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ABSTRACT 

Rain drop size distributions (DSDs) in severe convective storms are highly variable in time 

and space. DSDs can be derived from polarimetric radar observations at high spatiotemporal 

resolution but these observations are often lacking near the surface owing to radar horizon issues. 

Disdrometers provide “ground-truth” measurements and validation of radar-derived DSDs but are 

by nature limited point measurements. Moreover, substantial evolution of the DSD can occur 

between the lowest radar elevation angle and the surface. Recent studies have shown that 

hydrometeor size sorting (HSS) is an important and even dominant process contributing to DSD 

evolution in severe storms; many physical processes such as the strength of the updraft, transient 

effects, and storm-relative mean winds are contributing factors to continued size sorting. In this 

study, we focus on strong storm-relative mean winds that induce sustained size sorting owing to 

the different residence times of hydrometeors of different sizes as they fall in severe storms. The 

resulting differential advection leads to a distinct horizontal spread of hydrometeors of different 

sizes at the bottom of a given layer. The goal of this study is to evaluate the impact of size sorting 

on DSD evolution from the radar level to the surface. To accomplish this, we develop and apply a 

raindrop trajectory model to compute the evolution of DSDs between radar observations aloft and 

the surface. For simplicity and to isolate the effects of size sorting, we neglect processes such as 

breakup, collection, and evaporation, and assume a horizontally homogeneous wind profile. We 

use disdrometer and radar data, which measure DSDs at the surface and provide the observed 

quantities aloft, respectively. The disdrometer data was collected from portable disdrometers as a 

collaboration between Purdue University, University of Oklahoma, University of Massachusetts, 

and the National Severe Storms Laboratory during the VORTEX-SE 2017 field campaign. 

NEXRAD data from KHTX Huntsville, AL and KGWX Columbus Air Force Base, MS was 

retrieved from the National Centers for Environmental Information (NCEI). 

We evaluate three separate cases, a tornadic QLCS on 30 April 2017, a cluster storm on 27 

March 2017, and a squall line on 25 March 2017. After the radar data is pre-processed, we retrieve 

the DSDs from the radar by assuming a gamma distribution and discretize them into PARSIVEL 

bins to produce a gridded dataset of DSDs. We then apply the raindrop trajectory model to compute 

the DSDs at the surface which are then compared directly with disdrometer observations. Analysis 

and comparisons from all cases yield similar results in that-the sorted radar DSDs at the surface 
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are overall closer to the disdrometer observations than the original radar DSDs aloft. Results also 

show that the spatial variation of DSDs is higher at the surface due to size sorting by the storm-

relative mean winds. 
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1. INTRODUCTION 

DSDs vary with height because of several processes, including collision, coalescence, 

evaporation, spontaneous breakup, and size sorting. Storm-relative winds can induce sustained 

size sorting owing to the different residence times of drops of different sizes as they fall toward 

the ground, resulting in variable horizontal advection leading to a distinct horizontal spread of 

drops of different sizes at a given height. Numerous recent studies based on scanning radar 

observations and numerical simulations have shown that this process can explain certain low-level 

microphysical features in convective storms. Rain DSDs can continue to evolve between the 

lowest radar elevation scan and the surface. Changes in DSD shape and mean diameter consistent 

with size sorting can therefore serve as a proxy to changes in the near-surface wind profile near 

storms. In tornado environments, the strongest shear and storm relative flow can exist below the 

radar. Quantifying this evolution can have some good benefits such as an improved understanding 

of how low-level storm dynamics and microphysics interact, improvements to radar-based 

precipitation algorithms, and nowcasts of storm structural changes leading to tornadogenesis. The 

goal of this study is to evaluate the impact of size sorting on DSD evolution from the radar level 

to the surface in southeast-U.S. convective storms by applying a simple trajectory model to radar-

retrieved DSDs and comparing them directly with surface disdrometer observations. Typical 

radars don’t provide good information close to the ground but are often the only source of 

microphysical information aloft. Retrieval of the DSD from radar observations is needed, since it 

only observes quantities related to bulk moments (for example, the reflectivity related to the 6th 

moment), while disdrometers directly measure the DSD. 

 The southeastern United States (Fig. 1a) experiences many severe storms annually. 

According to statistics from the US Department of Commerce, Alabama has two tornado seasons; 

one during the average spring season from March through May and the other during the fall around 

late November (www.weather.gov/bmx/tornadostats2). In part due to this, it has become a prime 

region for experimental studies. The Verification of the Origin of Tornadoes Experiment-

Southeast (VORTEX-SE) is a research program to help understand how the environmental factors 

that are characteristic of the Southeastern U.S. affect the formation, intensity, structure, and path 

characteristics of tornadoes for this region (Rasmussen 2015). Many of the reported thunderstorms 

occur in the western region of the state and according to Ashley (2008) and Rasmussen (2015), 

http://www.weather.gov/bmx/tornadostats2
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tornadoes in the southeast occur during the night much more frequently than other regions. The 

southeastern tornado environments differ in many ways from their better studied Great Plains 

counterparts. The region consists of more frequent cold-season (low-CAPE) environments, more 

frequent nocturnal tornadoes, and more tornadoes that develop in quasi-linear convective systems 

(QLCS) vs. supercell modes. These environmental differences influence storm microphysical 

processes and associated feedback to thermodynamic and dynamic processes related to tornadoes 

and other hazards in poorly understood ways. As a first step toward improving our understanding 

of these differences, it is important to better characterize important microphysical-dynamical 

interactions such as storm-relative wind-induced size sorting. The rich set of observations from 

the VORTEX-SE field program will help us do that. According to Ashley (2008), nocturnal 

tornadoes are a large factor in the rising death total in rural areas due to vulnerable housing 

structures, such as mobile homes, lack of visual evidence, inability to hear sirens at night while 

indoors and sleeping, or according to Rasmussen (2015) high false alarm rates (FAR) which are 

associated with low lead-time and missed events.  

 
Figure 1. Rotation tracks (a) captured by NSSL's On-Demand system of the devastating 

tornadoes in the southeastern U.S. on April 27–28, 2011. Bright reds and yellows show more 

intense circulations (image adapted from www.nssl.noaa.gov/projects/vortexse/). (b) Storm 

reports for 04/30/2017 during VORTEX-SE through Mississippi and Alabama. Red “T” 

represents tornadoes; Blue “W” represents high winds (image adapted from www.spc.noaa.gov). 

For this study, we utilized WSR-88D radars and portable in-situ precipitation stations 

(PIPS) that include PARSIVEL (PARticle SIze and VELocity) laser disdrometers  (Löffler-Mang 

and Joss 2000, Friedrich et al. 2013), as well as instruments to measure relative humidity, 

a) b) 

http://www.nssl.noaa.gov/projects/vortexse/
http://www.spc.noaa.gov/
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reflectivity, temperature, pressure, rain rate, wind speed, and direction. The four PIPS deployed 

during the VORTEX-SE field program were located at the Scottsboro Airport, Scottsboro, 

Alabama and various locations throughout the Lawrence County, Alabama area. We examine three 

convective storm events that passed over the sites on 25 March 2017, 27 March 2017, and 30 April 

2017. The 25 March 2017 case featured a nontornadic squall line that moved over the PIPS site 

from southwest to northeast. It was the least intense of the three cases, but provided relevant data. 

The 27 March 2017 case featured a tornadic multicellular cluster thunderstorm whose individual 

cells passed over PIPS 1A at ~1945 UTC, PIPS 1B at ~2100 UTC, and PIPS 2B at ~2115 UTC, 

from northwest to southeast. The storm produced seven tornadoes over Mississippi, Tennessee, 

and Kentucky with no confirmed tornadoes reported in Alabama. Many hail and high winds were 

reported in northwest Alabama associated with embedded supercells. The 30 April 2017 case 

featured a weakening QLCS with embedded circulations. The QLCS advanced from southwest to 

northeast across the northern Alabama VORTEX-SE domain. The storm produced several 

tornadoes throughout Mississippi but weakened in tornadic activity as it approached west 

Alabama. Embedded circulations persisted with one confirmed tornado reported over central 

Alabama. According to NOAA/NWS Storm Prediction Center, the National Weather Service 

survey team found evidence of an EF-0 near Cullman, AL, around 1912 UTC just southwest of 

Huntsville, AL. 

We will present results characterizing the vertical and temporal variation of DSDs in these 

events, compare with predictions of idealized models of size sorting owing to the storm-relative 

winds using near-storm wind profiles derived from observations and model analyses, and discuss 

differences between the cases.  
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2. BACKGROUND 

2.1 Rain DSD Measurements 

2.1.1. Historical Measuring Methods 

Before the development of instruments used for measuring DSDs, there were other 

laborious and tedious ways to measure raindrop sizes. One method was the European style of using 

sheets of filter paper brushed with water-soluble dye and exposing it to rain for momentary periods 

(Laws and Parson 1943). Once the raindrops contacted the filter paper, they produced permanent 

spots. A drop size template is then created and used in conjunction with calibrated drops of a 

known volume for size comparison. Although this approach allowed for good observations of 

raindrop size, larger raindrops splattered on impact causing an increase in error. Another method 

was the flour method of size measurement. This method used a pan of one-inch, uncompacted, 

smooth surface flour in a tin receptacle (Laws and Parson 1943). After the raindrops fell in the 

flour, they absorbed the flour and formed dough pellets that hardened as they dried, corresponding 

very closely to the actual raindrop size.  

2.1.2. Modern Measuring Instruments 

Over the years, technological advancements in developing electronic disdrometers have 

made measuring drop sizes automatic and exponentially less tedious. Some popular DSD 

measuring devices are the impact disdrometer, two-dimensional (2D) video disdrometer, and 

PARSIVEL laser disdrometer (Joss and Waldvogel 1969) and (Kruger and Krajewski 2001).  The 

impact disdrometer uses a sensor that is exposed to the rain allowing it to transform each impacted 

raindrop into an electrical pulse to interpret the diameter of each drop. It consists of two main 

parts; the sensor that receives the impacted raindrops via a conical styrofoam body and the 

processor that supplies power to the sensor, processes the signal, and tests the instruments 

performance. The 2D video disdrometer archives orthogonal image projections of raindrops to 

provide the raindrops size, shape, and velocity (Kruger and Krajewski 2001). It has three main 

components which consist of the sensor unit, the outdoor electronic unit (OEU), and another 

internal PC (Kruger and Krajewski 2001). The PARSIVEL laser disdrometer measures size and 

velocity of hydrometeors using a rectangular sheet of laser light. They can be stationary and when 
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deployed in pairs, they are often set up perpendicular to each other or articulating, designed by the 

University of Florida (Friedrich et al. 2013). As hydrometeors pass through the sampling area, it 

disrupts the light intensity between the transmitter and receiver. The duration and magnitude of 

the disruption is proportional to the particle velocity and size, respectively. 

2.2 Fitting DSDs 

Marshall and Palmer (1948) analyzed DSDs from summer rainfall in Ottawa, Canada and 

found that an exponential distribution provided a good fit to the data:  

                                             𝑁(𝐷) = 𝑁0 𝑒𝑥𝑝 (−𝛬𝐷) ,                                                     (1) 

where N(D) (m-3 cm-1) is the number of raindrops per unit volume per unit size interval having 

equivolume spherical diameter D (cm), with 𝑁0(m-3 cm-1) and 𝛬(cm-1) as the intercept and slope 

parameters of the distribution, respectively. 

For their dataset, Marshall and Palmer (1948) found that 𝑁0 was a constant and 𝛬 varies with the 

rainfall rate. Exponential distributions work well for DSDs that are averaged over long time 

periods; however, for shorter sampling periods, natural rain DSDs contain both fewer large and 

fewer small drops (Vivekanandan et al. 2004). 

According to Ulbrich (1983), the suggested appropriate form to analyze DSDs uses the 

gamma distribution form,  

     𝑁(𝐷) = 𝑁0𝐷𝜇 𝑒𝑥𝑝 𝑒𝑥𝑝 (−𝛬𝐷) ,                                             (2) 

where the shape parameter 𝜇 can have any negative or positive value. The gamma distribution (2) 

thus has three free parameters; the exponential distribution (1) is the special case with 𝜇 = 0. 

Ulbrich (1983) introduced (2) owing to its greater flexibility and capability of describing a wider 

range of DSDs found in nature: “previous analyses imply that variations in the form or shape of 

DSDs occur commonly in nature and that DSD variations found between different rainfall types 

are similar to those found from moment to moment within a given rainfall type” (Ulbrich 1983). 

Using the three-parameter gamma distribution better characterizes instantaneous rain DSDs 

(Vivekanandan et al. 2004). 
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2.3 Storm Dynamics and Microphysical Process 

To understand storm dynamics, we take into account the microphysics of clouds. Clouds 

form when air becomes supersaturated with respect to water or ice (Wallace and Hobbs 2009). 

Since the atmosphere contains many particles of many sizes, droplets can form on those particles 

if they are wettable. Those wettable particles form the cloud condensation nuclei (CCN) of the 

droplet. Clouds that form below (above) the 0°C isotherm are warm (cold) clouds and contain only 

water (ice particles and/or supercooled) droplets (Wallace and Hobbs 2009). In warm clouds, 

droplets grow by condensation and by colliding and coalescing with other droplets. Droplets that 

do not coalesce after a collision will break upon impact, follow a streamline around the collector 

drop, or simply bounce off one another. Condensation allows droplets to continue growing; the 

smaller the droplet the faster its growth rate. As droplets continue to increase in size, their terminal 

velocities increase, and growth by collision and coalescence becomes more likely. 

Cloud prediction is beneficial for forecasting times and locations of severe weather, but 

may prove problematic and intricate to represent in models (Griffin et al. 2020). The dynamical 

structure of clouds and storms depends on the organization of convection from environmental 

conditions such as instability, lift, water vapor, and wind shear. Mechanisms that cause air parcels 

to lift can be due to fronts, jet streaks, vorticity, low level moisture advection, and low level 

convergence to name a few. An increase in moisture or water vapor in the lower troposphere 

coupled with dry air in the middle troposphere leads to an increase in storm severity. Since wind 

increases with height, strong vertical wind shear may lead to an increase in wind speed and/or 

wind direction further intensifying storms into a possible severe category. Once the warm moist 

air rises, they develop into single cell, multicellular clusters, multicellular lines, or supercell 

storms, depending on the magnitude and depth of the vertical wind shear.   

Severe storms can produce a magnitude of meteorological phenomena that are amenable 

to observations and analysis. Severe storms must include at least one of the following conditions: 

wind greater than 58 mph (50 knots), hail one inch in diameter or greater, and/or a tornado 

(www.spc.noaa.gov/faq/#4.2). The fallout from thunderstorms may produce heavy rain, damaging 

winds, large hail, and tornadoes of all magnitudes (Klemp 1987). Microphysical processes affect 

the evolution of DSDs (Kumjian and Ryzhkov 2012) and DSDs are dominated by collection, 

evaporation, and breakup in convective storms (Freidrich et al. 2013). We care about these 

processes in severe convective storms due to the multitude of information it provides. Severe 

http://www.spc.noaa.gov/faq/#4.2
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storms can provide high precipitation, large sample regions for size sorting studies and a 

convective thunderstorm study conducted by Friedrich et al. (2013) revealed DSD changes rapidly 

in time and space.  

2.4 Raindrop Size Sorting 

 HSS is an important process in severe storms. The physical processes that cause HSS 

include vertical wind shear, the strength of the updraft of a storm, an increase of terminal fall speed 

with diameter, and the storm relative wind field. “Updrafts and vertical wind shear can maintain 

size sorting, resulting in prolonged regions of particle size sorting” (Kumjian and Ryzhkov 2012) 

but as the updraft weakens or dissipates, smaller and larger raindrops fall with less of an opposing 

force acting on it. Many observations in convective storms have shown larger raindrops dominate 

the leading edge (defined with respect to the storm-relative flow) of the storm system owing to 

their steeper fall trajectories (Dawson et al. 2014) because they are heavier and their terminal fall 

velocity is faster than the updraft velocity. Smaller raindrops are constantly removed, lofted back 

up, and suspended in the storm until they collide and coalesce to form larger raindrops (or if lofted 

above the freezing level, they can freeze and become embryos for hailstones) therefore repeating 

the process. HSS associated with vertical wind shear has a longer lasting effect on smaller 

raindrops because they fall slower allowing them to be carried farther downstream by the storm-

relative flow (Kumjian and Ryzhkov 2012).  
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Figure 2 (a) shows size sorting results in narrowing of the DSD and increase in mean diameter 

near the storm-relative leading edge of the precipitation (Original Fig. 2(b) from Kumjian and 

Ryzhkov 2012). (b) Shows an evaluated raindrop terminal fall speed as a function of diameter. It 

shows the Brandes relation used in our study to specify the terminal velocity as a function of 

diameter (Original Fig. 1 from Kumjian and Ryzhkov 2012).  

Dawson et al. (2015) found that nonzero storm-relative mean wind causes HSS, even in 

the absence of vertical wind shear. Based on the storm motion, the trajectories of larger raindrops 

impact the surface first, followed by medium drops, then smaller drops along the storm-relative 

mean wind vector. Severe storms evolve in environments with strong storm-relative winds that 

induce sustained size sorting owing to the different residence times of hydrometeors of different 

sizes as they fall. The resulting differential advection leads to a distinct horizontal spread of 

hydrometeors of different sizes at the bottom of a given layer. Dawson et al. (2014, 2015) showed 

that for a horizontally homogeneous wind profile, the gradient of 𝑍𝐷𝑅 (a proxy of  mean rain 

diameter) at the bottom of a precipitating layer is aligned with the direction of the storm-relative 

mean wind vector in that layer. This size sorting process manifests itself in distinctive low-level 

polarimetric radar signatures--particularly the “𝑍𝐷𝑅 arc”--in supercells (Kumjian and Ryzhkov 

2009). QLCS’s exhibit similar signatures (Mahale et al. 2012). This study focuses only on using 

storm-relative mean winds to analyze the size sorting effect and ignores contributions from 

updrafts and transient effects.  

 

 
 

a) b) 
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Figure 3. (a) Dawson et al. (2014, 2015) showed that for a horizontally homogeneous wind 

profile, the gradient of 𝑍𝐷𝑅 (a proxy of mean rain diameter) at the bottom of a precipitating layer 

is aligned with the direction of the storm-relative mean wind vector in that layer (Original Fig. 

3(f) in Dawson et al 2014).  (b) Size-sorting process in distinctive low-level polarimetric radar 

signatures--particularly the “𝑍𝐷𝑅 arc”--in supercells. Shading represents the 𝑍𝐷𝑅 enhancement, 

which is maximized at the leading edge (Original Fig. 2 in Kumjian and Ryzhkov 2009). 

2.4.1. Impact of Size-sorting on Polarimetric Radar Variables  

Size sorting can have impacts on polarimetric variables such as differential 

reflectivity, (𝑍𝐷𝑅), horizontal polarization (𝑍𝐻), specific differential phase (𝐾𝐷𝑃), and cross-polar 

correlation coefficient (𝜌ℎ𝑣). 𝑍𝐷𝑅 is the difference between the co-polar horizontal and the co-

polar vertical reflectivity. High 𝑍𝐷𝑅 is indicative of areas of larger raindrops since it is sensitive to 

the axis ratio (horizontal-to-vertical dimensions) of raindrops, and larger raindrops are increasingly 

oblate. When rain regions have a higher quantity of larger raindrops with a relative lack of smaller 

raindrops, 𝑍𝐷𝑅 increases with increasing 𝑍𝐻 because the oblateness of the bigger raindrops 

increases them both (Kumjian and Ryzhkov 2012). Many models have shown that larger drops 

dominate the forward edge of precipitation regions (Gunn and Marshall 1955) although this is not 

always the case since observations have shown larger drops arriving after smaller drops, depending 

on the relative orientation of the storm-relative wind and storm motion vectors (Battan 1977, 

Dawson 2015). Sensitive to areas of heavy liquid precipitation, 𝐾𝐷𝑃 highlights these regions better 

than reflectivity alone. 

  

a) b) 
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3. DATA 

3.1 Disdrometer Data 

3.1.1. Data Collection 

 For this study, multiple PIPS were deployed throughout various locations in Alabama 

during the 2017 VORTEX-SE field program to collect DSD data in convective storms. PIPS 2A 

was located southeast of Huntsville, AL (lat: 34.6871 deg, lon: -86.0049 deg) and collected nearly 

continuous data from 03/24/17 16:58:07 to 05/01/17 15:31:43 UTC (Dawson et al. 2017). PIPS 

1A, PIPS 1B, and PIPS 2B were deployed in northwest Alabama in various locations depending 

on the event. Table 1 and 2 describes details of their deployments in Intensive Operating Periods 

(IOPs) 1A and 1B of VORTEX-SE 2017 that are analyzed in this study. PIPS data was retrieved 

from the VORTEX-SE Earth Observing Laboratory (EOL) 

(https://data.eol.ucar.edu/dataset/541.029). The PIPS (Fig. 4) are small, portable instrumented 

platforms equipped with several meteorological instruments. These include a suite of sensors to 

measure temperature, relative humidity, wind speed and direction, and pressure. A GPS and a 

digital compass respectively allow for easy determination of location and of wind direction for 

arbitrary orientations of the probe. Finally, each PIPS is equipped with an OTT PARSIVEL2 laser 

disdrometer that measures the size and number of objects that fall through the laser beam. 

The optical sensor laser diode has a wavelength of 780 nm, output power of 0.5 mW, and 

a beam size of 180 x 30 mm2. The PARSIVEL disdrometer works when particles pass through 

the laser beam disrupting the signal therefore decreasing the voltage. The instrument categorizes 

particles that fall through the sensing area into a 32 x 32 velocity/diameter count matrix (Dawson 

et al. 2017). The duration of the signal reduction and amplitude of the signal deviation allows for 

an estimate of particle velocity and is a measure of particle size, respectively (Löffler-Mang and 

Joss 2000). The DSD is measured at 10-s intervals and all other observations at 1-s intervals. The 

nominal measuring range of liquid precipitation is 0.2 to 5 mm (but can measure larger drop sizes 

that fall through the beam) and solid precipitation from 0.2 to 25 mm with the particle velocity 

ranging from 0.2 to 20 m/s (Tokay et al. 2013). The rain rate minimum to maximum intensity 

ranges from 0.001 mm/h (drizzle) to 1200 mm/h with an accuracy of +/- 5% for liquid and +/- 20% 

for solid. A micro-SD card located inside the datalogger housing records all data.  

https://data.eol.ucar.edu/dataset/541.029


22 

 

Figure 4. A photograph of PIPS 2A, with disdrometer and weather sensors labeled. (Image 

courtesy of Dawson, D. T.) 

Table 1. PIPS deployment details for IOP1A during VORTEX-SE (Dawson 2020). 

PIPS ID Date Start time 

(UTC) 

End Time 

(UTC) 

Lat(deg) Lon(deg) Elevation 

(m ASL) 

PIPS 1A 03/25/17 17:28:30 18:45:45 34.5207 -87.2945 205 

PIPS 1B 03/25/17 17:38:30 18:36:30 34.5587 -87.3373 215 

PIPS 2B 03/25/17 17:47:50 18:25:00 34.5728 -87.3925 207 

Table 2. PIPS deployment details for IOP1B during VORTEX-SE (Dawson 2020). 

PIPS ID Date Start time 

(UTC) 

End Time 

(UTC) 

Lat(deg) Lon(deg) Elevation 

(m ASL) 

PIPS 1A 

(D1) 

03/27/17 19:48:20 23:18:17 34.8382 -87.3912 193 

PIPS 1B 

(D1) 

03/27/17 20:54:10 21:51:57 34.5587 -87.3373 217 

PIPS 2B 

(D1) 

03/27/17 21:02:00 21:42:09 34.5163 -87.2927 205 
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 One advantage of the PARSIVEL2 disdrometer (PD) is its low cost and lightweight, 

compared to other instruments, making it rapidly deployable. Its base is heavier and sturdy, 

preventing it from easily tipping during high winds. PDs use dwell times within its single beam 

and give the maximum dimension of the drop in only one plane (Thurai et al. 2011). However, 

overestimations tend to occur in PD DSDs with drops larger than 2.4 mm in diameter (Tokay et 

al. 2013). PDs also have a higher mean mass and rain rate, particularly at rain rates above 30 mm/h, 

compared to 2D Video Disdrometers, but with 𝐷𝑚< 2 mm and/or 𝑅< 20 mm/h they perform 

similarly (Thurai et al. 2011; Tokay et al. 2013). Possible causes of the overestimation may be due 

to the presence of graupel or hail during periods of higher rain rates as well as non-fully melted 

hydrometeors together with drop shape and velocity assumptions made by the PD for large drops 

(Thurai et al. 2011).  

3.1.2. Data Filtering 

For quality control, this study follows the filtering procedures of Friedrich et al. (2013)   to 

remove unwanted particles from the sample area (Fig. 5). Strong winds, margin fallers, and 

splashing from particles lead to misclassification, errors, and unrealistic fall velocities and 

diameters. According to Friedrich et al. (2013), stationary (PIPS used in this study) and articulating 

disdrometers are prone to misclassification of particles with larger number concentrations of 

raindrops >5 mm in diameter and fall velocities <1-2 m/s. Articulating disdrometers observe higher 

concentrations of larger raindrops and higher concentration of medium sized raindrops compared 

to stationary disdrometers (Friedrich et al. 2013). Diameters >5 mm with velocities <1 m/s were 

removed to address this error. Margin fallers occur when raindrops fall through the edge of the 

laser beam, displaying as smaller drops with faster fall velocities, creating errors in the sampling 

area. Splashing errors occur when raindrops impact the disdrometer surface, break up, and fall 

through the laser beam, resulting in a wide variety of fall speeds and smaller drop diameters in the 

sampling area. These errors are filtered by removing particles that have fall velocities 60% above 

or below the fall velocity-diameter relationship for rain and that have a diameter <2 mm for 

splashing and <8 mm for margin fallers (Friedrich et al. 2013). In addition to the above QC 

procedures, this study removes all particles that are likely not rain, based on the classification 

scheme of Friedrich et al. (2013), as illustrated in Fig. 5. Raindrops should have diameters of < 8 
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mm (Rauber et al. 1991); any diameters larger are discarded and any remaining graupel and hail 

is removed.  

 

 

Figure 5. Particle hydrometeor classification scheme used to separate raindrops from other 

particles, based on fall velocity-diameter relationship. Light gray lines indicate rain, graupel, and 

hail respectively (Originally Fig. 5(a) in Friedrich et al. 2013). 

3.2 Radar Data 

 For comparison, either data collection from the S-Band radar KHTX (Huntsville, AL) or 

the KGWX (Columbus Air Force Base, MS) WSR-88D is used due to its close proximity to the 

PIPS location during their deployments (www.ncdc.noaa.gov/nexradinv/). Radar beams increase 

in height farther away from the radar causing the variables they measure to change in response to 

changes in the DSD beneath the radar beam and surface. The distance between the PIPS location 

and the KGWX radar used for the 25 March 2017 and 27 March 2017 cases ranged up to ten times 

the distance between PIPS 2A and the KHTX radar used for the 30 April 2017 case meaning less 

DSD change occurred in the 30 April 2017 case.  

WSR-88D radars scan in clear air mode, completing 5 different elevation angle scans in 10 

minutes and precipitation mode, completing 14 different elevation scans in 5-6 minutes. For the 

purposes of the analyses in this study, radar observations on the original elevation surfaces were 

remapped onto a regular grid with 1-km horizontal resolution and 100-m vertical resolution 

between 500 m and 10 km AGL.  

http://www.ncdc.noaa.gov/nexradinv/
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 Radar reflectivity, also known as echo intensity, is measured in decibels (dBZ) and 

represents the amount of transmitted radar energy returned to the receiver after hitting bugs, debris, 

birds, or in this case, precipitation (www.wunderground.com/prepare/understanding-radar). 

Decibel values range higher when the radar operates in precipitation mode vice clear air mode. A 

higher return signal at the radar leads to a higher dBZ value, which indicates greater rainfall rates. 

Reflectivity is a function of the underlying size distribution of precipitation particles. Since 

PARSIVEL disdrometers measure the DSD directly, the corresponding radar reflectivity can be 

calculated from the distribution. Under the Rayleigh approximation, the reflectivity (Z) is 

calculated from DSDs using  

                                                               𝑧 = Σ𝑖𝐷𝑖
6/𝑉                                                                  (3) 

where z is proportional to the sixth power of the diameter of the 𝑖𝑡ℎ drop 𝐷𝑖(mm6) and a 

parameter that relates quantities measured by the radar to the DSD in a volume V(m-3). From 

there, we can express the linear reflectivity factor in a logarithmic scale,  

𝑍 = 10 log10(𝑧)                                                                 (4) 

measuring Z in decibels (Rauber and Nesbitt 2018). Our approach, however, makes use of a 

polarimetric radar simulator (Jung et al. 2010, Dawson et al. 2014) based on the T-matrix method 

(Watermann 1969) to compute not only the radar reflectivity but several polarimetric observables 

as well, including 𝑍𝐷𝑅, 𝐾𝐷𝑃, and 𝜌ℎ𝑣. Equations (3) and (4) nevertheless provide an excellent 

approximation to Z for rain for the S-band radars used in this study.   

http://www.wunderground.com/prepare/understanding-radar
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4. METHODOLOGY 

4.1 Overview 

Analyses of radar observations in this study were confined to levels below the melting layer 

to minimize the impact of frozen precipitation, which can contaminate or cause more errors in the 

sample. Particularly in tornado environments, strong shear and storm-relative flow can exist in the 

lowest few hundred meters AGL (e.g. Esterheld and Giuliano 2008, Coffer et al. 2019). To quantify 

the evolution, a simple raindrop trajectory model applied to DSDs retrieved from radar 

observations of severe storms and compared with disdrometer measurements is applied. 

Disdrometer observations provide “ground-truth” measurements of DSDs compared with radar-

based DSD retrievals aloft. The trajectory model assumes the vertical profile of the horizontal 

wind is horizontally homogeneous and that vertical air motion is zero everywhere. Other 

assumptions and approximations are made for simplicity and to isolate the effect of size sorting. 

Specifically, we assume that there are no interactions between drops, no breakup, and no 

evaporation. Assuming no breakup may yield too many large drops and assuming no evaporation 

or condensational growth may mean that more smaller drops make it to the surface than actually 

would. Also, neglecting collision and coalescence means that their overall broadening effect on 

the distribution is not considered. All drops fall at a diameter-dependent empirically defined 

terminal velocity (Brandes et al. 2002; Fig. 2b), and the effect of changing air density on terminal 

velocity is neglected. 

4.2 Radar Data Pre-processing 

 Python ARM Radar Toolkit (Py-ART) provides the framework for working with radar data 

and is used to visualize, correct, and analyze radar data from weather radars in Python (Helmus 

and Collis 2016). Py-ART was used to bring the NEXRAD Level-2 radar to regular 1 km grids. A 

1 km height is extracted from the gridded radar dataset and used for the 04/30/2017, vice a 2 km 

height used for the 03/25/2017 and 03/27/2017 case. We applied an optical flow advection-

correction method using pysteps, developed by Pulkkinen et al. (2019), to interpolate the storm 

evolution between the original 4-5 minute radar scan times to 1-min intervals. This method yields 

a flow field that represents the local advective velocity of the reflectivity pattern (Fig. 6). From 
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this, we derive the storm motion vectors that are plotted on the various hodographs in section 5 for 

each case. 

 

 

Figure 6. Advection correction with pysteps of the 03/27/2017 case. The flow field (black 

arrows) represents the local advective velocity of the reflectivity pattern (color fill). 

4.3 DSD Retrieval from Radar and Gridding 

 It is important to use an appropriate set of moments when estimating DSD parameters. 

Many researchers have used various combinations of moments to estimate DSD parameters with 

the method of moments, or an estimation method of choice. DSDs are assumed to be a gamma 

distribution (Eq. 2) and we retrieve its three parameters 𝑁0, λ, and μ from the radar parameters 

reflectivity (𝑍) and differential reflectivity (𝑍𝐷𝑅), which depend mainly on the raindrop shape and 

size (Zhang et al. 2001). Ulrich (1983) suggested using the gamma distribution for illustrating a 

raindrop spectra and Smith et al. (2005) proposed using M234 because they gave the least error 

for the estimate of DSD parameters for DSDs that follow a gamma distribution fit. According to 

Zhang et al. (2001), Ulrich used a 𝑁0- μ relation but it was too noisy for their study which led to 
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deriving disdrometer observations from a constrained μ-Λ relation. “It is possible that the μ-Λ 

relationship changes depending on climatology and rain type” (Zhang et al. 2003). Polarimetric 

radar measurements and radar reflectivity have allowed alterations to the μ-Λ relation. Statistical 

uncertainties can be attributed to errors between the μ and Λ parameters (Moisseev and 

Chandrasekar 2007). Zhang et al. (2001) suggested 𝑁0, λ, and μ can be solved from any three 

moments but in their study, the second, fourth, and sixth moments fit the measurements well and 

give consistent rain rate estimations. Following this method, we retrieve the DSDs from the radar 

by assuming a gamma distribution and discretize them into PARSIVEL bins to produce a gridded 

dataset of DSDs (Fig. 7). The different colored curves are different exponential and gamma 

distribution fits using the method of moments and the sorting and averaging of two parameters 

(SATP) method (Cao et al. (2008). The transition (T) matrix method (Watermann 1969 and 

Vivekanandan et al. 1991) is used to look up scattering amplitudes and phases. 

 

 

Figure 7. 60-s PARSIVEL DSD (tan histogram) and several for ~18:11 UTC 03/25/2017. The 

white transparent histogram is the DSD for the case of only one drop per bin. After Zhang et al. 

(2001) and Cao et al. (2008), several exponential and gamma fits using the method of moments 

(MM), truncated method of moments (TMM), and sorting and averaging of two parameters 

(SATP) as applied to the observed and overlying radar observations are shown for reference.  
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Analyses were performed using a series of Jupyter notebooks (Kluyver et al. 2016).  The 

original NEXRAD Level-2 files for each case were mapped to a regular 1-km grid using py-ART 

(Helmus and Collis 2016). Pysteps was used to temporally interpolate the radar observations to 1-

min intervals using an optical flow method.  

Gamma DSD parameters (λ, 𝑁0, and μ) were retrieved from 𝑍 and 𝑍𝐷𝑅 using the method 

of moments and the constrained-gamma method of Zhang et al. (2001). The final set of gridded 

radar variables interpolated to 1-min intervals was then saved to disk for each case in preparation 

for the application of the trajectory model. 

4.4 Trajectory Model 

We apply a simple raindrop trajectory model to disdrometer and radar observations of 

severe storms. Low level wind profiles are ingested from proximity soundings for each case. 

Multiple trajectories for each size bin, grid point, and time are initialized at a given radar grid level 

aloft. Endpoints of trajectories at the surface are solved analytically knowing the terminal velocity 

and mean wind in the layer (Dawson et al. 2015). The trajectory endpoints of raindrops form a line 

oriented along the storm-relative mean wind direction in the layer and their horizontal spread can 

quantify the amount of size sorting in that layer (Dawson et al. 2015). Smaller drops fall further 

away from the initial points (Fig. 8). We choose the 1 km AGL for the 04/30 case and a 2 km AGL 

for the 03/25 and 03/27 cases then refine the horizontal grid from 1 km to 250 m to initialize the 

trajectories. We allow them to fall from all grid points at the top of the layer and hit the surface. 

We then re-bin the collection of trajectory endpoints into a new horizontal grid at the bottom which 

provides the final set of gridded DSDs at the surface. This procedure is described in more detail in 

the next two sections. 
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Figure 8. Example 𝑍𝐷𝑅 field (color fill) overlaid with trajectory endpoints of a quantity derived 

from the original retrieved DSDs at 1 km AGL for the 04/30/2017 case. 

More specifically, 𝑁𝐷 was calculated for each grid point from gamma distribution 

parameters using PARSIVEL bins. Next, the precipitation trajectory grid was set up for height 

above ground level (1 km for the 04/30 case and 2 km for the 03/25 and 03/27 cases), interpolated 

sounding for u and v, storm-relative winds, and layer-mean storm-relative winds. The diameter 

range was truncated for less than 9 mm and the range of terminal velocities were computed from 

Brandes relation. Three dimensional bins (two for space and one for time) were set up for the 

bottom of the sorting layer and 3D histograms (x, y, t) were created for number density for each 

diameter bin for drop trajectory endpoints.  

4.5 Computing of Final Surface DSDs 

The final step is to recompute the DSDs at 1-min intervals as if we are measuring them 

with a disdrometer again at the surface. Surface trajectory endpoints are binned in time and space, 

weighted by the number density of each size bin followed by constructing new 1-min DSDs. 
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Derive DSD moment-related quantities and polarimetric observables give us the sorting model 

surface DSD.  

 

 

Figure 9. Example 𝑍𝐷𝑅 field (color fill) derived from the sorted surface DSDs for the 04/30/2017 

case. 

4.6 Analysis and Comparison of Disdrometer and Final Sorted Radar DSDs  

Large drops dominate radar parameters and radars poorly capture drops close to the surface 

(Friedrich et al. 2013). Disdrometers only receive a fraction of raindrops at the surface as compared 

to the large sample size of radars. PIPS locations are retrieved followed by calculating radar 

variables for new surfaces DSDs, plotting the 𝑍 and 𝑍𝐷𝑅 at the bottom of the sorting layer, and 𝑍 

and 𝑍𝐷𝑅1 km above ground level. The radar data at the PIPS location in conjunction with the 

filtered 𝑍 and 𝑍𝐷𝑅 were plotted for each start and end time. Polarimetric fields are computed from 

PIPS DSDs then 𝑍 and 𝑍𝐷𝑅 are interpolated from sorted grids to PIPS location. Afterwards, plots 

were created to show the comparison between the size sorting model, gridded reflectivity at the 
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top of the sorting layer, original raw radar data from the gates, and the observed surface DSD 

derived from the PIPS.  
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5. RESULTS 

5.1 Case Studies 

5.1.1. 04/30/2017 

During the afternoon of April 30, 2017, a tornadic QLCS moved from southwest to 

northeast across the northern Alabama VORTEX-SE domain. We focus on the QLCS as it passed 

over the site of PIPS 2A, which was collocated with the UMASS FMCW profiling radar at 

Scottsboro Airport, Scottsboro, AL. The convective region of the QLCS passed over PIPS 2A from 

~2040 to ~2115 UTC followed by a period of stratiform precipitation until ~0000 UTC on 1 May. 

A few shear vortices appeared on radar with tornado warnings in the Scottsboro area with no 

observed tornadic activity. The SPC reported one wind report for the county at 2055 UTC. Figure 

10 shows the (left) reflectivity and (right) differential reflectivity as the QLCS passed over PIPS 

2A location at 2040 UTC. It produced several tornadoes earlier in the day over Mississippi but 

weakened as it approached Alabama. Embedded circulations persisted, but only a single tornado 

report was received over central Alabama. The closest WSR-88D radar was the Huntsville, AL 

KHTX, which was located approximately 20 km northwest at a 640 m elevation scan.   
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Figure 10. An overview of (left) reflectivity at 49.9 dBZ and (right) differential reflectivity at 2.1 

dB at time 2040 UTC as the leading edge of the storm passed over PIPS 2A. Higher 𝑍𝐷𝑅 at the 

leading edge representing larger raindrops, which can be a result of size sorting. 

 Figure 11 is a time series of the disdrometer-derived, radar-observed, and mass-weighted 

mean diameter of (a) 𝑍 and (b) 𝑍𝐷𝑅 over PIPS 2A. The time series shows DSDs and associated 

quantities plotted at 1-min intervals with raindrop diameters plotted on the y-axis ranging from 

0-9 mm and the number of concentration of drops using a color scale with a logarithmic range. A 

maximum reflectivity (~52 dBZ) and differential reflectivity (3.5 dB) were observed as the 

strongest convective region passed over PIPS 2A between 2040 and 2100 UTC. Both 𝑍 and 𝑍𝐷𝑅 

decreased as the storm entered its stratiform region after 2130 UTC, remaining below 36 dBZ 

and 1.5 dB, respectively. The radar reflectivity plotted in these figures is the ungridded 

reflectivity taken from the gate just above the disdrometer location. Overall, the 𝑍 and 𝑍𝐷𝑅of the 

PIPS vs. radar agree well throughout the entirety of the storm.  
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Figure 11. Time series of DSDs (color shading is number density) from PIPS 2A on 04/30/2017 

of (a) reflectivity and (b) differential reflectivity. Red, purple, and red-dotted lines denote 

disdrometer-derived, radar-observed, and mass-weighted mean diameter, respectively.  

 Surface DSDs obtained from binning the drop trajectory endpoints are used to compute 

quantities such as radar reflectivity. Gridded reflectivity at the surface, after applying the 

precipitation trajectory model, tends to be somewhat higher than the gridded radar reflectivity at 

the top of the sorting layer (probably due to neglecting break up in the models). A 0-1 km AGL 

sorting layer was used for this case. Differential reflectivity at the surface exhibits an enhancement 

at the leading edge of the QLCS. This enhancement at the surface relative to that at 1 km AGL is 

consistent with size sorting by the easterly storm-relative mean wind in the 0-1 km layer as shown 

by the hodograph (Fig. 14). This hodograph is derived from a special VORTEX-SE sounding taken 

at 1954 UTC near Hollywood, AL and is representative of the inflow environment of the QLCS 

and strong wind shear with height. The distribution shifts towards larger drops near the leading 

edge because the smaller drops are advected farther downwind relative to the large drops, resulting 

in a horizontal redistribution of raindrops by size. The 𝑍𝐷𝑅 gradient is stronger at the surface 

compared to 1 km because of the sorting over this layer.  
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Figure 12 (a) gridded radar reflectivity at the top of the layer (1 km AGL) and (b) gridded 

reflectivity at the surface after applying the precipitation trajectory model. Surface calculated 

reflectivity shows a higher enhancement at the leading edge. 

  

Time: 2017-04-30T20:40 
         Time: 2017-04-30T20:40 

b) 

Gridded Radar Z at 1 km AGL 

a) 

PIPS 2A PIPS 2A 

Surface Calculated Radar Z at 1 km AGL 
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Figure 13 (a) and (b) are the same as Figure 12 (a) and (b) but with differential reflectivity. 

Enhancement at the surface relative to that at 1 km is consistent with size sorting by the easterly 

storm-relative mean winds in the 0-1 km layer.  

Gridded Radar 𝒁𝑫𝑹 at 1 km AGL Surface Calculated 𝒁𝑫𝑹 

Time: 2017-04-30T20:40 Time: 2017-04-30T20:40 
a) b) 

PIPS 2A PIPS 2A 
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Figure 14. Hollywood, Alabama 1954 UTC special VORTEX-SE sounding hodograph. The 0-1 

km layer is in red, above 1 km layer in blue, the black dot represents the mean winds between the 

surface and 1 km, purple dot is the storm motion, and the purple line is the 0-1 km storm-relative 

mean wind vector. 

Finally, a time series of 𝑍 and 𝑍𝐷𝑅 is shown in Figure 15. 𝑍 and 𝑍𝐷𝑅 at PIPS 2A from the 

trajectory model are in better agreement with the disdrometer than the original radar at 1 km AGL. 

This is particularly true regarding the timing and magnitude of 𝑍 and 𝑍𝐷𝑅 at the leading edge. The 

position of the peaks for 𝑍 and 𝑍𝐷𝑅 shows that the surface DSD produced from the sorting model 

is in better agreement with the observed surface DSD at PIPS 2A. Particularly looking at 𝑍𝐷𝑅 , the 

magnitude at the leading edge for the sorting model surface DSD is in better agreement with the 

surface PIPS observation.  
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Figure 15. A time series of (a) reflectivity at PIPS and (b) differential reflectivity at PIPS. Black 

line indicates the derived reflectivity and differential reflectivity from the PIPS observation, red 

line is the 1 km AGL radar observation, and the blue line is the sorting-model surface DSD after 

sorting the trajectory model and extrapolating it to the surface.  

5.1.2. 03/27/2017 IOP 1B-D1 

 On the afternoon of March 27, 2017, a cluster of occasionally tornadic storms passed over 

PIPS 1A, PIPS 1B, and PIPS 2B from northwest to southeast, respectively. The cluster produced 

several tornadoes over Kentucky, Tennessee, and Mississippi before weakening as it approached 

the PIPS locations in northwest Alabama. The cluster began dissipating as it moved farther 

southeast, but PIPS 1B encountered the strongest cluster. There were several hail and high wind 

reports from the cluster over Alabama, but no confirmed tornadoes. PIPS 1A was located north of 

the Tennessee River (just north of Lawrence County, AL), PIPS 1B and PIPS 2B were located in 

southeast Lawrence County, AL and the closest WSR-88D radar was Columbus AFB, MS KGWX, 

which was located ~209 km southwest of PIPS 1A, ~188 km southwest of PIPS 1B, and ~193 km 

southwest of PIPS 2B. The mean height of the radar beam over PIPS 1A, PIPS 1B, and PIPS 2B 

is 2323 m, 1851 m, 1881 m, respectively. Figure 16 shows (a) KGWX radar reflectivity imagery 

of the storm as it approached the PIPS locations and (b) the tornado, wind, and hail reports from 

the Storm Prediction Center.  

 

b) a) 
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Figure 16 (a) is KGWX radar reflectivity on 27 March 2017 at 1935 UTC as cells approach PIPS 

1A, PIPS 1B, and PIPS 2B (image adapted from http://catalog.eol.ucar.edu/vortex-

se_2017/radar/113/1192/188087/54137971). Red and blue circles denote PIPS and KGWX 

locations, respectively. SPC (b) filtered storm report for 03/27/17. Red are tornado reports, blue 

are high wind reports, and green are hail reports (image adapted from 

www.spc.noaa.gov/exper/archive/event.php?date=20170327).  

 A radiosonde released over Haleyville, AL at 1924 UTC produced the skew-T log-P 

diagram (Fig. 17) to plot the vertical profiles of the atmosphere. The cluster had a small area of 

CIN between 850 mb and 800 mb followed by a narrow continuous region of CAPE, used to 

measure the updraft strength or severity of the storm. A multitude of reasons may have occurred 

due to no recorded sounding data beyond 470 mb; because of this, it displays no equilibrium level. 

The wind barbs show the change in wind speed and direction from the surface up to 470 mb, 

overall resulting in an increase in wind and a direction change from south southeast to southwest, 

represented by the hodograph (Fig. 18). The storm-relative winds at the surface are from the 

southeast and the 0-2 km storm-relative mean wind, represented by the purple line, is from the 

south southeast.  

 

 

  

a) b) 

KGWX 

http://catalog.eol.ucar.edu/vortex-se_2017/radar/113/1192/188087/54137971
http://catalog.eol.ucar.edu/vortex-se_2017/radar/113/1192/188087/54137971
http://www.spc.noaa.gov/exper/archive/event.php?date=20170327
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Figure 17.  Skew-t chart produced from Haleyville, AL 1924 UTC radiosonde. Solid green line is 

𝑇𝑑, solid red line is 𝑇, and the solid black line shows the parcels transition from the dry adiabatic 

lapse rate (DALR) to the saturated adiabatic lapse rate (SALR).  
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Figure 18. Haleyville, AL 1924 UTC VORTEX-SE hodograph sounding. The 0-2 km layer is in 

red, above 2 km layer in blue, the black dot represents the mean winds between the surface and 2 

km, purple dot is the storm motion, and the purple line is the 0-2 km storm-relative mean wind 

vector.  

Fig. 19, Fig. 20 and Fig. 21 is a time series of DSD (a) reflectivity and (b) differential 

reflectivity as different cells pass over PIPS 1A, PIPS 1B, and PIPS 2B, respectively. The largest 

cell passed over PIPS 1A, which was located farther north, with the maximum hydrometeor 

diameter occurring around 2040 UTC. PIPS 1B had a steady diameter distribution of hydrometeors 

between ~2110 UTC to ~2135 UTC. PIPS 2B encountered a weakening small cell with a lower 

number density and raindrop diameter.  
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Figure 19. A time series of DSDs (a) reflectivity and (b) differential reflectivity from PIPS 1A 

(color shading is number density) 

 

Figure 20. Same as Fig. 19 but at PIPS 1B. 
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Figure 21. Same as Fig. 19 but at PIPS 2B. 

 

Individual cells passed over each PIPS location, with the convective region of the first cell 

moving over PIPS 1A at ~1945 UTC, a second cell moving over PIPS 1B at ~2100 UTC, and a 

cell moving over PIPS 2B at ~2115 UTC. Figure 22 and 24 shows the gridded reflectivity and 

gridded differential reflectivity, respectively, at 2 km AGL as the earliest cell passed over PIPS 

1A followed by a larger cell passing over PIPS 1B and PIPS 2B. Figure 23 and 25 shows the 

surface calculated reflectivity and surface calculated differential reflectivity, respectively, for PIPS 

1A and for PIPS 1B and PIPS 2B, respectively. Each image was captured as the highest area of 

reflectivity passed over each PIPS location. The 𝑍 and 𝑍𝐷𝑅 at the surface is greater than the 𝑍 and 

𝑍𝐷𝑅 at 2 km AGL.  
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Figure 22. Time when the maximum gridded radar reflectivity at 2 km AGL was present at (a) 

PIPS 1A and (b) PIPS 1B and PIPS 2B.  
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PIPS 1A Gridded Radar Z at 2 km AGL 
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 PIPS 1B 
 
           PIPS 2B 
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        PIPS 2B 

b) 
Time: 2017-03-27T20:40 Time: 2017-03-27T21:15 
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Figure 23. Same as Fig. 22 but with the surface calculated reflectivity.  

  

 

b) a) 

PIPS 1A Surface Calculated Z PIPS 1B and PIPS 2B Surface Calculated Z 
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PIPS 1B 
 
           PIPS 2B 
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Figure 24. Same as Fig. 22 but with differential reflectivity. 

 

 

PIPS 1B and PIPS 2B Gridded Radar 𝒁𝑫𝑹 at 2 km AGL  
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       PIPS 2B 

b) Time: 2017-03-27T20:40 Time: 2017-03-27T21:15 
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Figure 25. Same as Fig. 23 but with surface calculated differential reflectivity.  

A time series of Z and 𝑍𝐷𝑅 for each PIPS is shown in Figure 26 and 27, respectively. 

Overall, when comparing the peaks for Z, the derived surface sorted DSDs (blue) agrees better 

with the reflectivity derived from the surface PIPS-observed DSDs (black) than the reflectivity 

from both the original radar gate above the PIPS (purple) and the gridded and temporally 

interpolated radar data at 2 km AGL directly above the PIPS (green). Regarding 𝑍𝐷𝑅 (Fig. 27), 

there is less agreement between the peaks of the derived surface sorted DSDs (blue) and the 

differential reflectivity derived from the surface PIPS-observed DSD (black). The reasons for the 

poor agreement in 𝑍𝐷𝑅 for this case are unknown; possibilities include errors introduced by the 

gridding procedure and sampling errors in the disdrometer data.       

  

PIPS 1A 

PIPS 1B 
 
        PIPS 2B 
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         PIPS 2B 
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PIPS 1A Surface Calculated 𝒁𝑫𝑹 PIPS 1B and PIPS 2B Surface Calculated 𝒁𝑫𝑹 

b) Time: 2017-03-27T20:40 Time: 2017-03-27T21:15 
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Figure 26. KGWX radar at PIPS 1A, PIPS 1B, and PIPS 2B versus reflectivity. Blue line is 

calculated from the size sorting model at the surface, green line is the gridded reflectivity at the 

top of the sorting layer (2 km AGL), purple line is the original raw radar data, and black line is 

the observed surface DSD derived from the PIPS.  
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Figure 27. Same as Fig. 26 but for differential reflectivity.  

5.1.3. 03/25/2017 IOP 1A  

 During the afternoon of 25 March 2017, the convective region of a nontornadic squall line 

with intermittent shear and rotation passed over PIPS 2B, PIPS 1B, and PIPS 1A sites from 

southwest to northeast, respectively. The convective region approached the PIPS location between 

~1750 to ~1800 UTC. All PIPS were located in Lawrence County, Alabama and the closest WSR-

88D radar was Columbus AFB, MS KGWX, located ~188 km southwest of all PIPS. The mean 

height of the radar beam over PIPS 2B, PIPS 1B, and PIPS 1A is 1805 m, 1855 m, and 2078 m, 
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respectively. A time series of DSD reflectivity and differential reflectivity as the squall line passes 

over PIPS 2B (Fig. 28), PIPS 1B (Fig. 29), and PIPS 1A (Fig. 30), respectively. Although PIPS 

1A was located farther south and to the east, the storm motion was from the southwest and the 

convective region of the squall line bowed causing PIPS 2B and PIPS 1B to receive raindrops 

earlier. The PIPS vs. radar observed 𝑍 agree better than 𝑍𝐷𝑅, potentially due to the distance 

between the radar and the PIPS location.  

 

Figure 28. Time series of DSD (a) reflectivity and (b) differential reflectivity as the squall line 

passed over PIPS 2B. Red, purple, and red-dotted lines denote disdrometer-derived, radar-

observed reflectivity, and mass-weighted mean diameter, respectively. 
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Figure 29. Same as Fig. 28 but at PIPS 1B.  

 

Figure 30. Same as Fig. 28 but at PIPS 1A. 
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A radiosonde released over Courtland, AL at 1759 UTC produced the skew-T log-P 

diagram (Fig. 31). Data from the sounding stopped at 530 mb. The sounding had a small area of 

CAPE between ~780 mb to ~600 mb, followed by the parcels reaching the equilibrium level, then 

entering another area of negative buoyancy. This shows that the squall line was not severe, at least 

compared to the previous two cases in this study. The wind barbs indicate the change in wind 

speed and direction from the surface up to 530 mb, overall resulting in an increase in winds and a 

small change in direction from south southwest, represented by the hodograph (Fig. 32). The 

storm-relative winds at the surface are from the north and the 0-2 km storm-relative mean wind, 

represented by the purple line, is from the south southeast.  

 

 

Figure 31. Same as Fig. 17 but using the Courtland, AL 1759 UTC radiosonde data for the PIPS 

locations on 03/25/2017.  
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Figure 32. Same as Fig. 18 but using the Courtland, AL 1759 UTC radiosonde data for the PIPS 

locations on 03/25/2017.  

 At ~1813 UTC, the center of the squall line with the highest reflectivity passed over the 

PIPS locations. Although this case produce a short period of precipitation as compared to the 

previous cases, similarly, the surface calculated 𝑍 (Fig. 33b) and 𝑍𝐷𝑅 (Fig. 34b) is stronger than 

the gridded 𝑍 (Fig. 33a) and 𝑍𝐷𝑅 (Fig. 34a) at 2 km AGL.  
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Figure 33. Gridded reflectivity (a) and surface calculated reflectivity (b) at PIPS 2B, PIPS 1B, 

and PIPS 1A for the 25 March 2017 case. 
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Figure 34. Same as Fig. 33 but for differential reflectivity.  

 The reflectivity time series (Fig. 35) is similar to the 27 March case. The overall peak 

comparison between the derived surface sorted DSDs agrees better with the reflectivity derived 

from the surface PIPS-observed DSDs than the reflectivity from both the original radar gate and 

the gridded interpolated radar above the PIPS. PIPS 1A comparison between the derived surface 

sorted DSD agrees better with the differential reflectivity derived from the surface PIPS-

observed DSDs than the differential reflectivity from both the original radar gate and the gridded 

interpolated radar above the PIPS. The latter comparison does not show the same 𝑍𝐷𝑅 agreement 

from PIPS 1B and PIPS 2B possibly due to the same reasons mentioned in the 27 March case.  
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Figure 35. Same as Fig. 26 but for the 25 March 2017 case.  
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Figure 36. Same as Fig. 27 but for the 25 March 2017 case.   
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6. CONCLUSION AND FUTURE WORK 

 In this study, disdrometer data from the 2017 VORTEX-SE field program was analyzed 

and compared to radar observations relative to each case for the PIPS location. In reality, 

microphysical processes such as evaporation, collision, coalescence, and break up cause rain DSDs 

to vary in size but were neglected for simplicity. This analysis only examined size sorting due to 

storm-relative mean winds and neglected that due to transient effects and updrafts. Storm-relative 

winds can induce size sorting resulting in variable horizontal advection leading to a distinct 

horizontal spread of different drop sizes. The goal is to evaluate the impact of size sorting on DSD 

evolution from the radar level to the surface. Radar is often the only source of microphysical 

information aloft while disdrometers provide ground-truth surface measurements of DSDs. After 

retrieval of radar and disdrometer observations, the radar data is pre-processed and interpolated, 

applied to a trajectory model then the final DSDs are computed at the surface.  

Three unique cases were used to investigate the results of radar and disdrometer DSD 

retrievals. We analyzed the 30 April case followed by the 25 March and 27 March case for 

comparison and to analyze the sorted radar DSDs at the surface. The horizontal spread of drops of 

different sizes shift as they fall towards the surface resulting from horizontal advection. Our 

trajectory model takes into account the change in the DSD due to size sorting and improves the 

agreement. Comparisons and analysis from the trajectory model derived from the discretized 

gamma distribution fits to observed radar data shows agreement in timing and magnitude of 𝑍 and 

𝑍𝐷𝑅 when compared to disdrometer observations of surface DSDs, specifically for the 30 April 

case. 𝑍𝐷𝑅 shows less of an agreement than 𝑍 possibly due to errors introduced by the gridding 

procedure, sampling errors in the disdrometer data, and the fact that we neglected several 

microphysical processes, but this will require a more thorough investigation of the DSDs. The 

sorted radar DSDs at the surface are overall closer to the disdrometer observations than the original 

radar DSDs aloft. Results also show that the spatial variation of DSDs is higher at the surface due 

to size sorting by the storm-relative mean winds. This could be due to neglecting other 

microphysical processes listed above.    

Future work will improve the trajectory model to allow more realistic inhomogeneous 

time-varying wind fields to investigate the importance of storm-scale circulations. Additionally, 

vertical profiles of retrieved DSDs from the FMCW radar will be examined in the context of the 



60 

size-sorting model. Plenty of data is not gathered beneath the lowest elevation scan of S-Band 

radars so incorporating a vertical profiling radar will narrow the loss data gap. Many storms mature 

farther away from radars, as with the 25 March and 27 March cases. As part of the motivation for 

this study, we want to mitigate the effects of being far from the radar by taking into account the 

DSD evolution below the radar horizon. Minimized distance between disdrometer locations and 

radars will provide better data comparison due to lower radar elevation scans closer to the radar. 

This is a likely reason the 30 April case has a better agreement than the other two cases.  Also, 

launching mobile radiosondes within a reasonable time frame ahead of the storm would provide 

more accurate and representative near-storm wind profiles. Methods will need continued 

modification to improve the 𝑍𝐷𝑅 agreement in timing and magnitude between the sorted DSDs at 

the surface from the trajectory model and the disdrometer observations derived from the PIPS.  
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