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ABSTRACT

Touch event detection investigates the interaction between two people from video record-

ings. We are interested in a particular type of interaction which occurs between a caregiver

and an infant, as touch is a key social and emotional signal used by caregivers when inter-

acting with their children. We propose an automatic touch event detection and recognition

method to determine the potential timing when the caregiver touches the infant, and classify

the event into six touch types based on which body part of the infant has been touched. We

leverage deep learning based human pose estimation and person segmentation to analyze the

spatial relationship between the caregivers’ hands and the infant. We demonstrate promising

performance on touch event detection and classification, showing great potential for reducing

human effort when generating groundtruth annotation.

Recently, artificial intelligence powered techniques have shown great potential to in-

crease the efficiency of video compression. In this thesis, we describe a texture analysis

pre-processing method that leverages deep learning based scene understanding to extract

semantic areas for the improvement of subsequent video coder. Our proposed method gen-

erates a pixel-level texture mask by combining the semantic segmentation with simple post-

processing strategy. Our approach is integrated into a switchable texture-based video coding

method. We demonstrate that for many standard and user generated test sequences, the

proposed method achieves significant data rate reduction without noticeable visual artifacts.
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1. INTRODUCTION

1.1 Touch Event Detection

Touch is a key social and emotional signal used by caregivers when interacting with their

children [  1 ]–[ 13 ]. Touch is present in an enormous amount of caregiver-infant interactions

and its presence has been found to impact infants’ attention, arousal levels, behavioral, and

emotional states [ 7 ], [ 8 ], [ 14 ], [ 15 ], as well as to reduce infants’ stress [ 2 ].

The benefits of touch on human development extend to special populations as well.

Low birthweight infants who receive more nurturing touch from their mothers were found

to have higher scores for the security of their attachments than infants who receive less

touch[ 16 ]. This can impact physiology. For example, compared to infants who did not

receive any specific therapy, low birthweight infants who received touch therapy in the form

of “Kangaroo Care” (skin-to-skin contact between the mother and the infant) were more

socially alert, and had higher scores on measures of cognitive and motor development at 6

months of age [  17 ]. Moreover, low birthweight infants who received more nurturing touch

from their mothers were less likely to show depression and anxiety at 2 years of age [ 18 ].

The positive impact of caregiver touch on low birthweight and preterm infants extends even

further into development. Studies that extend beyond infancy into childhood show that early

human tactile contact leads to lower stress, better sleep, more cognitive control, and a better

mother-child relationship [  19 ]. Furthermore, the use of touch therapies such as “Kangaroo

care” have a positive impact not only on the development of preterm low birthweight infants,

but also on their mothers’ well-being and their sensitivity towards their infants [ 17 ].

Recent work suggests that touch may not only be generally helpful to infant development

by fostering attachment [  1 ], [  16 ] and mother-child reciprocity [ 19 ], but may also be specifically

helpful to some crucial tasks in development, namely learning the input language. Speech to

infants (and to adults) does not contain clear reliable cues to word boundaries [  20 ]. Thus,

in order to learn the mapping between words and their referents the infant must first find

words in the continuous flow of human speech and remember these word units. Data from a

variety of paradigms suggests that infants do not begin to segment the speech stream until 6

to 7 months of age, and even then their abilities are still quite tenuous [  21 ]. However, recent
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data suggests that touch may be helpful for very young infants in the task of segmenting the

speech stream into words [  22 ]. In this study, 4.5-month-old who received consistent touch

cues from an experimenter were better able to segment the speech they were familiarized

with than infants who did not receive such tactile stimulation [  22 ]. This suggests a role for

touch in the formation of the protolexicon the lexicon of things that sound like words that

infants compose before they form a true lexicon (mental dictionary) –that is adult-like in

nature.

However, touch would not be useful to language-acquiring children, if they did not receive

it from their caregivers in real life interactions in a way that would aid in language acquisition.

Recent work suggests that caregivers do in fact provide their infants with touches that

are informative both about the beginnings and ends of words in continuous speech and

also about the meanings of words, at least in certain contexts. Specifically, Abu-Zhaya,

Seidl, and Cristia [ 23 ] recorded caregivers interacting with their infants in a book-reading

situation and found that caregiver touch is used in a way that might be helpful to two crucial

language learning tasks: segmenting the speech stream into words and mapping words to

their referents. They found that when interacting with their infants, mothers naturally

accompanied their speech with touch cues. Moreover, most of the touch cues (73 percent)

that mothers provided to their infants were accompanied with speech. These touches that

were accompanied by speech were found to be longer and had twice as many beats as the

touches that were not accompanied by speech. An examination of the speech that was

accompanied by touch compared to the speech that was not accompanied by touch, and more

specifically body-part and animal words, revealed that words that were spoken with touch

had a significantly higher fundamental frequency than words that were not accompanied by

touch. Moreover, most mothers’ touches were found to be temporally aligned with their

speech such that the onsets/offsets of touches and the onsets/offsets of words were often

aligned providing potential multimodal word segmentation cues. Further, the majority of the

touches produced during the production of body-part words were found to be semantically

congruent, i.e., when mothers talked about their infants’ body-parts, they were very likely

to also touch those same body parts that were evoked by their speech. For example, the

researchers found that a mother was more like to say the word “foot” when touching her
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infant’s foot than another object or body part. Thus, this congruency could be helpful to

the infant in forming her word-to-world mappings in the wild. Figure  2.20 is an example of

such touch events.

(a)

(b)

Figure 1.1. (a) An example without touch event, (b) An example where a
potential touch event has occurred.

18



Recently, researchers examining the use of touch in mother-infant interactions have em-

ployed a micro-genetic approach by frame-by-frame annotation of touch cues yielding a de-

tailed examination of maternal touches during different types of interactions [  23 ]. Using this

micro-genetic approach to examine videotaped human interactions, and annotating touch

events in this detailed fashion allows researchers to examine the richness of mother-infant

interactions and the way language is presented to the infant in alignment with various other

cues.

However this micro-genetic coding is extremely time consuming. For example, Abu-

Zhaya et al. [ 23 ]. used ELAN [  24 ] to annotate the touch events. Using their detailed

coding, it could take as much as 15 hours to annotate a series of 120 touch events in a 5

minute caregiver-infant interaction. This was so time consuming because they developed a

scheme according to which each touch event is annotated on three different tiers marking the

duration of the touch event, its location, its type and the number of beats that are involved

in that touch event. Their videos were annotated by teams of two research assistants who

watched the videos frame by frame and annotated each touch event as a team. Both research

assistants had to reach consensus on the different components of the touch event before the

annotation was complete. Not only is annotating these video interactions extremely time

consuming, but research assistants have to be trained for several hours before they can

even begin annotating the videos. Further, and in order to achieve accurate and consistent

annotation of events, each member of each team has to be attentive and detail-oriented, and

both members of each team have to be dedicated to working with one another in order to

analyze the data properly.

Hence given the importance of human touch on human development it would be helpful

for researchers studying human behavior to have a tool that can easily quantify both the

quantity and quality of human touch that infants receive. Having an automatic system

that is capable of detecting touch events would greatly reduce the amount of time spent on

manually annotating these events, and would allow researchers to devise more efficient plans

for data analyses.

This tool could be broadly applied. Developing such a tool and easily quantifying care-

giver touch to infants would be helpful for researchers interested in looking at the usefulness
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of touch in language learning as well as to researchers interested in examining the frequency

of touch provided to infants who are at risk for receiving lower levels of maternal touch.

Further, the creation of such an automatic tool might be helpful for medical teams working

with special populations and caregivers who have children with special needs. Given the

enormous benefits that caregiver touch has on the development of low birthweight preterm

infants [ 16 ]–[ 19 ], caregivers might benefit from a tool that monitors the amount of touch

they are providing to their infants to help them achieve higher frequencies of touch in the

Neonate Intensive Care Unit and beyond. Further, and due to findings showing that not

only are the duration and frequency of touch important to child development, but also the

specific functions of touch [  16 ], it is necessary to identify the different functions of touch

events – e.g. nurturing touch, soothing touch and aggressive touch, and alert caregivers on

their touch pattern in order to promote better outcomes for their infants.

An automatic system that can detect the frequency and function of human touch can

be broadly applicable to other situations in child development. Various methodological

problems make it difficult for researchers to estimate and confirm the prevalence of child

abuse in daycare and school settings [ 25 ]. However, methods like covert video surveillance

have been effective in identifying serious physical and emotional violence that would not have

been detected otherwise [  26 ]; hence, developing an automatic system that can identify touch

events quickly and classify them based on their locations, types and functions can enable a

quicker and more accurate detection of incidents of child abuse. Moreover, such a system

can be applied to an even wider range of human interactions detecting physical and sexual

abuse in the workplace and in night-clubs.

In this thesis we are interested in detecting a particular interaction between the caregiver

and the infant, namely the touch event, and detecting the moment when a touch occurs. A

touch event is defined as the time when the infant is touched by the hands of the caregiver.

Thus successfully tracking the hands of the caregiver and clearly detecting the outline of

the infant are crucial in our touch event detection. Essentially a touch will occur when the

segmented contours of the hands and the infant merge. An example of this is shown in

Figure  1.2 . We present two methods to track the position of the hands using a tracking

based method and a learning based method. We propose two Grab-Cut [ 27 ] based infant
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segmentation methods to obtain the contour of the infant. We propose a touch detection

method by analyzing the merging contours of the caregivers hands and the infants contour.

We also propose an improved automatic touch event recognition method to determine the

potential time interval when the caregiver touches the infant. In addition to label the touch

events, we also classify them into six touch types based on which body part of infant has been

touched. CNN based human pose estimation and person segmentation are used to analyze

the spatial relationship between the caregivers hands and the infants. We demonstrate

promising results for touch detection and show great potential of reducing human effort in

manually generating precise touch annotations.
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(a)

(b)

Figure 1.2. (a) An example of a frame without a touch event, (b) An example
where a touch event has occurred by detecting merging contours.
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1.2 Introduction for Texture Analysis in Video Compression

In recent years, Internet traffic has been dominated by a wide range of applications involv-

ing video, including video on demand (VOD), live streaming, ultra-low latency real-time com-

munications, etc. With ever increasing demands in resolution (e.g., 4K, 8K, gigapixel [  28 ],

high speed [  29 ]), and fidelity, (e.g., high dynamic range [  30 ], and higher bit precision or bit

depth [ 31 ]), more efficient video compression is imperative for content transmission and stor-

age, by which networked video services can be successfully deployed. Fundamentally, video

compression systems devise appropriate algorithms to minimize the end-to-end reconstruc-

tion distortion (or maximize the quality of experience (QoE)), under a given bit rate budget.

This is a classical rate-distortion (R-D) optimization problem. In the past, the majority of

effort had been focused on the development and standardization of video coding tools for

optimized R-D performance, such as the intra/inter prediction, transform, entropy coding,

etc., resulting in a number of popular standards and recommendation specifications (e.g.,

ISO/IEC MPEG series [  32 ]–[ 38 ], ITU-T H.26x series [ 36 ]–[ 40 ], AVS series [ 41 ]–[ 43 ], as well

as the AV1 [  44 ], [  45 ] from the Alliance of Open Media (AOM)[ 46 ]). All these standards have

been widely deployed in the market and enabled advanced and high-performing services to

both enterprises and consumers. They have been adopted to cover all major video scenar-

ios from VOD, to live streaming, to ultra-low latency interactive real-time communications,

used for applications such as telemedicine, distance learning, video conferencing, broadcast-

ing, e-commerce, online gaming, short video platforms, etc. Meanwhile, the system R-D

efficiency can also be improved from pre-processing and post-processing, individually and

jointly, for content adaptive encoding (CAE). Notable examples include saliency detection

for subsequent region-wise quantization control and adaptive filters to alleviate compression

distortions [ 47 ]–[ 49 ].

Modern video codecs such as HEVC [ 37 ] and AV1 [ 50 ] use hybrid coding techniques

consisting of motion compensation and 2D transform to remove spatial and temporal re-

dundancy. However, efficient exploitation of statistical dependencies measured by a mean

squared error (MSE) does not always produce the best psychovisual result. Some regions in

the frame, e.g., texture, are “perceptually insignificant” where an observer does not notice
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any difference without observing the original video sequence, but are costly to encode. Tex-

ture based approaches have been shown to improve the coding efficiency for “perceptually

insignificant” regions [ 51 ]–[ 54 ]. We explored similar ideas in our previous work [  55 ], where

we do not encode the texture regions, but instead these regions are reconstructed at the

decoder based on a motion model. A Convolutioanl Neural Networks (CNN) based texture

analyzer was developed to identify the texture regions in a frame and generates block-based

texture masks. The displacement of the entire texture region is modeled by a set of mo-

tion parameters. At the decoder, instead of performing motion compensation prediction to

reconstruct blocks in the texture region, the texture blocks are warped from the reference

frames towards the current frame using the motion parameters.

While the proposed approach in [ 55 ] can achieve a data rate saving of 1% to 13% compared

to the baseline when implemented using AV1 with satisfactory visual quality, the block-

based texture masks cannot always accurately represent the texture regions. The block-

based texture masks can be seamlessly integrated into AV1 since the common coding units

are blocks. However, it can sometimes cause noticeable visual artifacts when an identified

texture block consist of small structural region. In addition, the smallest texture block

size in [  55 ] was 32 × 32 in order to avoid detecting small moving objects, but at the same

time limits the size of identified texture regions and reduces potential data rate savings. To

illustrate this, an example is shown in Figure  1.3 where part of the bow of the white boat

and the person’s head are identified as texture region in [  55 ] since the majority of that block

is texture. The bow of the white boat and the person’s head show flickering artifacts since

they have different motion trajectory than the river. There is also some texture regions in

the river not identified due to the large block size used in the texture analyzer. The methods

proposed in this paper address both of these issues.

In this thesis, we introduce a modified switchable texture mode in AV1 and show that

the proposed method can achieve significant data rate reductions with improved visual qual-

ity. Our previous work [  55 ] using block-based texture analyzer has shown data rate savings

in texture regions. However, block-based texture mask cannot accurately represents tex-

ture regions and may cause coding artifacts. Therefore, in this thesis, a pixel-level texture

mask generation is described in this section to obtain more accurate texture masks. We
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(a)

(b)

Figure 1.3. (a) is the reconstructed frame by AV1 original codec. (b) is the
block-based mask. (c) is the reconstructed frame using block-based mask. (d)
is the pixel-level mask. (e) is the reconstructed frame using pixel-level mask.
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incorporate semantic scene segmentation into video compression by generating pixel-level

texture segmentation masks to represent “perceptually insignificant” regions in a frame and

use motion models to reconstruct the texture regions at the decoder to improve the coding

efficiency. First, we use a semantic scene segmentation method described in Section  3.3.1 to

generate masks for different semantic classes. Then in Section  3.3.2 , we describe how several

semantic classes with similar texture are grouped into four texture classes to produce a single

pixel-level segmentation mask for each texture class.

1.3 Thesis Statement and Contributions

Touch Event Detection

In this thesis, we propose an automatic touch event detection and recognition method

to determine the potential timing when the caregiver touches the infant, and classify the

event into six touch types based on which body part of the infant has been touched. We

leverage deep learning based human pose estimation and person segmentation to analyze the

spatial relationship between the caregivers’ hands and the infant. We demonstrate promising

performance on touch event detection and classification, showing great potential for reducing

human effort when generating groundtruth annotation.

The challenges of this project includes:

1. The dataset is collected in a challenging scenario where the caregiver is mostly in the

profile view. Also as the caregiver is free to interact with the infant, hand occlusion

and hand vanishing are likely to happen.

2. Some touch events are very difficult to distinguished even for human. The proposed

method aims at rejecting non-touch frames with high confidence and narrow down the

potential touch frames for human annotator to refine.

The main contributions of this thesis are listed as follows:

1. We propose a 2D hand tracking method using color and motion features with occlusion

handling.
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2. We propose a long-term 2D hand tracking method with re-initialization capability

using a hand detection network and a human pose estimation network.

3. We propose a challenging hand tracking dataset with annotations for long sequences

in which the subjects are mostly in profile view. The dataset also contains difficult

scenarios such as hand interaction, hand occlusions and hand vanishing.

4. We propose an automatic touch event detection and recognition system to determine

the potential timing when the caregiver touches the infant, and classify the event into

six touch types based on which body part of the infant has been touched.

Texture Analysis for Video Compression

In this thesis, we describe a texture analysis pre-processing method that leverages deep

learning based scene understanding to extract semantic areas for the improvement of sub-

sequent video coder. Our proposed method generates a pixel-level texture mask by com-

bining the semantic segmentation with simple post-processing strategy. Our approach is

integrated into a switchable texture-based video coding method and implementing using

the AV1 codec [ 44 ]. We demonstrate that for many standard and user generated test se-

quences, the proposed method achieves significant data rate reduction without noticeable

visual artifacts.

The challenges of this project includes:

1. Lack of annotated texture datasets. Most texture related datasets contain still images

with pure texture. Also, there is no existing image/video datasets with pixel-level

annotated for texture regions.

2. The accuracy of the texture analysis is important to video compression performance.

False positive in texture analysis will lead to compression artifacts, and false negative

in texture analysis lead to inefficient compression.

3. Lack of proper visual quality metric to analyze the compression results objectively.

The main contributions of this thesis are listed as follows:
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1. We combine semantic segmentation with optional post-processing steps to generate

pixel-level segmentation mask for texture regions in a video frame.

2. The proposed texture analysis method is integrated into a switchable texture-based

video coding method.

3. We show that for many standard test sets and user generated test sequences, the

proposed method achieves significant data rate reductions with improved visual quality.
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2. TOUCH EVENT DETECTION

2.1 Overview

There is a growing need to understand the content of videos, such as human action

recognition. Using automated methods to analyze video contents are of great interest due to

the high expense and intense labor required to perform these tasks manually. Video action

recognition datasets like UCF101 [  56 ], Hollywood2 [  57 ] have enabled improved performance

for these tasks. These datasets [  56 ], [  57 ] consist of small video clips and each video clip

has a label for type of actions. A considerable amount of literature has been published on

classifying actions in video clips and assign labels to each video clip [  58 ]–[ 60 ]. However,

recognizing pairwise human interaction and making frame level decision is still an open

problem.

In this thesis, we are interested in a particular type of human interaction known as touch,

as touch is a key social and emotional signal used by caregivers when interacting with their

children. Touch event is defined as the time when the hands of the caregiver has physical

contact with infant in the context of our work. Essentially, a touch will occur when the

segmented regions of the hands and the infant overlap. A touch event is further categorized

into one of the six touch types (head, arm, hand, torso, leg, foot) based on which body part

of infant has been touched. Thus, successfully tracking the hands of the caregiver and clearly

detecting the outline of the infant are crucial in our touch event detection.

Our method for touch detection contains three parts, the hand tracker of the caregiver,

the infant’s contour detector and the touch event detector. Figure  2.1 shows block diagram

of the analysis system.

Two method of hand tracking are described in Section 3. A tracking based method is

described in Section 3.2 and a learning based method using deep neural networks is described

in Section 3.3. The hand tracking method in Section 3.2 takes advantage of analyzing the

motion of the hand inspired from [  61 ], and deals with occlusions occurred while tracking two

hands. Section 3.3 extends the idea of using hand detection and the locations of body joints

to refine tracking results. A hand model is trained using the Faster-RCNN [  62 ].
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Figure 2.1. Block diagram of our touch event detection system.

The motion and the localization of the human hand is important in characterizing hu-

man actions in dynamic scenes. Hand tracking is used in this thesis to obtain the spatial

information of caregiver’s hands with respect to the location of the infant. Hand tracking is

very challenging due to large variation in appearance and movement compared to other body

parts. This chapter represents two hand localization method, a tracking based method is

described in Section 3.2 and a learning based method using deep neural networks is described

in Section 3.3. The hand tracking method in Section 3.2 takes advantage of analyzing the

motion of the hand inspired from [  61 ], and deals with occlusions occurred while tracking

two hands. Section 3.3 extends the idea of using hand detection and the locations of body

joints to refine tracking results. A hand model is trained using the Faster-RCNN [ 62 ]. We

use a heatmap based method called stacked hourglass network [ 63 ] to predict the keypoints

of human body. The hand position in the tracker is updated and corrected if need to based

on hand detection and body keypoints results.

2.2 Hand Tracking with Occlusion Handling

Hand tracking is an active and open research problem as it plays an important role

in other vision tasks including human computer interaction [ 64 ], human action recognition
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[ 65 ] and sign language recognition [ 66 ]. Due to the high number of degrees of freedom

in a hand and high occlusion of hands with other objects, many researchers rely on other

sensors such as depth cue [ 67 ], [  68 ] or use meanings, e.g., wearing colored glove on the

hand [ 69 ], to obtain accurate hand models. However, for many other applications, there

exists only visible imaging data. There has been much work in 2D hand tracking based

on videos captured from RGB cameras. In [  61 ], a Camshift [  70 ] method is described that

reduces tracking failures when the hand moves across other large skin-like areas by classifying

velocities. It generally works when the velocity of the hand differs greatly from other skin-

like regions and fails to track the hand when there are other skin regions moving along

with the hand at similar speed. Hand detection [ 71 ] uses hand shape, context, skin colors

and deformable part model [  72 ] to detect the hand in static images. Another method [  65 ]

combines hand detection with hand tracking and uses an upper body model to refine the

hand detection. Recent developments of hand detection in egocentric view have heightened

the need for localizing hands in RGB videos captured from wearable devices [  73 ] and in

driving scenario [  74 ]. Furthermore, tracking hand positions in long sequences is of special

interest [ 75 ], [ 76 ].

The motion and the localization of the human hand is important in characterizing hu-

man actions in dynamic scenes. Hand tracking is used in this thesis to obtain the spatial

information of caregiver’s hands with respect to the location of the infant. Hand tracking is

very challenging due to large variation in appearance and movement compared to other body

parts. This chapter represents two hand localization method, a tracking based method is

described in Section 3.2 and a learning based method using deep neural networks is described

in Section 3.3. The hand tracking method in Section 3.2 takes advantage of analyzing the

motion of the hand inspired from [  61 ], and deals with occlusions occurred while tracking

two hands. Section 3.3 extends the idea of using hand detection and the locations of body

joints to refine tracking results. A hand model is trained using the Faster-RCNN [ 62 ]. We

use a heatmap based method called stacked hourglass network [ 63 ] to predict the keypoints

of human body. The hand position in the tracker is updated and corrected if need to based

on hand detection and body keypoints results.
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The hand tracker uses color and motion features to track the position of both hands in

each frame. The hand positions are initialized by manually selecting two bounding boxes

containing each hand of the caregiver respectively in the first frame. Each bounding box

is considered as a separate independent tracker. Figure  2.2 is the block diagram for the

proposed method.

Figure 2.2. Block Diagram of the Proposed Hand Tracking Method.

2.2.1 Skin Detection

Color is an important feature in many tracking scenarios, because the color differences

of the interested objects usually within small variances. Thus color cue provides relevance

information about the target in consecutive frames. Especially for handing tracking, the

color of hands are likely to be human skin color. Skin detection is used to obtain the skin

regions the frame, and we assume that the interested points to track on hand have similar

color as the skin.

A pixel-based skin detection method is used to obtain the skin mask of the hands [ 77 ],

which classify each pixel as skin or non-skin individually. [  77 ] suggested to use the linear

quantization on each histogram since too many color bins lead to over-fitting while too few

bins results in poor accuracy. For the color model, each RGB color space is quantized from

the original 256 bins to 16 bins and is mapped into 1D 163-bin histogram. The sum of this

histogram is then normalized to one.

Since the lighting condition in our dataset is much brighter than existing public skin

datasets [  78 ], [  79 ], we use our own data to train the skin color model. The skin color model
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is trained using 240 frames from videos with different pairs of caregivers and infants. All

skin regions are manually segmented as ground truth skin pixels in every training frame,

the remaining pixels are treated as non-skin pixels. Figure  2.3 shows examples of skin mask

ground truth in our dataset.

(a) (b)

(c) (d)

Figure 2.3. Examples skin masks ground truth in our dataset, (a) and (c)
are the original images, (b) and (d) are the corresponding skin mask ground
truth.

The probability of the skin class and non-skin class are defined as follows[ 77 ]:

P (RGB|skin) = s(RGB)
Ts

(2.1)

P (RGB|nonskin) = n(RGB)
Tn

(2.2)

where s(RGB) represents the number of skin pixels in the histogram and n(RGB) represents

the non-skin pixel counts in the histogram. Ts and Tn are the total counts contained in the
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skin and non-skin histograms, respectively. A color pixel is considered as skin pixel when it

satisfies:
P (RGB|skin)

P (RGB|nonskin) > Θ (2.3)

where

Θ = C · Tn

Ts

(2.4)

Θ is a threshold which can be adjusted for trade-off between correct detections and false

positives. C is an adaptive parameter. The value of C varies with different skin tones or

lighting conditions.

We divide 240 images to four subsets and 60 image each, then perform a four-fold cross

validation on the performance of the skin detection. Table  2.1 shows the cross validation

results. And we use the second color model with the highest precision score in our system.

Table 2.1. Skin Detection Results

Training Set Testing Set Precision Recall
Subsets 1,2,3 4 89.04% 68.22%
Subsets 1,2,4 3 90.80% 71.37%
Subsets 1,3,4 2 85.01% 74.55%
Subsets 2,3,4 1 86.70% 77.66%

In our experiments described below we empirically choose C (and hence Θ) such that the

detected skin regions compared favorably to the training data skin masks. We then used a

morphological opening with window size 3 and a constant structuring element on the output

of the pixel-based skin classifier to reduce isolated and small skin regions. Figure  2.4 (b)

shows the skin detection result of a sample frame in Figure  2.4 (a)
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(a)

(b)

Figure 2.4. (a) Original image, (b) Skin color detection, white pixels repre-
sent skin region, black pixels represent non-skin region.
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2.2.2 Hand Motion Analysis

Motion Prediction using Optical Flow

The motion of the hand is analyzed using optical flow [ 80 ] and the Lucas-Kanade registra-

tion method on the keypoints that represent the hand luct81. The optical flow estimation

is based on the relationship between the searched motion field at time t and the image at

t. The most widely used assumption is that pixel intensity remains constant between con-

secutive frames. The pixel intensity at the point (x, y) in the image at time I is denoted

I(x, y, t), with the assumption that the pixel intensity does not change, we can write

I(x, y, t) = I(x + dx, y + dy, t + dt) (2.5)

Where (dx, dy) is the displacement in the next frame after dt time. Using chain rule for

differentiation, we get:
∂I

∂x

dx

dt
+ ∂I

∂y

dy

dt
+ ∂I

∂t
= 0 (2.6)

The image gradients are fx and fy :

fx = ∂I

∂x
; fy = ∂I

∂y
(2.7)

If we let:

u = dx

dt
; v = dy

dt
(2.8)

In order to solve the optical flow equation  2.6 with two unknowns u and v, we use the Lucas-

Kanade registration method luct81. The Lucas-Kanade method takes the assumption that

neighboring pixels have similar motion, it takes a 3 by 3 pixel window around the point and

all the 9 points have the same motion. The least square is used to obtain a solution for two

unknowns using 9 equations. The final solution is:

u

v

 =

 ∑
i f 2

xi

∑
i fxifyi∑

i fxifyi

∑
i f 2

yi


−1 − ∑

i fxifti

− ∑
i fyifti

 (2.9)
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We find the Harris corners [  81 ] inside the hand bounding box and the points on the

contour of the hand skin mask and use them as keypoints. The Harris corners are obtained

by finding the difference in intensity for a displacement in all directions. A point is considered

as a corner point that shifting a window in any direction should yield large change in intensity

in that window. The skin mask is obtained using our skin model. By obtaining the optical

flow of keypoints using the iterative Lucas-Kanade technique with a pyramid luct81, [  82 ],

the predicted positions of the keypoints on the next frame can be found. The pyramid

structure uses a 3 level pyramid from coarse to fine. Figure  2.5 illustrates motion analysis

for keypoints and the trajectories for 10 frames.

Figure 2.5. Zoomed in view of the trajectories of detected keypoints in 10
consecutive frames.

Keypoints Update

The hand bounding box is updated based on the remaining keypoints after discarding

outliers using the velocity and skin color tests described below. Where the velocity [  61 ] is

defined as the Euclidean distance between the keypoints’ location in the previous frame and

the predicted position in the current frame.
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The average velocity vavg is the arithmetic average of the velocity of all keypoints. The

velocity test is:

|v − vavg| 6 2vstd (2.10)

where v is the velocity and vstd is the standard deviation of the velocity. Any keypoint that

falls outside of the above range are considered an outlier and is discarded. The skin color

test checks whether the predicted position of keypoints are on the current skin mask. If not,

these keypoints are discarded because we assume the hand is in the skin regions. The new

hand bounding box is the smallest rectangle that contains all the remaining keypoints. New

keypoints used for motion analysis are the Harris corners and the contour points inside the

new bounding box.

2.2.3 Occlusion Handling

Occlusion handling is a challenging problem in object tracking. It is even more difficult

in hand tracking, because the hand has a non-rigid shape. In our work, the caregivers

are allowed to freely move their hands. Thus, the caregivers often move their two hands

together, for example a handclap. The problem then becomes how to keep track of two

hands respectively after they separate.

We propose a method to handle occlusion by using the merge and split concept [ 83 ].

Figure  2.6 shows the flow chart of this method. We define a hand flag that indicates whether

the two hands are together. In the hand initialization step, we manually select two hands

and set the hand flag to 1. The hand tracker described above provides the hand position

and the centroid of each hand can easily be obtained. When two hands are approaching,

the centroids of hands are also getting closer. A merge happens when the centroids of two

hands become one point. When it occurs, the hand flag is set to 0. In our experiments the

threshold for the merge and split is set to 50 pixels and was empirically determined.
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Figure 2.6. Flowchart of the merge and split method.

After the two hands merge together, the independent trackers are tracking the same

region. The hand trackers not only track the contour points for largest skin region, but also

search for the second largest skin region. Once the Euclidean distance between the centroid

of the largest skin region and the centroid of the second largest skin region is greater than

the threshold, a split occurs. The one tracker tracks the largest skin region and the other

tracks the second largest skin region. The hand flag is then set back to 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7. Examples frames of an example of two tracker occulsion occurs
and succefully sperater by merge and split.

41



The two hands merge and split method proposed above works for most of occlusion cases

we have observed because hands represent large skin regions in the scene. However, the

hand tracker fails in some special cases. For example, during the splitting of two merged

hands, one hand may be fully occluded by objects other than the hand. Figure  2.8 and  2.9 

illustrates two example failing cases.

Figure  2.8 happens when the a non-hand skin region is large enough for splitting after a

merge. This type of errors would happen in the situations that the caregiver is interacting

with the infant. And this tracker is not able to distinguish the whether the skin region

belongs to the caregiveri hands or other skin regions like the infant’s hands.

Figure  2.9 shows another failing case that one hand is highly occluded and the split is

not happening while the two hand are actually separating. Incorrect decision of the splitting

time will lead the tracker fails in subsequent frames.

(a) (b)

Figure 2.8. Example of failing cases using occlusion handling.
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(a)

(b)

(c)

Figure 2.9. Example of failing cases using occlusion handling.
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2.3 Long Term Hand Tracking

A considerable amount of literature has been published on adapting hand tracking with

most popular tracking frameworks, for example Camshift [  61 ]. These methods works well

under the condition that hand trajectories are simple and without much occlusion. The major

shortcoming of these methods is that the tracker cannot be re-initialized if it fails. However,

due to the high number of degrees of freedom in a hand and the frequent interactions between

the caregiver and the infant, the previous describes hand tracker would drift if the tracking

error propagated from frame to frame. Thus, it is important to design a hand tracker that

can accurately re-initialize the hand positions.

Several attempts have been made to integrate hand detection into tracking schema. A

hand detection method which selects hand proposals from hand shape, context and skin

color based on the deformable parts model [  72 ] in static images was introduced in [  71 ]. The

same method was used in [ 65 ] with an upper body detection in tracking to refine the hand

positions in videos. Hand models trained using neural networks were proposed in [  84 ], [  85 ]

to solve different vision tasks. Automatic human pose estimation also shifted from classical

methods like graphical models to deep neural networks. DeepPose [  86 ] is one of the earliest

deep-learning based method to estimate human poses which uses a convolutional architecture

to directly regress the coordinates of joints. In [  87 ], a structural heat map is predicted to

characterize the probabilities of joints at different locations through multiple resolutions.

Our method for long term hand tracking extends the idea of using hand detection and the

locations of body joints to refine tracking results. A hand model is trained using the Faster-

RCNN [  62 ]. In addition, we use a stacked hourglass network [  63 ] to predict the keypoints of

human body. The hand position in the tracker is updated and corrected if need to based on

hand detection and body keypoints results.

Initialization

The hand positions and an approximate center of the human body in the first frame

are manually initialized to yield an accurate starting point. No additional manual input is

needed to track the hand position in the rest of the video. We assume that both hands are
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visible in the first frame and we provide a simple interface that allows users to manually

draw hand bounding boxes using a mouse with a click and drag action. Each hand bounding

box is treated as an independent hand tracker. The center of the body can be determined

directly by clicking on the approximate center of the person. It is used as an input to the

human pose estimator.

2.3.1 Hand Tracker

The hand tracker uses color and motion features to select and track keypoints in each

frame. Due to the lack of feature points in small hand bounding boxes, instead of using SIFT

features [  88 ] to detect keypoints, our tracker uses contour points and Harris corners [  81 ] to

preserve temporal information. Contour points are generated using a pixel-based skin detec-

tion method [  77 ]. Previously, we used merge and split concept [ 83 ] to handle occlusion [  89 ].

However, tracker re-initialization was not addressed which became problematic for longer

videos if the track cannot be recovered and errors can propagate from frame to frame. In

this method, we can recover the tracker in subsequent frames based on the information from

the hand detector and wrist position estimator which will be explained in Section  2.3.4 .

2.3.2 Hand Detection

Overview of Object Detection Methods

Object recognition is one of the hottest research topics in computer vision. Object

recognition contains the problems of detecting, localizing and classifying generic objects

in static images. It is a challenge problem because the high variations of the appearance in

one object category, for example the view point variation. PASCAL VOC (Pattern Analysis,

Statistical Modeling and Computational Learning Visual Object Classes)[  90 ] ran challenges

evaluating performance on object class recognition from 2005-2012. It contains 54,000 objects

in 22,000 images and a total of 20 object classes. Since 2010, the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [ 91 ] has been used as a standard benchmark for evaluating

large-scale object recognition performance. It contains 1.2 million training images, 50,000
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validation images and 100,000 test images of 1000 object classes. We review some popular

object detection methods that are worth mentioning.

Deformable Part Models: Deformable part models(DPM) [  72 ] uses Histogram of

Oriented Gradients (HOG) as feature and SVM as classifier. DPM computes HOG feature

of the whole image at multiple resolutions. Each object model contains root filter and part

filters. The filter score of each sub-window of the feature pyramid is compute, and it is

the dot product of filter and feature vector. The final score is sum of filter scores minus

deformation costs. DPM reach 49% average precision for person detection on PASCAL

VOC 2007. It was the state of art object detection method before the deep neural networks.

Figure  2.10 illustrates the flowchart of the deformable part models. Figure  2.11 illustrates

an example of the feature pyramid.

A DPM based hand detection method is proposed by [  71 ]. This hand detection using

DPM for hand shape and hand context, and use a super-pixel based non-maximum suppres-

sion to obtain the final hand hypotheses.

Figure 2.10. Flowchart of the deformable part models.

R-CNN: Regions with CNN features [ 92 ] show that a Convolutional Neural Networks

can lead higher object detection performance on PASCAL VOC as compared to systems

based on HOG-like features. R-CNN use a process called Selective Search to generate bound-

ing boxes of different sizes. A modified version of AlexNet [  93 ] is used as backbone network

to pass those bounding boxes into network and SVM is used as object classifier. The final

step of R-CNN is to refine the bounding box size using a linear regression model. Figure

 2.12 shows the R-CNN detection system.
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Figure 2.11. A feature pyramid and an instantiation of a person model within
that pyramid. The part filters are placed at twice the spatial resolution of the
placement of the root. [ 72 ]

Figure 2.12. R-CNN object detection system overview. [ 92 ]

Fast R-CNN: R-CNN works quite slow because it requires a forward pass of the CNN

for every proposed bounding box(around 2000 bounding boxes for one image). Additionally,

R-CNN need to train the feature generation network, the classifier that predict class and

the regression model separately. In Fast R-CNN [  94 ], Region of Interest(RoI) Pooling is

introduced which shares the forward pass for an image across its subregions. Faster R-CCN
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also used a single network to extract image features, classify objects and regress bounding

boxes. Figure  2.13 shows the Fast R-CNN detection system.

Figure 2.13. Fast R-CNN object detection system overview. [ 94 ]

Faster R-CNN: In Faster R-CNN [  62 ], the proposal selection process Selective Search

has been replaced. A single CNN is used for region proposals and classification. The bound-

ing boxes are generated by Region Proposal Network which is a fully convolutional network

on top of the features of the CNN. The Region Proposal Network passes a sliding window

over the CNN feature and output k potential bounding boxes with confidence scores, where

k is the number of anchor boxes.

Hand Detection in Our System

We use the Faster-RCNN, which is a powerful object detection network [ 62 ], to generate

hand hypotheses in each frame. The network consists of a feature extractor, a region proposal

network and a softmax classifier. We choose Zeiler and Fergus (ZF) [  95 ] as the feature

extractor when train the hand model. Then the region proposal network provides hand

proposals and the softmax classifier gives a confidence score ranging from 0 to 1 for each

detected hand. A comprehensive hand dataset collected from several different public image

datasets [  71 ] is used to train the hand model. This dataset contains 13,050 annotated hand

instances, about 4,170 of them are high quality hand instances where the annotated bounding
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Figure 2.14. Faster R-CNN object detection system overview. [ 62 ]

boxes contain more than 1,500 pixels. Figure  2.15 illustrates example hand detection results

using Faster-RCNN.

(a) (b)

Figure 2.15. Examples of hand detection results with confidence score greater
than 0.9 on the Oxford hand dataset [ 71 ]
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2.3.3 Human Pose Estimation

Overview of Human Pose Estimation

A key step toward understand people in images and videos is accurate pose estimation

[ 63 ]. A good pose estimation system need to be robust to occlusion and invariant to changes

in appearance due to clothing or lighting condition. Early researches focus on part based

models[ 96 ]–[ 98 ] or pictorial structures [  99 ], [  100 ]. Recent human pose estimations has shifted

from classical methods like graphical models to deep neural networks.

DeepPose [  86 ] is one of the earliest deep-learning based method to estimate human poses

which uses a convolutional architecture to directly regress the coordinates of joints. [  86 ] also

propose a cascade of DNN-based pose predictor which refines the joint predictions by using

higher resolution sub-images. In [  87 ], a structural heat map is predicted to characterize the

probabilities of joints at different locations through multiple resolutions. They uses a deep

ConvNet and a graphical model.

The stacked hour glasses [ 63 ] combing features across different resolutions without using

any graphical model or any pictorial structures. The hour glass is constructed in a bottom-

up, top down fashion. The final architecture contains two hour glasses stacked end-to-end

with intermediate loss. The first hourglass predicts an initial set of heatmaps upon which

apply a loss. Then, the second hourglass processes these high level features again across

all scales to further capture higher order spatial relationships, which is critical to the final

performance. Figure  2.16 shows the architecture of stacked hour glasses.

Figure 2.16. Stacked hour glasses architecture [ 63 ]. Each box is a residual module
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Human Pose Estimation in Our System

Human pose estimation is used to obtain the possible location of joints, in particular

locations of wrists. We assume the actual hand positions are near the wrist if the human

pose estimator is accurate. The Stacked Hourglass Network is used because it has shown good

performance in locating elbow and wrist [  63 ] . The network consists of multiple repeated

encoder-decoder architectures that capture information across all scales.

We use a pre-trained model that was trained on the MPII Human Pose dataset [  101 ]. The

MPII images contain center and scale annotations, thus we need to determine an approximate

center and scale S for the human body as inputs to the human pose estimator. During the

initialization step, we manually select the center of the body and two hand bounding boxes

Bi where i = 1, 2. The width and height for each hand bounding box are denoted as

Bi = {wi, hi}. We assume a linear relationship between the scale S and the selected hand

area, as stated in Equation  2.11 .

S = a
√

0.5
∑

i=1,2
(wi × hi) + b (2.11)

We tested the human pose estimator with the initialization step on a subset of the MPII

test images to obtain proper values for coefficients a and b, which are set to 0.06 and 1.5

accordingly for the image resolution of 1280×720. Scale S need to be adjusted linearly with

the image resolution.

2.3.4 Combining Multiple Proposals

The hand tracker provides one hand hypothesis for each tracker based on temporal infor-

mation, while the hand detector gives proposals that are greater than a certain confidence

score. The human pose estimator provides possible locations of wrists.

To detect and re-initialize the current hand track position, we look for instances when

both the hand detector and the human pose estimator return a strong hand hypothesis that

is not in agreement with the current tracker position. Instead of using a high recall random

forest classifier [  76 ] as the hand detector, we set the threshold of the confidence score for

the hand detector to 0.9 to maintain a high precision to enlarge the probability that the
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re-initialization happens at the true hand position. The hand position is re-initialized when

the predicted wrist is inside a valid hand detection proposal. i.e., a confidence score greater

than 0.9. If there are multiple valid hand detection proposals, we pick the one with the

highest confidence score. Figure ?? shows the re-initialization process which selects the best

candidates from several hand proposals with joints information.

2.4 Graph-Based Method For Infant Segmentation

Graph-based image segmentation techniques generally represent the problem in terms

of a graph G = (V, E) where each node vi ∈ V corresponds to a pixel in the image, and

the edges in E connect certain pairs of neighboring pixels. A weight is associated with each

edge based on some property of the pixels that it connects, such as their image intensities.

Depending on the method, there may or may not be an edge connecting each pair of vertices.

A graph-partitioning method attempts to organize nodes into groups such that the intra-

group similarity is high and the inter-group similarity is low. A Cut which partitions the

graph or subgraph into two disjoint sets A and B = V − A is sometimes defined as a total

weight of the removed edges:

cut(A, B) =
∑

u∈A,v∈B

w(u, v)

A key challenge is to find the minimum cut.

2.4.1 Pixel-wise Grab-Cut Infant Segmentation

We use Grab-Cut [  27 ] to detect the contour of the infant in every frame of the video

sequence. Grab-cut segmentation is an iterative method based on Graph-Cut[ 102 ], which is

described by the Gibbs energy:

E(x) =
∑
i∈I

D(xi) + λ
∑

i∈I,j∈Ni

V (xi, xj) (2.12)

where i is a pixel that belongs to image I, Ni is the neighboring pixels of i, xi takes on

the value of 0 for sure background, 1 for sure foreground, 2 for probably background, and 3
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for probably foreground. D(xi) is the data term, and V (xi, xj) is the smoothing term. The

data term D(xi) is modeled by a Gaussian Mixture Model (GMM), where we estimate the

probability distribution of the background and the foreground. A mask is generated by the

user that marks the foreground as RGB color white (255, 255, 255), background as RGB color

black (0, 0, 0), and the unknown region as a RGB color different than black and white. Based

on this initial graph, the Grab-Cut method finds a minimum cost to the energy function.

A zoomed in view of the original image and its mask image is shown in Figure  2.17(a) and

 2.17(b) . The infant segmentation can be seen in Figure  2.17(c) .

(a) (b) (c)

Figure 2.17. (a) Original image (b) Infant mask (c) Infant Contour.

Background and Foreground Updates

As the initial mask is obtained from the first frame of the video, the mask need to

be update for later frames. Morphological operations, erosion and dilation, are conducted

on the result of previous frame to generate the mask denoting the sure foreground region,

sure background region, probable foreground region, and probable background region of the

current frame. The kernel for the erosion and dilation are decided based on the addition of

the average velocity from the motion analysis to a fixed given base kernel size.

The result of the previous frame is first converted into a binary image, and processed by

a morphological closing with kernel size 3 × 3 to fill the interstitials and smooth the borders.

Then erosion and dilation operations for the current frame are conducted to generate the

probable foreground and probable background regions. The intersection of the sure back-

ground from the current mask and the the region after dilation is set to probable foreground.
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And the sure foreground is refined by the intersection of the current sure foreground and

the region after erosion operation. Figure  2.18(b) shows the erosion and dilation operations

on the infant segmentation using the GrabCut result from the previous frame shown in

Figure  2.18(a) .

(a) (b)

Figure 2.18. Morphological Operations on Infant Segmentation

2.4.2 Superpixel Grab-Cut Based Infant Segmentation

Instead of doing a pixel-wise Grab-Cut in previous method, we are using a simple linear

iterative clustering (SLIC)[ 103 ] as the initial segmentation tool to obtain the superpixels for

the frame. The SLIC method computes a local clustering of pixels in 5D space consisting of

L, a, b values from CIELAB color space and x, y pixel coordinates. The sure foreground in the

mask is obtained using joint locations of the infant from the human pose estimation in section

3.3.3. We connect the joints to obtain a skeleton mask as the sure foreground. The sure

background mask is manually initialized as described in previous method. The intersection

of the sure background and the sure foreground will be set to probable foreground. Figure

 2.19 shows the infant segmentation result using this method.

The super-pixel Grab-Cut method with updated mask using joint information is more

robust to the movement of the infant. Because the foreground mask is update in each frame

using the pose estimation results for the infant.
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(a)

(b)

(c)

Figure 2.19. (a) Original image with skeleton (b) Infant mask (c) Infant Contour.

2.5 Proposed Touch Detector Method

After obtaining the caregiver’s hands position and infant’s contour from the hand tracker

and baby detector in each frame, a touch event can be defined as the time period during

which contours merge. We examine each hand of the caregiver with the infant’s contour

separately. Once a hand touches the infant, the contour of the hand and the contour of the

baby will merge into one contour. When this situation occurs, we can declare that a touch
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event has occurred. The same method is used to detect whether a touch event has occurred

for the other hand. Either hand touching the baby will result in a touch event detection and

labeling that frame as a touch event. Figure  2.20 (a) shows a frame without a touch event,

and Figure  2.20 (b) shows an example of a potential touch event by detecting the merging

contours of the hands and the infant.

(a) (b)

Figure 2.20. (a) An example of a frame without a touch event, (b) An
example where a potential touch event has occurred by detecting merging
contours.

2.6 Improved Touch Detection Method

The proposed improved touch detection method performs two tasks: (1) identify a frame

is touch or non-touch by checking whether the hand segments of the caregiver overlap with the

infant segment, (2) classify a detected touch frame into six different touch type classes based

on the spatial relationship between keypoints on caregivers’ hand and infant body parts.

The overview block diagram is shown in Fig.  2.21 . Hand segment updates are introduced in

Section  2.6.1 , infant segmentation is described in Section  2.6.2 , and touch detection decision

is described in Section  2.6.3 .

2.6.1 Hand Location

The pose estimator [  104 ] we used is trained on Microsoft COCO [  105 ] dataset and a foot

dataset [ 104 ] with a total of 25 joints. After obtaining wrist and elbow position from the

pose estimator, the hand joints detector [  106 ] is applied by assuming hand is located at an
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Figure 2.21. Improved touch detection block diagram

extend region of forearm in the same direction, we denote as Icrop ∈ Rw×h×3. The hand

joints detector h(·) maps cropped hand region Icrop to N joints locations xn associated with

a score cn, where N is 21 in this model. An example of human pose estimation and hand

joints estimation are shown in Figure  2.22 , where joints information for infant will be used

in Section  2.6.2 and Section  2.6.3 . We say a hand joint is detected if Equation  2.13 is equal

to one, where 1(·) is an indicator function, α and β are empirically set to be 0.5 and 10,

respectively.

Conf idence = 1((
∑

n∈[1...N ]
1(cn > α)) > β) (2.13)

We extend the tightest bounding box enclosing all hand joints ten pixels in horizontal and

vertical direction, and use the extended rectangular as the hand bounding box. If the

detected hand is not confident or the pose estimation does not provide wrist or elbow position,

then a feature based tracking method is enabled to continue updating hand position. The

hand tracker uses color and motion features as keypoints to track in each frame. Due to the

lack of feature points in small hand bounding boxes, instead of using SIFT features [  88 ] to

detect keypoints, our tracker uses contour points and Harris corners [  81 ] to preserve temporal

information. Contour points are generated using a pixel-based skin detection method [ 77 ].

Similarly, the final hand bounding box is the extended rectangular enclosing all keypoints.
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The hand tracker is disabled when a confident hand joints prediction is available. The final

hand segment is obtained by applying skin detection inside the hand bounding box.

Figure 2.22. Human pose estimation and hand joints estimation

2.6.2 Infant Segmentation

Mask-RCNN [  107 ] is trained on Microsoft COCO [ 105 ] and is used to generate infant

segmentation. Infant body parts may be occluded by caregiver or other objects during their

interaction, and Mask-RCNN tends to exclude the occluded region, an example is shown

in Figure  2.23(b) . However, excluding occluded region is not consistence with the way we

detect touch event. Thus, we proposed a temporal refinement to recovery the occluded

region. We use the confidence score of infant joints to assess the confidence of an infant

segmentation by assuming when parts are missing in the infant segmentation, the confident

score of occluded joints is also low. Equation  2.13 is used to determine whether a infant

segmentation is confident, where α and β are empirically set to be 0.3 and 20 respectively,

and cn is the confidence score for a infant joint here. An invalid infant segmentation at t1 is

recovered by using a confident segmentation from previous frame at t0 as shown in Figure

 2.23(c) .
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(a) (b) (c)

Figure 2.23. Infant segmentation temporal refinement, (a) valid infant seg-
mentation at time t0 (b) occluded segmentation at time t1 (c) infant segmen-
tation recovered by temporal refinement at time t1.

2.6.3 Touch Detection

The proposed method makes decision to label a frame as “touch” or “non-touch” first, and

then assigns a touch type label Li to detected “touch” frame based which part of infant body

has been touched, where Li ∈ {“head”, “hand”, “torso”, “arm”, “leg”, “foot”} and i is the

index. Whether touch occurs in a given frame is determined by checking if caregiver’s hand

segments, obtained from Section  2.6.1 , overlap with the infant segmentation from Section

 2.6.2 .

To classify touch type, we analyze the spatial relationship between caregiver’s hands and

infant body parts. We define six infant body parts corresponding to six touch type labels,

and each part contains a set of limbs, where limbs are pairs of adjacent joint points belongs

to that part. For example, left elbow and left wrist are a pair of adjacent joint points, they

form the limb left forearm and belongs to the part “arm”. We use a straight line connecting

from one joint to another to fit the body limbs, and using a set of points to represent the

fitted line, they are linearly spaced in 0.1 pixel in horizontal direction. Then for a given

frame I, there are sets Si for i ∈ [1 . . . 6] contains fitted points for each part respectively to
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represent infant body parts. We evaluate the Euclidean distance of joint points of caregiver’s

hands to infant body parts. For each hand point xn, we get a label zn using Equation  2.14 .

zn =i ‖xn − xp‖2
2 , ∀xp ∈ Si (2.14)

The final touch type is determined as the majority vote of zn, where n ∈ [1 . . . N ], and N is

the total number of caregiver’s hand points.
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2.7 Experiments

2.7.1 Hand Tracking Experiments

Dataset and Evaluation Metric

The proposed hand tracker with automated re-initialization is tested on a public dataset

and on our own dataset. The public dataset [  108 ] contains three sequences, one sequence is

2000 frames and the other two sequences are around 400 frames. Furthermore, only a single

person appears in each video and his two hands are visible in frontal view for most of the

frames.

Our dataset contains five long video sequences (2500 frames each) with a more challenging

setting where the caregiver is mostly in the profile view. An infant is also present in the

video, adding more complexity to the dataset for tracking hands. In addition, the caregiver

is free to interact with the infant, hand occlusion and hand vanishing are common in these

videos. These videos were acquired from different pairs of caregivers and infants at different

times and dates under the same recording settings. The recorded videos have a resolution

of 1280 × 720 at 30 fps. In each image, two hands of the caregiver are annotated. If the

hand can be perceived clearly by human, the annotations consist of a axis-aligned bounding

rectangle for each hand. If the hand is not observed, we annotate the hand is not visible on

that frame. Figure  2.29 shows sample frames from both dataset.

The intersection over union score is used for evaluation, a score lower than 0.5 is consid-

ered as a tracker error.

IoUscore = Area(boxtracker ∩ boxgroundtruth)
Area(boxtracker ∪ boxgroundtruth) (2.15)

We also compute the F-measure for comparing tracking accuracy among different meth-

ods.

F -measure = 2TP

2TP + FP + FN
(2.16)
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(a) (b)

(c) (d)

Figure 2.24. Examples frames from two datasets, (a) and (b) are from [  108 ],
(c) and (d) are from our dataset.

Experimental Comparison Results

We compared the proposed hand tracking method to an image based method [ 71 ] and a

semiautomatic method [  109 ] which allows a user to manually correct the hand position when

tracker fails throughout the video. Our results, shown in Table  2.2 , improved significantly

compared to the hand detection method. Our method also performed comparably to the

semiautomatic method with manual hand re-initialization for the two shorter videos, i.e.,

dataset1 and dataset2 and showed improved performance for dataset3 which contains a

longer video.

We also tested the proposed hand tracking method on a more challenging dataset of our

own which contains 5 videos of more than 2000 frames each. In this dataset, the hands of

the caregiver is often occluded when interacting with the infant. Another challenge of this

dataset is that only the side view of the caregiver is captured where there are limited views

of the hands and one hand is mostly occluded by the other hand posing significant difficulty
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Table 2.2. Tracking Results from dataset [ 108 ]

Name Length Mittal etc.
[ 71 ]

Beugher etc.
[ 109 ] Ours

Dataset1 403 85.0% 95.76%
(manual) 94.95%

Dataset2 492 46.5% 92.75%
(manual) 89.41%

Dataset3 2000 - 88.31%
(manual) 90.54%
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is tracking that hand. The performance on our dataset is shown in Table  2.5 . Results shown

in column 3 of Table  2.5 was obtained by using the hand tracking method described in [  89 ].

Table 2.3. Tracking Results from our dataset
Name Length Chen [ 89 ] Ours

Sequence1 2500 20.41 % 75.77%

Sequence2 2500 29.36 % 80.70%

Sequence3 2500 29.45 % 76.24%

Sequence4 2500 26.37 % 72.41%

Sequence5 2500 4.61 % 82.96%

Avg - 22.04 % 77.62 %

Our method significantly outperformed the method described in [  89 ], where tracking

errors are more prominent in longer videos without re-initialization . Sample tracking results

for both datasets are shown in Figure  2.25 and Figure  2.26 .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.25. Sample tracking results for the public dataset [ 109 ].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.26. Sample tracking results for our dataset.
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2.7.2 Touch Detection Experiments

Proposed Touch Detection System

To test the performance of our method, we recorded the interactions between a caregiver

and an infant in a lab setting. In these experiments, the caregivers were asked to interact

with the infant as they would normally do during playtime. The infant was secured in a

high chair and the caregiver sat on a chair facing the infant. The lab where the experiments

were conducted had a green wall as background and the high chair was also covered by a

green blanket. A RGB camera and a clip-on wireless microphone were used to record video

and audio data. The video sequences were acquired from different pairs of caregivers and

infants at different times and dates while under the same recording settings. The videos

were recorded at a resolution of 1280 × 720 and with a frame rate of 30 fps.

The videos were processed using our automatic touch detector. In our experiments the

threshold C in the skin detector was set to 0.0001 and the threshold for the merge and split

for the hand occlusion is set to 50 pixels. We compared and illustrated the results with the

ground-truth data annotated by a trained analyst for an example video sequence. Figure

 2.27 shows a sample result of the performance comparison. The green bars and yellow bars

indicate potential touch events detected using the hand tracking with occlusion handling and

the long-term hand tracking respectively. The blue bars are touch events noted by a trained

analyst. The automatic touch detector successfully captured all touch events, but included

one false alarm. This was mainly due to the lack of precise hand contour detection for some

frames in the video and difficulty in dealing with occlusions due to the camera view. The

current automatic touch detector cannot differentiate different types of touch, resulting in

one touch event detected instead of three consecutive touches (resting, grabbing, moving) as

indicated by the trained analyst between 11.2 - 14.2 seconds.
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Figure 2.27. The comparison of touch event detection with a trained analyst
using two hand tracking methods
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Improved Touch Detection System

Dataset

We evaluate the performance of our method on a testing set which records the interactions

between a caregiver and an infant in a lab setting. Our testing dataset contains five 2500

frames video sequences and two long video sequences (more than 9000 frames each). The

video sequences were acquired from different pairs of caregivers and infants at different times

and dates while under the same recording settings. In these experiments, the caregivers were

asked to interact with the infant as they would normally do during playtime. The infant

was secured in a high chair and the caregiver sat on a chair facing the infant. The lab where

the experiments were conducted had a green wall as background and the high chair was also

covered by a green blanket. A RGB camera and a clip-on wireless microphone were used to

record video and audio data. The videos were recorded at a resolution of 1280 × 720 at 30

fps.

The precise labels for each video in the testing set are annotated by trained analyst, and

this information is used as groundtruth for our evaluation. The testing set contains 25, 043

out of 31, 374 non-touch frames. The type of touch occured are listed in Table  2.4 .

Table 2.4. Touch types occurrences

Labels Head Hand Torso Arm Leg Foot
frames 403 472 367 168 3346 1575

Evaluation Metrics

Precision and recall are used to assess the performance of the automated touch detection

method. Our method aims to narrow down the potential touch time intervals and provide

less frames for trained analyst to annotate compared to original video sequences. Thus, recall

of this method is more important than precision. Another metric potential saving amount

in number of frames is used to show how much work may be reduced for trained analyst

when annotating only the potential touch frames after using automated touch detection

compared to annotating the entire sequence. In other words, trained analyst could skip

69



annotating predicted non-touch frames (FN + TN), because they were less likely to contain

touch frames.

PotentialSavingAmount = FN + TN

TP + FP + FN + TN
(2.17)

For touch type detection, we use a confusion matrix to evaluate the quality of our detection

results.

Experiment Results

The touch/non-touch detection results are showed in Table  2.5 . The proposed automatic

touch detector successfully captured 99.19% of touch frames with a precision score of 48.13%.

Potential saving amount in table  2.5 shows the trained analyst could skip 58.41% number

of frames, which is a great reduction compared to annotating every frame. The proposed

method outperforms previous work [  89 ] by having less missed touches, higher precision in

predicted touches and less frames needed for trained analyst to annotate.

The confusion matrix in Figure  2.28 illustrates the performance of touch type detection.

We observed that “Head” class and “Foot” class have higher scores compare to other classes.

Considering those two classes are located in the top and bottom part of an infant segmenta-

tion respectively, they are less likely to be confused with other body parts. Taking “Torso”

class for an example, 77% of “Torso” class are predicted correctly with 12% are classified

as neighbor class “Arm” and 9% are labeled as “Leg”. Because infant body part torso are

spatially close to legs and arms.

Table 2.5. Touch interaction detection results from our dataset

Total Frames Method Recall Precision Potential Saving Amount

Testing sequences 31,374 Proposed[ 89 ] 72.03% 24.66% 41.07%
Improved 99.19% 48.13% 58.41%

With 48.13% of precision for touch detection results, the proposed method still detected

more false alarm than true touches. This was mainly due to the lack of precise hand contour

detection for some frames in the video and difficulty in dealing with occlusions due to the

camera viewing angle. In addition, without the third dimension information, it is difficult to
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Figure 2.28. Confusion matrix of touch type labels
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distinguish from a true touch to fake touch illustrate in Figure  2.29(a) and Figure  2.29(b) .

Furthermore, we feel these challenging potential touch frames require a second look from

trained analyst. From our results, the potential saving amount is larger for videos sequences

where the caregiver is well separated from the infant when they are not interacting (Figure

 2.29(c) ) than those caregiver and infant pairs that are in close-proximity (Figure  2.29(d) )

for entire sequences.

Conclusion

We proposed an automatic touch event detection system that detects and tracks the

caregiver’s hands, detects the location of the infant and then defines a “touch” to occur

whenever the caregiver’s hand contours overlap with the infants contour. The touch type

label is assigned to predicted touch frames based on the spatial relationship between care-

giver’s hands and infant body parts. The proposed method avoids using expensive precise

touch annotations for training. Instead it takes advantage of CNN models that are trained

on large public datasets to produce intermediate results needed to identify touches. The

proposed method allows trained analyst skip annotating 58.41% of frames and still be able

to capture more than 99% true touch frames.
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(a)

(b)

(c)

(d)

Figure 2.29. Examples frames from testing set, (a) true touch (b) false touch
(c) well-separated (d) close-proximity
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3. TEXTURE ANALYSIS IN VIDEO COMPRESSION

3.1 Overview

Modern video codecs such as HEVC [ 37 ] and AV1 [ 50 ] use hybrid coding techniques

consisting of motion compensation and 2D transform to remove spatial and temporal re-

dundancy. However, efficient exploitation of statistical dependencies measured by a mean

squared error (MSE) does not always produce the best psychovisual result. Some regions in

the frame, e.g., texture, are “perceptually insignificant” where an observer does not notice

any difference without observing the original video sequence, but are costly to encode. Tex-

ture based approaches have been shown to improve the coding efficiency for “perceptually

insignificant” regions [ 51 ]–[ 54 ].

The previous attempt [  51 ] yielded encouraging bit rate savings without decreasing visual

quality. This was accomplished by perceptually differentiating pInSIG textures and other

areas to be encoded in a hybrid coding framework. However, the corresponding texture

masks were derived using traditional methods, at the coding block level. Similar ideas were

explored in work [  55 ], where they do not encode the texture regions, but instead these

regions are reconstructed at the decoder based on a motion model. A block diagram that

illustrates the video coding using texture analysis and reconstruction is shown in Fig.  3.1 . A

Figure 3.1. Overview of texture-based video coding

Convolutioanl Neural Networks (CNN) based texture analyzer was developed to identify the

texture regions in a frame and generates block-based texture masks. The displacement of

the entire texture region is modeled by a set of motion parameters. At the decoder, instead
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of performing motion compensation prediction to reconstruct blocks in the texture region,

the texture blocks are warped from the reference frames towards the current frame using the

motion parameters.

While the proposed block-based approach in [  55 ] can achieve a data rate saving of 1% to

13% compared to the baseline when implemented using AV1 with satisfactory visual quality,

the block-based texture masks cannot always accurately represent the texture regions. The

block-based texture masks can be seamlessly integrated into AV1 since the common coding

units are blocks. However, it can sometimes cause noticeable visual artifacts when an iden-

tified texture block consist of small structural region. In addition, the smallest texture block

size in [  55 ] was 32 × 32 in order to avoid detecting small moving objects, but at the same

time limits the size of identified texture regions and reduces potential data rate savings.

In this thesis, a switchable texture-based video pre-processing that leverages DNN-based

semantic understanding for subsequent coding improvement is present. In short, we exploit

DNNs to accurately segment “perceptually InSIGnifcant” (pInSIG) texture areas to produce

a corresponding pInSIG mask in pixel level. In many instances, this mask drives the encoder

to perform separately for pInSIG textures that are typically inferred without additional

residuals, and “perceptually SIGnificant” (pSIG) areas elsewhere using traditional hybrid

coding method. This approach is implemented on top of the AV1 codec [ 50 ], [ 110 ], [ 111 ] by

enabling the GoP-level switchable mechanism, resulting noticeable bit rate savings for both

standard test sequences and additional challenging sequences from YouTube UGC dataset

[ 112 ], under similar perceptual quality. The method we propose is a pioneering work that

integrates learning-based texture analysis and reconstruction approaches with modern video

codec to enhance video compression performance.

On the other hand, building upon advancements created by DNNs and large-scale labeled

datasets (e.g., ImageNet [ 113 ], COCO [ 105 ], and ADE20K [  114 ]), learning-based semantic

scene segmentation algorithms [  114 ]–[ 116 ] have been tremendously improved to generate

accurate pixel-level texture masks. In this section, a switchable texture-based video pre-

processing that leverages DNN-based semantic understanding for subsequent coding im-

provement is introduced.
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3.2 Related Work

Pre-processing techniques are generally applied prior to the video coding block, with

the objective of guiding the video encoder to remove psychovisual redundancy and to main-

tain or improve visual quality, while simultaneously lowering bit rate consumption. One

category of pre-processing techniques is the execution of pre-filtering operations. Recently,

a number of deep learning-based pre-filtering approaches have been adopted for targeted

coding optimization. These include denoising [  117 ], [  118 ], motion deblurring [  119 ], [  120 ],

contrast enhancement [  121 ], edge detection [ 122 ], [  123 ], etc. Another important topic area

is closely related to the analysis of video content semantics, e.g., object instance, saliency

attention, texture distribution, etc., and its application to intelligent video coding. For the

sake of simplicity, we refer to this group of techniques as “pre-processing” for the remain-

der of this paper. In our discussion below, we also limit our focus to saliency-based and

analysis/synthesis-based approaches.

3.2.1 Saliency-Based Video Pre-processing

Saliency Prediction

Saliency is the quality of being particularly noticeable or important. Thus, the salient

area refers to regions of an image that predominantly attracts the attention of subjects. This

concept corresponds closely to the highly discriminative and selective behaviour displayed in

visual neuronal processing [  124 ], [  125 ]. Content feature extraction, activation, suppression,

and aggregation also occur in the visual pathway [ 126 ].

Earlier attempts to predict saliency typically utilized handcrafted image features, such as

color, intensity, and orientation contrast [ 127 ], motion contrast [  128 ], camera motion [  129 ],

etc. Later on, DNN-based semantic-level features were extensively investigated for both

image content [ 130 ]–[ 136 ] and video sequences [ 137 ]–[ 143 ]. Among these features, image

saliency prediction only exploits spatial information, while video saliency prediction often

relies on spatial and temporal attributes jointly. One typical example of video saliency

is a moving object that incurs spatio-temporal dynamics over time, and is therefore more
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likely to attract users’ attention. For example, Bazzani et al. [ 137 ] modeled the spatial

relations in videos using 3D convolutional features and the temporal consistency with a

convolutional long short-term memory (LSTM) network. Bak et al. [ 138 ] applied a two-

stream network that exploited different fusion mechanisms to effectively integrate spatial

and temporal information. Sun et al. [ 139 ] proposed a step-gained FCN to combine the

time-domain memory information and space-domain motion components. Jiang et al. [ 140 ]

developed an object-to-motion CNN that was applied together with a LSTM network. All of

these efforts to efficiently predict video saliency leveraged spatio-temporal attributes. More

details regarding the spatio-temporal saliency models for video content can be found in [ 144 ].

Salient Object

One special example of image saliency involved the object instance in a visual scene,

specifically, the moving object in videos. A simple yet effective solution to the problem of

predicting image saliency in this case involved segmenting foreground objects and background

components. The segmentation of foreground objects and background components has

mainly relied on foreground extraction or background subtraction. For example, motion

information has been frequently used to mask out foreground objects [ 145 ]–[ 149 ].

Recently, both CNN and foreground attentive neural network (FANN) models have been

developed to perform foreground segmentation [  150 ], [ 151 ]. In addition to conventional

Gaussian mixture model-based background subtraction, recent explorations have also shown

that CNN models could be effectively used for the same purpose [  152 ], [  153 ]. To address

these separated foreground objects and background attributes, Zhang et al. [ 154 ] introduced

a new background mode to more compactly represent background information with better R-

D efficiency. To the best of our knowledge, such foreground object/background segmentation

has been mostly applied in video surveillance applications, where the visual scene lends itself

to easier separation.
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Video Compression with UEQ Scales

Saliency or object, which refers to more visually attentive areas, is straightforward to

apply UEQ setting in a video encoder, where light compression is used to encode the saliency

area, while heavy compression is used elsewhere. Use of this technique often results in a lower

level of total bit rate consumption without compromising QoE.

For example, Hadi et al. [ 155 ] extended the well-known Itti-Koch-Niebur (IKN) model

to estimate saliency in the DCT domain, also considering camera motion. In addition,

saliency-driven distortion was also introduced to accurately capture the salient characteris-

tics, in order to improve R-D optimization in H.265/HEVC. Li et al. [ 156 ] suggested using

graph-based visual saliency to adapt the quantizations in H.265/HEVC, to reduce total bits

consumption. Similarly, Ku et al. [ 157 ] applied saliency-weighted Coding Tree Unit (CTU)-

level bit allocation, where the CTU-aligned saliency weights were determined via low-level

feature fusion.

The aforementioned methodologies rely on traditional handcrafted saliency prediction

algorithms. As DNN-based saliency algorithms have demonstrated superior performance,

we can safely assume that their application to video coding will lead to better compression

efficiency. For example, Zhu et al. [ 158 ] adopted a spatio-temporal saliency model to accu-

rately control the QP in an encoder whose spatial saliency was generated using a 10-layer

CNN, and whose temporal saliency was calculated assuming the 2D motion model (resulting

in an average of 0.24 BD-PSNR gains over H.265/HEVC reference model (version HM16.8)).

Performance improvement due to fine-grained quantization adaptation was reported using

an open-source x264 encoder in [ 159 ]. This was accomplished by jointly examining the input

video frame and associated saliency maps. These saliency maps were generated by utilizing

three CNN models suggested in [  140 ], [  144 ], [  160 ]. Up to 25% bit rate reduction was reported

when distortion was measured using the edge-weighted SSIM. Similarly, Sun et al. [ 161 ] im-

plemented a saliency-driven CTU-level adaptive bit rate control, where the static saliency

map of each frame was extracted using a DNN model and the dynamic saliency region was

tracked using a moving object segmentation algorithm. Experiment results revealed that the

PSNR of salient regions was improved by 1.85 dB on average.
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Though saliency-based pre-processing is mainly driven by psychovisual studies, it heavily

relies on saliency detection to perform UEQ-based adaptive quantization with a lower rate of

bit consumption but visually identical reconstruction. On the other hand, visual selectivity

behaviour is closely associated with video content distribution (e.g., frequency response),

leading to perceptually unequal preference. Thus, it is highly expected that such content

semantics-induced discriminative features can be utilized to improve the system efficiency

when integrated into the video encoder. To this end, we will discuss the analysis/synthesis-

based approach for pre-processing in the next section.

3.2.2 Analysis/Synthesis Based Pre-processing

Since most videos are consumed by human vision, subjective perception of HVS is the

best way to evaluate quality. However, it is quite difficult to devise a profoundly accurate

mathematical HVS model in actual video encoder for rate and perceptual quality optimiza-

tion, due to the complicated and unclear information processing that occurs in the human

visual pathway. Instead, many pioneering psychovisual studies have suggested that neuronal

response to compound stimuli is highly nonlinear [  162 ]–[ 169 ] within the receptive field. This

leads to well-known visual behaviors, such as frequency selectivity, masking, etc., where such

stimuli are closely related to the content texture characteristics. Intuitively, video scenes can

be broken down into areas that are either “perceptually significant” (e.g., measured in an

MSE sense) or “perceptually insignificant”. For “perceptually insignificant” regions, users

will not perceive compression or processing impairments without a side-by-side comparison

with the original sample. This is because the HVS gains semantic understanding by viewing

content as a whole, instead of interpreting texture details pixel-by-pixel [  170 ]. This notable

effect of the HVS is also referred to as “masking,” where visually insignificant information,

e.g., perceptually insignificant pixels, will be noticeably suppressed.

In practice, we can first analyze the texture characteristics of original video content in

the pre-processing step, e.g., Texture Analyzer in Fig.  3.2 , in order to sort textures by their

significance. Subsequently, we can use any standard compliant video encoder to encode the

perceptually significant areas as the main bitstream payload, and apply a statistical model
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Figure 3.2. Texture Coding System. A general framework of analy-
sis/synthesis based video coding.

to represent the perceptually insignificant textures with model parameters encapsulated as

side information. Finally, we can use decoded areas and parsed textures to jointly syn-

thesize the reconstructed sequences in Texture Synthesizer. This type of texture modeling

makes good use of statistical and psychovisual representation jointly, generally requiring

fewer bits, despite yielding visually identical sensation, compared to the traditional hybrid

“prediction+residual” method  

1
 . Therefore, texture analysis and synthesis play a vital role

for subsequent video coding. We will discuss related techniques below.

Texture Analysis

Early developments in texture analysis and representation can be categorized into filter-

based or statistical modeling-based approaches. Gabor filter is one typical example of filter-

based approaches, by which the input image is convoluted with nonlinear activation for the

derivation of corresponding texture representation [  172 ], [  173 ]. At the same time, in order

to identify static and dynamic textures for video content, Thakur et al. [ 174 ] utilized the 2D
1

 ↑ A comprehensive survey of texture analysis/synthesis based video coding technologies can be found in [ 171 ].
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dual tree complex wavelet transform and steerable pyramid transform [ 175 ], respectively. To

accurately capture the temporal variations in video, Bansal et al. [ 176 ] again suggested the

use of optic flow for dynamic texture indication and later synthesis, where optical flow could

be generated using temporal filtering. Leveraging statistical models such as the Markovian

random field (MRF) [  177 ], [ 178 ] is an alternative way to analyze and represent texture. For

efficient texture description, such statistical modeling was then extended using handcrafted

local features, e.g., the scale invariant feature transform (SIFT) [  88 ], speeded up robust

features (SURF) [ 179 ], and local binary patterns (LBP) [ 180 ]

Recently, stacked DNNs have demonstrated their superior efficiency in many computer

vision tasks. This efficiency is mainly due to the powerful capacity of DNN features to be

used for video content representation. The most straightforward scheme directly extracted

features from the FC6 or FC7 layer of AlexNet [  181 ] for texture representation. Further-

more, Cimpoi et al. [ 182 ] demonstrated that Fisher vectorized [  183 ] CNN features were a

decent texture descriptor candidate. Recent work in [  55 ], a binary CNN based classifier

for texture/non-texture is trained by using 32 × 32 image patches that obtained from the

Salzburg Texture Image Database (STex) [  184 ] and Places365 [ 185 ]. The CNN architecture

and the sample training data are shown in Fig.  3.3 and Fig.  3.4 respectively.

Figure 3.3. CNN architecture for block-based texture classification [ 55 ]
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Figure 3.4. Training data preparation [ 55 ]

Texture Synthesis

Texture synthesis reverse-engineers the analysis in pre-processing to restore pixels ac-

cordingly. It generally includes both non-parametric and parametric methods. For non-

parametric synthesis, texture patches are usually resampled from reference images [ 186 ]–

[ 188 ]. In contrast, the parametric method utilizes statistical models to reconstruct the tex-

ture regions by jointly optimizing the observation outcomes and the model itself [ 175 ], [  189 ],

[ 190 ].

DNN-based solutions exhibit great potential for texture synthesis applications. One

notable example demonstrating this potential used a pre-trained image classification-based
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CNN model to generate texture patches [  191 ]. Li [  192 ] then demonstrated that a Markovian

GAN-based texture synthesis could offer remarkable quality improvement.

To briefly summarize, earlier “texture analysis/synthesis” approaches often relied on

handcrafted models, as well as corresponding parameters. While they have shown good per-

formance to some extent for a set of test videos, it is usually very difficult to generalize them

to large-scale video datasets without fine-tuning parameters further. On the other hand,

related neuroscience studies propose a broader definition of texture which is more closely

related to perceptual sensation, although existing mathematical or data-driven texture rep-

resentations attempt to fully fulfill such perceptual motives. Furthermore, recent DNN-based

schemes present a promising perspective. However, the complexity of these schemes has not

yet been appropriately exploited. So, in Section  3.3 , we will reveal a CNN-based pixel-level

texture analysis approach to segment perceptually insignificant texture areas in a frame for

compression and later synthesis. To model the textures both spatially and temporally, we

introduce a new coding mode called the “switchable texture mode” that is determined at

group of pictures (GoP) level according to the bit rate saving.
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3.3 Proposed texture-based video pre-processing

The previous work [ 55 ] using block-based texture analyzer has shown data rate savings

in texture regions. However, block-based texture mask cannot accurately represents texture

regions and may cause coding artifacts. Therefore, in this section, a pixel-level texture mask

generation is described to obtain more accurate texture masks. We incorporate semantic

scene segmentation into video compression by generating pixel-level texture segmentation

masks to represent “perceptually insignificant” regions in a frame and use motion models to

reconstruct the texture regions at the decoder to improve the coding efficiency.

3.3.1 Deep learning based pixel level semantic segmentation

Recent advances in deep neural networks have led to a renewed interest in semantic scene

segmentation [ 115 ], [  116 ], [  193 ]. Large-scale datasest like ImageNet [  113 ], COCO [  105 ] and

ADE20K [  193 ] have enabled improved performance for these tasks. For example, the Fully

Convolutional Network (FCN) [  115 ] is one of the most commonly used network architectures

for semantic scene segmentation. The major issue with FCN [ 115 ] is the lack of global con-

textual information to categories global scene which could lead parsing error. The pyramid

scene parsing network(PSPNet) [  116 ] addresses this issue by adding a global pyramid pooling

module to extract global information from the image.

In this work, we first rely on the powerful ResNet50 [ 194 ] with dilated convolutions [ 195 ],

[ 196 ] to extract feature maps that effectively embed the content semantics. We then in-

troduce the pyramid pooling module from PSPNet [  116 ] to produce a pixel-level semantic

segmentation map shown in Fig.  3.5 . The pyramid pooling module uses four different sizes

of CNN receptive field to represent global contextual information contained in four pyramid

scales. The pyramid pooling module reduces the scene parsing errors by considering global

contextual relationship in a scene. Cross-entropy loss is used at the end of each stream.

Our implementation starts with a pre-trained PSPNet model generated using the MIT

SceneParse150 [  197 ] as a scene parsing benchmark. We then retrain the model on a subset of

a densely annotated dataset ADE20K [  114 ]. In the end, the model offers a pixel segmentation

accuracy of 80.23%.
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Figure 3.5. Texture Analyzer. Proposed semantic segmentation network
using PSPNet [ 116 ] and ResNet-50 [ 194 ].
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3.3.2 Post-processing of pInSIG mask generation

After obtaining semantic segmentation from the PSPNet, a series of post-processing is

used to generate the perceptual insignificant mask for AV1 codec.

Grouping by class labels

It is worthwhile to note that the semantic pixel-level segmentation may result in the

creation of a number of semantic classes. Nevertheless, this study suggests grouping simi-

lar texture classes commonly found in nature scenes together into four major categories, as

shown in Table.  3.1 , e.g., “earth and grass”, “water, sea and river”, “mountain and hill”, and

“tree”. The four texture classes are based on groupings of different semantic classes defined

in ADE20K dataset [ 193 ] that have similar textures. The texture classes grouping criteria

should be set accordingly for the training data that used for semantic segmentation. The

chosen texture groups in ADE20K dataset fit the need of obtaining the perceptual insignif-

icant region for AV1 codec. Furthermore, each texture category would have an individual

segmentation mask to guide the compression performed by the succeeding video encoder.

Table 3.1. Texture classes grouping

Texture group Class labels

Texture class 1 earth, grass

Texture class 2 water, sea, river

Texture class 3 mountain, hill

Texture class 4 tree

Figure  3.6 shows an example of pixel-level texture segmentation mask for texture class 2,

which combines semantic segmentation of water and river. The combined mask is considered

as the pixel level perceptual insignificant(pInSIG) mask.
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(a) Semantic segmentation

(b) Texture mask for class 2
Figure 3.6. An example of pixel-level texture segmentation for video sequence
bridgefar. Texture mask for class 2 contains semantic segmentations of water
and river in this example.
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(a) An example frame in tractor

(b) Semantic segmentation

Figure 3.7. An example frame in video tractor

Class label refinement

Generating pInSIG mask based on semantic class labels is effective, however it also has

its limitation. In some scenarios, the generated semantic class labels do not well represent

actual perceptual insignificant region in the scene. An example has show in Fig.  3.7 , where

the upper part of “ground” is classified as “ceiling”, and “ceiling” is not belongs to the

predefined texture group which leads to a decrease in perceptual insignificant region.

In this section, we introduce a class label refinement process that enlarge the possible

perceptual insignificant mask by adjusting the class confidence scores for potential texture

regions. A block diagram of the overall refinement process is shown in Fig.  3.8 . A scene

detection is performed first to split the target video into several splits. Within each video

split, we assume the desired class labels are consistent in the same scene. In practice, we use

the intra frames selected by AV1 as the scene change frames, which is consistent with scene

detection used in switchable-texture mode.

88



Figure 3.8. Proposed class label refinement process

Within the same scene, texture confidence adjustment is performed to increase the confi-

dence score for potential “texture-like” regions , thus enlarges the pInSIG mask and improve

the bit rate saving for compression. In original semantic segmentation, for every pixel p, the

top confidence score is used to determine the class label for that pixel. And now, instead of

just looking at the top choice, we analyze the top three confidence scores, note as c1, c2, c3

and their corresponding label l1, l2, l3, that are generated by the semantic segmentation. Let

the group of texture class be set G. The the new confidences are updated as following:

c′
1 = c1 × w1 (3.1)

c′
2 = c2 × w2 (3.2)

c′
3 = c3 × w3 (3.3)

With the condition that for any li ∈ G, then wiequalstoθt, others weights equal to θnt, where

θt and θnt are empirically set to be 0.5 and 0.33 respectively.

c′ = max(c′
1, c′

2, c′
3) (3.4)

The the label l′ is adjust according to c′.

A temporal refinement is then performed to maintain the consistency of texture segmen-

tation mask and minimize the artifacts throughout the entire video sequence. A median

filter with filter size five is used to adjust the class label for each pixel. In other words, the

final group label for a pixel is corrected by the majority voting of labels in five consecutive

frames.
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3.4 Experiments

3.4.1 Texture analysis

Compared to the BM method, the proposed PM method shows larger texture area in

general. For the BM method, the fixed size blocks for CNN based texture analyzer need

to be large enough to ensure classification accuracy. While for the PM method, there is no

such limitation so we use 16 × 16 as the minimum size for texture blocks instead of 32 × 32

in the texture mode. Therefore, there are more pixels in a frame that are reconstructed

using the texture mode in the PM method leading to larger data rate savings. We did not

using smaller texture blocks because further block splitting will require extra bits to send the

motion information for these blocks. The PM method with refinement enlarges the texture

area especially for the sequence flower and tractor. Because in the sequence flower, some

perceptual insignificant area is classified as “flower” in PM method where they further adjust

to “ground” after class label refinement. Examples of enlarging the perceptual insignificant

area are shown in Fig.  3.9 and Fig.  3.10 

And for the sequence tractor, the top area is classified as “ceiling” which also been adjust

after the refinement. Table  3.2 shows the texture region percentage, defined in equation  3.5 

as average percentage of the regions that are reconstructed using texture mode within the

frames where texture mode is enabled.

Ptex = (
Ftex∑
j=1

(
∑Nj

i=1 Bij

W × H
))/Ftex × 100% (3.5)

where Ftex is the number of frames that enables texture mode, Nj is the number of texture

blocks in the jth frame, Bij is the block size of texture block i in frame j, W and H are frame

width and height.
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(a) An example frame in flower

(b) Original semantic segmentation

(c) New segmentation after class refinement process
Figure 3.9. An example of refinement result in video flower
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(a) An example frame in tractor

(b) Original semantic segmentation

(c) New segmentation after class refinement process

Figure 3.10. An example of refinement result in video tractor
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Table 3.2. Texture region percentage
Texture region encoded BM (%) PM (%) PM with refinement (%)

coastguard 37 41 41
flower 58 24 32
football 10 22 22

waterfall 61 77 77
netflix_aerial 37 53 53

intotree 43 52 52
tractor 20 23 38

3.4.2 Coding performance

To evaluate the performance of the proposed method using pixel-level texture mask,

data rate savings at four quantization levels (QP=16, 24, 32, 40) are calculated for low and

high resolution videos from standard video test sequences. We use the original AV1 codec

as the baseline for comparison. We compare the pixel-level texture segmentation results

before/after refinement steps with our previous work [ 55 ] which uses block-based single class

texture mask with our AV1 texture mode. All four methods use the same golden frame group

structure that has fixed golden frame and a group interval of eight frames. Results for the test

videos are shown in Table  ?? . BM in the tables refers to block-based texture segmentation

method [ 55 ] and the PM refers to the proposed pixel-level texture segmentation method,

and PMR refers to pixel texture segmentation with refinement. The data rate saving is

calculated as

Pbit = (R − Rb)/Rb × 100% (3.6)

where Pbit represents data rate saving, R represents the bitstream size using BM or PM

method, Rb represents the bitstream size of the AV1 baseline method. A negative value

indicates a reduction in the codec’s bitstream data rate compared to the AV1 baselines.

In general, compared to the AV1 baseline, the coding performance of the both BM and

PM shows larger data rate savings with low QP. However, as QP increases, the data rate

saving decreases. As shown in the tables, football, waterfall and netflix_aerial have worse

coding performance than the AV1 baseline at high QP. The reason is that at high QP, the
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high compression ratio results in many zero residual blocks thus there is limited margin

for data rate saving using texture based methods. In addition, the texture based method

requires a few extra bits for the texture motion parameters, and some extra bits for using

two reference frames in compound prediction for all the texture blocks.
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In general the texture region percentage of PM method is larger than that of the BM

method, thus the increase in data rate saving. The texture region percentage of PM for

flower is smaller because the texture mask of BM contains sky and flowerbed area as it

fails to identify them as two different classes of texture. Although texture mask of PM only

contains flowerbed area, the sky area is very homogeneous which has small residual using

AV1 baseline. Therefore, we still achieve more data rate saving using PM than BM. The PM

method also reduces flickering artifacts in some of the reconstructed video when using the

BM method. The pixel-level texture mask can more accurately represent the perceptually

insignificant pixels. An example is illustrated in Figure  1.3 and discussed in Section  1.2 .

Furthermore, the refinement process provides larger potential texture region as mention in

Section  3.4.1 for sequence flower and tractor, we observe a greater bit rate saving for those

two videos.

In addition to test on the standard test sequences, we also selected sequences with texture

regions from the YouTube UGC data set [  112 ]. YouTube UGC dataset is a sampling from

thousands of User Generated Content (UGC) videos uploaded to YouTube. We calculate

the data rate savings at different quantization levels. Table.  3.4 shows the data rate saving

using pixel-level texture mask with refinement compare to the AV1 baseline.

3.4.3 Subjective evaluation

Although significant bit rate savings have been achieved compared to the AV1 baseline,

it is acknowledged that identical QP values do not necessarily imply the same video quality.

We have performed a subjective visual quality study with 20 participants. Reconstructed

videos produced by the switchable texture coding with pixel level mask and the baseline AV1

codec at QP = 16, 24, 32, and 40 are arranged randomly and assessed by the participants

using a double stimulus continuous quality scale (DSCQS) method [  200 ]. Subjects have been

asked to choose among three options: the first video has better visual quality, the second

video has better visual quality, or there is no difference between the two versions.

The result of this study is summarized in Figure  3.11 . The “Same Quality” indicates the

percentage of participants that cannot tell the difference between the reconstructed videos by
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Table 3.4. Data rate saving (%) comparison between AV1 baseline and PM
methods(tex-switch) on UGC dataset videos. A negative value indicates a
reduction in the bitstream data rate compared to the AV1 baseline.

Video Sequence Resolution QP=16 QP=24 QP=32 QP=40
PMR PMR PMR PMR

NewsClip_360P-1e1c 360P 10.77 9.27 5.23 1.54
NewsClip_360P-22ce 360P 17.37 15.79 16.37 17.98

TelevisionClip_360P-3b9a 360P 1.45 0.48 0.00 0.00
TelevisionClip_360P-74dd 360P 1.66 1.17 0.36 0.00

HowTo_480P-04f1 480P 3.81 2.57 0.93 0.36
HowTo_480P-4c99 480P 2.36 1.67 0.00 0.00

MusicVideo_480P-1eee 480P 3.31 3.29 2.53 -0.30
NewsClip_480P-15fa 480P 6.31 5.79 0.11 0.03
NewsClip_480P-7a0d 480P 11.54 10.03 1.53 0.00

TelevisionClip_480P-19d3 480P 3.13 2.86 1.66 0.00
HowTo_720P-0b01 720P 12.72 11.84 9.31 6.35

MusicVideo_720P-3698 720P 1.76 1.07 0.30 0.00
MusicVideo_720P-4ad2 720P 6.93 3.81 1.87 0.11

HowTo_1080P-4d7b 1080P 7.31 6.07 3.21 0.72
MusicVideo_1080P-55af 1080P 3.88 1.78 0.33 -0.68
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Figure 3.11. Subjective evaluation of visual preference. Results show
average subjective preference (%) for QP = 16, 24, 32, 40 compared between
AV1 baseline and proposed switchable texture mode.

the AV1 baseline codec and the proposed method tex-switch (69.03% on average). The term

“tex-switch” indicates the percentage of participants that prefer the reconstructions by the

proposed method tex-switch (14.32% on average); and the “AV1” indicates the percentage of

participants who think the visual quality of the reconstructed videos using the AV1 baseline

is better (16.65% on average).

We observe that the results are sequence dependent and both spatial and temporal arti-

facts can appear in the reconstructed videos. The main artifacts come from the inaccurate

pixel-based texture mask. For example, in some frames of TelevisionClip_360P-74dd se-

quence, the texture masks include parts of the moving objects in the foreground, which are

reconstructed using texture mode. Since the motion of the moving objects is different from

the motion of the texture area, there are noticeable artifacts around those parts of the frame.

To further improve the accuracy of region analysis using DNN-based pre-processing, we plan
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to incorporate an in-loop perceptual visual quality metric for optimization during the texture

analysis and reconstruction.
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4. SUMMARY

4.1 Touch event detection

In this thesis, we propose an automatic touch event recognition method to determine the

time when the caregiver touches the infant and label it as a “touch event” by analyzing the

locations of the caregiver’s hands and the infant’s contour.

1. We described a touch event detection system that combines hand tracking and infant

segmentation and analyzing the merging contours of the caregiver’s hands and the

infant’s contour.

2. We propose a 2D hand tracking method using color and motion features with occlusion

handling.

3. We propose a long-term 2D hand tracking method with re-initialization capability

using a hand detection network and a human pose estimation network.

4. We propose a challenging hand tracking dataset with annotations for long sequences

in which the subjects are mostly in profile view. The dataset also contains difficult

scenarios such as hand interaction, hand occlusions and hand vanishing.

5. We propose a pixel-wise Grab-cut segmentation method with updated mask using

morphological operations and a super-pixel based Grab-cut segmentation method using

skeleton information as foreground mask.

6. We propose an automatic touch event detection and recognition method to determine

the potential timing when the caregiver touches the infant, and classify the event into

six touch types based on which body part of the infant has been touched.

We proposed an automatic touch event detection system that detects and tracks the

caregiver’s hands, detects the location of the infant and then defines a “touch” to occur

whenever the caregiver’s hand contours overlap with the infants contour. The touch type

label is assigned to predicted touch frames based on the spatial relationship between care-

giver’s hands and infant body parts. The proposed method avoids using expensive precise
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touch annotations for training. Instead it takes advantage of CNN models that are trained

on large public datasets to produce intermediate results needed to identify touches. The

proposed method allows trained analyst skip annotating 58.41% of frames and still be able

to capture more than 99% true touch frames.

The touch detection system is designed specifically for the touch project from Purdue

infant speech lab. However, the tracking method used in this project and the problem solving

approaches could be broadly applied. We explain this from three aspects: 1) dataset; 2)

general human interactions detection; 3) other types of action analysis.

Dataset: For the touch detection project, the experimental data is captured in a con-

trolled environment, i.e., a sound proof room at the Purdue Infant Speech Lab where infant

speech related studies are typically conducted. Our overall approach works well for this par-

ticular type of data, and key components of the system also performs well on public dataset

compared to other methods. For example, the proposed long term hand tracking method

with re-initialization capability not only performs well with our own dataset, but is also ro-

bust to many general scenarios. In [  201 ], experiments have been done to compare our hand

tracking method with method proposed in [  109 ] on a public hand tracking dataset [  109 ] with

typical room setting and background. Our method with auto re-initialization performed

comparably to the semi-automatic method with manual hand re-initialization [  109 ] on that

public dataset.

General human interaction detection: This project aims to detect a specific type of

action “touch” in human interaction. Analyzing the positions and trajectories of human could

also be used in other action detection and recognition tasks. Taking the video surveillance as

an example, detecting whether a scene contains fighting is a common task [  202 ]–[ 204 ]. Both

the tracking techniques and the human pose estimation techniques could be adopted to fight

detection, as tracking human body joints is also a key component to identify fighting.

Other types of action analysis: Our proposed methods can also be adopted for other

types of action analysis. For example, there is an increasing need to automate the moni-

toring of animal behavior [  205 ]–[ 208 ]. Similar concepts of detecting and tracking skeleton

and keypoints to analyze actions could be transferred to analyze behaviors of animals. In

addition, skeleton detection may not always provide sufficiently accurate information for
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animal’s joints in each frame. Thus, combining skeleton keypoints detection with traditional

tracking techniques used in this project, to track feature points from frame to frame, could

provide continuous analysis in cases when skeleton detection fails.

The touch detection project guided by Prof. Zhu, was my first individual project which

kicked off my Ph.D. research. We started by treating the touch detection as a frame level

two classes classification problem. However, directly using entire frame as input did not

lead to good results. Then we broke down the problem into two parts, finding caregiver’s

hand localization and infant’s position. We built and improved several methods for coarse

to fine analysis. The first touch detection method with contour merging uses feature based

approach. It was able to detect touches, however, detection error would propagate whenever

the hand tracker loses track. This situation was improved when we proposed a long term

hand tracking method with re-initialization using human pose estimation. Furthermore, we

extended the usages of human pose estimation to identifying six different touch types.

4.2 Texture analysis for Video compression

For the texture analysis for video compression project, our contributions are as below:

1. We combined semantic segmentation with a few post-processing steps to generate a

pixel-level texture mask that is more accurate than our previously proposed block-

based texture method.

2. The proposed texture analysis method is integrated into a switchable texture-based

video coding method.

3. We show that for many standard test sets and user generated test sequences, the

proposed method achieves significant data rate reductions with improved visual quality.

We proposed a DNN based texture pre-processing for texture analysis/synthesis coding

tool in AV1 codec. Experimental results show that our proposed method can achieve no-

ticeable bit rate reduction with satisfying visual quality for both standard test sets and user

generated contents, which is verified by a subjective study. We envision that video coding

driven by semantic understanding will continue to improve in terms of both quality and bit

102



rate, especially by leveraging advances of deep learning methods. However, there remain

several open challenges that require further investigation.

Accuracy of region analysis is one of the major challenges for integrating semantic un-

derstanding into video coding. However, recent advances in scene understanding have sig-

nificantly improved the performance of region analysis. Visual artifacts are still noticeable

when a non-texture region is incorrectly included in the texture mask, particularly if the

analysis/synthesis coding system is open loop. One potential solution is to incorporate some

perceptual visual quality measures in-loop during the texture region reconstruction.

Benchmark video segmentation datasets are important for developing machine learning

methods for video based semantic understanding. Existing segmentation datasets are either

based on images with texture [ 209 ], or contain general video objects only [ 210 ], [ 211 ], or

focus on visual quality but lack segmentation ground truth.

From Section 1.4.1 in Di’s thesis [  212 ], we observed that the memory and computation

efficiency are still challenging for deploying module based video coding in practical system.

As for the memory and computational efficiency for our texture analysis, it requires 197MB

for model storage. The proposed method processes around 5 frames per second for a CIF

resolution video on an NVIDIA GTX 1080 Ti GPU, which is four times slower than the

block-level texture analysis [  55 ]. There exists a trade-off between the accuracy of the texture

representation and computational complexity. To address this challenge, future work needs

to explore more compact and efficient networks structures, and to deploy on deep neural

network accelerators for efficient processing.
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