
NEURAL NETWORK APPROXIMATIONS TO SOLUTION
OPERATORS FOR PARTIAL DIFFERENTIAL EQUATIONS

by

Nick Winovich

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Mathematics

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Guang Lin, Chair

Department of Mathematics, Statistics and School of Mechanical Engineering

Dr. Jianlin Xia

Department of Mathematics

Dr. Karthik Ramani

School of Mechanical Engineering

Dr. Xianfan Xu

School of Mechanical Engineering and Birck Nanotechnology Center

Approved by:

Dr. Plamen Stefanov

2

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere appreciation and gratitude for the

valuable guidance and steadfast support of my supervisor, Dr. Guang Lin. He has served

as a constant source inspiration throughout my graduate studies and has provided me with

tremendous opportunities and encouragement which have made this work possible.

I would also like to thank Dr. Jianlin Xia, Dr. Karthik Ramani, and Dr. Xianfan Xu for

kindly agreeing to serve as members of my defense committee and for the knowledge they have

imparted through instruction and research supervision. In addition, I gratefully acknowledge

the kind support of Dr. Karthik Ramani and Dr. Carol Handwerker who provided me with the

incredibly rewarding opportunity to take part in the IGERT program on the development of

sustainable electronics. Finally, I would like to thank Dr. Mohamed Ebeida for his dedicated

mentorship, guidance, and support throughout my time spent at Sandia.

3

TABLE OF CONTENTS

 LIST OF TABLES . 7

 LIST OF FIGURES . 8

 ABSTRACT . 10

 1 INTRODUCTION AND BACKGROUND MATERIAL 11

 1.1 Neural networks . 11

 1.1.1 Overview . 11

 1.1.2 Network layers and activation functions 12

 1.1.3 Universal approximation theorems 16

 1.1.4 Loss functions and stochastic gradient descent 17

 1.1.5 Adam optimizer . 19

 1.1.6 Backpropagation . 21

 1.1.7 Automatic differentiation . 22

 1.1.8 Convolutional architectures . 23

 1.2 Probability theory . 27

 1.2.1 Overview . 27

 1.2.2 Measure theory background . 27

 1.2.3 Random variables and probability distributions 29

 1.2.4 Gaussian processes and uncertainty estimates 32

 1.3 Partial differential equations . 36

 1.3.1 Overview . 36

 1.3.2 Second order equations . 36

 1.3.3 Finite element method . 38

 1.4 Related works and operator networks . 40

 1.4.1 Historical background and related works 40

 1.4.2 Motivation for operator networks . 43

 2 APPROXIMATING OPERATORS WITH CONVOLUTIONS 45

4

 2.1 Introduction . 45

 2.2 Problem setup . 46

 2.2.1 Mathematical framework . 46

 2.2.2 Discretization . 48

 2.2.3 Approximation by convolutional networks 49

 2.3 Methodology . 50

 2.3.1 Bayesian framework . 50

 2.3.2 Probabilistic training procedure . 51

 2.3.3 Network architecture . 53

 2.3.4 Network loss functions and training procedure 54

 2.3.5 Data generation . 57

 2.4 Numerical results . 58

 2.4.1 Comparison of training procedures 58

 2.4.2 Uncertainty quantification . 60

 2.4.3 Inference speed . 62

 2.4.4 Concluding remarks . 63

 2.A Additional experiments . 64

 2.A.1 Variable coefficient differential operators 64

 2.A.2 Neumann boundary conditions . 66

 2.B Alternative distributions for modeling network uncertainty 67

 2.B.1 Laplace uncertainty model . 68

 2.B.2 Cauchy uncertainty model . 69

 3 OPERATOR NETWORKS & PREDICTIVE UNCERTAINTY 72

 3.1 Introduction . 72

 3.1.1 DeepONet framework . 73

 3.1.2 PDE systems and data generation 74

 3.2 Architecture for predictive uncertainties . 76

 3.2.1 Loss functions and training procedure 77

 3.2.2 Predictive uncertainty and function space generalization 78

5

 3.3 Summary of numerical results . 80

 3.4 Optimization for inference . 82

 3.4.1 Precomputing branch weights . 82

 3.4.2 Precomputing trunk weights . 83

 3.4.3 Concluding remarks . 86

 3.A Architecture Variations . 87

 3.A.1 Incorporation of boundary conditions 87

 3.A.2 Network structures for predictive uncertainties 88

 4 SUMMARY AND CONCLUDING REMARKS 89

 4.1 Research summary . 89

 4.2 Future work and applications . 89

 4.3 Further considerations and limitations . 90

 REFERENCES . 91

 VITA . 99

 PUBLICATIONS . 100

6

LIST OF TABLES

 2.1 ConvPDE-UQ performance comparison . 59

 2.2 ConvPDE-UQ time comparisons . 63

 2.3 Quantitative results for the “Variable Coefficient” problem setup. 65

 2.4 Quantitative results for the “Neumann” problem setup. 66

 3.1 Homogeneous Dirichlet losses on square . 81

 3.2 Inhomogeneous Dirichlet losses on square . 81

 3.3 Inhomogeneous Dirichlet losses on circle . 81

 3.4 Inhomogeneous nonlinear losses . 81

 3.5 Inhomogeneous nonlinear diffusion-reaction losses 81

7

LIST OF FIGURES

 1.1 Artificial neural network overview . 12

 1.2 Hidden layers in neural networks . 14

 1.3 Activation function graphs . 15

 1.4 Adam optimization algorithm . 21

 1.5 Backpropagation technique for gradient calculations. 22

 1.6 Convolutional layers. 24

 1.7 Encoder-decoder diagram. 26

 1.8 Probability density function graphs. 30

 1.9 Probability density function expressions. 30

 1.10 Gaussian process covariance kernels. 33

 1.11 Predictive uncertainty for Gaussian processes. 34

 1.12 Simple network architecture used for fixed PDEs. 40

 1.13 Overview of operator and approximator networks. 44

 2.1 Domain discretization . 48

 2.2 Recognition/generation diagram. 51

 2.3 Probabilistic loss function . 53

 2.4 ConvPDE-UQ network architecture . 54

 2.5 Flow-diagram for ConvPDE-UQ loss calculations 56

 2.6 Qualitative results for Poisson equation on varying domains 60

 2.7 Network uncertainty and correlation with error 61

 2.8 Quantitative analysis of predictive uncertainties 62

 2.9 Qualitative results for the “Variable Coefficient” problem setup. 65

 2.10 Qualitative results for the “Neumann” problem setup 67

 2.11 ConvPDE-UQ uncertainty analysis for Laplace distribution 69

 2.12 ConvPDE-UQ uncertainty analysis for Cauchy distribution 71

 3.1 Basis functions from DeepONet architecture. 74

 3.2 Input data for inhomogeneous boundary conditions. 76

 3.3 Probabilistic architecture for DeepONet. 77

8

 3.4 Predictive uncertainties fit to model error. 78

 3.5 Probabilistic loss function. 78

 3.6 Comparison of DeepONet performance on training and validation datasets. . . . 79

 3.7 DeepONet uncertainty analysis by length-scale. 80

 3.8 Qualitative results for nonlinear problem setup 82

 3.9 Optimized inference - fast surrogate models . 83

 3.10 Optimized Inference - Precomputing Trunk . 85

 3.11 Optimized Inference Overview . 85

 3.12 DeepONet BC architecture: Variation 1. . 87

 3.13 DeepONet BC architecture: Variation 2. . 87

 3.14 DeepONet BC architecture: Variation 3. . 87

 3.15 DeepONet UQ architecture: Variation 1. . 88

 3.16 DeepONet UQ architecture: Variation 2. . 88

 3.17 DeepONet UQ architecture: Variation 3. . 88

9

ABSTRACT

In this work, we introduce a framework for constructing light-weight neural network ap-

proximations to the solution operators for partial differential equations (PDEs). Using a

data-driven offline training procedure, the resulting operator network models are able to

effectively reduce the computational demands of traditional numerical methods into a single

forward-pass of a neural network. Importantly, the network models can be calibrated to spe-

cific distributions of input data in order to reflect properties of real-world data encountered

in practice. The networks thus provide specialized solvers tailored to specific use-cases, and

while being more restrictive in scope when compared to more generally-applicable numerical

methods (e.g. procedures valid for entire function spaces), the operator networks are capable

of producing approximations significantly faster as a result of their specialization.

In addition, the network architectures are designed to place pointwise posterior distribu-

tions over the observed solutions; this setup facilitates simultaneous training and uncertainty

quantification for the network solutions, allowing the models to provide pointwise uncertain-

ties along with their predictions. An analysis of the predictive uncertainties is presented with

experimental evidence establishing the validity of the uncertainty quantification schema for a

collection of linear and nonlinear PDE systems. The reliability of the uncertainty estimates

is also validated in the context of both in-distribution and out-of-distribution test data.

The proposed neural network training procedure is assessed using a novel convolutional

encoder-decoder model, ConvPDE-UQ, in addition to an existing fully-connected approach,

DeepONet. The convolutional framework is shown to provide accurate approximations to

PDE solutions on varying domains, but is restricted by assumptions of uniform observation

data and homogeneous boundary conditions. The fully-connected DeepONet framework

provides a method for handling unstructured observation data and is also shown to provide

accurate approximations for PDE systems with inhomogeneous boundary conditions; how-

ever, the resulting networks are constrained to a fixed domain due to the unstructured nature

of the observation data which they accommodate. These two approaches thus provide com-

plementary frameworks for constructing PDE-based operator networks which facilitate the

real-time approximation of solutions to PDE systems for a broad range of target applications.

10

1. INTRODUCTION AND BACKGROUND MATERIAL

Caminante, no hay camino

sino estellas en la mar.

Antonio Machado

This work aims to summarize the research insights gathered from an investigation into

the potential strategies for applying neural network models to the application of partial dif-

ferential equations (PDEs), which serve as the governing constraints for a broad range of

physical systems. More specifically, we examine the possibility of approximating solution op-

erators associated with PDE systems by constructing light-weight neural network surrogate

models equipped with an automated form of predictive uncertainty estimation.

This chapter covers the essential material from the three primary fields of study that

serve as the foundation of the research presented in this work: artificial neural networks,

probability theory, and partial differential equations. An overview of the key concepts and

constructions for neural networks is provided in Section 1.1 . This is followed by a brief

review of probability theory in Section 1.2 , with an emphasis placed on the framework

of Gaussian process regression. A very short summary of the general theory of partial

differential equations, along with a quick review of the finite element method, is provided in

Section 1.3 . Finally, a review of the related works, historical literature, and the motivation

for operator networks is presented in Section 1.4 .

1.1 Neural networks

1.1.1 Overview

Neural networks are a class of simple, yet effective, computing systems with a diverse

range of applications. These systems comprise large numbers of small, efficient computational

units which are organized to form large, interconnected networks capable of carrying out

complex calculations. In this section we review the key principles and defining components of

11

neural network architectures which will be used to construct the operator networks proposed

later in this work.

1.1.2 Network layers and activation functions

The fundamental building block of feedforward neural networks is the fully-connected

neuron illustrated in Figure 1.1

1
 . A single fully-connected neuron/unit consists of a collection

of weight parameters {wi}, equal in number to the input variables {xi} entering the neuron,

along with a bias parameter b and an activation function f . Once the input variables are

specified, the neuron output y is defined by the formula:

y = f
(∑

i
wi · xi + b

)
or y = f(wT x + b) (1.1)

where w and x denote the column vector representations of the neuron weights and inputs.

x2 w2 Σ f

Activation
function

y

Output

x1 w1

Weights

x3 w3

Bias
b

Inputs

Figure 1.1. Overview of the components of a single artificial neuron.

More generally, a fully-connected layer can be formed by processing the input data

by multiple independent neurons. These layers produce a vector of output values (often

interpreted as features extracted from the input data) and are determined by a weight matrix

W = {wij} and bias vector b = {bj}:

yj = f
(∑

i
wij · xi + bj

)
or y = f(Wx + b) (1.2)

1
 ↑ This diagram is based off of Gonzalo Medina’s response to the following Stack Exchange post:

https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network

12

From this description, we see that the network layer corresponds to a vector-to-vector map-

ping specified by an affine linear operator followed by the elementwise application of a single

nonlinear function.

In order to model more complex mappings, hidden layers are typically introduced as

intermediate steps between the initial network input values and the final network output.

x Layer 1−−−−−−−→ h(1) Layer 2−−−−−−−→ h(2) −−→ . . . −−→ h(k−1) Layer k−−−−−−−→ y (1.3)

The number of hidden layers is referred to as the network depth and the concept is typically

visualized as shown in Figure 1.2 . Mathematically, these hidden layers simply correspond to

a sequence of function compositions where the output of each layer is fed forward and taken

as the input to the next layer until the final output is produced. For example, the evaluation

of a fully-connected network with three layers is defined by the equations:

h(1) = f(W(1)x + b(1)) , h(2) = f(W(2)h(1) + b(2)) , y = f(W(3)h(2) + b(3)) (1.4)

=⇒ y = f
(

W(3)
[
f
(

W(2)
[
f(W(1)x + b(1))

]
+ b(2)

)]
+ b(3)

)
(1.5)

For comparison with alternative network architectures, we note the connection between

a layer with N nodes and a layer with M nodes entails:

FLOPs Weights

2M N M N
(1.6)

The floating point operation (FLOP) [32] count consists of the M addition operations for

including the bias terms along with the M · N multiplication operations and M · (N − 1)

addition operations required for matrix-vector multiplication of the weight matrix with the

input/previous-layer values.

The activation functions play an essential role in neural network architectures since they

provide the only source of nonlinearity in the resulting models. In particular, composing

multiple layers without applying activation functions still results in an affine linear trans-

formation and can therefore be represented by a single layer. Accordingly, the concept of

13

Figure 1.2. Example of neural network defined using intermediate/hidden layers.

network depth is meaningful only in the presence of activation functions, and the proper

choice of activation often plays a significant role in the overall performance of the networks.

Two of the most common bounded activation functions are the Sigmoid and hyperbolic

tangent (Tanh) functions:

Sigmoid(x) = 1
1 + exp(−x) Tanh(x) = ex − e−x

ex + e−x
(1.7)

The Rectified Linear Unit (ReLU) and Softplus activations are also commonly used:

ReLU(x) =

x x ≥ 0

0 x < 0
Softplus(x) = log

(
1 + exp(x)

)
(1.8)

The Leaky ReLU and and Exponential Linear Unit (ELU) provide parameterized variations

of the ReLU activation and can help avoid problems such as “vanishing gradients”

2
 :

Leaky_ReLUα(x) =

x x ≥ 0

α · x x < 0
ELUα(x) =

x x ≥ 0

α · (ex − 1) x < 0
(1.9)

2
 ↑ The problem of “vanishing gradients” refers to situations where the performance of optimization procedures

is undermined by neurons producing negative inputs to ReLUs that result in zero-valued gradients.

14

Conventionally, the values of α in the ELUs and Leaky ReLUs are treated as hyper-parameters

(i.e. values specified manually prior to training); it also possible to define activation functions

with parameters treated as trainable variables (i.e. values which the network is permitted

to change during the learning process), as is the case for Parameterized ReLU [24] and

Swish [70] activation functions.

Figure 1.3. Graphs of common activation functions used in neural networks.

The selection of activation functions for hidden layers, as well as the choice of layer sizes

and network depth, are typically determined through a series of initial experiments used to

identify the settings which yield the best performance. However, the choice of the activation

function used for the final network layer, connecting the last hidden layer to the network’s

final prediction values, requires particular attention. In regression models, for example, the

final activations are usually omitted to avoid placing undesirable restrictions on network

predictions (e.g. non-negative values produced by ReLU activations).

15

1.1.3 Universal approximation theorems

In 1989, a number of works were published establishing the approximation capabilities

of artificial neural networks, which serve as the basis for a broad collection of results which

are commonly referred to as the universal approximation theorems. These results extend a

number of early works [21 , 33 , 50 , 52] which aimed to explain the observed approximation

properties of neural networks under more restrictive assumptions.

Cybenko [14] produced a key result establishing the approximation capabilities of su-

perpositions of sigmoidal functions. Translated into the context of neural networks, this

result shows that scalar-valued feedforward networks with one hidden layer and sigmoidal

activation functions are universal approximators for continuous functions. More precisely,

Cybenko proves that the collection of functions which can be expressed in the following form:

N∑
i=1

ωi · σ(wT
i xi + bi) (1.10)

is dense is the space of continuous functions defined on the unit hypercube in Rd. As noted

above, this collection of functions coincides precisely with the definition of feedforward neural

networks with one hidden sigmoidal layer followed by a bias-free linear layer.

That same year, Funahashi [19] provided a proof that neural networks with multiple hid-

den layers are capable of approximating and continuous function defined on a compact subset

of Rd provided that the activation functions used are continuous, non-constant, bounded,

and monotonically increasing.

Hornik et al. [30] provided a more general result which proved that multi-layer neural

networks are capable of approximating any Borel measurable function

3
 defined on a compact

subset of Rd provided that the activation functions f(x) satisfied the following properties:

f : R → [0, 1] is non-decreasing with limx→−∞ f(x) = 0 and limx→∞ f(x) = 1. This general

result provides the key theoretical foundation for neural network models, which have since

been employed as universal approximators for a broad range of practical applications.
3

 ↑ A brief overview of the concept of Borel measurability is provided in Section 1.2.2

16

1.1.4 Loss functions and stochastic gradient descent

While the results from the previous section show that neural networks are capable of

providing accurate approximations in theory, it still remains to be shown how such networks

can be constructed. In particular, the values of the weights and biases must be calibrated

to the specific problem under consideration in order for the neural network to produce any

meaningful approximation. To this end, it is necessary to provide the network with a form

of guidance which precisely defines the problem and quantifies the network’s performance.

This information is summarized by the network’s loss function L(θ) which quantifies the

network performance based on the current network parameters θ.

In the context of neural networks, gradient descent appears to provide a reasonable

approach for tuning network parameters. In particular, gradient descent gives a simple,

iterative algorithm for finding local minima of a real-valued function numerically, which may

consider applying to the network loss function L(θ). The iteration step of the algorithm is

defined in terms of a step size parameter α (or by a decreasing sequence {αt}) by setting:

θt+1 = θt − α · ∇L(θt). The initial weights and biases can be interpreted as a single vector

θ0, and the iteration steps from the previous slide could, in theory, be used to identify the

optimal parameters θ∗ for the model. The issue with this approach is that the function we

are actually trying to minimize is defined in terms of the entire dataset D:

L(θ) = 1
|D|

∑
x∈D

l(x|θ) (1.11)

where l(x|θ) denotes the loss for a single example x when using the model parameters θ.

In particular, the standard gradient descent algorithm would require computing the average

loss (and evaluating the loss for every dataset example) at each step of the iterative scheme.

Since computing the true gradient ∇L(θ) at every step is impractical for large datasets,

we can instead approximate the gradient using smaller, more manageable batches of data:

∇L(θ) ≈ ∇L̂t(θ) = 1
|Bt|

∑
x∈Bt

∇l(x|θ) (1.12)

17

where the batches {Bt} partition the dataset into smaller subsets (typically of equal size).

The iteration step for the stochastic batch gradient descent algorithm is then defined by

replacing the full gradient ∇L(θ) with the approximate gradient ∇L̂t(θ) at each step. This

procedure is often referred to as mini-batch gradient descent, a particular form of stochastic

gradient descent (SGD) where the stochasticity in the optimization procedure is a result of

the dataset subsampling used to approximate gradients.

Since fixed learning rates often lead to suboptimal performance in practice, it is typically

necessary to gradually reduce the learning rate gradually during the optimization procedure.

However, specifying the proper learning rate “schedule” is complicated by the facts that:

• Manually tuning learning rates for each application is time consuming and imprecise.

• In many cases, different parameters require entirely different learning rates.

One method for calibrating learning rates based on information gathered from previous

steps is to incorporate a notion of momentum into the update policy:

θt+1 = θt − vt where vt = γ · vt−1 + α · ∇L(θ) (1.13)

An accelerated form of incorporating momentum was introduced by Nesterov [64] in 1983

which leverages the value of “looking ahead” before making updates:

θt+1 = θt − vt where vt = γ · vt−1 + α · ∇L(θ − γ · vt−1) (1.14)

More recently, the AdaGrad [16] and RMSProp [27] algorithms have been proposed as

improved forms of momentum-based SGD. Both of these methods make use of a common

technique for estimating momentum incrementally at each iterative step. In particular,

the methods make use of exponential moving averages which are obtained by applying an

exponential decay to the values from previous iterations so that an emphasis is placed on

the most recent values; this allows the average to move, or correct itself, as the distribution

of the values changes.

18

For example, to track the gradient gt = ∇L(θt−1) of the loss with respect to the param-

eters θ, we can define an average recursively by setting:

m0 = 0

mt = β ·mt−1 + (1 − β) · gt

=⇒ mt = (1 − β)
t∑

τ=1
βt−τ · gτ (1.15)

where the parameter β < 1 is used to specify the exponential decay rate and is typically taken

to be close to 1. While this technique typically works well, the zero-initialization m0 = 0 is

rather arbitrary. In the following section, an algorithm will be introduced which is specifically

designed to avoid the undesirable effects resulting from this choice of initialization.

1.1.5 Adam optimizer

Among the most commonly used variations on conventional SGD is the Adam optimiza-

tion algorithm, which was introduced by Kingma and Ba [36] and derives its name from

the concept of “adaptive moment estimation”. As the name suggests, the intuition behind

the algorithm is that the efficiency of a gradient descent based optimization scheme can be

improved by tracking the moments

4
 of the gradient estimates and incorporating this infor-

mation into the update policy of the numerical scheme. In particular, the Adam algorithm

tracks the first two uncentered moments of the objective function gradient at each step:

{mt , vt} with E[mt] ≈ E[∇θLt(θ)] and E[vt] ≈ E[(∇θLt(θ))2] (1.16)

where Lt(θ) denotes the evaluation of the fixed loss function on the particular batch of

data occurring at time-step t. This information is incorporated into the gradient descent

algorithm by rescaling the step-size of each parameter update by a factor of mt/
√
vt at each

step. This is motivated by the intuition that mt/
√
vt can, loosely speaking, be interpreted

as a signal-to-noise ratio for the stochastic gradient estimates. Accordingly, the step-size

of the descent scheme is automatically reduced in regions where the gradient estimates are

becoming increasingly noisy. This is of particular importance when the scheme has arrived
4

 ↑ The measure-theoretic definitions of expectation and moments are provided in Section 1.2.2

19

near a true minimum of the objective function; at such a minimum, the gradient estimates

will simply reduce to mean-zero noise (caused by evaluation at varying subsamples of the

full dataset). In the context of the Adam optimization algorithm, the optimal parameters

θ∗ are taken to be those which minimize the expected value of the objective function; i.e.

θ∗ = argminθ E[L(θ)] where the expectation is taken with respect to the batch data {Dt}.

An outline of the implementation details of the Adam algorithm is provided in Figure 1.4 .

The main idea is to track the moment estimates by maintaining two exponential moving

averages {mt} and {vt}. Of note, however, is the fact that the moment estimates are biased

by the fact that they have been arbitrarily initialized to zero. Fortunately, this bias can be

easily accounted for using the observation that:

mt = (1 − β1)
t∑

τ=1
βt−τ

1 · gτ and vt = (1 − β2)
t∑

τ=1
βt−τ

2 · g2
τ (1.17)

where gτ denotes the gradient estimate ∇θLτ (θτ−1) at time-step τ ; these equalities follow

from the exponential moving average construction and a simple expansion of the recursive

definitions of mt and vt. In the case where the true first and second moments are stationary,

i.e. E[gτ] and E[g2
τ] are constant at each step, it follows that:

E[mt] = E
[
(1 − β1)

t∑
τ=1

βt−τ
1 · gτ

]
= E[gt](1 − β1)

t∑
τ=1

βt−τ
1 = E[gt] · (1 − βt

1) (1.18)

E[vt] = E
[
(1 − β2)

t∑
τ=1

βt−τ
2 · g 2

τ

]
= E[g 2

t](1 − β2)
t∑

τ=1
βt−τ

2 = E[g 2
t] · (1 − βt

2) (1.19)

From this, we observe that the bias introduced by the zero-initialization can be removed

from the moment estimates by defining the adjusted estimates:

m̂t = mt

1 − βt
1

v̂t = vt

1 − βt
2

(1.20)

By eliminating the initialization bias used for the exponential moving average calculations,

the Adam algorithm can lead to considerable improvements in performance; this optimization

algorithm will be used for all of the neural network training procedures presented in this work.

20

Figure 1.4. Psuedocode for the Adam optimization algorithm; based off of
Algorithm 1 from the paper where Kinga and Ba introduced the algorithm [36].

1.1.6 Backpropagation

At this point, we have defined the computational structure of neural networks, estab-

lished their capacity for function approximation after proper parameter tuning with respect

to a given loss function, and specified procedures for tuning the network parameters accord-

ingly. However, one fundamental question regarding the optimization of neural networks

still remains: “How are the gradients of network parameters actually computed?”.

The concept of backpropagation [75], first introduced in 1986, provides a natural solution

to this question in the context of neural networks. The authors considered the context of a

neural network with sigmoidal activations σ and a loss E defined in terms of the network

predictions yj and true values dj by the following equation:

E = 1
2
∑

j
(yj − dj)2 (1.21)

As shown in Figure 1.5 , the gradient information computed at the final stage of the neural

network architecture can be “propagated backward” to determine gradients associated with

21

network quantities earlier on in the network. The influence of the value xj, for example, can

be gauged by computing the gradients ∂E
∂xj

by means of the Chain Rule:

∂E

∂xj
= ∂E

∂yj
· ∂yj

∂xj
= ∂E

∂yj
· d

dxj
[σ(xj)] (1.22)

Likewise, the gradients with respect to the weights wji and previous layer outputs yi can be

computed via:
∂E

∂wji
= ∂E

∂xj
· ∂xj

∂wji
= ∂E

∂xj
· yi (1.23)

∂E

∂yi
=

∑
j

∂E

∂xj
· ∂xj

∂yi
=

∑
j

∂E

∂xj
· wji (1.24)

Now that the error contribution associated with yi is known, the contributions from network

parameters of the previous layer can be computed using the same methodology that was

applied to yj. In this way, gradient calculations for all network parameters can be computed

by propagating back the error contributions through each of the network layers.

Figure 1.5. Overview the backpropagation technique for computing the gra-
dients required by gradient descent in the context of neural networks.

1.1.7 Automatic differentiation

While the backpropagation framework provides us with an overall strategy for comput-

ing the gradients of the network error with respect to each of the network parameters, the

derivative calculations themselves require further attention. Two commonly used methods

22

for automating the process of computing derivatives are symbolic differentiation and nu-

meric differentiation; however, both of these methods have severe practical limitations in

the context of training neural networks:

• Symbolic differentiation produces exact derivatives through direct manipulation of the

mathematical expressions used to define functions; the resulting expressions can be

lengthy and contain unnecessary computations, however, and are inefficient unless ad-

ditional “expression simplification” steps are included.

• Numeric differentiation techniques are widely applicable and efficient; however, the re-

sulting inexact gradient estimates can entirely undermine the training process.

Automatic differentiation (AD) [9] in “reverse mode” provides a generalization to back-

propagation and gives us a way to carry out the required gradient calculations exactly and

efficiently. This approach computes derivatives using the underlying computational graph

associated with the specified network structure. In particular, a trace of all elementary op-

erations required for computing the network output is stored on an evaluation “tape”, or

“Wengert list”, and common operations are shared to avoid repeating calculations that are

common to both the evaluation and derivative calculations [11].

1.1.8 Convolutional architectures

In many cases the spatial orientation of the input data plays an important role in the

correct interpretation of the data. Fully-connected layers are extremely inefficient at learning

spatial connections, however, since the ordering/arrangement of the data has no influence

in the overall network architecture (in the sense that if all entries of the input dataset were

permuted in a fixed manner, the performance of the network would remain unchanged).

Convolutional layers are specifically suited for processing data with spatial features (e.g.

images, time-series, etc.). The fundamental idea behind convolutional layers is to restrict

the domain of influence of any given input; in particular, convolutional layers specify a

receptive field which determines which output neurons are affected by each input value. As

illustrated in Figure 1.6 , convolutional layers operate by applying a filter which is designed

23

to slide across the input array to produce output values; this is done by multiplying filter

weights with the input values covered by the current filter position. A stride is also typically

introduced, corresponding to the number of steps the filter slides after each calculation; in

the example below the filter starts in the upper-left to produce the output value y11, shifts

two steps right to align with the upper-right entries used to produce the value y12, then shifts

two steps down to repeat the process on the lower entries of the array.

y11 = f(w11x11 + w12x12 + w21x21 + w22x22) y12 = f(w11x13 + w12x14 + w21x23 + w22x24)

Figure 1.6. Overview of the computations prescribed by a convolutional network layer.

As mentioned in the discussion of fully connected layers, matrix representations offer

a natural way of expressing the connection between network layers. Convolutional layers

are also easily expressed in matrix form, however the dense weight matrices from fully-

connected layers are replaced with highly structured, sparse matrices. For example, the

matrix representation for applying a convolutional layer with a 2 × 2 filter and stride 2 to a

4 × 4 input layer is given by:

y11
y12
y21
y22

 = f

w11 w12 0 0 w21 w22 0 0 0 0 0 0 0 0 0 0
0 0 w11 w12 0 0 w21 w22 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 w11 w12 0 0 w21 w22 0 0
0 0 0 0 0 0 0 0 0 0 w11 w12 0 0 w21 w22

∣∣∣
x̂∣∣∣

(1.25)

where x̂ =

[
x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44

]T

(1.26)

The concept of convolution also generalizes naturally to “multi-channel” arrays (for exam-

ple, image data defined by RGB channels associated with different colors). A convolutional

layer between an input array with N channels and an output array with M channels is

defined by a collection of N · M distinct filters, with associated weight matrices W(n,m) for

24

n ∈ {1, . . . , N} and m ∈ {1, . . . ,M}, corresponding to the connections between each input

channel and each output channel. In addition, each output channel is also assigned a bias

term, b(m) ∈ R for m ∈ {1, . . . ,M}, and the final outputs for the mth channel are given by:

y(m) = f
(∑N

n=1 W(n,m)x(n) + b(m)
)

(1.27)

In some applications it is necessary to restore the original resolution of the input array.

This requires an upsampling technique designed to increase the resolution of an array. It

is often possible to upsample directly using a technique such as bilinear interpolation. The

concept of convolutional layers also admits a natural generalization, however, which pro-

vides an alternative method for upsampling and is referred to as a transpose convolutional

layer. As the name suggests, the transpose convolutional layer is defined by a weight matrix

corresponding to the transpose of a standard convolutional weight matrix.

From the above matrix representation, we note that a stride 1, k× k convolutional layer

between a layer with resolution R×R and N channels and a layer with M channels entails:

FLOPs Weights

≈ 2 k2 R2 N M k2 N M
(1.28)

Here the FLOP calculation is carried out as follows:

k2 R2 N M + (k2 − 1)R2 N M + R2 (N − 1)M + R2 M = 2 k2 R2 N M (1.29)

The first term corresponds to the multiplication operations with the filter weights in each

filter position, the second term corresponds to the addition operations for each position, the

third term accounts for the addition operations between the filtered input channels, and the

last term accounts for the addition operations for including bias terms. This calculation is

only approximate since it does not account for padding considerations (which will typically

reduce the overall count by a negligible amount). It is typically important to keep the

filter size k relatively small in order to maintain a manageable number of trainable variables

and FLOPs. However, we note that the number of variables and FLOPs associated with

25

convolutional layers are substantially smaller than those required by fully-connected layers

(in particular, since the input data consists of R2 values, the connections required by a

fully-connected layer between two such arrays would be on the order of R4).

In addition to providing an efficient form of processing spatially structure data, convolu-

tional architectures also provide powerful tools for generating and transforming structured

data. One of the most prolific design strategies used for modeling data transformations is to

construct an architecture according to an encoder-decoder structure. As illustrated in Fig-

ure 1.7 , these architectures consist of an “encoder” component designed to map the original

data into a lower-dimensional “latent-space” followed by a “decoder” component which maps

the extracted latent features back to a structured output/prediction. These architectures

have been well-established in the computer vision community for applying transformations to

image and video data with a broad range of applications; we will also adopt this structure in

Chapter 2 where encoder-decoder models are used to model function-to-function mappings.

Figure 1.7. Overview of a typical encoder-decoder structure used for convo-
lutional architectures.

26

1.2 Probability theory

1.2.1 Overview

Probability theory provides a powerful theoretical framework for handling uncertainties

involved with mathematical models and systems. For the purposes of this work, we will

restrict our attention to a few specific concepts which serve as the theoretical motivation

for the network architectures proposed in subsequent chapters. The material covered in this

section serves as the basis for the proposed works in two fundamental ways:

1. Gaussian processes serve as the primary motivation/inspiration for the concept of pre-

dictive uncertainty and the definition of the neural network loss functions.

2. The datasets used for the proposed neural network training procedure are constructed

using samples from Gaussian processes.

For a more detailed analysis of the topics covered in this section, the following works

are recommended: Gaussian Processes for Machine Learning [71], Machine Learning: A

Probabilistic Perspective [63], and Kernel-based Approximation Methods using MATLAB [18].

1.2.2 Measure theory background

The precise definitions of the concepts involved with probability theory are formulated

in the context of measure theory. For completeness, the formal definitions of several key

constructions in probability theory are outlined below. A more detailed treatment of this

material can be found in Probability & Measure Theory [8], and heuristic descriptions of

these concepts are also provided in Section 1.2.3 for a more informal review.

A σ-algebra on a set W is defined to a be a collection of sets F ⊆ P(W) (where P(W)

denotes the set of all subsets of W) subject to the constraints:

W ∈ F , A ∈ F ⇐⇒ AC ∈ F , {An}n∈N ⊂ F =⇒
⋃

n∈N
An ∈ F (1.30)

In the context of probability theory, such σ-algebras are interpreted as the possible “events”

that may occur in a given system or model. The probability of each event (i.e. the likelihood

27

that the event occurs) is determined by specifying a probability measure on the space (W ,F):

namely, a set function µ : F → [0,∞] which satisfies the following three properties:

µ(∅) = 0 , µ(W) = 1 , µ
(⋃

n∈N
An

)
=

∑
n∈N

µ(An) for all {An} ⊂ F disjoint (1.31)

Since these underlying spaces are often rather abstract in practice, the majority of results

in probability theory are formulated in terms of functions between spaces which have more

intuitive interpretations. In order to develop a consistent analytical framework, the functions

considered must behave well with respect to the source and target σ-algebras, and this notion

is formalized by the concept of measurability. In particular, given two measurable spaces

(W1,F1) and (W2,F2), a mapping f : W1 → W2 is said to be (F1,F2)-measurable if

f−1(A) ··= {ω ∈ W1 | f(ω) ∈ A} ∈ F1 for every A ∈ F2.

A random variable on a measurable space (W ,F) is a real-valued mapping X : W → R

which is measurable with respect to the Borel σ-algebra B(R) on R, which is defined to be

the smallest σ-algebra containing all open sets on the real line. Given a random variable X

on a probability space (W ,F ,P), we define the cumulative distribution function (c.d.f.) of

X to be the mapping FX : R → [0, 1] defined for all t ∈ R by:

FX(t) ··= P(X ≤ t) = P
(
{ω ∈ W : X(ω) ≤ t}

)
(1.32)

In cases where FX(t) is absolutely continuous, the derivative pX(t) ··= d
dt
FX(t) exists almost

everywhere on the real line and is referred to as the probability density function (p.d.f.) of

the random variable X. This allows us to recast many of the key constructs from probability

spaces in terms integration of standard functions on the real line:

P[X ∈ E] =
∫

x∈E
pX(x) dx for all E ∈ B(R) (1.33)

28

The expectation E[X] of a random variable X gives a precise formulation of the “average”

or “mean”. While the precise definition of expectation requires a formal measure-theoretic

construction, in scenarios where pX(x) exists the expectation of X can be computed by:

E[X] =
∫
R
x · pX(x) dx (1.34)

The higher-order moments E[Xn] can be computed in a similar fashion; notably, the second-

order “centered” moment Var [X] ··= E[(X−E[X])2] is commonly referred to as the variance

of the random variable X and can be interpreted as a measure of how much the variable

deviates from its mean value.

The relationships between two random variables X and Y are generally specified with

respect to the construction of an abstract probability space which is beyond the scope of

this work. However, under suitable circumstances as joint density pX,Y (x, y) can be specified

which characterizes the likelihood of the events {X = x} and {Y = y} both occurring

(in particular, accounting for potential dependencies between the two random variables).

This leads to the notion of the conditional distribution X |Y which formalizes the concept of

making conclusions concerning the variable X based off of information which is known about

the variable Y . This notion of conditioning plays a critical role in the context of inference,

since it allows us to incorporate observation data into probabilistic models and refine the

model predictions as more data is made available.

1.2.3 Random variables and probability distributions

The two core components of probability theory that will be relevant for this work are

concepts of random variables and stochastic processes. Intuitively, a random variable can

simply be interpreted as a value which unknown until a certain event occurs or a measurement

is made; the range in possible values, as well as the likelihood of a given value occuring, is

characterized by the distribution of the random variable. Under certain assumptions, the

distribution of a random variable can be characterized by a probability density function;

examples of the densities that will be considered in this work are illustrated in Figure 1.8 .

29

Figure 1.8. Graphs of common probability density functions.

Distribution Density Function Parameters
Gaussian pX(x) = 1√

2πσ2 exp(−1
2(x− µ)2/σ2) µ, σ

Cauchy pX(x) = (πγ (1 + (x− µ̃)2/γ2))−1
µ̃, γ

Laplace pX(x) = 1
2b

exp(−|x− µ)|/b) µ, b

Uniform pX(x) = 1
b−a

1[a,b](x) a, b

Figure 1.9. Expressions for common probability density functions.

Among the most commonly occurring distributions in practice, and one which will play

a central role in the results presented in this work, is the Gaussian, or Normal, distribution.

A Gaussian random variable X is defined by a continuous density of the form:

pX(x) = 1√
2πσ2

exp
(

− (x− µ)2/σ2
)

∀ x ∈ R (1.35)

and is uniquely determined by two parameters: the mean µ and the variance σ2 > 0. To

specify the distribution more concisely, the notation X ∼ N (µ, σ2) is commonly used. This

density can also be rewritten in the following form, which motivates a natural generalization

to higher dimensions:

pX(x) = (2π)−1/2 |σ2|−1/2 exp
(

− (x− µ)(σ2)−1(x− µ)
)

(1.36)

30

The concept of Gaussian random variables also extends naturally to higher-dimensional

quantities referred to as multivariate Gaussian random variables, or Gaussian random vec-

tors. A multivariate Gaussian random variable X has a density of the form:

pX(x) = (2π)−d/2 |Σ|−1/2 exp
(

− (x− µ)T Σ−1(x− µ)
)

∀ x ∈ Rd (1.37)

The random variable is defined by two defining parameters: the mean vector µ ∈ Rd

and the covariance matrix Σ ∈ Rd×d. This is only a well-defined density if the covariance

matrix Σ is symmetric and positive-definite: i.e. xT Σx > 0 ∀ x ∈ Rd. Equivalently, all

eigenvalues of the matrix Σ must be positive. Notably, a random vector X = (X1, . . . , Xd)T

is Gaussian if and only if every linear combination of its components is Gaussian:

i.e.
d∑

i=1
αi Xi ∼ N (µα, σ

2
α) ∀ α ∈ Rd (1.38)

In particular, each component Xi is Gaussian, though this is not sufficient to ensure that

the random vector X is Gaussian. By construction, the matrix Σ is the covariance matrix

between the components of the vector X: i.e. Cov[Xi, Xj] = Σij

5
 .

In the context of inference, situations often arise where the values of some vector com-

ponents are known while others are not. This gives rise to a natural partition of the compo-

nent values consisting of the unknown values X(1) = {X1, . . . , Xr} and the observed values

X(2) = {Xr+1, . . . , Xd}. In this case the covariance matrix takes the form:

Σ =

 Σ11 Σ12

Σ21 Σ22

 where Σij = Cov[X(i), X(j)] (1.39)

5
 ↑ The covariance between random variables provides a general measure of the correlation or relationship

between the variables and is defined by Cov [Xi, Xj] ··= E[(Xi − E[Xi])(Xj − E[Xj])

31

Importantly, the resulting conditional distribution X(1) |X(2) ∼ N (µ∗,Σ∗) is also normally

distributed; moreover, the updated parameters can be computed explicitly using Schur com-

plements [23] and are given by the following formulas:

µ∗ = µ(1) − Σ12 Σ−1

22 [X(2) − µ(2)]

Σ∗ = Σ11 − Σ12 Σ−1
22 ΣT

12

(1.40)

In this way, we are able to update/refine our knowledge regarding the unknown values X(1)

based off of the observed values X(2).

1.2.4 Gaussian processes and uncertainty estimates

While the formal definition of a stochastic process is beyond the present scope, the

following informal interpretation will suffice for our purposes: a stochastic process generalizes

the notion of a random vector X = [X1, . . . , Xd] by replacing the finite index set {1, . . . , d}

with a domain Ω; namely, for each point x ∈ Ω, a stochastic process specifies a random

variable Xx, just as a random vector specifies a random variable Xi for each i ∈ {1, . . . , d}.

A continuous stochastic process X : Ω → R on a domain Ω ⊂ Rd is said to be a

Gaussian process if for every finite collection of points {x(1), . . . , x(k)} the random vector

(X(x(1)), . . . , X(x(k))) is a multivariate Gaussian. The notation Xx = X(x) is also often

used, and will be adopted here to emphasize the dependence on outcomes from an underlying

probability space W ; in particular, Xx(ω) is used to denote the observed value of the process

X at spatial location x ∈ Ω for a given outcome ω ∈ W .

Gaussian processes are completely determined by a mean function µ(x) and covariance

function K(x, y). The mean function must be continuous, and the covariance function must

be symmetric and positive definite in the sense that the matrix [K(xi, xj)]Ni,j=1 is positive

semi-definite for all N ∈ N and {x(1), . . . , x(N)} in Ω.

From a probabalistic standpoint, a Gaussian process specifies a distribution over a space

of functions defined on the domain Ω [71]. In particular, for each outcome ω in the underlying

32

probability space, the process X defines a continuous function X∗(ω) : Ω → R by mapping

x 7→ Xx(ω) for all x ∈ Ω.

While the mean function µ(x) influences the general trends of the sample paths/functions

associated with a given Gaussian process, the covariance function K(x, y) dictates the high-

level characteristics and regularity properties. In many situations, it is reasonable to assume

that the correlation between function values at any two evaluation locations x and y is

determined solely by the separation distance r = ‖x − y‖. This often motivates the use of

stationary isotropic covariance functions K(x, y) = κ(‖x−y‖), which are defined with respect

to a scalar-valued function κ : R≥0 → R≥0 and encompass a broad range of commonly used

covariance functions [18]. A brief list of common kernels along with the associated mean

function properties is provided in Figure 1.10 .

Kernel Expression Mean Function Property
Matern C0 κ(r) = exp(−r) Continuous
Matern C2 κ(r) = (1 + r) exp(−r) Twice Differentiable

Squared Exp. κ(r) = exp(−r2/2) Smooth

Figure 1.10. Examples of common covariance kernels for Gaussian processes
and the corresponding properties of the sample means. Each of these kernels
is stationary isotropic, with the covariance between two points x and y deter-
mined entirely by the distance r = ‖x− y‖.

Once the mean and covariance functions of a Gaussian process are specified, samples

paths can be drawn and evaluated at arbitrary spatial locations {xi}N
i=1 by assembling the

covariance matrix Σ = [K(xi, xj)]Ni,j=1, computing the associated Cholesky factorization,

and multiplying the Cholesky factor by samples drawn from a standard multivariate normal

distribution [71].

If we are given a set of observations of the process at the points Xobs = {x∗
i }k

i=1, we can

sample values from the updated process at a different set of points Xeval = {xi}n
i=1 using

the fact that Xeval |Xobs ∼ N (µ∗,Σ∗) with updated parameters given by:

µ∗ = µeval − Σ12 Σ−1

22 [Xobs − µobs]

Σ∗ = Σ11 − Σ12 Σ−1
22 ΣT

12

(1.41)

33

where Σ11 = Cov[Xeval, Xeval], Σ12 = Cov[Xeval, Xobs], and Σ22 = Cov[Xobs, Xobs] are

calculated using the covariance kernel.

In practice, however, the precise form and parameter values for the underlying covariance

kernel are typically unknown. In some cases the general form of the covariance function can

be inferred from the observations by inspection, but in almost all cases a more precise

analysis is required in order to adequately tune the kernel parameters θ. Since the likelihood

p(Xobs | θ) ∼ N (0,Σ) of the observation values is given explicitly by:

p(Xobs | θ) = (2π)−d/2 |Σ|−1/2 exp
(
−XT

obsΣ−1Xobs

)
(1.42)

the associated negative log marginal likelihood (NLML) is given by:

NLML = − log p(Xobs | θ) = d
2 log(2π) + 1

2 log(|Σ|) + 1
2 X

T
obsΣ−1Xobs (1.43)

By minimizing this expression, the optimal values for the kernel parameters θ can be deter-

mined so that the Gaussian process model is correctly calibrated to the observation data in

considerations; in particular, the term 1
2 log(|Σ|) accounts for the model’s complexity while

the term 1
2 X

T
obsΣ−1Xobs accounts for the model’s fit to the data [63]. Once the model param-

eters have been calibrated, the model predictions and associated uncertainty estimates can

be computed using Equation 1.41 ; importantly, this allows us fit Gaussian process models

to potentially noisy data while providing a quantitative measure of model uncertainty along

with the mean predictions, as illustrated in Figure 1.11 .

Figure 1.11. Predictive uncertainty estimates (shown as transparent layers)
provided by a Gaussian process approximation to noisy observation data.

34

In the conventional implementation of Gaussian process learning algorithms, scalability

is limited due to the following calculations: Σ−1Xobs and log (|Σ|). These calculations can be

carried out using a Cholesky factorization of the observation covariance matrix Σ, however

this requires O(n3) operations and O(n2) storage when modeling n observations [23]. Once

the Cholesky factorization is computed, the cost for inference of a single test point is O(n)

with an additional cost of O(n2) for the associated variance estimate. This computational

complexity often poses a significant challenge for employing these techniques for real-time

or data intensive applications of Gaussian process inference.

However, the automated uncertainty estimates provided by these models often provide

valuable insights into the confidence/accuracy of the model predictions. This essential prop-

erty of Gaussian processes provides us with the fundamental template for equipping neural

networks with predictive uncertainties. In addition to motivating the construction of pre-

dictive uncertainties, Gaussian processes will be used as a key element of the construction

of training data for the proposed neural network models.

35

1.3 Partial differential equations

1.3.1 Overview

The theory of partial differential equations (PDEs) is central to our understanding of

diverse range mathematical systems. Broadly speaking, the study of PDEs involves the

analysis of systems where multivariate functions are determined implicitly by relationships

imposed on their partial derivatives. These types of systems arise naturally in a variety of

contexts and often provide the governing equations for modeling physical, biological, and

financial systems.

While the exact solutions of systems of differential equations are often intractable an-

alytically, a wide range of effective numerical techniques exist for computing approximate

solutions. For the purposes of this work, we will restrict our attention to one specific numer-

ical method for solving PDEs which is referred to as the finite element method (FEM). In

particular, we note that the FEM framework is relevant to the neural networks proposed in

this work in two crucial ways: (1) it will be employed to generate the approximate solutions

used for the neural network training datasets in Chapter 2 and (2) the concept of FEM basis

functions serves as a natural motivation for the network architecture used in Chapter 3 .

1.3.2 Second order equations

For concreteness, we will restrict our attention to the context of second order PDEs

defined on bounded two-dimensional domains Ω ⊂ R2; this will be the problem setting

under consideration for the remainder of this work. The primary task in this context is to

identify an unknown function u : Ω → R based on equations which involve second-order

derivatives, along with lower order derivatives and the function itself. In general, second

order PDEs can be expressed using a single equation of the form:

F
(
x, u(x), ∂

∂x1
u(x), ∂

∂x2
u(x), ∂2

∂x2
1
u(x), ∂

∂x1
∂

∂x2
u(x), ∂2

∂x2
2
u(x)

)
= 0 for all x ∈ Ω (1.44)

Once the definition of F is specified, our goal is to find a function u(x) which satisfies

this equation throughout the domain Ω. Under certain assumptions regarding the structure

36

and regularity of the function F , it can be guaranteed that such a function exists, and any

such function is referred to as a solution of the PDE. In order to guarantee the uniqueness

of a solution, these systems typically include boundary conditions (BCs) which constrain

the solutions behavior on the boundary ∂Ω of the domain [17]. Among the most common

forms of boundary conditions are the Dirichlet BCs, characterized by constraints of the form

u(x) = g(x), and Neumann BCs, expressed in the form ∂
∂~nu(x) = g(x) (where ~n denotes

the unit outward normal vector along the boundary). The boundary conditions are referred

to as homogeneous when g(x) ≡ 0 and are referred to as inhomogeneous otherwise.

Many common families of PDEs can be defined by specifying a fixed structure for the

function F where variations are parameterized by functions involving only the variable x. For

example, the Poisson equation with homogeneous Dirichlet boundary conditions is defined

with respect to the Laplace operator ∆ ··= ∂2

∂x2
1

+ ∂2

∂x2
2

by the system:

∆u(x) = f(x) for all x ∈ Ω

u(x) = 0 for all x ∈ ∂Ω
(1.45)

In this case, the interior constraint can be expressed equivalently by Equation 1.44 with the

function F taken to be of the form:

F (x, U, U1, U2, U11, U12, U22) = (U11 + U22) − f(x) (1.46)

The function f(x) is typically referred to as the source or forcing term of the PDE, and

under mild assumptions regarding Ω it can be shown that a unique solution u(x) exists

for each f(x) with sufficient regularity. In particular, this assertion holds for any function

f ∈ C∞(Ω) defined on a bounded, connected domain Ω with a smooth boundary; moreover,

it can be shown the the solution also belongs to C∞(Ω) under these assumptions. From this,

it follows that a solution operator G : C∞(Ω) → C∞(Ω) exists which is defined by mapping

each source term f(x) to the associated solution u(x).

37

1.3.3 Finite element method

In this section we provide a very brief overview of the finite element method which is

primarily intended to serve as a motivation for the neural network models introduced in

later chapters. A more detailed analysis can be found in Partial Differential Equations with

Numerical Methods [51].

The FEM approach is formulated with respect to a collection of finite elements consisting

of a partition of the underlying domain along with a collection of basis functions {ϕi}i∈I .

The calculations performed by FEM procedures are then confined to the subspace Vh =

span {ϕi }i∈ I induced by the choice of basis functions.

For concreteness, we will restrict our attention to the Poisson equation with homogeneous

Dirichlet boundary conditions, as defined in Equation 1.45 . By multiplying by an unknown

“test” function ϕ(x) on both sides and integrating the resulting equation, an application of

integration by parts yields the related, but less strict equation:

∫
Ω

∇u(x) · ∇ϕ(x) dx =
∫

Ω
f(x) · ϕ(x) dx (1.47)

The left-hand-side of the equation above motivates the definition of the bilinear form a(−,−)

associated with the Laplace operator ∆ from the original PDE system:

a(ϕ, ψ) =
∫

Ω
∇ϕ(x) · ∇ψ(x) dx ∀ϕ, ψ ∈ Vh (1.48)

and leads us to what is commonly referred to as the weak formulation of the problem:

Find uh ∈ Vh such that a(uh, vh) =
∫

Ω
f · vh dx ∀ vh ∈ Vh (1.49)

In particular, we aim to find coefficients {xi}i∈ I for the basis functions ϕi so that the asso-

ciated approximation uh = ∑
i∈ I xi ϕi satisfies:

a (uh, ϕj) = a
(∑

i∈ I
xi ϕi, ϕj

)
=

∫
Ω
f · ϕj dx ∀ j ∈ I (1.50)

38

Since the form a(−,−) is bilinear, the central expression can be rewritten as a (∑i∈ I xi ϕi, ϕj) =∑
i∈ I xi ·a (ϕi, ϕj). From this we see that the coefficients {xi} can be interpreted as weighting

factors for the values a(ϕi, ϕj) for each fixed j ∈ I. The full list of constraints defined by

Equation 1.50 can therefore be expressed more concisely in matrix form as:

Ax = b where Aij ··= a(ϕi, ϕj) ∀ i, j ∈ I and bj ··=
∫

Ω
f · ϕj dx ∀ j ∈ I (1.51)

After constructing the system defined by Equation 1.51 based off of the PDE in consideration,

the optimal coefficients {x̂i}i∈I are computed by solving the linear system and an approximate

solution û(x) for the PDE is then given by:

û(x) =
∑

i∈ I
x̂i ϕi(x) ∀x ∈ Ω (1.52)

Once the basis functions {ϕi}i∈I are specified, the overall objective of the finite element

method can thus be framed in the context of mapping input data f(x) to the correct co-

efficients {x̂i}i∈I in order to produce an accurate approximation û(x) to the solution. This

interpretation provides a key source of inspiration for the “operator networks” that will be

considered in this work; in particular, we will aim to model the high-level mappings of the

form “f 7→ û” directly using neural network architectures.

39

1.4 Related works and operator networks

1.4.1 Historical background and related works

Following the universal approximation results of the late 1980’s, a number of strategies

were proposed aiming to leverage the approximation capacity of neural networks in the con-

text of PDEs [15 , 47 , 53 , 78]. Of particular relevance for the present work, is the 1992 paper

submitted by Dissanayake and Phan-Thien entitled Neural-Network-Based Approximations

for Solving Partial Differential Equations [15].

The work of Dissanayake and Phan-Thien showed that neural networks could used to

approximate the solution of the following PDE system:

∆u(x) = sin(πx1) · sin(πx2) ∀ x ∈ [0, 1]×2

u(x) = 0 ∀ x ∈ ∂[0, 1]×2
(1.53)

and that the same method could be applied to obtain an approximate solution for a nonlinear

problem on the unit square as well.

The neural network architectures used in this case were very simple feedforward networks

with small dense layers and sigmoidal activation functions. More specifically, the authors

conducted experiments using two hidden layers and 3 to 10 units per layer, as illustrated

in Figure 1.12 . Of note is the fact that the input to the neural network consists of a single

spatial location x = (x1, x2) and the output consists of a single scalar value intended to

provide an approximation to the solution value u(x) at the prescribed input location.

Figure 1.12. A neural network architecture capable of approximating the
solution u(x) of a fixed PDE, as proposed by Dissanayake and Thien [15].

40

In order to capture the model fit with respect to the PDE, the network loss function is

defined using point-collocation to approximate the L2 error of the approximation û(x) on

the interior and boundary of the domain:

Loss =
(∑

x∈Ωd
|∆û(x) − ∆u(x)|2

)1/2
+
(∑

x∈∂Ωd
|û(x) − u(x)|2

)1/2
(1.54)

where Ωd and ∂Ωd denote discrete sets of points on a coarse grid used to model the interior

and boundary of the domain, respectively. The gradients of the loss function with respect to

the network parameters, as well as the Laplacian values ∆û(x), are then derived manually

using backpropagation. A quasi-Newtonian method, such as the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm, is then used to tune the network weights by minimizing the loss

associated with the neural network approximations.

More recently, a number of more complex neural network models have been proposed

for obtaining numerical solutions to PDEs [15 , 47 , 48 , 53 , 61 , 76 , 78 , 79 , 81]. A substan-

tial amount research has also been directed toward the development of a physics-informed

deep learning framework for modeling physical data with governing constraints defined by

PDEs [68 , 69]. As was the case in the work of Dissanayake and Phan-Thien, these neu-

ral network frameworks have focused primarily on the construction of specialized networks,

with each network dedicated to a specified PDE. This setup is motivated by the universal

approximation property [14 , 30 , 31] of neural networks, with the trained network associated

with a fixed PDE intended to serve as an embodiment of the solution itself. These networks

are individually tailored to the specific problem and geometry into consideration, and by

construction must be retrained for each new system. In effect, the neural network training

procedure is employed as a substitute for explicitly forming and solving the linear system

corresponding to the FEM framework.

One shortcoming of the conventional FEM approach, and the more recent neural network

PDE solvers, however, is that neither provides any form of uncertainty estimate associated

with their proposed solutions. This can result in overconfidence in the accuracy of the

approximate solutions produced by the solvers, potentially leading to a reliance on inaccurate

approximations without any indication of the risk. In an effort to mitigate this vulnerability,

41

works in the field of probabilistic numerics have aimed to design Bayesian frameworks for

approximating the solutions to PDEs using Gaussian process priors [12 , 26]. These solvers

provide both mean and variance estimates, corresponding to a Bayesian posterior distribution

associated with the solver’s approximate solutions.

This Bayesian framework has the advantage of providing a natural form of uncertainty

quantification; in particular, when uncertainties begin to accumulate in the numerical al-

gorithm, and the approximation has the potential for significant inaccuracies in a certain

region, the resulting uncertainty in the predicted solution is clearly indicated in the form of

high variance estimates.

While the probabilistic numerics approaches provide accurate, rigorous uncertainty es-

timates, they also inherently rely on the explicit conditioning of Gaussian processes; this

leads to cubic computational complexity and results in extremely slow inference speeds.

The neural network-based methods, on the other hand, provide exceptionally fast estimates

but do so without any attempt to quantify the associated uncertainty. To incorporate the

benefits of uncertainty quantification into deep learning models, Gal and Ghahramani [20]

introduced a dropout procedure for representing model uncertainty without incurring the

computational costs of fully Bayesian models. More recently, Lakshminarayanan et al. [49]

introduced an ensemble method for predicting uncertainty estimates using deterministic net-

works, and Kendall and Gal [35] proposed a detailed framework for modeling epistemic and

aleatoric uncertainties in deep learning models using Bayesian neural networks (BNNs) and

loss functions derived from likelihood calculations.

Zhu and Zabaras [83] introduced a fully convolutional BNN designed to predict solutions

to stochastic PDEs in an image-to-image manner; i.e. input arrays specifying the terms of

the PDE are mapped directly to the associated solution array. Importantly, this setup allows

the model to make predictions for new systems without requiring the model to be retrained.

Moreover, since the network weights are realized as random variables in the Bayesian frame-

work, uncertainty estimates are naturally provided by Monte Carlo approximations to the

pointwise variance of the predicted solution (using samples from the posterior distributions

of the network weights). The variational inference procedure used to train this network is

specifically designed to account for the limited availability of training data on a fixed domain

42

in consideration; generalizing this model to solve PDEs on varied domains requires extremely

large data sets and would be infeasible due to the computational demands of the Bayesian

training procedure.

1.4.2 Motivation for operator networks

The majority of existing neural network models are designed to take advantage of the

universal approximation property of neural networks in a fairly straight-forward manner: the

goal is essentially to tune the network weights/parameters so that the resulting, ‘trained’

network provides a faithful surrogate model for an unknown/intractable solution function.

In the context of function regression/inference, for example, the input to the neural

network is typically assumed to be coordinate data ‘x’ and the output of the network is

interpreted as an approximation to the solution value ‘u(x)’ at the location specified by

the input, as shown in Figure 1.12 . After training, the neural network surrogate can be

evaluated quickly at any input location to provide an approximation to the true solution

function; however, whenever the problem statement is modified (e.g. when a source term is

changed) the target solution changes as well and the network must therefore be retrained,

as depicted in Figure 1.13 .

As noted in Section 1.3.2 , it is also possible to view the task of solving PDEs in the

context of a solution operator G : C∞(Ω) → C∞(Ω) which assigns to each admissible input

function f(x) the associated solution u(x). This motivates the possibility of constructing

neural networks which are designed to model the high-level function-to-function mappings

‘f 7→ û’ associated with PDE systems instead of modeling the pointwise mappings ‘x 7→ û(x)’

for each individual problem instance. This concept serves as the primary focus of the work

presented in the following chapters; namely, the construction of “operator networks’ designed

to compute approximate solutions to PDE systems. Importantly, the resulting models do not

require any retraining between problem instances which provides a fundamental advantage

over conventional ‘approximator networks’ in the context of real-time applications.

43

Figure 1.13. Comparison of training and inference workflow for ‘approxi-
mator networks’ (left) designed to model pointwise mappings and ‘operator
networks’ (right) designed to model high-level mappings of functions.

44

2. APPROXIMATING OPERATORS WITH CONVOLUTIONS

La généralisation est l’un des

meilleurs moyens de «fair

comprendre» en mathématiques.

Henri Lebesgue

2.1 Introduction

In this chapter, we introduce a data-driven neural network framework, referred to as

ConvPDE-UQ [82], for constructing numerical PDE solvers which provide accurate uncer-

tainty estimates and are applicable to varied domains/geometries. These solvers are im-

plemented as fully convolutional networks and are trained offline using a diverse collection

of FEM solutions to PDEs on varying domains. To take advantage of recent advances in

deep learning for computer vision [74 , 77], an image-to-image network architecture is intro-

duced to construct a solver which does not require retraining for new problems or different

domains; once training is complete, approximate solutions can be obtained using a single

forward-pass of the convolutional network. A theoretical justification for the approximation

of direct PDE input-to-solution mappings by neural networks is established based on the

existence and properties of Green’s functions. In addition, a probabilistic training proce-

dure is proposed which casts network predictions as pointwise Gaussian estimates and leads

to a natural form of uncertainty quantification with virtually no additional computational

demands. The performance of the proposed framework is demonstrated on a collection of

three distinct classes of PDEs consisting of two linear elliptic problems and a nonlinear Pois-

son problem. The inference speed of these solver networks are shown to be 30 times faster

than the parallelized FEM implementations using FEniCS [1 , 2 , 3 , 4 , 5 , 6 , 7 , 28 , 29 , 34 ,

 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 54 , 55 , 56 , 57 , 58 , 59 , 66 , 67 , 72 , 73]. Moreover, a careful

analysis of the network uncertainty estimates is carried out, and the interpretation of the

45

network predictions as pointwise Gaussian estimates is shown to be strongly supported by

the experimental evidence.

2.2 Problem setup

2.2.1 Mathematical framework

To begin, we consider the task of solving the Poisson equation with the Dirichlet boundary

condition:

∆u = f in Ω

u = 0 on ∂Ω
(2.1)

where the domain Ω = D, corresponding to the unit disk in R2, is fixed and we aim to

solve the system for a family of source terms f ∈ C∞(Ω). The solution to this problem

can be obtained explicitly in terms of the fundamental solution to the Laplace operator

∆ = ∑2
i=1

∂2

∂x2
i

and the Green’s function associated with the domain Ω. We recall that the

fundamental solution Γ to the Laplacian in R2 is given by:

Γ(x) = 1
2π

ln(|x|) ∀x ∈ R2 \ {0} (2.2)

and the Green’s function for the unit disk in R2 is defined by:

G(x, y) =

Γ(x− y) − Γ

(
|y| (x− y)

)
for y 6= 0

Γ(x) for y = 0
(2.3)

where y = y/|y|2 corresponds to a scaled reflection of interior points y ∈ D \ {0} across the

boundary of the disk [22]. The solution to the homogeneous Dirichlet problem posed above

can then be expressed using the representation formula:

u(x) =
∫

Ω
G(x, y) f(y) dy ∀x ∈ Ω (2.4)

46

Accordingly, we have an explicit solution mapping:

G :C∞(Ω) −→ C∞(Ω) (2.5)

f 7→
∫

Ω G(−, y)f(y)dy (2.6)

which assigns to each admissible source term f the associated solution Gf = u. This solution

mapping takes the form of an integral operator with kernel G(x, y) and satisfies the well-

known maximum principle [22]: the unique solution u ∈ C∞(Ω) to Equation (2.1) with

source term f ∈ C∞(Ω) satisfies:

sup
Ω

| Gf | ≤ C · sup
Ω

|f | (2.7)

In particular, the solution mapping G : C∞(Ω) → C∞(Ω) is continuous with respect to the

supremum norm.

More generally, given a domain Ω with piecewise smooth boundary ∂Ω, an associated

Green’s function can be constructed by finding a solution h(x) to the system:

∆h = 0 in Ω

h = −Γ on ∂Ω
(2.8)

and setting G(x, y) = Γ(x − y) + h(x − y). Repeating the argument above, we arrive at

analogous estimates for the continuity of the new solution mapping G for the domain Ω.

In this general case, however, the explicit Green’s function is no longer available (with the

exception of a select number of simple geometries).

Although an explicit Green’s function is not available for general domains, the maximum

principle can still be applied since the constant C in Equation (2.7) depends only on the diam-

eter of the domain Ω. In particular, when the diameters of the domains in consideration are

bounded by a fixed constant, the maximum principle gives a uniform, domain-independent

bound for the continuity of the solution mapping.

47

2.2.2 Discretization

Figure 2.1. Discretization of the domain Ω (light gray) and boundary ∂Ω
(dark gray) for the Poisson equation on the circle. The interior and boundary
locations are used to define the network loss function and tailor training to
the domain in consideration.

To cast the problem in discrete form for numerical approximation, we introduce a regular,

rectangular grid Λ which covers the closure Ω of each domain Ω in consideration. For our

purposes, we consider domains contained inside the square [− 1, 1]×2 and take Λ to be a

uniform grid on the square with fixed resolution R. Given a domain Ω, we denote by Ωd the

collection of mesh points in Λ which lie inside of the closure of the domain Ω (i.e. Ωd = Λ∩Ω).

We then define the associated interpolation and projection mappings:

I :
{

(x, f(x))
}

x ∈ Ωd

7→ interp Ω

{
(x, f(x))

}
(2.9)

P : u | Ω 7→
{

(x, u(x))
}

x ∈ Ωd

(2.10)

where interp Ω

{
(x, f(x))

}
denotes the function defined on Ω resulting from a fixed interpo-

lation procedure (e.g. bilinear or bicubic interpolation). By construction, these mappings

satisfy the norm estimates:

sup
Ω

∣∣∣ I{(x, f(x))
} ∣∣∣ ≤ C(interp) · max{|f(x)|} (2.11)

max
{

|u(x)| : (x, u(x)) ∈ Pu
}

≤ sup
Ω

|u| (2.12)

48

where the constant C(interp) depends only on the fixed interpolation procedure which has

been selected. It follows that the discretized, composite mapping:

{
(x, f(x))

}
x∈Ωd

I−−→ f | Ω
G−−→ u | Ω

P−−→
{
(x, u(x))

}
x∈Ωd

(2.13)

is continuous and can, therefore, be approximated by a multi-layer feedforward neural net-

work according to the universal approximation theorem [14 , 30 , 31]. In light of this, we

pursue the construction of an approximate PDE solver using a neural network designed to

predict discrete arrays {(x, u(x))} of the solution point values on a grid provided a discrete

array {(x, f(x))} of specified source term values as input.

2.2.3 Approximation by convolutional networks

Our aim is to define a neural network which approximates the discretized solution map-

ping from Equation (2.13). The convolutional form of the integral operator G naturally

inspires the use of convolutional layers within this neural network approximation. As out-

lined in Section 2.2 , the task is rather trivial in the setting where the domain Ω in Equation

(2.1) is fixed to the unit disk D. In this case, the true Green’s function is known and can

be used to directly apply the linear solution operator in Equation (2.5). For more general

domains, however, the explicit Green’s function is unavailable and alternative numerical

methods must be employed. We first consider the problem setup on the circle as a proof-

of-concept for the proposed neural network PDE solver framework; after establishing the

performance of the network for this simple setup, we proceed to a more careful analysis of

the following more complex scenarios:

1. Varying domain: construct a network to approximate the solution u to Equation (2.1)

when both the source term f and domain Ω are permitted to vary.

49

2. Nonlinear Poisson: construct a network to approximate the solution u when both the

source term f and domain Ω are permitted to vary, and Equation (2.1) is replaced with

the following nonlinear PDE:

div

((
1 + |u|2

)
· ∇u

)
= f in Ω

u = 0 on ∂Ω
(2.14)

The proposed framework can also be naturally extended to work with more general

PDE systems. In particular, variable coefficient differential operators and homogeneous

Neumann boundary conditions can both be accounted for with minimal changes to the

network architecture.

2.3 Methodology

2.3.1 Bayesian framework

For the training procedure and theoretical foundation of the proposed model, we adopt

the probabilistic framework introduced by Kingma and Welling [37]. In particular, we con-

sider a setting in which two variational autoencoder (VAE) models have been trained: one

for the space of source terms and one for the space of solutions. In this setup, the source

data space Df and solution data space Du are mapped to associated latent variable spaces

Zf and Zu by recognition models p(zf |f) and p(zu|u), respectively. The encoded variables

are then decoded back to the original data spaces by generative models q(f |zf) and q(u|zu).

The associated theoretical framework is summarized in the commutative diagram provided

in Figure 2.2 .

The mapping Gz corresponds to the latent space transformation which sends the encoded

latent variables zf associated with the source term f to the latent variables zu corresponding

to the solution u.

The proposed neural network model incorporates a recognition model p(zu|f), trained

to map functions from the source data space Df directly to the solution representations

zu, along with a generative model q(u|zu), designed to produce approximations to the true

50

Df Zf Df

Du Zu Du

p(zf |f)

p(zu|f)

q(f |zf)

Gz
◦

◦ G

p(zu|u) q(u|zu)

Figure 2.2. Commutative diagram for the proposed recognition/generator
model; the source data space Df and solution data space Du are mapped to
associated latent variable spaces Zf and Zu by recognition models p(zf |f) and
p(zu|u), respectively. The encoded variables are then decoded back to the
original data spaces by generative models q(f |zf) and q(u|zu).

solutions from the encoded representations. This has the benefit of resulting in a one-shot

training process (i.e. separate training procedures are not required for each VAE model) as

well as enabling the learned latent space structure to be optimized simultaneously for the

data space encoder and solution space decoder.

2.3.2 Probabilistic training procedure

One shortcoming of traditional numerical methods is the lack of any explicit uncertainty

quantification associated with the resulting approximations. Though rigorously grounded in

asymptotic convergence results, the uncertainty for each individual approximation is known

only up to a single, global bound. The approximate solutions produced by a FEM solver,

for example, do not provide any indication of specific regions in a domain where the conver-

gence/accuracy of the numerical solution is uncertain. Conventional neural network archi-

tectures follow this format as well, predicting pointwise values without providing estimates

gauging how far off the prediction may be from the true solution in certain regions.

To address this issue, we construct a network with the capacity to quantify the het-

eroscedastic uncertainty associated with its predictions; that is, the uncertainty specific to

individual examples (e.g. the uncertainty resulting from a sharp corner in a given domain).

As noted by [35 , 49], this can be achieved by casting the network’s predictions in the form

of Gaussian posterior distributions, as opposed to singular point-estimates. The network

51

is designed to predict pointwise statistics µ̂[i, j] and σ̂[i, j] corresponding to a posterior dis-

tribution N (µ̂[i, j], σ̂[i, j]) over the possible true solution values {u(xi, yj)}. This allows the

network to attach to each point both an estimate µ̂[i, j] for the value of the solution and a

standard deviation σ̂[i, j] reflective of its confidence in that estimate. For numerical stability,

and to avoid enforcing constraints on the network’s variance predictions, it is convenient to

predict the log standard deviations σ̂log and compute the associated statistics for the loss

function using the exponential function:

σ̂[i, j] = exp
(
σ̂log[i, j]

)
(2.15)

Training is then designed to maximize the associated likelihood of observing the known true

solution values. Assuming, for example, independent pointwise posterior distributions, we

aim to maximize:

p(u ; µ̂, σ̂) =
R∏

i,j=1

1√
2π · σ̂[i, j]2

exp
(

− 1
2

(
u[i, j] − µ̂[i, j]

)2
/ σ̂[i, j]2

)
(2.16)

or, equivalently, to minimize the negative log-likelihood of the observed solution values:

− log p(u ; µ̂, σ̂) =
R∑

i,j=1

1
2

(
u[i, j] − µ̂[i, j]

)2
/ σ̂[i, j]2 +

R∑
i,j=1

1
2 log(2π · σ̂[i, j]2) (2.17)

This framework allows the network to begin by making coarse mean estimates while ad-

mitting relatively high variance estimates (i.e. low-precision predictions) and to gradually

increase the network’s predicted confidence by lowering variance estimates as the training

procedure progresses. This interpretation is indeed motivated by the design of the network’s

loss function, which is fundamentally responsible for guiding the training process, as illus-

trated in Figure 2.3 . More importantly, the interpretation is seen to coincide with what

happens in practice, as will be discussed further in Section 2.4 .

52

Figure 2.3. The probabilistic prediction framework allows the network to
begin with coarse, low-confidence predictions (left) and to gradually build
confidence by lowering the predicted standard deviations. High confidence
predictions (right) allow the network to attain far better losses when correct,
but have steep drop-offs penalizing any inaccuracy in the prediction.

2.3.3 Network architecture

The proposed network architecture consists of two primary components; an encoder

designed to map high-level input functions to low-dimensional latent features, and a decoder

used to map these latent features to approximate solutions. The encoder consists of a series

of convolutional layers which gradually reduce the resolution of input features. The output

features of the encoder are then partitioned into mean and standard deviation values and used

to sample latent features. The standard ‘reparameterization trick’ [37] is used to maintain a

differentiable network structure; the entries of the latent features are sampled independently

via z = µ+σ ·ε where µ and σ are the corresponding entries of the reshaped encoded features

and ε ∼ N (0, 1).

The decoder maps the sampled latent features back to the original resolution using a

series of convolutional layers followed by bilinear interpolation. In addition, the network

incorporates aspects of the U-Net architecture [74], passing features extracted in the encoding

component directly over to the decoder. In particular, the encoder features with spatial

resolutions 32×32, 16×16, and 8×8 are concatenated with the features of the same resolution

in the network’s decoder (as indicated with arrows in Figure 2.4). To accommodate the

probabilistic prediction framework described in Section 2.3.2 , the stem of the decoder is

53

Figure 2.4. Proposed network architecture. Features have been color-
coded according to the type of layer which has been used to produce them.
The arrows indicate feature concatenation, whereby the encoder features are
shared/reused in the decoding process in accordance with the U-Net architec-
ture. For the probabilistic network, the stem of the decoder is split into two
branches corresponding to mean and variance predictions (as shown above);
the MSE network architecture is obtained by simply dropping the variance
branch of the decoder (since a variance prediction is not required in this case).

split into two branches: one for the mean predictions and another for log standard deviation

predictions.

For improved performance, some layers have been split into a collection of collaborative

filters [77] which are referred to as ‘inception blocks’ in Figure 2.4 for convenience. These

blocks consist of a max-pooling layer along with 1×1, 3×3, and two stacked 3×3 convolutional

layers implemented in parallel; the features of these layers are then concatenated channel-

wise to produce the final set of features sent to the next network layer. Dropout layers

with drop-rate 0.045 have also been included before and after the first inception block in the

decoder to help avoid over-fitting to the training data set.

2.3.4 Network loss functions and training procedure

Based on the problem statement provided in Equation (2.1), it is natural to define the

network’s loss function in terms of two components; one to enforce the differential equation

54

on the interior, and another to enforce the boundary condition. To this end, the mean

squared error (MSE) can be calculated on the interior and the boundary of the domain

using a template file to indicate where these errors should be calculated:

Loss MSE(û ; u,Ω) = 1
|Ω|

R∑
i,j=1

1Ω[i, j]·
(
û[i, j] − u[i, j]

)2
+ λ

|∂Ω|

R∑
i,j=1

1∂Ω[i, j]·
(
û[i, j] − u[i, j]

)2

(2.18)

Here R denotes the selected output resolution, |D| corresponds to the number of pixels inside

the region D, and 1D denotes the indicator function for the discretized, Boolean template

file corresponding to the domain D (e.g. 1Ω[i, j] = 1 when the (i, j)th pixel lies inside of the

domain Ω, and 1Ω[i, j] = 0 otherwise).

The hyperparameter λ in Equation (2.18) is intended to balance the contributions of the

interior and boundary terms. In practice, however, it has been observed that this explicit

boundary loss term is not strictly necessary. Setting λ = 0, we arrive at the alternative,

simplified expression for the MSE loss:

Loss MSE(û ; u,Ω) = 1
|Ω|

R∑
i,j=1

1Ω[i, j] ·
(
û[i, j] − u[i, j]

)2
(2.19)

The probabilistic training procedure described in Section 2.3.2 , and illustrated in Fig-

ure 2.5 , is implemented by replacing the traditional MSE loss function with the following

negative log-likelihood calculation:

Loss PROB(µ̂, σ̂ ; u,Ω) = 1
|Ω|

R∑
i,j=1

1Ω[i, j]·
[

1
2

(
µ̂[i, j] − u[i, j]

)2
/ σ̂[i, j]2 + 1

2 log(2π · σ̂[i, j]2)
]

(2.20)

Intuitively, the two terms of this summand can be seen to account for a notion of model fitness

and model confidence, respectively; the training procedure is thus directed toward balancing

the trade-offs between the two competing notions in order to minimize the probabilistic loss

function.

In addition to the primary MSE/probabilistic loss term, the network incorporates a

secondary loss term corresponding to the Kullback-Leibler (KL) divergence prescribed by

55

Figure 2.5. Overview of the proposed probabilistic network design; point
estimates ûi are replaced with the statistics µi and σi of a normal distribution,
and the negative log-likelihoods of observed solution values ui are summed to
define the network loss. To align with the numerical implementation, we have
flattened the summation operation in Equation (2.20) and omitted terms in
which 1Ω[i, j] = 0 so that only the N = |Ω| points inside of the current domain
are included in the loss calculation.

the VAE framework. As noted in [37], assuming independent normal priors on the latent

means zµ and variances zσ2 , this can be computed via:

Loss KL(zµ, zσ) = 1
2

L∑
i=1

(
z2

µ,i + zσ2,i − log zσ2,i − 1
)

(2.21)

where L denotes the number of latent variables at the sampling stage of the model, and zµ,i

and zσ2,i denote the encoded mean and variance associated with the ith latent variable. In

particular, for the experiments presented in this work, there are L = 2048 latent variables

corresponding to the individual entries of the 128 channels of 4×4 features at the bottleneck

of the network architecture, as illustrated in Figure 2.4 .

Once the loss function for the network is specified, training is carried out using the Adam

optimization algorithm [36] to minimize the loss function evaluated on batches of data from

the training set. A batch size of 64 has been used, and the learning rate of the Adam optimizer

has been initialized at 0.00075, with an exponential decay applied every 10, 000 steps by a

factor of 0.95. The network architecture and hyperparameters have been tuned to optimize

56

the MSE training procedure. The same architecture and hyperparameters were observed

to be optimal for the probabilistic training procedure as well (with the final layers of the

decoding component duplicated to produce uncertainty estimates), and this same network

setup is shown to be suitable for each of the three problem setups into consideration.

2.3.5 Data generation

The source terms for each experiment are taken to be samples from mean-zero Gaussian

random fields:

f ∼ G(0, kl(x, y)) (2.22)

where the covariance kernels kl(x, y) = exp(−‖x − y‖2/2l2) correspond to squared expo-

nential kernels with length-scales l varying in a fixed interval [lmin, lmax]. In particular, 20

distinct length-scales were selected between lmin = 0.2 and lmax = 0.6 were selected for data

creation in the experiments presented in this work. We note that this setup explicitly de-

fines the universal data distribution, in accordance with the proposed Bayesian framework

for training described in Section 2.3.1 . In particular, the data samples for the source terms f

are drawn from a distribution of functions in C∞(Ω) with an average expected rate of change

controlled by the length-scale parameters l in the specified collection of Gaussian random

fields.

The domain generation procedure has been designed to sample from a family of polyg-

onal domains in the interior of the region [− 1, 1]×2 ⊂ R2 with vertex counts between

vmin = 4 and vmax = 16. This generation was carried out by sampling a vertex count

v ∼ Unif({vmin, . . . , vmax}), randomly sampling angles for vertices to be placed at {θk} ∼

Unif(0, 2π), and lastly sampling the corresponding radii for the vertices {rk} ∼ Unif(rmin, 1)

with rmin = 0.25. After re-indexing to ensure θ1 < · · · < θv, the boundary of the generated

domain was taken to correspond to the cycle [(r1 cos θ1, r1 sin θ1), . . . , (rv cos θv, rv sin θv)].

Once the source terms and domains have been generated, it remains only to produce

the corresponding solution to each system. The approximate solutions {u(x)} used for the

training datasets have been computed numerically using the finite element solver FEniCS

57

with a mesh resolution of 35 (corresponding to finite element cells of approximate diameter

1/35 ≈ 0.0286) and Lagrange basis functions of polynomial order 1. The generated source

terms and meshes have also been implemented within FEniCS to facilitate the solution

procedure; the final source terms, meshes, and solutions are then evaluated on a regular

grid and converted to rectangular arrays to accommodate for a more natural neural network

architecture. Of note is the fact that the data generation process outlined above is trivially

parallelizable, as the solutions to distinct systems are independent. This fact has indeed

been leveraged in the code provided to take full advantage of all processors available, and

can further be implemented on distributed systems with minimal changes.

The numerical results presented in this work have been obtained using datasets consisting

of 100, 000 examples, with 80% used for training and 20% used for validation. These datasets

have been generated following the procedures above with 5, 000 source term samples drawn

from each of the 20 length-scale classes. The mesh, source term, and solution arrays are also

rotated 180 degrees and flipped horizontally during training to augment the effective dataset

size to 400, 000 examples for each problem setup.

2.4 Numerical results

2.4.1 Comparison of training procedures

Following the methodology outlined in Section 2.3 , a convolutional network has been

trained to serve as a numerical solver for each of the three problem setups. The networks

have each been trained independently using the traditional MSE loss as well as the pro-

posed probabilistic training procedure. As shown in Table 2.1 , the probabilistic framework

outperforms the conventional MSE training in each of the three problem setups.

This is a rather striking result considering the fact that the mean estimates of the proba-

bilistic networks (which are used to calculate the errors in Table 2.1) are produced using an

identical architecture to those used for the MSE networks. Introducing an independent vari-

ance branch in the decoder and redefining the loss function in terms of likelihood estimates

is actually seen to achieve lower L2 errors, the precise errors the MSE network is specifically

designed to minimize. The consistent outperformance of the probabilistic network is also

58

Table 2.1. Summary of the network errors for each of the three problem
setups under consideration. The L1 relative errors and mean squared errors are
provided for both the training dataset (left) and validation dataset (right). The
relative errors are seen to gradually increase as we move from the simple setup
on the circle to the more complex nonlinear equation on varying domains. In
all cases, however, we see that the probabilistic training procedure outperforms
the traditional mean squared error training.

Problem Setup Model L1 Relative Error Mean Squared Error

Poisson on Circle
Probability 9.19e−3 1.00e−2 1.18e−4 1.50e−4
MSE (λ = 0.1) 1.23e−2 1.28e−2 2.60e−4 3.06e−4
MSE (λ = 0.0) 1.23e−2 1.29e−2 2.48e−4 2.90e−4

Varying Domain
Probability 1.82e−2 2.11e−2 1.21e−3 1.45e−3
MSE (λ = 0.1) 3.43e−2 3.57e−2 2.25e−3 2.62e−3
MSE (λ = 0.0) 3.60e−2 3.75e−2 2.43e−3 2.86e−3

Nonlinear Poisson
Probability 1.94e−2 2.24e−2 1.32e−3 1.58e−3
MSE (λ = 0.1) 3.21e−2 3.46e−2 1.84e−3 2.46e−3
MSE (λ = 0.0) 3.37e−2 3.61e−2 2.09e−3 2.69e−3

observed when the data set is partitioned according to the length-scales of the input func-

tions, and, as one would expect, both networks admit a gradual reduction in accuracy as the

length-scales of the inputs decrease, corresponding to more oscillatory source terms.

In addition to the unexpected improvement in performance, the probabilistic networks

have the added benefit of providing predictive uncertainties associated with their predictions.

This gives the probabilistic networks the capacity to clearly indicate potential inaccuracies

in its predictions and is seen to occur in practice as shown in Figure 2.6 . Of note is the

fact that these examples have been taken from the validation data set, and have therefore

never been seen by the network during the training procedure. The fact that the uncertainty

estimates remain accurate for the validation problems suggests that the network has learned

an uncertainty quantification schema capable of generalization, and is not simply fit to

model the observed errors during training. A closer, more quantitative analysis of these

uncertainties is provided below.

59

Figure 2.6. Qualitative results demonstrating the network’s predictions for
two problems in the “Varying Domain Poisson Equation” setup. Both exam-
ples have been taken from the validation data set and have not been seen by
the network during training. Network predictions and true solutions are shown
at the top, with the corresponding absolute errors plotted below along with
the network’s predicted two standard deviations plus/minus bounds (shown
as transparent wireframes). The predicted pointwise standard deviations are
seen to provide accurate error estimates for the network predictions.

2.4.2 Uncertainty quantification

An essential requirement of any meaningful measure of uncertainty is that the predicted

uncertainties are correlated with the associated prediction errors. As shown in Figure 2.7 ,

this is indeed the case for the proposed framework; the predicted uncertainties are seen to

gradually reduce throughout the training process, closely following the progression of the

network’s mean squared error on the validation data set. A strong relationship between the

model uncertainty and the absolute L2 error is observed for the full duration of training,

with a Pearson correlation coefficient of 0.921.

60

Figure 2.7. The absolute L2 loss and magnitude of predicted uncertainties in
the “Varying Domain Poisson Equation” setup throughout the training pro-
cess (left) along with a plot of the absolute L2 error against the predicted
model uncertainty (right). A high correlation between the predicted model
uncertainty and error in network predictions is clearly visible, with a Pearson
correlation coefficient of 0.921.

By construction, the trained network is designed to predict pointwise Gaussian posterior

distributions for the true solution values. To evaluate how effectively the network conforms

to this design in practice, we compare the trained network predictions with true solutions.

We should expect the fraction of pixels falling within a specified standard deviation range

to coincide with that of a Gaussian distribution:

1
|D|

∑
d∈D

∑
[i,j]∈Ωd

1
|Ωd|

1

(∣∣∣µ̂d[i, j] − ud[i, j]
∣∣∣ ≤ x · σ̂d[i, j]

)
≈ P

(
|N (0, 1)| ≤ x

)
(2.23)

Here the left-hand-side corresponds to the average number of points where the true solution

differs from the predicted mean by less than a factor x of the predicted standard deviation:

i.e. µ̂d[i, j] − x · σ̂d[i, j] ≤ ud[i, j] ≤ µ̂d[i, j] + x · σ̂d[i, j] d ∈ D , [i, j] ∈ Ωd (2.24)

As shown in Figure 2.8 , the trained model follows the Gaussian design almost perfectly

in practice. In particular, the observed errors between the network predictions and true solu-

tions are seen to closely approximate the empirical 68 -95 -99.7 rule for normal distributions.

61

This experimental evidence suggests that the network’s predicted error bounds do, in fact,

provide an accurate measure of the model’s uncertainty.

Figure 2.8. Quantitative analysis of the network’s predicted standard devia-
tion values in the “Varying Domain Poisson Equation” setup. The percentage
of points where the difference between the network prediction and true solution
is less than a multiple of the predicted pointwise standard deviation values is
shown for the training (top curve) and validation (bottom curve) data sets.
The curve for the validation data set is shown to closely follow the cumula-
tive distribution of the half-normal distribution (dashed, partially covered by
validation), supporting the claim that the predicted standard deviation values
do, in fact, provide accurate pointwise uncertainty estimates.

2.4.3 Inference speed

The numerical results for each experiment have been obtained using an 8-core Intel

Xeon 3.60GHz processor and a single NVIDIA GeForce GTX 1080 GPU. To compare the

inference/prediction speed of the proposed convolutional networks with the traditional FEM

approach, the average inference times have been evaluated for solving 10, 000 distinct PDE

systems. As shown in Table 2.2 , the convolutional networks achieve faster inference times for

each problem setup, with a speed-up by a factor of 3.1 using the CPU alone and a speed-up

by a factor of 21.3 using a single GPU. For a fair comparison with the batch evaluation of

62

the convolutional networks, the FEM implementation in FEniCS has been parallelized to

use all 8 cores.

Table 2.2. Comparison of inference/prediction times for the convolutional
and FEM solvers. The “FEniCS (Coarse)” results correspond to FEM im-
plementations in which the meshes have been coarsened until the accuracy
coincides with that of the neural network models. The accuracies of the coarse
FEM implementation and neural network models have been measured with
respect to the refined mesh “FEniCS” results which serve as proxies for the
true solutions.

Problem Setup FEniCS FEniCS (Coarse) Network Network (GPU)
Poisson on Circle 0.05064 seconds 0.03872 seconds 0.01157 seconds 0.00171 seconds
Varying Domain 0.04432 seconds 0.03395 seconds 0.01160 seconds 0.00170 seconds
Nonlinear Poisson 0.04863 seconds 0.03473 seconds 0.01152 seconds 0.00164 seconds
Average 0.04786 seconds 0.03580 seconds 0.01156 seconds 0.00168 seconds

2.4.4 Concluding remarks

In this chapter, we have demonstrated a framework for the construction of approximate

PDE solvers on varied two-dimensional domains by leveraging existing numerical methods

and recent advances in data-driven deep learning. A theoretical justification for the use of

neural networks as approximations to PDE solution mappings on varied domains is estab-

lished using the theory of Green’s functions and the universal approximation property of

neural networks. This framework replaces online tasks such as mesh generation, finite ele-

ment space construction, and linear/nonlinear system solvers with a one-shot, offline training

session. After training, predictions can be obtained on any specified two-dimensional domain

via a single forward-pass through a light-weight convolutional network. The networks are

also designed to provide pointwise error bounds along with the approximate solutions; this

is achieved using a simplified deterministic training procedure which avoids the computa-

tionally expensive inference steps of BNNs and allows training to be scaled up to work with

the large data sets required for learning on varied geometries.

The performance of the framework has been demonstrated for both linear and nonlinear

heterogeneous elliptic PDEs on varied two-dimensional domains with homogeneous Dirichlet

63

boundary conditions. The proposed framework can also be naturally extended to handle

inhomogeneous PDE coefficients, such as stiffness terms, by simply adding additional chan-

nels to the network’s input. The experimental results presented in this chapter provide a

foundation for the construction of more general neural network solvers in the future; it is

envisioned that the long-term development of this framework will result in networks capable

of solving linear and nonlinear heterogeneous PDEs with variable coefficients and inhomo-

geneous/mixed boundary conditions on arbitrary domains. To reach this goal, however, a

significant amount of additional research efforts will need to be directed toward effectively

modeling inhomogeneous and mixed boundary conditions. In the following chapter, we in-

vestigate an alternative neural network framework for approximating solution operators for

PDEs which is capable of incorporating inhomogeneous boundary conditions, however the

scope of these operators are currently restricted to fixed spatial domains.

2.A Additional experiments

2.A.1 Variable coefficient differential operators

The proposed framework provides a natural extension for handling variable coefficient

differential operators as well. In particular, the coefficients of the operator can be passed to

the network by simply concatenating the coefficient arrays with the source term array. Each

channel of the network’s input then corresponds to a specific coefficient or source term in

the differential equation. For example, we may consider the elliptic differential equation:

div

(
a · ∇u

)
= f in Ω

u = 0 on ∂Ω
(2.25)

where the coefficient a ∈ C∞(Ω) is subject to the elliptic coercivity constraint infΩ a > κ for

some fixed κ > 0. The same randomization procedure used to generate the source terms f

can be applied to sample coefficient terms a with one additional step designed to enforce the

coercivity constraint: the values of each coefficient array are rescaled and shifted to have a

mean value of 1.0 and satisfy infΩ a > κ with κ = 0.2.

64

In this case, the network input consists of two channels: one for the source term f and

another for the coefficient a. Conveniently, no additional modification to the network archi-

tecture is required; the first convolutional layer identifies the additional input channel, adds

the necessary filters for parsing the channel, and passes the extracted features to subsequent

hidden layers without further modification. The qualitative and quantitative results for the

variable coefficient problem setup defined in Equation (2.25) are provided in Figure 2.9 and

Table 2.3 , respectively.

Figure 2.9. Qualitative results for the “Variable Coefficient” problem setup.

Table 2.3. Quantitative results for the “Variable Coefficient” problem setup.

Problem Setup Model L1 Relative Error Mean Squared Error

Variable Coefficient
Probability 2.06e−2 2.62e−2 7.95e−4 1.33e−3
MSE (λ = 0.1) 4.25e−2 4.54e−2 2.82e−3 3.42e−3
MSE (λ = 0.0) 3.81e−2 4.19e−2 2.28e−3 3.00e−3

65

2.A.2 Neumann boundary conditions

The proposed framework is also compatible with homogeneous Neumann boundary con-

ditions. In particular, denoting the outward unit normal vector along the boundary of the

domain Ω by ~n, we consider the following problem:

∆u = f in Ω
∂u

∂~n
= 0 on ∂Ω

(2.26)

In this situation, no modification to the network architecture is required. The training

dataset is simply modified to reflect the Neumann boundary conditions, and the network

naturally adapts its predictions to approximate the target boundary behavior.

In practice, however, the network is observed to perform poorly on domains with sharp

corners in the Neumann boundary condition setup. This is a rather natural difficulty since

the outward normal derivative constraints at domain vertices include severe discontinuities.

To minimize the impact this has on the network’s training procedure, the dataset has been

generated with an additional domain smoothing step intended to remove sharp corners from

the randomized geometries.

The qualitative and quantitative results for the Neumann boundary condition setup de-

fined in Equation (2.26) are provided in Figure 2.10 and Table 2.4 , respectively.

Table 2.4. Quantitative results for the “Neumann” problem setup.

Problem Setup Model L1 Relative Error Mean Squared Error

Neumann BC
Probability 4.23e−2 4.64e−2 1.78e−2 1.84e−2
MSE (λ = 0.1) 1.29e−1 1.33e−1 3.18e−2 3.38e−2
MSE (λ = 0.0) 1.31e−1 1.34e−1 3.26e−2 3.46e−2

66

Figure 2.10. Qualitative results for the “Neumann” problem setup. The net-
work’s predictive uncertainty is observed to increase sharply near the boundary
of the domain, forming a bowl-like shape. The boundary of the domain is also
where the most severe inaccuracies in the network’s predictions occur, and this
information is reflected in the uncertainty estimates provided by the network.

2.B Alternative distributions for modeling network uncertainty

A natural extension to the proposed uncertainty schema can be obtained by replacing

the normally distributed network predictions with an alternative distribution. For example,

the likelihood associated with independent pointwise normal distributions:

pNormal(u ; µ, σ) =
R∏

i,j=1

1√
2π · σ[i, j]2

exp
(

− 1
2

(
u[i, j] − µ[i, j]

)2
/ σ[i, j]2

)
(2.27)

can be replaced with the likelihood associated with independent pointwise Laplace or Cauchy

distributions:

pLaplace(u ; µ, b) =
R∏

i,j=1

1
2 · b[i, j]

exp
(

−
∣∣∣u[i, j] − µ[i, j]

∣∣∣ / b[i, j]) (2.28)

pCauchy(u ; µ, γ) =
R∏

i,j=1

(
π · γ[i, j] ·

(
1 + 1

γ[i, j]2
(
u[i, j] − µ[i, j]

)2
))−1

(2.29)

Experiments with these alternative implementations show that the network is still able

to achieve comparable levels of accuracy with respect to the mean squared error. In both

67

cases, however, the predictive uncertainties fail to capture the empirical distribution of the

network’s errors. Indeed, after inspecting the empirical distribution of the network errors, it

is quite evident that the errors remain normally distributed despite the change to the loss

function.

In this section, we provide a detailed analysis of these alternative uncertainty models in

order to provide insight into how the network’s uncertainty schema works. In particular,

we show that the network does, in fact, succeed in fitting the respective distributions to the

data. However, since the network errors are observed to be normally distributed in practice,

the fit of the Laplace and Cauchy distributions do not provide a faithful representation of the

network’s uncertainty. The true uncertainty can be easily recovered, however, by considering

the relationship between the optimal scale parameters of the distributions and the standard

deviations of the normal data to which they are fit.

2.B.1 Laplace uncertainty model

To understand how the use of the Laplace loss function affects the uncertainty schema, we

consider the result of fitting a Laplace distribution to normally distributed data. Following

the approach of Kundu [46], we consider the maximum likelihood estimator (MLE) for

the scale parameter b of a mean-zero Laplace distribution corresponding to independent

identically distributed observations {xi}N
i=1:

MLE(b) = 1
N

N∑
i=1

|xi| (2.30)

Converting to a continuous setting, and assuming that the data is distributed as x ∼

N (0, σ), we have:

MLE(b) =
∫
R

|x|√
2πσ2

e−x2/2σ2
dx =

√
2
π

∫ ∞

0

x

σ
· e−x2/2σ2

dx =
√

2
π

∫ ∞

0
σ e−u du =

√
2
π
σ

(2.31)

Thus, the scale parameter b of a Laplace distribution which is inappropriately fit to

normally distributed data should converge to the true standard deviation σ scaled by a

factor of
√

2/π. In particular, we can recover the true standard deviation σ of the normally

68

Figure 2.11. Quantitative analysis of the network’s predicted uncertainties
for the “Varying Domain Poisson Equation” using the Laplace distribution
for uncertainty quantification. The network’s errors are observed to be better
fit by normal distributions with standard deviations rescaled by the factor of√

π/2 derived in the MLE calculation for the Laplace scale parameter b.

distributed data from the MLE calculation for b by simply rescaling by a factor of
√

π/2.

Indeed, this is precisely the result of training the network in the “Varying Domain Poisson

Equation” setup using the Laplace loss function, as illustrated in Figure 2.11 .

2.B.2 Cauchy uncertainty model

An analogous analysis can be carried out for the Cauchy uncertainty model by considering

the maximum likelihood estimator (MLE) for the scale parameter γ of a mean-zero Cauchy

distribution associated with independent identically distributed observations {xi}N
i=1. The

MLE criterion for the scale parameter γ has been derived in Equation 2 of [13] and is as

follows:

MLE(γ) = γ such that 1
N

N∑
i=1

γ2

x2
i + γ2 = 1

2 (2.32)

69

Converting to a continuous setting, and assuming that the data is distributed as x ∼

N (0, σ), we have:

MLE(γ) = γ such that
∫
R

γ2

x2 + γ2
1√

2πσ2
e−x2/2σ2

dx = 1
2 (2.33)

Using Equation 7 in Section 3.2 of [65], with a = 1/σ
√

2 and z = γ, the integral in

consideration can be expressed in terms of the complementary error function erfc(x) =

1 − erf(x) = 1 − 2/
√

π
∫ x

0 e−t2
dt:

erfc
(

γ

σ
√

2

)
= 2γ

π
e−γ2/2σ2

∫ ∞

0

e−x2/2σ2

x2 + γ2 dx = γ

π
e−γ2/2σ2

∫
R

e−x2/2σ2

x2 + γ2 dx (2.34)

Solving for the integral on the right hand side and rescaling by γ2/
√

2πσ2 yields:

∫
R

γ2

x2 + γ2
1√

2πσ2
e−x2/2σ2

dx =
√

π

2 · γ
σ

· eγ2/2σ2 · erfc
(

γ

σ
√

2

)
(2.35)

The optimal value of γ can now be approximated numerically by minimizing the difference

between the expression on the right and the target value of 1/2. In particular, we find that

γ ≈ 0.612 in the case of a unit standard deviation σ = 1 and that the scale parameter γ

scales linearly with the standard deviation σ.

Thus, the MLE calculation for the scale parameter γ can be approximated by γ ≈

0.612 · σ, and the true standard deviation of the normally distributed data can be recovered

via σ ≈ 1.634 · γ. This again aligns perfectly with the results of training the network in the

“Varying Domain Poisson Equation” setup using the Cauchy loss function, as illustrated in

Figure 2.12 .

These results strongly suggest that the network has in fact accurately estimated the

optimal scale parameters b and γ for the Laplace and Cauchy distributions, respectively. The

mismatch between the predicted uncertainties and observed errors is simply a consequence of

fitting a non-normal distribution to normally distributed data. As detailed above, the correct

uncertainty can be recovered by observing that the errors are in fact normally distributed;

70

Figure 2.12. Quantitative analysis of the network’s predicted uncertainties
for the “Varying Domain Poisson Equation” using the Cauchy distribution for
uncertainty quantification. The network’s errors are seen to be better fit by
normal distributions with standard deviations rescaled by the factor of 1.634
derived in the MLE calculation for the Cauchy scale parameter γ.

the correction factors from the MLE calculations can then be used to derive the true standard

deviations from the predicted scale parameter values.

71

3. OPERATOR NETWORKS & PREDICTIVE UNCERTAINTY

There is certain danger in dealing

only with the general theory.

Nicolai Krylov

3.1 Introduction

The DeepONet [60] framework was introduced by Lu et al. in 2019 and has been suc-

cessfully applied in a number of more recent works [10 , 62 , 80]. This framework provides a

fundamentally different approach for modeling operators which can be seen as a hybrid be-

tween conventional approximator networks and the black-box function-to-function mappings

considered in the previous chapter

1
 . In particular, an independent pair of fully-connected

networks are designed to parse function data and domain data separately, and the resulting

data is fused together in a precise, interpretable way to produce the network output.

One of the key differences between the DeepONet and ConvPDE-UQ approaches is the

format requirements of the input data specifying the PDE systems. While ConvPDE-UQ

necessitates input data structured on a uniform grid, DeepONet models are designed to

parse observation data retrieved from sensors placed throughout the spatial domain. This

is particularly useful for many physical applications where sensor data is more commonly

available than complete uniform grids of observations.

While the use of fixed sensors is advantageous for many real-world applications, it also

restricts the scope of any particular DeepONet model to a specific domain. This is in con-

trast to the ConvPDE-UQ approach presented in the previous chapter, where the resulting

operator networks were designed to be applicable to varied domains after a single offline

training procedure. In the context of a fixed domain, however, the performance of Deep-

ONet models is often quite remarkable. In particular, these models are capable of learning
1

 ↑ The hybrid interpretation of DeepONet is discussed in more detail in Section 3.4.1

72

from very limited amounts of training data, a fact that is especially impressive given the

unstructured nature of the input data provided to the networks.

In this chapter, we investigate the possibility of equipping DeepONet models with pre-

dictive uncertainty capabilities analogous to those provided by ConvPDE-UQ networks. A

particular emphasis is placed on PDE systems with inhomogeneous boundary conditions, and

a modified data generation procedure is proposed to remove the dependence on conventional

numerical methods for training DeepONet models. We also present computational tech-

niques for optimizing the resulting operator networks to accommodate real-time inference

tailored to specific applications and use-cases.

3.1.1 DeepONet framework

DeepONet architectures are comprised of two central components referred to as the

branch network and trunk network. The branch network is responsible for processing in-

formation associated with input functions, and the trunk network parses input coordinates

corresponding to evaluation locations on the spatial domain. The branch and trunk compo-

nents produce vectors b and t which summarize the information/features extracted by the

respective networks; these features are then combined to form the final network prediction,

which is defined by the inner product û = 〈 b , t 〉.

While this predefined method of combining the outputs of the neural network compo-

nents slightly restricts the expressivity of the resulting model, it also provides a distinctive

advantage with respect to interpretability. Since the output t of the trunk network depends

solely on the input coordinates x, it is natural to interpret the components of the trunk

output as functions defined on the underlying spatial domain of the PDE.

Trunk(x) =
[

t
]

=
[
ϕ1(x) , . . . , ϕN(x)

]
(3.1)

As illustrated in Figure 3.1 , the component functions of the trunk network often bear a strong

resemblance to the basis functions from the finite element method reviewed in Section 1.3.3 .

In the context of DeepONet models, however, these basis functions are learned by the trunk

network automatically during training, as opposed to being specified beforehand as is the

73

case in FEM calculations. The branch network then assumes the role of computing the

appropriate coefficients b for the basis functions produced by the trunk, ensuring that the

resulting network approximation:

û(x) = 〈 b , t 〉 =
∑N

i=1 bi · ϕi(x) (3.2)

satisfies the PDE constraints specified by the input functions under consideration.

Figure 3.1. Example basis functions learned by the trunk network of a DeepONet model.

3.1.2 PDE systems and data generation

In this chapter, we present the results of experiments conducted using DeepONet models

to approximate the solution operators associated with the following problem setups:

Poisson (Homogeneous BC)
∆u = f in Ω

u = 0 on ∂Ω

Poisson (Inhomogeneous BC)
∆u = f in Ω

u = g on ∂Ω

Nonlinear Poisson
div

(
(1 + u2) ∇u

)
= f in Ω

u = g on ∂Ω

Nonlinear Diffusion-Reaction
λ · ∆u + u2 = f in Ω

u = g on ∂Ω

74

The experiments conducted for the purposes of this work will focus on problems defined on

the unit square and unit circle in this work; however, the framework and network implemen-

tations are equally applicable to general connected and bounded domains.

As noted in the previous chapter, the incorporation of inhomogeneous boundary condi-

tions presents a key technical challenge in the context of neural network approximations for

PDEs. In particular, handling input data associated with inhomogeneous boundary condi-

tions is complicated by the fact that the interior and boundary data come from two distinct

functions, often with different scales/properties. In addition, the dimensionality of boundary

data is strictly less than that of the interior data, as shown in Figure 3.2 . This leads to a

sparse representation of the boundary data in the ambient space which poses a significant

challenge for convolutional architectures.

In the context of fully-connected layers, however, the boundary can simply be appended

to the list of sensor values associated with the interior data. While there are a number

of natural architecture choices for handling interior and boundary data, as described in

Appendix 3.A.1 , experimental results show that simply appending the boundary data to the

network input vector achieves the same level of performance as more structured approaches.

To generate the training datasets for the DeepONet models, we make use of the Gaussian

process sampling procedure introduced in Section 2.3.5 of the previous chapter. Instead of

using these samples as realizations of PDE coefficients, however, we will employ the samples

as realizations of the solution functions. In particular, we sample:

u ∼ G(0, kl(x, y)) (3.3)

from mean-zero Gaussian random fields with squared exponential covariance kernels kl(x, y) =

exp(−‖x − y‖2/2l2) and length-scales l ∈ {0.2, 0.2333, 0.2667, 0.3}. The associated interior

data f and boundary data g can then be computed by applying the forward differential

operator and boundary operator directly to the sampled solution. Importantly, this vari-

ation on the data generation procedure allows us to construct training datasets without

relying on conventional numerical solvers, such as FEM implementations; the datasets can

be constructed whenever numerical implementations of the forward differential operator and

75

boundary operator are available. In addition, with regard to inhomogeneous boundary con-

ditions, this procedure ensures that the interior data f and boundary data g correspond to a

well-defined solution u. This is of particular importance for more general nonlinear equations

where non-trivial relationships between the interior and boundary data may be required for

a solution to exist.

Figure 3.2. Example input data consisting of 2-dimensional interior data and
1-dimensional boundary data; DeepONet sensor locations for the interior data
(blue) and boundary data (red) are shown on the right.

3.2 Architecture for predictive uncertainties

In this section, we show that the DeepONet architecture can be extended to provide

predictive uncertainties following a procedure analogous to that used in the ConvPDE-UQ

framework. After conducting experiments with several architecture variations, as described

in Appendix 3.A , the network structure outlined in Figure 3.3 was found to provide the best

performance.

The branch and trunk networks each consist of 5 fully-connected layers with 50 units and

30 units per layer, respectively. Each network layer uses Leaky ReLU activation functions,

with the exception of the final layer of the branch network where no activation is applied.

In order to equip the networks with predictive uncertainties, the final two layers of the

branch and trunk are split to provide independent processing for the mean and uncertainty

parameters. More specifically, two distinct pairs of 50 unit layers are used to produce the

mean output b and uncertainty output bσ of the branch network; similarly, two distinct pairs

76

Figure 3.3. Probabilistic network architecture for DeepONet models with
predictive uncertainty.

of 30 unit layers are used to produce the trunk outputs t and tσ. For the experimental results

presented in this work, the number of basis functions N was taken to be 150; however, it

should be noted that the performance of the models remain essentially unchanged for any

choice of N > 50.

3.2.1 Loss functions and training procedure

While the network architecture proposed in the previous section allows the DeepONet

networks to attach uncertainty parameters to the model predictions, it still remains to be

shown how these parameters can be calibrated during training to produce accurate uncer-

tainty estimates. In order translate the uncertainty parameters into uncertainty estimates,

it suffices to select an appropriate parameterized family of probability distributions.

In practice, this can be done by observing the empirical distribution of network errors

observed during training. More precisely, a histogram of the observed network errors during

training, such as the one shown in Figure 3.4 , can be compared with the density functions of

common families of distributions, such as those presented in Figure 1.8 . Once an appropriate

family of parameterized probability distributions is selected, the network loss is defined with

respect to the associated log likelihood function, following the analogy of Gaussian process

77

regression used in the ConvPDE-UQ framework. In particular, when the network errors are

observed to follow a normal distribution, the loss function is given explicitly by:

Loss = 1
2

(
µ(f, g)(x) − u(f, g)(x)

)2/(
σ(f, g)(x)

)2
+ log

(
σ(f, g)(x)

)
+ 1

2 log(2π) (3.4)

Figure 3.4. Observed network errors during training and final uncertainty predictions.

Figure 3.5. Interpretation of network outputs as parameters for a normal distribution.

The network outputs µ(f, g)(x) and σ(f, g)(x) are thus interpreted as parameters for a

predictive probability distribution placed on the unknown values of the true solution. By

construction, the loss function corresponds to the negative log likelihood, − log p(u |µ, σ),

associated with an observation from the true solution, u(f, g)(x), as illustrated in Figure 3.5 .

3.2.2 Predictive uncertainty and function space generalization

While the proposed network architecture and training procedure allow DeepONet models

to make uncertainty estimates, verifying that these estimates generalize beyond the scope

of the data provided during training is of fundamental importance. In the context of the

proposed data generation and training procedure, it is natural to consider two distinct cases

78

of generalization: (1) performance on unseen validation data sampled from the length-scale

classes used during training and (2) performance on testing data sampled outside of the

length-scale range seen by the network. The former case corresponds to the network gen-

eralization on in-distribution data, while the latter corresponds to the generalization for

out-of-distribution (OoD) data [25].

In the presence of sufficient training data, the prediction accuracy of the DeepONet mod-

els on in-distribution validation data matches the accuracy on training examples across all

length-scales. The associated uncertainty estimates are also well-calibrated to the validation

examples provided the availability of sufficient data during training, as shown in Figure 3.6 .

Figure 3.6. Comparison of DeepONet performance on training and validation datasets.

Of greater interest is the fact that the predictive uncertainties generalize quite well to

out-of-distribution data, as shown in Figure 3.7 . As noted in the previous chapter, the lower

length-scale classes correspond to more difficult problems; accordingly, the network perfor-

mance gradually decays as the length-scale is reduced. More importantly, the predictive

uncertainties for the smallest length-scales are also observed to increase in agreement with

the rising network errors associated with the out-of-distribution data. However, this rise in

uncertainty does not occur for the out-of-distribution at the other extreme (i.e. length-scales

larger than those seen during training), which correctly reflects the model performance for

these simpler problems.

79

Figure 3.7. Analysis of predictive uncertainty produced by a DeepONet
model on the Nonlinear Diffusion-Reaction problem setup.

From this, we see that the network is, to some extent, able to automatically determine the

difficulty associated with a given problem. More precisely, the accuracy of network’s predic-

tive uncertainties extend beyond the scope of the function classes observed during training.

Notably, the network is never provided any labeling information regarding the length-scale

values, so the network’s predictive uncertainty is based solely on information/features ex-

tracted from the input function values.

3.3 Summary of numerical results

The numerical results for the experiments conducted using DeepONet models to approx-

imate solutions to the PDE systems listed in Section 3.1.2 are summarized in the tables

below. Each table represents a specific problem setup, and the network performance is

provided for each length-scale class. As noted in the previous section, the length-scales

{0.2000, 0.2333, 0.2667, 0.3000} correspond to the function spaces observed during train-

ing while the length-scales {0.1333, 0.1667, 0.3333, 0.3667} correspond to out-of-distribution

data. We note that in general, the DeepONet models are capable of achieving close to a 1%

relative error for all problems, with performance worsening as the length-scale is reduced.

Qualitative results for the Nonlinear Poisson problem setup are also provided in Figure 3.8 .

80

Table 3.1. Square with Dirichlet boundary conditions.

0.1333 0.1667 0.2000 0.2333 0.2667 0.3000 0.3333 0.3337
MSE 4.78e-04 1.45e-04 5.17e-05 2.82e-05 2.10e-05 1.78e-05 1.60e-05 1.50e-05
MAE 1.71e-02 9.38e-03 5.60e-03 4.11e-03 3.51e-03 3.20e-03 3.01e-03 2.89e-03
L1 Rel 3.33e-02 1.61e-02 8.60e-03 5.82e-03 4.62e-03 3.96e-03 3.63e-03 3.31e-03
L2 Rel 3.19e-02 1.56e-02 8.36e-03 5.69e-03 4.55e-03 3.93e-03 3.62e-03 3.32e-03

Table 3.2. Square with inhomogeneous boundary conditions.

0.1333 0.1667 0.2000 0.2333 0.2667 0.3000 0.3333 0.3337
MSE 1.94e-02 4.17e-03 7.90e-04 1.67e-04 5.46e-05 3.22e-05 9.35e-05 8.83e-05
MAE 8.78e-02 3.80e-02 1.59e-02 7.21e-03 4.09e-03 2.95e-03 2.91e-03 2.63e-03
L1 Rel 2.25e-01 9.87e-02 4.19e-02 1.92e-02 1.10e-02 8.04e-03 7.67e-03 6.91e-03
L2 Rel 2.83e-01 1.32e-01 5.88e-02 2.76e-02 1.59e-02 1.15e-02 1.07e-02 9.66e-03

Table 3.3. Circle with inhomogeneous boundary conditions.

0.1333 0.1667 0.2000 0.2333 0.2667 0.3000 0.3333 0.3337
MSE 3.85e-03 5.23e-04 7.04e-05 1.43e-05 6.45e-06 3.08e-06 3.69e-06 3.66e-06
MAE 4.63e-02 1.66e-02 6.07e-03 2.70e-03 1.63e-03 1.22e-03 1.07e-03 9.37e-04
L1 Rel 1.20e-01 4.40e-02 1.64e-02 7.43e-03 4.51e-03 3.42e-03 3.06e-03 2.60e-03
L2 Rel 1.28e-01 4.79e-02 1.83e-02 8.30e-03 4.97e-03 3.75e-03 3.35e-03 2.86e-03

Table 3.4. Nonlinear with inhomogeneous boundary conditions.

0.1333 0.1667 0.2000 0.2333 0.2667 0.3000 0.3333 0.3337
MSE 4.46e-03 4.79e-04 6.71e-05 1.64e-05 9.30e-06 5.92e-06 1.97e-05 1.70e-05
MAE 4.95e-02 1.67e-02 6.24e-03 3.01e-03 2.00e-03 1.58e-03 1.54e-03 1.41e-03
L1 Rel 1.29e-01 4.43e-02 1.67e-02 8.07e-03 5.31e-03 4.21e-03 3.94e-03 3.66e-03
L2 Rel 1.32e-01 4.61e-02 1.77e-02 8.58e-03 5.64e-03 4.48e-03 4.20e-03 3.89e-03

Table 3.5. Nonlinear Diffusion-Reaction with inhomogeneous boundary conditions.

0.1333 0.1667 0.2000 0.2333 0.2667 0.3000 0.3333 0.3337
MSE 6.87e-03 1.28e-03 2.70e-04 8.83e-05 6.65e-05 5.77e-05 4.87e-05 5.67e-05
MAE 6.50e-02 2.77e-02 1.22e-02 6.48e-03 4.57e-03 3.89e-03 3.61e-03 3.51e-03
L1 Rel 1.69e-01 7.27e-02 3.24e-02 1.69e-02 1.17e-02 9.85e-03 9.26e-03 8.97e-03
L2 Rel 1.71e-01 7.47e-02 3.37e-02 1.77e-02 1.23e-02 1.04e-02 9.84e-03 9.55e-03

81

Figure 3.8. DeepONet results on validation dataset for Nonlinear equation on unit circle.

3.4 Optimization for inference

When deploying DeepONet models for real-time applications, it is often important to

modify the computational workflow based off of the target application. In this section,

we consider to common use-cases where redundant calculations can be avoided in order to

achieve significantly faster inference speeds. We first consider the construction of light-weight

surrogate models for specific PDE solutions under the assumption of fixed input data. This

is followed by an overview of the steps required for performing fast inference on the full

spatial domain for arbitrary input data.

3.4.1 Precomputing branch weights

The first use-case we will consider involves the construction of light-weight surrogate

networks which can be used to approximate the solution function associated with fixed

input data (f, g). The optimization required for this type of application is quite trivial, but

yields a noticeable improvement in inference speed and helps motivate the more involved

optimization steps introduced in the following section.

82

In this setting, we note that the branch output b remains constant for any choice of

evaluation location x (since the branch depends only on the fixed input data (f, g)). By pre-

computing the branch weights, the solution u(f, g) can be evaluated at arbitrary evaluation

locations x using just a single forward-pass of the trunk network, as shown in Figure 3.9 . In

this context, the DeepONet framework can be seen as a natural generalization of the con-

ventional “approximator” networks described in Section 1.4.2 ; i.e. once the branch weights

are fixed, the DeepONet framework yields fast neural network surrogate models

2
 .

Figure 3.9. Inference speeds for DeepONet surrogates with precomputed
branch outputs. The resulting surrogate model provides an efficient method
for evaluating the approximate solution at arbitrary spatial locations.

Moreover, these light-weight surrogates provide access to potentially valuable derivative

information with very minimal overhead. In particular, since the branch output b is inde-

pendent of the input coordinate x and the basis functions ϕi(x) are defined by the neural

network architecture of the trunk component, a linear differential operator L can be applied

to DeepONet surrogates by computing:

Lx[u(f, g)(x)] = Lx

[∑N

i=1 bi · ϕi(x)
]

=
∑N

i=1 bi · Lx [ϕi(x)] (3.5)

where Lx [ϕi(x)] is evaluated using automatic differentiation through the trunk network.

3.4.2 Precomputing trunk weights

Another common use-case for DeepONet models concerns scenarios where the input

data (f, g) is expected to vary, and we are interested in evaluating the associated solutions
2

 ↑ However, the key difference is that “approximator” networks need to be re-trained whenever the input data
(f, g) is modified, while DeepONet surrogates can be obtained by simply recomputing the branch weights.

83

quickly at a fixed set of locations throughout the spatial domain. As one may expect, the

optimization relevant for this form of inference is primarily based on precomputing the trunk

weights. In order to achieve real-time speeds in practice, however, it also necessary to make

a few additional adjustments to inference calculations.

To begin, we review the computational steps involved with evaluating a DeepONet model

with input data (f, g) at a fixed set of evaluation locations {xj}j∈E . First, we need to evaluate

the trunk at each of the input locations to form the matrix:

T =

t1

...

tE

 where tj =
[
tj1 , . . . , tjN

]
= Trunk(xj) (3.6)

The branch output vector is then computed for the current input data (f, g), and the network

prediction û is given in vector form by:

û1
...

ûE

 =

t1

...

tE

b1
...

bN

 where bT = [b1 , . . . , bN] = Branch(f, g) (3.7)

In order to interpret the vector prediction û as a function on a two-dimensional domain, we

must then place each of the entries û(xj) in a data structure which specifies the associated

spatial position xj. More concretely, it is often desirable to have an array representation of

the predicted solution û; in this case, the evaluation locations {xj}j∈E can be defined with

respect to a uniform grid, with points outside of the domain omitted. To efficiently convert

the vector prediction into a structured array, it is advisable to construct a sparse “placement

matrix” P defined by mapping each index j ∈ E to the appropriate array location. The full

computational workflow for this form of inference is summarized in Figure 3.10 .

The computation time resulting from the naïve implementation above is not very well-

suited for real-time applications; however, the inference time can be greatly reduced when

the evaluation locations are fixed. In particular, after the DeepONet training procedure is

completed the trunk network outputs {tj}j∈E and placement matrix P need only be computed

84

once to facilitate inference for arbitrary input data (f, g). As shown in Figure 3.11 , the

computation time required to evaluate the DeepONet approximation across the full domain

can be reduced to approximately 0.03 seconds per problem.

Figure 3.10. Standard inference speeds without precomputing trunk outputs;
the placement matrix P is used to efficiently restructure the vectorized network
outputs to match the format of the target two-dimensional domain.

Figure 3.11. Inference can be optimized for fast evaluations on a fixed grid
by precomputing the trunk outputs associated with each grid location and
constructing a sparse placement matrix for mapping vectorized network out-
puts to the correct array locations. The timings in the top row of the figure
are computed only once after training. The timings shown in red denote the
unoptimized speeds using loops and manual entry placement instead of einsum
operations and sparse matrix-vector products with the placement matrix.

85

3.4.3 Concluding remarks

In this chapter, we have shown that the DeepONet framework for the construction of

operator networks can be extended to produce predictive uncertainty estimates with minimal

modifications to the underlying network architecture. The resulting uncertainty estimates

were shown to be well-calibrated to the observed network error for the function classes seen by

the network during training, and remained well-calibrated when tested on out-of-distribution

data as well. These fully-connected operator networks were also shown to provide accurate

approximations to PDE systems involving inhomogeneous boundary conditions. Notably,

these networks are capable of working with unstructured sensor data, in contrast to the

models introduced in the previous chapter which required uniform observation data. We

also demonstrated how the inference speeds associated with trained DeepONet models can

be significantly reduced by a careful consideration of the computational workflow used to

evaluate the models. Overall, the DeepONet models presented in this chapter were observed

to produce approximations with accuracies on the order of 1% relative error and computation

times of roughly 0.03 seconds per prediction. Based on these observations, combined with the

ability of DeepONet models to work with unstructured sensor data, the DeepONet framework

provides a very promising tool for constructing light-weight models which are ideally suited

for real-time applications.

86

3.A Architecture Variations

3.A.1 Incorporation of boundary conditions

A series of ablation studies were conducted based on the following three network architec-

tures regarding the incorporation of inhomogeneous boundary conditions. The architecture

illustrated in Figure 3.12 was ultimately chosen due to its simplicity; while the other two

variations achieved similar performance, there was no observable benefit associated with

separate processing components used for the interior data f(x) and boundary data g(x).

Figure 3.12. DeepONet BC architecture: Variation 1.

Figure 3.13. DeepONet BC architecture: Variation 2.

Figure 3.14. DeepONet BC architecture: Variation 3.

87

3.A.2 Network structures for predictive uncertainties

Once the architecture for the inclusion of boundary conditions was selected, additional

ablation experiments were conducted in order to identify the best network design regarding

uncertainty predictions. In particular, the three architecture variations illustrated below

were considered and the network structure shown in Figure 3.16 was observed to produce

the best performance.

Figure 3.15. DeepONet UQ architecture: Variation 1.

Figure 3.16. DeepONet UQ architecture: Variation 2.

Figure 3.17. DeepONet UQ architecture: Variation 3.

88

4. SUMMARY AND CONCLUDING REMARKS

That coursing on, whate’er men’s speculations,

Amid the changing schools, theologies, philosophies,

Amid the bawling presentations new and old,

The round earth’s silent vital laws, facts, modes continue.

Walt Whitman

4.1 Research summary

In this work, we have introduced the ConvPDE-UQ framework for constructing opera-

tor networks designed to produce rapid approximations to the solutions of PDE systems.

Inspired by the concept of Gaussian process regression, we introduced a training procedure

and network architecture designed to produce predictive uncertainty estimates calibrated to

the observed model error. This predictive uncertainty schema was shown to produce accu-

rate estimates in the context of the convolutional ConvPDE-UQ framework, and was also

shown to be effective in the context of the fully-connected DeepONet framework. We have

also demonstrated how ConvPDE-UQ models can be applied to problems on varied domains

using a single offline training procedure. Moreover, it was established that DeepONet mod-

els can be used to approximate solutions to PDE systems with inhomogeneous boundary

conditions based off of unstructured sensor data. The inference speeds of both frameworks

were also assessed, and with proper implementations it was shown that both approaches can

perform inference in just a few hundredths of a second.

4.2 Future work and applications

The rapid inference speeds of the operator networks considered in this work suggest that

these networks may be well-suited for real-time applications; more specifically, in situations

where strict time-constraints prevent the use of conventional numerical methods for PDEs it

89

is envisioned that operator network surrogates can be employed as light-weight alternatives.

Current research efforts are also being directed toward the inclusion of operator networks

for applications involving digital twin models, where we aim to leverage neural network

surrogates for processing real-time observation data. In addition, future work will be directed

toward applications for more involved optimization procedures where the solutions to PDE

systems are required as intermediate steps as a part of a larger calculation and must be

approximated quickly in order for optimization to converge within a reasonable time frame.

4.3 Further considerations and limitations

While the proposed operator networks were observed to produced accurate predictions

for all of the experiments and problem setups conducted in this work, it is expected that

these frameworks will be subject to some practical limitations due to the data-driven nature

of model calibration. For example, training networks to enforce constraints of the form:

a11 · ∂2u
∂x2

1
+ a12 · ∂2u

∂x1∂x2
+ a22 · ∂2u

∂x2
2

+ a1 · ∂u
∂x1

+ a2 · ∂u
∂x2

+ a0 · u = f (4.1)

may require a substantial increase in the dataset size in order to capture the relationships

between all of the input sources. The randomization procedures used to generate these input

sources may also require additional attention in order to ensure that the resulting operator

network is properly calibrated to the types of input data that will be encountered in practice.

The data-driven framework used to train operator networks also offers some less obvious

advantages in terms of model flexibility. For example, when modeling a constraint of the

form div(a · gradu) = f , the same dataset used to model the forward mapping (a, f) 7→ u

can hypothetically be used to approximate the inverse mapping (u, f) 7→ a. In fact, simply

transposing the terms ‘a’ and ‘u’ in the training dataset can produce accurate network

approximations to this type of inverse problem based on preliminary experiments. Due to

the lack of a proper theoretical justification, and related issues such as non-uniqueness, these

applications were not considered in the present work; however, initial experiments suggest

there is some potential for pursuing this direction, and a more careful analysis in future works

may reveal additional applications for operator networks in the context of inverse problems.

90

REFERENCES

[1] Martin S. Alnæs. “UFL: a Finite Element Form Language”. In: Automated Solution
of Differential Equations by the Finite Element Method, Volume 84 of Lecture Notes
in Computational Science and Engineering. Ed. by Anders Logg, Kent-Andre Mardal,
and Garth N. Wells. Springer, 2012. Chap. 17.

[2] Martin S. Alnæs, Anders Logg, and Kent-Andre Mardal. “UFC: a Finite Element
Code Generation Interface”. In: Automated Solution of Differential Equations by the
Finite Element Method, Volume 84 of Lecture Notes in Computational Science and
Engineering. Ed. by Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Springer,
2012. Chap. 16.

[3] Martin S. Alnæs and Kent-Andre Mardal. “On the Efficiency of Symbolic Computa-
tions Combined With Code Generation for Finite Element Methods”. In: ACM Trans-
actions on Mathematical Software 37.1 (2010). doi: 10.1145/1644001.1644007 .

[4] Martin S. Alnæs and Kent-Andre Mardal. “SyFi and SFC: Symbolic Finite Elements
and Form Compilation”. In: Automated Solution of Differential Equations by the Finite
Element Method, Volume 84 of Lecture Notes in Computational Science and Engineer-
ing. Ed. by Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Springer, 2012.
Chap. 15.

[5] Martin S. Alnæs et al. “The FEniCS Project Version 1.5”. In: Archive of Numerical
Software 3.100 (2015). doi: 10.11588/ans.2015.100.20553 .

[6] Martin S. Alnæs et al. “Unified Form Language: A domain-specific language for weak
formulations of partial differential equations”. In: ACM Transactions on Mathematical
Software 40.2 (2014). doi: 10.1145/2566630 .

[7] Martin S. Alnæs et al. “Unified Framework for Finite Element Assembly”. In: Inter-
national Journal of Computational Science and Engineering 4.4 (2009), pp. 231–244.
doi: 10.1504/IJCSE.2009.029160 .

[8] Robert B Ash et al. Probability and measure theory. Academic Press, 2000.

[9] Atilim Gunes Baydin et al. “Automatic differentiation in machine learning: a survey”.
In: Journal of machine learning research 18 (2018).

[10] Shengze Cai et al. “DeepM&Mnet: Inferring the electroconvection multiphysics fields
based on operator approximation by neural networks”. In: Journal of Computational
Physics 436 (2021), p. 110296.

91

https://doi.org/10.1145/1644001.1644007
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1145/2566630
https://doi.org/10.1504/IJCSE.2009.029160

[11] Tianqi Chen, Haichen Shen, and Arvind Krishnamurthy. CSE599W Lecture 4: Back-
propagation and Automatic Differentiation. Spring 2018.

[12] Oksana A Chkrebtii et al. “Bayesian solution uncertainty quantification for differential
equations”. In: Bayesian Analysis 11.4 (2016), pp. 1239–1267.

[13] JB Copas. “On the unimodality of the likelihood for the Cauchy distribution”. In:
Biometrika 62.3 (1975), pp. 701–704.

[14] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Math-
ematics of control, signals and systems 2.4 (1989), pp. 303–314.

[15] MWMG Dissanayake and N Phan-Thien. “Neural-network-based approximations for
solving partial differential equations”. In: communications in Numerical Methods in
Engineering 10.3 (1994), pp. 195–201.

[16] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online
learning and stochastic optimization.” In: Journal of machine learning research 12.7
(2011).

[17] L.C. Evans and American Mathematical Society. Partial Differential Equations. Gradu-
ate studies in mathematics. American Mathematical Society, 1998. isbn: 9780821807729.
url: https://books.google.com/books?id=5Pv4LVB%5C_m8AC .

[18] Gregory E Fasshauer and Michael J McCourt. Kernel-based approximation methods
using Matlab. Vol. 19. World Scientific Publishing Company, 2015.

[19] Ken-Ichi Funahashi. “On the approximate realization of continuous mappings by neural
networks”. In: Neural networks 2.3 (1989), pp. 183–192.

[20] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian approximation: Repre-
senting model uncertainty in deep learning”. In: international conference on machine
learning. 2016, pp. 1050–1059.

[21] A Ronald Gallant and Halbert White. “There exists a neural network that does not
make avoidable mistakes.” In: ICNN. 1988, pp. 657–664.

[22] David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second
order. springer, 2015.

[23] Gene H Golub and Charles F Van Loan. Matrix computations. Johns Hopkins studies
in the mathematical sciences. 1996.

92

https://books.google.com/books?id=5Pv4LVB%5C_m8AC

[24] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1026–1034.

[25] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-of-
distribution examples in neural networks”. In: arXiv preprint arXiv:1610.02136 (2016).

[26] Philipp Hennig and Søren Hauberg. “Probabilistic solutions to differential equations
and their application to Riemannian statistics”. In: Artificial Intelligence and Statistics.
2014, pp. 347–355.

[27] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent”. In: Cited on 14.8 (2012).

[28] Johan Hoffman et al. “Turbulent Flow and Fluid–structure Interaction”. In: Automated
Solution of Differential Equations by the Finite Element Method, Volume 84 of Lecture
Notes in Computational Science and Engineering. Ed. by Anders Logg, Kent-Andre
Mardal, and Garth N. Wells. Springer, 2012. Chap. 28.

[29] Johan Hoffman et al. “Unicorn: Parallel Adaptive Finite Element Simulation of Tur-
bulent Flow and Fluid-Structure Interaction for Deforming Domains and Complex
Geometry”. In: Computer and Fluids in press (2012).

[30] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward net-
works are universal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[31] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Universal approximation of
an unknown mapping and its derivatives using multilayer feedforward networks”. In:
Neural networks 3.5 (1990), pp. 551–560.

[32] Raphael Hunger. Floating point operations in matrix-vector calculus. Munich University
of Technology, Inst. for Circuit Theory and Signal …, 2005.

[33] Bunpei Irie and Sei Miyake. “Capabilities of three-layered perceptrons.” In: ICNN.
1988, pp. 641–648.

[34] Niclas Jansson, Johan Jansson, and Johan Hoffman. “Framework for Massively Parallel
Adaptive Finite Element Computational Fluid Dynamics on Tetrahedral Meshes”. In:
SIAM Journal on Scientific Computing 34.1 (2012), pp. C24–C41.

[35] Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian deep learning
for computer vision?” In: Advances in neural information processing systems. 2017,
pp. 5574–5584.

93

[36] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[37] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv
preprint arXiv:1312.6114 (2013).

[38] Robert C. Kirby. “Algorithm 839: FIAT, a New Paradigm for Computing Finite Ele-
ment Basis Functions”. In: ACM Transactions on Mathematical Software 30.4 (2004),
pp. 502–516. doi: 10.1145/1039813.1039820 .

[39] Robert C. Kirby. “FIAT: Numerical Construction of Finite Element Basis Functions,”
in: Automated Solution of Differential Equations by the Finite Element Method, Volume
84 of Lecture Notes in Computational Science and Engineering. Ed. by Anders Logg,
Kent-Andre Mardal, and Garth N. Wells. Springer, 2012. Chap. 13.

[40] Robert C. Kirby and Anders Logg. “A Compiler for Variational Forms”. In: ACM
Transactions on Mathematical Software 32.3 (2006). doi: 10.1145/1163641.1163644 .

[41] Robert C. Kirby and Anders Logg. “Benchmarking Domain-Specific Compiler Opti-
mizations for Variational Forms”. In: ACM Transactions on Mathematical Software
35.2 (2008), pp. 1–18. doi: 10.1145/1377612.1377614 .

[42] Robert C. Kirby and Anders Logg. “Efficient Compilation of a Class of Variational
Forms”. In: ACM Transactions on Mathematical Software 33.3 (2007). doi: 10.1145/
1268769.1268771 .

[43] Robert C. Kirby and L. Ridgway Scott. “Geometric Optimization of the Evaluation
of Finite Element Matrices”. In: SIAM Journal on Scientific Computing 29.2 (2007),
pp. 827–841.

[44] Robert C. Kirby et al. “Optimizing the Evaluation of Finite Element Matrices”. In:
SIAM Journal on Scientific Computing 27.3 (2005), pp. 741–758. doi: 10 . 1137 /
040607824 .

[45] Robert C. Kirby et al. “Topological Optimization of the Evaluation of Finite Element
Matrices”. In: SIAM Journal on Scientific Computing 28.1 (2006), pp. 224–240. doi:
 10.1137/050635547 .

[46] Debasis Kundu. “Discriminating between normal and Laplace distributions”. In: Ad-
vances in Ranking and Selection, Multiple Comparisons, and Reliability. Springer, 2005,
pp. 65–79.

94

https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1145/1163641.1163644
https://doi.org/10.1145/1377612.1377614
https://doi.org/10.1145/1268769.1268771
https://doi.org/10.1145/1268769.1268771
https://doi.org/10.1137/040607824
https://doi.org/10.1137/040607824
https://doi.org/10.1137/050635547

[47] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. “Artificial neural networks
for solving ordinary and partial differential equations”. In: IEEE transactions on neural
networks 9.5 (1998), pp. 987–1000.

[48] Isaac E Lagaris, Aristidis C Likas, and Dimitris G Papageorgiou. “Neural-network
methods for boundary value problems with irregular boundaries”. In: IEEE Transac-
tions on Neural Networks 11.5 (2000), pp. 1041–1049.

[49] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and scal-
able predictive uncertainty estimation using deep ensembles”. In: Advances in Neural
Information Processing Systems. 2017, pp. 6402–6413.

[50] Alan Lapedes and Robert Farber. “How neural nets work”. In: Evolution, learning and
cognition. World Scientific, 1988, pp. 331–346.

[51] Stig Larsson and Vidar Thomée. Partial differential equations with numerical methods.
Vol. 45. Springer, 2003.

[52] Yann Le Cun and Françoise Fogelman-Soulié. “Modèles connexionnistes de l’appren-
tissage”. In: Intellectica 2.1 (1987), pp. 114–143.

[53] Hyuk Lee and In Seok Kang. “Neural algorithm for solving differential equations”. In:
Journal of Computational Physics 91.1 (1990), pp. 110–131.

[54] Anders Logg. “Automating the Finite Element Method”. In: Archives of Computational
Methods in Engineering 14.2 (2007), pp. 93–138. doi: 10.1007/s11831-007-9003-9 .

[55] Anders Logg. “Efficient Representation of Computational Meshes”. In: International
Journal of Computational Science and Engineering 4.4 (2009), pp. 283–295. doi: 10.
1504/IJCSE.2009.029164 .

[56] Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated Solution of Differ-
ential Equations by the Finite Element Method. Springer, 2012. isbn: 978-3-642-23098-
1. doi: 10.1007/978-3-642-23099-8 .

[57] Anders Logg and Garth N. Wells. “DOLFIN: Automated Finite Element Computing”.
In: ACM Transactions on Mathematical Software 37.2 (2010). doi: 10.1145/1731022.
1731030 .

[58] Anders Logg, Garth N. Wells, and Johan Hake. “DOLFIN: a C++/Python Finite Ele-
ment Library”. In: Automated Solution of Differential Equations by the Finite Element
Method, Volume 84 of Lecture Notes in Computational Science and Engineering. Ed.
by Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Springer, 2012. Chap. 10.

95

https://doi.org/10.1007/s11831-007-9003-9
https://doi.org/10.1504/IJCSE.2009.029164
https://doi.org/10.1504/IJCSE.2009.029164
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1145/1731022.1731030

[59] Anders Logg et al. “FFC: the FEniCS Form Compiler”. In: Automated Solution of
Differential Equations by the Finite Element Method, Volume 84 of Lecture Notes in
Computational Science and Engineering. Ed. by Anders Logg, Kent-Andre Mardal,
and Garth N. Wells. Springer, 2012. Chap. 11.

[60] Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators”. In: Nature Machine Intelligence 3.3 (2021),
pp. 218–229.

[61] A Malek and R Shekari Beidokhti. “Numerical solution for high order differential equa-
tions using a hybrid neural network—optimization method”. In: Applied Mathematics
and Computation 183.1 (2006), pp. 260–271.

[62] Zhiping Mao et al. “DeepM&Mnet for hypersonics: Predicting the coupled flow and
finite-rate chemistry behind a normal shock using neural-network approximation of
operators”. In: arXiv preprint arXiv:2011.03349 (2020).

[63] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[64] Yurii E Nesterov. “A method for solving the convex programming problem with con-
vergence rate O (1/k^ 2)”. In: Dokl. akad. nauk Sssr. Vol. 269. 1983, pp. 543–547.

[65] Edward W Ng and Murray Geller. “A table of integrals of the error functions”. In:
Journal of Research of the National Bureau of Standards B 73.1 (1969), pp. 1–20.

[66] Kristian B. Ølgaard, Anders Logg, and Garth N. Wells. “Automated Code Generation
for Discontinuous Galerkin Methods”. In: SIAM Journal on Scientific Computing 31.2
(2008), pp. 849–864. doi: 10.1137/070710032 .

[67] Kristian B. Ølgaard and Garth N. Wells. “Optimisations for Quadrature Represen-
tations of Finite Element Tensors Through Automated Code Generation”. In: ACM
Transactions on Mathematical Software 37 (2010). doi: 10.1145/1644001.1644009 .

[68] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics Informed Deep
Learning (Part I): Data-driven solutions of nonlinear partial differential equations”. In:
arXiv preprint arXiv:1711.10561 (2017).

[69] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics informed deep
learning (Part II): data-driven discovery of nonlinear partial differential equations”. In:
arXiv preprint arXiv:1711.10566 (2017).

[70] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activation func-
tions”. In: arXiv preprint arXiv:1710.05941 (2017).

96

https://doi.org/10.1137/070710032
https://doi.org/10.1145/1644001.1644009

[71] Carl Edward Rasmussen. “Gaussian processes in machine learning”. In: Summer school
on machine learning. Springer. 2003, pp. 63–71.

[72] Marie E. Rognes, Robert C. Kirby, and Anders Logg. “Efficient Assembly of H(div)
and H(curl) Conforming Finite Elements”. In: SIAM Journal on Scientific Computing
31.6 (2009), pp. 4130–4151. doi: 10.1137/08073901X .

[73] Marie E. Rognes et al. “Automating the solution of PDEs on the sphere and other
manifolds in FEniCS 1.2”. In: Geoscientific Model Development 6 (2013), pp. 2099–
2119. doi: 10.5194/gmd-6-2099-2013 .

[74] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks
for biomedical image segmentation”. In: International Conference on Medical image
computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[75] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning represen-
tations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[76] Justin Sirignano and Konstantinos Spiliopoulos. “DGM: A deep learning algorithm
for solving partial differential equations”. In: Journal of Computational Physics 375
(2018), pp. 1339–1364.

[77] Christian Szegedy et al. “Rethinking the inception architecture for computer vision”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 2818–2826.

[78] Jun Takeuchi and Yukio Kosugi. “Neural network representation of finite element
method”. In: Neural Networks 7.2 (1994), pp. 389–395.

[79] Rohit Tripathy and Ilias Bilionis. “Deep UQ: Learning deep neural network surrogate
models for high dimensional uncertainty quantification”. In: Journal of Computational
Physics 375 (2018), pp. 565–588.

[80] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the solution operator of
parametric partial differential equations with physics-informed DeepOnets”. In: arXiv
preprint arXiv:2103.10974 (2021).

[81] E Weinan, Jiequn Han, and Arnulf Jentzen. “Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and backward stochastic
differential equations”. In: Communications in Mathematics and Statistics 5.4 (2017),
pp. 349–380.

97

https://doi.org/10.1137/08073901X
https://doi.org/10.5194/gmd-6-2099-2013

[82] Nick Winovich, Karthik Ramani, and Guang Lin. “ConvPDE-UQ: Convolutional neu-
ral networks with quantified uncertainty for heterogeneous elliptic partial differen-
tial equations on varied domains”. In: Journal of Computational Physics 394 (2019),
pp. 263–279.

[83] Yinhao Zhu and Nicholas Zabaras. “Bayesian deep convolutional encoder–decoder net-
works for surrogate modeling and uncertainty quantification”. In: Journal of Compu-
tational Physics 366 (2018), pp. 415–447.

98

VITA

Nick Winovich graduated from the University of Notre Dame in 2012, majoring in mathe-

matics and Spanish, and received funding from the Kellog Institute for International Studies

to teach English at a primary school in Pacuare, Costa Rica through the World Teach pro-

gram. He subsequently received a master’s degree in mathematics at the University of Oregon

and enrolled as a Ph.D. student in the Department of Mathematics at Purdue University

in 2015. At Purdue, he was funded as an NSF IGERT fellow as a part of the sustainable

electronics program headed by Dr. Carol Handwerker and later participated in a student

internship at Sandia National Laboratories conducting research under the supervision of Dr.

Mohamed Ebeida. He also volunteers as a student consultant for the Purdue Data Sci-

ence Consulting Service and has served as a mentor for undergraduate students through the

NSF Summer Undergraduate Research Fellowship (SURF) and Network for Computational

Nanotechnology (NCN) Undergraduate Research Experience (URE) programs.

99

PUBLICATIONS

Winovich, N., Ramani, K., & Lin, G. (2019). ConvPDE-UQ: Convolutional neural net-

works with quantified uncertainty for heterogeneous elliptic partial differential equations on

varied domains. Journal of Computational Physics, 394, 263-279.

Winovich, N., Rushdi, A., Phipps, E. T., Ray, J., Lin, G., & Ebeida, M. S. (2019).

Rigorous Data Fusion for Computationally Expensive Simulations (No. SAND2019-10322).

Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia National Labo-

ratories, Livermore, CA.

Kim, M., Winovich, N., Lin, G., & Jeong, W. (2019). Peri-Net: Analysis of Crack

Patterns Using Deep Neural Networks. Journal of Peridynamics and Nonlocal Modeling,

1(2), 131-142.

Kim, S., Winovich, N., Chi, H. G., Lin, G., & Ramani, K. (2019). Latent transformations

neural network for object view synthesis. The Visual Computer, 1-15.

100

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION AND BACKGROUND MATERIAL
	Neural networks
	Overview
	Network layers and activation functions
	Universal approximation theorems
	Loss functions and stochastic gradient descent
	Adam optimizer
	Backpropagation
	Automatic differentiation
	Convolutional architectures

	Probability theory
	Overview
	Measure theory background
	Random variables and probability distributions
	Gaussian processes and uncertainty estimates

	Partial differential equations
	Overview
	Second order equations
	Finite element method

	Related works and operator networks
	Historical background and related works
	Motivation for operator networks

	APPROXIMATING OPERATORS WITH CONVOLUTIONS
	Introduction
	Problem setup
	Mathematical framework
	Discretization
	Approximation by convolutional networks

	Methodology
	Bayesian framework
	Probabilistic training procedure
	Network architecture
	Network loss functions and training procedure
	Data generation

	Numerical results
	Comparison of training procedures
	Uncertainty quantification
	Inference speed
	Concluding remarks

	Additional experiments
	Variable coefficient differential operators
	Neumann boundary conditions

	Alternative distributions for modeling network uncertainty
	Laplace uncertainty model
	Cauchy uncertainty model

	OPERATOR NETWORKS & PREDICTIVE UNCERTAINTY
	Introduction
	DeepONet framework
	PDE systems and data generation

	Architecture for predictive uncertainties
	Loss functions and training procedure
	Predictive uncertainty and function space generalization

	Summary of numerical results
	Optimization for inference
	Precomputing branch weights
	Precomputing trunk weights
	Concluding remarks

	Architecture Variations
	Incorporation of boundary conditions
	Network structures for predictive uncertainties

	SUMMARY AND CONCLUDING REMARKS
	Research summary
	Future work and applications
	Further considerations and limitations

	REFERENCES
	VITA
	PUBLICATIONS

