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ABSTRACT 

 The need for sources of efficient and renewable energy has become an issue of great 

importance in recent years. Fossil fuels are diminishing in supply, and they not only pollute the 

environment, but have also proven to be inefficient in many cases, losing a large portion of the 

total energy generated to waste heat, instead of usable energy.   

The first work this thesis addresses is the development of a Genetic Algorithm (GA) 

optimization method for the search and discovery of semiconductor materials for use in 

thermoelectric devices. The specific material in question is the Silicon Germanium superlattice. 

This structure made of alternating layers of Si and Ge is known to be one of the better materials 

for thermoelectric energy generation at elevated temperature, along with Bismuth-Telluride that 

targets room temperature. Previously, it has been shown that random multilayer (RML) structures 

can lower thermal conductivity as compared to periodic superlattices due to phonon localization. 

However, it was unknown which specific RML would yield the lowest thermal conductivity, due 

to the large design space from which these RML’s can be generated. Considering this, a global 

and non-smooth optimization method was employed to search for the best possible structure. 

Results not only showed that the thermal conductivity could be lowered even further, but that there 

was an optimal average period for the RML’s that produced the best results. 

The second work discussed in this thesis concerns itself with the development of a Neural 

Network Potential (NNP) for use in Molecular Dynamics (MD) simulations. There are multiple 

methods for running MD including ab-initio methods such as Density Functional Theory (DFT) 

calculations and classical MD with the use of empirical potentials. Unfortunately, DFT is too time 

consuming for systems larger than a few hundred atoms, and empirical potentials can be inaccurate. 

Therefore, a NNP for bulk Silicon trained on DFT was developed, and it was shown that the 

phonon dispersion for Si could be accurately reproduced. 
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 INTRODUCTION 

1.1 Thermal Transport in RML’s and Si 

When discussing thermal transport in this thesis we are concerned with heat conduction as 

opposed to convection and radiation. To be more specific, we are concerned with thermal transport 

through semiconductor solids at the nanoscale. The primary heat carrier at this level is the phonon, 

defined as the quantum of energy for lattice vibrations [1]. When analyzing a structure’s thermal 

property at the nanoscale it is important to take phonon properties such as scattering and dispersion 

into consideration.  

 

 

Figure 1.1: Phonon transport through different superlattice configurations [2] 

 

It has been proposed that making the layer thickness random in a periodic superlattice could 

lower the thermal conductivity and potentially enhance thermoelectric energy conversion 

efficiency [2]. The design of RML structures is primarily concerned with phonon scattering. To 

help illustrate this point, consider microwaves and radio waves. Comparing these two, they are on 

vastly different orders of magnitude in terms of wavelengths. Consider that when a microwave 

device is operated, the microwaves are contained within the device and will not leak, however, a 

radio wave with its much larger wavelength will pass right through a microwave oven, car, and 

even house walls. Now let us extrapolate this idea to phonon transport through RML structures. 

Figure 1.1 shows a schematic of phonon transport through different multilayer types. Notice that 
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the coherent phonons can pass through the different interfaces as if they are not there, while the 

shorter wavelength phonons, which do see the interface, are scattered. This scattering is what 

allows for significant reduction in the thermal conductivity of superlattices. However, the coherent 

phonons are still not scattered. To further reduce the thermal conductivity, RML’s can be used as 

the variation in layer thickness allows for localization of coherent phonons, hence phonons of 

multiple wavelengths are now all scattered. 

Although Silicon is used in conjunction with Ge for RML studies, it is also an important 

material on its own. Silicon is widely used in the electronics industry for two main reasons: it is a 

good semiconductor, and it is readily available [3]. Since Si is used so widely in electronics, its 

thermal properties are also of great importance. Without proper thermal management, many of 

today’s electronics would not functional properly due to overheating. Understanding the thermal 

properties of Silicon is necessary for the continued development and improvement of electronic 

devices. 

1.2 Molecular Dynamics 

1.2.1 Classical MD 

Molecular dynamics is a method of simulating atomic structures by solving F = ma at 

multiple timesteps throughout the simulation region to extract atomic energies, and from that 

other structural and material properties. For this study, the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) was used to carry out MD runs [4]. The use of this 

program as with any MD package or code required the use of an interatomic potential to describe 

the interactions between atoms. A basic type of potential is the Leonard-Jones 2-Body potential 

which can be seen in Figure 1.2. These potentials define the energy of atomic interactions as a 

function of system parameters. For the LJ case, only the distance between two atoms is 

considered, however other potentials can include contributions between multiple atoms as well 

as angular data. For Silicon, one of the most widely accepted potentials is the Tersoff many-body 

potential, which was used in this study for comparison [5]. For Aluminum as well as the 

interface system the modified embedded atom method (MEAM) potential was used for 

comparison and structure generation before DFT [6]. 
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Figure 1.2: 2-Body Leonard Jones Potential [7] 

 

These potentials are developed by fitting experimental and DFT data to an appropriate 

functional form. This method allows for molecular dynamics to be run at greater efficiency and 

speed compared to DFT and experiment. However, there is a trade off in accuracy. For example, 

the Si Tersoff potential tends to overestimate thermal conductivity values [8]. The experimental 

thermal conductivity for Silicon at 500K is reported to be approximately 80 W/mK, however the 

Tersoff potential reports values closer to 120 W/mK [8]. The functions describing the Tersoff 

potential, for example, can be seen in Figure 1.3. Here fr represents the two body interactions and 

fa represents the three body interactions [9]. 

 

 

Figure 1.3: Functional form of Tersoff potential [9]. 



 
 

12 

1.2.2 EMD vs NEMD 

EMD (Equilibrium Molecular Dynamics) and NEMD (Non-Equilibrium Molecular 

Dynamics) are two well-known methods for calculating thermal conductivity with molecular 

dynamics. EMD employs the use of the Green-Kubo method. The heat flux is found using 

equation 1 and, from there thermal conductivity is calculated using equation 2, which is the 

autocorrelation of the heat flux to thermal conductivity [10].  

 

𝑱 = !
"
[∑ 𝑒#𝒗𝒊# + !

%
∑ (𝑭𝒊𝒋 	 ∙ ,𝒗𝒊 + 𝒗𝒋-. 𝒓𝒊𝒋]#'(    (1) 

𝑘 = "
)*!+"

∫ ⟨𝑱(0),
- ∙ 𝑱(𝑡)⟩𝑑𝑡   (2) 

 

where J is heat flux, e is per atom energy, r is distance, v is velocity, F is force, V is volume, and 

kb is the Boltzmann constant. However, this method usually comes with considerable uncertainty, 

and requires long MD production runs to produce viable data [11]. 

Therefore, NEMD was used for thermal conductivity calculations. This method is more 

straightforward, as it imposes a temperature gradient on a system, calculates the energy being 

transferred through the system, and then employs Fourier’s Law, as seen in.  

 

𝑞. = −𝑘𝐴 /+
/.

   (3) 

 

Figure 1.4 shows a plot of a system that has had a temperature gradient imposed with the 

calculated slope drawn over the plot. The very ends of the simulation domain must be kept in place 

for this simulation to work. The temperature gradient is imposed by fixing a constant temperature 

on both ends of the simulation box. With this temperature gradient imposed, the system is allowed 

to run under NVE (constant number of particles, volume, and energy) conditions, and the resultant 

temperature gradient is allowed to develop in the middle section, which is the section to be 

analyzed. Energy is calculated as the average of energy being added to the hot region and 

subtracted from the cold, which should be of approximately equal magnitudes. The temperature 

gradient is acquired by fitting a line to the middle section and retrieving the slope. 
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Figure 1.4: Temperature gradient for NEMD simulation of Silicon. 

1.3 Genetic Algorithm 

1.3.1 Algorithm 

To address the extremely large design space, we explore the genetic algorithm in this work. 

The genetic algorithm is a global and non-smooth optimization method that can also be considered 

a machine learning algorithm. This method mimics natural evolution by encoding the chosen 

design variables into binary (each 0 or 1 is a ‘gene’) to form a string or ‘chromosome’. This process 

is repeated for multiple random initial design values until a set of designs, or a ‘population’, is 

generated. Each member of the population then has its fitness evaluated by running the chosen 

designs through the objective function and constraint functions to check its performance. Then the 

members with the highest fitness are chosen to generate the next population. Fitness is 

characterized by a design’s performance with the objective function and the constraint functions, 

with the goal being to minimize the objective and to not violate the constraints. The next population 

is generated by applying two actions to the parents: cross-over and mutation. ‘Cross over’ means 

to split each structure at a certain point and swap the sections to generate two new structures. 

‘Mutation’ involves picking one or more individual genes and switching their value. These 

processes are visualized in Figure 1.5. Finally, the best performing chromosome of each generation 

is saved and updated as needed. Every other generation or so, one or two completely random 

structures may be introduced as well to increase the algorithm’s global performance. 
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Figure 1.5: Visualization for cross-over and mutation processes in GA [12]. 

 

The Genetic Algorithm requires little input from the user other than the starting designs and 

rates for mutation and cross over. Since the GA is global and non-smooth, the initial choice of 

design should not be a major factor in the outcome of the final designs. The values for mutation 

and cross over rate may be chosen at the user’s discretion as well, depending on the magnitude of 

variation desired from generation to generation. 

1.4 Machine Learning Potential 

1.4.1 Types of MLP’s 

Machine Learning Potential (MLP) refers to interatomic potential that is derived with or 

uses any form of machine learning methods. Two of the more common methods are Gaussian 

Approximation Potentials (GAP) and Neural Network Potentials (NNP). The GAP method was 

implemented by Bartok et. al, and has been successfully used to produce a GAP for graphene 

[13][14]. Meanwhile, neural networks as a form of machine learning, and machine learning 

potential, have been around for some time but were greatly improved upon by the works of 

Behler and Parrinello which will be discussed shortly. For this study, the focus will remain on 

NNP’s.	
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1.4.2 Neural Network Potentials 

Neural Networks 

Neural networks are a form of supervised machine learning where a computer attempts to 

learn from data and make predictions. Neural networks accomplish this by creating a network of 

‘neurons’ made up of layers of interconnected nodes which are meant to mimic organic thought 

processes. A schematic of a basic neural network can be seen in Figure 1.6. We see that a network 

is formed by each input layer sending data to each corresponding output layer. For example, the 

hidden layers in the diagram each receive data from the inputs multiplied by a certain weight. The 

weights serve to assign importance to the data. For example, were this a neural network meant for 

classification, data that better captured differences and helped in classification would receive a 

higher weight. This data is then passed through an activation function at the receiver node. The 

purpose of this is to eliminate linearity in the network and control the flow of information. Without 

an activation function a neural network is just a system of linear equations, and therefore only 

provides a linear regression model [15]. The model is trained by tuning the weights and bias values 

as the model learns to identify certain features that aid in classification. 

 

 
Figure 1.6: General representation of a neural network [17] 

Implementation for Potential 

The goal is to use a neural network as an interatomic potential. However, this introduces 

some issues when using the neural network structure displayed above. The input for a NNP is 
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atomic positions. The error here arises from a form of ‘double dipping’. For example, if we have 

a system of 3 atoms of the same type, say atoms i, j, and k, then the system i-j-k will return a 

certain energy value. Now, if we take this same system but change the position of two atoms, say 

we have j-i-k, we have the same exact system. Unfortunately, the NNP will not see it this way, 

but will recognize this as an entirely new system, and it is possible it could get assigned a 

different energy value than it was assigned previously. To avoid this problem, Behler proposed a 

set of atom-centered symmetry functions that would instead define local atomic environments 

instead of specific atom positions. The goal of these functions is to eliminate variance in system 

energy if that system were to have atom coordinates switched, or if the system were to be rotated 

or translated [15]. Examples of radial and angular symmetry functions can be seen in equations 4 

and 5 [15]. 

𝐺# = ∑ cos	(𝑘𝑅#() ∙ 𝑓0(𝑅#()(    where  𝑓0,𝑅#(- = C
0.5 Fcos (

12#$
2%
. + 1H 𝑓𝑜𝑟	𝑅#( ≤ 𝑅0

0	𝑓𝑜𝑟	𝑅#( > 𝑅0
 (4) 

𝐺! = 2"#$ ∑ (1 + 𝜆 cos$,𝛩!%&.'((
%,&*! ∙ 𝑒#+,-!"

#.-!$
# / ∙ 𝑓0(𝑅!%) ∙ 𝑓0(𝑅!&)  (5) 

 

 

 

Figure 1.7: Neural network recommended by Behler and Parrinello for NNP [16]. 

 

Behler and Parrinello, along with their suggestions on using symmetry functions to 

convert the inputs, also proposed a slightly altered form for the neural network. This network, 

shown in Figure 1.7, shows the conversion of Cartesian coordinates into symmetry functions, 
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followed by sub neural networks for each atom, which gives the contribution of that atom to the 

total energy, and finally the summation of each atom into the total system energy [16]. While 

these methods are well regarded by many, and implemented in this work as well, it is worth 

noting that there is flexibility in choosing inputs for NNP’s. For example, Sanville et. al 

successfully produced a NNP for bulk silicon using a slightly different method. Instead of 

passing the cartesian coordinates of the atoms through symmetry functions, the network is set up 

to take a variable number of inputs for each atom, and the complete geometric environment of 

each atom is described [18]. Each input is a vector which corresponds to a chain of 5 atoms, and 

each vector has 13 variables corresponding to different features of that 5-atom chain [18]. Figure 

1.8 shows a schematic depicting the possible input variables. 

 

 

Figure 1.8: NNP input method employed by Sanville [18]. 

 

Finally, we mention DeePMD kit, which is a deep learning package meant to assist in the 

development of Neural Network Potentials. DeePMD-kit is a package to train many-body 

potentials for molecular dynamics simulations, that has been interfaced with TensorFlow and 

LAMMPS. The energy for the system is constructed the same as in the Behler and Parrinello 

framework where the total energy is a summation of the contributions of individual atoms [16]. 

The energy of each individual atom is dependent on its local atomic environment which includes 

all the surrounding atoms contained within the chosen cutoff radius. This framework offers a 

third alternative to describing the inputs for the neural network that is discussed in detail in Ref. 
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[20]. DeePMD can be trained on VASP output data directly if the OUTCAR file is provided. 

From VASP the model is trained on the system box coordinates, atom positions, system energy, 

force, and virial. Once training is complete the output model can easily be interfaced with 

numerous MD programs including LAMMPS, NAMD, and i-PI [19]. 
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 DESIGN FOR ULTRA-LOW THERMAL CONDUCTIVITY RANDOM 
MULTILAYER STRUCTURES 

2.1 Motivation/Overview 

Currently, 84% of the worlds energy still comes from fossil fuels [21]. With energy costs 

rising, fossil fuels being depleted, and pollution levels rising, it is important to consider and further 

advance research into alternative energy generation methods. Approximately 70% of energy 

generated by humans is lost to the ambient environment as waste heat [22]. One method of energy 

generation that serves as a renewable energy method while increasing the efficiency of current 

methods is thermoelectric energy generation. Thermoelectric devices such as the one shown in 

Figure 2.1 are made up of rows of semiconductor materials alternating between ‘n’ and ‘p’ types. 

When a temperature gradient is applied to this device, a current is formed, this is defined as the 

thermoelectric effect [23]. The efficiency of these devices is measured using figure of merit, or zT,  

 

𝑧𝑇 = 3"

4*
𝑇 (6) 

 

where S is the Seebeck coefficient, r is electrical resistivity, k is thermal conductivity, and T is 

temperature [24]. Therefore, to achieve a high figure of merit (maximize zT), thermal 

conductivity should be as low as possible. 

 

 

Figure 2.1: Schematic of thermoelectric energy generation device [23]. 
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2.2 GA Implementation 

The general framework for a GA has already been given, here the specific implementation 

of the GA for this study will be discussed. Unlike regular GA, there are not multiple design 

variables to encode into binary. Instead, the superlattice structures themselves were the design 

variables. Since the structures only display the RML in one dimension, each layer of Si was coded 

to ‘1’ and each layer of Ge coded to ‘2’. With this, each chromosome for the GA was a series of 

1’s and 2’s, where each gene corresponded to one of the materials. Cross over and mutation were 

employed normally. The final change from a typical GA was the choice of objective function. In 

this case, there was not an actual function that could describe the thermal conductivity, instead, 

Molecular Dynamics simulations served as the objective function.  

The calculation of thermal conductivity for each structure was done using NEMD 

implemented in LAMMPS. The ends of the simulation box were fixed, and the entire region split 

into 3 regions of 40 atomic layers each. The middle region held the actual RML, while the ends 

were defined as either bulk Si or Ge thermostatted. System equilibration was done at both NVT 

(constant particles, volume, and temperature) and NPT (constant particles, pressure, and 

temperature) ensembles before the production run. Production runs were completed with an NVE 

fix for the RML, and Langevin thermostat fixes for the thermostatted regions [25]. Thermal 

conductivity was calculated using Fourier’s Law, with temperature gradient and energy values 

being calculated as described in section 1. Then, as in any optimization, the goal was to lower the 

thermal conductivity, so structures reporting the lowest thermal conductivity were deemed best 

and used to generate the next generation. A sample NEMD input script can be found in Appendix 

B, and Figure 2.2 shows a visual of the GA. 
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Figure 2.2: Graphical representation of Genetic Algorithm for RML design [26]. 

2.3 Tool Development 

Part of the work on the GA involved publishing it as a simulation tool to nanoHub.org. This 

work involved interfacing the GA written in python with the Rappture toolkit used by nanoHub to 

generate graphical user interfaces (GUI) for simulation tools. Since the RML extends in the z-

direction, the user can set the x-y dimensions (cross sectional area), RML length, and the lattice 

constants of the two materials to be used. The GA specific settings that can be set by the user are 

generations and populations. The GUI can be seen in Figure 2.3 [27]. 
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Figure 2.3: GUI for GA tool (STEDFAST) [27]. 

2.4 Results and Discussion 

It can be shown that periodic Si-Ge superlattice structures achieve an absolute minimum 

thermal conductivity of 3.5 W/mK at a period of approximately 4.5 nm, where the period is defined 

as the length of a Si-Ge pair in the structure. Also, we can show that this lower limit can be broken 

with a random multilayer structure. However, due to the large design space and inefficient nature 

of manual RML search, the GA was employed in the search for better performing structures [26]. 
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Figure 2.4: Thermal conductivity plotted against average RML period [26]. 

 

The results of the Genetic Algorithm optimization showed that not only could the 

superlattice structure minimum thermal conductivity be broken even further than the manual RML 

search, but it also showed an interesting convergence when it came to one of the features of the 

RML. Figure 2.4 shows that a minimum thermal conductivity of approximately 1 W/mK is 

achieved at an average period length of 1.85 nm, far below the original superlattice minimum of 

3.5 W/mK. There is also a noticeable trend in the thermal conductivity values versus the average 

period length. Where the previous minimum for superlattice structures and RML structures found 

manually was approximately 3.5 nm, this shows the optimum average period length is much lower 

at 1.85 nm [26].  

 

 

Figure 2.5: Best RML structure from GA. Corresponds to 1.85 nm average period [26]. 
 

The reason for this minimum has to do with the phonon scattering at the interfaces. Figure 

2.5 shows the structure that achieved the lowest thermal conductivity from the GA. This structure 

has maximized the number of interfaces it can contain without becoming a 1-1 or 2-2 superlattice, 

which some structures at lower average period did. This allows for the maximum amount of 
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phonon localization to occur such that many coherent phonons cannot pass through the structure, 

thus efficiently reducing thermal conductivity. 
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 NEURAL NETWORK POTENTIAL FOR PHONON PROPERTIES 
AND THERMAL CONDUCTIVITY OF SILICON 

3.1 Motivation/Overview 

The purpose of using Molecular Dynamics to study systems is that it can give us insights 

into the underlying physics in ways that theory and experiment cannot. The previous study on the 

GA used MD as an objective function to analyze thermal conductivity of SiGe superlattices. 

However, how accurate are those results? A study by Cruz et al. showed that thermal conductivity 

of Silicon when calculated using the Tersoff potential, is much higher than what is reported in 

experiment. To be more precise, Tersoff reports 120 W/mK at 500K while experiment reports just 

80 W/mK [8]. Therefore, molecular dynamics based on empirical potentials can often only be used 

to explore the trends rather than quantitative comparison with experiments. 

Silicon plays an important role in the electronics industry. Even the previous study regarding 

the GA was heavily dependent on Silicon. Therefore, an accurate computational model of Silicon 

without the expenses of DFT is needed. This study shows the development and testing of a Neural 

Network Potential for bulk Silicon. The goal of this potential is to have the process repeated for 

bulk Aluminum, and finally the Si-Al interface, another system commonly found in 

microelectronics. 

3.2 Data Generation 

When preparing a neural network for any application the training data is the first and most 

important step in the process. In the case of a neural network potential, the potential will only 

perform molecular dynamics to the accuracy of the method chosen to generate the data. For this 

reason, if we want the model to perform with the accuracy of experiment or first principles 

calculations, then the data needs to be generated with those methods respectively. For this study, 

molecular dynamics using Density Functional Theory (DFT) was chosen for data generation and 

implemented using the Vienna Ab-initio Simulation Package (VASP) [28]. Simulations were 

initially run under constant pressure and temperature (NPT) conditions for 500 timesteps. This 

process was repeated for 5 temperatures ranging from 100 to 500 Kelvin. Each temperature had 5 

equilibration runs, which then led to 20 production runs starting from each equilibrated system. 
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With this data, the phonon dispersion curves for Silicon were reproduced successfully. However, 

the thermal conductivity was underestimated. Therefore, to improve the accuracy the data was 

generated anew, this time using a finer mesh grid of 4 x 4 x 4 as opposed to 3 x 3 x 3 previously. 

To account for the increase in simulation time each simulation was only run for 250 timesteps 

instead of 500. 

3.3 Neural Network 

The neural network potential file was generated using the DeePMD package, a code 

written in python, C++, and TensorFlow to generate potentials given data [19]. The important 

model parameters such as cutoff type, cutoff radius, smooth distance, number of layers and 

nodes, and activation function could be set in the input file. Based on previous literature the 

initial model was set to 3 layers, with 30 nodes each as a starting point, and the tanh activation 

function selected [29]. The other parameters were chosen as follows: 5 hidden layers with 120 

nodes each, smooth cutoff, cutoff of 5 angstroms smoothed out to 5.4 angstroms.   

 

  

 
 

Figure 3.1: Plots for various RMSE values vs nodes per layer at a layer count of 3 layers. 
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The choice of nodes and hidden layers was justified by running tests using different model 

parameters and seeing which ones reported the lowest RMSE values. RMSE values for overall 

model performance, energy, and force were reported and can be seen in Figure 3.1. This test was 

also repeated for number of hidden layers while holding the nodes per layer constant. The results 

in Figure 3.1 and of the other tests all showed that model and force error were minimized at 3 

hidden layers of 90 nodes each, while energy was always minimized at 5 layers with 120 nodes 

each. This was also verified by generating phonon dispersion curves which will be discussed in 

more detail in the results section.  

Lastly, the potential was smoothed from an initial cutoff of 5 angstroms to a potential 

value of 0 by 5.4 angstroms. The original system run using VASP was a 64-atom cube of Silicon 

with dimensions of 10.86 angstroms, or two unit cells. Since the cutoff radius should be less than 

half the simulation box, the cutoff smoothed from 5 to 5.4 angstrom was chosen. 

3.4 Model Validation 

The developed NNP was validated in two ways: phonon dispersion compared to experiment, 

and thermal conductivity calculations using NEMD. For phonon dispersion curves, the program 

latgen was employed to generate the diamond structure for Silicon using the appropriate primitive 

cell dimensions [30]. The phonon data was generated in LAMMPS using the fix phonon command 

[31]. Post processing of phonon data was handled by the program phana [32]. 

 

 
(a) 

 
(b) 

Figure 3.2: (a) Phonon dispersion for Si using 3x90 NNP. (b) Black lines are phonon dispersion 
generated by MD using 5x120 NNP, red dots are experimental data taken from ref [33]. 
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First, we show in Figure 3.2 that the choice of a 5x120 neural network was appropriate. As 

can be seen, the phonon dispersion generated by the 5x120 network matches closely with 

experiment, whereas the 3x90 network does not appear to be reasonable. Second, we compare the 

5x120 phonon dispersion with both experimental data and the Tersoff potential (specifically Si(D) 

in SiCGe.tersoff) in Figure 3.3. This figure shows that again, our potential has good agreement 

with experimental data, but that it also outperforms the Tersoff potential in terms of accuracy. 

 

 

Figure 3.3: Black lines are phonon dispersion generated by MD using Tersoff potential, red dots 
are experimental data taken from ref [33]. 

 

Thermal conductivity calculations, however, are not as promising. The accepted thermal 

conductivity for bulk Silicon at 300K is approximately 148 W/mK [34]. The value reported by the 

NNP is approximately 30 W/mK which is much lower. Improvement is possible, however, upon 

running more simulations it was discovered that there was some trouble with equilibration when 

using the NNP, and results did improve slightly after that was increased. With more appropriate 

equilibration it is expected the NNP will perform as intended. The drawback is that the model 

performance is now approaching the computational expense of ab-initio MD for the same domain 

size, when it should run closer to the speeds of classical MD. 

3.5 Discussion 

Results for the NNP for bulk Silicon are promising in the sense that the phonon dispersion 

curve was accurately reproduced and was in excellent agreement with experiment. The model has 

been generated again using the 4x4x4 K-grid, which reproduced the phonon dispersion curves just 
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as well, but did not show improvement in thermal conductivity calculations. The issue persists in 

equilibration during MD, with NVT and NPT equilibration running smoothly. However, under 

NVE conditions as well as NEMD thermostatted conditions, the system no longer behaves as 

expected. Despite adequate equilibration under NVT and NPT, the system explodes and 

consequently fails once NVE is initiated for the 4x4x4 grid. This issue does not present itself as 

much for the 3x3x3 grid, however. Under NEMD conditions for the 3x3x3 grid, the thermosetting 

does not work as expected. The thermostatting for the hot and cold regions is expected to return 

energy values opposite in sign and equal in magnitude for energy added to the hot and energy 

subtracted from the cold. However, we show a discrepancy in these values, which is a contributing 

factor in the miscalculated thermal conductivity. 
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 CONCLUSIONS AND FUTURE WORK 

The lower limits of thermal conductivity sought to exist for SL and RML structures has 

successfully been broken. Using a Genetic Algorithm optimization method, an RML structure of 

Si and Ge was found that reduces thermal conductivity to approximately 1 W/mK. This result is 

important for the applications of SL and RML structures, not just of SiGe, but for other materials 

commonly used in thermoelectric energy generation such as bismuth-telluride.  

 

The NNP generated for bulk Silicon was able to successfully replicate the phonon dispersion 

curves for Silicon. This shows the potential can match experimental accuracy and outperform the 

classical Tersoff potential. The thermal conductivity issues remain to be solved, though it is 

believed that more accurate DFT data and longer MD equilibration will produce accurate results. 

For future work, this NNP needs to be expanded to Aluminum and the Silicon-Aluminum interface. 

The framework for generating the model and generating data is in place and semi-automated, so 

the work may proceed with relative ease once the Silicon model has been fully validated. 
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APPENDIX A. DEEPMD INPUT FILE 

{ 
    "model":{ 
        "type_map": ["Si"], 
        "data_stat_nbatch": 15, 
 
        "descriptor":{ 
            "type": "se_a", 
            "sel": [50], 
            "rcut":  5.00, 
            "rcut_smth": 5.40 
        }, 
        "fitting_net":{ 
            "type": "ener", 
            "neuron": [120,120,120,120,120], 
            "activation_function": "tanh", 
            "seed": 5 
        } 
    }, 
    "loss":{ 
        "type": "ener" 
    }, 
    "learning_rate":{ 
        "type": "exp" 
    }, 
    "training":{ 
        "systems": "../../data_compiled/", 
        "set_prefix": "set", 
        "stop_batch": 100000, 
        "batch_size": "auto", 
        "seed": 1, 
        "disp_file": "lcurve.out", 
        "disp_freq": 100, 
        "save_freq": 100, 
        "save_ckpt": "model.ckpt", 
        "disp_training": true, 
        "time_training": true 
    } 
} 
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APPENDIX B. SAMPLE LAMMPS SCRIPT FOR NEMD 

#### NEMD script for bulk Si 

 

## Initialize 

 

units metal 

dimension 3 

boundary p p p 

atom_style atomic 

 

## System 

 

lattice diamond 5.4307 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 

region sim block 0 40 0 5 0 5 

create_box 1 sim 

create_atoms 1 region sim 

mass 1 28.0855 

 

variable l_c equal 5.4307 

variable NRML equal 20 

variable Nleftright equal 20 

variable Nedge equal 1 

variable Nres equal 9 

 

variable Neach equal ${NRML}+${Nleftright} 

variable posi_leftedge equal ${Nedge}*${l_c}-0.1 

variable posi_rightedge equal (${Neach}-${Nedge})*${l_c}-0.1 

variable posi_hot equal (${Nedge}+${Nres})*${l_c}-0.1 

variable posi_cold equal (${Neach}-${Nedge}-${Nres})*${l_c}-0.1 
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region  112 block INF ${posi_leftedge} INF INF INF INF units box 

group  edge_left region 112 

region  113 block ${posi_rightedge} INF INF INF INF INF units box 

group  edge_right region 113 

region  114 block ${posi_leftedge} ${posi_rightedge} INF INF INF INF units box 

group  mid region 114 

 

region  2 block ${posi_leftedge} ${posi_hot} INF INF INF INF  units box 

group  hot region 2 

region  3 block  ${posi_cold} ${posi_rightedge} INF INF INF INF  units box 

group  cold region 3 

 

## Simulation Settings 

 

pair_style deepmd graph.pb 

pair_coeff  

timestep 0.001 

 

## Equilibration 

 

velocity all create 300.0 821745 mom yes rot yes dist gaussian 

 

fix fxmom all momentum 1 linear 1 1 1 angular 

 

fix 1 all nvt temp 300.0 300.0 0.05 

thermo_style custom step temp ke pe etotal press lx ly lz  

thermo 1000 

 

run 50000 

 

unfix 1  
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fix 2 all npt temp 300.0 300.0 0.05 iso 0.0 0.0 0.5 

 

run 50000 

 

unfix 2 

fix 3 all nve 

 

run 50000 

 

write_data equil.data 

unfix 3 

unfix fxmom 

 

## NEMD 

 

velocity edge_left set 0.0 0.0 0.0 

velocity edge_right set 0.0 0.0 0.0 

fix fxleft edge_left setforce 0.0 0.0 0.0 

fix fxright edge_right setforce 0.0 0.0 0.0 

 

fix fxhot hot langevin 330.0 330.0 0.05 821745 tally yes 

fix fxcold cold langevin 270.0 270.0 0.05 821745 tally yes 

fix 6 mid nve 

 

compute temp_hot hot temp 

compute temp_cold cold temp 

 

thermo_style custom step temp ke pe etotal press vol c_temp_hot c_temp_cold f_fxhot f_fxcold 

thermo 10000 

 

run 300000 
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## Final run 

reset_timestep 0 

variable myLx equal lx 

variable myLy equal ly 

variable myLz equal lz 

 

compute cc1 all chunk/atom bin/1d x lower 1.3575 units box 

fix 105 all ave/chunk 10 10000 100000 cc1 temp file Tgrad.txt 

fix fluxout all ave/time 1 1 1000 v_myLy v_myLz f_fxhot f_fxcold file fluxout.txt 

 

run 1000000 
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