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ABSTRACT

This thesis studies problems in computational topology through the lens of semi-algebraic

geometry. We first give an algorithm for computing a semi-algebraic basis for the first

homology group, H1(S,F), with coefficients in a field F, of any given semi-algebraic set

S ⊂ Rk defined by a closed formula. The complexity of the algorithm is bounded singly

exponentially. More precisely, if the given quantifier-free formula involves s polynomials

whose degrees are bounded by d, the complexity of the algorithm is bounded by (sd)kO(1) .

This algorithm generalizes well known algorithms having singly exponential complexity for

computing a semi-algebraic basis of the zero-th homology group of semi-algebraic sets, which

is equivalent to the problem of computing a set of points meeting every semi-algebraically

connected component of the given semi-algebraic set at a unique point.

We then turn our attention to the Reeb graph, a tool from Morse theory which has re-

cently found use in applied topology due to its ability to track the changes in connectivity of

level sets of a function. The roadmap of a set, a construction that arises in semi-algebraic ge-

ometry, is a one-dimensional set that encodes information about the connected components

of a set. In this thesis, we show that the Reeb graph and, more generally, the Reeb space,

of a semi-algebraic set is homeomorphic to a semi-algebraic set, which opens up the algo-

rithmic problem of computing a semi-algebraic description of the Reeb graph. We present

an algorithm with singly-exponential complexity that realizes the Reeb graph of a function

f : X → Y as a semi-algebraic quotient using the roadmap of X with respect to f .
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1. INTRODUCTION

1.1 Computational topology

The field of applied topology was born out of a desire to better understand the underlying

structure of real-world data by using ideas, such as homology, from the mathematical field

of algebraic topology. As collections of data grow in size, it is increasingly important to have

a way to efficiently analyze data. Applied topology addresses this problem by combining

theoretical advances in computational topology with practical applications in topological

data analysis. In particular, this thesis explores two problems in computational topology:

efficient computation of Reeb spaces, which have gained recent attention in applied topology,

and the classical topological problem of computing a basis for the first homology group of a

space. In order to obtain meaningful results, we work within the category of semi-algebraic

sets and maps over a real closed field R (see Chapter 2 for an overview of semi-algebraic

geometry).

1.2 Semi-algebraic geometry

Because the goal of applied topology is to study real-world data, we choose to work

within the framework of semi-algebraic geometry since the class of semi-algebraic sets is large

enough that semi-algebraic sets can approximate any set that will occur in applications. We

fix a real closed field R, and denote by D ⊂ R a fixed ordered domain. We will denote

by C = R[i] the algebraic closure of R. For example, one can take R = R, and D = Z.

Semi-algebraic sets are the subsets of Rn that are defined by a finite number of polynomial

equations (P = 0) and inequalities (P > 0), and semi-algebraic maps are maps whose graphs

are semi-algebraic sets. Given any finite family of polynomials P ∈ R[X1, . . . , Xk], we call a

Boolean formula without negations and with atoms P{≥,≤}0, P ∈ P , a P-closed formula,

and we call the realization, R(Φ,Rk), a P-closed semi-algebraic set. This framework allows

us to make use of prior results in semi-algebraic geometry related to algorithmic complexity,

as defined below.
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1.2.1 Algorithmic semi-algebraic geometry

The field of semi-algebraic geometry arose from the problem of counting the real roots of

a real univariate polynomial. Whether there exist real solutions to a finite set of polynomial

equations and inequalities is decidable, and equivalent to the statement “the projection of

a semi-algebraic set is semi-algebraic” [1 ]. There are several models of computation that

can be considered when working with semi-algebraic sets (and also several notions of what

constitutes an algorithm). If the real closed field R = R, and D = Z, one can consider these

algorithmic problems in the classical Turing model and measure the bit complexity of the

algorithms. In this paper, we will follow the book [1 ] and take a more general approach valid

over arbitrary real closed fields. In the particular case, when R = R, our method will yield

bit-complexity bounds.

It is an ongoing field of research to construct “efficient” algorithms, that is, algorithms

with singly-exponential complexity, in order to answer mathematical questions. The com-

plexity of an algorithm refers to the the the supremum over all inputs of the number of

arithmetic operations performed by the algorithm, measured by the number of number of

polynomials, their degrees, and the number of variables. Many algorithms in semi-algebraic

geometry make use of the techniques of triangulation and cylindrical algebraic decomposi-

tion (CAD), both of which have doubly exponential complexity. In our paper, we bypass

these techniques to construct efficient algorithms to compute topological invariants in special

cases.

1.3 Computing A Basis for Higher Homology Groups

Given the relation between the upper bounds on topological complexity of a set and the

complexity of algorithms computing their invariants, we can expect that there should exist

algorithms for computing the Betti numbers of semi-algebraic sets with complexity bounded

singly exponentially. Indeed, algorithms for computing the zero-th Betti number have been

investigated in depth, and nearly optimal algorithms are known for this problem [2 ], [3 ], [4 ],

[5 ]. We build on these results in Chapter 5, where present an efficient algorithm that takes

as input a space X and returns a semi-algebraic basis for the first homology group, H1(S).
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To avoid computationally infeasible doubly-exponential complexity, our result relies on

previous work on finding a basis for the 0-dimensional homology. That is, given a descrip-

tion of a semi-algebraic set, it is possible to compute a finite set of points that mean each

connected component of the set exactly once. The solution to this problem is in two steps.

The first, more simple step, is to compute a finite subset Γ ⊂ S of “sample points” that meet

each connected component of S. This is equivalent to finding a set Γ such that H0(S,Γ) = 0.

The second step is to select a subset of the points in Γ so that there is only one point meet-

ing each connected component of S. This is equivalent to finding a set {xi} ⊂ Γ such that

H0({xi}) ∼= H0(S).

Here, we extend this result to H1: given a semi-algebraic set S, we produce an algorithm

that outputs semi-algebraic cycles that form a basis of H1(S). As before, we first compute

a one-dimensional subset Γ of S such that H1(Γ) � H1(S), or equivalently, H1(S,Γ) = 0.

The cycles in Γ span H1(S), but may not be a minimal spanning set, so we use a result in

[6 ] to select cycles in Γ to form a basis of H1(S). We construct an algorithm that proves the

following theorem:

Theorem. [7 ] There exists an algorithm that takes as input a finite set

P ⊂ D[X1, . . . , Xk],

and a P-closed formula Φ, where s = card(P) and the maximum of the degrees of the

polynomials in P and f1, . . . , fm is bounded by d,and outputs a finite set Q ⊂ D[X1, . . . , Xk],

as well as a finite tuple (Ψj)j∈J , in which each Ψj is a Q-formula, such that the realizations

Γj = R(Ψj,Rk) have the following properties:

1. For each j ∈ J , Γj ⊂ S and Γj is semi-algebraically homeomorphic to S1;

2. the inclusion map Γj ↪→ S induces an injective map F ∼= H1(Γj) → H1(S), whose image

we denote by [Γj];

3. the tuple ([Γj])j∈J forms a basis of H1(S).

The complexity of each Γj, j ∈ J (as a semi-algebraic subset of Rk defined over D), as well

as the complexity of this algorithm, are bounded by (sd)kO(1).
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1.4 Reeb Spaces

The Reeb space of a continuous function f : X → Y , where X and Y are topological

spaces, is defined to be the set X/ ∼, where x ∼ x′ ∈ X if and only if f(x) = f(x′) and x

and x′ are in the same connected component of f−1(f(x)) = f−1(f(x′)) ∈ X. To emphasize

the dependence of the Reeb space on the choice of function f : X → Y , we denote the Reeb

space of a function by Reeb(f). When restricted to the special case where f : X → R, we

obtain the Reeb graph of f . In order to ensure that the Reeb graph is a semi-algebraic set,

we consider the case where X and Y are semi-algebraic sets and f is a proper semi-algebraic

function and think of the Reeb space as a semi-algebraic set. Originally created as a tool in

Morse theory [8 ], Reeb spaces have gained attention in applied topology [9 ], [10 ], [11 ] due to

their ability to capture the underlying topological properties of a space. Burlet and de Rham

first introduced the Reeb space in [12 ] as the Stein factorization of a map f , but their work

was limited to bivariate, generic, smooth mappings. The authors of [13 ] defined the Reeb

space of a multivariate piecewise linear mapping on a combinatorial manifold, and proved

results regarding its local and global structure.

Reeb spaces, and in particular Reeb graphs, have previously been used to simplify and

study data sets. The authors of [14 ] observe that, since shape data of natural objects is

often available in cross-sections, Reeb graphs can be used to reconstruct the original three-

dimensional surface. Furthermore, Mapper, an approximation of the Reeb graph introduced

in [15 ], can be used to visualize the relationship between clusters of points in point-cloud

data. The authors of [16 ] define the interleaving distance for Reeb spaces to show the

convergence between the Reeb space and Mapper. Mapper has been used in a diverse range

of applications, including the analysis breast cancer tumor expression [17 ]. Although there

are fewer applications of higher dimensional Reeb spaces, the authors of [18 ] believe that

Reeb spaces have shown promise in interpreting the output of standard statistical machine

learning methods. These varied applications illustrate the need for an efficient method to

compute Reeb spaces, which Chapter 3 provides.

While progress has been made in computing Reeb graphs [19 ] and Reeb spaces of certain

maps [13 ], [20 ], little has been made in computing Reeb spaces of semi-algebraic maps. In
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[21 ] it was shown that the Reeb space of a proper semi-algebraic map is homeomorphic to

a semi-algebraic set, and furthermore that there is a singly exponential upper bound on the

Betti numbers of the Reeb space of a semi-algebraic map f : X → Y , where X is a closed

and bounded semi-algebraic set, in terms of the number and the degrees of the polynomials

defining X, Y and f .

Theorem. [21 ] Let S ⊂ Rn be a bounded P-closed semi-algebraic set, and f = (f1, . . . , fm) :

S → Rm be a polynomial map. Suppose that s = card(P) and the maximum of the degrees

of the polynomials in P and f1, . . . , fm is bounded by d. Then,

b(Reeb(f)) ≤ (sd)(n+m)O(1)
.

It is a meta theorem in algorithmic semi-algebraic geometry that upper bounds on topo-

logical complexity of objects are closely related to the worst-case complexity of algorithms

computing the topological invariants of such objects. As a consequence of Theorem 4.2.1 ,

we can expect to obtain an algorithm with singly-exponential complexity that computes the

Reeb space of a semi-algebraic map. To that end, we will prove the following theorem:

Theorem. There is an algorithm that takes as input a family of polynomials P and formulas

describing a semi-algebraic set and polynomial map f and computes as output a semi-

algebraic description of the Reeb graph with complexity sk+1dO(k2), where s = card(P) and

the maximum of the degrees of the polynomials in P.
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2. PRELIMINARIES

We begin by defining concept of semi-algebraic sets, which play a critical role throughout

this thesis.

Definition 2.0.1 (Semi-algebraic Sets). Let R be a real closed field. We define the semi-

algebraic sets of Rk as the smallest family of sets in Rk that contains the sets of the form

{x ∈ Rk | P (x) = 0} and {x ∈ Rk | P (x) > 0} for some polynomial P ∈ R[X1, . . . , Xk] and

is closed under finite unions, finite intersections, and complementation.

A map f : X → Y between two semi-algebraic sets is is semi-algebraic if its graph is a

semi-algebraic set.

In this thesis, we assume that X and Y are semi-algebraic sets, and f : X → Y is a proper

semi-algebraic map. We require f to be proper to ensure that Reeb(f) is a semi-algebraic

set. In fact, we can assume without loss of generality that the map f is projection onto

the first coordinate. To see that the choice of projection map does not reduce generality,

consider a semi-algebraic set S ∈ Rk and let f : S → R be any semi-algebraic map. Then

we can add a new variable y and consider the set S ′ = {(x, y) ∈ Rk × R | x ∈ S, y = f(x)}.

Then f(S) is the projection of S ′ onto R.

For computational efficiency, we represent points in Rk by univariate representations and

an associated Thom encoding. To define these concepts, we must first define the notion of a

sign condition.

Definition 2.0.2 (Sign Condition). Let Q be a finite subset of R[X1, . . . , Xk]. A sign

condition on Q is an element of {0, 1,−1}Q, i.e. a mapping from Q to {0, 1,−1}. We say

that Q realizes the sign condition σ if ∧
Q∈Q

sign(Q(x)) = σ(Q).

The realization of the sign condition σ is

Reali(σ) = {x ∈ Rk |
∧

Q∈Q
sign(Q(x)) = σ(Q)}

The sign condition σ is realizable if Reali(σ) is non-empty.
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In particular, for our algorithms, we need to consider triangular Thom encodings. We

first introduce some notation:

Notation 1. Consider a finite subset P ⊂ C[X1, . . . , Xk], where C is an algebraically closed

field. We write the set of zeros of P in Ck as

Zer(P ,Ck) = {x ∈ Ck |
∧

P ∈P
P (x) = 0}

Notation 2. Let P be a univariate polynomial of degree p in R[X]. We denote by Der(P )

the list P, P ′, . . . , P (p)

Definition 2.0.3 (Thom Encoding). Let P ∈ R[X] and σ ∈ {0, 1,−1}Der(P ). The sign

condition σ is a Thom encoding of x ∈ R if σ(P ) = 0 and Reali(σ) = {x}.

Definition 2.0.4 (Triangular Thom Encoding and Associated Point). A triangular Thom

encoding T = (F,σ) of size i is a tuple (triangular system) of polynomials,

F = (f1, . . . , fi)

where fj ∈ R[X1, . . . , Xj], 1 ≤ j ≤ i, and a tuple of Thom encodings σ = (σ1, . . . , σi), with

σj ∈ {0, 1,−1}DerXj
(fj), such that for each j, 1 ≤ j ≤ i, there exists tj ∈ R, such that tj is

a root of the polynomial fj(t1, . . . , tj−1, Tj) with Thom encoding σj. We call (t1, . . . , ti) ∈ Ri

the point associated to T and denote ass(T ) = (t1, . . . , ti).

Given a triangular Thom encoding

T + = ((f1, . . . , fi+1), (σ1, . . . , σi+1)),

with ass(T +) = (t1, . . . , ti+1), we will sometimes call the pair τ = (fi+1, σi+1) a Thom

encoding over the triangular Thom encoding T = ((f1, . . . , fi), (σ1, . . . , σi)). In this case we

will denote ti+1 by ass(τ) (generalizing Definition 2.0.3 ).

We will call max1≤j≤i deg(Fj) the degree of the triangular Thom encoding T , and denote

it by deg(T ).
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If τ = (fi+1, σi+1) a is Thom encoding over a triangular Thom encoding

T = ((f1, . . . , fi), (σ1, . . . , σi)),

we will call degTi+1(fi+1), the degree of τ , and denote it by deg(τ).

Finally, given a triangular Thom encoding T = (F,σ) of size i, we denote by θ(T ), the

formula ∧
1≤j≤i

∧
0≤h≤degXj

(fj)

(
sign(f (h)

j ) = σj(f (h)
j )

)
.

Notation 3. Given a triangular Thom encoding T = (F,σ) of size i (following the same

notation as in Definition 2.0.4 above), we will denote by σ, the closed formula obtained from

σ by replacing each sign condition on the derivatives by the corresponding weak inequality

(i.e. replacing f (h)
j > 0 by f (h)

j ≥ 0 and f (h)
j < 0 by f (h)

j ≤ 0).

We will make use of the following consequence of Thom’s lemma[1 ]:

Lemma 1. Given a triangular Thom encoding T = (F,σ) of size i,

ass(T ) = R(σ,Ri).

Proof. Follows directly from [1 , Proposition 5.39] (Generalized Thom’s Lemma).

We now introduce the notion of a univariate representation to efficiently describe the

coordinates of the solutions of a zero-dimensional polynomial system as rational functions

of the roots of a univariate polynomial.

Definition 2.0.5 (Univariate Representation). Let K be a field. A k-univariate representa-

tion is a k + 2-tuple of polynomials in K[T ],

u = (f(T ), g(T )), with g = (g0(T ), g1(T ), . . . , gk(T ))

such that f and g0 are coprime.

A real k-univariate representation is a pair u, σ where u is a k-univariate representation

and σ is the Thom encoding of a root of r, tσ ∈ R.

14



A real univariate triangular representation T , σ, u of level i− 1 consists of

– a triangular Thom encoding T , σ specifying (z, t) ∈ Ri with z ∈ Ri−1

– a parametrized univariate representation

u(X<i) = (Ti(X<i, T ), g0(X<i, T ), gi(X<i, T ), . . . , gk(X<i, T )

with parameters X<i = (X1, . . . , xi−1).

The point associated to T , σ, u is

(
z,
gi(z, t)
g0(z, t)

, . . . ,
gk(z, t)
g0(z, t)

)

A curve segment representation u, ρ above V1τ1,V2, τ2 consists of

– a parametrized univariate representation with parameters (x≤i)

u = (f(X≤i, T ), g0(X≤i, T ), gi+1(X≤i, T ), . . . , gk(X≤i, T ),

– a sign condition ρ on Der(f) such that for every v ∈ (a, b) there exists a real root t(V )

of f(z, v, T ) with Thom encoding ρ, σ and g0(z, v, t(v)) 6= 0.

We need the following notation:

Notation 4. For R a real closed field we denote by R〈ε〉 the real closed field of algebraic

Puiseux series in ε with coefficients in R. As a real closed field R〈ε〉 is uniquely ordered,

and this order extends the order on R. It is the unique order in which ε > 0 and ε < x for

every x ∈ R, x > 0. In particular, the subring D[ε] ⊂ R〈ε〉 is ordered by:

∑
i≥0

aiε
i > 0 if and only if ap > 0 where p = min{i | ai 6= 0}

Notation 5. For P = apT
p + · · ·+ aqT

q, p ≥ q ∈ D[T ], we denote

c′(P ) =
(

(p+ 1) ·
∑

i

a2
i

a2
q

)−1

.
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In Chapter 4, we make use of a tool from semi-algebraic geometry called the roadmap

[22 ], which provides a useful description of the connected components of a set.

Definition 2.0.6 (Roadmap). A roadmap for S is a semi-algebraic set M of dimension at

most one contained in S which satisfies the following roadmap conditions:

– RM1: For every semi-algebraically connected component D of S, D ∩ M is semi-

algebraically connected.

– RM2: For every x ∈ R and for every semi-algebraically connected component D′ of

Sx = {y ∈ Rk−1 | (x, y) ∈ S}, D′ ∩M 6= ∅.

We conclude this section with the following defintion:

Definition 2.0.7 (Semi-algebraic Description). Given a pair (S, s) where S is a semi-

algebraic set and s : S → R, a semi-algebraic description of (S, s) is a set D homeomorphic

to S and a map p : D → R such that the following diagram commutes:

S D

R

s

∼

p

2.1 Algorithmic Preliminaries

Before we introduce our algorithmic contributions, we must first discuss previous contri-

butions to algorithmic semi-algebraic geometry upon which we build our algorithm. We rely

the roadmap algorithm detailed in [1 ], reprinted here for convenience.

Algorithm 1 (Roadmap of a Semi-Algebraic Set)
Input:

(a) a polynomial Q ∈ D[X1, . . . , Xk] such that Zer(Q,Rk) is of real dimension k′,

(b) a semi-algebraic subset S of Zer(Q,Rk) described by a finite set P ⊂ R[X1, . . . , Xk].

Output: a roadmap for S.

Complexity: sk′+1dO(k2) where s is a bound on the number of elements of P , and d is a

bound on the degree of Q and of the polynomials in P .
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We also include a semi-algebraic generalization of the Curve Selection Algorithm in [1 ],

which relies on the following algorithm, appearing (without a triangular Thom encoding in

the input) in [6 ].

Algorithm 2 (Morse partition)
Input:

(a) r ∈ D, r > 0;

(b) A triangular Thom encoding T of size i, 0 ≤ i ≤ k;

(c) A finite set P = {P1, . . . , Ps} ⊂ D[X1, . . . , Xk];

(d) A P-closed formula Φ.

Output:

A finite set of F of Thom encodings over T , with associated points t1 < · · · < tN , with

−r ≤ t1, tN ≤ r, and such that for each j, 1 ≤ j ≤ N − 1, and all t ∈ [tj, tj+1) the

inclusion maps

S{ass(T )}×(∞,ti] ↪→ S{ass(T )}×(∞,t]

induce isomorphisms

H∗(S{ass(T )}×(∞,ti])→ H∗(S{ass(T )}×(∞,t]),

where

S = R(Φ,Rk) ∩ clos(Bk(0, r)).

Complexity: The complexity of the algorithm is bounded by

DO(i)(sd)O(k),

where s = card(P), d = maxP ∈P deg(P ), and D = deg(T ).

Moreover, deg(τ) ≤ dO(k) for each τ ∈ F , and card(F) ≤ (sd)O(k).

17



We will need the following extra property of the output of Algorithm 2 .

Proposition 2.1.1. For each j, 1 ≤ j ≤ N − 1, and all t ∈ [tj, tj+1] the inclusion maps

S{ass(T )}×{t} ↪→ S{ass(T )}×[tjtj+1]

induce isomorphisms

H∗(S{ass(T )}×{t})→ H∗(S{ass(T )}×[tjtj+1]),

where

S = R(Φ,Rk) ∩ clos(Bk(0, r)).

Proof. Let

A1 = S{ass(T )}×(−∞,t],

A2 = S{ass(T )}×[t,∞),

B1 = S{ass(T )}×(−∞,tj+1],

B2 = S{ass(T )}×[tj ,∞).

Then, Ah ⊂ Bh, h = 1, 2 and

A1 ∩ A2 = S{ass(T )}×{t},

B1 ∩B2 = S{ass(T )}×[tjtj+1],

and

A1 ∪ A2 = B1 ∪B2 = Sass(T ).

Moreover, the properties of the output of Algorithm 2 imply that that the homomorphisms

H∗(Ah) → H∗(Bh), h = 1, 2, induced by inclusions are isomorphisms. The Mayer-Vietoris

exact sequence in homology then yields the following commutative diagram with exact rows

and vertical homomorphisms induced by inclusion (where A12 (resp. B12) denotes A1 ∩ A2

(resp. B1 ∩B2), and A12 (resp. B12) denotes A1 ∪ A2 (resp. B1 ∪B2)):
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Hm+1(A1)⊕ Hm+1(A2) Hm+1(A12) Hm(A12) Hm(A1)⊕ Hm(A2) Hm(A12)

Hm+1(B1)⊕ Hm+1(B2) Hm+1(B12) Hm(B12) Hm(B1)⊕ Hm(B2) Hm(B12)

It follows from the fact that homomorphisms H∗(Ah) → H∗(Bh), h = 1, 2 induced by

inclusions are isomorphisms, and the fact that A12 = B12, that all the vertical arrows other

than the middle one are isomorphisms. Hence, by the “five-lemma” [23 ] the middle arrow is

also an isomorphism, thus proving the proposition.

Algorithm 4 requires the following construction construction as input:

Algorithm 3 (Big enough radius)
Input:

(a) A triangular Thom encoding T = (F,σ) of size i, 0 ≤ i ≤ k;

(b) a finite set P ⊂ D[X1, . . . , Xk];

(c) a P-closed formula Φ such that R(Φ,Rk) is bounded.

Output:

Elements a, b ∈ D[ass(T )], a, b > 0, such that the inclusion map

R(Φ,Rk)ass(T ) ∩ clos({ass(T )} ×Bk−i(0, r)) ↪→R(Φ,Rk)ass(T ),

where r = a
b
, induces an isomorphism

H∗
(
(R(Φ,Rk) ∩ clos({ass(T )} ×Bk−i(0, r)))ass(T )

)
→ H∗

(
R(Φ,Rk)ass(T )

)
.

Procedure:

1: P1 ← Y − (X2
i+1 + · · ·+X2

k).

2: P2 ← (ε2(X2
i+1 + · · ·+X2

k)− 1).

3: Φ̃← Φ ∧ (P1 = 0) ∧ (P2 ≤ 0).
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4: D̃← D[ε] where D[ε] ⊂ R〈ε〉 (cf. Definition 4 ).

5: Call Algorithm 2 (Morse partition) treating Y as the (i+ 1)-st coordinate, with compu-

tations occurring in the domain D̃, and with input T ,P ∪ {P1, P2}, Φ̃.

6: Q ∈ D[ass(T )][ε] ← the set of polynomials whose signs are determined during the call

to Algorithm 2 (Morse partition) in the previous step.

7: c = b
a
← minQ∈Q c

′(Q), a, b ∈ D[ass(T )] (cf. Notation 5 ).

8: r ← a
b
.

9: Output a, b.

Complexity: The complexity of the algorithm is bounded by

DO(i)(sd)O(k),

where s = card(P), d = maxP ∈P deg(P ), and D = deg(T ).

Proof of Correctness of Algorithm 3 . Note that the formula Φ̃ defines a semi-algebraic subset

S̃ ⊂ R〈ε〉i × clos(Bk−i(0,
1
ε

)).

It follows from the conic structure theorem at infinity of semi-algebraic sets (see for example

[1 , Proposition 5.49]) and the Tarski-Seidenberg transfer principle (see for example [1 , The-

orem 2.98]) that ext(S,R〈ε〉)ass(T ) is semi-algebraically homeomorphic to S̃ass(T ), and hence

H∗(ext(S,R〈ε〉)ass(T )) ∼= H∗(S̃ass(T )). (2.1)

It follows from the way r is computed in the algorithm in Line 7 , and Lemma 10.7 in

[1 ] that c = 1
r

is strictly positive, and smaller than all roots in R of the polynomials in Q

(defined in Line 6 of the algorithm). It now follows from the ordering of the ring D[ass(T )][ε]

(cf. Notation 4 ) that all the branchings in the algorithm, each of which depend on the

determination of the sign of an element in D[ass(T )][ε], remain the same if c is substituted

for ε.

20



It now follows from the correctness of Algorithm 2 (Morse partition), that the inclusion

S̃{ass(T )}×(−∞,r] ↪→ S̃{ass(T )}×(−∞, 1
ε

] = S̃ass(T )

(with r as computed in the algorithm) induces an isomorphism

H∗(S̃{ass(T )}×(−∞,r])→ H∗(S̃ass(T )). (2.2)

Moreover, for any r′ > 0, S̃{ass(T )}×(−∞,r′] is semi-algebraically homeomorphic to

ext(S,R〈ε〉) ∩ {ass(T )} × clos(Bk−i(0, r′)), and hence

H∗(S̃{ass(T )}×(−∞,r]) ∼= H∗(ext(S,R〈ε〉) ∩ {ass(T )} × clos(Bk−i(0, r))). (2.3)

Finally, for any closed semi-algebraic set X ⊂ Rk,

H∗(X) ∼= H∗(ext(X,R〈ε〉)). (2.4)

The isomorphisms (2.1 ), (2.2 ), (2.3 ), and (2.4 ) imply that

H∗(Sass(T )) ∼= H∗(S ∩ {ass(T )} × clos(Bk−i(0, r))).

This proves the correctness of Algorithm 3 .

Complexity of Algorithm 3 . The stated complexity follows from the complexity of Algo-

rithm 2 (Morse partition).

Algorithm 4 (Curve segments)
Input:

1. A triangular Thom encoding T = (F,σ) of size i with 0 ≤ i ≤ k − 1;

2. a finite set P ⊂ D[X1, . . . , Xk];

3. a P-closed formula Φ such that R(Φ,Rk) is bounded.
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Output:

1. A finite tuple F = (τ1, . . . , τN) of Thom encodings over T , with

t1 = ass(τ1) < · · · < tN = ass(τN);

2. for each j, 1 ≤ j ≤ N − 1, an indexing set Ij, a finite tuple Cj = (γh)h∈Ij
of curve

segment representations over T , such that for each h ∈ Ij

τ1(γh) = τj, τ2(γh) = τj+1

(we will let C0 = CN+1 = ∅);

3. for each j, 1 ≤ j ≤ N a finite set Uj of real univariate representations over T ,

such that for each u ∈ Uj, the set of points {ass(u) | u ∈ Uj} includes the set of

end-points of the curve segment representations in Cj−1 ∪ Cj;

4. mappings Lj, Rj−1 : Ij → Uj, defined by ass(Lj(h)) is the left end-point of γh, and

ass(Rj(γh)) is the right end-point of γh.

Procedure:

1: Call Algorithm 3 with input (T ,P ,Φ) and compute r > 0, r ∈ D.

2: P ← P ∪ {X2
1 + · · ·+X2

k − r2}.

3: Φ← Φ ∧ (X2
1 + · · ·+X2

k − r2 ≤ 0).

4: Call Algorithm 2 (Morse partition) with (T , r,P ,Φ) as input and obtain a finite set F

of Thom encodings over T as output.

5: Call Algorithm 16.26 (General Roadmap) on [1 ] with input P ,Φ, performing all compu-

tations over the ring D[ass(T )].

6: Retain from the output of the previous step, the set C of curve segment representations

over T parametrized by Xi+1, and the set U of real univariate representations over T .

7: For each pair γ, γ′ ∈ C, compute a description of ass(γ) ∩ ass(γ′) using Algorithm 14.25

(Parametrized Sign Determination) in [1 ], and refine the set C to have the property that

ass(γ) ∩ ass(γ′) = ∅, for all γ, γ′ ∈ Cγ 6= γ′.
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8: Augment the set U to also contain the set of real univariate representations over T whose

associated points are the end points of the curve segments in C.

9: Compute Thom encodings over T whose associated values are the Xi+1-coordinates of

the asssociated points of U , and add these to F .

10: Using Algorithm 12.69 (Triangular Comparison of Roots) in [1 ] order the Thom encod-

ings in F , and let the associated values be t1 = ass(τ1), . . . , tN = ass(τN).

F ← (τ1, . . . , τN).

11: Further refine C, such that for each γ ∈ C, there exists j, 1 ≤ j < N , such that

τ1(γ) = τj, τ2(γ) = τ2.

12: Augment the set U to include the left and the right end points of each γ ∈ C.

13: for each j, 1 ≤ j ≤ N − 1 do

14: Let Ij denote a set indexing the set of curve segment representations γ ∈ C, such

that τ1(γ) = τj, τ2(γ) = τj+1. For h ∈ Ij, we denote the corresponding curve segment

representation in C by γh.

15: Cj ← (γh)h∈Ij

16: Uj ← {u ∈ U | πi+1(ass(u)) = ass(τj)}.

17: Compute the maps Lj : Ij → Uj, Rj : Ij → Uj+1, such that ass(Lj(h)) is the left

end-point of γh, and ass(Rj(h)) is the right endpoint of γh.

18: end for

19: Output
(
F , (Ij, Cj,Uj, Lj, Rj)j∈[1,N ]

)
.
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Complexity: The complexity of the algorithm is bounded by DO(i)(sd)kO(1) , where

s = card(P), d = maxP ∈P deg(P ), and D = deg(T ).

The degrees of the curve segment representations in the various Cj, and the degrees

of the real univariate representations in Uj are both bounded by (D, dO(k)). Finally the

sum of the cardinalities,
N∑

j=1
(card(Cj) + card(Uj))

is bounded by (sd)kO(1) .

Proposition 2.1.2. The output of Algorithm 4 (Curve segments) satisfies the following:

(a) For each j, 1 ≤ j ≤ N − 1, and all xi+1 ∈ [ass(τj), ass(τj+1)) the inclusion maps

S{ass(T )}×(−∞,ass(τj)] ↪→ S{ass(T )}×(−∞,xi+1]

are homological equivalences;

(b) for each h ∈ Ij, ass(γh) ⊂ S = R(Φ,Rk);

(c) for each xi+1 ∈ (ass(τj), ass(τj+1)) and each semi-algebraically connected component C

of Sy, where y = (ass(T ), xi+1) ∈ Ri+1, there exists h ∈ Ij such that ass(γh)y ∈ C;

(d) if h1, h2 ∈ Ij with h1 6= h2, then ass(γh1) ∩ ass(γh2) = ∅.
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3. COMPUTATION OF A BASIS OF THE FIRST HOMOLOGY

GROUP OF A SEMI-ALGEBRAIC SET

Given a quantifier-free formula Φ defining a semi-algebraic subset S ⊂ Rk, the problem

of computing a basis for H0(S) has been well-studied, and very efficient algorithms for

computing such a basis via roadmaps have been produced [24 ]–[28 ]. It is natural to ask

if this result can be extended to higher homology groups. In this chapter, we present an

efficient algorithm to compute a basis for H1(S).

To achieve this result, we first construct a one-dimensional subset Γ of S such that there

is a surjection H1(Γ) � H1(S). This Γ is semi-algebraically equivalent to the realization |G|

of a finite graph G that is singly exponential in size. It is then a relatively easy combinatorial

task to choosing a basis of simple cycles, Γ1, . . . ,ΓN , for the cycle space of G. Letting [Γi]

denote the image of H1(|Γi|) in H1(S) under the homomorphism induced by the inclusion

|Γi| ↪→ S, the images [Γ1], . . . , [ΓN ] span H1(S) but are not necessarily linearly independent.

To select a minimal spanning subset from amongst the [Γ1], . . . , [ΓN ], we rely on an algorithm

from [6 ] that replaces a given semi-algebraic set and a tuple of subsets by a simplicial

complex and a tuple of corresponding subcomplexes, which are homologically `-equivalent

(cf. Definition 3.0.2 ) for any fixed `, and which has singly exponentially bounded complexity

[6 ] (cf. Algorithm 6 below).

The set Γ is very similar to the roadmap construction, however the roadmap requirements

alone do not guarantee that H1(Γ) � H1(S). To see why the roadmap is insufficient for our

purposes, consider the 2-torus, which has as its basis for H1 a wedge of two copies of S1,

shown below.

Figure 3.1. A basis for H1(T 2)
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The outer equator E of a torus T , shown in 3.2a , is a roadmap for T . However, H1(D)

does not surject onto H1(T ). To remedy this problem, we present an algorithm (cf Algo-

rithm 7 ) to construct a set Γ, shown in 3.2b , such that H1(Γ)→ H1(S1 ∧S1) is a surjection.

(a) The outer equator of T 2 (b) Our construction

Figure 3.2. Two roadmaps of T 2

Algorithm 7 takes as input a P-closed formula Φ, and produces as output a descrip-

tion of a semi-algebraic subset Γ ⊂ S = R(Φ), having dimension ≤ 1, and such that the

homomorphism i∗,1 : H1(Γ) → H1(S) induced by the inclusion Γ ↪→ S is surjective, and

the homomorphism i∗,0 : H0(Γ) → H0(S) is an isomorphism. More explicitly, we have the

following theorem.

Theorem 3.0.1. There exists an algorithm that takes as input a finite set

P ⊂ D[X1, . . . , Xk],

and a P-closed formula Φ, where s = card(P) and the maximum of the degrees of the

polynomials in P and f1, . . . , fm is bounded by d,and outputs a finite set Q ⊂ D[X1, . . . , Xk],

as well as a finite tuple (Ψj)j∈J , in which each Ψj is a Q-formula, such that the realizations

Γj = R(Ψj,Rk) have the following properties:

1. For each j ∈ J , Γj ⊂ S and Γj is semi-algebraically homeomorphic to S1;

2. the inclusion map Γj ↪→ S induces an injective map F ∼= H1(Γj) → H1(S), whose image

we denote by [Γj];

3. the tuple ([Γj])j∈J forms a basis of H1(S).

The complexity of each Γj, j ∈ J (as a semi-algebraic subset of Rk defined over D), as well

as the complexity of this algorithm, are bounded by (sd)kO(1).
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We will prove Theorem 3.0.1 by describing an algorithm (cf. Algorithm 8 below) for

computing a semi-algebraic basis of H1(R(Φ,Rk)), for any given closed formula Φ. Theo-

rem 3.0.1 will then follow from the proof of correctness this algorithm and the analysis of the

complexity of the algorithm. Before presenting Algorithm 8 , we need to address address the

following technical issue: the output of Algorithm 7 (Computing one-dimensional subset)

contains amongst other objects, a set of curve segment representations. In order to use Al-

gorithm 6 which only accepts such descriptions by closed formulas in the input, we will need

to convert these descriptions into closed formulas describing the closure of the associated

curves

Note that the algorithmic problem of computing a closed formula describing the closure of

a given semi-algebraic set described by a quantifier-free (but not necessarily closed-) formula

is far from being easy, and no algorithm with singly exponential complexity is known for

solving this problem in general. (A doubly exponential algorithm is known, using the notion

of a stratifying family [1 , Chapter 5]). However, the curve segment representations describing

the associated curve have a special structure, namely, it is clear that given a curve segment

representation γ, it is algorithmically quite simple to obtain a description of the the image,

π{1,j}(ass(γ)), of the projection of ass(γ), to each of the coordinate subspaces spanned by

(X1, Xj), 2 ≤ j ≤ k. More precisely, suppose that γ is the curve segment representation with

u(γ) = ((f, g0, . . . , gk), σ),

where f, gi ∈ D[X1, T ], and σ ∈ {0, 1,−1}DerT (f). Then, ass(γ) is defined by

ass(γ) =
{(

x1,
g2(x1, t(x1))
g0(x1, t(x1))

, . . . ,
gk(x1, t(x1))
g0(x1, t(x1))

) ∣∣∣∣∣ ass(τ1(γ)) < x1 < ass(τ2(γ))
}
,

where for each x1, ass(τ1(γ)) < x1 < ass(τ2(γ)), and t(x1) is a root of f(x1, T ) with Thom

encoding σ.

Now for each j, 2 ≤ j ≤ k, the projection of ass(γ) to the (X1, Xj)-plane is described by

π{1,j}(ass(γ)) =
{(

x1,
gj(x1, t(x1))
g0(x1, t(x1))

) ∣∣∣∣∣ ass(τ1(γ)) < x1 < ass(τ2(γ))
}
.
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Using an effective quantifier elimination (eliminating T ), one can obtain from the above

description a quantifier-free formula with free variables X1, Xj whose realization is equal to

π{1,j}(ass(γ)).

We will use the following claim.

Claim 1. Suppose that γ is a curve segment representation and ass(γ) is bounded, then

clos(ass(γ)) =
⋂

2≤j≤k

π−1
{1,j}(clos(π{1,j}(ass(γ)))).

Proof of Claim 1 . First, suppose that x ∈ clos(ass(γ)). Then we have that

x ∈ π−1
{1,j}(π{1,j}(ass(γ)))

for all j. It is a general fact from topology that for any continuous function f and set A,

f(clos(A)) ⊂ clos(f(A)). Hence,

π−1
{1,j}(π{1,j}(ass(γ))) ⊂ π−1

{1,j}(clos(π{1,j}(ass(γ))))

for all j. Therefore x ∈ ⋂2≤j≤k π
−1
{1,j}(clos(π{1,j}(ass(γ)))).

Now, suppose that

x = (x1, . . . , xk) ∈
⋂

2≤j≤k

π−1
{1,j}(clos(π{1,j}(ass(γ))))

and let x1,j = π{1,j}(x) for j = 2, . . . , k.

Since, x1,j ∈ clos(π{1,j}(ass(γ))), using the semi-algebraic curve selection lemma (see for

example [1 , Theorem 3.19]) there exists tj,0 > 0, such that there exists a semi-algebraic

curve, γj = (γ1,j, γ2,j) : [0, tj,0] : R2, such that γ1,j, γ2,s are continuous semi-algebraic func-

tions, γj(0) = x1,j, and γ((0, tj,0]) ⊂ π{1,j}(ass(γ)). Moreover, since π{1,j}(ass(γ)) is a curve

parametrized by the X1 coordinate, γ1,j is not a constant function, and without loss of gen-
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erality (choosing tj,0 smaller if necessary) we can assume that γ1,j is a strictly increasing

function. For j = 2, . . . , k, let fj : [x1, γ1,j(tj,0)]→ R be defined by

fj(X1) = γ2,j(γ−1
1,j (X1)).

Taking x′
1 = min2≤j≤k γ1,j(tj,0), we obtain a semi-algebraic curve γ̃ : [x1, x

′
1] → ass(γ),

defined by

γ̃(X1) = (X1, f2(X1), . . . , fk(X1)).

It is easy to check that

γ̃(x1) = x,

and

γ̃ : (x1, x
′
1] ⊂ ass(γ),

which proves that x ∈ clos(ass(γ)).

Using Claim 1 we reduce the problem of computing a closed description of clos(ass(γ))

to the problem of computing the closures of π{1,j}(ass(γ)), 2 ≤ j ≤ k, and each of the latter

is a 2-dimensional problems which can be solved within our allowed complexity bound using

the doubly exponential algorithm referred to previously.

Finally, as in the case of the other algorithms in this paper we include in the input

a triangular Thom encoding T that fixes the first i-coordinates, and the curve segment

representations in the input is over T . The computations in the algorithm take place in the

ring D[ass(T )], and in the description given above, the first coordinate is replaced by the

(i+ 1)-st coordinate.
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Algorithm 5 (Conversion of curve segment representations to closed formulas)
Input:

1. A triangular Thom encoding T = (F,σ) of size i, 0 ≤ i ≤ k;

2. a curve segment representation γ over T .

Output:

1. A finite set of polynomials Q ⊂ D[ass(T ][Xi+1, . . . , Xk];

2. A Q-closed formula Ψ such that

R(Ψ,Rk)ass(T ) = clos(ass(γ)).

Procedure:

1: u← u(γ) = ((f, g0, gi+2, . . . , gk), σ).

2: for j = i+ 2, . . . , k do

3: Using Algorithm 14.5 (Quantifier Elimination) in [1 , pp. 591] with the formula

(∃T )(f = 0) ∧
∧

1≤h≤degT (f)
(sign(f (h)) = σ(f (h))) ∧ (Xjg0 − gj = 0),

as input, and obtain a Q̃j-formula quantifier-free formula φ̃j, for some

Q̃j ⊂ D[ass(T )][Xi+1, Xj] describing such that R(φ̃j) = π[1,i+1]∪{j}(ass(γ)).

4: Compute a stratifying family of polynomials (see [1 , Proposition 5.40] for definition),

Qj ⊂ D[ass(T )][Xi+1, Xj] containing Q̃j.

5: Using Algorithm 13.1 (Computing realizable sign conditions) in [1 , pp. 549] deter-

mine the set Σj ⊂ {0, 1,−1}Qj of realizable sign conditions of Qj.

6: Determine Θj ⊂ Σj such that π[1,i+1]∪{j}(ass(γ)) = ⋃
θ∈Θj
R(θ).

7: Ψj ←
∨

θ∈Θj
θ.

8: end for

9: Q ← F ∪ ⋃i+2≤j≤kQj.

10: Ψ← σ ∧ ∧i+2≤j≤k Ψj (see Notation 3 for definition of σ).

11: Output Q,Ψ.
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Complexity: The complexity of the algorithm is bounded by (k − i)DO(i)
1 D

O(1)
2 , where

D1 = deg(T ), and D2 = deg(γ). Moreover, card(Q) is bounded by i+ (k− i)DO(1)
2 , and

the degrees of the polynomials in Q are bounded by max(D1, D
O(1)
2 ).

Proof of Correctness of Algorithm 5 . The algorithm reduces the problem to obtaining closed

formulas describing the closures of the various πi+1,j(ass(γ)), i + 2 ≤ j ≤ k (cf. Line 2 ).

After obtaining the descriptions of the various πi+1,j(ass(γ)) using effective quantifier elimi-

nation algorithm (Algorithm 14.5 (Quantifier Elimination) in [1 , pp. 591] called in Line 3 ),

closed formulas are obtained describing the closure by computing a stratifying family (cf.

4 ) in each case. The important property of the stratifying families Qj is that the closures,

clos(πi+1,j(ass(γ))) are unions of realizations of a set of weak sign conditions on Qj. This is a

consequence of the generalized Thom’s Lemma (see [1 , Proposition 5.39]). Finally, the set of

weak sign conditions on Qj whose realizations are contained in clos(πi+1,j(ass(γ))) computed

using Algorithm 13.9 (Computing realizable sign conditions) in [1 , pp. 549] in Line 5 . The

disjunction of these weak formulas gives a closed formula, Ψj describing clos(πi+1,j(ass(γ)))

(cf. Line 7 ). Now Claim 1 together with Lemma 1 (and noting that the conjunction of a

finite set of closed formulas is also closed), imply that the conjunction, Ψ, of the formulas

Ψj, j = i+ 2, . . . , k along with the closed formula σ (Notation 3 ), describes clos(ass(γ)) (cf.

Line 10 ). This proves the correctness of the algorithm.

Complexity analysis of Algorithm 5 . As before, each arithmetic operation in D[ass(T )] costs

D
O(i)
1 arithmetic operations in D (where D1 = deg(T )). There are (k − i) two dimensional

projections (cf. Line 2 ). The complexity of each of these two-dimensional sub-problems

(measured in terms of number of operations in D[ass(T )]) is bounded by D
O(1)
2 , where

D2 = deg(γ), and this follows from the complexity bounds on the various algorithms used in

the different steps (namely, Algorithm 14.5 (Quantifier Elimination) in [1 , pp. 591] in Line 3 ,

algorithm for computing stratifying families in 4 , and Algorithm 13.9 (Computing realizable

sign conditions) in [1 , pp. 549] in Line 5 ). Note that these algorithms are used with the

number of variables equal to 2, and hence the complexity of each call (measured in terms
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of arithmetic operations in D[ass(T )]) are polynomially bounded in D1. This completes the

complexity analysis of Algorithm 1 .

Before we prove our main result, we must first introduce some definitions and notation

required to understand the algorithm in [6 ].

Definition 3.0.1 (Homological `-equivalences). We say that a map f : X → Y between two

topological spaces is a homological `-equivalence if the induced homomorphisms between the

homology groups f∗ : Hi(X)→ Hi(Y ) are isomorphisms for 0 ≤ i ≤ `.

The relation of homological `-equivalence as defined above is not an equivalence relation

since it is not symmetric. In order to make it symmetric one needs to “formally invert”

`-equivalences.

Definition 3.0.2 (Homologically `-equivalent). We will say that X is homologically `-

equivalent to Y (denoted X ∼` Y ), if and only if there exists spaces, X = X0, X1, . . . , Xn = Y

and homological `-equivalences f1, . . . , fn as shown below:
X1 X3 · · · · · · Xn−1

X0 X2 · · · · · · Xn

f1

f2

f3

f4

fn−1

fn

Note that ∼` is in fact an equivalence relation.

Definition 3.0.3 (Diagrams of topological spaces). A diagram of topological spaces is a

functor, X : J → Top, from a small category J to Top.

In particular, we need the notion of homological `-equivalence between diagrams of topo-

logical spaces. We denote by Top the category of topological spaces.

Definition 3.0.4 (Homological `-equivalence between diagrams of topological spaces). Let

J be a small category, and X,Y : J → Top be two functors.

We will say that a diagram X : J → Top is homologically `-equivalent to the diagram

Y : J → Top (denoted as before by X ∼` Y ), if and only if there exists diagrams X =

X0, X1, . . . , Xn = Y : J → Top and homological `-equivalences f1, . . . , fn as shown below:
X1 X3 · · · · · · Xn−1

X0 X2 · · · · · · Xn

f1

f2

f3

f4

fn−1

fn
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Again, ∼` is indeed an equivalence relation.

Notation 6 (Diagram of various unions of a finite number of subspaces). Let J be a finite

set, A a topological space, and A = (Aj)j∈J a tuple of subspaces of A indexed by J .

For any subset J ′ ⊂ J , we denote

AJ ′ =
⋃

j′∈J ′
Aj′ .

We consider 2J as a category whose objects are elements of 2J , and whose only morphisms

are given by:

2J(J ′, J ′′) = ∅ if J ′ 6⊂ J ′′,

2J(J ′, J ′′) = {ιJ ′,J ′′} if J ′ ⊂ J ′′.

We denote by SimpJ(A) : 2J → Top the functor (or the diagram) defined by

SimpJ(A)(J ′) = AJ ′
, J ′ ∈ 2J ,

and SimpJ(A)(ιJ ′,J ′′) is the inclusion map AJ ′
↪→ AJ ′′.

Now that we have the definition of homological equivalence of diagrams as defined above,

we can state the specifications of the simplicial replacement algorithm described in [6 ].

Algorithm 6 (Simplicial replacement)
Input:

(a) A finite set of polynomials P ⊂ D[X1, . . . , Xk];

(b) An integer N ≥ 0, and for each i ∈ [N ], a P-closed formula φi;

(c) `, 0 ≤ ` ≤ k.
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Output:

A simplicial complex ∆ and for each I ⊂ [N ] a subcomplex ∆I ⊂ ∆ such that there is

a diagrammatic homological `-equivalence

(I 7→ ∆I)I⊂[N ]
h∼` Simp[N ](R(Φ)),

where Φ(i) = φi, i ∈ [N ].

Complexity: The complexity of the algorithm is bounded by (sd)kO(`) , where s = card(P)

and d = maxP ∈P deg(P ).

With these preliminaries in place, we are now ready to present an algorithm which satisfies

the conditions of 3.0.1 .

Algorithm 7 (Computing one-dimensional subset)
Input:

1. A triangular Thom encoding T = (F,σ) of size i;

2. a finite set P ⊂ D[X1, . . . , Xk];

3. a P-closed formula Φ such that R(Φ,Rk) is bounded;

4. a finite set M of real univariate representations over T , whose set of associated

points, M , is contained in R(Φ,Rk).

Output:

1. a finite set U of real univariate representations over T ;

2. a finite indexing set I and a finite tuple (γj)j∈I where each γj a curve segment

representation over T ;

3. mappings L,R : I → U , defined by ass(L(j)) is the left endpoint of γj, and ass(R(j))

is the right endpoint of γj.
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Procedure:

1: if k − i = 1 then

2: for each u = {(f, g0, gk), σ} ∈ M do

3: Let Ru ∈ R[Xk] be the Sylvester resultant (see for example [1 , pp. 118]) with

respect to the variable T of the polynomials f,Xkg0 − gk.

4: Use Algorithm 10.96 (Sign Determination) [1 , pp. 426] to compute a Thom

encoding τu = (Ru, σu) over T , such that ass(τu) = πk(ass(u)).

5: P ← P ∪ {Ru}.

6: end for

7: Use Algorithm 12.69 (Triangular Comparison of Roots) in [1 , pp. 534] repeatedly

with inputs T and pairs of polynomials in P , and order the real roots of the polynomials

P (ass(T ), Xk), P ∈ P , and hence obtain a partition of R into points and open intervals,

and identify those points and open intervals which are contained in R(Φ,Rk)ass(T ).

8: U ← ∅.

9: I ← ∅.

10: j ← 0.

11: for each Thom encoding (P, σ) over T obtained in Line 4 whose associated point is

in S = R(Φ,Rk) do

12: U ← U ∪ {((P,Xk, 1), σ)}.

13: end for

14: for each open interval with end-points described by the Thom encodings τ1 =

((P1, Xk, 1), σ1), τ2 = ((P2, Xk, 1), σ2) ∈ U with ass(τ1) < ass(τ2) such that

(ass(τ1), ass(τ2)) ⊂ πk(R(Φ,Rk)) do

15: I ← I ∪ {j}.

16: j ← j + 1.
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17: γj ← γ, where γ is the curve segment representation over T defined by:

τ1(γ) = τ1,

τ2(γ) = τ2,

u(γ) = ((T, 1), (0, 1)).

18: L(j)← τ1(γj).

19: R(j)← τ2(γj).

20: end for

21: Output U , (γj)j∈I , and the mappings L,R : I → U .

22: end if

23: Use Algorithm 4 (Curve segments) with input (T ,P ,Φ) to compute:

(a) A finite tuple F = (τ1, . . . , τN) of Thom encodings over T , with

ass(τ1) < · · · < ass(τN);

(b) for each j, 1 ≤ j ≤ N − 1, a finite tuple Cj of curve segment representations over

T such that for each γ ∈ Cj, τ1(γ) = τj, τ2(γ) = τj+1;

(c) for each j, 1 ≤ j ≤ N a finite set Uj of real univariate representations over T , such

that for each u ∈ Uj, the set of points {ass(u) | u ∈ Uj} is precisely the set of

end-points of the curve segments in Cj−1 ∪ Cj (with the convention that C0 = ∅);

(d) mappings Lj, Rj−1 : Cj → Uj, such that ass(Lj(γ)) is the left end-point of γ, and

ass(Rj(γ)) is the right end-point of γ.

24: for τ = (f, σ) ∈ F do

25: Mτ ← {u ∈M∪ U | πi+1(ass(u)) = ass(τ)}.

26: Tτ ← ((F, f), (σ, σ))).

36



27: Call Algorithm 7 (Computing one-dimensional subset) recursively with input

(Tτ ,P ,Φ,Mτ ) and obtain a set of Uτ of real univariate representations over Tτ ,

an indexing set Iτ , a tuple (γi)i∈Iτ of curve segment representations, and mappings

Lτ , Rτ : Iτ → Uτ . (Note that for each i ∈ Iτ , ass(γi) ⊂ Sass(τ).)

28: end for

29: I ← ⋃
τ∈F Iτ .

30: U ← ⋃
τ∈F Uτ .

31: L← ⋃
1≤j≤N Lj∪

⋃
τ∈F Lτ . (Union of disjoint mappings means the disjoint union of their

graphs.)

32: R← ⋃
1≤j≤N Rj ∪

⋃
τ∈F Rτ .

33: Output U , I, (γj)j∈I , L,R.

Complexity: Suppose that deg(T ) = dO(k). The complexity of the algorithm is bounded

by (sd)O(k2), where s = card(P), d = maxP ∈P . Moreover, card(I) = (sd)O((k−i)2), and

the degrees of the elements of U and γj, j ∈ I are bounded by (dO(k), dO(k)).

Proposition 3.0.1. The output of Algorithm 7 has the following properties. Let

Γ = ⋃
j∈I clos(ass(γj)), and S = R(Φ,Rk)ass(T ).

(a) M ⊂ Γ;

(b) Γ ⊂ S;

(c) dim(Γ) ≤ 1;

(d) the homomorphism i∗,0 : H0(Γ) → H0(S) induced by the inclusion map i : Γ ↪→ S is an

isomorphism;

(e) the homomorphism i∗,1 : H1(Γ) → H1(S) induced by the inclusion map i : Γ ↪→ S is an

epimorphism.

Proof. The property in Part (a ) is ensured in Lines 2 and 25 . Part (b ) follows from the

property of the output of Algorithm 4 (Curve segments) (called in Line 23 ) given in Part

(b ) of Proposition 2.1.2 .
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Part (c ) holds since Γ is by definition the finite union

⋃
j∈I

clos(ass(γj))

and dim ass(γj) = 1 for each j ∈ I, and taking the closure does not increase the dimension

of a semi-algebraic set.

It is a standard exercise (see for example proof of Proposition 15.8 in [1 ]) to prove that

the semi-algebraic set Γ satisfies the properties of being roadmap for S = R(Φ,Rk) (see [1 ,

Chapter 15]), which implies Part (d ).

We now prove Part (e ).

The proof is by induction on k − i.

Base case: k − i = 1. In this case the claim is clear since H1(Γ) = H1(S) = 0.

Suppose the claim is true for all smaller values of k − i. Notice that Algorithm 7 (Com-

puting one-dimensional subset) is called recursively in Line 27 . In these calls the triangular

Thom encoding Tτ , τ ∈ F in the input is of size i + 1, while the number of variables is still

k. We have also have

Γτ := clos
 ⋃

j∈Iτ

ass(γj)
 = Γass(τ).

Thus, using the induction hypothesis for this recursive call (since k − (i + 1) < k − i), we

obtain that the restriction of the inclusion Γ→ S to Γτ induces a surjection

H1(Γτ )→ H1(Sass(τ)). (3.1)

For 1 ≤ j ≤ N , denote tj = πi+1(ass(τj)).

a0 = t1,

ai = ti + ti+1

2 , 1 ≤ i < N,

aN = tN ,

We prove the following claims.
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Claim 2. For each j, 0 ≤ j ≤ N , the inclusion maps induce the following isomorphisms.

H∗(S(−∞,tj ])→ H∗(S(−∞,aj ]), (3.2)

H∗(Stj
)→ H∗(S[aj−1,aj ]), (3.3)

H∗(Γ(−∞,tj ])→ H∗(Γ(−∞,aj ]), (3.4)

H∗(Γtj
)→ H∗(Γ[aj−1,aj ]). (3.5)

Proof. Parts (3.2 ) and (3.3 ) are consequences of the property of the output of Algorithm 4 

(Curve segments) (which is called in Line 23 ) given in Part (a ) of Proposition 2.1.2 .

Parts (3.4 ) and (3.5 ) follow from the fact that there is a retraction (along the Xi+1-

coordinate) of Γ(−∞,aj ] to Γ(−∞,tj ] (resp. Γ[aj−1,aj ] to Γtj
) making use of the fact that distinct

curve segments over the open intervals (tj−1, tj) do not intersect which is ensured by Part

(d ) of Proposition 2.1.2 .

Claim 3. Let a, b ∈ {a0, . . . , aN}, with a ≤ b. The inclusion map Γ ↪→ S induces isomor-

phisms

H0(Γ(−∞,a])→ H0(S(∞,a]),

H0(Γ[a,b])→ H0(S[a,b]),

Proof. This follows from the fact that Γ(−∞,a] (resp. Γ[a,b]) satisfy the roadmap property with

respect to the set S(∞,a] (resp. S[a,b]). The proof of this fact is standard and omitted.

Using the claims proved above, we are now going to prove using induction on j, that the

inclusion map Γ→ S induces an isomorphism,

H1(Γ(∞,aj ])→ H1(S(∞,aj ]).

The claim is true for j = 0 by the global induction hypothesis on i, and hence is also

true for j = 1 using using (3.2 ) and (3.4 ).

We prove it for j > 1 by induction. Suppose the claim holds until j − 1.
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Hence we have isomorphism

H1(Γ(∞,aj−1])→ H1(S(∞,aj−1])

induced by inclusion.

Observe that for any set X ⊂ Rk,

X(−∞,aj ] = X(−∞,aj−1] ∪X[aj−1,aj ],

Xaj−1 = X(−∞,aj−1] ∩X[aj−1,aj ]Xaj−1 .

Let

A1 = Γ(−∞,aj−1],

A2 = Γ[aj−1,aj ],

B1 = S(−∞,aj−1],

B2 = S[aj−1,aj ].

Also, let A12 (resp. B12) denote A1∩A2 (resp. B1∩B2), and A12 (resp. B12) denote A1∪A2

(resp. B1 ∪B2).

The Mayer-Vietoris exact sequence (see for example [1 , Theorem 6.35]) yields the follow-

ing commutative diagrams with exact rows and vertical arrows induced by various restrictions

of the inclusion Γ ↪→ S.

H1(A12)a H1(A1)⊕ H1(A2)b1⊕b2 H1(A12)c H0(A12)d H0(A1)⊕ H0(A2)e1⊕e2

H1(B12) H1(B1)⊕ H1(B2) H1(B12) H0(B12) H0(B1)⊕ H0(B2)

By induction hypothesis on j, the map b1 : H1(A1) → H1(B1) is surjective. Using (3.1 ),

(3.3 ), and (3.5 ) we have that the map b2 : H1(A2) → H1(B2) is surjective. Hence the map

b = b1 ⊕ b2 is surjective.
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Using Proposition 2.1.2 (c ) we have that map d is surjective.

Finally, using Claim 3 , we have that the maps e1 and e2 are both isomorphisms, and

hence so is e. In particular, e is injective.

It follows from the above and (one-half of) the “Five-lemma” (see for example [23 ]), that

c is a surjection.

Now, we can present an algorithm to prove Theorem 3.0.1 .

Algorithm 8 (Computing homology basis)
Input:

1. a finite set P ⊂ D[X1, . . . , Xk];

2. a P-closed formula Φ.

Output:

1. a finite set Q ⊂ D[X1, . . . , Xk];

2. a finite tuple (Ψj)j∈J , in which each Ψj is a Q-formula, such that the realizations

Γj = R(Ψj,Rk) have the following properties:

(a) For each j ∈ J , Γj ⊂ S and Γj is semi-algebraically homeomorphic to S1;

(b) the inclusion map Γj ↪→ S induces an injective map F ∼= H1(Γj) → H1(S),

whose image we denote by [Γj];

(c) the tuple ([Γj])j∈J forms a basis of H1(S).

Procedure:

1: Use Algorithm 3 (Big enough radius) with input (P ,Φ) and let r = a
b
> 0, a, b ∈ D be

the output.

2: P ← P ∪ {b2(X2
1 + · · ·+X2

k)− a2}.

3: Φ← Φ ∧ (b2(X2
1 + · · ·+X2

k)− a2 ≤ 0).
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4: Call Algorithm 7 (Computing one-dimensional subset) with input (P ,Φ) to obtain

(a) a finite set U of real univariate representations over T ;

(b) a finite indexing set I and a finite tuple (γj)j∈I where each γj a curve segment

representation over T ;

(c) mappings L,R : I → U , defined by ass(L(j)) is the left endpoint of γj, and ass(R(j))

is the right endpoint of γj.

5: Using Algorithm 5 (Conversion of curve segment representations to closed formulas)

compute for each j ∈ I a set of polynomials Qj and a Qj-closed formula Θj such that

R(Θj) = clos(ass(γj)).

6: Q ← ⋃
j∈I Qj.

7: G← (E = I, V = U , head = L, tail = R).

8: Using a graph traversal algorithm compute a tuple (C1, . . . , CN) where each

Ch = (ih,0, . . . , ih,qh−1) ∈ Iqh and

(a) tail(ij,h) = head(ij,h+1 mod qj
), h = 0, . . . , qj − 1.

(b) C1, . . . , CN are simple cycles of G.

(c) The cycles C1, . . . , CN form a basis of the cycle space of G (which is isomorphic to

H1(|G|)).

9: for 1 ≤ h ≤ N do

10: Ψh ← Θih,0 ∨ · · · ∨Θih,qh−1 .

11: end for
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12: Call Algorithm 6 (Simplicial replacement) with input:

1. Q,

2. the tuple of Q-closed formulas Φ = (φ0, . . . , φN) = (Ψ1, . . . ,ΨN ,Φ),

3. ` = 1

to obtain a simplicial complex ∆1(Φ) such that

(J 7→ |∆1(Φ|J)|)J⊂[N ]

is homologically 1-equivalent (cf. Definition 3.0.2 ) to Simp[N ](R(Φ)) (cf. Notation 6 ).

13: Using Gauss-Jordan elimination identify a minimal subset J ⊂ {1, . . . , N} such that

the span({Im(H1(∆1(Φ|{h}))→ H1(∆1(Φ))) | h ∈ J}) = H1(∆1(Φ)).

14: Output (Ψh)h∈J .

Complexity: The complexity of each Ψh, h ∈ J is bounded by (sd)O(k2), and the complexity

of the algorithm is bounded by (sd)kO(1) , where s = card(P) and d = maxP ∈P deg(P ).

Proof of correctness of Algorithm 8 . The correctness of Algorithm 8 follows from the cor-

rectness of Algorithms 3 , 4 , 5 , and 6 .

Complexity analysis of Algorithm 8 . The complexity upper bound is a consequence of the

complexity analysis of the Algorithms 3 , 4 , 5 , and 6 .

Proof of Theorem 3.0.1 . Theorem 3.0.1 follows from the correctness and complexity analysis

of Algorithm 8 .
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4. REEB SPACES OF SEMI-ALGEBRAIC MAPS

We begin by defining the Reeb space, a generalization of the Reeb graph, a concept first

developed by Georges Reeb as a tool in Morse Theory [8 ]. In the next two chapters, to ensure

that the resulting Reeb spaces are semi-algebraic sets, we restrict ourselves to working with

proper maps, that is, maps with the property that inverse images of compact subsets are

compact.

While it is possible to compute directly the Reeb space of a semi-algebraic map, the

best known algorithm to compute semi-algebraic descriptions of quotients has doubly expo-

nential complexity using cylindrical algebraic decomposition (CAD), which is often used in

algorithms for computing topological properties of semi-algebraic sets [1 ]. For the general

case of the Reeb space, our algorithm has similar complexity. In the special case of Reeb

graphs, however, we were able to produce an algorithm with singly-exponential complexity

to compute the Reeb graph of a function from the roadmap.

Definition 4.0.1. The Reeb space of the map f , henceforth denoted Reeb(f), is the topolog-

ical space X/∼, equipped with the quotient topology, where x ∼ x′ if and only if f(x) = f(x′),

and x, x′ belong to the same connected component of f−1(f(x)).

The Reeb space of a function depends highly on on the choice of function f : X → Y .

To see this, consider the following two functions from the torus into R:

(a) f : T 2 → R

(b) g : T 2 → R

Figure 4.1. Two Reeb graphs of T 2

Letting β(X) denote the sum of the Betti numbers of a spaceX, note that β(Reeb(f)) = 2

and β(Reeb(g)) = 1, both of which are less than β(T 2) = 3. The authors of [29 ] produced
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the first bound on the Betti numbers of a Reeb graph, showing that, for a manifold M and

a Morse function f : M → R, β1(R(f)) ≤ β1(M). In fact, the complexity of the Reeb graph

of an arbitrary map f : X → R is bounded by the topological complexity of X, namely, that

β(Reeb(f)) ≤ β(X), as noted in [30 , page 141]. However, this does not generalize to Reeb

spaces. The following example shows that the topological complexity of a Reeb space can

grow arbitrarily large compared to that of the original space.

Example 1. Consider the closed n-dimensional disk Dn with n ≥ 1, and let ∼ be the

equivalence relation identifying all points on the boundary of Dn, shown in the figure below.

Figure 4.2. Reeb space of D2

Then Dn/ ∼ ∼= Sn, the n-sphere. Letting fn denote the quotient map fn : Dn → Sn, the

fibers of fn consist of either one point or the boundary Sn−1 of Dn. Therefore Reeb(fn) ∼= Sn

for all n > 1. Because β0(Dn) = 1 and βi(Dn) = 0 for all i > 0 and furthermore, β0(Sn) = 1,

βn(Sn) = 1, and βi(Sn) = 0, i 6= 0, n, we have that for n > 1,

β(Dn) = 1,

β(Reeb(fn)) = 2.
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Thus the inequality β(Reeb(f)) ≤ β(X) does not hold for arbitrary maps f : X → Y . Indeed,

the topological complexity of the Reeb space can be arbitrarily large compared to that of the

original space. For k ≥ 0, let

fn,k = f × · · · × f︸ ︷︷ ︸
k times

: Dn × · · · ×Dn︸ ︷︷ ︸
k times

−→ Sn × · · · × Sn︸ ︷︷ ︸
k times

.

Using the same argument as before, for n > 1 and k > 0,

Reeb(fn,k) ∼= Sn × · · · × Sn︸ ︷︷ ︸
k times

.

Thus,

β0(Dn × · · · ×Dn︸ ︷︷ ︸
k times

) = 1,

βi((Dn × · · · ×Dn︸ ︷︷ ︸
k times

)) = 0, i > 0,

and hence

β(Dn × · · · ×Dn︸ ︷︷ ︸
k times

) = 1.

Moreover, for n > 1,

βi(Reeb(fn,k)) = 0 if n 6 | i or if i > nk,

βi(Reeb(fn,k)) =
(
k

i/n

)
otherwise,

and hence for n > 1,

β(Reeb(fn,k)) = 2k.

Thus, even for definably proper maps f : X → Y , the individual as well as the total Betti

numbers of Reeb(f) can be arbitrarily large compared to those of X.
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In this chapter, we determine a bound on the topological complexity of a Reeb space in

terms of the complexity of both the complexity of X and f . To do this, we must first discuss

definability of Reeb spaces.

4.1 Reeb Spaces as Semi-algebraic Quotients

In this section, we show that the Reeb space of a semi-algebraic map can be realized

as a semi-algebraic quotient. This result implies the possible existence of an algorithm to

compute the Reeb space of a semi-algebraic map as a semi-algebraic quotient.

Theorem 4.1.1. Let X ⊂ Rn be a closed and bounded semi-algebraic set, and f : X → Y

be a semi-algebraic map. Then, the space Reeb(f) , X/∼ is a definably proper quotient. In

other words, let X ⊂ Rn be a closed and bounded semi-algebraic set, and f : X → Y be a

semi-algebraic map. Then there exists a semi-algebraic set Z, and a proper semi-algebraic

map ψ : X → Z and a homeomorphism θ : Reeb(f) → Z such that the following diagram

commutes:

X Reeb(f) = X/ ∼

Z

q

(here q is the quotient map). In particular, Reeb(f) is homeomorphic to a semi-algebraic

set.

Remark 1. To see why the assumption that X is closed and bounded is needed, consider

the example where X = R2 \ 0 and f : X → R is the projection map forgetting the second

coordinate. Each fiber f−1(x) has one connected component except where x = 0, where f−1(0)

has two connected components. The resulting Reeb space of f is homeomorphic to R with a

doubled point, which is not a semi-algebraic set.

We now prove Theorem 4.1.1 .

Proof of Theorem 4.1.1 . We first claim that the relation, “x ∼ x′ if and only if f(x) =

f(x′), and x, x′ belong to the same connected component of f−1(f(x))” is a definably proper
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equivalence relation. Using Hardt’s triviality theorem for o-minimal structures [31 ], [32 ],

we have that there exists a finite definable partition of Y into locally closed definable sets

(Yα)α∈I , yα ∈ Yα, and definable homeomorphisms φα : Yα × f−1(yα) → f−1(Yα) such that

the following diagram commutes for each α ∈ I:

Yα × f−1(yα) f−1(Yα)

Yα

π1

φα

f |f−1(Yα)

(here π1 is the projection to the first factor in the direct product). For each α ∈ I,

let (Cα,β)β∈Jα be the connected components of f−1(yα), and for each α ∈ I, β ∈ Jα, let

Dα,β = φα(Yα × Cα,β).

Let

E =
⋃

α∈I,β∈Jα

(φα × φα)((Yα × Cα,β)×π1 (Yα × Cα,β)),

where (Yα×Cα,β)×π1 (Yα×Cα,β) is the definable subset of (Yα× f−1(yα))× (Yα× f−1(yα))

defined by

((y, x), (y′, x′)) ∈ (Yα × Cα,β)×π1 (Yα × Cα,β)⇔ y = y′, x, x′ ∈ Cα,β.

It is clear that E is a definable subset of X ×X, and that x ∼ x′ if and only if (x, x′) ∈ E.

Since X is assumed to be closed and bounded, if we can show that E is closed in X ×

X, it would follow that E is a definably proper equivalence relation, and we can apply

Proposition 4.1.1 .

The rest of the proof is devoted to showing that E is a closed definable subset of X ×X.

For each α ∈ I, β ∈ Jα, let

Eα,β = (φα × φα)((Yα × Cα,β)×π1 (Yα × Cα,β)).

Since E = ⋃
α∈I,β∈Jα

Eα,β, in order to prove that E is closed it suffices to prove that for

each α ∈ I, β ∈ Jα,

Eα,β ⊂ E,
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where Eα,β is the closure of Eα,β in X ×X.

It follows from the curve selection lemma for o-minimal structures [32 ] that for every

z ∈ Eα,β there exists a definable curve γ : [0, 1] → Eα,β with γ(0) = z, γ((0, 1]) ⊂ Eα,β.

Thus, in order to prove that Eα,β ⊂ E, it suffices to show that for each definable curve

γ : (0, 1]→ Eα,β, z0 = limt→0 γ(t) ∈ E.

Let γ : (0, 1] → Eα,β be a definable curve, and suppose that limt→0 γ(0) 6∈ Eα,β. Other-

wise, limt→0 γ(0) ∈ Eα,β ⊂ E, and we are done.

For t ∈ (0, 1], let yt = f(γ(t)) and let (xt, x
′
t) ∈ (φα × φα)((Yα × Cα,β) ×π1 (Yα × Cα,β))

be such that γ(t) = (xt, x
′
t). Note that f(xt) = f(x′

t) = yt. Finally, let z0 = (x0, x
′
0) =

limt→0 γ(t).

Since, z0 6∈ Eα,β by assumption and γ((0, 1]) ⊂ Eα,β, there exists t0 > 0 such that

λ = f ◦ γ|(0,t0] : (0, t0] → Yα is an injective definable map and limt→0 λ(t) = y0 = f(x0) =

f(x′
0) ∈ Yα′ for some α′ ∈ I. We need to show that x0 and x′

0 belong to the same connected

component of f−1(y0), which would imply that (x0, x
′
0) ∈ E.

Let Dα,β,γ = f−1(λ((0, t0])) ∩ Dα,β and let g : Dα,β,γ → (0, t0] be defined by g(x) =

λ−1(f(x)) (which is well defined by the injectivity of λ). Note that for each t ∈ (0, t0],

g−1(t) is definably homeomorphic to Cα,β, and hence is connected. It also follows from

Hardt’s triviality theorem that there exists t′0 ∈ (0, t0] and a definable homeomorphism

θ : g−1(t′0)× (0, t′0]→ g−1((0, t′0]) such that the following diagram commutes:

g−1(t′0)× (0, t′0] g−1((0, t′0])

(0, t′0]

θ

π2
g

Extend θ continuously to a definable map θ : g−1(t′0) × [0, t0] → g−1((0, t′0]) by setting

θ(x, 0) = limt→0 θ(x, t). Finally, let θ′ : g−1(t′0)→ f−1(y0) be the definable map obtained by

setting θ′(x) = θ(x, 0).

Note that since g−1(t′0) is connected, θ′(g−1(t′0)) is connected as well, since it is the image

of a connected set under a continuous map. Also note that for each t ∈ (0, t′0], we have that

xt, x
′
t ∈ Dα,β,γ and f(x, t) = f(x′

t) = λ(t), hence xt, x
′
t ∈ g−1(t), and thus x0, x

′
0 ∈ θ′(g−1(t′0)).
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Moreover, f(x0) = f(x′
0) = y0. Therefore, since θ′(g−1(t′0)) is connected, x0 and x′

0 belong

to the same connected component of f−1(y0).

This shows that (x0, x
′
0) ∈ E, which in turn implies that E is closed in X ×X.

The fact that Reeb(f) exists as a definably proper quotient now follows from the following

proposition which appears in [31 ]:

Proposition 4.1.1. [31 , page 166] Let X be a definable set and E ⊂ X × X a definably

proper equivalence relation on X. Then X/E exists as a definably proper quotient of X.

4.2 A Bound on the Topological Complexity of Reeb Spaces

We now consider the problem of bounding effectively from above the Betti numbers of the

Reeb space of a continuous semi-algebraic map. We have seen from Example 1 that, given

a continuous semi-algebraic map f : X → Y , β(Reeb(f)) can be arbitrarily large compared

to β(X), unlike in the case of Reeb graphs (i.e. when dim(Y ) ≤ 1). Because 4.1.1 shows

that the Reeb space of a proper semi-algebraic map is indeed a semi-algebraic set, we can

make use of results from semi-algebraic geometry to compute a bound on the topological

complexity of Reeb(f). In this section, we prove an upper bound on β(Reeb(f)) in terms of

the “semi-algebraic” complexity of the map f . We present the main result below:

Theorem 4.2.1. Let S ⊂ Rn be a bounded P-closed semi-algebraic set, and f = (f1, . . . , fm) :

S → Rm be a polynomial map. Suppose that s = card(P) and the maximum of the degrees

of the polynomials in P and f1, . . . , fm is bounded by d. Then,

β(Reeb(f)) ≤ (sd)(n+m)O(1)
.

4.2.1 Outline of the proof of Theorem 4.2.1 

We first replace the map f : S → Rm, by a new map f̃ : S̃ → Rm, where S̃ ⊂ Rn × Rm

and f̃ is the restriction to S̃ of the projection map to Rm, such that the following diagram

commutes:
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S̃ Rn ×Rm

Rm

f̃

πm

From the definitions it is evident that Reeb(f) and Reeb(f̃) are homeomorphic. We

next prove that there exists a semi-algebraic partition of Rm of controlled complexity (more

precisely given by the connected components of the realizable sign conditions of a fam-

ily of polynomials of singly exponentially bounded degrees and cardinality) into connected

semi-algebraic sets C, such that the connected components of the fibers f̃−1(z) are in 1-

1 correspondence with each other as z varies over C. Moreover, each of these connected

components C is described by a quantifier-free first order formula and the complexity of

these formulas (i.e. the number of polynomials appearing in the formula and their respective

degrees) is bounded singly exponentially (given by Proposition 4.2.2 ).

Next, we use the fact that the canonical surjection φ : S̃ → Reeb(f̃) is a proper semi-

algebraic map. We then use an inequality proved in [33 ] (see Proposition 4.2.1 below) to

obtain an upper bound on the Betti numbers of the image of a proper semi-algebraic map

F : X → Y in terms of the sum of the Betti numbers of various fiber products X×F · · ·×F X

of the same map. Recall that for p ≥ 0, the (p+ 1)-fold fiber product is given by

X ×F · · · ×F X︸ ︷︷ ︸
(p+ 1)-times

, {(x(0), . . . , x(p)) ∈ Xp+1 | F (x(0)) = · · · = F (x(p))}.

The following proposition proved in [33 ] allows one to bound the Betti numbers of the

image of a closed and bounded definable set X under a definable map F in terms of the

Betti numbers of the iterated fibered product of X over F . More precisely:

Proposition 4.2.1. [33 ] Let F : X → Y be a definable continuous map, and X a closed

and bounded definable set. Then, for for all p ≥ 0,

βp(F (X)) ≤
∑

i,j≥0
i+j=p

βi(X ×F · · · ×F X︸ ︷︷ ︸
(j+1)

).
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Proposition 4.2.2 provides us with a well controlled description (i.e. by quantifier-free

first order formulas involving singly exponentially any polynomials of singly exponentially

bounded degrees) of the fibered products S̃ ×f̃ · · · ×f̃ S̃. Finally, using these descriptions

and results on bounding the Betti numbers of general semi-algebraic sets in terms of the

number and degrees of polynomials defining them (cf. Proposition 4.2.4 below) we obtain

the claimed bound on Reeb(f).

4.2.2 Technical necessities

Before we proceed to the proof, we need a few preliminary results. We will use the

following notation for the rest of this chapter.

Notation 7. We will denote by πY : Rk+` → R` the projection to the last ` (denoted by

Y = (Y1, . . . , Y`)) coordinates. For any semi-algebraic subset S ⊂ Rk+` and T ⊂ R`, we will

denote by ST = S ∩ π−1
Y (T ). If T = {y}, we will write Sy in stead of S{y}.

The following proposition, whose proof can be found in [21 ], will play a crucial role in

the proof of Theorem 4.2.1 .

Proposition 4.2.2. Let R be a real closed field, and let P ⊂ R[X1, . . . , Xk, Y1, . . . , Y`] be a

finite set of polynomials of degrees bounded by d, with card(P) = s. Let S ⊂ Rk × R` be a

P-semi-algebraic set. Then there exists a finite set of polynomials Q ⊂ R[Y1, . . . , Y`] such

that card(Q) and the degrees of polynomials in Q are bounded by (sd)(k+`)O(1), and Q has the

following additional property.

For each σ ∈ sign(Q) ⊂ {0, 1,−1}Q and C ∈ Cc(R(σ,R`)), there exists

(i) an index set Iσ,C,

(ii) a finite family of polynomials Pσ,C ⊂ R[X1, . . . , Xk, Y1, . . . , Y`], and

(iii) Pσ,C-formulas, (Θα(X, Y ))α∈Iσ,C
,

such that

1. Θα(x,y)⇒ y ∈ C;
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2. for each y ∈ C and each D ∈ Cc(SC), there exists a unique α ∈ Iσ,C such that

R(Θα(·,y)) = Dy and Dy ∈ Cc(Sy).

In order to prove Theorem 4.2.1 , we will need singly exponential upper bounds on the

Betti numbers of semi-algebraic sets in terms of the number and degrees of the polynomials

appearing in any quantifier-free formula defining the set. The first results on bounding

the Betti numbers of real varieties were proved by Oleĭnik and Petrovskiĭ [34 ], Thom [35 ],

and Milnor [36 ]. Using a Morse-theoretic argument and Bezout’s theorem they proved the

following proposition which appears in [37 ] and makes more precise an earlier result which

appeared in [38 ]:

Proposition 4.2.3. [37 ] If S ⊂ Rk is a P-closed semi-algebraic set, then

β(S) ≤
k∑

i=0

k−i∑
j=0

(
s+ 1
j

)
6jd(2d− 1)k−1, (4.1)

where s = card(P) > 0 and d = maxP ∈P deg(P ).

Using a technique to replace an arbitrary semi-algebraic set by a locally closed one with

a very controlled increase in the number of polynomials used to describe the given set,

Gabrielov and Vorobjov [39 ] extended Proposition 4.2.3 to arbitrary P-semi-algebraic sets

with only a small increase in the bound. Their result, in conjunction with Proposition 4.2.3 ,

gives the following proposition.

Proposition 4.2.4. [1 ], [40 ] If S ⊂ Rk is a P-semi-algebraic set, then

β(S) ≤
k∑

i=0

k−i∑
j=0

(
2ks+ 1

j

)
6jd(2d− 1)k−1, (4.2)

where s = card(P) and d = maxP ∈P deg(P ).

We will also use the following bound on the number of connected components of the

realizations of all realizable sign conditions of a family of polynomials proved in [37 ].
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Proposition 4.2.5. Let P ⊂ R[X1, . . . , Xk]≤d and let s = card(P). Then

card

 ⋃
σ∈sign(P)

Cc(R(σ,Rk))

 ≤ ∑
1≤j≤k

(
s

j

)
4jd(2d− 1)k−1.

With these preliminary results in place, we proceed to the proof of Theorem 4.2.1 :

4.2.3 Proof of Theorem 4.2.1 

Proof of Theorem 4.2.1 . Let Φ be the P-closed formula defining S. Introducing new vari-

ables Z1, . . . , Zm, let S̃ ⊂ Rn × Rm be the P̃-formula

Φ ∧
∧

1≤i≤m

(Zi − fi = 0).

Let f̃ : S̃ → Rm denote the restriction to S̃ of the projection map πZ : Rm×Rn → Rm to the

Z-coordinates. Then clearly S is semi-algebraically homeomorphic to S̃, f(S) = f̃(S̃), and

Reeb(f) is semi-algebraically homeomorphic to Reeb(f̃). We have the following commutative

square where the horizontal arrows are homeomorphisms and the vertical arrows are the

quotient maps.
S S̃

Reeb(f) Reeb(f̃)

∼=

φ φ̃

∼=

Now it follows from Proposition 4.2.2 that there exists a finite set of polynomials Q ⊂

R[Z1, . . . , Zm], with

card(Q),max
Q∈Q

deg(Q) ≤ (sd)(n+m)O(1) (4.3)

having the following property: for each σ ∈ sign(Q) and each C ∈ Cc(R(σ,Rm)), there

exists an index set Iσ,C , a finite family of polynomials

Pσ,C ⊂ R[X1, . . . , Xn, Z1, . . . , Zm],
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and Pσ,C formulas (Θα(X,Z))α∈Iσ,C
such that Θα(x, z) ⇒ z ∈ C, and for each z ∈ C, and

each connected component D of π−1
Z (C) ∩ S̃, there exists a unique α ∈ Iσ,C (which does not

depend on z) with R(Θα(·, z)) = π−1
Z (z) ∩D.

Moreover, the cardinalities of Iσ,C and Pσ,C and the degrees of the polynomials in Pσ,C

are all bounded by (sd)(n+m)O(1) .

Let φ (resp. φ̃) be the canonical surjection φ : S → Reeb(f) ∼= S/ ∼ (resp. φ̃ : S̃ →

Reeb(f̃) ∼= S̃/ ∼). From Theorem 4.1.1 it follows that we can assume that φ is a proper

semi-algebraic map. For each i ≥ 0, we have the inequality (cf. Proposition 4.2.1 )

βi(Reeb(f)) ≤
∑

p+q=i

βq(S ×φ · · · ×φ S︸ ︷︷ ︸
(p+ 1) times

). (4.4)

Now observe that S̃ ×φ̃ · · · ×φ̃ S̃︸ ︷︷ ︸
(p+ 1) times

(and hence S ×φ · · · ×φ S︸ ︷︷ ︸
(p+ 1) times

) is semi-algebraically homeo-

morphic to the semi-algebraic set defined by the formula

Θ(X(0)
, . . . , X

(p)
, Z) =

∨
σ∈sign(Q)

C∈Cc(R(σ,Rm))
α∈Iσ,C

∧
0≤j≤p

Θα(X(j)
, Z). (4.5)

To see this observe that

((x(0), z(0)), . . . , (x(p), z(p))) ∈ S̃ ×φ̃ · · · ×φ̃ S̃︸ ︷︷ ︸
(p+ 1) times

if and only if

z(0) = · · · = z(p) = z,

for some z, and x(0), . . . , x(p) belong to the same connected component of f̃−1(z).

It is easy to verify this last equivalence using the properties of the decomposition given

by Proposition 4.2.2 .
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We now claim that each of the formulas

Θ(X0
, . . . , X

(p)
, Z), 0 ≤ p ≤ m,

is a P̃p-formula for some finite set P̃p ⊂ R[X0
, . . . , X

(p)
, Z] with card(P̃p) and the degrees of

the polynomials in P̃p being bounded singly exponentially.

In order to prove the claim first observe that the cardinality of the set

⋃
σ∈sign(Q)

Cc(R(σ,Rm))

is bounded singly exponentially, once the number of polynomials in Q, and their degrees

are bounded singly exponentially (using Proposition 4.2.5 ). The fact that the number of

polynomials in Q and their degrees are bounded singly exponentially follows from (4.3 ).

Moreover, for similar reasons the cardinalities of the index sets Iσ,C are also bounded singly

exponentially. The claim now follows from Eqn. (4.5 ).

Finally, to prove the theorem we first apply inequality (4.4 ) and then apply Proposi-

tion 4.2.4 to bound the right hand side of the inequality (4.4 ).
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5. AN EFFICIENT ALGORITHM FOR THE COMPUTATION

OF REEB SPACES FROM ROADMAPS

The field of algorithmic semi-algebraic geometry is rich and well-studied. Born out of a desire

to develop an algorithm to count the number of real roots of a real-valued polynomial, algo-

rithmic semi-algebraic geometry been the area of exploration for over 350 years. Algorithmic

problems in semi-algebraic geometry generally take as input a finite family of polynomials

and formulas defining a semi-algebraic set S, and either decide whether or not certain topo-

logical properties hold for S, or compute topological invariants of S. Many algorithms in

semi-algebraic geometry rely on cylindrical algebraic decomposition (CAD), a technique with

doubly-exponential algorithmic complexity in terms of the number of polynomials defining

S and their degrees.

In fact, one could apply general the quotienting algorithm, which would rely on CAD

which has doubly exponential complexity, to yield a description of the Reeb space with

doubly exponential complexity. The point of much research in other problems has been to

obtain more refined algorithms with singly exponential complexity, for example, computing

descriptions of connected components or Euler characteristics of semi-algebraic sets. In

a similar direction, in this paper, we are designing an algorithm with singly exponential

complexity for computing Reeb graphs.

Because there is a meta theorem in algorithmic semi-algebraic geometry relating up-

per bounds on topological complexity of semi-algebraic sets with worst-case complexity of

algorithms to compute their topological invariants, the singly-exponential upper bound in

Theorem 4.2.1 raises the possibility of constructing an algorithm with singly-exponential

complexity to compute a semi-algebraic description of the Reeb space the Reeb space of a

semi-algebraic map. We begin to prove this result by presenting an algorithm with singly

exponential complexity to compute the Reeb graph of a semi-algebraic map.

Theorem 5.0.1. There is an algorithm that takes as input a family P ⊂ R[X1, . . . , Xk] of

polynomials and formulas describing a semi-algebraic set and map f and computes as output

a semi-algebraic description of the Reeb graph with complexity sk+1dO(k2) where s is a bound

on the number of polynomials in P and d is a bound on their degree.
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5.1 Example

We demonstrate how our algorithm works with the following examples.

Example 2. Consider the curves show in Figure 5.1 . Starting with Figure 5.1 , we run

algorithm 9 and obtain Figure 5.2 as an intermediate step.

Figure 5.1. Figure 5.2.

Figure 5.3.

The output of the algorithm is Figure 5.3 .

Example 3. Consider a roadmap of the torus given in [1 ] corresponding to the projection

map π onto the first coordinate.
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The Reeb graph Reeb(π) is the set

By choosing one curve per connected component of the fiber of each point on X1, as

shown in Figure 5.4 and joining them at their endpoints as in Figure 5.5 , we obtain a set

homeomorphic to Reeb(π). In the case of the roadmap of the torus, this subset in Figure 5.4 

is not unique; any subset satisfying this criterion will produce the Reeb graph after joining

the curves in this manner.

Figure 5.4. Figure 5.5.

5.2 Algorithm to Compute the Reeb Graph

We begin by defining Puiseux series, a commonly used tool in algorithmic semi-algebraic

geometry.

Definition 5.2.1. A Puiseux series in ε with coefficients in R is a series of the form

r = ∑
i≥k

riε
i/q with k, i ∈ Z, q ∈ N, and ri ∈ R. We denote the set of algebraic Puiseux

series in ε with coefficients in R as R〈ε〉. This is a real closed field whose unique order is

the one whose restriction to R(ε) is >0+.
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We can now consider the field R(ε) =
{

f(ε)
g(ε) | f, g ∈ R[ε]

}
with order >0+ , defined on

polynomials in R(ε), as follows: f > 0 if and only if it is positive to the right of the

origin, and f < 0 if and only if it is negative to the right of the origin. Equivalently, if

f(ε) = apε
p + . . .+ anε

n, ai 6= 0, then f(ε) > 0 ⇐⇒ ap > 0. In particular, let f = a− ε for

any a > 0. Then f > 0, and hence a > ε, so ε is indeed smaller than every element in R.

Definition 5.2.2. We define a variable ε > 0 to be infinitesimal if ε < r for any r ∈ R.

Because the field R(ε) is not a real closed field (there is no unique order on it), we work

with the field R〈ε〉, Puiseux series in ε.

Our algorithm makes use of a generalized version [31 ] of Hardt’s triviality theorem [41 ]:

Theorem 5.2.1. Let S ⊂ Rk and T ⊂ Rm be semi-algebraic sets. Given a continuous

semi-algebraic function f : S → T , there exists a finite partition of T into semi-algebraic sets

T =
r⋃

i=1
Ti, so that for each i and any xi ∈ Ti, Ti×f−1(xi) is semi-algebraically homeomorphic

to f−1(Ti).

Definition 5.2.3. Consider a finite partition of [0, 1] into intervals of the form (xi, xi+1),

0 = x0 < x1 < . . . xn−1 < xn = 1. Suppose we are given a a finite set Γ of semi-algebraic

continuous maps {γk} where each γk : (xi, xi+1) → Rk is parametrized by X1. Suppose also

that for each curve γk, we are given two points, zki
and zki+1, whose first coordinates are

equal to the first coordinates of the left and right endpoints of the image of γk. Let U be the

union of the images of the curves in Γ. Define an equivalence relation ∼ on points in U by

letting γk(xi) ∼ γj(xi) if and only if zki
= zji

. Letting Z denote the set {zki
}, the set U/ ∼,

denoted GUZ
, is called the gluing of U with respect to Z, and will play an important role in

the proof of Theorem 5.0.1 .

By Hardt’s Triviality Theorem, there exists an r0 > 0 such that the images of any two

curves γ1(t) and γ2(t) do not intersect on (0, r0). By definition, ε < r0. Thus no two curves

intersect on the intervals (xi − ε, xi) and (xi, xi + ε) for all xi.
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Algorithm 9 (Gluing)
Input:

1. A finite partition of [0, 1] into intervals of the form (xi, xi+1), 0 = x0 < x1 <

. . . xn−1 < xn = 1;

2. a set U and a set Z as described in Definition 5.2.3 .

Output: A semi-algebraic set Ũ of dimension 1 over R〈ε〉 and a map p : Ũ → R〈ε〉 such

that the following diagram commutes:

GSZ
Ũ

R〈ε〉

∼

Complexity: card(Γ)dO(k), where d is a bound on the degree of the curve segments in Γ.

Procedure:

1: for each each γj ∈ Γ with endpoints xi, xi+1 do,

2: construct a line Lj1 between zi and γj(xi + ε).

3: construct a line Lj2 between zi+1 and γj(xi+1 − ε).

4: end for

5: if n line segments L1, L2, . . . , Ln intersect at a point p then

6: construct balls B2(p, ε), B2(p, 2ε), . . . , B2(p, (n− 1)ε).

7: for each k in 1, . . . , n do

8: Lk ← Lk \B2(p, kε)∪ {(x, y, z) | (x, y) ∈ Lk ∩B2(p, kε)∧ z =
√

(kε)2 − x2 − y2}.

9: end for

10: end if

11: γ′
j ← Lj1 ∪ {(x, y) | (x, y) ∈ γj ∧ x ∈ (xi + ε, xi+1 − ε)} ∪ Lj2 .

12: Ũ ← ⋃
γ′

j.
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Figure 5.6. Re-routing lines around a ball, as described in Step 8 in Algorithm 9 

Proof of correctness. First, we show that there exists a homeomorphism f : GSZ
→ Ũ . Con-

sider the diagram

U

GSZ
Ũ

R〈ε〉

q
g

s

f

p

Define the map g : U → Ũ as follows: consider a point (x, y) ∈ γi where x ∈ R and

y ∈ Rk−1. Define g(x, y) = (x, y′), where y′ is the unique point such that (x, y′) ∈ Ũ ;

uniqueness is guaranteed by condition 3 of the curves being glueable.

To define the map f : GUZ
→ Ũ , let (x, y) ∈ GUZ

where x ∈ R and y ∈ Rk−1. Let

q : U → GUZ
be the quotient map. Pick an arbitrary point (x′, y′) ∈ U that is contained in

the preimage of (x, y) under q. Then f(x, y) = g(x′, y′). This is well defined because for any

two points (x′, y′), (x′′, y′′) in the preimage of (x, y) under q, x′ = x′′ so g(x′, y′) = g(x′′, y′′).

This construction also guarantees that f is surjective. Similarly, f−1 is well-defined: for

any point (x, y) ∈ Ũ , the map q sends all points in the preimage of (x, y) under g to the

same point (x′, y′) ∈ GUZ
. Let U ⊆ Ũ be a basic open set. Then U = Bk ∩ g(γi) for some

γi ∈ Γ. Then f−1(U) is of the form Bk ∩ q(γi) because f−1 acts as the identity on the first

coordinate. Therefore f−1(U) is open, and hence f−1 is continuous. To show that f is a

homeomorphism, it remains to show that f is bijective. Note that g is surjective because

each point (x, y′) ∈ Ũ corresponds with exactly one point (x, y) ∈ S by construction.

Define s : GUZ
→ R〈ε〉 and p : Ũ → R〈ε〉 to be projection maps onto the first coordinate.

Because the map f acts as the identity on the first coordinate, the lower triangle commutes.
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By construction, it is straightforward to see that the resulting set is dimension 1. Because

the input curves are semi-algebraic sets, the truncated curves are as well. Moreover, since

lines are semi-algebraic sets, the finite union of the lines with the semi-algebraic curves is a

semi-algebraic set.

In Example 3 , it was shown that by choosing a particular subset of curves of a roadmap

of a function and applying Algorithm 9 , we can obtain the Reeb graph of that function.

The following algorithm includes a procedure to select curves and produce an equivalence

relation on them so that after applying Algorithm 9 , our Algorithm will output a semi-

algebraic description of the Reeb graph of the given function.

Our algorithm works as follows: let S be a semi-algebraic set and let π : S → R be the

projection map. From Algorithm 15.12 in [1 ], we obtain a semi-algebraic description Γ of the

curves in the roadmap of π. We then obtain a subset U of Γ, which we then equip with an

equivalence relation using Algorithm 9 to obtain a set Γ homeomorphic to the Reeb graph

Reeb(π) and a map p which makes the following diagram commute, where s is the projection

map onto the first coordinate:

Reeb(π) Γ′′

R〈ε〉

s

f

t

The following algorithm proves Theorem 5.0.1 .
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Algorithm 10 (Construction of Reeb graphs)
Input:

A family of polynomials P ⊂ R[X1, . . . , Xk] and a P-semi-algebraic set S.

Output:

A semi-algebraic set Γ of dimension 1 over R〈ε〉 homeomorphic to Reeb(π) and a map

p : Γ→ R〈ε〉 such that the diagram,
Reeb(π) Γ

R〈ε〉

r

p

where r is a homeomorphism and s denotes projection onto the first coordinate, com-

mutes.

Complexity: The complexity of the algorithm is dominated by the complexity of the

roadmap algorithm in [1 ], which has complexity sk+1dO(k2) where s is a bound on the

number of polynomials in P and d is a bound on their degree.

Procedure:

1: Call Algorithm 16.26 (General Roadmap) with input S to obtain a set of curve segments

{Ci}, critical points {uj}`
j=1, and a set Z as described in Definition 5.2.3 .

2: For each j = 1, . . . , `−1, select one xj ∈ (uj, uj+1), where each ui is the point associated

to Dj.

3: For each π−1(xj) ∩ U ⊂ S, and select a single point p ∈ π−1(xj) ∩ U . Denote by P the

collection of all such points p, and let Γ′ be the subset of U of curves containing some

point p ∈ P .

4: Perform Algorithm 9 with inputs Γ′ and the points output in step 3 to obtain a gluing

Γ of the curves represented by the Cj and a map p : Γ→ R〈ε〉.

Proof of correctness. We begin by showing that Reeb(π) ∼= GΓ′
Z
. Consider the diagram

S Γ′

Reeb(π) GΓ′
Z

r q

ι

f
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where r : S → Reeb(π) is the quotient map. We define the map f : Reeb(π) → GΓ′
Z

as

follows: let (x, y) ∈ Reeb(π), where x ∈ R and y ∈ Rk−1. Pick an element (x, y′) ∈ r−1(x, y).

By construction, this element is contained in π−1(x). Let p the point in step 4 such that

p ∈ π−1(x) ∩ U . Then p ∈ Γ′ by definition, so let f(x, y) = q(p). This is well defined since

any element in p−1(x, y) is in the same connected component of π−1(x) ∈ S, and hence will

get mapped to the same p ∈ Γ′.

To show that f is continuous, let U ⊆ GSZ
be a basic open set. Then U = Bk ∩ q(γi) for

some γi ∈ Γ′. Because f−1 acts as the identity on the first coordinate, f−1(U) is of the form

Bk ∩ Reeb(π). Therefore f−1(U) is open, and hence f−1 is continuous.

To show that f is injective, suppose that (x, y), (x′, y′) ∈ Reeb(π) with f(x, y) = f(x′, y′).

Because f acts as the identity on the first coordinate, x = x′. Let p, p′ be the points

corresponding to (x, y) and (x′, y′) in the construction of f . First, suppose that x = x′

are not critical points. If p 6= p′, then p and p′ are not in the same connected component

of π−1(x), and hence not equal in Reeb(π), a contradiction. Now, suppose that x = x′

are not critical points. Then p = p′, since q is injective outside of critical points. Thus

(x, y) = (x′, y′).

Lastly, to show that f is surjective, let (x, y) ∈ GΓ′
Z
. By surjectivity of q, there is some

point p ∈ Γ′ such that q(p) = (x, y), which can be expressed as some (x, y′) ∈ S. Then

p(x, y′) = (x, y′′) ∈ Reeb(π). Thus, by construction of f , f(x, y′′) = (x, y), as desired.

By Algorithm 9 , the diagram

GΓ′
Z

Γ

R〈ε〉

s′

f

p

commutes. Because Reeb(π) ∼= GΓ′
Z
, the diagram

Reeb(π) Γ

R〈ε〉

s

g◦f

p

commutes and g ◦ f is a homeomorphism, as desired.
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Complexity analysis. The complexity of the algorithm is dominated by the complexity of the

roadmap algorithms, which has complexity sk+1dO(k2) [1 ], where s is a bound on the number

of polynomials in P and d is a bound on their degree.

Algorithm 10 can be generalized to compute Reeb spaces using similar ideas, but the

complexity is doubly exponential in n.
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