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ABSTRACT

Difficulty understanding speech in background noise is the most common hearing com-

plaint. Elucidating the neurophysiological mechanisms underlying speech intelligibility in

everyday environments with multiple sound sources and distortions is hence important for

any technology that aims to improve real-world listening. Using a combination of behavioral,

electroencephalography (EEG), and computational modeling experiments, this dissertation

provides insight into how the brain analyzes such complex scenes, and what roles different

acoustic cues play in facilitating this process and in conveying phonetic content. Experiment

#1 showed that brain oscillations selectively track the temporal envelopes (i.e., modulations)

of attended speech in a mixture of competing talkers, and that the strength and pattern

of this attention effect differs between individuals. Experiment #2 showed that the fidelity

of neural tracking of attended-speech envelopes is strongly shaped by the modulations in

interfering sounds as well as the temporal fine structure (TFS) conveyed by the cochlea, and

predicts speech intelligibility in diverse listening environments. Results from Experiments

#1 and #2 support the theory that temporal coherence of sound elements across envelopes

and/or TFS shapes scene analysis and speech intelligibility. Experiment #3 tested this theory

further by measuring and computationally modeling consonant categorization behavior in

a range of background noises and distortions. We found that a physiologically plausible

model that incorporated temporal-coherence effects predicted consonant confusions better

than conventional speech-intelligibility models, providing independent evidence that temporal

coherence influences scene analysis. Finally, results from Experiment #3 also showed that

TFS is used to extract speech content (voicing) for consonant categorization even when

intact envelope cues are available. Together, the novel insights provided by our results can

guide future models of speech intelligibility and scene analysis, clinical diagnostics, improved

assistive listening devices, and other audio technologies.
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1. INTRODUCTION

Understanding speech in environments with interfering sound sources and distortions (e.g.,

reverberation, wind-noise reduction in cell phones and assistive listening devices, etc.) is

one of the most complex tasks our brains solve everyday (Cherry, 1953), and is an ability

unparalleled by machine algorithms (Loizou, 2013). Yet the mechanisms supporting this

process are still poorly understood. Elucidating the neurophysiological mechanisms underlying

speech intelligibility in such everyday environments is important not just from a basic-

science perspective, but also for clinical applications and audio technologies. Indeed, clinical

diagnostics, individualized interventions for speech-in-noise communication problems (e.g.,

hearing-aid fitting versus cognitive aural training), signal-processing strategies for assistive

listening devices (e.g., cochlear implants and hearing aids), speech-denoising algorithms (e.g.,

in cell phones), and room acoustics design are all applications that may benefit from accurate

characterization and modeling of speech intelligibility mechanisms.

Various physiological processes shape the internal representation of input speech sounds

along the auditory pathway from the periphery to the cortex. Extracting intelligible informa-

tion from a target speech source in a sound mixture crucially depends on the robust encoding

of the input acoustics by the auditory periphery, the subsequent segregation of the target

from other interfering sounds, selective attention to the segregated target source while effec-

tively ignoring distracting sound sources, and further cognitive processing such as categorical

perception (B. Shinn-Cunningham, 2008). Several fundamental questions remain about the

precise mechanisms underlying scene segregation and target selection in everyday listening,

as well as the roles of different acoustic cues in facilitating these processes and in conveying

phonetic content. This dissertation uses a combination of behavioral, electrophysiological,

and computational modeling experiments to address this significant gap. Each chapter in

this dissertation is an individual study, and is written in the format of a journal article with

sufficient background and discussion to stand on its own. The following paragraphs of this

introductory chapter highlight the contents of the chapters to follow.

The cortical mechanisms underlying speech-on-speech selective attention were investigated

in the electroencephalography (EEG) study presented in Chapter 2. This study examined

12



how a mixture of two speech streams is represented in the brain as subjects attended to

one stream or the other. In particular, because brain rhythms are intimately associated

with sensory processing (Buzsáki & Draguhn, 2004), we systematically investigated how

brain oscillations in each of the canonical frequency bands are related to speech fluctuations,

comparing when the speech is attended versus when it is ignored. In doing so, we addressed

an important gap in the field where no prior studies had reported how the full complement of

canonical brain oscillations track speech sounds in a mixture of competing sources. We show

that EEG oscillations in the delta, theta, and low-gamma bands selectively track attended

speech, a result that mechanistically links computational models of information routing in

cortical circuits (Börgers et al., 2008) with attentive listening. Moreover, we found individual

differences in the overall strength of the attention effects as well as in the specific speech and

EEG features (channels and frequency bands) that were most informative about attentional

focus.

The study described in Chapter 3 characterized the neural encoding of target speech

in diverse acoustic scenes and examined the relationship between temporal coding, scene

segregation, and target-speech intelligibility. Previous psychophysical studies suggested that

slow temporal fluctuations (envelopes or modulations) convey most speech content (Shannon

et al., 1995; Smith et al., 2002), and that the masking of envelopes in attended speech by

those in interfering sounds (i.e., modulation masking) influences speech intelligibility (Bacon

& Grantham, 1989; Dubbelboer & Houtgast, 2008; Jørgensen et al., 2013; Stone & Moore,

2014). Here, we evaluated this theory neurophysiologically using EEG and simultaneous

speech-intelligibility measurements. We found that the neural envelope-domain signal-to-noise

ratio (SNR) in target-speech encoding, which is shaped by modulations in interfering sounds,

predicts intelligibility over a variety of realistic listening conditions. This result provides

neurophysiological evidence for modulation masking. However, we also found that envelope

coding of target speech in the brain is influenced not only by cochlear-level envelopes, but

also by faster stimulus fluctuations (temporal fine structure; TFS), which support scene

segregation (Darwin, 1997; A. J. Oxenham & Simonson, 2009). These results are consistent

with the theory that temporal coherence of sound elements (Elhilali et al., 2009; Singer &

13



Gray, 1995) across envelopes and/or TFS shapes scene analysis and attentive selection of a

target sound.

To further test the temporal coherence theory, we conducted a follow-up study that

used a combination of physiologically plausible computational modeling and a psychophys-

ical experiment to measure consonant categorization across diverse noises and distortions

(Chapter 4). Rather than limiting our analyses to overall speech intelligibility—as had been

done in prior studies of scene analysis—we analyzed consonant confusion patterns (Miller

& Nicely, 1955). Consonant confusions provide a more detailed characterization of error

patterns in speech categorization compared to percent-correct scores, and can thus better

constrain models of scene analysis. We tested whether modulation masking within individual

frequency channels (Jørgensen et al., 2013; Relaño-Iborra et al., 2016) is sufficient to predict

consonant confusions across the tested conditions, or if model predictions are improved by

the addition of across-channel temporal-coherence processing (Elhilali et al., 2009) that

accounts for interference from masker elements that are temporally coherent with target

elements but in different frequency channels. Our results provide independent evidence for

the role of temporal-coherence processing in scene analysis and speech perception. Moreover,

they address the important question of whether this processing may start earlier in the

auditory pathway than previously thought (Teki et al., 2013), such as the cochlear nucleus

where physiological correlates of across-channel comodulation masking release (CMR) are

apparent (Pressnitzer et al., 2001).

Another important problem in the study of speech perception in everyday complex envi-

ronments is to understand the relative contributions of different acoustics cues in transmitting

speech content. The classic view in the literature is that there is a dichotomy in auditory

perception where envelopes are thought to convey most speech content and to be sufficient

to understand speech in quiet (given adequate frequency resolution; Shannon et al., 1995),

whereas TFS is thought to convey other sound attributes such as fundamental frequency (B. C.

Moore et al., 2006). However, whether TFS can convey speech content in background noise

and when redundant envelope cues are available was poorly understood. Chapter 5 describes

our psychophysical study to address this important gap. In this study, we measured consonant

categorization in ecologically relevant multi-talker babble for stimuli with intact and degraded
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TFS. Confusion patterns in consonant categorization revealed that TFS conveys voicing

information beyond what is conveyed by envelopes for intact speech in everyday listening

environments with multiple competing talkers. This result suggests that in addition to

influencing speech intelligibility in noise indirectly by aiding source segregation, TFS can

also influence intelligibility directly by conveying phonetic content.

Chapter 6 concludes this dissertation with a summary of the main findings and how they

advance the field, a brief discussion of the significance of this body of work, and some future

research directions.
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2. ELECTROENCEPHALOGRAPHIC SIGNATURES OF THE

NEURAL REPRESENTATION OF SPEECH DURING

SELECTIVE ATTENTION

Abstract1

The ability to selectively attend to speech in the presence of other competing talkers is

critical for everyday communication; yet the neural mechanisms facilitating this process are

poorly understood. Here, we use electroencephalography (EEG) to study how a mixture of

two speech streams is represented in the brain as subjects attend to one stream or the other.

To characterize the speech-EEG relationships and how they are modulated by attention,

we estimate the statistical association between each canonical EEG frequency band (delta,

theta, alpha, beta, low-gamma, and high-gamma) and the envelope of each of ten different

frequency bands in the input speech. Consistent with previous literature, we find that

low-frequency (delta and theta) bands show greater speech-EEG coherence when the speech

stream is attended compared to when it is ignored. We also find that the envelope of the

low-gamma band shows a similar attention effect, a result not previously reported with EEG.

This is consistent with the prevailing theory that neural dynamics in the gamma range are

important for attention-dependent routing of information in cortical circuits. In addition, we

also find that the greatest attention-dependent increases in speech-EEG coherence are seen

in the mid-frequency acoustic bands (0.5–3 kHz) of input speech and the temporal-parietal

EEG sensors. Finally, we find individual differences in the following: (1) the specific set of

speech-EEG associations that are the strongest, (2) the EEG and speech features that are

the most informative about attentional focus, and (3) the overall magnitude of attentional

enhancement of speech-EEG coherence.

2.1 Introduction

Most of us take for granted our ability to understand speech amidst the cacophony

we encounter every day (Cherry, 1953), an ability that is unparalleled by machine algo-
1↑This chapter was published following peer review in eNeuro (Viswanathan et al., 2019).
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rithms (Loizou, 2013). Yet, 3–5% of children and approximately one in five adults find

communicating in noisy social situations extremely challenging (Chermak & Musiek, 1997;

Lin et al., 2011), including some listeners who have clinically normal or near-normal thresh-

olds (Kumar et al., 2007). The brain mechanisms that support this auditory “selective

attention” process are poorly understood. Identifying correlates of how speech is represented

in the brain during selective attention would give us insight into the mechanisms of this

process, and how it fails in different clinical populations. Here, we use electroencephalography

(EEG) to probe how attended and ignored speech streams in a sound mixture are represented

in the brain. Specifically, our goal was to characterize which acoustic features of the speech

streams are related to which features of the EEG response, and how such relationships differ

for attended and ignored streams.

Neurophysiological experiments using EEG and MEG (magnetoencephalography) show

that brain rhythms are intimately associated with sensory processing (Buzsáki & Draguhn,

2004). Electrophysiological studies and computational models suggest that gamma rhythms

(30–90 Hz) support the formation of cell assemblies (Cannon et al., 2014). Such assemblies

likely mediate stimulus competition and attentional selection of task-relevant representa-

tions (Börgers et al., 2008). In contrast, delta (1–3 Hz) and theta (3–7 Hz) oscillations

may reflect synchronous interactions between assemblies (White et al., 2000). Strikingly,

speech also has spectro-temporal features that are quasiperiodic over similar time scales.

Perceptually, the energy envelopes of different frequencies spanning the hearing range carry

important information about speech content (Elliott & Theunissen, 2009; Shannon et al.,

1995). Importantly, the time scales of phonemic, syllabic, and phrase/sentence level rhythmic

fluctuations in speech parallel the EEG gamma, theta, and delta frequencies, respectively.

This has led researchers to speculate that the canonical cortical network oscillations are in-

volved in the processing of speech sounds (Doelling et al., 2014; Giraud & Poeppel, 2012). For

speech in isolation, brain oscillations phase lock to the speech fluctuations, or more precisely,

the fluctuations conveyed at the output of cochlear processing of speech sounds (Ghitza et al.,

2012; Gross et al., 2013). It has been suggested that the temporal match between inherent

cortical network oscillations and the natural fluctuations in communication sounds may help
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the listener parse input speech (Ghitza & Greenberg, 2009; Gross et al., 2013; Luo & Poeppel,

2007).

Fundamental to our understanding of everyday communication is the question of how the

neural computations generating brain oscillations relate to the perceptual processes of scene

segregation and attentional selection (B. Shinn-Cunningham, 2008). EEG/MEG studies

show that when a mixture of speech sources is presented, low-frequency cortical responses

(matching canonical delta and theta bands) preferentially track the temporal envelopes of

attended speech compared to simultaneously presented ignored speech (Ding & Simon, 2012;

J. A. O’Sullivan et al., 2014). Similarly, electrocorticography (ECoG) studies show that the

power of brain oscillations in the high-gamma (70–150 Hz) band preferentially phase locks to

attended speech more than ignored speech (Golumbic et al., 2013; Mesgarani & Chang, 2012).

While non-invasive studies have focused on low-frequency portions of the EEG, invasive studies

have focused on the high-frequency bands. To the best of our knowledge, no non-invasive

studies to date have reported how the full complement of canonical brain oscillations track

speech sounds in a mixture of competing sources, when attention is selectively directed to

one source stream.

Here, we systematically study how brain oscillations in each of the canonical frequency

bands are related to speech fluctuations, comparing when the speech is attended versus when

it is ignored. Specifically, we analyze EEG data recorded during a realistic selective attention

task, and replicate previous findings that low-frequency EEG bands (in the delta and theta

range) show enhanced synchrony with a speech stream when it is attended compared to when

it is ignored. In addition, we find that the envelope of the low-gamma EEG band also shows

enhanced synchrony with the target speech. Finally, we observe individual differences in the

strength and pattern of attention effects. We discuss the implications of our findings for basic

neuroscience, and their potential for informing brain-computer interface (BCI) applications

such as EEG-guided hearing aids (Fiedler et al., 2017; Fuglsang et al., 2017; J. O’Sullivan

et al., 2017; Van Eyndhoven et al., 2017).
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2.2 Materials and Methods

2.2.1 Participants

Data was collected from twelve human subjects (six female), aged 23–41 years, recruited

from the Boston University community. All subjects had pure-tone hearing thresholds better

than 20 dB hearing level (HL) in both ears at standard audiometric frequencies between 250

Hz and 8 kHz. Subjects provided informed consent in accordance with protocols established

at Boston University. Of the twelve subjects who participated, data from two were excluded

from analysis for reasons described below.

2.2.2 Experimental design

In each listening block, two running speech streams (narrated whole stories), one spoken

by a male and the other by a female (from one of “The Moth” storytelling events, New

York), were presented simultaneously to the subject. The stories were each lateralized using

interaural time delays (ITDs). The root-mean-square intensities of the male and female speech

streams were equalized dynamically using a sliding window of length 2 s. A total of four

stories were used in the experiment. Each subject performed four blocks; at the beginning of

each block, subjects were verbally instructed to attend to one of the two talkers throughout

that block. Subjects were also asked to stay still with their eyes blinking naturally during the

experiment; however, their eye gaze was not restricted. EEG was measured simultaneously

with the behavioral task in each block. The individual stories were about 9-12 min long; thus

the blocks were also 9-12 min long each.

At the end of each block, subjects were given a quiz on the attended story. If a subject

answered at least 90% of the quiz questions correctly, they passed the quiz. Based on the

responses to the quiz, one subject was excluded due to their inability to accurately recall

details of the attended story. All of the remaining eleven subjects were able to recount details

of the attended story accurately, and reported being largely unaware of the details of the

other (ignored) story.
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All the subjects were presented with the same set of speech stories. However, which story

was attended in a given block was varied randomly across listeners, with the constraint that

each listener heard every story once when it was to be ignored and once when it was to be

attended. This design allowed us to directly compare attended and ignored conditions for

the same acoustic input to the subject. Furthermore, the two presentations of each speech

story (once when the story was to be attended, and the other when it was to be ignored)

were separated by at least one block for every subject.

2.2.3 Data acquisition

A personal desktop computer controlled all aspects of the experiment, including triggering

sound delivery and storing data. Special-purpose sound-control hardware (System 3 real-time

signal processing system, including digital-to-analog conversion and amplification; Tucker

Davis Technologies) presented audio through insert earphones (ER-1; Etymotic) coupled

to foam ear tips. The earphones were custom shielded using a combination of metallic

tape and metal techflex to attenuate electromagnetic artifacts. The absence of measurable

electromagnetic artifact was verified by running intense click stimuli through the transducers

with the transducers positioned in the same location relative to the EEG cap as actual

measurements, but with foam tips left outside the ear. All audio signals were digitized at a

sampling rate of 24.414 kHz. The EEG signals were recorded at a sampling rate of 2.048

kHz using a BioSemi ActiveTwo system. Recordings were done with 32 cephalic electrodes,

additional electrodes on the earlobes, and a bipolar pair of electrodes adjacent to the outer

left and right canthi to measure saccadic eye movements.

2.2.4 Data preprocessing

The EEG signals were re-referenced to the average of all the channels. The signal-space

projection method was used to construct spatial filters to remove eye blink and saccade

artifacts (Uusitalo & Ilmoniemi, 1997). The broadband EEG was then band-pass filtered

between 1 Hz and 120 Hz for further analysis. For computing associations between speech

and EEG, the EEG data were segmented into 5-s-long epochs. Epochs with movement
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artifacts were identified as those with a peak-to-peak swing that exceeded twenty median

absolute deviations compared to the median epoch. All such epochs were rejected to eliminate

movement artifacts. Of the eleven subjects who successfully passed our behavioral screening,

one subject was excluded because more than 20% of their EEG data was contaminated

by movement artifacts. The data from the remaining ten subjects were used in all further

analyses.

2.2.5 Estimating speech-EEG associations

Our goal was to understand the relationships between features of input speech and EEG

responses, and how these relationships vary depending on whether speech is attended to

or ignored. For the speech features, we considered envelope fluctuations in ten different

frequency bands. For the EEG features, we considered different EEG bands corresponding to

the canonical cortical rhythms, and different scalp locations of the 32-channel EEG recording.

The rationale for the choice of these speech and EEG features, along with the procedure for

extracting them are described below.

The auditory periphery can be approximated as a filter bank that decomposes speech

into different frequency bands; the envelope at the output of each cochlear filter is conveyed

to the brain by auditory-nerve fibers tuned to the corresponding frequency band (Khanna &

Leonard, 1982; Smith et al., 2002). We used a bank of ten gammatone filters that mimic

cochlear frequency selectivity (Slaney et al., 1993), with center frequencies spanning 100–8533

Hz. The filters were spaced roughly logarithmically, such that their center frequencies had best

places that are spaced uniformly along the length of the cochlea according to an established

place-frequency map (Greenwood, 1990). The amplitude envelope at the output of each

filter, extracted using the Hilbert transform, was treated as a distinct speech feature. For the

speech signals used in our experiment, the envelopes at the different filters were not strongly

correlated. In analyzing the speech envelopes extracted from different bands, we found that

the variance explained in the envelope of one band by any other band was about 8% or less

(estimated by calculating squared coherence between speech envelopes). This suggests that
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the speech envelopes in the ten different cochlear bands provide somewhat complementary

speech information.

Previous EEG/MEG studies show that cortical responses to speech mixtures preferentially

track the spectro-temporal features of the attended speech during selective listening (Ding &

Simon, 2012; J. A. O’Sullivan et al., 2014). Specifically, the low-frequency speech envelope

elicits phase-locked EEG responses at corresponding frequencies (delta band: 1–3 Hz, and

theta band: 3–7 Hz). Furthermore, ECoG studies show that the slowly varying envelopes

of high-frequency neural responses (high-gamma band: > 70 Hz) also track the attended

speech (Golumbic et al., 2013; Mesgarani & Chang, 2012). Thus, we systematically studied

the relationship between speech and the corresponding neural responses by decomposing the

EEG signal from each of the 32 channels into six canonical frequency bands (delta: 1–3 Hz,

theta: 3–7 Hz, alpha: 7–15 Hz, beta: 13–30 Hz, low-gamma: 30–70 Hz, and high-gamma:

70–120 Hz; Buzsáki & Draguhn, 2004). In the delta, theta, alpha, and beta bands, the

filtered EEG signal was treated as a feature. On the other hand, for the higher-frequency

gamma bands, we were motivated by the results from the ECoG studies to extract and use

the amplitude envelopes in those bands instead (discarding phase information). For the alpha

and beta bands, we considered the amplitude envelopes of those bands as additional features

separately from the filtered EEG. This choice was motivated by the finding that alpha power

fluctuates coherently with the attended stimulus (Wöstmann et al., 2016), and that beta-band

power fluctuates in a task-specific way across many cognitive and motor tasks (Engel & Fries,

2010). To extract the envelopes of the alpha, beta, low-gamma, and high-gamma bands,

we used the Hilbert transform. Overall, a total of 256 EEG features were considered: the

filtered EEG in the delta, theta, alpha, and beta bands, and the envelopes of alpha, beta,

low-gamma, and high-gamma bands, across the 32 EEG channels. Throughout this report,

we will use the term EEG bands to denote the EEG signals or envelope signals in different

frequency bands. Thus, the analyzed EEG bands consist of the delta, theta, alpha, and beta

bands, and the amplitude envelopes of alpha, beta, low-gamma, and high-gamma bands.

Spectral coherence (also simply referred to as coherence) was chosen as the measure of

statistical dependence between the speech and EEG signals. High coherence indicates a

consistent phase relationship between signals (Dobie & Wilson, 1989; Hannan, 1970; Thomson,
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1982). Moreover, when artifactual trials are excluded, spectral coherence is likely to be more

sensitive than the phase-locking value (Lachaux et al., 1999), as coherence computation

assigns greater weights to trials with larger signal amplitude (Dobie & Wilson, 1994). A

multi-taper approach (with five tapers, resulting in a frequency resolution of 1.2 Hz) was used

to estimate the spectral coherence between each speech and EEG feature from the 5-s-long

epochs segmented from the raw EEG data (Slepian, 1978; Thomson, 1982). A total of 108

epochs were used in the computation of each coherence spectrum. The multi-taper estimate

minimizes spectral leakage (i.e., reduces mixing of information between far-away frequencies)

for any given spectral resolution, and is calculated from the Fourier representations of two

signals X(f) and Y (f) as follows:

CXY (f) = SXY (f)√
SXX(f)SY Y (f)

(2.1)

where

SXY (f) = 1
KtapersNepochs

Ktapers∑
k=1

∣∣∣∣∣∣
Nepochs∑

n=1
Xkn(f)Y ∗

kn(f)

∣∣∣∣∣∣ (2.2)

SXX(f) = 1
KtapersNepochs

Ktapers∑
k=1

∣∣∣∣∣∣
Nepochs∑

n=1
Xkn(f)X∗

kn(f)

∣∣∣∣∣∣ (2.3)

SY Y (f) = 1
KtapersNepochs

Ktapers∑
k=1

∣∣∣∣∣∣
Nepochs∑

n=1
Ykn(f)Y ∗

kn(f)

∣∣∣∣∣∣ (2.4)

For each pair of speech and EEG features, a single measure of coherence was obtained by

averaging the coherence spectrum obtained via the multi-taper estimation procedure as follows:

For the regular coherence in the delta, theta, alpha, and beta bands, the coherence values were

averaged over the canonical frequency ranges of the respective bands (i.e., 1–3 Hz for delta,

3–7 Hz for theta, 7–15 Hz for alpha, and 13–30 Hz for beta). For the envelope coherences

of the alpha, beta, low-gamma, and high-gamma bands, the averaging was performed over

envelope frequencies of 1–7 Hz (corresponding to the frequency range at which previous

studies report phase locking between the speech envelope and the envelope of the neural
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response in the gamma band; Gross et al., 2013). Figure 2.1 summarizes the steps used to

extract speech and EEG features, and to estimate the coherence between them.

In this way, we characterized the relationships between different features of input speech

(i.e., the speech envelopes in different cochlear bands) and different features of the EEG

response (each of which corresponds to a specific EEG band and channel). In particular, we

characterized these relationships in an attention-specific manner, i.e., both when the input

speech was attended and also when it was ignored. This allowed us to examine the effects

of attention on the speech-EEG relationships separately in different EEG bands, different

scalp locations, and different speech bands, and also to characterize individual differences in

the attentional enhancement of speech-EEG associations. Further methodological details are

presented alongside each result description as needed.

2.2.6 Visualizing individual subject results as a network graph

The full set of speech-EEG relationships is a high-dimensional data set (with EEG bands,

scalp channels, and speech bands constituting the different dimensions) that can be conceived

of as a network. In many domains, bipartite graphs have been successfully used to represent

and characterize the complex pattern of associations between two types of variables (“nodes”)

in a relational network (e.g., group-member relationships in a social network (T. P. Wilson,

1982), genotype-phenotype relationships in a biological network (Goh & Choi, 2012), etc.).

To visualize the relationships between all pairs of speech and EEG features simultaneously

in each individual subject, we constructed bipartite graphs with the ten speech features

forming the nodes in one partition, and the 256 EEG features (32 scalp locations × eight EEG

bands) forming the nodes in the other. An edge (i.e., connection) between a speech feature

and an EEG feature in our bipartite graph construction signifies a statistical dependence

between them, such as a significant coherence value. We constructed separate attended and

ignored graphs for each individual subject in our study using the following procedure. First,

the speech-EEG coherences for each subject were averaged across all speech stories for the

attended and ignored conditions separately. Next, edges were drawn between those pairs of

speech-EEG features whose coherence values met a particular threshold. The resulting graph
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Figure 2.1. : Illustration of the steps used to extract speech and EEG features and to estimate
the association between them. The speech signal is passed through a gammatone filter bank simulating
cochlear processing, and the envelope at the output of each filter (i.e., the envelope of each speech band) is
extracted as a speech feature. Similarly, different bands of the EEG and different sensor channels together
form the different EEG features. For the lower-frequency bands (delta and theta), the EEG signals are used
as is. For the alpha and beta bands, both the signals in those bands, and their envelopes are extracted
as separate features. For the higher-frequency gamma bands, only the envelopes of the EEG signals in
those bands are considered. These EEG features are then compared with the speech features using spectral
coherence.
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representations of speech-EEG relationships were visualized to qualitatively compare the

two attention conditions and different individuals. To quantitatively compare attended and

ignored graphs, we computed the average difference in the number of graph edges between

the attended and ignored conditions, for different coherence thresholds. The results were

compared with permutation-based null distributions to obtain p-values, as described in

Section 2.2.7.

The bipartite graph formulation also has the advantage that the complex set of dependen-

cies between speech and EEG, and how those dependencies are modulated by attention, can

be summarized using rigorous metrics developed in network science. Accordingly, we take

advantage of network summary measures that use the entire network structure to find those

speech and EEG features that best capture attentional focus in an individual-specific manner.

This is done with the view of informing attention-decoding applications as to which EEG

and stimulus features may provide the best decoding performance at the individual level. For

this, we first computed the differential (“attended - ignored”) coherence for each speech-EEG

pair for each individual subject (but averaged across speech stories). For each individual,

the full set of speech and EEG features and their associated differential coherences can be

represented as a weighted “differential” speech-EEG bipartite graph, with the differential

coherence associated with each speech-EEG pair forming the edge weight for that pair. Note

that this weighted graph representation of the differential coherences contrasts with the

unweighted graph representations for the attended and ignored conditions that were described

previously. For the attended and ignored graphs, we had used a coherence threshold to define

an edge. On the other hand, to obtain the differential graphs, we did not use any thresholding

procedure. Instead, the differential coherence values across all speech-EEG feature pairs

were retained, and used to define graph edge weights. Finally, to find those speech and EEG

features that are the most informative about an individual’s attentional focus, we computed

the eigenvector-based graph centrality measure for each speech and EEG feature in every

individual’s differential graph. For a discussion on the notion of network centrality, and how

it may be computed in bipartite graphs to identify the most informative nodes in the network,

see Faust, 1997.
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2.2.7 Statistical analysis

The primary question that this study is concerned with is whether the neural representation

of speech is modulated by attention. For this, the null hypothesis is that attention does not

alter speech-EEG relationships. We used a non-parametric within-subjects randomization

procedure to perform statistical inference against this null hypothesis. This procedure was

applied to two separate analyses, as described below.

For the analysis performed to characterize which EEG bands show attention-dependent

changes in coherence with speech (results in Figure 2.3 Panel A), the specific null is that the

speech-EEG coherence in each of the EEG bands is the same on average for the attended and

ignored conditions. Thus, under the null hypothesis, the attended and ignored conditions are

equivalent and the labels “attended” and “ignored” can be swapped randomly to generate

examples of coherence differences that would be observed under the null hypothesis. Note

that our experimental design of randomly assigning which of the two stories in each block

is attended provides the necessary exchangeability criterion, justifying the permutation

procedure (Nichols & Holmes, 2002). That is, every permutation of the order in which the

stimuli and attention conditions occurred was equally likely to occur during data acquisition.

Thus, under the null hypothesis, the condition labels corresponding to the measurements can

be randomly permuted. To generate a single realization from the null distribution, a random

sign was assigned to the coherence difference between the attended and ignored conditions

for each subject and speech story, then the results were averaged across subjects and stories.

This procedure was repeated with 500,000 distinct randomizations to generate the full null

distribution for the average coherence difference. A separate null distribution was generated

for each of the eight EEG bands using band-specific data. For each band, the corresponding

null distribution was used to assign a p-value to the observed average coherence difference

obtained with the correct labels. Finally, to correct for multiple comparisons across the

eight EEG bands, the conservative Bonferroni procedure was used. In addition to being

used to obtain p-values, the null distributions were also used to express each individual’s

coherence-difference values as a z-score, which provided an easy-to-interpret quantification of

effect sizes. We used a similar permutation procedure to generate noise floors for computing

27



the z-scores shown in Figure 2.3 Panels B and C, and in the differential scalp map of Figure 2.4.

A separate noise floor was generated for each speech band in Figure 2.3 Panel B, for each

pixel (corresponding to a distinct speech band and EEG band) in Figure 2.3 Panel C, and

for each electrode in Figure 2.4.

For the analysis on the number of edges in the graph representation of speech-EEG

coherence (Figure 2.7), a similar permutation procedure was used. Here, the specific null

hypothesis is that the graph has the same number of edges in the attended and ignored

conditions on average. Thus, for each subject, a random sign was assigned to the difference

in the number of edges between the attended and ignored conditions, then the result was

averaged over subjects. This randomization procedure was repeated 500,000 times to generate

the full null distribution. A separate null distribution was generated for each of the coherence

thresholds shown in Figure 2.7. The observed average differences in the number of edges

between the correctly labeled attended and ignored conditions were then compared to the

corresponding null distributions to assign p-values.

The noise floor parameters used for computing the z-scores shown in the attended and

ignored scalp maps of Figure 2.4 were theoretically derived. This was done by using the

mean and variance expressions for multi-taper coherence estimates provided in Bokil et al.,

2007, and adjusting the variance parameter to account for pooling across EEG frequencies

and speech bands.

2.2.8 Software accessibility

Stimulus presentation was controlled using custom MATLAB (The MathWorks, Inc.,

Natick, MA) routines. EEG data preprocessing was performed using the open-source software

tools MNE-Python (Gramfort et al., 2013; Gramfort et al., 2014) and SNAPsoftware (Bharad-

waj, 2018). All further analyses were performed using custom software in Python (Python

Software Foundation, www.python.org). Network visualizations were created using the SAND

package (Kolaczyk & Csárdi, 2014) in R (R Core Team, www.R-project.org). Copies of all

custom code can be obtained from the authors.
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Figure 2.2. : Illustration of the effect of attention on the average speech-EEG magnitude
squared coherence spectra, for (A) the envelope of the 1014 Hz speech band, and the low-
frequency portions (overlapping with the delta and theta bands) of EEG channel C3, and for
(B) the envelope of the 3733 Hz speech band, and the envelope of the low-gamma band of
EEG channel CP1. Note that the y-axis ranges differ between panels A and B. The shaded regions indicate
values within one standard error around the mean. The delta- and theta-band EEG responses (Panel A), and
the low-gamma-band EEG envelope fluctuations (Panel B) selectively track features of the attended speech
over the ignored speech.

2.3 Results

Figure 2.2 shows magnitude squared coherence spectra (averaged over subjects and speech

stories) for two example speech-EEG pairings: the envelope of the 1014 Hz speech band and

the low-frequency EEG in sensor C3 (Panel A), and the envelope of the 3733 Hz speech band

and the envelope of the low-gamma EEG band in sensor CP1 (Panel B). The coherence in

the attended condition is greater than that in the ignored condition in the 2–5 Hz frequency

range (overlapping with the delta and theta bands) for the example in Panel A. The slow

envelopes of the low-gamma band also preferentially track attended speech in the 2–5 Hz

frequency range (Panel B).

As described in Section 2.2.5, the coherence spectrum for each pair of speech-EEG features

was averaged across frequencies to obtain a single coherence value for that feature pair; this

was done separately for the attended and ignored conditions. One key question we wished

to answer was which EEG bands showed the greatest attention effects. To address this

question, we averaged the differential coherences (“attended - ignored”) for each EEG band

across all speech bands and across the 32 EEG channels. The results obtained from this
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analysis are shown in Figure 2.3 Panel A. For each EEG band, we statistically tested whether

the coherence increase in the attended condition was significant using the permutation

procedure described previously. To correct for multiple comparisons across the eight EEG

bands that were considered, we used a Bonferroni correction with a familywise error rate

of 0.05. Thus, for each of the eight tests, only p-values less than 0.05/8 were considered

to be statistically significant. Based on the statistical tests, we find that both delta and

theta bands of the EEG show greater coherence with a speech stream when that stream is

attended compared to when it is ignored (i.e., a positive “attended - ignored” difference).

This replicates previously reported results (Ding & Simon, 2012; J. A. O’Sullivan et al., 2014).

Aside from the attention-dependent increase in low-frequency coherence, we also observe

that the envelope of the low-gamma band shows greater coherence to speech in the attended

condition. The preferential synchrony of gamma-band envelopes with attended speech has

previously been reported only in invasive recordings (Golumbic et al., 2013; Mesgarani &

Chang, 2012). For speech in isolation, some non-invasive studies have found gamma-band

envelopes to be synchronous with input speech (Gross et al., 2013); however, to the best of

our knowledge an attention-dependent increase of this coherence has previously not been

reported with non-invasive recordings.

In addition to identifying the EEG bands that showed the greatest attention effects,

we were also interested in characterizing which speech bands contribute most to attention-

dependent increases in coherence. To address this question, we averaged the differential

coherences for each speech band across the 32 scalp locations and across all EEG bands. This

yielded a profile of attention-dependent increases in coherence across the ten different speech

bands. The results are shown in Figure 2.3 Panel B. The strongest attention effects appear to

occur in the 0.5–3 kHz range, which contains spectro-temporal speech features (formants and

formant transitions) that convey many vowel and certain consonant cues (Gold & Morgan,

2002), and is also the range thought to be the most important for speech intelligibility (Kryter,

1962).

To examine whether the attention effects for different speech bands varied with the EEG

bands that they were paired with, we visualized the differential coherence for the full matrix

of speech bands versus EEG bands, averaged across EEG channels. The results are shown in
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Figure 2.3 Panel C. While the 0.5–3 kHz speech frequency range shows hot spots in the delta,

theta, and low-gamma EEG bands, the lower-frequency speech bands (e.g., 200 Hz) show a

hot spot only in the theta range corresponding to the syllabic rate. This could be because

the pitch conveyed by the resolved harmonics of the syllabic voicing may be an important

cue based on which attention is directed.

We also wished to find the EEG scalp locations that show the greatest coherence and

attention effects. To address this question, we averaged the coherence values across the ten

speech bands, and the delta, theta, and low-gamma EEG bands (i.e., the bands showing

significant attention effects in Figure 2.3 Panel A). The results are plotted as a topographic

map of coherence values (i.e., one value for each of the 32 scalp locations) for the attended,

ignored, and differential conditions, respectively, in Figure 2.4. The spatial profiles are hard

to distinguish between the attended and ignored maps; however, note that the coherences

are larger in the attended condition than the ignored, on an absolute scale. The differential

map quantifies these differences across the scalp. Temporal-parietal regions appear to show

the largest coherence differences between the attended and ignored conditions; however,

this pattern is not symmetric between the hemispheres. This result is consistent with

previous studies that found that areas such as the superior temporal gyrus and the inferior

parietal lobule contribute to attention effects (Golumbic et al., 2013). In addition to plotting

scalp maps averaged across EEG bands, we also looked at band-specific scalp maps for

the differential condition. However, the spatial patterns in those maps were not easily

interpretable, and are hence not shown here. Because we only used 32 channels, a detailed

exploration of which brain sources contribute to the observed differential coherences cannot

be done with our data. This should be a focus of future studies.

The results shown so far were mainly concerned with attention-dependent coherences

averaged across different sets of speech and EEG features (i.e., across speech bands, and/or

EEG bands, and/or scalp locations). In addition to this, we also constructed speech-EEG

bipartite graphs for each individual to examine the full set of coherence values corresponding

to all pairs of speech-EEG features simultaneously. Figure 2.5 shows attended and ignored

graphs (averaged over speech stories) for all individual subjects in our study. In this figure,

each square denotes a speech feature, and each circle denotes an EEG feature. An edge

31



Figure 2.3. : Differential effects of attention on speech-EEG coherences in different EEG bands
(Panel A), different speech bands (Panel B), and the full matrix of EEG bands versus speech
bands (Panel C). Panel A shows the differential (“attended - ignored”) coherence averaged across speech
bands and EEG channels (shown as a z-score) for each of the EEG bands. Uncorrected p-values obtained
from the permutation test are displayed for the different EEG bands. When a Bonferroni-corrected p-value
threshold of 0.05/8 = 0.006 is applied to each band, we find that the delta and theta bands show significantly
higher coherence with speech when it is attended compared to when it is ignored. In addition, we also find
that the envelope of the low-gamma band shows greater coherence with attended versus ignored speech.
Panel B shows the differential coherence averaged across all EEG bands and EEG channels (shown as a
z-score) for each input speech band. The strongest attention effects appear to occur in the 0.5–3 kHz range,
which contains spectro-temporal speech features (formants and formant transitions) that convey many vowel
and certain consonant cues, and is also the range thought to be the most important for speech intelligibility.
In Panel C, the differential coherence averaged across EEG channels is shown as a z-score for each EEG
band and speech band for completeness. While the 0.5–3 kHz speech frequency range shows hot spots in the
delta, theta, and low-gamma EEG bands, the lower-frequency speech bands (e.g., 200 Hz) show a hot spot
only in the theta range corresponding to the syllabic rate. This could be because the pitch conveyed by the
resolved harmonics of the syllabic voicing may be an important cue based on which attention is directed. In
all three panels, z-scores shown are averaged across speech stories and individual subjects, with error bars
representing the standard error.
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Attended Ignored Differential

Figure 2.4. : Scalp maps showing the average coherence (shown as a z-score) at each of the
different EEG electrodes in the attended, ignored, and differential conditions. To obtain the
scalp maps, the speech-EEG coherence values were averaged across the delta, theta, and low-gamma EEG
bands (i.e., the bands showing significant attention effects in Figure 2.3 Panel A), and all speech bands, and
expressed as a z-score. The intensity shown at each electrode is the mean of the z-score across speech stories
and individual subjects. Note that the scalp maps are scaled to their respective minimum and maximum
z-score values, so as to best show the spatial patterns. The spatial profiles are hard to distinguish between
the attended and ignored maps; however, note that the coherences are larger in the attended condition than
the ignored, on an absolute scale. The differential map shown in the right column quantifies these differences
across the scalp. Temporal-parietal regions appear to show the largest coherence differences between the
attended and ignored conditions; however, this pattern is not symmetric between the hemispheres.

is shown connecting a pair of speech-EEG features if the coherence between them meets a

certain threshold. Here, a coherence threshold of 3 standard deviations from the average

coherence (pooled across attended and ignored conditions) is arbitrarily chosen, and only

edges whose coherence meets that threshold are shown. One pattern that is immediately

apparent from Figure 2.5 is that there are many more edges in the attended condition than

in the ignored condition for eight of the ten subjects in this study. This suggests that a larger

number of speech-EEG feature pairs become coherent when the speech is attended. Also

apparent from Figure 2.5 is the fact that the graph structure is variable across subjects. This

means that the particular speech-EEG feature pairs that show the greatest coherence values

are not the same across subjects. As described in Section 2.2.6, we used the eigenvector

centrality measure for bipartite graphs to find those EEG and speech features that are the

most informative about an individual’s attentional focus. We find that the most central

features differ between individuals, as shown in Figure 2.5. This suggests that for applications

such as BCIs that aim to decode attention from EEG, individual-specific customization of

features might be necessary to obtain optimal decoding performance.
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Figure 2.5. : Graph representation of speech-EEG coherence in the attended and ignored
conditions for all individual subjects. Rows represent different individuals. Squares denote speech
features (i.e., the envelopes from the ten speech bands; shown in the order of increasing center frequency).
Each circle denotes an EEG feature (i.e., a particular EEG band from a particular scalp location). An
edge between a speech and EEG feature indicates that the coherence between them meets a threshold of 3
standard deviations from the mean. Only EEG features with one or more edges that survive the thresholding
procedure are shown. Attended graphs exhibit greater number of edges compared to ignored graphs for all
but two subjects (see bottom two rows). Additionally, the graph structure is variable across subjects. The
top two EEG and speech features that are most informative (as obtained using eigenvector centrality) about
an individual’s attentional focus also vary across subjects (rightmost column).
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Figure 2.6 shows individual differences in the overall magnitude of attentional enhancement

of speech-EEG coherences, separately for the delta, theta, and low-gamma EEG bands (i.e.,

the bands showing significant attention effects in Figure 2.3 Panel A). Here, each individual’s

“attentional boost” was computed as their percentage change in squared coherence going from

the ignored condition to the attended, averaged across the 32 EEG channels, all speech bands,

and the different speech stories. This attentional boost metric represents the percentage

change in the proportion of EEG signal energy that is correlated with a speech signal, when

the speech is attended to versus ignored. The distribution of the attentional boost across

individuals is skewed above zero in all three EEG bands, consistent with positive attentional

boost in the neural coding of target speech. Furthermore, there is considerable variation across

subjects almost uniformly over the range of boosts. Finally, where a particular individual

falls relative to the overall distribution is somewhat consistent across the three EEG bands

(the rank correlation between the attentional boosts in the delta and theta bands is 0.78, and

between the boosts in the delta and low-gamma bands is 0.38).

Although Figure 2.5 is visualized for a particular coherence threshold, the observation

that there are many more edges in the attended condition than in the ignored condition

did not depend strongly on the choice of threshold. To illustrate this, we quantified the

percentage of edges (i.e., coherences that meet a given threshold) for the attended and ignored

conditions, for three different threshold values. The results are shown in Figure 2.7. For all

three thresholds shown, the number of edges in the attended condition is significantly greater

than the number of edges in the ignored condition, which confirms the generality of this

result. The p-values for this statistical comparison were obtained using a permutation test as

described in Section 2.2.7. While Figure 2.3 showed that specific speech-EEG associations

are strengthened by attention, the present result suggests that a greater number of distinct

speech-EEG associations are induced by attention.

2.4 Discussion

We systematically studied the attention-dependent relationships between input speech

envelopes in different frequency bands and the neural response in different EEG channels
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Figure 2.6. : Individual differences in the overall magnitude of attentional enhancement of
speech-EEG coherences in different EEG bands. Each individual’s “attentional boost” in coherence is
shown (with an individual-specific marker symbol and color) for the delta, theta, and low-gamma EEG bands
(i.e., the bands showing significant attention effects in Figure 2.3 Panel A). The mean and standard error
across individuals are also indicated in black. Note that the y-axis ranges differ between the three panels of
the figure. The attentional boost was computed as the percentage change in squared coherence going from
the ignored condition to the attended, averaged across EEG channels, speech bands, and the different speech
stories. The distribution of the attentional boost across individuals is skewed above zero in all three EEG
bands, consistent with positive attentional boost in the neural coding of target speech. Furthermore, there is
considerable variation across subjects almost uniformly over the range of boosts.

and frequency bands. Importantly, we investigated selective attention effects in all canoni-

cal (Buzsáki & Draguhn, 2004) EEG frequency bands simultaneously. In doing so, we found

that low-frequency delta- and theta-band EEG showed the strongest attention effects (i.e.,

the greatest speech-EEG coherence increases for the attended condition compared to the

ignored). This result is consistent with the preferential phase locking to attended rather than

ignored speech in the delta and theta bands reported in previous EEG/MEG studies (Ding

& Simon, 2012; J. A. O’Sullivan et al., 2014). Using stationary masking noise, Ding and

Simon, 2013 found that the delta band was the most robust in carrying target information at

poorer SNRs (-3 dB and lower), whereas both delta and theta bands were equally robust in
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Figure 2.7. : Percentage of edges (i.e., coherences meeting threshold) in attended (ATT) and
ignored (IGN) speech-EEG bipartite graphs, at different coherence thresholds. The across-
subject distribution of the percentage of graph edges is shown as a violin plot, separately for the attended and
ignored conditions, and for three different coherence thresholds. In addition, the median (white dot), 50%
confidence limits (thick black box), and 95% confidence limits (black whiskers) of each distribution are shown.
Across all three threshold values, the number of edges is significantly larger for the attended condition (based
on a permutation test; p-values are shown). While Figure 2.3 showed that specific speech-EEG associations
are strengthened by attention, the present result suggests that a greater number of distinct speech-EEG
associations are induced by attention.

conveying target information at higher SNRs. These findings are consistent with our present

results from using a speech masker at 0 dB SNR. One possible factor contributing to the

strong delta- and theta-band attention effects is that the power in the acoustic envelope

of natural speech is maximal below 8 Hz (corresponding to the prosodic and syllabic rates;

Ding et al., 2017). Moreover, in the presence of background noise, the SNR in the envelope

domain at the auditory-nerve level is strongest for slow modulation frequencies (Rallapalli &

Heinz, 2016). Thus, the strength of the delta- and theta-band effects may be a reflection of

the neural computations that take advantage of the high power and SNR in speech at slow

envelope frequencies. Yet another possible factor could be that attention mechanisms might

be geared towards boosting the representation of those temporal modulations that are the
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most important for speech intelligibility; previous studies suggest that modulations below 8

Hz are perhaps the most important (Drullman et al., 1994; Elliott & Theunissen, 2009).

A novel finding of the present study is that the power fluctuations (i.e., envelope) of

the low-gamma band of the EEG show significantly higher coherence with the attended

speech stream versus the ignored. In contrast to cortical theta-band activity, activity in

the gamma band has relatively small amplitude (Pritchard, 1992). This may explain why

previous EEG studies have not reported attention effects in the gamma band. Despite

the relatively low amplitude and the conservative statistical thresholding that we adopted

(i.e., using Bonferroni corrections across EEG bands), we found the low-gamma envelope to

fluctuate coherently with the attended speech. This finding supports the view that gamma

activity plays an important role in the underlying physiological computations that support

selective listening (Ribary, 2005; Tallon-Baudry & Bertrand, 1999; X.-J. Wang, 2010), and

demonstrates that non-invasive EEG can be used to measure these effects.

While gamma-band responses have been investigated using EEG/MEG when processing

speech streams in isolation, i.e., without competition (Gross et al., 2013), prior non-invasive

studies of selective attention focused on the low-frequency portions of the brain signal,

which overlap with traditional evoked responses (Ding & Simon, 2012; Luo & Poeppel, 2007;

J. A. O’Sullivan et al., 2014). Gamma-band power has previously been shown to fluctuate

coherently with the envelope of an attended speech stream in selective attention tasks, but

only from invasive (ECoG) recordings (Golumbic et al., 2013; Mesgarani & Chang, 2012). The

current results replicate this finding using EEG. However, one discrepancy in the gamma-band

findings between the ECoG studies and the present EEG-based study is that the ECoG

studies found the high-gamma, rather than the low-gamma band to be important, while

we observed no significant effects at high gamma. This may be explained by the fact that

ECoG measurements are more spatially specific, reflecting local neural activity rather than

the broadly distributed activity measured using EEG. For instance, the observed correlation

of high gamma in the spatially summed EEG signal with attended speech could be weak even

if high-gamma activity within different brain areas are each significantly correlated with the

speech, but at different phases. In general, the SNR of high-gamma signals measured from

ECoG is likely greater than from EEG. The fact that we observed no significant attention-
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dependent change in the coherences between the high-gamma envelopes and speech signal

envelopes is thus most likely due to limitations of scalp recordings.

One other study that examined the effect of attention on gamma-band EEG responses

suggested that the attentional enhancement of gamma rhythms was specific to multisensory

stimuli (audiovisual), and was not seen for stimuli presented solely to the auditory sys-

tem (Senkowski et al., 2005); however, this study used simple tonal stimuli. Computational

models (Börgers et al., 2008), in vitro studies (Llinás et al., 2002), in vivo electrophysiol-

ogy (Fries et al., 2001), and modern studies using optogenetics (Cardin et al., 2009) show

that gamma-band synchrony over a network of neurons can mediate sensory binding of

different components that make up a perceptual object (Tallon-Baudry & Bertrand, 1999),

which facilitates attentional selection and routing. Because the behavioral task in the current

study involves both segregation (the grouping of input speech features into two separate

coherent perceptual streams), and selection (the preferential, detailed processing of one of the

two streams), the observed gamma-band effects could be related to either or both of those

processes. Further studies are needed to understand the precise mechanisms involved in the

generation of gamma-band activity, and how it shapes the network computations associated

with segregation and selection (B. Shinn-Cunningham, 2008).

Despite the relatively high amplitude of the signals in the alpha and beta bands (e.g.,

compared to the gamma band), these mid-frequency bands did not show any attention

effects. This is in spite of the fact that both the phase and envelope fluctuations of these

bands were considered. At first glance, this result appears to be at odds with the findings

of Obseler and colleagues (Obleser & Weisz, 2011; Wöstmann et al., 2016). However, the

synchronous alpha variations in those studies were not of the overall alpha power, but

rather the lateralization (i.e., left-right hemispherical asymmetry) of the alpha. Moreover,

in Wöstmann et al., 2016, both the attended and ignored sound streams had the same

temporal structure. This is in contrast to the present study, where the natural differences in

the temporal envelope structure of distinct speech streams forms the basis of the analysis.

Here, we did not examine any hemifield or hemisphere-specific aspects of attention on the

EEG response. Instead, the goal was to examine the overall band-specific effects of attention

on EEG responses. Analyses that focus on hemispheric lateralization of rhythms during
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spatial selective attention may indeed reveal alpha-band effects. Further, even for speech

presented in isolation, cortical processing of linguistic sounds exhibits hemispheric asymmetry

with a preferential left lateralization (Morillon et al., 2010). Future work should be undertaken

to investigate hemifield-specific effects of attention on EEG, and how these effects interact

with asymmetric aspects of cortical processing such as the left-lateralization of phonetic and

linguistic processing.

On examining the scalp topography of the speech-EEG coherence, we found that the

largest differences in coherence between the attended and ignored conditions occur in temporal-

parietal channels, rather than EEG channels that are sensitive to early auditory responses.

For example, the N100 EEG response, which is thought to originate from the primary

auditory cortex, projects to Cz and Fz channels on the scalp. These channels show a weaker

attention effect than the temporal-parietal channels, suggesting that early sensory responses

are less modulated by attention than are later processing regions. This is consistent with the

observation that attention effects can be localized to later “components” (200–220 ms) of the

EEG response by methods such as spread-spectrum analysis, which allow for the temporal

signature of the attention effect to be extracted (Power et al., 2012). These results suggest

that higher-order processing areas selectively process attended speech.

In the present study, we also find individual differences in the overall magnitude of

attentional enhancement of speech-EEG coherences, even though all individuals scored

more than 90% in the quiz. This finding is consistent with results from Choi et al., 2014,

which used a selective attention task with complex-tone stimuli to show that there are large

individual differences in the neural attentional boost, even when performance is at ceiling

for all individuals. This study further found that as the behavioral demands became more

adverse, the neural attentional boost from the easier condition was predictive of behavioral

performance in the harder condition. Taken together with our results, this suggests that EEG

measurements from an easier speech-based selective attention task may be used to quantify

the top-down attentional contribution to individual differences in speech intelligibility in

adverse listening conditions.

Finally, we visualized the coherences across all pairs of speech-EEG features as a bipartite

graph, separately for each individual and for each attention condition. We found individ-
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ual differences in the structures of attended and ignored graphs (i.e., which speech-EEG

relationships were the strongest varied across individuals), and also in the set of EEG and

speech features that are most informative about attentional focus in the entire network

structure. Such an individual-specific set of just the most informative features can be used

for individualized attention-decoding applications that require a compact feature set, such

as attention-guided hearing aids (Fiedler et al., 2017; Fuglsang et al., 2017; J. O’Sullivan

et al., 2017; Van Eyndhoven et al., 2017) and other BCIs. These features are likely to be

more optimal for attention decoding than what may be extracted from more conventional

analyses; however, the utility of this approach should be directly tested in future studies.

One explanation for the individual differences reported here could be anatomical variations

across people, which could lead to EEG measurements being differently sensitive across

people to different sources. Another possibility is that every individual’s listening strategy

might be different. For example, while some individuals may give more weight to spatial

cues to perform the task, others may rely more on voice-based cues such as speaker pitch.

Finally, there could also be individual differences in the efficacy of attentional modulation of

different brain sources (Choi et al., 2014). To elucidate the precise reasons for the individual

differences, future studies might consider using high-density recordings and source localization

techniques.
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3. MODULATION MASKING AND FINE STRUCTURE

SHAPE NEURAL ENVELOPE CODING TO PREDICT

SPEECH INTELLIGIBILITY ACROSS DIVERSE LISTENING

CONDITIONS

Abstract1

A fundamental question in the neuroscience of everyday communication is how scene

acoustics shape the neural processing of attended speech sounds and in turn impact speech

intelligibility. While it is well known that the temporal envelopes in target speech are

important for intelligibility, how the neural encoding of target-speech envelopes is influenced

by background sounds or other acoustic features of the scene is unknown. Here, we combine

human electroencephalography with simultaneous intelligibility measurements to address

this key gap. We find that the neural envelope-domain signal-to-noise ratio in target-

speech encoding, which is shaped by masker modulations, predicts intelligibility over a

range of strategically chosen realistic listening conditions unseen by the predictive model.

This provides neurophysiological evidence for modulation masking. Moreover, using high-

resolution vocoding to carefully control peripheral envelopes, we show that target-envelope

coding fidelity in the brain depends not only on envelopes conveyed by the cochlea, but

also on the temporal fine structure (TFS), which supports scene segregation. Our results

are consistent with the notion that temporal coherence of sound elements across envelopes

and/or TFS influences scene analysis and attentive selection of a target sound. Our findings

also inform speech-intelligibility models and technologies attempting to improve real-world

speech communication.

3.1 Introduction

A fundamental question in sensory neuroscience is how our brains parse complex scenes

to organize the barrage of sensory information into perceptually coherent objects and streams.

Low-level regularities in stimulus features, such as proximity and continuity of boundaries/tex-
1↑This chapter was published in bioRxiv (Viswanathan, Bharadwaj, Shinn-Cunningham, & Heinz, 2021).
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tures in vision (Gray, 1999), or rhythmicity, pitch, and harmonicity in audition (Darwin,

1997), can promote perceptual binding and scene segregation. Speech perception in complex

environments is a prominent example where such feature-based scene analysis is critical for

everyday communication (Cherry, 1953). Yet, the neurophysiological mechanisms supporting

this process are poorly understood. Elucidating the mechanisms underlying speech intelligi-

bility is important for both clinical applications and audio technologies, such as optimizations

for cochlear-implant and hearing-aid signal processing, clinical diagnostics and individualized

interventions for speech-in-noise communication problems, and speech denoising algorithms

(e.g., in cell phones).

Any acoustic signal can be decomposed into a slowly varying temporal modulation, or

envelope, and a rapidly varying temporal fine structure (TFS) (Hilbert, 1906). In the auditory

system, the cochlea decomposes broadband inputs into a tonotopic representation, where

each channel encodes the signal content in a relatively narrow band of frequencies around

a different center frequency. The envelope and TFS information in each channel are then

encoded through the activity of neurons in the ascending auditory pathway (Johnson, 1980;

P. X. Joris & Yin, 1992). Psychophysical studies suggest that envelopes convey important

information about speech content (Elliott & Theunissen, 2009; Shannon et al., 1995; Smith

et al., 2002), whereas TFS is important for our perception of attributes such as pitch and

location (Smith et al., 2002).

The temporal coherence theory of scene analysis (Elhilali et al., 2009; Gray, 1999) suggests

that neural assemblies that fire coherently (driven by envelopes, or TFS, or both) support

perceptual grouping of sound elements across distinct frequency channels, which can aid

source segregation (Schooneveldt & Moore, 1987). This may also explain how masker elements

that are temporally coherent with target speech, but are in a different channel from the target

can perceptually interfere (Apoux & Bacon, 2008). Accordingly, the temporal coherence

theory makes important predictions about how the envelopes and TFS of sources in a

scene affect scene analysis, and thus how they should influence the neural representation

and intelligibility of target speech. However, these predictions have not been evaluated in

neurophysiological experiments for realistic listening conditions that capture the complexity

of everyday “cocktail-party” environments.
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A parallel psychoacoustic literature suggests that modulation masking (i.e., the internal

representation of temporal modulations in the target relative to those from the background,

which contains inherent distracting fluctuations) may be a key contributor to speech under-

standing in noise (Bacon & Grantham, 1989; Stone & Moore, 2014). Accordingly, while classic

speech-intelligibility models emphasized audibility in different frequency bands (ANSI, 1969,

1997), current models that emphasize envelope coding (Steeneken & Houtgast, 1980) and

modulation masking (Dubbelboer & Houtgast, 2008; Relaño-Iborra et al., 2016) have been

successful in predicting performance in many realistic conditions. However, the core notion

that modulation masking is important has not been validated neurophysiologically. With the

exception of current speech-intelligibility models that restrict modulation masking effects

to within a carrier frequency channel (Jørgensen et al., 2013; Relaño-Iborra et al., 2016),

the literature on modulation masking largely does not distinguish between cross-channel

interference and within-channel masking. In this sense, the theory of modulation masking

is consistent with the temporal coherence theory. However, modulation masking does not

consider the role of TFS, despite the consistent finding that cues conveyed by TFS (e.g.,

pitch) (Smith et al., 2002) critically support object formation, perceptual scene segregation,

and selective attention (Darwin, 1997; B. Shinn-Cunningham, 2008). Indeed, temporal

coherence across low-frequency TFS and high-frequency pitch envelopes may significantly

improve speech intelligibility in noise, compared to having either cue alone (A. J. Oxenham

& Simonson, 2009). While some psychophysical studies have explored the relative roles

of envelope and fine-structure cues for speech intelligibility in noise (Lorenzi et al., 2006;

Qin & Oxenham, 2003; Swaminathan & Heinz, 2012), few neurophysiological studies have

investigated how these cues work together during selective listening.

In the present study, we bridge these gaps by measuring electroencephalography (EEG)

simultaneously with intelligibility for target speech over a range of strategically chosen

realistic listening conditions. The EEG measured is the response evoked by ongoing stimulus

fluctuations when attending to the target speech. We hypothesized that the neural tracking of

target modulations, as quantified from EEG, will depend strongly on the modulation content

of the masker, in line with the temporal coherence theory and the notion of modulation

masking. Furthermore, we hypothesized that the availability (or lack thereof) of TFS will
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also impact this neural target-envelope coding, in line with the role of TFS in providing

cues to facilitate scene analysis and attention. Finally, we hypothesized that the net neural

target-envelope coding shaped by these factors (i.e., the neural signal-to-noise ratio (SNR) in

the envelope domain) will predict (in a quantitative, statistical sense) speech intelligibility in

conditions unseen by the predictive model. Our neurophysiological results provide evidence

for all of the above hypotheses. The present study thus goes beyond comparing individual

outcomes to neural measures in a particular condition (e.g., Bharadwaj et al., 2015; Ding &

Simon, 2013), to elucidate what aspects of the scene acoustics and neural processing predict

intelligibility across diverse real-world conditions.

3.2 Materials and Methods

3.2.1 Stimulus generation

700 Harvard/IEEE sentences (Rothauser, 1969) spoken in a female voice and recorded

as part of the PN/NC corpus (McCloy et al., 2013) were chosen for the study. The Har-

vard/IEEE lists have relatively low semantic context compared to other commonly used

speech material (Boothroyd & Nittrouer, 1988; Grant & Seitz, 2000; Rabinowitz et al., 1992).

Stimuli were created for eight different experimental conditions as described below:

1-3. Speech in Speech-shaped Stationary Noise (SiSSN): Speech was added to spec-

trally matched stationary Gaussian noise, i.e., speech-shaped stationary noise, at SNRs

of -2 dB, -5 dB, and -8 dB. The long-term spectra of the target speech sentences and

that of stationary noise were adjusted to match the average (across instances) long-term

spectrum of four-talker babble. A different realization of stationary noise was used for

each SiSSN stimulus.

4-5. Speech in Babble (SiB): Speech was added to spectrally matched four-talker babble

at SNRs of 4 dB and -2 dB. The long-term spectra of the target speech sentences were

adjusted to match the average (across instances) long-term spectrum of four-talker

babble. In creating each SiB stimulus, a babble sample was randomly selected from
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a list comprising 72 different four-talker babble maskers obtained from the QuickSIN

corpus (Killion et al., 2004).

6. Speech in Babble with Reverberation (SiB Reverb): SiB at 6 dB SNR was sub-

jected to reverberation simulating the St. Albans Cathedral in England (by convolution

with a binaural impulse response; see http://www.openairlib.net). The reverberation

time (T60) was 2.4 s.

7. Vocoded Speech in Babble (SiB Vocoded): SiB at 4 dB SNR was subjected to

64-channel envelope vocoding, which left the peripheral envelopes and place coding

intact, while replacing the TFS with a noise carrier in accordance with the procedure

described in Qin and Oxenham, 2003. The 64 frequency channels were contiguous

with their center frequencies equally spaced on an ERB-number scale (Glasberg &

Moore, 1990) between 80 Hz and 6000 Hz. To verify that the vocoding procedure did

not significantly change envelopes at the cochlear level, we extracted the envelopes at

the output of 128 filters (using a similar procedure as in the actual vocoding process)

both before and after vocoding for 50 different SiB stimuli. Note that the use of

128 filters allowed us to compare envelopes at both on-band filters (i.e., filters whose

center frequencies matched with the sub-bands of the vocoder), and off-band filters (i.e.,

filters whose center frequencies were halfway between adjacent vocoder sub-bands on

the ERB-number scale). The average correlation coefficient between envelopes before

and after vocoding (across the 50 SiB stimuli and the 128 cochlear filters, and after

adjusting for any vocoder group delays) is about 0.9. This suggests that our vocoding

procedure leaves the cochlear-level envelopes largely intact. Indeed, as illustrated

in Figure 3.1, our 64-channel vocoding procedure better preserves the within-band

envelopes than the lower resolution procedures of Ding et al., 2014. Although Ding

et al., 2014 suggested that TFS matters for neural envelope tracking, their methods

using 4- or 8-channel vocoding do not preserve peripheral envelopes within individual

cochlear bands. Consequently, a purely envelope-based explanation of their findings

cannot be ruled out.
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8. Speech in Babble with ITFS (SiB ITFS): SiB at -6 dB SNR was subjected to 64-

channel ideal time-frequency segregation (ITFS), a non-linear denoising procedure that

forms the basis of many machine-learning denoising strategies (D. Wang & Chen, 2018).

This was performed over a frequency range of 80–8000 Hz, mirroring the procedure

in Brungart et al., 2006. A local SNR criterion of 0 dB was used in the ITFS procedure.

Prior to the full study, a behavioral pilot study (with five subjects who did not participate

in the actual EEG experiment) was used to determine the SNRs for the different experimental

conditions. The SNRs for the three SiSSN conditions were chosen to yield intelligibility values

of roughly 25%, 50% and 75%, respectively, to span the full range of intelligibility. The SNRs

for the other conditions were chosen such that the intelligibility scores were between (but did

not include) 0% and 100%, and were different across the different conditions.

Figure 3.1. : Illustration of the effect of 64-channel vocoding versus the lower resolution
procedures of Ding et al., 2014 on envelopes within individual cochlear bands. Panel A shows
a histogram of the group-delay-adjusted squared normalized-correlation (i.e., variance explained) between the
envelope in intact speech in babble (SiB) and 64-channel vocoded SiB, which is used in the present study
(i), and the 8-channel (ii) and 4-channel (iii) vocoding of Ding et al., 2014 vocoded SiB. The histograms
are across different speech sentences and 128 different cochlear bands equally spaced on an ERB-number
scale (Glasberg & Moore, 1990) from 80-6000 Hz. The 64-channel vocoding clearly better preserves the
within-band envelopes than either the 8- or 4-channel procedures of Ding et al., 2014 in that the 64-channel
procedure captures an additional variance of more than 20%. This disruption of within-band envelopes
using their technique was observed despite replicating their result of 0.99 correlation for the band-summed
envelope (i.e., the basis for their conclusion that their vocoding preserved speech envelopes). Panel B shows
an example envelope derived from SiB for the 1.5-kHz speech band for intact SiB, our 64-channel vocoding,
and the better-resolution, 8-channel vocoding from Ding et al., 2014, to visualize how our procedure yields
band-specific envelopes that more closely match those of intact SiB.
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Table 3.1 lists the different stimulus conditions along with the rationale for including

them in our study.

Table 3.1. : Rationale for the different stimulus conditions included in this study. Collectively,
the different listening conditions represent a diversity of scene acoustics, including important examples
in our environment and clinical applications. Moreover, they span maskers with different modulation
statistics (Jørgensen et al., 2013; S. Rosen et al., 2013) and stimuli with intact and degraded TFS, which
allowed us to rigorously test our hypotheses. Note that the SNR levels were chosen to span the full range of
intelligibility without floor or ceiling effects.

No. Stimulus condition Rationale for inclusion in study

1-3 Speech in Speech-shaped Stationary Noise (SiSSN)
at SNRs of -2 dB, -5 dB, and -8 dB

Widely used in the literature; used for calibration of pre-
diction model

4-5 Speech in Babble (SiB) at SNRs of 4 dB and -2 dB Simulates ecologically relevant cocktail-party listening;
has different masker modulation statistics from SiSSN

6 SiB at 6 dB SNR subjected to reverberation (T60
= 2.4 s)

Reverberation is ubiquitous in everyday listening envi-
ronments (e.g., rooms and stairwells); linearly distorts
temporal information

7 SiB at 4 dB SNR subjected to 64-channel envelope
vocoding

Used to investigate the role of TFS in target-speech cod-
ing and intelligibility

8 SiB at -6 dB SNR subjected to 64-channel ideal
time-frequency segregation (ITFS)

ITFS is a precursor to deep-learning-based denoising al-
gorithms that are increasingly used in many audio pro-
cessing applications, including hearing aids (D. Wang &
Chen, 2018); nonlinear distortion

3.2.2 Participants

Data were collected from twelve human subjects (four male), aged 19–31 years, recruited

from the Purdue University community. All subjects were native speakers of American

English, had pure-tone hearing thresholds better than 20 dB hearing level in both ears at

standard audiometric frequencies between 250 Hz and 8 kHz, and reported no neurological

disorders. All subjects also had distortion-product and click-evoked otoacoustic emissions

(DPOAE and CEOAE) within the normal range of published values for individuals with

normal hearing (Gorga et al., 1993), as well as normal tympanograms. Subjects provided

informed consent in accordance with protocols established at Purdue University. Data were

collected from each subject over the course of one or two visits (with a total visit time of ∼5

hours).
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3.2.3 Experimental design

Each subject performed seven blocks of speech intelligibility testing, with 100 trials per

block, and with a distinct target sentence in each trial. Subjects had a 5–10 min break between

successive blocks. Different but overlapping subsets of experimental conditions were randomly

assigned to each subject, such that at least 700 trials for each experimental condition were

collected across the subject cohort. This design avoided confounding individual-subject effects

with experimental-condition effects. The different experimental conditions were intermingled

within each block.

Subjects were instructed that in each trial they would be listening for a woman’s voice

speaking a sentence, and that at the end of the trial, they would have to verbally repeat

the sentence back to the experimenter sitting beside them in a sound-treated booth. They

were told that it would be the same woman’s voice every time, but that the type and level of

background noise/distortion would change from trial to trial. They were also instructed that

in each trial, the noise would start first and the target woman’s voice ∼1 s later. They were

encouraged to guess as many words as they could if they heard a sentence only partially.

Stimuli were presented to subjects diotically in all conditions except the reverberation

condition, in which stimuli were generated with ear-specific impulse responses as described

previously. 32-channel EEG was measured while subjects performed the behavioral task. The

target speech sentences were presented at a sound level of 72 dB SPL, while the level of the

background was varied according to the stimulus SNR.

At the beginning of each trial, subjects were presented with a visual cue that read “stay

still and listen now” in red font. The audio stimulus started playing 1 s after the visual

cue was presented. In every stimulus presentation, the background noise started first and

continued for the entire duration of the trial, while the target speech started 1.25 s after the

background started. This was done to help cue the subjects’ attention to the stimulus before

the target sentence was played. The target was at least 2.5 s long. After the target sentence

ended, the background noise continued for a short amount of time that varied randomly

from trial to trial. This was done to reduce EEG contamination from movement artifacts

and motor-planning signals. 200 ms after the noise ended, subjects were presented with a
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different visual cue that read “repeat now” in green font, cueing them to report the target

sentence to the experimenter. Intelligibility was scored on five pre-determined keywords

(which excluded articles and prepositions) for each sentence. For each experimental condition,

an overall intelligibility score was obtained by averaging the percentage of key words correct

(for a sentence) over all sentences used in that condition and across subjects.

Subjects performed a short training demo task before the actual EEG experiment. The

demo spanned the same set of listening conditions and used the same woman’s voice as the

actual experiment, but contained a different set of Harvard/IEEE target sentences, not used

in the main experiment. All twelve subjects scored more than 70% on the easiest condition

and got at least some words correct (> 0%) on the hardest condition. All were able to

stay still during the presentation of the sentences and respond on cue. This ensured that in

the actual experiment, intelligibility scores showed minimal ceiling or floor effects and that

movement artifacts were minimal, providing clean EEG recordings.

3.2.4 Hardware

A personal desktop computer controlled all aspects of the experiment, including triggering

sound delivery and storing data. Special-purpose sound-control hardware (System 3 real-time

signal processing system, including digital-to-analog conversion and amplification; Tucker

Davis Technologies, Alachua, FL) presented audio through insert earphones (ER-2; Etymotic,

Elk Grove Village, IL) coupled to foam ear tips. The earphones were custom shielded by

wrapping the transducers in layers of magnetic shielding tape made from an amorphous

cobalt alloy (MCF5; YSHIELD GmbH & Co., Ruhstorf, Germany), and then placing them

in 3-mm-thick aluminum enclosures to attenuate electromagnetic interference. The signal

cables driving the transducers were shielded with braided metallic techflex. All shielding

layers were grounded to the chassis of the D/A converter. The absence of measurable

electromagnetic artifact was verified by running intense click stimuli through the transducers

with the transducers positioned in the same location relative to the EEG cap as actual

measurements, but with foam tips left outside the ear. All audio signals were digitized at a

sampling rate of 48.828 kHz. The EEG signals were recorded at a sampling rate of 4.096 kHz
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using a BioSemi (Amsterdam, Netherlands) ActiveTwo system. Recordings were done with

32 cephalic electrodes, and two additional earlobe electrodes.

3.2.5 Data preprocessing

Of the twelve subjects who participated, one subject could not complete the task because

they were sleepy, and another subject was unable to return for their second visit to complete

the study. Data from these two subjects were excluded from the study. The EEG signals

of the remaining 10 subjects were re-referenced to the average of the two earlobe reference

electrodes. The Signal Space Projection method was used to construct spatial filters to

remove eye blink and saccade artifacts (Uusitalo & Ilmoniemi, 1997). The broadband EEG

was then band-pass filtered between 1 Hz and 400 Hz for further analysis. Data from three

completely new subjects (who were not among the twelve that participated in the main

experiment) showed that responses from the auditory cortex and brainstem are strongest in

EEG channel FCz (see Fig. 3.2B); thus, we used FCz to derive all results presented in this

report.

3.2.6 Quantifying EEG-based target-envelope encoding fidelity

We sought to quantify the fidelity (i.e., SNR) of neural envelope encoding of target speech

relative to masker fluctuations for each of the eight experimental conditions. The EEG

measured in response to our speech-in-noise stimuli reflects not only the neural responses

to the target speech and masking noise, but also unrelated brain activity and other EEG

measurement noise. To quantify target-envelope coding, we computed the extent to which

the EEG response is phase locked to the target-speech envelope using the phase-locking

value measure (PLV; Lachaux et al., 1999). We chose this metric because the PLV is

monotonically related to the SNR (approximately linearly in the SNR range of ±6 dB) in the

EEG measurements (Bharadwaj & Shinn-Cunningham, 2014), and consequently also to the

neural envelope-domain SNR of the target relative to the masker (as sources of noise other

than the masker do not vary between conditions). A high PLV between the target-speech

envelope and EEG response indicates a consistent phase relationship between those signals,
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and a low PLV implies little to no relationship between the two signals. Thus, if the EEG

response mostly coded target fluctuations (e.g., in a condition with low background noise

levels), then the PLV between the EEG signal and the target envelope would be strong. On

the other hand, if the EEG response coded mostly masker fluctuations rather than target

fluctuations, the PLV would be small. Thus, the PLV captures the envelope-domain SNR with

which target envelopes are internally represented relative to modulations in masking sounds

and random noise. Note that envelope coding has often been quantified in the literature

using a stimulus reconstruction approach, which estimates a linear filter that approximately

reconstructs the input speech envelope from EEG responses (e.g., Ding & Simon, 2012; J. A.

O’Sullivan et al., 2014). Following reconstruction, the proportion of the actual stimulus

envelope that is linearly related to the reconstructed envelope is computed as a metric of

envelope coding. One disadvantage with this approach is that the first filter estimation

step is ill conditioned and necessitates the use of arbitrary regularization techniques (Wong

et al., 2018). Our phase-locking measure bypasses this filter estimation step and instead

directly captures the proportion of the EEG power that is linearly related to the input speech

envelope.

To derive speech envelopes for use in the PLV computation, we used a bank of 10

gammatone filters that mimic cochlear frequency selectivity (Glasberg & Moore, 1990), with

center frequencies spanning 100–8500 Hz. The filters were spaced roughly logarithmically,

such that their center frequencies had best places that are spaced uniformly along the length

of the cochlea according to an established place-frequency map (Greenwood, 1990). Each

of the 700 speech sentences used in our study were processed through this filterbank. The

envelope of the output of each filter was extracted using the Hilbert transform; the results

were summed across all cochlear bands to obtain one overall temporal envelope for each

target speech sentence. Note that the single overall envelope obtained by summing across

10 bands is adequate to characterize envelope coding with EEG since EEG does not offer

tonotopically resolved information and our focus was not on tonotopic weightings. This is

in contrast to the high-resolution procedure crucial for generating vocoded stimuli, as the

envelopes conveyed by the periphery are expected to influence the neural processing of target

speech. To extract the EEG response to the speech-in-noise stimulus in each trial, a 2.5-s-long
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epoch that corresponds to the time window during the trial when the target speech was

presented was extracted from the overall EEG response in that trial. Epochs corresponding

to a particular experimental condition were then pooled over all subjects who performed

the condition, to yield a total of 700 epochs per condition. All EEG epochs for a particular

condition were paired with the envelopes of the corresponding target speech sentences, and

used to calculate the condition-specific PLV measure. PLV was computed in two different

ways using custom code adapted from the MNE-Python toolbox (Gramfort et al., 2014), as

described below.

The “long-term” PLV spectrum was estimated for each condition using a multi-taper

approach (Zhu et al., 2013). Five tapers were used, which resulted in a frequency resolution

of 2.4 Hz. The multi-taper PLV estimate minimizes spectral leakage (i.e., reduces mixing of

information between far-away frequencies) for any given spectral resolution, and is calculated

from the Fourier representations of two signals X(f) and Y (f) (representing target-speech

envelope and EEG response, respectively) as follows:

Ckn(f) = exp[j(∠Xkn(f) − ∠Ykn(f))] (3.1)

PLVXY (f) = 1
KtapersNepochs

Ktapers∑
k=1

∣∣∣∣∣∣
Nepochs∑

n=1
Ckn(f)

∣∣∣∣∣∣ (3.2)

Here, k indexes the taper, n indexes the epoch, and f is modulation frequency.

In addition to the long-term PLV measure described above, we also computed a short-term

multi-resolution PLV for modulation frequencies above 7 Hz to account for any modulation

masking release that may occur in short time windows. Multi-resolution analyses have been

shown to predict intelligibility better than long-term analyses in the case of fluctuating

maskers (Jørgensen et al., 2013). A Morlet wavelet was used to compute the EEG and speech

spectra in short time windows using seven cycles at each frequency bin (which resulted in a

frequency resolution that monotonically decreased with increasing bin center frequency). The

window length is inversely proportional to the wavelet center frequency; thus, the number

of windows also varied according to frequency (with fewer windows at lower frequencies,

and more windows at higher frequencies). Given that each target sentence was a little over
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2 s and that each wavelet had seven cycles, the multi-resolution analysis was restricted to

7 Hz and above in order for at least two non-overlapping windows to be resolvable. The

multi-resolution PLV is calculated from the Fourier representations of two signals X(f) and

Y (f) (representing target-speech envelope and EEG response, respectively) as follows:

Cmn(f) = exp[j(∠Xmn(f) − ∠Ymn(f))] (3.3)

mrPLVXY (f) = 1
Mwin(f)Nepochs

∣∣∣∣∣∣
Mwin(f)∑

m=1

Nepochs∑
n=1

Cmn(f)

∣∣∣∣∣∣ (3.4)

Here, m indexes the window, n indexes the epoch, and f is modulation frequency.

The long-term PLV spectra were averaged within octave-wide modulation bands, spaced

half an octave apart. In the case of the multi-resolution PLV computation, we used a similar

half-octave spacing when defining the wavelet center frequencies. The binned long-term

and multi-resolution PLV spectra thus obtained were z-scored with respect to corresponding

null distributions of zero phase locking, which were obtained by pairing EEG trials with

mismatching speech trials as described in Section 3.2.8. The z-scores from the long-term and

multi-resolution analyses were thresholded at zero, and then summed at each frequency bin.

Then, to obtain a summary metric of neural envelope coding ENVneural, the average PLV

over all modulation frequency bins was computed after weighting the z-scores in the bins

to compensate for the 1/f power transfer function that is characteristic of the SNR of EEG

measurements (Buzsáki et al., 2012; Roß et al., 2000; Stinstra & Peters, 1998). Specifically,

the z-score in each frequency bin was weighted by a factor proportional to the square root of

the bin center frequency, then the weighted-average z-score across bins was computed. In

this way, a separate ENVneural metric was quantified for each experimental condition. Note

that although different carrier frequency bands and modulation frequencies likely differ in

their perceptual importance (Drullman et al., 1994; Kryter, 1962), our ENVneural metric

does not assign any importance weighting to them. This is because of the possibility that the

physiological computations that contribute to our EEG measurements implicitly incorporate

such weighting. Figure 3.2 illustrates the steps used to quantify ENVneural.
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Figure 3.2. : Quantifying the fidelity of target-speech envelope encoding with EEG. Panel A
illustrates the steps used to quantify target-envelope coding. Target-speech envelopes were extracted using
a bank of 10 gammatone filters simulating cochlear processing, with roughly log-spaced center frequencies
spanning 100–8500 Hz. The envelope at the output of each filter was extracted using the Hilbert transform,
and the results summed across all filters to obtain one overall temporal envelope for each target speech
sentence. The fidelity of neural envelope coding of target speech relative to that of background noise (i.e.,
neural SNR in the envelope domain) was quantified for each experimental condition by computing the
phase-locking spectrum between the EEG response in channel FCz and the target-speech envelope across the
different trials of that condition (see Equations 3.1, 3.2, 3.3, and 3.4). The resulting phase-locking spectra were
z-scored with respect to an appropriate null distribution of zero phase locking. To obtain a summary metric
of neural envelope coding ENVneural, the average z-score over all modulation frequencies was computed by
weighting the frequencies to compensate for the 1/f transfer function that is observed in EEG measurements.
Panel B shows that responses from auditory cortex and brainstem are strongest in EEG channel FCz. Data
shown are from three different subjects who did not participate in the main experiment, but underwent the
same screening protocols as the subjects in the main study. Established paradigms for envelope-following
responses (EFRs) and onset-evoked potentials (N100 and ABR wave 5) were used to elicit responses from the
auditory cortex and brainstem (Picton, 2010). The scalp maps obtained from these responses were normalized
such that the amplitudes across channels within each map add to one. The red and blue colors in a scalp
map indicate opposite polarities, and the color saturation indicates the normalized amplitude. These scalp
maps were used to select the sensor location (FCz) used for all analyses and results presented in this report.
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3.2.7 Testing the hypothesis that the fidelity of target-envelope coding in the
brain predicts intelligibility

The hypothesis that the fidelity (i.e., SNR) with which envelopes of target speech are

coded in the brain relative to background noise predicts intelligibility (in a quantitative,

statistical sense) was tested using a rigorous two-step approach. In the calibration step,

a logistic/sigmoid function was used to map the EEG-based ENVneural measurements to

perceptual intelligibility for speech in stationary noise. This mapping revealed a monotonic

relationship between ENVneural and intelligibility across the three SiSSN conditions (see

Fig. 3.4B). A crucial test of envelope-based predictions is whether a mapping between

ENVneural and perceptual intelligibility derived from one type of background noise can be

used to estimate intelligibility for novel backgrounds and linear and non-linear distortions

applied to the input sounds. In the next step, we predicted intelligibility for speech presented

in various novel, realistic backgrounds and distortions from EEG ENVneural measurements

and by using the mapping created with stationary noise. The following conditions were tested

in the prediction step: SiB at 4 dB SNR, SiB at -2 dB SNR, SiB at 6 dB SNR subjected to

reverberation, SiB at 4 dB SNR subjected to 64-channel envelope vocoding, and SiB at -6

dB SNR subjected to non-linear denoising (ITFS). Figure 3.3 illustrates the calibration and

prediction steps that were used to test the hypothesis.

3.2.8 Statistical analysis

The distributions for the PLV metric (one for the long-term analysis and another separately

for the multi-resolution approach) under the null hypothesis of zero phase locking were

obtained using a non-parametric shuffling procedure (Le Van Quyen et al., 2001). Each

realization from either null distribution was obtained by following the same computations

used to obtain the actual PLV measures, but by pairing EEG response epochs randomly with

mismatching speech epochs. That is, when computing the PLV between the speech signal

and the EEG signal, the order of epochs for one of the two signals was randomly permuted.

This procedure was repeated with 16 distinct randomizations for each experimental condition.

Samples were pooled across the 16 randomizations, and across all eight conditions, to yield a
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Figure 3.3. : Our rigorous two-step approach to test the hypothesis that the fidelity of neural
envelope coding of target speech relative to background noise predicts speech intelligibility (in
a quantitative, statistical sense). The first step is a calibration step, where a logistic/sigmoid function
was used to map an EEG-based target envelope-coding metric ENVneural to perceptual intelligibility for
speech in stationary noise. In the second step, we used this mapping to blindly predict speech intelligibility
in various completely novel realistic background noises and distortions only from EEG-based ENVneural
measurements.

total of 128 realizations from each null distribution. This procedure ensured that the data

used in the computation of the null distributions had the same statistical properties as the

original speech and EEG signals.

To test the hypothesis that the fidelity of neural envelope coding of target speech relative

to that of background noise (i.e., neural SNR in the envelope domain) predicts intelligibility,

we computed the Pearson correlation between our EEG-based intelligibility predictions and

the actual intelligibility measurements. The p-value for the correlation was derived using

Fisher’s approximation (Fisher, 1921).

The noise floor parameters used for computing the z-scores shown in Figure 3.8 were

derived as described in Viswanathan et al., 2019.

3.2.9 Software accessibility

Stimulus presentation was controlled using custom MATLAB (The MathWorks, Inc.,

Natick, MA) routines. EEG data preprocessing was performed using the open-source software
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tools MNE-Python (Gramfort et al., 2014) and SNAPsoftware (Bharadwaj, 2018). All further

analyses were performed using custom software in Python (Python Software Foundation,

www.python.org) and MATLAB. Copies of all custom code can be obtained from the authors.

3.3 Results

3.3.1 Neural envelope-domain SNR in target encoding predicts speech intelligi-
bility over a variety of realistic listening conditions novel to the predictive
model

Figure 3.4 shows results from the calibration step of our two-step approach to test the

hypothesis that speech intelligibility can be predicted from the fidelity (i.e., SNR) with

which target-speech envelopes are encoded in the brain relative to background noise. As

described in Section 3.2, the fidelity of target-envelope coding in the brain was estimated

from the phase-locking spectrum (computed using the phase-locking value; PLV) between

the EEG response and the target-speech envelope. Panel A shows target phase-locking

(PLV) spectra for three speech in speech-shaped stationary noise (SiSSN) conditions, which

correspond to different acoustic SNRs. Comparing the areas under the PLV spectra for -2 dB

SNR, -5 dB SNR, and -8 dB SNR shows that the strength of neural envelope coding of the

target monotonically decreases with increasing noise. A summary metric of target-envelope

coding, ENVneural, was derived separately for each condition by pooling the PLV across

modulation frequencies (see Section 3.2). Panel B illustrates the monotonic relationship

between ENVneural and perceptual intelligibility measurements across the different SNRs of

SiSSN. We fit this relationship with a sigmoid/logistic function (shown in the figure) to map

ENVneural to perceptual intelligibility.

The mapping created in the calibration step was used to predict intelligibility for speech

in novel realistic background noises and with different distortions (i.e., conditions not used in

calibration), purely from EEG measurements. Figure 3.5 compares predictions to measured

intelligibility for the novel conditions. A total of five novel conditions were tested: speech

in four-talker babble (SiB) at SNRs of 4 dB and -2 dB, SiB at 6 dB SNR subjected to

reverberation, SiB at 4 dB SNR subjected to 64-channel envelope vocoding, and SiB at -6

dB SNR subjected to non-linear denoising (using ideal time-frequency segregation; ITFS).

58



Figure 3.4. : The calibration step: Stationary noise was used to create a mapping between our
EEG-based target envelope-coding metric ENVneural and perceptual intelligibility. Shown are
results from the calibration step of our two-step approach to test the hypothesis that speech intelligibility can
be predicted from the fidelity (i.e., SNR) with which target-speech envelopes are coded in the brain relative
to background noise. Target-envelope coding fidelity was estimated by computing the phase-locking (PLV)
spectrum between the EEG response and the target-speech envelope. Panel A shows target PLV spectra
(z-scored with respect to a null distribution that is common across conditions) for three SNRs of speech in
speech-shaped stationary noise (SiSSN). The dashed lines indicate z = 1.64, i.e., the 95th percentile of the
noise floor distribution. Neural envelope coding of the target monotonically decreases with increasing noise
(compare the areas under the PLV spectra for -2 dB SNR, -5 dB SNR, and -8 dB SNR). A summary metric of
target-envelope coding (i.e., ENVneural) was derived separately for each condition by pooling the PLV across
modulation frequencies. Panel B shows ENVneural versus intelligibility measurements (mean and standard
error across subjects). The monotonic relationship between ENVneural and measured intelligibility across
the three SNRs of SiSSN allowed us to fit a sigmoid/logistic function mapping ENVneural to intelligibility, as
shown, which can then be used for predicting intelligibility from measured ENVneural for novel conditions.

Predictions match measured performance closely (R2 = 0.93, p = 0.004), suggesting that

envelope coding of the target (relative to the background) in the central auditory system

predicts intelligibility. Note that the measurement noise (i.e., background EEG activity

unrelated to the target or masker) would be constant across our comparisons. Hence, the

variation in ENVneural across conditions should primarily reflect the fidelity of target-envelope

coding relative to the masker’s internal representation (i.e., the neural modulation-domain

SNR). In light of this, the result that ENVneural predicts intelligibility across a range of novel

realistic conditions provides neurophysiological evidence for perceptual modulation masking.

3.3.2 The modulation frequencies that contribute to the overall ENVneural
metric, which predicts intelligibility, depend strongly on the envelope
spectrum of the masker

Figure 3.6 shows target phase-locking (PLV) spectra for two distinct listening conditions:

SiSSN, and SiB, as well as modulation spectra for the speech-shaped stationary noise and four-
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Figure 3.5. : EEG-based target-envelope coding fidelity predicts intelligibility for a variety of
realistic conditions not used in calibration. The mapping created using stationary noise (Fig. 3.4B)
was used to predict intelligibility for speech in completely novel realistic background noises and with various
distortions, purely from EEG measurements. A total of five novel conditions were tested: speech in four-talker
babble (SiB) at SNRs of 4 dB and -2 dB, SiB at 6 dB SNR subjected to reverberation, SiB at 4 dB SNR
subjected to 64-channel envelope vocoding, and SiB at -6 dB SNR subjected to non-linear denoising (using
ITFS). Shown are our intelligibility predictions versus actual measurements (mean and standard error across
subjects) for these conditions. Predictions match measured performance closely (R2 = 0.93, p = 0.004),
suggesting that neural envelope coding of target speech (relative to the background) in the central auditory
system predicts intelligibility. Since the measurement noise (i.e., background EEG activity unrelated to the
target or masker) would be constant across our comparisons, the variation in ENVneural across conditions
should primarily reflect the fidelity of target-envelope coding relative to the masker’s internal representation
(i.e., the neural modulation-domain SNR). In light of this, the result shown provides neurophysiological
evidence for perceptual modulation masking.

talker babble maskers. The modulation spectra for the maskers were generated by computing

the multi-tapered spectral estimates (with five tapers, resulting in a frequency resolution of 2.4

Hz, and 72 trials) of the 2.5-s-long temporal envelope (summed across cochlear bands) of those

maskers. Note that the procedure used to generate the masker envelopes was the same as that

used to obtain target-speech envelopes for the PLV computation (see Section 3.2). Comparing

the modulation spectrum of speech-shaped stationary noise to the target PLV spectrum for

the -2 dB SNR SiSSN condition, we find that speech-shaped stationary noise degrades the

representation of high-frequency target modulations more (and low-frequency modulations

less), in line with the fact that there is greater power for high-frequency than for low-frequency

modulation in stationary noise. On the other hand, comparing the modulation spectrum of

four-talker babble to the target PLV spectrum for the 4 dB SNR SiB condition, we see that

four-talker babble degrades the representation of low-frequency target modulations more (and
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high-frequency modulations less). This is consistent with the fact that there is greater power

for low-frequency rather than high-frequency modulation in babble. These results show that

the spectral profile of EEG-based target-envelope coding fidelity (i.e., the neural envelope-

domain SNR in target-speech encoding) is shaped by the masker’s modulation spectrum.

This result, in combination with our finding that EEG-based target-envelope coding predicts

intelligibility, provides further neurophysiological evidence for perceptual modulation masking.

These results also suggest that the modulation frequencies that contribute most to speech

intelligibility in realistic listening conditions could lie anywhere in the full continuum from

slow prosodic fluctuations to fast pitch-range fluctuations. Previous studies that examined

electrophysiological responses to speech in background noise, and how those relate to speech

perception, focused on either the cortical tracking of low-frequency envelopes (Ding & Simon,

2014), or on the subcortical tracking of envelope fluctuations in the pitch range (Bidelman,

2017; B. Shinn-Cunningham et al., 2017). Our findings thus suggest that the prominent

use of stationary noise in the previous cortical speech-tracking literature may have been a

contributing factor to their focus on low-frequency speech envelopes, i.e., in the so-called

“Delta” and “Theta” ranges.

3.3.3 EEG-based envelope coding fidelity and intelligibility are shaped not just
by peripheral envelopes, but also by TFS

Comparing the SiB at 4 dB SNR (intact) condition with the 64-channel envelope-vocoded

SiB at 4 dB SNR in Figure 3.7, we find that intelligibility and target-envelope coding

fidelity in central auditory neurons are both significantly degraded in the vocoded condition.

Note, however, that the envelopes at the cochlear level are very similar before and after

vocoding (see Section 3.2), due to the relatively large number of channels (i.e., 64) used

in the vocoding process. Despite this, intelligibility is far worse for the vocoded condition

compared to the intact condition, demonstrating that the integrity of peripheral envelope

cues alone cannot account for speech intelligibility. Importantly, the neural representation of

the target envelope in these conditions mirrors these behavioral differences. Thus, the central

representation of target envelopes is shaped by factors other than just peripheral envelopes,

such as fine-structure-aided segregation mechanisms and selective-attention mechanisms that
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Figure 3.6. : The modulation frequencies that contribute to the overall ENVneural metric,
which predicts intelligibility, depend strongly on the envelope spectrum of the masker. The
target phase-locking (PLV) spectra shown are z-scored with respect to a null distribution that is common
across conditions. The dashed lines indicate z = 1.64, i.e., the 95th percentile of the noise floor distribution.
Comparing the modulation spectrum of speech-shaped stationary noise (rightmost panel) to the target PLV
spectrum for the -2 dB SNR SiSSN condition (A), we find that speech-shaped stationary noise degrades
the representation of high-frequency target modulations more (and low-frequency modulations less), in line
with stationary noise containing relatively more high-frequency modulation power. In contrast, comparing
the modulation spectrum of four-talker babble (rightmost panel) to the target PLV spectrum for the 4 dB
SNR SiB condition (B), we show that four-talker babble degrades the representation of low-frequency target
modulations more (and high-frequency modulations less), consistent with babble containing relatively more
low-frequency modulation power. These results show that the spectral profile of EEG-based target-envelope
coding fidelity (i.e., the neural envelope-domain SNR in target-speech encoding) is shaped by the masker’s
modulation spectrum. This result, in combination with our finding that EEG-based target-envelope coding
predicts intelligibility, provides further neurophysiological evidence for perceptual modulation masking.
These results also suggest that the modulation frequencies that contribute most to speech intelligibility in
everyday listening could lie anywhere in the full continuum from slow prosodic fluctuations to fast pitch-range
fluctuations.

operate on the segregated representations of target and masker. For example, perceptual

cues such as pitch and timbre can aid segregation and selective attention (Darwin, 1997;

Micheyl & Oxenham, 2010; B. Shinn-Cunningham, 2008), but these attributes rely upon

stimulus TFS (Smith et al., 2002). When segregation cues are ambiguous, selective attention

is impaired, as demonstrated by experiments that engineered conflicting cues (Bressler et al.,

2014; B. Shinn-Cunningham, 2008). The notion that fine-structure cues work together with

envelopes in facilitating segregation is consistent with previous psychophysical studies showing

that broadband stimuli produce greater pitch-based masking release compared to low-pass or

high-pass speech (A. J. Oxenham & Simonson, 2009).

Many previous studies show that attentional focus, manipulated through subject instruc-

tion, can alter central neural envelope coding (e.g., Ding & Simon, 2012; J. A. O’Sullivan

et al., 2014). Figure 3.8 illustrates this for a previous study from our lab (reanalysis of
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Figure 3.7. : EEG-based envelope coding fidelity and intelligibility are shaped not just by
peripheral envelopes, but also by TFS. Comparing the target phase-locking (PLV) spectra (z-scored
with respect to a null distribution that is common across conditions) for intact and vocoded SiB at 4 dB
SNR shows that 64-channel envelope vocoding significantly degrades envelope coding of the target relative to
the background in central auditory neurons, even though the envelopes at the cochlear level are very similar
before and after vocoding. Concomitantly, intelligibility is far worse for the vocoded condition compared to
the intact condition, demonstrating that the integrity of peripheral envelope cues alone cannot account for
speech intelligibility. This result shows that central neural envelope coding and intelligibility are shaped by
factors other than just peripheral envelopes, such as stimulus TFS, which supports source segregation and
selective attention. Note that the dashed lines indicate z = 1.64, i.e., the 95th percentile of the noise floor
distribution.

data from Viswanathan et al., 2019). Phase locking (averaged over 10 cochlear bands with

center frequencies spanning 100–8500 Hz) between the input speech envelope and EEG

response depends directly on what speech a listener attends. For the same input speech

stream, the speech envelope of a stream is represented more strongly in the brain when that

speech is attended to, rather than when it is ignored. Thus, central neural envelope coding

is shaped by not just peripheral envelopes, but also fine-structure-dependent segregation

and selective-attention effects. However, no model of speech intelligibility accounts for this

fine-structure contribution.

3.3.4 Results support an integrative conceptual model of speech intelligibility

To summarize, our results show that the strength of neural tracking of the target envelope

relative to that of the background provides a neural correlate of perceptual interference

from a competing sound. Specifically, the ultimate strength of the central auditory system’s

encoding of the envelope of target speech relative to other interfering sounds predicts speech

intelligibility in a variety of real-world listening conditions. Moreover, we find that the
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Figure 3.8. : For the same input speech stream, attentional manipulations (via experimental
design) alter central neural envelope coding (data reanalyzed from Viswanathan et al., 2019).
Subjects were presented with a mixture of two running speech streams, one to be attended to and the other
ignored. Selective-attention-dependent phase locking was computed between the input speech envelope and
EEG response, and averaged over 10 cochlear bands with center frequencies spanning 100–8500 Hz. The data
shown are the mean and standard errors of phase locking across 10 subjects. The dashed line indicates z =
1.64, i.e., the 95th percentile of the noise floor distribution. Speech envelopes are represented more strongly
in the brain when speech is attended to, versus when the same speech is ignored.

modulation frequencies that contribute to our overall ENVneural metric, which predicts

intelligibility, depend strongly on the envelope spectrum of the masker and the scene acoustics.

Note that modulation-frequency-specific effects can arise from within-channel masking where

the masker contains elements that share the same carrier and modulation frequency as some

target elements (Jørgensen & Dau, 2011), or from cross-channel interference where masker

elements that are coherently modulated with target elements interfere with target coding and

perception (Apoux & Bacon, 2008). Our EEG-based metric does not distinguish between

these distinct forms of temporal-coherence-based effects. Rather, our results provide evidence

that some combination of the two shapes scene analysis and speech perception in noise. Our

results also provide direct neural evidence that TFS cues affect how well neural responses in

the central auditory system encode the envelope of target speech, likely by aiding in successful

source segregation (Darwin, 1997; Micheyl & Oxenham, 2010; A. J. Oxenham & Simonson,

2009) and selective attention (which can operate on the internal representation of segregated

target and masker objects to boost the neural representation of the target relative to the

masker; Ding & Simon, 2012; J. A. O’Sullivan et al., 2014; Viswanathan et al., 2019). Taken

together, our neurophysiological results support the theory that scene analysis and attentive
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selection of target speech are influenced by both modulation masking and TFS, consistent

with the broader temporal coherence theory. These ideas motivate our conceptual model of

speech intelligibility (Fig. 3.9), which consolidates these elements into a single framework.

Figure 3.9. : Results support an integrative conceptual model of speech intelligibility. Taken
together, our results support this integrative conceptual model of speech intelligibility, in that they clarify
what internal representation is predictive of speech intelligibility and how that representation is related to
the acoustics of the auditory scene and cognitive variables. Our results show that the strength of the net
envelope (ENV) coding of target speech relative to other interfering sounds in the central auditory system
predicts intelligibility in a variety of real-world listening conditions (arrow A). The modulation frequencies
that contribute to these EEG-based intelligibility predictions depend strongly on the envelope spectrum
of the masker and the scene acoustics. TFS cues (arrow B) also affect how well neural responses in the
central auditory system encode the envelope of target speech, likely by aiding in source segregation (Darwin,
1997; Micheyl & Oxenham, 2010; A. J. Oxenham & Simonson, 2009). Selective attention can then operate
effectively on the distinct representations of segregated target and masker objects (arrow C), to boost the
neural representation of the target relative to the masker (Ding & Simon, 2012; J. A. O’Sullivan et al., 2014;
Viswanathan et al., 2019). Taken together, our results support the theory that scene analysis and attentive
selection of target speech are influenced by both modulation masking and TFS, consistent with the broader
temporal coherence theory.

3.4 Discussion

The present study systematically examined how neural encoding of target speech in the

central auditory system varied as characteristics of the scene acoustics and background noise
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were manipulated, and how these neural metrics are related to speech intelligibility. Our

results provide support for the temporal coherence theory of scene analysis (Elhilali et al.,

2009) in that (i) our EEG-based target-envelope coding metric, which predicts intelligibility,

is strongly influenced by the envelopes in background noise in a modulation-frequency-specific

manner, and (ii) the availability of intact TFS enhances target-envelope coding.

A key result here is that the neural envelope-domain SNR in target encoding predicts

intelligibility (in a quantitative, statistical sense) for a range of strategically chosen real-

world conditions that are completely novel to the prediction model. Furthermore, the set

of target-envelope frequencies that contribute to our EEG-based intelligibility prediction

depends strongly on the envelope frequencies contained in the background sounds. These

results together suggest that modulation masking may be fundamentally important for speech

perception in noise, thus validating previous behavioral studies (Bacon & Grantham, 1989;

Stone & Moore, 2014) and current speech-intelligibility models (Dubbelboer & Houtgast,

2008; Relaño-Iborra et al., 2016) with neurophysiological evidence. Note, however, that

our results do not directly provide evidence of neural modulation filter banks (Jørgensen

et al., 2013; Relaño-Iborra et al., 2016). Another mechanism by which modulation masking

could occur is through temporal-coherence-based binding across a distributed assembly of

neurons (Eckhorn et al., 1990; Eggermont, 2006). Through this mechanism, those envelope

and fine-structure frequencies of the target that are temporally coherent with components of

the masker may get bound together (i.e., a failure of source segregation), which in turn can

lead to degraded target representation and perceptual modulation masking at those specific

frequencies. Indeed, there is evidence that the redundancy in temporal pitch information

across low-frequency resolved harmonics and high-frequency envelopes is more effective in

facilitating masking release than what is obtained from either of them individually (A. J.

Oxenham & Simonson, 2009). Our findings underscore the need for further research into the

neural circuit-level computations that support such complex integration of various temporal

cues during active listening.

Previous psychophysical studies with carefully processed speech stimuli in quiet (Elliott

& Theunissen, 2009; Shannon et al., 1995; Smith et al., 2002) and the success of envelope-

based cochlear implants in quiet backgrounds (B. S. Wilson & Dorman, 2008) suggest that

66



envelope coding is fundamental for speech perception. However, a more general and rigorous

test of this hypothesis requires an examination of whether or not envelope coding predicts

intelligibility for the average listener over a range of realistic listening conditions not used by

the predictive model. Some prior studies compared individual variations in envelope coding

to intelligibility; these used just one type of masker, such as stationary noise (e.g., Ding &

Simon, 2013; Vanthornhout et al., 2018) or a multi-talker interferer (e.g., Bharadwaj et al.,

2015). In contrast, we were able to predict intelligibility in a variety of novel ecologically

relevant conditions from just average neural metrics, learning the prediction model from

the independent stationary-noise condition. Despite EEG measurement noise or any errors

introduced due to variability in intelligibility measurements in the calibration step, our

EEG-based predictions closely track (R2 = 0.93, p = 0.004) the overall pattern in measured

intelligibility across conditions (Fig. 3.5C). This is in fact stronger evidence that neural

envelope coding is a correlate of speech intelligibility than being able to correlate individual

differences in neural coding and behavior, both because pooling across subjects (who differ

in performance) adds noise to the metrics we computed, and more importantly because

correlated individual differences in EEG and behavior could easily arise from extraneous

factors such as motivation, attention, level of arousal, etc. that are unrelated to envelope

coding (Bharadwaj et al., 2019).

Another fundamental insight from the present study is that central neural envelope

coding depends not only on envelopes conveyed by the inner ear, but also on the TFS.

Although this result was reported by Ding et al., 2014, they used 4- and 8-channel envelope

vocoding to degrade the TFS; this broadband vocoding is in contrast to the high-resolution

(64-channel) envelope vocoding that we used here. As demonstrated in Section 3.2, low-

resolution vocoding introduces spurious envelopes (not present in the original stimuli) during

cochlear filtering of the noise carrier used in vocoding (Gilbert & Lorenzi, 2006). These

spurious envelopes introduced within individual frequency channels are large enough to

degrade neural envelope coding in a way that is easily perceptible (Swaminathan & Heinz,

2012), and could account for the reduced cortical target-envelope coding they observed

(Fig. 3.1). Previous behavioral work (Dorman et al., 1998; Qin & Oxenham, 2003) also shows

that increasing the number of noise-vocoding channels beyond eight considerably improves
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speech intelligibility in noise, despite the fact that the TFS is uninformative regardless of

the number of channels used in vocoding. Together, these results demonstrate that it is

necessary to use high-resolution vocoding, as we do here, to unambiguously attribute effects

to TFS cues rather than spurious envelopes. Our 64-channel vocoding procedure leaves

place coding and cochlear-level envelopes largely intact (Fig. 3.1), not only at filters with

center frequencies matching the vocoder sub-bands, but also at filters that are midway

between adjacent sub-bands. Thus, it is unlikely that peripheral envelope distortion can

account for degraded central neural envelope coding and intelligibility in the present study.

These neurophysiological results are consistent with previous behavioral studies showing that

fine-structure cues aid in scene segregation and selective processing of target speech (Darwin,

1997; A. J. Oxenham & Simonson, 2009; B. Shinn-Cunningham, 2008). The present study

also points to a need for more sophisticated speech-intelligibility models that account for the

various scene-analysis mechanisms in play to better predict performance across a wider range

of conditions (including vocoded speech-in-noise; Steinmetzger et al., 2019).

Our EEG-based two-step approach can be used to test and refine speech-intelligibility

models. A major strength of this approach is that it intrinsically factors in listener attributes

(e.g., hearing-loss profile, language experience) and listening state (e.g., focus of attention),

in addition to purely stimulus-dependent aspects of coding. How different factors contribute

to speech perception can be systematically investigated by characterizing how much each

factor contributes to the neural response and how the respective contributions are weighted

to best predict intelligibility across various conditions. For instance, here we studied how an

acoustic aspect of the stimulus (temporal envelope) is coded in the central auditory system by

deriving EEG metrics from scalp locations that strongly reflect auditory cortex and brainstem

contributions. In addition, higher-order stimulus features, such as phonemic (categorical)

processing (Di Liberto, Crosse, et al., 2018) and semantic composition (Brodbeck et al., 2018)

may be studied in future experiments, perhaps by extending our analyses to other brain

regions (Di Liberto, Lalor, et al., 2018; Du et al., 2014; Kim et al., 2020). Similarly, by

studying individuals with different peripheral pathophysiologies, the effects of various forms

of hearing loss on neural coding and intelligibility can also be characterized (Rallapalli &

Heinz, 2016; Swaminathan & Heinz, 2011).
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One limitation of our approach is that stimulus-related responses in the EEG can be

captured and separated from background brain activity only by virtue of their temporal signa-

ture. If certain features are encoded through abstract rate-based representations or through

different activation profiles within a spatially distributed organization of receptive fields, our

approach cannot readily account for them. For example, cortical neurons represent temporal

envelopes not only through phase locking, but also through rate-based tuning (X. Wang et al.,

2008). Furthermore, place/spectral cues are important for speech recognition (Boothroyd

et al., 1996; Elhilali et al., 2003; Shannon et al., 1998), whereas EEG measurements are not

place specific but instead reflect population neural activity. One consequence of this fact

is that our metrics cannot distinguish between within-channel modulation masking where

the masker contains elements that share the same carrier and modulation frequency as some

target elements (Jørgensen & Dau, 2011), and cross-channel modulation interference where

masker elements that are coherently modulated with target elements interfere with target

coding and perception (Apoux & Bacon, 2008). Future EEG studies should attempt to

delineate cross-channel versus within-channel effects in scene analysis and speech percep-

tion, perhaps by employing frequency-separated target speech and masking sounds. Despite

these issues, we find that neural encoding of temporal envelopes can account for much of

the intelligibility variations seen across the stimulus conditions tested in this study. This

may be because: (i) although EEG signals cannot be readily used to decode the perceived

phonemes, they can adequately capture the overall fidelity with which envelopes are coded

despite the lack of tonotopic specificity, and (ii) at slow modulation frequencies, temporal

coding may be a prominent mechanism in the cortex (X. Wang et al., 2008), and at faster

modulation frequencies (e.g., in the pitch range), our metric also includes a small contribution

from subcortical portions of the auditory pathway where the coding of envelopes is largely

temporal (P. Joris et al., 2004).
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4. SPEECH CATEGORIZATION REVEALS THE ROLE OF

EARLY-STAGE TEMPORAL-COHERENCE PROCESSING IN

AUDITORY SCENE ANALYSIS

Abstract

Temporal coherence of sound fluctuations across spectral channels is thought to aid

auditory grouping and scene segregation. Although prior studies on the neural bases of

temporal-coherence processing focused mostly on cortical contributions, neurophysiological

evidence suggests that temporal-coherence-based scene analysis may start as early as the

cochlear nucleus (i.e., the first auditory region supporting cross-channel processing over a

wide frequency range). Accordingly, we hypothesized that aspects of temporal-coherence

processing that could be realized in early auditory areas may shape speech understanding

in noise. We then explored whether physiologically plausible computational models could

account for results from a behavioral experiment that measured consonant categorization in

different masking conditions. We tested whether within-channel masking of target-speech

modulations predicted consonant confusions across the different conditions, and whether

predicted performance was improved by adding across-channel temporal-coherence processing

mirroring the computations known to exist in the cochlear nucleus. Consonant confusions

provide a rich characterization of error patterns in speech categorization, and are thus crucial

for rigorously testing models of speech perception; however, to the best of our knowledge,

they have not been utilized in prior studies of scene analysis. We find that within-channel

modulation masking can reasonably account for category confusions, but that it fails when

temporal fine structure (TFS) cues are unavailable. However, the addition of across-channel

temporal-coherence processing significantly improves confusion predictions across all tested

conditions. Our results suggest that temporal-coherence processing strongly shapes speech

understanding in noise, and that physiological computations that exist early along the

auditory pathway may contribute to this process.

71



4.1 Introduction

An accumulating body of evidence suggests that temporal-coherence processing is im-

portant for multisensory scene analysis (Elhilali et al., 2009; Singer & Gray, 1995). In

audition, a rich psychophysical literature on grouping (Darwin, 1997), comodulation masking

release (CMR; Schooneveldt & Moore, 1987) and cross-channel interference (Apoux & Bacon,

2008), and pitch-based masking release (A. J. Oxenham & Simonson, 2009) support the

theory that temporally coherent sound modulations can bind together sound elements across

distinct spectral channels to form a perceptual object, which can help perceptually separate

different sources in an acoustic mixture. This theory may help explain how we perform speech

separation in a multi-source environment (Krishnan et al., 2014), as speech naturally has

common temporal fluctuations across different channels, particularly in the syllabic (0–5 Hz),

phonemic (5–64 Hz), and periodicity (i.e., pitch; 64–300 Hz) ranges (Crouzet & Ainsworth,

2001; Swaminathan & Heinz, 2011).

Prior studies on the neural bases of temporal-coherence processing mostly focused on

cortical contributions (Elhilali et al., 2009; J. A. O’Sullivan et al., 2015; Teki et al., 2013).

However, single-unit measurements and computational modeling of across-channel CMR

effects suggest that temporal-coherence-based scene analysis may start early in the auditory

pathway; for instance, the cochlear nucleus has the physiological mechanisms (e.g., wideband

inhibition) needed to support such analysis (Meddis et al., 2002; Pressnitzer et al., 2001).

Moreover, attention, which operates on segregated auditory objects (B. Shinn-Cunningham,

2008), affects responses in the primary auditory cortex (Hillyard et al., 1973). Given this,

binding and scene segregation likely start even earlier, such as brainstem, and accumulate

along the auditory pathway. However, no prior studies have directly tested the theory that

speech understanding in noise may be shaped by aspects of temporal-coherence processing

that exist in early auditory areas.

While previous studies of temporal-coherence processing mostly used non-speech stim-

uli (e.g., Elhilali et al., 2009; J. A. O’Sullivan et al., 2015; Teki et al., 2013), a parallel

literature on modeling speech-intelligibility mechanisms typically focused on overall intel-

ligibility to test predictions of performance (Jørgensen et al., 2013; Relaño-Iborra et al.,
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2016). A detailed characterization of error patterns in speech categorization—crucial in order

to rigorously examine any theory of speech perception—has not been previously used in

studies of scene analysis. In contrast, confusion patterns in speech categorization, such as

consonant/vowel confusion matrices (Miller & Nicely, 1955), have been widely used in the

speech acoustics and cue-weighting literatures, and can indeed provide deeper insight into

underlying mechanisms if utilized to test theories of scene analysis.

To address these gaps, we used a combination of online consonant-identification experi-

ments and computational modeling of temporal-coherence processing that is physiologically

plausible in the cochlear nucleus (Pressnitzer et al., 2001), the first auditory area where cross-

channel processing over a wide frequency range is supported. We asked whether the masking

of target-speech envelopes by distracting masker modulations (i.e., modulation masking;

Bacon & Grantham, 1989; Stone & Moore, 2014) within individual frequency channels (as im-

plemented in current speech-intelligibility models; Jørgensen et al., 2013; Relaño-Iborra et al.,

2016) is sufficient to predict consonant categorization, or if across-channel temporal-coherence

processing improves predictions by accounting for interference from masker elements that

are temporally coherent with target elements but in different frequency channels. Crucially,

instead of just trying to predict perceptual intelligibility measurements from model outputs,

we predicted consonant confusion patterns in various listening conditions. Considering the

error patterns in consonant categorization (i.e., when an error was made, what consonant

was reported instead of the consonant presented) provided a richer characterization of the

processes engaged during speech perception compared to looking only at percent-correct

scores. Our combined use of consonant confusions and physiologically plausible computational

modeling provides independent evidence for the role of temporal-coherence processing in

scene analysis and speech perception. Moreover, it suggests that this processing may start

earlier in the auditory pathway than previously thought.
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4.2 Materials and Methods

4.2.1 Stimulus generation

The stimuli used in the present study draw from and expand on the Materials and Methods

previously described in Viswanathan, Shinn-Cunningham, et al., 2021. 20 consonants from

the STeVI corpus (Sensimetrics Corporation, Malden, MA) were used. The consonants were

/b/, /Ù/, /d/, /D/, /f/, /g/, /Ã/, /k/, /l/, /m/, /n/, /p/, /r/, /s/, /S/, /t/, /T/, /v/,

/z/, and /Z/. The consonants were presented in CV (consonant-vowel) context, where the

vowel was always /a/. Each consonant was spoken by two female and two male talkers (to

reflect real-life talker variability). The CV utterances were embedded in the carrier phrase:

“You will mark /CV/ please” (i.e., in natural running speech). Stimuli were created for five

experimental conditions:

1. Speech in Quiet (SiQuiet): Speech in quiet was used as a control condition.

2. Speech in Speech-shaped Stationary Noise (SiSSN): Speech was added to sta-

tionary Gaussian noise at -8 dB signal-to-noise ratio (SNR). The long-term spectra

of the target speech (including the carrier phrase) and that of stationary noise were

adjusted to match the average (across instances) long-term spectrum of the four-talker

babble. A different realization of stationary noise was used for each SiSSN stimulus.

3. Speech in Babble (SiB): Speech was added to four-talker babble at -8 dB SNR. The

long-term spectrum of the target speech (including the carrier phrase) was adjusted to

match the average (across instances) long-term spectrum of the four-talker babble. Each

SiB stimulus was created by randomly selecting a babble sample from a list comprising

72 different four-talker babble maskers obtained from the QuickSIN corpus (Killion

et al., 2004).

4. Speech in a masker with only DC modulations (SiDCmod) (Stone et al.,

2012): In line with the procedure described in Stone et al., 2012, the target speech

was filtered into 28 channels between 100–7800 Hz and a sinusoidal masker centered on

each channel was added to the channel signal at -18 dB SNR. To minimize peripheral
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interactions between maskers, odd-numbered channels were presented to one ear and

even to the other; this procedure effectively yields an unmodulated masker (i.e., a

masker with a modulation spectrum containing only a DC component). Thus, the

SiDCmod condition presented stimuli that were dichotic, unlike the other conditions,

which presented diotic stimuli. The long-term spectra of the target speech (including

the carrier phrase) and that of the masker were adjusted to match the average (across

instances) long-term spectrum of the four-talker babble.

5. Vocoded Speech in Babble (Vocoded SiB): SiB at 0 dB SNR was subjected to

64-channel envelope vocoding. A randomly selected babble sample was used for each

Vocoded SiB stimulus, similar to what was done for intact SiB. In accordance with

the procedure described in Viswanathan, Shinn-Cunningham, et al., 2021, we retained

the cochlear-level envelopes during vocoding but replaced the stimulus temporal fine

structure (TFS) with a noise carrier. We verified that the vocoding procedure did

not significantly change envelopes at the cochlear level, as described in Viswanathan,

Shinn-Cunningham, et al., 2021.

Table 4.1 describes the rationale behind including these different stimulus conditions in

our study.

The stimulus used for online volume adjustment was running speech mixed with four-talker

babble. The speech and babble samples were obtained from the QuickSIN corpus (Killion

et al., 2004); these were repeated over time to obtain a ∼20 s total stimulus duration (to

give subjects sufficient time to adjust their computer volume with the instructions described

in Section 4.2.3). The root mean square (RMS) value of this stimulus corresponded to 75%

of the dB difference between the softest and loudest stimuli in the consonant identification

experiment, which ensured that no stimulus was too loud for subjects once they had adjusted

their computer volume to a comfortable level.

4.2.2 Participants

Full details of participant recruitment and screening are provided in Viswanathan, Shinn-

Cunningham, et al., 2021, and are only briefly reviewed here. Anonymous subjects were
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Table 4.1. : Rationale for the different stimulus conditions included in this study. The different
listening conditions were chosen to span a range of modulation masking spectral profiles and temporal fine
structure (TFS) information, which allows for theories of scene analysis based on within-channel modulation
masking and across-channel temporal coherence to be tested in a rigorous manner. Collectively these
conditions represent a diversity of scene acoustics, including important examples in our environment and
clinical applications. The SNR levels were chosen to give approximately equal overall intelligibility across
SiSSN, SiB, SiDCmod, and Vocoded SiB using a behavioral pilot study with three subjects who did not
participate in the online consonant identification experiment. This was done to obtain roughly equal variance
in the consonant confusion estimates for these conditions, which allows us to fairly compare confusion patterns
across them. Equalizing intelligibility also maximizes the statistical power for detecting differences in the
pattern of confusions. The overall intelligibility in each of these conditions was ∼60%, which yielded a
sufficient number of confusions for analysis.

No. Stimulus condition Rationale for inclusion in study

1 Speech in Quiet (SiQuiet) Used as a control condition

2 Speech in Speech-shaped Stationary Noise (SiSSN)
at -8 dB SNR

Widely used in the literature; used for calibration of pre-
diction model

3 Speech in Babble (SiB) at -8 dB SNR Simulates ecologically relevant cocktail-party listening

4 Speech in a masker with only DC modulations (SiD-
Cmod) at -18 dB SNR

To obtain a different modulation masking profile
from stationary noise (which contains relatively more
high-frequency modulation energy) and babble (which
contains relatively more low-frequency modulation
power) (Viswanathan, Bharadwaj, Shinn-Cunningham,
& Heinz, 2021)

5 SiB at 0 dB SNR subjected to 64-channel envelope
vocoding

Used to compare performance across models that con-
sider TFS and those that do not (since TFS can influ-
ence scene analysis and can convey consonant voicing
information in noise; Viswanathan, Bharadwaj, Shinn-
Cunningham, & Heinz, 2021; Viswanathan, Shinn-
Cunningham, et al., 2021)

recruited for online data collection using Prolific.co. A three-part subject-screening protocol

developed and validated by Mok et al., 2021 was used to restrict the subject pool. This

protocol included a survey on age, native-speaker status, presence of persistent tinnitus, and

history of hearing and neurological diagnoses, followed by headphone/earphone checks and

a speech-in-babble-based hearing screening. Subjects who passed this screening protocol

were invited to participate in the consonant identification study, and when they returned,

headphone/earphone checks were performed again. Only subjects who satisfied the following

criteria passed the screening protocol: (i) 18–55 years old, (ii) self-reported no hearing loss,

neurological disorders, or persistent tinnitus, (iii) born and residing in US/Canada, and native

speaker of North American English, (iv) experienced Prolific subject, and (v) passed the

headphone/earphone checks and speech-in-babble-based hearing screening (Mok et al., 2021).
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Subjects provided informed consent in accordance with remote testing protocols approved by

the Purdue University Institutional Review Board (IRB).

4.2.3 Experimental design

The online consonant identification experiment was previously described in Viswanathan,

Shinn-Cunningham, et al., 2021. Subjects performed the experiment using their personal

computers and headphones/earphones. Our online infrastructure included checks to prevent

the use of mobile devices. The experiment had three parts: (i) Headphone/earphone checks, (ii)

Demonstration (“Demo”), and (iii) Test. Each of these three parts had a volume-adjustment

task at the beginning. In this task, subjects were asked to make sure that they were in a quiet

room and wearing wired (not wireless) headphones or earphones. They were instructed not

to use desktop/laptop speakers. Headphone use was checked using the procedures outlined in

Mok et al., 2021. They were then asked to set their computer volume to 10–20% of the full

volume, following which they were played a speech-in-babble stimulus and asked to adjust

their volume up to a comfortable but not too loud level. Once subjects had adjusted their

computer volume, they were instructed not to adjust the volume during the experiment, as

that could lead to sounds being too loud or soft.

The Demo stage consisted of a short training task designed to familiarize subjects with

how each consonant sounds and with the consonant-identification paradigm. Subjects were

instructed that in each trial they would hear a voice say “You will mark *something* please.”

They were told that they would be given a set of options for *something* at the end of the

trial, and that they should click on the corresponding option. After subjects had heard all

consonants sequentially (i.e., the same order as the response choices) in quiet, they were

tasked with identifying consonants presented in random order and spanning the same set of

listening conditions as the Test stage. Subjects were instructed to ignore any background

noise and only listen to the particular voice saying “You will mark *something* please.” In

order to ensure that all subjects understood and were able to perform the task, only those

subjects who scored ≥ 85% in the Demo’s Speech in Quiet control condition were selected for

the Test stage.

77



Subjects were given similar instructions in the Test stage as in the Demo, but told to

expect trials with background noise from the beginning. The Test stage presented, in random

order, the 20 consonants (with one stimulus repetition per consonant) across all four talkers

and all five experimental conditions. In both Demo and Test, the masking noise, when

present, started 1 s before the target speech and continued for the entire duration of the trial.

This was done to cue the subjects’ attention to the stimulus before the target sentence was

played. In both the Demo and Test parts, subjects received feedback after every trial as to

whether or not their response was correct to promote engagement with the task. However,

subjects were not told what consonant was presented to avoid over-training to the acoustics

of how each consonant sounded across the different conditions; the only exception to this

rule was in the first sub-part of the Demo where subjects heard all consonants in quiet in

sequential order.

We used 50 subjects per talker (subject overlap between talkers was not controlled); with

four talkers, this yielded 200 subject-talker pairs, or samples. Separate studies were posted

on Prolific.co for the different talkers; thus, when a subject performed a particular study,

they would be presented with the speech stimuli for one specific talker consistently over

all trials. Within each talker and condition, all subjects performed the task with the same

stimuli. Moreover, all condition effect contrasts were computed on a within-subject basis,

and averaged across subjects.

4.2.4 Data preprocessing

Only samples with intelligibility scores ≥ 85% for the Speech in Quiet control condition

in the Test stage were included in results reported here. All conditions for the remaining

samples were excluded from further analyses as a data quality control measure. This yielded

a final N=191 samples.

4.2.5 Quantifying confusion matrices from perceptual measurements

The 20 English consonants used in this study were assigned the phonetic features described

in Table 4.2. The identification data collected in the Test stage were used to construct
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consonant confusion matrices (pooled over samples) for the different conditions; these matrices

in turn were used to construct voicing, place of articulation (POA), and manner of articulation

(MOA) confusion matrices by pooling over all consonants.

Table 4.2. : Phonetic features of the 20 English consonants used in this study.

Consonant Voicing Manner of
articulation (MOA)

Place of
articulation (POA)

/b/ Voiced Stop Bilabial
/Ù/ Unvoiced Affricative Palatal
/d/ Voiced Stop Alveolar
/D/ Voiced Fricative Dental
/f/ Unvoiced Fricative Labiodental
/g/ Voiced Stop Velar
/Ã/ Voiced Affricative Palatal
/k/ Unvoiced Stop Velar
/l/ Voiced Liquid Alveolar
/m/ Voiced Nasal Bilabial
/n/ Voiced Nasal Alveolar
/p/ Unvoiced Stop Bilabial
/r/ Voiced Liquid Palatal
/s/ Unvoiced Fricative Alveolar
/S/ Unvoiced Fricative Palatal
/t/ Unvoiced Stop Alveolar
/T/ Unvoiced Fricative Dental
/v/ Voiced Fricative Labiodental
/z/ Voiced Fricative Alveolar
/Z/ Voiced Fricative Palatal

In order to test whether there are significant differences in confusion patterns between

SiSSN, SiB, SiDCmod, and Vocoded SiB, we first normalized the overall intelligibility for

these conditions to 60% by scaling the consonant confusion matrices such that the sum

of the diagonal entries was the desired intelligibility (note that overall intelligibility was

not normalized for the main modeling analyses of this study). By matching intelligibility

in this manner, differences in confusion matrices across conditions could be attributed to

changes in consonant categorization and category errors rather than differences in overall

error counts (due to one condition being inherently easier at a particular SNR). Since overall

intelligibility was similar across conditions to start with (Fig. 4.5), small condition differences

in intelligibility could be normalized without loss of statistical power. Confusion-matrix

differences between the intelligibility-matched conditions were then compared with appropriate

null distributions of zero differences (see Section 4.2.8) to extract statistically significant

differences (shown in Fig. 4.6).
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4.2.6 Auditory periphery modeling

The auditory-nerve model of Bruce et al., 2018 was used to simulate processing by the

auditory periphery. The parameters of this model were set as follows. 30 cochlear filters

with characteristic frequencies (CFs) equally spaced on an ERB-number scale (Glasberg

& Moore, 1990) between 125 Hz and 8 kHz were used. Normal function was chosen for

the outer and inner hair cells. The species was chosen to be human with the Shera et al.,

2002 cochlear tuning; however, with suppression, the Glasberg and Moore, 1990 tuning is

effectively obtained for our broad-band stimuli (Heinz et al., 2002; A. J. Oxenham & Shera,

2003). The noise type parameter for the inner-hair-cell synapse model was set to fixed

fractional Gaussian noise to yield a constant spontaneous auditory-nerve firing rate. To avoid

single-fiber saturation effects, the spontaneous rate of the auditory-nerve fiber was set to 10,

corresponding to that of a medium-spontaneous-rate fiber. An approximate implementation

of the power-law adaptation dynamics in the synapse was used. The absolute and relative

refractory periods were set to 0.6 ms.

The periphery model was simulated with the same speech stimuli used in our psychophys-

ical experiment (i.e., CV utterances that spanned 20 consonants, four talkers, and five

conditions, and were embedded in a carrier phrase) as input. The level for the target speech

was set to 60 dB SPL across all stimuli, as this produced sufficient (i.e., firing rate greater than

spontaneous rate) model auditory-nerve responses for consonants in quiet and also did not

saturate the response to the loudest stimulus. The periphery model was provided with just one

audio channel input for all conditions except SiDCmod, as that was the only condition that

was dichotic rather than diotic. Instead, for SiDCmod, the model was separately simulated

for each of the two audio channels. 200 stimulus repetitions were used to derive peri-stimulus

time histograms (PSTHs) from model auditory-nerve outputs. The model was simulated for

the full duration of each stimulus (versus just the time period when the target consonant was

presented). A PSTH bin width of 1 ms (i.e., a sampling rate of 1 kHz) was used. This was

done so as to capture fine-structure phase locking up to and including the typical frequency

range of human pitch for voiced sounds. In the case of the SiDCmod condition, a separate

PSTH was computed for each of the two dichotic audio channels.
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Although the full speech stimuli (including the carrier phrase and CV utterances) were

used as inputs to the periphery model, the responses to the target consonants were manually

segmented out from the model PSTHs before being input into the scene analysis models. To

do this, we calculated the time segment corresponding to when the target consonant was

presented for each speech-in-quiet stimulus by visualizing speech spectrograms computed by

gammatone filtering (Patterson et al., 1987) followed by Hilbert-envelope extraction (Hilbert,

1906). 128 gammatone filters were used for this purpose, with center frequencies between

100–8000 Hz and equally spaced on an ERB-number scale (Glasberg & Moore, 1990). A

fixed duration of 104.2 ms was used for each consonant segment. Segmentation accuracy was

verified by listening to the segmented consonant utterances. The time segments thus derived

were used to extract model auditory-nerve responses to the different target consonants across

the different conditions and talkers. These responses were then used as inputs to the scene

analysis models described below.

4.2.7 Scene analysis modeling to predict consonant confusions

In order to study the contribution of across-channel temporal-coherence processing to

consonant categorization, we constructed two different scene analysis models. The first is a

within-channel modulation-masking-based scene analysis model inspired by Relaño-Iborra

et al., 2016, and the second is a simple across-channel temporal coherence model mirroring

the physiological computations that are known to exist in the cochlear nucleus (Pressnitzer

et al., 2001).

In the within-channel modulation-masking-based model, the auditory-nerve PSTHs (i.e.,

the outputs from the periphery model; see Section 4.2.6) corresponding to the different

consonants, conditions, and talkers were filtered within a 1-ERB bandwidth (Glasberg &

Moore, 1990) to extract band-specific envelopes. Note that the envelopes extracted from

auditory-nerve outputs may contain some TFS converted to envelopes via inner-hair-cell

rectification (assuming envelope and TFS are defined at the output of the cochlea), but

that is the processing that is naturally performed by the auditory system as well. Pairwise

dynamic time warping (Rabiner, 1993) was performed to align the results for each pair
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of consonants across time. Dynamic time warping can help compensate for variations in

speaking rate across consonants. A modulation filterbank (Ewert & Dau, 2000; Jørgensen

et al., 2013) was then used to decompose the results at each CF into different modulation

frequency (MF) bands. This filterbank consists of a low-pass filter with a cutoff frequency

of 1 Hz in parallel with eight band-pass filters with octave spacing, a quality factor of 1,

and center frequencies ranging from 2 to 256 Hz. For each condition, talker, CF, MF, and

consonant, Pearson correlation coefficients were computed between the filterbank output for

that consonant in that particular condition and the output for each of all 20 consonants in

quiet. Each of the individual correlations was squared to obtain the variance explained; the

results were averaged across talkers, CFs, and MFs to obtain a “raw” neural metric ψ for

each experimental condition. A separate ψ value was obtained for each condition, and every

pair of consonant presented and option for consonant reported. For the dichotic SiDCmod

condition, the variance explained was separately computed for the left and right ears at each

CF, then the maximum across the two ears (i.e., the “better-ear” contribution) was used for

that CF (Zurek, 1993). Finally, for each condition, the ψ values were normalized such that

their sum across all options for consonants reported for a particular consonant presented was

equal to 1; this procedure yielded a condition-specific “neural consonant confusion matrix.”

We wanted to test whether across-channel temporal-coherence processing of input fluctua-

tions could better predict consonant categorization than a purely within-channel modulation

masking model. To simulate across-channel temporal-coherence processing, we modeled a

physiologically plausible wideband-inhibition-based temporal-coherence processing circuit

proposed by Pressnitzer et al., 2001 to account for physiological correlates of CMR in the

cochlear nucleus. A schematic of this circuit is provided in Figure 4.1. The overall across-

channel scene analysis model is similar to the within-channel model, except that the envelope

extraction stage of the within-channel model is replaced with the CMR circuit model in

the across-channel model. Thus, the across-channel model can account for both within-

channel modulation masking effects as well as across-channel temporal-coherence processing.

Figure 4.2 shows schematics of both the within- and across-channel models.

To verify that the CMR circuit model (Fig. 4.1) produced physiological correlates of

CMR similar to those reported by Pressnitzer et al., 2001, we used the same complex stimuli
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Figure 4.1. : Comodulation masking release (CMR) circuit based on wideband inhibition in
the cochlear nucleus. This physiologically plausible circuit was proposed by Pressnitzer et al., 2001 to
model CMR effects seen in the cochlear nucleus (CN). CN units at different characteristic frequencies (CFs)
form the building blocks of this circuit. Each CN unit consists of a narrowband cell (NB) that receives narrow
on-CF excitatory input from the auditory nerve (AN) and inhibitory input from a wideband inhibitor (WBI).
The WBI in turn receives excitatory inputs from AN fibers tuned to CFs spanning two octaves below to
one octave above the CF of the NB that it inhibits. The time constants for the excitatory and inhibitory
synapses are 5 ms and 1 ms, respectively. The WBI input to the NB is delayed with respect to the AN input
by 2 ms. Note that our model simulations were rate-based, i.e., they used AN peri-stimulus time histograms
(PSTHs) rather than spikes. Thus, all outputs were half-wave rectified (i.e., firing rates were positive at every
stage). All synaptic filters were initially normalized to have unit gain, then the gain of the inhibitory input
was allowed to vary parametrically to implement different excitation-to-inhibition (EI) ratios between 3:1 and
1:1. The EI ratio was adjusted so as to obtain the best consonant confusion prediction accuracy for SiSSN
(i.e., the calibration condition), and the optimal ratio for the calibration condition was found to be 1.75:1.
Note that the model parameter corresponding to the EI ratio cannot be readily compared to its physiological
correlate because the model is rate-based and lacks important membrane conductance properties that spiking
models can be endowed with.

that they used (Fig. 4.3). The stimuli consisted of a target signal in a 100% sinusoidally

amplitude-modulated (SAM) tonal complex masker. There were three experimental conditions:

Reference, Comodulated, and Codeviant. In the Reference condition, the masker had just

one component: a SAM tone with a carrier frequency of 1.1 kHz (to allow comparison to data

from Pressnitzer et al., 2001); this masking component is also referred to as the on-frequency

component (OFC). The Comodulated and Codeviant conditions presented the OFC along

with six flanking components that were SAM tones at the same level as the OFC. The carrier

frequency separation between the different flanking components and the OFC were -800 Hz,

-600 Hz, -400 Hz, 400 Hz, 600 Hz, and 800 Hz, respectively. The flanking components were

modulated in phase with the OFC in the Comodulated condition, and 180◦ out of phase with

the OFC in the Codeviant condition. A 10 Hz modulation rate was used for all SAM tones.
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Figure 4.2. : Schematic of the within- and across-channel scene analysis models. The speech
stimuli were input into the Bruce et al., 2018 model, which simulated a normal auditory periphery with 30
cochlear filters having characteristic frequencies (CFs) equally spaced on an ERB-number scale (Glasberg
& Moore, 1990) between 125 Hz and 8 kHz. PSTHs from the periphery model were processed to retain
only the time segments when the target consonants were presented. For the within-channel model, these
results were filtered within a 1-ERB bandwidth (Glasberg & Moore, 1990) to extract band-specific envelopes;
however, for the across-channel model, the results were instead input to the CMR circuit model (Fig. 4.1).
Pairwise dynamic time warping was performed to align the outputs from the previous step across time for
each pair of consonants. A modulation filterbank (Ewert & Dau, 2000; Jørgensen et al., 2013) was then
used to decompose the results at each CF into different modulation frequency (MF) bands. This filterbank
consists of a low-pass filter with a 1-Hz cutoff in parallel with eight band-pass filters with octave spacing,
a quality factor of 1, and center frequencies between 2–256 Hz. For each condition, talker, CF, MF, and
consonant, Pearson correlation coefficients were computed between the filterbank output for that consonant
in that particular condition and the output for each of all 20 consonants in quiet. Each of the individual
correlations was squared to obtain the variance explained; the results were averaged across talkers, CFs, and
MFs to obtain a “raw” neural metric ψ for each experimental condition. A separate ψ value was obtained
for each condition, and every pair of consonant presented and option for consonant reported. The ψ values
were normalized such that their sum across all options for consonants reported for a particular consonant
presented was equal to 1, which yielded a condition-specific “neural consonant confusion matrix.”
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The target signal consisted of a 50-ms-long (i.e., half of the modulation time period) tone pip

at 1.1 kHz that was presented in the dips of the OFC modulation during the last 0.3 s of

the stimulus period (i.e., in the last three dips) at different values of signal-to-component

ratio (SCR; defined as the signal maximum amplitude over the amplitude of the OFC before

modulation). These stimuli were presented to the periphery model, and the corresponding

model outputs were passed into the CMR circuit model.
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Figure 4.3. : Stimuli used to validate the CMR circuit model. The stimuli used were from Pressnitzer
et al., 2001, and consisted of a target signal in a 10-Hz 100% sinusoidally amplitude-modulated (SAM) tonal
complex masker. The masker differed depending on the experimental condition. In the Reference condition,
the masker was a 1.1 kHz-carrier SAM tone (referred to as the on-frequency component or OFC). In the
Comodulated and Codeviant conditions, six flanking components were presented in addition to the OFC. The
flanking components were SAM tones at the same level as the OFC. The flanking components were separated
from the OFC by -800 Hz, -600 Hz, -400 Hz, 400 Hz, 600 Hz, and 800 Hz, respectively. The modulation of
each flanking component was in phase with the OFC modulation in the Comodulated condition, but 180◦

out of phase with the OFC modulation in the Codeviant condition. The target signal was a 50-ms-long 1.1
kHz tone pip that was presented in the dips of the OFC modulation during the last 0.3 s of the stimulus
period (i.e., in the last three dips) at different values of signal-to-component ratio (SCR; defined as the signal
maximum amplitude over the amplitude of the OFC before modulation).

The rate-level function at the output of the CMR circuit model (Fig. 4.4D) closely matches

physiological data for chopper units in the ventral cochlear nucleus (Winter & Palmer, 1990),

and was used to set the masker level for the CMR stimuli. The firing-rate threshold was 0

dB SPL for pure-tone inputs at CF; thus, a fixed level of 40 dB SPL (i.e., 40 dB SL) was

used for the OFC. The PSTH outputs from the CMR circuit model (at 1.1 kHz CF) are

shown in Figure 4.4A. The time-averaged statistics of the firing rate during the last 0.3 s of

the stimulus period and in the absence of the target signal were used as the null distribution
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against which the neurometric sensitivity, d′, was calculated; a separate null distribution

was derived for each condition. The average firing rate during the target signal periods was

compared to the corresponding null distribution to estimate a separate d′ for each SCR and

condition (Fig. 4.4B). d′ of 0.4 was used to calculate SCR thresholds and the corresponding

CMR (threshold difference between the Codeviant and Comodulated conditions). Note that

the absolute d′ values cannot be interpreted in a conventional manner given that the choice

of window used to estimate the null-distribution parameters introduces an arbitrary scaling;

thus, our choice of d′ to calculate CMR was instead based on avoiding floor and ceiling

effects. Results indicate that the CMR circuit model shows a CMR effect consistent with

actual cochlear nucleus data in that signal detectability is best in the Comodulated condition,

followed by the Reference and Codeviant conditions (compare Figs. 4.4A and 4.4B with Figs.

2 and 6A from Pressnitzer et al., 2001, respectively). The size of the predicted CMR effect

is also consistent with perceptual measurements (Mok et al., 2021). As expected, no CMR

effect is seen at the level of the auditory nerve. Thus, the CMR circuit model accounts for the

improved signal representation in the Comodulated condition where the masker is more easily

segregable from the target signal, an advantage that derives from the fact that the different

masking components are temporally coherent with one another. In addition, it also accounts

for the greater cross-channel interference in the Codeviant condition, where the flanking

components are temporally coherent with the target signal that is presented in the dips of

the OFC. Finally, when the modulation rate of the input SAM tones was varied, CMR effects

were still seen and followed the same low-pass trend as human perceptual data (Carlyon

et al., 1989) (Fig. 4.4C).

Each scene analysis model was separately calibrated by fitting a logistic/sigmoid function

mapping the neural consonant confusion matrix entries from that model for the SiSSN

condition to corresponding perceptual measurements. The mapping derived from this

calibration was used to predict perceptual consonant confusion matrices from the corresponding

neural confusion matrices for unseen conditions. Voicing, POA, and MOA confusion matrices

were then derived by pooling over all consonants. Finally, the Pearson correlation coefficient

was used to compare model predictions to perceptual measurements across the voicing,
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Figure 4.4. : CMR circuit model validation. Panel A shows PSTH outputs from the CMR circuit
model at 1.1 kHz CF for the stimuli in Figure 4.3. Results are shown separately for the Comodulated and
Codeviant conditions, and at different SCRs. The black horizontal bars indicate the time points corresponding
to when the target signal was presented. Panel B summarizes the results from Panel A by showing the
neurometric sensitivity, d′, as a function of SCR for the auditory-nerve and CMR circuit model outputs
(both at 1.1 kHz CF). The CMR circuit model shows a clear separation between the Comodulated and
Codeviant conditions, i.e., a CMR effect. This is not seen at the level of the auditory nerve. Panel C shows
the variation in the CMR obtained from the circuit model as a function of modulation rate. Panel D shows
the pure-tone rate-level function (i.e., mean steady-state firing rate versus input tone level) for the CMR
circuit model.
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POA, and MOA categories. The prediction accuracy for the different models is reported in

Section 4.3.

4.2.8 Statistical analysis

Permutation testing (Nichols & Holmes, 2002) with multiple-comparisons correction at

5% false-discovery rate (FDR; Benjamini & Hochberg, 1995) was used to extract significant

differences in the SiSSN, SiB, SiDCmod, and Vocoded SiB consonant confusion matrices

quantified in Section 4.2.5. The null distributions for permutation testing were obtained using

a non-parametric shuffling procedure, which ensured that the data used in the computation

of the null distributions had the same statistical properties as the measured confusion data.

A separate null distribution was generated for each consonant. Each realization from each

null distribution was obtained by following the same computations used to obtain the actual

difference in the confusion matrices between conditions, but with random shuffling of condition

labels corresponding to the measurements. This procedure was independently repeated with

10,000 distinct randomizations for each null distribution.

The p-values for the Pearson correlation coefficients between model predictions and per-

ceptual measurements (Tables 4.3 and 4.4) were derived using Fisher’s approximation (Fisher,

1921).

To test whether the improvements in prediction accuracy (i.e., the correlation between

model predictions and perceptual measurements) offered by the across-channel model com-

pared to the within-channel model are statistically significant, a permutation procedure was

employed once again. Under the null hypothesis that the within- and across-channel models

are equivalent in their predictive power, the individual entries of the confusion matrices

predicted by the two models can be swapped without effect on the results. Thus, to generate

each realization of the null distribution of the correlation improvement, a randomly chosen half

of the confusion matrix entries were swapped; this permutation procedure was independently

repeated 100,000 times. A separate null distribution was generated in this manner for each

condition. The actual improvements in correlation were compared against the corresponding

null distributions to estimate (uncorrected) p-values. To adjust for multiple testing, an FDR
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procedure (Benjamini & Hochberg, 1995) was employed. Table 4.5 indicates whether each

test met criteria for statistical significance under an FDR threshold of 5%.

4.2.9 Software accessibility

Subjects were directed from Prolific to the SNAPlab online psychoacoustics infrastruc-

ture (https://snaplabonline.com; Mok et al., 2021) to perform the study. Offline data

analyses were performed using custom software in Python (Python Software Foundation,

https://www.python.org) and MATLAB (The MathWorks, Inc., Natick, MA). Copies of all

custom code can be obtained from the authors.

4.3 Results

Figure 4.5 shows speech intelligibility measurements from the online consonant identifica-

tion study. Approximately equal overall intelligibility was achieved for SiSSN, SiDCmod, SiB,

and Vocoded SiB due to our careful choice of SNRs for these conditions based on piloting

(see Table 4.1). This was done to obtain roughly equal variance in the consonant confusion

estimates for these conditions, which allows us to fairly compare confusion patterns across

them. Equalizing intelligibility also maximizes the statistical power for detecting differences

in the pattern of confusions. ∼60% overall intelligibility was obtained in each condition,

which yielded a sufficient number of confusions for analysis.

Given that all psychophysical data were collected online, data quality was verified by

comparing results for SiSSN with previous lab-based findings; the analyses performed and the

results are described in Mok et al., 2021 and Viswanathan, Shinn-Cunningham, et al., 2021.

The identification data collected in the Test stage of the online experiment were used to

construct a consonant confusion matrix for each condition (see Section 4.2.5). Then, statisti-

cally significant differences in these matrices across conditions were extracted (Section 4.2.8).

Results (Fig. 4.6) show significant differences in the confusion patterns across (i) conditions

with different masker modulation statistics, and (ii) stimuli with intact versus degraded

TFS information. Computational modeling was then used to predict these differences across

conditions to test specific theories of scene analysis (Section 4.2.7).
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Figure 4.5. : Overall intelligibility measured in the online consonant identification study for
different conditions and talkers. Approximately equal overall intelligibility was achieved for SiSSN,
SiDCmod, SiB, and Vocoded SiB (N=191).

Figure 4.6. : Measured consonant confusion-matrix differences across conditions (pooled over
samples; N=191). The first two columns represent differences across maskers with different modulation
spectra, whereas the third column shows the difference across stimuli with intact versus degraded TFS
information. Only significant differences are shown, after permutation testing with multiple-comparisons
correction (5% FDR). As the modulation statistics of the masker or the TFS content were varied, statistically
significant differences emerged in the confusion patterns across conditions. Overall intelligibility was normalized
to 60% for this analysis (Section 4.2.5) so that differences in confusion matrices across conditions could be
attributed to changes in consonant categorization and category errors rather than differences in overall error
counts (due to one condition being inherently easier at a particular SNR).

Figure 4.7 shows results from the calibration step of testing the within- and across-channel

models of scene analysis. In this step, a separate logistic/sigmoid function was fit for each

model to map neural confusion matrix entries for the SiSSN condition to corresponding

perceptual measurements.
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Figure 4.7. : Calibration result for the within- and across-channel models of scene analysis.
Shown are the model-specific sigmoid/logistic functions that were fit to map neural confusion matrix entries
for the SiSSN condition to corresponding perceptual measurements. This model-specific mapping was used to
predict perceptual consonant confusion matrices from neural confusion matrices for unseen conditions.

The model-specific mapping derived in the calibration step was used to predict perceptual

consonant confusion matrices for each of the scene analysis models from the neural confusion

matrices for unseen conditions (not used in calibration). Then, voicing, POA, and MOA

confusion matrices were derived by pooling over all consonants (Figs. 4.9, 4.10, and 4.11).

Finally, model predictions were compared to perceptual measurements for the different

confusion matrix entries across the voicing, POA, and MOA categories. The results are shown

in Figure 4.8 for SiB, SiDCmod, and Vocoded SiB. The SiQuiet condition is not visualized,

as there were ceiling effects in the intelligibility measurements (i.e., the diagonal entries of

the confusion matrix were dominant) and very few confusions (i.e., off-diagonal entries were

rare), which made it infeasible to meaningfully evaluate the quality of predictions for this

condition (as there was no variance across either the on- or off-diagonals). But overall, across

all entries for SiQuiet, both models predicted diagonal entries close to one and off-diagonal

entries close to zero, in line with perceptual measurements.

Pearson correlation coefficients were computed between the model predictions and per-

ceptual measurements (shown in Fig. 4.8) and are given in Tables 4.3 and 4.4 for the within-

and across-channel models, respectively. Since the range of confusion matrix entries spanned

three orders of magnitude, all comparisons were performed with log-transformed values. The
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Figure 4.8. : Within- and across-channel model predictions versus measured confusion matrix
entries for the unseen conditions. Diagonal entries correspond to intelligibility measurements for the
different consonant phonetic categories (transmission scores for voicing, POA, and MOA), and off-diagonal
entries correspond to true confusions. It can be seen that the cluster of points is less dispersed for the
across-channel model compared to the within-channel model, indicating greater predictive accuracy. These
trends are quantified in Tables 4.3, 4.4, and 4.5.
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correlations were statistically significant across all non-vocoded conditions for the within-

channel model, and across all conditions for the across-channel model (see Section 4.2.8 for

statistical analysis details). The strong correlation of the within-channel model predictions

with perceptual data in the non-vocoded conditions (where TFS cues are preserved) provides

independent evidence that speech understanding is strongly influenced by modulation masking

when TFS cues are available (Viswanathan, Bharadwaj, Shinn-Cunningham, & Heinz, 2021);

moreover, this result also suggests that modulations are used differently by the brain in the

absence of natural TFS.

The across-channel model produced stronger correlation values compared to the within-

channel model for all conditions, and the improvements were statistically significant across

all conditions even after correcting for multiple comparisons (Table 4.5; for analysis details,

see Section 4.2.8). Thus, a simple physiologically plausible model of across-channel cochlear

nucleus processing that shows CMR (Fig. 4.4) also yields category confusion predictions

that match behavioral data, and more specifically improves predictions compared to a

within-channel model. Note that our within-channel model assumes perfect segregability of

target-masker components that are separated in CF and MF (in line with current speech-

intelligibility models; Jørgensen et al., 2013; Relaño-Iborra et al., 2016), and only models

within-channel modulation masking. Specifically, within a particular channel (i.e., CF) and

MF, masker modulations that are not in phase with the target are the only components

that mask the target. However, our across-channel model simulates both within-channel

modulation masking and cross-channel temporal-coherence-based interference. Specifically,

masker components that are in a different channel from the target but that are temporally

coherent with the target can interfere with target coding and perception. We implemented

this interference via the CMR circuit model (Fig. 4.1) where temporally coherent pieces of

the target and masker, even across distinct cochlear channels, coherently drive the wideband

inhibitor (WBI), thereby enhancing outputs of the narrowband (NB) unit (which is inhibited

by the WBI) that are incoherent with the masker. Thus, our finding that model predictions

are improved when cross-channel processing is added is consistent with the theory that

across-channel temporal coherence shapes scene analysis (Elhilali et al., 2009). Moreover,

this result also suggests that physiological computations that exist as early as the cochlear

93



nucleus can contribute significantly to temporal-coherence-based scene analysis. Note that

improvements to confusion predictions are apparent with the across-channel model for the

same range of model parameters for which the CMR effect is also apparent.

Another key result from Table 4.5 is that the condition that showed the greatest im-

provement in confusion matrix predictions between the within- and across-channel models is

Vocoded SiB. The masker in Vocoded SiB produces both within-channel modulation masking

and cross-channel interference (as described above). These masking and interference effects

are partially mitigated in intact SiB (and other non-vocoded conditions) compared to Vocoded

SiB, because the brain can use the pitch cue supplied by natural TFS to better separate the

target and masker (Darwin, 1997; A. J. Oxenham & Simonson, 2009). The across-channel

model is a better fit to perceptual data for all conditions, which suggests that cross-channel

interference affects perceptual data. Thus, the improvement offered by this model is likely

most apparent for vocoded SiB because cross-channel interference effects contribute most to

perception in this condition.

Table 4.3. : Pearson correlation coefficients between within-channel model predictions and
perceptual measurements. Results are listed separately for the diagonal entries of the confusion
matrix (i.e., proportion correct for the different consonant phonetic categories), off-diagonal entries (i.e., true
confusions), and across all entries.

Condition Diagonal entries Off-diagonal entries All entries
Correlation p-value Correlation p-value Correlation p-value

SiB 72% 0.0026 ** 64% 10−7 *** 87% 10−21 ***
SiDCmod 66% 0.0072 ** 64% 10−7 *** 83% 10−17 ***

Vocoded SiB 4% 0.4445 40% 0.0019 ** 75% 10−13 ***
SiSSN 83% 0.0002 *** 67% 10−8 *** 87% 10−21 ***

Table 4.4. : Pearson correlation coefficients between across-channel model predictions and
perceptual measurements. Results are listed separately for the diagonal entries of the confusion
matrix (i.e., proportion correct for the different consonant phonetic categories), off-diagonal entries (i.e., true
confusions), and across all entries.

Condition Diagonal entries Off-diagonal entries All entries
Correlation p-value Correlation p-value Correlation p-value

SiB 85% 0.0001 *** 73% 10−10 *** 90% 10−24 ***
SiDCmod 88% 10−5 *** 72% 10−9 *** 86% 10−20 ***

Vocoded SiB 63% 0.0103 * 70% 10−9 *** 86% 10−20 ***
SiSSN 89% 10−5 *** 81% 10−13 *** 92% 10−27 ***

94



Table 4.5. : Improvement in prediction accuracy offered by the across-channel model compared
to the within-channel model. The across-channel model showed improved correlations between model
predictions and perceptual measurements for all of the unseen conditions, with the largest improvement
apparent for Vocoded SiB.

Condition Diagonal entries Off-diagonal entries
Improvement Uncorrected

p-value
Significant

under 5% FDR
threshold?

Improvement Uncorrected
p-value

Significant
under 5% FDR

threshold?

SiB 12% 0.0225 Yes 8% 0.0406 Yes
SiDCmod 22% < 10−5 Yes 8% 0.1006 No

Vocoded SiB 59% < 10−5 Yes 30% < 10−5 Yes

Note that while the main difference between the two scene analysis models tested in the

current study is the exclusion/inclusion of cross-channel processing, another difference is

that the within-channel model discards TFS, whereas the across-channel model uses the full

simulated auditory-nerve output to drive the CMR circuit model. This raises the possibility

that part of the improvement offered by the across-channel model could come simply from the

inclusion of TFS information within each channel independently. To investigate whether the

poorer performance of the within-channel model was partly due to discarding TFS, we re-ran

the within-channel model by retaining the full auditory-nerve output (results not shown).

We found that the predictions from the modified within-channel model were not significantly

better than the original within-channel model. This confirms that the improvement in

predictions given by the across-channel model comes largely from across-channel CMR effects,

suggesting that categorical perception is sensitive to the temporal coherence across channels.

Moreover, these CMR effects were restricted to low rates (< 80 Hz or so; Fig. 4.4C), consistent

with perceptual data (Carlyon et al., 1989). This suggests that the cross-channel processing

did not benefit much from the TFS information included in driving the CMR circuit model.

4.4 Discussion

To probe the contribution of temporal-coherence processing to speech understanding in

noise, the present study used a behavioral experiment to measure consonant identification

in different masking conditions in conjunction with physiologically plausible computational

modeling. To the best of our knowledge, this is the first study to use confusion patterns
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in speech categorization to test theories of auditory scene analysis. The use of confusion

data provides independent constraints on our understanding of scene-analysis mechanisms

beyond what overall intelligibility can provide. This is because percent correct data only

convey binary information about whether or not target coding was intact, whereas consonant

categorization and confusion data provide richer information about what sound elements

received perceptual weighting.

We constructed computational models simulating (i) purely within-channel modulation

masking (in line with current speech-intelligibility models; Relaño-Iborra et al., 2016), and (ii)

a combination of within-channel modulation masking and across-channel temporal-coherence

processing mirroring physiological computations that are known to exist in the cochlear

nucleus (Pressnitzer et al., 2001). Our across-channel temporal coherence circuit produced

a CMR effect (Fig. 4.4) that is consistent with actual cochlear nucleus data (Pressnitzer

et al., 2001) and perceptual measurements (Mok et al., 2021). Moreover, consonant confusion

pattern predictions were significantly improved for all tested conditions with the addition of

this cross-channel processing (Table 4.5), which suggests that temporal-coherence processing

strongly shapes speech categorization when listening in noise. This result is consistent

with the theory that comodulated features of a sound source are perceptually grouped

together, and that masker elements that are temporally coherent with target speech but in a

different channel from the target perceptually interfere (Apoux & Bacon, 2008; Darwin, 1997;

Schooneveldt & Moore, 1987). The only case where the within- and across-channel models

were statistically equivalent was in predicting the off-diagonal entries (i.e., true confusions) for

the SiDCmod condition; this may be because this condition has little coherent cross-channel

interference from the masker as the masker is unmodulated (Stone et al., 2012).

An important difference between the cross- and within-channel masking simulated in

our models is that while the cross-channel interference was produced by masker fluctuations

that were temporally coherent with the target, the within-channel masking was produced by

masker components that were matched in both CF and MF with target components. While

current speech-intelligibility models simulate the latter type of masking (Jørgensen et al., 2013;

Relaño-Iborra et al., 2016), they do not account for cross-channel temporal-coherence-based

masking as we have done here. This may explain why these models fail in certain conditions,
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including for vocoded stimuli (Steinmetzger et al., 2019). Indeed, even in the present study,

although our within-channel modulation masking model reasonably accounted for category

confusions, it failed when TFS cues were unavailable (Table 4.3). One explanation for this is

that because pitch-based masking release is poorer in the vocoded condition due to degraded

TFS information (A. J. Oxenham & Simonson, 2009), the effects of cross-channel interference

are more salient. This may also be the reason why the Vocoded SiB condition showed the

greatest improvement in confusion pattern predictions after adding cross-channel processing

(Table 4.5), which models these interference effects.

Although the lateral inhibition network used in Elhilali et al., 2003 bears some similarities

to the across-channel CMR circuit model used in the current study, the CMR circuit model

was explicitly based on physiological computations present in the cochlear nucleus and

their CMR properties. Thus, another implication of the results of the present study is

that physiological computations that exist as early as the cochlear nucleus can contribute

significantly to temporal-coherence-based scene analysis. Such effects likely accumulate as

we ascend along the auditory pathway (Elhilali et al., 2009; J. A. O’Sullivan et al., 2015;

Teki et al., 2013). Note that the CMR circuit model does not perform pitch-range temporal-

coherence processing and no CMR effect was seen at high modulation rates (Fig. 4.4C),

consistent with perceptual data in the literature (Carlyon et al., 1989). Despite this, our

across-channel model significantly improved predictions of category confusions compared

to the within-channel model, which suggests that temporal-coherence processing at lower

modulation rates is perceptually important. A future research direction is to extend the

modeling framework proposed here to study the contributions of scene-analysis mechanisms

beyond the specific aspects of temporal-coherence processing studied here. One such extension

could be to account for pitch-based source segregation (Bregman, 1990), perhaps by modeling

a combined temporal-place code for pitch processing (A. J. Oxenham et al., 2004; A. J.

Oxenham & Simonson, 2009; Shamma & Klein, 2000).

One limitation of the periphery model we used (Bruce et al., 2018) is that it was developed

to match nerve responses to simple stimuli. However, this family of periphery models has been

successfully used to account for complex phenomena such as synchrony capture (Delgutte &

Kiang, 1984), formant coding in the midbrain (Carney et al., 2015), and qualitative aspects of
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evoked potentials such as auditory brainstem responses and frequency-following responses (B.

Shinn-Cunningham et al., 2013). Although a debate exists regarding the spatio-temporal

properties of different periphery models in cochlear responses (Verhulst et al., 2015), those

differences are subtle compared to the slower CMR effects that are important for the present

study. A more general limitation of the models used in this study is that they are simple and

do not incorporate many aspects of speech perception (e.g., context effects; Dubno & Levitt,

1981) because the goal here is to test specific theories of scene analysis. Nevertheless, the

contrast between the models would be unaffected by these higher-order effects.
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4.6 Supplementary Information

For completeness, the full set of model-predicted and measured perceptual confusion

matrices are shown in Figures 4.9, 4.10, and 4.11 for the voicing, POA, and MOA categories,

respectively. Results are shown only for the SiB, SiDCmod, and Vocoded SiB conditions (i.e.,

the conditions unseen by the calibration step and having a sufficient number of confusions

for prediction).
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Figure 4.9. : Full set of measured and model-predicted voicing confusion matrices.
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Figure 4.10. : Full set of measured and model-predicted POA confusion matrices.
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Figure 4.11. : Full set of measured and model-predicted MOA confusion matrices.
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5. TEMPORAL FINE STRUCTURE INFLUENCES VOICING

CONFUSIONS FOR CONSONANT IDENTIFICATION IN

MULTI-TALKER BABBLE

Abstract1

To understand the mechanisms of speech perception in everyday listening environments, it

is important to elucidate the relative contributions of different acoustics cues in transmitting

phonetic content. Previous studies suggest that the envelope of speech in different frequency

bands conveys most speech content, while the temporal fine structure (TFS) can aid in

segregating target speech from background noise. However, the role of TFS in conveying

phonetic content beyond what envelopes convey for intact speech in complex acoustic scenes

is poorly understood. The present study addressed this question using online psychophysical

experiments to measure the identification of consonants in multi-talker babble for intelligibility-

matched intact and 64-channel envelope-vocoded stimuli. Consonant confusion patterns

revealed that listeners had a greater tendency in the vocoded (versus intact) condition to be

biased towards reporting that they heard an unvoiced consonant, despite envelope and place

cues being largely preserved. This result was replicated when babble instances were varied

across independent experiments, suggesting that TFS conveys voicing information beyond

what is conveyed by envelopes for intact speech in babble. Given that multi-talker babble is

a masker that is ubiquitous in everyday environments, this finding has implications for the

design of assistive listening devices such as cochlear implants.

5.1 Introduction

Any acoustic signal can be decomposed into a slowly varying amplitude envelope, or

temporal modulation, and a fast-varying temporal fine structure (TFS) (Hilbert, 1906). The

cochlea decomposes sound input into a multi-channel representation organized by frequency,

where each channel encodes the signal content in a relatively narrow band of frequencies around

a different carrier frequency. The envelope and TFS information in each channel are then
1↑This chapter was published in bioRxiv (Viswanathan, Shinn-Cunningham, et al., 2021).
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conveyed to the central nervous system through the ascending auditory pathway (Johnson,

1980; P. X. Joris & Yin, 1992). Elucidating the relative contributions of envelope and TFS

cues to speech perception in everyday listening environments is important not just from a

basic science perspective, but also for translation to clinical technologies such as cochlear

implants.

Psychophysical studies suggest that speech content in quiet can be largely conveyed

by envelopes (Shannon et al., 1995). Psychophysical (Bacon & Grantham, 1989; Stone &

Moore, 2014), modeling (Dubbelboer & Houtgast, 2008; Relaño-Iborra et al., 2016), and

electroencephalography (EEG) (Viswanathan, Bharadwaj, Shinn-Cunningham, & Heinz, 2021)

studies support the theory that in the presence of background noise, modulation masking

of envelopes of target speech by distracting masker envelopes predicts speech intelligibility

across diverse listening conditions. However, in addition to this contribution of envelopes to

intelligibility, TFS may also play a role, especially in noisy listening environments (Hopkins

& Moore, 2010; Lorenzi et al., 2006).

Psychophysical studies suggest that cues conveyed by TFS (e.g., fundamental frequency;

B. C. Moore et al., 2006) can support perceptual scene segregation or unmasking (Darwin,

1997; A. J. Oxenham & Simonson, 2009). Moreover, EEG studies raised the possibility that

the neural representation of the attended speech in a sound mixture is sensitive to the spectro-

temporal details of the acoustic scene (Ding et al., 2014; Rimmele et al., 2015). By using high-

resolution vocoding to alter TFS cues without introducing spurious envelopes, Viswanathan,

Bharadwaj, Shinn-Cunningham, and Heinz, 2021 showed that TFS cues per se can influence

the coding of attended-speech envelopes in the brain, and that this neural envelope coding

in turn predicts intelligibility across a range of backgrounds and distortions. Despite the

extensive prior literature on TFS and speech intelligibility, whether TFS can contribute to

speech-in-noise perception beyond supporting masking release, i.e., whether TFS can directly

convey phonetic content when envelopes are available, is poorly understood. As an analogy

to help clarify this gap, consider the role of spatial cues. Spatial cues can provide masking

release even though they do not carry any phonetic content. The analogous question here

is whether TFS plays a similar role for speech perception in noise in that it only aids in
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unmasking, or if TFS can also convey speech content when redundant intact envelope cues

are available.

Previous behavioral studies that used TFS-vocoded speech (i.e., where the TFS or phase

information in different frequency channels is retained but the envelope information is

degraded; e.g., Ardoint & Lorenzi, 2010; Sheft et al., 2008) showed that TFS can convey

certain phonetic features with relatively high levels of information reception by means other

than envelope reconstruction (i.e., the recovery of degraded speech envelopes at the output of

cochlear filters; Gilbert & Lorenzi, 2006; Heinz & Swaminathan, 2009). However, while these

studies examined the role of TFS when envelope cues were degraded, they did not address the

question of whether or not TFS cues are used for intact speech that has preserved envelope

cues.

Another limitation of previous studies that investigated the role of TFS in conveying

speech content is that they used masking conditions that were not ecologically realistic. While

some used speech in quiet (Ardoint & Lorenzi, 2010; S. Rosen, 1992; Sheft et al., 2008), others

presented speech in stationary noise (Gnansia et al., 2009; Swaminathan & Heinz, 2012).

Ecologically relevant maskers such as multi-talker babble—a common source of interference

in everyday cocktail-party listening—have not been utilized to study this problem. The

spectro-temporal characteristics of multi-talker babble (envelope and TFS cues) are similar

to what may be encountered in realistic scenarios and a better match to competing speech

(albeit without semantic and linguistic content). Thus, multi-talker babble is an important

masker to use when studying the role of TFS in speech understanding.

The present study addressed these gaps using online envelope-vocoding experiments

designed to probe directly the role of TFS in conveying consonant information beyond what

envelopes convey for intact speech (i.e., with redundant envelope cues) in realistic masking

environments. Multi-talker babble was used as an ecologically relevant masker. Consonant

confusion patterns (Miller & Nicely, 1955) were analyzed, grouping consonants into categories

based upon the features of voicing, place of articulation (POA), and manner of articulation

(MOA). Confusion patterns were compared between intact and 64-channel envelope-vocoded

stimuli for consonants presented in multi-talker babble and separately in quiet (as a con-

trol). 64-channel envelope vocoding largely preserves cochlear-level envelopes (Viswanathan,
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Bharadwaj, Shinn-Cunningham, & Heinz, 2021), allowing us to study the role of the original

TFS in conveying speech content beyond what is conveyed by the intact envelopes. Since TFS

plays a role in masking release, vocoding at the same signal-to-noise ratio (SNR) as for intact

stimuli produces considerably lower intelligibility. Here this intelligibility drop is mitigated by

using a higher SNR for vocoded stimuli so that overall intelligibility was matched for intact

and vocoded conditions. By matching intelligibility in this manner, differences in confusion

patterns across conditions could be attributed to changes in consonant categorization and cat-

egory errors rather than differences in overall error counts. Moreover, equalizing intelligibility

also maximizes the statistical power for detecting differences in the pattern of confusions.

Finally, given that consonants are transient sounds, whether or not effects were robust to

changes in the local statistics of the masker were also examined by testing whether results

were replicated when the specific instances (i.e., realizations) of multi-talker babble varied

across experiments.

The current study tested the hypothesis that TFS does not convey speech content beyond

what is conveyed by envelopes for intact speech (i.e., the classic view that envelopes convey

speech content and that TFS conveys other attributes like pitch and aids source segregation).

As a result, it was expected that once intelligibility was matched across conditions, confusion

patterns would be the same for intact and envelope-vocoded stimuli corresponding to speech

in (i) babble, and (ii) quiet. The experiments used to test this hypothesis and the results

and their implications are described below.

5.2 Materials and Methods

5.2.1 Stimulus generation

20 consonants from the STeVI corpus (Sensimetrics Corporation, Malden, MA) were used.

The consonants were /b/, /Ù/, /d/, /D/, /f/, /g/, /Ã/, /k/, /l/, /m/, /n/, /p/, /r/, /s/,

/S/, /t/, /T/, /v/, /z/, and /Z/. The consonants were presented in CV (consonant-vowel)

context, where the vowel was always /a/. Each consonant was spoken by two female and two

male talkers (to reflect real-life talker variability). The CV utterances were embedded in the
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carrier phrase: “You will mark /CV/ please” (i.e., in natural running speech). Stimuli were

created for five experimental conditions:

1. Speech in Babble (SiB): Speech was added to four-talker babble at -8 dB SNR. The

long-term spectrum of the target speech (including the carrier phrase) was adjusted

to match the average (across instances) long-term spectrum of the four-talker babble

(by applying a filter with a transfer function equal to the ratio of the two spectra). To

create each SiB stimulus, a babble sample was randomly selected from a list comprising

72 different four-talker babble maskers obtained from the QuickSIN corpus (Killion

et al., 2004).

2. Vocoded Speech in Babble (Vocoded SiB): SiB at 0 dB SNR was subjected to

64-channel envelope vocoding. A randomly selected babble sample was used for each

Vocoded SiB stimulus, similar to what was done for intact SiB. The vocoding process

retained the cochlear-level envelopes, but replaced the stimulus fine structure with a

noise carrier, in accordance with the procedure described in Qin and Oxenham, 2003.

The 64 frequency channels were contiguous with their center frequencies equally spaced

on an ERB-number scale (Glasberg & Moore, 1990) between 80 Hz and 6000 Hz. This

resulted in roughly two channels per ERB, which ensured that for any given channel,

there was one additional channel on each side within 1 ERB. This helps to mitigate

spurious envelope recovery on the slopes of cochlear filters, which in turn allows for TFS

effects to be better isolated (Viswanathan, Bharadwaj, Shinn-Cunningham, & Heinz,

2021). The envelope in each channel was extracted by using a sixth-order butterworth

band-pass filter to extract the component of the intact stimulus in that channel, followed

by half-wave rectification and low-pass filtering using a second-order butterworth filter

with a cut-off frequency of 300 Hz, or half of the channel bandwidth, whichever was

lower. The envelope in each channel was then used to modulate a random Gaussian

white noise carrier; the result was band-pass filtered within the channel bandwidth and

scaled to match the level of the original signal.

3. Speech in Quiet (SiQuiet): Speech in quiet was used as a control condition.
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4. Vocoded Speech in Quiet (Vocoded SiQuiet): SiQuiet subjected to 64-channel

envelope vocoding (using the same procedure as for Vocoded SiB) was used to examine

whether TFS conveys speech content beyond what envelopes convey for intact speech

in quiet.

5. Speech in Speech-shaped Stationary Noise (SiSSN): Speech was added to sta-

tionary Gaussian noise at -8 dB SNR. Similar to what was done for SiB, the long-term

spectra of the target speech (including the carrier phrase) and that of stationary

noise were adjusted to match the average (across instances) long-term spectrum of the

four-talker babble. A different realization of stationary noise was used for each SiSSN

stimulus. The SiSSN condition was used for online data quality checking, given that

lab-based confusion data were available for this condition (Phatak & Allen, 2007).

Prior to the main consonant identification study, a behavioral pilot study (with three

subjects who did not participate in the actual online experiments) was used to determine

appropriate SNRs for the different experimental conditions. The SNRs for the intact and

vocoded SiB conditions were chosen to give intelligibility of roughly 60%, so that a sufficient

number of confusions would be obtained for data analysis.

To verify that the vocoding procedure did not significantly change envelopes at the

cochlear level, the envelopes at the output of 128 filters were extracted (using a similar

procedure as in the actual vocoding process) both before and after vocoding for SiQuiet and

SiB at 0 dB SNR, and for each of the different consonants and talkers. The use of 128 filters

allowed us to compare envelopes for both on-band filters (i.e., filters whose center frequencies

matched those of the sub-bands of the vocoder), and off-band filters (i.e., filters whose center

frequencies were halfway between adjacent vocoder sub-bands on the ERB-number scale).

The average correlation coefficient between envelopes before and after vocoding (across the

different stimuli and cochlear filters, and after adjusting for any vocoder group delays) was

about 0.9 (Fig. 5.1). This suggests that the 64-channel envelope-vocoding procedure left

the within-band cochlear-level envelopes largely intact. Thus, although intrinsic envelope

fluctuations conveyed by the noise carrier used in vocoding may mask crucial speech-envelope

cues in some cases (Kates, 2011), this issue is mitigated by using high-resolution vocoding as

106



was done in the current study. This high-resolution vocoding allowed us to unambiguously

attribute vocoding effects to TFS cues rather than any spurious envelopes (not present

in the original stimuli) that can be introduced within individual frequency bands during

cochlear filtering of the noise carrier used in vocoding when low-resolution vocoding is

performed (Gilbert & Lorenzi, 2006; Swaminathan & Heinz, 2012; Viswanathan, Bharadwaj,

Shinn-Cunningham, & Heinz, 2021).
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Figure 5.1. : 64-channel envelope vocoding largely preserves the envelopes within individual
cochlear bands. Shown are the normalized histogram of the group-delay-adjusted correlation between the
envelope for intact speech in quiet (SiQuiet) and 64-channel vocoded SiQuiet (i), and that for intact speech
in babble (SiB) and 64-channel vocoded SiB (ii). The histograms are across the different consonants and
talkers, as well as across 128 different cochlear bands equally spaced on an ERB-number scale from 80-6000
Hz. The average correlation between envelopes before and after vocoding was about 0.9.

The stimulus used for online volume adjustment was separately generated, and consisted

of running speech mixed with four-talker babble. The speech and babble samples were both

obtained from the QuickSIN corpus (Killion et al., 2004); these were repeated over time to

obtain a total stimulus duration of ∼20 s (to give subjects adequate time to adjust their

computer volume with the instructions described in Section 5.2.3). The volume adjustment

stimulus was designed to have a root mean square (RMS) value that corresponded to 75% of

the dB difference between the softest and loudest stimuli in the study. This ensured that

once subjects had adjusted their computer volume, the stimuli used in the main consonant

identification tasks were never too loud for subjects, even at adverse SNRs.
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5.2.2 Participants

Data were collected online from anonymous subjects recruited using Prolific.co. The

subject pool was restricted using a screening method developed by Mok et al., 2021. The

screening method contained three parts: (i) a core survey that was used to restrict subjects

based on age to 18–55 years (to exclude significant age-related hearing loss), whether or not

they were US/Canada residents, US/Canada born, and native speakers of North American

English (because North American speech stimuli were used), history of hearing and neurologi-

cal diagnoses if any, and whether or not they had persistent tinnitus, (ii) headphone/earphone

checks, and (iii) a speech-in-babble-based hearing screening. Subjects who passed the screen-

ing were invited to participate in the consonant identification study, and when they returned,

headphone/earphone checks were performed again. All subjects had completed at least 40

previous studies on Prolific and had > 90% of them approved (Prolific allows researchers to

reject participant submissions if there is clear evidence of non-compliance with instructions or

poor attention). These procedures were validated in previous work, where they were shown

to successfully select participants for near-normal hearing status, attentive engagement, and

stereo headphone use (Mok et al., 2021). Subjects provided informed consent in accordance

with remote testing protocols approved by the Purdue University Institutional Review Board

(IRB).

5.2.3 Experimental design

Three nearly identical consonant-identification experiments were conducted to assess the

replicability of any main effect of TFS. The experiments were designed with the goal of

contrasting intact and vocoded conditions (i.e., stimuli with original and disrupted TFS),

while roving the levels of all other experimental variables (i.e., consonants, talkers, conditions,

and masker instances). Thus, each experiment presented, in random order, one stimulus

repetition for each of the 20 consonants across all four talkers and all five experimental

conditions. Within a given experiment, in creating each intact or vocoded SiB stimulus,

babble instances (i.e., realizations) were randomly chosen from a list comprising 72 different

four-talker babble maskers (see Section 5.2.1); thus, the babble instances that were used for
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a particular consonant and talker were not the same between the intact and vocoded SiB

conditions. To test whether the main effects of fine structure generalized when the babble

instances used were varied across experiments, a different random pairing of masker instances

was used across consonants, talkers, and conditions in Experiment 2 compared to Experiment

1. Experiment 3 used, as a sanity check while testing replication of effects, the same stimuli

as Experiment 2. Thus, the only difference in the stimuli between the experiments was in

the particular instance of babble that was paired with a particular consonant, talker, and

SiB condition (intact, and vocoded). As observed by Zaar and Dau, 2015, when effects are

instance-specific, different realizations of the same masker random process can contribute

significantly larger variability to consonant identification measurements than across-listener

variability. Thus, our study design of varying babble instances across the three experiments

helped to disambiguate any effects of vocoding from masker-instance effects.

25 subjects per talker were used (subject overlap between talkers was not controlled)

in each of the three experiments. With four talkers, this yielded 100 subject-talker pairs,

or samples, per experiment. Separate studies were posted on Prolific.co for the different

talkers; thus, when a subject performed a particular study, they would be presented with

the speech stimuli for one specific talker consistently over all trials. There was no overlap

between experiments in the particular set of 100 samples that were used, i.e., samples were

independent across experiments. Within each experiment, talker, and condition, all subjects

performed the task with the same stimuli. Moreover, all condition effect contrasts were

computed on a within-subject basis, and averaged across subjects.

Subjects performed the tasks using their personal computers and headphones/earphones.

Our online infrastructure included checks to prevent the use of mobile devices. Each of

the three experiments had three parts: (i) Headphone/earphone checks, (ii) Demonstration

(“Demo”), and (iii) Test (which was the main stage of the experiment). Each of these three

parts had a volume-adjustment task at the beginning. In this task, subjects were asked to

make sure that they were in a quiet room and wearing wired (not wireless) headphones or

earphones. They were instructed not to use desktop/laptop speakers. They were then asked

to set their computer volume to 10–20% of the full volume, following which they were played

a speech-in-babble stimulus and asked to adjust their volume up to a comfortable but not too
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loud level. Once subjects had adjusted their computer volume, they were instructed not to

adjust the volume during the experiment, as that could lead to sounds being too loud or soft.

The paradigm of Mok et al., 2021 was used for headphone/earphone checks. In this

paradigm, subjects first performed the task described by Woods et al., 2017. While the Woods

et al., 2017 task can distinguish between listening with a pair of free-field speakers versus

using stereo headphones/earphones, it cannot detect the use of a single free-field speaker or

a mono headphone/earphone. Thus, the Woods et al., 2017 task was supplemented with

a second task where the target cues were purely binaural in nature, thereby allowing us

to test if headphones/earphones were used in both ears. The second task was a 3-interval

3-alternative forced-choice task where the target interval contained white noise with interaural

correlation fluctuating at 20 Hz, while the dummy intervals contained white noise with a

constant interaural correlation. Subjects were asked to detect the interval with the most

flutter or fluctuation. Only those subjects who scored greater than 65% in each of these two

tasks were allowed to proceed to the next (Demo) stage of the experiment. This two-task

paradigm to verify stereo headphone/earphone use was validated in Mok et al., 2021.

In the Demo stage, subjects performed a short training task designed to familiarize them

with how each consonant sounds, and with the consonant-identification paradigm. Subjects

were instructed that in each trial they would hear a voice say “You will mark *something*

please.” They were told that at the end of the trial, they would be given a set of options for

*something*, and that they would have to click on the corresponding option. Consonants

were first presented in quiet, and in sequential order starting with /b/ and ending with /Z/.

This order was matched in the consonant options shown on the screen at the end of each

trial. After the stimulus ended in each trial, subjects were asked to click on the consonant

they heard. After subjects had heard all consonants sequentially in quiet, they were tasked

with identifying consonants presented in random order and spanning the same set of listening

conditions as the Test stage. Subjects were instructed to ignore any background noise and

only listen to the particular voice saying “You will mark *something* please.” Only subjects

who scored ≥ 85% in the Demo’s Speech in Quiet control condition were selected for the Test

stage, so as to ensure that all subjects understood and were able to perform the task.
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In the Test stage, subjects were given similar instructions as in the Demo, but told to

expect trials with background noise from the beginning (rather than midway through the task

as in the Demo). In both Demo and Test, the background noise (babble or stationary noise),

when present, started 1 s before the target speech and continued for the entire duration of

the trial. In both Demo and Test, to promote engagement with the task, subjects received

feedback after every trial as to whether or not their response was correct. Subjects were

not told what consonant was presented, to avoid over-training to the acoustics of how each

consonant sounded across the different conditions, except for the first sub-part of the Demo,

where subjects heard all consonants in quiet in sequential order.

5.2.4 Data preprocessing

Only samples (i.e., subject-talker pairs) with intelligibility scores ≥ 85% for the Speech

in Quiet control condition in the Test stage were included in results reported here. All

conditions for the remaining samples were excluded from further analyses as a data quality

control measure.

5.2.5 Quantifying confusion matrices

The 20 English consonants used in this study were assigned the phonetic features described

in Table 5.1. The identification data collected in the Test stage of each experiment were

used to construct consonant confusion matrices (pooled over samples) separately for each

condition. Overall intelligibility was normalized to 60% for intact and vocoded SiB, and to

90% for intact and vocoded SiQuiet by scaling the confusion matrices such that the sum of the

diagonal entries was the desired intelligibility. Matching intelligibility in this manner allowed

for differences in confusion patterns across conditions to be attributed to changes in consonant

categorization and category errors rather than differences in overall error counts (due to one

condition being inherently easier at a particular SNR). Furthermore, equalizing intelligibility

also maximizes the statistical power for detecting differences in the pattern of confusions.

The resulting confusion matrices (Fig. 5.10) were used to construct voicing, POA, and MOA

confusion matrices by pooling over all consonants. In order to test our hypothesis that voicing,
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POA, and MOA confusion patterns would be the same for intact and envelope-vocoded

speech in babble (after matching intelligibility), the difference between intelligibility-matched

intact and vocoded SiB confusion matrices was computed. Confusion-matrix differences

were then compared with appropriate null distributions of zero differences (see Section 5.2.6)

to extract statistically significant differences (shown in Figs. 5.6, 5.7, and 5.8). A similar

procedure was used to test whether TFS conveys phonetic content beyond what is conveyed

by envelopes for intact speech in quiet, but by pooling data across all three experiments when

constructing confusion matrices for intact and vocoded SiQuiet (versus examining effects

separately for each experiment, as was done for intact and vocoded SiB). This data pooling

across experiments was performed to improve statistical power because of the relatively high

overall intelligibility in quiet.

Table 5.1. : Phonetic features of the 20 English consonants used in this study.

Consonant Voicing Manner of
articulation (MOA)

Place of
articulation (POA) Binary POA

/b/ Voiced Stop Bilabial Front
/Ù/ Unvoiced Affricative Palatal Back
/d/ Voiced Stop Alveolar Back
/D/ Voiced Fricative Dental Front
/f/ Unvoiced Fricative Labiodental Front
/g/ Voiced Stop Velar Back
/Ã/ Voiced Affricative Palatal Back
/k/ Unvoiced Stop Velar Back
/l/ Voiced Liquid Alveolar Back
/m/ Voiced Nasal Bilabial Front
/n/ Voiced Nasal Alveolar Back
/p/ Unvoiced Stop Bilabial Front
/r/ Voiced Liquid Palatal Back
/s/ Unvoiced Fricative Alveolar Back
/S/ Unvoiced Fricative Palatal Back
/t/ Unvoiced Stop Alveolar Back
/T/ Unvoiced Fricative Dental Front
/v/ Voiced Fricative Labiodental Front
/z/ Voiced Fricative Alveolar Back
/Z/ Voiced Fricative Palatal Back

5.2.6 Statistical analysis

To examine the role of TFS in conveying speech content, the difference in the voicing,

POA, and MOA confusion matrices between intact and vocoded conditions was computed,

separately for speech in babble and speech in quiet. Permutation testing (Nichols & Holmes,

2002) with multiple-comparisons correction at 5% false-discovery rate (FDR; Benjamini &
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Hochberg, 1995) was used to extract significant differences in the confusion patterns. The

null distributions for permutation testing were obtained using a non-parametric shuffling

procedure, which ensured that the data used in the computation of the null distributions had

the same statistical properties as the measured confusion data. Separate null distributions

were generated for speech in babble and speech in quiet, and for the different phonetic

categories. Each realization from each null distribution was obtained by following the same

computations used to obtain the actual “intact - vocoded” confusion matrices, but with

random shuffling of intact versus vocoded condition labels corresponding to the measurements.

This procedure was repeated with 10,000 distinct randomizations for each null distribution.

To quantify the degree to which statistically significant “intact - vocoded” confusion

differences were replicated across the three experiments, simple Pearson correlation was used

and the p-value for the correlation was derived using Fisher’s approximation (Fisher, 1921).

Although the entries of each difference matrix are not strictly independent (which can cause

p-values to be underestimated), this p-value approximation was considered adequate given

that the individual p-value estimates were not near conventional significance criteria (i.e.,

were orders of magnitude above or below 0.05).

5.2.7 Signal-detection theoretic analysis

A signal-detection theoretic analysis (Green & Swets, 1966) was used to calculate the bias,

i.e., the shift in the classification boundary, in the average subject’s percept of voicing for

target speech in babble relative to an unbiased ideal observer (i.e., a classifier that optimally

uses the acoustics to arrive at a speech-category decision) (see Fig. 5.2). The extent to which

this bias was altered by vocoding was then quantified. This analysis was motivated by the

finding that vocoding had a significant and replicable effect on voicing confusions for speech

in babble across the three experiments in our study.

Let us define the null and alternative hypotheses for the voicing categorization performed

by listeners. Let H0 be the null hypothesis that an unvoiced consonant was presented, and

let H1 be the alternative hypothesis that a voiced consonant was presented. Let FA be

the probability of a false alarm, and HR be the hit rate. The FA and HR values for each
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experiment and condition were obtained from the voicing confusion matrix (pooled over

samples and consonants) corresponding to that experiment and condition.

The cutoff C (or decision boundary) for the average subject’s perceptual decision on

whether or not to reject H0, d′, and listener bias B (expressed as a percentage relative to an

unbiased ideal observer’s cutoff) were calculated separately for each experiment and condition

(intact versus vocoded SiB) as:

C = φ(1 − FA), (5.1)

d′ = φ(1 − FA) − φ(1 −HR), (5.2)

and

B = (C − d′/2) × 100
d′/2 , (5.3)

where φ is the inverse of the standard normal cumulative distribution.

Figure 5.2. : Illustration of a decision-theoretic quantification of speech categorization bias. x
denotes the internal decision variable. Bias is quantified as the percent shift in the average listener’s cutoff (or
decision boundary) relative to an unbiased ideal observer’s cutoff. The cutoff values for the average listener
and the ideal observer were estimated from the false-alarm and hit rates in the data.

The change in the listener bias between the intact and vocoded SiB conditions was derived

as:

Bvocoded −Bintact, (5.4)
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where Bvocoded and Bintact are the biases in the vocoded and intact SiB conditions, respectively.

5.2.8 Software accessibility

Subjects were directed from Prolific to the SNAPlab online psychoacoustics infrastruc-

ture (https://snaplabonline.com; Mok et al., 2021) to perform the study. Offline data

analyses were performed using custom software in Python (Python Software Foundation,

https://www.python.org) and MATLAB (The MathWorks, Inc., Natick, MA). Copies of all

custom code can be obtained from the authors.

5.3 Results

Figure 5.3 shows intelligibility scores for all conditions and experiments. Approximately

equal overall intelligibility was achieved for intact and vocoded SiB due to our choice of

SNRs for these conditions, based on extensive piloting. This allowed small differences in

intelligibility to be normalized without loss of statistical power. Overall intelligibility was

normalized to 60% for intact and vocoded SiB, and to 90% for intact and vocoded SiQuiet,

respectively (as described in Section 5.2.5), before examining the effects of vocoding on

voicing, POA, and MOA confusion patterns.

Figure 5.3. : Overall intelligibility (mean and standard error) measured in the online consonant
identification experiments for the different conditions and talkers. Approximately equal overall
intelligibility was achieved across intact and vocoded SiB, and across intact and vocoded SiQuiet.

Given that our data were collected online, a few different data quality checks were

conducted. The first of these examined whether subjects randomly chose a different consonant
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from what was presented when they made an error, or if there was more structure in the data.

As shown in Figure 5.4, percent errors in our data fall outside the distributions expected

from random confusions. This result suggests that the error patterns in our data have a

non-random structure, which supports the validity of our online-collected data. Moreover,

there are small differences in the percent errors for voicing, place, and manner between intact

and vocoded SiB, and also between intact and vocoded SiQuiet. These differences were further

investigated by quantifying full consonant confusion matrices for the voicing, place, and

manner categories and examining the differences in these matrices across intact and vocoded

conditions (Figs. 5.6, 5.7, 5.8, and 5.9). This allowed us to obtain a richer characterization of

the error patterns in consonant categorization (i.e., when an error was made, what consonant

was reported instead of the consonant presented, and what proportion of trials was the

alternative reported) compared to the percent error scores shown in Figure 5.4.

Figure 5.4. : Percent errors (mean and standard deviation from Experiment 1) for each
phonetic category for intact and vocoded SiB (Panel A), and intact and vocoded SiQuiet
(Panel B). The labels “Voicing”, “Manner”, and “Place” correspond to when the consonant reported differed
from the consonant presented only in voicing, manner of articulation (MOA), or place of articulation (POA),
respectively. “All V”, “All M”, and “All P” correspond to when the consonant reported differed from the
consonant presented in at least voicing, MOA, or POA, respectively (e.g., “All V” includes the following types
of errors: (i) voicing only, (ii) voicing and MOA simultaneously, (iii) voicing and POA simultaneously, and
(iv) voicing, MOA, and POA simultaneously). The expected distribution of errors under the null hypothesis
of random confusions was generated separately for Panels A and B, and with 1000 realizations each. Each
realization of each null distribution was produced by generating a Bernouilli trial with “success” probability
= 60% for Panel A, or 90% for Panel B, followed by uniform-random selection of a different consonant from
what was presented if the trial outcome was “failure”.
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To further test data quality, consonant confusions for the SiSSN condition were compared

with previous lab-based findings, since speech-shaped stationary noise is a commonly used

masker in the phoneme confusions literature. Phatak and Allen, 2007 found that for a given

overall intelligibility, recognition scores vary across consonants. They identified three groups

of consonants, “C1”, “C2”, and “C3” with low, high, and intermediate recognition scores,

respectively in speech-shaped noise. Our online-collected data for SiSSN (Fig. 5.5A) closely

replicate that key trend for the groups they identified, after matching the SNR they used.

Moreover, using a hierarchical clustering analysis (Ward Jr, 1963) of the consonant confusion

matrix (pooled over samples) for SiSSN, perceptual “clusters” (i.e., sets where one consonant

is confused most with another in the same set) were identified (shown as a dendrogram plot

in Fig. 5.5B). The clusters identified here closely replicate the lab-based clustering results

of Phatak and Allen, 2007, further supporting the validity of our online data.

Figure 5.5. : Consonant groups (Panel A) and confusion clusters (Panel B) for the speech in
speech-shaped stationary noise (SiSSN) data from Experiment 1. Panel A shows recognition scores
for our SiSSN data for the three groups of consonants, “C1”, “C2”, and “C3” that Phatak and Allen, 2007
identified as having low, high, and intermediate recognition scores, respectively in speech-shaped noise (for
a given overall intelligibility). Panel B shows the perceptual “clusters” (visualized as a dendrogram plot)
identified with our SiSSN data. Each cluster is a set where one consonant is confused most with another in
the same set. Clusters with greater than 3% probability of confusion share a color. For example, /T/ and /D/
form a cluster because they are more confused with each other than with the other consonants; moreover,
while /T/ and /D/ are less confused with the cluster comprising /f/, /v/, and /b/ than with each other, they
are even less confused with all the remaining consonants.
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After verifying data quality, the hypothesis that confusion patterns would be the same for

intelligibility-matched intact and envelope-vocoded speech in babble was tested. Figure 5.6

shows the results for voicing confusions. Vocoding altered the voicing percept for speech

in babble by changing subject bias relative to an ideal observer. In particular, there was a

greater tendency in the vocoded (versus intact) condition for the subject to be biased towards

reporting an unvoiced consonant despite envelope and place cues being largely preserved. A

detection-theoretic analysis (see Section 5.2.7) was used to quantify the decision boundary

for the average subject’s perceptual decision on whether or not to reject the null hypothesis

that an unvoiced consonant was presented. The bias or shift in this boundary relative to

an unbiased ideal observer was then quantified and compared between intact and vocoded

conditions. Intact-to-vocoded bias changes were found to be about 40%, 24%, and 19%

in Experiments 1, 2, and 3, respectively. Thus, the result that vocoding biases voicing

percept towards unvoiced consonants is replicated across Experiments 1–3, supporting the

idea that this bias effect is robust and generalizes across different babble instances. Note that

the bias change between the intact and vocoded SiB conditions was observed even though

the percent correct scores for the unvoiced and voiced categories were similar across these

conditions (i.e., the diagonal entries in Fig. 5.6 are zero after statistical testing; for the precise

number of errors, see Fig. 5.4). That is, while there were not a significantly different number

of voicing errors after vocoding, the errors in the vocoded condition were biased towards

reporting an unvoiced consonant even when a voiced consonant was presented. The errors

in the intact condition were biased in the opposite direction, causing the total number of

errors to be similar across the two conditions. This result suggests that the original TFS

conveys important voicing information even when envelope cues are intact, since degrading

the TFS led to a greater bias towards the percept of unvoiced consonants. This result also

demonstrates that independent insight can be gained into the role of TFS cues from analyzing

error patterns in consonant categorization rather than just examining transmission scores for

the different phonetic categories.

Figures 5.7 and 5.8 show the results from testing our hypothesis for POA and MOA

confusions. Although significant differences were found in the POA and MOA confusion

patterns between intact and vocoded SiB, the results were not consistent across Experiments
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Figure 5.6. : Voicing confusion-matrix differences (pooled over consonants and samples)
between intact and vocoded SiB conditions (SiB - Vocoded SiB). Overall intelligibility was matched
at 60% before computing the differences across conditions. Only significant differences are shown, after
permutation testing with multiple-comparisons correction (5% FDR). Uncorrected p-values are also indicated
for the individual matrix entries.

1 and 2, which used different instances of babble (R2 = 2 × 10−6, p = 0.99 for POA, and

R2 = 0.03, p = 0.44 for MOA). The results were replicated only when the stimuli were kept

constant, between Experiments 2 and 3 (R2 = 0.85, p = 3.77 × 10−13 for POA, and R2 = 0.94,

p = 1.44 × 10−12 for MOA). Note that the differences in POA and MOA confusions between

intact and vocoded SiB could be due to either TFS or masker-instance effects; our goal behind

using different masker instances across Experiments 1 and 2 was to extract those effects

that are not instance-specific and rather due to a true effect of TFS. However, because the

confusion-matrix differences for POA and MOA were not replicated across different masker

instances, it is not possible to disambiguate between these two effects here. Nevertheless, the

fact that these results did not generalize across different babble instances suggests that any

effects of TFS on POA and MOA reception are weak when compared to differences across

different samples of babble.

To test whether TFS conveys phonetic content beyond what is conveyed by envelopes for

intact speech in quiet, the effect of vocoding on consonant confusion patterns for the SiQuiet

condition was examined. The results (Fig. 5.9) indicate no significant effects of degrading

TFS on either voicing, POA, or MOA confusions in quiet.
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Figure 5.7. : POA confusion-matrix differences (pooled over consonants and samples) between
intact and vocoded SiB (SiB - Vocoded SiB). Overall intelligibility was matched at 60% before
computing the differences across conditions. Panel A shows full (5x5) matrices, whereas Panel B shows
simplified (binary) matrices after collapsing over front versus back places of articulation. Only significant
differences are shown, after permutation testing with multiple-comparisons correction (5% FDR).

5.4 Discussion

The present study examined the influence of TFS on consonant confusion patterns by

degrading TFS using high-resolution vocoding while controlling intelligibility to match that for

intact stimuli. The results suggest that TFS is used to extract voicing content for intact speech

in babble (i.e., even when redundant envelope cues are available). Moreover, this finding

generalized across different babble instances. However, there were no significant vocoding

effects on consonant confusions in quiet even after pooling data across all experiments; instead,

overall intelligibility for Vocoded SiQuiet was ∼90%.

The finding that TFS conveys voicing information beyond what is conveyed by envelopes

for intact speech in babble is previously unreported to the best of our knowledge. This result

deviates from the commonly held view that envelopes convey most speech content (Shannon
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Figure 5.8. : MOA confusion-matrix differences (pooled over consonants and samples) between
intact and vocoded SiB (SiB - Vocoded SiB). Overall intelligibility was matched at 60% before
computing the differences across conditions. Only significant differences are shown, after permutation testing
with multiple-comparisons correction (5% FDR).

Figure 5.9. : Voicing, POA, and MOA confusion-matrix differences (pooled across all ex-
periments, consonants, and samples) between intact and vocoded speech in quiet (SiQuiet -
Vocoded SiQuiet). Overall intelligibility was matched at 90% before computing the differences across
conditions. Only significant differences are shown, after permutation testing with multiple-comparisons
correction (5% FDR).

et al., 1995). Several acoustic cues have been implicated in the categorization of consonant

voicing, such as voice onset time (VOT), fundamental frequency at the onset of voicing (onset

F0), and the relative amplitude of any aspiration noise in the period between the burst release

and the onset of voicing (Francis et al., 2008). Of these, VOT appears to be the dominant

cue in quiet (Francis et al., 2008). However, listeners shift reliance to onset F0 when the

VOT is ambiguous in the presence of noise (Holt et al., 2018; Winn et al., 2013). Our finding

that vocoding alters the voicing percept in noise, but not quiet, is consistent with this result
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from the cue-weighting literature, and can be attributed to impaired F0 cues resulting from

TFS degradation in the vocoded (versus intact) SiB condition. Indeed, voiced sounds (unlike

unvoiced) have quasi-periodic acoustic energy reflecting the quasi-periodic vibrations of the

vocal folds; this periodicity has a fundamental frequency (F0) that is perceived as pitch (S.

Rosen, 1992). Our finding that TFS is used to extract voicing content for intact speech in

babble is consistent with the view that the pitch of complex sounds (with resolved harmonics)

is coded either via TFS (Meddis & O’Mard, 1997; B. C. Moore et al., 2006), or a combination

of TFS and tonotopic place (A. J. Oxenham et al., 2004; Shamma & Klein, 2000). Indeed,

psychophysical studies have found that melody perception (B. C. Moore & Rosen, 1979) and

F0 discrimination (Bernstein & Oxenham, 2006; Houtsma & Smurzynski, 1990) are both

better when conveyed by low-frequency resolved harmonics where the auditory nerve can

robustly phase lock to the TFS (Johnson, 1980; Verschooten et al., 2015). Our results from

directly manipulating TFS cues also corroborate previous correlational work relating model

auditory-nerve TFS coding and voicing reception in noise (Swaminathan & Heinz, 2012).

Other previous studies have suggested that low-frequency speech information is important

for voicing transmission (Li & Loizou, 2008), but the experimental manipulations they used

altered multiple cues including low-frequency place cues, slower envelopes, and possibly the

masking of more basal regions by upward spread; this makes it difficult to unambiguously

attribute their results to the role of TFS. In contrast, by isolating TFS manipulations in the

present study, these limitations were overcome.

The current study found a strong babble-instance effect on POA and MOA confusion

patterns. The effects of vocoding on these confusion patterns were not replicated when babble

instances differed between Experiments 1 and 2, but were replicated when instances were

fixed across Experiments 2 and 3. One explanation for the differences in confusion patterns

across varying babble instances is that even though the average masker modulation spectrum

was kept constant (the envelope of babble is dominated by low modulation frequencies;

Viswanathan, Bharadwaj, Shinn-Cunningham, & Heinz, 2021), there can be small variations

in the modulation spectrum of the babble masker across instances within any given short

time window. This, in turn, can cause variations in modulation masking across instances

due to the relatively short duration of each consonant. Although not directly tested, hints
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of such effects of short-term envelope statistics were also found in Phatak and Grant, 2012,

where alterations of masker modulations produced less predictable effects on consonants

than vowels. In the present study, masker-instance effects on consonant perception were

explicitly measured and confirmed. The role of short-term masker statistics should be further

examined in future studies, perhaps using computational modeling to predict instance effects

on consonant confusions from variations in modulation masking across short masker instances.

Indeed, psychoacoustic literature on speech-in-noise perception (Bacon & Grantham, 1989;

Stone & Moore, 2014), neurophysiological studies using EEG (Viswanathan, Bharadwaj,

Shinn-Cunningham, & Heinz, 2021), and and the success of current speech intelligibility

models (Dubbelboer & Houtgast, 2008; Relaño-Iborra et al., 2016) show that modulation

masking (i.e., masking of the internal representation of temporal modulations in the target

by distracting fluctuations from the background) is a key contributor to speech perception in

noise.

The fact that no significant vocoding effects on consonant confusions in quiet were found,

even after pooling data across experiments, is consistent with previous behavioral studies that

suggested that speech content in quiet is mostly conveyed by envelopes (Elliott & Theunissen,

2009; Shannon et al., 1995), and with the success of envelope-based cochlear implants in quiet

backgrounds (B. S. Wilson & Dorman, 2008). However, our finding that voicing cues are

degraded in vocoded (versus intact) SiB has implications for current cochlear implants that

do not appear to be able to provide usable TFS cues (Heng et al., 2011; Magnusson, 2011),

because babble is a masker that is ubiquitous in everyday listening environments. Indeed,

multi-talker babble, which has modulations spanning the range of modulations in the target

speech, is a more ecological masker than either stationary noise (which has predominantly

high-, but not low-frequency modulations as are present in speech) or even narrow-band

syllabic-range AM modulations imposed on stationary noise (Viswanathan, Bharadwaj, Shinn-

Cunningham, & Heinz, 2021), as were used in previous studies (Gnansia et al., 2009; Holt

et al., 2018; Swaminathan & Heinz, 2012; Winn et al., 2013). In addition to our finding here

that TFS can convey important voicing cues, there is evidence from previous studies that TFS

can also aid in source segregation (Darwin, 1997; Micheyl & Oxenham, 2010; A. J. Oxenham

& Simonson, 2009), which can lead to stronger representation of attended-speech envelopes
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in the brain that predicts intelligibility (Viswanathan, Bharadwaj, Shinn-Cunningham, &

Heinz, 2021). The effect of TFS on segregation is reflected in the present study too, where

the SNR for vocoded SiB had to be increased by 8 dB relative to intact SiB in order to

match their respective overall intelligibility values. Taken together, these results suggest that

patients with cochlear implants may benefit from improvements that allow these implants

to provide usable TFS cues for speech recognition in everyday listening environments with

multiple talkers or sound sources (Heng et al., 2011; Magnusson, 2011). This finding should

be further examined in future studies using clinical populations.

One limitation of the current study is the use of isolated CV syllables (e.g., /ba/)

rather than words commonly used in the English language (e.g., bat) to measure consonant

categorization. However, the use of CV syllables allowed us to easily standardize the context

across the different consonants (i.e., the vowel used was always /a/, and it always occurred

after the consonant), thereby eliminating any confounds between the consonant used and

condition effects (i.e., the effect of vocoding). One issue with standardizing context in this

manner is that the effect of TFS may depend on the specific context used (i.e., C/a/). Thus,

future work should explore whether such interaction effects exist. That being said, the C/a/

syllables were not presented in complete isolation; instead, a carrier phrase was used to help

guide the listeners’ attention in a manner similar to natural running speech.
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5.6 Supplementary Information

For completeness, the raw confusion matrices for all conditions and experiments are shown

in Figure 5.10.
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Expt 1 (N=95)
Expt 2 (different masker realizations

from Expt 1, N=94)
Expt 3 (same masker realizations as

Expt 2, N=97)
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Figure 5.10. : Raw confusion matrices for all conditions and experiments (pooled over samples).
Overall intelligibility was 60% for the SiB and Vocoded SiB conditions, and 90% for the SiQuiet and Vocoded
SiQuiet conditions.
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6. CONCLUSIONS

This dissertation addresses fundamental questions about the neurophysiological mechanisms

supporting speech intelligibility in everyday listening environments with interfering sound

sources and distortions. Examples of such environments include crowded streets/rooms with

multiple talkers or other sources of noise, reverberant rooms and stairwells, and non-linear dis-

tortion produced by certain speech-processing algorithms (e.g., wind-noise reduction; Launer

et al., 2016) in cell phones, hearing aids, and cochlear implants. In particular, this dissertation

investigated the mechanisms underlying scene segregation and selective attention in such

everyday environments, and the roles of different acoustic cues in supporting these processes

and in conveying phonetic content. The main findings of this dissertation and the gaps they

address are summarized in this concluding chapter. Additionally, the significance of these

findings is briefly discussed, and some future research directions are proposed.

6.1 Summary of Main Findings

6.1.1 Cortical signatures of speech-on-speech selective attention

The neural mechanisms that underlie selective attention to speech in the presence of

other competing talkers—an ability that is critical for everyday communication—are poorly

understood. Results from noninvasive electrophysiology show that low-frequency cortical

responses preferentially track the envelopes of attended speech in a mixture of sources (Ding

& Simon, 2012; J. A. O’Sullivan et al., 2014). In contrast, invasive studies show that the

power fluctuations in the high-gamma band preferentially phase lock to attended speech

more than ignored speech (Golumbic et al., 2013; Mesgarani & Chang, 2012). However,

no prior noninvasive studies had reported how the full complement of canonical brain

oscillations (Buzsáki & Draguhn, 2004) track speech sounds in a mixture of competing

sources, when attention is selectively directed to one source stream. We addressed this gap

by using electroencephalography (EEG) to systematically study the attention-dependent

relationships between input speech envelopes and the neural response in different canonical

frequency bands (Chapter 2). Consistent with previous literature, we found that brain
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rhythms in the low-frequency delta and theta bands (corresponding to the prosodic and

syllabic rates, respectively) show more phase synchrony with speech envelopes when speech is

attended versus ignored (Ding & Simon, 2012; J. A. O’Sullivan et al., 2015). Additionally, we

found that the slow power fluctuations of the gamma band selectively track the low-frequency

envelopes of attended speech, a result that had previously been reported only with invasive

recordings (Golumbic et al., 2013; Mesgarani & Chang, 2012). This result supports the view

that gamma activity plays an important role in the underlying physiological computations

that support selective listening (Ribary, 2005; Tallon-Baudry & Bertrand, 1999; X.-J. Wang,

2010) and demonstrates that non-invasive EEG can be used to measure these effects. Our

results also showed individual differences in the overall magnitude of attentional enhancement

of speech-envelope coding, which suggests that difficulty listening in noise can stem from

purely top-down factors such as attention. Finally, we also found individual differences in

the speech and EEG features (i.e., channels and frequency bands) that are most informative

about attentional focus.

6.1.2 Neurophysiological mechanisms of scene segregation

Speech, like any acoustic signal, can be decomposed into a slowly varying temporal envelope

(or modulation) and rapidly varying temporal fine structure (TFS). A leading hypothesis in

the field is that the signal-to-noise ratio (SNR) in the internal representation of envelopes of

a target speech source (relative to interfering sounds) predicts speech intelligibility (Bacon

& Grantham, 1989; Dubbelboer & Houtgast, 2008; Relaño-Iborra et al., 2016; Stone &

Moore, 2014). We tested this hypothesis using EEG and simultaneous speech-intelligibility

measurements over a range of realistic background noises and distortions (Chapter 3). Our

results provide neurophysiological evidence for modulation masking in that they showed

that EEG-based target-speech envelope encoding fidelity is shaped by masker envelopes in

a modulation-frequency-specific manner, and that this net target-envelope coding predicts

intelligibility across all tested conditions. We also found that the modulation frequencies

that contribute most to speech intelligibility in everyday listening could lie anywhere in the

full continuum from slow prosodic fluctuations to fast pitch-range fluctuations. Another
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important finding in this study is that envelope coding in central auditory neurons is shaped

not only by input envelopes, but also by the TFS. Indeed, when there are competing sound

sources, TFS cues can help segregate a target speech source from distracting sounds (Darwin,

1997; A. J. Oxenham & Simonson, 2009), which in turn facilitates attentional boosting of

target-speech envelopes (Viswanathan et al., 2019). Our results thus elucidate the acoustic

cues and scene-analysis mechanisms that shape the neural processing of a target speech sound

to predict speech intelligibility. Our results are consistent with the theory that temporal

coherence of sound elements across envelopes and/or TFS influences scene analysis and

attentive selection (Elhilali et al., 2009). Through this mechanism, those envelope and TFS

frequencies of the target that are temporally coherent with components of the masker may

get bound together (i.e., a failure of source segregation), which in turn can lead to degraded

target representation and perceptual modulation masking at those specific frequencies. A

conceptual model of speech intelligibility that integrates these ideas was proposed.

6.1.3 Computational modeling of speech categorization to test fundamental the-
ories of auditory scene analysis

Temporal coherence of sound fluctuations across different frequency channels is thought to

be important for auditory scene analysis (Apoux & Bacon, 2008; Darwin, 1997; Elhilali et al.,

2009; Schooneveldt & Moore, 1987). Prior studies on the neural bases of temporal-coherence

processing mostly focused on cortical contributions (Elhilali et al., 2009; J. A. O’Sullivan

et al., 2015; Teki et al., 2013). However, results from single-unit measurements and modeling

suggest that physiological correlates of comodulation masking release (CMR)—a temporal-

coherence-based phenomenon—may be present as early as brainstem (Meddis et al., 2002;

Pressnitzer et al., 2001). Prior studies of temporal-coherence processing also mostly used

simple non-speech stimuli. Thus, the theory that speech understanding in noise may be shaped

by aspects of temporal-coherence processing that exist in early auditory areas had not been

previously tested. To address this gap, we used a combination of computational modeling and

a psychophysical consonant-identification experiment (Chapter 4). We constructed separate

models for (i) within-channel modulation masking (Relaño-Iborra et al., 2016), and (ii)

across-channel temporal-coherence processing mirroring the computations that exist in the
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cochlear nucleus (i.e., the first auditory region that can support cross-channel processing over

a wide frequency range) (Pressnitzer et al., 2001) combined with within-channel modulation

masking. Crucially, we predicted confusion patterns in consonant categorization using each

of these models. Consonant confusions provide a richer characterization of error patterns

in speech categorization compared to percent-correct scores; thus, the use of confusion

data provides independent constraints on our understanding of scene-analysis mechanisms

beyond what overall intelligibility can provide. Despite this, confusion patterns had not been

utilized in prior studies of scene analysis. Here, by comparing model predictions to measured

consonant confusions across different listening conditions, we found that across-channel

temporal-coherence processing strongly influences consonant categorization across diverse

noises and distortions, and that physiological computations that exist as early as the cochlear

nucleus can contribute significantly to temporal-coherence-based scene analysis.

6.1.4 Roles of different acoustic cues in conveying speech content

Behavioral experiments in quiet backgrounds suggest a fundamental dichotomy in speech

perception, with envelopes conveying most speech content and TFS conveying other sound

attributes such as fundamental frequency (F0) (B. C. Moore et al., 2006; Shannon et al., 1995).

However, TFS can also influence speech intelligibility in noise, in particular, by supporting

scene segregation (Darwin, 1997; A. J. Oxenham & Simonson, 2009; Viswanathan, Bharadwaj,

Shinn-Cunningham, & Heinz, 2021). However, whether TFS can contribute to speech-in-noise

perception beyond supporting masking release, i.e., whether TFS can directly convey phonetic

content, was poorly understood. Some prior studies examined this role of TFS when envelope

cues were degraded, but did not address whether TFS cues are used for intact speech that

has preserved envelope cues (Ardoint & Lorenzi, 2010; Sheft et al., 2008). Furthermore, prior

studies used masking conditions that were not ecologically realistic (Ardoint & Lorenzi, 2010;

Gnansia et al., 2009; S. Rosen, 1992; Sheft et al., 2008; Swaminathan & Heinz, 2012); maskers

such as multi-talker babble, which has spectro-temporal characteristics similar to what may

be encountered in realistic scenarios, had not been utilized to study this problem. To address

these gaps, we measured consonant confusions for intact and envelope-vocoded speech in
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ecologically relevant multi-talker babble (Chapter 5). We found that degrading TFS cues while

controlling overall performance biased subjects towards the percept of unvoiced consonants,

despite envelope and place cues being largely preserved. This result suggests that TFS is

used to extract consonant voicing even when redundant envelope cues are available. This

finding was replicated when the babble instances were varied across independent experiments,

suggesting that the effects were robust to changes in the local statistics of the masker. This

result deviates from the commonly held view that envelopes convey most speech content.

Indeed, even though VOT appears to be the dominant cue for voicing in quiet (Francis

et al., 2008), listeners shift reliance to fundamental frequency at the onset of voicing (onset

F0) when VOT is ambiguous in the presence of noise (Holt et al., 2018; Winn et al., 2013).

Our results are consistent with these previous findings from the cue-weighting literature,

and suggest that TFS conveys voicing in multi-talker environments by contributing to the

percept (Meddis & O’Mard, 1997; B. C. Moore et al., 2006) and discrimination (Bernstein &

Oxenham, 2006; Houtsma & Smurzynski, 1990) of F0.

6.2 Significance

The findings of this dissertation can inform clinical applications, models of auditory scene

analysis, attention, and speech intelligibility, and audio technologies, as described below.

6.2.1 Implications for clinical diagnostics, individualized interventions, and as-
sistive listening devices

Difficulty understanding speech in noise can be caused by any of multiple factors. Although

peripheral hearing impairments (including sensorineural loss, conductive loss, synaptopathy,

and presbycusis) were traditionally thought to be the dominant contributor to hearing

difficulties in noisy environments, deficits in top-down cognitive function such as selective

attention (Dai et al., 2018; B. Shinn-Cunningham & Best, 2008) and working memory (Lunner,

2003) can also contribute. Indeed, the results in Chapter 2 show that even those with clinically

normal hearing exhibit individual differences in the overall strength of selective attention to

speech, and suggest that EEG measurements from an easier speech-based selective attention
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task may be used to quantify the top-down attentional contribution to individual differences in

speech intelligibility in adverse listening conditions (Choi et al., 2014). Moreover, the results in

Chapter 3 establish that the internal representation of envelopes is fundamentally important

for intelligibility across diverse realistic listening conditions, thereby lending support to

envelope-coding metrics as assays of suprathreshold hearing health (Bharadwaj et al., 2015).

Characterizing, for each individual, the factors affecting speech intelligibility (e.g., au-

dibility, temporal envelope coding, and attention) would allow for more effective, targeted,

individualized interventions to improve communication. For example, sensorineural hearing

loss can be treated with hearing aids; alternatively, cochlear implants may be used if the hear-

ing loss is severe to profound. On the other hand, those with poorer selective attention, either

from the natural variation experienced by clinically normal-hearing individuals (Chapter 2),

or due to peripheral hearing damage (Dai et al., 2018; B. Shinn-Cunningham & Best, 2008),

may benefit from cognitive aural training. Indeed, approaches such as neurofeedback training

of auditory selective attention show promise in enhancing speech-in-noise perception (Kim

et al., 2021). EEG-guided hearing aids of the future represent another approach to mitigate

selective attention issues (Fiedler et al., 2017; Fuglsang et al., 2017; J. O’Sullivan et al.,

2017; Van Eyndhoven et al., 2017). Unlike traditional hearing aids that are used to improve

audibility in patients with peripheral hearing loss, future EEG-guided hearing aids aim to

mitigate attention deficits by performing attention decoding and selective amplification of

the target sound source. Our graph-theoretic approach (Chapter 2) can be used identify the

speech and EEG features (channels and frequency bands) that are most informative about

an individual’s attentional focus in such attention-guided hearing aids of the future. More

generally, this approach can be used to identify optimal feature sets in any individualized

brain-computer interface (BCI) that requires a compact feature set.

Our consistent finding that TFS influences target-speech intelligibility in the presence of

interfering sounds (Chapters 3 and 5) has implications for modern cochlear implants that are

used to treat severe to profound sensorineural hearing loss. This is because cochlear implants

do not appear to be able to provide usable TFS cues (Heng et al., 2011; Magnusson, 2011).

Degradation to TFS (while preserving place and envelope cues) can reduce speech intelligibility

by as much as ∼55% in ecologically relevant multi-talker environments (Chapter 3), and an ∼8
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dB SNR increase is needed for TFS-degraded stimuli relative to intact stimuli in order to match

their respective overall intelligibility values (Chapter 5). This is because TFS cues can support

source segregation (Darwin, 1997; A. J. Oxenham & Simonson, 2009), thereby influencing

the encoding of attended speech in the central auditory system (Chapter 3). In addition to

this role of TFS, it also conveys speech content (in particular, voicing) for intact speech (i.e.,

with preserved envelope cues) in ecologically relevant multi-talker environments (Chapter 5).

In particular, there is a greater tendency in the TFS-degraded (versus intact) condition to be

biased towards reporting an unvoiced consonant as being heard, despite envelope and place

cues being largely preserved. Taken together, these findings have implications for cochlear

implants and other assistive listening devices.

6.2.2 Implications for models of auditory scene analysis, attention, and speech
intelligibility

The auditory periphery can convey information to the central nervous system through

both place and temporal coding (B. C. Moore, 2012). Classic models of speech intelligibility,

i.e., the Articulation Index (AI; ANSI, 1969) and Speech Intelligibility Index (SII; ANSI,

1997), emphasized audibility and the SNR of signal components at different cochlear places.

However, these approaches fail in many complex listening conditions (Kryter, 1962; Steeneken

& Houtgast, 1980). More recent models consider temporal aspects of coding. Since temporal

modulations convey important information about speech content (Shannon et al., 1995), the

Speech Transmission Index (STI; Steeneken & Houtgast, 1980) was developed to predict

speech intelligibility from how much temporal modulations of clean speech in different audio

frequency bands are degraded in the presence of noise and/or distortion. However, the STI

does not explicitly consider noise modulations, which may interfere with speech intelligibility,

and fails for non-linear distortions, including those typical of hearing-aid processing and

cell-phone denoising algorithms (Jørgensen & Dau, 2011).

In keeping with behavioral studies that suggested that modulation masking may be a key

contributor to speech understanding in noise (Bacon & Grantham, 1989; Stone & Moore,

2014), current intelligibility models are based on the fidelity (i.e., SNR) of the internal

representation of temporal modulations in the target relative to those from the background
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(which contains inherent distracting fluctuations), and have been successful over a wide range

of listening conditions (Dubbelboer & Houtgast, 2008; Jørgensen et al., 2013; Relaño-Iborra

et al., 2016). The study presented in Chapter 3 was the first, to the best of our knowledge,

to validate these models with neurophysiological evidence. Specifically, we showed that

the neural envelope-domain SNR in target-speech encoding, which is shaped by masker

modulations, predicts intelligibility over a range of realistic interfering sounds and linear

and non-linear distortions that are unseen by the predictive model. The findings of this

dissertation, however, also suggest that TFS can influence speech intelligibility. In particular,

we found that TFS can convey important speech content in everyday listening situations even

when intact envelope cues are available (Chapter 5), and that TFS influences the internal

representation of attended-speech envelopes that predicts intelligibility (Chapter 3). However,

no models consider these roles of TFS in speech intelligibility.

Our finding that both modulation masking and TFS shape target-speech envelope encoding

in the brain, which predicts intelligibility, is in line with the temporal coherence theory,

thought important in both auditory (Elhilali et al., 2009) and visual (Singer & Gray, 1995)

scene analysis. Accordingly, we proposed that envelope and/or TFS components that fluctuate

coherently are perceptually grouped together, and that masker elements that are temporally

coherent with target speech perceptually interfere even when they are in a different frequency

channel from the target. Chapter 3 describes our conceptual model of speech intelligibility

that integrates these ideas as well as the role of selective attention. In Chapter 4, we directly

tested the role of across-channel temporal-coherence processing in consonant categorization

using physiologically plausible computational modeling of within-channel modulation masking

and temporal-coherence-based across-channel modulation interference. Our modeling results

suggest that temporal-coherence processing shapes confusion patterns in speech categorization

across diverse listening conditions and that this processing may start as early as brainstem.

Our psychophysical, neurophysiological, and modeling results across Chapters 2, 3, 4,

and 5 can inform future modeling studies of auditory scene analysis, attention, and speech

intelligibility. Crucially, our series of experiments also helps bridge the speech-intelligibility

modeling literature with the separate literature on binding, source segregation, and attention,

134



to provide integrative insight into how the acoustic cues that are often considered for predicting

speech intelligibility contribute to scene analysis and target selection.

6.2.3 Implications for other audio technologies

Intelligibility models form the basis for evaluating speech-denoising strategies in audio

technologies such as cell phones, cochlear implants, and hearing aids (D. Wang & Chen, 2018).

However the models most commonly used for this purpose (e.g., short-time objective intelligi-

bility or STOI; Taal et al., 2011) have known limitations. These limitations are addressed by

more recent intelligibility models based on within-channel modulation masking (Jørgensen

et al., 2013; Relaño-Iborra et al., 2016) as well as the models proposed in this dissertation

(Chapters 3 and 4). Our proposed models are in fact more accurate than these recent models

because we account for across-channel interference in addition to modeling within-channel

effects. Indeed, the addition of across-channel temporal-coherence processing to our model in

Chapter 4 significantly improved predictions of confusion patterns in speech categorization

across all tested conditions (including vocoded stimuli; Steinmetzger et al., 2019). In addition

to their use in evaluating speech processing strategies, accurate, physiologically realistic

models of scene analysis and intelligibility can also guide source separation algorithms in

audio technologies (i.e., computational auditory scene analysis; D. Wang and Brown, 2006)

as an alternative to black-box deep-learning-based approaches. A further application of our

proposed intelligibility models is to evaluate room acoustics designs (Houtgast & Steeneken,

1985).

6.3 Future Work

There are several avenues for future research into the mechanisms of speech intelligibility

that go beyond the topics investigated in this dissertation and the specific approaches used

here. One such avenue is to integratively study scene-analysis mechanisms beyond temporal-

coherence processing (e.g., streaming mechanisms based on spatial location or frequency

separation; Bregman, 1990) within the modeling framework proposed in this dissertation.

Another direction is to investigate the relative contributions of higher-order cognitive processes
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such as working memory (Füllgrabe & Rosen, 2016), categorical perception and short-term

plasticity from changing sound statistics (Holt et al., 2018), predictive coding (Davis &

Johnsrude, 2007; Hickok & Poeppel, 2007), context (acoustic, lexical, semantic, and linguistic)

processing (McClelland et al., 2006; Stilp, 2020), and multisensory integration (Lee et al., 2019)

to speech understanding. In pursuing either of these directions, multi-pronged approaches

that use a combination of electrophysiology, behavioral, and modeling experiments to combine

findings across different stages of input processing along the auditory pathway are especially

useful to obtain integrative insight into the mechanisms of speech perception.

Although this dissertation used exclusively noninvasive human experiments, deep mech-

anistic insight can in fact be obtained from invasive neurophysiology using either clinical

populations or animal subjects. Approaches such as stereoelectroencephalography (sEEG)

and electrocorticography (ECoG) are routinely and safely used in epilepsy patients under-

going neurosurgery planning (Katz & Abel, 2019); these approaches afford greater spatial

specificity and SNR than scalp EEG for studying neural correlates of multisensory percep-

tion using these populations (Herff et al., 2020). Animal neurophysiology is particularly

useful for manipulating different internal structures and processes in order to understand the

specific conditions under which the system “breaks”; thus, this approach allows for causal

relationships to be investigated at various stages of input processing. Moreover, when used in

conjunction with carefully designed psychophysics, invasive neurophysiology has even greater

potential to inform theories and computational models of sensory processing, especially at the

cellular and network scales (Meddis et al., 2010). In cases where the experimental approach

is limited to noninvasive measurements (e.g., in non-clinical human populations), spatial

resolution in neurophysiology may be improved without sacrificing temporal resolution by

using high-density EEG and magnetoencephalography (MEG) recordings along with source

localization techniques (Hämäläinen et al., 1993).

Future human studies in this area can also benefit from the use of intervention (versus

correlational) study designs. Indeed, in addition to their use for investigating the efficacy of

treatments in clinical populations, intervention designs can also be used in basic-science studies

on the general population to infer causal relationships between different aspects of sensory

processing (e.g., working memory, attention, and executive control) and speech intelligibility.
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Results from intervention studies such as audiomotor closed-loop training (Whitton et al.,

2017), neurofeedback training for selective attention (Kim et al., 2021), working memory

training (Wayne et al., 2016), and neurostimulation (Deng et al., 2019) are also informative

about what strategies work to improve speech comprehension in everyday listening. These

studies may hence inform future aural training, either to augment treatments like hearing

aids and cochlear implants for peripheral hearing damage (Zeng et al., 2011), or to treat

central auditory processing disorders such as deficits in selective attention or working memory

(e.g., in older adults and certain clinical populations) (Musiek & Chermak, 2013).

Along the same lines, another future direction is to study clinical populations in order

to understand the effects that different kinds of peripheral hearing damage (B. C. Moore,

2007) and central auditory processing disorders (Musiek & Chermak, 2013) have on speech

recognition in noise. Studying impaired systems can provide insight into the aspects of healthy

function that matter for speech intelligibility in normal systems, and can also guide diagnostics

and strategies to treat disordered function. For example, pathological neural encoding of

sound can result from disorders such as synaptopathy (Bharadwaj et al., 2014), distorted

tonotopy (Henry et al., 2016), and age-related changes in central auditory processing (Frisina,

2010), all of which have implications for everyday speech recognition.
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