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ABSTRACT

Extending an explicit result from Bridson–Conder–Reid [  1 ], this work provides an algo-

rithm for distinguishing finite quotients between cocompact triangle groups ∆ and lattices

Γ of constant curvature symmetric 2-spaces. Much of our attention will be on when these

lattices are Fuchsian groups. We prove that it will suffice to take a finite quotient that is

Abelian, dihedral, a subgroup of PSL(2, Fq) (for an odd prime power q), or an Abelian ex-

tension of one of these 3 groups. For the latter case, we will require and develop an approach

for creating group extensions upon a shared finite quotient of ∆ and Γ which between them

have differing degrees of smoothness. Furthermore, on the order of a finite quotient that

distinguishes between ∆ and Γ, we are able to establish an effective upperbound that is

superexponential depending on the cone orders appearing in each group.
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1. INTRODUCTION

1.1 Motivation

Given an object, e.g., a field, group, manifold, variety, etc., one might seek a collection of

invariants of the object such that it is essentially determined by this collection. For instance,

by the classification of surfaces, a closed, connected, orientable 2–manifold M is uniquely

determined up to homeomorphism by its genus.

Unfortunately, such recognition results are rare and require more complicated invariants.

As an example, given a number field K/Q, by the Neukirch–Uchida–Pop theorem, K is

determined by its collection of finite Galois groups Gal(L/K). In the same vein, for a finitely

generated group Γ, problems of profinite invariance (see Section  3.1 for further details) aims

in answering the properties of Γ that can be recovered from its collection of finite quotients.

Bridson–Conder–Reid [  1 ] proved that finitely generated Fuchsian groups can be distin-

guished from lattices of connected Lie groups via their finite quotients (see also [  2 ] [  3 ] re-

garding the absolute profinite rigidity of certain triangle groups). Furthemore, in Section

8 of [  1 ], an explicit description was detailed for distinguishing finite quotients between two

non-isomorphic (cocompact) triangle groups. We are motivated in extending this explicit

result, for which we aim to answer the following two main problems.

1. Can we distinguish a triangle group ∆ := ∆(r, s, t) by a finite quotient Q among the

larger class of lattices of constant curvature symmetric 2-spaces Γ := (g; p; m)?

2. Can we construct an algorithm for distinguishing ∆ and Γ via finite quotients? What

effective upperbounds can be established on the orders of such quotients?

The first problem is a question of existence (does such a finite quotient Q exist?). Natu-

rally, one wonders if the existence of Q can be proven constructively, which can create more

insight towards a proof.

The second problem provides an effective result regarding our finite quotients. Effective

upperbounds on the order of Q that differs between ∆ and Γ precisely answers how sufficiently

large one must pursue quotients before confirming that ∆ and Γ must be isomorphic and

therefore indistinguishable.

7



1.2 Main results

Our work will focus on proving the following theorem, which will answer both of the

problems listed in the previous section.

Theorem  7.0.2 . Let ∆ := ∆(r, s, t), Γ := (g; p; m), and k := |m| ≥ 0 such that ∆ � Γ.

Define N := max{lcm(r, s, t), lcm(m)}. Then there exists a finite group Q having order

|Q| � N (k+3)N15

such that Q is a quotient for one of the groups, but not for the other group.

We are inspired by the methods from [  1 ]; however, generalizing results from triangle

groups to lattices is not so straightforward. In addition to producing a list of basic quotients

to work with, we also want to qualify certain quotients Q as smooth or non-smooth by

considering all of the surjective maps to Q. Another important theorem for this work extends

a result from [ 4 ], which produces a family of PSL2 representations that are smooth.

Theorem  5.1.1 . Let q = `d be an odd prime power and m = (m1, . . . , mk), with k ≥ 3.

There exists a subgroup of PSL(2, q) that is a smooth quotient of (0; 0; m) if and only if each

of the integers m1, . . . , mk divides one of `, q−1
2 , or q+1

2 .

The toughest case that remains is when ∆ and Γ share exactly the same basic quotients

(there are many examples of this). However, even if ∆ and Γ have a common finite quotient

G, we have ways of detecting discrepancies in smoothness.

This requires refining the notion on the smoothness of quotients, in the sense that quo-

tients can be considered to be partially smooth or maximally smooth. To this end, for a

shared finite quotient G, if G is a smoother quotient for ∆ than it is for Γ, then we can

construct a group extension G′ of G which is a finite quotient of ∆ but not for Γ. The

following theorem formally states this in terms of first Betti numbers b1.

Theorem  5.3.1 . Let G be a finite group. Fix a surjective homomorphism π : (g1; p1; m) � G

such that b1(ker π) is maximal among all such surjective maps. If every surjective map
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s : (g2; p2; n) � G satisfies b1(ker s) < b1(ker π), then there is a finite Abelian extension G′

of G such that G′ is a finite quotient of (g1; p1; m) but not for (g2; p2; n).

With these major theorems above utilized in our work, we will be able to show that

we can distinguish a triangle group from a lattice by using only dihedral quotients, Abelian

quotients, subgroups of PSL(2, q), or Abelian extensions of the latter three groups. In Section

 7.2 , we will demonstrate our algorithm with some illustrative examples.
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2. SUMMARY

In Chapter  3 , we develop the background and conventions necessary for studying the profi-

nite invariants of lattices in constant curvature symmetric 2-spaces. Among the spherical,

Euclidean, and hyperbolic lattices, our overwhelming interest will be in the hyperbolic case,

for which we can exploit the theory of Fuchsian groups.

The purpose of Chapter  4 is understand Abelian and dihedral quotients. While these

quotients are particularly simple to understand, they still are able to provide a wealth of in-

formation towards developing rigidity results. These particular concrete quotients represent

the least resistant cases towards our proof.

Unfortunately, the quotients studied in Chapter  4 are not enough to prove profinite

rigidity. In Chapter  5 , we develop a notion of a degree of smoothness of finite quotients,

which pays particular attention to the geometry of lattices. Generalizing a result from

Macbeath [  4 ], we are able to produce criteria for a lattice to exhibit smooth and non-smooth

representations to 2-dimensional projective special linear groups over finite fields.

Chapter  6 provides constructive results for genus 0 lattices. Among the most resistant

cases are in distinguishing finite quotients between two triangle groups.

Chapter  7 showcases a full algorithm for distinguishing a triangle group from a lattice via

finite quotients. In particular, we are able to produce an effective upperbound on the order

of such a distinguishing quotient depending only on the numerical entries of both groups.
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3. BACKGROUND AND PRELIMINARIES

We begin with important background on profinite invariants, and then proceed with certain

results on finitely generated Fuchsian groups.

3.1 Profinite invariants

For details of much of the profinite results of this section, see [  5 ], and for a further survey

on profinite invariants, see [ 6 ].

Let Γ be a group, and define the set of finite quotients of Γ

FQ(Γ) := {[Q] | Q is a finite quotient of Γ} ,

where [Q] denotes the isomorphism class of the finite group Q. We can construct a universal

object Γ̂, called the profinite completion of Γ, which is a group that encodes all of the finite

quotients FQ(Γ) of Γ.

Definition 1. Let Γ be a group, and let F be the set of finite index normal subgroups of Γ.

Given M, N ∈ F such that M ≤ N , let πN
M : Γ/M � Γ/N be the natural projection map.

The profinite completion of Γ is the subgroup Γ̂ given by

Γ̂ :=
{
(xM)M∈F

∣∣∣xM ∈ Γ/M and for every M ≤ N, πN
M(xM) = xN

}
≤

∏
M∈F

Γ/M.

A categorical definition of the profinite completion Γ̂ as an inverse limit and as a compact

topological group is provided in [  5 ]. There is an intimate connection between the profinite

completion Γ̂ of Γ and the set of finite quotients FQ(Γ). In fact, for finitely generated groups,

we can make this connection more precisely.

Theorem 3.1.1. Let Γ and Λ be finitely generated groups, then Γ̂ ∼= Λ̂ if and only if

FQ(Γ) = FQ(Λ).

We say Γ and Λ are profinitely equivalent if Γ̂ ∼= Λ̂. Without the assumption that Γ

and Λ are finitely generated, we would require that the isomorphism from above Γ̂ ∼= Λ̂
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additionally be a homeomorphism for the theorem to hold. A deep result of Nikolov–Segal

[ 7 ] implies with this finitely generation assumption that any abstract group isomorphism

Γ̂ ∼= Λ̂ is automatically a homeomorphism.

We now assume that the groups Γ and Λ are finitely generated, as is with the case of

lattices, see ( 1 ). The profinite invariants of a group Γ are the properties that are shared by

another profinitely equivalent group Λ, i.e. satisfying FQ(Γ) = FQ(Λ). Notice that if K

is the intersection of all of the finite index normal subgroups of Γ, then Γ/K and Γ have

exactly the same finite quotients, FQ(Γ) = FQ(Γ/K).

To ensure we are not working with essentially redundant examples such as the one above,

we insist on restricting to groups Γ such that its associated subgroup K is the trivial sub-

group.

Definition 2. A group Γ is residually finite, if the intersection of all of the finite index

normal subgroups of Γ is the trivial subgroup 〈1Γ〉.

In particular, the group Γ/K constructed above is residually finite. Also, lattices of

constant curvature symmetric 2-spaces are residually finite by [ 8 ].

The best possible kind of profinite invariant is that of rigidity. We define two different

scopes of profinite rigidity.

Definition 3. Let C denote some subclass of the class of all residually finite groups.

1. A group Γ ∈ C is relatively profinitely rigid in C, if whenever Γ̂ ∼= Λ̂ for some Λ ∈ C,

then Γ ∼= Λ.

2. A residually finite group Γ is (absolutely) profinitely rigid, if Γ is relatively profinitely

rigid in the class of all residually finite groups.

One of our main goals will be to prove Theorem  7.0.2 that triangle groups are relatively

profinitely rigid in the class of all lattices of constant curvative symmetric 2-spaces.

3.2 Lattices of constant curvature symmetric 2-spaces

Let X denote any of the following three Riemannian 2-manifolds: the sphere S2, the

Euclidean plane R2, or the hyperbolic plane H2. Given a surface X, the isometry group
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Isom(X) is a linear group equipped with an isometric action on the locally compact metric

space X. We will concern ourselves with the index two subgroup of orientation-preserving

isometries Isom+(X). The lattices Γ arising in Isom+(X) will be the main objects of our

interest.

Definition 4. A lattice Γ of X is a discrete subgroup Γ ≤ Isom+(X) such that Γ has finite

co-area, i.e. the quotient X/Γ has finite area.

For a lattice Γ, the metric from X is inherited by the quotient O := X/Γ via the natural

projection map πΓ : X � X/Γ which is a branched covering map. The quotient O also has

the structure of a 2-orbifold, see [ 9 ] and [  10 ] for a treatment on orbifolds. We will often study

lattices Γ by understanding its associated orbifold X/Γ, and vice versa.

We say that a discrete subgroup Γ ≤ Isom+(X) is uniform or cocompact, if X/Γ is

compact. In this case, Γ automatically has finite co-area.

The most populated examples of lattices Γ as well as the most interesting for this work

will be based in the hyperbolic plane X = H2. Consequently, Γ is a Fuchsian group, and

much of the exposition which we will preface about Fuchsian groups can be found in [ 11 ].

One objective in this chapter is to provide a combinatorial framework for classifying

lattices, via numerical data called the signature of the group. We will be able to conclude

that every lattice Γ is a finitely presented group whose isomorphism type depends only on

the topology and geometry of the orbifold X/Γ.

3.2.1 Fuchsian groups

We first describe the action of PSL(2, R) ∼= Isom+(H2) on the hyperbolic plane via

Möbius transformations. In this case, we will employ the upper half-plane model for the

hyperbolic plane

H2 := {z ∈ C | Im(z) > 0}.

For elements z ∈ H2 and

A :=

a b

c d

 ∈ PSL(2, R),
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we define the action

Az := az + b

cz + d
∈ H2.

This action extends naturally, viewed as a subspace of the Riemann sphere C ∪ {∞}, to the

boundary R ∪ {∞} of H2. For a subgroup Γ ≤ PSL(2, R), we define the Γ-orbit of z ∈ H2

by

Γz := {Az | A ∈ Γ}

and the Γ-stabilizer of z by

StabΓ(z) := {A ∈ Γ | Az = z}.

In the group PSL(2, R), the absolute value of the trace function induced by SL(2, R) is

well-defined,

| tr(A)| := |a + d|, where A :=

a b

c d

 .

We say that a non-identity matrix A ∈ PSL(2, R) is elliptic, parabolic, or hyperbolic, if

| tr(A)| < 2, | tr(A)| = 2, or | tr(A)| > 2, respectively. This can also be characterized in

regards to the action of A on H2 ∪ (R ∪ {∞}). Elliptic elements fix only and exactly one

point of H2, parabolic elements fix only and exactly one point of R ∪ {∞}, and hyperbolic

elements fix only and exactly two points of R ∪ {∞}. We say that a subgroup Γ is elliptic,

parabolic, or hyperbolic, if all of the non-identity elements in Γ are elliptic, parabolic, or

hyperbolic elements, respectively.

A Fuchsian group Γ is a discrete subgroup of PSL(2, R) ∼= Isom+(H2). In terms of group

actions, we will find the following equivalence useful.

Theorem 3.2.1. A subgroup Γ ≤ PSL(2, R) is a Fuchsian group if and only if for every

z ∈ H2, Γz ⊂ H2 is discrete and StabΓ(z) is finite.

Proof. Various characterizations of a Fuchsian group, including the one stated above, can

be found in [ 11 ].
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We would like to focus on lattices Γ in H2, that is, Γ is a Fuchsian group and H2/Γ has

finite area. It follows from Theorem  3.2.1 and from [  11 ] that a lattice Γ has up to conjugacy

the following: a finite number, say k ≥ 0, of maximal elliptic cyclic subgroups and a finite

number, say p ≥ 0, of maximal parabolic cyclic subgroups. Sorting by conjugacy classes,

each of the k maximal elliptic cyclic subgroups are finite in order and of at least 2, so we can

compile a list of those orders into a (possibly empty) unordered tuple m := (m1, . . . , mk),

where each mi ≥ 2. On the other hand, each of the maximal parabolic cyclic subgroups

have infinite order, and on occasion, we will instead treat a conjugacy class of a maximal

parabolic cyclic subgroup as an elliptic subgroup of order mi = ∞.

The values p, k, and m = (m1, . . . , mk) coming from the lattice Γ above are witnessed

by the quotient orbifold O := H2/Γ in a precise way. As a topological space, O is a genus g

surface Sg with exactly p points removed, called punctures or cusps. Additionally, O has k

cone points (or marked points), one for as many as the size of the tuple m = (m1, . . . , mk),

with a cone order mi ≥ 2 realized at each cone point. All of the points of O which are not

cone points are smooth points, locally resembling that of a differentiable 2-manifold. In fact,

without any (finite) cone points, O is globally a differentiable 2-manifold.

We may occasionally view a smooth point of O as a cone point having cone order 1 and

a puncture as a cone point (despite it not even being a point of O) having cone order ∞.

We say the tuple m = (m1, . . . , mk) is nondegenerate, if 2 ≤ mi < ∞, for every i. Unless

otherwise mentioned in this work, all tuples will implicitly be considered nondegenerate. As

described above, the genus g, number of punctures p, and unordered tuple of cone orders

m = (m1, . . . , mk) are all values determined by the lattice Γ.

Definition 5. The signature of Γ is the data (g; p; m), where g ≥ 0 is the genus, p ≥ 0 is

the number of punctures, and m = (m1, . . . , mk), with k ≥ 0 are the cone orders to each

cone point of O = H2/Γ.

Not every prescription of values (g; p; m) for the signature will admit a Fuchsian group

and a hyperbolic orbifold. We will state a theorem of Poincaré, that uses Euler characteristics

to quantify which signatures do work.
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Definition 6. The Euler characteristic of the signature (g; p; m) is the rational number

χ(g; p; m) := 2 − 2g − p −
k∑

i=0

(
1 − 1

mi

)
.

Without any cone points m, this extends the definition of the Euler characteristic of a

2-manifold of genus g with p punctures. Also, it can be verified that χ(g; p; m) is well-defined

for equivalent degeneracies of the signature (g; p; m).

Theorem 3.2.2. For g ≥ 0, p ≥ 0, and a tuple m, if χ(g; p; m) < 0, then there exists

a Fuchsian group Γ with signature (g; p; m), and the co-area of Γ is finite and equal to

−χ(g; p; m). Otherwise, the 2-orbifold O corresponding to the signature (g; p; m) is not

hyperbolic.

A proof of this theorem is provided in [  11 ]. Furthermore, it is shown that if Γ has

signature (g; p; m), then Γ can be given the following group presentation:

〈a1, b1, . . . , ag, bg, y1, . . . , yp, x1, . . . , xk | xmi
i = [a1, b1] . . . [ag, bg]y1 . . . ypx1 . . . xk = 1〉. (1)

Consequently, lattices in H2 are finitely presented groups. From now on, we will use

context to denote by (g; p; m) either as a signature or as a group with the presentation given

by (  1 ). The generators ai and bj are hyperbolic, the yi are parabolic, and the xi are elliptic

(and necessarily torsion). We will refer to these specific generators from (  1 ) as the canonical

generators for the group (g; p; m).

One collection of groups that we are interested in is the collection of (cocompact) triangle

groups.

Definition 7. For integers r, s, t ≥ 1, the (r, s, t)-triangle group is the group

∆(r, s, t) := (0; 0; r, s, t) ∼= 〈x, y, z | xr = ys = zt = xyz = 1〉.

For this definition, we allow for the possibility for the cone orders to be equal to 1, but

not ∞, which would comprise of the non-cocompact triangle groups, see Theorem  3.2.3 .

We reserve to use the term triangle groups specifically for the cocompact ones. As triangle
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groups will be a focus for this work, we will find it convenient to denote an operator f (e.g.,

FQ, χ, or b1) on a triangle group by f(r, s, t) := f(∆(r, s, t)).

3.2.2 Signatures

We can extend and redevelop the presentation and signature of the group Γ = (g; p; m)

given by (  1 ) for the sphere S2 when χ(g; p; m) > 0, and for the Euclidean plane R2 when

χ(g; p; m) = 0. Technically, a few of the non-hyperbolic groups listed below are not finite in

co-area, but they can be innocuously subsumed and will be treated as a lattice. We now list

all of the spherical and Euclidean groups arising as signatures.

Spherical lattices χ(g; p; m) > 0.

1. (0; 0; m) ∼= (0; 1; −) ∼= 〈1〉

2. (0; 0; m, n) ∼= Cgcd(m,n)

3. ∆(1, m, m) ∼= (0; 1; m) ∼= Cm

4. ∆(2, 2, n) ∼= D2n

5. ∆(2, 3, 3) ∼= A4

6. ∆(2, 3, 4) ∼= S4

7. ∆(2, 3, 5) ∼= A5

Spherical lattices are finite groups and must have genus 0. We denote Ca as the cyclic

group of order a and D2a as the dihedral group of order 2a. We also allowed for the possibility

for m and n above to be equal to 1.

Euclidean lattices χ(g; p; m) = 0.

1. (0; 2; −) ∼= Z

2. (1; 0; −) ∼= Z2

3. (0; 1; 2, 2) ∼= C2 ∗ C2 ∼= D∞ ∼= Z o C2
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4. (0; 0; 2, 2, 2, 2) ∼= Z2 o C2

5. ∆(2, 3, 6) ∼= Z2 o C6

6. ∆(2, 4, 4) ∼= Z2 o C4

7. ∆(3, 3, 3) ∼= Z2 o C3

Euclidean lattices are infinite and solvable groups, and must have genus at most 1. There

are only finitely many of them. Each of the groups is isomorphic to some semidirect product

of the form ZioCk, where i ∈ {1, 2} and k ∈ {1, 2, 3, 4, 6}. We can develop an infinite family

of finite quotients Ci
d o Ck by varying d ≥ 1, each of which are solvable quotients having

order kdi. By taking d large enough, we can distinguish Euclidean lattices from spherical

ones. We can use Abelian quotients (see Chapter  4 ) to be able to distinguish Euclidean

lattices from other Euclidean lattices.

Any other signature (g; p; m) provides a hyperbolic group, which are infinite and insolv-

able groups. We can distinguish a hyperbolic lattice Γ from any non-hyperbolic lattice by

finite quotients, for example, [ 4 ] shows that Γ has infinitely many finite simple quotients.

We have shown non-hyperbolic lattices are easy cases to deal with, and have fully de-

termined the relative profinite rigidity for these groups. Therefore, in later chapters we will

often assume the lattices (g; p; m) are hyperbolic. While for many occasions our results will

hold true for even non-hyperbolic lattices, we will only feel the obligation to ensure future

results hold for Fuchsian groups.

3.2.3 Punctured and unpunctured lattices

We describe the differences between lattices (g; p; m) for the unpunctured p = 0 compared

to the punctured p > 0 cases. In Chapter  6 , we will dichotomize our analyses in this manner.

Theorem 3.2.3. The lattice (g; p; m) is cocompact in X if and only if p = 0. Furthermore,

when X = H2, the lattice (g; p; m) is cocompact if and only if it contains no parabolic

elements.

Proof. This is straightforward to verify this for X = S2 or X = R2, and for X = H2, this is

Theorems 4.2.1 and 4.2.2 of [ 11 ].
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Whenever (g; p; m) has punctures, it is a virtually free group due to [  12 ], as it can be

deduced from the canonical group presentation that

(g; p; m) ∼= F2g+p−1 ∗ Cm1 ∗ · · · ∗ Cmk
, for p > 0, (2)

is a free product of the free group Fr of rank r := 2g + p − 1 with the cyclic groups Cmi
of

order mi.

Since (g; p; m) ∼= (g−1; p+2; m) whenever p > 0 (and g > 0), we can always find a genus

zero representative (0; p′; m) isomorphic to (g; p; m) for p > 0. It can also be checked that

χ(g; p; m) = χ(g − 1; p + 2; m) in this case. However, as a warning, the associated orbifolds

may no longer be isomorphic upon changing the signatures in this way.

If a tuple n is a permutation of m, then (g; p; m) ∼= (g; p; n), and thus the order of the

entries of tuples need no concern. We treat m = n as an equality of unordered tuples.

Outside of these isomorphisms mentioned above, different hyperbolic signatures produce

non-isomorphic lattices.

When p = 0, the lattice (g; 0; m) is virtually a surface group Σg′ ∼= (g′; 0; −). This follows

from Selberg’s lemma [ 13 ], for which we provide an explicit construction in Theorem  5.1.1 .

3.2.4 Finite index subgroups of Fuchsian groups

Let (g; p; m) be a Fuchsian group. Every finite index subgroup of Γ = (g; p; m) will also

be a lattice Λ = (g′; p′; n), and the Riemann–Hurwitz formula will be extremely useful in

restricting the possible signatures for Λ.

Riemann–Hurwitz formula. Let Γ be a lattice, and Λ a finite index subgroup of Γ. Then

Λ is also a lattice and χ(Λ) = [Γ : Λ]χ(Γ).

We can use the Riemann–Hurwitz formula to determine the signature of the kernel

K := ker π associated to any surjective map π : (g; p; m) � G to a finite group G. Sup-

pose that K := (g′; p′; n), and let e(i) indicate the value of e repeated i times. Take the

canonical parabolic and elliptic generators y1, . . . , yp, x1, . . . , xk ∈ (g; p; m). They map to
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the elements π(y1), . . . , π(yp), π(x1), . . . , π(xk) ∈ G, and suppose their respective orders in

G are d1, . . . , dp, c1, . . . , ck. Denote this tuple of orders by d := (d1, . . . , dp, c1, . . . , ck).

By using branched covering space theory, it can be shown that the kernel K = (g′; p′; n)

admits the following tuple of (possibly degenerate, if p > 0) cone orders:

n′ :=
(

∞(|G|/d1), . . . , ∞(|G|/dp),
m1

c1

(|G|/c1)
, . . . ,

mk

ck

(|G|/ck))
.

With a desire for a nondegenerate K = (g′; p′; n), we apply the data from n′ to let

p′ := |G|
d1

+ · · · + |G|
dp

and n :=
(

m1

c1

(|G|/c1)
, . . . ,

mk

ck

(|G|/ck))
.

To obtain the value of g′, we use the Riemann–Hurwitz formula:

χ(K) = χ(g′; p′; n) = |G|χ(g; p; m) (3)

2 − 2g′ −
(

|G|
d1

+ · · · + |G|
dp

)
−

k∑
i=1

(
1 − ci

mi

) |G|
ci

= |G|

2 − 2g − p −
k∑

j=1

(
1 − 1

mj

) (4)

This simplifies to

2 − 2g′ = |G|χ(g; 0; d), where d = (d1, . . . , dp, c1, . . . , ck). (5)

Therefore, for any surjective map π : (g; p; m) � G to a finite group G, we are able to deter-

mine the signature of the kernel K = (g′; p′; n) that depends only on g, p, |G|, and the orders

of the images of the canonical parabolic and elliptic generators d = (d1, . . . , dp, c1, . . . , ck).

Another consequence from this is that every finite index subgroup (g′; p′; n) ≤ (g; 0; m)

remains unpunctured, i.e., p′ = 0, which reconfirms Theorem  3.2.3 . In addition, the anal-

ysis provided above shows that every finite index subgroup (g′; p′, n) of a punctured lattice

(g; p; m) is also punctured, i.e. p′ > 0 whenever p > 0.
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4. BASIC QUOTIENTS OF FUCHSIAN GROUPS

This chapter introduces the dihedral and Abelian quotients of Fuchsian groups arising as lat-

tices. In particular, these quotients will significantly restrict the possible signatures (g; p; m)

of profinitely equivalent lattices. However, these quotients alone will not suffice in establish-

ing relative rigidity completely, for which we will require results and techniques described in

Chapters  5 and  6 .

Many of the results in this chapter are extensions of ideas from [  1 ]. We will also use the

convention that the tuples m and n with respective sizes k and l have the following entries:

m := (m1, . . . , mk) and n := (n1, . . . , nl).

4.1 Dihedral quotients

We establish criteria for genus 0 groups (0; p; m) to have dihedral quotients. Let D2a

denote the dihedral group of order 2a, for a > 0. Recall that ∆(2, 2, a) ∼= D2a is a spherical

triangle group.

Proposition 4.1.1. The group (0; p; m) has a dihedral quotient if and only if the number k′

of even entries in m plus the number of punctures p is at least 2, i.e., k′ + p ≥ 2.

Proof. Let

(0; p; m) ∼= 〈y1, . . . , yp, x1, . . . , xk | xmi
i = y1 . . . ypx1 . . . xk = 1〉

be the canonical group presentation. Then there is some a > 0 with a surjective map

(0; p; m) � ∆(2, 2, a) if and only if (0; p; m) has two canonical generators of either even or

infinite order in (0; p; m).

Two important cases as a result of Proposition  4.1.1 are that (0; 0; m) admits a dihedral

quotient if and only if m contains at least two even entries, and that (0; 1; n) admits a dihedral

quotient if and only if n contains at least one even entry. We will find these characterizations

important for Chapter  6 .
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4.2 Abelian quotients

The Abelianization of Γ is the Abelian group ΓAb := Γ/[Γ, Γ], where [Γ, Γ] is the commu-

tator subgroup of Γ. As a universal object, ΓAb encodes all of the Abelian quotients of Γ.

It is clear that the Abelianization of a lattice (g; p; m)Ab is finitely generated, and we will

consider the invariant factor form for finitely generated Abelian groups:

Zr × Ca1 × · · · × Cad
,

where r ≥ 0, ai 6= 0, and ai | aj whenever i < j. We may remove any instances of the trivial

factor C1 appearing in this decomposition.

To proceed, we generalize the notions of gcd’s and lcm’s with a definition for the family

of operators midi(m), for a k-tuple m := (m1, . . . , mk). We set

Li := {lcm(m′) | m′ is a projection of the tuple m of size i}, for 1 ≤ i ≤ k.

Then we define midi(m) := gcd(Li). Equivalently, midi(m) = lcm(Gi), where

Gi := {gcd(m′) | m′ is a projection of the tuple m of size k − i + 1}.

For another description, midi(m) is the product of each of the i-th lowest prime powers

existing among the prime factorizations of the integers m1, . . . , mk. In particular we have,

mid1(m) = gcd(m)

mid|m|(m) = midk(m) = lcm(m)

m1 . . . mk =
k∏

i=1
midi(m).

Also worth noting is that midi(m) | midj(m), whenever i < j.

We begin with the following piece-wise result for the Abelianizations of lattices.
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Proposition 4.2.1. Written in the invariant factor form (with possible C1 factors),

(g; p; m)Ab ∼=


Z2g+p−1 × Cmid1(m) × · · · × Cmidk(m) if p > 0

Z2g × Cmid1(m) × · · · × Cmidk−1(m) if p = 0.

Proof. Recall from ( 2 ) that when p > 0, then

(g; p; m) ∼= F2g+p−1 ∗ Cm1 ∗ · · · ∗ Cmk
.

Hence this case is the Abelianization of a free product of free and cyclic groups, so that

(g; p; m)Ab ∼= Z2g+p−1 × Cm1 × · · · × Cmk

∼= Z2g+p−1 × Cmid1(m) × · · · × Cmidk(m),

which is written as a product of its invariant factors.

When p = 0, we can further assume that g = 0, with the case g > 0 following similarly.

We write the group presentation of (0; 0; m)Ab additively:

(0; 0; m)Ab ∼= 〈x1, . . . , xk | m1x1 = · · · = mkxk = x1 + · · · + xk = 0〉.

This presentation is isomorphic to the quotient of the group G := Zk/(m1Z ⊕ · · · ⊕ mkZ) by

its cyclic subgroup generated by (1, 1, . . . , 1) ∈ G of order lcm(m). It follows that

G ∼= H, where H := Cgcd(m) × Cmid2(m) × · · · × Cmidk−1(m) × Clcm(m)

and through this natural isomorphism, the element (1, 1, . . . , 1) ∈ G is mapped to the element

(1, 1, . . . , 1) ∈ H.
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It can be verified that the assignment

f : Cgcd(m) × · · · × Clcm(m) → Cgcd(m) × · · · × Clcm(m), with

ei 7→ ei, for 1 ≤ i ≤ k − 1,

(1, 1, . . . , 1) 7→ ek,

induces a well-defined group isomorphism. Thus we have the desired result

(0; 0; m) ∼= Cgcd(m) × Cmid2(m) × . . . Cmidk−1(m).

Remark. Notice that (g; p; m)Ab is a finite group if and only if g = 0 and p ≤ 1. In partic-

ular, a triangle group ∆(r, s, t) has finite Abelianization. Only lattices of the form (0; 0; m)

or (0; 1; m) could possibly share all of its Abelian quotients with ∆(r, s, t). Therefore, our

typical and convenient focus will be on lattices of genus 0 with at most one puncture.

Another way to prove the dihedral criterion of Proposition  4.1.1 is to observe that a group

(0; p; m) admits a dihedral quotient if and only if (0; p; m) has C2 ∼= D2·1 as a quotient, which

is also equivalent to having C2 as a quotient of (0; p; m)Ab. Therefore by Proposition  4.2.1 ,

if p > 0, then we require lcm(m) to be even, and if p = 0, then we require midk−1(m) to be

even.

In the genus 0, unpunctured (0; 0; m) case, the only midi(m), for 1 ≤ i ≤ k, to have no

dependence on the Abelianization (0; 0; m)Ab is the quantity midk(m) = lcm(m). Proposi-

tion  4.3.2 in the next section will show that the Abelianization and the Euler characteristic

of (0; 0; m) determine lcm(m).

4.3 Euler characteristics

Recall from Section  3.2.4 the Euler characteristic of a signature (g; p; m) is a rational

number given by

χ(g; p; m) = 2 − 2g − p −
k∑

i=1

(
1 − 1

mi

)
.
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Also, the Riemann–Hurwitz formula states that if Λ is a finite index subgroup of a lattice

Γ, then Λ is also a lattice and

χ(Λ) = [Γ : Λ]χ(Γ).

We now consider various results on genus 0, unpunctured lattices, and set notation for the

tuples m = (m1, . . . , mk) and n = (n1, . . . , nl), and assume 2 ≤ k ≤ l.

The following is an immediate corollary to Proposition  4.2.1 , since up to reordering,

the invariant factor decomposition uniquely determines the isomorphism type for a finitely

generated Abelian group.

Corollary 4.3.1. If (0; 0; m)Ab ∼= (0; 0; n)Ab, then

1. midi(n) = 1, for 1 ≤ i ≤ l − k,

2. midj(m) = midl−k+j(n), for 1 ≤ j ≤ k − 1.

Chapter  5 will show we can distinguish finite quotients between two groups with unequal

Euler characteristics χ(0; 0; m) 6= χ(0; 0; n). This provides motivation for allowing the Euler

characteristics to be the same for the following proposition. Furthermore, to complement

Corollary  4.3.1 , appending information about the Euler characteristic will determine the

lcm.

Proposition 4.3.2. If (0; 0; m)Ab ∼= (0; 0; n)Ab and χ(0; 0; m) = χ(0; 0; n), then lcm(m) =

lcm(n) and m1 . . . mk = n1 . . . nl.

Proof. The statement m1 . . . mk = n1 . . . nl will hold true, once we show that lcm(m) =

lcm(n).

Corollary  4.3.1 determines all of the midi’s for m and n, except for their lcm’s. In

particular, we have that midi(n) = 1, for 1 ≤ i ≤ l − k.

Now, for a fixed prime `, let ν`(x) denote the `-adic valuation of a rational number x. It

follows from the ultrametric property of ν` that if ν`(x1) ≤ · · · ≤ ν`(xr), then

ν`(x1 + · · · + xr) ≥ ν`(x1),
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with strict inequality only if ν`(x1) = ν`(x2).

Define αj := ν`(midj(m)) = ν`(midl−k+j(n)), for 1 ≤ j ≤ k − 1, β := ν`(lcm(m)), and

γ := ν`(lcm(n)). We have that 0 ≤ α1 ≤ α2 ≤ · · · ≤ αk−1 ≤ β, γ. The Euler characteristic

condition χ(0; 0; m) = χ(0; 0; n) provides the following:

1
m1

+ · · · + 1
mk

− (k − 2) = 1
n1

+ · · · + 1
nl

− (l − 2)

Sm − (k − 2)m1 . . . mk

m1 . . . mk

= Sn − (l − 2)n1 . . . nl

n1 . . . nl

(Sm − (k − 2)m1 . . . mk)n1 . . . nl = (Sn − (l − 2)n1 . . . nl)m1 . . . mk

Tm n1 . . . nl = Tn m1 . . . mk.

The value Sm (resp. Sn) is the sum of all k (resp. l) squarefree monomials of m (resp. n) of

size k−1 (resp. l−1), and we define Tm := Sm−(k−2)m1 . . . mk and Tn := Sn−(l−2)n1 . . . nl.

Notice that by ordering each of the individual summands in Tm by their `-adic valuations,

the smallest two such `-adic values are α1 + · · · + αk−1 and α1 + · · · + αk−2 + β. Similarly for

Tn, the smallest two such `-adic values are α1 + · · · + αk−1 and α1 + · · · + αk−2 + γ. Hence,

the ultrametric provides the lower bounds on ν`(Tm n1 . . . nl) ≥ 2(α1 + · · · + αk−1) + γ and

on ν`(Tn m1 . . . ml) ≥ 2(α1 + · · · + αk−1) + β. Without loss of generality, suppose β < γ, but

then ν`(Tn m1 . . . mk) cannot take on the value of its ultrametric lower bound. This implies

αk−1 = γ; however, γ = αk−1 ≤ β, which is a contradiction.

Therefore, it must be that β = γ, and so ν`(lcm(m)) = ν`(lcm(n)) for each prime `,

which concludes the proof.

The following lemma provides an explicit way for distinguishing genus 0, unpunctured

lattices by dihedral quotients.

Lemma 4.3.3. Suppose (0; 0; m)Ab ∼= (0; 0; n)Ab, and (0; 0; m) admits dihedral quotients. If

{m1, . . . , mk} ∩ {n1, . . . , nl} = ∅, then there is a finite dihedral group that is a quotient for

one of the groups but not the other.

Proof. First, observe that the number of even entries in a tuple x is precisely the number of

even integers in the set {midi(x) | 1 ≤ i ≤ |x|}. By the hypothesis (0; 0; m)Ab ∼= (0; 0; n)Ab
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and by Corollary  4.3.1 , m and n have exactly the same number of even integers, say a.

Applying m to Proposition  4.1.1 , we have that a ≥ 2, which implies that (0; 0; n) also

admits dihedral quotients.

If a ≥ 3, define t as the largest entry among m and n, and if a = 2, define t as the largest

odd entry among m and n. In either case, since t can only belong to one of m or n, the

dihedral group D2t is a finite quotient for exactly one of (0; 0; m) or (0; 0; n).

4.4 First Betti numbers

We have encountered an inability to identify m and n uniquely in the situation where

(0; 0; m)Ab ∼= (0; 0; n)Ab. For example, there are infinitely many groups of the form (0; 0; m)

with trivial Abelianization. Developing methods to be able to dismiss these cone orders is

one natural way to proceed.

The group (g; p; m) is torsion-free, if all of the non-identity elements have infinite order,

or equivalently, there are integers g′ and p′ such that (g; p; m) ∼= (g′, p′; −), which precisely

accounts for the situation where m is a degenerate tuple. We define the first Betti number

of finitely generated groups.

Definition 8. The first Betti number of a finitely generated group Γ is the non-negative

integer given by b1(Γ) := rank(ΓAb ⊗Z Q).

Hence for a lattice (g; p; m), by Proposition  4.2.1 , we have that

b1(g; p; m) =


2g + p − 1 if p > 0

2g if p = 0,

ignoring any instances of the torsion arising from the tuple m.

Remark. We use b1 to recast an earlier observation regarding lattices with finite Abelian-

izations: b1(g; p; m) = 0 if and only if g = 0 and p ≤ 1.
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An important perspective for when (g; p; −) is torsion-free is the following

b1(g; p; −) =


1 − χ(g; p; −) if p > 0

2 − χ(g; 0; −) if p = 0.

In this case the Euler characteristic and whether or not the lattice is punctured determines

the b1 of the group. More generally, we have the following.

Proposition 4.4.1. For a nondegenerate tuple m, if p > 0, then

b1(g; p; m) ≤ 1 − χ(g; p; m),

with equality if and only if (g; p; m) is torsion-free. For a nondegenerate tuple n, if p = 0,

then

b1(g; 0; n) ≤ 2 − χ(g; 0; n),

with equality if and only if (g; 0; n) is torsion-free.

Proof. Notice when p > 0, then

b1(g; p; m) = b1(g; p; −) = 1 − χ(g; p; −) ≤ 1 − χ(g; p; m).

Similarly for p = 0, then

b1(g; 0; n) = b1(g; 0; −) = 2 − χ(g; 0; −) ≤ 2 − χ(g; 0; n),

providing piece-wise upperbounds on the first Betti numbers.

Regarding achieving upperbounds, we will prove the case p = 0, with the case p > 0 done

similarly. When (g; 0; −) is torsion-free, then the observation above shows the upperbound

b1(g; 0; −) = 2 − χ(g; 0; −) is achieved.

If b1(g; 0; n) = 2 − χ(g; 0; n), then χ(g; 0; −) = χ(g; 0; n), and so

l∑
i=1

(
1 − 1

ni

)
= 0.
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This cannot occur for a nondegenerate tuple n with |n| > 0. Therefore, |n| = 0, and so

(g; 0; n) = (g; 0; −) is torsion-free.

While it is far from being a unique profinite measurement for any particular lattice, the

usage of dihedral and Abelian finite quotients as building blocks for group extensions will be

explored in Chapter  5 .
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5. SMOOTH AND NON-SMOOTH QUOTIENTS

This chapter will introduce the notion of the degree of smoothness for a finite quotient G

of a lattice (g; p; m), which in light of Chapter  4 aims to detect even smaller differences

between two lattices. To apply this theory, we will construct smooth representations to

PSL(2, q) := PSL(2, Fq), for q := `d an odd prime power. Extending a result by Macbeath

[ 4 ], this method of construction will be aiding with computing effective upperbounds and

for providing an infinite family of quotients to work with. As with dihedral and Abelian

quotients, these PSL2 representations will append to the list of numerical restrictions for the

signatures of profinitely equivalent lattices. By allowing the odd prime powers q to vary, the

data associated to the collection of PSL(2, q)’s such that the lattice (0; 0; m) has a smooth

representation can be organized with an L2-set, which was initially created in [ 1 ].

5.1 Smooth PSL2 representations

Let G be a finite group. We say that G is a smooth quotient of (g; p; m), if there exists

a surjective homomorphism s : (g; p; m) � G that preserves the order of torsion elements.

In this case, we will also say that the surjective map s is smooth. It suffices to check this

condition only on the canonical elliptic generators of (g; p; m). Equivalently, G is a smooth

quotient of (g; p; m) if there exists a surjective map s : (g; p; m) � G with torsion-free kernel,

say (g′; p′; −). In Section  5.3 , we will define more generalized degrees of a smooth quotient

for lattices of the form (0; 0; m).

To this end, for the remainder of the chapter, we will focus on lattices (0; 0; m) having

genus 0 and without punctures. Since every lattice (g; p; m) naturally admits the quotient

map π : (g; p; m) � (0; 0; m), a finite quotient G of (0; 0; m) is smooth if and only there

exists a smooth surjective map s : (g; p; m) � G such that s factors through π. We now set

up notation for a theorem that extends a result from Macbeath [ 4 ].
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For a field Fq with q elements, we denote the matrix group SL(2, q) := SL(2, Fq), and for

Fq2 , the unique quadratic extension over Fq, we will be utilizing the isomorphism

SL(2, q) ∼= SU(2, q2) :=


 a b

−bq aq


∣∣∣∣∣∣∣ a, b ∈ Fq2 , aq+1 + bq+1 = 1

 . (6)

Theorem 5.1.1. Let q = `d be an odd prime power and m = (m1, . . . , mk), with k ≥ 3.

There exists a subgroup of PSL(2, q) that is a smooth quotient of (0; 0; m) if and only if each

of the integers m1, . . . , mk divides one of `, q−1
2 , or q+1

2 .

Proof. The forward direction holds since the orders of elements in PSL(2, q) are precisely

each of the divisors of `, q−1
2 , and q+1

2 .

For the converse, suppose each of the integers m1, . . . , mk divides `, q−1
2 , or q+1

2 . Notice

by the theory of Jordan canonical forms and that −1 6= 1 ∈ Fq, if A ∈ SL(2, q) ∼= SU(2, q2),

then tr(A) ∈ Fq \ {±2} determines the multiplicative order of A. In the case tr(A) = ±2,

by projecting A to its image in PSL(2, q), any such non-identity matrix in PSL(2, q) has the

order `.

To this end, we will construct matrices A1, . . . , Ak in PSL(2, q) with corresponding orders

m1, . . . , mk, such that A1 . . . Ak = I2. Therefore, given the canonical elliptic generators

x1, . . . , xk with respective orders m1, . . . , mk, the following representation will be smooth

onto its image

(0; 0; m1, . . . , mk) → PSL(2, q)

xi 7→ Ai.

Let Fq2 = Fq(α), such that α2 ∈ Fq. Such an α always exists, because there are precisely
q−1

2 non-squares in Fq. Consequently, we have that αq = −α.

We claim that for any 2t ∈ Fq, we can construct a non-identity matrix

A :=

 a b

−bq aq

 ∈ SU(2, q2)
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with trace 2t. Notice that the solutions to the equation given by aq + a = tr(A) = 2t are

precisely a = t + uα, for any u ∈ Fq. Hence, the condition det(A) = 1 provides, for some

u ∈ Fq, the equation

bq+1 = 1 − t2 + u2α2 ∈ Fq,

for which either b = 0 or b has q + 1 distinct non-zero solutions in Fq2 since bq+1 is the image

of b under the field norm Nm: F×
q2 � F×

q , which is a (q + 1)-to-1 surjective homomorphism.

This proves the claim, since if b = 0, we can choose u ∈ Fq so that a = t + uα 6= 1, ensuring

that A is not the identity matrix.

Now, for each mi, we will consider the cases where mi divides one of `, q−1
2 , or q+1

2 . We

will be using the notation coming from the claim above.

Case mi | q±1
2 .

Take an element w ∈ Fq2 with multiplicative order 2mi | (q ± 1) and let t be such that

2t = w + w−1. Thus, for our choices of a and b in the claim above, the matrix

Ai :=

 a b

−bq aq

 ∈ SU(2, q2)

has order 2mi, since the eigenvalues of Ai are distinct and equal to w and w−1. Then the

projection of Ai to its image in PSL(2, q), which we also denote by Ai, will have order mi.

Case mi = `.

In the case mi = `, it suffices to have the trace 2t to be equal to 2, i.e. a = 1 + sα, for

s ∈ Fq. If we take s 6= 0, we can ensure that the matrix

Ai :=

 a b

−bq aq

 ∈ SU(2, q2)

is not the identity matrix, and therefore Ai has order `. The image of Ai under PSL(2, q),

also denoted Ai, will have order `.

One noted consequence from the cases and the claim is that for any 2t ∈ Fq, there are at

least 2 choices for a non-identity Ai such that tr(Ai) = 2t. This will be invoked later when
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an initial arbitrary choice for Ai causes an undesired coincidence, which is avoided upon any

replacement.

For 1 ≤ i ≤ k − 2, we define Ai ∈ PSL(2, q) with order mi as in the cases above. An

assignment remains for only Ak−1, since afterwards the matrix Ak := (A1 . . . Ak−1)−1 will be

uniquely determined. However, the entries of Ak−1 must be chosen properly so that both of

the orders of Ak−1 and Ak in PSL(2, q) are mk−1 and mk, respectively. Exploiting the form

( 6 ) of the matrices in SU(2, q2), we can set the entries in the following product

A1 . . . Ak−2 =:

 c d

−dq cq

 .

By possibly varying the matrix entries of one of the factors Ai of this product, we can assume

the entry d 6= 0. If we establish that

Ak−1 :=

 e f

−f q eq


has order mk−1 in PSL(2, q), then eq + e = tr(Ak−1) = 2tk−1, for an appropriate value of

2tk−1, corresponding to the case above where mk−1 belongs. We can choose some value of

e in Ak−1 so that f q+1 = 1 − eq+1 6= 0, and therefore f must be nonzero. With the entries

c, d, and e now fixed (d 6= 0) and with f 6= 0 currently left unknown, we have the following

matrix product representing A−1
k

A1 . . . Ak−2Ak−1 =

 c d

−dq cq


 e f

−f q eq

 (7)

=

 ce − df q cf + deq

−(cqf q + dqe) cqeq − dqf

 . (8)
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We insist the matrix in ( 8 ) has order mk in PSL(2, q) and has a corresponding trace 2tk ∈ Fq.

It remains to solve for f the following system of equations:

ce − df q + cqeq − dqf = 2tk (9)

f q+1 = 1 − eq+1, (10)

where ( 9 ) comes from tr(A1 . . . Ak−1) = 2tk, and ( 10 ) from det(Ak−1) = 1. Since we assumed

f 6= 0, we can substitute ( 10 ) into ( 9 ) multiplied by f to get

dqf 2 + (2tk − (ce + cqeq))f + d(1 − eq+1) = 0, (11)

a quadratic equation in f over Fq2 (recall d 6= 0). There is a solution for f to the system in

Fq2 , because the discriminant ( 12 ) of the quadratic is an element of Fq.

(2tk − (ce + cqeq))2 − 4dq+1(1 − eq+1) ∈ Fq. (12)

After relabelling Ak−1 ∈ SU(2, q2) by its projection in PSL(2, q), we have acquired a smooth

representation (0; 0; m1, . . . , mk) → PSL(2, q).

Retaining the notation above, we will show such a q from Theorem  5.1.1 exists. We show

there is an odd prime power q such that all of the mi divides q−1
2 . Take any odd prime `

that is coprime to M := 2m1m2 . . . mk. Then ` is a unit element in the ring Z/MZ, and so

there exists an n > 0 such that

`d ≡ 1 (mod M). (13)

Setting q := `d, we have ( 13 ) implies that mi | q−1
2 , for every 1 ≤ i ≤ k.

Remark. Theorem  5.1.1 is a constructive version of Selberg’s lemma [  13 ], which states that

a finitely generated linear group over a field of zero characteristic is virtually torsion-free.
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5.2 L2-sets

Theorem  5.1.1 will allow us to find smooth and non-smooth quotients of (0; 0; m), based

off simple divisibility conditions. To this end, we will utilize L2-sets in our study of smooth

representations to various PSL(2, q)’s. This section repurposes much of the background and

results on L2-sets first introduced in [ 1 ].

Definition 9. The L2-set of m = (m1, . . . , mk), with k ≥ 3, denoted L2(m) is a set

{M1, . . . , Mk′} satisfying the following properties:

1. gcd(Mi, Mj) = 1, for every i 6= j,

2. lcm(M1, . . . , Mk′) = lcm(m),

3. For each mi, there exists a unique Mj such that mi | Mj.

Notice that 1 ≤ |L2(m)| ≤ |m|, and we will always implicitly assume |m| ≥ 3 in the

setting of L2-sets. In the case where |L2(m)| = |m|, then as sets we have L2(m) = m

precisely when (0; 0; m) is a perfect group, i.e., (0; 0; m)Ab is the trivial group. This follows

from Proposition  4.2.1 . At the other extreme, if L2(m) is a singleton set, then it must be

equal to {lcm(m)}. This latter case will be an important focus, particularly for two triangle

groups in Proposition  6.2.6 .

The L2-set L2(0; 0; m) disentangles any gcd relations among the pairs of entries of m. An

immediate corollary to Theorem  5.1.1 follows from an application of the Chinese remainder

theorem.

Corollary 5.2.1. Let q = `d be an odd prime and m = (m1, . . . , mk), with k ≥ 3. Suppose

that L2(m) = {M1, . . . , Mk′}. There exists a subgroup of PSL(2, q) that is a smooth quotient

of (0; 0; m) if and only if each of the integers M1, . . . , Mk′ divides one of `, q−1
2 , or q+1

2 .

Remark. It is a priori difficult to tell whether or not the triangle groups ∆(15, 42, 63)

and ∆(21, 21, 90) have smooth representations to exactly the same collection of PSL(2, q)’s.

Computing their L2-sets, we have L2(15, 42, 63) = L2(21, 21, 90) = {630}, and Corollary

 5.2.1 establishes this is indeed the case.

35



Corollary  5.2.1 shows that L2 can be treated as a functor, taking a tuple m to the

collection of all odd prime powers q such that there is a smooth representation from (0; 0; m)

to PSL(2, q). The following proposition (with a condition on the lcm) shows that this

association is essentially unique.

Proposition 5.2.2. Let m and n be tuples such that |m|, |n| ≥ 3. If L2(m) 6= L2(n) and

lcm(m) = lcm(n), then by switching m and n if necessary, there exists a finite quotient G

that is smooth for (0; 0; m), but is non-smooth for (0; 0; n).

Proof. Switching m and n if necessary, since L2(m) 6= L2(n), there are distinct maximal

prime power factors q1 and q2 of lcm(m) = lcm(n) such that for some N ∈ L2(n), q1q2 | N ,

but q1 | M1 and q2 | M2 for distinct M1, M2 ∈ L2(m). It suffices to show there exists an odd

prime power q satisfying the following system of congruences

q ≡ 1 (mod 2M1M) (14)

q ≡ −1 (mod 2M2), (15)

where M is the product of each element of L2(m) \ {M1, M2} (and with M = 1, for the

empty product).

From (  14 ), the exhaustive list of integer solutions is given by q = 1 + i2M1M , where

i ∈ Z. Take 1 ≤ a < M2 such that

a ≡ −(M1M)−1 (mod M2),

where the inverse exists since by the definition of L2-sets, gcd(M1M, M2) = 1. In addition

to being a solution for ( 14 ), choosing i = a also provides a solution to ( 15 )

1 + a2M1M ≡ −1 (mod 2M2).

Being a unit modulo 2M2, we have gcd(1 + a2M1M, 2M2) = 1, and therefore,

gcd(1 + a2M1M, 2M1M2) = 1. (16)

36



By the Chinese remainder theorem,

q = (1 + a2M1M) + d2M1M2, d ∈ Z (17)

gives the solutions to the system of congruences ( 14 ) and ( 15 ). By Dirichlet’s theorem on

arithmetic progressions and ( 16 ), there exist infinitely many prime powers q of the form ( 17 ).

Now that we have such an odd prime power q as a solution, notice that

q1 | M1M
∣∣∣∣ q − 1

2 , and q2 | M2

∣∣∣∣ q + 1
2 . (18)

This shows that every element of L2(m) divides one of q−1
2 or q+1

2 . Since q−1
2 and q+1

2

are coprime, (  18 ) shows we cannot have q1q2

∣∣∣ q±1
2 , and so N ∈ L2(n) cannot exist as an

order of any element of PSL(2, q). By Corollary  5.2.1 applied twice, (0; 0; m) has a smooth

representation into PSL(2, q), but for (0; 0; n), any representation into PSL(2, q) must be

non-smooth.

Remark. A natural concern about Proposition  5.2.2 is that its conclusion only provides

a smooth finite quotient G for one group (0; 0; m) that is non-smooth for the other group

(0; 0; n), but G may still exist as an outright quotient of (0; 0; n). With a few more conditions,

Theorem  5.3.1 will put this concern to rest, by producing an appropriate group extension G′

of G so that G′ is a finite quotient of (0; 0; m) but not for (0; 0; n).

5.3 Degree of smoothness of quotients

In this section, we state a key theorem for this work. Theorem  5.3.1 and its manifestations

will suffice in covering the remaining cases for our relative profinite rigidity problem. We

will apply these results in Chapters  6 and  7 .

The following theorem generalizes an important observation made in [ 1 ].

Theorem 5.3.1. Let G be a finite group. Fix a surjective homomorphism π : (g1; p1; m) � G

such that b1(ker π) is maximal among all such surjective maps. If every surjective map

s : (g2; p2; n) � G satisfies b1(ker s) < b1(ker π), then there is a finite Abelian extension G′

of G such that G′ is a finite quotient of (g1; p1; m) but not for (g2; p2; n).
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Proof. Denote K := ker π and f := b1(K). Let a > 1 be such that a is coprime to both

lcm(m) and lcm(n), or more specifically, the integer lcm(m) can be replaced with the lcm

of all of the cone orders appearing in the signature of K. For our choice of a, we take the

subgroup

L := K(a)[K, K],

which is the join of the commutator subgroup [K, K] with the subgroup K(a) generated by

the a-th power elements of K. Since L char K E (g1; p1; m), we see that L E (g1; p1; m).

We consider the quotient of (g1; p1; m) given by

G′ := (g1; p1; m)/L.

By our choice of a, the surjective map π : (g1; p1; m) � G naturally induces a map π̃ : G′ � G

such that

ker π̃ = K/L ∼= (Ca)f .

This shows that G′ is a quotient of (g1; p1; m) that is finite.

Suppose by way of contradiction, there is a surjection t : (g2; p2; n) � G′, and denote

L′ := ker t. By the hypothesis, we have a composite map s = π̃ ◦ t : (g2; p2; n) � G with

K ′ := ker s which satisfies b1(K ′) < f . It can be seen by the five lemma that there is an

isomorphism

K ′/L′ ∼= K/L ∼= (Ca)f .

This gives us a surjective map K ′ � (Ca)f , implying that (as a result of how a was chosen)

that a surjective map Zb1(K′) � (Ca)f exists, which is impossible since b1(K ′) < f .

We have arrived at a contradiction, and thus, G′ cannot be a quotient for (g2, p2; n).

Retaining the notation of Theorem  5.3.1 , the hypothesis assumes that the finite group G

is a quotient of both groups (g1; p1; m) and (g2; p2; n). We intuitively think of the maximality

conditions on the b1’s as the behavior that G is a quotient that is smoother for the group

(g1, p1; m) than G is as a quotient for (g2, p2; n). For genus 0 lattices, we now aim to formalize

some measure of degree of smoothness for a quotient G.
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Let c := (c1, . . . , ck) be a tuple that is possibly degenerate. If ci | mi for every 1 ≤ i ≤ k

(which we denote by c | m), then there is the natural projection map

pc : (0; 0; m1, . . . , mk) � (0; 0; c1, . . . , ck).

In particular, for a finite quotient G of (0; 0; m), there exists a surjection π : (0; 0; m) � G.

If x1, . . . , xk ∈ (0; 0; m) are the canonical generators with orders m1, . . . , mk, respectively,

then π(xi) will have some order ci dividing mi. This is equivalent to having the map π factor

through the map pc.

Definition 10. Let G be a finite group and c | m.

1. G is a c-smooth quotient of (0; 0; m), if there exists a surjective map π : (0; 0, m) � G

that factors through the the natural projection pc : (0; 0; m) � (0; 0; c). In this case,

we say that π is c-smooth.

2. G is a c-maximally smooth quotient of (0; 0; m), if χ(0; 0; c) is the smallest such quantity

of χ(0; 0; c′) among all c′ | m and all surjective maps π : (0; 0; m) � G such that π

factors through pc′ . We say that π is c-maximally smooth, if G is c-maximally smooth

and π is c-smooth.

Remark. Since χ(0; 0; m) is the lowerbound among the values of χ(0; 0; c) for c | m, a finite

group G is a smooth quotient of (0; 0; m) if and only if G is m-maximally smooth. This

observation motivates the above definition as a finer measure on the degree of smoothness

for quotients.

We now state important corollaries to Theorem  5.3.1 .

Corollary 5.3.2. Let G be a finite group. Fix surjective homomorphisms

π1 : (0; 0; m) � G and π2 : (0; 0; n) � G

that are m′-maximally smooth and n′-maximally smooth, respectively. If

χ(0; 0; m′) < χ(0; 0; n′),
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then there exists a finite Abelian extension G′ of G such that G′ is a finite quotient of (0; 0; m)

but not for (0; 0; n).

Proof. This follows from Theorem  5.3.1 , since (  5 ) and the condition χ(0; 0; m′) < χ(0; 0; n′)

implies that b1(ker π1) > b1(ker π2).

Corollary 5.3.3. If χ(0; 0; m) 6= χ(0; 0; n), then there exists a group G′ that is a finite

quotient of one of the groups but not for the other group.

Proof. Without loss of generality, suppose that χ(0; 0; m) < χ(0; 0; n). Then there exists a

finite group G that is a smooth quotient of (0; 0; m) by Theorem  5.1.1 . If G is not a quotient

of (0; 0; n), then we are done. Otherwise, G is also a quotient of (0; 0; n) and we can directly

apply Corollary  5.3.2 to extend G to G′ so that G′ is a finite quotient of (0; 0; m) but not

for (0; 0; n).

In regards to distinguishing finite quotients between two lattices, we have yet to consider

the case when χ(0; 0; m) = χ(0; 0; n), where one of the groups is a triangle group. In this

case, we will be finding a way to incorporate Corollary  5.3.2 and will be exploiting features

of L2-sets in Chapter  6 .
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6. ANALYSIS OF GENUS ZERO CASES

Let ∆ := ∆(r, s, t) be a triangle group and Γ := (g; p; m) be a Fuchsian group. Recall that

b1(r, s, t) = 0 and that b1(g; p; m) = 0 if and only if g = 0 and p ≤ 1. We devote this

chapter precisely on these two cases for (g; p; m). Furthermore, we will do so in such a way

to accommodate for computations for effective upperbounds performed in Chapter  7 , and

will closely apply the results from Chapter  5 .

Recall that we denote the k-tuple m := (m1, . . . , mk), where k ≥ 0.

6.1 Genus 0, Punctures 1

In this section, suppose that ∆ = ∆(r, s, t) and Γ = (0; 1; m), where ∆ � Γ and |m| ≥ 2.

Compared to the next section (where Γ = (0; 0; m) will be unpunctured), the punctured case

will have a more direct approach.

We now set some notation regarding the kernels of surjective maps coming from our two

lattices. Suppose G is a finite quotient that is shared by both groups ∆(r, s, t) and (0; 1; m).

In view of Theorem  5.3.1 , we denote K1 to be the kernel of a surjective map ∆(r, s, t) � G

that maximizes the value of b1(K1) among all possible such surjective maps. Similarly, we

denote K2 to be the kernel of a surjective map (0; 1; m) � G that maximizes the value of

b1(K2) among all possible such surjective maps. By Riemann-Hurwitz and Proposition  4.4.1 ,

we obtain the following upperbounds on the first Betti numbers

b1(K1) ≤ 2 − |G|χ(r, s, t) (19)

b1(K2) ≤ 1 − |G|χ(0; 1; m), (20)

where each of the b1’s attain its respective upperbound precisely when G is a smooth quotient

for its respective group. By comparing the Euler characteristics of ∆(r, s, t) and (0; 1; m),

we analyze two cases:
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Case χ(r, s, t) ≤ χ(0; 1; m).

Suppose that χ(r, s, t) ≤ χ(0; 1; m). Then for any integer n > 0, we have

χ(r, s, t) < χ(0; 1; m) + 1/n,

and so

nχ(r, s, t) < nχ(0; 1; m) + 1,

which implies that

2 − nχ(r, s, t) > 1 − nχ(0; 1; m), for every n.

Hence, for a finite smooth quotient G of ∆(r, s, t) having some order n, we acquire the

inequality b1(K1) > b1(K2), associated to the kernels of each map, see (  19 ) and (  20 ). We

can use Theorem  5.1.1 in this case to produce such a G. Then by applying Theorem  5.3.1 ,

we can extend G to G′ that is a finite quotient of ∆(r, s, t) but not for (0; 1; m).

Case χ(r, s, t) > χ(0; 1; m).

Now suppose that χ(r, s, t) > χ(0; 1; m). Since Euler characteristics are rational numbers,

we have that χ(r, s, t) > χ(0; 1; m), which implies that

χ(r, s, t) − χ(0; 1; m) ≥ 1
lcm(r, s, t, m) .

Hence, for every integer n > lcm(r, s, t, m), we have the inequality

2 − nχ(r, s, t) < 1 − nχ(0; 1; m).

If we further assume that ∆(r, s, t)Ab ∼= (0; 1; m)Ab, then Corollary  4.3.1 shows that

lcm(m) = mid2(r, s, t). Moreover, this implies that lcm(m) | lcm(r, s, t), so that

χ(r, s, t) − χ(0; 1; m) ≥ 1
lcm(r, s, t, m) = 1

lcm(r, s, t) . (21)
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This then yields

2 − nχ(r, s, t) < 1 − nχ(0; 1; m), (22)

for every integer n > lcm(r, s, t).

In either case, we can take G to be a smooth quotient of (0; 1; m) having some order n >

lcm(r, s, t, m). The associated kernels arising from G gives the inequality b1(K1) < b1(K2).

Then by Theorem  5.3.1 , we extend G to G′ that is a finite quotient of (0; 1; m) but not for

∆(r, s, t).

What remains to be considered for this case is to be able to construct a smooth finite

quotient G of (0; 1; m) having order n > lcm(r, s, t, m). It suffices to find a group G contain-

ing an element of order n. Here, we use Theorem  5.1.1 to generate a smooth representation

to PSL(2, q), where q := `d is an odd prime adhering to the L2-set L2(n, m1, . . . , mk), that

is, n and each of the mi divides one of `, q−1
2 , or q+1

2 . Consequently, an associated smooth

representation ϕ : (0; 1; m) → PSL(2, q) will have its image G have order at least n, with

ϕ factoring through the natural projection (0; 1; m) � (0; 0; n, m1, . . . , mk). Such a smooth

representation can be achieved by requiring the sole canonical parabolic generator of (0; 1; m)

to map to an order n element in PSL(2, q).

6.2 Genus 0, Punctures 0

Let ∆ := ∆(r, s, t) and Γ := (0; 0; m1, . . . , mk) such that ∆ � Γ and k ≥ 3.

We will analyze this section with additional assumptions. In light of Proposition  4.3.2 

and Corollary  5.3.3 , we will aim in restricting to the following

∆(r, s, t)Ab ∼= (0; 0; m)Ab, (23)

χ(r, s, t) = χ(0; 0; m). (24)

Given isomorphic Abelianizations ( 23 ), we will narrow down the possible sizes k ≥ 3 for a

tuple m that can satisfy the equality of Euler characteristics ( 24 ). The cases when k = 3

and k = 4 will require most of our attention.
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Assume r, s, t, mi ≥ 2, for 1 ≤ i ≤ k. Every triangle group ∆(r, s, t) admits the following

range of rational values for its Euler characteristic

χ(r, s, t) = 1
r

+ 1
s

+ 1
t

− 1 ∈
(

−1,
1
2

]
. (25)

On the other hand, notice that the range of values of

χ(0; 0; m) = 1
m1

+ · · · + 1
mk

− (k − 2) ∈
(

−(k − 2), 4 − k

2

]
(26)

depends on the size of the k-tuple m. Thus, if k ≥ 6, then χ(0; 0; m) < χ(r, s, t), regardless

of the choice of triangle group ∆(r, s, t). We can then apply Theorem  5.1.1 to construct some

smooth quotient G of (0; 0; m) and Corollary  5.3.3 to obtain the extension G′ such that it is

a finite quotient of (0; 0; m) but not for ∆(r, s, t).

The cases that remain are for k = 3, 4, and 5. When k = 4 or k = 5, we compute all of

the possible candidates for a tuple m such that

χ(0; 0; m) ∈
(

−1,
1
2

]
, (27)

as per (  24 ) and (  25 ). Since we are assuming an isomorphism of Abelianizations (  23 ), we

will be able to compare ∆(r, s, t) with each of the candidates (0; 0; m) using either dihedral

groups or by Corollary  5.3.3 .

Similar methods will not be sufficient for the case when k = 3, where both

∆ = ∆(r, s, t) and Γ := ∆(u, v, w)

are triangle groups. This will require an analysis of L2-sets and a result on quotient triangle

groups, Lemma  6.2.6 . In Section  6.2.4 , we will compile a detailed list of numerical restrictions

on the profinite invariants of pairs of triangle groups (k = 3) that we have observed up to

this point.
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6.2.1 Case k = 5

Let ∆ := ∆(r, s, t) and Γ := (0; 0; u, v, w, x, y), for r, s, t, u, v, w, x, y ≥ 2, and assume

∆(r, s, t)Ab ∼= (0; 0; u, v, w, x, y)Ab.

As detailed in ( 24 ), we find all the candidate choices of Γ such that

χ(0; 0; u, v, w, x, y) = χ(r, s, t), (28)

and in particular by ( 27 ), when

χ(0; 0; u, v, w, x, y) > −1.

We will conclude that no such candidates can satisfy ( 28 ), and state this as follows.

Proposition 6.2.1. For any choice of ∆(r, s, t) and (0; 0; u, v, w, x, y), if ∆(r, s, t)Ab ∼=

(0; 0; u, v, w, x, y)Ab, then χ(r, s, t) 6= χ(0; 0; u, v, w, x, y).

Proof. Assume 2 ≤ u ≤ v ≤ w ≤ x ≤ y. We will exhaust cases to find u, v, w, x, and y such

that

χ(0; 0; u, v, w, x, y) > −1,

or equivalently,

2 <
1
u

+ 1
v

+ 1
w

+ 1
x

+ 1
y

. (29)

By considering the average value of the summands in the right-hand side of (  29 ), we see that

u < 5/2. Therefore, u = 2 and so

3
2 <

1
v

+ 1
w

+ 1
x

+ 1
y

. (30)

By applying the average summand argument to the right-hand side of ( 30 ), we get v < 8/3.

Therefore, v = 2 and so

1 <
1
w

+ 1
x

+ 1
y

.
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This gives us w < 3 implying that w = 2. Thus, we have

1
2 <

1
x

+ 1
y

,

and so x < 4 gives us x = 2 or x = 3.

If x = 2, then 0 < 1
y
, implying y ≥ 2 and so we acquire the candidates of the form

Γ = (0; 0; 2, 2, 2, 2, y). (31)

Lastly, if x = 3, then 1
6 < 1

y
, implying y < 6, and so we acquire 3 possible candidates

Γ = (0; 0; 2, 2, 2, 3, 3), (0; 0; 2, 2, 2, 3, 4), (0; 0; 2, 2, 2, 3, 5). (32)

To summarize, only the candidates Γ in (  31 ) and ( 32 ) can have the possibility of satisfying

χ(Γ) = χ(r, s, t). We rule out each of these cases from being equal.

Recall our assumption that ∆Ab ∼= ΓAb. Alongside this, we will also be using Corollary

 4.3.1 and Proposition  4.3.2 to finish the proof.

Case Γ = (0; 0; 2, 2, 2, 3, 3).

If χ(0; 0; 2, 2, 2, 3, 3) = χ(r, s, t), then 1
6 = 1

r
+ 1

s
+ 1

t
. It follows that r, s, t > 6, and so

rst > 216, but after applying Proposition  4.3.2 , we have rst = 2 · 2 · 2 · 3 · 3 = 72, which is a

contradiction.

Case Γ = (0; 0; 2, 2, 2, 3, 4).

If χ(0; 0; 2, 2, 2, 3, 4) = χ(r, s, t), then 1
12 = 1

r
+ 1

s
+ 1

t
. It follows that r, s, t > 12, and so

rst > 1728, but after applying Proposition  4.3.2 , we have rst = 2 · 2 · 2 · 3 · 4 = 96, which is

a contradiction.

Case Γ = (0; 0; 2, 2, 2, 3, 5).

If χ(0; 0; 2, 2, 2, 3, 5) = χ(r, s, t), then 1
30 = 1

r
+ 1

s
+ 1

t
. It follows that r, s, t > 30, and so

rst > 27,000, but after applying Proposition  4.3.2 , we have rst = 2 · 2 · 2 · 3 · 5 = 120, which

is a contradiction.
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Case Γ = (0; 0; 2, 2, 2, 2, y).

If χ(0; 0; 2, 2, 2, 2, y) = χ(r, s, t), then 1
y

= 1
r

+ 1
s

+ 1
t
. It follows that r, s, t > y, and so

rst > y3, but after applying Proposition  4.3.2 , we have rst = 16y. Hence, y3 < 16y, implying

that y = 2 or y = 3; however, for either case, there are integer solutions r, s, t ≥ 2 to neither

rst = 32 nor rst = 48.

6.2.2 Case k = 4

Let ∆ := ∆(r, s, t) and Γ := (0; 0; u, v, w, x), for r, s, t, u, v, w, x ≥ 2, and assume

∆(r, s, t)Ab ∼= (0; 0; u, v, w, x)Ab.

Similar to Section  6.2.1 , we aim to find all the candidate choices of Γ = (0; 0; u, v, w, x) such

that

χ(Γ) = χ(r, s, t).

In particular, we find u, v, w, x satisfying

χ(0; 0; u, v, w, x) > −1.

There will be a glaring difference however: unlike the k = 5 case in Proposition  6.2.1 , for

k = 4 there are examples for ∆ = ∆(r, s, t) and Γ = (0; 0; u, v, w, x) such that ∆Ab ∼= ΓAb and

χ(∆) = χ(Γ). We will handle distinguishing these groups Γ from a triangle group ∆(r, s, t)

later in the section.

Assume u ≤ v ≤ w ≤ x. The condition χ(0; 0; u, v, w, x) > −1 is equivalent to

1 <
1
u

+ 1
v

+ 1
w

+ 1
x

. (33)

By fixing u, v, and (with one exception) w, we list the finite and infinite families for such

candidates Γ = (0; 0; u, v, w, x) satisfying ( 33 ). We will be applying similar methods to the

proof of Proposition  6.2.1 .
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Finite families.

(0; 0; 2, 3, 7, {7 ≤ x ≤ 41})

(0; 0; 2, 3, 8, {8 ≤ x ≤ 23})

(0; 0; 2, 3, 9, {9 ≤ x ≤ 17})

(0; 0; 2, 3, 10, {10, 11, 12, 13, 14})

(0; 0; 2, 3, 11, {11, 12, 13})

(0; 0; 2, 4, 5, {5 ≤ x ≤ 19})

(0; 0; 2, 4, 6, {6, 7, 8, 9, 10, 11})

(0; 0; 2, 4, 7, {7, 8, 9})

(0; 0; 2, 4, 7, {7, 8, 9})

(0; 0; 2, 5, 5, {5, 6, 7, 8, 9})

(0; 0; 2, 5, 6, {6, 7})

(0; 0; 3, 3, 4, {4 ≤ x ≤ 11})

(0; 0; 3, 3, 5, {5, 6, 7})

(0; 0, 3, 4, 4, {4, 5})

Infinite families.

(0; 0; 2, 4, 4, {x ≥ 4})

(0; 0; 3, 3, 3, {x ≥ 3})

(0; 0; 2, 3, 6, {x ≥ 6})

(0; 0; 2, 3, 4, {x ≥ 4})

(0; 0; 2, 2, {w ≥ 2}, {x ≤ w})

(0; 0; 2, 3, 3, {x ≥ 3})

(0; 0; 2, 3, 5, {x ≥ 5})
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For each of the finite family lattices and as well as for 3 of the infinite family lattices

(0; 0; 2, 4, 4, {x ≥ 4}), (0; 0; 3, 3, 3, {x ≥ 3}), and (0; 0; 2, 3, 6, {x ≥ 6}),

we will highlight that the following holds

∆(r, s, t)Ab � (0; 0; u, v, w, x)Ab or χ(r, s, t) 6= χ(0; 0; u, v, w, x). (34)

Assume that χ(r, s, t) = χ(0; 0; u, v, w, x), then

1
u

+ 1
v

+ 1
w

+ 1
x

− 1 = 1
r

+ 1
s

+ 1
t
,

which may be expressed as

1
α

= 1
r

+ 1
s

+ 1
t
, where α := 1

χ(0; 0; u, v, w, x) + 1 . (35)

Notice that α > 0, since χ(0; 0; u, v, w, x) > −1. Equation ( 35 ) implies that r, s, t > α,

and so rst > α3. However, if we also assume that ∆(r, s, t)Ab ∼= (0; 0; u, v, w, x)Ab, then

Proposition  4.3.2 provides the equality rst = uvwx, but it can be verified that either

1. uvwx ≤ α3,

2. x < w, or

3. lcm(r, s, t) 6= lcm(u, v, w, x),

any one of which would yield a contradiction. This would then confirm that (  34 ) holds.

We are left with 4 remaining lattices Γ, all of which are among the infinite families. We

will be able to distinguish ∆ and Γ using a dihedral quotient. First, we will require the

following proposition.

Proposition 6.2.2. If ∆(r, s, t)Ab ∼= (0; 0; u, v, w, x)Ab and χ(r, s, t) = χ(0; 0; u, v, w, x),

then {r, s, t} ∩ {u, v, w, x} = ∅.

Proof. The equality of Euler characteristics gives us

1
u

+ 1
v

+ 1
w

+ 1
x

− 1 = 1
r

+ 1
s

+ 1
t
,
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and the hypothesis also ensures that uvwx = rst, by Proposition  4.3.2 .

Suppose by contradiction that, say, t = x. Then it follows that uvw = rs and

1
u

+ 1
v

+ 1
w

− 1 = 1
r

+ 1
s

. (36)

As with our earlier method for finding our candidate lattices, we can similarly produce

candidates (u, v, w) that satisfy ( 36 ) for 2 ≤ u ≤ v ≤ w.

Now since

0 <
1
r

+ 1
s

= 1
u

+ 1
v

+ 1
w

− 1,

we have that

1 <
1
u

+ 1
v

+ 1
w

.

This implies that u < 3, and so u = 2. Therefore,

1
2 <

1
v

+ 1
w

,

and so v < 4, which yields v = 2 or v = 3. If v = 3, then 1
6 < 1

w
, yielding

(u, v, w) = (2, 3, {3, 4, 5}).

Lastly, if v = 2, we have 0 < 1
w

, yielding

(u, v, w) = (2, 2, {w ≥ 2}).

For any of these cases (u, v, w), we have

1
α

= 1
r

+ 1
s

, where α :=
(1

u
+ 1

v
+ 1

w
− 1

)−1
> 0.
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This implies that r, s ≥ α + 1, and so rs ≥ (α + 1)2. Since rs = uvw, this implies that

uvw ≥ (α + 1)2. However, it can be verified for each case that uvw < (α + 1)2 or w < v,

which is a contradiction. Thus, we cannot have t = x, proving that

{r, s, t} ∩ {u, v, w, x} = ∅.

From this proposition, when Γ = (0; 0; 2, 3, 4, {x ≥ 4}) or (0; 0; 2, 2, {w ≥ 2}, {x ≤ w}),

we can use Lemma  4.3.3 to distinguish a dihedral quotient between Γ and ∆.

Only the lattices (0; 0; 2, 3, 3, {x ≥ 3}) (0; 0; 2, 3, 5, {x′ ≥ 5}) remain. We will let the

tuple n denote either (2, 3, 3, x) or (2, 3, 5, x′). We will consider their L2-sets. Notice if

L2(n) 6= L2(r, s, t), then we can apply Proposition  5.2.2 to acquire a smooth finite quotient

G for one group that is non-smooth for the other group. Hence, we only need to consider

the case when L2(n) = L2(r, s, t).

Lemma 6.2.3. Suppose that (0; 0; n)Ab ∼= ∆(r, s, t)Ab and χ(0; 0; n) = χ(r, s, t). Then

L2(n) = {lcm(n)} must be a singleton.

Proof. This follows directly from Proposition  6.2.2 and from the definition of L2-sets.

We can characterize that L2(2, 3, 3, x) = L2(r, s, t) and L2(2, 3, 5, x′) = L2(r, s, t) are

singletons to precisely the conditions 6 | x and 30 | x′, respectively. In particular, x and x′

are even integers, and therefore we can use Lemma  4.3.3 and Proposition  6.2.2 to distinguish

Γ and ∆ with a dihedral quotient. This finishes the case k = 4.

6.2.3 Case k = 3

The last case for this chapter is when k = 3, that is, both groups are triangle groups.

We let ∆ := ∆(r, s, t) and Γ := ∆(u, v, w) such that ∆ � Γ.

Proposition 6.2.4. Suppose ∆(r, s, t)Ab ∼= ∆(u, v, w)Ab, χ(r, s, t) = χ(u, v, w), and ∆(r, s, t) �

∆(u, v, w). Then
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1. gcd(r, s, t) 6= lcm(r, s, t)

2. {r, s, t} ∩ {u, v, w} = ∅.

Proof.

1. By contradiction, suppose that gcd(r, s, t) = lcm(r, s, t), which is equivalent to the

condition r = s = t. By Corollary  4.3.1 , this implies that

gcd(u, v, w) = gcd(r, s, t) = lcm(r, s, t) = lcm(u, v, w),

and so r = s = t = u = v = w, which contradicts that ∆(r, s, t) � ∆(u, v, w).

2. The assumptions ∆(r, s, t)Ab ∼= ∆(u, v, w)Ab and χ(r, s, t) = χ(u, v, w) provide us with

rs + rt + st

rst
= uv + uw + vw

uvw
,

rst = uvw,

rs + rt + st = uv + uw + vw,

where the second equality comes from Corollary  4.3.2 .

Towards a contradiction, assume that t = w. This gives

rs = uv, (37)

and since rs + rt + st = uv + uw + vw, we have rt + st = uw + vw, and so

r + s = u + v. (38)

For u and v fixed, the system of equations given by (  37 ) and ( 38 ) only has a unique

pair of solutions {r, s}, since they are precisely the roots of the quadratic polynomial

x2 + (r + s)x + rs. This contradicts that ∆(r, s, t) � ∆(u, v, w).
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As with Proposition  4.3.3 , one suitable situation for the proposition above will be in

distinguishing two triangle groups using a dihedral quotient. However, Proposition  6.2.4 will

also be important for comparing the L2-sets L2(r, s, t) and L2(u, v, w).

When L2(r, s, t) 6= L2(u, v, w), Proposition  5.2.2 showcases a solution as not to warrant

further attention for this chapter. It then remains to consider the case when L2(r, s, t) =

L2(u, v, w).

Lemma 6.2.5. If ∆(r, s, t) � ∆(u, v, w), ∆(r, s, t)Ab ∼= ∆(u, v, w)Ab, and L2(r, s, t) =

L2(u, v, w), then L2(r, s, t) = L2(u, v, w) = {lcm(r, s, t)} is a singleton.

Proof. Notice when L2(r, s, t) = L2(u, v, w) is not a singleton set, then either

|L2(r, s, t)| = 2 or |L2(r, s, t)| = 3.

For the case |L2(r, s, t)| = 3, we have

{r, s, t} = L2(r, s, t) = L2(u, v, w) = {u, v, w}.

When |L2(r, s, t)| = 2, suppose that after possibly permuting the entries of each tuple

(r, s, t) and (u, v, w), we have

{r, lcm(s, t)} = L2(r, s, t) = L2(u, v, w) = {u, lcm(v, w)}, (39)

which as a consequence of the definition of L2-sets we have that

gcd(r, st) = 1

gcd(u, vw) = 1

gcd(s, t) > 1

gcd(v, w) > 1.
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From ( 39 ), if r = u, then we are done, so we may assume that

r = lcm(v, w) and u = lcm(s, t). (40)

Comparing mid2’s, we have that

mid2(r, s, t) = lcm(gcd(r, s), gcd(r, t), gcd(s, t)) = gcd(s, t)

mid2(u, v, w) = lcm(gcd(u, v), gcd(u, w), gcd(v, w)) = gcd(v, w).

Furthermore, since by Corollary  4.3.1 we have mid2(r, s, t) = mid2(u, v, w), this implies that

gcd(s, t) = gcd(v, w) > 1, which contradicts gcd(r, st) = 1 because by ( 40 ), gcd(v, w) | r.

Therefore, every viable case encountered above results in having {r, s, t} ∩ {u, v, w} 6= ∅,

contradicting Proposition  6.2.4 . This proves |L2(r, s, t)| = |L2(u, v, w)| = 1.

We conclude this section with the situation when L2(r, s, t) = L2(u, v, w) = {lcm(r, s, t)}

is a singleton.

Proposition 6.2.6. Suppose that

∆(r, s, t) � ∆(u, v, w),

∆(r, s, t)Ab ∼= ∆(u, v, w)Ab,

χ(r, s, t) = χ(u, v, w),

L2(r, s, t) = L2(u, v, w) = {lcm(r, s, t)}.

Then there exists a finite group G such that G is a (r′, s′, t′)-maximally smooth quotient of

∆(r, s, t) and is a (u′, v′, w′)-maximally smooth quotient of ∆(u, v, w), chosen in such a way

so that χ(r′, s′, t′) 6= χ(u′, v′, w′).

Proof. Recall from Proposition  6.2.4 that gcd(r, s, t) 6= lcm(r, s, t). We define the integers

r′, s′, t′, u′, v′, and w′ based on the following two cases. For a prime p, we take νp : Q× → Z

to denote the p-adic valuation.
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1. Suppose mid2(r, s, t) 6= lcm(r, s, t). Then there exists a prime p such that

νp(mid2(r, s, t)) < νp(lcm(r, s, t)). (41)

By possibly permuting (r, s, t) and (u, v, w), we define

(r′, s′, t′) := (r/p, s, t)

(u′, v′, w′) := (u/p, v, w),

where r and u are taken such that νp(r) = νp(u) = νp(lcm(r, s, t)).

If one of r, u is equal to p, say r = p, then by how p is chosen in (  41 ), we must have

gcd(p, st) = 1. This contradicts that L2(r, s, t) is a singleton, and therefore, we have

eliminated the possibility of having r′ = 1 and u′ = 1.

2. Suppose mid2(r, s, t) = lcm(r, s, t). Since gcd(r, s, t) 6= lcm(r, s, t), there exists a prime

p such that

νp(gcd(r, s, t)) < νp(mid(r, s, t)) = νp(lcm(r, s, t)). (42)

Then by possibly permuting each tuple, we define

(r′, s′, t′) := (r/p, s/p, t)

(u′, v′, w′) := (u/p, v/p, w),

where r, s, u, and v are taken so that νp(r) = νp(s) = νp(u) = νp(v) = νp(lcm(r, s, t)).

We show that r, s, u, v cannot be equal to p. Suppose by contradiction that, say, r = p.

Then by how we chose p in (  42 ), we can assume p - t and s = pd for some d coprime

to p. For L2(r, s, t) to be a singleton set, we must have that gcd(d, t) > 1. Notice also

that

mid2(r, s, t) = lcm(r, s, t) =⇒ p · gcd(d, t) = p · lcm(d, t).
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Hence, d = t, and so (r, s, t) = (p, pt, t) with gcd(p, t) = 1. However, for u, v, w to

satisfy

gcd(u, v, w) = gcd(p, pt, t) = 1

mid2(u, v, w) = mid2(p, pt, t) = pt

lcm(u, v, w) = lcm(p, pt, t) = pt,

we must have ∆(u, v, w) ∼= ∆(r, s, t), which is a contradiction. Therefore, none of

r′, s′, u′, v′ can be equal to 1.

Regarding Euler characteristics, since

χ(r, s, t) = χ(u, v, w) and {r, s, t} ∩ {u, v, w} = ∅,

where the latter comes from Proposition  6.2.4 , it follows that in either case,

χ(r′, s′, t′) 6= χ(u′, v′, w′).

Notice from our construction of the two cases, by setting

L′ := lcm(r′, s′, t′) = lcm(u′, v′, w′)

L := lcm(r, s, t) = lcm(u, v, w),

then we have pL′ = L ≥ 2. To finish this proof, it remains to show there exists a finite group

G that is a (r′, s′, t′)-maximally smooth quotient of ∆(r, s, t) and is a (u′, v′, w′)-maximally

smooth quotient of ∆(u, v, w), which follows from Theorem  5.1.1 and the ensuing lemma.

Lemma 6.2.7. Retain the notation in Proposition  6.2.6 . For pL′ = L ≥ 2, there exists an

odd prime power q such that PSL(2, q) has an element of order L′, but with no element of

order L.
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Proof. It suffices to show there is an odd prime power q that solves the following

q ≡ 1 (mod 2L′) (43)

q 6≡ ±1 (mod 2L). (44)

The first congruence (  43 ) yields the set of solutions q = 1 + i2L′, for i ∈ Z. Observe that

every choice of 1 ≤ i ≤ p − 1 (recall pL′ = L) satisfies ( 44 ):

1 + i2L′ 6≡ ±1 (mod 2L).

In accordance with Dirichlet’s theorem, we aim to prove that there exists 1 ≤ i ≤ p − 1

such that

gcd(1 + i2L′, 2L) = 1.

It suffices to show that either i = 1, i.e, q = 1 + 2L, or i = 2, i.e., q = 1 + 4L, works to

complete the proof.

Let ` be an arbitrary prime such that ` | 2L′. Then also ` | 2L and ` - (1 + i2L′), for any

integer i. Specializing to the prime ` = p for the occasion where p | 2L′ (recall that pL′ = L),

notice that 2L′ and 2L have an identical list of prime factors. Therefore, gcd(1+2L′, 2L) = 1,

and we can take i = 1 for the case when p | 2L′. Otherwise, we consider the case where

p - 2L′, which means the prime p is the only difference between the list of prime factors

of 2L′ and 2L. Then for this case, either p - (1 + 2L′) or p - (1 + 4L′). This implies that

gcd(1 + i2L′, 2L) = 1, where i = 1 or i = 2, depending on when p - (1 + i2L′) holds true.

For our choice of i in either case, we set q = (1 + i2L′) + k2L, for k ∈ Z, as a solution

to ( 44 ). Furthermore, i = 1 or i = 2 had been chosen so that gcd(1 + i2L′, 2L) = 1.

This allows us to invoke Dirichlet’s theorem that there is an odd prime power of the form

q = (1 + i2L′) + k2L, for some k ∈ Z such that it satisfies ( 43 ) and ( 44 ). Therefore,

L′
∣∣∣∣ q − 1

2 , but L 6
∣∣∣∣ q ± 1

2 ,

and so PSL(2, q) contains an element of order L′, but not an element of order L.
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Remark. We highlight important observations in our constructions of (r′, s′, t′), (u′, v′, w′),

and q from Proposition  6.2.6 and Lemma  6.2.7 .

1. L′ := lcm(r′, s′, t′) = lcm(u′, v′, w′), L := lcm(r, s, t) = lcm(u, v, w), and pL′ = L. In

particular, L′ 6= L.

2. If ∆(r, s, t) � ∆(a, b, c) � ∆(r′, s′, t′) and ∆(a, b, c) � ∆(r′, s′, t′), then

L2(a, b, c) = L2(r, s, t) = {L} and lcm(a, b, c) = L.

3. If ∆(u, v, w) � ∆(x, y, z) � ∆(u′, v′, w′) and ∆(x, y, z) � ∆(u′, v′, w′), then

L2(x, y, z) = L2(u, v, w) = {L} and lcm(x, y, z) = L.

4. For a, b, c as above, there is an odd prime q such that ∆(r′, s′, t′) has a smooth repre-

sentation to PSL(2, q), but ∆(a, b, c) has no smooth representations to PSL(2, q).

5. For x, y, z, and q as above, ∆(u′, v′, w′) has a smooth representation to PSL(2, q), but

∆(x, y, z) has no smooth representations to PSL(2, q).

6. χ(r′, s′, t′) 6= χ(u′, v′, w′).

6.2.4 Numerical restrictions for k = 3

We now provide a list of numerical restrictions on pairs of triangle groups based on our

survey of Abelian quotients, dihedral quotients, and smooth PSL2 representations.

Proposition 6.2.8. Assume ∆(r, s, t) � ∆(u, v, w) and that both triangle groups have an

identical collection of finite quotients. Then we have the (possibly redundant) conditions.

(1) gcd(r, s, t) = gcd(u, v, w),

(2) mid2(r, s, t) = mid2(u, v, w),

(3) 1/r + 1/s + 1/t = 1/u + 1/v + 1/w < 1,
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(4) lcm(r, s, t) = lcm(u, v, w),

(5) gcd(r, s, t) 6= lcm(r, s, t) and gcd(u, v, w) 6= lcm(u, v, w),

(6) rst = uvw,

(7) rs + st + rt = uv + vw + uw,

(8) {r, s, t} ∩ {u, v, w} = ∅,

(9) at most one entry of (r, s, t) and at most one entry of (u, v, w) are even, and

(10) L2(r, s, t) = L2(u, v, w) = {lcm(r, s, t)}.

Using the complexity N := rst = uvw ≤ 12,000,000, we computed pairs of distinct

hyperbolic triangle groups subjected to these conditions via GAP [ 14 ]. We were able to

confirm from [ 1 ] that there are 3581 pairs of triangle groups exhibiting conditions (1)–(9).

Furthermore, we found exactly 1848 pairs of triangle groups under the conditions (1)–(10).
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7. ALGORITHM AND EFFECTIVE UPPERBOUNDS

In this chapter, we provide an algorithm for distinguishing a cocompact triangle group ∆ :=

∆(r, s, t) from a Fuchsian group Γ := (g; p; m), where m = (m1, . . . , mk) is an unordered

(and possibly empty) tuple. The results from Chapters  4 ,  5 , and  6 will be used to construct

these finite quotients.

In finding upperbounds on distinguishing finite quotients, we will require bounds on the

odd prime powers q obtained from Theorem  5.1.1 . The following result from Linnik [  15 ]

[ 16 ] and improved by Xylouris [  17 ] is an effective version of Dirichlet’s theorem on primes in

arithmetic progressions.

Theorem 7.0.1. Let a and D be coprime positive integers with a < D. Then there exists

k ≥ 0 such that a+kD is prime, and if p is the lowest such prime of this form, then p < cD5,

where c is an effectively computable constant which is independent of choice of a and D.

We now state our main result which establishes both the relative profinite rigidity and the

effective upperbound on a distinguishing finite quotient. For real valued functions f(N, k)

and g(N, k), we denote by f � g to mean there exists M, C > 0 such that for all N, k ≥ M ,

we have |f(N, k)| ≤ C|g(N, k)|.

Theorem 7.0.2. Let ∆ := ∆(r, s, t), Γ := (g; p; m), and k := |m| ≥ 0 such that ∆ � Γ.

Define N := max{lcm(r, s, t), lcm(m)}. Then there exists a finite group Q having order

|Q| � N (k+3)N15

such that Q is a quotient for one of the groups, but not for the other group.

7.1 Proof of Theorem  7.0.2 

Begin with ∆ := ∆(r, s, t) and Γ := (g; p; m) such that ∆ � Γ, with m := (m1, . . . , mk)

and k ≥ 0. We prove Theorem  7.0.2 by showcasing an algorithm broken up into several cases

which are not necessarily disjoint.

For ease of readability, we set L := lcm(r, s, t) and M := lcm(m).
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Both are non-hyperbolic.

For this case, we will relax the restriction of having ∆ be a triangle group. Assume both

∆ and Γ are non-hyperbolic lattices. We refer to Section  3.2.2 where we listed each of the

spherical and Euclidean lattices.

1. Both are spherical: When both ∆ and Γ are spherical, they are non-isomorphic

finite groups, so one of these lattices (denote by G) will suffice as a distinguishing

finite quotient. Since a spherical lattice is isomorphic to either Cn, D2n, A4, S4, or

A5, we have an upperbound given by

|G| ≤ max{60, 2r, 2s, 2t, 2m1, . . . , 2mk}.

2. One spherical, one Euclidean: Without loss of generality, suppose ∆ is spherical

(hence a finite group) and Γ is Euclidean. Take d to be the smallest positive integer

such that there does not exist an element of order d in the group ∆. The Euclidean

lattices are of the form

Γ ∼= Zi o Ck, where i ∈ {1, 2} and k ∈ {1, 2, 3, 4, 6}.

Hence, Γ has a quotient Ci
d o Ck that contains an element of order d and therefore

cannot be a quotient of ∆. The group Ci
d o Ck has order kdi ≤ 6(1 + |∆|)2.
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3. Both Euclidean: If ∆ and Γ are both Euclidean, we can compare them solely through

their Abelianizations:

(0; 2; −)Ab ∼= Z

(1; 0; −)Ab ∼= Z2

(0; 1; 2, 2)Ab ∼= C2 × C2

(0; 0; 2, 2, 2, 2)Ab ∼= C2 × C2 × C2

∆(2, 3, 6)Ab ∼= C2

∆(2, 4, 4)Ab ∼= C2 × C4

∆(3, 3, 3)Ab ∼= C3 × C3.

The largest finite Abelianization appearing above has order 9. Notice that when ∆ or

Γ is one of (0; 2; −) or (1; 0; −), either the cyclic group C10 or the 2-generated group

C2 × C2 will suffice as a distinguishing quotient.

We now assume that at least one of the lattices ∆(r, s, t) and (g; p; m) is hyperbolic.

Different Abelianizations.

Suppose ∆(r, s, t)Ab � (g; p; m)Ab. We consider the cases for which the Abelianization

(g; p; m)Ab is an infinite or a finite group:

1. Case g > 0 or p > 1: This condition suffices for ∆(r, s, t)Ab � (g; p; m)Ab, since

b1(g; p; m) > 0 but b1(r, s, t) = 0. We can then take the cyclic group G := C1+mid2(r,s,t)

which is a finite quotient of (g; p; m), but not for ∆(r, s, t). The order of the group is

|G| = 1 + mid2(r, s, t).

2. Case g = 0 and p ≤ 1: In this case, both ∆(r, s, t)Ab � (0; p; m)Ab are finite groups.

Take G to be the Abelianization having larger order, or either Abelianization in the

case of a tie. We have that G is a finite quotient for one of groups ∆ or Γ, but not for the

other group. The order of such a G has an upperbound of |G| ≤ max{rst, m1 . . . mk}.

Same Abelianizations.

Suppose ∆(r, s, t)Ab ∼= (g; p; m)Ab. Necessarily, we have g = 0 and p ≤ 1. Setting g = 0,
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we will consider the cases for which Γ is unpunctured or 1-punctured. The case p = 1 is a

relatively straightforward application, but the case p = 0 requires considerably more effort.

1. Case p = 1: Suppose ∆(r, s, t)Ab ∼= (0; 1; m)Ab. By Proposition  4.2.1 , we have that

mid2(r, s, t) = lcm(m),

and consequently,

M = lcm(m) | lcm(r, s, t) = L and lcm(r, s, t, m) = lcm(r, s, t).

We proceed by comparing Euler characteristics:

(a) χ(r, s, t) ≤ χ(0; 1; m): We take q := `d to be the smallest odd prime power

satisfying the following: each of r, s, t divides one of `, q−1
2 , q+1

2 . By Theorem

 7.0.1 , q � L5. By Theorem  5.1.1 , there exists a group G ≤ PSL(2, q) that is

(r, s, t)-smooth. The group G has order |G| ≤ | PSL(2, q)| ≤ q3 � L15. Now, take

an integer a > 1 such that a and M are coprime, for example, a = M − 1 < L.

Then using Theorem  5.3.1 , we can construct the group G′, an extension of G by

the group Cf
a, where f := 2 − |G|χ(r, s, t) from Proposition  4.4.1 . We have that

f < 2 + |G| � L15 and that G′ is a quotient of ∆(r, s, t), but not for (0; 1; m).

Hence |G′| = af |G| � LL15
L15 ≈ LL15 .

(b) χ(r, s, t) > χ(0; 1; m): We take q := `d to be the smallest odd prime power

such that the integer lcm(r, s, t) divides one of `, q−1
2 , q+1

2 . Recall that lcm(m)

divides lcm(r, s, t), so therefore each of the mi | lcm(r, s, t). This is useful

because in the perspective of Corollary  5.2.1 , we want to employ the L2-set

L2(m1, . . . , mk, lcm(r, s, t)) = {lcm(r, s, t)}. By Theorem  7.0.1 , we have q � L5.

By Corollary  5.2.1 , there exists a group G ≤ PSL(2, q) that is a smooth quotient

of (0; 1; m), where we map the canonical parabolic generator of (0; 1; m) to an

element in PSL(2, q) having order lcm(r, s, t). If necessary, we may adjust our

smooth representation (0; 1; m) → PSL(2, q), so that the image G is not cyclic,
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thereby guaranteeing that |G| > lcm(r, s, t). Recall from Section  6.1 , having that

|G| > lcm(r, s, t) ensures that any representation ∆(r, s, t) → PSL(2, q) cannot be

smooth. The group G has order |G| ≤ | PSL(2, q)| � L15. Now, take an integer

a > 1 such that a and L are coprime, say, a = L − 1. By Theorem  5.3.1 , we con-

struct the group extension G′ of the group G by Cf
a, where f := 1 − |G|χ(0; 1; m)

from Proposition  4.4.1 . Notice that f < 1 + |G|(k − 1) � kL15 and that G′ is a

quotient of (0; 1; m), but not for ∆(r, s, t). We see that

|G′| = af |G| � LkL15
L15 ≈ LkL15

.

2. Case p = 0: Suppose ∆(r, s, t)Ab ∼= (0; 0; m)Ab. In particular, from Proposition  4.2.1 ,

we have

gcd(r, s, t) = midk−2(m) and mid2(r, s, t) = midk−1(m);

however, there is generally no relationship between L := lcm(r, s, t) and M := lcm(m).

We consider some straightforward cases, leaving behind |m| = 3, 4 for further analyses.

(a) χ(r, s, t) < χ(0; 0; m): We can precisely mirror the construction and retain the

notation of the earlier case χ(r, s, t) ≤ χ(0; 1; m). The only notable difference is

there is in general no relation between the integers L and M , but the groups G

and G′ as well as the quantities q, a, and f are defined the same way as before.

By Corollary  5.3.3 , G′ is a quotient of ∆(r, s, t), but not for (0; 0; m). Accounting

for the lack of relationship between L and M , the computation of the upperbound

for the order of this quotient gives |G′| � ML15 .

(b) χ(r, s, t) > χ(0; 0; m): This is the same as the previous case, but with the roles

of ∆(r, s, t) and (0; 0; m) reversed. We take q := `d to be the smallest odd prime

power satisfying the following: each of the mi divides one of `, q−1
2 , q+1

2 . By

Theorem  7.0.1 , q � M5. By Theorem  5.1.1 , there exists a group G ≤ PSL(2, q)

that is m-smooth. The group G has order |G| ≤ | PSL(2, q)| ≤ q3 � M15. Now,

take an integer a > 1 such that a and L are coprime, for example, a = L − 1.

Then by Corollary  5.3.3 , we can construct the group G′, an extension of G by the
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group Cf
a, where f := 2 − |G|χ(0; 0; m). Notice that f < 2 + |G|(k − 2) � kM15,

and that G′ is a quotient of (0; 0; m) but not for ∆(r, s, t). Hence,

|G′| = af |G| � LkM15
M15 ≈ LkM15

.

(c) |m| ≥ 6: This case guarantees the inequality χ(r, s, t) > χ(0; 0; m) above.

(d) |m| = 5: This case guarantees the inequality χ(r, s, t) 6= χ(0; 0; m) above.

(e) |m| ≤ 2: (0; 0; m) ∼= Ca is a finite cyclic group (and a spherical lattice). By

Proposition  4.2.1 , this forces gcd(r, s, t) = 1 and mid2(r, s, t) = a. This data

specifies that exactly one of r, s, t, say r, is coprime to a. We can use Theorems

 5.1.1 and  7.0.1 to produce a group G ≤ PSL(2, q) that is (r, s, t)-smooth with

q � L5. This construction ensures that G contains an element of order r, so that

G cannot be a quotient of (0; 0; m) ∼= Ca. The upperbound on the order of G is

|G| � L15.

Same Euler characteristics, Same Abelianizations, g = 0, p = 0.

We now append the condition

χ(r, s, t) = χ(0; 0; m).

Since we also have ∆(r, s, t)Ab ∼= (0; 0; m)Ab, Proposition  4.3.2 provides us with

L = lcm(r, s, t) = lcm(m) = M and rst = m1 . . . mk.

1. Different L2-sets: Suppose L2(r, s, t) 6= L2(0; 0; m). To proceed, we will highlight

the proof of Proposition  5.2.2 : switching the roles of (r, s, t) and m if necessary, there

are distinct maximal prime power factors q1 and q2 of lcm(r, s, t) = lcm(m) such that
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for some R ∈ L2(r, s, t), q1q2 | R but q1 | M1 and q2 | M2 for distinct M1, M2 ∈ L2(m).

We take the smallest odd prime power q = `d satisfying

q ≡ 1 (mod 2M1K)

q ≡ −1 (mod 2M2),

where K is the product of each element in L2(m)\{M1, M2} (with K = 1, for the empty

product). By Chinese remainder theorem, the solution to the system of congruences

above will be unique modulo

2M1M2K = 2 lcm(m) = 2 lcm(r, s, t) = 2L.

Therefore, by Theorem  7.0.1 , q � L5. By our choice of q and by Corollary  5.2.1 

(applied twice), there is a smooth representation (0; 0; m) → PSL(2, q) such that every

map ∆(r, s, t) → PSL(2, q) cannot be smooth. Take G to be the image under the

smooth representation, with order |G| ≤ | PSL(2, q)| � L15. We take an integer a > 1

that is coprime to L, say a = L − 1. Now we apply Corollary  5.3.2 to obtain the group

extension G′ of G by the group Cf
a, where

f := 2 − |G|χ(0; 0; m) = 2 − |G|χ(r, s, t) < 2 + |G| � L15.

Then G′ is a finite quotient of (0; 0; m) but not for ∆(r, s, t). The upperbound for the

order is |G′| = af |G| � LL15
L15 ≈ LL15 .

Same L2-sets, Same χ’s, Same Abelianizations, g = 0, p = 0, and |m| = 3, 4.

We now consider ∆ = ∆(r, s, t) and Γ = (0; 0; m), where |m| = 3, 4. Additionally, we

assume that our L2-sets are identical: L2(r, s, t) = L2(m).

1. Case |m| = 4: Let ∆ = ∆(r, s, t) and Γ = (0; 0; u, v, w, x), with u ≤ v ≤ w ≤ x.

We consider the results in Section  6.2.2 . We will consider viable choices of tuples

(u, v, w, x) that adhere to all of the restrictions above:
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(a) Dihedral groups: We can use Proposition  6.2.2 to distinguish many of the

viable candidates (0; 0; u, v, w, x) from ∆(r, s, t) by using a dihedral group G.

For the purposes of this algorithm, the necessary candidates for Γ to mark that

can be distinguished using some dihedral quotient of ∆ or Γ are as follows:

(0; 0; 2, 4, 4, x), (0; 0; 2, 2, w, x), (0; 0; 2, 3, 4, x), (0; 0; 2, 3, 6, x), (0; 0; 2, 3, 3, x), and

(0; 0; 2, 3, 5, x). We determined in Section  6.2.2 that the latter two groups

(0; 0; 2, 3, 3, x) and (0; 0; 2, 3, 5, x′)

require that x and x′ be even, by the assumption that L2(r, s, t) = L2(m). The

upperbound on the order for a distinguishing dihedral quotient is

|G| ≤ 2 max{r, s, t, u, v, w, x}.

2. Case |m| = 3: Let ∆ = ∆(r, s, t) and Γ = ∆(u, v, w) be two triangle groups. From

Lemma  6.2.5 , we have that

L2(r, s, t) = L2(u, v, w) = {lcm(r, s, t)}

is a singleton set. To proceed, we state and apply Lemma  6.2.6 , for which we will make

effective: there exists

r′ | r, s′ | s, t′ | t, u′ | u, v′ | v and w′ | w,

such that

χ(r′, s′, t′) 6= χ(u′, v′, w′) and lcm(r′, s′, t′) = lcm(u′, v′, w′) 6= lcm(r, s, t).

Moreover, r′, s′, t′ can be chosen so that whenever

(r′′, s′′, t′′) 6= (r′, s′, t′) such that r′ | r′′ | r, s′ | s′′ | s, t′ | t′′ | t,
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we have an equality of L2-sets

L2(r′′, s′′, t′′) = L2(r, s, t = {lcm(r, s, t)}),

see the remark at the end of Section  6.2.3 . The analogous statement can be made for

u′ | u′′ | u, v′ | v′′ | v, w′ | w′′ | w.

Without loss of generality, suppose χ(r′, s′, t′) < χ(u′, v′, w′), which follows from

Lemma  6.2.6 . By Lemma  6.2.7 and Lemma  7.0.1 , there exists an odd prime power q �

L5 such that there are (r′, s′, t′)- and (u′, v′, w′)-smooth representations to PSL(2, q) but

there can never be smooth representations from ∆(r′′, s′′, t′′) or from ∆(u′′, v′′, w′′) to

PSL(2, q). Take G to be the image of any (r′, s′, t′)-smooth representation to PSL(2, q),

whose order is bounded by |G| � L15. From the construction in Corollary  5.3.2 , let G′

be this group extension of G by Cf
a, where f := 2−|G|χ(r′, s′, t′) < 2+ |G| � L15, and

we can take a = L−1. Then G′ is a finite quotient of ∆(r, s, t) but not a finite quotient

of ∆(u, v, w). The upperbound for the order is |G′| = af |G| � LL15
L15 ≈ LL15 .

After collecting and comparing the upperbounds produced in each of the cases, we see that

the greatest asymptotic bound produced is N (k+3)N15 , where N := max{lcm(r, s, t), lcm(m)}.

7.2 Examples

Example 1. Let ∆ = ∆(4, 3, 7) and Γ = ∆(2, 3, 7). By Proposition  4.2.1 , both ∆(4, 3, 7)

and ∆(2, 3, 7) have trivial Abelianizations, i.e. they are perfect groups. Since naturally the

group ∆(2, 3, 7) is a quotient of ∆(4, 3, 7), every quotient of ∆(2, 3, 7) must also be a quotient

of ∆(4, 3, 7). Therefore, we can only use finite quotients from ∆(4, 3, 7) to distinguish them

from ∆(2, 3, 7). Comparing Euler characteristics yields −23
84 = χ(4, 3, 7) < χ(2, 3, 7) = − 1

42 .

It can be verified that G = PSL(2, 7) having order 168 is a smooth quotient of ∆(4, 3, 7),

see [ 4 ]. Taking a = 5 and f = 2 − |G|χ(4, 3, 7) = 2 + 168 · 23
84 = 48, then there is a group

extension G′ of G by the Abelian group C48
5 such that G′ is a quotient of ∆(4, 3, 7), but not
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for ∆(2, 3, 7). The group G′ has order |G′| = 548 · 168 ≈ 5.97 × 1035, which is roughly 600

decillion.

Example 2. Let ∆ = ∆(15, 42, 63) and Γ = ∆(21, 21, 90). These two groups are indistin-

guishable in many important aspects: both Abelianizations are isomorphic to C3 ×C21, both

Euler characteristics are equal to −563
630 , and both L2-sets are precisely the singleton {630}

(and so both groups have non-trivial representations to exactly the same list of PSL(2, q)’s,

for q an odd prime power). It can be shown that the group G = PSL(2, 11) is a quo-

tient for both groups; however, under ∆(15, 42, 63), G is (5, 6, 3)-maximally smooth and

under ∆(21, 21, 90), G is (3, 3, 6)-maximally smooth. Since − 3
10 = χ(5, 6, 3) < χ(3, 3, 6) =

−1
6 , we will consider any (5, 6, 3)-maximally smooth map π : ∆(15, 42, 63) � PSL(2, 11).

Notice that the kernel K := ker π is a finitely generated Fuchsian group with signature

(g; 0; 3(132), 7(110), 21(220)), where g = 1
2b1(K), and d(i) is the tuple with all entries d of size i.

Via the Riemann-Hurwitz formula, the kernel K := ker π provides a first Betti number

of f = b1(K) = 2 − | PSL(2, 11)|χ(5, 6, 3) = 200. Taking a = 7, which is coprime to

| PSL(2, 11)| = 660, we can construct G′ := ∆(15, 42, 63)/K(7)[K, K], which is a quotient

of ∆(15, 42, 63) but not for ∆(21, 21, 90). The order of G′ is |G′| = af |G| = 7200 · 660 ≈

6.90 × 10171.

Example 3. Let ∆ = (0; 0; 2, 3, 3, 315) and Γ = ∆(15, 18, 21). These two groups are have the

following properties: both Abelianizations isomorphic to C3 × C3, their Euler characteristics

are both equal to −523
630 , but L2(2, 3, 3, 315) = {2, 315} and L2(15, 18, 21) = {630}. Here,

we are able to use Lemma  5.2.2 as an approach to our algorithm: using the notation of

Lemma  5.2.2 , we can take q1 = 32 and q2 = 2 which are maximal prime power divisor of

630 such that the quantity q1q2 divides some element of L2(15, 18, 21), but two separate

elements of L2(2, 3, 3, 315). We can verify that the prime number q = 631 is a solution to

the following system of congruences: q ≡ 1 (mod 2 · 315) and q ≡ −1 (mod 2 · 2). In this

way, we have that 315 | q−1
2 , 2 | q+1

2 , but 630 - q±1
2 . The group G has order 125,619,480.

By Theorem  5.1.1 , the group G := PSL(2, 631) is a smooth quotient of (0; 0; 2, 3, 3, 315)

but non-smooth for∆(15, 18, 21) (we verified with GAP [ 14 ] that G is indeed a quotient).

The first Betti number associated to the kernel of a smooth map from ∆(15, 18, 21) to G
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is precisely b1 = 2 − |G|χ(15, 18, 21) = 104,284,110. We mirror the construction given by

Theorem  5.3.1 and take a = 2 to construct a finite quotient G′ that is an extension of G

by the Abelian group Cb1
a , which consequently is a quotient of (0; 0; 2, 3, 3, 315), but not for

∆(15, 18, 21). The order of G′ is |G′| = 2104,284,110 · 125,619,480 ≈ 1.91 · 1031,392,653.

We wanted to use the previous example as a proof of concept of Lemma  5.2.2 . We

now revisit the previous example using a different observation to produce a much smaller

distinguishing finite quotient.

Example 4. Let ∆ = (0; 0; 2, 3, 3, 315) and Γ = ∆(15, 18, 21). Both groups have quotients

to G := ∆(2, 3, 3) ∼= A4; however, it can be shown that the representations π1 : ∆ � G

is (2, 3, 3, 3)-maximally smooth and that π2 : Γ � G is (3, 2, 3)-maximally smooth. Since

χ(0; 0; 2, 3, 3, 3) < χ(0; 0; 3, 2, 3), we can ensure that b1(ker π1) > b1(ker π2). The Riemann-

Hurwitz formula gives us b1(ker π1) = 2 − |A4|χ(0; 0; 2, 3, 3, 3) = 8. Take n = 2, and let G′

be a extension of G by the Abelian group C8
2. Then G′ is a quotient of (0; 0; 2, 3, 3, 315) but

not a quotient for ∆(15, 18, 21). The order of G′ is 12 · 28 = 3072, which provides a much

better bound than by the previous method.
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