
STRUCTURED PREDICTION: STATISTICAL AND
COMPUTATIONAL GUARANTEES IN LEARNING AND

INFERENCE
by

Kevin Bello

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Jean Honorio, Chair

Department of Computer Science

Dr. Jennifer Neville

Department of Computer Science

Dr. Dan Goldwasser

Department of Computer Science

Dr. Elena Grigorescu

Department of Computer Science

Approved by:

Dr. Kihong Park

2

To my parents Greta & Segundo

3

ACKNOWLEDGMENTS

First, I am immensely grateful to my advisor Prof. Jean Honorio for his valuable support

throughout this five years at Purdue. Particularly, I thank him for his vast patience on the

many times I got stuck in a research question; for his technical knowledge and imperative

feedback that ensured the culmination of all the projects we worked together; and for his

thoughtful guidance on events related to academic development and life in general. I will

surely reminisce about all the time we spent in front of the whiteboard discussing ideas and

trying to figure out solutions for the unknown. A large portion of the reason I enjoyed so

much my doctoral journey is because of Jean.

I also extend my gratitude to my Ph.D. committee members, Dan Goldwasser, Jeniffer

Neville, and Elena Grigorescu for putting the time to examine my research outcomes. Es-

pecially Prof. Goldwasser, for his keen comments and questions that helped me improve my

dissertation.

When I arrived to Lafayette on August 1st, 2016, I was prepared for a lonely voyage.

Little did I know I was going to find a lovely community of friends and colleagues that

made life much more bearable. Be it watching soccer games of the Peruvian national team,

dancing, or enjoying drinks with fun conversations, I thank Jorge, Eliana, Andres, Johnny,

Grady, Clara, Eloy, and the rest of the Peruvian Community at Purdue (PCP) for the all

the cheerful memories. I shall mention here that the PCP was founded by, the then Purdue

Master student, Sulyn Gomez, who I would marry four years after starting my graduate

studies. Nonetheless, she deserves her own paragraph of acknowledgments. Finally, I thank

Andres for introducing me to Kevin Ro who allowed me to join the training sessions of the

West Lafayette FC team in 2018. I will always cherish those moments of joy.

I would also like to thank Asish, Chuyang, Adarsh, Hanbyul, Gregory, and other members

of our research group under Prof. Honorio for their time and feedback on presentation

rehearsals and for being remarkable co-authors.

No words will ever exist to express the gratitude I feel towards my parents Segundo and

Greta and my brother Noel for their undying love and support that have helped me come

out victorious against the hardships of the Ph.D. Having been born in San Ramon, a small

4

town from the Peruvian jungle, I was always mindful of all the hard work my parents went

through to secure that my brother and I received the best of health, food, and education.

My parents always emphasized that education would open me many doors in life, and they

were right. They gave me everything they could have given me and I am here today in great

part because of them, thus, I dedicate this dissertation to them.

Lastly, I would like to thank my dear wife Sulyn who has been my partner in crime since

2018. I was proud and wretched when that same year she went to pursue her Ph.D. at

Berkeley; instantly however, every holiday or break would translate to a trip to California

to see her, which gave rise to an uncountable series of lighthearted memories. At the same

time, being a Ph.D. student myself meant I spent several extra hours and weekends working

on research, for which I am grateful to her for bear with me during such stressful times.

Furthermore, I am thankful to her as during my last semester at Purdue she gave me the

best gift a human being can ask for, the gift of life, the light of my life, my daughter Emilia.

Both are helping me appreciate the little pleasures of life and are shaping my life in new

ways. With all my heart, I look forward to a healthy and happy life with them.

5

TABLE OF CONTENTS

 LIST OF TABLES . 9

 LIST OF FIGURES . 10

 ABSTRACT . 11

 1 INTRODUCTION . 13

 1.1 Structured Prediction . 14

 1.2 Contributions . 16

 1.3 Outline and Previously Published Work . 17

 2 EFFICIENT LEARNING OF LATENT VARIABLE MODELS WITH GAUSSIAN

PERTURBATIONS . 18

 2.1 Preliminaries . 18

 2.2 Related Work . 20

 2.2.1 Structural Support Vector Machines with Latent Variables 21

 2.3 The Maximum Loss Over All Structured Outputs and Latent Variables . . . 22

 2.4 The Maximum Loss Over Random Structured Outputs and Latent Variables 24

 2.4.1 A More Efficient Evaluation . 25

 2.4.2 Statistical Analysis . 25

 2.5 Examples . 28

 2.5.1 Examples for Assumption 2.4.1 . 28

 2.5.2 Examples for Assumption 2.4.2 . 30

 2.5.3 Examples for Assumption 2.4.3 . 32

 2.6 Experiments . 33

 2.6.1 Synthetic Experiments . 33

 2.6.2 Image Matching . 35

 2.7 Discussion . 37

 2.7.1 Inference on Test Data . 37

 2.7.2 A Non-Convex Formulation . 37

6

 2.7.3 Randomizing the Latent Space . 38

 2.8 Summary . 38

 3 THE FUNDAMENTAL LIMITS OF STRUCTURED PREDICTION 40

 3.1 Preliminaries . 41

 3.1.1 The Hamming Loss . 41

 3.1.2 Factor Graphs and Scoring Functions 42

 3.1.3 Learning . 43

 3.1.4 A Review of the General Minimax Risk Framework 45

 3.1.5 Minimax Risk in Structured Prediction 46

 3.2 An Information-Theoretic Lower Bound for Structured Prediction 46

 3.3 Relation of the Pair-Dimension to the VC-Dimension 49

 3.4 Summary . 50

 4 EXACT INFERENCE IN STRUCTURED PREDICTION 51

 4.1 Preliminaries . 52

 4.2 On Exact Recovery of Node Labels . 54

 4.2.1 First Stage . 54

 4.2.2 Second Stage . 57

 4.2.3 Examples of Classes of Graphs . 58

 4.3 Exact Inference from the Degree-4 Sum-of-Squares Hierarchy 60

 4.3.1 Problem Definition . 61

 Semidefinite Programming Relaxation 62

 Sum-of-Squares Hierarchy . 63

 4.3.2 The Dual Problem . 67

 4.3.3 The Expected Value and the Algebraic Connectivity of the Level-2

Graph . 69

 4.3.4 Systems of Sets and a Novel Cheeger-Type Lower Bound 71

 4.3.5 Example . 74

 4.4 Exact Inference Under Fairness Constraints 76

 4.4.1 Statistical Parity . 76

7

 4.4.2 Problem Definition . 77

 4.4.3 The Effect of Linear Constraints on Exact Recovery 78

 4.4.4 Discussion . 81

 4.4.5 On the Multiplicity of the Algebraic Connectivity 82

 4.4.6 Experiments . 84

 4.5 Summary . 86

 5 CONCLUSION . 88

 REFERENCES . 90

 A APPENDIX TO CHAPTER 2 . 101

 A.1 Proof of Theorem 2.3.1 . 101

 A.2 Proof of Theorem 2.3.4 . 103

 A.3 Proof of Theorem 2.4.4 . 104

 B APPENDIX TO CHAPTER 3 . 111

 B.1 Proof of Theorem 3.2.2 . 111

 C APPENDIX TO CHAPTER 4 . 117

 C.1 Proof of Theorem 4.2.2 . 117

 C.2 Proof of Theorem 4.2.5 . 118

 C.3 Proof of Theorem 4.3.3 . 121

 C.4 A Degree-Based Construction of the Kneser Graph 124

 C.5 Proof of Theorem 4.4.4 . 127

8

LIST OF TABLES

 2.1 Average over 30 repetitions, and standard error at 95% confidence level. All
(LSSVM) indicates the use of exact learning and exact inference. Rand and
Rand/All indicate use of randomized learning, and randomized and exact infer-
ence respectively. The mark (S) indicates the use of superset H̃ in the calculation
of the margin. Rand/All obtains a similar or sightly better test performance than
All in the different study cases. Note that the runtime for learning using the ran-
domized approach is much less than exact learning, while still having a good test
performance. . 39

9

LIST OF FIGURES

 2.1 Image matching on the Buffy Stickmen dataset, predicted by our randomized
approach with latent variables. The problem is challenging since the dataset
contains different episodes and people. 36

 3.1 Three examples of factor graphs. (Left) Tree-structured factor graph. (Center)
Arbitrary factor graph with decomposition: f(x, y) = fφ1(x, y1) + fφ4(x, y4) +
fφ12(x, y1, y2) + fφ45(x, y4, y5) + fφ24(x, y2, y4) + fφ234(x, y2, y3, y4). (Right) Grid-
structured factor graph. . 43

 4.1 A comparison between the degree-4 SoS and SDP relaxations in the context of
structured prediction. We observe that SoS attains a higher probability of exact
recovery, for different levels of edge noise p. (See Section 4.3.1 for a formal problem
definition). . 61

 4.2 Illustration of the level-2 construction of X. The edge values in the grid graph
correspond to the observation X, while the edge values on the right graph cor-
respond to level-2 matrix X(2). The solid blue and dotted red lines indicate that
the observation is correct and corrupted, respectively. 66

 4.3 Johnson and Kneser graphs for n = 4, where each edge weight is related to some
dual variables from the SoS constraints. Edge weights with the same color sum
to zero, see eq.(4.16). 72

 4.4 Detailed example of how the level-2 SoS relaxation results in improving the al-
gebraic connectivity of the input graph through a combination of weights of its
level-2 version, and the Johnson and Kneser graphs. In the final graph G̃, green
and red lines indicate that their weights remain unchanged w.r.t. the Kneser and
Johnson edge weights, respectively; while blue lines indicate that their weights
resulted from the summation of weights from the Level-2 and Johnson graphs. . 75

 4.5 Graphs drawn from an Erdős-Rényi model with n nodes and edge probability r. (Left)
Probability of ∆ > 0 for each number of nodes, we draw 1000 graphs and compute ∆,
then, we count an event as success whenever ∆ > 0, and failure when ∆ = 0. (Right)
Expected value of ∆ computed across the 1000 random graphs for each number of nodes. 84

 4.6 Probability of exact recovery for Grid(4, 16) computed across 30 observations X for
different values of p ∈ [0, 0.1]. We observe how the addition of fairness constraints
helps exact recovery, where SDP+1F refers to the addition of a single constraint, and
SDP+2F the addition of two constraints. . 85

 C.1 (Left) The blue line is the algebraic connectivity found by CVX, i.e., 0.95 as
pointed in Figure (4.4 g). The red line is the algebraic connectivity of our con-
struction in Algorithm 2 for different values of c ∈ [0, 0.6]. (Right) The Kneser
graph weights for the optimal c = 0.32, which in effect differs from the weights
found by CVX in Figure (4.4 f). . 126

10

ABSTRACT

Structured prediction consists of receiving a structured input and producing a combi-

natorial structure such as trees, clusters, networks, sequences, permutations, among others.

From the computational viewpoint, structured prediction is in general considered intractable

because of the size of the output space being exponential in the input size. For instance, in

image segmentation tasks, the number of admissible segments is exponential in the number

of pixels. A second factor is the combination of the input dimensionality along with the

amount of data under availability. In structured prediction it is common to have the input

live in a high-dimensional space, which involves to jointly reason about thousands or millions

of variables, and at the same time contend with limited amount of data. Thus, learning and

inference methods with strong computational and statistical guarantees are desired. The

focus of our research is then to propose principled methods for structured prediction that

are both polynomial time, i.e., computationally efficient, and require a polynomial number

of data samples, i.e., statistically efficient.

The main contributions of this thesis are as follows:

i. We develop an efficient and principled learning method of latent variable models for

structured prediction under Gaussian perturbations. We derive a Rademacher-based

generalization bound and argue that the use of non-convex formulations in learning

latent-variable models leads to tighter bounds of the Gibbs decoder distortion.

ii. We study the fundamental limits of structured prediction, i.e., we characterize the nec-

essary sample complexity for learning factor graph models in the context of structured

prediction. In particular, we show that the finiteness of our novel pair-dimension is

necessary for learning. Lastly, we show a connection between the pair-dimension and

the VC-dimension—which allows for using existing results on VC-dimension to calculate

the pair-dimension.

iii. We analyze a generative model based on connected graphs, and find the structural con-

ditions of the graph that allow for the exact recovery of the node labels. In particular,

we show that exact recovery is realizable in polynomial time for a large class of graphs.

11

Our analysis is based on convex relaxations, where we thoroughly analyze a semidefi-

nite program and a degree-4 sum-of-squares program. Finally, we extend this model to

consider linear constraints (e.g., fairness), and formally explain the effect of the added

constraints on the probability of exact recovery.

12

1. INTRODUCTION

Over the last decade, artificial intelligence (AI) has played a critical role in the progress of

several industries, and is sometimes regarded as the “new electricity” by established leaders of

the field [1]. In particular, machine learning, a sub-field of AI, has received a lot of attention

by the industry and is currently been applied in a wide range of domains, for example,

transportation, medicine, speech and image processing, forecasting, and robotics, to name

a few. This implies that new problems, packed with their own challenges, are constantly

arising, which calls for novel and better algorithms. However, at a high-level, one can

discriminate two important factors that drive the complexity of a machine learning problem.

One factor is related to what is being predicted, for instance, it could be a real number

indicating the likelihood that tomorrow is going to rain, the estimation of the share price of a

company in the next quarter, or the classification of a product review into a negative, neutral,

or positive category. In this regard, structured prediction consists of receiving a structured

input and producing a combinatorial structure such as trees, clusters, networks, sequences,

permutations, among others. From the computational viewpoint, structured prediction is in

general considered intractable because of the size of the output space being exponential in the

input size. For instance, in image segmentation tasks, the number of admissible segments

is exponential in the number of pixels. A second factor is the combination of the input

dimensionality along with the amount of data under availability. In structured prediction

it is common to have the input live in a high-dimensional space, which involves to jointly

reason about thousands or millions of variables, and at the same time contend with limited

amount of data. For instance, consider the bioinformatics problem of predicting the three-

dimensional structure of a protein given its amino acid sequence [2 , 3], in this case the input

sequence generally is of hundreds to thousands amino acids long [4], which requires to jointly

process all that information to predict a complex three-dimensional structure. Moreover,

due to massively parallel sequencing technology, we know many more protein sequences

than protein three-dimensional structures, and the gap is widening rather than diminishing.

Another interesting example is dependency parsing [5 – 7], in which one is given a sentence and

the goal is to predict a parse tree that represents its grammatical structure. In this case, a

13

sentence and its parse tree are usually jointly embedded in a high-dimensional feature vector,

a decade ago this construction relied on feature engineering, nowadays deep learning is being

applied to automatically create such embeddings. In addition, the number of parse trees of a

sentence is exponential in the length of the sentence, where only a few parse trees are actually

good candidates. However, in practice we receive only one parse tree for each sentence and

this is usually manually annotated, which requires quite a bit of human work to create a

single training set. For this reason, not all languages enjoy the luxury of having large training

sets for different language applications. Other examples of the applicability of structure

prediction include: part-of-speech tagging [8], object detection [9], scene understanding [10 –

 12], phoneme/speech recognition [13 , 14], and text-to-speech mapping [15]. Thus, learning

and inference methods with strong computational and statistical guarantees are desired. The

focus of this research is then to propose principled methods for structured prediction that

are both polynomial time, i.e., computationally efficient, and require a polynomial number

of data samples, i.e., statistically efficient. Finally, to further motivate this line of work,

there is a lack of foundational research in structured prediction as opposed to other machine

learning problems, such as binary classification and regression. In what follows, we formally

and succinctly introduce the structured prediction problem, and later summarize in a high

level the main technical contributions of this thesis.

1.1 Structured Prediction

A large fragment of machine learning models are considered discriminative models. Dis-

criminative learning is an approach that aims to directly learn a function f : X → Y that

maps inputs x ∈ X to outputs y ∈ Y . When Y = {0, 1} or Y = R, we are facing the

long-established binary and regression problems, respectively. However, in the structured

prediction framework, the output space Y is some type of structured output such as graphs,

sequences, sets, among others. As a concrete example, consider that the input space X

consists of square images, where these images are represented by matrices in Rn×n; let also

the output space Y consists of all matrices in {0, 1}n×n. The previous example is an instance

of the image segmentation task, where each binary entry in a matrix y ∈ Y corresponds to

14

assigning a pixel to foreground or background. The reader can rapidly notice that the size

of the output space is exponential in n; and also that, for a given input x, definitely not all

outputs y are equally “good”. Then, for a given image x, it is natural to attempt to assign

a score to each possible segmentation y ∈ Y , and choose as prediction the output y that

attains the best score—which hopefully corresponds to the best possible segmentation. More

formally, let s : X × Y → R be a score function that assigns a real number to each given

pair (x, y). Moreover, assume that s is parameterized by θ. Then, our prediction function f

can be described as:

f(x) = arg max
y∈Y

s(x, y | θ). (1.1)

Eq.(1.1) is regarded as the inference problem. That is, given a fixed θ, one seeks to efficiently

find the output y that maximizes s. Finally, given a set of m observations of input-output

pairs S = {(xi, yi)}mi=1, the task of estimating θ from S corresponds to the learning problem.

We note that the learning problem typically requires performing an inference step during

the learning stage.

In this thesis, we aim to answer the following questions:

i. Learning:

(i) How to efficiently learn the mapping f from a finite set of samples S?

(ii) How many observations suffice to learn f so that it generalizes to unseen observa-

tions?

(iii) What is the minimum number of samples needed to learn f so that it performs

better than a random predictor?

ii. Inference:

(i) Is it possible to solve eq.(1.1) exactly in polynomial time?

(ii) What classes of structures allow for efficient exact inference?

(iii) If one further constrains the inference problem in eq.(1.1), what role do the addi-

tional constraints play in exact inference?

15

1.2 Contributions

The overall contribution of this thesis is to demonstrate that, when facing intractable

problems in machine learning, one can aim to exactly solve subset of instances where there

exists polynomial time methods, or develop approximate algorithms—with guarantees—that

yield reasonable results to deal with intractability. Specifically:

i. We propose an efficient and principled learning method of latent variable models for

structured prediction under Gaussian perturbations. Our method is based on clev-

erly sampling a polynomial number of objects from some proposal distribution that

would then guarantee a good approximation of the loss at training time. We derive a

Rademacher-based generalization bound and argue that the use of non-convex formu-

lations in learning latent-variable models leads to tighter upper bounds of the Gibbs

decoder distortion.

ii. We characterize the necessary sample complexity for learning factor graph models in the

context of structured prediction. Specifically, we introduce a novel type of dimension,

named pair-dimension, and show that its finiteness is necessary for learning. We further

show the connection of the pair-dimension to the VC-dimension, which could allow us

computing the pair-dimension from the several known results on VC-dimension.

iii. We analyze a generative model based on connected graphs, and aim to discover the

structural conditions that allow for the exact recovery of the node labels. We show

that exact recovery is possible and achievable in polynomial time for multiple classes

of graphs of n nodes where their Cheeger constant grows in at least O(log n). Our

analysis is based on continuous relaxations of a combinatorial problem, where we also

thoroughly study the problem under the sum-of-squares hierarchy. Finally, we extend

this model to consider linear constraints (e.g., in the context of fairness), and formally

explain the effect of the added constraints on the probability of exact recovery.

16

1.3 Outline and Previously Published Work

The rest of the manuscript is organized as follows. Chapter 2 is concerned with efficient

learning of latent-variable models for structured prediction, and describes in detail our main

results, proofs, and comparison with previous work. Chapter 3 discusses the fundamental

limits of structured prediction based on factor graph models, and describes our main results

for the same, along with detailed comparison with prior work. Finally, Chapter 4 delves

into understanding exact inference in structured prediction, and describes our main results,

proofs, and detailed comparison with prior work.

The bulk of this manuscript is based on the following five papers [16 – 20], which are joint

work of mine with my advisor Jean Honorio. The first paper [16] contains our results for

efficient learning in structured prediction. The main results on the fundamental limits of

structured prediction are described in [19]. The results on exact inference are contained in

[17 , 18 , 20]. Finally, our work [21] was also published but is not included in this dissertation.

17

2. EFFICIENT LEARNING OF LATENT VARIABLE MODELS

WITH GAUSSIAN PERTURBATIONS

In many tasks it is crucial to take into account latent variables. For example, in machine

translation, one is usually given a sentence x and its translation y, but not the linguistic

structure h that connects them (e.g., alignments between words). Even if h is not observable,

it is important to include this information in the model in order to obtain better prediction

results. Examples also arise in computer vision, for instance, most images in indoor scene

understanding [22] are cluttered by furniture and decorations, whose appearances vary dras-

tically across scenes, and can hardly be modeled (or even hand-labeled) consistently. In this

application, the input x is an image, the structured output y is the layout of the faces (floor,

ceiling, walls) and furniture, while the latent structure h assigns a binary label to each pixel

(clutter or non-clutter).

2.1 Preliminaries

We denote the input space as X , the output space as Y , and the latent space as H. We

assume a distribution D over the observable space X × Y . We further assume that we are

given a training set S of n i.i.d. samples drawn from the distribution D, i.e., S ∼ Dn.

Let Yx 6= ∅ denote the countable set of feasible outputs or decodings of x. In general,

|Yx| is exponential with respect to the input size. Likewise, let Hx 6= ∅ denote the countable

set of feasible latent decodings of x.

We consider a fixed mapping Φ from triples to feature vectors to describe the relation

among input x, output y, and latent variable h, i.e., for any triple (x, y, h), we have the

feature vector Φ(x, y, h) ∈ Rk \ {0}. For a parameter w ∈ W ⊆ Rk \ {0}, we consider linear

decoders of the form:

fw(x) = arg max
(y,h)∈Yx×Hx

〈Φ(x, y, h),w〉. (2.1)

The problem of computing this arg max is typically referred as the inference or prediction

problem. In practice, very few cases of the above general inference problem are tractable,

18

while most are NP-hard and also hard to approximate within a fixed factor. (For instance,

see Section 6.1 in [23] for a thorough discussion).

We denote the distortion function by d : Y × Y × H → [0, 1], which measures the

dissimilarity among two elements of the output space Y and one element of the latent space

H. (Note that the distortion function is general in the sense that the latent element may

not be used in some applications). Therefore, the goal is to find a w ∈ W that minimizes

the decoder distortion, that is:

min
w∈W

E
(x,y)∼D

[
d(y, (fw(x)))

]
. (2.2)

In the above equation, the inner parentheses surrounding fw(x) indicate that we are inserting

a pair (ŷ, ĥ) = fw(x) into the distortion function. From the computational point of view, the

above optimization problem is intractable since d(y, (fw(x))) is discontinuous with respect

to w. From the statistical viewpoint, eq.(2.2) requires access to the data distribution D and

would require an infinite amount of data. In practice, one only has access to a finite number

of samples.

Furthermore, even if one were able to compute w using the objective in eq.(2.2), this

parameter w, while achieving low distortion, could potentially be in a neighborhood of

parameters with high distortion. Therefore, we can optimize a more robust objective that

takes into account perturbations. In this chapter we consider Gaussian perturbations. More

formally, let α > 0 and let Q(w) be a unit-variance Gaussian distribution centered at αw of

parameters w′ ∈ W . The Gibbs decoder distortion of the perturbation distribution Q(w)

and data distribution D, is defined as:

L(Q(w), D) = E
(x,y)∼D

[
E

w′∼Q(w)

[
d(y, (fw′(x)))

]]
. (2.3)

Then, the optimization problem using the Gibbs decoder distortion can be written as:

min
w∈W

L(Q(w), D).

19

We define the margin m(x, y, y′, h′,w) as follows:

m(x, y, y′, h′,w) = max
h∈Hx

〈Φ(x, y, h),w〉 − 〈Φ(x, y′, h′),w〉.

Note that since we are considering latent variables, our definition of margin differs from that

of McAllester [24], and Honorio and Jaakkola [23]. For a given pair (x, y) and parameter w,

let h∗ = arg maxh∈Hx〈Φ(x, y, h),w〉. In this case h∗ can be interpreted as the latent variable

that best explains the pair (x, y). Then, for a fixed w, the margin computes the amount by

which the pair (y, h∗) is preferred to the pair (y′, h′).

Next we introduce the concept of parts, also used in the work of [24]. Let c(p, x, y, h) be

a nonnegative integer that represents the number of times that the part p ∈ P appears in

the triple (x, y, h). For a part p ∈ P , we define the feature p as follows:

Φp(x, y, h) ≡ c(p, x, y, h).

We let Px 6= ∅ denote the set of p ∈ P such that there exists (y, h) ∈ Yx × Hx with

c(p, x, y, h) > 0.

2.2 Related Work

During past years, there has been several solutions to address the problem of latent

variables in structured prediction. In the field of computer vision, hidden conditional random

fields (HCRF) [25 – 27] have been widely applied for object recognition and gesture detection.

In natural language processing, there are also works in applying discriminative probabilistic

latent variable models, for example, the training of probabilistic context free grammars with

latent annotations in a discriminative manner [28]. The work of Yu and Joachims [29] extends

the margin re-scaling SSVM in [30] by introducing latent variables (LSSVM) and obtains a

formulation that is optimized using the concave-convex procedure (CCCP) [31]. The work of

Ping, Liu, and Ihler [32] considers a smooth objective in LSSVM by incorporating marginal

maximum a posteriori inference that “averages” over the latent space.

20

Some of the scarce works in deriving generalization bounds for structured prediction in-

clude the work of McAllester [24], which provides PAC-Bayesian guarantees for arbitrary

losses; and the work of Cortes, Kuznetsov, Mohri, and Yang [33], which provides data-

dependent margin guarantees for a general family of hypotheses with an arbitrary factor

graph decomposition. However, with the exception of Honorio and Jaakkola [23], both afore-

mentioned works do not focus on producing computationally tractable methods. Moreover,

prior generalization bounds have not focused on latent variables.

2.2.1 Structural Support Vector Machines with Latent Variables

Yu and Joachims [29] extended the formulation of margin re-scaling given in [30] by

incorporating latent variables. The motivation to extend such formulation is that it leads

to a difference of two convex functions, which then allows the use of CCCP [31]. The

aforementioned formulation is:

min
w

1
2‖w‖

2
2 + C ·

∑
(x,y)∈S

max
(ŷ,ĥ)∈Yx×Hx

{〈Φ(x, ŷ, ĥ),w〉+ d(y, ŷ, ĥ)}

− C ·
∑

(x,y)∈S
max
h∈Hx

〈Φ(x, y, h),w〉. (2.4)

In the case of standard SSVMs (without latent variables), Tsochantaridis, Joachims, Hof-

mann, and Altun [30] discussed two advantages of the slack re-scaling formulation over the

margin re-scaling formulation, these are: the slack re-scaling formulation is invariant to the

scaling of the distortion function, and the margin re-scaling potentially gives significant score

to structures that are not even close to being confusable with the target structures. Altun

and Hofmann [34], Collins and Roark [35], and Taskar, Guestrin, and Koller [36] proposed

similar formulations to the slack re-scaling formulation. Despite its theoretical advantages,

the slack re-scaling has been less popular than the margin re-scaling approach due to compu-

tational requirements. In particular, both formulations require optimizing over the output

space, but while margin re-scaling preserves the structure of the score and error functions,

the slack re-scaling does not. This results in harder inference problems during training.

Honorio and Jaakkola [23] also analyzed the slack re-scaling approach and formally showed

21

that using random structures one can obtain a tighter upper bound of the Gibbs decoder

distortion. However, none of these works take into account latent variables.

The following formulation corresponds to the slack re-scaling approach with latent vari-

ables:

min
w

1
n

∑
(x,y)∈S

max
(ŷ,ĥ)∈Yx×Hx

d(y, ŷ, ĥ) 1
[
m(x, y, ŷ, ĥ,w) ≤ 1

]
+ λ‖w‖2

2. (2.5)

We take into account the loss of structures whose margin is less than one (i.e., m(·) ≤ 1)

instead of the Hamming distance, as done in [23]. This is because the former gave better

results in preliminary experiments. Also, it is more related to current practice (e.g., [29]). In

order to obtain an SSVM-like formulation, the hinge loss is used instead of the discontinuous

0/1 loss in the above formulation. However, note that both eq.(2.4) and eq.(2.5) are now

non-convex problems with respect to the learning parameter w, even if the hinge loss is used.

2.3 The Maximum Loss Over All Structured Outputs and Latent Variables

In this section we extend the work of McAllester [24] by including latent variables. In the

following theorem, we show that the slack re-scaling objective function, eq.(2.5), is an upper

bound of the Gibbs decoder distortion, eq.(2.3), up to an statistical accuracy of O(
√

logn/n)

for n training samples.

Theorem 2.3.1. Assume that there exists a finite integer value r such that |Yx ×Hx| ≤ r

for all (x, y) ∈ S. Assume also that ‖Φ(x, y, h)‖2 ≤ γ for any triple (x, y, h). Fix δ ∈ (0, 1).

With probability at least 1− δ/2 over the choice of n training samples, simultaneously for all

parameters w ∈ W and unit-variance Gaussian perturbation distributions Q(w) centered at

wγ
√

8 log (rn/‖w‖2
2), we have:

L(Q(w), D) ≤ 1
n

∑
(x,y)∈S

max
(ŷ,ĥ)∈Yx×Hx

d(y, ŷ, ĥ) 1
[
m(x, y, ŷ, ĥ,w) ≤ 1

]
+ ‖w‖

2
2

n

+

√√√√4‖w‖2
2 γ

2 log (rn/‖w‖2
2) + log (2n/δ)

2(n− 1)

22

(See Appendix A for all detailed proofs).

For the proof of the above, we used the PAC-Bayes theorem and well-known Gaussian

concentration inequalities. Note that the average sum in the right-hand side, i.e., the objec-

tive function, can be equivalently written as:

1
n

∑
(x,y)∈S

max
(ŷ,ĥ)∈Yx×Hx

min
h∈Hx

d(y, ŷ, ĥ) 1
[
〈Φ(x, y, h),w〉 − 〈Φ(x, ŷ, ĥ),w〉 ≤ 1

]
.

Remark 2.3.2. It is clear that the above formulation is tight with respect to the latent

space Hx due to the minimization. This is an interesting observation because it reinforces

the idea that a non-convex formulation is required in models using latent variables, i.e.,

an attempt to convexify the formulation will result in looser upper bounds and consequently

might produce worse predictions. Some other examples of non-convex formulations for latent-

variable models are found in [29 , 37].

Note also that the upper bound has a maximization over Yx×Hx (usually exponential in

size) and a minimization over Hx (potentially in exponential size). We state two important

observations in the following remark.

Remark 2.3.3. First, for the minimization, it is clear that the use of a subset of Hx would

lead to a looser upper bound. However, using a superset H̃x ⊇ Hx would lead to a tighter

upper bound. The latter relaxation not only can tighten the bound but also can allow the

margin to be computed in polynomial time. See for instance some analyses of LP-relaxations

in [38 – 40]. Second, for the maximization, using a subset of Yx ×Hx would lead to a tighter

upper bound.

From the first observation above, we will now introduce a new definition of margin, m̃,

which performs a maximization over a superset H̃x ⊇ Hx.

m̃(x, y, y′, h′,w) = max
h∈H̃x
〈Φ(x, y, h),w〉 − 〈Φ(x, y′, h′),w〉.

Several examples are NP-hard m for H (DAGs, trees or cardinality constrained sets), but

poly-time m̃ for H̃ being a set of binary strings. That is, we can encode any DAG (in H)

23

as a binary string (in H̃), but not all binary strings are DAGs. Later, in Section 2.6 , we

provide an empirical comparison of the use of m and m̃. We next present a similar upper

bound to the one obtained in Theorem 2.3.1 but now using the margin m̃.

Theorem 2.3.4 (Relaxed margin bound.). Assume that there exists a finite integer value

r such that |Yx × Hx| ≤ r for all (x, y) ∈ S. Assume also that ‖Φ(x, y, h)‖2 ≤ γ for any

triple (x, y, h). Fix δ ∈ (0, 1). With probability at least 1− δ/2 over the choice of n training

samples, simultaneously for all parameters w ∈ W and unit-variance Gaussian perturbation

distributions Q(w) centered at wγ
√

8 log (rn/‖w‖2
2), we have:

L(Q(w), D) ≤ 1
n

∑
(x,y)∈S

max
(ŷ,ĥ)∈Yx×Hx

d(y, ŷ, ĥ) 1
[
m̃(x, y, ŷ, ĥ,w) ≤ 1

]
+ ‖w‖

2
2

n

+

√√√√4‖w‖2
2 γ

2 log (rn/‖w‖2
2) + log (2n/δ)

2(n− 1) .

From the second observation in Remark 2.3.3 , it is natural to ask what elements should

constitute this subset in order to control the statistical accuracy with respect to the Gibbs

decoder. Finally, if the number of elements is polynomial then we also have an efficient

computation of the maximum. We provide answers to these questions in the next section.

2.4 The Maximum Loss Over Random Structured Outputs and Latent Vari-
ables

In this section, we show the relation between PAC-Bayes bounds and the maximum

loss over random structured outputs and latent variables sampled i.i.d. from some proposal

distribution.

24

2.4.1 A More Efficient Evaluation

Instead of using a maximization over Yx ×Hx, we will perform a maximization over a

set T (w, x) of random elements sampled i.i.d. from some proposal distribution R(w, x) with

support on Yx ×Hx. More explicitly, our new formulation is:

min
w

1
n

∑
(x,y)∈S

max
(ŷ,ĥ)∈T (w,x)

d(y, ŷ, ĥ) 1
[
m̃(x, y, ŷ, ĥ,w) ≤ 1

]
+ λ‖w‖2

2. (2.6)

We make use of the following two assumptions in order for |T (w, x)| to be polynomial, even

when |Yx ×Hx| is exponential with respect to the input size.

Assumption 2.4.1 (Maximal distortion [23]). The proposal distribution R(w, x) fulfills the

following condition. There exists a value β ∈ [0, 1) such that for all (x, y) ∈ S and w ∈ W:

P
(y′,h′)∼R(w,x)

[
d(y, y′, h′) = 1

]
≥ 1− β.

Assumption 2.4.2 (Low norm). The proposal distribution R(w, x) fulfills the condition for

all (x, y) ∈ S and w ∈ W:

1

∥∥∥∥∥ E
(y′,h′)∼R(w,x)

[
Φ(x, y, h∗)−Φ(x, y′, h′)

]∥∥∥∥∥
2
≤ 1

2
√
n
≤ 1

2‖w‖2
,

where h∗ = arg maxh∈Hx〈Φ(x, y, h),w〉.

In Section 2.5 we provide examples for Assumptions 2.4.1 and 2.4.2 which allow us to

obtain |T (w, x)| = O
(

1
log(1/(β+e−1/(γ2‖w‖22)))

)
. Note that β plays an important role in the

number of samples that we need to draw from the proposal distribution R(w, x).

2.4.2 Statistical Analysis

In this approach, randomness comes from two sources, from the training data S and the

random set T (w, x). That is, in Theorem 2.3.1 , randomness only stems from the training
1

 ↑ The second inequality follows from an implicit assumption made in Theorem 2.3.1 , i.e., ‖w‖2
2 /n ≤ 1 since

the distortion function d is at most 1.

25

set S. Now we need to produce generalization results that hold for all the sets T (w, x), and

for all possible proposal distributions R(w, x). The following assumption will allow us to

upper-bound the number of possible proposal distributions R(w, x).

Assumption 2.4.3 (Linearly inducible ordering [23]). The proposal distribution R(w, x)

depends solely on the linear ordering induced by the parameter w ∈ W and the mapping

Φ(x, ·, ·). More formally, let r(x) ≡ |Yx×Hx| and thus Yx×Hx ≡ {(y1, h1), . . . , (yr(x), hr(x))}.

Let w,w′ ∈ W be any two arbitrary parameters. Let π(x) = (π1, . . . , πr(x)) be a permuta-

tion of {1, . . . , r(x)} such that 〈Φ(x, yπ1 , hπ1),w〉 < · · · < 〈Φ(x, yπr(x) , hπr(x)),w〉. Also, let

π′(x) = (π′1, . . . , π
′
r(x)) be a permutation of {1, . . . , r(x)} such that 〈Φ(x, yπ′1

, hπ′1
),w′〉 <

· · · < 〈Φ(x, yπ′
r(x)
, hπ′

r(x)
),w′〉. For all w,w′ ∈ W and x ∈ X , if π(x) = π′(x) then

KL
(
R(w, x)

∥∥R(w′, x)
)

= 0. In this case, we say that the proposal distribution fulfills

R(π(x), x) ≡ R(w, x).

In Assumption 2.4.3 , geometrically speaking, for a fixed x, we first project the feature

vectors Φ(x, y, h) of all (y, h) ∈ Yx ×Hx onto the lines w and w′. Let π(x) and π′(x) be the

resulting ordering of the structured outputs after projecting them ontow andw′ respectively.

Two proposal distributions R(w, x) and R(w′, x) are the same provided that π(x) = π′(x).

That is, the specific values of 〈Φ(x, y, h),w〉 and 〈Φ(x, y, h),w′〉 are irrelevant, and only

their ordering matters.

In Section 2.5 we show an example that fulfills Assumption 2.4.3 , which corresponds

to a generalization of Algorithm 2 proposed in [23] for any structure with computationally

efficient local changes.

In the following theorem, we show that our new formulation in eq.(2.6) is related to an

upper bound of the Gibbs decoder distortion up to statistical accuracy of O(log2 n/√n) for n

training samples.

Theorem 2.4.4. Assume that there exist finite integer values r, r̃, `, and γ such that |Yx×

Hx| ≤ r and |H̃x| ≤ r̃ for all (x, y) ∈ S, | ∪(x,y)∈S Px| ≤ `, and ‖Φ(x, y, h)‖2 ≤ γ for

any triple (x, y, h). Assume that the proposal distribution R(w, x) with support on Yx ×Hx

fulfills Assumption 2.4.1 with value β, as well as Assumptions 2.4.2 and 2.4.3 . Assume

that ‖w‖2
2 ≤ 1

128γ2 log(1/(1−β)) . Fix δ ∈ (0, 1) and an integer s such that 3 ≤ 2s + 1 ≤

26

9
20

√
`(r + 1) + 1. With probability at least 1−δ over the choice of both n training samples and

n sets of random structured outputs and latent variables, simultaneously for all parameters

w ∈ W with ‖w‖0 ≤ s, unit-variance Gaussian perturbation distributions Q(w) centered at

wγ
√

8 log (rn/‖w‖2
2), and for sets of random structured outputs T (w, x) sampled i.i.d. from

the proposal distribution R(w, x) for each training sample (x, y) ∈ S, such that |T (w, x)| =

d1
2

logn
log(1/(β+e−1/(128γ2‖w‖22)))

e, we have:

L(Q(w), D) ≤ 1
n

∑
(x,y)∈S

max
(ŷ,ĥ)∈T (w,x)

d(y, ŷ, ĥ) 1
[
m̃(x, y, ŷ, ĥ,w) ≤ 1

]
+ ‖w‖

2
2

n

+

√√√√√4‖w‖2
2 γ

2 log rn
‖w‖22

+ log 2n
δ

2(n− 1) +
√

1
n

+ 3
√
s(log `+ 2 log (nr)) + log (4/δ)

n

+ 1
log(1/(β + e−1/(128γ2‖w‖22)))

√
(2s + 1) log(`(nr̃ + 1) + 1) log3(n+ 1)

n
.

The proof of the above is based on Theorem 2.3.4 as a starting point. In order to

account for the computational aspect of requiring sets T (w, x) of polynomial size, we use

Assumptions 2.4.1 and 2.4.2 for bounding a deterministic expectation. In order to account

for the statistical aspects, we use Assumption 2.4.3 and Rademacher complexity arguments

for bounding a stochastic quantity for all sets T (w, x) of random structured outputs and

latent variables, and all possible proposal distributions R(w, x).

Remark 2.4.5. A straightforward application of Rademacher complexity in the analysis of

[23] leads to a bound of O(|Hx|/
√
n). Technically speaking, a classical Rademacher com-

plexity states that: let F and G be two hypothesis classes. Let min(F ,G) = {min(f, g) |

f ∈ F , g ∈ G}. Then R(min(F ,G)) ≤ R(F) + R(G). If we were to use such result, then

Theorem 2.4.4 would contain a O(|Hx|/
√
n) term, or equivalently O(r/

√
n). This would be

prohibitive since r is typically exponential size, and one would require a very large number

of samples n in order to have a useful bound, i.e., to make O(r/
√
n) close to zero. In the

proof of Theorem 2.4.4 , we show a way to tighten the bound to O(
√

log |Hx|/n).

27

2.5 Examples

Here we provide several examples that fulfill the three main assumptions of our theoretical

results.

2.5.1 Examples for Assumption 2.4.1

First we argue that we can perform a change of measure between different proposal

distributions. This allows us to focus on uniform proposals afterwards.

Claim 2.5.1 (Change of measure). Let R(w, x) and R′(w, x) two proposal distributions,

both with support on Yx ×Hx. Assume that R(w, x) fulfills Assumption 2.4.1 with value

β1. Let rw,x(·) and r′w,x(·) be the probability mass functions of R(w, x) and R′(w, x) respec-

tively. Assume that the total variation distance between R(w, x) and R′(w, x) fulfills for all

(x, y) ∈ S and w ∈ W:

TV(R(w, x) | R′(w, x)) ≡ 1
2
∑
(y,h)
|rw,x(y, h)− r′w,x(y, h)| ≤ β2.

Then R′(w, x) fulfills Assumption 2.4.1 with β = β1 + β2 provided that β1 + β2 ∈ [0, 1).

Proof. For all (x, y) ∈ S and w ∈ W , by definition of the total variation distance, we have

for any event A(x, y, y′, h′,w):

∣∣∣∣∣ P
(y′,h′)∼R(w,x)

[A(x, y, y′, h′,w)]− P
(y′,h′)∼R′(w,x)

[A(x, y, y′, h′,w)]
∣∣∣∣∣ ≤ TV(R(w, x)‖R′(w, x))

Let the event A(x, y, y′, h′,w) : d(y, y′, h′) = 1 and 1−m(x, y, y′, h′,w) ≥ 0. Since R(w, x)

fulfills Assumption 2.4.1 with value β1 and since TV(R(w, x)‖R′(w, x)) ≤ β2, we have that

for all (x, y) ∈ S and w ∈ W :

P
(y′,h′)∼R′(w,x)

[A(x, y, y′, h′,w)] ≥ P
(y′,h′)∼R(w,x)

[A(x, y, y′, h′,w)]− TV(R(w, x)‖R′(w, x))

≥ 1− β1 − β2,

which proves our claim.

28

Next, we present a new result for permutations and for a distortion that returns the

number of different positions. We later use this result for an image matching application in

the experiments section.

Claim 2.5.2 (Permutations). Let Yx be the set of all permutations of v elements, such that

v > 1. Let yi be the i-th element in the permutation y. Let d(y, y′, h) = 1
v

∑v
i=1 1[yi 6= y′i]. The

uniform proposal distribution R(w, x) = R(x) with support on Yx ×Hx fulfills Assumption

 2.4.1 with β = 2/3.

Proof. Since Yx is the set of all permutations of v elements, then |Yx| = v!. In addition,

since d(y, y′, h) = 1
v

∑v
i=1 1[yi 6= y′i] and since R(x) is a uniform proposal distribution with

support on Yx ×Hx, we have:

P
(y′,h′)∼R(x)

[d(y, y′, h′) = 1] = P
y′

[d(y, y′) = 1]

= F (v)
v! (2.7.a)

≥ 1− 2/3.

For a fixed y, the function F (v) in step eq.(2.7.a) represents the number of permutations

y′ ∈ Yx such that d(y, y′, h) = 1. Moreover, F (v) can be computed through the following

recursion: F (v) = (v− 1)!× (1 +∑v−2
i=1

F (i)
i!). The probability is then F (v)/v!, it can be seen

that this probability converges as v → ∞ through the following: limv→∞
F (v+1)
(v+1)! −

F (v)
v! = 0.

The probability converges to 0.3679 approximately, while achieving a minimum value of 1/3

at v = 3. Hence β = 2/3.

Honorio and Jaakkola [23] presented several examples of distortion functions of the form

d(y, y′), for directed spanning trees, directed acyclic graphs and cardinality-constrained sets,

and a distortion function that returns the number of different edges/elements; as well as, for

any type of structured output and binary distortion functions. For completeness, we next

present the examples provided in [23] since we make use of the suggested β values in our

synthetic experiments. Although their proofs are given without using latent variables, it is

straightforward to extend their claims by marginalizing over h.

29

i. Any type of structured output for binary distortion functions. Let Yx ×Hx be an arbi-

trary countable set of feasible decodings of x, such that |Yx| ≥ 2 for all (x, y) ∈ S. Let

d(y, y′, h) = 1[y 6= y′]. The uniform proposal distribution R(w, x) = R(x) with support

on Yx ×Hx fulfills Assumption 2.4.1 with β = 1/2.

ii. Directed spanning trees for a distortion function that returns the number of different

edges. Let Yx be the set of directed spanning trees of v nodes. Let A(y) be the adjacency

matrix of y ∈ Yx. Let d(y, y′, h) = 1
2(v−1)

∑
ij |A(y)ij − A(y′)ij|. The uniform proposal

distribution R(w, x) = R(x) with support on Yx ×Hx fulfills Assumption 2.4.1 with

β = v−2
v−1 .

iii. Directed acyclic graphs for a distortion function that returns the number of different

edges. Let Yx be the set of directed acyclic graphs of v nodes and b parents per node,

such that 2 ≤ b ≤ v − 2. Let A(y) be the adjacency matrix of y ∈ Yx. Let d(y, y′, h) =
1

b(2v−b−1)
∑
ij |A(y)ij − A(y′)ij|. The uniform proposal distribution R(w, x) = R(x) with

support on Yx ×Hx fulfills Assumption 2.4.1 with β = b2+2b+2
b2+3b+2 .

iv. Cardinality-constrained sets for a distortion function that returns the number of differ-

ent elements. Let Yx be the set of sets of b elements chosen from v possible elements,

such that b ≤ v/2. Let d(y, y′, h) = 1
2b(|y − y

′|+ |y′ − y|). The uniform proposal distri-

bution R(w, x) = R(x) with support on Yx ×Hx fulfills Assumption 2.4.1 with β = 1/2.

2.5.2 Examples for Assumption 2.4.2

The claim below is for a particular instance of a sparse mapping and a uniform proposal

distribution.

Claim 2.5.3 (Sparse mapping). Let b > 0 be an arbitrary integer value. For all (x, y) ∈ S

with h∗ = arg maxh∈Hx〈Φ(x, y, h),w〉, let Υx = ∪p∈PxΥp
x, where the partition Υp

x is defined

as follows for all p ∈ Px:

Υp
x ≡ {(y′, h′) | |Φp(x, y, h∗)−Φp(x, y′, h′)| ≤ b and (∀q 6= p) Φq(x, y, h∗) = Φq(x, y′, h′)}.

30

If n ≤ |Px|/(4b2) for all (x, y) ∈ S, then the uniform proposal distribution R(w, x) = R(x)

with support on Yx ×Hx fulfills Assumption 2.4.2 .

Proof. Let ∆ ≡ Φ(x, y, h∗)−Φ(x, y′, h′). Let p ∈ Px be a superindex denoting the parti-

tions, i.e., for all p ∈ Px, let ∆p ≡ Φ(x, y, h∗)−Φ(x, y′, h′) for some (y′, h′) ∈ Υp
x. By as-

sumption, since (y′, h′) ∈ Υp
x then |∆p

p| ≤ b and (∀q 6= p) ∆p
q = 0. Therefore:

∥∥∥∥∥ E
(y′,h′)∼R(x)

[∆]
∥∥∥∥∥

2
=
√√√√∑
q∈Px

E
(y′,h′)∼R(x)

[
∆q

]2

≤
√√√√∑
q∈Px

E
(y′,h′)∼R(x)

[
|∆q|

]2

=

√√√√√∑
q∈Px

∑
p∈Px

P
(y′,h′)∼R(x)

[(y′, h′) ∈ Υp
x] |∆p

q|

2

=

√√√√√∑
q∈Px

(
P

(y′,h′)∼R(x)
[(y′, h′) ∈ Υq

x] |∆q
q|
)2

≤

√√√√|Px|
(

b

|Px|

)2

= b/
√
|Px|,

where we used the fact that for a uniform proposal distribution R(x), we have:

P(y′,h′)∼R(w,x) [(y′, h′) ∈ Υq
x] = 1/|Px|. Finally, since we assume that n ≤ |Px|/(4b2), we have

b/
√
|Px| ≤ 1/(2

√
n) and we prove our claim.

The claim below is for a particular instance of a dense mapping and an arbitrary proposal

distribution.

Claim 2.5.4 (Dense mapping). Let a finite b > 0 be an arbitrary integer value. Let

|Φp(x, y, h∗) − Φp(x, y′, h′)| ≤ b
|Px| for all (x, y) ∈ S with h∗ = arg max

h∈Hx
〈Φ(x, y, h),w〉,

(y′, h′) ∈ Yx × Hx and p ∈ Px. If n ≤ |Px|/(4b2) for all (x, y) ∈ S, then any arbitrary

proposal distribution R(w, x) fulfills Assumption 2.4.2 .

31

Proof. Let ∆ ≡ Φ(x, y, h∗)−Φ(x, y′, h′). By assumption |∆p| ≤ b/|Px|, for all p ∈ Px. There-

fore:

∥∥∥∥∥ E
(y′,h′)∼R(w,x)

[∆]
∥∥∥∥∥

2
=
√√√√∑
p∈Px

E
(y′,h′)∼R(w,x)

[
∆p

]2

≤
√√√√∑
p∈Px

E
(y′,h′)∼R(w,x)

[
|∆p|

]2

≤

√√√√|Px|
(

b

|Px|

)2

= b/
√
|Px|

Finally, since we assume that n ≤ |Px|/(4b2), we have b/
√
|Px| ≤ 1/(2

√
n) and we prove our

claim.

2.5.3 Examples for Assumption 2.4.3

In the case of modeling without latent variables, Zhang, Lei, Barzilay, and Jaakkola

[7] and Zhang, Li, Barzilay, and Darwish [8] presented an algorithm for directed spanning

trees in the context of dependency parsing in natural language processing. Later, Honorio

and Jaakkola [23] extended the previous algorithm to any structure with computationally

efficient local changes, which includes directed acyclic graphs (traversed in post-order) and

cardinality-constrained sets. Next, we generalize Algorithm 2 in [23] by including latent

variables.

Algorithm 1 Procedure for sampling a structured output (y′, h′) ∈ Yx ×Hx from a greedy
local proposal distribution R(w, x)

1: Input: parameter w ∈ W , observed input x ∈ X

2: Draw uniformly at random a structured output (ŷ, ĥ) ∈ Yx ×Hx

3: repeat

4: Make a local change to (ŷ, ĥ) in order to increase 〈Φ(x, ŷ, ĥ),w〉

5: until no refinement in last iteration

6: Output: structured output and latent variable (y′, h′)← (ŷ, ĥ)

32

The algorithm above has the following property:

Claim 2.5.5 (Sampling for any type of structured output and latent variable). Algorithm 1

fulfills Assumption 2.4.3 .

Proof. Algorithm 1 depends solely on the linear ordering induced by the parameter w and

the mapping Φ(x, ·). That is, at any point in time, Algorithm 1 executes comparisons of

the form 〈Φ(x, y, h),w〉 > 〈Φ(x, ŷ, ĥ),w〉 for any two pair of structured outputs and latent

variables (y, h) and (ŷ, ĥ).

2.6 Experiments

In this section, we illustrate the use of our approach by using the formulation in eq.(2.6).

The goal of the synthetic experiments is to show the improvement in prediction results and

runtime of our method. While the goal of the real-world experiment is to show the usability

of our method in practice.

2.6.1 Synthetic Experiments

We present experimental results for directed spanning trees, directed acyclic graphs and

cardinality-constrained sets. We performed 30 repetitions of the following procedure. We

generated a ground truth parameterw∗ with independent zero-mean and unit-variance Gaus-

sian entries. Then, we generated a training set of n = 100 samples. Our mapping Φ(x, y, h)

is as follows. For every pair of possible edges/elements i and j, we define Φij(x, y, h) =

1

[
(hij xor xij) and i ∈ y and j ∈ y

]
. In order to generate each training sample (x, y) ∈ S,

we generated a random vector x with independent Bernoulli entries, each with equal proba-

bility of being 1 or 0. The latent space H is the set of binary strings with two entries being

1, where these two entries share a common edge or element, i.e., hij = hik = 1,∀ i, j, k.

To the best of our knowledge there is no efficient way to exactly compute the maximization

in the margin m under this latent space. Thus, we define H̃ (relaxed set) as the set of all

binary strings with exactly two entries being 1. We then can efficiently compute the margin

m̃ by a greedy approach since our feature vector is constructed using linear operators. After

33

generating x, we set (y, h) = fw∗(x). That is, we solved eq.(2.1) in order to produce the

structured output y, and disregard h.

We replaced the discontinuous 0/1 loss 1[z ≥ 0] with the convex hinge loss max (0, 1 + z),

as it is customary. Note however, that even by using the hinge loss, the objective functions

in eq.(2.4), eq.(2.5) and in eq.(2.6) are still non-convex with respect to w. This is due to

the maximization over the latent space in the definition of the margin. We used λ = 1/n

as suggested by Theorems 2.3.1 and 2.4.4 , and we performed 30 iterations of the subgradi-

ent descent method with a decaying step size 1/
√
t for iteration t. For sampling random

structured outputs and latent variables in eq.(2.6), we implemented Algorithm 1 for directed

spanning trees, directed acyclic graphs and cardinality-constrained sets. We performed the

local changes in Algorithm 1 as follows. Given a pair (ŷ, ĥ), making a local change to (ŷ, ĥ)

consists on iterating through all pairs (y′, h′) where ŷ and y′ differ only in one edge/element,

and where the single entries in ĥ and h′ are contiguous. Finally, we used β = 0.67 for directed

spanning trees, β = 0.84 for directed acyclic graphs, and β = 0.5 for cardinality-constrained

sets, as prescribed by the examples given in Section 2.5 .

We compared three training methods: the maximum loss over all possible structured

outputs and latent variables with slack re-scaling as in eq.(2.5). We also evaluated the

maximum loss over random structured outputs and latent variables, using the original latent

space, as well as, the superset relaxation as in eq.(2.6). We considered directed spanning

trees of 4 nodes, directed acyclic graphs of 4 nodes and 2 parents per node, and sets of 3

elements chosen from 9 possible elements. After training, for inference on an independent

test set, we used eq.(2.1) for the maximum loss over all possible structured outputs and latent

variables. For the maximum loss over random structured outputs and latent variables, we

use the following approximate inference approach:

f̃w(x) ≡ arg max
(y,h)∈T (w,x)

〈Φ(x, y, h),w〉. (2.8)

Note that we used small structures and latent spaces in order to compare to exact learning,

i.e., going through all possible structures as in eq.(2.5) and eq.(2.4). Bigger structures would

result in exponential number of structures, making exact methods intractable to compare

34

against our method. For purposes of testing, we tried cardinality constrained sets of 4

elements out of 100 (note that in this case |Y| ≈ 108, |H| ≈ 1016) and training took only 11

minutes under our approach.

Table 2.1 shows the runtime, the training distortion as well as the test distortion in an

independently generated set of 100 samples. In the different study cases, the maximum loss

over random structured outputs and latent variables obtains similar test performance than

the maximum loss over all possible structured outputs and latent variables. However, note

that our method is considerable faster.

2.6.2 Image Matching

We illustrate our approach for image matching on video frames from the Buffy Stickmen

dataset (http://www.robots.ox.ac.uk/∼vgg/data/stickmen/). The goal of the experiment is

to match the keypoints representing different body parts between two images. Each frame

contains 18 keypoints representing different parts of the body. From a total of 187 image

pairs (from different episodes and people), we randomly selected 120 pairs for training and

the remaining 67 pairs for testing. We performed a total of 30 repetitions. Ground truth

keypoint matching is provided in the dataset.

Following the experiments of Gane, Hazan, and Jaakkola [41], and Volkovs and Zemel

[42], we represent the matching as a permutation of keypoints. Let x = (I, I ′) be a pair of

images, and let y be a permutation of {1, . . . , 18}. We model the latent variable h as a R2×2

matrix representing an affine transformation of a keypoint, where h11, h22 ∈ {0.8, 1, 1.2},

and h12, h21 ∈ {−0.2, 0, 0.2}. Our mapping Φ(x, y, h) uses SIFT features, and the distance

between coordinates after using h.

The authors in [41 , 42] did not use latent variables, and considered the mapping Φ(x, y) =
1
18
∑18
i=1(Ψ(I, i)−Ψ(I ′, yi))2, where Ψ(I, k) ∈ R128 are the SIFT descriptors at scale 5 eval-

uated at keypoint k. We properly centered the coordinates independently on each frame to

avoid modeling translations in h. We use the mapping Φ(x, y, h) = (Φ(x, y), 1
18
∑18
i=1‖c(I, i)×

h−c(I ′, yi)‖2
2), where c(I, k) ∈ R2 are the coordinates of keypoint k. Intuitively, we are adding

35

http://www.robots.ox.ac.uk/~vgg/data/stickmen/

one extra feature that summarizes the change in rotation and scaling of the keypoints, i.e.,

Φ(x, y, h) ∈ R129.

The learning is performed using the randomized formulation as in eq.(2.6), and using

local changes as in Algorithm 1 for sampling from the proposal distribution. As in the

synthetic experiments, we also replaced the discontinuous 0/1 loss 1[z ≥ 0] with the convex

hinge loss max (0, 1 + z), and followed the local changes in Algorithm 1 for sampling from

the proposal distribution. The neighborhoods of the structures and latent variables were

defined as follow: for a given permutation y, we considered y′ to be its neighbor, and vice

versa, if they have only two mismatched entries. Similarly, for a given h, we considered h′

to be its neighbor, and vice versa, if they have only one different entry.

We used the distortion function and β = 2/3 as prescribed by Claim 2.5.2 . After learning,

for a given x from the test set, we performed 100 iterations of randomized inference as

in eq.(2.8). We obtained an average error of 0.3878 (6.98 incorrectly matched keypoints)

in the test set, which is an improvement to the values of 8.47 for maximum-a-posteriori

perturbations and 8.69 for max-margin, as reported in [41]. Finally, we show an example

from the test set in Figure 2.1 .

Figure 2.1. Image matching on the Buffy Stickmen dataset, predicted by our
randomized approach with latent variables. The problem is challenging since
the dataset contains different episodes and people.

36

2.7 Discussion

2.7.1 Inference on Test Data

The upper bound in Theorem 2.4.4 holds simultaneously for all parameters w ∈ W .

Therefore, our result implies that after learning the optimal parameter ŵ ∈ W in eq.(2.6)

from training data, we can bound the decoder distortion when performing exact inference

on test data. More formally, Theorem 2.4.4 can be additionally invoked for a test set S ′,

also with probability at least 1− δ. Thus, under the same setting as of Theorem 2.4.4 , the

Gibbs decoder distortion is upper-bounded with probability at least 1− 2δ over the choice

of S and S ′. In this chapter, we focused on learning the model parameters.

2.7.2 A Non-Convex Formulation

As mentioned in Section 2.1 , all formulations with latent variables (eq.(2.4), eq.(2.5), and

eq.(2.6)) are non-convex objectives. The motivation to use the margin re-scaling approach in

the work of Yu and Joachims [29] is that the non-convex objective leads to a difference of two

convex functions, which allows the use of CCCP [31]. In the case of models without latent

variables, Sarawagi and Gupta [43] propose a method to reduce the problem of slack re-scaling

to a series of modified margin re-scaling problems. However, there are two main caveats in

their approach. First, the optimization is only heuristic, that is, it is not guaranteed to solve

the slack rescaling objective exactly. Second, their method is specific to the cutting plane

training algorithm and does not easily extend to stochastic algorithms. Choi, Meshi, and

Srebro [44] propose efficient methods for finding the most-violating-label in a slack re-scaling

formulation, given an oracle that returns the most-violating-label in a (slightly modified)

margin re-scaling formulation. However, in the case of latent models, it is still unclear if this

sort of reductions are possible for the slack re-scaling approach because of the maximization

in the margin with respect to the latent space.

We also note that one way to make the objective in eq.(2.5) convex is to replace the

maximization in the margin by the latent variable ĥ. However, this not only results in a

37

looser upper bound of the Gibbs decoder distortion but also under performs with respect to

the methods mentioned in this chapter.

2.7.3 Randomizing the Latent Space

We note that in the definition of the margin, there is a maximization over the latent

space H. In this chapter, we sample structured outputs and latent variables from some

proposal distribution and these samples are used in the outer maximization in eq.(2.6).

While sampling latent variables from some proposal distribution in the maximization of the

margin might be computationally appealing, the main issue is that this will lead to a looser

upper bound of the Gibbs decoder distortion.

2.8 Summary

We focused on the learning aspects of structured prediction problems using latent vari-

ables. We first extended the work of McAllester [24] by including latent variables, and showed

that the non-convex formulation using the slack re-scaling approach with latent variables is

related to a tight upper bound of the Gibbs decoder distortion. This motivates the apparent

need of the non-convexity in different formulations using latent variables (e.g., [29 , 37]).

Second, we provided a tighter upper bound of the Gibbs decoder distortion by randomiz-

ing the search space of the optimization problem. That is, instead of having a formulation

over all possible structures and latent variables (usually exponential in size), we proposed a

formulation that uses i.i.d. samples coming from some proposal distribution.

Our approach is computationally appealing in cases where the margin can be computed

in poly-time since it would lead to a fully polynomial time evaluation of the formulation. We

provided a method to obtain an upper bound that is logarithmic in the size of the latent space

as the use of standard Rademacher arguments (e.g., [23]) would lead to a prohibitive upper

bound that is proportional to the size of the latent space. Finally, we provided experimental

results in synthetic data and in a computer vision application, where we obtained competitive

results in the average test error with respect to the values reported in [41].

38

T
ab

le
2.

1.
Av

er
ag

e
ov

er
30

re
pe

tit
io

ns
,a

nd
st

an
da

rd
er

ro
r

at
95

%
co

nfi
de

nc
e

le
ve

l.
Al

l(
LS

SV
M

)
in

di
ca

te
s

th
e

us
e

of
ex

ac
t

le
ar

ni
ng

an
d

ex
ac

t
in

fe
re

nc
e.

Ra
nd

an
d

Ra
nd

/A
ll

in
di

ca
te

us
e

of
ra

nd
om

iz
ed

le
ar

ni
ng

,
an

d
ra

nd
om

iz
ed

an
d

ex
ac

ti
nf

er
en

ce
re

sp
ec

tiv
el

y.
T

he
m

ar
k

(S
)

in
di

ca
te

s
th

e
us

e
of

su
pe

rs
et
H̃

in
th

e
ca

lc
ul

at
io

n
of

th
e

m
ar

gi
n.

R
an

d/
A

ll
ob

ta
in

s
a

sim
ila

r
or

sig
ht

ly
be

tt
er

te
st

pe
rfo

rm
an

ce
th

an
A

ll
in

th
e

di
ffe

re
nt

st
ud

y
ca

se
s.

N
ot

e
th

at
th

e
ru

nt
im

e
fo

r
le

ar
ni

ng
us

in
g

th
e

ra
nd

om
iz

ed
ap

pr
oa

ch
is

m
uc

h
le

ss
th

an
ex

ac
t

le
ar

ni
ng

,w
hi

le
st

ill
ha

vi
ng

a
go

od
te

st
pe

rfo
rm

an
ce

.
P

ro
bl

em
M

et
ho

d
T

ra
in

in
g

ru
nt

im
e

T
ra

in
in

g
di

st
or

ti
on

T
es

t
ru

nt
im

e
T

es
t

di
st

or
ti

on
D

ire
ct

ed
A

ll
(L

SS
V

M
)

10
00
±

15
8.

4%
±

1.
4%

18
.9
±

0.
1

8.
2%
±

1.
3%

sp
an

ni
ng

R
an

d
(S

)
44
±

1
22

%
±

2.
2%

0.
92
±

0
22

%
±

1.
9%

tr
ee

s
R

an
d/

A
ll

(S
)

19
±

0.
1

8.
2%
±

1.
3%

R
an

d
12

6
±

5
23

%
±

3.
0%

3
±

0.
4

24
%
±

3.
2%

R
an

d/
A

ll
17
±

0.
8

8.
2%
±

1.
4%

D
ire

ct
ed

A
ll

(L
SS

V
M

)
10

00
±

21
17

%
±

1.
7%

19
±

0.
2

21
%
±

2.
4%

ac
yc

lic
R

an
d

(S
)

63
±

0
24

%
±

1.
5%

1.
5
±

0
28

%
±

1.
9%

gr
ap

hs
R

an
d/

A
ll

(S
)

19
±

0.
2

20
%
±

1.
9%

R
an

d
35

3
±

5
21

%
±

1.
1%

8
±

1
25

%
±

1.
4%

R
an

d/
A

ll
15
±

0.
2

19
%
±

1.
6%

C
ar

di
na

lit
y

A
ll

(L
SS

V
M

)
10

00
±

5
6.

3%
±

1.
0%

19
.5
±

0.
1

6%
±

1.
2%

co
ns

tr
ai

ne
d

R
an

d
(S

)
75
±

0
18

%
±

1.
8%

1.
7
±

0
18

%
±

1.
8%

se
ts

R
an

d/
A

ll
(S

)
19

.5
±

0.
1

6%
±

1.
3%

R
an

d
18

2
±

3
15

%
±

3.
2%

3.
1
±

1
17

%
±

1.
2%

R
an

d/
A

ll
19

.4
±

0.
1

6%
±

2.
2%

39

3. THE FUNDAMENTAL LIMITS OF STRUCTURED

PREDICTION

A common approach to structured prediction is to exploit local features to infer the global

structure. For instance, one could include a feature that encourages two individuals of a

social network to be assigned to different clusters whenever there is a strong disagreement in

opinions about a particular subject. Then, one can define a posterior distribution over the

set of possible labelings conditioned on the input. The output structure and corresponding

loss function make these problems significantly different from the (unstructured) binary or

multiclass classification problems extensively studied in learning theory.

Some classical algorithms for learning the parameters of the model include conditional

random fields [45], structured support vector machines [30 , 34 , 36], kernel-regression algo-

rithm [46], search-based structured prediction [47]. More recently, deep learning algorithms

have been developed for specific tasks such as image annotation [48], part-of-speech-tagging

[49 , 50], and machine translation [51].

However, in contrast to the various algorithms proposed throughout the years, there have

been only a small handful of studies devoted to the theoretical understanding of structured

prediction. From the scarce theory literature, the most studied property of structure predic-

tion models has been the generalization error. Cortes, Kuznetsov, and Mohri [52], Collins

[53], and Taskar, Guestrin, and Koller [54] provided learning guarantees that hold primarily

for losses such as the Hamming loss. Cortes, Kuznetsov, Mohri, and Yang [33] presented

generalization bounds for more general losses and scoring functions based on factor graphs.

Similar to [33], in this chapter we also study factor graph models, with the difference that we

focus on lower bounds and not upper bounds. Bello and Honorio [16], Honorio and Jaakkola

[23], McAllester [24], and Ghoshal and Honorio [55] provided PAC-Bayesian guarantees for

arbitrary losses through the analysis of randomized algorithms using count-based hypotheses.

Results on lower bounding the sample complexity for structure prediction is scarcer even

for specific classes of predictors. Information-theoretic bounds have been studied in the

context of binary graphical models [56 , 57] and Gaussian Markov random fields [58]. Never-

40

theless, the aforementioned works apply to the modeling of the input x and not the prediction

of y from x.

In this chapter, our main contribution consists of characterizing the necessary sample

complexity for learning factor graph models in the context of structured prediction, which to

the best of our knowledge, we are the first to find such characterization. Specifically, we show

that the finiteness of the pair-dimension (see Definition 3.2.2) is necessary for learning. We

further show the connection of the pair-dimension to the VC-dimension [59], which could

allow us to compute the pair-dimension from existing results on VC-dimension.

3.1 Preliminaries

Let X denote the input space and Y the output space. In structured prediction, the

output space usually consists of a large (e.g., exponential) set of discrete objects admitting

some possibly overlapping structure. For example, sequences, graphs, images, parse trees,

etc. Thus, we consider the output space Y to be decomposable into l substructures: Y =

Y1×· · ·×Yl. Here, Yi is the set of possible labels that can be assigned to substructure i. For

example, in a webpage collective classification task [60], each Yi is a webpage label, whereas

Y is a joint label for an entire website. In this work we assume that Yi ∈ {0, 1}, that is,

|Yi| = 2 for all i. In this case, the number of possible assignments to Y is exponential in the

number of substructures l, i.e., |Y| = 2l.

3.1.1 The Hamming Loss

In order to measure the success of a prediction, we use the Hamming loss throughout

this work. Specifically, for two outputs y, y′ ∈ Y , with y = (y1, . . . , yl) and y′ = (y′1, . . . , y′l),

the Hamming loss, LH , is defined as:

LH(y, y′) =
l∑

i=1
1

[
yi 6= y′i

]
.

The use of Hamming loss in this work is motivated for being widely used in structured

prediction problems, for instance, in image segmentation one may count the number of

41

pixels that are incorrectly assigned as foreground/background; in graphs, one may count

the number of different edges between the prediction and the true label. For this reason,

Globerson, Roughgarden, Sontag, and Yildirim [61] also focused on the Hamming loss for

analyzing approximate inference.

3.1.2 Factor Graphs and Scoring Functions

We adopt a common approach in structured prediction where predictions are based on a

scoring function f : X × Y → R+, where R+ denotes the set of non-negative real numbers.

Let F be a family of scoring functions. For any f ∈ F , we denote by f(x) the predictor

induced by the scoring function f : for any x ∈ X ,

f(x) = arg max
y∈Y

f(x, y).

We denote the class of induced predictors by F. Furthermore, we assume that each score

function f ∈ F can be decomposed as a sum, as is standard in structured prediction. We

consider the most general case for such decompositions through the notion of factor graphs,

motivated also in [33]. A factor graph G is a bipartite graph, and is represented as a tuple

G = (V,Φ, E), where V is a set of variable nodes, Φ a set of factor nodes, and E a set

of undirected edges between a variable node and a factor node. In our context, V can be

identified with the set of substructure indices, that is V = {1, . . . , l}. We further assume

that G is connected.

For any factor node φ ∈ Φ, denote by Scope(φ) ⊆ V the set of variable nodes connected

to φ via an edge and define Yφ as the substructure set cross-product Yφ =×i∈Scope(φ) Yi.

Then, f decomposes as a sum of functions fφ , each taking as argument an element of the

input space x ∈ X and an element of Yφ, yφ ∈ Yφ:

f(x, y) =
∑
φ∈Φ

fφ(x, yφ).

We further use F(G) to denote the set of scoring functions that are decomposable with

respect to the graph G, and use F(G) to denote the set of predictors induced by F(G). Note

42

also that while all f ∈ F(G) decompose with respect to same graph G, the scoring functions

fφ and f ′φ are allowed to be different for any φ ∈ Φ, f, f ′ ∈ F(G). For instance, fφ can be a

linear function, while f ′φ can be a kernel-based function. Figure 3.1 shows different examples

of factor graphs.

y1 y2 y3

y1 y2 y3

y4 y5 y6

y1

y2

y3

y4

y5

Figure 3.1. Three examples of factor graphs. (Left) Tree-structured fac-
tor graph. (Center) Arbitrary factor graph with decomposition: f(x, y) =
fφ1(x, y1) + fφ4(x, y4) + fφ12(x, y1, y2) + fφ45(x, y4, y5) + fφ24(x, y2, y4) +
fφ234(x, y2, y3, y4). (Right) Grid-structured factor graph.

3.1.3 Learning

We receive a training set S = ((x1, y1), . . . , (xm, ym)) of m i.i.d. samples drawn according

to some distribution P over X ×Y . We denote by RP (f) the expected Hamming loss and by

RS(f) the empirical Hamming loss of f:

RP (f) = E
(x,y)∼P

[LH(f(x), y)], (3.1)

RS(f) = 1
m

∑
(x,y)∈S

LH(f(x), y). (3.2)

Our learning scenario consists of using the sample S to select a scoring function f ∈ F(G)

with small expected Hamming loss RP (f).

43

Next, we introduce the definition of Bayes-Hamming loss, which in words is the minimum

attainable expected Hamming loss by any predictor.

Definition 3.1.1 (Bayes-Hamming loss). For any given distribution P over X × Y, the

Bayes-Hamming loss is defined as the minimum achievable expected Hamming loss among

all possible predictors f : X → Y. That is, R∗ = minf RP (f).

Then the Bayes-Hamming predictor, f∗, is defined as the function that achieves the Bayes-

Hamming loss, that is, RP (f∗) = R∗.

The following proposition shows how the Bayes-Hamming predictor makes its decision

with respect to the Hamming loss.

Proposition 3.1.1. For any given distribution P over X ×Y, the Bayes-Hamming predictor

f∗ is:

(f∗(x))i =

1 if ηi(x) ≥ 1/2,

0 otherwise,

where ηi(x) = P [yi = 1|x] is the marginal probability of substructure yi.

Proof. Recall that ηi(x) = P [yi = 1|x]. From eq.(3.1) and Definition 3.1.1 , the Bayes-

Hamming predictor f∗ minimizes the following expression (with respect to f).

RP (f) = E
(x,y)∼P

[LH(f(x), y)]

= E
(x,y)∼P

 l∑
i=1

1
[
(f(x))i 6= yi

]
=

l∑
i=1

E
(x,y)∼P

[
1
[
(f(x))i 6= yi

]]

=
l∑

i=1
E
x

[
P [yi = 1|x](1− (f(x))i) + (1− P [yi = 1|x])(f(x))i

]
=

l∑
i=1

E
x

[
ηi(x)(1− (f(x))i) + (1− ηi(x))(f(x))i

]
.

In order to minimize the above expression, for any x we choose (f(x))i = 1 if ηi(x) ≥ 1/2,

and (f(x))i = 0 otherwise.

44

We emphasize that the above proposition considers the Hamming loss, LH , as defined

in Section 3.1.1 . For other types of loss functions, the Bayes predictor can have different

optimal decisions.

3.1.4 A Review of the General Minimax Risk Framework

In this section we briefly review the minimax framework in the context of general sta-

tistical problems. The minimax framework consists of a well defined objective that aims

to shed light about the optimality of algorithms and has been widely used in statistics and

machine learning [62 , 63]. The standard minimax risk considers a family of distributions

Q over a sample space Z, and a function θ : Q → Θ defined on Q, that is, a mapping

Q 7→ θ(Q). Here we call θ(Q) parameter of the distribution Q. We aim to estimate the

parameter θ(Q) based on a sequence of m i.i.d. observations Z = (z1, . . . , zm) drawn from

the (unknown) distribution Q, that is, Z ∈ Zm. To evaluate the quality of an estimator θ̂,

we let ρ : Θ × Θ → R+ denote a semi-metric on the space Θ, which we use to measure the

error of an estimator θ̂ with respect to the parameter θ(Q). For a distribution Q ∈ Q and

for a given estimator θ̂ : Zm → Θ, we assess the quality of the estimate θ̂(Z) in terms of the

(expected) risk:

EZ∼Qm
[
ρ(θ̂(Z), θ(Q))

]
.

A common approach, first suggested by [64], for choosing an estimator θ̂ is to select the one

that minimizes the maximum risk, that is,

sup
Q∈Q

EZ∼Qm
[
ρ(θ̂(Z), θ(Q))

]
.

An optimal estimator for this semi-metric then gives the minimax risk, which is defined as:

Mm(Q, ρ) := inf
θ̂

sup
Q∈Q

EZ∼Qm
[
ρ(θ̂(Z), θ(Q))

]
,

where we take the supremum (worst-case) over distributions Q ∈ Q, and the infimum is

taken over all estimators θ̂.

45

3.1.5 Minimax Risk in Structured Prediction

We now apply the framework above to our context and study a specialized notion of risk

appropriate for prediction problems. In this setting, we aim to estimate a scoring function

f ∈ F(G) by using samples from a distribution P . For any sample (x, y) ∼ P , we will

measure the quality of our estimation, f , by comparing the prediction f(x) to the structure

y drawn from P through the Hamming loss. By taking expectation, we obtain the expected

risk or expected Hamming loss, RP (f), defined in eq.(3.1). We then compare this risk to

the best possible Hamming loss, i.e., the Bayes-Hamming loss (Definition 3.1.1). That is, we

assume that at least one scoring function in F(G) achieves the Bayes-Hamming loss. Finally,

recall that S ∈ (X × Y)m is the training set consisting of m i.i.d. samples drawn from P .

Thus, we arrive to the following minimax excess risk:

Mm(P) = inf
A

sup
P∈P

E
S∼Pm

[
RP (A(S))−RP (f∗)

]
, (3.3)

where f∗ is the induced predictor by the scoring function f ∗ = arg minf∈F(G) RP (f)

1
 , and

A : (X × Y)m → F(G) is any algorithm that returns a predictor given m training samples

from P . Moreover, P defines a family of distributions over X × Y .

Intuitively speaking, for a fixed distribution P ∈ P , the quantity Mm(P) represents the

minimum expected excess loss achievable by any algorithm with respect to the factor graph

G. Then Mm(P) looks into the distribution that attains the worst expected excess loss.

3.2 An Information-Theoretic Lower Bound for Structured Prediction

We are interested on finding a lower bound to the minimax risk (3.3) presented in Section

 3.1.5 . By doing this, we characterize the necessary number of samples to have any hope in

achieving learning.

Before presenting our main result for this chapter, we introduce a new type of dimension

that will show up in our lower bound and will help to characterize learnability. Note that it is

known that different notions of dimension of predictor classes help to characterize learnability
1

 ↑ Recall that f denotes the induced predictor by f ∈ F(G).

46

in certain prediction problems. For example, in binary classification with the 0/1-loss, the

finiteness of the VC dimension [59] is necessary for learning [65]. For multiclass classification,

it was shown that the finiteness of the Natarajan dimension is necessary for learning [66].

General notions of dimensions for multiclass classification has also been study in [67].

For a given predictor class G ⊆ {g | g : X → {0, 1}2}, and dataset S of m samples, we

use the following shorthand notation:

G(S) = {(g(x1), . . . , g(xm)) ∈ {0, 1}m×2 | g ∈ G}.

That is, G(S) contains all the matrices in {0, 1}m×2 that can be produced by applying all

functions in G to the dataset S. Next we define pair-shattering.

Definition 3.2.1 (pair-shattering). A function class, G, pair-shatters a finite set S of m

samples if G(S) produces all possible binary matrices in {0, 1}m×2. That is, |G(S)| = 22m.

Definition 3.2.2 (pair-dimension). The pair-dimension of a function class G, denoted

PairDim(G), is the maximal size of a set S that can be pair-shattered by G. If G can

shatter sets of arbitrarily large size we say that G has infinite pair-dimension.

The above dimension applies to predictors with output in {0, 1}2. Next, we define the

max-pair-dimension for classes of predictors H ⊆ {h | h : X → {0, 1}l}.

Definition 3.2.3 (max-pair-dimension). For a predictor class H ⊆ {h | h : X → {0, 1}l},

the max-pair-dimension of H, denoted as max-PairDim(H), is defined as:

max-PairDim(H) = max
u,v∈{1,...,l}

u6=v

PairDim(Hu,v),

where Hu,v = {hu,v | h ∈ H, hu,v : X → {0, 1}2, hu,v(x) = (h(x)u, h(x)v)}, that is, the

predictor hu,v only takes into account the output of h at positions u and v, and becomes a

mapping from X to {0, 1}2.

We remark that Definition 3.2.3 is stated for general classes of predictors with output in

{0, 1}l. However, in our context we consider predictors induced by scoring functions based

47

on factor graphs. That is, for a predictor f : X → {0, 1}l induced by the scoring function f ,

we will create predictors with output in {0, 1}2 as follows. Let

f (0)
u,v(x, yu, yv)

def=f(x, (0, . . . , 0, yu, 0, . . . , 0, yv, 0, . . . , 0))

denote the scoring function f(x, y) with yi = 0 for all i ∈ {1, . . . , l} \ {u, v}. Then, let

f(0)
u,v(x) = arg max

yu,yv
f (0)
u,v(x, yu, yv)

be the induced predictor by f (0)
u,v(x, yu, yv), i.e., the output of f(0)

u,v(x) is in {0, 1}2.

Remark 3.2.1. For a given factor graph G = (V,Φ, E) such that T = {(u, v) | u 6=

v, {u, v} ⊆ Scope(φ), φ ∈ Φ}, F (0)
u,v(G) = {f (0)

u,v | f ∈ F(G)}, and let F(0)
u,v(G) = {f(0)

u,v | f (0)
u,v ∈

F (0)
u,v(G)} denote the set of predictors induced by F (0)

u,v(G). Then, the max-pair-dimension

of a class of scoring functions is given by the max-pair-dimension of the class of predictors

it induces, i.e.,

max-PairDim(F(G)) = max
(u,v)∈T

PairDim(F(0)
u,v(G)).

Next, we present our main result which provides a characterization on the necessary

number of samples for learning.

Theorem 3.2.2. Let G = (V,Φ, E) be a factor graph and let F(G) denote a class of

scoring functions where each f ∈ F(G) decomposes according to G. Let F(G) be the in-

duced class of predictors by F(G), where f : X → {0, 1}l for each f ∈ F(G), and let

d = max-PairDim(F(G)) ≥ 2. Then, we have that for any γ ∈ [0, 1/3] and any m ≥ d:

Mm(P) ≥ 1
81 min

d− 1
γm

,

√
d− 1
m

 .
The proof of the theorem above can be found in Appendix B.1 . As prescribed by Theorem

 3.2.2 , the max-pair-dimension needs to be finite in order for the predictor class to be

learnable.

48

3.3 Relation of the Pair-Dimension to the VC-Dimension

In this section, we show a connection of our defined pair-dimension to the classical VC-

dimension [59]. The following theorem shows that for a function class G ⊆ {g | g : X →

{0, 1}2}, the pair-dimension of G is related to the minimum VC-dimension of a subclass of

functions derived from G.

Theorem 3.3.1. Let G ⊆ {g | g : X → {0, 1}2} be a function class. Let H11,H10,H01,

H00 ⊆ {h | h : X → {0, 1}} be four function classes defined as:

H11 = {h | h : X → {0, 1}, h(x) = g(x)1g(x)2, g ∈ G},

H10 = {h | h : X → {0, 1}, h(x) = g(x)1(1− g(x)2), g ∈ G},

H01 = {h | h : X → {0, 1}, h(x) = (1− g(x)1)g(x)2, g ∈ G},

H00 = {h | h : X → {0, 1}, h(x) = (1− g(x)1)(1− g(x)2), g ∈ G}.

Then, we have that PairDim(G) = mini,j∈{0,1}VC-Dim(Hij).

Proof. Recall that for a dataset S ofm samples, G(S) = {(g(x1), . . . , g(xm)) ∈ {0, 1}m×2 | g ∈

G}. Similarly, define Hij(S) = {(h(x1), . . . , h(xm)) ∈ {0, 1}m | h ∈ Hij} for all i, j ∈ {0, 1}.

Let PairDim(G) = d.

There exists a dataset S of d samples such that |G(S)| = 22d. Thus for all i, j ∈ {0, 1}

we have |Hij(S)| = 2d, which implies that for all i, j ∈ {0, 1} we have VC-Dim(Hij) ≥ d.

Therefore,

d ≤ min
i,j∈{0,1}

VC-Dim(Hij).

Also, for any dataset S of d + 1 samples we have |G(S)| < 22(d+1). Thus there exists

i, j ∈ {0, 1} such that |Hij(S)| < 2d+1, implying that there exists i, j ∈ {0, 1} such that

VC-Dim(Hij) < d+ 1. Therefore,

min
i,j∈{0,1}

VC-Dim(Hij) < d+ 1.

From the above, mini,j∈{0,1}VC-Dim(Hij) = d.

49

3.4 Summary

In this chapter, we studied the problem of finding the necessary number of samples for

learning of scoring functions based on factor graphs in the context of structured prediction.

Our work was based on the minimax framework, that is, in obtaining a lower bound to the

minimax risk. We showed a lower bound that requires the max-pair-dimension (Definition

 3.2.3) to be finite in order for a function class to be learnable. We also note that in the proof

of Theorem 3.2.2 , our choice of setting a value of zero to many y’s was for clarity purposes.

In principle, one can create such distributions by fixing y’s to arbitrary values in {0, 1}l−2.

This would result in a slightly different notion of dimension, which would take the maximum

across the 2l−2 different values. However, our focus was on providing a clear guideline to

obtain lower bounds in structured prediction, hence, we opted for simplicity. In addition, in

Theorem 3.3.1 , we showed the connection of the pair-dimension to the VC-dimension, for

which there are several known results for different types of hypothesis classes.

An interesting future work is the analysis of tightness. For example, regarding tightness

for linear classifiers, consider inputs x ∈ Rk. We observe that our lower bound in Theorem

 3.2.2 is tight with respect to k and m. Specifically, consider non-sparse linear classifiers as

the scoring functions, Theorem 2 in [33] gives O(
√
k/m). In this case, the pair-dimension is

equal to the VC-dimension, and the latter is equal to k. Thus, we obtain a lower bound with

rate
√
k/m for some γ. Similarly, consider sparse linear classifiers as the scoring functions.

Then, Theorem 2 of [33] gives O(
√

log k/m). In this case, the VC-dimension is O(log k) [68],

thus, we obtain a lower bound with rate
√

log k/m for some γ. However, an analysis for general

functions remains open, where perhaps, one possible approach is to find an upper bound to

the factor graph Rademacher complexity [33] in terms of the pair-dimension, similar in spirit

to the known result of the VC-dimension being an upper bound to the classical Rademacher

complexity (see for instance, [69]).

50

4. EXACT INFERENCE IN STRUCTURED PREDICTION

In this chapter, we focus on the inference problem and assume that the model parameters

have already been learned. In the context of Markov random fields (MRFs), for an undirected

graph G = (V , E), one is interested in finding a solution to the following inference problem:

max
y∈M|V|

∑
v∈V,m∈M

cv(m)1[yv = m] +
∑

(u,v)∈E
s,t∈M

cu,v(s, t)1[yu = s, yv = t] , (4.1)

where M is the set of possible labels, cv(m) is the cost of assigning label m to node v, and

cu,v(s, t) is the cost of assigning s and t to the neighbors u, v respectively.

1
 Similar inference

problems arise in the context of statistical physics, sociology, community detection, average

case analysis, and graph partitioning. Very few cases of the general MRF inference problem

are known to be exactly solvable in polynomial time. For example, Chandrasekaran, Srebro,

and Harsha [70] showed that problem (4.1) can be solved exactly in polynomial time for a

graph G with low treewidth via the junction tree algorithm. While in the case of Ising models,

Schraudolph and Kamenetsky [71] showed that the inference problem can also be solved

exactly in polynomial time for planar graphs via perfect matchings. Finally, polynomial-

time solvability can also stem from properties of the pairwise potential, under this view, the

inference problem can be solved exactly in polynomial time via graph cuts for binary labels

and sub-modular pairwise potentials [72].

Despite the intractability of maximum likelihood estimation, maximum a-posteriori esti-

mation, and marginal inference for most models in the worst case, the inference task seems to

be easier in practice than the theoretical worst case. Approximate inference algorithms can

be extremely effective, often obtaining state-of-the-art results for these structured prediction

tasks. Some important theoretical and empirical work on approximate inference include [38 ,

 47 , 61 , 73 – 75].

Globerson, Roughgarden, Sontag, and Yildirim [61] analyzed the hardness of approxi-

mate inference in the case where performance is measured through the Hamming error, and

provided conditions for the minimum-achievable Hamming error by studying a generative
1

 ↑ In the literature, the cost functions cv and cu,v are also known as unary and pairwise potentials, respectively.

51

model. Similar to the objective (4.1), the authors in [61] considered unary and pairwise

noisy observations. As a concrete example [73], consider the problem of trying to recover

opinions of individuals in social networks. Suppose that every individual in a social network

can hold one of two opinions labeled by −1 or +1. One observes a measurement of whether

neighbors in the network have an agreement in opinion, but the value of each measurement

is flipped with probability p (pairwise observations). Additionally, one receives estimates

of the opinion of each individual, perhaps using a classification model on their profile, but

these estimates are corrupted with probability q (unary observations). Foster, Sridharan,

and Reichman [73] generalized the work of Globerson, Roughgarden, Sontag, and Yildirim

[61], who provided results for grid lattices, by providing results for trees and general graphs

that allow tree decompositions (e.g., hypergrids and ring lattices).

Note that the above problem is challenging since there is a statistical and computational

trade-off, as in several machine learning problems. The statistical part focuses on giving

highly accurate labels while ignoring computational constraints. In practice this is unrealis-

tic, one cannot afford to wait long times for each prediction, which motivated several studies

on this trade-off (e.g., [16 , 76]).

While the statistical and computational trade-off comes into sight in general, an interest-

ing question is whether there are conditions for when recovery of the true labels is achievable

in polynomial time. That is, conditions for when the Hamming error of the prediction is

zero and can be obtained efficiently. The present chapter addresses this question. Finally,

Chen, Kamath, Suh, and Tse [77] and Abbe, Bandeira, and Hall [78] also studied exact

recovery. The former analyzed edges on sparse graphs—such as grids and rings— where one

has multiple i.i.d. observations for each edge label; while the latter studied exact inference

in the context of community detection, where there is a single (noisy) observation of each

edge of the graph—in this case a complete graph.

4.1 Preliminaries

Vectors and matrices are denoted by lowercase and uppercase bold faced letters respec-

tively (e.g., a,A), while scalars are in normal font weight (e.g., a). For a vector a, and a

52

matrix A, their entries are denoted by ai and Ai,j respectively. Indexing starts at 1, with

Ai,: and A:,i indicating the i-th row and i-th column of A respectively. Finally, sets and

tuples are both expressed in uppercase blackboard bold and calligraphic fonts respectively.

For example, R will denote the set of real numbers. The eigenvalues of a n×n matrix A are

denoted as λi(A), where λ1 and λn correspond to the minimum and maximum eigenvalue

respectively. Finally, the set of integers {1, . . . , n} is represented as [n].

We now present the inference task. We consider a similar problem setting to the one in

[61], with the only difference that we consider general undirected graphs. That is, the goal

is to predict a vector of n node labels ŷ = (ŷ1, . . . , ŷn)>, where ŷi ∈ {+1,−1}, from a set of

observations X and c, where X and c correspond to corrupted measurements of edges and

nodes respectively. These observations are assumed to be generated from a ground truth

labeling y by a generative process defined via an undirected connected graph G = (V , E),

an edge noise p ∈ (0, 0.5), and a node noise q ∈ (0, 0.5). For each edge (u, v) ∈ E , the edge

observation Xu,v is independently sampled to be yuyv (good edge) with probability 1 − p,

and −yuyv (bad edge) with probability p. While for each edge (u, v) /∈ E , the observation

Xu,v is always 0. Similarly, for each node u ∈ V , the node observation cu is independently

sampled to be yu (good node) with probability 1 − q, and −yu (bad node) with probability

q. Thus, we have a known undirected connected graph G, an unknown ground truth label

vector y ∈ {+1,−1}n, and noisy observations X ∈ {−1, 0,+1}n×n and c ∈ {−1,+1}n, and

our goal is to find sufficient conditions for which we can predict, in polynomial time and

with high probability, a vector label ŷ ∈ {−1,+1}n such that ŷ = y.

Definition 4.1.1 (Biased Rademacher variable). Let zp ∈ {+1,−1} such that P(zp = +1) =

1−p, and P(zp = −1) = p. We call zp a biased Rademacher random variable with parameter

p and expected value 1− 2p.

From the definition above, we can write the edge observations as Xu,v = yu yv z(u,v)
p ·

1[(u, v) ∈ E], where z(u,v)
p is a biased Rademacher with parameter p. While the node obser-

vation is cu = yu z(u)
q , where z(u)

q is a biased Rademacher with parameter q.

53

Given the generative process, we aim to solve the following optimization problem, which

is based on the maximum likelihood estimator that returns the label arg maxy P(X,y) (see

[61]):

ŷ = arg max
y

1
2y
>Xy + αc>y subject to yi = ±1, (4.2)

where α = log 1−q
q /log 1−p

p
. In general, the above combinatorial problem is NP-hard to compute

(e.g., see [79] for results on grids). Our goal is to find what structural properties of the graph

G suffice to achieve, with high probability, exact recovery in polynomial time.

4.2 On Exact Recovery of Node Labels

Our approach consists of two stages, similar in spirit to [61]. We first use only the

quadratic term from (4.2), which will give us two possible solutions, and then as a second

stage, the linear term is used to decide the best between these two solutions.

4.2.1 First Stage

We analyze a semidefinite program (SDP) relaxation to the following combinatorial prob-

lem (4.3), motivated by the techniques in [78].

ŷ = arg max
y

1
2y
>Xy subject to yi = ±1, (4.3)

We denote the degree of node i as ∆i, and the maximum node degree as ∆max =

maxi∈V ∆i. For any subset S ⊂ V , we denote its complement by SC such that S ∪ SC = V

and S ∩ SC = ∅. Furthermore, let E(S,SC) = {(i, j) ∈ E | i ∈ S, j ∈ SC or j ∈ S, i ∈ SC},

i.e., |E(S,SC)| denotes the number of edges between S and SC .

Definition 4.2.1 (Edge Expansion). For a set S ⊂ V with |S| ≤ n/2, its edge expansion,

φS , is defined as: φS = |E(S,SC)|/|S|. Then, the edge expansion of a graph G = (V , E) is defined

as: φG = minS⊂V,|S|≤n/2 φS .

54

In the literature, φG is also known as the Cheeger constant, due to the geometric analogue

defined by Cheeger in [80]. Next, we define the Laplacian matrix of a graph and the Rayleigh

quotient which are also used throughout this section.

Definition 4.2.2 (Laplacian matrix). For a graph G = (V , E) of n nodes. The Laplacian

matrix L is defined as L = D −A, where D is the degree matrix and A is the adjacency

matrix.

Definition 4.2.3 (Rayleigh quotient). For a given symmetric matrix M ∈ Rn×n and non-

zero vector a ∈ Rn, the Rayleigh quotient RM (a), is defined as: RM (a) = a>Ma
a>a

.

We now define a signed Laplacian matrix.

Definition 4.2.4 (Signed Laplacian matrix). For a graph G = (V , E) of n nodes. A signed

Laplacian matrix, M , is a symmetric matrix that satisfies x>Mx = ∑
(i,j)∈E(yixi − yjxj)2,

where y is an eigenvector of M with eigenvalue 0, and yi ∈ {+1,−1}.

Note that the typical Laplacian matrix, as in Definition 4.2.2 , fulfills the conditions of

Definition 4.2.4 with yi = +1 for all i. Next, we present an intermediate result for later use.

Lemma 4.2.1. Let G = (V , E) be an undirected graph of n nodes with Laplacian L. Let

M ∈ Rn×n be a signed Laplacian with eigenvector y as in Definition 4.2.4 , and let a ∈ Rn

be a vector such that 〈y,a〉 = 0. Finally, let 1 ∈ Rn be a vector of ones. Then we have that,

for a given δ ∈ R, RL(a ◦ y + δ1) ≤ RM (a), where the operator ◦ denotes the Hadamard

product.

Proof. First, note that L has a 0 eigenvalue with corresponding eigenvector 1. Also, we

have that x>Lx = ∑
(i,j)∈E(xi − xj)2, for any vector x. Then, (a ◦ y + δ1)>L(a ◦ y + δ1) =∑

(i,j)∈E((yiai + δ) − (yjaj + δ))2 = (yiai − yjaj)2 = a>Ma. Therefore, we have that the

numerators of RL(a ◦ y+ δ1) and RM (a) are equal. For the denominators, one can observe

that: (a ◦ y + δ1)>(a ◦ y + δ1) = (a ◦ y)>(a ◦ y) + 2δ〈1,a ◦ y〉 + δ21>1 = ∑
i aiyiaiyi +

2δ〈a,y〉+ δ2n = a>a+ δ2n ≥ a>a, which implies that RL(a ◦ y + δ1) ≤ RM (a).

In what follows, we present our first result of this chapter, which has a connection to

Cheeger’s inequality [80].

55

Theorem 4.2.2. Let G,M ,L,y be defined as in Lemma 4.2.1 , and let λ1 ≤ λ2 ≤ · · · ≤ λn

be the eigenvalues of M . Then, we have that φ2
G

4∆max
≤ λ2.

Remark 4.2.3. For a given undirected graph G, its Laplacian matrix L fulfills the conditions

of Lemma 4.2.1 and Theorem 4.2.2 . That is, if M = L in Theorem 4.2.2 then it becomes the

known Cheeger’s inequality. Therefore, our result in Theorem 4.2.2 apply for more general

matrices and is of use for our next result.

We now provide the SDP relaxation of problem (4.3). Let Y = yy>, we have that

y>Xy = Tr(XY) = 〈X,Y 〉. Since our prediction is a column vector y, we have that yy>

is rank-1 and symmetric, which implies that Y is a positive semidefinite matrix. Therefore,

our relaxation to the combinatorial problem (4.3) results in the following primal formulation

2
 :

Ŷ = arg max
Y

〈X,Y 〉 subject to Yii = 1, Y � 0. (4.4)

We will make use of the following matrix concentration inequality for our main proof.

Lemma 4.2.4 (Matrix Bernstein inequality, Theorem 1.4 in [81]). Consider a finite sequence

{Nk} of independent, random, self-adjoint matrices with dimension n. Assume that each

random matrix satisfies E [Nk] = 0 and λmax(Nk) ≤ R almost surely. Then, for all

t ≥ 0, P
(
λmax

(∑
kNk

)
≥ t

)
≤ n · exp

(
−t2/2

σ2+Rt/3

)
, where σ2 = ‖∑k E [N 2

k]‖.

The next theorem provides the conditions for exact recovery of labels with high proba-

bility.

Theorem 4.2.5. Let G = (V , E) be an undirected connected graph with n nodes, Cheeger

constant φG, and maximum node degree ∆max. Then, for the combinatorial problem (4.3), a

solution ŷ ∈ {y,−y} is achievable in polynomial time by solving the SDP based relaxation

(4.4), with probability at least 1− ε1(φG,∆max, p), where p is the edge noise from our model,

and

ε1(φG,∆max, p) = 2n · e
−3(1−2p)2φ4

G
1536∆3

maxp(1−p)+32(1−2p)(1−p)φ2
G∆max .

2
 ↑ Here we dropped the constant 1/2 since it does not change the decision problem.

56

Regarding the statistical part from Theorem 4.2.5 , it is natural to ask under what

conditions we obtain a high probability statement. For example, one can observe that if
φ2
G/∆max ∈ Ω(n) then there is an exponential decay in the probability of error. Another

example would be that if ∆max ∈ O(
√
n) and φ2

G/∆max ∈ Ω(
√
n) then we also obtain high

probability statement. Thus, we are interested in finding what classes of graphs fulfill these

or other structural properties so that we obtain a high probability bound in Theorem 4.2.5 .

Regarding the computational complexity of exact recovery, from Theorem 4.2.5 , we are solv-

ing a SDP, and any SDP can be solved in polynomial time using methods such as the interior

point method.

4.2.2 Second Stage

After the first stage, we obtain two feasible solutions for problem (4.3), that is, ŷ ∈

{y,−y}. To decide which solution is correct we will use the node observations c. Specifically,

we will output the vector ŷ that maximizes the score c>ŷ. The next theorem formally states

that, with high probability, ŷ = y maximizes the score c>ŷ for a sufficiently large n.

Theorem 4.2.6. Let ŷ ∈ {y,−y}. Then, with probability at least 1− ε2(n, q), we have that:

c>y = maxŷ∈{y,−y} c>ŷ, where ε2(n, q) = e−n2 (1−2q)2 and q is the node noise.

Proof. We are interested in upper bounding the probability of predicting the wrong vector

y, that is,

P (c>y∗ ≤ −c>y∗) = P (c>y∗ ≤ 0)

= P
(∑
u∈V

z(u)
q ≤ 0

)
≤ e−n2 (1−2q)2

,

where for the last equation we applied Hoeffding’s inequality.

Remark 4.2.7. From Theorems 4.2.5 and 4.2.6 , we obtain that exact recovery (i.e., ŷ = y)

is achievable with probability at least 1 − ε1(φG,∆max, p) − ε2(n, q). Finally, from Theorem

 4.2.6 , it is clear that since the parameter q ∈ (0, 0.5), for a sufficiently large n we have an

57

exponential decay of the probability of error ε2. Thus, we focus on the conditions of the first

stage and provide examples in the next section.

4.2.3 Examples of Classes of Graphs

In this section, we provide examples of classes of graphs that yield high probability in

Theorem 4.2.5 .

Perhaps the most important example we provide in this section is related to the smoothed

analysis on connected graphs [82]. Consider any fixed graph G = (V , E) and let Ẽ be a random

set of edges over the same set of vertices V , where each edge e ∈ Ẽ is independently drawn

according to the Erdős-Rényi model with probability ε/n and where ε is a small (fixed)

positive constant. We denote this as Ẽ ∼ ER(n, ε/n), then let G̃ = (V , E ∪ Ẽ) denote the

random graph with the edge set Ẽ added.

The model above can be considered a generalization of the classical Erdős-Rényi random

graph, where one starts from an empty graph (i.e., G = (V , ∅)) and adds edges between

all possible pairs of vertices independently with a given probability. The focus on “small”

ε means that we are interested in the effect of a rather gentle random perturbation. In

particular, it is known that graphs with bad expansion properties are not suitable for exact

inference (see for instance [83]), but certain classes such as grids or planar graphs can yield

good approximation under some regimes despite being bad expanders as shown by Globerson,

Roughgarden, Sontag, and Yildirim [61]. Here we consider the graph G to be a bad expander

and show that with a small perturbation, exact inference is achievable.

The following result was presented by Krivelevich, Reichman, and Samotij [82] in an

equivalent fashion. Specifically, we set α = 1/2, δ = ε/256, K = 128/ε, C = 1, s = K log n,

which results with all the conditions being fulfilled in the proof of Theorem 2 in [82].

Lemma 4.2.8 (Theorem 2 in [82]). Let G = (V , E) be a connected graph, choose Ẽ ∼

ER(n, ε/n), and let G̃ = (V , E ∪ Ẽ). Then, for every ε ∈ [1, n], we have that φG̃ ≥
ε

256+256 logn ,

with probability at least 1− n−2.2− log ε
2 .

The above lemma allows us to lower bound the Cheeger constant of the random graph

G̃ with high probability, and is of use for our first example.

58

Corollary 4.2.9. Let G = (V , E) be any connected graph, choose Ẽ ∼ ER(n, log8 n/n), let

G̃ = (V , E ∪ Ẽ) and let ∆G̃max be the maximum node degree of G̃. Then, we have that φ2
G̃/∆G̃max ∈

Ω(log5 n) and ∆G̃max ∈ O(log9 n) with high probability. Therefore, exact recovery in polynomial

time is achievable with high probability.

Proof. Fix ε = log8 n. Let εr(n, ε) = n−2.2− log ε
2 , then from Lemma 4.2.8 we get φG̃ ∈ Ω(log7 n)

with probability at least 1 − εr(n, ε). Let ∆max be the maximum node degree of graph G,

then it is clear that ∆G̃max is a random variable with expected value E [∆G̃max] ≤ ∆max +log8 n.

By applying Markov’s inequality we obtain P (∆G̃max ≥ t) ≤ E [∆G̃max]/t ≤ (∆max+log8 n)/t for t > 0.

Set t = log9 n, then let ε∆(∆max, n) = (∆max+log8 n)/log9 n, we have that ∆G̃max ≤ log9 n with

probability at least 1− ε∆(∆max, n).

By using the union bound and noting that εr → 0 and ε∆ → 0 as n→∞, we have that
φ2
G̃/∆G̃max ∈ Ω(log5 n) and ∆G̃max ∈ O(log9 n) with high probability. Finally, this leads to ε1 → 0

as n→∞, thus, exact inference is achievable in polynomial time.

We emphasize the nice property of random graphs G̃ shown in Corollary 4.2.9 , that is, by

adding a small perturbation—edges from the Erdős-Rényi model with small probability—we

are able to obtain exact inference in spite of G being a bad expander. Our next two examples

include complete graphs and d-regular expanders. The following corollary shows that, with

high probability, exact recovery of labels for complete graphs is possible in polynomial time.

Corollary 4.2.10 (Complete graphs). Let G = Kn, where Kn denotes a complete graph of

n nodes. Then, we have that φ2
G/∆max ∈ Ω(n). Therefore, exact recovery in polynomial time

is achievable with high probability.

Proof. For any set S ⊂ V with |S| ≤ n/2, we have that:

φS = |E(S,SC)|
|S|

= |S| · |S
C |

|S|
= |SC | =⇒ φG = dn2 e.

Since G is a complete graph, we have that ∆max = n− 1, which yields φ2
G/∆max ∈ Ω(n). Thus,

from Theorem 4.2.5 , we have that ε1(φG,∆max, p)→ 0 as n→∞.

Another important class of graphs that admits exact recovery is the family of d-regular

expanders [84], which is defined below.

59

Definition 4.2.5 (d-regular expander). A d-regular graph with n nodes is an expander with

constant c > 0 if, for every set S ⊂ V with |S| ≤ n/2, |E(S,SC)| ≥ c · d · |S|.

Corollary 4.2.11 (Expanders graphs). Let G be a d-regular expander with constant c. Then,

we have that φ2
G/∆max ∈ Ω(d). If d ∈ Ω(log n) then exact recovery in polynomial time is

achievable with high probability.

Proof. From Definition 4.2.5 , we have that φG ≥ c · d. Since the graph is regular, we have

that ∆max = d. Therefore, φ2
G/∆max ∈ Ω(d). Finally, if d ∈ Ω(log n), then ε1(φG,∆max, p)

decays in at least n−c1 for some constant c1 > 0. That is, ε1(φG,∆max, p)→ 0 as n→∞.

4.3 Exact Inference from the Degree-4 Sum-of-Squares Hierarchy

In the previous section, we studied the sufficient conditions for realizing exact recovery

from a SDP viewpoint. In contrast, we now study the same problem under the sum-of-

squares (SoS) hierarchy of relaxations [85 – 87], which is a sequential tightening of convex

relaxations based on SDP. We study the SoS hierarchy because it is tighter than other known

hierarchies such as the Sherali-Adams and Lovász-Schrijver hierarchies [88]. In addition, our

motivation to study the level-2 or degree-4 SoS relaxation stems from three reasons. First,

higher-levels of the hierarchy, while polynomial time solvable, are already computationally

very costly. This is one of the reasons the SoS hierarchy have been mostly used as a proof

system for finding lower bounds in hard problems (e.g., for the planted clique problem, see

[89]). Second, little is still known about the level-2 SoS relaxation, where [90] and [91] are

attempts to understand its geometry. Third, there is empirical evidence on the improvement

in exact recoverability with respect to SDP, an example of which is depicted in Figure 4.1 .

While it is known that the level-2 SoS relaxation has a tighter search space than that of

SDP, it is not obvious why it can perform better than SDP for exact recovery. In this section,

we aim to understand the origin of such improvement from a graph theoretical perspective.

We will show that the solution of the dual of the SoS relaxed problem is related to finding edge

weights of the Johnson and Kneser graphs, where the weights fulfill the SoS constraints and

intuitively allow the input graph to increase its algebraic connectivity. Finally, as byproduct

60

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Edge noise

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
a
b
ili

ty
 o

f
e
x
a
c
t
re

c
o
v
e
ry

Nodes: 10 Iterations: 30

SDP

SOS D4

Figure 4.1. A comparison between the degree-4 SoS and SDP relaxations
in the context of structured prediction. We observe that SoS attains a higher
probability of exact recovery, for different levels of edge noise p. (See Section

 4.3.1 for a formal problem definition).

of our analysis, we derive a novel Cheeger-type lower bound for the algebraic connectivity

of graphs with signed edge weights.

We emphasize that the objective of this section is on the understanding of exact recov-

erability by using the degree-4 SoS. Scalability of the SoS hierarchy is an important open

problem that is actively under study [92 , 93] and is beyond the scope of this analysis.

4.3.1 Problem Definition

For clarity purposes, we restate the problem under analysis and slightly modify our

notation for convenience. We aim to predict a vector of n node labels y = (y1, . . . , yn)>, where

yi ∈ {+1,−1}, from a set of observations X, where X corresponds to noisy measurements

of edges. These observations are assumed to be generated from a ground truth labeling y by

a generative process defined via an undirected connected graph G = (V,E), where V = [n],

and an edge noise p ∈ (0, 0.5). For each edge (u, v) ∈ E, we have a single independent

61

edge observation Xu,v = yuyv with probability 1− p, and Xu,v = −yuyv with probability p.

While for each edge (u, v) /∈ E, the observation Xu,v is always 0. Thus, we have a known

undirected connected graph G, an unknown ground truth label vector y ∈ {+1,−1}n, noisy

observations X ∈ {−1, 0,+1}n×n. Given that we consider only edge observations, our goal is

to understand when one can predict, in polynomial time and with high probability, a vector

label y ∈ {−1,+1}n such that y ∈ {y,−y}.

Given the aforementioned generative process, our focus will be to solve the following

optimization problem, which stems from using maximum likelihood estimation [61]:

max
y

y>Xy, subject to yi = ±1, ∀i ∈ [n]. (4.5)

Recall that, in general, the above combinatorial problem is NP-hard to compute [79]. Let

ydis denote the optimizer of eq.(4.5). It is clear that for any label vector y, the negative label

vector −y attains the same objective value in eq.(4.5). Thus, we say that one can achieve

exact recovery by solving eq.(4.5) if ydis ∈ {y,−y}. Given the computational hardness

of solving eq.(4.5), we next revise approaches that relax problem (4.5) to one that can be

solved in polynomial time. Then, our focus will be to understand the effects of the structural

properties of the graph G in achieving, with high probability, exact recovery in the continuous

problem.

Semidefinite Programming Relaxation

As explained in Section 4.2 , a popular approach for approximating problem (4.5) is to

consider a larger search space that is simpler to describe and is convex. In particular, let

Y = yy>, that is, Yi,j = yiyj and noting that Y is a rank-1 positive semidefinite matrix. We

can rewrite the objective of problem (4.5) in matrix terms as follows, y>Xy = Tr(Xyy>) =

Tr(XY) = 〈X,Y 〉. Thus, we have

max
Y
〈X,Y 〉, subject to Y � 0, Yi,i = 1,∀i ∈ [n]. (4.6)

62

Let Y ∗ denote the optimizer of the problem above, then, in this case, we say that exact

recovery is realized by solving eq.(4.6) if Y ∗ = yy>. The only constraint dropped in problem

(4.6) with respect to problem (4.5) is the rank-1 constraint, which makes problem (4.6)

convex. The above relaxation is known as semidefinite programming (SDP) relaxation and

is typically used as an approximation algorithm. That is, after obtaining a continuous

solution Y ∗ ∈ Rn×n, a rounding procedure is performed to recover an approximate solution

in {±1}n, e.g., see [94 , 95]. We now introduce tighter levels of relaxations known as the SoS

hierarchy, and we will see that an SDP relaxation corresponds to the first level of the SoS

hierarchy.

Sum-of-Squares Hierarchy

Let [n]≤d = {∅} ∪ [n]1 ∪ . . . ∪ [n]d denote the set of (possibly empty) tuples, of length up

to d, composed of the integers from 1 to n, e.g., [2]≤2 = {∅, (1), (2), (1, 1), (1, 2), (2, 1), (2, 2)}.

Also, let the summation between two tuples be the concatenation of all the elements in them,

e.g., for C1 = (1, 1, 2), C2 = (3, 1) we have C1 + C2 = (1, 1, 2, 3, 1). We use ψ(C) to denote

the tuple with elements from C sorted in ascending order, e.g., for C = (2, 1, 1, 3) we have

ψ(C) = (1, 1, 2, 3). We also use |C| to denote the cardinality of C. For two distinct tuples

C1 and C2, the expression C1 < C2 means that either |C1| < |C2|, or |C1| = |C2| and ∃i such

that the i-ith entry of C2 is greater than the i-th entry of C1. Then, for a set of tuples

C = {C1, . . . , Ck}, we say that C is in lexicographical order if Ci < Cj for all i < j. Finally,

for a matrix Y ∈ R[n]≤`×[n]≤` , we index its rows and columns by using tuples in [n]≤` ordered

lexicographically, e.g., for Y ∈ R[5]≤3×[5]≤3 we have that Y(1,1,2),(5) corresponds to the entry

at row (1, 1, 2) and column (5).

It is convenient to rewrite the objective of problem (4.5) as a polynomial optimization

problem, i.e., ∑i

∑
j Xi,jyiyj, so that the standard machinery of SoS optimization [85 , 86 ,

 96] can be applied to formulate the degree-d relaxation. Then, for an even number d, the

degree-d (or level d/2) SoS relaxation of problem (4.5) takes the form

max
Y ∈R[n]≤

d
2 ×[n]≤

d
2

n∑
i=1

n∑
j=1

Xi,jY(i),(j), (4.7)

63

subject to Y � 0; Y(∅)(∅) = 1; Y(i)+C1,(i)+C2 = YC1,C2 , ∀i ∈ [n], |C1|, |C2| ≤ d/2− 1;

YC1,C2 = YC1,C2 , ∀ψ(C1 + C2) = ψ(C1 + C2), |C1|, |C2|, |C1|, |C2| ≤ d/2.

In the problem above, each entry of the matrix Y corresponds to a reparametrization that

takes the form YC1,C2 = ∏
i∈C1 yi

∏
j∈C2 yj = ∏

i∈C1+C2 yi, which is also known as a pseudomo-

ment matrix [86 , 96]. In problem (4.7), the second constraint can be thought as a normaliza-

tion constraint. The third list of constraints corresponds to∏j∈C yj ·y2
i = ∏

j∈C yj,∀|C| ≤ d−2,

which is equivalent to yi = ±1 in problem (4.5). Finally, the last list of constraints corre-

sponds to ∏j∈C1+C2 yj = ∏
j∈C1+C2 yj,∀ψ(C1 + C2) = ψ(C1 + C2), and |C1|, |C2|, |C1|, |C2| ≤ d/2,

which states that YC1,C2 should be invariant to all permutations of the tuple C1 + C2. One

can note that, for d = 2, the degree-2 (or level 1) SoS relaxation is equivalent to the SDP

relaxation in eq.(4.6). It is clear that for a larger d, the degree-d SoS relaxation gives a

tighter convex relaxation of problem (4.5). While one can solve problem (4.7) to a fixed

accuracy using general-purpose SDP algorithms in polynomial time in n, the computational

complexity will be of order nO(d). Thus, it is important that d be of low order.

As the focus of this section is on the degree-4 SoS relaxation, we start by formulating

the corresponding optimization problem. In problem (4.7), for d = 4, the matrix Y is in

R[n]≤2×[n]≤2 , that is, Y is a matrix of dimension (1 + n + n2) × (1 + n + n2). Bandeira and

Kunisky [90 , Appendix A] showed that one can write an equivalent formulation by using

only the principal submatrix of Y indexed by [n]2× [n]2 (i.e., a matrix of dimension n2×n2).

The reduced formulation takes the form:

max
Y ∈R[n]2×[n]2

n∑
i=1

n∑
j=1

Xi,jY(1,1),(i,j), (4.8)

subject to Y � 0; Y(i,i)(j,j) = 1, ∀i, j ∈ [n]; Y(i,i)(j,k) = Y(i,i)(j,k), ∀i, i, j, k ∈ [n];

Y(i,j)(k,`) = Y(π1,π2)(π3,π4),∀ i, j, k, ` ∈ [n], π ∈ Π(i, j, k, `),

where Π(i, j, k, `) is the set of all permutations of (i, j, k, `). We will go one step further

in the reduction and show that one can indeed cast an equivalent formulation to problem

(4.8) by using only the principal submatrix of Y ∈ R[n]2×[n]2 indexed by
(

[n]
2

)
×
(

[n]
2

)
, i.e., a

64

matrix of dimension n(n−1)
2 × n(n−1)

2 . Here, it will be more convenient to use sets instead of

tuples for indexing the rows and columns of Y , where
(

[n]
2

)
denotes the set of all unordered

combinations of length 2 from the numbers in [n], e.g.,
(

[3]
2

)
= {{1, 2}, {1, 3}, {2, 3}}. For

further distinction against the matrix Y ∈ R[n]2×[n]2 , we will use Ỹ to denote the matrix

indexed by
(

[n]
2

)
×
(

[n]
2

)
.

We will also make use of the next set of definitions, which are important for stating our

results.

Definition 4.3.1 (The level-2 vector). For any vector v ∈ Rn, its level-2 vector, denoted by

v(2) ∈ R(n2) and indexed by
(

[n]
2

)
, is defined as v(2)

{i,j} = vivj.

We also define the level-2 version of a graph as follows.

Definition 4.3.2 (The level-2 graph). Let G = (V,E), where V = [n], be any undirected

graph of n nodes with adjacency matrix A ∈ {0, 1}n×n. The level-2 graph of G, denoted by

G(2) = (
(

[n]
2

)
, E(2)) and with adjacency matrix A(2) ∈ {0, 1}(

n
2)×(n2), has its adjacency matrix

defined as A(2)
{i,k},{k,j} = 1 if (i, j) ∈ E for all i < j < k ∈ [n], and A

(2)
{i,j},{k,`} = 0 for all

i < j < k < ` ∈ [n].

The next type of graphs have been studied for several years within the graph theory

community and we will later show how they relate to the solution of the level-2 SoS relaxation.

Definition 4.3.3 (Johnson graph [97]). For a set [n], the Johnson graph J (n, k) has all

the k-element subsets of [n] as vertices, and two vertices are adjacent if and only if the

intersection of the two vertices (subsets) contains (k − 1)-elements.

Definition 4.3.4 (Kneser graph [98]). For a set [n], the Kneser graph K(n, k) has all the

k-element subsets of [n] as vertices, and two vertices are adjacent if and only if the two

vertices (subsets) are disjoint.

From Definitions 4.3.3 and 4.3.4 , we are interested in J (n, 2) and K(n, 2), where we

first note that K(n, 2) is the complement of J (n, 2). We also note that for a graph G of n

nodes, by construction, the level-2 graph of G is always a subgraph of the Johnson graph

J (n, 2), and is equal to J (n, 2) if and only if G is the complete graph of n nodes. Finally,

65

Index Value

Index Value

Figure 4.2. Illustration of the level-2 construction of X. The edge values in
the grid graph correspond to the observation X, while the edge values on the
right graph correspond to level-2 matrix X(2). The solid blue and dotted red
lines indicate that the observation is correct and corrupted, respectively.

since our observation matrix X depends on a graph G, one can also extend X to a matrix

in {−1, 0,+1}(
n
2)×(n2). We will use X(2) to denote the level-2 version of X. Specifically,

X
(2)
{i,k},{k,j} = Xi,j for all i < j < k ∈ [n], and X

(2)
{i,j},{k,`} = 0 for all i < j < k < ` ∈ [n].

For further clarity, we illustrate the level-2 construction of X in Figure 4.2 , where the input

graph is a 2 by 2 grid.

Next, we present an optimization problem that is equivalent to problem (4.8) but in terms

of the level-2 constructions defined above. For notational convenience, we will use S+(ijk`)
−(stuv)

to denote a sparse symmetric matrix such that the only non-zero entries are S{i,j},{k,`} = 1,

and S{s,t},{u,v} = −1.

max
Ỹ ∈R([n]

2)×([n]
2)

1
n− 2〈X

(2), Ỹ 〉, (4.9)

subject to Ỹ � 0; ỸC,C = 1,∀C ∈
(

[n]
2

)
; 〈S+(ikkj)

−(ikkj) , Ỹ 〉 = 0,∀i < j < k < k ∈ [n];

〈S+(ijk`)
−π(ijk`), Ỹ 〉 = 0,∀i < j < k < l ∈ [n], π ∈ Π(i, j, k, l).

Proposition 4.3.1. Problem (4.9) is equivalent to problem (4.8).

Proof. By construction of the level-2 matrix X(2), we have that each entry Xi,j is repeated

n− 2 times. Thus, it follows that the objectives in problems (4.8) and (4.9) are equal.

Let Y be a feasible solution to problem (4.8), then clearly the principal submatrix indexed

by
(

[n]
2

)
×
(

[n]
2

)
is a feasible solution to problem (4.9). It remains to verify that if Ỹ is a

66

feasible solution to problem (4.9) then there exists a matrix Y such that it is feasible to

problem (4.8) and has Ỹ as a principal submatrix. We define the entries of Y as follows,

Y(i,i)(j,j) = Ỹ{i,j},{i,j}

Y(i,i)(j,k) = Ỹ{i,j},{i,k}

Y(i,j)(k,`) = Ỹ{i,j},{k,`}.

Clearly, Y will fulfill the constraints of problem (4.8) if Ỹ is feasible to problem (4.9). In

particular, one can verify that v>Y v ≥ 0 for any v if Ỹ � 0, which concludes our proof.

Remark 4.3.1. Let y(2) be the level-2 vector of the ground-truth labeling y, and let Ỹ ∗ be the

optimizer of problem (4.9). Then, we say that exact recovery is realized if Ỹ ∗ = y(2)y(2)>.

4.3.2 The Dual Problem

A key ingredient for our analysis is the dual formulation of problem (4.9), which takes

the following form

min
Ṽ , µ

Tr(Ṽ), (4.10)

subject to Ṽ is diagonal,

Λ̃ = Ṽ − X(2)

n− 2 +
∑

i<j<k<k

µikkjikkjS
+(ikkj)
−(ikkj) +

∑
i<j<k<`

π∈Π(i,j,k,`)

µijk`
π(ijk`)S

+(ijk`)
−π(ijk`) � 0,

where Ṽ ∈ R([n]
2)×([n]

2), µikkjikkj ∈ R and µijk`
π(ijk`) ∈ R are the dual variables of the second

constraint, and the third and fourth list of constraints from the primal formulation (4.9),

respectively. The dual variable µ denotes all the scalars µikkjikkj and µijk`
π(ijk`).

We have that if there exists Ỹ , Ṽ ,µ that satisfy the Karush-Kuhn-Tucker (KKT) con-

ditions [99], then Ỹ and Ṽ ,µ are primal and dual optimal, and strong duality holds in this

case. Let y(2) be the level-2 vector of the ground-truth labeling y. Since we are interested

67

in exact recovery, we will consider the solution Ỹ = y(2)y(2)> for the rest of our analysis,

where it is clear that such setting satisfies the primal constraints. Let

Ṽ =
diag

(
X(2)Ỹ

)
n− 2 − diag

(∑
i<j<k<k

µikkjikkjS
+(ikkj)
−(ikkj)Ỹ

)
− diag

(∑
i<j<k<`
π∈Π(ijk`)

µijk`
π(ijk`)S

+(ijk`)
−π(ijk`)Ỹ

)
, (4.11)

where, for a matrix M , diag(M) denotes the diagonal matrix formed from the diagonal

entries of M . Complementary slackness and stationarity require the trace of Ṽ to be equal

to the trace of the r.h.s. of eq.(4.11), which is clearly satisfied by construction. Thus, if

we find an assignment of µ such that Λ̃ � 0, we would have an optimal solution since all

KKT conditions are fulfilled. Nevertheless, we are also interested in Ỹ = y(2)y(2)> being

the unique optimal solution, where we note that having λ2(Λ̃) > 0 suffices to guarantee a

unique solution. The argument follows from the fact that, by the setting of eq.(4.11), we

have Λ̃y(2) = 0. Thus, if λ2(Λ̃) > 0 then y(2) spans all of the null-space of Λ̃. Combined

with the KKT conditions, we have that Ỹ should be a multiple of y(2)y(2)>. Since Ỹ has

diagonal entries equal to 1, we must have that Ỹ = y(2)y(2)>.

Putting all pieces together, we have that under eq.(4.11), if for some µ we have that

Λ̃ � 0 and λ2(Λ̃) > 0, then the optimizer of problem (4.9) is y(2)y(2)>, i.e., we obtain exact

recovery. Since y(2) is an eigenvector of Λ̃ with eigenvalue zero, we focus on controlling the

quantity λ2(Λ̃) = minv⊥y(2)
v>Λ̃v
v>v

.

3
 Also, as Λ̃ depends on the noisy observation X(2), we

have that Λ̃ is a random quantity. Then, by using Weyl’s theorem on eigenvalues, we have

λ2(Λ̃) = λ2(Λ̃− E [Λ̃] + E [Λ̃]) ≥ λ2(E [Λ̃]) + λ1(Λ̃− E [Λ̃]). (4.12)

In eq.(4.12), let t be a lower bound to λ2(E [Λ̃]), i.e., λ2(E [Λ̃]) ≥ t. Then, the second

summand can be lower bounded by using matrix concentration inequalities. Specifically,

by using matrix Bernstein inequality [81], one can obtain that P[λ1(Λ̃ − E [Λ̃]) ≤ −t] ≤

O(n2e−t). Thus, we can now focus on the first summand, which will be lower bounded by a
3

 ↑ This expression comes from the variational characterization of eigenvalues.

68

novel Cheeger-type inequality. In the next subsections, we look at the expected value of Λ̃

in more detail.

4.3.3 The Expected Value and the Algebraic Connectivity of the Level-2 Graph

We will show how E [Λ̃] is related to the Laplacian matrix of G(2) (the level-2 version of

G). To do so, we will use the following definitions and notation.

For a signed weighted graph H = (U, F), we use WH to denote its weight matrix, that

is, the entry WH
i,j ∈ R is the weight of edge (i, j) ∈ F and is zero if (i, j) /∈ F. For any set

T ⊂ U , its boundary is defined as ∂T = {(i, j) | i ∈ T and j /∈ T}; while its boundary

weight is defined as ω(∂T) = ∑
i∈T,j /∈T W

H
i,j . The number of nodes in T is denoted by |T |.

The degree of a node is defined as deg(i) = ∑
j 6=iW

H
i,j .

Definition 4.3.5. Let H be a graph with degree matrix DH and weight matrix WH , where

DH is a diagonal matrix such that Di,i = deg(i). The Laplacian matrix of H is defined as

LH = DH −WH .

Definition 4.3.6 (Cheeger constant [80]). For a graph H = (U, F) of n nodes, its Cheeger

constant is defined as φ(H) = minT⊂U, |T |≤n/2 ω(∂T)
|T | .

Remark 4.3.2. For unweighted graphs, the definitions above match the standard definitions

for node degree, boundary of a set, and Laplacian matrix, as in Section 4.2 .

Next, we analyze the scenario where all the scalar dual variables in µ are zero, we defer

the case when they are not for the next subsection.

The µ = 0 scenario. From eq.(4.11) we have that Ṽ = diag(X(2)Ỹ)/(n − 2). Hence,

for all i < j ∈ [n], we have E [Ṽ{i,j},{i,j}] = (1−2p)/(n−2) · deg({i, j}). In addition, we have

E [X(2)
{i,k},{k,j}] = (1 − 2p) yi yj1

[
(i, j) ∈ E

]
, for all i < j < k ∈ [n].

4
 Finally, since µ = 0,

we have Λ̃ = Ṽ − X(2)

n−2 . Therefore,

E [Λ̃] = 1− 2p
n− 2 Υ̃LG(2)Υ̃, (4.13)

4
 ↑ Recall that if (i, j) ∈ E, then Xi,j = −yiyj with probability p, and Xi,j = yiyj otherwise. If (i, j) /∈ E

then Xi,j = 0.

69

where Υ̃ is a diagonal matrix with entries equal to the entries in y(2). Recall that y(2)
{i,j} = yiyj

and yi ∈ {±1} for all i ∈ [n]. Then, we have that Υ̃−1 = Υ̃ and, thus, the matrix E [Λ̃] and
1−2p
n−2 L

G(2) are similar. The latter means that both matrices share the same spectrum, i.e.,

λ2(E [Λ̃]) = 1− 2p
n− 2 λ2(LG(2)). (4.14)

Notice that the level-2 graph G(2) is unweighted since G is unweighted. That implies that

one can lower bound λ2(E [Λ̃]) by using existing lower bounds for the second eigenvalue

5
 of

the Laplacian matrix of G(2). In particular, one can have [100]

λ2(E [Λ̃]) = 1− 2p
n− 2 λ2(LG(2)) ≥ (1− 2p)φ(G(2))2

2(n− 2) degmax
. (4.15)

Finally, we note that considering µ = 0 is equivalent to not having the third and fourth list

of constraints in problem (4.9). At this point, the reader might wonder if, setting µ = 0 and

solving problem (4.9) yields in any better chances of exact recovery than solving problem

(4.6). We answer the latter in the negative.

Proposition 4.3.2. Without the third and fourth list of constraints, problem (4.9) does not

improve exact recoverability with respect to problem (4.6).

Proof. We will show the equivalence between problem (4.8), without the third and fourth list

of constraints, and problem (4.6). Then, by Proposition 4.3.1 , our claim follows.

It is clear that the objectives in problems (4.6) and (4.8) are equal. Let Y sdp be a feasible

solution to problem (4.6), then we define Y sos as follows,

Y sos
(i,i)(j,k) = Y sdp

i,j , Y sos
(i,j)(k,`) = 0.

Since Y sdp � 0, it follows that Y sos � 0 and, thus, Y sos is feasible to problem (4.8) without

the third and fourth list of constraints. Similarly, in the other direction, let Y sos be a feasible

solution to problem (4.8) without the third and fourth list of constraints, and define Y sdp to
5

 ↑ The second eigenvalue of the Laplacian matrix is also known as the algebraic connectivity.

70

be the principal submatrix of Y sos with the first n rows and columns. Then, it follows that

if Y sos � 0 then Y sdp � 0, which is feasible to problem (4.6).

The purpose of Proposition 4.3.2 is to highlight the role that a µ 6= 0 will play in showing

the improvement in exact recoverability of the degree-4 SoS relaxation with respect to the

SDP relaxation, which is discussed next.

4.3.4 Systems of Sets and a Novel Cheeger-Type Lower Bound

We next show how the third and fourth list of constraints of problem (4.9) relate to

finding edge weights of the Johnson and Kneser graphs, respectively, so that the Laplacian

matrix of a new graph is positive semidefinite (PSD).

Note that the third and fourth list of constraints in the SoS relaxation (4.9) do not

depend on the input graph, nor on the edge observations or the ground-truth node labels.

Instead, they are constraints coming from the SoS relaxation, as explained in the subsequent

paragraphs to problem (4.7). That means that they depend only on the number of nodes,

n, and on the degree of the relaxation, d = 4. We will illustrate in detail the case of n = 4

as it is easier to generalize from there to any value of n.

Recall that S+(ijk`)
−(stuv) is a symmetric matrix that has non-zero entries S{i,j},{k,`} = 1, and

S{s,t},{u,v} = −1. By taking advantage of the implicit symmetry constraint from Ỹ � 0, for

n = 4, one can realize that the third list of constraints in problem (4.9) has six different

constraints in total (with their respective dual variables), which are:

µ1224
1334 : 〈S+(1224)

−(1334) , Ỹ 〉 = 0, µ2113
2443 : 〈S+(2113)

−(2443) , Ỹ 〉 = 0, µ1332
1442 : 〈S+(1332)

−(1442) , Ỹ 〉 = 0,

µ3114
3224 : 〈S+(3114)

−(3224) , Ỹ 〉 = 0, µ1223
1443 : 〈S+(1223)

−(1443) , Ỹ 〉 = 0, µ2334
2114 : 〈S+(2334)

−(2114) , Ỹ 〉 = 0.

Similarly, from the fourth list of constraints we have:

µ1324
1234 : 〈S+(1324)

−(1234) , Ỹ 〉 = 0, µ2314
1234 : 〈S+(2314)

−(1234) , Ỹ 〉 = 0.

71

Weighted Johnson Graph Weighted Kneser Graph

Figure 4.3. Johnson and Kneser graphs for n = 4, where each edge weight
is related to some dual variables from the SoS constraints. Edge weights with
the same color sum to zero, see eq.(4.16).

In the dual formulation (4.10), for both lists above, the matrices S are weighted by the

dual variables µ. Then, the two weighted summations can be thought of as weight matrices

of some graphs. Interestingly, such graphs happen to be the Johnson and Kneser graphs

6

for the first and second list of constraints above, respectively. In Figure 4.3 , we show an

illustration of the Johnson and Kneser graphs with edge weights corresponding to the dual

variables.

Let ⊕ denote the symmetric difference of sets. Also, let W J and WK denote the weight

matrices of the Johnson and Kneser graphs, respectively. Then, for any n, the third and

fourth list of constraints of problem (4.9) translate to having the following constraints on

W J and WK,

∑
C1,C2

C1⊕C2={i,j}

W J
C1,C2 = 0, ∀ i < j ∈ [n],

∑
C1,C2

C1⊕C2={i,j,k,`}

WK
C1,C2 = 0, ∀ i < j < k < ` ∈ [n]. (4.16)

Thus, by using the construction in eq.(4.11), we have that the PSD constraint of the dual

formulation (4.10) can be rewritten in terms of W J and WK as follows,

Λ̃ =
diag

(
X(2)Ỹ

)
n− 2 − X(2)

n− 2 +
(
diag(W J Ỹ)−W J

)
+
(
diag(WKỸ)−WK

)
� 0.

6
 ↑ For any n, whenever we write the Johnson and Kneser graphs, we refer to J (n, 2) and K(n, 2), respectively.

72

Let G̃ = G(2) ∪ J ∪ K such that W G̃ = 1−2p
n−2 W

G(2) +W J +WK, and noting that w.l.o.g.

one can multiply the weights in eq.(4.16) by yiyj and yiyjyky`, respectively. We can use a

similar argument to that of eq.(4.14) and obtain

λ2(E [Λ̃]) = λ2(LG̃). (4.17)

The subtlety for lower bounding eq.(4.17) is that, unless all edge weights are zero, the Johnson

and Kneser graphs will both have at least one negative edge weight in order to fulfill eq.(4.16).

In other words, the Laplacian matrix LG̃ is no longer guaranteed to be PSD. That fact alone

rules out almost all existing results on lower bounding the algebraic connectivity as it is

mostly assumed that all edge weights are positive. Among the few works that study the

Laplacian matrix with negative weights, one can find [101 , 102]; however, their results focus

on finding conditions for positive semidefiniteness of the Laplacian matrix in the context of

electrical circuits and not in finding a lower bound. Our next result, generalizes the lower

bound in [100] by considering negative edge weights.

Theorem 4.3.3. Let H = H+∪H− be a weighted graph such that H+ and H− denote the dis-

joint subgraphs of H with positive and negative weights, respectively. Also, let degH+

max denote

the maximum node degree of H+. Then, we have that λ2(LH) ≥ φ(H+)2

2 degH+
max

+ 2 ·mincut(H−).

Remark 4.3.4. We remark that the reason we do not consider other versions of the Lapla-

cian matrix (e.g., the normalized Laplacian matrix which is guaranteed to be PSD even in

the presence of negative weights) is because how our primal/dual construction (see Section

 4.3.2) leads to a valid solution of the constraints in eq.(4.10) which also satisfies the KKT

conditions. That is, using other notions of Laplacian matrix (see e.g., [103 – 108]) would not

satisfy the optimality conditions needed for exact recovery—in particular, stationarity and

complementary slackness. In fact, one of the challenges we face in our analysis is that by

having the standard Laplacian matrix, its minimum eigenvalue can be negative, as shown in

our example in Section 4.3.5 and also discussed in [107], which motivated the search of a

more general lower bound for the algebraic connectivity of signed graphs (Theorem 4.3.3).

73

In the case when there are positive weights only, the theorem above yields the typical

Cheeger bound [100]. When there is at least one negative weight, the bound shows an

interesting trade-off between the Cheeger constant of the positive subgraph and the minimum

cut of the negative subgraph. By applying Theorem 4.3.3 to eq.(4.17), we obtain

λ2(E [Λ̃]) ≥ φ(G̃+)2/(2 degG̃+

max) + 2 ·mincut(G̃−). (4.18)

Without the weights of the Johnson and Kneser graphs, the lower bound above is equal to

that of eq.(4.15). Also, recall that, by construction, the edge set of the level-2 graph G(2) is

a subset of the edge set of the Johnson graph, and that the Kneser graph is the complement

of the Johnson graph. That means that G̃ will be a complete graph of
(
n
2

)
vertices, where

the edge weights of the Kneser graph are exclusively related to the dual variables µ, while

the edge weights of the Johnson graph might have an interaction between the noisy edge

observations and the dual variables µ. Intuitively, the SoS solution will try to find negative

weights for the Johnson and Kneser graphs of as low magnitude as possible, so that the

minimum-cut of the negative subgraph does not make the algebraic connectivity negative.

From the concentration argument stated after eq.(4.12), we conclude that as the lower bound

in eq.(4.18) increases then the more likely to realize exact recovery.

4.3.5 Example

The goal of this section is to provide a concrete example where the SoS relaxation (4.8)

achieves exact recovery but the SDP relaxation (4.6) does not. Since for any input graph with

n vertices, its level-2 version has
(
n
2

)
vertices, we select a value of n = 5 so that the level-2

graph has 10 nodes and the plots can still be visually inspected in detail. Figure (4.4 a) shows

the ground-truth labels of a graph with 5 nodes and 8 edges. Figure (4.4 b) corresponds to

the observation matrix X. In this case, only one edge is corrupted (the red edge). Figure

(4.4 c) shows the graph where an edge label of −1 or 1 indicates whether the observed edge

value was corrupted or not, respectively. The latter graph is obtained by ΥXΥ, where Υ

denotes a diagonal matrix with entries from y, similar to the procedure in eq.(4.13). Let

Λ be the dual variable of the PSD constraint in the SDP relaxation (4.6). Then, under a

74

+ + =

1

2

3

4

5

1

-1

-1

-1

-1

1

-1

1

1

2

3

4

5

1

-1

-1

-1

1

1

-1

1

+1 -1

1

2

3

4

5

1

1

1

1

-1

1

1

1

Not Flipped
Flipped

(a)(b)(c)

(d) (e) (f) (g)

Figure 4.4. Detailed example of how the level-2 SoS relaxation results in
improving the algebraic connectivity of the input graph through a combination
of weights of its level-2 version, and the Johnson and Kneser graphs. In the
final graph G̃, green and red lines indicate that their weights remain unchanged
w.r.t. the Kneser and Johnson edge weights, respectively; while blue lines
indicate that their weights resulted from the summation of weights from the
Level-2 and Johnson graphs.

similar dual construction to the one in [17 , 78], we have that λ2(Λ) = minv⊥y v
>Λv
v>v

is equal

to the second eigenvalue of the Laplacian matrix of Figure (4.4 c). Thus, we can observe

that, for SDP, the ground-truth solution Y attains a value of λ2(Λ) = −0.24 < 0, hence,

exact recovery fails.

In Figure (4.4 d), we show the level-2 graph of ΥXΥ, i.e., Υ̃X(2)Υ̃. As argued by

Proposition 4.3.2 , by setting µ = 0 the SoS does not do any better than SDP, which is

verified by obtaining λ2(Λ̃) = −0.24 < 0, hence, exact recovery also fails in this case.

However, by solving problem (4.9), we obtain µ 6= 0 which, as discussed in Section 4.3.4 ,

relates to edge weights in the Johnson and Kneser graphs. Those edge weights are depicted

in Figures (4.4 e) and (4.4 f), respectively. Finally, after summing all the weights of the level-2

graph, Johnson and Kneser graphs, we obtain a complete graph depicted in Figure (4.4 g).

In the latter, we have that λ2(Λ̃) = 0.95 > 0, which guarantees that Ỹ = y(2)y(2)>, i.e.,

exact recovery succeeds.

75

Motivated by eq.(4.16) and Theorem 4.3.3 , in Appendix C.4 , we show a non-trivial con-

struction of the Kneser graph weights based on only the node degrees of the level-2 graph.

4.4 Exact Inference Under Fairness Constraints

As the use of machine learning in decision making increases in our society [109], re-

searchers have shown interest in developing methods that can mitigate unfair decisions or

avoid bias amplification. With the existence of several notions of fairness [110 – 113], and

some of them being simultaneously incompatible [114], the first step is to define the notion

of fairness, which is commonly dependent upon the task on hand. For our purposes, we will

adapt the notion of statistical parity and apply it to the exact inference problem. Several

notions of statistical parity have been studied in prior works [115 – 117], where, in general,

statistical parity enforces a predictor to be independent of the protected attribute. In partic-

ular, in regression, Agarwal, Dudik, and Wu [115] relaxed the principle of statistical parity

and studied ε-away difference of marginal CDF and conditional CDF on the protected at-

tribute. Finally, unlike the works on supervised learning [118 – 120], the work of Chierichetti,

Kumar, Lattanzi, and Vassilvitskii [121] is among the first to adapt the disparate impact

doctrine (related to statistical parity) to unsupervised learning, specifically, to the clustering

problem.

For the rest of this chapter we will study the generative model described in the previous

sections with the addition of a fairness constraint.

4.4.1 Statistical Parity

In a few words, statistical (or demographic) parity enforces a predictor to be independent

of the protected attributes. While the definition has been mostly used in supervised learning,

in this work we try to adapt this notion of fairness to an inference problem. Specifically,

we say that, given a vector attribute a, the assignment y is fair under statistical parity if

y>a = 0. In particular, we will consider yi ∈ {−1,+1} to be the node labels of a graph,

as described in the next section. That is, we would like the partitions (or clusters) to have

76

the same sum of the attribute a.

7
 As an example, we can consider the nodes of a graph

to be individuals, and the node label to represent the community an individual belongs to.

Then, given a vector of resources a, demographic parity will enforce to output a labeling

that assigns the same amount of resources to each community.

4.4.2 Problem Definition

We consider a similar generative model as the one studied in previous sections. For clarity

purposes, we next provide a complete description of the problem to be studied in the next

sections. We aim to predict a vector of n node labels ŷ = (ŷ1, . . . , ŷn)>, where ŷi ∈ {+1,−1},

from a set of observations X and c, where X and c correspond to noisy measurements of

edges and nodes respectively. These observations are assumed to be generated from a fair

ground truth labeling y by a generative process defined via an undirected connected graph

G = (V , E), an edge noise p ∈ (0, 0.5), and a node noise q ∈ (0, 0.5). For each edge

(u, v) ∈ E , we have a single independent edge observation Xu,v = yuyv with probability

1− p, and Xu,v = −yuyv with probability p. While for each edge (u, v) /∈ E , the observation

Xu,v is always 0. Similarly, for each node u ∈ V , we have an independent node observation

cu = yu with probability 1 − q, and cu = −yu with probability q. In addition, we are given

a set of attributes A = {a1, . . . ,ak} such that ai ∈ Rn and 〈ai,y〉 = 0 for all i ∈ [k], i.e.,

for each i we have ∑j|yj=1(ai)j = ∑
j|yj=−1(ai)j. In other words, we say that the ground

truth labeling y is fair under statistical parity with respect to the set of attributes A. Thus,

we have a known undirected connected graph G, an unknown fair ground truth label vector

y ∈ {+1,−1}n, noisy observations X ∈ {−1, 0,+1}n×n and c ∈ {−1,+1}n, a set A of k

attributes ai ∈ Rn, and our goal is to find sufficient conditions for which we can predict, in

polynomial time and with high probability, a vector label ŷ ∈ {−1,+1}n such that ŷ = y.

Given the generative process, our prediction ŷ is given by the following combinatorial

problem:

ŷ = arg max
y∈{−1,+1}n

1
2y
>Xy + α · c>y (4.19)

7
 ↑ Note that the elements of the attribute can already be divided by the size of the clusters they belong to,

in which case it would represent equal averages. Here we make no assumptions on the elements of a.

77

subject to 〈ai,y〉 = 0, ∀i ∈ [k]

yi = ±1, ∀i ∈ [n].

where α = log 1−q
q /log 1−p

p
. Thus, we have a similar objective to that of eq.(4.2) with the

addition of a linear constraint related to fairness.

Remark 4.4.1. The optimization problem 4.19 is clearly NP-hard to compute in general.

For instance, consider the case where k = 1, and (a1)j is a positive integer for all j ∈ [n], i.e.,

there is a single attribute with positive entries. Also, let X = 0 and c = 0, that is, any vector

y will attain the same objective value. Then, the problem reduces to finding an assignment

y such that 〈a1,y〉 = 0, which is equivalent to the known NP-complete partition problem.

Another example is the case when a1 = 1, that is, a feasible solution has to have the same

number of positive and negative labels. Thus, if X is such that it encourages minimizing the

number of edges between clusters, the problem reduces to the minimum bisection problem,

which is known to be NP-complete [122]. Finally, consider also the case in which k = 0,

then it is known that when the graph G is a grid, the problem is NP-hard [79].

In the next section, we relax the combinatorial problem 4.19 to a continuous problem,

and formally show how the addition of some fairness constraints such as that of statistical

parity (as described above) can increase the exact recovery rate of Theorem 4.2.5 .

4.4.3 The Effect of Linear Constraints on Exact Recovery

Our approach to analyze exact recovery will focus on the quadratic term of problem

(4.19). This is because if ŷ ∈ {y,−y} from solving only the quadratic term with the

constraints, then by using majority vote with respect to the observation c one can decide

which of {y,−y} is optimal, as done in Section 4.2.2 . We will show sufficient conditions

for exact recovery in polynomial time through the use of semidefinite programming (SDP)

relaxations similar to that of Section 4.2.1 .

Next, we provide the SDP relaxation of problem (4.19).

Ŷ = arg max
Y ∈Rn×n

〈X,Y 〉 (4.20)

78

subject to Yii = 1, i ∈ [n],

a>i Y ai = 0, i ∈ [k],

Y � 0.

Next, we present an intermediate result that is of use for the proof of Theorem 4.4.4 .

Lemma 4.4.2. Let M ∈ Rn×n be a positive semidefinite matrix and let N ∈ Rn×n be

a rank-l positive semidefinite matrix, and consider a non-negative α ∈ R. Define ∆ =

λ2(M)− λ1(M), where λ1(·) and λ2(·) represent the minimum and second minimum eigen-

value, respectively. Also, let q1 denote the first eigenvector of M , and let v1, . . . ,vn denote

the eigenvectors of N related to λ1(N), . . . , λn(N) respectively. Then, we have that:

λ1(M + α ·N) ≥ λ1(M) + max
i

αi + ∆
2 −

√√√√(αi + ∆
2

)2

− αi ·∆ · (v>i q1)2

 ,
where αi = α · λi(N).

Proof. Let M = QDQ> and N = ∑n
i=n−l+1 λi(N)viv>i be the eigendecomposition of M

and N respectively. Let us define T = Q>(M + α ·N)Q. Since T and (M + α ·N) are

similar matrices, their spectrum is the same, which means that λ1(M + α ·N) = λ1(T).

By letting pi = Q>vi and αi = α · λi(N), we can express T = D + ∑n
i=n−l+1 αi · pip>i .

Without loss of generality, consider the elements of the diagonal matrix D to be in non-

decreasing order, i.e., D11 = λ1(M) ≤ D22 = λ2(M) ≤ . . . ≤ Dnn = λn(M). Choose any

r ∈ {n− l+1, . . . , n} and let D̃ = diag(D11, D22, . . . , D22), and T̃ = D̃+αr ·prp>r . Then, we

have that λ1(T) ≥ λ1(T̃). Denote by λ̃i the eigenvalues of T̃ , since prp>r is a rank-1 matrix

and D̃ has only two different eigenvalues, we have that λ̃2 = . . . = λ̃n−1 = D22. Now,

λ̃1λ̃nD
n−2
22 = det(D̃ + αr · prp>r) = det(D̃) det(I + αr · D̃−1prp

>
r)

= (1 + αr · p>r D̃−1pr) det(D̃)

= D11D
n−1
22

(
1 + αr

p2
r1

D11
+ αr

1
D22

(1− p2
r1)
)
,

79

where the third equality comes from det(I +AB) = det(I +BA), and the last equality is

due to ‖pr‖2 = 1. Simplifying on both ends, we obtain:

λ̃1λ̃n = αrD11 +D11D22 + αrp
2
r1∆ (4.21)

From calculating the trace we have:

λ̃1 + (n− 2)D22 + λ̃n = Tr(T̃) = Tr(D̃) + αr Tr(prp>r) = D11 + (n− 1)D22 + αr.

Simplifying on both ends, we obtain:

λ̃1 + λ̃n = D11 +D22 + αr. (4.22)

Combining eq.(4.21) and eq.(4.22), and simplifying for λ̃1 we have, λ̃1 = D11 + αr+∆
2 ±√

(αr+∆
2)2 − αr ·∆ · p2

r1 . Finally, since λ1(T) ≥ λ1(T̃) = λ̃1 and the choice of r was arbitrary,

we take the negative sign of the square root for a lower bound and we can maximize over

the choice of r for the tightest lower bound.

Remark 4.4.3. Note that Lemma 4.4.2 is tighter than general eigenvalue inequalities such

as Weyl’s inequality. Lemma 4.4.2 is tight with respect to ∆ in the sense that when N is

rank-1 and ∆ = 0, i.e., when λ1(M) = λ2(M), our lower bound yields λ1(M), which is

exactly the case as the minimum eigenvalue cannot be perturbed by a rank-1 matrix under this

scenario. Similarly, our bound is tight with respect to α. When α = 0, i.e., no perturbation,

our lower bound results in λ1(M).

Recall from Definition 4.2.1 that φG is the Cheeger constant of G, and let L be the Lapla-

cian matrix of G. Then, the second smallest eigenvalue of L and its respective eigenvector

are known as the algebraic connectivity and the Fiedler vector

8
 , respectively. The following

theorem corresponds to our main result for this section, where we formally show how the

effect of the statistical parity constraint improves the probability of exact recovery.

8
 ↑ If the multiplicity of the algebraic connectivity is greater than one then we have a set of Fiedler vectors.

80

Theorem 4.4.4. Let G = (V , E) be an undirected connected graph with n nodes, Cheeger

constant φG, Fiedler vector πππ2, and maximum node degree degmax(G). Also let ∆ denote

the gap between the third minimum and second minimum eigenvalue of the Laplacian of

G, namely, ∆ = λ3(L) − λ2(L). Let N = ∑k
i=1 aia

>
i with eigenvalues λi(N) and related

eigenvectors vi for i ∈ [n]. Then, for the combinatorial problem (4.19), a solution y ∈

{y,−y} is achievable in polynomial time by solving the SDP based relaxation (4.20), with

probability at least 1− 2n · e
−3(ε1+ε2)2

24σ2+8R(ε1+ε2) , where

ε1 = max
i=n−k+1...n

nλi(N) + ∆
2 −

√√√√(nλi(N) + ∆
2

)2

− nλi(N) ·∆ · (v>i πππ2)2

 ,
ε2 = (1− 2p) φ2

G
4 degmax(G) , σ2 = 4p(1− p) degmax(G), R = 2(1− p),

and p is the edge noise from our model.

4.4.4 Discussion

We start by contrasting our result in Theorem 4.4.4 to that of Theorem 4.2.5 . Following

the notation in Theorem 4.4.4 , Theorem 4.2.5 states that the probability of error for exact

recovery is 2n · e
−3ε22

24σ2+8Rε2 , while our result in Theorem 4.4.4 is 2n · e
−3(ε1+ε2)2

24σ2+8R(ε1+ε2) . Then, we

can conclude that, whenever ε1 > 0, the probability of error when adding a statistical parity

constraint (our model) is strictly less than the case with no fairness constraint whatsoever

(models studied in [17 , 61 , 73 , 78]).

The above argument poses the question on when ε1 > 0. Recall from Theorem 4.4.4

that ε1 = maxi=n−k+1...n

(
nλi(N)+∆

2 −
√(

nλi(N)+∆
2

)2
− nλi(N) ·∆ · (v>i πππ2)2

)
. For clarity

purposes, we discuss the case of a single fairness constraint, that is, N = a1a
>
1 , and let

‖a1‖2
2 = s. Then we have that ε1 = n·s+∆

2 −
√(

n·s+∆
2

)2
− n ·∆ · (a>1 πππ2)2, from this ex-

pression, it is clear that whenever ∆ > 0 and 〈a1, πππ2〉 6= 0 then ε1 > 0. In other words, to

observe improvement in the probability of exact recovery, it suffices to have a non-zero scalar

projection of the attribute a1 onto the Fiedler vector πππ2, and an algebraic connectivity of

81

multiplicity 1.

9
 Finally, note that since 〈a1, πππ2〉 depends on a1, which is a given attribute,

one can safely assume that 〈a1, πππ2〉 6= 0. However, the eigenvalue gap ∆ depends solely on

the graph G and raises the question on what classes of graphs we observe (or do not) ∆ = 0.

4.4.5 On the Multiplicity of the Algebraic Connectivity

Since ∆ > 0 if and only if the multiplicity of the algebraic connectivity is 1, we devote

this section to discuss in which cases this condition does or does not occur. After the

seminal work of Fiedler [123], which unveiled relationships between graph properties and

the second minimum eigenvalue of the Laplacian matrix, several researchers aimed to find

additional connections. In the graph theory literature, one can find analyses on the complete

spectrum of the Laplacian (e.g., [100 , 124 – 127]), where the main focus is to find bounds for

the Laplacian eigenvalues based on structural properties of the graph. Another line of work

studies the changes on the Laplacian eigenvalues after adding or removing edges in G [128 –

 130]. To our knowledge the only work who attempts to characterize families of graphs that

have algebraic connectivity with certain multiplicity is the work of Barik and Pati [130]. Let

πππ be a Fiedler vector of G, we denote the entry of πππ corresponding to vertex u as πu. A

vertex u is called a characteristic vertex of G if πu = 0 and if there exists a vertex w adjacent

to u such that πw 6= 0. An edge (u,w) is called a characteristic edge of G if πuπw < 0. The

characteristic set of G is denoted by CG(πππ) and consists of all the characteristic vertices and

characteristic edges of G. Let W be any proper subset of the vertex set of G, by a branch at

W of G we mean a component of G \ W. A branch at W is called a Perron branch if the

principal submatrix of L, corresponding to the branch, has an eigenvalue less than or equal

to λ2(L). The following was presented in [130] and characterizes graphs that have algebraic

connectivity with certain multiplicity.

Theorem 4.4.5 (Theorem 10 in [130]). Let G be a connected graph and πππ be a Fiedler vector

with W = CG(πππ) consisting of vertices only. Suppose that there are t ≥ 2 Perron branches

G1, . . . ,Gt of G at W. Then the following are equivalent.

1. The multiplicity of λ2(L) is exactly t− 1.
9

 ↑ Specifically, we refer to the algebraic multiplicity. Having an algebraic connectivity with multiplicity
greater than 1 will imply that ∆ = 0.

82

2. For each Fiedler vector ψ, CG(ψ) = W.

3. For each Fiedler vector ψ, the set CG(ψ) consists of vertices only.

The above characterization is very limited in the sense that authors in [130] are able to

show only one example of graph family that satisfies the conditions above. Specifically, their

example correspond to the class G = (KCn−t +HC
t)C , where Ki denotes the complete graph

of order i and Hj is a graph of j isolated vertices, and for G1 = (V1, E1),G2 = (V2, E2), the

operation G = G1 + G2 is defined as G = (V1 ∪ V2, E1 ∪ E2). A particularly known instance of

this class is t = n − 1, which corresponds to the star graph and has algebraic connectivity

with multiplicity n− 2 and therefore ∆ = 0 for n > 3.

Another known example where ∆ = 0 is the complete graph Kn of order n where there

is only one non-zero eigenvalue equal to n and with multiplicity n − 1. We now turn our

attention to graphs with poor expansion properties such as grids. A m × n grid, denoted

by Grid(m,n), is a connected graph such that it has 4 corner vertices which have two edges

each, m − 2 vertices that have 3 edges which make up the short “edge of a rectangle” and

n − 2 vertices that have 3 edges each which make up the “long edge of a rectangle” and

(n − 2)(m − 2) inner vertices which each have four edges. Edwards [131] characterizes the

full Laplacian spectrum for grid graphs as follows: the eigenvalues of the Laplacian matrix of

Grid(m,n) are of the form λi,j = (2 sin(πi
2n))2 + (2 sin(πj

2m))2, where i and j are non-negative

integers. Next, we present a corollary showing the behavior of ∆ in grids.

Corollary 4.4.6. Let G be a grid graph, Grid(m,n), then we have:

• If m = n then ∆ = 0.

• If m 6= n then ∆ > 0.

Proof. Since λi,j = (2 sin(πi
2n))2 + (2 sin(πj

2m))2, then λi,j = 0 if and only if (i, j) = (0, 0)

and corresponds to the first eigenvalue of the Laplacian. It is clear that the next minimum

should be of the form λ0,j and λi,0. By taking derivatives we obtain: dλi,0
di

= 2π

n
sin(πi

n
) and

dλ0,j
dj

= 2π

m
sin(πj

m
). We observe that the minimums are attained at λ1,0 = (2 sin(π

2n))2 and

λ0,1 = (2 sin(π

2m))2 respectively. Thus, when m = n we have ∆ = 0 and when m 6= n we

have ∆ > 0.

83

That is, Corollary 4.4.6 states that square grids have ∆ = 0, while rectangular grids have

∆ > 0. To conclude our discussion on ∆, we empirically show that the family of Erdős-Rényi

graphs exhibit ∆ > 0 with high probability. Specifically, we let G ∼ ER(n, r), where r is the

edge probability. When r = 1, G is the complete graph of order n and ∆ > 0 with probability

zero. Interestingly, when r = 0.9 or r = 0.99, that is, values close to 1, the probability of

∆ > 0 tends to 1 as n increases. Also, we analyze the case when r = 2 logn/n,

10
 and also

observe high probability of ∆ > 0. The aforementioned results are depicted in Figure 4.5

(Left). Intuitively, this suggests that the family of graphs where ∆ > 0 is much larger than

the families where ∆ = 0. Finally, in Figure 4.5 (Right), we also plot the expected value of

the gap, where we note an interesting concentration of the gap to 0.5 for r = 2 logn/n. An

explanation of the latter gap behavior remains an open question.

10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

0

0.25

0.5

0.75

1

1.25

1.5

Figure 4.5. Graphs drawn from an Erdős-Rényi model with n nodes and edge
probability r. (Left) Probability of ∆ > 0 for each number of nodes, we draw 1000
graphs and compute ∆, then, we count an event as success whenever ∆ > 0, and
failure when ∆ = 0. (Right) Expected value of ∆ computed across the 1000 random
graphs for each number of nodes.

4.4.6 Experiments

In this section, we corroborate our theoretical results through synthetic experiments.

Graphs with high expansion properties such as complete graphs and d-regular expanders are
10

 ↑ Our motivation for the choice of r = 2 log n/n is that for r > (1+ε) log n/n then the graph is connected almost
surely [132].

84

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Nodes: 64

Figure 4.6. Probability of exact recovery for Grid(4, 16) computed across 30
observations X for different values of p ∈ [0, 0.1]. We observe how the addition of
fairness constraints helps exact recovery, where SDP+1F refers to the addition of a
single constraint, and SDP+2F the addition of two constraints.

known to manifest high probability of exact recovery as their Cheeger constant increases

with respect to n or d [17].

That is, in those graphs, the effect of the fairness constraint will not be noticeable. In

contrast, graphs with poor expansion properties such as grids, which have a Cheeger constant

in the order of O(1/n) for a Grid(n, n), can only be recovered approximately [61], or exactly

if the graph can be perturbed with additional edges [17]. Thus, we focus our experiments on

grids and empirically show how the inclusion of the fairness constraint boosts the probability

of exact recovery. In Figure 4.6 , we first randomly set y by independently sampling each yi

from a Rademacher distribution. We consider a graph of 64 nodes, specifically, Grid(4, 16),

i.e., ∆ is guaranteed to be greater than 0. Finally, we compute 30 observations for p ∈ [0, 0.1].

When there is no fairness constraint, we observe that the probability of exact recovery

decreases at a very high rate, while the addition of fairness constraints improves the exact

recovery probability. In particular, we note that while the addition of a single fairness

constraint (SDP + 1F) helps to achieve exact recovery, the tendency is to still decrease as

p increases, in this case the attribute a1 was randomly sampled from the nullspace of y>

85

so that y>a1 = 0. We also show the case when two fairness constraints are added (SDP +

2F), were we observe that exact recovery happens almost surely, here the two attributes also

come randomly from the nullspace of y>.

4.5 Summary

In this chapter, we studied a generative model where we receive a single noisy observation

for each edge and each node of a graph with the goal of recovering the ground-truth node

labels exactly.

In Section 4.2 , our approach consisted of two stages. The first stage consisted of solv-

ing solely the quadratic term of an optimization problem (based on a SDP relaxation) in

order to find the structural properties of a graph that guarantee exact recovery with high

probability. Given two possible solutions from the first stage, the second stage consisted

in using solely the node observations and simply outputting the labeling with higher score.

We showed that for any graph G, the term φ2
G/degmax(G) is related to achieving exact recovery

in polynomial time. Examples include complete graphs and d-regular expanders, that are

guaranteed to recover the correct labeling with high probability. While perhaps the most

interesting example is related to smoothed analysis on connected graphs, where, even for a

graph with bad expansion properties, the node labels can still be exactly recovered by adding

small perturbations (edges coming from an Erdős-Rényi model with small probability).

In Section 4.3 , we applied a powerful hierarchy of relaxations, known as the sum-of-

squares (SoS) hierarchy, to the combinatorial problem. Motivated by empirical evidence

on the improvement in exact recoverability, we centered our attention on the degree-4 SoS

relaxation and set out to understand the origin of such improvement from a graph theoretical

perspective. We showed that the solution of the dual of the relaxed problem is related

to finding edge weights of the Johnson and Kneser graphs, where the weights fulfill the

SoS constraints and intuitively allow the input graph to increase its algebraic connectivity.

Finally, as byproduct of our analysis, we derived a novel Cheeger-type lower bound for the

algebraic connectivity of graphs with signed edge weights.

86

In Section 4.4 , we studied the effect of adding fairness constraints

11
 to the aforementioned

generative model, specifically, under a notion of statistical parity, and showed how they can

help increase the probability of exact recovery even for graphs with poor expansion properties

such as grids. In our analysis, we assumed that the ground-truth labeling is fair. While the

linear constraints reduce the search space in the relaxed continuous problem, before our

results, it was unclear how these constraints would affect the probability of exact recovery,

which we formally show in Theorem 4.4.4 . We argue that even in the scenario of having

“fair data” one should not rule out the possibility of adding fairness constraints as there is

a chance that it can help increase the performance. For instance, a practitioner could use

one of the several preprocessing methods for debiasing a dataset with respect to a particular

metric [133 – 136], assuming that the data is now fair, the practitioner might be tempted not

to use any fairness constraint anymore. However, as showed in this chapter, when the data

is fair, adding fairness constraints could improve performance.

11
 ↑ Note that, given that our definition of statistical parity is a linear constraint, our analysis and results will

hold for any linear constraint not necessarily attached to a fairness viewpoint.

87

5. CONCLUSION

This dissertation took a detailed view at different combinatorial aspects of structured pre-

diction problems. As structured prediction encompasses several important problems from

different domains (e.g., computer vision, biology, social networks, and natural language pro-

cessing to name a few), it is key to develop methods with strong theoretical guarantees.

In particular, in Chapter 2 , we tackled on the problem of learning latent-variable models

for structured prediction, where the key challenge we faced was the exponential size of the

search space in the max-margin formulation. To that end, we proposed a computationally

appealing method that allows for a fully polynomial time evaluation of the formulation, in

cases where the margin can be computed in poly-time. Our work showed that the non-convex

formulation using the slack re-scaling approach with latent variables is related to a tight up-

per bound of the Gibbs decoder distortion, and provided a tighter upper bound of the Gibbs

decoder distortion by randomizing the search space of the optimization problem. Finally,

we presented experimental results in synthetic data and in a computer vision application,

where we obtained competitive results in average test error with respect to previous work,

but with a much lower computational time.

In Chapter 3 , we considered the problem of finding the necessary number of samples for

learning of scoring functions based on factor graphs in the context of structured prediction.

Our work was based on the minimax framework, and showed a lower bound that requires a

new dimension (which we call max-pair-dimension) to be finite in order for a function class

to be learnable. In addition, we showed a connection of the pair-dimension to the classical

VC-dimension, for which there are several known results for different types of function classes.

Finally, it remains an open question to analyze the optimality of our bound for general

functions, where one possible attempt is perhaps to find an upper bound to the factor graph

Rademacher complexity in terms of the pair-dimension, similar in spirit to the known result

of the VC-dimension being an upper bound of the classical Rademacher complexity.

Lastly, in Chapter 4 , we studied the statistical problem of exact inference in graphs, given

noisy measurements. By formulating a SDP relaxation of the discrete combinatorial problem,

which is solvable in polynomial time, we showed conditions on the input graph that suffice

88

to realize exact recovery. Those conditions relate to structural properties of the input graph

such as the Cheeger constant. Moreover, one of the most intriguing examples we provided

that satisfies such conditions is related to smoothed analysis on connected graphs. That is,

given any connected graph that possibly does not fulfill the conditions, one can obtain a

graph that satisfies the conditions by adding a few edges from an Erdős-Rényi graph. This

understanding enables the possibility to drive modeling decisions, where graph models that

satisfy such conditions are perhaps preferable. Finally, we also studied the problem under

the SoS hierarchy of relaxations, and considered the effect of linear constraints.

In the above, we briefly discussed the different analyses presented in this dissertation.

To obtain such results, we relied on techniques such as randomization, convex relaxations,

minimax theory, and graph theory. While the aforementioned technical tools have been

largely used by the machine learning community, this work employed such techniques to

understand different aspects of structured prediction. Thus, the presented work includes

the first set of results on characterizing the necessary number of samples for structured

prediction, a randomized learning method with computational and statistical guarantees,

and an analysis of the exact inference problem from a continuous relaxation viewpoint.

89

REFERENCES

[1] S. Lynch, Andrew Ng: Why AI Is the New Electricity, 2017. [Online]. Available: https:
//www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity .

[2] Y. Liu, E. Xing, and J. Carbonell, “Predicting protein folds with structural repeats
using a chain graph model,” International Conference on Machine Learning, pp. 513–
520, 2005.

[3] Y. Liu, J. Carbonell, V. Gopalakrishnan, and P. Weigele, “Protein quaternary fold
recognition using conditional graphical models,” International Joint Conference on
Artificial Intelligence, pp. 937–943, 2007.

[4] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular
Biology of the Cell. 4th edition. 2017. [Online]. Available: Available%20online%20at:
%20https://www.ncbi.nlm.nih.gov/books/NBK21054 .

[5] A. Martins, M. Almeida, and N. Smith, “Turning on the turbo: Fast third-order
non-projective turbo parsers,” Annual Meeting of the Association for Computational
Linguistics, pp. 617–622, 2013.

[6] A. Rush, D. Sontag, M. Collins, and T. Jaakkola, “On dual decomposition and lin-
ear programming relaxations for natural language processing,” Empirical Methods in
Natural Language Processing, pp. 1–11, 2010.

[7] Y. Zhang, T. Lei, R. Barzilay, and T. Jaakkola, “Greed is good if randomized: New in-
ference for dependency parsing,” Empirical Methods in Natural Language Processing,
pp. 1013–1024, 2014.

[8] Y. Zhang, C. Li, R. Barzilay, and K. Darwish, “Randomized greedy inference for joint
segmentation, POS tagging and dependency parsing,” North American Chapter of the
Association for Computational Linguistics, pp. 42–52, 2015.

[9] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object detection with
discriminatively trained part-based models,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, pp. 1627–1645, 2010.

[10] V. Hedau, D. Hoiem, and D. Forsyth, “Recovering the spatial layout of cluttered
rooms,” IEEE International Conference on Computer Vision, pp. 1849–1856, 2009.

[11] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade, “Estimating spatial layout of rooms
using volumetric reasoning about objects and surfaces,” Neural Information Process-
ing Systems, vol. 23, pp. 1288–1296, 2010.

90

https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
Available%20online%20at:%20https://www.ncbi.nlm.nih.gov/books/NBK21054
Available%20online%20at:%20https://www.ncbi.nlm.nih.gov/books/NBK21054

[12] H. Wang, S. Gould, and D. Koller, “Discriminative learning with latent variables for
cluttered indoor scene understanding,” European Conference on Computer Vision,
vol. 6312, pp. 435–449, 2010.

[13] J. Keshet, D. McAllester, and T. Hazan, “PAC-Bayesian approach for minimization of
phoneme error rate,” IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 2224–2227, 2011.

[14] S. Zhang and M. Gales, “Structured SVMs for automatic speech recognition,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 21, no. 3, pp. 544–555,
2013.

[15] H. Tang, J. Keshet, and K. Livescu, “Discriminative pronunciation modeling: A large-
margin, feature-rich approach,” Annual Meeting of the Association for Computational
Linguistics, pp. 194–203, 2012.

[16] K. Bello and J. Honorio, “Learning latent variable structured prediction models with
gaussian perturbations,” NeurIPS, 2018.

[17] K. Bello and J. Honorio, “Exact inference in structured prediction,” Advances in
Neural Information Processing Systems, 2019.

[18] K. Bello and J. Honorio, “Fairness constraints can help exact inference in structured
prediction,” Advances in Neural Information Processing Systems, 2020.

[19] K. Bello, A. Ghoshal, and J. Honorio, “Minimax bounds for structured prediction
based on factor graphs,” in International Conference on Artificial Intelligence and
Statistics, PMLR, 2020, pp. 213–222.

[20] K. Bello, C. Ke, and J. Honorio, “A thorough view of exact inference in graphs from
the degree-4 sum-of-squares hierarchy,” arXiv preprint arXiv:2102.08019, 2021.

[21] K. Bello and J. Honorio, “Computationally and statistically efficient learning of causal
bayes nets using path queries,” in Advances in Neural Information Processing Systems,
2018, pp. 10 931–10 941.

[22] H. Wang, S. Gould, and D. Roller, “Discriminative learning with latent variables for
cluttered indoor scene understanding,” Communications of the ACM, vol. 56, no. 4,
pp. 92–99, 2013.

[23] J. Honorio and T. Jaakkola, “Structured prediction: From gaussian perturbations to
linear-time principled algorithms,” in Uncertainty in Artificial Intelligence, 2016.

91

[24] D. McAllester, “Generalization bounds and consistency,” in Predicting Structured
Data, MIT Press, 2007, pp. 247–261.

[25] A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T. Darrell, “Hidden condi-
tional random fields,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 29, no. 10, 2007.

[26] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell, “Hidden
conditional random fields for gesture recognition,” in Computer Vision and Pattern
Recognition, IEEE, vol. 2, 2006, pp. 1521–1527.

[27] A. Quattoni, M. Collins, and T. Darrell, “Conditional random fields for object recog-
nition,” in Advances in neural information processing systems, 2005, pp. 1097–1104.

[28] S. Petrov and D. Klein, “Discriminative log-linear grammars with latent variables,”
in Advances in neural information processing systems, 2008, pp. 1153–1160.

[29] C. Yu and T. Joachims, “Learning structural SVMs with latent variables,” Interna-
tional Conference on Machine Learning, pp. 1169–1176, 2009.

[30] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods
for structured and interdependent output variables,” Journal of machine learning
research, vol. 6, no. Sep, pp. 1453–1484, 2005.

[31] A. L. Yuille and A. Rangarajan, “The concave-convex procedure (cccp),” in Advances
in neural information processing systems, 2002, pp. 1033–1040.

[32] W. Ping, Q. Liu, and A. Ihler, “Marginal structured SVM with hidden variables,”
International Conference on Machine Learning, pp. 190–198, 2014.

[33] C. Cortes, V. Kuznetsov, M. Mohri, and S. Yang, “Structured prediction theory based
on factor graph complexity,” in Advances in Neural Information Processing Systems,
2016, pp. 2514–2522.

[34] Y. Altun and T. Hofmann, “Large margin methods for label sequence learning,”
European Conference on Speech Communication and Technology, pp. 145–152, 2003.

[35] M. Collins and B. Roark, “Incremental parsing with the perceptron algorithm,” An-
nual Meeting of the Association for Computational Linguistics, pp. 111–118, 2004.

[36] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov networks,” Neural In-
formation Processing Systems, vol. 16, pp. 25–32, 2003.

92

[37] G. E. Hinton, “A practical guide to training restricted boltzmann machines,” in Neural
networks: Tricks of the trade, Springer, 2012, pp. 599–619.

[38] A. Kulesza and F. Pereira, “Structured learning with approximate inference,” Neural
Information Processing Systems, vol. 20, pp. 785–792, 2007.

[39] B. London, O. Meshi, and A. Weller, “Bounding the integrality distance of lp re-
laxations for structured prediction,” NIPS workshop on Optimization for Machine
Learning, 2016.

[40] O. Meshi, M. Mahdavi, A. Weller, and D. Sontag, “Train and test tightness of lp
relaxations in structured prediction,” International Conference on Machine Learning,
2016.

[41] A. Gane, T. Hazan, and T. Jaakkola, “Learning with maximum a-posteriori pertur-
bation models,” in Artificial Intelligence and Statistics, 2014, pp. 247–256.

[42] M. Volkovs and R. S. Zemel, “Efficient sampling for bipartite matching problems,” in
Advances in Neural Information Processing Systems, 2012, pp. 1313–1321.

[43] S. Sarawagi and R. Gupta, “Accurate max-margin training for structured output
spaces,” in Proceedings of the 25th international conference on Machine learning,
ACM, 2008, pp. 888–895.

[44] H. Choi, O. Meshi, and N. Srebro, “Fast and scalable structural svm with slack
rescaling,” in Artificial Intelligence and Statistics, 2016, pp. 667–675.

[45] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Probabilistic
models for segmenting and labeling sequence data,” 2001.

[46] C. Cortes, M. Mohri, and J. Weston, “A general regression framework for learning
string-to-string mappings,” Predicting Structured Data, vol. 2, no. 4, 2007.

[47] H. Daumé, J. Langford, and D. Marcu, “Search-based structured prediction,” Machine
learning, vol. 75, no. 3, pp. 297–325, 2009.

[48] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image cap-
tion generator,” Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3156–3164, 2015.

[49] D. Jurafsky and J. H. Martin, Speech and language processing. Pearson London, 2014,
vol. 3.

93

[50] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton, “Grammar as a
foreign language,” Advances in neural information processing systems, pp. 2773–2781,
2015.

[51] D. Zhang, L. Sun, and W. Li, “A structured prediction approach for statistical ma-
chine translation,” in Proceedings of the Third International Joint Conference on
Natural Language Processing, 2008.

[52] C. Cortes, V. Kuznetsov, and M. Mohri, “Ensemble methods for structured predic-
tion,” in International Conference on Machine Learning, 2014, pp. 1134–1142.

[53] M. Collins, “Parameter estimation for statistical parsing models: Theory and practice
of distribution-free methods,” in New developments in parsing technology, Springer,
2004, pp. 19–55.

[54] B. Taskar, C. Guestrin, and D. Koller, “Max-margin markov networks,” in Advances
in neural information processing systems, 2004, pp. 25–32.

[55] A. Ghoshal and J. Honorio, “Learning maximum-a-posteriori perturbation models for
structured prediction in polynomial time,” in International Conference on Machine
Learning, 2018.

[56] N. P. Santhanam and M. J. Wainwright, “Information-theoretic limits of selecting
binary graphical models in high dimensions,” IEEE Transactions on Information
Theory, vol. 58, no. 7, pp. 4117–4134, 2012.

[57] R. Tandon, K. Shanmugam, P. K. Ravikumar, and A. G. Dimakis, “On the infor-
mation theoretic limits of learning ising models,” in Advances in Neural Information
Processing Systems, 2014, pp. 2303–2311.

[58] W. Wang, M. J. Wainwright, and K. Ramchandran, “Information-theoretic bounds on
model selection for gaussian markov random fields,” in IEEE International Symposium
on Information Theory, 2010, pp. 1373–1377.

[59] V. Vapnik, The nature of statistical learning theory. Springer science & business me-
dia, 2013.

[60] B. Taskar, P. Abbeel, and D. Koller, “Discriminative probabilistic models for rela-
tional data,” in Proceedings of the Eighteenth conference on Uncertainty in artificial
intelligence, Morgan Kaufmann Publishers Inc., 2002, pp. 485–492.

[61] A. Globerson, T. Roughgarden, D. Sontag, and C. Yildirim, “How hard is inference
for structured prediction?” In International Conference on Machine Learning, 2015.

94

[62] M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint. Cam-
bridge University Press, 2019.

[63] L. Wasserman, All of nonparametric statistics. Springer Science & Business Media,
2006.

[64] A. Wald, “Contributions to the theory of statistical estimation and testing hypothe-
ses,” The Annals of Mathematical Statistics, vol. 10, no. 4, pp. 299–326, 1939.

[65] P. Massart, É. Nédélec, et al., “Risk bounds for statistical learning,” The Annals of
Statistics, vol. 34, no. 5, pp. 2326–2366, 2006.

[66] A. Daniely, S. Sabato, S. Ben-David, and S. Shalev-Shwartz, “Multiclass learnability
and the erm principle,” The Journal of Machine Learning Research, vol. 16, no. 1,
pp. 2377–2404, 2015.

[67] S. Ben-David, N. Cesa-Bianchi, D. Haussler, and P. M. Long, “Characterizations
of learnability for classes of {0, . . . , n}-valued functions,” Journal of Computer and
System Sciences, vol. 50, no. 1, pp. 74–86, 1995.

[68] T. Neylon, “Sparse solutions for linear prediction problems,” Ph.D. dissertation, New
York University, May 2006.

[69] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[70] V. Chandrasekaran, N. Srebro, and P. Harsha, “Complexity of inference in graphical
models,” in Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence, 2008.

[71] N. N. Schraudolph and D. Kamenetsky, “Efficient exact inference in planar ising
models,” in Advances in Neural Information Processing Systems, 2009, pp. 1417–
1424.

[72] Y. Boykov and O. Veksler, “Graph cuts in vision and graphics: Theories and ap-
plications,” in Handbook of mathematical models in computer vision, Springer, 2006,
pp. 79–96.

[73] D. Foster, K. Sridharan, and D. Reichman, “Inference in sparse graphs with pair-
wise measurements and side information,” in International Conference on Artificial
Intelligence and Statistics, 2018, pp. 1810–1818.

[74] D. Sontag, D. K. Choe, and Y. Li, “Efficiently searching for frustrated cycles in map
inference,” arXiv preprint arXiv:1210.4902, 2012.

95

[75] T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag, “Dual decomposition for
parsing with non-projective head automata,” in Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, Association for Computational
Linguistics, 2010, pp. 1288–1298.

[76] V. Chandrasekaran and M. I. Jordan, “Computational and statistical tradeoffs via
convex relaxation,” Proceedings of the National Academy of Sciences, p. 201 302 293,
2013.

[77] Y. Chen, G. Kamath, C. Suh, and D. Tse, “Community recovery in graphs with
locality,” in International Conference on Machine Learning, 2016, pp. 689–698.

[78] E. Abbe, A. S. Bandeira, and G. Hall, “Exact recovery in the stochastic block model,”
IEEE Transactions on Information Theory, 2016.

[79] F. Barahona, “On the computational complexity of ising spin glass models,” Journal
of Physics A: Mathematical and General, 1982.

[80] J. Cheeger, “A lower bound for the smallest eigenvalue of the laplacian,” in Proceedings
of the Princeton conference in honor of Professor S. Bochner, 1969.

[81] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Foundations
of computational mathematics, 2012.

[82] M. Krivelevich, D. Reichman, and W. Samotij, “Smoothed analysis on connected
graphs,” SIAM Journal on Discrete Mathematics, 2015.

[83] E. Abbe, A. S. Bandeira, A. Bracher, and A. Singer, “Decoding binary node labels
from censored edge measurements: Phase transition and efficient recovery,” IEEE
Transactions on Network Science and Engineering, 2014.

[84] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications,”
Bulletin of the American Mathematical Society, vol. 43, no. 4, pp. 439–561, 2006.

[85] P. A. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods
in robustness and optimization,” Ph.D. dissertation, California Institute of Technol-
ogy, 2000.

[86] J. B. Lasserre, “Global optimization with polynomials and the problem of moments,”
SIAM Journal on optimization, 2001.

[87] B. Barak and D. Steurer, “Sum-of-squares proofs and the quest toward optimal algo-
rithms,” ArXiv 1404.5236, 2014.

96

[88] M. Laurent, “A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre
relaxations for 0–1 programming,” Mathematics of Operations Research, 2003.

[89] R. Meka, A. Potechin, and A. Wigderson, “Sum-of-squares lower bounds for planted
clique,” in Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, 2015, pp. 87–96.

[90] A. S. Bandeira and D. Kunisky, “A gramian description of the degree 4 generalized
elliptope,” ArXiv preprint ArXiv:1812.11583, 2018.

[91] D. Cifuentes, C. Harris, and B. Sturmfels, “The geometry of sdp-exactness in quadratic
optimization,” Mathematical Programming, vol. 182, no. 1, pp. 399–428, 2020.

[92] T. Weisser, J.-B. Lasserre, and K.-C. Toh, “A bounded degree sos hierarchy for large
scale polynomial optimization with sparsity,” 2016.

[93] M. A. Erdogdu, Y. Deshpande, and A. Montanari, “Inference in graphical models via
semidefinite programming hierarchies,” Advances in Neural Information Processing
Systems, 2017.

[94] M. Goemans and D. P. Williamson, “Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming,” Journal of the
ACM, 1995.

[95] Y. Nesterov, “Semidefinite relaxation and nonconvex quadratic optimization,” Opti-
mization methods and software, 1998.

[96] M. Laurent, “Sums of squares, moment matrices and optimization over polynomials,”
in Emerging applications of algebraic geometry, Springer, 2009.

[97] D. Holton and J. Sheehan, The Petersen Graph, ser. Australian Mathematical Society
Lecture Series. Cambridge University Press, 1993.

[98] L. Lovász, “Kneser’s conjecture, chromatic number, and homotopy,” Journal of Com-
binatorial Theory, Series A, 1978.

[99] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[100] B. Mohar, “The laplacian spectrum of graphs,” Graph theory, combinatorics, and
applications, 1991.

97

[101] D. Zelazo and M. Bürger, “On the definiteness of the weighted laplacian and its
connection to effective resistance,” in 53rd IEEE Conference on Decision and Control,
IEEE, 2014.

[102] Y. Chen, S. Z. Khong, and T. T. Georgiou, “On the definiteness of graph laplacians
with negative weights: Geometrical and passivity-based approaches,” in 2016 Ameri-
can Control Conference (ACC), IEEE, 2016.

[103] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. De Luca, and S. Albayrak,
“Spectral analysis of signed graphs for clustering, prediction and visualization,” in
Proceedings of the 2010 SIAM International Conference on Data Mining, SIAM, 2010,
pp. 559–570.

[104] P. Mercado, F. Tudisco, and M. Hein, “Clustering signed networks with the geometric
mean of laplacians,” NIPS 2016-Neural Information Processing Systems, 2016.

[105] M. Cucuringu, P. Davies, A. Glielmo, and H. Tyagi, “Sponge: A generalized eigen-
problem for clustering signed networks,” in The 22nd International Conference on
Artificial Intelligence and Statistics, PMLR, 2019, pp. 1088–1098.

[106] K.-Y. Chiang, J. J. Whang, and I. S. Dhillon, “Scalable clustering of signed net-
works using balance normalized cut,” in Proceedings of the 21st ACM international
conference on Information and knowledge management, 2012, pp. 615–624.

[107] A. V. Knyazev, “Signed laplacian for spectral clustering revisited,” arXiv preprint
arXiv:1701.01394, vol. 1, 2017.

[108] F. M. Atay and S. Liu, “Cheeger constants, structural balance, and spectral clustering
analysis for signed graphs,” Discrete Mathematics, vol. 343, no. 1, p. 111 616, 2020.

[109] J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan, “Human
decisions and machine predictions,” The quarterly journal of economics, vol. 133,
no. 1, pp. 237–293, 2018.

[110] P. Gajane and M. Pechenizkiy, “On formalizing fairness in prediction with machine
learning,” arXiv preprint arXiv:1710.03184, 2017.

[111] S. Verma and J. Rubin, “Fairness definitions explained,” in 2018 IEEE/ACM Inter-
national Workshop on Software Fairness (FairWare), IEEE, 2018, pp. 1–7.

[112] S. Barocas and A. D. Selbst, “Big data’s disparate impact,” Calif. L. Rev., vol. 104,
p. 671, 2016.

98

[113] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian,
“Certifying and removing disparate impact,” in proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015, pp. 259–268.

[114] J. Kleinberg, S. Mullainathan, and M. Raghavan, “Inherent trade-offs in the fair
determination of risk scores,” arXiv preprint arXiv:1609.05807, 2016.

[115] A. Agarwal, M. Dudik, and Z. S. Wu, “Fair Regression: Quantitative Definitions and
Reduction-based Algorithms,” arXiv preprint arXiv:1905.12843, 2019.

[116] K. D. Johnson, D. P. Foster, and R. A. Stine, “Impartial predictive modeling: Ensuring
fairness in arbitrary models,” arXiv preprint arXiv:1608.00528, 2016.

[117] T. Calders, A. Karim, F. Kamiran, W. Ali, and X. Zhang, “Controlling attribute effect
in linear regression,” in 2013 IEEE 13th international conference on data mining,
IEEE, 2013, pp. 71–80.

[118] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised learning,”
in Advances in neural information processing systems, 2016, pp. 3315–3323.

[119] B. T. Luong, S. Ruggieri, and F. Turini, “K-nn as an implementation of situation
testing for discrimination discovery and prevention,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, 2011,
pp. 502–510.

[120] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach, “A reductions
approach to fair classification,” arXiv preprint arXiv:1803.02453, 2018.

[121] F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii, “Fair clustering through
fairlets,” in Advances in Neural Information Processing Systems, 2017, pp. 5029–5037.

[122] M. R. Garey and D. S. Johnson, Computers and intractability. freeman San Francisco,
1979, vol. 174.

[123] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathematical journal,
vol. 23, no. 2, pp. 298–305, 1973.

[124] R. Grone, R. Merris, and V. S. Sunder, “The laplacian spectrum of a graph,” SIAM
Journal on matrix analysis and applications, vol. 11, no. 2, pp. 218–238, 1990.

[125] R. Grone and R. Merris, “The laplacian spectrum of a graph ii,” SIAM Journal on
discrete mathematics, vol. 7, no. 2, pp. 221–229, 1994.

[126] M. W. Newman, “The laplacian spectrum of graphs,” 2001.

99

[127] K. C. Das, “The laplacian spectrum of a graph,” Computers & Mathematics with
Applications, vol. 48, no. 5-6, pp. 715–724, 2004.

[128] S. Kirkland, “Completion of laplacian integral graphs via edge addition,” Discrete
mathematics, vol. 295, no. 1-3, pp. 75–90, 2005.

[129] S. Kirkland, “Algebraic connectivity for vertex-deleted subgraphs, and a notion of
vertex centrality,” Discrete Mathematics, vol. 310, no. 4, pp. 911–921, 2010.

[130] S. Barik and S. Pati, “On algebraic connectivity and spectral integral variations of
graphs,” Linear algebra and its applications, vol. 397, pp. 209–222, 2005.

[131] T. Edwards, The discrete laplacian of a rectangular grid, 2013.

[132] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publ. Math. Inst. Hung.
Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[133] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair representa-
tions,” in International Conference on Machine Learning, 2013, pp. 325–333.

[134] F. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and K. R. Varshney, “Opti-
mized pre-processing for discrimination prevention,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 3992–4001.

[135] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel, “The variational fair au-
toencoder,” arXiv preprint arXiv:1511.00830, 2015.

[136] P. Gordaliza, E. Del Barrio, G. Fabrice, and J.-M. Loubes, “Obtaining fairness using
optimal transport theory,” in International Conference on Machine Learning, 2019,
pp. 2357–2365.

[137] J. Bennett, “Determination of the number of independent parameters of a score matrix
from the examination of rank orders,” Psychometrika, vol. 21, no. 4, pp. 383–393, 1956.

[138] J. Bennett and W. Hays, “Multidimensional unfolding: Determining the dimension-
ality of ranked preference data,” Psychometrika, vol. 25, no. 1, pp. 27–43, 1960.

[139] T. Cover, “The number of linearly inducible orderings of points in d-space,” SIAM
Journal on Applied Mathematics, vol. 15, no. 2, pp. 434–439, 1967.

[140] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming,
version 2.1, Mar. 2014.

100

A. APPENDIX TO CHAPTER 2

A.1 Proof of Theorem 2.3.1

First, we derive an intermediate lemma needed for the final proof.

Lemma A.1.1 (Adapted from Lemma 5 in [24]). Assume that there exists a finite integer

value r such that, |Yx ×Hx| ≤ r for all (x, y) ∈ S. Assume also that ‖Φ(x, y, h)‖2 ≤ γ for

any triple (x, y, h). Let Q(w) be a unit-variance Gaussian distribution centered at αw for

α = γ
√

8 log rn
‖w‖22

. Then for all (x, y) ∈ S, and all w ∈ W, we have:

P
w′∼Q(w)

[m(x, y, (fw′(x)),w) ≥ 1] ≤ ‖w‖2
2/n

or equivalently:

P
w′∼Q(w)

[m(x, y, (fw′(x)),w) ≤ 1] ≥ 1− ‖w‖2
2/n (A.1)

Proof. Note that the randomness in the statement comes from the variable w′, then by a

union bound on the elements of Yx × Hx it suffices to show that for any given (ŷ, ĥ) with

m(x, y, ŷ, ĥ,w) ≥ 1, the probability that fw′(x) = (ŷ, ĥ) is at most ‖w‖2
2/(rn).

Consider a fixed (ŷ, ĥ) ∈ Yx × Hx with m(x, y, ŷ, ĥ,w) ≥ 1. First, by well-know con-

centration inequalities we have that for any vector Ψ ∈ R` with ‖Ψ‖2 = 1 and ε ≥ 0:

P
w′∼Q(w)

[〈(αw −w′),Ψ〉 ≥ ε] ≤ e−ε2/2 (A.2)

Let h∗ = arg maxh∈Hx〈Φ(x, y, h),w〉, and let ∆(x, y, h∗, ŷ, ĥ) = Φ(x, y, h∗) − Φ(x, ŷ, ĥ).

Then, m(x, y, ŷ, ĥ,w) = ∆(x, y, h∗, ŷ, ĥ) ·w.

Using Ψ = ∆(x, y, h∗, ŷ, ĥ)/‖∆(x, y, h∗, ŷ, ĥ)‖2 in (A.2) we have:

P
w′∼Q(w)

[m(x, y, ŷ, ĥ,w′) ≤ αm(x, y, ŷ, ĥ,w)− ε‖∆(x, y, h∗, ŷ, ĥ)‖2] ≤ e−ε2/2

P
w′∼Q(w)

[m(x, y, ŷ, ĥ,w′) ≤ α− ε‖∆(x, y, h∗, ŷ, ĥ)‖2] ≤ e−ε2/2

101

P
w′∼Q(w)

[m(x, y, ŷ, ĥ,w′) ≤ 0] ≤ e−α2/(8γ2) (A.3)

P
w′∼Q(w)

[fw′(x) = (ŷ, ĥ)] ≤ e−α2/(8γ2)

where the step in (A.3) follows from ε = α/‖∆(x, y, h∗, ŷ, ĥ)‖2 and ‖∆(x, y, h∗, ŷ, ĥ)‖2 ≤ 2γ.

Thus, we prove our claim.

Next, we provide the final proof.

Proof of Theorem 2.3.1 . Define the Gibbs decoder empirical distortion of the perturbation

distribution Q(w) and training set S as:

L(Q(w), S) = 1
n

∑
(x,y)∈S

E
w′∼Q(w)

[d(y, (fw′(x)))]

In PAC-Bayes terminology, Q(w) is the posterior distribution. Let the prior distribution

P be the unit-variance zero-mean Gaussian distribution. Fix δ ∈ (0, 1) and α > 0. By well-

known PAC-Bayes proof techniques, Lemma 4 in [24] shows that with probability at least

1− δ/2 over the choice of n training samples, simultaneously for all parameters w ∈ W , and

unit-variance Gaussian posterior distributions Q(w) centered at wα, we have:

L(Q(w), D) ≤ L(Q(w), S) +

√√√√KL(Q(w)‖P) + log (2n/δ)
2(n− 1)

= L(Q(w), S) +

√√√√‖w‖2
2 α

2/2 + log (2n/δ)
2(n− 1) (A.4)

Thus, an upper bound of L(Q(w), S) would lead to an upper bound of L(Q(w), D). In

order to upper-bound L(Q(w), S), we can upper-bound each of its summands, i.e., we can

upper-bound Ew′∼Q(w) [d(y, (fw′(x)))] for each (x, y) ∈ S. Define the distribution Q(w, x)

with support on Yx ×Hx in the following form for all y ∈ Yx and h ∈ Hx:

P
(y′,h′)∼Q(w,x)

[(y′, h′) = (y, h)] ≡ P
w′∼Q(w)

[fw′(x) = (y, h)] (A.5)

102

For clarity of presentation, define:

u(x, y, y′, h′,w) ≡ 1−m(x, y, y′, h′,w)

Let u ≡ u(x, y, (fw′(x)),w). Simultaneously for all (x, y) ∈ S, we have:

E
w′∼Q(w)

[d(y, (fw′(x))] = E
w′∼Q(w)

[d(y, (fw′(x))) 1[u ≥ 0] + d(y, (fw′(x))) 1[u < 0]]

≤ E
w′∼Q(w)

[d(y, (fw′(x))) 1[u ≥ 0] + 1[u < 0]] (A.6.a)

= E
w′∼Q(w)

d(y, (fw′(x)) 1[u ≥ 0] + P
w′∼Q(w)

[u < 0]

≤ E
w′∼Q(w)

d(y, (fw′(x)) 1[u ≥ 0] +‖w‖2
2 /n (A.6.b)

= E
w′∼Q(w)

d(y, (fw′(x)) 1
[
u(x, y, (fw′(x)),w) ≥ 0

]
+‖w‖2

2 /n

= E
(y′,h′)∼Q(w,x)

d(y, y′, h′) 1
[
u(x, y, y′, h′,w) ≥ 0

]
+‖w‖2

2 /n (A.6.c)

≤ max
(ŷ,ĥ)∈Yx×Hx

d(y, ŷ, ĥ) 1
[
u(x, y, ŷ, ĥ,w) ≥ 0

]
+‖w‖2

2 /n (A.6.d)

where the step in eq.(A.6.a) holds since d : Y × Y ×H → [0, 1]. The step in eq.(A.6.b)

follows from Lemma A.1.1 which states that Pw′∼Q(w) [u(x, y, (fw′(x)),w) < 0] ≤‖w‖2
2 /n

for α = γ
√

8 log (rn/‖w‖2
2), for all (x, y) ∈ S and all w ∈ W . By the definition in eq.(A.5),

then the step in eq.(A.6.c) holds. Let λ : Y ×H → [0, 1] be some arbitrary function, the

step in eq.(A.6.d) uses the fact that E(y,h) [λ(y, h)] ≤ max(y,h) λ(y, h).

By eq.(A.4) and eq.(A.6.d), we prove our claim.

A.2 Proof of Theorem 2.3.4

Proof. The proof follows similar steps to that of Theorem 2.3.1 . Note that the relaxed

margin, m̃, also fulfills the bound in Lemma A.1.1 . Hence, following the steps of Proof A.1

we obtain an upper bound with same constants.

103

A.3 Proof of Theorem 2.4.4

First, we derive an intermediate lemma needed for the final proof.

Lemma A.3.1. Let ∆ ∈ R` be a random variable with ‖∆‖2 ≤ 2γ, and w ∈ R` be a constant.

If 〈E [∆],w〉 ≤ 1/2 then we have:

P [〈∆,w〉 > 1] ≤ exp
(

−1
128γ2‖w‖2

2

)

Proof. Let t > 0, we have that:

P [〈∆,w〉 > 1] = P [〈(∆− E [∆]),w〉 > 1− 〈E [∆],w〉]

≤ P [〈(∆− E [∆]),w〉 ≥ 1/2] (A.7.b)

= P [exp
(
t〈(∆− E [∆]),w〉

)
≥ et/2]

≤ e−t/2 E [exp
(
t〈(∆− E [∆]),w〉

)
] (A.7.c)

≤ exp
(
−t/2 + 8t2γ2‖w‖2

2

)
(A.7.d)

The step in eq.(A.7.b) follows from 〈E [∆],w〉 ≤ 1/2 and thus 1− 〈E [∆],w〉 ≥ 1/2. The step

in eq.(A.7.c) follows from Markov’s inequality. The step in eq.(A.7.d) follows from Hoeffd-

ing’s lemma and the fact that the random variable z = 〈(∆− E [∆]),w〉 fulfills E [z] = 0 as

well as z ∈ [− 4γ‖w‖2,+4γ‖w‖2]. In more detail, note that ‖∆‖2 ≤ 2γ and by Jensen’s

inequality ‖E [∆]‖2 ≤ E [‖∆‖2] ≤ 2γ. Then, note that by Cauchy-Schwarz inequality

|〈(∆ − E [∆]),w〉| ≤
∥∥∆− E [∆]

∥∥
2‖w‖2 ≤ (‖∆‖2 +

∥∥E [∆]
∥∥

2)‖w‖2 ≤ 4γ‖w‖2. Finally,

let g(t) = −t/2 + 8t2γ2‖w‖2
2. By making ∂g/∂t = 0, we get the optimal setting t∗ =

1/(32γ2‖w‖2
2). Thus, g(t∗) = −1/(128γ2‖w‖2

2) and we prove our claim.

Next, we provide the final proof.

Proof of Theorem 2.4.4 . Note that sampling from the distribution Q(w, x) as defined in

eq.(A.5) is NP-hard in general, thus our plan is to upper-bound the expectation in eq.(A.6.c)

by using the maximum over random structured outputs and latent variables sampled inde-

pendently from a proposal distribution R(w, x) with support on Yx ×Hx.

104

Let T (w, x) be a set of n′ i.i.d. random structured outputs and latent variables drawn

from the proposal distribution R(w, x), i.e., T (w, x) ∼ R(w, x)n′ . Furthermore, let T(w) be

the collection of the n sets T (w, x) for all (x, y) ∈ S, i.e., T(w) ≡ {T (w, x)}(x,y)∈S and thus

T(w) ∼ {R(w, x)n′}(x,y)∈S. For clarity of presentation, define:

v(x, y, y′, h′,w) ≡ d(y, y′, h′) 1
[
m̃(x, y, y′, h′,w) ≤ 1

]

For sets T (w, x) of sufficient size n′, our goal is to upper-bound eq.(A.6.c) in the following

form for all parameters w ∈ W :

1
n

∑
(x,y)∈S

E
(y′,h′)∼Q(w,x)

[v(x, y, y′, h′,w)] ≤ 1
n

∑
(x,y)∈S

max
(ŷ,ĥ)∈T (w,x)

v(x, y, ŷ, ĥ,w) +O(log2 n/√n)

Note that the above expression would produce a tighter upper bound than the maximum

loss over all possible structured outputs and latent variables since max
(ŷ,ĥ)∈T (w,x)

v(x, y, ŷ, ĥ,w) ≤

max
(ŷ,ĥ)∈Yx×Hx

v(x, y, ŷ, ĥ,w). For analysis purposes, we decompose the latter equation into two

quantities:

A(w, S) ≡ 1
n

∑
(x,y)∈S

 E
(y′,h′)∼Q(w,x)

[v(x, y, y′, h′,w)]

− E
T (w,x)∼R(w,x)n′

 max
(ŷ,ĥ)∈T (w,x)

v(x, y, ŷ, ĥ,w)
 (A.8)

B(w, S,T(w)) ≡ 1
n

∑
(x,y)∈S

 E
T (w,x)∼R(w,x)n′

 max
(ŷ,ĥ)∈T (w,x)

v(x, y, ŷ, ĥ,w)

− max
(ŷ,ĥ)∈T (w,x)

v(x, y, ŷ, ĥ,w)
 (A.9)

Thus, we will show that A(w, S) ≤
√

1/n and B(w, S,T(w)) ≤ O(log2 n/√n) for all parameters

w ∈ W , any training set S and all collections T(w), and therefore A(w, S)+B(w, S,T(w)) ≤

O(log2 n/√n). Note that while the value of A(w, S) is deterministic, the value of B(w, S,T(w))

is stochastic given that T(w) is a collection of sampled random structured outputs.

105

Fix a specific w ∈ W . If data is separable then v(x, y, y′, h′,w) = 0 for all (x, y) ∈ S and

(y′, h′) ∈ Yx ×Hx. Thus, we have A(w, S) = B(w, S,T(w)) = 0 and we complete our proof

for the separable case.

1
 In what follows, we focus on the non-separable case.

Bounding the deterministic expectation. Here, we show that in eq.(A.8), A(w, S) ≤√
1/n for all parameters w ∈ W and any training set S, provided that we use a sufficient

number n′ of random structured outputs sampled from the proposal distribution.

By well-known identities, we can rewrite:

A(w, S) = 1
n

∑
(x,y)∈S

∫ 1

0

(
P

(y′,h′)∼R(w,x)
[v(x, y, y′, h′,w) < z]n′

− P
(y′,h′)∼Q(w,x)

[v(x, y, y′, h′,w) < z]
)
dz (A.10.a)

≤ 1
n

∑
(x,y)∈S

P
(y′,h′)∼R(w,x)

[
v(x, y, y′, h′,w) < 1

]n′

= 1
n

∑
(x,y)∈S

P
(y′,h′)∼R(w,x)

[
d(y, y′, h′) < 1 ∨ m̃(x, y, y′, h′,w) > 1

]n′

≤ 1
n

∑
(x,y)∈S

(1− P
(y′,h′)∼R(w,x)

[
d(y, y′, h′) = 1

])

+ P
(y′,h′)∼R(w,x)

[
m̃(x, y, y′, h′,w) > 1

]n′

≤

β + exp
(

−1
128γ2‖w‖2

2

)n′ (A.10.b)

=
√

1/n (A.10.c)

where the step in eq.(A.10.a) holds since for two independent random variables g, h ∈ [0, 1],

we have E [g] = 1 −
∫ 1

0 P [g < z]dz and P [max (g, h) < z] = P [g < z]P [h < z]. There-

fore, E [max (g, h)] = 1 −
∫ 1

0 P [g < z]P [h < z]dz. For the step in eq.(A.10.b), we used

Assumption 2.4.1 for the first term in the sum. For the second term in the sum, let ∆ ≡

Φ(x, y, h∗) − Φ(x, y′, h′) where h∗ = arg max
h∈H̃x〈Φ(x, y, h),w〉, then m̃(x, y, y′, h′,w) =

1
 ↑ The same result can be obtained for any subset of S for which the “separability” condition holds. Therefore,

our analysis with the “non-separability” condition can be seen as a worst case scenario.

106

〈∆,w〉. From ‖Φ(x, y, h)‖2 ≤ γ, we have that ‖∆‖2 ≤ 2γ. By Assumption 2.4.2 , we

have that ‖E [∆]‖2 ≤ 1/(2
√
n) ≤ 1/(2‖w‖2). By Cauchy-Schwarz inequality we have

〈E [∆],w〉 ≤
∥∥E [∆]

∥∥
2‖w‖2 ≤‖w‖2 /(2‖w‖2) ≤ 1/2. Since 〈E [∆],w〉 ≤ 1/2 and ‖∆‖2 ≤ 2γ,

we apply Lemma A.3.1 in the step in eq.(A.10.b). For the step in eq.(A.10.c), let λ ≡
1

log(1/(β+e−1/(128γ2‖w‖22)))
. Furthermore, let n′ = 1

2λ log n.

Therefore,
(
β + exp

(
−1

128γ2‖w‖22

))n′
=
√

1/n.

Bounding the stochastic quantity. Here, we show that in eq.(A.9), B(w, S,T(w)) ≤

O(log2 n/√n) for all parameters w ∈ W , any training set S and all collections T(w). For

clarity of presentation, define:

g(x, y, T,w) ≡ max
(ŷ,ĥ)∈T

v(x, y, ŷ, ĥ,w)

Thus, we can rewrite:

B(w, S,T(w)) = 1
n

∑
(x,y)∈S

(
E

T (w,x)∼R(w,x)n′
[g(x, y, T (w, x),w)]− g(x, y, T (w, x),w)

)

Let rx ≡ |Yx ×Hx| and thus Yx ×Hx ≡ {(y1, h1) . . . (yrx , hrx)}. Let π(x) = (π1 . . . πrx) be a

permutation of {1 . . . rx} such that 〈Φ(x, yπ1 , hπ1),w〉 < · · · < 〈Φ(x, yπrx
, hπrx

),w〉. Let Π

be the collection of the n permutations π(x) for all (x, y) ∈ S, i.e., Π = {π(x)}(x,y)∈S. From

Assumption 2.4.3 , we have that R(π(x), x) ≡ R(w, x). Similarly, we rewrite T (π(x), x) ≡

T (w, x) and T(Π) ≡ T(w).

Furthermore, let WΠ,S be the set of all w ∈ W that induce Π on the training set S. For

the parameter space W , collection Π and training set S, define the function class GW,Π,S as

follows:

GW,Π,S ≡ {g(x, y, T,w) | w ∈ WΠ,S and (x, y) ∈ S}

Note that since |Yx×Hx| ≤ r for all (x, y) ∈ S, then |∪(x,y)∈SYx ×Hx| ≤
∑

(x,y)∈S |Yx×Hx| ≤

nr. Note that each ordering of the nr structured outputs completely determines a collection

107

Π and thus the collection of proposal distributions R(w, x) for each (x, y) ∈ S. Note that

since | ∪(x,y)∈S Px| ≤ `, we consider Φ(x, y, h) ∈ R`. Although we can consider w ∈ R`, the

vector w is sparse with at most s non-zero entries. Thus, we take into account all possible

subsets of s features from ` possible features. From results in [137 – 139], we can conclude

that there are at most (nr)2(s−1) linearly inducible orderings, for a fixed set of s features.

Therefore, there are at most
(
`
s

)
(nr)2(s−1) ≤ `s(nr)2s collections Π.

Fix δ ∈ (0, 1). By Rademacher-based uniform convergence

2
 and by a union bound over

all `s(nr)2s collections Π, with probability at least 1− δ/2 over the choice of n sets of random

structured outputs, simultaneously for all parameters w ∈ W :

B(w, S,T(w)) ≤ 2 RT(Π)(GW,Π,S) + 3
√
s(log `+ 2 log (nr)) + log (4/δ)

n
, (A.11)

where RT(Π)(GW,Π,S) is the empirical Rademacher complexity of the function class GW,Π,S

with respect to the collection T(Π) of the n sets T (π(x), x) for all (x, y) ∈ S. Let σ be an

n-dimensional vector of independent Rademacher random variables indexed by (x, y) ∈ S,

i.e., P [σ(x,y) = +1] = P [σ(x,y) = −1] = 1/2. The empirical Rademacher complexity is defined

as:

RT(Π)(GW,Π,S) ≡ E
σ

 sup
g∈GW,Π,S

 1
n

∑
(x,y)∈S

σ(x,y)g(x, y, T (π(x), x),w)

= E
σ

 sup
w∈WΠ,S

 1
n

∑
(x,y)∈S

σ(x,y) max
(ŷ,ĥ)∈T (π(x),x)

d(y, ŷ, ĥ) 1
[
1− m̃(x, y, ŷ, ĥ,w) ≥ 0

]

= E
σ

 sup
w∈WΠ,S

 1
n

∑
(x,y)∈S

σ(x,y) max
(ŷ,ĥ)∈T (π(x),x)

d(y, ŷ, ĥ) 1
1 ≥ max

h∈H̃x
〈Φ(x, y, h),w〉 − 〈Φ(x, ŷ, ĥ),w〉

2
 ↑ Note that for the analysis of B(w, S,T(w)), the training set S is fixed and randomness stems from the

collection T(w). Also, note that for applying McDiarmid’s inequality, independence of each set T (w, x) for
all (x, y) ∈ S is a sufficient condition, and identically distributed sets T (w, x) are not necessary.

108

= E
σ

 sup
w∈R`\{0}

 1
n

∑
i∈{1...n}

σi max
j∈{1...n′}

dij 1

1 ≥ max
h∈{1...|H̃x|}

〈z′ih,w〉 − 〈zij,w〉

 (A.12.a)

≤
∑

j∈{1...n′}
E
σ

 sup
w∈R`\{0}

 1
n

∑
i∈{1...n}

σi dij 1

1 ≥ max
h∈{1...|H̃x|}

〈z′ih,w〉 − 〈zij,w〉

 (A.12.b)

≤
∑

j∈{1...n′}
E
σ

 sup
w∈R`\{0}

 1
n

∑
i∈{1...n}

σi 1

1 ≥ max
h∈{1...|H̃x|}

〈z′ih,w〉 − 〈zij,w〉

 (A.12.c)

≤
∑

j∈{1...n′}
E
σ

 sup
w̃∈R`(|H̃|+1)+1\{0}

 1
n

∑
i∈{1...n}

σi 1
[
〈zH̃ij , w̃〉 ≥ 0

]
 (A.12.d)

≤ 2n′
√

(2s + 1) log (`(nr̃ + 1) + 1) log (n+ 1)
n

(A.12.e)

where in the step in eq.(A.12.a), the terms σi, dij, z′ih, zij correspond to σ(x,y), d(y, ŷ, ĥ),

Φ(x, y, h) and Φ(x, ŷ, ĥ) respectively. Thus, we assume that index i corresponds to the

training sample (x, y) ∈ S, and that index j corresponds to the structured output and latent

variable (ŷ, ĥ) ∈ T (π(x), x). Note that since Φ(x, y, h) ∈ R`, thus the step in eq.(A.12.a)

considers w, z′ih, zij ∈ R` \ {0} without loss of generality. The step in eq.(A.12.b) follows

from the fact that for any two function classes G and H, we have that R({max (g, h) | g ∈

G and h ∈ H}) ≤ R(G)+R(H). The step in eq.(A.12.c) follows from the composition lemma

and the fact that dij ∈ [0, 1] for all i and j. The step in eq.(A.12.d) considers a larger function

class, we consider w̃, zH̃ij ∈ R`(|H̃|+1)+1 \ {0}. More detailed, for a fixed i, j, and w ∈ R`, we

can construct the vectors zH̃ij = (1,−z′i1, . . . ,−z′i|H̃|, zij) and w̃(t) = (1,w(1), . . . ,w(|H̃|),w),

where w(l) = w if l = t, and w(l) = 0 otherwise. The step in eq.(A.12.e) follows from the

Massart lemma, the Sauer-Shelah lemma and the VC-dimension of sparse linear classifiers.

That is, for any function class G, we have that R(G) ≤
√

2V C(G) log (n+1)
n

where V C(G) is the

VC-dimension of G. Finally, note that |H̃x| ≤ r̃, ∀(x, y) ∈ S, and |H̃| = | ∪(x,y)∈S H̃x| ≤ nr̃.

Also, since w is s-sparse, we have that w̃ is (2s + 1)-sparse. Then, by Theorem 20 of

109

[68], V C(G) ≤ 2(2s + 1) log (`(|H̃|+ 1) + 1) for the class G of sparse linear classifiers on

R`(|H̃|+1)+1, with 3 ≤ 2s + 1 ≤ 9
20

√
`(|H̃|+ 1) + 1.

By eq.(A.4), eq.(A.6.c), eq.(A.10.c), eq.(A.11) and eq.(A.12.e), we prove our claim.

110

B. APPENDIX TO CHAPTER 3

B.1 Proof of Theorem 3.2.2

Proof. The proof is motivated by the work of [65] for binary classifiers. As a first step it is

clear that one can lower bound eq.(3.3) by defining the maximum over a subset of P . That

is, we create a collection of family of distributions Dγ, where |Dγ| = |Φ|. Each family distri-

bution Dγ,u,v ∈ Dγ is further indexed by (u, v) ∈ T = {(u, v) | u 6= v, {u, v} ⊆ Scope(φ), φ ∈

Φ}. Then we have,

Mm(P) ≥ max
(u,v)∈T

Mm(Dγ,u,v).

Our approach consists of first defining the families of distributions Dγ,u,v ⊂ P such that

its elements can be naturally indexed by the vertices of a binary hypercube. We will then

relate the expected excess risk problem to an estimation of binary strings in order to apply

Assouad’s lemma.

Construction of Dγ,u,v. Consider a fixed (u, v) ∈ T . We first focus on constructing a

family of distributions, Dγ,u,v, parameterized by γ > 0. Each distribution Dγ,u,v,B ∈ Dγ,u,v is

further indexed by a binary matrix B ∈ {0, 1}(d(0)
u,v−1)×2, where d(0)

u,v is the pair-dimension of

F(0)
u,v. To construct these distributions, we will first pick the marginal distribution D(x)

γ,u,v,B of

the feature x, and then specify the conditional distributions D(y|x)
γ,u,v,B of y given x, for each

B ∈ {0, 1}(d(0)
u,v−1)×2.

We construct D(x)
γ,u,v,B as follows. Since F(0)

u,v is a class with pair-dimension d(0)
u,v, there

exists a set of points {x1, . . . , xd(0)
u,v
} ∈ X that is shattered by F(0)

u,v, that is, for any binary

matrix B ∈ {0, 1}d
(0)
u,v×2 there exists at least one function f(0)

u,v ∈ F(0)
u,v such that f(0)

u,v(xi) = Bi∗,

for all i ∈ {1, . . . , d(0)
u,v}.

We now define the marginal distribution D
(x)
γ,u,v,B such that its support is the shattered set

111

{x1, . . . , xd(0)
u,v
}, i.e., P(x)

γ,u,v,B [{x1, . . . , xd(0)
u,v
}] = 1. For a given parameter p ∈ [0, 1/(d(0)

u,v−1)],

whose value is set later, we have:

P(x)
γ,u,v,B[xi] =

p, if i ∈ {1, . . . , d(0)

u,v − 1},

1− (d(0)
u,v − 1)p, otherwise.

Next, for a fixed B ∈ {0, 1}(d(0)
u,v−1)×2, the conditional distribution of y given x, D(y|x)

γ,u,v,B, is

defined as:

P(y|x)
γ,u,v,B

[
y|x

]
=

1−3γ
4 , if x = xi, yu = 1−Bi1, yv = 1−Bi2,

yk = 0 for k ∈ V \ {u, v}, i ∈ {1, . . . , d(0)
u,v − 1},

1+γ
4 , if x = xi, (yu 6= 1−Bi1 or yv 6= 1−Bi2),

yk = 0 for k ∈ V \ {u, v}, i ∈ {1, . . . , d(0)
u,v − 1},

0, otherwise,

here we implicitly assume that γ ∈ (0, 1/3] in order to obtain a valid distribution. The above

definition produces the following marginal probabilities:

η
(γ,u,v,B)
j (x) ≡ P(yj |x)

γ,u,v,B

[
yj = 1|x

]
=

1−γ
2 , if x = xi for some i ∈ {1, . . . , d(0)

u,v − 1},

((j = u,Bi1 = 0) or (j = v,Bi2 = 0)),
1+γ

2 , if x = xi for some i ∈ {1, . . . , d(0)
u,v − 1},

((j = u,Bi1 = 1) or (j = v,Bi2 = 1)),

0, otherwise,

(B.1)

112

where we note that for each j ∈ V and any x we have that |2η(γ,u,v,B)
j (x) − 1| ≥ γ. Given

the above marginals, the corresponding Bayes-Hamming predictor for substructure yj for a

given input x (see Proposition 3.1.1), which we denote by (f∗B,u,v(x))j, is given by:

(f∗B,u,v(x))j =

0, if x = xi for some i ∈ {1, . . . , d(0)
u,v − 1},

((j = u and Bi1 = 0) or (j = v and Bi2 = 0))

1, if x = xi for some i ∈ {1, . . . , d(0)
u,v − 1},

((j = u and Bi1 = 1) or (j = v and Bi2 = 1))

0, otherwise.

(B.2)

That is, we have that the output of the Bayes-Hamming predictor on each xi for i ∈

{1 . . . d(0)
u,v − 1}, for each substructure yj for j ∈ {u, v}, is equal to the bit value Bi1 or

Bi2, and zero otherwise.

Reduction to estimation of binary strings. For any distribution Dγ,u,v,B ∈ Dγ,u,v,

we can further express the expected excess risk in eq.(3.3) as follows:

RB,u,v(A(S))−RB,u,v(f∗B,u,v) = E
(x,y)∼Dγ,u,v,B

 l∑
j=1

(1− 2yj)((̂fm(x))j − (f∗B,u,v(x))j)

=
l∑

j=1
E

x∼D(x)
γ,u,v,B

 E
yj∼D

(yj |x)
γ,u,v,B

[
(1− 2yj)((̂fm(x))j − (f∗B,u,v(x))j)

]
=

l∑
j=1

E
x∼D(x)

γ,u,v,B

[∣∣∣∣2η(γ,u,v,B)
j (x)− 1

∣∣∣∣ · ∣∣∣(̂fm(x))j − (f∗B,u,v(x))j
∣∣∣]

≥ γ · E
x∼D(x)

γ,u,v,B

 l∑
j=1

∣∣∣(̂fm(x))j − (f∗B,u,v(x))j
∣∣∣
 (B.3)

= γ ·
d

(0)
u,v∑
i=1

l∑
j=1

∣∣∣(̂fm(xi))j − (f∗B,u,v(xi))j
∣∣∣ · P(x)

γ,u,v,B[xi],

def= γ · ‖f̂m − f∗B,u,v‖1,1, (B.4)

where RB,u,v denotes the expected risk and f∗B,u,v the Bayes-Hamming predictor, both with

respect to Dγ,u,v,B. Here f̂m is the output of A(S), with (̂fm(x))j denoting the j-th substruc-

ture of the output f̂m(x), and η(γ,u,v,B)
j (x) denotes the marginal probability P

D
(yj |x)
γ,u,v,B

[yj = 1|x].

113

Equation (B.3) follows from our definition of D(yj |x)
γ,u,v,B (see eq.(B.1)), and the L1,1 matrix norm

in eq.(B.4) is computed with respect to D(x)
γ,u,v,B. Thus, we have that:

Mm(Dγ,u,v) = inf
f̂m

max
B∈{0,1}(d

(0)
u,v−1)×2

EB,u,v
[
RB,u,v (̂fm)−RB,u,v(f∗B,u,v)

]

≥ γ · inf
f̂m

max
B∈{0,1}(d

(0)
u,v−1)×2

EB,u,v
[
‖f̂m − f∗B,u,v‖1,1

]
, (B.5)

where EB,u,v[·] denotes the expectation with respect to S ∼ Dm
γ,u,v,B. Equation (B.5) follows

from eq.(B.4). Given any candidate estimation f̂m, let B̂m ∈ {0, 1}(d(0)
u,v−1)×2 be defined as

follows:

B̂m
def= arg min

B∈{0,1}(d
(0)
u,v−1)×2

‖f̂m − f∗B,u,v‖1,1. (B.6)

Intuitively, B̂m ∈ {0, 1}(d(0)
u,v−1)×2 is the binary matrix that indexes the element of {f∗B,u,v :

B ∈ {0, 1}(d(0)
u,v−1)×2} that is closest to f̂m in L1,1 norm. Then, for any B, we have

‖f∗
B̂m,u,v

− f∗B,u,v‖1,1 ≤ ‖f∗B̂m,u,v − f̂m‖1,1 + ‖f̂m − f∗B,u,v‖1,1

≤ 2‖f̂m − f∗B,u,v‖1,1,

where we first applied the triangle inequality, and then used eq.(B.6). Applying this to

eq.(B.5), we obtain:

Mm(Dγ,u,v) ≥
γ

2 min
B̂m

max
B∈{0,1}(d

(0)
u,v−1)×2

EB,u,v
[
‖f∗
B̂m,u,v

− f∗B,u,v‖1,1

]
, (B.7)

here the infimum is over all estimators that take values in {0, 1}(d(0)
u,v−1)×2 based on m samples,

i.e., over B̂m : (X ×Y)m → {0, 1}(d(0)
u,v−1)×2. We now compute ‖f∗B,u,v − f∗B′,u,v‖1,1 for any two

B,B′. Using eq.(B.2) we have:

‖f∗B,u,v − f∗B′,u,v‖1,1 =
d

(0)
u,v∑
i=1

l∑
j=1

∣∣∣(f∗B,u,v(xi))j − (f∗B′,u,v(xi))j
∣∣∣ · P(x)

γ,u,v,B[xi]

114

= p ·
d

(0)
u,v−1∑
i=1

2∑
j=1

∣∣∣Bij −B′ij
∣∣∣

= p · LH(B,B′).

In the last equality we abuse notation and consider the matrix B ∈ {0, 1}(d(0)
u,v−1)×2 as a

vector of dimension 2(d(0)
u,v − 1). Replacing this result into eq.(B.7), we get:

Mm(Dγ,u,v) ≥
p γ

2 min
B̂m

max
B∈{0,1}(d

(0)
u,v−1)×2

EB,u,v[LH(B̂m, B)],

which is related to an estimation problem in the {0, 1}2(d(0)
u,v−1) hypercube.

Applying Assouad’s lemma. In order to apply Assouad’s lemma, we need an upper

bound on the squared Hellinger distance H2(Dγ,u,v,B, Dγ,u,v,B′) for all B,B′ with LH(B,B′) =

1. For any two B,B′ ∈ {0, 1}(d(0)
u,v−1)×2 we have:

H2(Dγ,u,v,B, Dγ,u,v,B′) =
d

(0)
u,v∑
i=1

∑
y∈{0,1}l

(√
Pγ,u,v,B(xi, y)−

√
Pγ,u,v,B′(xi, y)

)2

= p
d

(0)
u,v−1∑
i=1

∑
y∈{0,1}l

(√
P(y|x)
γ,u,v,B′(y|xi)−

√
P(y|x)
γ,u,v,B(y|xi)

)2

.

In the above summation, the inner sum is zero if Bi∗ = B′i∗. Since we are interested on B

and B′ such that LH(B,B′) = 1, this implies that for only one row i from {1, . . . , d(0)
u,v − 1}

we have Bi∗ 6= B′i∗ with exactly one bit different. Then, the Hellinger distance results in:

H2(Dγ,u,v,B, Dγ,u,v,B′) = p · (1− γ −
√

1− 2γ − 3γ2) ≤ 6pγ2. Applying Assouad’s lemma we

obtain:

Mm(Dγ,u,v) ≥
pγ

2 min
B̂m

max
B∈{0,1}(d

(0)
u,v−1)×2

EB,u,v
[
LH(B̂m, B)

]

≥
pγ(d(0)

u,v − 1)
2

(
1−

√
6pγ2m

)
(B.8)

115

Let p = 2/(27γ2m), and noting that if γ ≥
√

(d(0)
u,v − 1)/m then the condition p ≤ 1/(d(0)

u,v−1)

holds. Replacing p in eq.(B.8) we have:

Mm(Dγ,u,v) ≥
d(0)
u,v − 1
81γm . (B.9)

If γ ≤
√

d
(0)
u,v−1
m

, and using the same construction as above with γ̃ =
√

d
(0)
u,v−1
m

, we see that:

Mm(Dγ,u,v) ≥
d(0)
u,v − 1
81γ̃m = 1

81

√√√√d
(0)
u,v − 1
m

. (B.10)

Therefore, combining equations (B.9) and (B.10), and since the choice of (u, v) was arbitrary,

we have that:

Mm(P) ≥ max
(u,v)∈T

Mm(Dγ,u,v)

≥ max
(u,v)∈T

1
81 min

d(0)
u,v − 1
γm

,

√√√√d
(0)
u,v − 1
m

= 1

81 min
d− 1
γm

,

√
d− 1
m

 ,
which concludes our proof.

116

C. APPENDIX TO CHAPTER 4

C.1 Proof of Theorem 4.2.2

Proof. Since y is an eigenvector of M with eigenvalue 0, and M is a symmetric matrix, we

can express λ2 using the variational characterization of eigenvalues as follows:

λ2 = min
a∈Rn, a>y=0

RM (a), (C.1)

where we used the fact that y is orthogonal to all the other eigenvectors, by the Spectral

Theorem.

Assume that a is the eigenvector associated with λ2, i.e., we have that Ma = λ2a and

a>y = 0. Then, by Lemma 4.2.1 , we have that:

RL(a ◦ y + δ1) ≤ RM (a) = λ2. (C.2)

Next, we choose δ ∈ R such that {a1y1 + δ, a2y2 + δ, . . . , anyn + δ} has median 0. The reason

for the zero median is to later ensure that the subset of vertices S has less than n/2 vertices.

Let w = a ◦ y + δ1. From equation (C.2), we have that RL(w) ≤ λ2.

Let w+ = (w+
i)> such that w+

i = wi if wi ≥ 0 and w+
i = 0 otherwise. Let w− = (w−i)>

such that w−i = wi if wi ≤ 0 and w−i = 0 otherwise. Then, we have that either RL(w+) ≤

2RL(w) or RL(w−) ≤ 2RL(w). Now suppose that w.l.o.g. RL(w+) ≤ 2RL(w), then, it

follows that RL(w+) ≤ 2λ2.

Let us scale w+ by some constant β ∈ R so that: {βw1, βw2, . . . , βwm} ⊆ [0, 1]. It is

clear that RL(w+) = RL(βw+), therefore, we will still use w+ to denote the rescaled vector.

That is, now the entries of vector w+ are in between 0 and 1.

Next, we will show that there exists a set S ⊂ V with |S| ≤ n/2 such that: E [|E(S,SC)|]
E [|S|] ≤√

2RL(w+)∆max. We construct the set S as follows. We choose t ∈ [0, 1] uniformly at

random and let S = {i | (w+
i)2 ≥ t}. Let Bi,j = 1 if i ∈ S and j ∈ SC or if j ∈ S and

i ∈ SC , and Bi,j = 0 otherwise. Then, E [|E(S,SC)|] = E [∑(i,j)∈E Bi,j] = ∑
(i,j)∈E E [Bi,j] =

117

∑
(i,j)∈E P ((w+

j)2 ≤ t ≤ (w+
i)2). Recall that (w+

i)2 ∈ [0, 1], therefore, the probability above is

|(w+
i)2 − (w+

j)2|. Thus,

E [|E(S,SC)|] =
∑

(i,j)∈E
|w+

i − w+
j | |w+

i + w+
j | ≤

√ ∑
(i,j)∈E

(w+
i − w+

j)2
√ ∑

(i,j)∈E
(w+

i + w+
j)2

(C.3)

≤
√ ∑

(i,j)∈E
(w+

i − w+
j)2

√
2
∑

(i,j)∈E
(w+

i)2 + (w+
j)2 ≤

√ ∑
(i,j)∈E

(w+
i − w+

j)2
√

2∆max
∑
i

(w+
i)2,

(C.4)

where eq.(C.3) is due to Cauchy-Schwarz inequality and eq.(C.4) uses the maximum-degree

of a node for an upper bound.

Now consider another random variable bi such that bi = 1 if i ∈ S, and bi = 0 oth-

erwise. Therefore, we have that E [|S|] = E [∑i bi] = ∑
i E [bi] = ∑

i P (t ≤ (w+
i)2) =∑

i(w+
i)2. Thus, E [|E(S,SC)|]

E [|S|] ≤

√∑
(i,j)∈E(w+

i −w
+
j)2
√

2∆max
∑

i
(w+
i)2∑

i
(w+
i)2 =

√∑
(i,j)∈E(w+

i −w
+
j)2
√

2∆max
√∑

i
(w+
i)2

=√
2RL(w+)∆max ≤ 2

√
λ2∆max. The above implies that there exists some S such that

|E(S,SC)|
|S| ≤ 2

√
λ2∆max. Therefore, φG ≤ 2

√
λ2∆max or equivalently φ2

G
4∆max

≤ λ2.

C.2 Proof of Theorem 4.2.5

Proof. Without loss of generality assume that y = y. The first step of our proof corresponds

to finding sufficient conditions for when Y = yy> is the unique optimal solution to SDP

(4.4), for which we make use of the Karush-Kuhn-Tucker (KKT) optimality conditions [99].

In the following we write the dual formulation of SDP (4.4):

min
V

Tr(V) subject to V � X(2),V is diagonal. (C.5)

Thus, we have that Y = yy> is guaranteed to be an optimal solution under the following

conditions:

1. yy> is a feasible solution to the primal problem (4.4).

118

2. There exists a matrix V feasible for the dual formulation such that Tr(X(2)yy>) =

Tr(V).

The first point is trivially verified. For the second point, we assume strong duality in

order to find a dual certificate. To achieve that, we make Vi,i = (X(2)Y)i,i. If V −X(2) � 0

then the matrix V is a feasible solution to the dual formulation. Thus, our first condition is

to have V −X(2) � 0, and we conclude that yy> is an optimal solution to SDP (4.4).

For showing that yy> is the unique optimal solution, it suffices to have λ2(V −X(2)) > 0.

Suppose that Ŷ is another optimal solution to SDP (4.4). Then, from complementary

slackness we have that 〈V − X(2), Ŷ 〉 = 0, and from primal feasibility Ŷ � 0. Moreover,

notice that we have (V −X(2))y = 0, i.e., y is an eigenvector of V −X(2) with eigenvalue

0. By assumption, the second smallest eigenvalue of V −X(2) is greater than 0, therefore,

y spans all of its null space. This fact combined with complementary slackness, primal and

dual feasibility, entail that Ŷ is a multiple of yy>. Thus, we must have that Ŷ = yy>

because Ŷi,i = 1.

From the points above we arrived to the two following sufficient conditions:

V −X(2) � 0 and λ2(V −X(2)) > 0. (C.6)

Our next step is to show when condition (C.6) is fulfilled with high probability. Since we have

that y is an eigenvector of V −X(2) with eigenvalue zero, showing that λ2(V −X(2)) > 0 will

imply that V − X(2) is positive semidefinite. Therefore, we focus on controlling its second

smallest eigenvalue. Next, we have that:

λ2(V −X(2)) > 0 ⇐⇒ λ2(V −X(2) − E [V −X(2)] + E [V −X(2)]) > 0

⇐ λ1(V − E [V]) + λ1(E [X(2)]−X(2)) + λ2(E [V −X(2)]) > 0.

(C.7)

We now focus on condition (C.7) since it implies that λ2(V −X(2)) > 0. For the first two

summands of condition (C.7) we make use of Lemma 4.2.4 , while for the third summand we

119

make use of Theorem 4.2.2 . From Vi,i = (X(2)Y)i,i, we have that Vi,i = yiX
(2)
i,: y, thus, Vi,i =∑n

j=1 yiyjXi,j = ∑n
j=1 z(i,j)

p 1
[
(i, j) ∈ E

]
. Then, its expected value is: E [Vi,i] = ∆i(1− 2p).

Bounding the third summand of condition (C.7). Our goal is to find a non-zero

lower bound for the second smallest eigenvalue of E [V −X(2)]. Notice that E [V −X(2)] � 0

since it is a diagonally dominant matrix, and y is its first eigenvector with eigenvalue 0, i.e.,

λ1(E [V −X(2)]) = 0.

Then, we write M = E [V −X]. Now we focus on finding a lower bound for λ2(M). We

use the fact that for any vector a ∈ Rn, we have that a>Ma = (1−2p)∑(i,j)∈E(yiai−yjaj)2.

We also note that M has a 0 eigenvalue with eigenvector y. Thus, the matrix M/(1−2p)

satisfies the conditions of Theorem 4.2.2 and we have that λ2(M/(1−2p)) ≥ φ2
G

4∆max
. We conclude

that,

λ2(E [V −X(2)]) ≥ (1− 2p) φ2
G

4∆max
. (C.8)

Bounding the first summand of condition (C.7). Let N (i,j)
p = z(i,j)

p (eeeieee>i + eeejeee>j),

where eeei is the standard basis, i.e., the vector of all zeros except the i-th entry which is 1. We

can now write V = ∑
(i,j)∈EN

(i,j)
p . Then, we have a sequence of independent random matrices

{E [N (i,j)
p]−N (i,j)

p }, where we obtain the following: λmax(E [N (i,j)
p]−N (i,j)

p) ≤ 2(1− p), and

also ‖∑(i,j)∈E E [(E [N (i,j)
p]−N (i,j)

p)2]‖ ≤ 4∆maxp(1− p).

Next, we use the fact that λmax(A) = −λ1(−A) for any matrix A. Then, by applying

Lemma 4.2.4 , we obtain:

P
(
λ1
(
V − E [V]

)
≤ −(1− 2p)φ2

G
8∆max

)
≤ n · e

−3(1−2p)2φ4
G

1536∆3
maxp(1−p)+32(1−2p)(1−p)φ2

G∆max (C.9)

Bounding the second summand of condition (C.7). Using similar arguments to

the concentration above, we now analyze λ1(E [X] −X). Let H(i,j) = Xi,j(eeeieee>j + eeejeee>i).

Then, we have a sequence of independent random matrices {H(i,j) − E [H(i,j)]} and we can

write X = ∑
(i,j)∈EH

(i,j). Finally, we have that λmax(H(i,j) − E [H(i,j)]) ≤ 2(1 − p), and

120

E [(H(i,j)−E [H(i,j)])2] = 4p(1− p)(eeeieee>i + eeejeee>j). Thus, ‖∑(i,j)∈E E [(H(i,j)−E [H(i,j)])2]‖ ≤

4∆maxp(1− p) and by applying Lemma 4.2.4 we obtain:

P
(
λ1
(
E [X]−X

)
≤ −(1− 2p)φ2

G
8∆max

)
≤ n · e

−3(1−2p)2φ4
G

1536∆3
maxp(1−p)+32(1−2p)(1−p)φ2

G∆max (C.10)

Note that the thresholds in the concentrations above are motivated by equation (C.8). Fi-

nally, combining equations (C.8), (C.9), and (C.10), we have that:

P
(
λ2(V −X(2)) > 0

)
≥ 1− 2ne

−3(1−2p)2φ4
G

1536∆3
maxp(1−p)+32(1−2p)(1−p)φ2

G∆max ,

which concludes our proof.

C.3 Proof of Theorem 4.3.3

For simplicity, let W and L be the weight matrix and Laplacian matrix of an undi-

rected connected graph H of m nodes. Also, let W+ and W− be the weight matrices of

H+ and H−. For a matrix M and vector v, we use RM (v) to denote their Rayleigh quo-

tient, i.e., RM (v) = v>Mv
v>v

. It follows that RL(v) := v>Lv
v>v

=
∑

i<j
Wi,j(vi−vj)2

v>v
, and λ2(L) =

minv⊥1RL(v). Similarly, we define R+
L(v) :=

∑
i<j

W+
i,j(vi−vj)

2

v>v
, R−L(v) :=

∑
i<j

W−i,j(vi−vj)
2

v>v
.

Note that RL(v) = R+
L(v) +R−L(v). Next, we state a lemma that will be of use for the proof

of Theorem 4.3.3 .

Lemma C.3.1. Let L be a Laplacian matrix of dimension m × m. Let also 1 denote a

vector of ones. Then, for any δ ∈ R,v ∈ Rm,
∑
i vi ≥ 0, it follows that

R+
L(v) ≥ R+

L(v + δ1) .

Proof. Starting from the right-hand side, we have

R+
L(v + δ1) =

∑
i<jW

+
i,j

(
(vi + δ)− (vj + δ)

)2

∑
i (vi + δ)2

121

=
∑
i<jW

+
i,j

(
vi − vj

)2

∑
i (vi + δ)2

=
∑
i<jW

+
i,j

(
vi − vj

)2

∑
i

(
v2
i + δ2 + 2δvi

)
=

∑
i<jW

+
i,j

(
vi − vj

)2

∑
i v

2
i +mδ2 + 2δ∑i vi

(a)
≤
∑
i<jW

+
i,j

(
vi − vj

)2

∑
i v

2
i +mδ2

≤
∑
i<jW

+
i,j

(
vi − vj

)2

∑
i v

2
i

= R+
L(v),

where (a) holds by the fact that ∑i vi ≥ 0.

We now present the proof of Theorem 4.3.3 .

Proof. Let v be the eigenvector related to the eigenvalue λ2(L). Without loss of generality,

we assume ‖v‖ = 1 and v1 ≤ v2 ≤ · · · ≤ vm. Recall that 1>v = 0. Then, we have that

λ2(L) = RL(v) = R+
L(v) +R−L(v).

Lower bounding R+
L(v). Set δ = v1 and denote u = v − δ1. Then, we have that

0 = u1 ≤ · · · ≤ um. Also note that δ2 ≤ 1. Then, by Lemma C.3.1 , it follows that

R+
L(v) ≥ R+

L(u).

We now define a random variable t on the support [0, um], with probability density

function f(t) = 2
u2
m
t. One can verify that

∫ um
t=0

2
u2
m
t dt = 1, thus f(t) is a valid probability

density function. Then, for any interval [a, b], it follows that the probability of t falling in

the interval is

P[a ≤ t ≤ b] =
∫ b

t=a

2
u2
m

t dt = 1
u2
m

(b2 − a2).

Next, for some t, construct a random set St = {i | ui ≥ t}. Let ω+(∂St) = ∑
i∈St,j /∈StW

+
i,j.

122

It follows that

E [w+(∂St)] = E [
∑

i∈St,j /∈St

W+
i,j]

=
∑
i<j

P[uj ≤ t ≤ ui]W+
i,j

= 1
u2
m

∑
i<j

(ui − uj)(ui + uj)W+
i,j

≤ 1
u2
m

√∑
i<j

(ui − uj)2W+
i,j

√∑
i<j

(ui + uj)2W+
i,j

= 1
u2
m

√
R+
L(u)

∑
i

u2
i

√∑
i<j

(ui + uj)2W+
i,j

≤ 1
u2
m

√
R+
L(u)

∑
i

u2
i

√
2
∑
i

u2
i degH+(i)

≤ 1
u2
m

√
R+
L(u)

∑
i

u2
i

√
2 degH+

max
∑
i

u2
i

=
∑
i u

2
i

u2
m

√
2 degH+

max R
+
L(u).

Also note that E
[
|St|

]
= ∑

i P[ui ≥ t] = ∑
i
u2
i

u2
m
. As a result we obtain

E [ω+(∂St)] ≤ E
[
|St|

]√
2 degH+

max R
+
L(u).

Thus, we have E
[
ω+(∂St)− |St|

√
2 degH+

max R
+
L(u)

]
≤ 0. This implies that ∃St such that

ω+(∂St)− |St|
√

2 degH+

max R
+
L(u) ≤ 0. Rearranging we have,

R+
L(v) ≥ R+

L(u) ≥ ω+(∂St)2

2 degH+

max |St|
2 (C.11)

Lower bounding R−L(v). Set α =
√

1
v2
1+v2

m
and denote u = αv. Then, we have that

u2
1 + u2

m = 1. Note also that R−L(v) = R−L(u).

We now define a random variable t on the support [u1, um], with probability density

function f(t) = 2|t|. One can verify that
∫ um
t=u1

2|t| dt = 1, thus f(t) is a valid probability

123

density function. Then, for any interval [a, b], it follows that the probability of t falling in

the interval is

P[a ≤ t ≤ b] =
∫ b

a
2|t| dt = b2 sign(b)− a2 sign(a).

Since [u1, um] ⊂ [− 1, 1], one can verify that (a − b)2/2 ≤ P[a ≤ t ≤ b]. Let ω−(∂St) =∑
i∈St,j /∈StW

−
i,j. For some t, construct a random set St = {i | ui ≤ t}. It follows that

E [ω−(∂St)] = E [
∑

i∈St,j /∈St

W−
i,j]

=
∑
i<j

P[ui ≤ t ≤ uj]W−
i,j

≤ 1
2
∑
i<j

(ui − uj)2W−
i,j

= 1
2R
−
L(u)

∑
i

u2
i

≤ 1
2R
−
L(u),

where the last inequality follows from having ∑
i u

2
i ≥ 1 and R−L(u) ≤ 0. Thus, we have

E [ω−(∂St) − 1
2R
−
L(u)] ≤ 0. This implies that ∃St such that ω−(∂St) − 1

2R
−
L(u) ≤ 0. Rear-

ranging we have,

R−L(v) = R−L(u) ≥ 2ω−(∂St). (C.12)

By minimizing (C.11) and (C.12) independently, and combining them, we conclude our

proof.

C.4 A Degree-Based Construction of the Kneser Graph

In Section 4.3.5 , we used CVX [140] to solve problem (4.9) and, thus, obtain the dual

variables µ in problem (4.10) from which we construct the weights of the Johnson and Kneser

graphs. Motivated by the trade-off between Cheeger constants of the positive and negative

subgraphs, shown in Theorem 4.3.3 , we show a simple non-trivial way (not necessarily op-

124

Algorithm 2 A construction of Kneser graph weights
Input: Level-2 weight matrix M = Υ̃X(2)Υ̃, constant c ∈ R.

1: deg(C1)← ∑
C2 MC1,C2 , ∀C1 ∈

(
[n]
2

)
2: Initialize WK as a zero matrix
3: for all i < j < k < ` ∈ [n] do
4: Assign the following such that ψ1 ≥ ψ2 ≥ ψ3
5: ψ1 ← deg({i, j}) + deg({k, `})
6: ψ2 ← deg({i, k}) + deg({j, `})
7: ψ3 ← deg({i, `}) + deg({j, k})
8: if ψ1 = ψ2 = ψ3 then
9: WK

{i,j},{k,`} ← 0, WK
{i,k},{j,`} ← 0, WK

{i,`},{j,k} ← 0
10: else if ψ1 = ψ2 then
11: WK

{i,j},{k,`} ← −c, WK
{i,k},{j,`} ← −c, WK

{i,`},{j,k} ← 2c
12: else
13: WK

{i,j},{k,`} ← −2c, WK
{i,k},{j,`} ← c, WK

{i,`},{j,k} ← c
14: end if
15: end for
16: WK ←WK + (WK)> {To symmetrize.}
Output: W G̃ ←M +WK

timal) to directly construct the weights of the Kneser graph. The reason why we focus in

the Kneser graph weights is because the fourth list of constraints in problem (4.9) can be

expressed by two constraints for any i < j < k < `, as noted in Section 4.3.4 . The latter fact

implies that, for any i < j < k < `, the edge weights WK
{i,j},{k,`}, WK

{i,k},{j,`}, and WK
{i,`},{j,k}

need to sum to zero in order to fulfill the SoS constraints. As also noted in Section 4.3.4 , at

least one of the previous weights need to be negative unless all three are zero. With these

considerations, we present our construction in Algorithm 2 , which relies only on the node

degrees and a constant real value.

The intuition behind Algorithm 2 is that the negative weight will be assigned to the edge

that connects the two nodes that have the highest combined node degree. In Lines 8-9, if all

three edges have the same combined node degree then we set all three weights to zero. In

Lines 10-11, the edge with lowest combined node degree is set to 2c, while the other edges

that attain the same combined node degree are set to −c. In Line 13, the edge with highest

combined node degree is set to −2c, while the other edges are set to c. It is clear that the

SoS constraints will be fulfilled for each quadruple i < j < k < `. Finally, we note that if

125

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

CVX

Our Construction

Figure C.1. (Left) The blue line is the algebraic connectivity found by CVX,
i.e., 0.95 as pointed in Figure (4.4 g). The red line is the algebraic connectivity
of our construction in Algorithm 2 for different values of c ∈ [0, 0.6]. (Right)
The Kneser graph weights for the optimal c = 0.32, which in effect differs from
the weights found by CVX in Figure (4.4 f).

c = 0 then simply the same input, M , is returned. The latter implies that, for the optimal

value of c, Algorithm 2 cannot return a weight matrix with lower algebraic connectivity than

that of M .

1

Recall that λ2(Λ̃) = λ2(LG̃). In Figure C.1 , we ran Algorithm 2 with input graph

Υ̃X(2)Υ̃ equal to the graph in Figure (4.4 d), and c ∈ [0, 0.6]. For each c, we plotted

the algebraic connectivity of our construction. We observe that when c = 0, in effect

λ2(Λ̃) = −0.24 as pointed in Figure (4.4 d). In this example, the optimal value of c is

0.32 and attains a λ2(Λ̃) of 0.9368, which is very close to the value λ2(Λ̃) = 0.95 found

by CVX (see Figure (4.4 g)). Finally, we also plot the Kneser graph weights for c = 0.32

following the construction in Algorithm 2 .
1

 ↑ Recall that the SDP problem (4.6) would attain an algebraic connectivity equal to that of M if the optimal
solution is yy>.

126

C.5 Proof of Theorem 4.4.4

Proof. The dual of problem 4.20 is given by:

min
V , ρ

Tr(V) (C.13)

subject to V −X −
k∑
i=1

ρi · aia>i � 0,

V is diagonal.

Letting Λ def= Λ(V ,ρ) = V −X−∑k
i=1 ρi ·aia>i , with V diagonal. The Karush-Kuhn-Tucker

(KKT) [99] optimality conditions are:

1. Primal Feasibility: Yii = 1, a>i Y ai = 0, Y � 0.

2. Dual Feasibility: Λ � 0.

3. Complementary Slackness: 〈Λ,Y 〉 = 0.

Our approach is to find a pair of primal and dual solutions that simultaneously satisfy

all KKT conditions above. Then, the pair witnesses strong duality between the primal and

dual problems, which means that the pair is optimal. It is clear that Y = Y = yy> satisfies

the primal constraints. Let Vii = (XY)ii and ρi = −n, if Λ � 0 then V and ρ satisfy the

dual constraints. Thus, we conclude that if the condition Λ � 0 is met then Y is an optimal

solution.

For arguing about uniqueness, let us consider that λ2(Λ) > 0 and let Ỹ be another

optimal solution to problem 4.20 . From dual feasibility and complementary slackness we

have that Λy = 0, which implies that y spans all the null space of Λ since λ2(Λ) > 0.

Finally, from primal feasibility we have that Ỹ = yy>. Thus, λ2(Λ) > 0 is a sufficient

condition for uniqueness.

From the arguments above, showing the condition λ2(Λ) > 0 suffices to guarantee that

Y = Y is optimal and unique. As X and V are random variables by construction, we

127

next show when this condition is satisfied with high probability. By Weyl’s theorem on

eigenvalues, we have

λ2(Λ) = λ2(Λ− E [Λ] + E [Λ]) ≥ λ2(E [Λ]) + λ1(Λ− E [Λ]).

Let M = V −X and N = ∑k
i=1 aia

>
i , then we have E [Λ] = E [M]+n ·N , where we remove

the expectation on N since it is not a random matrix. To lower bound λ2(E [M] + n ·N),

we first note that y ∈ {Null(M) ∩ Null(N)}, which means that we can invoke Lemma 4.4.2

for λ2 instead of λ1. Thus, we have

λ2(E [M] + n ·N) ≥ λ2(E [M]) + ε1 (C.14)

≥ ε2 + ε1, (C.15)

where ε1 = maxi=n−k+1...n

(
nλi(N)+∆

2 −
√(

nλi(N)+∆
2

)2
− nλi(N) ·∆ · (v>i πππ2)2

)
in eq.(C.14)

follows from Lemma 4.4.2 , and ε2 = (1 − 2p) φ2
G

4 degmax(G) in eq.(C.15) follows from Theorem

 4.2.2 . The term πππ2 in ε1 corresponds to the Fiedler vector of G because the matrix M is a

signed Laplacian of G, that is, the matrix L and M share the same spectrum, and the i-th

eigenvector of M is equal to the i-th eigenvector of L multiplied by yi. Since y2
i = 1, only

the second eigenvector of L appears in the expression, i.e., πππ2.

To lower bound λ1(Λ− E [Λ]), we first observe that Λ− E [Λ] = V −X − E [V −X].

Thus, we can further decompose the lower bound as follows: λ1(V −X − E [V −X]) ≥

λ1(V − E [V]) + λ1(E [X] − X). Finally, for λ1(V − E [V]) and λ1(E [X] − X) we use

Bernstein’s inequality [81] with a similar setting to the one in the proof of Theorem 4.2.5

and obtain:

P

(
λ1(V − E [V]) ≤ −ε1 + ε2

2

)
≤ n · e

−3(ε1+ε2)2

24σ2+8R(ε1+ε2) , (C.16)

P

(
λ1(E [X]−X) ≤ −ε1 + ε2

2

)
≤ n · e

−3(ε1+ε2)2

24σ2+8R(ε1+ε2) , (C.17)

128

where σ2 = 4p(1− p) degmax(G) and R = 2(1− p). Combining equations (C.15), (C.16) and

(C.17) we conclude our proof.

129

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Structured Prediction
	Contributions
	Outline and Previously Published Work

	EFFICIENT LEARNING OF LATENT VARIABLE MODELS WITH GAUSSIAN PERTURBATIONS
	Preliminaries
	Related Work
	Structural Support Vector Machines with Latent Variables

	The Maximum Loss Over All Structured Outputs and Latent Variables
	The Maximum Loss Over Random Structured Outputs and Latent Variables
	A More Efficient Evaluation
	Statistical Analysis

	Examples
	Examples for Assumption 2.4.1
	Examples for Assumption 2.4.2
	Examples for Assumption 2.4.3

	Experiments
	Synthetic Experiments
	Image Matching

	Discussion
	Inference on Test Data
	A Non-Convex Formulation
	Randomizing the Latent Space

	Summary

	THE FUNDAMENTAL LIMITS OF STRUCTURED PREDICTION
	Preliminaries
	The Hamming Loss
	Factor Graphs and Scoring Functions
	Learning
	A Review of the General Minimax Risk Framework
	Minimax Risk in Structured Prediction

	An Information-Theoretic Lower Bound for Structured Prediction
	Relation of the Pair-Dimension to the VC-Dimension
	Summary

	EXACT INFERENCE IN STRUCTURED PREDICTION
	Preliminaries
	On Exact Recovery of Node Labels
	First Stage
	Second Stage
	Examples of Classes of Graphs

	Exact Inference from the Degree-4 Sum-of-Squares Hierarchy
	Problem Definition
	Semidefinite Programming Relaxation
	Sum-of-Squares Hierarchy

	The Dual Problem
	The Expected Value and the Algebraic Connectivity of the Level-2 Graph
	Systems of Sets and a Novel Cheeger-Type Lower Bound
	Example

	Exact Inference Under Fairness Constraints
	Statistical Parity
	Problem Definition
	The Effect of Linear Constraints on Exact Recovery
	Discussion
	On the Multiplicity of the Algebraic Connectivity
	Experiments

	Summary

	CONCLUSION
	REFERENCES
	APPENDIX TO CHAPTER 2
	Proof of Theorem 2.3.1
	Proof of Theorem 2.3.4
	Proof of Theorem 2.4.4

	APPENDIX TO CHAPTER 3
	Proof of Theorem 3.2.2

	APPENDIX TO CHAPTER 4
	Proof of Theorem 4.2.2
	Proof of Theorem 4.2.5
	Proof of Theorem 4.3.3
	A Degree-Based Construction of the Kneser Graph
	Proof of Theorem 4.4.4

