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DEFINITIONS 

Automated compliance checking (ACC) of building codes. Review and analyze the building 

design to check if it meets the requirements documented in building codes in an automated way to 

simplify the process (Zhang and El-Gohary 2016c). 

Architecture, engineering, and construction (AEC). A collective term for the three industries.  

Building information modeling (BIM). “A data-rich digital representation cataloging the 

physical and functional characteristics of design and construction” (GSA 2007). 

Industry Foundation Classes (IFC). An open and neutral objected-based data format for AEC 

objects (BuildingSMART 2018a). 
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ABSTRACT 

Building Information Modeling (BIM) serves as an important media in supporting 

automation in the architecture, engineering, and construction (AEC) domain. However, with its 

fast development by different software companies in different applications, data exchange became 

labor-intensive, costly, and error-prone, which is known as the problem of interoperability. 

Industry foundation classes (IFC) are widely accepted to be the future of BIM in solving the 

challenge of BIM interoperability. However, there are practical limitations of the IFC standards, 

e.g., IFC’s flexibility creates space for misuses of IFC entities. This incorrect semantic information 

of an object can cause severe problems to downstream uses. To address this problem, the author 

proposed to use the concept of invariant signatures, which are a new set of features that capture 

the essence of an AEC object. Based on invariant signatures, the author proposed a rule-based 

method and a machine learning method for BIM-based AEC object classification, which can be 

used to detect potential misuses automatically. Detailed categories for beams were tested to have 

error-free performance. The best performing algorithm developed by the methods achieved 99.6% 

precision and 99.6% recall in the general building object classification. To promote automation 

and further improve the interoperability of BIM tasks, the author adopted invariant signature-based 

object classification in quantity takeoff (QTO), structural analysis, and model validation for 

automated building code compliance checking (ACC). Automation in such BIM tasks was enabled 

with high accuracy.   
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CHAPTER 1 – INTRODUCTION 

Significant portions of this chapter can be found in:  

“Automated BIM object classification to support BIM interoperability.” In Proc., 

Construction Research Congress, 706-715. DOI: 10.1061/9780784481301.070. 

“New automated BIM object classification method to support BIM interoperability.” in 

Journal of Computing in Civil Engineering, 33(5). DOI: 10.1061/(ASCE)CP.1943-5487.0000858. 

“Invariant signatures of architecture, engineering, and construction objects to support BIM 

interoperability between architectural design and structural analysis.” in Journal of Construction 

Engineering and Management, 147(1). DOI: 10.1061/(ASCE)CO.1943-7862.0001943. 

 

1.1 Motivation and Overview 

Building Information Modeling (BIM) is designed to serve different stakeholders at 

different life cycle phases, such as architects at the design phase and contractors at the construction 

phase (Eastman et al. 2011). BIM eases the analysis and control of a project prior to its 

construction. It facilitates the collaboration of different stakeholders by providing a platform with 

uniform standards and data in the architecture, engineering, and construction (AEC) domain. For 

such support, the data of building information models (BIMs) must contain accurate information 

in their digital representations and is easily interoperable for different stakeholders. 

However, as the development of BIM was mainly carried out by proprietary software 

providers, the BIM companies used different data structures and data formats. As a result, data 

transfer between different BIM software turned out to be labor-intensive and costly because of the 

needed manual efforts in converting data between different formats and fixing information 

inconsistency or adding the missing information. This data exchange process is also error-prone 

because of the labor involvement. A small error in the BIM data may result in malfunctions in the 

construction processes such as material misuse or dimension mismatch, therefore resulting in 

costly construction failure and/or rework. The difficulty of the data exchange is known as the 

problem of interoperability.  
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According to a conservative estimate by the National Institute of Standards and 

Technology (NIST) (Gallaher et al. 2004), the lack of interoperability in the U.S. capital facilities 

industry costs $15.8 billion per year. Industry Foundation Classes (IFC) is widely believed to be 

the future of BIM because the IFC data format is open and neutral (BuildingSMART 2018a). 

However, there are practical limitations of the IFC standards, especially the entity misuse created 

by IFC’s flexibility. To prevent such error from happening, it is critical to generate flawless data 

at each phase of the construction, which requires an effective checking of the model in different 

phases. One of the key challenges in such a checking process is the labeling of AEC building 

objects in BIM, i.e., annotating the objects with their correct categories. Although some efforts 

have been conducted to develop methods that can automatically label BIM data (Ma et al. 2018, 

Koo et al. 2019), the results of automated labeling still need to be manually checked in practical 

use, to ensure the quality of the labels. To achieve full automation of such labeling process, the 

BIM object classification method still needs further research and development to cover more 

generic building elements with high accuracy.  

In this dissertation, the author proposed to use invariant signatures, which are a set of 

features that captures the intrinsic properties of AEC objects. The invariant signatures were an 

effort to solve interoperability by providing automated AEC object classification with high 

accuracy. The object classification can be used for many BIM tasks, such as quantity takeoff 

(QTO), structural analysis, and automated building code compliance checking (ACC).  

1.2 State of the Art in BIM Interoperability and Knowledge Gaps 

Object classification distinguishes BIM from 3D computer-aided design (CAD) by 

carrying the semantic information of objects in a building model (Ma et al. 2018). Ma et al. (2018) 

proposed an integrated approach to classify AEC objects that combined domain knowledge of 

geometric features and pairwise relationships of 3D objects into a tailored matching algorithm. 

Their algorithm can process various complex 3D geometries and compile a knowledge base in 

civil engineering. In addition, in their experiment, Ma et al. (2018) achieved 100% accuracy in 

their two bridge models and provided a knowledge matrix of the objects.  

Distinct from the rule-based approaches taken by Ma et al. (2018), Koo et al. (2019) 

proposed a classification method using support vector machines (SVM), a machine learning 

algorithm commonly used for classification. They proposed a feature set that could map IFC 
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objects to selected IFC classes with an average F1-score of 94.9% for eight classes. SVM is one 

of the most robust supervised machine learning algorithms.  

Although significant results have been achieved for object classification of BIM objects, 

the practical gap has not been filled, because (1) the lack of interoperable features for AEC objects, 

(2) limited accuracy for AEC object classification, with more advanced features and better 

machine learning algorithms needed, (3) the practical gaps for solving interoperability in BIM 

tasks, e.g., model exchange for QTO and structural analysis, information extension for ACC.  

1.3 Proposed Approach 

In this dissertation, a new set of features of BIM-based AEC objects, namely, the invariant 

signatures, are defined, extracted, and used in object classification. Then the invariant signatures 

and the object classification are used together to support practical BIM tasks, including QTO, 

structural analysis, and ACC. To support the experiment, a new dataset was collected, manually 

labeled, and shared. 

1.3.1 Introduce a new BIM-based AEC object dataset 

The author built a dataset that covers a wide range of different shapes and representations 

of IFC objects.  Each type has hundreds of unique AEC objects. 

For object labeling, each object is labeled by independent annotators with inter-annotator 

agreements assessed. For instances that the annotators do not agree on, majority votes are used to 

label the data. 

 With the labeled entities, the dataset can be used in later experiments. The data is made 

public and shared through the Purdue University Research Repository (PURR) (Wu and Zhang 

2018b, Wu and Zhang 2021b). The data can be used to reproduce the results and conduct further 

research by other researchers. 

1.3.2 Construct invariant signatures 

Invariant signatures are a set of properties that capture the geometric nature and intrinsic 

relations of an AEC object that do not change with data schema, software implementation, or 

language/cultural contexts (Wu et al. 2021).  
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The author proposes to construct invariant signatures in three sub-types: geometric 

signatures, locational signatures, and metadata signatures. Geometric signatures capture the 

geometric information of common shapes, such as rectangles and cylinders. Locational signatures 

capture the position information of an object, including the absolute position, relative position, and 

orientation. Metadata signatures capture representation-level information, especially the 

representation used in IFC, e.g., the average number of vertices among faces in a boundary 

representation (Brep). 

Invariant signatures are extracted iteratively in BIM applications. For each BIM task, a 

subset of the invariant signatures is used to represent the AEC objects in the model. For example, 

QTO only uses the geometric signatures, while structural analysis uses both geometric and 

locational signatures. 

1.3.3 BIM-based AEC object classification 

With the invariant signature-based features of AEC objects, two approaches are developed 

for AEC object classification, namely, a rule-based approach and a machine learning (ML) 

approach. The two methods are developed independently on the same dataset, and the results are 

compared in terms of precision and recall. 

1.3.4 Applications of invariant signature and object classification 

The invariant signatures have broader use in addition to object classification. As an 

illustration, the invariant signatures and the classification algorithms are used together to support 

QTO, structural analysis, and ACC.  

1.4 Problem Statement 

Interoperability is a costly problem in BIM because of the need for manual efforts in 

information checking, reentry, correction, etc., which is time-consuming, costly, and error-prone. 

Automation in such tasks is expected to reduce time, cost, and error. While significant efforts have 

been put into addressing BIM interoperability, the previous efforts are still limited, because they 

(1) still require significant manual effort in BIM tasks, (2) lack an intuitive uniform interoperable 
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representation that can be used for different BIM tasks, and (3) have not achieved seamless and 

universal interoperability. 

1.5 Research Objectives and Questions 

The objective of this research is to extract uniform features from AEC objects, and use 

these features in BIM tasks, including BIM object classification, structural analysis, QTO, and 

ACC. 

Objective 1. Build a new uniform and open AEC object dataset 

Collect, label, and prepare a dataset of AEC objects from IFC models with good coverage 

in object types, object sizes, and data representations. 

Research Questions: What are reliable sources for collecting the data? How to develop 

gold standard that can be widely accepted? What are the requirements for coverage of building 

object representations? How to share the data to promote collaboration and communication? 

Objective 2. Construct invariant signatures of AEC object  

Define, construct, and test invariant signatures of AEC objects from the collected dataset 

that can fully represent the object using a data-driven approach. 

Research Questions: What properties the invariant signatures should have? What 

advantage do the invariant signatures have over other methods or concepts? 

Objective 3. Apply invariant signatures in AEC object classification  

Apply invariant signatures in AEC object classification to achieve high precision and recall. 

Develop algorithms using both a rule-based method and a machine learning method. 

Research Questions: How to achieve high precision and recall for object classification? 

How to balance between recall and precision? Between machine learning and rule-based, how do 

they compare in the AEC object classification task? What are the advantages and limitations of 

both methods? 
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Objective 4. Apply invariant signatures and object classification to practical BIM 
applications 

Apply invariant signatures and object classification in QTO, structural analysis, and ACC. 

Research Questions: What is the performance comparing to the state of the art? What are 

the advantages of using invariant signatures in terms of efficiency, cost, and precision? What other 

BIM tasks can be improved using invariant signatures and object classification? 

 

.   

1.6 Significance of the Problem 

BIM object classification remains a key challenge in the development of full automation 

for BIM-based applications. The author seeks to address this challenge by automated classification 

of BIM objects with high accuracy and efficiency. 

For such support of automation, the data used in BIM must contain accurate information. 

A small error in BIM data can result in malfunctions in the construction process, such as material 

misuse and size mismatch, therefore resulting in a construction failure. In addition, it is costly to 

correct the error in later phases of the construction. To generate flawless data, it is essential to 

check the model during different phases of the construction to conduct correct QTO and structural 

analysis. ACC also requires accurate information extraction and mapping, which checks the safety, 

consistency to allow the model to function safely and efficiently. For full automation in BIM 

applications, annotating the objects in BIMs with correct categories is a key premise. Then 

practical BIM applications can be developed, potentially with full automation. With a fully 

automated classifier and fully automated BIM applications, efforts dedicated to solving 

interoperability issues manually can be reduced or eliminated. The author’s method facilitates the 

automation of the AEC domain, provides insights for the understanding of BIM, and promotes 

interoperability for BIM applications, thus contributes to the body of knowledge in the AEC 

domain. 

1.6.1 Intellectual merit 

The research has the following intellectual merit. 
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• Propose a set of features (invariant signatures) that capture the geometric essence 

of BIM-based AEC objects. The invariant signatures are interoperable and can be 

used in QTO, structural analysis, and ACC.  

• A new iterative method for developing rule-based algorithms for AEC object 

classification. The algorithms relied on invariant signatures, i.e., the inherent 

geometric features, of AEC objects rather than entity or attribute names and 

therefore prevented classification errors caused by misuse of entities, which are 

stable and reliable. 

• A new generic method for developing machine learning algorithms for AEC object 

classification. The method can systematically select features and the best-fit 

machine learning algorithms. 

1.6.2 Broader impact 

The research has the following broader impact. 

• A new open dataset for research. The dataset can be used to reproduce the results 

and conduct further research in BIM interoperability and BIM-based AEC task 

automation for other researchers. 

• Improve the accuracy for object classification, thus preventing misuses of IFC 

entities. Automating the BIM-based AEC object classification is expected to save 

time, save efforts, and reduce the errors of object classification by eliminating 

human-caused errors that may occur during the manual annotating process.  

• Improve interoperability of QTO and structural analysis. Promote automation by 

developing algorithms for data exchange from IFC-based BIM models to structural 

analysis software.   

• Improved automation in model validation by extending the extracted information 

with logic-based inference. Develop heuristic algorithms that automate the 

otherwise manual effort dedicated to checking missing information, inferring non-

explicit information, and mapping to building code concepts. 

• Save time and manual effort, reduce human-caused errors on BIM tasks, including 

AEC object annotation, data exchange, and model validation. 
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1.7 Assumptions  

To allow the algorithms to work in different models, the data in those testing models must 

be consistent with those of the training models. The developed algorithms may not achieve the 

same level of performance if the testing model contains totally different patterns from the training 

data, i.e., if a certain pattern cannot be found in the training data, then the developed algorithms 

may not generate expected results. As a premise, a key assumption is that the training and testing 

data contain the same representation patterns. In this dissertation, this condition is satisfied to the 

largest extent by randomly dividing the data into training set and testing set.  

In addition to the data consistency, another assumption is that the framework and 

algorithms can be used in a broader application setting. The author uses 1,900 object instances in 

AEC object classification, two models for QTO, ten models for structural analysis, and five models 

for ACC. The experiment serves as an illustration of the proposed framework. The algorithms 

serve as proof-of-concept to illustrate the potential of such applications.  

1.8 Limitations 

1.8.1 Dataset 

As a first step towards building a comprehensive BIM object classifier, the author 

establishes a new dataset tailored for object classification. The dataset contains five BIM models 

with 1,900 object instances in IFC format. The dataset provides verified labels and processed 

features for the objects in a systematic way. While the data is sufficient for developing proof-of-

concept algorithms, the dataset was still small compared to the dataset in other domains, such as 

the ADE20K (Zhou et al. 2018) that contained 22,210 images for image processing. The dataset 

needs to be continuously developed to contain more models to cover more robust object 

representations.  

1.8.2 Object classification 

In spite of the promising experimental results and the ability to achieve 100% recall and 

precision in automated AEC object classification for certain object categories, the following 

limitations of the proposed method are acknowledged. First, the proposed rule-based method for 
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AEC object classification is labor intensive in the algorithm development phase, especially when 

a comprehensive algorithm is pursued to cover all possible geometric shape representations of 

AEC objects.  

Second, a universal classifier requires a large amount of data in training for all the possible 

configurations. Instead of the full development of the universal classifier, the author focuses on 

the method of developing such classifiers to show the potential of this proposed method using a 

data-driven approach. While the methods are expected to be adaptable to more object types with 

data of that type, practical obstacles may occur in the actual development.  

1.8.3 QTO and structural analysis 

The author acknowledges two main limitations of the QTO and structural analysis methods 

as follows. First, the invariant signatures are only tested for regular-shaped buildings and members, 

for both QTO and structural analysis. For example, it was not tested for curved or irregular shapes. 

Second, the experiment of structural analysis only used one structural analysis software. The 

algorithm development needs to be expanded to cover more complicated structures such as high-

rise buildings, incorporate curved and irregular-shaped building elements into consideration, and 

test the invariant signatures on more software platforms. 

1.8.4 Model validation 

The author acknowledged the following limitations of the proposed model validation 

method in this dissertation: (1) the proposed method was tested in only one chapter (i.e., Chapter 

10) of the IBC 2015, how it will perform in other chapters and other building codes remain to be 

tested. However, the author would expect comparable results on other chapters and other building 

codes using the same method. (2) In order for the processing of inferable concepts to be error-free, 

the assumption used in the heuristic rules needs to be broadly applicable in any foreseeable BIMs. 

(3) Due to the nature of rule-based algorithms, it is time-consuming and labor intensive to grow 

the number of concepts and patterns covered, whereas error is always possible before the number 

of concepts and patterns saturate.  However, the author believes the number of concepts and 

patterns in this context is enumerable, and a compatible set of rules are feasible with careful 

implementation, such as by performing a comprehensive check after each new rule is added. In 
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addition, while the theoretical optimal rule set may be hard to achieve, it is always feasible to 

arrive at practically “comprehensive” solutions for a known scope (e.g., concepts in International 

Fire Code) using data-driven approaches. 

1.9 Delimitations 

All the methods and algorithms are developed for as-design models. As-built models, such 

as point-cloud data, are not in the scope of this dissertation. 

The collected data are either IFC models or are converted to IFC models, because IFC 

standards are open and neutral. Other types of BIM models are not directly covered in this 

dissertation. They are converted into IFC models with existing methods and software. Errors such 

as entity misuse are allowed in the converted models. 

For AEC object classification, the author focuses on five main types of building 

components, which are beams, columns, footings, slabs, and walls. Sub-types of beams are also 

included. Other types of AEC objects, e.g., framed doors and swing doors, are not tested in this 

dissertation. However, the methods are expected to work for developing algorithms for those other 

entities as well. As an illustration, the author developed algorithms for distinguishing interior doors 

from exteriors doors, following the Uniformat (Uniformat 2010). 

For the machine learning method of AEC object classification, the author uses traditional 

machine learning algorithms. Based on the size of the collected data, which is at the scale of 

thousands of items, the author excluded the option of deep learning, which is under fast 

development and achieved many promising results but requires a significantly larger size of data. 

1.10 Article-Based Dissertation Statement 

As an article-based dissertation, the author used four journal publications (Wu and Zhang 

2019b, Wu et al. 2021a, Wu et al. 2021b, Wu and Zhang 2021a) and two conference publications 

(Wu and Zhang 2018a, Wu and Zhang 2019a). 

The author started the research on object classification using rule-based algorithm (Wu and 

Zhang 2018a, Wu and Zhang 2019b). The data was then used to create a public dataset and to 

generate invariant signatures (Wu and Zhang 2019a). The invariant signatures are used in 
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structural analysis (Wu et al. 2021a), machine learning-based object classification (Wu et al 2021b), 

and model validation (Wu and Zhang 2021a). 

The Construction Research Congress provided permission for me to publish this article 

titled “Automated BIM object classification to support BIM interoperability.” in this dissertation.   

The 2019 ASCE International Conference on Computing in Civil Engineering provided 

permission for me to publish this article titled “Introducing geometric signatures of architecture, 

engineering, and construction objects and a new BIM dataset.” in this dissertation. 

The Journal of Computing in Civil Engineering provided permission for me to publish this 

article titled “New automated BIM object classification method to support BIM interoperability.” 

in this dissertation. 

The Journal of Construction Engineering and Management provided permission for me to 

publish this article titled “Invariant signatures of architecture, engineering, and construction 

objects to support BIM interoperability between architectural design and structural analysis.” in 

this dissertation.  

The Journal of Computing in Civil Engineering provided permission for me to publish this 

article titled “Constructing invariant signatures for AEC objects to support BIM-based analysis 

automation through object classification.” in this dissertation.  

The Journal of Computing in Civil Engineering provided permission for me to publish this 

article titled “Model validation using invariant signatures and logic-based reasoning for automated 

building code compliance checking.” in this dissertation.  

1.11 Summary 

In summary, behind all the practical gaps in BIM tasks and applications is the lack of 

intuitive, uniform, and interoperable representations that can be seamlessly used for different BIM 

tasks. The author proposes to use invariant signatures of AEC objects as a solution, which are “a 

set of intrinsic properties of the object that distinguish it from others and that do not change with 

data schema, software implementation, modeling decisions, and/or language/cultural contexts” 

(Wu et al. 2021). The invariant signatures are able to provide interoperable representations for 

BIM and AEC objects. With this theoretical foundation, practical BIM tasks can be automated 

seamlessly. For each BIM task, a new method is proposed for its automation with the adoption of 
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invariant signatures. For the development of invariant signatures and the applications, Fig. 1 shows 

the timeline of the development and articles. 

 

Fig. 1. Visualization of chapters flow with corresponding publications. 
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CHAPTER 2 – LITERATURE REVIEW 

Significant portions of this chapter can be found in:  

“Automated BIM object classification to support BIM interoperability.” In Proc., 

Construction Research Congress, 706-715. DOI: 10.1061/9780784481301.070. 

“New automated BIM object classification method to support BIM interoperability.” in 

Journal of Computing in Civil Engineering, 33(5). DOI: 10.1061/(ASCE)CP.1943-5487.0000858. 

“Invariant signatures of architecture, engineering, and construction objects to support BIM 

interoperability between architectural design and structural analysis.” in Journal of Construction 

Engineering and Management, 147(1). DOI: 10.1061/(ASCE)CO.1943-7862.0001943. 

“Constructing invariant signatures for AEC objects to support BIM-based analysis 

automation through object classification.” in Journal of Computing in Civil Engineering, 

submitted. 

“Model validation using invariant signatures and logic-based reasoning for automated 

building code compliance checking.” in Journal of Computing in Civil Engineering, submitted. 

“Introducing geometric signatures of architecture, engineering, and construction objects 

and a new BIM dataset.” In Proc., 2019 ASCE International Conference on Computing in Civil 

Engineering, 264-271. DOI: 10.1061/9780784482421.034. 

2.1 Building Information Modeling (BIM) 

2.1.1 Building information modeling (BIM)  

Building information modeling (BIM) is “a data-rich digital representation cataloging the 

physical and functional characteristics of design and construction” (GSA 2007). BIM has been 

gaining popularity since the 1980s when the first BIM software - the ArchiCAD’s Radar CH – was 

developed (Quirk 2012). Recent BIM software, such as Autodesk Revit, Bentley AECOsim, 

Solibri Model Viewer, and BIMserver, serve primarily as architectural design and visualization 

tools (Eastman et al. 2011).   

Using BIM technology, architecture, engineering, and construction (AEC) models can be 

built virtually with accurate digital representations prior to their physical construction. Comparing 

to a traditional manual process, BIM and related technologies allow better analysis and control of 
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a project, such as in cost estimation (Akanbi et al. 2020) and progress control (Ren and Zhang 

2021). These computer-generated models can support the construction, fabrication, and 

procurement activities of a construction project with accurate information in a digital format, 

which saves time and effort by supporting the automation of construction engineering and 

management tasks (Eastman et al. 2011, Azhar et al. 2011, Hussain and Choudhry 2013, Santos et 

al. 2017, Wong Chong and Zhang 2021).   

Such pre-construction visualization improves collaboration between different stakeholders 

such as planners, designers, structural engineers, construction managers, and field workers. Better 

collaboration between these stakeholders will likely improve the performance and quality of the 

end product, the building. With the BIM software at hand, people can take quick, responsive 

actions to design changes and discover errors and omissions prior to the actual construction 

(Eastman et al. 2011). There are many off-the-shelf BIM software programs that a BIM user can 

choose from. For example, ETakeoff (2021) helps people with the cost estimation task, ANSYS 

(2021) helps people with the structural analysis task, and STR Vision (2021) provides a 4D (3D + 

time) and 5D (4D + cost) modeling system to help people with scheduling and cost estimation 

tasks. For such BIM uses, one would like to take advantage of all the strengths of these different 

BIM software options. Considering that for the same project the BIM data in these different 

programs belong to the same building structure, it will be a waste of opportunities to create BIM 

data from scratch in each of the software applications. An optimal process would require a 

seamless data transfer between different software in an automated fashion. In theory, BIM is 

designed to be interoperable. However, in practice, BIM software developed by different 

companies use different data structures and data formats. As a result, data transfer between 

different software used by stakeholders in different disciplines can be costly because of the needed 

manual efforts or converters in conducting the transfer and fixing information inconsistency or 

adding missing information, even for the same building project. For example, if two programs 

need one converter that converts the BIM model between the formats of the two, ten BIM software 

programs would require 𝐶"!"# # = 45 converters (theoretically) to achieve interoperability between 

all of them. The number of converters increases quadratically with the number of BIM software 

programs, resulting in a high cost and inconvenience for achieving interoperability between all 

BIM software. To reduce the high cost of achieving BIM interoperability, 12 companies 

collaborated to develop a uniform standard for BIM, known as the Industry Foundation Classes 
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(IFC) (Hamil 2012). IFC specifications are open and transparent (buildingSMART 2018a). IFC 

models can be readily accessed using a text editor. Under constant development and refinement 

by buildingSMART, IFC became one of the most promising attempts trying to solve BIM 

interoperability. However, the IFC schema still has major problems when transforming to other 

proprietary software formats and vice versa (Ma et al. 2006; Pazlar and Turk 2008).  

2.1.2 Information exchange in building information models (BIMs)  

Information exchange has been frequently studied (Sarawagi 2008, and Yang et al. 2019), 

especially using the ontology-based approach in recent research (Wimalasuriya and Dou 2010, 

Fernández et al. 2011, Paliouras et al. 2011, and Yehia et al. 2019). For information exchange in 

BIMs, in a design science research by Ding et al. (2017), a real-time quality checking system was 

accomplished using IFC-based Inspection Process Model (IFC-IPM). Their system demonstrated 

the efficiency in quality information exchange and could be used in inspection activities. Kim et 

al. (2016) developed a new approach to extract and process material information in BIMs, to 

explore energy-saving options early in the design phase. The major limitation of such an approach 

was the inaccuracies during simplifications in construction/material data. Their new system 

consisted of three parts, namely, information extraction, material property matching, and file 

writing. The system improved the efficiency of energy modeling by eliminating the manual 

information input and increased the accuracy using the developed matching algorithms. 

For information exchange of IFC models in ACC, Zhang and El-Gohary (2019) proposed 

a machine learning-based approach to map building code concepts and relations to IFC elements 

and relations. Their method achieved 77% matching accuracy in IFC elements and 78% accuracy 

in IFC relations, which is representing the state of the art. For practical ACC, performance 

improvement will be needed. In addition, many concepts in building codes do not have a one-to-

one mapping to IFC entities. The bridge between building code concepts and IFC entities still need 

to be built with additional ways. 

2.2 IFC Schema 

The IFC standard defines its own object data types to store the physical and functional 

information of building elements in entities and attributes. For a standard building, most elements 
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are in common shapes such as cuboids, prisms, and cylinders, whereas uncommon shapes (in the 

context of building structure) also exist, such as pyramids, pentagonal cylinders, and 

dodecahedrons. It is easier to construct elements for common shapes than uncommon shapes.  

IFC schema has been developed from IFC1.0 to IFC4.3 RC2 (buildingSMART 2021). 

Because of the delay in the wide adoption of the latest version, IFC2x3 was the most widely used 

version of the IFC schema at the time of this research. Based on the collected data, the author 

chose to use IFC2x3 in the experiment. There are 117 defined types and 653 entities, including 33 

types of entities for building elements in the IFC2x3 schema (buildingSMART 2007). For example, 

IfcBeam is a building element entity that is used to define a beam instance. Fig. 2 provides the 

visualization of a beam in IFC. Fig. 3 shows the IFC data of the beam. It is a wide flange beam (or 

I-beam) that is commonly seen in a steel structure. The IfcBeam references other entities such as 

IfcOwnerHistoty, IfcLocalPlacement, and IfcProductDefinitionShape, which contain detailed 

information about the beam.  

 
Fig. 2. Visualization of a wide flange beam/I-beam. 

 

 
Fig. 3. IFC data of an I-beam as represented by an IfcBeam. 
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To track the information of an object, a reference-tracing algorithm is required (Won et al. 

2013). IFC is widely believed to be the future of BIM because the IFC data format is open, platform 

neutral, and intended to be used by all disciplines and all life cycle phases of a project in the AEC 

domain (BuildingSMART 2018a). Created by the collaboration of twelve companies, IFC was 

designed to create a uniform standard to address the interoperability challenge (Hamil 2012). 

BuildingSMART has been constantly developing and refining IFC. As a result, it became one of 

the most promising attempts and is gaining more popularity. The ISO-registered IFC data standard 

facilitates BIM interoperability by allowing a “one-to-many” information flow between different 

BIM applications, which enables the mapping between one central model and representations in 

various applications, therefore brings flexibility into BIM representation. For example, the same 

3D shape can be represented using either a Swept Solid (i.e., the solid created by the sweeping 

motion of an existing solid or plane) or a Boundary Representation (i.e., a solid created by a 

collection of connected surface elements). Furthermore, the existence of property sets allows BIM 

implementations to customize and define their own properties. However, such flexibility also 

creates challenges in data consistency. While the future is promising, the IFC schema still has a 

major flaw in its actual use when transforming data between different software formats (Ma et al. 

2006; Pazlar and Turk 2008). An important factor in ensuring IFC data consistency and integrity 

is the correct object classification.  

An IFC model usually consists of a plurality of AEC objects represented by IFC entities. 

Correct use of the IFC schema indicates the use of the correct entity that the object intends to 

represent. Although most of the building elements should be using correct IFC entities, e.g., 

IfcWall for a wall, IfcSlab for a slab, it is not rare to see misuses, such as the misuse of an IfcSlab 

for a wall. The misuse occurred because both of them have a cuboid shape, and the only differences 

are in their corresponding length/width/height ratios. Although model visualization tools can still 

provide the same visualization results of a slab represented using an IfcWall entity as if it was 

represented correctly by an IfcSlab entity, this type of misuse can lead to problems in transferring 

data between different BIM applications that require the use of semantic information of building 

elements beyond their shape and geometry, such as architectural design, cost estimation, and 

structural analysis. It will make the conversion results from IFC files error-prone. For example, 

given the previous misuse case, when taking off the volume of slabs, the software will mistakenly 

add the volume of the wall represented by a slab entity.  
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 In extreme cases, most of the objects in a model contain entity misuses. For example, in a 

bridge model with 59 objects in total, there were 35 objects (59%) with entity misuses (Ma et al. 

2018). Due to the flexibility of IFC, one object can be represented by different IFC entities. For 

example, a wall can be represented by IfcExtrudedAreaSolid or IfcFacetedBrep, which is by 

extending a 2D plan or by defining all the 6 faces of a rectangular parallelepiped, respectively. 

Such an approach separates the IFC entities used with the geometric information it is attached to, 

which created a space for entity misuse.  

To prevent such errors and negative consequences resulting from misuses of IFC entities, 

an automated checking process is required, to improve the current approach which is mainly labor-

intensive manual checking. The checking process requires the accurate classification of an object 

by its content. As a result, new methods in AEC object classification are needed.  

2.3 Shared Data for Research and Development 

A Shared dataset (e.g., ImageNet, Flickr) not only provides people with resources for 

research, but also enhances the synergistic effect of research efforts from different teams by 

providing a common ground for comparison and discussion. It has been a common practice in 

computer science domains and helped advance research discoveries and technology development. 

For example, in the computer vision domain, Guillaumin et al. (2014) developed automated 

annotation methods for images using ImageNet. Yin et al. (2009) explored social tagging graph-

based web object classification using Flickr. In the natural language processing domain, Reid et 

al. (2018) developed social science interpretation methods based on decompounded lexicon 

induction technics, through the use of a Consumer Complaint Database in their development.  

Open datasets are the cornerstones of many research studies and provide a platform for 

comparison and collaboration. For example, in biology, Rezac et al. (2018) proposed a 

conformational method using MPCONF196 Benchmark Energy Data Set, which contained data 

that was carefully selected with both high and low-energy compounds. Rezac et al. (2018) selected 

cyclic and acyclic model peptides and other macrocycles to increase the accuracy of density 

functional theory (DFT)-based method for building the structure of complex biomolecules. Their 

method has shown statistically significant agreement with the ground truth. The method of Rezac 

et al. (2018) provides an efficient and accurate model that has the potential to help people fully 

understand the structural determinant of complex biomolecules, e.g., the information contained in 
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the structure of DNA. In computer science, Zhou et al. (2017) developed a method for Scene 

Parsing through the use of the ADE20K Dataset (Zhou et al. 2018). They introduced and analyzed 

the ADE20K dataset, which contains diverse annotations of senses, objects, and parts of objects. 

Consistent annotations of the images were created following a labeling protocol, and the dataset 

was larger and more diverse compared to many other image datasets, such as COCO (Lin et al. 

2014) and ImageNet (Russakovsky et al. 2015). The method proposed by Zhou et al. (2017) used 

a Cascade Segmentation Module to parse the images, that could remove image content and 

synthesize images automatically. Without the MPCONF196 dataset, the ADE20K dataset, and 

other related image datasets, such research developments would not have been possible or as 

successful. 

2.4 Existing Methods for AEC Object Classification 

2.4.1 General object classification 

Object classification is the process in which objects are recognized, differentiated, and 

interpreted meaning that the objects are grouped for some specific purpose. Object classification 

in an automated fashion involves two essential steps: feature extraction (Langley 1994) and 

feature-based classification (Ullman 2007). 

There is a lot of research on two-dimensional (2D) object classification to detect and 

classify objects from 2D images. For example, Cohen and Lefebvre (2017) proposed to extract a 

hierarchy of fragments with visual element features such as human faces and car wheels for use in 

recognizing and classifying objects (e.g., people and cars) from 2D images. Ullman and Epshtein 

(2007) proposed two extensions of the fragment-based object recognition scheme. One is a 

hierarchical decomposition into parts and subparts at multiple levels according to the features. The 

other is depicting different views of the same object part using semantically equivalent feature sets 

(Ullman and Epshtein 2007). Distinguished from the fragment-based scheme, Wang et al. (2009) 

designed a technique that sorts objects into predefined categories by building their text-based 

image features. A text-based feature is built from the tags of its k-nearest neighbors in the training 

collection. For example, “motorbikes” is a text-based feature built from the tags of its 5,000 nearest 

neighbors based on measuring the chi-square distance in a space of 256-dimensional vectors. 

Wang et al. (2009) found that text-based features from images are reliable to classify the objects 
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in images even when an object appearance changes in the images. In the civil engineering domain, 

computing methods and algorithms have also been developed to identify/classify the following 

contents from 2D images: construction equipment (Memarzadeh et al. 2013), construction 

activities (Liu and Golparvar-Fard 2015), safety harness (Fang et al. 2018), construction materials 

(Han and Golparvar-Fard 2015), highway assets (Golparvar-Fard et al. 2013) and traffic signs 

(Balali et al. 2015), bridge components (Narazaki et al. 2018), and cracks and defects in a structure 

(Feng et al. 2017; Gopalakrishnan et al. 2017), among others. 

In contrast to 2D object classification, three-dimensional (3D) object classification has 

more information to leverage because of its additional spatial dimension. For a successful 3D 

object classification, object detection is a critical step when dealing with less structured data such 

as point cloud data collected using light detection and ranging (LIDAR) techniques. For example, 

Wang and Schenk (2000) designed an object classification technique to detect and reconstruct 

buildings from LIDAR data. Their approach uses LIDAR terrain surface, edges, and points of a 

building as features. Also working on point cloud data but from a different perspective, Voegtle 

and Steinle (2003) designed a method to detect segments and extract objects inside these segments 

based on a special region growing algorithm. LIDAR data has been widely used in the civil 

engineering domain for capturing as-built projects (Wang and Cho 2014), prefabricated 

components (Kalasapudi et al. 2015), construction equipment and assets (Chen et al. 2016; Fang 

et al. 2016), and surveying results (Tang and Akinci 2012). Red, green, and blue-depth (RGB-D) 

data is another type of commonly used 3D data other than point cloud data. Different methods 

have been proposed to conduct object classification on RGB-D data. For example, Socher et al. 

(2012) proposed a combination of convolutional and recursive neural networks (CNNs and RNNs) 

to classify 3D objects from RGB-D data, in which multiple RNN weights are randomly initialized, 

and a tree structure is built for the classifier. Bo et al. (2013) proposed a hierarchical matching 

pursuit (HMP) method for object classification in RGB-D data that uses an unsupervised learning 

technique with sparse coding to generate hierarchical feature representations for classifying 

household objects. 

In spite of the different types of data used, the aforementioned methods all focused on 

object classification in as-built models or assets. As-built models are models created from 

surveying/ inspecting a physical system (Hefele and Dolin 1998). On the contrary, as-designed 

models are virtual models that are derived from design data (Huber et al. 2011). As such, an as-
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designed model has more degrees of freedom in terms of the possible model setup. For example, 

an as-designed model can be built as high as the designer wants, whereas as-built models can only 

be as high as it physically stands. As a result, a successful classification of objects in an as-designed 

model will heavily rely on the correct understanding of the designed structure and the BIM data 

structure. Object classification of as-designed models is underexplored compared to that of as-

built models. In this domain, Qin et al. (2014) proposed a 3D computer-aided drafting (CAD) 

object classification method using deep neural networks in which they leveraged prior CAD 

knowledge to generate features to use in the deep neural network model training. An average 

accuracy of 98.64% was achieved in a dataset that contained objects in 28 categories, such as screw 

and nut. Henn et al. (2012) presented a support vector machines (SVMs)-based machine learning 

classifier that can automatically classify the building type of a selected 3D model from city models 

such as terraced buildings and apartment buildings. They achieved a cross-validation accuracy of 

90.79% on 1,953 building objects. 

2.4.2 Identification of building components 

There is also no lack of research in automated identification of building components. For 

example, Quintana et al. (2018) proposed a method for door detection from 3D colored point 

clouds data. Their approach could detect open, semi-open, and closed doors from the laser scanned 

data of an indoor environment by integrating geometry, colors, and other characteristics into the 

detection analysis. As a result, they were able to detect doors with close to 100% precision and 

higher than 90% recall. Adán et al. (2018) proposed a method for detecting secondary building 

components (e.g., MEP components) from laser scanners. They proposed a 6D approach 

(XYZ+RGB) to recognize small objects such as switches and signs by inferring the objects 

following a consensus procedure, to create an as-is semantically rich 3D model. Puente et al. (2014) 

proposed a method for detecting road tunnel luminaires using mobile Light Detection and Ranging 

(LiDAR) technology. Hamledari et al. (2017) proposed a method to detect components of under-

construction indoor partitions using computer vision-based technologies. It was found that the 

methods for detecting and constructing as-is building components have been studied extensively 

with practical results. However, reasoning about semantic building concepts (e.g., egress) from as-

designed models was under-researched to produce reliable and practical results, as discussed in 

the information exchange section. The detection of building code concepts is also different from 
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detecting objects, because the building code concepts may involve multiple objects, relationships 

between them, and their combinations. As a result, new methods need to be developed to help 

identify these building code concepts, which the existing methods did not cover.  

2.4.3 IFC object classification  

To address the misuse in IFC entities, a high-performing classification algorithm is needed 

to label the IFC data with their intended semantic category based on the information extracted 

from that object. Several attempts have been conducted to develop such algorithms. 

From a historical perspective, object classification makes a difference between BIM and 

3D computer-aided design (CAD), because BIM carries the semantic information of objects in a 

building model (Ma et al. 2018). 

A few recent works in IFC object classification were found. For example, Koo and Shin 

(2018) explored the use of a machine learning approach to detect IFC object misclassifications 

during manual creation of the IFC data. They used SVMs to classify objects into individual classes 

and tested the SVMs on four classes, which are walls, doors, columns, and slabs. Their testing 

achieved an accuracy that ranged from 80.95% to 97.14% for different classes. The use of machine 

learning was promising, but it was difficult (if not impossible) to achieve 100% accuracy. In 

contrast, Sacks et al. (2017) captured domain expert knowledge into computer rules for classifying 

IFC objects. The rules were based on pairwise geometric, spatial, and topological relationships 

between IFC objects. Ma et al. (2018) designed a similar method to classify BIM objects using a 

tailored matching algorithm. In their methods, each object in consideration is paired with all other 

objects and the similarity of objects in each pair is calculated by comparing their feature values 

and relationships. Perfect testing results (100% accuracy) have been reported in both methods on 

333 objects and 390 objects from one and two bridge IFC models, respectively. However, their 

methods focused on the relative relationship between features of different objects rather than the 

feature values of the objects themselves, such as geometric representation and numerical 

parameters of the object, thus, reference objects are always in need.  

While high performance has been achieved for the machine learning method, it is still not 

accurate enough to support seamless BIM interoperability. A more systematic and comprehensive 

feature set may improve the accuracy of the machine learning algorithms. In addition, a more 

systematic selection of machine learning algorithms needs to be conducted to select the best 
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machine learning algorithm for AEC object classification. For the rule-based algorithms, the 

efficiency needs to be improved, and the results need to be tested with more data. A comparison 

of the rule-based algorithm and the machine learning algorithms in the same dataset can provide 

more evidence in selecting the best approach. 

2.5 Machine Learning  

2.5.1 Machine learning algorithms 

Machine Learning (ML) plays an important role in the success of many modern computing 

technologies such as artificial intelligence (AI). There are traditional statistical methods such as 

linear regression and logistic regression, and new methods that require large computational efforts 

such as convolutional neural networks (CNN) (Kuang and Xu 2018) and generative adversarial 

networks (GAN) (Seeliger et al. 2018). Machine learning algorithms can be categorized into two 

types - supervised and unsupervised. Supervised algorithms require ground truth as input, which 

is the correct labels of the data. Unsupervised algorithms do not have such prerequisite. Based on 

the purpose of application, machine learning algorithms can also be categorized by tasks, e.g., 

classification, regression, and clustering. Kotsiantis (2007) reviewed major machine learning 

algorithms for the classification task: logic-based algorithms, including decision trees and rule-

based algorithms; perception-based algorithms, including logistic regression (Grégoire 2014), 

neural networks (Cartwright 2015, Cartwright, 2008, Angermueller et al. 2016, Zeng et al. 2019, 

Silver et al. 2016, Rosandich 1997, and Mahanta 2017), and radial basis function networks; 

statistical learning algorithms, including naive Bayes and Bayesian network (Kotsiantis 2007, 

Quinlan 1986, and Jensen 1996); instance-based learning, including nearest neighbors and k-

nearest neighbors (Veropoulos et al. 1999); and SVM. Kotsiantis (2007) summarized the 

properties and method of each type of algorithms and provided analysis of each of them. For 

supervised object classification, multiple existing algorithms provide accurate results for different 

cases. Some of the most promising ones include logic-based algorithms, perception-based 

techniques, statistical learning algorithms, instance-based algorithms, and SVM (Kotsiantis 2007). 

In addition to those ML algorithms, boosting method can increase the overall accuracy by reducing 

variance (Hastie et al. 2009) and therefore can be used to develop new ML algorithms. For 

example, Random Forest (Hastie et al. 2009) is a machine learning algorithm that is built on 
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substantial modification of the bagging method which in turn is also known as bootstrap aggression 

to reduce the variance of an estimating function. The bagging method works well for tree 

structures. Random forest pushes that further to build a large collection of de-correlated trees and 

take the mean prediction of the many trees in classification results using the bagging method.  

2.5.2 Feature engineering 

To fully explore the potential of machine learning algorithms, a systematic feature 

engineering is needed. 

Feature engineering is one of the critical steps to ensure that the machine learning 

algorithms can generate good models to achieve the desired classification results. In addition, 

Feature engineering is one of the most time-consuming and challenging tasks in data mining 

(Zhang et al. 2018). According to the Occam’s Razor (Bethel 2009), the fewer features used, the 

more robust machine learning algorithms can potentially be, so the main task in feature engineering 

is to select a small set of features that maintain a good performance in the target machine learning 

task. Koo et al. (2019) used a feature set consisted of certain geometric information and relational 

information. 

2.6 Logic Programming 

The formal foundations of logic programming started in the late 1970’s and further 

developed in the early 1980’s (Alferes 1996). With declarative nature, logic programming became 

a candidate for knowledge representation. In addition, the relations with deductive database made 

logic programming even more suitable for knowledge representation. This approach provided 

machines with a logic representation of the knowledge and made the reasoning independent of any 

particular implementation. It is context-free and easy to manipulate. Among the implementations 

of logic programming, Prolog (Max 2013 and Spivey 1996) is the most widely used logic 

programming language. It does not require a background in mathematics, logic, or artificial 

intelligence (AI) to use.  
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2.7 Automated Compliance Checking of Building Codes 

2.7.1 Domain knowledge representations of building codes 

To enable ACC, one of the main steps is to convert the building codes written in 

natural/human language into computing language. In natural language’s discussion, syntax refers 

to the word sequences, semantics refers to the sense and meaning, and pragmatics refers to 

different interpretations in different contexts (Nawari 2018). To enable machines to process such 

syntax, semantics, and pragmatics, natural language processing (NLP) (Nadkarni et al. 2011) 

methods were developed and used. NLP approach has been shown to be promising in converting 

building codes rules and infrastructure regulations written in plain text into computable 

representations (Zhang and El-Gohary 2016b; Xu and Cai 2020; Xue and Zhang 2020, 2021). 

Regarding computable representations of building codes, a lot of research has been conducted in 

representing the building code requirements in various computable formats. For example, 

Khemlani (2011) proposed to use predicate logic to represent building codes in FORNAX (i.e., a 

C++ library for IFC data editing). Ding et al. (2006) proposed to use rule-based language to 

represent accessibility requirements in building codes. Martins and Monteiro (2013) proposed to 

use XML-based language to represent building codes of water systems. Tan et al. (2010) proposed 

to use XML-based language to represent building codes for checking building envelope using the 

Jboss rule engine. In addition, Jeong and Lee (2009) proposed to use direct hard coding to check 

building fire resistance requirements automatically. Nawari (2012) proposed to use object-oriented 

representation for encoding a knowledge domain. Zhang and El-Gohary (2016c) proposed to use 

first-order logic (FOL) for encoding building codes. FOL consists of objects, relations, and 

functions. In recent research, domain-specific ontology was also used in constructing a set of 

semantic and syntactic structures for building codes (Zhang and El-Gohary 2016c). Independent 

from such computable representations, however, is the need of matching BIMs to related building 

code concepts.  

2.7.2 Automated building code compliance checking (ACC) 

The first successful effort for ACC can be traced back to the 1960s when Fenves (1966) 

designed an if-then system to represent American Institute of Steel Construction (AISC) standard 

specifications. Later, many research efforts followed and made advancement in ACC (Lopez and 
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Wright, 1985; Lopez et al., 1989, Garrett and Fenves, 1987). In recent studies (Holzer 2015, Sionov 

et al. 2015, Volk et al. 2014, Zou et al. 2017, and Sacks 2018), researchers showed great interests 

in using BIM to support ACC, which is expected to be interoperable among platforms for 

designers, contractors, clients, vendors, and others. An important problem each and every BIM-

based ACC system must address, is how to match building design information from BIMs to 

building code concepts that are essential building blocks of regulatory rules in building codes. This 

was reflected in the four-stage rule checking framework that Eastman et al. (2009) summarized 

which included “(1) rule interpretation and logical structuring of rules for their application; (2) 

building model preparation, where the necessary information required for checking is prepared; 

(3) the rule execution phase, which carries out the checking, and (4) the reporting of the checking 

results.” Both the first two stages are intended to prepare input (i.e., building design and building 

codes, respectively) for the third phase – rule execution. In order for the building code rules to 

execute over the building design input, there lies the matching between the two inputs. In tackling 

this problem, recent ACC efforts mainly endeavored at the rule level (i.e., regulatory requirements 

from building codes). For example, Kasim et al. (2013) proposed a reusable solution for 

sustainability compliance checking using the requirement-applicabilities-selection-exception 

(RASE) methodology developed by Hjelseth and Nisbet (2011). Their method can extract 

sustainability requirements and convert them into compiled rules for use with a rule engine. It has 

the potential to support dynamic checking during the building design stage. Solihin and Eastman 

(2015) proposed to classify the rules in building codes into six categories, including: (1) rules for 

checking the well-formedness of a building model, (2) rules for building regulatory code checking, 

(3) rules for constructability/other contractor requirements, (4) rules for safety/other rules with 

corrective actions, (5) rules for warranty approvals, and (6) rules for checking BIM data 

completeness. Zhang and El-Gohary (2017) proposed a semantic NLP and logic reasoning-based 

method to support fully ACC. Their prototype achieved 98.7% recall & 87.6% precision in 

noncompliance detection in Chapter 19 of the International Building Code 2009 which was based 

on representing each regulatory requirement as a logic rule. Haubler et al. (2021) proposed a rule-

based method to implement the ACC of railways, with 12 categories of rules (e.g., component 

definitions, directional definitions). Their approach was shown to be able to automatically examine 

37%-75% of the 943 rules. Xue et al. (2021) developed a semi-automated method for information 

extraction from tabular contents of building codes and information transformation into computable 
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rules. Their method correctly processed 91.67% of tables when tested on Chapter 10 of the 

International Building Code 2015. 

BIM has a great potential in supporting ACC, especially with the support of IFC standard, 

which is open and platform-neutral. However, despite the existing efforts and progresses achieved, 

practical obstacles remain, in information extraction and matching from both BIMs and specific 

building codes, at the regulatory concept level. For example, BIMs are not expected to contain 

explicit depictions of “egress”, which is an important concept in building codes.  
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CHAPTER 3 – A NEW AEC OBJECT DATASET 

Significant portions of this chapter can be found in:  

“Automated BIM object classification to support BIM interoperability.” In Proc., 

Construction Research Congress, 706-715. DOI: 10.1061/9780784481301.070. 

“New automated BIM object classification method to support BIM interoperability.” in 

Journal of Computing in Civil Engineering, 33(5). DOI: 10.1061/(ASCE)CP.1943-5487.0000858. 

“Introducing geometric signatures of architecture, engineering, and construction objects 

and a new BIM dataset.” In Proc., 2019 ASCE International Conference on Computing in Civil 

Engineering, 264-271. DOI: 10.1061/9780784482421.034. 

 

In order to perform a data-driven approach for the experiments, the author built a data set 

which targets collecting a uniform AEC dataset with broad coverage of types and representations 

in IFC. The dataset is reusable for reproducing and conducting further research. 

3.1 Data Collection: Collect IFC Models from Different Sources to Create a Dataset with a 
Broad Coverage of Different Types of IFC Entity Usage. 

To collect needed data, the author explored existing open BIM repositories, including the 

“Open IFC Model Repository” (Dimyadi and Henderson 2012) and the NBS National BIM Library 

(2018), which contain 105 and 6,660 IFC data instances, respectively. They provided good quality 

models for visualization. However, these data were not tailored for object classification, because 

they did not have verified object class labels. In contrast, the author developed a new dataset 

tailored for BIM object classification. The author invited independent annotators to manually label 

the collected data and discussed among themselves any disagreement. If any disagreement could 

not be resolved through discussion, the majority vote mechanism was used to decide the label to 

adopt. 

To cover the identified main types of AEC objects including beams, columns, footings, 

slabs, and walls in different types of representations and uses of IFC entities, the author collected 

data from two different sources: (1) the “Common Building Information Model Files” published 

by buildingSMARTalliance of the National Institute of Building Sciences (East 2013), (2) Revit 

models exported as IFC data files. 
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Among the collected data, the author selected the duplex apartment model (Duplex_A) 

from the first source, which is a model from the buildingSMART official website (WBDG 2021); 

the Revit (Autodesk 2021) architectural sample model (Rac_basic), the Revit advanced structural 

sample model (Rst_advanced), the Revit basic structural sample model (Rst_basic), and the Revit 

technical school sample structural model (Tech_school) from the second source, which covers 

different types of projects. The similarity between all the selected models was that they all 

contained many beams, columns, footings, slabs, and walls. The selected models contained 

hundreds of AEC objects on average. AEC objects from the selected models covered many 

variations of IFC representation used, including IfcFacetedBrep, IfcExtrudedAreaSolid, 

IfcMappingRepresentation, and IfcBooleanResult. For the coverage of object shapes, the data 

covered a wide range of different shapes with hundreds of unique AEC objects for each type.  

3.2 Label the Data with Inter-Annotator Agreement 

In order to classify the objects of an IFC model, algorithm needs to be developed to detect 

the objects and extract all related information. The extraction of IFC objects is achieved using the 

algorithm of Won et al. (2013), as reproduced by the author, that can extract all building elements 

from an IFC file and store each element as a separate file for the purpose of labeling. Each file 

contains a building element that is independent of other parts of the original IFC model. For 

example, one file may contain a window of an exterior wall, whereas another file may contain a 

slab on the second floor. Fig. 4 shows the visualization of a duplex apartment model collected 

from buildingSMARTalliance of the National Institute of Building Sciences (East 2013). All such 

objects from the collected data are extracted in this step. The objects are manually labeled with 

their correct categories by observing each object in a BIM visualization and data display utility. 

Labels include two types: existing categories (represented by IFC entity names) in the IFC schema, 

and non-IFC categories. The existing IFC categories represent common building elements, 

whereas non-IFC categories can define building elements to any level of detail. During the labeling 

using existing IFC categories, misuse of IFC entities in the collected data can be identified.  
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Fig. 4. Visualization of a duplex apartment model. 

 

The author invited three independent annotators to manually label the same set of objects 

with their building element types. The average inter-annotator agreement was 87.21% initially 

(Table 1). For the objects that had different labels by different annotators, the author arranged 

discussions with the annotators and tried to get agreement through debating and convincing each 

other. In the end, an average inter-annotator agreement of 99.06% was achieved. For the 18 objects 

(0.94% of the data) that annotators still did not achieve agreement, the author picked the majority 

labels (examples in Table 2). BIM viewer (Fieldwire 2021) was used to visualize the extracted 

objects and display their properties during the manual labeling. The results are showed in Table 3. 

 

Table 1. Inter-annotator agreements of IFC objects manual labeling before discussion -> after 
discussion. 

Annotator A B C Average 
A - 81.37% -> 99.79% 81.52% -> 98.79% 81.45% -> 

99.29% 
B 81.37% -> 99.79%  - 98.74% -> 98.58% 90.06% -> 

98.19% 
C 81.52% -> 98.79% 98.74% -> 98.58% - 90.13% -> 

99.69% 
Average 81.45% -> 99.29% 90.06% -> 99.19% 90.13% -> 98.69% 87.21% -> 

99.06% 
 

Table 2. Sample majority vote labels. 
AEC Object and Model Origin Label by A Label by B Label by C Majority Vote 

IfcWall34 from Duplex_A Wall Wall Beam Wall 
IfcWall35 from Duplex_A Wall Wall Beam Wall 

IfcBeam132 from Rst_advanced Beam Colum Beam Beam 
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IfcBeam133 from Rst_advanced Beam Colum Beam Beam 
IfcBeam133 from Rst_advanced Beam Colum Beam Beam 

 

Table 3. Numbers of instances in each object types. 
Object Type Number of Instances 

Beam 790 
Column 412 
Footing 354 

Slab 79 
Wall 265 
Total 1,900 

3.3 Data Sharing  

To facilitate data sharing, the author hosted this open dataset at Purdue University Research 

Repository (PURR), an initial and a second version of which was described in (Wu and Zhang 

2018b, Wu and Zhang 2021b). The new dataset can be used directly by researchers and developers 

to develop and test object classification algorithms. The dataset contains not only the 1,900 IFC 

instances of beams, columns, footings, slabs, and walls but also the object class type labels as 

described below in Chapter 3.2, and selected object features (invariant signatures) as described in 

Chapter 4.  
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CHAPTER 4 - INVARIANT SIGNATURES OF AEC OBJECT 

Significant portions of this chapter can be found in:  

“Constructing invariant signatures for AEC objects to support BIM-based analysis 

automation through object classification.” in Journal of Computing in Civil Engineering, 

submitted. 

“Introducing geometric signatures of architecture, engineering, and construction objects 

and a new BIM dataset.” In Proc., 2019 ASCE International Conference on Computing in Civil 

Engineering, 264-271. DOI: 10.1061/9780784482421.034. 

 

To address the gap of lacking intuitive uniform interoperable representations that can be 

used for different BIM tasks, the author proposes the concept of invariant signatures for AEC 

objects.  

4.1 Invariant Signature Definition 

The invariant signatures concept was first conceived by Dr. Jiansong Zhang in his NSF 

proposal titled “EAGER/Collaborative Research: Science-Based Exploration of Invariant 

Signatures of Architecture/Engineering/Construction Objects to Enable Interoperability of 

Building Info Modeling” (NSF 2017). It is inspired by neural signatures and mathematical 

signatures. 

Neural signatures. The structure and functions of human brains are still underexplored. 

But the way that a human brain detects objects gradually got unraveled, i.e., patterns consisted of 

features that help people recognize objects (Brandman and Peelen 2017). For example, Johnson 

and Olshausen (2003) observed this object detection process by a human brain through 

experiments. In their experiment, two ways to measure event-related potential (ERP), i.e., the 

electrophysiological response to a stimulus, were used to correlate brain activities with object 

recognition. Two types of components in an ERP of natural images were discovered: early 

presentation-locked signal and later recognition-related component, respectively. An early 

presentation-locked signal indicates low-level feature differences between images. A later 

recognition-related component covariates with the subsequent reaction time. Their experiment 
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inferred that the second type of neural signatures for image recognition have a substantially later 

and variable time of onset comparing to the first type, which provides insights into object detection 

by human brains using neural signatures.  

Mathematical signatures. Compared to neural signatures described above, mathematical 

signatures follow a more concise and rigid formulation. The creation of mathematical signatures 

followed a rigorous procedure of definition and proof, based on element axioms and complicated 

deductions. For example, the mathematical signature of a circle includes the following two rules 

depicting the patterns of features: (1) the set of points that forms the circle must be in the same 

plane; (2) the boundary (circumference) must be equidistant to a center point (Coolidge 1902). 

Furthermore, Daniyarova et al. (2012) showed that the entire properties of algebraic universal 

geometry can be carried over to the case of an arbitrary geometric signature without essential 

changes.  

Other signatures. The idea of signatures is widely used and has a variety of different 

nature. For example, Stow et al. (2012) proposed frequency distribution signatures for use in the 

classification of within-object pixels. Nelson and Sokkappa (2008) proposed radiation signatures 

that were generated using a statistical model to detect nuclear threats. Marat and Ltti (2012) 

established object signatures for object classification and showed that the amount of context 

learned had an important effect in object recognition results. 

In the same spirit, the author proposed to construct invariant signatures of BIM-based AEC 

objects, which are “a set of intrinsic properties of the object that distinguish it from others and that 

do not change with data schema, software implementation, modeling decisions, and/or 

language/cultural contexts” (Wu et al. 2021). The invariant signatures consist of three sub-types, 

namely, (1) geometric signatures, (2) locational signatures, and (3) metadata signatures. Geometric 

signatures capture the shape information such as common shapes as rectangle and cylinder. 

Locational signatures capture the position information of an object, including the absolute position, 

relative position, and orientation. Metadata signatures capture representation-level information, 

especially the representation used in IFC, e.g., the average number of vertices among faces in a 

boundary representation (Brep). 
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4.2 Invariant Signature Features 

The invariant signatures include both categorical features and numeric features. 

Categorical features can be transformed into numeric values using discrete numbers or binary 

representations. For features that an object does not have (i.e., no feature value exists), a default 

value of “0” or “false” was assigned. In addition, metadata signatures may have certain information 

overlap with geometric and locational signatures. For example, if an object has nonzero values for 

the I-shape signatures then the object should also have a “true” value for the extruded area solid 

signature. Table 4 shows all the developed invariant signatures with their value types, signature 

types, and meanings. Fig. 5 and Fig. 6 shows the visualization of a few sample properties for I-

shape and ring shape. 

 

Table 4. Developed object invariant signatures. 
Invariant 

Signature Name Value Type  Signature Type  Description 

Rec_L Numerical Geometric Length of a rectangular shape 
Rec_W Numerical Geometric Width of a rectangular shape 
Rec_H Numerical Geometric Height of a rectangular shape 
Cir_R Numerical Geometric Radius of a cylinder shape 
Cir_H Numerical Geometric Height of a cylinder shape 
R_R Numerical Geometric Radius of a ring shape 
R_H Numerical Geometric Height of a ring shape 
R_T Numerical Geometric Thickness of a ring shape 
I_W Numerical Geometric Overall width of an I-shape 

I_H Numerical Geometric Height of an I-shape (extruded 
depth) 

I_D Numerical Geometric Overall depth of an I-shape 
I_R Numerical Geometric Fillet radius of an I-shape 

I_WT Numerical Geometric Web thickness of an I-shape 
I_FT Numerical Geometric Flange thickness of an I-shape 
X1 Numerical Locational 

Vector x for placement X2 Numerical Locational 
X3 Numerical Locational 
Z1 Numerical Locational 

Vector z for placement Z2 Numerical Locational 
Z3 Numerical Locational 
O1 Numerical Locational Center Cartesian point of the 

object O2 Numerical Locational 
O3 Numerical Locational 

mHigh Numerical Locational Highest elevation of the 
original model 
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Table 4. Continued 
Invariant 

Signature Name Value Type  Signature Type  Description 

mLow Numerical Locational Lowest elevation of the original 
model 

mRatio Numerical Locational mRatio = (mHigh – (mHigh + 
mLow) / 2) / (mHigh - mLow) 

Length Numerical Geometric Length of the bounding box 
Width Numerical Geometric Width of the bounding box 
Height Numerical Geometric Height of the bounding box 
Volume Numerical Geometric Volume of the bounding box 
Items Integer Metadata Number of items 

Faces Integer Metadata Number of faces of Brep 
representation 

F3 Integer Metadata Number of faces with 3 edges 
of Brep representation  

F4 Integer Metadata Number of faces with 4 edges 
of Brep representation  

F7 Integer Metadata Number of faces with 7 edges 
of Brep representation  

AveVerti Numerical Metadata Average number of edges of all 
faces of Brep representations  

Xmax Numerical Metadata Max value in x direction 
Xmin Numerical Metadata Min value in x direction 
Ymax Numerical Metadata Max value in y direction 
Ymin Numerical Metadata Min value in y direction 
Zmax Numerical Metadata Max value in z direction 
Zmin Numerical Metadata Min value in z direction 
Brep Nominal (Binary) Metadata If Brep representation is used 

Extruded Nominal (Binary) Metadata If swept solid representation is 
used 

Clipping Nominal (Binary) Metadata If clipping representation is 
used 

CSG Nominal (Binary) Metadata If CSG representation is used 

SurfaceModel Nominal (Binary) Metadata If SurfaceModel representation 
is used 

ExtrudX Numerical Geometric 
Extruded direction  ExtrudY Numerical Geometric 

ExtrudZ Numerical Geometric 
Rec Nominal (Binary) Metadata If a rectangular shape is used 
Cir Nominal (Binary) Metadata If a cylinder shape is used 

Ring Nominal (Binary) Metadata If a ring-shape is used 
I Nominal (Binary) Metadata If an I-shape is used 

Type Nominal (Quinary) Ground Truth Labeled type 
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Fig. 5. Cross-sectional properties of an I-shape. 

 

 
Fig. 6. Cross-sectional properties of a ring shape. 

 
 

The signature set contains built-in feature values, such as Rec_L, Rec_W, Rec_H, which 

represent the length, width, and height of a 3D rectangular shape, respectively. For regular shapes, 

rectangular, cylindrical, and ring shape features were included. For irregular shapes, the author 

defined two sets of signatures, one for extruded area solid and one for faced boundary 

representation (Brep). The extruded area solid signature for irregular shapes included a set of 3 

decimal numbers to represent the length, width, and thickness dimensions of the bounding box, 

respectively. For Brep, in addition to the dimensions of the bounding box, the signatures that 

indicate the number of faces were also included. Table 5 shows 16 examples of the invariant 

signature values of independent objects. 
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Table 5. Sample invariant signature values by instances. 
Instance Model Rec_L Rec_W Rec_H Cir_R AveVerti Type 

IfcFooting1  Duplex_A 18.283 0.9 0.3 0 0 Footing 
IfcFooting2 Duplex_A 8.383 0.9 0.3 0 0 Footing 
IfcFooting3 Duplex_A 17.383 0.9 0.3 0 0 Footing 
IfcWall1 Duplex_A 16.966 0.417 1.25 0 0 Wall 
IfcWall2 Duplex_A 4.2005 0.435 1.25 0 0 Wall 
IfcSlab1 Rac_Basic 0 0 0 150 0 Column 
IfcSlab2 Rac_Basic 0 0 0 150 0 Column 
IfcSlab3 Rac_Basic 0 0 0 150 0 Column 
IfcBeam174 Rst_Basic 0 0 0 15 0 Beam 
IfcBeam114 Rst_Basic 0 0 0 0 3.519503546 Beam 
IfcBeam115 Rst_Basic 0 0 0 0 3.52228164 Beam 
IfcBeam116 Rst_Basic 0 0 0 0 3.52228164 Beam 
IfcBeam117 Rst_Basic 0 0 0 0 3.519503546 Beam 
IfcWall136 Tech_School 0 0 0 0 3.007682815 Wall 
IfcWall137 Tech_School 0 0 0 0 3.009665124 Wall 
IfcWall138 Tech_School 0 0 0 0 3.028989751 Wall 

 

The proposed invariant signatures are expected to uniquely identify AEC objects. To allow 

this identification, the invariant signatures shall describe all the major information embedded in 

each object. This can be reflected by the statistical relations of each invariant signature with AEC 

object types. For one type of AEC object, the invariant signature values fall into a certain range. 

For example, the height of a slab object usually does not exceed 1 ft. However, the height of a wall 

object usually does not fall below 1 ft. This is reflected in the distribution of each invariant 

signature value. Figs. 7 to 9 show three plots of object instances’ distributions across three different 

invariant signature features, respectively. Fig. 7 shows the distribution of the locational signature 

O3 (elevation of an object) on different object types. It shows that footings have smaller values of 

elevation. Fig. 8 shows the distribution of the geometric signature Length (horizontal dimension) 

on different object types. It shows that columns have smaller values of length, comparing to other 

types. Fig. 9 shows the distribution of the geometric signature Cir_R on different object types. It 

shows that circle is not used in walls or slabs. 
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Fig. 7. Distribution of the locational signature O3 (elevation) on different object types. 

 

 
Fig. 8. Distribution of the geometric signature Length on different object types. 

 

 
Fig. 9. Distribution of the geometric signature Cir_R on different object types.  
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CHAPTER 5 - INVARIANT SIGNATURE – BASED AEC OBJECT 
CLASSIFICATION 

Significant portions of this chapter can be found in:  

“Automated BIM object classification to support BIM interoperability.” In Proc., 

Construction Research Congress, 706-715. DOI: 10.1061/9780784481301.070. 

“New automated BIM object classification method to support BIM interoperability.” in 

Journal of Computing in Civil Engineering, 33(5). DOI: 10.1061/(ASCE)CP.1943-5487.0000858. 

“Constructing invariant signatures for AEC objects to support BIM-based analysis 

automation through object classification.” in Journal of Computing in Civil Engineering, 

submitted. 

With the theoretical concept and its potential implementation of invariant signatures, it is 

essential to test the robustness of the invariant signatures in solving practical BIM problems. New 

automation methods are proposed for different BIM tasks with the adoption of invariant signatures. 

In this chapter, BIM object classification is investigated, to support the automated detection of IFC 

entity misuses. 

5.1 Rule-Based Method for AEC Object Classification 

The author proposes a new seven-step iterative method to classify BIM objects in IFC 

models (Fig. 10): data collection, preprocessing, environment setup, primary development, 

secondary development, error analysis and training improvement, and testing. The method 

provides a platform for algorithm development using a data-driven and pattern matching rule-

based approach. With the addition of detailed patterns, the algorithm can be continuously 

developed to reach a required level of granularity, e.g., to distinguish beams from walls, to 

distinguish I-beams from C-beams, or to distinguish different sizes of I-beams. To help illustrate 

the method, some implementation examples are used in this explanation. 
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Fig. 10. Proposed 7-step method for automated IFC-based BIM object classification. 

 

5.1.1 Data collection: collect IFC models from different sources to create a dataset with a 
broad coverage of different types of IFC entity usage  

Although IFC was designed to be an open and neutral data standard that is intended to be 

used by all disciplines and all life cycle phases of a project in the AEC domain, its built-in 

flexibility allows the IFC standard to be used in different ways. For example, the same 3D shape 

can be represented using either a Swept Solid (i.e., the solid created by the sweeping motion of an 

existing solid or plane) or a Boundary Representation (i.e., a solid created by a collection of 

connected surface elements). Furthermore, the existence of property sets allows BIM 

implementations to customize and define their own properties. Therefore, a dataset consisting of 

models collected from different sources is expected to have a broader coverage of different types 

of representations and uses of IFC entities compared to models collected from a single source. 

5.1.2 Preprocessing: extract IFC objects from the collected models, manually label the data, 
and divide the objects into training set and testing set  

In order to classify the objects of an IFC model, the algorithm needs to detect them and 

extract all related information. The extraction of IFC objects is achieved using the algorithm of 

Won et al. (2013), as reproduced by the author, that can extract all building elements from an IFC 

file and store each element as a separate file. Each file contains a building element that is 
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independent of other parts of the original IFC model. For example, one file may contain a window 

of an exterior wall, whereas another file may contain a slab on the second floor. All such objects 

from the collected data are extracted in this step. The objects are manually labeled with their 

correct categories by observing each object in a BIM visualization and data display utility. Labels 

include two types: existing categories (represented by IFC entity names) in the IFC schema, and 

non-IFC categories. The existing IFC categories represent common building elements, whereas 

non-IFC categories can define building elements to any level of detail. During the labeling using 

existing IFC categories, misuse of IFC entities in the collected data will be identified. The division 

of the IFC objects into a training dataset and a testing dataset is conducted using a data dividing 

Java program that the author wrote. The program randomly picks objects from the extracted set 

and puts them into training or testing set based on a predefined ratio between training and testing 

data. A common training/testing data ratio to use for statistical learning is 70% - 30% (Kemal and 

Salih 2007). However, the author’s rule-based learning has more rationality (i.e., based on 

geometric theorems) built into the training process and therefore requires less training data 

compared to statistical learning, in spite of its dependency on the variety of data representations 

and their distributions. To study such a learning effect, the author proposes the use of a learning 

curve measure that will be described in detail in the experiment section (Section 5.2).  

5.1.3 Environment setup 

The author uses Java as their developing language because Java provides a convenient 

platform with a rich set of existing utilities such as Java toolboxes of IFC, which provides facilities 

to extract information from an IFC model. The algorithm to be developed will take a single IFC 

object file as input and output the category it belongs to. The classification algorithm is initialized 

to be empty, i.e., with no rules or patterns. This step establishes an environment in which the IFC 

object classification algorithm and sub-algorithms can be developed. By default, the algorithm 

classifies an IFC object into an “unknown” category because no pattern matching rules are 

applicable. In the development stage, the algorithm is developed by extending it with sub-

algorithms, e.g., sub-algorithms to classify an object into beams, walls, columns, etc., or to classify 

a beam into I-beam, C-beam, rectangular beam, etc. Each sub-algorithm consists of one or more 

pattern matching-based rules. A pattern matching-based rule defines a pattern consisting of 

features that could uniquely recognize a category. These features are inherent properties of the 
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AEC objects such as number of subcomponents, number of faces, cross-sectional profile, extrusion 

direction, dimensional ratio, number of straight lines and curves, line connection angle, length, 

and turn direction. Extraction of these features is achieved using the author’s developed object 

analysis algorithms similar to the object extraction algorithms. At this step, there are no sub-

algorithms or rules.  

5.1.4 Primary development: study the representations of the training set objects in IFC, 
build rules and develop sub-algorithms to classify objects into existing categories in 
IFC. 

Existing categories in IFC represent a common and essential set of elements in a building. 

For example, IfcBeam, IfcColumn, IfcFooting, IfcSlab, and IfcWall are used to represent beams, 

columns, footings, slabs, and walls, respectively. However, misuse of IFC categories could 

happen. For example, a wall should be represented in an IFC model using IfcWall or 

IfcWallStandardCase, but it may be represented using any of the other four IFC entities: IfBeam, 

IfcColumn, IfcFooting, and IfcSlab. This may appear to be correct in visualization, but the semantic 

information carried would be incorrect and therefore cause errors in BIM applications that rely on 

such semantic information. In this step, training data will be used to develop pattern matching rules 

to classify the IFC objects into existing IFC categories such as beams, columns, footings, slabs, 

and walls, based on the geometric representations of the objects. An object in IFC usually has 

multiple geometric representations for its Body and Axis (Geiger et al. 2014). The proposed 

method here focuses on analyzing the Body representation, which could be using one of the three 

main types of solid representation: Swept Solid, Boolean Results, and Brep Bodies 

(buildingSMART 2007; Zhang 2018). The primary development of sub-algorithms follows an 

iterative process (Fig. 11): (a) input reading: get an object instance from the training data; (b) sub-

algorithm development: study the body representation of the object instance and develop sub-

algorithms to capture the essential features of the body representation for classifying it into the 

labeled categories in Section 5.1.2; (c) intermediate testing: apply the cumulative sub-algorithms 

developed up to this point to all the object instances in the training data; (d) object instances 

identification: identify the object instances that were either correctly classified, incorrectly 

classified, or not classified; (e) results recording; and (f) recursion: get the next object instance 
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from the training data that was not classified and repeat the process until all object instances in the 

training data are classified.  

 
Fig. 11. Primary development flowchart. 

5.1.5 Secondary development: study the representations of IFC objects and develop sub-
algorithms to classify them into non-IFC defined categories.  

This step aims to further classify the IFC objects into categories that do not have matching 

IFC entity names in the IFC schema. These are categories that usually define more detailed 

characteristics of an object but could be defining an object in any dimension. Those objects are 

expected to be distinguishable based on their geometric information. To identify these object types, 

the same iterative method as in Step 4 (Section 5.4.1 Primary Development) will be used. Each 

developed sub-algorithm will be used to identify one specific object type such as I-beam, C-beam, 

and rectangular beam.  
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In addition to the five categories, the author expanded the classification on beams to 

classify beams into subtypes, including U-Beam, I-Beam, C-Beam, T-Beam, etc. (Chennu 2017; 

buildingSMART 2018c). The author developed an algorithm for each of the corresponding built-

in shape (e.g., I-Shape), swept solid with IfcArbitraryClosedProfileDef, and “Brep” 

representations, respectively.  

5.1.6 Error analysis and training improvement: analyze errors in the classification results 
on the training set, further add/revise sub-algorithms and rules to improve the 
training performance. 

After the development in Sections 5.1.4 and 5.1.5 (Primary Development and Secondary 

Development), the algorithm should be able to classify all the objects in the training data. To verify 

the correctness, the classification results are compared with the manually labeled categories. For 

the instances with incorrect classification, an error analysis will be conducted. The error analysis 

and training improvement step follows a six-step methodology (Fig. 12): (1) input reading: get an 

object instance that was classified incorrectly; (2) rule analysis: analyze the application of sub-

algorithms on this instance and find the pattern-based rule that fires on this instance; (3) rule 

modification: modify the identified rule to correct the error instance and update the corresponding 

algorithm; (4) modification testing: reapply the updated set of sub-algorithms on the training set; 

(5) modification updating: if the performance on the training set improves, then accept the update, 

otherwise decline the update; (6) recursion: get the next object instance that was classified 

incorrectly and repeat the procedure until all error instances are tried.  
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Fig. 12. Error analysis and training improvement flowchart. 

5.1.7 Testing: apply the developed classification algorithm to testing data for evaluation. 

This is the evaluation section of the method measured by recall and precision. The author 

adapted the measurements of recall and precision from the information science domain (Makhoul 

et al. 1999). Recall is defined as the number of correctly classified objects in a category divided 

by the total number of actual objects in that category. Precision is defined as the number of 

correctly classified objects in a category divided by the total number of objects that have been 

classified into that category.  
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5.2 Rule-Based Method Experiment 

5.2.1 Data collection: collect IFC models from different sources to create a dataset with a 
broad coverage of different types of IFC entity usage  

To cover the identified main types of AEC objects, including beams, columns, footings, 

slabs, and walls, in different types of representations and uses of IFC entities, the author used the 

data from the new proposed dataset described in Chapter 3. In addition, the author also collected 

models (some special beams) from the National BIM library of UK (NBS of UK 2014), for 

secondary development. The special beam model objects were collected so that the author could 

test the classification of sub-types for the proposed method.  

5.2.2 Preprocessing: extract IFC objects from the collected models, manually label the data, 
and divide the objects into training set and testing set  

With the proposed dataset in Chapter 3, this step was simplified because extracting and 

labeling was already finished. 

Using the data-dividing Java program that the author wrote, the author collected 1,330 

objects into the training set and 575 objects into the testing set. The total is 1,905 objects, which 

is five more than the 1,900 collected in Chapter 3 with the addition of five extra beams to support 

secondary development. The collected data was not exhaustive but sufficient for testing the 

author’s proposed method (Beleites et al. 2013), i.e., with more than a hundred instances for each 

type. In addition, the method can be used to continuously develop more patterns and rules to cover 

more categories when fed with more data. Because of the composite nature of the proposed method, 

the patterns, and rules to be developed for future categories will not affect the processing results 

of the already covered categories.  

5.2.3 Environment setup: initially build a classification algorithm with no rules or patterns. 

The author developed the framework of the classification algorithm and implemented it in 

Java programming language. It takes a file as input and outputs a string that represents the 

classification result of the object in that file. If the object cannot be classified, an error message 

with detailed information will be displayed. At this step, there were no rules or patterns yet, and 

the default error message “cannot be classified” would be displayed if the method was applied to 

a model. 
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5.2.4 Primary development: study the representations of the training set objects in IFC, 
build rules and develop sub-algorithms to classify objects into existing categories in 
IFC. 

Using the iterative process described in Section 5.1.4, the author developed sub-algorithms 

and rules to classify all objects in the training data into five main existing IFC categories: beams, 

columns, footings, slabs, and walls. Among the instances in the dataset, the study of one object 

will usually be sufficient to classify all object instances with similar geometric representations. To 

study the effect of training at each stage of the development, the author recorded the number of 

correctly classified instances after each stage of development and plotted them as a learning curve. 

Table 6 shows the geometric content of the study, and the number of correctly classified instances 

with respect to each stage of the development. In each stage, the geometric features of the targeted 

type of geometric representation were analyzed and used to compose patterns and rules for 

identifying objects represented using this targeted type of geometric representation. Stage 1 to 

Stage 8 focused on the “Swept Solid” type of geometric representation. Specifically, Stage 1 

focused on rectangular shapes; Stage 2 focused on I-beams represented by “Swept Solid” with 

IfcArbitraryClosedProfileDef; Stage 3 focused on slabs represented by “Swept Solid” with 

IfcArbitraryClosedProfileDef; Stage 4 focused on objects represented by “Swept Solid” with 

IfcCircleProfileDef; Stage 5 focused on objects represented by “Swept Solid” with four other built-

in shape profiles, including I-shape, C-shape, U-shape, and L-shape; Stage 6 focused on objects 

represented by “Swept Solid” with built-in IfcCircleHollowProfileDef, which defines a ring shape; 

Stage 7 focused on objects represented by “Swept Solid” with IfcCompositeCurve; Stage 8 focused 

on objects represented by “Swept Solid” with IfcClosedShell. Stage 9 to 12 focused on “Brep,” 

“Clipping,” “CSG,” and “Mapped Representation” types of geometric representation, respectively. 

Fig. 13 shows the plot of the learning curve. Some development details are described below. 
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Table 6. Learning curve parameters. 
Stage Number Stage/Content of Study Number of Objects Classified 

Stage 1 Rectangular shapes 146 
Stage 2 I-Beam with IfcArbitraryClosedProfileDef 153 
Stage 3 Slabs with IfcArbitraryClosedProfileDef  184 
Stage 4 IfcCircleProfileDef 364 
Stage 5 Four other built-in shape profiles 538 
Stage 6 IfcCircleHollowProfileDef 554 
Stage 7 IfcCompositeCurve 557 
Stage 8 IfcClosedShell 637 
Stage 9 Brep 902 
Stage 10 Clipping 1,004 
Stage 11 CSG 1,005 
Stage 12 Mapped Representation 1,330 
Stage 13 Locational Information 1,330 

Total All 1,330 
 

 
Fig. 13. Plot of the learning curve for all objects in the training data. 

 
 

In the geometric representations of objects in the training dataset, the following solid 

representation methods were used: “Swept Solid” (using IfcExtrudedAreaSolid), “Clipping,” 

“MappedRepresentation,” “Brep,” and “CSG”. Among these representation methods, “Swept 

Solid” is the most frequently used one: 1,035 of 1,330 (77.82%) of entities in the training data used 

“Swept Solid”. This representation method extends a 2D shape through a direction that is not in 
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the 2D plane, to create a 3D shape. For example, extending a long narrow rectangular shape on the 

floor vertically upwards creates a solid cuboid shape that could be used to represent the geometry 

of a vertical standing wall. The same wall may also be represented using a “Brep” by enclosing 

six connected faces. “Brep” is a powerful geometric representation in IFC (Hébert 2016). It can be 

used to approximate almost any shape. The internal structure of “Brep” data can vary a lot, which 

adds to the complexity of Brep-based geometries and their processing. In contrast, “Swept Solid” 

(or IfcExtrudedAreaSolid) is a faster way to represent common building element shapes 

(buildingSMART 2018b). It can easily represent a cuboid shape by extending a rectangular planar 

surface in its normal direction or the opposite direction. There are also “Clipping”, “CSG”, and 

“MappedRepresentation” that can represent solid model elements (buildingSMART 2007). 

“Clipping” representation is the Boolean results of two representations; “MappedRepresentation” 

reuses existing representation for new ones; “CSG” is the Boolean results of multiple primitive 

solids.   

In the first stage, the author studied the data representation of “Swept Solid,” which 

contains an instance of IfcExtrudedAreaSolid (buildingSMART 2018a). There are four attributes 

of an IfcExtrudedAreaSolid: a swept area, a direction, a position, and a depth. The swept area 

defines a 2D shape to be extended; the position defines the placement position and direction where 

the solid object is to be placed; the extruded direction defines a direction along which the swept 

area is extended; and the depth defines a distance for which the swept area is extended. The author 

used the assumption that a beam, when represented using a “Swept Solid,” is extended horizontally 

while other building elements such as walls and columns will be extended vertically. So the 

extruded direction is used as an indicator for differentiating beams from the other building 

elements. When looking at the orientation of an object, it is possible that an object is represented 

by “Swept Solid” with extrusion in the vertical direction but then rotated horizontally during the 

placement of the object. In other words, the position and the direction that an object was placed 

also need to be taken into consideration. As a result, in developing the algorithm, the author 

combined both information. 

In a “Swept Solid” representation, the extruded direction can be obtained from the 

IfcDirection property, and the placement is defined using an IfcAxis2Placement3D, as described 

by a point and two axes (ideally orthogonal). The point is the origin and the two axes are the Z and 

X axes. The axis Z = (Z0, Z1, Z2) and X = (X0, X1, X2) are both represented by a vector with three 
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parameters. They are called “Axis” and “RefDirection” respectively in an IfcAxis2Placement3D. 

In this way, it defines a unique position and orientation for the placement of an object. In 

comparison, the direction of the original extruded direction in the “Swept Solid” representation is 

defined directly using a 3D vector (x, y, z) with three parameters. After extracting these 

information, the author combined the extruded direction and placement information using 

Equation (1) to compute the final extruded direction of the object. 

Final extruded direction: 

(xnew, ynew, znew) = x*(x0,x1,x2) + y*(x0,x1,x2) × (z0,x1,x2) + z*(z0,z1,z2)       (1) 

where: 

Extruded direction (x,y,z) = x * (1,0,0) + y * (0,1,0) + z * (0,0,1), 

Placement Z axis (Axis): (z0,z1,z2), 

Placement X axis (RefDirection): (x0,x1,x2), 

 

As a result, if the final extruded direction is horizontal, the object will be processed as a 

candidate of a beam. In contrast, an object with vertical extruded direction will become a candidate 

for the other categories: column, footing, slab, and wall. Then the depth information could be used 

to differentiate the slab category from the other three categories. Finally, the 2D shape of the swept 

area (i.e., cross section) and ratios between different dimensions are used to differentiate the 

column, footing, and wall categories. 

Fig. 14 shows the algorithm after development. The algorithm starts from a single IFC 

object and extracts its geometric representation by tracing its associated IfcShapeRepresentation 

instance. According to the extracted geometric representation type, the algorithm follows 

“Clipping”, “Swept Solid”, “Brep”, “MappedRepresentation”, or “CSG”. For example, if the 

geometric representation is a swept solid, the algorithm will extract its extruded direction. If the 

extruded direction is horizontal, the algorithm will check the geometry and classify the input into 

designated beam types; if the extruded direction is vertical, the algorithm will make the object a 

candidate of column, footing, slab, and wall categories. Based on the value of the extruded depth, 

slab can be differentiated from the other three categories. To distinguish footing, column, and wall, 

the shape of the cross section (e.g., square vs. circle) and ratios between the three dimensions are 

used. For example, a circular cross-sectional profile excludes the object from the wall category. 
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The dimensional ratio between height and the other two dimensions can be used to distinguish 

slabs from other categories. 

 
Fig. 14. Algorithm flowchart for rule-based object classification. 

 
 

For “Brep”, the algorithm extracts the number of faces first. Using the number of faces, the 

algorithm selects possible candidates. For example, an instance with 6 faces will be a candidate of 

a cuboid. Then the sub-algorithm for each shape will verify the features of that shape. An example 

of development will be shown in Section 5.2.5. 
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For “Clipping”, the algorithm picks the main element that will be cut or added. The 

classification result will follow the result of that element. This method works well because most 

clipping results are some modifications of an existing “Swept Solid,” which has already been 

classified based on its geometric representation.  

For “MappedRepresentation”, the algorithm will track the original element to be mapped 

and classify it. The classification result of the original element will be used as the classification of 

the mapped object. Such use is feasible because the mapping from the original element to the 

mapped object does not change the internal geometric representation of the shape. 

In the last step, the author found that 167 footing piers were similar to columns and 

incorrectly classified into columns, as shown in Fig. 15. This is due to the fact the previous 

development relied solely on geometric information in such a case. In other words, by checking 

shape information here, the footing piers cannot be differentiated from columns. The author 

improved the algorithm to add the consideration of the relative location of an object to other objects. 

 
Fig. 15. Visualization of footing piers and columns with the same geometric information. 

 
 

As a result of the development, the author created an algorithm to classify an IFC object 

into one of the following building elements: beams, columns, footings, slabs, and walls. The 

algorithm did not use the entity name of the IFC object, because the entity name may be incorrect 

due to misuses. Instead, it directly searches for the geometric representation information of the 

object from the invariant signatures and uses the information for the classification. If 
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corresponding information was not found in the invariant signatures, additional extraction 

algorithms were developed. 

5.2.5 Secondary development: study the representations of IFC objects and develop sub-
algorithms to classify them into non-IFC defined categories.  

In this step, the author expanded the classification on beam into subtypes of beams. Beams 

can be classified by its support into simply supported beam, fixed beam, cantilever beam, 

continuously supported beam, or by the cross-sectional shape into I-Beam, C-Beam, T-Beam, etc. 

(Chennu 2017; buildingSMART 2018c). Because the author focused on using geometric 

information, which may not necessarily have the support type information, sub-algorithms were 

developed to classify the beams by their cross-sectional shapes.  

In the collected data, there were three ways to represent the geometry of a beam: a “Swept 

Solid” with built-in 2D shapes, a “Swept Solid” with a 2D IfcClosedShell, and a “Brep,” i.e., an 

IfcFacetedBoundaryRepresentation. The author developed sub-algorithms for processing all the 

three cases. 

In the first case, the beam’s geometry will be represented by a “Swept Solid” with built-in 

2D shape profiles, which is an IfcProfileDef (buildingSMART 2018c), such as 

IfcIShapeProfileDef and IfcCShapeProfileDef. Using shape profiles provided in IFC, it is 

straightforward to represent common shaped beams. For example, I-Beam can be represented 

using the IfcIShapeProfileDef, which can then be automatically classified as an I-Beam based on 

its profile shape name.  

However, built-in shape profile types are not the only way to represent an I-Shape. In 

practice, there are a large amount of data that were using IfcArbitraryClosedProfileDef, which is 

a 2D shape bounded/delineated by some arbitrary lines or curves that are closed. For the closed 

curves, their 2D features can be used to identify the unique cross-sectional shape. For example, an 

I-Beam has two possible cross sections: W-Section and S-Section as shown in Fig. 16. 
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Fig. 16. Types of I-beam: (1) W-section; and (b) S-section. 

 
 

Although an S-Section can be classified as an I-Beam, the W-Section is much more 

common in industrial use. In fact, in the collected data, there were only W-Section I-Beams. 

Similar to I-Beam having different variants, there can be variants of W-Section I-Beams. However, 

the goal here was only to distinguish I-Beam from other beam types, such as C-Beams and U-

Beams. To distinguish them, the author developed a sub-algorithm that counts the number of 

boundary lines and curves and checks the linkages between them. The author calls this type of sub-

algorithm shape recognizer. For example, a typical I-Beam cross section contains 12 lines (i.e., 

straight lines) and 4 curves. The linkages between the lines and curves are unique, which makes 

them feasible for use in distinction. For example, for a standard U-Beam as shown in Fig. 17, there 

are 8 lines. For a standard C-Beam, there are 12 lines and 8 curves. However, in the practical use 

of IFC, a C-Beam may only contain 12 lines and 4 curves or 12 lines without any curves, according 

to the level of details of their representations. Such complexity may increase the number of 

possible configurations of beam shapes. However, even in these special cases, shape 

configurations can still be enumerated. To sort the beams into different types, the author developed 

the following four-step method (Fig. 18): (1) Input reading: read in a beam candidate; (2) Lines 

and curves counting: count the number of lines and curves of the geometric representation of the 

beam candidate; (3) Shape checking: compare the line configuration of the geometric 

representation with all studied 2D shapes; (4) Linkage verification: verify the possible shapes by 

checking the unique linkages between lines and curves. 
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Fig. 17. U-beam, C-beam, I-beam, and L-beam. 

 
 

 
Fig. 18. Beam type classification method. 
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Among all the beams in the training data, the author studied four shapes that had built-in 

2D profiles in IFC. Examples of these shapes are shown in the beams in Fig. 17. They are 

IfcIShapeProfile, IfcCShapeProfile, IfcUShapeProfile, and IfcLShapeProfile (buildingSMART 

2018c). They can be recognized by adding a new count of the lines and curves, and a verification 

of their linkages. 

Table 7 shows the calculated possible counts of lines and curves of Rectangular Beam, U-

Beam, C-Beam, I-Beam, and L-Beam, respectively. 

 

Table 7. Possible number of lines and curves for rectangular beam, 
U-beam, C-beam, I-beam, and L-beam. 

Beam Types Lines Curves 
Rectangular 

Beam 4 0 

U-Beam 
8 0 
8 2 
8 4 

C-Beam 
12 0 
12 4 
12 8 

I-Beam 12 0 
12 4 

L-Beam 
6 0 
6 1 
6 2 

 

Based on the information in Table 7, the author summarized possible beam types of 

different geometric patterns in terms of the number of lines and curves in their geometric 

representations (Table 8). 

 

Table 8. Possible beam type according to their number of lines and curves in 
geometric representation. 

Number of Lines Number of Curves Possible Beam Shape 
4 0 Rectangular Beam 
6 0, 1, 2 L-Beam 
8 0, 2, 4 U-Beam 
12 0, 4 I-Beam, C-Beam 
12 8 C-Beam 
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According to Table 8, with the same number of lines and curves in their geometric 

representations, two beam objects may still have different possible beam types. To successfully 

differentiate such types of beams, the linkage types of the lines and curves in the geometric 

representations were used. For example, for an I-Beam, the following three aspects of the 

connections between lines will be checked. First, all the angles between connected lines must be 

right angles. Second, there must be four different lengths of lines based on the symmetry of I-

Beam. Third, because lines have directions in IFC data, the way they are connected (e.g., left turn 

versus right turn) also provide useful information. By these observations, the author developed a 

verification sub-algorithm that verifies the angles, lengths, and turn directions of lines and curves. 

Conceptually, checking linkages helps differentiate the two shapes shown in Fig. 19. These 

two shapes both have 12 lines, with the lengths of all the lines being the same. Apparently, the 

shape in the right part of Fig. 19 should not be classified as an I-Beam while the shape in the left 

part of Fig. 19 should. Such distinction is made at the linkage checking step by analyzing the turn 

directions of the lines. 

 
Fig. 19. Shapes with 12 lines but different line connection types. 

 
 

For Brep, there are many ways to represent a beam, the author used a data-driven approach 

and developed several sub-algorithms for different shape representations. Each time a new shape 

representation was came across in the training data, a new sub-algorithm was added.  

As a result, the author developed sub-algorithms for all types of beams observed in the 

training data. There were three main types of sub-algorithms developed: one for “Swept Solid” 

with built-in shape profiles, one for “Swept Solid” with a 2D IfcClosedShell, and one for Brep.  

The first sub-algorithm type was straightforward by tracking the built-in shape used, as 

previously discussed. The second sub-algorithm type was using the shape recognizer that 

differentiates shapes based on patterns of lines and curves. The third sub-algorithm type classifies 
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the beam objects that are represented using “Brep.” Some of them are single beams, for which a 

recognizer sub-algorithm was developed for each type of beam. Some of them are trusses. Fig. 20 

shows a visualization of a truss. In the training data, there can be from 42 sub-elements to as many 

as 72 sub-elements in a truss. Each truss consists of two major beams (i.e., longeron/chord) and 

many web members across the bridge, with each major beam consisted of two L-beams as shown 

in Fig. 20. The author developed a sub-algorithm that: (1) recognizes the two major beams 

(therefore the four L-beams), and (2) verifies and counts the web members. The author classified 

this type of “Beam” into a truss category. As shown in Fig. 21, this sub-algorithm takes a single 

IFC object as input and counts the number of sub-elements (n). If n is between 42 and 72, then the 

sub-algorithm finds the two sub-elements with the largest two sizes (se1 and se2) and checks their 

shapes. If n is not between 42 and 72, then the object being processed is not identified as a truss. 

In the shape checking, the sub-algorithm tests if any shape associated with the two sub-elements 

is not in L-shape. If so, then the object being processed is not identified as a truss. Otherwise (all 

the four shapes associated with the two sub-elements are in L-shape), store all the remaining n-2 

sub-elements (i.e., web members) into a stack structure (s). The content in stack s is checked, if s 

is not empty, the sub-algorithm pops one sub-element from s and checks its position and number 

of faces. If the position is between the positions of se1 and se2, and at the same time if the number 

of faces is among 6, 8, 10, and 14, then this sub-element passes the test, and the sub-algorithm 

moves on to test the next sub-element from stack s. If all sub-elements from stack s pass the test, 

then the object being processed is identified as a truss.  

Similar to truss, the author developed sub-algorithms for each unique type of beams. 

Examples of such shapes of beams are shown in Fig. 22.  

 
Fig. 20. Visualization of a truss. 
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Fig. 21. Developed sub-algorithm for recognizing a truss. 
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Fig. 22. Other shapes of beams. 

5.2.6 Error analysis and training improvement: analyze errors in the classification results 
on the training set, further add/revise sub-algorithms and rules to improve the 
training performance. 

The results of object classification were evaluated in terms of recall and precision (Table 

9).  

 

Table 9. AEC object classification results of training data. 
Object 
Types 

Number of 
Actual 

Objects (a) 

Number of Objects 
Classified into the 

Category (b) 

Number of 
Correctly Classified 

Objects (c) 

Recall 
(c/a) 

Precisio
n (c/b) 

Beam 561 561 561 100% 100% 
Column 285 285 285 100% 100% 
Footing 249 249 249 100% 100% 

Slab 52 52 52 100% 100% 
Wall 183 183 183 100% 100% 
Total 1,330 1,330 1,330 100% 100% 

 

In all the categories of beam, column, footing, slab, and wall, 100% recall and precision 

were achieved.  

The classification results on detailed beam sub-types also achieved 100% recall and 

precision in all categories, as shown in Table 10. 
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Table 10. Beam classification results of training data. 

Beam Sub-
Type 

Number of 
Actual 

Objects (a) 

Number of Objects 
Classified into the 

Category (b) 

Number of 
Correctly Classified 

Objects (c) 

Recall 
(c/a) 

Precisio
n (c/b) 

Rectangula
r Beam 155 155 155 100% 100% 

C-Beam 70 70 70 100% 100% 
I-Beam 35 35 35 100% 100% 
L-Beam 1 1 1 100% 100% 
U-Beam 5 5 5 100% 100% 

Rectangula
r Beam 

with Cuts 
222 222 222 100% 100% 

Round 
Beam 11 11 11 100% 100% 

Truss 35 35 35 100% 100% 
Hollow  
Round 
Beam 

12 12 12 100% 100% 

Skewed  
I-Beam 12 12 12 100% 100% 

Total 558 558 558 100% 100% 

5.2.7 Testing: apply the developed classification algorithm to testing data for evaluation. 

To test the expected performance of the algorithm, the author tested the algorithm on 

testing data. The results are listed in Table 11 and Table 12. 

 

Table 11. AEC object classification results of testing data. 

Object 
Types 

Number of 
Actual 

Objects (a) 

Number of Objects 
Classified into the 

Category (b) 

Number of 
Correctly Classified 

Objects (c) 

Recall 
(c/a) 

Precisio
n (c/b) 

Beam 234 234 234 100% 100% 
Column 127 127 127 100% 100% 
Footing 105 105 105 100% 100% 

Slab 27 25 25 92.59% 100% 
Wall 82 79 79 96.34% 100% 
Total 575 570 570 99.13% 100% 
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Table 12. Beam classification results of testing data. 

Beam 
Types 

Number of 
Actual 

Objects (a) 

Number of Objects 
Classified into the 

Category (b) 

Number of 
Correctly Classified 

Objects (c) 

Recall 
(c/a) 

Precisio
n (c/b) 

Rectangula
r Beam 64 64 64 100% 100% 

C-Beam 29 29 29 100% 100% 
I-Beam 9 9 9 100% 100% 
L-Beam 0 0 0 100% 100% 
U-Beam 3 3 3 100% 100% 

Rectangula
r Beam 

with Cuts 
99 99 99 100% 100% 

Round 
Beam 5 5 5 100% 100% 

Truss 15 15 15 100% 100% 
Hollow  
Round 
Beam 

8 
 

8 
 

8 
 

100% 100% 
100% 100% 
100% 100% 

Skewed  
I-Beam 2 2 2 100% 100% 

Total 234 234 234 100% 100% 

5.3 Rule-Based Method Result Analysis and Discussion 

The developed algorithm worked well in most cases on the testing data with a higher than 

90% precision and recall. For the errors in testing data, the author inspected the instances and 

found that all the 5 error instances were due to new geometric representations in the testing data 

which were not covered in the training data. Among these 5 error instances, one was due to a new 

“SurfaceModel” geometric representation instance in the testing data, and 4 were due to new “Brep” 

geometric representation instances in the testing data.  

The experiment shows that our proposed method could be used to develop an algorithm 

(with sub-algorithms) that successfully captures the core features of object geometries and use 

them to distinguish AEC objects. The core features are consisted of: number of sub-components, 

number of faces, cross-sectional profile, extrusion direction, dimensional ratio, number of straight 

lines and curves, line connection angle, length, turn direction, and locations. Using these features, 

the algorithm can correctly classify beams, columns, footing, slabs, and walls, where the errors 

come from the lack of coverage of geometric patterns in the training data. For beams, the algorithm 

can identify the detailed beam types it was designed to identify with 100% precision and recall. 
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The algorithm can be further extended if more objects of different types and shapes are added to 

the training data. It can be continuously and accumulatively developed in this manner by adding 

more patterns and rules to cover more categories to ultimately lead to a comprehensive 

classification algorithm that identifies any type of AEC object in IFC automatically. Because of 

the composite nature of the proposed method, the patterns and rules to be developed for future 

categories will not affect the processing results of the already covered categories, therefore, the 

author’s proposed method can result in an accurate and reliable classification method. 

A comparison between the proposed method and the methods by Ma et al. (2018) and Sacks 

et al. (2017) was conducted (Table 13). While all methods work for BIM and could achieve 100% 

precision and recall, their computational complexities differ. The method by Ma et al. (2018) has 

a time complexity of O(kn), where k is the highest number of properties for a studied object, and 

n is the number of studied objects. The method by Sacks et al. (2017) has a time complexity of 

O(n) in theory, where n is the total number of objects to be sort. In practice, the complexity can be 

higher because an optimal subset of unique rules may not always be achieved. In contrast, the 

algorithm developed using the proposed method in this dissertation has constant time complexity 

O(1), because the algorithm solely analyzes the geometric properties of the instances without the 

need of comparing an object with all possible categories in an enumerative manner. In addition, 

the proposed method does not require the use of reference objects during the classification 

application stage, which was needed in the methods of Ma et al. (2018) and Sacks et al. (2017). 

 

Table 13. Time complexity of the proposed method in comparison with the state-
of-the-art methods. 

Methods Time Complexity 
Proposed Method O(1), constant time. 

Ma et al. 2018 O(kn), k is the highest number of properties for a studied object, and n is 
the number of studied objects 

Sacks et al. 2017 O(n) in theory. May be higher in practice. 
 

 

5.4 Machine Learning Method for AEC Object Classification  

For the task of BIM object classification, in this dissertation, the author explores the 

potential of combining invariant signature-based features and a machine learning approach. In 
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addition to the selection of machine learning algorithms, the selection of features also plays an 

important role in the performance of machine learning models. With a reported strong performance 

that was higher than 90%, the feature set used by Koo et al. (2019) seems sufficient. However, 

exploring a broader range of features could potentially further improve the classification 

performance, which is crucial in BIM-based automation applications.  

To gain more insights into the invariant signatures and to achieve high accuracy in AEC 

object classification, the author proposes to use invariant signatures and feed them into machine 

learning algorithms to classify AEC objects. By nature, invariant signatures are expected to suit 

well the task of AEC object classification because they capture the geometric essence. 

Given that the data points in the dataset are at the scale of thousands, the author proposes 

to use traditional machine learning algorithms instead of deep neural networks, where the latter 

usually require more data. For algorithm selection, different types of algorithms need to be tested 

in the training set, and the best-performing algorithm is selected to test on the testing dataset. 

5.5 Machine Learning Method Experiment 

In the experiment, the author randomly split the 1,900 objects into training dataset and 

testing dataset following a 7:3 ratio. As a result, 1,330 objects were used as training/development 

data, and 570 objects were used as testing data. During the development phase, only training data 

set was used. 

With the proposed invariant signatures, five types of machine learning algorithms were 

tested using Waikato Environment for Knowledge Analysis (Weka), which is an open machine 

learning platform developed by the University of Waikato (Witten et al. 2016). Ten-fold cross-

validation was used to avoid overfitting.  

5.5.1. Perceptron-based techniques: neural networks 

A single layer artificial neural network would have the same structure with the linear 

regression model, so the author chose to use neural networks with different layers (not limited to 

one layer) for perceptron-based techniques to differentiate from linear regression. After parameter 

tuning, the author selected the best performing configuration to compare with other machine 

learning algorithms. Table 14 shows the training results of different configurations. Fig. 23 shows 
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a visualization of the accuracies of these results. Table 15 shows the classification results details 

of the best configuration. 

 

Table 14. Neural network accuracy using different layers and different number of nodes. 
Layers\Nodes per 

Layer 10 20 30 35 40 45 50 

1 98.05% 98.20% 98.12% 97.89% 98.20% 98.02% 97.97% 
2 97.74% 98.05% 98.12% 98.05% 98.35% 98.57% 98.20% 
3 96.91% 97.97% 97.67% 97.52% 97.97% 97.29% 97.00% 

 

 
Fig. 23. Visualization of neural network training accuracies on different configurations. 

 
 

Table 15. Classification results of best configuration of neural networks. 

Category Number 
of objects 

Number of 
correctly 
classified 
objects 

Number of 
objects 

classified 
into 

Recall Precision F1 ROC 

Beam 549 548 551 99.8% 99.5% 99.6% 100.0% 
Column 286 284 286 99.3% 99.3% 99.3% 100.0% 
Footing 250 249 255 99.6% 97.6% 98.3% 99.8% 

Slab 53 45 49 84.9% 91.8% 88.2% 99.0% 
Wall 192 185 189 96.4% 97.9% 97.1% 99.6% 
Total 1,330 1,310 1,330 98.6% 98.6% 98.6% 99.9% 
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5.5.2. Logic-based: decision table 

A decision table is a graphical implementation of decision trees. The author used best-first 

search (BFS) and greedy stepwise search. For BFS, the author implemented forward, backward 

and bidirectional search methods (Table 16). Fig. 24 shows a visualization of the detailed training 

results. Table 17 shows the details of the classification results of the best configuration. 

 

Table 16. Decision table accuracy using different search direction and depth. 
Forward 

Depth Accuracy Backward 
Depth Accuracy Bidirectional 

Depth Accuracy 

1 97.44% 1 97.74% 1 97.44% 
2 97.44% 2 97.74% 2 97.44% 
3 97.44% 3 97.74% 3 97.59% 
4 97.44% 4 97.74% 4 97.59% 
5 97.44% 5 97.74% 5 97.59% 
10 97.44% 10 97.74% 10 97.59% 

 

 
Fig. 24. Visualization of training results of decision table on different configurations. 
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Table 17. Classification results of the best configuration of decision table. 

Category Number 
of objects 

Number 
of 

correctly 
classified 
objects 

Number 
of 

correctly 
classified 
objects 

Recall Precision F1 ROC 

Beam 549 544 550 99.1% 98.9% 99.0% 100.0% 
Column 286 277 280 96.9% 98.9% 98.2% 99.3% 
Footing 250 248 260 99.2% 95.4% 97.3% 99.7% 

Slab 53 47 48 88.7% 97.9% 93.1% 98.4% 
Wall 192 184 192 95.8% 95.8% 95.8% 99.3% 
Total 1,330 1,300 1,330 97.7% 97.7% 97.7% 99.6% 

5.5.3. Statistical machine learning: Bayesian network 

Naïve Bayes assumes that the features are independent from each other. However, some of 

the features may be highly correlated. To address that, the author implemented a Bayesian network 

instead. Bayesian network used probability graphical model, which was based on the conditional 

dependencies of the parent nodes on each node in the network. The classification results depend 

on the number of parent nodes implemented. As a result, the author used different numbers of 

parent nodes to train the best model. Table 18 shows the training results of different configurations, 

the visualization of which is shown in Fig. 25. Table 19 shows the details of the classification 

results of the best configuration. 

 

Table 18. Accuracy vs. number of parents of Bayesian network. 
No. of Parents Accuracy 

1 96.62% 
2 98.80% 
3 98.80% 
4 98.80% 
5 98.80% 

6 - 10 98.80% 
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Fig. 25. Visualization of training results of Bayesian network on different configurations. 

 
 

Table 19. Classification results of the best configuration of Bayesian network. 

Category 
Number 

of 
objects 

Number 
of 

correctly 
classified 
objects 

Number 
of 

objects 
classified 

into 

Recall Precision F1 ROC 

Beam 549 547 549 99.6% 99.6% 99.6% 100.0% 
Column 286 285 285 99.7% 100.0% 99.8% 100.0% 
Footing 250 247 241 98.8% 98.4% 98.6% 100.0% 

Slab 53 44 49 83.0% 89.8% 87.3% 99.8% 
Wall 192 181 186 99.5% 97.4% 98.5% 100.0% 
Total 1,330 1,300 1,330 98.8% 98.8% 98.8% 100.0% 

5.5.4. Support vector machines (SVM) 

SVM uses hyperplanes to separate data into different classes. The classification results 

depend on a regularization term, which is defined by a soft margin constant. The author 

experimented with different soft margin constants to find the best performance. Table 20 shows 

the accuracy of using different soft margin constants at different range scales. A visualization of 

the accuracy is shown in Fig. 26. Table 21 shows the details of the classification results of the best 

configuration. 
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Table 20. Accuracy on different regulation terms C for SVM. 
C Accuracy C Accuracy C Accuracy C Accuracy 
1 97.44% 9 98.50% 10 98.57% 14.2 98.65% 
5 97.97% 10 98.57% 14 98.65% 14.25 98.72% 
10 98.57% 20 98.72% 15 98.72% 14.5 98.72% 
50 98.57% 30 98.57% 16 98.72% 14.75 98.72% 
100 98.57% 40 98.57% 17 98.65% 15 98.72% 
1000 98.20% 50 98.57% 18 98.65% 15.25 98.72% 
10000 98.05% 60 98.50% 19 98.65% 15.5 98.72% 

  80 98.50% 20 98.72% 15.75 98.72% 
  100 98.57% 25 98.65% 16 98.72% 
  105 98.50   16.25 98.65% 

 

 
Fig. 26. Visualization of training results of SVM using different configurations. 
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Table 21. Classification results of the best configuration of SVM. 

Category 
Number 

of 
objects 

Number of 
correctly 
classified 
objects 

Number of 
objects 

classified 
into 

Recall Precision F1 ROC 

Beam 549 547 551 99.6% 99.3% 99.5% 99.6% 
Column 286 284 286 99.3% 99.3% 99.3% 99.8% 
Footing 250 250 256 100.0% 97.7% 98.8% 99.7% 

Slab 53 44 46 83.0% 95.7% 88.9% 97.5% 
Wall 192 186 191 96.9% 97.4% 97.1% 99.0% 
Total 1,330 1,300 1,330 98.6% 98.6% 98.6% 99.5% 

5.5.5. Random forest 

Random forest uses a collection of decision trees and takes the statistical majority of the 

results of each tree. Search depth will determine the classification results. A low depth value may 

lead to underfitting, whereas a high depth value may lead to overfitting. Table 22 shows the 

accuracy of different configurations, a visualization of which is shown in Fig. 27, where the top 

one shows the trends of the accuracy, and the bottom one shows the highest value was achieved at 

7 number of parents. Table 23 shows the details of the classification results of the best 

configuration.  

 

Table 22. Accuracy of random forest on different number of parents. 
Parents Accuracy 

1 60.08% 
2 88.72% 
3 94.59% 
4 97.97% 
5 99.17% 
6 99.25% 
7 99.40% 
8 99.24% 
9 99.17% 
10 99.17% 
11 99.17% 
12 99.25% 
13 99.25% 
14 99.25% 
15 99.25% 
20 99.25% 
50 99.25% 

Unlimited 99.25% 
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Fig. 27. Visualization of training results of random forest in different configurations. 

 
 

Table 23. Classification results of the best configuration of random forest. 

Category 
Number 

of 
objects 

Number of 
correctly 
classified 
objects 

Number of 
objects 

classified 
into 

Recall Precision F1 ROC 

Beam 549 549 551 100% 99.6% 99.8 %  100% 
Column 286 285 285 99.7% 100.0% 99.8% 100.0% 
Footing 250 250 254 100% 98.4% 99.2% 100.0% 

Slab 53 47 48 88.7% 97.9% 93.1% 99.8% 
Wall 192 191 191 99.5% 99.5% 99.5% 100.0% 
Total 1,330 1,322 1,330 99.4% 99.4% 99.4% 99.9% 

5.6 Machine Learning Method Results & Analysis 

5.6.1 Result of machine learning method 

Random forest achieved the highest F1-measure among all the algorithms in the training 

phase, so the author selected random forest as the best-performing algorithm to test on the testing 

dataset. The overall F1-measure was 99.6% as a result. This was 0.20% higher than the training 

accuracy. This shows the algorithm did not overfit and perform well in the testing dataset. Table 

24 shows the detailed testing results.  
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Table 24. Testing performance of the selected machine learning algorithm - the random forest. 

Category 
Number 

of 
objects 

Number of 
correctly 
classified 
objects 

Number 
of objects 
classified 

into 

Recall Precision F1 ROC 

Beam 241 241 241 100.0% 100.0% 100.0% 100.0% 
Column 126 126 126 100.0% 100.0% 100.0% 100.0% 
Footing 104 104 105 100.0% 99.0% 99.5% 100.0% 

Slab 26 24 24 92.3% 100.0% 96.0% 99.1% 
Wall 73 73 74 100.0% 98.6% 99.3% 100.0% 
Total 570 568 570 99.6% 99.6% 99.6% 99.9% 

5.6.2 Error analysis 

For the best performing machine learning algorithm, the random forest, the errors were 

mainly due to the cutoff values of decision trees. The invariant signatures were verified to be 

correct, so the errors occurred because of the limitations in selected machine learning algorithm. 

A level of depth 7 achieved the best performance in the cross-validated data. More levels might 

lead to overfitting, which would reduce the training performance. The errors included 2 slabs 

misclassified as 1 footing and 1 wall, respectively. Fig. 28 shows the trained classifier. The tree on 

the left shows a branch that successfully classified all instances, which are shown in the bracket in 

the leaf nodes (5 columns and 15 beams were classified). The tree on the right shows a branch that 

only successfully classified a part of them: among the 10 objects classified as columns, 8 of them 

were correct and 2 of them were incorrect, while among the 18 objects classified as beams, 15 of 

them were correct and 3 of them were incorrect. Although each tree may make wrong predictions, 

e.g., in one of the branches, among 157 classified columns, 47 of them were wrong, after the voting 

process, the accuracy increased significantly. For example, Table 25 shows the two incorrectly 

classified instances. The depth of the voting tree ranged from 4 (mRatio < 0.39; mLow < -3.901; 

mRatio < 0.37; Z3 >= 0.5: Footing (238/0)) to 7 (mLow < -7.151; ExtrudZ >= 0.5; Width >= 

0.2375; X1 >= 0.9; O1 < -0.21903; Width >= 0.3178; I_R < 0.0076: Column (3/1)). 
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Fig. 28. Visualization of the best-performing machine learning model (random forest). 

 
 

Table 25. Error analysis of the best machine learning algorithm - the random forest. 
Instance Real type Classified type Comment/ analysis 
IfcSlab1 Slab Footing Voting trees: 5 footings, 3 slabs, 1 column, 1 

wall 
IfcSlab3 Slab Wall Voting trees: 5 walls, 2 footings, 2 slabs, 1 

column 

5.6.3 Feature set (invariant signatures) analysis 

The feature set proposed in Section 45.1 led to a good performance (i.e., 99.6% F1 score 

in testing data) but may contain extra information that would be needed only for subcategories. 

After feature selection, the author proposed a 6-feature set which achieved 98.65% F1 score. The 

author analyzed the features as follows. The Cir_H feature describes the height of a cylinder shape. 

A zero value for this feature means a non-cylinder shape. It mainly helps distinguishing footings 

and columns from other object types. The Width feature describes the width of any shape. It is one 
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of the general features that help distinguish many different objects. The O3 feature describes the 

elevation of any object. The elevation is one of the most important pieces of information based on 

locational features. The Zmin feature describes the lowest point of faced boundary (Brep) 

representation, which not only tells whether the object used that representation or not, but also 

provides information about the size. The ExtrudZ feature describes the extruded direction of a 

swept solid representation, which not only tells whether the object used that representation or not, 

but also provides information about the orientation direction of the object, which is important to 

differentiate beams from other types. 

5.6.4 Comparison with the state-of-the-art algorithm 

The BIM object classification algorithm developed by Ma et al. (2018) encoded experts’ 

insights as rules. A direct comparison would be difficult as the objects used by Ma et al. (2018) 

and the author were of different types. To compare with Koo et al. (2019), the author reproduced 

the method by Koo et al. (2019) based on the author’s understanding of the feature values used by 

Koo et al. (2019). Because the author could not get access to the original data used by Koo et al. 

(2019), the author used their own dataset while extracting the features that Koo et al. (2019) 

proposed. After model training and parameter tuning, the author obtained 94.86% (94.12% on 

testing) accuracy using SVM with C=200000, which is in the same range as the experiment of Koo 

et al. (2019). The author also tested random forest machine learning algorithm using the same set 

of features and obtained 98.87% (99.12% on testing) accuracy (Table 26.). 

 

Table 26. Performance comparison with the state of the art. 
 Koo et al.'s Features Author’s Features (Invariant Signatures) 

SVM 94.86% (94.12%) 98.65% (99.30%) 
Random Forest 98.87% (99.12%) 99.40% (99.65%) 

 

The random forest machine learning algorithm showed high performance in both training 

and testing data and is expected to be robust in similar types of BIM objects.  
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5.7 Rule-Based vs Machine Learning  

Both rule-based method and machine learning method can be applied in solving computing 

problems (Chtourou and Haouari 2008) and in BIM applications (Bloch and Sacks 2018, Han et 

al. 2017). For this application of BIM-based AEC object classification, the comparison of the rule-

based method and machine learning method is shown in Table 27.  

The rule-based method achieved 100% precision and 99.1% recall, while the machine 

learning method achieved both 99.6% precision and 99.6% recall. As both the recall and precision 

were high enough, there was no need to balance the precision and recall. While both results were 

high, the rule-based method had a higher precision because it was less likely to make mistakes for 

any seen pattern. The machine learning method had a higher recall because it can automatically 

infer types for unseen patterns based on the features. 

For efficiency, both methods were very efficient with O(1) complexity, i.e., a constant 

running time. As a result, both methods could generate classification results in a few seconds, 

which is very fast. 

However, the training time for the rule-based method was significantly longer than the 

machine learning method, because of the human effort needed in recognizing and encoding 

patterns.  

 

Table 27. Performance comparison for rule-based method and machine learning method. 
 Rule-Based Method Machine Learning Method 

Precision 100% 99.6% 
Recall 99.1% 99.6% 

Training Time Days Minutes 
Efficiency O(1) O(1) 

Running Time Seconds Seconds 
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CHAPTER 6 – APPLICATIONS OF INVARIANT SIGNATURE-BASED 
OBJECT CLASSIFICATION  

Significant portions of this chapter can be found in:  

“Invariant signatures of architecture, engineering, and construction objects to support BIM 

interoperability between architectural design and structural analysis.” in Journal of Construction 

Engineering and Management, 147(1). DOI: 10.1061/(ASCE)CO.1943-7862.0001943. 

“Constructing invariant signatures for AEC objects to support BIM-based analysis 

automation through object classification.” in Journal of Computing in Civil Engineering, 

submitted. 

 

With the theoretical concept and implementation of invariant signatures, it is essential to 

test the robustness of the invariant signatures in solving practical BIM problems. In the previous 

chapter, BIM object classification was investigated. BIM object classification serves as the 

foundation of other BIM applications. In this chapter, based on the accurate BIM object 

classification, other BIM tasks, including QTO, structural analysis, and Uniformat classification 

are tested with the adaptation of invariant signatures and BIM object classification. 

6.1 Application in QTO 

Object classification is needed for a lot of common tasks in BIM. Classification accuracy 

is the premise for any subsequence applications. For example, QTO is an important task in BIM 

applications (Alshabab et al. 2017, Choi et al. 2015, Liu et al. 2016, Mandava and Zhang 2016). 

for QTO of wall volume, it can generate costly error if any wall object is mistakenly classified as 

a slab. Based on accurate QTO results, in turn, cost estimation is another important task in BIM, 

which therefore also relies on the accurate classification result.  

Based on the automation enabled by object classification, QTO jobs can be implemented 

with high precision and efficiency. To demonstrate the QTO potential and verify the robustness of 

automated object classification based on invariant signatures and machine learning, the author 

tested the invariant signature-based objection classification on QTO of two types of units from a 

student apartment. The selected models in Fig. 29 show these two types of student apartment units 
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(2-bedroom unit and 4-bedroom unit) extracted from a student apartment complex (Fig. 30). As 

shown in Fig. 30, the units comprise of wall components and floor components. For this 

experiment, the author randomly selected 30 wall objects from the 4-bedroom unit and 30 wall 

objects from the 2-bedroom unit. The results obtained using the algorithms were compared with 

results of the state-of-the-art method using commercial software. The comparison of the results 

showed consistent values for the length, width, height, and volume of the selected objects.    

 
Fig. 29. Visualization of the 2-bedroom and 4-bedroom units used for quantity takeoff. 

 

 
Fig. 30. Visualization of the student apartment complex used for quantity takeoff. 

 
Table 28 shows a few sample QTO results. Table 29 shows the maximum difference, 

average difference, and more statistics of the QTO results.  

 

Table 28. Example quantity takeoff results. 

 
Model Volume using 

invariant 
signatures 

Volume using 
commercial software 

results 

Difference 

Wall 1 Two-bedroom unit  149.06 ft3 149.06 ft3 0.0% 
Wall 2 Two-bedroom unit 17.42 ft3 14.47 ft3 0.3% 
Wall 1 Four-bedroom unit 348.03 ft3 348.03 ft3 0.0% 
Wall 2 Four-bedroom unit 7.48 ft3 7.48 ft3 0.0% 

 

Table 29. Quantity takeoff statistics. 
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Quantity Takeoff Statistic Value 
Largest difference 4.8% 
Smallest difference 0.0% 

Average of differences 0.3% 
Median  0.0% 

Average time of proposed method 0.079 second 
Average time of commercial software 4.23 second 

Time saved 98.13% 
Number of objects 60 

 

On average, the difference of the QTO results between using random forest-based object 

classification and using traditional approach is 0.3%, within the desirable threshold 1%. In 

addition, the time difference for QTO tasks was also significant. On average, each object saved 

98.13% time using our proposed method. The time for QTO using the traditional approach was 

mainly consumed in the loading, project set-up, and element selection. This shows that the 

proposed invariant signature-based object classifications can produce correct QTO results that are 

comparable with traditional approach but with much less time, which illustrates the robustness of 

the invariant signature-based object classification in QTO application. 

6.2 Application in Structural Analysis 

The author used a data-driven approach to develop processing sub-algorithms to check and 

extract the geometric and material properties that include all distinguishing geometric and material 

information of an AEC object. Geometric properties were covered by the invariant signatures; 

Material properties were also used in generating material related outputs (Wu et al. 2020), but the 

focus of the dissertation is on the geometric parts. Table 30 shows all the needed properties related 

to the invariant signatures. 

 

Table 30. Selected properties of invariant signatures. 
Signature Name Signature Type  Value Type  Feature Description 

X-dim Shape Numerical X dimension of bounding box 
Y-dim Shape Numerical Y dimension of bounding box 

Z-dim (Depth) Shape Numerical Extruded Depth 
Extruded_direction Shape 3D Vector Extruded directions (Z-dim) 

Origin Locational 3D Vector The origin of the placement 
x-axis Locational 3D Vector Vector of x-axis 
z-axis Locational 3D Vector Vector of z-axis 
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6.2.1 Iterative algorithm development overview 

The author used an interative approach to develop algorithms to process an IFC model 

input. The workflow is shown in Fig. 31. The iterative algorithm development starts with the 

development of the sub-algorithms for extracting invariant signatures from all training models. 

Then the extracted features are verified by comparing to the original models. The extraction sub-

algorithms are modified until all information are correctly extracted and verified. After verifying 

all the features of invariant signatures, a validating process is conducted to check if any required 

information is missing. In this validating process, all missing information based on geometric and 

material signatures are solicited until all required information are acquaired. After obtaining all 

the required inputs, the information mapping sub-algorithms are iteratively developed until they 

can successfully generate the correct results, which is based on the comparison with the predefined 

gold standards. In the end, all the sub-algorithms are compiled together into one processing 

algorithm.   
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Fig. 31. Iterative algorithm development. 

6.2.2 Develop sub-algorithms for extracting invariant signatures & verify extracted 
features for invariant signatures 

Started with the sub-algorithm development for extracting invariant signatures, an iterative 

development approach was followed until the extracted information are verified to be correct. For 

geometric information, both shape and locational information were extracted. All shapes in the 

training data were represented by either IfcExtrudedAreaSolid or IfcFacetedBrep. For 
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IfcExtrudedAreaSolid, objects were represented by extending a 2D plane. Regular objects can be 

represented using built-in 2D rectangular shapes. In this case, X-dim and Y-dim can be extracted 

easily because the bounding box of a rectangular cuboid is the cuboid itself. Z-dim (depth) and 

extruded_direction were extracted directly from the IfcExtrudedAreaSolid. Although all shapes in 

the data were represented by rectangular cuboid shape, the actual implementation of the object 

instances may not be regular because of the overlapping of objects, where the boundary 

representation (IfcFacetedBrep) was used. The dimensions were calculated by taking the 

differences between the maximum and minimum values in the X, Y, and Z dimensions. 

Extruded_direction was set vertical, i.e., using a vector of <0, 0, 1>. 

For locational information, by observing the data and documentation, the author developed 

the sub-algorithm to calculate a resulting absolute placement from all relative placement 

(IfcAxis2Placement3D) instances associated with a given object (Fig. 32). The placement (both 

relative and absolute) of an object is represented by two orientation vectors (x-vector and z-vector) 

and a placement origin (point o). A vector or a point is represented with three values x, y, z, 

representing three dimensions. In IFC the placement of an object is usually defined in reference to 

the placement of another object, which forms relative placement. An absolute placement (i.e., in 

reference to the world coordinate) may represent the same information as multiple layers of relative 

placements. Using the algorithm in Fig. 32 the author was able to calculate an absolute placement 

a [(i.e., represented as new origin and axes (x-axis and z-axis)] for a series of multiple layers of 

relative placements by iteratively performing the merging until all placements in the list merge 

into one. 
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Fig. 32. Calculating an absolute placement that combine all relative placements. 

6.2.3 Validate geometric information 

After feature verification, the author validated the extracted information to check if 

additional input were needed.  

For geometric information, all needed feature values were successfully extracted. So there 

were no need for additional information beyond those extracted from the IFC model file.  

6.2.4 Develop geometric information mapping sub-algorithms 

After validating the required information in invariant signatures, the author developed 

information mapping sub-algorithms that convert the invariant signatures to corresponding 

STAAD (Bentley Company 2019) input files, i.e., a nonproprietary (textual data) structural 
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analysis data format, for each model. Fig. 33 illustrates the developed sub-algorithm for geometric 

information mapping. 

   
Fig. 33. Geometric information mapping sub-algorithm. 

 
 

The generation of the STAAD inputs started from processing all the columns. Based on 

the required format of the STADD input file that a column object is represented by two points (Fig. 

34a), which was defined as the centers of the top and bottom surfaces as the two ends of a straight-

line segment. The length (YD) and width (ZD) information is generated by X-dim and Y-dim from 

the invariant signatures.  
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Fig. 34. Column, beam, slab, and wall examples. 

 
To determine the coordinates of the two end points of a column (e.g., point A and B in Fig. 

34a) from invariant signatures, the author observed that B is the origin, and A is calculated using 

Equation (1). 

(𝑥, 𝑦, 𝑧) = "𝜎$ , 𝜎% , 𝜎&# + "𝑑$ , 𝑑% , 𝑑&# ∗ 𝑑   (1) 

Where (x, y, z) is the coordinate of the end point (e.g., point A in Fig. 34a), (ox,oy,oz) is the 

coordinate of the origin (e.g., point B in Figure 34a), (dx,dy,dz) is the normalized extruded direction, 

and d is the extruded depth. The length and width are generated from invariant signatures to be X-

dim and Y-dim or Y-dim and X-dim, based on the axis property. All end points of the columns form 

a list L that stores all the necessary points for defining all the objects. 

For processing the beam instances, coordinates of the two end points were calculated from 

invariant signatures. Instead of directly using the coordinates of the two end points of the beam, 
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the coordinate of the closest point of the connecting columns were used. Fig. 34b shows an 

example that instead of using points E and F, points C and D were used to determine the 

coordinates of the beam’s two end points, which were the end points of the two connecting 

columns. The coordination of the two end points (E and F) was first calculated using Equation (1). 

Then the closest point of the connecting column is iteratively sought among all the column end 

points list L until the shortest Euclidian distance to point E or F is obtained. Similar to the columns 

dimensional definition, the length and width of a beam was generated based on X-dim, and Y-dim 

from invariant signatures. For the building model with multiple bays, a beam spanning two bays 

shall be represented by two beam members for structural analysis purpose (Fig. 34c). This scenario 

was captured by checking if the line of the two end points of such beam goes through another point 

in the L list. If another point P is in the line of AB, then this beam shall be split into two beams as 

AP and PB (Fig. 34c).  

For mapping a slab information, the STAAD input file requires four end points and a 

numeric value for its thickness. Fig. 34d shows an example of a slab. The coordinates of the end 

points were calculated using Equation (2), where origin.x, origin.y, and origin.z represent the three 

coordinate values of the origin. Similar to beams, slabs may be divided into multiple slabs if the 

edge of a slab pass through a point in the L list. 

Four	points = (𝑜𝑟𝑖𝑔𝑖𝑛. 𝑥 ± '_)*+
#

, 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑦 ± ,_)*+
#

, 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑧)           (2) 

Mapping wall information was more straightforward compared to slabs, as a wall does not 

need to be divided into multiple walls in the multi-bay building model. The coordinates of the four 

end points of a wall (Fig. 34e) are calculated by Equations (3) and (4). 

Point	1	and	2 = (𝑜𝑟𝑖𝑔𝑖𝑛. 𝑥 ± 𝑚𝑎𝑥(𝑋_𝑑𝑖𝑚, 	𝑌_𝑑𝑖𝑚), 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑦, 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑧) (3) 

Point	3	and	4 = (𝑜𝑟𝑖𝑔𝑖𝑛. 𝑥 ± 𝑚𝑎𝑥(𝑋_𝑑𝑖𝑚, 𝑌_𝑑𝑖𝑚) , 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑦, 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑧 + 𝑒𝑥𝑡𝑟𝑢𝑑𝑒𝑑_𝑑𝑒𝑝𝑡ℎ)  

          (4) 

Based on the invariant signatures, the author was able to identify the four points used to 

define a slab/wall. Then the coordinates of the columns closest to these four points were utilized 

to map the information of the end points of the slab/wall. The thickness was subsequently 

determined as the Z-dim for a slab object, and the minimum of X-dim or Y-dim for a wall object.  
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6.2.5 Check geometric outputs with gold standards 

To check the processing outputs of all training models, the outputs were compared to the 

gold standard (i.e., the STAAD input files of the models). Sample STAAD inputs for the one bay 

beam-column frame developed based on invariant signatures and based on the gold standard are 

shown in Fig. 35a and Fig. 35b, respectively. Both input files gave exactly the same structural 

model in element connectivity, cross-sectional dimensions and material properties. To obtain a 

quantitative measure of the algorithm’s performance, the author implemented metrics in describing 

the accuracy of each section of header, joint coordinates, member (column, beam, slab, wall) 

incidences, member property, material properties, and overall (Table 31). In the comparison of the 

joint coordinates with the gold standard, the order of the coordinates does not matter. However, 

they must contain the same set of coordinates. For member incidences, the comparison focused on 

if every object was represented with the correct ending points (incidences). Even though the data 

from the gold standard and from the algorithm output may appear to be different, they were 

considered to match if the difference was solely due to different sequences of the same incidences. 

In effect, the incidences define the joints connectivity based on which the length of beams, height 

of columns, length and width of slabs, and length and height of walls can be checked by taking the 

distances between the corresponding points. For beams and columns, cross-sectional dimensions 

were checked by YD, and ZD of MEMBER PROPERTY AMERICAN (line 24 in Fig. 35a and 

line 30 in Fig. 35b). For slabs and walls, the thickness was checked. The data evaluation results 

using the proposed metrics are summarized in Table 31, in which both the geometric and material 

information were generated correctly by the developed algorithm, with a 100% accuracy.  
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Fig. 35. STAAD input: a. Gold standard. b. Results of developed algorithm. 

 

Table 31. Algorithm evaluation results on training data (correct number of instances/total 
number of instances). 

Section Subsection 1  2 3 4 5 
Header  6/6 6/6 6/6 6/6 6/6 

Joint Coordinates  8/8 8/8 8/8 8/8 12/12 
Member Incidences Column 4/4 4/4 4/4 4/4 12/12 

Beam 4/4 4/4 4/4 4/4 12/12 
Slab NA 1/1 1/1 1/1 2/2 
Wall NA 2/2 2/2 2/2 1/1 

Member Property Column Dimensions 8/8 8/8 8/8 8/8 6/6 
Beam Dimensions 8/8 8/8 8/8 8/8 6/6 

Slab Thickness NA 1/1 1/1 1/1 2/2 
Wall Thickness NA 2/2 2/2 2/2 1/1 

Material Information  8/8 8/8 8/8 8/8 8/8 
Total  46/46 52/52 52/52 52/52 78/78 

 

 

The developed algorithm was also designed to overcome the overlapping issues. The tested 

scenarios are: i. beams sitting on columns, ii. columns passing through beams, iii. walls cutting 

beams and columns, iv. slab and walls at the face of beams and columns, v. continuous slab that 



 

103 

requires virtual cut, and vi, continuous beam that requires virtual cut. According to the results in 

Table 31, the developed algorithm successfully solved the overlapping issue in the training models. 

6.2.6 Compile sub-algorithms together.  

After checking the correctness, all the developed sub-algorithms were combined into one 

algorithm that can take an IFC file as an input and output a valid STAAD file to be imported by 

the software for structural analysis. 

6.2.7 Evaluation 

The algorithm developed based on the training data was then tested on the four models in 

the testing dataset which had different dimensions of structural configurations and members with 

the training models as explained previously. Similar to the training models, results of all the testing 

models using the developed algorithm were compared to the gold standard STAAD input files and 

evaluated in accuracy. According to the evaluation results (Table 32), a 100% accuracy was 

achieved demonstrating that invariant signature was capable of supporting the extraction of 

information required for conducting structural analysis including geometry, element connectivity, 

and cross-sectional dimensions from an IFC CV 2.0 model file created by the architectural 

modeling software.  

 

Table 32. Algorithm evaluation results on testing data (correct number of instances/total number 
of instances). 

Section Subsection 1  2 3 4 
Header  6/6 6/6 6/6 6/6 

Joint Coordinates  8/8 8/8 8/8 8/8 
Member Incidences Column 4/4 4/4 6/6 8/8 

Beam 4/4 4/4 6/6 8/8 
Slab 1/1 1/1 2/2 3/3 
Wall 2/2 2/2 1/1 2/2 

Member Property Column Dimensions 8/8 8/8 12/12 16/16 
Beam Dimensions 8/8 8/8 12/12 16/16 

Slab Thickness 1/1 1/1 2/2 3/3 
Wall Thickness 2/2 2/2 1/1 2/2 

Material Information  8/8 8/8 8/8 8/8 
Total  52/52 52/52 78/78 88/88 
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In addition to the four simple testing models, the author also tested the algorithm on a 

building model of a real project, which is a two-story penthouse commercial building (Fig. 36 and 

Fig. 37). The building, for a medium size grocery store, is 31.70 meters long and 21.60 meters 

wide, Due to the topography limitation of the building site, the first story is a semi-basement used 

as storage space and the second story provides the main shopping area.  

The results showed a 94.9% precision and 98.4% recall (Table 33). The author conducted 

an error analysis on the incorrect instances. The causes of the errors were found to include the 

following: a). There were 4 beams that use surface model (similar to Brep but different in the IFC 

representations) in the real model, where there were no such representations in the training data. 

So, the invariant signatures were not correctly generated. This was fixed by adding the processing 

of such new representations. b). The algorithm generated 5 repeated beams existing in the model, 

which was caused by erroneous exporting into IFC. However, this was detected and fixed by 

checking if the beam index already existed. c). Two slabs were not generated correctly because of 

their stair openings (Fig. 38), i.e., the algorithm generated the larger size of slabs because the 

algorithm was not trained to process openings based on training data. However, this can be 

addressed by finding the corresponding slab and cutting the slab with the opening to find the 

correct dimension. d). Column dimensions were not correct for the eight cylindrical columns. This 

can be fixed with the addition of radius on the dimensions. e). Four beams and five slabs were not 

successfully processed as they exceeded the main frame boundaries (Fig. 39). This error occurred 

because there were no similar situations in the training data. To fix this, the algorithms can be 

extended to include the addition of the objects that exceed the boundaries. For example, the 

algorithm can check if the ending point exceeds the boundary of the columns. If so, new end points 

will be added, and the same algorithm will be able to generate the desired results based on the new 

points. In summary, all errors were attributed to unseen patterns in the training data. As more 

training data is used, the algorithm can be accumulatively developed into a robust one that can 

successfully handle all intricate details of architectural models.  
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Table 33. Algorithm evaluation results on a real project (number of instances). 

Section Subsection Generated  Correctly 
Generated  Total Precision Recall 

Header  6 6 6 100% 100% 
Joint Coordinates  64 64 64 100% 100% 

Member Incidences Column 44 44 44 100% 100% 
Beam 65 60 68 88.2% 92.3% 
Slab 25 23 30 83.3% 92.0% 
Wall NA NA NA NA NA 

Member Property Column Dimensions 72 72 80 90% 100% 
Beam Dimensions 128 128 128 100% 100% 

Slab Thickness 25 25 25 100% 100% 
Wall Thickness NA NA NA NA NA 

Material 
Information  8 8/8 8/8 100% 100% 

Total  437 430 453 94.9% 98.4% 
 

 

 

 
Fig. 36. Architectural view of a real project for testing. 
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Fig. 37. Visualization of the structural view of the real project for testing. 

 

 
Fig. 38. The incorrectly generated slabs because of the stair openings. 

 

 
Fig. 39. An example of slabs that goes beyond the column boundary. 
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6.3 Application in Uniformat 

Another potential use of invariant signatures for AEC objects is to support Uniformat 

classification. The main difference between the previous object types and the types in Uniformat 

is that Uniformat distinguishes exterior and interior elements, because the elements are 

characterized by their function with consistent economic evaluation of existing and new projects 

(Uniformat 2010), which is different from other classification methods. For example, Uniformat 

differentiates interior and exterior doors, while both of them should be represented using IfcDoor 

entities. 

To illustrate the use of invariant signatures in Uniformat object classification, the author 

developed a proof-of-concept system to classify the AEC objects into interior and exterior doors. 

The algorithm was based on the egress identification algorithm developed in Chapter 7, i.e., 

egresses are exterior doors, and the other doors are interior doors. The results are shown in Table 

34. In total, the developed algorithms were able to produce 98.7% recall and precision in 

recognizing interior and exterior doors. 

 

Table 34. Performance of the developed algorithms for classifying interior and exterior doors. 

Category Number 
of Objects 

Correctly 
Classified  

Classified 
As Recall Precision 

Interior Door 331 331 336 100.0% 98.5% 
Exterior Door 55 50 50 90.9% 100.0% 

Total 386 381 386 98.7% 98.7% 
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CHAPTER 7 – AUTOMATED BUILDING CODE COMPLIANCE 
CHECKING BASED ON INVARIANT SIGNATURES 

A version of some parts of this chapter has been previously published as “Model validation 

using invariant signatures and logic-based reasoning for automated building code compliance 

checking.” in Journal of Computing in Civil Engineering, submitted. 

 

 

7.1 Model Validation Introduction 

Fully ACC (Nguyen and Kim 2021, Yang and Xu 2004) requires accurate information 

extraction from both BIMs and building code chapters, and equally (if not more) importantly, a 

precise matching between the two. While research on information extraction has been extensively 

conducted for ACC, there is a lack of investigation of automated and practical information 

mapping between the extracted information, from BIMs to building code requirements. To address 

this gap, the author proposes a new method for BIMs model validation, to validate an input IFC 

model with regard to building code concepts. This validation method was supported by creating 

invariant signatures of AEC objects that capture the geometric nature of the objects. Target 

concepts from building codes are classified into four categories: (1) explicit concepts, (2) inferable 

concepts, (3) user-assisted concepts, and (4) system defaults. Identification algorithms are 

developed for all four categories based on the invariant signatures of AEC objects. An experiment 

was conducted to test the proposed method on validating five real commercial project models with 

selected concepts from the International Building Code 2015. Comparing to a manually developed 

gold standard, 99.7% precision and 99.5% recall were achieved. This demonstrates that the 

proposed method is promising in supporting information matching between BIMs and building 

code concepts for ACC purpose. 

7.2 Proposed Method for ACC-Oriented BIMs Model Validation 

The author proposes an iterative method to extend the information from BIMs to better 

support information mapping to building codes, for use in ACC systems. Different from previous 
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approaches that directly map the building code concepts to IFC entities, which still do not provide 

enough information in ACC, or approaches that extend the IFC schema, which requires deep 

knowledge and understanding of IFC, the author proposes to use invariant signatures of AEC 

objects (Wu et al. 2021) as intermediate results to connect building code concepts and IFC entities, 

and extend the information from IFC models to infer more concepts based on the invariant 

signatures, to better map the information in IFC-based BIMs to building code concepts (Fig. 40).  

 
Fig. 40. Idea illustration of the proposed method. 

 
 

The author proposes an iterative approach to develop an intermediate information set with 

extended information added to BIMs, to provide information mapping between BIMs and building 

code concepts, which in turn better supports ACC compared to the state of the art (Fig. 41). In this 

proposed method, there are four main steps: (1) construct invariant signatures for AEC objects 

from IFC models, (2) identify and classify target concepts from logic rules that represent regulatory 

information from building codes, (3) develop algorithms for extending model information to match 

target concepts, and (4) generate logic facts to store the extended information. The algorithms are 

developed following a data-driven approach so that the algorithms can be continuously developed 

to cover more concepts and model representations. New rules and algorithms can be added under 

the condition that they do not interfere with previous results, to ensure compatibility and robustness. 

With more training data, the system will be more robust. It is not the goal in this chapter, however, 

to build the ultimate all-in-one set of algorithms that cover each and every possible concept in 

building codes. Instead, the goal in this chapter is to introduce the method and framework to enable 

that. 
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Fig. 41. Workflow of the proposed method. 

7.2.1 Construct invariant signatures for AEC objects from IFC models 

To allow the information matching in later steps, this step extracts information from the 

BIMs. During this processing of the BIMs data, invariant signatures (Wu et al. 2021) are used to 

convert the IFC models into value entries of a set of pre-defined features, a data format that is 

easier to process and use. Invariant signatures capture the geometric nature of the IFC model and 

can fully represent the AEC objects in the IFC models. In this proposed method, invariant 

signatures are extracted from BIMs using the IFC2x3 standard, which is commonly used in 
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commercial projects. While invariant signatures are platform neutral and independent from 

specific data schema, during their use, however, they still need to be extracted from practical 

models that follow certain data standards. For example, consistent invariant signatures must be 

generated from different representations of the same shape, e.g., boundary representations (Brep) 

and extruded solid representations, two of the most commonly used 3D representations in IFC. In 

addition to these commonly used representations, a data-driven approach is used to develop 

algorithms for extracting information from the models that follow uncommon representations. In 

summary, the state-of-the-art invariant signatures extraction algorithms by Wu and Zhang (2019a, 

b) and Wu et al. (2021) are extended to allow full support for information extraction and 

information exchange for BIMs model validation. 

Experimental testing requires different BIMs as training data and testing data. The 

performance in terms of precision and recall is reported using element-level assessment, and the 

results are manually verified. During the training phase, the results shall achieve 100% in 

information extraction from the training models, and then the trained algorithms are tested on the 

testing models to assess their performance. 

7.2.2 Identify and classify target concepts 

The target concepts are extracted from logic rules that are in turn generated from building 

codes (regulations) using the state-of-the-art regulatory information extraction and transformation 

algorithms (Zhang and El-Gohary 2015; 2016a). These algorithms can generate logic rules based 

on the building codes fully automatically. As the state-of-the-art algorithms are not 100% accurate 

yet, the generated logic rules are further manually verified and modified as necessary, to form gold 

standards. This is still much more efficient comparing to generating the logic rules solely manually 

from scratch. In the gold standard logic rules generated from the building codes, the logic clause 

in the form of “entity(Entity)” (where the predicate name has the same string with the argument 

but in lowercase) indicates a declaration of a concept instance. An observation of the building 

codes and those logic clauses showed that these predicates contain all the concepts in the 

corresponding sections of building codes, which are the target concepts to be mapped. On the other 

hand, because almost all nouns are generated in this form of instance declaration, the generated 

logic rules contain multiple types of building code concepts. For example, building, door opening, 

group h, and section 10.4 are all concepts generated from the building codes, which are of 
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completely different types (of concepts). To allow seamless information mapping, it is critical to 

classify these concepts, and then develop rule-based identification algorithms based on the 

characteristics of each type. 

In the proposed method, the author classifies the concepts into four types, which are 

explicit concept, inferable concept, user-assisted concept, and system default, respectively. These 

target concepts are classified for/by developers and end-users are not required to participate in this 

classification process. 

Explicit concepts are the concepts that are directly generable from the BIMs, i.e., the 

concept has a one-to-one mapping to IFC entities and can be directly identified. For example, a 

wall concept has corresponding AEC objects in IFC entities: IfcWall and IfcWallStandardCase.  

For non-explicit concepts, they may be identified through inference. Accordingly, there are 

two sub-categories, inferable and user-assisted. If a consistent inference rule can be found, then 

that concept is considered inferable, i.e., the inferable concepts are the concepts that can be 

heuristically inferred from the explicit information in the model with consistency; if not, then that 

concept is considered to require user judgement and therefore classified as user-assisted. For 

example, egress is considered an inferable concept whereas bathroom is classified as a user-

assisted concept. One way to identify egress (exterior egress, all occurrence of egresses in this 

dissertation refers to exterior egress) concepts is by recognizing door instances at boundaries of 

the building that connect interior and exterior of the building. Based on the geometric and 

locational information, interior doors can be excluded from the egress. During this process, all the 

reasoning can be performed automatically without human judgment, with the developed heuristic 

rules. While it is not difficult for a human to judge if a door is an egress, the algorithm for 

identifying these requirements still needs to be developed with exact steps, to ensure the algorithm 

can function well to generate the expected results robustly.  

In contrast, user-assisted concepts are the concepts that can be semi-inferable with 

additional user input and judgement. The concepts that rely solely on user input could be 

straightforwardly handled by taking user inputs and therefore are outside of the scope of this 

dissertation. While logically it is straightforward to demonstrate if a concept is inferable (i.e., by 

finding a way to infer it), it is close to impossible to prove if a concept is not inferable. The 

boundary between inferable and user-assisted concepts therefore depends on the current 

implementation and reasoning capability. To differentiate from inferable concepts, user-assisted 
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concepts can be inferred to a certain extent, but not 100% inferred. For example, while it might be 

tempting to computationally infer bathrooms from their size (i.e., bathrooms tend to be smaller 

than other rooms), this cannot guarantee a consistent result, as storage rooms can also be small 

whereas public restaurants can have quite large bathrooms. As such, additional manual input is 

needed to decide if a room is a bathroom. As a result, it is hard to quantify the size of the bathrooms, 

and relative size does not work either. Furthermore, room functions may change during the 

planning phase, so additional inputs from users are required for these concepts’ identification. By 

allowing certain extent of user judgment, the proposed method also incorporates some flexibility 

and error-tolerance in the building design. An important consideration is that the additional user 

input shall be minimal with inferred information computed to the largest extent possible, and the 

input should be collected preferably by multiple-choice or yes/no type of questions, with the least 

amount of domain knowledge and manual efforts needed.  

The system defaults are the concepts that are not representing actual objects from a building, 

such as tables in the regulation, equations for calculations, references to other sections, or other 

concepts that are not directly related to BIMs, which as a result will not be the focus of this research. 

However, they are still needed in order for the downstream logic-based reasoning to execute 

successfully.   

To illustrate the idea, Fig. 42 shows the relations between the four categories of target 

concepts based on the above-mentioned IFC models and the IBC 2015. It also reveals that direct 

mapping from building codes to BIMs is not feasible for all concepts, and IFC models also contain 

information not used in the ACC. With the extended information, such gaps in matching BIMs 

with building code concepts can be addressed. 
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Fig. 42. Venn diagram of concepts in building codes and IFC models. 

7.2.3 Develop algorithms for extending model information to match target concepts 

In this step, information extension and matching algorithms are developed to match the 

invariant signatures generated from Section 7.2.1 to the target concepts identified in Section 7.2.2. 

Heuristic rule-based algorithms are developed iteratively until consistent results are obtained in 

the training data, i.e., the target concepts matching need to achieve 100% precision and recall in 

the training data. 

For explicit concepts, the algorithms are straightforward in that each object will generate 

one instance of the corresponding target concept. For example, a door object (IfcDoor) from the 

IFC model can be used to directly generate an instance of the door concept. The attributes of the 

instance should also be extracted, such as the length, width, etc. These attribute values can be 

directly obtained from the invariant signatures of the object. 

For inferable concepts, heuristic rule-based algorithms are developed to extend the explicit 

information to the target information by inference. Each concept has its own identification sub-

algorithm. For example, the egress concept (i.e., target concept) does not have a one-to-one 

mapping to existing IFC entities. The identification of egresses therefore needs to be conducted 

through inference. To develop the algorithm, heuristic rules are developed first. For example, one 

possible heuristic rule for egress is that doors at boundaries of the building that connect interior 

and exterior of the building can be recognized as egresses. An algorithm can therefore be 
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developed to identify a door’s shape, position, level, and relative locations to decide if the door 

can be classified as an egress, using this heuristic rule. Then all inferred results are added to the 

extended information set (i.e., the information originated from the BIMs), so the extended 

information set now contains all the inferred information in addition to the original explicit 

information. All information is stored for later use. 

For user-assisted concepts, a light user interface (UI) is developed to allow users to input 

the missing information. Inference algorithms are still developed to infer intermediate results, so 

that the questions presented to the user only ask for minimal input, and preferably using multiple-

choice questions and/or binary yes/no questions. In addition to soliciting user inputs, the 

algorithms also combine the user input with existing explicit and inferred information, to enrich 

the extended information set. 

At this step, all system default concepts are identified to support further development. No 

further processing is needed from the model validation perspective, as the information does not 

directly map to the BIMs per se. For example, section_1003_3 is such a concept, which refers to 

Chapter 10, Section 1003.3 of a selected building code. While such concepts do not have a direct 

mapping in the extended information, they are important in the later automated reasoning stage of 

ACC.  

7.2.4 Generate logic facts to store extended information set 

With the extended information set produced from the previous step, logic facts are 

generated to store this information. Instead of higher-order logic (Gallin 2011) and defeasible logic 

(Naeem 2014), the logic facts store all the instances of target concepts in first-order logic (FOL) 

format, which is widely used and successfully tested for storing objects and relations to conduct 

deductive reasoning effectively and expressively (Zhang and El-Gohary 2015). It is machine-

readable so that they can be directly used for logic-based ACC reasoning. The advantage of this 

logic fact format is that it is very easy to read, edit, store, and manage. The logic facts can be 

directly fed into a logic-based ACC system for automated reasoning, with no further processing 

needed on the model information side.  

The logic facts follow a uniform representation of concepts and properties. For each 

instance of the target concept, a numbered instance is declared (e.g., egress(egress32)). Then 

properties of the concept are linked to the instance in the form of logic relations (e.g., has(egress32, 
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height117) indicates the height property of egress instance number 32 is represented by height 

instance number 117). Different concepts may have their unique properties, e.g., the room type 

property applies to a room but does not apply to a window. For algorithm development of 

generating logic facts, each target concept uses its own designated sub-algorithm. All generated 

logic facts are then manually checked for evaluation.  

7.3 Experiment  

For experimental testing, the author collected five real commercial projects, namely, a 

convenience store, a warehouse, two restaurants (a fast-food restaurant and an Italian restaurant), 

and a hotel. All the five models were provided by our industry partner and all of them are located 

in Texas. All the five models, however, were designed by different architects. For each project, 

the author used a corresponding building model in IFC format. The author followed a 6:4 ratio for 

splitting the projects into training and testing models. As a result, the convenience store, warehouse, 

and the Italian restaurant were used as training data, whereas the fast-food restaurant and the hotel 

models were used as testing data. Fig. 43 shows the training projects, and Fig. 44 shows the testing 

projects. The hotel project contains a four-story main building and two one-story side buildings, 

which has the largest number of building elements, and was also largest in footage. The rest four 

models are all one-story buildings without side buildings. All models are well-functioned complete 

building models with multiple rooms, walls, doors, etc. For example, the Italian restaurant, the 

convenience store, the warehouse, the fast-food restaurant, and the hotel contained 14, 12, 1, 1, 

and 200 rooms, 34, 37, 18, 54, and 673 walls, 13, 11, 34, 11, and 317 doors, respectively. In 

summary, one of the testing models is similar to the three training models, which is one-story but 

with different layouts and different number of rooms, while the other testing model is less similar 

in that it contains four stories, and has significantly more rooms, which adds more complications 

to the validation process. 
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Fig. 43. Visualizations of training project models: the convenience store, the Italian restaurant, 

and the warehouse. 

 
Fig. 44. Visualizations of testing project models: the fast-food restaurant and the hotel. 
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7.3.1 Construct invariant signatures from IFC models 

For the model validation process, the first step is to preprocess the models to extract 

invariant signatures-based information from the IFC models.  

In constructing the invariant signatures, the state-of-the-art algorithms (Wu et al. 2021) 

were used to extract values from the IFC models. For each AEC object, 36 features were generated 

as invariant signatures, including geometric, locational, and metadata signatures. The distribution 

of the invariant signatures-based features is shown in Table 35. The invariant signatures were able 

to fully represent the information about building objects of a model. This simplified the process of 

further conversion, as the invariant signatures were ready to be used in developing the heuristic 

rule-based classification algorithms. Later algorithms development follows an iterative approach, 

i.e., for any information found missing in the later development phase, a refinement/extension of 

the invariant signatures was conducted. 

 

Table 35. Properties of invariant signatures-based features. 

Signature Type  Example Feature  Feature 
Count 

Geometric Length, Radius 21 
Locational Position, Orientation Direction 7 
Metadata # of Faces, Average # of Vertices 

of Faces 8 

7.3.2 Identify and classify target concepts 

With the invariant signatures-based processing of IFC models completed, the building 

codes were then processed, using the state-of-the-art information extraction and transformation 

algorithm (Zhang and El-Gohary 2015; 2016b) to generate logic rules from International Building 

Code 2015 (IBC 2015). To illustrate the idea, the author chose Chapter 10 for demonstration. The 

automatically generated logic rules were then manually refined to error-freely represent the 

regulatory requirements in Chapter 10 of IBC 2015.  

To extract the target concepts from the logic rules, the author developed a target concept 

identifier that can identify a target concept by recognizing the single-variable conjunct pattern of 

a logic clause (i.e., conjunct of the form “entity(Entity)”). For example, a “door(Door)” conjunct 

indicates a declaration of a door object variable. For each target concept, the logic rules always 
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contain this type of declaration. Therefore, the target concept identification algorithm could 

identify all the related building code concepts from the logic rules. 

With this target concept identification algorithm, the author was able to identify 1,408 

target concepts. These concepts were then classified into the four types, as shown in Table 36 and 

Table 37. For the concept coverage of models, every model covered most of the 1408 concepts 

from Chapter 10 of the IBC 2015. The exceptions were fence, stair, and mezzanine. Only the 

Italian restaurant contained fences. Only the hotel model contained stairs. No model contained 

mezzanines. 

 

Table 36. Count of concepts for each type. 

Concept Type  Example Concept  Concept 
Count 

Explicit Wall, Ceiling, Space 8 
Inferable Egress 11 

User-Assisted Sprinkler Type 7 

System Default Equation 20, Message, 
Group_H  1,382 

 

 

Table 37. All four types of concepts. 
Explicit Concept Inferable Concept User-Assisted Concept System Default 

Floor Building Stairway_doors Group_H 
Wall Building_height Machinery_rooms Means 

Window Floor_level Storage_rooms Barrier 
Door Floor_surface Lobbies Message 
Room Egress Bathroom 1,378 more concepts 
Ceiling Assembly_areas Exit_discharge_doors  
Fence Means_of_egress_

System Occupied_roof  

Stair Exit   
 Mezzanine   
 Room_elevations   
 Story   

7.3.3 Develop algorithms for extending model information to match target concepts 

Explicit concepts 

Explicit concepts were straightforward in their identification algorithm development, as 

the name suggested. Each explicit concept had a one-to-one mapping to the IFC entities, which 
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was directly used for identifying them in the IFC models. For example, doors were identified 

through IfcDoor and rooms were identified through IfcSpace. 

The validation of these concepts’ identification was conducted by directly checking the 

number and properties of the corresponding IFC entities. Results showed all the needed explicit 

concepts were identified with 100% precision and 100% recall in the training data (Table 38). 

 

Table 38. Explicit concepts identification result on training models. 

Concept IFC Map No. Identified No. Correctly 
Identified Gold Standard Precision Recall 

Floor IfcSlab 24 24 24 100% 100% 

Wall IfcWall/IfcWall
StandardCase 

99 99 99 100% 100% 

Window IfcWindow 20 20 20 100% 100% 
Door IfcDoor 58 58 58 100% 100% 
Room IfcSpace 27 27 27 100% 100% 
Ceiling IfcRoof 5 5 5 100% 100% 
Fence IfcRailing 12 12 12 100% 100% 
Stair IfcStair 0 0 0 - - 
Total - 245 245 245 100% 100% 

Inferable concepts 

Non-explicit concepts were more challenging in their detection comparing to the explicit 

concepts because there was no direct one-to-one mapping between the concepts and IFC entities. 

However, some non-explicit concepts could be inferred based on related information in the IFC 

model. The identification of these inferable concepts was therefore performed by recognizing 

related IFC entities and then selecting those that satisfy additional constraints based on heuristic 

rules. The additional constraints leveraged the geometry and relative locations of these IFC entities 

comparing to other IFC entities in the same model. For each inferable concept, one heuristic rule-

based algorithm is developed. The algorithms are developed by analyzing the corresponding 

human recognition process to summarize needed heuristics, and then digitalizing and formalizing 

these heuristics into rules. The rules are then verified on the training data to validate the correctness 

of the identification algorithms during the training process. 

One of the most representative inferable concepts was egress. For identifying an egress, 

the main heuristic was to identify the exit doors of the building. Therefore, the constraints used in 
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the egress identification algorithm were to find doors that locate at the boundary of the building 

that connect interior and exterior of the building. The detailed implementation was as follows: 

• Step 1: Identify the boundary of the building. The boundary is found by taking the 

maximum and minimum coordinates of walls and slabs at the first floor of the building. 

Four line segments need to be identified for each building model.  

• Step 2: Select doors that are at the boundary of the building. This is achieved by checking 

the position of the doors. The doors selected are the ones that are close (i.e., within a 

predefined threshold) to the boundary of the building. 

• Step 3: Verify the orientation of each door selected from Step 2 and keep the ones that 

connect the interior and exterior of a building. This is achieved by checking if the door’s 

orientation is in parallel to the corresponding boundary. 

The visualization of the egress identification results on the Italian restaurant model is 

shown in Fig. 45. 
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Fig. 45. Visualization of all the egresses identified for the Italian restaurant model. 

As illustrated in Fig. 45, Doors 1, 2, 3, 4, 6, and 8 were not identified as egress because 

they were not at the boundary of the building (Step 2 criterion was not satisfied). Doors 5 and 7 

were further eliminated because they failed to satisfy the orientation criterion at Step 3, i.e., the 

direction was not in parallel with the corresponding boundary. Finally, Doors 9, 10, 11, 12, and 13 

were identified as egresses because they met all the three criteria in the algorithm. 

In addition to egress, the author also developed algorithms for the rest of the inferable concepts 

(Table 39). 
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Table 39. Heuristics used in inferable concepts identification algorithms. 
Concept   Heuristics Description  
Building Identify the boundary. 

Building_height One of the properties of the building concept. 
Floor_level Using clustering algorithm to identify levels. 

Floor_surface One of the properties of the floor concept.  
Egress Door entity at the boundary that connects interior and exterior. 

Assembly_areas One of the properties of the building concept. 
Means_of_egress_system Same as egress. 

Exit Same as egress. 
Mezzanine Floors objects between floor levels. 

Room_elevations One of the properties of the room concept. 
Story Sam as floor level. 

 

The results of the algorithm development for inferable concepts are shown in Table 40. 

Table 40. Inferable concepts identification results on training models. 

Concept   No. 
Identified 

No. Correctly 
Identified 

Gold 
Standard Precision Recall 

Building 3 3 3 100% 100% 
Building_height 3 3 3 100% 100% 

Floor_level 3 3 3 100% 100% 
Floor_surface 3 3 3 100% 100% 

Egress 42 42 42 100% 100% 
Assembly_areas 3 3 3 100% 100% 

Means_of_egress_system 42 42 42 100% 100% 
Exit 42 42 42 100% 100% 

Mezzine 0 0 0 - - 
Room_elevations 29 29 29 100% 100% 

Story 3 3 3 100% 100% 
Total 173 173 173 100% 100% 

 

User-assisted concepts 

For the other subtype of non-explicit concepts, the user-assisted concepts, the information 

from the IFC models was not sufficient to automatically identify those concepts even with 

inference. However, the inferences were able to be conducted to an extent to narrow down the 

range of selection. For example, based on the observation of the models, there was not enough 

information for differentiating bathrooms from other rooms. For the target concept of a bathroom, 

however, it can be inferred that it must be a room, which could help limit the range. Therefore, to 

identify bathrooms, the algorithm will display questions to the user to help filter through the 
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narrowed range, e.g., “Is room2 a bathroom? Enter 1 for Yes, enter 2 for No.” Similarly, algorithms 

for processing other user-assisted concepts were developed with interactive questions. Table 41 

shows the additional information needed from users for successful identification of the user-

assisted concepts. Table 42 shows the results of identifying user-assisted concepts.  

 

Table 41. Additional information needed for user-assisted concepts. 
Concept Inferred Concept Additional Information Input Type 

Machinery_rooms Room Room type. Binary (Y/N) 
Storage_rooms Room Room type. Binary 

Lobbies Room Room type. Binary 
Bathroom Room Room type. Binary 

Exit_discharge_door
s Egress Egress type. Binary 

Occupied_roof Roof If the roof is occupied. Binary 
Stairway_doors Door Door types. Binary 

 

Table 42. User-assisted concepts identification result on training models. 

Concept 
No. 

Question
s 

No. Correct 
Questions 

Gold 
Standard Precision Recall 

Machinery_rooms 27 27 27 100% 100% 
Storage_rooms 27 27 27 100% 100% 

Lobbies 27 27 27 100% 100% 
Bathroom 27 27 27 100% 100% 

Exit_discharge_door
s 12 12 12 100% 100% 

Occupied_roof 5 5 5 100% 100% 
Stairway_doors 58 58 58 100% 100% 

Total 183 183 183 100% 100% 

System defaults 

As described above, system defaults were not representing actual objects from a building 

design and therefore do not have (or need to have) any mapping in the extended information set. 

As a result, during the model validation process, these system defaults were identified, but no 

further action was conducted on them. They can be used to support the later ACC stage by 

instantiating logic rules for automated reasoning execution. For example, an equation concept 

referred to an equation from the building codes. A fully ACC system would need to use the 
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equation for calculations in the checking, the process of which should also be automated. In line 

with such an approach, all 1,382 system defaults concepts were identified for future use.  

7.3.4 Generate logic facts to store extended information set 

With all the algorithms for extending the information set, identified target concepts were 

stored in logic facts. The logic facts can be directly used for later logic-based ACC reasoning.  

To generate logic facts, each instance of the target concept from the extended information 

was generated into connected B-Prolog (a Prolog system implementation with extensions for 

programming concurrency, constraints, and interactive graphics) clauses (Zhou 2014) including 

its declaration and properties, where Prolog is a FOL-based logic programming implementation. 

For example, the identified egress entity 1qPjXNL6r8rRF28rPA_nZx (Door 10 in Fig. 45) was 

stored in “egress(egress2). height(height32). has(egress2, height32). has_value(height32, 7.33). 

has_unit(height32, foot). …” “egress2” was used because it was the second identified egress 

among all the identified egresses. The height of the egress was 7.33 feet. To represent such 

information, a height instance was declared as “height32”, because there were already 31 height 

instances declared beforehand. The “has_value(height32, 7.33).” and “has_unit(height32, foot).” 

defined the value and unit of the height property, respectively. Additional information was also 

represented in the same format, such as its length, width, position, orientation direction, etc. Table 

43 shows the results of the logic clauses generated from the extended information set. 

 

 

Table 43. Number of logic clauses in the generated logic facts on training models. 

Concept Type  No. Logic 
Clauses 

No. Correct 
Logic Clauses 

Gold 
Standard 

Precisio
n Recall 

Explicit  3,458 3,458 3,458 100% 100% 
Inferable  699 699 699 100% 100% 

User-assisted  80 80 80 100% 100% 
System defaults 4,146 4,146 4,146 100% 100% 

Total 8,333 8,333 8,333 100% 100% 

7.4 Results and Analysis 

To evaluate the robustness of the proposed method and developed algorithms, the author 

tested them on the two testing models, namely, the fast-food restaurant model and the hotel model 
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(Fig. 44). The results are shown in Tables 44-47. Table 44 shows the results on explicit concepts. 

Note that the hotel model had four roofs which were not directly observable in Fig. 44, so the 

author showed the roofs again in Fig. 46. 

 

Table 44. Explicit concepts identification results on testing models. 

Concept IFC Map 
No. 

Identifie
d 

No. 
Correctly 
Identified 

Gold 
Standard 

Precisio
n Recall 

Floor IfcSlab 18 18 18 100% 100% 

Wall IfcWall/IfcWall
StandardCase 738 738 738 100% 100% 

Window IfcWindow 121 121 121 100% 100% 
Door IfcDoor 328 328 328 100% 100% 
Room IfcSpace 201 201 201 100% 100% 
Ceiling IfcRoof 5 5 5 100% 100% 
Fence IfcRailing 0 0 0 100% 100% 
Stair IfcStair 6 6 6 - - 
Total - 1417 1417 1417 100% 100% 
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Fig. 46. Visualization of the four roofs identified for the hotel model. 

 
 

Table 45 shows the results on inferable concepts. The precision was 98.1% and the recall 

was 94.1%. As an example illustration, the egresses identified are shown in Fig. 47 and Fig. 48, 

for the fast-food restaurant model and the hotel model, respectively. For fast-food restaurant model, 

both egresses were successfully identified. For the hotel model (Fig. 48), six egressed were 

successfully identified whereas five egresses were missed. This error occurred because there were 

three separate buildings in the hotel model, whereas the algorithm only identified one building - 

the main building. A further analysis showed that this was because in all three training models 

there was only one building for each model. Following the data-driven approach, the assumption 

of one building for each model was established from the training models, whereas it does not hold 
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in the hotel testing model. As a result, the trained algorithms in our experiment failed to identify 

the other two buildings and the corresponding five egresses. In addition, one assembly area was 

also incorrectly identified because of this error. 

 

Table 45. Inferable concepts identification result on testing models. 

Concept No. 
Identified 

No. Correctly 
Identified 

Gold 
Standard Precision Recall 

Building 2 2 4 100% 50.0% 
Building_height 2 2 4 100% 50.0% 

Floor_level 5 5 5 100% 100% 
Floor_surface 16 16 16 100% 100% 

Egress 12 8 13 66.7% 61.5% 
Assembly_areas 2 1 2 50% 50% 

Means_of_egress_system 8 8 13 100% 61.5% 
Exit 8 8 13 100% 61.5% 

Mezzanine 0 0 0 - - 
Room_elevations 201 201 201 100% 100% 

Story 5 5 5 100% 100% 
Total 261 256 272 98.1% 94.1% 

 

 
Fig. 47. Visualization of the two egresses identified for the fast-food restaurant model. 
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Fig. 48. Visualization of all egresses identified for the hotel model (viewed from the backside of 

the building). Egresses 3, 4, 8, 9, 10, 11 were correctly identified, whereas egresses 1, 2, 5, 6, 
and 7 were missed, and egresses 12, 13, 14, 15 were incorrectly identified. 

 
 

Table 46 shows the results of user-assisted concepts. The developed algorithms produced 

simple binary (Yes/No) questions based upon which perfect precision and recall could be achieved. 

Table 47 shows the generated logic facts for the whole model. 

 

Table 46. User-assisted concepts identification results on testing models. 

Concept   No. 
Questions 

No. Correct 
Questions 

Gold 
Standard Precision Recall 

Machinery_rooms 201 201 201 100% 100% 
Storage_rooms 201 201 201 100% 100% 

Lobbies 201 201 201 100% 100% 
Bathroom 201 201 201 100% 100% 

Exit_discharge_doors 319 319 319 100% 100% 
Occupied_roof 5 5 5 100% 100% 
Stairway_doors 319 319 319 100% 100% 

Total 1447 1447 1447 100% 100% 
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Table 47. Number of logic clauses in the generated logic facts on testing models. 

Concept Type 
No. 

Logic 
Clauses 

No. Correct 
Logic Clauses 

Gold 
Standard Precision Recall 

Explicit  19,852 19,852 19,852 100% 100% 
Inferable  620 555 657 88.7% 84.5% 

User-assisted  70 70 70 100% 100% 
System Defaults 1,382 1,382 1,382 100% 100% 

Total 21,924 21,859 21,961 99.7% 99.5% 
 

As shown in Table 47, the algorithms achieved an overall 99.7% precision and 99.5% recall 

which is very promising. However, for the inferable concept category, the precision was only 88.7% 

and recall was only 84.5% in the generated logic facts. The logic clause-level recall was lower 

than the concept-level recall shown in Table 45, because one egress concept needs to be 

represented by multiple logic clauses.  

The error in the inferable concept category occurred because the developed system did not 

identify all three buildings in the hotel model, which can be seen in Fig. 46 and Fig. 48. A further 

inspection showed that the developed algorithm used a relatively strong assumption that a building 

is close to a rectangular shape (with some error margin) and there is only one building in the model. 

This assumption was valid during the training phase because all training models were single-

building models with a rectangular-shaped boundary. However, this assumption was not valid on 

the testing hotel model because there were two side buildings attached to the main building. 

Therefore this hotel model did not have a one-to-one mapping between buildings and IfcBuilding 

entities (i.e., there was only one IfcBuilding entity but three connected buildings). This unseen 

multi-building model resulted in an error in the developed system and caused a 11.3% drop in 

precision and a 15.5% drop in recall on the logic clauses of the inferable concept category. To 

resolve it, the author did a follow-up experiment to modify the algorithm to allow polyline shape 

as building boundaries and allow multiple buildings to exist in one project model. This 

modification enabled the algorithm to then identify all buildings and egresses correctly. 

Based on the nature of rule-based algorithms, the same level of performance may not be 

readily achieved on unseen patterns. However, with further development on more training data to 

cover more concepts and patterns for building code and building design models, respectively, the 

expectation is that the accumulated set of algorithms will continuously be expanded and therefore 

enhanced its robustness, to asymptotically approach the ultimate superset of algorithms. 
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In Chapter 10 of the IBC 2015, 1408 regulatory concepts can be extracted, which is 

sufficient to demonstrate the robustness of the method. This method is expected to generate 

comparable results on other chapters of the IBC 2015. For other chapters in the IBC 2015, there 

are many concepts that were in common with Chapter 10, such as building, wall, ceiling, etc. For 

new concepts, the proposed method can also be used to categorize them and develop new 

identification algorithms accordingly. 

In summary, the proposed method achieved an overall 99.7% precision and 99.5% recall 

in the resulting logic clauses. 
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CHAPTER 8 – CONCLUSION 
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“New automated BIM object classification method to support BIM interoperability.” in 

Journal of Computing in Civil Engineering, 33(5). DOI: 10.1061/(ASCE)CP.1943-5487.0000858. 

“Invariant signatures of architecture, engineering, and construction objects to support BIM 

interoperability between architectural design and structural analysis.” in Journal of Construction 

Engineering and Management, 147(1). DOI: 10.1061/(ASCE)CO.1943-7862.0001943. 

“Constructing invariant signatures for AEC objects to support BIM-based analysis 

automation through object classification.” in Journal of Computing in Civil Engineering, 

submitted. 

“Model validation using invariant signatures and logic-based reasoning for automated 

building code compliance checking.” in Journal of Computing in Civil Engineering, submitted. 

“Introducing geometric signatures of architecture, engineering, and construction objects 

and a new BIM dataset.” In Proc., 2019 ASCE International Conference on Computing in Civil 

Engineering, 264-271. DOI: 10.1061/9780784482421.034. 

 

8.1 Conclusions 

This dissertation presents a solution to solve the practical gap of lacking intuitive, uniform, 

and interoperable representations that can be seamlessly used for different BIM tasks. The 

invariant signatures, as the solution, capturing the essence of AEC objects, provide interoperable 

properties to represent AEC objects in BIM, which can be easily and seamlessly used in BIM tasks 

and applications. With this theoretical foundation, practical BIM tasks were automated seamlessly, 

such as AEC object classification, QTO, structural analysis, Uniformat classification, and model 

validation for ACC. For each BIM task, a new method was proposed to automate the process or 

improve the state-of-the-art performance, with the adoption of invariant signatures. As the premise 

of the successful experiment, a uniform and comprehensive dataset was collected. 
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8.1.1 Dataset 

The author developed a new open BIM dataset tailored for object classification. The dataset 

contains five BIM models with 1,900 object instances in IFC format (and 5 additional beams as 

described in Section 5.2.2). The data covered the major types of AEC objects, including beams, 

columns, footings, slabs, and walls. The data also covered different types of representations used 

by the IFC entities. 

The author invited independent annotators to manually label the collected data and 

discussed among themselves any disagreement. For objects that results could not be agreed on 

through discussion, the majority vote mechanism was used to decide the label to adopt. As a result, 

the dataset provided verified labels for the collected BIM-based AEC objects. 

8.1.2 Invariant signatures  

The author proposed invariant signatures of AEC objects that capture the building design 

information. Geometric, locational, and metadata information were included in the invariant 

signatures. In total, 56 invariant signatures were proposed. The invariant signatures can be 

extended based on needs during the development of more BIM applications. 

8.1.3 BIM-based AEC object classification 

This dissertation presented a data-driven, iterative method for rule-based automated 

classification of AEC objects in an IFC-based BIM. The method can be used to develop algorithms 

that read in an AEC object and automatically classify it into predefined categories. These 

categories include existing IFC categories that represent common building object types and non-

IFC categories that can represent a more detailed level of classification of objects. The developed 

algorithm consists of multiple sub-algorithms, with each sub-algorithm depicting a pattern 

matching rule based on patterns of selected features. An experiment was conducted on 1,905 

objects with five IFC categories (beams, columns, footings, slabs, and walls) and eleven non-IFC 

categories (e.g., C-Beam, I-Beam, L-Beam, U-Beam). An algorithm was developed using the 

proposed method based on the training data and tested on the testing data. In common building 

elements categories, 99.1% recall and 100% precision were achieved. In detailed beam categories, 

100% recall and precision were achieved. For common building element categories, the errors 
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were found to come from the occurrence of geometric shape representation patterns in testing data 

that were not included in training data. This kind of error can be avoided by including all 

foreseeable geometric shape representations in the training data. By such a strategy, the proposed 

method can achieve 100% recall and precision in the classification of all categories of AEC objects. 

The author’s method has a constant computational complexity which is better than the linear (or 

higher) computational complexity of the state-of-the-art methods. 

For the machine learning method, five types of machine learning algorithms were 

systematically investigated in AEC object classification on this dataset. The author improved the 

BIM object classification accuracy with the proposed invariant signatures comparing to the state 

of the art. In addition, the author showed that in BIM object classification, the random forest 

machine learning algorithm outperformed SVM and other machine learning algorithms using both 

the features of Koo et al. (2019) and the invariant signatures proposed by the author. The overall 

performance in object classification was 99.6% F1-measure. This shows that the invariant 

signatures and the random forest machine learning algorithm are promising in BIM object 

classification. 

8.1.4 QTO and structural analysis 

The random forest-based object classification was tested to achieve less than 1% error in 

QTO, compared with a gold standard developed using commercial software and a traditional 

manual approach, while saving significant time (98.13%) in conducting the QTO tasks.  

The author used invariant signature-based object classification to propose a new data-

driven method for solving practical problems in structural analysis. The method represented an 

effort to address the gap of the lack of foundational methods that enable a seamless BIM 

interoperability between architectural design and structural analysis. The developed invariant 

signatures, in combination with the material signatures, made the information exchange possible. 

An experiment was conducted to develop an information validation and mapping algorithm based 

on five training models, which was then tested on four testing models. Results showed that the 

developed algorithm successfully generated structural analysis input files for all four testing 

models. Comparing to an existing model conversion workflow, the proposed method achieved 

better accuracy. Invariant signatures were therefore demonstrated to support BIM interoperability 
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between architectural design and structural analysis. In addition, the developed algorithm 

demonstrated the potential for it to be used in more complex AEC models.  

The invariant signatures in combination with machine learning algorithms are expected to 

be applicable in a variety of other different BIM applications such as cost estimation, ACC, and 

building energy simulation and analysis, with high accuracy and efficiency. 

8.1.5 Model validation 

The author proposed an iterative method for BIMs model validation using invariant 

signatures and logic inference to support ACC. The proposed method can extend the information 

extracted from BIMs with non-explicit concepts, to support mapping from BIMs to target concepts 

in building codes. The proposed method uses invariant signatures of AEC objects as intermediate 

results to extract information from IFC entities and extended the extracted information by inferring 

more concepts based on heuristic rule-based algorithms and user inputs. An experiment on the 

International Building Code 2015 and five commercial building models showed that the proposed 

method achieved 99.7% precision and 99.5% recall in generating the extended information set. 

The proposed method was shown to function with consistent results between testing data and 

training data, in mapping the extended information set from BIMs to building code concepts. This 

helps address the existing research gap of BIMs validation to support fully ACC. 

8.2 Contributions to the Body of Knowledge 

8.2.1 Dataset  

The author established an open dataset for BIM object classification, which can be used to 

reproduce the results and conduct further research. The dataset can also save time and effort of 

data collection and labeling for further development on the same research subject. This open and 

consistent data can also promote collaboration and comparison. 

8.2.2 Invariant signatures  

At the theoretical level, this dissertation offered an invariant signature theory with initial 

geometric signatures that can be used to capture the essence of AEC objects to be used in various 
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engineering analyses and model exchange tasks. This theory goes beyond the state of the art of 

AEC information representation based on data schema, and enables robust AEC information 

representation ignorant to software implementation, modeling decisions, and/or language/cultural 

contexts. 

In practice, this research advanced the empirical knowledge in the area of BIM 

interoperability by offering new data-driven methods to use invariant signatures for solving 

practical problems in BIM applications. This method supports the many-to-one paradigm of BIM 

interoperability and brings seamless and universal BIM interoperability one step closer to reality. 

The invariant signatures, composed of geometric, locational, and metadata signatures, were tested 

to be able to support AEC object classification, QTO, structural analysis, and model validation 

(for ACC). The invariant signatures are expected to support all other BIM activities, such as energy 

analysis and cost estimation. 

8.2.3 BIM-based AEC object classification 

The AEC object classification had both intellectual merits and practical benefits. From an 

intellectual perspective, this research contributes to the body of knowledge in four main ways. 

First, the author offered a new data-driven method for developing rule-based algorithms and a 

systematic machine learning method that can automatically classify IFC-based BIM objects into 

predefined categories. The algorithms relied on invariant signatures, i.e., the inherent geometric 

features, of AEC objects rather than entity or attribute names and therefore prevented classification 

errors caused by misuse of entities. Invariant signatures are stable and reliable properties of AEC 

objects (not changing with regard to software implementation, modeling decisions, an/or 

language/cultural contexts), and therefore object classification algorithms developed using the 

author’s proposed methods can be more robust than those that depend on entity or attribute names.  

Second, the author improved the state-of-the-art F1-measure (accuracy) for BIM-based 

AEC object classification from 94.9% to 99.6%, using invariant signatures as the features. The 

proposed method can be used by the research community to develop AEC object classification 

algorithms in a continuous and accumulatively way, which will ultimately lead to a comprehensive 

set of AEC object classification algorithms that will help significantly reduce or eliminate 

classification errors of BIM objects caused by misuse of entities.  
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Thirdly, a systematic approach was conducted to test and compare the rule-based algorithm 

and different machine learning algorithms. The best performing algorithm, random forest, was 

shown to outperform the rule-based algorithm and other machine learning algorithms in both the 

author’s feature set and the state-of-the-art features.  

Last but not least, the impacts of applying this work in the AEC domain could be far-

reaching. The use of invariant signatures of AEC objects in classifying the objects opens a new 

door to BIM interoperability because such features do not change according to modelers, software 

providers, language, culture, or other contexts. The elimination of human-induced misuse errors 

in BIM enables better usability of BIM in downstream applications such as cost estimation, ACC, 

and structural analysis. Better usability of BIM can in turn promote the adoption of BIM in the 

AEC industry.  

8.2.4 QTO and structural analysis 

Object classification is the premise of the full automation of many BIM applications. The 

invariant signature-based objection classification showed that it led to comparable QTO results 

with the traditional approach whereas saving both time and manual effort significantly.  

The research on structural analysis contributes to the body of knowledge in a unique way. 

The invariant signature-based structural analysis achieved better model data transfer accuracy 

compared to the state of the art. At the empirical level, the theoretical and practical knowledge in 

the area of BIM interoperability can support an improved model exchange between different AEC 

processes, such as between architectural design and structural analysis, between architectural 

design and cost analysis, and between architectural design and energy modeling and simulation. 

8.2.5 Model validation 

The contributions to the body of knowledge in model validation are four-fold. First, the 

author investigated the feasibility of automated inference of non-explicit information in BIMs, to 

match with building code concepts. It was found that this feasibility depends on the type of non-

explicit information to be derived. For non-explicit information that is not directly inferable, the 

author still leveraged inference to reduce the needed manual input from users. Second, the author 

presented a new categorization of the concepts from building codes in four categories: (1) explicit, 
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(2) inferable, (3) user-assisted, and (4) system defaults, in the context of serving as target concepts 

of validating/matching with BIMs, to facilitate the analysis of BIMs for ACC in a divide-and-

conquer manner. Third, in the identification of concepts from BIMs, the author developed invariant 

signatures-based algorithms for matching with each of the four categories of building code 

concepts, with high recall and precision. Last but not least, the proposed method was able to extend 

the information from BIMs and check for missing information in the context of ACC. Combined 

with logic rule-based algorithms, the resulting information set (i.e., the collected information) was 

demonstrated to be significantly extended to facilitate the matching of BIMs with building codes. 

In summary, the author made a solid advancement in filling the gap of information mapping from 

BIMs to building codes for ACC, by introducing an extended information set using invariant 

signatures-based inferences. This method supports model validation in ACC and therefore 

indirectly and positively affects interoperability of BIM.   

8.3 Recommendations for Future Work. 

For the BIM-based AEC object dataset, future work is recommended to expand the dataset 

to cover more theoretical and practical representations of AEC objects. 

For AEC object classification, future work is recommended to develop the sub-algorithms 

with more data that belong to more categories. With a large enough dataset, the potential use of 

deep learning in the algorithm development phase can be investigated. 

For object classification-based BIM analysis, future work is recommended to develop more 

robust algorithms for QTO and structural analysis with more complicated test cases and extend the 

application of the methods to other BIM-based tasks, such as energy analysis.   

For ACC, future work is recommended to integrate the model validation method into an 

ACC system to perform comprehensive testing for the full ACC process. 
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APPENDIX C: FULL STAAD OUTPUT OF THE REAL MODEL FOR 
SECTION 6.2 

STAAD SPACE 
START JOB INFORMATION 
ENGINEER DATE 4-Aug-19 
END JOB INFORMATION 
INPUT WIDTH 54 
UNIT FEET POUND 
JOINT COORDINATES 
1 20.13 -3.78 -3.95 
2 20.13 0.0 -3.95 
3 20.13 -3.78 3.65 
4 20.13 0.0 3.65 
5 20.13 -3.78 11.2 
6 20.13 0.0 11.2 
7 20.13 -3.78 18.75 
8 20.13 0.0 18.75 
9 20.13 -3.78 26.3 
10 20.13 0.0 26.3 
11 13.58 -3.78 -3.95 
12 13.58 0.0 -3.95 
13 13.58 -3.78 3.65 
14 13.58 0.0 3.65 
15 13.58 -3.78 11.2 
16 13.58 0.0 11.2 
17 13.58 -3.78 18.75 
18 13.58 0.0 18.75 
19 13.58 -3.78 26.3 
20 13.58 0.0 26.3 
21 6.98 -3.78 -3.95 
22 6.98 0.0 -3.95 
23 6.98 -3.78 3.65 
24 6.98 0.0 3.65 
25 6.98 -3.78 11.2 
26 6.98 0.0 11.2 
27 6.98 -3.78 18.75 
28 6.98 0.0 18.75 
29 6.98 -3.78 26.3 
30 6.98 0.0 26.3 
31 0.43 -3.78 -3.95 
32 0.43 0.0 -3.95 
33 0.43 -3.78 3.65 
34 0.43 0.0 3.65 
35 0.43 -3.78 11.2 
36 0.43 0.0 11.2 
37 0.43 -3.78 18.75 
38 0.43 0.0 18.75 
39 0.43 -3.78 26.3 
40 0.43 0.0 26.3 
41 20.18 4.68 -3.95 
42 20.18 4.68 3.65 
43 20.18 4.68 11.2 
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44 20.18 4.68 18.75 
45 20.18 4.68 26.3 
46 13.58 4.68 -3.95 
47 13.58 4.68 3.65 
48 13.58 4.68 11.2 
49 13.58 4.68 18.75 
50 13.58 4.68 26.3 
51 6.98 4.68 -3.95 
52 6.98 4.68 3.65 
53 6.98 4.68 11.2 
54 6.98 4.68 18.75 
55 6.98 4.68 26.3 
56 0.38 4.68 -3.95 
57 0.38 4.68 3.65 
58 0.38 4.68 11.2 
59 0.38 4.68 18.75 
60 0.38 4.68 26.3 
61 6.98 7.68 18.75 
62 6.98 7.68 26.3 
63 0.38 7.68 18.75 
64 0.38 7.68 26.3 
MEMBER INCIDENCES 
1 24 22; 
2 34 32; 
3 32 22; 
4 34 36; 
5 10 8; 
6 8 6; 
7 6 4; 
8 4 2; 
9 22 12; 
10 12 2; 
11 34 24; 
12 24 26; 
13 14 16; 
14 36 38; 
15 26 28; 
16 16 18; 
17 38 28; 
18 28 18; 
19 18 8; 
20 40 30; 
21 30 20; 
22 20 10; 
23 20 18; 
24 14 12; 
25 30 28; 
26 40 38; 
27 24 14; 
28 14 4; 
29 36 26; 
30 26 16; 
31 16 6; 
32 50 49; 
33 49 48; 
34 48 47; 
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35 47 46; 
36 55 54; 
37 54 53; 
38 53 52; 
39 52 51; 
40 57 52; 
41 52 47; 
42 47 42; 
43 58 53; 
44 53 48; 
45 48 43; 
46 59 54; 
47 54 49; 
48 49 44; 
49 45 44; 
50 44 43; 
51 42 41; 
52 43 42; 
53 51 56; 
54 41 46; 
55 46 51; 
56 59 60; 
57 57 58; 
58 58 59; 
59 56 57; 
60 50 45; 
61 60 55; 
62 55 50; 
63 62 61; 
64 63 61; 
65 63 64; 
66 64 62; 
67 1 2; 
68 3 4; 
69 5 6; 
70 7 8; 
71 9 10; 
72 11 12; 
73 13 14; 
74 15 16; 
75 17 18; 
76 19 20; 
77 21 22; 
78 23 24; 
79 25 26; 
80 27 28; 
81 29 30; 
82 31 32; 
83 33 34; 
84 35 36; 
85 37 38; 
86 39 40; 
87 2 41; 
88 4 42; 
89 6 43; 
90 8 44; 
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91 10 45; 
92 12 46; 
93 14 47; 
94 16 48; 
95 18 49; 
96 20 50; 
97 22 51; 
98 24 52; 
99 26 53; 
100 28 54; 
101 30 55; 
102 32 56; 
103 34 57; 
104 36 58; 
105 38 59; 
106 40 60; 
107 54 61; 
108 55 62; 
109 59 63; 
110 60 64; 
ELEMENT INCIDENCES SHELL 
111 30 20 18 28  
112 20 10 8 18  
113 38 28 26 36  
114 28 18 16 26  
115 18 8 6 16  
116 36 26 24 34  
117 26 16 14 24  
118 16 6 4 14  
119 34 24 22 32  
120 24 14 12 22  
121 14 4 2 12  
122 55 50 49 54  
123 50 45 44 49  
124 59 54 53 58  
125 54 49 48 53  
126 49 44 43 48  
127 58 53 52 57  
128 53 48 47 52  
129 48 43 42 47  
130 57 52 51 56  
131 52 47 46 51  
132 47 42 41 46  
133 64 62 61 63  
ELEMENT PROPERTY 
111 TO 133 THICKNESS 0.2 
DEFINE MATERIAL START 
ISOTROPIC CONCRETE 
E 4.536e+008 
POISSON 0.17 
DENSITY 149.99 
ALPHA 5.5e-006 
DAMP 0.05 
TYPE CONCRETE 
STRENGTH FCU 576000 
END DEFINE MATERIAL 
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CONSTANTS 
MATERIAL CONCRETE ALL 
MEMBER PROPERTY AMERICAN 
1 TO 66 PRIS YD 0.4 ZD 0.5 
67 TO 110 PRIS YD 0.5 ZD 0.5 
FINISH 
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APPENDIX D: EGRESS RECOGNITION ALGORITHM FOR CHAPTER 7 
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APPENDIX E: USER ASSISTED CONCEPT’S QUESTION DATA 
STRUCTURE FOR CHAPTER 7 

 
 

 


