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ABSTRACT 

This study investigated high-achieving and non-high-achieving students’ persistence in 

STEM fields using nationally representative data from the High School Longitudinal Study of 

2009 for the years 2009, 2012, 2013, 2013-2014, and 2016. The results indicated that 

approximately 70% of high-achieving and non-high-achieving students continued their initial 

STEM degrees within 3 years of college enrollment. The study revealed that the most important 

predictors of STEM persistence were: math proficiency level, school belonging, school 

engagement, school motivation, school problems, science self-efficacy, credits earned in computer 

sciences, GPA in STEM courses, credits earned in STEM courses, and credits earned in Advanced 

Placement/International Baccalaureate (AP/IB) courses. Based on the results, math proficiency 

was the most important variable in the study for both high-achieving and non-high-achieving 

students. Even though credits earned in AP/IB combined were among the most important variables, 

they were two times more important for high-achieving students (6.86% vs. 3.37%). Regarding 

demographic information related variables, socioeconomic status was the most important variable 

among gender, ethnicity, and urbanicity in models predicting STEM persistence and had higher 

importance for non-high-achieving students. Furthermore, Hispanic students' proportion of 

persistence differed from other underrepresented populations’ persistence. Non-high-achieving 

Hispanic students had the highest persistence rate, similar to well-represented populations (i.e., 

White, Asian). Machine learning methods used in the study including random forest and artificial 

neural network provided good accuracy for both achievement groups. Random forest accuracy was 

over 82% with the Synthetic Minority Over-Sampling Technique (SMOTE) dataset, while 

artificial neural network accuracy was over 92%. 
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CHAPTER 1 INTRODUCTION 

Society needs large numbers of students in Science, Technology, Engineering, and 

Mathematics (STEM) fields as these areas support innovation, technical development, global 

competitiveness, and economic growth (Maltese et al., 2014). Based on the National Science and 

Engineering Indicators (National Science Board [NSB], 2018) report, STEM education is a priority 

globally due to current higher demand and also faster growing job opportunities in STEM than 

non-STEM fields. The report revealed, however, that the percentage of students who completed 

Science and Engineering degrees in India, China, the European Union, and the United States was 

25%, 22%, 12%, and 10%, respectively, from 2000 to 2014. In particular, China’s STEM degree 

attainment increased by 350% from 2000 to 2018 (NSB, 2018), while in the United States 

enrollment rates in STEM areas declined. Based on National Center for Education Statistics 

(NCES) report, only 48% of students who initially declared STEM majors continue their education 

in STEM fields within three years of college enrollment in the United States (Chen & Soldner, 

2013). On the other hand, another report by NCES (2017) regarding first-time postsecondary 

students’ persistence after three years of initial enrollment revealed that 70% of students persisted 

at their institutions in general. To avoid falling behind other countries, the United States needs to 

significantly improve support of STEM education and higher education degree attainment. 

Researchers have recently promoted the importance of supporting excellence in STEM 

fields in the United States and encouraging gifted and talented students to pursue studies in these 

areas (Heilbronner, 2011; Steenbergen-Hu & Olszewski-Kubilius, 2017). Nonetheless, despite 

their high potential, a small proportion of gifted and talented students enter into STEM fields 

(Holmes et al., 2018). Furthermore, gifted and talented students do have low STEM persistence in 

college (Heilbronner, 2011; Steenbergen-Hu & Olszewski-Kubilius, 2017) in STEM areas. Dweck 
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(2002) pointed out that students' view of learning (e.g., fixed or growth mindset) affects their 

persistence. Heilbronner (2011) suggested that many students who drop out of STEM fields could 

be successful if they persisted and believed in their abilities. However, there is not sufficient 

research on the early postsecondary STEM persistence of high-achieving students. Many 

researchers (e.g., Green & Sanderson, 2018; Mendez et al., 2008) focused on the general student 

population. Thus, continued research is needed to understand the STEM persistence of high-

achieving students, as they are more likely to have the potential to fulfill the need for graduates 

with STEM expertise.  

According to Olszewski-Kubilius (2006), school experiences (e.g., math and science 

courses) might not be challenging or motivating students to pursue careers in STEM fields. She 

suggested that additional experiences outside of school (e.g., summer and weekend camps) can 

engage students in STEM learning and ultimately in pursuing STEM degrees. Furthermore, Green 

and Sanderson (2018) found that students’ educational experiences were not a significant predictor 

of persistence among students, whether or not they were interested in STEM, suggesting the 

importance of out-of-school programs.  

Additionally, the effects of educational experiences on STEM persistence are even lower 

for high-achieving students who are from underrepresented populations. Previous studies have 

shown that students from racially, culturally, economically, and linguistically diverse populations 

are less likely to attend a postsecondary institution and even less to attain a degree (Ashford et al., 

2016; Diemer & Li, 2012), with the exception of Asian students, who are more likely to attain 

STEM degrees than their Black, Latinx, and Native American counterparts (Mendez et al., 2008). 

Many researchers have documented the barriers that underrepresented students face including 

racism; sexism; low science and math grades in high school; and insufficient STEM career 
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information; and they are less likely to pursue careers in STEM (Anderson, 2016; Assouline et al., 

2017; Turner et al., 2019). Wai et al. (2010) investigated the predictors of STEM achievement in 

college based on students’ advanced or enriched academic experiences in high school and found 

that students who had taken more advanced STEM courses and who had more opportunities in 

STEM were high achievers. However, many underrepresented students take a limited number of 

STEM courses in high school compared to their Asian American and White American peers 

leading to low STEM persistence in college (Ashford et al., 2016; Maltese & Tai, 2011).  

Given the importance of understanding factors that affect students’ persistence in STEM 

fields, researchers have focused on demographic, cognitive, and non-cognitive variables (Aryee, 

2017; Mendez et al., 2008). Quantitative analytic methods have included logistic regression 

(Mendez et al., 2008; Tyson et al., 2007; Watkins & Mazur, 2013; Zhang et al., 2004), discriminant 

function analysis (Achter et al., 1999), hazard/survivor models (Chimka et al., 2007; Min et al., 

2011), repeated measures ANOVA (Eris et al., 2010), and multinomial probit models (Chen & 

Soldner, 2013). Furthermore, with the development of machine learning, researchers have been 

widely used machine learning methods to examine factors affecting student persistence (Adejo & 

Connolly, 2018; Delen, 2010; Dissanayake et al., 2016; Kondo et al., 2017; Pereira et al., 2017). 

However, there is a need to understand high-achieving and non-high-achieving students’ 

persistence in STEM areas as there is limited research in the field. 

Compared to the traditional statistical methods, machine learning methods can be used to 

examine more complex relationships (Mendez et al., 2008). These methods provide better 

predictive results and have no limitations such as normality and independence. Furthermore, they 

can deal with missing data and nonlinear relationships, especially when working with large 

datasets (Thammasiri et al., 2014). In this study, I used machine learning methods to identify 
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variables affecting early post-secondary STEM persistence to better understand how they can 

contribute to the literature on early prediction of postsecondary STEM persistence.  

Significance of Study 

The findings of this study add to the literature on STEM persistence. In particular, using 

machine learning methods have the potential to identify variables that may be related to early 

postsecondary STEM persistence but that may not be identified with other standard statistical 

methods. The prediction of whether or not a student persist in an initial STEM major is not an easy 

task due to the complex relationships between and among variables (Mendez et al., 2008). Finding 

the predictors of persistence using traditional methods might not be sufficient to examine all the 

variables associated with persistence due to the limited number of variables that can be included 

in the models.  

 Researchers have investigated different variables and their association with students’ 

STEM persistence, such as high school GPA (Mendez et al., 2008; Nicholls et al., 2007; Zhang et 

al. 2004), SAT math scores (Chimka et al., 2007; French et al., 2005; Min et al., 2011; Nicholls et 

al., 2007; Watkins & Mazur, 2013; Zhang et al., 2004), gender (Chimka et al., 2007; Min et al., 

2011; Nicholls et al., 2010), number of STEM courses taken (Chen & Soldner, 2013; Mendez et 

al., 2008; Nicholls et al., 2010; Tyson et al., 2007; Wang, 2013), and experiences in high school 

math and science curriculum (Adelman, 1998). However, the effects of non-cognitive factors such 

as interest, outcome expectations, and self-efficacy (Aryee, 2017) have rarely been investigated. 

Additionally, studies of high-achieving students’ STEM persistence are scarce (Anderson, 2016; 

Yi, 2018). 

Specifically, focusing on demographics, cognitive, and non-cognitive variables that have 

the potential to affect persistence in STEM in the same study might provide better results. Also, 
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variables associated with persistence might not be found by other standard statistical methods. In 

this study, feature selection techniques are used to select the best predictor variables of STEM 

persistence. The selected machine learning methods in this study might be used in other settings, 

especially in similarly designed longitudinal studies, to predict students’ early postsecondary 

STEM persistence. The results may inform efforts to support students' persistence in STEM fields 

and identify students who are more likely to drop out of STEM fields within three years of college 

entrance. 

Purpose of the Study 

In this study, I investigated factors providing early prediction of postsecondary STEM 

persistence using machine learning methods. Traditional statistical methods commonly used to 

examine relationships between variables and their effects on persistence (Hodges & Mohan, 2019; 

Kučak et al., 2018; Mason et al., 2018). Machine learning techniques (e.g., random forest and 

artificial neural network) can also be implemented to examine more complex relationships 

between and among the variables. These new techniques can contribute to the current STEM 

persistence literature. To examine the predictors of early postsecondary STEM persistence of high-

achieving as well as non-high-achieving students from diverse populations, the following research 

questions were addressed in this study: 

1. What percentages of high-achieving and non-high-achieving students persist in 

postsecondary STEM majors? 

2. What variables affect high-achieving and non-high-achieving students’ persistence in 

postsecondary STEM majors?  

3. Which variables most significantly influence the early postsecondary persistence of high-

achieving and non-high-achieving students? 
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4. To what extent do high-achieving and non-high-achieving students’ demographics (e.g., 

gender, ethnicity, socioeconomic status) affect their early postsecondary STEM 

persistence? 

5. Which machine learning techniques can be used to identify variables influencing the early 

postsecondary persistence of high-achieving and non-high-achieving students in terms of 

classification models?  

 

To answer these questions, I used nationally representative data, the High School 

Longitudinal Study of 2009 (HSLS: 2009), collected by the National Center for Education 

Statistics (NCES). These data can be used to investigate students’ transitions from high school to 

college as well as to the job market. Using the data, I investigated demographics, cognitive factors, 

and non-cognitive factors of the early postsecondary STEM persistence of high-achieving 

students. To select variables associated with early postsecondary STEM persistence, I used feature 

selection techniques, which are essential preprocessing steps used in machine learning to find the 

predictor variables that increase the model’s performance (Saeys et al., 2008). Thus, these 

techniques are used to select the best variables to create a model. For instance, in the literature, 

parents’ education level has been shown to influence student persistence (Nicholls et al., 2010). In 

this study, instead of selecting only the highest education level of one parent as a variable, I 

included all the variables associated with parent education such as mother’s, father’s, female 

guardians’, male guardians’, and parents’ highest levels of education in feature selection. Using 

feature selection techniques helped me to select the best variables for the predictive model of 

students’ persistence in STEM. In particular, feature selection is an essential task in machine 

learning to create an effective predictive modeling system. After choosing the variables, I used 
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Random Forest and Artificial Neural Networks methods in this study. Then, using selected 

variables, based on the acceptable machine learning prediction performance, random forest feature 

importance technique was used to examine which variables were more important for predicting 

early postsecondary STEM persistence.
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CHAPTER 2 LITERATURE REVIEW 

Although previous studies have highlighted the importance of a qualified workforce in 

STEM areas (Ashford et al., 2016; Holmes et al., 2018), student persistence in STEM education 

still appears to be problematic (Heilbronner, 2011; Simon et al., 2015; Steenbergen-Hu & 

Olszewski-Kubilius, 2017). The enrollment and completion of postsecondary STEM degrees have 

been declining in the U.S (Holmes et al., 2018; Steenbergen-Hu & Olszewski-Kubilius, 2017) 

regardless of gender (Mendez et al., 2008). Although the United States attracts many students in 

STEM fields from all over the world, between 2000 and 2014, international student enrollment in 

U.S. postsecondary institutions decreased from 25% to 19% in these fields (NSB, 2018). As a 

result, due to low enrollment and completion rates, there is a need to support STEM areas in the 

United States. 

In the United States, a large proportion of college students who begin with STEM leave 

these fields prior to their postsecondary degree attainment because they either switch to non-STEM 

areas or drop out of college (Green & Sanderson, 2018). According to Chen and Soldner’s (2013) 

report based on nationally representative data, 48% of students who entered postsecondary STEM 

fields did not remain until graduation. Specifically, 28% switched to non-STEM fields, and 20% 

of them left the institution (Chen & Soldner, 2013). This situation creates a “leak” in the STEM 

pipeline. According to Holmes et al. (2018), the problems of decreasing enrollments and a lack of 

persistence have to be solved to meet the growing needs for a qualified workforce in STEM areas. 

Thus, it is crucial to encourage students to pursue and persist in STEM majors. According to Chen 

(2009), STEM persistence is defined in terms of students who continue their initial STEM degrees 

within 3 years of college enrollment. One way to increase the number of students who persist to 

graduation in STEM fields is to better understand and support them during their undergraduate 
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education. Thus, every type of decline in degree completion in STEM including switching to non-

STEM majors and dropping out of school should be reduced (Aryee, 2017; Simon et al., 2015). 

Given the critical need, researchers have studied the variables that predict STEM 

persistence to identify factors at both high school and postsecondary levels likely to yield 

persistence. Steenbergen-Hu and Olszewski-Kubilius (2017) found the longitudinal process of 

STEM postsecondary degree attainment is linked with students’ secondary education. STEM 

persistence is a longitudinal process, and secondary education has a significant impact on the 

completion of STEM degrees in college (Steenbergen-Hu & Olszewski-Kubilius, 2017). 

Additionally, Shaw and Barbuti (2010) studied the patterns of persistence of 54,336 third year 

college students and found that advanced placement exams, performance in science and math 

courses, positive science efficacy beliefs, and aiming for a doctorate were factors positively 

associated with STEM persistence in college. Similarly, Green and Sanderson (2018) found that 

the number of math and science courses taken in high school was linked with persistence in STEM 

and stated that there is little evidence that educational experiences affect persistence in college. 

With regard to who were confident in their high school science and math skills were more likely 

to persist in STEM areas at postsecondary levels (Eris et al., 2010). To augment these prior 

findings, more research is needed to determine the most effective predictors of student persistence 

in postsecondary STEM education so that improvements can be made to support the persistence 

of future STEM students. 

Machine Learning  

Machine learning is an important technology that enables computers to learn from past data 

and apply what is learned to new situations without being explicitly programmed (Samuel, 1959). 

Machine learning has existed since the mid-1900s; however, it has not been well known and used 
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in research, especially in education, until recent years (Kučak et al. 2018; Hodges & Mohan, 2019). 

According to Richert and Coelho (2013), machine learning is not an entirely new field because of 

the use of techniques and knowledge similar to statistics. Machine learning is instead used to 

understand underlying patterns and relationships in the data to make predictions (Delen, 2010). 

With the improvement of computer technologies, machine learning techniques have gained 

increasing popularity due to their ability to yield fast and accurate results (Kučak et al. 2018). 

Recently, machine learning algorithms have been used in several areas such as computer vision, 

natural language processing, and automated driving; however, applications of machine learning in 

education remain limited (Richert & Coelho, 2013).  

Some researchers have proposed that machine learning methods could be used in education 

to support teachers, predict student performance, and personalize student learning (Kučak et al., 

2018; Maseleno et al., 2018). For instance, Pavleković et al. (2011) demonstrated that a machine 

learning method known as a neural network, could identify fourth grade students who were 

mathematically talented. Okubo et al. (2017) showed that predicting students’ final grades with 

machine learning methods was more accurate and took less time than standardized statistical 

methods. Such efficiency is possible because machine learning uses various techniques and 

computational methods to increase its performance in making predictions (Kučak et al., 2018).  

According to Richert and Coelho (2013), similar to other statistical techniques, machine 

learning requires researchers to follow specific steps: 

1. Read and clean the data.  

2. Explore and understand the given data.  

3. Analyze how best to present the data to the learning algorithm.  
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4. Choose the right model and the learning algorithm.  

5. Measure performance accurately. 

In machine learning, when working with data, researchers generally split data into two 

parts as training and test sets. Experts often use the terms “validation” and “test” sets 

interchangeably. The majority of data in machine learning are used to train the model so that it can 

perform well and provide accurate results. The rest of the data are used to confirm an unbiased 

evaluation of the final model that fits the training data. 

One of the most important machine learning method categories is supervised learning, in 

which the target (dependent) variable is labeled, and the input data are used to find the target value 

(Müller & Guido, 2016). To examine the target value, supervised learning uses its initial output 

against the target output so that weights and coefficients can be adjusted based on these two outputs 

(Alpaydin, 2004; Hodges & Mohan, 2019). The supervised learning algorithms are complex and 

yield accurate results. 

Hodges and Mohan (2019) and Kučak et al. (2018) have asserted that understanding and 

using the framework and techniques of machine learning in education could provide benefits to 

the field such as generating more accurate results, solving complex problems, and making 

predictions.  

Predictor Variables of STEM Persistence 

Interest 

Interest is one of the most studied latent constructs and a significant predictor of STEM 

persistence (Aryee; 2017; Heilbronner 2011, 2013; Lubinski et al., 2001; Steenbergen-Hu & 

Olszewski-Kubilius, 2017). Interest indicates the degree to which individuals prefer specific tasks 
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over others (Lent et al., 1994, 2000). According to Aryee (2017), students who have a strong 

interest in pursuing a STEM degree are more likely to persist and complete initially declared 

STEM majors. Researchers have shown that students tend to lack interest in STEM, which leads 

to declines in enrollment rates in STEM areas (Heilbronner, 2011, 2013; Holmes et al., 2018).  

In a longitudinal study of talented students Heilbronner (2011) found that 74.2% of those 

students who had STEM interests in high school completed STEM degrees. This result suggests 

the need for further investigation of the role of interest in students’ success in STEM majors at the 

college level. However, Nugent et al. (2015) argued that interest does not directly correlate with 

STEM career orientation, but rather indirectly affects students’ careers through self-efficacy and 

outcome expectations. Green and Sanderson (2018) stated that attending different programs such 

as summer field studies, high school outreach programs, and mentoring programs can increase 

STEM interest and prepare students for further study. 

Expectancy 

Lent et al. (1994, 2000) defined outcome expectations as the imaginary consequences of 

performing specific behaviors (e.g., what happens if I do this?). Many researchers have concluded 

that evidence regarding the effects of expectancies on STEM persistence is still lacking. In a 

longitudinal study of 710 high school participants, Aryee (2017) found that those with mid or 

higher levels of outcome expectations tended to persist and obtain college degrees in STEM. In 

another longitudinal study in which they employed the expectancy value model (Eccles et al., 

2004) as a framework, the results showed that the expectations of low-income students were 

significantly influenced by pre-school contexts and directly affected post-secondary STEM 

persistence after three years of initial enrollment (Diemer & Li, 2012). 
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Given the importance of outcome expectancies, it is essential to address factors positively 

linked to them. Turner et al. (2019) examined the role of the outcome expectancies and found that 

mother support positively predicted students’ outcome expectations and yielded career 

development in STEM. By contrast, Nugent et al. (2015) found that students' outcome expectations 

regarding STEM careers are directly influenced by interest and indirectly affected by educator, 

family, peer, and prior knowledge. However, limited research has addressed the influence of 

outcome expectations on students’ postsecondary STEM persistence (Aryee, 2017). Also, the 

studies discussed above did not specifically explore the expectancies of high-achieving and non-

high-achieving students.  

Based on Social Cognitive Career Theory ([SCCT], Lent et al., 1994, 2000), Aryee (2017) 

concluded that outcome expectation is an essential part of the framework for predicting student 

persistence. Students with high level expectations are more likely to persist in STEM areas. 

Moreover, Heilbronner’s (2011) study included factors that could shed light on the STEM 

persistence of students with talents; however, she did not include expectancy as a factor. Overall, 

it is important to note that research on how outcome expectancy affects students with gifts and 

talents and from diverse populations is limited. 

Self-Efficacy 

 According to Bandura (1986), self-efficacy refers to an individual’s beliefs in their capacity 

to perform the necessary behaviors to achieve specific accomplishments. The SCCT framework 

includes self-efficacy as an important factor in predicting several variables such as interests, goals, 

and persistence (Lent et al., 1994, 2000). Heilbronner (2011, 2013) found a significant correlation 

between self-efficacy and STEM degree retention. Dweck (2007) also pointed out that students’ 

self-efficacy is one of the influential factors in STEM degree attainment. Furthermore, Nugent et 
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al. (2015) concluded that self-efficacy more strongly associated with STEM persistence when 

students’ interests are reinforced by educators, peers, and family. According to Lewis et al. (2017), 

self-efficacy is positively associated with student achievement and motivation; nonetheless, the 

magnitude and quality of self-efficacy are different for male and female students. This results in 

gender-related differences favoring men in STEM persistence and attainments, which should be 

addressed by educators and researchers. 

Gender 

There is ongoing debate regarding the higher representation of men in STEM fields (Kim 

et al., 2018; Lewis et al., 2017; Turner et al., 2019, Wang & Degol, 2017) and the lower likelihood 

that women enter and continue in STEM areas to completion of degrees (Chen & Soldner, 2013; 

Heilbronner, 2013; Wang & Degol, 2017). Although Wang and Degol (2017) pointed out that the 

difference between male and female participation in STEM education has been declining, the U.S. 

Department of Commerce (2011) stated that the representation of females in the STEM workforce 

was only 25%, revealing that problems still exist concerning equal gender representation in STEM 

areas.  

Researchers have investigated female students’ low representation in STEM fields and 

found that gender gaps in STEM are not a result of cognitive abilities. However, Boston and 

Cimpian (2018) stated that low female representation in STEM is because of negative stereotypes 

against women. This includes intellectual abilities, confidence, sense of belonging, and interest. 

The authors pointed out that female students might feel less competent in STEM due to these 

negative stereotypes, and they might have low self-efficacy in STEM areas and interest. 
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Academic Achievement 

Previous researchers have shown that domain specific abilities help students undertake and 

persist in their degrees (Kerr et al., 2012; Steenbergen-Hu & Olszewski-Kubilius, 2017). In many 

studies (e.g., Higdem et al., 2016) student achievements were measured through standardized test 

scores (e.g., SAT and AP exams), and in others GPA was used (e.g., Aryee, 2017; Camp et al., 

2009). 

With regard to gender, according to SAT Math and Verbal assessment results (College 

Board, 2011), male students have performed higher than female students since 1972. However, 

Heilbronner (2013) reported that male students’ performance is more elevated on the SAT Math 

test but not on the Verbal test. Although ability is essential for success in STEM education, 

researchers have shown that achievement as measured by standardized tests is not effective in 

predicting female students’ degree completion (Heilbronner, 2013). 

Racial Background 

Based on the literature, students of color (e.g., Black, Latinx, and Native American) face 

barriers (e.g., racism; low science and math grades) and are less likely to attend college (Ashford 

et al., 2016; Diemer & Li, 2012). Diemer and Li (2012), investigating the lower likelihood that 

students of color attend and attain degrees in postsecondary education, found that if age, academic 

achievement, and gender are controlled, peers and parents’ educational expectancies support their 

college-level degree attainment. In a study of a U.S. national sample of Black male students with 

talents, Anderson (2016) found that 61% of eleventh-grade students who took pre-calculus in 

ninth- and eleventh-grades scored in the top 20%. However, only 18% of students who took only 

ninth-grade pre-calculus scored in the 20%. The result of the study further demonstrated that Black 

male students were more likely to persist in STEM if they attended field trips, engaged in 
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extracurricular activities, and took college level courses. Thus, involvement in STEM-related 

courses and activities promotes the pursuit and attainment of STEM degrees by high ability 

students from underrepresented populations. 

Income 

The low representation of students from economically disadvantaged backgrounds in 

postsecondary education is an ongoing issue as these students are more likely to drop out of school 

(Holmes et al., 2018). Turner et al. (2019) found that students with lower-income families 

perceived more barriers to careers in STEM and received less peer and parental and father support 

than higher SES peers, while the latter scored higher in outcome expectations but not in self-

efficacy. Furthermore, the study results revealed that participating in STEM fields does not predict 

efficacy but does predict positive outcome expectations of students. More research is needed to 

determine the importance of income-related variables in STEM persistence for students from 

different economic backgrounds. 

STEM Course Completion and Access 

Preparation for and access to STEM courses is effective in increasing students’ degree 

completion rates in STEM (Assouline et al., 2017). According to Anderson (2016), taking a higher-

level mathematics course resulted in a higher graduation rate in any postsecondary field. Based on 

previous research, factors negatively associated with STEM degree completion are: fewer credit 

hours in STEM (Chen & Soldner, 2013), poor performance in STEM (Chen & Soldner, 2013). On 

the other hand, advanced math courses (Anderson, 2016), SAT math scores (Cardona et al., 2020; 

Chimka et al., 2007; French et al., 2005; Min et al., 2011; Nicholls et al., 2007; Thammasiri et al., 

2014; Watkins & Mazur, 2013; Zhang et al., 2004), SAT verbal scores (Zhang et al., 2004), ACT 
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science scores (Chimka et al., 2007), high school GPA (French et al., 2005, Mendez et al., 2008; 

Nicholls et al., 2007; Watkins & Mazur, 2013; Zhang et al., 2004), freshman year GPA (Mendez 

et al., 2008), number of science courses taken (Mendez et al., 2008; Tyson et al., 2007; Wang, 

2013), number of engineering courses taken (Mendez et al., 2008), number of math courses taken 

(Tyson et al., 2007; Wang, 2013), ACT and SAT scores (Nicholls et al., 2010), and 12th grade 

math achievement (Wang, 2013) positively affect STEM degree completion.  

Advanced Placement (AP) and International Baccalaureate (IB) programs are two types of 

programs commonly offered to high school students looking for advanced curricula. The AP 

program has been offered since 1955 by the College Board (n.d.) to provide college-level 

introductory courses to students for those who desire more of a challenge. The AP program offers 

38 different subjects, where students learn text examination, data interpretation, evidence 

evaluation, solid argument construction, and multiple perspectives. Students must obtain a 3 or 

higher grade to pass their AP test; thus, they can transfer credits to some colleges. Research has 

shown that students who take AP courses in high school are more likely to complete their STEM 

majors (Mattern et al., 2013).  

However, students from underrepresented populations are less likely to have access to AP 

courses and are also underrepresented in the AP program (College Board, 2020). According to 

Smith et al.’s (2018) report, students from underrepresented populations in STEM, including first-

generation students, students of color, and female students, had a 13% higher STEM college 

completion compared to those who did not take AP courses in high school. That demonstrates the 

need to support students from underrepresented populations to take AP courses to reduce potential 

dropouts in college.  



 

 

31 

    The International Baccalaureate (IB) program was founded in 1968 by the International 

Baccalaureate Organization (2017) to promote more challenging courses and an internationally 

standardized curricula for students between 3 and 19 years old. IB programs are available in 158 

countries, and the U.S offers 52% of the IB programs. IB programs increased by 37.9% between 

2015 and 2019. Researchers (Pilchen et al., 2019) have shown that there is a positive relationship 

between students who are enrolled in an IB program and their persistence in postsecondary degrees 

in general. 

Previous studies might help to understand student persistence; however, they do not study 

all STEM subjects as well as all grade levels. Therefore, there is a need to examine all possible 

STEM course offerings, which can yield a comprehensive picture of how these different courses 

and credits are associated with persistence. 
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CHAPTER 3 METHODS 

In this study, I examined the demographic, cognitive, and non-cognitive factors affecting 

the early postsecondary STEM persistence of high-achieving students using nationally 

representative data from the High School Longitudinal Study of 2009 (HSLS: 2009). I used 2009 

data as the base year, first follow-up data collected in 2012, update data collected in 2013, high 

school transcripts collected in 2013-2014, and second follow-up data collected in 2016. The HSLS: 

2009 began with the data of a nationally representative ninth-grade cohort involving 944 schools 

in fall 2009. The first follow up involved data from the spring of 2012, when the students were in 

the eleventh grade. The second follow up involved their data three years after high school. Thus, 

students were followed through their high school and three of their postsecondary years. The 

HSLS: 2009 addresses how, when, and why students decide to pursue careers in STEM as well as 

in other areas.  

In this study, I used the HSLS: 2009 data to investigate factors associated with early post-

secondary STEM persistence in relation to the research questions using different approaches and 

compared how different machine learning methods address the research questions. I used feature 

selection techniques to select the best variables for the machine learning classification algorithms’ 

performance in terms of predicting early post-secondary STEM persistence. Then, I used machine 

learning methods, including Random Forests and Artificial Neural Network, to find the selected 

variables' prediction accuracy. Finally, I used feature importance techniques to investigate the 

importance of each selected variable in the study. 
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Research Questions 

This study addressed the following research questions: 

1. What percentages of high-achieving and non-high-achieving students persist in 

postsecondary STEM majors? 

2. What variables affect high-achieving and non-high-achieving students’ persistence in 

postsecondary STEM majors?  

3. Which variables most significantly influence the early postsecondary persistence of high-

achieving and non-high-achieving students? 

4. To what extent do high-achieving and non-high-achieving students’ demographics (e.g., 

gender, ethnicity, socioeconomic status) affect their early postsecondary STEM 

persistence? 

5. Which machine learning techniques can be used to identify variables influencing the early 

postsecondary persistence of high-achieving and non-high-achieving students in terms of 

classification models? 

Data Sources 

Data were drawn from the HSLS: 2009, which comprises nationally representative data 

collected by NCES. The HSLS: 2009 allows researchers to examine the transition of American 

students from high school to college or to the job market. The HSLS: 2009 is the fifth and only 

ongoing longitudinal study including a high school cohort by NCES. There are several new 

features included in the HSLS: 2009, which were not included in previous nationally representative 

longitudinal studies, such as the National Longitudinal Study of the High School Class of 1972, 

High School and Beyond, the National Education Longitudinal Study of 1988, and the Education 
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Longitudinal Study of 2002. For example, whereas previous studies started with eighth-, tenth- 

and twelfth-grade cohorts, in the HSLS:2009, the ninth-grade cohort was selected as the base 

because ninth grade is a critical juncture for to determining students transition to high school and 

academic paths (Ingels et al., 2011). Another difference is that student assessment, and student 

parent, teacher, and school administrator survey data are included in HLSL: 2009. Also, the HLSL: 

2009 places particular emphasis on STEM, which allows researchers to address the relationships 

between STEM courses and achievement as well as persistence in STEM. The variables are 

selected from the publicly available data of the HSLS: 2009 to investigate the research questions 

of the study.  

NCES Data Collection Procedures 

The target population of the HSLS: 2009 comprised students in the United States, who 

were in ninth grade in the fall of 2009. The data were collected through a two-stage sampling 

process including a stratified random sampling of 1,889 schools of which a total of 944 schools 

agreed to participate in the study, and a random sample of 25,206 ninth-grade students (about 27 

per school) (Ingels et al., 2011). The target population included students attending regular public 

schools, public charter schools, and private schools in the United States. Of the original sample of 

25,206 students, 548 students who had language barriers or severe disabilities were excluded, 

resulting in 24,658 participants eligible to participate in the study. The student data comprised an 

assessment of algebraic reasoning and an online survey about educational experiences, 

expectancies, socioeconomic status, values regarding math and science as a subject, and vocations. 

Additionally, students’ parents, principals, math and science teachers, and counselors completed 

surveys on the web or over the phone.  
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The first follow up took place 2.5 years after the base year data collection, in the spring of 

2012, when the initial ninth-grade cohort of students were eleventh-graders. All students eligible 

to participate in the base year were included in the follow up data collection (Ingels et al., 2013). 

That is, the target population was not altered to have a representative cohort in the follow up. 

Therefore, 24,658 students were eligible to participate in the study in 2012.  

The update data were collected between June and December 2013 to obtain information 

about students’ transitioning from high school to college or the workforce. The purpose of the 

update was to examine students’ high school completion, college applications and enrollment, and 

financial aid options status. Either a student or a parent completed a short 15-minute survey to 

provide information on students’ high school completion, enrollment in courses for college credit, 

meetings with high school counselors, postsecondary enrollment, employment, financial aid, and 

careers (Ingels et al., 2015). As part of the update, the high school transcripts for the 2013-14 

academic year of 23,415 students were collected from 938 of the initial 944 schools (six schools 

had closed after the baseline data collection). Students who had transferred to a new school were 

included in the follow up data.  

The second follow up, which was administered from March 2016 through January 2017, 

included information on the target cohort approximately three years after high school graduation. 

This collection included new data such as high school completion; college enrollment history and 

plans, college majors, and occupations with an emphasis on STEM fields (Duprey et al., 2018). In 

this round of data collection, postsecondary transcripts were used instead of students’ self-reports 

as a more reliable data source.  
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Participants 

Identification 

Students were identified for inclusion in this study as high-achieving and non-high-

achieving based on their high school overall GPAs, which were included in the publicly available 

HSLS: 2009 dataset. In this study, all students (out of 23,503) with a 3.5 or higher GPA were 

identified as high-achieving, and non-high-achieving students were students with a 2.5 and lower 

GPA. I only selected students who were in STEM fields in college. Based on these criteria, 2,397 

students identified as high-achieving in STEM and 1,034 students identified as non-high-achieving 

in STEM were included in the study to investigate early postsecondary STEM persistence 

predictors. 

Of the students identified as high-achieving in this study, 17.73% were Asian, 4.01% were 

Hispanic, 6.76% were Multiracial, 0.58% were Indigenous, and 58.82% were White (Table 1). Of 

the students identified as non-high-achieving, 6.77% were Asian, 17.41% were Black, 19.83% 

were Hispanic, 9.38% were Multiracial, 1.84% were Indigenous, and 41.68% were White (See 

Table 1). It is important to note that 3.30% of high-achieving and 3.09% of non-high-achieving 

students’ race information were missing in the dataset. More information on race proportions based 

on the HSLS: 2009 sample and National Population data is included in Table 1. 
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Table 1. Race Proportions Based on High-Achieving and Non-High-Achieving Students, 

HSLS: 2009 Sample, and National Population Census Data 
 High-Achieving Non-High-Achieving HSLS: 2009   Nation 

Asian 17.73% 6.77% 8.31% 5.90% 

Black 4.01% 17.41% 10.42% 13.40% 

Hispanic 8.80% 19.83% 16.16% 18.50% 

Multiracial 6.76% 9.38% 8.26% 2.80% 

Indigenous 0.58% 1.84% 1.17% 1.50% 

White 58.82% 41.68% 51.41 60.10% 

Missing 3.30% 3.09% 4.28%   

Note. The term Indigenous refers to students who are American Indian, Alaska Native, Native 

Hawaiian, and Pacific Islander. The national population is based on U.S Census Bureau’s 2010 

data. 

 

Data Preparation 

In the HSLS: 2009 dataset, missing values are encoded as certain numerical values. To 

handle these values, I assigned the “NaN” label to the missing values to prepare the data for data 

imputation. Also, I regrouped some ordinal categorical variables to have fewer categories related 

to the selected variable to increase generalization and learning capabilities of machine learning 

algorithms. Each feature in this study and its categories are explained in the variables section. 

Generally, datasets require addressing data quality problems such as removing duplicate values 

and handling missing values (Chu et al., 2016). However, in the HSLS: 2009 data, there was no 

problem regarding data cleaning since this process had already performed by the data provider, 

and the codebook was available for variables included in the dataset.  

Data Imputation 

Machine learning algorithms can work with missing values (Géron, 2019). However, 

missing values can negatively impact models’ accuracy (Zahedi et al., 2020). In machine learning 

modeling, several methods are used for missing data imputation such as interpolation, mean, 
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median, constant value, forward fill (ffill), backward fill (bfill), and k-nearest neighbor (kNN). In 

this study, I used two different methods including ffill and kNN to fill the missing values since the 

selected variables contained categorical and numerical values. For simplicity, based on the final 

variables selected in the study, the number of missing values and their percentages are given for 

high-achieving and non-high-achieving students in the Tables 2 and 3, respectively. 

 

Table 2. Missing Values Before Data Imputation for High-Achieving Students 

Feature Description Count  Percentage 

X1SEX Gender 0 0 

X1RACE Race 79 3.32 

X1SCHOOLBEL School Belonging 203 8.53 

X1SCHOOLENG School Engagement 176 7.4 

X1LOCALE Locale 0 0 

X2TXMPROF5 Math Proficiency 65 2.73 

X2PAR1OCC_STEM1 Parent Occupation 110 4.62 

X2BEHAVEIN School Motivation 106 4.46 

X2PROBLEM School Problems 354 14.88 

X2SCIEFF Science Self-Efficacy 122 5.13 

X2STU30OCC_STEM1 Expected Occupation at 30 98 4.12 

X3TCREDCOMPSCI Credits in Computer Science 0 0 

X3TCREDAPIB Credits in AP/IB combined 0 0 

X3TGPASTEM GPA in STEM 0 0 

S1ACTIVITIES Activity Attendance 0 0 

X1SESQ5 Socioeconomic Status 150 6.31 

X3TCREDSTEM Credits in STEM 0 0 

S4ANYDUALCRED Dual Credits  131 5.51 

Persistent   0 0 
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Table 3. Missing Values Before Data Imputation for Non-High-Achieving 

Students 

Feature Description Count Percentage 

X1SEX Gender 1 0.1 

X1RACE Race 32 3.09 

X1SCHOOLBEL School Belonging 117 11.32 

X1SCHOOLENG School Engagement 105 10.15 

X1LOCALE Locale 0 0 

X2TXMPROF5 Math Proficiency 74 7.16 

X2PAR1OCC_STEM1 Parent Occupation 87 8.41 

X2BEHAVEIN School Motivation 107 10.35 

X2PROBLEM School Problems 284 27.47 

X2SCIEFF Science Self-Efficacy 120 11.61 

X2STU30OCC_STEM1 Expected Occupation at 30 86 8.32 

X3TCREDCOMPSCI Credits in Computer Science 0 0 

X3TCREDAPIB Credits in AP/IB combined 0 0 

X3TGPASTEM GPA in STEM 0 0 

S1ACTIVITIES Activity Attendance 0 0 

X1SESQ5 Socioeconomic Status 77 7.45 

X3TCREDSTEM Credits in STEM 0 0 

S4ANYDUALCRED Dual Credits  87 8.41 

Persistent   0 0 

 

Categorical Missing Variables 

Generally, machine learning researchers use several filling techniques for missing 

categorical values such as mode, ffill and bfill (Heydt, 2017). I used the ffill function for 

categorical missing values in the dataset, which uses the last valid observation forward to fill the 

missing value (Heydt, 2017). Thus, in this technique, the missing values are filled based on the 

last non-missing value in the previous row in the same column. This method helps prevent the 

overuse of one category and scatters values more randomly due to not assigning one specific value 

to all missing values (e.g., mode and median).  
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Numerical Missing Variables 

In this study, I used the kNN algorithm for missing numerical values, which populates the 

values with respect to the selected k nearest neighbors. The algorithm uses a distance measure to 

fill the missing value similarly to surrounding values (Zhang, 2012). In this study, k is set as 15 to 

fill the missing numerical variables, indicating that missing values were filled relative to the 

nearest 15 neighbors. The kNN algorithm also helps avoid the overuse of one value in the same 

feature so that machine learning algorithms do not mislead learning. This method is widely used 

in machine learning due to its simplicity and high performance and because it is generally effective 

for numerical variables (Zhang, 2012).  

Feature Scaling and Normalization 

Machine learning algorithms underperform when the numerical input values have very 

different scales. Normalization (min-max scaling) is used to avoid this problem and does not 

change the shape of the distribution, only rescales values between 0 and 1 where the minimum 

value is equal to 0, and the max value is equal to 1. Using normalization is especially useful when 

the data are not normally distributed (Géron, 2019). Normalization places variables into a new 

scale (0-1). By doing this, machine learning algorithms do not place too much importance on 

features that have higher values. This scaling technique performs well with most of the machine 

learning algorithms including artificial neural networks as it does not assume any data distribution. 

Therefore, normalization is generally used with artificial neural networks (Géron, 2019). 

Standardization 

Standardization is another common scaling technique used in machine learning, and it is 

used to rescale values so that each feature has a mean of 0 and a standard deviation of 1, giving 
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the data a standard normal distribution (Géron, 2019). In this study, I only used normalization for 

numerical variables. I did not perform standardization because the numerical variables in this study 

had already been prepared and standardized by NCES based on statistical methods and were ready 

for use. 

Feature Transformation and One-Hot-Encoding (Dummy Variables) 

Categorical variables need to be encoded with numerical values to be meaningful in 

machine learning modeling. However, when we assign categorical variables with numerical 

values, machine learning algorithms may assume an ordinal relationship; such a relationship can 

damage the model. Furthermore, in machine learning algorithms, two near values are considered 

more similar than two distant values (Géron, 2019). The most common way to prevent these 

problems is to employ the one-hot-encoding or one-out of-N encoding, which is also called dummy 

variables (Müller & Guido, 2016). This method replaces integer categorical variables with new 

attributes into one-hot vectors, which contain values of 0 and 1 (Géron, 2019; Müller & Guido, 

2016). The number of these new attributes are based on the categories of the categorical variable. 

In this study, I used one-hot-encoding for all categorical variables with three or more categories to 

obtain dummy variables for each category. 

Variables 

In machine learning, “feature” is the term used to describe a variable. In this study, the 

variables of interest, including demographics, cognitive factors, and non-cognitive factors, are 

defined and discussed in the following paragraphs.   
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Sex 

In this study, I regrouped the “X1SEX” variable, and it included categories of “0” and “1” 

for male and female students, respectively.  

Race  

In the HSLS: 2009 dataset, race/ethnicity is a composite variable encompassing six 

different dichotomous race/ethnicity composites. In this study, I regrouped the categories of the 

“X1RACE" variable based on the publicly available dataset and used the following categories in 

the analysis: Asian, Black/African American, Hispanic/Latino, Indigenous (including American 

Indian, Alaska Native, Native Hawaiian, and Pacific Islander), Multiracial, and White. In the 

HSLS: 2009, race/ethnicity composites were obtained through a student questionnaire, and if race 

information was not available on the student questionnaire, a school-provided sampling roster or 

data from a parent questionnaire was used to generate the race ethnicity composites.  

Parental Education 

In the HSLS: 2009, several categorical variables are included for parents’ education. In this 

study, I included all parental education-related variables and aimed to select the final variables 

after using the feature selection techniques to identify those with greatest influence on persistence. 

Therefore, I selected variables from each parent’s highest level of education, both parents’ highest 

level of education, female guardian's highest level of education, and male guardian's highest level 

of education in this study. Based on the feature selection analyses, there was a high correlation 

between parental education variables. Furthermore, a socioeconomic status variable was created 

using parental education so that I decided to avoid using parental education related variables in my 

final analysis as it did not bring new information into the analyses. 
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Socioeconomic Status (SES) 

For the socioeconomic status, I used the quintile variable "X1SESQ5", which consists of 5 

quintiles from 1 to 5, from the lowest to the highest quartile, respectively. The quintile variable for 

the socioeconomic status is created by NCES for inclusion in the dataset using both the parents'/ 

guardians' education, occupation, and family income. 

Math Scores 

In this study, I used several math related variables to select the best predictive math scores 

associated with STEM persistence in college. I added the following variables: math quantile score, 

base year math proficiency probability scores from level 1 to 5, and follow up math probability 

scores from level 1 to 7. Each score is created by NCES and explained in more detail in the 

following paragraphs.  

Math Quantile Score 

This is a norm-referenced achievement variable included in the HSLS: 2009 dataset. This 

score is derived from the estimated (weighted) population achievement distributions based on math 

scores, where “1” indicated the lowest and “5” indicated the highest quantile. These quantiles are 

generated through the cut points at every 20th percentile. 

Math Proficiency Probability Scores (Base Year) 

 In this study, five different levels of probability scores were used. These scores are 

criterion referenced and clustered using IRT-estimated item parameters created by NCES. The 

higher a score the lower the level of proficiency, and a student who is at a particular proficiency is 

expected to pass that given level. In the HSLS: 2009, levels 1 through 5 represent proficiency in 
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the following math topics: algebraic expressions, multiplicative and proportional thinking, 

algebraic equivalents, systems of equations, and linear functions, respectively. 

Math Proficiency Probability Scores (First Follow up) 

Similar to the math proficiency probability scores of the base year, the first follow up math 

proficiency scores are criterion referenced and based on clusters of items that mark seven levels 

on the mathematics scale. In HSLS: 2009, the levels are hierarchical so that higher level mastery 

subsumes proficiency at the lower levels. These proficiency scores were computed by NCES using 

IRT-estimated item parameters, and each of the proficiency scores consists of a continuous scale. 

Each proficiency probability represents the probability that a student would pass a given 

proficiency level. In the first math proficiency follow-up scores, levels 1 to 7 correspond to the 

following math topics: algebraic expressions, multiplicative and proportional thinking, algebraic 

equivalents, systems of equations, linear functions, quadratic functions, and log and exponential 

functions, respectively. 

Identity 

Math Identity 

I included both the base year and the first follow up math identity variables in the study. In 

the HSLS: 2009, math identity is a continuous variable that was generated by NCES using principal 

components factor analysis and standardized to a mean of 0 and standard deviation of 1. Students 

who agree with the statements "you see yourself as a math person" and/or "others see me as a math 

person" have higher values for the math identity. 
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Science Identity 

Similar to math identity, this variable is a continuous variable for science identity and 

constructed from extent of agreement with the following statements: "you see yourself as a science 

person" and/or "others see me as a science person." This variable was created by NCES using 

factor analysis and standardized scores. In the HSLS: 2009, base year and first follow up science 

identity variables were generated, and these variables were included in this study. 

Interest 

Math Interest 

In the HSLS: 2009, this variable represents students’ math interest on a scale in which 

higher values represent greater interest in math courses. This variable was created by NCES using 

principal components factor analysis and standardized to a mean of 0 and standard deviation of 1. 

The scale is generated based on six input variables, three of which are assessed with four-point 

Likert scale items: “you are enjoying/enjoyed this class very much or you enjoy math classes very 

much,” “you think/thought this class is/was a waste of your time or you think math classes are a 

waste of your time,” and “you think/thought this class is/was boring or you think math classes are 

boring.” The remaining three input variables were related to the items “favorite school subject,” 

“least favorite school subject,” and “taking fall 2009 math because he/she really enjoys math.” 

Students who provided a full set of responses were assigned a scale value for math interest. 

Science Interest 

This variable is also a continuous variable, which is generated using the same procedures 

as those used with math interest. A higher value represents a greater interest in science courses. 

The variable was created by NCES and constructed using factor analysis and standardized scores. 
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This scale is based on the following statements: “enjoying fall 2009 science course very much,” 

“thinks fall 2009 science course is a waste of time,” “thinks fall 2009 science course is boring,” 

“favorite school subject,” “least favorite school subject,” and “taking fall 2009 science because 

he/she really enjoys science.”  

Self-Efficacy  

Math Self-Efficacy 

Math self-efficacy is a continuous variable in which a higher value represents higher math 

self-efficacy. In the HSLS: 2009, math self-efficacy was created using principal components factor 

analysis and standardized scores from the base year data. This scale was generated using four input 

variables, each measured using a four-point Likert scale: “you are confident that you can do an 

excellent job on math assignments,” “you are certain that you can understand the most difficult 

material presented in math textbooks,” “you are certain that you can master math skills,” and “you 

are confident that you can do an excellent job on math assignments.” Students who provided all 

responses were assigned a scale value.  

Additionally, the first follow up math self-efficacy scale was also included in this study, 

which is generated using the same calculation methods and inputs that were used in the first 

follow up data for the scale score.  

Science Self-Efficacy 

In the HSLS: 2009, this variable is a scale of students’ science self-efficacy in which a 

higher value represents higher science self-efficacy. The variable was obtained from the base year 

data and generated through principal components factor analysis and standardized scores. Four 

input variables, each presented as a four-point Likert scale item, were used to compute this scale: 
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“you are confident that you can do an excellent job on science tests,” “you are certain that you can 

understand the most difficult material presented in science textbooks,” “you are certain that you 

can master science skills,” and “you are confident that you can do an excellent job on science 

assignments.” Students who provided a full set of responses were assigned a scale value.  

In the HSLS: 2009, the first follow up science self-efficacy scale, a similar variable to the 

science self-efficacy score from the base year data, was constructed using the same calculation 

methods and inputs for the scale score.  

Sense of Belonging  

This variable represents students’ perceptions of school belonging, in which higher values 

represent a greater sense of school belonging. The sense of belonging variable was generated 

through principal components factor analysis and standardized scores. Five inputs, each presented 

as an item with a four-point Likert scale, were selected to generate the sense of belonging scale: 

“you feel safe at this school,” “You feel proud being part of this school,” “there are always teachers 

or other adults in your school that you can talk to if you have a problem,” “school is often a waste 

of time,” and “getting good grades in school is important to you.” Students who provided a full set 

of responses were assigned a scale value for sense of belonging.  

Engagement  

In the HSLS: 2009, the engagement variable is represented on a scale of the students’ 

school engagement in which a higher value represents greater school engagement. The variable 

was calculated through principal factor components and standardized scores. In this study, to 

generate the engagement variable, four input variables were measured with the following 

questions: “how often do you go to class without your homework done?” “how often do you go to 
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class without pencil or paper?” “how often do you go to class without books?” and “how often do 

you go to class late? Only students who responded to all these questions were assigned a scale 

value in the HSLS: 2009. 

Motivation 

In the HSLS: 2009, there is a numerical value that represents a scale of students’ school 

motivation. The variable was created using principal components factor analysis and standardized 

to a mean of 0 and standard deviation of 1 by NCES, and higher values represent higher school 

motivation.   

Student Expectation 

This is a categorical variable indicating the highest level of education each ninth grader 

expects to achieve. This variable is drawn from the student questionnaire, and the same variable 

was collected in the first follow up and was also included in this study. In this study, I regrouped 

categories of student expectation as follows: “do not know,” “high school,” “college degree,” and 

“graduate degree.” 

Parent Expectation 

Another categorical variable included was “how far in school a ninth grader’s parents 

thinks s/he will go.” This variable is derived from the base year parent questionnaire, or, if missing 

from the base year parent questionnaire, it is statistically imputed in the HSLS: 2009. Additionally, 

the same variable was collected in the first follow up and was also included in this study. 
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School Problems 

In the HSLS:2009, there is a standardized value that represents a scale of problems such as 

lack of resources and materials at each high school. The variable was created by NCES using 

principal components factor analysis and standardized to a mean of 0 and standard deviation of 1 

by NCES and higher values represent more positive assessments of the school's problems. 

School Locale and Region 

School Locale 

School locale is a categorical variable based on four categories: city, suburb, town, and 

rural represented by values 1 to 4, respectively. Values for the base year, the first follow up, and 

the update were included in this study. The update data demonstrate the locale of students’ current 

or last attended school or “-8” for unit non-response and “-9” for missing values.  

School Region 

School region is a categorical variable indicating the geographic location of a student’s 

school in the United States, Northeast, Midwest, South, and West, represented by values 1 to 4, 

respectively. Values for the base year, the first follow up, and the update were included in this 

study. The update data demonstrates the geographic location of the sample based on students’ 

current or last attended school also includes “-8” for unit non-response and “-9” for missing values.  

Math and Science Effort 

This math effort variable is a scale of the students’ responses to math effort items; higher 

values represent more positive assessments. This variable was generated using factor analysis and 

standardized scores. To generate this scale, four input variables were used, each consisting of a 
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five-point Likert scale item: “you pay/paid attention to the teacher,” “you turn/turned in your 

assignments and projects on time,” “when an assignment is/was very difficult, you stop/stopped 

trying,” and “you do/did as little work as possible; you just want/wanted to get by.”  

In the HSLS: 2009, the science effort scale was created by following the same procedures 

as for the math effort scale, the only difference being science was referenced instead of math.  

Activities 

In this study, I created a variable based on students’ responses, representing the 

participation of any of the following student activities including math club, math competition, 

math camp, math study groups, science club, science competition, science camp, and science study 

groups in 2008-2009 school year. The variable consisted of two categories, representing “0” for 

no and “1” for yes.  

Courses and Credits 

In the HSLS: 2009, several variables are included for the credits earned in STEM courses 

and the highest-level STEM courses taken. I selected all variables regarding STEM courses and 

credits in this study and choose the final variables after using feature selection techniques.  

Dual Credit  

This is a dichotomous categorical variable representing if the student ever earned dual 

enrollment credits from college or trade school. The variable consisted of two categories, 

representing “0” for no and “1” for yes.  
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GPA in STEM 

This variable is a numerical value (max GPA is 4, min GPA is 0), and it represents total 

GPA earned in STEM courses in high school. The variable was included in the high school 

transcripts collected in 2013-2014. 

Persistence in STEM Fields 

In this study, persistence is defined in terms of students who continue their education in 

STEM fields within 3 years of initial college enrollment (including all types of postsecondary 

education institutions). In other words, if they start a STEM degree and continue in a STEM 

degree, they are considered persistent in STEM. The dependent variable of the study is persistence 

in STEM fields. I used different variables to create a binary outcome (target) variable (feature). 

This procedure is called feature engineering, which allows for extracting different features from 

the dataset.  

To create the target variable, I used a variable to indicate whether or not students initially 

considered pursuing a STEM major drawing on information from the second follow up and using 

the values of “0” for no and “1” for yes. Then, I used a categorical variable that indicates students’ 

first or second major fields of study in STEM areas. In the HSLS: 2009, this variable indicates 

whether a student is enrolled in a STEM field or not. The variable includes two values, “0” for not 

having a STEM major and “1” for having one or more STEM majors. Another variable used in 

this study is also categorical, indicating students’ NSF STEM majors, indicated as “0” for not 

having an NSF approved STEM major and “1” for having an NSF approved STEM major. In this 

study, if a student in a STEM or NSF STEM, that is considered as a STEM major. Ultimately, 

students who initially considered pursuing STEM majors and still pursue STEM majors and are 

considered as persistent. The remaining students who did not continue STEM majors are 
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considered as non-persistent in this study. The persistency and non-persistency categories 

constituted the dependent/target/outcome variable in this study. 

Feature Selection 

The outcome variable of the study was a dichotomous variable that demonstrated whether 

students persisted in STEM majors within three years of college enrollment. In this study, I used 

feature selection techniques to select the best variables for early postsecondary STEM student 

persistence and reached the models used in the study. I aimed to explain the model with the best 

predictive variables to explain students' persistence in STEM adequately.  

Numerical Variables 

In terms of numerical variable selection, Pearson Correlation and Variance Inflation Factor 

(VIF) values were used in the study. I grouped all numerical variables in the study and examined 

the Pearson Correlation. Pearson correlation uses coefficients ranging from -1 to 1, where "-1" and 

"1" represent strong negative and positive correlations, respectively. I investigated variables with 

moderate and strong correlations in more detail and selected final variables according to the 

literature and correlation results. 

I examined the variance inflation factor of the remaining variables after Pearson 

Correlation. I observed the VIF of all the remaining variables, and they were less than 2.5 and 

lower, indicating there was no multicollinearity among variables (Midi et al., 2010). 
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Categorical Variables  

Before using categorical feature selection, I encoded categorical variables consisting of 3 

or more categories to obtain dummy variables for each category. Next, I examined Spearman 

Correlation and Chi-Square values. 

In this study, I also used Spearman Correlation that uses coefficients ranging from -1 to 1, 

where "-1" and "1" represent strong negative and positive correlations, respectively. In this study, 

I examined variables with moderate and strong correlations in more detail and obtained the final 

variables according to the literature and correlation results. In this study, no variables were reduced 

using the chi-square; this method is used for control purposes.  

Feature Importance 

Feature importance techniques use unique machine learning parameters from the relevant 

machine learning libraries to select the most important features for the model (Saeys et al., 2008). 

The most important features are good predictors of the independent variable (target feature). After 

feature selection, I employed feature importance techniques for identifying good predictors of 

persistence in STEM. Each feature importance technique uses different machine learning 

algorithms and parameters to provide a score for each independent variable. Higher scores 

represent variables that are more salient to the dependent variable. For instance, if the feature 

importance score is high for a specific feature in this study, the feature affects students’ persistence 

more than other features. These techniques reduce the complexity of the model (number of features 

or independent variables) so that interpretations become easier. I used the random forest feature 

importance technique to examine each variable’s importance. The higher scores represent the 

higher importance for the target variable. In this technique, a sum of all importance scores is equal 

to 1.  
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Machine Learning Methods 

Random Forest 

Random forest is an ensemble learning method and consists of decision tree collections 

(Müller & Guido, 2016). A random forest incorporates the random selection of variables (Ho, 

1995; Amit & Geman, 1997). In other words, in a random forest, a subset of random variables is 

selected in the learning process. According to Hastie et al. (2009), for a classification problem with 

p variables, the size of random variables is typically set at √𝑝; for a regression problem, the size 

p is set at 
𝑝

3
. In addition to the number of random variables, a random forest also includes other 

tuning parameters, including the terminal node size, number of trees, and bootstrap sample sizes.  

The random forest method has some advantages, such as providing high quality models, 

reducing overfitting issues, and selecting the most important dataset variables. In this study, I used 

several parameters in random forest. The “max samples” parameter was used with bootstrap that 

was set as “True” to control the decision tree collections. Furthermore, I used “n estimators” as 

1000, indicating the number of trees in the forest. The quality of a split was measured using Gini 

impurity. All the remaining parameters were used as default. I also set “random state” as 46 in the 

study to produce the same results while using the random forest method. In this study, I randomly 

selected 80% of data for training and 20% of data for testing. 

Artificial Neural Networks (ANN) 

The artificial neural network is a non-parametric machine learning technique in which 

many simple units, called neurons, are interconnected by weighted links (Mason et al., 2018). The 

human brain inspired artificial neural networks, and artificial neural network neurons work 
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similarly to neurons in the human brain (Rosebrock, 2019). The artificial neural network is a 

labeled structure and consists of an input layer, weights, hidden layers, and an output layer 

(Rosebrock, 2019). Each layer has nodes, and connections through layers are obtained through 

signals. A final function calculates the output label. According to Mason et al. (2018), artificial 

neural networks outperform standard classical methods because they can analyze incomplete and 

noisy data, and they provide clear solutions. 

In this study, the artificial neural networks used included 1 input layer, 3 hidden layers, 

and 1 output layer. As an activation function in each hidden layer, I used Rectified Linear Units 

(ReLU) to introduce nonlinearity into the artificial neural network to increase learning capabilities 

with nonlinear learning functions. Using the output of the last layer, sigmoid classifies student 

persistency into two different classes based on the highest probability.   

The data trained with using neural network algorithm with a batch size of 10 examples, the 

learning rate of 1e−2 (scientific notation of .01). The artificial neural network Keras model 

compiled with the “binary_crossentropy” loss function, “adam” optimizer, and “accuracy” metrics 

using the Keras library (Chollet et al., 2015). Depending on the amount of data (e.g., number of 

high-achieving students’ data) and selected features in the training and test sets, the max epoch 

number in experiments was set to 100 and 125. 

Evaluation Measures 

To evaluate the performance of machine learning methods, I used accuracy, sensitivity, 

and specificity metrics in the study. These evaluation metrics are calculated using a confusion 

matrix (also known as error matrix) representing actual vs. predicted results in a table format 

similar to the decision table for hypothesis testing. Because the study outcome variable had only 
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two categories (dichotomous outcome), there were four populated cells in the confusion matrices 

in Table 4. 

 

Table 4. Confusion Matrix for a Dichotomous Outcome Variable 

  
Predicted Results 

    Predicted positive Predicted negative 

Actual Results  
Actual positive  True Positive (TP)  False Positive (FP) 

Actual negative False Negative (FN) True Negative (TN) 

Accuracy 

Accuracy is the amount of correctly predicted data out of all the data. In this study, accuracy 

shows the percentage of correctly predicted data by the machine learning algorithms, which is the 

amount of correctly predicted data divided by all the data in the dataset. The amount of correctly 

predicted data can be defined as follows: the total number of class 0 classified as class 0 (True 

Negative) and the total number of class 1 classified as class 1 (True Positive). 

The terms True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 

(FN) refer to the result of a test and the correctness of the classification. For example, in this study, 

for student persistence, TP means correctly predicted as persistent, FP means incorrectly predicted 

as persistent, TN means correctly predicted as not persistent, and FN is incorrectly diagnosed as 

persistent. 

Accuracy is calculated as follows:  

 

 Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃+ 𝐹𝑁
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Sensitivity 

Sensitivity, also known as recall, is another common evaluation measure used in machine 

learning studies. Sensitivity is the proportion of actual positive cases that are predicted as positive 

(True Positive) and provides information on how well the test detects True Positives (TP). 

Sensitivity is calculated as follows:  

 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Specificity 

Specificity is defined as the proportion of the actual negative class (non-persistent), which 

is predicted as the negative class (True Negative). Thus, specificity provides information on how 

well the test detects True Negatives (TN).  

Specificity is calculated as follows: 

 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Receiver Operating Characteristics (ROC) Curve 

A ROC curve is a plot showing the tradeoff between sensitivity and specificity. A ROC 

curve is a graphically illustrated plot that shows the ability of a binary classifier system as its 

discrimination threshold is varied. Normally, the threshold value is defined as 0.5 as a default 

which means if the classification result is greater than and equal to 0.5, it is predicted as positive 

class (persistent). With ROC curves, we can see the machine learning algorithm performance when 

the threshold increases or decreases. When the true positive rate increases and the false positive 

rate decreases, the area under the ROC curve enlarges, indicating that the test is more accurate. If 
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the ROC area becomes a 45-degree diagonal, the test is less accurate. In sum, the area under the 

ROC curve indicates the test’s accuracy. 

Handling Imbalanced Classification 

Synthetic Minority Over-Sampling Technique (SMOTE) 

Imbalanced learning is a common problem in machine learning, requiring special attention 

for minority class (e.g., students who are not persistent in STEM fields in this study). There are 

several approaches to handle imbalanced learning to avoid misclassification of minority class such 

as under-sampling and over-sampling (Longadge et al., 2013). In this study, I performed Synthetic 

Minority Over-Sampling Technique (SMOTE), which generates additional data points based on 

the sampling data of minority class using K-nearest neighbors (Elreedy & Atiya, 2019). SMOTE 

is a common technique in machine learning to prevent the imbalanced learning problem (Elreedy 

& Atiya, 2019).   
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CHAPTER 4 RESULTS 

In this section, I present the results of the study, in which I investigated high-achieving and 

non-high-achieving students’ persistence in postsecondary STEM fields using random forest and 

artificial neural network methods. I also discuss the importance of each selected factor affecting 

students’ persistence using random forest feature importance technique. 

Research Question 1: What percentages of high-achieving and non-high-achieving students 

persist in postsecondary STEM majors? 

To answer the first research question, I used publicly available student data from HSLS: 

2009. The full dataset includes 23,503 students. To perform the analysis, I created “Major” and 

“Persistent” variables by using feature engineering techniques. For high-achieving and non-high-

achieving students, I selected STEM students with GPAs of 3.5 and higher and 2.5 and lower, 

respectively. A total of 2,397 students were identified as high-achieving and 1,034 students as non-

high-achieving.  

In this study, 29.62% of high-achieving students were non-persistent while 70.38% were 

persistent in STEM fields. On the other hand, 28.92% of non-high-achieving students were non-

persistent, while 71.08% were persistent in STEM majors. These results indicate that the 

percentages of high-achieving and non-high-achieving of students who were persistent in STEM 

majors were similar. However, the number of high-achieving students who pursued STEM were 

two times more than non-high-achieving students.  
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Research Question 2: What variables affect high-achieving and non-high-achieving students’ 

persistence in postsecondary STEM majors?  

To select variables that affect high-achieving and non-high-achieving students’ persistence 

in postsecondary STEM majors, I used a dataset that included approximately 8,500 student 

variables. Based on the literature, I included all the variables that were relevant to student 

persistence in STEM in my initial analyses. In this study, a dichotomous outcome variable (target 

feature), created using feature engineering techniques, indicated whether students persisted in their 

initially designated STEM major. I employed feature selection techniques to select the most 

important features for early post-secondary student persistence in STEM and reached optimal 

performance of the machine learning models used in this study. I aimed to explain the model with 

the variable that best predicted student persistence in STEM.   

I used two different approaches to select final numerical variables, Pearson Correlation and 

the Variance Inflation Factor (VIF). Variables with moderate to high Pearson correlations were 

examined in more detail, and the final variables were selected based on the domain knowledge and 

correlation results. Next, I checked the remaining variables’ VIFs. I observed that all the remaining 

variables’ VIFs were 2.5 or lower, which indicated no multicollinearity among variables.  

Additionally, I encoded categorical variables that consisted of three or more categories and 

obtained dummy variables for each category; this method is also known as one-hot-encoding. 

Then, in order to select the final categorical variables, I used Spearman Correlation and Chi-Square 

methods. Variables with moderate to high Spearman correlations were examined in more detail. 

The final variables were selected based on the correlation results. For example, the total GPA was 

used instead of each grade level GPA because the total GPA provided more information and 

correlated with each grade level GPA. I did not remove any variables based on chi-square because 

the chi-square value for each feature provided no new information. I used this method for checking 
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purposes as I had observed that all the variables were correctly selected based on the Pearson 

Correlation Analysis. 

After my initial analyses, I selected the following variables for the study: school belonging, 

school engagement, math proficiency level, parent occupation, school motivation, school 

problems, science self-efficacy, expected occupation at the age of 30, credits earned in computer 

sciences, GPA for STEM courses, student activities, credits earned in STEM, credits earned in 

AP/IB combined, dual credits, race, socioeconomic status, urbanicity. Information on all variables 

used in the analyses is included in Table 5.  
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Table 5. Full List of Final Variables 

Feature Description Type Values 

X1SEX Gender Categorical (Binary) 0: Female, 1: Male 

X1SCHOOLBEL School Belonging Numerical Normalized float values ranging from 0 to 1 

X1SCHOOLENG School Engagement Numerical Normalized float values ranging from 0 to 1 

X2TXMPROF5 Math Proficiency Numerical Normalized float values ranging from 0 to 1 

X2PAR1OCC_STEM1 Parent Occupation Categorical (Binary) 0: Non-STEM, 1: STEM 

X2BEHAVEIN School Motivation Numerical Normalized float values ranging from 0 to 1 

X2PROBLEM School Problems Numerical Normalized float values ranging from 0 to 1 

X2SCIEFF Science Self-Efficacy Numerical Normalized float values ranging from 0 to 1 

X2STU30OCC_STEM1 Expected Occupation at 30 Categorical (Binary) 0: Non-STEM, 1: STEM 

X3TCREDCOMPSCI Credits in Computer Science Numerical Normalized float values ranging from 0 to 1 

X3TCREDAPIB Credits in AP/IB combined Numerical Normalized float values ranging from 0 to 1 

X3TGPASTEM GPA in STEM Numerical Normalized float values ranging from 0 to 1 

S1ACTIVITIES Activity Attendance Categorical (Binary) 0: No, 1: Yes 

X3TCREDSTEM Credits in STEM Numerical Normalized float values ranging from 0 to 1 

S4ANYDUALCRED Dual Credits  Categorical (Binary) 0: No, 1: Yes 

X1RACE_2.0 Asian Categorical (Binary) Asian 0: No; 1: Yes 

X1RACE_3.0 Black Categorical (Binary) 0: No, 1: Yes 

X1RACE_5.0 Hispanic Categorical (Binary) 0: No, 1: Yes 

X1RACE_6.0 Multiracial  Categorical (Binary) 0: No, 1: Yes 

X1RACE_7.0 Indigenous Categorical (Binary) 0: No, 1: Yes 

X1RACE_8.0 White  Categorical (Binary) 0: No, 1: Yes 

X1LOCALE_1.0 City  Categorical (Binary) 0: No, 1: Yes 

X1LOCALE_2.0 Suburb Categorical (Binary) 0: No, 1: Yes 

X1LOCALE_3.0 Town Categorical (Binary) 0: No, 1: Yes 

X1LOCALE_4.0 Rural  Categorical (Binary) 0: No; 1: Yes 

X1SESQ5_1.0 First quintile (lowest)  Categorical (Binary) 0: No; 1: Yes 

X1SESQ5_2.0 Second quintile  Categorical (Binary) 0: No; 1: Yes 

X1SESQ5_3.0 Third quintile Categorical (Binary) 0: No, 1: Yes 

X1SESQ5_4.0 Fourth quintile  Categorical (Binary) 0: No, 1: Yes 

X1SESQ5_5.0 Fifth quintile (highest) Categorical (Binary) 0: No, 1: Yes 

Persistent   Categorical (Binary) 0: No, 1: Yes 

Note. The term Indigenous refers to students who are American Indian, Alaska Native, Native Hawaiian, and Pacific Islander. 
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Research Question 3: Which variables most significantly influence the early postsecondary 

persistence of high-achieving and non-high-achieving students? 

To examine variables that most significantly influenced high-achieving and non-high-

achieving students' early postsecondary persistence, I used different feature importance 

techniques. Based on the machine learning algorithm performances, I obtained best results with 

random forest and artificial neural network methods using a Synthetic Minority Oversampling 

Technique (SMOTE) dataset. As the random forest importance technique is one of the commonly 

used methods in educational research for non-linearly distributed data, I used it. The results for 

high-achieving and non-high-achieving students are listed in Table 6. The random forest 

importance algorithm uses random forest classifiers and assigns a relative importance score for 

each variable. According to this technique, the higher the percentage of the variable, the greater 

its importance.  
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Table 6. Feature Importance Scores of High-Achieving (GPA >= 3.5) and  

Non-High-Achieving STEM Students (GPA <= 2.5) 

 High-Achieving 

Students 

Non-High-Achieving 

Students 

Feature 

Feature 

Importance 

Score 

Percentage 

Feature 

Importance 

Score 

Percentage 

Gender 0.017706 1.77 0.025039 2.5 

School Belonging 0.078048 7.8 0.075099 7.51 

School Engagement 0.085393 8.54 0.077479 7.75 

Math Proficiency 0.09165 9.17 0.089296 8.93 

Parent Occupation 0.012636 1.26 0.019495 1.95 

School Motivation 0.083039 8.3 0.086969 8.7 

School Problems 0.082953 8.3 0.076305 7.63 

Science Self-Efficacy 0.07525 7.53 0.073064 7.31 

Expected Occupation at 30 0.017334 1.73 0.028278 2.83 

Credits in Computer Science 0.066012 6.6 0.067485 6.75 

Credits in AP/IB combined 0.068642 6.86 0.033737 3.37 

GPA in STEM 0.078694 7.87 0.075965 7.6 

Activity Attendance 0.012793 1.28 0.012708 1.27 

Credits in STEM 0.074368 7.44 0.072674 7.27 

Dual Credits  0.014915 1.49 0.014777 1.48 

Asian 0.010782 1.08 0.007697 0.77 

Black 0.004655 0.47 0.012142 1.21 

Hispanic 0.008127 0.81 0.014319 1.43 

Multiracial  0.006979 0.7 0.008672 0.87 

Indigenous 0.001021 0.1 0.002565 0.26 

White  0.013728 1.37 0.013518 1.35 

City  0.012215 1.22 0.01403 1.4 

Suburb 0.013753 1.38 0.014306 1.43 

Town 0.009647 0.96 0.008878 0.89 

Rural  0.011669 1.17 0.011762 1.18 

First quintile (lowest)  0.005516 0.55 0.010347 1.03 

Second quintile  0.007967 0.8 0.013763 1.38 

Third quintile 0.009572 0.96 0.016529 1.65 

Fourth quintile  0.011739 1.17 0.012531 1.25 

Fifth quintile (highest) 0.013198 1.32 0.010569 1.06 

     Note. Feature importance scores are based on SMOTE datasets.
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Based on the feature importance results for high-achieving students, the 10 most important 

variables for the study were math proficiency level 5 (9.17%), school belonging (7.80%), school 

engagement (8.54%), school motivation (8.30%), school problems (8.30%), science self-efficacy 

(7.53%), credits earned in computer sciences (7.44%), GPA for STEM courses (7.87%), credits 

earned in STEM courses (7.44%), and credits earned in AP/IB combined (6.86%). Based on these 

results, math proficiency was the most important variable in the study, showing the greater 

importance of math proficiency in predicting persistence of high-achieving students in STEM 

fields.  

Feature importance results for non-high-achieving students (Table 6) revealed that the 10 

most important variables of the study were math proficiency level 5 (8.93%), school motivation 

(8.70%), school engagement (7.75%), school problems (7.63%), GPA for STEM courses (7.60%), 

school belonging (7.51%), credits earned in STEM courses (7.27%), science self-efficacy (7.31%), 

credits earned in computer sciences (6.75%), and credits earned in AP/IB combined (3.37%). 

According to these results, the most important variables were similar for high-achieving 

and non-achieving students. However, the importance scores of these variables were different. For 

example, the scores for credits earned in AP/IB were 3.37% for non-high-achieving students and 

6.86% for high-achieving students, meaning that the variable was almost twice as important for 

high-achieving students. Furthermore, when I compared academic factors in general (see Table 6), 

I found that academic factors had slightly higher importance for high-achieving students’ 

persistence in STEM.  
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Research Question 4: To what extent do high-achieving and non-high-achieving students’ 

demographics (e.g., gender, ethnicity, socioeconomic status) affect their early postsecondary 

STEM persistence? 

Table 7 presents the demographic information (gender, race, socioeconomic status, and 

locale) of high-achieving STEM students shows that 68.04% of female and 73.73% of male high-

achieving students were persistent in STEM fields; however, the number of female students (927) 

in this group was greater than that of male students (727). Results regarding race showed that 

White (71.48%), Hispanic (70.59%), and Asian (70.53%) students had the highest percentages of 

persistent high-achieving students in STEM areas. The proportion of persistent high-achieving 

Multiracial students was 65.09% and of Black students was 64.65%. Indigenous students had the 

smallest percentage of persistent high-achieving students, 53.33%. Furthermore, in this study, 

comparison of the percentages of persistent students from different socioeconomic backgrounds 

showed that the highest percentage of persistent students who were high-achieving in STEM fields 

were from the third economic quintile (73.21%), followed by the fourth (72.50%), fifth (69.41%), 

and second (68.37%) quintiles (see Table 7). The smallest percentage of persistent students was 

from the first (67.16%) quintile, indicating that students from lower socioeconomic backgrounds 

were the least persistent in STEM. Regarding students’ residential locale, the highest percentage 

of persistent high-achieving students (72.85%, n=884) resided in suburbs. In contrast, the lowest 

percentage of persistent high-achieving students (64.26%, n=291) resided in towns. There is not a 

notable difference in student persistence based on students' residential locale. 

As shown in Table 7’s summary of demographic information for non-high-achieving 

students, 69.94% of female and 72.28% of male non-high-achieving students were persistent in 

STEM. Among racial groups, Hispanic students had the highest percentage of persistence in STEM 

fields (76.53%) followed by White students (68.62%), and Indigenous students had the lowest 

percentage (57.89%). With regard to socioeconomic status, the highest percentage of persistent 
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non-high-achieving students were from the third quintile (75.41%) and the lowest percentage 

(64.84%) from the fifth quintile (see Table 7). Regarding urbanicity, the highest percentage of 

persistent non-high-achieving students was from rural areas (73.33%, n=165) and the second 

highest from suburban areas (72.52%, n=285), followed by city (68.89%, n=217) and town 

(67.33%, n=68). 
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Table 7. Demographics of High-Achieving (GPA >= 3.5) and Non-High-Achieving (GPA <= 2.5) STEM Students  
  High-Achieving Students Non-High-Achieving Students 

Variable  Categories Total Number Non-Persistent Persistent Total Number Non-Persistent Persistent 

Gender 
Female 1411 451 (31.96 %) 960 (68.04%) 529 159 (30.06%) 370 (69.94%) 

Male 986 259 (26.27%) 727 (73.73%) 505 140 (27.72%) 365 (72.28%) 

Race 

Asian 431 127 (29.47%) 304 (70.53%) 72 21 (29.17%) 51 (70.83%) 

Black 99 35 (35.35%) 64 (64.65%) 189 52 (27.51%) 137 (72.49%) 

Hispanic 221 65 (29.41 %) 156 (70.59%) 213 50 (23.47%) 163 (76.53%) 

Multiracial 169 59 (34.91 %) 110 (65.09%) 98 29 (29.59%) 69 (70.41%) 

Indigenous 15 7 (46.67%) 8 (53.33%) 19 8 (42.11%) 11 (57.89%) 

White 1462 417 (28.52%) 1045 (71.48%) 443 139 (31.38%) 304 (68.62%) 

Socioeconomic 

Status 

First Quintile 134 44 (32.84%) 90 (67.16%) 196 49 (25%) 147 (75%) 

Second Quintile 215 68 (31.63%) 147 (68.37%) 206 54 (26.21%) 152 (73.79%) 

Third Quintile 336 90 (26.79%) 246 (73.21%) 244 60 (24.59%) 184 (75.41%) 

Fourth Quintile 509 140 (27.50%) 369 (72.50%) 206 72 (34.95%) 134 (65.05%) 

Fifth Quintile 1203 368 (30.59%) 835 (69.41%) 182 64 (35.16%) 118 (64.84%) 

Locale 

City 708 211 (29.80%) 497 (70.20%) 315 98 (31.11%) 217 (68.89%) 

Suburb 884 240 (27.15%) 644 (72.85%) 393 108 (27.48%) 285 (72.52%) 

Town 291 104 (35.74%) 187 (64.26%) 101 33 (32.67%) 68 (67.33%) 

Rural 514 155 (30.16%) 359 (69.84%) 225 60 (26.67%) 165 (73.33%) 

Note. The term Indigenous refers to students who are American Indian, Alaska Native, Native Hawaiian, and Pacific Islander. 
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Figure 1 shows the random forest feature importance bar graph for high-achieving students. 

The feature importance scores for gender, race, socioeconomic status were 1.77%, 4.53%, and 

4.8%, respectively, indicating that among these three demographic variables socioeconomic status 

was the most important.  

 
Figure 1. Feature Importance Bar Graph for High-Achieving Students Based on SMOTE 

Note. X1SCHOOLBEL = School Belonging, X1SCHOOLENG = School Engagement, X2TXMPROF5 = Math 

Proficiency, X2PAR1OCC_STEM1 = Parent Occupation, X2BEHAVEIN = School Motivation, X2PROBLEM = 

School Problems, X2SCIEFF = Science Self-Efficacy, X2STU30OCC_STEM1 = Expected Occupation at 30, 

X3TCREDCOMPSCI = Credits in Computer Science, X3TCREDAPIB = Credits in AP/IB combined, 

X3TGPASTEM = GPA in STEM, S1ACTIVITIES = Activity Attendance, X3TCREDSTEM = Credits in STEM, 

S4ANYDUALCRED = Dual Credits, X1RACE_2.0 = Asian, X1RACE_3.0 = Black, X1RACE_5.0 = Hispanic, 

X1RACE_6.0 = Multiracial, X1RACE_7.0 = Indigenous, X1RACE_8.0 = White, X1LOCALE_1.0 = City, 

X1LOCALE_2.0 = Suburb, X1LOCALE_3.0 = Town, X1LOCALE_4.0 = Rural, X1SESQ5_1.0 = First quintile 

(lowest), X1SESQ5_2.0 = Second quintile, X1SESQ5_3.0 = Third quintile, X1SESQ5_4.0 = Fourth quintile, 

X1SESQ5_5.0 = Fifth quintile (highest) 

 

 

An examination of each demographic variable reveals that the feature importance score of 

race-related dummy variables was smaller than that of other variables included in the study. The 

highest feature importance score was found for White students and the lowest for Indigenous 

students. Furthermore, socioeconomic status also has small feature importance scores; however, 
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the feature importance scores increase from the first to the fifth quantile. This result indicates that 

students from higher socioeconomic backgrounds are more likely to persist in STEM. Examination 

of the importance of locale information importance indicated that suburban areas have higher 

feature importance than other areas. 

Figure 2 shows the random forest feature importance bar graph for non-high-achieving 

students. The feature importance scores for gender, race, and socioeconomic status were 2.5%, 

5.89%, and 6.37%, respectively, indicating that, similar to results for high-achieving students, 

economic status was the most important among these three demographic variables. However, non-

high-achieving students had a higher importance score for socioeconomic status than high-

achieving students. 

An examination of each demographic variable reveals that the feature importance of race 

was higher for Hispanic and White students than for other groups, and it was lowest for Indigenous 

students. Overall, the feature importance scores of race related variables were much lower than 

those of other variables included in the study. Furthermore, the third quintile had the highest 

feature importance score regarding socioeconomic status while the first quintile had the lowest 

score. Among the four locales, students from suburban areas had the highest feature importance 

score, implying that they were more likely to persist in STEM.  
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Figure 2. Feature Importance Bar Graph for Non-High-Achieving Students Based on SMOTE 

 

Note. X1SCHOOLBEL = School Belonging, X1SCHOOLENG = School Engagement, X2TXMPROF5 = Math 

Proficiency, X2PAR1OCC_STEM1 = Parent Occupation, X2BEHAVEIN = School Motivation, X2PROBLEM = 

School Problems, X2SCIEFF = Science Self-Efficacy, X2STU30OCC_STEM1 = Expected Occupation at 30, 

X3TCREDCOMPSCI = Credits in Computer Science, X3TCREDAPIB = Credits in AP/IB combined, 

X3TGPASTEM = GPA in STEM, S1ACTIVITIES = Activity Attendance, X3TCREDSTEM = Credits in STEM, 

S4ANYDUALCRED = Dual Credits, X1RACE_2.0 = Asian, X1RACE_3.0 = Black, X1RACE_5.0 = Hispanic, 

X1RACE_6.0 = Multiracial, X1RACE_7.0 = Indigenous, X1RACE_8.0 = White, X1LOCALE_1.0 = City, 

X1LOCALE_2.0 = Suburb, X1LOCALE_3.0 = Town, X1LOCALE_4.0 = Rural, X1SESQ5_1.0 = First quintile 

(lowest), X1SESQ5_2.0 = Second quintile, X1SESQ5_3.0 = Third quintile, X1SESQ5_4.0 = Fourth quintile, 

X1SESQ5_5.0 = Fifth quintile (highest) 
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Research Question 5: Which machine learning techniques can be used to identify variables 

influencing the early postsecondary persistence of high-achieving and non-high-achieving 

students in terms of classification models? 

In this study, I used random forest and artificial neural networks as machine learning 

models. In addition, I used original and augmented (SMOTE) student data to obtain the results. 

The descriptive statistics of each variable are shown in Tables 8 through 11. Furthermore, I 

present results for high-achieving and non-high-achieving students separately, including random 

forest and neural network results with original and SMOTE datasets to better understand how 

variables influence the early postsecondary STEM persistence of these groups. 

Table 8 presents descriptive statistics that summarize the central tendency, dispersion, and 

shape of the imbalanced dataset distribution for high-achieving students, including the count, 

mean, standard deviation, and dispersion of each feature. 
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Table 8. Descriptive Statistics That Summarize the Central Tendency, Dispersion and Shape 

of Imbalanced Dataset Distribution for High-Achieving Students (GPA >= 3.5) 

Feature count mean std min 25% 50% 75% max 

Gender 2397 0.411348 0.492181 0 0.000000 0.000000 1.000000 1 

School Belonging 2397 0.782007 0.149772 0 0.694757 0.780899 0.908240 1 

School Engagement 2397 0.815607 0.164994 0 0.729560 0.849057 0.937107 1 

Math Proficiency 2397 0.533440 0.414498 0 0.055286 0.661465 0.959595 1 

Parent Occupation 2397 0.203171 0.402442 0 0.000000 0.000000 0.000000 1 

School Motivation 2397 0.867598 0.113251 0 0.823633 0.892416 0.943563 1 

School Problems 2397 0.368154 0.214473 0 0.210884 0.361451 0.494331 1 

Science Self-Efficacy 2397 0.694052 0.216390 0 0.615572 0.666667 0.863747 1 

Expected Occupation at 30 2397 0.666667 0.471503 0 0.000000 1.000000 1.000000 1 

Credits in Computer Science 2397 0.105924 0.146944 0 0.000000 0.100000 0.200000 1 

Credits in AP/IB combined 2397 0.250088 0.250617 0 0.000000 0.153846 0.384615 1 

GPA in STEM 2397 0.883187 0.097399 0 0.875000 0.875000 1.000000 1 

Activity Attendance 2397 0.232791 0.422698 0 0.000000 0.000000 0.000000 1 

Credits in STEM 2397 0.571131 0.133682 0 0.483871 0.548387 0.645161 1 

Dual Credits 2397 0.372132 0.483474 0 0.000000 0.000000 1.000000 1 

Asian 2397 0.179808 0.384108 0 0.000000 0.000000 0.000000 1 

Black 2397 0.041302 0.199028 0 0.000000 0.000000 0.000000 1 

Hispanic 2397 0.092199 0.289366 0 0.000000 0.000000 0.000000 1 

Multiracial 2397 0.070505 0.256049 0 0.000000 0.000000 0.000000 1 

Indigenous 2397 0.006258 0.078875 0 0.000000 0.000000 0.000000 1 

White 2397 0.609929 0.487868 0 0.000000 1.000000 1.000000 1 

City 2397 0.295369 0.456304 0 0.000000 0.000000 1.000000 1 

Suburb 2397 0.368794 0.482579 0 0.000000 0.000000 1.000000 1 

Town 2397 0.121402 0.326662 0 0.000000 0.000000 0.000000 1 

Rural 2397 0.214435 0.410515 0 0.000000 0.000000 0.000000 1 

First quintile (lowest) 2397 0.055903 0.229783 0 0.000000 0.000000 0.000000 1 

Second quintile 2397 0.089695 0.285805 0 0.000000 0.000000 0.000000 1 

Third quintile 2397 0.140175 0.347241 0 0.000000 0.000000 0.000000 1 

Fourth quintile 2397 0.212349 0.409056 0 0.000000 0.000000 0.000000 1 

Fifth quintile (highest) 2397 0.501877 0.500101 0 0.000000 1.000000 1.000000 1 

Persistent 2397 0.703796 0.456677 0 0.000000 1.000000 1.000000 1 
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As shown in Table 8, school motivation and GPA in STEM have higher means, showing 

that students’ school motivation and GPA in STEM are higher compared to other features for high-

achieving students. However, math proficiency variable had the highest score (0.959595) at the 

75%, showing that 25% of students’ math proficiency score are close the highest score. Another 

point to be addressed is that among the means of racial groups, the highest was White and the 

lowest was Indigenous, showing that a greater number of White students are high-achieving than 

of other groups. 

Table 9 presents descriptive statistics that summarize the central tendency, dispersion, and 

shape of the SMOTE dataset distribution for high-achieving students, including the count, mean, 

standard deviation, and dispersion of each feature.  
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Table 9. Descriptive Statistics That Summarize the Central Tendency, Dispersion and Shape 

of the SMOTE Dataset Distribution for High-Achieving Students (GPA >= 3.5) 
feature count mean std min 25% 50% 75% max 

Gender 3374 0.375519 0.484328 0 0.000000 0.000000 1.000000 1 

School Belonging 3374 0.779352 0.143844 0 0.691011 0.776626 0.889513 1 

School Engagement 3374 0.814651 0.156425 0 0.729560 0.840671 0.920335 1 

Math Proficiency 3374 0.521610 0.407157 0 0.062984 0.617598 0.945618 1 

Parent Occupation  3374 0.179609 0.383918 0 0.000000 0.000000 0.000000 1 

School Motivation 3374 0.865185 0.109698 0 0.823633 0.888598 0.940035 1 

School Problems 3374 0.369354 0.206715 0 0.222222 0.365592 0.492063 1 

Science Self-Efficacy 3374 0.688932 0.209042 0 0.605147 0.666667 0.844282 1 

Expected Occupation at 30 3374 0.640486 0.479929 0 0.000000 1.000000 1.000000 1 

Credits in Computer Science 3374 0.103865 0.138598 0 0.000000 0.078398 0.200000 1 

Credits in AP/IB combined 3374 0.245817 0.240949 0 0.053942 0.162562 0.384615 1 

GPA in STEM 3374 0.881431 0.092900 0 0.840652 0.875000 1.000000 1 

Activity Attendance 3374 0.201541 0.401211 0 0.000000 0.000000 0.000000 1 

Credits in STEM 3374 0.569426 0.126896 0 0.483871 0.548387 0.637864 1 

Dual Credits 3374 0.348548 0.476581 0 0.000000 0.000000 1.000000 1 

Asian 3374 0.175163 0.380163 0 0.000000 0.000000 0.000000 1 

Black 3374 0.035862 0.185975 0 0.000000 0.000000 0.000000 1 

Hispanic 3374 0.082395 0.275006 0 0.000000 0.000000 0.000000 1 

Multiracial 3374 0.069057 0.253589 0 0.000000 0.000000 0.000000 1 

Indigenous 3374 0.004446 0.066538 0 0.000000 0.000000 0.000000 1 

White 3374 0.600771 0.489813 0 0.000000 1.000000 1.000000 1 

City 3374 0.295199 0.456200 0 0.000000 0.000000 1.000000 1 

Suburb 3374 0.354475 0.478425 0 0.000000 0.000000 1.000000 1 

Town 3374 0.122407 0.327803 0 0.000000 0.000000 0.000000 1 

Rural 3374 0.213693 0.409973 0 0.000000 0.000000 0.000000 1 

First quintile (lowest) 3374 0.048014 0.213828 0 0.000000 0.000000 0.000000 1 

Second quintile 3374 0.086544 0.281208 0 0.000000 0.000000 0.000000 1 

Third quintile 3374 0.130705 0.337128 0 0.000000 0.000000 0.000000 1 

Fourth quintile 3374 0.203023 0.402309 0 0.000000 0.000000 0.000000 1 

Fifth quintile (highest) 3374 0.505039 0.500049 0 0.000000 1.000000 1.000000 1 

Persistent 3374 0.500000 0.500074 0 0.000000 0.500000 1.000000 1 
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Table 9 shows that the descriptive statistics of the SMOTE dataset for high-achieving 

students are similar to those of the imbalanced dataset. In this dataset, school motivation and GPA 

in STEM have higher means than other features for high-achieving students. Also, math 

proficiency still had the highest score (0.945618) at 75%, showing that 25% of the students’ math 

proficiency scores are close the highest score. Also, the race variable had a similar pattern in the 

SMOTE dataset. The mean score of White was the highest while Indigenous was the lowest, 

showing that a greater number of White students are high-achieving based on high school GPA.  

Table 10 presents descriptive statistics that summarize the central tendency, dispersion, and 

shape of imbalanced dataset distribution for non-high-achieving students, including the count, 

mean, standard deviation, and dispersion of each feature.
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Table 10. Descriptive Statistics That Summarize the Central Tendency, Dispersion and Shape 

of Imbalanced Dataset Distribution for Non-High-Achieving Students (GPA <= 2.5) 

feature count mean std min 25% 50% 75% max 

Gender 1034 0.488395 0.500107 0 0.000000 0.000000 1.000000 1 

School Belonging 1034 0.699844 0.175415 0 0.614095 0.689524 0.824762 1 

School Engagement 1034 0.694545 0.194238 0 0.587002 0.712998 0.840671 1 

Math Proficiency 1034 0.100000 0.239005 0 0.001033 0.006408 0.036663 1 

Parent Occupation 1034 0.150870 0.358096 0 0.000000 0.000000 0.000000 1 

School Motivation 1034 0.812063 0.129217 0 0.754745 0.837178 0.902190 1 

School Problems 1034 0.436793 0.193805 0 0.322176 0.451883 0.550941 1 

Science Self-Efficacy 1034 0.628858 0.219145 0 0.525547 0.666667 0.691241 1 

Expected Occupation at 30 1034 0.500967 0.500241 0 0.000000 1.000000 1.000000 1 

Credits in Computer Science 1034 0.101838 0.147868 0 0.000000 0.000000 0.200000 1 

Credits in AP/IB combined 1034 0.046608 0.119815 0 0.000000 0.000000 0.000000 1 

GPA in STEM 1034 0.439329 0.146849 0 0.333333 0.466667 0.600000 1 

Activity Attendance 1034 0.111219 0.314555 0 0.000000 0.000000 0.000000 1 

Credits in STEM 1034 0.475369 0.152073 0 0.406250 0.500000 0.562500 1 

Dual Credits 1034 0.165377 0.371700 0 0.000000 0.000000 0.000000 1 

Asian 1034 0.069632 0.254650 0 0.000000 0.000000 0.000000 1 

Black 1034 0.182785 0.386677 0 0.000000 0.000000 0.000000 1 

Hispanic 1034 0.205996 0.404623 0 0.000000 0.000000 0.000000 1 

Multiracial 1034 0.094778 0.293049 0 0.000000 0.000000 0.000000 1 

Indigenous 1034 0.018375 0.134369 0 0.000000 0.000000 0.000000 1 

White 1034 0.428433 0.495091 0 0.000000 0.000000 1.000000 1 

City 1034 0.304642 0.460478 0 0.000000 0.000000 1.000000 1 

Suburb 1034 0.380077 0.485640 0 0.000000 0.000000 1.000000 1 

Town 1034 0.097679 0.297024 0 0.000000 0.000000 0.000000 1 

Rural 1034 0.217602 0.412815 0 0.000000 0.000000 0.000000 1 

First quintile (lowest) 1034 0.189555 0.392139 0 0.000000 0.000000 0.000000 1 

Second quintile 1034 0.199226 0.399612 0 0.000000 0.000000 0.000000 1 

Third quintile 1034 0.235977 0.424813 0 0.000000 0.000000 0.000000 1 

Fourth quintile 1034 0.199226 0.399612 0 0.000000 0.000000 0.000000 1 

Fifth quintile (highest) 1034 0.176015 0.381018 0 0.000000 0.000000 0.000000 1 

Persistent 1034 0.710832 0.453596 0 0.000000 1.000000 1.000000 1 
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Descriptive statistics of the imbalanced dataset for non-high-achieving students show that 

the mean of each variable is lower for them than for high-achieving students. Despite their low 

STEM GPAs, however, the mean of their school motivation was 0.812063, suggesting their high 

motivation to persist. Also, their math proficiency mean is 0.100000, showing that non-high-

achieving students have lower scores in math. Furthermore, the mean value differences among 

race variables demonstrated that White students had the highest value, and Indigenous students 

had the lowest, showing that a greater number of White students are non-high-achieving. However, 

the gap between these values is lower compared to that of high-achieving students. 

Table 11 represents descriptive statistics that summarize the central tendency, dispersion, 

and shape of the SMOTE dataset distribution for non-high-achieving students, including the count, 

mean, standard deviation, and dispersion of each feature. 
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Table 11. Descriptive Statistics That Summarize the Central Tendency, Dispersion and Shape 

of SMOTE Dataset Distribution for Non-High-Achieving Students (GPA <= 2.5) 

feature count mean std min 25% 50% 75% max 

Gender 1470 0.475549 0.489322 0 0.000000 0.066230 1.000000 1 

School Belonging 1470 0.694782 0.166221 0 0.611809 0.688440 0.801910 1 

School Engagement 1470 0.699221 0.183490 0 0.588077 0.714890 0.840670 1 

Math Proficiency 1470 0.096171 0.225838 0 0.001757 0.007650 0.039780 1 

Parent Occupation 1470 0.138578 0.337678 0 0.000000 0.000000 0.000000 1 

School Motivation 1470 0.813022 0.122653 0 0.760584 0.837960 0.899270 1 

School Problems 1470 0.431873 0.187461 0 0.320084 0.437590 0.546030 1 

Science Self-Efficacy 1470 0.629511 0.207360 0 0.530414 0.661110 0.703160 1 

Expected Occupation at 30 1470 0.482980 0.490418 0 0.000000 0.192660 1.000000 1 

Credits in Computer Science 1470 0.094990 0.136088 0 0.000000 0.012440 0.195240 1 

Credits in AP/IB combined 1470 0.043784 0.112262 0 0.000000 0.000000 0.020020 1 

GPA in STEM 1470 0.442336 0.138598 0 0.333333 0.466670 0.545390 1 

Activity Attendance 1470 0.099863 0.293333 0 0.000000 0.000000 0.000000 1 

Credits in STEM 1470 0.476692 0.142484 0 0.406250 0.500000 0.562500 1 

Dual Credits 1470 0.163562 0.361707 0 0.000000 0.000000 0.000000 1 

Asian 1470 0.053741 0.225584 0 0.000000 0.000000 0.000000 1 

Black 1470 0.165986 0.372195 0 0.000000 0.000000 0.000000 1 

Hispanic 1470 0.178231 0.382838 0 0.000000 0.000000 0.000000 1 

Multiracial 1470 0.079592 0.270752 0 0.000000 0.000000 0.000000 1 

Indigenous 1470 0.016327 0.126771 0 0.000000 0.000000 0.000000 1 

White 1470 0.453741 0.498025 0 0.000000 0.000000 1.000000 1 

City 1470 0.297279 0.457216 0 0.000000 0.000000 1.000000 1 

Suburb 1470 0.372789 0.483711 0 0.000000 0.000000 1.000000 1 

Town 1470 0.084354 0.278012 0 0.000000 0.000000 0.000000 1 

Rural 1470 0.207483 0.405642 0 0.000000 0.000000 0.000000 1 

First quintile (lowest) 1470 0.172109 0.377603 0 0.000000 0.000000 0.000000 1 

Second quintile 1470 0.187075 0.390104 0 0.000000 0.000000 0.000000 1 

Third quintile 1470 0.212925 0.409514 0 0.000000 0.000000 0.000000 1 

Fourth quintile 1470 0.212925 0.409514 0 0.000000 0.000000 0.000000 1 

Fifth quintile (highest) 1470 0.182313 0.386234 0 0.000000 0.000000 0.000000 1 

Persistent 1470 0.500000 0.500170 0 0.000000 0.500000 1.000000 1 
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Table 11 shows that the descriptive statistics of the SMOTE dataset for non-high-achieving 

students were similar to those of the imbalanced dataset. For example, the mean value of school 

motivation (0.813022) is similar to that of the imbalanced dataset results. Also, GPA in STEM is 

0.442336, similar to that of non-high-achieving students in the imbalanced dataset results but much 

lower than high-achieving students’ results. Thus, the imbalanced and SMOTE dataset provides 

similar results for non-high-achieving students but shows different trends from those of high-

achieving students. 

Machine Learning Results for High-Achieving Students 

In this study, 2,397 STEM students had GPAs of 3.5 and higher. Of these students, 1,687 

(~70%) continued their STEM education, while the remaining 710 (~30%) did not. I performed 

four different analyses for high-achieving students that yielded (1) results with the original dataset 

including random forest and artificial neural network, and (2) results with the SMOTE dataset 

including random forest and artificial neural network. The test results (e.g., accuracy, sensitivity, 

and specificity) for the machine learning algorithms for high-achieving students in the imbalanced 

and the SMOTE datasets are presented in Table 12. 
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Table 12. Machine Learning Algorithms Test Results for High-Achieving Students (GPA >= 3.5) 

       Neg. Pos.      
   Negative Positive Training Test Test Test    

Dataset Method Sample Data Data Set Size Set Size Size Size Acc Sens Spec 

Imbalanced 
Random 

Forest 
(2397, 30) (710, 30) (1687, 30) (1917, 30) (480, 30) 158 322 0.66 0 0.99 

Imbalanced ANN (2397, 30) (710, 30) (1687, 30) (1917, 30) (480, 30) 158 322 0.88 0.75 0.94 

SMOTE 
Random 

Forest 
(3374, 30) (1687, 30) (1687, 30) (2699, 30) (675, 30) 342 333 0.82 0.75 0.88 

SMOTE ANN  (3374, 30) (1687, 30) (1687, 30) (2699, 30) (675, 30) 342 333 0.92 0.94 0.89 
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Results with Original (Imbalanced) Dataset for High-Achieving Students  

In this study, the original data were imbalanced in that the minority class (non-persistent 

students) included fewer students than the majority class. Random forest and artificial neural 

network results based on the original dataset are shown in Table 12.  

The accuracy of the random forest model (see Table 12) was 0.66, and its specificity and 

sensitivity were 0.99 and 0, respectively. Compared to random forest model, the artificial neural 

network method provided much better results, as accuracy, sensitivity, and specificity were 0.88, 

0.75, and 0.94, respectively. However, the sensitivity of artificial neural network was less than the 

specificity, implying that the model’s ability to predict the minority class’s (non-persistent 

students’) persistence could still be improved. 

That the majority class (persistent students) included more students than the minority class 

caused the imbalanced learning problem with the use of the original dataset. Therefore, in this 

study, the SMOTE technique was used to avoid the imbalanced learning problem in further 

analyses.  

Results with Augmented (SMOTE) Dataset for High-Achieving Students 

To increase the performance of random forest and artificial neural network, the SMOTE 

imbalanced learning technique was used in this study to increase the accuracy of both the random 

forest and artificial neural network models. Based on the random forest model (see Table 12), the 

accuracy was 0.82, while the model's specificity and sensitivity were 0.75 and 0.88 respectively. 

Furthermore, the artificial neural network’s result had an accuracy of 0.92 (see Table 12), while 

the model's sensitivity and specificity were 0.94 and 0.89 respectively. 
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Machine Learning Results for Non-High-Achieving Students 

In this study, there were 1,034 STEM students with a GPA of 2.5 and lower, of whom 735 

(71%) continued their STEM education, while the remaining 299 (29%) did not. I performed four 

different analyses for non-high-achieving students: random forest and artificial neural network 

results with the original and SMOTE datasets. Results for non-high-achieving students are 

presented in Table 13.  
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Table 13. Machine Learning Algorithms Test Results for Non-High-Achieving Students (GPA <= 2.5) 

       Neg. Pos.      
   Negative Positive Training Test Test Test    

Dataset Method Sample Data Data Set Size Set Size Size Size Acc Sens Spec 

Imbalanced 
Random 

Forest 
(1034, 30)    (299, 30)    (735, 30) (827, 30) (207, 30) 53 154 0.74 0.04 0.99 

Imbalanced ANN (1034, 30)    (299, 30)    (735, 30) (828, 30) (206, 30) 53 154 0.95 0.92 0.96 

SMOTE 
Random 

Forest 
(1470, 30)    (735, 30)    (735, 30) (2699, 30) (675, 30) 149 145 0.85 0.8 0.91 

SMOTE ANN (1470, 30)    (735, 30)    (735, 30) (2699, 30) (675, 30) 149 145 0.96 0.97 0.96 
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Results with Original (Imbalanced) Dataset for Non-High-Achieving Students 

In this study, the original data for non-high-achieving students was imbalanced in that the 

minority class (non-persistent students) was smaller than the majority class. Random forest and 

artificial neural network results based on the original dataset are given in Table 13. The accuracy 

of the random forest model (see Table 13) was 0.74, while the model's specificity and sensitivity 

were 0.99 and 0.04, respectively. Based on the original data results, the artificial neural network 

results for non-high-achieving students were 0.95 for accuracy and 0.92 for sensitivity (see Table 

13). The SMOTE technique was used to avoid the imbalanced learning problem in further 

analyses. 

Results with Augmented (SMOTE) Dataset for Non-High-Achieving Students 

To increase the performance of the random forest and artificial neural network models for 

non-high-achieving students, the SMOTE technique was used in this study. SMOTE results have 

shown that using this common imbalanced learning technique can increase a model’s accuracy. 

The accuracy of the random forest model for non-high-achieving students (see Table 13), was 

0.85, and its specificity and sensitivity were 0.91 and 0.8 respectively. In comparison, the accuracy 

of the artificial neural network model for this group was 0.96 (see Table 13) and its sensitivity and 

specificity were 0.97 and 0.96 respectively. These results showed the neural network model could 

predict non-high-achieving students’ persistence with a high level of accuracy. Moreover, it 

performed well with both non-persistent and persistent groups. 

Receiver Operating Characteristics (ROC) Curve 

As the ROC curve is one of the evaluation measures of the study measures to better identify 

accuracy using various thresholds, I present the performance analysis of machine learning models 
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for original (imbalanced) and augmented synthetic student (SMOTE) data using ROC curves in 

Figures 3 through 6. An ROC curve is plotted by computing the true positive rate and the false 

positive rate for different threshold values at the probability output of machine learning models. 

True positive rate represents the instances of a positive label (here, “persistent”) the model 

correctly identifies out of all the possible instances. In contrast, false positive rate is the probability 

of a false report when an instance of a negative label (“non-persistent”) is categorized as positive 

(“persistent”). Because true positive rate and false positive rate values change according to selected 

threshold changes, any threshold value can be selected to lower the false report rate or increase the 

detection accuracy based on the system’s specific needs. 

In this study, machine learning models were used to classify student data into two different 

classes based on the highest probability using the last layer's output. The student data were 

classified as persistent in STEM education if the probability of persistence was higher than 0.5. 

However, the best performance might not be obtained using equal probability. Thus, I used ROC 

curves to conduct a performance analysis to examine where accuracy was plotted based on various 

thresholds. It should be noted that in this research sensitivity is the most important factor because 

its result shows the success rates of the detection of persistency in STEM education. 

As shown in Figures 4 and 6, in the ROC curves analyses of the augmented synthetic 

student (SMOTE) data, marked with a solid orange line, show better results were more accurate 

than those of the analyses of the original (imbalanced) student data, shown in Figures 3 and 5. 

When the model was trained with a dataset that included additional data, in particular an increased 

amount of augmented non-persistent student data, it performed more accurately than with the 

imbalanced dataset. Furthermore, as two commonly used machine learning algorithms for non-

linearly distributed data, random forest and artificial neural network produce more accurate results 
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with augmented data, as shown in Tables 12 and 13 above, indicating that a model’s accuracy 

depends on the size of samples. Accuracy increases as the model complexity increases along with 

the usage of non-linear based predictive machine learning models as presented in ROC curves and 

test results as shown in Tables 12 and 13. 

 

 

Figure 3. ROC Curve Results for High-Achieving Students with Imbalanced Dataset 
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Figure 4. ROC Curve Results for High-Achieving Students with SMOTE Dataset 

 

 

 

Figure 5. ROC Curve Results for Non-High-Achieving Students with Imbalanced Dataset
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Figure 6. ROC Curve Results for Non-High-Achieving Students with SMOTE Dataset 

 

Based on the ROC Curve results for both high-achieving and non-achieving students, the 

SMOTE dataset performed more accurately than the imbalanced dataset (see figures 4 and 6). 
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CHAPTER 5 DISCUSSION 

In this dissertation study, I examined factors affecting high-achieving and non-high-

achieving students’ early postsecondary STEM persistence using machine learning techniques and 

methods. The following discussion of my findings is organized according to the research questions. 

Research Question 1: What percentages of high-achieving and non-high-achieving students 

persist in postsecondary STEM majors? 

Previous research has mostly focused on general student persistence (Aulck et al., 2017; 

Chen et al., 2018; Cardona et al., 2020), and few studies have specifically addressed high-

achieving and non-high-achieving students’ persistence in STEM fields in college. To determine 

high-achieving and non-high-achieving students’ persistence in STEM, a nationally representative 

dataset, the HSLS: 2009, was used in the study. The results demonstrated that high-achieving and 

non-high-achieving students’ persistence levels were similar; however, the sample was 

imbalanced in that it comprised more than twice as many high-achieving as non-high-achieving 

students in STEM fields. Based on the literature (Heilbronner, 2011; Steenbergen-Hu & 

Olszewski-Kubilius, 2017), high-achieving students are more likely to have the potential to pursue 

a STEM field. The study results supported the literature showing that there were more high-

achieving students in STEM fields. This can be a result of having more opportunities in STEM, 

such as taking advanced STEM courses. 

The results of this study are in line with literature showing that nearly a third of students 

with STEM majors drop out of the field prior to graduation (Green & Anderson, 2018; NCES, 

2018), while approximately 70% of both high-achieving and non-high-achieving students persist 
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in STEM in college. Thus, these results provide confirmatory evidence that persistence in STEM 

fields is problematic regardless of academic achievement.  

In addition, it is important to note that according to National Center for Education Statistics 

(NCES, 2017) report, 70% of first-time postsecondary students persisted at their institutions after 

three years of initial enrollment. The study results were similar to persistence in general in 

postsecondary education institutions. 

Furthermore, the study results revealed that high-achieving and non-high-achieving 

students had a similar persistence rates after entering a STEM field. This study provides evidence 

that entering a STEM field can be a turning point in the lives of non-high-achieving students 

regarding STEM persistence. Therefore, educators should also support non-high-achieving 

students’ entrance into STEM fields as they likewise have the potential to persist in STEM. 

Research Question 2: What variables affect high-achieving and non-high-achieving students’ 

persistence in postsecondary STEM majors?  

Based on my literature review and statistical selection techniques, the variables selected 

for this study were gender, school belonging, school engagement, math proficiency level, parent 

occupation, school motivation, school problems, science self-efficacy, expected occupation at age 

30, credits earned in computer sciences, GPA for STEM courses, student activities, credits earned 

in STEM, credits earned in AP/IB combined, dual credits, race, socioeconomic status, and 

urbanicity. The results align with previous studies showing the importance of demographics 

(Holmes et al., 2018; Turner et al., 2019), cognitive aspects (Watkins & Mazur, 2013; Nicholls et 

al., 2010) and non-cognitive aspects (Aryee 2017; Dimer & Li, 2012, Lent et al., 1994, 2000; 

Heilbronner 2011) while adding to the literature regarding significant non-cognitive variables. 

Most studies involving machine learning have focused on demographics and college level 
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cognitive factors (Thammasiri et al., 2014). This study expanded machine learning research by 

providing evidence that even high school non-cognitive variables can be used to predict students’ 

early postsecondary STEM persistence. In general, the results demonstrate the importance of 

supporting students’ social, emotional, and academic development while in high school. 

According to Mendez et al. (2008), predicting student persistence in STEM is not an easy 

task and requires advanced methods; however, the authors argued that machine learning could deal 

with complex relationships between and among variables. In this study, students’ STEM 

persistence was predicted using random forest and artificial neural network models, which 

provided high accuracy with selected variables. Most previous machine learning studies in 

education have focused on single feature importance predictors (Aulck et al., 2016; Baranyi et al., 

2020). However, in this study, I used the random forest feature importance technique to determine 

the importance of each of several features and how they affect the persistence of students in STEM 

overall. This technique contributes to educational research in education by demonstrating and 

comparing the importance of variables included in the final model.  

Research Question 3:  Which variables most significantly influence the early postsecondary 

persistence of high-achieving and non-high-achieving students?  

According to Sage et al. (2018), academic performance is a strong predictor that supports 

student persistence in college. Previous research has indicated that STEM related courses (Mendez 

et al., 2008; Tyson et al., 2007; Wang, 2013), scores (Chimka et al., 2007; French et al., 2005; Min 

et al., 2011; Nicholls et al., 2007; Watkins & Mazur, 2013; Zhang et al., 2004), and credits (Chen 

& Soldner, 2013) positively influence student persistence; this study confirms previous results 

showing that math scores, credits earned in computer sciences, GPA in STEM courses, credits 

earned in STEM and AP/IB courses significantly predict student persistence in STEM for both 
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high-achieving and non-high-achieving students. Furthermore, this research expands the literature 

by showing that credits taken in AP/IB courses can be used to predict student persistence. 

Additionally, credits taken in AP/IB courses were two times more important for high-achieving 

students, showing the greater importance of these courses for STEM persistence. This might be a 

result of educators' recommendations of taking these courses, especially for high-achieving 

students. Additionally, in general, high-achieving students might link these courses with potential 

success. However, AP/IB courses are also important for non-high-achieving students. Thus, 

educators should encourage both high-achieving and non-high-achieving students to take AP/IB 

courses as they lead to persistence in STEM. Besides, schools can offer more AP/IB courses, as it 

is an important factor for STEM persistence. 

The results of this study provide evidence that non-cognitive factors (e.g., school 

belonging, science self-efficacy, school motivation, and school engagement) significantly 

influence both high-achieving and non-high-achieving students’ persistence in STEM. These 

results are consistent with previous research demonstrating the importance of non-cognitive factors 

(Aryee, 2017; Nugent et al., 2015). Furthermore, I included variables related to non-cognitive 

factors that have not been widely investigated in a single study to determine persistence in STEM 

for both high-achieving and non-high-achieving students.  

Some differences existed regarding feature importance scores among non-cognitive 

variables. For instance, compared to high-achieving students, non-high-achieving students’ feature 

importance score of school motivation was higher, indicating the greater importance of school 

motivation for non-high-achieving students. However, motivation was among the most important 

variables for both high-achieving students and non-high-achieving students, indicating importance 

of the school motivation in general. 
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In addition, based on the literature, self-efficacy is positively associated with student 

achievement and motivation (Nugent et al., 2015). In this study, science self-efficacy was among 

the most important variables for high-achieving students and non-high-achieving students. 

Overall, the results indicate that even though slight differences exist in feature importance scores, 

researchers should investigate non-cognitive variables as they are also crucial to support students’ 

persistence in STEM.  

Research Question 4: To what extent do high-achieving and non-high-achieving students’ 

demographics (e.g., gender, ethnicity, socioeconomic status) affect their early postsecondary 

STEM persistence?  

Overall, the results supported the literature showing that students from underrepresented 

populations were less likely to pursue and attain a degree in STEM (Ashford et al., 2016; Diemer 

& Li, 2012). However, it should be noted that Hispanic students with high achievement in STEM 

had a persistence rate similar to that of well-represented populations (i.e., Asian, White). 

Additionally, among non-high-achieving groups, Hispanic students had the highest rate of 

persistence. Factors such as motivation, self-efficacy, and school belonging might play a key role 

in these students’ persistence in STEM fields. 

Previous studies have shown that students from economically disadvantaged backgrounds 

perceive more barriers to postsecondary education (Turner et al., 2019) and are more likely to 

leave institutions before graduation (Holmes et al., 2018). In this study, I examined the importance 

of gender, ethnicity, and socioeconomic status using the random forest feature importance 

technique. Even though they were not the most significant variables of the study, the results 

indicated that socioeconomic status was the most important demographic variable. 

The results confirm previous results showing that students from racially, culturally, 

economically, and linguistically diverse populations are less likely to pursue a STEM field 
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(Ashford et al., 2016; Diemer & Li, 2012). However, the study results also demonstrate that 

traditionally underrepresented populations can also persist similarly in STEM once they enter into 

STEM fields. Furthermore, being high-achieving might be a protective factor for students' 

readiness to succeed and persist in STEM since high-achieving students from low socioeconomic 

backgrounds persist similarly in STEM. Therefore, schools and educators need to provide 

opportunities to underrepresented students to pursue STEM fields (e.g., recruiting students for 

AP/IB courses), which will potentially help develop their talents in STEM. 

Research Question 5: Which machine learning techniques can be used to identify variables 

influencing the early postsecondary persistence of high-achieving and non-high-achieving 

students in terms of classification models? 

In this study, random forest and artificial neural network methods were used in predicting 

persistence in STEM fields. The results revealed that the accuracy of random forest and artificial 

neural network results was high in that the models had over 80% performance levels (Cardona et 

al., 2020). Additionally, sensitivity, specificity, and Receiver Operating Characteristics (ROC) 

Curve results showed that the models performed well, demonstrating that they could classify 

persistent and non-persistent students. Thus, the results of this study are in line with previous 

studies showing that random forest and artificial neural network models could be used to predict 

student persistence (Cardona et al., 2020; Thammasiri et al., 2014). Moreover, it should be noted 

that, overall, artificial neural network results were more accurate than random forest results. This 

finding aligns with previous research showing that artificial neural networks perform with greater 

accuracy than other models (Hodges & Mohan, 2019).  

Compared to previously studied models, the models with SMOTE dataset performed at a 

higher level, over 82%, in this study. However, although the results with the SMOTE dataset 

provided good results, it should be noted that the random forest model could not handle an 
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imbalanced dataset and favored persistent students in STEM, which is a common problem in 

machine learning, resulting in overfitting of a major class. However, even with an imbalanced 

dataset, artificial neural network sensitivity was 75% for high-achieving and 95% non-high-

achieving students’ persistence. These results support the idea that artificial neural networks 

usually outperform other methods (Mason et al., 2018). Overall, the results provide evidence that 

the selected variables could predict persistence of high-achieving and non-high-achieving students 

and support the effectiveness of machine learning in educational research (Adejo & Connolly, 

2018; Delen, 2010; Dissanayake et al., 2016; Kondo et al., 2017; Pereira et al., 2017).  

Additionally, a nationally representative cohort of students was used in this study, which 

extended machine learning research on STEM persistence by expanding use of high school data 

to predict college persistence in STEM. Results of the study revealed that random forest and 

artificial neural network results can be good resources for the prediction of student persistence in 

STEM majors in the United States, and educators can use this information to develop strategies to 

support at-risk students and prevent future dropouts from STEM majors in college.  

Limitations 

There are several limitations in this study. First, even though I initially planned to use a 

much larger dataset, after feature engineering, the number of high-achieving and non-high-

achieving students became much smaller compared to the initial dataset size. In general, larger 

datasets yield better results (Cardona, 2020); using a bigger dataset might have reduced the final 

number of variables and also might have yielded more reliable results.  

Second, I used a publicly available dataset in which some variables were restricted, limiting 

the study's analyses in many ways. For instance, if AP/IB courses could have been investigated 

separately, more information could be gained based on each program’s courses.  
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Finally, student persistence is a complex problem (Chen et al., 2018). In this study, I 

provided only random forest feature importance technique results to investigate the most 

significant variables of the study, which could be a limitation. Other techniques such as SHapley 

Additive exPlanations (SHAP) by Lundberg and Lee (2017) might have provide additional 

insights regarding each variable and its effect on STEM persistence. 

Suggestions for Future Research 

This study provides many insights into factors affecting both high-achieving and non-high-

achieving students’ persistence in STEM education. Further research can be conducted using a 

larger dataset. To deal with imbalanced datasets in machine learning, different techniques can be 

used such as under-sampling and over-sampling (Longadge et al., 2013; Thammasiri et al., 2014). 

A similar study with a larger sample and fewer variables included in the model can reduce the risk 

of overfitting of the model.  Also in future research, other nationally representative datasets can be 

used to study the variables used in the study, which could provide further insights regarding the 

roles of demographics, cognitive factors, and non-cognitive factors in the prediction of student 

persistence in STEM fields in college. 

Conclusion  

With the goal of better understanding the nature and dynamics of STEM persistence, I 

examined the predictors of early postsecondary STEM persistence of high-achieving and non-

high-achieving students. I presented the results for predicting and understanding STEM 

persistence using a national dataset collected by NCES. Unlike most previous studies, this study 

used machine learning methods to examine the persistence of high-achieving and non-high-

achieving students in STEM fields in the United States 
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In most machine learning studies in post-secondary education, data are collected from 

university students (Baranyi et al., 2020; Zahedi et al., 2020). In this study, I used high school level 

factors to predict student persistence in STEM in post-secondary education. Educators should 

focus on all the variables included in the models because the models used in this study performed 

well, supporting that high school factors can be used to make strong predictions about student 

persistence in STEM in college using machine learning models. These models can be used not 

only to help researchers understand the factors that affect student persistence but to guide students 

along the right path to success (Alkhasawneh & Hargraves, 2014). Furthermore, because students 

who are more likely to be non-persistent in STEM can be identified right after high school, 

strategies can be developed to prevent their future dropping out from STEM education.  

In general, larger datasets generate more reliable results in machine learning (Cardona, 

2020). As noted, initially, this study had a larger dataset; however, the size decreased substantially 

after using feature engineering to answer research questions. In future research, it is recommended 

to work with a larger dataset and confirm the results of the study.  

More research using machine learning is needed to determine factors influencing student 

persistence. Ultimately, the machine learning models used in this study can be used to develop 

strategies to increase students' persistence in STEM, such as creating services and programs to 

support them. Also, these models can help identify at-risk students and support their learning to 

avoid negative educational outcomes (Kučak et al., 2018).  

Also, machine learning applications in education are limited; researchers can use machine 

learning to solve educational problems such as grading students and predicting student 

performance and achievement. 
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