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ABSTRACT

Millimeter-wave (mmWave) bands have become the most promising candidate for enlarg-

ing the usable radio spectrum in future wireless networks such as 5G. Since frequent and

location-specific blockages are expected for mmWaves, the challenge is understanding the

propagation characteristics of mmWave signals and accordingly predicting the channel state

information. This research direction has garnered great attention worldwide from industry,

academia, and government. However, the majority of current research on mmWave commu-

nications has focused on urban areas with high population densities, with very few measure-

ment campaigns in suburban and rural environments. These environments are extremely

important for future wireless applications in areas including residential welfare, digital agri-

culture, and transportation. To fill in this research gap, we developed broadband mmWave

channel sounding systems and carried out intensive measurement campaigns at 28 GHz,

covering clear line-of-sight as well as non-line-of-sight scenarios over buildings and foliage

clutters, to fully characterize the mmWave propagation in suburban and rural environments.

Moreover, the accuracy provided by traditional statistical models is insufficient for next-

generation wireless networks with higher-frequency carriers, because they are unable to pre-

dict abrupt channel changes caused by site-specific blockages. To overcome this issue, we

explored the possibility of utilizing site-specific geographic features such as buildings and

trees in improving mmWave propagation models. A new channel modeling methodology

highlighting site-specific parameter evaluation based on easily obtainable data sources (e.g.,

LiDAR) was proposed for accurate, fast, and automated channel state predictions. Accord-

ingly, an overall root mean square error (RMSE) improvement of 11.79 dB was achieved in a

one-building blockage scenario and a regional RMSE improvement of over 20 dB was observed

in a coniferous forest. This approach also enables channel simulations for large-scale system

performance evaluation, demonstrating a powerful and promising approach for planning and

tuning future wide-area wireless networks. The simulation results showed that network den-

sification alone is not enough for closing the digital gap, especially with mmWaves because

of the impractical number of required towers. They also backed up supplementary solutions

including private data relays, e.g., via drones and portable towers.

15



1. INTRODUCTION

Some materials presented in this chapter on the digital gap are from: Y. Zhang, D. J. Love,

J. V. Krogmeier, et al., “Challenges and opportunities of future rural wireless communica-

tions,” IEEE Communications Magazine, Dec. 2021, to be published. © 2021 IEEE.

1.1 Motivation

Wireless communications have completely revolutionized society during the past few

decades. Considering cellular communications as an example, from analog voice calls in 1G,

messaging in 2G, limited data in 3G, and broadband access in 4G, our society’s functions

have fundamentally changed repeatedly due to new generations of mobile communication

technologies. The ever-improving mobile services experienced by the users are fueling a

rocketing future demand on broader connections with higher data rates. By 2022, mobile

devices will account for 20% of total IP traffic: a seven-fold increase of the global mobile data

traffic and over a three-fold increase of the mobile network connection speeds are expected

between 2017 and 2022 [2 ]. Previously available radio resources are insufficient to realize

this aggressive expansion.

Millimeter-wave (mmWave) bands have become the most promising candidate for en-

larging the usable spectrum in future wireless networks such as 5G [3 ]–[5 ] . Once fully

exploited, a large amount of underutilized mmWave resources could dramatically increase

the communication speed and the network capacity [6 ]–[8 ]. This promise has motivated a

series of research efforts in channel measurement and modeling for mmWave during the past

decade [3 ], [4 ], [9 ]. However, future mmWave systems will mainly benefit urban regions,

especially during the initial implementation, due to the high user density, small cell radii

(typically 100–200 m), and lower mobility [4 ]. As a result, the majority of current mmWave

channel measurement and modeling research is focusing on urban regions with high popula-
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tion densities [10 ]–[24 ], with very limited measurement campaigns carried out for suburban

and rural environments [25 ], [26 ].

This unbalanced research effort also follows the unbalanced telecommunication resource

allocation between urban and rural regions. Even though broadband access today is key to

ensuring robust economic development and improving quality of life, the communication in-

frastructure deployed in rural areas throughout the world lags behind its urban counterparts

due to low population density and economic concerns. For the vast majority of broadband

users living in urban environments, it can be difficult to understand this imbalance, because

network operators prioritize urban tower density over ubiquitous geographic coverage.

Considering the network of a U.S. cellular carrier as an example (Figure 1.1 ), large cities

typically have a high cell tower density, e.g., over 30 / (1000 km2) in and around Indianapolis

and over 80 / (1000 km2) near Chicago. Some urban areas even have tower densities far

exceeding these numbers. Approximately 20 km away from downtown Chicago, suburban

users enjoy as many as 165 / (1000 km2) towers per thousand km2. In sharp contrast, 44.5%

of Indiana’s land has less than 5 / (1000 km2), while 70.5% has less than 10. It is worth

noting that the geographic cell tower density in Figure 1.1b was evaluated within a 50-km

radius. Decreasing this radius would yield a map showing a larger digital gap.

These disparities are unnoticed by most urban and suburban users. Figure 1.1a shows

that cell towers cluster not only in cities and towns but also along highways. Therefore, even

when traveling, most users lack an accurate understanding of broadband inequality. The

National Association of Counties tested the Internet speeds of 3069 U.S. counties and found

that over 65 percent were experiencing Internet speeds below the Federal Communications

Commission (FCC) broadband definition (25 Mbps download, 3 Mbps upload) [28 ].

The 1G and 2G cellular eras had the simple objective of providing voice connectivity.

Consequently, infrastructure construction based on population density (with large macrocells

in rural areas) was an efficient, cost-effective approach. In the U.S., rural regions account

for 97% of the land area but only 19.3% of the population [29 ]. Achieving broadband

connectivity over such a large geographic area requires a high initial investment, as more

towers are needed for broadband versus voice service. For instance, the average cost for

constructing one conventional cellular site is estimated to be $200,000–$250,000, which is

17



Cell Tower

Indiana

(a) Cell tower locations

(b) Indiana cell tower density

Figure 1.1. Tower distribution of a national cellular carrier according to a
randomized real network laydown from the National Telecommunications and
Information Administration [27 ]. Map data © 2021 Google.
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hard to recover from a low density of potential rural users [30 ]. This fundamental revenue

problem is arguably the primary culprit for the digital divide.

In 5G and future standard deployments, there will be an increasing demand for the

connection of physical objects [2 ], [31 ]. Cisco is anticipating 29.3 billion devices connected

to IP networks (more than three times the global population) by the year 2023, which boasts

a 50% increase compared with what we had in 2018 [32 ]. Furthermore, around half of these

connections will be machine-to-machine (M2M) [32 ]. With the shift from connecting people

to connecting things, new applications in a variety of areas will require rural broadband to

sustain the economy. According to the U.S. Department of Agriculture, digital agriculture

could drive an annual additional gross benefit of US$47–65 billion, corresponding to nearly

18% of annual agricultural production in 2017, and rural broadband connectivity could

contribute over one-third of this value (i.e., US$18–23 billion) [33 ]. The U.S. Department of

Transportation [34 ] has pointed out that: 49% of U.S. car crash fatalities in 2015 occurred in

rural regions, despite the low population; wireless connectivity could reduce these fatalities by

80%. The digital divide prevents such visions from being realized. Furthermore, broadband

access has become a necessity instead of a luxury, especially during and after the COVID-

19 pandemic. The digital divide is causing inequality in multiple dimensions, which could

economically and socially cripple rural communities [35 ].

Future mmWave communications will play a key role in bridging the digital gap by pro-

viding cost-effective high-throughput wireless backhaul solutions [36 ]–[39 ]. Traditionally,

optical fiber is the technology of choice for most Internet service providers and wireless com-

munications carriers. It supports secure long-distance communication with high speed and

low latency, but the deployment remains relatively expensive. The abundant spectrum re-

source available in the mmWave range opens the possibility of supporting backhaul traffic

with point-to-point/point-to-multipoint multi-hop fixed wireless technologies. What is more,

the promises of future wireless networks, such as extremely high throughput and ultra-low

latency, depend heavily on mmWave and the features enabled by it, including small antenna

form factor, massive multiple-input multiple-output beamforming, and spatial multiplex-

ing [40 ]–[42 ]. More attention is needed on the characterization and application of mmWave

19



signal propagation in suburban and rural environments. Otherwise, mmWaves will benefit

mainly the urban users and the digital gap will be further widened.

Accurately modeling mmWave channels is very important for future network planning

and deployment in suburban and rural environments, especially because the higher atten-

uation suffered by mmWave signals already significantly hinders their coverage ability [43 ].

Signals at mmWave bands are prone to destructive effects caused by obstacles such as build-

ings and trees, which is not well captured in traditional channel models for lower-frequency

bands [44 ]–[46 ]. The successful utilization of mmWave bands in wireless wide-area networks

remains challenging. In urban regions, cellular network densification has been proposed to

compensate for the propagation issues [36 ], [47 ], [48 ]. This is backed by the high user density

and considerable profit. In rural areas, though, densification is not an economically viable

solution anymore in the foreseeable future. Channel models for mmWave signal propagation

will need to consider local blockages to increase their accuracy for cost-efficient network

deployment.

1.2 Structure Overview of the Dissertation

mmWave has now become a game-changer for wireless communications. However, based

on our research, the digital divide between urban and rural regions is more severe than

expected. Without proper intervention, it will grow bigger because of the broader application

of mmWaves. To facilitate the use of mmWaves in suburban and rural regions, we conducted

two intensive measurement campaigns. Chapter 2 introduces the measurement system and

our first measurement campaign in typical suburban environments at the United States Naval

Academy (USNA). mmWave’s extremely high sensitivity to local blockages was observed

and accordingly, a one-building blockage channel model considering the geometry of building

walls for better accuracy is proposed in Chapter 3 . Then, our second measurement campaign

at the National Institute of Standards and Technology (NIST) for a more complicated case,

a coniferous forest with hundreds of trees, will be introduced in Chapter 4 . The site-specific

channel modeling idea was also applied there to achieve better performance than traditional

statistical channel models.
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The site-specific models perform better than traditional ones thanks to the site-specific

features. They are easy to implement and fully automatable. And the computational cost

is very low due to their simple structures. Furthermore, these features fit the requirements

of large-scale channel simulations. Chapter 5 applies the techniques of site-specific channel

modeling into large-scale channel simulation. Simulations for ten counties in Indiana were

carried out to quantitatively analyze the coverage improvement for rural users via data relay

drones. In Chapter 6 , the simulator will be extended to cover a majority area of the State

of Indiana for simulations at a wide range of different carrier frequencies. It was observed

that network densification alone is not a good enough solution to bridging the digital divide.

Without more research efforts on cost-effective rural coverage, the digital gap would probably

be widened by the popularization of mmWaves. The simulator with improved scalability will

also help in providing deeper insights into the system-level performance of real-life wireless

networks. Finally, Chapter 7 recaps our findings and contributions.

1.3 mmWave’s High Sensitivity to Site-Specific Blockages

One of the initial steps in employing new carrier frequency bands is to measure and char-

acterize the corresponding signal propagation through the environments of interest. Then,

the measurement results are inspected and developed into easy-to-use closed-form models

to predict the signal propagation in locations with no/few measurement references. Good

channel models should generalize well beyond the measurement data sets from which they

are originated. Consistent high accuracy essentially marks a good understanding of how the

signal will behave, which is the foundation for successfully utilizing the new bands. This

practice applies to mmWave, too. To promote the application of mmWave in suburban and

rural areas, (i) measurements need to be conducted for these environments, (ii) new char-

acteristics of the propagation, if any, need to be identified, and (iii) channel models need to

incorporate these new characteristics for more accurate results.

Most of the curses and benefits of mmWave come from its unique signal propagation

characteristics. For example, traditional carrier bands in mobile communications are below

6 GHz, while mmWave bands have way higher frequencies than that. On the one hand,
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the higher frequency range results in a significantly greater attenuation. To counteract this

negative influence, narrow-beam directional antennas are typically required for better gains

towards the receiver’s direction [49 ]–[51 ]. On the other hand, the higher frequency enables the

design of miniature antennas and the deployment of antenna arrays in a single device [40 ],

[51 ], [52 ]. Built on the possibility of fitting several (or even tens of) antennas in a base

station or a mobile device, advanced signal processing techniques including beamforming,

beam alignment, and (massive) multiple-input and multiple-output (MIMO) could play a

vital role in the successful commercial deployment of mmWave communication systems [4 ],

[5 ], [53 ]. Furthermore, with the controllable narrow beams from this suite of technologies,

spatial multiplexing becomes very appealing in further boosting the capacity of mmWave

networks in the future [42 ], [54 ], [55 ]. The benefits from these technologies, are yet to

succeed in lowering the risk of the digital divided being enlarged by the popularization of

mmWaves, though. The features and requirements of urban environments [4 ] better fit what

these technologies can provide, so early adoptions of mmWave, as well as the aforementioned

technologies, are expected to be for urban regions.

Another major propagation disadvantage of mmWave is its high sensitivity to site-specific

blockages, as we will learn in Chapters 2 to 4 . This topic has been well studied for urban

environments [56 ]–[58 ] and it has recently received great attention in vehicle-to-vehicle [59 ]–

[61 ] and ground-to-air [62 ]–[64 ] communication systems. Thanks to our custom-designed

positioning system, we were able to quantitatively demonstrate mmWave’s extremely high

sensitivity to site-specific blockages in suburban and rural environments. We will go into

more detail on this later in Chapters 2 and 3 , but now is a good time for us to examine some

results to obtain a better understanding of the disadvantage of ignoring site-specific features

in mmWave channel modeling.

As shown by the photos in Figure 1.2 , our positioning system can move the RX antenna

left and right along the x-axis and up and down along the z-axis. During the measurement

campaign, we positioned the RX antenna following a small “+” pattern to investigate how

the signal interacts with the site-specific features present between the transmitter and the

RX. Figure 1.3 illustrates the corresponding measurement data collected behind a bleacher.

It is worth noting that the RX antenna was confined in a very small square area, which has
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a side length of less than 0.5 m. However, the path loss difference could be as significant

as 19 dB. We can even clearly see the blockage pattern caused by the frames and rails. Of

course, this is an extreme case, but similar effects were observed near common obstacles such

as buildings and trees, too. For example, path loss results collected behind a tree are shown

in Figure 1.4 . Again, the RX antenna was limited in a very small area. In this case, when the

RX moved too high, or too to the right side, the communication link would be blocked by the

tree captured in Figure 1.4a , causing an extra path loss up to 24 dB. Without considering

the site-specific geographic information, mmWave models will not be able to predict abrupt

centimeter-level changes as demonstrated in the two examples here.

Because of the severer propagation attenuation and the higher sensitivity to local block-

ages experienced by mmWaves, coverage will be the biggest research challenge in applying

mmWave communications in suburban and rural regions. This challenge is as difficult as,

if not more demanding than, mmWave network deployments in urban environments. Our

contributions to this challenge include (i) two intensive campaigns to better characterize

mmWave propagation in suburban and rural areas, (ii) improved accuracy of traditional

mmWave channel models with site-specific geographic information, and (iii) increased scala-

bility of mmWave channel simulations for large-scale network performance evaluation. The

improved channel models can facilitate the deployment of mmWaves, while the improved

channel simulations can give us a deeper understanding of the system-level performance of

real-life wireless networks.

1.4 Improving mmWave Channel Models with Site-Specific Features

In this dissertation, site-specific geographic features will be included in mmWave chan-

nel modeling to improve model performance. Measurement campaigns at 28 GHz were con-

ducted for both suburban resident and rural forest environments to support the investigation.

Broadband sliding correlator sounding systems [65 ] were used during these campaigns. The

extra attention caused by obstacles was carefully analyzed and eventually reflected in our

site-specific channel models.
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A detailed introduction is given for the channel measurement system in Chapter 2 . Mea-

surement results collected on the campus of the United States Naval Academy, which is a

typical suburban environment, were inspected. Performance evaluations on the path loss

prediction are provided for popular traditional channel models, including the close-in free

space reference distance path loss model, the alpha-beta-gamma model [18 ], and the In-

ternational Telecommunication Union (ITU) site-general/site-specific model for propagation

over rooftops [66 ]. These traditional models typically take a condensed, statistical approach,

which works well so far for carrier frequencies lower than mmWaves. This approach is simple

to understand and easy to use. It is also accurate to a reasonable degree, with a typical root

mean square error (RMSE) of around 10 dB for the suburban environment and a typical

RMSE of around 20 dB for rural forest environment based on our measurement data sets.

However, as shown in our measurement results, mmWave is very sensitive to blockages [67 ].

The consideration of site-special geographic features, e.g., buildings and trees, becomes nec-

essary to ensure a good performance of future mmWave channel models. Otherwise, local

obstacles and the corresponding signal destruction can not be fully captured in these models,

causing channel condition predictions too off to be useful in real-life scenarios.

Following this idea, new research on mmWaves has been conducted for high-accuracy

predictions on channel characteristics via simulations, especially by the means of high-fidelity

ray tracing [68 ]–[72 ]. A two-dimensional (2D) or full three-dimensional (3D) environment

reconstruction is required for each area of interest, typically manually [68 ], [69 ], [72 ] or

with the help of high-resolution LiDAR [71 ]. This approach yields very promising accurate

results, but it is difficult to be applied in large-area analyses needed in real-life network

constructions. The complexity, especially the intense labor work involved in the environment

reconstruction and the high computational expense required by the simulation, has been the

main obstacle in a broader application. Currently, the application is mainly limited to

small-scale environments, especially indoor [68 ], [70 ] and dense urban ones [68 ], [71 ].

To harvest the benefits of both worlds, we developed fully automatable low-complexity

channel models which make predictions based on easy-to-obtain site-specific geographic in-

formation. A good example for this would be our one-building-blockage model introduced in

Chapter 3 for suburban residential environments. Based on a simple geometry representation
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of the building of interest, the model can compute an adjustment term evaluated through the

knife-edge diffraction model [73 ]. Adding this term to the baseline ITU site-general model

for propagation over rooftops [66 ] yielded a significant RMSE improvement.

Chapter 4 extends our investigation to a complicated rural coniferous forest environ-

ment. In that work, a variety of traditional models were inspected, including the partition-

dependent attenuation factor model [74 ], the ITU-R obstruction by woodland model [75 ],

and Weissberger’s model [76 ]. Site-specific features, e.g., the foliage depth and the foliage

area, were computed from Public LiDAR and ground elevation data from United States Geo-

graphic Survey (USGS). Two new site-specific models were developed accordingly to further

improve the performance available from the traditional models.

1.5 Large-Scale Coverage Analyses via Site-Specific Channel Modeling

So far, we have been blurring the boundary between channel modeling and simulation to

better describe mmWave’s sensitivity to blockages in future channel models. On the other

hand, the simplicity inherited from the traditional channel modeling philosophy makes it

possible for us to apply the site-specific channel modeling concepts into large-scale channel

simulation. We will explore this idea in the site-specific cellular coverage analyses presented

in Chapters 5 and 6 . Chapter 5 will quantitatively evaluate the coverage performance of

drone data relays at different heights in an LTE system, while Chapter 6 will conduct state-

wide simulations for Indiana with a wide range of carrier frequencies to assess the validity

of network densification for rural regions. These analyses are important in quantifying the

coverage and locating poorly covered spots in real-life wireless wide-area networks. They also

provide us with a deeper understanding of the digital divide in terms of service coverage:

network diversification alone is probably not a good enough solution for bridging the digital

gap; more research efforts are needed in developing cost-effective supplementary solutions,

e.g, private data relay via drones or portable towers.
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2. 28-GHZ CHANNEL MEASUREMENTS AND MODELING

FOR SUBURBAN ENVIRONMENTS

Reprinted, with permissions, from: Y. Zhang, D. J. Love, N. Michelusi, et al., “28-GHz

channel measurements and modeling for suburban environments,” Department of Electrical

and Computer Engineering, Purdue University, West Lafayette, Indiana, Tech. Rep. TR-

ECE-17-07, Nov. 2017. [Online]. Available: https://docs. lib.purdue.edu/ecetr/483/  . A

majority of the materials were also presented in: Y. Zhang, S. Jyoti, C. R. Anderson, et al.,

“28-GHz channel measurements and modeling for suburban environments,” in 2018 IEEE

International Conference on Communications (ICC), IEEE, May 2018, pp. 1–6. doi: 10.

1109/icc.2018.8422820  . © 2018 IEEE. Editorial changes have been made to meet Purdue’s

requirements on the dissertation.

2.1 Introduction

The increasing demand of mobile device users for higher data rates has been the driving

factor for the rapid development of mobile telecommunications during the past decade [3 ].

The number of worldwide mobile subscriptions, which reached a record height of 7.5 billion

in 2016, has continued to increase, and the total mobile data traffic is expected to rise at a

compound annual growth rate of 42% between the end of 2016 and 2022 [77 ]. This increasing

usage of wireless technology is prompting mobile service providers to take advantage of higher

frequency bands in the foreseeable future, starting with millimeter waves (mmWaves), to

overcome the expected global bandwidth shortage [78 ].

With recent advances in radio frequency (RF) technology [79 ]–[81 ], hardware operat-

ing at mmWave frequencies is becoming commercially available [4 ], [82 ], [83 ]. This has

made mmWave frequencies the most promising higher frequency bands for a larger usable

radio spectrum. To fully understand the propagation characteristics of mmWave signals,
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the amount of research on mmWave channel measurement and modeling has increased dra-

matically in the past five years [3 ], [84 ]–[86 ]. However, the majority of current research

on mmWave communications has focused on urban areas with high population densities,

with very few measurement campaigns in suburban and rural environments, which are also

important for future mobile networking technologies. Moreover, statistical models for point-

to-point links have received significant attention, but the channel information provided by

these approaches is insufficient for next-generation wireless networks such as 5G. These net-

works must address mobility requirements because frequent and location-specific blockages

are expected at mmWaves, which require a much richer set of channel state information

beyond LoS path loss (such as multipath scattering).

In this paper, we explore this gap in the research by focusing on suburban environments

and constructing physically motivated and practical models that can be used for mmWave

networks in these environments. An intensive measurement campaign has been carried out

at the United States Naval Academy (USNA) in Annapolis, Maryland. Measurements were

taken around the campus at 28 GHz to characterize the propagation in a suburban-type

environment. The resulting path losses are compared with several standard 5G channel

models. Our results indicate that a holistic, network-wide approach beyond traditional

point-to-point links may be needed to deal with the high dependence of mmWaves on site-

specific environment geometry.

The paper is organized as follows: In Section 2.2 , we present our propagation measure-

ments in suburban environments; In Section 2.3 , we present the procedure for calculating

basic transmission losses, followed by our analysis in Section 2.4 ; Finally, in Section 2.5 , we

conclude the paper.

2.2 Mm-Wave Propagation Measurements for Suburban Environments

An outdoor propagation measurement campaign was conducted on the USNA campus

to emulate a typical 5G deployment in a suburban environment. Compared with urban

environments, the USNA campus has shorter buildings with more flexible shapes and lo-

cations, wider streets, and lighter traffic. During the campaign, the transmitter (TX) was
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temporarily installed on the Mahan Hall clock tower. The receiver (RX) was moved around

the campus to obtain path loss measurements for individual sites and continuous paths.

2.2.1 Measurement Equipment

A custom-designed broadband sliding correlator channel sounder [87 ] was used to record

propagation data. Figure 2.1 presents block diagrams for the channel sounder. At both

the TX and the RX sides, horn antennas with a nominal +22 dBi gain and 15° half-power

beamwidth (HPBW) were employed, and pseudo-random noise (PN) generators produced

the same PN sequences with a chip sequence length of 2047 [3 ].

At the TX, the PN probing signal was generated with a chip rate of 400 megachips per

second (Mcps). To make the implementation cost-effective, the signal was first modulated

to a 2.5-GHz intermediate frequency (IF) and then converted to RF of 28 GHz by mixing it

with a 25.5-GHz local oscillator (LO) at the upconverter. At the RX, the received signal was

first downconverted from 28 GHz to 2.5 GHz and then cross-correlated with the identical

PN sequence generated with a slightly slower clock rate of 399.94 MHz, similar to the setup

in [3 ]. A Universal Software Radio Peripheral (USRP) B200 was utilized to record the

resulting in-phase (I) and quadrature (Q) signal components. It also regularly sampled the

RX’s location with the help of an onboard GPS disciplined oscillator (TCXO version). The

implementation of the TX and RX systems is shown in Figure 2.2 . The components are

fixed on shelves for portability and the TX is furthermore enclosed into a rack case for extra

protection during the deployment.

Table 2.1 summarizes the key parameters for the channel sounder. Note that the estima-

tion for the maximum measurable path loss is based on the following. (1) The RX low-noise

amplifier has a noise figure of 2.4 dB, so we assume a worst-case RX noise figure of 6 dB.

(2) The RX detection bandwidth is 60 kHz. (3) The minimum signal-to-noise ratio (SNR)

for a detectable signal is empirically estimated as 5 dB.
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(a) TX

(b) RX

Figure 2.2. Photos of the custom-designed spread-spectrum channel sounder.
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Table 2.1. Broadband Sliding Correlator Channel Sounder Specifications

Carrier Frequency 28 GHz

Chip Sequence Length 2047

RF Bandwidth (First Null) 800 MHz

TX Chip Rate 400 Mcps

Temporal Resolution 2.5 ns

RX Chip Rate 399.94 Mcps

TX Power 23 dBm

TX/RX Antenna Gain 22 dBi

Measured TX/RX Azimuth HPBW 10.1°

Measured TX/RX Elevation HPBW 11.5°

Maximum Measurable Path Loss 182 dB

2.2.2 Measurement Setup and Procedure

Three types of measurements have been performed for large-scale path loss, emulated

single-input and multiple-output (SIMO), and continuous tracks. The TX was installed at

a height of 90 feet (27.4 m) to emulate a microcell deployment. The RX was moved around

campus by an electric car or a two-layer platform trolley to obtain the measurements, which

is illustrated by the photographs in Figure 2.3 . For both cases, the platform for the RX

could be rotated horizontally and tilted with composite wood shims to align the beam.

We used compasses and digital levels to achieve beam alignment before the measurements

at each RX location. Aside from the USRP output files and GPS samples, the azimuths

and elevations of both the TX and RX antennas were recorded manually. This allowed us

to reconstruct the geometry relationship of the antennas and extract precise antenna gains

during post-processing for path loss computation and analysis. The USRP gain was manually

adjusted to maximize the SNR at the RX.1  

1↑ The Python code for automatically carrying out the measurements at each location using GNU Radio,
together with the MATLAB code for post-processing the collected data, are available at https://github.com/
YaguangZhang/EarsMeasurementCampaignCode.git 
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(a) RX on an electric car

(b) RX on a trolley

(c) Before a continuous signal recording
for a pedestrian path

Figure 2.3. Photos of the measurement setup.

Large-Scale Path Loss Measurements

Forty measurement locations were chosen to investigate the large-scale path loss at

various distances from the TX (between 100 m and 1000 m). For each site, the RX antenna

was moved along X and Z axes by our positioning system to form a “+” pattern within a

20λ×20λ area, where λ = 10.7 mm was the wavelength corresponding to 28 GHz. For every

λ interval on the “+” pattern, one 3-second signal recording and one GPS sampling were

obtained, with 40 separate measurements in total. In Figures 2.3b and 2.3c , the custom-built

X-Z positioning system is shown.
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Emulated SIMO Measurements

Measurements that were used to emulate SIMO signals were similar to those for the

large-scale path loss, but with a higher space sample density and a larger sample area for

each site. The RX antenna was moved along the “+” pattern with the interval between

adjacent measurements reduced to 0.25λ. The pattern covered an enlarged 40λ × 40λ area,

with 320 separate measurements in total for each site. Ten locations were chosen, where the

distances between the TX and the RX varied from 50 m to 500 m. The data collected were

or will be used to analyze small-scale propagation characteristics. However, in this paper,

we focus only on large-scale path loss.

Measurements for Continuous Tracks

To investigate the shadowing effect on a moving user, two approximately 200-m-long

straight tracks were chosen for continuous signal recordings. The TX antenna was pointed

at the center of the track for each recording. The RX antenna was fixed on the positioning

system and moved at walking speed along each track to record the signal, and the GPS

location of the RX was sampled once per second. The RX antenna elevation was kept at 0°,

and the platform was adjusted as necessary to maintain the azimuth concerning the fixed

earth reference during the recording process (see Figure 2.3c ) for the beam alignment.

2.3 Basic Transmission Loss Calculation

In this section, we present our procedure for computing the basic transmission loss of

each signal recording. Received signal power calculation, RX calibration, antenna pattern

generation, and antenna gain extraction were considered in determining antenna-independent

path losses.

2.3.1 Received Signal Power Calculation

The traditional method of calculating received signal power for broadband measurements

is carried out in the time domain by integrating the total area under a power delay profile

(PDP), assuming that all the multipath signals add up in phase. Instead, we adopted a
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frequency-domain technique, as illustrated in Figure 2.4 , to preserve the phase relationships

and yield a more accurate estimate of received power. For each measurement, the noise

amplitude characteristics were first estimated for the filtered signal to set a noise elimination

threshold. Then, all samples weaker than the threshold were set to 0, as shown in Figure 2.4a .

The received power energy was computed by integrating the PSD of the noise-eliminated

signal below 20 kHz, ignoring the DC component, as shown in Figure 2.4b . This process is

summarized below,

1. Run the recorded complex I/Q voltage waveform through a 60 kHz low pass filter

(LPF) to remove noise in frequency.

2. Further eliminate noise in the time domain by (a) estimating the standard deviation

σ and mean n0 for the noise using 10%–20% of the samples between two adjacent

signal pulses, as illustrated in the top plot of Figure 2.4a ; (b) calculating the noise

elimination threshold as 3.5σ + n0; and (c) Setting all samples with an amplitude

below the threshold to 0, as illustrated by the plot at the bottom of Figure 2.4a .

3. Calculate the received power by integrating over the power spectrum density (PSD)

of the noise-eliminated signal. We chose a tighter integration range (1 Hz–20 kHz) to

ignore residual high-frequency noise and direct current (DC) components, as illustrated

in Figure 2.4b .

The resulting values would have a linear relationship with the actually received power.

Next, we needed the RX calibration to convert the calculated power to the received power.

2.3.2 RX Calibration

To calibrate the RX, the upconverter and downconverter, as well as the antennas, were

removed from our system in Figure 2.1 . Then, an adjustable attenuator for IF signals with

a 5-dB step size was attached to the TX to simulate the channel. The RX together with

a spectrum analyzer were used to record and measure the signal strength separately for a

set of different attenuation values, with the results from the spectrum analyzer treated as

the reference for signal strengths. We repeated the procedure with the RX gain (i.e., the
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(a) Noise variance estimation and noise elimination

(b) Integral in frequency for the signal power

Figure 2.4. Illustration of the received signal power calculation in the frequency domain.
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Figure 2.5. Linear fitting and interpolation for RX calibration lines.

adjustable USRP gain) set as its minimum (1 dB) and maximum (76 dB) values. From the

obtained power value pairs, linear relationships were extracted for expected measured power

vs. calculated power at the RX gain limits [88 ]. Figure 2.5 shows the resulting two base

reference calibration lines obtained via orthogonal least squares, as well as all the calibration

lines needed for our whole dataset gotten via a linear interpolation over the RX gain. By

carrying out orthogonal least squares over the calibration data points, we constructed a

linear relationship between the calculated power and the reference power measured by the

spectrum analyzer, as can be seen in Figure 2.5a . Then, Figure 2.5b illustrates how to obtain

new calibration lines for the RX gains used in the campaign. The calibration lines needed for

the whole dataset, denoted by the cluster of colored lines in Figure 2.5b , were obtained via

a linear interpolation over the RX gain with fixed unit slopes. From these results, received

powers were computed accordingly.

2.3.3 Antenna Pattern Generation

Using calibrated measurements from the manufacturer as a reference, we were able to

account for upconverter/downconverter and antenna gains.
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Normalization for Antenna Plane Patterns

To construct the pattern for our antennas, two measurement sweeps were conducted in

an anechoic chamber at USNA for the azimuth and elevation planes, respectively, using an

Anritsu VectorStar MS4640 series Vector Network Analyzer and the Diamond Engineering

DAMS Antenna Measurement System. The forward transmission coefficients |S21| from

each sweep were normalized to the nominal maximum gain of the antennas at 28 GHz, +22

dBi, and the resulting antenna patterns are plotted in Figure 2.6 . The antenna beamwidths

(10.1° azimuth HPBW and 11.5° elevation HPBW) were computed accordingly.

Full 3D Antenna Pattern Filling

From the azimuth and elevation antenna patterns, we constructed a full 3D pattern for

the antenna via linear interpolation, as illustrated in Figure 2.7 .

Antenna Gain Computation

With the detailed measurement records collected, we were able to reconstruct the ge-

ometry relationship of the TX and RX antennas for each measurement and extract their

gains. The Universal Transverse Mercator (UTM) coordinate system (x, y), also known as

(easting, northing), was extended with altitude z to form a three-dimensional (3D) reference

system (x, y, z). Inside this system, a new 3D coordinate system (X, Y, Z) was constructed

originating at the antenna of interest, which could be for either the TX or the RX, so

that the azimuth and elevation angles for any destination point could be calculated. The

corresponding gain was extracted by interpolating the antenna measurement data in 3D.

Figure 2.8 gives an illustration for computing the TX antenna gain for one measurement.

In this example, westing = −easting is used in the visualization. Within the extended

UTM coordinate system, the azimuth and elevation angles for the destination, from the

TX’s point of view, were calculated. Then, the resulting gain for the antenna was extracted

via 3D antenna pattern interpolation. For the case illustrated, the antenna of interest was

the TX on the clock tower. From the TX antenna’s point of view, i.e. in the tilted coordinate

system (X, Y, Z) determined by the TX antenna’s orientation, the destination has an azimuth

40



(a) Azimuth plane pattern

(b) Elevation plane pattern

Figure 2.6. Antenna pattern measurement results for the azimuth and elevation planes.
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Figure 2.7. Full 3D antenna pattern filling.

of 15.2° and an elevation of -3.9°. The corresponding gain by the 3D interpolated antenna

pattern was 11.05 dB.

2.4 Measurement Results and Analysis

In Figure 2.9 , 49 of the 50 static sites are shown on a Google map of the USNA cam-

pus. One large-scale site was ignored in our analysis because the data collected there were

influenced by rain.

2.4.1 Line-of-Sight (LoS) Sites

For LOS sites (24 in total), we compared the measurement results with the International

Telecommunication Union (ITU) site-general model for propagation over rooftops [66 ]:

PL(d, f) = 10 · α · log10(d) + β + 10 · γ · log10(f)

+ N(0, σ), (2.1)
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Figure 2.8. Illustration of antenna gain evaluation.
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where d is the 3D direct distance between the TX and RX in meters and f is the operating

frequency in GHz. In our case, f = 28 GHz. The parameters α, β, γ, and σ are chosen for

the LoS propagation in a suburban environment [66 ]:



α = 2.29

β = 28.6

γ = 1.96

σ = 3.48 .

(2.2)

These parameters are recommended for a distance range of 55 m to 1200 m at 2.2–73 GHz

frequency.

For a better comparison, we also considered two other models as references. The first is

the close-in (CI) free space reference distance path loss model:

PL(d) = PLF S(d0) + 10 · n · log10

(
d

d0

)
, (2.3)

PLF S(d0) = 20 · log10

(
4πd0

λ

)
, (2.4)

where n is the path loss exponent, PLF S(d0) is the free-space propagation loss at a distance

of d0 = 1 m with isotropic antennas, and λ is the carrier wavelength. The second is the

alpha-beta-gamma (ABG) model on which the ITU site-general model is based:

PL(d) = 10 · α · log10(d) + β + 10 · γ · log10(f). (2.5)

Note that α here acts as the path loss exponent.

We have fit these two reference models to our LoS measurement results. To deal with

GPS sample errors, the median values of latitude, longitude, and altitude measurements for

each site were used as that site’s geographic location to compute the site distance to the TX.

And for the ABG model, we set γ = 1.96 as recommended by ITU, given that we had only

one carrier frequency at 28 GHz.
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Figure 2.10. Model comparison for LoS and NLoS measurements.
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All three models, together with the measurement results, are presented in Figure 2.10a .

The ITU model provides path loss predictions in the form of Gaussian variables, and their

3-sigma range covers the measured path losses reasonably well, even though if we extrapolate

the ITU model to d = d0 = 1 m, its mean path loss would be smaller than the corresponding

free-space propagation loss (FSPL). This issue affects the ABG type of models in general.

In our case, the ABG model has the lowest root mean square error (RMSE) at 9.70 dB, but

its predicted path loss quickly descends below FSPL as the distance decreases. Hence, the

ABG model does not generalize well outside the distance range for its measurement data.

The resulting path loss exponents for the CI and ABG reference models are 2.00 and 2.81,

respectively. For the LoS dataset, these two models perform 0.41 dB and 0.64 dB better than

the ITU model, respectively, in terms of RMSE. Basically, within the distance range of the

LoS measurement dataset, these three models are equivalent, and the ITU model performs

well.

The four sites with lower path losses than the ITU 3-sigma range were further inves-

tigated through their PDPs. As very strong multipath components were observed for all

of these sites, it is still possible for even narrow mmWaves to have multipath components

that dramatically enhance the signal. For the closer two sites, this was expected because

they were surrounded by buildings. However, the two sites at farther distances were in open

areas, and the most reasonable origins of the multipath were reflections from buildings close

to the TX, as many of these buildings have sloped ceilings.

2.4.2 Non-Line-of-Sight (NLoS) Sites

For the 25 NLoS sites, the site-specific model for propagation over rooftops defined in

ITU-R P.1411-9, Section 4.2.2.2 [66 ] was utilized to predict the path loss for each site.

Similar to the LoS case, the CI and ABG models were compared with the ITU model as

references. This time, γ was set to 2.30 for the ABG model, as recommended by ITU for

NLoS above-rooftop propagation from 260 m to 1200 m at 2.2–66.5 GHz in an urban high-rise

environment, which was the most suitable for our purposes.

47



T
ab

le
2.

2.
K

ey
Pa

ra
m

et
er

s
fo

r
C

ha
nn

el
M

od
el

s

M
od

el
Lo

S
N

Lo
S

n
α

β
γ

R
M

SE
(d

B
)

n
α

β
γ

R
M

SE
(d

B
)

IT
U

N
/A

2.
29

28
.6

1.
96

10
.3

4
N

/A
N

/A
N

/A
N

/A
25

.3
3

C
lo

se
-i

n
2.

00
N

/A
N

/A
N

/A
9.

93
2.

50
N

/A
N

/A
N

/A
11

.7
3

A
B

G
N

/A
2.

81
11

.6
6

1.
96

9.
70

N
/A

1.
12

63
.6

1
2.

30
11

.0
5

48



Figure 2.10b shows the ITU predictions together with the reference models and NLoS

measurement results. For the NLoS data, the ITU model shows a trend of following the

measured path loss, but it has over-estimated predictions for most of the sites. Only five

of the NLoS sites had measured path losses that were clearly larger than the corresponding

ITU predictions. Furthermore, the ABG model does not agree well with the close-in one,

with resulting path loss exponents of 1.37 and 2.50, respectively. This may be caused by an

over-fitting of the ABG model to our NLoS path losses. However, both of these reference

models outperformed the ITU predictions by around 14 dB in RMSE. Table 2.2 summarizes

the key parameters for the obtained channel models.

Several factors may have reduced the performance of the ITU site-specific model. First,

the buildings on the USNA campus are not geometrically arranged exactly like those defined

in the ITU suburban area propagation model. The over-rooftop propagations often span

multiple building rows, which alters the blockage and reflection conditions. Also, for many

of our sites, the ITU over-rooftop model with a limited number of buildings would be a

better fit, which may ameliorate the path loss overestimation for propagations beyond the

building area.

Second, the parameter ranges defined in the ITU model do not always agree with those

for our NLoS sites. For example, the street width for most of our sites was over the defined

limit. For these cases, we used the upper bound for the model, 25 m, in the calculation, so

the model may have underestimated the path losses for sites relatively close to the TX by

considering reflections from buildings that do not exist. For sites that were further away,

more buildings are positioned between the TX and the RX, which may have caused an

overestimation.

Third, at around 10 of the NLoS sites, the LoS propagation was directly blocked by veg-

etation, not buildings. A few other sites have foliage near their LoS paths. ITU-R P.1411-9

does not consider the propagation effects caused by vegetation due to the complexity.
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2.4.3 Continuous Tracks

Two continuous signal recordings were conducted to investigate the shadowing effect for

a simulated moving RX at walking speed. The basic transmission losses were calculated

for each second of signal recording (see Figure 2.11 ). As can be observed, the path losses

on Holloway road illustrate the shadowing effect of buildings and benches, while those on

Upshur road illustrate the shadowing effect of trees. In Figure 2.11c , the starting part of the

track is zoomed in, and trees are indicated by green rectangles.

For the track on Holloway road (Figure 2.11b ), the most significant blockage was from

Michelson Hall, which caused approximately 30 dB of additional path loss to half of the track.

Rickover Hall partially blocked the track by around 20 dB. The dotted lines in Figure 2.11b 

show where these blockages started on the track. There were also metal stadium benches on

the northeast side of Ingram Field adjacent to the measurement route, which caused around

20 dB of additional path loss. This is more clear on the part of the track with no building

blockages, where a path loss peak shows up behind each one of the benches.

For the track on Upshur road (Figure 2.11c ), the two benches next to the measurement

route were farther away from the track and did not block the signal significantly. For this

set of data, the effect of foliage shadowing is of interest. Trees were planted on the TX side

adjacent to the pathway and a few path loss peaks shown in Figure 2.11c correspond well

with the locations of these trees.

2.4.4 Discussion

We have focused on the large-scale path loss, comparing our measurements with predic-

tions obtained by following ITU-R P.1411-9 [66 ] on propagation over rooftops. Our data show

that a richer set of channel state information, including multipath scattering and location-

specific building geometries, is necessary to produce more reliable coverage predictions. In

the LoS situation, the measurements agree reasonably well with the ITU predictions, while

for the NLoS situation, most of the predictions appear to have higher path losses than the

corresponding measurement results. Limiting the building number, extending the model
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(a) Basic transmission losses for two continuous tracks
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Figure 2.11. Basic transmission losses for continuous tracks on Google Maps.
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with sloped ceilings, and considering over-rooftop propagations spanning multiple building

rows may help improve the ITU site-specific model for suburban environments.

According to our model comparison results, the CI and ABG models do a good job of

predicting large-scale path loss in both LoS and NLoS cases. Furthermore, the ABG model,

in general, can provide a better fit for a given set of data. However, it may give non-physical

results beyond the distance range over which the data are collected. Because of this, care

should be taken when using the ABG model out of its defined range.

The continuous recordings back up channel modeling attempts that consider environmen-

tal information, for example, through the radio environment map [89 ] and ray tracing [90 ]

approaches. Moreover, the results indicate the possibility of increasing large-scale path loss

prediction accuracy for statistical models with simple but site-specific environment geometry,

which would balance computation complexity and model performance.

2.4.5 Future Works

In the future, we plan to: (1) Further investigate the ITU channel modeling recommenda-

tion for possible extensions or improvements, e.g. sloped ceilings, over roof-tops propagations

spanning multiple rows, and limitation on the building number; (2) Explore the possibility

of enhancing statistical channel model performance with side geometric information; (3) Ex-

amine the influence on large-scale path loss from the vegetation; (4) Look closer into the

SIMO measurements for means to utilize the presented multipath effects.

2.5 Conclusion

In this paper, we discussed the implementation of a custom-designed broadband channel

sounder and explained how we used it for a measurement campaign that focused on the prop-

agation of mmWaves in suburban environments at 28 GHz. The resulting basic transmission

losses for LoS and NLoS sites were separately compared with the corresponding propagation

predictions based on the ITU-R P.1411-9 recommendation. The site-general LoS model for

propagation over rooftops in suburban environments agreed with our measurements reason-

ably well, but the corresponding site-specific NLoS model overestimated the path loss for

52



most of the NLoS sites. Two continuous measurement tracks were also constructed. The

results illustrated that the knowledge of geometric features may increase the prediction per-

formance for large-scale path losses, which backs up the radio environment map approach

for channel modeling in future communication networks.
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3. IMPROVING MILLIMETER-WAVE CHANNEL MODELS

FOR SUBURBAN ENVIRONMENTS WITH SITE-SPECIFIC

GEOMETRIC FEATURES

Reprinted, with permissions, from: Y. Zhang, D. J. Love, N. Michelusi, et al., “Improving

millimeter-wave channel models for suburban environments with site-specific geometric fea-

tures,” in 2018 International Applied Computational Electromagnetics Society Symposium

(ACES), IEEE, Mar. 2018, pp. 1–2. doi: 10.23919/ropaces.2018.8364140  . © 2018 IEEE.

Editorial changes have been made to meet Purdue’s requirements on the dissertation.

3.1 Introduction

Millimeter wave (mmWave) bands have become the most promising candidate for en-

larging the usable radio spectrum in future wireless networks such as 5G [3 ]. Since frequent

and location-specific blockages are expected at mmWaves, the challenge is understanding the

propagation characteristics of mmWave signals and accordingly predicting the channel state

information as needed, so that the high mobility requirements of these wireless networks can

be addressed in real-time.

The majority of current research has focused on urban areas with high population densi-

ties [3 ], [73 ], [84 ]. Very few measurement campaigns have been performed in suburban and

rural environments. Moreover, statistical models for point-to-point links have received signif-

icant attention, but this approach ignores all or most of the site-specific geometric features,

which mmWaves are sensitive to due to blockages. In this paper, we explore this research

gap by focusing on suburban environments and improving standard 5G channel models with

site-specific geometric features.
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3.2 Mm-Wave Propagation Measurements for Suburban Environments

An outdoor propagation measurement campaign was carried out at the United States

Naval Academy (USNA) in Annapolis, Maryland. The transmitter (TX) was temporarily

installed on the Mahan Hall clock tower to emulate a typical 5G suburban microcell de-

ployment. A custom-designed broadband sliding correlator channel sounder was used as the

receiver (RX) and moved around the campus to obtain path loss measurements. More details

for the measurement setup can be found in [67 ].

3.3 Building Blockage Analysis

One approximately 200-m-long straight track was chosen for a continuous signal record-

ing, to investigate the shadowing effect of buildings on a moving user. The resulting basic

transmission losses are shown in Figure 3.1a . The numbers in the boxes are distances to the

TX. The dotted lines illustrate the boundaries between the line-of-sight (LoS) area and the

none-line-of-sight (NLoS) area due to blockages. As we can see, the path loss values clearly

illustrate the shadowing effect caused by the buildings. The most significant blockage was

from Michelson Hall, which obstructed the southern half of the track. Rickover Hall partially

blocked the track at the north end.

To estimate the path loss caused by building blockages, the knife-edge diffraction (KED)

model [73 ] was utilized. In our case, the Universal Transverse Mercator (UTM) coordinate

system was extended with height to form a 3-dimensional (3D) space for computing the

effective height of the obstructing screen, as well as the distances between the TX, the RX,

and the screen. Note that the path obstruction may occur either on a horizontal roof edge or

a vertical side edge of the building. Finally, the screen height was computed as the distance

between the obstruction point and the direct Euclidean path between the TX and the RX.

The resulting diffraction losses were used to shift the large-scale path loss predictions from

the International Telecommunication Union (ITU) site-general model for propagations over

rooftops [66 ]:

PL(d, f) = 10 · α · log10(d) + β + 10 · γ · log10(f) + N(0, σ), (3.1)
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where d is the 3D direct distance between the TX and the RX in meters and f is the

operating frequency in GHz. In our case, f = 28 GHz. The parameter values α = 2.29,

β = 8.6, γ = 1.96, and σ = 3.48, were chosen for the LoS propagation in a suburban

environment [66 ], which are recommended by ITU for distances from 55 m to 1200 m at

2.2–73 GHz frequency.

Figure 3.1b shows the final results. The ITU model provides path loss predictions in the

form of Gaussian variables. Accordingly, 3-sigma ranges for both the original and shifted ITU

models are shown and root mean square errors (RMSEs) are computed separately according

to the mean of each model. Note that the mean of the ITU predictions is proportional to

log10(d), the logarithmic value of the distance between the TX and the RX. To better reflect

this trend, our visualization here created the x-axis on a logarithmic scale, even though the

result is not much different than a linear-scale plot in the distance range of interest. As we

can see, the modified ITU predictions follow the measurement data much better than the

original ones, providing an RMSE improvement of 11.79 dB.

Another observation is that for distances below 280 m, the original ITU model overesti-

mated the path loss by around 20 dB. This may be caused by some strong reflection path(s).

Also, in the same distance range, the KED model overestimated the attenuation caused by

Rickover Hall. This was probably because the blockage happened at the southern vertical

edge of the building, which corresponds to a very short obstructing screen, whereas the KED

model applies for a screen with infinite height. Still, the KED model helped identify the path

loss peak below 260 m.

3.4 Foliage Analysis

The effect of foliage for modeling mmWave channel is a vital consideration for suburban

environments as scattering and absorption at these frequencies can significantly attenuate

the signal. In our measurement campaign, eleven sites had partial or total obstruction of the

LoS signal from foliage, ranging from a single tree to a small grove of trees. Our measurement

results were compared against four well-known empirical models [91 ] that are valid in this

frequency range: COST235, Weissberger, ITU-R, and FITU-R models.
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Figure 3.2 illustrates our measured excess vegetation attenuation versus vegetation depth

as well as existing model predictions. From the figure, we can see that the ITU-R model

and Weissberger’s model both work well compared to our measurement results, especially

when the vegetation depth is below 10 m. The other two models, FITU-R and COST235,

overestimate the extra attenuation caused by the trees in our case. We can also observe that

the mean measured value of foliage attenuation (0.07 dB/m) is significantly less than those

of model-predicted values. In fact, our measurements demonstrate a significant amount of

multipath energy arriving at the receiver, likely being scattered from other objects in the

environment. As a result, we recorded a greater signal strength than what would be predicted

by these simple single-path attenuation models.

3.5 Conclusion

In this paper, we illustrate two measurement- and geometry-based techniques for im-

proving existing statistical mmWave channel models. Our approach is suitable for a holis-

tic, network-level model that utilizes side information and the results could be updated in

real-time. Our techniques demonstrate a modest, but significant, overall improvement in

propagation modeling accuracy.
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4. PROPAGATION MODELING THROUGH FOLIAGE IN A

CONIFEROUS FOREST AT 28 GHZ

Reprinted, with permissions, from: Y. Zhang, C. R. Anderson, N. Michelusi, et al., “Propa-

gation modeling through foliage in a coniferous forest at 28 GHz,” IEEE Wireless Communi-

cations Letters, vol. 8, no. 3, pp. 901–904, Jun. 2019. doi: 10.1109/lwc.2019.2899299 . © 2019

IEEE. Editorial changes have been made to meet Purdue’s requirements on the dissertation.

4.1 Introduction

With the rapid standardization process of 5G communication networks [92 ], millime-

ter waves (mmWaves) have garnered great attention worldwide from industry, academia,

and government. A major issue is to better understand the propagation characteristics of

mmWave signals. Many mmWave channel measurement campaigns have recently been car-

ried out in urban and suburban environments [3 ], [44 ], [45 ], [73 ]. However, very limited effort

has been put into validating and improving currently available channel models in overcom-

ing vegetation blockages. This is a key element of sensor data collection in forestry and

agriculture [93 ] for preventing costs incurred by under/over-deployment of the sensors and

improving their communication performance. In [94 ], a constant excess path loss of around

25 dB was observed at 28.8 GHz through a pecan orchard for paths with roughly 8 to 20

trees. More recent works [45 ], [95 ] reported low attenuation values per unit foliage depth

of 0.07 dB/m at 28 GHz and of 0.4 dB/m with 3 dB deviation at 73 GHz, respectively.

In [96 ], attenuation with a dual-slope structure was observed for out-of-leaf measurements

at 15 GHz, 28 GHz, and 38 GHz in forest environments. Moreover, even though a variety

of modeling approaches have been considered, most of them ignore site-specific geographic

features [45 ]. A comprehensive analysis for attenuation in vegetation is required to validate

those observations and make improvements to mmWave propagation modeling.
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We explore this research gap by investigating the mmWave propagation at 28 GHz

through vegetation. Using a portable custom-designed sliding correlator sounder, we carried

out a measurement campaign in a coniferous forest near Boulder, Colorado, and obtained a

total of 1415 basic transmission loss measurements. Relevant foliage regions were extracted

from the United States Geological Survey (USGS) LiDAR and terrain elevation data. Tree

locations were also manually labeled according to the LiDAR data and to high-resolution

satellite images from Google Maps. These data enabled us to view channel modeling in a

site-specific manner. A comprehensive model comparison is provided to elucidate the pros

and cons of different modeling approaches for predicting signal attenuation through vegeta-

tion. Novel site-specific models with consistently better performance than existing models

are developed. They are fully automatic, easy to implement, and feasibly applicable to

machine learning frameworks.

4.2 Measurement Setup

The measurement system in our previous work [44 ] was utilized. The receiver (RX), which

had a chip rate of 399.95 megachips per second, was installed in a backpack and powered

by a lithium-ion polymer battery for portability purposes. As illustrated in Figure 4.1 , the

transmitter (TX) was set up at the edge of the forest, while the RX was moved in the

coniferous forest to continuously record the signal along with the GPS location information.

Boulder is a semi-arid environment with low humidity and minimal rainfall. Measurements

were performed on a warm spring day under mostly sunny conditions. The TX antenna

was adjusted before each signal recording activity to point to the middle area of the track

to be covered. Beam alignment was achieved at the RX side using a compass. One basic

transmission loss result was computed for each second of the recorded signal to match the

GPS data. We also obtained satellite images from Google Maps and LiDAR data from the

United States Geological Survey (USGS). Tree locations were manually labeled accordingly.

Foliage regions were automatically extracted by comparing the LiDAR data with USGS

terrain elevation data. These site-specific geographic features of the forest are illustrated in

Figure 4.1 b . We have zoomed in on the dotted-square area in Figure 4.1a to better illustrate
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surement campaign.
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the site-specific features. Satellite images from Google Maps are used here as background.

Overlaid on top are LiDAR data, foliage regions, and trunk locations, respectively.

4.3 Foliage Analysis for the Coniferous Forest

We compared three empirical foliage analysis models: the partition-dependent attenu-

ation factor (AF) model [74 ], the ITU-R obstruction by woodland model [75 ], and Weiss-

berger’s model [76 ]. To tune these models, four parameters were computed for each mea-

surement location: the distance between the TX and the RX, the number of tree trunks

within the first Fresnel zone, the foliage depth along the line-of-sight (LoS) path, and the

foliage area within the first Fresnel zone. These computations were performed in a three-

dimensional (3D) reference system using Universal Transverse Mercator coordinates (x, y)

and altitude. Based on these results, site-specific models were introduced to improve path

loss predictions.

All channel models considered here generate excess attenuation values on top of a site-

general channel model. We use the free-space path loss (FSPL) model as the baseline generic

model. The path loss PL in dB at the RX location s is then composed of two parts:

PL(s) = FSPL [d(s)] + EPL(s) ,

where FSPL [d(s)] is the FSPL in dB at a RX-to-TX distance of d at s, and EPL(s) is the

excess path loss in dB at s.

4.3.1 AF Propagation Model [74 ]

The partition-dependent AF propagation model takes advantage of site-specific informa-

tion by assuming that each instance of one type of obstacle along the LoS path will incur a

constant excess path loss. In our case, we counted the number of trees, N(s), along the LoS

path to s and added a constant excess path loss in dB, L0, for each of the trees, as follows:

EPL(s) = N(s) · L0 .
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There are different methods for determining N(s). Considering the forest size and the

number of RX locations involved, it is extremely difficult and time-consuming to count N at

each s on-site. In our work, we simplified the trees, making them vertical lines rather than

estimating the cylinder of each tree. Then, the number of trees within the first Fresnel zone

for each s was estimated based on manually labeled trunk locations and used as the number

of obstacle trees.

Figure 4.2 shows the predictions obtained from the AF model. The unknown constant

L0 was fit according to the measurement data, resulting in a value of 6.47 dB per tree. As

can be seen, the AF model closely follows the shape formed by the measurement results.

However, it suffers in predicting the correct amount of excess path loss in general. This is

expected because we have only considered the trunk locations for counting trees, but their

physical sizes also play a critical role in attenuating the signal. The root mean squared

error (RMSE) for the AF model compared with the measurements is 27.96 dB, achieving an

11.47 dB improvement over the FSPL model but still significantly worse than those for the

other two empirical models discussed below. In a word, the predictions from the AF model

fit the shape of the measurement results but have poor overall accuracy. We observe that it

may be possible to improve the AF model by classifying trees into different size categories

and assigning each category a loss value. However, in our case, trees grew in clusters, making

it extremely challenging to distinguish individual canopies and to properly classify trees.

4.3.2 ITU-R Obstruction by Woodland Model [75 ]

The ITU-R obstruction by woodland model assumes one terminal (the TX or the RX)

is located within woodland or similar extensive vegetation, which fits well our measurement

scenario. Instead of the number of trees, the ITU model uses the length of the path within

the woodland in meters, dw(s), which is the distance from the woodland edge to the terminal

in the woodland, to estimate the excess path loss:

EPL(s) = Am [1 − exp(−dw(s) · γ/Am)] , (4.1)
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Figure 4.2. The AF propagation model simplifies to a constant-loss-per-tree
model in our case.

where γ ≈ 6 dB/m is the typical specific attenuation for very short vegetative paths at

28 GHz, and Am is the maximum attenuation in dB. The most distinguishing feature of this

model is the upper limit Am imposed on the excess path loss.

Since the TX was installed approximately 15 m away from the forest, this offset has

been taken away from the 3D RX-to-TX distance to estimate dw(s), with the negative

values clipped to zero. Also, Am is yet to be determined in [75 ] for 28-GHz signals, so we

fitted it to our measurement results to obtain the best possible performance, which yielded

Am ≈ 34.5 dB. The resulting predictions are plotted in Figure 4.3 . The ITU model exhibits

the best fit among the empirical models considered, with an overall RMSE of 20.08 dB.

However, it clearly overestimates the path loss for locations with dw smaller than 30 m. At

those locations, the LoS path may be clear or blocked by only a couple of trees, differing from

a typical woodland blockage scenario. On the other hand, the ITU model underestimates the

path loss for large dw. As a comparison, the predictions from one site-specific model, which
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is covered in Section 4.3.4 , are also shown. The site-specific model follows the measurements

better than the ITU model at the lower and higher ends of dw.

4.3.3 Weissberger’s Model [76 ]

Weissberger’s model, or Weissberger’s modified exponential decay (WMED) model, can

be formulated as follows:

EPL(s) =


0.45 f 0.284

c df (s) , if 0 < df (s) 6 14

1.33 f 0.284
c d0.588

f (s) , if 14 < df (s) 6 400

where fc is the carrier frequency, and df (s) is the foliage depth in meters along the LoS path

for the RX location s. The model treats locations with df (s) >14 differently from those with

less foliage blockage.

We have taken an image processing approach to automatically obtain the site-specific

foliage depth, df (s), which is the accumulated distance for the intersections of the direct
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path and the foliage regions. Both the LiDAR data and the terrain elevation data from the

USGS were rasterized onto the same set of reference location points. The foliage regions were

then extracted by thresholding their difference, resulting in the foliage regions illustrated in

Figure 4.1 b . Along the LoS path, the ratio of the number of foliage region pixels over the

total number of pixels was calculated and multiplied with the corresponding 3D RX-to-TX

distance to get the foliage depth for each RX location.

Figure 4.4 a compares the predictions from the WMED model with the measurement

results. Overall, the WMED model gives a reasonably good RMSE value of 22.19 dB. As

shown in Figure 4.4a , Weissberger’s model slightly underestimates the loss of RX locations

with shallow vegetation blockages and overestimates the loss of those with deep vegetation

blockages. To better illustrate this, results from site-specific model A-I are shown as a

reference.

4.3.4 Site-specific Models

Using high-precision publicly available geographic information, existing channel models

can be tuned with well-estimated site-specific parameters. As a result, simple but powerful

site-specific models can be constructed as alternatives. We refer to these as ”site-specific”

models because their performance depends heavily on the accuracy of the parameters eval-

uated for each site.

By combining the idea of evaluating the blockage condition individually for each s from

the AF model and the two-slope modeling approach in the WMED model, we constructed

model A-I :

EPL(s) =


df (s) · L1 , if 0 6 df (s) 6 Df

DfL1 + [df (s) − Df ] L2 , if df (s) > Df

where df (s) is the foliage depth in meters at s, L1 and L2 are two constants for adjusting

the extra loss in dB caused by each meter of foliage, and Df is the boundary determining
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when L2 will take effect. The upper bound from the ITU model can be imposed by setting

L2 = 0 to form model A-II :

EPL(s) =


df (s) · L1 , if 0 6 df (s) 6 Df

Df · L1 , if df (s) > Df

We also reused the ITU model in Equation (4.1 ) with site-specific foliage depth to form

model B. That is, df (s) is used instead of dw(s), and parameters Am and γ are set according

to the measurements.

For a fair performance comparison for these three models, we used the WMED boundary

Df = 14 for model A-I to leave only two adjustable parameters. After fitting these models

to our data, we found L1 ≈ 2.39 dB/m and L2 ≈ 0.12 dB/m for model A-I, L1 ≈ 2.09 dB/m

and Df ≈ 17.87 m for model A-II, along with Am ≈ 38.04 dB and γ ≈ 4.47 dB/m for model

B. The resulting predictions are plotted in Figure 4.4 b . The corresponding RMSE values are

summarized in Table 4.1 , together with those for the traditional models as references. Note

that the site-specific models perform very similarly, and each unit of foliage depth tends to

contribute less to the excess loss as foliage depth grows. Model A-I does not limit the excess

loss as the other two site-specific models do, but it performs slightly better than model A-II

in terms of RMSE. Overall, model B performs the best, but computationally, it is more

demanding because of its exponential form.

We can further push the best RMSE performance to 19.18 dB with Model C :

EPL(s) =



0 , if af (s) = 0

af (s) · L1 + L0 , if 0 < af (s) 6 Af

AfL1 + [af (s) − Af ] L2 , if af (s) > Af

where foliage area af (s) is the sum total area for the intersections between the first Fresnel

zone at RX location s and the foliage regions; L0 (dB), L1 (dB/m2), and L2 (dB/m2) are

constants adjusting the excess loss contribution; and Af is the boundary determining when

the foliage is deep enough for L2 to take effect. According to our measurement results, we
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Figure 4.5. Regional performance improvement for site-specific models using
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have L0 ≈ 19.14 dB, L1 ≈ 2.09 dB/m2, L2 ≈ 0.06 dB/m2, and Af ≈ 18.02 m2. This model

has a sudden jump at the origin. Its prediction results are also shown in Figure 4.4 b for

reference.

The most important feature of these models is that they are fully automatic and thus

can be applied in large-scale wireless communication networks. Site-specific information was

fetched from Google and USGS servers. Foliage information was extracted, and channel

modeling performed, by our automated algorithms. Another advantage of our site-specific

models is their consistently good performance throughout the whole dataset. To demonstrate
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Table 4.1. Overall Performance

Baseline Traditional Site-Specific

Model FSPL AF ITU WMED A-I A-II B C

RMSE (dB) 39.43 27.96 20.08 22.19 19.96 20.02 19.93 19.18

this, regional RMSE improvements over the ITU and WMED models are evaluated in terms

of dw and df , respectively, as summarized in Figure 4.5 . For our dataset, the ITU model works

very well, as shown in Table 4.1 . However, according to Figure 4.5 a , the ITU model suffers

from an RMSE degradation of as much as 20 dB compared with the site-specific models in

the low-vegetation-coverage region (dw < 30 m). For large dw, this value is observed to be as

much as 6 dB. Compared with the ITU model, site-specific models work significantly better

for locations close to the TX and reasonably better for those far away. However, models

A-I, A-II, and B suffer a severe performance degradation for dw ∈ [35, 60] m, which is less

of an issue for model C. A visual comparison for predictions from the ITU model and model

A-I is provided in Figure 4.3 , where model A-I clearly works better for extreme cases at the

low and high ends of dw. Similar comparisons have been carried out for the WMED model

in Figure 4.4 a and Figure 4.5 b . The WMED model slightly underestimates the path loss at

RX locations with a small df and overestimates it at large df . Compared with the WMED

model, site-specific models again work reasonably better for extreme cases. A performance

deterioration is observed at a foliage depth of around 80 m, where models A-I and C are

less influenced.

4.4 Conclusion

A comprehensive channel model comparison for attenuation through vegetation was con-

ducted using data from measurements in a coniferous forest near Boulder, Colorado. The

partition-dependent AF model is intuitive and site-specific but hard to automate with satis-

fying performance. The ITU obstruction by woodland model and Weissberger’s model work

extremely well overall, but only for scenarios with a moderate amount of foliage blockage.

Inspired by the results, we developed novel site-specific models for consistent improvement in
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prediction accuracy through shallow to deep vegetation blockages. They are fully automatic,

easy to implement, and feasibly applicable to machine learning frameworks.
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5. LARGE-SCALE CELLULAR COVERAGE ANALYSES FOR

UAV DATA RELAY VIA CHANNEL MODELING

Reprinted, with permissions, from: Y. Zhang, T. Arakawa, J. V. Krogmeier, et al., “Large-

scale cellular coverage analyses for UAV data relay via channel modeling,” in ICC 2020 -

2020 IEEE International Conference on Communications (ICC), IEEE, Jun. 2020, pp. 1–6.

doi: 10.1109/icc40277.2020.9149403  . © 2020 IEEE. Editorial changes have been made to

meet Purdue’s requirements on the dissertation.

5.1 Introduction

The rapid development of unmanned aerial vehicle (UAV) technologies has provided a

vast array of new possibilities for wireless communications [98 ]. In particular, consumer-grade

drones debuted around a decade ago and have become increasingly sophisticated for a lower

cost. These drones have demonstrated the ability to dramatically alter several industries [99 ].

Boosted by advanced technologies, such as energy-efficient autonomous target tracking [100 ],

the popularity of drones has made it possible and cost-effective to extend wireless commu-

nication coverage via UAV data relay (also called data ferrying), especially for rural areas

where network coverage is sparse or nonexistent [101 ]. The flexibility of UAV-aided wireless

communication has attracted research attention from a variety of areas, including the In-

ternet of Things [102 ], intelligent transportation systems [103 ], and digital agriculture [104 ].

On-demand deployment of relay UAVs could play a key role in improving mobile service

quality in many challenging scenarios faced by today’s communication infrastructure. Most

current research efforts, however, focus on modeling and theoretically optimizing data relay

systems via UAV trajectories in simplified geographic environments [105 ]–[107 ], while de-

ploying UAVs in practical wireless communication networks requires large-scale quantitative

performance analysis results based on real-life environment information.
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To fill this research gap, we propose algorithms for generating large-scale blockage and

path loss maps via terrain-based channel modeling for cellular communication systems with

fixed-height relay drones. Novel procedures for computing and visualizing the coverage

ratio gain based on these maps are also set up to quantify system-level performance in an

equipment-independent manner. Based on high-resolution LiDAR data, the blockage maps

are used to locate regions with line-of-sight (LoS) obstruction and identify areas that may

benefit from utilizing UAV data relay. Simultaneously, path loss maps generated from terrain

elevation data enable us to identify regions with satisfactory coverage conditions and quantify

the overall system performance. These algorithms were applied to Tippecanoe County,

Indiana, with relay drones simulated at different heights to obtain the overall coverage gains

of implementing UAV-aided cellular communication systems. Furthermore, we were able to

extend the area of interest to include ten counties [108 ] in the Wabash Heartland Innovation

Network (WHIN), Indiana, for carrying out similar cellular coverage analyses. A significant

coverage ratio gain of over 40% can be achieved for both cases at a drone height of 100 m.

Regions that would benefit the most were also revealed by the resulting maps. These site-

specific analyses are important for quantifying the possible improvement from UAV data

relay and guiding the implementation of such systems.

Our work makes the following contributions: (i) it provides quantitative analyses for

UAV data relay at system level over a large geographic area based on real-life environment

data, (ii) blockage detection is computed using publicly available LiDAR data as an effective

alternative to full propagation simulation, and (iii) the coverage ratio gain over different

path loss values is introduced to link the benefit of UAV data relay systems to quality-of-

service metrics. The paper is organized as follows. In Section 5.2 , we present our algorithms

for generating blockage and path loss maps. Coverage analyses based on these maps are

described in Section 5.3 . Finally, in Section 5.5 , we conclude the paper.
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5.2 Terrain-Based Channel Modeling

5.2.1 Scenario Model

Consider the scenario illustrated in Figure 5.1 . An agricultural end user is operating in

a region with sparse coverage. A dedicated UAV follows the user at a constant height above

ground hD to act as a relay between the user and remote cell towers serving the area of

interest. The communication between the UAV and the user is assumed to be reliably taken

care of by wireless local area network (WLAN) technology. This is a possible application

in digital agriculture where the relay UAV provides extended communication links in rural

areas for the user via a cellular backhaul. The relay UAV’s presence allows the cell tower to

reach some areas blocked at the user level. We are interested in modeling this improvement

quantitatively at a large geographic scale for different values of hD using freely available

geographic information such as LiDAR and terrain elevation data.

Such a data relay system can be implemented at low cost by attaching a custom-

configured cell phone to a modern photography drone with autonomous target tracking

functionality. Compared to enhancing coverage via a vast number of traditional repeaters

or small cell systems, the data relay approach provides the flexibility to enable inexpensive

on-demand deployment of wireless communication infrastructure. The relay UAVs can be

dispatched from the mobile service providers or set up privately by users. When they are no

longer needed, they can be dismissed. This flexibility is the key to satisfy the intermittent

connectivity requirement over vast low-population areas in many digital agriculture applica-

tions. In particular, data relay would be most useful for scheduled sensor data collection or

temporary data transmission during short-term activities such as planting and harvesting.

Such systems could operate without the high cost of building out and maintaining traditional

fixed infrastructure.

5.2.2 Simulation Scene Construction

The simulation was carried out primarily in the Universal Transverse Mercator (UTM)

coordinate system. Conversions between UTM (x, y) and GPS (latitude, longitude) were
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Figure 5.1. Illustration of a typical UAV data relay scenario.

performed when necessary with a fixed UTM zone label 16T. To incorporate the height

dimension over a large geographic area, the UTM system is extended with altitude, the sum

of the ground elevation, and the object height. The information needed for constructing

the simulation scene includes the cell tower antenna locations and the drone locations to

inspect. Our simulator, together with the coverage analysis algorithms, were implemented1
 

using MATLAB R2019b.

Locating Effective Cell Towers

Cell tower GPS locations were obtained from a randomized U.S. cellular laydown used

in a National Telecommunications and Information Administration (NTIA) analysis for Ad-

vanced Wireless Services (AWS)-3 spectrum sharing. This dataset contains real-life cell

tower locations with randomized errors of a scale of a few kilometers for security and privacy

concerns. To reduce the number of cell towers considered in the simulation, we extended the

area of interest by an estimated maximum cell tower coverage radius and only considered

towers within that range, as illustrated in Figure 5.2 . Cell towers out of the extended area

were considered ineffective and ignored in the corresponding simulation. For simplicity, the
1↑ Source code publicly available at https://github.com/YaguangZhang/CellCoverageMapperForDrones
MatlabWorkspace.git 
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(a)

(b)

Figure 5.2. Area of interest and cell tower locations for (a) Tippecanoe
County and (b) WHIN region.
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maximum coverage radius RMax in kilometer was estimated as the longest optical horizon

distance from the cell tower antenna:

RMax ≈ 3.57 ×
(√

hT +
√

hD

)
, (5.1)

where hT and hD are the heights in meters for the cell tower antenna and the drone, respec-

tively. The antenna heights for all cell towers were set to be a typical value of 50 m in the

simulation. For RMax, we set hD = 1.5 m, the lowest drone height inspected, which gave us

RMax ≈ 29.6 km.

UAV Location Grid Construction

A grid for the UAV locations covering the area of interest was built for each simulation,

as shown in Figure 5.3 . These locations are sampled evenly within the area of interest.

Its spatial resolution is determined by the number of grid points NSamp for the longer side

(width or height) of the area of interest. We had NSamp = 100 (over 38.5 km) for Tippecanoe

County and, to compensate the extra cell towers to consider, NSamp = 50 (over 144.8 km)

for the WHIN area. This results in an 8700-point grid with a spatial resolution of around

0.4 km for Tippecanoe County and a 1249-point grid with a spatial resolution of around

2.9 km for the WHIN area.

5.2.3 Blockage Map Generation

Blockage maps visualize locations with no clear LoS connection to any cell tower. Fig-

ure 5.4 illustrates six examples. Examining the figures, we observe that the blocked region

shrinks dramatically as we increase the drone height from 1.5 m to 100 m. Intuitively this

makes sense, as higher altitude drones will more likely be operating above natural and man-

made obstructions.

To determine blocked links, the Indiana 5-feet-resolution (approximately 1.52-meter-

resolution) LiDAR dataset [109 ] was utilized in locating obstructions. At a given position,

the LiDAR z value (relative to the sea level) was interpreted as the altitude of the top of

the obstacle at that position. To improve accuracy, rather than determining blockage of
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(a) (b)

Figure 5.3. The UAV locations to be inspected for (a) Tippecanoe County
and (b) WHIN region.

the direct path between a transmitter (TX) and a receiver (RX), we incorporated clearance

tests for the first Fresnel zone. The first Fresnel zone provides a 3-dimensional (3D) ellip-

soid surrounding the direct path; obstacles present in this zone will negatively influence the

communication link. The radius of the first Fresnel zone RF (P ) at any point P in between

the endpoints of the link is given by [110 ]:

RF (P ) =
√

λd1d2

d1 + d2
, d1, d2 � λ, (5.2)

where d1 is the distance of P from one end, d2 is the distance of P from the other end,

and λ = c/fC is the wavelength of the transmitted signal (c is the speed of light). In

the simulation, we set the signal carrier frequency fC = 1.9 GHz to mimic a 4G Long-

Term Evolution (LTE) system operating in the Personal Communications Service band. For

computing blockage, a threshold of 60% clearance in the first Fresnel zone was set, as shown

in Figure 5.5 . That is, 60% of the first Fresnel zone radius, RF (P ), around the direct path

should be clear of any obstacles. This value is the minimum value required for reliable

wireless communication links [111 ].
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(a) Tippecanoe, hD = 1.5 m (b) WHIN, hD = 1.5 m

(c) Tippecanoe, hD = 10 m (d) WHIN, hD = 10 m

Figure 5.4. Example blockage maps for Tippecanoe County and the WHIN
area, with different drone heights (hD).
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Figure 5.4. Continued.

(e) Tippecanoe, hD = 100 m (f) WHIN, hD = 100 m

To make large-scale analyses feasible, the clearance test was conducted in a 2-dimensional

(2D) vertical plane that contained the path connecting the cell tower antenna and the drone.

In this approach, the first Fresnel zone becomes an ellipse, as illustrated in Figure 5.5 . An

obstacle profile between the effective cell tower and the drone location is generated primarily

from interpolating locally cached LiDAR and terrain elevation data for Indiana, as shown

in the top view. Then, the 60% clearance test for the first Fresnel zone is carried out in the

front view. In this example, the LiDAR sample for the rightmost tree indicates the LoS link

is disrupted.

More specifically, to generate the blockage map, we constructed a 2D obstacle profile

based on the LiDAR data for each effective cell tower antenna with each drone location in

its RMax range. For example, Figure 5.5 illustrates the link between an effective cell tower

(indicated by the cross mark) in WHIN and a nearby drone location to inspect (indicated

by the solid circle). The top view also shows in dark grey the LiDAR data tiles, covering

the whole State of Indiana. The obstacle profile is generated by extracting a 2D vertical

profile of LiDAR z values along with the link of interest via bilinear interpolation. When

the effective cell tower is located out of Indiana, we fall back to the United States Geological
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Figure 5.5. Illustration of the LoS path clearance test.

Survey (USGS) 1/3rd arc-second terrain elevation data for the vertical profile values. The

number of profile samples is set to be the minimum integer bigger than or equal to 10 that

guarantees a spatial resolution smaller than or equal to 50 m. An obstacle LiDAR profile

with this relatively large resolution may miss small-scale obstructions such as single trees but

is necessary to ensure a reasonable time to perform simulations over such large geographic

areas. Both the LiDAR data and the elevation data were cached locally for the whole State

of Indiana to further boost the simulation speed.

Once the profile has been extracted, the direct LoS path can be determined by the 3D

coordinates UTM (x, y) and altitude of the cell tower antenna and the drone position. If

any of the obstacle LiDAR profile values are on or higher than the direct path, the LoS

link is considered blocked. Otherwise, we will carry out the 60% clearance test for the first

Fresnel zone demonstrated in Figure 5.5 . For each obstacle LiDAR profile point, we locate

the corresponding P by intersecting the direct path with its perpendicular line which goes

through that profile point. The LoS link is blocked if the distance from the profile point

to the direct path is smaller than or equal to 0.6RF (P ). If the direct paths between the

inspected drone location and all the effective cell towers are blocked, that location will be
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marked as “blocked” in the corresponding blockage map. This procedure helps improve the

speed of the simulator by reducing the number of Fresnel zone calculations.

5.2.4 Path Loss Map Generation

The path loss maps are generated similarly to the blockage maps. However, instead of

blockage indicators, they store at each drone location the best (minimum) available path

loss for the links between all the effective cell towers and that drone location, as plotted in

Figure 5.6 . In these maps, we can observe a clear decreasing trend for the path loss values

as hD is increased from 1.5 m to 100 m, implying improved communication conditions with

relay UAVs.

To estimate the median basic transmission loss using terrain elevation data, we utilized

the NTIA C++ implementation [112 ] of the extended Hata (eHata) model [113 ]. The eHata

model extends the applicability of the Hata empirical formula for the Okumura curves to

1500 MHz ≤ fC ≤ 3000 MHz with a transmitter-to-receiver (TX-to-RX) distance d between

1 km and 100 km. For d < 1 km, we computed the convex combination of the eHata result

PLeHata and the free-space path loss PLF SP L via:

PLnear = d

1 km
× PLeHata + (1 − d

1 km
) × PLF SP L, (5.3)

where PLnear is the path loss for locations near the TX. The eHata model is designed for

the case when the TX’s altitude is larger than the RX’s, so we assumed reciprocity and

treated the higher one of the cell tower antenna and the drone to be the TX. The NTIA

implementation also accounts for a set of link-specific adjustments based on terrain type,

terrain elevation profiles, and endpoint clutter category. For simplicity, a fixed National

Land Cover Database environment code of 82 (cultivated crops) was chosen in our simulator,

representing a rural type environment. The elevation profiles were generated in the same

manner as the obstacle LiDAR profiles.

One advantage of considering path loss via channel modeling for large-scale coverage

analyses is that the results are independent of equipment or wireless standard. With the

huge range of devices at both the cell tower and the user sides, it is practically difficult to
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(a) Tippecanoe, hD = 1.5 m (b) WHIN, hD = 1.5 m

(c) Tippecanoe, hD = 10 m (d) WHIN, hD = 10 m

Figure 5.6. Example path loss maps for Tippecanoe County and the WHIN
area, with different drone heights (hD).
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Figure 5.6. Continued.

(e) Tippecanoe, hD = 100 m (f) WHIN, hD = 100 m

collect the specifications for all installations involved over a large geographic area. Being the

unavoidable major signal degradation contributor, path loss provides a fair coverage analysis

without that information. However, the path loss values do not directly translate to a link

quality indicator such as data rate; therefore it is necessary to compute link budgets with

typical parameter values to form a connection between the path loss maps in the cellular

coverage scenario and system-level key performance indicators. According to [114 ], for the

downlink of a 4G LTE Frequency Division Duplex system, a user terminal typically has a

noise figure of NFU = 9 dB. With a bandwidth B = 10 MHz, the minimum detectable signal

strength MDDL ≈ −95 dBm is given by:

MDDL = 10 log10

(
kT

1mW

)
+ NFU + 10 log10 B, (5.4)
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where k is the Boltzmann’s constant and T = 290 K is the device temperature. Taking into

account the typical cell tower antenna power PT = 64 dBm, we have the maximum allowed

path loss for the downlink PLDL ≈ 177 dB via:

PLDL = PT + GT + GU − MDDL, (5.5)

where GT = 18 dBi and GU = 0 dBi are the typical maximum antenna gains for the cell

tower and the user terminal. Similarly, we can get the maximum allowed path loss for the

uplink PLUL ≈ 140 dB, with the user terminal TX power PU = 23 dBm and the noise figure

for the cell tower NFT = 5 dB. Note that the 140 dB PLUL effectively sets the maximum

coverage area for cellular communications. Thus, for the path loss maps, we set a threshold

of PLMax = 150 dB as the maximum allowed path loss value and discard any results above

that. If the drone location does not have a lower or equal path loss value for any links

originating from all the considered cell towers, the corresponding grid cell is considered out

of service and will not be colored on the map, as shown in Figure 5.6 . Examining the figure,

we observe very poor coverage on the west side of WHIN because of a lack of cellular towers

in that region. It is also worth noting that 140 dB of PLUL is the typical worst uplink path

loss for detecting the signal, which will not support high data rates or quality of service. One

could leave a wriggle room of about 10 dB for acceptable service quality, yielding a desired

path loss value of 130 dB as reference.

5.3 Coverage Analyses

Both the blockage and path loss maps in Figure 5.4 and Figure 5.6 visually demonstrate

promising cellular coverage improvement via data relay UAVs. Furthermore, we can ob-

tain quantified results in terms of coverage area improvement from these maps. Figure 5.7 

presents the LoS coverage ratio, the ratio of the size for the clear region on the blockage

map to the total size of the area of interest, at different UAV heights for Tippecanoe County

and WHIN. For Tippecanoe County, a dramatic coverage gain over 90% − 40% = 50% can

be obtained by deploying UAV at hD = 10 m, compared to a typical user terminal height

of 1.5 m. For WHIN, that gain boosts to over 60%. Increasing the relay UAV beyond 10 m
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Figure 5.7. Clear LoS area percentage values based on blockage maps for the
Tippecanoe County and the WHIN region.

will further improve the LoS coverage, but with only an extra gain of around 10% for both

cases.

Figure 5.8 summarizes the path loss maps for all the UAV heights evaluated using the

empirical cumulative distribution functions (CDFs) of the path loss values stored in these

maps. With a given maximum allowed path loss value, we can find in these plots the

corresponding coverage ratios for the UAV heights inspected. Because each path loss value

represents a grid cell of a constant size on the corresponding map, the ratio of the path loss

values smaller than or equal to a maximum allowed path loss PLMax is the same as the

coverage ratio for PLMax in terms of area. That is, given PLMax, we can directly use the

empirical CDF values read from Figure 5.8 as coverage ratios. For example, with PLMax =

PLUL = 140 dB, we can get the coverage ratio for Tippecanoe County is around 75% at hD =

1.5 m and around 95% at hD = 100 m, yielding an improvement of (0.95 − 0.75) /0.75 ≈ 27%.

Similarly, with PLMax = 140 dB, we have for WHIN a coverage ratio of around 28% at

hD = 1.5 m and around 80% at hD = 100 m, yielding a remarkable 186% improvement. The

general rising trend of the curves with increasing hD supports the use of relay UAVs. To

better demonstrate these improvements, the coverage ratio gains relative to the hD = 1.5 m

case are plotted in Figure 5.9 . For Tippecanoe County, as we increase hD from 10 m to

100 m, the coverage gain at PLMax = 140 dB increases from 5% to 20%, while the whole

region from 130 dB to 140 dB gets a significant boost with the highest gain of around 50%

at 133.5 dB. This implies a moderate improvement for the worst acceptable coverage with
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Figure 5.8. Empirical CDFs of the path loss maps for (a) the Tippecanoe
County and (b) the WHIN region.
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Figure 5.9. Coverage ratio gain relative to the hD = 1.5 m case.

88



a dramatic larger area getting better service. On the other hand, the WHIN area enjoys a

significant boost between 130 dB and 140 dB, particularly at the high end with a gain value

from 19% to 51% as hD increases, indicating a large area with no cellular service will get

covered with relay UAVs.

5.4 Discussion

We have focused on extending LTE cellular coverage for digital agriculture applications.

However, the same methodology can be applied to other systems such as future millimeter-

wave systems, where the blockage maps will play a more important role because of the high

sensitivity of millimeter waves to blockage [45 ]. With digital terrain data becoming more

widely available, our coverage analysis tool will be able to quantify the benefit of utilizing

relay UAVs for more areas of interest. The biggest challenge for such a tool is to speed

up the computation to cope with the large geographic area considered. The bottleneck of

our algorithms is the LiDAR/elevation terrain profile generation. Additionally, we applied

the following techniques to speed up the simulation: reprocessed local data for indexes to

enable faster search and data fetch; issued up to 100 concurrent HTTP requests for data

not cached locally; reused terrain profiles for different drone heights; used parallel computing

and preassigned tasks to workers to avoid frequent worker initialization. On a 36-core cluster

with 216 GB RAM, the simulation for Tippecanoe County took two days, and that for WHIN

took less than a week. In the future, we would like to optimize UAV deployment based on

our simulations. We would also like to take real-life measurements to verify the simulation

results and expand the simulation area in Indiana and to areas with more complex terrain

conditions for comparison, Colorado for instance.

5.5 Conclusion

In this paper, we presented a simulator to generate blockage maps and path loss maps via

channel modeling for large-scale cellular coverage analyses on UAV data relay. Both visual

and quantitative results are provided for Tippecanoe County and the ten-county WHIN

region. According to these results, a significant coverage gain of over 40% at a UAV height
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of 100 m is expected for both cases. These analyses are crucial in guiding the implementation

of UAV data relay systems.
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6. REVEALING DIGITAL GAP VIA

STATEWIDE CELLULAR COVERAGE ANALYSES

In this chapter, we will expand the area of interest to the State of Indiana and present

cellular coverage simulation results over a wide range of carrier frequencies, including the

4G Long-Term Evolution (LTE) 1.9 GHz, the 5G sub-6GHz band at 4.7 GHz, the fixed

wireless 13 GHz, and 28-GHz millimeter wave (mmWave). This work is a natural extension

of Chapter 5 . Instead of the effects of the antenna heights on the user’s side, this chapter

investigates at a system level the implications of moving towards mmWave bands in wireless

local area networks (WLANs).

6.1 Blockage Distance Map

With improvements in the large-scale cellular coverage simulator to reduce the computa-

tional cost, we are now able to carry out simulations at the state level. Here, a simulation is

set up for the State of Indiana to obtain a map of the minimum available blockage distance

between the location of interest and the cell towers. The same procedures for the blockage

maps in Chapter 5 were used, but with an extra step to get the cumulative blockage distance

along the direct paths. An overview of the area of interest is provided in Figure 6.1 . It can be

observed that the simulation area, denoted by the orange region, is smaller than the State of

Indiana, bounded by the red dotted line. In a nutshell, the simulation area covers 52 348 km2

out of the whole Indiana’s land area, 94 321 km2. That corresponds to a 55.5% coverage of

the whole Indiana state. This simulation area was chosen so that, after it was expanded by

the maximum coverage radius of a cell tower, the expanded area, denoted by the red region,

would still be barely contained in the Indiana state. This way, all effective cell towers to

consider in the simulation, represented by the blue dots, were all located in Indiana. As a

result, we did not need to worry about getting the LiDAR information for locations out of

Indiana.

We have in total 3975 grid points with a spatial resolution of 3.65 km covering the sim-

ulation area. The carrier frequency in this simulation was set to 1.9 GHz, a typical value
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Figure 6.1. Simulation area of interest for Indiana.

for the LTE system. The Digital Surface Model from 2016–2020 Indiana statewide LiDAR

data [115 ] was used to locate obstacles. The National Telecommunications and Information

Administration (NTIA) one-carrier cell tower laydown was merged with the cellular tower

location dataset from the Homeland Infrastructure Foundation-Level Data (HIFLD) Open

Data program [116 ]. This way, the towers of small regional network operators, especially

those in the rural regions, were also considered in the simulation. In other words, we assume

that all the carriers share their towers for better coverage in rural areas.

Now, from the resultant blockage distance map shown in Figure 6.2 , we can see that

most of the locations do not have clear line-of-sight (LOS) links to any tower. The minimum

cumulative blockage distance goes up to over 6000 m at some locations. In fact, as can be

further observed in the empirical cumulative distribution function (CDF) plot in Figure 6.3 ,
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Figure 6.2. Map of the minimum available blockage distance for 1.9 GHz in Indiana.

over 80% of that region has a cumulative blockage distance over 10 meters, while around

60% of that region has a cumulative blockage distance over 100 meters. The majority of the

area of interest experiences a minimum cumulative blockage distance of more than 170 m.

For higher-frequency carriers, including mmWaves, this is bad news. In rural regions, there

are very few buildings to cause strong reflection paths as alternative communication links to

the LOS one. The blockages can easily attenuate the LOS signal to an unrecognizable state.
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Figure 6.3. Empirical CDF of the minimum available blockage distance for
1.9 GHz in Indiana.

6.2 Path Loss Maps

We also have simulated the path loss for different frequencies, including 1900 MHz for

LTE, 4700 MHz for one of the sub-6 GHz bands in the 5G cellular system, 13 GHz used in

fixed wireless, and finally 28 GHz for mmWave. The path loss maps are plotted in Figure 6.4 .

A decreasing trend of the coverage can be clearly observed as we move closer to mmWave.

So, with other conditions kept the same, moving towards higher frequency will significantly

increase the difficulty of achieving ubiquitous coverage.

This is why network densification, or even ultra-densification, has been proposed. The

idea is simple: if the coverage of one cell shrinks, we just need to add more cells to cover

the same area. However, what people normally take for granted here is the expansion of the

network. As we increase the carrier frequency to mmWave, an impractical number of new

towers will be needed for ubiquitous coverage.

Table 6.1 estimates the number of new towers needed for different carrier frequencies to

achieve ubiquitous coverage in the simulation area. As derived in Chapter 5 , the typical

maximum path loss an LTE system can endure is 140 dB. Here, we added an extra 10 dB
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(a) 1900 MHz (b) 4700 MHz

(c) 13 GHz (d) 28 GHz

Figure 6.4. Path loss maps for different carrier frequencies.
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as a margin. Based on this new maximum allowed path loss value of 150 dB, the currently

covered areas were simulated for the carrier frequencies of interest. Then, the maximum cell

tower coverage radius was estimated in a flat terrain without any obstacles via the NTIA

extended Hata (eHata) model (see Chapter 5 ). The maximum coverage area for one cell

was computed from a circle with that radius. At last, the minimum number of new towers

needed to completely cover the whole simulation area was evaluated.

As can be read from Table 6.1 , with an increasing carrier frequency, the number of extra

towers needed to achieve ubiquitous coverage in the simulation area increases dramatically,

from none for 1.9-GHz LTE, all the way to 32 988 for 28-GHz mmWave. The average cost

for constructing one conventional cellular site today is estimated to be 200,000–250,000 dol-

lars [30 ]. Building another 32 thousand towers is simply impractical. After all, we only have

in total 819 towers in the area of interest based on our cell tower location data. Apparently,

densification alone is not a good enough solution for rural coverage, especially for mmWave.

It is worth noting that the estimated numbers of new towers here are in fact lower-bound

estimates because we have loosened many simulation conditions. For example, as mentioned

before, the towers in our systems are always shared among all the network operators and

carriers, even the small regional ones, for the best possible coverage. That may not be the

case in real life. Also, the 10-dB margin we applied beyond the maximum path loss a 4G

LTE system can endure (140 dB), implies that the devices in our simulations are of a higher

quality than typical off-the-shelf ones. What’s more, the shape of a cell is usually a circle if

we want to achieve the biggest coverage, but in our calculations, we assumed the cell shape

for the new towers can be anything as necessary to cover the area of interest, without any

punishment. In a word, more towers could be needed in real-life network deployments than

the values we got from the simulations.

6.3 Discussion

In this chapter, we examined the results of the large-scale cellular coverage analyses for

different carrier frequencies. Based on real-life cell tower locations and LiDAR data, the

current condition of the digital divide was quantified via the cumulative blockage distance
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and the estimated number of new towers needed to achieve ubiquitous coverage. Although

most research efforts on mmWaves are for urban environments, the difficulty in successfully

applying mmWaves in a WLAN ubiquitously covering the vast rural areas is as great as,

if not bigger than, that for urban-environment mmWave communications. Without proper

interventions, the digital gap will be widened by the popularization of mmWave in urban

regions. There is no simple solution to this challenge. Instead, an urgent need is there for

researchers to work on achieving the ubiquitous coverage demanded by our future society.
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7. CONCLUSIONS

In this dissertation, we have explored the possibility of taking advantage of site-specific geo-

graphic features in improving and developing channel models for millimeter waves (mmWaves).

This approach takes into consideration one of the salient characteristics that the mmWave

signal propagation has: the sensitivity to blockages. Based on measurement campaign re-

sults obtained for suburban and rural environments, we proposed site-specific models for

one-building blockage and propagation through the foliage. They outperformed traditional

channel models with improved accuracy. We also investigated large-scale channel simulation

following the techniques used in the site-specific channel modeling. In the future, we would

like to (i) expand the idea of site-specific channel modeling and (ii) apply machine learning,

to construct scenario-generic channel models with high performance.

7.1 Scenario-Generic Site-Specific Channel Modeling

Figure 7.1 summarizes the difference between the traditional and the site-specific channel

models. The input to the traditional models, i.e., the dominating parameters in Figure 7.1a ,

typically are not affected by the site-specific features. For instance, the ITU model for

propagation over rooftops does not care about where exactly the buildings are, and the

ITU model for propagation through foliage does not care about where exactly the trees are.

For mmWaves, though, moving the RX by a very short distance could change the channel

condition from line-of-sight (LOS) to non-line-of-sight (NLOS) because of obstacles, and vice

versa. Without considering the locations and sizes of the obstacles, this phenomenon will

not be accurately reflected in the channel models.

The site-specific models (Figure 7.1b ), on the other hand, not only considers the TX

and RX locations, but also the site-specific features in the area of interest. This makes it

possible to evaluate site-specific parameters only applicable for a given pair of TX and RX

locations. Thus, even local blockages could be captured properly. For example, in our one-

building-blockage model and the site-specific models for propagation through the foliage, we

essentially trace one ray between the TX and the RX to identify and compensate for these

blockages.

99



Dominating
parameter

Scenario-specific 
model

Path loss
prediction

(a) Traditional models

Model
Path loss
prediction

Site-specific
parameter
evaluation

TX location

RX location Site-specific
parameters

(b) Site-specific models

Figure 7.1. Block diagrams for traditional and site-specific models.

Resultant site-specific models are still simple to understand, easy to use, and fully au-

tomatable. Figure 7.2 showcases the site-specific model C we developed in Chapter 4 . The fo-

liage coverage information was extracted from the United States Geographic Survey (USGS)

LiDAR and elevation information for the area of interest. A debugger took in the foliage

coverage and overlaid it on Google satellite imaginary for user-friendly visualizations. This

is helpful for human operators to verify the results. Together with the TX and RX locations,

the foliage coverage information enables site-specific evaluation of the parameter foliage area,

Af , which is needed in the model to make a path loss prediction. This full automation is a

huge advantage, especially for large-scale network planning and performance evaluation.

More generally, our approach has the potential to embed the manual environment deter-

mination procedure into fully automated channel models. Traditional models are scenario-

specific, as illustrated in Figure 7.1a . Each model was developed for and is expected to be

used in, one type of environment, e.g., urban canyon, suburban rooftops, and rural forest.

Users have to determine, normally manually, which environment best describes the area

of interest. This dramatically limits the usability of the traditional models, especially in

large-scale network planning because multiple environments may be involved. In that case,

operators have to manually divide and categorize the area of interest into smaller regions

with different propagation scenarios, choose for each scenario a good model, and then eval-

uate the dominating parameter(s) defined in each chosen model to calculate the prediction
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Figure 7.2. Fully automated site-specific model C.

values. This procedure takes a huge amount of human labor and is very challenging to

automate.

On the contrary, our site-specific channel modeling approach, as plotted in Figure 7.3 ,

can hide the scenario determination from the users in the site-specific parameter evaluation

procedure. This is possible because the site-specific features implicitly contain the required

information for making the decision. For example, whenever one-building or foliage block-

age happens, path loss adjustments can be evaluated via our site-specific channel models,

regardless of which scenario or environment the location of interest is located in. Then, the

final path loss prediction is obtained via aggregating (normally by summing up the path loss

values in dB) these adjustments to a baseline model, e.g., the alpha-beta-gamma model. This

approach is very flexible because different modules could be added for different obstacles,

following the concepts introduced in the partition-dependent attenuation factor model [74 ].

7.2 Large-Scale Channel Simulation

As we have seen in Chapters 3 and 4 , the site-specific models perform better than tra-

ditional ones thanks to the site-specific features. They are easy to implement and fully
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automatable. And the computational cost is very low due to their simple structures. Fur-

thermore, these features fit the requirements for large-scale channel simulations.

In fact, our simulator used in Chapters 5 and 6 essentially follows the same structure

of the site-specific model C implementation, as illustrated in the block diagram Figure 7.4 .

We have (i) the core, a parallel computing pool, to carry out the simulation, (ii) the prepro-

cessors, which prepare the data for the simulation, and (iii) postprocessors to analyze and

visualize the results. As one of the preprocessors, the location sampler chooses the locations

to inspect according to the area of interest. These are where the users will show up. The

tower range manager determines which towers to consider. We also have the geographic data

preprocessor to index LiDAR and elevation data for faster data retrieval. Then, the work-

load scheduler distributes workload among the workers and oversees the simulation. It also

generates recovery points for resuming the simulation in case of interruptions. The parallel

computing pool calculates the blockage status, based on our LoS blockage model, and the

path loss values, based on the National Telecommunications and Information Administra-

tion (NTIA) extended Hata (eHata) model. The blockage maps and the path loss maps are

generated accordingly by the postprocessor visualizer.

In a nutshell, we would not have been able to build the large-scale simulator without

the techniques in the site-specific channel modeling. Comparing Figure 7.4 with Figure 7.3 ,

we can see that the preprocessors in the cellular coverage simulator complete the procedure

site-specific parameter evaluation. The core carries out the simulation based on the module

of the LoS blockage model and the module of the NTIA eHata model. Although it is not

clear in Figure 7.4 , we have the free-space propagation loss (FSPL) model as the scenario-

generic baseline model for sanity checks. Last but not least, the visualizer takes charge of

the aggregator ’s job.

7.3 Applying Machine Learning in Channel Modeling

The feature of full automation and consideration of local geographic information in

site-specific channel modeling also builds the foundation of applying data-driven machine-

learning techniques. This needs to be done with caution, though, because channel modeling
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and machine learning have been developing independently for a long time and they follow

very different philosophies.

More specifically, these two areas have adopted very different procedures in model vali-

dation. In traditional channel modeling, researchers are often inspired by physics to propose

models with new structures. The validity of these models, in some sense, is guaranteed by

the physics behind them. Also, measurement results are typically expensive to obtain, and

thus, quite limited. As a result, it is common to use the same set of measurements to both

adjust (or train) and validate (or test) the models of interest to compare their potentially best

performances. There are so many factors that could influence the channel. The challenge in

channel modeling is not to name some that may be relevant, but to identify the important

ones that are essential/the true causes and quantify their influences. The traditional channel

modeling process helps tackle this challenge with limited measurement results.

In machine learning, data are normally cheap to obtain. One would rely on a large

amount of data to reveal the true structure behind the scene, without caring much about

how things should work theoretically, typically until we find something that works and we

want to understand why. With this approach, the data sets play a key role. That is why

it is normally required to use different data sets to train and test the models separately, to

prove that the model should also work for unseen data/scenarios.

When these two areas are combined, it may seem intriguing to take the “easy” paths in

both of them: following the traditions in channel modeling, use only one data set for both

training and testing, and following the traditions in machine learning, discard physics/anal-

yses on how things should work. However, these two choices simply should not be taken at

the same time. The generalizability in traditional channel models is from physics, while in

machine learning, it is from testing with unseen data sets. Without both, we will lose our

ability to back up the generalizability of the new model. One extreme example would be, by

using a simple nearest-neighbor fitting as the machine learning component, we can expect

zero root mean square error (RMSE) (i.e., the perfect performance) because the same data

set is used for training and testing. But in theory, this new model will not generalize at all

beyond the measurement data set.
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What is more, pure data-driven channel models backed by machine learning could have

limited application, because the results may not be explainable. This is undesirable in many

cases. A network operator would need to understand why the model output is high/low to

lay out actionable strategies to improve the network performance. A regulator would need

to provide clear explanations on their decisions if they are based on a channel model. In

this sense, the site-specific channel modeling framework illustrated in Figure 7.3 provides

a better solution. The baseline model and the site-specific channel model modules can be

predefined and be fully understood, with only the parameter evaluation procedures and the

result aggregator being improved by the machine learning techniques.

7.4 Summary

This dissertation confirmed the extreme sensitivity of mmWave signals to blockages in

suburban and rural environments via two intensive channel measurement campaigns. With

the consideration of geographic information, site-specific channel models were developed for

future wireless networks to better face this challenge. Also, a framework for site-specific

channel modeling was proposed to enable scenario-generic channel models. The same tech-

niques were applied to large-scale channel simulations to locate poorly covered spots and

quantify network performance in real life. The severity of the digital divide was revealed

via state-level cellular coverage simulations. The site-specific channel models with improved

accuracy can facilitate the deployment of mmWave systems, while the channel simulations

with improved scalability can give us a deeper understanding of the system-level performance

of real-life wireless networks.
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