
TOWARD ENERGY-EFFICIENT MACHINE LEARNING:
ALGORITHMS AND ANALOG COMPUTE-IN-MEMORY

HARDWARE
by

Indranil Chakraborty

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Kaushik Roy, Chair

School of Electrical and Computer Engineering

Dr. Anand Raghunathan

School of Electrical and Computer Engineering

Dr. Vijay Raghunathan

School of Electrical and Computer Engineering

Dr. Shreyas Sen

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

Dedicated to my mother, my late father, my sister,

my brother-in-law, my niece and Deboleena

3

ACKNOWLEDGMENTS

I would like to express my gratitude towards my advisor Prof. Kaushik Roy for helping

me shape my understanding of research and guiding me through my journey at the Na-

noelectronics Research Laboratory (NRL) thus far. Kaushik has been inspirational in my

development as a researcher, always keeping me in touch with the higher level aspects of my

research. A remarkable quality in Kaushik is his dedication and commitment towards his

students, which I have truly reaped benefits of, during my course here by engaging in regular

discussions, not only about the technical aspects of research but also its philosophical val-

ues. Overall, I will forever be indebted to Kaushik for his immense support and constructive

criticism which has brought me where I am today.

I would also like to thank my doctoral thesis committee members: Prof. Anand Raghu-

nathan, Prof. Vijay Raghunathan and Prof. Shreyas Sen. I would like to take this oppor-

tunity to individually express my gratitude towards my committee members. Aside from

the countless meaningful interactions I have had with Prof. Anand, I have had the opportu-

nity to collaborate with Prof. Anand on two review papers where I have learnt immensely

about framing my research to the community. Prof. Vijay has been very welcoming for any

discussion on relatable topic. Prof. Shreyas has also taught me a lot about analyzing any

situation better. Finally, I would like to thank my Master’s advisor, Prof. Udayan Ganguly

at Indian Institute of Technology, Bombay without whom I probably wouldn’t have never

been introduced to research or thought about doing a PhD.

I would also like to thank the NRL members for creating an environment conducive for

research as well as fun activities. I have had the opportunity to know some of the best minds

who would surely make a difference in our future. I reserve a special gratitude for my friend,

now Prof. Abhronil Sengupta at Penn State University, for support since the day I started

here. I would like to also thank Dr. Akhilesh Jaiswal for helping me start my research here.

I have been grateful to have friends in NRL such as Mustafa, Nitin, Aayush, Amogh during

my PhD. Finally, a big thanks to all my collaborators and fellow lab-mates at NRL for their

immense support.

4

Last, but not the least, I would like to dedicate my doctoral journey to a few really

special people in my life: My better half, Deboleena, who has been there through all the

ups and downs in my life in the last three and a half years and helped me cope with the

pressure and stress, my mother who has always been supportive of my decision to do a PhD

despite her having to cope alone in the house, my late father who still inspires me to be a

better person, my sister for her constant encouragement, my brother-in-law and my niece

for making my life a happier place.

5

TABLE OF CONTENTS

LIST OF TABLES . 14

LIST OF FIGURES . 15

ABSTRACT . 25

1 INTRODUCTION . 28

2 CONSTRUCTING ENERGY-EFFICIENT MIXED-PRECISION NEURAL NET-

WORKS THROUGH PRINCIPAL COMPONENT ANALYSIS FOR EDGE IN-

TELLIGENCE . 32

2.1 Introduction . 32

2.2 Related Work . 34

2.3 PCA-driven Hybrid-Net Design . 37

2.3.1 PCA-driven identification of significant layers 38

2.3.2 Hybrid-Net Design . 40

2.4 Experiments, Results and Discussion . 42

2.4.1 Experiments . 42

Energy efficiency and Memory compression 43

2.4.2 Results - PCA . 45

ResNet Architectures - CIFAR-100 45

VGG Architectures - CIFAR-100 . 46

ResNet Architectures - ImageNet . 47

6

2.4.3 Image Classification Results - CIFAR-100 48

ResNet Architectures . 48

VGG architecture . 50

2.4.4 Image Classification Results - ImageNet 51

2.4.5 Statistical Analysis . 52

Fixed Optimal Solutions: . 52

Varying Optimal Solutions: . 53

2.4.6 Optimality Studies . 54

2.4.7 Discussion . 55

2.5 Conclusion . 58

3 RESISTIVE CROSSBARS AS BUILDING BLOCKS FOR MACHINE LEARNING 60

3.1 Introduction . 60

3.2 The Anatomy of Resistive Crossbars . 63

3.2.1 Device Technologies . 64

Two Terminal Devices . 65

Three Terminal Devices . 67

3.2.2 Circuits: Peripherals and Access . 68

Selectors/Access transistors . 68

Input Encoding . 70

Output Sensing . 70

7

3.2.3 Crossbar Write Operations . 72

3.2.4 Silicon Demonstrations . 74

NVM MVM macros: . 74

CMOS MVM macros: . 75

4 TECHNOLOGYAWARE TRAINING INMEMRISTIVE NEUROMORPHIC SYS-

TEMS FOR NONIDEAL SYNAPTIC CROSSBARS 77

4.1 Crossbar Implementation of Neural Networks 79

4.1.1 Types of network topologies . 79

Fully Connected Networks . 79

Convolutional Networks . 79

4.1.2 Hardware representations of Neural networks 80

4.1.3 Training . 82

4.1.4 Technologies . 83

4.2 Modeling the non-idealities . 84

4.2.1 Neuron Resistance . 85

4.2.2 Source Resistance . 86

4.2.3 Memristive Conductance Variations 87

4.2.4 Proposed Training Algorithm . 87

4.3 Simulation Framework . 90

4.3.1 Model simulations . 90

8

FCN . 90

CNN . 90

4.3.2 SPICE-like Simulations for validation 92

4.4 Results and Discussion . 92

Source and Neuron Resistance . 94

Weight variations . 95

Crossbar Size . 96

4.5 Conclusion . 98

5 GENIEX: A GENERALIZED APPROACH TO EMULATING NON-IDEALITY

IN MEMRISTIVE XBARS USING NEURAL NETWORKS 99

5.1 Introduction . 99

5.2 Related Work . 101

5.3 Analysis of NVM Non-Idealities . 102

5.4 GENIEx - A Neural Network Based Crossbar Model 105

5.5 Functional Simulator . 107

5.6 Experimental Methodology . 110

5.7 Results . 111

5.7.1 Impact on Design Parameters . 111

5.7.2 Impact of Quantization . 112

5.7.3 Impact of Bit Slicing . 114

9

5.8 Conclusion . 115

6 8T SRAM CELL AS A MULTIBIT DOT-PRODUCT ENGINE FOR BEYOND

VON NEUMANN COMPUTING . 116

6.1 Introduction . 116

6.2 8T-SRAM as a Dot Product Engine . 118

6.3 Results . 122

6.4 Variation Analysis . 129

6.4.1 Corner Analysis . 129

6.4.2 Effect of Line-Resistances . 130

6.4.3 VT Variations . 134

6.5 Discussions . 136

6.6 Conclusion . 139

7 SPARSITY AWARE COMPUTE-IN-MEMORY PROCESSOR BASED ON 8T

SRAM

(Work done in collaboration with Mustafa Ali) . 140

7.1 Introduction . 140

7.2 8T SRAM based Compute-in-Memory Cell - A Brief Recap 141

7.3 Analysis of Sparsity in ML Workloads . 141

7.4 Sparsity-Aware Compute-in-memory Macro with Reconfigurable Precision ADC 144

7.4.1 Macro Structure . 144

7.4.2 Reconfigurable-Precision SAR ADC 146

10

7.4.3 Measurement Results . 148

7.4.4 Conclusion . 151

7.5 Sparsity-Aware Compute-in-memory Processing Core 151

7.5.1 Related Work . 152

7.5.2 CIM Core Features . 152

7.5.3 Sparsity Aware CIM Compute Unit (SCU) Microarchitecture 154

Sparsity Controller (SC) . 156

CIM Macro . 157

Reconfigurable Shift-and-Add Circuits (RSnA) 158

7.5.4 Core Microarchitecture . 160

7.5.5 Mapping and Dataflow . 160

7.5.6 Tentative Floorplan . 162

7.5.7 Preliminary Results . 164

8 NEUROMORPHIC COMPUTING USINGGST-BASED PHOTONIC PLATFORMS 167

8.1 Introduction . 167

8.2 GST on Micro-ring Resonators . 169

8.3 Toward Fast Neural Computing using All-Photonic Phase Change Spiking

Neurons . 172

8.4 Photonic In-Memory Computing Primitive for Spiking Neural Networks Using

Phase-Change Materials . 184

8.4.1 Photonic Dot Product Engine . 188

11

Network Design . 188

Synapse Design constraints . 189

8.4.2 Operation of All-Photonic Spiking Neural Network 191

8.4.3 Results . 195

Device Simulations . 195

Device to System Framework . 195

8.4.4 Device Simulations . 195

Interference Errors . 198

System Level SNN performance . 198

8.4.5 Discussion . 203

8.4.6 Conclusion . 207

9 SUMMARY AND FUTURE WORK . 209

9.1 Summary . 209

9.2 Future Work . 210

A ENERGY EFFICIENCY AND MEMORY CALCULATIONS FOR DNNS 212

A.1 Energy Efficiency . 212

A.2 Memory Compression . 214

B CROSSBAR NON-IDEALITIES . 215

B.1 Read non-idealities . 215

B.1.1 Linear read non-idealities . 215

12

B.1.2 Non-linear read non-idealities . 216

B.2 Write non-idealities . 218

B.3 Impact of non-idealities on the output current 220

B.3.1 Read non-idealities . 221

B.3.2 Write Non-idealities . 227

B.3.3 Process Variations . 227

B.3.4 Device to Device Write Variations . 227

B.3.5 Cycle to Cycle Write Variations . 228

B.3.6 Device to Device Read Variations . 229

REFERENCES . 230

VITA . 258

PUBLICATIONS . 259

13

LIST OF TABLES

2.1 Networks architectures for ImageNet classification task 44

2.2 Significant Layers identified by PCA analysis 47

2.3 Comparison of different networks on CIFAR-100 49

2.4 Comparison of different networks on CIFAR-100 for VGG-15 50

2.5 Comparison of different networks on ImageNet 51

2.6 Analysis of effect of random initialization on varying optimal Hybrid-Net archi-
tecture (ResNet-20 on CIFAR-100) . 53

2.7 Network Configurations with randomly chosen layers as kb-bit precision 54

2.8 Analysis of quantization of first and last layers in Hybrid-Net (2,2) (Delta=4) on
ResNet-32 for CIFAR-100 . 57

3.1 Silicon Demonstrations . 73

4.1 Resistance Ranges for Various technologies . 84

4.2 CNN Architecture . 90

5.1 Related work comparison . 102

5.2 Non-idealities in crossbar . 103

5.3 Functional simulator parameters . 109

6.1 Comparison of 8T DPE inference accuracy on MNIST 136

7.1 Comparison with state of the art. 149

8.1 Dimensions and Material parameters . 175

8.2 Simulation Parameters . 194

A.1 Number of operations in a kb-bit layer . 213

B.1 Crossbar Simulation Parameters . 221

14

LIST OF FIGURES

1.1 Trends of ML applications in terms of computational complexity 29

2.1 (a) The PCA function in Algorithm. 1 for a particular layer showing flattening
of an instance of a 4-D tensor and subsequent PCA analysis yielding the
plot showing how the cumulative explained variance accrues with the number
of filters in a particular layer. Number of Significant filters, k is defined
as the number of filters at which the cumulative sum reaches a threshold
(say 0.99). (b) The Main() function in Algorithm. 1 is explained as we
take a standard binary network (leftmost, with first and final layers having
full-precision weights and activations) and perform the aforementioned PCA
function on each binary layer (shown in white). The resulting plot (middle)
shows the layer-wise variation in k in a ResNet-18 on ImageNet for example.
A layer is considered significant (shown by red markers), when k increases by
at least ∆. The new Hybrid-Net (rightmost) is designed by increasing the
precision of weights and activations for the significant layers (shown in blue). 36

2.2 Different network configurations based on a) ResNet-20/ResNet-32 and b)
VGG-15 architectures showing binary, kb-bit and full-precision layers in each
of the networks as described in Section 4.2. The width of the layer shown in
this figure is for CIFAR-100 dataset . 42

2.3 PCA analysis plot showing the number of principal components required to
explain 99% variance at the output of convolutional layers across different
layers for a) ResNet-32 (∆ = 4), b) ResNet-20 (∆ = 1), and c) VGG-15
(∆ = 3) on CIFAR-100 dataset and d) for ResNet-18 (∆ = 30) on ImageNet
dataset . 46

2.4 Illustration of energy-accuracy optimality of Hybrid-Net. a) Accuracy v/s En-
ergy efficiency plot showing that PCA-driven Hybrid network design achieves
more optimal tradeoffs than randomly chosen layers.. b) Normalized Energy
Efficiency v/s Accuracy plot showing optimality boundaries for the consid-
ered network configurations. It shows that Hybrid-Net (2,2) networks lie right
on the optimal boundary among the networks considered. Note, that PACT
involves a more advanced quantization algorithm than other networks. . . . 55

3.1 Layers of abstractions of resistive crossbar systems for DNN accelerators.
First, the basic building blocks of such systems are the NVM devices based
on technologies such as PCM, RRAM and Spintronics. Crossbar array with
NVM devices, is augmented with peripheral circuits to enable MVM computa-
tions. Such crossbars can be used to design large-scale hardware accelerators.
Finally, software frameworks allow workloads to be mapped to such hardware
fabrics and evaluated considering the impact of non-idealities. 61

15

3.2 resistive crossbar and its peripherals for large-scale integration. Input Encod-
ing circuits apply analog voltages to the rows and Word-line (WL) decode ac-
tivates the access devices. At the output of the crossbar, muxing network and
transimpedance amplifiers (TIA) converts analog current to voltage, which is
then passed through Sample & Hold (S&H) circuits. The Analog to Digital
Converter (ADC) is shared across the columns. The ADC outputs go through
shift and add circuits to account for bit-slicing and bit-streaming. 63

3.3 Crossbar arrangement of NVM devices to enable matrix-vector multiplication
operations. A voltage vector, V0, V1, ..., VN is applied to each row of the re-
sistive crossbar where the conductance of the devices, G11, ..., GNN , form the
2-D matrix. The current output vector I1, I2, ..., IN in the column represents
the MVM result. 64

3.4 Different NVM device technologies can be broadly categorized into two types:
Two terminal Devices and Three terminal Devices. Two terminal devices
include Phase Change Material (PCM), metal oxide Resistive Random access
memory (RRAM) and Spin Transfer Torque Magnetic Tunnel Junction (STT-
MTJ). Three terminal devices include Spin Hall Effect MTJ (SHE-MTJ) and
SHE domain wall magnet MTJ (SHE-DWM-MTJ). 66

3.5 (a) R-2R ladder based DAC. (b) Capacitance-based DAC [102] 69

3.6 (a) The resistor-based current-to-voltage converter. (b) The op-amp based
TIA [106]. 71

3.7 (a) Flash ADC architecture. (b) SAR ADC architecture [107], [108]. 72

3.8 Row inputs, xi, are encoded by the pulse-width and the column inputs, yj,
encoded as pulse amplitude. Simultaneous application of pulses at the rows
and column produces a multiplicative effect such that a higher voltage at the
column and longer pulse at the row results in a bigger change in conductance
of the NVM devices at the crosspoint [116] 74

3.9 (a) MVM macro using current based computations in 8T SRAM cells. The
weight bit is represented by node ‘Q’. By applying a voltage on RWL, the
current in the RBL is a function of the weight bit and the applied voltage.
The transistors are sized appropriately to represent multi-bit weights. (b)
MVM macro using voltage based computation in 10T SRAM cells. The local
bit-lines (LBLT and LBLF) are discharged according to the weight bit stored
in the 6T SRAM. Through charge sharing, average MVM output is calculated
in the horizontal lines [11]. 75

4.1 (a) Fully connected 3-layered neural network showing the input layer, hidden
layer, and an output layer. Each neuron in a particular layer is fed by weighted
sum of all inputs of the previous layer and it performs a sigmoid operation on
the sum to provide the inputs for the next layer. (b) CNN Architecture with
different convolutional and pooling layers terminated by a fully connected layer. 78

16

4.2 (a) Hardware implementation of a single fully connected network layer rep-
resented by two resistive crossbar arrays. The output of the crossbar will be
fed to another crossbar representing the next layer. (b) An arrangement of
multiple sub-crossbars to realize the functionality of a large crossbar. 81

4.3 Crossbar Architecture showing non-ideal elements like source and neuron re-
sistances. The final output current equation is modified by the impact of
these non-ideal elements. 85

4.4 (a) Distribution of output currents (Imean), averaged over 100 images, across
500 neurons in the hidden layer comparing the approximate model to SPICE-
like simulation framework. (b) Variation of Normalized Root Mean Square
Deviation (NRMSD) with non-ideality ratio. NRMSD is close to zero for the
relevant range of non-idealities. 91

4.5 Accuracy degradation v/s varying Rneu/Rhigh ratio for different Rs/Rhigh com-
binations comparing technology aware training scheme with normal training
for (a) FCN and (b) CNN. 93

4.6 Accuracy degradation v/s σ variations in weights for various Rs/Rhigh and
Rneu/Rhigh combinations comparing the technology aware training scheme
with normal training for (a) FCN and (b) CNN. 95

4.7 Accuracy degradation v/s crossbar size for various Rs/Rhigh and Rneu/Rhigh

combinations comparing the technology aware training scheme with normal
training for (a) FCN and (b) CNN. Larger crossbars show higher accuracy
degradation. 97

5.1 A typical non-ideal crosspoint structure with NVM devices accompanied by
a transistor at every junction of the word-lines (WL) and bit-lines (BL). . . 103

5.2 (a) Output currents from a 64x64 crossbar showing the deviation of (Inon−ideal)
from (Iideal). (b), (c) and (d) shows the box-plot variation of the NF with
varying crossbar design parameters. . 104

5.3 (a) Output current distribution showing impact of non-linearity. (b) Relative
error between the cases with and without nonlinearity increases with increase
in maximum supply voltage. 105

5.4 Crossbar computation mapped to GENIEx. V and G are concatenated to
form the input vector for neural network, with output being the ratio fR =
Iideal/Inon−ideal. 106

5.5 Comparison of NF for a typical 64x64 crossbar between HSPICE outputs,
analytical model and GENIEx. 108

5.6 Logical organization of functional simulator 108

17

5.7 Impact of non-idealities with crossbar design parameters (a) Crossbar Size,
(b) ON resistance, (c) ON/OFF ratio. (d) Comparison between analytical
model and GENIEx. . 112

5.8 Impact of precision of weights and activations on classification accuracy under
the influence of non-idealities. 113

5.9 Impact of number of bits/device and bits/stream. 114

6.1 (a) Schematic of a standard 8T-SRAM bit-cell. It consists of two decoupled
ports for reading and writing respectively. (b) First proposed configuration
(Config-A) for implementing the dot product engine using the 8T-SRAM bit-
cell. The SL is connected to the input analog voltage vi, and the RWL is
turned ON. The current IRBL through the RBL is sensed and is proportional
to the dot product vi ·gi, where gi is the ON/OFF conductance of the transis-
tors M1 and M2. (c) Second proposed configuration (Config-B). The input
analog voltages are applied to the RWL, while the SL is supplied with a con-
stant voltage Vbias. The current through the RBL is sensed in the same way
as in Config-A. . 117

6.2 8T-SRAM memory array for computing dot-products with 4-bit weight preci-
sion. Only the read port is shown, the 6T storage cell and the write port are
not shown. The array columns are grouped in four, and the transistors M1
and M2 are sized in the ratio 8 : 4 : 2 : 1 for the four columns. The output
current I j

OUT represents the weighted sum of the IRBL of the four columns,
which is approximately equal to the desired dot-product. 120

6.3 IRBL versus Vin characteristics for (a) Config. A and (b) Config. B shows the
linear region of operation for different weights. IRBL versus Weight levels for
(c) Config. A and (d) Config. B shows desirable linear relationship at various
voltages Vin. IRBL shows significant deviation from ideal output (IN = N×I1
with increasing number of rows for both (e) Config. A and (f) Config. B,
where I1 is the current corresponding to one row and N is the number of
rows. The analyses were done for VDD = 0.65V 122

6.4 IRBL versus Vin characteristics for (a) Config. A and (b) Config. B shows
the linear region of operation for different weights. IRBL versus weight levels
for (c) Config. A and (d) Config. B shows desirable linear relationship at
various voltages Vin. IRBL shows almost zero deviation from ideal output
(IN = N × I1 with increasing number of rows for both (e) Config. A and
(f) Config. B, where I1 is the current corresponding to one row and N is the
number of rows. These analyses were done for VDD = 0.65V 124

6.5 Fully connected network topology consisting of 3 layers, the input layer, the
hidden layer and the output layer [22]. We have used M=784, N = 500 and
P = 10. . 126

6.6 Thin-cell layout for a standard 8T-SRAM bit-cell [196]. 127

18

6.7 Thin-cell layout for the proposed 8T-SRAM array with 4-bit precision weights.
The width of read transistors of different bit positions are sized in the ratio
8:4:2:1. An additional metal line for SL is also required, which runs parallel
to the power-lines. This incurs an area overhead of ∼29.4% compared to the
standard 8T-SRAM bit-cell. . 127

6.8 (a) Shows the effect of global change in VT on the output current for +/-
90mV change in the nominal VT. (b) Shows that by adjusting the Vpos (
Offset compensation) or Vpos in addition to Vbias (Offset + bias compen-
sation), the resultant currents in presence of global variations can be easily
compensated for. 128

6.9 Bitcell organization of Config. B variants showing SL driven from both ends
and tapping of SL every 16 bitcells. The line resistances in the source line
(SL) and the bit-line (BL) are shown. . 131

6.10 Percentage error in output current for worst case combination (highest input
values and all weights = ‘1111’). The left set of bar graphs represent the
error for various combinations assuming 16 rows are activated simultaneous
for the dot product computation, while the right set of bar graphs correspond
to simultaneous activation of 8 rows. 132

6.11 (a) and (b) shows the percentage error map arising due to line resistance for
different weight levels ranging from ‘0000’ to ‘1111’ and input voltages ranging
from 0.35V to 0.675V for 16 and 8 activated rows. For e.g., the data point
corresponding to V = 0.35V and weight level = ‘0000’ means the test case
where all the 4-bit weight elements in the memory array are considered to be
at weight ‘0000’ and the input voltages to all rows are 0.35V. The percentage
error decreases with decreasing weight and input value. (c) Probability of
occurrence of weight levels in a trained neural network on MNIST dataset
shows lowest weight levels have the highest frequency, thus indicating low
impact due to line resistance. 133

6.12 (a) Standard deviation of current due to variations in Vt of the transistors of
the bitcells with increasing current for 1000 Monte Carlo simulations. A single
data point shown here refers to the standard deviation in output current when
16 rows are activated and input voltages to all rows are Vin and weights of all
elements are w. For different data points, we consider Vin values ranging from
0.35V to 0.675V in steps of 0.025V and weight levels ranging from 1 to 16
to capture the impact of VT variations across the input parameter space. (b)
Standard deviation as a percentage of the total current showing a decreasing
trend with higher current. 134

6.13 Average Energy comparison between conventional digitial sequential imple-
mentation and proposed Dot-product Engine (DPE). The energy is reported
for 16x16 dot product computations wherein 16 rows are simultaneously ac-
tivated and each row consists of 16 4-bit words. 138

19

7.1 Energy and area distribution of ReRam-based MVMU 140

7.2 8T SRAM array deploying current-domain compute to perform MAC opera-
tions, with the table showing compute logic. 142

7.3 (a) CONV operation on CIM using iterative MVMs. (b) Bit-level sparsity of
a ResNet-20 model running CIFAR-10 with the required ADC precision. (c)
Comparison between row gating and reconfigurable-precision ADC in terms
of energy. (d) Energy/latency scaling with ADC precision. 143

7.4 The proposed macro structure and timing diagram. 145

7.5 The proposed reconfigurable-precision SAR ADC with two example configu-
rations: 2-bit and 6-bit precision. . 146

7.6 Measured ADC results showing output vs input voltage, energy and latency
for various precisions. 147

7.7 Measured CIM macro results show good agreement between expected output
and measured output, energy efficiency for different precision and baseline
comparison on workload. 149

7.8 Die micrograph and chip summary with the macro energy breakdown 150

7.9 Standard Deviation in measured outputs from proposed CIM Macro. 150

7.10 Accuracy of fixed precision ADC v/s reconfigurable precision ADC. 151

7.11 CIM Core Features: a) SNR-aware Row Gating and b) Latency Balancing . 153

7.12 SCU Microarchitecture . 155

7.13 Sparsity Contoller Logical Diagram . 156

7.14 Sparsity-Aware CIM Macro with Reconfigurable Precision ADC, leveraging
charge-domain computation . 157

7.15 Reconfigurable Shift-and-add circuit logical flow 159

7.16 Core Microarchitecture . 160

7.17 Different SCU mappings . 161

7.18 Tentative SCU and Core Floorplan . 163

7.19 Simulation Results for Macro . 164

7.20 Macro Layout and Energy/Area Distribution of components 165

7.21 Preliminary SCU Energy/Area Breakdown 166

7.22 Estimated SCU Performance in TOPS/s . 166

20

8.1 (a) A perspective view of an add-drop microring resonator with a small patch
of GST on top showing its ports and materials. (b) A two-dimensional
top view of the ring resonator illustrating the input, output, coupling and
transmission parameters. Theoretically calculated transmission at various
wavelengths for different degrees of amorphization of GST ranging from 0%
(crystalline) to 100% (amorphous) showing that the transmission at the (c)
‘THROUGH’ ((d) ‘DROP’) port decreases (increases) with increasing degree
of amorphization. . 170

8.2 (a) Schematic of a bipolar integrate and fire neuron based on GST-Embedded
Ring resonator devices showing the integration and firing unit. (b) Timing
diagram showing the integration of membrane potential for various incident
pulses demonstrating the operation of the proposed neuron. 172

8.3 (a) Experimental benchmarking on a Si3N4-SiO2 ridge-waveguide system, val-
idating our simulation framework. (b) Simulated volume of the GST section
in the ring resonator described in Fig. 8.1 (a) delineating the different materi-
als used. Surface electric field propagation of (c) c-GST and (d) a-GST shows
significant contrast. (e) Temperature distribution along the length of cGST.
(f) Plot of final percentage amorphization as a function of initial percentage
amorphization and input power. 176

8.4 Normalized Transmission at the (a) ‘THROUGH’ and (b) ‘DROP’ ports with
increasing degree of amorphization for a particular range of frequencies includ-
ing a resonance peak at λread = 1529.1nm. As the degree of amorphization
increases, transmission at ‘THROUGH’ (‘DROP’) port decreases (increases)
thus realizing negative (positive) integration action of the neuron. (c) and (d)
shows the top-view E-field distribution of a GST-embedded ring resonator for
c-GST and a-GST showing higher field absorption for the former when the
wave passes the GST region. (e) High contrast between c-GST and a-GST
for the rectangular waveguide in the firing unit of the neuron. 178

8.5 (a) Fully connected ANN topology showing 3 interconnected layers, namely,
the input layer, the hidden layer and the output layer[22], (b) Schematic
of potential integration of an integrate-and-fire neuron in a spiking neural
network framework consisting of bipolar weights. The positive and negative
weighted sums are computed using two separate dot-product engines and in-
put to two different ring-resonators. The bidirectional integrating action of
the two ports of the ring resonator is leveraged to calculate the effective mem-
brane potential under the action of the bipolar weighted sums. Output spikes
are generated when the effective membrane potential of the neuron crosses
a threshold by the spike generation mechanism described. (c) The behavior
of the proposed integrate-and-fire neuron in the simulated SNN showing the
variation of the membrane potential under the action of incident pulses thus
showing integrate and firing action. . 180

21

8.6 (a) The basic functional elements of an SNN are spiking neurons and weighted
synaptic connections. At each time instant, the inputs are weighted by the
synaptic weights to produce a resultant output represented as ∑

i Piwi. The
‘integrate-and-fire’ neuron’s membrane potential (Vmem) is updated according
to the weighted sum and compared with a threshold value (Vth). (b) GST-
embedded single bus microring resonator structure with Si waveguides on SiO2
substrate. (c) Top view of the device illustrating the different parameters
pertaining to the ring resonator structure. The synaptic device performs an
analog multiplication of input Pin and transmission T 186

8.7 Cross-section view of Fundamental Mode profiles for a GST-embedded Si-
SiO2 waveguide section for (a) a-GST and (b) c-GST showing visible contrast
in optical absorption for the two boundary states of GST. (c) The variation of
the real (neff,GST)) and imaginary (κeff,GST) refractive indices of GST with
degree of crystallization. 187

8.8 Synaptic dot product engine showing arrangement of ring resonators with
increasing radii representing the transmission vector Tλ = {Tλ1 , . . . , TλN

}.
WDM signals gets modulated by weights corresponding to respective wave-
length and the photodetector array collects the signals to generate a cur-
rent Iout representing the dot product of transmission vector Tλ and inputs
P = {P1, . . . , PN}. 189

8.9 Synaptic dot product engine showing arrangement of ring resonators with
increasing radii representing the transmission vector Tλ = {Tλ1 , . . . , TλN

}.
WDM signals gets modulated by weights corresponding to respective wave-
length and the photodetector array collects the signals to generate a cur-
rent Iout representing the dot product of transmission vector Tλ and inputs
P = {P1, . . . , PN}. k is an amplification factor. 192

8.10 Schematic of an All-Photonic Spiking Neural Network. Two DPE arrays are
deployed to represent the positive and negative components of the weights.
The outputs of the DPE arrays are converted to optical spikes and passed
to integrate-and-fire neurons. The structure of an integrate-and-fire neuron
is illustrated in a circle. Each neuron has two inputs corresponding outputs
from the positive and negative DPE arrays. The neuron outputs a spike when
the membrane potential crosses its threshold. 193

8.11 (a) Normalized transmission for 16 different rings for 4 degrees of crystalliza-
tion (30 %, 50 %, 80 %, 100 %) showing a decreasing trend with decreasing
degree of crystallization. The range of wavelength for the 16 rings is less
than the FSR for the design. (b) and (c) shows the electric field profile in
the ring resonator system showing visible contrast in optical absorption and
field transmission at the ‘PASS’ port in the GST element for c-GST and 30%
c-GST respectively. 196

22

8.12 (a) Gaussian fit of simulated data points across degrees of crystallization
ranging from 0 % and 100 %. (b) Linearly varying transmission across 16
different programmable states (Levels) of the GST. Inset shows the degrees
of crystallization corresponding to the Levels. 197

8.13 Map of non-ideality factor (αλi) arising due to interference from adjacent rings
for each ring in the DPE row. 199

8.14 (a) Fully connected neural network topology consisting of an input layer (M),
a hidden layer (N) and an output layer (P) of neurons. The resulting synap-
tic networks are of sizes N × M and P × N(b) Evolution of classification
accuracy of handwritten digit recognition task based of MNIST dataset com-
paring our proposed Photonic SNN to ideal SNN performance. Here ideal
SNN corresponds to software-level functionalities without considering device
characteristics. 200

8.15 (a) Structure and arangement of input write waveguide at a distance tgap to
the synaptic device. The width of the write waveguide (Wwrite) is smaller than
that of the ring waveguide (Wwg) for asymmetric coupling. (b) Transmission
characteristics of 1.59 µm ring for different values of tgap compared with the
case without a write waveguide. Inset 1 (Blue) shows a zoomed-in view of the
transmission characteristics to show the different cases clearly. Inset 2 (Red)
shows the variation of percentage error in transmission at read wavelength
1562.85 nm with tgap. 203

B.1 resistive crossbars with parasitic resistances, arising from bit-line and word-
line wire resistances (Rwire), input driver resistance (Rsource), and sensing
resistance (Rsink). 216

B.2 a) I-V characteristics for a typical i) PCM, ii) RRAM and iii) Spintronic
device for RON = 10kΩ exhibiting non-linear behavior, resulting in significant
deviation from expected linear characteristic. b) i) I–V trace of the 1ES-1R
follows the exponential curve of the ES, ii) the semi-linear I–V curve of the
1TS-1R caused by the RRAM [95]. 218

B.3 a) Conductance (G) evolution curve with respect to number of programming
pulses [276]. (b) Non-linear conductance curve model vs number of program-
ming pulses for varying degree of non-linearity, showing asymmetry between
increasing and decreasing conductance trajectories. 219

B.4 Ideal (Iideal) v/s Non-ideal (Inon−ideal) current plots for a) Vsupply = 0.25V and
b) 0.5V showing that the case with both linear and non-linear non-idealities
have higher errors than solely linear non-idealities, particularly for higher
supply voltages. Inset shows the relative error (R.E) for Vsupply = 0.25V/0.5V
in Inon−ideal between the two cases (blue and red). 222

23

B.5 Mean and standard deviation of non-ideality factor (NF) highlighting the in-
dividual contributions of the different sources of read non-idealities mentioned
in Section B -A. The configurations ‘Source’, ‘Sink’, ‘Wire’ and ‘Device/Tx’
refer to cases where only the impact of source, sink, wire resistance and de-
vice/transistor non-linearities were considered respectively. The configuration
‘All’ refer to the case when all non-idealities are considered. 223

B.6 Impact of read non-idealities on resistive crossbar output, expressed as NF
(Equation (11)), on crossbar design parameters such as a) Crossbar Size, b)
Conductance ON/OFF ratio, c) ON resistance and d) Bits per device. 225

B.7 Impact of device write non-linearity and asymmetry on conductance on mean
error in final conductance, Gf inal, calculated by the mean relative error be-
tween the desired (linear) final conductance value after 20 updates and the
achieved final conductance. Here, symmetric (asymmetric) update means that
the conductance trajectories, shown in Fig. B.3 (b), are identical (different)
for negative and positive weight updates. 226

B.8 Impact of a) Device to device variations and b) cycle to cycle variations on
Normalized Conductance v/s Number of pulses characteristics. 228

B.9 Device to device variations manifesting in the read operation of the NVM
device. Variations in the fitting parameters d0 and V0 in Equation (7) results
in a variation in I-V characteristics. . 229

24

ABSTRACT

The ‘Internet of Things’ has increased the demand for artificial intelligence (AI)-based

edge computing in applications ranging from healthcare monitoring systems to autonomous

vehicles. However, the growing complexity of machine learning workloads requires rethinking

to make AI amenable to resource constrained environments such as edge devices. To that

effect, the entire stack of machine learning, from algorithms to hardware primitives, have

been explored to enable energy-efficient intelligence at the edge.

From the algorithmic aspect, model compression techniques such as quantization are

powerful tools to address the growing computational cost of ML workloads. However, quan-

tization, particularly, can result in substantial loss of performance for complex image classi-

fication tasks. To address this, a principal component analysis (PCA)-driven methodology

to identify the important layers of a binary network, and design mixed-precision networks.

The proposed Hybrid-Net achieves a significant improvement in classification accuracy over

binary networks such as XNOR-Net for ResNet and VGG architectures on CIFAR-100 and

ImageNet datasets, while still achieving up remarkable energy-efficiency.

Having explored compressed neural networks, there is a need to investigate suitable com-

puting systems to further the energy efficiency. Memristive crossbars have been extensively

explored as an alternative to traditional CMOS based systems for deep learning accelerators

due to their high on-chip storage density and efficient Matrix Vector Multiplication (MVM)

compared to digital CMOS. However, the analog nature of computing poses significant issues

due to various non-idealities such as: parasitic resistances, non-linear I-V characteristics of

the memristor device etc. To address this, a simplified equation-based modelling of the non-

ideal behavior of crossbars is performed and correspondingly, a modified technology aware

training algorithm is proposed. Building on the drawbacks of equation-based modeling, a

Generalized Approach to Emulating Non-Ideality in Memristive Crossbars using Neural Net-

works (GENIEx) is proposed where a neural network is trained on HSPICE simulation data

to learn the transfer characteristics of the non-ideal crossbar. Next, a functional simulator

was developed which includes key architectural facets such as tiling, and bit-slicing to analyze

the impact of non-idealities on the classification accuracy of large-scale neural networks.

25

To truly realize the benefits of hardware primitives and the algorithms on top of the

stack, it is necessary to build efficient devices that mimic the behavior of the fundamental

units of a neural network, namely, neurons and synapses. However, efforts have largely been

invested in implementations in the electrical domain with potential limitations of switching

speed, functional errors due to analog computing, etc. As an alternative, a purely photonic

operation of an Integrate-and-Fire Spiking neuron is proposed, based on the phase change

dynamics of Ge2Sb2Te5 (GST) embedded on top of a microring resonator, which alleviates

the energy constraints of PCMs in electrical domain. Further, the inherent parallelism of

wavelength-division multiplexing (WDM) was leveraged to propose a photonic dot-product

engine. The proposed computing platform was used to emulate a SNN inferencing engine

for image-classification tasks. These explorations at different levels of the stack can enable

energy-efficient machine learning for edge intelligence.

Having explored various domains to design efficient DNN models and studying various

hardware primitives based on emerging technologies, we focus on Silicon implementation of

compute-in-memory (CIM) primitives for machine learning acceleration based on the more

available CMOS technology. CIM primitives enable efficient matrix-vector multiplications

(MVM) through parallelized multiply-and-accumulate operations inside the memory array

itself. As CIM primitives deploy bit-serial computing, the computations are exposed bit-level

sparsity of inputs and weights in a ML model. To that effect, we present an energy-efficient

sparsity-aware reconfigurable-precision compute-in-memory (CIM) 8T-SRAM macro for ma-

chine learning (ML) applications. Standard 8T-SRAM arrays are re-purposed to enable MAC

operations using selective current flow through the read-port transistors. The proposed

macro dynamically leverages workload sparsity by reconfiguring the output precision in the

peripheral circuitry without degrading application accuracy. Specifically, we propose a new

energy-efficient reconfigurable-precision SAR ADC design with the ability to form (n+m)-

bit precision using n-bit and m-bit ADCs. Additionally, the transimpedance amplifier (TIA)

–required to convert the summed current into voltage before conversion—is reconfigured

based on sparsity to improve sense margin at lower output precision. The proposed macro,

fabricated in 65 nm technology, provides 35.5-127.2 TOPS/W as the ADC precision varies

from 6-bit to 2-bit, respectively. Building on top of the fabricated macro, we next design

26

a hierarchical CIM core micro-architecture that addresses the existing CIM scaling chal-

lenges. The proposed CIM core micro-architecture consists of 32 proposed sparsity-aware

CIM macros. The 32 macros are divided into 4 matrix-vector multiplication units (MV-

MUs) consisting of 8 macros each. The core has three unique features: i) it can adaptively

reconfigure ADC precision to achieve energy-efficiency and lower latency based on input

and weight sparsity, determined by a sparsity controller, ii) it deploys row-gating feature to

maintain SNR requirements for accurate DNN computations, and iii) hardware support for

load balancing to balance latency mismatches occurring due to different ADC precisions in

different compute units. Besides the CIM macros, the core micro-architecture consists of

input, weight, and output memories, along with instruction memory and control circuits.

The instruction set architecture allows for flexible dataflows and mapping in the proposed

core micro-architecture. The sparsity-aware processing core is scheduled to be taped out

next month. The proposed CIM demonstrations complemented by our previous analysis on

analog CIM systems progressed our understanding of this emerging paradigm in pertinence

to ML acceleration.

27

1. INTRODUCTION

The idea of building intelligent machines was conceptualized long before the recent excite-

ment about Artificial Intelligence that has engulfed today’s computing world. Alan Turing,

in his seminal paper [1], “Computing Machinery and Intelligence” was one of the first to

lay the foundation of machine intelligence. Since then, the developments in neuroscience

[2] as well as emergence of digital computers have enabled the Artifical Neural Networks

(ANNs), which have now become the basic building block of AI systems. Despite facing

enormous hurdles in realizing large scale ANNs due to their computational complexity, the

development of General Purpose Graphics Processing Units (GPGPUs) and Special Pur-

pose Machine Learning (ML) accelerators such as TPUs [3] in the last decade has made

Deep Learning (DL) pervasive in various applications such as speech recognition, predictive

systems and image and video classification [4]–[7].

The motivation for energy-efficient AI systems arise from its predicted evolution in the

coming years. Today, AI is comprised of various edge devices collecting data from the

environment and sending it over to a cloud system for processing the data. However, with

rapid proliferation of these edge devices, it becomes costly to sustain such a cloud computing

model. To that effect, it is of growing interest to enable computing in these edge devices.

Edge computing can overcome the latency of communication between edge and cloud as well

as enhance data security.

Thus far, we have established that AI at the edge is an absolute necessity. However,

the growing computational complexity of DL models poses a serious challenge toward their

deployment in resource constrained edge devices. Fig. 1.1 shows the exponential trends of

computational complexity in ML applications over the last few years [8]. There is a need,

therefore, to devise solutions at various levels of the stack which would include designing

algorithms that enable low complexity neural network models as well as building low-power

hardware based on both CMOS and emerging technologies. At the highest level, its necessary

to adapt techniques such as model compression, including quantization and pruning, to

design DNN models with reduced number of parameters and arithmetic operations. At

the lowest level, we should focus on hardware acceleration of DNN models. The main

28

Figure 1.1. Trends of ML applications in terms of computational complexity

computational kernel in a DNN is matrix multiplication, which can be data intensive. It is

imperative to accelerate this kernel through parallelism and data reuse and today’s digital

accelerators [9], [10] go a long way in overcoming the memory bandwidth bottleneck faced by

traditional computing systems when performing large-scale matrix multiplications. Despite

significant developments in digital DNN accelerators, there has been a growing interest in

the enabling computing within the memory array itself by simultaneously activating multiple

rows of an array. Such a computing paradigm is known as analog Compute-in-Memory (CIM)

where the arithmetic of matrix multiplication is performed in the bit-lines of the memory

array [11]–[14]. Such a technique can utilize the full bandwidth of on-chip memories. Further,

when implemented on emerging non-volatile memory, analog CIM systems can enable highly

dense spatial architectures capable of significantly improvement over digital implementation

of DNN accelerators. [15], [16]

In this research, we explore solutions at these aforementioned levels of the design stack,

from algorithms to devices, which can pave the way for enabling AI at the edge. First, in order

to tackle the exploding computational complexity in DNN models, researchers have explored

quantization of the activations and weights of the models. However, in DNNs, different

layers can have different quantization limits and hence a heterogeneous quantization across

29

layers can achieve optimal energy-accuracy tradeoffs. Therefore, in Chapter 2 , we propose a

Principal Component Analysis (PCA) driven design of mixed precision neural networks [17]

where we determine the significance of the layers in Binary Neural Networks [18] using PCA

and increase the bit precision of the weights and activations of the significant layers.

Having explored the design of low complexity DL models, we focus on energy-efficient

hardware primitives based on non-volatile memory (NVM) based analog compute-in-memory

(CIM) through Chapters 3 to 6. Analog CIM can potentially offer massively parallel compu-

tations thus leading to higher energy efficiency than its digital counterparts for accelerating

ML workloads. To that effect, in Chapter 3 , we introduce the background of analog CIM

using memristive crossbars [19]–[21]. Despite the promises of analog CIM primitives toward

achieving high density and energy efficiency compared to digital accelerators, the inherent

analog nature of computing can introduce computational errors due to various device-circuit

non-idealities in the system. These non-idealities can arise from parasitic and peripheral

resistances, or from non-linear device characteristics. In Chapter 4 , we develop mitigation

strategies [22] to counteract computational errors in analog CIM primitives. In Chapter

5 , we build a novel neural-network based modeling technique GENIEx [23], and develop a

simulation framework around GENIEx to evaluate large-scale DNN models on state-of-art

CIM accelerators in presence of non-idealities.

Next, we focus on implementation of silicon demonstration of an analog CIM processing

system for DNN acceleration. In Chapter 6 , we develop an in-memory computing platform

based CMOS SRAM memories [24]. In Chapter 7 , we demonstrate an implementation of

8T SRAM based CIM in TSMC 65nm technology [25]. The proposed CIM macro can

leverage data sparsity to reduce the peripheral ADC overhead and achieve energy efficiency.

We further propose a multi-macro sparsity-aware CIM processing core which is designed and

implemented in TSMC 65nm technology for an upcoming tape-out. The proposed processing

core addresses challenges in scaling up a sparsity-aware analog CIM macro such as low

signal-to-noise ratio (SNR) and sparsity imbalance. Finally, in Chapter 8 , we explore spike-

based photonic computing systems of the future based on phase change materials embedded

in photonic devices [26], [27]. Through thorough exploration and investigation of various

solutions across the stack, to the computational complexity in DNN models, this research

30

has established the ground for low-complexity DNNmodels and corresponding demonstration

of hardware acceleration based on analog CIM. It has paved the way for future research in

building low-complexity models and large-scale DNN accelerators based on analog CIM.

31

2. CONSTRUCTING ENERGY-EFFICIENT

MIXED-PRECISION NEURAL NETWORKS THROUGH

PRINCIPAL COMPONENT ANALYSIS FOR EDGE

INTELLIGENCE

2.1 Introduction

The recent advent of ‘Internet of Things’ (IOT) has deeply impacted our lives by en-

abling connectivity, communication and autonomous intelligence. With rapid proliferation

of connected devices, the amount of data that needs to be processed is ever increasing. These

data collected from numerous distributed devices are usually noisy, unstructured and hetero-

geneous [28]. Deep learning succeeds in reliably processing such complex and large volumes

of data where conventional machine learning techniques fail [29]. Thus, it has become the

driving force behind ubiquitous Artificial Intelligence (AI), and we see the pervasiveness

of deep learning in various applications such as speech recognition, predictive systems and

image and video classification [4]–[7].

Traditionally, IOT devices act as data collecting interfaces that feed the deep learning

models deployed in centralized cloud computing systems. However, such systems have their

own issues and vulnerabilities. In real-time application such as self-driving cars, the latency

of communication between IOT devices and the cloud can pose a serious safety risk. As

more IOT devices connect to the cloud, it strains the available shared bandwidth for com-

munication. Furthermore, rising concerns around data privacy and over-centralization of

information has propelled the need for decentralized user-specific systems [30], [31]. Edge

computing [32] is a promising alternative that enables IOT devices to process data, thus

reducing communication overhead and latency and ensuring decentralization of data. The

facilitation of on-chip analytics offered by edge computing can prove to be pivotal for au-

tonomous platforms such as drones and self-driving cars as well as smart appliances. In

addition, smart edge devices can play a significant role in healthcare monitoring systems and

medical applications. Intelligent edge devices can be further leveraged for swarm intelligence

based applications. However, computing in these resource constrained edge devices comes

32

with its own challenges. Deep learning models are usually large in size and computationally

intensive, thus making them difficult to implement in low-power and memory-constrained

IOT devices. Thus, there is a need to design deep learning models which can perform

effectively while requiring less memory and less computations.

One approach toward compressing neural network models is to modify the network archi-

tecture itself, such that it has fewer parameters, such as SqueezeNet [33]. Another method of

compression is pruning which aims to reduce redundancies in over-parameterized networks.

To that effect, researchers have investigated several network pruning techniques, both during

training [34], [35] and inference [36], [37].

A different technique of model compression is representing weights and activations with

reduced precision. Quantized networks [38] help achieve reduction in energy consumption

as well as improve memory compression compared to full-precision networks. Binary neural

networks [18] are an extreme case of quantization where the activations and weights are

reduced to binary representations. These networks drastically reduce the energy consump-

tion by replacing the expensive multiply and accumulate (MAC) operations with simple

add or subtract operations. This massive reduction in memory usage and computational

cost make them particularly suitable for edge computing. However, despite these benefits,

the networks suffer from performance and scalability issues, especially for complex pattern

recognition tasks. Several training algorithms [39] have been proposed to optimize network

performance to achieve state-of-art accuracy in extremely quantized neural networks. Al-

though such training methodologies recover the performance hit caused by binarizations

weights alone, they fail to completely counter the degradation caused by binarizing both

weighs and activations.

In this chapter, we present Hybrid-Net, a mixed-precision network topology fashioned by

the combination of binary and high-precision inputs and activations in different layers of a

network. We use Principal Component Analysis (PCA) to determine significance of layers

based on the ability of a layer to expand data into higher dimensional space, with the ultimate

aim of linear separability. Viewing a neural network as an iterative projection of input onto

a successively higher dimensional manifold at each layer, until the data is eventually linearly

separable allows us to identify layers that contribute relevant transformations. Following the

33

algorithm in [40], we find the ‘significant dimensions’ in a layer as the number of dimensions

that cumulatively explain 99% of the total variance of the output activation map generated

by that layer. Since we want the data to be expanded into higher dimensions at each layer, we

deem the layers at which significant dimensions increase from the previous layer as significant.

Following the identification of significant layers, we increase the bit-precision of the inputs

and weights of those layers, keeping the rest of the layers entirely binary. Traditionally,

PCA has been used primarily as a dimensionality reduction technique. It was also recently

used to identify redundancies in different layers of a neural network and prune out the

redundant features[40]. We propose a methodology where we use PCA in a reverse manner,

i.e., to increase the precision of the important layers. Hybrid-Net remarkably improves

the performance of extremely quantized neural networks, while keeping the activations and

weights of the most of the layers binary. This ensures low energy consumption and high

memory compression of extremely quantized neural networks while achieving significantly

enhanced classification performance compared to binary networks such as XNOR networks.

This work not only achieves signficant progress in the challenge of quantizing neural networks

to binary representations but also paves way for optimized yet highly accurate quantized

networks suitable for enabling intelligence at the edge.

2.2 Related Work

Various techniques have been proposed to improve the performance of quantized net-

works. Fully binary networks [18], [39] are constructed by replacing the activations with

their sign. However, these networks usually suffer from significant degradation in accuracy,

especially for larger datasets such as CIFAR-100 and ImageNet. One intuitive way of recov-

ering quantization errors is using wider networks [41] but it comes at the cost of increased

energy consumption. There have been efforts focusing on gradient calculations for approxi-

mated sign functions to ameliorate the effect of binarization [42]. More general quantization

schemes have also been explored for weights and activations [43], [44]. Although weight

quantization can be compensated by training the network with quantized weights [38], it has

been observed that input quantization pose a serious challenge to classification performance

34

for precisions lower than 4 bits. One approach that addresses this challenge involve clipping

the activations by setting an upper bound. Although this approach seems to be heuristic,

recent efforts have focused on using trainable quantization that can be dynamically ma-

nipulated[45], [46]. One such approach involves parameterized clipping where the clipping

level is dynamically adjusted through gradient descent [47]. Another approach proposed the

use of batch-normalization layers after ReLU activations to bound the activation values for

effective quantization [48]. Note, that most of these works focus on optimizing the activa-

tions when the quantization precision is 2 bits or more. Binary networks with both 1-bit

activations and weights, despite offering the most benefits in terms of computation cost and

memory compression, still suffer from significant degradation in performance compared to

full-precision networks.

An alternative path towards improving the accuracy of binary neural networks focuses on

network design techniques. To that effect, improved input representations through shortcut

connections in deep networks can significantly improve performance of binary neural net-

works without any increase in computation cost [42]. This is because shortcut connections

are usually identity in nature and do not comprise of expensive MAC operations. Combina-

tions of different kinds of input precisions have also been explored across different layers to

circumvent the significant decrease in classification accuracy of such binarized networks [49].

There has been considerable effort in making the search for optimum neural architecture

more sophisticated through efficient design space exploration [50]. A theoretical approach

towards predicting layer-wise precision requirement has been also explored [51]. Our work

differs from most of the current efforts in quantized neural networks as it lies in the realm of

hybrid network design for more optimal performance of neural networks where most of the

layers still have 1-bit weights and activations. This motivates us to propose an algorithm

to identify important layers and judiciously reinforce those particular layers with higher

bit-precision representation. To follow such a motivation, it is necessary to understand the

significance of layers, which we explain in the next section.

35

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

……

H

W

O

O

Flatten PCA

7×7 conv 64

3×3 conv 64

3×3 conv 128

3×3 conv 128

3×3 conv 128

3×3 conv 128

3×3 conv 256

3×3 conv 256

3×3 conv 256

3×3 conv 256

FC 1000

1×1 conv 128

1×1 conv 256

3×3 conv 64

3×3 conv 64

3×3 conv 64

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 512

1×1 conv 512

7×7 conv 64

3×3 conv 64

3×3 conv 128

3×3 conv 128

3×3 conv 128

3×3 conv 128

3×3 conv 256

3×3 conv 256

3×3 conv 256

3×3 conv 256

FC 1000

1×1 conv 128

1×1 conv 256

3×3 conv 64

3×3 conv 64

3×3 conv 64

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 512

1×1 conv 512

Full-precision Binary

Standard Binary Network Hybrid NetworkPCA Analysis

Hybrid-Net Design

a)

b)

PCA Hybrid-Net

kb-bit

ki - ki-1>Δ

ki - ki-1<Δ

Figure 2.1. (a) The PCA function in Algorithm. 1 for a particular layer
showing flattening of an instance of a 4-D tensor and subsequent PCA analysis
yielding the plot showing how the cumulative explained variance accrues with
the number of filters in a particular layer. Number of Significant filters, k
is defined as the number of filters at which the cumulative sum reaches a
threshold (say 0.99). (b) The Main() function in Algorithm. 1 is explained as
we take a standard binary network (leftmost, with first and final layers having
full-precision weights and activations) and perform the aforementioned PCA
function on each binary layer (shown in white). The resulting plot (middle)
shows the layer-wise variation in k in a ResNet-18 on ImageNet for example.
A layer is considered significant (shown by red markers), when k increases by
at least ∆. The new Hybrid-Net (rightmost) is designed by increasing the
precision of weights and activations for the significant layers (shown in blue).

36

2.3 PCA-driven Hybrid-Net Design

A Hybrid-Net is a neural network that employs two different bit precisions for its weights

and activations. The base network is of low precision, for example 1 bit, and certain layers

are selected and set to a higher bit precision. For selecting the layers, we use Principal

Component Analysis (PCA) on the output feature maps of each of the layers. The input

to any layer is binarized and convolved with the weight filters. We perform PCA on the

resulting output tensor. This is performed individually on the output tensor of every layer.

Given any set of correlated variables, such as the feature maps, PCA does an orthogonal

transformation to map them to uncorrelated variables called Principal Components(PCs),

which also form the orthogonal basis set for these tensors. Each of these resulting basis

vectors identify directions of varying variance in the data, and are ordered in decreasing

manner, with the first vector in the direction of highest variance. We perform such PCA

on each convolutional layer in a standalone fashion based on the transformation that it

applies on its input. It is applied only on the linear portion of the network before non-linear

activation. The aim of PCA is to identify redundancy and how many filters in that layer are

necessary to give us a near perfect reconstruction of the output. Based on the redundancy

data obtained from the PCA, we define our own significance metric to obtain significant

layers from the network.

In a neural network, each layer applies a transformation on its input and projects it to a

new feature space of ideally higher or same dimension with the objective of achieving linear

separability. PCA provides the ability to study the directions of maximum variance in the

input data. The pre-ReLU activation map generated by a filter is considered to composed of

many instances of that particular filter. Performing PCA and finding the number of filters

needed to explain a pre-defined cumulative percentage of variance identifies the number of

significant dimensions for each layer. More the number of principal components needed to

preserve a significant percentage, say T , of the total variance in the input, lesser is the re-

dundant information carried by those tensors, and higher is the significant dimensionality of

those tensors. Ideally, we want the number of PC’s required to explain T% of the total vari-

ance of the feature space to increase as we move deeper into the network in order to extract

37

more uncorrelated, unique features from the data, and project it into a higher dimensional

space that will eventually lead to linear separability at the classifier layer. Thus, the layers

for which the number of PCs explaining variance in the output data is more than that in the

input data, contribute to significant transformations on the input data. Note, the significant

dimensionality of layers does not always monotonically increase. However, regardless of the

trend, it provides us a way of judging the pliability of a layer to binarization. In this sec-

tion, we propose a methodology to identify these significant layers and subsequently design

mixed-precision networks by increasing the bit-precision of those layers.

2.3.1 PCA-driven identification of significant layers

We perform our analysis on activations of each layer, which provide a notion of activity

of each filter in that layer. Let us consider the activation matrix of the Lth layer, XL. Layer

L has O filter banks, each containing I filters of size k × k. I and O are the number of

input and output channels. The first element of the ith output map of XL is the result of

convolution of the first k × k × I sized input patch with the ith filter bank. The rest of the

elements of any particular output map of XL can be obtained by striding over the entire

input. Thus, if we consider M as the size of a minibatch, XL is a 4-dimensional tensor of

size M × H ×W × O where H and W are the height and width of the each output map.

If we flatten the 4-D data XL ∈ RM×H×W ×O into a 2-D matrix YL ∈ RM∗H∗W ×O, we would

obtain M ∗ H ∗W samples, each containing O elements equivalent to the number of filter

banks. This process is shown in Fig. 2.1 (a).

When PCA is performed over the aforementioned 2-D matrix YL, the singular value

decomposition (SVD) of the mean normalized, symmetric matrix Y T
L YL generates O eigen-

vectors vi and eigenvalues λi. The total variance in the data is given by sum of the variances

of individual parameters:

V ar =
O∑
i

(σ2
ii) = Tr(Y T

L YL) (2.1)

The contribution of any component, λi, towards the total variance can be expressed as

λi/V ar. To calculate the number of significant components, we set a threshold value T

38

Algorithm 1: Hybrid-Net Design Methodology
Function PCA(activations,layer,T)

1 [M,H,W,O] ←− size(activations[layer]);
2 act_fl ←− flatten(activations[layer],M*H*W,O);
3 run PCA on act_fl;
4 tot_var ←− total variance;
5 cum_var ←− cumulative sum of variance;
6 k ←− num of components with cum_var<T*tot_var ;
7 return k;

Function Main()

8 Train a N-layer binary network;
9 Set Threshold T ;

10 Set Delta ∆ ;
11 Set Delta kb ; // Bit Precision of significant layers

12 for i← 0 to N − 1 do
13 k[i]←− PCA(activations, i, T);

if k[i]− k[i− 1] > ∆ & i > 0 then
14 Add to Significant Layer list;

end
end

15 Create Hybrid-Net:
for i← 1 to N − 1 do

if i ∈ Siglayer then
Prec− layer ←− kb

else
Prec− layer ←− 1

end
end

16 Initialize weights with same seed
17 Train Hybrid-Net

39

which is amount of variance the first k significant components are able to explain. This can

be expressed as: ∑k
i=1(λ2

i)∑O
i=1(λ2

i)
= T (2.2)

An example of a typical curve of the cumulative sum of variance for different filter numbers,

obtained by PCA, is shown in Fig. 2.1 (a) (rightmost). As the PCA analysis produces the

k most significant components to explain T fraction of the total variance, we proceed to

identify the significant layers. We define a significant layer as the layer which transforms

the input data such that the number of significant components to explain T fraction of the

variance, increase from that required for the output of previous layer. Let ki be the number

of significant components corresponding to the ith layer. Then, it can be said that layer

i contributes a relevant transformation on the input data if ki > ki−1. It means that the

layer requires more significant components to explain the variance in the data at its output

than the previous layer. However, for a better control on deciding the important layers, we

check the condition whether ki − ki−1 > ∆ to determine if the ith layer is significant. This is

explained in Fig. 2.1 (b) (middle) where the dots marked in red denote the significant layers

where ki − ki−1 > ∆.

2.3.2 Hybrid-Net Design

The PCA analysis helps us identify a set of important layers in an N-layer network. We

design a hybrid network, ‘Hybrid-Net’, where we set the bit-precision of weights and inputs

of the important layers to a higher value, kb = 2, 4, than the other layers which have binary

weights and inputs. This is shown in Fig. 2.1 (b) (rightmost). The weights and inputs of the

first and the final layers of a N-layer network are kept full-precision, according to standard

practice [39], [43], [47]. The quantization algorithm for any kb-bit quantized layer can be

readily derived from XNOR-Net [39] where the quantized levels are:

qk−b(x) = 2(b(2
kb − 1)(x + 1)/2c

2kb − 1 − 1
2) (2.3)

40

In a layer with kb-bit weights and activations, qkb
(x) is used instead of the sign function in

layers with binary weights and activations. We use a slightly modified version of quantized

networks, proposed in [39], where the weights have a scaling factor α instead of just being

quantized. The convolution operation in between inputs X and weights W in such a network

is approximated as:

Binary: X ∗W ≈ (sign(X) ∗ sign(W))� α (2.4)

kb-bit: X ∗W ≈ (qk−b(X) ∗ qk−b(W))� α (2.5)

Here, α is the L1-norm of W and act as a scaling factor for the binary weights. In binary

layers, the activation gradients are clipped such that they lie between -1 and 1. In the kb-bit

layers, we get rid of the activation gradient clipping for better representation. Each layer of

a N-layer Hybrid-Net have either binary or kb-bit weight kernels and the activations after

each convolution are again quantized before passing to the next layer.

Hybrid-Net is expected to have a higher computation cost than a binary network. The

parameter ∆ decides the number of important layers to consider and hence a penalty is

incurred due to increase in bit-precision. We can estimate the penalty in computation cost

incurred due to the increase in bit-precision a in network with LS number of significant layers

as

P enalty =

∑
i/∈SigLayer

Bi + ∑
i∈SigLayer

Bi × p

N∑
i=1

Bi

(2.6)

Here Bi is the computation cost of a binary layer and p is the overhead of kb-bit computation

over binary computation. We will present a detailed analysis of energy consumption and

memory usage later in the manuscript (A).

For residual networks, ResNets, we include another design feature in addition to the PCA-

driven Hybrid-Net, improving input representations through residual connections. This has

been alluded to by Liu et al in [42] where adding identity shortcut connections at every

layer improves representational capability of binary networks. In standard residual networks

[6], such identity connections are added to address the vanishing gradient problem in deep

41

3×3 conv 16

3×3 conv 16

3×3 conv 32

3×3 conv 32

3×3 conv 32

3×3 conv 32

3×3 conv 64

3×3 conv 64

3×3 conv 64

3×3 conv 64

FC 100

1×1 conv 32

1×1 conv 64

3×3 conv 16

Hybrid-Net ResNet-N

3×3 conv 16

3×3 conv 16

3×3 conv 32

3×3 conv 32

3×3 conv 32

3×3 conv 32

3×3 conv 64

3×3 conv 64

3×3 conv 64

3×3 conv 64

FC 100

1×1 conv

32

1×1 conv

64

3×3 conv 16

XNOR-Net ResNet-N

3×3 conv 16

3×3 conv 16

3×3 conv 32

3×3 conv 32

3×3 conv 32

3×3 conv 32

3×3 conv 64

3×3 conv 64

3×3 conv 64

3×3 conv 64

FC 100

1×1 conv 32

1×1 conv 64

3×3 conv 16

Binary-Shortcut 1 ResNet-N

3×3 conv 16

3×3 conv 32

3×3 conv 64

3×3 conv 64

3×3 conv 64

3×3 conv 64

3×3 conv 128

3×3 conv 128

3×3 conv 128

3×3 conv 128

FC 100

1×1 conv

64

1×1 conv

128

3×3 conv 32

XNOR-2x ResNet-N

3×3 conv 16

3×3 conv 16

3×3 conv 32

3×3 conv 32

3×3 conv 32

3×3 conv 32

3×3 conv 64

3×3 conv 64

3×3 conv 64

3×3 conv 64

FC 100

1×1 conv 32

1×1 conv 64

3×3 conv 16

Hybrid-Comp A ResNet-N

Full-precision kb-bit Binary

a) b)×3/5

×2/4

×2/4

ResNet-20/ResNet-32

VGG-15

3×3 conv 64

3×3 conv 64

3×3 conv 128

3×3 conv 128

3×3 conv 256

3×3 conv 256

3×3 conv 256

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 512

FC 1024

FC 100

XNOR-Net -VGG 15

3×3 conv 64

3×3 conv 64

3×3 conv 128

3×3 conv 128

3×3 conv 256

3×3 conv 256

3×3 conv 256

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 512

FC 1024

FC 100

Hybrid-Net -VGG 15

3×3 conv 128

3×3 conv 128

3×3 conv 256

3×3 conv 256

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 1024

3×3 conv 1024

3×3 conv 1024

3×3 conv 1024

3×3 conv 1024

3×3 conv 1024

FC 1024

FC 100

XNOR-2x -VGG 15

3×3 conv 128

3×3 conv 128

3×3 conv 256

3×3 conv 256

3×3 conv 512

3×3 conv 512

3×3 conv 512

3×3 conv 1024

3×3 conv 1024

3×3 conv 1024

3×3 conv 1024

3×3 conv 1024

3×3 conv 1024

FC 1024

FC 100

Hybrid Comp A -

VGG 15

Full-precision kb-bit Binary

Figure 2.2. Different network configurations based on a) ResNet-20/ResNet-
32 and b) VGG-15 architectures showing binary, kb-bit and full-precision layers
in each of the networks as described in Section 4.2. The width of the layer
shown in this figure is for CIFAR-100 dataset

neural networks. However, in case of binary networks, these connections serve to provide an

improved representation by carrying floating-point information from the previous layer. As

a result, the Hybrid-Net design also considers the effect of adding such highway connections

at every layer. Note, in case of convolution layers which induce a change in size of each

feature map, the shortcut connections consist of 1× 1 convolution weight layers to account

for the change in size [6].

2.4 Experiments, Results and Discussion

2.4.1 Experiments

We evaluated the performance of all the networks described in this section 4.2 in PyTorch

[52]. We perform image classification on the datasets CIFAR-100 [53] and ImageNet [54].

The CIFAR-100 dataset has 50000 training images and 10000 testing images of size 32× 32

42

for 100 classes. For the CIFAR-100 dataset, we explore the proposed Hybrid-Net design

methodology on standard network architectures, ResNet-20, ResNet-32 and VGG-15, where

the training algorithm for the quantized layers has been adopted from [39]. We extended our

analysis to the ImageNet dataset [54] which is the most challenging dataset pertaining to

image classification tasks. It consists of 1.2 million training images and 50000 validation im-

ages divided into 1000 categories. For simplicity, we considered ResNet-18 for our ImageNet

evaluation. To compare against the proposed Hybrid-Net designs, we explore different net-

work configurations as baselines, for ResNet, shown in Fig. 2.2 (a) and VGG architectures,

shown in Fig. 2.2 (b). XNOR-Net is the base skeleton network we design other networks on.

Binary-Shortcut is same as XNOR-Net except it has residual connections every layer similar

to [42]. Hybrid-Comp A is formed by inter-layer sectioning, i.e., dividing the network into 2

parts (N−k binary and k kb-bit layers) where N is the number of the layers between the first

and last layer. The widths of the network architectures, shown in Fig. 2.2 (a) and Fig. 2.2

(b) are for CIFAR-100 dataset. For ImageNet, we have used a wider network architecture,

which we describe in Table. 2.1 . We have also compared our proposed Hybrid-Net designs

against state-of-art quantized networks such as [43], [45], [47] for ImageNet. We performed

simulations for 5 different random initializations for all networks on CIFAR-100 dataset.

For simplicity, we performed simulations for 3 different random initializations on 4 selected

networks and 1 initialization for the rest of the networks on ImageNet dataset. The accuracy

reported for both datasets is the top-1 accuracy and the Mean ± SD accuracy provides the

mean and standard deviation of accuracies obtained for different random initializations.

Energy efficiency and Memory compression

We have briefly alluded to the possible penalty incurred due to increasing the bit-precision

of certain layers in a network. To identify its effect with respect to the entire network metrics

and further illustrate the benefits of the proposed Hybrid-Nets, we perform a storage and

computation analysis to calculate the energy efficiency and memory compression of the

43

Table 2.1. Networks architectures for ImageNet classification task
ResNet - 18

7×7 conv 64 stride 2
3×3 maxpool stride 2

3×3 conv 64 stride 1 (× 4)
3×3 conv 128 stride 2

3×3 conv 128 stride 1 (× 3)
3×3 conv 256 stride 2

3×3 conv 256 stride 1 (× 3)
3×3 conv 512 stride 2

3×3 conv 512 stride 1 (× 3)
Linear 1000

proposed networks. For any two networks A and B, the energy efficiency and memory

compression of Network A with respect to Network B can be defined as:

Energy Efficiency (E.E) = EA

EB

Memory Compression (M.C) = MA

MB

(2.7)

where EA and EB are the energy consumed by Network A and Network B respectively, MA

and MB are the memory used for storing the weights of Network A and Network B, respec-

tively. We estimate energy efficiency (E.E) and memory-compression (M.C) with respect to

an full-precision network and normalize it with respect to an XNOR-Net network which is an

entirely binary network except the first and final layer. Thus, the normalized E.E (E.ENorm)

and normalized M.C (M.CNorm) of any network A can be written as:

E.E(A) =
∑

i Ei(FP)∑
i Ei(A)

E.ENorm(A) = E.E(A)
E.E(XNOR)

M.C(A) =
∑

i Mi(FP)∑
i Mi(A)

M.CNorm(A) = M.C(A)
M.C(XNOR)

(2.8)

44

Here, Ei(FP)(Mi(FP)) is the energy (memory) consumed by the ith layer of a network

with full-precision weights and activations whereas Ei(A)(Mi(A) is the energy (memory)

consumed by the ith layer of any network A under consideration.

2.4.2 Results - PCA

We perform PCA analysis on the activations of each convolutional layer and extract the

number of principal components required to explain a T fraction of variance in the data.

The design parameters such as T and subsequently ∆ are heuristically. For all analysis, we

fix T = 99% as this makes the increases in significant components, k across various layers

clearly distinguishable. The ∆ values are chosen based on the variation in k across layers. A

higher ∆ value yields less number of significant layers. For clarity, we perform our analysis

for various ∆ values.

ResNet Architectures - CIFAR-100

For ResNet architectures, we perform the PCA on a plain version of a binary network

devoid of any residual connections. We decided to do this to isolate the effect of the convo-

lution layers on the activations, instead of having residual connections. This is done because

we focus on the quantization of the filters of the layers and the residual additions may distort

the output feature space and hence the information we seek from it. Fig. 2.3 (a) and (b)

shows the variation in the number of filters required to explain T = 99% with different layers

for ResNet-20 and ResNet-32 architectures respectively. As expected, the maximum change

in k occurs when the number of output channels increase. However, we observe a trend in

both networks, that the layers just after the output channels increase from, say 16 to 32

or 32 to 64, attribute for the maximum change in the number of significant filters. Based

on our criteria for significant layers, discussed in Section 3.1, we fix a ∆ = 1 for Resnet-20

and ∆ = 4 for ResNet-32 to identify the layers where the number of significant components

undergo a change more than ∆. Fig. 2.2 (a) also shows those layers marked by red dots.

Note, by varying the ∆, more or less number of layers can be considered as significant. After

45

a) b)

c)

ImageNet – ResNet-18

CIFAR-100 - ResNet-32

d)

CIFAR-100 - ResNet-20

CIFAR-100 – VGG-15

Figure 2.3. PCA analysis plot showing the number of principal components
required to explain 99% variance at the output of convolutional layers across
different layers for a) ResNet-32 (∆ = 4), b) ResNet-20 (∆ = 1), and c) VGG-
15 (∆ = 3) on CIFAR-100 dataset and d) for ResNet-18 (∆ = 30) on ImageNet
dataset

performing this analysis on a plain version of the ResNet architecture, we perform network

simulations on the standard version with residual connections.

VGG Architectures - CIFAR-100

For VGG architecture, we perform the PCA of a binary network which has binary weights

and activations for all layers except the first and the last. Fig. 2.3 (c) shows the plot showing

how the number of filters required to explain T = 99% of the variance changes with different

layers for a VGG-15 architecture. We observe that the number of significant filters mostly

46

Table 2.2. Significant Layers identified by PCA analysis
CIFAR-100

Network Arch Significant layers
ResNet-20 (∆ = 1) 8, 9, 10, 14, 15, 16, 18
ResNet-20 (∆ = 2) 8, 9, 14, 15
ResNet-32 (∆ = 4) 12, 13, 22, 23, 24
VGG-15 (∆ = 3) 3, 5, 8, 11, 12
VGG-15 (∆ = 10) 3, 5, 8

ImageNet
Network Arch Significant layers
ResNet-18 (∆ = 30) 6, 10, 14, 15
ResNet-18 (∆ = 20) 6, 10, 11, 14, 15, 16
ResNet-18 (∆ = 10) 6, 7, 10, 11, 14, 15, 16

increase when the number of filter bank increases at a particular layer. For rest of the

layers, it remains fairly constant. As the PCA plot shows very little variation across layers,

we consider a relatively lower ∆ = 3 with respect to the number of filters. We mark the

significant layers by red dots in Fig. 2.3 (c). Table. 2.2 lists the different combination of

significant layers obtained from ResNet and VGG architectures through the PCA analysis for

different ∆ values for CIFAR-100 dataset. Note, we did not choose a lower ∆ for ResNet-32

as it would have included many layers which would increase the computation cost without

a significant benefit in accuracy.

ResNet Architectures - ImageNet

We further perform PCA analysis on ResNet-18 architecture for the ImageNet dataset.

Fig. 2.3 (d) shows the plot showing how the number of filters required to explain T = 99%

of the variance changes with different layers for ResNet-18 for ∆ = 10. The significant layers

identified by our proposed methodology are marked with red dots. We observe a similar

trend as in case of CIFAR-100, that maximum increase in the number of significant filters,

k, occur in the first few layers after every change in filter size. We perform the PCA analysis

for ∆ = 10, 20, 30 to identify the significant layers, listed in Table. 2.2 .

47

2.4.3 Image Classification Results - CIFAR-100

ResNet Architectures

The ResNet-N architecture consists of N-1 convolution layers and a fully-connected clas-

sifier. As discussed before, the first convolution layer and the classifier have full precision

inputs and weights. For CIFAR-100 dataset, we consider N = 20 and N = 32. Further, we

consider a slightly modified version of ResNet, where we add identity shortcut connections

at every layer instead of every two layers for better input representation, as discussed earlier.

We increase the bit-precision of weights and inputs of the layers obtained from PCA analysis

to bit precisions kb = 2 and kb = 4 to form Hybrid-Net (kb, kb). The rest of the layers have

binary representations for weights and inputs. We also compare the proposed Hybrid-Net

with Hybrid-Comp A (kb, kb) (k), which is formed by splitting the entire network into N −k

binary and k kb-bit sections. Table. 2.4 shows that accuracy, energy efficiency and memory

compression of the proposed Hybrid-Net based on ResNet-20 and ResNet-32 in comparison

to XNOR-Net and other kinds of hybrid networks discussed in Fig. 2.2 .

We observe that the proposed Hybrid-Net achieves a much superior trade-off between ac-

curacy, energy efficiency and memory compression compared to other kinds of hybridization

techniques. Moreover, in case of both ResNet-20 and ResNet-32, Hybrid-Net increases the

classification accuracy by 10-11% compared to a XNOR-Net with minimal degradation in

efficiency and compression. For example, Hybrid-Net (2,2) (∆ = 1) based on ResNet-20 can

be expected to have only 36% ± 0.03% of the accuracy degradation of a XNOR network with

respect to a full precision network while only costing 13% extra energy. While quantizing

the entire network to 2-bit inputs and weights (Quantized (2,2)) achieves a slightly higher

accuracy, we show that the our principle of increasing the bit-precision of few significant

layers captures most of the increase in accuracy from an XNOR-Net to a 2-bit networks.

Hybrid-Net thus consumes 14% less energy and 12% less memory for ResNet-20 than a 2-bit

network with a performance within 2% of the latter. For ResNet-32, the benefits of Hybrid-

Net is even pronounced where it consumes 24% less energy and 26% less memory than a

2-bit network while achieving accuracy within 4% of the latter. Hybrid-Net thus ensures a

signficant improvement in accuracy over a binary network without making the entire network

48

Table 2.3. Comparison of different networks on CIFAR-100
ResNet-20

FP Accuracy - 69.49%
E.E(XNOR) - 16.35, M.C(XNOR) - 17.26

Network Type Best Accuracy (%) Mean ± SD Accuracy (%) E.ENorm M.CNorm

XNOR 50.50 50.23 ± 0.21 1 1
Binary- Shortcut
1

54.16 53.92 ± 0.21 0.99 1

Hybrid-Net (2,2)
(∆=1)

62.84 62.5 ± 0.24 0.87 0.77

Hybrid-Net (2,2)
(∆=2)

60.93 60.53 ± 0.39 0.93 0.88

Hybrid-Net (4,4)
(∆=1)

63.88 63.38 ± 0.49 0.7 0.53

Hybrid-Net (4,4)
(∆=2)

61.62 61.53 ± 0.1 0.82 0.7

Quantize(2,2) 65.81 65.19 ± 0.49 0.73 0.65
Hybrid-Comp A
(2,2)(k=6)

62.36 61.79 ± 0.34 0.88 0.71

XNOR2x 63.03 62.81 ± 0.14 0.39 0.33
Resnet-32

FP Accuracy - 70.62%
E.E(XNOR) - 18.42, M.CNorm - 20.44

Network Type Best Accuracy (%) Mean ± SD Accuracy (%) E.ENorm M.CNorm

XNOR 53.89 53.48 ± 0.27 1 1
Binary- Shortcut
1

58.98 58.23 ± 0.61 0.99 1

Hybrid-Net (2,2)
(∆=4)

64.34 63.75 ± 0.39 0.94 0.87

Hybrid-Net (4,4)
(∆=4)

64.45 64.28 ± 0.18 0.84 0.69

Quantize(2,2) 68.04 67.73 ± 0.21 0.7 0.61
Hybrid-Comp A
(2,2)

62.41 62.15 ± 0.2 0.91 0.76

XNOR2x 65.20 65.11 ± 0.07 0.38 0.31

2-bit. We also show that Hybrid-Net achieves a higher accuracy than Hybrid-Comp A net-

works while consuming less energy for both ResNet-20 and ResNet-32, thus demonstrating

the effectiveness of the design methodology.

49

Table 2.4. Comparison of different networks on CIFAR-100 for VGG-15
VGG-15

FP Accuracy - 68.31%
E.E(XNOR) - 21.77, M.CNorm - 26.24

Network Type Best Accuracy (%) Mean ± SD Accuracy (%) E.ENorm M.CNorm

XNOR 54.30 54.23 ± 0.1 1 1
Hybrid-Net (2,2)
(∆=3)

61.81 61.67 ± 0.08 0.84 0.75

Hybrid-Net (2,2)
(∆=10)

60.13 59.87 ± 0.25 0.93 0.92

Hybrid-Net (4,4)
(∆=3)

63.38 63.12 ± 0.15 0.64 0.5

Hybrid-Net (4,4)
(∆=10)

60.37 60.06 ± 0.18 0.81 0.8

Quantize(2,2) 68.90 68.63 ± 0.28 0.65 0.55
Hybrid-Comp A
(2,2) (k=3)

58.01 57.46 ± 0.38 0.85 0.72

XNOR2x 58.24 57.35 ± 0.54 0.29 0.3

VGG architecture

We further extend our analysis to VGG architectures. We considered VGG-15, which

consists of 13 convolutional and 2 fully-connected layers as shown in Fig. 2.2 (b). We

kept one of the fully-connected layer binary to preserve energy-efficiency. Table 2.4 lists the

accuracy, energy efficiency and memory compression results for VGG-15 on CIFAR-100 for

different networks. We consider ∆ = 3 and ∆ = 10 for our analysis and for each of the

network configurations we use kb = 2, 4 for the significant layers. We observe that Hybrid-

Net achieves 13% higher accuracy than a XNOR-Net with minimal degradation in efficiency.

When we make the inputs and weights of the entire network 2-bit (Quantize (2,2)), we achieve

an even higher accuracy. We also show that Hybrid-Net with 2-bit layers achieve a better

performance than Hybrid-Comp A for iso-efficiency in energy and memory. Similar to trends

in ResNet, we observe that making the significant layers 4-bit while keeping the rest of the

layers binary improves performance, however, at the cost of energy-efficiency. An entirely

2-bit network proves to be a more efficient solution. In summary, even for VGG architecture,

we show that Hybrid-Net achieves 7.44% higher classification accuracy compared to a XNOR

network while keeping most of the layers binary.

50

Table 2.5. Comparison of different networks on ImageNet
Resnet-18

FP Accuracy - 69.15%
E.E(XNOR) - 8.57, M.C(XNOR) - 13.35

Network Type Best Accuracy
(%)

Mean ± SD Accuracy
(%)

E.ENorm M.CNorm

XNOR 50.33 – 1 1
Binary-Shortcut 1 54.36 54.15 ± 0.15 1 1
Bi-Real Net [42] 56.9 – 1 1

Hybrid-Net (2,2) (∆ = 30) 60.38 59.75 ± 0.44 0.96 0.87
Hybrid-Net (2,2) (∆ = 20) 61.95 61.89 ± 0.04 0.93 0.8
Hybrid-Net (2,2) (∆ = 10) 62.73 – 0.92 0.8
Hybrid-Net (4,4) (∆ = 30) 61.70 60.54 ± 0.84 0.89 0.7

Quantize (2,2)

XNOR-
kbit

64.51 –

0.84 0.71DoReFA
[43]

62.6 –

PACT [47] 67 –
LQ-Nets

[45]
64.9 –

Hybrid [49] 54.9 – 0.68 1
Hybrid-Comp A (2,2) (k=4) 59.47 – 0.94 0.77

2.4.4 Image Classification Results - ImageNet

We evaluate the proposed Hybrid-Net design Table. 2.5 . We observe that the XNOR

network suffers a significant degradation in accuracy from a full-precision network. Even

the Binary-Shortcut 1 network with residual connections at every layer fail to recover the

classification accuracy. With improved quantization schemes and weight update mechanisms,

Bi-Real Net [42] has shown a slightly higher accuracy. Compared to these binary networks,

we observe that the proposed Hybrid-Net, considering both 2-bit and 4-bit weights and

activations achieves upto over 10 % higher accuracy than corresponding XNOR network.

In particular, Hybrid-Net (2,2) (∆ = 20) can be expected to have only 38.6% ± 0.002% of

the accuracy degradation of a XNOR network with respect to a full-precision network while

only costing 7% extra energy. Quantizing the activations and weights of the entire network

to 2-bits can further increase the accuracy by 1-2% but at the cost of a 15-20% increase

51

in energy consumption than Hybrid-Net. Note, that we have provided results as baselines

for different input quantization algorithms, such as DoReFA-Net [43], LQ-Net [45], and

PACT [47], for the Quantize (2,2) network although we have used the XNOR quantization

(described in Section 3.2) in this chapter. We also show Hybrid-Net (2,2) achieves upto 7.4%

higher accuracy with respect to other methods of hybridization [49]. This work shows that

increasing the bit-precision of a few significant layers can remarkably boost the performance

of binary neural networks without making the entire network higher precision. Note, that

using improved quantization schemes [42], [47] can potentially further increase the accuracies

of the proposed Hybrid-Nets.

2.4.5 Statistical Analysis

We have mentioned in an earlier subsection that we perform simulation for various ran-

dom initializations. To understand the amount of variations in the results, we performed

simulations for two cases:

(a) Fixed Optimal Solutions: We define a binary base network with any random ini-

tialization. We run a PCA analysis and obtain a optimal Hybrid-Net. Next, we train the

Hybrid-Net with various random initializations.

(b)Varying Optimal Solutions: We train the base binary network with different random

initializations and run PCA analysis on each case. This provides various optimal solutions

of Hybrid-Net with different combinations of significant layers. Then we perform accuracy

simulations for corresponding random initializations.

Fixed Optimal Solutions:

We performed simulations for all cases explained in the chapter for 5 different random

initializations. For simplicity, we considered 3 random initializations for 4 networks for

ImageNet. Note, the energy and memory costs depend on the network architecture and is

fixed for a particular architecture. The results in Table. 2.4 and 2.5 shows the variations in

accuracies are within 2% of the best accuracies.

52

Varying Optimal Solutions:

We trained the base binary network for ResNet-20 on CIFAR-100 for different initializa-

tions and performed PCA analysis on each of them to obtain varying optimal solutions for

different ∆ values. We observe that the optimal solutions overlap quite significantly. The

resulting energy efficiency and memory compression metrics also do not vary remarkably.

We perform accuracy analysis for each optimal solution for their corresponding random ini-

tialization to observe the variations in results. The results are presented in Table. 2.6 . Based

on the analysis, we can expect the Hybrid-Net (2,2) (∆=1) to have only 37.7 ± 7E-3 % of the

accuracy degradation of a XNOR network with respect to a full-precision network with only

12 ± 1.22 % extra energy cost. Similarly, Hybrid-Net (2,2) (∆=2) is expected to have only

41 ± 0.01 % of the accuracy degradation of a XNOR network with respect to a full-precision

network with only 9 ± 1.4 % extra energy cost.

Table 2.6. Analysis of effect of random initialization on varying optimal
Hybrid-Net architecture (ResNet-20 on CIFAR-100)

∆
Init

Significant layers Best Ac-
curacy
(%)

Mean ± SD
Accuracy (%)

E.ENorm M.CNorm

1

1 8,9,10,14,15,16,18 62.84 62.46 ± 0.23 0.88 0.77
2 5,8,9,14,15,16 62.14 61.59 ± 0.29 0.89 0.82
3 7,8,9,14,15,16 62.17 61.85 ± 0.19 0.89 0.82
4 2,8,9,10,14,15,16,18 63.4 63.15 ± 0.13 0.86 0.77

2

1 8,9,14,15 61.49 60.72 ± 0.52 0.93 0.88
2 8,9,14,15,16 61.29 61.48 ± 0.29 0.91 0.83
3 6,8,9,14,15,16 61.70 61.82 ± 0.53 0.89 0.82
4 8,9,14,15,16 61.87 61.48 ± 0.29 0.91 0.83

Following this analysis, we can conclude that variation in classification accuracy due to

different random initializations vary within a range of 2% for all cases considered. Further,

it is true that random initializations lead to varying optimal solutions which would mean

the PCA step needs to be performed for every network initialization and dataset. For

edge applications, the network can be tuned for a target application during initial stages of

deployment.

53

2.4.6 Optimality Studies

The optimality of the proposed Hybrid-Net configurations can be understood through two

visualizations. First, we compare the network designed through the proposed PCA-driven

methodology with arbitrarily defined network architectures with randomly chosen layers as

kb-bit precision. We have performed this analysis on ResNet-32 for CIFAR-100 dataset. For

identical comparisons to the proposed network Hybrid-Net(2,2) (∆ = 1), we have defined

networks with randomly chosen 6 or 7 layers with kb-bit precision. Table. 2.7 shows the

networks. The numbers within the bracket signifies the layers with kb-bit precision. The rest

of the layers in this network is binary. Fig. 2.4 (a) shows the resulting plot.

Table 2.7. Network Configurations with randomly chosen layers as kb-bit precision
Network
index

Network Configurations Best
Accuracy
(%)

Mean ± SD
Accuracy (%)

Energy

N1 Hybrid-Net (2,2) (Delta=4) 64.34 63.75 ± 0.39 0.94
N2 Hybrid-Net (25, 26, 27, 28, 29, 30, 31) 62.70 62.62 ± 0.09 0.90
N3 Hybrid-Net (2, 11, 12, 20, 21, 23, 29) 63.43 63.00 ± 0.37 0.91
N4 Hybrid-Net (12, 17, 18, 20, 24, 25, 26) 63.81 63.46 ± 0.21 0.91
N5 Hybrid-Net (2, 5, 6, 7, 20, 28) 61.26 61.04 ± 0.24 0.92
N6 Hybrid-Net (2, 17, 22, 25, 28, 30) 63.57 63.43 ± 0.12 0.93

We observe that hybrid network configurations with similar energy efficiencies lead to

different accuracies. This gives the intuition that some layers might be more significant

than others. This is the premise our technique is based on where we provide a methodology

to identify those significant layers. We observe that PCA-driven methodology of designing

Hybrid-Net achieves a better energy-accuracy tradeoff than networks with randomly chosen

layers as kb-bit precision.

Another visualization of optimality would be a comparison of the networks with varying

∆ and other baselines considered in this work. Here, we plot the best accuracies obtained for

different configurations of ResNet-20 on CIFAR-100 and ResNet-18 on ImageNet described

in Table. 2.4 and Table. 2.5 . Fig. 2.4 (b) shows such a plot.

Note, that its difficult to comment on Pareto frontier without doing an exhaustive search

of networks which can prove to be quite time expensive. In this chapter, we have focused

54

a) ResNet-20 (CIFAR-100) ResNet-18 (ImageNet)ResNet-32 (CIFAR-100) b)

Figure 2.4. Illustration of energy-accuracy optimality of Hybrid-Net. a) Ac-
curacy v/s Energy efficiency plot showing that PCA-driven Hybrid network
design achieves more optimal tradeoffs than randomly chosen layers.. b) Nor-
malized Energy Efficiency v/s Accuracy plot showing optimality boundaries
for the considered network configurations. It shows that Hybrid-Net (2,2)
networks lie right on the optimal boundary among the networks considered.
Note, that PACT involves a more advanced quantization algorithm than other
networks.

on improving the accuracy of extremely quantized neural networks without a significant

degradation in energy efficiency. Our technique proposes a methodology to design hybrid

networks through a PCA-driven significance analysis, which achieves 10% higher accuracy

with less than 6-10% increase in energy consumption. Out of the network configurations

considered, Hybrid-Net (2,2) configurations shows that the proposed design principle can

lead us to optimality for both CIFAR-100 and ImageNet. The absolute Pareto optimality is

difficult to gauge without performing an exhaustive search.

2.4.7 Discussion

The proposed Hybrid-Net design uses PCA-driven hybridization of extremely quantized

neural networks, resulting in significant improvements and observations as listed. One key

contribution of the proposed methodology is that we can design hybrid networks without

any iterations. It does not require an iterative design space exploration to identify optimal

networks. Moreover, this methodology shows that increasing the bit-precision of only the

significant layers in a binary network achieves performance close to that of a network that

is entirely composed of layers with higher bit-precision weights and activations. Intuitively,

55

a 2-bit network performs much better than a binary network. However, our analysis shows

that it is not necessary to make the weights and activations of the entire network 2-bit.

Hybrid-Net achieves more than ∼ 10% improvement over a XNOR network, which is a fully

binary network except the first and final layers, by increasing the bit-precision of less than

half of the entire network. In fact, for deeper networks, like ResNet-34, this improvement

is achieved with only ∼ 6% increase in energy consumption from a XNOR-Net [39]. Thus,

Hybrid-Net goes a long way in reaching close to high-precision accuracies with networks

which are mostly binary and attain comparable energy-efficiency and memory compression

to binary networks such as XNOR-Net [39] and BNN [18]. Moreover, this methodology can

be extended to any network where making significant layers of the network kb2-bit while

keeping the rest of the network kb1-bit (kb2 > kb1), can potentially produce comparable

performance with enhanced energy-efficiency than an entirely kb2-bit network.

Secondly, the performance of Hybrid-Net is subject to the nature of the plots obtained

from PCA on the binary version of the networks. For example, for ResNet architectures (Fig.

2.3 (a), (b) and (c) for CIFAR-100 and Fig. 2.3 (d) for ImageNet), we observe the number

of significant components increase for the layers which are adjacent to the ones where the

number of output channels increase and then decrease for the later layers which have the

same number of output channels. It can be said that the later layers are not adding to the

linear separability of the data and binarizing them preserve the accuracy as observed. Or

in other words, the significant layers identified using our proposed methodology contribute

remarkably higher to the linear separability than the other layers. This is reflected in the

results where we show the performance difference between Hybrid-Net and a 2-bit network

is less than 4%. However, for VGG architectures, we observe that the PCA plot remains

fairly flat, which means that the identified significant layers are not remarkably different in

their contribution towards linear separability of the data in comparison to the other layers.

This is reflected in the performance difference (> 6%) of Hybrid-Net from a 2-bit network

for a VGG-15 network.

Thirdly, we observe that increasing the bit-precision of the weights and activations of the

significant layers to 4-bits while keeping the rest of the layers binary is not the most energy-

efficient way of improving accuracy of a network. An entire 2-bit network proves to be more

56

energy-efficient while performing better. It may be because the loss due to binarization can

not be significantly recovered by increasing the bit-precision much higher than binary, while

keeping most of the layers binary. Thus, the proposed methodology performs best when the

precision of the significant layers is close to the base precision of the network (binary in our

case).

Finally, the precision of the first and final layers is of utmost important for extremely

quantized neural networks. To study the influence of quantization on these layers, we per-

formed experiments on our Hybrid-Net designs by making the weights of the final layer

binary while having full-precision inputs as suggested in [27]. The results for ResNet-32 for

CIFAR-100 for the configuration Hybrid-Net(2,2) (∆=4) are listed below:

Table 2.8. Analysis of quantization of first and last layers in Hybrid-Net (2,2)
(Delta=4) on ResNet-32 for CIFAR-100

Last Layer Configuration Best
Accuracy
(%)

Mean ± SD
Accuracy (%)

Energy
Con-
sumption

Memory

Full-Precision 64.34 63.75 ± 0.39 1 1
Binary weights and activations 56.93 56.83 ± 0.09 0.98 0.75
Binary weights and full-precision activations 61.07 60.36 ± 0.44 0.98 0.75
2-bit weights and activations 62.41 62.35 ± 0.05 0.98 0.76
First Layer Configuration Best

Accuracy
(%)

Mean ± SD
Accuracy (%)

Energy
Con-
sumption

Memory

Binary weights and activations 44.79 44.16 ± 0.74 0.85 0.98
Binary weights and full-precision activations 59.94 59.29 ± 0.57 0.93 0.98
2-bit weights and activations 60.87 60.46 ± 0.25 0.85 0.98

Energy Consumption: The energy consumption reduction after quantizing the last layer

of the neural network is only 2% for CIFAR-100. On the other hand, quantizing the last layer

leads to at least 2% degradation in accuracy (when the last layer is 2-bit precision). The first

layer consumes more energy due to larger output map size. We performed this analysis by

quantizing the first layer as well. We observe that although the energy consumption reduces

by 15%, the accuracy also degrades by 3.5%.

Memory: The memory requirements of the last layer is a significant aspect. We observe

that quantizing the last layer can lead to close to 25% lower memory. In case of ImageNet,

57

this will be even more significant and the memory reduction can be upto 2x. However, fully

binarizing the last layer leads to significant accuracy degradation. Thus, keeping them higher

precision (2-bit or 4-bit) will lead to better accuracy-memory tradeoffs.

In this chapter, we have considered the quantization scheme, explored in [39]. Since

then, there has been a plethora of works focused on improving quantization for both inputs

and weights [43], [47]. Hybrid-Net focuses on improving the performance of binary neural

networks through mixed-precision network design and we believe the improved quantization

schemes should further increase the accuracy of both Hybrid-Nets and entirely 2-bit or 4-bit

networks.

The humongous computing power and memory requirements of deep networks stand in

the way of ubiquitous use of AI for performing on-chip analytics in low-power edge devices.

The significant energy efficiency offered by the compressed hybrid networks increases the vi-

ability of using AI, powered by deep neural networks, in edge devices. With the proliferation

of connected devices in the IOT environment, AI-enabled edge computing can reduce the

communication overhead of cloud computing and augment the functionalities of the devices

beyond primitive tasks such as sensing, transmission and reception to in-situ processing.

2.5 Conclusion

Binary neural networks offer significant energy-efficiency and memory compression com-

pared to full-precision networks. In this chapter, we propose a one-shot methodology for

designing mixed-precision, hybrid networks with binary and higher bit-precision inputs and

weights to improve the performance of extremely quantized neural networks in terms of

classification accuracy while still achieving significant energy efficiency and memory com-

pression. The proposed methodology uses PCA to identify significant layers in a binary

network which transform the input data such that the output feature space require more

significant dimensions to explain variance in data. PCA is usually exploited to perform

layer-wise dimensional reduction. We use PCA in an opposite manner in order to determine

which layers cause the number of signficant dimensions to increase across input and output.

Next, we increase the bit-precision of the weights and activations of the significant layers and

58

keeping that of the other layers binary. The proposed Hybrid-Net achieves more than ∼ 10%

improvement over XNOR networks for ResNet and VGG network architectures on CIFAR-

100 and ImageNet with only ∼ 6− 10% increase in energy consumption, thus ensuring more

than 15−20x reduction in energy consumption and memory compression from full-precision

networks. Memory compression along with the close match to high-precision accuracies of-

fered by the proposed mixed-precision network design using layer-wise information allows us

to explore interesting possibilities in the realm of hardware-software co-design. This chapter

thus proposes an effective, one-shot methodology for designing hybrid, compressed neural

networks and potentially paves the way toward using energy-efficient hybrid networks for

AI-based on-chip analytics in low-power edge devices with accuracy close to full-precision

networks.

59

3. RESISTIVE CROSSBARS AS BUILDING BLOCKS FOR

MACHINE LEARNING

3.1 Introduction

Rapid advances in Machine Learning (ML) and Artificial Intelligence (AI) have touched

human lives in an unprecedented way as the application space has proliferated over the

last decade [55]. Deep Neural Networks (DNNs), in particular, have had enormous success

in several ML tasks such as image classification [4], [6], object detection [7] and natural

language processing [56]. However, the capabilities of deep learning algorithms have been

accompanied by an increase in computational complexity [57]. Designers have proposed

special-purpose accelerators [3], [10] to improve the time and energy required to execute

DNNs. These accelerators are designed to efficiently perform matrix-vector multiplication

(MVM) operations, the core computational kernel in DNNs. Despite their extensive use of

on-chip scratchpads to exploit data re-use, these accelerators are eventually still limited by

the off-chip memory bottleneck [58], motivating closer integration of memory and processing

units as the next step in the quest for further efficiency. Taking this concept to its logical

end leads to a new computing paradigm, ‘in-memory’ computing, wherein memory arrays

that store data are also capable of performing compute operations. Although ‘in-memory’

computing can be explored in CMOS technology [14], [24], fundamental design conflicts in

CMOS memories as well as their limited density and slowing scaling trends in CMOS are

limiting factors. To that end, non-volatile memory (NVM) technologies such as PCM [59],

RRAM [60], [61], Spintronics [62], etc. offer immense promise as an alternative to CMOS

due to their high storage density and the ability to perform massively parallel in-situ MVM

operations. This has led to a growing interest of exploring NVM technology as the substrate

for the next generation of ML hardware [19], [63]–[66]. The basic computational fabric of

NVM technologies is a two-dimensional cross-point arrangement of NVM devices, commonly

known as a crossbar. Due to the intrinsic physics of these NVM devices, they can store

multiple states in a highly dense memory with bit-cell area of ∼ 4F 2 [67]. Further, owing

to the resistive nature of NVM devices, crossbars can be used to perform in-situ MVM

operations by programming a matrix of conductances into the 2D array of NVM devices

60

...

...

...

...

...

...

In
p

u
t

E
n

c
o

d
in

g W
L
 D

e
c
o

d
e

r

S&H

ADC

Shift and Add

MUX & TIA

Access

Device

S&H S&H S&H

...

...

...

...

...

...

In
p

u
t
E

n
c
o

d
in

g W
L
 D

e
c
o
d

e
r

S&H

ADC

Shift and Add

MUX & TIA

Access

Device

S&H S&H S&H

...

...

...

...

...

...

In
p

u
t
E

n
c
o

d
in

g W
L
 D

e
c
o
d

e
r

S&H

ADC

Shift and Add

MUX & TIA

Access

Device

S&H S&H S&H

...

...

...

...

...

...

In
p

u
t
E

n
c
o

d
in

g W
L
 D

e
c
o
d

e
r

S&H

ADC

Shift and Add

MUX & TIA

Access

Device

S&H S&H S&H

...

...

...

...

...

...

In
p

u
t
E

n
c
o

d
in

g W
L
 D

e
c
o
d

e
r

S&H

ADC

Shift and Add

MUX & TIA

Access

Device

S&H S&H S&H

...

...

...

...

...

...

In
p

u
t
E

n
c
o

d
in

g W
L
 D

e
c
o
d

e
r

S&H

ADC

Shift and Add

MUX & TIA

Access

Device

S&H S&H S&H

...

...

...

...

...

...

DEVICE AND CIRCUITS

ARCHITECTURE

LARGE-SCALE DNN FRAMEWORK

System

Bus

Network-

on-chip

In
p

u
t

E
n

c
o

d
in

g W
L
 D

e
c
o

d
e

r

S&H

ADC

Shift and Add

Compute

Core

MUX & TIA

Access

Device

S&H S&H S&H

Iterative MVM1DNN mapped
on MVM units

L1: conv2d-mvm

LN: linear-mvm

⁞

ADC (9-bit)

Shift-Add

Output Register (38-bit)

ADC

01 01 01

00 11 10

11 01 11

2-bit stream

2-bit slice

Shift-Add

Input Vector Kernel Matrix

01

11

00

01

Input Weights

Outputs

Tile Tile

Tile

Tile Tile

Tile

Tile

Tile

Ti
le

 R
o

w
s

(T
r)

Tile Columns (Tc)

Tiling2 Bit Slicing3

DNN model

L1: conv2d

LN: linear

⁞

Crossbar Model4

Gideal

Gnon-ideal = f(Gideal, Rparasitics)

BLAS
Nodal

Analysis
or

GidealVideal

or
Statistical
Methods

Inon-ideal = f(Videal, Gideal)

Neural
Networks

Analytical Modeling Data-dependent Modeling

Figure 3.1. Layers of abstractions of resistive crossbar systems for DNN
accelerators. First, the basic building blocks of such systems are the NVM de-
vices based on technologies such as PCM, RRAM and Spintronics. Crossbar
array with NVM devices, is augmented with peripheral circuits to enable MVM
computations. Such crossbars can be used to design large-scale hardware ac-
celerators. Finally, software frameworks allow workloads to be mapped to such
hardware fabrics and evaluated considering the impact of non-idealities.

that constitute the crossbar, applying a vector of input voltages to the rows (columns) of the

crossbar, and reading out the currents from the columns (rows) of the crossbar. This mode

of computation uses Ohm’s law and Kirchoff’s laws of current summation to natively realize

massively parallel analog MVM operations inside memory, and can achieve significantly

higher energy efficiency over digital accelerators by eliminating sequential memory accesses.

Further, the high density of resistive crossbars can be leveraged to achieve large on-chip

61

storage, thus avoiding frequent data transfer between off-chip memory and the processor.

This promise has fueled great interest over the past decade in designing systems that can

leverage the high compute efficiency as well as the high density storage of crossbar-based

MVM units [15], [16], [68].

Despite the promise of resistive crossbars, their analog nature of computing poses two

primary challenges to large-scale system design: i) Functional inaccuracies due to device and

circuit non-idealities, and ii) Overheads due to peripheral circuitry.

Non-idealities signify effects that cause a deviation from ideal MVM computations in re-

sistive crossbars. Undesirable device characteristics and circuit behavior can manifest them-

selves in three kinds of non-idealities: a) Linear non-idealities, b) Non-linear non-idealities,

and c) Random device and transistor variations. Linear non-idealities arise from parasitic

resistances in metal lines, source resistances in input drivers as well as sink resistances in

sensing circuits. On the other hand, non-linear non-idealities result from read and write non-

linearities in the NVM devices and the access device characteristics. Moreover, as the NVM

process is in its nascent stage of development; device variations are a major challenge. Such

variations can appear in the form of intra-crossbar and inter-crossbar variations. The cu-

mulative effect of the aforementioned non-idealities can cause functional errors at the MVM

unit level. In the context of large-scale systems, these errors can accumulate and degrade

the application accuracy significantly [22], [69].

The outputs produced by analog MVM units need to be communicated to other such

units for the evaluation of large-scale neural networks. As analog signals are less tolerant

to noise, global communication in any large-scale system needs to be digital. As a result,

MVM units need peripheral circuits such as Digital to Analog Converters (DAC) at their

inputs and Analog to Digital Converters (ADCs) at their outputs. These peripheral circuits

within MVM units, particularly the ADCs, have been shown to account for a large fraction

(up to ∼ 80%) of the total energy consumption of the MVM unit [70]. In addition, ADCs

consume close to 70% of the area of the MVM unit. Thus, the power and area of peripheral

circuits significantly reduces the benefits of the crossbars in terms of compute efficiency and

high density.

62

...

...

...

...

...
In

p
u
t
E

n
c
o

d
in

g W
L
 D

e
c
o
d

e
r

S&H

Analog to Digital Conversion

Shift and Add

MUX & TIA

Access

Device

S&H S&H S&H

Figure 3.2. resistive crossbar and its peripherals for large-scale integration.
Input Encoding circuits apply analog voltages to the rows and Word-line (WL)
decode activates the access devices. At the output of the crossbar, muxing net-
work and transimpedance amplifiers (TIA) converts analog current to voltage,
which is then passed through Sample & Hold (S&H) circuits. The Analog to
Digital Converter (ADC) is shared across the columns. The ADC outputs go
through shift and add circuits to account for bit-slicing and bit-streaming.

In summary, in-memory computing using resistive crossbars present great promise but

also poses several challenges that need to be analyzed and addressed.

3.2 The Anatomy of Resistive Crossbars

Let us first introduce the concept of crossbar organization. Figure 3.3 shows the concep-

tual NVM-based crossbar structure, where NVM devices are connected as a matrix similar

to a standard memory array. In such resistive crossbars, each memory cell is connected to

its corresponding word-line (WL) and bit-line (BL). In principle, MVM operations can be

efficiently achieved in an resistive crossbar using Ohm’s law for multiplication and Kirch-

hoff ’s current law (KCL) for summation. The MVM vector operands are applied as analog

voltages to WLs of the crossbar. Thus, the resulting current passing through a memory cell

is the multiplication of the applied voltage (V) at the WL connected to that cell and the

NVM device conductance (G). Further, KCL sums up the currents from all cells connected

to the same BL resulting in the multiply and accumulate (MAC) operation of V and G.

63

Such inherent MAC computations in crossbars enable parallel MVM operations where the

inputs are V and G while the MAC ouput is represented as the current passing at BL (IBL).

In the following subsections, we discuss in details the basic building blocks of an resistive

crossbar including the NVM cell structure based on various device technologies, selectors,

and, peripherals required for analog computing.

V0

V1

VN

...

...

G11 G1j G1N

G21 G22 G2j G2N

GN1 GN2 GNj GNN

I1 I2 Ij

...

...

...

G12

I11

I21

IN1

Ij = Iij = ViGij

...

...

...

Figure 3.3. Crossbar arrangement of NVM devices to enable matrix-vector
multiplication operations. A voltage vector, V0, V1, ..., VN is applied to each row
of the resistive crossbar where the conductance of the devices, G11, ..., GNN ,
form the 2-D matrix. The current output vector I1, I2, ..., IN in the column
represents the MVM result.

3.2.1 Device Technologies

The basic building block of the MVM compute macro based on crossbars are the NVM

devices. However, CMOS memories have also been explored to build this macro which we

will discuss later. NVM devices are mostly two-terminal devices based on Phase Change Ma-

terials (e.g. PCRAM) [71], Oxide-based materials (e.g. RRAMs) [72] or magnetic materials

(e.g. Spin Transfer Torque (STT) - MRAM) [73]. On the other hand, some spintronic de-

vices can also be three-terminal devices such as Spin Orbit Torque (SOT) based devices [74]

which have decoupled read and write paths. In this section, we will discuss how the inherent

physics of these devices enable multi-bit storage and in-situ multiplication operations.

64

Two Terminal Devices

Two terminal devices usually consist of a layer sandwiched between two electrodes. This

layer is a phase change material in case of a PCM device, an oxide-based material in case of

a RRAM device, and stack of ferromagnetic layers in case of STT-MRAM.

a. Phase-Change Materials: PCMs are chalcogenides which have large contrast

in electrical and optical properties resulting in a significantly high ON/OFF resistance or

reflectance ratio. The device structure follows a mushroom cell structure representing the

shape of the switching volume above the heater, shown in Figure. 3.4 . These materials

can exist in multiple intermediate states between two extreme resistance states, amorphous

(high-resistance) and crystalline (low-resistance) states. Progressive crystallization reduces

amorphous thickness gradually and can result in multiple programmable states in PCM

devices, which makes it suitable for MVM operations.

The most widely used phase change material is Ge2Sb2Te5, which provides optimal trade-

off between switching speeds and write power [75]. The advantages of PCMs as the building

block of MVM units, are their scalability and high density [76]. Despite the promising av-

enues of PCM crossbars, there are several challenges of the technology that still remains to be

addressed. First, the resistance of PCM devices in the amorphous state drifts over time due

to structural relaxations after the melt-quench amporphization process. This can adversely

affect the MVM functionality of PCM crossbars. Second, PCM devices have high switching

times (∼ 100ns) [71] and suffer from low endurance (∼ 107cycles) [77] which makes write

operations in PCM crossbars costly.

b. Metal-Oxide Materials and CBRAMs: Perovskite oxides such as SrTiO3 and

binary metal oxides such as HfOx, TiOx, TaOx, etc exhibit resistive switching properties [78]–

[81]. Two-terminal devices based on these materials form the basic building blocks of RRAM

based crossbars. Another class of devices formed using the same structure by simply replacing

the oxides by conductive elements, constitute Conductive Bridge RAMs or CBRAMs [82].

RRAM and CBRAM devices can behave as multi-level memory with two extreme resistance

states. The multi-level behavior is owing to soft dielectric breakdown in metal-oxide RRAMs

and dissolution of metal ions in CBRAMs. Although switching mechanisms in CBRAMs are

65

Two-terminal Devices Three-terminal Devices

T1

T2

T1

T2T3

T1

T2

T1

T2

T1

T2T3

PCM RRAM STT-MTJ SHE-MTJ SHE-DWM-MTJ

Figure 3.4. Different NVM device technologies can be broadly categorized
into two types: Two terminal Devices and Three terminal Devices. Two ter-
minal devices include Phase Change Material (PCM), metal oxide Resistive
Random access memory (RRAM) and Spin Transfer Torque Magnetic Tunnel
Junction (STT-MTJ). Three terminal devices include Spin Hall Effect MTJ
(SHE-MTJ) and SHE domain wall magnet MTJ (SHE-DWM-MTJ).

primarily filamentary, metal-oxide RRAMs can exhibit both filamentary and non-filamentary

switching. Thermal redox reactions between metal electrodes and oxide material causes

formation and rupture of filamentary conductive paths, resulting in filamentary switching.

Through this switching, RRAM devices can be programmed to multiple states either by

modulating the number of conductive filaments using current compliance or by controlling

the degree of oxidation [83]. On the other hand, non-filamentary switching occur in oxides

of some transition metals such as PrCaxPCMO, through modulation of Schottky barrier by

charge-trapping or defect migration at the metal-oxide interface [84]. Switching in CBRAMs

is analogous to RRAM filamentary switching except that the filament is a metallic conductive

path instead of oxygen vacancies. Typical CBRAMs are based on Ag electrodes where the

multi-level behavior is achieved by tuning the volume of Ag-rich and Ag-poor regions [85].

The multi-level memory behavior of RRAMs and CBRAMs is suitable for the aforementioned

MVM macro using the crossbar arrangement of these devices.

c. Spintronic Devices: Unlike PCMs and RRAMs, spintronic devices use electron spin

as the storage variable. Spin devices are particularly promising with respect to other NVM

technologies due to the extremely high endurance (∼ 1015cycles) [86] and fast switching

(∼ 10ns) [87]. Two terminal spin devices constitute of a structure known as Magnetic

Tunnel Junctions (MTJs) which is basically two ferromagnetic (FM) layers sandwiching

a spacer layer (commonly MgO). These ferromagnets encode information in form of the

66

direction of magnetization and can achieve two stable opposing directions. The direction of

the two FMs can either be parallel (P) or anti-parallel (AP), which result in two extreme

resistance states in these devices. The MTJ can be switched from AP to P or vice-versa by

passing a spin polarized current, which initiates a phenomenon called Spin Transfer Torque

(STT) [88]. STT-MTJs can typically attain only two stable states, unlike PCMs or RRAMs,

which limit the density of the crossbars based on them. Moreover, writing into STT-MTJs

can require high amounts of current compared to RRAM or PCM devices. Although STT-

MTJs have been experimentally demonstrated at a large-scale for storage class memories

[89], their applicability as MVM macros still is at a nascent stage of development. This is

primarily due to the low resistance ratio between the P and AP states, commonly quantified

as the Tunneling Magnetoresistance (TMR). Although TMR of 600% have been achieved

experimentally for MTJs [90] and theoretical models predicting that 1000% can be achievable

[91], [92], large-scale demonstrations are still lacking.

Two terminal devices achieve high density and possess simpler fabrication process. How-

ever, due to merged read and write paths, writing into these devices may cause sneak path

issues [93]. To address such issue, researchers have proposed using access devices such as

transistors or selectors. An alternative way to circumventing this problem is using three-

terminal devices with decoupled read and write paths.

Three Terminal Devices

Typically, three terminal devices are primarily based on spin devices. By stacking an

MTJ on top of a heavy metal (HM) layer, one can write into the FM layer by passing

current through the HM using a phenomenon called the Spin Hall Effect (SHE) [94]. SHE-

MTJs can achieve higher spin injection efficency than STT-MTJs, thus achieving lower

write currents. Moreover, the decoupled read and write paths can address sneak path issues

prevalent in crossbars with two terminal devices. SHE-MTJs have also been explored for

achieving multiple states using bigger domain-wall magnets (DWM) [74]. Here, the position

of the domain wall in the DWM can be controlled by passing appropriate current through

the HM layer. The position of the domain wall governs the conductance of the SHE-MTJ.

67

Much like STT-MTJs, SHE-MTJs also suffer from significantly low TMR. Thus, although

three terminal SHE-MTJs offer immense promise in terms of energy efficiency and speed,

studies have mostly been limited to simulations [62]. To realize the potential of spin-based

crossbars, material exploration to achieve higher TMR is important.

Having elucidated on different NVM device technologies that have been explored for

crossbars, it is important to understand the key device parameters that play a key role

in large-scale crossbar designs. The scalability of resistive crossbars as a MVM macro is

primarily dependent on:

• Resistance ON/OFF ratio: The ratio between the resistances of the two extreme states

in the device.

• ON Resistance: The low-resistance state of the device.

• Bit precision: Number of states that can be reliably programmed and read from the

device.

These parameters affect the resistive crossbar size, thus playing a role in both the MVM

functionality as well as energy and latency.

3.2.2 Circuits: Peripherals and Access

The aforementioned MVM unit based on resistive crossbars needs to be supplemented by

peripheral circuits and access devices for suitable interfacing between the analog compute

unit and digital communication and data flow. Let us first consider various device options

that provide efficient data access in a memristive cell including two-terminal selectors and

three-terminal selectors (transistors). The access devices are used to avoid sneak path issues

in resistive crossbars during write operation. Next, we consider several peripheral circuitry

needed for MVM operations based on the type of input encoding.

Selectors/Access transistors

As mentioned earlier, all cells in a crossbar are activated to perform the dot product

operation. Therefore, sneak-path currents induced from partial select operation are avoided

68

VOUTVREF

.

.

2R

2R

2R

2R

Rin

RF

R

R

R

bN-1

bN-2

bN-3

b0

VOUTVREF

.

.
C

2N-3C

2N-2C

2N-1C

C
reset

bN-1

bN-2

bN-3

b0

Figure 3.5. (a) R-2R ladder based DAC. (b) Capacitance-based DAC [102]

during dot-product computing. However, such sneak-path current issue becomes significant

during normal read/write operations where only one row is selected and the unselected rows

should be simultaneously biased to GND. To that end, selector devices and access transistors

have been adopted in practical implementations of memristive crossbars to eliminate the

effects of the sneak path problem [95]–[101].

Two dimensional selector devices are more dense and suitable for 3D integration than a

transistor, thus one-selector–one-memristive-device (1S-1R) arrays were reported with differ-

ent types of selector devices such as [96]–[98], [100], [101]. On the other hand, one-transistor–

one-memristive-device (1T-1R) crossbars have exhibited MVM computations with fewer er-

rors[103], [104], in comparison to 1S-1R crossbars. Typically, in an 1T-1R crossbar WL

controls the gate of the transistor, while the source-line (SL) is connected to the transistor

source. The NVM device top electrode is connected to BL, while its bottom electrode is

connected to the access transistor drain. One disadvantage in 1T-1R structure is that the

cell area is determined by the transistor area, depending on the maximum programming cur-

rent required to pass across the NVM device. Nevertheless, 1T-1R structure is a standard

practice for constructing resistive crossbars as MVM units. Next, let us discuss in details

69

various peripheral circuit design choices needed for efficient MVM computing in memristive

crossbars.

Input Encoding

In MVM operations of ML workloads, the vector represents the inputs of the neural

networks. These input vectors can be encoded in voltage or time in resistive crossbars. WL

DACs can be used to convert the digital inputs to analog voltages to be applied at every

row. Different variants of DAC utilize charge, current, and voltage multiplication or division

using switched-capacitor circuits, current steering circuits, and resistor ladders, respectively,

to generate the analog output [102], [105]. Figure 3.5 shows schematic of the aforementioned

DAC structures.

Output Sensing

The MVM output current (IBL) at each crossbar column needs to be converted to the

digital domain for transferring data to the next compute unit in the system. To that end,

IBL at each column is converted to analog voltage, then to digital through current to voltage

converter and analog-to-digital converter (ADC), respectively. Figure 3.2 shows the crossbar

structure with peripheral circuitry including input encoding and sensing.

Current-to-Voltage Conversion: After performing the MVM operations in memris-

tive crossbars, the resulting output current at BLs (IBL) is converted to analog voltage

through a current-to-voltage converter. A common circuit technique to convert analog cur-

rent to voltage is the trans-impedance amplifier (TIA) [106]. In its simplest form, a TIA

can be just a single grounded resistance as shown in Figure 3.6 (a). Further, a more sophis-

ticated TIA can be an amplifier having an open-loop gain of −A0 with a negative feedback

resistance RF placed around the amplifier as shown in Figure 3.6 (b). The fundamental dif-

ference between single-resistance and amplifier-based TIA is that IBL sees a high impedance

in Figure 3.6 (a) and a low impedance in Figure 3.6 (b).

Analog-to-Digital Conversion: Analog to Digital conversion is a critical step in the

MVM operation using resistive crossbars, as the analog voltages need to be converted to

70

(a) (b)

IBL

VOUT

RF
IBL

VOUT

RF

Figure 3.6. (a) The resistor-based current-to-voltage converter. (b) The
op-amp based TIA [106].

digital output for further processing. To that effect, various ADC architectures have been

adopted in memristive crossbars including Successive Approximation Register (SAR) based

ADC and Flash ADC [107], [108]. Typically, Flash ADCs employ parallel sampling to

achieve fast conversion, an n-bit Flash ADC consists of 2n comparators, a resistor ladder,

and a decoder. Due to the large number of comparators, the energy consumption of a Flash

ADC is much larger than same-precision SAR ADC [109].

SAR ADC is the most common ADC architecture adopted in analog in-memory comput-

ing memristive crossbars due to its simplicity and low area/energy overhead compared to

other ADC architectures [109]. Various ADC architectures and precisions have been adopted

in memristive crossbar MVM units [15], [16], [103]. For instance, ISAAC [16], and PUMA

[15] adopted an 8-bit SAR ADC for higher precision computations, while XNOR-RRAM im-

plemented a 3-bit Flash ADC for binary input/weight computation [110]. Note, ADC area

and energy costs are huge and dominate the whole crossbar area and energy [15]. Typically,

as reported in [70] ADC consumes 80.61% and 68.13% of the crossbar power and area, re-

spectively. Therefore, ADCs are shared across the columns, and analog multiplexers (MUX)

and sample and hold (SnH) blocks are adopted to allow the time-multiplexed ADC usage

for further energy efficiency. On the other hand, reducing the ADC precision further reduces

its area and energy.

71

It is worth mentioning that the ADC precision required to compute exact MVM operation

in an NxN crossbar having K input precision and M weight precision should be ceil(log2((2K−

1)∗ (2M − 1)∗N)). To conclude, peripheral design choices like input encoding, input/weight

precision, ADC architecture, and precision are key factors to improve energy consumption,

area, and performance at the crossbar and system levels.

3.2.3 Crossbar Write Operations

The operation of resistive crossbars for memory applications uses the more conventional

read-verify-write mechanism for reliable programming of devices. However, due to the serial

nature of this update mechanism and high write energy of NVM technologies, the cost

of in-situ training of large-scale DNNs using resistive crossbars become significantly high.

As a solution, researchers have proposed parallel updating scheme [116], particularly for

ML workloads, which leverage the analog mechanism of programming to mimic the outer-

product operation commonly used in DNN training algorithms. Figure 3.8 shows such a

parallel writing scheme, where the row inputs, xi, are encoded by the pulse-width and the

column inputs, yj, encoded as pulse amplitude. Simultaneous application of pulses at the

VOUTVREF

.

.

2R

2R

2R

2R

Rin

RF

R

R

R

bN-1

bN-2

bN-3

b0

VOUTVREF

.

.
C

2N-3C

2N-2C

2N-1C

C
reset

bN-1

bN-2

bN-3

b0

Figure 3.7. (a) Flash ADC architecture. (b) SAR ADC architecture [107], [108].

72

Table 3.1. Silicon Demonstrations
Category [60] [59] [111] [112] [113] [110] [114] [103] [115]

Technology Node (nm) 2 µ m 180 nm 180 nm 130 nm 130 nm 65 nm 65 nm 55 nm 22 nm
Device Type RRAM PCM RRAM RRAM RRAM RRAM RRAM RRAM RRAM
Crossbar Size 128x64 512x1024 64x64 128x16 784x100 128x128 256x64 256x512 512x512
Input Precision 4b NA 1b 1b 1b 1b 1b 1b, 2b 1b, 2b, 4b
Weight Precision 2b NA 8b 5b 3b 1b 4b 3b 2b, 4b, 4b
MAC output 4b NA 1b 8b 8b 3b 8b 4b 6b, 10b, 11b

Accuracy (MNIST) 99% 97.95% 90.8% NA 94.4% 98.43% NA 98.8% NA
Accuracy (CIFAR-10) NA 88.29% NA 94% NA 86.08% NA 88.52% 90.18%
Accuracy (CIFAR-100) NA 67.96% NA NA NA NA NA NA 66.46%
Accuracy (ImageNet) NA NA NA NA NA NA 69% NA NA

Energy Efficiency1

(TOP/s/W) 115 28.065 2 20.7 11 78.4 141.18 5.9 53.17
121.38 (6b)
45.52 (10b)
28.93 (11b)

1 TOP/s/W values are reported with respect to the corresponding technology node and the output precision.
2 scaled to 14 nm.

rows and column produces a multiplicative effect such that a higher voltage at the column

and longer pulse at the row results in a bigger change in conductance of the NVM devices

at the crosspoint. The result, of course, is the update of the weights, expressed as:

Wij = Wij + xi × yj (3.1)

Weights in crossbar are stored in unsigned form. To account for both positive and negative

weight updates, the inputs are represented in sign magnitude form. The polarity of weights

can be represented using two separate devices for positive and negative weights. To rep-

resent both positive and negative weights in the same device, the range of weight, RON to

ROF F , is symmetrically centered around (RON+ROF F)/2 [117]. This means a zero weight is

represented by (RON+ROF F)/2. Such sign-magnitude and biased representation of weights

can enable both positive and negative updates to the same device.The polarity of the update

is controlled by the polarity of the simultaneous pulses [118]. Such parallel writing schemes

can be adopted entirely in the time domain as well [119]. Such a scheme has also been

experimentally demonstrated on floating gate memory arrays [120].

We have discussed the basic anatomy of resistive crossbars, starting from the building

blocks (NVM devices at the crosspoint) to detailed description of peripheral circuits required

for proper operation of the crossbar as compute cores in DNN accelerators. The devices

and circuits, however, can introduce undesirable behavior that affects the desired MVM

73

Figure 3.8. Row inputs, xi, are encoded by the pulse-width and the column
inputs, yj, encoded as pulse amplitude. Simultaneous application of pulses
at the rows and column produces a multiplicative effect such that a higher
voltage at the column and longer pulse at the row results in a bigger change
in conductance of the NVM devices at the crosspoint [116]

functionality of the crossbars. In the next section, we will study the origin of such non-

idealities and their impact on the MVM functionality.

3.2.4 Silicon Demonstrations

NVM MVM macros:

Although NVM technologies are in their nascent stage of developments, there are several

experimental demonstrations of MVM macros based on these technologies. There has been

extensive work on experimental demonstration of PCM [59], [121] and RRAM crossbars

[104], [122], [123]. At the time of writing this thesis, experimental demonstrations of Spin-

tronic and FeFET crossbars are yet to be explored in a large-scale. Table 3.1 summarizes

the recently-demonstrated memristive crossbars configurations and results.

74

Figure 3.9. (a) MVM macro using current based computations in 8T SRAM
cells. The weight bit is represented by node ‘Q’. By applying a voltage on
RWL, the current in the RBL is a function of the weight bit and the applied
voltage. The transistors are sized appropriately to represent multi-bit weights.
(b) MVM macro using voltage based computation in 10T SRAM cells. The
local bit-lines (LBLT and LBLF) are discharged according to the weight bit
stored in the 6T SRAM. Through charge sharing, average MVM output is
calculated in the horizontal lines [11].

CMOS MVM macros:

It is worth mentioning that MVM units can also be constructed using CMOS-based

SRAM cells akyel2016drc, [11], [14], [24]. Figure 3.9 (a) shows an example of such a macro

based on an eight-transistor (8T) SRAM array [24]. The bitcell consists of six-transistor

(6T) SRAM cell along with a read port constituted by two additional transistors. The node

‘Q’ stores the weight bit. By applying appropriate voltage on the read word-line (RWL),

the current sourced from the source-line (SL) onto the bit-line (BL) becomes a function

75

of the stored weight bit and the applied voltage. The currents from all the bit-cells in a

single column accumulate in the BL, which represent the MVM output, similar to resistive

crossbars. To enable multi-bit MVMs, the transistors in the read port can be appropriately

in the ratio 8:4:2:1 as shown in Figure 3.9 (a). If the weight W j
i = w3w2w1w0, where wi are

the bits corresponding to the 4-bit weight, the vector matrix dot product becomes:

Σ(vi ·W j
i) = Σ[vi · (23w3 + 22w2 + 21w1 + w0)] (3.2)

Alternatively, voltage accumulation can be also used to perform MVM operations through

charge-sharing in the BL. Figure 3.9 (b) shows a voltage-based MVM operation in a ten

transistor SRAM cell [11]. This bitcell consists of two local BLs, which are discharged

according to the weight bit stored in the bit-cell. The local BLs are appropriately shorted

to evaluate the average MVM output which is then passed to a charge sharing ADC to

obtain the digital output. Due to the inherent non-linearity in transistor characteristics, the

linearity of MVM operations in CMOS memories is difficult to realize. Moreover, as SRAM

cells can only store single weight bits, CMOS based analog computing MVM macros lose in

area efficiency to resistive crossbars for multi-bit MVM operations. As a result, researchers

have explored CMOS macros primarily in the context of binary neural networks [18], [39]

where the matrix vector multiplications are represented using XNOR operations [110], [124]

between binary inputs and weights. Despite several efforts investigating possibilities of MVM

computations using CMOS memories, their significantly higher area footprint with respect

to resistive crossbars make the latter more promising as basic compute primitives for ML

workloads.

76

4. TECHNOLOGY AWARE TRAINING IN MEMRISTIVE

NEUROMORPHIC SYSTEMS FOR NONIDEAL SYNAPTIC

CROSSBARS

Recent developments in computational neuroscience have resulted in a paradigm shift away

from Boolean computing in sequential von-Neumann architectures as the research commu-

nity strives to emulate the functionality of the human brain on neurocomputers. Although

extensive research has been done to accelerate computational functions such as matrix op-

erations on general-purpose computers, the parallelism of the human brain has remained

elusive to von-Neumann architecture, thus engendering high hardware cost and energy con-

sumption[125]. This has resulted in the exploration of non-von Neumann architectures with

‘massively parallel operations in-memory’, thus avoiding the overhead cost of exchanging

data between memory and processor. Especially with the recent advances in machine

learning in various cognitive tasks such as image recognition, natural language process-

ing etc, the search for such energy-efficient ‘in-memory computing’ platforms has become

quintessential. Although standardized hardware implementations of neuromorphic systems

like CAV IAR[126], IBM TrueNorth[127], SpiNNaker[128] have primarily been dominated

by CMOS technology, the memristor-based non-volatile memory (NVM) technology[129]–

[133] has naturally evolved into an exciting prospect. To that end, various technologies such

as spintronics[134], oxide-based memristors [135], [136], phase change materials (PCM) [137],

etc., have shown promising progress in mimicking the functionality of the core computational

units of a neural network, i.e., neurons and synapses.

The core functionality of a neuromorphic system is a parallelized dot product between the

inputs and the synaptic weights[138]. This has been demonstrated to be efficiently realized

by a dense resistive crossbar array [139], [140]. The ability to naturally compute matrix mul-

tiplications makes crossbar arrays the most convenient way of implementing neuromorphic

systems. However, real crossbars could suffer from various non-idealities including device

variations[141], [142], parasitic resistances, non-ideal sources, and neuron resistances. Al-

though neural networks are generally robust against small variations in the crossbar, the

aforementioned technological constraints can severely impact accuracy of recognition tasks

77

Input layer
M Neurons Hidden layer

N Neurons

Output layer
P Neurons

Synaptic
Connection

Synaptic
Connections

(ai
1)

(zj
1) (ai

2)

(ai
L)

σ

Input Image

Convolutional
Layer

Convolutional
Layer

Pooling
Pooling

Fully
Connected

Layer
Layer

Activation
Activation

a) b)
(wji1) (wji2)
N×M P×N

(zj
2) σ

Figure 4.1. (a) Fully connected 3-layered neural network showing the input
layer, hidden layer, and an output layer. Each neuron in a particular layer
is fed by weighted sum of all inputs of the previous layer and it performs a
sigmoid operation on the sum to provide the inputs for the next layer. (b)
CNN Architecture with different convolutional and pooling layers terminated
by a fully connected layer.

as well as restrict the crossbar size. Several techniques such as redundancy schemes[143],

technology optimization[144] and modified training algorithms[145]–[147] have been explored

for both on-chip and ex-situ learning to mitigate specific non-ideal effects such as IR drops,

synaptic device variations. However, mathematical modeling of non-idealities and its incor-

poration in standard training algorithm needs further exploration.

In this chapter, we analyze the impact of non-idealities such as source resistance, neuron

resistances, and synaptic weight variations in hardware implementations of neuromorphic

crossbars. We show how such non-idealities can significantly degrade the accuracy when

traditional training methodologies are employed. The presence of these parasitic elements

also severely limits the crossbar sizes. As a solution, we propose an ex-situ technology

aware training algorithm that mathematically models the aforementioned non-idealities and

accounts for the same in the traditional backpropagation algorithm. Such a technique not

only preserves the accuracy of an ideal network appreciably but also allows us to use larger

crossbar sizes without significant accuracy degradation. The key highlights of our work are

as follows:

1. We mathematically model the effect of source resistance, neuron resistance, and varia-

tions in synaptic conductance on the output currents of a neuromorphic crossbar. We

78

establish the validity of our model by comparing against SPICE-like simulations of

resistive networks.

2. We analyze the impact of these non-idealities on the accuracy of two types of image

recognition tasks with varying amounts of non-ideality within relevant technological

limits.

3. We propose a training algorithm which incorporates the mathematical models of the

crossbar non-idealities and modifies the standard training algorithm in an effort to

restore the ideal accuracy.

4.1 Crossbar Implementation of Neural Networks

4.1.1 Types of network topologies

Fully Connected Networks

Traditionally, deep neural networks such as deep belief nets (DBNs) comprise of multiple

layers of interconnected units. Fully connected networks (FCN) involve a series of neuron

layers between the input and the output layers. The output of each neuron in a layer is

connected to the inputs of all the neurons in the subsequent layer. Fig. 6.5 (a) shows a

3-layered fully connected network consisting of a single hidden layer between the input and

output layers.

Convolutional Networks

Complex image recognition datasets comprise of objectively different classes where global

weight mapping like FCNs prove to be less efficient. As an alternative, convolutional neural

networks (CNN) have been recognized as a more powerful tool for complex image recognition

problems using locally shared weights to learn common spatially local features. As shown in

Fig. 6.5 (b), CNNs consist of several layers performing operations like convolution, activation,

and pooling, finally terminating with a fully connected layer. The convolution function can

be mathematically represented by a 4 dimension tensor. Intuitively, a convolution layer is

composed of a number of filter banks. The number of filter banks is equal to the number of

79

output maps. Each output map represents a feature. A filter bank is made up of multiple

kernels, one for each input map. Hence each filter bank operates on all the input maps to

extract one output feature map. A kernel is mathematically represented as a n × n weight

matrix. During convolution, the kernels of a filter bank are convolved with their respective

input maps. The outputs of these convolutions are then summed together to form the

corresponding output map of that filter bank. Thus a convolution operation captures the

spatially local features of an input image. Convolution of a m×m input map with a kernel of

size n×n yields an output map of size ((m−n+2p)/s+1)×((m−n+2p)/s+1), where s is the

stride of the filter and p is the padding. In practice, s and p are chosen such that the original

input size is preserved. The activation layer which can be ‘RELU’ [148], ‘sigmoid’[149], or

other non-linear functions, introduces a non-linearity in the network[150]. The pooling layer

reduces the dimensionality of the output map. Most commonly used pooling techniques are

average and max-pooling[151]. Finally, the fully connected layer uses the learned features

to classify the images. In essence, a fully connected layer could also be represented by a

convolutional layer where the kernel size is equal to the input size.

4.1.2 Hardware representations of Neural networks

In hardware realizations of neural networks based on the non-Von Neumann architecture

framework, the synaptic connections between the neurons of two adjacent layers are repre-

sented using a resistive crossbar. The weights are represented in terms of conductance and

the inputs are encoded as voltages. Convolutional layers have locally concentrated connec-

tions, hence each filter bank is represented by a crossbar of equivalent size. The input to the

crossbar is a subset of the image being sampled by the kernel. Each element of the output

map is calculated through time multiplexing of the outputs from a particular crossbar for

different subsets of the image. This is repeated for each filter bank to obtain different output

maps. In contrast, fully connected layers have all possible connections between input and

the output and the entire connection matrix can be represented by a crossbar. The basic

computational function of any layer is a dot product and can be seamlessly performed by

80

To neurons of next layer

V1
+

IN

M×N Crossbar Network

G11
+ G21

+ G31
+ G41

+ GN1
+

G11
- G21

- G31
- G41

-

G12
+ G22

+ G32
+ G42

+

GN1
-

GN2
+

GN2
-

GNM
+

GNM
-

Positive array Negative array

I = V
+
G

+
+V

-
G

-

 G12
- G22

- G32
- G42

-

 G1M
+ G2M

+ G3M
+

 G4M
+

 G1M
- G2M

- G3M
-
 G4M

-

a)

V2
+

VM
+

V1
-

V2
-

VM
-

I1 I2 I3 I4

…

Total Current

Figure 4.2. (a) Hardware implementation of a single fully connected network
layer represented by two resistive crossbar arrays. The output of the crossbar
will be fed to another crossbar representing the next layer. (b) An arrangement
of multiple sub-crossbars to realize the functionality of a large crossbar.

81

representing the weights as the resistances in a crossbar fashion. The output current of jth

neuron of each crossbar is computed as

Ij =
∑

V +
i G+

ji + V −
i G−

ji (4.1)

where Vi is the input voltage corresponding to ith input neuron and Gji represents the con-

ductance corresponding to the synaptic weights between the neurons. Two resistive arrays

are deployed to account for bipolar weights. The input to the positive array is +Vi whereas

the input to the negative array is −Vi. The weight matrix [wji] is mapped to a corresponding

conductance range [Glow, Ghigh] ⊂ [Gon, Goff]. To represent bipolar weights, the conduc-

tance of the synapse connecting the jth neuron in the next layer to the ith input is denoted by

a positive (G+
ji) component and a negative (G−

ji) component. For positive (negative) weights,

the programming is done such that G+
ji (G−

ji) = |wji|Ghigh and G−
ji (G+

ji) = 0 (no connection).

Fig. 4.2 (a) shows a crossbar implementation of a fully connected neural network.

As mentioned earlier, crossbar arrays could suffer from non-ideal effects and incur lim-

itations on their sizes. As a result, larger crossbars are divided into smaller crossbars and

the output of each crossbar is time-multiplexed to obtain the desired functionality of the

entire crossbar. Fig. 4.2 (b) shows how multiple small crossbars can be efficiently mapped

to realize the functionality of a large crossbar in a particular layer. The small size of the

crossbar reduces fan-out and fan-in, thus minimizing the impact of non-idealities. FCNs,

being densely connected, are severely affected by hardware imperfections, especially when

implemented on large crossbars. Convolutional layers in CNNs are usually implemented on

very small crossbars and are thus insensitive to non-ideal effects. However, the final fully

connected layers which acts as a classifier can be significantly affected by these non-idealities

due to their large sizes. In this chapter, we are thus considering the impact of non-idealities

on FCNs, and fully connected layers of CNNs.

4.1.3 Training

The training of Artificial Neural Networks (ANN) are traditionally done off-chip through

the standard backpropagation algorithm which updates weight matrices using gradient de-

82

scent technique[152]. It is important to note down the vital aspects of the algorithm here in

relevance to the later sections. The basic algorithm updates weights based on the gradients

of a cost function. The cost function depends on the error computed from the feed-forward

network which assumes a form : C = 1
2

∑ (yj − aj)2, where yj is the expected output and

aj is actual output from the jth neuron in the output layer. The sensitivity of the errors

for each layer are calculated from the derivatives of the cost function with respect to the

outputs and weights and after each iteration, the weights are updated based on those of the

corresponding layer. The detailed description of the algorithm is well documented[152]. In

this chapter, we focus on the aspects of the algorithm pertinent to fully connected layers and

we build mathematical models to account for the non-idealities experienced by the hardware

implementation of neuromorphic crossbars.

4.1.4 Technologies

Various technologies have been explored for crossbar implementations of neural net-

works. Memristive crossbars based on different material systems (like TaOx[153], T iO2[154],

Ag/Si[155] etc) have been proposed to realize neuromorphic functionality in an energy effi-

cient manner. Phase change materials (PCM)[137] have also been investigated as potential

candidates for neuromorphic computing due to their high scalability. More recently, neurons

and synapses implemented with spintronic devices[134], [140] have shown great promise in

performing ultra-low power neuromorphic computing. However, each technology suffers from

specific drawbacks. An important metric in regard of resistive crossbars for neuromorphic

systems is the ratio of the high resistance state (Roff) and the low resistance state (Ron) of

the synaptic device. Usually, a high Roff/Ron ratio is desired for a near-ideal implementation

of the weights in a neuromorphic crossbar. Moreover, in the light of non-ideal systems, higher

values of Ron, Roff may be less significantly impacted by parasitic resistances. In this chap-

ter, we have chosen a maximum to minimum conductance (Glow = α/Roff , Ghigh = 15Glow,

α is a parameter of choice) ratio of 15 which is a potentially realizable predictive measure

for all memory technologies[137], [156], [157].

83

Table 4.1. Resistance Ranges for Various technologies
Technol-
ogy

[Ron, Roff] Considered Range [Rlow,
Rhigh]

Rs/Rhigh

%
Rneu/Rhigh

%
TiO2[159] 15k, 2M 40k,600k 0.033 -

0.13
0 - 0.033

Ag/Si
[142]

25k,10M 100k,1.5M 0.013 -
0.053

0 - 0.013

TaOx
[160]

1k,1M 20k,300k 0.067 -
0.27

0 - 0.067

Spintron-
ics*

Function of MTJ oxide
thickness [161]

40k, 400k 0.05 - 0.2 0-0.05

PCM
[137]

10k, 3M 60k, 900k 0.022 -
0.08

0 - 0.022

*The spintronic analysis is done based on predictive measures of Roff/Ron[156]
Rs range - 200 to 800 Ω, Rneu range - 0 to 200 Ω

Memristor based neuromorphic crossbar designs leverages its inherent capability of ma-

trix multiplication to provide high accuracy at a relatively modest computational cost[158].

However, the memristor technology is still in its nascent stage. Thus, the hardware im-

plementation of such crossbars may suffer various kinds of non-ideal effects arising from

memristor device variations, parasitic resistances as well as non-idealities in sources, and

sensing neurons.

4.2 Modeling the non-idealities

In this chapter, we have considered three kinds of non-idealities that arise in crossbar

implementations, namely,

1. Neuron Resistance (Rneu)

2. Source Resistance (Rs)

3. Memristive resistance variations

To perform an analysis of the impact non-idealities might have on accuracy of recognition

task, it is important to note the ratio of non-ideal resistances to the synaptic resistances

for a particular technology. Table. 4.1 shows the range of considered resistance ratios to

84

To neurons of next layer

V1

+

V1

-

V2

+

V2

-

VM

+

I1 I2 I3 I4 IN

M×N Crossbar Network

VM

-

GN1

+

GN1

-

GN2

+

GN2

-

GNM

+

GNM

-

Positive array Negative array

VS1 VS2 VS3 VS4 VSN

VSj = IjRneu

G11
-

G21
-

G31
-

G41
-

Rs Rneu

G11
+ G21

+ G31
+ G41

+

G12
+ G22

+ G32
+ G42

+

 Vi

+

deg(G
+

+ Δ) + Vi

-

deg(G
-
+ Δ)

1+ Rneu(G
+
+ Δ + G

-
 + Δ)

I =

G12
- G22

- G32
- G42

-

V2
+

deg

V1
+

deg

V1
+

deg

V2
+

deg

VM
+

deg

VM
-
deg

G1M
+ G2M

+ G3M
+ G4M

+

G1M
- G2M

- G3M
- G4M

-

Vi
+/-

deg = βi
+/-Vi

+/-

Figure 4.3. Crossbar Architecture showing non-ideal elements like source
and neuron resistances. The final output current equation is modified by the
impact of these non-ideal elements.

synaptic resistances Rs/Rhigh and Rneu/Rhigh for various technologies, considering relevant

values of source (Rs) and neuron (Rneu) resistances.

4.2.1 Neuron Resistance

The resistance offered by the neuron in a neuromorphic crossbar varies from technology

to technology. In many cases, such as, PCM technology, the resistance of the neuron is not

a hardware issue as the crossbar outputs are sensed through a sense amplifier, where virtual

ground at the input eliminates the voltage drop across the neuron. However, in spintronic

crossbars[134], crossbar outputs are fed to the neuron as a current stimulus and thus, the

85

resistance of the neuronal device becomes relevant. Fig. 4.3 shows the effect of neuron

resistance on the crossbar output. This can be mathematically modeled to modify Eqn (1)

as:

Ij =
∑

V +
i G+

ji + V −
i G−

ji

1 + Rneu
∑

G+
ji + G−

ji
(4.2)

Here, Ij, V
+/−

i , G
+/−
ji and Rneu carry the same meaning as described in earlier sections.

Eqn (1) can be derived by applying Kirchoff’s law at the output nodes of the crossbar

and considering the voltage drop across the neuron to be Vj,neu = Ij × Rneu. It is evident

that the denominator is close to 1 for smaller arrays as Gjis are much smaller than neuron

conductances (resistances of the order of a few hundred ohms [134]). However, larger arrays

could lead to Gneu = 1/Rneu being comparable to sum of the conductances in a particular

column. More specifically, a higher number of rows in the crossbar lead to enhanced impact

of neuron resistance.

4.2.2 Source Resistance

The source resistance (Rs) in a neuromorphic crossbar could arise due to non-ideal voltage

sources and input access selectors lumped together. The input voltages to crossbar gets

degraded due to Rs and the degradation can be mathematically modeled as:

V +
i,deg = V +

i
1/Rs

1/Rs + ∑ 1
R+

ij +Rneu

(4.3)

V −
i,deg = V −

i
1/Rs

1/Rs + ∑ 1
R−

ij +Rneu

(4.4)

Here R
+/−
ij is the resistance of the synaptic element between the ith row and jth column in

the positive or negative array. The model ignores the effect of sneak paths. In neuromorphic

crossbars, all the inputs are simultaneously active. As the IR drops in the metal lines are

negligible, all the nodes in a particular row are supplied by the degraded source voltage of

that row. As all the rows are supplied by voltages of same polarity, even the shortest possible

current sneak path will experience a low potential difference. Thus, the current through the

series connection of the synaptic memristor and neuron would be primarily dependent on

86

the degraded supply voltage and effective series resistance. We have verified the validity of

the model by comparing against SPICE-like simulations, which is described in more detail

in Section IV B.

4.2.3 Memristive Conductance Variations

The weights obtained from the training algorithm are usually discretized in order to be

represented as memristive synapses. In this chapter, we have used a 4-bit discretization tech-

nique where we have used a Rhigh/Rlow ratio of 15, relevant to the technologies considered.

We have mapped the weights such that the maximum weight always maintains the Rhigh/Rlow

ratio to the minimum weight. We have chosen the maximum and minimum weight limits

so as to minimize the accuracy degradation due to discretization. To analyze the impact of

chip-to-chip variation of weights, we have introduced weight variations in terms of standard

deviation (σ) errors, ranging from -2σ to +2σ after discretization. This implies that all the

memristive devices on a neuromorphic chip suffer the same variation at a particular process

corner. The weight variations are incorporated in the mathematical model as a ∆ variation

to the conductances.

4.2.4 Proposed Training Algorithm

The mathematical representations of the non-idealities are finally collated and incorpo-

rated in the feed-forward path and the backpropagation algorithm for training the ANN.

Weights wji and inputs ai replaces the conductances Gji and voltages Vi respectively in Eqn

(1) and Eqn (2). The symbol zj is used to represent the current output of the crossbars Ij

corresponding to jth neuron of the next layer. We assume that the neuronal function receives

a current input and provides a voltage output. For the sake of simplicity, we assume ideal

mathematical representations of activation functions like ‘RELU’ [148] and ‘sigmoid’[149].

87

As described in Section. II A, the ideal crossbar output of the jth column in any layer is

given by zj = ∑
i

ai × wji. The modified crossbar output can be computed as follows:

zl
j =

∑
a+

i,degw+
ji,vary + a−

i,degw−
ji,vary

γj
(4.5)

γj = 1 + Rneu

∑
i

w+
ji,vary + w−

ji,vary

where,
a+

i,deg = ai
1/Rs

β+
i

a−
i,deg = −ai

1/Rs

β−
i

w
+/−
ij,vary = w

+/−
ij + ∆

β
+/−
i = 1/Rs +

∑ 1
R

+/−
ij + Rneu

R
+/−
ij = 1/w

+/−
ij,vary

As described earlier, two weight matrices are deployed to account for bipolar weights in the

original weight matrix W = [wji]. Positive (Negative) inputs are fed to the positive (negative)

weight array. The weight matrices are created such that w+
ji (w−

ji) = 0 for all i,j for which

Wji < 0(> 0) and w+
ji (w−

ji) = Wji for all i,j for which Wji > 0(< 0). Note that mapping the

weights to a particular conductance range is equivalent to multiplication by a scaling factor

as we have already discretized the weights based on a maximum to minimum weight ratio

equal to Ghigh/Glow = 15. Thus an equivalent representation in terms of conductance would

be G
+/−
ji = WjiGhigh.

The output of each crossbar is passed as inputs to the next crossbar through a sigmoid

function such that aL+1
i = σ(zL

i) (where L is the layer index). The backpropagation algorithm

is modified to account for the modified crossbar functionality. As described earlier, learning

in neural networks relies on computation of gradients of a cost function. Here, it is calculated

from the error between the expected and the actual output of the output layer neurons in the

form of C = 1
2

∑ (yj − aL
j)2. The delta-rule in the backpropagation algorithm [162] involves

88

calculation of δ for each layer accounting for the change in the cost function for unit change

in inputs to that particular layer. Thus, δ for layer l can be written as:

For output layer,

δL
j = ∂C

∂zL
j

=
∑ ∂C

∂aL
j

∂aL
j

∂zL
j

= (aL
j − yj)σ(aL

j) (4.6)

For other layers,

δl
j = ∂C

∂zl
j

=
∑

k

∂C

∂zl+1
k

∂zl+1
k

∂zl
j

=
∑

k

δl+1
k

∂zl+1
k

∂zl
j

(4.7)

∂zl+1
k

∂zl
j

= ∂zl+1
k

∂al
j

∂al
j

∂zl
j

= ∂zl+1
k

∂al
j

σ(al
j)

∂zl+1
k

∂al
j

=
a+,l

j,deg

al
j

w+
jk,vary −

a−,l
j,deg

al
j

w−
jk,vary

γj
(4.8)

Finally, the δs of each layer are used to compute the weight updates as:

dwl
jk = ∂C

∂wl
jk

= ∂C

∂zl
j

∂zl
j

∂wl
jk

= δl
j

∂zl
j

∂wl
jk

(4.9)

∂zl
j

∂wl
jk

=
γj(a+

k,deg(1− w+
kj

β+
k

) + a−
k,deg(1− w−

kj
β−

k

))−Rneuzl
jγj

γ2
j

(4.10)

To simulate the impact of non-idealities on varying crossbar size, we divide the large crossbars

of size M × N into several smaller crossbars of size m × n. Fig. 6.5 (c) shows the network

architecture of combining smaller crossbars to realize the neuromorphic functionality of larger

crossbars. The source degradation factor βi is more prominent for larger number of columns

as it depends on the term ∑
j

1/(Rij + Rneu) summed over the columns. The neuron resistance

degradation factor γj, on the other hand, increases with the number of rows due to its

dependence on the term ∑
i

wji, summed over the rows. Thus, the combined effect of these

two non-idealities is expected to have a higher impact on the network for larger crossbars.

89

Table 4.2. CNN Architecture
Input 32 × 32 RGB image
5 × 5 conv. 64 RELU

2 × 2 max-pooling stride 2
5 × 5 conv. 128 RELU

2 × 2 max-pooling stride2
3 × 3 conv. 256 RELU

2 × 2 avg-pooling stride 2
4 × 4 conv. 512 Sigmoid (fully connected)

0.5 Dropout
1 × 1 conv. 10 (fully connected)

10-way softmax

4.3 Simulation Framework

4.3.1 Model simulations

The model described in the previous section was implemented on FCNs using the MATLAB®

Deep Learning Toolbox[163] and CNNs using MatConvNet [164].

FCN

A 3-layered neural network was employed to recognize digits from the MNIST Dataset.

The training set consists of 60000 images, while the testing set consists of 10000 images. The

input layer consists of 784 neurons designated to carry the information of each pixel of each

28×28 image. The hidden layer consists of 500 neurons and the output layer has 10 neurons

to recognize 10 digits. The neuron transfer function was chosen to be the sigmoid function

which can be written as σ(x) = 1
1+e−x

.

CNN

For the classification of more complex dataset CIFAR-10, we have used a network with

RELU-activated convolutional layers and a sigmoid-activated fully connected layer. The

architecture is represented as 32×32×3-64c5-2s-128c5-2s-256c3-2s-512o-10o.The details of

the layers are provided in Table. II. Essentially, the different layers represent subsequent

90

Figure 4.4. (a) Distribution of output currents (Imean), averaged over 100
images, across 500 neurons in the hidden layer comparing the approximate
model to SPICE-like simulation framework. (b) Variation of Normalized Root
Mean Square Deviation (NRMSD) with non-ideality ratio. NRMSD is close
to zero for the relevant range of non-idealities.

operations such as convolution, max-pooling or average-pooling and activation. The op-

erations are described in detail in Secton II.A. Each convolutional layer is followed by a

batch-normalization layer for better performance. We concentrate our analysis on the fully

connected layers of the network as the initial convolutional layers possess local connections

implemented on small crossbars equal to the kernel sizes.

91

4.3.2 SPICE-like Simulations for validation

Each fully connected layer for both FCNs and CNNs can be implemented in a crossbar ar-

chitecture comprising of all possible connections. A SPICE-like framework was implemented

in MATLAB® by creating a netlist of all connections, voltage source, source and neuron

resistances in such resistive crossbars and evaluating the voltages at each node by solving

the conductance matrix: [V] = [G]−1[I]. The framework was benchmarked with HSPICE®.

This framework was used to calculate the output of non-ideal crossbars on application of

the inputs from the MNIST dataset as voltages. The resistances of the crossbar elements Rji

were determined such that Rji = 1/wji, where wji are the weights determined by the ideal

training scheme described in the previous subsection. The output obtained by showing 100

images of the testing set was averaged and the distribution was compared with the mathe-

matical model simulations. Fig. 6.8 (a) shows the comparison in the distribution of output

currents of a crossbar where the approximate model shows good agreement with the exact

SPICE-like simulations. Fig. 6.8 (b) shows that the normalized root mean square deviation

(NRMSD) between the two techniques for various (Rs + Rneu)/Rhigh combinations remains

very close to zero for relevant values. As SPICE simulations automatically takes account

of possible sneak paths, the agreement of our model to SPICE simulations means that the

effect of sneak paths, even if not absolutely zero, is insignificant. Thus, the dominant issues

in the crossbar to be considered are source and neuron resistances. It is to be noted that

the validation of our approximate model was important in the context of reducing the time

required for simulating the training and inferencing of each network for the entire dataset

as the matrix operations could be more efficiently performed using the mathematical model.

This eliminated simulating the network for each input image in HSPICE®and the subsequent

iterative steps involving MATLAB-SPICE interfacing.

4.4 Results and Discussion

We analyzed the impact of technological constraints in crossbar implementations on both

FCNs and CNNs. As fully connected layers form the crux of classification in both network

topologies, it is expected that such non-ideal conditions will have similar detrimental effects

92

Figure 4.5. Accuracy degradation v/s varying Rneu/Rhigh ratio for differ-
ent Rs/Rhigh combinations comparing technology aware training scheme with
normal training for (a) FCN and (b) CNN.

on both. We present the detailed impact of each non-ideality on FCNs and CNNs for better

understanding.

We consider a 3-layered FCN and a CNN architecture described in Table. 4.2 to analyze

the impact of the non-idealities on the accuracy of recognition task on MNIST and CIFAR-10

datasets respectively. The other convolutional layers in the CNN are usually implemented

using small crossbars and hence do not suffer significant effects of non-ideal resistances.

93

First, the neural networks were trained under ideal conditions using the training set.

Then, the non-ideal model was included in the feed-forward path and the ideally trained

network was tested using the testing set to determine the performance degradation due

to the non-idealities. Next, the technology aware training algorithm was implemented by

incorporating the mathematical formulation of the non-idealities in the standard training

iterations of feed-forward and backpropagation as described in the Section III D. For each

iteration, the weights were discretized as described in Section III C. The testing accuracy of

an ideally trained FCN with a sigmoid neuronal function was 98.12% on MNIST and that

of an ideally trained CNN was 85.6% on CIFAR-10 datasets. The accuracy degradations

discussed in this section has been calculated with respect to these ideal testing accuracies

such that Accuracy Degradation (%) = Ideal Accuracy (%) - Accuracy Obtained (%). We

use the parameters Rs/Rhigh and Rneu/Rhigh to denote the ratios of the non-ideal resistances

and the maximum synaptic resistance.

Source and Neuron Resistance

Fig. 4.5 (a) and 4.5 (b) shows the accuracy degradation for different Rneu/Rhigh and

Rs/Rhigh combinations in FCN and CNN, respectively. The effect of the non-ideal resistances

on the performance of the network predictably worsens monotonically with higher Rs/Rhigh

and Rneu/Rhigh ratios. It can be observed that with normal training methods, the non-ideal

resistances result in accuracy degradation for FCN: up to 41.58% for Rneu/Rhigh = 0.07% and

Rs/Rhigh = 0.27%. Our proposed training scheme incorporates the impact of non-idealities

and achieves significant restoration of accuracy, within 1.9% of the ideal accuracy, for the

worst case combination of resistances considered, shown in Fig. 4.5 (a).

In case of CNNs, we show that due to the large crossbar sizes of the fully connected layers

in the CNN, it can suffer up to 59.3% degradation in accuracy for the worst case non-ideal

resistances considered. Our proposed algorithm, on the other hand, achieves an accuracy

within 1.5% of the ideal accuracy (Fig. 4.5 (b)), considering the largest crossbar sizes for the

architecture.

94

CNN

Figure 4.6. Accuracy degradation v/s σ variations in weights for various
Rs/Rhigh and Rneu/Rhigh combinations comparing the technology aware train-
ing scheme with normal training for (a) FCN and (b) CNN.

Weight variations

On-chip crossbar implementations suffer from chip-to-chip device variations. To account

for such variations, we form a defect weight matrix, and include it in the feed-forward

network, as described in detail in Section III C. We have considered up to±2σ variation in the

synaptic weights. Fig. 4.6 shows the impact of such device variations on the accuracy of FCN

and CNN for different combinations of Rs/Rhigh and Rneu/Rhigh. Predictably, changes in the

95

positive direction reduces the accuracy degradation from the nominal (no variation) case as it

enhances the significance of the neurons. However, changes in the negative direction slightly

degrades the accuracy from the nominal case. It is observed that a −2σ variation can result

in an accuracy degradation of up to 59.9% for Rneu/Rhigh = 0.067% and Rs/Rhigh = 0.27%

in FCN. By accounting for these variations in the backpropagation algorithm, our proposed

training methodology successfully restores the accuracy within 2.34% of the ideal accuracy

for worst case of non-idealities considered, as shown in Fig. 4.6 (a).

Weight variations in the negative direction also adversely affect CNNs where −2σ vari-

ation can result in an accuracy degradation of 62.4% considering the non-ideal resistances

mentioned above. Our proposed algorithm achieves an accuracy within 0.8% of the ideal

testing accuracy as shown in Fig. 4.6 (b).

Crossbar Size

Non-idealities in crossbars usually establish restrictions on the allowable crossbar sizes

due to the dependence of their performance on fan-in and fan-out. For example, the impact

of Rs on the crossbar depends on the parallel combination of column resistances and a higher

number of columns (and hence, higher fan-out) result in severe performance degradation.

Also, the impact of Rneu intensifies with increasing number of rows in the crossbar as it

leads to more fan-in. As observed in Fig. 4.7 (a), the combined effect of these resistances

and variations can result in significant accuracy degradation (41.58%) when the network

is implemented on crossbars of sizes 784 × 500 and 500 × 10 for the respective layers in

the FCN. Under the same non-ideal conditions, accuracy degradation drops to 1.2% when

smaller crossbars of sizes 112×100 and 100×10 are used to represent the functionality of the

network. In contrast, considering the same Rs and Rneu, our proposed training algorithm

achieves an accuracy degradation within ∼ 1.89% for sizes 784×500, 500×10 and ∼ 0.3% for

sizes 112×100, 100×10. Thus, the proposed algorithm ensures that a network implemented

on larger crossbars can parallel the performance of ideally trained networks implemented on

smaller crossbars with minimal degradation.

96

a)

FCN

b)

CNN

Figure 4.7. Accuracy degradation v/s crossbar size for various Rs/Rhigh

and Rneu/Rhigh combinations comparing the technology aware training scheme
with normal training for (a) FCN and (b) CNN. Larger crossbars show higher
accuracy degradation.

The convolutional layers in CNNs are implemented on smaller crossbars. For the fully

connected layers in the CNN architecture, we have considered significantly larger crossbars

of sizes 4096 × 512 and 512 × 10. Due to large sizes of the last 2 layers of the considered

architecture, we show in Fig. 4.7 (b), that the network, when trained under ideal conditions,

can suffer as large as 59.3% degradation in accuracy for the worst case resistance constraints

considered. On the other hand, using smaller crossbars of sizes 512× 64, 64× 10 reduces the

accuracy degradation to 2.4% for the same conditions. In comparison, a network trained with

97

the proposed technology aware training algorithm restores the accuracy to within ∼ 1.5%

of the ideal accuracy even for the highest crossbar sizes (4096 × 512, 512 × 10). Thus, the

proposed algorithm ensures that a CNN with fully connected layers implemented on crossbars

of size in the order of 4096 × 512 can achieve better performance than for crossbars of size

512 × 64 with standard training algorithms. Such a provision of using large crossbars for

implementing neuromorphic systems could potentially reduce overheads of repeating inputs,

time multiplexing outputs, thus ensuring faster operations.

4.5 Conclusion

Hardware implementations of neuromorphic systems in crossbar architecture could suffer

from various non-idealities resulting in severe performance degradation when employed in

machine learning applications such as recognition tasks, natural language processing, etc. In

this chapter, we analyzed, by means of mathematical modeling, the impact of non-idealities

such as source resistance, neuron resistance and chip-to-chip device variations on perfor-

mance of a 3-layered FCN on MNIST and a state-of-the-art CNN architecture on CIFAR-10.

Severe degradation in recognition accuracy, up to 59.84%, was observed in FCNs. Although

convolution layers in CNN can be implemented on smaller crossbars, the large fully con-

nected layers at the end made them prone to performance degradation (up to 62.4% for our

example). As a solution, we proposed a technology aware training algorithm which incorpo-

rates the mathematical models of the non-idealities in the training algorithm. Considering

relevant ranges of non-idealities, our proposed methodology recovered the performance of

the network implemented on non-ideal crossbars to within ∼ 2.34% of the ideal accuracy for

FCNs and ∼ 1.5% for CNNs. We further show that the proposed technology aware training

algorithm enables the use of larger crossbars of sizes in the order of 4096×512 for CNNs and

784× 500 for FCNs without significant performance degradation. Thus, we believe that the

proposed work potentially paves the way for implementation of neuromorphic systems on

large crossbars which otherwise is rendered unfeasible using standard training algorithms.

98

5. GENIEX: A GENERALIZED APPROACH TO EMULATING

NON-IDEALITY IN MEMRISTIVE XBARS USING NEURAL

NETWORKS

5.1 Introduction

The pervasiveness of deep learning in a wide-variety of applications such as object detec-

tion, language processing etc. has been a major force behind the recent success of Artificial

Intelligence (AI). Consequently, there has been a growing interest in developing specialized

accelerators to improve the efficiency of deep learning. Such accelerators include Google

TPU [3], Microsoft BrainWave [10], and Nvidia V100. One key aspect driving these acceler-

ators is moving computations closer to the memory, which has brought forth the paradigm

of in-memory computing. Despite the breakthroughs in custom hardware, the storage and

computation requirements of Deep Neural Networks (DNNs) have been increasing at a much

faster rate than the efficiency improvements in digital CMOS hardware [57]. To this effect,

researchers have explored Non Volatile Memory (NVM) [59], [165] based crossbar architec-

tures to achieve higher on-chip storage density and efficient MVMs in the analog domain [15],

[16].

NVM devices can store multiple states per device, and crossbars built with these de-

vices can be integrated on chip leading to high storage density [165]. Second, the voltage-

driven nature of these two-terminal devices enables crossbar-like arrangement to perform

MVMs, at significantly higher efficiency compared to digital CMOS [104]. Despite the mul-

tifold promises of NVM technologies, the analog nature of computing in crossbars poses

several challenges due to the device and circuit non-idealities such as: parasitic resistance,

non-linearity from access transistors, and I-V characteristics of the NVM device. Parasitic

resistances lead to undesirable IR-drops in the metal lines of the crossbar. On the other

hand, the non-linearity leads to inaccurate multiplications at the cross-points. As a result,

non-idealities can have an adverse effect on the MVM arithmetic. This gets exacerbated

further due to the device variations. Eventually, the inaccuracies in the MVM arithmetic

99

can accumulate over the multiple layers of a neural network, causing significant accuracy

degradation [69].

To address this accuracy degradation, there have been efforts towards exploring tech-

niques to model non-idealities and subsequently mitigating them [22], [69], [166]. The ef-

ficacy of these mitigation techniques strongly depend upon the modelling [22], [69], [167]

approach to exhaustively capture the sources of the non-idealities and retraining of the neu-

ral network weights. The non-idealities in crossbars can be broadly categorized into non-data

dependent or linear (for eg. parasitic resistances), and data-dependent or non-linear types

(for eg. access transistors and device I-V characteristics). While the current analytical tech-

niques can model the non-data dependent aspects [22], [69], [167], they fail to capture the

data dependent non-idealities. Data-dependent non-idealities can have a pronounced effect

on the crossbar outputs, particularly at higher operating voltages (discussed in Section 5.3).

Thus, it is important to move away from approximate analytical models to data-based mod-

els in order to truly capture all the non-idealities. In this chapter, we present GENIEx, a

neural network based modelling approach that provides an accurate as well as generalized

representation of the non-ideal behavior of crossbars. The key contributions of this work

are:

• Analyze the sources of non-ideality in crossbars through extensive SPICE simulations

(Section 5.3).

• Propose GENIEx, a generalized approach for modelling non-idealities in crossbars using

neural networks (Section 5.4).

• Develop a PyTorch-based functional simulator which models the key architectural as-

pects namely tiling, and bit-slicing to evaluate large-scale DNNs using GENIEx (Sec-

tion 5.5).

• Perform detailed analysis of different non-idealities on the classification accuracy of

DNNs (Section 5.7).

To the best of our knowledge, this is the first work proposing an end-to-end framework for

data-dependent crossbar modeling along with a functional simulator considering tiling, and

100

bit-slicing. This enables studying the accuracy impacts of device and circuit properties at

the application level. It is worth noting that due to the ability to capture data dependency

of crossbar behavior (transfer characteristics), GENIEx can be used to model crossbars

from both simulations as well as experimental measurements. We believe that our proposed

approach paves the way for universal modeling of practical crossbars with the scope of seamless

functional evaluation and mitigation. We plan to open-source the framework for further

research on crossbar hardware.

5.2 Related Work

Past research have explored modeling crossbar non-idealities and subsequently mitigating

them [22], [69], [166], [168]. Jain et al [69] used matrix inversion techniques to model the

effects of parasitic resistances due to input driver, metal lines etc. Liu et al [168] proposed

an approximation technique based on sample input/output behavior. An alternative way of

capturing effects such as stuck-at-faults [169] or device variations [170] is to map the distri-

bution of the variations or defects. While the above modelling approaches [69], [168]–[170]

consider linear (non-data dependent) non-idealities, GENIEx also captures the non-linear

(data dependent) non-idealities. Note, there could be non-linearity during programming of

NVM devices. Sun et al [171] propose analytical models to study such non-linearity dur-

ing programming. However, analyzing the impact of non-linearity on the subsequent MVM

computations (after programming) requires a data-dependent model like GENIEx.

Researchers have also proposed evaluation frameworks such as [69] and NeuroSim [172]

to study the impact of these non-idealities using analytical models. Other works have ex-

plored the impact of quantization noise of ADCs for analog computing [173]. However,

these frameworks do not consider the architectural aspects of MVM computations such as

tiling and bit-slicing, which have a significant implication on classification accuracy (shown

in Section 5.7.2). Our work explores a neural network based technique to model the cross-

bar non-idealities using a functional simulator with detailed MVM architecture. Table 5.1

summarizes our contribution with respect to the related work.

101

Table 5.1. Related work comparison

Related Work Linear + Non-linear
non-idealities

Large scale
DNNs

Architecture
model of MVM

GENIEx 4 4 4

CxDNN [69] 7 4 7

CrossSim [174] 4 7 7

NeuroSim [172] 4 7 7

AMS [173] 7 4 7

5.3 Analysis of NVM Non-Idealities

Background: A typical memristive crossbar consists of NVM devices arranged in a

crossbar fashion as shown in Figure 5.1 . The two terminals of each NVM device connect

to a horizontal word-line (WL) and a vertical bit-line (BL). These devices are accompanied

by access transistors or selectors to avoid the sneak path issues during writing [175]. This

primitive can be used to compute Matrix Vector Multiplications (MVMs) in the analog

domain by activating all the WLs and sensing all the BLs simultaneously. For example, to

perform a multiplication between a 1×N vector and a N ×M matrix, the vector is encoded

as input voltages (Vi) while the matrix is encoded as conductances (Gij). Consequently,

the output current in the jth BL (for ideal crossbar) is the sum of currents through each

NVM device in the corresponding column: Ij = ∑
i ViGij. Thus, the currents from the

M columns constitute the output vector of the MVM operation. Typically, a crossbar

requires peripheral circuits such as Digital-to-Analog Converters (DACs) and Analog-to-

Digital Converters (ADCs) for system-level integration. The DACs convert the digital inputs

into analog voltages while the ADCs convert the analog currents in the BLs to digital outputs.

Due to the analog nature of computing, several non-idealities can lead to errors in the MVM

computations. These non-idealities can be classified into two kinds - linear and non-linear,

as shown in Table 5.2 .

Analysis: Under the influence of non-idealities, the crossbar design parameters such as

size, ON resistance, conductance ON/OFF ratio etc. can have a considerable effect on the

magnitude of errors in computations. To analyze this effect, we perform SPICE analysis of

a 64× 64 crossbar. Herein, the linear non-idealities are modeled using parasitic resistances

102

...

...

G11 G12 G13 G1N

G21 G22 G23 G2N

GN1 GN2 GN3 GNN

I1 I2 I3 IN

Rsource Rsink Rwire

SL WL

BL

...

...

...

V0

V1

VN

Figure 5.1. A typical non-ideal crosspoint structure with NVM devices ac-
companied by a transistor at every junction of the word-lines (WL) and bit-
lines (BL).

Table 5.2. Non-idealities in crossbar
Linear Non-idealities Non-linear Non-idealities

Source Resistance (Rsource) Access devices or selectors
Sink Resistance (Rsink) Device non-linearity
Wire Resistance (Rwire)

as shown in Figure 5.1 . The access devices are based on transistor models from TSMC

65nm technology. The device models are adopted from a compact model of a filamentary

RRAM [176], where the current flowing through the device can be expressed as: I(d, V) =

I0exp(d
d0

)sinh(V
V0

). Here, d is the gap-size between the tip of the filament and electrode, I0,

d0 and V0 are fitting parameters.

Figure 5.2 (a) shows a typical plot of ideal current (Iideal) v/s non-ideal current (Inon−ideal)

of a crossbar. Here, we observe that different voltage (V) and conductance (G) conditions

which lead to similar Iideal can result in a varying range of Inon−ideal outputs, causing errors

103

a) b)

c) d)

NF=

Figure 5.2. (a) Output currents from a 64x64 crossbar showing the deviation
of (Inon−ideal) from (Iideal). (b), (c) and (d) shows the box-plot variation of the
NF with varying crossbar design parameters.

in computations. To quantify the error, we define a non-ideality factor (NF) as the relative

error between the Iideal and Inon−ideal. NF is calculated as: Iideal−Inon−ideal

Iideal
. We observe in

Figures 5.2 (b) and (c) that lower ON resistances and higher crossbar sizes lead to higher

NF. This is due to the fact that bigger crossbars have longer metal lines leading to higher

Rwire. Moreover, the parallel combination of resistances along the columns and rows results

in a reduced effective resistance of the crossbar in case of bigger crossbars as well as low ON

resistances. In addition, Figure 5.2 (d) shows that lower ON/OFF conductance ratio leads

to high NFs. This is due to the fact that for a given ON resistance, the average resistance

in the crossbar is low for lower ON/OFF ratio.

104

a) b)

Figure 5.3. (a) Output current distribution showing impact of non-linearity.
(b) Relative error between the cases with and without nonlinearity increases
with increase in maximum supply voltage.

Next, we analyze the impact of non-linear non-idealities. We consider two cases i) only

linear non-idealities, ii) both linear and non-linear non-idealities. Figures 5.3 (a) and (b)

show the relative difference in output currents between the two cases. We observe that the

output currents in case (i) vary noticeably from case (ii). This effect becomes even more

prominent for higher supply voltage of Vsupply = 0.5V , thereby implying an inherent data

dependence of Inon−ideal on the V and G. This result underlines the drawbacks of analytical

models which fail to capture the data-dependent non-idealities. We propose a neural network

based modeling technique that captures the data-dependent errors in crossbar computations.

5.4 GENIEx - A Neural Network Based Crossbar Model

Neural networks project data to a high dimensional space which enables them to dis-

tinguish between different input patterns. We leverage this property of neural networks to

propose GENIEx, which models the non-ideal behavior of memristive crossbars for different

input voltage and conductance combinations. As discussed in Section 5.3 , non-idealities in

crossbars can lead to a varying range of NF for similar Iideal. Using a neural network can

help us capture the data-dependent nature of such non-ideal behavior.

105

Iideal = VxG 𝑭𝑹(𝑽, 𝑮) =
𝑰𝒊𝒅𝒆𝒂𝒍

𝑰𝒏𝒐𝒏−𝒊𝒅𝒆𝒂𝒍 GENIEx

Conductance (G)
V

o
lt

a
g

e
s

(V
)

Inon-ideal

IN

SL

WL

BL

V0

V1

VN

...

...

G11 G12 G13 G1N

G21 G22 G23 G2N

GN1 GN2 GN3 GNN

I1 I2 I3

Rsource

Rsink

Rwire

...

...

...

C
o

n
d

u
c
ta

n
c
e
 (

G
)

V
o

lt
a
g

e
s
 (

V
)

Hidden Layer

F
R
(V

,G
) p

re
d

ic
te

d

𝑰 𝒏
𝒐
𝒏
−
𝒊𝒅
𝒆
𝒂
𝒍
=

𝑰 𝒊
𝒅
𝒆
𝒂
𝒍

𝑭
𝑹
(𝑽
,𝑮
)

Figure 5.4. Crossbar computation mapped to GENIEx. V and G are con-
catenated to form the input vector for neural network, with output being the
ratio fR = Iideal/Inon−ideal.

NN Formulation: The output current vector of an ideal crossbar (Iideal) represents an

MVM operation between V and G. Meanwhile, the output current vector from a real cross-

bar is non-ideal and can be expressed as a distorted MVM function: Inon−ideal = fD(V, G).

Therefore, it represents multiplicative behavior between the input variables, V and G. The

objective here is to model such non-ideality function fD(V, G) being input-dependent and

having multiplicative behavior. The intuitive way of modeling fD(V, G) using neural net-

works is to provide V and G as inputs and obtain Inon−ideal as output. However, as neural

networks perform linear transformations, it is difficult for them to model multiplicative inter-

actions between its inputs. To avoid such input multiplications, we propose extracting only

the distortion information of the real output current from fD(V, G). We define a function

which represents the ratio of Iideal to Inon−ideal: fR(V, G) = Iideal

Inon−ideal
. fR(V, G) represents

the deviation of the Inon−ideal from Iideal, thus eliminating the need to capture multiplicative

relationships. For an N ×N crossbar, the input vector to the neural network is a concatena-

tion of (N ×1) voltage vector and (N2×1) flattened conductance vector. The output vector

obtained is fR(V, G) which is of size N × 1. Subsequently, the Inon−ideal is obtained using

Iideal/fR(V, G). Dataset: To train GENIEx for predicting the ratio fR(V, G) for a set of V

and G vectors, we create a dataset covering the exhaustive space of V and G combinations.

106

Crossbar-based accelerators commonly use bit-slicing to perform high precision MVM oper-

ations [15], [16]. We observed that this leads to high sparsity in V and G vectors across the

popular deep learning tasks. To exhaustively capture the resulting sparse data distributions,

we consider various degrees of sparsity while generating the training set of V and G. We

apply the V and G vectors to various crossbars and perform SPICE simulations to obtain the

corresponding Inon−ideal. The obtained Inon−ideal is used to calculate fR(V, G), the prediction

labels for the dataset. To evaluate the accuracy of GENIEx, we create a separate validation

set of V , G and expected fR(V, G).

NN Topology: GENIEx considers a two layer fully-connected neural network consisting

of an input layer, a hidden layer and an output layer. For a N × N crossbar, the size of

the neural network is given as: (N2 + N) × P × N , where P is the number of neurons in

the hidden layer. The training set mentioned above is used to train the neural network by

feeding V, G combinations as inputs and fR(V, G) as the output.

Benchmarking: We compare the accuracy of GENIEx against HSPICE results and a

baseline linear analytical model for the same test voltage and conductance combinations. We

use the metric NF , defined in Section 5.3 , to compare the models with HSPICE results. The

baseline analytical model considers only linear non-idealities. We observe, in Figure 5.5 that

even at a low supply voltage of Vsupply = 0.25V , GENIEx achieves a Root Mean Square Error

(RMSE) of 0.25 while estimating the NF with respect to HSPICE. This is 7× lower than

the baseline analytical model. For higher supply voltage of Vsupply = 0.5V , GENIEx achieves

a RMSE of 0.7, which is 12.7× lower than the analytical model. To evaluate the impact

of non-idealities on large scale DNNs, we develop a functional simulator that incorporates

GENIEx with detailed MVM architecture model.

5.5 Functional Simulator

Several frameworks such as Ares [177], Distiller [178] etc. have been developed using Ten-

sorFlow and PyTorch to enable hardware-software codesign studies. However, such frame-

works cannot emulate the implications of crossbar-based hardware, because of the intrinsic

differences in the CMOS-based and Crossbar-based computation models. For CMOS, ma-

107

V=0.25V V=0.5 V=0.25V V=0.5

Analytical 1.73 8.99 GENIEx 0.25 0.7

RMSE (wrt SPICE)

Figure 5.5. Comparison of NF for a typical 64x64 crossbar between HSPICE
outputs, analytical model and GENIEx.

Iterative MVM1Model-mvm.py

L1: conv2d-mvm

LN: linear-mvm

⁞

C
o

n
d

u
ct

an
ce

 (
G

)
V

o
lt

ag
e

(V
)

F R
(V

,G
) p

re
d

ic
at

ed

9-bit ADC

Shift-Add

Output Register (38-bit)

ADC

01 01 01

00 11 10

11 01 11

2-bit stream

2-bit slice

Shift-Add

Input Vector Weight Matrix

01

11

00

01

Input Weights

Outputs

Tile Tile

Tile

Tile Tile

Tile

Tile

Tile

Ti
le

 R
o

w
s

(T
r)

Tile Columns (Tc)

Tiling2 Bit Slicing3 GENIEx4

Model.py

L1: conv2d

LN: linear

⁞

Figure 5.6. Logical organization of functional simulator

trix operations (ops) in a ML model are expressed as General Matrix-Matrix Multiplications

(GEMMs) that use floating/fixed point compute units, whereas Crossbar requires matrix ops

expressed as Matrix-Vector Multiplications (MVM) that use bit-serial compute units [15],

[16]. To address this, we design a functional simulator using PyTorch that implements the

conv2d (convolution) and linear (fully connected) layers based on the crossbar-based com-

putation (conv2d-mvm, linear-mvm).

108

Table 5.3. Functional simulator parameters
Component Parameters (architecture parameters in italics)

Iterative-mvm Input feature size, Kernel size, Input channels,
Output channels, Padding, Stride

Tiling Crossbar size

Bit-slicing Input bits, Weight bits, Accumulator width
ADC bits, Stream width, Slice Width

GENIEx Crossbar size, Ron, Roff, Rsource, Rsink, Rwire

Functional Simulator. As shown in Figure 5.6 , the execution of a convolution layer

is divided into three phases within the functional simulator: Iterative-mvm, Tiling, and Bit-

slicing. Each phase depends on parameters that either capture the layer or architecture

details pertinent to MVMs. Consequently, we extract the analog computing aspect of cross-

bar hardware and ignore any impact of memory and communication. First, Iterative-mvm

expresses a convolution as repeated MVMs, where the weights forms the matrix and a block

of pixels across all input channels form the vector (for an iteration). Each iteration produces

an output vector which is comprised of one pixel from all output channels. Second, Tiling

expresses the weight-matrix as a combination of several sub-matrices (or tiles) where, each

sub-matrix’s size equals the crossbar size. A slice of input vector is shared by tiles in a row.

Tiles in a column produce partial sums, which are added together to produce a slice of the

convolution output. Third, Bit-slicing (both input and weight bits) expresses the bit-serial

nature of crossbar computations [15], [16]. We will refer to a bit-slice (≥ 1 bits) of inputs

and weights as stream and slice, respectively. Within each step, an input stream is applied

to a crossbar’s rows to produce ADC outputs. Next, the shift-and-add units merge the ADC

outputs of different weight slices. Eventually, the outputs of successive input streams go

through shift-and-add units to produce the partial sums for a tile. Depending on the simula-

tion mode (ideal or non-ideal), the ADC outputs are generated either by actual dot-product

computation or a forward pass of GENIEx discussed in Section 5.4 . In summary, the three

phases together provide the projection of a layer’s execution on actual crossbar hardware.

109

PyTorch Modelling. The weight-matrix and input-vectors are modelled as multi-

dimensional tensors of shape - (Slices, Tr, T c, Xr, Xc), and (Batch Size, T r, Xr, Streams),

respectively. Here, the symbols - T , X, r, and c refer to a tile, crossbar, row and column.

Accordingly, Tr refers to a “tile row” and so on. The tensor operations torch.mul and

torch.sum execute the individual crossbar operations. Subsequently, reduction across the

weight slices (Slices) and input streams (Streams) with scalar factors for shift-and-add

generates the partial products. Subsequently, reduction across Tr dimension produces the

convolution output. Multiple input vectors corresponding to different iterations of MVM are

implemented as a batch of vectors (Batch Size). Table 5.3 lists the layer and architecture

parameters supported by the functional simulator.

5.6 Experimental Methodology

Crossbar: We simulate memristive crossbars using HSPICE. The test vectors for V

and G are collected from the dataset (CIFAR-100 and ImageNet) and the pretrained neural

network models (ResNet) respectively. Inon−ideal obtained from SPICE simulations is used

to calculate the non-ideality ratio, fR, described in Section 5.4 . Finally, V , G and fR(V, G)

are normalized to the range [0,1] to form the training set for GENIEx. To verify the gen-

eralization and applicability of GENIEx, we generated datasets for crossbar configurations

with different design parameters such as crossbar size (16, 32, 64), ON resistance (50kΩ,

100kΩ, 300kΩ), and conductance ON/OFF ratio (2, 6, 10). The non-ideality parameters are

Rsource = 500Ω/1000Ω, Rsink = 100Ω/500Ω, Rwire = 2.5Ω per cell. The device parameters

are d0 = 0.25nm, V0 = 0.25V , I0 = 0.1mA [179], [180].

Functional Simulator: The precisions of different components of the functional simu-

lators are as follows: accumulator = 32-bit (24 fractional), ADC = 14-bit, inputs and weights

= 16-bit (13 fractional), input Streams = 4-bit, weight Slices = 4-bit, unless otherwise spec-

ified. All networks use fixed-point (FxP) representations.

DNN: GENIEx has 500 hidden layer neurons and ReLU non-linearity [148]. We use

PyTorch to evaluate large-scale neural networks on the functional simulator using GENIEx.

For the CIFAR-100 dataset, we use the network architecture ResNet-20. For the ImageNet

110

dataset, we considered ResNet-18 on a subset of 7680 test images of the dataset. We report

the top-1 accuracies for both datasets. The ideal floating point 32-bit (FP) accuracies for

CIFAR-100 and subset of ImageNet are 69.6% and 76.01% respectively.

5.7 Results

5.7.1 Impact on Design Parameters

First, we study the impact of non-idealities on the classification accuracy of DNNs under

different design considerations of crossbar sizes, ON resistances, and conductance ON/OFF

ratio. The studies are performed on ResNet-20 for CIFAR-100 dataset with the features of

bit-slicing and bit-streaming using 4-bit Streams and Slices. The weights and activations for

these networks have been considered as 16-bit fixed point representations.

We observe in Figure 5.7 (a) that the classification accuracy degrades by 12% for a 64×64

crossbar compared to an ideal 16 bit fixed-point (Ideal FxP) implementation. However, for

lower crossbar sizes like 16 × 16, the degradation is ≤ 1%. This is due to reduced effective

resistance for higher crossbar sizes, as discussed in Section 5.3 . For higher ON resistances

such as 300kΩ, we observe, in Figure 5.7 (b) that the accuracy degradation is 7.6% lower than

the case with 100kΩ. This is because the parasitic resistances have more pronounced effect

on crossbars with lower ON resistances, resulting in higher accuracy degradation. In 5.7 (c),

we observe that for a given ON resistance (100kΩ in this case), lower ON/OFF ratio like 2

results in upto 46% degradation in accuracy due to the average resistances in the crossbar

being low. With higher ON/OFF ratio such as 10, the accuracy degradation reduces to

8.6%.

Figure 5.7 (d) shows that there is a significant difference between the accuracies predicted

by an analytical model and GENIEx. Further, it also illustrates that an analytical model

overestimates the accuracy degradation by 12.34% for supply voltage, Vsupply = 0.25V and

11.6% for Vsupply = 0.5V compared to GENIEx. Note that the analytical model considers

only linear non-idealities (parasitic resistances). It underscores that the device non-linearity

which is captured by our model can push the behavior of the crossbar towards ideality, thus

resulting in a lower accuracy degradation.

111

b)

c) d)

a)

CIFAR-100 on ResNet-20

Figure 5.7. Impact of non-idealities with crossbar design parameters (a)
Crossbar Size, (b) ON resistance, (c) ON/OFF ratio. (d) Comparison between
analytical model and GENIEx.

5.7.2 Impact of Quantization

We study the effect of non-idealities on DNNs with different bit-precision for weights

and activations. We consider 3 cases for networks where the weights and activations are

16-bit, 8-bit and 4-bit fixed point representations: i) Ideal, ii) Non-idealities estimated by

analytical model, and iii) Non-idealities estimated by GENIEx. Figure 5.8 shows that when

the weights and activations are represented as 16-bit fixed point, the classification accuracy

is close to ideal 32-bit floating point accuracy. When the precision of the weights and

activations is reduced to 8-bit, the accuracy degrades by 30.03% for CIFAR-100, and 35.29%

112

CIFAR-100

ImageNet

Figure 5.8. Impact of precision of weights and activations on classification
accuracy under the influence of non-idealities.

for ImageNet. For 4-bit case, the accuracy is ' 0%. Further, the accuracy degradation

increases from 12.5% to 29.6% for CIFAR-100 and 4.54% to 17.67% for ImageNet when

the bit-precision is reduced from 16-bit to 8-bit. Thus, non-idealities have an increased

detrimental effect at lower bit-precisions. Note that the analytical models overestimate the

degradation in accuracy by 12.34% and 3.99% for CIFAR-100, and 3.70% and 6.49% for

ImageNet compared to GENIEx for 16-bit and 8-bit cases respectively. This result shows

that due to the constraints on a) the number of bits NVM devices can store reliably [165], and

b) the DAC precisions for efficient MVM [16], bit slicing of weights and inputs are essential

features to achieve close to full-precision accuracies.

113

Figure 5.9. Impact of number of bits/device and bits/stream.

5.7.3 Impact of Bit Slicing

Finally, we study the impact of different bit-slicing configurations for inputs (Streams)

and weights (Slices) for 16-bit FxP network on the classification accuracy of DNNs in presence

of non-idealities. Figure 5.9 shows that using 2-bit or 1-bit Streams and Slices, achieves close

to ideal FxP accuracy. Increasing the Stream and Slice widths to 4-bit results in a 12.48%

degradation in accuracy. Note that 1-bit Streams and 1-bit Slices result in a slightly lower

accuracy. This is because the combination of 1-bit Streams and Slices results in very high

sparsity that makes the crossbar resilient to parasitic resistances. In such a case, device non-

linearity can lead to non-ideality factor, NF to be lower than 0, resulting in lower accuracy.

Nonetheless, using lower number of bits per slice and stream can help achieve close to ideal

FxP accuracies. This result provides a perspective on architectural design parameters such

as the Slice and Stream widths in presence of crossbar non-idealities.

114

5.8 Conclusion

We present GENIEx, a generalized approach to emulating non-ideality in memristive

crossbars using neural networks. We perform extensive SPICE simulations and subsequently

train a neural network to learn a generalized behavior of the non-ideal crossbar. Finally, we

use GENIEx in a functional simulator for evaluating the impact of these non-idealities on

the image classification performance of large-scale DNNs. We show that GENIEx achieves

a low RMSE of 0.25 for Vsupply = 0.25V and 0.7 for Vsupply = 0.5V with respect to HSPICE,

which is 7× and 12.8× lower, respectively, than an analytical model. This is due to the

ability of GENIEx to model both linear and non-linear non-idealities. We further show that

an analytical model overestimates the degradation in classification accuracy by 12.3% on

CIFAR-100, and 4% on ImageNet compared to GENIEx. We analyze the impact of non-

idealities on the crossbar design parameters such as crossbar-size, ON resistance, conductance

ON/OFF ratio, Stream width, and Slice width. We observe that packing lower bits per device

as well as using low crossbar sizes with higher ON resistances is necessary to minimize the

impact of non-idealities. The proposed end to end framework for evaluating crossbar based

architectures on realistic crossbars can pave the way for efficient crossbar designs for future

machine learning systems.

115

6. 8T SRAM CELL AS A MULTIBIT DOT-PRODUCT

ENGINE FOR BEYOND VON NEUMANN COMPUTING

6.1 Introduction

State-of-the-art computing platforms are widely based on the von-Neumann architecture

[181]. The von-Nuemann architecture is characterized by distinct spatial units for computing

and storage. Such physically separated memory and compute units result in huge energy

consumption due to frequent data transfer between the two entities. Moreover, the transfer of

data through a dedicated limited-bandwidth bus limits the overall compute throughput. The

resulting memory bottleneck is the major throughput concern for hardware implementations

of data intensive applications like machine learning, artificial intelligence etc.

A possible approach geared towards high throughput beyond von-Neumann machines is

to enable distributed computing characterized by tightly intertwined storage and compute

capabilities. If computing can be performed inside the memory array, rather than in a

spatially separated computing core, the compute throughput can be considerably increased.

As such, one could think of ubiquitous computing on the silicon chip, wherein both the

logic cores and the memory unit partake in compute operations. Various proposals for ‘in-

memory’ computing with respect to emerging non-volatile technologies have been presented

for both dot product computations [182], [183] as well as vector Boolean operations [184].

Prototypes based on emerging technologies can be found in [85], [183] .

With respect to the CMOS technology, Boolean in-memory operations have been pre-

sented in [185] and [186]. In [185] authors have presented vector Boolean operations using

6T SRAM cells. Additionally, authors in [186] have demonstrated that the 8 transistor

(8T) SRAM cells lend themselves easily as vector compute primitives due to their decou-

pled read and write ports. Both the works [185] and [186] are based on vector Boolean

operations. Interestingly, by adding additional peripheral circuits more complex functions

like add and multiplication can be implemented using bulk-bit-wise computations as shown

in [187]. However, perhaps the most frequent and compute intensive function required for

numerous applications like machine learning is the dot product operation. Memristors based

on resistive-RAMs (Re-RAMs) have been reported in many works as an analog dot product

116

WWL WWL

RBL

RWL

WBL WBLB

Q QB

M1

M2

SL

Storage cell

RBL

VDD

M1

M2

vi

Q IRBL

Bit-cell RBL

M1

M2

Vbias

Q IRBL

Bit-cell

vi

Config-A Config-B

Sensing Circuit Sensing Circuit

(a) (b) (c)

Figure 6.1. (a) Schematic of a standard 8T-SRAM bit-cell. It consists of
two decoupled ports for reading and writing respectively. (b) First proposed
configuration (Config-A) for implementing the dot product engine using the
8T-SRAM bit-cell. The SL is connected to the input analog voltage vi, and
the RWL is turned ON. The current IRBL through the RBL is sensed and is
proportional to the dot product vi · gi, where gi is the ON/OFF conductance
of the transistors M1 and M2. (c) Second proposed configuration (Config-B).
The input analog voltages are applied to the RWL, while the SL is supplied
with a constant voltage Vbias. The current through the RBL is sensed in the
same way as in Config-A.

compute engine [122], [184]. Few works based on analog computations in SRAM cells can be

found in [188]–[191]. These works use 6T SRAM cells and rely on the resultant accumulated

voltage on the bit-lines (BLs). Not only 6T SRAMs are prone to read-disturb failures, the

failures are also a function of the voltage on the BLs. This leads to a tightly constrained

design space for the proposed 6T SRAM based analog computing. More recently, there have

been works on modified SRAM cells such as 8T or 10T cells for more robust in-memory

computing [11], [192]–[194]. These works use a modified SRAM cell enabling parallel com-

putations of binary dot products. In general, the existing analog computing works in SRAM

cells have implemented either multi-bit multiplication or have been limited to binary dot

products. Interestingly, using current based computations allow highly parallel multi-bit

dot product operation. 8T SRAM cells as current based dot product accelerators were first

proposed in [195]. Subsequently, the work in [14] used a twin 8T cell to enable multi-bit

dot products using current based computations. Based on [195], in this thesis, we employ

117

8T cells that are much more robust as compared to the 6T cells due to isolated read port.

We show that without modifying the basic bit-cell for the 8T SRAM cell, it is possible to

configure the 8T cell for in-memory multi-bit dot product computations. Note, in sharp

contrast to the previous works on in-memory computing with the CMOS technology, we

enable current based, analog-like dot product computations using robust digital 8T bit-cells.

The key highlights of the present work are as follows:

1. We show that the conventional 8T SRAM cell can be used as a primitive for analog-like

dot product computations, without modifying the bit-cell circuitry. In addition, we

present two different configurations for enabling dot product computation using the

8T cell.

2. Apart for the sizing of the individual transistors consisting the read port of the 8T cell,

the basic bit-cell structure remains unaltered. Thereby, the 8T SRAM array can also

be used for usual digital memory read and write operations. As such, the presented 8T

cell array can act as a dedicated dot product engine or as an on-demand dot product

accelerator.

3. A detailed simulation analysis using 45nm predictive technology models including

layout analysis and effect of non-idealities like the existence of line-resistances and

variation in transistor threshold voltages has been reported highlighting the various

trade-offs presented by each of the two proposed configurations.

6.2 8T-SRAM as a Dot Product Engine

A conventional 8T bit-cell is schematically shown in Fig. 6.1 (a). It consists of the well-

known 6T-SRAM bit-cell with two additional transistors that constitute a decoupled read

port. To write into the cell, the write word-line (WWL) is enabled, and write bit-lines

(WBL/WBLB) are driven to VDD or ground depending on the bit to be stored. To read a

value from the cell, the read bit-line (RBL) is pre-charged to VDD and the read word-line

(RWL) is enabled. Note, that the source-line (SL) is connected to the ground. Depending

on whether the bit-cell stores a logic ‘1’ or ‘0’, the RBL discharges to 0V or stays at VDD,

118

respectively. The resulting voltage at the RBL is read out by the sense amplifiers. Although

8T-cells incur a ∼30% increase in bit-cell area compared to the 6T design, they are read-

disturb free and more robust due to separate read and write path optimizations [196].

We now show how such 8T-SRAMs, with no modification to the basic bit-cell circuit

(except for the sizing of the read transistors), can behave as a dot product engine, without

affecting the stability of the bits stored in the SRAM cells. We propose two configurations -

Config-A and Config-B, for enabling dot-product operations in the 8T-SRAMs. Config-A is

shown in Fig. 6.1 (b). The inputs vi (encoded as analog voltages) are applied to the SLs of

the SRAM array, and the RWL is also enabled. The RBL is connected to a sensing circuitry,

which we will describe later. Thus, there is a static current flow from the SL to the RBL,

which is proportional to the input vi and the conductance of the two transistors M1 and M2.

For simplicity, assume that the weights (stored in the SRAM) have a single-bit precision. If

the bit-cell stores ‘0’, the transistor M1 is OFF, and the output current through the RBL is

close to 0. Whereas if the bit-cell stores a ‘1’, the current is proportional to vi · gON , where

gON is the series ‘ON’ conductance of the transistors. Assume similar inputs vi are applied

on the SLs for each row of the memory array. Since the RBL is common throughout the

column, the currents from all the inputs vi are summed into the RBL. Moreover, since the SL

is common throughout each row, the same inputs vi are supplied to multiple columns. Thus,

the final output current through RBL of each column is proportional to I j
RBL = Σ(vi · gj

i),

where gj
i is the ‘ON’ or ‘OFF’ conductance of the transistors, depending on whether the

bit-cell in the i-th row and j-th column stores a ‘1’ or ‘0’, respectively. The output current

vector thus resembles the vector-matrix dot product, where the vector is vi in the form of

input analog voltages, and the matrix is gj
i stored as digital data in the SRAM.

Let us now consider a 4-bit precision for the weights. If the weight W j
i = w3w2w1w0,

where wi are the bits corresponding to the 4-bit weight, the vector matrix dot product be-

comes:

Σ(vi ·W j
i) = Σ[vi · (23w3 + 22w2 + 21w1 + w0)]

= Σ(vi · 23w3) + Σ(vi · 22w2) + Σ(vi · 21w1) + Σ(vi · w0)

119

RBL

M1

M2

vi0

Q3

IRBL

Sensing Circuit

M1

M2

Q0

RBL

M1

M2

RBL

M1

M2

RBL

Q1Q2

RWL0

M1

M2

vi1

Q3
M1

M2

Q0
M1

M2

M1

M2

Q1Q2

RWL1

IRBL IRBL IRBL

Figure 6.2. 8T-SRAM memory array for computing dot-products with 4-bit
weight precision. Only the read port is shown, the 6T storage cell and the
write port are not shown. The array columns are grouped in four, and the
transistors M1 and M2 are sized in the ratio 8 : 4 : 2 : 1 for the four columns.
The output current I j

OUT represents the weighted sum of the IRBL of the four
columns, which is approximately equal to the desired dot-product.

Now, if we size the read transistors M1 and M2 of the SRAM bit-cells in column 1

through 4 in the ratio 23 : 22 : 21 : 1, as shown in Fig. 6.2 , the transistor conductances in the

‘ON’ state would also be in the ratio 23 : 22 : 21 : 1. Thus, summing the currents through

the RBLs of the four columns yields the required dot product in accordance to the equation

shown above. This sizing pattern can be repeated throughout the array. In addition, one

could also use transistors having different threshold voltages to mimic the required ratio of

conductances as 23 : 22 : 21 : 1. Note that, the currents through the RBLs of the four

consecutive columns are summed together, thus we obtain one analog output current value

for every group of four columns. In other words, the digital 4-bit word stored in the SRAM

array is multiplied by the input voltage vi and summed up by analog addition of the currents

on the RBLs. This one-go computation of vector multiplication and summation in a digital

memory array would result in high throughput computations of the dot products.

120

It is worth mentioning, that the way input vi are multiplied by the stored weights and

summed up is reminiscent of memristive dot product computations [122]. However, a concern

with the presented SRAM based computation is the fact that the ON resistance of the

transistors (few kilo ohms) are much lower as compared to a typical memristor ON resistance

which is in the range of few tens of kilo ohms [22]. As such the static current flowing through

the ON transistors M1 and M2 would typically be much higher in the presented proposal.

In order to reduce the static current flow, we propose scaling down the supply voltage of the

SRAM cell. Note, interestingly, 8T cells are known to retain their robust operation even at

highly scaled supply voltages [197]. In the next section we have used a VDD lower than the

nominal VDD of 1V. We would now describe another way of reducing the current, although

with trade-offs, as detailed below.

Config-B is shown in Fig. 6.1 (c). Here, the SLs are connected to a constant voltage Vbias.

The input vector vi is connected to RWLs, i.e., the gate of M2. Similar to Config-A, the

output current IRBL is proportional to vi. We will later show from our simulations that for

a certain range of input voltage values, we get a linear relationship between IRBL and vi,

which can be exploited to calculate the approximate dot product. To implement multi-bit

precision, the transistor sizing is done in the same way as Config-A as represented in Fig.

6.2 , so that the IRBL is directly proportional to the transistor conductances. Key features

of the proposed Config-B are as follows. The input voltages vi have a capacitive load, as

opposed to a resistive load in Config-A. This relaxes the constraints on the input voltage

generator circuitry, and is useful while cascading two or more stages of the dot product

engine. However, as presented in the next section, Config-B has a small non-zero current

corresponding to zero input as opposed to Config. A that has zero current for zero input.

In order to sense the output current at the RBLs, we use a current to voltage converter.

This can most simply be a resistor, as shown in Fig. 6.1 . However, there are a few constraints.

As the output current increases, the voltage drop across the output resistor increases, which

in turn changes the desired current output. A change in the voltage on the RBL would also

change the voltage across the transistors M1 and M2, thereby making their conductance a

function of the voltage on the RBL. Thus, at higher currents corresponding to multiple rows

of the memory array, the IRBL does not approximate the vector-matrix dot product, but

121

Figure 6.3. IRBL versus Vin characteristics for (a) Config. A and (b) Config.
B shows the linear region of operation for different weights. IRBL versus Weight
levels for (c) Config. A and (d) Config. B shows desirable linear relationship
at various voltages Vin. IRBL shows significant deviation from ideal output
(IN = N × I1 with increasing number of rows for both (e) Config. A and
(f) Config. B, where I1 is the current corresponding to one row and N is the
number of rows. The analyses were done for VDD = 0.65V

deviates from the ideal output. This dependence of the RBL voltage on the current IRBL

will be discussed in detail in the next section with possible solutions.

6.3 Results

The operation of the proposed configurations (Config-A and Config-B) for implementing

a multi-bit dot product engine was simulated using HSPICE on the 45nm PTM technology

[198]. For the entire analysis, we have used a scaled down VDD of 0.65V for the SRAM cells.

The main components of the dot-product engine implementation are the input voltages and

conductances of the transistors for different states of the cells. A summary of the analysis

for the two configurations is presented in Fig. 6.3 . In Fig. 6.3 , we have assumed a sensing

resistance of 50-ohms connected to the RBL. Note, a small sense resistance is required to

ensure that the voltage across the sensing resistance is not high enough to drastically alter

the conductances of the connected transistors M1 and M2.

122

In Fig. 6.3 (a)-(b) we plot the output current in RBL (IRBL) as a function of the input

voltage for three 4-bit weight combinations ‘1111’, ‘1010’ and ‘0100’ for the two different

configurations described in the previous section. The results presented are for a single 4-bit

cell. To preserve the accuracy of a dot-product operation, it is necessary to operate the cell

in the voltage ranges such that the current is a linear function of the applied voltage vi.

These voltage ranges are marked as linear region in Fig. 6.3 (a)-(b). The slope of the linear

section IRBL versus Vin plot varies with weight, thus signifying a dot product operation.

Further, at the left voltage extremity of the linear region, IRBL tends to zero irrespective of

the weight, thus satisfying the constraint that the output current is zero for zero Vin. It is to

be noted that the two configurations show significantly different characteristics due to the

different point-of-application of input voltages.

Fig. 6.3 (c)-(d) presents the dependence of the current IRBL on the 4-bit weight levels

for Config-A at constant voltages Vin = 0.05V, 0.1V, 0.15V and configuration B at Vin =

0.5V, 0.55V, 0.6V, respectively. Different voltages were chosen so as to ensure the circuit

operates in the linear region as depicted by Fig. 6.3 (a)-(b). Desirably, IRBL shows a linear

dependence on weight levels and tends to zero for weight = ‘0000’. The choice of any voltage

in the linear regions of Fig 6.3 (a)-(b) does not alter the linear dependence of the IRBL on

weight levels.

To expand the dot-product functionality to multiple rows, we performed an analysis for

upto 64 rows in the SRAM array, driven by 64 input voltages. In the worst case condition,

when the 4-bit weight stores ‘1111’, maximum current flows through the RBLs, thereby

increasing the voltage drop across the output resistance. Fig. 6.3 (e)-(f) indicates that the

total current IRBL deviates from its ideal value with increasing number of rows, in the worst

case condition. The deviation in Fig. 6.3 (e)-(f) is because we sense the output current with

an equivalent sensing resistance (Rsense) and hence the final voltage on the bit-line (VBL) is

dependent on the current IRBL. At the same time, IRBL is also dependent on VBL and as a

result the effective conductance of the cell varies as VBL changes as a function of the number

of rows. It was also observed that the deviation reduces with decreasing sensing resistance

as expected. Another concern with respect to Fig. 6.3 is the fact that the total summed

123

VDD

Vout = -IRBLRf+Vpos

Q

RBL

Vin

IRBL

Vin

Q

RBL

Vbias

Config. A

Config. B

a)

b)

c)

d)

e)

f)

With Opamp

-+

Vpos
+-

-+

Vpos
+-

IRBL

Vout = -IRBLRf+Vpos

Rf

Rf

Figure 6.4. IRBL versus Vin characteristics for (a) Config. A and (b) Config.
B shows the linear region of operation for different weights. IRBL versus weight
levels for (c) Config. A and (d) Config. B shows desirable linear relationship
at various voltages Vin. IRBL shows almost zero deviation from ideal output
(IN = N × I1 with increasing number of rows for both (e) Config. A and
(f) Config. B, where I1 is the current corresponding to one row and N is the
number of rows. These analyses were done for VDD = 0.65V

up current reaches almost 6mA for 64 rows for the worst case condition (all the weights are

‘1111’).

There are several ways to circumvent the deviation from ideal behavior with increasing

number of simultaneous row accesses and also reduce the maximum current flowing through

the RBLs. One possibility is to use an operational amplifier (Opamp) at the end of each

4-bit column, where the negative differential input of the Opamp is fed by the bit-line

corresponding to a particular column. Whereas, the positive input is supplemented by

a combination of the Opamp offset voltage and any desired voltage required for suitable

operation of the dot-product as shown in left hand side of Fig. 6.4 . Opamp provides a

means of sensing the summed up current at the RBL while maintaining a constant voltage

at the RBL. Opams in the configuration as shown in Fig. 6.4 have been traditionally used

for sensing in memristive crossbars as in [183].

124

We performed the same analysis as previously described in Fig. 6.3 for the two proposed

configurations with the bit-line terminated by an Opamp. For our analysis, we have set

Vpos = 0.1V for the positive input of the Opamp and thus analysis is limited to input voltages

above Vpos to maintain the unidirectional current. Note, we have used an ideal Opamp for

our simulations, where the voltage Vpos can be accounted for both the non-ideal offset voltage

of the Opamp and a combination of an externally supplied voltage. Fig. 6.4 (a)-(b) shows

the plot of IRBL versus input voltage Vin for the two configurations. Similar behavior as

in the case of Fig. 6.3 (a)-(b) is observed even in the presence of the Opamp. However,

note that the current ranges have decreased since RBL is now clamped at Vpos. Further,

the dot-product operation is only valid for Vin > Vpos and thus the acceptable input range

is shifted in the presence of an Opamp. Fig. 6.4 (c)-(d) shows the behavior of IRBL versus

weight levels for the two configurations and desirably, linearity is preserved.

Fig. 6.4 (e)-(f) presents the current through the RBL as a function of the number of rows.

As expected, due to the high input impedance of the Opamp, and the clamping of VBL at a

voltage Vpos the deviation of the summed up current from the ideal value have been mitigated

to a huge extent. Although, the current levels have reduced significantly as compared to the

Fig. 6.3 , the resultant current for 64 rows would still be higher than the electro-migration

limit for the metal lines constituting the RBL [199]. One possible solution is to sequentially

access a smaller section of the crossbar (say 16 or 8 rows at a time), convert the analog

current into its digital counterpart each time and finally add all accumulated digital results.

In addition use of high threshold transistors for the read port of the SRAM would also help

to reduce the maximum current values. Further, the maximum current is obtained only

when all the weights are ‘1111’, which is usually not true due to the sparsity of matrices

involved in various applications as in [36], [200].

We also performed functional simulations using the proposed dot-product engine based on

Config. A in a fully connected artificial neural network consisting of 3 layers as shown in Fig.

6.5 . The main motivation behind this analysis is to evaluate the impact of the non-linearity

in the I-V characteristics on the inference accuracy of the neural network. We chose an input

voltage range of 0.1-0.22V. As can be observed in Fig. 6.4 (a), the I-V characteristics are

not exactly linear within this range, as such a network level functional simulation is required

125

Input layer

M Neurons
Hidden layer

N Neurons

Output layer

P Neurons

Synaptic

Connections

(wji1)

N×M

Synaptic

Connections

(wji2)

P×N
(ai1)

(zj1) (ai2)

(zj2) (aiL)

σ

σ

Figure 6.5. Fully connected network topology consisting of 3 layers, the input
layer, the hidden layer and the output layer [22]. We have used M=784, N =
500 and P = 10.

to ascertain the impact of the non-linearity on classification accuracy. The network details

are as follows. The hidden layer consisted of 500 neurons. The network was trained using

the Backpropagation algorithm [201] on the MNIST digit recognition dataset under ideal

conditions using MATLAB ®Deep Learning Toolbox[163].

During inferencing, we incorporated the proposed 8T-SRAM based dot-product engine

in the evaluation framework by discretizing and mapping the trained weights proportionally

to the conductances of the 4-bit synaptic cell. The linear range of the voltage was chosen to

be [0.1-0.22V] and normalized to a range of [0 1]. The dot-product operation was ensured by

normalizing the I-V characteristics for all the weight levels such that current corresponding

to the highest input voltage and highest weight level is Imax = Vmax×Gmax. The activation

function of the neuron was considered to be a behavioral satlin function scaled according to

the scaling factor of the weights to preserve the mathematical integrity of the network. To

be noted, the normalization of current and input voltage simplifies the scaling of the neuron

126

NwellVDD

VDD
GND

GND

BL

BLB

WWL

WWL

RBL

RWL

SL

W

Metal 1 ContactPolyMetal 2 N+ P+ N-well

Figure 6.6. Thin-cell layout for a standard 8T-SRAM bit-cell [196].

BIT3 BIT2 BIT1 BIT0

4W 2W W8W

SL

GND

VDD

Metal 1 Contact Poly Metal 2 N+ P+ N-well

Figure 6.7. Thin-cell layout for the proposed 8T-SRAM array with 4-bit
precision weights. The width of read transistors of different bit positions are
sized in the ratio 8:4:2:1. An additional metal line for SL is also required,
which runs parallel to the power-lines. This incurs an area overhead of ∼29.4%
compared to the standard 8T-SRAM bit-cell.

activation function. The accuracy of digit recognition task was calculated to be merely

0.11% lower than the ideal case (98.27%) thus indicating that the proposed dot-product

engine can be seamlessly integrated into the neural network framework without significant

loss in performance.

Further, it is to be noted that in many cases the inherent resilience of the applications

that require dot product computations can be leveraged to circumvent some of the circuit

level non-idealities. For example, for cases like training and inference of an artificial or

a spiking neural network, various algorithmic resilience techniques can be applied where

modeling circuit non-idealities and modifying the standard training algorithms[22], [147]

can help preserve the ideal accuracy of the classification task concerned. Additionally, the

proposed technique can either be used as a dedicated CMOS based dot product compute

engine or as an on-demand dot product accelerator, wherein the 8T array acts as usual

127

Figure 6.8. (a) Shows the effect of global change in VT on the output cur-
rent for +/- 90mV change in the nominal VT. (b) Shows that by adjusting
the Vpos (Offset compensation) or Vpos in addition to Vbias (Offset + bias
compensation), the resultant currents in presence of global variations can be
easily compensated for.

digital storage and can also be configured as a compute engine as and when required. It is

also worth mentioning that the 8T cell has also been demonstrated in [186] as a primitive

for vector Boolean operations. This work, significantly augments the possible use cases for

the 8T cells by adding analog-like dot product acceleration.

Due to different sizing of the read transistors and an additional metal line routing for

SL, there is an area penalty of using the proposed configurations, compared to the standard

8T-SRAM bit-cell used for storage. Fig. 6.6 shows the thin-cell layout for a standard 8T-

SRAM bit-cell [196]. Note that the rightmost diffusion with width (W) constitute the read

transistors (M1 and M2). To implement the 4-bit precision dot-product, we size the width of

read transistors in the ratio 8 : 4 : 2 : 1, as described earlier. Thus, the width of the rightmost

diffusion is increased to 8W, 4W, and 2W, increasing the bitcell length (horizontal dimension)

128

by ∼39.6%, 17.1%, and 5.7% for bits 3, 2 and 1, respectively, compared to the standard

minimum sized 8T bit-cell with diffusion width W. Moreover, to incorporate an extra metal

line (SL), that runs parallel to VDD and ground lines, the cell width (vertical dimension)

increases by ∼12.5%. The resulting layout of first four columns for two consecutive rows in

the proposed array is shown in Fig. 6.7 . The overall area overhead for the whole SRAM

array with 4-bit weight precision, amounts to ∼29.4% compared to the standard 8T SRAM

array. Note, this low area overhead results from the fact that both the read transistors M1

and M2 share a common diffusion layer and hence an increase in transistor width can be

easily accomplished by having a longer diffusion, without worrying about spacing between

metal or poly layers. Additionally, instead of progressively sizing the read transistors one

could also use multi-VT design wherein the LSBs consist of hight VT read transistors and

the MSBs consist of nominal (or low VT read transistors). The use of multi-VT design can

significantly reduce the reported area overhead. As such, the reported area overhead is close

to the worst case impact on the bit-cell area without resorting to additional circuit tricks

like multi-VT design.

6.4 Variation Analysis

To ascertain the robustness of the presented dot product computations, in this section,

we analyze the effects of non-idealities on the output current. The non-idealities considered

are SL and BL line-resistances and transistor threshold voltage variations.

6.4.1 Corner Analysis

Since the currents through the read transistors depend on the effective conductance of the

read port, one would expect that the output current on the BL would be a strong function of

global variations in transistor threshold (VT) due to process corners or temperature changes.

We reproduced (Fig. 6.8 (a)) the leftmost figure of Fig. 6.4 (b) assuming global changes in

the threshold voltage of +/- 90mV% as compared to the nominal threshold voltage. As

can be seen from the figure, the output currents indeed are a strong function of global

variations in VT. However, interestingly, such global effects can be easily taken care of by

129

compensating/calibrating circuits. An initial calibration based on on-chip tracking of process

corner or temperature can be used to either calibrate the input voltage ranges, or the offset

voltage (Vpos) applied to the OPAMP. As an illustration, in Fig. 6.8 (b), we show that by

adding or subtracting voltages from Vpos and Vbias one can easily compensate the deviation

in current due to global changes in VT. Note, the plots for Fig. 6.8 (b) were generated in a

similar manner to Fig. 6.4 (b) except that Vpos and Vbias were added or subtracted with a

constant compensating voltage. One can also compensate digitally, by adding or subtracting

a constant number (a bias) from the resultant dot product (after converting it to a digital

value). It is worth mentioning, that since process corners and temperatures have global

effects, a single bias estimator circuit can be shared among multiple sub-banks of the SRAM

array, amortizing its energy and area overhead. For the rest of the analysis, we have assumed

the nominal corner case.

6.4.2 Effect of Line-Resistances

Both the SL and BL line-resistances add parasitic voltage drops along the rows and

the columns. Moreover, to complicate the analysis, the error in the output current would

be a function of both the spatial dependence due to distributed line-resistances and data-

dependence as a function of the stored weights in the memory array. We, therefore, resort to

worst case analysis. The worst case arises when all the weights and all the inputs are at the

highest value. This scenario results in maximum current flow through the BLs and SLs and

hence has maximum impact of parasitic line-resistances. To analyze the impact, we consider

a line resistance of 1.3 ohms/µm [202]. Based on the layout, the average line resistance

between each bit-cell was found to be 1.25 ohms in the bit-line direction and 2.5 ohms in the

SL direction. We explore both the configurations (Config. A and Config. B) to analyze the

impact of the line-resistances and ways to compensate for the voltage degradation along the

metal lines. In addition, for Config. B, we explore two variants to minimize the effect of line

resistances. Note, in Config. B the inputs are connected to the word-lines i.e. to the gate of

the transistors. As such, the inputs drive capacitive load and there is no voltage degradation

due to line-resistances. On the other hand, the bias voltage is connected to the SL, which

130

. . .

. . .

. . .

. . .

. . .

. . .

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

SL0

SL1

SLN-1

BL0 BL1 BL2 BL3 BL12 BL13 BL14 BL15

SL-tap0
BL16 BL17 BL18 BL19

BL4M-4 BL4M-3 BL4M-2 BL4M-1

SL0

SL1

SLN-1

Rf

VOUT1

-+
+-Vpos

Rf

VOUT4

-+
+-

Rf

VOUT5

-+
+-

Rf

VOUTM

-+
+-Vpos Vpos Vpos

16 bitcells

Source Line

Drivers
Source Line

Drivers

Source

Line

Tapping
RSL

RBL

RWL0

RWL1

RWL2

Figure 6.9. Bitcell organization of Config. B variants showing SL driven
from both ends and tapping of SL every 16 bitcells. The line resistances in the
source line (SL) and the bit-line (BL) are shown.

would degrade due to line-resistances and induce error in the final output current flowing

through each column. To minimize this error, the two variants of Config. B presented in the

chapter are:

• Config. B with the bias voltage driving the SL from both the ends (i.e. from the

extreme right and extreme left ends, as shown in Fig. 6.9).

• Config. B with the SL tapped every 16 bits with regenerated values of the bias voltage

in the horizontal direction, as depicted in Fig. 6.9 .

Fig. 6.10 shows the worst case impact (when all inputs are at the highest value and

all the weights are ‘1111’) of the line-resistances in terms of percentage error in the output

current (Note, this is error with respect to the current values, it should not be confused

with the error corresponding to the classification accuracy) for the various configurations

for simultaneous activation of 16 and 8 rows, respectively. As observed, Config. A has a

higher error than all the variants of Config. B. Note, tapping is infeasible in case of Config.

A because in Config A, the input voltages are connected to the SL. Tapping in Config. A

would therefore require regeneration of input voltage along the horizontal direction, making

it infeasible. In contrast, in case of Config. B, SL is supplied by a global bias voltage and

131

Figure 6.10. Percentage error in output current for worst case combination
(highest input values and all weights = ‘1111’). The left set of bar graphs
represent the error for various combinations assuming 16 rows are activated
simultaneous for the dot product computation, while the right set of bar graphs
correspond to simultaneous activation of 8 rows.

hence, is easy to regenerate. We have assumed an array size of 64x128 (64 rows and 128

columns). Further, for our analysis we assume that the ‘farthest’ 16 rows are simultaneously

activated. SL and BL distributed resistances were included for all the activated rows, while

the unactivated rows were modeled by an equivalent lumped resistance.

For rest of the analysis, we choose Config. B with tapping every 16 bits. We now

analyze the error percentage across all voltages and weight combinations to understand the

impact of the degradation in light of applications discussed in the chapter. Fig. 6.11 (a)

and (b) shows the 2D error-map due to line resistances for various combinations of input

voltages and weights for 16 and 8 activated rows, respectively. Note, for each input voltage

− weight combination all rows are supplied with the same input voltage and all weights

in the array are same. In addition, Fig. 6.11 (c) shows the weight level distribution of a

neural network layer trained on the MNIST dataset. As observed from Fig. 6.11 (a) and (b),

the error above 6% for 16 rows and above 4% for 8 rows is concentrated to the top 25% of

the map corresponding to the highest weights and inputs. However, from Fig. 6.11 (c), we

observe that for relevant applications such as neural network the trained weights are mostly

concentrated to the weight level 1-6 where the error is close to 0-5% for 16 rows and 0-3.4%

132

a) b)

c)

Figure 6.11. (a) and (b) shows the percentage error map arising due to
line resistance for different weight levels ranging from ‘0000’ to ‘1111’ and
input voltages ranging from 0.35V to 0.675V for 16 and 8 activated rows. For
e.g., the data point corresponding to V = 0.35V and weight level = ‘0000’
means the test case where all the 4-bit weight elements in the memory array
are considered to be at weight ‘0000’ and the input voltages to all rows are
0.35V. The percentage error decreases with decreasing weight and input value.
(c) Probability of occurrence of weight levels in a trained neural network on
MNIST dataset shows lowest weight levels have the highest frequency, thus
indicating low impact due to line resistance.

for 8 rows. From this analysis, we can conclude that using the circuit techniques presented

i.e. driving SL from both the sides and tapping every 16 columns and also leveraging the

weight distribution for a trained neural network, the effect of line resistances for simultaneous

activation of 8 and 16 rows can be substantially mitigated. For example, for Config. B with

taps every 16 columns with SL being driven from both the ends, the worst-case error is

133

Figure 6.12. (a) Standard deviation of current due to variations in Vt of
the transistors of the bitcells with increasing current for 1000 Monte Carlo
simulations. A single data point shown here refers to the standard deviation
in output current when 16 rows are activated and input voltages to all rows are
Vin and weights of all elements are w. For different data points, we consider
Vin values ranging from 0.35V to 0.675V in steps of 0.025V and weight levels
ranging from 1 to 16 to capture the impact of VT variations across the input
parameter space. (b) Standard deviation as a percentage of the total current
showing a decreasing trend with higher current.

contained within 9%. Further, it was observed that the error improves rapidly when the

input voltages or the programmed weights are less than their maximum possible values.

6.4.3 VT Variations

The variations in transistors can result in error in the dot-product operations. To analyze

this, we perform 1000 Monte-Carlo simulations to assess the variation of the output current

134

for various combinations of input voltages and weights. We considered 30 mV σ variation of

threshold voltage (VT)for the minimum sized transistor and scaled the variation with width

as σL = σmin

√
WminLmin/WL. Note, for random variations it is customary to include various

sources of variations into effective variation in the transistor threshold voltage [203]. We ran

1000 Monte-Carlo simulations for each voltage value ranging from 0.35V to 0.675V in steps

of 0.025V and each weight level ranging from 0 to 15 and obtained the standard deviation in

output current for each case. This captures the impact of Vth variations for a considerable

precision of gate voltages. We calculated the standard deviation about the mean current

for the entire range of output current from the cases described above for 16 activated rows

of the memory array. The minimum current on the x-axis in Fig. 6.12 (a) arises when the

input voltages and (or) the stored weights in the memory array are zero. The next higher

level of current is obtained when either the weight or the input voltage is incremented. It

is worth noting that Fig. 6.12 (a) corresponds to 16 activated rows in an array of 64 rows

and 128 columns. Further, for the analysis in Fig. 6.12 (a), we have neglected the effect

of line-resistances for the following reasons - 1) adding line-resistances makes the standard

deviation in Fig. 6.12 (a) a function of not only the random VT variation and weights, but

also makes the deviation in current spatially dependent. This leads to a non-trivial analysis

problem that can quickly become intractable. 2) As shown in the previous sub-section, even

the worst case error due to line-resistances was well within acceptable limits. Fig. 6.12 (a)

shows that the absolute standard deviation is higher for a higher value of output current.

We fit a representative standard deviation for each current value using a polynomial fit as

shown by the fitted line in Fig. 6.12 .

In the functional simulations to evaluate the classification accuracy with such VT varia-

tions, we calculated the output current from every 16 rows and replaced it with a random

value from a Gaussian distribution with the corresponding standard deviation of the partic-

ular output current. The final classification accuracy was 0.01% lower than the case without

random variations. Table. 6.1 shows the inference accuracy on MNIST dataset for 8T dot

product engine in comparison to ideal accuracy. This error resiliency is mainly due to the in-

herent robustness of neural networks. If we look at the standard deviation as a percentage of

the total current in Fig. 6.12 (b), we observe that the errors are the highest for low currents.

135

Table 6.1. Comparison of 8T DPE inference accuracy on MNIST
Network Configuration Accuracy (%)
Ideal (Software) 98.27
8T DPE (No VT varia-
tions)

98.16

8T DPE (With VT vari-
ations)

98.15

However, device to device variations can have both additive and subtractive effect on the

currents through each cell. This means that for simultaneously activated rows, the resulting

current deviation in individual synapses due to variations tend average-out as we are primar-

ily interested in the sum of the currents. This results in a lower error due to variations. As

such for generic dot-product operations, there exists a trade-off, lower voltage implies lower

current (lesser than the electromigration limit) allowing to turn ON more number of rows

simultaneously and hence leads to higher parallelism. At the same time, lower voltage also

results in higher variation and hence more approximation in the dot product calculations.

For neural networks / machine learning applications and specifically for the case of on-line

learning such approximations can be taken care of by relying on the inherent error resiliency

of the target applications.

6.5 Discussions

We would like to emphasize the fact that the present proposal aims at providing a means

to enable in-situ dot-product computations in standard 8T SRAM cells by exploiting the

isolated read-port. We believe a wide-range of applications can be accelerated using the

present proposal. As such, the presented dot product engine should not be seen only in con-

text of machine learning and neural network applications. In general, any application that

can benefit from approximate vector addition and multiplication can be a possible use case

for the presented proposal. This wide spectrum of possible use cases implies that the exact

details of the required peripheral circuits and its complexity would depend heavily on the

target application. For example, error resilient applications like neural networks can rely on

low cost peripherals whereas more traditional dot-product computations as in image process-

136

ing might require sophisticated circuitry. Moreover, one could think of hybrid significance

driven peripheral design such that the less significant computations are associated with low

overhead peripherals while more significant operations are enabled by high accuracy circuits

or a full digital computation without resorting to dot product acceleration. The target appli-

cation would also dictate the constrains on OPAMP specification and the required precision

of the resistance Rf shown in Fig. 8. In addition, the choice of Config. A versus Config. B

would also depend on the target application. For example, Config. A shows better linearity

as opposed to Config. B. However, the input voltages in Config. A drive a resistive load

requiring complex driving circuits as opposed to Config. B which has capacitive load. The

authors would also like to point that a detailed analysis of the appropriate peripherals and

the associated architecture for each individual use case requires a case by case analysis and

is not the focus of the present chapter. The current chapter is more of a generic proposal

and a study of the effect of intrinsic non-idealities, for example, the non-linearity, the line-

resistances and the transistor threshold voltage variations with respect to the present dot

product engine.

Advantageously, the presented proposal resembles dot product computations in memris-

tive crossbar arrays [122]. Memristive dot products have been extensively studied and tech-

niques like segregation of positive and negative weights in different sub-arrays, bit-slicing,

efficient sensing schemes for computations have been widely proposed [16], [204], [205]. Such

memristive techniques can also be used in conjunction with the presented proposal. We

would, however, like to highlight the fact that the present proposal should not be considered

as a replacement for memristive crossbar arrays. Rather, we feel that memristors are more

suitable for spatial architectures [16], [205], whereas the presented proposal can be used to

augment on-chip storage (cache or GPU register files) with dot product acceleration.

We would now present the estimates for energy consumptions by performing 16x16 dot

product operation with and without the proposed dot product engine. It is worth mentioning

that the overall dot-product engine consists of DACs to generate analog inputs fed to the 8T-

SRAM crossbar array, along with ADCs to detect the analog outputs and converting them

back to digital bits. A cache memory of size 256KB with a basic sub-array size of 64×128

bits was modeled using CACTI [206] simulator. The energy consumption and latency of

137

Figure 6.13. Average Energy comparison between conventional digitial se-
quential implementation and proposed Dot-product Engine (DPE). The energy
is reported for 16x16 dot product computations wherein 16 rows are simulta-
neously activated and each row consists of 16 4-bit words.

the peripheral circuitry (ADCs and DACs) was appropriately incorporated in the CACTI

model, referring to [207]. We assume a 16×16 crossbar operation (i.e. activating 16 rows at a

time with each row containing 16 four bit words) at any given time, thus requiring 16 ADCs

in the peripheral circuitry, per sub-array. The conversion time for the ADC operation was

assumed to be 10ns and the energy estimates for the ADCs were adopted from [207]. This

framework was used to evaluate the total energy consumption and latency of the proposal for

a test vector of 16×16 dot-product, compared to the pure digital approach wherein the dot

product was computed by sequential memory access and multiply as well as add operations

were performed in dedicated adders and multipliers synthesized separately.

Fig. 6.13 shows the energy for performing a 16×16 dot-product with the proposed DPE

and the conventional digital approach. This energy overhead stems from the fact that in

digital approach, row-by-row access to the data from memory, followed by MAC operations

138

are performed sequentially to compute the same 16×16 matrix-vector dot-product, which

the proposed DPE can do in a single instruction. Also, it was noted that the total energy

consumption of the dot-product engine had a dominant contribution from the peripheral

circuitry. Nevertheless, in general, the energy and latency overheads associated with respect

to DACs and ADCs in similar dot product engines based on memristors have been extensively

studied and can be found in works like [16], [205].

6.6 Conclusion

In the quest for novel in-memory techniques for beyond von-Neumann computing, we

have presented the 8T-SRAM as a vector-matrix dot-product compute engine. Specifically,

we have shown two different configurations with respect to 8T SRAM cell for enabling analog-

like multi-bit dot product computations. We also highlight the trade-offs presented by each

of the proposed configurations. The usual 8T SRAM bit cell circuit remains unaltered and

as such the 8T cell can still be used for the normal digital memory read and write operations.

The proposed scheme can either be used as a dedicated dot product compute engine or as an

on-demand compute accelerator. The presented work augments the applicability of 8T cells

as a compute accelerator in the view that dot products find wide applicability in multiple

data intensive application and algorithms including efficient hardware implementations for

machine learning and artificial intelligence.

139

7. SPARSITY AWARE COMPUTE-IN-MEMORY PROCESSOR

BASED ON 8T SRAM

(Work done in collaboration with Mustafa Ali)

7.1 Introduction

The growing trends of developing domain-specific accelerators for Machine Learning ap-

plications has led to a deep exploration of compute-in-memory primitives based on SRAM

arrays [11]–[14], [24], [193], [208], [209]. In the previous chapter (Chapter 6 , we proposed a

8TSRAM-based compute-in-memory primitive capable of performing multi-bit dot-product.

In Chapter 5 , we learnt how weights in neural networks can be mapped on to these SRAM

arrays and inputs are streamed to perform convolutional and linear operations through it-

erative matrix-vector multiplications. In this chapter, we will delve into detailed nuances of

compute-in-memory with the focus on how to improve the efficiency of such systems through

circuit design.

Designing efficient CIM primitives and micro-architectures necessitates examining the

energy breakdown of different components that constitute the compute system. Fig. 7.1

shows the energy breakdown for a standard CIM compute block along with its peripherals.

We observe that the ADC consumes 57% of energy and 81% of area in the compute block.

Hence, CIM benefits can be shadowed by the significant energy, latency, and area cost of

the ADC [15]. There is a need for cross-layer efforts to amortize the significant ADC energy

15%

57%

9%

19%

DAC
ADC
Crossbar
Digital

0.10%

81%

2%
17%

Energy Distribution Area Distribution

Figure 7.1. Energy and area distribution of ReRam-based MVMU

140

and performance cost. One such approach is geared towards leveraging sparsity in weights

and activations of ML workloads. Due to the bit-serial nature of computing in CIM, it is

exposed to bit-level sparsity which can be heterogenous across different layers in a workload

or among various workloads. Bit-level sparsity can be exploited to reduce the precision of

ADC, thereby lowering the energy and latency of CIM operations.

7.2 8T SRAM based Compute-in-Memory Cell - A Brief Recap

In Chapter 6 , we introduced the concept of a 8T SRAM based compute-in-memory array

capable of performing multi-bit dot-products by simultaneous application of voltages on the

read word-lines (RWL). Fig. 7.2 (a) shows a 8T SRAM bit-cell. The two transistors in the

read port, M1 and M2 can be re-purpose to perform multiplication in the bit-cell itself. Fig.

7.2 (b) shows a M ×N 8T SRAM compute-in-memory array capable of performing matrix

vector multiplication between input vector applied through activation of multiple RWLs,

and the weight matrix represented by the data stored in the SRAM array. By applying a

voltage on the source line (SL), the current flows from the SL based on the input at the RWL

and the content of the corresponding 6T cell. The logical representation representation of a

1-bit input (IN) and 1-bit weight (W) computation is shown in the truth table in Fig. 7.2

(a). The current through each cell gets added in the bit-lines (BL) to produce IRBLj, which

represents the dot-product of the inputs and weights.

7.3 Analysis of Sparsity in ML Workloads

Machine Learning workloads can be quite sparse, and several works have explored tech-

niques [210], [211] to leverage that sparsity in order to achieve benefits in performance and

energy consumption. In regard to compute-in-memory which deploys bit-serial computing,

the compute primitive is exposed to bit-level sparsity which can be even higher than data

level sparsity [212] in ML workloads. To motivate a sparsity-aware CIM design, we perform

preliminary analysis on bit-level sparsity in a standard ML workload, i.e., ResNet-20 on

CIFAR-10 dataset. Fig. 7.3 b shows bit-level sparsity of input activations (considering 64x64

sized CIM operation) across first 15 convolutional layers in ResNet-20 tested on CIFAR-10

141

Figure 7.2. 8T SRAM array deploying current-domain compute to perform
MAC operations, with the table showing compute logic.

dataset. We observe that activations of each layer experience different bit-level sparsity and

the distribution of various sparsity levels can vary remarkably across layers. Correspond-

ingly, the analysis shows that different ADC precisions (2-6 bit) are required to optimally

leverage the varying degrees of sparsity within and across layers.

Therefore, leveraging sparsity in ML hardware has become a key solution to improve

energy-efficiency. Few works have leveraged sparsity in CIM-based systems [14], [213]. In

[214], offline workload profiling is required to determine the low-MAC output threshold,

which is used to decide if the ADC conversion is performed or skipped to save macro energy

and latency. In [213], workload training is required to induce block-level sparsity that can

be leveraged using row-gating techniques. However, row gating does not harness the maxi-

mum potential energy and performance benefits that bit-level sparsity offers. The reason is

two-fold. First, row gating reduces width of the dot-product by activating less number of

rows, which can lead to lower energy efficiency considering sub-quadratic decrease in ADC

energy/latency with precision [215]. Second, row gating leverages block-level sparsity (the

142

C
onv

1

C
onv

2

C
onv

3

C
onv

4

C
onv

5

C
onv

6

C
onv

7

C
onv

8

C
onv

9

C
onv

10

C
onv

11

C
onv

12

C
onv

13

C
onv

14

C
onv

15
0.0

0.2

0.4

0.6

0.8

1.0

A
c

ti
v

a
ti

o
n

 B
it

-l
e

v
e

l
S

p
a

rs
it

y

 <50% (6-bit) >50% & <75% (5-bit)

 >75% & <87.5% (4-bit) >87.5% & <93.5% (3-bit)

 >93.5% & <96.9% (2-bit) >96.9% & <100% (1-bit)

 100% (No ADC)

Sparsity Levels (ADC Precision for 64 CIM rows)

ResNet-20 (CIFAR-10)

C
onv

1

C
onv

2

C
onv

3

C
onv

4

C
onv

5

C
onv

6

C
onv

7

C
onv

8

C
onv

9

C
onv

10

C
onv

11

C
onv

12

C
onv

13

C
onv

14

C
onv

15

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v

e
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

 Row_Gating (Block_size = 16)

 Reconfigurable Precision ADC

ResNet-20 (CIFAR-10)

a) b)

c)

d)

Figure 7.3. (a) CONV operation on CIM using iterative MVMs. (b) Bit-
level sparsity of a ResNet-20 model running CIFAR-10 with the required ADC
precision. (c) Comparison between row gating and reconfigurable-precision
ADC in terms of energy. (d) Energy/latency scaling with ADC precision.

block size can be 8 input bits as in [213]) rather than bit-level sparsity which leads to coarser

granularity of sparsity control. Additionally, authors in [216], [217] proposed sparsity-based

input-aware sensing schemes. Our approach presents a modular and high throughput sens-

ing than previously reported input-aware sensing schemes. Specifically, our approach enables

conversions of voltages on two bit-lines simultaneously for ADC precisions 2, 3, or 5-bit, pro-

viding 2× throughput for those precisions, owing to the proposed reconfigurable precision

ADC. This is in contrast to approaches presented in [216], [217] which depend on changing

143

the reference voltages or reducing conversion cycles based on input sparsity which provides

lower performance than our method.

In this chapter, we propose an alternative CIM design with a novel reconfigurable-

precision ADC which can leverage bit-level sparsity at the finest granularity for maximum

energy and performance gains. In the proposed design, we adaptively change the precision of

the ADC according to the bit-level sparsity of the input activations. Reconfigurable-precision

ADC introduces an inherent advantage over row gating in CIM because it leverages sparsity

at a finer granularity (bit-level). As shown in Fig. 7.3 c, the reconfigurable-ADC approach

provides better energy efficiency in most layers of ResNet-20 on CIFAR-10 compared to

row gating adopted in [213]. Fig. 7.3 d shows the energy/latency trends of SAR ADCs at

various precisions [215]. To summarize, the presented CIM macro features the following

contributions:

• Reconfigurable-precision ADC running at lower precision with higher sparsity and vice

versa.

• Sparsity-aware TIA which increases the sense margin with lower precisions.

• Run-time irregular sparsity-aware computing with no offline profiling/specific workload

training.

7.4 Sparsity-Aware Compute-in-memory Macro with Reconfigurable Precision
ADC

7.4.1 Macro Structure

Fig. 7.4 illustrates the overall CIM macro structure. The memory array is comprised of

8T-SRAM cells which are repurposed to perform the multiplication operation in the analog

domain [24], as shown in Fig. 7.2 (b). The 8T-SRAM array stores weight data (Wij), while

input activations (INi) are fed to the input-aware word-line (WL) decoder which activates

only those read word-lines (RWLs) whose INi=1. The source-lines (SLs) are driven to Vbias

through the SL driver. Based on Wij and INi at the RWL of an 8T-SRAM cell, current is

driven through the read-port transistors from the SL to the read bit-line (RBL). Currents

144

IN
P

U
T

 A
W

A
R

E

W
L

 D
E

C
O

D
E

R

IN[0]

8T SRAM CELL

RWL 6T

IN[1]

IN[63]

RWL[0]

RWL[1]

RWL[63]

RBL

SL

S
L

 D
R

IV
E

R

PRECHARGE

aMUX aMUX

Wij
INi

𝐼𝑗 =𝐼𝑁𝑖𝑊𝑖𝑗

TIA TIA

5b
4b 6b

5b

MUX

OUT

P
R

E
C

IS
IO

N
 C

T
R

L

O
U

T
P

R
E

C
IS

IO
N

 - +

- +

R
B

L

V
b

ia
s

TIA OUT

2b

3b

4b

5b

6b

BIT PRECISION

TIA

BLOCK

SAR2b SAR2bSAR3b SAR3b

READ/WRITE PERIPHERALS

S
p

a
rs

it
y
 E

s
ti

m
a

to
r

(n
o

t
im

p
le

m
e

n
te

d
)

IN[0]

IN[1]

IN[63]

Reconfigurable-precision

ADC Block

Figure 7.4. The proposed macro structure and timing diagram.

from simultaneously activated rows get accumulated in the columns (RBL) representing the

dot-product (∑ INi ∗Wij). The RBLs are fed to analog multiplexers (aMUX) to select which

column to read, followed by two TIA blocks for converting current to voltage. Each TIA

consists of two amplifiers as shown in Fig. 7.4 to achieve higher range and configurability.

Based on the sparsity of INi data, the bit-precision of the output (2b-6b) is chosen. The

TIA outputs are fed to the ADC block to be converted to digital. The proposed ADC block

provides reconfigurable precision that gets selected based on input sparsity at the run time.

It consists of two 2-bit and two 3-bit SAR ADCs, which can be operated in isolation to

provide support for two 2-bit ADCs and two 3-bit ADCs, as well as combined to generate

one 4-bit ADC, two 5-bit ADCs and one 6-bit ADC. Thus, for 2b, 3b and 5b precisions,

two columns can be processed in parallel, thereby giving a higher throughput, while for 4b

and 6b precisions, the processing is done one column at a time. It is worth mentioning that

the required output precision can be determined by calculating input sparsity at the run

time using a sparsity calculator which is simply a 64-bit counter (not implemented in the

prototype chip). The sparsity calculator counts the number of ones in the input bit-stream

and decides the required precision based on input sparsity. For instance, if the input stream

145

Figure 7.5. The proposed reconfigurable-precision SAR ADC with two ex-
ample configurations: 2-bit and 6-bit precision.

has 50% sparsity (half the input bits are ones), then the precision will be 5-bit instead of

6-bit. Note, the cost of such precision calculator can be amortized across many macros

receiving the same input activations.

7.4.2 Reconfigurable-Precision SAR ADC

Fig. 7.5 shows the proposed reconfigurable-precision SAR ADC which supports 2-bit to

6-bit precision configurations based on input sparsity. Typically, the proposed ADC con-

sists of two 2-bit and two 3-bit SAR ADCs with their capacitive DACs connected through

switches and bridge capacitors. The main sub-circuits in the ADC are: i) Input selector,

ii) DAC capacitors, iii) Comparators, and iv) SAR and precision logic. The input selector

146

Figure 7.6. Measured ADC results showing output vs input voltage, energy
and latency for various precisions.

and reconfigurable SAR and precision logic are designed to support the precision reconfig-

urability. The input selector comprises analog switches to decide which input is applied to

the capacitive DACs based on the selected precision. Moreover, the bridge capacitors (CB1,

CB2, CB3 and CB4 in Fig. 7.5) decide the equivalent DACs formed from the available 2-bit

and 3-bit DACs based on the selected precision. For instance, by turning on the switches

surrounding CB3, 6-bit DAC is formed from the two 3-bit DACs and 6-bit conversion can be

performed. The SAR and precision logic block is responsible for the signals controlling all

DACs switches and comparators along with producing the final ADC outputs. The proposed

ADC features four comparators with each comparator input connected to one of the four

DACs and produces the comparison output and a valid signal to indicate that the compar-

ison is finished. Additionally, the comparators’ clocks are generated in the asynchronous

SAR logic block using valid signals. The DAC capacitors are arranged in the split-capacitor

fashion for energy efficient capacitor switching. Note, in our design we can perform two

2-bit, 3-bit or 5-bit conversions simultaneously since we have two modular 2-bit and 3-bit

DACs. However, we can only perform one 4-bit or 6-bit conversion at a time. Regarding

147

4-bit precision, the two 2-bit DACs are connected through CB1 to form one 4-bit DAC. Such

design choice is decided due to area constraints.

Further, the TIA block is reconfigured based on the chosen precision: (1) The variable

feedback resistor is set based on precision to provide the desired gain and output range. (2)

At higher precision (4-6 bit), a second stage is also used for additional gain (by trading off

power and latency), i.e., TIA_OUT is obtained from TIA2 for 4-6 bit and TIA1 for 2-3 bit,

as shown in Fig. 7.4 . Therefore, the proposed TIA allows higher signal margin at lower

precision due to the fixed range.

7.4.3 Measurement Results

Fig. 7.6 shows the measured ADC outputs for a full range of input voltages with 2-6 bit

precisions of the proposed reconfigurable ADC. Additionally, Fig. 7.6 presents the energy

and latency per conversion of the proposed ADC. ADC energy varies from 0.2 pJ to 1.1 pJ

for 2-bit to 6-bit configuration, respectively, whereas ADC latency/conversion varies from

3.5ns to 20ns. Note, 4-bit conversion latency is higher than 5-bit because 5-bit precision

configuration has two conversion channels whereas the 4-b has only one conversion channel

as described in the previous section due to area constraints.

Fig. 7.7 shows measurement results from the proposed CIM macro. We performed ex-

periments with different input and weight combinations that produce the same CIM output.

We observe that the ideal output and measured output show good agreement for different

input sparsity (thus requiring different ADC precision). In Fig. 7.7 , we show example ADC

precision configurations of 3-bit and 5-bit to demonstrate the functionality of the CIM macro.

We estimate the energy consumption of a ResNet-20 architecture on CIFAR-10 dataset. The

energy presented only represents the measured energy consumed by the CIM macro and is

simulated by considering a mapping scheme of the workload on 64x64 arrays for bit-serial

compute geniex. Our design consumes 2.2x and 1.5x lower energy than a corresponding

macro with fixed, homogeneous 6-bit and 5-bit ADC respectively. The proposed CIM macro

achieves 1b/1b (Input/Weight) energy efficiency 35.5 to 127.2 TOPs/W for 6-bit to 2-bit

148

Figure 7.7. Measured CIM macro results show good agreement between
expected output and measured output, energy efficiency for different precision
and baseline comparison on workload.

Table 7.1. Comparison with state of the art.
TWIN-8Tsi_isscc19 CONV-RAMconv-ram JSSC’19[12] ISSCC’20[213] ISSCC’21su_isscc21 ISSCC’20[13] This Work

Tech Node 55nm 65nm 65nm 28nm 28nm 7nm 65nm
Memory capacity 3.75Kb 16Kb 2.4Mb 64Kb 384Kb 4Kb 4Kb
SRAM Cell Twin8T 10T 8T+1C 6T+Local Computing 6T+Local Computing 8T 8T
MAC operation Word-wise Word-wise Binary Bit-wise Bit-wise Word-wise Bit-wise
Simultaneous MACs
in analog domain 9*(2b*2b) 64*(1b*6b) 4608*(1b*1b) 16*(1b*2b) 16*(1b*2b) 64*(4b*4b) 64*(1b*1b)

ADC precision 5b 7b 1b 5b 5b 4b 2b 3b 4b 5b 6b
TOPS/W 72.03 40.3 866 23.26 60.28-94.31 321 127 109 80 51 35
CIFAR-10 85.56% - 84.37 91.90% - 88.52% 92.02%
CIFAR-100 - - - 67.60% - - 68.66%
Sparsity Aware
Computing No No No Yes1 Yes1 No Yes

1 Requires offline workload profiling to determine the low MAC output threshold.

ADC precision, respectively. Additionally, the macro energy breakdown is shown in Fig. 7.7 .

The die micrograph and chip summary are shown in Fig. 7.8 . We use a design framework

geniex to map DNN models on to the proposed CIM macro considering bit-serial compute.

We measured the standard deviation for a range of expected CIM macro outputs for var-

ious configurations of the reconfigurable-precision ADC based on the sparsity of the input

data, as shown in Fig. 7.9 . Under such computational errors (arising due to deviations

149

Figure 7.8. Die micrograph and chip summary with the macro energy breakdown

Figure 7.9. Standard Deviation in measured outputs from proposed CIM Macro.

from expected output), considering the DNN model ResNet-20, our proposed CIM macro

with sparsity-aware reconfigurable precision ADC achieves accuracies of 91.49% on CIFAR-

10 (software accuracy - 92.69%) and 65.35% on CIFAR-100 (software accuracy - 69.6%).

Next, we compared our CIM macro with an implementation with 4b fixed-precision ADC,

150

Figure 7.10. Accuracy of fixed precision ADC v/s reconfigurable precision ADC.

i.e., without the support for sparsity-aware reconfigurability. In comparison to accuracies

obtained considering fixed-precision ADC (say 4b), as shown in Fig. 7.10 , the proposed CIM

Macro with sparsity-aware reconfigurable precision ADC achieves 4-5% higher accuracy. Ta-

ble 7.1 presents the comparison between our macro and related works. Our work leverages

run-time irregular bit-level sparsity without the need to profile nor train the workload for

maximum performance and energy benefits. When adopted in large scale systems, we be-

lieve the proposed CIM macro is capable of achieving an optimal trade-off between energy

efficiency, performance and accuracy.

7.4.4 Conclusion

Bit-level sparsity is an interesting yet challenging workload feature with a potential for

energy and performance benefits to CIM-based ML acceleration. We presented a CIM SRAM

macro leveraging bit-level run-time input sparsity for energy and performance benefits. Typi-

cally, the proposed macro features a new sparsity-aware reconfigurable-precision ADC so that

the precision can be reduced at higher sparsity. Moreover, a reconfigurable TIA is proposed

to maintain the voltage range for different MAC output precisions. The proposed sparsity-

aware CIM macro shows energy and performance benefits over baseline while maintaining

accuracy.

7.5 Sparsity-Aware Compute-in-memory Processing Core

One of the main challenges in computing using CIM macros is the difficulty to scale

up the design to a multi-macro processing core, and even to multi-core chips. Primarily,

it is the nature of compute which is subject to errors at even the macro level which can

magnify at the system level due to variations. Second, scaling up is also a challenge in case

151

of sparsity-aware CIM macros, since the granularity of sparsity needs to be explored across

multiple macros in a multi-macro system. Finally, architecting the mapping and dataflow

for optimal data re-use is necessary.

7.5.1 Related Work

There have been various demonstrations of CIM processors for inference acceleration

based on both CMOS and RRAM technologies [218], [219]. More recently, Yue et al [213],

[220] proposed CIM processors leveraging block-wise sparsity. However, most works on CIM

processors which leverage sparsity do not provide support for balancing latency imbalance

across various macros.

Here, we propose a hierarchical CIM processing core microarchitecture consisting of 32

sparsity-aware CIM macros, proposed in Section 7.4 . The CIM processing core utilizes three

key features:

• Sparsity Aware CIM Compute Unit (SCU) consisting of eight CIM Macros capable

of performing matrix-vector multiplication operations between 8-bit or 4-bit weight

matrices and 1-8-bit input vectors by leveraging sparsity to achieve lower energy con-

sumption and higher throughput.

• Row-gating to achieve higher signal-to-noise ratio (SNR) necessary to maintain appli-

cation accuracy

• Hardware support for input and output vector re-arrangement instructions to balance

latency loads across multiple SCUs with different latencies.

7.5.2 CIM Core Features

The proposed sparsity-aware CIM processing core has the following features, necessary

to address issues arising from micro-architectural extension of a sparsity-aware CIM macro:

i) SNR-aware row-gating, ii) latency balancing and iii) run-time sparsity controller.

• SNR-aware row-gating: Analog CIM primitives are inherently erroneous and have

low signal-to-noise ratio (SNR). DNN models are typically error resilient and we have

152

Figure 7.11. CIM Core Features: a) SNR-aware Row Gating and b) Latency Balancing

analyzed the accuracy degradation for these primitives in Sec. 7.4 . The computational

errors in analog CIM primitives is directly proportional to the number of simultaneous

word-line (row) activations. Activating more rows simultaneously implies distinguish-

ing more output states within a given output voltage/current range, leading to reduced

sense margin. However, activating more rows can reduce peripheral overhead, leading

to higher energy efficiency. In order to maintain optimal trade-offs between energy-

efficiency and accuracy, we support SNR-aware row-gating. Fig. 7.11 a) shows a weight

matrix and input vector. We can process the input vector by computing it at once

(N = 8) or in steps of N = 2, 4. This technique is called row-gating. The CIM pro-

cessing core supports various number of row activations such that we can adapt the

row activations according to the SNR required by the workload.

• Latency Balancing: The second feature addresses a concern that arises due to scaling

up sparsity-aware computing units. Fig. 7.4 b) (Left) shows two macros with varying

degrees of sparsity. Notice that that red macro is sparser than the gray macro. Based,

on our sparsity-aware ADC precision reconfiguration explained in Sec. 7.4 , the red

macro would require 2b ADC and the gray macro would require a 4b ADC. If the

outputs produced by these two macros need to processed further, we have to wait

153

for the macro with 4b ADC to complete processing. If certain rows are exchanged

between to the two macros to balance the sparsity, both macros will use a 3b ADC

and finish faster than the unbalanced case. The proposed CIM processing core supports

re-arrangement of input and weight elements to enable such latency balancing.

• Run-time Sparsity Controller: The proposed CIM processing core also features

a run-time sparsity controller to calculate the data sparsity in input vectors as well

as compare with pre-compiled weight sparsity to decide the precision of ADC that

macros need to be operating at. Since the precision determination is performed during

run-time, it needs to be fast and have low area and energy overhead.

7.5.3 Sparsity Aware CIM Compute Unit (SCU) Microarchitecture

First, we describe the microarchitecture of the Sparsity Aware CIM Compute Unit (SCU).

The microarchitecture derives inspiration from the MVMU microarchitecture, described in

[15], but adds sparsity control and precision-based reconfigurability features to the original

design. It has four primary components:

• Sparsity Controller (SC)

• CIM Macros

• Reconfigurable Shift and Add Circuits (RSnA)

• Control Unit

The SCU can perform multiplication operation between an input vector and weight

matrix. The precision of the weight matrix can be either 4 or 8 bits, whereas the precision of

the input vector can be anything between 1 to 8 bits. The SCU deploys bit-serial computing.

Consider a MVM operation between 8-bit input vector and 8-bit weight matrix. The input

vector is divided into 8 1-bit vector streams, where as the weight vector is sliced into 8

1-bit slices, and mapped on to the 8 CIM macros in each SCU. Each CIM macro is of size

64 × 64. Thus, the SCU can perform 64 × 64 8-bit and 64 × 128 4-bit computations in a

single instruction. The mapping of the weight matrix on to the CIM macros is such that

154

INPUT SPARSITY

CONTROLLER

CIM MACROS

RECONFIGURABLE SHIFT AND

ADD CIRCUITS

Input

Data

FIFO

Weight ADC

Precision Buffer

Sparsity

Controller

M
U

X Macro1

ADC

Weight Shift n Add (Spatial)

Control Unit

Output Buffer

Macro2

ADC

Macro8

ADC

Accumulator

Input Shift n Add (Temporal)

Input Data ...

COMPUTE done

D
e

c
o
d

e
r

D
e

c
o
d

e
r

D
e

c
o
d

e
r

Output Data

Figure 7.12. SCU Microarchitecture

Macro 1 holds the MSB, while Macro 8 holds the LSB. In case of MVM operations using

4-bit weights, we have two 64 × 64 matrices with 4-bit weights. The two weight matrices

the 8 CIM Macros are divided into two sections of 4 CIM Macros, where Macro 1 to Macro

4 stores MSB to LSB of one weight matrix, and Macro 5 to Macro 8 stores MSB to LSB of

the second weight matrix.

The shift-and-add circuits accumulates the result of the 8-bit MVM across different weight

slices and input streams. Due to the sparsity-aware nature of the SCU, the shift-and-circuits

need to be reconfigurable based on the precision at which the ADCs in the CIM macros are

operating at.

The flow of computation occurs in four steps: i) The input Data FIFO buffer provides

input streams to the SC, ii) the SC determines the precision of operation, and incorporates

row-gating features and supplies data to the decoders in the CIM macros, iii) the CIM

macros perform the computations and provides 1-bit MVM outputs to the RSnA, iv) The

RSnA spatially accumulates the outputs from 8 macros to perform weight level shift and

add operations, and temporally accumulates outputs to perform input level shift and add

155

Weight ADC

Precision Buffer

(Pre-compiled)

Input

Data

FIFO

Sparsity

Control

precweight

precinput

M
U

X

igw

Precision

if Input Sparsity > Weight Sparsity (igw=0)

Precision = precweight

Else

Precision = precinput

Figure 7.13. Sparsity Contoller Logical Diagram

operations to produce outputs for the 8-bit MVM. The last two steps of this computation

flow are pipelined. In the next subsections, we describe the aforementioned components of

the SCU micro-architecture in more detail.

Sparsity Controller (SC)

The Sparsity Controller (SC) determines the precision configuration for the ADC opera-

tion in the CIM macros. On receiving a 1-bit input vector from the input FIFO, the SC first

performs row-gating based on the external row-gating signal to maintain a reasonable SNR

of the CIM operation. For example, row-gating of a 64 width vector using 16 wide blocks,

would result in 4 compute iterations to process the entire vector. Next, the SC deploys

a ones counting circuit on the row-gated input to determine the input data sparsity. The

weight data sparsity is pre-compiled and stored the Weight ADC precision buffer as shown

in Fig. 7.13 . A multiplexer decides which precision to use (input or weight) based on the

signal ‘igw’, which is ‘1’ when weight sparsity is lower than or equal to input sparsity and ‘0’

otherwise. Thus, if input sparsity is higher than weight sparsity (igw = 0), we use the input

ADC precision (precinput) determined by SC, otherwise we use the pre-compiled weight ADC

precision (precweight).

156

Figure 7.14. Sparsity-Aware CIMMacro with Reconfigurable Precision ADC,
leveraging charge-domain computation

CIM Macro

The next component of the SCU are the CIM macros, capable of performing bit-wise

MVM operations between the input vector and the weight matrix. The sparsity-aware CIM

macro used in the SCU is different from the previously proposed sparsity-aware CIM macro,

described in Sec. 7.4 . The previous sparsity-aware CIM macro, deployed a current-based

compute, whereas the CIM macro used in the SCU relies on bit-line discharge, similar to [14].

Fig. 7.14 shows the sparsity-aware CIM macro. It comprises of a 8T-SRAM array capable

of performing MAC operations in the analog domain. The 1-bit compute logic performed

by a single 8T-SRAM cell is shown in Fig. 7.14 . First, the BL is precharged to VDD using

an active low pulse. When the RWL is ‘1’, and the data stored in the cell (Q) is ‘1’, the

BL discharges based on the capacitance seen by the bit-line, along with the amplitude and

157

the width of the RWL activation pulse. To perform MAC operations, multiple RWLs are

simultaneously activated, and that results in the BL discharge being proportional to the dot-

product between the input vector and the corresponding weight column vector. The analog

multiplexers (MUX) select which columns are turned on for compute. The capacitance at the

BL is a combination of the intrinsic line capacitance, analog mux capacitance, and the input

capacitance of the ADC capacitive DAC. The final voltage on the BL (VRBL) is sampled by

the previously proposed Reconfigurable Precision ADCs, described in Sec. 7.4.2 . We have 4

analog Muxes and 2 ADCs, which implies we can perform four 2/3/5-bit conversion or two

4/6-bit ADC conversions in a single compute iteration. The sparsity-aware CIM macro is

equipped with reconfigurable precision ADCs, which necessitates further adjustments in the

BL discharge for different precisions at which the ADCs operate at. Since the BL discharge

is the function of the capacitive DAC in the ADC, different precision results in different VRBL

for the same input and weight conditions. As a result, in order to maintain the same dynamic

range of VRBL for all the precision configurations, we need to either vary the amplitude or

the width of the RWL activation pulse. Varying width of the pulse can be complicated in

a synchronous design. Therefore, we include a input WL decoder circuit, which can select

appropriate RWL pulse amplitude for each precision.

For more details on the design of Reconfigurable Precision ADCs, please refer to Sec.

7.4.2 .

Reconfigurable Shift-and-Add Circuits (RSnA)

The final component of the SCU microarchitecture is the Reconfigurable Shift-and-Add

Circuits (RSnA). The primary purpose of the shift-add is to perform a two level (input

and weight) accumulation to account for bit-serial computing for both inputs and weights.

Since the MSBs and LSBs of a particular weight are mapped on to different macros, and

being computed simultaneously, the weight level shift-and-add operation is spatial in nature.

The input bits are streamed one by one, and as a result require temporal shifting and

accumulation. Due to the precision reconfigurability of the macro, the shift-and-add circuit

needs to incorporate reconfigurability in its circuits.

158

Figure 7.15. Reconfigurable Shift-and-add circuit logical flow

The ADC output is fed to the RSnA, as shown in Fig. 7.15 . Note that the figure shows

the case of one ADC as an example, whereas the CIM macros have two ADCs each, which

would mean the same flow being replicated for the other ADC. The RSnA computation flow

happens in 4 steps: i) A precision based reconfiguration is performed where based on the 10

bits received from the 8 ADCs of 8 macros, it is interpreted as either two outputs of 2/3/5

bits, or one output of 4/6 bits, from each macro, ii) Next, the outputs from 8 macros are

spatially shifted and added to produce two (in case of 2/3/5 bit precision) and one (in case

of 4/6 bit precision) 14-bit output(s), iii) This result is added to an accumulator, along with

results for subsequent bit-streams obtained from the input level shift and add, iv) Finally, the

input shift and add circuit temporally assimilates results for all the bit streams to produce

two or one 22-bit outputs depending on the precision.

The entire computation flow of the CIM macros and RSnA is iterated for a given row-

gated input vector, for all the columns in the macros in a pipelined fashion. Once all the

columns are processed, the SC either provides the next block of the row-gated input vector

or the next input vector (in case of no row-gating), and the computation flow is repeated

until all the bits of inputs are exhausted. This synchronization is controlled by the control

unit, shown in Fig. 7.14 , which also provides timing signals to the CIM macro arrays for

RWL activation, BL precharging etc, ADCs for BL sampling, and conversion cycling, and to

the RSnA for its operation.

159

SCU

SCU

SCU

SCU

INPUT

MEMORY

VECTOR

COMPUTATION UNIT

WEIGHT

MEMORY

OUTPUT

MEMORY

CONTROL

UNIT

INSTRUCTION

MEMORY

Figure 7.16. Core Microarchitecture

7.5.4 Core Microarchitecture

Having described the SCU microarchitecture, we move to the the design of the processing

core microarchitecture. The top level micro-architecture of the sparsity-aware processing core

is shown in Fig. 7.16 . It consists of 4 SCUs, external memories dedicated to weights (Weight

Memory), inputs (Input Memory) and outputs (Output Memory) respectively, an Instruction

Memory to program the instructions into and a Vector Computation Unit to perform vector

operations such as addition, as well as re-arrangement for load-balancing support.

7.5.5 Mapping and Dataflow

We have briefly described the internal mapping of weights and inputs in the SCU for bit-

serial compute. Each SCU can execute MVM instructions to perform arithmetic operations

between 64× 1 n-bit (1 ≥ n ≤ 8) vector and 64× 64 8-bit matrix or 64× 128 4-bit matrix.

Thus when 4 SCUs are combined in a 2x2 organization, a single MVM instruction can enable

MVM operation between 128 × 1 n-bit (1 ≥ n ≤ 8) vector and 128 × 128 8-bit matrix or

128× 256 4-bit matrix.

160

SCU 0

SCU 2

128

SCU 1

SCU 3

128
SCU 0

SCU 1

256

64

SCU 2

SCU 3

SCU 0 SCU 2SCU 1 SCU 364

256

Mapping A Mapping B Mapping C

Figure 7.17. Different SCU mappings

The core microarchitecture can follow several mappings and dataflows. For example, the

4 SCUs can be rearranged in 2 × 2, 4 × 1 and 1 × 4 configurations. Fig. 7.17 shows the

different spatial arithmetic configuration due to the 3 different mappings A, B and C. To

understand different mappings and dataflows, let us consider a convolutional layer problem

where the image size is 32×32 (P ×Q) and the layer size is 3×3×256×256(R×S×C×M).

First the weight matrix is flattened into a 2-D matrix 2304 × 256 (RSC ×M). Since the

4 SCUs can perform 8-bit 128× 128 MVM operation in a 2× 2 configuration, one possible

mapping is shown below:

f o r M = 1 to 2

f o r RSC(1) = 1 to 18

f o r P = 1 to 32

f o r Q = 1 to 32

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SCU Leve l

f o r RSC(2) = 1 to 128 (Spa t i a l)

f o r M = 1 to 128 (Spa t i a l)

The above mapping deploys a weight-stationary dataflow, i.e., the weights in SCUs remain

stationary while the entire input image is stridden. Then the next set of input channels

(RSC) are fetched from the external weight memory and corresponding input channels are

161

fetched from the input memory. Finally, once all iterations of RSC is over for the weights,

the next set of output channels (M) are fetched from the weight memory and the entire

input image is re-fetched to perform the next set of computations.

Another possible mapping is a shown below which maximizes partial sum reduction to

reduce overhead on output storage.

f o r M = 1 to 2

f o r P = 1 to 32

f o r Q = 1 to 32

f o r RSC(1) = 1 to 18

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SCU Leve l

f o r RSC(2) = 1 to 128 (Spa t i a l)

f o r M = 1 to 128 (Spa t i a l)

In this mapping, for the same input stride, all the input channels (RSC) are exhausted, such

that all the partial sums are reduced to produce the all pixels of the first 128 output channels

(M). Once the entire image is stridden, the next set of output channels (M) are fetched

from the weight memory, and the inputs are re-fetched to complete the layer computations.

The sparsity-aware CIM processing core comprises of an instruction memory which stores

the instructions. The instruction sequence follows the simple finite state machine of ‘Fetch–

>Decode–>Execute’. The execution cycles of different instruction can vary, since MVM

operations tend to take significantly more cycles than load/store instructions or vector op-

erations.

7.5.6 Tentative Floorplan

The floorplan of the SCU, presented in Fig. 7.12 and the processing core, presented in

Fig. 7.16 is described next. Fig. 7.18 shows the SCU and procesing core floorplan. The SCU

has 8 macros, distributed into 4 macros each on either side of the peripheral units, namely,

the control unit (SCU CTRL) and the reconfigurable shift-and-add (RSnA) unit. The macro

size is roughly 200µm× 200µm, and four macros together occupy an area 800µm× 200µm

162

Figure 7.18. Tentative SCU and Core Floorplan

on each side. The control unit along with the input sparsity controller is roughly planned

as 250µm × 60µm and the RSnA unit is 550µm × 60µm. The total SCU area estimate is

800µm× 460µm . The processing core floorplan is described next. We have 4 SCUs in the

processing, distributed equally on either side of the other memory and control units. Since

each SCU occupies 800µm× 460µm, the four SCUs occupy 1600µm× 460µm on either side.

163

Figure 7.19. Simulation Results for Macro

The rest of the chip space is occupied by different memory units such as input memory,

weight memory, output memory and instruction (or program) memory.

7.5.7 Preliminary Results

Next, we discuss some preliminary results obtained by performing simulations using the

schematic design of the proposed SCU microarchitecture. For scaling up analog CIM macro

to a processor micro-architecture, it is necessary to consider macro to macro variations. Fig.

7.19 shows the box-plot results using Monte-Carlo simulations for 2-bit and 5-bit configura-

tions for the proposed macro. We observe that for 2-bit configuration, there is reasonable

distinction between the different states, under Vt variations. However, for the 5-bit config-

uration, we observe overlap between adjacent states, which would result in computational

errors. Usually, DNN workloads are error-resilient. However in case the workloads demand

higher signal to noise ration, our chip can configured to operate under row-gating conditions,

which will enable less number of word-lines simultaneously, achieving higher SNR as well as

lower precision ADC.

Fig. 7.20 shows the macro layout and the energy and area distribution for different

components of the macro. The proposed macro has a input decoder, the 8T-SRAM CIM

array, and two ADCs. Contrary to the macro presented in 7.4 , we do not require a TIA.

Hence, we observe that the ADCs consume 53.8% of the area and 73% of the energy in the

macro. Despite the high area and energy consumption of the ADC, we have reduced the

total energy consumption of the macro by 20%.

164

8T-SRAM CIM
ARRAY

ADC ADC

INPUT
DECODER
AND RWL
SELECTOR

7
1

 u
m

8
7

 u
m

200 um

230 um Area Distribution

Energy Distribution

21%

6%

73%

 ADC

 Array

 Others

20.9%

25.2%

53.8%

 ADC

 Array

 Others

Figure 7.20. Macro Layout and Energy/Area Distribution of components

Next, we present the preliminary energy and area breakdown of the SCU in Fig. 7.21 .

The SCU has 4 primary components, the input FIFO, the sparsity controller (SC), the macro,

the reconfigurable shift-and-add (RSnA) and the control unit. We observe that the macro

consumes 79.5% and 72.4% of the total area and energy consumed by the SCU respectively.

This breakdown is reasonable because we want most of the area and energy consumed by the

component responsible for computing. However, we also observe that RSnA consumes 16.3%

and 21.4% of the total area and energy consumed by the SCU respectively. This peripheral

overhead is undesirable and needs to be optimized further.

Finally, we present the estimated performance numbers for the entire sparsity-aware

processing core consisting of 4 SCUs. Each SCU can perform a 8-bit MVM operation between

a 64 × 1 vector and a 64 × 64 matrix. Considering 1-bit MAC operations as 2 operations

(multiply and add), an 8-bit 64 × 64 MVM involves 64 × 64 × 8 × 8 × 2 = 524288 1-bit

MAC operations. The processing core achieves a performance ≈ 1.4 TOPS/s when operated

under 2-bit configuration. The performance varies from ≈ 0.35 − 1.4 TOPS/s as the ADC

precision is varied from 2-bit to 6-bit.

The proposed sparsity-aware CIM accelerator core will be a scaled up demonstration of

multiple analog CIM cores with various features such as row-gating and latency balancing

165

Energy BreakdownArea Breakdown

16.3%

1.3%
2.5%

0.3%

79.5%

21.4%

2.1%

4.1%

0%

72.4%

 Macro

 Sparsity Controller

 Input FIFO

 Control

 Shift-n-Add

Figure 7.21. Preliminary SCU Energy/Area Breakdown

Figure 7.22. Estimated SCU Performance in TOPS/s

techniques to solve micro-architectural challenges of scaled analog CIM design. The process-

ing core can support flexible mapping and dataflow, which will enable optimality studies of

various CIM mappings and dataflows.

166

8. NEUROMORPHIC COMPUTING USING GST-BASED

PHOTONIC PLATFORMS

8.1 Introduction

The phenomenal success in the field of Deep Learning using Artifical Neural Networks

(ANN) based on analog information processing has had far reaching consequences in the

past decade [221]. Machines driven by such networks have surpassed human in various tasks

ranging from pattern recognitions to playing complex games such as AlphaGo [222] and

Chess [223]. However, the growing complexities of computational models involved in such

multi-layered neural networks have rendered the training and inferencing tasks extremely

expensive in terms of memory and energy. To that effect, there have been significant ad-

vancements in the field of neuromorphic computing which largely rest on our understanding

of the human brain as researchers strive to comprehend the intricacies of its complex func-

tionalities and emulate its unparalleled energy efficiency. Despite the obvious elusiveness of

the brain, neuroscientific experiments have unravelled various underlying mechanisms be-

hind our behavorial patterns. To that effect, various studies have been performed exploring

phenomena concerning the basic functional units, namely neurons and synapses, that knit

the neural network in the human brain. The need to incorporate these neuroscientific find-

ings in computing models and consequently in building bio-plausible hardware has led to

extensive investigations in recent years.

Most of the available computing models that encode the information processing in a neu-

ral network are based on mathematical optimization techniques. More recently, with growing

evidence of spike-based processing in the biological neural network, its event-driven nature

has led researchers to explore bio-plausible hardware implementations in an effort to achieve

higher energy efficiency. Spiking neural networks (SNN) comprise the third generation of

neural networks and the basic principle relies on how the membrane potential of a spiking

neuron rises and eventually cause the neuron to spike under the action of incident spikes.

Mathematically speaking, the fundamental operations performed by such SNNs involve par-

allelized dot-product through the synaptic network followed by subsequent integration and

167

thresholding by the neurons. Neuromorphic systems attempting to leverage the sparse and

event-driven nature of SNNs thus aim toward efficient emulation of these functionalities.

The initial efforts [126], [224], [225] in hardware implementations of SNNs was based

on standard von-Neumann architecture [181] based on CMOS technology where the synap-

tic units of the neural networks are stored in the digital memory and repeatedly fetched

by the processor for computing operations. However, the overhead of frequent data trans-

port between the memory and processor have led to a shift in the computing paradigm as

‘in-memory’ computing platforms [24], [226] attempt to emulate the ‘massively parallel’ op-

erations of the brain. Moreover, hardware implementations of various spiking neuron models

such as Hodgkin-Huxley[227] and Leaky-Integrate-Fire (LIF)[228] on CMOS platforms not

only fail to match the energy efficiency of the human brain but is also area-inefficient. As

a result, although the term ‘neuromorphic’ was primarily coined [229] with CMOS tech-

nology in mind, this computing domain has branched out to non-volatile memory (NVM)

technologies such as oxide-based memristors [183], spintronics [74], phase change materials

(PCM) [137], [230], etc in the recent years. The natural ability of these resistive technolo-

gies to compute parallelized dot-products using crossbar structures make them promising

candidates for neuromorphic systems. These novel material systems and technologies [74],

[230] have been proposed to mimic the behavior of a spiking neuron thus providing direct

mapping between a single device behaving as a functional neural element. However, each

technology suffers from different drawbacks, such as energy-efficiency, speed, cross-talk, fab-

rication difficulties, etc. Integrated Photonics offers an alternative approach to standard

microelectronic ‘in-memory’ computing platforms and promises ultra-fast neural computing

and information processing. The recent advances in photonics-based neuromorphic comput-

ing has overseen implementations of various kinds [231], [232] of neural processing units on

the photonic platform leveraging the inherent capability of matrix operations of integrated

optical circuits. Spike-based processing systems have also been extensively explored using

excitable lasers [233], [234]. However, most of the photonic systems investigated in the con-

text of neuromorphic computing are based on volatile information processing. Non-volatility

offers the ability to write and erase information dynamically desirable for large-scale imple-

mentations of neuromorphic systems. Phase change materials (PCM), in particular, have

168

been demonstrated [235] to have significant energy restrictions due to their high ‘write’ times

in the electrical domain. It has been shown that either the exciting current or ‘write’ pulse

duration has to be reduced by 10× for PCM to perform better than CMOS. However, re-

cently PCMs, e.g. GST, have been demonstrated[236] to achieve sub-ns ‘write’ speeds when

excited by photonic laser pulses. Due to highly contrasting optical and electrical proper-

ties in their amorphous (a-GST) and crystalline (c-GST) states, PCMs have thus offered

avenues to implement all-photonic memories[237], [238], switches[236] and have been even

used for mixed-mode electro-optical operations [239]. The promise of fast information pro-

cessing with PCMs in the photonic domain has thus encouraged the possibilities of PCMs as

a viable material for photonic neuromorphic systems. Recently, device[240] based on GST

deposited on waveguides was proposed to emulate the synaptic weight update mechanism

in synapses in SNN frameworks. In this work, we propose an all-photonic operation of an

Integrate-and-Fire spiking neuron. We show that the proposed neuron mimics the behavior

of the biological neuron. Next, we propose an all-photonic Spiking Neural Network, based

on GST-based photonic neural elements, which attempts to bridge the gap between de-

vices to system-level implementation of Photonic neural networks. We leverage the inherent

wavelength division multiplexing (WDM) [241] property of optical networks to propose a

non-volatile synaptic array, while exploring and mitigating the challenges arising from de-

signs based on ring resonators of radii comparable to the wavelength of operation. Such a

synaptic array can achieve higher densities compared to current state-of-art photonic com-

puting systems. We show how the proposed synaptic computing platform can be seamlessly

integrated with previously explored ‘integrate and fire’ spiking neurons to realize an ultra-

fast and truly integrable Spiking Neural Network. Finally, we evaluate the performance of

the proposed Photonic SNN in the classification task of handwritten digits.

8.2 GST on Micro-ring Resonators

The basic working principle of a ring resonator is necessary to be illustrated at first.

A ring resonator is a structure with two rectangular waveguides and a ring waveguide (as

shown in Fig. 8.1 (a)). Wave entering through the ‘INPUT’ port gets partially coupled to

169

b)

SiO2

Si

Ge2Sb5Te5a)

c)

Increasing

Degree of

Amorphization

Crystalline

Amorphous

THROUGH PORT d)

Increasing

Degree of

Amorphization

Crystalline

Amorphous

DROP PORT

Figure 8.1. (a) A perspective view of an add-drop microring resonator with
a small patch of GST on top showing its ports and materials. (b) A two-
dimensional top view of the ring resonator illustrating the input, output, cou-
pling and transmission parameters. Theoretically calculated transmission at
various wavelengths for different degrees of amorphization of GST ranging
from 0% (crystalline) to 100% (amorphous) showing that the transmission at
the (c) ‘THROUGH’ ((d) ‘DROP’) port decreases (increases) with increasing
degree of amorphization.

the ring waveguide and interferes constructively inside the ring when the following condition,

called resonant condition, is met:

2πRneff,wg = mλm (8.1)

Eq.1 provides the resonant condition (at wavelengths λm) for the ring resonator of radius

R where the effective refractive index of the waveguide-substrate material system is neff,wg.

By controlling the coupling and attenuation parameters, t1, t2 and k1, k2, as shown in Fig.

8.1 (b), light can be conditionally guided through the ‘THROUGH’ and ‘DROP’ ports.

Introducing a GST element (shown in red in Fig. 8.1 (a)) on top of the ring waveguide

in the ring resonator described above allows us to control light propagation through the

ports by merely changing the state of the GST. Light passing through the waveguide get

evanescently coupled to the GST element and gets differentially absorbed by the GST in

170

its low-loss amorphous state and high-absortion crystalline state [237]. The difference in

attenuation arises due to the contrasting imaginary refractive index (κGST) of GST in its

two states. Theoretically, the transmission of the ‘THROUGH’ and ‘DROP’ ports can be

expressed as:

Tt = t2
2α

2 − 2t1t2αcos(θ) + t2
1

1− 2t1t2αcos(θ) + (t1t2α)2 Td = (1− t2
1)(1− t2

2)α
1− 2t1t2αcos(θ) + (t1t2α)2 (8.2)

where α is the attenuation factor, θ is the phase factor, t1 and t2 are coupling parameters.

α and θ can be expressed as:

α = exp(−2π

λ
[κeff,wg(2πR− LGST) + κeff,GST LGST]) ≈ exp(−2π

λ
κeff,GST LGST) (8.3)

θ = 2π

λ
[neff,wg(2πR− LGST) + neff,GST LGST]. (8.4)

Here κeff,GST (κeff,wg) and neff,GST (neff,wg) are effective imaginary and real parts of the

refractive index of the waveguide material with (without) GST. R is the radius of the ring

waveguide and LGST is the length of the GST element. The refractive indices of partially

crystallized GST are estimated from effective permitivities approximated by an effective-

medium theory[146], [242]:

εeff (p)− 1
εeff (p) + 2 = p× εc − 1

εc + 2 + (1− p)× εa − 1
εa + 2 (8.5)

where εc and εa are the permittivities in the crystalline and amorphous states respectively

calculated from the refractive indices of GST[237] by
√

ε(λ) = n + iκ. p is the degree of

crystallization. The effective refractive indices of the Si waveguide- SiO2 substrate system

with and without GST was calculated using COMSOL Multiphysics simulations, shown in

the inset of Fig. 8.1 (c).

These equations depict the theoretical backdrop of a ring resonator system with GST. As

the GST element crystallizes (amorphizes), κeff,GST and hence its absorption increases (de-

creases) and as a result the transmission at the ‘THROUGH’ (‘DROP’) port increases. Fig.

171

∑

Drop

Drop

Input Through

Input Through

Membrane

Potential
Amplifier

INTEGRATION UNIT FIRING UNIT

Rect.

Waveguide

GST

Element

GST Element

Positive

Weighted

Sum

Negative

Weighted

Sum

Φ

Output

a) b)

Pamp
A C

Write Pulses Reset Pulse

Membrane

Potential

Pthresh

Prest

Spike Event

Incident

Spikes

Figure 8.2. (a) Schematic of a bipolar integrate and fire neuron based on
GST-Embedded Ring resonator devices showing the integration and firing unit.
(b) Timing diagram showing the integration of membrane potential for various
incident pulses demonstrating the operation of the proposed neuron.

8.1 (c) and 8.1 (d) shows that the theoretically calculated transmission at the THROUGH

and ‘DROP’ ports in a ring resonator increases with p.

8.3 Toward Fast Neural Computing using All-Photonic Phase Change Spiking
Neurons

We first propose an integrate-fire spiking neuron leveraging these characteristics of the

GST-ring resonator system. Information processing in neural networks usually involve mul-

tiplication of inputs with the significance metric of the synapses, namely ‘weight’ and feeding

the corresponding output to a neuron. For most neural network applications, weights can

assume negative values. It is thus necessary to realize a bipolar neuron which can receive

inputs of both polarity for all practical purposes. Let us now consider a GST embedded

ring resonator described above. The GST initially is in crystalline state, denoting the high-

est (lowest) transmission level through ‘THROUGH’ (‘DROP’) port. During the ‘write’

phase, an off-resonance pulse is input which writes into the GST element, thereby reduc-

ing (increasing) its degree of crystallization p (amorphization (1 − p)). During the ‘read’

phase, as p reduces, ‘THROUGH’ port transmission Tt decreases and ‘DROP’ port trans-

mission (Td) increases. Thus, with incoming pulses, the transmission through the ‘DROP’

and ‘THROUGH’ ports get positively and negatively integrated respectively. We combine

these properties of the device to propose a bipolar integrate and fire neuron. The integration

172

unit of the neuron body consists of two ring resonators as shown in Fig. 8.2 (a) and pulses

of amplitudes proportional to the positive (O+
j) and negative (O−

j) weighted sums, received

from the synapses, are fed to the positive and negative ring resonators respectively. The

details of entire network framework is discussed later. Note, the resultant amplitude of the

incident pulse to the neuron is the difference of the positive and negative inputs fed to the

two devices: Oj = O+
j − O−

j . Thus, the two ring resonators integrate in opposite direction

to emulate the resultant integration which should ideally be proportional to Oj. The output

from the ‘DROP’ and ‘THROUGH’ ports of the positive and negative devices respectively

are passed to an interferometer. We place a phase modulator (φ) in the path of the positive

ring resonator and the interferometer to tune the output of the interferometer to produce

the sum of the two incoming pulses. As the two ports integrate in the opposite direction,

the output of the interferometer is the resultant integration based on both the positive and

negative inputs to the neuron body and can be treated as membrane potential of the inte-

grate and fire neuron. Thus at every time-step, the membrane potential of the jth neuron

can be represented by:

Vj[t] = Vj[t− 1] + Oj[t] (8.6)

Fig. 8.2 (b) shows the operation of the proposed neuron such that the membrane potential in-

tegration is proportional to the amplitude of the resultant incident spike to the neuron. Once

the GST reaches full amorphization, the membrane potential crosses its threshold (Pthresh).

The ‘firing’ action of the neuron involves the generation of a spike which is implemented by

an additional photonic circuit as shown in Fig. 8.2 (a). This circuit consists of an photonic

amplifier, a circulator and a rectangular waveguide with a GST element on top initially in

crystalline state. For a rectangular waveuguide with GST, the transmission is low (high) in

crystalline (amorphous) state. The ‘read’ and ‘write’ phases for the ‘integration unit’ and

the ‘firing unit’ alternate in successive cycles. This essentially means that during the ‘write’

cycle of the integration unit of the neuron, a read pulse is passed through the firing unit.

On the other hand, during the ‘read’ cycle of the integration unit, the ‘read’ pulse is passed

through the ring resonators and based on the output of inteferometer and subsequent ampli-

fication, the resulting pulse attempts to write into the GST of the rectangular waveguide in

173

the firing unit. A circulator C directs the incoming and outgoing pulses into the rectangular

waveguide. When the GST elements in the integration unit are initially in crystalline state,

the output of the amplifier A (Pamp) is not sufficient to amorphize the GST on rectangular

waveguide and hence, a spike is not transmitted through the rectangular waveguide. How-

ever, when the membrane potential integrates, on incidence of several ‘write’ pulse, enough

to the cross the threshold, Pamp is ensured to be high enough to amorphize the GST on the

rectangular waveguide and a spike is transmitted. Once the neuron fires, a ‘RESET’ pulse

is passed to reset the states of the devices to their initial states and the membrane potential

drops to the resting potential (Prest) as shown in Fig. 8.2 (b). Thus, the operation of a

bipolar integrate and fire neuron can be achieved using the setup described in Fig. 8.2 .

The dynamics of the spiking neuron is primarily governed by the phase-change dynamics

of GST. GST partially absorbs the wave passing through the ring waveguide and its low

thermal conductivity [243]causes a considerable increase in temperature. The growth of the

amorphization region in the material occurs when the concerned region is above the melting

temperature, which is around 877K [244]. For a particular incident pulse, the amorphous

region heats up less than the crystalline region. Thus the change in amorphous thickness will

decrease as the amorphous thickness increases. Thus, change in amorphization thickness is

a function of the current state of the GST and the amplitude of the incident pulse.

Results

The ‘write’ operation of the spiking neuron is investigated using the modal profiles of

the incident EM waves and the resulting temperature profiles in the GST-Si-SiO2 stack.

The ‘read’ operation, on the other hand, is explored from the point of view of the entire

GST-ring resonator system. The modal profile of input EM wave and subsequent heat dissi-

pation framework was implemented in COMSOL[250]. The temperature profiles were used

to simulate the phase change characteristics of GST in MATLAB®. The optical response of

a ring resonator was obtained using a commercial-grade simulator Lumerical FDTD Solu-

tions based on the finite-difference time-domain (FDTD) method[251]. Table. 8.2 lists the

parameters used for each simulation.

174

Table 8.1. Dimensions and Material parameters
Dimensions Material Parameters

Parameters Values Parameters Values
Ring Resonator
Radius (R)

6µm Si Refractive Index (nSi)[245] 3.5

Si Waveguide
Cross-section

0.4×0.18
µm

SiO2 Refractive Index (nSiO2) [246] 1.4

Upper Coupling Gap
(Lupper)

0.1 µm c-GST Refractive Index
(nc−GST + iκc−GST)[247]

7.2+1.9i

Lower Coupling Gap
(Llower)

0.1µm a-GST Refractive Index
(na−GST + iκa−GST)[247]

4.6+0.18i

GST Length (LGST) 0.3µm c-GST Specific Heat,(Cc−GST) 217J/kg.K
GST Width (WGST) 0.3µm a-GST Specific Heat,(Ca−GST) 217J/kg.K
GST Thickness (tGST) 20 nm c-GST Thermal

Conductivity,(kc−GST)[238]
0.59W/m.K

a-GST Thermal
Conductivity,(ka−GST)[248]

0.19
W/m.K

c-GST Density,(ρc−GST)[249] 6270
kg/m3

a-GST Density,(ρa−GST)[249] 5870
kg/m3

Phase change dynamics of GST

The electromagnetic power absorption and subsequent temperature rise in GST is ana-

lyzed in detail using Finite Element Method (FEM) simulations in COMSOL Multiphysics.

Firstly, to validate our simulation framework we simulated a GST embedded Si3N4-SiO2

ridge-waveguide system and compared its transient response of temperature in GST with

experimental data[238] under same excitation conditions. Fig. 8.3 (a) shows good agreement

between the results from our simulation and corresponding experimental data, thus validat-

ing our simulation setup. Next, we built a 3D model of a section of the ring resonator with

GST as shown in Fig. 8.3 (b) and studied the electromagnetic characteristics and subsequent

temperature profiles using the validated simulation setup. The dimensions of the waveguide

were fixed to ensure single fundamental mode propagation for a input optical wave of 1550

nm length. The electric field distribution at the surface of the waveguide embedded with

c-GST and a-GST are shown in Fig. 8.3 (c) and (d) respectively. We observe optical atten-

175

SiO2

GST

Si3N4

SiO2

GST

Si3N4

GST

Simulated section of Ring Resonator

Si

SiO2

a)

b)

c)

d)

(V/m)

(V/m)

f)

e)

LGST

WGSTWwg

twg

a)

b)

c)

d)

Figure 8.3. (a) Experimental benchmarking on a Si3N4-SiO2 ridge-waveguide
system, validating our simulation framework. (b) Simulated volume of the
GST section in the ring resonator described in Fig. 8.1 (a) delineating the
different materials used. Surface electric field propagation of (c) c-GST and
(d) a-GST shows significant contrast. (e) Temperature distribution along the
length of cGST. (f) Plot of final percentage amorphization as a function of
initial percentage amorphization and input power.

uation of - 3.71 dB in the waveguide for c-GST of 0.3 µm length and 20 nm thickness while

similar dimensions of a-GST give us negligible (- 0.26 dB) attenuation. This implies strong

optical absorption in c-GST and also validates the fact that it is an order of magnitude higher

than that of amorphous state[238]. This property allows us to progressively amorphize our

device while keeping the state of the already amorphized volume undisturbed for our chosen

range of input optical power.

Next, we analyze the thermal response of the GST upon optical excitation using finite

element simulation. We incorporate optical heating by modeling GST as local heat source.

An optical pulse of amplitude 26mW and duration 200ps is injected from the front facet

of the waveguide. The GST is initially considered to be in crystalline state and absorbed

energy in GST is taken as the heat energy for that local heat source. However, as heat is

not generated uniformly within the GST volume, we designed the heat source to decrease

exponentially[238] with a factor, A = exp(−|αx| · x · ln(10)/10) along the length of the GST

176

(0 ≤ x ≤ LGST) where αx is the optical attenuation per unit length of GST. Resulting

temperature distribution at the end of the pulse is shown in Fig. 8.3 (e). From inspection of

this profile, an exponential temperature distribution along the GST length becomes evident.

We also observe that there exists a significant portion of GST whose temperature is above

the melting temperature (877K) and hence will become amorphized (e.g. 57% amorphization

for given conditions) after removal of optical pulse. This simulation was performed multiple

times keeping the pulse width same but varying the pulse power (amplitude) and initial level

of amorphization and results are plotted in Fig. 8.3 (f). We find that below 12mW (200 ps)

input pulse, irrespective of initial amorphization state, no further amorphization happens.

Thus, we choose a input power range (26mW to 12mW) for the operation of the proposed

all-photonic spiking neuron.

Optical response of ring resonator

The ‘read’ operation of the spiking neuron concerns with the optical response of the ring

resonator or more precisely, the transmission characteristics at the ‘THROUGH’ and ‘DROP’

ports of the device. FDTD simulations were performed in Lumerical. Inc on a ring resonator

with Si waveguides and SiO2 substrate with a patch of GST on top of the ring waveguide

as illustrated in Fig. 8.1 (a). Fig 8.4 (a) and (b) shows the normalized transmission at the

‘THROUGH’ and ‘DROP’ ports for different amorphization levels of GST. The insets of Fig

8.4 (a) and (b) show the variation of transmission at a resonant wavelength λread = 1529nm

with increasing degree of amorphization for the two ports respectively and results show

consistency with our theoretical discussions above. The variation in transmission results

from the decreasing absorption co-efficient (α) as the GST amorphizes. We observe a FWHM

of 1.68 (2.23) nm for a-GST and 2.97 (2.97) nm for c-GST and an extinction ratio contrast

of 7.5 (6.03) dB between the fully amorphous and fully crystalline states in the ‘THROUGH’

(‘DROP’) port. Fig. 8.4 (c) and (d) shows the visible contrast in electric field absorption by

the GST element in the ring resonator for the amorphous and crystalline states of GST for

an on-resonance incident wave. The slight shift in the resonance peaks can be attributed to

177

c-GST

a)

b)

c) d)

e)

c-GST a-GST

Input Through

Drop

Input Through

Drop

GST GST

THROUGH

DROP

Figure 8.4. Normalized Transmission at the (a) ‘THROUGH’ and (b)
‘DROP’ ports with increasing degree of amorphization for a particular range
of frequencies including a resonance peak at λread = 1529.1nm. As the degree
of amorphization increases, transmission at ‘THROUGH’ (‘DROP’) port de-
creases (increases) thus realizing negative (positive) integration action of the
neuron. (c) and (d) shows the top-view E-field distribution of a GST-embedded
ring resonator for c-GST and a-GST showing higher field absorption for the
former when the wave passes the GST region. (e) High contrast between c-
GST and a-GST for the rectangular waveguide in the firing unit of the neuron.

the minor variations in the real part of the effective refractive indices of the GST at different

states, which can be expressed as[236]:

∆λread ≈
∆neff,GST

neff,wg

.
LGST

2πR
(8.7)

These characteristics show that the outputs at the ‘THROUGH’ and ‘DROP’ ports de-

crease and increase respectively with increasing degree of amorphization which is a desirable

characteristic for integration in both the positive and negative direction. We leverage this

characteristic by connecting the outputs from the ‘THROUGH’ and ‘DROP’ ports of two

178

devices to an interferometer, as shown in Fig. 8.2 (a) to obtain the resultant integration of

the membrane potential as described earlier. Thus, the progressive optical responses of the

ring resonator for various percentage amorphization are in agreement with the desired char-

acteristics for the neuronal system to show integrating action. Finally, the contrast between

transmission of a-GST and c-GST for a rectangular waveguide is shown in Fig. 8.4 (e).

Spiking Neural network inferencing framework

A neural network is comprised of multiple layers of neurons connected through synapses.

The operation of any layer in a neural network involves computing the dot-product of the in-

puts and weights of the synapses, which gets transferred through the neuron to the next layer.

To that effect, the synaptic network can be represented as a dot-product engine that multi-

plies the inputs with the corresponding synaptic weights and computes a weighted sum which

is received by the neuron. Such a dot-product framework can be potentially implemented by

GST-based photonic synapses. Such a synapse can draw its inspiration from a GST-based

on-chip photonic synapse[240] recently proposed. The proposed integrate-and-fire spiking

neuron can be integrated with these photonic synapses in an all-photonic implementation

of a spiking neural network. To analyze the performance of such an all-photonic neural

network, we built a device to algorithm framework by mapping the device characteristics

to implement the proposed neuron in an algorithm level neural network inferencing setup.

Such a system-level simulation is quintessential to validate the operation of the proposed

integrate-and-fire neuron. For the current analysis, we assume ideal operation of the dot-

product engine. We consider a fully connected network consisting of 3 layers, the input

layer, the hidden layer and the output layer as shown in Fig. 8.5 (a). In such a network,

each neuron receives inputs from all the neurons of the previous layer. We study the per-

formance of the aforementioned fully connected neural network in a standard handwritten

digit recognition task based on the MNIST dataset[252]. The MNIST dataset consists of

60000 training images and 10000 testing images. The weights of the synapses are trained

using the Backpropagation algorithm [253] as in case of traditional Artificial Neural networks

(ANN). During inferencing, we use a conversion mechanism [254] from ANN to SNN where

179

Figure 8.5. (a) Fully connected ANN topology showing 3 interconnected
layers, namely, the input layer, the hidden layer and the output layer[22], (b)
Schematic of potential integration of an integrate-and-fire neuron in a spiking
neural network framework consisting of bipolar weights. The positive and neg-
ative weighted sums are computed using two separate dot-product engines and
input to two different ring-resonators. The bidirectional integrating action of
the two ports of the ring resonator is leveraged to calculate the effective mem-
brane potential under the action of the bipolar weighted sums. Output spikes
are generated when the effective membrane potential of the neuron crosses
a threshold by the spike generation mechanism described. (c) The behavior
of the proposed integrate-and-fire neuron in the simulated SNN showing the
variation of the membrane potential under the action of incident pulses thus
showing integrate and firing action.

180

the neurons with ‘ReLU’[148] activation functions in the ANN are replaced by the proposed

integrate-and-fire neurons. The dependence of final state of the device on the input and

initial state of the device as shown in Fig. 8.3 (f) was used to determine the state of each

neuron after each time-step. Then, the transmission characteristics of the ports of the ring

resonators in the proposed neuron as shown in Fig. 8.4 (a) and (b) was used to determine

the final membrane potential of each neuron. Each pixel of a 28×28 input image is divided

into a stream of spikes whose frequency is proportional to the pixel intensity. The proposed

integrate-and-fire neurons receive the dot product of the input spikes in a certain time-step t

and the corresponding weights of synapses connecting the neuron and the inputs as shown in

Fig. 8.5 (b). Upon receiving the dot product stimulus, the neurons integrate its membrane

potential at that time-step. Mathematically, for jth neuron, this can be represented similar

to Eqn.6:

Vj[t] = Vj[t− 1] +
∑

i
Ii[t]wij (8.8)

where Vj[t] is the internal state or the membrane potential of the jth neuron at time t, Ii[t]

is the ith input at time t, wij is the weight of the synapse connecting the ith input to the

jth neuron. The details of the synaptic network implementation in the photonic domian

will be a future course of study, however, similar concepts have been well-explored in the

electrical domain [74]. Any synaptic network is essentially a dot-product engine performing

element-wise multiplication of the inputs and the synaptic weights. Such a dot-product

engine receives an N-dimensional input vector and provides an M-dimensional output vector

which can be mathematically represented as:

O1

O2
...

OM

=

[
I1 I2 . . . IN

]

w11 w12 . . . w1M

w21 w22 . . . w2M

...

wN1 wN2 . . . wNM

(8.9)

where [wij] is a N ×M weight matrix.

181

To account for weights of either polarity, we represent the weights in two different dot-

product engines as shown in Fig. 8.5 (b). We can interpret the weight wij to possess a

positive and negative component:

wij = w+
ij − w−

ij (8.10)

w−
ij = |wij|, w+

ij = 0,when wij < 0 (8.11)

w+
ij = wij, w−

ij = 0,when wij > 0 (8.12)

This gives us two matrices W + = [w+
ij] and W − = [w−

ij]. These matrices are represented in

the dot-product engines such that they return the corresponding dot products:

O+
j =

∑
i

Iiw
+
ij (8.13)

O−
j =

∑
i

Iiw
−
ij (8.14)

The positive and negative integrating ring resonators in the proposed neuron take these

inputs separately and integrate in opposite direction such that the resulting integration

mimics the desired integration that a biological neuron performs, given by Eqn. 7 because∑
i Iiwij = ∑

i Iiw
+
ij −

∑
i Iiw

−
ij . The resulting membrane potential is fed to a Firing Unit as

described in Fig. 8.2 (a). A behavorial model of the SNN inferencing framework described

above was simulated using the MATLAB Deep Learning Toolbox [163] using a well-explored

network topology [254]. Fig. 8.5 (c) shows the progression of the membrane potential of

the proposed integrate-and-fire neuron in the hidden layer of the simulated SNN under the

action of weighted incident spikes with time. The magnitude of the weighted incident spikes

is essentially equal to ∑
i Ii[t]wij for the jth neuron at time-step t. It can be observed that once

the membrane potential of the neuron reaches its threshold, it goes back to its rest potential.

In the process, it generates a spike that gets fed to the next layer. The same integration

process happens in case of the output layer neurons as well and the spike activities of all the

neurons are monitored. The 10 output layer neurons correspond to the 10 classes of image

being classified. The neuron with the highest spiking activity over a number of time-steps is

182

compared with the test image label and if it matches with the neuron number, the image is

classified correctly. This device to system level analysis helps us validate the operation of the

proposed integrate-and-fire neuron. The accuracy of recognition was calculated to be 98.06%

after 25 time-steps on the testing set. The accuracy suffers a 0.24% degradation with respect

to the testing accuracy (98.3%) of a SNN based on an ideal integrate-and-fire neurons. This

can be attributed to the non-linear transmission characteristics shown in Fig. 8.4 and the

dependence of the final state on the initial state of the device. Such device inaccuracies can

be accounted for by modifying the training algorithm [22].

The important metrics for performance evaluation on a neuromorphic hardware system

are energy efficiency and speed. To that effect, the energy and delay performance of the

proposed neuron merits discussion. Each ‘write’ cycle is considered to be 1.5ns and each

‘read’ cycle for the proposed neuron was considered to be 500ps. The durations of the ‘read’

and ‘write’ pulses were 200ps. The additional times in the ‘write’ and ‘read’ cycles is to

ensure that the GST temperature settles to its initial value after the excitation. The ‘write’

times are constrained by the transient response of GST to an amorphization pulse, which is

shown to achieve times as low as 200ps, experimentally [236] when excited with 1ps pulses.

The average energy of a ‘write’ step considered for the simulation of the neural network

was 4 pJ per neuron per time-step whereas the average ‘read’ energy was 1 pJ per neuron

per time-step. The energy consumption in the ‘write’ cycles of the neuron can be further

reduced by optimizing the feature size of the GST element. PCM devices of similar feature

sizes[71], [255] in the electrical domain can consume upto 14-19 pJ of ‘write’ energy while

operating at speeds of 40-100ns. Writing into the GST through evanscent coupling with

photonic waveguides thus achieves a higher energy efficiency and speed, thus promising to

rekindle the viability of PCMs for fast neuromorphic processing.

Discussion

Neuromorphic engineering has evolved heavily from its dawn as researchers have explored

various kinds of technologies to mimic the functionality of the brain on an energy-efficient

hardware platform. In the electrical domain, such technologies have been demonstrated to

183

possess limitations such as speed, energy, process integration etc. Phase change materials, in

particular, have hit the scaling bottleneck where further improvements in energy-efficiency

would require reducing ‘write’ speeds significantly. To beat CMOS in terms of energy-

efficiency a 10× reduction[235] in current pulse amplitude or increase in pulse duration is

necessary. As a solution, we propose an all-photonic integrate-and-fire neuron based on the

phase change dynamics of GST which promises to achieve ‘write’ speeds of sub-ns orders.

To the best of our knowledge, this is the first demonstration of a biologically plausible

spiking neuron in the photonic domain involving phase change materials. We also showed

that the proposed neuron can be potentially integrated with synapses in an all-photonic

spiking neural network inferencing framework without any significant drop in classification

performance. The proposed design opens up a host of possibilities for future implementations

of all-photonic SNNs. By modulating the resonant wavelength by varying dimensions offers

us the opportunity of wavelength multiplexing in an all-photonic spiking neural network.

This offers substantial benefits such as elimination of cross-talk between neighboring neural

elements thus allowing the provision of a denser network and in addition, could possibly allow

us to implement larger networks on the same chip. With the recent advances in Photonic

Neuromorphic, the proposed integrate-and-fire neuron fills the void of an all-photonic neuron

that can be interfaced with photonic synapses[240] to build a truly integrated all-photonic

neuromorphic system that leverages the aforementioned advantages of photonic devices to

perform ultrafast neuromorphic computation.

8.4 Photonic In-Memory Computing Primitive for Spiking Neural Networks
Using Phase-Change Materials

The core computational units of any neural network are neurons and synapses. In SNNs,

information is encoded in form of spikes and the neurons and synapses are capable of pro-

cessing information through these spike trains. As shown in Fig. 8.6 (a), the input trains of

spikes get multiplied by the synaptic weights w1, w2, ..., wn and the weighted sum is received

by an ‘Integrate-and-Fire’ neuron. The internal state of the neuron, known as the ‘mem-

brane potential’ (Vmem) integrates based on the incoming weighted spikes and is compared

with a threshold (Vth) at every time-step. The neuron outputs a spike once Vmem reaches

184

Vth. The synaptic functionality essentially corresponds to a multiplication operation of the

inputs and the corresponding weights of the synapses. The basic operation performed by a

single synapse can be represented as Iiwi. We show how a single bus microring resonator

with a GST element embedded on top of it can operate as such a synapse. The device under

consideration is a Si-on-insulator structure consisting of a rectangular waveguide and a ring

waveguide as shown in Fig. 8.6 (b). A GST element is deposited on one arm of the ring

waveguide, which takes the shape of an arc and the length of the arc is denoted as the length

of the GST element (LGST). The fabrication technique of building such a structure has been

well explored [236], [256]. Wave in the rectangular waveguide gets partially coupled to the

ring and constructively interferes when the round-trip phase shift equals an integer multiple

of 2π leading to the resonant condition:

2πRringneff,wg = mλm (8.15)

where Rring is the radius of the ring waveguide, neff,wg is the effective refractive index of the

ring waveguide and λm is the resonant wavelength. The transmission through the ‘PASS’

port is dependent on the device dimensions and material such that:

Tp = a2 − 2arcosθ + r2

1− 2arcosθ + a2r2 (8.16)

where a is the attenuation factor and r is the self-coupling coefficient as shown in Fig. 8.6

(c). θ is the single-pass phase shift. Under resonance, θ equals 2π and the transmission is

given by Tmin = ((a− r)/(1− ar))2.

We leverage the contrasting optical properties of GST in its amorphous (a-GST) and

crystalline (c-GST) states to manipulate the attenuation in the ring waveguide and thus

vary the transmission Tmin at the resonance wavelength. The varying imaginary refractive

indices of a-GST and c-GST leads to differential absorption of evanescently coupled light.

The difference in optical absorption can be visibly observed through the cross-section view of

the fundamental mode profiles in GST-embedded Si waveguide when excited by a TE mode

electromagnetic (EM) wave as shown in Fig. 8.7 . c-GST introduces a significant change in

185

INPUT PASS

SiO2

Si

GST

k -k
*

r

r
*

INPUT PASS

GST

element

R

Pin Pout=Tp×Pin

SiO2

Si

tGST Waveguide

Cross-section

GST

Lgap

INPUT PASS

SiO2

Si

GST

k -k
*

r

r
*

INPUT THROUGH

GST

element

R

Pin Pout=T×Pin

Vmem

Vth

Integrate and Fire

Spiking Neuron

w1

w2

wn

Σ

Output Spikes

Input Spike

trains I1

I2

In

.

.

.

a)

b) c)

a)

b)

LGST

c)

Figure 8.6. (a) The basic functional elements of an SNN are spiking neu-
rons and weighted synaptic connections. At each time instant, the inputs are
weighted by the synaptic weights to produce a resultant output represented
as ∑

i Piwi. The ‘integrate-and-fire’ neuron’s membrane potential (Vmem) is
updated according to the weighted sum and compared with a threshold value
(Vth). (b) GST-embedded single bus microring resonator structure with Si
waveguides on SiO2 substrate. (c) Top view of the device illustrating the dif-
ferent parameters pertaining to the ring resonator structure. The synaptic
device performs an analog multiplication of input Pin and transmission T .

waveguide mode in contrast to a-GST due to higher absorption in the GST element. The

attenuation factor (a) in Eqn. 2 can be related to the imaginary refractive index as:

a = exp(−2πκeff,GST LGST

λ
+ Loss) (8.17)

where κeff,GST is the effective imaginary refractive index of the GST on Si-SiO2 stack, LGST

is the length of the GST element, and the term ‘Loss’ refers to other propagation losses such

as bending losses, etc. The GST element can be programmed to partially crystallized levels

186

b)a)

c)

Figure 8.7. Cross-section view of Fundamental Mode profiles for a GST-
embedded Si-SiO2 waveguide section for (a) a-GST and (b) c-GST showing
visible contrast in optical absorption for the two boundary states of GST. (c)
The variation of the real (neff,GST)) and imaginary (κeff,GST) refractive indices
of GST with degree of crystallization.

such that multi-level states can be achieved [238], [256]. To note, from the perspective of

neural networks, significant progress have been made towards proposing training algorithms

[257], [258] which preserve performance even with binarized synapses. Thus, although multi-

level states would be desirable from a device point of view, modified training techniques can

enable reasonable performance with low-precision synapses.

The refractive indices of partially crystallized GST can be calculated from effective per-

mittivities approximated by an effective-medium theory [146], [242]:

εeff (p)− 1
εeff (p) + 2 = p× εc − 1

εc + 2 + (1− p)× εa − 1
εa + 2 (8.18)

187

where εc and εa are the complex permittivites of c-GST and a-GST respectively calculated

from the refractive indices of GST[237] by
√

ε(λ) = n + iκ. p is the degree of crystalliza-

tion. Thus, the different levels of crystallization of GST leads to various levels of κeff,GST

thus leading to different levels of transmission. We leverage the multi-level transmission to

implement an all-photonic synapse. Considering an incident optical pulse of power Pin, the

synaptic functionality is realized such that the output power Pout is given by:

Pout = TλmPin (8.19)

where Tλm is the transmission at resonant wavelength λm. Tλm represents the weight

of the synapse and the various levels of transmission with varying degree of crystallization

states of GST can be leveraged to represent a entire range of synaptic weights with ap-

propriate discretization. We critically couple the resonator to the amorphous state such

that the transmission is minimum in the amorphous state and increases with the degree of

crystallization. While individual synapses represent a simple multiplication, the weighted

inputs from multiple synapses are received by a neuron as shown in Fig. 8.6 (a). To emulate

such a behavior, it is important to connect these synapses in an integrated fashion. Such a

synaptic network would perform the most ubiquitous functionality of any neural network, a

dot-product.

8.4.1 Photonic Dot Product Engine

We leverage the characteristics of the proposed non-volatile photonic synaptic device to

map the synaptic weights of a neural network in a Photonic Synaptic Network capable of

performing the dot-product of the inputs and the weights.

Network Design

We leverage the Wavelength Division Multiplexing (WDM) technique to compute dot

product operations between incoming spikes and synaptic weights. We represent the synaptic

weights in terms of the transmission Tλ of the microring resonator as discussed in the previous

188

λ1 λ2 λN-1 λN

P
H

O
T

O
D

E

T
E

C
T

O
R

A
R

R
A

Y

Tλ1 Tλ2 Tλ,N-1 TλN

[P1, P2, …, PN]

R1Radii:
Weights:

R2 RN-1 RN

. . .

R1< R2< … <RN-1< RN
Iout =R∑TλiPi

INPUT OUTPUT

Figure 8.8. Synaptic dot product engine showing arrangement of ring
resonators with increasing radii representing the transmission vector Tλ =
{Tλ1 , . . . , TλN

}. WDM signals gets modulated by weights corresponding to
respective wavelength and the photodetector array collects the signals to gen-
erate a current Iout representing the dot product of transmission vector Tλ and
inputs P = {P1, . . . , PN}.

section. To represent multiple wavelengths, we use multiple ring resonators of increasing ring

radii to represent different synapses in a row as shown in Fig. 8.8 . The number of synapses

(N) in each row is dependent on the Free Spectral Range (FSR) of the ring resonator and this

governs the dimension of the input vector of the dot product engine. A WDM spike enters the

straight waveguide through the ‘INPUT’ port and the GST element on each ring resonator

modulates the amplitude of corresponding wavelength by the representative synaptic weight

according to Eqn. (5). Thus at the ‘OUTPUT’ port we obtain a multi-wavelength spike

comprising of different TλiPi products corresponding to different wavelengths. This spike is

then fed to a photodiode array (PD) which produces a current given by the sum of all the

amplitudes given by:

Iout = R
∑

i
TλiPi (8.20)

where R is the responsivity of the PD expressed as A/W. This current is equal to the dot

product of the input vector P and weight vector Tλ. The operation is illustrated in Fig. 8.8 .

Synapse Design constraints

Using the WDM technique for the proposed photonic synaptic array imposes certain

constraints on the design of the synaptic devices. For accurate dot-product operation, it is

necessary to achieve significant isolation between the channels in order to minimize channel-

to-channel interaction. The important parameters which constrain the design space of the

189

synaptic device are finesse (F) and channel spacing (λdiff). Finesse is the ratio of free spectral

range (FSR) and full-width at half maximum (FWHM). For a single bus ring resonator,

FWHM and FSR are expressed as [259]:

FWHM = (1− ra)λ2
m

πngL
√

ra
(8.21)

FSR = λ2
m

ngL
(8.22)

F inesse = FSR

FWHM
(8.23)

where L = 2πRring is the circumference of the ring, ng is the group index and rest of the

parameters bear the same meaning as defined earlier. The interference due to adjacent

channels can be modeled as:

Tλi|λ=λi = Tλi|λ=λi × Tλi|λ=λi+1 × Tλi |λ=λi−1

Tλi|λ=λi = αλiTλi|λ=λi

(8.24)

Here, Tλi|λ=λi is the modified transmission due to interference from the adjacent resonant

wavelengths, Tλi|λ=λi,λi+1,λ=λi−1 are the transmissions of ith ring at the ith, (i + 1)th and

(i− 1)th resonant wavelengths respectively. αλi represents the non-ideal factor which should

ideally be close to 1. αλi decreases with decreasing channel spacing (λdiff) and increasing

FWHM. For our design, we decided the minimum radius of the ring to be 1.5 µm in order to

achieve a high density synaptic array for better scalability. Rings of similar size have been

demonstrated previously [260] with certain modifications that we will discuss next. The rest

of the parameters concerning the synapses were chosen to maximize the number of rings in

a single row (N) while maintaining αλi close to 1 under the condition that Nλdiff < FSR.

A number of challenges arise for rings of radius comparable to the wavelength of op-

eration. Firstly, to achieve a critical coupling in the low-loss amorphous state, the power

coupling gap between the bus and the ring waveguide needs to be small (< 100nm). This

is because the interaction length between the ring and the straight waveguide is quite short

and hence to achieve reasonable coupling, even to match the small intrinsic loss in the ring in

low-loss amorphous state of GST, we require a small power coupling gap. Such gaps become

190

extremely difficult to fabricate. An alternative to using lower gaps has been demonstrated

[260] for rings of small radii. Reducing the width of the bus waveguide increases the spatial

period of the propagating mode due to the lower effective refractive index. This results in a

better phase match with the mode in the tightly curved ring waveguide. For the rest of our

analysis, we have used a bus waveguide of width 0.35 µm and a coupling gap of 135 nm.

8.4.2 Operation of All-Photonic Spiking Neural Network

Implementation of a SNN based on the Photonic Dot-Product Engine (PDPE) and

‘integrate-and-fire’ neurons described above involves integration of the proposed structures.

As elucidated above, the basic computational function of a neural network is a dot product.

To realize parallel instances of such a functionality using the aforementioned PDPE, we use

a splitter (SPL) to feed the WDM input spikes to multiple PDPE rows with the input vector

and obtain the dot-products of each rows from respective PD arrays as shown in Fig. 8.9 .

Essentially, the output vector thus obtained from the PD arrays gives us the multiplication

of the vector of input spikes Pi with a N ×M synaptic network Tij. The M outputs Ij ob-

tained from the PD arrays are fed to laser diodes (LD) which converts the electrical current

to optical spikes thus completing the parallel dot-product operations and can be represented

as:

O1

O2
...

OM

∝

[
P1 P2 . . . PN

]

T11 T12 . . . T1M

T21 T22 . . . T2M

...

TN1 TN2 . . . TNM

(8.25)

We now present how such a photonic synaptic network based can be integrated with the

proposed bipolar IF Neurons to realize a photonic SNN. The schematic of such a photonic

SNN is illustrated in Fig. 8.10 . To account for negative weights in a neural network, we

191

λ1

λ1

λ1

λ1

λ2

λ2

λ2

λ2

λN-1

λN-1

λN-1

λN-1

λN

λN

λN

λN

P
H

O
T

O
D

E
T

E
C

T
O

R
 A

R
R

A
Y

S

L
A

S
E

R
 D

IO
D

E
 A

R
R

A
Y

Neuron

1

Neuron

2

Neuron

3

Neuron

M

T11 T21 TN-1,1 TN1

T12 T22 TN-1,2 TN2

T13 T23 TN-1,3 TN3

T1M T2M TN-1,M TNM

[P1, P2, …, PN]

[O1]

[O2]

[O3]

[OM]

Ij = R∑PiTij

Oj = kIj

N
×
1
 M

U
L
T

IP
L
E

X
E

R 1
×

M
 S

P
L
IT

T
E

R

[P1, P2, …, PN]

[P1, P2, …, PN]

[P1, P2, …, PN]P1

P2

PN

PN-1

[I1]

[I2]

[I3]

[IM]

Figure 8.9. Synaptic dot product engine showing arrangement of ring
resonators with increasing radii representing the transmission vector Tλ =
{Tλ1 , . . . , TλN

}. WDM signals gets modulated by weights corresponding to
respective wavelength and the photodetector array collects the signals to gen-
erate a current Iout representing the dot product of transmission vector Tλ and
inputs P = {P1, . . . , PN}. k is an amplification factor.

represent the element of the weight matrix T to be comprised of a positive and negative

component:
Tij = T +

ij + T −
ij

T +
ij = Tij, T −

ij = Tlow,when Tij > 0

T +
ij = Tlow, T −

ij = |Tij|,when Tij < 0

(8.26)

Here Tlow is the transmission corresponding to the lowest programmable state considered.

Two PDPE arrays are deployed for mapping the positive and negative components respec-

tively as depicted in Fig. 8.10 . The dot-product outputs from the LD arrays of the two DPE

arrays can be represented as:
O+

j =
∑

i
PiT

+
ij

O−
j =

∑
i

PiT
−
ij

(8.27)

192

λ1

λ1

λ1

λ1

λ2

λ2

λ2

λ2

λN-1

λN-1

λN-1

λN-1

λN

λN

λN

λN

P
H

O
T

O
D

E
T

E
C

T
O

R
 A

R
R

A
Y

S

L
A

S
E

R
 D

IO
D

E
 A

R
R

A
Y

Neuron

2

Neuron

3

Neuron

M

[P1, P2, …, PN]

[O1
+
]

[O2
+
]

[O3
+
]

[OM
+
]

N
×
1

 M
U

L
T

IP
L
E

X
E

R 1
×

M
 S

P
L
IT

T
E

R

P1

P2

PN

PN-1

λ1

λ1

λ1

λ1

λ2

λ2

λ2

λ2

λN-1

λN-1

λN-1

λN-1

λN

λN

λN

λN

P
H

O
T

O
D

E
T

E
C

T
O

R
 A

R
R

A
Y

S

L
A

S
E

R
 D

IO
D

E
 A

R
R

A
Y

Neuron

2

Neuron

3

Neuron

M

[P1, P2, …, PN]

[O1
-
]

[O2
-
]

[O3
-
]

[OM
-
]

N
×
1

 M
U

L
T

IP
L
E

X
E

R 1
×

M
 S

P
L
IT

T
E

R

P1

P2

PN

PN-1

Neuron

1

Neuron

1

Firing Unit∑

Drop

Drop
Input Through

Input Through

Membrane

Potential

Neuron Soma

Output

Spikes

NEGATIVE DPE ARRAY

POSITIVE DPE ARRAY

T11
+

T21
+ TN-1,1

+
TN1

+

T12
+

T22
+ TN-1,2

+
TN2

+

T13
+

T23
+ TN-1,3

+
TN3

+

T1M
+

T2M
+ TN-1,M

+
TNM

+

T11
-

T21
- TN-1,1

-
TN1

-

T12
-

T22
- TN-1,2

-
TN2

-

T13
-

T23
- TN-1,3

-
TN3

-

T1M
-

T2M
- TN-1,M

-
TNM

-

Figure 8.10. Schematic of an All-Photonic Spiking Neural Network. Two
DPE arrays are deployed to represent the positive and negative components
of the weights. The outputs of the DPE arrays are converted to optical spikes
and passed to integrate-and-fire neurons. The structure of an integrate-and-
fire neuron is illustrated in a circle. Each neuron has two inputs corresponding
outputs from the positive and negative DPE arrays. The neuron outputs a
spike when the membrane potential crosses its threshold.

These outputs from the jth rows are received by the jth IF neuron discussed earlier. The

outputs from the positive and negative PDPE arrays are received by the positive and negative

integrating ring resonators in the neuron respectively. The two ring resonators integrate in

the opposite direction based on the two inputs and the resulting integration mimics the

desired integration that a biological ‘integrate-and-fire’ neuron performs, given by:

Vmem,j[t] = Vmem,j[t− 1] +
∑

i
PiTij (8.28)

Here, ∑
i PiTij = ∑

i(PiT
+
ij −PiT

−
ij). Vmem,j[t] is the internal state or the membrane potential

193

Table 8.2. Simulation Parameters
Parameters Values
Si Ring Waveguide X-Section 0.45×0.25 µm2

Si Bus Waveguide X-Section 0.35×0.25 µm2

Coupling Gap (Lgap) 0.135 µm
GST Length (LGST) 170 nm - 220nm
GST Thickness (tGST) 10 nm
GST Width (WGST) 0.44 µm
Si Refractive Index (nSi) [245] 3.5
SiO2 Refractive Index (nSiO2) [246] 1.4
c-GST Refractive Index (nc−GST + iκc−GST)
[247]

7.2+1.9i

a-GST Refractive Index (na−GST + iκa−GST)
[247]

4.6+0.18i

of the jth neuron at time t. The resulting membrane potential is passed to a Firing Unit

as described in Fig. 8.2 such that the neuron produces an output spike once the Vmem,j[t]

reaches a threshold. The output spikes from all the neurons of the current layer are then

fed to the next synaptic array layer. Fig. 8.10 delineates the operation of basic building

blocks of a neural network. We perform large scale system-level simulations by emulating

the behavorial model of the proposed spike processing system to assess the performance of

neuromorphic systems based on this fabric.

It is important to consider the architecture-level facets of any computing primitive. The

proposed design is analogous to memristive crossbars, where the high fan-in into the neurons

is resolved by the inherent parallelism of the computing framework. In our design, each

neuron receives two inputs, from the positive and negative synaptic array, and the output of

that neuron is fed to one of the 16 inputs of the synaptic array of the next layer. In reality,

neural networks are of far bigger sizes than what the proposed design can accommodate. As

a result, multiple instances of the proposed primitive can be used with time-multiplexing

to perform the entire vector-matrix multiplication operation. The partial sums from these

instances are collected and added before being fed to the neuron. Output from a neuron

is again served as inputs to the synaptic arrays storing the weights of the next layer of

the neural network. Similar architectures have been explored using memristive technologies

194

[16], [261]. This work is concerned with device and circuit primitive of a spike-based photonic

non-volatile inferencing engine which will act as a computing core of a large-scale system

similar to technologies in the electrical domain.

8.4.3 Results

Device Simulations

We evaluated the performance of the proposed all-photonic SNN fabric by designing a

device-circuit-algorithm co-simulation framework. First, the device characteristics of each

ring resonator in a DPE row is simulated for 4 different degrees of crystallization of the

GST element using commercial-grade simulator Lumerical FDTD Solutions[251] based on

the finite-difference time-domain (FDTD) method. The fixed parameters used for these

simulations are listed in Table 8.2 . The mode-profiles were obtained through Electromagnetic

simulations using the Finite Element method in COMSOL Multiphysics [250].

Device to System Framework

The device characteristics, obtained from the FDTD simulations are analyzed and a

Gaussian fit is applied on the data for interpolation. We develop a device to system co-design

framework by building behavorial models of the proposed synapses and neurons based on the

fitted device characteristics. The models are used to evaluate the inferencing performance

of the standard neural network topology on standard digit recognition task based on the

MNIST dataset using the Deep Learning Toolbox[163] in MATLAB. The MNIST dataset

consists of 60000 images in the training set and 10000 images in the testing set.

8.4.4 Device Simulations

We considered 16 ring resonators of radii linearly increasing from 1.5 µm to 1.59 µm in

any particular DPE row. The choice of number of devices, N , in a single row is discussed

earlier. The length of the GST element is increased accordingly and chosen iteratively to

ensure uniform transmission characteristics across the wavelength range of operation. We

195

GST

Element
GST

Element

a)

b) c)

INPUT PASS INPUT PASS

Figure 8.11. (a) Normalized transmission for 16 different rings for 4 degrees
of crystallization (30 %, 50 %, 80 %, 100 %) showing a decreasing trend with
decreasing degree of crystallization. The range of wavelength for the 16 rings
is less than the FSR for the design. (b) and (c) shows the electric field profile
in the ring resonator system showing visible contrast in optical absorption and
field transmission at the ‘PASS’ port in the GST element for c-GST and 30%
c-GST respectively.

performed FDTD simulations for each device with 4 different degrees of crystallization of

GST (30%, 50%, 80%, 100%) and the observed transmission characteristics for the rings

are shown in Fig. 8.11 (a). Expectedly, the transmission for each device decreases with

decreasing degree of crystallization. The observed FSR was 53.1 nm and difference between

the highest and lowest resonant wavelength was 47nm, which is well within the FSR, thus

ensuring no interference from resonant wavelengths beyond the region of operation. Fig.

8.11 (b) and (c) show the contrast in electric field absorption by the GST element in the ring

resonator for 30% and 100% crystallized GST. We observe certain variations across different

196

a)

b)

Figure 8.12. (a) Gaussian fit of simulated data points across degrees of
crystallization ranging from 0 % and 100 %. (b) Linearly varying transmission
across 16 different programmable states (Levels) of the GST. Inset shows the
degrees of crystallization corresponding to the Levels.

wavelengths which can be minimized by further adjustments of lengths of the GST element.

However, from the perspective of neuromorphic applications, these variations prove to be

insignificant. We will explore the impact of such variations in our evaluation of the proposed

neuromorphic processing engine. We exploit the dependence of transmission on degree of

crystallization to realize the synaptic behavior of the rings. Fig. 8.12 (a) shows the Gaussian

fit of the simulated data across degrees of crystallization varying from 0% to 100%. Note, the

Gaussian fit provides a fairly accurate representation of the observed data and is a powerful

tool to speed up our analysis in light of the computationally expensive FDTD simulations. It

can be observed that transmission has a non-linear relationship with p and hence, operation

of the rings as synapses would require the GST element to be programmed to states with non-

197

linearly increasing p. This can be achieved with appropriate amplitude of the programming

stimulus. Fig. 8.12 (b) shows the transmission levels for each ring corresponding to 16

discretized programmable states or Levels. The degrees of crystallization, p, for each state

is shown in the inset of Fig. 8.12 (b). The linear relationship between transmission and

Levels is a necessity for the target application, i.e., a dot-product operation for neuromorphic

computing which led us to the choice of programmable states with the non-linear distribution

of p.

Interference Errors

The transmission characteristics of the different rings for varying states of the GST el-

ement is used to evaluate the accuracy of the dot-product operation performed using the

proposed synaptic network. The error in the computation stems from the premise of over-

lapping frequency response between adjacent channels. The advantage of the proposed im-

plementation over electrical counterparts is that in the electrical domain, the losses due to

line resistance is a function of input and the weights thus rendering them difficult to model.

The impact of the error in this setup is only dependent on the weight level and hence, can be

easily modeled, analyzed and even corrected in light of the proposed application. In Eqn. 9,

we have formulated a behavorial model of the error arising from interference due to adjacent

channels. Fig. 8.13 shows the map of non-ideality factor αλi for all 16 rings for 16 different

levels. This was calculated through fitting of the extracted αλi from Fig. 8.11 (a) based on

Eqn. 9. We observe that errors are highest for rings of higher radius and for the highest

levels. This can be attributed to higher FWHM for rings of higher radius due to the longer

lengths of the GST element used to achieve uniform transmission levels across the operating

range of wavelength. We include these error characteristics corresponding to each ring for

our system level evaluation of the proposed photonic SNN inferencing framework.

System Level SNN performance

We develop a device to algorithm level framework to perform system level analysis of the

photonic SNN implementation. A SNN, like any other neural network, consists of multiple

198

Figure 8.13. Map of non-ideality factor (αλi) arising due to interference from
adjacent rings for each ring in the DPE row.

layers of neurons connected through synapses. The unique property of SNNs is that the

inputs to the network are discretized spike events instead of analog values. The synapses act

as weights which get multiplied with amplitude of the incoming stimulus and the resulting

weighted-sum, i.e., dot-product of all impulses coming from different synapses is received by

the neuron. We map the device characteristics of each individual synapse and ‘integrate-and-

fire’ spiking neurons discussed previously to explore the validity of operation of the proposed

devices as synapses and neurons in such a SNN. Let us now explain how we perform the

evaluation of a SNN on the proposed PCM-based photonic inferencing framework. We

consider a fully connected neural network consisting of 3 layers, namely, the input layer, the

hidden layer and output layer as shown in Fig. 8.14 (a). This type of topology is well explored

[254]. For our analysis, we consider a network with M = 784, N = 500, P = 10. We analyze

the accuracy of such a network in a standard handwritten digit recognition task based on the

MNIST dataset [252]. A popular way of implementing spike-based inferencing systems is to

train a network as an Artificial Neural Network (ANN) and then convert it to a SNN by well

199

Input layer

M Neurons
Hidden layer

N Neurons

Output layer

P Neurons

Synaptic

Connections (wji
1
)

N×M

Synaptic

Connections (wji
2
)

P×N

(ai
1
)

(zj
1
) (ai

2
)

(zj
2
) (ai

L
)

σ

σ

a)

b)

Figure 8.14. (a) Fully connected neural network topology consisting of an
input layer (M), a hidden layer (N) and an output layer (P) of neurons. The
resulting synaptic networks are of sizes N ×M and P × N(b) Evolution of
classification accuracy of handwritten digit recognition task based of MNIST
dataset comparing our proposed Photonic SNN to ideal SNN performance.
Here ideal SNN corresponds to software-level functionalities without consider-
ing device characteristics.

explored conversion algorithms [254], [262]. The weights of the network are trained using

the Backpropagation algorithm [263] as in case of Artificial Neural Networks (ANN). The

neurons in ANNs are usually non-linear mathematical functions, such as Rectified Linear

Units (ReLU) [148], sigmoid or tanh with ReLU being the most popularly chosen neuron

functionality. During conversion, an artificial neuron with ReLU functionality can be directly

converted to an IF neuron, mathematically [254]. The details of the operation of the IF

neuron has been elucidated in our earlier work[26]. The trained weights of the network after

200

the ANN is converted to a SNN are mapped to the observed characteristics of each synaptic

device in the proposed synaptic network. The synaptic network has the provision of operating

16 synapses simultaneously. To perform the dot-product of larger dimensions, the synaptic

network needs to be time-multiplexed as discussed earlier. To simulate large-dimension

operations with the proposed synaptic network, we repeat the device characteristics every

16 synapses. The weights of the network can be negative. To account for negative weights,

two dot-product engines are deployed, shown in Fig. 8.10 as described earlier.

The pixels of input images of size 28 × 28 are divided into streams of spikes whose

frequency is proportional to the pixel intensity. At every time-step, the input can either be

‘0’ when there is no spike or ‘1’ in the event of a spike. The behavorial model of the SNN

inferencing framework described above was implemented using the MATLAB Deep Learning

Toolbox [163] using the network topology shown in Fig. 8.14 (a). The network is evaluated

at every time-step by passing the inputs through the forward path from the input layer to the

output layer through the synaptic network and activity of the network was recorded. Finally,

the output neuron with the highest spiking activity is compared with the label of the input

image to determine the accuracy of the recognition system. The classification performance

of the proposed photonic SNN is compared with an ideal SNN in Fig. 8.14 (b). Here,

ideal SNN essentially means software-level evaluation without taking device characteristics

into consideration. We observe that there is a degradation in accuracy of 0.52 % after 35

time-steps from the ideal case arising from the different variations in device characteristics

discussed earlier. To note, the concept of time-steps here correspond to how many times we

evaluate the network over the Poisson-distributed input spikes generated from the image.

The duration of a time-step is not relevant in this context as we do not include any temporal

dynamics in the system. We further attempted to isolate the contribution of synaptic device

variations to the observed degradation in accuracy by considering a comparison test case:

ideal synapses with proposed neurons. That accuracy degradation amounted to 0.1% after

35 time-steps. This implies 0.42% degradation due to synaptic variations.

We evaluated the energy consumption of the the basic building blocks for our system, the

synaptic array and the neurons. The energy consumed by each synapse can be estimated by

the transmission (or the weight) of the synaptic device. As the information being processed

201

is based on spike events, the input can either be ‘1’ or a ‘0’. Experimental demonstrations

[238] have shown that readout for GST-based Si photonic devices can be achieved by pulse

energies of 0.48 pJ. For our case, due to smaller GST footprints, we consider input ‘1’ to

correspond to a pulse of amplitude 0.25 mW. The power consumed by the synapse is thus

given by (1-T) mW where T is the transmission of the synapse. As these read pulses will

eventually write into the neurons, we choose a pulsewidth of 200 ps, which is the minimum

pulsewidth required to write into the GST, as we observed previously [26]. Considering

these metrics for the read pulses and power calculations for each synapse, we estimated the

energy consumption of the entire classification operation described above. The resulting

average energy consumption for first layer of the neural network in the synaptic array was

calculated to be ∼ 12.5fJ per synapse per time-step of evaluation. For the second layer,

the energy consumption was ∼ 1.6fJ per synapse per time-step. The difference is energy

consumption in the two layers is due to more sparse spiking activity in the second layer.

The energy consumed by each neuron was calculated in our previous work to be 5pJ per

time-step. The writing energies for PCM devices of similar feature sizes [71], [255] in the

electrical domain can amount upto 14-19 pJ while operating at speeds of 40-100ns. The total

energy consumption for an image classification was calculated ∼ 261nJ (178nJ consumed

by the synaptic operations and 83nJ consumed by the neurons). Although the energy

consumption is comparable to CMOS technology [264], photonics potentially offers a faster

operation at sub-ns speeds. To note, in this work, we have considered a significantly high

read pulse (0.25 mW) through the synapses which is reflected in the high energy per inference

operation. The proposed synapses can be potentially read with a pulse of lower amplitude

based on the sensitivity of the photodetectors and that will significantly improve the energy

requirements of the system. Moreover, the speed of operation in the photonic domain is

significantly higher since read latencies of the neuromorphic systems based on memristors

usually occur in orders of ns. These benefits encouraged us to further explore the possibility

of neuromorphic hardware design based on this technology.

202

READ

INPUT PASS

GST

element

R
WRITE

INPUT
tgap

Wwrite< Wwg

Wwg

a)

b)

Figure 8.15. (a) Structure and arangement of input write waveguide at a
distance tgap to the synaptic device. The width of the write waveguide (Wwrite)
is smaller than that of the ring waveguide (Wwg) for asymmetric coupling.
(b) Transmission characteristics of 1.59 µm ring for different values of tgap

compared with the case without a write waveguide. Inset 1 (Blue) shows a
zoomed-in view of the transmission characteristics to show the different cases
clearly. Inset 2 (Red) shows the variation of percentage error in transmission
at read wavelength 1562.85 nm with tgap.

8.4.5 Discussion

The proposed photonic SNN inferencing framework fills a major void of scaling from

device to systems in current state-of-the-art photonic neuromorphic works based on PCMs.

However, few challenges stand in the way of physical demonstration of the proposal that

need to be overcome. Firstly, reconfigurability of the proposed non-volatile synaptic array

203

is a necessity. Various reconfigurability schemes have been explored on the phase-change

based photonic platforms [237], [256]. We explored the possibility of adding an input bend

waveguide (WGwrite) as a writing port for each synapse at a distance such that the infer-

encing framework is unaffected. The width of WGwrite (Wwrite) is intentionally considered

to be much lower than the ring waveguide of the synaptic device. This is done to achieve

asymmetric coupling such that during writing, the wave leaks out of WGwrite appropriately

for efficient writing while during standard inferencing operation, the wave remains mostly

confined within the ring. Fig. 8.15 (a) shows the structure and arrangement of WGwrite ad-

jacent to the proposed synaptic device. tgap denotes the distance between the ring waveguide

and WGwrite. We observe that error in transmission during normal inferencing operation due

to the presence of the WGwrite is around 0.5 % for tgap ∼ 300nm. For the same distance, we

calculated the transient field coupling from the WGwrite to the ring to be 70 %. Thus, this

writing scheme is a viable option for achieving reconfigurability in the proposed network.

The dimensions chosen for our analysis are catered towards achieving desirable function-

ality for ring resonators of small radii of around ∼ 1.5µm. The main motivation behind using

small ring resonators was to achieve high area density for scalability. We have explored a

number of challenges arising from such small rings such as non-uniform bending and cou-

pling losses across the range of wavelength and fabrication difficulties to achieve critical

coupling. We have attempted to mitigate such challenges by appropriate design. Further,

we delineated the design constraints for scaling individual synapses to a network of synapses

which is necessary for large-scale neuromorphic systems. GST-based photonic platforms also

experience a small resonance shift between the different programmable states of the PCM.

The resonance shift between the any two states can be quantified by [236]:

∆λm

λm,in
= ∆neff,GST

ng,eff

.
LGST

2πRring

(8.29)

Here, λm,in is the resonant wavelength in the initial state, ∆neff,GST is the difference in effec-

tive refractive index between the states, ng,eff is the group index. For our case, it amounts

to approximately 0.012 nm. In addition to the variations arising from device characteristics,

we also explored errors arising due to interference from adjacent channels and their impact

204

on the performance of the proposed photonic SNN. From our analysis, it can be observed

that the network size, N considered in our synaptic fabric is a rather conservative design.

N can be further increased which would result in higher errors. However, the effect of such

variations have been modelled in Eqn (9) and the resulting accuracy degradation can be

recovered by modifying the training algorithm as explored for memristive technologies [22].

The challenges of errors arising due to interference between adjacent rings essentially

stems from the usage of WDM-based computation. To that effect, the limitations of array

size due to WDM merits discussion. WDM, while introducing parallelism in the system, is

constrained by the finesse of the rings. In this work, we have shown that we can use 16

rings in a single dot-product engine row which implies that the array can process 16 inputs

in parallel. The size of the array is thus limited to 16 × N where N would be limited by

the area and not design constraints. However, analogous computing units in the electrical

domain using memristive crossbars are also limited in size due to electro-migration limits,

sneak-paths and line-resistances. The photonic array on the other hand, although limited

in one direction due to finesse, can be possibly extended to larger sizes in the direction of

N . Moreover, time multiplexing is a popular practice when implementing large scale neural

networks on memristive networks, as alluded to earlier. The possibility of fast writing into

PCMs can potentially make these photonic arrays more suitable for temporally scalable

architectures.

An alternative way to implement Photonic Neural Networks is through the use of intefer-

ometers [232] where the weights of the network are controlled through phase-shifters. Such

phase-shifters can consume significant amount of power per synapse to maintain the weight.

On the other hand, non-volatile elements based on PCMs can potentially encode the weights

without requiring any power to maintain their states. However, we do not use the concept of

phase-shift for our design. We encode the weights in terms of levels of partial crystallization.

Non-volatility is necessary for large-scale neuromorphic systems for primarily two reasons: i)

it eliminates the need for phase-shifters as constant tuning is not required, and ii) it provides

a platform for in-memory computing rather than storing the synaptic weights in a separate

memory. In this work, the intention to use non-volatile material based memory primitive

is to eliminate the need for thermal tuners. To the best of our knowledge, this is the first

205

proposal of photonic neuromorphic platform from a scalable system point of view based

on a non-volatile memory primitive. Recent proposals [265], [266] have looked at scalable

systems to realize complex neural dynamics using for dynamic learning. However, the flux-

based memory in such systems are dependent on temperature and also on the run-time of

operation. Such detailed neuro-biological functionalities make them more suitable for brain-

like simulations similar to NeuroGrid [267] in the electrical domain. In this work, we do not

incorporate complex biological dynamics of SNNs in our system and rather focus on lever-

aging the inherent sparsity of spike-based processing while performing image classification

for energy efficiency. The primary motivation behind exploring this primitive stems from

building a potentially reconfigurable neuromorphic system which performs energy-efficient

inferencing. For building such neuromorphic platforms to perform spike-based processing in

standard architectures, in-memory computing offers significant promise. To that effect, non-

volatile memory primitives are quintessential and more suitable as they potentially eliminate

the need for off-chip DRAM accesses, thus alleviating memory bottlenecks.

A popular way of implementing such spike-based inferencing systems is to train a net-

work as an Artificial Neural Network (ANN) and then convert it to a Spiking Neural Network

(SNN) by well explored conversion algorithms[254]. This method has seen considerable suc-

cess [262] in image classification, far beyond the scope of spike-based training algorithms.

The neurons in ANNs are usually non-linear mathematical functions, such as Rectified Lin-

ear Units (ReLU), sigmoid or tanh with ReLU being the most popularly chosen neuron

functionality. During conversion, an artificial neuron with ReLU functionality can be di-

rectly converted to an IF neuron, mathematically [262]. This explains why we have chosen

IF neuron as the spiking neuron in our proposal. IF neurons are not associated with time-

constants as it does not include leak factors and the operations are fairly simple unlike other

spiking neurons. The proposal concerns with building spike-based photonic neuromorphic

inferencing platform for image classification task. Note, the neuron does not bear exact

resemblance to biological neuron, however, the design leverages the event-driven behavior of

biological neurons. The aim of this work is to build a fast neuromorphic inferencing platform

in the spiking domain to perform machine learning tasks such as image classification. Sev-

206

eral works [267] have previously explored brain-like neuron and synaptic functionalities with

more significant resemblance for complex neural simulations, albeit in the electrical domain.

The major advantage of building neuromorphic systems based on Photonics rests in its

speed of operation. The primary bottleneck in ‘write’ latencies arise from the programming

time of the IF neuron which can also be performed at 200ps. Although the current tech-

nology is power expensive during writing, the speed of writing still enables us to achieve a

reasonable energy efficiency. With further optimization of switching techniques or by use of

alternative PCMs with lower switching power, further energy benefits can also be aimed for

to achieve comparable energy consumption to other technologies in the electrical domain.

In turn, the proposed photonics computing platform eliminates various drawbacks usually

faced in the electrical counterparts such as metal wire resistance, electromigration, sneak

paths, etc. Despite the inherent challenges in the design and implementation, our proposed

SNN framework based on GST-on-silicon photonics neuromorphic fabric enables parallelism

through integration of a synaptic network with IF neurons. Such a design paves the way

for scalable photonic architectures suitable for large-scale neuromorphic systems catered to

perform fast computations.

8.4.6 Conclusion

We have proposed a photonic Spiking Neural Network computing primitive through seam-

less integration of non-volatile synapses and ‘Integrate-and-Fire’ Neurons based on Phase-

change materials. The microring resonator devices explored for such synapses and neurons

leverage the differential optical absorption of GST for non-volatility. We use the WDM

technique to scale individual synapses into a large-scale synaptic array capable of perform-

ing parallelized dot-products. Our design is based on ring resonators of radius comparable

to the wavelength of operation in order to achieve high area density while maintaining per-

formance. We explore several challenges involved in such small ring resonators and proposed

certain design modifications to achieve uniform and desirable characteristics across the entire

operating range of wavelength. Finally, we developed a device to system level framework to

evaluate the performance of the proposed photonic in-memory computing primitive and IF

207

neurons as an SNN inferencing engine by building behavioral models of the photonic neu-

romorphic fabric and achieve comparable performance to an ideal network. Neuromoprhic

systems based on Integrated Photonics offer an alternative dimension to the current wave

of exploring beyond von-Neumann computing frameworks and our proposed photonic SNN

inferencing engine achieves a significant step towards proposing individual non-volatile de-

vices capable of performing in-memory computing and scaling to a network of such devices

to realize a truly integrated Spiking Neural Network.

208

9. SUMMARY AND FUTURE WORK

9.1 Summary

The primary goal of this research has been addressing challenges towards enabling intelli-

gence in edge devices from the perspective of various levels of the design stack which include

designing low complexity algorithms as well as enabling low-power hardware primitives. We

started by exploring model compression techniques such as quantization in DNNs to reduce

their computational complexity and memory footprint. We proposed a PCA-driven method-

ology to construct mixed precision neural networks which can achieve significantly higher

accuracy than binary neural networks with comparable energy efficiency.

Next, we focused on the hardware aspect of reducing the energy consumption and area

efficiency. In that regard, we worked toward building feasible analog in-memory comput-

ing primitives based on both CMOS and emerging technologies such as memristors. On one

hand, we addressed the functional errors in analog computing primitives arising from various

device and circuit non-idealities. We developed analytical models and mitigation techniques

to account for such non-idealities. Furthermore, we built a more detailed data-based model,

GENIEx, using a neural network to capture the co-dependence of the input paramaters and

the non-idealities. We showed that GENIEx can model the functional errors in analog com-

puting crossbars more accurately than analytical models. We further developed a functional

simulation framework to evaluate large scale DNNs on such approximate crossbars using

GENIEx. The proposed framework has been used as a tool to evaluate non-idealities in

memristive crossbars in design adversarially robust hardware [268] and hardware-software

co-design using Network Architecture Search [269] among other works.

Next, we designed compute-in-memory primitive and processing core based on 8T-SRAM

arrays and implemented them in TSMC 65nm technology. The proposed primitive can

perform matrix-vector multiplication operations within the memory array. Moreover, it

can leverage sparsity in inputs and weights to adaptively reconfigure the peripheral ADC

overhead based on sparsity and achieve higher energy efficiency. Further, we propose a multi-

macro CIM processing micro-architecture which can not only leverage sparsity to reduce

energy and latency cost, but also address concerns of low SNR analog computing using CIM

209

primitives as well as support re-arrangement of input and weight vectors to mitigate latency

mismatch due to varying sparsity.

Having explored techniques to enable edge computing at the algorithm and circuit level,

we further delved into the next level of stack, the devices. Here, we proposed bio-mimetic

photonic devices based on phase-change materials which mimic the basic fundamental units

of a neural network, such as neurons and synapses. We use Si micro-ring resonators with

a GST element embedded on top of the ring waveguide to implement the neuronal and

synaptic functionalities in the photonic domain. Next, we developed a SNN framework using

the proposed devices to perform image classification tasks. Overall, all the aforementioned

efforts and investigations can pave the way for energy-efficient algorithms and hardware

platforms amenable for enabling intelligence at the edge.

9.2 Future Work

In the current state of the research, we have delved into crucial aspects of enabling low-

power computing and algorithms for edge computing. As a future proposition, we will focus

on addressing another important challenge that currently plagues analog computing. We

have alluded to the high power consumption of ADCs in the analog computing primitives

in Chapter 3 , which drastically reduces its benefits over digital computing. We proposed a

large-scale CIM processing (Chapter 7) core comprised of MVM units with reconfigurable

precision ADCs which can leverage sparsity in the data to achieve high energy-efficiency

while preserving accurate functionality. Such a CIM processing core can also enable flexible

mapping and dataflow for DNN workloads. Although, CIM processors have been explored,

the optimality of mapping, dataflow and corresponding architectural configuration is yet

to be investigated. The proposed processing core can act as a platform for performing a

thorough design-space exploration to search for optimal CIM accelerator configurations.

In this research, we have focused on accurate modeling of functional errors in analog

computing primitives. We have also looked at mitigation techniques for analytical models.

However, there is a further need of looking at corrective measures in the degradation in ac-

curacy observed for large-scale DNNs when evaluated in a functional framework consisting

210

of key architectural facets such as bit slicing and bit streaming. There is a need to develop

hardware mapping techniques, which could be error comepnsation circuits as well as offline

training algorithms to counter computational errors in large-scale DNNs due to device and

circuit non-idealities. In summary, future focus in analog CIM design can answer the afore-

mentioned open-ended questions regarding optimality as well as functionality which would

compliment this research effectively and move us closer to making it feasible for deployment

in edge devices.

211

A. ENERGY EFFICIENCY AND MEMORY CALCULATIONS

FOR DNNS

A.1 Energy Efficiency

The primary model-dependent metrics that affect the energy consumption of classification

task are the energies consumed by the computations (multiply-and-accumulate or MAC

operations) and memory accesses in our calculations for energy efficiency. We exclude energy

consumed due to data flow and instruction flow in the architecture. For a convolutional layer,

there are I input channels and O output channels. Let the size of the input be N ×N , size

of the kernel be k × k and size of the output be M ×M . Thus, in Table A.1 we present

the number of memory-accesses NM−F P and computations NC−F P for standard full-precision

(FP) networks:

The number of binary memory accesses (NM i) and computations (NCi) in a binary layer

is same as the corresponding number in full-precision layer of equivalent dimensions. As

explained in Eq. 1, we consider additional full-precision memory accesses and computations

for parameter α, where α is the scaling factor for each filter bank in a convolutional layer.

Number of accesses for α is equal to the number of output maps, O. Number of full-

precision computations are M2 × O. Table A.1 lists the number of k-bit and full-precision

memory access and computations of any layer. We calculated the energy consumption from

projections for 45 nm CMOS technology [36], [270]. Considering 32-bit representation as

full-precision, the energy consumption for both binary and 32-bit memory accesses and

computations are shown in Table. A.1 .

Then, energy consumed by any layer with k-bit weights and activations is given by

Ei = NA−F EA−32 + NA−kEA−k + NC−F EC−kF + NC−kEC−kI (A.1)

Note, this calculation is a rather conservative estimate which does not take into account

other hardware architectural aspects such as input-sharing or weight-sharing. However, our

approach concerns with modifications of network architecture and we compare the ratios

of energy consumption. These aspects of the hardware architecture affect all the networks

212

Table A.1. Number of operations in a kb-bit layer
Operations in neural networks

Operation Number of Operations
Input Read N2 × I
Weight Read k2 × I ×O
Computations (MAC) M2 × I × k2 ×O
Memory Write M2 ×O

Number of operations of kb-bit layer
Operation Term Number of Operations
k-bit Memory Access NA−k N2 × I+ k2 × I ×O
k-bit Computations (MAC) NC−k M2 × I × k2 ×O
FP Memory Access NA−F O
FP Computations NC−F M2 ×O

Energy Consumption Chart
Operation Term Energy (pJ)
k-b Memory Access EA−k 2.5k
32-b MULT FP EM−F 3.7
32-b MULT INT EM−I 3.1
32-b ADD FP EAD−F 0.9
32-b ADD INT EAD−I 0.1
k-bit MAC INT EC−kI ((3.1*k)/32+0.1)
k-bit MAC FP EC−kF 4.6

equally and hence can be taken out of consideration. Further, FP MAC operations can be

optimized for lower energy consumptions. In our calculations, we have bluntly taken it as the

sum of a 32-b FP Multiply and 32-b FP Add operations. These optimizations are catered

towards FP networks, and reduce the FP energy consumption. This, in turn, will reduce

the energy efficiency of the binary and hybrid networks. In this work, we are focused on

comparing different kinds of binary and hybrid network, and hence, this assumption of FP

MAC energy is not going to affect the analysis.

213

A.2 Memory Compression

The memory required for any network is given by product of the total number of weights

in the network multiplied by the precision of the weights. The number of weights in any

layer is given by:

Nw−i = Ii ×Oi × k2 (A.2)

considering usual notations describer earlier. Thus, the total memory requirements can be

simply written as Mi = ∑
i Nw−i ∗ kb−i where kb−i is the precision of weights in the ith layer.

We can estimate memory compression (M.C) with respect to a full-precision network and

normalize it with respect to an XNOR-Net network which is an entirely binary network

except the first and final layer.

Note that the assumption for the energy and storage calculations for binary layers hold

for custom hardware capable of handling fixed-point binary representations of data, thus

leveraging the benefits offered by quantized networks.

214

B. CROSSBAR NON-IDEALITIES

As discussed earlier, the analog nature of computing in NVM crossbars can lead to approx-

imations in their functionality as MVM units. Such approximations arise from device and

circuit non-idealities originating from metal-lines, peripheral circuits and non-ideal devices.

It is important to delineate the sources of these approximations and their impact on the

functionality. In this section, we provide a detailed analysis and perspective on the implica-

tion of the imperfections in resistive crossbars on MVM computations. In Section 4 , we have

delineated several techniques to overcome the effects of these non-idealities. The mentioned

device-circuit non-idealities can be categorized into 2 types: 1) Read non-idealities, and 2)

Write non-idealities.

B.1 Read non-idealities

Generally, read non-idealities refer to the imperfections in the devices and circuits that

can lead to functional read errors in MVM computations. Further, read non-idealities can

be categorized into two parts:

1. Linear read non-idealities

2. Non-linear read non-idealities

B.1.1 Linear read non-idealities

Linear read non-idealities comprise three kinds of parasitic resistances: i) Wire resistance,

ii) Source resistance, iii) Sink resistance. Figure B.1 shows a typical memristive crossbar with

parasitic resistances.

Wire resistances originate from the interconnects between memristive cells in BLs and

WLs. Typically, the wire resistance can be calculated as: Rwire = ρl
wh

, where ρ, l, w, and h

are the interconnect resistivity, wire length, width, and height, respectively [271]. Therefore,

the wire resistance parasitic effect increases with crossbar size due to the increase in wire

lengths. Further, with technology scaling the wire resistance increases at more advanced

nodes due to the reduced width [271].

215

Source and sink resistances represent the WL analog drivers output resistance and the

input resistance of the current sensing circuitry, respectively. Such parasitic resistances

contribute significantly to current-resistance (IR) drops across the BLs and WLs of the

crossbar, thus degrading the output current from its ideal value.

IN

BL

V0

V1

VN

...

...

G11 G13 G1N

G21 G22 G23 G2N

GN1 GN2 GN3 GNN

I1 I2 I3

Rsource

Rsink

Rwire
...

...

...

G12

SL

WL

Figure B.1. resistive crossbars with parasitic resistances, arising from bit-
line and word-line wire resistances (Rwire), input driver resistance (Rsource),
and sensing resistance (Rsink).

B.1.2 Non-linear read non-idealities

Non-linear read non-idealities originate from the non-linear behavior of both NVM devices

and access transistors. The read operation is affected by the non-linear current (I) vs voltage

(V) characteristics of the NVM devices. Besides NVM devices, the transistor characteristics

can also introduce non-linearity in the computations.

a) Device read non-linearity: Different device technologies can exhibit different

kinds of non-linear behavior due to the fundamental dissimilarities in current conduction.

For example, transport in amorphous PCM devices have been described by Poole-Frenkel

transport [272] of carriers which results in the current being linear at small voltages and

exponential at higher voltages. In crystalline state, PCM devices exhibit Ohmic behavior at

low voltages, and non-Ohmic behavior at high voltages due to Joule heating. The compact

model for such non-linear I-V behavior has been previously studied. [273], [274].

216

Unlike PCMs, RRAM conduction relies on tunnelling mechanism which results in an

exponential dependence of current on voltage. This can be expressed as [176]: I(d, V) =

I0exp(d
d0

)sinh(V
V0

) Here, d is the gap-size between the tip of the filament and electrode, I0,

d0 and V0 are fitting parameters.

Similarly, spin devices show voltage-dependent resistive characteristics. Additionally,

the non-linear I v/s V characteristics in spin devices can be modeled using Non-equilibrium

Green’s Function (NEGF) [275]. Figure B.2 (a) shows the non-linear I-V characteristics of

(i) PCM, (ii) RRAM, and (iii) spintronic technologies for RON = 10kΩ. It can be observed

that all the NVM technologies exhibit I-V characteristics that deviate from the expected

linear resistive behavior. Such non-linear behavior can result in functional errors when

MVM units are constructed using these devices as MVM operations demand linearity of the

output (current) with the input variables (V and G). Indeed, non-linearities during the read

process in resistive crossbars can pose a challenge toward accurate MVM functionality.

b) Access device non-linearity:

The non-linearity of access devices can play a role in introducing functional inaccuracies

in MVM units. Various access devices have been adopted in crossbar-based MVM units

as mentioned in Section II.B.1. Such access devices (two-terminal selectors or transistors)

impose different nonlinear characteristics on the analog computing operations in crossbars.

Two-terminal selectors: Two-terminal selectors can switch the current passing into

the memory device by exponential switching or threshold switching as mentioned in Section

??. Interestingly, 1ES-1R based crossbars show more nonlinearity effects over different tech-

nologies than 1TS-1R based crossbars. According to [95], 1S-1R cell I − V characteristics

strongly depend on the selector type (ES or TS) after the RRAM state has been changed,

which is clearly shown in the linear scale I–V curves in Figure B.2 (b). ES inherently shows

a slow slope of several hundred mV/decades due to the exponential switching nature. There-

fore, a certain amount of the cell voltage is continuously applied to ES even after it is turned

on during the 1ES-1R operation, resulting in the nonlinear I–V curves, as shown in Figure

B.2 (b) (i). On the other hand, the applied voltage to 1TS-1R cell beyond TS threshold

voltage is fully transferred to the RRAM due to the fast slope that is at most 5 mV/decade

217

ii) Threshold Type Selector

iii) Spintronics

a)

i) PCM ii) RRAM

a) NVM Non-linearity

b) Access Device Non-linearity

i) Exponential Type Selector

Figure B.2. a) I-V characteristics for a typical i) PCM, ii) RRAM and iii)
Spintronic device for RON = 10kΩ exhibiting non-linear behavior, resulting in
significant deviation from expected linear characteristic. b) i) I–V trace of the
1ES-1R follows the exponential curve of the ES, ii) the semi-linear I–V curve
of the 1TS-1R caused by the RRAM [95].

[95]. As a result, the linear I–V trace of the 1TS-1R device governed by the RRAM is shown

in Figure B.2 (b) (i).

Transistors as access devices: generally, 1T-1R cells behave more linearly than 1S-

1R. The reason for that is transistors in 1T-1R cells operate in linear region during the MVM

operation. Moreover, there is no threshold for the applied voltage to reach before switching

since it is a three-terminal switch. To that end, 1T-1R exhibits less significant nonlinearity

than two-terminal selector based cells with the cost of large cell area.

B.2 Write non-idealities

The conductance tuning operation in NVM devices is desired to be linear and symmetric,

especially for on-line weight update algorithms. However, a typical curve between the con-

218

Increasing

∆G1

∆G2

a)

b)

Figure B.3. a) Conductance (G) evolution curve with respect to number of
programming pulses [276]. (b) Non-linear conductance curve model vs number
of programming pulses for varying degree of non-linearity, showing asymmetry
between increasing and decreasing conductance trajectories.

ductance and the number of programming pulses can significantly deviate from the desired

219

linear and symmetric behavior, as shown in Figure B.3 (a). This behavior has been quanti-

tatively modeled by researchers for RRAMs [171], [276] through the following equations:

G+ = B(1− e− P
α) + Gmin (B.1)

G− = −B(1− e
P −Pmax

α) + Gmax (B.2)

B = (Gmax −Gmin)/(1− e− Pmax
α) (B.3)

Here P is the number of applied pulses, G+(G−) is the conductance trajectory in the in-

creasing (decreasing) direction, Gmin(Gmax) is the minimum (maximum) conductance, and

Pmax is the maximum pulse number required to entirely switch the device between 2 extreme

states. The parameter α controls the non-linearity behavior, where as B is a fitting function.

Typically, α can range from +6 to -6, where α = 0 denotes linear behavior. Figure B.3 (b)

shows the non-linear conductance trajectory for varying range of α. In this figure, we also

observe that due to the asymmetric trajectory of increasing and decreasing conductance,

same difference in number of applied pulses can lead to drastically different conductance

update.

The non-linearity and asymmetry in NVM devices adversely affect the on-line learning

schemes due to the continuous and gradual weight update in such schemes. For off-line

trained neural networks, the conductances of the NVM devices in the crossbar are pre-

determined, and hence can be reliably written using the popular read-verify-write mechanism

[277].

B.3 Impact of non-idealities on the output current

The impact of the aforementioned non-idealities arising from device characteristics and

circuit parasitics introduces functional errors in MVM computations (read non-idealities) as

well as weight updates (write non-idealities) during on-line training.

220

Table B.1. Crossbar Simulation Parameters
Category Parameter Value Ranges References
Design Parameters Crossbar Size 16, 32, 64

Design Choices
Circuit Non-idealities

Rsource 1000Ω
Rsink 150Ω
Rwire 2.5Ω

Device Parameters

I0 0.1 mA
[179], [180]g0 0.25 nm

V0 0.25 V
Number of bits 1, 2, 4

[59], [61], [65], [74]
ON Resistance 50k, 100k, 300k
ON/OFF Ratio 2, 6, 10

B.3.1 Read non-idealities

We study the impact of the read non-idealities on the output current of the crossbar. We

consider RRAM device characteristics for simplicity. To study the cumulative impact of each

non-ideality, we consider a 64x64 1T-1R crossbar and perform SPICE simulations for various

input V and G matrix combinations. The parameters for SPICE simulations are presented

in Table B.1 . Figure B.4 shows that different voltage (V) and conductance (G) conditions

which lead to similar ideal current (Iideal) can result in a varying range of non-ideal current

(Inon−ideal) outputs, causing errors in computations. The difference can be quantified using

a non-ideality factor (NF) which is the relative error between the Iideal and Inon−ideal. NF is

calculated as:
Iideal − Inon−ideal

Iideal

(B.4)

Figure B.4 (a) and (b) shows the Iideal v/s Inon−ideal characteristics for the crossbar under

the influence of first, only linear non-idealities (blue), and second, both linear and non-linear

non-idealities (red), for different supply voltages (Vsupply). We observe that the effects of

221

a)

b)

Vsupply=0.5V

Vsupply=0.25V

Linear non-idealities Linear+Non-linear non-idealities

Figure B.4. Ideal (Iideal) v/s Non-ideal (Inon−ideal) current plots for a) Vsupply

= 0.25V and b) 0.5V showing that the case with both linear and non-linear
non-idealities have higher errors than solely linear non-idealities, particularly
for higher supply voltages. Inset shows the relative error (R.E) for Vsupply =
0.25V/0.5V in Inon−ideal between the two cases (blue and red).

non-linearity become more prominent at higher Vsupply, resulting in a higher difference in NF

between the red and blue plots.

We study the impact of individual contributions of different non-idealities mentioned in

Section B -A. The simulations based on the parameters listed in Table. B.1 show that source

resistance has the highest mean NF among linear non-idealities in Figure B.5 . This is due

to the high source resistance. The non-linear device and transistor non-idealities have a

negative NF, i.e, it causes Inon−ideal to be higher than Iideal unlike the linear non-idealities.

This effect is pronounced for higher supply voltages (0.5V). The standard deviation of NF

is also primarily contributed by device non-linearity which gets significantly magnified for

222

a)

b)

Vsupply = 0.25V

Vsupply = 0.5V

Figure B.5. Mean and standard deviation of non-ideality factor (NF) high-
lighting the individual contributions of the different sources of read non-
idealities mentioned in Section B -A. The configurations ‘Source’, ‘Sink’, ‘Wire’
and ‘Device/Tx’ refer to cases where only the impact of source, sink, wire resis-
tance and device/transistor non-linearities were considered respectively. The
configuration ‘All’ refer to the case when all non-idealities are considered.

223

higher supply voltages. Thus, the device and transistor non-linearities act in the opposite

direction to the linear non-idealities. This necessitates accurate modeling of these non-linear

non-idealities.

Read non-idealities have a significant impact on crossbar design parameters both from

the device and circuit point of view. These design parameters are namely, a) Crossbar size,

b) ON resistance, c) ON/OFF ratio and d) Bits per device.

a. Crossbar size: The size of the crossbar has considerable effect on the impact of

parasitics on MVM functionality. The reason is two-fold; first, larger crossbars consist of

longer metal lines, thereby, increasing the impact of wire resistance. Second, higher crossbar

size also amounts to lowering the effective resistance, as seen, from the input WL drivers.

A lower effective resistance results in increasing impact of parasitic resistances on the MVM

functionality. Figure B.6 (a) shows the trend of non-ideality factor for varying crossbar sizes

from 16× 16 to 64× 64. It can be observed that mean non-ideality factor, NF, increases by

∼ 5× as crossbar size increases from 16×16 to 64×64. Although, using lower crossbar sizes

would reduce functional errors in large-scale DNNs, it would also lead to more crossbars for

representing a particular network. This results in an energy/latency-accuracy tradeoff from

a system design point of view.

b. ON resistance: The ON resistance is referred to as the resistance of the Low

Resistance State (LRS) in the NVM device. For a given crossbar size and resistance ON/OFF

ratio, the effective resistance of the crossbar seen from each input is also determined by the

ON resistance. A lower ON resistance reduces the effective resistance, which results in an

increased detrimental effect of parasitic resistances. Figure B.6 (b) shows that mean non-

ideality factor, NF , is ∼ 5× higher for RON = 50kΩ than for RON = 300kΩ. It is intuitive to

use higher ON resistance to reduce the impact of parasitics on the MVM functionality. From

an energy point of view, using higher ON resistance can also reduce the array energy due to

lower passive power (P = V/R) dissipation. One disadvantage of using higher ON resistance,

however, is need for higher sense margin that can lead to higher peripheral overhead.

c: ON/OFF ratio: For a fixed ON resistance and Crossbar Size, the ON/OFF ratio of

the NVM device resistance also affects the impact of non-idealities on the output current of

the crossbar. This is because, for a given ON resistance, a lower ON/OFF ratio reduces the

224

a)

b)

c)

d)

Figure B.6. Impact of read non-idealities on resistive crossbar output, ex-
pressed as NF (Equation (11)), on crossbar design parameters such as a)
Crossbar Size, b) Conductance ON/OFF ratio, c) ON resistance and d) Bits
per device.

average resistance in each column of the crossbar. Thus, a lower ON/OFF ratio results in a

higher impact of parasitics. Figure B.6 (c) shows that mean non-ideality factor, NF , is ∼

1.75× higher for ON/OFF Ratio = 2 than for ON/OFF Ratio = 10. However, a ON/OFF

Ratio = 10 has a higher deviation in NF , implying a strong dependence of NF on the varying

resistance range in the crossbar. Despite that variation, a higher ON/OFF resistance ratio

is desirable in NVM devices for proper MVM functionality in resistive crossbars.

d: Bits per device: Finally, the bits per device can have some effect on NF as shown

in Figure B.6 (d). It can be observed that although there is not a significant difference

between the NF distribution when the number of bits per device is 2 or 4, but storing 1 bit

per device certainly results in a lower mean NF but with higher deviation. This is because

storing 1 bit per device, skews the resistance distribution in the crossbar toward either RON

225

Figure B.7. Impact of device write non-linearity and asymmetry on con-
ductance on mean error in final conductance, Gf inal, calculated by the mean
relative error between the desired (linear) final conductance value after 20
updates and the achieved final conductance. Here, symmetric (asymmetric)
update means that the conductance trajectories, shown in Fig. B.3 (b), are
identical (different) for negative and positive weight updates.

or ROF F , thus increasing the effective ON/OFF ratio of the crossbar. Thus, this impact

can be correlated to higher ON/OFF ratio when a similar trend is observed. Packing lower

number of bits per device might reduce the average NF but it harms the storage density of

the crossbars, which will their reduce area efficiency.

The variation in NF with various design parameters provides us with insights on how

to design crossbars with lower NF . Lower crossbar sizes with high ON resistances, high

ON/OFF ratio and low bits per devices might seem preferable, but as we have described

before, each of these design choices have their own negative implications. Thus, careful

design space exploration needs to be performed to achieve optimal energy-latency-accuracy

trade-off.

226

B.3.2 Write Non-idealities

The impact of write non-idealities becomes prominent during on-line training on cross-

bars. To quantify the impact of the write non-idealities, we study the deviation of the

conductance matrix under the influence of write non-linearity and asymmetry explained

above from the desired values. Increasing degrees of non-linearity, α, in Equation (8), can

affect the iterative conductance update quite severely. Figure B.7 depicts the impact of

device write non-linearity and asymmetry on the final conductance achieved after 20 weight

update iterations. The mean error in conductance, G, is calculated as the mean relative

error between the desired (linear) final conductance value after 20 updates and the achieved

final conductance. The symmetric updates exhibits lower error than the asymmetric up-

dates, although, for high non-linearity, both can have a significant deviation from ideal. In

Section ??-C, we will delineate the impact of device write non-linearity and asymmetry on

application accuracy for systems with on-line learning.

B.3.3 Process Variations

Thus far, we have discussed non-ideal device and circuit behavior leading to errors in

MVM computations and weight update operations. In addition, a major challenge in realizing

large-scale resistive crossbars is process variations, which can add undesirable randomness

to the device behavior. Broadly, process variations in resistive crossbars can be categorized

into:

1. Device to Device Write Variations

2. Cycle to Cycle Write Variations

3. Device to Device Read Variations

B.3.4 Device to Device Write Variations

During the write process, NVM devices can exhibit considerable variation from one device

to another in the same crossbar. This can be modelled by adding a variation term in

227

the non-linearity programming equation (Equation (5-7)). The degree of non-linearity in

programming can vary device to device with a typical 3σ = ±1.5. Figure B.8 (a) illustrates

how device to device variations manifest in the form of programming characteristics.

Device to

Device

Variations

(3)

Nominal

Cycle to

Cycle

Variations

(10%)

Nominal

a) b)

Figure B.8. Impact of a) Device to device variations and b) cycle to cycle
variations on Normalized Conductance v/s Number of pulses characteristics.

B.3.5 Cycle to Cycle Write Variations

Cycle to cycle write variations can be described as the variations in conductance charac-

teristics at every programming pulse. It can be modeled by considering a distribution in the

non-linearity factor for different programming pulses. Figure B.8 (b) illustrates how device

to device variations manifest in the form of programming characteristics.

The write variations primarily affect the on-line learning schemes on the NVM devices.

We will study the impact of such variations on application accuracy in Section ??.

228

Device to

Device

Variations

(3 =0.02nm)

Nominal

Device to

Device

Variations

(3 =0.02V)

Nominal

Variations in d0 Variations in V0

a) b)

Figure B.9. Device to device variations manifesting in the read operation of
the NVM device. Variations in the fitting parameters d0 and V0 in Equation
(7) results in a variation in I-V characteristics.

B.3.6 Device to Device Read Variations

The device to device variations can also reflect in the IV characteristics of the device

which can affect the MVM functionality of resistive crossbars. To analyze such an effect, the

variations can be included in the fitting parameters of the compact model of such devices. For

example, in RRAM devices, Equation (4) can be modified to include the effect of variations

through the parameters d0 and V0. Figure B.9 illustrates how device to device variations

manifest in the form of IV characteristics.

229

REFERENCES

[1] A. M. Turing, “Computing machinery and intelligence,” in Parsing the Turing Test,
Springer, 2009, pp. 23–65.

[2] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” The Journal of physiology, vol. 160, no. 1,
pp. 106–154, 1962.

[3] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,”
in 2017 ACM/IEEE 44th Annual ISCA, IEEE, 2017, pp. 1–12.

[4] Krizhevsky et al., “Imagenet classification with deep convolutional neural networks,”
in Advances in neural information processing systems, 2012, pp. 1097–1105.

[5] Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2015, pp. 1–9.

[6] He et al., “Deep residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–778.

[7] Girshick et al., “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440–1448.

[8] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network
models for practical applications,” arXiv preprint arXiv:1605.07678, 2016.

[9] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,”
in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), IEEE, 2017, pp. 1–12.

[10] E. Chung et al., “Serving dnns in real time at datacenter scale with project brain-
wave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[11] A. Biswas and A. P. Chandrakasan, “Conv-ram: An energy-efficient sram with em-
bedded convolution computation for low-power cnn-based machine learning applica-
tions,” in 2018 IEEE International Solid-State Circuits Conference-(ISSCC), IEEE,
2018, pp. 488–490.

[12] H. Valavi et al., “A 64-tile 2.4-mb in-memory-computing cnn accelerator employing
charge-domain compute,” IEEE JSSC, 2019. doi: 10.1109/JSSC.2019.2899730 .

230

https://doi.org/10.1109/JSSC.2019.2899730

[13] Q. Dong et al., “A 351tops/w and 372.4gops compute-in-memory sram macro in
7nm finfet cmos for machine-learning applications,” in ISSCC, 2020. doi: 10.1109/
ISSCC19947.2020.9062985 .

[14] X. Si, J.-J. Chen, Y.-N. Tu, W.-H. Huang, J.-H. Wang, Y.-C. Chiu, W.-C. Wei, S.-Y.
Wu, X. Sun, R. Liu, et al., “24.5 a twin-8t sram computation-in-memory macro for
multiple-bit cnn-based machine learning,” in 2019 IEEE International Solid-State
Circuits Conference-(ISSCC), IEEE, 2019, pp. 396–398.

[15] A. Ankit et al., “Puma: A programmable ultra-efficient memristor-based accelerator
for machine learning inference,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ACM, 2019, pp. 715–731.

[16] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 14–26, 2016.

[17] I. Chakraborty, D. Roy, I. Garg, A. Ankit, and K. Roy, “Constructing energy-efficient
mixed-precision neural networks through principal component analysis for edge intel-
ligence,” Nature Machine Intelligence, vol. 2, no. 1, pp. 43–55, 2020.

[18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks: Training deep neural networks with weights and activations constrained to+
1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[19] I. Chakraborty, M. Ali, A. Ankit, S. Jain, S. Roy, S. Sridharan, A. Agrawal, A.
Raghunathan, and K. Roy, “Resistive crossbars as approximate hardware building
blocks for machine learning: Opportunities and challenges,” Proceedings of the IEEE,
vol. 108, no. 12, pp. 2276–2310, 2020.

[20] A. Ankit, I. Chakraborty, A. Agrawal, M. Ali, and K. Roy, “Circuits and architectures
for in-memory computing-based machine learning accelerators,” IEEE Micro, vol. 40,
no. 6, pp. 8–22, 2020.

[21] I. Chakraborty, A. Jaiswal, A. Saha, S. Gupta, and K. Roy, “Pathways to efficient
neuromorphic computing with non-volatile memory technologies,” Applied Physics
Reviews, vol. 7, no. 2, p. 021 308, 2020.

[22] I. Chakraborty et al., “Technology aware training in memristive neuromorphic sys-
tems for nonideal synaptic crossbars,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 2, no. 5, pp. 335–344, 2018.

231

https://doi.org/10.1109/ISSCC19947.2020.9062985
https://doi.org/10.1109/ISSCC19947.2020.9062985

[23] I. Chakraborty, M. F. Ali, D. E. Kim, A. Ankit, and K. Roy, “Geniex: A generalized
approach to emulating non-ideality in memristive xbars using neural networks,” in
2020 57th ACM/IEEE Design Automation Conference (DAC), IEEE, 2020, pp. 1–6.

[24] A. Jaiswal et al., “8t sram cell as a multibit dot-product engine for beyond von
neumann computing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2019.

[25] M. Ali, I. Chakraborty, U. Saxena, A. Agrawal, A. Ankit, and K. Roy, “A 35.5-
127.2 tops/w dynamic sparsity-aware reconfigurable-precision compute-in-memory
sram macro for machine learning,” IEEE Solid-State Circuits Letters, 2021.

[26] I. Chakraborty, G. Saha, A. Sengupta, and K. Roy, “Toward fast neural computing
using all-photonic phase change spiking neurons,” Scientific reports, vol. 8, no. 1,
pp. 1–9, 2018.

[27] I. Chakraborty, G. Saha, and K. Roy, “Photonic in-memory computing primitive
for spiking neural networks using phase-change materials,” Physical Review Applied,
vol. 11, no. 1, p. 014 063, 2019.

[28] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (IoT): A
vision, architectural elements, and future directions,” Future Generation Computer
Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013. doi: 10.1016/j.future.2013.01.010 .
[Online]. Available: https://doi.org/10.1016%5C%2Fj.future.2013.01.010 .

[29] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “DeepSense,” in Proceedings
of the 26th International Conference on World Wide Web - WWW‘17, ACM Press,
2017. doi: 10.1145/3038912.3052577 . [Online]. Available: https://doi.org/10.1145%
5C%2F3038912.3052577 .

[30] L. M. Kaufman, “Data security in the world of cloud computing,” IEEE Security &
Privacy, vol. 7, no. 4, pp. 61–64, 2009.

[31] N. Gonzalez, C. Miers, F. Redigolo, M. Simplicio, T. Carvalho, M. Näslund, and
M. Pourzandi, “A quantitative analysis of current security concerns and solutions for
cloud computing,” Journal of Cloud Computing: Advances, Systems and Applications,
vol. 1, no. 1, p. 11, 2012.

[32] D. Li, T. Salonidis, N. V. Desai, and M. C. Chuah, “Deepcham: Collaborative edge-
mediated adaptive deep learning for mobile object recognition,” in 2016 IEEE/ACM
Symposium on Edge Computing (SEC), IEEE, 2016, pp. 64–76.

[33] Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<
0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

232

https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016%5C%2Fj.future.2013.01.010
https://doi.org/10.1145/3038912.3052577
https://doi.org/10.1145%5C%2F3038912.3052577
https://doi.org/10.1145%5C%2F3038912.3052577

[34] Alvarez and Salzmann, “Compression-aware training of deep networks,” in Advances
in Neural Information Processing Systems, 2017, pp. 856–867.

[35] Weigend et al., “Generalization by weight-elimination with application to forecast-
ing,” in Advances in neural information processing systems, 1991, pp. 875–882.

[36] Han et al., “Learning both weights and connections for efficient neural network,” in
Advances in neural information processing systems, 2015, pp. 1135–1143.

[37] Ullrich et al., “Soft weight-sharing for neural network compression,” arXiv preprint
arXiv:1702.04008, 2017.

[38] Hubara et al., “Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 6869–6898, 2017.

[39] Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural
networks,” in European Conference on Computer Vision, Springer, 2016, pp. 525–542.

[40] I. Garg, P. Panda, and K. Roy, “A low effort approach to structured cnn design using
pca,” arXiv preprint arXiv:1812.06224, 2018.

[41] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “Wrpn: Wide reduced-precision
networks,” arXiv preprint arXiv:1709.01134, 2017.

[42] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng, “Bi-real net: Enhancing
the performance of 1-bit cnns with improved representational capability and advanced
training algorithm,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 722–737.

[43] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint
arXiv:1606.06160, 2016.

[44] S.-C. Zhou, Y.-Z. Wang, H. Wen, Q.-Y. He, and Y.-H. Zou, “Balanced quantiza-
tion: An effective and efficient approach to quantized neural networks,” Journal of
Computer Science and Technology, vol. 32, no. 4, pp. 667–682, 2017.

[45] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization for highly ac-
curate and compact deep neural networks,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 365–382.

233

[46] S. Jung, C. Son, S. Lee, J. Son, Y. Kwak, J.-J. Han, and C. Choi, “Joint training of
low-precision neural network with quantization interval parameters,” arXiv preprint
arXiv:1808.05779, 2018.

[47] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K. Gopalakr-
ishnan, “Pact: Parameterized clipping activation for quantized neural networks,”
arXiv preprint arXiv:1805.06085, 2018.

[48] B. Graham, “Low-precision batch-normalized activations,” arXiv preprint arXiv:1702.08231,
2017.

[49] Prabhu et al., “Hybrid binary networks: Optimizing for accuracy, efficiency and mem-
ory,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV),
IEEE, 2018, pp. 821–829.

[50] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer, “Mixed precision
quantization of convnets via differentiable neural architecture search,” arXiv preprint
arXiv:1812.00090, 2018.

[51] C. Sakr and N. Shanbhag, “Per-tensor fixed-point quantization of the back-propagation
algorithm,” arXiv preprint arXiv:1812.11732, 2018.

[52] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W,
2017.

[53] Krizhevsky and Hinton, “Learning multiple layers of features from tiny images,” Cite-
seer, Tech. Rep., 2009.

[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision and
pattern recognition, Ieee, 2009, pp. 248–255.

[55] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human
knowledge,” nature, vol. 550, no. 7676, pp. 354–359, 2017.

[56] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent neural net-
work for sentiment classification,” in Proceedings of the 2015 conference on empirical
methods in natural language processing, 2015, pp. 1422–1432.

[57] X. Xu et al., “Scaling for edge inference of deep neural networks,” Nature Electronics,
vol. 1, no. 4, pp. 216–222, 2018.

234

[58] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,”
ACM SIGARCH computer architecture news, vol. 23, no. 1, pp. 20–24, 1995.

[59] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network training using
analogue memory,” Nature, vol. 558, no. 7708, p. 60, 2018.

[60] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang,
R. S. Williams, J. J. Yang, et al., “Memristor-based analog computation and neural
network classification with a dot product engine,” Advanced Materials, vol. 30, no. 9,
p. 1 705 914, 2018.

[61] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, and
W. D. Lu, “A fully integrated reprogrammable memristor–cmos system for efficient
multiply–accumulate operations,” Nature Electronics, vol. 2, no. 7, pp. 290–299, 2019.

[62] A. Sengupta and K. Roy, “A vision for all-spin neural networks: A device to system
perspective,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63,
no. 12, pp. 2267–2277, 2016.

[63] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive switching de-
vices,” Nature Electronics, vol. 1, no. 6, pp. 333–343, 2018.

[64] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics based on
memristive systems,” Nature Electronics, vol. 1, no. 1, p. 22, 2018.

[65] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,” Proceedings
of the IEEE, vol. 106, no. 2, pp. 260–285, 2018.

[66] S. Jain, A. Ankit, I. Chakraborty, T. Gokmen, M. Rasch, W. Haensch, K. Roy, and
A. Raghunathan, “Neural network accelerator design with resistive crossbars: Oppor-
tunities and challenges,” IBM Journal of Research and Development, vol. 63, no. 6,
pp. 10–1, 2019.

[67] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, “Binary convolutional neural network
on rram,” in 2017 22nd Asia and South Pacific Design Automation Conference (ASP-
DAC), IEEE, 2017, pp. 782–787.

[68] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and A. Raghunathan,
“Spindle: Spintronic deep learning engine for large-scale neuromorphic computing,”
in Proceedings of the 2014 international symposium on Low power electronics and
design, ACM, 2014, pp. 15–20.

235

[69] S. Jain and A. Raghunathan, “Cxdnn: Hardware-software compensation methods for
deep neural networks on resistive crossbar systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 6, p. 113, 2019.

[70] Leibin Ni, Yuhao Wang, H. Yu, Wei Yang, Chuliang Weng, and Junfeng Zhao, “An
energy-efficient matrix multiplication accelerator by distributed in-memory comput-
ing on binary rram crossbar,” in 2016 21st Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), Jan. 2016, pp. 280–285. doi: 10.1109/ASPDAC.2016.
7428024 .

[71] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M.
Asheghi, and K. E. Goodson, “Phase change memory,” Proceedings of the IEEE,
vol. 98, no. 12, pp. 2201–2227, 2010.

[72] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T.
Chen, and M.-J. Tsai, “Metal–oxide rram,” Proceedings of the IEEE, vol. 100, no. 6,
pp. 1951–1970, 2012.

[73] X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta, A. Raghunathan, and K. Roy,
“Spin-transfer torque devices for logic and memory: Prospects and perspectives,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, no. 1, pp. 1–22, 2015.

[74] A. Sengupta and K. Roy, “Encoding neural and synaptic functionalities in electron
spin: A pathway to efficient neuromorphic computing,” Applied Physics Reviews,
vol. 4, no. 4, p. 041 105, 2017.

[75] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transi-
tions of gete-sb2te3 pseudobinary amorphous thin films for an optical disk memory,”
Journal of Applied Physics, vol. 69, no. 5, pp. 2849–2856, 1991.

[76] H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe,
“Ultra-high-density phase-change storage and memory,” Nature materials, vol. 5,
no. 5, p. 383, 2006.

[77] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main
memory using phase change memory technology,” in ACM SIGARCH computer ar-
chitecture news, ACM, vol. 37, 2009, pp. 14–23.

[78] Y. Watanabe, J. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A. Beck, and S. Wind,
“Current-driven insulator–conductor transition and nonvolatile memory in chromium-
doped srtio 3 single crystals,” Applied Physics Letters, vol. 78, no. 23, pp. 3738–3740,
2001.

236

https://doi.org/10.1109/ASPDAC.2016.7428024
https://doi.org/10.1109/ASPDAC.2016.7428024

[79] L. Goux, P. Czarnecki, Y. Y. Chen, L. Pantisano, X. Wang, R. Degraeve, B. Gov-
oreanu, M. Jurczak, D. Wouters, and L. Altimime, “Evidences of oxygen-mediated
resistive-switching mechanism in tin\hfo 2\pt cells,” Applied Physics Letters, vol. 97,
no. 24, p. 243 509, 2010.

[80] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J.-S. Zhao, and C. S. Hwang, “Identifica-
tion of a determining parameter for resistive switching of ti o 2 thin films,” Applied
Physics Letters, vol. 86, no. 26, p. 262 907, 2005.

[81] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii,
K. Katayama, M. Iijima, et al., “Highly reliable taox reram and direct evidence of
redox reaction mechanism,” in 2008 IEEE International Electron Devices Meeting,
IEEE, 2008, pp. 1–4.

[82] D. Jana, S. Roy, R. Panja, M. Dutta, S. Z. Rahaman, R. Mahapatra, and S. Maikap,
“Conductive-bridging random access memory: Challenges and opportunity for 3d ar-
chitecture,” Nanoscale research letters, vol. 10, no. 1, p. 188, 2015.

[83] S.-Y. Wang, C.-W. Huang, D.-Y. Lee, T.-Y. Tseng, and T.-C. Chang, “Multilevel
resistive switching in ti/cu x o/pt memory devices,” Journal of Applied Physics,
vol. 108, no. 11, p. 114 110, 2010.

[84] S. Park, S. Jung, M. Siddik, M. Jo, J. Park, S. Kim, W. Lee, J. Shin, D. Lee, G.
Choi, et al., “Self-formed schottky barrier induced selector-less rram for cross-point
memory applications,” physica status solidi (RRL)–Rapid Research Letters, vol. 6,
no. 11, pp. 454–456, 2012.

[85] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale
memristor device as synapse in neuromorphic systems,” Nano letters, vol. 10, no. 4,
pp. 1297–1301, 2010.

[86] K. Wang, J. Alzate, and P. K. Amiri, “Low-power non-volatile spintronic memory:
Stt-ram and beyond,” Journal of Physics D: Applied Physics, vol. 46, no. 7, p. 074 003,
2013.

[87] P. Khalili Amiri, Z. Zeng, J. Langer, H. Zhao, G. Rowlands, Y.-J. Chen, I. Kriv-
orotov, J.-P. Wang, H. Jiang, J. Katine, et al., “Switching current reduction using
perpendicular anisotropy in cofeb–mgo magnetic tunnel junctions,” Applied Physics
Letters, vol. 98, no. 11, p. 112 507, 2011.

[88] J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” Journal of
Magnetism and Magnetic Materials, vol. 159, no. 1-2, pp. L1–L7, 1996.

237

[89] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. Lee, R. Sasaki, Y.
Goto, K. Ito, T. Meguro, et al., “2mb spin-transfer torque ram (spram) with bit-by-
bit bidirectional current write and parallelizing-direction current read,” in 2007 IEEE
International Solid-State Circuits Conference. Digest of Technical Papers, IEEE, 2007,
pp. 480–617.

[90] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. Lee, K. Miura, H. Hasegawa, M. Tsunoda,
F. Matsukura, and H. Ohno, “Tunnel magnetoresistance of 604% at 300 k by sup-
pression of ta diffusion in co fe b/ mg o/ co fe b pseudo-spin-valves annealed at high
temperature,” Applied Physics Letters, vol. 93, no. 8, p. 082 508, 2008.

[91] J. Mathon and A. Umerski, “Theory of tunneling magnetoresistance of an epitaxial
fe/mgo/fe (001) junction,” Physical Review B, vol. 63, no. 22, p. 220 403, 2001.

[92] A. Hirohata, H. Sukegawa, H. Yanagihara, I. Žutić, T. Seki, S. Mizukami, and R.
Swaminathan, “Roadmap for emerging materials for spintronic device applications,”
IEEE Transactions on Magnetics, vol. 51, no. 10, pp. 1–11, 2015.

[93] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints in memristor
crossbar arrays,” in 2013 IEEE International Symposium on Information Theory,
IEEE, 2013, pp. 156–160.

[94] L. Liu, C.-F. Pai, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, “Spin-torque switching
with the giant spin hall effect of tantalum,” Science, vol. 336, no. 6081, pp. 555–558,
2012.

[95] J. Woo and S. Yu, “Impact of selector devices in analog rram-based crossbar arrays for
inference and training of neuromorphic system,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 9, pp. 2205–2212, Sep. 2019, issn:
1557-9999. doi: 10.1109/TVLSI.2019.2917764 .

[96] K. Gopalakrishnan, R. S. Shenoy, C. T. Rettner, K. Virwani, D. S. Bethune, R. M.
Shelby, G. W. Burr, A. Kellock, R. S. King, K. Nguyen, A. N. Bowers, M. Jurich, B.
Jackson, A. M. Friz, T. Topuria, P. M. Rice, and B. N. Kurdi, “Highly-scalable novel
access device based on mixed ionic electronic conduction (miec) materials for high
density phase change memory (pcm) arrays,” in 2010 Symposium on VLSI Technology,
Jun. 2010, pp. 205–206. doi: 10.1109/VLSIT.2010.5556229 .

[97] J. Woo, D. Lee, E. Cha, S. Lee, S. Park, and H. Hwang, “Vertically stacked reram
composed of a bidirectional selector and cb-ram for cross-point array applications,”
IEEE Electron Device Letters, vol. 34, no. 12, pp. 1512–1514, Dec. 2013, issn: 1558-
0563. doi: 10.1109/LED.2013.2285583 .

238

https://doi.org/10.1109/TVLSI.2019.2917764
https://doi.org/10.1109/VLSIT.2010.5556229
https://doi.org/10.1109/LED.2013.2285583

[98] Wan Gee Kim, Hyun Min Lee, Beom Yong Kim, Kyoo Ho Jung, Tae Geun Seong,
Seonghyun Kim, Ha Chang Jung, Hyo June Kim, Jong Hee Yoo, Hyung Dong Lee,
Soo Gil Kim, Suock Chung, Kee Jeung Lee, Jung Hoon Lee, Hyeong Soo Kim, Seok
Hee Lee, Jianhua Yang, Yoocharn Jeon, and R. S. Williams, “Nbo2-based low power
and cost effective 1s1r switching for high density cross point reram application,” in
2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers,
Jun. 2014, pp. 1–2. doi: 10.1109/VLSIT.2014.6894405 .

[99] R. Midya, Z. Wang, J. Zhang, S. E. Savel’ev, C. Li, M. Rao, M. H. Jang, S. Joshi, H.
Jiang, P. Lin, K. Norris, N. Ge, Q. Wu, M. Barnell, Z. Li, H. L. Xin, R. S. Williams, Q.
Xia, and J. J. Yang, “Anatomy of ag/hafnia-based selectors with 1010 nonlinearity,”
Advanced Materials, vol. 29, no. 12, p. 1 604 457, 2017. doi: 10.1002/adma.201604457 .
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201604457 . [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201604457 .

[100] Sung Hyun Jo, T. Kumar, S. Narayanan, W. D. Lu, and H. Nazarian, “3d-stackable
crossbar resistive memory based on field assisted superlinear threshold (fast) selector,”
in 2014 IEEE International Electron Devices Meeting, Dec. 2014, pp. 6.7.1–6.7.4. doi:
10.1109/IEDM.2014.7046999 .

[101] S. Yasuda, K. Ohba, T. Mizuguchi, H. Sei, M. Shimuta, K. Aratani, T. Shiimoto, T.
Yamamoto, T. Sone, S. Nonoguchi, J. Okuno, A. Kouchiyama, W. Otsuka, and K.
Tsutsui, “A cross point cu-reram with a novel ots selector for storage class memory
applications,” in 2017 Symposium on VLSI Technology, Jun. 2017, T30–T31. doi:
10.23919/VLSIT.2017.7998189 .

[102] B. Razavi, “The r-2r and c-2c ladders [a circuit for all seasons],” IEEE Solid-State
Circuits Magazine, vol. 11, no. 3, pp. 10–15, 2019, issn: 1943-0590. doi: 10.1109/
MSSC.2019.2922886 .

[103] C. Xue, W. Chen, J. Liu, J. Li, W. Lin, W. Lin, J. Wang, W. Wei, T. Huang, T. Chang,
T. Chang, H. Kao, Y. Chiu, C. Lee, Y. King, C. Lin, R. Liu, C. Hsieh, K. Tang, and
M. Chang, “Embedded 1-mb reram-based computing-in-memory macro with multibit
input and weight for cnn-based ai edge processors,” IEEE Journal of Solid-State
Circuits, pp. 1–13, 2019, issn: 1558-173X. doi: 10.1109/JSSC.2019.2951363 .

[104] M. Hu et al., “Dot-product engine for neuromorphic computing: Programming 1t1m
crossbar to accelerate matrix-vector multiplication,” in Design Automation Confer-
ence (DAC), 2016 53nd ACM/EDAC/IEEE, IEEE, 2016, pp. 1–6.

[105] B. Razavi, “The current-steering dac [a circuit for all seasons],” IEEE Solid-State
Circuits Magazine, vol. 10, no. 1, pp. 11–15, 2018, issn: 1943-0590. doi: 10.1109/
MSSC.2017.2771102 .

239

https://doi.org/10.1109/VLSIT.2014.6894405
https://doi.org/10.1002/adma.201604457
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201604457
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201604457
https://doi.org/10.1109/IEDM.2014.7046999
https://doi.org/10.23919/VLSIT.2017.7998189
https://doi.org/10.1109/MSSC.2019.2922886
https://doi.org/10.1109/MSSC.2019.2922886
https://doi.org/10.1109/JSSC.2019.2951363
https://doi.org/10.1109/MSSC.2017.2771102
https://doi.org/10.1109/MSSC.2017.2771102

[106] B. Razavi, “The transimpedance amplifier [a circuit for all seasons],” IEEE Solid-
State Circuits Magazine, vol. 11, no. 1, pp. 10–97, 2019, issn: 1943-0590. doi: 10.
1109/MSSC.2018.2881860 .

[107] B. Razavi, “A tale of two adcs: Pipelined versus sar,” IEEE Solid-State Circuits
Magazine, vol. 7, no. 3, pp. 38–46, 2015.

[108] B. Razavi, “The flash adc [a circuit for all seasons],” IEEE Solid-State Circuits Mag-
azine, vol. 9, no. 3, pp. 9–13, 2017.

[109] B. Murmann, “The successive approximation register adc: A versatile building block
for ultra-low- power to ultra-high-speed applications,” IEEE Communications Mag-
azine, vol. 54, no. 4, pp. 78–83, Apr. 2016, issn: 1558-1896. doi: 10.1109/MCOM.
2016.7452270 .

[110] X. Sun, S. Yin, X. Peng, R. Liu, J. Seo, and S. Yu, “Xnor-rram: A scalable and
parallel resistive synaptic architecture for binary neural networks,” in 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), Mar. 2018, pp. 1423–
1428. doi: 10.23919/DATE.2018.8342235 .

[111] R. Mochida et al., “A 4m synapses integrated analog reram based 66.5 tops/w neural-
network processor with cell current controlled writing and flexible network architec-
ture,” in 2018 IEEE Symposium on VLSI Technology, 2018, pp. 175–176.

[112] P. Yao et al., “Fully hardware-implemented memristor convolutional neural network,”
Nature, vol. 577, no. 7792, pp. 641–646, 2020. doi: 10.1038/s41586-020-1942-4 .

[113] Q. Liu et al., “33.2 a fully integrated analog reram based 78.4tops/w compute-in-
memory chip with fully parallel mac computing,” in 2020 IEEE International Solid-
State Circuits Conference - (ISSCC), 2020, pp. 500–502.

[114] Q. Wang, X. Wang, S. H. Lee, F. Meng, and W. D. Lu, “A deep neural network
accelerator based on tiled rram architecture,” in 2019 IEEE International Electron
Devices Meeting (IEDM), 2019, pp. 14.4.1–14.4.4.

[115] C. Xue et al., “15.4 a 22nm 2mb reram compute-in-memory macro with 121-28tops/w
for multibit mac computing for tiny ai edge devices,” in 2020 IEEE International
Solid- State Circuits Conference - (ISSCC), 2020, pp. 244–246.

[116] S. Agarwal, T.-T. Quach, O. Parekh, A. H. Hsia, E. P. DeBenedictis, C. D. James,
M. J. Marinella, and J. B. Aimone, “Energy scaling advantages of resistive mem-
ory crossbar based computation and its application to sparse coding,” Frontiers in
neuroscience, vol. 9, p. 484, 2016.

240

https://doi.org/10.1109/MSSC.2018.2881860
https://doi.org/10.1109/MSSC.2018.2881860
https://doi.org/10.1109/MCOM.2016.7452270
https://doi.org/10.1109/MCOM.2016.7452270
https://doi.org/10.23919/DATE.2018.8342235
https://doi.org/10.1038/s41586-020-1942-4

[117] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, S. Agarwal, M. Marinella, M. Foltin,
J. P. Strachan, D. Milojicic, W.-m. Hwu, and K. Roy, “Panther: A programmable
architecture for neural network training harnessing energy-efficient reram,” arXiv
preprint arXiv:1912.11516, 2019.

[118] M. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs-Gedrim, J. Niroula, S. J.
Plimpton, E. Ipek, and C. D. James, “Multiscale co-design analysis of energy, latency,
area, and accuracy of a reram analog neural training accelerator,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 86–101, 2018.

[119] D. Kadetotad, Z. Xu, A. Mohanty, P.-Y. Chen, B. Lin, J. Ye, S. Vrudhula, S. Yu, Y.
Cao, and J.-s. Seo, “Parallel architecture with resistive crosspoint array for dictionary
learning acceleration,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 5, no. 2, pp. 194–204, 2015.

[120] E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman,
C. D. James, M. J. Marinella, J. J. Yang, et al., “Parallel programming of an ionic
floating-gate memory array for scalable neuromorphic computing,” Science, vol. 364,
no. 6440, pp. 570–574, 2019.

[121] G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, I. Boybat, R. S. Shenoy, P.
Narayanan, K. Virwani, E. U. Giacometti, et al., “Experimental demonstration and
tolerancing of a large-scale neural network (165 000 synapses) using phase-change
memory as the synaptic weight element,” IEEE Transactions on Electron Devices,
vol. 62, no. 11, pp. 3498–3507, 2015.

[122] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila,
C. E. Graves, et al., “Analogue signal and image processing with large memristor
crossbars,” Nature Electronics, vol. 1, no. 1, p. 52, 2018.

[123] X. Sun, S. Yin, X. Peng, R. Liu, J.-s. Seo, and S. Yu, “Xnor-rram: A scalable and par-
allel resistive synaptic architecture for binary neural networks,” in 2018 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), IEEE, 2018, pp. 1423–
1428.

[124] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A mixed-signal binarized
convolutional-neural-network accelerator integrating dense weight storage and multi-
plication for reduced data movement,” in 2018 IEEE Symposium on VLSI Circuits,
IEEE, 2018, pp. 141–142.

[125] W. A. Wulf and S. A. McKee, “Hitting the memory wall,” ACM SIGARCH Computer
Architecture News, vol. 23, no. 1, pp. 20–24, Mar. 1995. doi: 10.1145/216585.216588 .
[Online]. Available: https://doi.org/10.1145%5C%2F216585.216588 .

241

https://doi.org/10.1145/216585.216588
https://doi.org/10.1145%5C%2F216585.216588

[126] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa, R. Berner, M. Rivas-Perez, T. Del-
bruck, S.-C. Liu, R. Douglas, P. Hafliger, G. Jimenez-Moreno, A. Ballcels, T. Serrano-
Gotarredona, A. Acosta-Jimenez, and B. Linares-Barranco, “CAVIAR: A 45k neuron,
5m synapse, 12g connects/s AER hardware sensory–processing– learning–actuating
system for high-speed visual object recognition and tracking,” IEEE Transactions on
Neural Networks, vol. 20, no. 9, pp. 1417–1438, Sep. 2009. doi: 10.1109/tnn.2009.
2023653 . [Online]. Available: https://doi.org/10.1109%5C%2Ftnn.2009.2023653 .

[127] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, “A
digital neurosynaptic core using embedded crossbar memory with 45pj per spike in
45nm,” in 2011 IEEE Custom Integrated Circuits Conference (CICC), IEEE, Sep.
2011. doi: 10.1109/cicc.2011.6055294 . [Online]. Available: https://doi.org/10.1109%
5C%2Fcicc.2011.6055294 .

[128] X. Jin, M. Lujan, L. A. Plana, S. Davies, S. Temple, and S. B. Furber, “Modeling
spiking neural networks on SpiNNaker,” Computing in Science & Engineering, vol. 12,
no. 5, pp. 91–97, Sep. 2010. doi: 10.1109/mcse.2010.112 . [Online]. Available: https:
//doi.org/10.1109%5C%2Fmcse.2010.112 .

[129] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit the-
ory, vol. 18, no. 5, pp. 507–519, 1971.

[130] H. Shiga, D. Takashima, S.-i. Shiratake, K. Hoya, T. Miyakawa, R. Ogiwara, R.
Fukuda, R. Takizawa, K. Hatsuda, F. Matsuoka, et al., “A 1.6 gb/s ddr2 128 mb
chain feram with scalable octal bitline and sensing schemes,” IEEE Journal of Solid-
State Circuits, vol. 45, no. 1, pp. 142–152, 2010.

[131] K. Osada, T. Kawahara, R. Takemura, N. Kitai, N. Takaura, N. Matsuzaki, K. Kurot-
suchi, H. Moriya, and M. Moniwa, “Phase change ram operated with 1.5-v cmos as
low cost embedded memory,” in Custom Integrated Circuits Conference, 2005. Pro-
ceedings of the IEEE 2005, IEEE, 2005, pp. 431–434.

[132] S.-S. Sheu, M.-F. Chang, K.-F. Lin, C.-W. Wu, Y.-S. Chen, P.-F. Chiu, C.-C. Kuo,
Y.-S. Yang, P.-C. Chiang, W.-P. Lin, et al., “A 4mb embedded slc resistive-ram macro
with 7.2 ns read-write random-access time and 160ns mlc-access capability,” in Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE Interna-
tional, IEEE, 2011, pp. 200–202.

[133] S. Chung, K.-M. Rho, S.-D. Kim, H.-J. Suh, D.-J. Kim, H.-J. Kim, S.-H. Lee, J.-H.
Park, H.-M. Hwang, S.-M. Hwang, et al., “Fully integrated 54nm stt-ram with the
smallest bit cell dimension for high density memory application,” in Electron Devices
Meeting (IEDM), 2010 IEEE International, IEEE, 2010, pp. 12–7.

242

https://doi.org/10.1109/tnn.2009.2023653
https://doi.org/10.1109/tnn.2009.2023653
https://doi.org/10.1109%5C%2Ftnn.2009.2023653
https://doi.org/10.1109/cicc.2011.6055294
https://doi.org/10.1109%5C%2Fcicc.2011.6055294
https://doi.org/10.1109%5C%2Fcicc.2011.6055294
https://doi.org/10.1109/mcse.2010.112
https://doi.org/10.1109%5C%2Fmcse.2010.112
https://doi.org/10.1109%5C%2Fmcse.2010.112

[134] A. Sengupta, P. Panda, P. Wijesinghe, Y. Kim, and K. Roy, “Magnetic tunnel junction
mimics stochastic cortical spiking neurons,” Scientific Reports, vol. 6, no. 1, Jul.
2016. doi: 10.1038/srep30039 . [Online]. Available: https://doi.org/10.1038%5C%
2Fsrep30039 .

[135] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and
D. B. Strukov, “Training and operation of an integrated neuromorphic network based
on metal-oxide memristors,” Nature, vol. 521, no. 7550, pp. 61–64, May 2015. doi: 10.
1038/nature14441 . [Online]. Available: https://doi.org/10.1038%5C%2Fnature14441 .

[136] C. Liu, Q. Yang, B. Yan, J. Yang, X. Du, W. Zhu, H. Jiang, Q. Wu, M. Barnell, and
H. Li, “A memristor crossbar based computing engine optimized for high speed and
accuracy,” in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
IEEE, Jul. 2016. doi: 10.1109/isvlsi.2016.46 . [Online]. Available: https://doi.org/10.
1109%5C%2Fisvlsi.2016.46 .

[137] S. B. Eryilmaz, D. Kuzum, R. Jeyasingh, S. Kim, M. BrightSky, C. Lam, and H.-S. P.
Wong, “Brain-like associative learning using a nanoscale non-volatile phase change
synaptic device array,” Frontiers in Neuroscience, vol. 8, Jul. 2014. doi: 10.3389/fnins.
2014.00205 . [Online]. Available: https://doi.org/10.3389%5C%2Ffnins.2014.00205 .

[138] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, Jan. 2015. doi: 10.1016/j.neunet.2014.09.003 . [Online]. Available:
https://doi.org/10.1016%5C%2Fj.neunet.2014.09.003 .

[139] P. Gu, B. Li, T. Tang, S. Yu, Y. Cao, Y. Wang, and H. Yang, “Technological explo-
ration of RRAM crossbar array for matrix-vector multiplication,” in The 20th Asia
and South Pacific Design Automation Conference, IEEE, Jan. 2015. doi: 10.1109/
aspdac.2015.7058989 . [Online]. Available: https://doi.org/10.1109%5C%2Faspdac.
2015.7058989 .

[140] A. Sengupta and K. Roy, “A vision for all-spin neural networks: A device to system
perspective,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63,
no. 12, pp. 2267–2277, Dec. 2016. doi: 10.1109/tcsi.2016.2615312 . [Online]. Available:
https://doi.org/10.1109%5C%2Ftcsi.2016.2615312 .

[141] S. Yu, X. Guan, and H.-S. P. Wong, “On the stochastic nature of resistive switching
in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental
characterization,” in 2011 International Electron Devices Meeting, IEEE, Dec. 2011.
doi: 10.1109/iedm.2011.6131572 . [Online]. Available: https://doi.org/10.1109%5C%
2Fiedm.2011.6131572 .

243

https://doi.org/10.1038/srep30039
https://doi.org/10.1038%5C%2Fsrep30039
https://doi.org/10.1038%5C%2Fsrep30039
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/nature14441
https://doi.org/10.1038%5C%2Fnature14441
https://doi.org/10.1109/isvlsi.2016.46
https://doi.org/10.1109%5C%2Fisvlsi.2016.46
https://doi.org/10.1109%5C%2Fisvlsi.2016.46
https://doi.org/10.3389/fnins.2014.00205
https://doi.org/10.3389/fnins.2014.00205
https://doi.org/10.3389%5C%2Ffnins.2014.00205
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016%5C%2Fj.neunet.2014.09.003
https://doi.org/10.1109/aspdac.2015.7058989
https://doi.org/10.1109/aspdac.2015.7058989
https://doi.org/10.1109%5C%2Faspdac.2015.7058989
https://doi.org/10.1109%5C%2Faspdac.2015.7058989
https://doi.org/10.1109/tcsi.2016.2615312
https://doi.org/10.1109%5C%2Ftcsi.2016.2615312
https://doi.org/10.1109/iedm.2011.6131572
https://doi.org/10.1109%5C%2Fiedm.2011.6131572
https://doi.org/10.1109%5C%2Fiedm.2011.6131572

[142] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa,
and W. Lu, “A functional hybrid memristor crossbar-array/CMOS system for data
storage and neuromorphic applications,” Nano Letters, vol. 12, no. 1, pp. 389–395,
Jan. 2012. doi: 10.1021/nl203687n . [Online]. Available: https://doi.org/10.1021%
5C%2Fnl203687n .

[143] S. Kannan, N. Karimi, R. Karri, and O. Sinanoglu, “Detection, diagnosis, and repair
of faults in memristor-based memories,” in 2014 IEEE 32nd VLSI Test Symposium
(VTS), IEEE, Apr. 2014. doi: 10.1109/vts.2014.6818762 . [Online]. Available: https:
//doi.org/10.1109%5C%2Fvts.2014.6818762 .

[144] P.-Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrudhula, J.-s. Seo,
Y. Cao, and S. Yu, “Technology-design co-optimization of resistive cross-point array
for accelerating learning algorithms on chip,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2015, IEEE Conference Publications, 2015. doi:
10.7873/date.2015.0620 . [Online]. Available: https://doi.org/10.7873%5C%2Fdate.
2015.0620 .

[145] B. Liu, H. Li, Y. Chen, X. Li, T. Huang, Q. Wu, and M. Barnell, “Reduction and
IR-drop compensations techniques for reliable neuromorphic computing systems,” in
2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
IEEE, Nov. 2014. doi: 10.1109/iccad.2014.7001330 . [Online]. Available: https://doi.
org/10.1109%5C%2Ficcad.2014.7001330 .

[146] Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domı́nguez, X. Luo, M. Hong, and
S. A. Maier, “Engineering the phase front of light with phase-change material based
planar lenses,” Scientific Reports, vol. 5, no. 1, Mar. 2015. doi: 10.1038/srep08660 .
[Online]. Available: https://doi.org/10.1038%5C%2Fsrep08660 .

[147] C. Liu, M. Hu, J. P. Strachan, and H. (Li, “Rescuing memristor-based neuromorphic
design with high defects,” in Proceedings of the 54th Annual Design Automation
Conference 2017 on - DAC 2017, ACM Press, 2017. doi: 10.1145/3061639.3062310 .
[Online]. Available: https://doi.org/10.1145%5C%2F3061639.3062310 .

[148] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th ICML, 2010, pp. 807–814.

[149] J. J. Hopfield, “Neurons with graded response have collective computational proper-
ties like those of two-state neurons,” Proceedings of the national academy of sciences,
vol. 81, no. 10, pp. 3088–3092, 1984.

[150] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics, 2010, pp. 249–256.

244

https://doi.org/10.1021/nl203687n
https://doi.org/10.1021%5C%2Fnl203687n
https://doi.org/10.1021%5C%2Fnl203687n
https://doi.org/10.1109/vts.2014.6818762
https://doi.org/10.1109%5C%2Fvts.2014.6818762
https://doi.org/10.1109%5C%2Fvts.2014.6818762
https://doi.org/10.7873/date.2015.0620
https://doi.org/10.7873%5C%2Fdate.2015.0620
https://doi.org/10.7873%5C%2Fdate.2015.0620
https://doi.org/10.1109/iccad.2014.7001330
https://doi.org/10.1109%5C%2Ficcad.2014.7001330
https://doi.org/10.1109%5C%2Ficcad.2014.7001330
https://doi.org/10.1038/srep08660
https://doi.org/10.1038%5C%2Fsrep08660
https://doi.org/10.1145/3061639.3062310
https://doi.org/10.1145%5C%2F3061639.3062310

[151] K. Jarrett, K. Kavukcuoglu, Y. LeCun, et al., “What is the best multi-stage archi-
tecture for object recognition?” In Computer Vision, 2009 IEEE 12th International
Conference on, IEEE, 2009, pp. 2146–2153.

[152] D. RUMELHART, G. HINTON, and R. WILLIAMS, “Learning internal representa-
tions by error propagation,” in Readings in Cognitive Science, Elsevier, 1988, pp. 399–
421. doi: 10.1016/b978-1-4832-1446-7.50035-2 . [Online]. Available: https://doi.org/
10.1016%5C%2Fb978-1-4832-1446-7.50035-2 .

[153] I.-T. Wang, Y.-C. Lin, Y.-F. Wang, C.-W. Hsu, and T.-H. Hou, “3d synaptic archi-
tecture with ultralow sub-10 fJ energy per spike for neuromorphic computation,” in
2014 IEEE International Electron Devices Meeting, IEEE, Dec. 2014. doi: 10.1109/
iedm.2014.7047127 . [Online]. Available: https://doi.org/10.1109%5C%2Fiedm.2014.
7047127 .

[154] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification by memristive
crossbar circuits using ex situ and in situ training,” Nature Communications, vol. 4,
Jun. 2013. doi: 10.1038/ncomms3072 . [Online]. Available: https://doi.org/10.1038%
5C%2Fncomms3072 .

[155] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale
memristor device as synapse in neuromorphic systems,” Nano Letters, vol. 10, no. 4,
pp. 1297–1301, Apr. 2010. doi: 10.1021/nl904092h . [Online]. Available: https://doi.
org/10.1021%5C%2Fnl904092h .

[156] A. Hirohata, H. Sukegawa, H. Yanagihara, I. Zutic, T. Seki, S. Mizukami, and R.
Swaminathan, “Roadmap for emerging materials for spintronic device applications,”
IEEE Transactions on Magnetics, vol. 51, no. 10, pp. 1–11, Oct. 2015. doi: 10.1109/
tmag.2015.2457393 . [Online]. Available: https://doi.org/10.1109%5C%2Ftmag.2015.
2457393 .

[157] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams,
“‘memristive’ switches enable ‘stateful’ logic operations via material implication,” Na-
ture, vol. 464, no. 7290, pp. 873–876, Apr. 2010. doi: 10.1038/nature08940 . [Online].
Available: https://doi.org/10.1038%5C%2Fnature08940 .

[158] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge,
J. J. Yang, and R. S. Williams, “Dot-product engine for neuromorphic computing:
Programming 1t1m crossbar to accelerate matrix-vector multiplication,” in Design
Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE, IEEE, 2016, pp. 1–6.

245

https://doi.org/10.1016/b978-1-4832-1446-7.50035-2
https://doi.org/10.1016%5C%2Fb978-1-4832-1446-7.50035-2
https://doi.org/10.1016%5C%2Fb978-1-4832-1446-7.50035-2
https://doi.org/10.1109/iedm.2014.7047127
https://doi.org/10.1109/iedm.2014.7047127
https://doi.org/10.1109%5C%2Fiedm.2014.7047127
https://doi.org/10.1109%5C%2Fiedm.2014.7047127
https://doi.org/10.1038/ncomms3072
https://doi.org/10.1038%5C%2Fncomms3072
https://doi.org/10.1038%5C%2Fncomms3072
https://doi.org/10.1021/nl904092h
https://doi.org/10.1021%5C%2Fnl904092h
https://doi.org/10.1021%5C%2Fnl904092h
https://doi.org/10.1109/tmag.2015.2457393
https://doi.org/10.1109/tmag.2015.2457393
https://doi.org/10.1109%5C%2Ftmag.2015.2457393
https://doi.org/10.1109%5C%2Ftmag.2015.2457393
https://doi.org/10.1038/nature08940
https://doi.org/10.1038%5C%2Fnature08940

[159] R. Berdan, E. Vasilaki, A. Khiat, G. Indiveri, A. Serb, and T. Prodromakis, “Em-
ulating short-term synaptic dynamics with memristive devices,” Scientific Reports,
vol. 6, no. 1, Jan. 2016. doi: 10.1038/srep18639 . [Online]. Available: https://doi.org/
10.1038%5C%2Fsrep18639 .

[160] K. M. Kim, J. J. Yang, J. P. Strachan, E. M. Grafals, N. Ge, N. D. Melendez, Z.
Li, and R. S. Williams, “Voltage divider effect for the improvement of variability
and endurance of TaOx memristor,” Scientific Reports, vol. 6, no. 1, Feb. 2016. doi:
10.1038/srep20085 . [Online]. Available: https://doi.org/10.1038%5C%2Fsrep20085 .

[161] X. Fong, S. K. Gupta, N. N. Mojumder, S. H. Choday, C. Augustine, and K. Roy,
“KNACK: A hybrid spin-charge mixed-mode simulator for evaluating different gen-
res of spin-transfer torque MRAM bit-cells,” in 2011 International Conference on
Simulation of Semiconductor Processes and Devices, IEEE, Sep. 2011. doi: 10.1109/
sispad.2011.6035047 . [Online]. Available: https://doi.org/10.1109%5C%2Fsispad.
2011.6035047 .

[162] R. Hecht-Nielsen et al., “Theory of the backpropagation neural network.,” Neural
Networks, vol. 1, no. Supplement-1, pp. 445–448, 1988.

[163] R. B. Palm, “Prediction as a candidate for learning deep hierarchical models of data,”
Technical University of Denmark, vol. 5, 2012.

[164] A. Vedaldi and K. Lenc, “MatConvNet,” in Proceedings of the 23rd ACM international
conference on Multimedia 2015, ACM Press, 2015. doi: 10.1145/2733373.2807412 .
[Online]. Available: https://doi.org/10.1145%5C%2F2733373.2807412 .

[165] M. Hu et al., “Memristor-based analog computation and neural network classification
with a dot product engine,” Advanced Materials, 2018. doi: 10.1002/adma.201705914 .

[166] A. Agrawal et al., “X-changr: Changing memristive crossbar mapping for mitigating
line-resistance induced accuracy degradation in deep neural networks,” arXiv preprint
arXiv:1907.00285, 2019.

[167] Y. Jeong et al., “Parasitic effect analysis in memristor-array-based neuromorphic
systems,” IEEE Transactions on Nanotechnology, vol. 17, no. 1, pp. 184–193, 2017.

[168] B. Liu et al., “Reduction and ir-drop compensations techniques for reliable neuro-
morphic computing systems,” in Proceedings of the 2014 IEEE/ACM International
Conference on Computer-Aided Design, IEEE Press, 2014, pp. 63–70.

[169] C. Liu et al., “Rescuing memristor-based neuromorphic design with high defects,” in
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), IEEE, 2017,
pp. 1–6.

246

https://doi.org/10.1038/srep18639
https://doi.org/10.1038%5C%2Fsrep18639
https://doi.org/10.1038%5C%2Fsrep18639
https://doi.org/10.1038/srep20085
https://doi.org/10.1038%5C%2Fsrep20085
https://doi.org/10.1109/sispad.2011.6035047
https://doi.org/10.1109/sispad.2011.6035047
https://doi.org/10.1109%5C%2Fsispad.2011.6035047
https://doi.org/10.1109%5C%2Fsispad.2011.6035047
https://doi.org/10.1145/2733373.2807412
https://doi.org/10.1145%5C%2F2733373.2807412
https://doi.org/10.1002/adma.201705914

[170] B. Liu et al., “Vortex: Variation-aware training for memristor x-bar,” in Proceedings
of the 52nd Annual Design Automation Conference, ACM, 2015, p. 15.

[171] X. Sun and S. Yu, “Impact of non-ideal characteristics of resistive synaptic devices
on implementing convolutional neural networks,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 570–579, 2019.

[172] P.-Y. Chen et al., “Neurosim: A circuit-level macro model for benchmarking neuro-
inspired architectures in online learning,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3067–3080, 2018.

[173] A. S. Rekhi et al., “Analog/mixed-signal hardware error modeling for deep learning
inference,” in Proceedings of the 56th Annual Design Automation Conference 2019,
ACM, 2019, p. 81.

[174] S. Agarwal et al., “Crosssim,” [Online]. Available: http://cross-sim.sandia.gov .

[175] M. A. Zidan et al., “Memristor-based memory: The sneak paths problem and solu-
tions,” Microelectronics Journal, vol. 44, no. 2, pp. 176–183, 2013.

[176] X. Guan et al., “A spice compact model of metal oxide resistive switching memory
with variations,” IEEE electron device letters, vol. 33, no. 10, pp. 1405–1407, 2012.

[177] B. Reagen et al., “Ares: A framework for quantifying the resilience of deep neural
networks,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
IEEE, 2018, pp. 1–6.

[178] N. Zmora et al., Neural network distiller, Jun. 2018. doi: 10.5281/zenodo.1297430 .
[Online]. Available: https://doi.org/10.5281/zenodo.1297430 .

[179] C. Xu et al., “Modeling and design analysis of 3d vertical resistive memory—a low
cost cross-point architecture,” in 2014 19th ASP-DAC, IEEE, 2014, pp. 825–830.

[180] S. Yu et al., “A neuromorphic visual system using rram synaptic devices with sub-
pj energy and tolerance to variability: Experimental characterization and large-scale
modeling,” in 2012 IEDM, IEEE, 2012, pp. 10–4.

[181] J. Von Neumann, The computer and the brain. Yale University Press, 2012.

[182] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,”
Nature nanotechnology, vol. 8, no. 1, p. 13, 2013.

247

http://cross-sim.sandia.gov
https://doi.org/10.5281/zenodo.1297430
https://doi.org/10.5281/zenodo.1297430

[183] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila,
C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. S.
Williams, J. J. Yang, and Q. Xia, “Analogue signal and image processing with large
memristor crossbars,” Nature Electronics, vol. 1, no. 1, pp. 52–59, Dec. 2017. doi:
10.1038/s41928-017-0002-z . [Online]. Available: https ://doi .org/10.1038%5C%
2Fs41928-017-0002-z .

[184] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams,
“‘memristive’switches enable ‘stateful’logic operations via material implication,” Na-
ture, vol. 464, no. 7290, p. 873, 2010.

[185] Q. Dong, S. Jeloka, M. Saligane, Y. Kim, M. Kawaminami, A. Harada, S. Miyoshi, D.
Blaauw, and D. Sylvester, “A 0.3 v vddmin 4+ 2t sram for searching and in-memory
computing using 55nm ddc technology,” in VLSI Circuits, 2017 Symposium on, IEEE,
2017, pp. C160–C161.

[186] A. Agrawal, A. Jaiswal, and K. Roy, “X-sram: Enabling in-memory boolean compu-
tations in cmos static random access memories,” arXiv preprint arXiv:1712.05096,
2017.

[187] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaauw, and
R. Das, “Neural cache: Bit-serial in-cache acceleration of deep neural networks,” in
Proceedings of the 45th Annual International Symposium on Computer Architecture,
IEEE Press, 2018, pp. 383–396.

[188] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A multi-functional
in-memory inference processor using a standard 6t sram array,” IEEE Journal of
Solid-State Circuits, vol. 53, no. 2, pp. 642–655, Feb. 2018, issn: 0018-9200. doi:
10.1109/JSSC.2017.2782087 .

[189] J. Lee, D. Shin, Y. Kim, and H. J. Yoo, “A 17.5-fj/bit energy-efficient analog sram
for mixed-signal processing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 10, pp. 2714–2723, Oct. 2017, issn: 1063-8210. doi:
10.1109/TVLSI.2017.2664069 .

[190] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a machine-learning
classifier in a standard 6t sram array,” IEEE Journal of Solid-State Circuits, vol. 52,
no. 4, pp. 915–924, 2017.

[191] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, “A variation-tolerant in-memory
machine learning classifier via on-chip training,” IEEE Journal of Solid-State Circuits,
no. 99, pp. 1–11, 2018.

248

https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1038%5C%2Fs41928-017-0002-z
https://doi.org/10.1038%5C%2Fs41928-017-0002-z
https://doi.org/10.1109/JSSC.2017.2782087
https://doi.org/10.1109/TVLSI.2017.2664069

[192] J. Yang, Y. Kong, Z. Wang, Y. Liu, B. Wang, S. Yin, and L. Shi, “24.4 sandwich-
ram: An energy-efficient in-memory bwn architecture with pulse-width modulation,”
in 2019 IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2019,
pp. 394–396.

[193] Z. Jiang, S. Yin, M. Seok, and J.-s. Seo, “Xnor-sram: In-memory computing sram
macro for binary/ternary deep neural networks,” in 2018 IEEE Symposium on VLSI
Technology, IEEE, 2018, pp. 173–174.

[194] R. Liu, X. Peng, X. Sun, W.-S. Khwa, X. Si, J.-J. Chen, J.-F. Li, M.-F. Chang, and S.
Yu, “Parallelizing sram arrays with customized bit-cell for binary neural networks,”
in Proceedings of the 55th Annual Design Automation Conference, ACM, 2018, p. 21.

[195] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, “8t sram cell as a multi-bit dot
product engine for beyond von-neumann computing,” arXiv preprint arXiv:1802.08601,
2018.

[196] L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R. K. Montoye,
L. Sekaric, S. J. McNab, A. W. Topol, C. D. Adams, et al., “Stable sram cell design for
the 32 nm node and beyond,” in VLSI Technology, 2005. Digest of Technical Papers.
2005 Symposium on, IEEE, 2005, pp. 128–129.

[197] L. Chang, Y. Nakamura, R. K. Montoye, J. Sawada, A. K. Martin, K. Kinoshita, F. H.
Gebara, K. B. Agarwal, D. J. Acharyya, W. Haensch, et al., “A 5.3 ghz 8t-sram with
operation down to 0.41 v in 65nm cmos,” in VLSI Circuits, 2007 IEEE Symposium
on, IEEE, 2007, pp. 252–253.

[198] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45 nm
early design exploration,” IEEE Transactions on Electron Devices, vol. 53, no. 11,
pp. 2816–2823, 2006.

[199] G. Posser, V. Mishra, R. Reis, and S. S. Sapatnekar, “Analyzing the electromigration
effects on different metal layers and different wire lengths,” in Electronics, Circuits
and Systems (ICECS), 2014 21st IEEE International Conference on, IEEE, 2014,
pp. 682–685.

[200] S. Changpinyo, M. Sandler, and A. Zhmoginov, “The power of sparsity in convolu-
tional neural networks,” arXiv preprint arXiv:1702.06257, 2017.

[201] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations
by error propagation,” Tech. Rep., Sep. 1985. doi: 10.21236/ada164453 . [Online].
Available: https://doi.org/10.21236%5C%2Fada164453 .

249

https://doi.org/10.21236/ada164453
https://doi.org/10.21236%5C%2Fada164453

[202] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti 5.1,” Technical
Report HPL-2008-20, HP Labs, Tech. Rep., 2008.

[203] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma,
A. Maheshwari, and S. Mudanai, “Process technology variation,” IEEE Transactions
on Electron Devices, vol. 58, no. 8, pp. 2197–2208, 2011.

[204] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memristor
crossbar-based neuromorphic computing system: A case study,” IEEE transactions
on neural networks and learning systems, vol. 25, no. 10, pp. 1864–1878, 2014.

[205] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A novel
processing-in-memory architecture for neural network computation in reram-based
main memory,” in Proceedings of the 43rd International Symposium on Computer
Architecture, IEEE Press, 2016, pp. 27–39.

[206] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A tool to
model large caches,” HP laboratories, pp. 22–31, 2009.

[207] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu,
and C.-C. Tsai, “A 10b 100ms/s 1.13 mw sar adc with binary-scaled error compensa-
tion,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010
IEEE International, IEEE, 2010, pp. 386–387.

[208] J. Su et al., “A 28nm 64kb inference-training two-way transpose multibit 6t sram
compute-in-memory macro for ai edge chips,” in ISSCC, 2020. doi: 10.1109/ISSCC19947.
2020.9062949 .

[209] M. Ali, A. Jaiswal, S. Kodge, A. Agrawal, I. Chakraborty, and K. Roy, “Imac: In-
memory multi-bit multiplication and accumulation in 6t sram array,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 67, no. 8, pp. 2521–2531,
2020.

[210] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler, and W. J. Dally, “Scnn: An accelerator for compressed-sparse convolu-
tional neural networks,” ACM SIGARCH Computer Architecture News, vol. 45, no. 2,
pp. 27–40, 2017.

[211] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and
T. Krishna, “Sigma: A sparse and irregular gemm accelerator with flexible intercon-
nects for dnn training,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), IEEE, 2020, pp. 58–70.

250

https://doi.org/10.1109/ISSCC19947.2020.9062949
https://doi.org/10.1109/ISSCC19947.2020.9062949

[212] H. Yang, L. Duan, Y. Chen, and H. Li, “Bsq: Exploring bit-level sparsity for mixed-
precision neural network quantization,” arXiv preprint arXiv:2102.10462, 2021.

[213] J. Yue et al., “A 65nm computing-in-memory-based cnn processor with 2.9-to-35.8tops/w
system energy efficiency using dynamic-sparsity performance-scaling architecture and
energy-efficient inter/intra-macro data reuse,” in ISSCC, 2020. doi: 10.1109/ISSCC19947.
2020.9062958 .

[214] X. Si et al., “A 28nm 64kb 6t sram computing-in-memory macro with 8b mac oper-
ation for ai edge chips,” in ISSCC, 2020. doi: 10.1109/ISSCC19947.2020.9062995 .

[215] B. Murmann, 2021. [Online]. Available: https : / /web . stanford . edu / ~murmann /
adcsurvey.html .

[216] L. Wang et al., “Efficient and robust nonvolatile computing-in-memory based on
voltage division in 2t2r rram with input-dependent sensing control,” IEEE TCAS-II,
vol. 68, no. 5, 2021. doi: 10.1109/TCSII.2021.3067385 .

[217] J. Yue et al., “A 2.75-to-75.9tops/w computing-in-memory nn processor supporting
set-associate block-wise zero skipping and ping-pong cim with simultaneous compu-
tation and weight updating,” in ISSCC, vol. 64, 2021. doi: 10.1109/ISSCC42613.
2021.9365958 .

[218] R. Guo, Y. Liu, S. Zheng, S.-Y. Wu, P. Ouyang, W.-S. Khwa, X. Chen, J.-J. Chen,
X. Li, L. Liu, et al., “A 5.1 pj/neuron 127.3 us/inference rnn-based speech recogni-
tion processor using 16 computing-in-memory sram macros in 65nm cmos,” in 2019
Symposium on VLSI Circuits, IEEE, 2019, pp. C120–C121.

[219] H. Jia, M. Ozatay, Y. Tang, H. Valavi, R. Pathak, J. Lee, and N. Verma, “15.1
a programmable neural-network inference accelerator based on scalable in-memory
computing,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC),
IEEE, vol. 64, 2021, pp. 236–238.

[220] J. Yue, X. Feng, Y. He, Y. Huang, Y. Wang, Z. Yuan, M. Zhan, J. Liu, J.-W. Su,
Y.-L. Chung, et al., “A 2.75-to-75.9 tops/w computing-in-memory nn processor sup-
porting set-associate block-wise zero skipping and ping-pong cim with simultaneous
computation and weight updating,” in 2021 IEEE International Solid-State Circuits
Conference (ISSCC), IEEE, vol. 64, 2021, pp. 238–240.

[221] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, May 2015. doi: 10.1038/nature14539 . [Online]. Available: https://doi.
org/10.1038%5C%2Fnature14539 .

251

https://doi.org/10.1109/ISSCC19947.2020.9062958
https://doi.org/10.1109/ISSCC19947.2020.9062958
https://doi.org/10.1109/ISSCC19947.2020.9062995
https://web.stanford.edu/~murmann/adcsurvey.html
https://web.stanford.edu/~murmann/adcsurvey.html
https://doi.org/10.1109/TCSII.2021.3067385
https://doi.org/10.1109/ISSCC42613.2021.9365958
https://doi.org/10.1109/ISSCC42613.2021.9365958
https://doi.org/10.1038/nature14539
https://doi.org/10.1038%5C%2Fnature14539
https://doi.org/10.1038%5C%2Fnature14539

[222] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T.
Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016. doi: 10.1038/
nature16961 . [Online]. Available: https://doi.org/10.1038%5C%2Fnature16961 .

[223] M. Campbell, A. Hoane, and F.-h. Hsu, “Deep blue,” Artificial Intelligence, vol. 134,
no. 1-2, pp. 57–83, Jan. 2002. doi: 10.1016/s0004-3702(01)00129-1 . [Online]. Avail-
able: https://doi.org/10.1016%5C%2Fs0004-3702%5C%2801%5C%2900129-1 .

[224] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R.
Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S.
Modha, “A million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014. doi: 10.
1126/science.1254642 . [Online]. Available: https://doi.org/10.1126%5C%2Fscience.
1254642 .

[225] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker project,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May 2014. doi: 10.1109/jproc.
2014 .2304638 . [Online]. Available: https ://doi . org/10 .1109%5C%2Fjproc .2014 .
2304638 .

[226] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient SRAM with
embedded convolution computation for low-power CNN-based machine learning ap-
plications,” in 2018 IEEE International Solid - State Circuits Conference - (ISSCC),
IEEE, Feb. 2018. doi: 10.1109/isscc.2018.8310397 . [Online]. Available: https://doi.
org/10.1109%5C%2Fisscc.2018.8310397 .

[227] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current
and its application to conduction and excitation in nerve,” The Journal of Physiology,
vol. 117, no. 4, pp. 500–544, Aug. 1952. doi: 10.1113/jphysiol.1952.sp004764 . [Online].
Available: https://doi.org/10.1113%5C%2Fjphysiol.1952.sp004764 .

[228] R. Stein, “Some models of neuronal variability,” Biophysical Journal, vol. 7, no. 1,
pp. 37–68, Jan. 1967. doi: 10 . 1016 / s0006 - 3495(67) 86574 - 3 . [Online]. Available:
https://doi.org/10.1016%5C%2Fs0006-3495%5C%2867%5C%2986574-3 .

[229] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78, no. 10,
pp. 1629–1636, 1990. doi: 10.1109/5.58356 . [Online]. Available: https://doi.org/10.
1109%5C%2F5.58356 .

252

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038%5C%2Fnature16961
https://doi.org/10.1016/s0004-3702(01)00129-1
https://doi.org/10.1016%5C%2Fs0004-3702%5C%2801%5C%2900129-1
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126%5C%2Fscience.1254642
https://doi.org/10.1126%5C%2Fscience.1254642
https://doi.org/10.1109/jproc.2014.2304638
https://doi.org/10.1109/jproc.2014.2304638
https://doi.org/10.1109%5C%2Fjproc.2014.2304638
https://doi.org/10.1109%5C%2Fjproc.2014.2304638
https://doi.org/10.1109/isscc.2018.8310397
https://doi.org/10.1109%5C%2Fisscc.2018.8310397
https://doi.org/10.1109%5C%2Fisscc.2018.8310397
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113%5C%2Fjphysiol.1952.sp004764
https://doi.org/10.1016/s0006-3495(67)86574-3
https://doi.org/10.1016%5C%2Fs0006-3495%5C%2867%5C%2986574-3
https://doi.org/10.1109/5.58356
https://doi.org/10.1109%5C%2F5.58356
https://doi.org/10.1109%5C%2F5.58356

[230] T. Tuma, A. Pantazi, M. L. Gallo, A. Sebastian, and E. Eleftheriou, “Stochastic phase-
change neurons,” Nature Nanotechnology, vol. 11, no. 8, pp. 693–699, May 2016. doi:
10.1038/nnano.2016.70 . [Online]. Available: https://doi.org/10.1038%5C%2Fnnano.
2016.70 .

[231] K. Vandoorne, P. Mechet, T. V. Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten,
B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reser-
voir computing on a silicon photonics chip,” Nature Communications, vol. 5, no. 1,
Mar. 2014. doi: 10.1038/ncomms4541 . [Online]. Available: https://doi.org/10.1038%
5C%2Fncomms4541 .

[232] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun,
S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent
nanophotonic circuits,” Nature Photonics, vol. 11, no. 7, pp. 441–446, Jun. 2017.
doi: 10.1038/nphoton.2017.93 . [Online]. Available: https://doi.org/10.1038%5C%
2Fnphoton.2017.93 .

[233] A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight:
An integrated network for scalable photonic spike processing,” Journal of Lightwave
Technology, vol. 32, no. 21, pp. 3427–3439, 2014.

[234] A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R.
Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,”
Scientific Reports, vol. 7, no. 1, Aug. 2017. doi: 10.1038/s41598-017-07754-z . [Online].
Available: https://doi.org/10.1038%5C%2Fs41598-017-07754-z .

[235] B. Rajendran, Y. Liu, J.-s. Seo, K. Gopalakrishnan, L. Chang, D. J. Friedman, and
M. B. Ritter, “Specifications of nanoscale devices and circuits for neuromorphic com-
putational systems,” IEEE Transactions on Electron Devices, vol. 60, no. 1, pp. 246–
253, 2013.

[236] M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Non-
volatile all-optical 1×2 switch for chipscale photonic networks,” Advanced Optical
Materials, vol. 5, no. 1, p. 1 600 346, Oct. 2016. doi: 10.1002/adom.201600346 . [On-
line]. Available: https://doi.org/10.1002%5C%2Fadom.201600346 .

[237] W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change
materials,” Applied Physics Letters, vol. 101, no. 17, p. 171 101, 2012.

[238] C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran,
and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Na-
ture Photonics, vol. 9, no. 11, pp. 725–732, Sep. 2015. doi: 10.1038/nphoton.2015.182 .
[Online]. Available: https://doi.org/10.1038%5C%2Fnphoton.2015.182 .

253

https://doi.org/10.1038/nnano.2016.70
https://doi.org/10.1038%5C%2Fnnano.2016.70
https://doi.org/10.1038%5C%2Fnnano.2016.70
https://doi.org/10.1038/ncomms4541
https://doi.org/10.1038%5C%2Fncomms4541
https://doi.org/10.1038%5C%2Fncomms4541
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038%5C%2Fnphoton.2017.93
https://doi.org/10.1038%5C%2Fnphoton.2017.93
https://doi.org/10.1038/s41598-017-07754-z
https://doi.org/10.1038%5C%2Fs41598-017-07754-z
https://doi.org/10.1002/adom.201600346
https://doi.org/10.1002%5C%2Fadom.201600346
https://doi.org/10.1038/nphoton.2015.182
https://doi.org/10.1038%5C%2Fnphoton.2015.182

[239] G. Rodriguez-Hernandez, P. Hosseini, C. Rı́os, C. D. Wright, and H. Bhaskaran,
“Mixed-mode electro-optical operation of ge2 sb2 te5 nanoscale crossbar devices,” Ad-
vanced Electronic Materials, vol. 3, no. 8, p. 1 700 079, Jun. 2017. doi: 10.1002/aelm.
201700079 . [Online]. Available: https://doi.org/10.1002%5C%2Faelm.201700079 .

[240] Z. Cheng, C. Rı́os, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic
synapse,” Science advances, vol. 3, no. 9, e1700160, 2017.

[241] L. Yang, R. Ji, L. Zhang, J. Ding, and Q. Xu, “On-chip cmos-compatible optical
signal processor,” Optics express, vol. 20, no. 12, pp. 13 560–13 565, 2012.

[242] N. V. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for
irregular fluffy structures: Aggregation of small particles,” Applied Optics, vol. 46,
no. 19, p. 4065, 2007. doi: 10.1364/ao.46.004065 . [Online]. Available: https://doi.
org/10.1364%5C%2Fao.46.004065 .

[243] H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G.
Bishop, and B.-k. Cheong, “Thermal conductivity of phase-change material Ge2Sb2Te5,”
Applied Physics Letters, vol. 89, no. 15, p. 151 904, 2006.

[244] A. Sebastian, M. L. Gallo, and D. Krebs, “Crystal growth within a phase change
memory cell,” Nature Communications, vol. 5, Jul. 2014. doi: 10.1038/ncomms5314 .
[Online]. Available: https://doi.org/10.1038%5C%2Fncomms5314 .

[245] D. E. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge,
GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev,” Physical review B, vol. 27,
no. 2, p. 985, 1983.

[246] I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” Josa,
vol. 55, no. 10, pp. 1205–1209, 1965.

[247] S.-Y. Kim, S. J. Kim, H. Seo, and M. R. Kim, “Variation of the complex refractive
indices with sb-addition in ge-sb-te alloy and their wavelength dependence,” in Optical
Data Storage’98, International Society for Optics and Photonics, vol. 3401, 1998,
pp. 112–116.

[248] M. L. Gallo, A. Athmanathan, D. Krebs, and A. Sebastian, “Evidence for thermally
assisted threshold switching behavior in nanoscale phase-change memory cells,” Jour-
nal of Applied Physics, vol. 119, no. 2, p. 025 704, 2016. doi: 10.1063/1.4938532 .
[Online]. Available: https://doi.org/10.1063/1.4938532 .

254

https://doi.org/10.1002/aelm.201700079
https://doi.org/10.1002/aelm.201700079
https://doi.org/10.1002%5C%2Faelm.201700079
https://doi.org/10.1364/ao.46.004065
https://doi.org/10.1364%5C%2Fao.46.004065
https://doi.org/10.1364%5C%2Fao.46.004065
https://doi.org/10.1038/ncomms5314
https://doi.org/10.1038%5C%2Fncomms5314
https://doi.org/10.1063/1.4938532
https://doi.org/10.1063/1.4938532

[249] W. K. Njoroge, H.-W. Wöltgens, and M. Wuttig, “Density changes upon crystalliza-
tion of Ge2 Sb2.04Te4.74 films,” Journal of Vacuum Science & Technology A: Vacuum,
Surfaces, and Films, vol. 20, no. 1, pp. 230–233, 2002. doi: 10 . 1116/1 . 1430249 .
[Online]. Available: https://doi.org/10.1116/1.1430249 .

[250] Comsol, Multiphysics reference guide for comsol 4.2, 2011. [Online]. Available: www.
comsol.com .

[251] Lumerical, Lumerical inc. 2017. [Online]. Available: http://www.lumerical.com/tcad-
products/fdtd/ .

[252] MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist/.

[253] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural net-
works for perception, Elsevier, 1992, pp. 65–93.

[254] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,” in
Neural Networks (IJCNN), 2015 International Joint Conference on, IEEE, 2015,
pp. 1–8.

[255] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as
a scalable dram alternative,” in ACM SIGARCH Computer Architecture News, ACM,
vol. 37, 2009, pp. 2–13.

[256] J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop,
J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid
nanophotonic integrated circuits: A non-volatile quasi-continuously reprogrammable
platform,” Optical Materials Express, vol. 8, no. 6, p. 1551, May 2018. doi: 10.1364/
ome.8.001551 . [Online]. Available: https://doi.org/10.1364%5C%2Fome.8.001551 .

[257] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks,” in Advances in neural information processing systems, 2016, pp. 4107–4115.

[258] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-net: ImageNet clas-
sification using binary convolutional neural networks,” in Computer Vision – ECCV
2016, Springer International Publishing, 2016, pp. 525–542. doi: 10.1007/978-3-319-
46493-0_32 .

[259] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T.
Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring
resonators,” Laser & Photonics Reviews, vol. 6, no. 1, pp. 47–73, 2012.

255

https://doi.org/10.1116/1.1430249
https://doi.org/10.1116/1.1430249
www.comsol.com
www.comsol.com
http://www.lumerical.com/tcad-products/fdtd/
http://www.lumerical.com/tcad-products/fdtd/
https://doi.org/10.1364/ome.8.001551
https://doi.org/10.1364/ome.8.001551
https://doi.org/10.1364%5C%2Fome.8.001551
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32

[260] Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-µm
radius,” Optics Express, vol. 16, no. 6, p. 4309, Mar. 2008. doi: 10.1364/oe.16.004309 .
[Online]. Available: https://doi.org/10.1364%5C%2Foe.16.004309 .

[261] A. Ankit, A. Sengupta, P. Panda, and K. Roy, “Resparc: A reconfigurable and energy-
efficient architecture with memristive crossbars for deep spiking neural networks,” in
Proceedings of the 54th Annual Design Automation Conference 2017, ACM, 2017,
p. 27.

[262] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural
networks: Vgg and residual architectures,” Frontiers in neuroscience, vol. 13, 2019.

[263] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[264] A. Sengupta, M. Parsa, B. Han, and K. Roy, “Probabilistic deep spiking neural sys-
tems enabled by magnetic tunnel junction,” IEEE Transactions on Electron Devices,
vol. 63, no. 7, pp. 2963–2970, 2016.

[265] J. M. Shainline, A. N. McCaughan, S. M. Buckley, C. A. Donnelly, M. Castellanos-
Beltran, M. L. Schneider, R. P. Mirin, and S. W. Nam, “Superconducting optoelec-
tronic neurons iii: Synaptic plasticity,” arXiv preprint arXiv:1805.01937, 2018.

[266] J. M. Shainline, J. Chiles, S. M. Buckley, A. N. McCaughan, R. P. Mirin, and
S. W. Nam, “Superconducting optoelectronic neurons v: Networks and scaling,” arXiv
preprint arXiv:1805.01942, 2018.

[267] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M.
Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A
mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings
of the IEEE, vol. 102, no. 5, pp. 699–716, 2014.

[268] D. Roy, I. Chakraborty, T. Ibrayev, and K. Roy, “Robustness hidden in plain sight:
Can analog computing defend against adversarial attacks?” arXiv e-prints, arXiv–
2008, 2020.

[269] S. Negi, I. Chakraborty, A. Ankit, and K. Roy, “Nax: Co-designing neural network and
hardware architecture for memristive xbar based computing systems,” arXiv preprint
arXiv:2106.12125, 2021.

[270] Keckler et al., “Gpus and the future of parallel computing,” IEEE Micro, no. 5, pp. 7–
17, 2011.

[271] 2015 ITRS 2.0 OFFICIAL PUBLICATION.zip, 2015.

256

https://doi.org/10.1364/oe.16.004309
https://doi.org/10.1364%5C%2Foe.16.004309

[272] D. Ielmini and Y. Zhang, “Analytical model for subthreshold conduction and thresh-
old switching in chalcogenide-based memory devices,” Journal of Applied Physics,
vol. 102, no. 5, p. 054 517, 2007.

[273] D. Ventrice, P. Fantini, A. Redaelli, A. Pirovano, A. Benvenuti, and F. Pellizzer, “A
phase change memory compact model for multilevel applications,” IEEE Electron
Device Letters, vol. 28, no. 11, pp. 973–975, 2007.

[274] S. R. Kulkarni, D. V. Kadetotad, J.-s. Seo, and B. Rajendran, “Well-posed verilog-
a compact model for phase change memory,” in 2018 International Conference on
Simulation of Semiconductor Processes and Devices (SISPAD), IEEE, 2018, pp. 369–
373.

[275] X. Fong, S. K. Gupta, N. N. Mojumder, S. H. Choday, C. Augustine, and K. Roy,
“Knack: A hybrid spin-charge mixed-mode simulator for evaluating different genres of
spin-transfer torque mram bit-cells,” in 2011 International Conference on Simulation
of Semiconductor Processes and Devices, IEEE, 2011, pp. 51–54.

[276] P.-Y. Chen, B. Lin, I. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-s. Seo, Y. Cao, S.
Yu, et al., “Mitigating effects of non-ideal synaptic device characteristics for on-chip
learning,” in Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, IEEE Press, 2015, pp. 194–199.

[277] L. Gao, P.-Y. Chen, and S. Yu, “Programming protocol optimization for analog weight
tuning in resistive memories,” IEEE Electron Device Letters, vol. 36, no. 11, pp. 1157–
1159, 2015.

257

VITA

Indranil Chakraborty received his B.E. degree from Jadavpur University, India, in 2013

and the Master’s degree from Indian Institute of Technology, Bombay, in 2016. His master’s

thesis was on physics-based modelling of PCMO-based devices. He was the recipient of best

M. Tech thesis award and academic excellence award during his time at IIT Bombay for

his academic performance. Currently, he is pursuing Ph.D. degree under the guidance of

Prof. Kaushik Roy. His primary research interests include in-memory computing platforms

based on CMOS, beyond-CMOS technologies and Si Photonics as well as hardware-software

co-design for enabling edge computing systems under the broad umbrella of Artificial Intel-

ligence. He was an intern with Intel Labs, Hillsboro, in summers of 2019 and 2020.

258

PUBLICATIONS

1. I. Chakraborty et al., ”Resistive Crossbars as Approximate Hardware Building

Blocks for Machine Learning: Opportunities and Challenges,” in Proceedings of the

IEEE, vol. 108, no. 12, pp. 2276-2310, Dec. 2020, doi: 10.1109/JPROC.2020.3003007.

2. I. Chakraborty, M. Fayez Ali, D. Eun Kim, A. Ankit and K. Roy, ”GENIEx: A

Generalized Approach to Emulating Non-Ideality in Memristive Xbars using Neural

Networks,” 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp.

1-6, doi: 10.1109/DAC18072.2020.9218688.

3. Mustafa Ali, I. Chakraborty, Utkarsh Saxena, Amogh Agrawal, ”A 35.5-127.2 TOP-

S/W Dynamic Sparsity-Aware Reconfigurable-Precision Compute-in-Memory SRAM

Macro for Machine Learning” under review in Solid State Circuit Letters.

4. A. Jaiswal*, I.Chakraborty*, A. Agrawal, K. Roy. “8T SRAM Cell as a Multi-bit

Dot Product Engine for Beyond von-Neumann Computing”, in IEEE Transactions on

Very Large Scale Integrated Circuits, 2020. (* Equal contributors)

5. I.Chakraborty, D. Roy, I. Garg, A. Ankit and K. Roy. “Constructing energy-efficient

mixed-precision neural networks through principal component analysis for edge intel-

ligence”, in Nature Machine Intelligence, 2020.

6. I.Chakraborty, D. Roy, and K. Roy. “Technology Aware Training in Memristive

Neuromorphic Systems based on non-ideal Synaptic Crossbars”, in IEEE Transactions

on Emerging Topics in Computational Intelligence 2018.

7. I.Chakraborty*, A. Jaiswal*, A. K. Saha, S. K. Gupta and K. Roy. “Pathways

to Efficient Neuromorphic Computing with Non-Volatile Memory Technologies”, in

Applied Physics Reviews, 2020. (* Equal contributors.)

8. I.Chakraborty, G. Saha, A. Sengupta, and K. Roy. “Toward Fast Neural Computing

using All-Photonic Phase Change Spiking Neurons”, in Scientific Reports, Nature,

2018.

259

9. I.Chakraborty, G. Saha, and K. Roy. “A Photonic In-Memory Computing primi-

tive for Spiking Neural Networks using Phase-Change Materials”, in Physical Review

Applied 2019.

10. I. Chakraborty, A. Agrawal, A. Jaiswal, G. Srinivasan and K. Roy, “In-Situ Un-

supervisedLearning using StochasticSwitching in Magneto-Electric Magnetic Tunnel

Junctions”, in Proceedings of the Royal Society A, IEEE, 2020.

11. I. Chakraborty, A. Agarwal and K. Roy. “Design of a Low Voltage Analog-to-Digital

Converter using Voltage Controlled Stochastic Switching of Low Barrier Nanomag-

nets”, in IEEE Magnetics Letters, Vol. 9, pp.1-5, 2018.

12. S. Jain, A. Ankit, I. Chakraborty, K.Roy, A. Raghunathan et al, “Neural network

accelerator design with resistive crossbars: Opportunities and challenges”, in IBM

Journal of Research and Development, vol. 63, no. 6, pp. 10:1-10:13, 1 Nov.-Dec.

2019.

13. A. Jaiswal, I. Chakraborty, K. Roy. “Energy-Efficient Memories using Magneto-

Electric Switching of Ferromagnets”, in IEEE Magnetics Letters, 8, pp.1-5, 2017.

14. P. Panda, I. Chakraborty, K. Roy, “Discretization based Solutions for Secure Ma-

chine Learning against Adversarial Attacks”, in IEEE Access 2019.

260

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	CONSTRUCTING ENERGY-EFFICIENT MIXED-PRECISION NEURAL NETWORKS THROUGH PRINCIPAL COMPONENT ANALYSIS FOR EDGE INTELLIGENCE
	Introduction
	Related Work
	PCA-driven Hybrid-Net Design
	PCA-driven identification of significant layers
	Hybrid-Net Design

	Experiments, Results and Discussion
	Experiments
	Energy efficiency and Memory compression

	Results - PCA
	ResNet Architectures - CIFAR-100
	VGG Architectures - CIFAR-100
	ResNet Architectures - ImageNet

	Image Classification Results - CIFAR-100
	ResNet Architectures
	VGG architecture

	Image Classification Results - ImageNet
	Statistical Analysis
	Fixed Optimal Solutions:
	Varying Optimal Solutions:

	Optimality Studies
	Discussion

	Conclusion

	RESISTIVE CROSSBARS AS BUILDING BLOCKS FOR MACHINE LEARNING
	Introduction
	The Anatomy of Resistive Crossbars
	Device Technologies
	Two Terminal Devices
	Three Terminal Devices

	Circuits: Peripherals and Access
	Selectors/Access transistors
	Input Encoding
	Output Sensing

	Crossbar Write Operations
	Silicon Demonstrations
	NVM MVM macros:
	CMOS MVM macros:

	TECHNOLOGY AWARE TRAINING IN MEMRISTIVE NEUROMORPHIC SYSTEMS FOR NONIDEAL SYNAPTIC CROSSBARS
	Crossbar Implementation of Neural Networks
	Types of network topologies
	Fully Connected Networks
	Convolutional Networks

	Hardware representations of Neural networks
	Training
	Technologies

	Modeling the non-idealities
	Neuron Resistance
	Source Resistance
	Memristive Conductance Variations
	Proposed Training Algorithm

	Simulation Framework
	Model simulations
	FCN
	CNN

	SPICE-like Simulations for validation

	Results and Discussion
	Source and Neuron Resistance
	Weight variations
	Crossbar Size

	Conclusion

	GENIEX: A GENERALIZED APPROACH TO EMULATING NON-IDEALITY IN MEMRISTIVE XBARS USING NEURAL NETWORKS
	Introduction
	Related Work
	Analysis of NVM Non-Idealities
	GENIEx - A Neural Network Based Crossbar Model
	Functional Simulator
	Experimental Methodology
	Results
	Impact on Design Parameters
	Impact of Quantization
	Impact of Bit Slicing

	Conclusion

	8T SRAM CELL AS A MULTIBIT DOT-PRODUCT ENGINE FOR BEYOND VON NEUMANN COMPUTING
	Introduction
	8T-SRAM as a Dot Product Engine
	Results
	Variation Analysis
	Corner Analysis
	Effect of Line-Resistances
	VT Variations

	Discussions
	Conclusion

	SPARSITY AWARE COMPUTE-IN-MEMORY PROCESSOR BASED ON 8T SRAM (Work done in collaboration with Mustafa Ali)
	Introduction
	8T SRAM based Compute-in-Memory Cell - A Brief Recap
	Analysis of Sparsity in ML Workloads
	Sparsity-Aware Compute-in-memory Macro with Reconfigurable Precision ADC
	Macro Structure
	Reconfigurable-Precision SAR ADC
	Measurement Results
	Conclusion

	Sparsity-Aware Compute-in-memory Processing Core
	Related Work
	CIM Core Features
	Sparsity Aware CIM Compute Unit (SCU) Microarchitecture
	Sparsity Controller (SC)
	CIM Macro
	Reconfigurable Shift-and-Add Circuits (RSnA)

	Core Microarchitecture
	Mapping and Dataflow
	Tentative Floorplan
	Preliminary Results

	NEUROMORPHIC COMPUTING USING GST-BASED PHOTONIC PLATFORMS
	Introduction
	GST on Micro-ring Resonators
	Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons
	Photonic In-Memory Computing Primitive for Spiking Neural Networks Using Phase-Change Materials
	Photonic Dot Product Engine
	Network Design
	Synapse Design constraints

	Operation of All-Photonic Spiking Neural Network
	Results
	Device Simulations
	Device to System Framework

	Device Simulations
	Interference Errors
	System Level SNN performance

	Discussion
	Conclusion

	SUMMARY AND FUTURE WORK
	Summary
	Future Work

	ENERGY EFFICIENCY AND MEMORY CALCULATIONS FOR DNNS
	Energy Efficiency
	Memory Compression

	CROSSBAR NON-IDEALITIES
	Read non-idealities
	Linear read non-idealities
	Non-linear read non-idealities

	Write non-idealities
	Impact of non-idealities on the output current
	Read non-idealities
	Write Non-idealities
	Process Variations
	Device to Device Write Variations
	Cycle to Cycle Write Variations
	Device to Device Read Variations

	REFERENCES
	VITA
	PUBLICATIONS

