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ABSTRACT 

Individuals with disabilities and persons operating in inaccessible environments can greatly 

benefit from the aid of robotic manipulators in performing activities of daily living (ADLs) and 

other remote tasks.  Users relying on robotic manipulators to interact with their environment are 

restricted by the lack of sensory information available through traditional operator interfaces. 

These interfaces only allow visual task access and deprive users of somatosensory feedback that 

would be available through direct contact. Multimodal sensory feedback can bridge these 

perceptual gaps effectively. Given a set of object properties (e.g. temperature, weight) to be 

conveyed and sensory modalities (e.g. visual, haptic) available, it is necessary to determine which 

modality should be assigned to each property for an effective interface design. However, the 

effectiveness of assigning properties to modalities has varied with application and context. The 

goal of this study was to develop an effective multisensory interface for robot-assisted pouring 

tasks, which delivers nuanced sensory feedback while permitting high visual demand necessary 

for precise teleoperation. To that end, an optimization approach is employed to generate a 

combination of feedback properties to modality assignments that maximizes effective feedback 

perception and minimizes cognitive load. A set of screening experiments tested twelve possible 

individual assignments to form the combination. Resulting perceptual accuracy, load, and user 

preference measures were input into a cost function. Formulating and solving as a linear 

assignment problem, a minimum cost combination was generated. Results from experiments 

evaluating efficacy in practical use cases for pouring tasks indicate that the solution is significantly 

more effective than no feedback and has considerable advantage over an arbitrary design. 
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 INTRODUCTION 

1.1 Overview 

Robot-assisted manipulation has applications in diverse tasks and environments. In the last 

decade, applications of high significance have emerged, such as in robot-assisted surgical 

procedures [1] [2] and space or undersea exploration [3] [4]. Remote robot manipulation is also 

useful for situations that are hazardous to humans such as toxic waste clean-up sites [5] or 

situations where humans may adversely affect the environment such as clean rooms [6] [7].  

One other field where remote robot operation is emerging to be of significant interest is 

assistive technology. Robot manipulators can significantly enhance the quality of life of 

individuals with disabilities [8]. Robot-assisted pouring tasks belong to a class of tasks that are 

critical to activities of daily living (ADLs) such as feeding and meal preparation [9] [10] and is 

also applicable in many of the other remote operation environments discussed above. In this thesis, 

we selected the application of robot-assisted pouring tasks in ADLs as the focus of our 

investigations due to its high relevance and the ability to simulate accurate everyday conditions 

without factors such as physical barriers, toxic gases or chemicals, and physical environmental 

properties such as gravity and pressure that other relevant applications may impose. 

Users relying on robotic manipulators to interact with the environment are deprived of an 

experience comparable to direct object manipulation due to the lack of access to sensory 

information such as tactile, thermal, and force feedback. Such sensory deprivation may result in 

poor situation awareness and consequently affect decisions relevant to the task being executed [11]. 

Somatosensory feedback that conveys information such as thermal and tactile properties of the 

object being manipulated may contribute to enhancing situational awareness and enabling better 

decisions to be made by the user [10] [12]. Multimodal feedback interfaces may provide effective 
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solutions to bridging this gap and have been explored previously in several applications such as 

human-computer interaction and teleoperation [13] [14].  

The theoretical premise of multimodal feedback displays is to avoid overloading a single 

perceptual pathway and/or provide additional information that cannot be obtained by a single 

modality alone. This is supported by cognitive models of information processing [15] [16]. 

However, modality assignment solutions from such studies have proven to vary with the 

application and context, and studies specific to assistive robotic manipulators in decision-based 

ADLs remain underexplored.  

 

The primary objective of this project was to develop an effective multisensory interface for 

robot-assisted pouring tasks, which delivers nuanced sensory feedback while permitting high 

visual demand necessary for precise robot operation. To that end, an optimization approach is 

employed to generate a combination of feedback property to modality assignments that maximizes 

effective delivery and minimizes load. A system was developed, integrating a robotic arm with a 

haptic device, vibrating tactors, a visual display, and a thermal feedback module as modalities to 

provide weight, temperature, and liquid level properties in a pouring task. An initial survey was 

conducted to support the relevance of the selected properties for situation awareness. A set of 

metrics including perception accuracy and resolution, and cognitive attention factors in such as 

distraction and load were selected to model the cost to be optimized. A detection response task 

was used to collect measures of attentional load. A linear assignment problem was used to solve 

for the optimal mapping based on the selected metrics. Two sets of experiments were conducted. 

The first set collected data for the selected metrics from which a minimum cost solution was 
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generated. The second experiment evaluated the efficacy of the generated solution for decision 

making tasks against a control case of no feedback and an arbitrary design. 

1.2 Research Problem 

Consider the daily execution of the simple task of pouring milk manually (Figure 1.1). The 

individual grasps and lifts the milk carton, assesses the surface temperature and the amount of 

liquid contained in it using tactile and force information, determines an angle to tilt based on the 

force information, and tilts the carton to pour milk into a glass without spilling. Much of the 

information relevant to these assessments is communicated from the contact surface to the 

individual via thermal, haptic, and visual receptors, and is used to inform the decision-making 

process relevant to the task. Such daily tasks are committed to muscle memory, and do not require 

an average, experienced individual significant conscious effort for execution. 

 

 

Figure 1.1: Feedback in a direct pouring task. 

 

Individuals with partial upper limb impairments resulting from conditions such as stroke or 

spinal cord injury may lack the somatosensory feedback and motor control abilities to perform 
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such tasks without aid and may therefore look towards robot assistance. Remote robot assistance 

may also be sought by individuals working on toxic waste cleanup, space, undersea, surgical, or 

clean room operations. For these individuals, only visual feedback during pouring would be readily 

available which is typically limited by field of view, greater distance than when performed 

manually, and other applicable environmental conditions (Figure 1.2). This leaves a significant 

gap in non-visual sensory feedback identified in Figure 1.1, that may be integral to task-related 

decisions. For example, without this information the user will not know whether the liquid is too 

hot for drinking or how far to tilt the vessel for controlled pouring of liquid. This will force the 

user to spend time testing or to slow down the task to control the outcome. In this project, we 

attempt to ameliorate this gap by developing a framework for designing a multimodal feedback 

interface capable of effectively conveying relevant object properties that enhance situational 

awareness and better inform robot operated task-related decisions.  

 

Figure 1.2: Feedback in a robot-aided pouring task 
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 Research Questions 

In this thesis, a set of selected cost metrics and an assignment problem were used to develop and 

test an effective multimodal interface for a robot-assisted pouring task. To that end, the following 

research questions were addressed through this study: 

 

1) Which property-modality assignment will be most effective in delivering each of the 

identified object properties (i.e. temperature, weight, liquid level) through selected sensory 

feedback modalities (i.e. visual, haptic, audio, vibration, thermal)?  

 

Hypothesis: An effective assignment combination can be generated by using an analytical model 

developed through empirical testing 

 

2) Does the developed interface show improved decision-making performance and user 

experience in a pouring task compared to when executing the task without feedback? 

 

Hypothesis: The developed interface will improve performance and user experience compared to 

a control of no feedback and an arbitrary assignment of properties to modalities. 

1.3 Contribution 

In this thesis, an approach to developing multimodal feedback interfaces for robot operation 

tasks is identified. This approach optimizes for visual distraction and may be generalized to other 

multimodal interfaces in other visual-manual tasks that demand visual attention, such as driving, 

human-computer interaction, and virtual reality applications. An effective solution for the defined 

application is produced and evaluated. The relevance of feedback for decision making, an 
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overlooked aspect so far in robot-assisted tasks is also demonstrated in this project. Further insights 

into the design considerations for such interfaces are generated from experimental findings, and 

results may also contribute towards further understanding of cognitive limitations associated with 

multisensory processing and attention. 

1.4 Thesis Structure 

The remainder of this thesis is structured as follows: 

Chapter 2 provides a background and literature review of the applications, neurocognitive 

theories, human factors tools, and the assignment problem relevant to this work. At the end of each 

section, the relevant aspects included in this project are described. This chapter also introduces the 

results of a thought experiment conducted to establish an initial basis of for this research problem. 

Chapter 3 describes the system architecture, feedback mappings, and solution approach. Chapter 

4 presents the design of preliminary studies and main experiments, referred to from here on as 

screening experiments and validation experiments. Chapter 5 discusses the results of the 

experiments discussed in Chapter 4. Chapter 6 summarizes the conclusions of this project and 

discusses possible investigations for future work. 
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 BACKGROUND AND LITERATURE REVIEW 

2.1 Assistive robot manipulators 

Assistive robot manipulators have the potential to aid in numerous tasks and many 

solutions have been developed over the years [17] [18]. In this section, the use of assistive robotic 

manipulators in activities of daily living and other remote operations applications is reviewed. 

Existing solutions for feeding and related tasks are identified and modalities for controlling the 

robotic devices are also explored. 

 Assistive robot manipulators for individuals with upper limb impaired impairments 

According to the most recent Americans with Disabilities Report [17], 5.6% of the adult 

population experience difficulties with activities of daily living (ADLs) stemming from 

manipulation tasks. These include critical activities such as feeding, bathing, and dressing. 

Individuals with such upper limb motor impairments are often rely on aids and assistants for help 

with everyday activities. Assistive technologies, including assistive robotic solutions [18] [19] [20] 

have shown potential to enhance their autonomy significantly [8] and may also provide cost 

savings and economic benefits relative to a dependent lifestyle [21].  

Among assistive robots, manipulators are particularly relevant because they allow the user 

to perform manipulation tasks that are crucial for many ADLs. A number of user surveys have 

been conducted in the past to identify critical tasks relevant to assistive robotic manipulators. Pre- 

and post-development studies reviewed in [9] identify meal preparation, eating, and drinking tasks 

to be ranked among the top five highest priority tasks. These are accompanied by tasks such as 

picking up and carrying objects and personal hygiene-related tasks such as bathing. Another survey 

reviewed in [9] found the most desirable tasks identified by users to be picking up objects, pouring 
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liquid, fetching objects from shelves, turning knobs, drinking from a cup or glass, use cutlery, and 

grasping and releasing objects. Surveys conducted on caregivers of the target population also rated 

eating and drinking tasks and pouring liquid to be of high importance in addition to tasks such as 

brushing teeth or typing. In [10], wheelchair transfer, gripping objects, and drinking were ranked 

highest priority, and when asked to express free ideas, the most popularly identified tasks were 

food preparation, household activities, and grasping objects. These surveys highlight both the wide 

variety of tasks that would benefit from an assistive robot and the significance of those tasks for 

carrying out essential functions of daily life routines. 

A majority of the ADLs identified above require upper limb motion and/or dexterity to 

manipulate tools and objects relevant to the task. One set of tasks particularly demanding of upper 

limb control are feeding and meal preparation. Assistive robot manipulators have been configured 

and tested specifically for this category of tasks in previous work. Commercial solutions capable 

of assisting with feeding tasks include recent seven degree of freedom (DOF) manipulators such 

as the iArm [22] and JACO [18], and simpler spoon-feeding mechanisms such as Handy1 [23], 

the Winsford Feeder [24], Meal Buddy [25] and MySpoon [26]. 

Many of the development efforts targeting feeding tasks using six or seven DOF arms have 

focused on control algorithms suited for these tasks. In [18] a drinking mode is implemented in 

the JACO robot to synchronize complex drinking and pouring motions. Other control 

implementations such as spasm filtering and automatic orientation are also implemented in this 

work to improve usability by an upper limb-impaired population. A reactive control strategy using 

vision to track the human is implemented in [27] to prevent risk of injuries during autonomous 

robot-assisted feeding tasks.  In [28] a robot arm simulator is demonstrated to avoid obstacles and 



 

20 

enable successful transfer of food in self-feeding tasks using a cup and spoon. A vision-augmented 

control algorithm is introduced in [29] to improve food acquisition efficiency and delivery.  

 Other robot-assisted manipulation tasks 

Robot-assisted manipulation tasks extend beyond the domain of upper limb-impaired 

individuals. In the last decade, a heavy focus has been placed on improving minimally invasive 

robot-assisted surgical procedures such as endovascular procedures [1] [30] [31], retinal surgeries 

[32] [33], biopsies [34], and more [2] [35] [36]. Teleoperated robot manipulators have been used 

for remote tasks such as space exploration [3] [37], undersea exploration [4] [38], dismantling 

bombs [39] [40], and safe maintenance of electricity infrastructure [41]. Remote robot 

manipulation is also useful for situations that are hazardous to humans such as toxic waste clean-

up sites and nuclear reactors [5] [42] [43] [44] or situations where humans may adversely affect 

the environment such as clean rooms [6] [7] [45], fume hoods, or hospital isolation rooms. Many 

of these environments deal with tasks that involve manipulating containers. Specific examples may 

include cleaning contaminated water bodies or soil, handling sensitive fluids, chemicals, and cell 

samples, or tending to an isolated patient.  

Because of its wide applicability to many tasks relevant to robot-assisted manipulation 

including in feeding and other remote operation environments, in this project, a pouring task was 

selected as the test case for developing a multimodal feedback interface.  

 Assistive robot control modalities 

Control modalities implemented in assistive manipulator solutions have varied widely 

depending on the targeted population and tasks. A vast majority of these solutions rely on joystick 

only or joystick and customized keyboard inputs [18] [22] [24] [26] [10]. Other control modalities 
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explored and implemented have included a head-controlled joystick [25], mouse inputs [28], voice 

commands [46], eye tracking [47] [48], and cortical motor activity-based control [49]. In [50], a 

3D joystick is introduced in a study comparing the 3D joystick with traditional joystick and 

keyboard inputs for quadriplegics. The 3D joystick was demonstrated to achieve a higher 

performance index and required a shorter learning curve, while keyboard input was observed to be 

the least physically demanding.  

In this thesis, a hybrid approach is implemented with a haptic device configured as a 3D 

joystick and keyboard inputs for shifting between modes.  

2.2 Sensory feedback in robot-assisted tasks 

Humans depend on sensory feedback to gather information from their surroundings. This 

information enters the neurological circuits through specialized sensory (e.g. vision, hearing) and 

somatosensory (e.g. touch, proprioception) receptors, and are processed to inform decisions 

relevant to daily activities. When one or more of these channels are unavailable due to a physical 

condition or other circumstance, they may be compensated via intervening systems or channels 

that provide direct or substituted translations of the relevant information [51]. In the remainder of 

this section, the types of sensory feedback integrated in robotic devices and the purpose served by 

these types of feedback will be reviewed. The relevance of feedback for situation awareness will 

also be explored and results of a preliminary survey to establish the relevance of properties selected 

for this project will be discussed. 

Tasks such as preparing coffee, feeding fluids to a patient, and handling chemicals and 

samples involve a complex exchange of information between the user and their environment. A 

limitation of using assistive manipulators is that the somatosensory information usually received 
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via direct interactions is not available when an intermediary agent is adopted to perform the task. 

This gap may be bridged by the effective integration of sensory feedback interfaces.  

Robotic devices supporting non-invasive sensory feedback provision has been investigated 

for a range of applications and feedback types. Auditory feedback has been effective to warn of 

impending hazards [52] and provide system alerts [53]. Electrical and vibratory feedback are 

frequented for prostheses [54] [55]. Haptic feedback mechanisms to indicate grasp force [8] [56] 

[57] [51] and slip [58] aid in robot and prosthetic control. However, approaches aimed at 

improving situation awareness in daily life activities remain underexplored.  

 Feedback for situation awareness and decision making 

Several cognitive science studies of mental simulation have demonstrated that humans 

have implicit knowledge and mechanisms to rationalize everyday physics with relative ease, which 

inform their predictions, inferences, and planning [59] [60]. Liquid pouring is one example of a 

subtle manipulation task that humans learn early and requires continuous monitoring of vessel 

states such as liquid level and tilt speed to avoid spilling [61].   

Feedback needs that are important to maintain situational awareness and influence task-

relevant decisions in daily life interactions remain to be addressed for users of assistive robots. 

Limitation of operator performance by the ability to maintain situation awareness and build mental 

models of remote environments has been previously identified among the challenges of 

teleoperation [62]. Sensory deprivation is one factor identified to affect this awareness and the 

accuracy of mental representations of the environment.  

‘Situation awareness’ is a term that originated in aviation psychology to describe the pilot’s 

understanding in tactical flight operations. Dominguez [63], merges Endsley [11] and Carroll [64] 

to define situational awareness as the “continuous extraction of environmental information, 
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integration of this information with previous knowledge to form a coherent mental picture, and the 

use of that picture in directing further perception and anticipating future events.” The concept is 

applicable both in the active awareness that informs decision-making as well as the passive 

awareness that keeps an operator aware of changes in the environment. Cognitive factors affecting 

situation awareness include attention, pattern recognition, and working memory [65].  Endsley’s 

model for situational awareness [11] illustrates that cue detection and recognition, followed by 

situation assessment and prediction are necessary inputs to the human decision-making process. 

In the executive brain, decisions may arise from external environmental influences (bottom-up 

processes) and from the motivation and goals of the person (top-down processes) [66]. The bottom-

up decision-making processes result from passive situation awareness cues while the top-down 

processes seek cues actively from the environment.   

As illustrated in Chapter 1 of this thesis, recognizing and assessing cues such as weight 

and temperature can inform both bottom-up (e.g. realize a vessel is empty and throw it out) and 

top-down (e.g. assess the temperature to ensure that it is safe to drink) decisions in a container 

manipulation task such as making and drinking a cup of coffee. It is therefore important to identify 

and integrate feedback that is relevant beyond grip control, particularly for devices such as 

assistive robot manipulators that are expected to be instrumental in the execution of everyday 

decisions.  

The need for such feedback has been addressed to some extent in interfaces designed for 

prosthetic arms where the need is clearer due to the more intimate integration with the user. 

Temperature and tactile feedback are most commonly integrated in these interfaces [67]. In 

addition to its importance in the daily use of prosthetic devices, situational feedback such as task 

state and navigational information are also identified to be of high importance in the contexts of 
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visually limited telerobotic applications [10]. In [14] poor perception is identified as having a 

detrimental effect on situation awareness and consequently on robot teleoperation tasks. Interfaces 

that provide situational feedback to users of assistive robotic manipulators can thus be expected to 

advance device utility and effectiveness in the lives of their users.  

2.2.1.1 Selected Properties 

In this project, we selected vessel temperature, initial weight/amount of liquid, and a binary 

indicator of liquid level (above or below the grasp point) as a set of properties relevant to enhancing 

situation awareness to be provided through a multimodal feedback interface developed specifically 

targeting those properties. 

Weight and liquid level correspond to amount of fluid in a container and is perceived via 

haptic receptors when the task is executed by humans. Initial amount of fluid in a container has 

been identified as one factor affecting the estimation of tilt angle in pouring [68]. Instead of relying 

on simple qualitative heuristics, humans rely on the perceived viscosity and fluid volume to make 

quantitative judgments, including angle of tilt [59]. Liquid level in the container has been identified 

as a state to be monitored in pouring tasks [61]. In this project, the combined information of weight 

and the detection liquid at the grasp point was used to allow the user to better judge the required 

angle of tilt estimate the amount of fluid in the container. The congruence of the two properties 

has been shown to increase the effectiveness of feedback [69].  

Temperature informs external decisions such as whether to drink a hot beverage at a given 

time, whether to reheat, or to determine proportions of beverages to mix. Thermal feedback 

protects against scald injuries prior to drinking and can also be useful in other daily functions such 

as washing. Temperature has been previously integrated as feedback in prosthetic limbs [67]. We 

provide feedback of the surface temperature of the vessel to mimic direct contact.  
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 User acceptance 

Despite the significance and anticipated benefits associated with assistive robotic solutions, 

there is not a wide acceptance by potential user groups. In a study conducted with the ASIBOT, 

an intelligent robotic arm, “too remote from life” was identified as one barrier to acceptance [10]. 

This can be interpreted as a lack of sense of ownership and device embodiment, factors that have 

been long since investigated for prosthetic devices [12]. Castellini et al. emphasizes the intimate 

relationship between human factors and technical devices by tracing this lack of embodiment to a 

few factors including the lack of afferent sensory feedback [70]. The influence of multi-faceted 

tactile information on the ownership and bodily integration of an external object has also been 

demonstrated in several studies of illusory rubber hand setups [71]. For assistive robotic 

manipulators, while the desired extent of device ownership has been demonstrated to be more 

variable [72], it has been argued that enhancing the sense of embodiment would facilitate use and 

thereby increase both acceptance and task performance for these devices [73] [71]. Moreover, 

increasing situational awareness by providing information users of elusive properties, a feedback 

interface may also serve to increase a user’s sense of ownership and therefore, contribute to 

facilitating increased use and acceptance of assistive robotic manipulators. 

2.3 Multimodal Feedback 

This section will review the cognitive premise for providing multimodal feedback and 

multimodal feedback displays in various applications. 

The premise of a multimodal feedback interface is that information can be conveyed more 

effectively when distributed across modalities. For example, if one is engaged in a visually 

occupying task such as driving, it would be better to provide route guidance through sound rather 

than a visual display so as to preserve the visual cognitive resources required for driving [74]. Thus, 
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the intention is to avoid overloading a single perceptual pathway and/or provide additional 

information that cannot be obtained by a single modality alone. Cognitive models of information 

processing such as Wickens’ multiple resource theory [15] and measured reaction times [75] 

support this reasoning [76]. A multiple resource framework for workload in robot teleoperation 

based on Wicken’s theory (Figure 2.1) included multimodal displays as a positive solution to 

workload issues in human-robot interaction [77]. Based on Wicken’s theory, performance should 

be improved when provided cross modal cues (e.g. visual and audio) compared to intra-modal cues 

(visual and visual) [77]. Further, Ernst’s theory of sensory integration, which employs Bayesian 

decision theory, indicates that the accuracy of perception increases with the number of modalities 

that present congruent or redundant information [16].  

Although multimodal feedback studies with assistive robotic manipulators are limited, 

investigations spanning a range of other similar applications have been reported. In [78] an 

interface provides visual, auditory, and tactile feedback from a virtual telepresence robot through 

the corresponding modalities. In [79], visual, audio, and haptic feedback is provided in redundance 

for a virtual manipulation task. A multimodal vibrotactile interface provided multiple properties 

in an upper limb prosthesis [80]. Interfaces have also been studied for collaborative robots to 

inform users of robot status [76] and independent robot interactions [81]. Multimodal feedback 

proved useful in poor visual conditions such as low frame rate [82] and 2D display [83] in 

teleoperation tasks. Several reviews of multimodal displays [13] [14] [84] have concluded that 

performance is empirically shown to improve with multimodal feedback across a variety of tasks. 
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Figure 2.1:  A multiple resource framework for workload in robot interaction. 

Multimodal displays are illustrated as a strategy for offloading perceptual demands. 

 

However, some studies suggest that certain combinations of modalities may instead prove 

to be cognitively burdensome and an optimal combination may be dependent on the task type [13], 

individual differences [85] and context [86] [87]. As a result, evaluative studies of multimodal 

feedback have yielded conflicting results across the literature. In a study comparing uni-, bi-, and 

tri- modal feedback conditions [88], the bimodal condition of haptic and visual feedback emerged 

most effective while the remaining bi- and tri-modal combinations were observed to be among the 

least effective. A user study found that the introduction of vibrotactile and auditory feedback to 

improve performance time in the operation of an impact wrench, but the addition of force feedback 

was not observed to improve performance [9]. Results from a multimodal vibrotactile feedback 

study indicated the need for additional studies to determine whether the combination of certain 
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feedback types may cause sensory confusion [80]. A neural efficiency study found task 

performance to be highest for a visual only compared to visual and haptic feedback in a virtual 

robot interaction task [81]. A type of system that yields such variability would benefit from a 

generalized design approach that is adaptable to their specific applications. 

Multimodal feedback interfaces should be designed to make effective use of the human 

sensory channels and available display modalities while balancing any cognitive burden associated 

with the interface. Approaches for designing interfaces that achieve this balance have not been 

discussed extensively. A systematic approach to designing an interface for stationary robot 

feedback in an industry setting by employing 100 employee responses to an online questionnaire 

has been proposed previously [76]. However, this approach relies solely on subjective responses 

and may also not be as easily adapted in applications where the reachable number of users is 

limited.  In the study by Zhang et al. [89] an optimal assignment approach is used to provide 

multimodal feedback of image properties for a virtual image exploration task. Apart from this, 

many of the studies discussed so far have been evaluative studies of selected combinations 

measuring performance time, accuracy, and cognitive load. These findings are arguably possible 

to adapt into working systems, however, as evident by varying results across the spectrum, they 

are likely to be most applicable to those specific applications and circumstances.  

 Cognitive demands of robot-assisted tasks 

Cognitive workload has long been of interest for human-computer interaction and has been 

recognized as an important element of human performance in complex systems [90]. Optimization 

of cognitive load has been found to reduce human error, improve system safety, and increase 

productivity and user satisfaction [91] [92] and therefore has a direct influence over a user’s ability 
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to perform tasks [88]. Increased cognitive effort has also been tied to reduced ownership and 

acceptance of prosthetic devices [12] [70]. 

Remote robot manipulation draws heavily on visual resources as the manual control 

operation is performed. It uses ambient vision to guide navigation and focal vision to detect critical 

objects and if applicable, display alerts [77]. It would therefore be expected that perceptual 

demands will primarily be placed on visual channels as demonstrated by a number of studies 

evaluating visual cues and displays in teleoperation [77]. The primary manual tasks related to robot 

control may include subtasks such as mode shifts, button presses, and other input interactions while 

steering a joystick in a traditionally controlled robot. The set of primary tasks involved require 

visual and motor attention and may involve other cognitive functions depending on the task. 

Including multimodal feedback in the user interface adds several (i.e. the number of modalities to 

be perceived) secondary sub tasks to the task of visually tracking and manually controlling the 

robot, that may distract from the primary tasks involved. Thus, to design an effective multimodal 

feedback interface, the perceptual demands of the interface should be balanced with those of the 

primary tasks. As such, the visual distraction from the primary task and the overall mental load 

would ideally be minimized while the feedback gap is effectively bridged. 

One task that closely resembles these demands of robot operation and has been researched 

extensively is driving [93] [94] [95]. Driving too involves a set of primary tasks (accelerating, 

breaking, steering, navigation, etc.), requires visual attention, and is frequently accompanied by 

secondary tasks (digital navigation, communication, entertainment, etc.) that may distract from the 

primary tasks [93]. Driver cognitive load is measured using several different tools such as the Lane 

Change Task or subjective methods such as the NASA TLX assessment or self-evaluation ratings 

[94]. One popular tool that has also been used in human-computer interaction studies and focuses 
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on cognitive attentional resources is the Detection Response Task (DRT) which we adopted in this 

project. 

2.3.1.1 The Detection Response Task 

The detection response task is intended to measure the cognitive attentional resources that 

are available to drivers when performing secondary tasks [95] [96]. The method consists of a 

simple task where subjects respond to a frequently repeated stimuli presented at randomized 

intervals of 3-5s [97]. Hit rate and reaction time are analyzed as measures of cognitive load. 

Decreased hit rate and increased reaction time correlate to increased cognitive load. For driving 

experiments, secondary tasks such as visual-manual tasks (typing on the phone, radio tuning, etc.), 

cognitive auditory tasks such the N-back task, and other cognitive load tasks such as backward 

counting have been evaluated using DRT measurements [94] [97] [98]. 

The DRT may be administered in three versions as standardized by the ISO in 2016 [95]. 

The Head-mounted DRT (HDRT) and Remote DRT (RDRT) involve different placements of the 

visual stimulus, which is typically a single red LED. During HDRT the visual stimulus is mounted 

on a head band directly in front of the subject’s eye. For RDRT the visual stimulus is placed in a 

fixed location in the driver’s field of view such as the dashboard. A third version is the Tactile 

DRT (TDRT) that replaces the visual stimulus with a vibrating tactile stimulus. 

Of the three methods, the RDRT is a standardized version of a Peripheral Detection Task 

(PDT) that is primarily used for assessing visual distraction [97]. The nature of the secondary task 

should also be taken into account when choosing the appropriate DRT such that overlaps are 

minimized. For example, for interfaces relying primarily on tactile information processing, the 

TDRT should not be used [94]. In accordance with the considerations for this project, an RDRT 
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was implemented so as to capture effects of visual distraction and minimize overlap with the tactile 

feedback modalities. 

 

Figure 2.2: Remote DRT in a Driving Experiment [96] 

2.3.1.2 Visual Challenges in Robot-assisted Tasks 

Remote robot operation can pose a multitude of visual challenges. [99] identifies field of 

view, orientation of the robot, view point, and depth perception as factor that affect perception and 

manipulation in teleoperation tasks. [77] identifies depth cues and environment details such as the 

number of visual objects or visual complexity to be challenges in teleoperation interfaces. These 

factors may also affect robot tasks that are viewed directly rather than through video or virtual 

displays. 

The tasks of operating a vehicle and operating a robotic manipulator possess the shared 

attributes of being visual attention demanding and manually controlled operations.  The DRT, as 

discussed above, has been an effective tool in driving experiments [94] [97] [98]. Additionally, it 

has also been proven effective for assessing workload in human-computer interaction applications 

such as gaming interfaces [100].  However, the tool is yet to be adopted widely in human-robot 

interaction studies. In this thesis, we first conducted an experiment (detailed in Chapter 3) to 
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demonstrate the utility of the RDRT in measuring attentional load in robot manipulator operation 

tasks.  Based on those results, we integrated it in the experiments for addressing the main research 

questions.  

This thesis aimed to develop and evaluate an effective multimodal feedback solution 

specific to the defined application, which strikes a balance between minimized distraction and load 

and effective conveyance of feedback. The approach developed in this thesis to achieve this goal 

may also be adapted as an approach for developing multimodal feedback interfaces for other 

visual-manual tasks with similar cognitive demands such as driving and virtual reality applications.  

2.4 Modality-matched and Substituted Sensory Feedback 

In this section, strategies for providing somatosensory feedback, including visual and 

auditory sensory substitution will be introduced and reviewed.  

A sensory feedback gap produced as a result of distancing from the task can be bridged in 

one of two ways. The first strategy is to provide modality-matched feedback by stimulating the 

sensory receptors in a similar manner to the direct contact case. This type of feedback has been 

previously demonstrated by providing tactile pressure using a pneumatic pressure mechanism for 

a prosthetic limb [101]. Likewise, thermal feedback has been provided using thermal elements 

[102] [103]. Haptic force and stiffness feedback rendered through remote haptic devices or other 

mechanical solutions is another illustration of modality-matched feedback featured in a number of 

applications ranging from surgical robotics to virtual reality [104] [105] [106].  

The second strategy is to map sensory information that is usually perceived through one 

sense to a different sense. This is referred to as sensory substitution, a term that commonly 

describes a technological intervention that performs this translation for its user [107]. As illustrated 

in [107], a sensory substitution system acquires information that typically corresponds to one 
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sensory modality and maps the information to the selected display actuators through which the 

information is presented to an alternative human sensory modality.  

Sensory substitution is a common strategy to compensate for a blocked or impaired sensory 

pathway such as with blind or deaf individuals [89] [108] [109] or with tasks executed in the dark 

[110]. This strategy may also be extended to situations that place a heavy demand on one sensory 

modality such as in the driving navigation tasks discussed in the previous section, where 

substitutions may reduce the load on a single modality. Sensory substitution is also employed to 

reduce technological complexity in virtual reality applications (substituting force and touch 

feedback with vibrations for example) as well as to reduce encumbrance (the extent to which a 

user is burdened with wearing various devices to interact with a system) while increasing situation 

awareness [51] [111]. Further, sensory substitution has also been used to reinforce feedback 

through a second modality and proven to create more powerful representations of virtual 

experiences [112] [113]. Stimulation of one sensory channel that produces the illusion of 

stimulation in another has also been suggested to be powerful in remote teleoperation [114]. 

 Somatosensory Feedback 

Somatosensation refers to a set of perceptual processes related to the body and skin, and 

includes touch, pressure, vibration, pain, thermal sensation and proprioception (limb position) [66]. 

A variety of receptors including six types of mechanoreceptors, thermoreceptors (temperature), 

chemoreceptors (chemical stimuli), proprioceptors (limb joints and muscular states), and 

nociceptors (pain) gather information pertaining to their specific sensations from the skin 

(cutaneous feedback) and from muscles, joints, and tendons (kinesthetic feedback). This 

information is transduced into neural signals and carried to the brain where the sensations are 
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integrated to form perceptions and inform both sensorimotor outputs and executive functions [66]. 

These receptors are more concentrated in the glabrous skin of the hand and surrounding areas.  

 

Figure 2.3: A cross section of the skin illustrating sensory receptors [115] 

 

Cutaneous receptors typically collect information about surface characteristics of an 

external body such as hardness, stiffness, smoothness or friction, vibration, temperature, moisture, 

and texture. Kinesthetic receptors collect information about external forces, including weight and 

other forces as well as information that aid proprioception. In this project, we focused on vibration, 

thermal, and force feedback as candidate modalities through which temperature, weight, and liquid 

level feedback may be provided because these modalities could be integrated with little 

encumbrance and have been tested extensively as providers of sensory feedback as discussed in 

the sub sections that follow.  

In this thesis, both direct and substituted modalities will be evaluated for providing selected 

somatosensory feedback properties that are deprived during remote robot pouring tasks. In 

particular, these somatosensory feedback channels may be substituted by distinctly different 
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channels such as visual or auditory modalities as well as by other somatosensory channels 

including haptic, vibrotactile, or thermal modalities, as elaborated below. 

2.4.1.1 Vibration 

Vibrotactile stimulation involves an actuator vibrating against the skin. The 

mechanoreceptors primarily involved in the perception of vibrations are the Pacinian corpuscles 

located in the dermis. Typically, frequencies are chosen to maximize Pacinian FA II receptor 

sensitivity which is highest near 250 Hz [107].  

Vibrotactile stimulation has been used to substituted information in a variety of 

applications. [115] demonstrates force and deformation for a forearm prosthesis conveyed via 

amplitude modulation of a tactor array. [116] encodes material stiffness information in vibrations 

using signals generated by tapping a material for upper limb prostheses. Virtual reality and human-

computer interaction applications have frequently used vibrations for binary or modulated 

representations of instantaneous touch or force [117] [118] [119]. Texture stroking signals are also 

communicated through vibration in [118]. In [120] voice coil actuators generate asymmetrically 

normal to the ground to generate the sensation of weight for virtual reality applications. [51] 

introduces a vibrotactile glove for providing tactile, force, and haptic feedback in teleoperation 

tasks, where homogeneous linear mapping to frequency and inhomogeneous radiating patterns are 

investigated. In [89], vibration frequency is linearly mapped to several image features such as 

intensity, texture, and shape for blind users. 

In this project, vibration frequency was mapped linearly from the tactor device range to 

constrained ranges of each of the identified properties and delivered through C2 tactors (Figure 

2.4). 
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Figure 2.4: A C2 Tactor 

2.4.1.2 Kinesthetic Force Feedback 

Force feedback displays are primarily aimed at accessing the kinesthetic haptic channel. 

The main source that drives external force perception are afferent discharges from Golgi tendon 

organs that signal intramuscular forces [121]. 

Haptic devices have been a central tool in the provision of force feedback in a number of 

applications. These devices are available commercially [122] [123] [124] and are capable of 

providing a range of force feedback to a handheld stylus in applications that allow the integration 

of a stylus. A large portion of these applications have focused on providing modality-matched, 

rather than substituted, feedback of force and stiffness as discussed above. Additionally, [125] 

provides friction and gravitational acceleration information in exploratory tasks through a haptic 

device. In [89], image features such as intensity and texture are mapped to corresponding force 

feedback for blind users (Figure 2.5).  
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Figure 2.5: Image feature representation through multimodal feedback [89] 

 

In this project, haptic feedback was provided as modality-matched feedback for weight (i.e. 

a downward force/weight bearing on the joystick stylus) and as a binary indicator of liquid level 

as above or below the grasp point. 

2.4.1.3 Thermal Feedback 

In thermal displays, heat is directed toward or away from the skin. Thermal perception 

depends on two different kinds of receptors known as cold and warm receptors, of which cold 

receptors outnumber warm receptors up to 30:1 [126]. Cold receptors respond to decreases in 

temperature while warm receptors respond to increases in temperature. No thermal sensation is 

noted in the range of 30–36°C although both types of receptors exhibit spontaneous firing, and 

outside this range, continuous discharge is primarily limited to one type of thermoreceptor [126].  

Thermal perception and the ability to discriminate between changes depends on a variety 

of factors including the site of stimulation, the amplitude of the temperature change, the rate of 

heat transfer, and the baseline temperature of the skin [126]. It must be noted that thermal receptors 

do not perform as effectively as thermometers due to perceptual changes associated with altering 

stimulation duration (adaptation) or the spatial extent (spatial summation) [126]. Temperature 

perception on external skin differs from oral temperature perception due to heat transfer with 

environment. In the case of oral temperature perception, particularly of fluids, ~32-34°C is 

perceived as neutral, while above this range is typically perceived as warm and below as cold [127]. 

Thermal displays may be implemented using Peltier cells, which can be electronically 

controlled to pump heat toward or away from an area of skin that it is in contact with [107] [121] 
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[128]. Improving energy efficiency and response time have been identified as challenges in 

previous development efforts [129] [102]. 

In this project, a Peltier device was implemented (Chapter 3) to provide modality-matched 

feedback for temperature, with an oral to skin perception association to be learned by users.  

 Visual and Audio Substitution 

In the interface developed for this project, visual and audio modalities were included as 

substitution modalities for the somatosensory feedback due to the ease with which humans interact 

with visual and audio displays. 

2.4.2.1 Visual substitution 

Visual displays allow the use of various visual information representations including color, 

semantic or numerical text, and graphical objects. In manual tasks, visual attentional requirements 

may interfere with the task and should be considered. Visual attentional requirements of robot-

assisted tasks will be discussed in section 2.5 of this thesis. 

Visual substitution of haptic or somatosensory feedback has been explored to some extent 

in teleoperation and virtual reality applications. In [130] a graphic display of colored bars were 

used to display force levels in surgical suture knots using a da Vinci robot. In [131] an arrow 

representing force magnitude and direction is used for endoscopic surgery training. [132] 

demonstrates using visual feedback in the form of a bar to augment haptic feedback of grip force 

in teleoperated suturing while [133] demonstrates bar graphs of force feedback for a virtual reality 

glove. In [134] collision forces are presented in the form of a bar graph to augment haptic and 

auditory feedback for telepresent manual assembly tasks. 
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However, humans and animals tend to discretize continuous information into categories 

for decision making [135]. This phenomenon is termed ‘categorical perception’ [136] and was first 

revealed in human speech perception research [137]. Thus, while bar graphs may be effective in 

monitoring force levels, information that requires less precision and is aimed at aiding decision 

making as in this project may be better conveyed through a more intuitive mode of communication 

such as semantic text identifying discrete categories.  

Unlike force, temperature has a more intimate association with color. Cooler temperatures 

are often associated with blues and warmer temperatures with reds, and reds and blues are often 

referred to as warm or cool colors in photography and art. This is often leveraged in engineering 

designs of human-machine interfaces and other thermal communications to users. This is 

demonstrated in [138] background color changes indicating temperature is demonstrated in an 

optimized design of an human-machine interface (HMI). Thermochromic straws [139] and cups 

[140] are other examples of thermal color representations to users. 

In this project semantic text and background color gradients was used as a substituted 

modality for all three selected properties. 

2.4.2.2 Auditory substitution 

Audio feedback may be displayed as pitch or amplitude varied sounds or tones or speech 

cues. However, conversational requirements may disrupt or be disrupted by audio cues, and 

applications that require collaboration may benefit from brief indicator cues rather than continuous 

ones. 

Audio substitution of haptic and somatosensory cues have been integrated in teleoperation 

and virtual reality applications. In [130] a single tone was used to indicate that the suture tension 

had reached the applied tension for teleoperated robotic suturing. In [134] a metallic sound was 
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used to indicate collision in telepresent manual assembly tasks. The sonification device in [141] 

includes provision of thermal information through frequency modulated sounds. 

Audio-visual substitution has been investigated more extensively. In [89] both audio 

speech cues and pitch varied tones are investigated to substitute image features for visually 

impaired individuals. [132] uses a more complex auditory encoding to deliver visual depth 

information. Auditory speech cues are also commonly used in navigation tasks [142] [143]. 

Following the concept of categorical perception, in this project semantic auditory cues will 

be provided as a substituted modality to identify levels of all three selected properties. 

In this project, we used a categorical approach to defining levels for testing perception of 

the three identified properties. Further, as noted above, the visual and audio cues was provided as 

category labels in addition to color changes accompanying the visual feedback for further 

resolution. 

2.5 The Linear Assignment Problem 

In this section, the linear assignment problem that was used to generate the optimal solution 

of feedback modalities in this project will be introduced. Algorithms for generating solutions and 

types of application are also reviewed. 

The assignment problem is a fundamental combinatorial optimization problem that deals 

with the question of assigning a given number of tasks to a given number of agents such that the 

total cost is minimized. The problem was first called an ‘assignment problem’ in 1952 by Votaw 

and Orden [144]. Assignment problems consist of two components: the underlying combinatorial 

structure that defines the assignment and an objective function that models the cost of assignment 

[145].  
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If the total cost of the assignment for all tasks is equal to the sum of the costs for each agent, 

then the problem is called linear assignment.  The Linear Assignment Problem (LAP) is one of the 

simplest forms of assignment problems [146]. The objective of the LAP can be described using 

graph theory as being to generate the minimum cost mapping of n tasks to n agents in a weighted 

bi-partite graph. 

A bi-partite graph (Figure 2.6) contains two independent sets of vertices, U and V and may 

be denoted as H= (U, V; E) where H denotes the graph, U and V represent the sets of vertices, and 

E denotes the set of edges. The problem constrains the mapping such that the edges E may only 

connect one vertex in U to one vertex in V, and may not connect any vertices within a set. In a 

weighted bi-partite graph, each edge carries a weight or a cost of being mapped from a given vertex 

in U to one in V. 

 

Figure 2.6: The bi-partite graph 

Thus, given n tasks in U and n agents in V and a set of costs, the LAP can be formulated 

and solved to find the minimum cost combination of mappings. If a problem is unbalanced, that is 

if the number of tasks and agents are not equal, one approach to solve is to add a ‘dummy’ task (or 

agent) with a radically high cost such that balance is regained. 

To construct a mathematical model for the problem, a n x n cost matrix, C=(𝑐𝑖𝑗), is defined 

where row i corresponds to Ui and column j represents Vj, and 𝑐𝑖𝑗 is the cost of assigning Ui to Vj.  



 

42 

Thus, the LAP can be defined as follows: 

For a binary matrix X=(𝑥𝑖𝑗) such that  

𝑥𝑖𝑗 = {
1 if there is an assignment of i to j

0 otherwise
  (2.1), 

 The minimum cost linear assignment is  

min ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1    (2.2) 

where  

∑ 𝑥𝑖𝑗 = 1𝑛
𝑖=1   (2.3) 

and 

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1   (2.4) 

Beginning with Easterfield in 1947 [147], many sequential and parallel algorithms have 

been proposed to solve the LAP in polynomial time. These algorithms can be classified into three 

main classes: Linear programming-based algorithms, Primal-dual algorithms, and Dual 

algorithms [145] [148]. Due to their polynomial worst-case complexity, the primal-dual 

algorithms such as the famous Hungarian algorithm [149] and Dual algorithms such as the shortest 

path algorithms [150] generally outperform the simplex-based linear programming algorithms 

such as the primal simplex algorithm [151] [148]. The theoretical time complexity of the most 

efficient primal-dual or shortest path algorithms is O(n3), where n is the number of resources or 

tasks [148]. The first computer program for solving the LAP [152] was based on the Munkres’ 

algorithm [146].  

Apart from straightforward applications such as personnel assignment in operations, the 

LAP has been applied in a number of settings. These include generating efficient communication 

routes in earth-satellite systems with TDMA protocols [152], tracking objects in space [153], 

multi-object tracking [154], optimal engine scheduling in railway systems, vehicle routing 
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problems to de-densify transportation terminals, and vehicle and crew scheduling [145]. Further 

details on these applications can be found in [145]. Additionally, the LAP occurs frequently as sub 

problems in other combinatorial problems such as the quadratic assignment problem and travelling 

salesman problem [145]. 

In this thesis, the LAP was used to compute an optimal mapping of properties to feedback 

modalities. The cost function modeling the problem will integrate measures of feedback perception 

accuracy and resolution as well as visual load and subjective user preference metrics to for which 

the solution was optimized.  
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 METHODOLOGY 

This chapter describes the system developed for controlling the robot and providing feedback 

and the methodology used to generate the feedback solution using the linear assignment problem. 

The developed system includes robot control, feedback modalities and corresponding property-to-

feedback translation strategies and sensing. The methodology to generate the optimal mapping 

includes the selection of metrics, problem and cost function definition, methodology for weighting 

the cost metrics, and the algorithm used to generate the final solution. The final solution generated 

with data from the first set of experiments will be presented in Chapter 4 following the 

experimental results discussion.  

3.1 System 

This section details the overall architecture, robot control modalities, and feedback 

configurations of the system developed for this project.  

 Overall Architecture 

The overall architecture for the system robot control and user feedback system is 

summarized in Figure 3.1 below. The blue arrows represent information flowing into the system 

from the user, while the green arrows represent information flowing out of the system to the user 

as feedback.  

A Gen2 6DOF JACO arm (Kinova®) [18] was used without the manufacturer-provided 

joystick. Control inputs to guide the robot is provided through a Force Dimension® Omega 7 

haptic device [124] joystick and keyboard presses. Sensors were mounted on the robot gripper 

including a capacitance-based non-contact liquid sensor for liquid level (SEN0204 by DFRobot®) 
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and an infra-red thermal sensor for temperature (MLX90614 by Melexis®). Property information 

acquired from the robot end are provided through multiple feedback modalities including 

kinesthetic force feedback through the same haptic device, visual feedback through a 7” LCD 

monitor, vibration feedback through an Engineering Acoustics® tactor device [155], audio speech 

cues through the computer speakers, and thermal feedback through an Arduino-controlled Peltier 

device. Serial communication was established between all devices and integrated in a 

multithreaded console application on a Windows™ desktop computer. 

 

Figure 3.1: Overall interface architecture 

 

In this thesis, the research problems focused on the user interaction aspect of robot manipulator 

control. Therefore, control input modality and individual feedback configurations are discussed in 

more detail in the following subsections. 
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 JACO Robot Hybrid Control  

The hybrid control model implemented in this system was based on previous research as 

well as user feedback during testing prior to experiments. Following the results and tradeoffs 

discussed by Jiang et al. in [50] in a comparison of multiple input modalities including the haptic 

device 3D joystick, a hybrid approach integrating a haptic device joystick and keyboard inputs was 

implemented in this system. The haptic device served as the motion control input method to guide 

the robot while keyboard inputs were used for shifting between modes and to carry out other built 

in single-command motions. 

The input configuration included seven possible modes. Three modes shifted between X, 

Y, and Z axis translations while three shifted between rotational axes. Only one rotational mode, 

that is robot wrist rotation, was introduced to subjects and used in this experiment. The seventh 

mode was to open and close the gripper. While mode shifts were initiated through keyboard inputs, 

the translation was performed using the joystick. In all cases, the position of the joystick was 

mapped to the velocity of the robot translation allowing for easier and more precise control of both 

robot speed and positioning. For intuitive controllability, the translation axes were mapped to the 

same axes on the haptic device when viewed from the user’s perspective, as were the rotational 

degrees of freedom. For example, to move the robot end effector left or right (in the x axis), the 

user had to move the stylus of the haptic device left or right. To rotate the wrist to pour, the user 

had to rotate their own wrist (and the corresponding degree of freedom on the haptic device) to 

pour. Because the position was mapped to robot velocity, the user had to move the stylus in the 

desired direction and hold it in one place for the robot to continue moving the in the same direction 

at a constant velocity. If desired, the user could move the robot faster initially and then decelerate 

when approaching the target in the same motion of the stylus. The rotational axes were configured 

the same way, with angular velocity mapped to angular displacement on the haptic device. An 
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origin of +/- 0.01m in all directions was defined where no motion would occur. To open and close 

the gripper, the forward/backward (y axis) translation of the haptic device was used where pulling 

the stylus backwards mapped to closing the gripper (similar to closing a drawstring pouch). Some 

mapping included multiplication coefficients, fine-tuned through empirical testing to achieve 

enough resolution at a reasonable speed. 

The set of equations mapping the controller to the robot can thus be defined as: 

𝑥𝑟̇ = 1.2𝑥𝑗  (3.1) 

𝑦𝑟̇ = 1.2𝑦𝑗  (3.2) 

𝑧𝑟̇ = 1.2𝑧𝑗  (3.3) 

𝑤𝑟̇ = 𝑤𝑗  (3.4)  

𝑔 = 1000𝑦𝑗  (3.5) 

where x represents the left to right motion form the user’s perspective, y represents forward and 

backward and z represents up and down for both the robot and the haptic device, 𝑥𝑟̇, 𝑦𝑟̇, 𝑧𝑟̇ are the 

linear velocities (m/s) of the robot, 𝑥𝑗, 𝑦𝑗, 𝑧𝑗 are the positions (m) of the haptic device joystick, 𝑤𝑟̇ 

is the angular velocity (rad/s) of the robot joints, 𝑤𝑗 is the angular positions (rad) of corresponding 

joints of the joystick stylus (counterclockwise positive for both), and 𝑔 is the set of angular finger 

positions (0 at fully closed to 60 degrees at fully open) of the robot.  

Table 3.1 below summarized the control mappings between the input modalities and the 

robot used in the experiments. 
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Table 3.1:  Summary of robot control modality configurations 

Robot Motion Keyboard Haptic device joystick 

Move in X axis (left/right) X Move stylus in X (left/right) 

Move in Y axis (forward/backward) Y Move stylus in Y 

(forward/backward) 

Move in Z axis (up/down) Z Move stylus in Z (up/down) 

Rotate wrist P (Pour) Rotate wrist to rotate stylus 

Open/ close gripper G Push/ pull stylus 

Send robot to home position H - 

Emergency control release R - 

 

Built in keyboard press motions in the system included sending the robot to home position 

and severing the connection between the joystick and the robot for an emergency stop. Keyboard 

presses could also be used to toggle the feedback properties on and off by the user as an additional 

feature. However, this feature was not used by subjects in the experiments. 

 Feedback Devices and Configurations 

Five feedback modalities were selected as potential options for delivering feedback in this 

project. This section details modality-matched or substituted feedback configurations implemented 

based on work reviewed in section 2.4 and device and human limitations. Modalities that did not 

have previous work to demonstrate effectiveness of delivering a property or did not have a simple 

heuristic solution were not assigned to the properties in question. 

 



 

49 

3.1.3.1    Haptic Feedback  

Haptic force feedback was configured to provide the weight and liquid level properties in 

this system. Haptic to weight feedback was a direct mapping of modality-matched feedback. The 

true weight (N) of the object was provided as a downward (negative Z direction) force (N) on the 

Omega 7 haptic device stylus (Figure 3.2), felt as a weight bearing down on the operating hand. 

 

 

Figure 3.2: Downward force on stylus 

 

For the binary liquid level feedback, if liquid was detected in front of the sensor (i.e. if liquid was 

above the grasp level), a downward force of 2N was exerted on the device stylus, and if liquid was 

below level, no force was exerted. This configuration provided a simple yet effective mapping to 

learn and perceive. 

 3.1.3.2    Vibration Feedback  

The vibration modality was a substitution modality for all the properties selected for this 

problem. In all three cases, frequency was mapped linearly from the expected range of feedback 

to the maximum range afforded by the tactor device. 

 Fz 
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The tactor device [155] comprises C-2 tactors, considered the “gold standard” for vibrotactile 

research. The C-2 is a linear actuator with a moving magnet design. Its mechanical resonance is in 

the 200-300 Hz range, coinciding with the peak sensitivity of the Pacinian corpuscle at 250Hz 

[107]. For this system, two C2 tactors were placed on the right wrist of the subject (Figure 3.3).  

 

Figure 3.3: Tactor placement 

 

The C2 tactors on this device have a frequency range from 30 to 349 Hz which corresponds to a 

range of 319 frequencies. Expected ranges of weight and temperature were mapped to this full 

range to achieve maximum resolution. The mapping equation thus took the form: 

𝑓(𝑥) = 319
(𝑥−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
+ 30  (3.6) 

Where f(x) was the mapped frequency as a function of x, x was the weight or temperature being 

mapped, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 were the minimum and maximum of the expected weight or temperature 

ranges. For weight, the expected range was defined as between 0 and 10N, such that up to a 1kg 

mass object could be supported and the expected temperature range was set between 60° F to 150° 

F. If the range was exceeded, the maximum frequency vibration would be continued. A sinusoidal 

wave with the mapped frequency was the output feedback for vibration. 

For the binary liquid level property, a frequency of 300Hz indicated that liquid was detected, while 

if no liquid was detected, 0Hz (no feedback) was provided. 
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3.1.3.3    Thermal Feedback  

The thermal feedback modality in this system was implemented through a wrist-mounted 

Peltier device. The device was developed with two Peltier elements placed back-to-back. Each 

element served to heat or cool the wrist-side surface, and a TMP36 temperature sensor was placed 

on the wrist side for closed-loop control of the temperature. Two PID controllers were 

implemented for the heating and cooling functions such that the placement of the cooling element 

behind the heating element may be accounted for through the PID coefficients. A heat sink 

absorbed the opposite surface heat from the cooling element during cooling. The device was placed 

on the wrist (Figure 3.4) because of its sensitivity to temperature (e.g. we often use the wrist to 

test formula in feeding bottles or cooked liquids), proximity to the palm where a high concentration 

of thermal receptors are found, and practical positioning in the robot control task. 

 

Figure 3.4: Thermal feedback device 

 

The thermal feedback was only configured to provide direct modality-matched feedback of 

temperature. No conversions were made to map ranges. Similar to weight, the actual temperature 

was provided as input to this device.  
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3.1.3.4    Visual Feedback  

The visual feedback modality provided information through text and color displayed on a 

7” LCD monitor placed in front of the user (Figure 3.5). Feedback properties were categorized to 

provide text outputs of categories (e.g. ‘Hot’, ‘Very Hot’), and background color was used to 

differentiate between higher and lower values within categories.  

 

Figure 3.5: Visual display 

 

Seven categories were defined for temperature based on oral temperature perception of 

beverages. A ‘Neutral’ range was defined between 90-95F [127] in white (R,G,B=1,1,1). 

Temperatures higher than this (‘Warm’ 95° F-105° F, ‘Hot’ 105° F-115° F, ‘Very Hot’ >115° F) 

were progressively deeper red in color, and lower temperatures (‘Cool’ 80° F-90° F, ‘Cold’ 70° F-

80° F, ‘Very Cold’ <70° F) became progressively deeper blue in color. The set of equations 3.7 

defines the mapping of R,G,B values for warm temperatures while 3.8 represents the mapping for 

cool temperatures. 

𝑅 = 1, 𝐺 = 0.25 −
(𝑇)

(92.5)
, 𝐵 = 0.25 −

(𝑇)

(92.5)
 (3.7) 

𝑅 = 0.25 −
(𝑇)

(92.5)
, 𝐺 = 0.25 −

(𝑇)

(92.5)
  𝐵 = 1  (3.8) 

where T represents the temperature to be mapped. 
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Five categories were defined for weight, dividing the weight of water in the vessel to be used in 

experiments into ‘Less than one quarter full’(0g-187.5g), ‘One quarter to one half full’ (187.5g-

375g), ‘One half to three quarters full’(375g-562.5g), and ‘Three quarters to full’ (562.5g-750g). 

Background color changes for weight ranged from white at 0N to progressively greener. The set 

of equations 3.9 represents the R,G,B mapping for weight. 

𝑅 = 0.25 −
(𝑊)

(10)
, 𝐺 = 1  𝐵 = 0.25 −

(𝑊)

(10)
    (3.9) 

where W is the weight to be mapped. 

For the binary categories in liquid level, text was displayed as ‘Liquid is ABOVE level’ on a 

yellow background or ‘Liquid is BELOW level’ on a black background for eye-catching contrast. 

3.1.3.5    Audio Feedback  

Audio feedback was provided as speech cues describing the categories for each of the 

properties. The same categories as described above were implemented here. Speech files generated 

from a text to speech converter were used with equal playback speed, volume, and pitch across all 

modalities. The audio cues were provided through the speakers installed on the LCD monitor in 

close proximity to the user. 

3.2 Feedback Modality Assignment Problem  

The theoretical core of this research lies in the feedback modality assignment problem and 

the associated framework to generate an optimal solution based on a set of experimental data. 

Optimization approaches have been used previously combining perception or recognition accuracy 

and psycho-physiological measures for haptic image rendering [89] and gesture-based interaction 

studies [156]. In this thesis, we use the structure of the Linear Assignment Problem (LAP) 

(described in section 2.5), to find an effective mapping of each of the three identified properties to 
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one of five available feedback modalities with feedback perception accuracy and cognitive load 

metrics taken into account.  

  The overall solution framework followed to achieve this goal (Aim 01) is summarized in 

Figure 3.6 below. First, a set of metrics were identified to measure the factors of interest. Data 

corresponding to these metrics were then collected from a set of screening experiments, along with 

subjective ratings to define the weight of each metric in the cost computation. Results from these 

experiments were then used to filter out the relevant metrics based on significance, and the weights 

re-scaled to reflect the new filtered set of metrics. The means of those metrics were then input into 

the LAP, and the optimum mapping (as identified by this experiment) was generated as the final 

solution. A validation experiment was run subsequently (Aim 02) with three use cases to evaluate 

the effectiveness of the feedback interface when compared to no feedback. 

 

Figure 3.6: Solution framework. U, E, and V represent the set of properties, edges, and modalities 

respectively in the bi-partite graph. 
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The subsections below detail the methodology followed in each of the steps identified in 

the solution framework above. The selected metrics are detailed first in section 3.2.1 with brief 

description of their utility in the screening experiments. The screening experiments and results as 

well as the procedure for metric filtering are detailed further in Chapter 4. Section 3.2.2 introduces 

the assignment problem definition and is followed by definitions of the cost function, cost 

weighting (the procedure for which was conducted parallel to screening experiments), and the 

solution algorithm used to solve the LAP. 

 Metric Selection  

Several metrics were identified for which the feedback interface was to be optimized. 

These included feedback perception metrics, cognitive load metrics, and subjective preference 

metrics detailed further in the remainder of this section. 

3.2.1.1 Perception Accuracy and Change 

The purpose of a feedback interface is to provide information to the user. Increasing the 

content of the information content of presented cues has been identified as the key to increasing 

information transfer [157]. Thus, for the identified feedback, it would be desired that both the 

perception accuracy of the delivered feedback and sensitivity to changes be optimized. To that end, 

two metrics representative of feedback perception accuracy and response to change were included 

in the screening experiments. 

Given the categories (or levels) into which the range of one property was divided, 

perception accuracy was defined as the closeness of the perceived category to the actual category 

[158]. Sensitivity to change was defined as the ability to differentiate whether a change (increase 
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or decrease) has occurred and in which direction [126] [158]. This included changes within the 

same category division as well as changes across categories.  

Equations used to quantify these metrics in the screening experiments are provided in 

chapter 4. 

3.2.1.2 Attentional Load Metrics from the DRT 

Hit rate and mean reaction time measurements of the DRT has been used as an objective 

attentional load metric in driving and human-computer interaction tasks [94] [97] [100]. Hit rate 

refers to the number of stimuli responded to as a percentage of total number of stimuli presented 

within a trial. Mean reaction time is the average of the times elapsed between the stimuli and the 

response for the stimuli that were responded to within a trial.  

To capture the visual attentional load, we selected the remote DRT with a visual stimulus 

for the robot-assisted pouring task in this project. Since previous work with robotic manipulators 

was limited, a preliminary experiment was conducted (described under the preliminary work 

sections of Chapter 4 and 5) to demonstrate the utility of the DRT in capturing the visual attentional 

challenges of robot operation. 

3.2.1.3 Subjective Preference Rating  

Subjective feedback has been an integral method of assessing user acceptance and 

identifying additional requirements in assistive robot manipulator surveys [10] along with design 

processes for many human-centric products including user interfaces [159], consumer products 

[160] and in the apparel industries [161]. Subjective preference ratings can capture a number of 

factors that are subtle and/or difficult to quantify including perceptions of physical comfort, 

psychological comfort, and integrated sensory impressions [161]. Subjective preference ratings 
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may also capture effects of subjective workload which may reflect effects of resources such as 

memory [162] and task differences [91]. 

To capture a combined measure of these other factors that may affect the efficacy of a 

multimodal feedback interface, a subjective preference rating was introduced as a metric to inform 

the assignment cost. A multi-attribute preference weighting technique known as the Analytic 

Hierarchy Process (AHP) [163] [164] was used to determine subjective preference ratings. In this 

method, pairwise comparisons of attributes are used to make evaluate preferences over available 

alternatives when multiple conflicting attributes are available. This process was applied by 

collecting pairwise preference indications of the feedback modalities (e.g. Visual vs. Vibration, 

Audio vs. Visual, etc.) from the subject after each property set in the screening experiments. These 

ratings were then used to compute scores per modality by adding the total number of times a 

modality was selected from a pair and dividing by the maximum possible score (where the 

maximum score was 3). 

The metrics introduced in this section served to quantify the costs in the LAP cost matrix. 

As illustrated in Figure 3.6, these metrics were quantified through screening experiments and 

statistically significant metrics were filtered out as described in Chapter 4. The definition of the 

LAP, cost function, and solution algorithm are discussed in the next sections. 

 Modality Assignment Problem Definition 

Five possible sensory modalities (vibration, visual, haptic, audio speech cues, and thermal) 

were selected to convey three selected properties of interest in this study. Each property was 

rendered in different formats through each of the modalities as detailed in section 3.1. Under the 

constraint that only one modality can be used to represent one property, the mapping of properties 

to modalities was modeled as a linear assignment problem. A cost computed from the metrics 
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identified in the previous section will be assigned to each property-modality mapping. The 

optimum mapping combination of 30 possible combinations can thus be generated by finding the 

combination of mappings that yields the minimum total cost.  

In this problem, not all modalities were included as candidates for each property. Only 

modality renderings that have been demonstrated in previous work or renderings that had 

straightforward translations for the property were used. The remaining mappings were treated as 

initial conditions with costs set to infinity. Table 3.2 presents the cost matrix to be filled and 

identifies candidate modalities (white cells) for each property. 

Table 3.2: Cost matrix indicating candidate modalities. Black cells indicate maximum cost initial 

conditions. Each column i corresponds to a property and each column j corresponds to a modality. 

 

 

Thus, this assignment problem can be formally defined as follows:  

Given two sets of vertices, P representing a set of properties (size 3) and M representing a set of 

modalities (size 5) with a cost function C: P x M →Q, find a bijection function h:F→ M that 

minimizes the total cost. Thus, for the matrix presented in Table 3.2, find the minimum cost linear 

assignment is:  

 

 

min ∑ ∑ 𝐶𝑖𝑗𝑥𝑖𝑗𝑗∊𝑀𝑖∊𝑃    (3.10) 

where:  
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∑ 𝑥𝑖𝑗𝑗∊𝑀 = 1 for i∊P  (3.11) 

and 

∑ 𝑥𝑖𝑗𝑖∊𝑃 = 1 for j∊M (3.12) 

with 

𝑥𝑖𝑗 = {
1 if there is an assignment of i to j

0 otherwise
  (3.13) 

and the cost of no assignment (dark cells in Table 3.2) are set to infinity. 

 Cost Function and Weighting  

The objective cost function to compute the costs of each cell in the cost matrix was defined 

as a weighted sum of the metric measures identified in section 3.2.1 and generated through the 

screening experiments.  

Human subjects were recruited to perform the same task with feedback modality varied for 

each property. The selected metrics were evaluated as response variables. Thus, defining the set 

of metrics 𝑦  of size k as response variables from the screening experiments and a set of 

corresponding weights 𝑤 of size k to define the contribution of a given metric to the cost, the cost 

function was defined as: 

𝐶𝑖𝑗=∑ 𝑤𝑘𝑦𝑘𝑘   (3.14) 

where 𝑦 is the set of metric means normalized to between 0 and 1, that may include measures of 

perception accuracy and change, DRT load measures, and the subjective preference rating. The set 

of weights, 𝑤, were subjectively generated by the participants in the screening experiments and 

are detailed in the subsection below. 

3.2.3.1 User-generated Cost Weighting 
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The multi-attribute decision making technique known as the Analytic Hierarchy Process 

(AHP) [163] [164] discussed in section 3.2.1 was used to determine subjective metric weightings. 

To do this a hypothetical scenario was constructed where the robotic manipulator would be used 

to make and drink a cup of coffee or tea. Subjects were asked to provide a pairwise comparison 

rating of which attribute they perceived to be more important in this task. The metrics in question 

were presented as relevant to the task and the feedback properties (e.g. the initial temperature, 

weight, or level of liquid, the change in temperature, weight, or level of liquid, your attention on 

controlling the robot to perform the tasks, etc.; See Appendix C). These ratings were collected 

after the subject had trained on the robot such that they had a clear idea of the demands of 

manipulating the robot, but before the screening experiments and introduction to feedback 

modalities such that responses would not be biased by the idea of feedback availability. These 

ratings were then used to compute scores per metric by adding the total number of times a metric 

was selected from a pair. Final weights were generated by taking the mean scores and dividing by 

the sum of means such that total weights summed to 1. Thus, the weight computations for a set of 

metrics size k may be summarized as: 

𝑤𝑘 =
𝑚𝑒𝑎𝑛(𝑚𝑘)

∑ 𝑚𝑒𝑎𝑛(𝑚𝑘)𝑘
                   (3.15) 

where means were taken over the responses of 𝑠 subjects and: 

𝑚𝑘 = ∑ 𝑁   (3.16) 

with 

𝑁 = {
1 𝑖𝑓 𝑚𝑒𝑡𝑟𝑖𝑐 𝑤𝑎𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3.17) 

These weights were rescaled after metrics filtering step using the same formula (with k reduced to 

reflect the new set of metrics). 
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Using the problem definition, cost function definition, and weighting strategies discussed 

thus far, the LAP was solved to generate and optimal mapping. The solution algorithm used to 

solve the problem is discussed in the next section. 

 Solution Algorithm  

Because the sizes of the property and modality sets are different, an extension of the 

Hungarian Algorithm for a rectangular cost matrix [165] is used to solve this problem. To address 

this, columns of zero elements are added to the matrix to produce a square matrix. The sequence 

of steps to solve the problem with the resulting matrix is as follows: 

A preliminary procedure precedes the main algorithm. We begin by defining 𝑘 to be the 

minimum of number of rows and columns such that: 

𝑘 = min (𝑛, 𝑚)   (3.18) 

where 𝑛  and 𝑚  represent the number of rows and columns respectively. 

If 𝑛 > 𝑚, then for each column, subtract the smallest element in the column from every element in 

that column. Else, if 𝑚 > 𝑛, subtract the smallest element in each row from every item in that row. 

Once the procedure above is completed, the following steps should be followed to execute the 

main algorithm: 

1) Sweeping the resulting matrix from left to right and up to down, identify and mark zeros with a 

star (*) if no zero in its row or column has yet been marked. Repeat this procedure for all zeroes.  

2) Cover every column that contains a marked zero. If 𝑘  columns are covered, an optimal 

assignment exists among the marked zeroes and the algorithm stops. If not, the following steps 

should be followed.  
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3) Choose an uncovered zero and mark it with a prime (‘). If no zero is starred in its row, a sequence 

of changing between starred and primed zeroes described in step 4 should be repeated until all 

zeroes are covered before proceeding to step 5. 

 4) Define 𝑍0 as an uncovered primed zero, 𝑍1 as the starred zeros in the same column as 𝑍0, and 

𝑍2 as the primed zeroes in the same row as 𝑍1. Look for uncovered primed zeroes 𝑍0 until one 

with no corresponding 𝑍1 is found. In this manner, unmark every starred zero and star the primed 

zeroes. Delete all primes and uncovered lines. Return to step 2.  

5) Add the minimum uncovered element in the matrix to every covered row. Subtract the minimum 

uncovered element from every uncovered column. Return to step 3. 

This chapter detailed the system and solution framework used to solve the identified problem. The 

screening experiments that yielded the values for the cost function and validation experiments that 

evaluated the solution are detailed in subsequent chapters. 
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 SURVEY AND EXPERIMENTAL DESIGN 

This chapter describes the survey conducted to establish a basis for selecting properties, 

preliminary experiments, the screening experiments that yielded the results to be input into the 

cost function, and the validation experiments that were conducted to evaluate the efficacy of the 

generated solution. Section 4.1 describes the survey and preliminary DRT experiment. The 

screening experimental design including three use cases, the control treatment, the arbitrary 

mapping, and response variables are detailed in section 4.2. The experimental design for the 

validation experiment including experiment set-up and response variables is detailed in section 4.3.  

4.1 Preliminary Work 

 Survey 

To establish a preliminary basis for the selected properties as relevant feedback in pouring 

tasks, a survey was conducted to determine the pertinence of non-visual information for users of 

robotic manipulators. The survey was designed in the form of a thought experiment, and guided 

respondents through a task of pouring milk into and drinking a cup of coffee using an assistive 

robot manipulator without the aid of somatosensory feedback that is present during direct manual 

contact. Images of each stage of the task from the perspective of the user were provided to ensure 

visual access was retained. Figure 4.1 depicts three of the key stages presented (see Appendix A 

for full survey). 
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Figure 4.1: Images presented in survey to illustrate visual access to holding the server vessel 

before pouring (left), tilting (center), and holding the receiver vessel after pouring (right) from the 

perspective of a wheelchair user operating an assistive robotic manipulator mounted to the 

wheelchair. 

 

Responses were collected from 102 participants (median age between 35-50) from a survey 

distributed to target populations for assistive devices through the University of Pittsburgh Human 

Engineering Research Laboratories (HERL) database, the Rehabilitation Hospital of Indiana, and 

Easterseals Crossroads, a non-profit organization for disability services in Indiana, in addition to 

the general distribution through social media. 67 of the respondents were individuals with ADL-

impairing disabilities including spinal cord injury, multiple sclerosis, traumatic brain injury, and 

stroke. 59 respondents were users of assistive devices such as wheelchairs, prosthetic limbs, 

quadjoy mouse or mouth joystick, and reaching and grabbing tools. The full report of survey 

responses can be found in Appendix A. 

Questions were posed at each stage where awareness of one of the selected properties was 

expected to inform a decision. These included deciding to pour after picking up the milk (stage 1), 

deciding the initial tilt angle (stage 2), and deciding to drink after picking up the coffee cup (stage 

3) as illustrated in Figure 2.1. At each stage respondents were asked what they would do next for 

which all possible options (proceed with the task, throw the empty vessel, wait to cool before 

drinking, etc.) were provided including ‘I would need more information’ and ‘Other’ (to be 

specified). This question was followed by rating of the importance of each of the selected 
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properties for making the decision, once again with the option to specify other properties that may 

be useful. Next, the subjects were asked to specify whether a combination of properties would aid 

the decision and then to identify how they would proceed without the information, including any 

alternative strategies they may employ to obtain the necessary information. Results from the 

survey are presented in the next chapter. 

 Preliminary DRT Experiment 

Although frequently used for driving experiments and having been used previously in 

human-computer interaction, no previous work could be found that demonstrated the use of a DRT 

in robot manipulator operation tasks. Therefore, we conducted a preliminary experiment to 

establish its relevance as a measure for optimization during robot operation. This section 

summarizes the experiment and its results.  

The same experimental set-up detailed in Chapter 4 of this thesis and the robot control 

configuration detailed in section 3.1.2 was used for this experiment (Figure 4.2, left). The visual 

stimulus was a red LED as per the ISO standard [95] mounted on the bowl in the visual field of 

operation, to which the user responded with a hand-held button. The visual stimuli were presented 

at the recommended randomized intervals of 3-5 seconds. Nine subjects were recruited for this 

experiment. 

A within-subjects design was used, and the DRT hit rate and mean reaction time was 

recorded for each of three tasks performed by the subjects. The first task was the baseline task in 

which subjects only responded to the DRT stimulus without a robot operation task. Each subject 

performed the task for 2 minutes, responding to ~20 stimuli. In the second task, subjects completed 

a robot-assisted pouring task into a wide-rimmed bowl (Figure 4.2, center). This task involved 

grasping the vessel, moving the end effector towards the bowl, positioning, lowering, tilting to 
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pour, straightening, and releasing the grip. To demonstrate a case of visual attentional demand in 

robot-assisted pouring tasks, a third depth perception task was included in the experiment. The 

subjects performed a pouring task into a narrower cup (Figure 4.2, right). The narrower receiving 

vessel was designed to pose a visual positioning challenge related to depth perception when 

pouring. It was hypothesized to show greater visual demand than the wide-rimmed bowl and result 

in poorer DRT performance. Tasks 01 and 02 included the additional task of responding to the 

DRT simultaneously, and the experiment was preceded by robot training where participants 

familiarized themselves with control modes and by two practice trials each of tasks 01 and 02. 

 

Figure 4.2: Experimental set-up for robot-assisted pouring task 01 (left), task 02 (center), and task 03 

(right). 

4.2 Screening Experiment Design 

In this set of experiments, a within-subjects design was employed where each subject tested 

all the individual property-modality assignments with the same task. For the properties selected in 

this application, a robot-assisted pouring task was chosen. Experiments were divided into three 

sets representing each property (temperature, weight, liquid level) completed on separate days, 

each of which contained four modality assignments. To compensate for possible learning effects 

tied to participants becoming more comfortable with controlling the robot, the three sets were 

ordered from the easiest to the hardest property set (liquid level, weight, temperature) and within 
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each set from easiest to hardest feedback rendering (visual, audio, vibration, haptic/thermal). Each 

subject performed three trials of the pouring task for each assignment pair, for four modalities 

assigned to each of the three properties, totaling 3 × 4 × 3 = 36 trials per subject. Nine subjects 

(4 male, 5 female) were recruited for this experiment, yielding a data set with a total of 324 trials 

with n=27 trials per each individual assignment. 

  Experimental Set-up and Execution 

This section describes the experimental set-up, task performed by a subject in each trial, 

and training and post-experimental procedures preceding each set. 

Set-up 

The experimental set-up for this experiment was similar to the preliminary DRT 

experiment set-up described above, but with inclusion of the different feedback modalities. The 

system with the JACO robot, haptic device, sensing, and feedback modalities as described in 

section 3.1 was setup for a robot-assisted pouring task as illustrated in Figure 4.3 below. Black 

26oz plastic tumblers (6.62 in. tall, 3.5 in. diameter opening) were used as the sample vessels from 

which to pour, while a large bowl was used as the receiving vessel. The robot was mounted in a 

fixed position on the table and the bowl position remained fixed. The robot end effector was 

returned to the same ‘home’ position before each trial. A control console placed between the 

subject and the table supported the haptic device, keyboard for mode shifts, and LCD display with 

speaker. The vibrating tactor elements were placed on the subject’s right wrist as illustrated in the 

figure, and the thermal feedback device was worn on the left wrist. The DRT stimulus was mounted 

on the bowl similar to the preliminary experiment, with the button held in the participant’s left 

hand. 
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Figure 4.3: The experimental set-up with robot, joystick-haptic device, feedback devices, and pouring 

task apparatus. Tumbler used as sample vessels is also pictured in robot grip. 

 

Task 

Figure 4.3 also illustrates the pouring task carried out by participants in each trial. In each 

trial, the subject was required to grasp the vessel handed to the robot while at home position, move 

the robot end effector towards the receiving vessel, lower the end effector, and tilt the robot wrist 

to pour out water. The wrist was then straightened and the grip on the vessel released (vessel 

received by the experimenter). During each trial, the subject also responded to the DRT stimulus 

(rendered in the same manner as in the preliminary experiment to ISO standards) which was 

initiated prior to grasping and ended after the vessel was released.  

During each trial, the subject was also required to assess feedback (e.g. temperature is in 

‘cold’ category or liquid is above level) and change (i.e. property is higher than, lower than, or the 

same as the previous trial) as perceived through the relevant modality. The feedback perception 

assessments were provided three times when asked by the experimenter at three different stages 

(during transfer towards the receiving vessel, lowering, and initial tilting) to improve the feedback 
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modality effect on the Detection Response Task. Change assessment was provided once at the 

beginning of the trial since it was a comparison to the previous trial.  

These steps were followed across all trials by all participants such that the task attributes 

and length remained consistent independent of the feedback modality and property variations. This 

trial was repeated across all modalities three times, and after each 12 trial set, the participant 

provided a pairwise comparison rating of subjective preference of modalities for that particular 

property (See section 3.2 and 4.1.2 for further details and Appendix C for comparison table 

provided to subjects).  

Samples 

Water was used as the liquid contained in the pouring vessel across all the trials. The 

property variations of water within each set was randomized while holding the remaining 

properties constant. For example, in the temperature set, the temperature category of the sample in 

each trial was selected randomly (of all possible categories) while the amount of water was held 

constant at half full. For constant temperature trials, room temperature water was used.  

Training 

Prior to the full experiment, each subject followed the same training procedure to become 

familiarized with the robot control. Once the control instructions were explained, subjects had the 

opportunity to try moving the robot in each degree of freedom until they felt comfortable with the 

control aspects. They were then required to perform three dummy trials with the pouring task (but 

with no feedback or DRT), two with empty vessels and one with a full vessel.  

Prior to each assignment set of three trials, subjects also received training on the feedback 

modality. In this training procedure, the subject was walked through the feedback categories as 

rendered by the given modality in ascending and descending order twice with category borders 
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repeated twice (e.g. ‘warm’, ‘warm’, ‘hot’, again-‘warm’, ‘hot’-, ’hot’, ‘hot’ etc.) by equal 

increments and then given ten random renderings to assess. Up to three additional random 

renderings were provided for subjects who opted for it. The feedback training preceded each 

individual feedback assignment set. 

 Response Variables  

Metrics identified to be optimized in section 3.2.1 were the response variables of interest 

in in this set of experiments. These included feedback perception metrics, cognitive load metrics, 

and subjective preference metrics as detailed in section 3.2.1.  

Perception accuracy  

Perception accuracy was intended to quantify the closeness of the perceived stimulus to the 

actual stimulus. Thus, in the screening experiments, it was defined as: 

𝐴𝑐𝑐 = 1 −
|𝐶𝑎−𝐶𝑝|

𝑛
                   (4.1) 

where 𝐶𝑎 is the actual category of stimulus, 𝐶𝑝 is the perceived category of stimulus, and 𝑛 is the 

number of possible categories for the property. The perceived category was the first feedback 

assessment provided by subjects during each trial.  

Change response 

To gain a measure of sensitivity to change in the screening experiments, responses were 

recorded of whether the perceived feedback was higher than, lower, than, or the same as the 

previous trial. If the response was correct (i.e. matched the actual), a score of 1 was given, and if 

incorrect, a score of 0 was given.  

DRT hit rate and reaction time 
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The DRT was used to obtain a measure of attentional load as described in the preliminary 

experiment detailed in Chapter 3. The same set-up was used with the feedback modalities added 

to the task and hits and reaction times to hits per trial were captured. Hit rate and mean reaction 

times (RT) were computed as follows: 

𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠
                   (4.2) 

 

𝑀𝑒𝑎𝑛 𝑅𝑇 =
∑𝑅𝑇 𝑓𝑜𝑟 𝐻𝑖𝑡𝑠 𝑜𝑛𝑙𝑦

𝑁𝑜.𝑜𝑓 𝐻𝑖𝑡𝑠
                   (4.3) 

where Hits indicate the number of times a stimulus was responded to and Misses indicate the 

number of times a stimulus was missed. Reaction times were normalized between 0 and 1 after 

data collection for the purpose of computing costs in the cost function. 

Subjective preference score 

The subjective preference scores were computed using the analytic hierarchy process 

described in the previous chapter. After each set in the screening experiment (e.g. after all trials 

for all modalities in the temperature set) subjects were required to complete a pairwise preference 

comparison of all possible modality pairs (Appendix C) totaling six comparisons per property. One 

modality could be selected a maximum of three times. Preference scores for each modality were 

thus computed as follows: 

𝑃𝑟𝑒𝑓. 𝑆𝑐𝑜𝑟𝑒 =
∑𝑀

3
                   (4.4) 

where  

𝑀 = {
1 𝑖𝑓 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑤𝑎𝑠 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (4.5) 
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4.3 Validation Experiment Design 

The primary objective of the validation experiments was to determine whether the generated 

mapping provided feedback in an effective manner. To address this, the solution feedback 

treatment was assessed against a control treatment of no feedback. To further evaluate whether the 

generated solution was better than another solution, it was assessed against a third treatment of a 

randomly mapped feedback solution. Three separate use cases targeting different properties were 

defined to test each of the treatments. 

A within-subjects design was used where each subject tested each treatment with each use 

case. The same set-up and robot-assisted pouring task used in the screening experiments was 

adapted for these experiments. Instead of assessing perceived feedback categories, in this 

experiment participants were tasked with making decisions relevant to the use cases. These 

decision tasks were informed by the feedback provided, and in the control treatment, inferred using 

alternative exploratory strategies detailed further below. Decision success, response time, and 

subjective mental demand ratings were collected as response variables. The control treatment was 

tested first to eliminate biases that may arise from knowing that feedback could be available. 

Each subject performed two trials of the pouring task per treatment for each use case. Twelve 

subjects (6 female, 6 male) were recruited to test the control vs solution, totaling (2x12) 24 trials 

per use case per treatment, (24x3) 72 trials total per treatment, and 144 total trials for both 

treatments. Seven subjects (4 male, 3 female) tested all three treatments, yielding (2x7) 14 trials 

per use case per treatment, (14x3) 42 trials total per treatment, and a total of 126 trials for all three 

treatments. 

Samples 

Black plastic 26oz tumblers were used in this experiment. Unlike in the previous 

experiment, in these experiments samples were enclosed containers with black coffee lids covering 
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the top ( Figure 4.4). Water was used as the liquid contained in the pouring vessel across all the 

trials. The specific samples used in each use case are described in each case below.  

 

Figure 4.4: The sample vessel (26oz, 6.62in. x 3.5in.) 

 

Training 

The same training procedures used in the previous experiment were followed prior to the 

feedback treatments in these experiments. Training was provided separately for each individual 

property. Additionally, during the robot training, participants also completed practice trials of the 

motions for the alternative strategies in the control experiment.  

Arbitrary Mapping 

The mapping used in the third treatment in this experiment was selected randomly. This 

solution mapped liquid level to the visual display, weight to the haptic device/joystick, and 

temperature to the vibration modality. 

The next subsection describes the tasks in detail for each use case, how success was defined, 

and the alternative strategies used in the control experiment. 
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 Use Cases and Control Alternatives 

Three distinct decision tasks were defined as use cases, each expected to leverage one or 

more of the properties provided as feedback. Conditions were defined to mark success or failure 

of the decision, and participants were made aware of those defining conditions. All three feedback 

modalities were simultaneously activated for the duration of each trial. For each of these cases, an 

alternative strategy to obtain the necessary information in the absence of feedback was identified 

for the control treatment and are described at the end of this section. 

Case 01: Temperature Decision Task 

The first use case was a temperature decision task. For each trial in the experiment, subjects 

were tasked with making the decision to pour based on the perceived temperature. If the sample 

was in the desired ‘Hot’ range (105° F-115° F), the decision should be to continue with the pouring 

task. If the sample was above this range, subjects should wait till the sample reached the correct 

range and then decide to pour. Success (1) and failure (0) was recorded based on the decision. The 

decision was marked as a failure if: 

The sample was at the desired temperature, but the participant chose to wait 

• The sample was too hot but, the participant chose to continue 

• The participant did not wait long enough for the temperature to reduce to the desired 

range 

• The participant waited too long and the temperature fell below the desired range 

The temperature of the water was measured at the end of the trials where participants waited for 

the temperature to reduce to identify whether the wait time was long enough. Participants were 

instructed to inform their decision to wait or pour as it was made, and wait times were recorded to 
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be subtracted from the total task time to yield response times that were comparable (see response 

variables). At the end of the trial, a subjective mental demand rating was provided on a 0-100 scale. 

Two fixed sample levels were defined for this experiment. The first was at110° F (the 

desired) and the second was at 145° F (too hot). The sample type was selected randomly with 

replacement for each trial so that the second trial could not be guessed based on the first trial. 

Case 02: Empty Vessel Identification 

The second use case required the participant to identify whether the vessel was empty or not 

empty. For each trial in the experiment, subjects were tasked with identifying whether the vessel 

was empty or not. Success (1) and failure (0) was recorded based on the decision. The decision 

was marked as a failure if: 

• The sample was empty, but the participant identified it as not empty 

• The sample was note empty, but the participant identified it to be empty 

Participants were instructed to inform of their decision as it was made, and to keep the task time 

at a comparable length to when not empty, they were instructed to continue with the pouring 

motion even if the vessel was perceived to be empty. At the end of the trial, a subjective mental 

demand rating was provided on a 0-100 scale. 

Two fixed sample levels were defined for this experiment. The first was an empty sample the 

second was a half full sample. The sample type was selected randomly with replacement for each 

trial so that the second trial could not be guessed based on the first trial. 

 

Case 03: Tilt Angle Estimation 

In the third use case the participant was tasked with estimating the angle of tilt to bring the 

top of the liquid stream to a desired region in the vessel. Prior to the experiment, the subjects were 
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shown the marked target range in the vessel (Figure 4.4, left) which covered an area of 0.75 inches 

below the rim of the cup without spilling.  

For each trial in the experiment, subjects were tasked with tilting the vessel to an estimated 

angle to bring the meniscus of the liquid to the target range based on the perceived amount of 

liquid in the vessel. The decision was marked as a failure (0) if: 

• The liquid spilled out of the opening in the coffee lid 

• The liquid was below the level of the targeted range 

For this use case, a third middle level was introduced because of the occurrence of a special case. 

If the liquid did not spill out of the opening, but spilled when the lid was removed for assessment, 

the trial was marked with a 0.5. Outside of this, if the liquid was within the target range, the trial 

was marked a success (1). A successful tilt is shown in below (Figure 4.5, right). 

  

Figure 4.5: Target tilt marking (left) and successful tilt (right) 

 

Participants were instructed to release the robot controller using the ‘release’ command (see 

Chapter 3) to hold the position stationary once their decision was made. The lid was removed, and 

the liquid meniscus was observed to mark the trial as a success or failure. At the end of the trial, a 

subjective mental demand rating was provided on a 0-100 scale. 
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Two fixed sample levels were defined for this experiment. The first was a quarter full 

sample the second was a three quarters full sample. The sample type was selected randomly with 

replacement for each trial so that the second trial could not be guessed based on the first trial. 

Alternative Strategies 

In the control treatment, since feedback was not available to make the relevant decisions, 

alternative strategies were identified for each use case. These strategies were informed by 

responses to the survey discussed in section 4.1. The alternative strategies used in each of the use 

cases are summarized in Table 4.1 and illustrated in Figure 4.6 below.  

Table 4.1: Alternative strategies for control treatment 

Case Alternative Strategy 

01: Temperature 

Decision Task 

Transfer the vessel towards themselves and touch the 

outer surface to determine temperature 

02: Empty Vessel 

Detection Task 

Tap the vessel on the table surface to perceive fill level 

from the hollowness of sound 

03: Tilt Angle 

Estimation 

Tap the vessel on the table surface to perceive fill level 

from the hollowness of sound 
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Figure 4.6: Alternative strategies: touch (left) and tap (right) 

 

Prior to the trials for each case in the control treatments, the participants were familiarized with 

how the samples presented in these alternative strategies in the following manner: 

Case 01 (Temperature): Prior to the experiment, subjects were given a sample heated to 110° F to 

hold. They were told that this was the desired temperature in the temperature decision task that 

followed. A sample heated to 145° F was also given to hold, and subjects were told that this was 

an example of a hotter sample for their reference. 

Case 02 (Empty vessel): Prior to the experiment, an empty vessel and a half full vessel were tapped 

on the table to demonstrate the difference between the tapping sounds. The empty vessel sounded 

hollower and consequently higher in pitch.  

Case 03 (Tilt angle): Prior to the experiment, vessels representing the two types of samples were 

tapped on the table to demonstrate the difference between the tapping sounds. The less filled vessel 

sounded hollower and consequently higher in pitch. 

All participants used the same alternative strategies to minimize effects from strategy variations in 

the results. 

 Response Variables 

Three response variables were selected for study during this experiment. Task success was 

marked between 0-1 following the conditions described in each of the use cases above. Thus, 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = {
0            𝑖𝑓 𝑎 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑚𝑒𝑡

0.5     𝑖𝑓 𝑎𝑛 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑠 𝑚𝑒𝑡
1                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4.6) 
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Because the alternative strategies resulted in tasks of varying lengths, the DRT was not 

used to quantify load in this experiment. Instead, a subjective mental demand rating on a 0-100 

scale (presented as a number line; see Appendix C) was collected at the end of each trial. This was 

supplemented by the response time variable which, in addition to capturing additional load 

imposed by alternative strategies and perception through more complex modalities, also represents 

a convenience measure for real life situations. Configurations that significantly reduce the time 

investment into performing a robot-assisted task can lead to improved task efficiency and 

improved usability. 

Response time captured the time taken to make the decision and complete the pouring task. 

For the temperature trials where some trials were compounded by a wait time, response time was 

computed as: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒 − 𝑊𝑎𝑖𝑡 𝑡𝑖𝑚𝑒  (4.7) 

One-way ANOVA was performed to analyze results using a linear mixed model that factored in 

the treatment and sample as main effects and the subject as a random effect. 
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 RESULTS AND DISCUSSION 

This chapter details the results of the survey and experiments described in the previous chapter. 

The results of the survey and preliminary DRT experiment are presented in section 5.1. Section 

5.2 presents the results of the screening experiment and discusses their implications. Section 5.3 

describes the final cost function and minimum cost assignment solution resulting from these 

experiments. Section 5.4 presents the results of the validation experiment and discusses their 

implications.  

5.1 Results from Preliminary Work 

 Survey Results 

The results of this survey served to establish an initial basis for the selection of situation 

enhancing properties in this project. Further, the alternative strategies identified by respondents 

were also used in the control case of no feedback for the evaluation experiment set. As elaborated 

in the previous chapter, the survey guided respondents through a task of pouring milk into and 

drinking a cup of coffee using an assistive robot manipulator. Questions were posed at three key 

stages: deciding to pour after picking up the milk (stage 1), deciding the initial tilt angle (stage 2), 

and deciding to drink after picking up the coffee cup (stage 3). 

5.1.1.1 Results 

As observed in Figure 5.1, 58% responded that more information would be needed at stage 

(1), 54% at stage (2), and 51% at stage (3). The remaining responses were distributed over the 

remaining response options in each stage, the highest of which involved 33% opting to proceed 

with the task in stages (1) and (3) and 33% selecting to tilt a little in stage (2).  
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Mean ratings for the selected properties on a rating scale of 0-5 (Figure 5.2) were as follows: 

3.63 (weight), 3.84 (liquid level), 3.33 (temperature) in stage (1), 3.88 (weight), 4.40 (liquid level), 

2.87 (temperature) in stage (2), and 3.02 (weight), 4.59 (liquid level), 4.28 (temperature) in stage 

(3). Only a small percentage (<10%) of respondents opted ‘Other’ for this question. 

When asked how they would proceed without the feedback, proceeding with the task to the 

best of their ability was indicated by 66% in stage (1), 74% in stage (2), and 64% in stage (3) 

(Figure 5.3).  

Alternative strategies were identified by a number of participants, mainly involving 

exploratory and testing procedures such as shaking or swirling the vessel, tipping slowly to try and 

gain visual access, bringing the cup to the lips or taking small sips to assess temperature, or simply 

leaving it for a while to cool. 
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Figure 5.1: Responses to ‘what would you do next?’ in stages (1) (top), (2) (center), and (3) (bottom) 
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Figure 5.2: Mean importance ratings for properties in stages (1) (top), (2) (center), and (3) (bottom) 
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Figure 5.3: Responses to 'how would you proceed without feedback?' in stages (1) (top), (2) (center, 

and (3) (bottom) 
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  Discussion 

The clear majority indicating that more information was necessary in all stages 

demonstrated that there was a lack of information to inform these decisions that would have been 

made with ease in a direct interaction setting (Figure 5.1). This lack of information is evident even 

with visual access to the scene and before respondents are introduced to the possibility of sensory 

feedback. This observation solidifies the importance of sensory feedback for decision making in 

robot control tasks in addition to demonstrating the relevance of the feedback properties selected 

for this study. The results in Figure 5.2 support the selection of these properties as critical to 

situation awareness. Weight and liquid level take prominence in stages (1) and (2) (assessing 

whether there is liquid in the vessel prior to pouring and estimating tilt angle) and temperature in 

stage (3) (deciding whether to drink) as expected. All three properties may have been deemed 

important at each stage beyond the specific decision that was targeted, eliciting ratings better than 

50% for all three properties in each stage. Additionally, weight and liquid level were identified as 

a desired combination in stages (1) and (2) by a majority of respondents while temperature and 

liquid level were identified as a desired combination is stage (3). This indicates that the congruence 

of these two properties were perceived by respondents to be helpful together in making the relevant 

decisions. Responses to how respondents may proceed without feedback illustrated in Figure 5.3 

suggest that without feedback, users may choose to either continue with the task at the expense of 

time and/or at risk of safety, or spend time maneuvering the robot to perform heuristic tests. This 

once again underscores the utility of multisensory feedback in improving user experience. 

 Results from Preliminary DRT Experiment 

This experiment demonstrated the relevance of cognitive attention load in robot-assisted 

pouring tasks and established the utility of the DRT as an effective measure of visual demand in 



 

86 

robot operation tasks. A similar set-up and methodology to this experiment was followed in the 

incorporation of the DRT as in the screening experiments. 

5.1.2.1 Results 

The mean DRT hit rates and mean reaction times produced in each task are illustrated in 

Figure 5.4 below. One-way ANOVA (α=0.05) performed on the data (with subject as a random 

effect) revealed highly significant differences for both hit rate (F=21.38, p<0.0001) and reaction 

time (F=14.55, p<0.0001). Post-hoc Tukey tests identified the significant differences in hit rate to 

be between the bowl vs cup and cup vs baseline at p<0.05, while the difference observed between 

baseline and bowl (Figure 5.4) were found to be insignificant. Post-hoc Tukey tests performed on 

reaction times for the hits found a significant difference between the robot manipulation tasks and 

the baseline at p<0.05 while differences between the two depth perception tasks were found to be 

insignificant. However, it must be noted that one data point was treated as missing in the cup set 

because one subject had zero hits during their cup trial (and reaction times are only computed for 

hits).  

   

Figure 5.4: Mean hit rate (left) and mean reaction time (right) for each task. Error bars represent standard 

error. Decreasing hit rate and increasing reaction times point to increasing load across tasks. * indicates 

significantly different pairs (p<0.05). 
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 Discussion 

The combined trends of increasing reaction time with decreasing hit rate observed in these 

results indicate increasing load. The similarity of the trends across the metrics establishes this 

result without contradiction. This supports the expectation of increased load (depicted by 

increasing reaction times and decreasing hit rates) for the robot manipulation tasks relative to the 

baseline, as well as for the more visually challenging manipulation task (Cup) between the two 

robot tasks. Overall, given the large difference in hit rate and reaction time, it can be concluded 

that the robot manipulation tasks required more cognitive attentional resources compared to the 

baseline, and that this requirement increased with increasing visual challenges in the manipulation 

task. Further, the differences in hit rate between the bowl vs cup and cup vs baseline indicated 

increased visual demand when the target vessel was narrowed. These results demonstrated that the 

DRT was successful in capturing the relevant demands of robot manipulation tasks, and therefore 

supported the selection of DRT cognitive load measures as a cost metric for the interface 

assignment problem. 

5.2 Screening Experiment Results 

This section discusses the results of each response variable for the different properties and 

modalities. Means of responses and One-way ANOVA results (α=0.05) are presented for each 

response variable separately and interpretations and implications are discussed in this section. The 

experiments, results, and procedures detailed in this section led to a final feedback property to 

modality assignment combination solution as solved for using the linear assignment problem 

(section 5.3). The solution was then evaluated in a set of validation experiments detailed in section 

5.4 of this thesis. 
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 Perception Accuracy 

    

 

Figure 5.5: Means of perception accuracy for each property and modality. Error bars represent standard 

error. * indicates modalities significantly different from visual display (p<0.05). 

 

One-way ANOVA results for perception accuracy show significant differences between 

modalities for all three properties with F=4.52, p=0.0051 for liquid level, F=8.46, p= 4.427e(-05) 

for weight, and F =17.32, p=3.389e(-09) for temperature. The significant results for perception 

accuracy confirm that it is an important and relevant metric to be included in the cost function for 

identifying an appropriate mapping. 
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  Change Response 

  

 

Figure 5.6: Means of change response accuracy for each property and modality. Error bars represent 

standard error. * indicates modalities significantly different from visual display (p<0.05). 

 

Despite the differences in means observed on Figure 5.6, the ANOVA results for change 

response accuracy yielded F=0.69, p=0.5632 for liquid level, F=1.89, p= 0.1397 for weight, and 

F =1.4, p=0.2512 for temperature. The insignificance of results for this metric indicates that it 

may not be a critical metric to be included in the cost function. 
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 DRT Hit Rate and Reaction Time 

 

 

 

Figure 5.7: Means of DRT hit rate (left) and reaction time (right) for each property and modality. Error 

bars represent standard error. * indicates modalities significantly different from visual display (p<0.05). 

 

For the hit rate means observed in the left graphs in Figure 5.7, the ANOVA results found 

F=2.01, p=0.1166 for liquid level, F=4.47, p= 0.0054 for weight, and F =3.0, p=0.0338 for 

temperature. While liquid level was found to be insignificant, the results for weight and 

temperature categories are observed to be significant for the DRT hit rate. Since liquid level is the 

* 
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simplest of the properties, and the more complex properties were significant, we can interpret these 

results to indicate that DRT hit rate is a valid inclusion in the cost function for optimization. 

Although differences in means are observed on Figure 5.7, the ANOVA results for DRT 

reaction time produced F=0.12, p=0.9486 for liquid level, F=1.8, p= 0.1509 for weight, and F 

=1.22, p=0.2704 for temperature. The insignificance of results for this metric indicates that it may 

not be a critical metric to be included in the cost function. 

 Subjective Preference Score 

  

 

Figure 5.8: Means of subjective preference for each property and modality. Error bars represent standard 

error. * indicates modalities significantly different from visual display (p<0.05). 

 

ANOVA results for subjective preference comparisons (Figure 5.8) were found to be 

highly significant with F=21.05, p=9.861e(-11) for liquid level, F=19.75, p= 3.289e(-10) for 

weight, and F =92.26, p=3.439e(-29) for temperature. The significance of results confirms that it 
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is an important and relevant metric to be included in the cost function for identifying the minimum 

cost assignment. 

 Discussion 

From the results across all metrics in the previous sections, we observed that perception 

accuracy, DRT hit rate, and subjective preference yielded significant differences between two or 

more modalities, while change response accuracy and DRT reaction time differences were not 

found to be significant. For the purposes of our optimization cost function, we divided our 

approach into two parallel paths from this point forward: we computed cost weights and matrices 

and finally generated solutions with (1) only the significant metrics and with (2) all the metrics. In 

the remainder of this section, we will discuss the results obtained from each metric separately. 

Perception Accuracy 

From Figure 5.5 it can be observed that the visual and audio modalities provided the best 

perception accuracy consistently across all properties while vibration (with the exception of liquid 

level where the two levels are perceived with 100% accuracy), haptic, and thermal modalities were 

less effective. This is not surprising as humans tend to favor visual and audio channels as general 

means for communication and learning [66]. For literate individuals, text, color, and speech cues 

are simple to learn and interpret, and can provide clear labels and representations of distinctions 

needed to be made. Information processed through mechanoreceptors such as vibration and haptic 

perception, on the other hand, do not provide the same resolution and are not as intuitive, especially 

when used as a substituted modality. Thermal perception is even lower in resolution due to the 

relatively sparse spread of thermoreceptors in the skin and is affected by the participant’s basal 

body temperature which can have an effect on the heat transfer rate and thus the perception of 

thermal cues [126]. Further, since thermal perception responds primarily to heat transfer rather 
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than temperature (e.g. a room temperature table may feel cold to a warm hand and warm to a cold 

hand), perception is affected by initial skin temperature and the rate of change of temperature at 

the time of each trial. However, it should be noted that all modalities yielded over 80% mean 

accuracy, supporting the choice of selected modalities and corresponding feedback rendering 

configurations (as discussed in Chapter 3.1) across the three properties despite the relative 

drawbacks of some of them.  

Another trend to note is the decrease in significance between liquid level and the remaining 

two properties. This trend is observed across most of the metrics here and can be explained by the 

simpler binary distinction to be made for the liquid level detection compared to the more involved 

multi-level distinctions to be drawn in the other two properties. Defining properties and category 

distinctions that would best suit the target tasks can therefore be identified as an important aspect 

when using this method to develop a multimodal feedback interface. 

Change Response 

In Figure 5.6 we observe that where the haptic and vibration modalities provide better 

perception of change, especially relative to the audio feedback, and in the case of weight, also 

visual feedback. Since audio speech cues did not provide a method to draw distinctions within 

categories compared to the linearly scaled vibration and haptic feedback, this result captures when 

samples provided were in the same category in consecutive trials. Because this is a relatively low 

occurrence for randomized samples, it may be necessary to increase the number of trials or to 

perform an experiment with fixed samples to observe this trade-off with better significance. 

However, the low occurrence with randomization can be taken to represent the frequency of 

occurrence in real-life situations. Therefore, the lack of significance can be treated as capturing 

the importance of this metric.  
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Additionally, the same decreasing significance trend between liquid level and the 

remaining two properties is observed as in the previous section and can be explained again by the 

property level differences. 

DRT Measures 

Looking at Figure 5.7, the DRT results show that hit rate was lower for the visual modality 

compared to audio across all properties with higher corresponding reaction times, as well as 

compared to vibration and haptic in liquid level and weight indicating higher attentional load. In 

temperature, the combination of lowest hit rate and highest reaction time for the thermal feedback 

indicated it to be the highest load modality. Overall, audio feedback is seen to impose the lowest 

load for the robot-assisted pouring task. This aligns with the expected visual attentional load trade-

off despite easier perception in the visual modality. Further, its better performance relative to the 

tactile, haptic, and thermal modalities may have been due to kinesthetic involvement in controlling 

the joystick. In the case of the haptic feedback, which was rendered through the joystick, there 

may have been an added distraction to the control aspect rather than the visual attention aspect that 

may have been captured in these results. This would also be a relevant factor to be incorporated 

for a robot-assisted task with given control and input modalities. 

While the significances of the DRT hit rate and mean reaction times are different, it should 

be noted that the reaction time is computed only from hits while hit rate is a measure relative to 

the total of hits and misses. Improved significances may be observed for reaction time with a higher 

number of subjects. Despite this lack of significance, it is important to observe that the hit rate load 

increases are corroborated by the reaction time results without contradictions (i.e. lower hit rate 

and lower reaction time together) and can therefore be safely relied on to represent cognitive load. 
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Additionally, once again the lower significance of liquid level relative to the remaining two 

properties is observed as in previous metrics. Since liquid level is only a binary property, lower 

cognitive demands are likely required. 

Subjective Preference 

The subjective preference score metric is by far the most distinct measure between 

modalities. While the preference scores indicate that the visual modality was preferred consistently 

across all modalities, it is interesting to observe that for the remaining modalities, preferences vary 

depending on the property. The visual modality preference can be explained by our natural affinity 

for processing visual information, the ease of understanding text and color representations, as well 

as attributes such as low memory and effort requirements to retain the different category levels. 

These may have been factored into the subjective preference indications by participants. While the 

audio feedback can have similar advantages, one repeated comment during experiments was that 

the repetitive vocalization of the category was irritating. Thus, for liquid level it may have been 

viewed as an unnecessary inconvenience compared to the visual and vibration modalities while 

for the other properties the ease of understanding exceeded its irritation. Between the vibration and 

haptic properties, in liquid level the higher preference for vibration may indicate that the control 

distraction imposed by the haptic device was less desirable, while in weight, the direct modality-

matched feedback of weight was more intuitive than learning an association to vibration. The low 

preference score for thermal feedback, although modality-matched, may have resulted from 

confusions arising from perceiving temperature changes from one trial to the next and from initial 

to target temperature, as well as learning the association between skin temperature perception and 

oral temperature perception, which for some of the mid categories may have been counter-intuitive.  
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Overall, the subjective preference metric can be seen to have captured a number of different 

factors that would be useful to consider, and also presents the most variation between modalities. 

 Metric Weighting and Filtering 

Metric weights were generated through a subjective pairwise comparison (detailed in 

section 3.2.3) completed by the nine participants after robot training and before the experiments. 

The resulting weights (summing to 1) for all the metrics are displayed in Figure 5.9. Here, 

‘attention’ represents the importance of their visual attention on the control task and is intended to 

isolate only DRT hit rate while ‘overall demand’ captures DRT reaction time. 

 

Figure 5.9: Weights for all metrics 

 

However, since some metrics were found to not be significant in the screening experiment results, 

a second set of weights were generated with those metrics filtered out. The weights were adjusted 

to include only the significant metrics (summing to 1) and are represented in Figure 5.10 below. 
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Figure 5.10: Adjusted weights for significant metrics 

 

An interesting observation to note here is that the weights that were removed were not only 

the metrics that were insignificant in the experiments, but also the metrics that were perceived to 

be least important and weighted the lowest in the subjective weighting. Since the weighting was 

completed prior to the introduction of the feedback interface, the experiments, and the perception 

tasks, the responses were not biased by knowledge of what was measured during the experiment. 

The significance results and the metric weighting results were thus mutually supportive of their 

relevance and provide further validation of the process. 

5.3 Assignment Solution 

The final step in the solution strategy is to define a cost function, generate a cost matrix, and 

solve for the final solution using the linear assignment problem solution algorithm. 

 Cost function  

Since some metrics were found to be insignificant and two sets of weights were found, cost 

matrices were generated for two cases, both with and without the insignificant metrics. Equation 

5.1 defines the cost function for significant metrics only to be: 



 

98 

𝐶𝑖𝑗 = 𝑤1(1 − 𝐴𝑐𝑐) + 𝑤3(1 − 𝐻𝑅) + 𝑤5(1 − 𝑃𝑟𝑒𝑓)    (5.1) 

Where 𝐴𝑐𝑐, 𝐻𝑅, and 𝑃𝑟𝑒𝑓 are the means of perception accuracy, hit rate, and preference score 

respectively, and 1 − 𝐴𝑐𝑐 , 1 − 𝐻𝑅 , and 1 − 𝑃𝑟𝑒𝑓 translate to error, miss rate, and disfavor of 

the modality, all of which would increase the cost. 

For the case with all the metrics, this equation would be modified to be:  

𝐶𝑖𝑗 = 𝑤1(1 − 𝐴𝑐𝑐) + 𝑤2(1 − 𝐶ℎ) + 𝑤3(1 − 𝐻𝑅) + 𝑤4(𝑅𝑇) + 𝑤5(1 − 𝑃𝑟𝑒𝑓)    (5.2) 

Where 𝐶ℎ and 𝑅𝑇 are change response accuracy and DRT reaction time respectively and 1 − 𝐶ℎ 

is the change response error. 𝑤𝑘  represents each respective weight identified in section 5.2.5. 

Computing costs in this manner yield the cost matrices corresponding to Equation 5.1 and Equation 

5.2 respectively. These cost matrices are shown in Figure 5.11 below. 

 

Figure 5.11: Cost matrices for significant metrics only (top) and all metrics (bottom). 

 Mapping Solution 

Using the algorithm described in Chapter 3, minimum cost solutions were generated from 

both matrices. Both versions generated the same mapping solution illustrated in the bipartite graph 

in Figure 5.12 below. This outcome makes sense since the weights were lower for the metrics that 

were insignificant and contributed least to the cost even in the version that used all the metrics. 
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Figure 5.12: Bi-partite graph for solution mapping assignment 

 

It is interesting to note that in this outcome, both modality matched feedback assignments 

(weight to haptic and temperature to thermal) were outperformed by the audio and visual 

modalities respectively.  

5.4 Validation Experiment Results and Discussion 

This section discusses the results of the validation experiment to evaluate the performance 

of the optimal solution against a control treatment of no feedback and an arbitrary design. First, 

the results comparing the optimal solution vs. the control strategies (12 subjects) are presented. 

These are followed by the results comparing the optimal solution with both the arbitrary design 

and the control (7 subjects). Means of response variables and One-way ANOVA for a linear mixed 

model and Tukey test results (α=0.05) are presented for each use case and implications are 

discussed in this section. 
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 Solution vs. Control 

The results comparing the solution mapping to the control experiments from the three use 

cases (the temperature decision task, empty vessel identification, and tilt angle estimation) are 

provided in Figure 5.13 below. 

From the means it can be observed that results are as expected across all the test cases with 

the solution performing consistently better with higher success rate, lower response times, and 

lower mental demand. ANOVA results are presented case by case below. 

 

Figure 5.13: Solution vs control means for success (top left), response time (top right), and subjective 

mental demand (bottom). Error bars represent standard error. 

 

Case 01 (Temperature): Results from all three response variables are observed to be highly 

significant with F=56.87, p<0.0001 for success, F=96.44, p<0.0001 for response time, and 

F=33.32, p<0.0001 for mental demand. These results indicate that the feedback interface 
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performed much better than the control strategies by providing significantly more reliable 

information to inform the decision, significantly reducing the time taken to execute the task, and 

offering a significant reduction on the cognitive demand of the task. Further, a secondary analysis 

on success of only initial temperature perception (i.e. wait time-related failures excluded), the 

difference was still significant with F=6.54, p=0.0159. This helps refute any concern that the 

significance may have been affected by subjects simply growing impatient during the waiting 

period. 

Case 02 (Empty vessel): Significant differences are observed across all three variables once again 

for the second use case with F=4.52, p=0.0419 for success, F=45.62, p<0.0001 for response time, 

and F=110.83, p<0.0001 for mental demand. The feedback interface is seen to have performed 

much better than the control strategies in feedback delivery, task time, and cognitive demand in 

this use case. 

Case 03 (Tilt angle): Results are observed to be highly significant for response time F=41.42, 

p<0.0001 and mental demand F=116.82, p<0.0001, indicating that the feedback interface was 

successful in reducing task time and cognitive effort associated with this task. Despite the 

difference observed in Figure 5.13, however, success is not statistically significant with F=1.63, 

p=0.2116. This is likely due to the more complex nature of the task relative to the other use cases, 

on which the impact of the feedback interface may be more subtle. Testing this case with more 

subjects may produce significant results. However, considering all three variables overall, we can 

conclude that the solution feedback is a better option for this use case as well compared to the 

control. 
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 Solution vs. Arbitrary Mapping and Control 

Figure 5.14 illustrates the results comparing the solution mapping to an arbitrary mapping 

and the control in each of the three cases in this experiment. These results help determine whether 

the solution mapping was better than providing any arbitrary mapping of feedback. 

 

 

Figure 5.14: Solution vs arbitrary and control means for success (top left), response time (top right), and 

subjective mental demand (bottom). Error bars represent standard error. * indicates optimal solution 

significantly different from arbitrary design. 

 

Overall, consistent patterns are observed across the use cases, reflecting reliable 

experimental design and conditions and consequently reliable results. Results from One-Way 

ANOVA and post-hoc Tukey tests are presented case by case below. 

Case 01 (Temperature): Results from all three response variables are observed to be highly 

significant with F=18.42, p<0.0001 for success, F=124.08, p<0.0001 for response time, and 

* 

* * 
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F=8.13, p=0.0018 for mental demand. Post-hoc Tukey tests indicated that the differences in 

success were significant between the solution and control and the solution and arbitrary treatments, 

indicating that the solution is capable of significantly better feedback delivery than both the 

arbitrary mapping and control. For response time there was no significant difference detected 

between the solution and arbitrary mapping as predicted upon observation of means. For subjective 

load the Tukey tests detected significant differences between the solution and control and the 

solution and arbitrary treatments, indicating that the solution significantly reduced cognitive load 

relative to the arbitrary mapping in addition to the control. Overall, considering all variables, these 

results indicate that the solution mapping performs better than the control for this use case. 

Case 02 (Empty vessel): Significant differences are observed with F=26.68, p<0.0001 for 

response time, and F=22.98, p<0.0001 for mental demand, while the observed differences are 

found to be insignificant for success with F=1.6, p=0.2202. Given that the significance observed 

for solution vs control with twelve subjects in the previous analysis is not observed here, a 

significant difference may be detected with the arbitrary mapping if a larger number of subjects 

were used to test this case. Tukey tests revealed that for response time there was no significant 

difference detected between the solution and arbitrary mapping similar to the previous case. For 

subjective load the Tukey tests detected significant differences between the solution and both the 

control and arbitrary treatments, indicating that the solution significantly reduced cognitive load 

relative to the arbitrary mapping as well as the control.  

Case 03 (Tilt angle): Results are observed to be significant for response time F=33.76, p<0.0001 

and mental demand F=15.86, p<0.0001, while success is not statistically significant with F=0.5, 

p=0.6096. This is not surprising following insignificant results from the previous analysis and can 

be interpreted in the same way. Testing this case with more subjects may produce significant 
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results. Similar to the previous cases, Tukey tests did not detect significant differences between 

the solution and arbitrary mapping for response time, although both treatments were significantly 

better than the control. The same was true for subjective mental load despite the differences in 

means observed in the graph. While none of the variables could differentiate between the arbitrary 

mapping and the solution in this use case, means indicate that the solution has an overall advantage 

in success and mental load.  

 Discussion 

In this set of experiments, we evaluated the solution mapping against a control treatment 

with alternative strategies and no feedback, and a third treatment with an arbitrary design. The 

treatments were tested with three use cases where subjects performed decision making tasks 

including assessing temperature, detecting an empty vessel, and estimating initial tilt angle. Task 

success, response time, and subjective mental demand ratings were assessed to evaluate the 

generated solution.  

Considering the first set of results (solution vs. control in Figure 5.13) we can conclude 

that the optimal solution is significantly more effective than the control treatment. This was true 

for all three metrics in the first and second use cases, and response time and subjective demand 

metrics in the tilt angle use case. The insignificance observed for tilt angle success may be 

attributed to the complexity of that task and may perhaps be observed more distinctly with a larger 

sample size. Overall, higher success rates, lower reaction times, and lower subjective load results 

demonstrated a clear and significant benefit from the presence of the feedback interface to aid in 

these tasks. 

To determine whether the optimization approach yielded a near optimal solution, we 

compared the solution against an arbitrary design (Figure 5.14). Based on these means, the overall 
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results observed were as expected across all the test cases with the solution performing with higher 

success rate and lower mental demand compared to the arbitrary mapping. While the arbitrary 

mapping was seen to improve response time and mental demand relative to the control, it 

performed as badly or worse than the control in task success. This is arguably the most important 

performance metric for the interface because it reflects effective delivery of feedback and indicates 

that the optimization approach guarded against highly unreliable solutions. This observation 

underscores the value of the optimization approach used to produce the solution mapping.  

Despite these promising observations in the means, only three of the comparisons (success 

for temperature task, subjective demand for temperature task, subjective demand for empty vessel 

task) resulted in statistical significance in the differences. In all these comparisons that were 

significant, the optimal solution performed better than the arbitrary solution. In the remaining 

comparisons, the optimal solution performed better in means. This indicates that it had a 

considerable overall advantage over the arbitrary solution.  

In order to further investigate those results that were statistically insignificant, we 

considered the costs generated for each of these mappings from the first set of screening 

experiments in the interpretation of these results. The total cost for the optimal solution was 

computed to be 0.634 while that of the arbitrary mapping was 1.011. However, there were a 

number of mappings that will result in even higher costs, the highest of which is 1.375 (mapping 

liquid level-haptic, weight-vibration, temperature-thermal). The difference between this worst 

mapping and the optimal (0.741) is almost double the difference of cost between the arbitrary 

solution (0.377) and the optimal. Therefore, we can expect the optimal solution to perform even 

better against a worse mapping and are likely to see increasing significance of results as the 

mapping cost increases. We can thus infer from these results that an effective solution has been 
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generated from the optimization strategy, and that it has effectively guarded against unreliable 

solutions that, as observed, may perform even worse than no feedback. Thus, we prove both of our 

hypotheses to be true by concluding that (1) we were able to generate an effective mapping using 

the proposed approach and (2) the solution we produced has higher efficacy and provides a better 

user experience compared to no feedback and compared to an arbitrary design. 

Through closer inspection of the trends observed in these results, we can draw further 

inferences beyond the main investigations of this project. In Figure 5.13 we see that while the 

differences between the control and solution are similar for response time and mental demand 

across the use cases, the differences vary in success accuracy. This may be attributed to the varying 

alternative strategy variations between the cases, i.e., the perception of hollowness may have been 

a better predictor of amount of liquid than touching the surface of the vessel was for temperature. 

In Figure 5.14 we observed that for response time, there was no significant difference between the 

solution and arbitrary mappings (although the response time was very slightly but consistently 

higher for the arbitrary treatment across the cases). This was not surprising because response time 

was mainly affected by the alternative strategies required to gain the same information in the 

absence of feedback. Thus, it may be that simply providing the feedback, regardless of the specific 

modality, improves task execution time.  

The results reported above are for only three of many possible use cases that could be 

constructed for this feedback. The solution feedback was determined to perform distinctly better 

than the control strategies based on the first analysis. Considering the complete set of results from 

the second analysis, the solution mapping was observed to have an advantage over the arbitrary 

mapping as evident in two of the three use cases and the trends in means. This visible advantage 

supports the use of the optimization approach in producing a sensory feedback interface. Further 
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evaluation with more use cases, more elaborate versions of these use cases, and/or more subjects 

may also solidify these findings further. 
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 CONCLUSIONS AND FUTURE WORK 

In this thesis, an optimization approach is taken to develop a multimodal sensory feedback 

interface for robot-assisted tasks. Feedback perception accuracy, cognitive load, and subjective 

preference measures are selected as optimization metrics to produce a solution that balances 

effective feedback delivery with added attentional load requirements to those of controlling a robot. 

A robot-assisted pouring task is chosen as the functional task to be investigated. Three selected 

properties, temperature, weight, and liquid level are configured to be conveyed through five 

available sensory feedback modalities including visual, audio, haptic, vibration, and thermal. A set 

of screening experiments are conducted to quantify the selected metrics. A subjective pairwise 

comparisons test is used to produce weighting coefficients for each of the metrics. The 

optimization problem is formulated and solved as a linear assignment problem to generate the 

minimum cost property-to-modality assignment mapping. In a set of validation experiments with 

three selected use cases, the solution mapping is evaluated against a control treatment with 

alternative strategies and no feedback, and a third treatment with a randomly mapped solution. 

Task success, response time, and subjective mental demand ratings are analyzed the evaluate the 

generated solution. Overall results indicate that the solution is significantly more effective than the 

control treatment and has considerable advantage over the arbitrary mapping solution. The 

proposed approach can therefore be concluded to have produced an effective solution for 

delivering feedback for robot-assisted tasks.  

This approach addresses the contradicting requirements of providing effective sensory 

feedback to bridge the disconnection between the user and the task environment and minimizing 

the compounded cognitive load on robot operation which is by itself an attention-demanding 

function. It produces a solution that delivers information effectively, reduces the time taken to 
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execute the task and improves user satisfaction and perceived mental effort. Bridging the multi-

sensory feedback gap can expand the scope of robot-assisted tasks, increasing efficiency of the 

functions and processes that they are a part of, and advancing the utility of robots in the field and/or 

in the lives of users. Additionally, the ability to provide information through multiple modalities 

effectively can open doors to studying the provision of additional information that is not generally 

available to the human, in order to enhance the task execution experience and improve task 

outcomes and efficiency further.   

6.1 Considerations for Future Work 

The work detailed in this thesis shows promise for further investigations both to refine these 

findings and branch out in different directions. This section introduces possible directions in which 

this research can be expanded going forward, and experimental improvements that may further 

refine the results of this work. 

 Formulating with Other Combinatorial Assignment Problems 

While the linear assignment approach used in this thesis proved to be an effective model 

for formulating problems, other approaches can be taken to formulate and solve for minimum cost 

assignments with varying degrees of complexity. One way to reformulate this problem is to apply 

other combinatorial optimization problems such as the weapon target assignment problem [166] 

and the quadratic assignment problem [167].  

Reformulating as the weapon target assignment problem removes the condition that one 

property (weapon) can only be mapped to one modality (target), opening the problem to 

possibilities of mapping multiple properties to a single modality. This may lead to a more 

comprehensive investigation and could be especially useful if the number of properties desired to 
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be conveyed exceeds the number of available modalities. One factor to consider with this approach 

is the potential for sensory overload through one modality, which should be quantified and 

incorporated in the cost function.  

The quadratic assignment problem is defined to map a set of facilities to a set of locations, 

given the distances between locations and the flow between facilities. Redefining our problem as 

a quadratic assignment problem would map the properties (facilities) to modalities (locations), 

taking into account any relationships between the properties (flow) and relationships between the 

modalities (distances). This may allow taking into consideration factors such as physiological 

interactions between sensory receptors involved, quantitative and physical relationships between 

properties (if any), and the characterization of cognitive load interactions between modalities. 

While this approach may require pre-screening experiments to characterize these relationships, it 

may lead to a more accurate model from which to generate a solution. 

 Alternative Methods for Metric Weighting 

For metric weighting this work used a subjective pairwise comparison weighting method 

known as the Analytic Hierarchy Process (AHP). Other subjective or objective methods for 

generating the metric weights can be investigated and compared to identify if other methods may 

lead to different or improved outcomes. Weighting procedures can be developed to employ 

statistical methods such as correlation analysis or principal component analysis [163]. However, 

this must be considered carefully especially if social indices are involved since if any control over 

the weighting procedure is removed from the analysis, it may result in an illusion of mathematical 

objectivity that is practically difficult to achieve [163]. A subjective approach known as Conjoint 

Analysis (CA) is a multi-attribute approach similar to AHP that works in the opposite direction by 

disaggregating preferences [163]. Studying both approaches side by side to ensure mutual 
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agreement could further validate the resulting weights. Scaling methods such as the Unfolding 

Approach [163] where individual rankings are used to determine a common joint ranking scale 

may also be adopted to provide weightings. Empirical studies to establish whether one method 

may be better than another will contribute to refining this approach further. 

 Considerations for Future Experiments 

Improvements to the experiments can also improve the reliability of the resulting solution 

and evaluation. In the screening experiments, designing the experiments to include effects of 

dynamic changes of the properties during a trial could provide a better estimation of the metrics 

for situations where properties may change dynamically and quickly. Further, integrating task 

complexity variations such as depth positioning challenges (demonstrated in Chapter 3) or pouring 

from different types of vessels with different grip configurations (bowls, bottles, jugs) can capture 

effects of varying challenge levels compounding the feedback perception. Expanding these 

experiments may also involve introducing additional or alternative metrics such as supplementing 

the DRT load data with subjective ratings and comparing results. Expansions specific to the 

pouring task discussed in this thesis can include the incorporation of liquids with different 

viscosities and other similar properties that could affect weight, pouring rate, and how the 

temperature affects the liquid. These considerations can lead to richer data sets and improve the 

accuracy of the solution generated. However, integrating these factors should be done 

systematically to avoid confounding of variables. 

For the validation experiments, evaluating the resulting solution with more use cases can 

improve the reliability of the results. These use cases should be constructed to target one or more 

of the available properties and effectively capture the distinctions between treatments. Further, the 

use cases identified in this thesis could be expanded to include more sample variations (beyond 
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the two levels used here) to ensure generalizability. The validation experiments can also be 

expanded to include more sub-optimal mappings so that the utility of the optimization approach 

can be verified further. Evaluating the interface with targeted user groups in application-specific 

tasks may also provide insights into how domain knowledge and experience influence the utility 

of the provided feedback.    

 Considerations for Expanding the Feedback Interface 

One clear direction for expansion is simply expanding the number of properties and 

modalities included in the interface and the assignment problem. This may include additional 

properties within the focus task (such as viscosity for the pouring task) or properties that are added 

as a result of expanding the pool of focus tasks. Considerations in expanding the number of 

available modalities can involve not only using other distinct sensory modalities such as smell and 

taste, but also leveraging multiple degrees of freedom of a single modality to generate sub-

modalities. For example, the audio modality can deliver combined speech, pitch, and volume 

modulated cues and the haptic modality can provide force outputs in multiple directions while the 

vibration modality can deliver modulations in frequency and amplitude. Physical locations for 

providing the sensory feedback can also be leveraged if skin is the sensory organ of interest. The 

effect of such combinations on property perception should be taken into account if pursuing this 

direction. 

If the number of properties and modalities expand into a large matrix that is experimentally 

intensive, solution algorithms used to solve sparse matrices can be used to find a solution with 

only some of the matrix costs computed. The sparse algorithm in [168] is one example of how this 

may be solved as a linear assignment problem. Another approach is presented in [169] where a 

neural network architecture and solution algorithm are proposed to solving a sparse matrix problem. 
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 Considerations for Human-Robot Interaction 

The methodology used in this thesis may be extended to multimodal sensory feedback 

provision in the general human-robot interaction space. This may include multimodal feedback 

provided in human-robot collaboration environments [170] or for studies of effective 

communication or associated distractions with social robots [171] as well as in teleoperated control 

studies [172]. 

In addition to providing a methodology for developing multimodal sensory feedback 

interfaces for robot operation tasks, the preliminary work presented in this thesis also established 

a basis for the utility of the Detection Response Task for visual attentional load measures in robot 

operation. The use of the DRT can therefore be expanded to be included in robot interaction studies 

that do not involve sensory feedback but are evaluating attention challenges in robot control such 

as in the preliminary experiment detailed in Chapter 2 of this thesis, or to identify and quantify 

distractions in collaborative environments. For example, the DRT can be extended to studies such 

as [173] which focuses on optimizing learning by minimizing distraction in human-robot 

interaction tasks and [174] where operator attention during multi-robot control is investigated.  

 Multimodal Feedback for Other Applications  

In addition to developing multimodal feedback interfaces for robot control applications, 

this methodology can be extended to optimizing the provision of multimodal feedback in other 

similar visual-manual tasks. One such task where the use of the DRT is already established in 

driving [95]. As vehicles evolve to integrate technological features such as navigation and media, 

it is necessary to identify solutions to providing this additional information effectively without 

compromising the task and putting the driver in danger. This can also be extended to studies of 

external sensory cues targeted at drivers, such as car horns, sirens, and road signs. 
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This methodology may also be extended to human-computer interaction technologies that 

usually require some form of manual input such as keyboard or mouse clicks and sensory feedback 

through tactile, visual, and audio interfaces in applications such as education and gaming. 

Specifically, this methodology may best transfer to the simulation gaming domain including 

technologies such as the Nintendo Wii [175] and other virtual or augmented reality applications 

that involve manual tasks such as training simulators for operating tooling machines [176], 

performing telepresent assembly tasks [134], practicing or performing remotely assisted surgical 

procedures [177] [178], or undergoing rehabilitation therapy [177]. 
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APPENDIX A. SURVEY 

This appendix includes the survey and responses report that acted as a basis for the properties 

selected for the interface. Appendix A1 consists of the survey questions presented to participants 

through a Qualtrics survey while appendix A2 presents a report of the responses to the survey. 

Purdue Internal Review Board (IRB) approval for the survey was obtained for the survey under 

number IRB-2020-1563. 
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A1: SURVEY 

 

Assistive Robot Interface: Predevelopment Survey 

Thank you for participating in this study. Please answer all  questions to the best of your ability. 

The first three questions of this survey are intended to capture background information relevant 

to the study. 

If you do not have a physical disability that significantly restricts your ability to navigate 

general daily activities such as eating, drinking, preparing meals, etc. without help, please 

respond N/A to the following questions. 

 

Do you have any physical disabilities linked to the following conditions? (Please select) 

 

0 Spinal cord injury (SCI) 

0 Multiple Sclerosis (MS) 

0 Traumatic Brain Injury (TBI) 

0 Stroke 

 0 Other [Please Specify]  

N/A  

 

Do you currently use any assistive devices to aid your daily life activities? 

 

0 Yes (Please Specify) 

0 No 

0    N/A 

 

Which age category do you belong to? 

 

0 18-20 

0 20-35 

0 35-50 

0 50-70 

0 >70
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The remainder of this survey is conducted in a thought experiment format. Visual aids will be 

provided to aid question interpretation. Please answer to the best of your ability with the given 

information. 

 

You are seated on a wheelchair, controlling a robotic arm via a 3D joystick (see images below). 

You have visual access to the workspace of the arm as seen from your chair, however, your 

movements on the chair are constrained: you are not able to lean forward, or move the other 

arm that is not controlling the joystick. 

 

Aerial view: 

 

 

 

Your view: 

 

In the image on the right, the hand is placed on the 30 joystick that controls the robot. 
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There is an opaque plastic bottle labeled 'milk' and a cup of hot coffee on the table in front of 

you. You have interacted with both vessels many times before. 

You would like to drink some coffee, so you use the robotic arm to pick up the bottle. 

 

 

What should you do next? 

 

0 The bottle is empty, I should put it back on the table, refill it, or throw it in the trash. 

0 The bottle holds liquid, I should proceed with the task. 

0 I would like to have more information about the bottle before I proceed. 



 

132 

 

Please rank how important the following additional information would be to help you make 

this decision. 0 represents not at all important, 5 represents extremely important. 

 

◄      ► 

If you think a combination of information would be more helpful than one type, please select 

which ones you would prefer a combination of. 

 

   The weight of the bottle when I lift it 

 The level of liquid in the bottle 

  The temperature of the bottle 

 Other: [Please specify] 

N/A 

 

Since you don’t have access to any additional information, how would you navigate this 

situation? 

0 I did not pick "need more information" 

0 I would just carry out the task as well as I can 
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0 I would work around it by: [Please describe your strategy briefly] 

 

You were just informed that the bottle is not empty. Using the robotic arm, you carry the bottle 

carefully over to the cup. The task ahead of you is to pour milk into the cup without spilling. 

Your view of the cup and the robot is from your chair, as shown below. 

 

First, you position the robot. How confident are you that you would not spill milk? 

 

0     Extremely confident 

0 Somewhat confident, and I think that's enough 

0 Somewhat confident, but I would like to be more confident 

0 Not very confident 
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f you answered (c) or (d), would access to an aerial view (shown below) help increase your 

confidence? 

 

 

 

 

 

 

 

 

 

 

 

 

0 Yes, that would help a lot 

0 Yes, that would help a little 

0  Yes, that would help a little, but something else would help more [Please specify] 

0  That wouldn't be very helpful, but something else would [Please      specify] 

0  That wouldn't be very helpful but I can't think of something that    would 

 

Now that you are positioned over the cup to the best of your ability, you tilt the upright bottle, 
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0 A little because it's almost full 

0 About 90 degrees because it's half full 

0 More than 90 degrees because it's less than a quarter full 

0 I need more information 

 

Please rank how important the following additional information would be to help you make 

this decision. 0 represents not at all important, 5 represents extremely important. 
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If you think a combination of information would be more helpful than one type, please 

you would prefer a combination of. 

0 The weight of the bottle when I lift it 

0 The level of liquid in the bottle  

0 The temperature of the bottle  

0 Other: [Please specify] 

0 N/A 

 

Since you don't have access to any additional information, how would you navigate this 

situation? 

0 I did not pick "need more information" 

0 I would just carry out the task as well as I can 

0 I would work around it by: [Please describe your strategy briefly] 

 

 

You tilt the bottle and pour some milk into the cup anyway. Then you place the bottle back 

on the table, stir the coffee, and pick up the cup using the robotic arm. 

 

What will you do next? 
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0 This coffee is too hot, I should let it cool down 

0 I should drink the coffee 

0  The milk has made the coffee too cold, I should heat it up or add more hot coffee 

0 I need more information 

 

 

Please rank how important the following additional information would be to help you 

make this decision. 0 represents not at all important, 5 represents extremely important. 

 

 

 

If you think a combination of information would be more helpful than one type, please          

select which ones you would prefer a combination of. 

0 The weight of the bottle when I lift it 

0 The level of liquid in the bottle  

0 The temperature of the bottle  

0 Other: [Please specify] 

0 N/A 

 

Since you don't have access to any additional information, how would you navigate this         

situation? 

0 I did not pick "need more information" 

0 I would just carry out the task as well as I can 

0 I would work around it by: [Please describe your strategy briefly] 
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A2: SURVEY REPORT 

Assistive report 

Assistive Robot Interface: Predevelopment Survey 

July 2nd 2021, 9:01 am MDT 

 

Q1 - If you do not have a physical disability that significantly restricts your ability to navigate 

general daily activities such as eating, drinking, preparing meals, etc. without help, please 

respond N/A to the following questions. Do you have any physical disabilities linked to the 

following conditions? (Please select) 

 

 

# Answer % Count 

1 Spinal cord injury (SCI) 32.41% 35 

2 Multiple Sclerosis (MS) 2.78% 3 

3 Traumatic Brain Injury (TBI) 1.85% 2 

4 Stroke 6.48% 7 

5 Other [Please Specify] 18.52% 20 

6 N/A 37.96% 41 

 Total 100% 108 

 

 

Q1_5_TEXT - Other [Please Specify] 

Other [Please Specify] - Text 
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Arthrogryposis Multiplex Congenita 

nueropathy fibromyalgia 

Ehlers-Danlos Syndrome, hypermobility type 

Spina bifidia 

Post Polio Syndrome 

Spina Bifida 

Muscular Dystrophy 

Spina Bifida 

Duchenne Muscular Dystrophy 

Stroke at birth. Diagnosed with Cerebral Palsy. 

Central Auditor Processing Disorder and Fibromyalgia 

CP 

SMA TYPE 3 

Primary Lateral Sclerosis 

spina bifida 

chronic migraine, rheumatoid arthritis, fibromyalgia 

spinal surgery that inhibits some LE movement 

Beckers Muscular Dystrophy 

SPINA BIFIDA 

Carpel  tunnel 

  



 

140 

Q2 - Do you currently use any assistive devices to aid your daily life activities? 

 

 

# Answer % Count 

1 Yes (Please Specify) 57.84% 59 

2 No 26.47% 27 

3 N/A 15.69% 16 

 Total 100% 102 

 

 

Q2_1_TEXT - Yes (Please Specify) 

Yes (Please Specify) - Text 

power wheelchair 

Power wheelchair, shower bench, a reacher 

Wheelchair 

moterized wheelchair 

wheelchair; scooter; crutches; cane; stool in kitchen; some assistive kitchen tech (strap wrench 

to open jars, fat-handled knives for chopping, dishwasher) 

Wheel chair 

Cane 

Wheelchair 

quadjoy mouse 

wheelchair Tenodesis Splint 

jouse 

Power wheelchair and many small assistive handles and devices 
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4 prong cane 

Wheelchair 

Power & Manual Wheelchair, Hearing Aids & Glasses 

Electric Wheelchair 

power chair, transfer board, reachers 

Forearm crutches 

hearing aids 

Permobil F5 power wheelchair 

prosthetic, crutches, wheelchair, cane 

Cane 

wheelchair 

Wheelchair, forearm crutches 

Manual wheelchair 

wheelchair 

Wheelchair 

power wheelchair, eye tracker, computer 

power wheelchair 

wheelchair 

Power & manual wheelchairs, assorted reaching tools 

Leg braces, canes, wheelchair 

Power Wheelchair 

Manual and power wheelchair, communication device 

Wheelchair, Grabbers 

Manual wheelchair 

power wheelchairs 

My tablet 

wheelchair, van hand controls, slide board, magnet grab stick 

Communication device and a computer 
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wheelchair 

Manual wheelchair, 3 ft grabber 

power wheelchair 

Power wheelchair 

Maanual wheelchair inside house, and power wheelchair otherwise. 

Power chair 

Wheelchair,speech recognition, utensils 

Hand controls for my car and 2 prosthetic legs 

Power Chair 

compression gloves and socks, ear plugs, cane 

quad canes, rollator, electric scooter 

Power wheel chair, handicapped van, handicapped bathroom 

Alexa, wheelchair, handsplint 

Manual wheelchair 

power wheelchair with joystick mouthstick for computer 

eyeglasses 

Q3 - Which age category do you belong to? 

 

 

# Answer % Count 

1 18-20 0.98% 1 

2 20-35 33.33% 34 

3 35-50 19.61% 20 
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4 50-70 37.25% 38 

5 >70 8.82% 9 

 Total 100% 102 

 

Q6 - There is an opaque plastic bottle labeled ‘milk’ and a cup of hot coffee on the table in 

front of you. You have interacted with both vessels many times before.   You would like to 

drink some coffee, so you use the robotic arm to pick up the bottle.        What should you do 

next? 

 

 

# Answer % Count 

1 
The bottle is empty, I should put it back on the table, refill it, or throw it 

in the trash. 
8.82% 9 

2 I would like to have more information about the bottle before I proceed. 57.84% 59 

6 The bottle holds liquid, I should proceed with the task. 33.33% 34 

 Total 100% 102 
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Q7 - Please rank how important the following additional information would be to help you 

make this decision.  0 represents not at all important, 5 represents extremely important. 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 
The weight of the bottle 

when I lift it 
0.00 5.00 3.63 1.35 1.81 90 

2 
The level of liquid in the 

bottle 
0.00 5.00 3.84 1.28 1.63 98 

3 
The temperature of the 

bottle 
0.00 5.00 3.33 1.56 2.43 88 

4 Other (Please Specify) 0.00 5.00 2.74 2.05 4.19 19 

 

 

Q7_4_TEXT - Other (Please Specify) 

Other (Please Specify) - Text 

whether the bottle "sloshes" i.e. obviously has liquid in it 

Angles or Distance 

safety and surety that the robotic arm will not spill it. 

What is in the bottle? 

Shape/contours and material (easy to grip or slippery) 

How the bottle pours 

HOW MUCH I POUR FROM IT IS IMPORTANT 

weight capacity of the arm 

Weight is ONLY useful if empty weight is known 

Can I open it? 

labeled milk. i want coffee 

movement/shifting of liquid inside the bottle 

Do I really know id it hold milk?  Was I already told? 

N/A 

Confirmation it is milk and it is fresh and not off! 
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Colour - to check if actually coffee or milk 

An ability to tilt the bottle and see the content as it is opaque 

Bottle should be transparent. To identify flavor of milk 

Viscosity of Liquid 

 

Q8 - If you think a combination of information would be more helpful than one type, please 

select which ones you would prefer a combination of. 

 

 

# Answer % Count 

1 The weight of the bottle when I lift it 31.28% 66 

2 The level of liquid in the bottle 36.49% 77 

3 The temperature of the bottle 24.64% 52 

4 Other: [Please specify] 5.69% 12 

5 N/A 1.90% 4 

 Total 100% 211 

 

 

Q8_4_TEXT - Other: [Please specify] 

Other: [Please specify] - Text 

If the milk is expired or if there is actually milk in the bottle. Checking before adding to coffee 

is safe. 

content 
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Shape/contours and material (easy to grip or slippery) 

POURING THE MILK AMOUNT 

wt. arm can lift 

the weight of the bottle - tare value of empty bottle 

A good tight lid 

The feeling of the liquid moving 

All of the above. 

What others have told me 

Confirm it is drinkable milk 

Colour 

 

Q9 - Since you don’t have access to any additional information, how would you navigate this 

situation? 

 
 

 

# Answer % Count 

1 I did not pick "need more information" 8.82% 9 

2 I would just carry out the task as well as I can 64.71% 66 

3 I would work around it by: [Please describe your strategy briefly] 26.47% 27 

 Total 100% 102 

 

 

Q9_3_TEXT - I would work around it by: [Please describe your strategy briefly] 

I would work around it by: [Please describe your strategy briefly] - Text 
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Checking the contents of the bottle by opening it and using sight, taste, and smell to decide 

before using the contents. 

Jostle the bottle to slosh the liquid inside and estimate the amount based on the sound.  If the 

milk is empty, or nearly so, then I would dispose of it, otherwise I would refrigerate it before 

moving on to the coffee task. 

I would carefully give the bottle a gentle nudge with the robotic arm to try to get a sense of its 

weight. 

I would first check what is in the milk cup first.  Then check temp and weight of the coffee to 

see how much coffee is there. I would try and complete my task 

Trying to pour milk into the cup and giving up and tossing the bottle if no milk comes out of the 

bottle. 

Tip the bottle gently over the cup to see if there is any liquid in it 

Since I have interacted with this situation before, I would carefully continue picking up the 

container in case it is very full. 

I would attempt to pour a tiny bit onto a plate so that I can see it and gauge how full the bottle 

is so that I don't ruin the coffee unexpectedly. 

Move my chair close to the bottle and examine it. Get a feel for the speed and flexibility of the 

arm and approximate what the move would look like proceed with attention and focus 

I’d test things out. Not having more information would make me concerned for my physical 

safety though 

I would drink the coffee without adding milk. 

attempting to pour milk into coffee - if I get milk, great if not, bottle is empty 

Confirm container is milk by visual inspection 

i would start over and pick coffee 

I would shake or swish bottle and listen for contents. 

slowly and carefully moving the bottle upright, assuming that it is full of liquid 

Bring it close and have a look how full it is and check visually and by smell that it is drinkable 

milk. 

Trial and error. Try to pour it. If there’s nothing, throw it in the trash. 

Open and tilt towards me to see inside 

Trying to tilt and peek into the content of the bottle. Provided, I see some quantity of milk in it, 

I'll proceed with my task 

If I can't see through the bottle or feel the weight, I'd like to slowly start pouring the milk into 

the coffee assuming it was full. 
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I know it’s milk. I’m assuming the bottle is a flask so I know the milk will be warm. Then carry 

out task as usual. Or I would call for assistance 

Trying with minimal force to figure out how heavy or empty the vessel is 

I would carefully and very slowly start angling the bottle in anticipation of the liquid to start 

spilling out at every degree, until it finally does. Will try to gauge the temperature from the 

smoke that's released once the liquid is in the cup. 

I would first assume that the bottle is near empty. This is because the heavier it is the more force 

you would put in the initial stage and if it was truly almost empty, you might use too much force 

and it flies out of your grip.  After the initial minimum force, I would continue steadily increasing 

force until I lift it. Since I have interacted with the bottle many times I should be able to judge 

by the weight (proportional to the amount of force I'm using) approximately how much liquid is 

in it. 

 

Q10 - You were just informed that the bottle is not empty. Using the robotic arm, you carry 

the bottle carefully over to the cup. The task ahead of  you is to pour milk into the cup without 

spilling. Your view of the cup and the robot is from your chair, as shown below.             First, 

you position the robot. How confident are you that you would not spill milk? 

 

 

# Answer % Count 

1 Extremely confident 14.71% 15 

2 Somewhat confident, and I think that’s enough 25.49% 26 

3 Somewhat confident, but I would like to be more confident 46.08% 47 

4 Not very confident 13.73% 14 

 Total 100% 102 

Q11 - If you answered (c) or (d), would access to an aerial view (shown below) help increase 

your confidence? 
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# Answer % Count 

1 Yes, that would help a lot 54.64% 53 

2 Yes, that would help a little 21.65% 21 

3 
Yes, that would help a little, but something else would help more [Please 

specify] 
14.43% 14 

4 That wouldn’t be very helpful, but something else would [Please specify] 3.09% 3 

5 That wouldn’t be very helpful but I can’t think of something that would 6.19% 6 

 Total 100% 97 

 

 

Q11_3_TEXT - Yes, that would help a little, but something else would help more [Please s... 

Yes, that would help a little, but something else would help more [Please specify] - Text 

The level of milk is still unknown. 

Close-up side view 

a sturdier looking cup 

Knowing how quick the rotation of the robot hand and how quickly the liquid will pour out is 

important to keep liquid from dribbling down the side of the bottle if the poor is too slow. If the 

hand rotated downward past 0° that would also help with the potential problem of spills 

The level of the coffee in the cup, and thus the amount of room for milk, as well as how fast the 

movements of the hand are 

How does that lid work. Is it getting in the way? 
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HOW MUCH I POUR 

A spout on the bottle to direct the flow or funnel on arm that can direct the flow of liquid. 

Aerial view from an angle in line with the mouth of the bottle from the side (a view line 

intersecting with mine at a 90 degree angle) 

Laser pointer guide 

I think I would lower the milk to the level of the cup. 

A projectile diagram 

A view from something like the edge of the handrest? Basically a view from the base of the 

robot but offset a little bit so that the robot arm doesn't occlude it. (Imagine a camera at the end 

of the arm rest of the robot arm was at the base of the armrest) 

 

 

Q11_4_TEXT - That wouldn’t be very helpful, but something else would [Please specify] 

That wouldn’t be very helpful, but something else would [Please specify] - Text 

Since there is a cap on the bottle, opening it would be helpful 

smaller container to pour from, different type of cap 

Speed of the pour and about when to pull back 

 

Q12 - Now that you are positioned over the cup to the best of your ability, you tilt the upright 

bottle, 

 

 

# Answer % Count 

1 A little because it’s almost full 33.33% 34 
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2 About 90 degrees because it’s half full 8.82% 9 

3 More than 90 degrees because it’s less than a quarter full 3.92% 4 

4 I need more information 53.92% 55 

 Total 100% 102 

 

Q13 - Please rank how important the following additional information would be to help you 

make this decision.  0 represents not at all important, 5 represents extremely important. 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 
The weight of the bottle 

when I lift it 
1.00 5.00 3.88 1.14 1.29 86 

2 
The level of liquid in the 

bottle 
1.00 5.00 4.40 0.90 0.82 97 

3 
The temperature of the 

bottle 
0.00 5.00 2.87 1.64 2.70 68 

4 Other (Please Specify) 0.00 5.00 3.38 1.58 2.48 8 

 

 

Q13_4_TEXT - Other (Please Specify) 

Other (Please Specify) - Text 

the weight of liquid the bottle can hold 

how much the bottle "sloshes" as a way to determine liquid level 

Angle or Distance 

I would pour and decide amount 

Robot gripping hand wrist Rotary range and speed 

The speed of the movements 

HOW MUCH AMOUNT OF MILK 

total weight - empty weight = weight liquid 
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Q14 - If you think a combination of information would be more helpful than one type, please 

select which ones you would prefer a combination of. 

 

 

# Answer % Count 

1 The weight of the bottle when I lift it 34.18% 67 

2 The level of liquid in the bottle 44.90% 88 

3 The temperature of the bottle 15.31% 30 

4 Other: [Please specify] 3.06% 6 

5 N/A 2.55% 5 

 Total 100% 196 

 

 

Q14_4_TEXT - Other: [Please specify] 

Other: [Please specify] - Text 

The weight of the bottle when full 

content of bottle 

Robot gripping hand wrist Rotary range and speed 

The speed of the movements of the hand and arm, to know how fast it will pour 

AMOUNT WANTED OR REQUIRED 

any method that allows determining liquid level 
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Q15 - Since you don’t have access to any additional information, how would you navigate 

this situation? 

 

 

# Answer % Count 

1 I did not pick "need more information" 5.88% 6 

2 I would just carry out the task as well as I can 73.53% 75 

3 I would work around it by: [Please describe your strategy briefly] 20.59% 21 

 Total 100% 102 

 

 

Q15_3_TEXT - I would work around it by: [Please describe your strategy briefly] 

I would work around it by: [Please describe your strategy briefly] - Text 

Emptying liquid little by little, cautiously 

Jostle the bottle to slosh the liquid inside and use the sound of the liquid to estimate the height 

of the liquid.  Hold it up to a light bulb and candle it like an egg. 

Lift the bottle to check the weight then slowly tilt the bottle and pour the bottle 

pouring starting at a low angle and slowly increasing until milk flows 

Slowly tilt the bottle till liquid begins to pour out. 

I would tilt slowly to determine the level of liquid in the bottle 

I would figure out how to empty the contents of the bottle 

I the last picture it looks like the cap has been removed.  I would carefully tip the bottle. 

I would pour a tiny bit of liquid onto a plate or easy to clean surface to examine the contents and 

assess the volume of liquid. 

Test the robot gripping hand wrist Rotary range and speed 
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Not knowing how full the bottle is, I would begin to tilt the bottle slowly. 

slowly increasing tilt of bottle until I get liquid out. 

Tilt bottle a little. Gradually until I see liquid poring. 

Pouring slowly 

beginning to pour at a slight angle, assuming it is mostly full. IF this does not work I would 

increase the angle slowly and gently until the fluid flows, increase angle as needed to finish the 

task 

First tilt a little, and if no liquid or not enough liquid comes out, tilt a little more 

I would try to pour it by tilting it a little. It is is full, it will pour and I’d not I’d have to tilt more. 

Heat of Liquid may be apparent on initial pour. 

Start from lowest tilt and slowly increase 

Same as mentioned previously. 

Start by tilting a little to ensure its not full. Keep tilting until liquid starts pouring out. Tilt just 

enough so that you can control the flow of the amount of liquid pouring out 

 

Q16 - You tilt the bottle and pour some milk into the cup anyway. Then you place the bottle 

back on the table, stir the coffee, and pick up the cup using the robotic arm.     What will you 

do next? 

 

 

# Answer % Count 

1 This coffee is too hot, I should let it cool down 12.75% 13 

2 I should drink the coffee 33.33% 34 

3 
The milk has made the coffee too cold, I should heat it up or add more hot 

coffee 
2.94% 3 
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4 I need more information 50.98% 52 

 Total 100% 102 

 

Q17 - Please rank how important the following additional information would be to help you 

make this decision.  0 represents not at all important, 5 represents extremely important. 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 
The weight of the cup 

when I lift it 
0.00 5.00 3.02 1.52 2.30 63 

2 
The level of liquid in the 

cup 
0.00 5.00 3.59 1.40 1.96 78 

3 
The temperature of the 

cup 
0.00 5.00 4.28 1.11 1.22 96 

4 Other (Please Specify) 1.00 5.00 4.00 1.31 1.71 7 

 

 

Q17_4_TEXT - Other (Please Specify) 

Other (Please Specify) - Text 

The temperature of the liquid in the cup would be more important since it may be hotter than the 

outside of the cup. 

Angle or Distance 

Again, I need to know how fast everything moves, in order to pour or drink from the cup without 

spilling 

Need to stir 

POUR MORE IF TOO HOT OR PREFER MORE MILK 

temperature of coffee 

the colour of the coffee after it is mixed with milk 

 

Q18 - If you think a combination of information would be more helpful than one type, please 

select which ones you would prefer a combination of. 



 

156 

 

 

# Answer % Count 

1 The weight of the cup when I lift it 17.01% 33 

2 The level of liquid in the cup 36.08% 70 

3 The temperature of the cup 39.18% 76 

4 Other: [Please specify] 3.09% 6 

5 N/A 4.64% 9 

 Total 100% 194 

 

 

Q18_4_TEXT - Other: [Please specify] 

Other: [Please specify] - Text 

The temperature of the liquid 

Speed of the moving arm 

Again, the speed of movements 

AMOUNT PREFERENCE 

Where cup is placed 

Colour of the coffee after it was mixed with milk 

 

Q19 - Since you don’t have access to any additional information, how would you navigate 

this situation? 
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# Answer % Count 

1 I did not pick "need more information" 10.89% 11 

2 I would just carry out the task as well as I can 64.36% 65 

3 I would work around it by: [Please describe your strategy briefly] 24.75% 25 

 Total 100% 101 

 

 

Q19_3_TEXT - I would work around it by: [Please describe your strategy briefly] 

I would work around it by: [Please describe your strategy briefly] - Text 

Bring the cup close to sniff the contents and feel the temperature of the surrounding air with my 

lips. 

Since the robotic arm is the one holding the cup, I'm not worried about burning my hand, so I 

would carefully sip the coffee as I normally would. 

bringing the cup to my lips and touching it to my lips (maybe sipping) to get a sense of how hot 

it is 

Slowly begin to sip coffee. 

Bringing the cup closer to see the level of coffee and hopefully determine an approximate 

temperature of the liquid 

After I pick up the cup, put my lips to the cup and decide then if I should blow on it or take a 

sip. 

trying to test the temp by touching the side of the cup with my cheek before attempting to drink 

it. 

I guess since I have done this before, I would be able to trust the robotic are to bring the cup 

close to my mouth to take a careful sip 
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I would carry carefully and take a tiny sip to assess temperature. Hopefully the robot arm moves 

smoothly and evenly. 

Move the arm very slowly placing the cup right in front of my lips. Purse my lips close to the 

liquid, gauging the temperature and carefully dip my upper lip into the liquid for temperature 

and if safe then for taste 

Again risking safety as you can’t feel it or even get close to it 

I would take a sip to determine if the coffee were too hot or too cold. 

I would bring it close to my mouth and see if I can determine the temperature 

maneuvering to lips and taking very small sip to test temperature 

bring it close and take a small sip 

bringing cup close to lips and see if i can determine temp 

bringing the cup slowly and carefully toards me and observing whether steam or heat is coming 

from the cup. If not, I may proceed to taste it. If I taste it and it is cold, I may choose to heat it. 

Bring cup to mouth and sip slowly to see the temperature. 

equip the arm with a thermometer 

I would bring it close to my mouth and test it by sipping. 

I would first take a sip to test the temperature. 

Place cup on table and try to observe if steam is coming off the coffee and possibly height of 

liquid. 

Taste it and take more action 

Leave it for a while and try. If too cold, heat it up 

I would first take a small sip and then decide 
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APPENDIX B: CONSENT FORMS 

This appendix includes two consent forms for experiments performed in this thesis. The consent 

forms were reviewed and approved by the Purdue IRB. The IRB approval for both experiments 

were obtained under number IRB-2020-17742. 
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RESEARCH PARTICIPANT CONSENT FORM (1) 

Multimodal Feedback Interface for Assistive Robotic Manipulator 

Prof. Bradley Duerstock and Prof. Juan Wachs 

Biomedical Engineering 

Purdue University 

 

Key Information 

Please take time to review this information carefully. This is a research study. Your 

participation in this study is voluntary which means that you may choose not to participate at 

any time without penalty or loss of benefits to which you are otherwise entitled.  You may ask 

questions to the researchers about the study whenever you would like. If you decide to take 

part in the study, you will be asked to sign this form, be sure you understand what you will do 

and any possible risks or benefits. You may also indicate preference for use of photographs or 

videos and future use of your data in the appropriate sections below. 

 

The main purpose of this study is to develop an effective multimodal feedback interface for 

users of assistive robotic arms. Such a feedback interface would allow users to access 

properties that they cannot access visually and are deprived from accessing due to the lack of 

direct contact with task. 

The main objectives of this study are: 

To design an effective multimodal feedback interface that delivers feedback of 

nonvisual task-related properties to the user. 

To validate the designed interface against the case of no feedback. 

To study user choice in the utility of the available feedback. 

The research project is expected to take ~18 months. 

 

What is the purpose of this study? 

The purpose of this set of experiments is to identify an effective combination of mapping of 

the properties to the available feedback modalities. We will determine this using the data 

collected from testing out the different possible combinations with participants, and analyzing 

cognitive load and accuracy. 

We would like to enroll 45 people in this study. 

 

What will I do if I choose to be in this study?  

During your participation: 

Prior to the experiments you will out a preliminary questionnaire that will collect information 

about your mobility limiting condition (if applicable) and screen for potential CoVid-19 risk 

factors. 

You will attend the experimental sessions following CoVid-19 safety guidelines. 

Prior to the start of the experiment, you will train on the device for a brief period. This will 

allow you to get familiarized with the control of the robot and the feedback types. 

You will be handed a vessel at the robotic arm, controlled by the 3D joystick. Feedback 

properties will be turned on. 

You will evaluate each property (for example temperature as too hot, hot, lukewarm, cold, too 

cold) while completing a pouring task. You will assess three vessels for each property to 

modality combination. This will be one set of trials. 
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You will complete a rating of your effort and cognitive load after each set of trials. 

You will repeat this procedure for six sets of trials. 

Additionally, photographs will be taken to demonstrate the setup of the system. Short videos 

may also be taken to demonstrate specific procedures or testing. Please indicate your 

permission for using photographs and videos in the confidentiality section below. Data may 

also be used in the future. Please indicate your preference for future use in the ‘Future Use’ 

section below.   

 

How long will I be in the study?  

One visit is expected to take ~1-2 hours. You will complete 6-10 visits depending on the 

duration per visit. Scheduling of visits will depend on your schedule. 

 

What are the possible risks or discomforts? 

This study is not expected to be much riskier than risks encountered in daily life.  

There are a few potential sources of risk in this study for which mitigation strategies are 

implemented: 

There will be a heating element placed on your skin for thermal feedback. A temperature sensor 

will continuously measure the temperature of this element, and it will not be allowed to reach 

beyond 120F. This is 20F below pain inducing temperature. Further, the thermal feedback 

provided to you will be far below 120F. There is also an ‘off’ switch for all the feedback 

modalities while the system is running, as an additional precaution. 

You will be operating a robotic arm with a 3D joystick. The arm is programmed to move very 

slowly, and you will be in control of its movements. The arm will be securely mounted on a 

base. There will also be an off switch for the arm as an added precaution.  

Breach of confidentiality is always a risk with data, but we will take precautions to minimize 

this risk as described in the confidentiality section. 

 

Are there any potential benefits?     

 

The main benefit of this study is intended to be to improve the experience of users of assistive 

robotic arms. You may also enjoy interacting with the system and the robot.  

 

Are there costs to me for participation?  

 

You may incur a travel cost to the location of the study (Purdue university), depending on your 

circumstances. No other costs are anticipated. 

 

This section provides more information about the study 

 

What happens if I become injured or ill because I took part in this study?  

 

If you feel you have been injured due to participation in this study, please contact: 

Mandira Marambe 

413-930-0001 

mmarambe@purdue.edu 
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Purdue University will not provide medical treatment or financial compensation if you are 

injured or become ill as a result of participating in this research project.  This does not waive 

any of your legal rights nor release any claim you might have based on negligence. 

 

Will information about me and my participation be kept confidential?   

 

The project's research records may be reviewed by the study sponsor/funding agency, Food 

and Drug Administration (if FDA regulated), US DHHS Office for Human Research 

Protections, and by departments at Purdue University responsible for regulatory and research 

oversight. 

The project's research records may be reviewed by departments at Purdue University 

responsible for regulatory and research oversight. Photographs or digital images and/or video 

of you performing the tests may be used for scientific publications and conference 

presentations with explicit permission from you. No records will ever be kept associating your 

name or any other identifiable personal information with these or any other data and 

information collected for this study. All identifiable data and research records will be stored in 

a locked cabinet.  Electronic video recordings will be stored on a secure, password protected 

server which only the research team will have access to.  Each participant will be assigned an 

arbitrary code that is linked to their identity.  The key for these codes will be kept in a location 

separate from the data.  Only the research team will have access to the identified data.  

 

_______  I give permission to use my photographs or video images for presentations and 

publications. 

 

_______  I do not give permission to use my photographs or video images for presentations 

and publications. 

 

What are my rights if I take part in this study? 

You do not have to participate in this research project.  If you agree to participate, you may 

withdraw your participation at any time without penalty. 

You may contact Mandira Marambe (information below) if you wish to withdraw your data 

from the study.  

Who can I contact if I have questions about the study? 

 

If you have questions, comments or concerns about this research project, you can talk to one 

of the researchers.  Please contact  

Bradley Duerstock: 765-496-2364 (PI) 

Mandira Marambe: 413-930-0001 (First point of contact) 

To report anonymously via Purdue’s Hotline see www.purdue.edu/hotline  

 

If you have questions about your rights while taking part in the study or have concerns about 

the treatment of research participants, please call the Human Research Protection Program at 

(765) 494-5942, email (irb@purdue.edu) or write to:  

Human Research Protection Program - Purdue University  

Ernest C. Young Hall, Room 1032  

155 S. Grant St.  

http://www.purdue.edu/hotline
mailto:irb@purdue.edu
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West Lafayette, IN 47907-2114  

 

Future Use 

 

May we share your accuracy and cognitive load data information without your name or 

identifying information attached with other researchers for future research projects related to 

other topics?  Yes          No 

 

Documentation of Informed Consent 

I have had the opportunity to read this consent form and have the research study explained.  I 

have had the opportunity to ask questions about the research study, and my questions have 

been answered.  I am prepared to participate in the research study described above.  I will be 

offered a copy of this consent form after I sign it.   

 

__________________________________________                           

_________________________ 

Participant’s Signature                                                                                  Date 

 

__________________________________________                           

Participant’s Name 

 

__________________________________________                          

___________________________ 

Researcher’s Signature                                                                                  Date 
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RESEARCH PARTICIPANT CONSENT FORM (2) 

Multimodal Feedback Interface for Assistive Robotic Manipulator 

Prof. Bradley Duerstock and Prof. Juan Wachs 

Biomedical Engineering 

Purdue University 

 

Key Information 

Please take time to review this information carefully. This is a research study. Your 

participation in this study is voluntary which means that you may choose not to participate at 

any time without penalty or loss of benefits to which you are otherwise entitled.  You may ask 

questions to the researchers about the study whenever you would like. If you decide to take 

part in the study, you will be asked to sign this form, be sure you understand what you will do 

and any possible risks or benefits. You may also indicate preference for use of photographs or 

videos and future use of your data in the appropriate sections below. 

 

The main purpose of this study is to develop an effective multimodal feedback interface for 

users of assistive robotic arms. Such a feedback interface would allow users to access 

properties that they cannot access visually and are deprived from accessing due to the lack of 

direct contact with task. 

The main objectives of this study are: 

To design an effective multimodal feedback interface that delivers feedback of 

nonvisual task-related properties to the user. 

To validate the designed interface against the case of no feedback. 

To study user choice in the utility of the available feedback. 

The research project is expected to take ~18 months. 

 

What is the purpose of this study? 

The purpose of this set of experiments is to identify an effective combination of mapping of 

the properties to the available feedback modalities. We will determine this using the data 

collected from testing out the different possible combinations with participants, and analyzing 

cognitive load and accuracy. 

We would like to enroll 45 people in this study. 

 

What will I do if I choose to be in this study?  

 

During your participation: 

Prior to the experiments you will out a preliminary questionnaire that will collect information 

about your mobility limiting condition (if applicable) and screen for potential CoVid-19 risk 

factors. 

You will attend the experimental sessions following CoVid-19 safety guidelines. 

Prior to the start of the experiment, you will train on the device for a brief period. This will 

allow you to get familiarized with the control of the robot and the feedback types. 

You will be handed a vessel at the robotic arm, controlled by the 3D joystick.  

You will complete a pouring task, using the feedback as an aid to make decisions relevant to 

the task. You will turn feedback modalities on and off as you see fit. Each trial will be classified 
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as a success or failure based on the decision you make. You will assess ten vessels for each set 

of trials. 

You will complete a rating of your effort and cognitive load after each set of trials. 

You will repeat this procedure for ten more trials without feedback. 

 

Additionally, photographs will be taken to demonstrate the setup of the system. Short videos 

may also be taken to demonstrate specific procedures or testing. Please indicate your 

permission for using photographs and videos in the confidentiality section below. Data may 

also be used in the future. Please indicate your preference for future use in the ‘Future Use’ 

section below.   

 

How long will I be in the study?  

 

One visit is expected to take ~1-2 hours. You will complete 2-4 visits depending on the 

duration per visit. Scheduling of visits will depend on your schedule. 

 

What are the possible risks or discomforts? 

 

This study is not expected to be much riskier than risks encountered in daily life.  

There are a few potential sources of risk in this study for which mitigation strategies are 

implemented: 

There will be a heating element placed on your skin for thermal feedback. A temperature sensor 

will continuously measure the temperature of this element, and it will not be allowed to reach 

beyond 120F. This is 20F below pain inducing temperature. Further, the thermal feedback 

provided to you will be far below 120F. There is also an ‘off’ switch for all the feedback 

modalities while the system is running, as an additional precaution. 

You will be operating a robotic arm with a 3D joystick. The arm is programmed to move very 

slowly, and you will be in control of its movements. The arm will be securely mounted on a 

base. There will also be an off switch for the arm as an added precaution.  

Breach of confidentiality is always a risk with data, but we will take precautions to minimize 

this risk as described in the confidentiality section. 

 

Are there any potential benefits?     

 

The main benefit of this study is intended to be to improve the experience of users of assistive 

robotic arms. You may also enjoy interacting with the system and the robot.  

 

Are there costs to me for participation?  

 

You may incur a travel cost to the location of the study (Purdue university), depending on your 

circumstances. No other costs are anticipated. 

 

This section provides more information about the study 

 

What happens if I become injured or ill because I took part in this study?  
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If you feel you have been injured due to participation in this study, please contact: 

Mandira Marambe 

413-930-0001 

mmarambe@purdue.edu 

Purdue University will not provide medical treatment or financial compensation if you are 

injured or become ill as a result of participating in this research project.  This does not waive 

any of your legal rights nor release any claim you might have based on negligence. 

 

Will information about me and my participation be kept confidential?   

 

The project's research records may be reviewed by the study sponsor/funding agency, Food 

and Drug Administration (if FDA regulated), US DHHS Office for Human Research 

Protections, and by departments at Purdue University responsible for regulatory and research 

oversight. 

 

The project's research records may be reviewed by departments at Purdue University 

responsible for regulatory and research oversight. Photographs or digital images and/or video 

of you performing the tests may be used for scientific publications and conference 

presentations with explicit permission from you. No records will ever be kept associating your 

name or any other identifiable personal information with these or any other data and 

information collected for this study. All identifiable data and research records will be stored in 

a locked cabinet.  Electronic video recordings will be stored on a secure, password protected 

server which only the research team will have access to.  Each participant will be assigned an 

arbitrary code that is linked to their identity.  The key for these codes will be kept in a location 

separate from the data.  Only the research team will have access to the identified data.  

 

_______  I give permission to use my photographs or video images for presentations and 

publications. 

 

_______  I do not give permission to use my photographs or video images for presentations 

and publications. 

 

What are my rights if I take part in this study? 

You do not have to participate in this research project.  If you agree to participate, you may 

withdraw your participation at any time without penalty. 

You may contact Mandira Marambe (information below) if you wish to withdraw your data 

from the study.  

Who can I contact if I have questions about the study? 

 

If you have questions, comments or concerns about this research project, you can talk to one 

of the researchers.  Please contact  

 

Bradley Duerstock: 765-496-2364 (PI) 

Mandira Marambe: 413-930-0001 (First point of contact) 

To report anonymously via Purdue’s Hotline see www.purdue.edu/hotline  

 

http://www.purdue.edu/hotline
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If you have questions about your rights while taking part in the study or have concerns about 

the treatment of research participants, please call the Human Research Protection Program at 

(765) 494-5942, email (irb@purdue.edu) or write to:  

Human Research Protection Program - Purdue University  

Ernest C. Young Hall, Room 1032  

155 S. Grant St.  

West Lafayette, IN 47907-2114  

 

Future Use 

 

May we share your accuracy and cognitive load data information without your name or 

identifying information attached with other researchers for future research projects related to 

other topics?  Yes          No 

 

Documentation of Informed Consent 

I have had the opportunity to read this consent form and have the research study explained.  I 

have had the opportunity to ask questions about the research study, and my questions have 

been answered.  I am prepared to participate in the research study described above.  I will be 

offered a copy of this consent form after I sign it.   

__________________________________________                           

_________________________ 

Participant’s Signature                                                                                  Date 

 

__________________________________________                           

Participant’s Name 

 

__________________________________________                          

___________________________ 

Researcher’s Signature                                                                                  Date 

 

 

 

  

mailto:irb@purdue.edu
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APPENDIX C: EXPERIMENTAL PROCEDURES 

This appendix includes step-by-step protocols for the experiments performed in this thesis. These 

protocols were reviewed and approved by the Purdue IRB. Appendix C1 lists the protocols for the 

screening experiments while Appendix C2 lists the protocol for the validation experiments. The 

IRB approval for both experiments were obtained under number IRB-2020-17742. 
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C1: SCREENING EXPERIMENT 

 

System: For each of the following experiments, the subject will control an assistive robotic arm 

via a haptic device configured as a 3D joystick, and will receive haptic, vibrational, visual, and 

thermal sensory feedback through the same haptic device, vibrating tactors placed on the arm, a 

display rendered on a computer screen, and a peltier device placed on the arm. 

Experiment 01: Screening Experiments 

For the pouring task, 

1. The subject was asked to provide some background information including age and if 

relevant, the nature of their physical disability. Information was recorded without the 

subject’s name or other personal identification factors. Prior to the experiment, the subject 

also completed two minutes of only responding to the DRT to collect a baseline. 

2. The subject was introduced to the robot and trained on it, including completing practice 

trials.  

3. The subject completed the pairwise comparison rating for metric weighting (see end of this 

section) 

4. The subject trained on feedback prior to each trial. The training procedure involved 

walking the subject across the feedback range in ascending and descending order twice, 

and then providing random renderings to assess. 

5. Vessels holding fluids of different weights and temperatures are placed in front of the 

subject. The subject was tasked with categorizing properties, for example, temperature as 

too hot for consumption, hot, lukewarm, cold, very cold or weight as empty, less than half 

full, half full, more than half full, full, etc. The subject also simultaneously responded to 

the Detection Response Task stimulus using a push button. 
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6. The subject was handed a vessel using the robotic arm, controlled by the haptic device. 

7. The subject categorized each property while executing a pouring task (The subject must be 

controlling the robot while assessing such that cognitive load is captured for the event when 

attention is split between modalities and task.).  

8. The subject assessed three vessels (trials) for each assignment pair. Each set of trials will 

collect information about one modality assignment for each property, resulting in a total of 

36 trials for the pouring task. The subject made three visits, one for each property. 

9. The subject completes the subjective preference rating (see end of this section) after each 

set of trials. 

10. The subject will repeat these steps for the second task and assess a second set of properties 

(with some overlap) for the same feedback modalities. 

 

Covid-19 Protocols: 

- Subjects were screened for symptoms and potential contact with 

patients verbally/via text communication prior to experiments 

- Subjects and researchers were required to wear masks for the 

duration of the experiments. 

- The equipment and devices in contact with the subject were 

sanitized prior to each session.  

- Subjects were brought in for experiments one by one. Only the 

subject and the graduate student researcher will occupy the 

research space during a session.  

- Subjects were provided with sanitizer after the experiment. 
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Metric weighting 

You are going to use this robot that you just trained on to make and drink a cup of coffee. This 

includes pouring coffee and milk in the cup, then deciding to drink it. Select which of the following 

factors is more important in each pair. 
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The initial temperature, 

weight, or amount of liquid in 

the vessel 

 

 

 

 

 

 

 

 

 

 

 

Or 

The change in temperature, 

weight, or amount of liquid in 

the vessel 

Your attention on controlling 

the robot to perform the tasks 

The overall mental demand of 

performing the task 

Your attention on controlling 

the robot to perform the tasks 

The initial temperature, 

weight, or amount of liquid in 

the vessel 

How you get information 

about temperature, weight, 

liquid level, etc. (e.g. on a 

screen, audio, vibration, etc.) 

The overall mental demand of 

performing the task  

The change in temperature, 

weight, or amount of liquid in 

the vessel 

The overall mental demand of 

performing the task  

How you get information 

about temperature, weight, 

liquid level, etc. (e.g. on a 

screen, audio, vibration, etc.) 

Your attention on controlling 

the robot to perform the tasks 

How you get information 

about temperature, weight, 

liquid level, etc. (e.g. on a 

screen, audio, vibration, etc.) 

The change in temperature, 

weight, or amount of liquid in 

the vessel 

The overall mental demand of 

performing the task 

The initial temperature, 

weight, or amount of liquid in 

the vessel 

The change in temperature, 

weight, or amount of liquid in 

the vessel 

Your attention on controlling 

the robot to perform the tasks 

The temperature, weight, or 

amount of liquid in the vessel 

How you get information 

about temperature, weight, 

liquid level, etc. (e.g. on a 

screen, audio, vibration, etc.) 
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C2: VALIDATION EXPERIMENT   

 

Experiment 02: Validation Experiments 

 

1. The subject was asked to provide some background information including age and if 

relevant, the nature of their physical disability. Information was recorded without the 

subject’s name or other personal identification factors. 

2. The same robot and training procedures as in Appendix C1 were followed prior to the 

experiment. 

3. For this experiment, the subject was tasked with going through a decision-making 

process relevant to the pouring task. The subject was tasked with making decisions in 

three use cases, including pouring at a given temperature, detecting an empty vessel, and 

estimating the tilt angle. 

4. Decisions were evaluated as successes and failures to obtain task success rate. The 

response time was also recorded with a stopwatch.  

5. The subject completed two trials per use case first without feedback using alternative 

strategies, then with the solution, and finally with the arbitrary mapping.  

6. The subject completed a subjective mental demand rating (see end of this section) after 

each trial. 

7. The subject will repeat these steps for each trial. 

 

Covid-19 Protocols: 

- Subjects were screened for symptoms and potential contact with 

patients verbally/via text communication prior to experiments 
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- Subjects and researchers were required to wear masks for the 

duration of the experiments. 

- The equipment and devices in contact with the subject were 

sanitized prior to each session.  

- Subjects were brought in for experiments one by one. Only the 

subject and the graduate student researcher will occupy the 

research space during a session.  

- Subjects were provided with sanitizer after the experiment. 
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