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ABSTRACT

We further the research in o-minimal topology by studying in full generality definable

topological spaces in o-minimal structures. These are topological spaces (X, τ), where X is a

definable set in an o-minimal structure and the topology τ has a basis that is (uniformly) de-

finable. Examples include the canonical o-minimal “euclidean” topology, “definable spaces”

in the sense of van den Dries [17 ], definable metric spaces [49 ], as well as generalizations

of classical non-metrizable topological spaces such as the Split Interval and the Alexandrov

Double Circle.

We develop a usable topological framework in our setting by introducing definable ana-

logues of classical topological properties such as separability, compactness and metrizabil-

ity. We characterize these notions, showing in particular that, whenever the underlying

o-minimal structure expands (R, <), definable separability and compactness are equivalent

to their classical counterparts, and a similar weaker result for definable metrizability. We

prove the equivalence of definable compactness and various other properties in terms of de-

finable curves and types. We show that definable topological spaces in o-minimal expansions

of ordered groups and fields have properties akin to first countability. Along the way we

study o-minimal definable directed sets and types. We prove a density result for o-minimal

types, and provide an elementary proof within o-minimality of a statement related to the

known connection between dividing and definable types in o-minimal theories.

We prove classification and universality results for one-dimensional definable topological

spaces, showing that these can be largely described in terms of a few canonical examples.

We derive in particular that the three element basis conjecture of Gruenhage [25 ] holds for

all infinite Hausdorff definable topological spaces in o-minimal structures expanding (R, <),

i.e. any such space has a definable copy of an interval with the euclidean, discrete or lower

limit topology.

A definable topological space is affine if it is definably homeomorphic to a euclidean space.

We prove affineness results in o-minimal expansions of ordered fields. This includes a result

for Hausdorff one-dimensional definable topological spaces. We give two new proofs of an

affineness theorem of Walsberg [49 ] for definable metric spaces. We also prove an affineness
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result for definable topological spaces of any dimension that are Tychonoff in a definable

sense, and derive that a large class of locally affine definable topological spaces are affine.
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1. INTRODUCTION

O-minimality is envisioned as a far reaching generalization of real semialgebraic and suban-

alytic geometry, isolating the tameness of these theories while having ample applicability.

After the seminal insights of van den Dries [16 ] [14 ], the definition of o-minimal structure

was coined by Pillay and Steinhorn [40 ]. That is, a model theoretic structure is o-minimal if

it expands a linear order (M,<) and every (parametrically) definable subset of M is a finite

union of points and intervals with endpoints in M ∪ {−∞,∞}. Since then, the vision of

o-minimality has been realized in two ways. On the one hand, some prominent structures

expanding the ordered field of reals have been shown to be o-minimal. These include, for ex-

ample, expansions by the real exponential function [51 ] and by the real exponential function

and restricted real analytic functions [19 ]. On the other hand, the study of mathematical

objects definable in o-minimal structures has become a fruitful area of research. Parting

from sets and functions with the canonical o-minimal “euclidean” topology, this research

has expanded into groups, fields, topological families of functions, metrics and linear orders

among others, with their study reaching into areas such as topology, geometry, algebra, com-

binatorics, machine learning and economics. An underlying thesis motivating this program

is the idea that o-minimality provides a mathematical framework for the theory of these

objects that is both rich and tame. In this sense, van den Dries [17 ] proposed o-minimality

as a framework for the “topologie moderée” (tame topology) of Grothendieck [24 ], a setting

for topology and geometry that avoids pathological objects. In this thesis we focus on the

capabilities of o-minimality as a tame topological setting.

The work of Knight, Pillay and Steinhorn [29 ] established, through the cell decomposi-

tion theorem, the topological tameness of definable sets and functions with the o-minimal

euclidean topology. Pillay [39 ] proved that definable groups in o-minimal structures have a

natural definable manifold topology that makes them topological groups. This motivated

the study of topologies within o-minimality beyond the canonical euclidean one. Van den

Dries [17 ] applied techniques from semialgebraic topology to study these manifold spaces.

He showed that, in an o-minimal expansion of a field, if a manifold space is regular then it

is definably homeomorphic to a euclidean space (we call this being affine). Van den Dries
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also studied limit sets in o-minimal expansions of the field of reals [15 ], proving definability

results for the Hausdorff and Gromov-Hausdorff metrics and the Tychonov topology among

definable families of sets. In the next years Thomas [48 ], motivated by the proof of the

Reparametrization Theorem of Pila and Wilkie, an application of o-minimality to diophan-

tine geometry, studied convergence results among definable families of functions with Cr-

norms and norms involving a Lipschitz constant. She proposed the development of a theory

of definable normed spaces within o-minimality. This was generalized by Walsberg [49 ], who

introduced and studied definable metric spaces in o-minimal expansions of fields. He proved

a strong affiness result, showing in particular that any separable definable metric space in an

o-minimal expansion of the field of reals is affine. Definable orders in o-minimal structures,

which encapsulate definable order topologies, were studied by Ramakrishnan and Steinhorn

([42 ], [43 ]), with applications to economics. Recently, Johnson [27 ] studied interpretable sets,

proving that their natural quotient topology is piecewise affine in a strong sense.

In this thesis we push further the vision of o-minimality as a tame topological setting,

and expand on the work of Walsberg [49 ], by studying in full generality topologies that

are (explicitly) definable in o-minimal structures in the sense of Flum and Ziegler [22 ] and

Pillay [38 ]. In other words, we study topologies that admit a (uniformly) definable basis.

Definition. Let M = (M,<, . . .) be an o-minimal structure. A definable topological space

in M is a topological space (X, τ) such that X ⊆ Mn, for some n < ω, and there exists

a definable (possibly with parameters) family of sets that is a basis for τ . We say that the

topology τ is definable.

Our aim is to develop an o-minimal theory of general topology. We build this topological

landscape by either introducing or adapting from the literature properties expressible in

first order logic that serve as analogues of classical topological notions such as separability,

compactness and metrizability. We study these properties, both to justify their suitability

as analogues of their classical counterparts, and as important tools in the classification

and study of definable topological spaces. In the particular case of our characterization of

definable compactness, we seek to unify in the o-minimal setting previous distinct definitions

of the notion. We carry out our topological research within this framework.
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We now describe the main results in this thesis.

We devote Chapters 3 , 4 and 5 to the construction of our topological landscape through

the study of various definable topological properties. In Chapter 3 we define the notion of

definable separability to be the property that a space does not admit an infinite definable

family of pairwise disjoint open sets (note the similarity with the countable chain condition).

We prove (Proposition 3.1.6 ) that this is equivalent, among definable metric spaces, to the

namesake notion due to Walsberg [49 ] (the non-existence of an infinite definable discrete

subspace), which in turn is not suitable for general definable topological spaces (see Exam-

ple A.9 ). We further characterize definable separability, proving that, for topological spaces

definable in o-minimal expansions of (R, <), the notion is equivalent to both the countable

chain condition and classical separability (Theorem 3.2.6 ).

The following is the main result in Chapter 4 . We refer to it loosely as “definable

first countability”. It allows us to conclude that, in o-minimal expansions of ordered fields,

definable topological spaces display properties akin to first countability, in particular in the

sense that definable curves (as analogues of sequences) play a crucial role in describing the

topology. The full result includes a suitable analogue in the case of an o-minimal expansion

of an ordered group (Corollary 4.5.3 (1) ). For clarity below we only state the field case.

Theorem A (Corollary 4.5.3 (2) and Proposition 4.5.4 ). Let M be an o-minimal expansion

of an ordered field. Let (X, τ) be a definable topological space in M. Then, for every x ∈ X,

there exists a definable basis of open neighborhoods of x in (X, τ) of the form

{At : t > 0}

satisfying that, for every 0 < s < t, As ⊆ At.

It follows that (X, τ) has definable curve selection.

The proof of Theorem A is based on the study of definable directed sets in o-minimal

expansions of ordered groups and fields, in particular the proof that these admit certain

definable cofinal maps (Theorem 4.2.2 and Corollary 4.3.4 ).
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One of the main aims of this thesis, which we realize in Chapter 5 , is the study of

the following notion of definable compactness: every downward directed definable family

of (nonempty) closed sets has nonempty intersection. We choose a definition of definable

compactness in terms of closed sets to establish a parallelism with classical compactness.

Notably, our definition is different from the original namesake notion in terms of converging

definable curves introduced by Peterzil and Steinhorn in the context of definable manifold

spaces [37 ], which we denote definable curve-compactness. Ultimately, we justify our def-

inition by proving that definable and classical compactness are equivalent whenever the

underlying o-minimal structure expands the reals (Theorem E (2) ), an equivalence that fails

for definable curve-compactness.

We approach the study of definable compactness by analyzing definable downward di-

rected families of sets in general (Definition 2.1.6 ), in connection with definable types. In-

spired by our work on definable directed sets used to prove Theorem A , we reach the following

strong density result for types with a basis given by a definable (downward directed) family

of cells.

Theorem B (Theorem 5.2.11 (definable case)). Let S ⊆ P(Mn) be a definable family of

sets in an o-minimal structure M. The following are equivalent.

(1) S extends to a definable n-type.

(2) There exists a definable downward directed family of (nonempty) sets F such that, for

every S ∈ S, there is some F ∈ F with F ⊆ S.

(3) S extends to an n-type with a basis given by a definable family of cells.

Our approach in Theorem B to study o-minimal types seems to be novel.

Still with the aim of characterizing definable compactness, we proceed by investigating

intersection properties among definable families of sets in connection with definable types.

We give an elementary proof within o-minimality of the following fact.

Theorem C (Theorem 5.3.9 and Proposition 5.3.18 ). Let S be a definable family of nonempty

sets in an o-minimal structure M. Let q = max{1, dim ∪S}. The following are equivalent.

14



(1) There exists some p ≥ q + 1 such that S has the (p, q + 1)-property, i.e. for every p

sets in S, some q + 1 intersect.

(2) S can be covered by finitely many subfamilies, each of which extends to a complete

definable type. If S is definable over A ⊆ R then the types can be chosen A-definable.

We also prove a version of Theorem C in terms of VC-codensity (Corollary 5.3.11 ). We

observe, with the use of VC theory, how these results are equivalent to the following fact,

known in o-minimal theories and a more general class of dp-minimal theories [47 ]: a formula

does not divide (equivalently does not fork) over a model M if and only if it extends to an

M -definable type. Our proof of Theorem C is elementary in that it avoids the use of any

forking or VC literature. We derive (Theorem 5.3.16 ) that the aforementioned equivalence

between formulas not dividing and extending to definable types holds within o-minimality

for dividing over any set (not just a model).

Finally we are able to characterize definable compactness through the next Theorem D .

In particular we use Theorem B to show its equivalence with specialization-compactness (2) ,

a notion introduced by Fornasiero [23 ], and Theorem C to prove the equivalence with (5) .

We also describe the relationship between compactness and definable curve-compactness (7) .

Theorem D (Theorem 5.4.9 ). Let M be an o-minimal structure. Let (X, τ) be a definable

topological space in M. The following are equivalent.

(1) (X, τ) is definably compact, i.e. every downward directed definable family of

(nonempty) closed sets has nonempty intersection.

(2) Every definable complete type in X has a specialization, i.e. there is a point contained

in every closed set in the type.

(3) Any definable family of τ -closed sets that extends to a (complete and global) definable

type has nonempty intersection.

(4) Any definable family of closed sets with the finite intersection property has a finite

transversal, i.e. there exists a finite set that intersects every set in the family.
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(5) Any definable family C of closed sets with the (p, q)-property, where p ≥ q >

max{1, dim ∪C}, has a finite transversal.

(6) Any definable family C of closed sets with the (p, q)-property, where p ≥ q and q is

greater than the VC-codensity of C, has a finite transversal.

Moreover all the above imply and, if τ is Hausdorff or M has definable choice, are equivalent

to:

(7) (X, τ) is definably curve-compact, i.e. every definable curve in X converges.

Theorem D generalizes the work of Peterzil and Pillay [35 ], who proved the equivalence

(1) ⇔(4) for definable families of definably compact sets in the euclidean topology in o-

minimal structures with definable choice. Interestingly, they extracted their proof from the

work of Dolich [12 ] on the connection between forking and definable types in o-minimal

theories, highlighting once again the link between o-minimal stability theory and topology.

Our work leading to Theorem D can be used to expand on the definable Helly’s The-

orem of Aschenbrenner and Fischer [5 ]. We observe in particular that, in an o-minimal

expansion of an ordered field M, any family of convex subsets of Mn with the property

that every subfamily of size n + 1 has nonempty intersection extends to a definable type

(Remark 5.4.10 (ii) ).

The theorem below collects our results on the equivalence between definable topological

properties and their classical counterparts in o-minimal expansions of the reals. The work

on definable metrizability, a notion imported from the work of Walsberg [49 ], is described in

Chapter 6 , Section 6.8 .

Theorem E. Let (X, τ) be a definable topological space in an o-minimal expansion M of

(R, <). The following hold.

(1) (X, τ) is definably separable if and only if separable.

(2) (X, τ) is definably compact if and only if compact.

If M expands the field of reals and dimX ≤ 1, then the following also holds.
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(3) (X, τ) is definably metrizable if and only if metrizable.

Theorem E justifies our definitions of definable topological properties, and moreover

shows that classical topological properties can be captured by first order logic, in the setting

of an o-minimal expansion of the reals.

The equivalence described in Theorem E (2) , which corresponds to Corollary 5.4.14 , is

proved using specialization-compactness (Theorem D (2) ) and the Marker-Steinhorn Theo-

rem (Theorem 2.1.8 ). On the other hand, (1) and (3) in Theorem E , which correspond

respectively to Theorems 3.2.6 and 6.8.2 , follow from elementary proofs. It is open whether

or not (3) holds in greater generality.

In Chapter 6 we proceed with a detailed study of one-dimensional definable topological

spaces. Among the examples of such spaces we observe some rather classical topological

spaces that had not previously been considered in an o-minimal context. It is perhaps not

surprising that spaces such as the Sorgenfrey Line, Split Interval and the Alexandrov Double

Circle (Examples A.3 , A.4 and A.13 respectively), which were defined during the onset of

topology as counterexamples to generalizations of metric and euclidean topology to general

topology, are definable in the field of reals.

On the other hand, we find strong dividing lines among one-dimensional o-minimal de-

finable topologies. We note, for example, that the Cantor space is not definable (Corol-

lary 6.3.8 ), and prove strong decomposition and universality theorems.

Our main decomposition result is Theorem F below. It is related to the 3-element basis

conjecture of Gruenhage [25 ], which is an open conjecture in set-theoretic topology stating

that ZFC and the proper forcing axiom imply the following property (?): every uncountable

first countable regular Hausdorff topological space contains a subspace of cardinality ℵ1

with either the euclidean, lower limit or discrete topologies. We prove (Theorem F (1) ) a

decomposition result stronger than (?) for definable topological spaces (X, τ) in M where

X ⊆ M (i.e. spaces in the line). Along the way we note that (?) holds for all infinite T1

definable topological spaces (Remark 6.3.3 ). We improve our decomposition result in the

case of Hausdorff regular spaces in the line (Theorem F (2) ).
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Theorem F (Theorems 6.3.9 and 6.4.3 ). Let M = (M,<, . . .) be an o-minimal structure.

Let (X, τ) be a definable topological space in M with X ⊆ M . Let 0 < 1 < 2 < · · · be fixed

constants.

(1) If (X, τ) is Hausdorff then it can be partitioned into finitely many points and intervals

such that, on each interval, the τ subspace topology is either euclidean, discrete, or the

lower or upper limit topologies.

(2) If (X, τ) is Hausdorff and regular then it can be partitioned into three definable sets

A, B and F such that F is finite and A and B are open, and moreover

(i) there exists some n < ω such that A embeds definably into the space M ×

{0, . . . , n} with the lexicographic order topology;

(ii) there exists some n < ω such that B embeds definably into the definable Alexan-

drov n-line (Example A.5 ), a generalization of the classical Alexandrov Double

Circle space.

From Theorem F we conclude that, even though there exist one-dimensional definable

topological spaces displaying a wide variety of distinct topological properties, a few classical

examples describe large classes of these spaces, whose overall structure is ultimately quite re-

strictive. This fails to be true for spaces of larger dimension, which display wilder behaviour,

as discussed in Appendix A , where we list a number of examples.

Finally, we consider the question of affineness for definable topological spaces. Recall that

a space is affine if it is definably homeomorphic to a set with the euclidean topology. Our aim

is to build on the literature on affineness results, in particular the theorems of van den Dries

for definable manifold spaces (Theorem 7.1.2 ) and of Walsberg for definable metric spaces

(Theorem 7.1.5 ). We start by proving the following affineness theorem for one-dimensional

definable topological spaces. The research on affineness is done in the context of o-minimal

expansions of ordered fields.

Theorem G (Theorem 6.7.1 ). Let M be an o-minimal expansion of an ordered field. Let

(X, τ), dimX ≤ 1, be a Hausdorff definable topological space in M. Exactly one of the

following holds:
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(1) (X, τ) contains a subspace definably homeomorphic to an interval with either the dis-

crete or the lower limit topology;

(2) (X, τ) is affine.

We compare Theorem G to the main result of Peterzil and Rosel [36 ] (Theorem 6.9.1 ), who

also recently studied one-dimensional definable topological spaces in o-minimal structures.

We establish the equivalence between their affineness result and ours. We also answer some

of their open questions (see Section 6.9 ).

We devote Chapter 7 to the investigation of affineness results for spaces of all dimen-

sions. We survey the proof of the corresponding theorems by van den Dries and Walsberg,

giving two new proofs of the theorem of the latter, one using the definable Tietze extension

theorem for definable metric spaces (Theorem 7.1.10 ), and another more elementary proof

(see Section 7.1.2 ). We conclude by proving the following affineness theorem for spaces of

all dimensions.

Theorem H (Theorem 7.2.4 and Corollary 7.2.18 ). Let M be an o-minimal expansion of

an ordered field. Let (X, τ) be a definable topological space in M satisfying the following

three conditions.

(1) (X, τ) is definably compact.

(2) (X, τ) has the frontier dimension inequality, i.e. any definable subset Y ⊆ X satisfies

dim(∂τY ) < dim Y , where ∂τY denotes the τ -frontier of Y .

(3) (X, τ) is Hausdorff and there exists a definable family of continuous functions X → M

such that their induced weak topology on X equals τ .

Then (X, τ) is affine.

In particular any locally affine Hausdorff space satisfying (1) and (2) is affine, where

locally affine is the property that every point has an affine neighborhood.

In order to prove Theorem H we use an approach from functional analysis, in particular

the proof that a compact Hausdorff space is metrizable if and only if its space of scalars is
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separable, as well as Walsberg’s affineness result (Theorem 7.1.5 ). This allows us to transform

the question into an investigation of the metrizability of the pointwise convergence topology

among certain definable families of continuous functions. We then proceed using tools of

o-minimality.

In assessing any improvement to Theorem H we find limitations in the fact that it is not

clear whether or not definable versions of Urysohn’s lemma or the Tietze extension theorem

hold in the o-minimal setting.

Chapter 4 is based on the author’s publication with Margaret Thomas and Erik Wals-

berg [2 ]. Chapter 6 is based on a further paper in preparation with the same authors.
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2. DEFINITIONS AND PRELIMINARY RESULTS

2.1 General conventions and preliminary results

Throughout this thesis we fix an o-minimal expansion M = (M,<, . . .) of a dense linear

order without endpoints, i.e. M a linearly densely ordered structure satisfying that any de-

finable subset of M is a finite union of points and intervals with endpoints in M∪{−∞,+∞}.

Unless stated otherwise, by “definable” we mean “definable in M, possibly with parameters

from M”. We denote the algebra of definable subsets of Mn, for some n < ω, by Def(Mn).

At times we assume that M expands an ordered group (M, 0,+, <) or field (M, 0, 1,+, ·, <).

In chapters and sections in which we assume throughout that M expands an ordered field

we use notation R and R in place of M and M respectively.

Throughout n, m k and l denote natural numbers. All variables and parameters u, x,

a . . . are n-tuples. Let l(u) denote the length of any given variable or parameter u.

Every formula we consider is in the language of M. Let ϕ(u, v) and φ(v) be formulas in

m+n and n free variables respectively. For any set S ⊆ Mn and a ∈ Mm, let ϕ(a, S) = {b ∈

S,M |= ϕ(a, b)} and φ(S) = {b ∈ S : M |= φ(b)}. We say that a family of sets S ⊆ P(Mn)

is definable when it is uniformly definable, meaning that there exists some definable index set

Ω ⊆ Mm and some formula ϕ(u, v) in m+n free variables such that S = {ϕ(a,Mn) : a ∈ Ω}.

Generally we will use notation S, X , Y , A, B, C, D, F , G and H to refer to definable

families of sets. In particular, we often use D for cell partitions, C for families of closed sets,

and F , G and H for families of functions.

For a given n, let π denote the projection Mn+1 → Mn to the first n coordinates,

where n will often be omitted and clear from context. For a family S ⊆ P(Mn+1) let

π(S) = {π(S) : S ∈ S}.

Let M±∞ = M ∪ {−∞,+∞}. Unless stated otherwise, by interval we mean an open

interval with respect to the order < and with distinct endpoints in M±∞.

Given a function f we denote its domain dom(f) and its graph by graph(f). We adopt

the convention of saying that a function f : Mn → M±∞ is definable if its restriction

f |f−1(M) and the sets f−1(+∞) and f−1(−∞) are definable, and similarly say that a family
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F = {fu : u ∈ Ω} of functions Mn → M±∞ is definable if the families {fu|f−1
u (M) : u ∈ Ω},

{f−1
u (+∞) : u ∈ Ω} and {f−1

u (−∞) : u ∈ Ω} are.

2.1.1 The euclidean topology

By the euclidean topology on Mn we refer to the canonical topology in an o-minimal

structure, which is given by to the order topology when n = 1 and its induced product

topology when n > 1. We interpret the euclidean topology in (M±∞)n to be its natural

extension.

Without reference to a particular topology, any topological notion is to be understood

with respect to the euclidean topology.

2.1.2 O-minimality

For most of the basics of o-minimality, including the full cell decomposition theorem, we

direct the reader to [17 ]. We present some basic facts and notation, starting with uniform

cell decomposition.

Regarding cells, we use the following standard notation. For any set C and any two

functions f, g : C → M±∞, with f < g, let (f, g)C = {〈x, t〉 ∈ C ×M±∞ : f(x) < t < g(x)}.

We sometimes omit C if it is clear from context and write simply (f, g).

Recall that a cell decomposition D of a definable set S ⊆ Mn is a finite partition of S

into cells such that, for any 0 < m < n, the family {π≤m(D) : D ∈ D} is a cell partition

of π≤m(S), where π≤m : Mn → Mm denotes the projection to the first m coordinates. By

o-minimality every definable set admits a cell decomposition.

Proposition 2.1.1 (Uniform cell decomposition, [17 ], Chapter 3, Proposition 3.5). Let

S ⊆ Mn+m be a definable set and let D be a cell decomposition of S. Then, for any fiber

Su = {v : 〈u, v〉 ∈ S}, u ∈ Mn, the corresponding family of fibers {Du : D ∈ D, Du 6= ∅} is

a cell decomposition of Su.

We will use the following lemma extensively, often without reference. It follows from the

full cell decomposition theorem.
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Lemma 2.1.2. Let X be a definable set and let f : X → (0,∞) be a positive definable

function. There exists some definable set A ⊆ X and some ε > 0 such that dimA = dimX

(in particular A has nonempty interior in X) and, for every x ∈ A, it holds that f(x) > ε.

Whenever M expands an ordered group, it has definable choice functions i.e. for any

definable family of nonempty sets S = {Su : u ∈ Ω}, there exists a definable function

f : Ω → ⋃S such that f(u) ∈ Su for every u ∈ Ω, and moreover f(u) = f(v) whenever

u, v ∈ Ω with Su = Sv. As long as M has a nonzero 0-definable element, f can be chosen

definable over the same parameters as S. For the proof we direct the reader to [17 ], Chapter

6, Proposition 1.2.

Finally, we also present the Fiber Lemma for o-minimal dimension.

Lemma 2.1.3 (Fiber Lemma for o-minimal dimension, [17 ], Chapter 4, Proposition 1.5 and

Corollary 1.6). Let X ⊆ Mn be a definable set and let f : X → Mm be a definable function.

For each 0 ≤ d ≤ n, let S(d) = {x ∈ Mm : dim f−1(x) = d}. Then

dimX = max
0≤d≤n

(dimS(d) + d) .

In particular, the union ∪S of any infinite definable family S of pairwise disjoint sets of

dimension n has dimension strictly greater than n.

2.1.3 Intersecting families of sets

Recall that a family of sets S has the finite intersection property (FIP) if ∩F 6= ∅ for

every finite subfamily F ⊆ S.

We now prove two technical lemmas. The first one will be used in proving the second

one, which in turn will be a useful tool in a number of proofs in this thesis.

For the next lemma recall that the dimension of a definable setX is equal to the dimension

of the interpretation of X in any elementary extension of M.

Lemma 2.1.4. Let M � N = (N, . . .). Let X ⊆ Mn be a definable set and X(N ) denote

the interpretation of X in N . Let dimX = d. If Y ⊆ Nn is an N -definable set with

X ⊆ Y ⊆ X(N ) then dim Y = d.
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Proof. Since Y ⊆ X(N ) we have that dim Y ≤ dimX(N ) = d. We show, by induction on

n, that from X ⊆ Y it follows that d ≤ dim Y . Since otherwise X = Y = X(N ) we may

assume that X is infinite.

Suppose that n = 1. Since X is infinite we have that Y is infinite and so, by o-minimality,

it must contain an interval. In particular dim Y ≥ 1, and so the result follows.

We prove the case n > 1. By passing to a cell inside X of maximal dimension if necessary

we may assume that X is a cell. For any x ∈ π(Y ), let Yx = {t : 〈x, t〉 ∈ Y }.

By induction hypothesis we have that dim π(X) ≤ dim π(Y ). If dimX = dim π(X)

then it follows that d = dimX = dim π(X) ≤ dim π(Y ) ≤ dim Y , and we are done. The

remaining case is that dimX = dim π(X) + 1, and X is of the form (f, g)π(X) for continuous

functions f, g : π(X) → M±∞ with f < g. Consider the definable set Y inf = {x ∈ π(Y ) :

Yx is infinite}. Then π(X) ⊆ Y inf and by induction hypothesis dim π(X) ≤ dim Y inf. By the

Fiber Lemma for o-minimal dimension (Lemma 2.1.3 ) dim Y inf + 1 ≤ dim Y . We conclude

that d = dimX = dim π(X) + 1 ≤ dim Y inf + 1 ≤ dim Y , which completes the proof.

Lemma 2.1.5. Let {Su ⊆ Mn : u ∈ Ω} be a definable family with the finite intersection

property. Then there exists Σ ⊆ Ω with dim Σ = dim Ω such that ⋂{Su : u ∈ Σ} 6= ∅.

Proof. Let N denote an |M |+-saturated elementary extension of M. Let Su(N ), for any

u ∈ Ω, and Ω(N ) denote the interpretations in N of Su and Ω respectively. By saturation

there exists x0 ∈ Nn such that x0 ∈ Su(N ) for every u ∈ Ω. By Lemma 2.1.4 , the N -

definable set Σx0(N ) = {u ∈ Ω(N ) : x0 ∈ Su(N )} has dimension equal to dim Ω. For each

x ∈ Mn, let Σx = {u ∈ Ω : x ∈ Su}. Note that, since dim Σx0(N ) = dim Ω and M 4 N ,

there must exist some x ∈ Mn such that dim Σx = dim Ω.

2.1.4 Types and tame extensions

Let p be an n-type in M (over a set A ⊆ M). We refer to p indistinctly as a consistent

family of formulas (with parameters from A) with n free variables {ϕ(v) : ϕ ∈ p} and as

a family of definable (over A) sets {ϕ(Mn) : ϕ ∈ p} with the finite intersection property

(FIP). For a structure N = (N, . . .), let Sn(N) denote the set of complete n-types over N .
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Unless otherwise specified, all types we consider are in M, global (over M) and complete.

By this identification an n-type is an ultrafilter on Def(Mn).

A type p with object variable v is (A-)definable if, for every partitioned formula ϕ(u, v),

the restriction of p to ϕ(u, v), namely the collection of sets of the form ϕ(u,M l(v)) in

p, is (A-)definable. In other words if, for every partitioned formula ϕ(u, v), the set

{u : ϕ(u,M l(v)) ∈ p} is (A-)definable.

Definition 2.1.6. A family of sets S is downward directed if, for every pair S, S ′ ∈ S, there

exists S ′′ such that S ′′ ⊆ S ∩ S ′. Moreover, for convenience we ask that S does not contain

the empty set. Equivalently, S is a filter basis. We define the notion of upward directed

family analogously.

Definition 2.1.7. Let p be an n-type. A type basis for p is a partial type q ⊆ p that is

downward directed and generates p, i.e. p = {X ∈ Def(Mn) : Y ⊆ X for some Y ∈ q}.

A uniform (type) basis for p is a type basis given by a uniform family q = {ϕ(u,Mn) :

u ∈ Ω}, for some formula ϕ(u, v) with l(v) = n.

In o-minimal and weakly o-minimal structures every 1-type p has a uniform basis. When

p is not realized this basis is given by all the open intervals in p.

Note that a type with a uniform basis is A-definable if and only if it has an A-definable

basis.

We now recall the basics of tame extensions and tame pairs.

A tame extension N = (N,<, . . .) of M is a proper elementary extension of M such that

{s ∈ M : s < t} has a supremum in M ∪ {−∞,+∞} (i.e. the induced cut is definable) for

every t ∈ N . Note that, by Dedekind completeness, if M expands (R, <) then every proper

elementary extension of M is tame.

The following is the canonical example of a tame extension. Suppose that M expands

an ordered group and let ξ be a positive element in an elementary extension of M which

is less than every positive element of M (i.e. ξ is infinitesimal with respect to M). Then

M(ξ) = (M(ξ), . . .), the prime model over M ∪ {ξ}, is a tame extension of M. Every tuple

of elements in M(ξ) is of the form γ(ξ) for some curve γ : (0, ε) → N l(γ(ξ)) definable over

M . By o-minimality, it holds that, for every (n + m)-formula φ(v, u) and every a ∈ Mm,
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M(ξ) |= φ(γ(ξ), a) if and only if M |= φ(γ(t), a) for all sufficiently small t > 0. It follows

that every type realized in M(ξ) is definable. We present the Marker-Steinhorn Theorem,

which proves this fact for all tame extensions.

Theorem 2.1.8 ([31 ], Theorem 2.1). Let N = (N, . . .) be a tame extension of M. For

every a ∈ Nn, the type tp(a/M), namely the type of a over M , is definable. Conversely any

definable type is realized in some tame extension of M.

In Appendix 5.A we use the methods developed in Chapter 5 to give a new proof of the

Marker-Steinhorn Theorem.

Given a tame extension N of M, a tame pair (N ,M) is the expansion of N by a unary

predicate defining M . Van den Dries and Lewenberg [18 ] proved that the theory of tame

pairs of o-minimal expansions of ordered fields is complete. In other words, suppose that M

expands an ordered field and let T denote the theory of M. Then, if M0, N0, M1 and N1

are models of T such that N0 is a tame extension of M0, and N1 is a tame extension of M1,

then the tame pairs (N0,M0) and (N1,M1) are elementarily equivalent.

2.2 Definable topological spaces

Recall that a topological space is T1 if every singleton is closed, T2 if it is Hausdorff and

T3 if it is Hausdorff and regular, where regular means that any point x and closed set C 63 x

are separated by neighborhoods, i.e. there exist disjoint open sets U, V with x ∈ U and

C ⊆ V .

We recall the definition of definable topological space given in the introduction.

Definition 2.2.1. A definable topological space is a tuple (X, τ), where X ⊆ Mn is a

definable set1
 and τ is a topology on X such that there exists a definable family of sets B that

is a basis for τ . We call B a definable basis for τ and say that the topology τ is definable.

Given a definable set X, the euclidean (Example A.1 ) and discrete (Example A.2 ) topolo-

gies on X are definable. We denote these by τe and τs respectively, in such a way that the

notation remains unambiguous. In particular, whenever M expands an ordered group, the
1↑ Clearly the fact that X is definable is redundant
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euclidean topology is defined by the definable l∞ norm, which we denote ‖ · ‖. That is, for

any 〈x1, . . . , xn〉 ∈ Mn, let

‖〈x1, . . . , xn〉‖ = max{|x1|, . . . , |xn|}.

Let (X, τ) be a topological space and Z ⊆ X. We denote the closure, interior, frontier

and boundary of Z in (X, τ) by clτZ, intτZ, ∂τZ and bdτZ respectively. We also abuse

notation by writing (Z, τ) to denote the subspace (Z, τ |Z). Moreover throughout we write

cle to mean clτe , and more generally write, when used as a prefix or subscript, the letter e

in place of τe (e.g. e-open, e-neighborhood). We adopt analogous conventions with respect

to the discrete topology τs.

The following are some basic facts about definable topological spaces that hold in any

first-order structure, regardless of the axiom of o-minimality and the fact that M expands

a linear order. Familiarity with them will be assumed.

Proposition 2.2.2. Let (X, τ) and (Y, µ) be definable topological spaces.

(a) If B is a definable basis for τ then the family B(x) = {A ∈ B : x ∈ A} is a basis of

open neighborhoods of x that is definable uniformly on x ∈ X.

(b) Let Z ⊆ X be a definable set. Then clτZ, intτZ, ∂τZ and bdτZ are also definable.

(c) Let f : (X, τ) → (Y, µ) be a definable function. The set of points where f is continuous

is definable.

(d) If Z ⊆ X is a definable set then the subspace (Z, τ) is a definable topological space.

(e) The product space (X × Y, τ × µ) is a definable topological space.

For a treatment of definable topological spaces in general first-order model theory we

direct the reader to [38 ].

We end this section with a further key definition.

Definition 2.2.3. A definable topological space (X, τ) is affine if it is definably homeomorphic

to a set with the euclidean topology.
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A definable topological space (X, τ) is locally affine if every point has an affine τ -

neighborhood.

Affineness is the main topic of research in Section 6.7.1 (one-dimensional definable topo-

logical spaces) and in Chapter 7 (spaces of all dimensions).

2.2.1 Definable metric spaces

In the spirit of the definition of M-norm introduced by Thomas in [48 ] we present the

next definition.

Definition 2.2.4. Suppose that M expands an ordered group and let X be a set. An M-

metric on X is a map d : X × X → M≥0 that satisfies the metric axioms, i.e. identity of

indiscernibles, symmetry and subadditivity.

The following definition encompasses an important class of definable topological spaces.

Definition 2.2.5 (Walsberg [49 ]). Suppose that M expands an ordered group. A definable

metric space is a tuple (X, d) where X is a definable set and d is an M-metric on X that is

definable.

Definable metric spaces were defined and studied in the setting of o-minimal expansions

of fields by Walsberg [49 ]. The definition however makes sense in the ordered group case.

Whenever we mention definable metric spaces we are always implicitly assuming that M

expands an ordered group.

Any M-metric d generates a topology in the usual way (and one can easily prove that

any such topology is always T3). We denote this topology τd. In particular any definable

metric on a definable set induces a definable topology. By this identification every definable

metric space is a definable topological space. Following the conventions set for the euclidean

and discrete topologies, we sometimes abuse terminology and write d in place of τd, e.g.

d-closed, cldX . . .

Definition 2.2.6. A topological space (X, τ) is M-metrizable if there exists an M-metric d

on X such that τd = τ and definably M-metrizable if there exists some definable M-metric

d on X such that τd = τ .
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Remark 2.2.7. From now on we shall simplify our terminology and refer to metrics, rather

than M-metrics, and similarly to metrizability, rather than M-metrizability, without any

loss of clarity.

Much like in general topology, there are definable topological spaces which are not defin-

ably metrizable. A basic example would be any non-Hausdorff definable topological space,

e.g. the Sierpinski Space X = {0, 1}, τ = {∅, {1}, {0, 1}}. A T3 example is given by the

lower limit topology τr on M (Example A.3 ). This is the topology with a definable basis

given by all right half-open intervals [x, y), for x < y in M .

Proposition 2.2.8. The space (M, τr) is not definably metrizable.

Proof. If (M, τr) were definably metrizable with definable metric d then there would exist, for

every x ∈ M , some εx > 0 such that, for every 0 < t ≤ εx, Bd(x, t) ⊆ [x,+∞), where Bd(x, t)

is the open d-ball of radius t and center x. Let 1 denote some fixed positive element in M

and f : X → (0,∞) be the definable map given by f(x) = sup{s ≤ 1 : ∀t ∈ (0, s), Bd(x, t) ⊆

[x,+∞)}. By o-minimality (Lemma 2.1.2 ) there exists an interval I ⊆ M and some ε > 0

such that f(x) > ε for all x ∈ I. Hence, by definition of f , for any distinct x, y ∈ I it holds

that d(x, y) ≥ ε, i.e. (I, τr) is a discrete space, which contradicts the definition of τr.

Suppose that M is an expansion of (R, <). The space (R, τr), called the Sorgenfrey Line,

is separable but not second countable, and thus it is not even metrizable. On the other hand,

if M = (Q, <), then the lower limit topology is metrizable2
 .

2.2.2 Definable connectedness and the frontier dimension inequality

The next two definitions generalize two well-known properties closely related to the eu-

clidean topology.

Definition 2.2.9. A definable topological space (X, τ) is definably connected if it is not the

union of two disjoint nonempty definable open sets.
2↑ See https://math.stackexchange.com/questions/2331814/existence-of-a-certain-near-metric-map-on-an-
ordered-divisible-abelian-group 
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A definably connected component of (X, τ) is a maximal definably connected definable

subset of X.

A topological characterization of the o-minimality of M is given by saying that (M, τe)

is definably connected and every definable subset of M can be partitioned into finitely many

definably connected euclidean spaces.

It is not clear whether or not every point in a definable topological space is contained in

a (definable) definably connected component. We give a positive answer to this question for

one-dimensional Hausdorff regular spaces in Section 6.9 .

The following definition is not topological in flavour, but it will be an important tool in

formulating and proving statements about definable topological spaces.

Definition 2.2.10. We say a definable topological space (X, τ) has the frontier dimension

inequality (f.d.i.) if, for every definable set Y ⊆ X, dim ∂τY < dim Y .

Recall that the euclidean topology has the frontier dimension inequality. Walsberg proved

([49 ], Lemma 7.15) that every definable metric space satisfies the frontier dimension inequal-

ity.

By an inductive argument on dimension, it is easy to show that in any space with the

frontier dimension inequality every definable set is a boolean combination of definable open

sets (i.e. Property (A) in [38 ], Section 2).

2.2.3 Definable curves

Definable curves play a crucial role in the study of definable topological spaces, often

taking the role that sequences have in general topology.

Definition 2.2.11. Let (X, τ) be a definable topological space. A curve in X is a map

γ : (a, b) → X, where a, b ∈ M±∞, a < b.

We say that γ converges in the τ -topology (in (X, τ), or τ -converges) as t tends to a to

a point x ∈ X if, for every τ -neighborhood A of x, there exists some a < tA < b such that

γ(t) ∈ A for all a < t < tA. In this case we write x = τ - limt→a γ(t). Convergence as t tends

to b is defined analogously. When we say that γ τ -converges to x ∈ X we are implicitly fixing
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an extreme point c ∈ {a, b} and saying that γ τ -converges to x as t tends to c. We say that

γ is τ -convergent if it τ -converges to some point.

Remark 2.2.12. We adopt some further conventions regarding definable curves. Let γ :

(a, b) → Mn be a definable map. By o-minimality, for any definable set X ⊆ Mn there exists

a′ > a such that either γ[(a, a′)] ⊆ X or γ[(a, a′)] ⊆ Mn \ X, and the analogous statement

holds for b.

Most of the time we only care about the behaviour of γ near one of the extremes a or b.

Hence if there is (say) a′ > a such that γ[(a, a′)] ⊆ X we may treat γ as a curve in X by

implicitly identifying it with its restriction γ|(a,a′).

Similarly we say that γ is constant or injective (or some other property) if it has this

property when restricting its domain to an appropriate interval as above. By o-minimality

every definable curve γ : (a, b) → Mn can be assumed to be either constant or injective

(strictly monotonic if n = 1) and continuous (with respect to the euclidean topology).

The following is a weak version of well-known property of euclidean spaces in o-minimal

expansions of ordered groups. We drop the condition that the curves be continuous.

Definition 2.2.13. A definable topological space (X, τ) has definable curve selection if, for

every definable set Z ⊆ X and any x ∈ clτZ there exists a definable curve γ in Z τ -converging

to x.

It is easy to see that, whenever the underlying structure M has definable choice, any

definable metric space has definable curve selection. In Chapter 4 (Lemma 4.5.4 ) we prove

that, whenever M expands an ordered field, any definable topological space has definable

curve selection.

Definable curve selection allows the characterization of continuity in terms of convergence

of definable curves as follows.

Proposition 2.2.14. Let (X, τ) and (Y, µ) be definable topological spaces, where (X, τ) has

definable curve selection. Let f : (X, τ) → (Y, µ) be a definable map. Then f is continuous

at x ∈ X if and only if, for every definable curve γ : (a, b) → X and c ∈ {a, b}, if

τ - limt→c γ(t) = x then µ- limt→c(f ◦ γ)(t) = f(x).
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Proof. Let γ : (a, b) → X be a definable curve τ -converging to x ∈ X as (say) t → a. If f is

continuous at x then, for every µ-neighborhood A of f(x), f−1(A) is a τ -neighborhood of x,

so there is a < tA < b such that γ[(a, tA)] ⊆ f−1(A). So, for every a < t < tA, (f ◦ γ)(t) ∈ A,

meaning that f ◦ γ µ-converges to f(x).

Conversely, suppose f is not continuous at x ∈ X. Thus there exists some definable

µ-neighborhood A of f(x) such that f−1(A) is not a τ -neighborhood of x, i.e. x ∈ clτ (X \

f−1(A)). By definable curve selection there exists a definable curve γ in X \ f−1(A) τ -

converging to x. However, by definition, f ◦ γ lies in Y \ A, and so does not µ-converge to

f(x).

2.2.4 Push-forwards

Definition 2.2.15. Let (X, τ) be a definable topological space with definable basis B and let

f : X → Mm be an injective definable map. We define the push-forward of (X, τ) by f to be

the definable topological space (f(X), f(τ)) where f(τ) is the topology on f(X) with definable

basis {f(A) : A ∈ B}. Thus f(τ) is the topology satisfying that f : (X, τ) → (f(X), f(τ)) is

a homeomorphism.

We will make use of the next remark extensively. It allows us to make the assumption,

whenever M expands an ordered field, that any definable topological space of dimension

n > 0 is, up to definable homeomorphism, a bounded subset of Mn.

Remark 2.2.16. Let X be a definable set with dim(X) = m > 0. If M expands an ordered

group and X is bounded there exists a definable injection f : X → Mm. In particular,

if τ is a definable topology on X then, by passing to the push-forward of (X, τ) by f if

necessary, one may always assume, up to definable homeomorphism, that X ⊆ Mm. If

moreover M expands an ordered field then the injection f exists without the assumption

that X is bounded, and with the added condition that f(X) ⊆ (0, 1)m. In particular one

may always assume, up to definable homeomorphism, that X ⊆ (0, 1)m.

The existence of one such injection follows from noting first that, whenever M expands

an ordered field, the map given coordinate-wise by xi 7→ 2xi−1
(2xi−1)2−1 gives a definable homeo-

morphism from (0, 1)n to Mn for every n. Moreover, if M expands an ordered group and X is
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a bounded definable set with dimX = m > 0, there exists a definable injection f : X → Mm

as follows.

Let D be a finite partition of X into cells. By o-minimality each cell in C ∈ D is in

bijection, under an appropriate projection πC , with a subset of Mm. Since X is bounded

then so are the sets πC(C) for C ∈ D. Since M is an expansion of a group, we can find

appropriate translations of these sets such that they do not intersect each other. The union

of the image of these translations is then in definable bijection with X.

2.2.5 e-Accummulation sets

The following definition will be used to study one-dimensional definable topological spaces

in Chapter 6 . For example, it plays a crucial role in Lemma 6.2.11 , which describes bases of

neighborhoods of points in T1 definable topological spaces (X, τ) where X ⊆ M .

Definition 2.2.17. Let (X, τ), X ⊆ Mn, be a definable topological space. Let x ∈ X and

B(x) be a basis of τ -neighborhoods of x. We define the e-accumulation set of x in (X, τ),

namely E(X,τ)
x , to be:

E(X,τ)
x :=

⋂
A∈B(x)

{y ∈ (M±∞)n : B \ {y} ∩ A 6= ∅,∀B ∈ τe, y ∈ B},

where τe refers to the euclidean topology in (M±∞)n. So E(X,τ)
x is the intersection of the

set of accumulation points (in the euclidean topology understood in (M±∞)n) of every τ -

neighborhood of x.

If (X, τ) is T1 and x 6= y then y ∈ E(X,τ)
x is equivalent to stating that, for every τ -

neighborhood A of x and every e-neighborhood B of y, A ∩B 6= ∅.

The definition of E(X,τ)
x is clearly independent of the choice of basis of neighborhoods.

Note that, if an element x ∈ X is isolated, then it satisfies E(X,τ)
x = ∅. We show in Chapter 6 

(Lemma 6.2.11 ) that the converse is not necessarily true. For any point x in a euclidean

space (Mn, τe) it holds that E(Mn,τe)
x = {x}.

Generally, since there will be no room for confusion, once a definable topological space

(X, τ) is fixed then for any x ∈ X we will write Ex in place of E(X,τ)
x , and will only resort to
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the latter when we also intend to address the e-accumulation set E(Y,τ)
x for some definable

subspace Y containing x.

The following proposition states facts regarding e-accumulation sets that follow immedi-

ately from the definition. Note that in it the euclidean topology is understood in M±∞.

Proposition 2.2.18. Let (X, τ) be a definable topological space.

(a) Ex is e-closed and Ex ⊆ cleX for every x ∈ X.

(b) The relation {〈x, y〉 : y ∈ Ex} ⊆ X ×Mm
±∞ is definable.

We now use Lemma 2.1.5 to prove a bound on the dimension of e-accumulation sets.

Definition 2.2.19. Let (X, τ) be a definable topological space. Let x ∈ X and let B(x) be a

definable basis of neighborhoods of x in (X, τ). The local dimension of (X, τ) at x is

dimx(X, τ) = min{dimA : A ∈ B(x)}.

Clearly the definition of local dimension does not depend on the choice of basis of neigh-

borhoods. This definition generalizes the definition of local dimension of a definable metric

space at a point that was introduced by Walsberg in [49 ].

Lemma 2.2.20. Let (X, τ) be a T1 definable topological space. For any x ∈ X, dim(Ex) <

dimx(X, τ). In particular when dimX ≤ 1 then the set Ex is finite for every x ∈ X.

Proof. Let {Au : u ∈ Ω} be a definable basis of τ -neighborhoods of x. If dimx(X, τ) = 0,

then, by definition of Ex, we have that Ex = ∅. From now on we assume that dimx(X, τ) > 0.

If dimEx ≤ 0 then the proof is complete. Suppose that dimEx > 0, and in particular

that dimEx = dimEx \ {x}. For any y ∈ Ex \ {x}, let Ωy = {u ∈ Ω : y /∈ Au}. Since X is

T1 the sets Ωy are nonempty, and in fact the definable family {Ωy : y ∈ Ex \ {x}} has the

finite intersection property.

Applying Lemma 2.1.5 there exists a definable set Y ⊆ Ex \ {x} with dim Y = dimEx

and u ∈ Ω such that Au ∩ Y = ∅. By shrinking Au if necessary we may assume that

dimAu = dimx(X, τ). Note however that, by definition of Ex, Y ⊆ cleAu, and so Y ⊆ ∂eAu.
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In particular dimEx = dim Y ≤ dim ∂eAu. However by o-minimality dim ∂eAu < dimAu, so

dimEx < dimAu = dimx(X, τ).
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3. DEFINABLE SEPARABILITY

Introduction

In this chapter we introduce and characterize a notion of definable separability. Our

main result is Theorem 3.2.6 , which states that, whenever M expands (R, <), definable

separability, classical separability, and the countable chain condition are equivalent.

Our notion of definable separability is inspired by but different from the one introduced by

Walsberg for definable metric spaces [49 ]. We show that, when restricted to definable metric

spaces, both notions are equivalent, and argue that Walsberg’s definition is not suitable for

general definable topological spaces.

In this chapter we make extensive use of the Fiber Lemma for o-minimal dimension

(Lemma 2.1.3 ).

3.1 Definitions and basic results

The following is the main definition of this chapter.

Definition 3.1.1. A definable topological space (X, τ) is definably separable if there exists

no infinite definable family of open pairwise disjoint sets in τ .

The reader will note the similarity between Definition 3.1.1 and the countable chain

condition (ccc, or Suslin’s condition) for topological spaces. That is, a topological space

has the ccc if it does not contain an uncountable family of pairwise disjoint open sets. In

general every separable topological space has the ccc, but the converse is not true. We prove

in Theorem 3.2.6 that, for spaces definable in an o-minimal expansion of (R, <), having the

ccc and being separable are equivalent.

Remark 3.1.2. Every euclidean space X is definably separable. If X is e-open then this

follows easily from the Fiber Lemma for o-minimal dimension (Lemma 2.1.3 ). In general it

follows from cell decomposition. That is, if X fails to be definably separable, then there must

be a cell that is also not definably separable. However every cell is homeomorphic through

a projection to an open cell.
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Additionally note that, again by the use of cell decomposition, every definable euclidean

space in an o-minimal expansion of (R, <) is separable, since every cell in a structure ex-

panding the reals is separable.

Walsberg [49 ] introduced the following definition of definable separability for definable

metric spaces.

Definition 3.1.3 (Walsberg [49 ]). A definable metric space (X, d) is definably separable if

it does not contain an infinite definable discrete subspace.

Our Definition 3.1.1 was inspired by Definition 3.1.3 . The differences between them are

due to the fact that there exist (definably non-metrizable) definable topological spaces in

(R, <,+, ·) that are separable but also contain an infinite definable discrete subspace, for such

examples see Example A.9 and the definable Moore Plane (Example A.12 ) in Appendix A .

We explain the relationship between both our definition and the generalization of Wals-

berg’s to all definable topological spaces in the next lemma and proposition, showing in

particular that they are equivalent for definable metric spaces. We make use of the following

definition.

Definition 3.1.4. A definable topological space (X, τ) is hereditarily definably separable if

every definable subspace of (X, τ) is definably separable.

Clearly every hereditarily definably separable space is in particular definably separable.

We observe how, as long as M has definable choice, the generalization of Definition 3.1.3 to

all definable topological spaces is equivalent to hereditary definable separability.

Lemma 3.1.5. Suppose that M has definable choice. A definable topological space (X, τ) is

hereditarily definably separable if and only if it does not contain an infinite definable discrete

subspace.

Proof. Any infinite discrete space is clearly not definably separable and so the “only if”

implication follows.

For the “if” implication let Y ⊆ X be a definable subset such that (Y, τ) is not definably

separable. Let A = {Au : u ∈ Ω} be an infinite pairwise disjoint family of open sets in
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(Y, τ). Using definable choice let f : Ω → ∪A be a definable map such that f(u) ∈ Au for

every u ∈ Ω, where f(u) = f(v) whenever Au = Av. Then the image (f(Ω), τ) is an infinite

definable discrete subspace.

Recall that definable metric spaces are understood implicitly in the setting where M ex-

pands an ordered group, and so in particular M has definable choice. Hence, by Lemma 3.1.5 ,

Walsberg’s notion of definable separability for definable metric spaces is equivalent to Defi-

nition 3.1.4 .

We further characterize definable separability for definable metric spaces as follows.

Proposition 3.1.6. Let (X, d) be a definable metric space. The following are equivalent.

(1) (X, d) is definably separable.

(2) (X, d) is hereditarily definably separable.

(3) (X, d) does not contain an infinite definable discrete subspace, i.e. it is definably

separable in the sense of Walsberg [49 ].

Proof. The equivalence (2) ⇔(3) is given by Lemma 3.1.5 . The implication (2) ⇒(1) is trivial.

We prove (1) ⇒(3) .

Let (X, d) be a definable metric space and Y a definable discrete subspace. By definable

choice one may select definably, for each x ∈ Y , some εx > 0 such that, for every y ∈ Y \{x},

2εx < d(x, y). We observe that the infinite definable family of open d-balls {Bd(x, εx) : x ∈

Y } is pairwise disjoint, and so (X, d) is not definably separable.

Towards a contradiction suppose that there exists x, y ∈ Y and some z ∈ Bd(x, εx) ∩

Bd(y, εy). Then, by the triangle inequality,

d(x, y) ≤ d(x, z) + d(z, y) ≤ εx + εy ≤ 2 max{εx, εy}.

Without loss of generality suppose that εx = max{εx, εy}. Then this contradicts the fact

that 2εx < d(x, y).

Note that the proof of Proposition 3.1.6 (and of Lemma 3.1.5 ) relies solely on definable

choice and not on the fact that the structure M is o-minimal.
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In general topology every separable metric space is second countable and thus hereditarily

separable. On the other hand, in parallelism with the o-minimal definable setting, there exist

(non-metrizable) topological spaces, such as the Moore Plane and Sorgenfrey Plane, that are

separable but not hereditarily separable.

3.2 Main result

In this section we will make use of the first paragraph of the following lemma. The second

paragraph will be used in Chapter 7 .

Lemma 3.2.1. Let S ⊆ P(Rn) be a definable upward directed family of sets. Then dim ∪S =

max{dimS : S ∈ S}.

Suppose that S ⊆ P(X) for some definable set X ⊆ Rn. If S has empty interior in X

for every S ∈ S then ∪S has empty interior in X.

Proof. Suppose that S = {Su : u ∈ Ω} and set Y := ∪S. We may clearly assume that

Y 6= ∅. For every x ∈ Y the set Ωx = {u ∈ Ω : x ∈ Su} is definable. The definable family

{Ωx : x ∈ Y } has the finite intersection property so, by Lemma 2.1.5 , there exists Y ′ ⊆ Y

with dim Y ′ = dim Y such that ⋂{Ωx : x ∈ Y ′} 6= ∅. Hence there is u ∈ Ω such that

Y ′ ⊆ Su, so dim Y = dim Y ′ ≤ dimSu ≤ max{dimSu : u ∈ Ω} ≤ dim Y . This proves the

first paragraph of the lemma.

Now suppose that S ⊆ P(X) for some definable set X ⊆ Rn. Suppose that Y has

nonempty interior Z in X. Clearly the definable family {Su ∩Z : u ∈ Ω} is upward directed

and satisfies that ∪u∈Ω(Su ∩ Z) = Z. By the statement in the first paragraph of the lemma

there exists u ∈ Ω such that dim(Su ∩ Z) = dimZ. By o-minimality it follows that Su ∩ Z

has interior in Z, and thus in X.

The following ad hoc lemma is trivial whenever M has elimination of imaginaries (e.g.

expands an ordered group).

Lemma 3.2.2. Suppose that M expands (R, <). Any infinite definable family of sets is

uncountable.
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Proof. If {Su : u ∈ Ω} is a definable family of sets then the relation u ∼ v ⇔ Su = Sv is a

definable equivalence relation. Hence it suffices to prove that any infinite quotient space by

a definable equivalence relation is uncountable. We use the fact that any infinite definable

subset in an o-minimal expasion of (R, <) is uncountable.

Let Ω ⊆ Mn be a definable set and ∼ denote a definable equivalence relation on Ω with

an infinite quotient space Ω/∼. For any u ∈ Ω, we denote the corresponding equivalence

class by [u]∼. We proceed by induction on n.

Suppose that n = 1. For any u ∈ Ω let f(u) = inf[u]∼. Note that, by o-minimality,

for every t ∈ M ∪ {−∞} there can be at most two non-equivalent elements u, v ∈ Ω with

f(u) = f(v) = t. Since Ω/∼ is infinite it follows that the image of f is infinite. Since f is

definable the result follows.

Now suppose that n > 1. For any x ∈ π(Ω), where π denotes the projection Mn → Mn−1,

let Ωx be the fiber {t ∈ M : 〈x, t〉 ∈ Ω} and ∼x the equivalence relation on Ωx given by

s ∼x t ⇔ 〈x, t〉 ∼ 〈x, s〉. If there exists some x ∈ π(Ω) such that Ωx/∼x is infinite then, by

the base case n = 1, Ωx/ ∼x is uncountable, and it follows that Ω/∼ is uncountable.

Onwards suppose that, for every x ∈ π(Ω), Ωx/∼x is finite. We first observe that there

is a uniform bound on the size of Ωx/∼x.

Consider, for every x ∈ π(Ω), the set Bx = {inf[t]∼x : t ∈ Ωx}. For every x ∈ π(Ω), since

Ωx/∼x is finite, the set Bx is finite. By uniform finiteness there exists some m such that

|Bx| ≤ m for every x ∈ π(Ω). Now note that, by o-minimality, if |Bx| = i then the size of

Ωx/∼x is at most 2i. In particular, for every x ∈ Ωx, the size of the quotient space Ωx/∼x is

at most 2m.

For every 1 ≤ i ≤ 2m, we define Ω(i) inductively as follows. Let Ω(1) be the set of points

〈x, t〉 ∈ Ω such that, for every s ∈ Ωx, there exists some t′ ∈ Ωx with 〈x, t〉 ∼ 〈x, t′〉 and

t′ ≤ s. Since every quotient space Ωx/∼x is finite this set is well defined. Now, for i > 1, let

Ω(i)′ = Ω \ ∪0≤j<iΩ(j), and let Ω(i) be the set of points 〈x, t〉 ∈ Ω(i)′ such that, for every s

in the fiber Ω(i)′
x, there exists some t′ ∈ Ωx with 〈x, t〉 ∼ 〈x, t′〉 and t′ ≤ s.

Note that the sets Ω(i), for 1 ≤ i ≤ 2m, are definable and partition Ω. We fix i satisfying

that Ω(i)/∼ is infinite. We show that Ω(i)/∼ is uncountable.
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For every x ∈ π(Ω(i)) let Ω(i)x = {t ∈ M : 〈x, t〉 ∈ Ω(i)}. Note that, by construction

of Ω(i), for every s, t ∈ Ω(i)x it holds that s ∼x t. Consider the equivalence relation ∼pr

on π(Ω(i)) given by x ∼pr y if and only if, for every t ∈ Ω(i)x and s ∈ Ω(i)y, it holds

that 〈x, t〉 ∼ 〈y, s〉. Note that the projection π : Ω(i) → π(Ω(i)) induces, through the map

[〈x, t〉]∼ 7→ [x]∼pr , a bijection between Ω(i)/∼ and π(Ω(i))/∼pr. By induction hypothesis the

latter space is uncountable, and the result follows.

From Lemma 3.2.2 we will derive that any space definable in an o-minimal expansion of

(R, <) that is not definably separable also fails to have the ccc.

The following lemmas are part of the proof that, in an o-minimal expansion of (R, <),

any definably separable definable topological space is separable.

Lemma 3.2.3. Let (X, τ) be a definably separable definable topological space. Let I ⊆ M

be an open interval and {At : t ∈ I} be a definable family of τ -open sets. Suppose that, for

every t ∈ I, dimAt ≤ n. Then there exists a definable τ -open set B ⊆ ∪t∈IAt such that

dimB ≤ n and ∪t∈IAt ⊆ clτB. In other words, the union of the At’s has a definable τ -open

dense subset of dimension less than or equal to n.

Moreover, B can be chosen definable over the same parameters as the family {At : t ∈ I}

and the topology τ .

Proof. Let A = {At : t ∈ I} and A = ∪t∈IAt. For each x ∈ A, let Ix = {t ∈ I : x ∈ At}.

We first show that we may assume that, for any x ∈ A, inf Ix /∈ Ix. We then show that,

under this assumption, it suffices to take B = A. The fact that B is definable over the same

parameters as A and τ follows by keeping track of parameters.

For each t ∈ I, let A′
t = ⋃{As : s < t, s ∈ I} ∩ At. Let A′ = {A′

t : t ∈ I}. Note

that A′ is a definable family of τ -open sets. For every x ∈ ∪A′ let I ′
x = {t ∈ I : x ∈ A′

t}.

Note that, for every x ∈ ∪A′, I ′
x = Ix \ {inf Ix}. In particular, if Ix is a left-closed interval

then I ′
x is a left-open interval. We can then repeat this process, and define, for every t ∈ I,

A′′
t = ⋃{A′

s : s < t, s ∈ I} ∩ A′
t, and a definable family of τ -open sets A′′ = {A′′

t : t ∈ I}.

Now, by uniform finiteness, there exists some m such that, for every x ∈ A, Ix has at most m

definably connected components. Consequently, after repeating the process m times, we will
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reach a definable family of τ -open sets A(m) = {A(m)
t : t ∈ I} with the following property.

For every x ∈ ∪A(m), if I(m)
x = {t ∈ I : x ∈ A

(m)
t }, then inf I(m)

x /∈ I(m)
x .

We proceed by showing that it suffices to prove the lemma for A′ in place of A. Then

by an inductive argument the same holds for A(m). Consequently, by passing to A(m) if

necessary, we may assume that inf Ix /∈ Ix for every x ∈ A.

Recall that, for every t ∈ I, A′
t = ⋃{As : s < t, s ∈ I} ∩ At. Note that, for any two

distinct s, t ∈ I, (As \ A′
s) ∩ (At \ A′

t) = ∅. By definable separability of (X, τ) it follows

that the set intτ (At \ A′
t) is nonempty for only finitely many values of t ∈ I. In particular

dim(∪t∈Iintτ (At \ A′
t)) ≤ n. Moreover, because the sets in A are τ -open, note that

A ⊆ clτ (∪t∈IA
′
t) ∪ ∪t∈Iintτ (At \ A′

t).

Let A′ = ∪t∈IA
′
t. Suppose that the lemma holds for the family A′ = {A′

t : t ∈ I} in place of

A. That is, there exists a definable τ -open set B′ ⊆ A′ such that dimB′ ≤ n and A′ ⊆ clτB
′.

Then it suffices to consider B = B′⋃∪t∈Iintτ (At \ A′
t) to complete the proof.

Hence we conclude that we may assume that A satisfies that, for every x ∈ A, inf Ix /∈ Ix.

We complete the proof by showing that, with this assumption, dimA ≤ n.

Let I = (a, b). For any t ∈ [a, b), let

Ct = {x ∈ A : t = inf Ix}.

Clearly A = ⋃{Ct : t ∈ [a, b)}. We show that dimCt ≤ n for every t ∈ [a, b), with equality

holding for only finitely many values of t. By the Fiber Lemma for o-minimal dimension

(Lemma 2.1.3 ) we conclude that dimA ≤ n.

Observe that Ca = ⋃
a<s<b

⋂
a<t′<s At′ . Moreover, since inf Ix /∈ Ix for every x ∈ A, we

have that, for every t ∈ (a, b),

Ct =
 ⋃

t<s<b

⋂
t<t′<s

At′

 \
⋃

a<s′≤t

As′ =
⋃

t<s<b

 ⋂
t<t′<s

At′ \
⋃

a<s′≤t

As′

 .
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In particular each set Ct is a union of nested sets each of which has dimension at most n.

By Lemma 3.2.1 , it follows that dimCt ≤ n.

Now, towards a contradiction suppose that there exist infinitely many values t ∈ [a, b)

such that dimCt = n. Then by o-minimality there exists an interval J ⊆ I that contains

only such values. For each a < t < s < b let

C(t, s) =
⋂

t<t′<s

At′ \
⋃

a<s′≤t

As′ ,

in which case Ct = ⋃
t<s<b C(t, s). Note that, for distinct t0, t1 ∈ I, and any choice of

t0 < s0 < b and t1 < s1 < b, it holds that the sets C(t0, s0) and C(t1, s1) are disjoint.

Applying Lemma 3.2.1 , for every t ∈ J let f(t) be the supremum of all the values s > t

in J such that dimC(t, s) = n. The function f is clearly definable. It moreover satisfies that

f(t) > t for every t ∈ J . By o-minimality f is piecewise continuous, and so we may find an

interval J ′ ⊆ J such that f(t) > J ′ for every t ∈ J ′.

Finally, let us fix some t0 ∈ J ′. Note that, for every t1, s1 in J ′ with t1 < t0 < s1, it holds

that C(t1, s1) ⊆ At0 . Moreover, by definition of f , dimC(t1, s1) = n. Also recall that, for

any t2 < t0 in J ′ \ {t1}, it holds that C(t1, s1) ∩ C(t2, s1) = ∅. Hence

⋃
t<t0;t∈J

C(t, s1) ⊆ At0 ,

where ∪t<t0;t∈JC(t, s1) is a union of infinitely many pairwise disjoint sets of dimension n.

By the Fiber Lemma for o-minimal dimension (Lemma 2.1.3 ) we derive that dimAt0 > n,

contradiction.

Note that, if (X, τ) satisfies the frontier dimension inequality (Definition 2.2.10 ), then in

Lemma 3.2.3 we may always take B = ∪t∈IAt. The analogous remains true for the following

generalization of the lemma.

Lemma 3.2.4. Let (X, τ) be a definably separable definable topological space. Let Ω ⊆ Mm

be a definable set and {Au : u ∈ Ω} be a definable family of τ -open sets. Suppose that, for
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every u ∈ Ω, dimAu ≤ n. Then there exists a definable τ -open set B ⊆ ∪u∈ΩAu such that

dimB ≤ n and ∪u∈ΩAu ⊆ clτB.

Proof. We proceed by induction on m.

Suppose that m = 1. By letting Au = ∅ for every u ∈ M \ Ω if necessary, we may assume

that Ω = M . The result then follows from Lemma 3.2.3 .

Now suppose that m > 1. Let A = {Au : u ∈ Ω}. For every x ∈ π(Ω) let Ωx = {t ∈ M :

〈x, t〉 ∈ Ω}, and consider the family Ax = {Ax,t : t ∈ Ωx}. By the case m = 1 there exists a

definable τ -open set Bx ⊆ ∪Ax such that dimBx ≤ n and ∪Ax ⊆ clτBx.

By Lemma 3.2.3 , note that the sets Bx may be chosen definable over the same parameters

as Ax and τ . Hence, by applying the usual argument involving model theoretic compactness,

we may choose the sets Bx definably in x ∈ π(Ω).

Finally, by induction hypothesis applied to the family {Bx : x ∈ π(Ω)} we derive that

there exists a definable τ -open set B with dimB ≤ n and ∪x∈π(Ω)Bx ⊆ clτB. In particular

⋃
u∈Ω

Au ⊆
⋃

x∈π(Ω)
clτBx ⊆ clτ

 ⋃
x∈π(Ω)

Bx

 ⊆ clτB.

Recall the notion of local dimension dimx(X, τ) of a definable topological space (X, τ) at

a point x (Definition 2.2.19 ), i.e. if B denotes a basis of τ -neighborhoods of x then

dimx(X, τ) = min{dimA : A ∈ B}.

We introduce the following terminology, which we will use from now on in this section.

Let (X, τ) be a definable topological space. For any m let

X(m) = {x ∈ X : dimx(X, τ) ≤ m}.

Note that, for any m, the set X(m) is definable and satisfies that X(m) ⊆ X(m + 1).

Moreover if dimX = n then, for any m ≥ n, it holds that X(m) = X(n) = X.

Remark 3.2.5. For every m, the set X(m) is τ -open. To see this let x ∈ X(m) and let A

be any definable τ -open neighborhood of x such that dimA ≤ m. Then clearly A ⊆ X(m).
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Theorem 3.2.6. Suppose that M expands (R, <). Let (X, τ) be a definable topological space.

The following are equivalent.

(1) (X, τ) is definably separable.

(2) (X, τ) is separable.

(3) (X, τ) has the countable chain condition.

Proof. The implication (2) ⇒(3) is a simple known fact in general topology. The implica-

tion (3) ⇒(1) follows directly from Lemma 3.2.2 . We prove (1) ⇒(2) .

Suppose that (X, τ) is definably separable. Let n = dimX. We may assume that n > 0.

By Remark 3.2.5 the subspace X(n − 1) is τ -open, and so it is clearly definably separable.

Let B be a definable basis for τ and let B′ = {A ∈ B : dimA < n}. Clearly X(n− 1) = ∪B′.

By Lemma 3.2.4 there exists a definable τ -open set B ⊆ X(n− 1) such that dimB < n and

X(n− 1) ⊆ clτB.

Since B is τ -open it is also definably separable. By induction hypothesis we derive that

it is separable. Let D1 denote a countable dense subset of (B, τ). Since X(n − 1) ⊆ clτB

note that D1 is also dense in X(n− 1).

Now recall (Remark 3.1.2 ) that the space X is separable in the euclidean topology. Let

D2 denote an e-dense countable subset of X.

Finally let D = D1 ∪D2. This is a countable set. Let A be a definable open set in (X, τ).

If A ∩ X(n − 1) 6= ∅ then A ∩ D1 6= ∅. If A ∩ (X \ X(n − 1)) 6= ∅ then, by definition of

X(n − 1), it must be that dimA = n. But then, by the frontier dimension inequality of

the euclidean topology, we have that A has interior in the euclidean topology on X, and

consequently A ∩D2 6= ∅.

From Lemma 3.2.4 we may also derive the following characterization of definable sepa-

rability.

Proposition 3.2.7. A definable topological space (X, τ) is definably separable if and only if

there exists a τ -open definable dense subset Y ⊆ X satisfying that, for every m, dim Y (m) ≤

m.

In particular if (X, τ) has the frontier dimension inequality then it suffices to take Y = X.
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Proof. To derive the second sentence of the proposition from the first one it suffices to show

that, if (X, τ) has the frontier dimension inequality and has a definable subset Y as described,

then dimX(m) ≤ m for every m. This follows from the following observation. For every m

and x ∈ X, if x ∈ clτ (Y \ Y (m)) then, by definition of Y (m), it holds that dimx(X, τ) > m.

It follows that, for every m, X(m) ⊆ clτY (m). By the frontier dimension inequality and

properties of Y , we have that dimX(m) ≤ dim clτY (m) = dim Y (m) ≤ m.

We now prove the first sentence in the proposition. We start by proving the “if” direction.

Let Y be as in the proposition and, towards a contradiction, suppose that (X, τ) is not

definably separable. Let A be an infinite family of pairwise disjoint τ -open sets. Since Y is

dense note that every A ∈ A satisfies that A∩ Y 6= ∅. Let m denote the smallest value such

that A ∩ Y (m) 6= ∅ for infinitely many sets A ∈ A. If m = 0 then we derive a contradiction

from the facts that dim Y (0) ≤ 0 and the sets in A are pairwise disjoint. From now on

suppose that m > 0.

Let A′ = {A ∈ A : A ∩ (Y (m) \ Y (m− 1)) 6= ∅}. Note that A′ is infinite and moreover,

by definition of Y (m) \ Y (m − 1), every A ∈ A′ satisfies that dimA = m. A contradiction

follows from the fact that dim Y (m) ≤ m and the Fiber Lemma for o-minimal dimension

(Lemma 2.1.3 ).

We now prove the “only if” implication. Suppose that (X, τ) is definably separable. We

proceed by induction on n = dimX. The case n = 0 is trivial, and so we may assume that

n > 0.

Let B be a definable basis for τ and let B′ = {A ∈ B : dimA < n}. Clearly X(n− 1) =

∪B′. By Lemma 3.2.4 there exists a definable τ -open set Z ⊆ X(n−1) with dimZ < n such

that X(n− 1) ⊆ clτZ. Since dimZ < n, by induction hypothesis there exists some definable

subset Y ′ ⊆ Z that is open and dense in (Z, τ), and moreover satisfies that dim Y ′(m) ≤ m

for every m. Since Z is τ -open note that Y ′ is τ -open too. Moreover, since Y ′ is dense in

(Z, τ) and Z is dense in (X(n− 1), τ), we derive that Y ′ is dense in (X(n− 1), τ).

Now let

Y = Y ′ ∪ intτ (X \X(n− 1)).
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Clearly Y is τ -open and, since Y ′ is dense in (X(n− 1), τ), Y is dense in (X, τ). Recall that

Y ′ ⊆ X(n−1). Moreover, by definition of X(n−1), for every x ∈ intτ (X\X(n−1)) and small

enough τ -neighborhood A of x, it holds that dimA = n and A ⊆ intτ (X \ X(n − 1)) ⊆ Y .

So dimx(Y, τ) = n. It follows that, for every m < n, Y (m) = Y ′(m). We conclude that

dim Y (m) ≤ m for every m.

We end this chapter by deriving from Proposition 3.2.7 that, much like in general topol-

ogy, definable separability is maintained after taking products.

Corollary 3.2.8. Let (X, τ) and (Z, µ) be definably separable definable topological spaces.

The product space (X × Z, τ × µ) is definably separable.

Proof. Let Y1 ⊆ X be as described in Proposition 3.2.7 , i.e. Y1 is a definable τ -open set that

is dense in (X, τ) and satisfies that, for every m, dim Y1(m) ≤ m. Let Y2 ⊆ Z be analogous

with respect to (Z, µ). Let Y = Y1 × Y2.

Clearly Y is open and dense in (X ×Z, τ × µ). We show that, for every m, it holds that

dim Y (m) ≤ m. By Proposition 3.2.7 we conclude that (X×Z, τ ×µ) is definably separable.

For any x ∈ Y1 and z ∈ Y2, note that dim〈x,z〉(Y, τ × µ) = dimx(Y1, τ) + dimz(Y2, µ). It

follows that, for any m, the set Y (m) is the union of sets of the form Y (m′) × Y (m′′) for

m′ +m′′ = m. Since dim(Y (m′)×Y (m′′)) = dim Y (m′)+dim Y (m′′) ≤ m′ +m′′, we conclude

that dim Y (m) ≤ m.
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4. DEFINABLE FIRST COUNTABILITY

Introduction

In this chapter we study directed sets definable in o-minimal expansions of groups and

fields. We make the assumption throughout that M expands an ordered group. By “directed

set” we mean a preordered set in which every finite subset has a lower (if downward directed)

or upper (if upward directed) bound.

We show that, in expansions of ordered fields, definable directed sets admit certain co-

final definable curves, as well as a suitable analogue in expansions of ordered groups, and

furthermore that no analogue holds in full generality. We use the theory of tame pairs to

extend the results in the field case to definable families of sets with the finite intersection

property. We then apply our results to the study of definable topologies. We prove that, in

o-minimal expansions of groups and fields, all definable topological spaces display definable

properties akin to first countability.

In Section 4.1 we introduce the necessary definitions. In Section 4.2 we prove the main

result on definable directed sets (Theorem 4.2.2 ) and show that it does not hold in all o-

minimal structures. In Section 4.3 we strengthen the main result in the case where the

underlying structure expands an ordered field (Corollary 4.3.4 ). In Section 4.4 we apply the

theory of tame pairs to make some additional remarks and frame our work in the context of

types (Theorem 4.4.2 ). We also strengthen our earlier results in the case where the underlying

structure expands an archimedean field (Corollary 4.4.9 ). In Section 4.5 we use the results

in previous sections to describe definable bases of neighborhoods of points in a definable

topological space (definable first countability, Theorem 4.5.2 ) and derive some consequences

of this, in particular showing that, whenever the underlying o-minimal structure expands an

ordered field, definable topological spaces admit definable curve selection (Lemma 4.5.4 ).

For papers treating objects similar to definable directed sets, namely orders and partial

orders, the reader may consult [42 ] and [43 ], in which the authors prove, respectively, that

definable orders in o-minimal expansions of groups are lexicographic orders (up to definable

order-isomorphism), and that definable partial orders in o-minimal structures are extendable

to definable total orders. We do not however use these results in this chapter.
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This chapter is based on joint work by the author [2 ].

4.1 Directed sets and families

In this chapter M is an o-minimal expansion of an ordered group.

Recall that a preorder is a transitive and reflexive binary relation.

Definition 4.1.1. A definable preordered set is a definable set Ω ⊆ Mn together with a

definable preorder 4 on Ω. A definable downward directed set is a definable preordered set

(Ω,4) that is downward directed, i.e. for every finite subset Ω′ ⊆ Ω there exists v ∈ Ω such

that v 4 u for all u ∈ Ω′.

Recall that a subset S of a preordered set (Ω,4) is cofinal if, for every u ∈ Ω, there exists

v ∈ S such that u 4 v. We refer to this property as upward cofinality, and work mostly

with the dual notion of coinitiality, which we in turn refer to as downward cofinality. The

reason for this approach is that it seems more natural for the later application of our results

to definable topologies.

Definition 4.1.2. Let (Ω′,4′) and (Ω,4) be preordered sets. Given S ⊆ Ω, a map γ : Ω′ → Ω

is downward cofinal for S (with respect to 4′ and 4) if, for every u ∈ S, there exists v =

v(u) ∈ Ω′ such that w 4′ v implies γ(w) 4 u. Equivalently, we say that γ : (Ω′,4′) → (Ω,4)

is downward cofinal for S. We say that γ is downward cofinal if it is downward cofinal for

Ω.

We say that a curve γ : (0,∞) → Ω is downward cofinal for S ⊆ Ω if γ : ((0,∞),≤) →

(Ω,4) is. If there exists such a map when S = Ω, then we may say that (Ω,4) admits a

downward cofinal curve.

The dual notion of definable downward directed set is that of definable upward directed

set. In other words, if (Ω,4) is a preordered set and 4∗ is the dual preorder of 4, then

(Ω,4) is a definable upward directed set whenever (Ω,4∗) is a definable downward directed

set. Moreover, given a preordered set (Ω′,4′), a map γ : (Ω′,4′) → (Ω,4) is upward cofinal

for S ⊆ Ω if it is downward cofinal for S with respect to 4′ and 4∗.
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Note that the image of a downward (respectively upward) cofinal map is always downward

(respectively upward) cofinal.

Recall that curves are classically defined to be any map into Mn with interval domain

(Definition 2.2.11 , taken from [17 ]), however since in this section we are assuming throughout

that M expands an ordered group, we restrict our notion of curve to those with domain equal

to (0,∞), since, in the o-minimal group setting, these are equivalent for all practical purposes

(e.g. Proposition 2.2.14 ) to the general class of curves with interval domain. Additionally

our notion of downward/upward cofinal curve focuses on the behaviour of curves as t →

0+. Cofinal curves however will only be relevant in this chapter in the setting where the

underlying structure expands an ordered field, where once again this notion of convergence

is strong enough for all purposes.

Remark 4.1.3.

(i) Let S = {Su : u ∈ Ω} be a definable family of sets. Set inclusion induces a definable

preorder 4S on Ω given by u 4S v ⇔ Su ⊆ Sv.

(ii) Conversely, let (Ω,4) be a definable preordered set. Consider the definable family of

nonempty sets {Su : u ∈ Ω}, where Su = {v ∈ Ω : v 4 u} for every u ∈ Ω. Then, for

every u,w ∈ Ω, u 4 w if and only if Su ⊆ Sw.

Note that Remark 4.1.3 remains true if we drop the word “definable” from the statements.

Motivated by Remark 4.1.3 (i) we introduce the following definition.

Remark 4.1.4. Note that a family of sets S = {Su : u ∈ Ω} is downward (respectively

upward) directed if ∅ /∈ S and the preorder 4S on Ω induced by set inclusion in S forms a

downward (respectively upward) directed set.

In other words, S is downward (respectively upward) directed if and only if ∅ /∈ S and,

for every finite F ⊆ S, there exists u = u(F) ∈ Ω satisfying Su ⊆ S (respectively S ⊆ Su)

for every S ∈ F .

Example 4.1.5. Let (Ω,4) be a downward (respectively upward) directed set. The induced

family S = {Su : u ∈ Ω} described in Remark 4.1.3 (ii) is a downward (respectively upward)

directed family.
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Definition 4.1.6. Let (Ω,4) be a definable preordered set and let f : Ω → Mm be a

definable injective map. We define the push-forward of (Ω,4) by f to be the definable

preordered set (f(Ω),4f ) that satisfies: f(x) 4f f(y) if and only if x 4 y, for all x, y ∈ Ω.

Thus (f(Ω),4f ) is the unique definable preordered set such that f : (Ω,4) → (f(Ω),4f ) is

a preorder-isomorphism.

Let {Su : u ∈ Ω} be a definable family of sets. Based on the correspondence between

definable families of sets and definable preordered sets given by Remark 4.1.3 we also define

the push-forward of {Su : u ∈ Ω} by f to be the reindexing of said family given by {Sf−1(u) :

u ∈ f(Ω)}. We abuse notation and write Su instead of Sf−1(u) when it is clear that u ∈ f(Ω).

4.2 Main result on directed sets

Throughout recall that ‖ · ‖ : Mn → M denotes the usual l∞ norm, i.e.

‖(x1, . . . , xn)‖ = max{|x1|, . . . , |xn|}.

For any x ∈ Mn and ε > 0, set

B(x, ε) := {y ∈ Mn : ‖x− y‖ < ε}

and

B(x, ε) := {y ∈ Mn : ‖x− y‖ ≤ ε}

to be respectively the open and closed ball of center x and radius ε .

Definition 4.2.1. We equip M>0 ×M>0 with the definable preorder given by

(s, t) E (s′, t′) ⇔ s ≤ s′ and t ≥ t′.

Note that (M>0 ×M>0,E) is a definable downward directed set.

We are now ready to state the main theorem of this section.
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Theorem 4.2.2. Let (Ω,4) be a definable downward (respectively upward) di-

rected set. There exists a definable downward (respectively upward) cofinal map

γ : (M>0 ×M>0,E) → (Ω,4).

Note that, if (Ω,4) is definable over a set of parameters A, and b ∈ M is any non-zero

parameter, then the downward (respectively upward) cofinal map given by Theorem 4.2.2 

is Ab-definable. To see this, it suffices to recall that the structure (M, b) has definable

choice, where every choice function is 0-definable. Equivalently any choice function in M is

b-definable. Then apply the theorem to the prime model over Ab, which by definable choice

is dcl(Ab).

We prove the downward case of Theorem 4.2.2 . From the duality of the definitions it

is clear that the upward case follows from this. Therefore, since there will be no room for

confusion, from now on and until the end of the section we write “directed” and “cofinal”

instead of respectively “downward directed” and “downward cofinal”.

In order to prove Theorem 4.2.2 we require three lemmas, the first of which concerns

definable families with the finite intersection property. Recall that a family of sets S has the

finite intersection property (FIP) if the intersection ⋂1≤i≤n Si is nonempty for all S1, . . . , Sn ∈

S.

Example 4.2.3. If S is a directed family of sets (e.g. Example 4.1.5 ), then S has the finite

intersection property. The converse is not necessarily true; the definable family {M \ {x} :

x ∈ M} has the finite intersection property but is not directed.

Lemma 4.2.4. Let S = {Su ⊆ Mn : u ∈ Ω} be a definable family of sets with the finite

intersection property. There exists a definable set Ωh and a definable bijection h : Ω → Ωh

such that the push-forward of S by h satisfies the following properties.

(1) For every u ∈ Ωh, there exists ε = ε(u) > 0 such that ⋂v∈Ωh, ‖v−u‖<ε Sv 6= ∅.

(2) For every closed and bounded definable set B ⊆ Ωh, there exists ε = ε(B) > 0 such

that ⋂v∈B, ‖v−u‖<ε Sv 6= ∅ for every u ∈ B.

52



Proof. We prove the result by showing that, for Ω and S as in the statement of the lemma,

there exists a definable map f : Ω → ∪u∈ΩSu ×M>0, given by u 7→ (xu, εu), such that, for

all u, v ∈ Ω,

‖f(u) − f(v)‖ < εu

2 ⇒ xu ∈ Sv. ((†)(f,S))

If (†)(f,S) holds for a continuous function f , then the lemma holds with Ωh = Ω and h = id.

This follows from the observation that, by (†)(f,S) and the continuity of f at u ∈ Ω, we have

xu ∈
⋂

v∈Ω
‖u−v‖<δ

Sv 6= ∅

whenever δ > 0 is sufficiently small. Moreover, if f is continuous on a definable closed

and bounded set B ⊆ Ω and εmin is the minimum of the map u 7→ εu on B, then uniform

continuity yields a δ > 0 such that ‖f(u)−f(v)‖ < εmin

2 for all u, v ∈ B satisfying ‖u−v‖ < δ.

So in this case we have

xu ∈
⋂

v∈B
‖u−v‖<δ

Sv 6= ∅, for all u ∈ B.

In the case that (†)(f,S) holds for a function f which is not necessarily continuous, then we

may modify the above argument by identifying an appropriate bijection h and push-forward

Sh = {Sh−1(u) : u ∈ Ωh} to complete the proof as follows. By o-minimality, let C1, . . . , Cl be

a a cell partition of Ω such that f is continuous on every Ci. Consider the disjoint union

Ωh = ∪1≤i≤l(Ci × {i}) and the natural bijection h : Ω → Ωh. This map is clearly definable.

Moreover, for every cell Ci, the restriction h|Ci
is a homeomorphism and h(Ci) is open in

Ωh. It follows that the map f ◦ h−1 : Ωh → ∪u∈ΩSu × M>0 is definable and continuous.

Additionally, note that (†)(f◦h−1,Sh) holds. Consequently, the lemma holds via an analogous

argument to the one above.
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Thus it remains to prove the existence of a definable function f satisfying (†)(f,S). First

of all we show that we can assume that there exists 0 ≤ m ≤ n such that the following

property (P ) holds:

dim

 ⋂
1≤i≤k

Sui

 = m, for every u1, . . . , uk ∈ Ω. (P)

Let m′ be the minimum natural number such that there exist u1, . . . , uk ∈ Ω with

dim(∩1≤i≤kSui
) = m′. Set S := ∩1≤i≤sSui

. Consider the definable family S∗ := {Su ∩S : u ∈

Ω}. This family has the FIP. Note that if (†)(f,S∗) is satisfied for some definable function f

then (†)(f,S) is satisfied too. Hence, by passing to S∗ if necessary, we may assume that (P)

holds for some fixed m.

Suppose that m = n, so in particular all sets Su have nonempty interior (we call this the

open case). By definable choice, let f : Ω → ∪uSu × M>0, f(u) = (xu, εu), be a definable

map such that, for every u ∈ Ω, the open ball of center xu and radius εu is contained in Su.

Then, for any u, v ∈ Ω, ‖f(u) − f(v)‖ < εu

2 implies both ‖xu − xv‖ < εu

2 and εv >
εu

2 . Hence

‖xu − xv‖ < εv, and so xu ∈ Sv.

Now suppose that m < n. Let u0 be a fixed element in Ω and let X be a finite partition

of Su0 into cells. We claim that there must exist some cell C ∈ X such that dim(C ∩⋂
1≤i≤k Sui

) = m for any u1, . . . , uk ∈ Ω. Suppose that the claim is false. Then, for every

C ∈ X , there exist kC < ω and uC
1 , . . . , u

C
kC

∈ Ω such that dim(C ∩ ⋂
1≤i≤kC

SuC
i
) < m. In

that case however

m = dim

Su0 ∩
⋂

C∈X ,1≤i≤kC

SuC
i

 ≤ dim

 ⋃
C∈X

C ∩
⋂

1≤i≤kC

SuC
i
)


= max
C∈X

dim

C ∩
⋂

1≤i≤kC

SuC
i

 < m,

which is a contradiction. So the claim holds.

Let C0 ∈ X be a cell with the described property. Clearly dim(C0) = m. Consider the

definable family S ′ = {S ′
u = C0 ∩ Su : u ∈ Ω}. By the claim, S ′ satisfies the FIP; in fact,
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any intersection of finitely many sets in S ′ has dimension m. We prove the lemma for S ′

and the result for S follows.

Let π : C0 → π(C0) ⊆ Mm be a projection which homeomorphically maps C0 onto an

open cell π(C0). Since π is a bijection, the set π(S ′
u) ⊆ Mm has nonempty interior, for every

u ∈ Ω. Consider the definable family {π(S ′
u) ⊆ Mm : u ∈ Ω}. This is a definable family

of sets with nonempty interior that has the FIP. By the open case, there exists a definable

g = (g1, g2) : Ω → Mm ×M>0, g(u) = (xu, εu), such that, for every u, v ∈ Ω, ‖g(u)−g(v)‖ <
εu

2 implies xu ∈ π(S ′
v), i.e. π−1(xu) ∈ S ′

v. Let f = (f1, f2) : Ω → Mm × M>0 be given by

f1 = π−1 ◦g1 and f2 = g2. Since g is a projection of f , we have ‖g(u)−g(v)‖ ≤ ‖f(u)−f(v)‖,

for all u, v ∈ Ω. The result follows.

Definition 4.2.5. Let (Ω,4) be a directed set. We say that Ω′ ⊆ Ω is 4-bounded in Ω if

there exists v ∈ Ω such that v 4 u for all u ∈ Ω′. We write v 4 Ω′.

Let (Ω,4) be a definable directed set and let S = {Su : u ∈ Ω} be a directed family of

sets as in Example 4.1.5 . By construction of S, note that, if a subfamily {Su : u ∈ Ω′} has

nonempty intersection, then Ω′ is 4-bounded in Ω. Hence Lemma 4.2.4 yields the following

corollary.

Corollary 4.2.6. Any definable directed set (Ω′,4′) is definably preorder-isomorphic to a

definable directed set (Ω,4) such that

(1) for all u ∈ Ω there exists an ε > 0 such that B(u, ε) ∩ Ω is 4-bounded in Ω;

(2) for any definable closed and bounded set B ⊆ Ω, there exists an ε > 0 such that

B(u, ε) ∩B is 4-bounded in Ω for every u ∈ B.

We now prove a lemma (Lemma 4.2.8 ) which allows us to see 4-boundedness as a local

property, and which we will use in proving Theorem 4.2.2 . We first show that the doubling

property of the supremum metric in Rn generalizes to Mn.

55



Lemma 4.2.7. For any x ∈ Mn and r > 0, there exists a finite set of points P ⊆ B(x, r),

where |P | ≤ 3n, such that the sets of balls of radius r
2 centered on points in P covers the ball

of radius r centered on x, i.e.

B(x, r) ⊆
⋃

y∈P

B
(
y,
r

2

)
.

Proof. Fix x = (x1, . . . , xn) ∈ Mn and r > 0. Set

P :=
{
y = (y1, . . . , yn) : yi = xi + δi, δi ∈

{
r

2 ,−
r

2 , 0
}
, 1 ≤ i ≤ n

}
.

Note that |P | = 3n and, for every z ∈ B(x, r), there exists some y ∈ P such that ‖y−z‖ < r
2 .

Thus B(x, r) ⊆ ⋃
y∈P B(y, r

2).

Lemma 4.2.8. Let (Ω,4) be a definable directed set and let S ⊆ Ω be a bounded definable

set. Suppose that there exists ε0 > 0 such that, for all u ∈ S, B(u, ε0) ∩ S is 4-bounded in

Ω. Then S is 4-bounded in Ω.

Proof. Consider the definable set

H = {ε : ∀u ∈ S, B(u, ε) ∩ S is 4-bounded in Ω}.

We have (0, ε0) ⊆ H, and so H is nonempty, and hence by o-minimality it must be of the

form (0, r), for some r ∈ [ε0,∞) ∪ {∞}. We show H = (0,∞) and thus, since S is bounded,

that S is 4-bounded in Ω.

Suppose that r < ∞. We reach a contradiction by showing 4
3r ∈ H. To do so we fix an

arbitrary u0 ∈ S and show that B(u0,
4
3r) ∩ S is 4-bounded in Ω.

By repeated application of Lemma 4.2.7 , the ball B(u0,
4
3r) can be covered by finitely

many (≤ 32n) balls B1, . . . , Bk of radius r
3 . For any 1 ≤ i ≤ k, if w ∈ Bi ∩ S, then

Bi ⊆ B(w, 2
3r), by the triangle inequality. By assumption, B(w, 2

3r) ∩ S is 4-bounded in

Ω, and so the set Bi ∩ S is 4-bounded in Ω. Moreover, if Bi ∩ S is empty for some for

1 ≤ i ≤ k, then Bi ∩ S is trivially 4-bounded in Ω. By the definition of directed set, it
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follows that ∪iBi ∩S is 4-bounded in Ω, and so, since B(u0,
4
3r) ⊆ ∪iBi, the set B(u0,

4
3r)∩S

is 4-bounded in Ω.

Corollary 4.2.6 and Lemma 4.2.8 together yield the following.

Corollary 4.2.9. Let (Ω′,4′) be a definable directed set. Then there exists a definable

directed set (Ω,4) that is definably preorder isomorphic to (Ω,4) and such that every closed

and bounded definable subset of Ω is 4-bounded in Ω.

We now borrow a definition from [13 ].

Definition 4.2.10. A definable set S is DΣ if there exists a definable family of closed and

bounded sets {S(s, t) : (s, t) ∈ M>0 ×M>0} such that S = ⋃
s,t S(s, t) and S(s, t) ⊆ S(s′, t′)

whenever (s′, t′) E (s, t).

To prove Theorem 4.2.2 we use the fact that every definable set is DΣ. This can be

derived from [13 ]. We include a proof for the sake of completeness.

Lemma 4.2.11. Every definable set is DΣ.

Proof. Let S denote a definable set. We proceed by induction on dim(S).

If S is closed, then define S(s, t) = B(0, t) ∩ S, for every (s, t) ∈ M>0 × M>0. Clearly

every S(s, t) is closed and bounded and ∪s,tS(s, t) = S. Moreover, S(s, t) ⊆ S(s′, t′) whenever

t ≤ t′. So S is DΣ. In particular, if dim(S) ≤ 0, then S is DΣ.

Now suppose that dim(S) ≥ 1. By the above, we may assume that S is not closed. Set

∂S := cl(∂S). By o-minimality, dim(∂S) < dim(S) and so S ∩ ∂S is DΣ by induction. Let

S0 = S\∂S. Since the union of finitely many closed and bounded sets is closed and bounded,

one may easily deduce that the union of finitely many DΣ sets is DΣ. Hence to prove that

S is DΣ is suffices to show that S0 is DΣ.

For every s > 0, set

∂S(s) :=
⋃

{B(x, s) : x ∈ ∂S}.

Note that, since ∂S0 ⊆ cl(S) \ S0 = ∂S, for every s > 0 it holds that S0 \ ∂S(s) =

cl(S0) \ ∂S(s), meaning that S0 \ ∂S(s) is closed. For any (s, t) ∈ M>0 ×M>0, let S(s, t) =
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B(0, t) ∩S0 \ ∂S(s). Every set S(s, t) is closed and bounded and S(s, t) ⊆ S(s′, t′) whenever

(s′, t′) E (s, t). Moreover, since ∂S is closed, for every x ∈ S0 there exists s > 0 such that

B(x, s) ∩ ∂S = ∅, so x /∈ ∂S(s), and in particular x ∈ S(s, t) for all sufficiently large t > 0.

Hence ∪s,tS(s, t) = S. So S0 is DΣ.

We now complete the proof of Theorem 4.2.2 .

Proof of Theorem 4.2.2 . Let (Ω,4) be a definable directed set. We construct a definable

cofinal map γ : (M>0 ×M>0,E) → (Ω,4).

Clearly it is enough to prove the statement for any definable preorder definably preorder-

isomorphic to (Ω,4). Hence, by Corollary 4.2.9 , we may assume that any definable closed

and bounded subset of Ω is 4-bounded.

Lemma 4.2.11 yields a definable family {Ω(s, t) : (s, t) ∈ M>0 × M>0} of closed and

bounded sets such that Ω = ∪s,tΩ(s, t) and Ω(s, t) ⊆ Ω(s′, t′) whenever (s′, t′) E (s, t). By

assumption on Ω, every Ω(s, t) is 4-bounded. Applying definable choice let γ : M>0 ×

M>0 → Ω be a definable map satisfying γ(s, t) 4 Ω(s, t), for every (s, t) ∈ M>0 × M>0 (if

Ω(s, t) is empty then trivially any value γ(s, t) ∈ Ω will do). For every x ∈ Ω, there exists

(sx, tx) ∈ M>0 ×M>0 such that x ∈ Ω(sx, tx) ⊆ Ω(s, t), for all (s, t) E (sx, tx). We conclude

that γ is cofinal.

Note that Theorem 4.2.2 implies that, if (M,<) is separable, then every definable directed

set has countable cofinality. In Proposition 4.5.1 we show that this holds in the greater

generality of any o-minimal structure.

Remark 4.2.12. Given a definable directed set (Ω,4), one may ask whether or not the

map γ : (M>0 ×M>0,E) → (Ω,4) given by Theorem 4.2.2 may always be chosen such that

γ(M>0 × M>0) is totally ordered by 4. The answer is no. Consider the definable family

{(0, t) ∪ (2t, 3t) : t > 0}. Following Remark 4.1.3 (i) , set inclusion in this family defines a

directed set (M>0,4), where t 4 t′ iff t = t′ or 3t ≤ t′. It is easy to see that no infinite

definable subset of M>0 is totally ordered by 4.

Applying first-order compactness and definable choice in the usual fashion we may derive

a uniform version of Theorem 4.2.2 . We leave the details to the reader.
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Corollary 4.2.13. Let {(Ωx,4x) : Ωx ⊆ Mm, x ∈ Σ ⊆ Mn} be a definable family of

downward directed sets. There exists a definable family of functions

{γx : (M>0 ×M>0,E) → (Ωx,4x) : x ∈ Σ}

such that, for every x ∈ Σ, γx is downward cofinal.

We end this section with an example of an o-minimal structure in which Theorem 4.2.2 

does not hold. For the rest of the section we drop the assumption that M expands a group

but keep the assumption that it is an o-minimal expansion of a dense linear order without

endpoints. We will consider the property that any definable function from M to itself is

piecewise either constant or the identity (think of M as having trivial definable closure, say;

for example M = (M,<) is a dense linear order without endpoints).

Theorem 4.2.2 tells us that, under the assumption that M expands an ordered group,

any definable upward directed set has a definable cofinal subset of dimension at most 2 (and

analogously for definable downward directed sets).

For every n > 0, we prove, under the assumption of the above property on M, the exis-

tence of a definable upward directed set that admits no definable cofinal subset of dimension

less than n. Thus Theorem 4.2.2 does not hold in general for o-minimal structures, even if

we substitute (M>0 ×M>0,E) with any other definable preordered set.

We begin with some notation. For any a ∈ M and n > 0, let

X(a, n) = {(x1, . . . , xn) ∈ Mn : a < x1 < · · · < xn}.

Then X(a, n) is definable and n-dimensional. We endow X(a, n) with the definable lexico-

graphic order and show that any definable cofinal subset of X(a, n) has dimension n. Hence

for the remainder of the section ‘cofinal’ will refer to the lexicographic order.

Proposition 4.2.14. Suppose that any definable map from M to itself is piecewise constant

or the identity. Then any cofinal definable subset of X(a, n) is n-dimensional.

Let π denote the projection onto the first coordinate. We will make use of the following

easily derivable fact:
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Fact 4.2.15. For any m > 0 and b ∈ M , a definable subset Y ⊆ X(b,m) is cofinal if and

only if (r,∞) ⊆ π(Y ) for some r > 0.

We now prove Proposition 4.2.14 .

Proof. We proceed by induction on n.

Fix a ∈ M and n > 0 and let X = X(a, n). If n = 1 then the result is trivial. For the

inductive step suppose that n > 1. We assume that there exists a definable cofinal subset

Y ⊂ X with dim Y < n and arrive at a contradiction.

Fact 4.2.15 implies that Yt = {x ∈ Mn−1 : (t, x) ∈ Y } must be nonempty for sufficiently

large t > 0. As dim Y < n, the Fiber Lemma for o-minimal dimension (Lemma 2.1.3 ) implies

the existence of some t0 > 0 such that 0 ≤ dim Yt < n− 1, for all t > t0. Now note that, for

every t > a, the fiber Xt is the space X(t, n− 1). Applying induction we conclude that Yt is

not cofinal in Xt for any t > t0. By Fact 4.2.15 and the fact that Yt is nonempty, it follows

that π(Yt) has a supremum, which clearly must be greater than t. Consider the definable

map f : (t0,∞) → M given by t 7→ sup π(Yt). This map is well defined and, for every t,

f(t) > t. This contradicts the fact that f is piecewise constant or the identity.

4.3 A strengthening of the main result for expansions of ordered fields

We recall that a pole is a definable bijection f : I → J between a bounded interval I and

an unbounded interval J . Edmundo proved the following in [20 ] (see Fact 1.6).

Fact 4.3.1. The structure M has a pole if and only if there exist definable functions ⊕,⊗ :

M2 → M such that (M,<,⊕,⊗) is a real closed ordered field.

The following corollary provides a condition on the structure M under which Theo-

rem 4.2.2 can be strengthened to state that every definable directed set admits a definable

cofinal curve. From now on, we write that M “expands an ordered field” when the conclusion

of Fact 4.3.1 holds.

Corollary 4.3.2. The structure M has a pole if and only if every definable downward

(respectively upward) directed set (Ω,4) admits a definable downward (respectively upward)

cofinal curve.
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Proof. Let (Ω,4) be a definable downward (respectively upward) directed set. If γ0 :

((0,∞),≤) → (M>0 × M>0,E) is a downward cofinal curve and γ1 : (M>0 × M>0,E) →

(Ω,4) is a downward (respectively upward) cofinal map then γ = γ1 ◦ γ0 is a downward

(respectively upward) cofinal curve in (Ω,4). Since such a downward (respectively upward)

cofinal map γ1 exists by Theorem 4.2.2 , in order to prove the corollary it suffices to show

that M has a pole if and only if (M>0 ×M>0,E) admits a definable downward cofinal curve.

As usual, from now on throughout the proof we omit the word downward as there is no room

for confusion.

Suppose that M contains a pole f : I → J , with I a bounded interval and J an

unbounded interval in M . By o-minimality, we may assume that f is strictly monotonic. By

transforming f if necessary by means of the group operation, we may assume that I = (0, r)

for some r > 0 and that limt→0+ f(t) = ∞. Continue f to (0,∞) by setting f to be zero on

[r,∞). For some fixed a > 0, define fa : (0,∞) → M by fa(t) = max{f(t), a}. The curve γ

given by γ(t) = (t, fa(t)) for all t > 0 is clearly a definable cofinal curve in (M>0 ×M>0,E).

Conversely, suppose that γ is a definable cofinal curve in (M>0 × M>0,E) and let Γ =

γ[(0,∞)]. Let π : M2 → M denote the projection onto the first coordinate. Since γ is

cofinal, we have (0, s1) ⊆ π(Γ) for some s1 > 0. Since Γ is one-dimensional, by the Fiber

Lemma for o-minimal dimension there exists s2 > 0 such that, for every 0 < s < s2, the fiber

Γs is finite. Let s0 = min{s1, s2} and consider the definable map µ : (0, s0) → M given by

µ(s) = max Γs. This map is well defined. Since γ is cofinal for every s′, t′ > 0, there exists

s, t > 0, with s ≤ s′ and t ≥ t′, such that (s, t) ∈ Γ. It follows that lims→0+ µ(s) = ∞. By

o-minimality, there exists some interval (0, r) ⊆ (0, s0) such that µ|(0,r) : (0, r) → (µ(r),∞)

is a pole.

Remark 4.3.3. The proof above shows that, if there exists a definable one-dimensional pre-

ordered set (Σ,4Σ) and a definable downward cofinal map γΣ : (Σ,4Σ) → (M>0 ×M>0,E),

then M has a pole. Hence Theorem 4.2.2 cannot be “improved” by putting a one-dimensional

space in place of (M>0 ×M>0,E), unless we assume the existence of a pole in the structure,

in which case by the above corollary (Σ,4Σ) can always be taken to be ((0,∞),≤).

By Fact 4.3.1 , the following is an immediate consequence of Corollary 4.3.2 .
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Corollary 4.3.4. Every definable downward (respectively upward) directed set (Ω,4) admits

a definable downward (respectively upward) cofinal curve if and only if M expands an ordered

field.

4.4 Tame Extensions

In this section we use the theory of tame pairs, as well as results from previous sections, to

obtain results about definable families of sets with the finite intersection property (FIP). We

conclude with a strengthening of Corollary 4.3.4 in the case that M expands an archimedean

field (Corollary 4.4.9 ). Along the way we prove some facts about types that will be further

explored in Chapter 5 (Section 5.2 ).

Recall the conventions and definitions on types established in Chapter 2 (Section 2.1.4 ).

In particular we refer to types interchangeably as consistent families of formulas and as fam-

ilies of definable sets with the finite intersection property (FIP). Moreover unless otherwise

specified all types we consider are global and complete. Recall the definitions of definable

type and uniform (type) basis.

Definition 4.4.1. Let S and F be families of sets. We say that F is finer than S if, for

every S ∈ S, there is F ∈ F such that F ⊆ S.

The following is the main result of this section. For the proof we rely on the completeness

of the theory of tame pairs. See Chapter 2 (Section 2.1.4 ) for definitions and relevant facts

on tame extensions and pairs.

Theorem 4.4.2. Suppose that M expands an ordered field, Ω ⊆ Mm, and S = {Su : u ∈ Ω}

is a definable family of subsets of Mn with the FIP. The following are equivalent.

(1) S can be extended to a definable type in Sn(M).

(2) There exists a definable downward directed family F that is finer than S.

(3) There exists a definable curve γ : (0,∞) → ∪S such that, for every u ∈ Ω, γ(t) ∈ Su

for sufficiently small t > 0.
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Proof. It is easy to show that (3) implies (1) and (2) . Namely, let γ be as in (3) , and consider

the definable downward directed family {γ[(0, t)] : t > 0}. This family is finer than S, from

which we conclude (2) . Moreover, to derive (1) , let M(ξ) be an elementary extension of M

by an infinitesimal element. Then the element γ(ξ) ∈ M(ξ)n belongs in the interpretation in

M(ξ) of Su for every u ∈ Ω, and so the definable n-type tp(γ(ξ)/M) extends S. Moreover

(2) ⇒(3) is Corollary 4.3.4 . It therefore remains to show that (1) implies (2) or (3) . We show

that (1) implies (3) . The main tool will be the completeness of the theory of tame pairs.

Suppose that S can be extended to a definable n-type S ′. If S ′ is realised in M it suffices

to let γ be a constant curve mapping to the realisation of S ′. Hence we assume that S ′ is

not realised. Let N = (N,<, . . .) be a (necessarily proper) elementary extension of M such

that there exists an element c ∈ Nn that realizes S ′, and let M(c) be the prime model over

M ∪ {c}. Then M 4 M(c). By definable choice M(c) is the definable closure of M ∪ {c}

in N , in particular any definable set in M(c) is M ∪ {c}-definable. Since S ′ = tp(c/M) is

definable it follows that M(c) is a tame extension of M. Since S ⊆ S ′ we have that, for

every u ∈ Ω, the element c belongs in the interpretation of Su in M(c). Now let ψ(u) be a

formula defining Ω (by adding constants to the language if necessary we may assume that Ω

is 0-definable) and let φ(u, v) be a formula such that, for every u ∈ Ω, Su = φ(u,Mn), then

(M(c),M) satisfies the following sentence in the language of tame pairs:

∃v∀u((ψ(u) ∩ u ∈ Mm) → φ(u, v)).

Let M(ξ) be an elementary extension of M generated by an infinitesimal element with

respect to M. By the completeness of the theory of tame pairs, there exists γ(ξ) ∈ M(ξ)

such that M(ξ) |= φ(u, γ(ξ)) for every u ∈ Ω, where γ is a definable curve. It follows that,

for every u ∈ Ω, γ(t) ∈ Su for all t > 0 small enough in M . Hence we conclude (3) .

The equivalence (1) ⇔(2) in Theorem 4.4.2 establishes a connection between definable

types and downward directed families of sets in o-minimal expansions of ordered fields.

We extend this connection further, proving that this equivalence holds in all o-minimal

structures, in Chapter 5 (Theorem 5.2.11 ).

63



Definition 4.4.3. We call a partial type p(v) a φ-type, for some formula φ(u, v), if there

exists a set of parameters Ω ⊆ M l(u) such that p(v) = {φ(u, v) : u ∈ Ω}.

Given the terminology we give widespread use in Chapter 5 , a φ-type is a uniform family

of sets with the FIP. A definable φ-type is a definable family of sets with the FIP.

Remark 4.4.4. As noted in the proof of Theorem 4.4.2 , it follows easily from o-minimality

that (3) in the theorem implies (1) and (2) , and the crux of the result lies in proving that (1) 

implies (3) and (2) implies (3) . These are really two separate results, the former following

from the completeness of the theory of tame pairs and the latter from results in previous

sections.

Note that Theorem 4.4.2 still holds without the assumption that the index set Ω be

definable, i.e. it suffices that S is a φ-type for some formula φ. Moreover, only the implication

(1) ⇒(3) requires this uniformity asumption. For the other implications it is enough that S

is a partial type.

The dimension of a type p is defined to be the minimum dimension among sets in p.

O-minimality implies that every one-dimensional type has a uniform basis. The same is

trivially true for zero-dimensional types.

Note that the proof of the implication (3) ⇒(1) in Theorem 4.4.2 involves showing that, by

o-minimality, for any definable curve γ, the definable family {γ[(0, t)] : t > 0} is a (uniform)

basis for a definable type.

The following lemma is easy to prove and follows partly from the proof of Theorem 4.4.2 .

Lemma 4.4.5. Suppose that M expands an ordered field and let be S a partial type, then

(3) in Theorem 4.4.2 is equivalent to any of the following statements.

(1) S is realized in M(ξ), where ξ is an element infinitesimal with respect to M.

(2) S extends to a definable type of dimension at most one (which has a uniform basis).

By Lemma 4.4.5 (2) it follows that the implications (1) ⇒(3) and (2) ⇒(3) in Theo-

rem 4.4.2 can be formulated in terms of types as follows.
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Proposition 4.4.6. Let p be a φ-type, for some formula φ. Suppose that either of the

following holds.

(i) p can be extended to a definable type.

(ii) p can be extended to a partial definable type with a uniform basis.

Then p extends to a definable type of dimension at most one (with a uniform basis).

If we only assume that M expands an ordered group, then we may prove a result similar

to the equivalence (2) ⇔(3) in Theorem 4.4.2 , where we substitute (3) with the existence of

a definable map γ : M>0 ×M>0 → ∪S where the definable family of sets {γ[(0, s) × (t,∞)] :

s, t > 0} is finer than S. Note that this family is a (uniform) basis for a type of dimension

at most two.

From this observation and the implication (2) ⇒(3) in Theorem 4.4.2 we derive the next

corollary.

Corollary 4.4.7. Every partial definable type with a uniform basis may be extended to a

definable type of dimension at most two. In particular, every definable type with a uniform

basis has dimension at most two. If M expands an ordered field then every partial definable

type with a uniform basis extends to a definable type of dimension at most one, and every

definable type with a uniform basis has dimension at most one.

Remark 4.4.8. The bounds in Corollary 4.4.7 are tight. In particular if M does not expand

an ordered field then the family {(0, s) × (t,∞) : s, t > 0} is a basis for a (two-dimensional)

type. To see this recall Fact 4.3.1 and note that, if M does not have a pole, then any cell

(f, g) that intersects every box of the form (0, s) × (t,∞) must satisfy that f = +∞ and

limt→0+ g(t) < ∞, and so it contains one such box. By cell decomposition it follows that,

for every definable set X ⊆ M2, there are sX , tX > 0 such that (0, sX) × (tX ,∞) is either

contained in or disjoint from X.

From the fact that all types in an o-minimal expansion of (R, <) are definable (see

Theorem 2.1.8 and recall that all extensions of (R, <) are tame) we may derive, using the

implication (1) ⇒(3) in Theorem 4.4.2 , the next corollary for o-minimal expansions of ordered

archimedean fields.
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Corollary 4.4.9. Suppose that M expands an ordered field. The following are equivalent:

(1) M is archimedean.

(2) If S is a definable family of sets with the FIP, then there exists a definable curve

γ : (0,∞) → ∪S such that, for every S ∈ S, γ(t) ∈ S for sufficiently small t > 0.

(3) Every definable family S with the FIP can be extended to a definable type.

Proof. The implication (2) ⇒(3) follows from o-minimality. We prove (3) ⇒(1) and (1) ⇒(2) .

To show (3) ⇒(1) , suppose that M is nonarchimedean and let r ∈ M denote an infinites-

imal with respect to 1. Consider the definable family of sets S = {(0, 1) \ (a− r, a+ r) : a ∈

[0, 1]}. Because r is infinitesimal this family has the FIP. It cannot however be extended to

a definable type p(v), since in that case the set {t : (t ≤ v) ∈ p(v)} would have a supremum

s ∈ [0, 1], contradicting ((v < s− r) ∨ (s+ r < v)) ∈ p(v).

To show (1) ⇒(2) , suppose that M expands an archimedean field and let S = {Su ⊆

Mn : u ∈ Ω} be a definable family with the FIP. The result amounts to the following claim:

that, for some (1+n+m)-formula φ(t, v, w), there are parameters b ∈ Mm such that φ(t, v, b)

defines a curve γ in Mn (given by t 7→ v) with the property that, for all u ∈ Ω, γ(t) ∈ Su

whenever t > 0 is small enough. So, in order to complete the proof, it suffices to show this

in an elementary extension of M.

Laskowski and Steinhorn [30 ] proved that any o-minimal expansion of an archimedean

ordered group is elementarily embeddable into an o-minimal expansion of the additive or-

dered group of real numbers. Moreover note that the fact that the family S has the FIP is

witnessed by countably many sentences in the elementary diagram of M, and so the same

property holds for the family S interpreted in any elementary extension of M. Therefore,

by Laskowski-Steinhorn [30 ], we may assume that M expands the ordered additive group of

real numbers.

By Dedekind completeness of the reals, every elementary extension of M is tame, and

thus by the Marker-Steinhorn Theorem (Theorem 2.1.8 ) every type over M is definable. In

particular any expansion of S to a type over M is definable. The corollary then follows from

Theorem 4.4.2 .
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4.5 Definable first countability

In this section we use results from Sections 4.2 and 4.3 to prove facts about definable

topological spaces. Note that a basis of neighborhoods of a point in a topological space is a

downward directed family of sets. If the topology is definable then this basis can be chosen

definable too.

As usual throughout we omit explicit references to a topology whenever this topology is

clear from context.

When making the assumption that M expands a field we will always understand conver-

gence of a curve γ to mean convergence as t → 0.

Recall the classical definitions of the density, d(X), and character, χ(X), of a topological

space (X, τ), namely

d(X) = min{|D| : D ⊆ X is dense in X}

and

χ(X) = sup
x∈X

min{|B| : B a basis of neighborhoods of x}.

In particular X is separable if and only if d(X) ≤ ℵ0, and first countable if and only if

χ(X) ≤ ℵ0. Given a definable set Y we write d(Y ) to denote the density of Y with the

euclidean topology.

The first result in this section is an observation that follows only from o-minimality, that

is, we do not require the assumption that M expands an ordered group. It implies that any

definable topological space in an o-minimal expansion of (R, <) is first countable.

Proposition 4.5.1. Every definable downward directed set admits a downward cofinal subset

of cardinality at most d(M).

It follows that every definable topological space (X, τ) satisfies χ(X) ≤ d(M). In partic-

ular, if (M,<) is separable, then any definable topological space is first countable.

Note that this proposition cannot be improved by writing second countable in place

of first countable, since the discrete topology on M is definable and not second countable

whenever M is uncountable.
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Proof of Proposition 4.5.1 . First we recall some facts of o-minimality. Let DM ⊆ M be a set

dense in M and let C ⊆ Mn be a cell of dimension m. There exists a projection π : C → Mm

that is a homeomorphism onto an open cell C ′. If m = 0 then d(C) = 1. Otherwise the

set π−1(Dm
M ∩ C ′), where Dm

M = DM × m· · · × DM , is clearly dense in C. By o-minimal cell

decomposition, it follows that any definable set B satisfies d(B) ≤ d(M). Secondly recall

that, by the frontier dimension inequality, for any definable set B and definable subset B′,

if dimB = dimB′ then B′ has interior in B.

Now set λ = d(M). Let (Ω,4) be a definable downward directed set. For any u ∈ Ω, let

Su = {v ∈ Ω : v 4 u}. By Remark 4.1.3 the definable family S = {Su : u ∈ Ω} is downward

directed. We fix S∗ ∈ S such that dimS∗ = min{dimS : S ∈ S}, and let D be a dense subset

of S∗ of cardinality at most λ. We claim that D is downward cofinal in Ω. This is because,

for every Su ∈ S, there exists S ′ ∈ S such that S ′ ⊆ Su ∩S∗, and so dim(Su ∩S∗) = dim(S∗),

and in particular Su ∩ S∗ has interior in S∗. This means that, for every u ∈ Ω, there exists

some v ∈ D such that v ∈ Su ∩ S∗, and so v 4 u.

Let (X, τ) be a definable topological space. For any given x ∈ X, let B(x) = {Au : u ∈

Ωx} be a definable basis of neighborhoods of x. Let (Ωx,4x) denote the definable downward

directed set given u 4x v ⇔ Au ⊆ Av. Note that, if D is a downward cofinal subset of Ωx,

then the family {Au : u ∈ D} is still a basis of neighborhoods of x in (X, τ). This completes

the proof of the proposition.

We now make use of Theorem 4.2.2 and Corollary 4.3.4 to prove the main theorem of

this section. It might strike the reader as surprising that we name this theorem “definable

first countability”, as opposed to using that label for Proposition 4.5.1 . The reasons for this

will be explained later in the section, but in short it is due to the fact that a consequence

(Lemma 4.5.4 ) of Theorem 4.5.2 is that, whenever M expands an ordered field, any definable

topological space admits definable curve selection.

Theorem 4.5.2 (Definable first countability). Let (X, τ) be a definable topological space

with definable basis B.
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(1) For every x ∈ X, there exists a definable basis of neighborhoods of x of the form

{A(s,t) : s, t > 0} ⊆ B satisfying that, for any neighborhood A of x, there exist

sA, tA > 0 such that A(s,t) ⊆ A whenever (s, t) E (sA, tA).

(2) Suppose that M expands an ordered field. Then, for every x ∈ X, there exists a

definable basis of neighborhoods of x of the form {At : t > 0} ⊆ B satisfying that, for

any neighborhood A of x, there exists tA > 0 such that At ⊆ A whenever 0 < t ≤ tA.

Proof. Let (X, τ) be a definable topological space with definable basis B = {Au : u ∈ Ω}.

We begin by proving (1) .

Given x ∈ X let Ωx = {u ∈ Ω : x ∈ Au}. The family {Au : u ∈ Ωx} ⊆ B is a

definable basis of neighborhoods of x that induces a definable preorder 4B by inclusion (see

Remark 4.1.3 (i) ) making (Ωx,4B) into a definable downward directed set. By Theorem 4.2.2 ,

let γ : (M>0 × M>0,E) → (Ωx,4B) be a definable downward cofinal map. The family

{Aγ(s,t) : s, t > 0} has the desired properties.

The proof of (2) follows analogously from Corollary 4.3.4 .

We denote the neighborhood bases described in (1) and (2) in the above theorem cofinal

bases of neigborhoods of x in (X, τ). By using Corollaries 4.2.13 and 4.3.4 , one may show

that these may be chosen uniformly on x ∈ X.

The next corollary is a refinement of Theorem 4.5.2 . It shows in particular that the

cofinal bases of neighborhoods described in (2) may be assumed to be nested.

Corollary 4.5.3. Let (X, τ) be a definable topological space.

(1) For every x ∈ X, there exists a definable basis of open neighborhoods of x of the form

{A(s,t) : s, t > 0} satisfying A(s′,t′) ⊆ A(s,t) whenever (s′, t′) E (s, t).

(2) Suppose that M expands an ordered field. Then, for any x ∈ X, there exists a definable

basis of open neighborhoods of x of the form {At : t > 0} satisfying As ⊆ At whenever

0 < s < t.

Proof. We prove (2) , and then sketch how statement (1) follows in a similar fashion.
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Let (X, τ) be a definable topological space and suppose that M expands an ordered

field. Let x ∈ X and A = {At : t > 0} be a cofinal basis of neighbourhoods of x as given

by Theorem 4.5.2 (2) . Let f : (0,∞) → (0,∞) be the function defined as follows. For

every t > 0, f(t) = sup{s < 1 : As′ ⊆ At for every 0 < s′ < s}. By definition of A and

o-minimality, this function is well defined and definable. By o-minimality, let (0, r0] be an

interval on which f is continuous. Note that the family {At : 0 < t ≤ r0} is still a basis of

neighborhoods of x. By continuity, for every 0 < r < r0, f reaches its minimum in [r, r0],

so there exists tr > 0 such that Atr ⊆ ∩r≤t≤r0At. In particular the set ∩r≤t≤r0At remains a

neighborhood of x. For every t > 0, consider the definable set

A′
t =


⋂

t≤t′≤r0 At′ if t < r0;

Ar0 otherwise.

The family {intτ (A′
t) : t > 0} is a definable basis of open neighborhoods of x such that, for

every 0 < s < t, intτ (A′
s) ⊆ intτ (A′

t).

To prove (1) note first that, if M expands an ordered field, then we may use the con-

struction in (2) taking A(s,t) = As. Suppose that M does not expand an ordered field

(equivalently, by Fact 4.3.1 , M does not have a pole). Let x ∈ X and let {A(s,t) : s, t > 0}

be a basis of neighborhoods of x as given by Theorem 4.5.2 (1) . Using definable choice,

let f be a definable map on M>0 × M>0 such that A(s′,t′) ⊆ A(s,t) for every s′, t′ > 0 with

(s′, t′) E f(s, t). By o-minimality let C be a cell, cofinal in (M>0 × M>0,E), where f is

continuous. Since M does not have a pole there exists some box (0, r0]× [r1,∞) contained in

C (see Remark 4.4.8 ). Following the approach to proving (2) , let A′
(s,t) = ⋂{A(s′,t′) : (s, t) E

(s′, t′) E (r0, r1)} if (s, t) E (r0, r1), and A′
(s,t) = A(r0,r1) otherwise. Our desired basis is given

by {intτ (A′
(s,t)) s, t > 0}.

Recall that in general topology a net is a map from a (generally upward) directed set

into a topological space for which there is a notion of convergence. The utility of nets lies

in that they completely capture the topology in the following sense: the closure of a subset

Y of a topological space (X, τ) is the set of all limit points of nets in Y . It follows that nets

encode the set of points on which a given function between topological spaces is continuous.
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It seems natural to define a definable net to be a definable map from a definable directed

set (which we can choose to be downward definable directed set for convenience) into a

definable topological space. Indeed, applying definable choice one may show that definable

nets defined in this way have properties that are equivalent to those of nets in general

topology, when considering definable subsets of definable topological spaces and definable

functions between definable topological spaces.

Theorem 4.5.2 suggests that, for all practical purposes, it is enough to consider definable

nets to be those whose domain is (M>0 ×M>0,E), if M expands an ordered group but does

not expand an ordered field, and to simply consider them as definable curves if M does

expand an ordered field (see Lemma 4.5.4 and Corollary 4.5.5 below). This is analogous to

the way in which, in first countable spaces, for all purposes nets can be taken to be sequences.

It is from this last observation, namely that, whenever M expands an ordered field, definable

curves take the role in definable topological spaces of sequences in first countable spaces, that

the motivation to label Theorem 4.5.2 “definable first countability” arose.

This argument of course implicitly relates definable curves in the definable o-minimal

setting to sequences in general topology. This identification however is far from new in

the o-minimal setting. It is mentioned for example by van den Dries in [17 ], page 93,

with respect to the euclidean topology in the context of o-minimal expansion of ordered

groups, and implicitly noted by Thomas in [48 ] when introducing the notions of definable

Cauchy curves and closely related definable completeness in the context of certain topological

spaces of definable functions where the underlying o-minimal structure expands an ordered

field. The same implicit identification can be seen in the definition of definable compactness

in [37 ], which is given in terms of convergence of definable curves. The motivation for

this correspondence lies precisely in that, in the settings being considered by the authors,

definable curves display properties similar to those of sequences in the corresponding setting

of classical topology.

We conclude this section with results illustrating that, whenever M expands an ordered

field, definable curves indeed take the role of definable nets, displaying properties similar to

those of sequences in first countable topological spaces. In particular we show that definable

topological spaces admit definable curve selection, and consequently, by Proposition 2.2.14 ,
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continuity of definable functions can be characterized in terms of convergence of definable

curves.

Lemma 4.5.4 (Definable curve selection). Suppose that M expands an ordered field. Any

definable topological space (X, τ) has definable curve selection, that is, if Y ⊆ X is a definable

set and x ∈ X, then x belongs to the closure of Y if and only if there exists a definable curve

γ in Y that converges to x.

Proof. Let (X, τ) be a definable topological space and x ∈ X. Let Y ⊆ X be a definable set

and suppose that x ∈ clτ (Y ). If M expands an ordered field there exists, by Theorem 4.5.2 ,

a definable basis of neighborhoods of x, {At : t > 0}, such that, for every neighborhood A

of x, At is a subset of A for all t > 0 small enough.

Given one such definable basis of neighborhoods, consider by definable choice a definable

curve γ such that, for every t > 0, γ(t) ∈ At ∩ Y . This curve clearly lies in Y and converges

in (X, τ) to x.

Conversely it follows readily from the definition of curve convergence that, if there exists

a curve in Y converging in (X, τ) to x ∈ X, then x ∈ clτ (Y ).

The following follows directly from Lemma 4.5.4 and Proposition 2.2.14 .

Corollary 4.5.5. Suppose that M expands an ordered field. Let (X, τ) and (Y, µ) be definable

topological spaces. Let f : (X, τ) → (Y, µ) be a definable map. Then, for any x ∈ X, f is

continuous at x if and only if, for every definable curve γ in X, if γ τ -converges to x then

f ◦ γ µ-converges to f(x).
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5. DEFINABLE COMPACTNESS

Introduction

In this chapter we seek to characterize a notion of definable compactness for definable

topological spaces in o-minimal structures, in particular in terms of intersecting definable

families of closed sets. Our definition of definable compactness is that every definable down-

ward directed family of closed sets has nonempty intersection (Definition 5.4.1 )

Inspired by the results in Chapter 4 , we begin by studying the relationship between types

and definable downward directed families of sets. We are able to prove that any such family

extends to a definable type, and conversely that any definable family of sets that extends

to a definable type also extends to one with a definable basis of cells (Theorem 5.2.11 ). In

particular this is a strong density result for types with a definable basis. This approach

to studying types seems to be new. It allows us to translate our questions about families

of closed sets in definably compact topologies into questions about intersecting definable

families of sets in general in connection with definable types.

We study definable families of sets with the (p, q)-property, i.e. the property that, for

every p sets in the family, some q intersect. In Theorem 5.3.9 we give an elementary proof

within o-minimality of the fact that, if a definable family of subsets of Mn has the (p, n+1)-

property, for any p > n, then it admits a finite covering of subfamilies, each of which extends

to a definable type (we call this having a finite tame transversal). We also derive a similar

result in terms of VC-codensity (Corollary 5.3.11 ).

We observe how Theorem 5.3.9 is equivalent to the known fact that, in an o-minimal

structure, a formula does not divide (equivalently does not fork) over a model M if and only

if it extends to an M -definable type. This equivalence is known in a large class of dp-minimal

theories [47 ]. We prove it within o-minimality for dividing over any set (not just a model);

see Theorem 5.3.19 .

Finally, we prove our characterization of definable compactness (Theorem 5.4.9 ). Using

our density result on types we are able to show that a space is definably compact if and

only if every definable family of closed sets that extends to a definable type has nonempty

intersection (specialization-compactness). Using our (p, q)-theorem and corollary we derive
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that, in a definably compact space, any definable family of closed sets with the (p, q)-property,

for some p ≥ q with q large enough, has a finite transversal (i.e. there is a finite set that

intersects every set in the family). We also establish the relationship between definable

compactness and the classical namesake notion in terms of convergence of definable curves

(definable curve-compactness) introduced in [37 ].

Theorem 2.1 in [35 ] shows that, in an o-minimal theory with definable choice functions,

if a non-forking formula over a model M defines (in a monster model) a closed and bounded

set C, then C∩Mn 6= ∅. And from this it is derived that every definable family of closed and

bounded sets with the finite intersection property has a finite transversal. Our characteri-

zation of definable compactness generalizes this result (see Remark 5.4.10 ) to any formula

that defines a definably compact closed set in some M -definable topology, also dropping the

assumption of having choice functions. In the same remark we explain how our work can

be used to expand on the definable Helly’s Theorem proved in [5 ] by showing in particular

that, in an o-minimal expansion of an ordered field M, any family of convex subsets of Mn

with the property that every subfamily of size n+ 1 has nonempty intersection extends to a

definable type.

Our focus throughout this chapter is on definable families of sets, and our proofs are

mostly elementary, in that they rely solely on o-minimal cell decomposition.

In Section 5.1 we introduce the necessary preliminaries. In Section 5.2 we study o-minimal

types and prove Theorem 5.2.11 . Section 5.3 includes our work on definable families of sets

with the (p, q)-property; we prove Theorem 5.3.9 and Corollary 5.3.11 . In Section 5.3.1 we

note the connection between our work and known properties of forking in o-minimal theories.

Finally, in Section 5.4 we prove our characterization of definable compactness, Theorem 5.4.9 .

Using the approach of various proofs in this chapter we include in Appendix 5.A a

shortened proof of the Marker-Steinhorn Theorem (Theorem 2.1.8 ).

This chapter is based on a paper by the author in preparation [1 ].
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5.1 Preliminaries

Recall the definition and conventions on types from Chapter 2 (Section 2.1.4 ). In par-

ticular we treat partial types indistinctly as consistent sets of formulas and as families of

definable sets with the finite intersection property (FIP). Throughout, unless otherwise spec-

ified, all types are global (over M) and complete. Then Sn(M) denotes the set of n-types.

In this chapter we make ample use of the notions of definable type and uniform (type) basis

(Definition 2.1.7 ).

Recall that Def(Mn) denotes the algebra of definable subsets of Mn. Moreover π :

Mn+1 → Mn denotes the projection to the first n coordinates. For a family S ⊆ Def(Mn+1),

recall that π(S) = {π(S) : S ∈ S}.

Let A ⊆ M . Note that, if p is an A-definable type, then the projection π(p) is also an

A-definable type.

Definition 5.1.1. A family of sets S ⊆ Def(Mn) is uniform 1
 if there is a formula ϕ(u, v)

and a set Ω ⊆ M l(u) such that S = {ϕ(u,M l(v)) : u ∈ Ω}. We call Ω the index set.

Note that a uniform family S = {ϕ(u,M l(v)) : u ∈ Ω} is definable whenever Ω can be

chosen definable. For example if M denotes the real algebraic numbers then the family of

intervals (s, t) for s < π < t is uniform but not definable.

5.1.1 Preorders induced by types

Recall that a preorder is a reflexive transitive relation. A preordered set (X,4) is a set X

together with a preorder 4 on it. It is definable if the preorder is definable (Definition 4.1.1 ).

A preorder 4 on a set X induces an equivalence relation ∼ on X given by x ∼ y if and only

if x 4 y and y 4 x. We use notation x ≺ y to mean x 4 y and x 6∼ y. Given a set Y ⊆ X

let x 4 Y (respectively x ≺ Y ) mean x 4 y (respectively x ≺ y) for every y ∈ Y . For every

x, y ∈ X let [x, y]4 = {z ∈ X : x 4 z 4 y} and (x, y)4 = {z ∈ X : x ≺ z ≺ y}.

Let p be an n-type and G be the collection of all definable functions f : Mn → M±∞

such that dom(f) ∈ p. Then p induces a total preorder 4 on G given by f 4 g if and only
1↑ We choose this terminology in part to justify the description of a “uniform topology” among types in
Remark 5.2.12 , in connection with the uniform convergence topology in function spaces
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if {u ∈ Mn : f(u) ≤ g(u)} ∈ p. In other words, f 4 g when f(ξ) ≤ g(ξ) for some (every)

realization ξ of p.

Let F = {fx : x ∈ X} ⊆ G be a uniform family. Without loss of clarity we will often

abuse notation and refer to 4 too as the total preorder on the index set X given by x 4 y if

and only if fx 4 fy. Note that, if F and p are A-definable, then 4 on X is A-definable too.

5.1.2 Transversals and intersection properties

For S a family of sets and F a set, let S ∩F = {S∩F : S ∈ S}. The next two definitions

refer to classical terminology in combinatorics.

Definition 5.1.2. Given a family of sets S and a set F , we say that F is a transversal of

S if it intersects every set in S, i.e. if S ∩ F does not contain the empty set.

In this chapter we are interested in the property that a definable family of sets has a

finite transversal, and in a similar property in terms of types that we introduce in Section 5.3 

(Definition 5.3.2 ).

Definition 5.1.3. Let S be a family of sets. We say that S is n-consistent if any subfamily

of cardinality at most n has nonempty intersection.

We say that S is n-inconsistent if every subfamily of cardinality n has empty intersection.

We say that S has the (p, q)-property, for p ≥ q > 0, if every subfamily S ′ ⊆ S of size p

contains a subfamily of size q with nonempty intersection.

Note that, for p large with respect to q, the (p, q)-property is a rather weak intersection

property. A family of sets S does not have the (p, q)-property if and only if there exists a

subfamily of S of size p that is q-inconsistent.

As an example of a fact involving transversals we include the following proposition,

whose proof (which can be obtained using Mirsky’s theorem, [33 ], Theorem 2) we leave to

the reader.

Proposition 5.1.4. Let S ⊆ P(M) be a family of closed intervals. Let k ≥ 1 be the

maximum such that there exists k pairwise disjoint sets in S. Then S has a transversal of

size k.
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5.1.3 VC theory

In this subsection we present the basic notions of VC theory, and state the Alon-Kleitman-

Matoušek (p, q)-theorem, as well as a known result bounding the VC-codensity of formulas

in o-minimal structures. These results have applications in Section 5.3 . The following brief

introduction serves as context for them. Only the notion of VC-codensity will appear in the

proofs in this chapter, always in reference to the theorems.

A pair (X,S), where X is a set and S is a family of subsets of X, is called a set system.

For a set F ⊆ X we say that S shatters F if S ∩ F = P(F ). The VC-dimension of S,

denoted by VC(S), is the maximum cardinality of a finite set F such that S shatters F , if

one such set exists. Otherwise we write VC(S) = ∞. The shatter function πS : ω → ω is

defined by πS(n) = max{|S ∩F | : F ⊆ X, |F | = n}. So the VC-dimension of S is the largest

n such that πS(n) = 2n.

Suppose that S has VC-dimension k < ∞. The Sauer-Shelah Lemma [45 ] states then

that πS = O(nk) (that is, πS(n)/nk is bounded at infinity). The VC-density of S, denoted

by vc(S), is the infimum over all real numbers r ≥ 0 such that πS = O(nr). Hence vc(S) ≤

VC(S).

The dual set system of S is the set system (X∗,S∗), where X∗ = S and S∗ = {Sx : x ∈ X}

where Sx = {S ∈ S : x ∈ S}. Hence S∗ shatters S ′ ⊆ X∗ if and only if every field in the

Venn diagram induced by S ′ on X contains at least one point. The dual shatter function

of S is π∗
S = πS∗ . Similarly there is the dual VC-dimension of S, VC∗(S) = VC(S∗), and

VC-codensity, vc∗(S) = vc(S∗). These satisfy that vc∗(S) ≤ VC∗(S) ≤ 2VC(S)+1.

A theory is NIP if every uniform family of sets in any model has finite VC-dimension.

Every o-minimal theory is NIP.

For convenience we state Matoušek’s theorem in terms of VC-codensity. For a finer

statement see [32 ].

Theorem 5.1.5 (Alon-Kleitman-Matoušek (p, q)-theorem). Let p ≥ q > 0 be natural num-

bers and let (X,S) be a set system such that vc∗(S) < q. Then there is a natural number

n such that, for every finite subfamily F ⊆ S, if F has the (p, q)-property then it has a

transversal of size at most n.
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The following corollary will be useful in Section 5.3 . It is a reformulation of the main

result for weakly o-minimal structures (a class that contains o-minimal structures) in [4 ] by

Aschenbrenner, Dolich, Haskell, Macpherson and Starchenko. It was previously proved for o-

minimal structures by Wilkie (unpublished) and Johnson-Laskowski [26 ], and for o-minimal

expansions of the field of reals by Karpinski-Macintyre [28 ].

Theorem 5.1.6. Let S ⊆ Def(Mn) be a uniform family of sets. Then vc∗(S) ≤ n.

Since throughout this chapter p and q are employed as standard terminology for types,

in the subsequent sections we address the (p, q)-property in terms of m and n, e.g. the

(m,n)-property.

5.2 Types

This section contains results about o-minimal types that will be used later on. Our main

result is Theorem 5.2.11 , which shows that types with a uniform basis are dense in a rather

strong sense among all types. The content of this section was motivated by Theorem 4.4.2 in

Chapter 4 , which establishes a connection between definable types and definable downward

directed families of sets in o-minimal expansions of ordered fields.

We start by noting how results in Chapter 4 imply that there exist types without a

uniform basis. In fact this already fails among among definable types in any o-minimal

expansion of (R,+, <).

Remark 5.2.1. Recall that the dimension of a type is the lowest dimension of a set in

it. In Chapter 4 we proved the following two statements (Corollary 4.4.7 ). If M expands

an ordered group, then every definable type with a uniform basis is of dimension at most

two, and if M expands an ordered field then one such type is of dimension at most one.

The Marker-Steinhorn Theorem (Theorem 2.1.8 ) implies that every type in an o-minimal

expansion of (R, <) is definable. So, in any o-minimal expansion of (R, <,+) or (R, <,+, ·),

any type of sufficiently large dimension lacks a uniform basis. Finally note that, for any n,

any expansion of the partial type {Mn \X : X ∈ Def(Mn), dimX < n} is n-dimensional.
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Nevertheless, we end this section by arguing, using the next two lemmas, that types with

a uniform basis are dense in a strong sense among all types, and an analogous density result

among definable types.

Recall (Definition 4.4.1 ) that, given two families S, F ⊆ Def(Mn), we say that S is finer

than F if, for every F ∈ F , there is S ∈ S such that S ⊆ F . That is, if S and F have the

FIP then the filter generated by S is finer than the one generated by F .

Definition 5.2.2. Let S ⊆ Def(Mn) be downward directed and X ⊆ Def(Mn). We say

that S is complete for X if, for every X ∈ X , there is S ∈ S such that either S ⊆ X or

S ∩ X = ∅. We say that S is complete if it is complete for Def(Mn), in other words, if S

is a type basis for some type.

We may now proceed with the results in this section. Theorem 5.2.11 will follow from

Lemmas 5.2.6 and 5.2.9 . The following facts are easy to prove and will be used later on,

often without notice. They do not require that the downward directed family S be definable.

Fact 5.2.3. Let S be a downward directed family and X be a set such that, for every S ∈ S,

S ∩X 6= ∅. Then the family S ∩X = {S ∩X : S ∈ S} is downward directed.

Fact 5.2.4. Let S be a downward directed family and X be a finite partition of a set X. If

S ∩X 6= ∅ for every S ∈ S then there exists Y ∈ X such that S ∩ Y 6= ∅ for every S ∈ S.

Fact 5.2.5. Let S be a definable downward directed family that is complete for X a finite

definable partition of a set X. If S ∩ X 6= ∅ for every S ∈ S then there exists a unique

Y ∈ X such that S ⊆ Y for some S ∈ S.

Lemma 5.2.6. Let S be a uniform downward directed family. There exist a uniform down-

ward directed family of cells C that is complete and finer than S. If S is a definable family

then C can be chosen definable.

Before presenting the proof of Lemma 5.2.6 we make the following observation. Our

work in Chapter 4 involves showing that, if M expands an ordered field, every downward

directed definable family S admits a finer (complete by o-minimality) family of the form

{γ[(0, t)] : 0 < t} for some definable curve γ : (0,∞) → ∪S. Moreover, whenever M expands
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an ordered group, there exists one such finer family of the form {γ[(0, s)×(t,∞)] : 0 < s < t}

for some definable map γ : (0,∞)×(0,∞) → ⋃S. As mentioned before, this provides us with

information on the maximum dimension of sets in a complete definable downward directed

family. In general however the picture is different. In a dense linear order (M,<), for any n

the definable nested family of n-dimensional sets of the form {〈x1, . . . , xn〉 : a < x1 < · · · <

xn}, for a ∈ M , is complete.

Proof of Lemma 5.2.6 . Fix S ⊆ P(Mn) a uniform downward directed family. We may

assume that ∩S = ∅, since otherwise it suffices to take C = {{x}} for any x ∈ ∩C. We

prove the lemma by induction on n. We assume that S is definable. When S is not definable

the base case follows from the fact that by o-minimality every 1-type has a uniform basis of

intervals, and the inductive step follows the same proof we present.

Base case: n = 1.

Let H = {t ∈ M : ∃S ∈ S, S ∩ (−∞, t] = ∅}. If H is empty then, by o-minimality, for

every S ∈ S there is tS such that (−∞, tS) ⊆ S, in which case we may take C = {(−∞, t) :

t ∈ M}.

Now suppose that H is nonempty. Note that H is an interval in M (possibly right closed)

unbounded from below. Let a = supH.

If a = maxH < ∞ then there exists Sa ∈ B such that Sa ∩ (−∞, t] = ∅. We note that,

for any S ∈ S, there exists tS > a such that (a, tS) ⊆ S, so we may take C = {(a, t) : t > a}.

Otherwise by o-minimality there exists S ∈ S and rS > a such that (a, rS) ∩ S = ∅, but

then any set S ′ ∈ S with S ′ ⊆ Sa ∩ S satisfies that (−∞, rS) ∩ B′ = ∅, contradicting that

a = supH.

If a /∈ H then, for every S ∈ S, S ∩ (−∞, a] 6= ∅. We show that it suffices to take

C := {(t, a) : t < a}. Let Sa ∈ S be such that a /∈ Sa. Suppose towards a contradiction that

there exists S ∈ S and rS < a such that (rS, a) ∩ S = ∅. Since rS ∈ H, there is S ′ ∈ S

such that S ′ ∩ (−∞, rS] = ∅. But then, any S ′′ ∈ B with S ′′ ⊆ S ′ ∩ S ∩ Sa satisfies that

(−∞, a] ∩ S ′′ = ∅, contradiction. This completes the proof of the base case.

Inductive step: n > 1.
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Suppose that there exists a cell C ⊆ Mn with dimC = m < n such that S ∩ C 6= ∅ for

every S ∈ S. Let πC : C → Mm be a projection that is a homeomorphism onto an open

cell. By Fact 5.2.3 the family {πC(S ∩ C) : S ∈ S} is a definable downward directed family

of subsets of Mm. By inductive hypothesis it admits a finer complete definable downward

directed family of cells C ′. By passing to a subfamily of C ′ if necessary we may assume that

every cell in C ′ is a subset of πC(C). The definable family of cells C = {π−1
C (C ′) : C ′ ∈ C ′} is

then downward directed, complete, and finer than S.

Hence onwards we assume that, for every cell C ⊆ Mn with dimC < n, there exists some

S ∈ S such that S ∩C = ∅. By Fact 5.2.4 and o-minimal cell decomposition it follows that,

for every definable set X ⊆ Mn,

if dimX < n then there exists S ∈ S such that S ∩X = ∅. (†)

In particular dimS = n for any S ∈ S.

Consider the definable downward directed family π(S) = {π(S) : S ∈ S}. By induction

hypothesis there exists a definable downward directed family of cells B in Mn−1 that is

complete and finer than π(S). Let F = {S ∩ (B ×M) : S ∈ S, B ∈ B}. We show that this

definable family is downward directed.

Let S, S ′ ∈ S and B,B′ ∈ B. Let S ′′ ∈ S be such that S ′′ ⊆ S ∩ S ′. Since B is finer

than π(S) and downward directed there exists B′′ ∈ B with B′′ ⊆ π(S ′′) ∩ B ∩ B′. Then

∅ 6= S ′′ ∩ (B′′ ×M) ⊆ S ∩ (B ×M) ∩ S ′ ∩ (B′ ×M).

Clearly F is finer than S. We proceed by proving the lemma for F in place of S.

Let F = {ϕ(u,Mn) : u ∈ Ω ⊆ Mm}. Let D be a cell decomposition of ϕ(Mm,Mn). Then,

by uniform cell decomposition, for every u ∈ Ω the family of fibers {Du : D ∈ D, Du 6= ∅}

is a cell decomposition of ϕ(u,Mn) and the family {π(Du) : D ∈ D, Du 6= ∅} is a cell

decomposition of π(ϕ(u,Mn)). For each u ∈ Ω let Du = {Du : D ∈ D}.

For the rest of the proof we assume that, for every F ∈ F , there is a unique u ∈ Ω with

F = ϕ(u,Mn). Then for clarity we identify F with u by writing DF in place of Du and DF

in place of Du, onwards omitting the subscript u entirely. This assumption is valid if M has
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elimination of imaginaries. Nevertheless it is adopted entirely for clarity and the proof can

be written in terms of u ∈ Ω instead of F = ϕ(u,Mn).

We now wish to show that there exists a definable family of open cells C = {CF ∈ DF :

F ∈ F} such that, for every F ∈ F :

(i) CF ∩ F ′ 6= ∅ for every F ′ ∈ F .

(ii) For every C ∈ DF , if C ∩F ′ 6= ∅ for every F ′ ∈ F , then C = CF or π(C) = π(CF ) and

CF < C, i.e. if CF = (f, g) and C = (f ′, g′) then g ≤ f ′.

Note that, for every F ∈ F , there can be at most one D ∈ D such that DF = CF (i.e.

satisfying (i) and (ii) above).

Observe that, for every D ∈ D, the family of F ∈ F such that DF = CF is definable.

Consider these induced subfamilies of F , as D ranges in D. If C as described above exists,

then these subfamilies cover F . Additionally, by downward directedness, one of them must

be finer than F . Hence, if it exists, C is definable, and in particular, by passing to a subfamily

of F if necessary, we may in fact assume that C is a family of fibers over a single cell in D.

We show that C exists.

For any F ∈ F let D′
F := {C ∈ DF : C ∩ F ′ 6= ∅ ∀F ′ ∈ F}. By Fact 5.2.4 this family is

nonempty. By († ) every cell in D′
F must be open. Now note that, since B is complete and,

by construction, π(F) is finer that B, π(F) is complete. By Fact 5.2.5 it follows that, for

every F ∈ F , there exists a unique set in π(DF ), say BF , such that π(F ′) ⊆ BF for some

F ′ ∈ F . Hence, for any C,C ′ ∈ D′
F , it holds that π(C) = π(C ′) = BF . Let CF = (f, g) be

the cell in D′
F satisfying that, for any other cell (f ′, g′) ∈ D′

F , g ≤ f ′.

We have defined C = {CF : F ∈ F}. This family is clearly finer than F . We prove that

it is downward directed and complete.

Claim 5.2.7. For every pair F, F ′ ∈ F , CF ∩ CF ′ 6= ∅.

Let CF = (f, g) and CF ′ = (f ′, g′), and suppose towards a contradiction that CF ∩CF ′ =

∅. Recall that π(F) is downward directed and complete, and notation BF for the projection

of any (every) cell in D′
F . By (i) there exists some B ∈ π(F) such that B ⊆ BF ∩ BF ′ .

Without loss of generality suppose that g′|B ≤ f |B.
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Let DF \D′
F = {C(1), . . . , C(l)}. By definition of D′

F for every 1 ≤ i ≤ l there exists some

F (i) ∈ F such that C(i)∩F (i) = ∅. Let F ′′ ∈ F be such that F ′′ ⊆ F ∩(∩l
i=1F (i))∩(B×M).

Then, by (ii) , we have that F ′′ ⊆ (f |B,+∞). But then F ′′ ∩ CF ′ = ∅, contradicting (i) .

Let CF = (f, g) and CF ′ = (f ′, g′), and suppose towards a contradiction that CF ∩CF ′ =

∅. By (i) and because B is complete there exists B ∈ B such that B ⊆ π(CF ) ∩ π(CF ′).

Without loss of generality suppose that g|B ≤ f ′|B. By definition of D′
F ′ and because F is

downward directed there exists some F ′′ ∈ F such that F ′′ ⊆ ⋃D′
F ′ . Let F ′′′ ∈ F be such

that F ′′′ ⊆ F ′′ ∩ B × M . Then, by (ii) , F ′′′ ⊆ (f ′|B,+∞), and in particular F ′′′ ∩ CF = ∅,

contradiction.

Claim 5.2.8. The family CF is downward directed.

Let C,C ′ ∈ CF . Recall that F is finer than S. By († ) let F ∈ F be such that F ∩∂C = ∅

and F ∩ ∂C ′ = ∅. By Claim 5.2.7 CF ∩ C 6= ∅. Since every cell is definably connected and

every cell in CF is open, it follows that CF ⊆ C. By the same argument CF ⊆ C ′. Hence

CF ⊆ C ∩ C ′.

Finally we show that C is complete. Suppose otherwise, in which case there exists a

definable set X ⊆ Mn such that, for every C ∈ C, C ∩ X 6= ∅ and C \ X 6= ∅. By († ),

dimX = n, and we may find F ∈ F such that F ∩ bd(X) = ∅, having in particular that

CF ∩ bd(X) = ∅. It follows that CF is not definably connected, contradicting that CF is a

cell.

Notice that, in the base case of the proof of Lemma 5.2.6 , if S is definable then the “a”

is definable over the same parameters as S. It follows that C is definable over the same

parameters as S. We might ask if this holds in higher dimensions. If M has definable

choice functions then it does, by the usual argument involving passing to an elementary

substructure. The paper in preparation by the author [1 ] on which this chapter is based

includes an appendix by Will Johnson in which he proves that, in general within o-minimality,

the answer to that question is no.

We now present a second lemma connecting types and downward directed families.
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Lemma 5.2.9. Let p be an n-type and S be a uniform family of subsets of Mn. There exists

a uniform downward directed family of sets F ⊆ p that is complete for S. If p is definable

then F can be chosen definable over the same parameters as p.

Proof. Since otherwise the result is immediate we may assume that p is not realised in M.

We proceed by induction on n. For simplicity we prove the case where p is definable. The

case where p is not definable follows by the same arguments. The fact that F can be chosen

definable over the same parameters as p follows by keeping track of parameters.

We start by reducing the proof to the case where S is a definable family of cells and

S ⊆ p.

By expanding S if necessary let us assume that it is a family of the form S = {ϕ(u,Mn) :

u ∈ Mm}. Let D be a cell decomposition of Mm ×Mn compatible with ϕ(Mm,Mn). Then,

for every u ∈ Mm, the family of fibers {Du : D ∈ D} is a partition of Mn compatible with

ϕ(u,Mn). This means that there exists some D ∈ D such that Du ∈ p, and moreover either

Du ⊆ ϕ(u,Mn) or Du ∩ ϕ(u,Mn) = ∅.

Consider the union C of the families {Du : u ∈ Mm, Du ∈ p} for D ∈ D. Then C is a

definable family of cells with C ⊆ p and, for every S ∈ S, there is some C ∈ C such that

either C ⊆ S or C ∩ S = ∅. Clearly it suffices to prove the lemma for C in place of S.

Hence onwards we assume that S is a definable family of cells and S ⊆ p. This means in

particular that we must prove the existence of a downward directed definable family F ⊆ p

that is finer than S.

Suppose that n = 1. Then the result follows from the fact that every non-realized 1-type

has a uniform basis of intervals. In particular when the type is definable this basis is of the

form {(a, t), t > a} for some a ∈ M ∪ {−∞}, or {(t, a) : t < a} for some a ∈ M ∪ {+∞}.

These are complete definable families of nested sets.

Suppose that n > 1. Suppose there exists S∗ ∈ S that is the graph of some definable

continuous function π(S∗) → M . Note that the type π(p) = {π(X) : X ∈ p} is definable.

Note that the definable family S ∩ S = {S ∩ S ′ : S, S ′ ∈ S} is a subset of p. We apply the

induction hypothesis to the type π(p) and family π(S ∩ S) and reach a downward directed

definable family G ⊆ π(p) that is finer than π(S ∩S). Let F = {S∩(G×M) : S ∈ S, G ∈ G}.
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Then F is clearly definable and finer than S. We show that it is a subset of p and downward

directed. Firstly, since G ⊆ π(p), for every G ∈ G it holds that G × M ∈ p, and thus

S ∩ (G × M) ∈ p for every S ∈ S. Secondly, since G is downward directed and finer that

π(S ∩S), for every S, S ′ ∈ S there exists G ∈ G such that G ⊆ π(S∗ ∩S)∩π(S∗ ∩S ′). Hence

in particular S∗ ∩ (G×M) ⊆ S∩S ′. It follows that, for any G′, G′′ ∈ G, if G′′′ ⊆ G∩G′ ∩G′′,

then S∗ ∩ (G′′′ ×M) ⊆ S ∩ (G′ ×M) ∩ S ′ ∩ (G′′ ×M).

We now prove the case where every cell S ∈ S is of the form (fS, gS) for definable

continuous functions fS, gS : π(S) → M±∞. Consider the definable families of sets S0 =

{(−∞, gS) : S ∈ S} and S1 = {(fS,+∞) : S ∈ S}. We observe that it suffices to find

definable downward directed families F0 and F1 contained in p such that F0 is complete for

S0 and F1 is complete for S1. In that case let F = {F ∩ F ′ : F ∈ F0, F
′ ∈ F1}. Then F

is clearly contained in p, in particular it does not contain the empty set, and is downward

directed. Moreover, for any S = (f, g) ∈ S, if F0 ∈ F0 is such that F0 ⊆ (−∞, g) and

F1 ∈ F1 is such that F1 ⊆ (f,+∞), then F0 ∩ F1 ⊆ S, so F is finer than S. We prove the

existence of F0 and F1.

For any two S, S ′ ∈ S let X(S, S ′) = {x ∈ π(S) ∩ π(S ′) : gS(x) ≤ gS′(x)}. These sets are

definable uniformly over S, S ′ ∈ S (formally over Ω2, if Ω is the index set of S). Let X =

{X(S, S ′) : S, S ′ ∈ S}. By induction hypothesis there exists a definable downward directed

family B ⊆ π(p) that is complete for X . Let F0 = {(B × M) ∩ (−∞, gS) : B ∈ B, S ∈ S}.

We claim that this family is downward directed, contained in p and finer than S0. The last

property is obvious. Moreover, for every B ∈ B, since B ∈ π(p) then B ×M ∈ p and so, for

every S ∈ S, (B ×M) ∩ (−∞, gS) ∈ p. It remains to prove that F0 is downward directed.

Let us fix B′, B′′ ∈ B and S, S ′ ∈ S. Note that π(S) ∩ π(S ′) is covered by X(S, S ′) and

X(S ′, S). Since B is a subset of π(p) and complete for X it follows that there exists B′′′ ∈ B

satisfying either B′′′ ⊆ X(S, S ′) or B′′′ ⊆ X(S ′, S) (fact 5.2.5 ). Suppose without loss of

generality that it is the former. Then (B′′′ ×M)∩ (−∞, gS) ⊆ (−∞, gS′). Let B ∈ B be such

thatB ⊆ B′∩B′′∩B′′′, then (B×M)∩(−∞, gS) ⊆ (B′×M)∩(−∞, gS)∩(B′′×M)∩(−∞, gS′).

We have shown that S0 is downward directed.

The construction of S1 is analogous. This completes the proof of the lemma.

85



Remark 5.2.10. Let p be a definable type and S ⊆ p be an A-definable family of sets. Is

there always an A-definable downward directed family F ⊆ p finer than S?

The negative answer is given by the following counterexample. Consider S = {M \

{t} : t ∈ M}, a family which is ∅-definable, and let p be a non-realised type with basis

{(s0, t) : t > s0} for some fixed s0 with s0 /∈ dcl(∅). Suppose there exists F as above and

∅-definable. Consider B = {s ∈ M : ∀F ∈ F ∃t > s (s, t) ⊆ F}. Clearly B is ∅-definable.

Since F ⊆ p the point s0 is in B. If B is finite then s0 ∈ dcl(∅), contradiction. Suppose

that B contains an interval I. By definition of B and o-minimality this means that every set

F ∈ F must satisfy that F ∩ I is cofinite in I. By uniform finiteness there is an m such that

|I \ (F ∩ I)| < m for every F ∈ F . This however contradicts that F is downward directed

and finer than S.

On the other hand in the next section we prove Proposition 5.3.18 , which implies that S

as above always extends to an A-definable type. By virtue of Lemma 5.2.9 there exists an

A-definable downward directed family finer than S.

We may now prove the main result of this section.

Theorem 5.2.11. Let S ⊆ P(Mn) be a uniform family of sets. The following are equivalent

(with and without the definability condition in parentheses).

(1) S extends to a (definable) n-type.

(2) There exists a uniform (definable) downward directed family finer than S.

(3) S extends to a (definable) n-type with a uniform basis of cells.

Proof. (1) ⇒ (2) is given by Lemma 5.2.9 , (2) ⇒ (3) by Lemma 5.2.6 , (3) ⇒ (1) is trivial.

Remark 5.2.12. Theorem 5.2.11 highlights an interesting property of types with uniform

bases in o-minimal structures. Consider the “uniform topology” on Sn(M) where basic open

sets AS are indexed by uniform families S ⊆ Def(Mn), where AS = {p ∈ Sn(M) : S ⊆ p}.

This topology is clearly finer than the usual Stone topology among types. Note that, in

this topology, the types with a uniform basis are precisely the isolated types. Moreover for

every A ⊆ M the set of all A-definable types in closed. In the context of this topology
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Theorem 5.2.11 states that isolated types are dense in Sn(M) and isolated definable types

are dense in the closed subspace of all definable types.

Recall that the appendix by Will Johnson in [1 ] shows that a parameter version of

Lemma 5.2.6 is not possible. That is, it is not true in general that every A-definable down-

ward directed family of sets extends to an A-definable type with a uniform basis. We end this

section however by proving the next best thing, that every A-definable downward directed

family extends to an A-definable type.

The following method to construct types will be useful in Proposition 5.2.15 and further

on.

Definition 5.2.13. Let p be a n-type and f : Mn → M be a definable function with

dom(f) ∈ p. We define three (n+ 1)-types.

Let f |p be the type of sets S such that π(S ∩ graph(f)) ∈ p.

Let f+|p be the type of sets S such that {x ∈ dom(f) : {x} × (f(x), s) ⊆ S for some s >

f(x)} ∈ p.

Let f−|p be the type of sets S such that {x ∈ dom(f) : {x} × (s, f(x)) ⊆ S for some s <

f(x)} ∈ p.

The definitions of f+|p and f−|p hold too if f is, respectively, the constant function −∞

and +∞.

The next lemma without proof follows by routine application of o-minimality and knowl-

edge of the Fiber Lemma for o-minimal dimension (Lemma 2.1.3 ).

Lemma 5.2.14. Given an n-type p and definable function f : Mn → M with dom(f) ∈ p

the types f |p, f+|p and f−|p are well defined. If p is A-definable and f B-definable the

they are AB-definable. If p d-dimensional then f |p is d-dimensional and f+|p and f−|p are

(d+ 1)-dimensional.

Proposition 5.2.15. Let A ⊆ M and let S ⊆ Def(Mn) be an A-definable downward directed

family of sets. Then S extends to an A-definable type.

Proof. We proceed by induction on n. If n = 1 then this is shown by the base case in the

proof of Lemma 5.2.6 . Suppose that n > 1.
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By induction hypothesis let p be an A-definable type expanding π(S). For every S ∈ S

we define fS : π(S) → M±∞ by fS(u) = supSu, where Su is the corresponding fiber {t :

〈u, t〉 ∈ S}. Let F = {fS : S ∈ S}. This family is clearly A-definable. Let 4 be the

A-definable total preorder induced by p described in Section 5.1.1 . We consider a number of

cases.

Case 1: F has a minimum with respect to 4. Let Smin ⊆ S be the family of S such

that fS is a minimum. Let Fmin = {fS : S ∈ Smin}. We prove that, for any given S ∈ Smin,

S extends to either fS|p or f−
S |p, and show that these types are A-definable. We make use

of two observations.

Claim 5.2.16. For every g, h ∈ Fmin, g|p = h|p and g−|p = h−|p. We denote these types

Fmin|p and F−
min|p respectively.

Since the family Fmin is A-definable, it follows from Claim 5.2.16 and definition 5.2.13 

that Fmin|p and F−
min|p are A-definable. We prove the claim.

Let g, h ∈ Fmin. Obeserve that, because g 4 h and h 4 g, we have that {x : g(x) =

h(x)} ∈ p. Let Z ∈ Def(Mn) be such that Z ∈ g|p. Then {x : 〈x, h(x)〉 ∈ Z} ⊇ {x : g(x) =

h(x), 〈x, g(x)〉 ∈ Z} ∈ p. So Z ∈ h|p. Analogously one proves that g−|p = h−|p.

Fact 5.2.17. For every S ∈ S, exactly one of the sets {x : fS(x) ∈ Sx} and {x : fS(x) /∈ Sx}

must belong in p. If it is the former then S ∈ fS|p. If it is the latter then, by definition of

fS and o-minimality, we have that S ∈ f−
S |p.

We assume that S does not extend to Fmin|p and prove that it extends to F−
min|p. Let

S∗ ∈ S be such that S∗ /∈ Fmin|p. Let S ′ ∈ Smin. For any S ∈ S, by downward directedness

there exists S ′′ ∈ S with S ′′ ⊆ S ∩ S ′ ∩ S∗. Since S ′′ ⊆ S ′ we have that S ′′ ∈ Smin. Since

S ′′ ⊆ S∗, S ′′ /∈ Fmin|p = fS′′ |p. By Fact 5.2.17 it follows that S ′′ ∈ f−
S′′|p. We conclude that

S ∈ f−
S′′ |p = F−

min|p.

Case 2: F does not have a minimum with respect to 4. Consider the n-type q given

by all sets F ∈ Def(Mn) such that F ∈ fS|p for every S in some subfamily S ′ ⊆ S that is

unbounded from below with respect to 4. We prove the consistency of this type. For this

it suffices to show that, for every cell C ∈ Def(Mn), if C ∈ q, then there is some S ′ ∈ S

88



such that C ∈ fS|p for every S ∈ S with S 4 S ′. However this follows from the fact that,

if C ∈ q, it must be an open cell of the form C = (f, g) with f ≺ F and fS 4 g for some

S ∈ S. Finally note that, since F and 4 are A-definable, by Definition 5.2.13 this type is

A-definable.

Remark 5.2.18. Lemma 5.2.9 and Proposition 5.2.15 show that, in the definable statement

of Theorem 5.2.11 , the type in (1) and the downward directed family in (2) can be required

to be definable over the same parameters.

On the other hand Will Johnson proved ([1 ], Appendix B) that the type with a uniform

basis in (3) might not exist definable over these same parameters.

In the context of the topology described in Remark 5.2.12 , it is not true in general that,

for any A ⊆ M , the family of isolated A-definable types is dense is the closed space of all

A-definable types.

5.3 Transversals

Throughout this section we fix a monster model U = (U,<, . . .) of Th(M). For a definable

set X let X(U) denote the interpretation on X in U . Our main result is Theorem 5.3.9 ,

stating that if a definable family has the (m,n)-property for some large enough n and m ≥ n,

then it partitions into finitely many subfamilies, each of which extends to a definable type.

Definition 5.3.1. Let S ⊆ Def(Mn). A transversal F of {S(U) : S ∈ S} is called tame if it

belongs in some tame extension of M. We abuse terminology by calling F a tame transversal

of S.

Let S be a uniform family. We are interested in the property that S admits a tame

transversal that is finite. We give an equivalent definition of this property.

Definition 5.3.2. Let S = {ϕ(u,Mn) : u ∈ Ω ⊆ Mm} be a uniform family and A ⊆ M . We

say that S has a finite tame transversal (FTT) over A if there are sets Ω1, . . . ,Ωk ⊆ Ω with

∪iΩi = Ω such that, for every 1 ≤ i ≤ k, the family Si = {ϕ(u,Mn) : u ∈ Ωi} extends to an

A-definable type.

Without mention to a specific A we mean A = M .
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By the Marker-Steinhorn Theorem (Theorem 2.1.8 ) every definable type is realized in

some tame elementary extension of M. So both definitions of having FTT are equivalent.

We precede Theorem 5.3.9 with two lemmas. First however we introduce some notation

on cuts.

Given a definable totally preordered set (X,4), a cut (P,Q) of (X,4) is a partition of

X into two sets P and Q such that x ≺ y for every x ∈ P and y ∈ Q. Such a cut (P,Q)

is definable if P (equivalently Q) is definable. All the cuts we consider satisfy that either

P does not have a maximum or Q does not have a minimum with respect to 4. That is,

for every x ∈ P and y ∈ Q the interval (x, y)4 is nonempty. Consequently we may always

associate to a cut (P,Q) the partial type {(x, y)4 : x ∈ P, y ∈ Q}, and by means of this

association we often refer to cuts as types. In particular we say that z ∈ X(U) realizes (P,Q)

if (x, y)4 ∈ tp(z/M) for every x ∈ P and y ∈ Q.

Without context, a cut is a cut in (M,≤). In this setting non-definable and definable cuts

are denoted, respectively, irrational and rational cuts in [41 ], and simply cuts and noncuts

in other sources such as [31 ] and [12 ]. By o-minimality, any non-isolated 1-type over M is

uniquely characterised by the unique cut it realizes in (M,≤).

It is worth noting that, in Lemma 5.3.3 below, the existence of the uniform bound l is

redundant, since it follows from o-minimality.

Lemma 5.3.3. Let (X,4), X ⊆ Mk, be a definable totally preordered set, and l < ω. Let

S be a definable family of nonempty subsets of X, all of which are finite union of at most

l points and intervals with respect to 4 with endpoints in X ∪ {−∞,+∞} (where −∞ and

+∞ have the natural interpretation with respect to 4). Then exactly one of the following

holds:

(1) S has a finite tame transversal.

(2) There exists S ′ ⊆ S an infinite subfamily (not necessarily definable) of pairwise disjoint

sets.

Proof. Clearly (1) and (2) are mutually exclusive. We assume the negation of (1) and prove

(2) . Throughout the proof let the term interval refer to an interval in (X,4) with endpoints

in X ∪ {−∞,+∞}.
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Hence let us assume that S = {ϕ(u,Mk) : u ∈ Ω} does not admit a finite tame transver-

sal. Then by model theoretic compactness there exists c ∈ Ω(U), S = ϕ(c, Uk), with the

property that, for every definable Ω′ ⊆ Ω, if {ϕ(u,Mk) : u ∈ Ω′} extends to a definable type,

then c /∈ Ω′(U). In particular this holds for Ω′ = Ωx = {u ∈ Ω : M |= ϕ(u, x)} for every

x ∈ X, and so S∩X = ∅. Moreover note that, if ∼ denotes the equivalence relation induced

by 4 on X, then by definition every S ∈ S is compatible with the equivalence classes of

∼, i.e. for every x, y ∈ X if x ∼ y and x ∈ S then y ∈ S too. This must also be satisfied

by S with respect to the interpretation of 4 on X(U) (which we also denote 4). So each

equivalence class in X(U) of points in X must be disjoint from S. Hence each point x ∈ S

induces a cut (P,Q) in X by P = {y ∈ X : y ≺ x} and Q = X \ P .

Let (P,Q) and (P ′, Q′) be different cuts in M , with, say, P ( P ′, and let x(P,P ′) ∈ P ′ \P .

Since x(P,P ′) ∈ X we have that x(P ′,P ) /∈ S and so, if x and y are points in S that realize

(P,Q) and (P ′, Q′) respectively, then these points do not belong in the same subinterval of

S. Since every set in S is union of at most l points and intervals, there are at most l many

distinct cuts (Pi, Qi), 0 ≤ i ≤ m, such that every point in S realizes one of these cuts.

For simplicity we assume that all the cuts (Pi, Qi) are such that Pi 6= ∅ and Qi 6= ∅. The

proof readily adapts to the other case. Let the indexing be such that (Pi, Qi), for 0 ≤ i ≤ n,

are the cuts that are non-definable, and (Pi, Qi), for n < i ≤ m, are definable.

For every 0 ≤ i ≤ m let us fix ai ∈ Pi and bi ∈ Qi such that {ai, bi} ⊆ Pj or {ai, bi} ⊆ Qj

for every j 6= i. We show that there exists S ∈ S with S ⊆ ⋃
i(ai, bi)4 such that, for every

0 ≤ i ≤ m, there are a′
i ∈ Pi, b′

i ∈ Qi, ai 4 a′
i ≺ b′

i 4 bi, with (a′
i, b

′
i)4 ∩ S = ∅ (in particular

S ∩ S = ∅). We may then apply the result again with parameters a′
i, b′

i in place of ai and bi

and reach a second set S ′ ∈ S that will be disjoint from S. Repeating this process yields a

countably infinite pairwise disjoint subfamily of S as desired.

Let (P,Q) be a cut. Whenever a definable set S satisfies that (a, b)4 ∩ S = ∅ for some

a ∈ P , b ∈ Q, we say that S is disjoint from (P,Q). Hence we must find S ∈ S contained in⋃
i(ai, bi)S that is disjoint from every cut (Pi, Qi), 0 ≤ i ≤ m.

We focus first on the definable cuts.

Claim 5.3.4. Let (P,Q) be a definable cut in X, then S is disjoint from the cut (P (U), Q(U)).
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We show that there is not a ∈ P (U) and b ∈ Q(U) with (a, b)4(U) ⊆ S. Since S is union

of finitely many points and intervals with respect to 4 it follows that there exists a ∈ P (U)

and b ∈ Q(U) with (a, b)4(U) ∩ S = ∅.

Suppose that there are a ∈ P (U) and b ∈ Q(U) with (a, b)4(U) ⊆ S. Let Σ ⊆ Ω be denote

the set of index elements u such that (a, b)4 ⊆ ϕ(u,Mk) for some a ∈ P , b ∈ Q. Since the

cut is definable then so is Σ. Moreover c, where S = ϕ(c, Uk), belongs in Σ(U). The definable

family {(a, b)4 : a ∈ P, b ∈ Q} is downward directed and so, by Lemma 5.2.6 , extends to

a definable type. This type must include {ϕ(u,Mk) : u ∈ Σ}. But then by construction

c /∈ Σ(U), contradiction. This proves Claim 5.3.4 .

We will need the following fact.

Fact 5.3.5. For every choice of xi ∈ Pi, yi ∈ Qi, 0 ≤ i ≤ m, there exists S ∈ S such that

S ⊆ ⋃
i(xi, yi)4 and is disjoint from every cut (Pj, Qj), for n < j ≤ m.

By Claim 5.3.4 this is witnessed by S in U , so it also holds in M.

Finally we require a claim regarding non-definable cuts.

Claim 5.3.6. Let (P,Q) be a non-definable cut. If F ⊆ X is a definable set such that, for

every x ∈ P , there is y ∈ F with x 4 y, then F ∩Q 6= ∅. Similarly if, for every x ∈ Q, there

is y ∈ F with y 4 x, then P ∩ F 6= ∅.

To prove Claim 5.3.6 note that, since F ⊆ X is definable, then its downward closure with

respect to 4, namely F ′ = {x ∈ X : x 4 y for some y ∈ F}, is definable too. If F ∩ P is

cofinal in P then F ′ ⊇ P , so if P is not definable then it must be that F ′ ∩ Q 6= ∅, hence

F ∩Q 6= ∅. The case where P ∩Q is unbounded from below in Q is analogous. This proves

Claim 5.3.6 .

For any x0, y0, . . . , xn, yn ∈ X let rel(x0, y0, . . . , xn, yn) denote the formula, including

parameters ai, bi for i > n, asserting that there exists S ∈ S with

S ⊆
⋃

0≤i≤n

(xi, yi)4 ∪
⋃

j>n

(aj, bj)4
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such that S is disjoint from the cuts (Pj, Qj) for n < j. Note that Fact 5.3.5 implies that

rel(x0, y0, . . . , xn, yn) holds for every choice of xi ∈ Pi and yi ∈ Qi, 0 < i ≤ n. We define by

reverse recursion a family of definable sets Fi, Gi ⊆ X, for 0 < i ≤ n, as follows. Let

Fn(x0, y0, . . . , xn−1, yn−1) = {y < an : rel(x0, y0, . . . , xn−1, yn−1, an, y)} and

Gn(x0, y0, . . . , xn−1, yn−1) = {x 4 bn : rel(x0, y0, . . . , xn−1, yn−1, x, bn)}.

For 0 < i < n let

Fi(x0, y0, . . . , xi−1, yi−1) = {y < ai : ∃x′ ∈ Fi+1(x0, y0, . . . , xi−1, yi−1, ai, y)

∃y′ ∈ Gi+1(x0, x1, . . . , xi−1, yi−1, ai, y), x′ 4 y′}

and

Gi(x0, y0, . . . , xi−1, yi−1) = {x 4 bi : ∃x′ ∈ Fi+1(x0, y0, . . . , xi−1, yi−1, x, bi)

∃y′ ∈ Gi+1(x0, y0, . . . , xi−1, yi−1, x, bi), x′ 4 y′}.

Clearly these sets are definable. For every 0 < i ≤ n we prove the following.

(Ii) For every choice of xj ∈ Pj, yj ∈ Qj, 0 ≤ j < i, it holds that there exists x ∈

Fi(x0, y0, . . . , xi−1, yi−1) and y ∈ Gi(x0, y0, . . . , xi−1, yi−1) with x 4 y.

(IIi) For every choice of aj 4 xj ≺ yj 4 bj, 0 ≤ j < i, if there exists x ∈

Fi(x0, y0, . . . , xi−1, yi−1) and y ∈ Gi(x0, y0, . . . , xi−1, yi−1) with x 4 y, then there exists

S ∈ S with S ⊆ ⋃
j<i(xj, yj)4 ∪ ⋃j≥i(aj, bj)4 that is disjoint from any cut (Pj, Qj) for

j ≥ i.

We proceed by reverse induction on i, where in the inductive step (Ii) follows from

(Ii+1) and (IIi) from (IIi+1). We will then derive the lemma from (I1) and (II1). Let

i = n. Fix any xj ∈ Pj and yj ∈ Qj for every j < n. By Fact 5.3.5 and Claim 5.3.6 

Fn(x0, y0, . . . , xn−1, yn−1) ∩ Pn 6= ∅ and Gn(x0, y0, . . . , xn−1, yn−1) ∩ Qn 6= ∅, so in par-

ticular there exists x ∈ Fn(x0, y0, . . . , xn−1, yn−1) and y ∈ Gn(x0, y0, . . . , xn−1, yn−1) with

x 4 y. This proves (In). To prove (IIn) let aj 4 xj ≺ yj 4 bj for j < n. If there exists

x ∈ Fn(x0, y0, . . . , xn−1, yn−1) and y ∈ Gn(x0, y0, . . . , xn−1, yn−1) with x 4 y then it cannot
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be that Fn(x0, y0, . . . , xn−1, yn−1) ⊆ Qn and Gn(x0, y0, . . . , xn−1, yn−1) ⊆ Pn. Suppose that

Fn(x0, y0, . . . , xn−1, yn−1) ∩ Pn 6= ∅, the other case being similar. Then by definition of Fn

there exists y ∈ Pn and some S ∈ S with S ⊆ ∪0≤j<n(sj, tj)4 ∪ (an, y)4 ∪ ∪j>n(aj, bj)4 such

that F is disjoint from every cut (Pj, Qj), j > n. By construction S is disjoint from (Pn, Qn)

too, proving (IIn).

Suppose now that i < n. Fix xj ∈ Pj and yj ∈ Qj for j < i. By (Ii+1) and Claim 5.3.6 it

holds that there exists x ∈ Fi(x0, y0, . . . , xi−1, yi−1)∩Pi and y ∈ Gi(x0, y0, . . . , xi−1, yi−1)∩Qi,

satisfying in particular x 4 y. This proves (Ii).

Now fix aj 4 xj ≺ yj 4 bj for j < i. Once again if there are x ∈

Fi(x0, y0, . . . , xi−1, yi−1) and y ∈ Gi(x0, y0, . . . , xi−1, yi−1) with x 4 y then it must be

that either Fi(x0, y0, . . . , xi−1, yi−1) ∩ Pi 6= ∅ or Gi(x0, y0, . . . , xi−1, yi−1) ∩ Qi 6= ∅. We

assume the former, being the proof given the latter analogous. Hence by definition of

Fi there exists y ∈ Pi such that x′ 4 y′ for some x′ ∈ Fi−1(x0, y0, . . . , xi−1, yi−1, ai, y),

y ∈ Gi−1(x0, y0, . . . , xi−1, yi−1, ai, y). But then by (IIi+1) there exists S ∈ S such that

S ⊆ ⋃
0≤j<i(xj, yj)4 ∪ (ai, y)4 ∪ ⋃

j>i(aj, bj)4, and S is disjoint from any cut (Pj, Qj) for

j > i. However note that, by construction, S is also disjoint from the cut (Pi, Qi), which

proves (IIi).

Finally we derive the lemma from (I1), (II1) and Claim 5.3.6 by repeating the arguments

in the inductive step. That is, by (I1) and Claim 5.3.6 there exists some y ∈ P0 such that

x′ 4 y′ for some x′ ∈ F1(a0, y), y′ ∈ G1(a0, y). Then by (II1) there is some S ∈ S with

S ⊆ (a0, y)4 ∪⋃j>0(aj, bj)4 that is disjoint from any cut (Pj, Qj) for j > 0. By construction

S is also disjoint from (P0, Q0).

By letting (X,4) = (M,≤), Lemma 5.3.3 proves the case S ⊆ P(M) of Theorem 5.3.9 ,

i.e. it shows that, if S is a definable family of nonempty sets with the (m, 2)-property for

any m ≥ 2, then it has a finite tame transversal. This result can be generalized to higher

dimensions as follows.

Proposition 5.3.7. Let S ⊆ P(Mn) be a definable family of nonempty sets. At least one

of the following holds.

(1) There exists an infinite subfamily of S of pairwise disjoint sets.
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(2) There exists a tame transversal T for S with dimT < n.

Proof. We assume the negation of (1) and prove (2) . We work by induction on n. The

case n = 1 is given by Lemma 5.3.3 . Suppose that n > 1. Let π1 denote the projection

onto the first coordinate and consider the definable family π1(S) = {π1(S) : S ∈ S}. If

S does not contain an infinite subfamily of pairwise disjoint sets then the same holds for

π1(S). By the case n = 1 there exists a finite set {ξ0, . . . , ξm} that is a tame transversal

for π1(S). Let N = (N,<, . . .) be a tame extension of M that contains {ξ0, . . . , ξm}. Then

∪0≤i≤m{ξi} ×Nn−1 is a tame transversal for S of dimension n− 1.

In order to prove Theorem 5.3.9 we first show that any definable family with the finite

intersection property has a finite tame transversal. We in fact prove the following more

precise statement. Recall that a family of sets S is n-consistent if any subfamily of at most

n sets has nonempty intersection.

Lemma 5.3.8. Let S ⊆ P(Mn) be a definable family of sets. If S is 2n-consistent then it

admits a finite tame transversal.

Proof. We proceed by induction on n. The case n = 1 is given by Lemma 5.3.3 . Suppose

n > 1. Let S = {ϕ(u,Mn) : u ∈ Ω}.

Consider the family {π(S ∩S ′) : S, S ′ ∈ S}. This family is definable and 2n−1-consistent.

Hence by induction hypothesis there exists a finite collection of definable (n − 1)-types

p0, . . . , pm such that, for every S, S ′ ∈ S, π(S ∩ S ′) belongs in one of them. We construct

a finite tame transversal for S given by types whose projection is one of p0, . . . pm. The

approach is to use cell decomposition to witness the “fiber over the pi” of each set in S

as a finite union of points and intervals on some definable preordered set, and then apply

Lemma 5.3.3 .

Let D be a uniform cell decomposition of S, i.e. a cell decomposition of ϕ(Ω,Mn).

For any D ∈ D and u ∈ Ω with Du 6= ∅ let fDu and gDu denote the functions such that

Du = (fDu , gDu) or Du = graph(fDu) = graph(gDu). Let Hi = {fDu , gDu : D ∈ D, u ∈

Ω, π(Du) ∈ pi}. We briefly observe that this family is definable.
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For every i and D ∈ D let Ω(i,D) = {u ∈ Ω : π(Du) ∈ pi}. By definability of pi these

sets are definable. By re-indexing Hi in terms of a finite disjoint union Xi of sets Ω(i,D) for

D ∈ D, we may take Hi to be a definable family {hx : x ∈ Xi}.

Let 4i be the total preorder induced by pi, in particular on Hi, described in Section 5.1.1 .

We abuse notation and also let 4i denote the induced definable preorder on the index set

Xi. Let (X,4) be the definable totally preordered set that extends the disjoint union of

(Xi,4i), 0 ≤ i ≤ m, by letting x ≺ y for any x ∈ Xi, y ∈ Xj with i < j.

For every u ∈ Ω, let Bu denote the union in (X,4) of intervals [y, z]4 where y, z ∈ Xi

for some 0 ≤ i ≤ m and satisfy that there exists D ∈ D with Du = (hy, hz) or Du =

graph(hy) = graph(hz). So every set Bu is the union of at most (m+ 1)|D| closed intervals.

By definability of S, 4 and each Xi the family BS = {Bu : u ∈ Ω} is definable. Onwards

for clarity we write BS in place of Bu where S = ϕ(u,Mn). This is valid because Bu = Bv

whenever S = ϕ(u,Mn) = ϕ(v,Mn), although this observation is unnecessary since we could

complete the proof in terms of the subscript u.

Since every two sets S, S ′ ∈ S satisfy that π(S ∩ S ′) ∈ pi for some 0 ≤ i ≤ m, the family

BS is 2-consistent. Consequently, by Lemma 5.3.3 , there exist finitely many definable types

q0, . . . , ql such that, for every S ∈ S, the set BS belongs in one of them. We complete the

proof by fixing an arbitrary 0 ≤ j ≤ l and showing that the subfamily Sj = {S ∈ S : BS ∈

qj} admits a finite tame transversal. We will use the construction of types appearing in

Definition 5.2.13 .

Let i be such that Xi ∈ qj. Note that, for every S ∈ S, if BS ∈ qj then there exists

y, z ∈ Xi with [y, z]4 ∈ qi, such that hy and hz are involved in the definition of a cell inside

S, i.e. dom(hy) = dom(hz) and (hy, hz) ⊆ S or graph(hy) = graph(hz) ⊆ S. Hence, by

definition of 4, for every x ∈ Xi, if y 4 x 4 z then it must hold that either S ∈ hx|pi
,

S ∈ h+
x |pi

or S ∈ h−
x |pi

.

We define Q = {x ∈ Xi : (−∞, x]4 ∈ pi}. Note that, by definability of pi, this set is

definable. Let S ∈ Sj and y, z ∈ Xi with [y, z]4 ∈ qi be such that hy and hz are involved in the

definition of a cell inside S. Then clearly z ∈ Q, and moreover [y, z]4∩(−∞, x]4 ⊆ [y, x]4 ∈ qi

for every x ∈ Q, so y 4 Q. If Q has a minimum x̂ it follows that y 4 x̂ 4 z, and so by

the above paragraph the family Sj has a tame transversal of size at most three given by the
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types hx̂|pi
, h+

x̂ |pi
and h−

x̂ |pi
. Finally, we assume that Q does not have a minimum. In this

case it holds that y ≺ Q and x ≺ z for some x ∈ Q. Note that, by definition of 4, the

inequality y ≺ x ≺ z implies S ∈ hx|pi
. We show that in this case Sj extends to a definable

type.

Let q be the type of all sets S ∈ Def(Mn) such that S ∈ hx|pi
for all x in some subset of

Q that is unbounded from below. We show consistency of this type. By cell decomposition

it suffices to do it for cells. Let C1, C2 be two cells in q. For k ∈ {1, 2} it must be that

Ck = (fk, gk) where fk ≺i {hx : x ∈ Q} and hxk
4i fk for some xk ∈ Q. If x = min4{x1, x2}

then we have that C1 ∩C2 ∈ hx′|pi
for every x′ ∈ Q with x′ ≺ x. So C1 ∩C2 ∈ q. Note that,

by definability of pi, Hi and Q, the type q is definable. In the previous paragraph we have

observed that Sj ⊆ q. This completes the proof of the lemma.

We may now prove Therem 5.3.9 . Recall that a family of sets is n-inconsistent if every

subfamily of size n has empty intersection. Recall also that, for a definable set X, we denote

its boundary (in the euclidean topology) by bd(X). If X is contained in a set Y then let

bdY (X) = bd(X) ∩ Y .

Theorem 5.3.9. Let S ⊆ P(Mk) be a definable family of nonempty sets. Let n =

max{1, dim ∪S}. The following are equivalent.

(1) There exists some m ≥ n+ 1 such that S has the (m,n+ 1)-property.

(2) S has a finite tame transversal.

Proof. To prove that (2) implies (1) note that, if S admits a tame transversal of cardinality

l, then it has a covering of l subfamilies with the FIP (those given by the sets containing

a given element in the transversal). It follows that S has the (nl + 1, n + 1)-property. We

assume the negation of (2) and derive the negation of (1) . We do so by proving the following

apparently stronger statement.

Suppose that S ⊆ P(Mk) does not admit a finite tame transversal. Let m and n be

such that m > n ≥ max{1, dim ∪S}. Let X1 ⊆ · · · ⊆ Xn ⊆ Xn+1 be a collection of nested

definable sets satisfying that dimXi < i for every 1 ≤ i ≤ n and ∪S ⊆ Xn+1. Then there

exists F ⊆ S with |F| = m such that, for every 1 ≤ i ≤ n + 1 and subfamily F ′ ⊆ F with
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|F ′| = i, it holds that ∩F ′ ∩Xi = ∅. Namely, for every 1 ≤ i ≤ n+ 1, the family F ∩Xi is

i-inconsistent. In particular, since ∪S ⊆ Xn+1, the family F is (n + 1)-inconsistent, and so

S does not have the (m,n+ 1)-property.

Let Prop(m,n) denote the statement that the above holds for some fixed m > n ≥ 1 and

any S that does not have a finite tame transversal and moreover satisfies that n ≥ dim ∪S.

We prove Prop(m,n) by induction. We let Prop(2, 1) be the base case. Suppose that

m > 2. If m > n + 1 then we use Prop(m − 1, n) to derive Prop(m,n). Otherwise we use

Prop(m− 1, n− 1) to derive Prop(m,n). We prove all cases simultaneously. We divide the

argument into two parts.

Let us fix m > n ≥ 1 and S ⊆ P(Mk) a definable family of nonempty sets with

n ≥ dim ∪S that does not admit a finite tame transversal, and X1 ⊆ · · · ⊆ Xn+1 a family

of definable nested sets with dimXi < i for i ≤ n and ∪S ⊆ Xn+1. The first part of the

argument consists of the following claim.

Claim 5.3.10. Let S ′ ⊆ S be a finite subfamily and, for every 1 ≤ i ≤ n, let Yi =

∪S∈S′bdXi+1(S ∩Xi+1). There exists a subfamily F ⊆ S of cardinality m− 1 that is (n+ 1)-

inconsistent such that F ∩ (Xi ∪ Yi) is i-inconsistent for 1 ≤ i ≤ n.

Note that, by o-minimality, dim Yi < i for every i. So dim(Xi ∪ Yi) < i for every

1 ≤ i ≤ n. Note that, if m = n + 1, then any subfamily F ⊆ S of cardinality m − 1 = n is

(n + 1)-inconsistent vacuously. It follows that, if m = 2 and n = 1, the claim follows easily

from the fact that S does not admit a finite transversal in Mk.

Suppose that m > 2. If m > n+ 1 then the claim is given by Prop(m− 1, n) applied to

S and the collection of nested sets {X1 ∪ Y1, . . . , Xn ∪ Yn, Xn+1}. Suppose m = n + 1 > 2.

We may apply Prop(m − 1, n − 1) = Prop(n, n − 1) to the definable family S ∩ (Xn ∪ Yn)

and collection of nested sets {X1 ∪ Y1, . . . , Xn ∪ Yn}. It follows that there exists F ⊆ S with

cardinality m− 1 = n such that F ∩ (Xn ∪ Yn) ∩ (Xi ∪ Yi) = F ∩ (Xi ∪ Yi) is i-inconsistent

for 1 ≤ i ≤ n. Since |F| = n, the family F is (n+ 1)-inconsistent vacuously. This completes

the proof of the claim.

We continue with the second part of the proof.
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For any S ∈ S consider the family of all ordered tuples 〈S1, . . . , Sm−1〉 ∈ ∏
1≤i<m S such

that {S1, . . . , Sm−1} is (n + 1)-inconsistent and {S1, . . . , Sm−1} ∩ (Xi ∪ bdXi+1(S ∩ Xi+1)) is

i-inconsistent for every 1 ≤ i ≤ n. We denote this family Sm(S). Note that, by Claim 5.3.10 ,

the family {Sm(S) : S ∈ S} has the finite intersection property.

We now explicitly identify the family {Sm(S) : S ∈ S} with a family of definable

sets as follows. Let ϕ(u, v) be such that S = {ϕ(u,Mk) : u ∈ Ω}. For any u ∈ Ω,

with S = ϕ(u,Mk), let Ωm(u) denote the set of all index tuples 〈u1, . . . , um−1〉 such that

〈ϕ(u1,M
k), . . . , ϕ(um−1,M

k)〉 ∈ Sm(S). Clearly the family {Ωm(u) : u ∈ Ω} is definable.

Like {Sm(S) : S ∈ S}, it has the finite intersection property.

By Lemma 5.3.8 it follows that {Ωm(u) : u ∈ Ω} admits a finite tame transversal. That

is, we may partition Ω into finitely many definable subfamilies Ω1, . . . ,Ωs satisfying that, for

each 1 ≤ i ≤ s, the family {Ωm(u) : u ∈ Ωi} extends to a definable type. Note that, since

by assumption S does not have a finite tame transversal, there must be some 1 ≤ i ≤ s such

that Si = {ϕ(u,Mk) : u ∈ Ωi} does not have a finite tame transversal either. Hence, by

passing if necessary to a subfamily of S, we may assume that {Ωm(u) : u ∈ Ω} extends to a

definable type p.

Let N = (N, . . .) be a tame extension of M that realizes p. Such an extension exists by

the Marker-Steinhorn Theorem (Theorem 2.1.8 ). Onwards let S∗ = S(N ) and X∗
i = Xi(N )

for every S ∈ S and 1 ≤ i ≤ n+ 1. That is, we use an asterisk to denote the interpretation

in N of a definable set in M. Let c = 〈c1, . . . , cm−1〉 be a realization in N of p and, for

1 ≤ i < m, let Si = ϕ(ci, N
k). Then we have that {S1, . . . , Sm−1} is (n+ 1)-inconsistent and

{S1, . . . , Sm−1} ∩ (X∗
i ∪ bdX∗

i+1
(S∗ ∩ X∗

i+1)) is i-inconsistent for every 1 ≤ i ≤ n. We prove

that there exists S ∈ S such that the family {S1, . . . , Sm−1, S
∗} witnesses Prop(m,n) in N ,

by satisfying that {S1, . . . , Sm−1, S
∗} ∩ X∗

i is i-inconsistent for every 1 ≤ i ≤ n + 1. Since

N is an elementary extension then an analogous family witnessing Prop(m,n) in M must

exist too.

Let C be a cell decomposition of Nk compatible with each intersection of sets in

{S1, . . . , Sm−1, X
∗
1 , . . . , X

∗
n, X

∗
n+1}. For each cell C ∈ C we choose a point ξC ∈ C. Since

S does not have a finite tame transversal there exists S ∈ S such that S∗ ∩{ξC : C ∈ C} = ∅.
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Since X1 is finite we also choose S so that S ∩ X1 = ∅. Let F = {S1, . . . , Sm−1, S
∗}. We

show that F ∩X∗
i is i-inconsistent for every 1 ≤ i ≤ n+ 1.

Towards a contradiction suppose that there exists some 1 ≤ i ≤ n+1 and a subset F ′ ⊆ F

of cardinality i such that ∩F ′ ∩ X∗
i 6= ∅. Note that, by construction of {S1, . . . , Sm−1}, it

must be that S∗ ∈ F ′. If i = 1 then F ′ = {S∗} and S∗ ∩ X∗
1 6= ∅ contradicts that

S ∩ X1 = ∅. Suppose that i > 1. Let F ′′ = F ′ \ {S∗} and let us fix a cell C ∈ C such that

C ∩ (∩F ′) ∩X∗
i 6= ∅. Since C is compatible with ∩F ′′ ∩X∗

i it must be that C ⊆ ∩F ′′ ∩X∗
i .

Moreover recall that ∩F ′′ (and in particular C) is disjoint from bdX∗
i
(S∗ ∩X∗

i ). By definable

connectedness from C ∩ S∗ 6= ∅ it follows that C ⊆ S∗. This however contradicts that

ξC /∈ S∗. This completes the proof of the theorem.

Note that, if we add to the statement of Theorem 5.3.9 the condition that all the sets in

S are finite, then the transversal can always be assumed to be in M .

With the use of the Alon-Kleitman-Matoušek (p, q)-theorem (Theorem 5.1.5 ),

Lemma 5.3.8 can be used to prove a different version of Theorem 5.3.9 , where the n + 1

in the statement is substituted by any interger greater than the VC-codensity of S. We

highlight this in the following corollary.

Corollary 5.3.11. Let S be a definable family of sets with the (m,n)-property, where m ≥ n

and n is greater than the VC-codensity of S. Then S admits a finite tame transversal.

Proof. For simplicity we assume that S ⊆ P(M), the proof otherwise being analogous.

Applying Theorem 5.1.5 there exists a natural number k > 0 such that every finite S ′ ⊆ S

has a transversal of cardinality at most k.

Let F = {F (S) ⊆ Mk : S ∈ S} be the definable family of sets given by F (S) =

(S ×Mk−1) ∪ (M × S ×Mk−2) ∪ · · · ∪ (Mk−1 × S). Note that F has the FIP. To see this it

suffices to note that, if S ′ is a finite subfamily of S, and {x1, . . . , xk} ⊆ Mk is a transversal

for S ′, then 〈x1, . . . , xk〉 ∈ Mk is in every F (S) for S ∈ S ′.

So, applying Lemma 5.3.8 , F has a finite tame transversalG ⊆ Uk. LetH = ∪1≤i≤kπi(G),

where πi denotes the projection to the i-th coordinate. We claim that H is a tame transversal

for S. This follows from the observation that, for every S ∈ S and 〈x1, . . . , xk〉 ∈ F (S), there

is some i such that xi ∈ S.
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Recall that Theorem 5.1.6 states that any uniform family S ⊆ Def(Mn) has VC-

codensity at most n. One may use this to derive Theorem 5.3.9 from Corollary 5.3.11 .

The following example shows that the bounds in Theorem 5.3.9 and Corollary 5.3.11 

cannot be improved.

Example 5.3.12. For any u, v ∈ M consider the “cross” S(u, v) = ({u} ×M) ∪ (M × {v}).

The family of crosses S = {S(u, v) : u, v ∈ M} is a definable family of subsets of M2 with

VC-codensity 2. To prove the latter we leave it to the reader to check that
(

n
2

)
+n ≤ π∗

S(n) ≤

(n+1)2. Moreover S is 2-consistent, since {〈u1, v2〉, 〈u2, v1〉} ⊆ S(u1, v1)∩S(u2, v2) for every

u1, v1, u2, v2 ∈ M . We observe that S does not have a finite transversal in any elementary

extension.

Let M 4 N = (N, . . .) and X ⊆ N2 be a finite set. Let X ′ ⊆ M be the set of coordinates

of points in X. Pick any u, v /∈ X ′ ∩ M . Then clearly the interpretation of S(u, v) in N is

disjoint from X.

Note that Lemma 5.3.3 shows that a definable family of subsets of M has a finite tame

transversal if and only if it has the (ω, 2)-property. We ask whether Theorem 5.3.9 can be

improved to generalize this to higher dimensions.

Question 5.3.13. Let S ⊆ (Mn) be a definable family of nonempty sets and let n =

max{1,max ∪S}. If S has the (ω, n+1) property then does it have a finite tame transversal?

Note that the answer to the above question is positive when M is ω1-saturated.

We now present a proposition that follows from the ideas in the proof of Lemma 5.3.3 .

Proposition 5.3.14. Let S ⊆ P(M) and k be such that every S ∈ S is union of at most k

open or closed intervals and points. Suppose that S is (k + 1)-consistent. Then at least one

of the following holds:

(i) S has a finite transversal in M ,

(ii) S extends to a definable type.

Proof. Suppose that S as in the proposition does not have a finite transversal in M and also

does not extend to a definable type. We prove that S is not (k + 1)-consistent. Since the
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construction and arguments that follow are similar to those in the proof of Lemma 5.3.3 we

are concise in the presentation.

If S does not have a finite transversal in M then for every finite X ⊆ M there is S ∈ S

with S ∩X = ∅. Let S ∈ S(U) be such that S∩M = ∅. Since S is union of at most k points

and intervals, there are at most k cuts (P1, Q1), . . . , (Pm, Qm) in M such that every point in

S realizes one of these cuts. We show that for every 1 ≤ i ≤ m there exists some Si ∈ S

that is disjoint from (Pi, Qi). It follows that the family S, S1(U), . . . , Sm(U), which has size

at most k + 1, has empty intersection. Hence S is not (k + 1)-consistent.

Let us fix 1 ≤ i ≤ m. If (Pi, Qi) is definable then by assumption there exists some

Si ∈ S that is disjoint from the cut. Suppose that (Pi, Qi) is not definable. Let us fix

a ∈ Pi and b ∈ Qi with {a, b} ⊂ Pj or {a, b} ⊂ Qj for every j 6= i. Note that, since

(Pi, Qi) is not definable, we have that (a,+∞) ∩ Pi 6= ∅. Consider the definable set F =

{t ∈ M : t > a and there exists S ∈ S with (a, t) ∩ S = ∅}. Then S witnesses the fact that

(a,+∞) ∩ Pi ⊆ F . Since (Pi, Qi) is not definable we have that F ∩Qi 6= ∅ (see Claim 5.3.6 

in the proof of Lemma 5.3.3 ). By definition of F we conclude that there exists some Si ∈ S

disjoint from (Pi, Qi).

It is possible that the above proposition can be generalized to higher dimensions, albeit

that author has not been able to prove a precise statement for said generalization.

We end with another example of a result on transversals from finite and compact combi-

natorics (Proposition 5.1.4 ) that adapts to definable families in o-minimal structures. Since

the result is not central to this chapter, we will, like in the previous proposition, be concise

in the proof.

Proposition 5.3.15. Let S ⊆ P(M) be a definable family of intervals. Let k ≥ 1 be the

maximum such that there exists k pairwise disjoint sets in S. Then S has a tame transversal

of size k.

Proof. We proceed by induction on k.

For the base case k = 1 let H be the definable set of all left endpoints of intervals in S.

Let a = supH. Since k = 1, meaning that S is 2-consistent, note that, by definition of H,

every right endpoint of an interval in S must be greater or equal to a. Now suppose that
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S does not extend to the definable type with basis {(t, a) : t < a}. Then there must exist

S ∈ S with S ⊆ [a,+∞). Additionally suppose that S does not extend to the definable

type with basis {(a, t) : a < t}. Then there must exists S ′ ∈ S with S ′ ⊆ (−∞, a]. Finally,

suppose that S does also not extend to tp(a/M), and let S ′′ ∈ S be such that a /∈ S ′′. If

S ′′ ⊆ (−∞, a) then S ′′ ∩ S = ∅ and if S ′′ ⊆ (a,+∞) then S ′′ ∩ S ′ = ∅, contradicting that

k = 1.

Now let k > 1. Let S0 ⊆ S be the subfamily of leftmost intervals in any pairwise disjoint

subfamily of S of size k. Note that, but induction hypothesis, the definable family S \S0 has

a tame transversal of size k − 1. We complete the proof by noting that S0 is 2-consistent,

and so, by the base case, extends to a definable type.

Suppose towards a contradiction that there are S, S ′ ∈ S0 with S ∩ S ′ = ∅. Without loss

of generality let S < S ′. Let F ⊆ S be a subfamily of size k of pairwise disjoint sets that

includes S ′ as leftmost interval. Then the family {S} ∪ F is a family of size k+ 1 of pairwise

disjoint sets. Contradiction.

5.3.1 Forking, dividing and definable types

In this subsection we reformulate Theorem 5.3.9 as a statement about the relationship

between forking and definable types known in o-minimal and some more general NIP theories.

This is the subject of ongoing research among NIP theories [46 ]. Until the end of the

subsection we drop the assumption that M and U are o-minimal.

Recall that formula ϕ(x, b) k-divides over A (a small set), for some k ≥ 1, if there exists

a sequence of elements (bi)i<ω in U l(b), with tp(bi/A) = tp(b/A), such that every k-element

subset of {ϕ(x, bi) : i < ω} is inconsistent. Equivalently, if the family of sets of the form

ϕ(U l(x), b′), where tp(b′/A) = tp(b/A), does not have the (ω, k)-property. A formula ϕ(x, b)

divides if it k-divides for some k. Conversely, a formula ϕ(x, b) does not divide over A if the

family {ϕ(U l(x), b′) : tp(b′/A) = tp(b/A)} has the (ω, k)-property for every k. Hence, not

dividing is an intersection property.
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A formula forks over A if it implies a finite disjunction of formulas that divide each over

A. In NTP2 theories (a class which includes NIP and simple theories) forking and dividing

over a model are equivalent notions (see Theorem 1.1 in [8 ]).

The next equivalence was proved first for o-minimal expansions of fields2
 by Dolich [12 ]

(where he considers forking over any set and not just models) and for unpackable VC-

minimal theories (a class which includes o-minimal theories) by Cotter and Starchenko [9 ].

The following is the best generalization up to date, due to Simon and Starchenko [47 ].

Theorem 5.3.16 ([47 ], Theorem 5). Let T be a dp-minimal L-theory with monster model U

satisfying that, for every set A ⊆ U , every unary set definable over A extends to a definable

type in S1(A). Let M |= T and ϕ(x, d) ∈ L(U). The following are equivalent.

(i) ϕ(x, d) does not fork over M .

(ii) ϕ(x, d) extends to an M-definable type.

For precise definitions of unpackable VC-minimal and dp-minimal theory see the corre-

sponding references. By the equivalence between forking and dividing in NTP2 theories, (i) 

and (ii) above are also equivalent to ϕ(x, d) not dividing over M .

We wish to observe that, in the o-minimal setting, a version of Theorem 5.3.16 , which

considers any set A ⊆ M in place of M and a condition weaker than not dividing, follows

from our Theorem 5.3.9 . First however we must prove a parameter characterization of the

property of having a finite tame transversal. This corresponds to Proposition 5.3.18 . We

first need a short lemma.

Lemma 5.3.17. Let A ⊆ M . Let p ∈ Sn(U) be a type definable over a tuple b ∈ Um.

Suppose the tp(b/M) is A-definable. Then the restriction of p to M (the partial type of

M-definable sets in p) is A-definable.

Proof. Let ϕ(x, y) be a partitioned formula with l(x) = n and ψ(y, b) be the definition of

p|ϕ. Since the type of b over M is A-definable the set ψ(Mn, b), which corresponds to all

y ∈ M l(y) such that ϕ(x, y) ∈ p, is A-definable.
2↑ Dolich actually works with “nice” o-minimal theories, a class of structures which includes o-minimal
expansions of fields.
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Proposition 5.3.18 (Parameter characterization of having FTT). Let M be o-minimal and

A ⊆ M . Let S be an A-definable family of sets with a finite tame transversal of size n. Then

S has a finite tame transversal over A of size n. In other words, S can be covered by n

subfamilies, each of which extends to an A-definable type.

Proof. Let S ⊆ Def(Mm) be an A-definable family of sets having a finite tame transversal

of size n. By Theorem 5.2.11 there exists n formulas ϕ1(x, y1, a1), . . . , ϕn(x, yn, an), with

parameters a1, . . . an respectively, such that, for every i, the family {ϕ(Mm, yi, ai) : yi ∈

M l(yi)} is a downward directed and, moreover, for every S ∈ S, there is some i and bi ∈ M l(yi)

such that ϕi(Mm, bi, ai) ⊆ S.

Let X denote the set of points 〈c1 . . . , cn〉 in ∏
i M

l(ai) satisfying that the formulas

ϕ1(x, y1, c1), . . . , ϕn(x, yn, cn) have the properties described above for ci = ai. That is, each

ϕi(x, yi, ci) describes a downward directed family and, for every S ∈ S, there is one such

family that is finer than S. This set is nonempty, since 〈a1, . . . , an〉 ∈ X. Note that X is

A-definable.

By Proposition 5.2.15 (applied to a family with only one set) let p be an A-definable type

extending X and 〈c1, . . . , cn〉 a realization of p in ∏i U
l(ai). Note in particular that, for every

i, tp(ci/M) is A-definable. By Proposition 5.2.15 let pi ∈ Sm(U) be a type ci-definable type

extending {ϕi(x, yi, ci) : yi ∈ U l(yi)}. Note that, by definition of X, every set S ∈ S belongs

in a type pi for some i.

Finally for any i let qi be the restriction of pi to M . By Lemma 5.3.17 these restrictions

are A-definable. Moreover every S ∈ S belongs in qi for some i.

Note that, by a first-order logic compactness argument, a formula ϕ(x, b) does not k-

divide over a small set A if and only if there exists Ω ∈ tp(b/A) and some m ≥ k such that

{ϕ(U l(x), u) : u ∈ Ω} has the (m, k)-property. Using this fact and Proposition 5.3.18 one

may check that the next theorem is equivalent to a weaker form of Theorem 5.3.9 with k in

place of n in its statement.

Theorem 5.3.19. Let M be o-minimal. Let ϕ(x, b) be a formula, l(x) = n, and A be a

small set. The following are equivalent.
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(1) ϕ(x, b) does not (n+ 1)-divide over A.

(2) ϕ(x, b) extends to an A-definable type.

Clearly a formula that extends to an A-definable type does not divide over A, and if

it does not divide over A then in particular it does not k-divide over A for any k, so the

two statements above are also equivalent to ϕ(x, b) not dividing over A. Moreover Cotter-

Starchenko [9 ] (Corollary 5.6) showed that, in unpackable VC-minimal theories (in particular

o-minimal theories), dividing and forking over sets are equivalent notions. So Theorem 5.3.19 

implies in particular a parameter version of the o-minimal part of Theorem 5.3.16 .

Finally, it is probably worth noting that the Alon-Kleitman-Matoušek (p, q)-theorem

(Theorem 5.1.5 ) implies the equivalence between a formula ϕ(x, b) dividing over A and k-

dividing over A, where k is any integer greater than the VC-codensity of {ϕ(U l(x) : b′) :

tp(b′/A) = tp(b/A)}. By Theorem 5.1.6 , in the o-minimal setting these two properties are

also equivalent to having that ϕ(x, b) (l(x) + 1)-divides over A.

5.4 Definable compactness

In this section we introduce several first order properties that aim to capture the notion of

topological compactness among definable topological spaces in o-minimal structures. Relying

on results from previous sections, we characterize definable compactness by proving the

equivalence of these various notions (Theorem 5.4.9 ). We also prove the equivalence between

definable compactness and compactness in o-minimal expansions of (R, <) (Corollary 5.4.14 ).

We include a preliminary subsection with the relevant definitions and some toolbox facts.

5.4.1 Definitions and basic facts

The following is our main definition.

Definition 5.4.1. A definable topological space (X, τ) is definably compact if every definable

downward directed family of τ -closed subsets of X has nonempty intersection.
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This notion has been explored in recent years by Johnson [27 ], Fornasiero [23 ] and the

author, Thomas and Walsberg [2 ]. It differs from the classical definition of definable com-

pactness within o-minimality [37 ], which we now present.

Let (X, τ) be a definable topological space. Generalizing terminology from [37 ], we say

that a curve γ : (a, b) → X is τ -completable if both τ -limt→a γ and τ -limt→b γ exist.

Definition 5.4.2. A definable topological space (X, τ) is definably curve-compact if every

definable curve in X is τ -completable.

Definition 5.4.2 was introduced, with the name “definable compactness”, by Peterzil and

Steinhorn [37 ], in the context of “definable spaces” in the sense of van den Dries [17 ] (Chapter

10). It has been used used in more general settings by Thomas [48 ] and Walsberg [49 ]. With

the aim of establishing a parallelism with general topology, we rename this property definable

curve-compactness, and reserve the former label for a definition (Definition 5.4.1 ) in terms

of families of closed sets.

The next definition is due to Fornasiero [23 ].

Definition 5.4.3. Let (X, τ) be a definable topological space and p, q be two types on X.

The type q is a specialization of p if, for every τ -closed set C ∈ p, it holds that C ∈ q. A

point x ∈ X is a specialization of p if tp(x/M) is, i.e. if x is contained in every τ -closed set

in p.

We say that (X, τ) is specialization-compact if, for every definable type p ∈ SX(M), there

exists x ∈ X that is a specialization of p.

Let (X, τ) be a definable topological space and let N be an elementary extension of M.

For any definable set S, let S(N ) denote the interpretation of S in N . Given x, y ∈ X(N ),

it would be reasonable to describe y as being infinitely close to x (with respect to M) if,

for every definable (over M) τ -neighborhood A of x, it holds that y ∈ A(N ). By the

Marker-Steinhorn Theorem (Theorem 2.1.8 ), Definition 5.4.3 can then be interpreted as the

condition that, in any tame extension N of M, every point in X(N ) is infinitely close to a

point in X.

Remark 5.4.4. In the paper by Thomas, Walsberg and the author [2 ] on which Chapter 4 

is based we use Theorem 4.2.2 to prove the equivalence between definable compactness
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and definable curve-compactness in o-minimal expansions of ordered groups ([2 ], Corollary

44), and Theorem 4.4.2 to prove the equivalence between definable curve-compactness and

specialization-compactness in o-minimal expansions of ordered fields ([2 ], Corollary 47). We

derive the equivalence between definable curve-compactness and classical compactness in

o-minimal expansions of the field of reals ([2 ], Corollary 48). Since all these results are

generalized in the next section we omit them in this thesis.

In the next proposition we present some basic facts around definable compactness. They

correspond to Lemmas 3.5 (1), 3.8, 3.4 and 3.11 in [27 ]. The proofs follow mostly the

treatment of the analogous results in general topology.

Proposition 5.4.5. Let (X, τ) and (Y, µ) be a definable topological spaces.

(1) If (X, τ) is definably compact then, for any definable τ -closed subset C, the subspace

(C, τ) is definably compact.

(2) Suppose that (X, τ) is Hausdorff and let C ⊆ X be a definable set such that the subspace

(C, τ) is definably compact, then C is τ -closed.

(3) Suppose that (X, τ) is definably compact and let f : (X, τ) → (Y, µ) be a definable

continuous function. Its image (f(X), µ) is definably compact.

(4) Suppose that (X, τ) is definably compact and (Y, τ) is Hausdorff. If f : (X, τ) → (Y, τ)

is a definable continuous bijection then it is a homeomorphism.

Peterzil and Steinhorn proved ([37 ], Theorem 2.1) that a euclidean space is definably

curve-compact if and only if it is closed and bounded. Johnson proved the analogous fact

for definable compactness ([27 ], Proposition 3.10). From Johnson’s result one easily derives,

using Proposition 5.4.5 (3) , the following lemma.

Lemma 5.4.6. Let (X, τ) be a definably compact definable topological space. Let f : (X, τ) →

(M, τe) be a definable continuous function. Then f reaches its maximum and minimum.

Recall that every compact Hausdorff topological space is regular (in fact it is normal).

We show that the analogous holds in our setting.
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Lemma 5.4.7. Any definably compact Hausdorff definable topological space (X, τ) is regular.

Proof. Towards a contradiction suppose that (X, τ) is not regular. Let x ∈ X and C ⊆ X

be a τ -closed subset with x /∈ C such that clτA ∩ C 6= ∅ for every τ -neighborhood A of

x. By passing to a larger C if necessary we may assume that it is definable. Let B(x) be

a definable basis of τ -neighborhoods of x. Note that the definable family of τ -closed sets

C = {clτ (A) ∩ C : A ∈ B(x)} is downward directed. By definable compactness let y ∈ ⋂ C.

Then y belongs in the τ -closure of any τ -neighborhood of x, but this contradicts that the

space is Hausdorff.

We now include an example that illustrates how the condition of downward directedness

in Definition 5.4.1 cannot be relaxed to simply having the FIP.

Example 5.4.8. Suppose M expands a non-archimedean ordered group. Let r denote an

infinitesimal element in M with respect to another element 1. Then

S = {[0, 1] \ (x− r, x+ r) : x ∈ [0, 1]}

is a definable family of closed sets with the FIP but with empty intersection.

5.4.2 Characterizing definable compactness

The following is our main result on definable compactness.

Theorem 5.4.9. Let (X, τ) be a definable topological space. The following are equivalent.

(1) (X, τ) is definably compact.

(2) (X, τ) is specialization-compact.

(3) Any definable family of τ -closed sets that extends to a definable type has nonempty

intersection.

(4) Any definable family of τ -closed sets with the FIP has a finite transversal in X.

(5) Any definable family C of τ -closed sets with the (m,n)-property, where m ≥ n >

max{1, dim ∪C}, has a finite transversal in X.
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(6) Any definable family C of τ -closed sets with the (m,n)-property, where m ≥ n and n

is greater than the VC-codensity of C, has a finite transversal in X.

Moreover all the above imply and, if τ is Hausdorff or M has definable choice, are equivalent

to:

(7) (X, τ) is definably curve-compact.

Remark 5.4.10.

(i) In [35 ] (Theorem 2.1) Peterzil and Pillay extracted from [12 ] the following. Suppose

that M has definable choice (e.g. expands an ordered group). Let U be a monster

model and φ(x, b) be a formula in L(U) such that φ(U l(x), b) is closed and bounded.

If the family {φ(U l(x), b′) : tp(b′/M) = tp(b/M)} has the finite intersection property,

then φ(U l(x), b) has a point in M l(x). They derive from this (Corollary 2.2 (i) in [35 ])

that any definable family of closed and bounded (equivalently definably compact with

respect to the euclidean topology) sets with the finite intersection property has a

finite transversal. Our work generalizes these results in a number of ways: we drop

assumptions on M besides o-minimality, and consider any M -definable topology. We

also weaken the intersection assumption (in their work they actually observe that it

suffices being k-consistent for some k in terms of l(x) and l(b)) without the use of VC

or forking theory.

(ii) (p, q)-theorems are closely related to so-called Fractional Helly theorems (see [32 ]),

which built on the classical Helly theorem. In its infinite version this theorem states

that any family of closed and bounded convex subsets of Rn that is (n+ 1)-consistent

has nonempty intersection. With an eye towards definably extending Lipschitz maps,

Aschenbrenner and Fischer [5 ] proved (Theorem B) a definable version of Helly’s The-

orem (i.e. for definable families) in definably complete expansions of real closed fields.

Our Theorem 5.4.9 and the arguments in Section 3.2 in [5 ] allow a generalization of the

o-minimal part of this definable Helly Theorem, by asking that the sets be definably

compact and closed in some definable topology instead of closed and bounded. More-
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over, by appropriately adapting Corollary 2.6 in [5 ], one may show that every definable

family of convex subsets of Mn that is (n+ 1)-consistent extends to a definable type.

Remark 5.4.11. In Chapter 6 (Proposition 6.2.4 ) we prove the equivalence of definable

compactness and definable curve-compactness for all one-dimensional definable topological

spaces.

Remark 5.4.12. Recall the notion of definable net γ : (Ω,4) → (X, τ) described in Chap-

ter 4 (Section 4.5 ). A subnet (a Kelley subnet) of γ is a net of the form γ′ = γ ◦ µ where

µ : (Ω′,4′) → (Ω,4) is a downward cofinal map. We say that γ′ is a definable subnet if all

of (Ω′,4′), µ and γ are definable.

Classically a topological space is compact if and only if every net in it has a converging

subnet. If M has definable choice then one may show that definable compactness is equiva-

lent to the condition that every definable net has a converging definable subnet. The proof

follows the proof of the classical result, using only definable choice (otherwise it does not

require o-minimality). See the paper of Thomas, Walsberg and the author [2 ] (Corollary 44)

for a proof in o-minimal expansions of ordered groups.

We divide Theorem 5.4.9 into a number of propositions, all proving how definable com-

pactness of (X, τ) relates to the other properties. The equivalence between (1) and (2) 

is given by Proposition 5.4.13 . The equivalence between (1) , (4) , (5) and (6) is given by

Proposition 5.4.15 . All the proofs make use of results from previous sections. Finally the

implication (1) ⇒(7) , and reverse implication when τ is Hausdorff or M has definable choice,

are given by Proposition 5.4.17 .

Proposition 5.4.13. Let (X, τ) be a definable topological space. Then (X, τ) is definably

compact if and only if it is specialization-compact.

Proof. Suppose that (X, τ) is specialization-compact and let C be a definable downward

directed family of τ -closed sets. By Lemma 5.2.6 C extends to a definable type p. Let x ∈ X

be a specialization of p, then x ∈ C for every C ∈ C. It follows that (X, τ) is definably

compact.
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Conversely suppose that (X, τ) is definably compact, and let p ∈ SX(M) be a definable

type. Let B denote a definable basis for the topology τ . By Lemma 5.2.9 let F ⊆ p be a

downward directed definable family of sets that is complete for B. By definable compactness

there exists x ∈ ⋂{clτ (F ) : F ∈ F}. We show that x is a specialization of p.

Let us fix a closed set C ∈ p. If x /∈ C then there is A ∈ B such that x ∈ A and

A∩C = ∅. Since x ∈ ⋂{clτ (F ) : F ∈ F} we have that A∩ F 6= ∅ for every F ∈ F . Since F

is complete for B it follows that there must be some F ∈ F with F ⊆ A. But then F ∩C = ∅,

contradicting that both F and C belong in p.

Corollary 5.4.14. Suppose that M extends (R, <), the linear order of reals, and let (X, τ)

be a definable topological space. Then (X, τ) is definably compact if and only if it is compact.

Proof. If (X, τ) is compact then it is clearly definably compact. We prove the direct impli-

cation.

Suppose that (X, τ) is definably compact and let C be a family of closed sets with the

FIP. Let B be a definable basis for τ . We show that ∩C 6= ∅. Note that, by definability of

the topology, for every C ∈ C and x ∈ X \ C there exists a definable open set A(x,C) ∈ B

such that x ∈ A(x,C) and A(x,C) ∩C = ∅. Then ∩C = ∩{X \A(x,C) : C ∈ C, x ∈ X \C}.

So we may assume that all the sets in C are definable, i.e. C is a partial type.

Let p be a type expanding C. By the Marker-Steinhorn Theorem (Theorem 2.1.8 ) p is

definable. By Proposition 5.4.13 let x ∈ X be a specialization of p. Then x ∈ ∩C.

Proposition 5.4.15. Let (X, τ) be a definable topological space. The following are equivalent.

(1) The topology τ is definably compact.

(2) Any definable family of τ -closed sets that extends to a definable type has nonempty

intersection.

(3) Any definable family of τ -closed sets with the FIP has a finite transversal in X.

(4) Any definable family C of τ -closed sets with the (m,n)-property, where m ≥ n >

max{1, dim ∪C}, has a finite transversal in X.
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(5) Any definable family C of τ -closed sets with the (m,n)-property, where m ≥ n and n

is greater than the VC-codensity of C, has a finite transversal in X.

Proof. We prove that definable compactness (1) is equivalent to each of the other statements.

By Theorem 5.2.11 any definable downward directed family extends to a definable type (in

particular it has the FIP). If it admits a finite transversal, then it clearly (Fact 5.2.4 ) has

nonempty intersection. Hence, (2) , (3) , (4) and (5) imply (1) . We show that (1) ⇒(2) .

The implications (1) ⇒(4) and (1) ⇒(5) then follow from Theorem 5.3.9 and Corollary 5.3.11 

respectively. The implication (1) ⇒(3) follows because (4) ⇒(3) is obvious.

The implication (1) ⇒(2) follows easily from applying specilization-compactness as follows

(in general the equivalence between specialization compactness and (2) holds regardless of

o-minimality). Suppose that τ is definably compact and let C be a definable family of τ -

closed sets that extends to a definable type p. By Proposition 5.4.13 there exists x ∈ X a

specialization of p. Clearly x ∈ ⋃ C.

Finally we prove the connection between definable compactness and definable curve-

compactness stated in Theorem 5.4.9 . That is, that definable compactness implies defin-

able curve-compactness in general, and that both notions are equivalent when the topology

is Hausdorff or when the underlying structure M has definable choice. This is Proposi-

tion 5.4.17 . We follow the proposition with an example of a non-Hausdorff topological space

definable in the trivial structure (M,<) that is definably curve-compact but not definably

compact (Example 5.4.20 ).

The next lemma allows us to apply definable choice in certain instances even when the

underlying structure M does not have the property.

Lemma 5.4.16 (Definable choice in compact Hausdorff spaces). Let C ⊆ Mm be a definable

nonempty τ -closed set in a definably curve-compact Hausdorff definable topological space

(X, τ). Suppose that τ and C are A-definable. Then there exists a point x ∈ C ∩ dcl(A),

where dcl(A) denotes the definable closure of A.

Consequently, for any A-definable family {ϕ(u,Mm) : u ∈ Ω} of nonempty subsets of X,

there exists an A-definable selection function s : Ω → X such that s(u) ∈ clτ (ϕ(u,Mm)) for

every u ∈ Ω.

113



Proof. We prove the first paragraph of the lemma. The uniform result is derived in the usual

way by the use of first-order logic compactness.

For this proof we adopt the convention of the one point euclidean space M0 = {0}. In

particular any projection Mk → M0 in simply the constant function 0 and any relation

E ⊆ M0 ×Mk is definable if and only if its restriction to Mk is.

Let C and τ be as in the Lemma. Let 0 ≤ n ≤ m be such that there exists an A-definable

function f : D ⊆ Mn → C, for D a nonempty set. If n can be chosen to be zero then the

lemma follows. We prove that this is the case by backwards induction on n.

Note that n can always be chosen equal to m by letting f be the identity on C. Suppose

that 0 < n ≤ m. For any x ∈ Mn−1 let Dx denote the fiber {t ∈ M : 〈x, t〉 ∈ D}. For each

x ∈ π(D) let sx = supDx, and consider the A-definable set H = {x ∈ π(D) : sx ∈ Dx}.

If H 6= ∅ then let g be the map x 7→ f(sx) : H → C. If H = ∅ then let g be

the map x 7→ τ - limt→s−
x
f(〈x, t〉) : π(D) → C which, by definable curve-compactness and

Hausdorffness, is well defined. In both cases g is an A-definable nonempty partial function

Mn−1 → C.

Lemma 5.4.16 implies that, even when M does not have definable choice, if an A-definable

family of sets S in an A-definable definably curve-compact Hausdorff topology has a finite

transversal, then it also has one in dcl(A). To prove this it suffices to note that, for any

k ≥ 1, the set of k-tuples of points corresponding to a transversal of S is A-definable and

closed in the product topology.

Proposition 5.4.17. Let (X, τ) be a definable topological space. If (X, τ) is definably

compact then it is definably curve-compact.

Suppose that either τ is Hausdorff or M has definable choice. Then (X, τ) is definably

compact if and only if it is definably curve-compact.

Proposition 5.4.17 gives a partial answer to a question by Johnson, who asked in [27 ]

(Question 4.14) whether definable compactness and definable curve-compactness are equiva-

lent notions for “definable spaces” in the sense of van den Dries [17 ]. Recall (Remark 5.4.11 )

that in Chapter 6 (Proposition 6.2.4 ) we prove that definable compactness and definable

curve-compactness are also equivalent for all one-dimensional definable topological spaces.
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We prove the left to right direction through a short lemma.

Lemma 5.4.18. Let (X, τ) be a definably compact definable topological space. Then (X, τ)

is definably curve-compact.

Proof. Let γ : (a, b) → X be a definable curve in X. Consider the definable family of τ -

closed nested sets Cγ = {clτ (γ[(a, t)]) : a < t < b}. By definable compactness there exists

x ∈ ∩Cγ. Clearly x ∈ τ - limt→a− γ(t). Similarly one shows that γ τ -converges as t → b.

We now prove a simpler case of the left to right implication.

Lemma 5.4.19. Let (X, τ) be a definable topological space. Suppose that either τ is Hausdorff

or M has definable choice. Let C be a nested definable family of τ -closed nonempty subsets

of X. If (X, τ) is definably curve-compact then ∩C 6= ∅.

Proof. Let C = {ϕ(u,Mm) : u ∈ Ω}, Ω ⊆ Mn, and (X, τ) be as in the lemma. We proceed

by induction on n.

Base case: n = 1.

Consider the definable totally preorder 4 in Ω given by u 4 v if and only if ϕ(u,Mm) ⊆

ϕ(v,Mm). If Ω has a minimum u with respect to 4 then ϕ(u,Mn) ⊆ C for every C ∈ C and

the result is obvious. We suppose that (Ω,4) does not have a minimum and consider the

definable nested family {(−∞, u)4 : u ∈ Ω}. By the base case in the proof of Lemma 5.2.6 

this family extends to a definable type with a basis of sets {(a, t) : t > a} for some a ∈

M ∪ {−∞} or {(t, a) : t < a} for some a ∈ M ∪ {+∞}. We consider the former case, being

the proof for the latter analogous. This means that, for every u ∈ Ω, there exists t(u) > a

such that v 4 u for every a < v < t(u).

If M has definable choice or if τ is Hausdorff (Lemma 5.4.16 ) there exists a definable

function f : Ω → ∪C satisfying that f(u) ∈ ϕ(u,Mm) for every u ∈ Ω. Recall that, for

every u, v ∈ Ω, if v 4 u then ϕ(v,Mm) ⊆ ϕ(u,Mm), and in particular f(v) ∈ ϕ(u,Mn).

It follows that, for every u ∈ Ω, there exists t(u) > a such that f(v) ∈ ϕ(u,Mn) for every

a < v < t(u). Let b > a be such that (a, b) ⊆ Ω and γ be the restriction of f to (a, b). We

conclude that, for every C ∈ C, τ - limt→a γ(t) ∈ C.

Inductive step: n > 1.
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For any x ∈ π(Ω) let C(x) denote the family {ϕ(x, t,Mm) : t ∈ Ωx}, and set C(x) :=

∩C(x). By the base case the definable family of τ -closed sets D = {C(x) : x ∈ π(Ω)} does

not contain the empty set. Clearly ∩D = ∩C. We observe that the family D is nested and

the result follows from the induction hypothesis.

Given x, y ∈ π(Ω), if for every C ∈ C(x) there is C ′ ∈ C(y) with C ′ ⊆ C then ∩C(y) ⊆

∩C(x). Otherwise there is C ∈ C(x) such that, for every C ′ ∈ C(y), it holds that C ⊆ C ′, in

which case ∩C(x) ⊆ C ⊆ ∩C(y).

We may now prove the proposition.

Proof of Proposition 5.4.17 . By Lemma 5.4.18 we must only prove the right to left implica-

tion. Let (X, τ), X ⊆ Mm, be a definably curve-compact Hausdorff definable topological

space. Let C ⊆ P(X) be a definable downward directed family of subsets of (X, τ). We show

that ⋂{clτ (C) : C ∈ C} 6= ∅.

We proceed by induction on n = min{dimC : C ∈ C}. By Lemma 5.2.6 after passing

to a finer family if necessary we may assume that C is a complete family of cells. For the

length of this proof, given two partial M±∞-valued functions f and g let (f, g) = {〈x, t〉 :

x ∈ dom(f) ∩ dom(g) and f(x) < t < g(x)}, relaxing thus the classical notation by allowing

that f and g have different domains.

If n = 0 there exists a finite set in C and so (Fact 5.2.4 ) ⋂ C 6= ∅. We now prove

the case n = m > 0. Hence suppose that every C ∈ C is an open cell C = (fC , gC), for

definable continuous functions fC , gC : π(C) → M±∞ with fC < gC . For any C ∈ C let

D(C) = ⋂{clτ ((fC , gC′)) : C ′ ∈ C}. We first show that these sets are nonempty.

Let us fix C = (f, g) and, for any x ∈ π(C), let C0(x) = τ - limt→f(x)+〈x, t〉. If τ is

Hausdorff then this point is unique, otherwise we use definable choice to pick one such point

definably on x. The definable set C0 = {C0(x) : x ∈ π(C)} has dimension dim(C)−1 = n−1.

For any C ′ = (f ′, g′) ∈ C, the definable set {x ∈ π(C) ∩ π(C ′) : f(x) < g′(x)} is nonempty,

since otherwise we would have C∩C ′ = ∅. It follows that C0 ∩clτ ((f, g′)) 6= ∅. Note that the

definable family {C0 ∩ clτ ((f, gC′)) : C ′ ∈ C} is downward directed. By inductive hypothesis

there is a point that belongs in the τ -closure of C0 ∩clτ ((f, gC′)), in particular in clτ ((f, gC′)),

for all C ′ ∈ C. So D(C) 6= ∅.
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Note that, for every C ∈ C, D(C) ⊆ clτ (C). We now note that the definable family of

nonempty sets {D(C) : C ∈ C} is nested. Then, by Lemma 5.4.19 , ⋂{clτ (D(C)) : C ∈ C} 6=

∅, and thus ⋂{clτ (C) : C ∈ C} 6= ∅.

Let us fix C1 = (f1, g1), C2 = (f2, g2) ∈ C. We may cover B = π(C1) ∩ π(C2) by the

definable sets

B1 = {x ∈ S : f1(x) ≤ f2(x)} and B2 = {x ∈ S : f1(x) > f2(x)}.

Since C is complete there exists some i ∈ {1, 2} such that π(C) ⊆ Bi for some C ∈ C.

Without loss of generality suppose that i = 1, and let us fix C3 ∈ C with π(C3) ⊆ B1. For

any C = (f, g) ∈ C let C ′ = (f ′, g′) ∈ C be such that C ′ ⊆ C∩C3. Clearly (f2, g
′) ⊆ (f1, g

′) ⊆

(f1, g). It follows that D(C2) ⊆ D(C1). This completes the proof of the case n = m > 0.

Finally we prove the case 0 < n < m by adapting the arguments above. Fix Ĉ ∈ C with

dim Ĉ = n < m and a projection π̂ : Mm → Mn such that π̂|Ĉ : Ĉ → π̂(Ĉ) is a bijection. By

passing to a finner subfamily if necessary we may assume that every set in C is contained in

Ĉ. It follows that the definable downward directed family π̂(C) = {π̂(C) : C ∈ C} contains

only open cells in Mn. Note moreover that this family is complete.

Set h := (π̂|Ĉ)−1. Then the proof in the case n = m can be applied to π̂(C)

instead of C, making sure to write throughout clτh(·) in place of clτ (·), and letting

π̂(C)0 = {τ - limt→f(x)+ h(x, t) : x ∈ π(π̂(C))} for any π̂(C) = (f, g) ∈ π̂(C). It follows

that ⋂{clτ (C) : C ∈ C} 6= ∅. This completes the proof of the proposition.

The following is an example of a non-Hausdorff definable topological space in the o-

minimal structure without definable choice (M,<) that is definably curve-compact but not

definably compact.

Example 5.4.20. Let X = {〈x, y〉 ∈ M2 : y < x}. Consider the family B of sets

A(x′, x′′, x′′′, y′, y′′, y′′′) ={〈x, y〉 : y < y′, y < x}∪

{〈x, y〉 : y′′ < y < y′′′ ∧ (y < x < y′′′ ∨ x′ < x < x′′ ∨ x′′′ < x)}

definable uniformly over y′ < y′′ < y′′′ < x′ < x′′ < x′′′.
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Figure 5.1. Depicting (in blue) the set A(x′, x′′, x′′′, y′, y′′, y′′′).

Given any A0 = A(x′
0, x

′′
0, x

′′′
0 , y

′
0, y

′′
0 , y

′′′
0 ) and A1 = A(x′

1, x
′′
1, x

′′′
1 , y

′
1, y

′′
1 , y

′′′
1 ) in B and any

〈x, y〉 ∈ A1 ∩ A2, since every set in B is open in the euclidean topology we may find y′′ <

y < y′′′ < x′ < x < x′′ such that the box (x′, x′′) × (y′′, y′′′) is a subset of A1 ∩ A2. Let y′ <

min{y′′, y′
0, y

′
1} and x′′′ > max{x′′, x′′′

0 , x
′′′
1 }. Then 〈x, y〉 ∈ A(x′, x′′, x′′′, y′, y′′, y′′′) ⊆ A1 ∩A2.

Hence the family B is a definable basis for a topology τ̃ .

This topology is T1, namely every singleton is closed. For every y ∈ M , τ̃ - limt→y+〈t, y〉 =

τ̃ - limt→+∞〈t, y〉 = (M × {y}) ∩X, and, for every x ∈ M , τ̃ - limt→x−〈x, t〉 = (M × {x}) ∩X

and τ̃ - limt→−∞〈x, t〉 = X. In particular τ̃ is not Hausdorff.

Now suppose that M = (M,<). By quantifier elimination we know that in this structure

any definably partial map M → M is piecewise either constant or the identity. Let γ =

(γ0, γ1) : (a, b) → X be an injective definable curve in X. Let I = (a, c) ⊆ (a, b) be an

interval where γ0 and γ1 are either constant or the identity. Since the graph of the identity

is disjoint from X and γ is injective it must be that γi is constant and γ1−i is the identity

on I for some i ∈ {0, 1}.

Suppose that i = 1 with γ1|I having constant value y. Then, by the observations made

above about the topology, γ τ̃ -converges as t → a to either 〈a, y〉 (if y < a) or (M ×{y})∩X

(if a = y). If i = 0, having γ0|I constant value x, then γ τ̃ -converges as t → a to either 〈x, a〉

(if a < −∞) or the whole space X (if a = −∞). Treating the limit as t → b similarly allows

us to conclude that γ is τ̃ -completable. Hence the space (X, τ̃) is definably curve-compact.
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On the other hand the definable downward directed family of nonempty τ̃ -closed sets

{X ∩M × [u,+∞) : u ∈ M} has empty intersection. So (X, τ̃) is not definably compact.

We end the chapter with a question. Notice that all the characterizations of definable

compactness in Theorem 5.4.9 are upfront expressible with infinitely many sentences in the

language of M (you have to check all relevant definable families of closed sets or all definable

curves). In [37 ] it is shown that, in the euclidean topology, a set is definably curve-compact

if and only if it is closed and bounded. Being closed and bounded is expressible by a single

formula. Moreover, given a definably family of sets with the euclidean topology, the subfamily

of those that are closed and bounded is definable. We ask the following.

Question 5.4.21.

(i) Can definable compactness of a given definable topology be expressed with a single

formula in the language of M?

(ii) More generally, given a definable family of definable topological spaces, is the subfamily

of all which are definably compact definable?

5.A Proof of The Marker-Steinhorn Theorem

In this appendix we use the approach of various proofs in this chapter, based on the

the preorder described in Section 5.1.1 , to extract from [31 ] a short proof of the Marker-

Steinhorn Theorem (that avoids a treatment by cases). It is worth noting that a similar

approach via definable linear orders was used by Walsberg [50 ] to prove the theorem in

o-minimal expansions of ordered groups.

Recall that M denotes an o-minimal structure and that, unless stated otherwise, definable

means in M over M . Recall that an elementary extension N of M is tame if, for every s ∈ N ,

the set {t ∈ M : t < s} has a supremum in M ∪ {+∞}. This is also referred to as M being

Dedekind complete in N .

In full generality the Marker-Steinhorn Theorem (Theorem 2.1.8 ) shows that a type

p ∈ Sn(M) is definable if and only if it is realized in some tame extension. We prove the “if”

direction, and direct the reader to [31 ] for the proof of the reverse implication.
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The approach of the proof below involves using cell decomposition to reduce the problem

to showing that any cut in a definable preordered set that is realized in a tame extension is

definable. This of course is obvious for the preordered set (M,≤) by definition of tameness.

Theorem 5.A.1. Let N = (N, . . .) be a tame extension of M. For every a ∈ Nn, the type

tp(a/M) is definable.

Proof. We must prove that, for every a ∈ Nn and formula ϕ(u, a), l(u) = m, the set

ϕ(Mm, a) = {u ∈ Mm : N |= ϕ(u, a)} is definable. We do this by induction on n and m,

where in the inductive step we assume that it holds for any 〈n′,m′〉 smaller than 〈n,m〉 in

the lexicographic order. We may assume that a /∈ Mn.

The case n = 1 (for any m) follows easily from tameness. In particular, let sa be

the supremum in M ∪ {±∞} of (−∞, a) ∩ M . If sa < a then tp(a/M) has a definable

basis of the form {(sa, t) : sa < t ∈ M}, otherwise it has a definable basis of the form

{(t, sa) : sa > t ∈ M}.

Suppose that n > 1 and let a = 〈c, d〉 ∈ Nn−1 × N . Let ψi(Nm, Nn), 0 ≤ i ≤ l, be

a (0-definable) cell decomposition of ϕ(Nm, Nn). For every u ∈ Mm, the set ϕ(u,Nn) is

partitioned by the cells ψi(u,Nn), 0 ≤ i ≤ l. In particular N |= ϕ(u, a) if and only if

N |= ψi(u, a) for some i. So to prove the theorem it suffices to pass to an arbitrary 0 ≤ i ≤ l

and show that ψi(Mm, a) is definable. Hence without loss of generality we assume that all

the sets ϕ(u,Nn) are cells.

By induction hypothesis tp(c/M) is definable. Suppose that there exists an M -definable

partial function f : Nn−1 → N with f(c) = d. Then, for every u ∈ Nm, we have that

N |= ϕ(u, a) if and only if N |= ∃t (ϕ(u, c, t) ∧ (f(c) = t)). And so the result follows.

Hence onwards we assume that there exists no M -definable partial function f with f(c) =

d. In particular we have that every u ∈ Mm with N |= ϕ(u, a) satisfies that ϕ(u,Nn) is

a cell of the form (fu, gu) for two definable continuous functions fu and gu. Let Ω = {u ∈

Mm : ϕ(u,Nn) is of the form (fu, gu) and N |= ∃t ϕ(u, c, t)}. Clearly ϕ(Mm, a) ⊆ Ω. Since

tp(c/M) is definable the set Ω is definable. We prove that the sets {u ∈ Ω : fu(c) < d} and

{u ∈ Ω : gu(c) > d} are definable. Then their intersection equals ϕ(Mm, a). The proof of

definability is the same for both sets, so we show it only for the former.
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Let 4 be the total preorder on Ω induced by {fu(c) : u ∈ Ω} described in Section 5.1.1 , i.e.

for u,w ∈ Ω, u 4 w if and only if fu(c) ≤ fw(c). By definability of tp(c/M) the preordered

set (Ω,4) is definable. Let P = {u ∈ Ω : fu(c) < d} and Q = {u ∈ Ω : fu(c) > d} = Ω \ P .

We must prove that P (equivalently Q) is definable. If P has a supremum in Ω ∪ {±∞}

with respect to 4 then the result is immediate, so we assume otherwise. In particular we

have that, for every u ∈ P and v ∈ Q, dim(u, v)4 > 0.

Note that, to prove the definability of P , it suffices to show that there exists a definable

set P ′ ⊆ P that is cofinal in P , since then P = {u ∈ Ω : u 4 v for some v ∈ P ′}. Similarly

it is enough to show the existence of a defiable Q′ ⊆ Q coinitial in Q. So we may always

pass to a subset Ω′ ⊆ Ω such that either Ω′ ∩ P is cofinal in P or Ω′ ∩ Q is coinitial in Q,

and then prove definability of Ω′ ∩ P or Ω′ ∩Q. Hence, by passing to a subset if necessary,

we may assume that, for any u ∈ P and v ∈ Q,

dim(u, v)4 = dim Ω. (?)

Moreover, note that we may also pass to an arbitrary set in any given definable finite partition

of Ω. In particular, by cell decomposition, we assume that Ω is a cell.

Suppose that m = 1. For each u ∈ Ω(N ) with c ∈ dom(fu) (note that this includes

every u in Ω) let f̂(u) = fu(c). Then f̂ is definable in N over M ∪ {c}. By o-minimality

there exists a partition (definable over M ∪ {c}) of the domain of f̂ into points and intervals

such that, on each interval, f̂ is continuous and either constant or strictly monotonic. Since

tp(c/M) is definable the intersections of these cells with Ω are definable. Note that, on any

such intersection, the restriction of the preorder 4 is either ≤, ≥, or ≤ ∪ ≥ (the trivial

relation where any two points are indistinguishable), depending respectively on whether f̂ is

strictly increasing, decreasing or constant. We fix one such interval I and show that I ∩ P

is definable.

If I ∩ P = I ∩ Ω or I ∩ Q = I ∩ Ω then the result is immediate. Otherwise there exist

u, v ∈ I ∩ Ω such that f̂(u) < d and f̂(v) > d. By continuity there must exist r in the

subinterval of I with endpoints u and v with f̂(r) = d. By tameness J = (−∞, d) ∩ M is
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definable. Finally note that f̂ |I is not constant, and thus it is strictly monotonic. If it is

increasing then it must be that J ∩ I = P ∩ I and otherwise J ∩ I = Q ∩ I.

Now suppose that m > 1. For every x in the projection π(Ω), let 4x be the definable

preorder on the fiber Ωx given by s 4x t if and only if 〈x, s〉 4 〈x, t〉. Note that, following

the arguments in the case m = 1, the sets Px and Qx are definable, and moreover Ωx can be

partitioned into finitely many points and intervals where the restriction of 4x is either ≤,

≥, or ≤ ∪ ≥.

If there exists x ∈ π(Ω) such that {x} × Px is cofinal in P or {x} × Qx is coinitial in

Q, then we are done. Suppose otherwise. We complete the proof by partitioning Ω into

finitely many definable sets with the following property. For each set Σ in the partition and

x ∈ π(Σ), either Σx ⊆ Px or Σx ⊆ Qx. Observe that the set Θ of all x ∈ π(Σ) such that

Σx ⊆ Px is described by

x ∈ π(Σ), ∀t ∈ Σx, f(x,t)(c) < d,

so, by induction hypothesis (applied in the case 〈n,m − 1〉), this set is definable. It follows

that Σ ∩ P = ⋃
x∈Θ({x} × Σx) is definable, and we may conclude that P is definable.

Recall that Ω is a cell. If it is defined as the graph of a function then, by taking Σ in

the above paragraph to be Ω, we are done, so we assume otherwise. Let x ∈ π(Ω). By (? ),

since {x} × Px is not cofinal in P and {x} × Qx is not coinitial in Q, the dimension of

{u ∈ Ω : {x} × Px ≺ u ≺ {x} × Qx} equals dim Ω. Consider r ∈ Ωx to be the right

endpoint of some maximal subinterval I ′ of Px. Then in particular r is the left endpoint of

a subinterval I ′′ of Qx. If r /∈ Px then the set {u ∈ Ω : {x} × I ′ ≺ u ≺ 〈x, r〉} has dimension

dim(Ω). If however r ∈ Px then the set {u ∈ Ω : 〈x, r〉 ≺ u ≺ {x} × I ′′} has dimension

dim(Ω). If r is the right endpoint in Ωx of a a maximal subinterval of Qx then the analogous

holds. Note that, if there exists s, t ∈ Ωx with s ∈ Px and t ∈ Qx, there will always be some

r in the closed interval between s and t with the described properties.

For any u = 〈x, t〉 ∈ Ω, let L(x, t) be the set of v ∈ Ω such that either {x} × I ′ ≺ v ≺ u

or u ≺ v ≺ {x} × I ′ for some interval I ′ ⊆ Ωx with right endpoint t. Similarly let U(x, t)

be the set of v ∈ Ω such that either {x} × I ′′ ≺ v ≺ u or u ≺ v ≺ {x} × I ′′ for some

interval I ′′ ⊆ Ωx with left endpoint t. These sets are definable uniformly on u ∈ Ω. Let Λ
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be the definable set of all u ∈ Ω such that U(u) ∪L(u) has dimension dim(Ω). By the above

paragraph, for every x ∈ π(Ω) and s, t ∈ Ωx, if s ∈ Px and t ∈ Qx, then there is some r in

the closed interval between s and t such that 〈x, r〉 ∈ Λ.

We now show that, for every x ∈ Ω, the fiber Λx is finite. Then the proof is completed

by taking any finite cell partition of Ω compatible with Λ, since, for any Σ in said partition

and x ∈ π(Σ), the fiber Σx is going to be either a point or an interval contained in either Px

or Qx.

Towards a contradiction suppose that Λx is infinite for some x ∈ Ω. Let J ′ be a subinterval

of Λx where 4x is either ≤, ≥ or ≤ ∪ ≥. Then note that, for any distinct s, t ∈ J ′,

the sets L(x, s), U(x, s), L(x, t) and U(x, t) are pairwise disjoint. Since, for every t ∈ J ′,

dim(L(x, t) ∪ U(x, s)) = dim Ω, we derive a contradiction from the Fiber Lemma for o-

minimal dimension (Lemma 2.1.3 ).
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6. ONE-DIMENSIONAL DEFINABLE TOPOLOGICAL

SPACES

Introduction

In this chapter we study definable topological spaces (X, τ) in o-minimal structures where

dimX ≤ 1. We undertake their study in topological terms, considering different separation

axioms and definable topological properties. We classify these spaces accordingly, and study

different classes in terms of piecewise decompositions and existence of definable embeddings

and homeomorphisms.

The axiom of o-minimality implies that the structure of one-dimension definable topo-

logical spaces is rather restrictive, admitting strong classification results, in particular when

compared to spaces of higher dimensions. Nevertheless, among the examples we count de-

finable versions of some rather classical topological spaces such as the Sorgenfrey Line, Split

Interval and the Alexandrov Double Circle (Examples A.3 , A.4 and A.13 respectively). The

thesis following from our results is that these few examples, albeit displaying a wide variety

of distinct (definable) topological properties, act as building blocks describing large classes

of one-dimensional definable topologies.

In Section 6.1 we include some basic definitions, conventions and examples. Section 6.2 

contains preliminary results. In Section 6.3 we prove some results on T1 and Hausdorff spaces.

We show how Hausdorff one-dimensional definable topologies can be decomposed in terms

of the euclidean, discrete and upper and lower limit topologies (Theorem 6.3.9 ). We observe

that the Cantor Space is not a definable topological space (Corollary 6.3.8 ). We also prove

the Gruenhage 3-element basis conjecture in our setting (Remark 6.3.3 ). In Section 6.4 we

prove a decomposition theorem for regular Hausdorff one-dimensional definable topologies

(Theorem 6.4.3 ). In Section 6.5 we show that the class of regular Hausdorff definable topolo-

gies in the line, as well as other classes of spaces, admit an almost definably universal space,

in a sense that is made precise. We answer universality questions. In Section 6.6 we prove

that all regular Hausdorff definable topologies in the line can be Hausdorff compactified in

a definable sense (Theorem 6.6.6 ). In Section 6.7 we address the question of which one-

dimensional definable topological spaces are affine in the setting of an o-minimal expansion
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of an ordered field, proving in particular that it suffices for them to be piecewise euclidean

(Theorem 6.7.1 ). In Section 6.8 we prove metrizability results. We prove a theorem implying

that, in an o-minimal expansion of the field of reals, any one-dimensional definable topol-

ogy that arises from a metric also admits a definable metric (Theorem 6.8.2 ). Section 6.9 

describes the work of Peterzil and Rosel [36 ] on one-dimensional definable topologies in o-

minimal structures, which was published during the writing of this thesis. We describe how

their main result relates to some of ours, and answer some of their open questions.

Most of the results we present fail to generalize to spaces of higher dimensions, as noted

in the examples in Appendix A .

This chapter is based on a paper in preparation with Margaret Thomas and Erik Wals-

berg.

6.1 Definitions and first examples

We fix infinitely many parameters 0 < 1 < 2 < . . . in M , in such a way that it will

be clear from context when these numerals denote elements of M and when they are just

natural numbers. At times we assume that M expands an ordered group (M, 0,+, <) or

field (M, 0, 1,+, ·, <), in which case these parameters have their natural interpretations. In

Sections 6.7 and 6.8 , where we assume throughout that our underlying structure expands an

ordered field, we resort to notation R and R in place of M and M respectively.

See Chapter 2 (Section 2.2 ) for a review of basic notational conventions, definitions and

results regarding definable topological spaces. We use almost all the content of that section

in this chapter. Recall that a topological space is T1 if every singleton is closed, T2 if it is

Hausdorff and T3 if it is Hausdorff and regular. Recall that, given a definable set X, we

denote the euclidean and discrete topologies on X by τe and τs respectively, in such a way

that the notation remains unambiguous.

Recall the notions of definable connectedness (Definition 2.2.9 ), definable separability

(Definition 3.1.1 ), definable compactness (Definition 5.4.1 ), definable metrizability (Defini-

tion 2.2.6 ) and the frontier dimension inequality (f.d.i., Definition 2.2.10 ).
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We present two definable topologies that are relevant to this chapter and which are

immediate generalizations of classical topologies definable in (R, <). Since there will be no

ambiguity we use some standard terminology to refer to them as understood in our setting.

The right half-open interval topology (or lower limit topology) on M (Example A.3 ),

denoted τr, is the topology with definable basis

[x, y) for x, y ∈ M, x < y.

We reserve the name “Sorgenfrey Line” to refer to the classical space, namely (M, τr) when

M expands (R, <). Similarly the left half-open interval topology (or upper limit topology)

on M , denoted τl, is the topology with definable basis

(x, y] for x, y ∈ M, x < y.

These spaces are clearly T3. Much as in general topology, they work as counterexamples to a

number of otherwise plausible sounding conjectures in our setting. We adopt all notational

conventions with respect to τr and τl that were previously set for τe and τs (i.e. we implicitly

address subspace topologies and write r and l in place of τr and τl respectively when used

as subscripts or prefixes).

By o-minimality, for any definable set X ⊆ Mn the euclidean space (X, τe) is definably

separable. On the other hand, when X is infinite, the discrete space (X, τs) is not. If n = 1

then the spaces (X, τr) and (X, τl) are definably separable.

It is easy to note that, for a given infinite definable set X ⊆ M , the spaces (X, τr), (X, τl)

and (X, τs) are not definably compact, and the space (X, τe) is definably compact if and only

if X is e-closed and bounded (by [37 ], Theorem 2.1).

Remark 6.1.1. Clearly any order reversing bijection M → M is a homeomorphism

(M, τr) → (M, τl). Let τ∗ denote either τr or τl. Then for any distinct pair τ, µ ∈ {τe, τ∗, τs}

and intervals I, J ⊆ X, there is no definable homeomorphism (I, τ) → (J, µ).
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This is obvious if one of the topologies is discrete. If {τ, µ} = {τe, τ∗} then it follows from

the fact that, while (I, τe) is definably connected, (J, τ∗) is totally definably disconnected

(i.e. every definably connected subspace is trivial).

In Lemma 2.2.8 we proved that the space (M, τr) is not definably metrizable. The same

proof applies if we consider any infinite definable set X ⊆ M in place of M and also if we put

τl in place of τr. On the other hand both the euclidean and discrete topologies are definably

metrizable on any definable set (with the implicit assumption that M expands an ordered

group).

Consider finitely many definable topological spaces (Xi, τi), Xi ⊆ Mn, 0 ≤ i ≤ k, each

having a basis Bi. Their disjoint union corresponds to the definable set ⋃0≤i≤k{i} × Xi

with definable topology given by basis ⋃0≤i≤k{i} × Bi. Note that, for each i, the map

Xi → ⋃
i{i} ×Xi : x 7→ 〈i, x〉 is a definable open embedding.

Given a definable function f : X → Y , in this chapter we sometimes say that f is

e-continuous or an e-homeomorphism if, as a map (X, τe) → (Y, τe), f is respectively

continuous or a homeomorphism.

6.2 Basic results

We present preliminary results about definable topological spaces (X, τ) where dimX ≤ 1

or more specifically when X ⊆ M , which we informally refer to as spaces “in the line”.

In the terminology of Chapter 4 , the next lemma can be edited to show that every one-

dimensional definable downward (respectively upward) directed set (Ω,4) admits a definable

downward (respectively upward) cofinal map γ : ((a, b),≤′) → (Ω,4), regardless of whether

M expands an ordered field, where ≤′ is either ≤ or the dual order ≥.

Lemma 6.2.1. Let S ⊆ P(Mn) be a definable downward directed family. Suppose there

exists S ∈ S with dimS ≤ 1. Then there exists a definable curve γ : (a, b) → ⋃S and some

c ∈ {a, b} such that, for every S ∈ S, γ(t) ∈ S for all a < t < b close enough to c.

Proof. Since otherwise the result is obvious we assume ⋂S = ∅, in particular it must be that

every set in S is infinite. Since one may always restrict the domain of γ appropriately, we
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construct γ without caring that its image is contained in ⋃S. We first prove the case where

n = 1, showing that it suffices to let γ be the identity on some appropriate interval.

Suppose that n = 1. By the proof of the base case in Lemma 5.2.6 , there exists a

definable nested family of intervals C, whose form is either C = {(a, t) : t > a} for some

a ∈ M ∪ {−∞}, or C = {(t, b) : t < b} for some b ∈ M ∪ {∞}, that is finer than S. In the

former case it suffices to let γ to be the identity on (a,∞), and in the latter the identity on

(−∞, b).

Now suppose that n > 1. Let us fix some S ∈ S and a cell decomposition of D of S. Let

D ∈ D be a cell satisfying that, for every S ∈ S, S ∩D 6= ∅ (see Fact 5.2.4 ). Let f : J → D

be a definable homeomorphism from an interval onto D. Then apply the proof of the case

n = 1 to the family {f−1(S ∩ D) : S ∈ S} to find an interval I and a endpoint c of I such

that, for every S ∈ S, t ∈ f−1(D ∩ S) for all t ∈ I close enough to c. Finally, it suffices to

take γ = f |J∩I .

We derive two important consequences of Lemma 6.2.1 , given by Lemma 6.2.2 and Propo-

sition 6.2.4 below.

Lemma 6.2.2 (Definable curve selection). Let (X, τ), dimX ≤ 1, be a definable topological

space. Then (X, τ) has definable curve selection. That is, if Y ⊆ X is a definable set and

x ∈ X, then x belongs to the closure of Y if and only if there exists a definable curve γ in Y

that converges to x.

Proof. It follows readily from the definition of curve convergence that, if there exists a curve

in Y τ -converging to x ∈ X, then x ∈ clτ (Y ). We prove the converse.

Let (X, τ) be a definable topological space. If X is finite the result is trivial so we assume

that dimX = 1. Let us fix x ∈ X and a definable set Y ⊆ X such that x ∈ clτY . Let B(x) be

a definable basis of τ -neighborhoods of x. Note that the family B(x)∩Y = {A∩Y : A ∈ B(x)}

is downward directed. Now let γ and c be as described in Lemma 6.2.1 . Then γ is a definable

curve in Y and clearly τ - limt→c γ(t) = x.

Note that the above lemma holds in any definable topological space if we add the condi-

tion that either dim Y ≤ 0 or that dimx(X, τ) ≤ 1 (i.e. the local dimension of x in (X, τ) is

at most one).
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Applying Lemma 6.2.2 and Proposition 2.2.14 , we conclude the following. We will use

this corollary often in this chapter.

Corollary 6.2.3. Let (X, τ) and (Y, µ) be definable topological spaces, where dimX ≤ 1.

Let f : (X, τ) → (Y, µ) be a definable map. Then f is continuous at x ∈ X if and only

if, for every definable curve γ : (a, b) → X and c ∈ {a, b}, if τ - limt→c γ(t) = x then

µ- limt→c(f ◦ γ)(t) = f(x).

We may also use Lemma 6.2.1 to prove the equivalence between definable compactness

(Definition 5.4.1 ) and definable curve-compactness (Definition 5.4.2 ) among one-dimensional

spaces.

Proposition 6.2.4. Let (X, τ) be a definable topological space with dimX ≤ 1. Then (X, τ)

is definably compact if and only if it is definably curve-compact.

Proof. By Theorem 5.4.9 any definably compact space is definably curve-compact. We prove

the converse. We may assume that dimX = 1.

Let C be a downward directed definable family of τ -closed subsets of X. Applying

Lemma 6.2.1 let γ : (a, b) → ⋃ C be a definable curve and c ∈ {a, b} be such that, for

every C ∈ C, γ(t) ∈ C for all t close enough to c. By definable curve-compactness let

x = τ - limt→c γ(t). Then clearly x ∈ ⋂ C. We conclude that (X, τ) is definably compact.

By virtue of Proposition 6.2.4 , we refer throughout this chapter to “definable curve-

compactness” as simply “definable compactness”, with reference to both notions.

Definable curve selection also allows us to prove the following facts regarding e-

accumulation sets. For completeness and in accordance with the focus of this chapter we only

prove them for one-dimensional spaces. Nevertheless one may show, using Corollary 4.3.4 ,

that (a) in Proposition 6.2.5 holds for spaces of all dimensions whenever M expands an

ordered field and, adapting Corollary 3.10 in [27 ], that (b) holds in general for spaces of

all dimensions. In the next proposition the euclidean closure means with respect to the

extended euclidean topology on Mm
±∞.

Proposition 6.2.5. Let (X, τ), dimX ≤ 1, be a definable topological space.
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(a) For any x ∈ X, y ∈ Mm
±∞, it holds that y ∈ Ex if and only if there exists an injective

definable curve in X τ -converging to x and e-converging to y.

(b) Let Y ⊆ X be a definable set and x ∈ ∂τY . If τ is T1 then Ex ∩ cleY 6= ∅.

Proof. The left to right implication in (a) is immediate. For the right to left implication

fix x ∈ X and y ∈ Mm
±∞. Consider the definable topology µ on X where every z 6= x is

isolated and where a basis of neighborhoods of x is given by the family {{x}∪ (A∩B \{y}) :

x ∈ A ∈ τ, y ∈ B ∈ τe}. Clearly µ is Hausdorff and finer than τ . Since y ∈ Ex, the sets

(A ∩ B \ {y}), where x ∈ A ∈ τ and y ∈ B ∈ τe, are nonempty. In particular x is in the

µ-closure of X \ {x}. Applying Lemma 6.2.2 there exists a necessarily injective definable

curve γ µ-converging (and thus τ -converging) to x. By construction γ must e-converge to y.

To prove (b) note that, if x ∈ ∂τY , then by Lemma 6.2.2 there is a definable curve in

Y τ -converging to x. If the topology is T1 one such curve cannot be constant and so, by

o-minimality, can be assumed to be injective. By o-minimality said curve e-converges in

Mm
±∞ and the result then follows from the left to right implication of (a) .

We now turn to the notion of e-accumulation set for definable topological spaces in the

line.

Lemma 6.2.6. Let (X, τ), X ⊆ M , be a definable topological space.

(a) Given x, y ∈ X, y ∈ Ex if and only if one of the following holds.

(i) For any τ -neighborhood A of x there exists z > y such that (y, z) ⊆ A.

(ii) For any τ -neighborhood A of x there exists z < y such that (z, y) ⊆ A.

(b) It follows from (a) that, if (X, τ) is Hausdorff then, for any y ∈ M , there exist as most

two points x0, x1 ∈ X such that y belongs in both Ex0 and Ex1 (i.e. for any distinct

x0, x1, x2 ∈ X, Ex0 ∩ Ex1 ∩ Ex2 = ∅).

Proof. If (i) fails then by o-minimality there exists a τ -neighborhood A′ of x and z′ > y such

that (y, z′) ∩A′ = ∅. Similarly if (ii) fails there is a τ -neighborhood A′′ of x and z′′ < y with

(z′′, y) ∩ A′′ = ∅. So A′ ∩ A′′ is a τ -neighborhood of x such that (z′′, z′) ∩ A′ ∩ A′′ ⊆ {y}.

This contradicts that y ∈ Ex. The rest of the lemma is immediate.
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Lemma 6.2.6 motivates the following definition.

Definition 6.2.7. Let (X, τ), X ⊆ M , be a definable topological space. For x ∈ X we

define the right e-accumulation set of x, denoted Rx ⊆ Ex, to be the set of points y ∈ M±∞

satisfying that, for any τ -neighborhood A of x, there exists z > y such that (y, z) ⊆ A.

Namely if {Au : u ∈ Ωx} is a definable basis of τ -neighborhoods of x in (X, τ), then

Rx = {y ∈ M±∞ : ∀u ∈ Ωx, ∃z > y, (y, z) ⊆ Au}.

So the set Rx \ {−∞} is definable. Similarly the left e-accumulation set of x, denoted

Lx ⊆ Ex, is defined to be the set of points y ∈ M±∞ satisfying that, for any τ -neighborhood

A of x, there exists z < y such that (z, y) ⊆ A.

The following proposition follows from the definition of right and left e-accumulation set

and Lemma 6.2.6 .

Proposition 6.2.8. Let (X, τ) be a definable topological space with X ⊆ M and x ∈ X.

Then

(a) the relations {〈x, y〉 : y ∈ Rx} ⊆ X × M±∞ and {〈x, y〉 : y ∈ Lx} ⊆ X × M±∞ are

definable;

(b) Ex = Rx ∪ Lx;

(c) if (X, τ) is Hausdorff then, for any y ∈ X \ {x}, Rx ∩Ry = ∅ and Lx ∩ Ly = ∅.

Remark 6.2.9. By Lemma 2.2.20 and Proposition 6.2.8 (b) , if (X, τ) is T1 then Rx and Lx

are finite for every x ∈ X.

Remark 6.2.10. Let γ be a definable curve in X e-converging to some y ∈ M±∞. Recall

Remark 2.2.12 . If γ is injective then we may assume that it lies in either (y,+∞) or (−∞, y).

In the former case we say that γ e-converges to y from the right and in the latter that it

does so from the left. Note that, if γ e-converges to y from the right (respectively left) and

x ∈ X, then γ τ -converges to x if and only if y ∈ Rx (respectively y ∈ Lx).
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It turns out that, if (X, τ) is T1, then, for any x ∈ X, the sets Rx and Lx characterize a

definable basis of neighborhoods for x. We show this in the next lemma.

Lemma 6.2.11. Let (X, τ), X ⊆ M , be a definable T1 topological space. Let x ∈ X. By

Remark 6.2.9 sets Rx and Lx are finite. Set Rx := {y1, . . . , yn} and Lx := {z1, . . . , zm}.

Consider the family U(x) of sets

{x} ∪
⋃

1≤i≤n

(yi, y
′
i) ∪

⋃
1≤j≤m

(z′
j, zj)

definable uniformly over (y′
1, . . . , y

′
n, z

′
1, . . . , z

′
m) ∈ Mn+m, where yi < y′

i and z′
j < zj. The

definable family {U ∩X : U ∈ U(x)} is a basis of neighborhoods of x in (X, τ).

In particular, in the case where M expands an ordered group and x has a bounded

τ -neighborhood (implying Ex ∩ {−∞,+∞} = ∅), we may take U(x) to be of the form

U(x, ε) := {x} ∪
⋃

y∈Rx

(y, y + ε) ∪
⋃

y∈Lx

(y − ε, y)

for ε > 0.

By passing to a subfamily if necessary, we may (and will) always assume that U(x) is a

family of subsets of X.

Proof. Let U(x) be as in the lemma. By definition of Rx and Lx it clearly holds that, for

every τ -neighborhood A of x, there exists U ∈ U(x) such that U ⊆ A ⊆ X. It therefore

remains to prove that all sets in U(x) are τ -neighborhoods of x.

Towards a contradiction, suppose that there exists U ∈ U(x) that is not a τ -neighborhood

of x. So x ∈ ∂τ (X \ U). By Lemma 6.2.2 there exists a (necessarily injective by T1-ness)

definable curve γ : I → X \ U that τ -converges to x and that by o-minimality must e-

converge to some a ∈ M±∞. By Remark 6.2.10 if γ e-converges from the right then a ∈ Rx

and otherwise a ∈ Lx. Either way by construction of U(x) it follows that γ maps into U , a

contradiction.
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From the above lemma it follows that, if (X, τ) is a T1 definable topological space

with X ⊆ M , a point x ∈ X is τ -isolated if and only if Ex = ∅, and the identity map

(X, τ) → (X, τe) is continuous at x ∈ X if and only if Ex ⊆ {x}.

The following Lemma will be fundamental in proofs in later sections.

Lemma 6.2.12. Let (X, τ), X ⊆ M , be a definable topological space. Let f : I ⊆ X → M

be a function on an interval I = (a, b), a, b ∈ M±∞, such that, for every x ∈ I, f(x) ∈ Ex.

Suppose that f is e-continuous and strictly increasing (respectively decreasing). We extend

f to a function [a, b] → M±∞ by letting f(a) = limx→a f(x) and f(b) = limx→b f(x). For all

y ∈ X, we have that

(a) for any x ∈ [a, b), if x ∈ Ry then f(x) ∈ Ry (respectively f(x) ∈ Ly);

(b) for any x ∈ (a, b], if x ∈ Ly then f(x) ∈ Ly (respectively f(x) ∈ Ry).

Under the additional assumption that τ is regular the converse also holds. Namely

(c) for any x ∈ [a, b), if f(x) ∈ Ry (respectively f(x) ∈ Ly) then x ∈ Ry;

(d) for any x ∈ (a, b], if f(x) ∈ Ly (respectively f(x) ∈ Ry) then x ∈ Ly.

Proof. We prove (a) . Let y ∈ X and suppose that f is strictly increasing. Suppose that

x ∈ [a, b) ∩Ry. If f(x) /∈ Ry then by o-minimality there is z > f(x) and a τ -neighborhood A

of y such that (f(x), z)∩A = ∅. Since x ∈ Ry, there is x′ > x in I such that (x, x′) ⊆ A. Since

f is e-continuous and strictly increasing there is x < x′′ < x′ such that f(x′′) ∈ (f(x), z).

So A is a τ -neighborhood of x′′ and f(x′′) /∈ cle(A), which contradicts that f(x′′) ∈ Ex′′ .

Similarly one may prove (b) in the increasing case. The proof in the decreasing case is

analogous.

For (c) and (d) we prove again only the case where f is strictly increasing. We present

the proof of (c) , the proof of (d) being similar. Suppose that f(x) ∈ Ry, for x ∈ [a, b),

and let A be a τ -neighborhood of y. Then there is some z > f(x) such that (f(x), z) ⊆ A.

Since f is e-continuous and strictly increasing there is x < x′ such that f [(x, x′)] ⊆ (f(x), z).

For any x′′ ∈ (x, x′), since f(x′′) ∈ Ex′′ and (f(x), z) ⊆ A, it follows that x′′ ∈ clτ (A),

i.e. (x, x′) ⊆ clτ (A). So we have shown that, for every τ -neighborhood A of y, there exists
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x′ > x such that (x, x′) ⊆ clτ (A). If x /∈ Ry then there must exist some x′′ > x and

some τ -neighborhood A′ of y such that (x, x′′) ∩ A′ = ∅. But then by regularity there is

A′′ ⊆ A′, another τ -neighborhood of y, such that clτ (A′′) ⊆ A′, and in particular such that

(x, x′′) ∩ clτ (A′′) = ∅, a contradiction by the above.

Throughout this chapter will will often use Remark 2.2.16 to argue that, whenever M

expands an ordered field, any one-dimensional definable topological space can be assumed

to be, up to definable homeomorphism, a space in the line.

In the case where M is not assumed to expand an ordered field, cell decomposition and

the observations made in Remark 6.2.13 below will suffice to generalize many of the results

on spaces in the line to all one-dimensional spaces.

Remark 6.2.13. Let (X, τ), X ⊆ Mn, n > 1, be a definable topological space, let I =

(a, b) ⊆ M , a, b ∈ M±∞, be an interval and let f : I → f(I) ⊆ X be an e-homeomorphism

(which we extend continuously to a function [a, b] → Mn
±∞). Consider the definable total

order ≺ on clef(I) = f([a, b]) given by identifying clef(I) with [a, b] through f , i.e. for every

pair x, y ∈ clef(I), set x ≺ y if and only if f−1(x) < f−1(y). Accordingly for any x ≺ y in

clef(I) let (x, y)≺ denote the corresponding interval with respect to ≺.

By means of this identification we may generalize the notion of right and left e-

accumulation point to points in clef(Y ). That is, if x ∈ X and y ∈ clef(I), then y ∈ Rx

if and only if, for every τ -neighborhood U of x, there is z ∈ f(I) such that y ≺ z and

(y, z)≺ ⊆ U . Similarly y ∈ Lx if and only if, for every τ -neighborhood U of x, there is

z ∈ f(I) such that z ≺ y and (x, y)≺ ⊆ U . Proposition 6.2.8 (a) and (c) generalize to this

setting.

Now suppose dimX ≤ 1. By o-minimal cell decomposition there is a finite definable

partition X of X into cells such that for every C ∈ X there is a projection πC : C → IC ⊆ M

that is an e-homeomorphism onto a cell. By passing to a pushforward of (X, τ) we may

assume that, for every distinct pair C,C ′ ∈ X , we have cleC ∩ cleC
′ = ∅. Then, for any

C ∈ X , let ≺C be the order on cleC given by identifying cleC with cleIC through πC . Now

let {n(C) < ω : C ∈ X } be a numbering of the cells in X and let ≺ be definable linear order

on cleX such that, for any x ∈ cleC and y ∈ cleC
′, where C,C ′ ∈ X , we have that x ≺ y if
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and only if n(C) < n(C ′) or n(C) = n(C ′) and x ≺C y. That is, ≺ is the linear order induced

by the lexicographic order given the push-forward x 7→ {n(C)} × πC(x) for x ∈ cle(C).

Given this convention the space (X, τ) behaves very much like a space in the line. The

definitions of right and left e-accumulation set immediately generalize to points x ∈ X, by

saying that y ∈ cleC belongs in Rx or Lx if it does with respect to ≺C .

Under this correspondence the statements and proofs of Proposition 6.2.8 and

Lemma 6.2.11 generalize to this setting. Moreover, suppose that, for any C,C ′ ∈ X and

partial function f : C → C ′ defined on an interval (a, b)≺C
, we consider that f is increasing

or decreasing to mean with respect to ≺C and ≺C′ . Then Lemma 6.2.12 and its proof also

generalize to (X, τ).

Note that under this construction the definitions of sets Rx and Lx, for any x ∈ X, are

dependent of the choice of cell decomposition X of X.

The remaining results in this section are formulated as usual for spaces in the line. By

Remark 6.2.13 they can be generalized to all one-dimensional spaces.

Proposition 6.2.14. Let (X, τ), X ⊆ M , be a Hausdorff definable topological space that

satisfies the frontier dimension inequality. Then (X, τ) is regular.

Proof. We prove that, for any x ∈ X and open neighborhood A of x, there exists an open

neighborhood U ∈ τ of x such that clτU ⊆ A.

Let x ∈ X and let A ∈ τ be an open neighborhood of x. By passing to a subset of A if

necessary we may assume that A is definable. By the frontier dimension inequality ∂τA is

finite. Since (X, τ) is Hausdorff there exists, for every y ∈ ∂τA, an open neighborhood Ay ∈ τ

of x such that y /∈ clτAy. Let U = ∩y∈∂τ AAy ∩A. Then U is open and x ∈ U ⊆ clτU ⊆ A.

In Example A.8 we describe a definable topological space in the line that is T1 and

has the f.d.i. but fails to be regular, justifying the Hausdorffness assumption in the above

proposition. In Example A.10 we construct a two-dimensional Hausdorff space with the

f.d.i. that it not regular, showing that Proposition 6.2.14 does not immediately generalize

to spaces of dimension greater than one.
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Definition 6.2.15. Let (X, τ) be a definable topological space. We say that (X, τ) is definably

normal if, given any pair of disjoint definable τ -closed sets B,C ⊆ X, there exist definable

disjoint open sets U, V ⊆ X such that B ⊆ U and C ⊆ V .

We say (X, τ) definably completely normal if any definable subspace of (X, τ) is definably

normal.

Proposition 6.2.16. Let (X, τ), X ⊆ M , be a definable topological space. If (X, τ) is T1

and regular then it is definably completely normal.

Proof. We suppose that (X, τ), X ⊆ M , is T1 and regular and prove that it is definably

normal. Since being T1 and regular are hereditary properties we conclude that (X, τ) is

definably completely normal.

Let B,C ⊆ X be disjoint τ -closed definable sets in (X, τ). To prove the proposition it

suffices to show the existence of a definable τ -neighborhood U of B such that the τ -closure

of U is disjoint from C. We proceed by constructing a suitable partition of B into two sets,

B = B′ ∪ B′′, where B′′ is finite. By regularity of (X, τ) there clearly exists a definable

τ -neighborhood U ′′ of B′′ such that clτ (U ′′) ∩ C = ∅. We show the existence of a definable

τ -neighborhood U ′ of B′ such that clτ (U ′) ∩ C = ∅. The proof is then completed by taking

U = U ′ ∪ U ′′.

First note that, since (X, τ) is T1 and regular, the space is also Hausdorff.

Set EB := ∪x∈BEx. Let inte(EB) be the euclidean interior of EB and set B′ := {x ∈

B : Ex ⊆ inte(EB)}. By o-minimality EB \ inte(EB) is finite and so, by Hausdorffness

and Lemma 6.2.6 (b) , B′′ = B \ B′ is also finite. By Lemma 6.2.11 , B′ ∪ inte(EB) is a

τ -neighborhood of B′. Set U ′ := B′ ∪ inte(EB) \ C.

For any x ∈ B, note that Ex ∩ C must be a subset of bde(C), since otherwise, by

Lemma 6.2.11 , we would have that x ∈ clτC, which contradicts that C is τ -closed and

disjoint from B. Hence in particular inte(EB) ∩ C is finite. So U ′ = B′ ∪ inte(EB) \ C is

cofinite in B′ ∪ inte(EB). Recall that B′ ∪ inte(EB) is a τ -neighborhood of B′. Since (X, τ)

is T1, it follows that U ′ is also a τ -neighborhood of B′. We now show that clτ (U ′) ∩ C = ∅,

which completes the proof.
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Towards a contradiction suppose that some x ∈ C is in the closure of U ′. Then x must be

in the closure of inte(EB) \C. Set E ′
B := inte(EB) \C. If there is some τ -neighborhood A of

x such that A∩E ′
B is finite then, since the space is T1, A \E ′

B is also a τ -neighborhood of x,

which contradicts that x is in the closure of E ′
B. On the other hand, suppose that for every

τ -neighborhood A of x the intersection A∩E ′
B is infinite. Then for every such A there exists

an interval I ⊆ A ∩ E ′
B. Using Lemma 6.2.11 note that, for any y ∈ B, if Ey ∩ I 6= ∅, then

y ∈ clτI. So, in this case, for every τ -neighborhood A of x, B ∩ clτA 6= ∅, which contradicts

that (X, τ) is regular.

6.3 T1 and Hausdorff (T2) spaces. Decomposition in terms of the τe, τc, τr and
τl topologies

This section focuses on the properties of T1 and Hausdorff spaces in the line. The main

result is Theorem 6.3.9 , which states that any Hausdorff definable topological space (X, τ)

in the line can be definably partitioned into finitely many subspaces each of which has one

of the τe, τs, τr or τl topologies. This is a partial improvement on the next proposition,

which shows that every infinite T1 definable topological space in the line contains an interval

subspace with one of these topologies. In Remark 6.3.3 this result is addressed in the context

of the 3-element basis conjecture of set-theoretic topology.

Proposition 6.3.1. Let (X, τ), X ⊆ M , be an infinite T1 definable topological space. Then

there exists an interval J ⊆ X such that (J, τ) = (J, τ�), where � is one of e, r, l or s.

Recall that every infinite definable set contains a one-dimensional definable subset. By

o-minimal cell decomposition the above proposition generalizes as follows.

Corollary 6.3.2. Every infinite T1 definable topological space has a subspace that is definably

homeomorphic to an interval with either the euclidean, right half-open interval, left half-open

interval, or discrete topology.

Proof of Proposition 6.3.1 . By Lemma 2.2.20 for each x ∈ X the set Ex is finite. Suppose

it is the case that there exist infinitely many points x ∈ X satisfying (x,∞) ∩ Ex = ∅.

In that case let I ⊆ X be a bounded interval containing only such points and fix C > I.
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Otherwise let I ′ ⊆ X be an interval such that (x,∞) ∩ Ex 6= ∅ for every x ∈ I and consider

the definable map f on I taking each x to the smallest y > x such that y ∈ Ex. The map f

satisfies x < f(x) for all x ∈ X and so by o-minimality, after passing to a subinterval where

f is continuous and then applying continuity, there exist an interval I ⊆ I ′ and C > I such

that, for all x ∈ I, f(x) > C. In either case we have that, for all x ∈ I, (x,C] ∩ Ex = ∅.

Similarly we can isolate a bounded subinterval J ⊆ I and some c < J such that, for every

x ∈ J , [c, x) ∩ Ex = ∅. Thus we have reached an interval J , c < J < C, such that for all

x ∈ J , Ex ∩ cleJ ⊆ {x}.

For any x ∈ J let U(x) denote a family of neighborhoods of x as described in

Lemma 6.2.11 . Note that, by construction of J , for any given x ∈ J and y < x < z

there is U ∈ U(x) such that,

U ∩ J =



(y, z) if x ∈ Rx ∩ Lx,

[x, z) if x ∈ Rx \ Lx,

(y, x] if x ∈ Lx \Rx,

{x} if x /∈ Rx ∪ Lx.

(6.1)

Recall that the families {Rx : x ∈ J} and {Lx : x ∈ J} are definable. Thus we may

partition J into four definable sets Ji, 1 ≤ i ≤ 4, where

J1 = {x ∈ J : x ∈ Rx ∩ Lx},

J2 = {x ∈ J : x ∈ Rx, x /∈ Lx},

J3 = {x ∈ J : x /∈ Rx, x ∈ Lx},

J4 = {x ∈ J : x /∈ Rx ∪ Lx}.

By (6.1 ) and definition of Rx and Lx the subspace topology on J1 is τe. Similarly the

subspace topologies on J2, J3 and J4 are τr, τl and τs respectively. At least one of the four
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definable sets J1, J2, J2 and J4 must contain an interval, and so the result follows. At least

one of these four sets must be infinite and thus contain an interval, the result follows.

For a justification for the condition of T1-ness in Proposition 6.3.1 see Example A.6 ,

which describes a T0 definable topological space in the line that fails to be T1 and does not

contain an interval with one of the τe, τr, τl or τs topologies.

Remark 6.3.3. Let (?) denote the following condition: if (X, τ) is an uncountable first

countable regular Hausdorff topological space, then (X, τ) contains a subset of the reals of

cardinality ℵ1 with either the euclidean, Sorgenfrey or discrete topologies. The 3-element

basis conjecture for uncountable first countable regular spaces is an open conjecture in set-

theoretic topology stating that ZFC plus the proper forcing axiom implies (?). It dates back

to Gruenhage [25 ], and since then has been the object of ongoing research [34 ], [21 ]. It is

known that the failure of (?) is consistent with ZFC.

It is worth noting the relation between this conjecture and Corollary 6.3.2 , which proves

in particular the existence, in a definable sense, of a 3-element basis for the class of T1 infinite

spaces definable in an o-minimal expansion of the field of reals.

We now make use of Proposition 6.3.1 to prove that the Cantor Space does not exist (up

to homeomorphism) in the form of a definable topological space.

Recall the classical definition of the weight of a topological space (X, τ), wτ (X), namely

the minimum cardinality of a basis for τ .

Remark 6.3.4. Let (X, τ), X ⊆ M , be a definable topological space. Clearly wτ (X) ≤ |M |.

We note that, if τ ∈ {τr, τl, τs}, then wτ (X) = |X|.

Clearly wτs(X) = |X|. We show that wτr(X) = |X|. Let B be a basis of (X, τr). Then

there must exist, for every x ∈ X, some A ∈ B such that x ∈ A ⊆ [x,+∞). A map X → B

that takes each x ∈ X to one such neighborhood A must be injective, so |X| ≤ |B| ≤ wτ (X).

The other inequality is obvious. An analogous argument shows that wτl
(X) = |X|.

From Proposition 6.3.1 it follows that, if (X, τ) is T1 and infinite, then α ≤ wτ (X), where

α = min{we(I) : I ⊆ X is an interval}.

Recall that, if M expands a field, then any two intervals are definably e-homeomorphic,

and so, if X is infinite, wτs(X) = wτr(X) = wτl
(X) = |M |. Additionally, the α defined above
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equals we(M) and, since one may show that |M | ≤ 2we(M), we have that we(M) ≤ wτ (X) ≤

2we(M).

Lemma 6.3.5. Let (X, τ) be a T1 definable topological space, let I ⊆ M be an interval and

let γ : I → X be an injective definable curve. If (X, τ) is compact then (I,<) is Dedekind

complete (i.e. every nonempty subset of I that is bounded above in I admits a supremum).

Proof. Towards a contradiction suppose that there exists a nonempty set S ⊂ I bounded

above in I but with no supremum. Let S ′ be the set of upper bounds of S in I. Consider

the following family of closed nonempty subsets of (X, τ):

S = {clτ (γ[(t, s)]) : t ∈ S, s ∈ S ′}.

This family clearly has the finite intersection property. By compactness of (X, τ) we may fix

x ∈ X belonging in ∩S. If x /∈ γ(I) then we fix some tx ∈ I and set γx := γ \ {〈tx, γ(tx)〉} ∪

{〈tx, x〉}, otherwise let γx = γ. Let (I, τx) be the push-forward of (γx(I), τ) by γ−1
x .

Now note that, for every t, s ∈ I and every τx-neighborhood U of tx, if t ∈ S and s ∈ S ′

then U ∩ (t, s) 6= ∅. In particular this holds for any t ∈ S with t > S ∩ E(I,τx)
x and s ∈ S ′

with s < S ′ ∩ E(I,τx)
x . This is clearly in contradiction with Lemma 6.2.11 . So I is Dedekind

complete.

Remark 6.3.6. Since in an ordered field any two intervals are order-isomorphic, from

Lemma 6.3.5 it follows that, under the assumption that M expands an ordered field, if there

exists an infinite compact T1 definable topological space then M is Dedekind complete. In

particular, since R is, up to (unique) field isomorphism, the only Dedekind complete ordered

field, it must be that M is an expansion of the field of reals.

Proposition 6.3.7. There exists no infinite definable topological space (X, τ) that is compact,

totally disconnected, and that satisfies wτ (X) < |Y | for every Y ⊆ X that is infinite and

definable.

Proof. Let (X, τ) be an infinite compact totally disconnected definable topological space sat-

isfying wτ (X) < |Y | for every Y ⊆ X that is infinite and definable. We reach a contradiction

by showing that (X, τ) contains an infinite (and in fact definable) connected subspace.
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First note that, since (X, τ) is totally disconnected, in particular it is T1. Let I ⊆ M

be an interval and let γ : I → X be an injective definable curve. Let (I, τI) be the push-

forward of (γ(I), τ) by γ−1. Since (I, τI) is T1 then by Proposition 6.3.1 we may assume,

after passing to a subinterval if necessary, that τI ∈ {τe, τr, τl, τs}. Since by hypothesis

wτI
(I) = wτ (γ(I)) ≤ wτ (X) < |f(I)| = |I| it must be that τI = τe. Now recall that, by

compactness and Lemma 6.3.5 , (I,<) is Dedekind complete, and so (I, τe) is connected.

Hence (γ(I), τ) is connected.

Corollary 6.3.8. The Cantor space 2ω is not a definable topological space.

Proof. Let (X, τ) be (homeomorphic to) the Cantor space and towards a contradiction sup-

pose that it is a definable topological space. Recall that the Cantor space is compact, second

countable (i.e. wτ (X) ≤ ω) and totally disconnected. Let Y ⊆ X be an infinite definable

set. We show that |Y | = c. Then the result follows from Proposition 6.3.7 .

Clearly |Y | ≤ c. By o-minimality there exists an interval I ⊆ M and an injective definable

curve γ : I → X. By Lemma 6.3.5 (I,<) is Dedekind complete, so c ≤ |I| = |γ(I)| ≤ |Y |.

It follows from the above corollary that the class of definable topological spaces up to

homeomorphism is not closed under countable products.

If we impose Hausdorffness we can strengthen Proposition 6.3.1 as follows. See Exam-

ple A.7 for a T1 non-Hausdorff space that cannot be decomposed as described below.

Theorem 6.3.9. Let (X, τ), X ⊆ M , be a nonempty Hausdorff definable topological space.

Then there exists a finite partition X of X into points and intervals such that, for every

I ∈ X , τ |Y ∈ {τe, τr, τl, τs}.
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Proof. We start by proving a simple case. Suppose that, for every x ∈ X, E(X,τ)
x ⊆ {x}. We

call this condition (†) . Then let us partition X into four definable sets as follows.

{x ∈ X : x ∈ Rx ∩ Lx},

{x ∈ X : x ∈ Rx, x /∈ Lx},

{x ∈ X : x /∈ Rx, x ∈ Lx},

{x ∈ X : x /∈ Rx ∪ Lx}.

By Lemma 6.2.11 these correspond respectively to spaces with the τe, τr, τl and τs topologies.

By o-minimality we can partition each of these into a finite number of points and intervals,

and the result follows.

In order to prove the theorem it is enough to show that we may partition (X, τ) into

finitely many definable subspaces where (†) holds. We do so as follows.

Note that, for any definable subspace S ⊆ X and any x ∈ S, E(S,τ)
x ⊆ E(X,τ)

x . We

prove the existence of a finite partition of X formed by points and intervals such that, for

any interval I in the partition and any x ∈ I, E(X,τ)
x ∩ cleI ⊆ {x}. Since any element in

E(I,τ)
x must belong in cleI (Proposition 2.2.18 (a) ) it follows that, for any x ∈ I, E(I,τ)

x =

E(I,τ)
x ∩ cleI ⊆ E(X,τ)

x ∩ cleI ⊆ {x}, i.e. (†) holds in (I, τ), which completes the proof.

From now on for any x ∈ X let Ex = E(X,τ)
x . By Lemma 2.2.20 , for any x ∈ X the set

Ex is finite. By o-minimality (uniform finiteness) there exists some n such that |Ex| ≤ n for

every x ∈ X. We may partition X into finitely many definable subspaces X0, . . . , Xn, where

Xi = {x ∈ X : |Ex| = i} for 0 ≤ i ≤ n. We fix Y = Xm for some 0 ≤ m ≤ n and prove the

existence of a partition of Y with the desired properties. Since otherwise the result is trivial

we assume that m > 0 and that Y is infinite.

For 1 ≤ i ≤ m, let fi : Y → M±∞ be the definable function taking each element in

x ∈ Y to the i-th smallest element in Ex. Since the family {Ex : x ∈ Y } is definable these

maps are definable. Moreover by Hausdorffness (see Lemma 6.2.6 (ii) ) these functions cannot

be constant on any interval. By o-minimality let Y be a partition of Y into finitely many
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intervals and points such that, for every interval I ∈ Y , the functions fi, 1 ≤ i ≤ m, are

e-continuous and strictly monotone.

Without loss of generality we fix an interval I ∈ Y and show that, for any x ∈ I,

Ex ∩ cleI ⊆ {x}, completing the proof. Let x ∈ I and y 6= x be such that y ∈ Ex ∩ cleI.

If y ∈ I then, by Lemma 6.2.12 , Ey ⊆ Ex. Since |Ey| = |Ex| it follows that Ey = Ex,

contradicting that the functions fi are injective. Suppose now that x ∈ ∂eI. Then y = fi(x)

for some 1 ≤ i ≤ m. By e-continuity and strict monotonicity of fi on I there exists a point

x′ ∈ I such that fi(x′) ∈ I and fi(x′) 6= x′. A contradiction then follows as before.

By o-minimal cell decomposition the above theorem has an immediate generalisation to

all one-dimensional spaces. Note that it follows that any definable function (X, τ) → (M, τe),

where dimX ≤ 1 and τ is a Hausdorff definable topology, is cell-wise continuous.

We end this section with a remark noting that, for spaces in the line, having an interval

subspace with either the euclidean, discrete or half-open interval topologies is a definable

topological invariant. It is an easy consequence of the monotonicity theorem of o-minimality.

It holds in weakly o-minimal structures too, since these have a form of monotonicity (see [3 ]).

Remark 6.3.10. If (X, τ) and (Y, µ) for X,Y ⊆ M are definable topological spaces and

f : (X, τ) → (Y, µ) is a definable homeomorphism, then

(i) if (X, τ) contains an interval subspace with the discrete topology then (Y, µ) contains

an interval subspace with the discrete topology,

(ii) if (X, τ) contains an interval subspace with the right half-open or left half-open interval

topology then (Y, µ) contains an interval subspace with the right half-open or left half-

open interval topology,

(iii) if (X, τ) contains an interval subspace with the euclidean topology then (Y, µ) contains

an interval subspace with the euclidean topology.

Note that (i) and (iii) hold for spaces of all dimensions if we substitute “interval subspace”

with “subspace of dimension n”.

Hence definable topological spaces in the line can be classified up to definable homeo-

morphism according to whether or not they contain interval subspaces with the euclidean,
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discrete or half-open interval topologies. Moreover by Proposition 6.3.1 every infinite T1

space will fall into at least one of these categories.

6.4 Hausdorff regular (T3) spaces. Decomposition in terms of the τlex and τAlex

topologies.

In this section we study Hausdorff regular (i.e. T3) spaces in the line. The main result is

Theorem 6.4.3 , which states that any such space can be partioned into a finite set and two

definable open subspaces, one of which definably embeds into a space with the lexicographic

order topology, and the other into a space which we label the Alexandrov n-line. In the next

section we will use this result and its proof, as well as Theorem 6.3.9 , to address universality

questions in our setting.

We start by introducing the relevant topologies.

Definition 6.4.1. Given X ⊆ Mn we denote by <lex the lexicographic order on X and by

(X, τlex) the topological space induced by <lex on X. Clearly this space is definable whenever

X is.

We focus on the space (M × {0, . . . , n}, τlex). This space satisfies that all the points in

M×{i}, for 0 < i < n, are isolated. Moreover, for any x ∈ M , a basis of open neighborhoods

of 〈x, 0〉 is given by sets 〈x, 0〉∪(y, x)×{0, . . . , n} for y < x, and a basis of open neighborhoods

of 〈x, n〉 is given by sets 〈x, n〉 ∪ (x, y) × {0, . . . , n} for y > x.

Definition 6.4.2 (Definable Alexandrov n-line). Let τAlex be the topology on M2 where all

points in M2 \ M × {0} are isolated and, for any x ∈ M , a basis of open neighborhoods of

〈x, 0〉 is given by sets

{〈x, 0〉} ∪ (((z, y) \ {x}) ×M) for z < x < y.

Then for any n > 0 we call the space (M × {0, . . . , n − 1}, τAlex) the definable Alexandrov

n-line.

Note that, in particular, (M × {0}, τlex) = (M × {0}, τAlex) = (M × {0}, τe).
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We may now state Theorem 6.4.3 . Lemmas 6.4.6 and 6.4.8 are the bulk of the proof.

They are also used in Section 6.6 to prove that all regular Hausdorff definable topological

spaces in the line can be definably Hausdorff compactified (Theorem 6.6.6 ).

Theorem 6.4.3. Let (X, τ), X ⊆ M , be a regular and Hausdorff definable topological

space. Then there exist disjoint definable open sets Y, Z ⊆ X with X \ (Y ∪ Z) finite, and

nY , nZ > 0, such that the following holds.

1. There exists a definable embedding hY : (Y, τ) ↪→ ({0, . . . , nY }, τlex).

2. There exists a definable embedding hZ : (Z, τ) ↪→ ({0, . . . , nZ}, τAlex).

In Lemma 6.4.6 we construct a finite family Xopen of pairwise disjoint definable open

subsets of X such that X\∪Xopen is finite. In Lemma 6.4.8 we construct, for every A ∈ Xopen,

a set A∗ of the form IA ×{0, . . . , nA} for some interval IA and nA, and a definable embedding

hA : (A, τ) ↪→ (A∗, τA), where τA is either τlex or τAlex. The construction will be such that

IA ∩ IA′ = ∅ for distinct A,A′ ∈ Xopen. Then Z will be the union of all the sets A in Xopen

such that (A∗, τA) = (A∗, τAlex), and hZ the union of the respective embeddings hA. The set

Y and embedding hY are constructed similarly from the remaining sets in Xopen.

Throughout this section and until the end of the proof of Theorem 6.4.3 we fix a definable

definable topological space (X, τ) with X ⊆ M .

We introduce an equivalence relation on X induced by the topology τ defined as follows.

Given x, y ∈ X we write x ∼τ y when one of the following holds:

(i) x = y.

(ii) There exists some z ∈ X such that {x, y}∩Ez 6= ∅ and, for all z ∈ X, x ∈ Ez ⇔ y ∈ Ez.

This relation is clearly reflexive and symmetric, and one easily checks that it is transitive.

Moreover by Proposition 2.2.18 (b) it is definable. For any x ∈ X we denote by [x] the

equivalence class {y ∈ X : y ∼τ x}. We prove some preliminary facts regarding this relation.

Lemma 6.4.4. If (X, τ) is T1 then every equivalence class of ∼τ is finite.
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Proof. Let x ∈ X. If x ∈ X \ ∪y∈XEy then [x] = {x}. If there is some y ∈ X such that

x ∈ Ey then, from the definition of ∼τ , it follows that [x] ⊆ Ey. If (X, τ) is T1 then, by

Lemma 2.2.20 , the set Ey is finite, so [x] is finite.

Lemma 6.4.5. Let (X, τ) be regular and Hausdorff. Then there exists a cofinite set X ′ ⊆ X

with the following properties.

(a) For any x ∈ X, either [x] ⊆ X ′ or [x] ∩X ′ = ∅ (X ′ is compatible with ∼τ ).

(b) For any x ∈ X ′ and y ∈ X, if x ∈ Ey then y ∈ [x].

(c) For any x ∈ X ′, Ex ⊆ [x]. In particular if Ex is nonempty then Ex = [x].

Proof. Let H = {(x, y) ∈ X2 : y ∈ Ex and x 6∼τ y}. Let H1 and H2 be the projections of H

onto the first and second coordinate respectively. We start by showing that these sets are

finite. If H2 is finite then, by Hausdorffness (see Proposition 6.2.6 (b) ), H1 is finite. Towards

a contradiction we suppose that H2 is infinite. Let g : H2 → H1 be a function given by

y 7→ min{x : y ∈ Ex and y 6∼τ x}. By Hausdorffness this function is well defined and by

Lemma 2.2.20 it cannot be constant on an interval, so by o-minimality there exists I ⊆ H2

an interval such that g|I is strictly monotonic and e-continuous. But then, by Lemma 6.2.12 ,

for any y ∈ I it holds that y ∼τ g(y), contradiction.

Set X ′ := X \(∪x∈H1∪H2 [x]). By Lemma 6.4.4 and finiteness of H1 ∪H2 this set is cofinite

in X. By definition of H it follows that X ′ satisfies (a) -(c) .

The next lemma strengthens Lemma 6.4.5 and is the core construction in the proofs of

Theorems 6.4.3 and 6.6.6 .

Lemma 6.4.6. Let (X, τ) be regular and Hausdorff and X ′ ⊆ X be as in Lemma 6.4.5 .

There exists a finite partition X of X into singletons Xsgl and infinite definable open sets

Xopen, the latter being subsets of X ′, with the following properties.

For every A ∈ Xopen there exists n > 0, an interval I ⊆ A, and definable e-continuous

strictly monotonic functions f0, f1, . . . , fn−1 : I → A such that, for every x ∈ I, [x] =

{fi(x) : 0 ≤ i < n}. In particular f0 is the identity map. Set Ii := fi(I) for 0 ≤ i < n, then
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the intervals Ii are pairwise disjoint and A = ∪0≤i<nIi. Aditionally, for every x ∈ I and

0 < i < n− 1, the point fi(x) is τ -isolated.

Moreover; for every x ∈ I let [x]E = {y ∈ [x] : Ey 6= ∅}. Then exactly one of the following

conditions holds.

∀x ∈ I [x] = {x} and Ex = ∅ (A = I contains only τ -isolated points),

∀x ∈ I [x]E = {x},

∀x ∈ I [x]E = {x, fn−1(x)}, given n > 1.

In each of the latter two cases exactly one of the following conditions is satisfied.

∀x ∈ I x ∈ Lx \Rx,

∀x ∈ I x ∈ Rx \ Lx,

∀x ∈ I x ∈ Rx ∩ Lx.

Proof. We construct X by describing the family Xopen of open subsets of X ′, while making

sure that ∪Xopen is cofinite in X. In particular we consider a finite number of definable sets

that partition X ′ and, for each such set S, describe a partition of a cofinite subset of S.

Let Aisol = X ′ \∪y∈XEy. Note that [x] = {x} for every x ∈ Aisol. By Lemma 6.4.5 (c) , for

all x ∈ Aisol, Ex = ∅, and so, by Lemma 6.2.11 , these points are τ -isolated. If Aisol is infinite

let Xisol be a finite family of disjoint intervals whose union is cofinite in Aisol. Otherwise let

Xisol = ∅.

Now by Lemma 6.4.4 and uniform finiteness there exists n′ ≥ 1 such that, for every

x ∈ X, |[x]| ≤ n′. For every 1 ≤ n ≤ n′ set Xn := {x ∈ X ′ \ Aisol : |[x]| = n}. These sets

are definable and partition X ′ \Aisol. We fix 1 ≤ n ≤ n′. If Xn is finite let Xn = ∅. Suppose

that Xn is infinite. We describe a finite partition Xn of a cofinite subset of Xn into definable

τ -open sets as desired.

For every x ∈ X let [x]E = {y ∈ [x] : Ey 6= ∅}. Since X ′ \ Aisol ⊆ ∪y∈XEy then, by

Lemma 6.4.5 (b) , for every x ∈ Xn it holds that |[x]E| ≥ 1. Moreover by Lemma 6.4.5 (c) 

and Hausdorffness (see Lemma 6.2.6 (b) ), for every x ∈ Xn we have |[x]E| ≤ 2. Let X(1)
n =

{x ∈ Xn : |[x]E| = 1} and X(2)
n = {x ∈ Xn : |[x]E| = 2}. These sets partition Xn.
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Set Dom(X(1)
n ) := ⋃{[x]E : x ∈ X(1)

n }, Dom(X(2)
n ) := {min[x]E : x ∈ X(2)

n } and

Dom(Xn) := Dom(X(1)
n ) ∪ Dom(X(2)

n ). By Lemma 6.4.5 (c) we may further partition

Dom(Xn) into three definable sets as follows.

Dom(Xn)′ = {x ∈ Dom(Xn) : x ∈ Lx \Rx},

Dom(Xn)′′ = {x ∈ Dom(Xn) : x ∈ Rx \ Lx},

Dom(Xn)′′′ = {x ∈ Dom(Xn) : x ∈ Rx ∩ Lx}.

Now let f0 denote the identity map on X. Then, for 1 ≤ i < n, let fi : Dom(Xn) → X be the

function defined as follows. For every x ∈ Dom(X(1)
n ) and 1 ≤ i < n, fi(x) is the i-th smallest

element in [x] \ {x}. For every x ∈ Dom(X(2)
n ) and 1 ≤ i < n− 1, fi(x) is the i-th smallest

element in [x]\ [x]E, and fn−1(x) = max[x]E. By construction, for every y ∈ Xn, there exists

a unique x ∼τ y and 0 ≤ i < n such that fi(x) = y. In particular [x] = {fi(x) : 0 ≤ i < n},

all functions fi are injective and the family of images {fi(Dom(Xn)) : 0 ≤ i < n} is pairwise

disjoint. Moreover, by construction, for every x ∈ Dom(Xn) and 0 < i < n − 1, Efi(x) = ∅,

so, by Lemma 6.2.11 , fi(x) is τ -isolated.

By o-minimality there exists a finite partition D(Xn) of Dom(Xn), compatible with

{Dom(X(1)
n ), Dom(X(2)

n ), Dom(Xn)′, Dom(Xn)′′, Dom(Xn)′′′}, which contains only single-

tons and intervals and such that, for every interval I ∈ D(Xn), fi|I is e-continuous and

strictly monotonic for every 0 ≤ i < n. The family of sets in Xopen which are subsets of Xn

is then given by

Xn = {∪0≤i<nfi(I) : I ∈ D(Xn), I an interval}.

Note that, by construction, ∪0≤i<nfi(I) = ∪x∈I [x] for every interval I ∈ D(Xn). More-

over, since the functions fi are e-continuous, the sets fi(I) are all intervals. So, using

Lemma 6.4.5 (c) and Lemma 6.2.11 , it is easy to see that the sets in Xn are τ -open.

Finally, set Xopen := Xisol ∪ X1 ∪ · · · ∪ Xn′ , and let Xsgl denote the finite set of points in

X \ ∪Xopen taken as singletons. By construction this partition satisfies the properties stated

in the lemma. To check this, for any A ∈ Xopen, if A ⊆ Xn for some n, let I and fi, for

0 ≤ i < n, be as above. If A ⊆ Aisol then simply consider I = A and f0.
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Continuing with the construction in Lemma 6.4.6 , the next lemma describes how each of

the sets A ∈ Xopen definably embeds into a space with either the lexicographic or Alexandrov

n-line topology.

We first require a definition expanding the notion of e-convergence from the right and

from the left, and observing how this convergence relates to convergence with respect to the

topologies τlex and τAlex.

Definition 6.4.7. Given a definable set X̃ ⊆ M×{0, 1, . . .} we say that a definable curve in

X̃ e-converges to 〈x, i〉 ∈ X̃ from the right (respectively left) if it e-converges to 〈x, i〉 and its

projection to the first coordinate, namely π ◦ γ, e-converges to x from the right (respectively

left).

Consider a definable set X̃ = I × {0, . . . , n}, with I ⊆ M an interval, and an injective

definable curve γ in X̃. For x ∈ I, note that γ converges in (X̃, τlex) to 〈x, 0〉 if and only if it

e-converges to 〈x, i〉 from the left, for some 0 ≤ i ≤ n; and similarly it converges in (X̃, τlex)

to 〈x, n〉 if and only if it e-converges to 〈x, i〉 from the right, for some 0 ≤ i ≤ n. Moreover

γ converges to 〈x, 0〉 in (X̃, τAlex) if and only if it e-converges to 〈x, i〉 for some 0 ≤ i ≤ n

(from the right or from the left).

Lemma 6.4.8. Let (X, τ) be regular and Hausdorff and consider the construction of X in

Lemma 6.4.6 . For each A = ∪0≤i<nfi(I) ∈ Xopen there exists a definable set A∗ ⊆ M2 and a

definable injection hA : A → A∗ such that the following holds.

(1) A∗ = I × {0, . . . ,m}, for some m ∈ {n− 1, n, 2} (in particular we have that, for every

pair of distinct A0, A1 ∈ Xopen, A∗
0 ∩ A∗

1 = ∅). Moreover, for every 0 ≤ i < n and

x ∈ fi(I), (π ◦ hA)(x) = f−1
i (x).

(2) The map hA : (A, τ) ↪→ (A∗, τA) is an embedding, where either

(a) (A∗, τA) = (A∗, τlex) or

(b) (A∗, τA) = (A∗, τAlex).

Proof. Following Lemma 6.4.6 , we distinguish different cases of possible A = ∪0≤i<nfi(I) in

Xopen, based on properties of I. In each case we define A∗ and hA (which for simplicity we

denote by h) so that (1) and (2) hold.
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Case 0: I = A is a set of isolated points in (X, τ).

Let A∗ = A × {0, 1, 2} and h : A → A∗ be given by x 7→ 〈x, 1〉. Let τA be the topology

induced by the lexicographic order on A∗. With this topology all the points in A× {1} are

isolated, so h is an embedding.

For the remaining cases we will make use of Corollary 6.2.3 to prove (3). After establishing

whether (A∗, τA) = (A∗, τlex) or (A∗, τA) = (A∗, τAlex), we will fix a point x ∈ X and prove

that an injective definable curve γ converges in (A, τ) to x if and only if h ◦ γ converges in

(A∗, τA) to h(x).

Case 1: [x]E = {x} and x ∈ Lx \Rx for every x ∈ I.

Let

A∗ = I × {0, . . . , n}

and let h : A → A∗ be the definable injection given by

h(fi(x)) = 〈x, i〉

for every x ∈ I and 0 ≤ i < n.

Note that, for each 0 ≤ i < n, h|Ii
is given by x 7→ 〈f−1

i (x), i〉, and so h is an e-embedding.

We show that h is an embedding (A, τ) ↪→ (A∗, τlex). Fix x ∈ A. If x ∈ Ii with i > 0 then

both x and h(x) are isolated, and hence not the limit of any injective definable curve, so we

may assume that x ∈ I.

We will make use of the following observation, which follows from applying Lemma 6.2.12 .

For every 0 ≤ i < n,

fi(x) ∈ Lx ⇔ fi is increasing ;

fi(x) ∈ Rx ⇔ fi is decreasing.
(?)

Let γ be a definable injective curve in X that τ -converges to x. Onwards recall Re-

mark 6.2.10 and Definition 6.4.7 . By properties of A, γ must e-converge to some fi(x), from

either the right or the left. Since fi is an e-homeomorphism, h ◦ γ e-converges to 〈x, i〉. If

γ e-converges from the left then it must be that fi(x) ∈ Lx, so by (? ) fi is increasing and
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consequently h ◦ γ also e-converges to 〈x, i〉 from the left, therefore converging in (A∗, τlex)

to 〈x, 0〉 = h(x). Similarly if γ e-converges from the right then it must be that fi(x) ∈ Rx,

and so by (? ) fi is decreasing and thus h ◦ γ e-converges to (x, i) from the left, so again it

converges in (A∗, τlex) to 〈x, 0〉 = h(x).

Conversely let γ′ ⊆ h(A) be an injective definable curve converging in (A∗, τlex) to 〈x, 0〉,

in which case it must e-converge from the left to some 〈x, i〉. We may assume that γ′ ⊆ I×{i}

(see Remark 2.2.12 ). Note that h−1◦γ′ = fi◦π◦γ′. If fi is increasing then, by (? ), fi(x) ∈ Lx,

and moreover h−1 ◦ γ′ e-converges to fi(x) from the left, so it τ -converges to x. Similarly if

fi is decreasing then, by (? ), fi(x) ∈ Rx, and moreover h−1 ◦ γ e-converges to fi(x) from the

right, so again it τ -converges to x.

Case 2: [x]E = {x} and x ∈ Rx \ Lx for every x ∈ I.

Let A∗ = I × {0, . . . , n} and h : A → A∗ be the definable injection given by h(fi(x)) =

〈x, n − i〉 for x ∈ I and 0 ≤ i < n. Again this is clearly an e-embedding. We show that

h : (A, τ) ↪→ (A∗, τlex) is an embedding.

We proceed as in Case 1. Fix x ∈ A. Since otherwise the points x and h(x) are isolated in

their respective spaces we may assume that x ∈ I. We make use of the next two equivalence

following from Lemma 6.2.12 . For every 0 ≤ i < n,

fi(x) ∈ Rx ⇔ fi is increasing ,

fi(x) ∈ Lx ⇔ fi is decreasing.
(6.2)

Let γ be an injective definable curve τ -converging to x. Then γ e-converges to some

fi(x). If γ e-converges from the right then it must be that fi(x) ∈ Rx, so, by (6.2 ), fi is

increasing, and so h ◦ γ e-converges to h(fi(x)) = (x, n− i) from the right, so it converges in

(A∗, τlex) to (x, n) = h(x). If it e-converges from the left then fi(x) ∈ Lx and, again by (6.2 ),

fi is decreasing, so h◦γ e-converges to 〈x, n− i〉 from the right, converging in (A∗, τlex) again

to 〈x, n〉.

Conversely let γ′ ⊆ h(A) be an injective definable curve that converges in (A∗, τlex)

to h(x). Then it must e-converge to some 〈x, j〉 from the right. We may assume that

γ′ ⊆ I × {j}. Let i = n − j. If fi is increasing then, by (6.2 ), fi(x) ∈ Rx and moreover
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h−1 ◦ γ = fi ◦π ◦ γ′ e-converges to fi(x) from the right, so it follows that it τ -converges to x.

Similarly If fi is decreasing then, by (6.2 ), fi(x) ∈ Lx and h−1 ◦ γ e-converges to fi(x) from

the left and so again it τ -converges to x.

Case 3: n > 1, [x]E = {x, fn−1(x)} and x ∈ Lx \Rx for every x ∈ I.

Let A∗ = I × {0, . . . , n − 1} and h : A → A∗ be defined as in case 1, namely h(fi(x)) =

〈x, i〉 for every x ∈ I and 0 ≤ i < n. In this case h : A → A∗ is a bijection. We show that h

is a homeomorphism (A, τ) → (A∗, τlex).

We fix y ∈ A. The case y ∈ Ii, for 0 < i < n − 1 is as usual trivial. If y ∈ I then the

result follows from the corresponding argument in case 1. Suppose that y ∈ In−1.

Let y = fn−1(x). Recall that, by Lemma 6.4.6 and Lemma 6.4.5 (c) , Ex = Ey = ∪ifi(x).

By Hausdorffness it follows that, for every 0 ≤ i ≤ n − 1, exactly one of the following two

possibilities holds

fi(x) ∈ Rx ∩ Ly,

fi(x) ∈ Ry ∩ Lx.
(6.3)

Let γ be a definable injective curve τ -converging y. Then γ e-converges to some fi(x). Since

h is an e-homeomorphism, h◦γ e-converges to 〈x, i〉, from the right or from the left. However,

if h◦γ e-converges from the left – converging thus in (A∗, τlex) to 〈x, 0〉 – then, by continuity

of h−1 at h(x) = 〈x, 0〉, it must be that h−1 ◦ h ◦ γ = γ τ -converges to x, a contradiction (by

Hausdorffness of τ). So h ◦ γ must e-converge from the right, meaning that it converges in

(A∗, τlex) to 〈x, n − 1〉 = h(y). Conversely let γ′ be an injective definable curve converging

in (A∗, τlex) to h(y) = 〈x, n − 1〉. Then it e-converges to some 〈x, i〉, meaning that h−1 ◦ γ′

e-converges to fi(x). It h−1 ◦ γ′ does not τ -converge to y then, by (6.3 ), it τ -converges

to x, but then by continuity of h at x it follows that γ′ converges in (A∗, τlex) to 〈x, 0〉, a

contradiction. So h−1 ◦ γ′ τ -converges to y.

Case 4: n > 1, [x]E = {x, fn−1(x)} and x ∈ Rx \ Lx for every x ∈ I.

Again let A∗ = I × {0, . . . , n − 1} and h : A → A∗ be given as in case 2, namely by

h(fi(x)) = 〈x, n − i〉. Note that h is again a bijection. Moreover h : (A, τ) → (A∗, τlex) is a

homeomorphism.
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The proof follows from the proofs of the other cases. The argument in case 2 shows that,

for any x ∈ A \ In−1, both h and h−1 are continuous at x and h(x) respectively. Then for

the case of points in In−1 one may use an argument analogous to the one in case 3.

Case 5: x ∈ Rx ∩ Lx for every x ∈ I.

Set A∗ := ⋃
0≤i≤n−1 I × {i} and let h : A → A∗ be given by h(fi(x)) = 〈x, i〉. This map

is clearly bijective. We show that it is a homeomorphism (A, τ) → (A∗, τAlex).

Applying Lemma 6.2.12 we note that, in this case, fi(x) ∈ Rx ∩ Lx for every x ∈ I and

0 ≤ i < n. In particular by Hausdorffness and Lemma 6.4.5 (c) [x]E = {x} for every x ∈ I,

meaning that for every 0 < i ≤ n− 1 the point fi(x) is τ -isolated. Thus it remains to check

continuity at points x and h(x) for x ∈ I.

Since Rx = Lx = [x] for any x ∈ I any injective definable curve converges in (A, τ) to x if

and only if it e-converges to some fi(x). Similarly any injective definable curve converges in

(A∗, τAlex) to 〈x, 0〉 if and only if it e-converges to some 〈x, i〉. Thus the result follows from

the fact that h is an e-homeomorphism, which is clear from the definition.

These are all the cases to consider, which completes the proof of the lemma.

We may now prove Theorem 6.4.3 .

Proof of Theorem 6.4.3 . Let X be a partition of X as given by Lemma 6.4.6 and, for each

A ∈ Xopen, let A∗, hA and τA be as given by Lemma 6.4.8 .

Set h := ⋃{hA : A ∈ Xopen}. By Lemma 6.4.8 (1) h is an injection ∪Xopen → ∪A∈XopenA
∗.

Let Y = ⋃{A ∈ Xopen : (A∗, τA) = (A∗, τlex) 6= (A∗, τAlex)} and Z = ⋃{A ∈ Xopen : (A∗, τA) =

(A∗, τAlex)}. By construction these sets are disjoint, open and definable, and X \ (Y ∪ Z)

is finite. Set Y ∗ := ⋃{A∗ : A ∈ X , A ⊆ Y } and Z∗ := ⋃{A∗ : A ∈ X , A ⊆ Z}. We claim

that h|Y : (Y, τ) → (Y ∗, τlex) and h|Z : (Z, τ) → (Z∗, τAlex) are embeddings. We show that

this claim holds by noting that we may decompose the maps into embeddings between open

subspaces of their domains and codomains.

Recall that, by Lemma 6.4.8 (1) , for each A ∈ X , the set A∗ is of the form I×{0, . . . ,m}

for some m and interval I ⊆ A. It follows that, for each A ∈ X , if A ⊆ Z then A∗ is open

in (Z∗, τAlex). Similarly, if A ∈ Y , then A∗ is open in (Y ∗, τlex), and the subspace topology
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on A∗ is precisely the topology induced by the lexicographic order on A∗. The claim then

follows from Lemma 6.4.8 (2) .

Finally, if Y 6= ∅ let nY = max{n : (M × {n}) ∩ Y ∗ 6= ∅}. It is easy to see that the map

given by 〈x,m〉 7→ 〈x, nY 〉 if m = max{m′ : 〈x,m′〉 ∈ Y ∗} and the identity otherwise is a

definable embedding (Y ∗, τlex) ↪→ (M × {0, . . . , nY }, τlex).

Remark 6.4.9. If M expands an ordered field then, by Remark 2.2.16 , Theorem 6.4.3 

applies to all T3 one-dimensional spaces. Otherwise the theorem and its proof may be

rewritten to apply to one-dimensional spaces as follows.

Let (X, τ) be a T3 one-dimensional definable topological space. In the context of Re-

mark 6.2.13 one may prove analogs of Lemmas 6.4.4 and 6.4.5 , and ultimately reach a

partition X = Xopen ∪ Xsgl of X as described in Lemma 6.4.6 . Then, analogously to the

proof of Lemma 6.4.8 , it is possible to show that, for any A ∈ Xopen, there exists some m,

an interval I, and a definable embedding hA : (A, τ) ↪→ (A∗, τA), where A∗ = ∪0≤i<mI × {i}

and τA ∈ {τlex, τAlex}. For any n > 0 let Xn = M × {0, . . . , n− 1}. We may conclude that X

has a cofinite subset definably homeomorphic to the disjoint union of finitely many spaces

of the form (Xn, τlex) or (Xn, τAlex).

In [42 ] Ramakrishnan showed that, if M has elimination of imaginaries and defines an

order reversing injection (e.g. if M expands an ordered group), then every definable linear

order definably embeds into (Mn, <lex) for some n. In particular, under these assumptions,

for any definable order topological space one may assume that, up to definable homeo-

morphism, the topology is induced by the lexicographic order. Theorem 6.4.3 adds to the

understanding of T3 definable spaces in the line by describing how the τAlex topology also

plays a role describing them. We complete this picture with the next proposition.

Proposition 6.4.10. For any interval I and any n > 0, the space (I × {0, . . . , n}, τAlex)

does not definably embed into a definable order topological space.

Proof. It suffices to prove the propostion for n = 1. Towards a contradiction assume there

exists one such embedding into a space (X, τ) where τ is given by a definable linear order

�. Let Y denote the image of the aforementioned embedding.
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Note that the subspace (I × {0}, τAlex) = (I × {0}, τe) is definably connected, and that

the τAlex-closure of any infinite definable subset of I × {0, 1} intersects I × {0}. It follows

that any clopen definable subset of (I × {0, 1}, τAlex) is either finite or cofinite. We reach a

contradiction by showing that (Y, τ) contains an infinite coinfinite definable clopen subset.

Let Y1 = {x ∈ Y : (x,+∞)� ∩ Y is finite}. Since the intervals (x,+∞)� are nested

note that, by uniform finiteness, the set Y1 is finite. Similarly the set Y2 = {x ∈ Y :

(−∞, x)� ∩ Y is finite} is also finite.

Since (Y, τ) is homeomorphic to (I × {0, 1}, τAlex) and all the points in I × {1} are τAlex-

isolated it follows that (Y, τ) has infinitely many isolated points. Let us fix x ∈ Y an isolated

point in (Y, τ) that does not belong in Y1 ∪ Y2. There must exist y ≺ z in X such that

(y, z)� ∩ Y = {x}.

It follows that the set (x,+∞)� ∩ Y = [z,+∞)� ∩ Y is clopen in (Y, τ). Since x /∈ Y1 ∪ Y2

then it is also infinite and coinfinite in Y , contradiction.

Finally, the next corollary of Theorem 6.4.3 implies that, for any T3 definably separable

definable topological space (X, τ), where X ⊆ M , there exists a cofinite subset Y ⊆ X such

that τ |Y is induced by a definable linear order.

Corollary 6.4.11. Let (X, τ), X ⊆ M , be a regular Hausdorff definable topological space.

If (X, τ) is definably separable then there exists a cofinite subset Y ⊆ X, a definable set

Y ∗ ⊆ M × {0, 1} and a definable homeomorphism (Y, τ) → (Y ∗, τlex).

Proof. Recall all the notation from Lemmas 6.4.6 and 6.4.8 . Our aim is to show that,

under the additional assumption that (X, τ) is definably separable, the construction in these

lemmas yields that, for every A ∈ Xopen, A∗ ⊆ M × {0, 1} and (A∗, τA) = (A∗, τlex). Then

let Y = ∪Xopen and Y ∗ = ∪{A∗ : A ∈ Xopen}. Following the proof of Theorem 6.4.3 , Y is

cofinite and h = ⋃{hA : A ∈ Xopen} is an embedding (Y, τ) ↪→ (Y ∗, τlex).

If (X, τ) is definably separable it can have only finitely many isolated points. Following

Lemma 6.4.6 fix A = ∪0≤i<nIi ∈ Xopen. For every x ∈ I and 0 < i < n− 1 the point fi(x) is
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τ -isolated. It follows that we must have n ≤ 2. Similarly, for every x ∈ I, it must be that

[x]E = {x, fn−1(x)}, since otherwise Ey = ∅ (i.e. y is τ -isolated) for every y ∈ In−1.

If n = 1, this is considered in Cases 1, 2 and 5 in the proof of Lemma 6.4.8 . In Cases 1

and 2, A∗ = I × {0, 1} and (A∗, τA) = (A∗, τlex). In Case 5, we have that A∗ = I × {0} and

(A∗, τA) = (A∗, τAlex), and in this case (A∗, τAlex) = (A∗, τlex). If n = 2, this is considered in

Cases 3 and 4 in the proof of Lemma 6.4.8 . In both these cases we have that A∗ = I× {0, 1}

and (A∗, τA) = (A∗, τlex).

6.5 Some universality results

In this section we answer, using results from the previous two sections, universality

questions in the definable setting.

Definition 6.5.1. Let C be a class of definable topological spaces and let (X, τ) be a definable

topological space. We say that (X, τ) is definably universal for C if every space in C embeds

definably into (X, τ).

We say that (X, τ) is almost definably universal for C if, for every (Y, µ) ∈ C there exists

a definable subset Z ⊆ Y with dim(Y \ Z) < dim Y such that (Z, µ) embeds definably into

(X, τ).

Note that if a space is almost definably universal for a class then in particular it is

definably universal.

We now observe how o-minimality implies that, if M expands an ordered field, Mn is

almost definably universal for the class of euclidean spaces of dimension at most n. An

analogous results can be proved for the class of bounded euclidean spaces of dimension at

most n when M expands an ordered group.

Proposition 6.5.2. Suppose that M expands an ordered field. Then (Mn, τe) is almost

definably universal for the class of euclidean spaces of dimension less than or equal to n.

Proof. Let (X, τ) be a euclidean space with dimX = n. Applying Remark 2.2.16 let (Y, µ)

denote its push-forward into Mn by some definable function f . We prove that (Y, µ) contains

a definable subspace Z ⊆ Y with dim(Y \ Z) < dim Y where the subspace topology is
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euclidean. The case where dimX = m < n follows from the fact that Mm embeds definably

into Mn.

Recall that, by o-minimal cell decomposition, any definable bijection is a finite union of

definable homeomorphisms in the euclidean topology. Applying this to f , it follows that

Y can be partitioned into finitely many cells D where the subspace topology is euclidean.

Let Z = ∪{intµD : D ∈ D, dimD = n}. By the frontier dimension inequality, dim(Y \Z) <

dim Y . Note that, since any cell of dimension n is open, for any D ∈ D with dimD = n

the set intµD is e-open as well as τ -open in D. Moreover the subspace topology on intµD is

euclidean. We conclude that the subspace topology in Z is euclidean.

Remark 6.5.3. In the general case where M does not necessarily expand an ordered field

one may still adapt the proof of Proposition 6.5.2 to show that, if (X, τ) is a euclidean space

of dimension n with cell decomposition D, then the union Z of the interiors in X of cells in

D of dimension n embeds definably into finitely many disjoint copies of Mn (one for each

cell). It follows that the space Mn+1 is almost definably universal for the class of euclidean

spaces of dimension at most n.

The question of definable universality for euclidean spaces is less straightforward. Chris

Miller and Erik Walsberg proved (unpublished) a definable version of the classical Menger-

Nöbeling theorem that implies that, whenever M expands an ordered field, any euclidean

space of dimension n embeds definably into M2n+1.

Theorem 6.4.3 may be framed in terms of existence of an almost definably universal space

as follows.

Corollary 6.5.4. The disjoint union of (M×[0, 1], τlex) and (M×[0,∞), τAlex) is Hausdorff,

regular and almost definably universal for the class of Hausdorff regular definable topological

spaces (X, τ), where X ⊆ M .

Proof. It is easy to observe that the spaces (M × [0, 1], τlex) and (M × [0,∞), τAlex) are

Hausdorff and regular, from where it follows that the disjoint union is too.

Let (X, τ), where X ⊆ M , be a regular Hausdorff definable topological space. By

Theorem 6.4.3 there exist definable disjoint open sets Y, Z ⊆ X and nY > 0 such that
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X \ (Y ∪ Z) is finite and there are definable embeddings (Y, τ) ↪→ (M × {0, . . . , nY }, τlex)

and (Z, τ) ↪→ (M × [0,∞), τAlex). Hence it suffices to show that, for any n > 0, there

exists a definable embedding (M × {0, . . . , n}, τlex) ↪→ (M × [0, 1], τlex). Fix parameters

0 = a0 < a1 < · · · < an = 1. Then the map given by 〈x, i〉 7→ 〈x, ai〉 does the job.

Remark 6.5.5. Similarly to Corollary 6.5.4 , Theorem 6.4.3 and Proposition 6.4.10 may be

used to show that the disjoint union of (M × [0, 1], τlex) and (M, τe) (note that the topology

in this union is given by the lexicographic order) is almost definably universal for the class

of definable topological spaces (X, τ) with X ⊆ M that embed definably into a definable

order topological space.

Onwards let CT3
dim 1 denote the class of one-dimensional regular Hausdorff definable topo-

logical spaces.

Remark 6.5.6. If M expands an ordered field then, by Remark 2.2.16 , the space described

in Corollary 6.5.4 is almost definably universal for CT3
dim 1.

In general, recall that Remark 6.4.9 states that any space in CT3
dim 1 can be partitioned into

finitely many points and open subsets definably homeomorphic to some set M×{0, . . . , n−1}

with either the τlex or τAlex topology. Consequently, following the arguments in the proof of

Corollary 6.5.4 , one may show that a space given by infinitely many copies of (M×[0, 1], τlex)

and (M× [0,∞), τAlex) is almost definably universal for CT3
dim 1. Such a space exists as a three-

dimensional space. That is, consider (X, τ), where X = ((−∞, 0) × M × [0, 1]) ∪ ([0,∞) ×

M × [0,∞)). Then let τ be the topology such that, for every t ∈ M , the fiber of X, which is

given by either {t}×M × [0, 1] or {t}×M × [0,∞), is open and its projection to the last two

coordinates is a homeomorphism onto (M × [0, 1], τlex) or (M × [0,∞), τAlex) respectively.

Note that Proposition 6.5.2 states that, when M expands an ordered field, the class

of euclidean spaces of dimension at most n contains an almost definably universal space for

itself (namely Mn). In light of these results it is natural to ask if, in the case that M expands

an ordered field, there exists a space (X, τ) ∈ CT3
dim 1 that is almost definably universal for

CT3
dim 1 (note that the space in Corollary 6.5.4 is not one-dimensional), and more generally

which classes of spaces admit an almost definably universal space, and when does the space
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belong in the class. This sort of universality question is common in the study of Banach

spaces [7 ] [11 ]. We answer the question regarding the class CT3
dim 1 negatively and derive, from

Theorem 6.3.9 and Corollary 6.4.11 , positive answers for two other classes of one-dimensional

spaces.

Proposition 6.5.7. There does not exist a one-dimensional definable topological space (X, τ)

that is almost definably universal for CT3
dim 1.

In order to prove the proposition we require a definition and two lemmas.

Definition 6.5.8. Let (X, τ) be a definable topological space. We say that two definable

curves γ : (a, b) → X and µ : (a′, b′) → X, with fixed domain endpoints c ∈ {a, b} and

c′ ∈ {a, b} respectively, are equivalent if, for any definable topology µ on X, µ- limt→c γ(t) =

µ- limt→c′ γ′(t) whenever one of the two limits exists.

For any x ∈ X let n(x,X, τ) (n(x) for short) denote the cardinality of a maximum set

of non-equivalent definable curves in X τ -converging to x.

Let n(X, τ) (n(X) for short) be defined to be sup{n(x) : x ∈ X}.

If dimX ≤ 1 and (X, τ) is T1 then one may easily check (see Remarks 6.2.10 and 6.2.13 )

that n(x) = 1 + |Rx| + |Lx|. By Lemma 2.2.20 , Proposition 6.2.8 (a) and (b) , and uniform

finiteness it follows that n(X) < ω.

Lemma 6.5.9. Let f : (X, τ) → (Y, µ), be a continuous injective definable map between

definable topological spaces. For any x ∈ X it holds that n(x) ≤ n(f(x)). In particular

n(X) ≤ n(Y ).

Proof. By Corollary 6.2.3 if γ and γ′ are two definable curves τ -converging to x then f ◦ γ

and f ◦γ′ µ-converge to f(x). It therefore suffices to show that if γ and γ′ are non-equivalent

then f ◦ γ and f ◦ γ′ are non-equivalent.

If γ and γ′ are non-equivalent with domain (a, b) and (a′, b′) respectively and converging

as, say, t → a and t → a′ respectively, then there exists a < d < b and a′ < d′ < b′ such that

γ[(a, d)] ∩ γ′[(a′, d′)] = ∅. By injectivity (f ◦ γ)[(a, d)] ∩ (f ◦ γ′)[(a′, d′)] = ∅, and so f ◦ γ and

f ◦ γ′ are clearly non-equivalent.
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A number of observations can be derived from Lemma 6.5.9 regarding the existence of

definably universal spaces. For a start, note that, given n, if L(i) denotes the line {0}× i−1· · ·×

{0} × M × {0} × n−i· · · × {0}, where M is in the i-th coordinate position, then the euclidean

space ∪1≤i≤nL(i) ⊆ Mn satisfies that n(0, . . . , 0) = 2n. Hence, by Lemma 6.5.9 , there does

not exist a one-dimensional T1 definable topological space that is definably universal for all

such spaces. This shows that there does not exist one such space definably universal for the

class of one-dimensional euclidean spaces (and so neither for CT3
dim 1).

Lemma 6.5.10. Let C be a class of T1 definable topological spaces and let (X, τ) be a definable

topological space. If (X, τ) is definably universal (respectively almost definably universal) for

C, then there exists a T1 definable topology µ finer than or equal to τ such that the space

(X,µ) is definably universal (respectively almost definably universal) for C.

Proof. Let (X, τ) be a definable topological space. For every x ∈ X let Cx = (clτ {x}) \ {x}.

Note that this set is uniformly definable over x ∈ X. If U denotes a definable basis for τ

let U ′ = {U \ Cx : U ∈ U , x ∈ X}. We claim that the definable family U ′ is a basis for a

topology µ, which will clearly be T1 and finer than or equal to τ .

Now given the claim suppose that there exists Y ⊆ X such that (Y, τ) is T1. Then,

for every x ∈ Y , Cx ∩ Y = ∅. So, for any x ∈ X, if Cx ∩ Y 6= ∅ then x /∈ Y , meaning

Y \ Cx = Y \ clτ {x}, which is an open set in (Y, τ). In particular any U ′ ∈ U ′ satisfies that

U ′ ∩Y is open in (Y, τ). It follows that (Y, τ) = (Y, µ). We derive that, if (X, τ) is definably

universal (or almost definably universal) for a class of T1 spaces, then (X,µ) is too, proving

the lemma. It remains to prove the claim.

Fix U1, U2 ∈ U and x1, x2 ∈ X. For simplicity, for i ∈ {1, 2}, set Ci = Cxi
. Let

x ∈ (U1 \ C1) ∩ (U2 \ C2). We must find U ∈ U ′ such that x ∈ U ⊆ (U1 \ C1) ∩ (U2 \ C2) =

U1 ∩ U2 \ (C1 ∪ C2). Since U is a basis there exists U0 ∈ U such that x ∈ U0 ⊆ U1 ∩ U2, and

it suffices to find U ∈ U ′ such that x ∈ U ⊆ U0 \ (C1 ∩ C2).

If x /∈ clτ (C1 ∪ C2), then the existence of one such set is immediate. Otherwise x ∈

clτ (C1 ∪C2) = (clτC1) ∪ (clτC2). Without loss of generality suppose x ∈ clτC1, in which case

x ∈ clτ {x1}. However, since x /∈ C1, it must be that x = x1. Now, if x /∈ clτC2, then we may

assume that U0 satisfies that U0 ∩C2 = ∅, in which case it is enough to consider U = U0 \C1.
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If x ∈ clτC2 then, by the same argument as before, we have that x = x2. Hence x = x1 = x2

and once again we can take U = U0 \ C1 = U0 \ C2.

We may now prove Proposition 6.5.7 .

Proof of Proposition 6.5.7 . Let Y = M × {0, . . . , n − 1} and consider the space (Y, τlex),

which belongs in CT3
dim 1. If, for every 0 ≤ i < n, we identify the subspace M × {i} with

M through the projection to the first coordinate (see Remark 6.2.13 ) then, for any x ∈ M ,

it holds that L〈x,0〉 = {〈x, 0〉, . . . , 〈x, n − 1〉} and R〈x,0〉 = ∅. So n(x, 0) = n, and in fact

n(Y ) = n. Moreover note that, for any cofinite subset Y ′ ⊆ Y , it still holds that n(Y ) = n,

since we may always find an interval I ⊆ M such that I × {0, . . . , n− 1} ⊆ Y ′.

Suppose that (X, τ) is a one-dimensional definable topological space that is almost defin-

ably universal for CT3
dim 1. By Lemma 6.5.10 we may assume that (X, τ) is T1. By Lemma 6.5.9 

and the above observation we have that n(X) ≥ n for every n, contradiction.

The same proof would have still be worked considering the space (M × {0, . . . , n −

1}, τAlex) in place of (M × {0, . . . , n − 1}, τlex). Ultimately one may show that there exists

no one-dimensional definable topological space that is almost definably universal for either

of the following two classes: all one-dimensional spaces with the τlex topology and all one-

dimensional spaces with the τAlex topology.

Nevertheless, Theorem 6.4.3 – more specifically Corollary 6.4.11 – does yield the existence

of a certain class of one-dimensional spaces that contains a space which is almost definably

universal for the class, as shown by the following corollary.

Let CT3, sep
dim 1 denote the class of Hausdorff regular definably separable one-dimensional

spaces.

Corollary 6.5.11. The disjoint union of (M, τe) and (M × {0, 1}, τlex) is Hausdorff, regu-

lar, definably separable, and almost definably universal for the class of Hausdorff, regular,

definably separable spaces (X, τ), where X ⊆ M .

It follows that, whenever M expands an ordered field, the class CT3, sep
dim 1 contains an almost

definably universal space.
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Proof. The second paragraph of the corollary follows from the first by direct application of

Remark 2.2.16 . We prove the first paragraph.

Since (M, τe) and (M × {0, 1}, τlex) are regular, Hausdorff and definably separable their

disjoint union is too.

By Corollary 6.4.11 it suffices to show that, for any definable set X ⊆ M × {0, 1}, there

exists a cofinite subspace Y of (X, τlex) that embeds definably in the disjoint union of (M, τe)

and (M × {0, 1}, τlex).

We partition X ⊆ M × {0, 1} as follows. Let X1 = {〈x, i〉 ∈ X : 〈x, 1 − i〉 /∈ X} and

X2 = X \X1. By o-minimality there exists a partition X of a cofinite subset of X with the

following properties. For every A ∈ X , there exists an interval I such that either A = I×{i},

for some i ∈ {0, 1}, and A ⊆ X1, or A = I×{0, 1} and A ⊆ X2. Let X1 = {A ∈ X : A ⊆ X1}

and X2 = X \ X1.

Note that every A ∈ X is open in (X, τlex), and that the subspace topology on A cor-

responds precisely to the lexicographic order topology on A. If A ⊆ X1 then the map

〈x, i〉 7→ x is an open embedding (A, τlex) ↪→ (M, τe), and otherwise the identity is an

open embedding (A, τlex) ↪→ (M × {0, 1}, τlex). Hence the projection to the first coordi-

nate is an open embedding (∪X1, τlex) ↪→ (M, τe) and the identity is an open embedding

(∪X2, τlex) → (M × {0, 1}, τlex), which completes the proof.

Following Remarks 6.5.3 and 6.5.6 , if M does not expand a ordered field then one may

adapt the proof of Corollary 6.5.11 to show that every space in CT3, sep
dim 1 has a cofinite subspace

that embeds definably into finitely many disjoint copies of (M, τe) and (M×{0, 1}, τlex), and

so one may construct a two-dimensional space that is almost definably universal for CT3, sep
dim 1 .

Note that any definable subspace of (M, τe) and (M × {0, 1}, τlex) is definably separable.

By Corollary 6.5.11 and the above paragraph it follows that any definable subspace of a space

in CT3, sep
dim 1 is also definably separable. In order words, definable separability is a hereditary

property for T3 one-dimensional spaces.

Finally we consider the class of one-dimensional Hausdorff definable topological spaces

with the frontier dimension inequality (f.d.i.), which we denote CT2, fdi
dim 1 . By Proposition 6.2.14 
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we know that these spaces are regular. We show that, whenever M expands an ordered field,

the class contains an almost definably universal space. It is a corollary of Theorem 6.3.9 .

Corollary 6.5.12. The disjoint union of spaces (M, τe), (M, τr), (M, τl) and (M, τs) is

Hausdorff, satisfies the frontier dimension inequality, and is almost definably universal for

the class of Hausdorff definable topological spaces with the frontier dimension inequality (X, τ)

where X ⊆ M .

It follows that, whenever M expands an ordered field, the class CT2, fdi
dim 1 contains an almost

definably universal space.

Proof. The second paragraph of the corollary follows from the first by direct application of

Remark 2.2.16 . We prove the first paragraph.

Since the spaces (M, τe), (M, τr), (M, τl) and (M, τs) are Hausdorff and have the f.d.i.,

their disjoint union has these properties too.

We fix (X, τ), X ⊆ M , a Hausdorff definable space with the f.d.i. By Theorem 6.3.9 ,

there exists a finite partition X of X into points and intervals such that, for each I ∈ X ,

the subspace topology τ |I is one of τe, τr, τl or τs. Let X ′ be the subfamily of intervals

in X and let X ′ = ⋃{intτI : I ∈ X ′}. By the frontier dimension inequality the set X ′ is

cofinite in X. Partition X ′ into four definable sets as follows. Let Xe = {x ∈ X ′ : x ∈

I ∈ X , (I, τ) = (I, τe)}. Then the identity is an open embedding (X1, τ) ↪→ (M, τe). By

repeating this argument with the topologies τr, τl and τs we may conclude that X ′ can be

partitioned into four definable open subspaces on which the identity is an embedding into

one of (M, τe), (M, τr), (M, τl) or (M, τs). The corollary follows.

Following Remarks 6.5.3 and 6.5.6 , if M does not expand a ordered field then one may

adapt the proof of Corollary 6.5.12 to show that every space in CT2, fdi
dim 1 has a cofinite subspace

that embeds definably into finitely many disjoint copies of (M, τe), (M, τr), (M, τl) and

(M, τs), and so one may construct a two-dimensional space that is almost definably universal

for CT2, fdi
dim 1 .
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6.6 Definable Hausdorff compactifications

In this section we address the question of which definable topological spaces can be

Hausdorff compactified in a definable sense, concluding (Theorem 6.6.6 ) that these include

all regular Hausdorff spaces in the line.

Recall that two definable curves γ : (a, b) → Mn and γ′ : (a′, b′) → Mn with fixed

extreme points c ∈ {a, b} and c′ ∈ {a′, b′} respectively are equivalent (Definition 6.5.8 ) if,

given any definable topological space (X, τ) and x ∈ X, γ τ -converges to x if and only if

γ′ τ -converges to x. If c = a and c′ = a′ then this is equivalent to having that, for every

a < d < b, there is a′ < d′ < b′ such that γ′[(a′, d′)] ⊆ γ[(a, d)].

Definition 6.6.1. A definable topological space (X, τ), dimX ≤ 1, is definably near-compact

if, up to equivalence, there are only finitely many non-convergent definable curves in (X, τ).

Clearly definable compactness implies definable near-compactness. We say that a definable

topological space (X∗, τ ∗), X∗ ⊆ M , is a definable near-compactification of (X, τ) if the

former is definably near-compact and the latter definably embeds into the former.

Lemma 6.6.2. A definable topological space (X, τ), where X ⊆ M , is definably near-compact

if and only if the set (∪x∈XRx) ∩ (∪x∈XLx) is cofinite in cleX.

Proof. This is a direct consequence of Remark 6.2.10 and the fact that, by o-minimality,

every injective definable curve in M e-converges to some point in M±∞ from the right or

from the left.

Remark 6.6.3. Note that, for any n and interval I, the spaces (I × {0, . . . , n}, τlex) and

(I × {0, . . . , n}, τAlex) are definably near-compact. It follows that the embedding h : (Y ∪

Z, τ) ↪→ (Y ∗ ∪ Z∗, τlex|Y ∗ ∪ τAlex|Z∗) described in the proof of Theorem 6.4.3 is a definable

near-compactfication of a cofinite open subspace of X.

We extract the following observation from the proof of Lemma 6.4.8 .

Proposition 6.6.4. Let (X, τ) be regular and Hausdorff. Let X be as in Lemma 6.4.6 . For

each A ∈ Xopen, let A∗ and hA : A → A∗ be as in Lemma 6.4.8 .
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If (X, τ) is definably near-compact then, for any A ∈ Xopen, the map hA is a bijection.

In particular, by Lemma 6.4.8 (2) , it is a definable homeomorphism (A, τ) → (A∗, µ), where

µ is one of τlex or τAlex.

Proof. Recall the proof by cases of Lemma 6.4.8 . Observe that, by Lemma 6.4.5 (b) , if (X, τ)

is definably near-compact then, for all but finitely many x ∈ I, it holds that x ∈ Ry ∩Lz, for

some y, z ∈ [x]E ⊆ {x, fn−1(x)}. It follows that, if (X, τ) is definably near-compact, cases 0,

1 and 2 in the proof of Lemma 6.4.8 are not possible. In the remaining cases the function

hA defined is a bijection.

The idea behind the definition of definable near-compactness is that it is the property

that characterizes the one-dimensional T3 spaces that can be one-point definably Hausdorff

compactified. We prove one direction of this characterization in the following proposition.

Proposition 6.6.5. Let (X, τ), dimX ≤ 1, be a regular Hausdorff definably near-compact

space. Then there exists a Hausdorff definably compact space (Xc, τ c) and a definable em-

bedding h : (X, τ) ↪→ (Xc, τ c), where Xc \ h(X) is a singleton.

If M expands the field of reals then (Xc, τ c) is simply the one-point compactification of

(X, τ).

Proof of Proposition 6.6.5 . We prove the lemma in the case where X ⊆ M . Given the

assumptions in Remark 6.2.13 the proof adapts to a proof of the general case.

Let c = 〈0, 1〉 and h be the map on X given by x 7→ 〈x, 0〉. Let Xc = X × {0} ∪ {c} and

τh be the push-forward topology of τ by h (see Definition 2.2.15 ). We will define τ c as an

expansion of τh to a topology on Xc.

Set Rc := {x ∈ M±∞ \ ∪x∈XRx : ∃y > x (x, y) ⊆ X} and Lc := {x ∈ M±∞ \ ∪x∈XLx :

∃y < x (y, x) ⊆ X}. Set Ec := Rc ∪ Lc. Since (X, τ) is definably near-compact, Ec is finite.

Let Rc = {y1, . . . , yn} and Lc = {z1, . . . , zm}, and let U(c) be the family of sets

⋃
1≤i≤n

(yi, y
′
i) ∪

⋃
1≤j≤m

(z′
j, zj)
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definable uniformly over parameters (y′
1, . . . , y

′
n, z

′
1, . . . , z

′
m) ∈ Mn+m, where yi < y′

i and

z′
j < zj. By definition of Rc and Lc we may moreover impose that the sets in U(c) are all

subsets of X.

Let τ c be the definable topology with basis {(intτU × {0}) ∪ {c} : U ∈ U(c)} ∪ τh. It

is routine to check that this is a well-defined topology and that h : (X, τ) ↪→ (Xc, τ c) is an

embedding. By definition of U(c) and Lemma 6.2.11 it is immediate that (X, τ c) is Hausdorff.

It remains to prove that it is definably compact.

Let γ′ be a definable curve in (Xc, τ c). We may assume that γ′ is injective and hence lies in

X×{0}. Let γ = h−1◦γ′. Let x0 ∈ M±∞ denote the limit of γ in the euclidean topology. Since

the remaining case is analogous we consider only the case where γ e-converges to x0 from

the right. Then clearly there must exist y > x0 such that (x0, y) ⊆ X. By Remark 6.2.10 , if

x0 /∈ Rc then x0 ∈ ∪x∈XRx and so γ τ -converges to some x ∈ X, and it follows that γ′ τ c-

converges to h(x). Suppose that x0 ∈ Rc. We will show that γ′ τ c-converges to c. To prove

this it suffices to show that, for every U ∈ U(c), there is xU > x0 such that (x0, xU) ⊆ intτU .

Towards a contradiction, suppose otherwise. Then, by o-minimality, there exists U1 ∈

U(c) and x1 > x0 such that (x0, x1)∩intτU1 = ∅. By definition of U(c) we may moreover take

x1 close enough to x0 to satisfy that (x0, x1) ⊆ U1. For every x0 < x < x1, x ∈ ∂τ (X \ U1),

and so from Proposition 6.2.5 (b) it follows that Ex \ U1 6= ∅. Let f : (x0, x1) → M±∞

be the definable map given by x 7→ minEx \ U1. By Hausdorffness (Lemma 6.2.6 (b) )

and o-minimality this function is e-continuous and strictly monotone on some subinterval

(x0, x2) ⊆ (x0, x1). Let y0 = e − limx→x0 f(x). If f is increasing on (x0, x2) then, by

construction of U(c) and the fact that f maps into M±∞ \ U1, it cannot be that y0 ∈ Rc.

However, there clearly exists y′ ∈ M such that (y0, y
′) ⊆ X. So there exists y ∈ X such that

y0 ∈ Ry and, by Lemma 6.2.12 and regularity, it follows that x0 ∈ Ry, a contradiction since

x0 ∈ Rc. The case where f is decreasing is analogous.

We now present the main result of this section.

Theorem 6.6.6. Let (X, τ), X ⊆ M , be a Hausdorff definable topological space. Then

(X, τ) is regular if and only if there exists a definably compact Hausdorff definable topological

space (Xc, τ c), with dimXc ≤ 1, and a definable embedding (X, τ) ↪→ (Xc, τ c).
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Proof. Let (X, τ) be a Hausdorff definable topological space in the line. Since the finite case

is trivial we assume that dimX = 1. The “if” implication of the theorem follows directly

from Lemma 5.4.7 , Proposition 6.2.4 and the observation that regularity is a hereditary

property. We prove the “only if” implication. Hence assume that (X, τ) is regular. We

will make use of Lemmas 6.4.6 and 6.4.8 to construct for (X, τ) a one-dimensional definable

Hausdorff compactification. It is perhaps interesting to note, although we will not use it in

the proof, that one may show that the closure of any one-dimensional subset of a Hausdorff

space is one-dimensional. Consequently, by passing if necessary to the closure of the image

of the embedding, one may always assume that the definable Hausdorff compactification of

a one-dimensional space is one-dimensional.

Recall the embedding (Y ∪Z, τ) ↪→ (Y ∗ ∪Z∗, τlex|Y ∗ ∪ τAlex|Z∗) described in the proof of

Theorem 6.4.3 . As noted in Remark 6.6.3 , this embedding is a definable near-compactfication

of a cofinite open subspace of X. The idea of the current proof is to extend this embedding

to an embedding of (X, τ) into a regular Hausdorff definably near-compact space (X∗, τ ∗),

with X∗ ⊆ M × {0, 1, . . .}. Then Proposition 6.6.5 completes the proof.

Let X = Xopen ∪ Xsgl be a finite partition of X as in Lemma 6.4.6 . For each A ∈ Xopen

let A∗, τA and hA be as in Lemma 6.4.8 . In particular recall that each set A∗ is of the form

I × {0, . . . , n} for some n and interval I ⊆ A, and that τA is either the τlex or τAlex topology

on A∗. Moreover hA : (A, τ) ↪→ (A∗, τA) is a definable embedding.

Let X∗ = ⋃{A∗ : A ∈ Xopen} ∪ {〈x, 0〉 : {x} ∈ Xsgl} and h = h′ ∪ ⋃{hA : A ∈ Xopen},

where h′ is the map with domain ∪Xsgl given by x 7→ 〈x, 0〉. Note that h is injective.

We construct a regular Hausdorff topology τ ∗ on X∗ such that, for every A ∈ Xopen, A∗

is τ ∗-open and (A∗, τ ∗) = (A∗, τA). Since every space (A∗, τA) is definably near-compact, it

follows that (X∗, τ ∗) is definably near-compact. We then prove that h : (X, τ) ↪→ (X∗, τ ∗)

is an embedding.
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Let F = ∪Xsgl and s = |Xopen|. We define τ ∗ as follows. For every x ∈ F and A ∈ Xopen

we construct a downward directed definable family BA(x) of τA-open subsets of A∗. Then

set, for each x ∈ F ,

B(x) := {{〈x, 0〉} ∪ V1 ∪ · · · ∪ Vs : (V1, . . . , Vs) ∈
∏

A∈Xopen

BA(x)}.

It is routine to check that then the family ⋃{B(x) : x ∈ F} ∪ ⋃{τA : A ∈ Xopen} is a basis

for a topology τ ∗ on X∗, which will clearly satisfy that τ ∗|A∗ = τA for every A ∈ Xopen. Since

F is finite and the topologies τA are definable, τ ∗ is also definable.

We fix x ∈ F and A ∈ Xopen and describe BA(x). Recall the notation A = ∪0≤i<nIi from

Lemma 6.4.6 , and let I0 = I = (a, b). For any y ∈ I let

Va(x, y) =


((a, y) ×M) ∩ A∗ if a ∈ Rx,

∅ otherwise,

Vb(x, y) =


((y, b) ×M) ∩ A∗ if b ∈ Lx,

∅ otherwise.

Note that these sets are always open in (A∗, τA). Then BA(x) is defined to be the family of

sets

VA(x, y, z) = Va(x, y) ∪ Vb(x, z),

definable uniformly in y and z with a < y < z < b. Clearly BA(x) is a definable downward

directed family of open subsets of A∗. Since ∩a<y<z<bVA(x, y, z) = ∅ it is immediate from the

definition that the induced topology τ ∗ is T1. It remains to check that (X∗, τ ∗) is Hausdorff

and regular and that h : (X, τ) ↪→ (X∗, τ ∗) is an embedding.

Consider the sets VA(x, y, z) for some a < y < z < b. By Hausdorffness of τ , for any

two distinct x, x′ ∈ F , if a ∈ Rx then a /∈ Rx′ and if b ∈ Lx then b /∈ Lx′ , so VA(x, y, z) ∩

VA(x′, y, z) = ∅, from where it follows that clτ∗VA(x, y, z) ⊆ {〈x, 0〉} ∪ A∗, and consequently

clτ∗VA(x, y, z) = {〈x, 0〉}∪clτA
VA(x, y, z). Moreover note that, since τA is one of τlex or τAlex,

it holds that clτA
Va(x, y) ⊆ ((a, y]×M)∩A∗ and clτA

Vb(x, z) ⊆ ([z, b)×M)∩A∗. So, for any
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a < y′ < y and z < z′ < b, we have that clτA
VA(x, y′, z′) ⊆ VA(x, y, z). It follows that, for

every U ∈ B(x), there exists U ′ ∈ B(x) such that clτ∗U ′ ⊆ U . Since each A∗ is τ ∗-open with

(A∗, τ ∗) = (A∗, τA), it is easy to check that the same property holds among τ ∗-neighborhoods

of points in A∗. It follows that the topology τ ∗ is regular. In particular, since it is T1, it is

Hausdorff.

It remains to show that h : (X, τ) ↪→ (X∗, τ ∗) is an embedding. We fix x ∈ X and

show continuity of h and h−1 at x and h(x) respectively. Since, for every A ∈ Xopen,

hA : (A, τ) ↪→ (A∗, τA) is an embedding between open subsets of X and X∗ respectively,

where τ ∗|A∗ = τA, this holds whenever x ∈ A for some A ∈ Xopen, so we may assume that

x ∈ F . We make use of Corollary 6.2.3 .

Fix γ an injective definable curve in X, and set γ′ := h ◦ γ. Let A = ∪0≤i<Ii ∈ Xopen

and 0 ≤ j < n be such that we may assume that γ is contained in the interval Ij. Recall

from Lemma 6.4.6 that, for every 0 ≤ i < n, Ii = fi(I) for some definable e-continuous

strictly monotonic function fi : I0 → M . We will prove the case where fj is increasing. The

decreasing case is analogous. Let I0 = I = (a, b) and Ij = (aj, bj). We require the following

simple fact that follows from the definition of the definable families BA(x).

Fact 6.6.7. The curve γ′ τ ∗-converges to h(x) = 〈x, 0〉 if and only if either a ∈ Rx and π ◦γ′

e-converges to a, or b ∈ Lx and π ◦ γ′ e-converges to b.

Suppose that γ τ -converges to x. Recall that, by Lemmas 6.4.5 (b) and 6.4.6 , if A∩Ex 6=

∅, then x ∈ A, a contradiction. So, by o-minimality and Proposition 6.2.5 (a) , γ must e-

converge to either aj or bj. Suppose that γ e-converges to aj, in which case aj ∈ Rx. Since

fj is increasing, we have that f−1
j ◦γ e-converges to a. By regularity of τ and Lemmas 6.2.12 

and 6.4.6 , it follows that a ∈ Rx. Now note that, by Lemma 6.4.8 (1) , π ◦ γ′ = π ◦ h ◦ γ =

f−1
j ◦ γ. Hence π ◦ γ′ e-converges to a. So, by Fact 6.6.7 , we conclude that γ′ τ ∗-converges

to h(x) = 〈x, 0〉. Analogously, if γ e-converges to bj, then bj ∈ Lx and, again by regularity

and Lemmas 6.2.12 and 6.4.6 , b ∈ Lx. Moreover, by Lemma 6.4.8 (1) , π ◦ γ′ e-converges to

b, so by Fact 6.6.7 γ′ τ ∗-converges to h(x) = 〈x, 0〉.

Now suppose that γ′ τ ∗-converges to h(x) and recall Fact 6.6.7 . If π ◦ γ e-converges to a,

then a ∈ Rx and, since fj is increasing, by Lemmas 6.2.12 and 6.4.6 , we have that aj ∈ Rx.
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Moreover, by Lemma 6.4.8 (1) and since fj is increasing, γ = h−1 ◦γ′ = fj ◦π◦γ′ e-converges

to aj. We conclude that h−1 ◦ γ′ τ -converges to x. Similarly, if π ◦ γ e-converges to b, then

b ∈ Lx and so, by Lemmas 6.2.12 and 6.4.6 , bj ∈ Lx. Moreover γ e-converges to bj, so γ

τ -converges to x. This completes the proof of the theorem.

6.7 Affine one-dimensional topologies

Unless stated otherwise throughout this section we assume that our underlying structure

expands an ordered field. Consequently we move to using R and R in place of M and M

respectively. Recall that a definable topological space is affine if it is definably homeomorphic

to a set with the euclidean topology. In this section we wish to classify affine one-dimensional

definable topologies. Our main result is the following.

Theorem 6.7.1. Suppose that R expands an ordered field. Let (X, τ), dimX ≤ 1, be a

Hausdorff definable topological space. Exactly one of the following holds:

(1) (X, τ) contains a subspace definably homeomorphic to an interval with either the dis-

crete or the right half-open interval topology.

(2) (X, τ) is affine.

Note that, since the map x 7→ −x is a homeomorphism (R, τr) → (R, τl), Theorem 6.7.1 

still holds if we consider τl instead of the τr topology in (1) .

Recall that, for any interval I ⊆ R, the space (I, µ), where µ ∈ {τr, τs}, is totally de-

finably disconnected (i.e. singletons are the only definably connected nonempty subspaces).

On the other hand, by o-minimality, every euclidean space has finitely many definably con-

nected components. Hence Theorem 6.7.1 implies that a Hausdorff one-dimensional definable

topological space (X, τ) is affine if and only if every definable susbspace has finitely many

definably connected components (or is not totally definably disconnected).

The main theorem (Theorem 7.1) in [49 ] states that if a definable metric space contains no

infinite definable discrete subspace (equivalently, by Remark 3.1.6 , if it is definably separable)

then it is affine. Hence, taking into account this result, statement (2) in Theorem 6.7.1 can

be changed to “(X, τ) is definably separable and definably metrizable”.
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A definition, a remark and a lemma precede the proof of Theorem 6.7.1 .

Definition 6.7.2. We say that a definable topological space (X, τ) is cell-wise euclidean if

it can be partitioned into finitely many cells X such that, for each C ∈ X , (C, τ) = (C, τe).

By o-minimal cell decomposition we can clearly relax the condition that sets in X in

Definition 6.7.2 are cells to just any definable sets. Since every definable bijection is a finite

union of disjoint definable e-homeomorphisms, the property of being cell-wise euclidean is

maintained by definable homeomorphism, and is equivalent to being cell-wise affine. In par-

ticular any affine space is cell-wise euclidean. Theorem 6.7.1 implies that the converse holds

for one-dimensional Hausdorff spaces. This statement cannot be generalized to spaces of

all dimensions, as illustrated by Example A.16 , which describes a two-dimensional definable

topological space that is Hausdorff and cell-wise euclidean but not definably metrizable.

Remark 6.7.3. By o-minimal cell decomposition and Theorem 6.3.9 , if a Hausdorff defin-

able topological space (X, τ), with dimX ≤ 1, does not have a subspace that is definably

homeomorphic to an interval with the τr or τs topologies, then (X, τ) is cell-wise euclidean.

To see this, it suffices to note that, for any cell C ⊆ X and definable bijection πC : C →

I ⊆ R, if (C, τ) does not have a definable copy of an interval with the τr or τs topologies

then, by Theorem 6.3.9 , the push-forward of (C, τ) by πC must be cell-wise euclidean, and

so (C, τ) is cell-wise euclidean.

By the above remark, in order to prove Theorem 6.7.1 it suffices to show that Hausdorff

one-dimensional spaces that are cell-wise euclidean are moreover affine.

The following lemma is essentially Lemma 5.7 in [49 ], which we extend to one-dimensional

spaces using Propositions 6.2.4 and 5.4.5 (4) . Recall that a euclidean space is definably

compact if and only if it is closed and bounded. This is easy to prove for one-dimensional

spaces, and was proved for spaces of all dimensions in [37 ].

Lemma 6.7.4. Let (X, τ) be a definably compact Hausdorff definable topological space. Let

(Y, τe) be a definably compact euclidean space that admits a definable continuous surjection

f : (Y, τe) → (X, τ). Then there exists a definable set Z and a definable homeomorphism

(Z, τe) → (X, τ).
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Proof. Let E be the kernel of f , namely E = {〈x, y〉 ∈ Y 2 : f(x) = f(y)}. By continuity

of f , E is closed in Y 2, and so definably compact. By Chapter 10 (Corollary 2.16) in [17 ]

there exists a definable set Z and a definable quotient map g : (Y, τe) → (Z, τe) of E, i.e. g

has kernel E, is surjective, continuous and, for every C ⊆ Z, if g−1(C) is closed in (Y, τe)

then C is closed in (Z, τe). Moreover, by Proposition 5.4.5 (3) , the space (Z, τe) is definably

compact.

The definable map h : (Z, τe) → (X, τ) given by h(g(x)) = f(x) is clearly continuous and

bijective. By Proposition 5.4.5 (4) it is a homeomorphism.

We may now prove Theorem 6.7.1 .

Proof of Theorem 6.7.1 . Let (X, τ) be a Hausdorff definable topological space. The case

where dim(X) = 0 is trivial and so we assume that dim(X) = 1. By Remark 2.2.16 we

assume that X ⊆ R and is bounded. Note that, by Remark 6.1.1 , (X, τ) cannot be both

cell-wise euclidean and have a definable copy of an interval with the τr or τs topologies, so

(1) and (2) in the statement of the theorem are mutually exclusive. Applying Remark 6.7.3 ,

we assume that (X, τ) is cell-wise euclidean and derive that it is affine.

Since (X, τ) is cell-wise eucliden it is also definably near-compact so, by Lemma 6.6.5 ,

by passing to (Xc, τ c) if necessary we may assume that (X, τ) is definably compact.

Let X be a partition of X into points and intervals such that, for each C ∈ X ,

the subspace (C, τ) is euclidean. We define, for each C ∈ X , a continuous function

fC : (cleC, τe) → (clτC, τ) extending the identity on C.

Once we have defined these functions we complete the proof as follows. Let num : X → ω

be a numbering of the elements in X and Y = ∪C∈X cleC × {num(C)} be the disjoint

union of the euclidean closures of the sets in X . Clearly (Y, τe) is definably compact. Let

f : (Y, τe) → (X, τ) be the function given by f(x, i) = fC(x), where num(C) = i. This

function is clearly surjective and continuous. By Lemma 6.7.4 the proof is complete. It

remains to define, for each C ∈ X , the function fC .

If C ∈ X is a singleton let fC be simply the identity. Now let us fix an interval C =

I = (aI , bI) ∈ X . By Hausdorffness (Proposition 6.2.8 (c) ) and definable compactness

(Remark 6.2.10 ) there exists a unique point xI ∈ X such that aI ∈ RxI
and similarly a
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unique point yI ∈ X such that bI ∈ LyI
. Note that, since (I, τ) = (I, τe), the points xI and

yI do not belong in I. Let fI be defined as

fI |I = id, f(aI) = xI and f(bI) = yI .

It is routine to check that fI is continuous as a map ([aI , bI ], τe) → (X, τ).

In Example A.14 we describe a Hausdorff definable topological space of dimension two

that has no definable copy of an interval with the τs or τr topology but fails to be cell-wise

euclidean. In Example A.16 we describe a regular Hausdorff definable topological space of

dimension two that is cell-wise euclidean but not affine. Hence, although equivalent for one

and zero-dimensional spaces, the following three implications are strict in general.

Affine ⇒ Hausdorff and ⇒ Hausdorff and does not contain

cell-wise euclidean a definable copy of an interval

with either the τr or τs topology

This complicates the task of generalising Theorem 6.7.1 to spaces of all dimensions. The

next corollary however offers a possibility.

Corollary 6.7.5. Suppose that R expands an ordered field. Let (X, τ), dimX ≤ 1, be a

definably compact Hausdorff definable topological space. The following are equivalent.

(1) (X, τ) satisfies the frontier dimension inequality.

(2) (X, τ) is definably metrizable.

(3) (X, τ) is affine.

Proof. We fix (X, τ), dimX ≤ 1, a definably compact Hausdorff definable topological space.

(3) ⇒ (2) is trivial. If (X, τ) is definably metrizable then, by Lemma 7.15 in [49 ], it

satisfies the f.d.i., i.e. (2) ⇒ (1) . We complete the proof by showing (1) ⇒ (3) , that is, if

(X, τ) satisfies the f.d.i., then it is affine.

Suppose that there exists an interval with the τr or τs topology that embeds definably

into (X, τ). We prove that (X, τ) does not have the f.d.i. By Theorem 6.7.1 this completes

the proof.
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By Remark 2.2.16 we may assume that X ⊆ R. By Remark 6.3.10 there exists an interval

I ⊆ X such that τ |I ∈ {τr, τl, τs}. Considering the push-forward of (X, τ) by x 7→ −x if

necessary, we may assume that τ |I ∈ {τr, τs}. By definable compactness and Hausdorffness,

for every y ∈ I there exists a unique x ∈ X such that y ∈ Lx (see Proposition 6.2.8 (c) and

Remark 6.2.10 ). Since τ |I ∈ {τr, τs}, this x must belong in ∂τI. By Lemma 2.2.20 it follows

that ∂τI is infinite, and so (X, τ) does not have the f.d.i.

6.8 Definable metrizability

In this section we explore the notion of definable metrizability (Definition 2.2.6 ) among

one-dimensional spaces. We maintain the assumption that our underlying o-minimal struc-

ture R expands an ordered field. Recall that, in our setting, “metric” refers to an R-metric

(Definition 2.2.4 ), including those instances when it appears implicitly in notions such as

metrizability and metric space. Recall the definition of weight, wτ (X), of a topological

space (X, τ), i.e. the minimum cardinality of a basis for τ . We denote the density of

(X, τ) by denτ (X). Our main result, Theorem 6.8.2 , shows that, whenever R satisfies that

dene(R) < |R| (i.e. whenever R expands the field of reals), every metrizable one-dimensional

space is in fact definably metrizable.

Note that from Theorem 6.7.1 and Remark 6.3.4 (and since R expands an ordered field)

it follows that every one-dimensional Hausdorff definable topological space (X, τ) satisfies

that wτ (X) ∈ {we(R), |R|}. Moreover, from Theorem 6.7.1 we may derive the next corollary.

Corollary 6.8.1. Let (X, τ), dim(X) ≤ 1, be a definable topological space that is metrizable

and separable. Suppose that any of the following two conditions hold.

• R expands the field of reals.

• (X, τ) is compact.

Then (X, τ) is affine. In particular it is definably metrizable.

Proof. The case where X is finite is trivial so we assume that dim(X) = 1. By Remark 6.3.6 ,

which states that if there exists a compact infinite T1 definable topological space then R

expands the field of reals, we may assume that R expands the field of reals.
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By Remark 2.2.16 we assume that X ⊆ R. By Theorem 6.7.1 , it is enough to show

that (X, τ) does not have a definable copy of an interval with the discrete or right half-

open interval topology. This follows from the fact that (X, τ) is a separable metric space,

hence second countable, so w(X) < 2ω, while the topological weight of an interval with the

Sorgenfrey Line or discrete topology is 2ω (Remark 6.3.4 ).

We now state the main theorem of this section, which improves the metrization part of

Corollary 6.8.1 .

Theorem 6.8.2. Suppose that R expands an ordered field and satisfies dene(R) < |R|. Let

(X, τ), dimX ≤ 1, be a definable topological space. Then (X, τ) is metrizable if and only if

it is definably metrizable.

In order to prove Theorem 6.8.2 we require two simple lemmas, whose aim is to generalize

basic results in metric topology and topology of the real line to our setting. In what follows

recall that, since R expands an ordered field, any two intervals are definably e-homeomorphic

and in particular, for any interval I ⊆ R, we have |I| = |R| and dene(I) = dene(R).

Lemma 6.8.3. Let (X, d) be a metric space. Let τ := τd, and let A,B ⊆ X satisfy that

A ⊆ clτ (B) (i.e. B is τ -dense in A). Let D be an e-dense subset of (0,+∞). Consider

the family of d-balls B = {Bd(y, δ) : y ∈ B, δ ∈ D}. Then, for every x ∈ A, there exists a

subfamily Bx of B that is a basis of open τ -neighborhoods of x.

In particular wτ (X) ≤ denτ (X)dene(R).

Proof. Clearly every set in B is τ -open. Without loss of generality, fix x ∈ A and ε > 0. We

must show that there exists y ∈ B and δ ∈ D such that x ∈ Bd(y, δ) ⊆ Bd(x, ε).

Let δ ∈ D be such that 0 < δ < ε/2. Since A ⊆ clτ (B), there exists y ∈ B such that

d(x, y) < δ. Consider the ball Bd(y, δ). Clearly x ∈ Bd(y, δ) and, if z ∈ Bd(y, δ), then, by

the triangle inequality, d(x, z) ≤ d(x, y)+d(y, z) ≤ δ+δ < ε. Hence x ∈ Bd(y, δ) ⊆ Bd(x, ε),

which completes the proof of the first part of the lemma.

For the second part, suppose that B is a dense subset of (X, τ) of cardinality denτ (X)

and D is an e-dense subset of (0,∞) of cardinality dene(R). Then, by the above, the family
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{Bd(y, δ) : y ∈ B, δ ∈ D} is a basis for τ which has cardinality bounded by denτ (X)dene(R).

Remark 6.8.4. Let X ⊆ R be an infinite definable set. By Remark 6.3.4 and because R

expands an ordered field the space (X, τ∗), where τ∗ ∈ {τl, τr}, has weight |R|. Moreover,

clearly the density of (X, τ∗) is equal to dene(R).

From Lemma 6.8.3 it follows that, if (X, τ∗) is metrizable, then |R| = wτ∗(X) ≤

denτ∗(X)dene(R) = dene(R)2 = dene(R) ≤ |R|, i.e. dene(R) = |R|. So, if dene(R) < |R|,

then (X, τ∗) is not metrizable1
 .

For the next lemma recall that, for any set X ⊆ R, a right (respectively left) limit point

of X is a point x ∈ R satisfying that, for every y > x (respectively y < x), (x, y) ∩ X 6= ∅

(respectively (y, x) ∩X 6= ∅).

Lemma 6.8.5. Suppose that dene(R) < |R| and let X ⊆ R be a subset of cardinality |R|.

Then there exist |R|-many elements x ∈ X that are both a right and left limit points of X.

Proof. We show that all but at most dene(R) many points in X are right limit points of

X and that the same holds for left limit points. The result then follows from the fact that

dene(R) < |R| = |X|.

Let Y be the set of points in X that are not right limit points of X. For every x ∈ Y ,

there is some x′ > x such that the interval (x, x′) = Ix is disjoint from X. The family

{Ix : x ∈ Y } has cardinality |Y | and contains only non-empty pairwise disjoint intervals. It

follows that |Y | ≤ dene(R). The proof for the set of left limit points is analogous.

We may now prove Theorem 6.8.2 .

Proof of Theorem 6.8.2 . Clearly any definably metrizable topological space is metrizable.

Fix (X, τ), with dimX ≤ 1, a definable topological space whose topology is induced by a

metric d. We prove that (X, τ) is definably metrizable by describing a definable metric d̂

that induces τ . Since every finite metric space is discrete we may assume that dimX = 1.
1↑ For a proof that (R, τr) is metrizable whenever R is a densely ordered countable group see: math.stack-
exchange.com/questions/2331814/existence-of-a-certain-near-metric-map-on-an-ordered-divisible-abelian-
group
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Let D be a dense subset of R of cardinality dene(R). By Remark 2.2.16 we assume that

X ⊆ R.

Consider the definable set S = {x ∈ X : Ex \ {x} 6= ∅}. We begin by proving the

following claim.

Claim 6.8.6. S is finite.

Towards a contradiction suppose that S is infinite. Let f : S → R±∞ be the map given by

x 7→ minEx\{x}, which, by Lemma 2.2.20 , is definable. By Hausdorffness (Lemma 6.2.6 (b) )

and o-minimality there exists an interval I ⊆ S on which f is e-continuous and strictly

monotonic. Note (see Lemma 6.2.11 ) that I is in the τ -closure of D ∩ f(I). Consider the

family of d-balls B = {Bd(q, δ) : q ∈ D ∩ f(I), δ ∈ (0,∞) ∩ D}. This family has cardinality

bounded by dene(R) and, by Lemma 6.8.3 , contains, for every x ∈ I, a subfamily that is a

basis of open τ -neighborhoods of x.

Now, by T1-ness, for every x ∈ I let h(x) denote a τ -neighborhood of x in B such that

f(x) /∈ h(x), i.e.

x ∈ h(x) ⊆ X \ {f(x)}. (6.4)

Since |I| = |R| and |B| ≤ dene(R), where dene(R) < |R|, there must exist, by the pigeonhole

principle, some ball B ∈ B such that h−1(B) has cardinality |R|. By Lemma 6.8.5 there

exists x ∈ h−1(B) that is both a right and left limit point of h−1(B). Recall that f(x) ∈ Ex.

Suppose that f(x) ∈ Rx. Then, since x ∈ h(x) = B, there is some z > f(x) such that

(f(x), z) ⊆ B. If f is increasing then, by e-continuity, there is some y > x with (x, y) ⊆ I

such that f [(x, y)] ⊆ (f(x), z). But then, by (6.4 ), for every x′ ∈ (x, y), h(x′) 6= B. This

contradicts that x is a right limit point of h−1(B). Similarly, if f is decreasing there is some

y < x with (y, x) ⊆ I such that (y, x) ∩h−1(B) = ∅, contradicting that x is a left limit point

of h−1(B). The argument in the case where f(x) ∈ Lx is analogous. This completes the

proof of the claim.

We now proceed with the proof of the theorem. By Theorem 6.3.9 and Remark 6.8.4 

there exists a partition X of X into finitely many points and intervals where each interval

subspace in X has the euclidean or discrete topology. Let ES = ∪x∈SEx. By the above claim
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and Lemma 2.2.20 both S and ES are finite sets. By passing to a finer partition if necessary

we may require that X has the following two properties.

(i) The elements in S and in ES do not belong in any interval in X .

(ii) For any interval (a, b) ∈ X with the discrete subspace topology it holds that, if a ∈

∪x∈XRx, then b /∈ ∪x∈XLx and, if b ∈ ∪x∈XLx, then a /∈ ∪x∈XRx (to see this note that

any discrete interval subspace I that is disjoint from ES is also disjoint from ∪x∈XEx,

and so any proper subinterval of I has the desired property).

By (i), for any interval I = (a, b) ∈ X , x ∈ I and y ∈ X \ I, it holds that Ex ⊆ {x} and

Ey ∩ I = ∅. So, by Lemma 6.2.11 , I is τ -open and, if y ∈ ∂τI, then it must be that either

a ∈ Ry or b ∈ Ly. In particular, by (ii) and Hausdorffness (Proposition 6.2.8 (c) ), if I is

discrete then |∂τI| ≤ 1.

Let Y ⊆ X be the family of all discrete interval subspaces in X . Let |Y| = n. We prove

the theorem by induction on n.

If n = 0 then X is cell-wise euclidean. In particular, by Remark 6.1.1 , it contains no

definable copy of an interval with the discrete or right half-open interval topologies and so,

applying Theorem 6.7.1 , (X, τ) is affine, and in particular it is definably metrizable.

Suppose that n > 0 and let Y = {I1, . . . , In}. Let X ′ = X \ In. By induction hypothesis

the space (X ′, τ) is metrizable with some definable metric d′. We extend d′ to a definable

metric d̂ on X such that τ |d̂ = τ . Let In = I = (a, b). We consider two cases.

Case 0: ∂τI = ∅. This is the case where I is a clopen subset of X. Note that the metric

min{1, d′} induces the same topology as d′, hence by passing to the former if necessary we

may assume that d′ ≤ 1. We define the metric d on X as follows.

• For all x, y ∈ X ′, d̂(x, y) = d′(x, y).

• For all x ∈ I, y ∈ X, d̂(x, y) = d̂(y, x) = 1 if x 6= y and d̂(x, y) = d̂(y, x) = 0 otherwise.

It is easy to check that d̂ is a metric that induces the topology τ .

Case 1: ∂τI 6= ∅, i.e. ∂τI = {x0} for some x0 ∈ X \ I. We prove the case where a ∈ Rx0 .

The remaining case, where b ∈ Lx0 , is analogous.
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Recall that, by (i) and (ii) , Ex0 ∩ (a, b) = ∅ and b /∈ Lx0 . Consider the following definable

metric d̂ in X.

• For all x, y ∈ X ′, d̂(x, y) = d′(x, y).

• For all x, y ∈ I, d̂(a, b) = |x− a| + |y − a| if x 6= y and d̂(x, y) = 0 otherwise.

• For all x ∈ I, y ∈ X ′, d̂(x, y) = d̂(y, x) = |x− a| + d′(y, x0).

It is routine to check that d̂ is a metric. Clearly it induces the corresponding subspace

topologies of τ on X ′ and I, and moreover I is d-open. Note that an injective definable

curve γ in I d̂-converges if and only if it e-converges to a from the right, d̂-converging to

x0. By (i) and (ii) the same holds for any τ -converging injective definable curve. Hence, by

Corollary 6.2.3 , we derive that τd̂ = τ . This completes the proof of the theorem.

It remains open whether or not Theorem 6.8.2 can be generalized to spaces of dimension

greater than one.

6.9 An affiness result by Peterzil and Rosel

During the writing of the contents of this chapter the author learned that Peterzil and

Rosel were working on similar questions. Their work resulted in [36 ]. The main theorem

(page 1) in said paper is the following affiness result.

Theorem 6.9.1 ([36 ], main theorem). Suppose that R expands an ordered field. Let (X, τ),

where dimX = 1, be a Hausdorff definable topological space. The following are equivalent.

(1) (X, τ) is affine.

(2) There is a finite set G ⊆ X such that the subspace topology τ |X\G is coarser than the

euclidean topology on X \G.

(3) Every definable subset of X has finitely many definably connected components, with

respect to τ .

(4) (X, τ) is regular and has finitely many definably connected components.
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Their work is in some ways parallel to ours. Their notion of set of shadows of x is

effectively the e-accumulation set of x. Similarly x inhabits the left (respectively right) side

of y means y ∈ Lx (respectively y ∈ Rx). For one-dimensional Hausdorff spaces being almost

coarser than the affine topology corresponds to being cell-wise euclidean.

In light of Theorem 6.3.9 , the implications (1) ⇔ (2) ⇔ (3) in their theorem are equiv-

alent to our Theorem 6.7.1 . To prove it they use a more elementary approach that allows

them to note that the result holds with only the assumption that R expands an ordered

group, when X is bounded.

To prove (4) ⇒ (1) they use a fact similar to the following, which can be derived from

Lemmas 6.4.6 and 6.4.8 (and generalized to all spaces of dimension one using Remark 6.4.9 ).

Corollary 6.9.2. Let (X, τ), X ⊆ R, be a regular Hausdorff definable topological space

that is not cell-wise euclidean, has no isolated points, and has no open definable copy of an

interval with the τr or τl topologies. Then there exists an interval I ⊆ R and a definable

open embedding h : (I × {0, 1}, τlex) ↪→ (X, τ). Moreover, for every a < b in I, the image by

h of the set ((a, b] × {0}) ∪ ([a, b) × {1}) is clopen in (X, τ).

It follows that every regular Hausdorff one-dimensional definably connected space is cell-

wise euclidean.

They ask if, given a definable topological space (X, τ) and x ∈ X, the union of all

(definable) definably connected sets containing x is itself definable, i.e. if there exists a

(definable) definably connected component containing x. By means of Theorem 6.4.3 and

its generalisation (Remark 6.4.9 ) one ought to be able to prove that the answer is yes for

one-dimensional regular Hausdorff definable topologies, where one such component is either

a singleton or an affine space.

They also ask whether or not, for Hausdorff definable topologies of all dimensions, being

affine is equivalent to the condition that every definable subset has finitely many definably

connected components, and also to being regular and having finitely many definably con-

nected components. The non-equivalence of these three conditions is given by Examples A.14 

and A.16 .
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7. GENERAL AFFINENESS RESULTS

Introduction

Throughout this chapter we work in an o-minimal expansion of an ordered field R =

(R, 0, 1,+, ·, <, . . .). Recall that, in this setting, any definable curve has domain (0, 1), and

convergence is understood as t approaches zero. Recall that we call a definable topological

space affine if it is definably homeomorphic to a set with the euclidean topology, and locally

affine if every point has an affine neighborhood (Definition 2.2.3 ). Our aim is to expand

on the affineness result for one-dimension spaces (Theorem 6.7.1 ) in Chapter 6 by studying

affineness results for spaces of all dimensions.

In Section 7.1.1 we review the proof of the affineness theorem for regular manifold spaces

of van den Dries (Theorem 7.1.2 ). We make some comments on the limitations of trying

to adapt this proof to a more general class of spaces. In Section 7.1.2 we review the proof

of the affineness result for definably separable definable metric spaces of Walsberg (Theo-

rem 7.1.5 ). In Section 7.1.2 we present a new proof of Walsberg’s theorem using the definable

Tietze Extension Theorem, and in Section 7.1.2 we present a third more elementary proof.

Finally, in Section 7.2 we prove our own affineness result for definably Tychonoff spaces

(Theorem 7.2.4 ).

Throughout this chapter recall that, given a definable metric space (X, d) and a defin-

able set Y ⊆ X, we denote by d(·, Y ) the definable distance function given by d(x, Y ) =

inf{d(x, y) : y ∈ Y }. It is easy to see that this function is always continuous. We denote by

de(·, Y ) the distance function with respect to the euclidean metric.

7.1 Affineness results by van den Dries and Walsberg

7.1.1 Van den Dries’ definable manifold spaces

In Chapter 10 of his book [17 ] van den Dries addresses “definable spaces”, which appeared

previously in the o-minimal setting implicitly in [38 ]. To avoid confusion we refer to these

“definable spaces” as “definable manifold spaces”. They are defined to be topological spaces

(X, τ) that admit a definable atlas of functions gi : Ui → Rn(i), for 0 ≤ i ≤ m, where
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X = ⋃
0≤i≤m Ui, each Ui is τ -open, and each gi : (Ui, τ) → (Rn(i), τe) is a homeoemorphism.

Moreover, for every 1 ≤ i ≤ j ≤ m, it holds that the transition map gij : gi(Ui ∩ Uj) →

gj(Uj ∩ Ui) given by gij(x) = gj(g−1
i (x)) is definable. The topology τ is then uniquely

determined by the fact that the functions on the atlas are homeomorphisms and each Ui is

open. By passing to a push-forward if necessary, we may redefine these manifold spaces as

follows.

Definition 7.1.1. A definable manifold space is a definable topological space that can be

covered by a finite family of open definable affine subspaces.

Van den Dries proved the following.

Theorem 7.1.2 ([17 ], Chapter 10, Theorem 1.8). A definable manifold space is affine if and

only if it is regular.

Before we describe the proof of Theorem 7.1.2 we note in the next corollary how one may

use the theorem, together with Corollary 5.4.14 , to prove an affineness result for locally affine

definable topological spaces in the case where R expands (R, <). At the end of Section 7.2 

we prove another affineness result (Corollary 7.2.18 ) for locally affine spaces.

Corollary 7.1.3. Suppose that R expands (R, <). Let (X, τ) be a locally affine definably

compact definable topological space. Then (X, τ) is affine.

Proof. By Corollary 5.4.14 if (X, τ) is definably compact then it is compact. By topological

compactness and local affineness it follows that there are finitely many affine definable τ -

open subspaces of X that cover X. So (X, τ) is a definable manifold space, and the result

follows from Theorem 7.1.2 .

Van den Dries proves the “if” direction (the “only if” implication is trival) of Theo-

rem 7.1.2 constructively, by explicitly describing an appropriate homeomorphism, using ideas

previously applied by Robson in the semialgebraic case [44 ]. Along the way he proves a ver-

sion of the next crucial lemma (it is a claim in his proof). We include the lemma without

proof, and refer the reader to the proof of Theorem 1.8 in [17 ], Chapter 10. We state it in the

language of this thesis. It is worth noting that the lemma can be stated and proved without

any assumptions on R besides it being an o-minimal expansion of a dense linear order.
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Lemma 7.1.4. [[17 ], Chapter 10, Claim 1 in the proof of Theorem 1.8] Let (X, τ) be a

regular definable topological space and let U ⊆ X be a τ -open set on which the subspace

topology is euclidean. Let C be the set of points x in ∂eU such that there exists a definable

curve in U e-converging to x and τ -converging outside U .

Then, for every y ∈ U , it holds that de(y, C) > 0.

We now sketch the proof of Theorem 7.1.2 .

Proof of Theorem 7.1.2 . Let (X, τ) be a regular definable manifold space. By an inductive

argument we may assume that there are just two open sets U and V that cover X and that

are affine. Let h1 and h2 be definable homeomophisms from U and V respectively into a

euclidean space. We may assume, by using the field structure, that the images of h1 and h2

are in the same Rn space, bounded and disjoint. Considering the push-forward of (X, τ) by

h1 ∪ (h2 \ h1), let C1 be the set of points x in ∂eh1(U) such that there is a definable curve γ

in h1(U) e-converging to x and converging in the push-forward topology outside h1(U). We

define C2 analogously for h2 in place of h1.

Then, recalling Lemma 7.1.4 , define

h(x) =



〈 de(h1(x), C1) , de(h1(x), C1)h1(x) , 0 , . . . , 0 〉, if x ∈ U \ V,

〈de(h1(x), C1), de(h1(x), C1)h1(x), de(h2(x), C2), de(h2(x), C2)h2(x)〉, if x ∈ U ∩ V,

〈 0 , . . . , 0 , de(h2(x), C2) , de(h2(x), C2)h2(x) 〉, if x ∈ V \ U,

where de(h1(x), C1)h2(x) and de(h2(x), C2)h2(x) refer to scalar multiplication.

Note first that, by Lemma 7.1.4 , h(x) is injective. Continuity is easy to prove by means

of definable curves (Corollary 4.5.5 ), the key observation being that, if γ is a curve in U ∩V

that τ -converges to, say, a point in V \ U , then h1 ◦ γ e-converges to some point in C1, and

so de(h1 ◦ γ, C1) goes to zero.

To prove that h is a homeomorphism we must show (Corollary 4.5.5 ) that, if h ◦ γ is a

curve in the image of h e-converging to some h(x), then γ τ -converges to x. Let us fix some

x ∈ X and definable curve γ in X such that h ◦ γ e-converges to h(x). If x ∈ U then, by

Lemma 7.1.4 , de(h1(x), C1) > 0. By definition of h this means that γ has to be (eventually)
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in U . So de(h1 ◦ γ, C1) e-converges to de(h1(x), C1), and de(h1 ◦ γ, C1)(h1 ◦ γ) e-converges to

de(h1(x), C1)h1(x). But then

e- lim h1 ◦ γ = (e- lim de(h1 ◦ γ, C1)(h1 ◦ γ))
(
e- lim 1

de(h1 ◦ γ, C1)

)
= h1(x).

Since h1 is a homeomorphism it follows that γ τ -converges to x. The case where x ∈ V is

analogous, and this completes the proof.

Comments on the proof of Theorem 7.1.2 

The key idea behind the proof of Theorem 7.1.2 lies in defining C1 and C2 in such a way

that allows both the injectiveness and continuity arguments to work. We now observe how

these arguments rely crucially on the fact that X can be covered by finitely many τ -open

affine spaces.

Note that a map h : X → Rn is injective if and only if its coordinate maps separate

points, i.e. for every distinct pair x, y ∈ X there must be a coordinate map πi ◦ h such that

(πi ◦ h)(x) 6= (πi ◦ h)(y). Hence, to find a continuous injective map on X is suffices to find

a finite family of continuous R-valued maps that separates points on X (and use these as

coordinate maps).

Since the set U in the described proof of Theorem 7.1.2 is affine, the maps de(h1(x), C1)

and de(h1(x), C1)h1(x) are continuous on U . By Lemma 7.1.4 , they separate any two points

in U . We definably extend these maps to the whole space X by making them zero outside

U (note that now they also separate any two points x ∈ U and y ∈ X \ U). By definition

of C1 and the fact that U is τ -open, these extensions are continuous. In particular, to prove

continuity (using Corollary 4.5.5 ) it suffices to check that limits of curves in U τ -converging

outside U are maintained. If U were not τ -open then, while the maps de(h1 ◦ γ, C1) and

de(h1(x), C1)h1(x) would still be continuous on U , they would not, by failure of Lemma 7.1.4 ,

necessarily separate points (although if U were a cell, and therefore locally closed, i.e. open

in its closure, then they would) and, perhaps more importantly, their extensions to zero

functions outside U would no longer necessarily be continuous.

184



We will continue to see in the subsequent subsections how definably continuously ex-

tending partial maps on definable topological spaces is a powerful tool in proving affineness

results, in particular with regards to piecewise euclidean spaces.

7.1.2 Walsberg’s definable metric spaces

Definable metric spaces were studied by Erik Walsberg in [49 ]. His main result states

that such a space is affine if and only if it is definably separable.

Theorem 7.1.5 ([49 ], Theorem 7.1). A definable metric space is affine if and only if it is

definably separable.

He divides the proof of the “if” direction (the “only if” implication follows easily from

o-minimality) into two parts. First he shows that every definably separable definable metric

space embeds definably into a definably compact one ([49 ], Proposition 7.19). Then he proves

the result for definably compact spaces.

He proves and uses the following two facts.

Fact 7.1.6 ([49 ], Lemma 7.15). Definable metric spaces (X, d) have the frontier dimension

inequality, i.e. for every definable set Y ⊆ X it holds that dim ∂dY < dim Y .

Fact 7.1.7 ([49 ], Corollary 7.17). Definably separable definable metric spaces are cell-wise

euclidean. i.e. they can be partitioned into finitely many cells where the subspace topology is

euclidean (Definition 6.7.2 ).

Walsberg proves these facts by witnessing each definable metric space (X, d) as the space

of functions {dx : x ∈ X} where dx(y) = d(x, y). He studies these families of functions with

the uniform and the Hausdorff metrics, using results from [15 ]. Ultimately, this approach

allows him to build the definable compactification of a definably separable definable metric

space. We now sketch the second part of his proof, which corresponds to the proof of the

following proposition.

Proposition 7.1.8. Every definably compact definable metric space is affine.
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In the next subsections we provide a different proof of Proposition 7.1.8 , as well as a more

elementary proof of Theorem 7.1.5 . In the sketch of Walsberg’s proof of Proposition 7.1.8 

that follows we adapt the arguments slightly to avoid the use of the definable Michael’s

Selection Theorem of Aschenbrenner and Thamrongtanyalak ([6 ], Theorem 4.1).

Proof of Proposition 7.1.8 . Let (X, d) be a definably compact definable metric space. We

apply an inductive argument on the dimension of X, where the base case dimX = 0 is

trival. We assume (see Lemma 2.2.16 ) that X is bounded. Using a version of Lemma 6.7.4 ,

the question is reduced to the construction of a definably compact euclidean space Z ′ and

a definable continuous surjective map h : (Z ′, τe) → (X, τd). Using Fact 7.1.7 , the question

is further simplified to the following problem. We fix a cell A ⊆ X such the τd subspace

topology on A is euclidean, and must construct a definably compact euclidean space Z and

some continuous definable map h : (Z, τe) → (X, τd) satisfying that A ⊆ h(Z).

Let C = ∂dA. By the frontier dimension inequality (Fact 7.1.6 ) dimC < dimA. By

induction hypothesis we conclude that C is affine, and so, by passing to a push-forward of

(X, τ) if necessary, we assume that the τd subspace topology on C is also euclidean.

We now construct a definable function on f : A → C with the following property.

For any definable curve γ on A, if γ d-converges to some point y ∈ C,

then f ◦ γ e-converges (equivalently d-converges) to y. (‡)

The construction of f is as follows. Recall that every cell is locally closed (open in its

closure) in the euclidean topology. By regularity of the euclidean topology, and that fact

that the τd subspace topology on A is euclidean, it follows that, for every x ∈ A, there exists

a τd-neighborhood B of x such that cle(B∩A)∩∂eA = ∅. In particular every definable curve

in B ∩ A e-converges (equivalently d-converges) to some point in A. By definable curve

selection (Lemma 4.5.4 ) we derive that B ∩ C = ∅. So A is also locally closed with respect

to d, i.e. d(x,C) > 0 for every x ∈ A (note the similarity between this observation and

Lemma 7.1.4 ). In particular this implies that C is d-closed, and so (Proposition 5.4.5 (1) ) it

is definably compact in the τd topology (equivalently in the euclidean topology).
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By definable choice let f be any definable function such that, for every x ∈ A, it holds

that d(x, f(x)) < 2d(x,C). Then by the triangle inequality, for every y ∈ C and x ∈ A,

d(y, f(x)) ≤ d(y, x) + d(x, f(x)) < d(y, x) + 2d(x,C).

It follows that f satisfies (‡ ).

The proof is now completed by constructing the continuous definable map h : (Z, τe) →

(X, τd) with A ⊆ h(Z) as follows. Let Z be the euclidean closure of the graph of f . Note

that, since A and C are bounded, Z is a definably compact euclidean space. Let πy(Z) denote

the projection of Z to the last coordinates, including the image of f . Since C is definably

compact in the euclidean topology, it follows that πy(Z) ⊆ C (in fact by property (‡ ) we

have that πy(Z) = C but this is not needed in the proof). Let h : Z → A ∪ C be given by

h(x, y) =


x if x ∈ A,

y otherwise.

Let Z1 be the set of points 〈x, y〉 in Z such that x ∈ A = dom(f) and let Z2 = Z \Z1. Then

h is the projection to the first x-coordinates on Z1 and to the last y-coordinates on Z2.

Clearly A ⊆ h(Z), so it remains to show that the map is continuous. We show that

limits of definable curves are maintained (see Corollary 4.5.5 ). Note first that, since A is a

cell and thus locally closed, the set Z1 is e-open and the set Z2 e-closed in Z. Let µ be a

definable curve in Z e-converging to a point 〈x, y〉. If µ is contained in Z2 then so is 〈x, y〉.

In particular h ◦ µ is a curve in C, and h(x, y) = y ∈ C. Since projections are continuous,

it follows that h ◦ µ e-converges, and equivalently d-converges, to h(x, y) = y. Now suppose

that µ is contained in Z1. If 〈x, y〉 is in Z1, then again the result follows easily from the facts

that projections are continuous and the τd subspace topology in A is euclidean. Suppose

that 〈x, y〉 ∈ Z2. Note that (h ◦ µ)(t) is the projection to the first coordinates of µ(t). Let

γ = h ◦ µ be the corresponding definable curve in A. We must show that γ d-converges to

h(x, y) = y.
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Since Z is the euclidean closure of the graph of f there exists, by definable choice, a

definable curve µ′ in Z1 of the form µ′ = 〈γ′, f ◦ γ′〉, for some definable curve γ′ in A,

satisfying ‖µ(t) − µ′(t)‖ < t for every 0 < t < 1. Since the τd subspace topology on A

is euclidean we may also ask that d(γ(t), γ′(t)) < t for every 0 < t < 1. Clearly µ and

µ′ e-converge in Z to the same point, namely 〈x, y〉. In particular f ◦ γ′ e-converges to y.

Moreover γ and γ′ also e-converge to the same point x /∈ A. By definable compactness and

the fact that the τd subspace topology on A is euclidean we have that γ′ must d-converge to

some point in C. Then, by property (‡ ), it must be that γ′ d-converges to y. Finally, since

d(γ(t), γ′(t)) < t for all 0 < t < 1, we conclude that γ also d-converges to y. This completes

the proof.

A proof of Theorem 7.1.5 using the definable Tietze Extension Theorem

A different approach to Theorem 7.1.5 , possibly more in line with the general approach

taken by van den Dries to prove Theorem 7.1.2 , would involve developing ways of definably

continuously extending partial functions on definable metric spaces.

Recall that Walsberg proved that any definably separable definable metric space embeds

definably into a definably compact one ([49 ], Proposition 7.19), and so, to prove Theo-

rem 7.1.5 , it suffices to do so for definably compact spaces. In particular, the more com-

plicated “if” direction of Theorem 7.1.5 follows from Proposition 7.1.8 . Another approach,

different from Walsberg’s proof described in the previous section, to the proof of Proposi-

tion 7.1.8 , is provided by the next lemma.

Lemma 7.1.9. Let (X, τ) be a definably compact definable topological space. Suppose that

there exists a finite family {f1, . . . , fm} of definable continuous functions (X, τ) → (R, τe)

that separate points in X (i.e. for every distinct pair x, y ∈ X there is some 1 ≤ i ≤ m such

that fi(x) 6= fi(y)). Then the function f = 〈f1, . . . , fm〉 : (X, τ) → (Rm, τe) is a definable

homeomorphism. In particular (X, τ) is affine.

Proof. Because the family of continuous functions {f1, . . . , fm} separates points the map f

is clearly a continuous injection. Then the result follows from Proposition 5.4.5 (4) .
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The Tietze Extension Theorem states that a continuous real-valued function on a closed

subset of a metric space can be extended to a continuous function on the whole space. Let

us consider a definable version of this result.

Theorem 7.1.10 (Definable Tietze Extension Theorem). Let (X, d) be a definable metric

space and C ⊆ X a closed set. Let f : (C, τd) → (R, τe) be a definable continuous function.

There exists a definable continuous function g : (X, τ) → (R, τe) such that g|C = f |C.

In its modern form the Tietze Extension Theorem, also referred to as Tietze-Urysohn

Extension Theorem, was proved by Uryshon for all normal spaces. The older metric version

is due to Tietze. Proofs of the metric version also yield the definable metric version above.

One may use for example the following formula due to Riesz (1923, see [5 ] page 31).

Lemma 7.1.11. Let (X, d) be an R-metric space and C ⊆ X a closed set. Let f : C → R

be a continuous map such that f(C) ⊆ (1, 2).

Let g be defined as g|C = f |C and, for any x ∈ X \ C,

g(x) = inf
y∈C

f(y) d(x, y)
d(x,C) .

Then g is continuous.

This approach to the Tietze Extension Theorem is presented in [5 ] (Lemma 6.6), where

Theorem 7.1.10 is proved in definably complete expansions of ordered fields (for sets with

the canonical field topology) through an analogue of Lemma 7.1.11 . For a detailed proof in

the classical metric case, which generalizes to our setting, see [10 ] (Theorem 4.5.1).

Using the definable Tietze Extension Theorem (Theorem 7.1.10 ), Lemma 7.1.9 and

Facts 7.1.6 and 7.1.7 , we may prove Proposition 7.1.8 as follows.

Proof of Proposition 7.1.8 using Theorem 7.1.10 . We use an inductive argument on n =

dimX, where the base case n = 0 is trivial. By Remark 2.2.16 we assume that X is

bounded.

By Fact 7.1.7 , let D be a finite cell partition of X such that the τd subspace topology on

each cell is euclidean. Let A be the union of the d-interiors of the cells in D of dimension n.
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Let C = X\A. By Fact 7.1.6 we have that dimC < dimX. Moreover (C, d) is definably com-

pact (see Proposition 5.4.5 (1) ). By induction hypothesis (C, d) is affine. By Theorem 7.1.10 ,

let hC be a definable continuous extension to (X, d) of a definable homeomorphism from

(C, d) to a euclidean space. Note that hC separates points in C.

Now consider the functions on X given by x 7→ d(x,C) and x 7→ d(x,C)x on A, and

by zero on X \ A. Since C is d-closed, d(x,C) > 0 for every x ∈ A, and so these functions

clearly separate any two distinct x, y ∈ A, and also any x ∈ A and y ∈ X \A. Moreover it is

easy to prove, using definable curves (Corollary 4.5.5 ), that these maps are continuous. In

particular, in the case of the function given by x 7→ d(x,C)x on A, we use the fact that A

is a finite union of d-open sets where the τd subspace topology is euclidean.

We define h coordinate-wise by taking the coordinate functions of hC and the two func-

tions described in the previous paragraph. By Lemma 7.1.9 , h is a homeomorphism onto a

euclidean space.

Unfortunately, it is not clear whether there exists a definable version of the general Tietze-

Urysohn Extension Theorem (or of the simple case given by Uryshon’s Lemma), since the

arguments in the proofs of those theorems rely on the axiom of choice and do not apparently

translate to our setting. We discuss this futher in Remark 7.2.20 .

An elementary proof of Theorem 7.1.5 

Inspired by the meticulous construction of van den Dries, we present a proof of Theo-

rem 7.1.5 that follows elementarily from Facts (7.1.6 ), (7.1.7 ) and Lemma 7.1.11 . In partic-

ular, it avoids proving the existence of a definable compactification. It relies heavily on the

use of the metric.

Proof of Theorem 7.1.5 . The “only if” implication is an easy consequence of o-minimality,

see for example Remark 3.1.2 . Hence we prove that every definably separable definable

metric space is affine.

Let (X, d) be a definable metric space that is definably separable. We proceed by induc-

tion on n = dimX. The base case n = 0 is trivial. Since R expands an ordered field we may

assume (see remark 2.2.16 ) that X ⊆ Rn and is bounded.
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By Fact 7.1.7 let D denote a finite cell partition of X such that the τd subspace topology

on each cell is euclidean. Let A = ⋃{inte(intdD) : D ∈ D, dimD = n}. By Fact 7.1.7 ,

and the fact that the euclidean topology has the frontier dimension inequality, we have that

dimA = dimX and dim(X \A) < dimX. Moreover note that A is both d-open and e-open.

Let C = X\A. By inductive hypothesis C is affine and thus, by passing to a push-forward

if necessary, we assume that the τd topology in C coincides with the euclidean topology.

Let C0 = C, C1 = ∂e∂eC0 and recursively Ci+1 = ∂e∂eCi. Note that it is not necessarily

the case that the sets Ci, for i > 0, are all empty because, although C is e-closed in X,

it is not necessarily e-closed in Rn. Note that these sets are nested and, because the τd

subspace topology on C is euclidean, d-closed. Moreover by the frontier dimension inequality

dimCi+1 < dimCi for every i, and so there exists some m such that Cm 6= ∅ and Cm+1 = ∅.

Let d′
e = min{de, 1/3}. For any 0 ≤ i < m let fi denote a definable continuous extension of

the map

x 7→ 4
3 + d′

e(x, ∂eCi)

on Ci as described in Lemma 7.1.11 . If ∂eCm 6= ∅ let fm be defined in the same way; if

∂eCm = ∅ we omit this extra function from the definition of our homeomorphism below. By

Theorem 7.1.10 let f be a definable continuous function (X, d) → Rn extending the identity

on C. We define h as follows:

h(x) = 〈d(x,C)x, d(x,C), f0(x), d(x,C1), f1(x), . . . , d(x,Cm), fm(x), f(x)〉,

where d(x,C)x refers to scalar multiplication. We claim that h is a homeomorphism.

The map is clearly continuous. Moreover note that the functions d(x,C), d(x,C)x and

f separate points, so h is injective. It remains to show that the inverse is continuous.

We use Corollary 4.5.5 . Let h ◦ γ be a definable curve in h(X) e-converging to a point

h(x). We must show that γ d-converges to x. We may assume that γ lies entirely in either

C or A.

Suppose that γ lies in C. Then d(γ(t), C) is constantly zero and so the same must be

true of d(x,C), so, since C is d-closed, we have that x ∈ C. But then f(x) = x, and so
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f ◦ γ = γ e-converges to x. Since the τd subspace topology on C is euclidean, it follows that

γ d-converges to x.

Suppose now that γ lies in A. If x ∈ A then, because A is d-open, we have that

d(x,C) 6= 0. Using the fact that h ◦ γ e-converges to h(x) we may then conclude that

e- lim γ(t) = e- lim d(γ(t), C)γ(t)
d(γ(t), C) = d(x,C)x

d(x,C) = x.

Since the τd subspace topology on A in euclidean it follows that γ d-converges to x.

Finally, suppose that γ lies in A and x ∈ C. By continuity (Corollary 4.5.5 ) it suffices to

prove that γ d-converges. Let i ≤ m be the largest index such that x ∈ Ci. Then d(x,Ci) = 0

and so d(γ(t), Ci) converges to zero. Using definable choice there exists a definable curve µ

in Ci such that

d(γ(t), µ(t)) < (1 + t)d(γ(t), Ci) (7.1)

for every 0 < t < 1. Note in particular that e- lim d(γ(t), µ(t)) = 0. So, if µ d-converges,

then so does γ (to the same point) and the proof is complete. From now on we assume that

µ does not d-converge. We will reach a contradiction.

Since the τd subspace topology on Ci is euclidean, and Ci is bounded, it must then be

that µ e-converges to a point in ∂eCi. In particular ∂eCi 6= ∅. Note that, since x ∈ Ci, if

de(x, ∂eCi) = 0, then that means that x ∈ Ci+1, which contradicts the choice of i. So

fi(x) = 4
3 + d′

e(x, ∂eCi) > 4/3.

We now prove that e- lim fi ◦ γ ≤ 4/3 (in fact the limit equals 4/3, but this is not needed).

This contradicts that fi ◦ γ e-converges to fi(x).

By Lemma 7.1.11 the map fi is defined on X \ Ci as

fi(z) = inf
y∈Ci

(4
3 + d′

e(y, ∂eCi)
)
d(z, y)
d(z, Ci)

.
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Recall that µ e-converges to a point in ∂eCi, and in particular e- lim de(µ(t), ∂eCi) = 0. For

any ε > 0, if 0 < t < ε is such that de(µ(t), ∂eCi) < ε, then, applying (7.1 ), we have that

(fi ◦ γ)(t) ≤
(4

3 + d′
e(µ(t), ∂eCi)

)
d(γ(t), µ(t))
d(γ(t), Ci)

<
(4

3 + ε
)

(1 + t) < 4
3 + 7

3ε+ ε2.

This completes the proof.

7.2 An affineness result for definably Tychonoff spaces

In this section we prove an affineness result (Theorem 7.2.4 ) under the assumption that

a definable topological space (X, τ) has a sufficiently “rich” definable space of scalars, in the

sense that there exists a definable family of continuous functions (X, τ) → (R, τe) whose

weak topology on X (i.e. the coarsest topology that makes the functions continuous) equals

τ . Our approach is based on the classical result from functional analysis that a compact

Hausdorff topological space (X, τ) is metrizable if and only if its space of scalars (continuous

real-valued functions on it) with the supremum norm is separable. This approach involves

witnessing the space (X, τ) as a space of continuous functions (on a separable metric space)

with the pointwise convergence topology, and then constructing a metric for said topology.

Unfortunately, the classical construction of this metric does not directly translate to the

o-minimal definable setting. Hence, we proceed first in a manner similar to the proof of

the classical result, using Theorem 7.1.5 to reduce our question to the definable metrizabil-

ity of the pointwise convergence topology among certain definable families of continuous

functions on a euclidean space, and continue by using tools of o-minimality to construct a

definable metric. Finally, we use Proposition 7.1.8 from the previous section, which states

that definably compact definable metric spaces are affine.

It is worth noting that, classically, by the Tietze-Urysohn Extension Theorem, any com-

pact Hausdorff topological space has a space of scalars whose induced weak topology is the

space topology. It is not clear whether there is an analogous fact in the o-minimal field

setting. We discuss this in Remark 7.2.20 at the end of the section.

We recall the formal definition of weak topology. Let X be a set, let {Yu : u ∈ Ω} be a

family of sets, and let F = {fu : X → Yu : u ∈ Ω} be a family of functions. Suppose that,
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for every u ∈ Ω, the set Yu is endowed with a topology τu. The weak topology τ induced on

X by F is the coarsest topology that makes all the functions in F continuous. If, for each

u ∈ Ω, Bu denotes a basis for τu, then a basis for τ is given by finite intersections of sets of

the form f−1
u (A), for u ∈ Ω and A ∈ Bu.

Given a set X and a family F of functions X → R, by the pointwise convergence topology

on F we mean the weak topology induced by the projection functions f 7→ f(x), for every

x ∈ X and f ∈ F , where R is endowed with the euclidean topology. Even when the family

F is definable, this topology is not necessarily definable. We present an example to highlight

this fact.

Example 7.2.1. For any t ∈ (0, 1), let ft : (0, 1) → {0, 1} be the function given by

ft(t) = 1 and ft(s) = 0 for every s ∈ (0, 1) \ {t}.

Let 0̂ denote the zero function on (0, 1).

The family F = {ft : 0 < t < 1} ∪ {0̂} is definable. One can moreover show that

any injective definable curve in F converges pointwise to 0̂. We observe that the pointwise

convergence topology τp on F is not definable by showing that there does not exist a definable

basis of τp-neighborhoods of 0̂.

Towards a contradiction, let B(0̂) be a definable basis of τp-neighborhoods of 0̂. For

any A ∈ B(0̂), let IA = {t ∈ (0, 1) : ft ∈ A}. Note that the family {IA : A ∈ B(0̂)} is

definable. Now observe that the pointwise convergence topology on F is T1. It follows that,

for every finite family {ft1 , . . . , ftm} in F , there exists some A ∈ B(0̂) such that ti /∈ IA for

every 1 ≤ i ≤ m. By uniform finiteness and o-minimality it follows that there exists some

A ∈ B(0̂) and some interval J ⊆ (0, 1) such that IA ∩ J = ∅. In particular, for any s ∈ J ,

we have that any definable curve in F given by fs+t for all t > 0 small enough does not

τp-converge to 0̂, contradiction.

For the next definition recall that a topological space (X, τ) is completely regular if, for

every x ∈ X and closed set C ⊆ X with x /∈ C, there exists continuous function f : X → R

with f(x) = 1 and f |C = 0. One may show that this is equivalent to the condition that the
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space of continuous real-valued functions on X (i.e. scalars) satisfies that its weak topology

on X equals τ . Moreover recall that a topological space is Tychonoff if it is Hausdorff and

completely regular.

Definition 7.2.2. A definable topological space (X, τ) is definably completely regular if

there exists a definable family F of continuous functions (X, τ) → (R, τe) such that the weak

topology induced on X by F equals τ .

A definable topological space (X, τ) is definably Tychonoff if it is Hausdorff and definably

completely regular.

Remark 7.2.3. Note that, by model theoretic compactness, our definition of definably

completely regular space (X, τ) corresponds to the property that, in any elementary extension

N = (N,<, . . .) of R, the interpretation of (X, τ) in N satisfies that its topology corresponds

to the weak topology induced by the space of all N -definable continuous N -valued functions

on it.

Note that every definable metric space (X, d) is definably Tychonoff. In particular the

τd topology is the weak topology induced by the family of functions y 7→ d(x, y) for x ∈ X.

Our main result of this section is the following.

Theorem 7.2.4. Let (X, τ) be a definably compact definable topological space. Suppose it

satisfies the following two conditions.

(i) (X, τ) is definably Tychonoff.

(ii) (X, τ) has the frontier dimension inequality.

Then (X, τ) is affine.

We prove Theorem 7.2.4 by constructing a definable metric d for (X, τ) such that τd = τ ,

and then applying Proposition 7.1.8 . In order to do this we require a number of lemmas.

Most of these lemmas deal exclusively with the euclidean topology. Consequently, since there

will be no room for confusion, in this section we generally drop the use of the subscript e in

the notation for euclidean closure, frontier, etc, and instead rely heavily on the convention
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that the use of any topological notion without explicit reference to a given topology should

be understood with respect to the euclidean topology.

The next lemma can be proved using only the assumption that R is an o-minimal ex-

pansion of an ordered group.

Lemma 7.2.5. Let (X, τ) be a Hausdorff definably compact space and let F be a defin-

able family of continuous functions (X, τ) → (R, τe). If (X, τ) has the frontier dimension

inequality then (F , ‖ · ‖) is definably separable.

Proof. Suppose that F is not definably separable. By definable choice there exists a definable

family of functions {ft : t ∈ I} ⊆ F , where I ⊆ R is an interval, and some εt > 0 for every

t ∈ I such that, for all distinct s, t ∈ I, it holds that ‖fs − ft‖ > max{εs, εt}. By definable

choice the values εt can be chosen definably in t ∈ I. By o-minimality (Lemma 2.1.2 ), after

passing to a subfamily of {ft : t ∈ I} if necessary, we may fix an ε > 0 and assume that

‖fs − ft‖ > ε for all distinct s, t ∈ I. We assume that (X, τ) has the frontier dimension

inequality and reach a contradiction.

By definable choice, let {xs,t : s, t ∈ I, s 6= t} be a definable family of points in X

satisfying |fs(xs,t) − ft(xs,t)| > ε. Note that xs,t = xt,s always. For each t ∈ I, let x(0)
t =

τ - lims→t− xs,t and x(1)
t = τ - lims→t+ xs,t. By definable compactness the set {x(0)

t , x
(1)
t : t ∈ I}

is well defined. It is clearly definable.

Claim 7.2.6. τ - limt→r− x
(1)
t = τ - limt→r− x

(0)
t for every r ∈ I.

Let x∗ = τ - limt→r− x
(1)
t and let us fix a definable τ -neighborhood A of x∗. We show that,

for every t < r sufficiently close to r it holds that x(0)
t ∈ clτA. Hence τ - limt→r− x

(0)
t ∈ clτA,

and the claim follows from Hausdorffness.

For every t < r sufficiently large x(1)
t ∈ A, and so there exists δt > 0 such that the set

{xs,t : t < s < t+δt} is contained in A. By definable choice we may assume that the function

t 7→ δt is definable. By o-minimality it is continuous on some interval (r′, r).

We fix t ∈ (r′, r) and prove that x
(0)
t ∈ A. Recall that x

(0)
t = τ - lims→t− xs,t =

τ - lims→t− xt,s. We show that xt,s ∈ A for every s < t close enough to t.
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By continuity of the map s 7→ δs, there exist some t′ < t such that, for every s ∈ (t′, t),

it holds that δs > δt/2. Let s ∈ (t′, t) with 0 < t − s < δt/2. Then s < t < s + δs and, by

definition of δs, we conclude that xt,s ∈ A. This completes the proof of the claim.

Claim 7.2.7. x(0)
t 6= x

(1)
t for all but finitely many values of t ∈ I.

By o-minimality, it suffices to show that, on any subinterval J ⊆ I, there is t ∈ J such that

x
(0)
t 6= x

(1)
t . For simplicity of notation we take J = I, but the proof holds on any subinterval.

We prove the inequality x(0)
t 6= x

(1)
t for some t ∈ I by showing that ft(x(0)

t ) 6= ft(x(1)
t ).

By o-minimality, after passing to a subinterval of I if necessary, we may assume that

the map t 7→ ft(x(1)
t ) is e-continuous. We prove the claim by showing that, after shrinking

I further, it holds that |fs(x(1)
s ) − ft(x(0)

t )| > ε/2 for all s, t ∈ I sufficiently close, and so

|ft(x(1)
t ) − ft(x(0)

t )| ≥ ε/2.

By continuity of the functions in F and o-minimality (Lemma 2.1.2 ) there exists a

subinterval I ′ of I and some δ > 0 such that, for every s, t ∈ I ′, if 0 < t − s < δ, then

|ft(x(0)
t ) − ft(xs,t)| < ε/4 and |fs(x(1)

s ) − fs(xs,t)| = |fs(x(1)
s ) − fs(xt,s)| < ε/4.

Now let us fix distinct s < t in I ′ with |s−t| < δ. Then, by the second triangle inequality,

|fs(x(1)
s ) − ft(x(0)

t )| ≥ |fs(x(1)
s ) − ft(xs,t)| − |ft(x(0)

t ) − ft(xs,t)|

≥ |ft(xs,t) − fs(xs,t)| − |fs(x(1)
s ) − fs(xs,t)| − |ft(x(0)

t ) − ft(xs,t)|

> ε− ε

4 − ε

4 = ε

2 .

This proves the claim.

Now consider the definable sets X0 = {x(0)
t : t ∈ I} and X1 = {x(1)

t : t ∈ I}, which

are at most one-dimensional. By the frontier dimension inequality dim clτ (X0) ≤ 1, and so,

by Corollary 6.7.5 applied to the subspace clτ (X0), the subspace X0 is cellwise euclidean.

Similarly X1 is cellwise euclidean. Hence, after shrinking I if necessary, we may assume that

the subspace topology on X0 and on X1 is the euclidean topology. By o-minimality, after

once again shrinking I if necessary, we may assume that the maps t 7→ x
(0)
t and t 7→ x

(1)
t are e-

continuous, and thus continuous as maps (I, τe) → (X0, τ) and (I, τe) → (X1, τ) respectively.

But then, for every t ∈ I, τ - lims→t− x(0)
s = x

(0)
t and τ - lims→t− x(1)

s = x
(1)
t . By Claim 7.2.6 ,
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it follows that x(0)
t = x

(1)
t for every t ∈ I. This however contradicts Claim 7.2.7 , completing

the proof of the lemma.

In Lemma 7.2.5 the condition of having the frontier dimension inequality is necessary, as

shown by the definable Split Interval (Example A.4 ).

Before we state the next lemma we need to introduce a natural analogue of pseudometric

in our setting.

Definition 7.2.8. Let X be a definable set. An (R-)pseudometric on X is a map X ×X →

[0,∞) that is symmetric and satisfies the triangle inequality.

Lemma 7.2.9. Let X be a definable set and let T = {dt : 0 < t < 1} be a definable family

of pseudometrics on X that separates points, i.e. for every distinct pair x, y ∈ X there exists

0 < t < 1 such that dt(x, y) 6= 0. Suppose that, for every x, y ∈ X and 0 < t ≤ t′ < 1, it

holds that dt′(x, y) ≤ dt(x, y).

Then the weak topology τ induced by T on X, i.e. the topology with basis given by sets

{y ∈ X : dt(x, y) < r ∀t ∈ F}, for x ∈ X, r > 0 and F ⊆ T finite, is definably metrizable.

Proof. By considering the pseudometric min{dt, 1} in place of dt if necessary (one may check

that they generate the same topology τ) we may assume that dt ≤ 1 for every 0 < t < 1.

Let d : X ×X → R be given by

d(x, y) = sup
0<t<1

tdt(x, y).

Since T separates points we have that, for every distinct x, y ∈ X, d(x, y) 6= 0. It is routine

to check that d satisfies the other metric axioms. Since T is definable, d is definable. So d

is a definable metric on X.

We show that the topology τd induced by d on X equals τ . Let x ∈ X. For any

0 < t < 1 and y ∈ X it holds that dt(x, y) ≤ 1
t
d(x, y). In particular, for any finite

collection 0 < t0 < · · · < tn < 1 and any r > 0, if y ∈ Y is such that d(x, y) < rt0, then

dti
(x, y) < r for every 0 ≤ i ≤ n. Hence τ ⊆ τd. Conversely, let us fix 0 < r < 1. Note

that, for every x, y ∈ X and 0 < t < 1, if t < r then tdt(x, y) ≤ t < r and, if r ≤ t,
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then tdt(x, y) < dt(x, y) ≤ dr(x, y). Hence, for every x, y ∈ X and 0 < t < 1, it holds that

tdt(x, y) < max{r, dr(x, y)}. So d(x, y) ≤ max{r, dr(x, y)}. In particular if dr(x, y) ≤ r then

d(x, y) ≤ r. It follows that τd ⊆ τ .

We now want to prove Lemma 7.2.12 , which is a special case of Lemma 7.2.13 . It

establishes a connection between pointwise and uniform convergence in certain definable

families of functions. Before proving it we require a basic o-minimal fact and another lemma.

Fact 7.2.10. Let D be a definable set and let f : D → R be a definable function. The set B

of points of discontinuity of f has empty interior in D.

This follows from the fact that, by o-minimality, every definable function is continuous

in an open subspace of its domain. Hence the set of points of continuity of f is dense in D.

Lemma 7.2.11. Let A,B ⊆ Rn be definable sets with B ⊆ cl(A). If A ∩ B has empty

interior in A, then A ∩ cl(B) has empty interior in A.

Proof. Suppose that A ∩ cl(B) has nonempty interior in A. Hence there exists an open set

U ⊆ Rn such that ∅ 6= A ∩ U ⊆ cl(B).

Let D be a finite cell partition of B and set C := ∪D∈D∂D. Observe that ∂B ⊆ C. Recall

that cells are simply closed, i.e. their frontier is closed. In particular C is closed. Note that

cl(B) = B ∪C, and so A∩U ⊆ B ∪C. So the open set U \C satisfies that A∩ (U \C) ⊆ B.

If A∩ (U \C) 6= ∅, then we conclude that A∩B has nonempty interior in A, proving the

lemma. Hence onwards we assume that A∩ (U \C) = ∅, meaning that A∩ U ⊆ C. We will

reach a contradiction.

Let D′ ( D be a subfamily of maximal size such that A ∩ (U \ ∪D∈D′∂D) 6= ∅. Set

C ′ := ∪D∈D′∂D. Let us fix D ∈ D \ D′. Note that, by maximality of D′, it holds that

A ∩ (U \ C ′) ⊆ ∂D. By definition of ∂D, and since U \ C ′ is open, there exists some

x ∈ D ∩ (U \ C ′). In particular there exists x ∈ (U \ C ′) \ ∂D. Let U ′ = (U \ C ′) \ ∂D. We

have that ∅ 6= D ∩ (U \ C ′) ⊆ U ′. In particular D ∩ U ′ 6= ∅. Since U ′ is open, D ⊆ B, and

B ⊆ cl(A), we conclude that A ∩ U ′ 6= ∅. This however contradicts the definition of U ′, in

particular the fact that A ∩ (U \ C ′) ⊆ ∂D.
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Note that the following lemma remains true with only the assumption that R is an o-

minimal expansion of an ordered group. Moreover, we can generalize the lemma to the case

where X is unbounded if we work in the (extended) euclidean topology on (R±∞)n.

Lemma 7.2.12. Let X ⊆ Rn be a bounded definable set and let {ft : 0 < t < 1} be a

definable family of functions X → R. Suppose that ft converges pointwise to a function f

as t → 0. Then there exists a definable closed set Y ⊆ cl(X) such that Y ∩ X has empty

interior in X and, for every neighborhood U of Y , ft converges uniformly to f on X \ U .

Moreover, let {ft,u : 0 < t < 1, u ∈ Ω} be a definable family of maps X → R such that,

for every u ∈ Ω, ft,u converges pointwise as t → 0. Then the definable sets Yu ⊆ cl(X) such

that {fu,t : 0 < t < 1} converges uniformly outside any neighborhood U of Yu can be chosen

definably over u ∈ Ω.

Proof. We prove the first paragraph of the lemma. The second paragraph follows from the

construction of the set Y .

For each x ∈ X and ε > 0, let t(x, ε) = sup{0 < s < 1 : |(ft − f)(x)| < ε for every 0 <

t < s}. By o-minimality and since {ft : 0 < t < 1} converges pointwise to f , this function is

well defined and definable. For each ε > 0 let

Y (ε) = {y ∈ Rn : ∀δ > 0 ∃z ∈ X ‖y − z‖ < δ and t(z, ε) < δ}.

Let us fix ε > 0. Clearly Y (ε) ⊆ cl(X). Note that, since the map x 7→ t(x, ε) is positive,

each point in Y (ε) is either in ∂X or is a point of discontinuity of said map. Hence, by

Fact 7.2.10 , Y (ε) ∩X has no interior in X. Consider 0 < ε′ < ε. Note that, for any x ∈ X,

t(x, ε′) ≤ t(x, ε). It follows that Y (ε) ⊆ Y (ε′). Hence, by Lemma 3.2.1 , Y = ∪ε>0Y (ε)

satisfies that Y ∩X has no interior in X. Applying Lemma 7.2.11 , after passing to cl(Y ) if

necessary we may assume that Y is closed.

We now show that, for any neighborhood U of Y , ft converges to f uniformly on X \U .

Let us fix U and ε > 0. We must show that, for all t > 0 small enough, |ft(x) − f(x)| < ε

for every x ∈ X \ U . Suppose this does not hold. Then, by o-minimality, there exists

some 0 < r < 1 such that, for all 0 < t < r, it holds that |ft(xt) − f(xt)| ≥ ε for some
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xt ∈ X \ U . Using definable choice we choose xt definably in t. Let x0 = limt→0 xt. Clearly

x0 ∈ Y (ε) ⊆ Y , contradicting that {xt : 0 < t < r} ⊆ X \ U .

We now generalize Lemma 7.2.12 as follows.

Lemma 7.2.13. Let X ⊆ Rn be a bounded definable set and let F be a definable family of

continuous functions X → R closed under pointwise limits of definable curves. There exists

a definable closed set Y ⊆ cl(X), where Y ∩X has empty interior in X, such that, for every

definable curve γ in F and every neighborhood U of Y , γ converges uniformly on X \ U .

Proof. Let

Y ′ = {x ∈ X : ∃ε > 0 ∀t > 0 ∃f ∈ F ∃y ∈ X ‖x− y‖ < t and |f(x) − f(y)| ≥ ε}.

Let U be a definable neighborhood of Y = cl(Y ′ ∪ ∂X) and let γ = {ft : 0 < t < 1}

be a definable curve in F converging pointwise to some f0 ∈ F . We first show that γ

converges uniformly on X \ U . Then we complete the proof of the lemma by showing that

cl(Y ′ ∪ ∂X) ∩X has empty interior in X.

Towards a contradiction suppose that γ does not converge uniformly on X \U , in which

case there exist ε′ > 0 and, for all t > 0 small enough, some xt ∈ X \ U , such that

|ft(xt) − f0(xt)| ≥ ε′. By definable choice the values xt can be chosen uniformly in t. Let

x0 = limt→0 xt. If x0 ∈ X then, by the second triangle inequality, for every t small enough

we have that

|ft(xt) − ft(x0)| ≥ |ft(xt) − f0(xt)| − |ft(x0) − f0(xt)|

and, applying the triangle inequality to |ft(x0) − f0(xt)|,

|ft(xt) − ft(x0)| ≥ |ft(xt) − f0(xt)| − |ft(x0) − f0(x0)| − |f0(x0) − f0(xt)|.

By continuity of f0 and the fact that γ converges pointwise to f0 we conclude that

|ft(xt) − ft(x0)| ≥ ε′

2 ,
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and consequently x0 ∈ Y ′. If, on the other hand, x0 /∈ X, then x0 ∈ ∂X. Either way this

contradicts the fact that x0 ∈ X \ U , since U is a neighborhood of Y ′ ∪ ∂X. We conclude

that γ converges uniformly on X \ U .

By Lemma 7.2.11 , if Y ′ has empty interior in X, then the same holds for cl(Y ′ ∪∂X)∩X.

We prove that Y ′ has empty interior in X.

Towards a contradiction suppose that there exists a definable set Z ⊆ Y ′ that is open in

X. By definition of Y ′, for every x ∈ Y ′ and 0 < t < 1, let εx > 0, fx,t ∈ F and yx,t ∈ X be

such that ‖x− yx,t‖ < t and |fx,t(x) − fx,t(yx,t)| ≥ εx. Using definable choice we choose fx,t,

yx,t and εx definably over x and t.

For any x ∈ Y ′, let fx,0 ∈ F be the pointwise limit of {fx,t : 0 < t < 1}. Set f ′
x,t :=

|fx,t − fx,0| for each 0 < t < 1. Let F ′ = {f ′
x,t : x ∈ X, 0 < t < 1}. Note that F ′ is

a definable family of continuous nonnegative functions. Moreover, since F is closed under

pointwise limits of definable curves, the pointwise limit of any definable curve in F ′ is a

continuous function. We reach a contradiction by constructing a definable curve in F ′ whose

pointwise limit is not continuous, witnessed by a discontinuity at some point in Z.

Onwards we assume that Z is an open set. In the case where it is not we may assume,

after passing to an open subspace of Z if necessary, that there exists some projection πZ :

Z → Rdim Z that is a homeomorphism onto an open set. Then we may adapt the proof below

to the family of functions {f ′
x,t ◦ π−1

Z : x ∈ X, 0 < t < 1} in place of F ′.

For any x ∈ Y ′, note that the definable curve of functions {f ′
x,t : 0 < t < 1} converges

pointwise to zero. Moreover, by the triangle inequalities, for every x ∈ Y ′,

f ′
x,t(yx,t) = |fx,t(yx,t) − fx,0(yx,t)|

≥ |fx,t(yx,t) − fx,t(x)| − |fx,0(yx,t) − fx,0(x)| − |fx,0(x) − fx,t(x)|.

By definition and continuity of fx,0 we may conclude that, for every x ∈ Y ′ and t > 0 small

enough, f ′
x,t(yx,t) ≥ εx/2.

By Lemma 7.2.12 , for every x ∈ Y ′ there exists a definable set Y ′
x, where Y ′

x ∩X has no

interior in X, satisfying that, for every neighborhood U of Y ′
x, {f ′

x,t : 0 < t < 1} converges
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uniformly on X \ U (to the zero function). Moreover Y ′
x can be chosen definably in x ∈ Y ′.

Note that, for every x ∈ Y ′, x ∈ Y ′
x.

By o-minimality, dim Y ′
x < dimX for every x ∈ X. Let S denote the unit sphere in Rn.

Since Z is open, for every x ∈ Z and v ∈ S, there exists some δ(x, v) > 0 such that either

{x + tv : 0 < t < δ(x, v)} ⊆ Y ′
x ∩ X or {x + tv : 0 < t < δ(x, v)} ⊆ X \ Y ′

x. By definable

choice we choose δ(x, v) definably in x and v. Let Vx ⊆ S be the set of all v ∈ S such that

{x+ tv : 0 < t < δ(x, v)} ⊆ X \ Y ′
x.

Claim 7.2.14. For every x ∈ Z, the set Vx is dense in S.

If Vx, for some x ∈ Z, is not dense in S, then by o-minimality (Lemma 2.1.2 ) there

exist a definable set S ′ ⊆ S open in S and some δ′ > 0 such that, for every v ∈ S ′, the set

{x + tv : 0 < t < δ′} is contained in Y ′
x ∩ X. But then this contradicts that Y ′

x ∩ X has

empty interior. Alternatively, Claim 7.2.14 follows from the good directions Lemma in [17 ]

(Chapter 7, Theorem 4.2).

By Claim 7.2.14 and Lemma 2.1.5 we have that, after passing to an open definable subset

of Z if necessary, there exists a fixed v ∈ S such that, for every x ∈ Z, it holds that v ∈ Vx.

By shrinking Z further if necessary (Lemma 2.1.2 ), we assume that there exists some δ > 0

such that, for every x ∈ Z, δ < δ(x, v). Similarly, we assume that, for every x ∈ Z, there

exists some ε > 0 such that ε < εx/2. We will reach a contradiction by proving the existence

of some x ∈ Z and definable curve {y′
x,t : 0 < t < 1} in X that converges to some point

x′ ∈ {x + tv : 0 < t < δ} and satisfies that, for every 0 < t < 1, f ′
x,t(y′

x,t) ≥ ε/2. This

contradicts the fact that, since Y ′
x is closed and {x+ tv : 0 < t < δ} ⊆ X \ Y ′

x, there exists,

by definition of Y ′
x, some neighborhood B of x′ in X such that {f ′

x,t : t > 0} converges

uniformly to the zero function on B.

For each y ∈ Z, let

ζy = inf{0 < t < δ/2 : ∃f ′ ∈ F ′ such that f ′(y) > ε and ∀s ∈ (t, t+ δ/2) f ′(y + sv) < ε/2}

if the infimum is not taken over the empty set, and ζy = δ/2 otherwise.
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Suppose that there exists some y ∈ Z such that ζy = 0. Then, by definable choice, there

exists a definable curve {gt : 0 < t < 1} in F ′ satisfying that, for t small enough, gt(y) > ε

and gt(y + sv) < ε/2 for every s ∈ (t, t+ δ/2). But then the pointwise limit g0 of this curve

satisfies that g0(y) ≥ ε and g0(y + sv) ≤ ε/2 for every s ∈ (0, δ/2), contradicting that g0 is

continuous. Hence, onwards we assume that, for every y ∈ Z, it holds that ζy > 0. After

passing to an open subset of Z if necessary (Lemma 2.1.2 ), we fix ζ > 0 such that ζ < ζx for

every x ∈ Z.

Let us fix x ∈ Z. Recall that, for all t > 0 small enough, it holds that f ′
x,t(yx,t) > εx/2 > ε.

Moreover, since Z is open, for t > 0 small enough we have that yx,t ∈ Z, and so, by definition

of ζyx,t , there exists some st ∈ (ζ, ζ+δ/2) such that f ′
x,t(yx,t +stv) ≥ ε/2. Let y′

x,t = yx,t +stv.

Let s0 = limt→0 st, and let x′ = x+ s0v. Note that ζ ≤ s0 ≤ ζ + δ/2 < δ, and so x′ ∈ X \Y ′
x.

Moreover limt→0 y
′
x,t = x′, and f ′

x,t(y′
x,t) ≥ ε/2 for every t > 0 small enough. Since x′ /∈ Y ′

x

we reach a contradiction. This completes the proof of the lemma.

The next lemma is the bulk of the proof of Theorem 7.2.4 . It uses Lemmas 7.2.9 

and 7.2.13 .

Lemma 7.2.15. Let X be a bounded definable set and let F be a definable family of con-

tinuous functions X → R closed under pointwise limits of definable curves. Let τp denote

the pointwise convergence topology on F . There exists a definably metrizable topology τ on

F that is finer than τp, and satisfies that, for any definable curve γ in F , if γ converges

pointwise to some f ∈ F , then it τ -converges to f .

Moreover τ is maximally coarse among Hausdorff definable topologies, i.e. if µ is a

definable Hausdorff topology on F with µ ⊆ τ , then τ = µ. In particular, if τp is definable,

then τ = τp.

If R expands the ordered field of reals then τ = τp.

Proof. We prove the existence of a definable metric d on F whose induced topology τ is finer

than the pointwise convergence topology τp and moreover satisfies that, if a definable curve

γ converges pointwise to some f ∈ F , then it τ -converges to f . Since F is closed under

limits of definable curves note that τ is definably compact. The fact that τ is maximally

coarse among Hausdorff definable topologies then follows from Proposition 5.4.5 (4) , i.e. if µ
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is a Hausdorff definable topology with µ ⊆ τ then the identity map id : (F , τ) → (F , µ) is a

homeomorphism.

We proceed by induction on n = dimX. If n = 0 then X is finite and the pointwise

convergence topology equals the uniform convergence topology (given by the supremum

norm) and so it is clearly definably metrizable. Suppose that n > 0.

Let Y ⊆ cl(X) be as in Lemma 7.2.13 . That is, Y is closed, Y ∩ X has empty interior

in X and, for every neighborhood U of X, any definable curve in F converges uniformly on

X \ U .

Since Y ∩ X has empty interior in X, we have in particular that dim(X ∩ Y ) < n. If

X ∩ Y = ∅ set d0(f, g) = 0 for every f, g ∈ F . If Y ∩X 6= ∅ then, by induction hypothesis,

let d0 be a definable metric on {f |X∩Y : f ∈ F} that induces a topology as described in the

lemma with respect to the pointwise convergence topology. We abuse terminology and write,

for any f, g ∈ F , d0(f, g) to mean d1(f |X∩Y , g|X∩Y ), and so d0 is a definable pseudometric

on F .

Let F ′ = {f |X\Y : f ∈ F}. For any x ∈ X, recall that de(x, Y ) = inf{‖x − y‖ : y ∈ Y }.

Note that, since Y is closed, for every x ∈ X \ Y it holds that de(x, Y ) > 0. For every

0 < t < 1 and f, g ∈ F ′, let

dt(f, g) = sup{|f(x) − g(x)| : x ∈ X, de(x, Y ) ≥ t}.

In other words, dt corresponds to the supremum norm after we restrict the functions on F

to the outside of a neighborhood of Y of radius t.

Note that, for every t > 0, dt is a definable pseudometric on F ′. Let f, g ∈ F ′ be such

that f 6= g, i.e. there exists some x ∈ X \ Y such that f(x) 6= g(x). If 0 < t < 1 is such that

de(x, Y ) ≥ t, then dt(f, g) > 0. So the family of pseudometrics {dt : 0 < t < 1} separates

points in F ′. Moreover, clearly dt′(f, g) ≤ dt(f, g) for every f, g ∈ F ′ and 0 < t ≤ t′ < 1.

By Lemma 7.2.9 , there exists a definable metric d1 on F ′ whose metric topology is the weak

topology induced by the family {dt : 0 < t < 1}. We abuse terminology and write, for any

f, g ∈ F , d1(f, g) to mean d0(f |X\Y , g|X\Y ), and so d1 is a definable pseudometric on F .
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Now, for any f, g ∈ F , let

d(f, g) = d0(f, g) + d1(f, g).

Suppose that f(x) 6= g(x) for some x ∈ X. If x ∈ X ∩ Y then d0(f, g) 6= 0, and if x ∈ X \ Y

then d1(f, g) 6= 0. So d(f, g) 6= 0 whenever f 6= g. It is routine to check that d satisfies the

other metric axioms.

Now we show that the topology τ induced by d is finer than the pointwise convergence

topology τp. Let us fix f ∈ F , some ε > 0 and a finite nonempty set {x0, . . . , xm} ⊆ X.

Suppose that the set is indexed in a way that there exists 0 ≤ l ≤ m such that {x0, . . . , xl} ⊆

X \ Y and {xl+1, . . . , xm} ⊆ X ∩ Y . By definition of d0, there exists some δ > 0 such that,

for every g ∈ F , if d0(f, g) < δ, then |f(xi) − g(xi)| < ε for every l < i ≤ m. Now let

0 < t < 1 be small enough to satisfy that de(xi, Y ) ≥ t for every 0 ≤ i ≤ l. For every

g ∈ F , if dt(f, g) < ε then clearly |f(xi) − g(xi)| < ε for every 0 ≤ i ≤ l. Finally note

that, by definition of d1, after shrinking δ if necessary it holds that, for every g ∈ F , if

d1(f, g) < δ then dt(f, g) < ε. Hence we conclude that, for every g ∈ F , if d(f, g) < δ, then

|f(xi) − g(xi)| < ε for every 0 ≤ i ≤ m. It follows that τ ⊆ τp.

Now consider a definable curve {ft : 0 < t < 1} in F that converges pointwise to some

f0 ∈ F . In particular {ft|X\Y : 0 < t < 1} converges pointwise to f |X\Y . By Lemma 7.2.13 

ds(ft, f0) converges to zero for every 0 < s < 1, and so d1(ft, f0) converges to zero. Moreover

by induction hypothesis d0(ft, f0) also converges to zero. It follows that {ft : 0 < t < 1}

τ -converges to f0.

It remains to prove only that, if R expands the ordered field of reals, then τ = τp. Hence

let us assume that R expands the ordered field of reals. Recall the terminology and basic

results of tame pairs (Chapter 2 , Section 2.1.4 ).

Suppose towards a contradiction that τp ( τ . Then there exists some f ∈ F and ε > 0

such that, for every finite set {x0, . . . , xk} ⊆ X and δ > 0, there exists some g ∈ F with

|f(xi) − g(xi)| < δ for every 0 ≤ i ≤ k, satisfying that d(f, g) ≥ ε. Applying model theoretic

compactness there exists an elementary extension N of R, and some g∗ in F(N ), where

F(N ) is the interpretation of F in N , such that |f(x) − g∗(x)| < δ for every x ∈ X and

206



δ > 0 in R, and moreover d(f, g∗) ≥ ε (where we are considering the natural interpretation of

d and f in N ). By the Marker-Steinhorn Theorem (Theorem 2.1.8 ), N is a tame extension.

Hence the existence of one such g∗ is a sentence in the language of tame pairs and so, by

completeness of the theory of tame pairs, one such function exists in every tame extension.

Hence we may assume that N = R(ξ), a tame extension of R by an infinitesimal element.

Recall that, in R(ξ), any definable set is definable with parameters only from R ∪ {ξ}, and,

if ϕ(ξ) is a sentence (possibly including parameters from R), then R(ξ) |= ϕ(ξ) if and only

if R |= ϕ(t) for all 0 < t < s in R for some s > 0. In particular, let φ(x, z, ξ) be a sentence

that defines g∗(x) = z and, for any 0 < t < s in R, where s > 0 is small enough, let gt be the

function in F defined by φ(x, z, t). Then note that, by properties of g∗, the definable curve

{gt : 0 < t < s} in F converges pointwise to f , and moreover satisfies that, for every t small

enough, d(f, gt) ≥ ε. This however contradicts that pointwise limits of definable curves in

F coincide with τ -limits. This completes the proof of the lemma.

The following is an example where Lemma 7.2.15 applies but τ 6= τp.

Example 7.2.16. Suppose that R contains an infinitesimal element ε. Consider, for every

ε ≤ u ≤ 1 − ε the following function defined on the closed interval [0, 1].

fu(x) =


1 − |x− u|

ε
for |x− u| < ε,

0 otherwise.

In particular fu is a continuous function that is zero outside (u − ε, u + ε) and satisfies

fu(u) = 1. Let F = {fu : ε ≤ u ≤ 1 − ε} ∪ {0}, where 0 denotes the zero function. One may

show, using arguments analogous to the ones in Example 7.2.1 , that the pointwise topology

on F is not definable.

We may now prove Theorem 7.2.4 .

Proof of Theorem 7.2.4 . Let (X, τ) be a definably compact definably Tychonoff definable

topological space with the frontier dimension inequality. We prove that (X, τ) is definably

metrizable. The affineness then follows from Proposition 7.1.8 .
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Since (X, τ) is definably Tychonoff there exists a definable family F of continuous func-

tions (X, τ) → (R, τe) whose induced weak topology on X is τ . As usual we implicitly

identify every function in F with its respective index parameters. By definable compactness

and Lemma 5.4.6 the functions in F are bounded and reach their maximum and minimum.

In particular (F , ‖ · ‖) is a definable metric space. We interpret X as a space of continuous

functions on (F , ‖ · ‖) given by x(f) 7→ f(x) for x ∈ X and f ∈ F . Note that, under this

interpretation, the pointwise convergence topology on X is precisely τ .

Since (X, τ) is Hausdorff, definably compact and has the frontier dimension inequality, by

Lemma 7.2.5 the definable metric space (F , ‖ · ‖) is definably separable. By Theorem 7.1.5 it

is affine. Let Z be a definable set and g a definable homeomorphism (F , ‖ · ‖) → (Z, τe). By

considering if necessary, for x ∈ X, the function x ◦ g−1 : Z → R in place of x, we interpret

(X, τ) to be a definable family of continuous functions on the euclidean space (Z, τe), where

τ is the pointwise convergence topology.

By Remark 2.2.16 we assume that Z is bounded. Recall that (X, τ) is definably compact

(in particular by Proposition 5.4.17 it is definably curve-compact). Applying Lemma 7.2.15 

we conclude that τ is definably metrizable. This completes the proof of the theorem.

The following is an immediate consequence of Theorem 7.2.4 , by noting that the pointwise

convergence topology among a definable family of functions is always, by definition, definably

Tychonoff, and recalling the fact that definable compactness and definable curve-compactness

are equivalent notions in R (Proposition 5.4.17 ).

Corollary 7.2.17. Let X be a definable set and let F be a definable family of functions X →

R closed under pointwise limits of definable curves. Suppose that the pointwise convergence

topology τp on F is definable. If (F , τp) has the frontier dimension inequality then it is affine.

Theorem 7.2.4 applies to locally affine spaces as follows.

Corollary 7.2.18. Let (X, τ) be a definably compact Hausdorff definable topological space

with the frontier dimension inequality. If (X, τ) is locally affine then it is affine.

Proof. Let (X, τ) be a definably compact Hausdorff definable topological space with the

frontier dimension inequality. Suppose that it is locally affine. By Theorem 7.2.4 it suffices
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to prove that (X, τ) is definably completely regular. We prove that, for any x ∈ X and a

τ -neighborhood U of x, there exists a continuous definable function fx,U : (X, τ) → (R, τe)

satisfying that fx,U(x) > 0 and fx,U(y) = 0 for every y ∈ X \ U . Let B be a definable basis

for τ . By the usual model theoretic compactness argument it follows that fx,U as described

can be chosen definably in x ∈ X and U ∈ B with x ∈ U . Let F be the corresponding

definable family of functions. It is easy to see that the weak topology induced by F on X is

τ .

Hence let us fix x ∈ X and a τ -neighborhood U of x. Since (X, τ) is locally affine,

by passing to a smaller τ -neighborhood if necessary we may assume that there exists a

definable homeomorphism h : (U, τ) → (Rn, τe). By regularity of τ (Lemma 5.4.7 ) let V

be a τ -open τ -neighborhood of x such that clτ (V ) ⊆ U . Then, by Proposition 5.4.5 (1) 

and (3) , C = h(∂τV ) is a closed and bounded set. Let de denote the euclidean metric on

the image of h. Consider the definable function f on X given by f(y) = 0 if y ∈ X \ V and

f(y) = de(h(y), C) otherwise. Using definable curves (Corollary 4.5.5 ) one easily checks that

this map is continuous. Since C is closed it holds that f(x) > 0. Moreover, clearly f(y) = 0

for every y ∈ X \ U . This completes the proof.

It is an open question whether the assumption of having the frontier dimension inequality

is necessary in the above corollary. It seems quite likely that any definably compact Hausdoff

locally affine space already satisfies this condition.

We may formulate Theorem 7.2.4 in such a way that it resembles more closely the classical

metrizability result in functional analysis as follows.

Corollary 7.2.19. Let (X, τ) be a definably Tychonoff definable topological space, and let F

denote a definable family of functions (X, τ) → (R, τe) such that their induced weak topology

on X equals τ . Suppose that (X, τ) is definably compact. Then the following are equivalent.

(i) (X, τ) is definably metrizable.

(ii) (F , ‖ · ‖) is definably separable.

Proof. Lemma 7.5 in [49 ] states that definable metric spaces have the frontier dimension

inequality. Consequently the implication (i) ⇒ (ii) follows from Lemma 7.2.5 .
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The implication (ii) ⇒ (i) follows from the proof of Theorem 7.2.4 . In particular in said

proof we apply Lemma 7.2.5 to show that the space (F , ‖·‖) is definably separable, and then

explain how can one apply Lemma 7.2.15 to prove the definable metrizability of (X, τ).

Remark 7.2.20. In general topology, results such as Urysohn’s Lemma or, equivalently, the

Tietze-Urysohn Extension Theorem, ensure that Hausdorff normal topological spaces (i.e.

Hausdorff spaces where any two disjoint closed sets can be separated by neighborhoods) are

completely regular. In particular this applies to Hausdorff compact spaces, since they are

always normal. It is not clear whether or not these results have definable analogues in the

o-minimal setting. In particular all the proofs that were found of Urysohn’s Lemma and the

Tietze-Urysohn Extension Theorem by the author make use of the axiom of choice/ Zorn’s

Lemma.

We end this section with some open questions.

Questions 7.2.21. Let (X, τ) be a definable topological space.

(i) If (X, τ) is regular and has the frontier dimension inequality, is it definably completely

regular?

(ii) If (X, τ) is regular, is it definably completely regular?

(iii) If (X, τ) is definably compact and Hausdorff, is it definably Tychonoff?

Since every definably compact Hausdorff space is regular (Lemma 5.4.7 ), a positive answer

to the second question would also answer the other two. By Theorem 7.2.4 , a positive answer

to the first question would imply that a definably compact Hausdorff space is affine if and

only if it has the frontier dimension inequality.
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A. EXAMPLES

In this appendix we compile examples that witness the heterogeneity of definable topological

spaces with reference to their (definable) topological properties. They help frame the results

in this thesis, in particular in Chapter 6 , and their limitations when trying to improve or

generalize them.

The examples are given in the language (0, 1,+,−, ·, <), where M is assumed to expand

an ordered group (M, 0,+,−, <) or an ordered field (M, 0, 1,+,−, ·, <) whenever the cor-

responding function symbols are involved. Throughout we fix infinitely many parameters

0 < 1 < 2 < . . . in M , in such a way that it will be clear from context when these numerals

denote elements of M and when they are just natural numbers. Whenever we assume that

M expands an ordered group or field these parameters have their natural interpretations.

Since we are working in the generality of an o-minimal structure, it is important to

note that we will not address certain topological properties of definable topological spaces,

because they are dependent on the specifics of the underlying structure M. These include

compactness, connectedness, separability, normality or metrizability. We focus instead on

their definable analogues. All the examples that are generalizations of classical topological

spaces (e.g. definable Split Interval, definable Alexandrov Double Circle…) behave, in terms

of their definable topological properties, exactly like their classical counterparts, the only

exception to this being normality (see Example A.12 ).

Example A.1 (Euclidean topology). The euclidean topology τe on Mn has definable basis

 ∏
1≤i≤n

(xi, yi) : xi < yi, 1 ≤ i ≤ n

 .
It is T3, definably separable, definably connected and definably metrizable. It is moreover

definably compact when restricted to a closed and bounded set.

Example A.2 (Discrete topology). The discrete topology τs on Mn has definable basis

{{x} : x ∈ Mn}.
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Note that this topology is definable on any definable set in any model-theoretic structure.

It is T3 and definably metrizable.

Example A.3 (Half-open interval topologies). The right half-open interval topology (or

lower limit topology) τr has definable basis

[x, y) for x, y ∈ M, x < y.

The space (R, τr) is classically called the Sorgenfrey Line.

The left half-open interval topology (or upper limit topology) τl has definable basis

(x, y] for x, y ∈ M, x < y.

These topologies are T3 and definably separable. They are also totally definably disconnected

(the only definably connected subspaces are singletons) and not definably metrizable (see

Proposition 2.2.8 ).

Example A.4 (Definable Alexandrov Double Arrow or definable Split Interval). Let X =

[0, 1] × {0, 1}. The definable Alexandrov Double Arrow (or definable Split Interval) is the

space (X, τlex), where τlex denotes the topology induced by the lexicographic order on X. It

is T3, definably compact, definably separable and totally definably disconnected.

It is not definably metrizable since the bottom line [0, 1]×{0} is definably homeomorphic

to ([0, 1], τl) and the top line [0, 1] × {1} to ([0, 1], τr). It is also worth noting that (X, τ)

does not satisfy the f.d.i., since ∂([0, 1] × {0}) = [0, 1) × {1}. Moreover, one may show

that [0, 1] × {0} is not a boolean combination of open definable sets, which was a tameness

condition for definable topologies considered by Pillay in [38 ].

The following example, the definable Alexandrov n-line, which was already introduced

in Example 6.4.2 and which plays a crucial role in Theorem 6.4.3 , was motivated by the

Alexandrov Double Circle.

Example A.5 (Definable Alexandrov n-line). For any n > 0, let Xn = M × {0, . . . , n− 1}.

For any y < x < z in M , let A(x, y, z) = {〈x, 0〉} ∪ (((y, z) \ {x}) × M). Let τAlex be the
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topology on M2 with definable basis {A(x, y, z) : y < x < z} ∪ {{〈x, y〉} : y 6= 0}. The

definable Alexandrov n-line is the definable topological space (Xn, τAlex).

This space is Hausdorff and regular. If n = 1 then it is simply a euclidean space. Suppose

that n > 1. The subset M × {i} for any i > 0 contains only isolated points, so the space is

not definably separable. The subspace [0, 1] × {0, . . . , n − 1} is definably compact but not

definably separable, so not definably metrizable. Hence (Xn, τAlex) for n > 1 is not definably

metrizable.

Moreover, for any 0 < n < m < ω, the spaces (Xn, τAlex) and (Xm, τAlex) are not

definably homeomorphic. In fact they are not even in definable bijection, since they have

different Euler characteristic (see Chapter 4 in [17 ]). Specifically every finite cell partition of

Xn will contain n more cells of dimension 1 than points. Meanwhile every cell partition of

Xm will contain m more cells of dimension 1 than points. By o-minimal cell decomposition

every definable injection Xn → Xm can be decomposed into disjoint definable bijections

between singletons and between 1 dimensional cells.

Example A.6. Consider the following definable basis for a topology on M .

{(−∞, x] : x ∈ M}.

The resulting space is T0 but not T1. Any subspace with more than one element fails to

be T1; in particular no interval subspace of this space has the euclidean, discrete or half-

open interval topologies. Consequently, the T1 assumption in Proposition 6.3.1 cannot be

weakened to T0.

Example A.7. Consider the definable family of sets

{(−∞, x) ∪ (y, z) : x < y < z}.

It is a basis for a topology on M that is T1 but not Hausdorff.

Any finite definable partition of M must include an interval of the form (−∞, x), whose

subspace topology is not Hausdorff. In particular (X, τ) cannot be decomposed into finitely
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many definable subspaces with the euclidean, discrete or half-open interval topologies. It

follows that the Hausdorffness assumption in Theorem 6.3.9 cannot be weakened to T1-ness.

Example A.8. Let X = [0, 1) ∪ {2} and consider a topology τ on X such that the subspace

topology τ |[0,1) is euclidean and a basis of open neighborhoods of {2} is given by

{(0, x) ∪ {2} : 0 < x < 1}.

This topology is clearly definable and T1 but not Hausdorff, since points 0 and 2 fail to have

disjoint neighborhoods. In particular, it is not regular. It is easy to observe that it has the

frontier dimension inequality (f.d.i.). Since it fails to be regular, it illustrates the necessity of

the Hausdorffness assumption in Proposition 6.2.14 . Moreover we note, by considering the

partition into subspaces (0, 1) and {2}, that it is cell-wise euclidean. So it is not true that

every cell-wise euclidean one-dimensional space is Hausdorff, and in particular affine.

Example A.9. Let X = M × {0, 1} and consider a topology τ on X given by the basis

{{〈x, 0〉} ∪ ((x, y) × {1}) : x < y} ∪ {(z, x] × {1} : z < x}.

This space is Hausdorff but not regular, since M×{0} is a closed set and, for any x ∈ M and

any neighborhood U = (z, x] × {1} of 〈x, 1〉, clτU ∩ (M × {0}) = [z, x) × {0} 6= ∅. Moreover

note that, since ∂τ (M × {1}) = M × {0}, it does not have the f.d.i.

Recall that any definable subspace of a definably separable definable metric space is also

definably separable (see Proposition 3.1.6 ). Example A.9 is definably separable, but the

subspace M × {0} is infinite and discrete, showing that definable separability, much like

separability, is not in general a hereditary property.

Example A.10. Let X = {〈0, 0〉} ∪ [0, 1) × (0, 1). Consider the topological space (X, τ),

where the subspace X \ {〈0, 0〉} is euclidean, and a basis of open neighborhoods for 〈0, 0〉 is

given by sets

A(t) = {〈0, 0〉} ∪ ((0, 1) × (0, t))
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for 0 < t < 1. The topology τ is clearly definable and Hausdorff. Moreover, for any 0 < t < 1,

the τ -closure of A(t) is {〈0, 0〉}∪ [0, 1)× (0, t], and so the space is not regular, since the point

〈0, 0〉 and the closed set {0} × (0, 1) are not separated by neighborhoods.

Since (X, τ) is T1 and the subspace X \ {〈0, 0〉} is euclidean it easily follows that (X, τ)

satisfies the f.d.i. Hence (X, τ) is Hausdorff and has the f.d.i but fails to be regular, serving as

a counterexample to the generalization of Proposition 6.2.14 to spaces of dimension greater

than one.

Moreover, the space can be partitioned into two euclidean subspaces, namely {〈0, 0〉}

and X \ {〈0, 0〉}; in particular it contains no definable copy of an interval with either the

discrete or the right half-open interval topology. However, it is not metrizable, since it is

not regular. Hence it is a counterexample to a generalization of Theorem 6.7.1 to spaces of

dimension two.

Example A.11 (Example 5.4.20 ). Suppose that M = (M,<). Then the following is an

example of a non-Hausdorff space that is definably curve-compact but not definably compact.

For a proof of this we refer the reader to Example 5.4.20 .

Let X = {〈x, y〉 ∈ M2 : y < x}. Consider the family B of sets

A(x′, x′′, x′′′, y′, y′′, y′′′) ={〈x, y〉 : y < y′, y < x}∪

{〈x, y〉 : y′′ < y < y′′′ ∧ (y < x < y′′′ ∨ x′ < x < x′′ ∨ x′′′ < x)}

definable uniformly over y′ < y′′ < y′′′ < x′ < x′′ < x′′′.

The family B is a definable basis for a topology τ̃ . This topology is T1 but not Hausdorff.

It is also definably curve-compact but not definably compact (see Example 5.4.20 ). It follows

that the connection between these two notions of compactness described in Theorem 5.4.9 

is tight.

For the subsequent Examples A.12 , A.13 , A.14 and A.16 , let B2(〈x, y〉, t), for 〈x, y〉 ∈ M2

and t > 0, denote the ball in the 2-norm of center 〈x, y〉 and radius t, namely

B2(〈x, y〉, t) = {〈x′, y′〉 ∈ M2 : (x− x′)2 + (y − y′)2 < t2}.
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Example A.12 (Definable Moore Plane). Let X = {〈x, y〉 ∈ M2 : y ≥ 0} be the closed

upper half-plane. Let Be be a definable basis for the euclidean topology in {〈x, y〉 ∈ M2 :

y > 0} and, for any x ∈ M , let

A(x, ε) = B2(〈x, ε〉, ε) ∪ {〈x, 0〉}.

The family B = Be ∪ {A(x, t) : x ∈ M, t > 0} is clearly definable and forms a basis for a

topology τ . We call the space (X, τ) the definable Moore Plane.

This space is T3 and definably separable but not definably metrizable since the subspace

M × {0} is infinite and discrete (see Lemma 3.1.6 ). When M expands the field of reals

the Moore Plane is a classical expample of a separable non-normal space (in particular not

metrizable).

It is worth noting that, even though our definition of definable normality (Defini-

tion 6.2.15 ) seems the natural adaptation of the classical notion, the classical Moore Plane

fails to be normal. Meanwhile one may show that the definable Moore Plane is definably

normal. This suggests that our notion of definable normality might not be adequate.

Example A.13 (Definable Alexandrov Double Circle). Let X = C1 ∪C2, where C1 and C2

denote respectively the unit circle and circle of radius two in M2 centered at the origin. Let

f : C1 → C2 be the natural e-homeomorphism given by x 7→ 2x. Let B2 = {{x} : x ∈ C2}

and B1 = {(B2(x, t) ∩ C1)∪f(B2(x, t)∩C1 \{x}) : x ∈ C1, t > 0}. The definable Alexandrov

Double Circle is the topology on X generated by the basis B1 ∪ B2.

This space is definably compact and Hausdorff, but not definably separable, since C2 is

an infinite definable set of isolated points. It follows (see Lemma 7.4 in [49 ], which states that

any definably compact definable metric space is definably separable) that it is not definably

metrizable. It also fails to have the f.d.i., since the outer circle C2 is a dense subset.

When M expands the field of reals this space is simply called the Alexandrov Double

Circle and is a classical expample of a compact non-separable space (hence not metrizable).

The following example shows that there exists a Hausdorff two-dimensional definable

topology that does not contain a definable copy of an interval with the discrete or lower
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limit topology but still fails to be cell-wise euclidean. In particular the space is not affine

but, by Theorem 6.7.1 , any one-dimensional subspace is affine (it is “line-wise” affine). This

is proved in Proposition A.15 .

Example A.14 (The definable hollow plane). We construct a basis for a topology τ̂ on M2

by considering, for each point x, a basis of open neighborhoods given by open euclidean balls

minus the graph of s = t2 for 0 < t translated to have its origin at x. That is, for a given

x = 〈x1, x2〉 ∈ M2, let Γx := {〈x1 + t, x2 + t2〉 : t > 0}. Now let B be given by sets:

A(x, t) := B2(x, t) \ Γx,

for x ∈ M2 and t > 0. We call A(x, t) a τ̂ -ball of center x and radius t.

We claim that B is a basis for a topology on M2. In order to prove this let A0 and A1

be intersecting sets in B and x ∈ A0 ∩ A1. We show that there is A = A(x, ε) such that

A ⊆ A0 ∩ A1.

For any y ∈ M2 and t > 0, let A∗(y, t) = A(y, t) \ {y}. Note that, for any A ∈ B, the set

A∗ is e-open.

Case 1: x ∈ A∗
0 ∩ A∗

1. Since A∗
0 ∩A∗

1 is e-open there is some ε > 0 such that B2(x, ε) ⊆

A∗
0 ∩ A∗

1 ⊆ A0 ∩ A1. Hence we may take A = A(x, ε) ⊆ B2(x, ε).

Case 2: x /∈ A∗
0 ∩ A∗

1. Without loss of generality suppose that A0 = A(x, ε0) for some

ε0 > 0. If A1 = A(x, ε1) for some ε1 > 0, let ε = min{ε0, ε1} and A = A(x, ε).

Otherwise, by analogy to case 1, let ε2 > 0 be such that A(x, ε2) ⊆ A∗
1 and let

A = A(x, ε), where ε := min{ε0, ε2}.

So we may conclude that B is a basis. Let τ̂ be the corresponding topology.

Every e-open set in M2 is also τ̂ -open, i.e. τe ( τ̂ . In particular (M2, τ̂) is Hausdorff.

It fails however to be regular, since it is easy to check that, for any x ∈ M2 and ε > 0,

clτ̂A(x, ε) = cleB2(x, ε), and so, for every τ̂ -neighborhood A of x, clτ̂ (A) ∩ Γx 6= ∅. This

space, however, is definably separable, which follows from (1) in the following proposition.

One may also show that it is definably connected.
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Proposition A.15. The following are properties of (M2, τ̂).

(1) Any one-dimensional subspace of (M2, τ̂) is affine.

(2) No two-dimensional subspace of (M2, τ̂) is cell-wise euclidean, in particular no two-

dimensional subspace of (M2, τ̂) is affine.

Proof. Statement (2) is obvious from the definition. We prove (1) . By Theorem 6.7.1 it

suffices to show that (M2, τ̂) contains no subspace definably homeomorphic to an interval

with the discrete or right half-open interval topology.

Towards a contradiction let I ⊆ M be an interval and let f : (I, µ) ↪→ (M2, τ̂) be a

definable embedding, where µ ∈ {τr, τs}. By o-minimality, after restricting f if necessary,

we may assume that f is an e-embedding too.

Since µ = τr or µ = τs and f is an embedding, it follows that, for any t ∈ I, τ̂ −

lims→t− f(s) 6= f(t). So, by o-minimality, for every t ∈ I there exists some εt > 0 and

s′ < t such that, for all s′ < s < t, f(s) /∈ A(f(t), εt). However, since f is an e-embedding,

there is also some s′ < s′′ < t such that, for all s′′ < s < t, f(s) ∈ B2(f(t), εt), and so

f [(s′′, t)] ⊆ Γf(t). For any t ∈ I, let st = inf{s ∈ I : s < t, f [(s, t)] ⊆ Γf(t)}. This family is

definable uniformly on t ∈ I. By o-minimality, there exists an interval J ⊆ I such that, for

every t ∈ J , st < J . In other words, for every s < t in J , it holds that f(s) ∈ Γf(t).

We now claim that, for any two distinct points y, z ∈ M2, |Γy ∩ Γz| ≤ 1. In that case,

we have a contradiction, since we have shown that, for any s, s′, t, t′ ∈ J , if s < s′ < t < t′

then {f(s), f(s′)} ⊆ Γf(t) ∩ Γf(t′). It therefore remains to prove the claim.

Let y = 〈y1, y2〉 ∈ M2 and z = 〈z1, z2〉 ∈ M2. Suppose that there exist t, t′ > 0 such that

〈y1 + t, y2 + t2〉 = 〈z1 + t′, z2 + t′2〉.

If y1 = z1, then t = t′ and y = z. If y1 6= z1, then we substitute t′ = t + y1 − z1 in

t2 = z2 − y2 + t′2 to get

t2 = z2 − y2 + t2 + 2t(y1 − z1) + (y1 − z1)2,
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and hence

t = y2 − z2 − (y1 − z1)2

2(y1 − z1)
.

which proves the claim.

A natural question to ask is whether we may generalize Theorem 6.7.1 to spaces of all

dimensions by substituting the condition of having a definable copy of an interval with the

τr or τs topologies with simply not being cell-wise euclidean. The answer, even if adding the

additional assumption that the space be regular, is no, as witnessed by the following, and

final, example.

Example A.16 (Space that is T3 and cell-wise euclidean but not definably metrizable). Let

X = {〈x, y〉 ∈ M2 : y ≥ 0} be the closed upper half-plane. Let Be be a definable basis for

the euclidean topology in {〈x, y〉 ∈ M2 : y > 0}. For any x ∈ M and t > 0, let

A(x, t) = {〈x, 0〉} ∪ {〈x′, y〉) ∈ M2 : |x′ − x| < t, 0 ≤ y < t|x′ − x|}.

Note that, for every x ∈ M and t > 0, there is t′ > 0 such that A(x, t′) ⊆ B2(x, t), while

the converse is not true. Moreover, for every x ∈ M , the family {A(x, t) : t > 0} is nested

and, for every t > 0, the set A(x, t) \ {〈x, 0〉} is e-open in X. From these three facts it

follows, in a manner similar to the case analysis in Example A.14 , that the definable family

Bτ̃ = Be ∪ {A(x, t) : x ∈ M, t > 0} is a basis for a topology τ̃ on X.

Since we have τe|X ( τ̃ , the topology τ̃ is Hausdorff. Note that, for every x ∈ M and

t > 0, clτ̃A(x, t) = cleA(x, t), and so (X, τ̃) is also regular. Moreover the disjoint subspaces

{〈x, y〉 : x ∈ M, y > 0} and {〈x, y〉 : x ∈ M, y = 0} are both euclidean, i.e. the space is

cell-wise euclidean. In particular the space is definably separable. Finally, it is also definably

connected.

When M expands the field of reals this space is separable but not second countable and

thus not metrizable. From the completeness of the theory of real closed fields it follows that

there is no metric on X definable in the language of ordered rings that induces τ̃ . We show

that this holds in greater generality.

Proposition A.17. The space (X, τ̃) is not definably metrizable.
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Proof. Towards a contradiction suppose that (X, τ̃) is definably metrizable with definable

metric d. For every x ∈ M let rx = sup{0 < t < 1 : Bd(〈x, 0〉, t) ∩ ({x} × (0,∞)) = ∅}.

Note that, by definition of the neighborhoods A(x, t), we have that rx > 0 for every x ∈ M .

By o-minimality, there exists an interval I ⊆ M and some r > 0 such that, for every x ∈ I,

r ≤ rx. Now fix x ∈ I and consider the d-ball Bd(〈x, 0〉, r/2). By definition of τ̃ , there exists

some y ∈ I \ {x} and some s > 0 such that {y} × [0, s] ⊆ Bd(〈x, 0〉, r/2). But then, by the

triangle inequality, d(〈y, 0〉, 〈y, s〉) ≤ d(〈y, 0〉, 〈x, 0〉) + d(〈x, 0〉, 〈y, s〉) < r ≤ ry. This is a

contradiction since, for every 0 < t < ry, Bd(〈y, 0〉, t) ∩ ({y} × (0,∞)) = ∅.
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