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ABSTRACT 

Sustainably meeting the food demands of a growing population based on finite resources 

while protecting the environment is one of the great challenges of humanity in the coming decades. 

This dissertation combines three essays that examine how future patterns of global food 

consumption will affect human health, and how the food system changes driven by the ongoing 

global nutrition transition will affect the environment. The production of food needed to meet a 

growing population combined with changes in food consumption patterns are placing 

unprecedented levels of stress on the planet’s scarce natural resources. In this context, while the 

existing literature has mainly focused on increasing production, the magnitude of loss and waste 

is too large to be ignored. The first essay contributes to the literature by examining the linkages 

between consumers’ food waste at the national level on the one hand, and global food security and 

environmental health on the other hand. Absent significant behavioral changes or successful policy 

interventions, food waste will nearly double by 2050. Emerging economies are likely to play a key 

role in driving this growth in global food waste. Further findings indicate that the global benefits 

of food waste mitigation are greatly enhanced in the context of a more open international trade 

regime. Yet even as food loss and waste has been undernutrition and overweight/obesity levels 

have also been increasing. Together, these trends form a triple challenge for food security, global 

sustainability and human health. In the second essay I examine the role of the excessive calorie 

availability as an historical driver of adult BMI. I find that, in part driven by excess in calorie 

availability, individuals in more recent cohorts are overweight or obese earlier and for larger 

proportions of their lifespan than those in earlier cohorts. This highlights the potential for 

unintended health consequences of agricultural and trade policies directed at increasing calorie 

supplies. In the third essay I introduce a novel framework that extends the UN-FAO’s methodology 

for assessing undernutrition to also assess the extent of overconsumption and obesity. This 

framework allows for examination of the dynamics of the double burden of malnutrition between 

2015 and 2050. Specifically, this framework shows how shifting towards healthier and more 

sustainable food consumption levels and reducing food waste could synergistically address 

multiple health and environmental burdens.  
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 INTRODUCTION 

Sustainably meeting the food demands of a growing population based on finite resources 

while protecting the environment is one of the great challenges of humanity in the coming decades. 

Current trends in population and consumption preferences will continue boosting demand for food 

for at least another 40 years (Godfray et al. 2010). In this context, increasing food supplies as well 

as decreasing food losses and waste are key to meeting these challenges. While the existing 

literature has mainly focused on increasing production, the magnitude of loss and waste is too large 

to be ignored (Irfanoglu et al. 2014; FAO 2019b) especially when an increasing number of people 

around the world suffer from food insecurity and different forms of malnutrition (FAO 2021). 

Roughly, one-third of the edible parts of global food produced for human consumption is estimated 

to be lost or wasted (FAO 2015), and these losses have been valued at 1 trillion USD (FAO 2013). 

Resources used in the production of food that ends up being lost and wasted accounts for almost 

one-fourth of the overall global cropland and fertilizer use (Kummu et al. 2012) contributing 

around 3.3 Gigatonnes of CO2-equivalent methane emissions (FAO 2013). 

Food lost and wasted also presents a social dilemma, given the persistence of global hunger. 

Food waste at the consumer level in industrialized countries (222 million tons) is almost as high 

as the total net food production in Sub Saharan Africa (230 million tons) (FAO 2015). Yet even 

as food loss and waste is rising, the global population facing chronic food deprivation has also 

been increasing, growing from 804 million in 2016 to around 821 million in 2017 (FAO 2019c). 

Food waste is concentrated in the industrialized countries, where more than 40% of the food losses 

and waste occur at retail and consumer (households and retails) levels (FAO 2015) and private 

households are responsible for the largest share (Monier 2010). Responding to these apparent 

contradictions, food loss and waste has received growing attention from policymakers, as well as 

from academics, at local, regional, and global levels. Indeed, it is included as part of the United 

Nation’s 2030 Agenda for Sustainable Development.  

Simultaneously, over the past century, rising incomes and increased urbanization have 

altered food consumption worldwide. Nutrition transitions currently underway in low- and middle- 

income countries are characterized by increases in the overall and proportional consumption of 

animal fats and protein (Miljkovic and Mostad 2007), refined grains, and added sugar (Malik, 

Willett, and Hu 2013; Tilman and Clark 2014) which have been implicated in rising rates of obesity 
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and diabetes worldwide (Chopra, Galbraith, and Darnton-Hill 2002). Economic transitions, from 

preindustrial agrarian food systems towards industrialized food systems characterized by capital-

intensive production and processing transform the allocation and functions of labor within food 

supply chains (Finkelstein et al., 2005; Popkin, 2001), reducing average physical activity levels. 

As a result, the balance between energy intake and energy expenditure has tipped over time, 

concomitant with observed increases in rates of overweight and obesity virtually everywhere (Hall 

et al., 2011; Swinburn et al., 2011; Thomas et al., 2011).  

The global prevalence of obesity among adults more than doubled between 1980 and 2014 

and rates of childhood overweight and obesity are increasing in most regions of the world 

(FAO, 2017a). The ratio of overweight to underweight individuals is increasing globally in step 

with improvements in per capita incomes (Abarca-Gómez et al. 2017; Abdullah 2015). Further, 

the double burden associated with the simultaneous presentation of poor nutrition, both at low and 

high levels of calorie consumption, continues to increase in the poorest low-income and middle-

income countries (Popkin et al., 2020; Rutter, 2011; Siddiqui & Donato, 2020). In 2016, 41 million 

children under five years of age were overweight, and in the same year the Food and Agriculture 

Organization of the United Nations (FAO) estimated 3.4 million deaths annually due to overweight 

and obesity (FAO 2017a). By 2030, one in three individuals in the global population is projected 

to be overweight or obese (FAO 2017b), outnumbering those with normal weight. At the same 

time, food insecurity is expected to follow a similar upward trend. The prevalence rate of 

undernourishment reached 8.9% of the global population (nearly 690 million of people) in 2019 

and by 2030 10% (840 million of people) will be unable to meet a diet with the minimum caloric 

requirements for a healthy life (FAO 2020). The coexistence of undernutrition and 

overweight/obesity constitutes an unprecedented challenge to global health. Effectively 

responding to this requires a better understanding of the dynamics of these phenomena (Popkin et 

al., 2020; Webb & Block, 2012) .  

These developments have serious consequences for health, as childhood and adult obesity 

are major risk factors for non-communicable diseases, such as cardiovascular disease (Scherer and 

Hill 2016), diabetes (Scherer & Hill, 2016; Verma & Hussain, 2017), and some types of cancer 

(Avgerinos et al. 2019; Williams 2013). These trends in food consumption also threaten the 

environment (Springmann, Clark, Mason-D’Croz, Wiebe, Bodirsky, Lassaletta, de Vries, 

Vermeulen, Herrero, Carlson, et al. 2018; Willett et al. 2019). Currently the food system accounts 
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for around one third of the global greenhouse gas emissions (GHG) (IPCC 2019; Crippa et al. 2021) 

and dietary trends are expected to be a major contributor to an estimated 80 per cent increase in 

global agricultural GHG emissions from food production and to global land clearing towards the 

mid-21st century (Tilman & Clark, 2014). Addressing the global challenge posed by this 

diet-environment–health trilemma is a high priority for society (Tilman & Clark, 2014; 

Willett et al., 2019).  

This dissertation combines three essays that examines how future patterns of global food 

consumption will affect human health, and how the agricultural changes needed to support the 

ongoing global nutrition transition will affect the environment. Specifically, the dissertation 

focuses on the quantitative linkages among the waste and the excessive intake of food and its 

influences on human health and environmental sustainability. The essays are motivated on the 

current trends and patterns in the global food system, where a growing demand combined with 

changes in consumption patterns are placing unprecedented levels of stress on the planet’s scarce 

natural resources. In this context, consumers’ food waste as well as overweight and obesity are 

rapidly growing especially in low- and middle-income countries. At the same time, an important 

share of the global population still suffers hunger Indeed, the coexistence of global overweight and 

obesity, as well as consumers undernutrition and overweight/obesity constitutes an unprecedented 

challenge to global health. Effectively responding to this requires a better understanding of the 

dynamics of the underlying phenomena. 

The first essay, presented in Chapter 2, titled “Global food waste across the income spectrum: 

Implications for food prices, production and resource use” addresses the quantitative linkages 

between food waste, food security, and environmental sustainability, at global scale. Based on the 

energy balance equation widely used un the nutrition literature, I develop a new panel database on 

household food waste at the national level based on the Energy Balance equation, including 

adjustments for changes in body weight over time. I use this to characterize the non-linear 

relationship between per capita income and the share of food availability wasted. By incorporating 

this relationship into a global partial equilibrium model of the agricultural sector, I develop future 

trajectories of household food waste. I find that, in the absence of policies or behavioral changes, 

emerging economies particularly China and South Asia are likely to play a key role in determining 

global food waste at mid-century. More generally, the interaction between food waste reduction 

measures and trade policies is a novel contribution of this chapter. Trade policies which increase 
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agricultural market integration have the potential to amplify the benefits of food waste reductions 

for food security (by facilitating the accessibility to food in the most vulnerable regions) and for 

reduce pressure on natural resources. This chapter also highlights the importance of developing 

new measurement methods for food waste that can be rapidly deployed across the globe. 

Measurement is the foundation of international action and there is a need for approaches which 

can be readily implemented with existing data sources and incorporated into quantitative models 

to explore impacts and consequences of mitigation measures. The data base which I have 

developed represents a new step the direction of having a global, internationally comparable data 

set on food waste. 

In the second essay, presented in Chapter 3, titled “Excess calorie availability and adult BMI: 

a cohort analysis of patterns and trends for 156 countries from 1890 to 2015”, I study the 

association between increases in food energy supply and changes in body mass index (BMI) across 

countries and time. Although changes in diets, lifestyles, and food environments have been 

implicated in the rise in BMIs in most countries, the specific role of excess calorie availability 

(ECA) and the cohort mechanisms that underlie patterns and trends in BMI are poorly understood. 

In this study I examine these relationships for 156 countries over the past century. By constructing 

a pseudo-panel dataset from repeated cross-sectional data, I developed an econometric model that 

allows identifying these relationships across time and countries. I find a positive association 

between ECA and BMI and a strengthening of this correlation over successive generations. 

Consequently, more recent cohorts reach adulthood with higher BMIs and become overweight and 

obese at younger ages. These results provide a number of policy-relevant insights. First, the 

findings highlight how some standard agricultural and trade policies oriented toward reducing 

hunger by increasing calorie supplies might have unintended consequences for undesirable 

overweight, obesity, and health-related outcomes (Law 2019). In light of current trends in food 

supply, these findings are of particular importance for developing countries already dealing with 

the complexities of a rising malnutrition double burden. Second, as the world continues to push 

toward increasing the supply of food to alleviate hunger among those still facing food insecurity, 

there is a simultaneous need to underscore and address, through policy and education, the 

importance of nutrition and diet quality, including the production, promotion and availability of 

affordable healthy diets, to avoid intensification of the already worrisome trends in adult BMI. 
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In the third essay, presented in Chapter 4, titled “Confronting the double burden of 

malnutrition yields health and environmental benefits” I introduce a novel framework that extends 

the UN-FAO’s methodology for assessing undernutrition to also encompass excessive calorie 

consumption and its association with the evolution of adult Body Mass Indexes (BMI). By 

incorporating these relationships into a global partial equilibrium model of the food sector 

(SIMPLE), I develop future trajectories of age-, sex-, and cohort specific adult BMI across major 

world regions over the next three decades. This allows for an examination of the dynamics of the 

double burden of malnutrition between 2015 and 2050. I find that the excessive consumption of 

calories will play a key role in driving rising BMI levels, particularly in emerging economies. As 

a consequence of reaching higher levels of BMI at younger ages, future cohorts will increase their 

exposure to the health risks attributable to overweight and obesity, including coronary heart 

disease (CHD), stroke, site-specific cancers, and type 2 diabetes (T2DM) I use this framework to 

shed light on the health, food, and environmental security impacts of changing food consumption 

behavior. A key finding is that environmental benefits of shifting consumption patterns are 

dominated by food waste reductions as opposed to changes in dietary composition. I extend the 

existing literature on this topic by disaggregating, for the first time, three elements of the linkage 

from food purchasing behavior and the environment: changes in the composition of food 

consumption to achieve a more balanced diet, reductions in overall food intake, and reductions in 

food waste. I examine the relative contribution of each subcomponent to environmental 

sustainability, revealing that the food waste component of what has been dubbed in the literature 

‘dietary changes’ represents the largest contributor to the environmental benefits of shifting food 

purchases to a more sustainable level. 

The three essays in this dissertation advance the current state of knowledge in the literature 

exploring the trade-offs and synergies arising out of the competing demands on the planet’s finite 

resources (such as water, land, clean air, biodiversity etc.), as well as potential pathways for 

sustainable development in the coming decades. Specifically, the outcomes from this dissertation 

provide several policy-relevant insights on the challenges related to the excessive consumption of 

food (understood as the gap between current food consumption levels), the environmental 

sustainability, and attributable weight-related diseases to current trends on adult BMI.  

The rest of the document is organized as follows: in Chapter 2, I introduce a novel food 

waste index that is traceable across time and countries to then use it for the estimation of systematic 
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underlying relationships between income and caloric waste. By incorporating these relationships 

into a global partial equilibrium model of the food sector, I turn then to explore the quantitative 

linkages between food waste, resource use, and caloric undernutrition. The Chapter 2 concludes 

with a discussion of the main findings and the limitations of the study, pointing on potential 

avenues for future research. Chapter 3 starts with a review of the existent literature on current 

trends and patterns on adults BMI attributable weight-related diseases. I then develop a country-

level pseudo-panel dataset on excessive calorie availability (ECA) to explore its role as a historical 

driver of overweight and obesity globally. In the section “Results” in this chapter I examine the 

specific correlations of ECA, as well as cohort and age effects, with observed changes on adult 

BMI during recent decades. Chapter 3 concludes with a summary main findings and potential 

implications of the study, pointing on a number of policy-relevant insights. Chapter 4 starts with 

a review of current trends and patterns on the ongoing malnutrition double burden, especially 

relevant in low- and middle-income countries. I then provide a novel framework to simultaneously 

analyze both ends of the caloric distribution by extending the widely used FAO’s Prevalence of 

Undernourishment (PoU) methodology. By incorporating these relationships into a global partial 

equilibrium model of the food sector, I turn then to explore the potential multiple dividends (i.e., 

health and environmental benefits) of policies oriented to mitigate consumers’ food waste, and to 

prevent overweight and obesity. Chapter 4 concludes with a review of the main findings in the 

study as well as pointing to some potential policy implications. Finally, in the Chapter 5 I present 

a summarize of the main findings and potential conclusions resulting from the studies undertaken 

through the three essays in this dissertation.  
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 GLOBAL FOOD WASTE ACROSS THE INCOME 

SPECTRUM: IMPLICATIONS FOR FOOD PRICES, PRODUCTION, AND 

RESOURCE USE 

Copyright 2020 Elsevier. Original source from Ref.(Barrera and Hertel 2020) 

 

Motivation and rationale: There are few examples in the existing literature that address the 

quantitative linkages between food waste, food security, and environmental sustainability, at 

global scale. Here I develop a new panel database on household food waste at the national level 

based on the energy balance equation, including adjustments for changes in body weight over time. 

I use this to characterize the non-linear relationship between per capita income and the share of 

food availability wasted. By incorporating this relationship into a global partial equilibrium model 

of the agricultural sector (SIMPLE), I develop future trajectories of household food waste. I find 

that the emerging economies, particularly China and South Asia, are likely to play a key role in 

determining global food waste at mid-century. I also present several counterfactual scenarios that 

shed light on the implications for environmental and food security of limiting future growth in 

food waste. I find that the global impacts of these alternative pathways are greatly enhanced in the 

context of a more open international trade regime. 

2.1 Introduction  

In this chapter, I contribute to the literature by providing a novel framework to better 

understand the linkages between consumer’s food waste at the national level on the one hand, and 

global food security and environmental health on the other hand. I begin with a newly constructed 

panel data set on per capita daily uneaten calories using a basic energy balance equation. Given 

the lack of data on food waste the present chapter also contributes by providing a global, 

internationally comparable data set on food waste. This allows for an empirical examination of the 

underlying systematic relationships between per capita income and the share of food waste in total 

food availability (SFW: the ratio of uneaten calories divided by purchased calories, a unit-free 

proportion). This statistical relationship allows us to incorporate food waste into a global partial 

equilibrium model of the agricultural sector. With this framework in hand, I undertake projections 



` 

 

17 

 

of future food waste as well as analysis of the food security and environmental impacts of 

alternative scenarios in which future food waste is limited. 

One barrier to reducing food loss and waste is the lack of data at the national and 

international level. Responding to this deficiency, FAO has developed the Food Loss Index to 

estimate how much food is lost in production or in the supply chain before it reaches the retail 

level. According to FAO 2019, 14% of food is lost through the supply chain before reaching the 

retail level. However, little is known about how much food is wasted by consumers (households 

and/or retailers). As a result this lack of data, there are few credible studies of the linkages between 

consumers’ food waste, food security, and environmental health (Hall et al. 2009a; M. Verma et 

al. 2017; 2020). Despite the attempt to develop a systematic framework for food loss and waste 

based on the life cycle of a typical food item by Bellemare et al. (2017), in general, the 

inconsistency of measures of food loss and waste has contributed to the absence of a coherent 

policy framework towards sustainable food consumption (Reisch, Eberle, and Lorek 2013; 

Bellemare et al. 2017). 

The present study follows the definition proposed by the High-Level Panel of Experts on 

Food Security and Nutrition (HLPE 2014): “food loss and waste (FLW) refer to a decrease, at all 

stages of the food chain from harvest to consumption in mass, of food that was originally intended 

for human consumption, regardless of the cause”. The proposed definition HLPE (2014) 

distinguishes between food losses (FL) “occurring before the consumption level regardless of the 

cause” and food waste (FW), “occurring at the consumption level regardless of the cause” 

(emphasis added). This distinction between loss and waste is essential for the current study since 

I focus solely on food waste at consumers (households and retailers) level. 

The chapter is organized as follows. I start with a review of the current literature on food 

waste, focusing specifically on the regional and global scale implications. I then introduce the new 

international data set on food waste which forms the basis for a novel methodology for estimating 

the underlying relationship between per capita income and food waste. This allows me to 

incorporate food waste into a global partial equilibrium model of the agricultural sector. In the 

section “Results” I start by performing an historical validation of the model for the period 

2006-2013. I then turn to a business-as-usual (BAU) projection of global food waste to 2050. 

Finally, I evaluate the impact on food security and the environment of mitigating in food waste, 

emphasizing the key role for international market integration. The chapter concludes with a 
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discussion of the findings and the limitations on the present study, pointing on potential avenues 

for future research. 

2.2 Literature Review and Knowledge Gap 

The Food and Agriculture Organization of the United Nations (FAO) reports the Food 

Balance Sheets (FBS), which is the most extensive global database on countries’ food systems. 

The FBS report annual data about domestic food supply (e.g., production, imports, and stock 

changes), and domestic food utilization (e.g., feed, seed, processing, export, etc.). FAO’s 

methodology is not free of criticism (Hall et al. 2009a; Svedberg 1999b). It is believed to 

underestimate food availability in developing countries, particularly in rural areas where 

unreported subsistence production represents an important share of the households’ consumption 

bundle (Hawkesworth et al. (2010). Additionally, before the last revision of the methodology 

(FAO 2019a) one of the components of the FBS (often stocks) would take on the outstanding 

unbalanced amount thereby inheriting all the statistical errors. The revised methodology reported 

by FAO mitigates some of those inaccuracies (FAO 2019a) by improving the estimates of the 

specific modules through the supply chain (e.g., stocks, food, feed, loss, etc.). In the revised 

methodology, imputations for the FBS components not reported by countries are generated by 

dedicated modules and then a balancing mechanism proportionally spread the imbalances out 

among all the components (FAO 2019a). The new food loss module reports essential information 

of losses across the whole food value chain up to and excluding the retail level. However, the 

information related to food waste at the consumer level is still being revised (FAO 2019a). Despite 

its limitations, FAO’s is the most widely used global database for food availability at country level. 

Based on the FBS Kummu et al. (2012) examine the relationship between crop-based food loss 

and waste throughout the entire supply chain and environmental sustainability. The authors 

estimate the potential resource savings and the impact on food supply from a hypothetical 

reduction on food waste. They find that around one quarter of the produced food (614 kcal/cap/day) 

is lost within the food supply chain, accounting for close to one quarter of the total resources used 

(fresh water, cropland and fertilizer).  

There are several examples in the existing literature of country-based studies attempting to 

quantify the magnitude of food waste at the consumers (households and retail) level. Most of them 

focus on developed regions. Monier et al. (2010) provides a comprehensive meta-analysis data 
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base for food waste in the European Union (EU) based mostly on data from the EUROSTAT 

database as well as through literature review. They find that total food waste in the EU27 (the EU 

except for the United Kingdom –UK--) in 2006 added up to 181 kg per capita per year 

(corresponding to 12 percent of the total EU food production). From which the 42 percent is 

generated by households (adding up to 23.3 million of tons). They also provide evidence of 

significant variability in per capita waste among the EU countries, with the highest food waste per 

capita generated in the Netherlands, Belgium and Cyprus. Thyberg et al. (2015) offer a meta-

analysis and synthesis of state, county, and regional studies from 1989 and 2013 within the United 

States (US) based on the weight of food disposed in Municipal Solid Waste (MSW) in the US. 

They find that the aggregate food waste disposal rate per person per day was 0.615 pounds (leading 

to an estimate of 35.5 million tons of food waste disposed annually in the US). The proportion of 

food waste in the overall MSW increased significantly during the 25 years analyzed in this study. 

The authors also find evidence of significant variations in per capita food waste across different 

regions. 

Using a different framework, moving from quantifying weight to quantifying calories, Hall 

et al. (2009) developed a detailed mathematical model relating changes in body weight and food 

intake. This model allows the authors to calculate the energy content of food waste in the US, from 

the difference between the US food supply for consumption in kilocalories per capita per day 

(kcal/cap/day) and their estimations of food intake (kcal/cap/day). Their results show that per 

capita daily caloric waste in the US has increased by 50% since 1974, reaching around 1400 

kcal/cap/day (around 40% of the available calories) by the year 2013.  

There are few examples in the existing literature addressing the linkages between the 

reductions in food waste at the household level, on the one hand, and global food security and 

environmental sustainability, on the other. A key reason for this literature gap is the absence of 

reliable data on food waste at the national level (Hall et al. 2009; Xue et al. 2017; FAO 2019b). 

The range of methods applied to quantify food waste also differs greatly from country to country 

(Xue et al. 2017; FAO 2019b) making comparisons or integrated analyses nearly impossible. 

Indeed, there is not one unique definition of food waste. The absence of such a standard has 

contributed to a dearth of comparable data (Parfitt, Barthel, and Macnaughton 2010; Bellemare et 

al. 2017) leading to poorly informed efforts attempting to reduce food waste (Bellemare et al. 

2017). 
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We can classify methods for quantifying food waste into two groups, those based on energy 

metrics (e.g. kcal) (Kummu et al. 2012; Hall et al. 2009a; Hiç et al. 2016) and those based on 

weight metrics (e.g. kg, ton) (Monier et al. 2010; Thyberg, Tonjes, and Gurevitch 2015). The 

former has the advantages of accounting for variation on nutritional content within each food type, 

providing information regarding the nutritional value of the food wasted (Lipinski et al. 2013) 

while also presenting a better opportunity for comparability across countries. Hiç et al. (2016) 

extend the methodology proposed in Hall et al. (2009) to calculate surplus in energy availability 

for 73 countries, linking the latter with Greenhouse Gas (GHG) emissions. Their results show how, 

given small changes in global energy requirement relative to large changes in food availability the 

food surplus has increased particularly rapidly in emerging economies (India and China). They 

also forecast a global food surplus of 850 kcal/cap/day by 2050, leading to an increase in associated 

GHG emissions in the range of 1.9 to 2.5 Gt Co2 equivalent/year. Springmann et al. (2018), 

analyze the environmental effects of the food system as well as options for mitigating those effects, 

including food waste and loss reductions, towards 2050. However, they base their analysis on 

current estimates of food waste, not on future projections. They find that, in the absence of yield 

improvements, technical change and moderating measures, the food system’s broad effects on the 

environment could increase by 50–90%. The authors conclude that such a scenario would cause 

humanity to violate the planetary safe operating space. They also conclude that a synergistic 

combination of sustainability measures, including cutting food waste by 75%, will be needed to 

avoid serious environmental damages. 

There are also some studies which have sought to evaluate the economic implications of 

food waste and its mitigation using  applied general and partial equilibrium frameworks. Irfanoglu 

et al. (2014) explore the impacts of reducing food losses and waste on global food security, trade, 

greenhouse gas emissions, and land use by using the Simplified International Model of Crop Prices, 

Land Use and the Environment (SIMPLE) model (Baldos and Hertel 2013). In this study the food 

waste is incorporated by including a household production function in the model, and the food 

waste is computed as the difference between food purchased and food consumed. However, they 

do not offer a methodology for projecting the future evolution of food waste. Britz et al. (2014) 

analyze the potential effects of food waste reduction on the whole economy incorporating food 

waste reduction related costs in a regional computable general equilibrium (CGE) model. They 

point out that, under certain circumstances, the attempts to reduce food waste might cause severe 
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loss of competitiveness for the agriculture and food production sectors. Hertel and Baldos (2016b) 

examine the implications of a range of policy initiatives aimed at improving food security and 

environmental outcomes, including reductions in post-harvest losses in SSA and reductions in food 

waste in the wealthy economies. Their study uses the SIMPLE model as a framework, first in the 

context of historically segmented markets for the global food economy, and secondly in a 

hypothetical future world of fully integrated crop commodity markets. Their study is the first to 

point out the potential interaction of the policies to reduce food waste and loss with trade policies. 

Verma et al. (2020) present a cross section data set with country-specific metrics of per 

capita daily caloric waste for 70 countries by extending the energy-balance equation presented in 

Hall et al. (2009). Their study starts by exploring the relationship between food waste, income, 

and prices concluding in an estimation of the affluence elasticity of waste (a metric for the 

influence of per capita income on food wasted). A limitation in this study is the absence of a time 

series component which stems from the fact that they do not consider changes in body weight in 

the energy balance equations. This limits the applicability of their study in examining the long-

term underlying systematic relationships between income, food availability, and food waste. All 

of these model-based studies: Verma et al. (2020), Britz et al. (2014), Hiç et al. (2016), Irfanoglu, 

et al. (2014), Hertel and Baldos (2016b) and Springmann et al.(2018), fail to provide a systematic 

analysis of the long-term relationship between national per capita income growth and food waste.  

The present research differs from the aforementioned studies in a number of important ways. 

I start by extending the methodology used in Hall et al. (2009), Hiç et al. (2016), and Verma et al. 

(2020), to calculate daily caloric per capita waste by incorporating changes in body weight into 

the analysis and extending coverage to a time series encompassing 95% of the world’s population. 

This results in a new panel data set of country-specific average daily per capita calories wasted 

from 1975 to 2014 for 158 countries. While previous studies have focused on the implications of 

reducing current levels of food waste (Springmann, Clark, Mason-D’Croz, Wiebe, Bodirsky, 

Lassaletta, de Vries, Vermeulen, Herrero, Carlson, et al. 2018), I use these data to estimate a model 

of food waste evolution across the development spectrum which allows for more accurate 

projections of consumer food waste. These estimates are then incorporated into a global model to 

shed light on how food waste affects food security and environmental health towards 2050. Finally, 

I analyze several counterfactual scenarios on how limiting future evolution of food waste would 
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affect food security and the pressure on environmental resources, paying special attention to how 

these impacts are influenced by the extent of international market integration. 

2.3 Food Waste Measurement Methodology and the Long-Term Relationship with Income  

2.3.1 A New Panel Data Set for Global Food Waste 

I begin by creating a consistent, international panel database building on the energy balance 

equation. Since food waste at the country level is not directly observed at present, it must be 

inferred from other observables, including food availability (FA), estimates of physical activity 

levels (PAL) and basal metabolic rates (BMR), and changes in Body Mass Index (BMI). This leads 

to the following system of equations for deducing food waste: 

Energy expenditure = Physical activity level*Basal Metabolic Rate          (2.1) 

Food Intake = 𝛥 𝐵𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡*𝜌 + 𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒           (2.2) 

Food Waste = 𝐹𝑜𝑜𝑑 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 − 𝐹𝑜𝑜𝑑 𝐼𝑛𝑡𝑎𝑘𝑒             (2.3) 

In Equation 2.2 𝜌 is a parameter which converts changes (increases) in body weight to 

excessive intake of calories based on the energy balance equations (Hall et al. 2011). Following 

this approach, the uneaten calories at household level are quantified as the difference between the 

available calories (kcal/cap/day) and the caloric intake (kcal/cap/day). Country-specific food 

availability (kcal/cap/day) is obtained from the FAO Food Balance Sheets (FAO/WHO 2017) over 

the period 1975-2013. The country-specific average Energy Expenditure are calculated from the 

product of country-specific BMR and the country-specific PAL. The composite BMR, for an 

average person in each country, is a function of countries’ demographics (age, average weight, and 

sex) retrieved from World Bank Database (World Bank 2018). PAL based on different lifestyles 

retrieved from (FAO/WHO 2001). I extend Verma et al. (2020) by incorporating the increment of 

body weight into this equation. The country-specific average increase 𝛥𝐵𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝐵𝑊) was 

obtained from the differences in BMI reported for the years 1975, 1985,1995, 2005, and 2014 

(Abarca-Gómez et al. 2017) and country-specific average height for male and female from NCD 

Risk Factor Collaboration (Risk and Collaboration 2016). The increment in body weight is 

converted to energy (Kcal/cap/day) by applying a weight change model (Hall et al. 2011). Finally, 

by assuming a uniform intertemporal distribution of changes on energy expenditure due to changes 
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on average weight, I can calculate country-specific average annual energy daily intake for the 

period 1975-2013. This extension is critical to permit estimation of the underlying long-term 

relationships between income, prices, food availability, and food waste. 

Previous evidence suggests that per capita income plays a key role in the evolution of food 

waste, both due to an increase in food purchases per capita and an increase in the opportunity cost 

of household labor (Xue et al. 2017). Previous studies suggest this relationship to be nonlinear, 

wherein the responsiveness of food waste to changes in income is high for developing countries 

and falls as nations become richer. Here, I use the newly constructed data set to explore this 

relationship in greater depth. 

I find it useful to focus on the share of food waste in a country’s total food supply, as opposed 

to the absolute level of waste (M. Verma et al. 2020; Carmona-Garcia et al. 2017; Xue et al. 2017; 

Zhou and Yu 2014). I define the Share of Food Waste (SFW) as the ratio of daily per capita calories 

wasted over the per capita calorie availability. Then I compare the evolution of the SFW across 

income regions, as well as across countries over time. Figure 2.1 presents an illustration of the 

findings based on a subset of 18 countries in the data set, chosen to represent a variety of 

geographic regions as well as different levels of development. 

 

Figure 2.1. The Share of Food Waste (SFW) across the income spectrum. 

Using a subset of 18 countries (selected from the 158 used in the present study) grouped by income levels according 

to World Bank Classification 2018. 
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A first point to be observed in Figure 2.1 is that, on average, the per capita daily energy 

supply has exceeded the requirements for most of the countries in the sample since 1992. That is 

also true at the global level, where the gap between the calories available and required, for an 

average person, have firmly increased in the recent decades (Figure A.1). The global SFW has 

increased from 0.11 to 0.17 over the 1992-2013 period. Of course, it should be noted that this does 

not mean that every person is obtaining sufficient calories, due to the wide distribution of caloric 

intake within each country. Understanding the intra-country distribution of food (food 

accessibility), is beyond the scope of this study given the level of aggregation in this approach. A 

second observation is that, in low-income countries, SFW rises rapidly as per capita incomes 

increase. Middle-income countries illustrate a transition period during which the absolute amount 

of food waste rises rapidly, while the rate of growth slows. Finally, high-income countries appear 

to converge to a relatively stable level of SFW. In this sample of 18 countries (Figure 2.1), SFW 

ends up stabilizing in the range between 29% and 36%. The UK is at the low end of this range – 

perhaps indicative of the strong emphasis placed on reducing food waste in the UK starting in 2007 

(Defra 2007). On the other hand, the US  is near the top of this group, peaking around 37% in 2004, 

consistent with figure reported in Hall et al. (2009), before dropping to 34.6% by the year 2013. 

Of course, a steady share of food waste in total availability is not equivalent to constant per capita 

food waste, since availability, as well as body mass have continued to rise in most regions. 

The consistency of the results with those of Hall et al. (2009) is important, as it provides an 

indirect channel for validating the approach taken, which is inspired by those authors. In their 

paper, focusing only on the US, Hall et al. (2009) compare their estimates of total food waste to 

data on US municipal solid food waste and find a close correspondence. Their estimates move 

closely over time with the observed data on municipal food waste, although their predictions of 

food waste are consistently above the solid food waste time series. This makes sense for several 

reasons. Firstly, not all waste goes to municipal dumps. And secondly, the solid food waste 

observations are likely underestimates of the true values of municipal waste. An additional source 

of indirect validation of the approach taken in this chapter comes from the fact that it suggests a 

leveling off of food waste at higher income levels that is consistent with the findings in the 

extensive literature review on food waste measurement and data provided by  Xue et al. (2017) 

along with evidence that the income elasticity of calories purchased and wasted decreases with 

rising incomes (Zhou and Yu 2014; M. Verma et al. 2020). 
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Figure 2.2. Aggregates the food waste data from all 158 countries in the data set to the global level. 

Showing the observed contribution of major country groupings to global, per capita food waste over the period 1992 

to 2013 as well as the projections towards 2050 (see Results below).  

Figure 2.2 aggregates the food waste data from all 158 countries in the data set to the global 

level, showing the contribution of major country groupings to global, per capita food waste over 

the period 1992 to 2013. The size of the “pies” correspond to how the estimated “global” per capita 

food waste has increased in this sample of countries since 1992 – starting at 287 kcal/capita/day 

and rising to 473 by 2013, with a projected 72% increase reaching 812 kcal/capita/day by the 2050 

(see Section 4 below). This global estimate is somewhat lower than that of Hiç et al. (2016), who 

project waste of 850 kcal/capita/day by mid-century.  

The changes in the relative shares within the pie show how the middle-income countries’ 

contribution to global food waste has come to dominate this total. (It should be noted that the 

“share” here is a different concept than the SFW in the presented in Figure 2.1.) On the one hand, 

the high-income regions--population weighted--share of the 287 kcal (during 1992) was 57% and 

decreased 25 percentage points to reach 32% of the global 473 kcal wasted during 2013. On the 

other hand, China’s share of global food waste increased from 5% during 1992 to 27% of the 

global total in 2013. These findings are consistent with previous studies estimating food waste via 

this caloric methodology (Hall et al. 2009a; Hiç et al. 2016; M. Verma et al. 2020). The observed 

changes in relative contributions to the composite global daily caloric waste, leading to a dominant 
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role of middle-income countries, follow from the rapid increases in population and income in 

developing countries where food comprises a large share of the average households’ budget 

(Barrett and Dorosh 1996); in contrast, the share of budget expended on food in developed 

countries such as US can be less than 10% (US EPA 2016). Additionally, it can be observed that 

China plays a critical role in global food waste given its large population.  

Having examined the historical evolution of food waste, I now turn to future projections. 

This will entail several steps: first estimating the relationship between food waste and income, then 

incorporating it into an economic model and finally making projections based on future growth in 

income, population, technology, and food waste policies.  

Estimating a Model of Food Waste Response to Income Growth 

Given the apparent difference in behavior of SFW with respect to income growth amongst 

the low, middle and high income countries, I first test for structural breaks in the data set using the 

Chow test (Chow 1960). Table 2.1 summarizes the results1. The large F statistic leads us to 

conclude that there are structural breaks in this relationship across the three income groupings, 

which suggests that I need to consider a non-linear functional form (Figure A.2) that allows for 

different responses of SFW to income at different income levels. 

Table 2.1. Summary statistics and test for structural breaks 

 GDPpc SFW 

Observations 3466 3466 

Mean 11329 0.1243 

Min 162 0.0001 

Max 111968 0.3698 

Structural test F (3,  3462) = 1081 Prob>F = 0 

Note: the type of non-linear relationship between the share of food waste in total food availability and per capita 

income suggested by Figure 2.1 is evidenced in many social and economic processes.  

 
1 Please find the Figure A.2 in which I illustrate the observed data points of Share of Food Waste (SFW) data across 

the income spectrum and the SFW projections obtained through the linear function estimation. That figure illustrates 

how a lineal approximation to model the relationship between income and food waste would over-project SFW for 

higher levels of income. 
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The response variable, in this case SFW, starts out rather flat, and at a low level. At low per 

capita income, food is relatively expensive and represents a large share of households’ budgets 

(Barrett and Dorosh 1996). They cannot afford to waste food and the opportunity cost of the time 

involved in food procurement, preparation and storage is relatively low (Lusk and Ellison 2017). 

Furthermore, the nature of diets at low-income levels – predominantly staples – is such that storage 

is easier. Food waste begins to grow as household incomes rise, diets diversify to include 

perishable fruits, vegetables and meats (Popkin 1994), and wages rise, increasing the opportunity 

cost of time spent on food procurement and preparation (Lusk and Ellison 2017). Increased away-

from-home food consumption likely plays a role here as well as previous studies suggest that 

consumers are more likely to save food when eating at home when compared with eating away-

from-home (Asioli, Pinpart, and Balcombe 2019). Figure 2.1 shows that this acceleration is 

particularly striking as countries move into the middle-income category. This growth in the overall 

share of food waste plateaus at high income levels when households have made the transition to a 

modern, industrialized economy. As consumers reach the affluent stage, a further increase of 

income would likely have no significant impact on calorie purchasing (including wasted calories). 

Rather, calorie purchases (including waste) are expected to enter a stage of stasis (Zhou and Yu 

2014). 

The S-shaped curve suggested by Figure 2.1 is quite similar to that found in the technology 

adoption literature where adoption rates start out slowly before reaching a ‘take off’ stage at which 

point the technology starts spreading at an increasing rate until it gradually levels off (Griliches 

1957; Jarvis 1981). Usually these patterns of change in adoption rates are modelled through a 

logistic function (Nin et al. 2004; Ludena et al. 2007a; Polson and Spencer 1991). The logistic 

function has the advantage of being parsimonious, yet flexible enough to capture the essential 

features in these relationships, enabling the capture of convex as well as concave curvatures at 

different income levels. I find this flexibility essential to capture both the broad trends as well as 

the regional eccentricities (i.e., due to different regulations, cultural differences, and/or relative 

prices of food with respect to non-food items in the market) in the response on food waste as the 

income evolves. The logistic functional form used here postulates the following relationship 

between per capita income and SFW: 

𝑆𝐹𝑊𝑖 =  
𝛾

1+ 𝑒−𝛼−𝛽∗𝐺𝐷𝑃_𝑝𝑐𝑖
              (2.4) 
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The parameters γ, α, and β govern the shape of the logistic function. The value of β 

determines the speed of change in the function; a higher value implies a faster approach of SFW 

to the upper asymptote of the function γ. The parameter α governs the midpoint ascent, indirectly 

determining where the function starts to increase. After applying the standard logarithmic 

transformation, and including an i.i.d. error term, the estimating form of the equation becomes: 

𝑌𝑖 = log (
𝑆𝐹𝑊𝑖

γ−𝑆𝐹𝑊𝑖
) =  𝛼 + 𝛽 ∗ 𝐺𝐷𝑃_𝑝𝑐𝑖 + 𝜀𝑖            (2.5) 

For a given value of γ, one may calculate the value of the left-hand side of the equation (2.4). 

Then α and β may be found by least-squares regression under the classical ordinary least squares 

(OLS) assumptions  (Nin et al. 2004; Ludena et al. 2007a). By iterating through this process, the 

value of γ may also be determined according to the criterion of minimizing the sum of squares of 

the residuals. There are several approaches for this, from systematic procedures to estimating the 

upper asymptote of the function such as the Golden Section Search and Fibonacci Search 

(Vardavas 1989) to running numerous regressions, each with a different value for γ. Results from 

the latter procedure are reported in the Table 2.2. The confidence intervals of the two parameters 

estimated (α and β) show that these parameters are rather precisely estimated. These confidence 

intervals will also be employed when attaching error bars to the projections of future food waste.  

Table 2.2. OLS estimations for parameters in the logistic function 

  Coef. [95% Conf. Interval] 

α -1.821084 [-1.873587       -1.76858] 

β 0.0000367 [0.0000341    0.0000393] 

γ 0.3201 -  

Figure 2.3 plots this estimated logistic function, along with the data points in the sample. 

As can be seen from that figure, while it seems that most countries follow this same general pattern 

of food waste as incomes rise, at any given income level SFW varies quite a bit. This is hardly 

surprising, as there are many other factors determining food waste beyond income (Chalak et al. 

2016). These country-specific factors, as well as the economic modeling approach taken in Section 

4 below, lead us to aggregate the data into regions and then re-calibrate the logistic function 

parameters to better reflect regional variation in the parameters governing equation 5. 
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Figure 2.3. The observed and projected data points of Share of Food Waste (SFW). 

Data across the income spectrum and the SFW projections obtained through the logistic function estimation previously 

described in this section.  

Regional Aggregation and Calibration 

In order to project future food waste, I aggregate countries to the regional level and then 

calibrate the regional parameters to reproduce the 2006 benchmark. While there is a cost to losing 

country-specific detail, this aggregation permits us to incorporate the projections of the share of 

food waste into a validated model of global partial equilibrium model of the agricultural sector. 

With this in hand I can project the level of food waste in 2050, as well as analyzing the 

consequences of alternative pathways for the reduction of future food waste. Regional aggregation 

is also useful given the eccentricity of individual countries and potential reporting errors to the 

FAO. In anticipation of the economic projections to be undertaken in Section 4 below, I have 

chosen to aggregate countries to the geographic 15 regions in an economic model (Figure 2.4). 

This allows to capture the changes in food waste through a large portion of the income spectrum 

over this period (see  
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Figure A.3 for a compiled version of Figure 2.4), while avoiding dealing with the inevitable 

country-specific eccentricities that arise in such a data set.  
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Figure 2.4. The logistic projections and observed levels of SFW. 

The logistic function projections (points connected via the solid lines) and the observed levels of SFW collapsing the 

data points through weighted-population averages into 15 regions across the 22 annual data points (SFW & income 

for 1992-2013) for each region. 
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This particular aggregation into 15 regions has the additional advantage of matching with 

the global model SIMPLE2 which I use for future projections. Calibration involves adjusting the 

logistic function parameters for each region while requiring this function pass through the year 

2006 benchmark data set used in Section 4 and based on FAO (FAO/WHO 2017) and World Bank 

(World Bank 2018) data. This calibration procedure minimizes the deviation across the entire 

series from the original estimates in Table 2.1 (illustrated in Figure 2.3). I use the year 2006 as 

benchmark in anticipation of the economic projections to be undertaken in Section 4. Figure 2.4 

plots the aggregated regional data points, along with outputs from the region-specific logistic 

functions (i.e., projections) for each year over the sample period. The significant shifts in these 

functions across regions illustrates the importance of the calibration step for capturing regional 

variation in the share of food waste and matching observed data as well as undertaking global 

projections. 

Future Evolution of SFW 

Figure 2.5 puts these region-specific SFW functions in the context of a timeline starting in 

1992 and continuing through the period of observation (up to 2013) and forward to 2050 using 

income projections to be discussed below. Error bars for the projected food waste shares were 

obtained through a bounding analysis using the lower and upper bounds from the confidence 

intervals in Table 2.2. From this figure, several points emerge. Firstly, the calibrated logistic 

functions now track individual regions’ evolving food waste quite closely. Secondly, there is very 

little ‘action’ in the high-income countries, where the share of food waste is not expected to change 

significantly in the absence of targeted policies. Thirdly, the most dramatic changes between 2013 

and 2050 are expected in South Asia, where the economy is starting out at a very low level of food 

waste, but high-income growth over the next three decades is expected to boost SFW to nearly 

one-third. Finally, based on the error bars in Figure 2.5, the most developed regions (US/Canada, 

 
2 The Simplified International Model of Crop Prices, Land Use and the Environment (SIMPLE) model is a global 

partial equilibrium model of the agriculture sector For a detailed explanation on the SIMPLE model, see the textbook 

by (Hertel and Baldos 2016). The SIMPLE model is designed to capture the major socio-economic forces at work in 

determining food consumption (crops, livestock and processed foods), cropland use, output, prices and nutritional 

attainment. The SIMPLE model focuses on a few key relationships related to global agriculture, keeping it as simple 

as possible while capturing the important drivers of global agricultural change. In order to avoid frequent criticism of 

general or partial equilibrium models, identification problems when involving too many behavioral parameters since 

each estimation implies an error SIMPLE focuses only on the relationships that are considered essential. However, 

the authors acknowledge that there is a trade-off in this decision. With the risk of becoming too simple which might 

lead to introducing other errors.  
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Europe), already at a high level of SFW, as well as the middle-income ones (China and South 

America), present significantly less sensitivity to changes in the parameters shaping the function. 

However, the uncertainties in the projected calculations are greater in the low and lower middle-

income regions (i.e., Sub Saharan Africa and South Asia) – particularly during the transition period 

to high income levels. It is also important to note that I base the projections in the observed values 

of food waste through the income spectrum. While the model attempts to capture the regional 

eccentricities, it does not capture changes in food waste beyond what has been observed in the 

period up to 2013 (e.g., potential decreases in food waste through increase of awareness). Below, 

I will explore the potential effects on resource use and food security of freezing the food waste 

(among other scenarios) in the results session. 

 

Figure 2.5. SFW observed between 2006-2013 and projected towards 2050. 

This figure includes 6 of the 15 regions in the study (the remaining regions’ figures are reported in the Figure A.4). 

The top two panels present two high-income regions, the ones in the middle two middle-income regions and the two 

at the bottom present lower income regions (according to World Bank 2018 classification of countries by income). 
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2.4 Incorporating the SFW into a Global Partial Equilibrium Model of the Agriculture 

Sector 

In order to convert the region-specific SFW functions reported in Table 2.2, into projections 

of global food waste, I require projections of income per capita and total food availability for each 

of the 15 regions. It is common in agricultural models to treat income as exogenous, and so I, too, 

adopt a partial equilibrium approach, taking income growth from other global modeling activities, 

while assuming limited feedback from food waste to national income. In an ideal world, I would 

have data on food waste by type of food commodity – i.e., a different SFW function for each food 

type. However, given the aggregate data set which I have been able to develop, I am forced to 

assume that the share of food waste in total availability is the same across all food types. This is 

clearly a limitation which should be relaxed in future work, as improved data become available.  

Given this aggregate approach to food waste, I do not require an extremely detailed model 

of food consumption. Rather, I focus on obtaining accurate, long run projections of total food 

consumption and total calories available, by region. One partial equilibrium model suitable for 

such purposes is the SIMPLE model (a Simplified International Model of Prices, Land use and the 

Environment). It is attractive for the purposes in this chapter since it has been subjected to 

historical validation with respect to long run evolution of crop output, prices, land use and caloric 

undernutrition (Hertel and Baldos 2016b;  Baldos and Hertel 2016; 2013; Baldos and Hertel 2014).  

The SIMPLE model includes three production activities in each of 15 regions: 1) an 

aggregate crop sector; 2) livestock; and 3) processed food, whereby the latter two utilize crop and 

non-crop inputs to produce food products for consumers. Food demand responds to changing 

prices and income through the incorporation of income and price elasticities which vary as a 

function of regional income per capita. These relationships are obtained from a cross-country 

analysis of purchasing patterns (Muhammad et al. 2011), and that vary by food commodity (crop, 

livestock, and processed foods). 

The crops sector employs land and non-land inputs via a Constant Elasticity of Substitution 

(CES) production function and the use of inputs is governed by the extensive and intensive margins 

of factor supply. The crop commodity is a composite of all 175 crops in the FAOSTAT database, 

weighted by relative prices to produce output measured in corn-equivalent tons. Crops are traded 

internationally and consumed directly as well as indirectly through their use in livestock and 

processed food production. For a detailed exposition, see the textbook by Hertel and Baldos 
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(2016a). The model is parsimonious and open source. As with the SFW data set, SIMPLE is based 

on FAO data.  

2.5 Results 

2.5.1 Model Validation  

As in Baldos and Hertel (2014) who used SIMPLE to examine changes in undernourishment 

over time, I start the analysis by evaluating how well the model projects SFW outcomes over an 

historical period, in this case, 2006–2013 (7-years). Often studies that use economic models to 

project future outcomes are not validated against history, yet this is a critical step. Additionally, 

this historical assessment provides valuable inputs for examining changes in the future. The 

historical projections in Figure 2.6 are most accurate at the global level; the projections are less 

accurate at the regional level, which is consistent with previous studies attempting to validate 

global agricultural models (Baldos and Hertel 2014; McCalla and Revoredo 2001). Those authors 

find that food availability and price projections become less accurate with greater levels of 

disaggregation.  

At the regional level, the framework underpredicts the growth in food waste in China, while 

over-predicting 2013 food waste in the US. Re-examination of the US time series for SFW in 

Figure 2.1, it can be seen that the food waste share jumped up around 2006 and then dropped to 

its level in the early 2000’s by 2013. The model is not capable of capturing this cyclical behavior. 

In the case of the low-income region in Figure 2.6 – SSA, the model does reasonably well over 

the historical period, while anticipating a significant rise by 2050.  
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Figure 2.6. Observed uneaten calories and model projections from 2013 to 2050. 

The panels plot observed uneaten calories (kcal/cap/day) in 2006 and 2013, and model projections for 2013 and 2050 

obtained from the baseline simulation starting in 2006. Projection errors (% difference between model projected and 

observed values for 2016) are reported. 

2.5.2 Future Projections 

Baseline 

The projections of uneaten calories to 2050 in Figure 2.6 rely on incorporation of 

equation (2.4)--albeit with the regionally calibrated parameters—into the SIMPLE model which 

produces estimates of total caloric availability and purchases. SIMPLE is projected forward with 

exogenous shocks to population, per capita incomes, total factor productivity (TFP) growth, and 

biofuel consumption. Growth rates for population and income were derived from the Shared 

Socioeconomic Pathways (Fricko et al. 2017). The Shared Socioeconomic Pathways (SSPs) create 

a framework for global studies, usually focused on environmental outcomes, to explore how the 

future can evolve under a consistent set of assumptions. They cover a wide range of hypothetical 

future states of the world by providing five different narratives. Here I the use the SSP 2 as the 

reference in the baseline projections. Given its description of a “middle-of-the-road” state of nature, 

the SSP 2 is natural starting point to further explore integrated solutions for achieving societal 
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objectives to reduce pressure on environmental resources (Fricko et al. 2017). In the projections, 

TFP growth rates are based on the historical estimates from (Ludena et al. 2007a) and (Fuglie 

2012). The growth in global biofuel consumption is from the document published in the World 

Energy Outlook  (IEA 2008; IEA 2012 ) (shocks are reported in Table D.1. See Appendix D for 

details). 

 

Figure 2.7. Projected uneaten calories 2013 and towards 2050. 

Error bars were obtained following the same process described above in the document. The upper (lower) bound 

corresponds to the projected uneaten calories while using the upper (lower) bounds from the 95% CI for the region-

specific α and β.  

Figure 2.7 reports projections for uneaten calories in 2013 and 2050, using a modeling 

framework. In the absence of significant policy interventions or behavioral changes, food waste is 

expected to increase substantially by 2050. Globally, SFW is expected to increase from 0.17 (17% 

of calories purchased are uneaten) to 0.26 in 2050. Daily uneaten calories are expected to nearly 

double going from 473 (kcal/cap/day) in 2013 to 812 (kcal/cap/day) in 2050. The largest per capita 

increases in food waste are expected to arise in the emerging markets where population and income 

will likely increase most. This is consistent with Engel’s law, since is also expected that the share 

of budget expended on food would also be higher than in developing regions and since the 

increasing purchases of food may lead to the increase in the excessive intake and waste of calories. 

In rich countries the SFW seems to have levelled off, so that middle income countries, particularly 
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China and lower income regions as South Asia, Southeast Asia, and Sub Saharan Africa are 

expected to dominate future global food waste (see the rightmost pie chart in Figure 2.2 – 2050). 

Note that China’s share of the global food waste declines from 2013 to 2050, as its food waste 

growth is outpaced by that of South and Central Asia, and Sub Saharan Africa. Additionally, the 

uncertainties on food waste projections are heterogenous across regions. The framework used in 

this study allows for systematic investigation of the impacts of variations in the key inputs on 

driving the results simulation results (Appendix D). In the case of the results on food waste, the 

systematic sensitivity analysis was driven by sampling from the estimated distributions for the 3 

key region-specific parameters (γ, α, and β) that govern the shape of the logistic function capturing 

the underlying relationship between income and caloric waste (equation 2.4). Specifically, in this 

analysis, the Gaussian quadrature approach to systematic sensitivity analysis draws parameters 

from the previously estimated distributions and produces 95% confidence intervals for the model 

results. I find that the regions already presenting higher levels of food waste have lower 

uncertainties. On the other hand, regions at earlier stages on the transition towards higher levels of 

food waste, present larger uncertainties. 

Examining the Consequences of Alternative Waste Reduction Pathways  

In the light of these results, I turn the attention to the likely implications for land use and 

food security of curbing future trajectories of food waste, as well as examining their interactions 

with trade policies. I start by exploring the food security and land impacts of rolling back SFW in 

all regions, except for the poorest one – SSA, to 0.20 (SFW = 0.20 scenario)3 . The second 

experiment explores the impact of freezing SFW in all regions, except for SSA, at their values in 

2020 (SFW=2020 scenario). Finally, I consider the impact of a somewhat less stringent scenario 

wherein of the SFW freeze is not implemented until 2030 (SFW=2030 scenario).  

Each of these three experiments is undertaken against the backdrop of two different levels 

of global market integration (segmented vs. fully integrated markets) to shed light on the 

interactions of initiatives attempting to reduce food waste with trade policies. The different 

scenarios projected are the result of changing assumptions with respect to the future evolution of 

the global economy. The segmented markets specification is designed to reproduce current 

conditions, in which domestic agricultural markets are imperfectly linked to world markets due to 

 
3 From Figure 2.5 we can see that SSA only rises above 0.20 at the end of the projected period. 
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domestic and border policies as well as trade and transport costs. The underlying idea in the 

segmented markets model is to reflect restricted accessibility to global markets. Not all consumers 

can buy goods in the global markets and not all producers are able to sell into the world market. 

The relative prices of domestic and international commodities, as well as the national market share 

of the domestically produced and of the international good, enter into a Constant Elasticity of 

Substitution demand function. Greater accessibility to global markets implies a larger elasticity of 

substitution between the domestic and the international good. This, in turn, results in less potential 

for deviation between local and international prices. When global market access is restricted for 

many households the implied elasticity of substitution is small and the potential for discrepancies 

between international and local prices is greater. The segmented markets version is also the 

specification used in the validation exercise described above and discussed in more detail in Hertel 

and Baldos (2016b). In contrast, the integrated markets version of the model assumes that all the 

consumers and producers can buy or sell in the global market, implying a unique equilibrium 

global price for crop. The integrated markets scenario is designed to reflect a future world in which 

global supply chains and enhanced trade infrastructure effectively remove barriers to trade and the 

world price and domestic price is equated for crop commodities.  

Figure 2.8 presents key results from these six experiments (three policies x two trade 

regimes). Results are reported as deviations from the 2050 baseline due to the three different food 

waste reduction scenarios. I focus here on the implications for global cropland use, 

undernourishment headcount (in million, the quantity of people below the minimum caloric intake 

level for a healthy life), and prevalence of undernourishment (% of population whose caloric intake 

is below the minimum for a healthy life).  



` 

 

40 

 

 

Figure 2.8. Results on counterfactual scenarios for food security and resource use. 

The panel on the left reports the reduction on land use and the panels on the right report reductions in undernourishment 

headcount and in the prevalence of undernourishment (PoU) within SSA (% difference with respect to the baseline) 

resulting from limiting future trajectories on food waste (freezing SFW at 20%, 2020-, and 2030-year’s level) under 

different assumptions of market integration (segmented markets vs fully integrated international agricultural markets). 

As expected, under all food waste scenarios global cropland area declines, as does 

undernourishment. However, even under the most extreme scenario (SFW = 0.20), the declines 

are rather modest as long as international markets are segmented. For example, the decline in 

cropland area in 2050 is less than 2%. This changes rather dramatically when international 

agricultural markets are assumed to be fully integrated. In this case, the decline in food demand in 

the rich countries is more fully transmitted across the globe, with stronger declines in land use and 

also in SSA undernourishment. (By mid-century, the projections suggest that this is where most 

of the world’s remaining undernourishment will reside.) Therefore, I conclude that trade policies 

and food policies can be highly complementary, with greater trade integration enhancing the food 

and environmental benefits of reducing food waste. 

Freezing the share of food waste at 2020 levels is nearly as effective as the across-the-board, 

0.20 target. However, the SFW=2030 scenario for freezing the share of food waste a decade later 

results in considerably lower impacts on the use of natural resources. This highlights the 

importance of moving quickly to limit the growth in food waste to the rate of growth of food 
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availability. This must be done before most of the world’s population begins exceeding the 0.20 

threshold if this scenario is going to contribute to improved food and environmental security. 

2.6 Discussion and Limitations 

The global pattern of food waste is evolving rapidly. There is an increasing gap between the 

average caloric supply and the average energy requirements. Under current trends, and in the 

absence of policy interventions or significant behavioral changes, I can expect that the global 

calories wasted at consumers level will nearly double by 2050. Per capita uneaten calories at the 

consumers level have leveled off in rich countries; however, this category is growing rapidly in 

middle income countries, and it is these countries that will drive future global changes. By the 

estimates in this chapter, China already dominates global food waste, but in the next three decades, 

it will be joined by South Asia and other lower income regions where rapid growth in food waste 

due to rising incomes, diversifying diets, and growing population could have a dramatic impact on 

the global total. 

Previous studies have shown that mitigation of current levels of food waste offers one 

potential pathway for contributing to global environmental goals. Combined with other efforts, 

limiting food waste is an avenue to remaining within the planet’s ‘safe operating space’ for land, 

water availability and quality & GHGs (Springmann, Clark, Mason-D’Croz, Wiebe, Bodirsky, 

Lassaletta, de Vries, Vermeulen, Herrero, and Carlson 2018). By modeling the evolution of food 

waste with per capita incomes, I am able to explore a richer set of (more realistic) scenarios than 

in previous studies which have typically abstracted from future growth in food waste (Springmann, 

Clark, Mason-D’Croz, Wiebe, Bodirsky, Lassaletta, de Vries, Vermeulen, Herrero, and Carlson 

2018). I consider two cases wherein the share of food waste in food availability is frozen. 

Undertaking such a policy in 2020 would have a strong impact on global resource use and food 

security – particularly if accompanied by greater trade integration. However, if such measures are 

delayed until 2030, and if trade frictions lead to greater market segmentation, then this food waste 

mitigation pathway will likely have far more modest food and environmental security benefits.  

More generally, the interaction between food waste reduction measures and trade policies is 

a novel contribution of this chapter. Trade policies which increase agricultural market integration 

have the potential to amplify the benefits of food waste reductions for food security (by facilitating 
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the accessibility to food in the most vulnerable regions) and for reduce pressure on natural 

resources. 

This chapter also highlights the importance of developing new measurement methods for 

food waste that can be rapidly deployed across the globe. Measurement is the foundation of 

international action and there is a need for approaches which can be readily implemented with 

existing data sources and incorporated into quantitative models to explore impacts and 

consequences of mitigation measures. The data base which I have developed builds on previous 

work in this area (Hall et al. 2009a; Hiç et al. 2016; M. Verma et al. 2020) and represents another 

step in the direction of having a global, internationally comparable data set on food waste. 

However, more cross-validation of this approach with independent estimates (and ideally 

observations) of food waste is required.  

In closing, there are some significant limitations to the analysis in the current chapter. First 

and foremost is the simplicity and level of aggregation of the model. SIMPLE does not attempt to 

capture all of the complexity present in the global food economy (see Appendix D). The model 

also operates at a high level of aggregation, thereby abstracting from country-specific details that 

may be especially relevant from a policy perspective. The regional results are indicative of possible 

future outcomes at the country level but are no substitute for careful national analysis to inform 

country-level policies. Secondly, the long run relationship which I estimate between the share of 

food availability that is wasted and per capita income needs a more complete theoretical 

underpinning. Such a theory should also help to explain the wide variation in the share of food 

waste at a given income level. Also, there is a need for more detailed analysis of what types of 

food that are being wasted. Due to data limitations, I have been silent on this matter, simply 

working with a caloric aggregate. Commodity-specific food waste estimates would naturally lead 

to the use of a more detailed commodity market model of the global food system.  

Finally, while I shed light on the potential benefits of curbing future trajectories of food 

waste focusing on limiting the expected increase in food waste in emerging economies, I do not 

analyze the potential costs related to efforts required to prevent food waste. Policy initiatives to 

prevent food waste encompass a wide range of instruments -- from economic incentives (fees, 

taxes, and subsidies) to regulatory approaches (such as laws and standards, and/or mandatory 

management plans), to education/information campaigns, to solutions at retailors level (packaging, 

date-labelling, etc.). For an extensive literature review of these alternatives see (Schanes, Dobernig, 
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and Gözet 2018). Some of these policy instruments have been found to be successful in reducing 

food waste. Some examples are the use of economic incentives as weight-based fee systems in 

some developed countries; the use of regulatory approaches as the National Pact against Food 

Waste in France; and the education campaigns such as the “Love Food Hate Waste” lead by WRAP 

in the UK. However, most of these policies have been implemented in the context of developed 

economies. It may prove more challenging to implement these policies in the low-to middle 

income countries that are likely to account for most of the growth in food waste over the next three 

decades. Addressing the effectiveness and cost-benefit analyses of such instruments in the context 

of emerging economies is beyond the scope of this study. However, given the prominence of these 

economies in the projections of food waste, this is an important area for future research. 
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 EXCESS CALORIE AVAILABILITY AND ADULT BMI: 

A COHORT ANALYSIS OF PATTERNS AND TRENDS FOR 156 

COUNTRIES FROM 1890 TO 2015 

Motivation and rationale: Current trends in adult obesity threaten global health. Although 

changes in diets, lifestyles, and food environments have been implicated in the rise in BMIs in 

most countries, the specific role of excess calorie availability (ECA) and the cohort mechanisms 

that underlie patterns and trends in BMI are poorly understood. I examine these relationships for 

156 countries over the past century using an age-, sex-, and cohort-specific approach to measure 

the association between increases in food energy supply and changes in body mass index (BMI) 

across countries and time. I find positive and significant associations between ECA and adult body 

mass index for both males and females, and between ECA during early childhood and BMI at 

adulthood for males. I also find a strengthening of these correlations over successive generations. 

Evidence of underlying cohort mechanisms suggest a positive correlation between changes in the 

food environment and trends in subsequent BMI. These cohort mechanisms are boosted by age 

effects, leading individuals in each successive cohort to reach unhealthy BMI levels at younger 

ages. Individuals in more recent cohorts are overweight or obese earlier and for larger proportions 

of their lifespan than those in earlier cohorts. This pattern is consistent across countries and appears 

to be driven, in part, by availability of calories in excess of underlying requirements. Findings 

from this chapter provide novel insights into the role of ECA and potential unintended health 

consequences of agricultural and trade policies directed at increasing calorie supplies. 

3.1 Introduction 

Previous studies have underscored the importance of secular changes or “period effects” in 

driving these patterns. These include changes in diets (Popkin, 1994, 2001), food environments 

(Kennedy & Fanzo, 2018; Miljkovic et al., 2015; Popkin et al., 2020; Swinburn et al., 2011), 

urbanization (Popkin, 1999), and changes in work environments (Popkin, 2001; 

Popkin et al., 2020). Previous studies also highlight the importance of the increase in the available 

food supply in driving trends and patterns of global diets (Drewnowski and Popkin 2009). The 

association between  obesity and diets has been explored across countries and time, with specific 

attention on the role of macronutrients (Hall, 2018), ultra-processed foods (Monteiro et al., 2018; 
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Popkin & Reardon, 2018), and fats and sweeteners (Drewnowski and Popkin 2009). However, the 

specific role of calorie availability, which has increased markedly over the past few decades, 

remains unclear.  

Available evidence suggests being overweight or obese at some point in early stages of life 

(e.g., childhood or adolescence) is significantly correlated with overweight, obesity, and related 

health outcomes in later life (Guo et al., 2000; Guo et al., 2002; Maner et al., 2017; Olsen et al., 

2006; Simmonds et al., 2016; Singh et al., 2008; Stokes & Preston, 2016). Birth cohort effects 

have been found to shape Body mass index BMI patterns at the country level; noteworthy examples 

include the United States (Reither, Hauser, and Yang 2009; Rosenquist et al. 2015), Denmark 

(Olsen et al. 2006), and France (Diouf et al. 2010). The possible role of underlying cohort-related 

mechanisms in explaining observed trends remains unclear, and findings to date are mostly derived 

from cross-sectional data or based on analyses of single cohorts, with some notable exceptions 

(Miljkovic et al., 2015). 

The nexus between overweight/obesity and non-communicable diseases suggests that the 

observed historical growth and patterns in adult BMI represent an important ‘canary in the coal 

mine’ for developing a better understanding of the drivers shaping BMI in current cohorts as 

potential future trends and momentum in adult obesity and related health outcomes. The objective 

of this chapter is to investigate factors correlated with observed patterns and trends in BMI over 

time and across countries. I focus on the long-term relationship between changes in different 

aspects of excess energy availability. A better understanding of this relationship is particularly 

important for countries currently at an early stage in the nutrition transition (Drewnowski and 

Popkin 2009; Schmidhuber and Shetty 2005). Using a repeated cross-sections of country-level 

data I construct a pseudo-panel (Deaton 1985) that allows us to track age- and sex-specific cohorts 

through time. Country-specific cohorts matched by age of birth move through different life stages 

together and are thereby affected by the same historical and social events at the same ages. This 

allows to estimate how changes in calorie availability in excess of calorie requirements—what I 

refer to as excess calorie availability (ECA)—correlate with adult BMI for specific cohorts at 

particular ages, whilst controlling for unobserved mechanisms operating at the level of individual 

countries. 

The remainder of this chapter is organized as follows. Section 3.2 introduces the materials 

and methods and the econometric approach employed in the study. Section 3.3 presents the 
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empirical results. Section 3.4 discusses the outcomes of the study in the context of potential 

limitations. Finally, section 3.5 concludes and draws potential policy implications. 

3.2 Materials and Methods 

3.2.1 Conceptual Framework and the Fixed Effects Regression Model  

I develop a model to estimate the main drivers of observed patterns and trends in adult body 

mass index (BMI). I frame the investigation in terms of energy balance, which is a fundamental 

principle of nutrition related to energy conservation. This principle expresses that changes in body 

weight are associated with an imbalance between the intake of energy content of food eaten and 

the energy required by the body to maintain life, adjust to temperature changes in the environment, 

and perform physical work (Hall et al. 2012; Spiegelman and Flier 2001). The energy balance 

framework provides a reference point to examine changes in body weight (∆BW). Energy balance 

can be expressed as the difference between Energy Intake (EI) and Energy Expenditure (EE):  

∆BWi,j,t = EIi,j,t − EEi,j.t              (3.1) 

In equation (3.1) all terms are expressed as energy per unit of time (i.e., kcal/cap/day). EI 

represents energy from food and fluids consumed. Even for a healthy individual who has no 

difficulty absorbing nutrients, not all energy intake is absorbed. Net absorption is determined by 

the amount of metabolizable energy in the food and its digestibility. This varies among individuals 

and also depends on the specific food items eaten and on how those are cooked. EE includes energy 

expended during biological processes, any physical activity performed, heat lost due to 

thermoregulation (radiant, conductive, and convective), and latent heat losses due to evaporation. 

The rate of energy expenditure (REE) accounts for most energy expended – roughly 

two-thirds (Hall et al. 2012). Hence, a usual approximation for the total EE comes from adjusting 

the basal metabolic rate (BMR) by different ratios of physical activity level (PAL). The 

calculations are for adult males and females aged 20 years or older. Details on the estimates for 

EE used in the calculations are reported in the Appendix B, sub-section Data on average energy 

requirements for adults used in Chapter 3 and Chapter 4. 
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BMI is defined as the ratio of body weight to height: 

BMI =  
W 

H2                (3.2) 

In equation (3.2) W is the individual’s weight (in kgs) and H is the individual’s height (in 

meters). Since adult stature is fixed, changes in BMI are a direct consequence of changes in W. 

Given the global scope of the study, I simplify the framework by assuming that most energy intake 

translates into absorption and that features that influence or alter absorption, for example changes 

in diet composition or food preparation and processing, are captured through changes in the food 

environment (FENV). Accordingly, I model BMI empirically as a function of three groups of 

variables: 

BMIi,j,t = θ0 + αi,j,tEIi,j,t + βi,j.tEEi,j.t + γi,j.tFENVi,j,t + μi,j,t          (3.3) 

In equation (3.3) where subscript i represents sex, j represents country, and t represents year. 

The composite error term consists of unobservable country effects (cI,j ); unobservable time effects 

(δI,t) and unobservable country-time effects (ϵI,j,t):   

μi,j,t =  ci,j + δi,t + ϵi,j,t              (3.4) 

Based on this setup, I use fixed effects Least Squares Dummy Variable regressions models 

to measure the magnitude and statistical significance of the correlation between changes in adult 

BMI of country-specific cohorts matched by age of birth with variables of interest. I introduce 

country-fixed effects to avoid omitted variable bias when measuring changes within cohorts across 

time. In regression models utilizing panel data sets, the error term corresponding to a particular 

observation is typically considered to consist of three components: one that is specific to the 

individual unit, one that is specific to time, and one that is both time- and individual-specific. In 

the fixed effects model the quantities observed in the explanatory variables are treated as 

non-random. This allows us to control for unobservable heterogeneity, when such heterogeneity is 

constant over time and correlated with the independent variables. The constant is then removed 

from the model through first differencing, which eliminates the components of equation (3.3) that 

are invariant over time. These country-specific fixed effects are those unobserved historical and 

institutional factors that are relevant to the country’s food system and likely to be correlated with 

explanatory variables (such as calorie availability) included in the regressions.  
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3.2.2 Data and Empirical Estimation  

We rely on publicly available data assembled from several different sources. Data on average 

daily supply of calories (ADSC) and for the estimations of the average dietary energy requirement 

(ADER) for adults and infants were obtained from the Food Balance Sheets (FBS) reported by the 

Food and Agriculture Organization of the United Nations (FAO) and FAO documents and reports.  

Data on Body Mass Index 

In the absence of long-run global panel data sets of adult BMI obtained at the country levels, 

I use NCD-RisC’s data to develop a pseudo-panel from repeated cross-sectional data 

(Deaton, 1985). To build a pseudo-panel, I begin by grouping BMI data by birth year. I then track 

each cohort across time. For example, the US male cohort born in 1955 and aged 20-24 in 1975 

becomes the US male cohort aged 25-29 in 1980, the male cohort aged 30-24 in 1985, etc. (Figure 

3.1).  

 

Figure 3.1. Generating a pseudo-panel data set using repeated cross-sectional data on BMI.  

Data is obtained from NCD Risk Factor Collaboration (NCD-RisC). The figure highlights changes in BMI of adult 

females after being matched by year of birth. 

To track BMI changes for each cohort I match the datapoints by year of birth. For example, 

to track the 1955 US male cohort, I first calculate the average BMI for a male between 20 and 24 

years of age in 1975. Subsequent datapoints for the cohort are calculated as the average BMI 

observed in each subsequent five-year band. This process yields a pseudo-panel dataset from 

repeated cross-sectional data for the period between 1975 and 2015 (Deaton 1985).The final 
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dataset allows us to track changes in BMI corresponding to 21 sex- and country-specific cohorts 

spaced at five-year intervals, born over the period 1890 to 1995. Data cover 156 countries which 

together represented 95% of the global population in 2015. Figure B.1 illustrates changes in adult 

male BMIs for four male cohorts in three countries. 

Data on Calorie Availability 

The FBS constitute the most extensive global database on countries’ food systems. The 

average daily supply of calories (ADSC) in the FBS is an indicator of food availability at the 

consumer level obtained as a result of an accounting process in each country. These data are 

reported on an annual basis starting in 1961. For each food item, the domestic supply (quantity) 

consists of domestic production, net imports (imports minus exports), adjustments for intermediate 

usages (e.g., feed, seed, etc.), and adjustments for variations in stocks and losses through the 

different stages of the supply chain. The quantity of food obtained through this accounting process 

(in gms) is then used to calculate country-level calorie availability by converting the edible parts 

of each food item into kilocalories. Dividing the latter result by 365 (days in the year) and the 

country’s total population in that year, FAO reports the ADSC for a year in terms of calories per 

capita per day (kcal/cap/day).  

The FBS underwent some changes in methodology for data reported after 2013. I 

downloaded food balance data from the website of the FAO (http://faostat3.fao.org/home/E); data 

and methodology updated December 2017). By matching calorie availability to BMI, I am able to 

examine the long-term correlations between BMI and the supply of calories for the cohorts at 

particular points in time. For example, in 1975 I observe at age 75 the cohorts born in 1900, at age 

70 those born in 1905, at age 65 those born in 1910, and so on. 

The average dietary energy requirement (ADER) is defined as the calorie intake 

(kcal/cap/day) required to provide energy balance in a given individual of a healthy weight for 

their sex, age and activity levels. The ADER for adults, used in Models 3.1 and 3.2 (presented later 

in this section), is calculated based on the country-specific average height and weight, adjusted by 

physical activity levels (PAL). I compiled ADER values under different scenarios of PAL, 

sedentary or light activity lifestyle, active or moderately active lifestyle, and vigorous or 

vigorously active lifestyle with PAL adjustment factors equal to 1.55, 1.76, and 2.25 respectively 

(FAO/WHO/UNU 1985). 

http://faostat3.fao.org/home/E
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Data for age-, sex-, and country-specific BMI, by year, come from the NCD Risk Factor 

Collaboration (NCD-RisC) database (http://ncdrisc.org/index.html). This database has been 

widely used in studies of long-run trends in human anthropometric (NCD Risk Factor 

Collaboration (NCD-RisC) 2016a; 2016b; NCD Risk Factor Collaboration (NCD-RisC) 2019) and 

related health outcomes (NCD Risk Factor Collaboration (NCD-RisC) – Africa Working Group et 

al. 2017; Nowbar et al. 2019). The database provides a range of variables of interest for the analysis 

of risk factors for non-communicable diseases. Data are compiled from more than 2,545 

population-based surveys administered in 193 countries. Data collection began in 1957, and risk 

factor levels have been measured for nearly 130 million participants. The NCD-RisC provides data 

on sex-specific BMIs for adults more than 20 years old by country, by year, and by five-year age-

groups for the period between 1890 and 2015 Figure 3.1. 

I define, compute, and track over time and across countries excess calorie availability (ECA) 

as the difference between the ADSC and ADER, i.e., 𝐸𝐶𝐴 =  𝐴𝐷𝑆𝐶 −  𝐴𝐷𝐸𝑅 , where both 

measures evolve over time. I construct the pseudo-panel dataset from repeated cross-sections 

(Deaton, 1985), spaced at five-year intervals. The dataset allows us to track changes in BMIs and 

their correlations with the ECA for 21 country-specific age-sex cohorts born between 1890 and 

1995 and observed between 1975 and 2015. The dataset covers 156 countries which together 

represented 95% of the global population in 2015. 

Estimations of Average Energy Requirements for Children Used in Model 3.3 

In Model 3.3 (presented later in this section), I use for children an energy requirement 

concept analogous to that used for adults in Model 3.2. The average dietary energy requirement 

(ADER) for a child is also defined as the calorie intake (kcal/cap/day) required to provide energy 

balance in a given individual of a healthy weight for their sex, age and activity level. However, the 

assessment of energy expenditure in children raises complications. Few studies with direct 

measures of energy requirements in this age group appear in the literature, and published work has 

often suffered from technical shortcomings (Ferro-Luzzi and Durnin 1981). Therefore, 

information for children in this age group is scarce, making it necessary to indirectly estimate child 

energy requirements from data on dietary intake (FAO/WHO/UNU 1985). Energy requirements 

depend on the age and weight (Table 3.1). 

http://ncdrisc.org/index.html
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Table 3.1. Prediction of energy requirements for children aged 12-60 months. 

Age Median weight (kg) Energy requirements (kcal/day) 

1-2 11.0 1150 

2-3 13.5 1350 

3-5 16.5 1550 

Note: Data from FAO/WHO/UNU (9) based on methodology provided by the National Center for Health Statistics 

(15). Note that sexes are not differentiated for children up to 5 years; median weight represents the average for boys 

and girls at the mid-point of the age range with adjustments for activity levels and energy expenditure. 

Similar to the Models 3.1 and 3.2, subtracts the imputed value of energy requirements for 

children from the ADSC reported in FAO’s FBS. In this case I focus on early childhood (ages 12-

60 months) of each cohort to analyze the potential correlation of the ECA with the BMI level at 

the age of adulthood (20 years). I do not consider the ECA during the first year of each cohort 

(0 to 12 months) since at this stage a child’s food intake largely depends on breastfeeding. For 

example, if the cohort was born in 1975, I consider the years 1976, 1977, 1978, and 1979 as “early 

childhood” for this model. I use the imputed ECA during those years to calculate the average ECA 

during early childhood by sex (i), country (j), and cohort (c) (ECA5I,j,t−15) . I then test the 

correlation of the ECA5I,j,t−15 with body mass index at the age of reaching adulthood BMI20I,j,t 

(1995 for this particular example) 

In the empirical estimation, I introduce country-fixed effects to avoid omitted variable bias 

when measuring changes within cohorts across time (Wooldridge 2010). I estimate the regression 

models using Least Squares Dummy Variable (LSDV) methods. The regressions to test the 

correlation between ECA and adult BMI Model 3.1 and Model 3.2: 

Model 3.1. BMIi,j,t = θ0 + βi,j.tAgei,j.t + γi,j.tCohorti,j,t + Ci,j +  ϵi,j,t        (3.5) 

Model 3.2. BMIi,j,t = θ0 + αi,j,tECAi,j,t + βi,j.tAgei,j.t + γi,j.tCohorti,j,t + Ci,j +  ϵi,j,t      (3.6) 

I also test for the existence of correlation between ECA during early childhood and BMI at 

the time of adulthood in Model 3.3 by estimating fixed effects regressions of the form: 

Model 3.3. BMI20i,j,t = θ0 + αi,j,tECA5i,j,t−15 +  γi,j.tCohorti,j,t + Ci,j + μi,j +  ϵi,j,t       

(3.7) 

In these models, subscript i corresponds to males and females, j indexes countries, and t 

corresponds to year; C  represents country fixed effects that embody relevant but unobserved 

historical and institutional features of a country that are highly likely to be correlated with 
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explanatory variables in the models; and ϵ represents an error term. In Models 3.1 and 3.2, BMI is 

the age- and sex-specific body mass index (BMI). Age represents a vector of variables controlling 

age-related unobservable effects, Cohort is the year of birth, and ECA represents excess calorie 

availability in year t. In Model 3.3, BMI20 is the sex-specific BMI at age 20 and ECA5 is the 

average excess calorie availability during early childhood (12-60 months) of each cohort. Similar 

to the construction of ECA, ECA5 is calculated as the difference between the ADSC and ADER 

for children between 12-60 months. I do not consider the effects of ECA during the first year of 

life since food intake at that age is heavily influenced by breastfeeding practices. 

3.3 Results 

Table 3.2 summarizes the overall findings. I find positive correlations between adult BMI 

and both contemporaneous ECA and ECA during early childhood (ECA5) under all model 

specifications. ECA has a positive and significant correlation with BMI in adults, for both males 

and females. I also find positive cohort effects resulting in successively stronger correlations 

between ECA and adult BMI over generations. These cohort mechanisms are boosted by positive 

and statistically significant age effects. Additionally, I find a positive correlation between ECA5 

and BMI at the age of adulthood (20 years), although this relationship is statistically significant 

only in the case of males. 

Table 3.2. Summary of regression results for different model specifications. 

Variables 
Model 3.1  Model 3.2  Model 3.3 

male female  male female  male female 

Age +** +**  +** +**  n/a n/a 

Cohort +** +**  +** +**  +** +** 

ECA n/a n/a  +** +**  n/a n/a 

ECA5 n/a n/a  n/a n/a  +** + 

Note: Full regression results are presented in  

Table C.1. All regressions include country fixed effects. ** indicates the estimated coefficient is significantly different 

from zero at the 5% test level; + indicates a positive correlation between the explained and the explanatory variable; 

n/a indicates the variable is not included in the model. 
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3.3.1 Calorie Effects 

Over previous decades, increases in total factor productivity (TFP) in agriculture combined 

with increases in international food trade have increased the total supply of calories  in virtually 

every country in the world (FAO 2017a). Total calorie supply is projected to continue increasing 

to 2050 (Uris Lantz C. Baldos and Hertel 2014a). Over the past five decades, average per capita 

calorie availability also has risen in every country (Figure 3.2). While a substantial portion of 

calories may result in “plate waste” at the consumer level (Barrera and Hertel 2020), evidence 

points to a sustained energy imbalance that is correlated with long run BMI outcomes (Fallah‐Fini 

et al. 2019).  

 

Figure 3.2. Average daily supply of calories (kcal/cap/day) and average BMI in 1975 and 2013 across 156 

countries. 

Average BMI is the population-weighted average composite of adult males and females. The gray shaded areas in the 

figures correspond to healthy BMI ranges. Dashed lines represent the global average daily energy requirement 

(kcal/cap/day) in reference years. Circle sizes are proportional to countries’ populations, using log-transformation 

weighting.  

In recent decades, average global per capita calorie availability has increased more than 32%. 

According to the FAO’s Food Balance Sheets (FBS; http://faostat3.fao.org/home/E), in the early 

1960s average per capita calorie availability (2196 kcal/cap/day) was similar to average per capita 

energy requirements. Since the mid-20th century, the calorie gap has risen sharply at a global level 

(Figure A.1), with calorie availability exceeding calorie requirements by more than 

800 kcal/cap/day in 2015 (Figure A.1). Although average calorie requirements have increased in 

recent decades in most countries, largely due to increases in body weight and changes in the age 

composition of populations (Barrera and Hertel 2020; Fallah‐Fini et al. 2019; Hiç et al. 2016), the 
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rate of increase in calorie availability has outstripped this increase in requirements. Accordingly, 

in Model 3.2 I find a positive and significant correlation between ECA and BMI for both males 

and females (Table B.2 and Table B.4). This correlation is greater in magnitude for females than 

males; it also becomes larger in magnitude at older ages for both males and females (Table B.2). 

The econometric model 3.2 in this chapter is developed to isolate the role of ECA as an historical 

driver of adult BMI. Therefore, the differences, for men and women, on the ECA parameters may 

reflect underlying gender gaps. Changes in number of pregnancies and breastfeeding prevalence 

in recent decades might play a role in the gender differences regarding the ECA role as a historical 

driver of adult BMI (Dewey 2004; Lutter and Morrow 2013; Vaz et al. 2021; Neves et al. 

2021).What emerges as a stylized pattern across most countries is that more recent cohorts reach 

adulthood with a higher BMI than previous cohorts (Figure 3.3), a result that is consistent with 

spending earlier stages of life in an environment that facilitates weight gain (Swinburn et al., 2011). 

Model 3.3 further tests this correlation and reveals a positive correlation between ECA5 and 

BMI at age 20, although this relationship is statistically significant only in the case of males (Table 

B.3). The differences in the role of excess calorie availability in early childhood and BMI at 

adulthood in girls vs. boys may be explained by cultural and behavioral attitudes. Previous 

evidence suggests that unequal resource distribution within households is affected by certain 

family characteristics (Chen, Huq, and D’Souza 1981; Harris-Fry et al. 2017; Brown, Calvi, and 

Penglase 2018). Women, children, and the elderly are more likely than men of facing poverty even 

in households with per-capita expenditure above the poverty threshold (Brown, Calvi, and 

Penglase 2018). Furthermore, girls more often receive less food than boys, previous studies in 

developing countries have shown that intake ratios of calories and protein were 1.16 and 1.14 times 

higher in boys compared to girls, respectively (Chen, Huq, and D’Souza 1981; Harris-Fry et al. 

2017). Our findings here are an step forward on evidencing potential gender gaps in the energy 

intake at early childhood, that might cascade in undesirable nutritional and health outcomes for 

women at the age of reaching adulthood (De Pee, Taren, and Bloem 2017). Moreover, while here 

I provide evidence on the fact that energy imbalance is implicated, other mechanisms — including 

behavioral and environmental influences — may also correlate with observed trends in BMI 

(Rutter 2011). 



` 

 

55 

 

3.3.2 Temporal Effects 

I examine BMI as an outcome of individuals’ interactions with time-varying phenomena and 

environmental influences that are particular to each country (Figure 3.3). The linear dependency 

of age, period, and cohort dimensions with time presents a potential identification problem (Yang 

and Land 2013). Resolution is typically achieved through the introduction of one or more variables 

that underlie at least one of the three temporal dimensions. Figure 3.3 illustrates the need to control 

for country-specific eccentricities in the models used in this chapter. I find that most countries 

present similar age and cohort patterns for changes in adult BMI for females (Figure 3.3) and 

males (Figure B.1) but at different BMI levels. Countries differ in many respects with regard to 

food regulations, diets and food culture, relative prices of food with respect to non-food items, the 

cost of a healthy diet (Bai et al., 2020; Miljkovic & Nganje, 2008), and infrastructure that may 

affect food systems and nutritional outcomes (Badiane and Shively 1998; Shively 2017). These 

differences may imply time-invariant country-specific mechanisms correlated with observed 

trends and patterns in adults’ BMIs (Figure B.2). To control for unobservable country-specific 

mechanisms affecting BMI, I use country fixed effects when estimating Models 3.1, 3.2, and 3.3. 

Results are presented in the Appendix B (Figure B.2, Figure B.3, and Figure B.4). 

 

Figure 3.3. BMI trajectories for adult females in three countries. 

Changes in BMI for cohorts matched by age of birth are illustrated by dashed lines. India (low income), China (middle 

income), and the US (high income) present similar age and cohort patterns but at different BMI levels. 

3.3.3 Cohort Effects 

Age, period, and cohort effects carry distinct substantive meanings for the observed changes 

in BMI. Period effects reflect the accumulation of historical events and environmental factors that 
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can affect the phenomena under study. Changes in food environments, technologies, urbanization, 

and incomes help drive increases in calorie consumption (Malik, Willett, and Hu 2013; Popkin 

2001; 1994). Simultaneously, changes in daily activity and work requirements during recent 

decades have tended to reduce energy needs (Popkin 2001; Popkin, Corvalan, and Grummer-

Strawn 2020a) contributing to the increase in energy imbalances (Hall et al. 2011; Thomas et al. 

2011). I find that this energy imbalance is correlated with the rapid increase in BMI across 

countries (Model 3.2). While ECA and BMI have both increased in virtually every country and 

region in the world in recent decades (Figure 3.2), they have not increased at the same or uniform 

rates. This raises the possibility that largely ignored cohort-related mechanisms also might 

contribute to observed trends in BMI (Figure 3.2).  

 

Figure 3.4 Observed global average cohort effects on BMI under two model specifications. 

The vertical axis measures the total increase in global average BMI for each of the 21 successive birth-year cohorts, 

with the BMI for those born in 1890 serving as the base (e.g. in Panel a, corresponding to Model 3.1, a female 

belonging to the cohort born in 1980 presents an average BMI that is 8.0 points higher than a female born in 1890, 

while a male presents a BMI that is 7.5 points higher than his 1890 cohort). Shaded areas in Panel a (Model 3.1) and 

Panel b (Model 3.2) represent 99% confidence intervals for the estimated cohort-specific parameters. 

Cohort effects are defined as changes across groups of people who experience an initial event 

(such as birth or marriage) in the same year or years (Yang and Land 2013). Here I develop a 

cohort analysis where BMI is a function of cohort membership, age, and ECA. Members of a birth 

cohort move through different life stages together and are affected by the same historical and social 

events at the same stages of their life. There is evidence to suggest observed increases in BMI 

might be a consequence of recent birth cohorts spending larger shares of their life in environments 

more favorable to weight gain (Allman-Farinelli et al., 2008; Reither et al., 2009; 
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Swinburn et al., 2011). Here I provide evidence for cohort mechanisms driving BMI over time and 

across countries. Models 3.1 and 3.2 (Figure 3.4) control for country- (Figure B.2 and Figure B.3) 

and age-specific mechanisms (Figure 3.5) and therefore provide evidence on the independent 

presence of cohort mechanisms as a factor underlying current trends in adult BMIs. More recent 

male and female cohorts present higher BMIs compared with earlier cohorts. ECA appears to play 

a significant role in driving increases in BMI. Furthermore, this effect intensifies when energy 

imbalances occur at earlier stages in life (Model 3.3). I find that male cohorts with larger ECA 

during early childhood reached adulthood with greater BMIs (Table B.3). For both males and 

females, I also find a positive fixed effect on BMI from one cohort to the next during most of the 

20th century (Table B.2). I find a marked increase in the cohort effects for individuals born 

between 1940 and 1990, a period that coincided with rapid increases in energy imbalances in most 

countries. This pattern is consistent with previous evidence (Swinburn et al. 2011). 

 

Figure 3.5. Observed age effects on BMI under two model specifications. 

The vertical axis measures the increment in global average BMI associated with each adult age group, with BMI at 

age 20 serving as the base (e.g., in Panel a, corresponding to Model 3.1, a female that is 60 years old presents an 

average BMI 6.8 points higher than a female that is 20 years old, while a male that is 60 years old presents a BMI that 

is 5.5 points higher than his 20-year-old cohort). The shaded areas in Panel a (Model 3.1) and Panel b (Model 3.2) 

represent 99% confidence intervals for the estimated age specific parameters. 

3.3.4 Age Effects 

Age effects reveal changes in energy requirements and intake due to variations associated 

with different chronological age groups. They thereby provide evidence for biological or 

physiological changes and changes in lifestyle due to shifts in in social roles or status (Hadgraft et 
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al., 2015). As people age, they tend to gain BMI as a result of changes in lifestyle and metabolism. 

A lower energy requirement due to a decrease in physical activity, combined with an increase in 

energy intake due to changes in social status (Feng, Li, and Smith 2020; Hayes et al. 2015; Lean 

et al. 2013; Tanamas et al. 2014) and changes in basal metabolic rates (National Research Council 

(US) 1989; Piers et al., 1998) may explain a portion of observed age effects. While the general 

trends are similar for both males and females, the age effect appears to play a stronger role in 

females, especially after age 30, likely due to childbirth and changes in lifestyle (Weng et al. 2004). 

Positive and increasing age effects as individuals grow older reinforce the importance of the cohort 

mechanisms. With each cohort reaching adulthood at a higher BMI than the previous cohort, the 

age effect works synergistically with the cohort effect. This process leads individuals to reach 

unhealthy BMI levels at younger ages and to remain overweight and/or obese for larger 

proportions of their adult life. I also observe a downturn in BMI at advanced ages, which likely 

reflects attrition bias arising from the deaths at younger ages of individuals with higher BMIs 

(Preston, Vierboom, and Stokes 2018; Stenholm et al. 2017; Narayan et al. 2007).  

3.4 Discussion and Limitations 

The global prevalence of obesity among adults is rising in virtually every country across the 

globe. I find a significant positive correlation between observed trends in adult BMI and ECA 

across countries, even after controlling for country-specific effects. Cohort mechanisms underlie 

BMI for both males and females. Each cohort reaches adulthood with a higher BMI than the 

previous cohort, and this cohort effect is particularly large for those born between 1940 and 1990, 

a period that coincided with the emergence of per capita energy imbalances in many countries. 

Results also provide evidence of a positive correlation between ECA during early childhood and 

BMI at the age of adulthood for males. This highlights the importance of food environments 

characterized by an abundance in calories during early stages of life on subsequent overweight and 

obesity outcomes in adulthood. I also find that the cohort mechanisms are boosted by age effects. 

I observe significant and positive age effects for both males and females, with each cohort reaching 

adulthood at higher baseline BMI than the previous cohort. As a result, across generations, the age 

effect leads individuals to become overweight and/or obese at younger ages. The combination of 

age and cohort effects presents a serious social challenge given the health and economic 

implications associated with overweight and obesity. Each cohort’s time of exposure to risk has 
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grown larger over time, which could be expected to have implications for increases in related 

mortality, morbidity, disability-adjusted life years (DALYs), and health care costs. 

Findings should be interpreted in the context of several limitations in the data and analysis. 

First, the ECA imputations are based on data for calorie availability, not calorie intake. Country-

level estimates for calorie intake are not available, and FAO Food Balance Sheet data are not 

without criticism (Hall et al. 2009b; Svedberg 1999a). FAO’s methodology tends to underestimate 

calorie availability in emerging economies, particularly in rural areas where unreported 

subsistence production represents an important share of the food intake (Hawkesworth et al. 2010). 

Second, although recent revisions to FAO’s methodology mitigates some of those acknowledged 

inaccuracies (FAO 2019a), for the purposes of the analyses in this chapter the database still carries 

the limitation that an important but unknown proportion of calories available ends up uneaten 

(Barrera and Hertel 2020). Third, while the results from this chapter highlight the underlying long-

run correlation between ECA and adult BMI, the approach taken in this chapter cannot uncover 

the importance of other diet-related factors, such as the role of macronutrient composition (e.g. fat, 

carbohydrates, etc.), that likely play a role in weight maintenance (Paeratakul et al. 1998; Prewitt 

et al. 1991). Finally, although it is true that the NCD-RisC’s data sets are widely used, they contain 

potent measurement errors, especially for early cohorts. For some of the variables in the dataset 

(e.g., height) measurements began in the 1980s. Hence, the earlier birth cohorts are based on either 

measurements of very old persons or on interpolation from countries for which some early data 

are available.  

The results from this chapter have implications for future projections of BMI and related 

outcomes. I find evidence that ECA during early childhood is correlated with BMI at the age of 

reaching adulthood. Long-run per capita calorie availability is projected to continue increasing in 

coming decades in most countries, particularly in emerging economies. As a result, cohorts born 

now and in the near future are likely to reach adulthood in an environment characterized by a 

super-abundance of calories. In addition, our findings here offer further  evidencing of potential 

gender gaps in the energy intake at early childhood, that might cascade into undesirable nutritional 

and health outcomes at the age of reaching adulthood (De Pee, Taren, and Bloem 2017). The 

differences in the role of excess calorie availability in early childhood and BMI at reaching 

adulthood in girls vs. boys are consistent with previous evidence in these matters (Chen, Huq, and 

D’Souza 1981; Harris-Fry et al. 2017; Brown, Calvi, and Penglase 2018).  
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One caveat is that the current global spread of SARS-CoV-2 introduces considerable 

uncertainty into projections of future trends in food availability, as the pandemic is creating a 

number of social and economic disruptions that may measurably affect nutritional outcomes; these 

include trade restrictions, food supply disruptions, lower incomes, and potentially higher food 

prices. A slowdown in economic growth and rising unemployment are aggravating food insecurity, 

particularly in vulnerable groups, in virtually all of the world’s economies. Early estimations 

project that rates of wasting and stunting may rise if food supply disruptions intensify and food 

prices remain high (Roberton et al. 2020; Headey et al. 2020). On the other hand, extended and 

repeated lockdown cycles with lengthy periods of confinement might shift diets toward unhealthy 

foods and reduce physical work and exercise in already-overweight populations. Addressing the 

complexities introduced by the global pandemic on BMI trajectories is beyond the scope of this 

study. However, given the magnitude of current disruptions within food supply chains, 

modification to lifestyles, and potential changes in mortality and morbidity rates, this is an 

important area for future investigation. Moreover, the models 3.1, 3.2, and 3.3, present the country 

fixed effects that aim to embody relevant but unobserved historical and institutional features of a 

region that are likely to be correlated with explanatory variables. That means a variety of 

phenomena might be captured within those fixed effects (from cultural, to policy, to behavioral 

differences, etc.). This is the reason I refrain from further commenting on those results. However, 

a deeper examination of regional differences (e.g., different gender effects across regions) might 

be an important area for future research.  

3.5 Conclusions 

This analysis has focused on measuring the role of excess calories availability (ECA) as a 

historical driver of overweight and obesity globally. I detect a pronounced ECA effect that is 

boosted by age effects, increasing the number of years that individuals are exposed to risks related 

to overweight and obesity. Incorporating a multidimensional consideration of time into the analysis 

of long-run BMI trajectories illustrates underlying mechanisms driving current trends. These 

results provide a number of policy-relevant insights. First, the findings highlight how some 

standard agricultural and trade policies oriented toward reducing hunger by increasing calorie 

supplies might have unintended consequences for undesirable overweight, obesity, and health-

related outcomes (Law 2019). In light of current trends in food supply, these findings are of 
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particular importance for developing countries already dealing with the complexities of a rising 

malnutrition double burden. Second, as the world continues to push toward increasing the supply 

of food to alleviate hunger among those still facing food insecurity, there is a simultaneous need 

to underscore and address, through policy and education, the importance of nutrition and diet 

quality, including the production, promotion and availability of affordable healthy diets, to avoid 

intensification of the already worrisome trends in adult BMI. Third, these findings highlight 

potential gender gaps in the within-household distribution of food that might cascade into 

undesirable nutritional and health outcomes in women during their adulthood. From a political 

perspective, these results imply a new argument in line with the fact that reducing the gender gap 

would boost global food and nutrition security. 
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 CONFRONTING THE DOUBLE BURDEN OF 

MALNUTRITION YIELDS HEALTH AND ENVIRONMENTAL 

BENEFITS. 

Motivation and rationale: Prevalence rates of overweight and obesity are increasing across 

the globe. In this chapter, I present a novel framework that extends the UN-FAO’s methodology 

for assessing undernutrition to also encompass excessive calorie consumption and its association 

with the evolution of adult Body Mass Indexes (BMI). By incorporating these relationships into a 

global partial equilibrium model of the food sector (SIMPLE), I develop future trajectories of age-, 

sex-, and cohort-specific adult BMI across major world regions over the next three decades. This 

allows for an examination of the dynamics of the double burden of malnutrition between 2015 and 

2050. I find that the excessive consumption of calories will play a key role in driving rising BMI 

levels, particularly in emerging economies. As a consequence of reaching higher levels of BMI at 

younger ages, future cohorts will increase their exposure to the health risks attributable to 

overweight and obesity, including coronary heart disease (CHD), stroke, site-specific cancers, and 

type 2 diabetes (T2DM) I use this framework to shed light on the health, food, and environmental 

security impacts of changing food consumption behavior. A key finding is that environmental 

benefits of shifting consumption patterns are dominated by food waste reductions as opposed to 

changes in dietary composition. 

4.1 Introduction 

In this chapter analyze the trade-offs and synergies posed by the dynamics of the 

malnutrition double burden towards the mid-21st century. While the global prevalence of 

undernutrition is expected to decline in coming decades (Uris Lantz C. Baldos and Hertel 2014b), 

the prevalence of overweight and obesity are expected to rise (FAO 2017b; Popkin, Corvalan, and 

Grummer-Strawn 2020b). Trends and patterns in BMI can be examined from different temporal 

perspectives (Reither, Hauser, and Yang 2009; Yang and Land 2013). Previous authors have 

examined: (i) age effects (Feng, Li, and Smith 2020; Hadgraft et al. 2015; Hayes et al. 2015; Lean 

et al. 2013; Tanamas et al. 2014), (ii) period effects, that refer to events which occur at a particular 

point in time uniformly influencing all age groups and cohorts (Kennedy and Fanzo 2018b; 

Miljkovic et al. 2015; Popkin 1994; 2001; Popkin, Corvalan, and Grummer-Strawn 2020b), and 



` 

 

63 

 

(iii) cohort effects of BMI (Diouf et al. 2010; Olsen et al. 2006; Reither, Hauser, and Yang 2009; 

Rosenquist et al. 2015). 

I advance the current state of knowledge by presenting a novel framework for analysis of 

age-cohort and gender-specific changes in BMI in a way that extends the Food and Agriculture 

Organization’s Prevalence of Undernourishment (PoU) methodology to consider excessive calorie 

consumption (Wanner et al. 2014a). Previous studies have also explored the human health and 

environmental co-benefits of moving from current levels of food purchasing to healthier dietary 

intake (Springmann et al. 2016b; Springmann, Clark, Mason-D’Croz, Wiebe, Bodirsky, Lassaletta, 

de Vries, Vermeulen, Herrero, and Carlson 2018) However, they have failed to disentangle key 

differences between current food purchases and food consumption under a healthy diet. Much of 

the literature has just looked at total calories from the Food and Agriculture Organization’s (FAO) 

Food Balance Sheets (FBS) and concluded that reducing them to a healthy level would greatly 

benefit the environment. However, the FBS calories have included food waste at consumers’ level. 

Although recently some adjustments have been made the inaccuracy persists (FAO 2019a). 

Therefore, the excessive consumption of food in current diets, understood as the gap between 

current food consumption levels (equated to food availability from FAO’s FBS) and healthy 

dietary intake levels, includes both food waste and excessive intake. 

Additionally, since shifting towards healthier diets usually implies not only the reduction in 

food consumption, but also shifting towards more plant-based diets, there is also a third 

contributor--the composition of these calories—that must also be considered. I extend the existing 

literature on this topic by disaggregating, for the first time, these three elements of the linkage 

from food purchasing behavior and the environment: changes in the composition of food 

consumption to achieve a more balanced diet, reductions in overall food intake, and reductions in 

food waste (Section 4.5). I examine the relative contribution of each subcomponent to 

environmental sustainability, revealing that the food waste component of what has been dubbed in 

the literature ‘dietary changes’ represents the largest contributor to the environmental benefits of 

shifting food purchases to a more sustainable level. 

I explore how the incidence of overweight and obesity would be affected by current trends 

in agricultural productivity, population, and income, as well as the complexities introduced by the 

changing diets. I then incorporate this novel framework into a global, partial equilibrium model of 

the agriculture sector, the Simplified International Model of Crop Prices, Land Use and the 
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Environment (SIMPLE) ( Hertel and Baldos 2016c). This approach offers several analytical 

advantages over prior work. Firstly, it allows for an historical validation of the novel methodology 

to see how well it reproduces observed historical patterns on overweight and obesity. By looking 

back, before looking forward with the SIMPLE model (Baldos & Hertel, 2013), the novel 

methodology allows the construction of more credible baseline projections of adult BMI towards 

2050. Secondly, it allows us to assess the main factors driving projected increases in adult BMI, 

including income growth and changes in diets and food waste and the demand side, and 

technological change through increasing food availability on the supply side. Thirdly, it allows us 

to simulate several alternative future scenarios to examine the implications of changing diets for 

health and environmental outcomes as well as prices and food security. The findings from this 

chapter shed light on some of the critical challenges of the agriculture-environment-health 

trilemma posed by the rising malnutrition double burden.  

4.2 The Impact of Excessive Consumption of Calories on Adult BMI 

Since the mid-20th century, the calorie gap between average availability and daily 

requirements has risen sharply across the world (Figure 4.1). Indeed, these nutrition transitions, 

have tipped the balance between energy intake and energy expenditure, leading to widespread 

increases in rates of overweight and obesity. The double burden of malnutrition, characterized by 

high national rates of undernutrition with the simultaneous rise in obesity, continues to increase in 

low- and middle-income countries. These trends present a serious threat to global health. In this 

context, there is a need to better understand the potential trade-offs of policies aiming to reduce 

hunger and their unintended consequences for overweight and obesity prevalence. 
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Figure 4.1. The excessive calorie availability and adult BMI. 

The top three panels present the average daily supply of calories (kcal/cap/day) and average BMI in 1975 (a), 2015 

(b), and projected towards 2050 (c) across regions. Average BMI is the population-weighted average composite of 

adult women and men. The gray shaded areas in the figures correspond to healthy BMI ranges. Dashed vertical lines 

represent the global average daily energy requirement (kcal/cap/day) in reference years. Circle sizes in a-c are 

proportional to countries’ populations. Panels d-f illustrate how BMI evolves across cohorts and over time at different 

income levels, for adult women in three regions (See Appendix C for the remaining regions, Figure C. 6 for BMI in 

adult women and Figure C. 7 for men). Observed changes in BMI for cohorts matched by age of birth are illustrated 

in the solid lines, while projections towards 2050 are given by the dashed lines. The isoquants in these panels represent 

different BMI levels: 18.5 (purple), 22.5 (green), 25 (brown), 30 (red). South Asia (d) (a low-income region), China 

(e) (middle-income), and Canada & US (f) (high-income), present similar age and cohort patterns but at different BMI 

levels. These lower panels were constructed by aggregating results from a fixed-effect, country/panel statistical model 

into 15 regions (Appendix C) and making projections to 2050 (Appendix D). 

While it is projected that this gap will almost double by 2050 (Figure 4.1c) there is also a 

positive correlation between excessive calorie consumption and adult BMI that has been 

strengthening with each successive generation over the past century (Appendix C, Section 

Empirical estimation of BMI and ADEC relationship in the long run). Consequently, more recent 

cohorts reach higher BMI levels at younger ages and therefore experience longer durations of 

obesity over their lifetimes. This pattern emerges consistently across regions (Figure 4.1 d-f) and 

appears to be correlated with changes in the food environment faced by each new cohort. This is 

a serious concern, since higher BMI levels re associated with a series of non-communicable 
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diseases (Afshin et al. 2019; Scherer and Hill 2016) and loss of years disease-free years (Nyberg 

et al. 2018).  

The SIMPLE model’s nutritional module mirrors the FAO’s methodology for the Prevalence 

of Undernourishment (Uris Lantz C. Baldos and Hertel 2014b). The FAO’s PoU is used as the 

official indicator to monitor progress towards the United Nations Sustainable Development Goal 

2.1 target 4 . This indicator estimates caloric content of food commodities, shifts the FAO 

distribution of those calories among the population across time based on incomes and prices, and 

utilizes an average minimum caloric requirement to produce an estimate of the share of the 

population that does not meet the minimum threshold of calories required for a healthy life (Cafiero 

et al. 2014). For this work, I extend the FAO methodology by incorporating into the analysis the 

concept of excessive calorie consumption (Figure 4.2), which includes both, the excessive calorie 

intake and the imputed food waste (Barrera and Hertel 2020).  

4.2.1 FAO PoU’s Extension: Excessive Acquisition of Calories and the Malnutrition Double 

Burden 

The Food and Agriculture Organization’s (FAO) prevalence of undernourishment indicator 

(PoU) monitors the proportion of people suffering from hunger. Estimates of the number of 

undernourished (NoU) are calculated by multiplying the PoU by the size of the reference 

population. The PoU is defined as the probability that a randomly selected individual from the 

reference population is found to consume less than his/her calorie requirement for an active and 

healthy life. It is calculated as follows (green area in Figure 4.2a): 

𝑃𝑜𝑈 = ∫ 𝑓(𝑥) 𝑑𝑥
𝑀𝐷𝐸𝑅

0
                (4.1) 

In equation (4.1) f(x) is the probability density function of per capita calorie consumption. 

The country-specific parameters involved in the estimation are: The mean level of dietary energy 

consumption (DEC) annually updated based on FAO food balance sheets; a threshold Minimum 

Dietary Energy Requirement (MDER) also annually update based on demographics (age, sex, PAL) 

using UN population data; the coefficient of variation (CV) as a parameter accounting for 

inequality in food consumption updated when information  from National Household Surveys 

 
4 Sustainable Development Goal 2.1: “By the year 2030, end hunger and ensure access by all people, in particular 

the poor and people in vulnerable situations, including infants, to safe, nutritious and sufficient food all year round”. 
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(NHS) is available ; and a skewness (SK) parameter accounting for asymmetry in the distribution, 

also updated when NHS data is available. In its standard version and in recent refinements, the 

methodology assumes a lognormal density function for the caloric distribution among the 

population of reference (Wanner et al. 2014b).  

Before proceeding to the next step, it is important to acknowledge that the FAO’s PoU 

methodology for estimating undernourishment suffers from several limitations, which need to be 

considered when analyzing the results presented in this chapter (See Appendix C for details on 

these limitations). A key set of limitations are related to the fact that the indictor provides 

information on a very specific aspect of food insecurity overlooking relevant aspects about the 

affordability and accessibility of food (Cafiero et al. 2014; Headey et al. 2020; Roberton et al. 

2020) as well as regarding the distribution and severity of undernourishment (Cafiero et al. 2014). 

Another group of limitations, that are more directly related and are more relevant to the results and 

extension presented in this chapter, are the ones regarding the choice of the probabilistic model 

and minimum requirements to represent the representative individual’s dietary intake. Some of 

these criticism arise from the misinterpretation of the indicator and its methodology (Wanner et al. 

2014b; Naiken 2021; Cafiero 2014). However, FAO’s recent refinements have acknowledged and 

mitigated some of these limitations by improving the estimates of the relevant parameters and 

exploring more flexible functional forms (Cafiero 2014; Naiken 2021) to represent the 

probabilistic distribution of calories. Consistently with most recent advances in FAO’s 

methodology it is possible to simultaneously estimate the prevalence of undernourishment and 

over-consumption based on information of the average and the distribution of daily average energy 

requirements as presented in this chapter. 

Here I extend this approach to look at the high levels of caloric availability – excess 

acquisition– to focus on prevalence of overweight and obesity and food waste (Figure 4.2a): 

𝑃𝑜𝑂 = ∫ 𝑓(𝑥) 𝑑𝑥
∞

𝐴𝐷𝐸𝑅
                (4.2) 

In equation (4.2) f(x) is the probability density function of per capita calorie consumption. 

Similarly, to the PoU’s the proposed estimation for the population overconsumption (PoO) is 

defined as the probability that a randomly selected individual from the reference population is 

found to consume (purchase) more calories than his/her Average Dietary Energy Requirement 

(ADER) which is defined as the calorie intake (kcal/cap/day) required to provide energy balance 
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in a given individual of a healthy weight for their sex, age, and activity levels. The PoO is 

calculated as follows, I start by defining a maximum threshold, in this case the ADER which is 

calculated based on country specific energy requirements, constructed from country-specific basal 

metabolic rate (BMR) and physical activity level (PAL) using country-specific demographics (age 

and sex). Also, similarly to the PoU methodology, the number of people over consuming calories 

(NoO) is calculated by multiplying the PoO by the size of the reference population.  

I use then split the over-consumption of calories into excessive intake of calories and food 

waste based on previous estimations of the share of calories purchased in excess that end up 

uneaten (Figure 4.2b) (Barrera and Hertel 2020). This second step enables to differentiate whether 

the excessive acquisition of calories is indeed intake or end up uneaten by the average consumer. 

This is a very important distinction since consumer behavior with respect to those are responsive 

to complete different sets of policies. Moreover, previous studies have emphasized that the 

potential environmental benefits of reducing from current food consumption levels towards 

healthier and more sustainable diets. However, while the excessive intake of calories influences 

health through affecting body weight, the excessive purchasing of food that ends up uneaten does 

not affect body weight. 
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Figure 4.2. Extension of the FAO’s Prevalence of Undernourishment methodology. 

The solid black curve in panel a represents the probability distribution of habitual (i.e., annual average) daily energy 

consumption (purchases) and is based on country-specific parameters and therefore vary by region (Section 4.2.1). 

The dashed vertical line represent the Average Daily Supply of Calories (ADSC) obtained from the FAO’s Food 

Balance Sheets (a). (acquisition) of an individual in the population (a). At the lower end of the calorie distribution, 

the solid green vertical line represents the Minimum Dietary Energy Requirements (MDER), which is the calorie 

intake (kcal/cap/day) compatible with good health and normal physical activity for an average individual; the green 

shaded area represents the Prevalence of Undernourishment (PoU) --the share of population that does not meet the 

MDER (a). The solid vertical red line represents the Average Dietary Energy Requirement (ADER) which is defined 

as the calorie intake (kcal/cap/day) required to provide energy balance in a given individual of a healthy weight for 

their sex, age, and activity levels; the solid red area represents the Prevalence of Overconsumption (PoU) --the share 

of the population with excessive consumption of calories (a). Panel b represents the split of average daily excessive 

consumption (ADEC) of calories (ADEC=ADSC-ADER) into the imputed calorie intake (gray share of the bars) and 

imputed share of food waste (orange share of the bars) using estimates from previous studies (Barrera and Hertel 

2020). 

This novel extension of the PoU methodology allows us to simultaneously analyze both ends 

of the caloric distribution, thereby producing estimates of the double burden of malnutrition which 

is now a dominant concern in countries at earlier stages of the nutrition transition (Popkin, 

Corvalan, and Grummer-Strawn 2020b). Indeed, the coexistence of undernutrition and 

overweight/obesity constitutes an unprecedented challenge to global health. Effectively 

responding to this requires a better understanding of the dynamics of the underlying phenomena 

(Popkin et al., 2020; Webb & Block, 2012). Moreover, reducing excess acquisition of calories is 

critical for improving resource efficiency towards sustainable food systems (FAO 2018a). Here I 

split the excessive acquisition of calories (Figure 4.2) into excessive intake and food waste. Food 
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waste is assumed to increase with income after the average dietary energy requirements are satiated 

(Barrera and Hertel 2020). 

Incorporating this extended nutritional module into a partial equilibrium framework 

(Thomas W. Hertel and Baldos 2016c), is possible to analyze likely future scenarios based on 

shared socio-economic pathway (SSP) projections for the global economy. After building a 

baseline scenario, I examine several counterfactual scenarios involving changes in consumer 

behavior to shed light on the associated linkages, trade-offs, and synergies, focusing specifically 

on overweight and obesity, as well as undernutrition. Further, it is possible to analyze the potential 

for multiple dividends (environmental and health co-benefits) of curbing future trajectories of over 

consumption of food products.  

4.2.2 Empirical estimation of BMI and ADEC relationship in the long run 

A regions FE model for men and women BMI 

In Chapter 2 I define, compute, and track over time and across countries excess calorie 

availability (ECA) as the difference between the average daily supply of calories (ADSC) and 

average dietary energy requirements (ADER), i.e., ECA=ADSC-ADER, where both measures 

evolve over time. Here we follow a similar strategy but adapting and framing the analysis into a 

global partial equilibrium framework, therefore we equate the supply of calories (from FAO’s 

FBS) to the demand (average daily demand of calories). As a result, we define the average daily 

excessive consumption of calories (ADEC) such as ADEC=ECA=ADSC-ADER. Similarly, to 

what is done in Chapter 2, in this chapter I construct a pseudo-panel dataset from repeated cross-

sections (Deaton 1985), spaced at five-year intervals (See Appendix C for details on regional 

aggregation of data used in Chapter 2). 

In the empirical estimation, we introduce regional, age, and cohort fixed effects to avoid 

omitted variable bias when measuring changes within cohorts across time (Wooldridge 2010). We 

estimate the regression models using Least Squares Dummy Variable (LSDV) methods. The 

regression to test the correlation between ADEC and adult BMI are described in Model 4.1: 

Model 4.1. BMIi,j,t = θ0 + αi,j,tADECi,j,t + βi,j.tAgei,j.t + γi,j.tCohorti,j,t + Ri,j +  ϵi,j,t 

In this model, subscript i corresponds to males and females, j indexes countries, and t 

corresponds to year; 𝑅  represents region-specific fixed effects that embody relevant but 
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unobserved historical and institutional features of a region that are highly likely to be correlated 

with explanatory variables in the models; and ϵ represents an error term. In this model, BMI is the 

age- and sex-specific body mass index (BMI). Age represents a vector of variables controlling age-

related unobservable effects, Cohort is the year of birth, and ADEC represents the average daily 

excess of consumption of calories. Results from these regressions are presented in  

Table C.1 and Figure C.1. 

4.3 Model Validation, Uncertainties, and Baseline Projections Towards 2050 

Following Baldos and Hertel (2014) and Lopez Barrera and Hertel (2020) who used the 

SIMPLE framework to examine the evolution of undernourishment and food waste respectively, I 

start our analysis by evaluating how well the model projects changes in adult BMI over an 

historical period: 2005–2015.  

 

Figure 4.3. Historical validation of the BMI module in SIMPLE for the period 2005 to 2015. 

Solid (pattern) colored bars represent observed (projected) percentage changes in adult BMI for cohorts matched by 

the birth year (x-axis) for women (a) and men (b). The error bars represent 95% confidence intervals in the projected 

values. Consistently with previous studies (Barrera and Hertel 2020; Uris Lantz C. Baldos and Hertel 2014c; Uris 

Lantz C Baldos and Hertel 2013; McCalla and Revoredo 2001b), the model does a fair job globally and the projections 

lose precision with higher levels of resolution. The uncertainties are heterogeneous across regions, those already in 

the later stages of the nutritional transition (higher ADEC levels and BMI levels) (as in the US and Canada) present 

lower uncertainties as BMI is expected to have relatively smaller changes in adult BMI. On the other hand, regions 

that are in earlier stages of the nutritional transition - a lower ADEC and BMI level - (such as South Asia), present 

greater uncertainties. 
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Often studies that use economic models to project future outcomes are not validated against 

history, yet this is a critical step. Additionally, this historical assessment provides valuable inputs 

for examining future changes. The model’s historical projections in (Figure 4.3) perform best at 

the global level; projections are less accurate at the regional level, but still capture the broad trends. 

This is consistent with previous studies attempting to validate global agricultural models (Uris 

Lantz C. Baldos and Hertel 2014b; Barrera and Hertel 2020; McCalla and Revoredo 2001c). Also 

consistent with previous literature, there is considerable regional variation in the model 

uncertainties. The framework used in this study allows for systematic investigation of the impacts 

of variations in the key inputs on driving the results simulation results (Appendix D). In the case 

of the results on BMI projections, the systematic sensitivity analysis was driven by incorporating 

variations on the age- cohort- and region-specific as well as the sex-specific ADEC parameters 

(model 4.1). Specifically, in this analysis, the Gaussian quadrature approach to systematic 

sensitivity analysis draws parameters from the previously estimated distributions and produces 95% 

confidence intervals for the model results. regression results for the aforementioned parameters I 

find that, regions already at higher levels of excessive calorie availability and BMI (such as the 

US) present lower uncertainties. On the other hand, regions at earlier stages in the nutrition 

transition, such as South Asia, present larger uncertainties.  

Following model validation, I turn to business-as-usual (BAU) projections of adult BMI 

from 2015 to 2050. The SIMPLE model is projected forward with exogenous shocks to population, 

per capita incomes, total factor productivity (TFP) growth in agriculture, and biofuel consumption. 

Growth rates for population and income were derived from the Shared Socioeconomic Pathways 

(Fricko et al. 2017). The baseline follows the BAU Shared Socioeconomic Pathway (SSP2) which 

is widely used to evaluate climate change and environmental outcomes. This provides a natural 

starting point from which to explore integrated solutions for achieving societal objectives to reduce 

pressure on environmental resources (Fricko et al. 2017). Projected TFP growth rates are based on 

the historical estimates from (Ludena et al. 2007b) and  (Fuglie 2012). Future growth in global 

biofuel consumption is from the (International Energy Agency 2019). All of these inputs are 

reported in the Appendix D. 

The projections of PoO to 2050 (Figure 4.4) rely on the incorporation of the FAO PoU’s 

extension (Section 4.2.1) – albeit with the regionally calibrated parameters – into the SIMPLE 

model which produces estimates of total caloric availability (acquisition) (Uris Lantz C. Baldos 
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and Hertel 2014c). Following projected increases in global average per-capita availability of 

calories, the share of population over consuming calories is projected to increase in virtually every 

region and at the global level. Additionally, those that regions that are already at latter stages in 

the nutrition transition --projected to have relatively lower growth in ADSC-- are the ones that are 

projected to have relatively lower growth in PoO (i.e., Canda & US and Europe). In the other hand, 

those regions that are at earlier stages in the nutrition transition --projected to have relatively larger 

growth in ADSC-- are the ones that are projected to have relatively lower growth in PoO 

(i.e., South Asia and Sub Saharan Africa). When this is combined with the projected growth in 

population, the millions of adults overconsuming calories are projected to more than double 

towards 2050 and regions already dealing with malnutrition, such as South Asia, double burden 

are projected to dominate excessive acquisition of calories towards 2050.  

 

Figure 4.4 Baseline projections of the PoO towards 2050. 

The green and blue curves in panel a-g represent the probability distribution of habitual (i.e., annual average) daily 

energy consumption (purchasing) (Section 4.2.1) projected to 2015 and 2050 respectively. Gray shaded areas delimit 

the region were purchasing of calories are greater than the average daily energy requirements (ADER). The green and 

blue bars represent the Prevalence of Overconsumption (over-acquisition) of calories projected to 2015 and 2050 

respectively. Regions are ordered across the income spectrum (from higher to lower income according to World Bank 

2019 classification) through panels a to f. Panel g presents projected results at the global level. 
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The average daily excessive consumption of calories (ADEC=ADSC-ADER) is projected to 

increase around 58% women and 60% in men at the global level. Consistently with the findings 

on the PoO projections, the projected growth in ADEC is especially large in regions such us South 

Asia and China, where the ADEC is project to growth around 98% (105%) and 82% (84%) 

respectively, in adult women (men). As described in the Section 4.2.2, we rely on the incorporation 

of the Model 4.1 into a global partial equilibrium of the food sector (SIMPLE) for projecting 

average adult BMI (Figure C.3) and age-specific adult BMI (Figure 4.5 a-c and Figure C. 8) 

towards 2050, for both, men and women. 

4.4 Health implications of adult BMI in 2050 

Under the SSP2 baseline, increases in average calorie availability would lead to a dramatic 

increase in the percentage of people overconsuming calories. While wealthier regions such as USA 

and Europe are not expected to experience large changes, middle- and low-income regions will 

experience dramatic increases in the over acquisition and consumption of calories. This is the case 

for regions that already struggling with a growing malnutrition double burden such as South 

America and South Asia (Figure 4.4).  
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Figure 4.5. Projections of the age-specific average adult BMI and PAFs. 

Panels a, b and c, present population pyramids for the age-specific average BMI in adult men (left-side) and women 

(right-side of each pyramid). Observed average adult BMIs in 2015 are represented in darker colors and projected 

average adult BMIs in 2050 are represented in lighter colors for the South Asia, China, and Canada &US regions (See 

Appendix C, Figure C. 8 for the remaining regions used in the study). The bar chart at the bottom (d) reports 

population attributable fractions (PAF), representing the potential reduction in population diseases attributable to 

overweight and obesity, coronary heart disease (CHD), Stroke, some types of cancer, and Type 2 Diabetes (T2DM), 

if the average adult BMI levels did not increase as projected by 2050. 

Based on the underlying relationships between the excessive calorie availability and adult 

BMI I project expected changes in adult BMI towards 2050 (Figure 4.5). Average adult BMI is 

projected to increase in virtually every region and for every age range, for both, men and women. 

Regions at earlier stages on the nutrition transition such as South Asia (Figure 4.5a) are expected 

to experience the larger increases. This will increase not only the average obesity, but also by 

reaching higher levels of BMI at younger ages, individuals will increase the number of years that 

they are exposed to the health risks related to overweight and obesity. Moreover, the projected 

increases in BMI will also be accompanied by dramatic increases in related diseases (Berrington 

de Gonzalez et al. 2010; Prospective Studies Collaboration 2009).  
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4.4.1 The Disease Burden Attributable to Weight-Related Risk Factors: Population 

Attributable Fractions (PAFs). 

The projected growth in average adult BMI (Figure C.3) will boost already worrisome 

trends in adult obesity. Additionally, also by reaching higher levels of BMI at younger ages 

(Figure 4.5a-c and Figure C. 8) individuals will increase the number of years that they are exposed 

to the health risks related to overweight and obesity. I estimate the disease burden attributable to 

weight-related risk factors by calculating population attributable fractions (PAFs). The PAFs 

represent the proportions of disease cases that would be avoided when the risk exposure is changed 

from a baseline situation to a counterfactual situation and are calculated using the following 

general formula: 

𝑃𝐴𝐹 =
∫ 𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥−∫ 𝑅𝑅(𝑥)𝑃′(𝑥)𝑑(𝑥)

∫ 𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥
             (4.3) 

In equation (4.3) RR (x) is the relative risk of disease for risk factor level x, P(x)is the number 

of people in the population with risk factor level x in the baseline scenario, and P’(x) is the number 

of people in the population with the risk factor level x in the counterfactual scenario. I assume that 

changes in relative risks follow a dose-response relationship (Lim et al. 2012) and that PAFs 

combine multiplicatively (Lim et al. 2012; Murray et al. 2012). Therefore, it can be shown that 

𝑃𝐴𝐹𝑇𝑂𝑇 = 1 − 𝜋𝑖(1 − 𝑃𝐴𝐹𝑖) where the i’s denote independent risk factors.  

I rely on publicly available data from different sources to parameterize the comparative risk 

analysis. I use two large-pooled analyses of prospective cohort studies (Berrington de Gonzalez et 

al. 2010; Prospective Studies Collaboration 2009) to infer the parameters describing disease 

attributable to weight-related relative risks. I adopted the relative risk parameters linking weight-

related disease factors and BMKI from previous studies, focusing in 4 categories: coronary heart 

disease (CHD), stroke, type-2 diabetes mellitus (T2DM) (Prospective Studies Collaboration 2009), 

and some type of cancers (Berrington de Gonzalez et al. 2010). The weight-related relative risk 

parameters were aggregated to the BMI categories used in this study and normalized to a risk-

neutral normal weight category consistent with the epidemiological evidence (Berrington de 

Gonzalez et al. 2010; Prospective Studies Collaboration 2009). For the purposes of the analyses 

on this chapter, the PAFs a based on a comparison of the relative risk exposures caused by the 

average adult BMI levels projected towards 2050 with the counterfactual hypothesis of BMI levels 

fixed at 2015 levels (Figure 4.5d and Figure C. 8). Therefore, PAFs in this study represent the 
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proportion of disease cases that would be avoided if average adult BMI, for adult men and women, 

did not increase as expected towards 2050.  

I find that the PAFs attributable to projected changes in adult BMI are substantial for many 

major non-communicable diseases related to overweight and obesity (Springmann, Clark, Mason-

D’Croz, Wiebe, Bodirsky, Lassaletta, de Vries, Vermeulen, Herrero, Carlson, et al. 2018), likely 

impacting mortality paths towards 2050 (Preston, Vierboom, and Stokes 2018). This expected 

increase in major disease burdens will further stress national health care systems (Springmann et 

al. 2016a). These results will also be associated with many economic and health costs (Springmann 

et al. 2016a), which is particularly relevant in developing countries, characterized by weak 

institutions with highly differentiated access to good quality health systems (Leatherman et al. 

2010). 

The PAF results reported in Figure 4.5d provide very important insights. However, 

attributable mortalities are just a portion of the implications of the rapid growth in adult BMI on 

disease burden. These results should be complemented with the analysis of morbidity implications. 

One of the main findings on chapters 3 and 4 is that more recent cohorts are reaching (and are 

projected to reach) adulthood with higher BMIs and become overweight and obese at younger ages. 

Increasing the years of exposure to the risks attributable to wight-related diseases will cascade in 

significant growths in future morbidity for future cohorts. Future analysis needs to incorporate the 

examination of the Disability-adjusted life years (DALYs). The DALY analysis may provide 

important insights health benefits and cost-effectiveness. One “DALY” can be thought of as one 

lost year of “healthy” life and are calculated for a disease or health condition are calculated as the 

sum of the years of life lost (YLL) due to premature death in the population, and the years lost due 

to disability (YLD) for people living with a disease or its consequences.  

4.5 Multiple Dividends from Altering Future Food Purchasing Patterns 

There is an increasing awareness of the role that food consumption choices can play in 

simultaneously addressing human health and climate change challenges (Willett et al. 2019). 

Following ongoing transitions in food consumptions patterns (Bodirsky et al. 2020; Masters et al. 

2016), the global daily per-capita food availability and consumption of animal products increased 

have significantly increased in recent decades. Consequently, the population of cattle, sheep and 

goats supplying livestock products for human consumption have increased by 1.4-fold and that of 
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pigs and poultry by 1.6 and 3.7-fold, respectively, with attendant increases in direct and indirect 

GHG emissions (IPCC 2017). Animal agriculture now accounts for 8–10.8% of global greenhouse 

gas (GHG) emissions under the IPCC framework and the contribution of livestock rises to 18% of 

global emissions on the basis of lifecycle analysis (O’Mara 2011). Consumption of these products 

is predicted to grow as middle and lower income regions continue to develop; livestock 

consumption generally increases as incomes rise (FAO 2018b).  

Previous studies have examined how the consumption of healthy and sustainable diets 

presents major opportunities to reduce environmental pressure (Bodirsky et al. 2020; Springmann 

et al. 2016a; Springmann, Clark, Mason-D’Croz, Wiebe, Bodirsky, Lassaletta, de Vries, 

Vermeulen, Herrero, Carlson, et al. 2018). Moreover, previous studies also highlight the 

importance of the increase in food availability in driving trends and patterns of global diets 

(Drewnowski and Popkin 2009). The association between obesity and diets has been explored 

across countries and time, with specific attention on the role of macronutrients (Hall, 2018), ultra-

processed foods (Monteiro et al., 2018; Popkin & Reardon, 2018), and fats and sweeteners 

(Drewnowski and Popkin 2009). Here I use the novel framework to examine the potential multiple 

dividends, including health and environmental co-benefits, as well reductions in undernutrition, of 

shifting towards healthier and more sustainable consumption levels.  

I expand the previous literature by examining the specific role of changes in dietary 

composition, reduction in food intake and food waste on natural resource use, crop production and 

environmental outcomes. Figure 4.6 presents projected deviations from the 2050 baseline in 

average adult BMI, for both men and women (percentage of 2050 values). As consequence of 

shifting towards dietary intake levels that follow the healthy dietary guidelines (HDG), I observe 

reductions in projected BMI, for both men and women. (Results are similar when shifting towards 

Flexitarian Diets. (See Appendix C: Figure C.3, Figure C.4, and Figure C.5 for results on 

flexitarian diets pathway). Men’s BMIs are more sensitive than women’s BMIs to changes in diets. 

Also, those regions at earlier stages of the nutrition transition such as Central Asia, China, and 

South America present larger decreases in BMI with respect to the baseline scenario in 2050 

(Figure 4.6). 
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4.5.1 Specification of the Counterfactual Scenarios  

The Healthy Dietary Guidelines (HDG) and the Flexitarian (FLX) Diets Scenarios  

I adapt the counterfactual scenarios in previous studies (Springmann, Clark, Mason-D’Croz, 

Wiebe, Bodirsky, Lassaletta, de Vries, Vermeulen, Herrero, and Carlson 2018) regarding shifting 

towards healthier and more sustainable diets. The counterfactual diet scenarios analyzed in this 

chapter include diets aligned with global dietary guidelines (HDG), and more plant-based 

flexitarian diets (FLX) that are reflective of present evidence on healthy eating. The HGD scenario 

is based on global guidelines on healthy eating issued by WHO/FAO Expert Consultations on diet, 

nutrition (WHO 2003) and human energy requirements (FAO/WHO 2001) and the FLX is a more 

ambitious dietary change that implies larger levels of substitution of animal source proteins for 

vegetable source proteins. I start by comparing the BAU projections on food consumption from 

Springmann et al.’s with the ones in this study obtained with SIMPLE, under the SSP2 scenarios. 

I do so by aggregating across food groups from Springmann et al. into “crop” and “livestock” 

categories. I find that baseline projections from both studies are very similar, and global averages 

of per capita consumption of crops and livestock are around 1130 grams and 412-425 grams, 

respectively. 

In Springmann et al. authors develop two different counterfactual scenarios regarding 

shifting towards healthier and more sustainable diets. One in which average consumers follow the 

Healthy Dietary Guidelines (HDG) and another one in which the average consumers follow a 

flexitarian style diet (FLX). In both scenarios, regional diets maintain their character of preferred 

foods but are restricted to an intake of 2100-2300 kcal per person per day, with specified grams 

per person per day servings of food categories such as red meat, dairy, fruits and vegetables, and 

staple crops. The flexitarian diet pathway is a more ambitious dietary change projection, in the 

sense that it implies a larger restriction in the consumption of livestock products and a boost in the 

nut and legume intake.  

To calculate the necessary shocks to simulate Springmann et al.’s two dietary change 

scenarios, regional per capita food consumption in grams is obtained from the QCONS_GRAM 

variable. Because this information is separated into “crops,” “livestock,” and “processed food” 

categories, the food groups in Springmann et al. are aggregated for comparison. Thus, wheat, rice, 

maize, legumes, vegetables, nut & seeds, et cetera are summed for “crops,” while “livestock” 

included such categories as beef, poultry, and eggs. For the healthy diets’ scenario, this 
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corresponds to 1093.6 g of crops and 369 grams of livestock products per person per day, while 

the flexitarian diet consists of 1110.3 grams of crops and 240.6 grams of livestock products. To 

translate these values into shocks, the percentage change necessary in per capita consumption to 

meet the scenario values was calculated. 

In order to better understand the dynamics of the malnutrition double burden, I restrict the 

exogenous changes in food consumption to those regions that are already at latter stages in the 

nutrition transition (Bodirsky et al. 2020). This allows us to project endogenous changes in caloric 

undernutrition in those regions that host most of the current and projected hunger individuals. So 

doing, I observe the potential multiple dividends (i.e., health and environmental benefits) derived 

from the shift towards healthier dietary intake levels in those regions that project higher levels on 

adult BMI. Table 4.1 lists the shocks in food consumption with respect to the baseline case, for 

the HDG and the FLX diets scenarios.  

Table 4.1. Shocks on per capita consumption in grams by type of food (i.e., crops, livestock, and 

processed food) in SIMPLE 

 
HDG 

 
FLX 

  Crops Livestock Proc_Food 
 

Crops Livestock Proc_Food 

East of Europe -15.9 -46.2 -35.3 
 

-14.6 -64.9 -22.0 

South America 12.0 -39.2 -60.5 
 

13.7 -60.3 -45.8 

Aust& N. Zealand 10.3 -52.7 -31.5 
 

12.0 -69.1 -18.4 

Europe -3.8 -42.4 -49.5 
 

-2.3 -62.4 -33.1 

South Africa 31.3 16.1 -140.1 
 

33.3 -24.3 -123.9 

Canada & US -3.7 -54.1 -48.9 
 

-2.3 -70.1 -41.7 

China -37.2 -3.4 -40.8 
 

-36.2 -37.0 77.0 

Japan and Korea 11.5 6.3 -77.6 
 

13.2 -30.7 -58.3 

Central Asia -14.2 -35.7 6.6 
 

-12.9 -58.1 33.8 

Note: Shocks on per capita consumption in grams by type of food (i.e., crops, livestock, and processed food) in 

SIMPLE. These shocks imply exogenous shifts for the average consumer, to move from the projected baseline diets 

towards 2050 to more healthy and sustainable intake levels. I develop the counterfactual diets scenarios following 

healthy dietary guidelines scenario (HDG) and the flexitarian (FLX) diets scenario from Springmann et al. 2018. 
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Extending the Counterfactual Scenarios: Splitting the Excessive Consumption Between 

Excessive Intake and Food Waste 

Much of the previous literature has just looked at total calories from the FAO’s FBS and 

concluded that reducing them to a healthy level would greatly benefit the environment. However, 

the FBS calories have included food waste at consumers’ level– although recently some 

adjustments have been made the inaccuracy persists (FAO 2019a). Therefore, the excessive 

consumption of food in current diets, understood as the gap between current food consumption 

levels (equated to FAO FBS’s) and healthy dietary intake levels, really includes both food waste 

and excessive intake. Additionally, since shifting towards healthier diets usually imply not only 

the reduction in food consumption, but also shifting towards more plant-based diets, there is also 

a third contributor – the composition of these calories. Here, I decompose, for the first time, these 

three elements (composition of diets, excessive intake, and food waste) of the linkage from food 

purchasing behavior and the environment to analyze their relative contribution to environmental 

sustainability. In order to decompose the relative environmental benefits of each of the 

subcomponents, I design a 3-steps complementary experiments to decompose the overall 

environmental benefits of shifting towards healthier diets, in both HDG and FLX, dietary scenarios 

described in the previous sub-section. 

I start by isolating the relative contribution of the changes in the composition of diets (i.e., 

shifting towards more plant-based food consumption bundle) when shifting towards HDG and 

FLX diets. I do so by imposing shifts in food consumption that imply the necessary changes in 

dietary composition in the HDG and FLX (i.e., relatively more calories from direct crop 

consumption and less from livestock) but maintaining the overall calories purchased as in the BAU 

towards 2050 scenario. This first step allows us to isolate the environmental benefits of changes 

in dietary composition by comparing the GHG emission and resource use resulting from this 

scenario with the ones resulting from the BAU. In the second step, in addition to the changes in 

the dietary composition, I impose a restrictions in food purchasing mimicking reductions in 

consumers’ food waste based on imputed values of uneaten calories art consumers’ level from 

previous studies (Barrera and Hertel 2020). The second step allows us to isolate the environmental 

benefits of reducing food waste by comparing the by comparing the GHG emission and resource 

use resulting from this scenario with the ones resulting of changes in dietary composition (results 

from step 1). In the third step of these complementary experiments, I isolate the environmental 

benefits of reductions in excessive intake of food by comparing the resulting GHG emissions and 
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result use from the HDG and FLX diets scenarios (Table 4.1) with the ones resulting from the 

second step (food reduction + change in dietary composition) in these complementary experiments. 

Table 4.2 lists the shocks in food consumption with respect to the baseline case, for the steps 1 

and 2, that complements the HDG and the FLX diets scenarios. 

Table 4.2. Shocks on per capita consumption in grams by type of food (i.e., crops, livestock, and 

processed food) in SIMPLE. 

  Step 1  Step 2 

HDG Crops Livestock Proc_Food  Crops Livestock Proc_Food 

East of Europe 53.8 -1.6 18.3  7.7 -31.1 -17.2 

South America 102.7 10.1 -28.5  41.9 -22.9 -49.9 

Aust. & N. Zealand 61.3 -30.8 0.2  16.1 -50.2 -27.9 

Europe 46.5 -12.2 -23.1  5.5 -36.8 -44.6 

South Africa 89.2 67.3 -157.8  43.8 27.2 -144.0 

Canada & US 62.3 -22.6 -13.8  8.8 -48.2 -42.2 

China 37.0 110.8 29.2  -4.1 47.5 -9.6 

Japan and Korea 40.4 33.9 -71.7  15.4 10.0 -76.8 

Central Asia 62.4 21.7 101.8  16.2 -12.9 44.3 

FLX Crops Livestock Proc_Food  Crops Livestock Proc_Food 

East of Europe 57.8 -35.2 44.2  10.5 -54.6 0.9 

South America 107.1 -27.8 -1.3  45.0 -49.4 -30.9 

Aust & N. Zealand 66.1 -54.2 21.0  19.6 -67.0 -12.9 

Europe 50.5 -42.1 3.0  8.3 -58.3 -25.8 

South Africa 93.6 10.0 -134.6  47.1 -16.4 -126.3 

Canada & US 68.5 -48.4 0.5  12.9 -65.4 -32.6 

China 37.5 35.9 281.8  -3.7 -4.9 167.3 

Japan and Korea 40.9 -13.7 -48.1  15.7 -29.1 -57.4 

Central Asia 64.0 -21.1 151.8  17.3 -43.5 80.1 

Note: These shocks imply exogenous shifts for the average consumer, to move from the projected baseline diets 

towards healthier diets. Columns corresponding to Step 1 present shocks in per capita consumption that implies shifts 

in dietary composition that follows healthier diets (i.e., HDG and FLX) but respect the overall calorie consumption 

levels from BAU scenario. Columns corresponding to Step 2 to shocks that imply reductions on consumers food waste 

(Barrera and Hertel 2020) accompanying the changes in dietary composition necessary to achieve healthier diets (i.e., 

HDG and FLX). 
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Figure 4.6. Projected changes in BMI for men and women. 

The bars represent the projected percentage changes with respect to the 2050 baseline case caused by shifting towards 

diets following intake recommended in the healthy dietary guidelines (HDG) in those regions (See Appendix C: 

Figure C.3, Figure C.4, and Figure C.5 for results on flexitarian diets pathway). Omitted regions are not subjected 

to the diet changes. Error bars represent 95% confidence intervals. 

Shifting towards healthier consumption levels in more developed regions would imply a 

reduction in the overall caloric intake with consequent reductions in adult BMI with respect to the 

baseline projections towards 2050 (Figure 4.6). As was explored in the previous section, and also 

highlighted in previous research, there are several health benefits that ae associated with these 

results (Figure 4.5d) (Afshin et al. 2019). In addition, and consistently with findings in chapter 3, 

the results on reductions of adults BMI are larger on men than in women. These differences imply 

that the women might be less sensitive to the reduction on energy intake, that is consistent with 

previous studies on gender gaps on the distribution of food within households (Harris-Fry et al. 

2017; Brown, Calvi, and Penglase 2018) and also consistent with current gender gaps on dietary 

intake levels (Afshin et al. 2019). 

Several studies have explored the potential environmental benefits of shifting towards 

healthier diets (Springmann et al. 2016a), the role of reducing food waste (Barrera and Hertel 

2020), as well as the contribution of cutting livestock consumption, in diminishing stress on natural 

resource use (Bajželj et al. 2014; Hedenus, Wirsenius, and Johansson 2014; Springmann, Clark, 
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Mason-D’Croz, Wiebe, Bodirsky, Lassaletta, de Vries, Vermeulen, Herrero, Carlson, et al. 2018). 

With a global decrease in food demand, as a result of the shift in diets, crop prices are lower than 

in the baseline scenario leading to a consequent reduction in the incentive to increase crop 

production (Figure 4.7), thereby reducing rates of cropland conversion as well as growth in the 

use of fertilizers and other yield-increasing inputs in all regions under both the flexitarian and the 

healthy dietary guidelines scenarios. 

 

Figure 4.7. Shifting towards healthy dietary intake levels reduce caloric undernutrition and land use. 

Bars represent percentage changes in 2050 baseline outcomes caused by shifting towards diets following healthy 

dietary guidelines (HDG) in the regions in italic and marked with asterisk starting with Central Asia and ending with 

Japan and Korea. Regions exogenously shifted to the HDG are in italic and marked with an asterisk, consumption 

patterns in the remaining regions are endogenous. Panel a represents the percentage change in global crop price, panel 

b represents reductions in undernutrition headcounts in those regions where diets are endogenously determined as a 

function of prices, and panel c represents changes in cropland use. Colored segments of each bar decompose the total 

change into three different components of the shift from current consumption levels: the change within the food basket 

composition (i.e., the HDG scenario implies reductions in livestock consumption with respect to the baseline case), 

reductions in food intake, and reductions in food waste (Barrera and Hertel 2020). (Figure C.4 presents results on 

flexitarian diets pathway). 
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Shifting towards healthier consumption patterns in more developed regions increases the 

affordability of staple foods, leading to reductions in undernutrition outcomes in key developing 

regions including South and Southeast Asia, Sub Saharan, and North Africa. Under this scenario, 

I project a reduction of 16 million people experiencing caloric undernourishment in those low-

income regions.  

Within the regions that are exogenously shifted towards HDG, those that are at earlier stages 

of the nutrition transition such as South America and Central Asia (Drewnowski and Popkin 2009; 

Malik, Willett, and Hu 2013) and/or that present higher levels of food waste such as China (Barrera 

and Hertel 2020), are the ones that present larger reductions in cropland use. In the reference case 

scenario, these regions are the ones that project the largest increases in cropland expansion due to 

growing regional and global demand for food. Consequently, the shift towards healthier diets has 

a bigger impact on these regions. Additionally, here I extend the existing literature by providing a 

breakout of the relative contributions within the shifts to in healthier consumption patterns (i.e., 

changes in the composition of the food basket, reductions in food intake, and reductions in food 

waste). Changes in diet composition (i.e., relative reduction in livestock consumption) plays a mild 

role in the observed environmental benefits as well as in food affordability. A considerable share 

of reductions global crop price and cropland use is derived from declines in food intake; however, 

most of the conservation in natural resource use in food production, as well as benefits from 

increased food affordability are driven by reductions in food waste.  

When considering the implications for greenhouse gas emissions, results are heterogenous 

across regions (Figure 4.8). Global greenhouse gas emissions related to crop production are 

predicted to decrease by about 18% compared to the 2050 baseline, while global livestock related 

emissions would decrease by more than 30%. This stronger impact is due to the expected shifts 

towards greater consumption of animal source proteins in the baseline projections. Therefore, in 

the context of a shift towards healthier consumption patterns, the relative contribution of changes 

in diet composition (less livestock) plays a large role in the greenhouse emissions reduction. This 

finding is consistent with previous studies (Bodirsky et al. 2020; Pelletier and Tyedmers 2010; 

Springmann, Clark, Mason-D’Croz, Wiebe, Bodirsky, Lassaletta, de Vries, Vermeulen, Herrero, 

Carlson, et al. 2018; Tilman and Clark 2014). Moreover, a better understanding of global 

inequality is essential for developing effective policies that seek to ensure global sustainability 

(Motesharrei et al. 2016). While most of the malnourished live in lower income regions, they are 
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responsible for a small share of the global GHG emissions. This results highlight that not only 

global resource use should be reduced, but also the international inequalities of production and 

supply need to be addressed and incorporated into the debate, which is consistent with previous 

research findings (Duro, Schaffartzik, and Krausmann 2018; United Nations 2015).  

 

 

Figure 4.8. Shifting towards healthy dietary intake levels reduce Green House Emissions. 

Bars represent percentage changes with respect to the 2050 baseline case, caused by shifting towards diets following 

healthy dietary guidelines (HDG) in the regions in italic and marked with an asterisk. Results represent the breakout 

between three different components within the shifts in diets: the change within the food basket composition (i.e., the 

HDG scenario implies reductions in livestock consumption with respect to the baseline case), reductions in food intake, 

and reductions in food waste (Barrera and Hertel 2020). (Figure C.5 presents results on flexitarian diets pathway). 
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4.6 Discussion and Implications 

I find a positive correlation between the excessive calorie availability and adult BMI – a link 

that is strengthening over successive generations. As a result, more recent generations present 

higher BMIs and are at risk of becoming overweight and obese earlier, and for larger proportions 

of their lifespan. Following projected increases in excessive calorie availability. Adult BMIs are 

projected to increase towards 2050 in virtually every country and region, which will imply 

worsening an already worrisome trends on non-communicable diseases attributable to overweight 

and obesity. This presents an extra challenge for developing countries, were weak institutions and 

limited access to health care systems are already challenging policy makers. 

By providing a novel framework that enables the simultaneous examination of both ends of 

the distribution of caloric purchases within populations, I am able to uncover additional synergies 

and trade-offs between food policies oriented toward reducing hunger by increasing food supply, 

on the one hand, and overweight, obesity and health related outcomes, on the other. As the world 

continues to push toward increasing the supply of food to alleviate hunger there is a simultaneous 

need to address the importance of nutrition and diet quality, including the production, promotion, 

and availability of affordable healthy diets. Moreover, I provide evidence of potential multiple 

dividends of policies promoting healthier diets through behavioral affecting consumers’ 

purchasing patterns. Shifting towards healthier and more sustainable food consumption levels, 

could synergistically address multiple health and environmental burdens.  

Furthermore, I extend the previous literature by examining the relative contribution of the different 

subcomponents of shifting towards healthier and more sustainable consumption levels.  By 

examining changes in food waste within the same framework as reductions in overall caloric intake 

and changes in dietary composition, I am able to assess its relative contribution to reducing the 

pressure on natural resources. While shifting towards healthier diets may have desirable health 

implications for overweight and obesity health related outcomes, much of the environmental 

benefits, in particular reductions in land use and crop related GHG emissions, are derived from the 

reductions in food purchasing (reductions in food waste and food intake) rather than changes in 

dietary composition in diets itself. A synergistic combination of measures will be needed to 

sufficiently mitigate the projected increase in environmental pressures, while also avoiding 

unintended consequences on already worrisome trends in malnutrition double burden, as the global 

food economy advances towards mid-century.  
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 DISCUSSION AND CONCLUSIONS 

This dissertation combines three essays that examines how future patterns of global food 

consumption will affect human health, and how the agricultural changes needed to support the 

ongoing global nutrition transition will affect the environment. Specifically, the dissertation 

focuses on the quantitative linkages among the waste and the excessive intake of food and its 

influences on human health and environmental sustainability. Outcomes from these studies may 

provide insights on tradeoffs and synergies among the excessive consumption of food --understood 

as the gap between current and healthy food consumption levels--, the environmental sustainability, 

and attributable weight-related diseases to current trends on adult BMI. The essays on this 

dissertation highlight potential unintended health consequences of agricultural and trade policies 

directed at increasing calorie supplies. In addition, results shed light on the potential multiple 

dividends of food waste and anti-obesity policies. 

In the Chapter 2, the work focusses on better understanding consumer’s food waste 

providing evidence on how the global pattern of food waste is evolving rapidly. The projected 

result is that under current trends, and in the absence of policy interventions or significant 

behavioral changes, the global calories wasted at consumers level will nearly double by 2050. This 

chapter extends the current state of knowledge in this area by exploring consumers’ food waste 

through the income spectrum across countries and time. I find that per capita uneaten calories at 

the consumers level have leveled off in rich countries; however, this category is growing rapidly 

in middle income countries, and it is these countries that will drive future global changes. By the 

estimates in this chapter, China already dominates global food waste, but in the next three decades, 

it will be joined by South Asia and other lower income regions where rapid growth in food waste 

due to rising incomes, diversifying diets, and growing population could have a dramatic impact on 

the global total.  

By modeling the evolution of food waste with per capita incomes, I am able to explore a 

richer set of (more realistic) scenarios than in previous studies in this area which have typically 

abstracted from future growth in food waste. Here I consider two cases wherein the share of food 

waste in food availability is frozen. Undertaking such a policy in 2020 would have a strong impact 

on global resource use and food security – particularly if accompanied by greater trade integration. 

However, if such measures are delayed until 2030, and if trade frictions lead to greater market 
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segmentation, then this food waste mitigation pathway will likely have far more modest food and 

environmental security benefits. More generally, the interaction between food waste reduction 

measures and trade policies is a novel contribution of this chapter. Trade policies which increase 

agricultural market integration have the potential to amplify the benefits of food waste reductions 

for food security (by facilitating the accessibility to food in the most vulnerable regions) and for 

reduce pressure on natural resources. 

Additionally, Chapter 2 also highlights the importance of developing new measurement 

methods for food waste that can be rapidly deployed across the globe. Measurement is the 

foundation of international action and there is a need for approaches which can be readily 

implemented with existing data sources and incorporated into quantitative models to explore 

impacts and consequences of mitigation measures. The data base which I have developed builds 

work represents a new step in the direction of having a global, internationally comparable data set 

on food waste. However, more cross-validation of this approach with independent estimates (and 

ideally observations) of food waste is required.  

In the Chapter 3 of this dissertation, the analysis focuses on measuring the role of excess 

calories availability (ECA) as a historical driver of overweight and obesity globally. In the analyses 

realized for this chapter I detect a pronounced ECA effect that is boosted by age effects, increasing 

the number of years that individuals are exposed to risks related to overweight and obesity. This 

chapter extends the current state of the knowledge in this area by incorporating a multidimensional 

consideration of time into the analysis of long-run BMI trajectories that helps to illustrate 

underlying mechanisms driving current trends. I find a significant positive correlation between 

observed trends in adult BMI and ECA across countries, even after controlling for country-specific 

effects. Cohort mechanisms underlie BMI for both males and females. Each cohort reaches 

adulthood with a higher BMI than the previous cohort, and this cohort effect is particularly large 

for those born between 1940 and 1990, a period that coincided with the emergence of per capita 

energy imbalances in many countries. The analyses realized for this chapter also provide evidence 

of a positive correlation between ECA during early childhood and BMI at the age of adulthood for 

males. This result highlights the importance of food environments characterized by an abundance 

in calories during early stages of life on subsequent overweight and obesity outcomes in adulthood, 

which may have implications for future projections of BMI and health-related outcomes. Moreover, 

I also find that the cohort mechanisms are boosted by age effects. I observe significant and positive 
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age effects for both males and females, with each cohort reaching adulthood at higher baseline 

BMI than the previous cohort. As a result, across generations, the age effect leads individuals to 

become overweight and/or obese at younger ages. The combination of age and cohort effects 

presents a serious social challenge given the health and economic implications associated with 

overweight and obesity. Each cohort’s time of exposure to risk has grown larger over time, which 

could be expected to have implications for increases in related mortality, morbidity, disability-

adjusted life years (DALYs), and health care costs. 

The results from Chapter 3 provide a number of policy-relevant insights. The findings 

highlight how some standard agricultural and trade policies oriented toward reducing hunger by 

increasing calorie supplies might have unintended consequences for undesirable overweight, 

obesity, and health-related outcomes. In light of current trends in food supply, these findings are 

of particular importance for developing countries already dealing with the complexities of a rising 

malnutrition double burden. More generally, as the world continues to push toward increasing the 

supply of food to alleviate hunger among those still facing food insecurity, there is a simultaneous 

need to underscore and address, through policy and education, the importance of nutrition and diet 

quality, including the production, promotion, and availability of affordable healthy diets, to avoid 

intensification of the already worrisome trends in adult BMI. Finally, findings in this chapter offer 

additional evidence of potential gender gaps in the energy intake at early childhood. Consistent 

with previous literature on within-household inequalities on food distribution. results from this 

chapter evidence gender gaps in energy intake that might cascade in undesirable nutritional and 

health outcomes for women at the age of reaching adulthood.  

In the Chapter 4, the analysis focuses on better understanding of the dynamics of the rising 

malnutrition double burden. By providing a novel framework (extending the widely used FAO’s 

PoU methodology) that enables the simultaneous examination of both ends of the distribution of 

caloric purchases within populations, I am able to uncover additional synergies and trade-offs 

between food policies oriented toward reducing hunger by increasing food supply, on the one hand, 

and overweight, obesity and health related outcomes, on the other. In this chapter, I provide 

evidence of potential multiple dividends of policies promoting healthier diets through behavioral 

affecting consumers’ purchasing patterns. Shifting towards healthier and more sustainable food 

consumption levels, could synergistically address multiple health and environmental burdens. I 

extend the previous literature in this area by examining the relative contribution of the different 
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subcomponents of shifting towards healthier and more sustainable consumption levels. By 

examining changes in food waste within the same framework as reductions in overall caloric intake 

and changes in dietary composition, I am able to assess its relative contribution to reducing the 

pressure on natural resources. While shifting towards healthier diets may have desirable health 

implications for overweight and obesity health related outcomes, much of the environmental 

benefits, in particular reductions in land use and crop related GHG emissions, are derived from the 

reductions in food purchasing (reductions in food waste and food intake) rather than changes in 

dietary composition in diets itself. Results highlight that a synergistic combination of measures 

will be needed to sufficiently mitigate the projected increase in environmental pressures, while 

also avoiding unintended consequences on already worrisome trends in malnutrition double burden, 

as the global food economy advances towards mid-century. Moreover, a better understanding of 

global inequality is essential for developing effective policies that seek to ensure global 

sustainability. While most of the malnourished live in lower income regions those are responsible 

for a small share of the global GHG emissions. The results in this chapter highlight that not only 

global resource use must be reduced, but also the international inequalities of production and 

supply need to be addressed and incorporated into the debate.  

The three essays Ph.D. dissertation advance the current state of knowledge in the literature 

exploring the trade-offs and synergies arising out of the competing demands on the planet’s finite 

resources (such as water, land, clean air, biodiversity etc.), as well as potential pathways for 

sustainable development in the coming decades. Specifically, the outcomes from this dissertation 

provide several policy-relevant insights on the challenges related to the excessive consumption of 

food (understood as the gap between current food consumption levels), the environmental 

sustainability, and attributable weight-related diseases to current trends on adult BMI. From 

highlighting potential unintended health consequences of agricultural and trade policies directed 

at increasing calorie supplies, to shedding light on the potential multiple dividends (i.e., boost in 

food security, improve in health outcomes due to weight-attributable diseases, and save of resource 

use in food production) of food waste and anti-obesity policies. 
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APPENDIX A. CHAPTER 2 

 

Figure A.1. Global excess calorie availability (ECA) in kcal/cap/day, 1975-2015. ECA= ADSC-ADER.  

The figure illustrates the growing of the excess calorie availability (ECA), understood as the gap between average 

daily supply of calories (ADSC) and average daily energy requirements (ADER). 

 

Figure A.2. The linear approximation to model the Share of Food Waste (SFW). 

The observed data points of Share of Food Waste (SFW) data across the income spectrum and the SFW projections 

obtained through the linear function estimation. 
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Figure A.3. The logistic function projections and the observed levels of SFW  

The logistic function projections and the observed levels of SFW collapsing the data points through weighted 

population averages15 regions we obtain 22 annual data points (SFW & income for 1992-2013) for each region. This 

compiled version of the Figure 2.4 collapsed into two panels allows to observe the response of food waste through 

the income spectrum. 
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Figure A.4. SFW observed between 2006-2013 and projected towards 2050.  

Regions are ordered from high to low-income level (according to World Bank 2018 classification of countries by 

income). 
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APPENDIX B. CHAPTER 3 

 

Figure B.1. BMI trajectories for adult males in three countries.  

Changes in BMI for cohorts matched by age of birth are illustrated in the dashed lines. India (low income), China 

(middle income), and the US (high income) present similar age and cohort patterns but at different BMI levels. 

Data on average energy requirements for adults used in Chapter 3 and Chapter 4 

The average dietary energy requirement (ADER) is defined as the calorie intake 

(kcal/cap/day) required to provide energy balance in a given individual of a healthy weight for 

their sex, age and activity levels. The ADER for adults, used in Models 3.1 and 3.2 (Chapter 3) 

and Model 4.1 (Chapter 4), is calculated based on the country-specific average height and weight, 

adjusted by physical activity levels (PAL). We begin by estimating the basal metabolic rate (BMR) 

for individuals of a given age, sex, height and weight. The NCD-RisC provides country-level data 

on sex-specific average height for adults more than 20 years old by country and by year of birth 

for the period between 1895 and 1995.  

I downloaded the yearly reported estimates of the average adult height in each country from 

the Our World in Data web page (https://ourworldindata.org/human-height). By matching the data 

on the age- and sex-specific average BMI with the data on average height we calculated average 

weight at country level, by year and by age group. We then used the data on average height and 

weight to obtain estimations of the sex-specific basal metabolic rate (BMR) for each age group 

(Table B.1). In practice the BMR measure is approximately equal to the energy expenditure in 

kilocalories (kcal) of individuals during sleep. Therefore, the estimate obtained through this 

method is considered a valid approximation to the true BMR. Table B.1 provides the equations 

https://ourworldindata.org/human-height
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used to compute the estimates of BMR for individuals of a given sex and weight 

(FAO/WHO/UNU, 1985; Schofield, 1985). 

Table B.1. Equations for the prediction of basal metabolic rate in adults 

  Age range  Estimated BMR in kcal/day 

Male 

 18-30  15.4W - 27H + 717 

 30-60  11.3W + 16H + 901 

 > 60  8.8W + 1 128H - 1 071 

Female 

 18-30  13.3W + 334H + 35 

 30-60  8.7W - 25H + 865 

 > 60  9.2W + 637H – 302 

Note: Data from FAO/WHO/UNU (9). Basal metabolic rate (BMR) data is computed from age and sex-specific data 

on height and weight form NCD Risk Factor Collaboration (NCD-RisC). The BMR is approximately equal to the 

energy expenditure (kcal) of individuals during sleep. Parameters in Table B.1 are used to obtain precise estimates 

of BMR for individuals of a given age, sex, height and weight (FAO/WHO/UNU, 1985; Schofield, 1985). 

The total energy required for an individual to maintain a healthy life will vary with 

occupation, time spent working, and an individual’s body size. Adjusting the age- and sex-specific 

BMR values for PALs we obtain estimates of the  need-adjusted ADER (FAO/WHO, 2001; 

FAO/WHO/UNU, 1985). We compiled ADER values under different scenarios of PAL, sedentary 

or light activity lifestyle, active or moderately active lifestyle, and vigorous or vigorously active 

lifestyle with PAL adjustment factors equal to 1.55, 1.76, and 2.25 respectively 

(FAO/WHO/UNU, 1985). We use these different scenarios of PAL to test the sensitivity of the 

correlation between ECA and BMI to assumptions about energy needs (Table B.4). Finally, the 

ECA for adults used in Model 3.2 (Chapter 3) and Model 3.1 (Chapter 4), measured in kilocalories 

per capita and per day, is the difference between average daily supply of calories (ADSC) and the 

average daily energy requirements (ADER). We acknowledge that the FAO/WHO/UNU (1985) 

procedures may overestimate daily energy requirements, particularly in individuals with sedentary 

or light PAL (Alfonzo-Gonzalez  et al., 2004). However, we believe this value provides an upper 

bound on adult ADER. Additionally, we acknowledge that the FBS is not free from criticism 

(Svedberg 1999a) and likely underestimates calorie availability, particularly in rural economies 

where unreported subsistence production represents an important share of the households’ food 

consumption (Hawkesworth et al. 2010). However, the FBS is the most extensive global database 

on countries’ food systems, and I believe the ADSC provides a reasonable lower bound on average 

calorie availability. The result is that, by using an upper benchmark for the ADER and a lower 
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benchmark for the ADSC, I consequently obtain a conservative lower bound for the estimate of 

ECA by sex (i), country (j) , and year (t), (ECAI,j,t =  ADSCI,j,t −  ADERI,j,t).  

 .  
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Table B.2. Results for LSDV regressions on Model 3.1 and Model 3.2 for adult females and males 

Variable 
 Model 3.1  Model 3.2 
 females males  females males 

ECA 
 

n/a n/a 
 0.0003486 0.0002036 

  (0.0000)*** (0.000)*** 

Age group 

25 
1.1372 1.2445  1.1327 1.2434 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

30 
2.2583 2.2700  2.2498 2.2681 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

35 
3.3285 3.1111  3.3158 3.1084 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

40 
4.3127 3.8037  4.2970 3.8008 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

45 
5.1769 4.3844  5.1589 4.3817 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

50 
5.8963 4.8679  5.8756 4.8651 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

55 
6.4664 5.2569  6.4427 5.2539 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

60 
6.8832 5.5531  6.8561 5.5496 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

65 
7.1489 5.7635  7.1190 5.7599 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

70 
7.2657 5.8985  7.2339 5.8954 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

75 
7.2450 5.9722  7.2112 5.9694 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

80 
7.0995 5.9975  7.0634 5.9950 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

85 
6.6336 5.8640  6.5948 5.8614 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

Year of birth 

1895 
0.3710 0.3191  0.3646 0.3167 

(0.0040)** (0.0000)***  (0.0000)*** (0.0000)*** 

1900 
0.7551 0.6865  0.7433 0.6824 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1905 
1.1509 1.0797  1.1353 1.0748 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1910 
1.5614 1.4902  1.5511 1.4899 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1915 
1.9924 1.9162  1.9839 1.9184 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1920 
2.4433 2.3548  2.4293 2.3554 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1925 
2.9102 2.7999  2.8928 2.8000 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1930 
3.3892 3.2461  3.3676 3.2454 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 
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Variable 
 Model 3.1  Model 3.2 
 females males  females males 

Year of birth 

1935 
3.9291 3.7334  3.9050 3.7327 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1940 
4.4814 4.2096  4.4547 4.2089 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1945 
5.0388 4.6782  5.0092 4.6774 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1950 
5.5931 5.1400  5.5605 5.1389 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1955 
6.1382 5.5966  6.1022 5.5952 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1960 
6.5993 6.0135  6.5603 6.0118 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1965 
7.0282 6.4143  6.9873 6.4130 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1970 
7.4227 6.7978  7.3809 6.7975 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1975 
7.7792 7.1631  7.7372 7.1643 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1980 
8.0912 7.5075  8.0395 7.5046 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1985 
8.3478 7.8233  8.2836 7.8147 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1990 
8.5398 8.0990  8.4744 8.0914 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

1995 
8.6607 8.3273  8.5875 8.3167 

(0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

Constant  17.1760 18.3768  16.7938 18.1742 

  (0.0000)*** (0.0000)***  (0.0000)*** (0.0000)*** 

R-squared  0.8426 0.9474  0.8432 0.9476 

No. of Observations  19656 19656  19656 19656 

Note: All regressions include country fixed effects. *** Significantly different from zero at the 1% level, ** 

Significantly different from zero at the 5% level, P-values within parentheses. Values for the “Year of birth” variables 

represent changes with respect to 1890 (omitted). For the ECA imputation we assumed light physical activity levels 
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Table B.3. Results for LSDV regressions on Model 3.3 for females and males at the age of reaching 

adulthood (20 years old) 

Variable 
 Model 3.3 
 females males 

ECA5 
 0.00004 0.000186 
 0.5780 (0.0040)** 

Year of birth 

1985 
0.2639 0.3051 

(0.0000)*** (0.0000)*** 

1990 
0.5029 0.5919 

(0.0000)*** (0.0000)*** 

1995 
0.7304 0.8562 

(0.0000)*** (0.0000)*** 

Constant 
 25.1188 25.5653 

 (0.0000)*** (0.0000)*** 

R-squared  0.9928 0.9945 

No. of Observations  544 544 

Note: All regressions include country fixed effects. *** Significantly different from zero at the 1% level, ** 

Significantly different from zero at the 5% level, P-values within parentheses. Values for the “Year of birth” variables 

represent changes with respect to 1890 (omitted). 

Table B.4. Sensitivity of ECA and BMI correlation under different scenarios of PAL 

  Model 3.2 

PAL Variable females males 

Light ECA 
0.000348 0.000203 

(0.0000)*** (0.0000)*** 

Moderate ECA 
0.000318 0.000194 

(0.0000)*** (0.0000)*** 

Vigorous ECA 
0.000247 0.000171 

(0.0000)*** (0.0000)*** 

Note: All regressions include country fixed effects.*** Significantly different from zero at the 1% level. 
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Figure B.2. Country-specific fixed effects in BMI derived from Model 3.1. 

Moving from left to right, the countries are listed from largest to smallest fixed effect with respect to the US (omitted). 

For females (the solid red line), country labels appear at the top (in red); for males (blue-dotted line) labels appear at 

the bottom (in blue). The shaded areas represent 99% confidence bands for the estimated coefficients. 

 

Figure B.3. Country-specific fixed effects in BMI derived from Model 3.2. 

Moving from left to right, the countries are listed from largest to smallest fixed effect with respect to the US (omitted). 

For females (the solid red line), country labels appear at the top (in red); for males (blue-dotted line) labels appear at 

the bottom (in blue). The shaded areas represent 99% confidence bands for the estimated coefficients. 
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Figure B.4. Country-specific fixed effects in BMI derived from Model 3.3. 

Moving from left to right, the countries are listed from largest to smallest fixed effect with respect to the US (omitted). 

For females (the solid red line), country labels appear at the top (in red); for males (blue-dotted line) labels appear at 

the bottom (in blue). The shaded areas represent 99% confidence bands for the estimated coefficients. 
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APPENDIX C. CHAPTER 4 

Limitations on the FAO’s PoU methodology and the proposed extension  

It is important to acknowledge that the FAO’s PoU methodology for estimating 

undernourishment suffers from several limitations, which need to be considered when analyzing 

the results presented in chapter 4. A key set of limitations are related to the scope and capability 

of the indicator to capture food insecurity. It is stated that the indicator focuses and captures only 

the yearly average per capita deficit in dietary caloric consumption which is a very specific aspect 

of the food insecurity (Cafiero et al. 2014). Another important limitation is that the PoU indicator 

does not capture within-year fluctuations in the acquisition of calories. As it was observed during 

disruptions throughout the food supply chain due to the pandemic outbreak in recent months, 

within-year fluctuations on food consumption play an important role in food security (Cafiero et 

al. 2014). Fluctuations in the accessibility and affordability of food can result in lower quality diets 

and/or short periods of lack of access to an adequate level of calorie consumption (Headey et al. 

2020; Roberton et al. 2020). Moreover, the methodology does not allow for any biases that may 

exist in intra-household distribution of foods (Cafiero et al. 2014). An additional significant 

limitation is that it does not provide information on the degree of severity of the food insecurity 

conditions experienced by a population. The FAO’s PoU only computes the share of the 

undernourished in a population but does not information report about the composition of 

undernourishment within that part of the population which might be valuable for policy makers.  

Another group of limitations and criticism to the FAO’s PoU methodology, that are more 

directly related and are more relevant to the results and extension presented in this chapter, are the 

ones regarding the choice of the probabilistic model to represent the distribution of dietary intake 

across the population. It is argued that some of this criticism arises from the misinterpretation of 

the probability distribution as the empirical distribution of the actual food consumption in the 

population (i.e.: the distribution that could be obtained through a food consumption census of the 

population) (Wanner et al. 2014b; Naiken 2021; Cafiero 2014). However, the correct interpretation 

of the distribution is as the level of dietary energy consumption that would be observed on a 

randomly selected individual in the population (Cafiero 2014; Naiken 2021). It follows that the 

PoU attempts to report the probability that a random selected individual from a given population 
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would be found to be undernourished. In addition to this, the variability on the individual’s energy 

requirements implies an extra challenge on choosing the appropriate “minimum” caloric threshold 

(Svedberg 2002; Cafiero 2014; Naiken 2021). This is also relevant when considering the extension 

proposed in this chapter to compute the share of population that overconsumes calories (Cafiero 

2014; Naiken 2021). Following most recent advances in FAO’s methodology it is possible to 

simultaneously estimate the prevalence of undernourishment and over consumption based on 

information the average and the distribution of daily average energy requirements (Naiken 2021). 

In this chapter, consistently with FAO’s PoU recent advances (Cafiero 2014; Wanner et al. 2014b; 

Naiken 2021), I impute the lower caloric threshold in order to minimize the risk of overestimate 

the prevalence of undernourishment (i.e., choosing the minimum of the range of dietary energy 

requirement indicated by nutritionists as compatible with good health and normal physical activity 

for that group) (FAO/WHO 2001; Cafiero 2014). Similarly, I chose an upper bound, the average 

daily energy requirement—ADER--, that avoids the over estimation of the overconsumption of 

calories (i.e., choosing the upper bound of the range of ADER indicated by nutritionists as 

compatible with good health and normal physical activity for that group) (Naiken 2021).  

Finally, there are certain limitations related to the choice of the functional form to represent 

the probabilistic distribution of calorie consumption of a representative individual in a given 

region. Historically, due to data restrictions, FAO’s has reported the PoU under the assumption a 

lognormal distribution (Cafiero 2014; Wanner et al. 2014b). While this representation convenient 

for the purposes of analysis, is has limited flexibility, especially in capturing the skewness of the 

distribution (Wanner et al. 2014b). Hence, some reservation may be legitimate on the historical 

report as well as on future projections, especially for regions where the mean of the distribution 

present large growth in recent decades and/or is projected to considerably increase in the incoming 

decades. Future refinements on the approach presented in this chapter may include more flexible 

functional forms (e.g., three-parameter Skew-Normal, Skew-Log Normal, or the four-parameter 

Skew –T models) as viable alternatives to the previous lognormal (Wanner et al. 2014b).  

A pseudo-panel data set on average daily excessive consumption of calories  

In Chapter 2, I define, compute, and track over time and across countries excess calorie 

availability (ECA) as the difference between the average daily supply of calories (ADSC) and 
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average dietary energy requirements (ADER), i.e., 𝐸𝐶𝐴 = 𝐴𝐷𝑆𝐶 − 𝐴𝐷𝐸𝑅, where both measures 

evolve over time. Here we follow a similar strategy but adapting and framing the analysis into a 

global partial equilibrium framework, therefore we equate the supply of calories (from FAO’s FBS) 

to the demand (average daily demand of calories). As a result, we define the average daily 

excessive consumption of calories (ADEC) as follows: 

𝐴𝐷𝐸𝐶 = 𝐸𝐶𝐴 = 𝐴𝐷𝑆𝐶 − 𝐴𝐷𝐸𝑅. 

Similarly to Chapter 2, we construct the pseudo-panel dataset from repeated cross-sections 

(Deaton 1985), spaced at five-year intervals. The dataset allows us to track changes in BMIs and 

their correlations with the ADEC for 21 country-specific age-sex cohorts born between 1890 and 

1995 and observed between 1975 and 2015. The dataset covers 156 countries which together 

represented 95% of the global population in 2015.  In anticipation to the projections to the 

economic projections to be undertaken using the framework of a partial equilibrium framework, 

we aggregate countries into 15 major geographic regions. This allows us to capture the long-run 

underlying systematic relationship between the ADEC and adult BMI while also dealing with 

potential eccentricities of individual countries and potential reporting errors to the FAO. This 

particular aggregation into 15 regions has the additional advantage of matching with the global 

model Simplified International Model of Crop Prices, Land Use and the Environment (SIMPLE) 

(Uris Lantz C Baldos and Hertel 2013) that we use in the economic projections towards 2050.  

The underlying assumption on the long-run relationship between ADEC and adult BMI is 

that the changes in ADEC carry on information on the intertemporal effects of the excessive intake 

of calories on the observed changes in adult body weight. This assumption is consistent with the 

principle of the energy balance equation.  However, authors recognize potential limitations on this 

approach when working with an average individual as reference and with a high level of 

aggregation. Firstly, even in healthy individuals (with no difficulty to absorbing nutrients) not all 

energy intake from food ends up absorbed in their bodies. In fact, the absorption is determined by 

the amount of metabolizable energy in the food and its digestibility. This varies among individuals 

and also depends on the specific food items eaten and on how those are cooked, implying that 

when working at an aggregated level and for the average individual, we might lose information on 

individual specifics. Secondly, the EE includes energy expended during biological processes, any 

physical activity performed, heat lost due to thermoregulation (radiant, conductive, and 

convective), and latent heat losses due to evaporation. The rate of energy expenditure (REE) 
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accounts for most energy expended – roughly two-thirds (Hall et al. 2012). Hence, we follow the 

usual approximation for the total EE that is adjusting the basal metabolic rate (BMR) by different 

ratios of physical activity level (PAL). However, as in the case of the EI, variations at the individual 

level on EE during the different biological processes might be lost when working with an average 

individual as reference and a highly aggregated level.  

Moreover, it should be noticed that the FAO reports are not free of criticism (Hall et al. 

2009b; Svedberg 1999a). One recurrent criticism is that FBS likely underestimate food availability 

at consumers level in developing countries. This particularly important in rural based economies, 

where unreported subsistence production represents a substantial share of the households’ 

consumption bundle (Hawkesworth et al. 2010). Another recurrent criticism is that one of the 

components of the FBS (often stocks) frequently take an outstanding unbalanced amount cause by 

inheriting all the statistical errors (including measurement errors, inaccuracies due to imprecise 

metrics on food losses within the different stages of supply chain, and on food waste at consumers 

level). Attending to these concerns, the FBS underwent some changes in methodology for data 

reported after 2017. The revised methodology reported by FAO mitigates some of those 

inaccuracies (FAO 2019a) by improving the estimates of the specific modules through the supply 

chain (e.g., stocks, food, feed, loss, etc.). Additionally, in the new methodology, imputations for 

the FBS components not reported by countries are generated by dedicated modules. The new 

approach implies a balancing mechanism to proportionally distribute the imbalances out among 

all the components (FAO 2019a). Furthermore, the revisited methodology incorporates a food loss 

module. This novel module reports essential information on food losses occurring across the 

different stages if the food supply chain up to and excluding the retail level. However, the 

availability of food at consumers level under the previous and also under the revisited methodology 

cannot be equated to food intake since the food waste imputations at the consumer level is still 

under review (FAO 2019a). This study is consistent with the latter, since equate the ADSC to the 

consumption of calories understood as the purchasing of calories; ergo the over-consumption of 

calories carries on information not only regarding the excessive intake of food but also regarding 

the calories that end up uneaten at the consumers’ level (Barrera and Hertel 2020). 
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Table C.1 Results for LSDV regressions on Model 4.1 for adult women and men. 

Variable  women  men 

 coefficient p_value  coefficient p-value 

ADEC   0.0002158* 0.055   0.0003725*** 0.000 

Age group 

25 1.102923*** 0.000   1.195964*** 0.000 

30 2.198653*** 0.000  2.182427*** 0.000 

35 3.249096*** 0.000  2.992504*** 0.000 

40 4.216125*** 0.000  3.660322*** 0.000 

45 5.062172*** 0.000  4.220509*** 0.000 

50 5.759925*** 0.000  4.686155*** 0.000 

55 6.302513*** 0.000  5.0587*** 0.000 

60 6.684201*** 0.000  5.338898*** 0.000 

65 6.908474*** 0.000  5.533227*** 0.000 

70 6.981457*** 0.000  5.649988*** 0.000 

75 6.918327*** 0.000  5.700924*** 0.000 

80 6.734975*** 0.000  5.696918*** 0.000 

85 6.240975*** 0.000   5.521108*** 0.000 

Year of birth 

1895 0.3308762 0.264   0.2753695* 0.063 

1900 0.6829636** 0.016  0.6058509*** 0.000 

1905 1.050823*** 0.000  0.9673373*** 0.000 

1910 1.434808*** 0.000  1.35364*** 0.000 

1915 1.83895*** 0.000  1.755655*** 0.000 

1920 2.260583*** 0.000  2.168493*** 0.000 

1925 2.697693*** 0.000  2.587819*** 0.000 

1930 3.146643*** 0.000  3.009341*** 0.000 

1935 3.652658*** 0.000  3.46876*** 0.000 

1940 4.171914*** 0.000  3.918437*** 0.000 

1945 4.69702*** 0.000  4.361493*** 0.000 

1950 5.220159*** 0.000  4.798399*** 0.000 

1955 5.735278*** 0.000  5.230721*** 0.000 

1960 6.168471*** 0.000  5.620699*** 0.000 

1965 6.575035*** 0.000  6.000606*** 0.000 

1970 6.951683*** 0.000  6.368141*** 0.000 

1975 7.293686*** 0.000  6.720973*** 0.000 

1980 7.590093*** 0.000  7.049327*** 0.000 

1985 7.832624*** 0.000  7.349038*** 0.000 

1990 8.014414*** 0.000  7.612211*** 0.000 

1995 8.127946*** 0.000   7.83018*** 0.000 

Constant   17.27239*** 0.000   18.41231*** 0.000 

R-squared   0.9041   0.9672 

Observations  1,890   1,890 

Note: All regressions include country fixed effects. *** Significantly different from zero at the 1% level, ** 

Significantly different from zero at the 5% level, * Significantly different from zero at the 10% level P-values within 

parentheses. Values for the “Year of birth” variables represent changes with respect to 1890 (omitted). For the ADEC 

imputation we assumed moderate physical activity levels. 

 



 

 

108 

 

 

 

 

 

 

Table C.2. Sensitivity of ECA and BMI correlation under different scenarios of PAL. 

  Model 4.1 

PAL Variable women men 

Light ADEC 
0.0002419 0.0003787 

(0.032)** (0.001)*** 

Moderate ADEC 
0.0002158 0.0003725 

(0.055)* (0.000)*** 

Vigorous ADEC 
0.0001551 0.0003578 

(0.168)*** (0.000)*** 
Note: All regressions include country fixed effects. *** Significantly different from zero at the 1% level, ** 

Significantly different from zero at the 5% level, * Significantly different from zero at the 10% level P-values within 

parentheses. 

 

Figure C.1. Region-specific fixed effects in BMI derived from Model 4.1. 

Moving from left to right, the countries are listed from largest to smallest fixed effect with respect to the US (omitted). 

For women (red dots, panel a) and for men (blue dots, panel b) region labels appear at the bottom. The shaded areas 

represent 95% confidence bands for the estimated coefficients. 
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Baseline projections of average adults BMI 

 

Figure C.2. Baseline projections of average adult BMI towards 2050. 

The bars represent the percentage change in average BMI projected from 2015 to 2050 in the baseline scenario, for 

both, adult men and women. Error bars represent 95% confidence intervals. 

Flexitarian Diets results 

 

Figure C.3. Projected changes in BMI for men and women. 

The bars represent the projected percentage changes with respect to the 2050 baseline case caused by shifting towards 

diets following intake recommended in the flexitarian diets pathway (FLX) in those regions. Omitted regions are not 

subjected to the diet changes. Error bars represent 95% confidence intervals. 
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Figure C.4. Shifting towards healthy dietary intake levels reduce caloric undernutrition and land use. 

Bars represent percentage changes in 2050 baseline outcomes caused by shifting towards diets following flexitarian 

diets pathway (FLX) in the regions in italic and marked with asterisk starting with Central Asia and ending with Japan 

and Korea. Regions exogenously shifted to the FLX are in italic and marked with an asterisk, consumption patterns in 

the remaining regions are endogenous. Panel a represents the percentage change in global crop price, panel b 

represents reductions in undernutrition headcounts in those regions where diets are endogenously determined as a 

function of prices, and panel c represents changes in cropland use. Colored segments of each bar decompose the total 

change into three different components of the shift from current consumption levels: the change within the food basket 

composition (i.e., the FLX scenario implies reductions in livestock consumption with respect to the baseline case), 

reductions in food intake, and reductions in food waste (Barrera and Hertel 2020).  
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Figure C.5. Shifting towards healthy dietary intake levels reduce Green House Emissions. 

Bars represent percentage changes with respect to the 2050 baseline case, caused by shifting towards diets following 

flexitarian diets pathway (FLX) in the regions in italic and marked with an asterisk. Results represent the breakout 

between three different components within the shifts in diets: the change within the food basket composition (i.e., the 

FLX scenario implies reductions in livestock consumption with respect to the baseline case), reductions in food intake, 

and reductions in food waste (Barrera and Hertel 2020). 
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Figure C. 6. BMI across cohorts and over time at different income levels for adult women. 
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Figure C. 7. BMI across cohorts and over time at different income levels for adult men. 
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Figure C. 8. Projections of the age-specific average adult BMI. 
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APPENDIX D. THE SIMPLE MODEL 

Overview of the SIMPLE model 

In the Simplified International Model of Crop Prices, Land Use and the Environment 

(SIMPLE) (Thomas W. Hertel and Baldos 2016c), per capita consumer demands for three food 

types: crops, livestock and processed foods are log-linear functions of price and income, with these 

food demand elasticities varying as a function of per capita income in each region. Based on 

international cross-section estimates by (Muhammad et al. 2011), the absolute values of the income 

and price elasticities for all food types fall as incomes grow. Regional food demand is obtained by 

multiplying per capita demand by regional population. 

 

Figure D.1. Graphical description of the SIMPLE model. 

SIMPLE is a global partial equilibrium model of the food sector. In this model, the per capita consumer demands for 

three food types: crops, livestock and processed foods are log-linear functions of price and income, and regional food 

demand is obtained by multiplying per capita demand by regional population. Global crop production is specified for 

each of the 15 model regions represented in the model as a constant elasticity of substitution function of land and non-

land inputs, each with different yields and potentially differing rates of technological progress. 
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Since livestock and processed foods are valued-added products, these are produced within 

the consuming region using crop and non-crop inputs and therefore have region- specific prices. 

A substantial share of crop demands in the model is derived demands, obtained from the consumer 

demands for value-added food products. This is important since technological change and factor 

substitution in the livestock and processed food industries can lead to varying intensities of crop 

use in these food products. The global demand for crops is the summation of final demands and 

derived demands summed over all regions. The global demand for crop feedstocks in biofuels is 

exogenously specified and serves as an addition to global crop demand. 

Global crop production is specified for each of the 15 model regions as a constant elasticity 

of substitution function of land and non-land inputs, each with different yields and potentially 

differing rates of technological progress. Cropland supply elasticities, which vary by region, are 

based on the estimates of Gurgel et al. (2007) and (Ahmed et al. (2009). Non-land factor supplies 

to agriculture are also less than perfectly elastic supply, but are more price responsive than land 

supply, based on the estimates offered by OECD (2001). Equilibrium in SIMPLE is attained when 

global crop supply equals global demand where the equilibrating variable is the global price of 

crops. 

Description of database and growth rate assumptions 

SIMPLE database: We construct separate base data for the years 2001 and 2006. Data from 

external sources include income, population, consumption expenditures and crop production and 

their sources are as follows. Information on GDP in constant 2000 USD and population are 

obtained from the World Development Indicators (2011) and from the World Population Prospects 

(2013), respectively. Data on cropland cover and production, utilization and prices of crops are 

derived from FAOSTAT (2011). We further converted the crop quantities into corn- equivalent 

quantities using weights constructed from world crop prices and the world price of corn. We then 

combined the data above with additional information on industry cost and sales shares in order to 

construct the rest of the database. The amount of crop feedstock used by the global biofuel sector 

is constructed using the sales shares by the global crop sector taken from GTAPBIO V.6 

(Taheripour et al. 2007).Shares constructed from the crop utilization data were then used to split 
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the remaining corn-equivalent crop quantities across 15 geographic regions and across different 

uses (i.e. food, feed and raw materials for processed food). 

We then calculated the global crop price from the value and corn-equivalent quantity data 

of crop production. Using the global price and the allocated corn-equivalent crop quantities, we 

then derived the value of crop input use in the livestock and processed food industries. Under the 

assumption of zero profits, we calculated the total value of land and non-land input costs in the 

regional crop sectors using GTAP v.6 cost shares as our guide. We again used GTAP v.6 cost 

shares and the value of crop input usage in the livestock and process food industries to impute the 

value of non-crop inputs used in these sectors. Under the assumption of zero profits, we then derive 

consumer expenditures and price indices for livestock and processed food commodities. Land rents 

and crop yields for each geographic region were derived using the value of land inputs, corn-

equivalent crop production and cropland areas. 

Key growth rates in the baseline scenarios: We start by simulating the model over the 

historical period 2005 to 2015 (10-years) and then projecting towards 2050. For this experiment, 

we implement shocks in population, per capita incomes, total factor productivity (TFP) growth, 

and biofuel consumption. We then compare the simulated changes for the period 2005 to 2015 

with the actual changes from our data base on average adult BMI for men and women. Growth 

rates for population and income were derived from the Shared Socioeconomic Pathway 2 (Fricko 

et al. 2017). TFP growth were based on the historical estimates (Ludena et al. 2007a) and by 

(Fuglie 2012). The growth in global biofuel consumption from the “Current policies” scenario 

published in the World Energy Outlook (International Energy Agency 2019). These forecasts are 

based on the results of a detailed world energy model given exogenous growths in GDP and 

population as well as assumptions on future energy prices and technology. We also calculate the 

growth in global biofuel consumption from the “Current policies” scenario published in the World 

Energy Outlook (International Energy Agency 2019). These forecasts are based on the results of a 

detailed world energy model given exogenous growths in GDP and population as well as 

assumptions on future energy prices and technology. TFP growth rates for the crop and the 

livestock sectors are based on the projections from (Ludena et al. 2007a) which are generated under 

the assumption of gradual convergence in productivity across regions. Growth rates of each driver 

for the period 2005 to 2015 (2050) are listed in Table D1. 
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Table D.1. Assumed growth rates of exogenous variables (in % per annum rates) 

Region 
Population Per Capita Income 

Biofuels  
TFP 

Annual rate Annual rate Annual rate 

Eastern Europe -0.35 3.23  1.45 

North Africa 1.06 3.25  1.35 

Sub Saharan Africa 2.46 4.43  0.69 

South America 0.78 2.85  1.44 

Australia/New Zealand 0.88 1.39  0.89 

European Union 0.03 1.23  1.03 

South Asia 0.99 5.70  0.84 

Central America  0.98 2.37  1.43 

Southern Africa  0.45 3.24  1.25 

Southeast Asia  0.80 4.26  1.40 

Canada/US  0.64 1.10  1.28 

China  -0.13 5.77  1.75 

Middle East  1.46 1.89  1.10 

Japan/Korea -0.39 1.74  1.40 

Central Asia 1.18 4.72  1.45 

World   6.96  

Note: From left to right – Population and per capita Income growths from SSP2 (Fricko et al. 2017). The increase in 

demand for biofuels from (International Energy Agency 2019) . Future TFP growth rates from Ludena et al. (2007) 

using (Fuglie 2012) as regional scalars. 

Model implementation and systematic examination of uncertainties within the model 

We implement SIMPLE and the double burden of malnutrition module using the 

GEMPACK program  (Harrison and Pearson 1996) which has many useful features for purposes 

of analysis (http://www.monash.edu.au/policy/gempack.htm). One of these is the subtotals feature 

developed by Harrison, Horridge, and Pearson (2000). The authors note that estimating the 

contribution of exogenous shocks in general equilibrium models will depend on the assumed path 

from one equilibrium point to another. They propose a numerical integration technique that exactly 

partitions the impacts of different exogenous shocks on endogenous variables of interest under the 

assumption that the assumed path is a straight line. This tool is critical in our analysis of the relative 

contribution of each key driver of global food security. 

Results of simulations often hinge critically on values of key exogenous inputs (parameters 

and/or shocks applied to exogenous variables) (DeVuyst and Preckel 1997). GEMPACK is 

equipped with practical methods for systematic investigation of the impacts of variations in these 

http://www.monash.edu.au/policy/gempack.htm
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key inputs conducting for any model solved using GEMPACK (Pearson and Arndt 2000; DeVuyst 

and Preckel 1997). In this process instead of projecting the endogenous variables within the model 

from a baseline to a projected period by solely “shocking” the key exogeneous variables and/or 

modifying parameters by their mean expected changes, the “shocks” on key exogenous inputs are 

drawn from a pool of potential expected changes, usually a triangular approximation for a normal 

distribution around the media of their respective expected changes. As a result, the procedure 

reports estimations of the mean and standard deviation for any endogenous variable in the model, 

resulting in a projection of future distributions of endogenous variables rather than just an average 

expected projection. 
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