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ABSTRACT

Biomechanical Big Data is of great significance to precision health applications, among

which we take special interest in Physical Activity Detection (PAD). In this study, we have

performed extensive research on deep learning-based PAD from biomechanical big data,

focusing on the challenges raised by the need for real-time edge inference. First, considering

there are many places we can place the motion sensors, we have thoroughly compared and

analyzed the location difference in terms of deep learning-based PAD performance. We

have further compared the difference among six sensor channels (3-axis accelerometer and

3-axis gyroscope). Second, we have selected the optimal sensor and the optimal sensor

channel, which can not only provide sensor usage suggestions but also enable ultra-low-

power application on the edge. Third, we have investigated innovative methods to minimize

the training effort of the deep learning model, leveraging the transfer learning strategy. More

specifically, we propose to pre-train a transferable deep learning model using the data from

other subjects and then fine-tune the model using limited data from the target-user. In

such a way, we have found that, for single-channel case, the transfer learning can effectively

increase the deep model performance even when the fine-tuning effort is very small. This

research, demonstrated by comprehensive experimental evaluation, has shown the potential

of ultra-low-power PAD with minimized sensor stream, and minimized training effort.
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1. INTRODUCTION

The field of Physical Activity Detection (PAD) has a wide range of applications such as

health analysis, mobility tracking, and security systems. The advancement of the Internet

of Things enables easy access to affordable wearable devices [1 ] [2 ] [3 ] that perform a mass

collection of data from their inbuilt inertial sensors. The devices attached to a person collect

PAD data through Sensor signals from an accelerometer, heart rate monitors, thermometers,

and gyroscope [4 ]. It contains information on types of sensors used, signal sampling rates,

length of times series of the activity performed, and feature processing techniques. The data

captured from the sensor devices are recognized using different Machine learning techniques.

These models are used to recognize better, classify, cluster, and predict human activities and

help in further decision making.

There are previous studies reported using machine learning [5 ] for PAD tasks. For ex-

ample, the support vector machine [6 ] [7 ] has been developed for human activity analysis.

Other classifier methods [8 ] [9 ] like the Random Forest, Naive Bayes, decision trees have

also been described for analysis. However, as these methods usually require manual feature

engineering, the efforts for feature design and the generalization ability of the models may

be constrained. Thus, we propose to study deep learning methods for PAD tasks.

Deep learning [10 ] is an essential type of ML algorithm that uses statistics and predictive

modeling in data analysis. It involves the collection of data, analyzing, and interpreting large

amounts of data. It is very beneficial due to the following reasons. First, the deep learning

architecture is adaptable to new problems that may arise in the future. In this method, the

features are automatically deduced and optimally tuned for the desired outcome. Second,

we can perform heavy parallel training that utilizes large volumes of data using GPUs.

There are deep learning [11 ] [12 ] [13 ] - based PAD methods reported. These have shown

the potential of automatic feature learning and inference using deep neural network mod-

els. Nevertheless, the comprehensive analysis of different sensor locations on the body is

still limited. Therefore, we propose first to investigate the difference among these sensor

locations using deep learning. This study will help minimize the need for sensor streams for

effective PAD tasks. Further, we are interested in minimizing training effort for the deep
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learning models, meaning that we propose to leverage transfer learning to learn shareable

deep learning models that can be applied to the target user for quicker adaptation.

The main benefit of transfer learning [14 ] [15 ] [16 ] is that we need fewer data to train the

neural network, which is particularly important because training for deep learning algorithms

is expensive in terms of both time and effort. Thus, it is used best in places where it is

challenging to find enough labeled data for training. Without transfer learning, we will have

to use significantly larger datasets to get results. Furthermore, since transfer learning is

performed by leveraging knowledge obtained from prior training methods, it is expected to

speed up the training process significantly.

Our major contributions are summarized below:

First, considering there are many places we can place the motion sensors, we have thor-

oughly compared and analyzed the location difference in terms of deep learning-based PAD

performance. Then, we have further compared the difference among six sensor channels

(3-axis accelerometer and 3-axis gyroscope).

Second, we have selected the optimal sensor and the optimal sensor channel, which can

not only provide sensor usage suggestions but also enable ultra-low-power application on the

edge.

Third, we have investigated innovative methods to minimize the training effort of the

deep learning model, leveraging the transfer learning strategy. More specifically, we propose

to pre-train a transferable deep learning model using the data from other subjects and then

fine-tune the model using limited data from the target user.

We have found that, for the single-channel case, using the transfer learning method

can effectively increase the deep model performance even when the fine-tuning effort is

minimal. This research, demonstrated by comprehensive experimental evaluation, has shown

the potential of ultra-low-power PAD with minimized sensor stream, and minimized training

effort.
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2. OVERVIEW OF DATA AND METHODS

2.1 Overview of Data and Methods

The Real-World Dataset [17 ] created by the University of Mannheim — Research Group

Data and Web Science is selected for this study. In total, the six activity classes are: climbing

downstairs, climbing upstairs, jumping, lying, running/jogging, and walking. The smart

devices to record sensor data were attached to the 15 Subjects in 7 different body regions:

chest, forearm, head, shin, thigh, upper arm, and waist. These subjects performed each

activity for approximately 10 minutes (except for jumping, approx. 2 minutes). [18 ] Both

accelerometer and gyroscope data are used in the study.

As shown in Fig.2.1, each method involves five basic operations. Data pre-processing,

evaluation using CNN model [19 ], generate deep learning curves and classification report

and arrive at a conclusion based on accuracy comparison of different methods. Initially, we

perform few preliminary operations on raw data to prepare it for mainstream data analysis.

Each channel from each activity of the whole dataset is first visualized using matplotlib.

Fig. 2.2 shows an example of the sample visualization of two activities – running and

climbing up performed by Subject 8. It contains all the six different channel types – tri-

axial accelerometer and tri-axial gyroscope values. The activity plot of the dataset based

on different features is discussed in length under Chapter 2. Finally, the total number of

instances is split into 80% training data and 20% test data for model classification, which

will be discussed in detail under Chapter 3.
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Once the data is processed, it is ready for analysis. We analyze the PAD dataset in four

methods as follows. Sensor-wise Physical Activity Detection (SwPAD) method, Sensor and

Channel wise Physical Activity Detection (SCwPAD) method, Sensor - x Physical Activ-

ity Detection (SxPAD) method, and Sensor and Channel - x Physical Activity Detection

(SCxPAD) method where x is optimal selection based on former analysis. In the first two

methods, the dataset is split based on the type of sensor, and the channel is trained using

the [20 ] CNN model to determine the best sensor location and channel type derived from

the results of the prediction model to be used for further study. The step-by-step procedure

of the process is discussed in length under Chapter 3 and Chapter 4, respectively. Then,

the SxPAD and SCxPAD methods are implemented using results from the former meth-

ods. Direct learning and transfer learning methodology are applied to these techniques, with

datasets generated using sensor locations and channels selected from the previous method.

A detailed explanation is given in Chapter 5 and Chapter 6. Finally, Chapter 7 discusses

the output generated from all four methods, accuracy comparison, and much in a concise

manner.
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Figure 2.2. The visualization plot of selected samples with tri-axial ac-
celerometer and gyroscope data from two different activities (a). Running
and (b). Climbing up of Subject 8 in the real-world dataset.
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In this chapter, we further discuss the activity plot of PAD data based on different fea-

tures. As we know, the PAD dataset is a large dataset with a copious collection of sensor

activity. First, let us list the different features in which the dataset can be categorized for

visualization: Based on Subject id - the dataset comprises 15 different subjects. Based on ac-

tivity – we have chosen the following six activities for our study. Climbing up, climbing down,

jumping, lying, running, and walking. Based on sensor location – Chest, forearm, head, shin,

thigh, upper arm, and waist. Based on channel type – accelerometer X, accelerometer Y,

accelerometer Z, gyroscope X, gyroscope Y, and gyroscope Z.

Figure 2.3. Visualization plot of 4-trial data of Climbing down activity with
six-axis from Thigh sensor location belonging to Subject 1.
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Representation of tri-axial sensor data with different activity and subjects are shown in

the figures to follow. Data is represented as segments, and each segment is called a trial

which consists of 200 samples. Therefore, Fig. 2.3 contains 800 samples of data as it is a

4-trial visualization of climbing down activity captured from thigh sensor location.

The seven plots in Fig. 2.4 represent climbing up activity captured from each of the

seven sensor locations. Thus, we can compare the trace of these seven sensors and how each

channel generates different waveforms.

Figure 2.4. Visualization plot of 1-trial data of Climbing up activity with
six-axis belonging to Subject 1 from all seven-sensor locations. (a). Head
sensor, (b). Waist sensor, (c). Thigh sensor, (d). Chest sensor, (e). Forearm
sensor, (f) Shin sensor, and (g). Upperarm sensor.
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Figure 2.5. Visualization plot of 1-trial data from Thigh sensor location
with six axes of all six activities belonging to Subject 1. (a). Jumping, (b).
Running, (c). Climbing up, (d). Walking, (e). Climbing down, (f) Lying.
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The difference in the pattern by different activity is shown in Fig. 2.5, where each plot

depicts one kind of activity performed by the same user from the exact sensor location.

Finally, Fig. 2.6 and Fig. 2.7 are visualization plots of one kind of activity belonging to all

subjects. By generating these plots, we realize the trend of each channel with respect to their

activity type and sensor type, which will be used for analysis in training the classification

model in further study.

Figure 2.6. Visualization plot of 1-trial data of Walking activity with six
axes belonging to all subjects.
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Figure 2.7. Visualization plot of 1-trial data of Jumping activity with six
axes belonging to all subjects.
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3. SENSOR-WISE PHYSICAL ACTIVITY DETECTION

METHOD (SwPAD)

3.1 Data Preprocessing

The raw accelerometer and gyroscope data of Physical Activity Detection sensors from the

wearable devices are highly fluctuating over time, increasing the complexity for classification.

Therefore, all data used for the study undergo three steps of pre-processing [21 ] operation:

Data Selection, Normalization, Segmentation before training the classifier. Then the data is

fed into the deep learning models for PAD.

3.2 Deep learning architecture

The architecture of the SwPAD method consists of several layers such as convolutional

layers, max-pooling layers, dropout layer, dense layer, and a training model function to

generate precise classification results. The CNN model [22 ] [23 ] proposed in this procedure

includes four convolutional layers. As shown in Fig. 3.1, the higher layers use broader filters

to process more complex input parts. Each convolutional layer describes how CNN cap-

tures local dependencies and the scale-invariant characteristics of the activity signals. Each

Conv2d layer in the architecture is followed by a leaky rectified linear unit (leaky ReLU) as

an active function. The max-pooling layer achieves the scale-invariant feature preservation.

In this layer, features from the convolutional layer are split into several partitions. In each

partition, we apply a max operation to output the values. Furthermore, same padding is

applied in order to save the information of edge from input data of each model.
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Figure 3.1. Deep learning architecture system for Sensor wise Physical Ac-
tivity Detection. Evaluation of 2D CNN model with six channel pre-processed
input dataset. Seven output models are generated for each sensor location.
Notes. Conv-3: Convolution layer 3

Dropout [24 ] is a simple optimization technique widely used in deep neural network opti-

mization. The units to be dropped are chosen at random. We train a network with dropout

by using the approximate averaging method at test time resulting in lower generalization

error on different types of classification problems. The parameters used for each layer are

mentioned in Table 3.1, the input shape for this method is (6,100,1), and there are seven

output models generated, one for each sensor location.
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Table 3.1. Different layers of Deep learning architecture and their parameters
for training model in Sensor wise Physical Activity Detection method.

Activation Layers Parameters Values
ReLu Convolution 1 Kernel size (1,2)

Filters 16
Maxpooling (1,2)

Dropout 0.15

ReLu Convolution 2 Kernel size (1,2)
Filters 32

Maxpooling (1,2)
Dropout 0.15

ReLu Convolution 3 Kernel size (1,2)
Filters 32

Maxpooling (1,2)
Dropout 0.15

ReLu Convolution 4 Kernel size (1,2)
Filters 64

Maxpooling (1,2)
Dropout 0.15

ReLu Dense 1 512
Dropout 0.2

ReLu Dense 2 256
Dropout 0.2

Softmax Dense num_classes
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3.3 Sensor Selection: SxPAD

There are seven sensors used in this study which are placed at the following locations:

chest, forearm, head, shin, thigh, upperarm, and waist. There are seven classification models

generated in this procedure. They are ranked based on accuracy, and the graph is plotted

as shown in Fig. 7.3. The accuracy comparison of these models shows that the highest

prediction activity is done by chest and thigh sensors. The forearm and upper arm produced

weak accuracy results. It is crucial to choose the best sensor location by considering all factors

instead of just going by the highest value. On understanding the practical application, the

thigh sensor location is chosen for further study. Holding a device near the thigh region is

more feasible than in other locations. It would be more comfortable to slide a device into

our pocket instead of holding it in the chest, head, or shin region. Hence, the Thigh sensor

location is selected.

3.4 Evaluation methods

We can evaluate the performance of a machine learning algorithm using the train test

split method. It can be used for regression, classification problems, and supervised learning

algorithms as well. Here, the dataset is divided into two subsets: The training dataset,

testing dataset. The former is used to fit the machine learning model, and the latter is

used to evaluate based on the results from the previously trained model. Finally, the whole

dataset is split into two by 80:20 ratio. We have used the most common split percentage of

80% training set and 20% testing set to obtain satisfactory results.

Training the CNN model with a large dataset is an extensive process due to the time it

takes to perform the algorithm. So, we have chosen [25 ] GPU-based platform to boost the

process. We make use of the CUDA platform from NVIDIA. The CNN model is executed

using the Keras library.

The PAD model is evaluated based on the results from the classification report con-

sisting of accuracy, recall, precision, and f1-score. We assume that TP, FN, FP, and TN

indicate represent the true positive, false negative, false positive, and true negative in binary

classification [26 ]. The formulae for the four evaluation indicators are as follows:
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Accuracy = TP+TN/ (TP+FP+FN+TN)

Precision = TP/ (TP+FP)

Recall = TP/ (TP+FN)

F1 Score = 2TP / (2TP+FP +FN)

The sci-kit learn library is imported to perform this computation. The results are visually

represented using a ranking plot. Each model was executed twice with a different random

seed value at each iteration. The average of both these models was considered for final

evaluation. The desired results were obtained by following this method.
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4. SENSOR AND CHANNEL WISE PHYSICAL ACTIVITY

DETECTION METHOD (SCwPAD)

4.1 Deep learning architecture

The architecture of the SCwPAD method also consists of convolutional layers, max-

pooling layers, dropout layer, dense layer, and a training model function. The CNN model

[4 ] proposed in this includes three convolutional layers. The overall set up is similar to the

one implemented in Chapter 3 and processes data at each layer as shown in Fig 4.1. The

parameters used for each layer are mentioned in Table 4.1. The input shape is (1,100,1) as

only one channel is considered for a single model. A fixed random seed value is defined during

model evaluation, and therefore at each iteration, the same transformation is executed. There

are 42 output models generated.

Figure 4.1. Deep learning architecture system for Sensor and Channel wise
Physical Activity Detection. Evaluation of 2D CNN model with a single chan-
nel pre-processed input dataset. Forty-two output models are generated for
each possible combination of sensor location and channel type.
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Table 4.1. Different layers of Deep learning architecture and their parameters
for training model in Sensor and Channel wise Physical Activity Detection
method.

Activation Layers Parameters Values
ReLu Convolution 1 Kernel size (1,2)

Filters 16
Maxpooling (1,2)

Dropout 0.15

ReLu Convolution 2 Kernel size (1,2)
Filters 32

Maxpooling (1,2)
Dropout 0.15

ReLu Convolution 3 Kernel size (1,2)
Filters 32

Maxpooling (1,2)
Dropout 0.15

ReLU Dense 1 512
Dropout 0.2

ReLU Dense 2 256
Dropout 0.2

Softmax Dense num_classes

4.2 Sensor Selection: SCxPAD

The comparison of accuracy ranking of the model showed that the values from channels

belonging to Shin and Thigh sensor give the best prediction. The accelerometer - y channel

yielded the highest accuracy percentage. A single channel from a sensor must be selected from

the 42 models present for further study compared to Sensor Channel selection. Therefore,

from careful analysis and data from the previous method, the accelerometer y-channel from

the thigh sensor is selected for further study.
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4.3 Evaluation methods

The evaluation of the model classified based on SCwPAD method is done using compari-

son of performance metrics [27 ] such as accuracy, precision, recall and F1-score as performed

in the previous method in Chapter 4.
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5. TRANSFER LEARNING FOR SxPAD

5.1 Direct learning strategy

In the Direct learning strategy, the method directly involves the analysis of the target

dataset. They provide accurate prediction results, as the input does not involve data from

other sources. The selected thigh sensor from each of the 15 subjects forms the input dataset.

The dataset is focused only on the selected sensor from analysis performed previously in

Chapter 3. The dataset corresponding to thigh sensor location from each subject is used for

the study.

5.2 Transfer learning Methodology

The procedure involves training a particular model using information from other sources

that do not involve the subject under study. It attempts to exhibit that data from previously

trained models can be re-used to perform a new analysis. We transfer a part of already

trained layers and combine them with few new layers to train data in the new task. The

block diagram of transfer learning model [28 ] [29 ] for SxPAD is shown in Fig. 5.1. Our

project is suitable for this method as we possess enough labeled data for training. The

dataset is focused only on the selected sensor from analysis performed previously in Chapter

3. The dataset corresponding to thigh sensor location from each subject is used for the study.

33



Figure 5.1. Block diagram of Transfer learning architecture for Sensor - x -
Physical Activity Detection. The training indices are generated from sources
other than the subject under study. Evaluation of 2D CNN model is trained
using both transfer and refine the method. Input is a six-channel pre-processed
dataset consisting of data corresponding to the selected Sensor location. Notes.
Subject x: dataset belonging to that subject, Subject x-bar: dataset generated
by combining information of all other subjects except subject x.
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6. TRANSFER LEARNING FOR SCxPAD

6.1 Direct learning strategy

The Direct learning strategy is a method that directly involves the analysis of the target

dataset. Accurate prediction results are generated since data from other sources are not

included in the input. The dataset is focused only on the selected sensor location and

sensor channel type from analysis performed previously in Chapter 3 and Chapter 4. The

accelerometer-y channel corresponding to thigh sensor location is the dataset under study.

6.2 Transfer learning Methodology

In this method, we use data from other sources as input to the target model. We classify

the model in the new task using pre-trained layers and combine them with few new layers.

The block diagram of transfer learning [28 ] [29 ] model for SCxPAD is shown in Fig. 6.1.

The dataset is focused only on the selected sensor location and sensor channel type from

analysis performed previously in Chapter 3 and Chapter 4. The accelerometer-y channel

corresponding to thigh sensor location from each subject is the dataset under study.
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Figure 6.1. Block diagram of Transfer learning architecture for Sensor and
Channel - x - Physical Activity Detection. The training indices are generated
from sources other than the subject under study. Evaluation of 2D CNN
model is trained using both transfer and refine the method. Input is a single-
channel pre-processed dataset consisting of data corresponding to the selected
Sensor location and channel type. Notes. Subject x: dataset belonging to that
particular subject, Subject x-bar: dataset generated by combining information
of all other subjects except subject x.
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7. RESULTS

7.1 Experimental Setup

The Real-world dataset [17 ] chosen for our study outwits all these complaints as the

data was generated from 15 subjects (8 males, seven females) donning seven smart wearable

devices on their bodies at different positions [30 ]. They traveled in all kinds of demographic

areas such as Downtown, suburbs, forests, and parks. The tri-axial accelerometer and gy-

roscope values are selected for this study. Climbing up, climbing down, walking, running,

lying, and jumping are the six activities performed by the 15 subjects for approximately 10

minutes (except jumping – 2 minutes)
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7.2 SwPAD

The learning curve is a visual representation of the training model [31 ]. The slope of

the learning curve indicates the rate at which the accuracy and loss improve as a model

is trained using a deep learning algorithm. Fig. 7.1 represents seven deep learning curves

generated by training models based on seven different sensor locations.

The confusion matrix is used to evaluate the quality of output of a classifier on the PAD

dataset. The total number of points for which the predicted label is equal to the true label

is represented by the elements in the diagonal of the matrix, while those that don’t belong

to the main diagonal are elements that are mislabeled by the classifier [32 ]. Fig. 7.2 shows

seven confusion matrices generated from the classifying model based on SwPAD. The correct

predictions are identified by the number of diagonal values present in the confusion matrix,

which indicates many correct predictions. The classification model is based on the type of

activity.
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The classification accuracy is the total number of correct predictions divided by the total

number of predictions made for a dataset. The accuracy results from the SwPAD model

generated for each sensor location are visualized as a ranking plot to analyze the prediction

trend of each sensor, as shown in Fig. 7.3. The highest accuracy value was generated by

thigh sensor location.

Figure 7.3. Accuracy ranking plot generated from the performance analysis of
all seven sensor locations in SwPAD method. The highest accuracy is obtained
at the thigh sensor location.
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The terms precision, recall, and f1-score relate to getting a finer-grained idea of how well

a classifier is doing instead of just looking at overall accuracy. Precision is a measure of how

many of the positive predictions made are correct. [33 ] The recall measures how many of the

positive cases the classifier correctly predicted, i.e., overall positive cases in the data. It is

sometimes also referred to as Sensitivity. F1-Score combines both precision and recall and is

generally described as the harmonic mean of the two. The visualization of precision, recall,

and F1-measure is shown in Fig. 7.4, Fig. 7.5, and Fig. 7.6, respectively.

Figure 7.4. The precision ranking plot from the performance analysis of
all seven sensor locations in the SwPAD method. The highest precision is
obtained at the thigh sensor location.
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Figure 7.5. The ranking plot of recall parameter from the performance anal-
ysis of all seven sensor locations in the SwPAD method. The maximum recall
value is obtained at the thigh sensor location.
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Figure 7.6. Ranking plot of F1-measure from the performance analysis of all
seven sensor locations in SwPAD method. The maximum F1-score is obtained
at the thigh sensor location.
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7.3 SCwPAD

Seven selected deep learning curves generated by the training model based on six channel

types and seven sensor locations are shown in Fig. 7.7. The diagonal elements from the con-

fusion matrices are studied to determine which combination generated the best classification

model, as shown in Fig. 7.8. A total of forty-two models are analyzed, and the best sensor

and channel type is chosen for the analysis in SCxPAD.
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The visualization of ranking of accuracy, precision, recall, and f1-measure are shown in

Fig. 7.9, Fig. 7.10, Fig. 7.11, and Fig. 7.12, respectively. The accelerometer-y channel of

the thigh sensor produced the best results and is selected for further study.

Figure 7.9. Accuracy ranking plot from the performance analysis of all forty-
two models in SCwPAD method.
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Figure 7.10. The Precision ranking plot from the performance analysis of all
forty-two models in the SCwPAD method.
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Figure 7.11. The Ranking plot of recall parameter from the performance
analysis of all forty-two models in the SCwPAD method.
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Figure 7.12. The Ranking plot of F1-measure from the performance analysis
of all forty-two models in the SCwPAD method.
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7.4 Comparison of SwPAD and SCwPAD, and Selection

The results from SwPAD and SCwPAD helps in deciding the optimal sensor and channel

type to select for further analysis. By training a model with a specific feature, we obtain a

wide range of results and thus can easily choose the model with high efficacy. Hence, feature

selection is essential in data analysis for better results in a short duration. By doing so, we

reduce the need for computation using large datasets.

7.5 Direct and Transfer Learning for SxPAD

The data from the thigh sensor location is being analyzed in this method. In direct

learning, only the subject under study is being trained. In the transfer learning method of

SxPAD, the data from thigh sensor location is being. The model is trained twice. The refine

method, where the only subject under study is used, and two, the transfer method, wherein

data from all other sources are used. The test dataset is the same throughout the study.

In direct learning, the model selected is thigh sensor location. It can be viewed that

accuracy increases with an increase in training size. Fig. 7.13 shows the accuracy ranking

averaged across all the subjects. The training percentage of subject x is 10%, 20%, 30%,

40%, 50%.
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Figure 7.13. Average Accuracy ranking plot from analysis through Direct
learning strategy in SxPAD method for different training percentages. The
model selected is thigh sensor location.
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In transfer learning, the model selected is thigh sensor location. The accuracy curve

from direct learning is also projected to observe the trend. The figures show that transfer

learning yields better results at training percentage in the initial stages. Fig. 7.14 shows

the accuracy ranking averaged across all the subjects.The training percentage of subject x

is 0%, 10%, 20%, 30%, 40%, 50% and the training percentage of all other subjects is 25%,

50%, 75%, 100%.

Figure 7.14. The SxPAD average accuracy ranking plot generated by average
of two transfer learning simulation implemented with different random seed.
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7.6 Direct and Transfer Learning for SCxPAD

The data from the thigh sensor and the accelerometer-y channel is being analyzed in this

method. In direct learning, only the subject under study is being trained. In the transfer

learning method of SxPAD, the data from thigh sensor location is being. Thus, the model

is trained twice. The subject under study is used, called the refine method, and two, data

from all other sources, called the transfer method. The test dataset is the same throughout

the study.

In direct learning, the model selected is the accelerometer-y channel of thigh sensor

location. It can be viewed that accuracy increases with an increase in training size. Fig.

7.15 shows the accuracy ranking averaged across all the subjects.The training percentage of

subject x is 10%, 20%, 30%, 40%, 50%.

Figure 7.15. Average Accuracy ranking plot from analysis through Direct
learning strategy in SCxPAD method for different training percentages.
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In transfer learning, the model selected is the accelerometer-y channel of thigh sensor

location. The accuracy curve from direct learning is also projected to observe the trend.

The figures show that transfer learning yields better results at training percentage in the

initial stages. The accuracy ranking averaged across all the subjects is shown in Fig 7.16.The

training percentage of subject x is 0%, 10%, 20%, 30%, 40%, 50% and the training percentage

of all other subjects is 25%, 50%, 75%, 100%.

Figure 7.16. The SCxPAD average accuracy ranking plot generated by av-
erage of two transfer learning simulation implemented with different random
seed.
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7.7 Comparison of Transfer Learning for SxPAD and SCxPAD

The results from SxPAD and SCxPAD demonstrates the effectiveness of transfer learning

[34 ]. By training the model using pre-trained results that can give better prediction results

than the traditional method, we save much time in computing the complex deep learning

algorithm repeatedly. By comparing the average accuracy ranking from Fig. 7.14 and Fig.

7.16, we can understand the advantage of training the model with a single channel type.
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8. CONCLUSION

In this project, we have compared and analyzed the biomechanical big data based on location

difference of sensor devices using deep learning algorithms. We further compared the six

sensor channels [35 ] (3-axis accelerometer and 3-axis gyroscope). The optimal sensor and

channel were selected from the PAD performance model. Furthermore, the proposed transfer

learning methodology has been proved effective in minimizing the training effort of the deep

learning model. The best prediction was observed for the single channel case. Thus, the

research demonstrates potential ultra-low-power PAD with minimized sensor stream and

training effort. The experimental evaluation shows the efficiency of this method and validates

the proposed wearable device. In conclusion, we have developed an ultra-low-power PAD

device to track the health and safety of an individual.
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9. FUTURE STUDIES

Future studies may be performed further to enhance the performance of the deep learning

models. Furthermore, it is interesting to minimize the training effort additionally during the

transfer learning process. Besides, the implementation of PAD in different applications is

also fascinating and may advance the field a lot.
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