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GLOSSARY 

K-values A set of coefficients that weigh the PID factors and are adjusted to influence 

controller response. 

Rise Time The time a controlled system's output takes to ascend from ten percent to 90 

percent of the desired setpoint. 

Settling Time The time from the beginning of a control cycle until stabilization. 

Stabilization The point which a controlled output is maintained between two percent of 

the setpoint for a defined period. 

Percent Overshoot The maximum output a controlled system reaches divided by the systems 

setpoint. 
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ABSTRACT 

Industry 4.0 holds many promises for manufacturers; however, a shortage of qualified 

employees has prevented a swift adoption of the revolution's new technologies. Engineer and 

Economist Klaus Schwab argues Education 4.0 is the key to addressing the employee shortage 

and preparing future generations for the shifting labor market. To support Education 4.0, classes 

must allow students to engage emerging technologies that help bridge Operational Technology 

(OT) and Informational Technology (IT). The thesis detailed an educational laboratory that 

demonstrates the application of data analytics (an IT tool) and optimize the performance of a 

cyber-physical system composed of industrial (OT) components. The lab experience focuses on a 

disc's controlled positioning (levitating) using a PLC-based PID controller and a VFD. The 

activity requires students to capture data of a moving discs, create a machine learning function 

representing the disc's movement, and use the machine learning function for classification and 

PID optimization problems. A comparative analysis of a PID cycle ensures a regressions model 

accurately represents the physical model using measurements including peak-overshoot, rise 

time, settling time, and the flight plots' Means of their Squared Error. Further, the study 

examines multiple ML models each built using various features to identify the systems relevant 

and redundant data. 
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CHAPTER 1. INTRODUCTION 

The Fourth Industrial Revolution, termed Industrie 4.0 (IR4), holds great promise to 

manufacturers; however, challenges implementing the technologies have prevented a swift 

realization of its benefits. A 2018 study conducted by the World Economic Forum and their 

partner Mckinsey & Company predicts IR4 will create up to $3.7 trillion of new sales revenue 

through 2025 (Leurent, 2018, p. 4). The income will derive from Smart scheduling and 

optimized processing enabled by the nine pillars of IR4. Technologies like the Internet of Things 

(IoT) and Big Data analytics provide capabilities to optimize processes by limiting quality 

defects, solving production flow issues, and preventing excessive waste. The same technologies 

allow for Smart scheduling enabled by predictive maintenance and predictive ordering.  

The benefits of IR4 also go beyond monetary value, as the revolution promises to bring 

higher quality jobs and stronger customer relations.  Higher quality jobs come as advanced 

systems create a demand for programming and data science employees. Further, the technologies 

can eliminate or mitigate assignments that require repetitive motion, lifting heavy objects, 

hazardous material interactions, and work in dangerous environments. Customer relations will 

strengthen as companies gain the ability to meet more customer requests. Satisfied requests could 

include lower costs, on-time deliveries, and production demands like small batch sizes and 

higher ensured product quality.  

Companies have yet to implement these new technologies and practices despite their 

promise of substantial benefit.  The manufacturing industry often cites equipment costs, 

incompatibility, and a lack of employee expertise as barriers to adoption. A 2019 study 

conducted by Deloitte and MAPI included a survey of 600 US manufacturers and executive 

focus groups (Wellener, 2019, p. 3). The study confirmed that executives believe IR4 has 
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potential, as "85 percent of respondents believe Smart Factory initiatives will be the main driver 

of manufacturing competitiveness in 5 years" (Wellener, 2019, p. 5). However, the study also 

shows the challenges of its implementation. The report finds only 49 percent of the respondents 

have not planned any initiatives, and only 3 percent have achieved full-scale smart factory 

adoption (Wellener, 2019, p. 3). One of the biggest obstacles of transitioning to a Smart Factory 

(a factory with full IR4 technology integration through all levels of the company) is the vertical 

integration that converges Informational Technology (IT) and Operational Technology (OT). A 

2014 blind study conducted by Cisco surveyed 1230 IT and OT executives from several 

industries to understand the current industry environment (Noronha, 2014, p. 4). IoT is a 

fundamental pillar of IR4, serving as the spinal cord that collects and transfers data. The Cisco 

survey found that the most common need from vendors progressing toward IoT installation was 

strategic planning (Noronha, 2014, p. 16). A need for strategic planning shows companies seem 

to lack an understanding of how to establish technologies' use into an integrated multi-level 

model. Another hesitation that keeps companies from capitalizing on IR4 is the reward/risk ratio. 

Deloitte and MAPI's study quoted one executive regarding the challenges of the adoption of 

smart factories. Claiming, "in a production environment, making a mistake can bring a 

production line down or harm a human worker, so the stakes are very high" (Wellener, 2019, p. 

16). The executive proves that companies do not feel qualified to shift to new technology out of 

fear of potentially putting an operational facility at risk. 

Schools are needed to help build the workforce pipeline by preparing students to 

implement and utilize the new technologies to push IR4 into full adoption. Colleges have long 

been a source for employers to find employees with unique talents and fresh ideas. "Education 

4.0 Made Simple: Ideas For Teaching," written by Anealka Hussin, describes strategies for 
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implementing Education 4.0 topics (2018). Schools can aid in developing a workforce capable of 

adopting IR4 by presenting IoT and Big Data Analytics applications to students through hand on 

learning experiences. Labs like optimizing a PID controller for a levitation system allows 

students to see how OT and IT converge as the experience brings the two worlds together on a 

small scale. A levitation system also provides an opportunity to introduce Big Data Analytics, 

like Machine Learning (ML), through classifications problems and applying ML-based 

optimization strategies. 

1.1 Problem 

Engineer and economist Klaus Schwab has been a strong voice in the discussion about 

the future of IR4. Since 2015, he has argued that the dramatic technology changes require 

support through education advancements capable of preparing students for work in the field 

(Schwab, 2016). Schwab acknowledges two conflicting scenarios possible to arise from IR4, 

each to benefit from the education system. One bolsters higher quality jobs and economic growth 

through dropping trade costs dropping due to increased business efficiency and productivity 

(Schwab, 2016). The scenario depends on the education system to supply adequate employees to 

fill positions and use their ingenuity to drive business decisions. 

On the other hand, Schwab mentions a less favorable outcome which involves job losses 

due to automated machines, leading to greater inequality and social tensions (Schwab, 2016). But 

again, education systems can help bridge the gap between socioeconomic classes and provide a 

means to enter the technology workforce. With schools holding a vital role in the future of IR4, 

universities need to maintain a strong influence on the revolution by providing students with up-

to-date laboratories and skill development. 
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The thesis addressed the need for introducing new IR4 technologies into an introductory 

industrial controls course. Incorporating emerging technologies into underclass coursework 

provides a platform for showing students how Operation Technology and Information 

Technology converge in an industry environment, showcasing how control systems can integrate 

data analytics, like ML. Further, students need a creative way to engage with the technology that 

may come with a traditional class. Multiple STEM studies have found theoretical based courses 

correlate to lower grades, academic interest, student confidence, and retention rates, all of which 

point to a lower quality student experience (Coleman, 2019; Wladis, 2015). One study found that 

implementing active learning increased "student performance on examinations and concept 

inventories" by 0.47 SDs (Freeman, 2014, p. 8410). 

1.2 Significance of Problem 

Klaus Schwab emphasizes STEM skills to prepare future generations for the IR4. In 

recognition of STEM skills' future demand, in 2012, the US President's Council of Advisors on 

Science and Technology called for a 33% increase in STEM bachelor's degrees (Freeman, 2014). 

A subsequent global study evaluated 25 countries based on 52 indicators to gauge the 

preparedness for the coming wave of automation (McCauley, 2018, p.10). The study put a 

particular emphasis on STEM skills and argues, "few countries have begun to address the impact 

of automation through educational policy" (McCauley, 2018, p.10). Alp Ustundag, author of 

Industry 4.0: Managing the Digital Revolution (2018), points out that the demand for technology 

skills has already created an employee shortage and an intensified competition for skilled 

workers. Ustundag furthers that the lack of well-established paths for learning the skills and 

technologies of IR4 is a primary contributor to the shortage. 
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Purdue's School of Engineering Technology has a long history of academic offerings 

supporting those entering the manufacturing industry. Multiple laboratories equipped with 

industrial grade devices commonly found in manufacturing facilities support the delivery of 

applied instruction. The Furnas Foundation Controls Lab is a vital element of the process as it 

serves multiple classes, including Introduction to Industrial Controls and Manufacturing 

Integration. The introductory controls course alone hosts over 260 students a year. It is a required 

course for several majors, such as Mechanical Engineering Technology, Electrically Engineering 

Technology, and Manufacturing Technology. In addition, students in degree programs outside 

the School of Engineering Technology regularly enroll in the course to gain operational 

experience with devices and systems. 

1.3 Purpose 

The work details the development of a learning platform and process capable of allowing 

students to explore the application of data analytics, a critical IR4 technology, on an industrial-

grade system through the tuning of a PID loop to control the height of a disc hovering in the air. 

A tangent study also explores how the system and associated model can use ML for simulation 

or part identification. A regression function reflecting the disc's movement allows for students to 

solve the optimal PID flight path. Solving the PID values allows for the disc's stability and 

enables the disc to reach a target height in a minimum amount of time. Learning the effects of 

PID coefficients and how to optimize a PID is essential in control engineering. Industries also 

use classification problems for image processing and predictive maintenance. The platform 

allows students to apply simplified classification strategies to gain an understanding of 

classification programs. 
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1.4 Significance of Purpose 

As the Furnas Foundation Laboratory serves a large student population in multiple 

courses, a teaching platform has an opportunity to influence many students. The platform would 

provide real-world applications that apply both data analytics and technical equipment skills. 

Again, the cross between data science and engineering skills is precisely what many industries 

desire but struggle to find. Lee et al. (2017, pp.2-3) attribute the shortage to the idea that these 

types of employees do not exist when he says, "few experts exist who have domain knowledge 

on manufacturing components and the physics of these components, as well as professional 

knowledge and skills for big data analytics." A lab experience, as proposed, can help develop 

these employees and deliver them to starving industries. 

1.5 Assumptions 

For the study, the data analysis will assume all measurements are consistent and accurate. 

The assumption assumes that the physical setup will remain unaltered, having: the laser 

measuring to the same position on the disc, an undisturbed airflow to the blower, and the tube 

remaining vertical. Performance characteristic measurements used the nearest data outside the 

area of focus. For instance, for rise time measurements which require knowing when the disc is 

3.5 and 31.5 inches high, the time interval was based on the nearest point at which the disc was 

at or below 3.5 inches and the nearest point the disc was at or above 31.5. The study assumes 

rounding to the nearest value for any performance characteristic measurement does not affect the 

accuracy of the measurement, and therefore, is viable is comparisons purposes. Additionally, 

when calibrating the laser sensor, averaging the sensor's signals across various collections is 

expected to mitigate any noise captured in the laser sensor's analog signal. 
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1.6 Delimitations 

The study created an introductory learning module universally suitable to multiple 

laboratory stations; however, all measurements collected in the thesis are from only one station. 

Inconsistencies amongst different workstations may exist, such as defects in the tube that affect 

the disc's movement. Discrepancies amongst the stations may cause the PID controller's optimal 

solutions to not necessarily translate to other lab stations. Nevertheless, the same optimization 

strategy presented here can calibrate any similar stations for predictable use.  

1.7 Limitations 

 The experience is specific to equipment and software available to students in the Furnas 

Foundation Controls Laboratory during research activity. The OPT2011 laser sensor has a 

maximum range of three meters and would require an alternative sensor for a system that ranges 

beyond the detailed model. Additionally, the sensor can read measurements at 2ms intervals; 

however, programming challenges prevented capturing the height at rates beyond 60ms. While 

60ms was suitable for the study, parallel work may require faster update rates. The blower was 

also constrained to lifting objects heavier than .13 grams due the blowers limited output force. 

And cylindrical pieces shorter than 1 ½ inches rocked sideways and either get stuck inside the 

tube or drag on the tube's wall, increasing friction and complicating the function that detailed the 

disc's movement. The original project design considering levitating a tennis ball. However, 

minute adjustments of the VFD frequency caused the ball to move too volatile and created 

unreliable ML models. The detailed lab platform fails to accommodate all hoovering objects and 

those with complicated movement functions. 
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CHAPTER 2. REVIEW OF LITERATURE 

2.1 Methodology of Review 

The research sought to develop and evaluate a lab experience capable of introducing 

students to data analytics in industrial control systems applications using industrial-grade 

equipment. The study used a machine learning regression model to help optimize a hoovering 

disc's flight path by solving the system's optimal PID values. A second ML model will classify 

predictions for two discs based on how the discs move at a known height and VFD frequency. 

Preliminary research for the study included reviews of journal articles, industry white 

papers, Ph. D. dissertations, Master's theses, and company presentations.  Journal databases and 

web search engines inform initial searches. The selected databases focus on data science, 

electronics, general engineering/technology, and Ph.D. publications. Databases utilized for the 

search included Google Scholar, Scopus, and IEEE Xplore. While Google Scholar and Scopus 

provide a wide range of resources, IEEE Xplore was most valuable for its expansive selection of 

electrical engineering and computer science papers, all relevant to the paper's system integration 

and data analysis. Keywords used for the search included: Machine Learning, Applied 

Engineering, Cyberphysical Systems, Teaching/Learning Model, PID optimization, and 

Hovering/Levitation Device. Placing the keywords in quotations (quotations to generate results 

that explicitly include both words of a phrase. For instance, "Teaching Model") and tying them 

together in diverse combinations with the Boolean operator "and" helped narrow the search for 

relevant articles.  Publications are limited to those published after 2016. 
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Figure 2.1 A concept map of the study 
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Figure 2.1 Keywords/Phrases use for the Literature Review 

2.2 Review of Literature on the Problem/Purpose 

There were three focus areas for creating the teaching module: PID control and 

optimization, ML regression models, and ML classification models. Multiple instructional 

experiences on controlling a levitation device have already been proposed and studied at an 

academic level. While these studies were unique in the components, software, and control 

strategies, they each utilized a closed feedback loop to control a blower to levitate an object, just 

as done in this study. The following sections will provide background regarding the three areas 

of focus for this study and how each of these areas will connect to a central theme of using a 

levitation system to incorporate ML principles. 

2.2.1 PID Control and Optimization 

Multiple parallel studies have optimized their control loops by solving PID values that 

optimize a flight path (Tootchi, 2019; Solihin, 2011; Paz-Ramos, 2004). PID optimization is a 

shared goal of this study. The teaching module will use ML algorithms to illustrate how data 
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analytics can inform and aid in optimizing industrial control systems. In general, control loops 

are negative feedback, closed-loop systems that repetitively use measured values to calculate an 

output's deviation from a set value.  The difference, or error, is used to generate a response to 

stabilize a parameter (for instance: height, position, trajectory, temperature, flow rate). A PID 

controller generates the output by using a sum of three separate response loops of reacting to 

changes in error (setpoint less actual position). These independent loops focus on proportional, 

integral, and derivative responses to a dynamically changing error value. Hence, the name PID. 

Based on the desired output response, weights are placed on the Proportional (P), Integral (I), 

and Derivative (D) calculations and represented as KP, KI, and KD. Tuning the controller can 

generate an ideal performance by solving the optimal k values. There are various optimization 

strategies capable of solving the k values to varying levels of success. These optimization 

methods include Ziegler Nichols (Ziegler, 1942), Cohen Coon (Cohen, 1953), and automatic 

tools like MATLAB's pidtune function that uses a unique underwritten algorithm. Each strategy 

uses a mathematic formula that interpolates the object's projected height based on a given 

height/velocity and applied response to solve the optimal k variables. 

The expression representing the disk's height in the levitation chamber serves to optimize 

the coefficients of a PID controller tuned to stabilize the vertical position at a set point. The 

formula is generated from calculated theoretical forces or through experimental data of the 

object's movement. For a thesis at the University of Milan, Justin Kuzhandairaj (2018) also 

created an instructional experience based around a levitation device. Kuzhandairaj's system 

consisted of a ping pong ball and a slotted tube to contain the ball. Because his apparatus used a 

slotted tube, he used a Gaussian model to calculate airspeed due to the blower's airflow 

dispersing along the tube's length. The airspeed was a critical variable required to understand the 
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ball's air pressure and how it would move.  Jesus Chacon and colleagues at the University of 

Murcia and Ewelina Cholodowicz and Przemyslaw Orlowski at the West Pomeranian University 

of Technology each created similar levitation systems.  They used solid tubes to channel ping 

pong balls, allowing them to regularly treat the air velocity (Chacon, 2017; Cholodowicz, 2017). 

Each of these studies, including Kuzhandairaj's, developed their ping pong ball movement's 

theoretical function by balancing a force equation and applying Bernoulli's principle. 

Kuzhandairaj (2018) would go on to use MATLAB's tuning toolbox to optimize his controller. 

Cholodowicz (2017) also valued MATLAB's virtual optimization tools, providing a potential 

learning phase for students through the software's manual tuning functions. Manually tuning 

would allow students to implement and test various PID coefficients and visually examine 

differences in the coefficient's effects (Cholodowicz, 2017). Cholodowicz (2017) went on to 

optimize her controller by applying a genetic algorithm, defining a cost function equal to the sum 

of the ball's height error, a population size of 50, and constraining the variables between -10 and 

10. 

PID controllers have applications beyond levitation devices with more practical industry 

applications. Adam Nyberg studied the use of PID's to control Robotic movement. Nyberg 

(2017) sought to investigate the potential of using an evolutionary programming (EP) method to 

solve optimal PID variables by examining their effects on the robot's angular and linear 

velocities. Nyberg (2017, p.3) defined a route for the robot and the system's average error to 

evolve and solve the K parameters. Nyberg designed his study as a parallel study to two other 

studies. In those studies, authors optimized their controllers using similar soft computing 

strategies, one applying a genetic algorithm (GA) and the other using Particle Swarm 

Optimization (PSO). Nyberg (2017) used inspiration from a third study in which the different 
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optimization optimized the voltage draw of a theoretical DC motor. Nagaraj et al., from Kamaraj 

College of Engineering and Technology in India, conducted the original study. Like the studies 

revolving around the levitation devices, Nagaraj et al.'s (2008, p. 279) study used a theoretical 

mathematical equation to calculate the DC motor's transfer function. Their goal was to improve 

the motor's steady-state characteristics and performance indices by optimizing the motor output 

using the motor's transfer function. Nagaraj et al. (2008, p. 279) applied the three soft computing 

strategies EP, GA, and PSO, along with the two most traditional strategies Ziegler-Nichlos and 

Continuous Cycle, to generate five distinct PID loop cycles. Using an integral motor's PID, a 

defined setpoint served as a standard to compare the different strategies (Nagaraj, 2008, p. 279).  

The soft computing method proved to have a beneficial influence on the quality of the motor's 

PID loop by decreasing the rise time by up to 94 percent, the peak overshoot by up to 89%, and 

the settling time by up to 91 percent in contrast to the traditional methods (Nagaraj, 2008, p. 

280). 

2.2.2 Teaching Models Involving Machine Learning 

As presented, ML has been used to optimize a PID controller. However, the study will 

instead use ML to develop a function to calculate an appropriate VFD frequency setting based on 

the PID loop output. ML has the potential for an unlimited number of applications through an 

array of programming methods. Some of the most common ways include Regression, 

Classification, Clustering, Reinforced Learning, and Neural Networks. Regression and 

Classification models, both Supervised Learning algorithms, are built using inputs data that 

corresponds known output values. 

Bram van der Vlist et al., from the Eindhoven University of Technology, produced a case 

study of a teaching curriculum designed to teach students the programming and mathematic 
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principles behind some ML methods. The curriculum revolved around two projects, each that 

used an NXT programmable LEGO set to provide a tangible platform to experience an applied 

ML program (van der Vlist, 2008, p. 213). They also designed their strategy to help 

communicate the ML complexities to students who are not necessarily Mathematics and 

Computer Science majors; therefore, they are not necessarily comfortable with programming 

(van der Vlist, 2008, p. 213). The goal of their projects was much like the intentions behind this 

paper's proposed model. 

Van der Vlist's study had a shared value for a creating a tangible learning experience. 

Each study also hopes to accommodate students from various disciplines with a range of 

technology, programming, and mathematic skills. One of van der Vlist's projects consisted of 

creating a vehicle controlled by a Reinforced Learning algorithm (Q-Learning). In the case 

study, one group of students created a vehicle that used a mechanical arm with two joints that 

could be automatically adjusted to propel itself. It used a distance sensor to gauge its movement. 

The Reinforced Learning algorithm provided a positive reward if the vehicle moved forward and 

a negative penalty if it moved backward. With the initial program, the crawler makes seemingly 

random angle adjustments and forward/backward movements. However, with time, the crawler 

naturally refines its program as it develops an understanding of how to open and close its joints 

to move the vehicle forward (Van der Vlist, 2008, p. 210-211). A second project introduced 

students to Neural Networks. Students utilized the NXT's microphone sensor to sense a spoken 

word and display it on the NXT's screen. For their case study, the terms "Biertje" and 

"Champagne" were program into the system and linked to samples from the sensor. The NXT 

would distinguish between the two words with a neural network generated based on the sensor's 

amplitude signal (Van der Vlist, 2008, p. 213). 
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2.2.3 Machine Learning Regression Models 

Regression models identify relationships between a set of inputs and outputs. The models 

produce mathematical functions helpful for making predictions based on given information. 

MATLAB's Regression Learner app can generate the optimal function to fit a collection of input 

values to scalar values. MATLAB uses multiple algorithms and evaluate the model's accuracy 

using withheld test data to measure RMSE of the functions predictions versus the systems actual 

output. 

Liu et al. (2020, p.5) explored multivariable linear regression-based wavelet neural 

networks. Multivariable linear regression models seek to relate a dependent variable to two or 

more independent variables. Equation 1 provides a general formula for any number of k variables 

at any i interval (Brown). The equation weighs each independent variable x by multiply the 

variable with distinct coefficients β. The dependent variable y equates to the sum of all weighted 

coefficients within a standard deviation e. 

 

       yi = β0 + β1xi1 + β2xi2 +···+ βkxik + ei,    i =1,2,...,n.         (1) 

 

Simple linear regression models fit the data to a straight line following the same multivariable 

equation, only incorporating a single k variable. Conversely, multivariable linear regression 

models fit data to a plane for a complex structure of more than two variables (Brown).   

Liu et al.'s (2020) research revolved around a theoretical math-based simulated PID 

controller. The work utilized ML to predict the control system's output, enabling the calculation 

of the controller's optimal parameters (Liu, 2020). Liu et al. used the K values, inputs, and 

outputs of three preceding time intervals to predict the following output. Given the predicted 
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output, Liu et al. could solve for optimal K values at the future time increment to stabilize the 

system. 

While traditionally used for classification purposes, MATLAB's Regression Learner also 

offers support vector machines to solve regression functions. For regression models, SVM's 

define a line of best fit using margins to fit the data. For a two-variable system, SVM margins 

equally space support vectors to each side of a best-fit line. The margin widths and support 

vectors are calculated to optimally constrain data clusters and omit outliers. Kernels, valuable for 

multiple Machine Learning types, transpose data onto a higher dimension, allowing further 

separation between points and, thus, higher precision (Dufrenois, 2009). Planes and other 

complex structures can also project margins around multivariable functions. Many SVM 

programs can eliminate outliers and rerun the algorithms to further decrease sensitivity to false 

data (Zhu, 2001). 

Like SVM's, tree diagram models also encompass multiple algorithms and are valuable 

for either regression or classification problems. Trees split data into classes using binary yes/no 

questions. Algorithms identify splits that divide the data into two groups with the "minimal 

impurity of the child nodes" (Loh, 2011, p.14). A tree can split until each node contains a single 

point or until the node impurity no longer decreases below of predefined threshold (Loh, 2011, 

p.14). The tree's output Y variables represent numeric values for a regression model that allows a 

regression function to fit the tree's nodes (Loh, 2011, p.14). 

Gaussian Process (GP) models develop regression functions by analyzing all functions 

that fit a data set. For a collection of data, the GP identifies all possible functions that fit known 

values and creates a normal distribution of each function's output across a range of inputs. The 

prediction function is solved using the mean and covariance of all hypothetical outputs (Williams 
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1996). Williams (2006) describes how hyperparameters are adjusted, allowing the Gaussian 

function to miss the dataset and account for noise due to the data collection process. 

2.2.4 Machine Learning Classification Models 

Multiple regression learning algorithms also apply to classification problems. 

Classification models use a collection of inputs to predict an output among a discrete number of 

classes, contrary to predictions on a continuous scale. MATLAB's Classification learner supports 

classification models built using algorithms of tree diagrams, discriminant, Naive Bayes, nearest 

neighbor, and SVM's. Classification models are evaluated using test data and comparing the rate 

of misclassification divided by accurate predictions. 

Again, with classification problems, tree diagrams use a series of nodes to divide data 

based on data features. Contrary to regression trees, classification models conclude each tree 

with a leaf that represents a single class (Murthy, 1998, p.349). Thus, deriving a prediction 

requires only working through the series of nodes. Trees use a "greedy top-down fashion" 

construction, first identifying an optimal initial split (the root node) and incrementally using 

nodes to discriminate the data (Murthy, 1998, p.349). MATLAB also offers bagged trees that 

support collections of trees to create a single output function. Kwon and Carter (1990) explored 

using bagged trees for a single data set to reduce performance variance. 

The Nearest Neighbor strategy "assumes observations which are close together will have 

the same classifications" (Cover, 1967, p.21). Thus, examining a k-number of surrounding 

observations allows for the prediction of unclassified values. Multiple studies, including Sun and 

Huang (2010), explore adaptive k-value algorithms to identify the optimal k-value that increases 

model accuracy. 
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For classification problems, support vector machines seek to identify a function that 

divides the data by the different classes. Unlike regression models, the accuracy of an SVM for 

classification models increases as the function’s side margins increase. Soft margins allow for 

misclassified data, preventing the overfitting of a function. Because SMV's use vectors to divide 

classes, the strategy can only apply to binary problems or a set of multiple binary problems. 

Discriminant models are used exclusively for classification problems. The strategy 

assumes data classes fit normal distributions around distinct mean values (Xiaozhou, 2000). 

Algorithms calculate the mean and variance for distribution to determine the probability of a 

particular class at any input set. Areas where the probability of two different classes are equal 

define boundaries around classes (MATLAB, 2018). 

2.3 Review of Literature pertaining to the Methodology 

 Nagaraj et al.'s work provided a comprehensive analysis of a DC motor running on a PID 

controller. As a result, they were able to compare the motor's output Nagaraj (2008) and his team 

used four of the five most common performance indices to evaluate the diverse PID strategies 

(EP, GA, PSO, Ziegler-Nichlos, and Continuous Cycle). The performance indices included: 

Integral Square Error (ISE), Integral Absolute Error (IAE), Integral time Squared Error (ITSE), 

and Mean of the Squared Error (MSE) (Nagaraj, 2008). Another standard performance index 

used is the Integral Time Absolute Error (ITAE). The subject's error is measured in contrast to its 

target height across a time interval to calculate these indices. Figure 2.3 provides a plot of 

Nagaraj et a.'s different optimization strategies and their PID cycles.  
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Figure 2.3 Motor output for each optimization strategy (Nagaraj, 2008, p. 280) 

Table 2.3 provides the calculations of the performance indices for each PID cycle. Like 

Nagaraj et al., this study will use the MSE. The MSE will optimize the Physical system's PID 

which will serve as an index to compare the theoretical/virtual optimized models with the actual 

physical model.  

Table 2.3 Comparisons of performance of optimization strategies (Nagaraj, pg. 280, 2008). 

Performance 

Indices 

Z-N (step 

response) 

Kappa-

Tau 

Continuous 

cycle 

EP GA PSO 

ITAE 3.3805 3.3113 7.82 .0721 .3781 .0229 

IAE .5176 .5188 .56 .4891 .7712 .9161 

ISE 2.3467 2.2503 3.2 1.0277 1.0435 1.0016 

MSE .0117 .0112 .016 .0051 .0052 .0050 
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For further analysis, Nagaraj (2008) also measured each cycle's steady-state 

characteristics, including their rise time, settling time, and peak overshoot. These steady-state 

characteristics will also serve as standards for comparing the theoretical/virtual models with the 

physical model. Table 2.3.2 displays Nagaraj's measurements. 

Table 2.4 Comparisons of steady-state characteristics (Nagaraj, 2008, p. 280) 

Characteristics ZNST Continuous 

cycling 

PSO EP GA 

Peak over shoot (%) 41.4 87.6 8.81 13 12.9 

Settling time (sec) 2.56 4.31 .205 .324 1.15 

Rise time (sec) .242 .0474 .014 .0317 .0385 
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CHAPTER 3. RESEARCH METHODOLOGY 

 Chapter three contains five sections. The first section provides a detailed description of 

the proposed physical teaching model. The second describes creating a Machine Learning 

regression algorithm that captured the function of the physical system. The regression algorithm 

was necessary to optimize the systems' operation through a theoretical model. The third section 

covers the optimization strategy. The fourth section details the data collection process for 

building the classification model. Finally, the fifth section reviews the evaluation process that 

comparing the two models to ensure the virtual model is an accurate representation of the 

physical system and can provide solutions that translate to the physical system.  

3.1 The Physical Platform 

The regression model test used a 0.1-gram hovering disc was 3-D printed with PLA. And 

the classification used a second disc designed to reduce mass. Appendix A and B provide the 

dimensions for Disc One and Two, respectively. Figure 3.1 provides a picture of the two discs. 

Disc One, used for both the regression and classification testing, is on the right side of the figure. 

The disc levitates inside a clear six-foot-tall tube. The outside diameter of the tube is 3 inches, 

and the inside diameter is 2.75 inches. A 3-phase 240-volt blower fastened to the bottom of the 

tube propels the disc upward. An Allen Bradley PowerFlex-523 Variable Frequency Drive 

(VFD) controls the blower's speed by adjusting the motor's frequency with a precision of .01 Hz. 

The VFD works compatibly with an Allen Bradly Compact Logic 5380 PLC. The Compact 

Logix 5380 is programmed using Studio 5000 and serves as a PID controller for the project, 

calculating and controlling the VFD's frequency. The physical system also relies on a laser 

sensor to measure the disc's height. The sensor is an Opti2000 and measures the entire length of 
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the tube, capable of a range between fifty millimeters and 3050 mm. A 3-D printed fixture holds 

the sensor at the top of the tube. The laser has a maximum sampling rate of 50 Hz, meaning the 

sensor can collect a reading once every 20 ms. Figure 3.2 displays a block diagram of the 

physical components in the system. Appendix C provides a wiring diagram for the system. 

 

Figure 3.1 Discs used for classification and regression model testing 
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Figure 3.2 A block diagram of the physical system 

3.2 Machine Learning Regression Model 

A regression model was essential for the program to simulate the disc's movement 

allowing for PID optimization and controlling the program's disc movement. MATLAB's 

Regression Learner generated an algorithm capable of solving quantitative solutions based on 

inputs. The ML algorithm processed three input variables (initial disc height, initial disc speed, 

and VFD frequency) and calculated two output variables (resulting disc height and resulting disc 

speed). Predicting the disc's resulting height and velocity is critical to simulating the disc's flight 

path over time. 
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The ML model required a dataset of sample data to generate a relationship between the 

input and output variables. The dataset will come from samples of the disc's movement while 

running the physical system programmed with a PID controller and predefined PID values. A 

trace in Studio 5000 collected the output and input samples at .06 second intervals. The samples 

captured the disc's movement using an array of programmed PID values, each set defined for one 

minute. Each sample collection for the various PID values began with the disc at the height of 

zero. Using multiple sets of predefined PID values helped supply a variety of data for the basis of 

the ML model. Table 3.2 displays the PID values for the sample collection process. Additionally, 

the sampled of the disc moving at fixed frequencies. Fixed VFD frequencies for data sampling of 

the disc's movement included: 0, 10, 20, 25, 30, 32.5, 34,35,36,39, 40, 42, 46, 48, 50, 52, 54, 56, 

and 60 hz. Tests showed that frequencies at 36 hz and below caused the disc to fall. So, for fixed 

frequencies at and below 36 hz, a program set the motor frequency at 45 hz, holding the disc at 

the top of the tube until the frequency shifted to the predefined frequency. Frequencies at and 

above 39 caused the disc to rise, so sampling began while the disc was at the bottom of the tube 

and the VFD was set to zero hertz. 

Table 3.1 PID values for data collection 

Sample Collection P I D 

1 10 10 10 

2 10 10 25 

3 10 25 25 

4 10 25 10 

5 25 25 25 

6 25 25 0 

7 25 25 10 

8 25 10 25 

9 15 10 25 

10 5 10 25 

11 5 10 10 

12 5 5 10 
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3.3 PID Optimization 

 MATLAB's automatic optimization function (fminsearch) optimized the disc's flight path 

for KP, KI, and KD. The optimization process aimed to reduce the disc's settling time, rise time, 

and overshoot, based on a target height of 35 inches. For the study, hoovering between 34.25 

inches and 35.75 inches for at least 3 seconds defined stabilization at 35 inches. The optimization 

program started the simulated disc at zero inches and constrained the disc's flight path to three 

minutes. The disc's flight path MSE versus the set point served as the cost function for 

MATLAB's fminsearch tool.  A low and ideal MSE reflects a fast rise time, a slight overshoot, 

and a quick settling time. Using diverse K values, the PID controller automatically generated an 

array of MSE solutions, allowing a quantifiable comparison of the tuning parameters.  Equation 

2 provides a general formula for the controller. 

𝑈 = 𝐾𝑃𝑒(𝑡) +  𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑃
𝑑

𝑑𝑡
𝑒(𝑡)          (2) 

The formula solves an appropriate response frequency to enable the disc to reach the target 

height. The PID controller will naturally constrain the ML response frequency to the limits of the 

motor and drive to ensure safe operating conditions. A continuous looping of the PID stabilizes 

the disc at the target of 35 inches. The ML predictors satisfy the formula's request for a continual 

update of the disc's height and speed, required in a continuous feedback loop. 

3.4 Machine Learning Classification Model 

Classification models have gain attention for predictive maintenance and part 

identification applications. The detailed lab platform can introduce students to classification 

problems by covering the transparent tube and challenging the students to identify a disc based 

on how the disc moves. Classifying between two discs corresponds to predictive maintenance 
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industry challenges. For a concealed system that utilizes multiple components, classification 

models can help identify a particular part that has failed based on the system's operation or a 

consequential noise. Models can also identify types of problems. For example, relating to the 

levitation of a disc, rust on a metal disc may cause added friction that slows the disc down. 

Likewise, particle accumulation on the disc may add weight and destabilize the disc, affecting 

the movement of the disc. Certain problems, like rust, may be critical in contrast to other system 

failures; and, therefore, vital to distinguish. Students can experience the same classification 

challenges by creating a model capable of deciphering between two discs. In the detailed model, 

the lighter disc may represent a normal state.  The heavier disc may correspond to an abnormal 

state like a disc with corrosion build-up, as the heavier disc has more surface area on the wall, 

thus is susceptible to more fiction and requires more lift. 

Samples for Disc Two followed identical procedures for Disc One. MATLAB's 

classification learner applied multiple algorithms to the data to identify the ideal algorithm. 

Unlike the regression function, the classification functions are put directly to a test using testing 

data. Like for the regression model, testing data comes from sample data withheld during the 

building process. 

3.5 Model Analysis 

 In theory, the two models, the physical and ML, create identical disc flight paths. 

However, because the ML model is a mathematical representation of the physical model and 

based on limited test samples, the ML model may not accurately represent the physical system. 

The study used comparative analysis to compare the disc flight paths on the physical and virtual 

systems using the same PID values to test if the ML is viable for deriving solutions. The physical 

system ran the optimal PID values to generate a plot of the disc movement from a starting height 
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of 0 inches to stabilization at 35 inches. A Studio 5000 recorded the disc's height every 60 ms 

using the laser sensor. The theoretical model in MATLAB operates using the same starting 

height and set point. Comparing the two plots involves evaluating differences between peak-

overshoot, rise time, settling time, and the MSE. 

3.6 Lab Experience 

  The detailed platform was developed for integration into an entry-level industrial controls 

course. The laboratory can accommodate students from diverse majors and is completable with 

no prior experience outside of the course. The lab experience contains two parts: one to explore 

using a regression model to optimize the systems PID controller. The second is to explore using 

a classification model to identify a disc based on flight movement. One potential avenue for 

integrating the platform into curriculum involves students following the methodologies laid out 

by the paper to create ML models, optimize a PID controller, and identify discs based on disc 

movement. The study did not focus on the platform's efficacy to deliver material to students. 

Instead, the study was designed to explore the platform and test the effectiveness of using 

Machine Learning to solve associated problems. 
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CHAPTER 4. RESULTS 

 The Machine Learning models explored for the work provided a simplified and simulated 

means to solve problems that exist on a physical counterpart. Gauging the accuracy of the 

machine learning model against a physical system ensures the theoretical model is viable for 

deriving accurate solutions. Identifying relevant and redundant variables was key to establishing 

precise ML models. Comparing an array of multiple ML models, each built upon different 

features, provided clarity on the importance of each variable. 

The blower's frequency is a critical variable as it controls the amount of air flowing 

through the tube and is responsible for the upward push on the disc. The disc's height is 

significant because of potential defects, like narrow spots along the length of the tube. The disc's 

height is also crucial for predicting the disc's future position. The disc's velocity and acceleration 

provide an idea of the disc's future height. Additionally, prior samples of each relevant variables 

are valuable for understanding the disc's resulting height. Table 4.1 shows that previous samples 

of the blower's frequency influence the lift of the disc due to a delayed windup of the blower. 

The table displays the disc's movement data at a fixed blower frequency of 60 hz. The data 

shows that from the initial time the VFD first read 60 hz, the blower took 480 milliseconds to 

start lifting the disc. 
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Table 4.1 Delay of blower impact 

Time (s) VFD Frequency (hertz) Height (in) 

0 0 -.2323 

.06 60 -.1997 

.12 60 -.1865 

.18 60 -.2075 

.24 60 -.1528 

.3 60 -.1528 

.36 60 -.1977 

.42 60 -.2610 

.48 60 -.2219 

.54 60 -.1705 

.6 60 .4366 

.66 60 .4366 

.72 60 2.2704 

.78 60 4.8588 

.84 60 8.2688 

 

Similarly, past samples of the disc's height are also valuable. The iterative height 

measurements allow for velocity, acceleration, and jerk measurements. The 60 ms data collection 

rate corresponded MATLAB's height predicting increment. Thus, the sampling period became 

obsolete, allowing MATLAB's Regression Learner to determine the relationship between the two 

height measurements. Therefore, the required velocity calculations and prediction for the 

proposed ML model became redundant. Table 4.2 is an example set of data for the proposed 

model, capable of predicting height and velocity using previous velocity measurements. Table 

4.3 is an example set of data for a height predicting model which excludes velocity data. For 

comparison purposes, the paper analyzes ML models, including and excluding velocity 

measures. 

 



 

 

 

39 

 

Table 4.2 Data collection example w/ velocity measurements 

VFD_2 Height_2 VFD_1 Height_1 Velocity_1 VFD Resulting_Height Resulting_Velocity 

4407 -.3073 4411 -.2195 1.4638 4467 .6300 14.1575 

4411 -.2195 4467 .6300 14.1575 4227 1.1759 9.0987 

4467 .6300 4227 1.1759 9.0987 4304 1.5759 6.6666 

4227 1.1759 4304 1.5759 6.6666 4407 2.3464 12.8415 

Table 4.3 Data collection example w/o velocity measurements 

4.1 Regression Model Analysis 

Gaussian Process Regression and Stepwise Linear regression for Height Predictor 

consistently generated functions more accurately than other algorithms. The linear models stood 

out for their fast generation. Figure 4.1 provides a visual representation of the predicted height 

responses versus actual responses for the machine learning model that used 15 samples of the 

immediately prior data measurements. Table 4.4 includes accuracy measurements for each of the 

different models. All the models built excluding the velocity calculations generated models with 

a RMSE between .28 and .41. The models built using the velocity data required two models, one 

to predict height and one to predict velocity. Height predictors using velocity data had a RMSE 

of approximately 0, because the data existed to calculate the next height. However, the velocity 

predictors had a RMSE of 7, diminishing the overall accuracy of the height predictor which 

relied on the velocity predictor for future predictions.  

VFD_2 Height_2 VFD_1 Height_1 VFD Resulting_Height 

4407 -.3073 4411 -.2195 4467 .6300 

4411 -.2195 4467 .6300 4227 1.1759 

4467 .6300 4227 1.1759 4304 1.5759 

4227 1.1759 4304 1.5759 4407 2.3464 
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Figure 4.1 Height predictor model accuracy 

Table 4.4 Comparison of ML models to physical model 

Model Accuracy 

(RMSE) 

MSE Rise_time (s) Percent_Overshoot 

(%) 

Settling_Time 

(s) 

Physical System - 74.49 1.32 14.97 31.68 

ML_2it w/Velocity ~0/~7 78.4 1.86 19.34 32.76 

ML_2it .404 81.33 1.92 33.09 36.66 

ML_3it .302 78.45 1.92 30.28 32.16 

ML_4it .315 77.09 1.92 22.17 33.36 

ML_5it .312 78.56 1.92 23.9 30.9 

ML_15it .28 70.57 2.22 18.08 10.62 

Note: #it signifies the number of immediately prior sample measurements of Height and VFD Frequency used to 

build the ML models  



 

 

 

41 

 

Appendix D displays an excerpt from the MATLAB-based PID controller. The code 

predicts the height to make PID calculations. To provide a simplified visualization of the 

relationship of the k-values, Figure 4.2 illustrates a contour plot when the derivative gain is set to 

zero. The chart details the k-values against the MSE calculations of the simulated disc flight path 

for a range of Ki and Kp values. Note the minimization of the MSE calculation as the K values 

simultaneously increase and the maximum MSE results when Ki is negligent. The pattern 

remains consistent for the 3D scatter plot detailed by Figure 4.3, which incorporates values for 

all three variables, simultaneously representing the proportional gain (X), integral gain (Y), and 

derivative gain (Z). Figure 4.4 also provides a scatter plot of the three variables, except having 

increased maximum constraints, showing the integral coefficient's diminishing effect. 

 

Figure 4.2 Contour of Kp vs. Ki 
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Figure 4.3 Optimized solution based on MSE 

 

Figure 4.4 Optimized solution based on MSE (2) 



 

 

 

43 

 

The Monte Carlo sampling depicted in Figure 4.3 providing a starting point for the 

Nelder-Mead algorithm of the fminsearch. The Monte Carlo found a minimal solution of (22.93, 

22.54, 22.21). After one hundred iterations of the Nelder-Mead algorithm, MATLAB found an 

optimal solution (26.707, 24.2246, 20.8477).  Figure 4.5 depicts an actual and simulated flight 

path for a disc specific to the optimal solutions from the fminsearch. The figure illustrates a 

machine learning model's output using the complete data set including velocity data excerpted by 

Table 4.2. The simulated model shows the disc rising and falling corresponding to the physical 

system, each rising to a height less than two percent different and less than one second apart for 

the first two peaks. However, the physical system shows sensitivity to noise noticeable by the 

increasing oscillations after one hundred seconds. The noise captured by the physical system 

signals unaccounted features. Such as airflows blockage preventing consistent air pressure or the 

disc catching on the side of the tube.  

 

Figure 4.5 The PID comparisons 



 

 

 

44 

 

Figure 4.6 provides a compilation of the six ML models against the physical system to 

show the effect of using various data inputs. Table 4.4 (p. 32) displays the measurements for 

comparing the fight paths. The model based on fifteen samples of prior data generated the 

highest model accuracy for the exponential Gaussian process regression algorithm, consistent to 

Table 4.1's (p. 30) evidence that the system has a delayed effect. However, an overlay of the 

flight paths shows the model built using 15 prior samples of data has timing inaccuracies of the 

ML models peaks and valleys. The 15 prior sampled ML model created a smoother plot, lacking 

the rapid fluctuations that exist throughout the physical system's data. Again, the fluctuations are 

likely caused by the disc catching the side tube, air density inconsistency, and sensor noise. The 

performance characteristics listed by Table 4.4 also illustrate the inaccuracy of the model built 

using the fifteen prior samples. For comparison purposes, each performance characteristic proves 

uninformative when viewed individually but valuable when analyzed as a collective. Individual 

characteristics can create an illusion for a correlation between the physical model and the 

simulated, despite other elements of the flight paths showing discrepancies. The 15 sample based 

model had a rise time a full standard deviation (.24 seconds) beyond the other times. Likewise, 

the same model had a settling time one third the settling time of the physical system and other 

models. 

Each model inaccurately predicts an immediate rise and fall of the disc. The fixed 

frequency data cause inaccurate steep spikes at the beginning of each flight path. The attenuation 

of the false spike's height as the number of prior samples used for a model increases is evidence 

of the fixed data creating the spikes. Each addition of a prior measurement to generate the ML 

models required one less sample of the resulting disc height. Subsequently, the ML models using 

more prior data samples have smaller datasets, showing the disc rising to a lower height for 



 

 

 

45 

 

specific frequencies and falling from a lower elevation at certain frequencies. The ML that used 

velocity data showed a negligent false spike and overshoot closer to the physical system than the 

four other models. 

 

Figure 4.6 ML models vs. physical system 

A compilation of the models programmed to fixed frequency, depicted by Figure 4.7, 

provides a simplified visual for model comparisons. At 48 hz, all models rise from zero inches to 

60 inches no more than .06 seconds different from the physical system rise time. However, the 

models fail to match the delayed rise of the physical system's displayed response. The addition of 

prior measurement samples helps capture the delayed response. The ML model that uses velocity 

predictor, which performed closest to the physical system while using the PID controller, fails to 

recognize the constraints at the tube of the tube which limits the disc to a height of 68 inches. 
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Figure 4.7 ML models vs. physical systems at 48 Hz 

4.2 Classification Model Analysis 

 The value of classification models are direct, as they allow users to categorize an 

unknown object based on a set of features. The data height measurement data reflect the velocity 

and acceleration at various VFD frequencies. Since Disc Two weighs less than Disc 1, the two 

discs move at different speeds despite identical conditions, allowing the program to decipher the 

disc. The Classification Learner's K-Nearest Neighbor (KNN) consistently outperformed the 

other algorithms. Figure 4.8 displays a confusion matrix of test data results run through the 

algorithm contrasted to actual responses. Table 4.5 provides a comparison chart listing the 

accuracy of multiple models each built including and excluding velocity data and using a 

different number of prior samples. The models struggle to distinguish between the disc when the 

model is stable at the top and bottom of the tube, where the disc does not have velocity and is not 

accelerating. The randomly generated test samples challenge the comparison of the model 
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accuracies. One test may capture values easily discernable by the model, while another evaluates 

samples where the separate disc's clusters converge. The RMSE calculations of the models differ 

1.2 percent, representing 124 samples. However, the accuracy percentage differences may 

slightly change depending on the sample used for testing. A controlled experiment would use the 

same testing sample for each test. 

 

Figure 4.8 Classification confusion matrix 

Table 4.5 Classification model comparisons 

Model Accuracy (%) Accuracy w/velocity data (%) 

Fine NKK 5it 98.2 98.3 

Fine NKK 4it 98.2 98.4 

Fine NKK 3it 98 97.9 

Fine NKK 2it 97.6 97.2 

 

 Unfortunately, testing the classification model on a live program requires an external 

computer to execute a python file. MATLAB embeds the regression function, hiding the 
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coefficients. A live program requires exporting the software's compact functions, which is 

impossible. Azure also provides a platform to build Machine Learning models and can export the 

model to a python code. The PLC can capture the disc data movement and communicate to a 

connected Raspberry Pi executing the ML python code. Time constraints prevented the 

connecting the Raspberry Pi and PLC.    
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CHAPTER 5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The thesis explored a cyber-physical system as a potential tool to apply Machine 

Learning models to solve Industrial Control problems. Further steps center on crafting a 

curriculum that integrates the platform and tests the tools effectiveness of conveying experiences 

to students. The process proved viable for creating ML models useful for solving problems.  

5.1 Conclusion 

For both the regression and classification tasks, the ideal model balances model accuracy 

while limiting data processing. When examining the flight paths, the model built using four 

samples of prior data captures the tube's height limit, begins to capture the VFD's delayed effect, 

and matches the PID flight closers to the other models. The model is also the point of 

diminishing return for the classification task. Meaning adding further samples of prior data fails 

to increase the model's accuracy. The fact that the model is optimal for both tasks confirms that 

four samples of prior data are the most insightful information for describing the disc's movement. 

The initial walkthrough of the experience provided a challenge that would push students 

to consider possible relevant variables and identify redundant ones, an important part of learning 

to build ML models. The experience also does well at illustrating PID controller principles. 

Contrast to using the ZN optimization strategy, which identifies a single solution, the Monte 

Carlo and Nelder-Mead methods show an array of k-value combinations exist. MATLAB plots 

provide a visual to understand how different k-value combinations compare and show the 

individual effect of each PID coefficient. MATLAB also provides granular control to obtain 

application specific flight paths. For instance, additional lines of codes could penalize an object 
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for going over the target height, allowing students to find an optimal solution that prevents 

overshoot. 

5.2 Recommendations 

Condensing the material is critical to delivering the lab experience, as students will only 

have one or two lab periods to complete the task. Providing a data set of the disc movements 

would help reduce sampling time. Processing and filtering the data is tedious, so providing a data 

set would also save students time and prevent the students from making mistakes and affecting 

the model's accuracy. Students could add a small amount of data to the provided data set, 

allowing them to experience and understand the data processing and filtering, yet bypassing the 

full-time intensive task. A data set would also offer students a pattern to follow, guiding the 

incorporation of prior samples of data to ease the challenge. Students would only need to create 

their own PLC program to control the VFD and capture the height of the disc at 60 millisecond 

intervals. 

Giving the students the PID optimization MATLAB code would further assist students to 

complete the lab. MATLAB based courses are not a prerequisite for the course; therefore, 

students may lack knowledge of navigating and programming the software. Various challenges 

can push the students to fully grasp the MATLAB program, such as adjusting the time frame, 

changing the target height, programming a dynamic target height, or preventing overshoot, all 

possible requirements for real-world applications.   

The classification problem, which requires an external computer for live predictions, is 

ideal for manufacturing integration courses. Manufacturing Integration courses introduce 
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students to device communication protocols and PYTHON programming, preparing students for 

the challenge.  
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