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ABSTRACT

Field-orthogonal temporal mode analysis of optical fields was recently developed to form

a new framework of quantum information science. But so far, the exact profiles of the

temporal modes are not known, which makes it difficult to achieve mode selection and

de-multiplexing. A novel feedback-iteration method which, combined with the stimulated

emission method, can give rise to the exact forms of the temporal mode structure of pulse-

pumped spontaneous parametric processes both for high gain parametric process, which

gives rise to quantum entanglement in continuous variables, and for the low gain case, which

produces a two-photon entangled state for discrete variables.

For the temporal mode analysis in high gain situations, the common treatment of para-

metric interaction Hamiltonian does not consider the issue of time ordering problem of

interaction Hamiltonian and thus leads to the inaccurate conclusion that the mode structure

and the temporal mode functions do not change as the gain increases. We use an approach

that is usually employed for treating nonlinear interferometers and avoids the time ordering

issue. This allows us to derive an evolution equation in differential-integral form. Numerical

solutions for high gain situations indicate a gain-dependent mode structure that has its mode

distributions changed and mode functions broadened as the gain increases. This will enable

us to have a complete picture of the mode structure of parametric processes and produce

high quality quantum sources for a variety of applications of quantum technology.

To verify the feedback-iteration method which measures temporal mode structure di-

rectly, we measure the joint spectral density of photon pairs produced with the spontaneous

parametric down-conversion process of a pulse-pumped PPKTP crystal. The measurement

method is based on a stimulated emission process which significantly improves the measure-

ment time and accuracy compared with old spectrally resolved photon coincidence measure-

ment. With the measured joint spectral density, the amplitude of the temporal modes can

be obtained with the mathematical tool of singular value decomposition and compared with

those measured directly with the feedback-iteration method.

Because the parametric amplifier is in essence a linear four-port device, it couples and

linearly mixes two inputs before amplifying and sending them to two output ports. We

11



show that for quadrature phase amplitudes, a parametric amplifier can replace beam split-

ters to play the role of mixer. We apply this idea to a continuous-variable quantum state

teleportation scheme in which a parametric amplifier replaces a beam splitter in the Bell

measurement. We show that this scheme is loss-tolerant in the Bell measurement process

and thus demonstrate the advantage of parametric amplifiers over beam splitter in the ap-

plications in quantum measurement.
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1. INTRODUCTION

It has been around thirty years since the field of quantum information science (QIS) arose

[ 1 ]. A lot of developments have been achieved after that. It has shown promising fu-

ture applications in many fields such as quantum computing, quantum simulation, quantum

communication and quantum metrology [ 2 ].

The quantum computer holds the promises to deliver a huge leap forward in computation

to solve certain types of problems that today’s most powerful supercomputers cannot solve,

for example, encrypting data or simulating chemical reactions, by taking the advantage of

the quantum mechanical concepts such as superposition and entanglement [  3 ]. It requires

a quantum internet to share quantum information between different quantum computers in

a secure way, with quantum cryptography which utilizes the techniques of quantum tele-

portation and quantum key distribution. Although the quantum computation is generally

implemented in atoms, which facilitate the implementation of stationary logical processors

and quantum memories, the photons are usually used to carry fragile quantum information

in transmission of the quantum network [ 4 ], [  5 ], because of their nature of weak interaction

with the environment which means low decoherence during the transmission. Any electro-

magnetic field, no matter what state (quantum or classical) it is in, is first characterized

by its modes, which are a special class of solutions to the Maxwell equation [  6 ]. There are

four degrees of freedom (DOF) for electromagnetic field corresponding to four DOF of the

modes: these are the helicity and the three components of the momentum vector. In a beam-

like geometry these may be stated as polarization mode, transverse modes (encompassing

two DOFs), and temporal mode (TM). In the QIS, the modes of the electromagnetic field are

used to encode quantum information. Polarization is most widely used to encode informa-

tion and the transverse mode has also been investigated as a basis of encoding information.

It was only until recently TM was exploited as the basis for quantum information encoding

and a complete tool kit for the TM QIS framework was proposed by [ 7 ]. Compared with the

polarization mode and transverse modes, TM shows its own advantages. For example, the

polarization modes span merely two dimensional Hilbert space, while TMs span an infinite

dimensional Hilbert space. The transverse spatial mode is sensitive to medium perturbation
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(such as turbulence, which affects the free space propagation) and is inherently incompatible

with the existing single-mode fiber network because the information is encoded in different

spatial modes. Those drawbacks can be avoided by TM.

Pulse-pumped spontaneous parametric down-conversion, because of precise timing pro-

vided by the ultra-short pump pulses [  8 ], [  9 ], have wide applications in QIS such as time-bin

entanglement, quantum multi-photon interference of independent sources, heralded single-

photon sources. In the tool kit of the TM QIS framework, spontaneous parametric down-

conversion (SPDC) serves as the source of generating fields with a rich intrinsic TM structure.

This structure is decoupled from the transverse spatial modes and polarization mode, and

is encoded in the complicated spectral correlation in frequency domain, as the so-called

joint spectrum function, due to the broad bandwidth of the pump field and strict phase

matching condition in highly dispersive nonlinear medium. The issue of the complicated

spectral correlation can be solved in the time domain, fortunately. Law et al. first made

a Schmidt decomposition of the joint spectrum function and found that the generated two-

entangled field can be decomposed into a superposition of independent pairs of TMs [ 7 ].

This method significantly simplifies the quantum description for the two entangled fields,

leading to multi-dimensional temporal quantum entanglement. Moreover, a quantum pulse

gate (QPG) technique through nonlinear interaction processes was developed to distinguish

and coherently manipulate TM, which completes the tool kit of the TM QIS framework.

[ 10 ]–[ 14 ].

On the other hand, the specific mode functions of the TMs are only revealed by theoret-

ical simulations through the joint spectrum function of parametric processes [  7 ], [  15 ]–[ 17 ].

Although they can be indirectly obtained through singular value decomposition when the

joint spectrum function is measured [  18 ], they have never been measured directly. It gives

rise to a requirement of an exact measurement of TM mode structure in the experiment

to provide information for TM-related measurement and manipulation. For example, the

mode-matched homodyne detection of the quantum fields which reveals the quantum entan-

glement in continuous variables is only allowed with the knowledge of the temporal profiles

of the TMs [  19 ]. The implementation of the QPGs in TM selection and de-multiplexing

also requires the information of the TM. It should be pointed out that because of the two
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different measurement techniques for the continuous and discrete variables of the quantum

fields, the SPDC source needs to be operated in both the relatively high and low gain regime.

As we show in Chapter 4, the mode structure changes with the gain. Therefore, the direct

measurement of mode structure in the experiment should be different for the two cases.

In the previous study the issue of time ordering was usually ignored in the treatment

of parametric interaction Hamiltonian [ 15 ]. This treatment only works in the limit of low

gain or in the regime of spontaneous emission but fails at high gain because the ignorance

of time ordering of the Hamiltonian will lead to significant error of the result in the high

gain limit [ 20 ] and will get a wrong TM profile. Because the measurement of the quantum

field relies on the homodyne measurement technique in which the mode match between

the local oscillator field (LO) and the quantum field is paramount, the mode mismatch

caused by the error of the TM profile leads to losses and introduces extra vacuum noise.

Obtaining a correct TM profile is also critical for QPG [ 10 ], [  11 ], [  13 ] in TM multiplexing.

We will investigate the pulse-pumped single-pass parametric processes at arbitrary pumping

power. We will use an operator input-output approach to avoid the time ordering issue

of the interaction Hamiltonian and allow us to derive a set of coupled operator evolution

equations in differential-integral form. We solve them numerically and analyze the mode

structure and mode functions at the final output ports as a function of the pump parameter.

It is further discussed the modification of the feedback-iteration method to suit SPDC at

arbitrary pumping power.

As mentioned above, the TM structure of the SPDC can be derived with the mathe-

matical tool, singular value decomposition once the joint spectrum function is measured.

Although the joint spectrum function is able to be measured, the normalized magnitude of

joint spectrum function, joint spectral density is often measured in the laboratory insteadly

for it is much easier to achieve. To date, JSD has been obtained by performing spectrally

resolved single photon coincidence measurements [  21 ]–[ 23 ]. The measurement relies on the

single-photon detection, which requires very low power of the pumping laser and the pho-

ton generation probability much less than unity. This leads to the measurement being very

time-consuming because a large number of measurements have to be performed to get the

whole JSD. This unavoidably introduces the error for the frequency drift of the pump laser
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in a long time duration, and results in low resolution. Recently the relation of the SPDC

and its simulated process counterpart has been utilized. Due to the fact that SPDC and

stimulated emission share the same phase match relation and pump beam spectrum, the JSD

of the spontaneous process can be measured through the corresponding simulated process by

a narrow-band seed laser beam [  24 ], [ 25 ]. The stimulated emission will significantly increase

the output field intensity, which allows the replacement of the single photon detection with

a spectrometer in the detection, therefore reducing the integration time. With the aim to

compare the indirect measurement of TM with the direct feedback-iteration measurement

method, we will investigate the measurement of the JSD for a SPDC process of the nonlinear

crystal PPKTP (Periodically Poled KTP) with a narrow-band seed laser beam to stimulate

the emission.

Quantum teleportation provides a novel opportunity for communicating quantum infor-

mation securely other than quantum cryptography (Their combination may further prompt

the security of data transformation). When quantum information (qubit) is teleported be-

tween two locations, it is transferred through two channels. One is a classical communication

channel and the other is a quantum channel. Only when the information from the two chan-

nels are received, the receiver can retrieve the original information. Combining this with

the no-cloning theorem of quantum mechanics, which states that it is impossible to cre-

ate an identical copy of an arbitrary unknown quantum state, it significantly improves the

security of data communication. It is well-known that losses are notorious in degrading

quantum effects and are the key obstacle in many protocols of quantum information process-

ing. Detection process often introduces losses due to imperfect coupling and less-than-unit

quantum efficiency. Highly efficient detectors are only available for some limited spectrum

of the electromagnetic waves. Thus, it has become a major concern in high fidelity quantum

communication involving quantum measurement by detection. Quantum state teleportation

is one of such quantum communication protocols where a Bell measurement [ 26 ], [  27 ] is

performed to projectively select out the required states [  28 ]–[ 31 ]. For continuous-variable

quantum state teleportation, Bell measurement is usually achieved by homodyne detection,

which is sensitive to losses. This will inevitably affect the fidelity of the teleported state. On

the other hand, amplification is known to overcome the effect of losses. In essence, a PA is
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a four-port linear device just like a beam splitter which makes it possible to replace beam

splitter (BS) in many situations to play the role of mixer while amplifying the input fields.

We will investigate the feasibility of replacing a beam splitter by a parametric amplifier for

Bell measurement in the quantum teleportation scheme and demonstrate the loss tolerant

property of the new scheme.

The thesis is organized as follows:

In the chapter “Quantum and Nonlinear Optics,” a general knowledge of quantum optics,

nonlinear optics and relevant topics are introduced. The important role optical mode plays

in quantum optics is explained. The TM is highlighted in the explanation. The two types

(continuous and discrete dimension) of Hilbert space, the quantum optical state spanned

corresponding to two different measurement methods in quantum optics, are discussed. The

classical and quantum theory of nonlinear optics is given. The nonlinear process SPDC is

explained with the introduction of the joint spectrum function. Phase match and quasi-phase

match conditions are analyzed.

In the chapter “Measurement of TM Structure of Entangled Fields in Continuous and Dis-

crete Variables,” we propose a direct TM structure measurement, feedback-iteration method,

of entangled fields for both high gain and low gain PAs. The simulation results are ana-

lyzed. In the chapter “Mode Structure of a Broadband High Gain Parametric Amplifier,”

Time-ordering issue of interaction Hamiltonian for parametric processes in the high gain

regime is further discussed. In the chapter “Measurement of JSD,” an experiment of fast

and highly resolved capture of the JSD of photon pairs is described. In the chapter “PA

for Bell Measurement in Continuous-Variable Quantum State Teleportation,” we propose a

new continuous-variable quantum state teleportation scheme in which a PA replaces a beam

splitter in Bell measurement, and demonstrates its feasibility. The loss-tolerant property

of the new scheme will be discussed on the transmission of a coherent state, Fock states,

and Einstein, Podolsky and Rosen (EPR) entangled state [  32 ]. It is followed by the chapter

”summary” with conclusion and further discussion.
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2. QUANTUM AND NONLINEAR OPTICS

2.1 Background Knowledge of Quantum Optics

Quantum optics is a study of how individual quanta of light, known as photons, interact

with atoms and molecules. The initial motivation to quantize the light is that the classical

optics can not explain the phenomenon of spontaneous emission. The photoelectric effect

was further evidence of this quantization as explained by Albert Einstein. The later study

found some quantum states of light giving rise to the phenomenon also could not be de-

scribed by classical electromagnetism. For example, single photon state, entangled state,

and squeezed state. Quantum optics actually refers to the second quantization of light. The

first quantization is already involved in the Maxwell equations (we use the cgs unit system,

in which the electric field and magnetic field have the same unit and the Maxwell equations

are symmetric with respect to these two quantities in the free space).

∇ · E = 4πρ

∇ · B = 0

∇ × E = −1
c

∂B
∂t

∇ × B = 1
c

(
∂E
∂t

+ 4πJ
)
.

(2.1)

This can be seen from the comparison of the Lagrangian of the scalar Klein Gordon field

L = 1
2∂µ∂

µϕ− 1
2m

2ϕ2 (2.2)

for massive particles and the electromagnetic vector potential field

L = −1
4FµνF

µν , (2.3)
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for photons, where F µν = ∂µAν − ∂νAµ and Aµ,ν is the component of four dimensional

electromagnetic vector potential A′ = (ϕ,A). The relation of the electric and magnetic

fields with the scalar and the three dimensional vector potential ϕ,A is given by

E = −1
c

∂A
∂t

− ∇ϕ, B = ∇ × A. (2.4)

From the Lagrangian of the Klein Gordon field Eq.(  2.2 ) it derives the Klein Gordon equation

∂µ∂
µϕ+m2ϕ = 0, (2.5)

which is the relativistic version of Schrödinger’s equation. And from the Lagrangian of the

four dimensional vector field Eq.( 2.3 ) it derives the electromagnetic vector potential version

of the Maxwell equation in free space.

∂µ∂
µA′ = 0. (2.6)

From Eq.(  2.5 ) we can see if we substitute the quantum operator of momentum P̂ = −ih̄∇ and

energy Ê = ih̄∂t to the energy–momentum relation of special relativity P2 −E2 +m2 = 0, we

can derive the Klein Gordon equation. It is the same as the way we quantize the equation of

classical energy–momentum relation E = P2/2m+V and obtain the Schrödinger’s equation.

ih̄∂tϕ = (− h̄2

2m∇2 + V )ϕ. (2.7)

Therefore the solution of the Klein Gordon equation is the quantum wave field due to the

first quantization. In the same way, the classic electromagnetic wave field is the solution of

the Maxwell equation due to the first quantization.

The solution of the Maxwell equations is given by.

E(r, t) =
∑
ω

i
√

2πh̄ωAk(r)α(ω)e−iωt + h.c.

B(r, t) =
∑
ω

√
2πc2h̄

ω
∇ × Ak(r)α(ω)e−iωt + h.c.

(2.8)
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Here, h.c. stands for Hermitian conjugate, and
∫
d3rA∗

k(r) · Ak′(r) = δk,k′ represents the

normalized orthogonal spatial distribution of the field. The second quantization can be

achieved by just replacing the complex amplitude α(ω) with the annihilation operator â (ω).

Of course the derivation process of the quantization is a little bit more complicated. Let

Qω =
√
h̄/2ω[α(ω) + α∗(ω)] and Pω =

√
ωh̄/2[α(ω) − α∗(ω)]/i, and substitute Eq.(  2.8 ) to

the Hamitonian of the electromagnetic field H = (1/8π)
∫
d3r (E · E +B ·B) and will get

an expression in the same form of the harmonic oscillation, and then quantize it with the

same method of the harmonic oscillator. We will have

Ĥ =
∑
ω

(â†â+ 1
2)h̄ω =

∑
ω

(
n̂+ 1

2

)
h̄ω (2.9)

Here the creation and annihilation operator â, â† and the number operator n̂ all refer to

the functions of the variable ω. Actually the wavefunction of other matters can be second

quantized in the same way. All the results and conclusions we got from the harmonic

oscillator can be applied here too. The number operator n̂ which is equal to â†â is a measure

of how many quanta of photons there are in the field. And the total energy is the total

number multiplied by the energy of each photon h̄ω. In the first quantization, the particle is

a field of waves, the classical variables such as position and momentum should be quantized

to some quantum states, so that the field is a probability distribution of the particle over

these states. In the second quantization, the field itself (total energy) has to be quantized

too. And the quantized field includes the probability distribution over the states of the first

quantization variables, such as position and momentum, and the probability distribution of

the states of the second quantization variables: particle number.

We define a quadrature amplitude operator X̂ = â+ â† and a quadrature phase operator

Ŷ = (â− â†)/i. By comparing with the quantum theory of harmonic oscillators, we can see

they are just a factor different from the position operator x̂ and momentum operator p̂. But

we should notice here they are not related to the real position and momentum operators which

belong to the concept of the first quantization, but related to the real and imaginary part of

the complex amplitude of the electromagnetic field. But comparing them with the position

and momentum quantities in the harmonic oscillator can help us have a deeper understanding
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(a)

(b)

Figure 2.1. (a) Phase-space portrait of the coherent state with the Wigner
function. (b) The coherent state revolves about the origin in Phase-space and
projected onto the X − t space

of the physical meaning behind those quantities. And if we ignore the factors and units, they

can even be used to simulate the position and momentum in the first quantization due to the

same mathematical formation. For example, the Einstein, Podolsky and Rosen state which

describes two particles spatially separated by x0 but perfectly correlated in both position

and momentum. It can be expressed in x− p phase space with Wigner function (which was

introduced [ 33 ] by Eugene Wigner in 1932 to study quantum corrections to classical statistical

mechanics. Due to the uncertainty principle, the concept of probability distribution of x

and p in the phase space for a classical particle fails for a quantum particle. But the
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Figure 2.2. Wigner function for a number state |n〉.

quasiprobability Wigner distribution plays an analogous role. By smoothing the Wigner

distribution with the resolution larger than h̄, we can obtain the semi-classical probability

distribution.) [  34 ]: δ(x1 −x2 +x0)δ(p1 +p2). The EPR state can be simulated by the outputs

of a nondegenerate optical parametric amplifier (NOPA) which possess the same correlation

properties of the EPR state except that the two particles are replaced by the virtual harmonic

oscillators and the position and momentum of the particles by the quadrature amplitude and

phase. A classical object should have no quantum fluctuation of the position and momentum,

and the two quantities can be measured at the same time. The quantum state most close

to a classical object is the coherent state. It is the eigenstate of the annihilation operator

â |α〉 = α |α〉 Here â is not Hermitian operator, so α is a complex number. For a coherent

state the fluctuation of X and Y are minimal, equal to unity. Fig.  2.1 (a) is a coherent state

represented in the X − Y phase space. It is a disc in the plane with the radius equal to

unity representing the fluctuation 〈∆2X̂〉 = 〈∆2Ŷ 〉 = 1. As the time going, the disc will

rotate about the original point. In a X − t coordination, it describes a wave as shown in
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Fig. 2.1 (b). This is the same with harmonic oscillation. In the experiment, the laser beam

state is the coherent state. Because it is the state most close to a classical object, the

Schrödinger’s cat state can be expressed as a coherent combination of two coherent states.

|ϕ〉cat = ℵ(|α〉 + eiθ | β〉). By contrast, the number state is the eigenstate of the number

operator n̂ |n〉 = n |n〉. It is a non-classical state. Fig.  2.2 shows the three photons state |3〉

in the X − Y phase space. As we can see the probability in some areas is negative which

shows its non-classical properties. That can not be understood in a classical view. The

coherent state can be expanded in the number state space as this

|α〉 = e− |α|2
2
∑

n

αn

√
n!

|n〉 . (2.10)

When α is very small, the one photon state |1〉 will dominate in probability besides the

vacuum state |0〉. Therefore in the experiment we usually put some attenuators in the laser

beam path to reduce the laser intensity to obtain a small number photon state or even single

photon state when we need to do the experiment at the photon counting level.

2.1.1 Optical Modes

Let’s get back to the first and second quantization. So how do we connect the first quan-

tization and the second quantization? We can understand them in a way that the linear

independent wave function solutions of the first quantization equations (Maxwell equations

for the electromagnetic field), are like sets of houses. We call these houses modes. For each

house there is a harmonic oscillator living inside. Each quanta of energy of the harmonic os-

cillation corresponds to one photon. In quantum field theory one particle is equivalent to one

quanta of energy since the energy of one particle is equal to h̄ω. Here there is an important

property. Just like two quanta of energy of a harmonic oscillator can not be distinguished,

two particles in the same mode are indistinguishable. Notice the indistinguishability is born

in the process of the second quantization, the precondition that they are in the same mode

is important for the two particles to be indistinguishable. If the two particles are in two

orthogonal modes, they are totally distinguishable. If they are in two modes which partially

overlap, the two particles are partially indistinguishable.
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Also notice there are no position and momentum variables in the second quantization

process. Therefore the quantum photon is not localized. The probability to find the photon

at some position and time is determined by the first quantization wave solution. For a pulsed

wave, for example, the probability distribution is confined in the pulse shaped wave. For a

continuous-wave (CW) light, on the other hand, the light source is operated continuously,

not pulsed. The probability is the same everywhere, so the detection of the photon at some

position and time is fully uncertain.

Since modes are a set of linear independent solutions of the first quantization equations

with the boundary condition, they span a linear space. An arbitrary field can be written as

a linear combination of each mode. The modes also represent the degree of freedom of the

field. Electromagnetic fields have four DOFs. Three spatial modes in different dimensions

and the polarization mode which is related to the spin of the photon. In a waveguide fiber

we are familiar with the three dimensional spatial modes. Two dimensions perpendicular

to the propagation path are called transverse mode. One dimension spatial mode along the

propagation direction is called longitudinal mode. In a beam-like geometry, the momentum

of the longitudinal mode is related to the frequency by the medium dispersion relation k(ω).

One momentum corresponds to one frequency component. So the longitudinal mode is

equivalently understood as the temporal mode. Frequency is a better parameter than the

longitudinal momentum to label the mode because it is fixed in all material while momentum

changes in different materials. A simple example can give us a basic understanding is Young’s

two-slit interference experiment. In the experiment, if the light source is monochromatic

light, namely light with single frequency, the visibility of the interference pattern is highest,

as shown in Fig.  2.3 (a). If we use a broadband light source such as white light, the visibility

of the interference pattern will reduce, as shown Fig. 2.3 (b). That is because the light of

the same frequency interferes with itself. The interference pattern of different frequencies

overlaps, which reduces the visibility.

Modifying Young’s two-slit interference experiment to a quantum version, we can use the

single photon as a light source and repeat the experiment for many times, we will still obtain

the interference pattern. From the quantum version of Young’s two-slit interference experi-

ment, Dirac obtained the conclusion: Each photon interferes only with itself. However, the
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(a)

(b)

Figure 2.3. (a) Young’s double slit experiment. The pure-wavelength light
sent through two slits is diffracted into a fringes pattern. (b) The visibility of
the interference pattern of double slit experiment reduces for broadband light
source

later research shows two photons can also interfere if they can not be distinguished. From

the previous discussion we know that only the photons in the same mode are indistinguish-

able. Therefore the optical coherence is related to the indistinguishability and modes of the

photons. In the QIS, modes are used to encode information. In early work, the polarization

modes are often used to encode the information. The information is encoded in the coherent

phase of the state: (|↑〉 + eiϑ |↓〉)/
√

2. However polarizations span a only two dimensional
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Hilbert space. TM can offer an infinite dimensional basis because of the infinite number of

frequencies or momentum for a given boundary condition. Therefore more information is

allowed to be encoded on. Besides that, in a quantum network or multi photon interference

experiment, photons from different sources are required to interface with each other, which

requires the indistinguishability between photons, thus they have to be shaped in the same

modes.

Figure 2.4. Two dimensional Cartesian coordinate system has the basis of
x, y axis. The linear combination of the original basis X = xcosθ+ysinθ, Y =
−xsinθ + ycosθ is also a basis.

From Young’s two-slit experiment we can see that each frequency can be treated as

a mode. Just like the two dimensional Cartesian coordinate system, the x, y axes can be

treated as the basis, but if we rotate the coordination, we can get another basis with the basis

vectors being a linear combination of the original basis vectors, as shown in Fig. 2.4 . The

TM is not unique, either. There are infinite choices of linear combinations of the frequency

modes. Notice that In quantum mechanics, the eigenstates of the position operator x̂ form

an infinite dimension space. The eigenfunction is δ(x−x′). We can call it the position state.

This is different from the Cartesian coordinate system. The concept is a little bit similar

to the first and second quantization. x, y form a two dimensional space in the Cartesian

coordinate system, and x, y are the basis vectors. But for each one dimension position x, y

themselves, they are the infinite dimension space, with the basis vector being the position
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(a) (b)

Figure 2.5. (a) Arbitrary function can be expanded in an infinite dimensional
space with the basis vector of δ(x − x′). The index for the basis vector is x′

(b) The function can be expanded with the new basis of Fourier transform
functions eikjx, too. The index of the basis vector is kj

state, δ(x − x′) or δ(y − y′). So any arbitrary function can be expanded in the position

state f (x) =
∫
d x′f (x′) δ(x − x′) as shown in Fig. 2.5 (a). But we can also choose another

basis with the basis vectors being a linear combination of the position states, such as the

Fourier transform term, eikjx, that the function can be expanded in this basis in the same

space too: f (x) = ∑
j Ajeikjx, as shown in Fig.  2.5 (b). In the position state, the index of the

state is x′. In the Fourier function eikjx, the index of the state is the momentum kj. It is the

same for the frequency mode too. We can write the annihilation operator in the frequency

mode as â(ω), which can be also understood to be expanded in the frequency state basis

as â(ω) =
∫
dωδ(ω − ω′)â(ω′). If we choose the Fourier function form combination of the

frequency, eiωt, we got the annihilation operator â(t) =
∫ dω

2π
e−iωtâ(ω). Now time t is the index

of the new basis, this is just the annihilation operator in the time domain. Besides these two
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choices, we can choose any linear combination of the frequency A(ω) (an example given in

Fig. 2.6 ) as long as the basis vectors are chosen orthogonal to each other. Being orthogonal

means the inner product of the different basis vectors is zero. Here the inner product is

defined as the integral of
∫
dωA∗

k(ω)Ak′(ω) = δk,k′ . Why is it in this form? Because, in

a Cartesian coordinate, we multiply the x, y components of the two vectors, respectively,

and then do a summation of them. In the same way, in this infinite dimensional space

we multiply the components of the vector at different frequency states ω, respectively, and

integrate them. And in a complex space, the inner product is defined by multiplying a vector

with the complex conjugate of the second vector.

Figure 2.6. The first three mode amplitudes for an example of the TM. Each
mode is orthogonal to each other.

2.1.2 Continuous and Discrete Variables

In quantum mechanics, the eigenstates of an Hermitian operator form a Hilbert space.

The eigenvalue can be continuous, such as the position and momentum, or discrete, such as

the photon number. The momentum in a waveguide is also discrete. In quantum optics the

concept is the same. Moreover, they are related to two main techniques of measurement in

the quantum optics experiment. The first method is called homodyne detection which use

the regular continuous photo-electric detector (Fig. 2.7 (b)), it amplifies the weak optical field

in a way that quantum fluctuation is amplified too, as shown in Fig.  2.7 (a). So the quantum

properties can be measured. It can be used to measure the continuous variable quadrature

amplitude and phase, X and Y , their quantum fluctuation and also the correlation of these

continuous variables. The second method is called the photon counting technique as shown

in Fig.  2.7 (c). For this method the optical field source has to be prepared to be very weak

so that the photons reach the detector one by one separately, and each photon will generate
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an electric pulse signal. Using two or more single photon detectors, we can also measure

the correlation of the field by connecting them to the logical electrical circuit block, and

counting the rate of two electrical pulses arriving at the same time. Therefore the photon

counting method is usually used to measure the photon number state and the correlation

of the discrete variable such as polarization and photon number. It is more consistent with

our intuition that the entanglement of discrete variable (for example, entanglement in the

polarization modes) should be be measured in a photon counting way, because each photon

has to be projected to one of the eigenstates and check the correlation between the different

photons. Measuring them in an ensemble average will make the problem more complicated.

While the homodyne detection is more unconditional. It can be used to measure a statistical

average quantity of all quantum states.

29



(a)

(b)

(c)

Figure 2.7. (a) The quantum fluctuation is amplified too when the intensity
of the field is amplified by the Homodyne detection technique. (b) Continuous
photon-current under relatively strong light intensity. (c) Photon counting
technique for weak optical fields.
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2.2 Nonlinear Optics

In recent decades, nonlinear optics has developed rapidly in the physics field. It is the

study of how intense light interacts with matter. In this condition the nonlinear response

of the atoms plays an important role. The invention of the laser by Maiman in 1960 plays

a key role in the evolution of nonlinear optics. It provides sufficiently high intensive light

required to experiment in this field. Franken and coworkers observed the nonlinear optical

phenomenon in an experiment with a ruby laser for the first time in 1961 [ 35 ]. The red light

was frequency doubled into ultraviolet in the process of second harmonic generation. The

emergence of pulse lasers provides a chance to obtain more pronounced nonlinear phenomena

with a moderate laser power. Since they concentrate light energy temporally, the magnitude

of the peak pulse power can be many orders higher than the intensity of the CW laser.

Nonlinear optics leads to many applications such as ultrafast pulse laser, optical signal

processing, ultrafast switches, laser amplifiers, optical computers, sensors, and many others.

The common material used in nonlinear optics today are usually birefringent crystals with

large nonlinearities such as BBO, LBO, KTP, ZGP and Quasi-Phase matched Periodic poled

material such as PPLN, PPKTP, PPLT.

Nonlinear optics processes can be described with both classical wave theory and quantum

optical theory, although some nonlinear effects can only be explained by quantum theory.

For example, the process of SPDC which involves spontaneous emission. In this section, we

will present both methods.

2.2.1 Classical Wave Theory of Nonlinear Optics

Nonlinear optical effects arise for the nonlinear response of the material in the applied

field. In most cases nonlinear magnetization responses can be ignored. We will only consider

nonlinear responses of polarization here. In nonlinear medium the electrical polarization ~P

is given

P = ε0[χ(1) : E + χ(2) : EE + χ(3) : EEE + . . . ] (2.11)
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where χ(n) is (n+ 1)th order tensor representing nth order electric susceptibility (Note that

for the medium invariant under spatial inversion, the even order susceptibility is zero. The

first nonzero nonlinear term is the third order one). To simplify the problem, here we

assume the medium response to the applied field instantaneously which means the medium

is nondispersive.

From the Maxwell equation in medium, we have

∇ × ∇ × E + 1
c2
∂2E
∂t2

= −µ0
∂2P
∂t2

. (2.12)

This tells us polarization can work as a source of electrical fields. When polarization oscil-

lates, it will generate a field oscillating with the same frequency. Only consider the second

order nonlinear susceptibility, with the applied field being E(t) = E0cosωt, the nonlinear

polarization PNL will be

PNL(t) = ε0χ
(2)E(t)2 = 1

2ε0χ
(2)E2

0(1 + cos2ωt). (2.13)

As we can see the polarization oscillates with twice the frequency as the applied field. It

generates the new field which doubles the frequency of the incident field. This is the sec-

ond harmonic generation. Now if the applied field includes two components with different

frequencies, E(t) = E1cosω1t+ E2cosω2t, the nonlinear polarization is

PNL(t) = 1
2ε0χ

(2)E2
1(1 + cos2ω1t) + E2

2(1 + cos2ω2t)

+ 2E1E2[cos(ω1 + ω2)t+ cos(ω1 − ω2)t].
(2.14)

The components of the new field will not only contain the double frequency terms of the

initial two components but also the sum and difference of their frequencies. This is the

sum and difference generation process, respectively. In the derivation of PNL above, we only

consider one dimension and the scalars. The wave transmission in space was also ignored.
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2.2.2 Quantum Optical Theory of Nonlinear Optics

The quantum optical theory of nonlinear optics explains nonlinear optics at the level

of photon interaction. The nonlinear effect couples the photons in the different frequency

modes, by annihilating photons in some frequency modes and creating some other photons

in different frequency modes, which can not be achieved in the linear optics. It therefore can

generate the entangled states and non-classical states such as squeeze states, which can not

be obtained in linear optics.

The quantum theory of nonlinear optics is given as follows (Notice that the recent research

shows it is wrong to use electrical fields to quantize in nonlinear optics, we still use the

old method in this report. It will lead to an incorrect factor in the nonlinear interaction

Hamiltonian [ 36 ]. The factor will be corrected by experiment measurement): The energy of

electromagnetic field in a non-magnetic medium is given by

H =
∫ 1

2µ0
B2(r, t)d3r +

∫
d3r

∫ D(~r,t)

0
E(r, t) · dD(r, t). (2.15)

Here D(r, t) is the electric displacement vector which can be expressed in the form

D(r, t) = ε0E(r, t) + P(r, t). (2.16)

Substitute Eq.(  2.11 ) and (  2.16 ) into Eq.(  2.15 ), it can be easily seen the Hamitonian can be

treated as an ordinary term H0 for electromagnetic field in linear medium plus a nonlinear

interaction term given by

Hint =
∞∑

n=2

∫
d3r

n

n+ 1ε0E(r, t) · χ(n) : E(r, t)n (2.17)

Quantizing the Hamitonian in linear medium H0, we obtain the electrical field with one

dimension approximation as

Ê = Ê(+) + Ê(−), (2.18)
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with

[Ê(−)]† = Ê(+) = σ̂

√
h̄ω

ε

∫
dωâ(ω)ei(k(ω)z−ωt), (2.19)

where σ̂ is the polarization and ε is the permittivity of the linear medium. Using the three-

wave mixing (TWM) as example, let Ê = Ê(ω1)+Ê(ω2)+Ê(ω3), and substitute the electrical

field operator to the second order nonlinear interaction Hamitonian

H
(2)
int =

∫
d3r

2
3ε0E(r, t) · χ(2) : E(r, t)2, (2.20)

and quantize it, we obtain the general form

1
ih̄

∫
dtĤT W M

int =
∫

dω1dω2φ(ω1, ω2)â†(ω1)â†(ω2)â(ω1 + ω2) + h.c., (2.21)

where we used
∫

dteiωt = 2πδ(ω). And

φ(ω1, ω2) = ζ
sin(∆KL/2)

∆K e−i∆KL/2, (2.22)

where ζ is a constant proportional to the second order susceptibility, L is the length of

the medium and ∆K = k(ω1)+k(ω2)−k(ω1 +ω2) is the phase mismatch. More details of the

phase matching is explained in the next section. Eq.(  2.21 ) gives the quantum explanation

of sum and difference generation processes. The creation and annihilation operators just tell

that one photon is annihilated while two photons are created and the reverse process is in

the hermitian conjugate term.

2.2.3 Phase Matching Condition

Because nonlinear optics is about the annihilation and creation of photons in different

frequency modes, and the process should obey the law of conservation of energy and momen-

tum, there exists an correlation of the energy and momentum between the output photons.

The energy and momentum of a photon correspond to the frequency and wavelength in a

wave view of optics. And the frequency and wavelength are related to each other by the

refractive index of the propagation medium. There are only some specific nonlinear mediums
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with the refractive index satisfying the dispersion relationship that will generate significant

nonlinear phenomena. This frequency, momentum correlation of the input and output beams

refers to the phase matching condition.

Figure 2.8. The pump field (the red line) at frequency 2ω propagates in
a χ(2) crystal. Second harmonic generated field (the blue line) at frequency
2ω is generated through the medium. When the phase matching condition is
satisfied, the waves of generated fields at different locations propagate in phase
with each other and amplitudes add constructively.

Phase matching can also be explained by the classical nonlinear optics theory. From

Eq.( 2.14 ) we see that double frequency, sum frequency and difference frequency are all gen-

erated at the same time. These effects usually can not be generated at the same time for

the same nonlinear crystal. Only one of these nonlinear phenomenon will happen when its

phase matching condition satisfied. Take the second harmonic generation as example, if its

phase matching condition is satisfied, the one of sum frequency and difference frequency

generations will not be satisfied, thus only double frequency survives at the output of the

crystal. Let E(t) = E0cos(k(ω)z − ωt), and only consider the second harmonic oscillation

term, the second order nonlinear polarization will be

PNL(z, t) = 1
2ε0χ

(2)E2
0 [cos(2k(ω)z − 2ωt)] = 1

2ε0χ
(2)E2

0 [cos(k(2ω)z − 2ωt)]. (2.23)

This shows the generated second harmonic fields in different locations of the crystal have a

phase difference k(2ω)z. Only when the relation k(2ω) = 2k(ω) is satisfied, the field gener-
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ated in different locations will contribute constructively and get amplified as they propagate

through the crystal. Otherwise, if the phase matching condition is not satisfied, the gen-

erated second harmonics field at different locations will interfere destructively, causing the

direction of energy flow between the generated field and the pump field in the crystal to

periodically change. In Fig. 2.8 , it assumes the phase matching condition is satisfied, the

second harmonic fields generated in three different locations a, b and c are in phase as they

propagate through the crystal. So the intensity of the generated field would increase expo-

nentially. Fig.  2.9 shows the intensity of the generated second harmonic field as a function of

propagation distance in the crystal. The solid line shows the intensity of the second harmonic

generation field when the phase matching condition is satisfied. The dashed line shows the

intensity of the generated field oscillates at low amplitude when the phase matching condi-

tion is not satisfied (phases mismatched). To satisfy the phase matching condition in the

second harmonic generation, k(2ω) has to be equal to 2k(ω) as in the previous analysis.

Most materials have normal dispersion: the refractive index n increases when the frequency

of the input field increases, and can not satisfy it. It can be solved with birefringent material,

in which the dispersion relation depends on the polarization and propagation direction of

light. If the pump light and the generated light have different polarizations, they don’t have

to obey the same dispersion relation. Therefore the phase matching condition is possible to

be satisfied.

Another way to solve this problem is to use quasi-phase matching. We already know

that when the phase is mis-matched, the energy flows periodically between the pump field

and generated fields. The technique of quasi-phase matching periodically flip the orientation

of the crystalline axes whenever the energy is about to flow back from the generated fields

to the pump field. This ensures that the energy always flows from the pump field to the

second harmonic fields even though their phases are not matched perfectly. The quasi-

phase matched crystals are usually made with the technique of periodic poling. The most

common periodic polled materials in the lab are PPLN, PPKTP, PPLT, etc. Fig. 2.9 shows

the comparison of phase-matched, phase-mismatched and quasi-phase matched conditions.
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Figure 2.9. Comparison of second harmonic generation when it is phase-
matched, phase mismatched and quasi-phase matched. The amplitude of the
second harmonic generated field increases exponentially when the phase match-
ing condition is satisfied (the solid line). When the phase is mismatched, the
generated field oscillates at low amplitude and there is almost no output field
(the dashed line). Quasi-phase matching technique alternates crystal orien-
tation periodically so that the energy flows positively consecutively from the
pump field to the second harmonic generated field (the dash-dot line).

2.2.4 Spontaneous Parametric Down-conversion

Spontaneous parametric down-conversion is one type of nonlinear TWM process which

converts one pump light beam of frequency of ω3 into two light beams of frequencies of ω1, ω2.

It is usually achieved by the nonlinear crystals pumped by a strong pulse laser beam. It

will produce two output fields entangled in many variables. We give them the names: signal

and ideal beam. The input and output photons obey the conversation law of energy and
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momentum, as shown in Fig. 2.10 . SPDC is caused by the second order expansion term of

electrical polarization. Since the â(ω1 + ω2)-field in Eq.(  2.21 ) is in a coherent state from a

strong pump laser. We replace the operator with a complex number: â(ω1+ω2) → αp(ω1+ω2)

where αp(ω1 + ω2) is the spectral profile of the laser which is usually a Gaussian function

(since the time duration of a laser pulse is short and Heisenberg uncertainty principle, the

conjugate variable frequency band should be broad). We have

1
ih̄

∫
dtĤint =

∫
dω1dω2F (ω1, ω2)â†

s(ω1)â†
i (ω2) + h.c., (2.24)

where

F (ω1, ω2) = ζsinc(∆KL/2)e−i∆KL/2αp(ω1 + ω2). (2.25)

F (ω1, ω2) is joint spectrum function. In particular, |F (ω1, ω2)|2 is known as joint spectral

intensity. Fig.  2.11 plots a typical normalized amplitude of JSF |F (Ω1,Ω2)/F (0, 0)/|. Here

the zero point of the frequency of ω is shifted to the center frequency of the pump beam

and normalized to Ω which has the unit of unity. We can see that the frequencies of signal

and idler fields are anti-correlated. The distribution ranges of frequency in the direction

perpendicular and parallel to the line of Ω1 + Ω2 = 0 are confined by the the pump envelope

term αp(Ω1 + Ω2) and phase matching term sinc(∆KL/2), respectively.
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Figure 2.10. Schematic of SPDC process. The process obeys the conservation
law of momentum and energy.

Expansion of Joint Spectrum Function with Temporal Modes

SPDC is a very important source in the quantum network to generate optical fields in

the desired way . It is also widely used to generate entanglement beams, and also to make

heralded single photons, so it is important to study and measure its TMs. Analyzing the

JSF can give us a lot of information such as the degree of the entanglement and the TM

structure of the output beam.

Let’s first review the TM. Without loss of generality, we use the single-photon state

to introduce TM for concise purposes. In the previous section, we know that TMs form

a complete basis in the frequency mode space. For a fixed polarization and spatial mode

optical field, any single-photon state can be expanded by this basis.

∫
dωf(ω) |1ω〉 =

∞∑
j=1

∫ dω
2π
cjfj(ω)â†(ω) |0〉 =

∞∑
j=1

∫
dtcjf̃j(t)â†(t) |0〉 , (2.26)

where cj is the complex-valued expansion coefficient. f̃j(t) is the Fourier transform of fj, and

they satisfied
1
2π

∫
dωf ∗

j (ω)fk(ω) =
∫

dtf̃ ∗
j (t)f̃k(t) = δj,k. (2.27)
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Figure 2.11. Normalized absolute value of the JSF |F (Ω1,Ω2)/F (0, 0)/| of
twin beams generated by a pulse pumped SPDC process. The frequency is in
the unit of the power of the pump field σp

The operator can be defined as

Â†
j = 1

2π

∫
dωfj(ω)â†(ω) =

∫
dtf̃j(t)â†(t). (2.28)

The single-photon state can be expressed as ∑∞
j=1 cjÂ

†
j |0〉.

In the SPDC process pumped by pulse laser fields, two-photon states are generated

in the signal and idler fields. When the pump power is relatively low, the dominating
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interaction leads to two-photon generation. The generated signal and idler fields and the

output quantum state takes the form of [ 37 ]

|Ψ2〉 ≈ |vac〉 +
∫
dω1dω2F (ω1, ω2)â†(ω1)â†(ω2)|vac〉, (2.29)

This is obtained by expansion of the time evolution operator and takes the first two terms:

Û = exp(
∫

dtĤ
(2)
int

ih̄
) ≈ 1 +

∫
dtĤ

(2)
int

ih̄
. (2.30)

When the JSF F (ω1, ω2) can be factorized to Gψ(ω1)ϕ(ω2), with
∫
dω1ψ

∗(ω1)ψ(ω1) = 1

=
∫
dω2ϕ

∗(ω2)ϕ(ω2), we obtain the A† and B† by integrating the frequencies ω1 and ω2. The

output state is

|Ψ2〉 ≈ |vac〉 +GÂ†B̂†|vac〉 = |vac〉 +G|1〉s|1〉i, (2.31)

where operators Â† ≡
∫

dω1ψ(ω1)â†
s(ω1), B̂† ≡

∫
dω2ϕ(ω2)â†

i (ω2), define single TM for the

signal and idler fields, respectively. |1〉s ≡ Â†|vac〉 and |1〉i ≡ B̂†|vac〉 are the single-photon

states in those TMs. From it we can see the TM Â† and B̂† are not entangled. In this case,

if we just look at one beam, either signal or idler, the output is in a single TM. We can get

single photon or multi photons in the single mode in one beam by detecting the other beam.

When the JSF can not be factorized, we use a mathematical tool, singular value decom-

position, to deal with this situation [  7 ], [  15 ], [  38 ]. It says any two variable function F (ω1, ω2)

can be expressed via singular mode decomposition method as Schmidt mode expansion in a

form of

F (ω1, ω2) =
∑

k

Grkψk(ω1)ϕk(ω2) (2.32)

with rk ≥ 0 (k = 1, 2, ...) and∑k r
2
k = 1 and two sets of orthonormal functions {ψk(ω1), ϕk(ω2)}

satisfying

∫
dω1ψ

∗
k(ω1)ψk′(ω1) = δkk′ =

∫
dω2ϕ

∗
k(ω2)ϕk′(ω2). (2.33)
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With mode decomposition in Eq.( 2.32 ), the state in Eq.( 2.29 ) can be rewritten as

|Ψ2〉 ≈ |vac〉 +G
∑

k

rkÂ
†
kB̂

†
k|vac〉 = |vac〉 +G

∑
k

rk|1k〉s|1k〉i, (2.34)

where operators Â†
k ≡

∫
dωψk(ω)â†

s(ω), B̂†
k ≡

∫
dωϕk(ω)â†

i (ω), define TMs for the signal

and idler fields, respectively. And |1k〉s ≡ Â†
k|vac〉, |1k〉i ≡ B̂†

k|vac〉 are the single-photon

states in those TMs. The way in which |Ψ2〉 is expressed in terms of the TMs in Eq.( 2.34 )

indicates that it is a multi-mode two-photon state and is in the form of high-dimensional

entanglement. It means if the signal beam is at the kth TM Â†
k, the idler beam must be

at the kth TM B̂†
k, as shown in the Fig. 2.12 . If we look at only one beam and ignore the

other one by tracing it, we will get a multi-modes beam. It is also a mixed state in the first

quantization view.

In Heisenberg picture, the input output relations for SPDC is

Âout
k = Âin

k coshGk + B̂in†
k sinhGk

B̂out
k = B̂in

k coshGk + Âin†
k sinhGk. (2.35)

where Gk ≡ rkG. It is equivalent to the output state expression in Eq.(  2.31 ) derived in

the interaction picture. The input and output annihilation relation tells that the input

and output fields are only related within the same TM. The fields from different TM are

decoupled.

42



Figure 2.12. Entangled two-photon states consisting of various TMs Ak , Bk

(k = 1, 2, 3, ...) in the signal and idler fields generated from a pulse-pumped
parametric process (Adapted from Ref.[ 39 ]).
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3. MEASUREMENT OF TEMPORAL MODE STRUCTURE

OF ENTANGLED FIELDS IN CONTINUOUS AND DISCRETE

VARIABLES

3.1 Direct Temporal Mode Measurement for High Gain Parametric Amplifier

Pulse-pumped spontaneous parametric processes, because of precise timing provided by

the ultra-short pump pulses [ 8 ], [  9 ], have wide applications in QIS such as time-bin entan-

glement, quantum multi-photon interference of independent sources, heralded single-photon

sources. However, the broad bandwidth of the pump field and strict phase matching condi-

tion in highly dispersive nonlinear medium lead to complicated spectral correlation in the

frequency domain.

Fortunately, the issue of complicated spectral correlation was solved in the time domain

by making a Schmidt decomposition of the JSF and finding that the generated two-photon

field can be decomposed into a superposition of independent pairs of TMs [  7 ], as Eq.(  2.31 )

shown. It was shown later that this mode decomposition can be extended to the high

gain domain [  15 ]–[ 17 ]. This method significantly simplifies the quantum description for the

two-photon fields, leading to multi-dimensional temporal quantum entanglement. Such a

TM description was recently extended more generally into field-orthogonal TM analysis of

electromagnetic fields and was shown to form a different framework for QIS [ 12 ].

On the other hand, the specific mode functions of the TMs are only revealed by theoretical

simulations through the JSF of parametric processes [  7 ], [  15 ]–[ 17 ]. They can be indirectly

obtained through singular value decomposition when the JSF is measured [ 18 ]. But they

have never been measured directly. We use a feedback-iteration method with a trial seed

pulse to obtain and eventually measure the exact forms of the TMs of the two correlated

fields generated from a pulse-pumped single-pass broadband fiber PA. In our method, we

exploit the stimulated emission process corresponding to SPDC, which is often called optical

parametric amplifier (OPA). It is just SPDC plus a seed signal or idler field. SPDC can

be treated as the OPA applied on the vacuum. With the seed field, OPA will enhance the
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output field significantly while sharing the same phase match relation of SPDC. This can be

seen from

â† |0〉 = 1 × |0〉 ,

â† |n〉 =
√
n+ 1 |n〉 . (3.1)

When the creation operator â† in Eq.(  3.1 ) applies to the vacuum state, the probability of

emission is proportional to unity, while when it applies to the |n〉 state, the probability of

emission is proportional to n+ 1.

Our method of measuring the mode structure has to be adjusted a little bit for the two

different situations, high gain and low gain case of SPDC process. The two cases just refer

to a relatively stronger and weaker power of the pump beam. The higher power pump beam

will result in a relatively larger output field. The high gain SPDC is usually used as the light

source in the continuous variable measurement or application with the homodyne detection

technique. The low power pump beam produces a weak output field. It is often used as the

light source in the discrete variable measurement or application with the photon counting

detection technique.

Figure 3.1. Schematic diagram for measuring the mode functions at high
gain. WS: wave shaper.

Our procedure to find the mode functions ψk(ω), ϕk(ω) is based on Eq.(  2.35 ). We inject

a seed into the signal field and observe its output by using the pulse characterization method

[ 40 ]. This is somewhat similar to the method of stimulated emission tomography [  25 ], [  41 ].

But here, after measuring the spectral shape of the output, we feed the result back to
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modify the input seed and iterate the process (see Fig. 3.1 ). This part is similar to the

adaptive method of Polycarpou et al [ 42 ]. To see what this leads to, we consider a coherent

pulse of spectral shape α0(ω) injected into the field A. Because of the orthogonality and

completeness of the TM basis in the frequency space, we can expand it as

α0(ω) =
∑

k

ξkψk(ω) (3.2)

with ξk =
∫
dωψ∗

k(ω)α0(ω). Using Eq.(  2.35 ) and assuming |ξk|2 � 1 to ignore spontaneous

emission, we find

αout(ω) =
∑

k

ξk coshGkψk(ω). (3.3)

So, each mode is amplified but with different gain. Now let us exploit this gain difference:

we can measure the output spectral function (amplitude and phase) and then program a

new input field with a wave shaper according to the measured function. To keep the input

power low, we can attenuate the output by a factor, say (coshG1)−1, so that the new input

becomes

α1(ω) =
∑

k

ξk(coshGk/ coshG1)ψk(ω). (3.4)

Since Gk’s are different for different k, let us arrange mode order: G1 > G2 > ... and

coshGk/ coshG1 < 1 for all except k = 1. We iterate the procedure N times and the field

after N iterations becomes

αN(ω) =
∑

k

ξk(coshGk/ coshG1)Nψk(ω). (3.5)

With N large enough, (coshGk/ coshG1)N → 0 for k 6= 1 and we are left with only the first

mode: αN(ω) ∝ ψ1(ω).

To obtain the mode function for k = 2, we need to have an input field that is orthogonal to

ψ1(ω), that is, ξ1 = 0. To achieve this, we use the Gram-Schmidt process: with ψ1(ω) known,

we set the input as α′(ω) = α(ω) − ξ1ψ1(ω), which has ξ′
1 = 0. Then the dominating mode
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is k = 2. We perform orthogonalization after each iteration to ensure ξ′
1 = 0. Subsequent

modes can be obtained in a similar way but with the orthogonalization changed to α′(ω) =

α(ω) −∑k−1
i=1 ξiψi(ω) for mode k.

This method can also be understood in the following way which provides a more clear

picture but less precise in equation derivation. Since the idler input port of the OPA is

always left in the vacuum state, we can simplify the first equation of Eq.( 2.35 ) as

Âout
k = Âin

k coshGk (3.6)

with classical approximation. In the method we program the seed field each time based on

the spectral profile of the output beam, and iterate the process. It is equivalent to a virtual

process that uses the output field directly as the seed beam and goes through the same

nonlinear interaction. Therefore we can describe the iteration process with

Âout
k = Âin

k (coshn Gk)/G′n (3.7)

by iteratively substituting Âout
k with Âin

k in Eq.( 3.6 ). Here n is the iteration number and G′

is the factor by which the power of the output field is scaled down to the same level of the

input seed field.

From this we can see, the fields of each mode are amplified independently with the

amplification rate proportional to the (coshGk)/G′. The amplification rate of the mode

with small index is larger than the one with large index as discussed above. Therefore after

repeating the process many times, only the mode with the largest amplification is left, as

shown in Fig. 3.2 .

3.1.1 Theoretical Simulation and Experimental Results

In order to demonstrate the validity of the method, we run some simulations based on

Eq.( 3.5 ) for the JSF given in Ref.[ 17 ] but with a chirped pump phase of eiΩ2/2σ2
p . The

parametric process is a pulse-pumped four-wave mixing in a dispersion-shifted fiber. With
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Figure 3.2. Working principle: Arbitrary field can be expanded with TMs.
The fields of each mode are amplified independently with the amplification rate
proportional to the (coshGk)/G′. The mode with the largest amplification will
be left after iterating the process.

spectrum shifted to the center frequencies ωs0, ωi0 of signal and idler beams by defining

Ωs,i ≡ ωs,i − ωs0,i0, the JSF has the specific form of

F (Ωs,Ωi) = F ei(Ωs+Ωi)2/2σ2
p exp

{
−(Ωs + Ωi)2

4σ2
p

}
× exp

{(
−i∆kL

2

)}
sinc

(
π

∆kL
2

)
. (3.8)

Here F is some constant proportional to the amplitudes of the pump fields and nonlinear

coefficient. The value of F is set so that |F (Ωs,Ωi)|2 = 2 in the simulation. σp is the

bandwidth of the pump field, ∆kL is the phase mismatch for fiber length of L. For the

dispersion-shifted fiber used in Ref.[ 17 ], it is given by

∆kL
2 ≈ 0.125Ωs

σp

− 0.075Ωi

σp

. (3.9)

The results are shown in Fig. 3.3 for the first three modes. The green and dashed curves

are the initial input and the final output spectral functions, respectively. The blue and red

curves are for the intermediate steps with the step numbers shown in the legends.
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Figure 3.3. Simulation results for the amplitudes (top) and converged phases
(bottom) of the output spectral functions ψk(Ωs)(Ωs ≡ ωs − ωs0 in the unit
of pump bandwidth σp) for (a) k =1, (b) k =2, (c) k =3. The green curves
are the input spectral functions while the blue and red curves are intermediate
outputs after the iteration steps N indicated in the legends. The dashed curves
are the final outputs.

An experiment is completed by a research group we cooperate with in Tianjin univer-

sity to measure the mode structure of the pulse pumped fiber optical parametric amplifier

(FOPA) in a high gain case. The experimental setup is shown in Fig.  3.4 (g), in which the

pulse-pumped FOPA consists of two dispersion-shifted fibers (DSFs) and a single-mode fiber

(SMF) [  43 ]. The pump and the seed, with their path lengths carefully balanced through a de-

lay line (not shown), are combined with a 90/10 beam splitter and simultaneously launched

into the FOPA. The output of FOPA is measured by optical spectrum analyzer (OSA) to

determine the spectral profile.

The TM profiles of the fiber PA are determined directly by the feedback-iteration method

described previously. The recorded spectrum of the signal field by an OSA is used to reshape

the input seed with a wave shaper. Although an OSA only measures the spectral intensity,

here, in the first order approximation, it is assumed that there is no dispersion in the phases

of the mode functions except a jump of π at zeros for higher order modes. Such an assumption

is valid because the spectral phases are relatively flat within the spectral width (∼ 3.5 nm) of

the specially engineered source (see Ref.[ 44 ]). So a sign change is implemented for the higher
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Figure 3.4. Measured spectral intensity |ψk(ω)|2 for k = (a) 1, (b) 2, (c) 3,
and those ((d),(e),(f)) for the corresponding idler field (Adapted from Ref.[ 19 ]).
The dotted lines are the initially injected seed (not shown for (c) due to crowd-
edness). The pink curve in (a) is the output after two iterations. The blue
lines are the output signal and the red lines are the feedback to the input (red
is covered by blue in (a)). (g) is the experimental setup. WS, wave shaper;
FOPA, fiber optical parametric amplifier; OSA, optical spectrum analyzer.

order mode cases whenever the spectral intensity goes to zero. After a number of iterations

(∼ 6 − 8 depending on the shape of the initial injection), a steady shape is reached, which

corresponds to one of the eigen TMs from the PA. The other eigen TMs are found following

the steps described previously. The blue curves in Fig. 3.4 are the converged spectral intensity

of the first three TMs (a,b,c) together with those for the corresponding idler field (d,e,f). The

curves are normalized to the maximum values. The dotted lines are the initially injected seed

(only for (a) and (b)). The pink curve in Fig.  3.4 (a) is the output after only two iterations,
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showing fast convergence of the iteration. For the higher order modes (k = 2, 3), there is a

slight difference between the feedback input (red) and the output (blue). This is caused by

the non-uniform spectral response of the detector as well as dispersion in phase of the higher

order modes.

3.2 Direct Temporal Mode Measurement for Low Gain Parametric Amplifier

The method described above has to rely on the large gain difference among the different

modes to eventually lead to the convergence to the mode with highest gain. At the low gain

regime of spontaneous emission, the amplifier operates at near unit gain (coshGk ≈ 1 for

all Gk ≈ 0, this is due to the stimulated field is too small for the low gain case that it is

dominated and covered by the seed beam) for all modes so there is basically no difference

in gain and the method will not lead to a converged shape. One may want to turn up

the pump power to push into the high gain regime but it is known that mode structure in

parametric processes changes with the pump power at high gain [ 41 ], [ 45 ]. Thus the method

in Ref.[  19 ] does not work in the low gain regime for spontaneous photon pair generation to

reveal the TM structure of the entangled photons discovered by Law et al [ 7 ]. We can solve

this problem by making a small modification to the method so as to apply it to the low gain

case to directly measure the mode functions.

For low gain case, |Gk| � 1 so Eq.( 2.35 ) can be approximated as

Âout
k ≈ Âin

k +GkB̂
in†
k

B̂out
k ≈ B̂in

k +GkÂ
in†
k , (3.10)

or in terms of photon state format, the output state is approximately a two-photon state of

the form [ 7 ], [ 15 ]–[ 17 ]

|Ψ2〉 = |vac〉 +
∫

dω1dω2F (ω1, ω2)â†
s(ω1)â†

i (ω2)|vac〉

= |vac〉 +
∑

k

GkÂ
†
kB̂

†
k|vac〉

= |vac〉 +G
∑

k

rk|1Ak
〉s|1Bk

〉i, (3.11)
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Figure 3.5. Schematic diagram for measuring the mode functions at low
gain (Adapted from Ref.[ 39 ]). WS: wave shaper. The directly related light
fields have the same line style (dashed or solid) and color (red or blue) and the
direction of the arrow shows the flow of the iteration. The converged functions
are the outputs that give the measured mode functions ψk(ω), ϕk(ω).

where |1Ak
〉s ≡ Â†

k|vac〉 =
∫

dω1ψk(ω1)|ω1〉s, |1Bk
〉i ≡ B̂†

k|vac〉 =
∫

dω2ϕk(ω2)|ω2〉i are the

single-photon states of modes Âk, B̂k.

As shown in Fig.  3.5 , we first inject a seed (αin) into the signal field and observe the

output at the idler field (βout). We use the information obtained at the measurement to

modify the input seed with wave shapers: with the shape measured at idler (βout), we then

inject this shape of pulse into the idler field and in the meantime observe the output at the

signal field (αout). Now we have a new shape for the input signal seed. We then alternately

inject the seed (αin or βin) at the signal or idler input based on the measurement result (αout

or βout) and repeat this procedure until steady shapes are observed in both signal and idler

fields.

To show the procedure converges, consider a coherent pulse of spectral shape α
(0)
in (ω)

as the initial injected seed into the signal field A. Because of the orthonormality of TMs

(Eq.( 2.33 )), we can expand it as

α
(0)
in (ω) =

∑
k

ξkψk(ω) (3.12)
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with ξk =
∫
dωψ∗

k(ω)α(0)
in (ω) as the excitation amplitude for mode k. Throughout the paper,

we will assume |ξk|2 � 1 in order to ignore spontaneous emission in the discussion. Since

the gain is nearly 1, the signal output has no information about Gk. But it is different for

the idler field. Using Eq.(  3.10 ), we find the output at the idler field is approximately

β
(1)
out(ω) =

∑
k

ξ∗
kGkϕk(ω). (3.13)

So, the excitations for each mode are modified by Gk but with different coefficients. Now

let us exploit this difference in the coefficients: we can measure the output spectral shape

β
(1)
out(ω) at the idler field by using pulse characterization method [ 40 ] and then program an

input seed of the shape β(0)
in (ω) = Cβ

(1)
out(ω) with a wave shaper (WSi). The wave shaper

electronic gain constant C can be taken as C = 1/G1 to increase the input intensity, with

G1 defined in Eq.(  2.35 ). At this time, the injection to the signal input is blocked, so the

output at the signal field becomes

α
(1)
out(ω) = 1

G1

∑
k

ξkG
2
kψk(ω). (3.14)

Now apply this to another wave shaper (WSs) with the same gain C = 1/G1 to produce a

new spectral shape for the input seed of the signal field and obtain

α
(1)
in (ω) = Cα

(1)
out(ω)

= 1
G2

1

∑
k

ξkG
2
kψk(ω)

=
∑

k

ξk(rk/r1)2ψk(ω), (3.15)

which, from Eq.( 3.13 ), leads to the output at the idler:

β
(2)
out(ω) = 1

G2
1

∑
k

ξ∗
kG

3
kϕk(ω)

= G1
∑

k

ξ∗
k(rk/r1)3ϕk(ω), (3.16)
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Since r1 > r2 > ..., we have (rk/r1)2 < 1 for all modes except the first one (k = 1) and

their excitation amplitudes are reduced. We can then iterate the procedure N times and the

output field after N iterations becomes

β
(N)
out (ω) = G1

∑
k

ξk(rk/r1)2N−1ϕk(ω)

α
(N)
out (ω) = G1

∑
k

ξk(rk/r1)2Nψk(ω). (3.17)

With N large enough, (rk/r1)2N → 0 for k 6= 1 and we are left with only the first mode:

α
(N)
out (ω) ∝ ψ1(ω) and β(N)

out (ω) ∝ ϕ1(ω). This procedure uniquely determines ψ1(ω), ϕ1(ω) up

to a normalization constant.

Similar with the high gain case, to obtain the mode function for k = 2, we use the Gram-

Schmidt process: with ψ1(ω), ϕ1(ω) known, we set the input as α′(ω) = α(ω) − ξ1ψ1(ω) or

β′(ω) = β(ω) − η1ϕ1(ω) with η1 =
∫
dωϕ∗

1(ω)β(ω), which gives ξ′
1 = 0 or η′ = 0. Then

the dominating mode will be k = 2. To ensure ξ1 = 0 in the input of each iteration,

we perform the orthogonalization step after each measurement of the output. Subsequent

modes can be obtained in a similar way but with the orthogonal step changed to α′(ω) =

α(ω) −∑k−1
i=1 ξiψi(ω) or β′(ω) = β(ω) −∑k−1

i=1 ηiϕi(ω) for mode k.

Same with the high gain case, this method can also be understood in a less precise way

while providing a more clear picture. Since one of the input port of the OPA in the iteration

process is left in the vacuum state, we can simplify Eq.( 2.35 ) as

Âout
k ≈ GkB̂

in†
k

B̂out
k ≈ GkÂ

in†
k , (3.18)

with classical approximation. The step programming the seed field each time based on the

measurement of the spectral profile of the output beam is equivalent to a virtual process
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that uses the output field directly as the seed beam and goes through the same nonlinear

interaction. Therefore we can describe the iteration process with

Âout
k ≈ G2n

k Â
in
k

B̂out
k ≈ G2n+1

k Âin
k , (3.19)

by iteratively substituting Âout
k with Âin

k , and B̂out
k with B̂in

k in Eq.( 3.18 ), respectively.

From this we can see, the fields of each mode TM Ak are amplified independently (it is

actually reduced) by G2n
k . In the meanwhile the corresponding TM Bk are also amplified by

G2n+1
k . Therefore after renormalization only the mode with the largest amplification is left

with a large iteration number n.

3.2.1 Simulations of Temporal Mode Determination Processes

The argument above is based on the singular value decomposition of the JSF. To demon-

strate its validity, we go back to the time evolution operator

Û = exp
{ 1

ih̄

∫
dtĤ

}
(3.20)

and check the output from the evolution process [  15 ]. Unfortunately, because of the com-

plexity in the JSF, we cannot have an analytical expression so we resort to numerical sim-

ulation. The evolution operator given in Eq.( 3.20 ) for large pumping power is hard to

evaluate [ 46 ] but at low pump power for the low gain regime, the dimensionless quantity

G2 ≡
∫
dω1dω2|F (ω1, ω2)|2 � 1 and we can expand the exponential in an infinite series and

drop the higher order terms. So, the evolution operator can be approximated as [  15 ], [ 47 ]

Û = exp
{ 1

ih̄

∫
dtĤ

}
≈ 1 + 1

ih̄

∫
dtĤ

= 1 +
∫
dω1dω2[F (ω1, ω2)â†

s(ω1)â†
i (ω2) − h.c.]. (3.21)

55



So, the output becomes

âout
s (ω) = Û †âs(ω)Û

≈ âs(ω) +
∫
dω2F (ω, ω2)â†

i (ω2), (3.22)

where we used the commutation relation [âs(ω), â†
s(ω1)] = δ(ω−ω1) and dropped the higher

order terms in F (ω1, ω2). Similarly,

âout
i (ω) = Û †âi(ω)Û

≈ âi(ω) +
∫
dω1F (ω1, ω)â†

s(ω1). (3.23)

If we inject a coherent state of |{α(ω)}〉 at the signal input port but vacuum at the idler

port, the expectation value at the idler output will be

〈âout
i (ω)〉 =

∫
dω1F (ω1, ω)α∗(ω1) ≡ βout(ω) (3.24)

because the coherent state is independent. Similarly, for an input at the idler port of

|{β(ω)}〉, the output at the signal field is

〈âout
s (ω)〉 =

∫
dω2F (ω, ω2)β∗(ω2) ≡ αout(ω). (3.25)

Notice that with singular value decomposition in Eq.( 2.32 ) for F (ω1, ω2) and decomposition

of Eq.(  3.12 ) for α(ω), we recover Eq.(  3.13 ) from Eq.( 3.24 ) by using the orthonormal relation

in Eq.( 2.33 ).

Furthermore, if we choose a mode-independent electronic gain constant C for the wave

shaper, from Eq.(  3.15 ) we find that once a specific eigenfunction, say, ψk0 is reached, that

is, ξk = δk,k0 , the ratio between next two outputs in the procedure is simply

α
(N+1)
out (ω)
α

(N)
out (ω)

= CG2r2
k0 ∝ r2

k0 . (3.26)

So, we can determine the mode numbers {rk} up to a normalization constant.
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In order to demonstrate the validity of the procedure above, we consider the JSF given in

Ref.[ 17 ] where the parametric process is a pulse-pumped four-wave mixing in a dispersion-

shifted fiber. With spectrum shifted to the center frequencies ωs0, ωi0 of signal and idler

beams by defining Ωs,i ≡ ωs,i − ωs0,i0, the JSF has the specific form of

F (Ωs,Ωi) = F exp
{

−(Ωs + Ωi)2

4σ2
p

}
× exp

{(
−i∆kL

2

)}
sinc

(
∆kL

2

)
. (3.27)

Here F is some constant proportional to the amplitudes of the pump fields and nonlinear

coefficient, σp is the bandwidth of the pump field, ∆kL is the phase mismatch for fiber length

of L. For the dispersion-shifted fiber used in Ref.[  17 ], it is given by

∆kL
2 ≈ 0.125Ωs

σp

− 0.075Ωi

σp

. (3.28)

Our simulation is based on Eq.(  3.10 ), which is derived with the assumption of small

F (Ωs,Ωi) or F � 1 for low gain cases. But because of the small F value, the magnitudes of

β(ω) and α(ω) will become progressively decreased as we iterate the process. To maintain

the size, we normalize the mode functions β(ω) and α(ω) after each step of application of

Eqs.( 3.24 ,  3.25 ). So the results are independent of F , which is then set to 1 in the simulation.

The absolute values and phases of the final converged mode functions of first three orders

are shown in Fig.  3.6 (a) for the signal field (ψ1,2,3(ω)) and in Fig.  3.6 (b) for the idler field

(ϕ1,2,3(ω)). The green dash-dotted curves are the initial input spectral functions and the

black dashed curves are the final output spectral functions. The blue dotted and red solid

curves are the output functions in the intermediate steps with the number of iterations shown

in the legends. The magnitudes and phases of the mode functions are plotted separately with

only final converged phase functions shown. It can be seen that the phase parts vary slowly

except the π-jumps at zeros of the magnitude. The mode numbers {rk} are plotted in Fig.  3.7 

with normalization to r1. It can be seen that the mode functions and the mode numbers are

the same as those obtained by the singular value decomposition method in Ref.[ 17 ] within

the calculation accuracy.
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Figure 3.6. Simulated convergent output spectral functions with their mag-
nitudes and phases for the first three modes k = 1, 2, 3 for the JSF given in
Eq.( 3.27 ) (Adapted from Ref.[ 39 ]). (a) signal field ψk(Ωs) and (b) idler field
ϕk(Ωi). The green dash-dotted curves are the input spectral functions while
the blue dotted and red solid curves are intermediate outputs after the iter-
ation steps indicated in the legends. The black dashed curves are the final
outputs.
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Figure 3.7. Mode number distribution obtained by simulation for the JSF
given in Eq.( 3.27 ) (Adapted from Ref.[ 39 ]).
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Figure 3.8. Simulated convergent output spectral functions with their mag-
nitudes and phases for the first three modes k = 1, 2, 3 for the JSF given
in Eq.(  3.27 ) but with a chirped pump phase of ei(Ωs+Ωi)2/σ2

p (Adapted from
Ref.[ 39 ]). (a) signal field ψk(Ωs) and (b) idler field ϕk(Ωi). The green dash-
dotted curves are the input spectral functions while the blue dotted and red
solid curves are intermediate outputs after the iteration steps indicated in the
legends. The black dashed curves are the final outputs.
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Figure 3.9. Mode number distribution obtained by simulation for the JSF
given in Eq.(  3.27 ) but with a modified phase of ei(Ωs+Ωi)2/σ2

p added due to
chirping of the pump field (Adapted from Ref.[ 39 ]).

61



As seen from Fig.  3.6 , the phases of the mode functions vary slowly with the frequency

except a jump of π at zero points of the functions. This confirms the validity of the approx-

imation of phase as a step function in Ref.[  19 ]. To see an example of large phase variation

in the mode functions, we add a chirped phase to the spectrum of the pump field resulting

in a phase of ei(Ωs+Ωi)2/σ2
p to the JSF. Figure  3.8 shows the magnitudes and phases of the

first three mode functions of the signal(a) and idler(b) fields for this case. As can be seen,

the phases change rapidly as a function of frequency. Even though the extra chirped phase

produces the same joint spectral intensity |F (ωs, ωi)|2 as that in Eq.(  3.27 ), it will change

the mode structure as shown in the mode number distribution in Fig.  3.9 as well as the

bandwidths of the mode functions in Fig. 3.8 .

To further see the effectiveness of this procedure and the convergence processes, we

calculate the ratio of the total output power of the idler to the total input power of the

signal for each step, that is,

(
R(2N−1)

)2
≡

∫
dω|β(N)

out (ω)|2∫
dω|α(N−1)

in (ω)|2
(3.29)

and similarly, the ratio of the output at the signal to the input at the idler

(
R(2N)

)2
≡

∫
dω|α(N)

out (ω)|2∫
dω|β(N−1)

in (ω)|2
, (3.30)

where N = 1, 2, 3, .... These ratios can be measured experimentally. Since β
(N−1)
in (ω) ∝

β
(N)
out (ω) and α(N)

in (ω) ∝ α
(N)
out (ω), using Eq.(  3.17 ) and Eqs.( 3.13 , 3.14 ), we can find for the first

mode

(
R

(2N−1)
1

)2
=

∑∞
k=1 |ξk|2G2

k(rk/r1)4(N−1)∑∞
k=1 |ξk|2(rk/r1)4(N−1) (3.31)

and

(
R

(2N)
1

)2
=

∑∞
k=1 |ξk|2G2

k(rk/r1)4N−2∑∞
k=1 |ξk|2(rk/r1)4N−2 . (3.32)
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or combining the two cases above for M = 2N − 1, 2N , we have

(
R

(M)
1

)2
=

∑∞
k=1 |ξk|2G2

k(rk/r1)2M−2∑∞
k=1 |ξk|2(rk/r1)2M−2

→ G2r2
1 for M → ∞. (3.33)

M is now the overall step number. Likewise, for k0-th mode,

(
R

(M)
k0

)2
=

∑∞
k=k0 |ξk|2G2

k(rk/rk0)2M−2∑∞
k=k0 |ξk|2(rk/rk0)2M−2

→ G2r2
k0 for M → ∞. (3.34)

Like α(N)
out , β

(N)
out in Eq.( 3.17 ), the convergence of R(M)

k0 depends on the ratio rk/rk0 . So

quantity R
(M)
k0 can represent how the procedure converges as a function of step M . Hence,

we calculate R(M)
k0 for each iteration step for the k0-th mode (k0 = 1, 2, 3) and normalize it

to Gr1 for the JSF in Eq.(  3.27 ). We plot it as a function of the iteration step numbers in

Fig. 3.10 (a). It can be seen that after only a few steps, R(M)
k changes slowly and eventually

converges to a final value rk/r1. So, the rate of convergence is quite good. The normalized

R
(M)
k0 value of the first three mode is also plotted in Fig.  3.10 (b) for the JSF given in Eq.(  3.27 )

but with a modified phase of ei(Ωs+Ωi)2/σ2
p added due to chirping of the pump field. It shows

a slower convergence rate because the rk value of modes is more close to each other.
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Figure 3.10. Normalized ratio R(M)
k /Gr1(k = 1, 2, 3) as a function of iteration

step M , (a) ; obtained by simulation for the JSF given in Eq.(  3.27 ) (Adapted
from Ref.[ 39 ]), (b) for the JSF given in Eq.(  3.27 ) but with a modified phase
of ei(Ωs+Ωi)2/σ2

p added due to chirping of the pump field. The straight lines are
the limiting values of rk/r1.
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4. MODE STRUCTURE OF A BROADBAND HIGH GAIN

PARAMETRIC AMPLIFIER

In the previous discussion we have not considered the issue of time ordering of the Hamil-

tonian. This treatment of parametric interaction Hamiltonian [ 15 ] fails when the gain of

OPA exceeds some extent that the time ordering issue will play a significant role in the

process and leads to the inaccurate result that TMs do not change in the high gain limit

[ 41 ]. Indeed, recent studies with approaches that avoid the time ordering issue showed the

spectrum broadening as the gain increases [  45 ]. The experiment that directly measured the

TM functions also confirmed the change of mode structure and mode functions as the gain

increases [ 19 ].

The change of mode structure and mode functions with gain is troublesome in the pro-

duction and applications of high quality quantum sources with quantum entanglement and

noise reduction such as EPR entangled states and squeezed states, which require high gain

operation in parametric processes. This is because the measurement on these states relies on

the homodyne measurement technique in which the mode match between the local oscillator

field (LO) and the quantum field is paramount and any mode mismatch is equivalent to

losses and introduces extra vacuum noise. The knowledge of the exact profile of the mode

functions will enable us to tailor the shape of LO field to match the quantum field [ 19 ]. But

the change of the mode functions means that we also need to adjust the shape of LO to

accommodate the change. The shape of the mode functions is also important for QPG [ 10 ],

[ 11 ], [ 13 ] in TM multiplexing.

But so far there is no analysis about how mode structure and mode functions change

with the gain. We investigate the pulse-pumped single-pass parametric processes at arbitrary

pumping power. We will use an operator input-output approach that is usually employed

for treating multi-stage nonlinear interferometers [  48 ]. This avoids the time ordering issue

of the interaction Hamiltonian and allows us to derive a set of coupled operator evolution

equations in differential-integral form. We solve them numerically and analyze the mode

structure and mode functions at the final output ports as a function of the pump parameter.
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Figure 4.1. An SU(1,1) interferometer with PAs (PA1,PA2) in place of beam
splitters (Adapted from Ref.[ 49 ]).

4.1 Multi-stage SU(1,1) Interferometers

In order to reveal the issue of time ordering in the derivation of evolution operator in

parametric processes and find ways to tackle it, we consider an SU(1,1) interferometer,

shown in Fig. 4.1 , which consists of two PAs (PA1, PA2) characterized by gain parameters

g1, g2 together with a phase shift θ in between. This interferometer has recently been

studied extensively [  50 ] for precision phase measurement beyond standard quantum limit

[ 51 ], quantum imaging with undetected photons [  52 ], and quantum state engineering [  43 ],

[ 44 ].

The two PAs are described by the Hamiltonians:

ĤP A(ξj) = ih̄ξjâ
†b̂† − ih̄ξ∗

j âb̂, (4.1)

where j = 1, 2. The input-output relations can be derived from evolution operators Ûj =

e(1/ih̄)ĤP A(ξj)t(j = 1, 2) and are respectively given as

â1 = G1â0 + g1b̂
†
0, b̂1 = G1b̂0 + g1â

†
0;

â2 = G2â
′
1 + g2b̂

′†
1 , b̂2 = G2b̂

′
1 + g2â

′†
1 ; (4.2)

where â′
1 = â1eiθ/2, b̂′

1 = b̂1eiθ/2, the amplitude gains gj ≡ (ξj/|ξj|) sinh |ξjt|(j = 1, 2), and

Gj = cosh |ξjt| for the interaction time period of t. Here we assume the phase shifts are the

same for both fields: θa = θb = θ/2. The outputs of the interferometer are then [  48 ]

â2 = GT â0 + gT b̂
†
0, b̂2 = GT b̂0 + gT â

†
0, (4.3)
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with

GT = G1G2eiθ/2 + g∗
1g2e−iθ/2

gT = G∗
1g2e−iθ/2 + g1G2eiθ/2. (4.4)

This shows that we can treat the whole system as one PA with equivalent amplitude gains

gT , GT . Furthermore, besides a propagation phase of eiθ/2 for both fields, the extra phase

shift eiθ can be absorbed in g2 by redefining g′
2 ≡ g2e−iθ or ξ′

2 ≡ ξ2e−iθ. Here ξ′
2 = ξ2e−iθ

takes the propagation phase shift eiθ into consideration. Notice that only when arg ξ1 =

arg ξ2 − θ, other than a common phase of eiθ/2 for both fields, the whole system can be

described by an equivalent overall Hamiltonian ĤT = ĤP A(ξT ) = ĤP A(ξ1) + ĤP A(ξ′
2) with

ξT = ξ1 + ξ′
2. But if arg ξ1 6= arg ξ2 − θ, then ĤT 6= ĤP A(ξ1) + ĤP A(ξ′

2). This is because

e(1/ih̄)ĤP A(ξ1)te(1/ih̄)ĤP A(ξ′
2)t 6= e(1/ih̄)[ĤP A(ξ1)+ĤP A(ξ′

2)]t if [ĤP A(ξ1), ĤP A(ξ′
2)] 6= 0 when arg ξ1 6=

arg ξ2 − θ.

This will have an inconvenient consequence when we extend the interferometer to multiple

stages [  43 ], [  53 ], as shown in Fig.  6.1 . Because the phases in each stage are arbitrary, we

therefore cannot write the overall Hamiltonian as the sum of each stage:

ĤT 6=
∑

j
ih̄(ξ′

jâ
†b̂† − ξ′∗

j âb̂), (4.5)

where the phase shifts at each stage are absorbed in the interaction parameter ξ′
j = ξje−iθj .

To solve this problem, we can proceed by repeatedly using Eq.(  4.4 ) to add each stage

and obtain a recursive relation. Specifically for Eq.(  4.4 ), we treat all the stage added up to

stage k as the first PA with equivalent amplitude gains GT (k), gT (k) and the second PA is

the k + 1-th stage to be added:

GT (k + 1) = GT (k)Gk+1eiθk/2 + g∗
T (k)gk+1e−iθk/2

gT (k + 1) = G∗
T (k)gk+1e−iθk/2 + gT (k)Gk+1eiθk/2. (4.6)
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Figure 4.2. A multi-stage SU(1,1) interferometer (Adapted from Ref.[ 49 ]).

Unfortunately, we cannot find an analytical expression for the final outputs. In order to

have some general idea about the outputs, we consider each stage has an infinitesimally small

gain and phase shift whose sizes are proportional to an infinitesimal length scale ∆x along

the field propagation direction: gk ≈ ζ(x)∆x, θk ≈ η(x)∆x and we use location x = k∆x to

denote the k-th stage. When ∆x → 0, Gk+1 =
√

1 + |gk+1|2 ≈ 1 + o(∆x). So, Eq.(  4.6 ) can

be approximated as

GT (x+ ∆x) ≈ GT (x)(1 + iη∆x/2) + g∗
T (x)ζ∆x

gT (x+ ∆x) ≈ G∗
T (x)ζ∆x+ gT (x)(1 + iη∆x/2). (4.7)

or

d

dx
GT (x) = ζ(x)g∗

T (x) + iη(x)
2 GT (x)

d

dx
gT (x) = ζ(x)G∗

T (x) + iη(x)
2 gT (x). (4.8)

These are the evolution equations for a PA with continuous gain function ζ(x). The phase

parameter η(x) usually corresponds to phase mismatching. The initial condition is obviously

GT (0) = 1, gT (0) = 0. It is hard to analytically solve the differential equations if ζ(x), η(x)

depend on location x. For simplicity, let us assume ζ, η be constant. Then, Eq.( 4.8 ) can be

solved analytically and have the following solution:

If ζ ≤ η/2 and η0 ≡
√
η2 − 4|ζ|2, we have

GT (x) = cos η0x

2 + i η
η0

sin η0x

2
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gT (x) = 2ζ
η0

sin η0x

2 . (4.9)

If ζ ≥ η/2 and ζ0 ≡
√

|ζ|2 − (η/2)2, we have

GT (x) = cosh(ζ0x) + i η2ζ0
sinh(ζ0x)

gT (x) = ζ

ζ0
sinh(ζ0x). (4.10)

The exponential growth of the gain when ζ ≥ η/2 is typical of high gain PAs. But the

oscillatory low gain behavior when ζ ≤ η/2 is the result of interference as we will see in the

following.

In the limit of ζ � 1, we have

GT (x) = eiηx/2,

gT (x) = ζx sinc(ηx/2) ≡ eiηx/2xξT

= eiηx/2
∫ x

0
dx′ζe−iηx′

. (4.11)

The extra phase factor eiηx/2 extracted out of gT is for the consistency with GT and is

due to propagation of the fields through the system. The gain parameters in Eq.( 4.11 ) are

equivalent to an overall Hamiltonian of interaction parameter ξT ≡ ζe−iηx/2sinc(ηx/2) with

evolution time t replaced by x:

ĤT = ih̄(ξT â
†b̂† − ξ∗

T âb̂), (4.12)

which can thought of as the sum of all the stages:

ĤT = 1
x

∫ x

0
dx′ih̄ζe−iηx′

â†b̂† + h.c.

= 1
x

∫ x

0
Ĥ(dξ′). (4.13)

Here, dξ′ = ζe−iηx′
dx′ is the infinitesimal gain parameter for each infinitesimal stage. Note

that this equivalence is true only when ζ(x) = constant and η(x) = constant.
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As a matter of fact, when gain parameters |g1|, |g2| � 1, we can add the two Hamiltonian

to obtain overall Hamiltonian: ĤT = ĤP A(ξT ) = ĤP A(ξ1) + ĤP A(ξ′
2). This can be seen from

evolution operator

ÛT = Û2(ξ2)Û1(ξ′
1) = eĤ(ξ2)∆x/ih̄eĤ(ξ′

1)∆x/ih̄

≈ [1 + Ĥ(ξ2)∆x/ih̄][1 + Ĥ(ξ′
1)∆x/ih̄]

≈ 1 + Ĥ(ξ2)∆x/ih̄+ Ĥ(ξ′
1)∆x/ih̄

= 1 + ĤT ∆x/ih̄ ≈ eĤT ∆x/ih̄, (4.14)

Here, we assumed |g1| = |ξ1|∆x � 1, |g2| = |ξ′
1|∆x � 1 and ξ′

1 = ξ1e−iθ with phase shift

e−iθ included. So, when the amplitude gains |gj| � 1, we can simply add the Hamiltonian

of each stage:

ĤT =
∑

j
ih̄(ξ′

jâ
†b̂† − ξ′∗

j âb̂) (4.15)

and

gT =
∑

k

g′
k =

∑
k

gke−iθk . (4.16)

The above can also be thought of as a result of two-photon interference among the pair of

photons generated by each stage [ 43 ], [ 53 ]. This can be confirmed by looking at the output

state for vacuum input:

|Ψ〉T = ÛT |0〉

≈ |0〉 + (
∑

k

g′
k)|1a, 1b〉

= |0〉 +
∑

k

|Ψ〉k (4.17)

with |Ψ〉k as the two-photon state generated by the k-th stage.

Notice that Eq.(  4.15 ) is true only if the overall amplitude gain gT is much smaller than

1 so that the last step of Eq.( 4.14 ) stands. For the high gain case, Eq.(  4.15 ) does not stand
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and we have to resort to Eq.( 4.6 ) or Eq.( 4.10 ). This will pose a serious problem in finding

a solution for a broad band PA in the high gain regime.

4.2 Broadband Parametric Amplifier

When parametric processes are pumped by high power pulses, broadband parametric

amplification is achieved. They can be used to produce quantum entangled fields with a

wide bandwidth. The traditional treatment of this situation is to start with a multi-mode

Hamiltonian of the form [ 15 ], [ 46 ]

ĤM = χ
∫
dω1dω2dω3Ψ(ω1, ω2, ω3)â†(ω1)b̂†(ω2)

×Ap(ω3)ei(ω1+ω2−ω3)t + h.c., (4.18)

where subscript “M” denotes multi-mode, χ is some parameter proportional to the nonlinear

coefficient of nonlinear medium of length L0, Ap(ω3) is the spectral amplitude of the pump

field, and Ψ(ω1, ω2, ω3) is obtained from spatial integration:

Ψ(ω1, ω2, ω3) ≡
∫ L0

0
dze−iz∆k = L0

sin β
β

e−iβ (4.19)

with β ≡ ∆kL0/2 and ∆k ≡ k1 + k2 − k3 as the phase mismatch. We then find evolution

operator as

Û = exp
{ 1

ih̄

∫ ∞

−∞
dtĤM

}
(4.20)

where time integration gives rise to a delta-function δ(ω1 + ω2 − ω3) and the integrated

Hamiltonian has the form of

∫
dtĤM = ih̄G

∫
dω1dω2Φ(ω1, ω2)â†(ω1)b̂†(ω2) + h.c.,

(4.21)
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with G ≡ χ/C as a dimensionless gain parameter such that

Φ(ω1, ω2) ≡ 2πCL0
sin β
β

e−iβAp(ω1 + ω2) (4.22)

is normalized:
∫
dω1dω2|Φ(ω1, ω2)|2 = 1. In general, this gives rise to a complicated coupling

of different frequency components at the outputs:

â(o)(ω1) = Û †â(ω1)Û =
∫
h1a(ω1, ω

′
1)â(ω′

1)dω′
1 +

∫
h2a(ω1, ω

′
2)b̂†(ω′

2)dω′
2 (4.23)

b̂(o)(ω2) = Û †b̂(ω2)Û =
∫
h1b(ω2, ω

′
2)b̂(ω′

2)dω′
2 +

∫
h2b(ω′

1, ω2)â†(ω′
1)dω′

1, (4.24)

where â(o), b̂(o) are the outputs at the end of nonlinear medium and â(ω1), b̂(ω2) are those at

the start. But we can make a singular value decomposition of the JSF Φ(ω1, ω2):

Φ(ω1, ω2) =
∑

k

rkψk(ω1)ϕk(ω2), (4.25)

where {ψk, φk} are two sets of ortho-normal functions:
∫
dω1ψ

∗
j (ω1)ψk(ω1) =

∫
dω2ϕ

∗
j (ω2)ϕk(ω2)

= δjk and {rk} are non-negative numbers satisfying ∑k r
2
k = 1. Then Eq.(  4.21 ) becomes

∫
dtĤM = ih̄G

∑
k

rkÂ
†
kB̂

†
k + h.c. (4.26)

with Âk ≡
∫
dω1ψ

∗
j (ω1)â(ω1), B̂k ≡

∫
dω2ϕ

∗
j (ω2)b̂(ω2) satisfying [Âj, Â

†
k] = δjk = [B̂j, B̂

†
k].

Together with Eq.(  4.20 ), this leads to de-coupling of the different TMs Âk and B̂k for the

two output fields:

Â
(o)
k = cosh (rkG)Âk + sinh (rkG)B̂†

k,

B̂
(o)
k = cosh (rkG)B̂k + sinh (rkG)Â†

k, (4.27)

Unfortunately, it was pointed out [  41 ] that the evolution operator in Eq.( 4.20 ) is not

correct for the Hamiltonian in Eq.(  4.18 ) because [ĤM(t), ĤM(t′)] 6= 0 for t 6= t′. The reason
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is the same as those for Eq.( 4.1 ). But Eqs.(  4.23 , 4.24 ) are still correct for the Hamiltonian

in Eq.( 4.18 ).

Figure 4.3. A PA from a single-pass pulse-pumped nonlinear medium
(Adapted from Ref.[ 49 ]).

In order to treat this in a correct manner, we can apply the same approach in the previous

section. Consider a nonlinear medium of length L which is divided into a small segment of

size ∆L, as shown in Fig.  4.3 . Let us treat the small segment first. The Hamiltonian is given

from Eq.( 4.18 ) for the small segment as

Ĥ(z,∆L) = χ
∫
dω1dω2dω3

∫ z+∆L

z
dz′e−iz′∆kâ†(ω1, z)

×b̂†(ω2, z)Ap(ω3)ei(ω1+ω2−ω3)t + h.c., (4.28)

where the spatial integration starts at z instead of 0 because the ∆L segment is located at

z inside the medium and we assume that there is no pump depletion. For ∆L = dL → 0,

we have

Ĥ(z, dL) = χdL
∫
dω1dω2dω3e−iz∆kâ†(ω1, z)b̂†(ω2, z)

×Ap(ω3)ei(ω1+ω2−ω3)t + h.c.+ o(dL). (4.29)

The evolution operator for this segment is given by the Dyson series:

Û(z,∆L) = 1 +
∑
n=1

Ûn (4.30)
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with

Ûn =
( 1

ih̄

)n ∫ ∞

−∞
dt1

∫ t1

−∞
dt2...

∫ tn−1

−∞
dtn

×Ĥ(z, dL, t1)...Ĥ(z, dL, tn). (4.31)

Eq.( 4.30 ) becomes Eq.(  4.20 ) if [Ĥ(z, dL, t1), Ĥ(z, dL, t2)] = 0 but it is not true for Ĥ(z, dL)

in Eq.( 4.29 ). On the other hand, for dL → 0, we have

Û(z, dL) = 1 + Û1 + o(dL) ≈ 1 +
∫
dtĤ(z, dL). (4.32)

So, we obtain the evolution of the field operators:

â(ω1, z + dL) = Û †(z, dL)â(ω1, z)Û(z, dL)

= â(ω1, z) + [â(ω1, z),
∫
dtĤ(z, dL)]

= â(ω1, z) + 2πχdL
∫
dω2b̂

†(ω2, z)

×e−iz∆kAp(ω1 + ω2), (4.33)

where the time integral gives rise to a δ-function for ω1 + ω2 − ω3 and ∆k = ∆k|ω3=ω1+ω2 .

With dâ(ω1, z)/dz = [â(ω1, z + dL) − â(ω1, z)]/dL, we have

d

dz
â(ω1, z) = 2πχ

∫
dω2e−iz∆kAp(ω1 + ω2)b̂†(ω2, z).

(4.34)

Likewise, we obtain

d

dz
b̂(ω2, z) = 2πχ

∫
dω1e−iz∆kAp(ω1 + ω2)â†(ω1, z).

(4.35)
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Note that Eqs.(  4.34 , 4.35 ) are in a similar form as those derived in Refs.[  45 ],[ 54 ] with different

methods. Using the input-output relation in Eq.(  4.23 ) at location z, we obtain

d

dz
h1a(ω1, ω

′
1, z) =

∫
dω2f(ω1, ω2)h∗

2b(ω′
1, ω2, z)

d

dz
h2b(ω′

1, ω2, z) =
∫
dω1f(ω1, ω2)h∗

1a(ω1, ω
′
1, z), (4.36)

and

d

dz
h1b(ω2, ω

′
2, z) =

∫
dω1f(ω1, ω2)h∗

2a(ω1, ω
′
2, z)

d

dz
h2a(ω1, ω

′
2, z) =

∫
dω2f(ω1, ω2)h∗

1b(ω2, ω
′
2, z), (4.37)

where f(ω1, ω2) ≡ 2πχe−iz∆kAp(ω1 + ω2). Since we have â(o)(ω1, z = 0) = â(ω1) and

b̂(o)(ω2, z = 0) = b̂(ω2) at the start, the initial condition is

h1a(ω1, ω
′
1, z = 0) = δ(ω1 − ω′

1)

h1b(ω2, ω
′
2, z = 0) = δ(ω2 − ω′

2)

h2a(ω1, ω
′
2, z = 0) = 0

h2b(ω2, ω
′
1, z = 0) = 0. (4.38)

From Eqs.( 4.36 , 4.37 ) and initial conditions in Eq.( 4.38 ), we can verify that

∫
dω′

1h1a(ω1, ω
′
1, z)h∗

1a(ω̄1, ω
′
1, z)

−
∫
dω′

2h2a(ω1, ω
′
2, z)h∗

2a(ω̄1, ω
′
2, z) = δ(ω1 − ω̄1),∫

dω′
2h1b(ω2, ω

′
2, z)h∗

1b(ω̄2, ω
′
2, z)

−
∫
dω′

1h2b(ω′
1, ω2, z)h∗

2b(ω′
1, ω̄2, z) = δ(ω2 − ω̄2),∫

dω′
1h1a(ω1, ω

′
1, z)h2b(ω′

1, ω̄2, z)

−
∫
dω′

2h1b(ω̄2, ω
′
2, z)h2a(ω1, ω

′
2, z) = 0, (4.39)

These relations guarantee the commutation relations [â(o)(ω1), â(o)†(ω̄1)] = δ(ω1−ω̄1), [b̂(o)(ω2),

b̂(o)†(ω̄2)] = δ(ω2 − ω̄2), [â(o)(ω1), b̂(o)(ω̄2)] = 0 from Eq.( 4.23 ).
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4.3 Eigen-modes of High Gain Parametric Processes

Although h-functions have very complicated form, we can in general use singular value

decomposition method to decompose them as

h1a(ω, ω′) =
∑

k

r
(k)
1a ψ

(k)
1a (ω)φ(k)

1a (ω′)

h2a(ω, ω′) =
∑

k

r
(k)
2a ψ

(k)
2a (ω)φ(k)

2a (ω′)

h1b(ω, ω′) =
∑

k

r
(k)
1b ψ

(k)
1b (ω)φ(k)

1b (ω′)

h2b(ω, ω′) =
∑

k

r
(k)
2b ψ

(k)
2b (ω)φ(k)

2b (ω′). (4.40)

Because of relations in Eq.( 4.39 ), it can be shown (see Appendix  4.A ) that ψ
(k)
1a (ω) =

ψ
(k)
2a (ω) ≡ ψ

(a)
k (ω), ψ(k)

1b (ω) = ψ
(k)
2b (ω) ≡ ψ

(b)
k (ω), φ(k)

1a (ω′) = φ
(k)∗
2b (ω′) ≡ φ

(a)
k (ω′), φ(k)

1b (ω′)

= φ
(k)∗
2a (ω′) ≡ φ

(b)
k (ω′), and r

(k)
1a = r

(k)
1b ≡ cosh rkG, r(k)

2a = r
(k)
2b =

√
r

(k)2
1a − 1 = sinh rkG.

Here, ψ(a)
k (ω), φ(a)

k (ω), ψ(b)
k (ω), φ(b)

k (ω) are four sets of orthonormal mode functions satis-

fying
∫
dωψ

(a,b)∗
k (ω) ψ(a,b)

k′ (ω) = δkk′ ,
∫
dωφ

(a,b)∗
k (ω)φ(a,b)

k′ (ω) = δkk′ and rk’s are normalized

mode coefficients satisfying ∑k r
2
k = 1 with G being some parameter depending on χ. So,

h-functions are in the form of

h1a(ω1, ω
′
1, z) =

∑
k

cosh(rkG)ψ(a)
k (ω1)φ(a)

k (ω′
1),

h2a(ω1, ω
′
2, z) =

∑
k

sinh(rkG)ψ(a)
k (ω1)φ(b)∗

k (ω′
2),

h1b(ω2, ω
′
2, z) =

∑
k

cosh(rkG)ψ(b)
k (ω2)φ(b)

k (ω′
2),

h2b(ω1, ω
′
2, z) =

∑
k

sinh(rkG)ψ(b)
k (ω1)φ(a)∗

k (ω′
2). (4.41)

With these relations and orthonormal relations for ψ(a,b)
k (ω), Eqs.( 4.23 , 4.24 ) can be recast as

Â
(o)
k = cosh (rkG)Âk + sinh (rkG)B̂†

k,

B̂
(o)
k = cosh (rkG)B̂k + sinh (rkG)Â†

k, (4.42)
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where Â(o)
k ≡

∫
dωψ

(a)∗
k â(o)(ω), B̂(o)

k ≡
∫
dωψ

(b)∗
k b̂(o)(ω), Âk ≡

∫
dωφ

(a)
k â(ω), B̂k ≡

∫
dωφ

(b)
k

b̂(ω) define the annihilation operators for the corresponding output and input TMs, simi-

lar to those given in Eq.(  4.27 ). Because of orthonormal relations, they satisfy the Boson

commutation relation for annihilation operators.

Because of the δ-function in the initial conditions in Eq.( 4.38 ), we cannot solve di-

rectly the differential-integral equations in Eqs.(  4.36 , 4.37 ). In order to proceed, let us write

h̄1a(ω1, ω
′
1, z) ≡ h1a(ω1, ω

′
1, z) − δ(ω1 − ω′

1) and h̄1b(ω1, ω
′
1, z) ≡ h1b(ω1, ω

′
1, z) − δ(ω1 − ω′

1).

Furthermore, for a specific parametric process from four-wave mixing in optical fiber with a

Gaussian pumping profile, we have Ap(ω3) = A2
0 exp

[
−(ω3 − 2ωp0)2/4σ2

p

]
with pump band-

width of σp and pump amplitudeA0 [ 55 ]. We can introduce some new dimensionless variables:

ζ ≡ z/L0, Ωj ≡ (ωj − ωj0)/σp (j = 1, 2) with L0 as the length of the nonlinear medium, and

ωj0(j = 1, 2, p) as the central frequency of the corresponding fields. Then, we can make

Eqs.( 4.36 , 4.37 ) dimensionless as

d

dζ
h̄1a(Ω1,Ω′

1, ζ) =
∫
dΩ2f(Ω1,Ω2, ζ)h∗

2b(Ω′
1,Ω2, ζ)

d

dζ
h2b(Ω′

1,Ω2, ζ) = f(Ω′
1,Ω2, ζ)

+
∫
dΩ1f(Ω1,Ω2, ζ)h̄∗

1a(Ω1,Ω′
1, ζ), (4.43)

and

d

dζ
h̄1b(Ω2,Ω′

2, ζ) =
∫
dΩ1f(Ω1,Ω2, ζ)h∗

2a(Ω1,Ω′
2, ζ)

d

dζ
h2a(Ω1,Ω′

2, ζ) = f(Ω1,Ω′
2, ζ)

+
∫
dΩ2f(Ω1,Ω2, ζ)h̄∗

1b(Ω2,Ω′
2, ζ), (4.44)

where f(Ω1,Ω2, ζ) ≡ Ke−iζ∆kL0 exp[−(Ω1 + Ω2)2/4] with K ≡ 2πL0A
2
0σpχ as the dimen-

sionless pump parameter and h(Ω1,Ω2)-functions are dimensionless and is related to h(ω)-

functions by h(Ω1,Ω2) ≡ σph(ω1, ω2). Phase mismatch ∆kL0 can be adjusted according

to the dispersion of the nonlinear medium and in general has a linear form of ∆kL0 =
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Ω1/∆1 + Ω2/∆2 with parameters ∆1,∆2 determined by medium dispersion, pump band-

width σp, and medium length L0. The initial conditions in Eq.(  4.38 ) change to

h̄1a(Ω1,Ω′
1, ζ = 0) = 0

h̄1b(Ω2,Ω′
2, ζ = 0) = 0

h2a(Ω1,Ω′
2, ζ = 0) = 0

h2b(Ω′
1,Ω2, ζ = 0) = 0. (4.45)

Note that when pump parameter is small: K � 1, h2a(Ω1,Ω2) has an approximate analytical

solution:

h2a(Ω1,Ω2, ζ = 1) ≈ Ke−i∆kL0/2sinc(∆kL0/2)

× exp
[
−(Ω1 + Ω2)2/4

]
, (4.46)

which is exactly the JSF Φ(ω1, ω2) in Eq.(  4.22 ) after changing to dimensionless quantities.

But for a sizable K, we cannot solve the differential-integral equations in Eqs.(  4.43 , 4.44 )

analytically. Next, we will solve them numerically, subject to initial conditions in Eq.( 4.45 ).

4.4 Numerical Solutions

Let us use a nonlinear fiber as the nonlinear medium. We use the parameters similar to

those given in Ref.[  17 ] for a real piece of 300m-long dispersion-shifted nonlinear fiber. We

obtain the dimensionless parameters 1/∆1 = 0.785, 1/∆2 = −0.471. The numerical solution

of the amplitude of h2a(Ω1,Ω2) is shown in Fig.  4.4 for four values of pump parameter K:

K = 0.01, 2, 4, 10. For small K(� 1, Fig.  4.4 (a)), h2a(Ω1,Ω2) is exactly the JSF Φ(ω1, ω2)

given in Eq.( 4.22 ), similar to Fig.2(a) of Ref.[  17 ]. The shape starts to broaden as K increases.

This can be seen in the profile change of the eigen-function ψ(a)
1 (Ω1) obtained from singular

value decomposition when we plot it in Fig.  4.5 for four values of K (0.01, 2, 4, 10). To show

the trend, we plot the full width at half maximum (FWHM) of |ψ(a)
1 (Ω1)| as a function of K

in the inset of Fig. 4.5 .
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Figure 4.4. Contour plot of the amplitude of h2a(Ω1,Ω2) for K = (a) 0.01,
(b) 2, (c) 4, (d) 10. Ωi ≡ (ωi − ωi0)/σp(i = 1, 2) (Adapted from Ref.[ 49 ]).
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Figure 4.5. The amplitude function ψ
(a)
1 of mode 1 for pump parameter

K = 0.01, 2, 4, 10, showing the broadening of the width. Inset: the full width
at half maximum (FWHM) of mode 1 function as a function of the pump
parameter K (Adapted from Ref.[ 49 ]).

Figure 4.6. Mode coefficients rk/r1 as a function of dimensionless pump
parameter K (Adapted from Ref.[ 49 ]).
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The change of the transfer function h2a(Ω1,Ω2) with pump parameter K will lead to

mode structure change. This is reflected in the change of the distribution of the mode

coefficients {rk}, whose normalized values to r1 are plotted in Fig. 4.6 as a function of the

pump parameter K. The trend shows the increasing weight of the higher order modes in

addition to the broadening of the mode functions as K increases.

The multi-mode nature and the broadening of the mode functions with pump parameter

K are due to the values of ∆1,∆2 in ∆kL0 for a realistic nonlinear fiber case, which gives

rise to an asymmetric sinc-function in Φ of Eq.( 4.22 ) or h2a(Ω1,Ω2) at small K (Fig. 4.4 (a)).

In principle, we can adjust the dispersion parameters of the fiber to change ∆1,∆2 in ∆kL0.

It is found that the initial h2a(Ω1,Ω2) when K � 1 is nearly round or factorized with

parameters 1/∆1 = 2.198, 1/∆2 = −2.198, as shown in h2a(Ω1,Ω2) in Fig.  4.7 (a). The initial

rk distribution is indeed close to single mode with high order rk much smaller than 1. This

can be seen in Fig. 4.8 for K = 0. However, the trend of mode spreading for large K in

Fig. 4.6 persists in Fig. 4.8 .

On the other hand, a close look at Fig.  4.7 (c,d) for large K shows that the function h2a

is still pretty round or nearly single mode. In fact, we find from mode decomposition in

Eq.( 4.41 ) that the coefficient of each mode is sinh2(rkG), which becomes 0.25e2rkG for large

rkG. So, the ratio of coefficients of the first mode to higher mode is then e2(r1−rk)G � 1

for large G, that is, the first mode will dominate in the mode decomposition in Eq.(  4.41 ) at

large K (or G) [ 56 ], which leads to a nearly round (or factorized) h2a.

Furthermore, we can look at the mode purity of the output state. It is known that

if we discard the other field, one of the output fields from a PA is in a thermal state. For

broadband pulsed pumping, it becomes a multi-mode thermal field. Mode purity for a pulsed

multi-mode thermal field was studied in Ref.Su2019PRA with the TM format described here.

It was found that mode purity can be characterized by the normalized intensity correlation

function g(2) defined as

g(2) ≡ 〈I2〉
〈I〉2 ≡ 1 + 1

M

= 1 +
∑

k I
2
k

(∑k Ik)2 , (4.47)
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Figure 4.7. Contour plot of the amplitude of h2a(Ω1,Ω2) for the case of
1/∆1 = 2.198, 1/∆2 = −2.198 with K = (a) 0.01, (b) 2, (c) 4, (d) 10. Ωi ≡
(ωi − ωi0)/σp(i = 1, 2) (Adapted from Ref.[ 49 ]).
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Figure 4.8. Mode coefficients rk/r1 as a function of dimensionless pump
parameter K for the nearly factorized case of 1/∆1 = 2.198, 1/∆2 = −2.198
(Adapted from Ref.[ 49 ]).
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where M is defined as the number of modes (M = 1 gives the pure single-mode case) and Ik

is the intensity of mode k. From Eq.(  4.42 ), we find that Ik = sinh2(rkG) for vacuum input

to the PA. So, Eq.( 4.47 ) becomes

M =

[∑
k sinh2(rkG)

]2
∑

k sinh4(rkG)
. (4.48)

Obviously, for the single mode case with r1 = 1, rk = 0 (k > 1), we have M = 1. Equation

( 4.48 ) was first derived by Christ et al. [ 15 ] for TMs and by Sharapova et al. [ 57 ] and

Dyakonov et al. [ 58 ] for spatial modes in high gain parametric processes. For the two cases

shown in Fig.  4.4 and Fig.  4.7 , we evaluate mode number M in Eq.(  4.48 ) as a function of

pump parameter K and plot the results in Fig.  4.9 . It can be seen that mode number M

indeed drops first as K increases. This drop is consistent with the dominance of the first

mode as K increases. However, the drop stops at around K = 2 when a minimum of M

is reached. M starts to slowly increase after K > 2. This is due to the increase of rk for

higher order modes as K increases, as shown in Fig.  4.6 and Fig. 4.8 . The minimum M value

depends on the initial M at low K(� 1). Thus, it is better to have a nearly single mode

situation at low pump power.

4.A Appendix

In general, we can use singular value decomposition to write

h1a(ω, ω′) =
∑

k

r
(k)
1a ψ

(k)
1a (ω)φ(k)

1a (ω′)

h2a(ω, ω′) =
∑

k

r
(k)
2a ψ

(k)
2a (ω)φ(k)

2a (ω′)

h1b(ω, ω′) =
∑

k

r
(k)
1b ψ

(k)
1b (ω)φ(k)

1b (ω′)

h2b(ω, ω′) =
∑

k

r
(k)
2b ψ

(k)
2b (ω)φ(k)

2b (ω′) (4.49)
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Figure 4.9. Mode number M as a function of pump parameter K for the
cases shown in Fig. 4.4 (orange, (a)) and Fig.  4.7 (blue, (b)). The dashed line
corresponds to M = 1 (Adapted from Ref.[ 49 ]).
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where ψ(k)
1a (ω), φ(k)

1a (ω′) etc. are 8 sets of orthonormal mode functions satisfying
∫
dωψ

(k)
1a (ω)

ψ
(k′)∗
1a (ω) = δk,k′ , etc. Using the the decomposition in Eq.(  4.49 ) and orthonormal relations,

we write the left hand side of the first relation in Eq.( 4.39 ) as

∫
dω′′h1a(ω, ω′′)h∗

1a(ω′, ω′′)

−
∫
dω′′h2a(ω, ω′′)h∗

2a(ω′, ω′′)

=
∫
dω′′∑

k,k′
r

(k)
1a r

(k′)
1a ψ

(k)
1a (ω)ψ(k′)∗

1a (ω′)φ(k)
1a (ω′′)φ(k′)∗

1a (ω′′)

−
∫
dω′′∑

k,k′
r

(k)
2a r

(k′)
2a ψ

(k)
2a (ω)ψ(k′)∗

2a (ω′)φ(k)
2a (ω′′)φ(k′)∗

2a (ω′′)

=
∑
k,k′

r
(k)
1a r

(k′)
1a ψ

(k)
1a (ω)ψ(k′)∗

1a (ω′)δk,k′

−
∑
k,k′

r
(k)
2a r

(k′)
2a ψ

(k)
2a (ω)ψ(k′)∗

2a (ω′)δk,k′

=
∑

k

r
(k)2
1a ψ

(k)
1a (ω)ψ(k)∗

1a (ω′) −
∑

k

r
(k)2
2a ψ

(k)
2a (ω)ψ(k)∗

2a (ω′).

(4.50)

Using the completeness of mode function {ψ(k)
1a (ω)}: ∑

k
ψ

(k)
1a (ω)ψ(k)∗

1a (ω′) = δ(ω − ω′), we can

rewrite the first relation in Eq.( 4.39 ) as

∑
k

r
(k)2
2a ψ

(k)
2a (ω)ψ(k)∗

2a (ω′) =
∑

k

(r(k)2
1a − 1)ψ(k)

1a (ω)ψ(k)∗
1a (ω′). (4.51)

Treating k as the row index and ω as the column index of a matrix, we can consider

mode function ψ(k)(ω) as matrix element of Ψ with {Ψ}k,ω ≡ ψ(k)(ω) (we dropped subscript

1a, 2a for clarity). Then Eq.(  4.51 ) is equivalent to the following matrix equation:

[Ψ2a]†


r

(1)2
2a 0 . . .

0 r
(2)2
2a . . .

... ... . . .

Ψ2a = [Ψ1a]†


r

(1)2
1a − 1 0 . . .

0 r
(2)2
1a − 1 . . .

... ... . . .

Ψ1a. (4.52)
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Multiplying left of the above with matrix Ψ1a and right with [Ψ1a]† and using orthonormal

relation
∫
dωψ

(k)
1a (ω)ψ(k′)∗

1a (ω) = δk,k′ , we obtain a rotational transformation:

R


r

(1)2
2a 0 . . .

0 r
(2)2
2a . . .

... ... . . .

R† =


r

(1)2
1a − 1 0 . . .

0 r
(2)2
1a − 1 . . .

... ... . . .

 (4.53)

with the transformation matrix R ≡ Ψ1a[Ψ2a]†. The only solution for the above is R = I,

or
∫
dωψ

(k)
1a (ω)ψ(k′)∗

2a (ω) = δk,k′ . With uniqueness of mode function set {ψ(k)
1a (ω)}, we have

ψ
(k)
1a (ω) = ψ

(k)
2a (ω), and then r(k)2

1a −r
(k)2
2a = 1. Similarly, using the second relation in Eq.( 4.39 )

we have ψ(k)
1b (ω) = ψ

(k)
2b (ω), and r

(k)2
1b − r

(k)2
2b = 1.

Next let us use the third relation in Eq.( 4.39 ) and rewrite as:

∫
dω′′∑

k,k′
r

(k)
1a r

(k′)
2b ψ

(k)
1a (ω)ψ(k′)

1b (ω′)φ(k)
1a (ω′′)φ(k′)

2b (ω′′)

−
∫
dω′′∑

k,k′
r

(k)
2a r

(k′)
1b ψ

(k)
1a (ω)ψ(k′)

1b (ω′)

×φ(k)
2a (ω′′)φ(k′)

1b (ω′′) = 0. (4.54)

Multiplying both sides with ψ(k1)∗
1a (ω)ψ(k2)∗

1b (ω′) and integrating ω, ω′, with orthonormal rela-

tions for ψ(k)
1a (ω), ψ(k′)

1b (ω′), we obtain

cosh r(k1)
a sinh r(k2)

b Rk2,k1 = sinh r(k1)
a cosh r(k2)

b R′
k2,k1 , (4.55)

where we set r(k)
1a ≡ cosh r(k)

a , r(k)
1b ≡ cosh r(k)

b , then r
(k)
2a =

√
r

(k)2
1a − 1 = sinh r(k)

a and r
(k)
2b =√

r
(k)2
1b − 1 = sinh r(k)

b , and R′
k2,k1 ≡

∫
dωφ

(k2)
1b (ω)φ(k1)

2a (ω), Rk2,k1 ≡
∫
dωφ

(k2)
2b (ω)φ(k1)

1a (ω).

Switching back notations: k = k1, k
′ = k2, we have

Rk,k = tanh r(k)
a coth r(k′)

b R′
k′,k,

R′
k′,k = coth r(k)

a tanh r(k′)
b Rk′,k, (4.56)
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which, in matrix form, is simply R = CbR′C−1
a or R′ = C−1

b RCa with

Ca ≡


coth r(1)

a 0 . . .

0 coth r(2)
a . . .

... ... . . .

 (4.57)

and

Cb ≡


coth r(1)

b 0 . . .

0 coth r(2)
b . . .

... ... . . .

 . (4.58)

Now notice that RR† = I = R′R′†, or using matrix form of Eq.( 4.56 ), we obtain

CbR′C−1
a C−1

a R′†Cb = I, C−1
b RCaCaR†C−1

b = I. (4.59)

Rewrite the above, we have

R′C−2
a R′† = C−2

b , RC2
aR† = C2

b . (4.60)

Since matrices Ca,Cb are both diagonalized, the above expressions are true only if R′ = I

= R, or φ(k)
1a = φ

(k)∗
2b , φ(k)

1b = φ
(k)∗
2a and Ca = Cb, or r(k)

a = r
(k)
b .

Setting r(k)
a = r

(k)
b ≡ rkG with rk normalized: ∑k r

2
k = 1, and φ

(k)
1a = φ

(k)∗
2b ≡ φ

(a)
k , φ

(k)
1b =

φ
(k)∗
2a ≡ φ

(b)
k , ψ

(k)
1a (ω) = ψ

(k)
2a (ω) ≡ ψ

(a)
k (ω), ψ(k)

1b (ω) = ψ
(k)
2b (ω) ≡ ψ

(b)
k (ω) in Eq.(  4.49 ), we obtain

Eq.( 4.41 ).
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5. MEASUREMENT OF JOINT SPECTRAL DENSITY

5.1 Research Background

With the knowledge of JSF of SPDC, we can extract the TM structure and correlation

information of the output fields with the singular value decomposition method. When the

pump power is low, two-photon states are generated by the nonlinear interaction which

dominate in the output fields except the vacuum state, as shown in Eq.(  2.29 ). Joint spectral

density CN |F (ω1, ω2)|2 (where CN is a normalization factor) characterizes the frequency

correlation of the output photon pair. CN |F (ω1, ω2)|2dω1dω2 describes the probability that

the frequency of the photon of signal field is within dω1 of ω1 while the frequency of the

correlated photon of idler field within dω2 of ω2. The measurement of the JSF is of particular

importance for the application of the TM framework of QIS. The TM structure can be derived

theoretically with the singular value decomposition of the measured JSF. It can examine the

application of the quantum nonlinear theory, and also verify our feedback-iteration method

which directly measures the TMs of the output fields. Although the JSF can be measured,

the joint spectral density is often measured in the laboratory instead for it’s much easier

to implement. This is valid when the spectral phases of TMs are relatively flat within the

spectral range of interest. Even if it is not, the joint spectral density still provides the

amplitude information of the TMs.

To date, joint spectral density has been measured with a statistical approach based on the

spectrally resolved photon coincidence experiment [ 21 ]–[ 23 ], [  59 ]. The measurement is very

time consuming because the power of the pump field has been very low and the output field

is mainly at two-photon states, and two single-photon detectors are used for the coincidence-

counting measurements. Furthermore, the two single-photon detectors have to be adjusted

each time to select specific frequencies. The two dimensional frequency domain has to be

scanned over to reconstruct the joint spectral density graph. This leads to low resolution with

a poor signal-to-noise ratio for the frequency drift of the pump laser in a long time duration.

Recently an alternate method was implemented which measured the joint spectral density

of the spontaneous process through the corresponding simulated process by a narrow-band

seed laser beam [  20 ], [  24 ], [  25 ]. It utilizes the relation of SPDC and stimulated emission that
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share the same phase match relation and pump beam spectrum. This avoids the photon

coincidence measurement and the spectrometer can be used as the detector instead of the

single-photon detectors, therefore it saves measurement time and improves the resolution.

We show an experimental demonstration of measurement of the joint spectral density for a

SPDC process of a nonlinear crystal PPKTP pumped by an ultrafast pulse laser beam. A

tunable CW external-cavity diode laser (ECDL) is used as a stimulated seed beam and the

output beam is measured by a monochromator as a spectrometer. The joint spectral density

is reconstructed by sweeping the seed wavelength.

Without considering the time ordering issue, the output two-photon state of the SPDC

is given by

|Ψ2〉 ≈
∫
dω1dω2F (ω1, ω2)â†(ω1)â†(ω2)|vac〉, (5.1)

which is the dominant component of the output field beside the vacuum state when the pump

field is operated at relatively low power. Therefore the joint spectral density can be measured

by the spectrally resolved single photon coincidence experiment 〈Ψ2| â†(ω1)â†(ω2)â(ω1)â(ω2)

|Ψ2〉 = |F (ω1, ω2)|2. This measurement is very time consuming as we discussed above. In-

stead we can exploit the stimulated emission by using a CW coherent laser field α(ω1) in

signal input port as a seed beam, and measure the spectrally pre-conditioned marginal output

spectra of the idler field 〈Ψ′
2| â†(ω2)â(ω2) |Ψ′

2〉 , with |Ψ′
2〉 =

∫
dω1dω2F (ω1, ω2)â†(ω1)â†(ω2)

|α(ω1), vac2〉 ≈
∫
dω1dω2F (ω1, ω2)α∗(ω1)â†(ω2)|α(ω1), vac2〉 for |α|2 � 1. Here |vac2〉 rep-

resents the vacuum state in the idler input port. Since CW coherent field has narrow spectral

band α(ω1) = αδ(ω1−ω10), we have 〈Ψ′
2| â†(ω2)â(ω2) |Ψ′

2〉 , with |Ψ′
2〉 = α∗ ∫ dω2F (ω10, ω2)â†(ω2)

|α(ω1), vac2〉 (as long as we keep the power of the stimulated emission field much less than

the seed field |α|2|F (ω10, ω2)|2 � 1, this term dominates in the output field besides the

vacuum). and the output spectra of the idler field

〈Ψ′
2| â†(ω2)â(ω2) |Ψ′

2〉 = |α|2|F (ω10, ω2)|2. (5.2)
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Sweeping the seed frequency ω10 allows the reconstruction of the joint spectral density. (see

Fig. 5.1 ).

Figure 5.1. Reconstruction of a typical joint spectral density, shared by the
SPDC and its counterpart stimulated emission process for the same nonlinear
crystal at the same pump configuration. A narrow-band seed laser beam at
frequency ω10 stimulates the emission of a spectrally pre-conditioned coherent
output beam in the idler mode. This spectrum is proportional to the joint
spectral density with the signal frequency being ω10 (Eq.( 5.2 )). The joint
spectral density can be obtained by sweeping the frequency�10of the seed beam.

5.1.1 Quasi-phase Matching for Periodic Poled Material

Birefringence is the optical property of a material having a refractive index that depends

on the polarization and propagation direction of light that passes through. Typically, SPDC

is done in a birefringent crystalline material. The polarizations of the fields and the ori-
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entation of the crystal are chosen such that the phase-matching condition is fulfilled. This

phase-matching technique is called angle tuning. Typically a crystal has three axes, one

or two of which have a different refractive index than the other one(s). Potassium titanyl

phosphate (KTP) is a Biaxial crystal which has three refractive indices corresponding to

three principal axes XY Z of the crystal. In our application we only exploit the Y Z plane

and call the two axes Y, Z with the traditional names ”extraordinary” (e) and ”ordinary”

(o) axis, respectively, and the corresponding light beam with the polarization parallel to the

axis e and o light, respectively. There are several schemes of choosing the polarizations for

this crystal type. The two types we exploit in our experiment is type-0 and type-II phase

matching: If the signal, idler and the pump beam have the same polarization (o + o -> o or z

+ z -> z interaction), it is called ”type-0 phase matching”, and if the signal and idler beam’s

polarizations are perpendicular ( e + o -> e or y + z -> y interaction), it is called ”type-II

phase matching”. PPKTP is produced by periodic poling of the crystal KTP, whereby a

structure of regularly spaced ferroelectric domains with alternating orientations are created

in the material. The structure is designed to achieve quasi-phase matching in the material.

It ensures that the energy always flows from the pump field to the second harmonic fields

even though their phases are not matched perfectly. We use two PPKTP in our experiment.

The first one employs type-0 phase matching with the poling period length of the crystal of

3.425 µm. The size of the crystal is 1 × 1 × 5 mm. It transfers o polarized pulse fields with

the central wavelength of 810 nm to the o pulse fields with the central frequency of 405nm

with the second harmonic generation process. The output field works as the pump beam for

the second PPKTP, the joint spectral density of which we are interested in measuring. The

second PPKTP employs type-II phase matching with the poling period length of the crystal

of 10 µm. The size of the crystal is 1 × 2 × 2.5 mm. It transfers the pump beam into two

different polarized (o and e) fields with the central frequencies near 810 nm with the SPDC

process.

In the section  2.2.4 , we obtain the JSF for birefringent phase matching. Now we will work

on the quasi-phase matching. The technique of Periodic poling alternates the orientation of

the crystal periodically in the direction of the pump beam. Therefore it changes the sign
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of χ(2) periodically in z direction. The interaction Hamiltonian of the nonlinear effect (

Eq.( 2.20 )) is modified to

H
(2),P P M
int =

∫
d3rη(z)2

3ε0 ~E(~r, t) · χ(2) : ~E(~r, t)2, (5.3)

with η(z) = 1 for (2n− 2)l ≤ z < (2n− 1)l and η(z) = −1 for (2n− 1)l ≤ z < 2nl. l is the

half poling period length of the crystal. n = 1, 2, 3, . . . denotes the nth half polling period.

When pulsed laser is used as the pump laser, αp(ω1 +ω2) =
√
P exp[ − (ω1+ω2−ωpc)2

2σ2
p

] describes

the pump field with a Gaussian spectral envelope with width σp, a central frequency of ωpc

and the power of P . Work out the integral in Eq.(  5.3 ) we obtain the joint spectral density

|F (ω1, ω2)|2 ∝
∣∣∣∣∣sinc(∆Kl/2)sin[(∆Kl + π)n/2]

sin[(∆Kl + π)/2]
exp[ − (ω1 + ω2 − ωpc)2

2σ2
p

]
∣∣∣∣∣
2

, (5.4)

where n is the number of the periods of the periodic polled material. From the term

sin[(∆Kl + π)n]/sin(∆Kl + π), we can see when l = π/∆K the joint spectral density

reached the peak. That is how the length of the period of the material is chosen in the

production for the nonlinear process of specific wavelengths. We can change the variables of

frequencies in Eq.( 5.4 ) to wavelengths as following,

exp[ − (ω1 + ω2 − ωpc)2

2σ2
p

] = exp[ −
λ4

pc(1/λ1 + 1/λ2 − 1/λpc)2

2σ2
λ

], (5.5)

where λpc = 405 nm, σλ = 0.813 nm

∆Kl = ksl + kil − kpl = [2πny(λ1)
λ1

+ 2πnz(λ2)
λ2

− 2πny(λp)
λp

]l, (5.6)

where λp = λ1λ2/(λ1 + λ2).

ny(λ) =
√

2.1518 + 0.87862λ2/(λ2 − 0.218012) − 0.01327λ2,

nz(λ) =
√

2.3136 + 1.00012λ2/(λ2 − 0.238312) − 0.01679λ2.
(5.7)
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Here l = 5.1 µm in Eq.( 5.6 ) denotes the half length of the period of PPKTP, and the unit

of wavelength in Eq.(  5.7 ) is µm. We obtain the joint spectral density as the function of λ1

and λ2. Fig.  5.2 show the contour graph of the joint spectral density for the PPKTP.

5.1.2 Experimental Implementation

The experimental setup mainly comprises two stages. Firstly, OPA is realized with quasi-

phase matching by fine tuning of angle with both the pump beam and seed beam being the

pulse laser. Optimize the stimulated output with the help of a lock-in amplifier. Secondly,

a CW beam from an ECDL is used as the seed beam instead of the pulsed seed beam. The

seed beam is collimated and overlapped with the pulse pump beam while keeping the angles

of the pump beam and the PPKTP fixed. Optimize the output. The first stage is necessary

because it works as an assistantary process to align CW beam with the pump beam and

PPKTP, which is difficult for the small signal of the output. Sweep the frequency of the seed

beam and measure the spectrum of the stimulated output with the help of a monochromator

or optical spectrum analyzer (OSA). This will make a measurement of the joint spectral

density.

In the first stage, the experiment is set up as shown in Fig.  5.4 . The main laser source is

a tunable femtosecond Ti:Sapphire laser with an output power at around 250 mW and pulse

repetition rate of 76 MHz. The pulse duration for the femtosecond Ti:Sapphire laser is 100 fs.

The bandwidth of the pulse beam is around 6.5 nm (see Fig.  5.3 ). The wavelength of the laser

source is tuned to 810 nm (IR), as marked in red color in the schematic Figure. Human’s

eye is not sensitive to this frequency. A near infrared (NIR) sensor card is used to spot

the light beam. The laser beam first passed through the first type-0 PPKTP which doubles

the frequency of the laser beam with the type-0 second harmonic generation. It generates

a blue beam with the central wavelength of 405 nm from the IR pulse beam with the same

polarization (perpendicular to the optical table). A pair of lenses is placed on both sides of the

crystal to achieve a higher conversion rate while maintaining the profile of the laser beam. By

fine tuning the angle of the beam and crystal so that the phase matching condition is satisfied,

the second harmonic field is generated all the way through the crystal which propagates
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Figure 5.2. The joint spectral density for PPKTP obtained by theoretical calculation
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collimated with the IR source beam. A Dichroic Beam Splitter (DBS) is used to separate

the IR and blue beams. The output blue beam (with the polarization perpendicular to the

optical table) works as the pump beam of the second PPKTP (after going through an optical

chopper) for the SPDC and its counterpart stimulated emission process, the joint spectral

density of which is to be measured. The IR beam (with the polarization perpendicular to

the optical table) works as the seed beam for the second PPKTP after going through a delay,

which is made out of two coated mirrors that are attached to a manual translation stage.

The stage is adjusted back and forth to make sure the pulses of the IR beam and blue beam

arrive at the second PPKTP simultaneously. The full width at half maximum (FWHM) of

the pulse × the speed of light shows how precisely we need to control the delay, i.e., 100 fs

× 3 × 108 m/s = 30 µm. The stimulated emission of the parametric process for the second

PPKTP is just a reverse type II second harmonic generation. It transfers the e polarized

blue beam to an e IR beam which is the same as the seed beam, and an o polarized (parallel

to the optical table) IR beam. The o polarized IR beam is extracted by a Polarizing Beam

Splitter (PBS) and a longpass optical filter (which rejects the blue beam), and measured by

the Model SR830 DSP lock-in amplifier with the oscillation signal from the optical chopper.

We tune the angles of the laser beams and the directions of the crystals until obtaining the

best output results.

The lock-in amplifier is used because although the PBS rejects the e IR seed beam,

there is a component of the seed beam in the final output due to the imperfection of the

experimental device. The stimulated emission is at a very low level so that the field from the

seed beam is much larger than from the stimulated emission even after the PBS. Therefore

the signal of the stimulated emission will be covered by that of the component of the seed

beam and its fluctuation. However the stimulated emission is related to the pump beam

the intensity of which is modulated by the optical chopper. The detection of the stimulated

emission is an AC signal with the frequency determined by the optical chopper. The IR seed

beam is not affected and corresponds to a DC signal in the measurement. With the lock-in

amplifier, the AC signal of the stimulated emission field will be selected out and measured.

In the second stage of the experiment (Fig.  5.5 ), A Littrow Modular CW Tunable External

Cavity Laser from Sacher Lasertechnik is used as the seed beam instead of the pulse laser
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Figure 5.3. The spectrum of the femtosecond Ti:Sapphire laser measured
with OSA. The central wavelength of the pulse spectrum is around 810 nm.
The bandwidth of the pulse beam is around 6.5 nm.

from the Ti:Sapphire laser. This is achieved by a flipper mirror conveniently. When the

flipper mirror is turned up, the CW beam will be injected to the second PPKTP and pulse

IR beam is blocked, while if the flipper mirror is turned down, the pulse IR beam is injected

to the PPKTP and the CW beam is blocked. The CW laser is operated at the power of

around 15 mw and in the e polarization. A pair of lenses is used to modify the profile of the

CW beam so that it shares the same spatial transverse mode with pulse IR beam to improve

the efficiency of the OPA effect. Moreover the CW beam has to be adjusted so that it shares

the same light path with the pulse IR beam too. We use the second flipper mirror in front of

the second PPKTP to make sure the beam collimated and overlapped with the pump beam

in a long distance. With the flipper mirror turned up, the two beams are projected to the

NIR sensor card after the mirror. We adjust the CW beam so that the light spot overlaps

with the pulse IR beam on the NIR sensor card both right after the flipper mirror and after
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Figure 5.4. A schematic diagram for the first stage of the experiment. DBS:
dichroic beam splitter. PBS: polarized beam splitter. ECDL: external-cavity
diode laser. FM: flipper mirror. LA: lock-in amplifier. ISO: optical isolator.
LF: optical longpass filter.

propagating a long distance. When the light beams are aligned, the flipper mirror is turned

down and the output field of o polarization extracted by the PBS and longpass filter is

measured by a detector with a lock-in amplifier. This gives the overall power of the output

field so that we can optimize the nonlinear effect by maximising the output. To obtain the

spectra of the stimulated emitted field, we can either place a monochromator in the front of

the detector or just replace the whole detection system with an OSA, as shown in Fig. 5.5 .

We tune the wavelength of the ECDL over the domain of interest (from 803 nm to 815 nm)

with the steps of 0.5 nm and record the corresponding output spectra for reconstructing

the joint spectral density. The wavelength of ECDL is measured with an OSA. Fig. 5.6 is a

photograph of the experimental setup in which the spectra of the stimulated emitted field is

measured with the monochromator and lock-in amplifier (which is not shown in the graph).
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Figure 5.5. A schematic diagram for the second stage of the experiment.
DBS: dichroic beam splitter. PBS: polarized beam splitter. ECDL: external-
cavity diode laser. FM: flipper mirror. LA: lock-in amplifier. ISO: optical
isolator. OSA: optical spectrum analyzer

5.1.3 Experimental Results and Discussions

Fig. 5.7 shows the experimental measured joint spectral intensity (the normalization of

which is the joint spectral density) based on the stimulated emission. The spectrum of the

stimulated output is measured with an optical detector and lock-in amplifier. The profile of

joint spectral density shows an anti-correlation of the seed beam (signal) and output beam

(idler) wavelength. It is consistent with theoretical results (Fig.  5.2 ).The data is measured

with the resolution of 0.5 nm and interpolated with Matlab. The peak value of joint spectral

density happens when the wavelength of the seed beam is around 807 nm. It deviates from

the theoretical 810 nm. We have tried tuning the central wavelength of the Ti:Sapphire laser

but the peak value doesn’t change significantly. The deviation may be due to the fabrication
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Figure 5.6. A photograph of the experimental setup taken from above the optical table.

error of the crystal. There is a line intersecting with the joint spectral density pattern. The

wavelength of the output field is just correlated with the seed beam. But note that we use a

lock-in amplifier to process the data with the oscillation signal from the optical chopper. The

optical chopper is in the light path of the 405 nm pump beam. With the lock-in amplifier,

only the AC signal with the same frequency of the chopper will be kept in the final data

output. Thus this part of the spectrum shares the same wavelength with the seed beam, and

is not only related to the seed beam but also with the pump beam. Its polarization is not

the same as the output o beam but more close to e beam. The signal measured in the graph

is only from the small o component extracted by the PBS. This is due to the imperfection

of the experiment. Although only a small component of this beam is extracted by the PBS,

The signal is either comparable with or much larger than stimulated emission, depending on

the angle tuning. This output field may be explained by the stimulated Raman scattering of

the crystal with the same pump and seed beam of SPDC. One photon of the pump beam is
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transferred to one photon of the seed beam. The energy difference is absorbed by the crystal

molecule in the form of the mechanical vibration.

Figure 5.7. Experimental joint spectral intensity (normalized with the peak
value) obtained by stimulated emission based measurements. The spectrum
of the stimulated output is measured with an optical detector and lock-in
amplifier. measurements

Fig. 5.8 shows the joint spectral intensity measured with hp 70951A OSA. The data is

read and recorded through HP-IB (GPIB) by PC with NI-488.2 Communicator of Labview.

The spectrum of the stimulated output when the wavelength of the seed beam is 809 nm

is shown Fig  5.9 . The spectrum of the seed beam (also the small o component) can be seen

as well as the stimulated emission. Note OSA measures DC signal. So this is mainly the o
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component of the seed beam. But the emission with the same wavelength of the seed beam

is still there which is covered by the seed beam. In the reconstructed joint spectral density

we remove the seed beam manually. The resolution of the wavelength for the seed beam

scanning and spectrum data is set to 1 nm, and interpolated with matlab.

Figure 5.8. Experimental joint spectral intensity (normalized with the peak
value) obtained by stimulated emission based measurements. The spectrum
of the stimulated output is measured with OSA.
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Figure 5.9. The spectrum of the stimulated output measured with OSA when
the wavelength of the seed beam is 809 nm.
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6. PARAMETRIC AMPLIFIER FOR BELL MEASUREMENT

IN CONTINUOUS-VARIABLE QUANTUM STATE

TELEPORTATION

Quantum interference plays an important role in the display of many quantum phenomena.

It usually requires a linear beam splitter to superimpose two fields for interference between

them. This happens in many protocols of quantum information processing. For example,

optical quantum computing relies on the Hong-Ou-Mandel effect where a beam splitter is

an essential element [  4 ], [ 5 ]. Current applicable schemes of Bell measurement [  26 ], [ 27 ] for

quantum state teleportation [  28 ]–[ 31 ] require beam splitters to mix the incoming unknown

state with one field of an entangled state.

It is well-known that losses are notorious in degrading quantum effects and are the key

obstacle in many protocols of quantum information processing. Detection process often intro-

duces losses due to imperfect coupling and less-than-unit quantum efficiency. Highly efficient

detectors are only available for some limited spectrum of the electromagnetic waves. Thus, it

becomes a major concern in high fidelity quantum communication involving quantum mea-

surement by detection. Quantum state teleportation is one of such quantum communication

protocols where a Bell measurement is performed to projectively select out the required

states. For continuous-variable quantum state teleportation, Bell measurement is usually

achieved by homodyne detection, which is sensitive to losses. This will inevitably affect the

fidelity of the teleported state.

On the other hand, amplification is known to overcome the effect of losses. Indeed, PA

were recently used in SU(1,1) interferometers [ 48 ] and quantum entanglement measurement

[ 60 ] to mix two fields by replacing beam splitters (BS) for interference and was demonstrated

to be loss-tolerant in detection processes.

At first look, it seems counter-intuitive that a PA can be of any use in QIS and play any

role in mixing fields for interference since it is often portrayed as adding extra noise and thus

degrading the signal in the amplification processes [  61 ]. However, if we look into the origin

of the extra noise, we find it comes from the vacuum fluctuations of the internal degrees

of the amplifier. So, if we can access these internal degrees and place them in correlation
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with the input, the extra noise can actually be suppressed due to quantum correlation [ 62 ],

[ 63 ]. Therefore, by treating the internal degrees of the amplifier as another input, we mix

them with the original input and use the amplifier as a field mixer similar to a beam splitter.

Specifically, PAs are such devices for which the internal degree is the so-called idler field

that we can easily access from outside. In essence, a PA is a four-port linear device just like

a beam splitter, even though it is often realized through nonlinear interaction with energy

actively pumped into it for amplification. We investigate the feasibility of replacing a beam

splitter by a PA for Bell measurement in quantum teleportation scheme and demonstrate

the loss tolerant property of the new scheme.

6.1 Quantum State Transformation of a Parametric Amplifier

The role played by a PA in the mixing of fields for interference can be understood from

the following input-output relation:

â
(o)
1(P A) = Gâ

(i)
1 + gâ

(i)†
2 , â

(o)
2(P A) = Gâ

(i)
2 + gâ

(i)†
1 , (6.1)

where G, g are amplitude gains satisfying G2 − g2 = 1 and without loss of generality, we

assume they are real and positive (otherwise, we can always absorb the extra phases in â1,2).

In comparison, the input-output relation for a beam splitter is given by

â
(o)
1(BS) = tâ

(i)
1 + râ

(i)
2 , â

(o)
2(BS) = tâ

(i)
2 − râ

(i)
1 (6.2)

with t2 + r2 = 1. It can be seen that the PA is basically a four-port linear device that not

only amplifies but also, similar to a beam splitter, mixes the two input fields.

However, the difference between the two devices is also obvious: the PA output is related

to the Hermitian conjugate of the second input field, which can lead to unwanted spontaneous

emission even with input in vacuum, as seen in the average photon number:

〈N̂ (o)
1(P A)〉 ≡ 〈â(o)†

1 â
(o)
1 〉

= G2〈â(i)†
1 â

(i)
1 〉 + g2(〈â(i)†

2 â
(i)
2 〉 + 1), (6.3)
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if the two inputs are independent of each other. So, PA is not suitable for mixing photons

or quantum information processing with discrete variables. On the other hand, the input-

output relations for quadrature-phase amplitudes are given by

X̂
(o)
1,2(P A) = GX̂

(i)
1,2 + gX̂

(i)
2,1, Ŷ

(o)
1,2(P A) = GŶ

(i)
1,2 − gŶ

(i)
2,1 , (6.4)

which is similar to those for a beam splitter:

X̂
(o)
1,2(BS) = tX̂

(i)
1,2 ± rX̂

(i)
2,1, Ŷ

(o)
1,2(BS) = tŶ

(i)
1,2 ± rŶ

(i)
2,1 , (6.5)

where X̂ ≡ â + â†, Ŷ ≡ (â − â†)/j(j ≡
√

−1) for the corresponding field described by â.

So, they only differ in coupling coefficients. Therefore, for continuous variable quantum

information processing, a PA can play the same role as a BS for superimposing two fields.

Note from Eqs.(  6.4 , 6.5 ) that similar to the situation of loss, which introduces quantum noise

through vacuum in the unused port, amplification also adds noise through the vacuum of

the second input if it is unattended and thus uncorrelated with the signal input. For this

reason, the second input is usually called “idler”.

The relationships in Eqs.( 6.4 , 6.5 ) provide us a way to evaluate quantum state transfer

through a BS and a PA, which can be done through Wigner function representation [ 37 ].

For a PA with input state described by a Wigner function Win(X1, Y1;X2, Y2), the output

Wigner function of the PA is given by (for details, see Appendix  6.A.1 )

W
(P A)
out (x1, y1;x2, y2)

= Win(Gx1 − gx2, Gy1 + gy2;Gx2 − gx1, Gy2 + gy1).

(6.6)

Similarly for a BS with the same input state, the output state is described by [ 37 ]

W
(BS)
out (x1, y1;x2, y2)

= Win(tx1 − rx2, ty1 − ry2; tx2 + rx1, ty2 + ry1). (6.7)
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Comparing Eqs.(  6.6 , 6.7 ), we find the output Wigner functions for the two devices give rise

to superposition of input fields but with different phases and different transfer coefficients.

As an example, let us consider the input of a two-mode squeezed state with a Wigner

function of [ 64 ]

Win(x1, y1;x2, y2)

= 1
(2π)2 e− 1

4 [(x1+x2)2+(y1−y2)2]e2s

×e− 1
4 [(x1−x2)2+(y1+y2)2]e−2s

, (6.8)

where s is the squeezing parameter. It is known that when t = r = 1/
√

2, the output of BS

is two single-mode squeezed states with squeezing at orthogonal quadratures. This can be

easily confirmed from Eq.( 6.7 ):

W
(BS)
out (x1, y1;x2, y2)

= 1
(2π)2 e− 1

2 (x2
1+y2

2)e2se− 1
2 (x2

2+y2
1)e−2s

= 1
2π

e− 1
2 (x2

1e2s+y2
1e−2s) 1

2π
e− 1

2 (x2
2e−2s+y2

2e2s). (6.9)

The corresponding situation for a PA is:

W
(P A)
out (x1, y1;x2, y2)

= 1
(2π)2 e− 1

4 [(x1+x2)2+(y1−y2)2]e2s(G−g)2

×e− 1
4 [(x1−x2)2+(y1+y2)2)]e−2s(G+g)2

. (6.10)

Especially when G+ g = 1/(G− g) = es, we have

W
(P A)
out (x1, y1;x2, y2)

= 1
2π

e− 1
2 (x2

1+y2
1) 1

2π
e− 1

2 (x2
2+y2

2), (6.11)

which is just the Wigner function for vacuum. This is equivalent to the case of balanced

gain in an SU(1,1) interferometer [ 48 ].
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Figure 6.1. Schematics for the continuous-variable quantum state teleporta-
tion with a parametric amplifier (PA, inset) in place of a beam splitter (BS)
(Adapted from Ref.[  65 ]). NOPA: non-degenerate optical parametric amplifier;
HD: homodyne detection; LO: local oscillator.
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6.2 Application to Quantum State Teleportation

Consider the scheme shown in Fig.  6.1 for quantum state teleportation with continuous

variables. This is the scheme that makes a complete unconditioned state teleportation (even

for vacuum state) [ 27 ], [ 31 ] in comparison [ 27 ] with the teleportation scheme of polarization

states [  28 ], [  30 ]. In this scheme, an EPR entangled source in the form of Eq.(  6.8 ) of strength

characterized by s is produced from a NOPA and its two entangled fields (2 and 3) are

sent to Alice and Bob, respectively. Bell projection measurement is performed with a beam

splitter (BS) to mix the unknown state (field 1) to be teleported with one of the fields (field

2) of the EPR-entangled state, which is described in Eq.(  6.8 ). The results (iX1′ , iY 2′) of Bell

measurement are sent by Alice via classical channel to Bob, who modifies field 3 (MX ,MY )

to recover the original input state characterized by Wigner function Win.

It has been shown that PA-assisted homodyne measurement can make the same quantum

correlation measurement as the homodyne measurement [  60 ]. So, let us now replace the BS

with a PA of gain parameters G, g, shown in the inset of Fig.  6.1 . Using Eq.( 6.8 ) for the EPR

entangled state with a strength of s and labeling of the fields in Fig. 6.1 , we find the input

state of the PA is described by the Wigner function:

Win(x1, y1;x2, y2;x3, y3)

= 1
(2π)2 e− 1

4 [(x3+x2)2+(y3−y2)2]e2s

×e− 1
4 [(x3−x2)2+(y3+y2)2]e−2s

Win(x1, y1). (6.12)

From Eq.( 6.6 ), the Wigner function after the PA becomes

Wout(x′
1, y

′
1;x′

2, y
′
2;x3, y3)

= 1
(2π)2 e− 1

4 [(x3+Gx′
2−gx′

1)2+(y3−gy′
1−Gy′

2)2]e2s

×e− 1
4 [(x3−Gx′

2+gx′
1)2+(y3+gy′

1+Gy′
2)2]e−2s

×Win(Gx′
1 − gx′

2, Gy
′
1 + gy′

2). (6.13)
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Now we make homodyne measurements of X̂1′ and Ŷ2′ of the PA output fields. With a

result of iX′
1

and iY ′
2
, the state in field 3 (other field of the EPR-entangled state) is projected

to a state described by the density operator:

ρ̂proj = Tr1′2′(|iX′
1
, iY ′

2
〉〈iX′

1
, iY ′

2
|ρ̂sys), (6.14)

where |iX′
1
, iY ′

2
〉 is the common eigen state of X̂1 and Ŷ2. The Wigner function of the projected

state is then

Wproj(x3, y3)

=
∫
dx′

2dy
′
1Wout(x′

1, y
′
1;x′

2, y
′
2;x3, y3)|x′

1=iX′
1

,y′
2=iY ′

2

=
∫ dx′

2dy
′
1

(2π)2 e− 1
4 [(x3+Gx′

2−giX′
1

)2+(y3−gy′
1−GiY ′

2
)2]e2s

×e− 1
4 [(x3−Gx′

2+giX′
1

)2+(y3+gy′
1+GiY ′

2
)2]e−2s

×Win(GiX′
1

− gx′
2, Gy

′
1 + giY ′

2
) (6.15)

Combining the common terms in the integral above, we obtain

Wproj(x3, y3)

= e−
x2

3+y2
3

2cosh2s

(2π)2

∫
dx′

2dy
′
1e

− cosh2s
2 (Gx′

2+x3tanh2s−giX′
1

)2

×e− cosh2s
2 (gy′

1+GiY ′
2

−y3tanh2s)2

×Win(GiX′
1

− gx′
2, Gy

′
1 + giY ′

2
). (6.16)

Taking the limit of s � 1 so that cosh 2s � 1, we can approximate the Gaussian functions

in the integral above with δ-functions. Then we have

Wproj(x3, y3)

= 1
2πcosh2se− 1

2cosh2s
(x2

3+y2
3)

×
∫
dx′

2dy
′
1δ(Gx′

2 + x3tanh2s− giX′
1
)

×δ(gy′
1 +GiY ′

2
− y3tanh2s)

×Win(GiX′
1

− gx′
2, Gy

′
1 + giY ′

2
)
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= 1
2πGgcosh2se− 1

2cosh2s
(x2

3+y2
3)

×Win( g
G
x3tanh2s+

iX′
1

G
,
G

g
y3tanh2s−

iY ′
2

g
). (6.17)

When g � 1 so that G =
√

1 + g2 ≈ g, we have g/G ≈ G/g ≈ 1. Furthermore, if
√

cosh 2s � Max{1, the range of Win(x3, y3)}, we have tanh 2s ≈ 1 and cosh 2s � x2
3 + y2

3

so that e− 1
2cosh2s

(x2
3+y2

3) ≈ 1 within the range of Win(x3, y3). Then Eq.(  6.17 ) becomes

Wproj(x3, y3)

' 1
2πGgcosh2sWin(x3 +

iX′
1

G
, y3 −

iY ′
2

g
). (6.18)

The case of finite G and s is dealt with in Appendix  6.A and it is shown that the limits of

G � 1 and s � 1 are independent. With the detection outcomes of iX′
1
, iY ′

2
, we transmit these

measurement result through a classical channel to the location of field 3 and a displacement

operation of x3 +
iX′

1
G

→ x3, y3 −
iY ′

2
g

→ y3 (MX ,MY in Fig. 6.1 ) can be performed on field 3,

leading to the displaced Wigner function as

W disp
proj (x3, y3) ∝ Win(x3, y3). (6.19)

This recovers the Wigner function of the input state thus achieving quantum state telepor-

tation. So, we just showed that the quantum state teleportation scheme still works even

after we replace the BS with a high gain PA. Note that the condition G =
√

1 + g2 ≈ g is

equivalent to t = r = 1/
√

2, which is required for the scheme with a BS.

6.3 Tolerance to Detection Loss

The quantum teleportation process involves homodyne detection which may introduce

losses through detectors’ less-than-unit quantum efficiency and imperfect mode matching to

the local oscillator fields. It was known that PA-assisted homodyne measurement is tolerant

to detection and propagation losses [ 60 ]. We will discuss the influence of these losses in this

section. Let us start with the traditional BS scheme. This case was treated in Ref.[  27 ] so

we will only present the result here for the comparison with the PA case.
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Given the input state in Eq.(  6.12 ) and using the relation in Eq.( 6.7 ), we can find the

Wigner function after the 50:50 beam splitter of Bell measurement. We then introduce

detection losses by using a beam splitter model with the same transmissivity η for both

output fields 1′ and 2′ right before detection. Since the homodyne detection is on the

x-quadrature of field 1′ and y-quadrature of field 2′, we can leave y′
1, x

′
2 unchanged and

integrate them out so that we only consider effect on x′
1, y

′
2 together with the vacuum from

the unused port of the beam splitter: x′
1 −→ ηx′′

1 +
√

1 − η2x′
v1, y′

2 −→ ηy′′
2 +

√
1 − η2y′

v2,

xv1 −→ ηx′
v1 −

√
1 − η2x′

1
′, yv2 −→ ηy′

v2 −
√

1 − η2y′
2

′. Here, â′
v1, â

′
v2 are the vacuum coupled in

through loss. For the homodyne measurement with result of x′′
1 = iX′

1
, y′′

2 = iY ′
2
, we obtain

the Wigner function for the projected state of field 3 by setting x′′
1 = iX′

1
, y′′

2 = iY ′
2

and

integrating the variables y′
1, x

′
2, x

′
v1, y

′
v2. In the limit of cosh 2s � 1, the projected Wigner

function is

W
(BS)
proj (x3, y3)

∝
∫

dxdyWin(x, y)e
− 1

2σ2
1

[(x−

√
2i

X′
1

η
−x3)2+(y−

√
2i

Y ′
2

η
−y3)2]

.

(6.20)

where σ2
1 = 21−η2

η2 + 1
cosh 2s

. In the ideal case of no loss, we have η = 1 and for large s,

the Gaussian in Eq.(  6.20 ) becomes a δ-function so that after the required displacement of

x3 +
√

2iX′
1

η
→ x3, y3 +

√
2iY ′

2
η

→ y3 upon receiving of the detection outputs iX′
1
, iY ′

2
, we recover

the input Wigner function Win(x3, y3). But with finite detection losses, vacuum noise will

come into the quantum teleportation channel so even in the limit of large s, we have

W
(BS)
proj (x3, y3)

∝
∫

dxdyWin(x, y)e− η2

4(1−η2)
[(x−x3)2+(y−y3)2]

, (6.21)

which involves a convolution with the vacuum Wigner function. Equation (  6.21 ) was first

derived in Ref.[ 27 ].

For the scheme with a PA in place of the BS, we introduce losses after the output of

the PA but before the homodyne measurement. From Eq.(  6.16 ) and similar procedure to
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Eq.( 6.20 ) but without cosh 2s � 1 assumption, we have the projected Wigner function of

field 3 after the homodyne measurement of results x′
1 = iX′

1
, y′

2 = iY ′
2
:

W
(P A)
proj (x3, y3) = 1

(2π)3 e− 1
2cosh2s

(x2
3+y2

3)
∫
dx′

2dy
′
1dx

′
v1dy

′
v2e

− cosh2s
2 [Gx′

2+x3tanh2s−g(ηiX′
1

+
√

1−η2x′
v1)]2

× e− cosh2s
2 [gy′

1+G(ηiY ′
2

+
√

1−η2y′
v2)−y3tanh2s]2e− 1

2 [(ηx′
v1−
√

1−η2iX′
1

)2+(ηy′
v2−
√

1−η2iY ′
2

)2]

×Win(G(ηiX′
1

+
√

1 − η2x′
v1) − gx′

2, Gy
′
1 + g(ηiY ′

2
+
√

1 − η2y′
v2)).

(6.22)

Now we make a change of integral variables from x′
2, y

′
1 to x = G(ηiX′

1
+

√
1 − η2x′

v1)−gx′
2, y =

Gy′
1 + g(ηiY ′

2
+

√
1 − η2y′

v2. After integrating over x′
v1, y′

v2, we obtain the projected Wigner

function in the form of

W
(P A)
proj (x3, y3) ∝ e− 1

2cosh2s
(x2

3+y2
3)
∫

dxdyWin(x, y)

× e
− 1

2σ2
2x

(x−
i
X′

1
ηG

− gx3
G

tanh 2s)2

e
− 1

2σ2
2y

(y+
i
Y ′

2
ηg

− Gy3
g

tanh 2s)2

.

(6.23)

where σ2
2x = 1−η2

η2G2 + g2

G2 cosh 2s
, σ2

2y = 1−η2

η2g2 + G2

g2 cosh 2s
. Setting G � 1 and s � 1 so that G ≈ g

and tanh 2s ≈ 1, cosh 2s � 1 and making the displacement operation of x3 + iX′
1
/ηg → x3

and y3 − iY ′
2
/ηG → y3, we have

W
(P A)
proj (x3, y3)

∝
∫

dxdyWin(x, y)e
− 1

2σ2
2

[(x−x3)2+(y−y3)2]
, (6.24)

where σ2
2 ≡ 1−η2

η2G2 + 1
cosh 2s

≈ σ2
2x ≈ σ2

2y. Notice that the conditions of G ≈ g and s � 1 are

independent of each other (see more in Appendix  6.A ). Comparing σ2
2 with σ2

1 in Eq.( 6.20 )

for the BS scheme, we find the PA scheme reduces the effect of losses by a factor of 2G2. If

G2 ∼ (1 − η2)e2s/2η2, we have σ′
2

2 → 4e−2s, which is similar to the lossless case (η = 1) of

Eq.( 6.20 ). Therefore, the effect of losses can be mitigated by large G.
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6.4 Influence of Losses via Fidelity

To quantify the influence of losses and the gain size of PA in place of BS, we consider

the fidelity of teleportation. For a pure input state |φin〉 and an output described by density

operator ρ̂out, it is given by [ 28 ]

F = 〈φin|ρ̂out|φin〉. (6.25)

Note that if the output state is same as the input: ρ̂out = |φin〉〈φin|, Eq.( 6.25 ) gives F = 1.

Since the roles of G and s are independent of each other, for the simplicity of argument

and emphasis on the effect of the PA, we set s → ∞ here. The case of finite s will be

presented in Appendix  6.A and the conclusion is similar to the case of s → ∞.

6.4.1 Scheme with Beam Splitter

Consider the quantum state teleportation scheme as the quantum channel. For the case

of using a BS for Bell measurement and with large s, the Wigner function of the output is

connected to the input by Eq.( 6.21 ) and is rewritten as

Wout = Win ◦Gσ̄1
(6.26)

with ◦ denoting convolution and Gbarσ1 as the two dimensional Gaussian distribution with a

variance σ̄2
1 = 2(1−η2)/η2. The teleportation input-output relation for the Wigner functions

described by Eq.(  6.26 ) can also be cast in the density operator form as (See Appendix  6.A.2 )

ρ̂out =
∫
dxdyD̂

(
x+ yj

2

)
ρ̂inD̂

†
(
x+ yj

2

)
Gσ̄1(x, y), (6.27)

where operator D̂(α) ≡ exp
(
αâ† − α∗â

)
is the displacement operator (α = (x+ jy)/2).
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From Eq.( 6.25 ), we find the fidelity for a pure state input is then

F =
∫
dxdy|χin(x, y)|2Gσ̄1(x, y), (6.28)

where χin(x, y) = 〈φin|D̂(x+yj
2 )|φin〉, which is the single-mode characteristic function defined

in Eq.( 6.45 ) for the input state’s Wigner function.

We can now evaluate the fidelity for a number of known input states. First for coherent

state, it is easy to obtain the fidelity as

F = 1
1 + σ̄2

1/2
(6.29)

with σ̄2
1 ≡ 2(1 − η2)/η2. For Fock state |N〉,

|χin(x, y)|2 = |〈N |D̂
(
x+ yj

2

)
|N〉|2

=
∣∣∣∣∫ dx′f ∗

N(x′)fN(x′ − x/
√

2)ej y(x′−x/
√

2)√
2

∣∣∣∣2 , (6.30)

where

fN(x) = π−1/4
√

2NN !
e−x2/2HN(x) (6.31)

with HN(x) as the Nth-order Hermite polynomials. We can then evaluate numerically fidelity

F with Eq.(  6.28 ) for a given loss modeled by a BS with transmission coefficient η. Figure

 6.2 plots the dependence of F as a function of η for a coherent state of α = 3 + 3j and Fock

states of N = 1, 3, 5, showing a fast drop of F with the increase of loss (decrease of η). The

rate of drop is especially large for number states with higher photon numbers as compared

to the coherent state (dashed curve). Thus, nonclassical states are more sensitive to loss in

the teleportation process.
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Figure 6.2. Fidelity F as a function of detection loss in the teleportation
scheme with a BS for a coherent state |α〉 with α = 3 + 3j (dashed line) and
Fock states of N = 1, 3, 5 (Adapted from Ref.[ 65 ]).
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6.4.2 Scheme with Parametric Amplifier

Next we consider the teleportation scheme with aid of a PA but having losses 1−η before

detection. The output is related to input by Eq.(  6.23 ) but with s � 1 and can be rewritten

in the form of Eq.( 6.26 ) as

Wout(x, y) =
∫

dx′dy′Win(x g
G

− x′, y
G

g
− y′)

×Gσ̄2x(x′)Gσ̄2y(y′), (6.32)

where σ̄2
2x ≡ (1−η2)/η2G2, σ̄2

2y ≡ (1−η2)/η2g2. Then Eq.(  6.27 ) is changed to (See Appendix

 6.A.2 )

ρ̂out =
∫
dxdyŜ(ε)D̂(x+ yj

2 )ρ̂inD̂
†(x+ yj

2 )

×Ŝ†(ε)Gσ̄2x(x)Gσ̄2y(y), (6.33)

where Ŝ(ε) ≡ exp
[
ε(â†2 − â2)/2

]
is the squeezing operator with ε ≡ ln(G/g), and Eq.(  6.28 )

is modified to

F =
∫
dxdy|χP A(x, y)|2Gσ̄2x(x)Gσ̄2y(y) (6.34)

with χP A(x, y) = 〈φin|Ŝ(ε)D̂(x+yj
2 )|φin〉.

For a coherent state |α〉, we have

|χ(α)
P A(x, y)|2 = |〈α|Ŝ(ε)D̂(x+ yj

2 )|α〉|2

= | 〈α| Ŝ(ε) |α + x+ yj
2 〉 |2. (6.35)

Setting α = a+ bj, we then obtain from Eq.( 6.34 ) with some manipulation

F =
2exp

[
− 2a2(1−g/G)2

1+g2/G2+σ̄2
2x

− 2b2(1−G/g)2

1+G2/g2+σ̄2
2y

]
√

(1 + g2/G2 + σ̄2
2x)(1 +G2/g2 + σ̄2

2y)

≈
exp

[
− 1

4G4
a2+b2

1+σ̄2
2/2

]
1 + σ̄2

2/2
for G � 1, (6.36)
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Figure 6.3. Three-dimensional plot of fidelity F as a function of transmission
η (opposite of loss) and gain parameter R(G ≡ coshR) of the PA used in
Bell measurement for teleportation of the coherent state |α〉 with α = 3 + 3j
(Adapted from Ref.[  65 ]). The light curve at R = 0 corresponds to the case of
using a beam splitter for the Bell measurement (the dashed line in Fig. 6.2 ).
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Figure 6.4. Fidelity F as a function of gain of PA at a loss of η = 0.7 for
Fock state |N〉 with N = 1, 5, 10. The dashed lines are for the BS scheme
(Adapted from Ref.[ 65 ]).

where σ̄2
2 ≡ (1 − η2)/η2G2. When G tends to a large value, we have G ∼ g and Eq.(  6.36 )

approaches Eq.(  6.29 ) but with σ̄2
1 replaced by σ̄2

2, which goes to zero as G becomes large.

Hence, F → 1 for large G and independent of the loss η. So, with the aid of a PA of large

gain, the effect of detection loss can be reduced to zero. This is demonstrated in Fig. 6.3 

as the red region (F ∼ 1) in the 3-D plot of F as a function of η and the gain-related

parameter R with G ≡ coshR (or R ≡ ln
(
G+

√
G2 − 1

)
). Figure  6.3 is obtained from the

first expression in Eq.(  6.36 ) without approximation. The red region extends to low value of

η (< 0.5, large loss) at high gain (R > 2). The light colored curve at R = 0 is for the case

when we use a beam splitter for Bell measurement (the dashed line in Fig. 6.2 ). In this case,

as can be seen, F drops fast as η decreases.

119



On the other hand, even with no detection loss (η = 1, σ̄2x = σ̄2y = 0) but a finite G, we

have from Eq.( 6.36 )

F = 2Gg
G2 + g2 exp

[
−2(G− g)2

G2 + g2 (a2 + b2)
]

≈ exp
[
−(a2 + b2)/4G4

]
for G � 1. (6.37)

The blue region (low F < 0.15) in Fig. 6.3 extends to high η value when R < 1 for relatively

low gain, which indicates that high gain (R > 2) is required for the PA-assisted scheme.

From Eq.(  6.37 ), we find that in order to have F ≈ 1, we need G2 �
√
a2 + b2 = |α|, that is,

the larger the average the photon number, the bigger the gain G needs to be. This behavior

is not limited to coherent states as we will see next for photon number Fock states.

Next we look at the nonclassical states of Fock state |N〉. The characteristic function

χP A in Eq.( 6.34 ) has the form of

|χ(N)
P A (x, y)|2 = | 〈N | Ŝ(ε)D̂(x+ yj

2 ) |N〉 |2

=
∣∣∣∣ ∫ dx′

√
tanhR e−jy[(x′/

√
2)tanh(ε)+x/2]

×f ∗
N(x′)fN(−x′tanh(ε) − x/

√
2)
∣∣∣∣2, (6.38)

where the definition of fN(x) is the same as Eq.(  6.31 ). The fidelity can be calculated nu-

merically from Eq.( 6.34 ). We plot in Fig.  6.4 the fidelity F as a function of the gain-related

parameter R for Fock states |N〉 with N = 1, 5, 10, respectively. The detection loss is set

with transmission η = 0.7. As can be seen, larger gain (R value) is needed for higher N

to reach F ≈ 1, similar to the case of coherent states as predicted by the second line of

Eq.( 6.37 ). We also plot in Fig.  6.4 the corresponding values of F for the BS scheme (dashed

lines) for comparison, demonstrating the effect of PA to counter the detrimental effect of

detection loss. The effect of loss on the Fock state |5〉 is displayed in Fig. 6.5 , where we

plot F as a function of transmission coefficient η for R = 1, 2, 3 (G = 1.54, 3.76, 10.07),

respectively. The result of the BS scheme (dashed line) is also plotted for comparison. As

expected, PA-assisted scheme is no good for the case of relatively low gain (R = 1, 2). But

with R = 3, it keeps relatively high F value (> 0.8) even at a large loss of 50% (η = 0.5).
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Figure 6.5. Fidelity F as a function of transmission η for Fock state |N〉
with N = 5 at gain of R = 1, 2, 3 (G = 1.54, 3.76, 10.07) for the PA-assisted
scheme. The case of BS scheme is plotted as the dashed line for comparison
(Adapted from Ref.[ 65 ]).
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6.5 Influence of Loss on Entanglement

The input states in the previous sections are all pure states. In quantum communica-

tion, we more often transmit one field of entangled fields, as in, for example, entanglement

swapping protocol [ 66 ]–[ 68 ]. The transmitted field is usually in a mixed state when the

other entangled field is not considered. We will examine how losses in the two teleportation

schemes will affect the transmission of an EPR-type of entangled states which is simply a

two-mode squeezed state with a Wigner function given in Eq.( 6.8 ).

6.5.1 Fidelity

For an input field that is entangled with another field, after tracing out the other field,

it becomes a mixed state described by density operator ρ̂in. In this case, we cannot use

Eq.( 6.25 ) or its density operator form: F ′ = Tr(ρ̂inρ̂out), for even in the ideal transmitted

case of ρ̂out = ρ̂in, F ′ = Tr(ρ̂2
in) 6= 1 for mixed states. A widely used definition of fidelity for

mixed states was given by Jozsa as Fm = Tr[
√√

ρ̂inρ̂out

√
ρ̂in]2 [ 69 ]. But this definition does

not consider entanglement with the other field.

On the other hand, we can use the entanglement fidelity [ 70 ], which quantifies how well a

quantum (teleportation) channel, which may interact with the environment E, preserves the

transferred input state (in a state space denoted as Q) and its entanglement with another

system in the space of R. The input state (ρ̂in) can be obtained by taking partial trace of

an entangled pure state on a larger Hilbert space (a joint space of Q and the entangled

space R) over the space R. For the case of no entanglement, the input state is then a pure

state. According to Ref.[ 70 ], the entanglement fidelity only depends on the initial quantum

state and the dynamic evolution of the input state on Q through the quantum channel.

Suppose the general quantum evolution of the state on Q through the quantum channel can

be cast in the form of ρ̂out = ∑
k Âkρ̂inÂ

†
k by some operator-sum representation with Âi being

a collection of operators acting in the space of Q and satisfying the completeness relation∑
k Â

†
kÂk = 1. Then, entanglement fidelity is defined as [  70 ]

Fe =
∑

k

Tr(Âkρ̂in)Tr(Â†
kρ̂in). (6.39)
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For the special case of a pure input state ρ̂in = |φin〉〈φin|, we have Fe = ∑
k |〈φin|Âk|φin〉|2 =

〈φin|ρ̂out|φin〉, which recovers Eq.( 6.25 ).

In our derivation of the output Wigner function for both teleportation protocols, the

output density operators of Eqs.(  6.27 , 6.33 ) have already been written in the form of ρ̂out =∑
k Âkρ̂inÂ

†
k with Âk ≡ D̂(x+jy

2 ) and Ŝ(ε)D̂(x+jy
2 ) for the BS and PA schemes, respectively.

Note that the sum over k is replaced by integral over x, y.

To obtain ρ̂in for Eq.(  6.39 ), we just need to take partial trace of the other field com-

ponent of the density operator of the entangled states. For the EPR state (a two-mode

squeezed state) in Eq.( 6.8 ), the signal field becomes a thermal state with an average pho-

ton number n̄ = sinh2(s). Its density operator can be expressed with P -Representation

as ρ̂in =
∫

d2αP (α) |α〉 〈α|, where P (α) = 1
πn̄

e−|α|2/n̄. The entanglement fidelity Fe can be

obtained from Eqs. (  6.28 ) and ( 6.34 ) with the characteristic functions being

|χBS(x, y)|2

=
∣∣∣∣∫ d2αP (α) 〈α| D̂(x+ yj

2 ) |α〉
∣∣∣∣2

=
∣∣∣∣∣
∫

d2α
1

πn̄
e−|α|2/n̄

×e[(x+yj)α∗−(x−yj)α]/2−(x2+y2)/8
∣∣∣∣∣
2

(6.40)

for the BS scheme and

|χP A(x, y)|2

=
∣∣∣∣∫ d2αP (α) 〈α| Ŝ(ε)D̂(x+ yj

2 ) |α〉
∣∣∣∣2

=
∣∣∣∣∣
∫

d2α
1

πn̄
e−|α|2/n̄e[(x+yj)α∗−(x−yj)α]/4

× 〈α| Ŝ(ε) |α + x+ yj
2 〉

∣∣∣∣∣
2

(6.41)

for the PA-assisted scheme. Figure  6.6 shows the results of calculation. It is very similar to

Fig. 6.5 for the number state case.
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Figure 6.6. Entanglement fidelity Fe as a function of transmission η for a
thermal state (one field of the EPR-entangled two-mode squeezed state) with
average photon number n̄ = sinh2(−1) = 1.38 for the PA-assisted scheme
with gain parameters of R = 1, 2, 3 (solid) and for the BS scheme (dashed)
(Adapted from Ref.[ 65 ]).
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6.5.2 Inseparability

Another way to see how entanglement is affected by teleportation protocols is to check

the inseparability criterion through parameter Is defined as [ 71 ]

Is ≡ 〈∆2(X̂1 − X̂2)〉 + 〈∆2(Ŷ1 + Ŷ2)〉. (6.42)

For un-entangled fields, it has a minimum value of I(0)
s = 4 for vacuum. Is < I(0)

s = 4 gives

the criterion for entanglement between two fields and the smaller the value of Is is, the more

entangled are the two fields. The ideal value is Is = 0, showing perfect EPR correlation

between X̂1, X̂2 and between Ŷ1, Ŷ2. For the EPR entangled state given in Eq.( 6.8 ) with

s = −1, we have normalized value IEP R
s /I(0)

s = 0.135 = −8.69dB. We will teleport one of

the two entangled fields, say the signal beam, through the BS or PA-assisted teleportation

scheme.

The Wigner functions of the output state are given by Eq.( 6.26 ) and ( 6.32 ) as

Wout =
∫

dx′dy′Win(x1, y1;x′
2 − x′, y′

2 − y′)

×Gσ′
x
(x′)Gσ′

y
(y′), (6.43)

with x′
2 = x2, y′

2 = y2, σ′
x = σ′

y = σ̄1 for the BS scheme and x′
2 = x2

g
G

, y′
2 = y2

G
g
, σ′

x =

σ̄2x, σ
′
y = σ̄2y for the PA-assisted scheme. We calculate Iout

s between the teleported signal

field and the original idler field to examine how entanglement is affected by teleportation.

Iout
s = 〈∆2X−〉out + 〈∆2Y+〉out with X− = x1 −x2 and Y+ = y1 +y2 is calculated from Wigner

function by

〈A〉out =
∫

dx1dy1dx2dy2A(x1, y1;x2, y2)

×Wout(x1, y1;x2, y2), (6.44)

where A = ∆2X−,∆2Y+, respectively. Wout is obtained from Eq.( 6.43 ) with Win given in

Eq.( 6.8 ) for an EPR entangled state. Figure  6.7 shows the results of calculation. As can

be seen, the BS scheme (dashed curve) is very sensitive to losses: the value of Is increases
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126



quickly as detection efficiency η drops and the fields are unentangled for η < 0.7 (The light

black line at 0 dB is the threshold for entanglement). The PA-assisted scheme, on the other

hand, can keep Is at quite a low value with a large gain (R = 3) even for η as low as 0.5.

Small gain cannot preserve the original Is value even at no loss η = 1 but the fields are still

entangled up to η = 0.5.

Comparing Figs.  6.6 and  6.7 , we find that there is a high correlation between entanglement

fidelity Fe and inseparability Is although there is no direct connection between the two

quantities. This reflects that Fe indeed quantifies how well the entanglement is preserved

through transmission. In some sense, they both provide general characterization of the

transmission quality of the teleportation protocols.

6.6 Summary and Discussion

In summary, we studied the quantum state teleportation scheme with a PA replacing

the beam splitter (BS) for field mixing used in the Bell measurement process. With large

enough gain for the PA, the new scheme is as good as the original scheme. In addition to

field mixing, the PA amplifies input field to a level that is much higher than the vacuum

quantum noise so that it can overcome the detection loss in the Bell measurement process,

leading to a high teleportation fidelity even in the presence of a large detection loss. This

will be especially useful for the spectrum of light where no efficient detector is available.

However, internal losses of PA and the losses before PA such as mode mis-match will be the

losses imposed on the incoming fields before the PA and thus cannot be overcome by the

employment of PA [ 48 ]. They will have the same effect as in the BS scheme.

Addition of an active element of PA to replace a passive element like BS will not only

require extra resources in the pumping of the PA but also add an extra level of control

such as locking of the pump phase to the EPR source. In a real experiment, these can be

easily handled, as shown in a recent demonstration in a fiber system [  60 ] where a PA is used

to replace a BS in battling the large coupling losses in fibers. The requirement of R > 2

discussed in Sect.V for a good fidelity corresponds to G > 3.8 or a power gain larger than

15, which can be easily achieved experimentally [  60 ]. On the other hand, larger average

127



photon number requires higher gain, as shown in Eq.(  6.37 ) and in Fig. 6.4 , and Fig. 6.5 . But

states with larger photon numbers are more prone to losses in the BS scheme. So, one must

balance between the cost and benefit of loss-tolerance in selecting a PA.

The application of PA is not limited to quantum teleportation schemes. The general

principle of loss tolerance is applicable to overcome any loss before detection. For example,

there may exist large losses in coupling light out of waveguide structure in integrated optics

for detection. An on-chip PA will mitigate these losses before detection. On the other hand,

the PA scheme can only be used in the final measurement of light and cannot be inserted

into a quantum network to overcome losses. This is because the PA amplifies the fields to a

macroscopic level that loses the quantum signature of the original input states. Furthermore,

the scheme only works for measurement of continuous variables such as homodyne detection

but fails in photon counting technique.

6.A Appendix

6.A.1 Derivation of input-output relation of Wigner function for a PA [Eq.( 6.6 )]

To find the input-output relation, we consider the two-mode Wigner function of a sys-

tem in the state described by density operator ρ̂, which is defined through the following

characteristic function:

χ(u1, v1;u2, v2)

= Tr(ρ̂ejv1X̂1−ju1Ŷ1+jv2X̂2−ju2Ŷ2). (6.45)

The Wigner function is a Fourier transformation of the characteristic function:

W (x1, y1;x2, y2)

= 1
(2π)2

∫
dx1dy1dx2dy2 χ(u1, v1;u2, v2)

×eju1y1−jv1x1+ju2y2−jv2x2 , (6.46)

Assume the input state is described by a Wigner function Win(X1, Y1;X2, Y2) for a PA. Since

the input-output relations presented in Eqs.( 6.4 , 6.5 ) are for Heisenberg picture, the state
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described by density operator ρ̂ is the same for both input and output. Using Eq.(  6.4 ), we

find

χout(u1, v1;u2, v2)

= Tr(ρ̂ejv1X̂
(o)
1 −ju1Ŷ

(o)
1 +jv2X̂

(o)
2 −ju2Ŷ

(o)
2 )

= Tr(ρ̂ejv′
1X̂

(i)
1 −ju′

1Ŷ
(i)

1 +jv′
2X̂

(i)
2 −ju′

2Ŷ
(i)

2 )

= χin(v′
1, u

′
1; v′

2, u
′
2), (6.47)

where u′
1 = u1G − u2g, v′

1 = v1G + v2g, u′
2 = u2G − u1g, v′

2 = v2G + v1g. Taking reverse

Fourier transformation for W , we find

W
(P A)
out (x1, y1;x2, y2)

= Win(Gx1 − gx2, Gy1 + gy2;Gx2 − gx1, Gy2 + gy1).

(6.48)

6.A.2 Derivation of Eqs.( 6.27 ) and ( 6.33 )

For the scheme with a beam splitter for Bell measurement, we have from Eq.( 6.26 )

Wout(X,Y ) =
∫
Win(X − x, Y − y)Gσ̄1(x, y)dxdy. (6.49)

In terms of Wigner function, the density matrix is

ρ̂out(X̂, Ŷ )

= 1
π

∫
Wout(X,Y )ejv(X̂−X)+ju(Ŷ −Y )dvdudXdY

= 1
π

∫
Win(X − x, Y − y)Gσ̄1(x, y)

×ejv(X̂−X)+ju(Ŷ −Y )dvdudXdY dxdy. (6.50)
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Now, let us shift X,Y in ejv(X̂−X)+ju(Ŷ −Y ) to X − x, Y − y by using operator D̂(α) ≡

exp
(
αâ† − α∗â

)
: D̂(α)âD̂†(α) = â− α. With α = (x+ jy)/2, we have

ρ̂out(X̂, Ŷ )

= 1
π

∫
Win(X − x, Y − y)Gσ̄1(x, y)

×D̂(x+ yj
2 )ejv[X̂−(X−x)]+ju[Ŷ −(Y −y)]

×D̂†(x+ yj
2 )dvdudXdY dxdy (6.51)

Making a change of variables: X − x, Y − y → X,Y in the integral with respect to X,Y , we

have

ρ̂out(X̂, Ŷ )

= 1
π

∫
Win(X − x, Y − y)Gσ̄1(x, y)

×D̂(x+ yj
2 )ejv[X̂−(X−x)]+ju[Ŷ −(Y −y)]

×D̂†(x+ yj
2 )dvdud(X − x)d(Y − y)dxdy

= 1
π

∫
Gσ̄1(x, y)D̂(x+ yj

2 )Win(X,Y )

×ejv(X̂−X)+ju(Ŷ −Y )dvdudXdY D̂†(x+ yj
2 )dxdy

=
∫
Gσ̄1(x, y)D̂(x+ yj

2 )ρ̂in(X̂, Ŷ )D̂†(x+ yj
2 )dxdy,

(6.52)

which is just Eq.( 6.27 ).

For the scheme with a PA for Bell measurement, we have from Eq.( 6.32 )

Wout(X,Y ) =
∫
Win(kX − x,

Y

k
− y)

×Gσ̄2x(x)Gσ̄2y(y)dxdy. (6.53)
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where k ≡ g/G. Defining W ′
out ≡ Win ◦Gσ̄2xGσ̄2x , we have

Wout(X,Y ) = W ′
out(kX,

Y

k
)

= 1
2π

∫
du 〈kX + u| ρ̂′

out |kX − u〉 e−ju Y
k .

(6.54)

Making a change of U = u/k in Eq. (  6.54 ), we have

Wout(X,Y ) =

= k

2π

∫
dU 〈kX + kU | ρ̂′

out |kX − kU〉 e−jUY

= 1
2π

∫
dU 〈X + U | Ŝ(ε)ρ̂′

outŜ
†(ε) |X − U〉 e−jUY ,

(6.55)

where ε = −ln(k) = ln(G/g). From Eqs.(  6.52 ) and ( 6.54 ), we have

ρ̂′
out =

∫
D̂(x+ yj

2 )ρ̂inD̂
†(x+ yj

2 )Gσ̄2x(x)Gσ̄2y(y)dxdy (6.56)

Therefore, we obtain Eq.( 6.33 )

ρ̂out =
∫
Ŝ(ε)D̂(x+ yj

2 )ρ̂inD̂
†(x+ yj

2 )

×Ŝ†(ε)Gσ̄2x(x)Gσ̄2y(y)dxdy. (6.57)

6.A.3 Fidelity for Coherent States with Finite s and G

The PA scheme requires extra resources and large G to work. We also need to have a

large s for the EPR entangled source for both BS and PA schemes. What is the relationship

between G and s?

To answer this, we calculate fidelity F for coherent state input with no approximation

applied to G and s. We start from Eq.(  6.23 ) but make the required displacement operation

to obtain the final output state as

Wout(x, y) = C
∫

dx′dy′e− 1
2cosh2s

(x2+y2)Win(x′, y′)

×Gσ2x(x′′ − x′)Gσ2y(y′′ − y′), (6.58)
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with x′′ ≡ x g
G

tanh2s, y′′ ≡ yG
g
tanh2s, σ2

2x = 1−η2

η2G2 + g2

G2cosh2s
and σ2

2y = 1−η2

η2g2 + G2

g2cosh2s
for the

PA case. C is a normalization constant. The BS case can be derived in a similar procedure

leading to Eq.(  6.20 ) and Eq.(  6.23 ) but without s � 1 approximation and has the same

form as Eq.(  6.58 ) but with x′′ ≡ xtanh2s, y′′ ≡ ytanh2s, and σ 2
2x, σ

2
2y both replaced by

σ1 = 21−η2

η2 + 1
cosh2s

. Thus, the PA and BS schemes are equivalent as long as G ≈ g or G � 1.

This condition is independent of the value of s. Of course, the PA scheme has the advantage

of reducing the effect of losses by a factor of 2G2.

We next evaluate F from Eq.( 6.25 ) for a coherent state input. The results are

FBS =
2
(
tanh2 2s+ σ2

1+1
cosh 2s

)
tanh2 2s+ σ2

1 + 1 + σ2
1+1

cosh 2s

exp
−2(a2 + b2)

[
(1 − tanh 2s)2 + σ2

1+2
cosh 2s

]
tanh2 2s+ σ2

1 + 1 + σ2
1+1

cosh 2s

exp 2(a2 + b2)/ cosh 2s
tanh2 2s+ σ2

1+1
cosh 2s

≈ 1
1 + σ̄2

1/2
for s � 1, (6.59)

with σ̄1 = 21−η2

η2 and

FP A = 2

√√√√√ g2 tanh2 2s
G2 + σ2

2x+1
cosh 2s

g2 tanh2 2s
G2 + (σ2

2x + 1)
(
1 + 1

cosh 2s

)
√√√√√√ G2 tanh2 2s

g2 + σ2
2y+1

cosh 2s

G2 tanh2 2s
g2 + (σ2

2y + 1)
(
1 + 1

cosh 2s

)

× exp
−2a2

[(
1 − g tanh 2s

G

)2
+ σ2

2x+2
cosh(2s)

]
g2 tanh2 2s

G2 + (σ2
2x + 1)

(
1 + 1

cosh 2s

) exp
−2b2

[(
1 − G tanh 2s

g

)2
+ σ2

2y+2
cosh(2s)

]
G2 tanh2 2s

g2 + (σ2
2y + 1)

(
1 + 1

cosh 2s

)
× exp

 2a2/ cosh 2s
g2 tanh2 2s

G2 + σ2
2x+1

cosh 2s

+ 2b2/ cosh 2s
G2 tanh2 2s

g2 + σ2
2y+1

cosh 2s

 . (6.60)

If s � 1 so that tanh 2s ≈ 1 and 1/ cosh 2s � 1 (independent of G value), the expression

above becomes Eq.( 6.36 ). On the other hand, if G � 1 so that G ≈ g and σ2
2x ≈ σ2

2y ≈ σ2
2 ≡

1−η2

η2G2 + 1
cosh 2s

, we have

FP A ≈
2
(
tanh2 2s+ σ2

2+1
cosh 2s

)
tanh2 2s+ σ2

2 + 1 + σ2
2+1

cosh 2s

exp
−2(a2 + b2)

[
(1 − tanh 2s)2 + σ2

2+2
cosh 2s

]
tanh2 2s+ σ2

2 + 1 + σ2
2+1

cosh 2s

× exp 2(a2 + b2)/ cosh 2s
tanh2 2s+ σ2

2+1
cosh 2s
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≈ 1
1 + σ̄2

2/2
for s � 1 (6.61)

with σ̄2 = 1−η2

η2G2 . Note that the difference between Eq. (  6.59 ) and Eq.(  6.61 ) is in σ1(σ̄1)

and σ2(σ̄2) with σ2 improved upon σ1 by the reduction of the loss effect term by a factor of

2G2.

Comparing the corresponding terms in Eqs.(  6.60 ) and (  6.61 ), we find that their differences

are all smaller than 1/G2, which is independent of s. Thus the limit of G � 1 is also

independent of s.
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7. SUMMARY

We analyze an experimentally implementable method to measure directly the TMs for the

quantum states generated by pulse-pumped parametric processes. The method is based on

the stimulated emission by a trial pulse and relies on a cross-feedback and iteration loop. We

demonstrate the convergence of the procedure by numerical simulations for various situations.

The feedback-iteration method is suitable for both the high gain PA, which gives rise to

quantum entanglement in continuous variables, and for the low gain case, which produces

a two-photon entangled state. Only a small modification is needed for both situations. We

also demonstrate experimentally a method that directly determines the temporal/spectral

profiles of the eigen-modes for the signal and idler fields generated from a fiber-based PA

pumped by a short pulse, and also show that the mode structure depends on the gain of

the PA. The technique can be generalized to other pulse-pumped systems such as frequency

conversion process or other DOF such as spatial modes to find the eigen-modes of the system.

So, the potential applications of the technique is not limited only to quantum optics but can

be applied to classical systems as well.

We studied the mode structure for a broadband PA at different gains by using an input-

output approach that avoids the crucial issue of time-ordering in Hamiltonian. Contrary to

previous studies where the time-ordering issue was not treated, the mode structure changes

as the gain increases in the sense that both the mode distribution and the mode functions

broaden with the increase of the gain. Although the mode number, a quantity that charac-

terizes the total number of modes, drops initially as the gain changes from low to high due

to the dominance of the first mode, it reaches a minimum value before slowly increasing due

to the broadening of the mode distribution. The mode structure change with the gain will

have a profound impact on the application of broadband parametric processes in quantum

technology with continuous variables, which relies on the homodyne detection method as the

dominant measurement technique. It means that we will need to measure them constantly

at different gains as we change the operation condition. Further study is needed to the

availability of the feedback-iteration direct mode measurement method for the high gain PA

when considering the time-ordering issue of the interaction Hamiltonian.
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We reconstruct the joint spectral density of photon pairs produced by pumped PPKTP

crystal with the spontaneous parametric down-conversion process. The measurement method

is based on a stimulated emission process compared with old spectrally resolved photons

coincidence measurements. It exploits the properties that the spontaneous parametric down-

conversion and its counterpart stimulated emission process share the same phase matching

configuration and pump spectrum and thus the same spectral correlation function, and

can measure the JSD in a relatively short time, and thus improve the accuracy of the

results. With reconstruction of the JSD, we can obtain the TM structure indirectly by the

mathematical tool singular value decomposition and verify our feedback-iteration method

which measures TM structure directly in experiment.

We studied the quantum state teleportation scheme with a PA replacing the beam splitter

for field mixing used in the Bell measurement process. The new scheme is as good as the

original scheme, when the gain for the PA is large enough. Moreover, because the PA

amplifies the input field to a level that is much higher than the vacuum quantum noise,

the new scheme can overcome the detection loss in the Bell measurement process, leading

to a high teleportation fidelity even in the presence of a large detection loss. This will be

especially useful for the spectrum of light where no efficient detector is available.
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