
MACHINE LEARNING IN THE OPEN WORLD
by

Yicheng Cheng

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Mehmet Murat Dundar, Chair

School of Computer & Information Science

Dr. Petros Drineas

School of Computer Science

Dr. George Mohler

School of Computer & Information Science

Dr. Antonio Bianchi

School of Computer Science

Approved by:

Dr. Kihong Park

2



ACKNOWLEDGMENTS

Throughout the writing of this dissertation I have received a great deal of support and

assistance.

I would first like to thank my supervisor, Prof. Murat Dundar for the continuous support

of my PhD study and research, for his expertise and advise in formulating the research

questions and methodology. His guidance helped me all the time of research and writing of

this thesis. He has taught me to systematically organizing my research and experiments,

and gave me lots of valuable suggestions on writing and representation. The methodology

and philosophy I learnt from him is beneficial not only for my PhD research but also for my

future career.

I would like to acknowledge Prof. George Mohler and Prof. Bartek Rajwa for the

collaboration of research papers. These papers are important contributions to my research

and thesis. They are publishable only with your collaboration and help.

I would like to thank my advisory committee, Prof. Petros Drineas and Prof. George

Mohler for their support and advise throughout the proposal until the defense of my thesis;

and my exam committee Prof. Jianzhu Ma and Prof. Antonio Bianchi. Thanks for your

time and patience for listening and advising on my research. Your support is valuable for

the completion of my research and thesis.

I would also like to thank TL. Jingzheng Qin, Dr. Zhen Qin, and Dr. Haifeng Gong for

hosting my internship. Thank you for offering me the opportunity and project for summer

2019 and 2018 at Google. I have gained valuable experiences from my internship projects.

Though not included in my thesis, the knowledge I learned is inspiring for my research and

thesis.

In addition, I would like to thank my parents and friends for the financial, spiritual, and

emotional support. Thanks for their support of my decision of pursuing a PhD in a country

on the opposite side of the earth to my hometown; thanks for them to cheer me on when

I was frustrated during my research; thanks for my friends who discuss my research ideas

with me and gave me inspirations. Only with their support I can finish my PhD.

3



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 NON EXHAUSTIVE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Adaptive I2GMM: A Unified Approach to Classification and Clustering for

Non-exhaustive Learning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 The Infinite Mixture of Infinite Gaussian Mixtures (I2GMM) . . . . . 19

2.1.2 Adaptive I2GMM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Hyperparameter Inference . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Experiments with Simulated Data . . . . . . . . . . . . . . . . . . . 31

Experiments with Benchmark Datasets . . . . . . . . . . . . . . . . . 31

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Applications to Seismic Fault Detection by a Coupled ETAS-I2GMM Point

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Infinite mixture of infinite Gaussian mixtures . . . . . . . . . . . . . 36

EM inference for ETAS . . . . . . . . . . . . . . . . . . . . . . . . . 38

Joint inference of the ETAS-I2GMM  . . . . . . . . . . . . . . . . . . 38

Baseline ETAS model with histogram estimator . . . . . . . . . . . . 39

ETAS model with variable kernel estimates . . . . . . . . . . . . . . 40

2.2.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 40

Experiment 1: goodness of fit of ETAS-I2GMM applied to CA earth-

quakes 3.5 and greater since 2000 . . . . . . . . . . . . . . . 40

4



Experiment 2: ETAS-I2GMM for event-fault linkage from space-time

event data . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 The Analog Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Heuristic Parameter Learning for I2GMM . . . . . . . . . . . . . . . 48

3 NON-EXHAUSTIVE FEATURE LEARNING . . . . . . . . . . . . . . . . . . . . 51

3.1 Variational Auto-encoding IGMM . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Generative Model for VAIGMM  . . . . . . . . . . . . . . . . . . . . 53

Variational Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . 54

Interleaving Training and Restricted Sampling for Non-exhaustive Learn-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 The Centroid Margin Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Applications to Segmentation of Sub-cell Structures in Multiplex Stimulated

Raman Scattering Images by Open World Feature Learning and Nonpara-

metric Bayesian Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Weakly Supervised Label Generation . . . . . . . . . . . . . . . . . . 63

3.3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3D Convolutional Autoencoder for Weakly Supervised Hyperspectral

Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 66

Centroid Margin Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 68

List of Compared Models . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Applications to Non-Exhaustive Cell Segmentation with Electron Microscopy

Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Asymmetric Centroid Margin Loss . . . . . . . . . . . . . . . . . . . 80

5



3.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 OUT OF DISTRIBUTION DETECTION . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Mahalanobis Distance Based Score . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Applications to Hyper-spectral Mineral Classification . . . . . . . . . . . . . 85

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6



LIST OF TABLES

2.1 F1 scores for benchmark datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Log-likelihood model comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Clustering accuracy comparison of fault classification. The log-likelihoods are
also included. We are not able to evaluate the accuracy score for ETAS-KDE
since it doesn’t generate spatial clusters. . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Comparison of mean F1 scores of Centroid Margin Loss and Triplet Loss on MNIST 60

3.2 Comparison of accuracy on Omniglot . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Macro and Micro F1 scores for the compared models. . . . . . . . . . . . . . . . 72

3.4 Comparison for TEM cell segmentation. . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Comparison of tied and un-tied covariance on CRISM . . . . . . . . . . . . . . . 87

7



LIST OF FIGURES

2.1 The probabilistic graphical model (PGM) for I2GMM and AI2GMM . . . . . . . 20

2.2 Simulated data experiment comparing AI2GMM , I2GMM , and IGMM . . . . 29

2.3 Southern California earthquakes magnitude 2.5 and greater (black) and faults
corresponding to the Community Fault Model 3.0 (marked by lines). . . . . . . 34

2.4 The hierarchy of I2GMM model illustrated on a synthetic dataset. . . . . . . . . 36

2.5 Fault line cluster membership using the nearest CFM 3.0 fault to each earthquake
(ground truth). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 True and predicted CFM fault groupings. Events with same labels are shown by
the same color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Ten largest CFM faults and recovered clusters. Events with same labels are
shown by the same color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 The comparison between training F1 and testing F1. Here we sort the 3500 runs
of training scores and plot in sorted order (red line), then the testing scores of
the same run is plotted at the same horizontal axis of the training score (blue line). 49

3.1 Directed graphical model for VAIGMM, where K is the current number of clusters
found (could potentially be infinite), nc is the number of data points in cluster c 53

3.2 Illustration of MNIST after training VAIGMM for 200 epochs on 5 of the digits. 57

3.3 The illustration for centroid margin loss. Where ”x” mark indicate the class
center, ”·” indicate the sample point, m is the margin. . . . . . . . . . . . . . . 58

3.4 Comparison of t-SNE illustration for MNIST testing data on the feature space.
Where we use different color to illustrate different classes. . . . . . . . . . . . . 61

3.5 Illustration of the label generation pipeline. Where in (c) black is unknown area;
blue is background, yellow is cytoplasm, green indicate high-intensity regions, and
red is bright spots; (d) for better illustration we plot the mean of background and
cytoplasm, and plot the bright spots and high-intensity regions classes individually. 63

3.6 Illustration of the training and testing workflow. . . . . . . . . . . . . . . . . . . 65

3.7 Illustration of the 3D CNN-AE network architecture. . . . . . . . . . . . . . . . 66

3.8 Comparison of the segmentation map for our proposed method and 2 other base-
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Comparison of the averaged spectral for each generated cluster of our proposed
method and 2 other baselines. We skipped small clusters with less than 50 sam-
ples which might be generated due to random noises. The legend is the cluster
labels, where -1 is the cluster aligned to unknown area, 0 is artifact, 1 is back-
ground, 2 is others, 3 is cytoplasm, and the rest are newly generated clusters. . 75

8



3.10 Segmentation map and corresponding spectral for proposed method. . . . . . . . 76

3.11 Segmentation map and corresponding spectral for proposed method continued. . 77

3.12 A crop of a TEM image after noise removal and histogram equalization. . . . . 79

3.13 The illustration of asymmetric centroid margin loss. . . . . . . . . . . . . . . . . 80

3.14 Comparison of the segmentation map. Where we use different colors for different
classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9



ABSTRACT

By Machine Learning in the Open World, we are trying to build models that can be used

in a more realistic setting where there could always be something ”unknown” happening.

Beyond the traditional machine learning tasks such as classification and segmentation where

all classes are predefined, we are dealing with the challenges from newly emerged classes,

irrelevant classes, outliers, and class imbalance. At the beginning, we focus on the Non-

Exhaustive Learning (NEL) problem from a statistical aspect. By NEL, we assume that our

training classes are non-exhaustive, where the testing data could contain unknown classes.

And we aim to build models that could simultaneously perform classification and class dis-

covery. We proposed a non-parametric Bayesian model that learns some hyper-parameters

from both training and discovered classes (which is empty at the beginning), then infer the

label partitioning under the guidance of the learned hyper-parameters, and repeat the above

procedure until convergence. After obtaining good results on applications with plain and

low dimensional data such flow-cytometry and some benchmark datasets, we move forward

to Non-Exhaustive Feature Learning (NEFL). For NEFL, we extend our work with deep

learning techniques to learn representations on datasets with complex structural and spatial

correlations. We proposed a metric learning approach to learn a feature space with good

discrimination on both training classes and generalize well on unknown classes. Then we

developed some variants of this metric learning algorithm to deal with outliers and irrelevant

classes. We applied our final model to applications such as open world image classification,

image segmentation, and SRS hyperspectral image segmentation and obtained promising re-

sults. Finally, we did some explorations with Out of Distribution detection (OOD) to detect

irrelevant sample and outliers to complete the story.
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1. INTRODUCTION

Modern machine learning techniques have reached very high standards on recognition tasks

such as image category recognition, text classification, spectral recognition etc. Machines can

now outperform humans even in domains where years of training and education is required

to achieve desired level of domain expertise. However, most of their success relies heavily

on manual supervision, a crucial aspect of learning a robust mapping from observations to

labels and that usually requires a large number of representative samples for satisfactory

performance. Traditional machine learning can only learn categories predefined by manual

labels and are ill-fitted for the open world settings, where new categories may continuously

emerge and data obscured by noise and outliers introduce additional challenges for machine

learning.

Compared with a closed world setting in which all categories are predefined before train-

ing, open world setting aligns better with real world scenarios where there could always

be something ”unknown” happening. Moreover, majority of the supervised learning tasks

assume that class sizes are balanced, whereas in the non-stationary real world environment

frequency of categories usually follow a heavy-tailed distribution. A few dominated classes

covers most of the population with some small classes scattered around.

The characteristic of non-stationary environment clearly exacerbates the challenge of

learning in the open world. In order to deal with emerging categories, noise and outliers in the

presence of rare classes, we need the model to learn high level concepts rather than just the

mathematical mapping from observations to labels. Instead of mimicking human supervisions

we want the model to ”understand” the underlying mechanism that forms categories based

on its ”past experiences” with similar categories. For example if a person sees some fruits

he/she has never seen before, he/she can easily tell which of them belong to same species and

which are not based on the common sense acquired from past experience. In other words, we

wish the ideal machine learning model to implicitly learn the so called ”common sense” from

its past experience. Learning ”common sense” seems to be trivial to human beings, but it is

proved to be extremely challenging for machines as it requires learning abstract knowledge

at different levels of abstraction [1 ], [2 ].
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Research areas such as zero-shot learning [3 ], few-shot learning [4 ], transfer learning [5 ],

out of distribution detection [6 ], open-set classification [7 ] each study different but related

aspects of the closed-world assumption impeding traditional classification. However, none of

these methods study novel class discovery problem when there is no information about emerg-

ing classes. For example, zero-shot learning recognize new classes based on their descriptive

attributes instead of using an extensive set of training data-label pairs, while few-shot learn-

ing reduces the number of training samples for new categories to a ”few” shots to save the

effort of labeling massive training samples. Few shots learning achieves this by learning to

transfer knowledge from classes with massive labeled samples available over to those that

exist only with few samples. Out-of-distribution detection aims to recognize samples that

doesn’t belong to any of the known classes. In contrast open-set classification build classifiers

that can operate in the presence of out-of-distribution samples with the goal of classifying

only samples of known classes while ignoring out-of-distribution samples.

Related lines of work that study novel class discovery are learning to cluster [8 ] and trans-

fer clustering [9 ]. Although they both address novel class discovery, these methods separate

learning from known categories and achieve novel category discovery in two independent

stages. First they pretrain a feature extractor or a metric function using labeled data and

then perform unsupervised fine-tuning on the target datasets based on the learned feature

extractor/metric function. No portion of the labeled data is used in the fine-tuning stage

and no portion of the unlabeled data is used in the pretraining stage. They also assume that

no samples of known classes will appear in testing, which is a restriction that doesn’t hold

for most real world scenarios where emerging samples could originate from both known and

unknown classes.

Our research combines recognition of known classes with discovery of unknown classes

in a single framework to have the following core functionalities. First, samples from exist-

ing classes can be classified with acceptable accuracy as in traditional supervised learning.

Second, samples from emerging classes can be identified with acceptable sensitivity and

specificity even when multiple emerging classes are present in the data. Third, the classifier

model should be flexible enough to differentiate not only between existing and emerging

classes but among different emerging classes as well.
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This is the so called non-exhaustive learning (NEL) paradigm first studied for a bio-

detection problem in [10 ], [11 ]. In non-exhaustive learning we assume that the training classes

is non-exhaustively listed, i.e., new classes may emerge after training. Our initial attempt

for NEL was the implementation of the adaptive I2GMM (AI2GMM) model [12 ], which is a

two layer hierarchical non-parametric Bayesian model with adaptive hyper-parameters based

on I2GMM [13 ]. In AI2GMM, we assume that class centers and covariances are drawn from

a Normal and Inverse Wishart (NIW) bivariate distribution. The hyperparameters of this

distribution are estimated by maximizing sample posterior likelihood conditioned on current

class assignments. By constraining samples of known classes to remain within their own

classes during inference, the inferred hyper-parameters are expected to capture ”the past

experience” from known classes to guide the generation of emerging classes. In order to

have more flexibility over cluster shapes and to be able to model non-Gaussian distributions,

AI2GMM models each class in the form of an infinite mixture of Gaussian components. The

component means are sampled from a distribution controlled by their class center and their

scaled class covariance, while all components inheriting the same class share the same class

covariance. Details of the AI2GMM can be found in 2.1 .

Although AI2GMM achieves good performance on applications involving well-separated

classes in low dimensional feature space such as cell type discovery in flow-cytometry and

some multi-spectral benchmark datasets [12 ], its applicability to complex data with struc-

tural information is limited. Structural data that involve images and texts not only contain

high-level abstract features but are also susceptible to high levels of noise and are often ob-

scured by outliers and other unwanted artifacts. To accommodate structural information in

our models we employ feature learning techniques before applying non-exhaustive learning

algorithms. Feature learning techniques such as stacked auto-encoder [14 ], generative ad-

versarial networks [15 ], and self supervised learning methods are known for their success in

visual feature extraction. However, unsupervised feature learning does not guarantee learn-

ing class discriminatory features, which are essential for non-exhaustive learning. Thus, we

aim to learn features that could discriminate between known classes but also generalize well

on unknown classes. In other words we want to implement a non-exhaustive feature learning
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framework that can learn to better separate unknown classes by implicitly learning the high

level concepts relevant for class separation from known classes.

We explore different ideas for non-exhaustive feature learning in chapter 3 . First we

use variational Infinite Gaussian Mixture Model (IGMM) (see section 3.1 for details), which

takes an IGMM as a prior and learns the auto-encoder by minimizing the KL divergence.

This method turns out to be very sensitive to initial assignments. We believe that the

interleaved training of both features and class assignments hampers effective training as the

initial class compositions obtained from under-trained features cannot capture actual class

distributions well. This is a common issue with algorithms that adopt interleaved learning of

features and cluster distributions [9 ], [16 ]. An intuitive way to solve this problem is to first

pretrain feature extraction networks to generate good quality features that could achieve

high clustering accuracy, and then fine tune the model with the learned clusters as described

in [9 ], [16 ]. These works that utilize unsupervised feature learning methods have shown

to be ineffective for non-exhaustive learning. If we pretrain the feature extractors in a fully

unsupervised fashion then the information from the labeled data cannot be incorporated into

learning. On the other hand if we pretrain the feature extractors to maximize separation

of known classes the model will be biased towards known classes and generalize poorly on

unseen classes.

Instead of directly maximizing the likelihood of known classes, we investigate methods

that indirectly use labels so that the feature extractor learned on known classes could still

generalize well on unknown classes. Inspired by the triplet loss idea we propose a method

called Centroid Margin Loss (CML). It is based on the idea that the distance between a

sample to the closest class center except its own class should be greater than to its own

class center at least by a margin. We provide two versions of this loss function, one for

labeled data, another one for unlabeled data. Our preliminary results suggest robust gen-

eralization can be achieved on unknown classes even when the feature extractor is merely

trained by labeled data. Details can be found in section 3.2 . We adjusted the original CML

into two variants, Asymmetric CML (ACML) and Kernel-ed CML (KCML) to handle the

challenge of the existence of irrelevant classes and outliers/tagging-errors. We then applied

the variants on two applications, one is non-exhaustive semantic cell segmentation for elec-
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tron microscopy images 3.4 , another is the SRS hyper-spectral image segmentation 3.3 . Our

experiments showed the effective of CML on learning a discriminative feature without losing

the generalization for unknown classes.

In addition to non exhaustive learning, we also studied out-of-distribution detection for

detecting outliers to build models that could operate in open world settings. Distance-based

methods are popular in the literature for performing outlier detection [17 ], [18 ]. Inspired

by the mahalanobis distance based out-of-distribution detection technique introduced in [19 ]

we aim to integrate outlier detection with nonexhaustive learning to be able to perform

recognition, class discovery, and outlier detection in a single unified framework as future

work.

1.1 Background and Motivation

Traditional recognition problems can be categorized into supervised classification and

unsupervised clustering. Our work originated from the need to classify bacterial pathogens

in a non-stationary environment where new types of bacteria can continuously emerge due

to high mutation rate [20 ]. It is impossible to build an exhaustive training dataset to include

past and future types of bacteria, while fully unsupervised clustering can not produce a clas-

sification accuracy comparable to that of supervised classification. Non-exhaustive learning

problem is introduced with the aim of achieving as good of a performance as supervised clas-

sification on known classes and can generalize the supervised information of known classes

for better clustering unknown clusters.

Motivated by the CRISM mineral discovery application [21 ] we then extend the non-

exhaustive learning into the open world learning problem due to a need for simultaneously

classifying known classes, discover novel classes, and detect outliers. CRISM is a hyperspec-

tral image dataset of Mars with massive amount of data, and there may exist minerals that

do not have matching lab spectra, and it is noisy due to aging instrument, poor device cali-

bration, atmospheric effects, distance etc. It is not possible to build an exhaustive training

dataset unless all of the more than 20,000 image cubes are examined by planetary scientists,

which makes it meaningless to use machine learning to aid the mineral discovery. Moreover,
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in addition to hyperspectral images of Mars, similar needs are expected to arise in the near

future for analyzing hyperspectral images of Jupiter moon Titan. The need for simultaneous

outlier/noise detection is arising from the complex composition of additive and multiplicative

noise. The distribution of noise depends on class distributions and also is image and region

specific, which makes denoising challenging.
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2. NON EXHAUSTIVE LEARNING

Non-Exhaustive Learning (NEL) lies in the center of our research topic, and is the most

important and the most challenge task for machine learning in the open world. As described

in chapter 1 , by Non-Exhaustive Learning, we are trying to perform unified classification and

class discovery without the assumption that the training class is exhaustively defined. Except

perform NEL in a unified way, this could also be achieved by separating the classification and

clustering, for example doing an open set classification then perform clustering on rejected

samples. But instead of performing the two tasks separately, we believe that we can improve

the class discovery performance by learning the underlying class generation mechanism from

known classes, and further aid the classification performance of known classes by extending

the dataset with unlabeled testing samples.

In this chapter, We first analyze and try to solve this problem from a statistical aspect.

See section 2.1 for the details. Section 2.2 is an application of this model. Based on the

statistical model, we also include another line of thought in section 2.3 .

2.1 Adaptive I2GMM: A Unified Approach to Classification and Clustering for
Non-exhaustive Learning

Our first attempt for non-exhaustive learning is the adaptive I2GMM model [12 ], which is

built on top of a highly flexible two-layer non-parametric Gaussian mixture model (I2GMM)

[13 ] and unifies classification with clustering to perform classification, class discovery, mod-

eling, and recovery all at once.

The first work for NEL uses a Gaussian mixture model and continuously augments exist-

ing set of Gaussian components by creating a new one each time the maximum of class con-

ditional likelihood values for an incoming sample is found to be below a designated threshold

[10 ]. A more systematic solution was later offered in [11 ], [22 ] based on the infinite Gaussian

mixture model (IGMM) that eliminates the need for thresholding likelihood values and uses

the concentration parameter of the Dirichlet process to encode prior knowledge about prob-

ability of new classes. These works uses training data available from the initial set of classes

for initializing a partially observed IGMM model and estimating its hyperparameters.
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However, the performance of these techniques can significantly vary from one problem

to other depending on how well each class data can be captured by a single Gaussian dis-

tribution. Although IGMM offers some flexibility toward more accurate estimation of the

probability density function by generating an arbitrarily large number of Gaussian compo-

nents, it is well known that more accurate estimation of the overall data density does not

necessarily lead to more accurate estimation of individual class distributions especially when

classes emerge with skewed and multi-modal distributions. Under such settings IGMM cre-

ates a large number of extraneous classes which may severely restrict the utility of IGMM

for non-exhaustive learning and yield poor classification and clustering performance.

In the clustering domain this model mismatch problem was recently tackled by I2GMM

[13 ]. In I2GMM the lower layer estimates the density of the overall dataset by clustering

individual data points to components, while the upper layer associates components with

clusters to allow for cluster recovery. More specifically, the generative model uses a two-layer

hierarchical Dirichlet process mixture (DPM) model where the lower layer uses one DPM

for each cluster and the upper layer uses a global DPM for modeling cluster shapes and

sizes. Thanks to its two-layer nonparametric structure, I2GMM can model a wide spectrum

of distributions and has proved very effective in clustering datasets with multi-modal and

skewed clusters.

I2GMM has several hyperparameters that offer great flexibility for encoding domain

knowledge into the model. If these hyperparameters can be tuned to capture different as-

pects of the underlying data model I2GMM can become an effective model for non-exhaustive

learning as well. Both labeled and unlabeled data, even when they originate from different

subsets of classes, can be effectively blended through a bilateral inference that restricts as-

signment of labeled points to a subset of components associated with their class of origin

while assigning all unlabeled points to any of the existing components without any restric-

tions. With this approach the model can adapt to unlabeled data by creating new classes

and/or by creating new components for existing classes.

The success of this restricted inference strategy mostly depends on how effectively the

fixed values assigned to hyperparameters can capture the complexity of the underlying data

model. If the values are optimized to fit the training data better the model becomes too
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restrictive and generates redundant components and/or classes. On the contrary when the

values are chosen too vague the model becomes too general and generates too few or no new

classes. Choosing a set of values that offers an acceptable trade off between the model being

too restrictive versus too general is not easy unless the underlying application domain and

data model are well known.

In non-exhaustive learning two types of discrepancies can occur between labeled and

unlabeled data. The first source of discrepancy arises when an unlabeled data point originates

from a yet unobserved component of a known class with a multi-mode distribution or from the

tail end of a skewed distribution. The second source of discrepancy arises when an unlabeled

data point originates from a yet unobserved class. Thus, apart from model flexibility the

most critical aspect of non-exhaustive learning is the reconciliation of these discrepancies

between labeled and unlabeled data by recovering as much information as possible about the

underlying data model. I2GMM has hyperparameters that control the shape of components,

the scattering of class centers around the data mean, the scattering of component centers

around their class means, as well as class and component sizes. These parameters define the

underlying data model. Thus, the compromise between labeled and unlabeled data can be

more easily reached if the model is modified to allow for learning of these hyperparameters

using both labeled and unlabeled data as opposed to using fixed values as in standard

I2GMM. To avoid unlabeled data dominating this learning process we impose restrictions

on the inference. Unlike unlabeled data points which can freely switch component and class

memberships during inference, labeled data points are only allowed to switch component

membership. This way labeled data points are constrained to remain in their class of origin.

For inference we use a collapsed Gibbs sampler for inferring class and component indicator

variables, which are sampled conditioned on the point estimates of hyperparameters.

2.1.1 The Infinite Mixture of Infinite Gaussian Mixtures (I2GMM)

In a Gaussian Mixture Model (GMM) each cluster is represented by a single Gaussian

distribution characterized by its mean and covariance. In the finite GMM the number of

Gaussian components is fixed. The infinite version of GMM (IGMM) is obtained by defining
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Figure 2.1. The probabilistic graphical model (PGM) for I2GMM and AI2GMM
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a Dirichlet process (DP) prior over the components. The DP prior serves as a distribution

over the Gaussian distributions. Its base distribution acts as a Bayesian prior over the

mean vectors and covariance matrices while its concentration parameter models the number

of components and their sizes. IGMM is an improvement over its finite version as the

number of components can be inferred directly from the data. However, the core modeling

aspect of GMM does not change with IGMM as each cluster data is still modeled by a

single Gaussian component. This creates a problem when fitting IGMM onto dataset with

multi-mode and skewed cluster distributions. In an attempt to more accurately estimate

density of the overall data IGMM generates multiple Gaussian components for such clusters.

However, more accurate density estimation does not necessarily translate into improved

clustering performance with IGMM due to inherent one-to-one association imposed between

components and clusters.

I2GMM is introduced to address this limitation of IGMM. I2GMM models each cluster

by IGMM and creates dependency across all clusters by using a global DP to model the

base distributions of local DPs. This two layer architecture of I2GMM allows for modeling

of non-Gaussian cluster shapes because each cluster data can be modeled by an arbitrarily

large number of components in the lower layer. The global DP in the upper layer establishes

the association between components and clusters, which also allows for information sharing

across clusters and their components.

The generative model for I2GMM is given by

H = NIW (µ, Σ|µ0, Ψ0, κ0, m)

= N(µ|µ0, κ−1
0 Σ)W −1(Σ|Ψ0, m)

G ∼ DP (γH)

(µk, Σk) = θk ∼ G

Hk = N(µk, κ−1
1 Σk)

Gk ∼ DP (αHk)

µkl ∼ Gk

xkli ∼ N(µkl, Σk)

(2.1)
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The generative model is also illustrated by a plate diagram in Figure 2.1a . Based on this

generative model, a global Dirichlet Process is defined with base distribution H and concen-

tration parameter γ. H is a bivariate Normal × Inverse Wishart distribution (NIW) with

hyperparameters {µ0, Ψ0, κ0, m}. To generate data points, we first draw a discrete mixing

measure G from DP (γH). Then the cluster centers µk and covariances Σk are sampled from

G. Next, we define a local DPM with base distribution Hk and concentration parameter α

for each cluster generated by the global DPM, where Hk is defined by a Gaussian centered

at µk with covariance κ−1
1 Σk. Then a cluster specific discrete mixing measure Gk is drawn

from the local DPM and a component with its mean vector drawn from Gk is generated. All

components generated this way share the same cluster specific covariance matrix Σk. Finally

data points xkli in cluster k and component l are generated from the component with center

µkl and covariance Σk.

Inference is performed by a collapsed Gibbs sampler similar to [23 ]. After integrating out

hidden variables µkl, µk, Σk, we can sample both cluster and component indicators from the

posterior predictive distributions defined by sufficient statistics and hyperparameters. The

posterior predictive distribution of a data point x belonging to component s and cluster k

is given by (2.2 ). Detailed derivations are available in [13 ].

P (x, t = s, c = k|X, T, C) = T (x|µ̄s, Σ̄s, v̄s)

µ̄s = nksx̄ks + κ̄sµ̄k

nks + κ̄s

Σ̄s = Σ0 +∑
l:cl=k Skl + Sks + Sµ

(nks+κ̄s)v̄s

nks+κ̄s+1

µ̄k =
∑

l:cl=k
nklκ1

nkl+κ1
x̄kl + κ0µ0∑

l:cl=k
nklκ1

nkl+κ1
+ κ0

κ̄s =

(∑
l:cl=k

nklκ1
nkl+κ1

+ κ0
)

κ1∑
l:cl=k

nklκ1
nkl+κ1

+ κ0 + κ1

Sµ = nksκ̄s

κ̄s + nks

(x̄ks − µ̄k)(x̄ks − µ̄k)T

v̄s = m +
∑

l:cl=k

(nkl − 1) + nks − d + 1

(2.2)
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where X = {xi}n
i=1 is the set of n data points; T = {ti}n

i=1 are the component indica-

tor variables for data points, C = {ci}L
i=1 are cluster indicator variables for components;

T (x|µ̄s, Σ̄s, v̄s) denotes the student-t distribution with mean µ̄s, covariance Σ̄s, and degree

of freedom v̄s; x̄ks and Sks = ∑nks
i=1 (xkli − x̄ks)(xkli − x̄ks)T are the sample mean and scatter

matrix for component s in cluster k; nks is the number of data points in component s of

cluster k. The latent variables in T and C are sampled one at a time conditioned on all

other variables.

Given initial values for T and C the inference is performed by first sampling the com-

ponent indicator variable for each data point. The posterior distribution for sampling the

component indicator variable ti for a data point xi in class k is given by

P (ti|X, T, C) ∝


nklT (xi|µ̄s, Σ̄s, v̄s), ti = l

αT (xi|µ̄∗, Σ̄∗, v̄∗), ti = Lk + 1
(2.3)

where Lk is the number of components in cluster k; the subscript ∗ is used to indicate

parameters for a new component, which are obtained by dropping the sufficient statistics for

the selected component in equation (2.2 ). Note that these samplings are conditioned on the

cluster indicator variables C. As a result ti is sampled within its own cluster k.

After sampling all component indicators for data points we then sample cluster indicators

for each component l by the posterior distribution

P (cl|X, T, C) ∝


Lk

∏
i:ti=l

T (xli|µ̄s, Σ̄s, v̄s), cl = k

γ
∏

i:ti=l

T (xli|µ̄∗, Σ̄∗, v̄∗), cl = K + 1
(2.4)

where K is the number of clusters. These two steps define a single Gibbs sweep. Depending

on the size of the data convergence to the target distribution may require up to a few

thousand Gibbs sweeps.
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2.1.2 Adaptive I2GMM

I2GMM offers great flexibility for modeling dataset with an unknown number of classes

where classes can have continuous arbitrary distributions. However, tuning or optimizing

the values of the hyperparameters based on a limited set of labeled data compromises this

flexibility and yields a model that may not fit unlabeled data well.

In the Bayesian context it is a common practice to distribute uncertainty surrounding

hyperparameters across multiple layers by treating hyperparameters as variables. An addi-

tional layer makes the model less sensitive to changes in the values of the hyperparameters.

However, in a purely unsupervised setting such a strategy significantly expands the state

space and convergence to the target distribution becomes more of a challenge. In the non-

exhaustive setting presence of labeled data may help eliminate a significant portion of the

potential modes the sampler can converge. However, if a large number of classes are missing

and/or labeled data from existing classes are not representative of their underlying distribu-

tions some of the most promising modes can get eliminated as well if the labeled dataset is

given too much emphasis during model inference. In this section we discuss the formulation

of an adaptive I2GMM that is designed as a trade off between model being too flexible yet

uninformative vs. too restrictive and unaccommodating.

Toward achieving this end we first modify the generative model of I2GMM by creating

an additional layer in the Bayesian hierarchy that treats the most data sensitive hyperpa-

rameters of the model (µ0,Ψ0,κ0, κ1) as variables. Then, we implement an implicit Bayesian

model averaging strategy to infer hyperparameters without sacrificing much from model flex-

ibility. Finally, we infer class indicator variables for unlabeled data and component indicator

variables for both labeled and unlabeled data by a restricted Gibbs sampler that also takes

into account potential overlaps across classes in the feature space. We define a Normal prior

over µ0, a Wishart prior over Ψ0, Gamma priors over κ0 and κ1. These prior distributions

are chosen for conjugacy.

µ0 ∼ N
(
µp, (Ψ0c1)−1

)
, Ψ0 ∼ W (Σ0, c2),

κ0 ∼ Γ (α0, β0) , κ1 ∼ Γ (α1, β1)
(2.5)
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With these additions the plate diagram of the generative model for AI2GMM is shown in

Figure 2.1b .

Hyperparameter Inference

Note that there is no closed form solution for the posterior predictive distributions of

the hyperparameters. We cannot sample them as we sample class and component indicator

variables by a Gibbs sampler. We resort to point estimation techniques for these hyperpa-

rameters as described below.

Estimating Ψ0 and µ0

Ψ0 is the hyperparameter that defines the expected shape of components whereas µ0 is the

hyperparameter that encodes expected mean vector for the individual class mean vectors.

If we estimate these parameters to maximize their corresponding posterior distributions

conditioned on a specific configuration of data points and estimations of other parameters

then their estimates become highly sensitive to this configuration. If this configuration is

not a good representation of the underlying data model the inference becomes more prone

to getting stuck at a poor local optima. To maintain model flexibility it is more reasonable

to obtain version of these estimates that are configuration independent. This can be done

by model averaging through maximizing the joint likelihood of all data points originating

from a new class.

The joint likelihood of the data originating from a new class is

p(X|µ0, Ψ0) =
n∏
i

p(xi|µ0, Ψ0) (2.6)

The posterior for Ψ0 is

p(Ψ0|X) = W −1(Ψ0|Σ0, c2)
n∏
i

p(xi|µ0, Ψ0) (2.7)
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where
p(xi|µ0, Ψ0) = St(xi|µ0,

m + 1 − D

1 + κ−1
0 + κ−1

1
Ψ−1

0 , m − d + 1)

Laplace appr.
≈ N(xi|µ0, bΨ0)

(2.8)

where b = 1+κ−1
0 +κ−1

1
m+1 . We use Laplace approximation to approximate Student-t distribu-

tion by a Normal distribution so that a closed-form estimate for Ψ0 can be obtained. We

substitute equation (2.8 ) back into (2.7 ) to get

p(Ψ0|X) = W −1(Ψ0|Σ0, c2)
n∏

i=1
N(xi|µ0, bΨ0) (2.9)

We can derive the estimates for Ψ0 and µ0 by maximizing the posterior

Ψ̂0 = Σ0 + b−1∑n
i=1(xi − µ0)(xi − µ0)T

n + c2 + D + 1 (2.10)

µ̂0 = 2bc1µp +∑n
i xi

2bc1 + n
(2.11)

Estimating κ0 and κ1

κ0 is the hyperparameter that adjusts the separation among class means. The smaller the

κ0, the farther apart the class centers will be from the center of the data, i.e., µ0. κ1 is the

hyperparameter that adjusts the separation among component means of a given class. The

smaller the κ1, the farther apart the component centers will be from their corresponding

class center, and classes will tend to have multi-modal shapes. According to the plate

diagram shown in Figure 2.1b , the posterior for these hyperparameters conditioned on the

point estimates of hidden variables are given in (2.12 ). We use theˆnotation to distinguish

estimates from variables. We also use ∗ to indicate conditioning on the current configuration

of the data points and estimates of all other hidden variables.

p(κ1|∗) ∝ Ga(κ1|α1, β1)
∏
k∈C

∏
l:cl=k

N(µ̂kl|µ̂k, Σ̂kκ−1
1 )

p(κ0|∗) ∝ Ga(κ0|α0, β0)
∏
k∈C

N(µ̂k|µ̂0, Σ̂kκ−1
0 )

(2.12)
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The point estimates of the hyperparameters are obtained by maximizing the corresponding

posterior distributions.

κ̂0 = 2(α0 − 1) + dK

2β0 +∑
k (µ̂k − µ̂0)T Σ̂−1

k (µ̂k − µ̂0)

κ̂1 = 2(α1 − 1) + d
∑

k nk

2β1 +∑
k

∑
l:cl=k (µ̂kl − µ̂k)T Σ̂−1

k (µ̂kl − µ̂k)

(2.13)

Note that these point estimates also depends on the hidden variables µkl, µk, Σk, which

we estimate as follows. The posterior for these variables conditioned on the point estimates

of hyperparameters and other hidden variables are given in (2.14 ).

p(Σk|∗) ∝ IW (Σk|Ψ̂0, m)N(µ̂k|µ̂0, Σkκ̂−1
0 )∏

l:cl=k

N(µ̂kl|µ̂k, Σkκ̂−1
1 )

∏
l:cl=k

W (Skl|Σk, nkl − 1)

p(µk|∗) ∝ N(µk|µ̂0, Σ̂kκ̂0)
∏

l:cl=k

N(µ̂kl|µk, Σ̂kκ̂−1
1 )

p(µkl|∗) ∝ N(µkl|µ̂k, Σ̂kκ̂−1
1 )N(x̄kl|µkl,

Σ̂k

nkl

)

(2.14)

The point estimates of these hidden variables are obtained my maximizing their correspond-

ing posterior distributions.

Σ̂k = Ψ̂0 + κ̂0(µ̂k − µ̂0)(µ̂k − µ̂0)T + Sk +∑
l:cl=k Skl

m + d + 2 +∑
l:cl=k nkl

Sk = κ̂1
∑

l:cl=k

(µ̂kl − µ̂k)(µ̂kl − µ̂k)T

µ̂k = µ̂0κ̂0 +∑
l µ̂klκ̂1

κ̂0 + nkκ̂1

µ̂kl = µ̂kκ̂1 + x̄klnkl

κ̂1 + nkl

(2.15)

Sampling class and component indicators by a restricted Gibbs sampler

Given an unlabeled dataset Xu along with a labeled dataset X` and its corresponding

label set C`, a restricted Gibbs sampler is implemented to preserve the class composition of

the labeled data during inference. For the points in the unlabeled dataset both the class
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indicators Cu and component indicators Tu are unknown and both need to be inferred. For

the data points in the labeled set class indicators C` are available but component indicators

T` are unknown and need to be inferred.

As the class labels for labeled data points are available, a straightforward restriction

would be to assign a component containing labeled data points to its corresponding class

without considering other classes. Although such an approach could be effective for datasets

with well separated class distributions, it creates additional problems when classes overlap

or some of the classes exhibit heavy-tailed distributions. Assigning a component located in a

region of the feature space that overlaps with other class distributions to one of the observed

classes severely limits the modeling capacity of AI2GMM. Many unlabeled data points from

unobserved classes, which so happen to be assigned to the same component as labeled data,

would be incorrectly assigned to the same observed class if such a restriction were to be

imposed.

We tackle this potential class overlap problem by executing a preinference stage where

we infer component indicators for all labeled data points and identify a fixed proportion of

them from each class as potential outliers based on their class conditional likelihood values.

During actual inference each Gibbs scan includes hyperparameter estimation followed by

sampling of component and class indicators, respectively. Component indicators for each

data point is sampled without any restrictions according to (2.3 ) with the hyperparameters

replaced by their then-current point estimates where X = Xu ∪ X`, T = Tu ∪ T`, and

C = Cu ∪ C`. When sampling class indicators for each component we impose a restriction as

follows. All components contain non-outlier labeled points are assigned to their respective

classes without sampling. On the other hand all components composed of only unlabeled

points and outlier labeled points are assigned to classes according to (2.4 ). Finally, to

preserve class composition, all outlier labeled points are assigned back to their respective

classes.

This restricted Gibbs sampler not only preserves class composition of labeled data points

but also allow for joint classification and clustering of unlabeled data points. Three possible

scenarios exist for unlabeled data points: perform standard classification for unlabeled data

points share the same component assigned to one of the observed classes with labeled data
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points; perform classification with new component of an observed class discovered for unla-

beled data points in a component assigned to one of the observed classes with no labeled

data points; perform class discovery for unlabeled data in component assigned to new class.

2.1.3 Experiments

(a) Scatter plot of the simulated data. Each
class data is shown by a different color. Con-
tours with solid lines indicate class-specific dis-
tributions. Contours with dashed lines indi-
cate component distributions.

(b) Mean F1 scores as a function of the number
of observed classes in the labeled data.

Figure 2.2. Simulated data experiment comparing AI2GMM , I2GMM , and IGMM .

We perform experiments with simulated and benchmark datasets to validate the per-

formance of AI2GMM for non-exhaustive learning. For each dataset we set aside twenty

percent of all available points as labeled data. However, we do not use the labels in the

labeled dataset all at once. To create a partially observed labeled dataset we start with

zero observed classes, i.e., no labels are used, and gradually increase the number of observed

classes by two until all of the available classes for each dataset are represented in the labeled

dataset. The case with no observed classes in the labeled data corresponds to fully unsuper-

vised setting, i.e., clustering, whereas the case with all classes observed corresponds to fully

supervised setting, i.e., classification. All cases in between are considered non-exhaustive

learning.
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We compare the performance of AI2GMM against IGMM and I2GMM. IGMM and

I2GMM have been mainly used in the literature for unsupervised learning problems. Here,

we use a restricted Gibbs sampler scheme to adapt these models for non-exhaustive learning.

In IGMM labeled points are assigned to their class of origin without sampling to preserve

class composition for all observed classes. For I2GMM we use the same restricted sampling

strategy we adopt for AI2GMM. In other words we introduced two new versions of I2GMM

for non-exhaustive learning that both use the same restricted Gibbs sampler we discussed in

Section 2.1.2 but differ in the way hyperparameters are treated. I2GMM fixes hyperparam-

eters to vague values whereas AI2GMM dynamically estimates them using both labeled and

unlabeled data.

All features in each dataset are normalized to have zero mean and unit variance. Fixed

sets of vague hyperparameters are used for both IGMM and I2GMM. For IGMM: µ0 = 0,

Ψ0 = I, κ0 = 0.1, m = d + 2. For I2GMM: µ0 = 0, Ψ0 = I, κ0 = 0.1, κ1 = 0.5, m = d + 2

where d is the number of features, α = 1, γ = 1 are used for all datasets. For AI2GMM we

consider 20% of labeled data from each observed class as outliers and select vague values for

c1 = 0.1, c2 = d + 2, β0 = 20, α0 = 3,β1 = 20, α1 = 11. The number of Gibbs sweeps is set

to 1000 in all three algorithms. For the preinference stage implemented to infer components

of the labeled data in AI2GMM we used 200 Gibbs sweeps.

We use the mean F1 score to evaluate performance for all algorithms, which is computed

as described below. Given the ground truth labels and predicted labels for the unlabeled

data we build a confusion matrix C of K rows and L columns, where K is the number

of ground truth classes and L is the number of predicted classes. We assume that rows 1

through M of C are corresponding to the M observed classes and columns 1 through M are

corresponding to predicted classes. Mean F1 score is computed as F1 = 1
K

∑K
k=1 F k

1 where

F k
1 is evaluated differently for observed and unobserved classes

F k
1 =


2ckk∑K

i=1 cik +∑L
j=1 ckj

if k is observed

2 max (ckM+1, ..., ckL)∑K
i=1 cil +∑L

j=1 ckj
if k is unobserved

(2.16)
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where cij is the element for the ith row and jth column of C and l is the index returned

by max. Each experiment is repeated five times and average F1 scores are reported in all

experiments to account for the stochastic nature of inference.

Experiments with Simulated Data

We use a two layer Gaussian mixture model similar to I2GMM to generate a 2D simulated

data with multi-mode class distributions. For illustration purposes we fixed the number of

classes to 10, the total number of components to 100, and the total number of points to 3000.

We sample the number of components within each class and the number of data points within

each component according to a Dirichlet prior with parameters set to γ and α, respectively.

Class centers µk and covariance matrices Σk are sampled from a NIW with µ0 = 0, Ψ0 = I,

κ0 = 0.03, m = 4. Component centers µkl are sampled from a Normal distribution with mean

µk and covariance matrix κ−1
1 Σk with κ1 = 0.5. Finally data points for each component are

sampled from a Normal distribution with mean µkl and covariance matrix Σk. The generated

dataset is shown in Figure 2.2a . Classes with varying sizes exhibit multi-mode patterns with

highly unbalanced component sizes, which makes this a challenging dataset for clustering.

Experiments with Benchmark Datasets

We used several benchmark datasets from different domains to further validate the pro-

posed algorithm. FLC1 is a 12-channel multispectral airborne image containing several land

cover types most of which are known to have multi-mode class distributions. NDDg1 and

stemcell are two of the flow cytometry datasets used in the FlowCAP I competition [24 ].

Both datasets exhibit skewed class distributions. We also selected three datasets (letter, sat,

and uci_har) from UCI Machine Learning repository. These are all datasets with continuous

valued features but with various numbers of classes and dimensions as shown in Table 2.1 .

The dimensionality of uci_har is reduced to 30 by PCA. Experiments with all other datasets

are performed with the original dimensionality.
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Table 2.1. F1 scores for benchmark datasets
dataset # observed classes IGMM I2GMMAI2GMM

NDDg1
d = 12
n = 44620

0 0.502 0.696 0.691
2 0.464 0.654 0.663
4 0.497 0.699 0.727
6 0.535 0.816 0.825
7 0.527 0.788 0.830

FLC1
d = 12
n =
69500

0 0.776 0.777 0.774
2 0.758 0.788 0.797
4 0.797 0.773 0.838
6 0.825 0.872 0.894
9 0.822 0.931 0.934

letter
d = 16
n =
20000

0 0.416 0.474 0.409
5 0.399 0.311 0.461
7 0.379 0.286 0.495
13 0.431 0.427 0.575
26 0.591 0.861 0.840

sat
d = 36
n =
6435

0 0.523 0.494 0.603
2 0.579 0.396 0.459
4 0.632 0.452 0.660
6 0.764 0.812 0.814

stemcell
d = 6
n = 9936

0 0.514 0.651 0.773
2 0.487 0.868 0.930
4 0.566 0.901 0.890

uci_har
d = 561
n =
10299

0 0.614 0.689 0.614
2 0.565 0.730 0.790
4 0.822 0.863 0.834
6 0.883 0.928 0.910

Discussion

The following observations can be made from the results of experiments performed with

both simulated and benchmark datasets. First, there is a strong trend that favors I2GMM

and AI2GMM over IGMM under all experimental settings, which justifies the need for using

more flexible models for modeling class distributions. Second, in a fully unsupervised setting

(rows with second column equal to zero in Table 2.1 ) vague values assigned to hyperpa-

rameters can be more useful than values estimated from data. When no observed classes

are available treating all hyperparameters as variables enlarges the state space and makes
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AI2GMM more susceptible to a poor local optima problem. Third, in non-exhaustive set-

tings estimating hyperparameters helps improve the performance of AI2GMM significantly.

However as the results of experiments with simulated data as well as on sat and letter bench-

mark datasets suggest the performance of I2GMM is less predictable under non-exhaustive

settings. Restricting the Gibbs sampler while the model is constrained by a fixed set of

vague hyperparameters creates clustering configurations that do not conform well with the

constrained model in I2GMM. Under these constrained settings the model favors existing

classes over new ones. This effect is more evident when the number of observed classes is

small. When most or all of the classes are observed I2GMM can still achieve moderately

high F1 without generating new classes and thus the effect of the model’s limitation becomes

negligible on the overall performance.

2.2 Applications to Seismic Fault Detection by a Coupled ETAS-I2GMM Point
Process

In addition to our non-exhaustive learning research, we have extended the unsupervised

I2GMM mentioned in 2.1.1 to a seismic fault detection application and published as [25 ].

The epidemic-type aftershock sequence (ETAS) model of earthquake occurrence [26 ], [27 ]

is a self-exciting point-process model where the conditional intensity λ(t, x, y|Ht) of events

is determined by a stationary Poisson intensity generating spontaneous earthquake events

along with a dynamic term representing a branching process of aftershocks:

λ(t, x, y|Ht) = µ(x, y) +
∑

i:ti<t

g(t − ti, x − xi, y − yi, mi). (2.17)

Here (x, y) is the epicenter of an earthquake event described by longitude and latitude

in decimal degrees, m is its magnitude on the Richter scale computed using a body-wave

magnitude formula [28 ], Ht = {(ti, xi, yi, mi) : ti < t} is the history of all earthquake events up

to time t in a catalog, and µ(x, y) is the background intensity reflecting spatial heterogeneity

of spontaneous earthquakes and the fact that earthquake catalogs with aftershocks removed

are approximately Poisson in time [29 ].
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Figure 2.3. Southern California earthquakes magnitude 2.5 and greater
(black) and faults corresponding to the Community Fault Model 3.0 (marked
by lines).

The space-time-magnitude distribution of parent-offspring events in the branching pro-

cess given by the function g(t, x, y, m) is called the triggering kernel, typically following

Omori’s law [30 ]:

g(t − ti, x − xi, y − yi, mi) = K0ea(mi−m0)

(t − ti + c)(1+ω)((x − xi)2 + (y − yi)2 + d)(1+ρ) (2.18)

where m0 is the cutoff magnitude of the dataset under study [26 ] and (K0, a, c, ω, d, ρ) > 0

are parameters to be estimated. Estimation of Equation 2.17 typically consists of construct-

ing a non-parametric estimate for µ(x, y) along with finding maximum-likelihood estimators

for the parameters of the triggering kernel in Equation 2.18 . Methods for maximizing the

likelihood include quasi-Newton [26 ] and expectation-maximization (EM) [31 ], and the most

common estimators for µ(x, y) are spatial histograms [31 ], [32 ] or isotropic kernel density

estimators [33 ], [34 ].
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Earthquakes cluster at multiple scales, as earthquakes cluster locally through aftershock

activity but also over larger scales along fault lines (see Figure 2.3 ). While there is research

on the reconstruction of aftershock clusters from event data [33 ], [35 ], existing point-process

models of earthquake activity fail to capture spatial clustering patterns at the larger scale of

fault lines. In particular, histograms and kernel density estimators are able to capture spatial

heterogeneity in the risk of spontaneous earthquakes, but the methods capture variation over

only one scale. To our knowledge, our work here is the first to attempt to reconstruct the

community fault model [36 ] with a statistical model based on earthquake event data.

In this paper we introduce a new type of ETAS model that can capture multiscale clus-

tering in earthquake patterns. In particular, we propose using an infinite mixture of infinite

Gaussian mixtures (I2GMM) [13 ] to estimate the background rate of earthquakes µ(x, y).

For each spatial cluster, the I2GMM uses a different Dirichlet process mixture of Gaussians

(DPMG) that simultaneously predicts the number of clusters along with performing model

inference. While I2GMM has been introduced for high-dimensional clustering and ETAS is

well known in seismology, what is new in this paper is the use of I2GMM for modeling the in-

tensity of a point process and the coupling of these two techniques for multiscale modeling of

space-time event patterns. Through the use of an expectation-maximization algorithm, the

benefit of our approach is that earthquakes are assigned membership to aftershock clusters

in addition to a larger scale fault line cluster.

Another advantage of our approach is that multi-modal and skewed spatial clusters are

more accurately captured. In the case of spatial earthquake patterns, each fault may be

considered as a separate cluster with multi-modality and skewness that the I2GMM can

handle better than histograms and KDE estimators. In particular, a fault is represented in

the background rate of spontaneous earthquakes by I2GMM as a cluster of several Gaussians.

Unlike kernel density estimation where each kernel corresponds to one event in the dataset at

which it is centered, each Gaussian in a spatial cluster of I2GMM is not necessarily centered

at a historical event and can generate multiple spontaneous earthquakes in the future. One

additional advantage of the I2GMM model is that earthquakes are assigned membership

to spatial clusters inferred by the model. In this research, we explore the relevance of
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spatial cluster membership to automatic detection of fault lines within the ETAS-I2GMM

framework.

2.2.1 Methods

Infinite mixture of infinite Gaussian mixtures

Figure 2.4. The hierarchy of I2GMM model illustrated on a synthetic dataset.

Since we have already gave the details of I2GMM in 2.1.1 , we will not repeat it here. We

believe that I2GMM has three unique features that make it very suitable for the estimation

of background intensity µ(x, y) in the ETAS model.

• As a two-layer non-parametric model, I2GMM allows the number of clusters and the

number of mixture components in each cluster to grow arbitrarily large, offering great

flexibility in modeling clusters with multi-mode/skewed distributions. This is the main
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feature that distinguishes I2GMM from other model-based clustering techniques that

use one component for each cluster.

• As a Bayesian model, I2GMM has hyper-parameters that can be tuned to recover clus-

ters with varying shapes and different levels of rarity without facing singularities during

model estimation. This distinguishes I2GMM from purely data-driven techniques such

as finite mixture of Gaussians and t-distributions that rely on EM and its extensions

during model learning.

• As a hierarchical model, I2GMM can share parameters not only across different clusters

but also across different components of the same cluster. In other words, I2GMM

assumes that components are generated independently only when conditioned on the

unique parameter defining their clusters of origin. This differentiates the proposed

work from other techniques that estimate a large number of Gaussian components and

merges them sequentially to recover clusters, thus violating component dependence.

In Figure 2.4 we provide an illustration of the generative model for I2GMM. Where tkl

indicates the lth component in the kth cluster Ck; xkli indicates the ith data point in the lth

component in the kth cluster. In the generative process, tkl is a Gaussian distribution and Ck

is a Gaussian mixture defined by its components. We will use the top-level label (i.e., Ck)

to identify different clusters of spontaneous earthquakes that can be used to predict fault

membership of each event. The lower-level labels could also be used to identify faults or

sub-faults (where seismologists may want to consider refining their labels); however, in this

paper we will restrict our analysis to the top-level labels.

To perform inference with the I2GMM model using spatial event data, we first initialize

the cluster and component indicators for each event to some arbitrary values (for example

put all data in the same component of a cluster) and then use a collapsed Gibbs sampler

to infer values for indicator variables one at a time, given all other indicator variables [13 ].

Conditioned on the indicator variables, the location vectors and scale matrices are determined

by maximizing the complete data log-likelihood and have closed-form solutions. One sweep

of the Gibbs sampler will go over all events in the dataset; convergence typically requires

several hundred to thousand Gibbs sweeps.
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EM inference for ETAS

The ETAS model given in Equation 2.17 can be viewed as a branching process where

spontaneous events occur according to a Poisson process with intensity µ(x, y). Events

(from all generations) give birth to direct offspring events determined by the triggering

kernel g(t − ti, x − xi, y − yi, mi).

Given an initial guess for the parameters of the triggering kernel in Equation 2.18 and

the background rate µ(x, y), the branching structure along with the model parameters of

the triggering kernel can be estimated using an EM algorithm [31 ], [37 ]. In the E-step of

the EM algorithm the probability pij that event i is a direct offspring of event j is estimated,

along with the probability pb
i that the event was generated by the Poisson process with rate

µ(xi, yi).

pij = g(ti − tj, xi − xj, yi − yj)
λ(ti, xi, yi)

, (2.19)

pb
i = µ(xi, yi)

λ(ti, xi, yi)
, (2.20)

Given the probabilistic estimate of the branching structure, the complete data log-

likelihood is then maximized in the M-step (using standard methods for estimating a Pareto

distribution) [31 ], providing an estimate of the model parameters.

Joint inference of the ETAS-I2GMM

We propose three variants for inferring the joint ETAS-I2GMM model.

ETAS-I2GMM 1. In the first variant we start by clustering all events spatially using

I2GMM. We then evaluate the convex hull of each cluster and enforce µ(x, y) to be constant

in the convex hull. µ(x, y) and other parameters are then estimated using the EM algorithm

in Section 2.2.1 with the rectangular cells in Section 2.2.1 replaced by the estimated convex

hulls.
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ETAS-I2GMM 2. In the next variant we perform joint inference using a Monte-Carlo EM

algorithm. In particular, at each EM iteration we perform the following steps:

i. (I2GMM-step) Sample background events from probabilistic branching structure pij.

Rather than clustering all events using I2GMM now we cluster the sampled background

events only. Estimate µ(x, y) based on the clusters of background events the same as in

ETAS-I2GMM 1.

ii. (E-step) Estimate probabilistic branching structure and model parameters of triggering

kernel as in Section 2.2.1 .

ETAS-I2GMM 3. In the last variant we use a weighted I2GMM algorithm in place of

the i step in variant two above. Instead of estimating µ(x, y) based on clusters of sampled

background events, we estimate µ(x, y) based on clusters generated by weighted I2GMM on

all events whose weights are estimated by (2.20 ). In the first EM iteration, since pb
i does not

exist we initialize the weight to 1.

Baseline ETAS model with histogram estimator

We use the histogram estimator proposed in [31 ] as a baseline model for comparison. In

particular, we let the background rate µ(x, y) be a constant:

µ(x, y) = µk if (x,y) is in cell k, k ∈ 1, . . . , K (2.21)

over each rectangular cell of a regular grid. There are then K + 6 parameters θ =

(µ1, . . . , µK , a, c, d, w, ρ, K0) that we need to estimate (assuming there are K cells in the

grid) and for that purpose we use the EM algorithm in [31 ].
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ETAS model with variable kernel estimates

For a second comparison we use kernel density estimation with variable bandwidth as

proposed in [33 ]. Here µ(x, y) is estimated as

µ(x, y) = 1
T

∑
j

pb
j kdj(x − xj, y − yj) (2.22)

where T is the time span of all events, pb
j is the background probability defined in (2.20 ),

dj is the varying bandwidth calculated for each event j according to the distance of its np

nearest neighbor, and kd(x, y) denotes the Gaussian kernel function 1
2πd

exp{−x2+y2

2d2 }. For all

experiments, we set the parameter np = 3 as suggested by [38 ]. The rest of the parameters

are estimated according to Section 2.2.1 using the same EM algorithm.

2.2.2 Experiments and Results

Experiment 1: goodness of fit of ETAS-I2GMM applied to CA earthquakes 3.5
and greater since 2000

We apply our models to the California earthquake-event data filtered by year (greater

than 2000) and magnitude (greater than 3.5). The geographic bounds range from 46.116 >

latitude > 29.615 and −113.581 > longitude > −130.427. The dataset is divided into

training and testing using time point 2010-01-01 00:00:00 as cutoff. All events before this

time stamp are placed in the training dataset, while all events after it are placed in the

testing dataset. We performed experiments with the following seven models to analyze how

the performance varies by adopting different modeling strategies:

1. ETAS-I2GMM 1.

2. ETAS-I2GMM 2.

3. ETAS-I2GMM 3.

4. 4 × 4 grid baseline model.

5. 3 × 4 grid baseline model.
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6. 3 × 3 grid baseline model.

7. ETAS-KDE described in Section 2.2.1 .

Note that experiments 1 to 3 are repeated 10 times and the means of the likelihoods are

recorded. For I2GMM we run 400 Gibbs sweeps; the hyper-parameters are set as follows:

µ0 = [36.4603; −119.3265] the mean of the dataset; Σ0 = [21.4972 0; 0 23.1351)] the

diagonal matrix with diagonal entries equal to the latitude-longitude variances of the dataset;

m = 22; κ0 = 0.1; κ1 = 0.5. The values of m, κ0, κ1 are tuned to let I2GMM generate fewer

or equivalent number of clusters as the 4 × 4 grid baseline model.

We use the log-likelihood function

logL =
N∑

i=1
log(λ(ti, xi, yi)) −

∫ T

0

∫
S

λ(t, x, y)dxdydt (2.23)

to evaluate the competing models for the background intensity. The results are shown in

Table 2.2 .

Table 2.2. Log-likelihood model comparison.

Model logL ∑
i log(λi)

∫
λ

ETAS-I2GMM 1 -4619 -1206 3413
ETAS-I2GMM 2 -4686 -1283 3403
ETAS-I2GMM 3 -4716 -1319 3397

4 × 4 Grid -4980 -1590 3390
3 × 4 Grid -4937 -1607 3330
3 × 3 Grid -5023 -1582 3440
ETAS-KDE -4860 -1441 3419

All three ETAS-I2GMM models outperform those with histogram or kernel density es-

timators. Between the three ETAS-I2GMM variants, the best-performing model is variant

1, where I2GMM is first estimated and the EM algorithm is run separately to estimate the

parameters of the triggering kernel. It is worthwhile to note that finer clusters do not nec-

essarily yield better results. Even though the 4 × 4 grid model generates more clusters it

produces lower likelihood than the 3 × 4 grid model.
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Figure 2.5. Fault line cluster membership using the nearest CFM 3.0 fault
to each earthquake (ground truth).

Experiment 2: ETAS-I2GMM for event-fault linkage from space-time event data

Next, we investigate the extent to which the ETAS-I2GMM model can learn fault struc-

ture from space-time event data. For this purpose we use the Community Fault Model 3.0

[36 ], which is a three dimensional representation (latitude, longitude, and elevation) of faults

in Southern California. The CFM is a collaborative project undertaken by scientists of the

Southern California Earthquake Center (SCEC) for studying active faults and earthquake

phenomena and to improve regional earthquake hazard assessments. Our goal here is to

assess how well ETAS-I2GMM recovers a 2D projection of the CFM 3.0 using only space-

time-magnitude earthquake incident data as input. In particular, we generate a fault label

for each event in the dataset by assigning fault membership as the nearest fault in CFM 3.0

(see Figure 2.5 ).

The ETAS-I2GMM-predicted label is taken from the first layer of the I2GMM model

clusters, where offspring events are assigned to the spatial cluster of their nearest neigh-

bor among background events. To allow for comparison to the CFM 3.0, we restrict the
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geographic bounds of the CA earthquake event data to 36.958 > latitude > 31.518 and

−113.719 > longitude > −121.176, but we expand the magnitude threshold down to 2.5.

There are 145 actual fault lines in CFM 3.0, but all the models we used in previous

experiments generate at most 26 clusters. For this dataset, we added two additional models

in the experiments for fault recovery:

• An I2GMM with parameters tuned to generate approximately 145 clusters on average;

this version is named as ETAS-I2GMM 145 in our experiments.

• A 16 × 15 grid model that contains 143 non-empty clusters.

Table 2.3. Clustering accuracy comparison of fault classification. The log-
likelihoods are also included. We are not able to evaluate the accuracy score
for ETAS-KDE since it doesn’t generate spatial clusters.

Accuracy Acc10 logL ∑
i log(λi)

∫
λ

ETAS-I2GMM 145 0.46 0.52 5495 16772 11277
ETAS-I2GMM 1 0.50 0.67 4688 16034 11346
ETAS-I2GMM 2 0.45 0.46 4466 15820 11354
ETAS-I2GMM 3 0.41 0.33 4495 15904 11409

Grid 16x15 0.45 0.47 4384 15703 11319
Grid 4x4 0.37 0.37 4247 15723 11476
Grid 3x4 0.36 0.28 4224 15694 11470
Grid 3x3 0.35 0.32 4198 15673 11475
ETAS-KDE – – 4066 15464 11398

Given that the number of clusters estimated by I2GMMmay be different from the number

of faults in the CFM 3.0, we evaluate the success of fault-cluster recovery by considering the

percentage of correctly classified data points. In addition to the overall clustering accuracy,

we evaluate the mean clustering accuracy for the 10 largest faults, which contains 67% of data

points across 145 faults. In Table 2.3 we present the clustering accuracy for the seven models

listed in 2.2.2 as well as the two additional models. To calculate the clustering accuracy, we

first align the generated clusters with the ground-truth classes using the Hungarian algorithm

[39 ], [40 ], and then calculate the percentage of the data points that fall into their classes

of origin. We adopt clustering accuracy for its simplicity and its invariance to potential
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misalignment between ground truth and predicted class labels. Mean clustering accuracy is

calculated as below:

Acc = 1
|C∗|

∑
C∗

k
∈C∗

|C∗
k ∩ Ck|
|C∗

k |
(2.24)

where for each event, C∗
k is fault cluster assignment of event k and Ck is the predicted

cluster assignment of event k. Here C∗ contains all fault clusters under consideration; Ck is

the predicted cluster corresponding to C∗
k after alignment; C∗

k ∩ Ck indicates data points in

both C∗
k and Ck; |S| denote the cardinality of the set S. To compute the mean clustering

accuracy for the ten largest faults Acc10 we set C∗ to contain the ten largest true fault

clusters in the above equation.

Here again we see that ETAS-I2GMM 1 performs best both in terms of clustering accuracy

and Acc10. All the ETAS-I2GMM models outperform ETAS with a histogram estimator

or a kernel density estimator in terms of likelihood, which is consistent with the results

we have in Experiment 1 on the CA earthquake data. In Figure 2.6 we plot the clusters

recovered corresponding to ETAS-I2GMM 145, ETAS-I2GMM 1, 16 × 15 grid, 4 × 4 grid,

and the true clusters for a better understanding of this outcome. Despite the fact that

I2GMM generated only 26 unique clusters on average compared to 145 actual fault lines

in CFM 3.0, a meaningful clustering accuracy of 0.5 was achieved. Results suggest that a

majority of events in fault clusters that tend to have elongated, skewed, and in some cases

multi-mode shapes are clustered correctly by I2GMM. In contrast, the clusters in the two

histogram models have abrupt boundaries formed from the grid irrespective of the shape of

the underlying faults, as shown in Figure 2.6 . Moreover, when we adjust the parameters

of the I2GMM to get approximately the same number of clusters as the true number of

fault clusters, we observe that the clustering accuracy does not improve owing to erroneous

splitting of events belonging to larger fault lines into multiple clusters. This is also true

for the 16 × 15 grid model that generates 143 non-empty clusters. Although the clustering

accuracy improves with this model compared to the grid model with a smaller number of

clusters, overall clustering accuracy achieved by this model is still less than that achieved

by I2GMM with 26 clusters (0.45 vs 0.50). The difference in clustering accuracy between
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Figure 2.6. True and predicted CFM fault groupings. Events with same
labels are shown by the same color.
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Figure 2.7. Ten largest CFM faults and recovered clusters. Events with same
labels are shown by the same color.
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the two models increases in favor of I2GMM when we take into account only the largest ten

fault clusters (0.47 vs 0.67). This is a natural result of the grid model’s arbitrarily splitting

fault clusters, compared to the more effective handling of elongated fault cluster shapes by

I2GMM.

We illustrate this over-splitting problem in Figure 2.7 by plotting the clustering results

of the ten largest faults. From the Acc10 results in Table 2.3 and Figure 2.7 we can see that

ETAS-I2GMM 1 did the best by achieving a mean clustering accuracy of 0.67 across ten

faults while recovering several of them by a clustering accuracy of over 0.9. On the other

hand, for the grid models the Acc10 values are consistent with their corresponding overall

accuracies.

2.2.3 Discussion

We introduced a coupled ETAS-I2GMM model for jointly estimating multi-scale clus-

tering in earthquake data with parameters governing earthquake productivity and self-

excitation. We also introduced what we believe is a novel machine-learning task for statisti-

cal seismology, namely estimating CFM fault clusters using unlabeled space-time-magnitude

event data. Improving upon algorithms aimed at solving this task could aid in the develop-

ment of future versions of CFM, as well as fault models in other regions of the world.

The I2GMM model may have applications to point processes beyond those arising in

seismology. Space-time self-exciting point processes arise in the study of crime [37 ], [41 ], [42 ],

conflict [43 ], and terrorism [44 ]–[47 ], as well as in social-network event dynamics, for example

in social media [48 ]–[50 ]. In the case of crime, clusters arise naturally from the superposition

of events committed by different offenders with different modi operandi. Similar clusters may

arise from the operations of different terrorist groups within a geographic region. I2GMM

is a flexible model for capturing this type of clustering in the intensity of events of a point

process.
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2.3 The Analog Learning Framework

Besides AI2GMM, we made another attempt on Non-Exhaustive Learning. Intuitively

speaking if we can learn a feature space mapped by function f to improve the unsupervised

clustering accuracy of known classes, the clustering accuracy of unknown classes in the

feature space should also be improved. We proposed the analog learning framework (ALF)

that aims to separate classes in the learned feature space without using the supervised

information encoded in the class labels. Specifically, this framework has two stages. In

the first stage the analog learning component attempts to learn the intrinsic metric that

separates classes. In the second stage the validation component infers the assignments of

samples in an unsupervised manner with metric information derived from the analog learning

part. An evaluation score is used as an indicator of model fitness. With this approach the

model is expected to draw an analogy between known and unknown classes by leveraging

the past knowledge embodied in known classes.

2.3.1 Heuristic Parameter Learning for I2GMM

Our first approach in the analog learning framework is built on top of I2GMM. During

our experiments with AI2GMM we noticed that when there is a big discrepancy between

the actual classes distributions and the model’s assumption, performing restricted Gibbs

sampling generates ill-defined components. Since the hyper-parameters are learned based

on current cluster and components assignments, the learned hyperparameters further dete-

riorate the mismatch between true and predicted class distributions. When this happens,

the performance of the restricted AI2GMM with training data could be even worse than

that of fully unsupervised version. Which is against our goal where we want to improve the

performance of the model in discovering unknown classes through utilizing the supervised

information provided by the training data.

Therefore, rather than performing restricted Gibbs sampling and learning the hyper-

parameters based on the current assignments, we randomly sampled the hyper-parameters

and perform fully unsupervised clustering using both training and testing datasets together.

Then we evaluate the performance based on the assignment of the training samples using
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Figure 2.8. The comparison between training F1 and testing F1. Here we
sort the 3500 runs of training scores and plot in sorted order (red line), then
the testing scores of the same run is plotted at the same horizontal axis of the
training score (blue line).

mean F1 score as the performance indicator of how good the selected hyper-parameters are.

The hyper-parameters are then optimized by the Simulated Annealing (SA) algorithm [51 ]

using the training score. In this method the SA hyper-parameter optimizing is the analog

learning part and the clustering algorithm is the validation part of the analog learning

framework. In order to see whether the assumption for the analog learning framework holds

here, we performed experiment on the Statlog dataset from the UCI Machine Learning

Repository [52 ], and plotted the comparison between training scores on training data and

evaluation scores on test data in Figure 2.8 . We can see from the figure that the testing score

is trending higher with the training score with the exception of a small random perturbation.
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Moreover, we can use the training score as an indicator of the goodness of fit between the

model and the dataset. For datasets that do not suit the I2GMM model, training score will

still be low (higher is better) even after the SA algorithm converges but for datasets that fit

the I2GMM well, the training score will be high.

Although the heuristic method described above is effective and can eventually find the

set of hyper-parameters that achieve the best performance, it is very computational costing

since each time we evaluating the score of hyper-parameters suggested by the SA optimizer

we need to run the I2GMM from scratch using the updated hyper-parameters. Apart from

the computational burden the applicability of this SA-based heuristics is limited to low

dimensional datasets with well separated class distributions that I2GMM could fit well.

Performing NEL on complex datasets with structural information and high dimensional

features requires learning a low dimensional feature representation. Rather than continue

with this line of work, we decided to move forward to Non-Exhaustive Feature Learning

through deep learning techniques.
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3. NON-EXHAUSTIVE FEATURE LEARNING

In chapter 2 we discussed the theoretical work and applications of Non-Exhaustive Learning.

Though considering NEL from a statistical aspect gives us theoretical support and helped

with formulating the problem, it is limited to ”plain” datasets whose statistical characteristics

of each class is obvious and discriminating. This is usually not hold for many real word

datasets such as natural images, texts, and speeches. Therefore, we put forwarded with the

Non-Exhaustive Feature Learning (NEFL) task. Different from supervised or unsupervised

representation learning which are extensively studied, in our NEFL work we focus on learning

a statistically discriminating feature space that could separate well both known and unknown

classes.

We first tackle this problem along the direction of generative models, and proposed the

Variational Auto-encoding IGMM detailed in section 3.1 . Then we changed our focus on

the generalization ability of the feature learning method, and conducted our research under

the metric learning direction. Section 3.2 gives an introduction of this approach. We then

applied this method and proposed its two variants in two applications in section 3.3 and 3.4 

3.1 Variational Auto-encoding IGMM

In order to generalize NEL to complex and structural datasets which usually appear

with high dimensional and sparse features, we proposed the variational auto-encoding IGMM

(VAIGMM) for non-exhaustive feature learning. VAIGMM is proposed based on the intuition

that the IGMM prior can be made to more effectively fit a learned low dimensional feature

space representation of the original features. Instead of picking an IGMM prior and fitting

original data into this prior by brute force, we aim to jointly learn a nonlinearly projected

representation of the original data and the IGMM prior that would best fit this data.

We resort to deep feature learning techniques since they are known for their flexibility

and success in many domains. Feature learning can be either supervised or unsupervised.

Supervised feature learning including Linear Discriminant Analysis (LDA) [53 ] and super-

vised neural networks learn a mapping fθ to maximize the discrimination between different

classes in the latent space based on labeled data. Since most of the supervised feature
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learning methods are greedily maximizing the discrimination, the learned feature space is

usually over-fitted for the known classes and generalize poorly on unknown classes. On

the other hand, unsupervised feature learning techniques including Principal Component

Analysis (PCA) [54 ], clustering based one hot encoding [55 ], auto-encoders [56 ] try to learn

a feature space that could capture explanatory underlying factors that will be useful for

high-level tasks such as classification [57 ]. The objective for unsupervised feature learning

techniques is usually some similarity measure between the observations and the learned fea-

tures, ensuring that the learned feature representations contains necessary information of

the raw data with a small random perturbation. Due to the intrinsic objective, unsupervised

feature learning techniques usually generalize well even on unknown classes.

Among all the techniques in unsupervised deep feature learning, variational auto encoder

(VAE) [58 ] and generative adversarial networks (GAN) [59 ] are the most popular ones. While

VAE imposes a prior for the latent layer and build a graphical model to make the latent

layer distribution comply with the prior, GAN and its variants such as Adversarial Auto-

encoders (AAE) [60 ] fit the latent distribution in a more straight forward way by imposing

an additional network to distinguish between samples generated by the prior and encoded

samples. We have tried both AAE and VAE for fitting an IGMM prior and finally choose

VAE due to the better fit of data distributions it generate on the latent space. [61 ] proposed

a model similar to ours for clustering by imposing a GMM on the latent space and achieved

promising results on some benchmark datasets. The parametric mixture model such as

GMM [61 ] uses requires the number of clusters to be defined beforehand. In our work we

use IGMM as a non-parametric Bayesian prior and derive the corresponding evidence lower

bound (ELBO) as the optimization objective for the feature learning neural network, and

designed a training method to integrate labeled and unlabeled data in the NEL framework.

Details are discussed in 3.1.1 .
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3.1.1 Method

In this section, we describe the generative model of VAIGMM along with the deriviation

of its objectives. We also proposed a training method for integrated training of both labeled

and unlabeled data in 3.1.1 .

Generative Model for VAIGMM

Figure 3.1. Directed graphical model for VAIGMM, where K is the current
number of clusters found (could potentially be infinite), nc is the number of
data points in cluster c

The generative model for VAIGMM is below:

H = N
(
µc|µ0, κ−1σ2

c I
)

Γ−1(σ2
c |α, β)

G = DP (γH)

θc = (µc, σ2
c ) ∼ G

z ∼ N(µc, σ2
c I)

(µx, σx) = f(z|θ)

x ∼ N(µx, σ2
xI)

(3.1)

where H is the base distribution in the form of a Normal Inverse Gamma distribution with the

expected cluster centers at µ0. The scaling constant κ controls the separation among clusters.
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The inverse Gamma distribution is defined by its shape parameter α and rate parameter β.

A sample G is drawn from the Dirichlet process with base H and concentration γ; cluster

center µc and scalar variance σ2
c are drawn from G, and latent space sample z is drawn

from a Normal distribution with mean µc and covariance σ2
c times identity. Finally, latent

space sample z is mapped by a function f parameterized by θ to generate the mean µx and

variance σx in the observation space, and a data point is sampled by a Normal distribution

centered at µx and covariance σ2
xI.

We choose the simplified version of IGMM with a spherical covariance for each cluster c

in order to reduce the computational cost in high dimensions. Although this sacrifices the

flexibility of the clustering model the neural network can still learn a feature space with well-

separated and unimodal class distribution. This is the so called ”thin” model and ”heavy”

feature learning. By doing this, we are training a feature learning network that could learn

features useful for non-exhaustive learning.

According to the generative process in (3.1 ) and the graphical model illustrated in Figure

3.1 , the joint probability p(x, z, c) can be factorized as:

p(x, z, c) = p(x|z, c)p(z|c)p(c) = p(x|z)p(z|c)p(c) (3.2)

since x is independent of c when conditioned on z. Based on the generative definition in

(3.1 ), the probability terms in (3.2 ) are:

p(x|z) = N(µx, σ2
xI)

p(z|c) = p(z|θc) = N(µc, σ2
c I)

p(c) = DP (γ)

(3.3)

Variational Lower Bound

We followed the work of [61 ] to derive the variational lower bound for our model. The

training objective is to maximize the likelihood given the observations. According to the
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generative process in 3.1.1 , the log-likelihood of VAIGMM can be written as below by using

Jensen’s inequality:

log p(x) = log
∫

z

∫
c
p(x, z, c)dcdz ≥ Eq(z,c|x)

[
log p(x, z, c)

q(z, c|x)

]
= LELBO(x) (3.4)

where LELBO(x) is the evidence lower bound, q(z, c|x) is the variational posterior to approx-

imate the true posterior p(z, c|x). We can factorize q(z, c|x) as mean-field distribution and

use a neural network g to model q(z|x):

q(z, c|x) = q(z|x)q(c|x)

q(z|x) = N(z|µ̃, σ̃2I)

[µ̃, log σ̃2] = g(x|φ)

(3.5)

and by approximating q(c|x) with the posterior p(c|z) we have:

q(c|x) = p(c|z) = p(θc|z) = p(z|θc)p(θc)∫
θc

p(z|θc)p(θc)
= N(z|µc, σ2

c I)N (µ0, κ−1σ2
c I) Γ−1(σ2

c |α, β)∫
θc

N(z|µc, σ2
c I)N (µ0, κ−1σ2

c I) Γ−1(σ2
c |α, β)

(3.6)

By integrating out the θc in the denominator, we have:

p(θc|z) =
Γ(α + D

2 )βαN(z|µc, σ2
c I)N (µ0, κ−1σ2

c I) Γ−1(σ2
c |α, β)(

κ
1+κ

)D
2 Γ(α)

(
β(1+κ)

1+κ+βκ

)α+ D
2 N(z|µ0, I)

(3.7)

Therefore, the LELBO(x) term can be rewritten as below according to (3.2 ) and (3.5 ):

LELBO(x) = Eq(z,c,µc|x)[ log p(x|z) + log p(z|c) + log p(c) − log q(z|x) − log q(c|x)] (3.8)
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After deriving each term based on their definitions in equations (3.3 ) and (3.5 ), and

combining them together we have:

LELBO(x) = 1
L

L∑
l=1

log N(x|µ(l)
x , σ(l)2

x I) +
K+1∑
c=1

q(c|x)
(

log πcN(µ̃|µc, σ2
c I)

q(c|x) − Dσ̃2

2σ2
c

)

+ D

2 log(2πσ̃2) + D

2

(3.9)

Note that we adopt the Stocastic Gradient Variational Bayes (SGVB) estimator [58 ] in (3.9 ),

where L is the number of Monte Carlo samples. µ(l)
x , σ(l)2

x = f(z(l)|θ) with z(l) sampled from

q(z|x) in equation (3.5 ). By using the reparameterization trick, z(l) can be obtained with

z(l) = µ̃ + σ̃ ◦ ε(l) (3.10)

where ε ∼ N(0, I) is the reparameterized random sample generated from a standard Normal

distribution, ◦ indicate the element-wise multiplication. Different from the finite Gaussian

mixtures, we included the term for generating new cluster in equation (3.9 ), which makes

the sum term to be the number of existing clusters K plus 1. The estimated prior πc is

defined as below:

πc =


nc

N−1+α
, c ≤ K

α
N−1+α

, c > K

(3.11)

Interleaving Training and Restricted Sampling for Non-exhaustive Learning

In Sections 3.1.1 and 3.1.1 we defined the generative model as a fully unsupervised model

and derived the resultant optimization objective. The training procedure for non-exhaustive

learning is described below:

1. We pretrain a fully unsupervised stacked auto-encoder [14 ], initialize gφ with the en-

coder and fθ with the decoder. Then perform initial training on the feature space
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encoded by gφ using equation (3.5 ) with restricted IGMM using the same restrictive

training strategy described in 2.1.2 on labeled data.

2. For each epoch, we perform one sweep of restricted Gibbs sampling similar to 2.1.2 

for IGMM. Conditioned on the label, we maximize the ELBO in (3.9 ) by training the

feature learning networks gφ and fθ. The second term in (3.9 ) for c = K + 1, i.e. the

likelihood of assigning a sample to a new class can be estimated by replacing µc with

µ0, σc with the expectation of the inverse gamma β
α−1 .

3. Successively iterate training IGMM for cluster assignment and the variational networks

for feature representation learning until convergence.

3.1.2 Experiments

(a) Plot of first 2 dimension
on the feature space for en-
coded training data.

(b) Plot of first 2 dimension
on the feature space for en-
coded testing data.

(c) Images of decoded cluster
centers.

Figure 3.2. Illustration of MNIST after training VAIGMM for 200 epochs on
5 of the digits.

Due to the inappropriate inference of previous version, I don’t have the experiments

results for current version yet. The previous version and the VAIGMM described here differ

in the generative model, where in the previous version the cluster covariance are all assumed

to be identity; and the previous version use p(x, z, c, µc) as the joint probability in (3.2 ) and

making too many approximations. Figure 3.2 showed an illustration of running previous

version of VAIGMM on MNIST with feature space dimensions set to 10. We can see from
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Figure 3.3. The illustration for centroid margin loss. Where ”x” mark indi-
cate the class center, ”·” indicate the sample point, m is the margin.

the figure that though the training data is well separated, most of the testing classes are still

mixed together. From the generated digits by decoding cluster centers, we can observe that

only few of new digits are discovered, and some of the classes are split into different clusters

by their different shape variation. Based on previous results, relying on restricted Gibbs

sampling to learn the supervised information from the labeled data seems not generalize

well on unknown classes. Which means, we got high accuracy on known classes but doesn’t

perform well on discovering new classes. But this could be due to the inappropriate inference

and the choice of q(c|x). Note that we approximate q(c|x) with p(c|z) in (3.6 ). Rather than

use the posterior distribution we can also use the posterior predictive p(z∗|c), which might

be a better choice than the posterior.

3.2 The Centroid Margin Loss

Centroid Margin Loss (CML) is inspired by the triplet loss [62 ], which is a metric learning

technique that avoid using explicit class labels but still encourage samples coming from same

classes to be close to each other and far away from other classes. Though triplet loss is known

to generalize well on unknown classes for transfer learning [63 ], it is also known for its less

desirable convergence characteristics due to the large number of potential triplet (n3) that

can be tried [63 ]. We proposed the stochastic centroid margin loss to deal with this problem.

For each batch with N data, we sample Nknown labeled data points from each of the K

classes, and Nunknown data points from unlabeled data. For a labeled data point with feature

z in class k, we evaluate the centroid ci of each class in the feature space, and use the centroid
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of its own class ck as positive sample. Then we use the centroid cn closest to x among all

centroids except ck as the negative sample. Then the centroid margin loss is calculated as:

L(z, ck, cn) = max {d (z, ck) − d (z, cn) + margin, 0} (3.12)

Note that this equation is exactly the same as triplet loss but with positive samples replaced

by the centroid of its class of origin, and the negative samples replaced by the centroid of

the closest class. We have illustrated the centroid margin loss in Figure 3.3 . By replacing

the positive random sample from the same class of the anchor point by its class centroid,

and replacing the negative sample by its closest negative centroid, we highly improved the

effectiveness of the triplet loss. When performing random sampling most of the negative

sample distances associated with the anchor point will be larger than the margin associated

with the positive sample distance resulting in too many trivial triplet loss of 0s. After

replacing the random samples with centroid, we reduced the number of potential triplet

from n3 to n, which is the same as the number of data points and overcomes the convergence

problem of triplet loss.

We compared the triplet loss and CML on MNIST by using them as an optimization

objective on the feature space of a stacked auto-encoder. The stacked auto-encoder is first

pretrained with all data in a fully unsupervised manner, and then fine tuned by triplet loss or

CML on the training data. Then we perform K-means clustering algorithm on the encoded

features to generate the label, the results are showed in Table 3.1 . In this experiment,

training data are sub-sampled from the original MNIST train split with 80% of data points

from 5 of the classes, validation data is the rest of the MNIST training data, and the testing

data contains all data points in the MNIST testing split. We can see from the comparison

that both the triplet loss and centroid margin loss generalize well on unknown classes but

centroid margin loss achieves much better results than triplet loss.

The main challenge to perform feature learning using centroid margin loss for NEL is

how to utilize the unlabeled data. In the experiments above both the centroid margin loss

and the triplet loss are optimized with only labeled data. The unlabeled data is only used

in the auto-encoder. Recent studies suggest that when learning the feature space keeping
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Table 3.1. Comparison of mean F1 scores of Centroid Margin Loss and Triplet
Loss on MNIST

Train F1 Validation F1 Testing F1
Centroid Margin Loss 0.95 0.89 0.90
Triplet Loss 0.88 0.75 0.75
cross entropy loss 0.96 0.62 0.62

the sample x and its random transformation in the same class will significantly improve the

performance [9 ], [16 ]. Herein we define this kind of transformation to be ”class invariant”, as

these transformations are not supposed to affect the class semantics of the data. Moreover,

the class invariant transformation provides us a way to incorporate task-specific domain

knowledge into the model. We proposed the unsupervised centroid margin loss based on

the class invariant transformations. For each unlabeled data, we generate l class invariant

transformations, and consider the centroid of these l data points as the positive centroid for

the current unlabed data point. We then choose two of the closest centroids from labeled

data, generate m samples by blending transformations of the two centroids, and treat the

centroid of these m samples as the negative centroid. We have illustrated the feature space

learned by CML with unlabeled data, CML only on labeled data, and the triplet loss learned

on labeled data using t-SNE in Figure 3.4 . We can see from the illustration that centroid

margin loss with unlabeled data get the most clear class boundaries, and triplet loss is the

worst among them.

In order to see how our proposed model compares with state-of-art, we performed exper-

iments on Omniglot dataset and compared with Deep Transfer Clustering (DTC) [9 ]. We

adopted the same network architecture as them and loaded their pretrained model, along

with the same labeled and unlabeled data split. Due to the limitation of batch size constraint

by GPU memory size, we can’t load all training classes all at once, since centroid margin

loss requires sampling Nknown points from each training classes in every batch. Therefore

we trained the target alphabet against every training alphabet for 10 epochs and perform

KMeans clustering to generate the label, then align all the labels and take the mode as the
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(a) t-SNE illustration for
MNIST testing data on the
feature space learned by op-
timizing centroid margin loss
on both the labeled and unla-
beled data.

(b) t-SNE illustration for
MNIST testing data on the
feature space learned by op-
timizing centroid margin loss
only on labeled data.

(c) t-SNE illustration for
MNIST testing data on the
feature space learned by opti-
mizing triplet loss on labeled
data.

Figure 3.4. Comparison of t-SNE illustration for MNIST testing data on the
feature space. Where we use different color to illustrate different classes.

final label for the target alphabet. This process is repeated for 10 epochs and the accuracy

for the last epoch is reported. The comparison results is showed in Table 3.2 .

Table 3.2. Comparison of accuracy on Omniglot
DTC-π DTC-TE/TEP Centroid Margin Loss

ACC 89.0 % 87.8 % 88.1 %

Though simple and trained only for 10 epochs, centroid margin loss still achieves com-

parable performance with the DTC on Omniglot. Moreover, in this experiment the set of

classes in the training and testing data sets are mutually exclusive, which DTC is designed

for. DTC split the learning of labeled data and unlabeled data into pretraining and fine

tuning stages, whereas there is no information about unlabeled data in the pretraining stage

and also no labeled data is used in the fine tuning stage. We don’t know how DTC will

perform when labeled data is included as in the non-exhaustive learning scenario. DTC is

based on DEC [64 ], which optimize the likelihood of the clustering on the feature learning

network. In our case, we can use the unsupervised version of VAIGMM introduced in section

3.1 rather than KMeans clustering for the validation part of the analog learning framework.

By jointly maximizing the ELBO of VAIGMM and the triplet margin loss, the model may
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be able to learn a feature space that not only the classes are well separate but also cope with

the IGMM prior. This could be a line of future research direction.

3.3 Applications to Segmentation of Sub-cell Structures in Multiplex Stimu-
lated Raman Scattering Images by Open World Feature Learning and Non-
parametric Bayesian Clustering

In this section, we discussed the application of Centroid Margin Loss on a hyper-spectral

image datasets. We proposed a variant of CML that is robustive to outliers or tagging errors

in order to tackle with the challenges appeared in the application.

3.3.1 Introduction

Semantic segmentation is a popular research area in machine learning with many appli-

cations in segmentation of objects in street scene photos [65 ], cells in microscopy images,

landcover types in hyperspectral images, just to name a few. Currently successful semantic

segmentation algorithms use fully convolutional neural (FCN) networks such as UNet [66 ],

or HRNet [67 ], and their performance heavily rely on contextual learning. Unlike semantic

segmentation in RGB or Gray scale images, in this project we deal with the semantic segmen-

tation of multiplex stimulated Raman scattering (SRS) images to identify static (nucleus,

endoplasmic reticulum) as well as dynamic (lipid droplets) sub-cell structures.

SRS imaging cytometry is a label-free single-cell analysis platform with chemical speci-

ficity and high-throughput capabilities [68 ]. This platform can generate hyperspectral images

with dozens of channels that reflect the chemical components inside cells with high spatial

and temporal resolution. The images can be analyzed to delineate a map of chemical activ-

ities inside single living cells paving the way for discovery of important molecular events in

cell cycle.

In this paper we try to find solutions to the following key challenges of semantic segmen-

tation in SRS images. (1) How can we learn a feature space that can preserve separability

among classes representing known structures but at the same time allow for the discovery

of subclasses representing interesting sub-cell structures that emerge with unknown spectral

patterns? (2) How do we utilize spatial information in order to reduce noise for a more
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robust spectral segmentation? (3) How do we perform segmentation without knowing the

number of spectral patterns in each image beforehand. In order to deal with the first two

challenges, we propose a 3D CNN Auto-encoder model [69 ] trained with a newly proposed

contrastive loss function to learn a new feature space specific enough to distinguish classes

representing known static structures but general enough to facilitate discovery of new classes

representing dynamic structures. In order to deal with the third challenge we use a doubly

non-parametric hierarchical Bayesian model [12 ], [70 ] to cluster pixel embeddings in the new

feature space to identify spectral patterns with potentially significant biological and chemical

implications.

3.3.2 Weakly Supervised Label Generation

 

PCA 1st axis projection 

PCA 2nd axis projection 

PCA 3rd axis projection 

Multi-level 
threshold 
and 
binarization 

Morphological 
Operations 

(a) PCA projections (b) Adaptive multi-level thresholding 

(c) Label mask 

(d) Spectrum plot 

Figure 3.5. Illustration of the label generation pipeline. Where in (c) black
is unknown area; blue is background, yellow is cytoplasm, green indicate high-
intensity regions, and red is bright spots; (d) for better illustration we plot
the mean of background and cytoplasm, and plot the bright spots and high-
intensity regions classes individually.

One trivial approach to segment SRS images involves thresholding gray level images ob-

tained by the first few principal components. As different principal components capture the
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maximum variance along a different set of orthogonal directions they can be used to segment

different compartments of the image provided that there is enough intensity difference among

these compartments. For example the first principal component can segment cells from the

background and the second principal component when used together with the first one can

identify high intensity regions inside cells as long as their gray-level images are binarized

at suitably adjusted thresholds. Although such an approach would not be robust to seg-

mentation of less common and subtle sub-cell structures due to variations in overall image

characteristics, a coarse-grained segmentation map that identifies background, cytoplasm,

high-intensity regions, and artifacts, usually characterized by very bright spots, can still be

obtained by PCA analysis.

We propose a coarse label generation process based on the adaptive multi-level threshold-

ing of gray-level images as illustrated in Figure 3.5 . (a) In the first stage we pre-process the

pixel-scale spectral data by a median filter, and then project this data into a 3-dimensional

PCA space defined by the first three principal components; And for each PCA projection

of the data, we pre-processed with the Adaptive Histogram Equalization (CLAHE) [71 ] fol-

lowed with a wiener filter [72 ] to remove the effect of noises and uneven exposure; (b) In

the second stage we calculate multi-level thresholds using Otsu’s method [73 ] and tune the

number of bins for each PCA axis; (c) In the third stage we obtain the segmentation masks

for each class by binarizing gray-level PCA images using thresholds from the previous stage,

and further refine the results by morphological operations such as morphological openings

and closing, and finally combine these binary images to segment four main compartments:

background, cytoplasm, high-intensity regions, and bright spots.

In this study we show that these coarse labels can be useful for weakly supervising the

training process to discover subtle spectral patterns representing dynamic structures when

a suitably chosen network architecture and loss function can be selected.

3.3.3 Method

Given the coarse-grained labels generated in Section 3.3.2 , we propose a 3D convolutional

auto-encoder architecture to perform fine-grained segmentation. The high-level block dia-
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Figure 3.6. Illustration of the training and testing workflow.

gram of the training and testing stages are illustrated in Figure 3.6 . (1) Given a set of SRS

images with each pixel representing a signal of C channels, we perform preprocessing that

involves signal-wise normalization and whole image re-scaling and normalization. (2) Using

preprocessed images we extract p by p patches centered at pixel locations (i, j). Note that p

needs to be an odd number in order to avoid asymmetric sampling. These patches are used

to train a CNN-AE described in Section 3.3.3 . (3) We train the network by simultaneously

optimizing the reconstruction loss and the discrimination loss as described in Section 3.3.3 .

For patches for which the labels are unknown, we only optimize the reconstruction loss. (4)

After the network is trained, patches are embedded into the feature space generated by the

CNN-AE to obtain pixel embeddings. These pixel-scale embedding vectors are clustered by

a doubly nonparametric Bayesian model as described in Section 2.1.2 . During clustering

pixels from background class are not used. Finally, segmentation maps are generated based

on the cluster indicator variables for each pixel.

We describe the details of the 3D CNN-AE in Section 3.3.3 and the proposed discrimi-

nation loss in Section 3.3.3 . We also included an ablation study on each part of the model

component in subsection 3.3.3 .
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3D Convolutional Autoencoder for Weakly Supervised Hyperspectral Image Seg-
mentation
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Figure 3.7. Illustration of the 3D CNN-AE network architecture.

3D Convolutional Neural Net (CNN) uses spectral and spatial information together and

can significantly reduce image noise to generate spatially more coherent segmentation maps.

However, when the goal is to discover dynamic sub-cell structures there is always the risk of

eliminating subtle spectral patterns representing these structures as noise unless conservative

training schemes are adopted. To obtain a more accurate segmentation map of both dynamic

and static cell structures we use a 3D CNN-AE architecture. The backbone network generates

feature embeddings for each pixel data. The decoder reverses the operation of the backbone

network to reconstruct the input patch given the feature embedding. The network end-to-end

is trained to optimize a loss function combining discriminant and reconstruction losses.

For the backbone network there are many options. For example we can use the most

basic Multi Layer Perceptron (MLP), or a 1D convolutional neural network implemented in

the spectral space, or a 2D convolutional neural network implemented in the spatial space.

However, none of these models consider spatial and spectral information together. Multiplex

SRS generates hyperspectral images and our work can benefit from a diverse set of CNN

architectures successfully applied to remote sensing data [74 ]. Upon preliminary evaluation of

different architectures we choose the model in [69 ] for its superior classification performance
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as our base model. This architecture take full advantage of the spatio-spectral information

and has lower computational costs.

We added a decoder part in order to deal with challenges (1) and (3). Since there

exist unknown areas which is highly possible to contain new classes, training relies only on

supervised information would tend to over-fitting. Moreover, since PCA gives us many useful

information on classification as showed in section 3.3.2 , we believe by setting a bottleneck at

the coding space and learning a reconstruction loss will also benefit the performance. And

by the combination of reconstruction loss and discrimination loss and training across images

from different time shift, we are expecting that by feature reduction we can filter out the

information that related to intro-class heterogeneity.

We build the decoder as the reverse architecture of the backbone network as illustrated in

Figure 3.7 . Where in the figure Convi is the ith convolution layer composed of ki 3×3×3 3D

convolution filters followed with a Relu activation layer; Pooli is the ith down-sampling layer

composed of same number of 3D convolution filters as previous layer with stride 2 across

channels (the spatial stride is still 1); ConvT i is the reverse convolution layer composed

of ki−1 3 × 3 × 3 3D transposed convolution filters and a Relu activation layer similar to

Convi, but this time we put the Relu layer before the 3D filters; Upi is the corresponding

up-sampling layer using transposed convolution filters with stride 2 across channels; flatten

and reshape are the pair of operations that flatten a 4D feature volume into a vector and

reshape a vector back to the feature volume; linear is a simple fully connected layer map

a x dimensional feature vector to a y dimensional one; p is the patch size, pi is the spatial

size after convolution layer i, C is the number of channels. Note that, since the number of

channels is not always an even number when performing pooling, the last channel will be

omitted during convolution. Even though we can pad both side of the feature volume before

pooling to avoid lose of information, but this will still result in miss-match of the number of

channels in the reconstruction phase to its corresponding down sampling one. To solve this

problem, we adopted the output padding to restore the original shape.

When training the network, we optimize the sum of reconstruction loss and discrimination

loss. Note that for reconstruction loss, in order to be consistent with discrimination loss and

to avoid marginal effect (which could be very severe since we use a very small patch size
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and padded the features), we only reconstructed the center pixel. Though the output of

the decoder is of the same shape as input, we calculate reconstruction loss only between the

center pixel and its reconstruction. We use Normalized Spectral Similarity Score (NS3) [75 ]

as the reconstruction loss and re-scaled the data in order to make both of the loss at same

magnitude. For cross entropy loss we added a fully connected layer on the feature space in

order to generate desired feature dimensions.

Centroid Margin Loss

We proposed the Centroid Margin Loss (CML) in section 3.2 for learning a feature space

that has good discrimination on both the training classed and could generalize well on un-

known classes. The generalization ability is meanly due to the non-greedy optimization

characteristics of CML. Since the samples will not contribute anymore in the loss once sat-

isfied the discrimination criterion, the learned feature space is not tend to over-fitting to the

training data. And as a contrastive learning objective, CML doesn’t make any assumption

on the class distributions or the feature space, which gives high flexibility for it to kept most

of the original data relationship. We restated the formulation of CML as below:

For each batch of N data samples composed by K classes, we evaluate the centroid ci

of each class i in the feature space. Then for a labeled data point with feature z in class

k, we use the centroid of its own class ck as positive centroid, and note the centroid which

is closest to x among all other centroids except ck as the negative centroid cn. Then the

centroid margin loss is calculated as:

L(z, ck, cn) = max {d (z, ck) − d (z, cn) + m, 0} (3.13)

Where m denotes the margin. We illustrated CML in figure 3.3 . From the illustration we

can see that CML is trying to find a feature space that each sample is at least m far away

from its closes negative centroid then its own centroid. Which means, their should be a at

least m size margin between the boundary of each class.

Due to the existence of outliers and incorrect labeling in the SRS spectral images, we

proposed a variants of CML, which we called kernel CML (K-CML). We observed the phe-
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nomenon of feature space collapse when training with the basic CML after a few epoch,

especially when the data is not re-scaled. In the case of feature space collapse, the CML

loss increases rather than reduce after a few epochs, and finally all losses becomes m. When

checking the features for data samples, we noticed that they all mapped to a same location.

Therefore, d (z, ck) − d (z, cn) will always be 0, which makes the final loss to be m. Our

inspection on the training process indicate that this is due to the large gradient generated

by high error of the outliers. So we proposed CML with sigmoid kernel in order to smooth

the loss at outliers:

L(z, ck, cn) = max {φ (d (z, ck) − d (z, cn)) + m), 0} (3.14)

where φ(x) is the kernel which could be of any form. For our scenario, we choose φ(x) =

sigmoid(x) − 0.5 in order to make the range of φ(x) between -0.5 and 0.5 and centered at 0.

By doing so, no matter how large is the outlier in the feature space, it could contribute at

most 0.5 with a much smoother gradient in the loss.

List of Compared Models

We did an ablation study for different aspects of our proposed model. Below is a list of

the descriptions for all compared models.

1. 3D CAE with KCML loss and AI2GMM. This is our proposed model. For this

model, we use the 3D CAE described in section 3.3.3 along with the sigmoid kernel

CML in 3.14 to generate feature. And we set the coding space dimensions to be 10D.

We then obtained the label by running a constrained AI2GMM on the features as

described in 3.3.3 .

2. 3D CAE with CEL and AI2GMM. We evaluate the generalization ability of KCML

loss by compare it with standard cross-entropy loss (CEL). For this model, everything

else is the same with our proposed model except that we use cross-entropy loss instead

of KCML loss. Note that since the number of dimensions of the feature space is usually

not equal to the number of classes, and cross-entropy prediction is known not good for
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using as feature, we added a linear layer on top of the bottleneck layer of the CAE for

CEL.

3. 3D CAE with AI2GMM. In this model we removed the discrimination loss part

and only optimize the reconstruction loss when training the CAE. Everything else is

the same as proposed model.

4. 3D CNN with KCML loss and AI2GMM. To evaluate the effectiveness of the

auto-encoder framework, we removed the decoder part and the reconstruction loss.

Which means, we train a network of the same architecture of [69 ] except for the last

layer we replace the cross-entropy loss with KCML loss. And after training we take

the feature as the last layer output and run a constrained AI2GMM on the feature the

same as our proposed model.

5. 3D CAE with KCML loss and KMeans. In this configuration we compared the

performance of AI2GMM and KMeans. We use the same feature as our proposed

model, but instead of running a AI2GMM, we run a Kmeans with various K values

and use the one get the best results, which is 5 in our experiment.

6. PCA feature with AI2GMM. Rather than using features from CAE, we tested

with the PCA features the same dimension with the CAE feature. And then run an

AI2GMM model the same as in our proposed model.

7. PCA feature with KMeans. Same as above except that we replace AI2GMM with

KMeans.

8. Original Signal with AI2GMM. We also tested how the results will be if we run

an AI2GMM model on the original signals with all 32 channels.

For all these models we runs on the same training testing split and use the same pre-

processing method. For the neural network part we trained with 10 epochs with stochastic

gradient decent using Adam optimizer. The results are shown in section 3.3.4 .
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3.3.4 Experiments

We did the experiment on SRS images collected on different starvation time. In order

to evaluate the generalization ability of the compared methods, we select two images from

control group and one image from 6h as training images, and select one from each of the

control (0h), 6h, 12h, 24h, and 48 hours starvation time as testing images. We further split

the training data by 90% pixels in training and 10% pixels in validation when training the

neuron network. We generated the weakly supervised label as described in section 3.3.2 

composed of 4 coarse classes (background, cytoplasm, other components, and artifacts) and

unknown areas. And use these labels to train our model. Due to the highly unbalance of

the 4 classes (where the size of the smallest class is around 0.007% of the greatest one), we

balanced the class size by a customized sampler when training the neuron network. We then

run the experiments with models listed in section 3.3.3 and generate labels using AI2GMM

or Kmeans for the testing images. Since it take too long to run AI2GMM on the whole

image (which usually has millions of pixels), we did a sampling by VCA [76 ] to reduce the

sample size, and then perform inference on the sampled data. For fair comparison, we did

the same sampling when perform KMeans. In order to obtain the segmentation map for the

whole image, we did a single Gibbs sampling sweep for AI2GMM (for KMeans we assign the

rest of the pixels to their nearest centers).

We did a quantitative evaluation of the clustering results on the VCA samples. In order to

match the labels between the ground truth classes and the clusters, we first did an alignment

by Hungarian algorithm. And then calculate the macro F1 3.15 and micro F1 3.16 evaluation

same as in classification: 3.16 :

F1macro = 1
K

∑
k

( 2TPk

FPk + FNk + 2TPk

)
(3.15)

F1micro
= 2TP

FP + FN + 2TP
(3.16)

Where TP , FP , FN means the number of true positive, false positive, and false negative

samples for the whole data set; TPk, FPk, FNk denotes the true positive, false positive, and
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false negative samples for class k; and K is the total number of ground truth classes. We

can see from the equation that micro F1 is the global score evaluate the performance with

regard to the total percentage of pixels; while macro F1 is the average F1 score for each class

and treated each class equally no matter how many samples falls in them. And the macro

F1 usually has more practical meanings, since we cared more about rare classes. The results

are shown in table 3.3 .

Table 3.3. Macro and Micro F1 scores for the compared models.

ctrl 6h 12h 24h 48h avg
3D CAE + KCML + AI2GMM 0.89 0.92 0.92 0.84 0.91 0.82 0.92 0.89 0.96 0.94 0.92 0.88
3D CAE + CEL + AI2GMM 0.84 0.9 0.9 0.77 0.88 0.77 0.81 0.71 0.78 0.89 0.84 0.81
3D CAE + AI2GMM 0.72 0.76 0.92 0.84 0.85 0.76 0.78 0.77 0.85 0.85 0.82 0.80
3D CNN + KCML + AI2GMM 0.58 0.51 0.79 0.67 0.81 0.58 0.79 0.68 0.61 0.7 0.72 0.63
3D CAE + KCML + KMeans 0.46 0.71 0.41 0.81 0.36 0.73 0.39 0.58 0.36 0.64 0.40 0.69
PCA + AI2GMM 0.76 0.64 0.85 0.83 0.78 0.6 0.8 0.66 0.74 0.7 0.79 0.69
PCA + KMeans 0.21 0.41 0.19 0.35 0.23 0.37 0.3 0.41 0.24 0.39 0.23 0.39
Original signal + AI2GMM 0.59 0.41 0.61 0.49 0.67 0.54 0.65 0.62 0.79 0.66 0.66 0.54

We can see from the quantitative results that our proposed method performed best among

all the 8 methods. Also, AI2GMM gave a large performance drump over KMeans especially

in terms of macro F1. From the score of 3D CAE (0.92 0.88) vs 3D CNN (0.72 0.63), we

can conclude that by adding a decoder part and introducing the reconstruction loss helped

a lots. Moreover, we can see that with 3D CAE alone we obtained good results (0.82 0.80),

and adding the discrimination loss by cross-entropy doesn’t help a lot (0.84 0.81). But we

got the performance drump by replacing CEL with KCML loss (0.92 0.88).

In additional to the quantitative evaluation by F1 score, which doesn’t take into accounts

of unknown areas, we also did a qualitative evaluation by visual inspection on the generated

segmentation map and spectral. We first aligned the clusters with the weakly supervised

classes using Hungarian algorithm, and label the rest of the clusters increasingly. Since the

number of generated clusters are different for each method, it is not possible for us to use

same coloring schemes for all method. In order to get better visualization, we use same

colors for the clusters aligned to known classes. For the segmentation map we cropped the

original segmentation map to 2400×1800 pixels for better illustration since their sizes varies
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between images. To illustrate the spectral, we plot the averaged 32 channels spectral of the

original image for each generated cluster. And we also use the same color scheme for the

spectral plot and its corresponding segmentation map.

We compared the segmentation map and the averaged cluster spectral over the most basic

method to the most advance model in figure 3.8 and figure 3.9 . From the segmentation map,

we can see that with discrimination loss, we get cleaner background, and get better results

for the cytoplasm class (showed in cyan, please refer to class 3 in the legend of spectral

plot). Moreover, the size of the cluster mapped to unknown area is smaller than other

methods, from which we can think that our proposed method did better job in splitting the

unknown area to their real class. For the segmentation map both our proposed method and

PCA+AI2GMM did a good job on identifying cell boundary and their different compartment,

while PCA+KMeans failed to do so. The results of PCA is greatly affected by the stripped

noises. As for the comparison of the averaged spectral over generated clusters, we can see

that both of our proposed method and PCA+AI2GMM did well on identifying the major

compartments. But our proposed method generate fewer overlapping clusters. While we can

see that PCA+KMeans failed to capture the patterns.

In additional to the comparison between different methods, we also did an analysis of the

segmentation map and the corresponding spectral of our proposed method in figure 3.10 and

figure 3.11 . We can see that our proposed method successfully discovered sub-classes of the

coarse class split. Note that since most of the sub-classes found are in the unknown area,

we wouldn’t lose the score for discovering sub-classes when perform quantitative analysis.

From the joint analysis of the segmentation map and the spectral plot, we can see that

even though they have similar shape, the magnitude of the cytoplasm increasing when get

closer to the cell center; the patterns of sub-classes belongs to others class varies not only

in magnitude but also in their shape, and they usually diverse when the environment of the

cell changed (the pattern of ”others” class in the center of a large cell usually differs with

those in small ones and on the boundary). We can conclude from the joint analysis that our

proposed method successfully handled challenge (2).
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Proposed method PCA+AI2GMM PCA+KMeans 
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Figure 3.8. Comparison of the segmentation map for our proposed method
and 2 other baselines.
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Proposed method PCA+AI2GMM PCA+KMeans 
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6h 
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24h 

48h 

Figure 3.9. Comparison of the averaged spectral for each generated cluster
of our proposed method and 2 other baselines. We skipped small clusters with
less than 50 samples which might be generated due to random noises. The
legend is the cluster labels, where -1 is the cluster aligned to unknown area, 0
is artifact, 1 is background, 2 is others, 3 is cytoplasm, and the rest are newly
generated clusters.
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Figure 3.10. Segmentation map and corresponding spectral for proposed method.
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Segmentation Map Cluster spectral 

24h 

48h 

Figure 3.11. Segmentation map and corresponding spectral for proposed
method continued.
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3.3.5 Conclusions

In this work we propose a weakly-supervised deep non-exhaustive segmentation technique

for segmentation of sub-cell structures in hyperspectral SRS images. Our approach starts the

training process with coarse-grained labels obtained by simple PCA-based processing. As

these coarse labels only provides ”weak” supervision and identify obvious spectral patterns,

the learning has to be performed so that class separability is preserved not only between

these coarsely labeled classes but also between potential subclasses of these classes as well.

To achieve this goal we train the network using the sum of reconstruction and discrimination

losses. We replace the standard cross-entropy loss by a newly proposed contrastive loss

function that is less sensitive to class labels than the cross-entropy loss so that in the learned

feature space class separability information among unknown classes can be relatively well-

preserved. Our contrastive loss function is based on the idea of maximizing the number of

samples that falls on the right side of margin. Once the feature space is learned hyperspectral

pixel data are projected into this space and clustered by a doubly non-parametric Bayesian

clustering technique. This clustering technique can accommodate clusters with arbitrary

shapes and automatically infers the number of classes from the data. Segmentation maps

obtained using cluster labels for each pixel along with average spectra for each cluster suggest

that our approach can discover a diverse set of biologically spectral patterns in SRS images

with little supervision automaticaly obtained by PCA processing.

3.4 Applications to Non-Exhaustive Cell Segmentation with Electron Microscopy
Images

In additional to the application of the hyper-spectral SRS image segmentation where

the spatial correlation is merely auxiliary, we made an attempt on non-exhaustive semantic

segmentation with Transmission Electron Microscopy (TEM) images. TEM images are high

resolution grayscale images, the photo taken by TEM can provide details on structure of

tissues, cells, organelles, and macromolecular complexes. In our application, we are trying

to segment subpopulations of unmyelinated and myelinated fibers of neural pathways. See

figure 3.12 for an example.
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Figure 3.12. A crop of a TEM image after noise removal and histogram equalization.

It might be too early to talk about non-exhaustive semantic segmentation in general real-

world scenarios, since scaling, obscuring, reflections, environmental effects etc. are still big

challenges for semantic segmentation even when all class labels are existing. And these are

challenges not only for semantic segmentation but also for the whole computer vision society.

Without solving these problems, it is not possible for non-exhaustive semantic segmentation.

But we still have hope on non-exhaustive semantic segmentation for the TEM images since it

is much simpler. First, the cells are living in a 2D space, and there’s not much environmental

effects such as reflections, shadows etc. Second, the scaling problem is existed but much

lighter. We can handle this through a multi-scale learning.

We explored semantic segmentation techniques that with success in semantic segmen-

tation for biomedical images, and decided to develop our model based on Unet [66 ]. As

a family of Fully Convolutional Network (FCN) [77 ] based architectures, Unet learns the

segmentation mask in an end to end manner. Given an image patch with W × H pixels, it

first did some down-sampling operations to learn a low resolution features which contains

more global context information, and then perform the up-sampling operations taken into

both the lower resolution features and the features from the down-sampling step with same

resolution. Finally, a per-pixel label map of the same resolution of the input is learned by

optimize a cross-entropy loss with regarding to the ground-truth label map.

The end to end training gives us convenience for non-exhaustive learning. Rather than

training the network to generate a label map, we can train the network to generate a feature

map, and then perform clustering on the generated feature map to infer the class label. A

primitive approach to do this is to append a linear head before cross-entropy loss, and use the
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output from the penultimate layer as the feature. Another alternative is to replace the cross-

entropy loss with centroid margin loss proposed in 3.2 . Though doing this gives us better

performance than the primitive approach, we are still not satisfied by the results. During the

experiments, we observed multi-modality in the background which made it the toughest class

that contribute the most in the training. Therefore we proposed the Asymmetric Centroid

Margin Loss in 3.4.1 .

3.4.1 Asymmetric Centroid Margin Loss

It may not be a good idea to treat all class the same when there exists a class that repre-

sent something like irrelevant samples, artifacts, or background, which we called asymmetric

class. These classes are usually multi-model since they are usually composed by sub-classes

with large inter-class variation. For example background of the TEM images are usually

multi-model with the existence of black or white crevice, some random texture changing

etc. Therefore we proposed the Asymmetric Centroid Margin Loss (ACML) to handle these

situations.

Figure 3.13. The illustration of asymmetric centroid margin loss.

The only different between CML and ACML is about how to treat with the asymmetric

class. We first categorize samples in asymmetric class as negative samples, and samples
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in target classes as positive samples. For positive samples we calculate normal CML as in

equation 3.13 . For negative samples, we calculate the loss based on the idea of pushing it

to the peripheral of the overall positive samples distribution as illustrated in figure 3.13 . In

order to do this, we need found a decision boundary x which could best separate positive

and negative samples. We did this by minimizing the number of miss-classified samples

when predict samples with distance to the center of all positive samples C larger than x as

negative and the samples with distance to C less than x as positive:

max
x

Np∑
p

σ (D(zp, C) ≤ x) +
Nn∑
n

σ (D(zn, C) ≥ x + M) (3.17)

Where σ is the bool function equals 1 or 0 depending on whether the condition in the paren-

thesis is satisfied. After finding the decision boundary x through a dynamic programming

algorithm based on sorted distance with computation complexity O(n log n), we calculate

the loss as:

L =
Np∑
p

max (D(zp, C) − x, 0) +
Nn∑
n

max (x + M − D(zn, C), 0) (3.18)

where M is the margin.

3.4.2 Experiments

We performed experiments on a TEM image data set with 6 classes: background, unmyeli-

nated fibers, outer myelinated fibers, inner myelinated fibers, blood vessels, and schwann

cells. We select background, unmylinated fibers, outer myelinated fibers, and inner myeli-

nated fibers as training classes, and only evaluate losses on pixels with training labels. We

split the upper 50% part of the image as training, middle 10% as validation, and the rest

bottom part as testing. An example of the original image (the validation part) is showed in

figure 3.12 .

We designed a data augmentation pipeline by randomly distorting the contrast, bright-

ness, color inverse, and added some Gaussian random noises for a image patch. Each time

we sampled a patch, it will have 50% possibility to be transformed. Note that the labels
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are the same for the transformed data, but the data transformed is very different from its

original class, and we could not say it still belongs to its original class. This could cause

trouble for cross-entropy loss but is not affect CML and its variants, because all the centers

and label assignment are ”local” within each training batch. Even if we change the labeling,

as long as the modifications are consistent for all image patches within a training batch, it is

not a problem for CML. We use the same U-Net backbone model and compared the results

of learning 10 dimensional features through a cross-entropy loss, original CML, and ACML

loss. For cross-entropy loss, we add a fully connected head, and obtained features from the

output of the penultimate layer. In this way we can define the number of dimensions of

features we want. Finally, we generate the label assignments by performing KMeans cluster

on the learned feature, and then reshaped it back to compose a segmentation map.

Table 3.4. Comparison for TEM cell segmentation.
cross-entropy loss CML ACML

macro F1 0.38 0.51 0.64
micro F1 0.40 0.60 0.70

The experiments results for testing data are showed in table 3.4 . Where we evaluate

the performance by micro and macro F1 scores defined in equation 3.16 and 3.15 . We also

plotted the segmentation map for the validation section of the image for ground-truth, CML

result, and ACML result in figure 3.14 .

We can see from the results that ACML achieved the best F1 scores among the compared

methods. And from the segmentation map we can see that it discovered some of the schwann

cells (colored in purple). Though the discovery of schwann cell is not perfect as the model

tend to split the border and the inner-side of the cell into two classes, the results is still

much better than CML which classified most of the schwann cells as outer mylinated fibers.

Moreover, we can see the effect of ACML that the background has been split into several

subclasses, which could corresponding to different patterns of the background.
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(a) The segmentation map for the ground truth.

(b) The segmentation map for CML results.

(c) The segmentation map for ACML results.

Figure 3.14. Comparison of the segmentation map. Where we use different
colors for different classes.
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4. OUT OF DISTRIBUTION DETECTION

To complete the story of learning in the open world, we studied the out-of-distribution de-

tection (OOD) problem and considered ways to fuse it with non-exhaustive learning. OOD

detection is proposed to enable the neural network classifier’s deployment in real-world sys-

tems such as self-driving, bacteria detection etc, where unknown scenario can be emerging

anytime. The need of OOD detection for our learning in the open world context is differ-

ent from the need as traditional classifiers. Under the learning in the open world settings,

the newly emerging classes is what we want to discover, but will be classified as OOD in

the traditional classification problem. What we expect for OOD detection is to identify

noises, anomalies, and outliers that hard to remove by reprocessing such as the CRISM case

mentioned in section 1.1 .

Recent works on OOD detection including classifier based methods which detect the

OOD samples based on their classification likelihoods/scores [18 ], [78 ]; score based methods

which design an objective as an indicator of how likely a sample is an OOD sample and

later trained using neural networks [6 ], [79 ]; and distance based methods which determine

whether a sample is an outlier based on some distance metrics between it and some anchors

[17 ], [19 ]. We choose to conduct our research based on distance based methods since it is

easy to integrate with our non-exhaustive learning models. Specifically, we explored some

ideas based on the Mahalanobis OOD detector [19 ]. We described the details in 4.1 and

illustrated with experiments on application to hyper-spectral mineral classification.

4.1 Mahalanobis Distance Based Score

We start by giving a review of the Mahalanobis OOD detector proposed by [19 ] below.

In [19 ] the authors first train a deep neural network (DNN) with a softmax classifier to

classifier the target dataset, then take the output from each of the intermediate layers until

the penultimate layer of the trained DNN as the feature for OOD detection. Let denote the

feature for layer l of data x to fl(x). For features from each layer, the sample mean for each

class µ̂l,c = 1
Nc

∑
i:yi=c fl(xi) where Nc is the number of training samples with label c, and the

tied sample covariance for the whole dataset Σ̂l = 1
N

∑
c

∑
i:yi=c(fl(xi) − µ̂l,c)(fl(xi) − µ̂l,c)T is
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estimated and are used for calculating the Mahalanobis distance-based confidence score for

layer l below:

Ml(x) = max
c

−(fl(x) − µ̂l,c)T Σ̂−1
l (fl(x) − µ̂l,c) (4.1)

Which is the negation of the Mahalanobis distance without square root between the

testing sample and its closest class in layer l. Then the final confidence score is calculated

as a weighted average of the confidence score over all layers:

M(x) =
∑

l

αlMl(x) (4.2)

Where the weights αl are tuned by a logistic regression on a binary classification training

dataset composed of in-distribution samples and OOD samples. Moreover, the authors also

adopted a calibration technique same as in [18 ]. Rather than calculate the confidence score

on the raw sample, the sample x are preprocessed by adding a small perturbation as below:

x̂l = x + ε sign(∇x − Ml(x)) (4.3)

where ε is a magnitude of noise also tuned on the binary classification training dataset

with in-distribution samples and OOD samples. And the final Ml(x) for each layer used to

calculate the confidence score in (4.2 ) is actually calibrated as Ml(x̂l). By adding a small

perturbation of the gradient of the confidence score will make the in- and out-of-distribution

samples more separable especially when their scores are close [18 ].

4.2 Applications to Hyper-spectral Mineral Classification

From the above description we can see that there’s two place we can make improvement

in the Mahalanobis OOD detector. First, the Mahalanobis OOD detector requires training

with part of the ground-truth OOD samples, which is not practical in most of the real

world applications. To deal with this, we generate simulated OOD samples and use the

generated OOD samples to tune the layer ensemble weight αl and the magnitude ε. We

tested different sample generation methods and select the best performed one based on a
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synthetic dataset. Then the same sample generation technique is used in the application.

Second, tied covariance is used in the Mahalanobis OOD detector, whereas we compared the

performance of both tied and un-tied covariance in our application. The un-tied covariance is

calculated for each class c and per each layer l as Σ̂l,c = 1
Nc

∑
i:yi=c(fl(xi)− µ̂l,c)(fl(xi)− µ̂l,c)T

where µ̂l,c is estimated same as above.

Before applying the algorithm to the real world hyper-spectral data, we first generated

a synthetic data in the same domain to find a way that generate good simulated OOD

samples. The synthetic data is generated by mixing library spectral [80 ] with noises added.

The mixing weight for each data is sampled from a dirichlet prior. We categorize data with

dominant mixing weight less than 0.5 as the OOD samples. We tried to generate simulated

OOD samples by using random simulated signals; random uniformed noises in the range of

the dataset; and background noises by averaging all training data together, and adding a

Gaussian noises on the mixing. It turned out turning the model with both of the random

simulated signals and the background noise gives the best performance.

We then compared the performance of Mahalanobis OOD detector with tied covariance

and un-tied covariance with a CRISM dataset contains noises and outliers in Table 4.1 . We

first trained a classifier on the CRISM dataset using a modification of ResNet34 by replacing

the 2D filter for images to 1D filters which convolution on spectral. Then fix the classifier

and train the Mahalanobis OOD detector on the training data (in-distribution samples) and

simulated OOD samples. Finally we generate the confident scores for each of the testing

samples, and evaluate the performance by the area under curve (AUC) score calculated by

varying the threshold of the confident score that separate OOD samples and in-distribution

samples. We also compared the mean F1 score without OOD detection and with OOD

detection. The mean F1 score is calculated as the average of F1 scores of in-distribution

classes by treating OOD samples as a background class. If an OOD sample is assigned

to a in-distribution class the FP of that class will be increase, hence reduce the F1 score.

To calculate the mean F1 score with OOD detection, we chose the threshold based on the

AUC curve that with max gain, and labeled the samples with confident score high than the

threshold as OOD samples.
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Table 4.1. Comparison of tied and un-tied covariance on CRISM

mean F1 before/after noise detection auc test
Mahalanobis OOD with tied covariance 0.797/0.801 0.822
Mahalanobis OOD with un-tied covariance 0.797/0.810 0.837

We can see from the results in Table 4.1 that the mean F1 score for both of the methods

improved after OOD detection, and the improvement for un-tied covariance is larger than tied

covariance, which indicated that using tied covariance is helpful in the hyper-spectral mineral

classification application. To combine the Mahalanobis OOD detector with NEL algorithms

is straight forward. Simply replace the classifier with the NEL model, and calculate the

confidence score with regard to the clusters found by the NEL model. This is also a future

work of our research.
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5. CONCLUSION

In this research, we explored the problem of performing machine learning in an open world

settings, where there could be things ”unknown” happening. We first investigated ways

to facilitate class discovery by learning from known classes. This problem,which we called

Non-Exhaustive Learning (NEL), was the key component of our research. After initially

approaching the problem from a generative model aspect, we concluded that a new feature

space in which both known and unknown classes are well separated will be needed for com-

plex structural real world datasets. We extended NEL work by developing Non-Exhaustive

Feature Learning (NEFL) techniques that focused on feature learning . In addition to new

class discovery we also explored out-of-distribution sample detection to complement our

efforts in open world machine learning.

For NEL, we proposed the AI2GMM model 2.1 that simultaneously performs classifica-

tion and new class discovery by inferring from sample statistics. AI2GMM is build upon

a statistical model which is flexible to sample distribution, and is designed to adapt its

hyper-parameters on both known and generated classes. Since hyper-parameters are used

to guide the generation of new classes, AI2GMM showed its advantage on both synthetic

and benchmark datasets compared to models with fixed hyper-parameters and models that

assume Gaussian class distribution. But since label inference for AI2GMM relies on Markov

Chain Monte Carlo (MCMC) sampling, it has high computational cost. There is a line of

work that explores collapsed Gibbs sampling in order to achieve speed up by parallelization

without losing much on performance [81 ]. Improving on this line of work could be one of

future research directions.

As for the NEFL, we illustrated the utility of Centroid Margin Loss (CML) in terms of

both the goodness of discrimination and generalization on unknown classes 3.2 . Moreover,

the Asymmetric Centroid Margin Loss (ACML) 3.4.1 could be naturally adopted for Out

Of Distribution detection (OOD). In ACML we define samples that distribute outside of a

hyper-spherical decision surface of interested classes and are multi-mode as the asymmetric

class, which is actually the same as OOD samples. Instead of performing OOD by post-

processing or pre-processing that are independent of the recognition, with ACML we can
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perform OOD and NEL in a unified framework. But since ACML is a metric learning

method which learns a feature space that does not generate labels by itself, in order to

do this we need to develop an asymmetric label sampling model that could jointly model

interesting distributions and aware of the peripheral samples. One naive idea to do this is

to learn a threshold for AI2GMM while assigning a sample as a new cluster. If the posterior

predictive distribution for the sample belongs to empty cluster higher than the threshold,

then we make this assignment, otherwise we classify it as an OOD sample. This future

extension will help us build a unified framework for open world machine learning.
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