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ABSTRACT

Computing with Artificial Neural Networks (ANNs) is a branch of machine learning that

has seen substantial growth over the last decade, significantly increasing the accuracy and

capability of machine learning systems. ANNs are connected networks of computing ele-

ments inspired by the neuronal connectivity in the brain. Spiking Neural Networks (SNNs)

are a type of ANN that operate with event-driven computation, inspired by the “spikes”

or firing events of individual neurons in the brain. Neuromorphic computing—the imple-

mentation of neural networks in hardware—seeks to improve the energy efficiency of these

machine learning systems either by computing directly with device physical primitives, by

bypassing the software layer of logical implementations, or by operating with SNN event-

driven computation. Such implementations may, however, have added restrictions, including

weight-localized learning and hard-wired connections. Further obstacles, such as catastrophic

forgetting, the lack of supervised error signals, and storage and energy constraints, are en-

countered when these systems need to perform autonomous online, real-time learning in an

unknown, changing environment.

Adapting neural network learning algorithms for these constraints can help address these

issues. Specifically, corrections to Spike Timing-Dependent Plasticity (STDP) can stabilize

local, unsupervised learning; accounting for the statistical firing properties of spiking neu-

rons may improve conversions from non-spiking to spiking networks; biologically-inspired

dopaminergic and habituation adjustments to STDP can limit catastrophic forgetting; con-

volving temporally instead of spatially can provide for localized weight sharing with direct

synaptic connections; and explicitly training for spiking sparsity can significantly reduce

computational energy consumption.
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1. INTRODUCTION

Engineering is all about creating effective tools, systems, or products, while also balancing

competing objectives such as cost, time, and energy. These competing objectives open up

many research avenues, helping us to explore not just what our creations can do, but also how

efficiently they operate. As a part of the Center for Brain-Inspired Computing (C-BRIC), I

have considered the modifications to neural network machine learning algorithms that must

occur for the associated computations to be performed more efficiently, to be computed on

more efficient hardware, and to be more efficient in their data usage over time.

1.1 Machine Learning with Neural Networks

Computing with neural networks is a branch of machine learning that has seen substantial

growth over the last decade, significantly increasing the accuracy and capability of machine

learning systems to do previously unattainable tasks, such as accurate image and voice

recognition.

1.1.1 Artificial Neural Networks (ANNs)

An Artificial Neural Network (ANN), loosely based on neuronal connectivity in the brain,

is a network of neuron computing elements with soma units that integrate incoming signals

received from other neurons via weighted synapses. Non-linear neuron activation functions

applied to the outgoing signal of each neuron in multi-layered networks enable them to ap-

proximate solutions to more complex problems. Deeper networks, however, can confront

over-fitting difficulties [1 ], [2 ] because of the over-parameterization that enables this capabil-

ity. In such cases, a network’s ability to generalize can be improved by parametric reduction

via “weight sharing” techniques [3 ] such as convolutions [4 ], [5 ].

Convolutional Neural Networks (CNNs) are ANNs that have one or more convolutional

layers which comprise a set of kernels or filter weights that convolve over the values from the

preceding layer, actualizing a feature map. At earlier layers, feature maps help the network

identify small, local structure in the data. At later layers, the feature maps identify larger,
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more complex data patterns. Such feature maps involve a high degree of weight replication, as

kernels are shared between the windows of convolution. This sharing of convolutional kernels

is central to a later portion of this work and is discussed further in Chapter 5 . Convolutional

layers are often followed by pooling layers, which provide sub-sampling, further reducing

overfitting while also improving spacial and noise invariance [6 ].

1.1.2 Spiking Neural Networks (SNNs)

For many years, the dominant neural networks in machine learning have been deep con-

volutional ANNs. Spiking Neural Networks (SNNs), a type of ANN that operate with event-

driven computation, have been touted as the “third generation” of neural networks [7 ]. SNNs

are inspired by the spikes or firing events of individual neurons in the brain. Each spiking

neuron only fires when its membrane potential reaches a specified threshold, similar to bi-

ological models, creating an asynchronicity that adds a timing component to the network.

This firing event then sends an all-or-nothing spike to the other neurons to which it is con-

nected through unidirectional, weighted synapses. SNNs have been gaining traction due to

their biological plausibility [8 ] and other potential benefits, discussed next.

1.1.3 Why spiking?

Neural networks with asynchronous, time-based signals have been shown to be compu-

tationally more powerful than threshold- or sigmoidal-gated neural network models by ad-

ditionally encoding information in the temporal dimension [7 ]. The stochasticity of spiking

events may also prove beneficial for system robustness.

In addition, SNNs can be more energy efficient by performing event-driven computation

triggered by synaptic action potentials. The inherent computational sparsity and additive

nature of integrating spikes versus synaptic multiplication on logically analog inputs is a

further source of potential energy efficiency [9 ].

Further, spiking neurons can learn with local, unsupervised learning rules. This type of

learning has been shown to occur with beyond-CMOS spintronic devices, resulting in power

consumption equivalent to biological counterparts [10 ].
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1.2 Online Neuromorphic Implementations

As Dennard scaling of traditional CMOS devices continues to break down in the nano-

transistor regime, non-traditional computational models are gaining ground to expand the

computing domain and decrease the energy footprint of VLSI circuits. Neuromorphic imple-

mentations of neural networks are one such area of exploration.

1.2.1 What is neuromorphic?

In a broad sense, “neuromorphic computing” encompasses all efforts of implementing

neural networks in hardware. More specifically, however, in the literature there are three

different ways to define the term neuromorphic [11 ]:

• computing directly with device physical primitives, sometimes on analog or

time-based signals;

• bypassing the software layer of logical implementation with dedicated

components; or

• operating with SNN event-driven computation.

Such neuromorphic designs are not just more biologically plausible—they may signifi-

cantly improve computational energy efficiency and reduce inference latency–enabling real-

time, low power machine learning on online systems. The goals and inherent properties of

online neuromorphic systems, however, place certain restrictions on the learning algorithms

that they can operate. We list eight such restrictions in the next two subsections.

1.2.2 Neuromorphic restrictions

In general, the above defining characteristics of neuromorphic computing imply that such

hardware implementations have one or more of the following requirements:

1. local learning (synaptic weight changes occurring with only local information);

2. fixed size and configuration;
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3. dedicated units and hardwired connections; and/or

4. asynchronous, spiking, or analog computation.

1.2.3 Online restrictions

There are also several goals associated with operating a neuromorphic system online.

Ideally, an online system would have the following characteristics:

5. autonomous and real-time (no offline retraining);

6. unsupervised learning (able to learn without supervised error signals);

7. lifelong/dynamic learning (able to adapt to a changing environment while

retaining memory); and

8. energy efficient (able to operate with a limited power supply).

Each of these characteristics also introduces restrictions on the neural network learning

algorithms for such systems.

1.3 Adapting for Online Neuromorphic Systems

Traditional neural network learning algorithms generally assume offline learning with up-

front access to all training data, together with their desired responses or labels. Additionally,

training and inference are typically computed on von-Neumann machines, performing digital

computations with generic computing components that load and store from shared memory.

These traditional algorithms are, therefore, not ideally suited for online neuromorphic im-

plementations.

This work presents several proposed adaptations to traditional neural network learning

algorithms that each help address one or more of the previously-mentioned restrictions associ-

ated with online neuromorphic computing, extracted from my work in [12 ]–[18 ]. Specifically,

Chapter 3 proposes two corrections to spiking learning algorithms: the first (Section 3.2 ) in

regards to online local, unsupervised learning [12 ] (©2020 Allred and Roy)1
 ; and the second

1↑ Used with permission.
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(Section 3.3 ) in regards to conversion from a non-spiking to a spiking network [13 ]. Chap-

ter 4 presents proposed augmentations to online local, unsupervised learning that enable

lifelong learning [14 ] (©2016 IEEE)2
 , [12 ], [15 ] (©2018 IEEE)3

 , [16 ]. Chapter 5 presents a

proof-of-concept for convolutional neural networks that accomplish traditional weight shar-

ing while still satisfying weight-localized computation on statically-connected synapses [17 ]

(©2017 IEEE)4
 . And finally, Chapter 6 demonstrates a method for achieving significant com-

putational energy efficiency improvements in SNNs by explicitly training for spiking sparsity

[18 ]. Before presenting these works, I first provide the models they employ, detailed next in

Chapter 2 .

2↑ Used with permission. In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of Purdue’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to http://
www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.
3↑ See footnote 2 .
4↑ See footnote 2 .
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2. SPIKING SYSTEMS AND MODELS

As spiking networks are central to this work, this chapter preemptively presents the basic

SNN models and systems used in the subsequent chapters. Table 2.1 lays out the different

model and system characteristics of each proposed method, which are subsequently detailed.

The three simulation platforms employed were Brian [19 ] based on the code in [20 ], Matlab

using a built-from-scratch event-driven simulation, and PyTorch based on the code in [21 ].

2.1 Synapse Models

For the methods that use the Brian spiking simulator, the synaptic connections between

neurons are modeled as inducing alpha responses, with incoming spikes inducing an expo-

nentially decaying current that potentiates an exponentially decaying membrane potential

(discussed next). The magnitude of the initial spike in current is weighted by the synapse

value. Alpha responses are more difficult to model in an event-driven system because they

create an non-instantaneous potentiation.

For the other methods, synapses are modeled as a delta spike from its pre-synaptic neuron,

scaled by the synaptic weight, and then added to the membrane potential of its post-synaptic

neuron, creating a exponential kernel response. Later in this work, we represent the weight

of the synapse connecting input i to neuron j as wij and the vector of all inputs to neuron j

as ~wj.

Table 2.1. Model and system characteristics employed by each proposed spiking method.
Method (Section) Platform Synapse Homeo. Computation Lateral
Stabilized STDP (3.2 ) Matlab delta yes event-driven direct
L4-Norm Adjustment (3.3 ) PyTorch delta N/A time steps N/A
Forced Firing (4.3 ) Brian alpha no time steps separate
Dopaminergic (4.4 ) Matlab delta no event-driven direct
ASP (4.7 ) Brian alpha yes time steps separate
Explicit Sparsity (6 ) PyTorch delta N/A time steps N/A
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2.2 Spiking Neuron Models

For all methods, we use the common Leaky-Integrate-and-Fire (LIF) neuron model, in

which a neuron’s membrane potential vmem undergoes a continuous decay according to the

differential equation in (2.1 ), where τmem is the membrane decay constant and vrest is the

resting potential. The membrane potential is also potentiated or depressed by incoming

excitatory or inhibitory signals, respectively. If the membrane potential reaches or surpasses

the neuron’s firing threshold vth then the neuron fires, producing an output spike and reset-

ting its potential to vreset. This is known as a hard reset, which is used throughout unless

otherwise specified. Section 3.3 and Chapter 6 employ a soft reset, in which the membrane

is simply reduced by the threshold value, retaining any residual potential over the thresh-

old. After each firing event, there may be a refractory period during which the neuron is

incapable of firing even if additional input spikes are received. Without loss of generality,

we set vrest to zero as a reference voltage for the mathematical analysis in the next chapter.

Except for the Brian simulations, for model and evaluation simplicity we also set vreset to

zero and have no refractory periods. Figure 2.1 shows an example LIF neuron responding

to incoming spikes via delta synapses.

v̇mem = −(vmem − vrest)
τmem

(2.1)

2.3 Rate-encoded Spike Train Inputs

Input samples are encoded as Poisson spike trains, following the mathematical model of

a Poisson point process (PPP), where the spike rate λi of an input neuron is proportional to

the pixel intensity of input i. Thus, the number of spikes in a given time window follows the

distribution of a Poisson random variable with an expectation proportional to the input value.

For perception tasks on static images, there is no temporal information in a single sample, and

thus rate encoding is one of the most common encoding methods for SNN image perception

implementations as it maintains statistical independence between individual input spikes,
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Figure 2.1. Leaky-Integrate-and-Fire model for spiking neurons in an SNN.
(©2016 IEEE [14 ])
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which is useful for the computationally less expensive one-sided STDP curve, discussed later

in Section 2.4.2 .1  

Each spike is modeled as a time-shifted delta function. The precise time of the kth most

recent spike from input i is represented as tik. Being a PPP, the timing between two sequential

spikes on a given input channel are drawn from an exponential random distribution, also

with rate λi. The time passed since the kth most recent spike from i at time t is represented

as t|ik| = t− tik and follows the distribution of a gamma random variable T|ik| ∼ gamma(α =

k; β = λi). The vector of all input rates for each dimension of the given sample is represented

as ~λ.

2.4 Unsupervised Learning in SNNs

Unsupervised learning is performed in four of the spiking works in this proposal (the first

four in Table 2.1 ). The clustering tasks in these works are based on the architecture and

learning process by Diehl and Cook [22 ].

2.4.1 Architecture for competitive unsupervised learning

Competitive learning is enabled by an architecture based on [22 ], which consists of two

layers: an excitatory layer and an inhibitory layer. Each of the excitatory neurons are

fully connected to the input and represents competing reference vector neurons during the

clustering task.

Lateral inhibition

There is a one-to-one connection from each excitatory neuron to its respective inhibitory

neuron in the inhibitory layer. The inhibitory neurons send inhibiting signals to every neuron

except the neuron that triggered it. This layer provides competition by limiting the firing
1↑ Other input encodings that use time-encoding such as rank-order may provide energy efficiency improve-
ments but at the moment provide no obvious additional benefit to the addressed problems and are thus
beyond the scope of this work.
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Figure 2.2. Competitive architecture with lateral inhibition for unsupervised learning.

of the other reference vector neurons, causing each to learn different input patterns. Figure

2.2 illustrates this architectural setup.

For the Stabilized STDP and the Dopaminergic methods, lateral inhibition was enacted

instead with direct inhibitory connections from each reference vector neuron rather than a

separate layer of inhibitory neurons, effecting the same behaviour.

Homeostasis

With STDP (discussed next), relevant synaptic weights are strengthened when the post-

synaptic neuron fires. A larger weight, in turn, enables the neuron to fire more easily. This

setup can create a positive feedback loop during training, potentially causing a single neuron

to dominate. This problem is often solved with homeostasis, distributing firing activity

between neurons.

One method of homeostasis based on [23 ] is implemented with adaptive thresholding—dy-

namically increasing a neuron’s firing threshold each time it fires, with a decay over time.

The temporarily larger threshold prevents a single neuron from firing too frequently. For two
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of the proposed methods, Forced Firing and Dopaminergic Learning, this form of homeostasis

is not employed because it is not effective on the targeted lifelong learning tasks.

2.4.2 Spike-Timing Dependant Plasticity (STDP)

Some components of biological neural learning can be modeled with Spike Timing Depen-

dent Plasticity (STDP) [24 ]. In STDP the weights of synaptic connections between neurons

are strengthened or weakened based on the timing of neuron spikes.

Traditional STDP

The STDP learning rule is a correlation-based Hebbian learning rule that achieves unsu-

pervised clustering by strengthening causal connections and weakening anti-causal connec-

tions. This is done by potentiating the weight when the post-synaptic neuron fires shortly

after the pre-synaptic neuron has fired, with the magnitude of the weight change expo-

nentially decaying with the increase of the time difference. Thus, the more that the given

pre-synaptic neuron contributed to causing the post-synaptic neuron to fire, the more easily

it will be able to do so in the future.

On the other hand, depression occurs if the order is reversed and the post-synaptic neuron

fires shortly after the pre-synaptic neuron has fired.

One-sided STDP

As the input information in the systems in this work is encoded only in the spike rate, we

can instead employ the computationally less-expensive one-sided version of STDP, evaluated

only at the post-synaptic firing event:

∆w = α(pre − offset) (2.2)

where α is the learning rate, pre is a trace of pre-synaptic firing events, and offset is the

value to which the pre-synaptic traces are compared, determining potentiation or depression.

When the post-synaptic neuron fires shortly after the pre-synaptic neuron, the synaptic
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weight is strengthened, with shorter time intervals resulting in an exponentially larger weight

change. As opposed to the two-sided rule, depression occurs when this time interval is larger,

as dictated by the offset.

Correlated potentiations in the direction of ~pre therefore provide Hebbian learning by

angularly migrating ~w toward the angle of the input vector ~λ. Anti-Hebbian depression

reduces weights from uncorrelated inputs and is provided by subtracting the offset term for

one-sided STDP rather than performing additional weight processing at pre-synaptic firing

events. Figure 2.3 illustrates this learning rule.

2.4.3 Training and testing process

With unsupervised learning algorithms, it is important to carefully design the training

and testing processes to avoid having the training labels influence model parameters while

still considering how network predictions are to be identified. These processes are described

here.
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Training:

Samples are presented one-by-one to the network. For the current sample, input neurons

fire at the sample rate until the system registers at least five output spikes, as followed

by Diehl and Cook, which is generally enough to confidently identify the input in view of

the stochasticity in the SNN. For the baseline, if a given sample does not produce enough

output spike, the input spike rates are incrementally scaled up until the requirement is met.

After five output spikes are registered, all membrane potentials are allowed to reset to avoid

one sample interfering with the next, and then the next sample is presented. This training

process is modified by the methods in Chapter 4 to represent sequentially presented tasks in

a lifelong learning scenario (see Section 4.1.4 ).

Label assignment and testing:

As training is performed entirely without supervision, the final network outputs must be

assigned class labels for evaluation. While the network is frozen, label assignment is done by

inference on the training set, followed by evaluation on the testing set. The MNIST dataset

is already highly clustered in its input space, and therefore a supervised linear classifier is

already capable of competitive accuracy. Because of this, no final linear readout classification

layer is added to avoid the label assignment process acting as a traditional supervised linear

classifier. Instead, following the unsupervised evaluation method of Diehl and Cook, each

trained neuron is directly assigned a class label and no linear combination of these neuron

outputs is performed. Rather, the class decision is winner-take-all, choosing the class of the

neuron that spiked the most for that sample.
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3. LEARNING RULE AND MODEL CORRECTIONS FOR

SPIKING NEURAL NETWORKS

Spiking networks differ from non-spiking feed-forward networks in several ways: (1) they

have a built-in temporal component internal to each neuron creating a recurrent dependency

over time; (2) there is some form of temporal encoding for the input, output and internal data

signals; (3) they can operate with event-driven computation; (4) their non-linear activation

functions are generally non-differentiable; and (5) the outputs of individual neurons are

non-continuous, often being represented as binary–active (spike) or inactive (no spike).

Yet, much of the initial exploration of SNNs has followed the same paths as non-spiking

networks, often ignoring some or all of these differences. The neuron and synapse models,

input encoding, and learning rules must be considered jointly to more effectively and effi-

ciently transfer the success of non-spiking network to SNNs. This chapter first examines

the statistical membrane potential distribution of spiking neurons (Section 3.1 ) before using

that information to correct local, unsupervised SNN learning (Section 3.2 ) and perform more

accurate transferring of trained non-spiking models to the spiking domain (Section 3.3 ).

3.1 Pre-Firing Membrane Potential Distribution

To estimate the relative firing distributions of competing LIF neurons, it is useful to

understand the distribution of their pre-firing membrane potentials. These derivations and

discussions are extracted from and expanded on my work in [12 ] (©2020 Allred and Roy)1
 .

3.1.1 Expected value of pre-firing membrane potential

Let Vj(t) be the random variable representing the potential of neuron j at time t. First,

we consider the effect of the most recent incoming spike k which is received from input i at

time tik. If at the time immediately before the spike was received, t−
ik, the voltage of neuron

1↑ Used here with permission. The material in this section is an expansion of [12 ], Section 2.3.4 therein. The
bulk of my work in [12 ] is included later in Chapter 4 , specifically in Sections 4.4 , 4.5 , and 4.6 . The expanded
discussion on these derivations are to be included in [13 ], manuscript in preparation, which contains my work
in Section 3.3 . I gratefully acknowledge assistance from Professor Jonathon Peterson of Purdue University
regarding these derivations.
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j over the resting potential vrest is given by vj(t−
ik), then, assuming neuron j has not since

fired, the potential of neuron j at time t is given by:

vj(t) =
(
vj(t−

ik) + wiju(t − tik)
)
e−(t−tik)/τmem + vrest (3.1)

where u(t) is the unit step function. If we assume that the input spike has already occurred,

i.e. t > tik, then the unit step function may be removed. Provided that the decay rate

τmem remains constant, we see that the value of the potential immediately preceding the

spike, vj(t−
ik), and the weighted potential increase induced by the spike, wij, may be linearly

separated. Without loss of generality, this linear separability may be extended to the residual

potential increases induced by all spikes received by a neuron since its last firing event and

refractory period, given by:

vj(t) = vrest +
∑

i

∑
k

wije−(t−tik)/τmem (3.2)

As discussed in the text, we assume that vreset = vrest. In cases where this does not hold,

the reset voltage is also linearly separable, and its residual effect may simply be added as

+(vreset − vrest)e−(t−tlast_ref )/τmem where tlast_ref is the time since the last refractory period.

Since t|ik| = t−tik follows the distribution of gamma random variable T|ik| ∼ gamma(α =

k; β = λi), let

V|ik| = u(T|ik|) = e−T|ik|/τmem (3.3)

be the random variable representing the unweighted portion of the potential increase from

the kth most recent spike from i. This allows us to rewrite (3.2 ) as a random variable:

Vj = vrest +
∑

i

∑
k

wijV|ik| (3.4)

Because T|ik| is a gamma random variable, we know its CDF is

FT|ik|(t) = γ(k, λit)
Γ(k) (3.5)
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where Γ(s) and γ(s, x) are the gamma function and the lower incomplete gamma function,

respectively.

We can use (3.5 ) and invert (3.3 ) as (3.6 ) to solve for the transformation from T|ik| to

V|ik| in (3.7 ).

t1 = u−1(v) = −τmem ln v (3.6)

FV|ik|(v) = 1 − FT|ik|(t1) = Γ(k, −λiτmem ln v)
Γ(k) (3.7)

where Γ(s, x) is the upper incomplete gamma function.

We take the derivative of the CDF in (3.7 ) to give us the following PDF for V|ik|:

fV|ik|(v) = (λiτmem)kvλiτmem−1(− ln v)k−1

(k − 1)! (3.8)

We use the pdf of V|ik| to calculate its expected value in (3.9 ), and since expectation is a

linear operator, we solve for the expectation of Vj in (3.10 ) from (3.4 ) and (3.9 ).

E(V|ik|) =
∫ 1

0
vfV|ik|(v)dv = (λiτmem)k

(1 + λiτmem)k
(3.9)

E(Vj) = vrest +
∑

i

∑
k

wij
(λiτmem)k

(1 + λiτmem)k
(3.10)

If we take the sum of spikes to infinity to get the steady state, which is a reasonable

approximation since only the most recent spikes have a significant impact on the potential,

then the inner sum converges to:

E(Vj) ≈ vrest +
∑

i
wijλiτmem

≈ vrest + τmem( ~wj · ~λ) (3.11)

which includes a simple scaled dot product of neuron j’s weight vector wj and the input

rate vector λ, as you would find in a non-spiking neuron. The appropriateness of this
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approximation is strengthened by the fact that in paper, the equation is used not to determine

the precise spiking rate of an individual neuron but rather to compare relative spiking rates

between competing neurons.

3.1.2 Function over a stochastic process

The entire input spike train may also be treated as a stochastic process. Assuming a

firing event has yet to occur, the effect of a Poisson spike train on a neuron’s membrane

potential with exponential leakage may be viewed as a shot-noise process [25 ]. This allows

for not only a more elegant derivation of the mean, but also an extension of that derivation

to any moment of the distribution.

A Poisson spike train from input i is the summation of many spikes represented as delta

functions:

Ni =
∑

k

δT|ik| (3.12)

This stochastic process produces the following pre-firing membrane potential induced on

neuron j by the spike train from input i:

Vij(t) =
∫

fij(t)N(dt) =
∑

k

fij(t − Tk), (3.13)

where fij(t) = wije−t/τmem . The Laplace transform of this shot-noise process is:

L(θ) = E[e−θVij(t)] = eg(θ) (3.14)

where g(θ) = λi
∫ t

0(e−θfij(v) − 1)dv.

First moment

The 1st moment, which is the mean pre-firing potential caused by input channel i, is

given by:
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E[Vij(t)] = −
[
dL(θ)

dθ

]
θ=0

= −
[

deg(θ)

dθ

]
θ=0

= −
[
eg(θ)

]
θ=0

[
dg(θ)

dθ

]
θ=0

= −λi

[ ∫ t

0
(−fij(v)e−θfij(v))dv

]
θ=0

= λi

∫ t

0
fij(v)dv = λiwijτmem(1 − e−t/τmem) (3.15)

For all inputs, represented as the rate vector ~λ, the mean combined pre-firing potential

of neuron j is:

E[Vj(t)] = τmem

∑
i

λiwij(1 − e−t/τmem)

= τmem( ~wj · ~λ)(1 − e−t/τmem) (3.16)

In steady-state this converges to: τmem( ~wj · ~λ), which is important for discussions later

in Sections 3.2 and 4.5.3 .

Second moment and variance

Continuing to the second moment, we can calculate the variance of the pre-firing mem-

brane potential that is induced on neuron j by incoming spikes received from input i:

V ar(Vij(t)) = E[Vij(t)2] − E[Vij(t)]2

=
[
d2L(θ)

dθ2

]
θ=0

− E[Vij(t)]2

= [eg(θ)(g(θ)2 + g(θ))]θ=0 − E[Vij(t)]2

= E[Vij(t)]2 + λi

∫ t

0
fij(v)2dv − E[Vij(t)]2

= 1
2λiτmemw2

ij(1 − e−2t/τmem) (3.17)
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The combined variance of the potential induced by all inputs is:

V ar(Vj(t)) = 1
2τmem

∑
i

λiw
2
ij(1 − e−2t/τmem)

= 1
2τmem(~λ · ~wj

◦2)(1 − e−2t/τmem) (3.18)

where ~wj
◦2 represents the Hadamard square, or element-wise square, of the weight vector.

This equation is important for discussions later in Section 3.3 .

Approximate distribution

The summation of the exponential decay of values drawn from a uniform distribution

may be approximated with a lognormal distribution. Because the mean and variance can be

calculated given the input rate vector, the neuron weight vector, and its membrane decay

constant, we can use these values to generate the estimated PDF of a lognormal distribution.

And indeed, simulations of many spike trains with varying input rate vectors being

applied to an LIF neuron with varying weight vectors produces distributions that match

very well to lognormal distributions calculated this way.
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3.2 Stabilizing One-Sided STDP

This section presents a proposed adjustment to the one-sided STDP learning rule that

stabilizes the weight update equation for unsupervised clustering tasks–extracted from and

expanded upon a portion of my work in [12 ] (©2020 Allred and Roy)2
 . In the baseline one-

sided STDP learning rule (see Section 2.4.2 ), the pre trace follows a similar distribution as the

membrane potential (see Section 3.1 ), only with a different time constant and without being

weighted by the synapse, and so its expected value is also proportional to the input spike

rate (e.g. E[prei] = λiτpre). This is how the weight vector migrates toward the input vector.

The offset term is a constant value identical across all dimensions and can be thought of as

a scaled ones vector, applying uniform anti-Hebbian depression by reducing the weights from

uncorrelated inputs. Such uniform depression does not, however, create a weight change in

exactly the direction desired (see Figure 3.1 ) and causes instability. Figure 3.1a shows that

with a static offset in each dimension, even scaled to the appropriate magnitude, the weight

vectors do not stabilize on the target and instead migrate toward the axes, creating binarized

weights when capped at zero.

3.2.1 Tying the offset to the weight

We provide the required stability to this STDP learning rule by correcting the direction of

the weight change. Rather than a constant offset, we dynamically tie offset to the current

weight value, which is an adaptation based on Oja’s rule [26 ]. The goal is to migrate ~w

toward the ~pre trace, which is proportional to the input ~λ. Figure 3.1b shows that the
~offset vector that is subtracted from ~pre must be dynamically tied in each dimension to ~w,

rather than being the same in every dimension. To place pre and the weight on the same

scale, we scale the pre-synaptic trace by the inverse of its decay rate τpre, changing (2.2 ) to:

∆w = α
(

pre
τpre

− w
)

(3.19)

2↑ Used here with permission. The material in this section is an expansion of [12 ], Section 2.4.2.2 therein.
The bulk of my work in [12 ] is included later in Chapter 4 , specifically in Sections 4.4 , 4.5 , and 4.6 .
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Figure 3.1. Instability of one-sided STDP. (©2020 Allred and Roy [12 ])
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3.2.2 Stabilization results

Using setups with differing homeostatic hyperparameters, this stabilized version STDP

learning rule was compared to the traditional which uses a static offset. For each, SNNs of

various sizes performed unsupervised learning on the MNIST [27 ] dataset. Figure 3.2 shows

that the correction consistently provides an approximate 1% accuracy improvement.
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Figure 3.2. Unsupervised classification accuracy on MNIST using one-sided
STDP with a static offset compared to stabilized on-sided STDP.
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3.3 L4-Norm Weight Adjustments

An efficient way of training spiking neural networks is by training a topologically ho-

mogeneous non-spiking network and then converting the weights over to a spiking network,

replacing ReLUs with integrate-and-fire neurons and balancing the weights with the thresh-

olds [28 ], [29 ]. One issue with this method is that SNNs operate in the temporal domain,

and this training process completely ignores any temporal variance. By accounting for the

temporal variance, the conversion process can be improved [13 ]3  .

3.3.1 Why account for membrane potential variance?

Although the mean pre-firing membrane potential of an LIF neuron is proportional to the

dot product of the input vector and the weight vector, we cannot assume that a neuron that

has a larger mean pre-firing membrane potential will have a higher spiking probability. To

illustrate this claim, consider two membrane potential distributions which have equivalent

means but different variances (see Section 3.1.2 ), for example two neurons each with a single

input and τmem = 1: the first with input rate λ1 = 1 and synaptic weight w1 = 2, and

the second with input rate λ2 = 2 and synaptic weight w2 = 1. Both have the same

mean membrane potential, E[vmem1] = E[vmem2] = 2, however the first neuron has a larger

variance, V ar(vmem1) = 1
2(1)(1)(2)2 = 2; and V ar(vmem2) = 1

2(1)(2)(1)2 = 1 (see Figure 3.3 ).

Given a certain threshold higher than the mean, the distribution with the larger variance

will have a higher probability of surpassing the threshold than the distribution with a smaller

variance (see Figure 3.4 ).

The mismatch between means and variances isn’t solely based on weight vector mag-

nitudes, either. Consider another simple example expanded into another dimension, with

two inputs and weights per neuron (see Figure 3.5 ). Based on the input/weight vector dot

products, we would expect the decision boundary between these two neurons to be at the

angular midpoint. However, in the spiking domain Neuron B dominates in much of the
3↑ This section contains my work on a manuscript that is still under preparation [13 ]. It may or may not
undergo a copyright transfer in the future, but will retain permission to be included here. This version
should be considered a pre-print that is not necessarily endorsed by any potential future publisher in its
current form.
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Figure 3.3. A simple example of the same mean membrane potential, but
different variances.

input space that is angularly closer to Neuron A. Neuron B was able to dominate more of

the input space than expected because its membrane potential at those points in the input

space had a larger variance than did the membrane potential of Neuron A. The difference

in variance at those points is because while both neurons have weight vectors with the same

magnitude, using a euclidean or L2-norm, the Hadamard or element-wise squares of their

respective weight vectors do not have the same magnitude.

3.3.2 Relation of vmem standard deviation to weight L4-norm

We know from Equation 3.18 that the variance of the pre-firing membrane potential is

proportional to the dot product of the input and the Hadamard (or element-wise) square

of the weight vector. Therefore, the variance is proportional to the L2-norm, or euclidean

magnitude of w◦2, which can be rewritten as:
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Figure 3.4. The temporal responses and distributions of the examples in Figure 3.3 .

46



1

1

0

0

Neuron A weight 

vector at
2

2
,

2

2

Expected decision 

boundary based on 

input/weight dot 

product or on mean 

pre-firing membrane 

potential

Input points where 

Neuron A dominates

Input points where 

Neuron B dominates

Neuron B weight 

vector at 1,0

Unity 𝐿2-norms 

Unity 𝐿4-norms 

Figure 3.5. A two-dimensional example of neurons with the same weight
magnitude (same L2-norm), showing the input points at which each dominates
in a spiking domain.

47



|w◦2|L2 =
√

(w2
1)2 + (w2

2)2 + (w2
3)2 + ... + (w2

n)2

=
√

w4
1 + w4

2 + w4
3 + ... + w4

n

=
(

4
√

w4
1 + w4

2 + w4
3 + ... + w4

n

)2

= (|w|L4)2 (3.20)

And since the standard deviation is the square root of the variance, the standard deviation

of the membrane potential becomes directly proportional to the L4-norm of the weight vector.

Going back to the example in Figure 3.5 , we now see that the standard deviation of the

membrane potential of Neuron B was larger than the membrane potential of Neuron A at

the points in question because Neuron B’s weight vector had a larger L4-norm than did

Neuron A’s, despite them having equivalent L2-norms.

3.3.3 L4-norm weight adjustments for SNNs conversions

For a given L2-norm, a weight vector that is closer to an axis will have a larger L4

norm. These are weight vectors that are more sparse or have a few larger individual compo-

nents rather than many fairly equivalent individual components. For example, the vectors

<
√

2
2 ,

√
2

2 > and < 1, 0 > have the same L2-norm, but their respective L4 norms are

≈ 0.84 and 1.

Current conversion methods from trained non-spiking ANNs to SNNs assume that a

neuron’s output spike rate is proportional to the dot product of the input rate vector and

the neuron’s weight vector. Failing to account for the wider reach of neurons with a larger

L4-norm can cause non-ideal conversions. We proposed scaling a neuron’s threshold, or

equivalently its weight magnitude, by some function of the L4-norm of the pre-conversion

weight vector so that systems that operate on a dot-product assumption incur less of a

“conversion penalty.”
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As a reminder, the mathematical modeling of the statistical distribution of the neu-

ron pre-firing membrane potential that we have been using was built on the Poisson rate-

encoding of the input. We note here that after the input layer, the spike trains may no longer

be considered Poisson point processes, as the potential has a transient state, meaning that

the probability of a neuron that is within the network firing is dependent on how recently it

has previously fired and reset its potential. This observation would imply that the following

adjustments are more effective at the first layer of the network. Our simulations verify that,

and so the following adjustments are applied to the first layer only.

3.3.4 Adjustment methodology

For clarity, we will begin by discussing how an individual neuron’s firing threshold vth

should be scaled. In practice, we instead scale the weights by the inverse amount, which

has the exact same functionality but still allows us to maintain a single threshold voltage

for all neurons in the layer. The reason for calculating the threshold change instead of the

weight magnitude change is so that the neuron’s pre-firing membrane potential distribution

remains consistent throughout the calculation process.

As discussed above, because training in a non-spiking domain is based on the dot product

of the input and weight vectors, the mean pre-firing membrane potential of neurons in the

converted network will be proportional to that dot product. For more accurate use of those

parameters in the converted SNN, we instead want those computed values to be reflected

in each neuron’s respective probability of having its potential reach its firing threshold. We

propose scaling each neuron’s threshold to a new value v̂thj so that the number of standard

deviations it is over the neuron’s mean membrane potential is proportional to the difference

between the original threshold vth0 and the mean.

v̂thj − µVj(t)

σVj(t)
∝ vth0 − µVj(t) (3.21)
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In other words, we want the reach of the threshold over the mean to be scaled by the

standard deviation, which is proportional to the L4-norm:

v̂thj − µVj(t)

vth0 − µVj(t)
∝ σVj(t) ∝ | ~wj|L4 (3.22)

To keep the parameters in the same range as training, we scale it with the average

L4-norm of the neurons in that layer, µL4 :

v̂thj − µVj(t)

vth0 − µVj(t)
= | ~wj|L4

µL4

which allows us to calculate the new threshold for each neuron:

v̂thj = µVj(t) + | ~wj|L4

µL4
(vth0 − µVj(t)) (3.23)

The mean membrane potential is input-dependent, and cannot be calculated only with

the weight values. We sample it by running a forward pass on a single batch of the training

set through only the first layer to measure the mean membrane potential of each neuron.

This extra single batch of inference need not add much computation time to the conversion

because the single-batch inference is already performed during the threshold balancing step

of the conversion, and we simply record the mean potential within the first layer during that

inference.

Then, as 3.23 gives us the new threshold, we instead us its proportion to the original

threshold inversely as the L4-norm weight adjustment scalar, sL4 , as mentioned at the start

of this subsection:

sL4 = 1/( v̂th

vth

) (3.24)

Smoothing ratio, rs

The variance is also input dependent. Although the magnitude of a given input doesn’t

have an affect of the conversion penalty–since it scales all the potentials of all competing

neurons equivalently–the angle of the input plays a role. The variance is proportional to
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Figure 3.6. The Hadamard angle drift. In this figure, each vector represents
the translation of performing an element-wise square–the shown start point
being an original vector endpoint, and the shown endpoint being the endpoint
of the element-wise square of the original vector.

the cosine of the angle between the input vector ~λ and the Hadamard square of the weight

vector ~wj
◦2. Figure 3.6 shows a 2-d plot of how performing the element-wise square on a

vector changes not only its magnitude, but also its direction.

Vectors that are along an axis or are along the ones vector do not change their angle from

the origin, but every other vector drifts away from the ones vector toward the axes. This

means that for a given angle between ~λ and ~wj, the corresponding angle between ~λ and ~wj
◦2

will either be smaller or larger, depending on if the input vector is located in the direction

of the drift or away from it, respectively.
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(b)(a)

(c)

(e)

(d)

Figure 3.7. A 2-d simulation of the needed vth of a sweeping weight vector
(purple to blue to green to yellow) that is competing against a static weight
vector (black) at <1,0> when presented with the midpoint input vector (red).
The dotted gray arrow indicates the direction of the sweep. Subfigures (a),
(b), (c), and (d) are snapshots of the sweep from an angle of zero to π/2.
Subfigure (e) shows the corresponding color coded vth of the sweeping neuron
in order for it to achieve the same spiking activity as the constant neuron,
whose vth remains static at 2. The smaller black dots represent the vth that
would correspond to a mean + variance of the L2 + L4 norms. (τ = 1)

This creates a hysteresis (see Figure 3.7 ), meaning that there cannot be a single vth for

a neuron that is input-independent and completely correct for the temporal variance. What

this means is that in some cases, the L4-norm correction will overshoot, and potentially move

to a portion of the loss space that increases loss rather than decreases loss.

I minimize this effect by smoothing the L4-norm variance estimations with a weighted

average of all the L4-norms in the layer, where the layer average µL4 is weighted by rs, a

hyperparameter, as follows:

|wi|L̂4 = (|wi|L4 + rsµL4)
1 + rs

(3.25)

Then |wi|L̂4 is used in place of |wi|L4 in the weight adjustment calculation of 3.23 .
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Additionally, there is the additional approximation of the mean potentials that are pro-

filed from a single batch and averaged over those inputs and across windows of convolution

rather than input-dependent for each sample. We additionally apply the smoothing ratio,

then, to determine how much of the correction to apply. The larger the smoothing ratio rs,

the smaller the weight adjustment.

ŝL4 = sL4 + rs

1 + rs

= sL4 − 1
1 + rs

+ 1 (3.26)

Finally, after scaling the weights in the first layer by ŝL4 , we calculate the overall change

in the average weight magnitude of the layer and re-scale the whole layer to match the

original average weight magnitude so that the spike rate remains on-par with the baseline.

Threshold balancing

In traditional non-spiking to spiking conversion, a threshold must be assigned to each

layer. Because we are changing the distribution of the membrane potentials and squashing

the outliers, the same threshold that was optimal for the baseline will not be the same as

threshold that is optimal for the L4-norm adjusted networks. (Recall that the adjustment

didn’t actually change the threshold, but instead the weights inversely.) Therefore, for a

more fair comparison, we perform the same threshold voltage sweep for both the baseline

and the adjusted networks and choose the best for each.

3.3.5 Adjustment results

We now present our results, which are being prepared for publication [13 ]. We tested

Cifar-10 on both VGG-5 and RESNET-20 as well as Cifar-100 on VGG-11 using both soft-

resent and hard-reset neurons. We also tested five different leak scalars for each network,

performing the threshold and smoothing ratio hyperparameter sweep on each using the

training data. (Note that these values show the leak scalar at each time step rather than

the corresponding leak time constant τ . For these figures, 1 means no leak, and lower values
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Figure 3.8. Classification accuracy of an SNN converted from a pre-trained
non-spiking ANN with the VGG-5 network model on the Cifar-10 dataset,
showing the improvement by adjusting weights according to the L4-norm.

mean faster leak.) The ANN to SNN conversion followed the methodology, code, and some

of the same pre-trained networks as in [30 ].

Cifar-10 on VGG-5

When VGG-5 is trained on Cifar-10 in a non-spiking ANN, the ANN accuracy is 89.32%.

We convert that pre-trained network to a spiking network operating with 75 time steps

per inference. Fig. 3.8 shows the accuracy when converting to a spiking network for both

the baseline conversion and the L4-norm adjusted conversion. The L4-norm adjusted net-

works outperform the baseline in all scenarios and regains some of the accuracy lost during

conversion without needing any additional training in the spiking domain (which is costly).

As expected, for all networks the accuracy drops when the leak is faster and also drops

with the hard reset, in both cases because of information loss. However, it is still benefi-

cial to explore these scenarios. Leaky neurons allow for identifying temporal patterns that

can be erased by non-leaky neurons, and there are also emerging analog devices that have

intrinsic parasitic sub-threshold leak. Additionally, hard resets can sometimes be cheaper

to implement in hardware, as a value simply needs to be discharged to ground rather than
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performing a subtraction operation. Note that the L4-norm improvement increases as the

leak gets faster. This is because the temporal stochasticity and variance plays a larger roll

in the spiking activity when there is more leak.

However, we still get an improvement even in the no-leak scenario, which we had originally

not expected. In the no-leak scenario, the traditional conversion dropped 3.27 percentage

points to 86.05% while the L4-norm adjusted network was able to regain 1.13 of those lost

percentage points. The reason this was unexpected is that because without leak, there is

no steady-sate; every positively-bound membrane potential will continue to increase at an

expected rate proportional to the input/weight dot product and eventually fire. In fact,

mathematically the expected time to fire–and thus the spiking activity–of a no-leak neuron

will always be proportional to the desired input/weight dot product, no matter the variance

in that rate. The benefit here, therefore, must be that that by stabilizing the variance of

that firing rate, it reduces the temporal noise in the spike rates for the subsequent layers.

Cifar-10 on RESNET-20

When RESNET-20 is trained on Cifar-10 in a non-spiking ANN, the ANN accuracy is

92.79%. We convert that pre-trained network to a spiking network operating with 250 time

steps per inference. Fig. 3.9 shows the accuracy when converting to a spiking network for

both the baseline conversion and the L4-norm adjusted conversion. (Note that because of

information loss, RESNET-20 failed to generalize for the faster two leaks in the hard reset

scenario for both the baseline and the L4-norm adjusted networks, and are not shown.)

In contrast to the smaller network VGG-5, RESNET-20 did not see a benefit in the no-

and low-leak, soft-reset scenarios by performing the L4-norm adjustment. We suspect that

because RESNET-20 is a larger network, the de-noising of the internal spike rates was less

effective because the redundancy was able to handle the noise. Yet, the benefit still exists

in the faster leak scenarios, verifying that even with a larger network we need to correct for

the temporal variance affecting the ability to reach the firing threshold.

We further note that in the hard reset scenarios, the L4-norm adjustment did provide

a benefit even in the no- and slow-leak scenarios. This benefit must because the L4-norm
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adjustment reduces the overshoot of high-varying potentials over the threshold, reducing the

associated information loss. Thus there are three areas in which adjusting for the L4-norm

provides a benefit: (1) in all networks with sufficient leak, by accounting for the gap between

the mean and threshold in proportion to the standard deviation; (2) in no-leak networks that

are smaller, or less redundant by reducing the spike rate noise past the first layer; and (3)

in networks with hard-reset neurons, even without leak and with redundancy, by accounting

for the statistical overshoot past the threshold, reducing information loss.

Cifar-100 on VGG-11

When VGG-11 is trained on Cifar-100 in a non-spiking ANN, the ANN accuracy is

71.21%. We convert that pre-trained network to a spiking network operating with 125 time

steps per inference. Fig. 3.10 shows the accuracy when converting to a spiking network for

both the baseline conversion and the L4-norm adjusted conversion.

With this network and dataset, we see similar areas of improvement as with RESNET-

20. While there is little to no benefit with soft reset and no- or slow- leak, there is still the

expected benefit at faster leaks and for hard reset. The overall improvement for VGG-11 is

higher than that of RESNET-20, likely because CIFAR-100 is a more complicated dataset

and so the corrections play a bigger role.
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Figure 3.9. Classification accuracy of an SNN converted from a pre-trained
non-spiking ANN with the ResNet-20 network model on the Cifar-10 dataset,
showing the improvement by adjusting weights according to the L4-norm.
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Figure 3.10. Classification accuracy of an SNN converted from a pre-trained
non-spiking ANN with the VGG-11 network model on the Cifar-100 dataset,
showing the improvement by adjusting weights according to the L4-norm.
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4. LIFELONG LEARNING IN ONLINE SPIKING NEURAL

NETWORKS

One of the current obstacles preventing fully autonomous, unsupervised learning in dynamic

environments while maintaining efficiency is the stability-plasticity dilemma, or the challenge

of ensuring that the system can continue to quickly and successfully learn from and adapt

to its current environment while simultaneously retaining and applying essential knowledge

from previous environments [31 ]. This chapter begins by introducing and discussing this

problem, as extracted from my work in [12 ] (©2020 Allred and Roy)1
 .

There have been a handful of terms used in literature to describe the process of learning

from data that is temporally distributed inhomogeneously, such as the terms incremental

learning, sequential learning, continual learning, and lifelong learning. In this work, we will

use the term “lifelong learning.” Lifelong learning is the process of successfully learning from

new data while retaining useful knowledge from previously encountered data that is statis-

tically different, often with the goal of sequentially learning differing tasks while retaining

the capability to perform previously learned tasks without requiring retraining on data for

older tasks. When traditional artificial neural networks are presented with changing data

distributions, more rigid parameters interfere with adaption, while more flexibility causes

the system to fail to retain important older information, a problem called catastrophic in-

terference or catastrophic forgetting. Biological neuronal systems don’t seem to suffer from

this dilemma. We take inspiration from the brain to help overcome this obstacle.

To avoid catastrophic forgetting, important information from older data must be pro-

tected while new information is learned from novel data. Non-local learning rules may not

provide such isolation. Localized learning such as STDP, on the other hand, may provide

the desired segmentation while also being able to perform unsupervised learning, which is

critical for lifelong learning in unknown environments.

However, even though STDP learning is localized, it is still susceptible to catastrophic

forgetting because the algorithms that employ STDP are traditionally designed for random-

ized input ordering. Certain features, such as homeostasis, attempt to distribute the effect
1↑ Used with permission.
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of input groupings globally in order to benefit from the full network. Without a tempo-

rally uniform distribution of classes, traditional STDP algorithms still lose important older

information, which is either replaced by or corrupted with information from newer samples.

Many recent papers have tackled the challenge of lifelong learning without catastrophic

forgetting, but they are not designed to target the goal of this work, which is autonomous

learning on an online neuromorphic system. This goal requires real-time unsupervised learn-

ing, energy efficiency, and fixed network resources. The works in [32 ]–[43 ] all employ super-

vised or reinforcement learning methods, in some way provide the network with the knowl-

edge of when a task change occurs, or provide access to previous samples for retraining. For

example, the work by [43 ] requires that the system be allowed a parameter-“importance up-

date” period on the older task(s) before proceeding to a new task. Additionally, [32 ]–[37 ], [44 ]

are also not applicable to localized learning rules that may be employed on spiking networks.

And [41 ], [45 ], [46 ] are morphological systems that do not work with static-sized networks,

which would exclude them from direct mapping onto physical hardware implementations.

This chapter begins with a discussion on the challenge of lifelong learning (Section 4.1 )

and a motivation for the need to address catastrophic forgetting (Section 4.2 ). I then detail

three proposed methods for lifelong learning: forced firing [14 ] (Section 4.3 ), dopaminergic

learning [12 ] (Sections 4.4 , 4.5 , and 4.6 ), and adaptive synaptic plasticity [15 ] (Section 4.7 ).

This chapter concludes with a discussion on a relationship between these lifelong learning

methods and the properties of an NiO Mott insulator material [16 ] (Section 4.8 ).

4.1 The Challenge of Lifelong Learning

Backpropagation has proven a successful learning algorithm for deep neural networks.

The accuracy of this approach depends on proper stochastic gradient descent or SGD, also

known as incremental gradient descent, in which many small, global adjustments to net-

work weights are performed while iterating over samples from a training dataset. These

samples, however, must be drawn from a random distribution of the dataset—hence the

name “stochastic” gradient descent—intermixing the classes so that each class can affect the

direction of descent for correct error minimization throughout the entire training process.
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The need to draw training samples from a random distribution is an obstacle for on-

line learning, especially when the system encounters novel data. Backpropagation in an

on-line system for real-time learning proves difficult when the input from the environment

is uncontrolled and unknown. With traditional SGD, the system typically has three choices

to attempt learning from novel data: (1) train normally on inputs in the order seen; (2)

periodically go offline and retrain from an updated dataset; or (3) maintain an online stor-

age of previous samples to intermix with the new samples, providing a simulated random

sampling. The latter two choices are costly and inhibit real-time learning, while the first

catastrophically violates SGD.

4.1.1 Catastrophic forgetting due to global interference

If a uniformly randomized order is not provided, e.g. samples are grouped by class and

classes are presented sequentially to the network, then the gradient descent followed by latter

samples will likely disagree with the direction from previous samples. This conflict causes

the network to fail to reach an error minimum that respects older tasks, as at each period of

time in the training process the network essentially attempts to globally optimize for only the

current tasks, agnostic as to whether or not that particular direction increases the error for

older tasks. Latter samples erase or corrupt the information learned from previous samples,

causing catastrophic forgetting.

One of the largest underlying causes of catastrophic forgetting in backpropagation algo-

rithms is the reliance on a global error. Calculating weight updates from the current sample’s

global error means that the current sample may globally affect network weights. Biological

neuronal learning, on the other hand, appears to be significantly localized, with synaptic

weight updates being a function of local activity, causing different regions to be responsi-

ble for different tasks. While distributed representations promote generalization in neural

networks, rapid learning of novel information may not require significant modifications to

low-level distributed representations in a sufficiently trained network. It has been shown

that the IT cortex contains a large-scale spatial organization, or “shape map,” that remains

significantly stable over time [47 ], even while learning novel information. Lee and DiCarlo
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[48 ] have shown that the stable earlier levels of the visual cortex are capable of representing

the generic structure and composition of never-before-seen inputs with an already-learned

understanding of the physical world that remains constant through the remainder of life–for

example, an understanding of lines, edges, curves, and colors at the lowest levels and an

understanding of rotations, shading, and physical properties at subsequent levels. Thus, it

is likely that lifelong learning need only occur in the last one or two layers of a neural net-

work, where local learning may sufficiently classify from a read-out of the higher-dimensional

generalizations that have been learned previously.

4.1.2 Catastrophic forgetting in localized learning due to homeostasis

Many leading STDP-trained SNNs employ adaptive thresholding, in which a neuron’s

firing threshold increases each time it fires and otherwise decays, preventing specific neurons

from dominating the receptive field (see 2.4.1 ). Adaptive thresholding helps achieve home-

ostasis by distributing the firing activity between neurons. However, adaptive thresholding

assumes a temporally random distribution of input samples and often causes catastrophic

interference when the environment changes [14 ]. For lifelong learning, adaptive thresholding

must be modified to account for long-term variations in spiking activity that would occur

when processing temporally variant input distributions.

4.1.3 The need for forgetting in online systems

For successful lifelong learning, there must be network resources available to learn new

information. In an online system with finite resources, some forgetting of older knowledge

is required to make room for information from new data. As mentioned earlier, there are

morphological systems that logically grow the network to accommodate new information,

even employing pruning techniques when necessary if the network grows too large. However,

for our goal of online learning on neuromorphic hardware, inserting and removing physi-

cal components of the network is not an option, and instead existing network components

must be re-purposed to learn a new task when network capacity is reached, requiring some

forgetting.
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Additionally, in some cases, forgetting may actually be beneficial. Forgetting outlier data

can improve generalizations, and forgetting stale data can allow the system to adapt to a

changing environment if new information directly contradicts older information. Because

some forgetting must occur, this work seeks to control the forgetting process to protect the

most vital information, minimizing accuracy loss.

4.1.4 Problem description: sequential unsupervised learning

In Section 2.4.3 , we described the traditional unsupervised digit recognition problem

in which samples are drawn from all classes uniform randomly throughout the training

process, providing a temporally consistent distribution. That is the interleaved scenario and

represents traditional offline learning in which all training data is already available.

To test lifelong learning, the methods proposed in this chapter (forced firing, dopamin-

ergic learning, and adaptive synaptic plasticity) are tested with the worst-case possible

ordering–the disjoint scenario in which all samples from one digit are presented before moving

to the next digit and never returning to previous digits after changing classes. The disjoint

scenario with sequentially presents classes represents a changing, dynamic environment.

In both scenarios, labels are not provided during training. The network receives no

external indication of when a task/digit change occurs in the disjoint scenario. Other than

sequentializing the MNIST dataset in the disjoint scenario, our training and testing procedure

follows closely with that of [22 ], who demonstrated competitive unsupervised STDP training

on MNIST in the traditional interleaved scenario. The following discusses modifications to

the baseline setup in Section 2.4.3 for the proposed lifelong learning methods.

Training process

In contrast to the baseline setup described previously, if a given sample does not produce

enough output spikes we do not continue to increase the input firing rate during training in

the Forced Firing and Dopaminergic Learning methods, since they have other methods of

stimulating neurons in the absence of a good match. Because these alternative approaches
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are part of the learning process, they are only employed during training, and the increased

input rates do occur as normal during testing.

Testing process

In the disjoint scenario, we measure effective lifelong learning over time by evaluating

each network after each task change to determine its current accuracy for all classes seen

up to that point. Networks in the interleaved scenario are only evaluated at the end of

the training process. As in the baseline, during evaluation we pause learning and freeze

network parameters to prevent samples from older classes or samples from the testing set

from affecting the network.

4.2 A Motivating Example

In many real-time applications, online machine learning must continually process new

data to tune its performance or alter its response when confronted with changing environ-

ments. In these situations, it is often essential to retain at least a portion of previously-

learned information. A common solution to avoid overwriting old information is to provide

data reinforcement both during initial training and any subsequent training. This motivating

example for data reinforcement is extracted from my work in [14 ] (©2016 IEEE)2
 .

4.2.1 Data reinforcement during initial training

The practice of data reinforcement is that of re-presenting previous information to the

network together with the new information so that the old data is sufficiently retained and

stays balanced with the new information. Data reinforcement is used during the initial

training process by intermixing input classes and iterating repeatedly over a varied selection

so that later input patterns do not replace previous patterns.
2↑ In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of Purdue’s products or services. Internal or personal use of this material is permitted. If
interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or
for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_
standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.
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Without data reinforcement, the latter information may dominate and the former infor-

mation may be lost. To emphasize this point, we show two examples of an SNN attempting

to learn the digits ‘0’ through ‘9,’ one with and the other without data reinforcement. Figure

4.1a shows the first example in which the network is presented with a randomized mixture of

input images from the MNIST data set, allowing data reinforcement to balance the different

input patterns during the training process.

In contrast, Figure 4.1b shows the second example in which previously learned data

categories were not re-presented to the network, i.e. the classes were presented sequentially:

first all the images for digit ‘0,’ and then all the images for digit ‘1,’ and so on until digit ‘9.’

At each stage of the training process, the new image patterns were unacceptably learned over

the top of the old image patterns, causing the learned patterns to morph together until the

network became useless at correctly categorizing them. The absence of data reinforcement

prevented the network from successfully learning during its initial training.

4.2.2 Data reinforcement during subsequent training

Not only is data reinforcement essential for the initial training process, but every time

subsequent information is encountered, old information must traditionally be re-presented to

avoid being lost. Figure 4.2a shows an SNN initially trained using data reinforcement (i.e., all

classes intermixed) for the digits ‘0’ through ‘8.’ After this initial training, we subsequently

presented the input image examples for the digit ‘9’ without reinforcing any of the previous

digits, resulting in data being overwritten. Figure 4.2b illustrates how weights associated

with each neuron were affected, with many learned digits slowly transforming into the digit

‘9,’ especially the weights for patterns of similar digits such as ‘4’ and ‘7.’

Without reinforcing previously-learned data, traditional neural networks have difficulty

retaining previous knowledge while trying to continue to learn. However, in online real-time

learning it is often impractical to store all previous input data for retraining each time new

input data is encountered. A neural network capable of sequential learning—being trained on

new data without reinforcement of old data—would naturally lend itself to online real-time

machine learning.
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(a) Interleaved scenario - all 10 digits. (b) Sequential scenario - ‘0’ through ‘9.’

Figure 4.1. Synaptic weights of reference vector neurons in a traditional SNN
after two contrasted training scenarios: (a) interleaved; and (b) sequential.
Each of the 100 (10x10) excitatory neurons has 784 (28x28) synaptic weights,
rearranged in a two-dimensional grid for display. Darker weights are stronger
synaptic connections. (©2016 IEEE [14 ])

(a) Interleaved scenario - all digits except
‘9.’

(b) After subsequently learning digit ‘9.’

Figure 4.2. A training scenario (before (a) and after (b)) showing the at-
tempt to add new information (digit ‘9’) to an already trained SNN. Without
reinforcing old data, the stored information is corrupted. (©2016 IEEE [14 ])
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4.3 An Initial Proof of Concept: Forced Firing

This section presents an initial approach for designing a sequentially learning SNN, taken

from my work in [14 ] (©2016 IEEE)3
 . The design framework explores four main components:

augmenting the network with over-provisioned neurons, guiding new input signals to these

supplemental neurons, determining when additional neurons are necessary, and reassigning

old neurons under network size constraints.

4.3.1 Adding neurons to an SNN

Lifelong learning of sequentially presented information requires that new information

be learned with a limited or controlled effect on previous training. The only certain way to

completely avoid altering previously learned information is to exclude any trained portions of

the network during any subsequent training. If trained portions are excluded, then untrained

portions must be made available.

To provide untrained resources for sequential learning, an SNN implemented directly in

hardware may be over-provisioned with additional neuron components. These reserved or

dormant neurons may remain inactive throughout initial training stages during which they

are not needed. For certain hardware implementations, dormant neuron components may

be power-gated [49 ] to reduce leakage current and overall power consumption while they

are dormant. Then, when the network encounters new information after the initial training,

the dormant neurons that were reserved may be activated or powered-on so that the new

information can be encoded in their respective synaptic weights.

However, the naïve approach of simply augmenting the network size to learn new in-

formation encounters a few obstacles. Figure 4.3 illustrates these obstacles. An SNN of

90-neurons was augmented with 10 additional neurons that remained dormant during the

training of digits ‘0’ through ‘8’ (see Figure 4.3a ). Then the dormant neurons were activated

while the training images for digit ‘9’ were presented to the network. The untrained weights

of the supplemental neurons that were added to the network were not intrinsically matched
3↑ See previous footnote 2 .
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to the input spike trains associated with the training data set of the digit ‘9,’ causing them

to spike infrequently and only weakly learn the new information (see Figure 4.3b ).

Even when the data set was applied 3X as long to allow the new neurons to learn the in-

formation, the input spike trains were better matched to the synaptic weights of previously-

trained neurons, especially those associated with the digits ‘4’ and ‘7’ (see Figure 4.3c ),

significantly overwriting the old information. Without reinforcement of the previous infor-

mation, merely adding neurons to this network is insufficient. The new input signals must

somehow be guided through the synaptic weights of the added neurons.

4.3.2 Guided STDP learning with forced firing

The principle element of STDP learning is the order and timing of the firing in pre- and

post-synaptic neurons. As discussed in Section 2.4.2 , the synaptic weight is strengthened

when the post-synaptic neuron fires shortly after the pre-synaptic neuron fires. This work

exploits STDP to guide input signals to the added neurons through a method called forced

firing. Forced firing consists of presenting the input signals to the network and then shortly

thereafter causing the added neurons to fire. By forcing the new neurons to fire, the synaptic

weights that connect the input neurons to the added neurons are strengthened. An SNN

with forced firing gives the added neurons the needed preference over the previously-trained

neurons, providing a layer of protection to the old information. In addition, this method is

enhanced by sending inhibitory signals to the previously trained output neurons, making it

harder for them to fire and further protecting the old information.

Figure 4.3d shows the results of forced firing using the same setup as the previous exam-

ple. The 10 neurons that were added were forced to fire while the previously-trained neurons

were inhibited. Forced firing successfully limited firing to the added neurons, preserving the

previous knowledge of the network while allowing the new information to be learned.

However, this example highlights several issues that need to be addressed: How many new

neurons should be added to the network? How does the network know when new information

is being presented? (This small example relied on supervised learning.) Many of the new

neurons learned very similar patterns because they were all forced to fire. For input patterns
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(a) The weights of 90 neurons that ini-
tially learned all digits except ‘9’ with
data reinforcement; 10 dormant neurons.

(b) The same SNN after then using the
dormant neurons to attempt to subse-
quently learn digit ‘9.’

(c) The weights of the same SNN after
further applying the input patterns for
the digit ‘9’ for 3X as long as in (b).

(d) The same network from (a) after in-
stead learning the digit ‘9’ using forced
firing of the dormant neurons.

Figure 4.3. The synaptic weights of a pre-trained SNN attempting to use
reserved dormant neurons to subsequently learn the digit ‘9.’ (©2016 IEEE
[14 ])
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that vary significantly, should different neurons be forced to fire? For how long should the

new neurons be forced to fire? (In this example, forced firing occurred for the entire data

set of presented ‘9’s. This caused unnecessary forced firing after the input patterns had

already been sufficiently learned, causing an effectively larger learning rate as manifested

by the darker weights.) How should the network respond if previously-learned data is re-

encountered? (Augmenting the network should only occur for new data.) Resolving these

issues requires an unsupervised network capable of true sequential learning—one that can

learn data in any order, with or without reinforcement, as detailed next.

4.3.3 Implementing unsupervised sequential learning

During supervised training, the data labels only provide the knowledge of when a new

category or class of information is presented. Ideally, neurons should be added to the net-

work as they are needed so that the allocation of neurons can depend on data complexity,

independent of data labels. Accordingly, the defining task of such a network is to determine

when new information is presented, and whether the new information merits forced firing.

In a spiking neural network, the frequency of spikes at the output layer can indicate how

well the input pattern was recognized by the network. Too few output spikes suggests that

there is not a good match in the network for the current input pattern. With an established

threshold for output spike count (see Section 4.3.5 ), the network makes a decision whether

or not to allocate a new neuron to help learn the current input data through forced firing.

Because neurons are added as they are needed, the network can begin this learning process

without any previous offline training. In essence, the network can start with zero active

neurons and no initial training, activating dormant neurons one-by-one as all information

is learned sequentially. If previously learned information is encountered, the output spike

count threshold will be surpassed, indicating that a new neuron is not required and causing

the old data to be reinforced, as desired to refine generalizations.

This threshold may be tuned to control the sensitivity of the network to new informa-

tion, which may be affected by the availability of dormant neurons. In a network where

many dormant neurons are available, the threshold can be set low, providing easy access to
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the extra neurons for those input patterns that do not reach the threshold. On the other

hand, a smaller network with few available dormant neurons should have a high threshold,

restricting new neurons to only information that is very different than previously learned

data. However, a finite network with limited neuron resources will eventually run out of

available dormant neurons. Sequential learning proves valuable when dealing with these

limited network memory scenarios.

4.3.4 Working with a static network configuration

Reserved dormant neurons may not be available to be added to the network, especially

under power and area constraints. A finite network must then perform a tradeoff between

learning new information and retaining old information. If new information must be learned

at the expense of old information, it may be desirable to control the loss of information in

a way that a small level of detail is lost from each category of information rather than an

entire category being forgotten.

In such a scenario, graceful degradation of accuracy can be achieved by strategically

selecting sections of the previously trained network to be reassigned to learn the new infor-

mation. This selection focuses on idle neurons, which are defined by their infrequent spike

count (see Section 4.3.5 ) because they contribute less often to the overall network compu-

tation. When the network has decided to allocate a new neuron but does not have any

dormant neurons available, the neuron that has been most idle is reassigned through forced

firing.

Therefore, in addition to the benefit of not requiring data reinforcement, our sequentially

learning SNN provides a valuable tradeoff. High accuracy may be maintained as new in-

formation is learned at the expense of increased power and area cost due to the activation

of dormant neurons (if they are available), or if network size is limited, the overall network

accuracy may be gracefully degraded to expand the network’s capability as new informa-

tion is learned. Overall, these advantages are provided by forced firing and knowing which

neurons to fire and when to fire them. Figure 4.4 delineates the system-level approach to
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implementing the proposed sequentially learning SNN, which we experimentally validate, as

demonstrated in the next two subsections.

4.3.5 Methodology

Simulations for this experiment were performed using Python and the BRIAN spiking

neural network simulator [19 ] to learn digit recognition with the MNIST training set [27 ]. The

Brian simulator enables spiking neural networks to be efficiently implemented on biologically-

based neuron models. We used the same neuron and synapse models, network architecture,

lateral inhibition, input encoding, and training and classification methods as Diehl and

Cook in [22 ] using portions of their code provided at [20 ], with the following modifications

to implement a sequentially learning SNN.

Implementing forced firing

In order to accomplish forced firing, the neuron membrane potential must be caused to

surpass the firing threshold potential. This requirement can be satisfied either by sending

additional excitatory synaptic signals to the relevant neuron to increase its membrane po-

tential, or by decreasing its firing threshold. In our simulations, we temporarily reduce the

relevant neuron’s firing threshold. The lower threshold causes the neuron to spike more eas-

ily, strengthening the appropriate synaptic connections from the input signals and encoding

the new information.

Spike count threshold for new neurons

In the setup used in [22 ], the output spike count was used to determine if the input spike

train intensity should be increased. If fewer than five output spikes were registered, then

it was determined that the network was having difficulty learning the current pattern. The

input intensity was incremented iteratively until at least five output spikes were registered.

We use spike count to also determine if there is poor recognition, indicating the need to add

a new neuron. This threshold was established as when the input intensity was increased 5X

without registering the five output spikes.
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Figure 4.4. System-level approach to implement incremental STDP learning.
(©2016 IEEE [14 ])
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Output spike count is partially influenced by the pixel footprint of the patterns stored

in synaptic weights. An input pattern with a larger pixel footprint can have a larger impact

on output spike count because there are more synaptic connections in use. Because output

spike count is an essential metric, this imbalanced preference was resolved using a weight

normalization technique similar to that in [28 ].

Identifying idle neurons using spike count

When there are no dormant neurons available, an idle neuron is identified and reassigned

to learn the new information. As discussed in 4.3.4 , the idle neurons can be identified by

a low spike count. We expand this idea to improve accuracy by using a “win” count that

is based on the spike count. Rather than count each spike for every output neuron that

fires, we count how many times an output neuron fires more than the other output neurons.

These are called “win” counts and can be implemented with simple hardware counters. For

each input sample, the win count of the output neuron that fires most is incremented. The

neuron with the smallest win count is deemed most idle. By counting wins, we also eliminate

neurons that are less useful due to redundancy.

In addition, we establish a time decay for neurons that were recently added to the net-

work, preventing them from being immediately overwritten (since their spike count resets

when they are reassigned). This time allows new information the opportunity to establish

its importance before becoming a candidate for deletion.

Homeostasis

Traditional homeostasis requires that input patterns be intermixed. However, iterative

learning often presents input categories in groups, requiring that sections of the network be

active at different times. Our method of forced firing further conflicts with homeostasis by

giving preference to a specific neuron.

Our resolution to this conflict was to replace homeostasis with a combination of weight

normalization (discussed previously) and complementary inhibitory input weights (discussed

73



(a) Excitatory synaptic weights from the
input to an excitatory neuron.

(b) Complimentary inhibitory weights to
the same neuron.

Figure 4.5. Example weights from the input neurons to an excitatory neuron
that has been trained for a specific pattern of the digit ‘0.’ (©2016 IEEE [14 ])

next) to reduce a single neuron’s dominance of all input fields while still encouraging variation

between neurons.

Complementary inhibitory weights

For each excitatory synapse extending from the input neurons to the excitatory neurons,

we implemented an inhibitory synapse with a complementary weight (see Figure 4.5 for

an example). The inhibitory weights (winh) are calculated to nonlinearly compliment the

excitatory weights (wexc) as follows:

winh = β · [1 − (wexc)µ] (4.1)

where β > 1 and µ < 1. The complementation is scaled by β to allow the inhibitory

weights to have larger strength, but to only reach a high value when the corresponding

excitatory weight is very small. The nonlinearity of µ allows the inhibitory weights to have

less affect before the weights are sufficiently trained. The excitatory weights range from 0

to 1, while the inhibitory weights are reversely scaled from β to 0. The exact values for β

and µ can depend on network size, tuning the variability of learned data. For a network of

size 400, we used β = 8 and µ = 1/32. An appropriate balance of excitatory and inhibitory

weights can help prevent overfitting.

The concept of complementary inhibitory weights is based on the idea that some patterns

are defined not only by where pixels are, but also by where they aren’t. For example, a certain

image for the digit ‘3’ may have all the same pixels as an image for the digit ‘8’ except for
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the pixels closing the loops on the left. In this example, the excitatory weights associated

with the digit ‘3’ would be large where there are pixels and small where there is white space,

while the inhibitory weights would be small where there are pixels and large where there is

white space. The inhibitory weights prevent the neurons associated with the digit ‘3’ from

firing when the digit ‘8’ is presented. Complimentary inhibitory weights allow forced firing

to successfully enable sequential learning, as demonstrated next.

4.3.6 Preliminary results

Using the methodology described, we simulated an sequentially learning spiking neural

network with 400 excitatory neurons. The data was presented sequentially, and no training

image is re-shown after subsequent images are shown (i.e. no reinforcement). While repeating

input patterns within a category is not prohibited by sequential learning, we avoid it to better

illustrate the capability of the network.

The accuracy of the network was measured using a testing set of images from the MNIST

data set which were not used during training. Figure 4.6 shows the accuracy measurements

at each stage of the training process, which we explain below.

We began the training process by presenting only digit ‘0’ to the network. Figure 4.7a 

shows the network weights at that stage. Notice that the network activated 315 out of the

400 total neurons, leaving 85 still dormant. The darker weights correspond to those input

patterns that were learned more intensely, indicating that patterns similar to those patterns

were more common. Lighter weights indicate input patterns that were less frequent and are

consequently better candidates for reassignment when the dormant neurons run out.

Figure 4.7b shows the network weights after subsequently presenting only the training

images associated with digit ‘1.’ We note that much fewer neurons were required to learn

the digit ‘1’ because it is a less complex pattern. Next, the training images for digit ‘2’

were presented, as shown in Figure 4.7c . It is important to see that the weights of several

neurons which had learned the digits ‘0’ or ‘1’ were overwritten to learn digit ‘2’ because

there were insufficient dormant neurons. The idlest neurons, by win count, were selected to

be reassigned.

75



85.9%

87.0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
la

ss
if

ic
at

io
n
 A

cc
u
ra

cy

Digits trained sequentially in time →

Incremental Learning (This Work)

Data Reinforcement (No Incremental Learning) [9]
Forced firing – sequential

Diehl and Cook (2015) – interleaved

Figure 4.6. Graceful degradation of accuracy as new information is added
to an incrementally learning SNN of size 400, compared to an equivalent SNN
which is incapable of incremental learning and requires data reinforcement.
(©2016 IEEE [14 ])

This process was continued in order for the remaining digits, one by one, until all digits

‘0’ through ‘9’ had been learned. Although the data was presented in groups, the training

process is unsupervised, and the information may be learned in any order. The advantage of

this network is that even though the old data is not reinforced, the network still successfully

preserves substantial amounts of old information across data categories. Note how the final

weights (see Figure 4.7j ) show many image patterns for each digit (early or late). Rather

than all of the old information being overwritten, less significant portions across the data

categories were selectively reassigned, providing graceful adaptation.

As mentioned, the trade-off for learning broader information across more categories with

a limited network size is a gradual decrease in accuracy. A good comparison at this network

size is Diehl and Cook’s [22 ] SNN which achieves at most 87.0% accuracy for an SNN of size

400, with improved accuracy as the network size is increased. As with other traditional SNNs,

their work requires that all input data be learned at once (i.e. input categories interleaved).

The accuracy results for our sequentially learning SNN are comparable (refer again to Figure

4.6 ), even though the data is presented sequentially without any data reinforcement.
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(a) After learning digit ‘0.’ (b) After learning digit ‘1.’ (c) After learning digit ‘2.’

(d) After learning digit ‘3.’ (e) After learning digit ‘4.’ (f) After learning digit ‘5.’

(g) After learning digit ‘6.’ (h) After learning digit ‘7.’ (i) After learning digit ‘8.’

(j) After learning digit ‘9.’
Figure 4.7. Synaptic weights of a sequentially learning SNN using forced
firing. (©2016 IEEE [14 ])
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4.4 Dopaminergic Learning for “Controlled Forgetting”

This section presents a new learning paradigm, inspired by the dopamine signals in

mammalian brains that non-uniformly, or heterogeneously modulate synaptic plasticity. We

create Controlled Forgetting Networks (CFNs) that address the stability-plasticity dilemma

with rapid/local learning from new information, rather than the traditional gradual/global

approach to learning. Our approach allows fixed-size CFNs to successfully perform unsu-

pervised learning of sequentially presented tasks without catastrophically forgetting older

tasks.

The stability-plasticity dilemma can be addressed by allowing for dynamic, heteroge-

neously modulated plasticity. Consider the example of unsupervised clustering where neu-

rons are trained to center on input clusters (see Figure 4.8 ). Temporarily making the synaptic

weights of some neurons more plastic while keeping the weights of other neurons more rigid

can allow for isolated adaptation by the plastic parameters while protecting the informa-

tion associated with the rigid parameters. The challenge then becomes how to dynamically

control the plasticity and for which parameters.

STDP embeds local, generalized representations of correlated inputs within the synaptic

weights of individual neurons. Lateral inhibition between neurons, similar to the architecture

in [22 ], creates competition that prevents multiple neurons from learning the same informa-

tion. We seek to control the forgetting process by harnessing the segmentation of localized

and distinct representations that are created by STDP with competition. Interference from

novel information may be isolated by stimulating specific network elements to adapt to that

information, protecting the remainder of the network from change. The forgetting caused by

this interference may be minimized and controlled by targeting network elements associated

with less useful information. We draw on inspiration from biology to heterogeneously mod-

ulate STDP learning to perform such isolated adaptation, creating Controlled Forgetting

Networks (CFNs).
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Figure 4.8. The stability-plasticity dilemma in unsupervised clustering. Life-
long learning is achieved with a strategic heterogeneous modulation of synaptic
plasticity. (©2020 Allred and Roy [12 ])
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Input Signals Layer 1 Neurons
Layer 1’s

Dopaminergic Neuron

Inhibitory

Dopaminergic

(Excitatory)

Excitatory

(Interlayer)

Figure 4.9. Single-layer CFN architecture. The dopaminergic neuron fires
when the other neurons on its layer are not firing, often a sign of novel in-
formation. The firing of the dopaminergic neuron stimulates firing in the
other neurons while temporarily enhancing plasticity. The stimulation signals
from the dopaminergic neuron are weighted to provide heterogeneous, targeted
stimulation. The other neurons within a layer each have additional laterally
inhibitory connections for competition (not shown here). (©2020 Allred and
Roy [12 ])

4.4.1 Biologically inspired dopaminergic plasticity modulation

Dopamine acts as a neuromodulator which gates synaptic plasticity. Dopamine signals

are most commonly thought of as reward signals. In addition, though, dopamine releases are

also associated with encountering novel data, which allows the brain to quickly adapt to new

information [50 ]. We adopt this concept of novelty-induced plasticity modulation for our

goal of local, rapid adaptation. We mimic a novelty-induced dopamine release by including

a dopaminergic neuron at a given layer of a CFN (see Figure 4.9 ). We discuss how to identify

novel information in an STDP-trained SNN, how the dopaminergic neuron is designed to

fire under those conditions, and how the dopaminergic neuron modulates plasticity.

In STDP-trained SNNs, the weight vectors stabilize on the radial center of seen input

clusters and are more likely to fire for inputs to which they are angularly closer–meaning
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inputs where the angle between the input vector and the weight vector are smaller for a given

vector magnitude (see Sections 3.1.2 and 4.5.2 ). In other words, a sample from an unseen

distribution will be less likely to induce firing than a sample from a learned distribution.

Thus, when an input sample results in little-to-no firing activity at a given layer of neurons,

we may assume that it contains information novel to that layer. Data in Section 4.6.3 

validate this assumption, showing that a dopaminergic neuron designed to fire under these

conditions is indeed triggered more frequently whenever the system switches to an unseen

class and otherwise sees a reduction in triggered dopaminergic activity as the new class is

learned over time.

We design the dopaminergic neuron with a resting potential higher than its firing poten-

tial, giving it a self-firing property. It is additionally suppressed via inhibitory connections

from the other neurons in its layer so that it only spikes when they do not. This setup allows

the dopaminergic neuron to fire only when novel information is detected.

When it fires, the dopaminergic neuron enhances plasticity by temporarily boosting the

learning rate of the other neurons in its layer all the way to one while simultaneously stim-

ulating firing in those other neurons via excitatory synaptic connections that we are calling

dopaminergic weights. Because of the lateral inhibition discussed previously, once one of

the stimulated neurons fires, it prevents or reduces the probability of the other neighboring

neurons from firing. A neuron with a boosted learning rate then resets its learning rate the

next time it fires or receives an inhibitory signal from a neighboring neuron, indicating that

one of its neighbors has fired. Thus, while the dopamine signal is sent to many neurons, only

the first neuron(s) to fire undergo the enhanced plasticity, creating heterogeneous plasticity

and allowing the dopamine signal to perform an isolated targeting for local, rapid adaptation

rather than global interference. Temporarily modulating the learning rate to the full value

allows the first neuron that responds during a dopamine release to undergo a one-shot rapid

learning of the current, novel sample and be “reassigned” without corruption from its old

weight values. Then the learning rate is reset, allowing the representation to generalize with

traditional, gradual weight changes. Figure 4.10 presents an example of the dopaminergic

neuron in operation. The dopaminergic neuron fires for novel representations and does not

fire if an input is similar to one already seen.
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4.4.2 Targeted stimulation for controlled forgetting

We have addressed how to make the forgetting process rapid and local in order to reduce

interference between old and new information. However, we must also control the specific

locality of the forgetting so as to maintain high accuracy for previous tasks. A uniform

stimulation would cause the neuron that is angularly closest to the input to fire first and

adapt to the novel information, independent of how useful that neuron is for previous tasks.

When the network is refining representations that have already been seen, adjusting the

closest weight vector is appropriate to promote generalization. However, when novel data

in presented in high-dimensional space, the closest neuron is more likely to be one that has

already learned a distribution from a previous class rather than an unused neuron that is

completely uncorrelated. Thus the stimulation must be controlled to avoid overwriting the

most essential information from previous tasks. We provide this control by heterogeneously

stimulating the other neurons to fire during the release of dopamine via the excitatory

dopaminergic weights. Training these weights allows specific neurons to be targeted to

undergo forgetting and re-learning.

To minimize accuracy degradation caused by forgetting, we would ideally like to forget

outlier or stale information rather than commonly-used or recent information that may be

essential for returning to previous tasks, applying knowledge from old tasks to new tasks,

or generalizing the rapidly learned novel information. As a proxy for this categorization, we

target neurons with low overall firing frequency (outliers) or less recent firing activity (stale).

Considering firing age over firing frequency is a tunable parameter that controls how much

if any preference should be given to more recent tasks. For the experiments in this paper,

we consider all tasks as equally important no matter how recently seen, so we target neurons

with low firing frequency.

For these purposes, we enact a simple local learning rule: a dopaminergic weight depresses

each time its post-synaptic neuron fires. This rule causes a dopaminergic weight to be smaller

when the post-synaptic neuron it is targeting has a higher firing rate, and vice versa. To

maintain positive values, the depressions are proportional to the current value, causing an

exponential decay. Otherwise, the dopaminergic weights experience a gradual potentiation.
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Potentiation must occur to prevent the weights from tending toward zero with differences

between weights too small to distinguish on implementations with finite precision. The rate

of potentiation is irrelevant in our setup as long as it is the same for all dopaminergic weights

in the layer, maintaining their relative values, because the dopaminergic neuron continues

to send the dopaminergic signal until one of the other neurons in the layer fires. For the

experiments in this work, we effect this potentiation by L2-normalizing the fan-out vector of

dopaminergic weights after a depression.

4.5 Dopaminergic Learning: Experimental Methodology

To evaluate the effectiveness of our proposed lifelong learning approach, we simulated

CFNs on the MNIST dataset [27 ] on network sizes of 400, 900, 1600, 2500. 3600, 4900,

and 6400 excitatory neurons, each for five different seeds. We compare the CFNs that have

dopaminergic neurons to the same setups without dopaminergic neurons, both with and

without homeostasis from adaptive thresholding. Also, as a control for the label assignment

and evaluation process, we also test equivalently-sized networks with randomized weights,

also averaged over five seeds, to compare with the accuracy achievable solely by the label

assignment process.

4.5.1 Event-driven computation

As opposed to the time-stepped Brian simulator used previously in the forced firing

method and also next the the adaptive synaptic plasticity method, for this method we

employed pure event-driven computation in Matlab. Using exponential kernels, we treat

spikes as inducing instantaneous voltage potentiations in the respective post-synaptic neuron

membranes with exponential decay. As such, neurons only fire upon receiving an incoming

spike and will not fire between incoming spikes, with the exception of the dopaminergic

neurons which are handled separately. This allows us to emulate the networks using purely

event-driven computation rather than breaking time into discrete time steps and updating

neurons states at each time step. Because we encoded input spike trains as Poisson point

processes, the time between spikes is an exponential random variable with λi = inputi.
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Therefore, rather than incrementing time in fixed intervals, we calculate the time until the

next input spike arrival and decay all the traces and membrane potentials according to that

time interval before processing that input spike.

The dopaminergic neurons are an exception, as they fire in the absence of input spikes.

Therefore, before processing an input spike, we first check to see if the dopaminergic neuron

would have fired earlier, in which case, it is processed at its respective time interval first.

4.5.2 Modulating STDP

Due to the rapid learning that occurs in the presence of dopamine and the lack of tra-

ditional homeostatic threshold dynamics, we modify the STDP learning rule for improved

stability, discussed previously in Section 3.2 . Dopaminergic modulation of plasticity is im-

plemented by dynamically changing the learning rate α. During normal operation, α is set

to 0.01 for gradual generalizing refinement of the synaptic weights. When the dopaminergic

neuron fires, α is temporarily set to one for the reasons discussed in Section 4.4.1 .

Normalization

The MNIST dataset is a magnitude insensitive dataset, meaning that increasing or de-

creasing the intensity of a sample does not alter its class and that angular distance is more

important than Euclidean distance. As given in (3.16 ), the mean pre-firing potential of a

spiking neuron is proportional to the L2-norm of its weight vector and also to the L2-norm

of the input rate vector. Although a larger mean pre-firing potential does not always corre-

spond to a larger firing rate due to differing variances caused by the Hadamard square of the

weight vector as shown in (3.18 ), the correlation between E[V ] and the firing rate sufficiently

holds for datasets like MNIST with inputs of large enough dimensions and fairly comparable

input sparsity between samples.

As such, for a given input and assuming equal weight vector magnitudes, the neuron that

is angularly closest to the input will be more likely to fire, allowing for unsupervised Hebbian

learning by training neurons on correlated inputs. Therefore, we L2-normalize each neuron’s

weight vector, and for the same reason the input rate vectors are also L2-normalized. Weight
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normalization has recently been shown to occur in biology [51 ] and may still be considered a

localized function, as the processing can occur at the post-synaptic neuron to which all the

weights in a given weight vector are directly connected.

4.5.3 Timing and time constants

As our evaluations and simulations are purely event-driven, the concept of discrete com-

putational time steps is not applicable. Timing parameters are thus purely relative. There-

fore, without loss of generality, the L2-normalized input rate vectors were defined as having

an L2 rate magnitude of one spike per time unit, and all other timing values are relative to

that. This subsection discusses the timing values used in the simulations.

Membrane decay time constant

According to Equation (3.16 ), the expected value of the membrane potential saturates in

time according to (1 − e−t/τ ). A smaller τ results in a faster convergence to the steady state,

or, equivalently, fewer input spikes to converge. E.g., in five time constants, the expected

potential reaches over 99% of is steady-state value. However, using (3.18 ), the steady state

standard deviation of the potential in proportion to the mean decreases as the decay rate

increases:

√
V ar(V )
E[V ]

∝ 1√
τ

(4.2)

Thus, a larger membrane decay constant is better for proper discrimination between two

differing inputs, but increases the number of computations. For the L2-normalized MNIST

dataset with 784 input dimensions, the angular distances between samples of differing classes

are close enough to require at least 10 to 15 normalized time units for τmem in order to

successfully establish a firing threshold that can discriminate between classes, and so τmem

was set to 15 time units.
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Time to recognize

A τmem of 15 still produces enough variance according to (3.18 ) that two to three time

constants (between 30 and 45 time units) is on average sufficient time for the potential to

rise above its steady-state mean. As mentioned earlier, we identify successful recognition of

an input sample after registering five output spikes. Therefore, a total of 150 to 225 time

units was generally sufficient to produce five sequential firing events in a reference vector

neuron with a center close to the input.

In our simulations, we found little accuracy change by adjusting this hyperparameter

within this range as long as the threshold voltage was appropriately tuned, so we fixed the

time to recognize at 200 normalized time units for each simulation. We tuned the dopaminer-

gic neuron to fire after those 200 time units unless it has been otherwise inhibited as discussed

in Section 4.4 . Specifically, with vreset set to zero as a reference voltage, the dopaminergic

neuron’s firing threshold vth was set to one with a resting voltage set higher at two, causing

the membrane potential to rise until it fires. Setting its rising time constant to 200
ln(2/1) then

meets this objective. Figure 4.10 shows the membrane potential of the dopaminergic neuron

during simulation for the first several samples as an example of its operation over time.

We also set τpre to the same timing value of 200 time units to capture as much of the

input train as possible because of the rapid one-shot dopaminergic learning of novel samples.

4.5.4 Determining vth without adaptive thresholding

As discussed in 4.1.2 , adaptive thresholding for homeostasis can interfere with lifelong

learning on changing input distributions by temporally and spatially distributing the firing

activity. Long-term adaptive thresholding may still be used with controlled forgetting if

properly tuned, but our proposed method of enhanced plasticity and stimulated firing of

infrequently-firing neurons is itself a form of deliberate, controlled homeostasis. Therefore,

for a more accurate evaluation of the CFNs, we do not have the CFNs employ any adaptive

thresholding–having static thresholds instead. With normalized weight vectors and input

vectors, the larger the ratio vth : E[V (t)] the closer the input rate vector must be angularly

to the weight vector to produce a given firing probability. Determining the proper vth
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without dynamic adaptation, therefore, depends on the tightness of the clustering in the

dataset. With this context, we included vth in our hyper-parameter search, discussed next.

4.5.5 Hyper-parameter sweep

SNNs are known to be highly sensitive to hyper-parameters, especially during unsuper-

vised learning without error signals to provide dynamic corrections. We perform a small

search in the hyper-parameter space, adjusting vth and the number of training epochs. Re-

sults from this search are shown in Table 4.1 , with hyperparameters resulting in the best

accuracy highlighted for each size. Good machine learning practice requires that we choose

the system parameters based only on the training set, so only training set accuracy results

are shown here. Testing accuracy results are discussed later in the Results section. A similar

hyper-parameter sweep was performed for the non-dopaminergic SNNs that also do not have

homeostatic adaptive thresholding, as well as for the SNNs with randomized weight vectors.

Neuron firing thresholds, vth

Based on the discussion above, vth should be close to but slightly less than τmem in

voltage units, which is set to 15 time units. For MNIST, we initially found that if vth is

much less than 13.5, a neuron may too likely fire for samples from other classes, while if

vth is much higher than 14.25, a neuron may not fire for very close samples, even different

stochastic instances of the same sample. We therefore tested each setup with four different

threshold values in this range: 13.5, 13.75, 14.0, and 14.25. Smaller networks require each

individual neuron to capture a larger subset of input samples, generally requiring slightly

lower thresholds than those in larger networks.

Number of training epochs

Larger networks can capture representations that are less common but still useful. As

such, for larger networks more epochs within a class are required before proceeding to sub-

sequent tasks in order to refine the less common representations. For smaller networks, on
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the other hand, more epochs may reinforce less useful outliers, making it more difficult to

make room for subsequent tasks.

Comparison of E[V (t)] at vth with k-means clustering angular error.

We can compare the vth values selected in the hyper-parameter search with the mean an-

gular distance to a neuron’s weight vector that would on average result in a membrane poten-

tial equal to that threshold. Performing a simple k-means clustering on the L2-normalized

Table 4.1. Training accuracy results of hyper-parameter sweep for each net-
work size across both vth and number of training epochs per task. Highlighted
cells are best configuration for each size. (©2020 Allred and Roy [12 ])

# of Training Epochs per Task
Neurons vth 1 5 10 20

400
13.50 87.63% 83.82% 79.23% 74.15%
13.75 87.63% 84.07% 78.34% 75.18%
14.00 86.64% 82.49% 77.11% 75.20%
14.25 85.50% 83.59% 75.75% 75.06%

900
13.50 89.78% 91.07% 89.36% 85.31%
13.75 89.11% 90.91% 89.81% 86.24%
14.00 87.83% 91.47% 89.71% 84.75%
14.25 86.82% 91.46% 89.94% 84.14%

1600
13.50 91.54% 92.42% 92.21% 91.35%
13.75 91.24% 92.87% 92.48% 91.40%
14.00 90.08% 93.34% 92.20% 91.30%
14.25 88.48% 93.06% 92.85% 91.74%

2500
13.50 93.15% 93.62% 93.46% 93.13%
13.75 92.82% 93.65% 94.06% 93.20%
14.00 91.80% 93.37% 94.28% 93.53%
14.25 90.06% 93.18% 94.04% 93.49%

3600
13.50 93.88% 94.09% 94.04% 93.80%
13.75 93.90% 94.12% 94.48% 94.52%
14.00 93.31% 94.02% 94.53% 94.52%
14.25 92.33% 93.27% 94.40% 94.27%

4900
13.50 94.51% 94.91% 94.67% 94.77%
13.75 95.00% 94.92% 94.82% 95.09%
14.00 94.61% 94.85% 94.97% 95.21%
14.25 93.59% 93.82% 94.54% 95.29%

6400
13.50 95.39% 95.25% 95.28% 95.25%
13.75 95.42% 95.55% 95.39% 95.68%
14.00 95.33% 95.59% 95.42% 95.79%
14.25 94.79% 94.99% 95.21% 95.88%
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Figure 4.11. Comparison of the static vth selected in the hyperparameter
sweep with the corresponding dot product of the nearest training error in
a kmeans network of the same size. The kmeans error bars represent two
standard deviations over 100 trials each. (©2020 Allred and Roy [12 ])

MNIST dataset yields information on the relative desired scope of each reference vector,

depending on the number of reference vector neurons. Figure 4.11 shows the dot product as-

sociated with the angular distance of the closest training sample / reference vector pair from

differing classes for each network size after k-means clustering. The figure also shows the

average membrane potential of a spiking neuron corresponding to these angles. For SNNs,

neurons that are able to fire for samples that are further away than these angles are thus

more likely to fire for samples of the wrong class. As the number of reference vector neurons

increases, the portion of the input space per neuron decreases, improving accuracy by al-

lowing each individual neuron to be more restrictive in its angular scope, which is relatively

similar to those associated with the vth values selected in the hyper-parameter sweep.

4.6 Dopaminergic Learning: Experimental Results

In this section, we present the results of simulating the CFNs and the non-dopamine

comparison networks for the various sizes in both the interleaved classes scenario and the
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Figure 4.12. Final classification accuracy at various sizes of the CFNs com-
pared to SNNs without dopamine. Accuracy is shown for both the interleaved
class scenario and the disjoint class scenario, showing the resulting accuracy
reduction by sequentializing the classes. CFNs show average over five seeds.
(©2020 Allred and Roy [12 ])

fully disjoint classes scenario. We present both the combined accuracy and the per digit

accuracy, with final results and (in the disjoint scenario) results throughout the attempted

lifelong learning process.

4.6.1 Combined, across-task accuracy results

Figure 4.12 shows the final combined, across-task classification accuracy of the CFNs

and comparison networks for both the interleaved scenario and the disjoint scenario for

all network sizes. The comparison with [22 ] is provided for the network sizes for which

results were published (400, 1600, and 6400). In the fully disjoint scenario, the 6400 CFN

achieves on average 95.24% classification accuracy across all digits, compared to 32.97% for

a non-dopamine SNN without homeostasis, 61.95% accuracy for a non-dopamine SNN with

homeostasis, and 53.30% accuracy for an SNN with random weights.

Figure 4.13 shows the combined, across-task accuracy over time for the CFNs in contrast

to the comparison networks for network sizes of 1600 and 6400 neurons. CFN results for

the other sizes are shown in Figure 4.14 . The combined, across-task accuracy over time is
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Figure 4.13. Classification accuracy over time at each stage of the learning
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the proposed CFNs to SNNs without dopamine and to the randomized weight
control. Accuracy is for all previous tasks, up to and including the current
task. CFN results are averaged over five seeds. (©2020 Allred and Roy [12 ])

defined as classification accuracy on the portion of the testing set consisting of all previously-

seen classes, up to and including the current task. For the 6400 size, the CFN incurs its

largest accuracy drop at the last stage, adding digit ‘9,’ dropping 1.06 percentage points.

In comparison, at that size the non-dopamine SNN without homeostasis incurs a 34.41

percentage point drop when adding digit ‘2,’ the non-dopamine SNN with homeostasis incurs

a 10.41 percentage point drop adding digit ‘9,’ and the SNN with random weights incurs an

11.82 percentage point drop adding digit ‘2.’

4.6.2 Per-digit accuracy results

Figure 4.15 shows the final accuracy of each individual task/digit by the end of the

training process for 6400 neurons, comparing the distribution of accuracy across tasks for the

CFNs in both the interleaved and disjoint scenarios, as well as with both the non-dopamine

SNNs in the disjoint scenario and the randomized weights. In the disjoint scenario, the

CFN’s final worst performing class is digit ‘9’ at 91.18% accuracy, which is also the worst

performing class in the interleaved scenario at 93.60% accuracy. In comparison, for the
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Figure 4.15. Final per-digit accuracy (size 6400), comparing interleaved CFN
accuracy to the disjoint CFN accuracy. Also showing failure for individual
digits in the disjoint scneario for SNNs without dopamine. (©2020 Allred and
Roy [12 ])

other networks in the disjoint scenario, the final worst performing class is digit ‘8’ at 38.81%

accuracy for the non-dopamine SNN with homeostasis; digits ‘5,’ ‘7,’ and ‘8’ tied at 0.00%

accuracy for the non-dopamine SNN without homeostasis; and digit ‘8’ at 33.37% accuracy

for the SNN with random weights.

Figure 4.16 shows the per-digit accuracy over time for each network of 6400 neurons.

Per-digit false positives over time are provided in Figure 4.17 . The CFN incurred its largest

per-digit accuracy drop for digit ‘4’ after adding digit ‘9,’ decreasing 3.89 percentage points
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Figure 4.16. Per-task/digit classification accuracy as new tasks/digits are
added over time for the following networks, all of size 6400: (a) the proposed
CFN, (b) no dopamine SNN with homeostasis, (c) no dopamine SNN without
homeostasis, and (d) SNN with random weights. (©2020 Allred and Roy [12 ])

for digit ‘4’ during that task change. In comparison, the non-dopamine SNN with homeostasis

incurred a 23.07 percentage point drop for digit ‘4’ at that same transition; the non-dopamine

SNN without homeostasis incurred a 69.52 percentage point drop for digit ‘1‘ after adding

digit ‘7;’ and the SNN with random weights incurred a 10.98 percentage point drop in

accuracy for digit ‘4’ when adding digit ‘9.’

4.6.3 CFN dopaminergic spiking activity during training

Figure 4.18 shows the dopaminergic spiking activity during the training process using

CFNs on the disjoint MNIST dataset. Note how dopaminergic activity suddenly increases

each time a task change occurs and novel data is presented, followed by a gradual decrease

in dopaminergic activity as the CFN learns the new task. These activity statistics validate

the assumption that low spiking activity in the non-dopaminergic neurons (which triggers

the dopaminergic neuron) is a meaningful measure of novelty.
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Figure 4.17. Per task/digit false positives as new tasks/digits are added over
time for the following networks of size 6400 neurons: (a) the proposed CFN,
(b) a no dopamine SNN with homeostasis (c) a no dopamine SNN without
homeostasis, and (d) an SNN with random weights. (Note: vertical scales
differ between charts because of the wide variation; grid lines remain consistent
at 5% intervals.) (©2020 Allred and Roy [12 ])
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This expected variation in dopaminergic activity is most pronounced in the larger net-

works that have capacity to learn many different digit representations. For example, in the

CFN with 6400 neurons the dopaminergic activity reaches near-zero levels by the end of

learning each task. In the very small networks, the decay of dopaminergic activity is slower

because a smaller network capacity means that even within a class there are more represen-

tations than capacity and thus a subset of less common but previously-seen representations

continue to be viewed as “novel” since the network did not have capacity to ever permanently

learn them.

Also note how different classes require different dopaminergic activity than others. For

example with digit ‘1’ there is very little required dopaminergic activity because there are

fewer significantly different representations of that digit within the class. Once the CFN has

learned these few representations, the remaining presentations are easily recognized, reducing

the need for dopaminergic assistance.

4.6.4 CFN excitatory neuron activity during testing

Making a shallow network wider has only marginal improvements in accuracy. However,

these neurons are still used, even if infrequently. Figure 4.19 shows the spiking activity

distribution across neurons for the CFNs during testing of all digits at the end of learning in

the disjoint scenario. For each size, all or almost all of the neurons experience firing activity

during testing, with only 0.7% of the neurons in the large 6400 network having zero spikes.

However, the “win” counts–the number of samples that each neuron was the highest-spiking

neuron–indicate that only just over half of the 6400 neurons in the large CFN were ever a

decisive neuron during testing.

There are indeed a few overfit representations, as indicated by the distorted tails in

the spiking distributions. These are the result of rapidly learned novel data in the last

class (digit ‘9’) that didn’t experience generalization but were not subsequently overwritten

because there was no following task. However, since most of the non-decisive neurons do

experience some spiking activity, we can assume that a majority of them are likely not overfit

representations and may therefore be useful for a different testing set selection. Additionally,
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Figure 4.19. Activity distribution of neurons in the CFNs during testing on
the disjoint MNIST. Values represent (a) spikes for each neuron during testing
and (b) wins (number of samples for which each neuron was the highest spiking
neuron). (©2020 Allred and Roy [12 ])
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this additional space may be viewed as a “scratchpad” or working memory for temporarily

storing novel inputs until it is determined if they will be kept.

4.6.5 Discussion

In this section, using a qualitative analysis we discuss reasons why the non-dopamine

SNNs failed at lifelong learning in the disjoint scenario and how the CFNs avoided those

failures. We also discuss the expected sequential penalty and graceful degradation of accu-

racy.

A qualitative analysis

In these fully-connected one-layer SNNs, each neuron’s weight vector can be viewed as a

reference vector that captures a specific input representation, ideally successfully generalized.

As such, we may qualitatively observe the success of dopaminergic learning over time by

viewing these representations. For a better visual demonstration of the disjoint scenario, we

show the weights of the networks for the first four digits ‘0’ through ‘3’ in Figure 4.20 , with

100 neurons arranged in a 10x10 grid.

Note that in the CFN case (Figure 4.20 (a)) there are two very distinct categories of rep-

resentations. The digit representations that appear to have a more consistent pixel intensity

and a more consistent line width and curvature are generalized representations refined by

many similar samples in a cluster. On the other hand, the digit representations that appear

less defined and with more irregularity in pixel intensity are outlier representations from

only one or a few samples. Notice that the digit representations that are preserved from one

task to another are the useful generalizations rather than the outliers, which on the other

hand are the first to be overwritten when space for a new task is required. In addition, the

representations that are preserved from previous tasks experience very little and infrequent

corruption during later learning stages. The dopamine signals are able to successfully replace

old information with new information without interference and while maintaining accuracy

because of the targeted localization.
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Figure 4.20. Grid view of the weight vectors over time, showing the first four
digits, learning ‘0’ through ‘3’ for (a) the proposed CFN, (b) a non-dopamine
SNN without homeostasis, and (c) a non-dopamine SNN with homeostasis,
each with 400 neurons, although only the 100 top-firing neurons are shown for
space. Digits highlighted in dashed green are examples of successfully learned
generalized representations. Digits highlighted in dotted orange are exam-
ples of outlier representations. Digits highlighted in solid blue are examples
of representations preserved from previous tasks. Also shown is (d) another
non-dopamine SNN with homeostasis, but with reduced plasticity, showing
catastrophic interference between classes causing corruption. (©2020 Allred
and Roy [12 ])
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In contrast, we can visually see the failure of the non-dopamine SNNs in the disjoint

scenario. In the network without homeostasis (Figure 4.20 (b)) we see that only a few neurons

experienced any learning. Without homeostasis the neurons that fired first migrated closer to

the input distributions and dominated the firing activity. Even when the input distribution

changed between tasks, the already used neurons were closer to the new distributions than

the unused neurons with random weight vectors. Continuing the reuse the same neurons

caused the SNN to overwrite and forget previous tasks.

Next, in the network with homeostatic adaptive thresholding (Figure 4.20 (c)), we see a

better use of network resources from the distributed firing activity. But without targeted

dopaminergic modulation homeostasis distributes the learning for a new task over all the

neurons previously used in earlier tasks. Even when the learning per-digit is reduced (Fig-

ure 4.20 (d)), the activity for the new tasks are still globally distributed by the adaptive

thresholding, causing corruption between tasks.

The CFNs with dopaminergic learning avoid globally distributing firing activity during

a single task by not having traditional homeostatic adaptive thresholding. In addition, the

CFNs avoid continuing to reuse the same neurons by proactively identifying novel data and

targeting specific neurons to learn the novel data, preserving essential information from

previous tasks.

We note that for the failed networks where older classes are entirely overwritten by new

classes, the networks still report some, albeit poor, accuracy for the forgotten tasks. This

is because the varied intra-class distributions can still be somewhat useful at differentiating

inter-class distributions. For this purpose, the accuracy comparisons to the SNNs with

random weights are essential at identifying catastrophic forgetting, indicating that around

40-50% is a failure baseline for unsupervised learning using SNNs of these sizes on the MNIST

dataset.

The expected “sequential penalty”

We see that the CFNs in the disjoint scenario perform on par with the interleaved sce-

nario, averaging only a 1.04% accuracy reduction across all sizes. This penalty is expected
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due to sequentializing the tasks. In fact, such a penalty may be impossible to completely

avoid, as the interleaved scenario provides more information to the network throughout train-

ing by providing all distributions up front, whereas the disjoint scenario never provides an

opportunity to temporally overlap learning of different distributions. Even so, the sequential

penalty for the CFNs is minimal, and may be acceptable given the system’s avoidance of

catastrophic failure in the disjoint scenario. In fact, even with this penalty, the 6400 neuron

CFN achieves a respectable 95.24% test accuracy after lifelong learning, which we believe

is the best unsupervised accuracy ever achieved by a fixed-size, single-layer SNN on a com-

pletely disjoint MNIST dataset. The CFNs in the disjoint scenario even outperform [22 ] in

all cases for which they provide results, even though that work is in the interleaved scenario.

Graceful degradation instead of catastrophic forgetting

Controlled forgetting allows the network to gracefully degrade its accuracy in exchange for

the ability to learn new tasks with limited resources, rather than failing. The true success of

a lifelong learning system is shown not just by the final accuracy, but also by its performance

throughout the training process and across training tasks. Notice how in Figure 4.15 while

the system expectedly performs better for some tasks rather than others, there is no single

task for which the system fails; i.e., the sequential penalty is spread between tasks. In fact,

the lifelong system performs best at the same tasks (digits ‘0,’ ‘1,’ and ‘6’) and worst at the

same tasks (digits ‘8’ and ‘9’) that the offline/non-lifelong system does.

We believe that this type of approach with modulated plasticity and targeted stimulation

can be useful for allowing online systems to gracefully adapt to changing environments rather

than failing to adapt or requiring frequent offline retraining.
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4.7 Additional Work: Adaptive Synaptic Plasticity

The previous proposed approach took inspiration from the biological brain in stimulat-

ing spiking activity and enhancing plasticity to sensitize the network to novel information.

In that process, information was only forgotten when the resources were needed for other

information. Complimentary to that approach is the Adaptive Synaptic Plasticity (ASP)

approach presented in this section, extracted from my contributions to [15 ] (©2018 IEEE4
 ),

which takes inspiration from the gradual, long-term adaptation and stabilization of synaptic

plasticity in the biological brain to habituate the network to important information, letting

less-important information be purposely and preemptively forgotten to allow for adaptation

without corruption.

Simply speaking, habituation is a decreasing response to a repeated stimulus and has

been observed as a learning mechanism in even the simplest life forms. In a dynamic envi-

ronment, habituation can stabilize long-term memory of frequently encountered information

and enable a short-term response to novelty. In the material field, this form of habituation-

based plasticity has been recently demonstrated in a perovskite quantum system via dynamic

modulation of electron localization [52 ].

In mimicking this habituation mechanism, there are two goals: (1) increase the decay

or “forgetting” of synaptic weights that are associated with less important information, i.e.

stale or outlier information (Section 4.7.1 ); and (2) reduce the relative plasticity for synap-

tic weights that are associated with important information, i.e. information encountered

recently and/or frequently (Section 4.7.2 ).
4↑ In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of Purdue’s products or services. Internal or personal use of this material is permitted. If
interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or
for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_
standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.
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4.7.1 Useful forgetting

In this work, forgetting is enabled via a continuous, gradual weight decay mechanism.

Two forms are explored, an exponential decay and a linear decay:

dw

dt
= − w

τleak

· cexp (4.3)

dw

dt
= − 1

τleak

· clin (4.4)

where cexp and clin are constants for each form and together with τleak create the decay

rate at which the weight value “leaks” toward zero. Weights are allowed to be positive or

negative and zero is the median between wmax and wmin. In a high-dimensional space, such

as with MNIST [27 ], visual information is encoded in patterns that express themselves as

input vectors with a Manhattan distance further from the mean than a randomly chosen

vector in that space, as dictated by the curse of dimensionality. As such, decaying toward

the median weight value represents an erasure or forgetting of the associated information.

These decay mechanisms act similar to an extension of the offset term discussed in

Sections 2.4.2 and 3.2.1 for the linear and exponential forms, respectively, and act to allow a

weight vector to remove traces of its previous positions as it learns a new position. Without

any such decaying, catastrophic interference occurs as information encoded in the weight

vectors becomes corrupted with outliers or multiple distributions.

This work modifies this weight decay of the learning process with habituation to pro-

vide more useful forgetting. To accomplish this, the τleak value is adapted dynamically to

the firing characteristics of the post-synaptic neuron, tying the value exponentially to the

homeostatically-adapted threshold (see Section 2.4.1 ) and linearly to an exponential trace of

the firing activity of its post-synaptic neuron. In effect, τleak is larger for synaptic weights

whose post-synaptic neuron has been firing more recently or more frequently, slowing down

the decay for that potentially more important information.

When a neuron is not firing, this adaptive weight decay is the only process affecting its

fan-in weights. These time windows are referred to hereafter as the decay phase.
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4.7.2 Adaptive plasticity

The other component of this work occurs in the recovery phase in which weight values are

potentiated or depressed away from the resting weight mean with Hebbian learning using the

one-sided STDP learning rule to encode generalized information in the weight vectors. Two

adjustments to this STDP rule apply habituation-based mechanisms to adapt the plasticity

for a dynamic environment.

First, the learning rate, α, is inversely scaled by the trace of the post-synaptic firing

activity. As such, parameters that are used more frequently and/or more recently become

more rigid, keeping and protecting useful information even when the environment changes.

Conversely, parameters that have not been used very often or after an extended amount of

time become more plastic, providing parametric resources for new information.

Second, the offset term in the STDP rule is increased with an additional term which

is exponentially decayed to the traces of the pre-synaptic firing activity, allowing for larger

depressions for synaptic weights from outlier or uncorrelated pre-synaptic activity.

4.7.3 Experimental results

Using the Brian spiking simulator [19 ] and the architectural and unsupervised learning

setup of [22 ] found at [20 ] on the MNIST dataset [27 ], this ASP method was tested for its

resilience against catastrophic forgetting in a changing environment. First, a test case is

presented to small networks with a single class addition, followed by a more extensive test

on a fully disjoint dataset with larger networks.

Offline pre-training with subsequent scenario change

The exponential form of ASP is compared to an SNN with traditional one-sided STDP,

each with 100 excitatory neurons. Each network is initially pre-trained to the same state

using digits ‘0’ through ‘8’ with uniformly-distributed access to all these classes throughout

pre-training. Then, to represent an environmental change, digit ‘9’ is presented for online

learning without providing any of the previous classes for data reinforcement.
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Figure 4.21. SNN weight vectors starting with (a) a pre-trained network
using digits ‘0’ through ‘8’, and then subsequently trained only with digit ‘9’
for both (b) traditional STDP and (c) exponential ASP. (©2018 IEEE [15 ])

105



94.30% 96.80% 95.60%

23.30%

94.85% 94.20%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

STDP ASP (exponential) ASP (linear)

F
in

al
 c

la
ss

if
ic

at
io

n
 a

cc
u
ra

cy

Interleaved scenario Disjoint scenario

-71.00%

-1.95% -1.40%

Figure 4.22. Final accuracy results of ASP versus traditional STDP after
learning all 10 digits, showing both the interleaved scenario and the disjoint
scenario, highlighting the accuracy drop from sequentializing.

Figure 4.21 shows the resulting weight changes, with the added class significantly cor-

rupting most reference vectors in the traditional STDP setup. On the other hand, with ASP

the adaptations to the new class are isolated and significant corruption is avoided. Final

classification accuracy across all ten classes fell down to 62.8% accuracy for STDP, compared

to 73.4% for ASP. Next, network sizes were increased for better baseline accuracy and the

dynamic environment was extended.

Lifelong learning (sequential classes)

A more extensive test of lifelong learning was performed by bypassing any pre-training

and instead presenting all digit classes sequentially (the disjoint scenario). The final results of

this scenario are compared to the traditional interleaved scenario with all classes distributed

throughout training.

Using networks of 6400 excitatory neurons three SNNs were tested, one with traditional

STDP, one with exponential ASP, and one with linear ASP. Final classification accuracy

results are shown in Figure 4.22 . While the STDP SNN catastrophically fails, the ASP
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(a) Interleaved scenario.

(b) Disjoint scenario.

Figure 4.23. The final synaptic weights of ASP versus traditional STDP
after learning all 10 digits, either in (a) the interleaved scenario, or (b) the
disjoint scenario. (©2018 IEEE [15 ])

SNNs maintain high accuracy even in the disjoint scenario, demonstrating successful lifelong

learning. In fact, the ASP SNNs exhibit a less than 2% drop in accuracy by sequentializing

the classes, with the exponential ASP SNN achieving 94.85% accuracy in the harder disjoint

scenario. Additionally, even in the interleaved scenario the ASP SNNs outperform traditional

STDP. While the environment remains unchanging in the interleaved scenario, the proposed

process of learning to forget helps remove outliers to improve generalizations. This can be

seen in the final synaptic weights shown in Figure 4.23 .

Similar to how this method of habituation was correlated with possible emerging devices

demonstrating such properties, proposed future work for this lifelong learning body of work

include demonstrating lifelong learning with a new set of potential device characteristics

that combine both habituation-based learning and the previously discussed sensitization-

based dopaminergic learning.
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4.8 Potential Relationship with Observed NiO Behavior

The dopaminergic learning discussed and employed in Sections 4.4 , 4.5 , and 4.6 includes

a stimulated rapid increase in synaptic plasticity. This functionality is sometimes called

sensitization, in which the system is rapidly more sensitive to a new stimulus. Sensitization

is complimentary to habituation, as discussed in Section 4.7 , which is a reduced response to

stimuli that the system has become accustomed to. While habituation allows the system to

be stable, sensitization allows for adaptation. This combination, which has been observed

in biological species, allows for non-associative learning and can help mitigate catastrophic

forgetting.

4.8.1 Habituation and sensitization behavior of NiO

In [16 ], both habituation and the ability to trigger sensitization is observed in the Mott

insulator NiO with certain stimuli. When exposed to H2, the electrical resistance of NiO

is increased and when the stimulus is removed, the resistance returns to its previous state.

However, under repeated exposures, that response habituates, and the change in resistivity

is reduced for the later exposures.

Then, when the stimulus O3 is presented for a short time, the next subsequent response

to H2 is sensitized, regaining its large increase in resistivity as if it had not previously been

habituation to that stimulus. Further exposures to H2 then again re-habituate the material

to that stimulus.

4.8.2 Potential neuromorphic application

The observed behaviour of the NiO material is still relatively far from device development

and has several obstacles, including the stimuli as a gas and the time scale of the observed

behavior (with exposure increments measured in minutes). However, the connection between

the behavior and the mentioned learning rules is worth exploring. The resistivity change of

the material could be used to indicate the plasticity of an associated learning parameter.

The habituating exposures could occur with each online use of the associated parameter,
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reducing its plasticity the more it is used. Then, when novel information in encountered,

the sensitizing stimulus could be presented to a targeted set of parameters which contain

the oldest or least-useful information, resetting their plasticity and response to the novel

stimulus, similar to the dopaminergic learning presented previously.

To help make this connection in [16 ] (from which the remainder of this section is taken5
 ),

I provided the following example simulations that illustrate the benefit of employing both

habituation and sensitization in the local learning rules of neurons in a dynamic environment

(see Fig. 4.24 and Fig. 4.25 ).

4.8.3 Task description

The task we explore is an unsupervised clustering task similar to k-means clustering [53 ]

but performed online, sample by sample. In a layer of reference vector neurons in an Artificial

Neural Network (ANN), each neuron produces a higher activation value for inputs that are

angularly closer to that neuron’s fan-in weight vector (i.e. using cosine distance). With

competition between neurons, often implemented via lateral inhibition, only the angularly

closest neuron responds sufficiently to a given input, assuming L2-normalization of neuron

weight vectors. An individual neuron, then, can dominate a Voronoi partition of an (n − 1)-

sphere in the n-dimensional input space and may be representative of an input distribution

in that partition, generally centered on the weight vector. Increasing or decreasing the L2-

norm of a given neuron’s weight vector with respect to the other neurons will expand or

shrink its Voronoi partition, respectively.

Hebbian learning can successfully perform such unsupervised clustering tasks. For a

given input sample, this correlation-based learning occurs by adjusting the weight vector of

the “winning” neuron which is closest to the current input vector toward the direction of

that input vector, gradually centering on a particular input distribution. For example, Spike

Timing Dependent Plasticity (STDP) [54 ] has been shown to perform such Hebbian learning

in shallow Spiking Neural Networks (SNNs) [22 ]. In deeper SNNs, this type of learning is
5↑ At the time this dissertation was submitted, this work was accepted but not yet published. My portion of
this work is included here with permission. Further changes may be made during the publication process,
and this version should not be considered as the final version.
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useful for layer-wise training in a convolutional neural network [55 ] and may also be useful

for online learning of the final readout layer of a pre-trained deep network [48 ].

To successfully perform this learning task, Hebbian learning is generally combined with

a form of homeostasis [56 ], as exemplified in Fig 4.24 (b) and reported in [22 ]. Because of the

curse of dimensionality [57 ], differing input distributions are likely to be closer to each other

than they are to a randomly chosen initial weight vector. Thus, homeostasis is implemented

to distribute activity between competing neurons in order to prevent a single neuron or a few

neurons from dominating the receptive field and blocking out other neurons from learning.

For example, homeostasis is often implemented in SNNs via adaptive thresholding [58 ]. In

an SNN, increasing or decreasing a neuron’s firing threshold is functionally equivalent to

decreasing or increasing the magnitude of its weight vector, respectively, and thus also the

scope of its Voronoi partition. By setting the firing threshold higher for a neuron that fires

more frequently, it becomes restricted in scope, allowing other neurons to compete for other

nearby distributions.

Distributing neuronal activity throughout training works well when the input distribu-

tions are temporally homogeneous. However, traditional homeostasis presents a difficulty

with a temporally changing dataset, as shown in Supplementary Fig. 4.25 (a). Once a layer

of neurons in an ANN has learned a set of input distributions, if novel input distributions are

then presented, homeostasis can often make information from the later distributions replace

important information learned from previous distributions, a problem which has been called

catastrophic interference. This problem is in part due to the stability-plasticity dilemma

[31 ]: if weight parameters are too rigid, the network will be stable but won’t easily learn

new information; if they are too plastic, old information will be lost; and trying to find an

in-between global plasticity level can cause corruption between old and new information.

4.8.4 Habituation and sensitization-inspired plasticity modulation

One solution to the stability-plasticity dilemma and catastrophic forgetting has been local

modulation of plasticity, allowing some weight parameters to be more plastic than others

at different times. Local plasticity modulation can isolate network changes in response to
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information that is new while preserving information in the other portions of the network

that may still be useful. The plasticity modulation of this learning approach is similar to

the approach reported in [12 ] based on novelty-induced dopaminergic modulation of STDP

[50 ] and demonstrates the usefulness of habituation and sensitization characteristics similar

to those of the NiO device and Aplysia.

Habituation for stability

When training an ANN, a smaller learning rate provides more stability but requires a

larger number of input samples to incrementally converge on the solution state. On the other

hand, a larger learning rate allows for more rapid learning but leaves neuron weight vectors

unstable, stochastically jittering around the learned distributions. To achieve both reduced

training time and solution stability, the learning rate is often designed to start large and

gradually reduce over time, as employed by the Habituation model shown in Fig. 4.24 (c).

For this clustering task, we gradually reduce the learning rate of a given synaptic weight

each time the post-synaptic neuron fires, which is similar to the habituated response of NiO

devices under repeated exposures to H2.

Having only a reduction in the learning rate over time is fine for offline learning but

fails to allow for adaptation during online learning in a dynamic environment. Therefore, in

addition we have designed the learning rate of a synaptic weight to gradually increase over

time if there has been a sufficient amount of time during which the associated post-synaptic

neuron is no longer being used [12 ]. This property is comparable to how the resistance

response of the NiO device gradually returns to the “forgotten” state when there is sufficient

time without an H2 stimulus. Thus, neurons that have learned a distribution of samples

that have been seen more recently and/or more frequently will have more stable reference

vectors while neurons that have learned a less frequent or less recent distribution will have

more plastic parameters available for adaptation to new information.

111



Sensitization for novelty

In addition to dynamics that require the habituated gradual modulation of plasticity there

may also be sudden changes in the environment, such as the introduction of novel information

(Fig. 4.25 (c) and 4.25 (d)), which require a sudden and temporarily large increase in plasticity

to avoid corruption between old information and new information [12 ]. In biology, this

plasticity modulation (such as the sensitization behavior observed in Aplysia) is in part

aided by the neuromodulator dopamine, which can be released when novel information is

encountered [50 ]. When dopamine is present, the effect of STDP learning is significantly

larger, allowing the network to quickly learn novel information. The sensitization response

of the NiO device in the presence of O3 acts similarly to this biological trigger, temporarily

setting the learning rate very high. For this unsupervised clustering task, novel inputs may

be identified by low activation values at the reference vector neurons, providing an indication

of when the sensitization should be triggered.

In the brain, dopamine is released locally by dopaminergic neurons. Similarly, the de-

scribed sensitized response should be local, targeted at specific reference vector neuron(s)

that can be “reassigned” to the novel information with minimal loss of older information

to prevent catastrophic forgetting (Fig. 4.25 (d)). With the habituated plasticity response

described above, a high current learning rate of a neuron’s weight vector is a good identi-

fier of a neuron associated with less-useful information, which may be an eligible target for

sensitization.

4.8.5 Illustrative examples

Using a simple, illustrative example in a two-dimensional space representative of input

and weight vectors normalized onto the surface of a sphere in the input space, we present

samples from various input distributions to three competing reference vector neurons. The

presented simulation setup is designed to demonstrate the key differences between the dis-

cussed learning rules and highlight the advantage of employing both habituation and sensiti-

zation in lifelong learning with sequentially presented distributions, as opposed to traditional
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homeostasis which is designed for a temporally homogeneous interleaving of the various input

distributions throughout the training.

Interleaved classes scenario

For the first scenario shown in Fig. 4.24 , three input distributions are presented in an

interleaved ordering such that samples from each distribution are seen throughout training

in a temporally homogeneous fashion. When there is no homeostasis, i.e. no balancing of

firing activity between neurons, a single neuron dominates because it is always the closest

neuron (Fig. 4.24 (a)), which results in non-usable Voronoi partitions (dotted lines). When

homeostasis is added to distribute neuronal firing activity (Fig. 4.24 (b)), all neurons get

used with each moving separately toward a different cluster because of the competition.

However, with a static plasticity, implemented with a constant learning rate, the neuron

weight vector locations continue to bounce around due to outliers and fail to stabilize, leading

to less accurate Voronoi partitions. To resolve this, the learning rate can be habituated, i.e.

starting out large and reducing exponentially each time the neuron is activated—similar to

the habituation behaviour of NiO under cyclic H2 exposure. With such habituation, the

neurons successfully stabilize on the centers of the input clusters, which attributes to more

accurate Voronoi partitions (Fig. 4.24 (c)).

Sequential classes scenario

Fig. 4.25 shows a more challenging unsupervised clustering task when the input ordering

is not temporally homogeneous but is instead a completely sequential ordering of input

distributions. In this scenario, using traditional homeostasis plus habituation to temporally

distribute activity between neurons causes old information to be lost (Fig. 4.25 (a)). However,

we can apply a sensitization behaviour, similar to the the NiO response after O3 exposure, by

resetting the learning rate αi of a neuron to its initial value (Table 4.2 ) in the presence of novel

information. When we keep the habituation but replace the traditional homeostasis with this

controlled and targeted sensitization response (Fig. 4.25 (b)), the network can learn novel

distributions by utilizing unused or less-used neuron instead of corrupting valuable older
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information in other portions of the network. This method of habituation plus sensitization

can also successfully learn the previous interleaved example with temporally homogeneous

input ordering (Fig. 4.24 (d)) and is thus useful for both scenarios.

Memory-constrained scenario

To highlight how controlled sensitization can reduce catastrophic interference or corrup-

tion between old and new information, we extend this illustrative example to be memory-

constrained. As shown in Figs. 4.25 (c) and 4.25 (d), we present a fourth input distribution

after the previous three distributions have already been learned, but we keep only three

reference vector neurons to demonstrate the response when some forgetting must necessarily

occur. With the traditional homeostasis plus habituation rule (Fig. 4.25 (c)), all three neu-

rons attempt to learn the new distribution, ending somewhere between their old and their

new positions. The result is catastrophic interference, failing to completely learn the new in-

formation and corrupting the old information. However, with controlled sensitization added

to habituation (Fig. 4.25 (d)), the response to new information can be targeted to replace

the least useful information, in this case the oldest information. As shown in Fig. 4.25 (d),

sensitized plasticity causes a rapid, isolated response that learns the new information with-

out corruption and while keeping as much of the old information as possible. Therefore, this

online unsupervised clustering example demonstrates the usefulness of having weight pa-

rameters in an ANN that undergo local, dynamic modification to their plasticity in patterns

similar to the habituation and sensitization responses observed in NiO.

4.8.6 Simulation methodology

During this unsupervised training task, samples are presented one-by-one. For the current

sample j, a single neuron wins and undergoes Hebbian learning. Table 4.2 includes the

variations in the learning and evaluation rules for each learning scenario. For the current

sample, each neuron i is evaluated. The winning neuron is the neuron that has the shortest

distance from that neuron to the current sample, scaled by the distance scaling factor for

each neuron, di. The weight vector of the winning neuron ( ~wi) is adjusted according to
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Table 4.2. Learning rules for each learning scenario.
Learning Rules Distance Scaling Initial Plasticity Habituated

Plasticity Rules
Sensitized

Plasticity Rules
No

Homeostasis
di = 1

(no scaling)
αi = 0.5

(constant) N/A N/A

With
Homeostasis

di = θi + θbase
∆θwinner = 1E2

dθi
dt

= −0.1θi
θbase = 1

αi = 0.5
(constant) N/A N/A

Homeostasis
+ Habituation (same as above) αi(0) = 1

dαi
dt

= 0.0001(1 − αi)
∆αwinner = −0.1αwinner

N/A

Habituation
+ Sensitization

di = 1
(no scaling) αi(0) = 1 (same as above) αreset = 1

dthreshold = 0.2

∆ ~wi = αi(~sj − ~wi), where ~sj is the input vector for sample j, and αi is the learning rate or

plasticity level for neuron i.

Homeostasis

If homeostasis is used, the distance scaling factor di consists in part of a dynamic θi

which increases for the winning neuron according to ∆θwinner, and decays exponentially

for all neurons through time (the time scale being normalized to 1 unit time per sample)

according to dθi
dt
.

Habituation

When habituation is not used, the learning rate αi remains constant. With habituation,

on the other hand, the initial values αi(0) start higher, but are reduced exponentially each

time a neuron wins according to ∆αwinner (applied after the weight change) and otherwise

slowly saturate back up to the original values according to dαi
dt

when it is not winning.

Sensitization

When sensitization is used, if the distance to the winning neuron is less than dthreshold,

then instead the neuron with the highest αi is chosen as the winner and its learning rate is

reset to αreset before undergoing a weight change. Sensitization is used in conjunction with

habituation, and the habituation rules that exponentially adjust αi also apply.
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Figure 4.24. Illustration of interleaved unsupervised online clustering task in
a layer of reference vector neurons: (a) no homeostasis; (b) with homeostasis;
(c) homeostasis with habituation; (d) homeostasis with sensitization.
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Figure 4.25. Illustration of sequential unsupervised online clustering task in
a layer of three reference vector neurons: (a) homeostasis with habituation, 3
sequential classes; (b) habituation with sensitization, 3 sequential classes; (c)
homeostasis with habituation, adding a fourth class to pre-trained network;
(d) habituation with sensitization, adding a fourth class.
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5. WEIGHT-LOCALIZED CONVOLUTIONS ON

DIRECT-MAPPED HARDWARE

Hardware implementations of neural networks with the intrinsic capability of real-time com-

puting on analog, asynchronous signals are a promising avenue for the future of machine

learning. As introduced in Section 1.1.1 , the success of machine learning has been sig-

nificantly advanced by neural networks employing convolutions, which promote learning

generalizations through subsampling and parametric reduction.

However, for neuromorphic hardware implementations with dedicated neural units, shar-

ing kernel weights between the convolutional windows can be disadvantageous because it

generally requires replicating the shared kernel components to implement the entire feature

map as well as the global distribution of weight updates for the replicated components. On

the other hand, hardware implementations comprising generic functional units require the

storage and regeneration of internal signals and synaptic weights, which is difficult for analog,

asynchronous designs.

This chapter, taken from my work in [17 ] (©2017 IEEE1
 ), presents a method of performing

convolutions over time in a way that avoids both kernel replication and the storage and

regeneration of internal signals, thus allowing for local weight updates, direct node-to-node

synaptic connections, and reduced network area. Convolving over time is accomplished via

recurrent connections that allow for sequentially sharing kernel weights for each convolutional

window while still propagating the computed signals.

We evaluate the proposed approach with a proof of concept, showing only a slight ac-

curacy reduction as a tradeoff for the previously mentioned connectivity, area, and storage

benefits.
1↑ In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of Purdue’s products or services. Internal or personal use of this material is permitted. If
interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or
for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_
standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.
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Figure 5.1. A traditional convolutional layer. (©2017 IEEE [17 ])

5.1 The Challenge of Weight Sharing in Neuromorphic Hardware

CNNs enact convolutions by sharing kernel weights across the input windows. Figure

5.1 shows a single convolutional layer where all n different kernels are shared over each w

windows of convolution. In this section, we first discuss traditional methods of CNN weight

sharing in hardware. Then, we identify the disadvantages of these approaches with regard

to biological plausibility and neuromorphic design.

5.1.1 Traditional CNN weight sharing in hardware

There are generally two methods of enabling the necessary weight sharing between kernel

instances for implementing convolutional neural networks in hardware. The first method

replicates dedicated hardware components. The second reuses generic components.

Weight sharing via dedicated component replication

Very fast neural network performance can be achieved when the network’s weighted

synaptic connections, integration units, and activation functions are synthesized as dedi-

cated components in the hardware for each corresponding instance of the various logical
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components. Specifically, each kernel is replicated for each window over which it convolves,

and the weights of a kernel are identical between the various instances of that kernel. Ded-

icated components for each instance provide maximum parallelism within the network and

allow analog and/or asynchronous signals to propagate between layers via direct node-to-

node synaptic connections.

Weight sharing via generic component reuse and shared memory

When area and power budgets limit the number of available hardware components,

generic functional units can execute on latched activation values and stored weights that

are loaded from shared memory when needed. With this method, the logical neural units

are not tied to specific hardware units. Therefore, area and power goals can be balanced

with desired parallelism goals, according to hardware constraints.

5.1.2 Biological plausibility and neuromorphic CNNs

Neuromorphic designs are inherently more apt to compute on biologically plausible asyn-

chronous, analog signals (e.g. [59 ]). However, the weight-sharing requirement of convolu-

tional architectures is an obstacle for implementing hardware convolutions using analog or

asynchronous signals.

Both of the methods described in the previous subsection are lacking in biological plausi-

bility. Although biological plausibility is not a necessity for neuromorphic design, the specific

areas in which these two methods differ from biology are the cause of significant disadvan-

tages to neuromorphic design. As a review from Section 1.2.2 , four possible attributes of

neuromorphic systems include: (1) local learning, (2) fixed configuration, (3) dedicated units

and hardwired connections, and (4) asynchronous or analog computation.

The disadvantages of dedicated component replication

While the brain prominently exhibits significant redundancy, the discussed method of

kernel replication is at odds with biology’s localized learning. When kernel instances are

replicated in hardware, updates to the weight values must be calculated for each instance,
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then summed or averaged, and then redistributed back to all the instances. This coordi-

nation between instances requires additional infrastructure and synchronization overhead.

Such weight coordination is often difficult in neuromorphic designs of asynchronous analog

circuitry.

Further, the parallelism benefit of kernel replication comes with a substantial area and

power cost. Quantified, a single convolutional layer with n kernels, each of size m, requires

n · m incoming synaptic weights for a single window. If the kernels are convolved over w

windows, then the n kernels would be replicated w times, with each instance receiving a

different selection of inputs indexed appropriately from the preceding layer. In total, the

n · w kernel instances would require n · m · w incoming synaptic weights, just at that layer.

For deep CNNs, such hardware dedication is expensive.

The disadvantages of generic component reuse

The use of generic components means that the operands on which it is computing are not

intrinsically local or directly connected to the functional unit, unlike neural networks in the

brain. For hardware designs, this non-locality presents data hazards when a unit is stalled

waiting for the appropriate kernel weights to be loaded or for the incoming values from the

previous layer to be made available. Beyond these data hazards are the structural hazards

that arise when there are insufficient hardware resources. In other words, without dedicated

components for each logical unit in the network, the number of available functional units

limits the possible parallelism. Both types of hazards limit the speed of such a network. In

addition, storing and regenerating analog or time-based signals in neuromorphic designs is

challenging.

Ideally, neuromorphic designs invite weight-sharing techniques that avoid the replication

of weighted synaptic connections and eliminate both the need to load weight values from

shared memory and the need to redirect computed values to available components. These

stipulations lead us toward a neural network that employs recurrent connections to convolve

in time, rather than space.
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5.2 Convolving Over Time with Recurrent Convolutional Neural Networks

In addition to the discussed feedforward networks, networks with feedback connections

can compute temporally. These Recurrent Neural Networks (RNNs) operate over several

time steps, allowing it to compute based on both the current inputs and the internal network

state.

In this section, we present a neural network that uses such recurrent connections to

convolve over time and enable sequential weight sharing. For simplicity, we will refer to

these networks as Recurrent Convolutional Neural Networks (RCNNs). By sharing weights

in time, these RCNNs can perform convolutions with dedicated hardware components, while

avoiding replication, data storage, and data redirection.

5.2.1 Related works

As our work combines the benefits of CNNs with the benefits of RNNs, we briefly dis-

cuss previous works that also merge the two network models. Donahue et al. [60 ] provide

methods in visual recognition and description tasks that utilize recurrent connections to pass

information between input frames in convolutional networks or to provide feedback from pre-

vious outputs when producing sequential outputs. Pinheiro and Collobert [61 ] add feedback

connections to a CNN to converge iteratively on scene predictions. Similarly, Liang and Hu

[62 ] utilize recurrent connections within a single frame to modulate convolutional units by

their neighboring units, creating an effectively deeper network with fewer parameters. These

methods all use recurrent connections to improve or augment the CNNs. However, in this

work, we employ recurrent connections to implement the convolutions themselves, allowing

for kernel weight sharing in time, which we describe next.

5.2.2 Weight sharing in time instead of space

Without replication of dedicated components or reuse of generic components, time is

the remaining dimension for sharing kernel weights over the windows of convolution. Fig-

ure 5.2 conceptually presents this convolutional method. Sufficient functional units can be
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Figure 5.2. Convolutions over time with the same kernels at each time step.
(©2017 IEEE [17 ])

synthesized to provide dedicated components for each kernel, which are then reused in time

for each window instance. Of course, simply performing the convolutions for each window

sequentially is not in itself novel or that beneficial. It simply serializes the previously parallel

process. The true benefit is the elimination of data storage and data redirection for (1) the

incoming signals, (2) the internal synaptic weights, and (3) the outgoing signals.
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Incoming signals

Rather than each kernel convolving over the windows of a fixed input, we can now view

each kernel as the fixed component, while the preceding input layer presents the values from

each window at different time steps using the same synaptic connections. Thus, convolving

over time on a dedicated hardware unit removes the data hazards and data traffic issues

associated with redirecting the incoming values toward whichever (if any) unit is available.

Internal synaptic weights

The dedicated kernel components also eliminate the data hazards and data traffic for

synaptic weight values because the weight values do not need to be stored and loaded—they

are embedded in the dedicated kernel hardware. Further the weight updates can occur

locally, as there is only one instance of each weight value. Quantified, this method requires

only n kernel instances (just one instance for each n kernels) and n · m incoming synaptic

weights at the given layer. Thus, convolving over time reduces the kernel area by a factor of

w when compared to the replication method.

Outgoing signals

Whether convolving over time or space, the same number of convolutions occur, and the

given layer still produces n values for each w windows. If simply stored until the other time

steps complete, these values would have a storage requirement of O(n ·w). However, because

of the recurrent connections discussed next, the outgoing signals undergo state compression

as they are retained over the remaining time steps in a recurrent layer, further reducing area

and eliminating data redirection on the outgoing side of the convolutional layer.

5.2.3 A recurrent state compression/retention layer

Information from previous states can be effectively retained and compressed by appro-

priately utilizing recurrent connections [63 ], [64 ]. In analog neuromorphic designs, latching

computed values and recalling them from storage is not as straightforward as it is for digital

124



designs. This is also true asynchronous or time-based signals, such as spike trains. Because

the network reuses the dedicated kernel hardware components in the subsequent time step,

the produced values must be transmitted to the next layer as they are generated. We use

the recurrent layer to receive these signals.

At each time step, the outgoing signals of each kernel propagate into the recurrent layer.

This layer has sparse recurrent connections creating built-in, interleaving cycles of systematic

lengths to retain information over the remaining time steps. For the RCNNs in the following

experiments, the neurons in the recurrent layer are arranged in a 2-D grid where each (i, j)th

node (zero-indexed) sends its signals to every node in the (i+j+1)st column, modulo the grid

dimensions. Training these recurrent connections allows the network to retain only the most

relevant information from the preceding time steps as the data signals merge and interfere

with each other in the recurrent layer. The resulting compression allows the recurrent layer

to be much smaller than if each signal were to be preserved in its entirety throughout the

remaining time steps.

Figure 5.3 illustrates this complete architectural setup with an example RCNN. Overall,

the key to this approach is that rather than replicating all the kernels for each window,

the same kernel components are used for all the windows—one window per time step, and

rather than storing and regenerating internal signals, the signals are received, retained, and

compressed via recurrent connections.
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Figure 5.3. Example architecture of a neural network with convolutions implemented via recurrency. (©2017 IEEE [17 ])
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5.3 Experimental Proof of Concept

Here we validate this approach of convolving over time while still propagating internal

signals with a simple proof of concept experiment.

5.3.1 Methodology

To validate the effectiveness of convolving over time, we set up a comparison between

the proposed RCNN architecture and a traditional CNN architecture. This section presents

the details of our experiment, the results of which we provide in the following section.

Network training

The networks were trained in MATLAB with standard gradient decent, using backpropa-

gation for the traditional CNNs and backpropagation through time (BPTT) for the RCNNs.

To perform BPTT, the RCNNs were logically unrolled for a number of time steps equal to

the number of convolution windows. Although other recurrent training techniques may be

used, BPTT was sufficient for validating the architecture.

The networks were trained and tested using the MNIST dataset [27 ], which is a collection

of grayscale images representing handwritten digits 0-9. There are 60,000 images in the

training set and 10,000 images in the testing set. We presented the training set to the

network for 30 passes, with a different random permutation of the set for each pass. After

training, the weight values were fixed, and the accuracy values for both the training and

testing sets were calculated.

Architecture and hyperparameters

The hyper-parameters in our setup were arbitrarily selected to allow for a more fair com-

parison between the RCNNs and the traditional CNNs, which exist in different optimization

spaces. For the input layer, the MNIST values were scaled to [-1, 1], corresponding to the

output range (-1, 1) of the selected non-linear hyperbolic tangent activation function used

throughout the network. Neuron outputs were capped within that range and output tar-
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gets were set within that cap to prevent migration towards the extremes where the gradient

approaches zero and restricts weight updates.

The convolution kernels were size 7x7 with a stride of three. As the images in the

MNIST dataset are of size 28x28 pixels, the kernel size and stride result in 8x8 (64 total)

convolutional windows. The number of kernels was set to 100 for each network design. The

network sizes were designed with the goal of comparability given the competing architectures.

For example, in place of the recurrent layer in the RCNNs, the CNNs had an equivalently

sized hidden layer with comparable connection density. For both the CNNs and the RCNNs,

two different sizes for this layer were evaluated: 100 neurons and 400 neurons.

5.3.2 Results and discussion

We compare a traditional CNN that has 100 post-convolution hidden layer neurons

(CNN100), a CNN with 400 hidden layer neurons (CNN400), an RCNN with 100 recurrent

layer neurons (RCNN100), and an RCNN with 400 recurrent layer neurons (RCNN400). After

presenting the classification accuracy, we discuss the network size and latency implications

of these four networks.

Network accuracy

Figure 5.4a compares the classification accuracy of CNN100 and RCNN100. As expected,

the testing accuracy degrades from CNN100 to RCNN100 because the convolutional signals in

an RCNN are not preserved in their entirety. However, the overall accuracy levels are quite

comparable, with only a 0.06% reduction in testing accuracy.

Similarly, Figure 5.4b presents the classification results when we increase the size of

the hidden/recurrent layer to 400 neurons. With more neurons the accuracy rates increase

compared to the smaller networks, as is typical. In these larger networks, the testing ac-

curacy reduction from CNN400 to RCNN400 is only 0.60%. These values are encouraging,

especially when considering the RCNN benefits discussed in Section 5.2 and the fact that

hyper-parameter optimization and deeper networks (see Section 5.4 ) are natural avenues for

improving the classification accuracy beyond this initial comparison.
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Figure 5.4. Accuracy results of a traditional CNN compared to the proposed
RCNN with equivalent-sized fully connected hidden layer (CNN) and recurrent
layer (RCNN) neurons with (a) 100 or (b) 400 hidden layer / recurrent layer
neurons. (©2017 IEEE [17 ])
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Table 5.1. Number of trainable parameters (synaptic weights). (©2017 IEEE [17 ])
Architecture Post-input Network Layers

Type Weight Sharing Conv. Hidden /
Recurrent Output Total

CNN100 Kernel replication 4900 1612 1010 7522
CNN100 Component reuse 4900 1612 1010 7522
RCNN100 Convolving in Time 4900 1505 1010 7415
CNN400 Kernel replication 4900 9404 4010 18314
CNN400 Component reuse 4900 9404 4010 18314
RCNN400 Convolving in Time 4900 8975 4010 17885

Discussion on network size

One benefit we note in the proposed RCNNs is the substantial network size reduction

when compared to CNNs that replicate components for kernel weight sharing. Although the

CNNs were designed with a comparable number of training parameters (see Table 5.1 ), the

CNNs that replicate kernel components for weight sharing in hardware have 64 times the

number of neuron components in the convolution layer when compared to the RCNNs (see

Table 5.2 ). This ratio is equal to the number of convolution windows, as the RCNN requires

only one instance of each kernel, which it uses for all windows.

As discussed in Section 5.1 , a CNN can reduce its parallelism (and thus increase its la-

tency) to avoid the larger hardware resource requirement by reusing generic, or even kernel-

specific components for multiple windows. However, since the subsequent layer cannot pro-

ceed until the convolutional layer is complete, a traditional CNN that reuses components

must still store and then regenerate all of the produced neuron outputs. Such storage or

regeneration requirements complicate any possible neuromorphic implementations of analog

or time-based neural networks. On the other hand, the proposed RCNN can pass produced

values or time-based signals into the recurrent layer as they are generated, further reducing

area costs by avoiding this restricting storage requirement when compared to a CNN with

generic components.
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Table 5.2. Neuron counts. (©2017 IEEE [17 ])
Architecture Post-input Network Layers

Type Weight Sharing Conv. Hidden /
Recurrent Output Total

CNN100 Kernel replication 6400 100 10 6510
CNN100 Component reuse* 6400 100 10 6510
RCNN100 Convolving in Time 100 100 10 210
CNN400 Kernel replication 6400 400 10 6810
CNN400 Component reuse* 6400 400 10 6810
RCNN400 Convolving in Time 100 400 10 510
* Note: For CNNs with generic component reuse, this chart represents the number of logical
neurons. The number of hardware components is dependent on the specific implementation.

Discussion on network latency

While RCNNs come with the additional latency cost of serialization when compared to a

completely parallelized CNN, there are a few latency benefits associated with RCNNs when

compared to CNNs with the same availability of hardware resources. Unlike CNNs that reuse

generic components, an RCNN does not have the latencies that result from data redirection,

data hazards, structural hazards, reading/writing weight values, storing and regenerating

internal signals, or control/synchronization penalties.

Further, for larger images our proposed RCNNs may be combined with attention-based

RNNs, such as that proposed by Mnih, et al. [65 ], in order to redirect the windows of the

convolutional network towards the most information-rich areas of the image. By so doing,

the RCNN may be able to improve latency by only convolving over the most relevant portions

of the image. Attention-based RCNNs are the subject of future work, as are deeper networks

and spiking neural networks as discussed next.

5.4 Potential Future Work

Future work prescribes the analysis of recurrent convolutions on SNNs with spike train

inputs. Further, we have hereto only validated the proposed method of convolving in time

for networks with a single convolutional layer. This method may be expanded to deeper

networks. The kernels of subsequent layers may be formed via small competing recurrent

clusters or via a larger recurrent cluster with competing outgoing weights. These recurrent
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clusters in the later stages would receive appropriately timed input from the outputs of the

kernels of preceding layers.

Consider the example in Figure 5.5 . If convolutional layer B has windows that encompass

a 2x2 area from the outputs of convolutional layer A, then the time steps for the recurrent

cluster(s) for layer B will encompass 4 time steps of the recurrent clusters in layer A (e.g.

time step B1 covers time steps A1, A2, A3, and A4). Thus, the order of input windows

cannot simply be left to right, top to bottom. The inputs should be presented in a zigzag

pattern that respects the overall window order required by later convolutional layers. Overlap

between windows in later stages may then require input signals to be repeated. Careful stride

patters, such as spiraled strides, may reduce the required repetition.
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6. EXPLICITLY TRAINED SPIKING SPARSITY (ETSS)

SNNs are being explored in machine learning in part for their potential energy efficiency

benefits due to the inherent computational sparsity that comes from event-driven computa-

tion [9 ]. The computational energy consumed in a spiking network during inference is highly

correlated with the number of spikes that occur because each spike at a given neuron induces

accumulation computations in each of that neuron’s fan-out neurons as well as a membrane

reset computation. Thus, reducing spiking activity is an important part of improving energy

efficiency in an SNN.

Until recently, training large-scale SNNs for complicated datasets was a difficult task

because discontinuous neuron activations are non-differentiable, preventing direct backprop-

agation. One of the first workarounds to this problem was converting a pre-trained, non-

spiking ANN to an SNN [29 ]. This approach allowed for competitive inference on an SNN

for complicated tasks like ImageNet, but it failed to capture the energy efficiency benefits

of sparsity. This failure was because the networks were trained in a highly precise, de-

terministic environment, and switching to the stochastic environment of an SNN reduces

resolution at small time scales, requiring a larger inference time to accurately distinguish

between close activation values. This larger inference time results in a significant number of

spiking operations, limiting energy efficiency benefits.

However, more recent works have demonstrated effective methods at backpropagating

directly in a spiking environment, e.g. [66 ], [67 ]. These methods approximate the gradients

over the discontinuous spiking activations, allowing for backpropagation through a deep SNN.

Lee et. al [67 ] have shown that this method of spiking backpropagation significantly reduces

the inference time required, and, with that, the total number of spikes and computations

that occur per inference, further improving the energy efficiency.

A beneficial side effect of these approximate spiking gradient techniques is that spikes

themselves may now be included in these surrogate backpropagation learning algorithms.

Since spiking sparsity is an energy goal of SNNs, this chapter presents the proposal of

including spiking activity directly in the loss function (Section 6.1 ), explicitly training the

SNNs to be more sparse in a multi-objective optimization process, taken from my work in
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[18 ]1  . We will refer to these networks as SNNs with Explicitly Trained Spiking Sparsity

(ETSS).

We additionally explore a simulated annealing-inspired loss function, providing back-

propagation with a dynamic weighting of the two optimization goals (accuracy and sparsity),

which can help avoid early local minima or solution states that catastrophically sacrifice ac-

curacy (Section 6.2 ). We compare these preliminary results (Section 6.3 ) to a modification of

Multi-Objective Particle Swarm Optimization (Section 6.4 ). When then expand into larger

networks by beginning with a pre-trained network (Section 6.5 ).

We note similar work in the SNN “activity regularization” portion of [68 ] that was de-

veloped concurrently with our work2
 . Our simulated annealing-inspired loss function which

dynamically adjusts the balance between the multiple objectives during training is a unique

contribution of our work, allowing the sparsity objective to be even stricter over time without

catastrophically reducing accuracy.

6.1 Balancing Accuracy and Sparsity with Surrogate Gradients

In SNNs, a spiking activation is often modeled as inducing an instantaneous weighted

potentiation in the membrane potentials of fan-out neurons. Emre et. al [66 ] have analyzed

the effectiveness of various “surrogate” or approximate gradients over spiking activations,

including fast-sigmoid, linear, and exponential surrogates, and have developed open-source

code for easy backpropagation in PyTorch using these surrogate gradients, called SpyTorch

[21 ]. These approximate gradients allow us to choose any criterion for the loss function, L(),

based on final classification error, e.g. mean squared error, cross entropy, etc., and let the

automatic software tools perform backpropagation.

Lclassif ication = criterion(output, target) (6.1)
1↑ This reference is a pre-print which, at the time of submitting this dissertation, currently contains only
preliminary results. The expanded results in this chapter are expected to be added to the pre-print soon.
This material may or may not undergo a future copyright transfer, but will retain permission to be included
here. This version is not necessarily endorsed by any potential future publisher in its current form.
2↑ Preliminary results from our work were first published internally to sponsors on 5 Oct 2019 and then
publicly at [18 ] on 2 Mar 2020. The work in [68 ] was first published on 3 Nov 2019. All updated results
presented here were produced before we were made aware of [68 ].
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Poggio et. al [69 ] have shown that the global minima for over-parameterized networks

often reside in flat valleys or basins within the optimization space. This means that many

neighboring solutions have near equivalent accuracy. These flat regions provide flexibility.

Our goal is to let the optimizer find solutions within those flat basins that have less spiking

activity without compromising accuracy too much.

Being able to differentiate over spiking events enables gradient descent based on a loss

that includes a measure of those spikes. The total loss, then, can be a combination of both

the classification accuracy goal and the spiking sparsity goal:

Ltotal = Lclassif ication + Lsparsity (6.2)

Lsparsity = σ(spikeCount) (6.3)

where σ() is a weighting function that scales the spike count loss to provide appropriate

balancing between the two loss components in (6.2 ).

6.2 Simulated Annealing-inspired Optimization Balancing

The most trivial approach for σ() would be to use a constant scalar:

σconstant(spikeCount) = σ0 ∗ spikeCount (6.4)

We consider a potential problem from adding in a sparsity loss function. When we

change the optimization topography, if the optimizer is constrained for sparsity too much,

too early in the training process, the gradients in the new landscape may not allow the

system to reach solution states that also reside in the basins of the classification landscape,

causing a significant reduction or complete failure of the classification accuracy. So for the

constant sparsity loss scaling function, σ0 must be small enough to allow the classification

loss to dominate the total gradient direction if classification accuracy is to be maintained.

However, letting the classification loss dominate too much, even after reaching the basins,

may fail to achieve the best sparsity.
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We explore a potential solution to this problem, inspired by simulated annealing–allow

the optimizer to disregard sparsity early in the training process and then slowly increase the

constraints for spiking sparsity as training continues. This approach makes σ() a function

of training time, or more simply, the current training epoch. In addition to the constant

sparsity loss function, we evaluate five annealing-inspired sparsity loss functions that increase

the sparsity constraint over time. These include a linear increase (6.5 ) and a quadratic

increase (6.6 ). The next two loss functions alternate between excluding and including the

sparsity loss function throughout the training process, where the portion of epochs in which

the sparsity loss is included increases linearly during training from zero-inclusion during the

first epoch to always-included in the last epoch. The first of these alternating loss functions

uses a constant σ0 when it the sparsity loss is included (6.7 ), and the other uses a linearly

increasing σ0 when it is included (6.8 ). The final sparsity loss function switches every 5

epochs between including or excluding the sparsity loss (6.9 ).

σlinear(spikeCount, nepoch) =
(

σ0 · nepoch

Nepochs

)
· spikeCount (6.5)

σquadratic(spikeCount, nepoch) =
(

σ0 · (nepoch)2

Nepochs

)
· spikeCount (6.6)

σalternating(spikeCount, nepoch) =
(

A(nepoch) · σ0

)
· spikeCount (6.7)

σalternating_linear(spikeCount, nepoch) =
(

A(nepoch) · σ0 · nepoch

Nepochs

)
· spikeCount (6.8)

σon_off (spikeCount, nepoch) =
(

σ0 ·
(⌊nepoch

5
⌋

mod 2
))

· spikeCount (6.9)

where A() is a binary value following the the alternating function discussed above.
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Table 6.1. Best preliminary sparsity results for each method when allowing
for an up to 0.5% drop in validation accuracy for CIFAR-10 on a VGG-5
trained from scratch.

Best Validation
Hyperparameters Validation Results Testing Results

Loss Function σ0
Training
Epochs Accuracy Average

Spikes Accuracy Average
Spikes

CrossEntropy (baseline) 0 124 81.49% 698,579 82.17% 663,577
C.E. (baseline) w/ drop 0 88 81.06% 679,384 81.61% 648,981
C.E. + σconstant 1.0e-05 87 81.12% 644,459 82.46% 359,542
C.E. + σlinear 1.0e-07 125 81.17% 489,694 82.22% 455,087
C.E. + σquadratic 1.0e-09 125 81.02% 530,408 82.11% 488,893
C.E. + σalternate 0.002 93 81.24% 94,996 81.69% 82,113
C.E. + σalternate_linear 1.0e-05 124 81.28% 121,142 81.24% 105,012
C.E. + σon_off 0.002 120 81.02% 77,149 81.26% 73,305

6.3 Preliminary Results

Preliminary experiments were conducted in PyTorch with SpyTorch using backpropa-

gation with piece-wise linear surrogate gradients on the Cifar-10 dataset with the VGG-5

architecture for 125 epochs. Cross entropy was chosen as the classification loss function. For

each of the sparsity loss functions discussed above, we performed a hyperparameter search

to discover the largest σ0 that still provides acceptable classification accuracy based on the

validation set. We set aside 20% of the training set as a validation set and trained with

the remaining 80%. Both the sparsity loss scaling constant, σ0, and the number of training

epochs were determined based on the validation results.

Using the hyperparameters for each method that gave the best spiking sparsity with an

up to 0.5% allowed drop in validation accuracy, we report the testing results in Table 6.1 

and Figure 6.1 (a). Results when allowing an up to 1% drop in validation accuracy are shown

in Table 6.2 and Figure 6.1 (b), and results for an up to 5% drop are shown in Table 6.3 and

Figure 6.1 (c).

Note that baseline accuracy values are low because these preliminary results are on

VGG-5 and for the reduced training set (with the validation set removed). Moving to larger

networks and re-including the removed validation set into training (after hyperparameter

selection) will significantly improve the baseline accuracy (Section 6.5 ).
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Table 6.2. Best preliminary sparsity results for each method when allowing
for an up to 1% drop in validation accuracy for CIFAR-10 on a VGG-5 trained
from scratch.

Best Validation
Hyperparameters Validation Results Testing Results

Loss Function σ0
Training
Epochs Accuracy Average

Spikes Accuracy Average
Spikes

CrossEntropy (baseline) 0 124 81.49% 698,579 82.17% 663,577
C.E. (baseline) w/ drop 0 76 80.82% 661,041 81.15% 635,610
C.E. + σconstant 1.0e-05 78 80.58% 637,949 81.83% 366,718
C.E. + σlinear 1.0e-06 125 80.58% 195,387 82.28% 177,737
C.E. + σquadratic 1.0e-08 125 80.50% 245,884 81.78% 224,648
C.E. + σalternate 0.002 124 80.52% 86,060 81.32% 76,932
C.E. + σalternate_linear 5.0e-05 86 80.69% 85,753 80.57% 79,508
C.E. + σon_off 0.0027 121 80.67% 62,010 81.07% 63,369

Table 6.3. Best preliminary sparsity results for each method when allowing
for an up to 5% drop in validation accuracy for CIFAR-10 on a VGG-5 trained
from scratch.

Best Validation
Hyperparameters Validation Results Testing Results

Loss Function σ0
Training
Epochs Accuracy Average

Spikes Accuracy Average
Spikes

CrossEntropy (baseline) 0 124 81.49% 698,579 82.17% 663,577
C.E. (baseline) w/ drop 0 73 79.47% 658,835 80.32% 636,826
C.E. + σconstant 1.65e-4 124 78.81% 141,011 80.41% 126,720
C.E. + σlinear 1.0e-05 125 78.36% 91,881 78.66% 83,243
C.E. + σquadratic 4.0e-07 96 76.49% 74,813 76.25% 69,005
C.E. + σalternate 0.003 119 76.52% 62,967 77.21% 57,955
C.E. + σalternate_linear 5.0e-05 124 79.32% 72,665 79.46% 69,570
C.E. + σon_off 0.0027 94 76.54% 54,642 77.98% 52,298
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Figure 6.1. Preliminary ETSS trade-off results (CIFAR-10 on VGG-5,
trained from scratch over 125 epochs). Results shown for the hyperparam-
eter selection in each method that resulted in the fewest average validation
spikes while maintaining the designated validation accuracy.
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6.4 Comparison with Multi-Objective Particle Swarm Optimization

The above preliminary results were achieved with a very ad-hoc exploration of the hyper-

parameter space of the sparsity scalar. Before expanding to larger networks, we wanted to

systematically explore how the sparsity scalar should change over time to observe any useful

patterns that would reduce the amount of hyperparameter exploration needed in the costly

temporal training of the larger networks. We performed this exploration with a modified

Multi-Objective Particle Sward Optimization (MO-PSO).

PSO employs many workers or particles that simultaneously explore the search space.

Each individual particle attempts to move toward a locally optimal solution, but is influenced

in its direction toward a globally optimal solution by better solution states found by other

particles. This is the swarm aspect of the optimization process.

6.4.1 MO-PSO methodology

Our process differs slightly from traditional PSO because of the temporal aspect of train-

ing. Not only does the specific hyperparameter(s) states that the particles have found make

up their solution state, but also the amount of time or epochs that the particles have spent

with the hyperparameter(s) at any previous value during previous epochs. Thus the solution

state isn’t just it’s current hyperparameter choice, but also it’s entire history.

We modify PSO to have Pareto-dominated particles be “killed off” and then clone a

state that is branched off from another Pareto-optimal particle. From each Pareto-optimal

point, we allowed for up to 6 different branches: (1) maintaining the current scalar value,

(2) a proportionally slightly higher scalar, (3) a proportionally slightly smaller scalar, (4)

maintaining the same momentum, i.e. letting the scalar continue to change in the direction

it had changed previously, (5) maintaining momentum with a proportionally slightly higher

scalar, and (6) maintaining momentum with a proportionally slightly smaller scalar. The

allowed deviations were approximately 4%.

Our initial attempts with branching were very noisy, with many branches being killed by

particles that had one statistically good epoch, but then were generally worse than the par-

ticles they killed off. We explored allowing branches from “grandfather” particles, averaging
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accuracy across branching generations, using training loss instead of validation accuracy, or

requiring two sequential dominations to be killed off, but we ultimately found success with

expanding the intervals to 5 epochs between evaluations/changes and keeping the same seed

between sibling branches. It was also important for us to restrict our definition of Pareto-

optimality to within a current generation so that child particles couldn’t be dominated by

the parent particles their branched from because of a single bad run.

We started at six starting values (1E-5, 2E-5, 4E-5, 8E-5, 1.6E-4, and 3.2E-4), logarith-

mically in the range that we knew from the previous ad-hoc attempts wouldn’t overpower

accuracy in the first few epochs. We ran the entire process for 125 epochs, exploring every

allowed non-dominated path along the way.

6.4.2 MO-PSO results and discussion

Figure 6.2 shows the MO-PSO results. There are three interesting observations that we

see in the MO-PSO results. First, the final accuracy/sparsity trade-off was on par with

the ad-hoc methods tried previously. Second, the sparsity scalar paths as expected started

small and increased, but then after sparsity was maxed out, the more sparse nodes then

began to branch off paths that once again decreased the scalar to focus on accuracy, and in

so doing, surpassed and killed off the branches that had stayed lower. Third, more sparse

paths seemed to follow the maximum increase allowed under the branching rules. While

this implies that they were constrained by limited branching options, it would have been

computationally infeasible to test the ability to jump to any arbitrary sparsity scalar at each

branching point.

The fact, however, that the sparsity scalar could not start very high without failing

and that the fact that the ad-hoc tests also failed with too rapid increases in the sparsity

scalar both support the case for an initial period focused on training more for accuracy than

sparsity. This is encouraging for training larger networks, because it means that we can

bypass much of that training time by using pre-trained networks.
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(a) Epoch 0 (b) Epoch 5 (c) Epoch 10

(d) Epoch 15 (e) Epoch 20 (f) Epoch 25

(g) Epoch 30 (h) Epoch 35 (i) Epoch 40

(j) Epoch 45 (k) Epoch 50 (l) Epoch 55

(m) Epoch 60 (n) Epoch 65 (o) Epoch 70

(p) Epoch 75 (q) Epoch 80 (r) Epoch 85

(s) Epoch 90 (t) Epoch 95 (u) Epoch 100

(v) Epoch 105 (w) Epoch 110 (x) Epoch 115

(y) Epoch 120 (z) Epoch 125
Figure 6.2. PSO. Left: path of surviving nodes. Right: corresponding trade-off.
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6.5 Expanding to Larger Networks/Datasets

We expanded to RESNET-20 on CIFAR-10 and then VGG-11 on CIFAR-100. Because

training in the time domain is very slow and memory-hungry, and because of the many

versions we needed to train for each network, expanding to ImageNet was not within the

scope of the computational resources we had available.

6.5.1 Starting with pre-trained networks

We expand to larger networks by beginning with pre-trained ANNs that are converted

to SNNs. While the option of beginning with pre-trained SNNs was also a possibility, the

addition of more spike-based training onto a network already trained in the spiking domain

would cause overfitting to the training set. By transferring domains, there is still some spike-

based training required, which training time we can use during the ETSS training before

it overfits. This hybrid method of training (first a converted ANN followed by additional

spike based training) is based on the methodology and code in [30 ], with the modifications

of adding the spike count loss, as scaled by the sparsity scalar, to the classification loss used

in the spike-based backpropagation. The domain transfer also allowed us to pre-train with

the validation set included, and then pull it back out only during the spike-based training,

increasing the baseline and overall accuracy.

We first tested this hybrid method on the previously explored VGG-5 on CIFAR-10 to

verify that this shorted training process still allows for equivalent sparsity/accuracy trade-

offs. Interestingly, we saw that even before any spike-based training, the baseline pre-trained

and converted network operated with significantly lower spikes than the baseline that had

only been trained in the spiking domain. In fact, the hybrid baseline was operating with

sparsity on par with the best best ETSS systems trained previously.

An analysis of the weight magnitudes, input spike rates, and spike count processes nar-

rowed down the discrepancy to the threshold balancing process during conversion. Because

of the conversion process, the threshold to weight magnitude ratio for the first layer of the

converted network was on the order of 10 times higher than the threshold to weight mag-

nitude ratio of the SNNs trained only in the spiking domain. This difference resulted in an
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order of 1/10th the number of spikes propagated in the hybrid system. Thus, the conversion

process included a form of weight regularization. This discovery helps us identify why we

were able to previously achieve such a large reduction in spikes at near iso-accuracy. A

majority of the pruned spikes were low-hanging fruit that could potentially be eliminated by

that re-scaling alone. While this reset our baseline and reduces the amount of iso-accuracy

sparsity improvement, we were still successful at further pushing the Pareto frontier with

the subsequent ETSS training.

A benefit to the hybrid baseline’s conversion-based sparsity is that the networks already

undergo (1) a period of accuracy-only training, followed by (2) a significant activation prun-

ing, which match the beginning and middle parts of the observed MO-PSO paths. With

this as the new starting point for ETSS training, the main need for dynamically altering the

sparsity scalar is reduced, and we can simply use a constant scalar to indicate the traded

desired. Dynamically changing the scalar can still allow for a single training run to explore

more area along the Pareto frontier, but a constant scalar can still push us to a corresponding

trade-off points along the frontier.

6.5.2 Identifying Pareto-optimal points

The validation set is used to identify which sparsity scalars and epoch stopping points

correspond with Pareto-optimal trade-offs. In other words, we do not use the testing data

even to identify the Pareto-optimal points we wish to report. Only once those configurations

are selected do we identify the testing results. This means that networks that were Pareto

optimal in the validation set may not be Pareto optimal in the testing set, but in practice

the match is very good. This, together with the inclusion of the validation set during pre-

training, also means that an identified accuracy vs. sparsity trade-off in the validation set

will not exactly correspond the an equivalent trade-off in the testing set, though in practice

it is close, as shown next, and is sufficient to identify the better trade-offs.

145



6.5.3 ETSS pre-trained, expanded results

For Cifar-10, we train VGG-5 for 50 additional epochs and RESNET-20 for 20 additional

epochs, and for Cifar-100 we train VGG-11 for 20 additional epochs. For each network,

we trained for many constant sparsity scalars. Each of the results shown here are run and

averaged over 3 seeds.

Cifar-10 on VGG-5

Figure 6.3 shows many iterations of training VGG-5 for different sparsity scalars, with the

results pushing to the bottom right. Figure 6.4 shows the identification of the Pareto-optimal

points according to the validation set and the corresponding testing set results. Figure 6.5 

shows the spike count reduction for various levels of acceptable accuracy reduction, compared

to the baseline network at equivalent levels of acceptable accuracy reduction.

Cifar-10 on RESNET-20

Figure 6.6 shows many iterations of training RESNET-20 for different sparsity scalars,

with the results pushing to the bottom right. Figure 6.7 shows the identification of the

Pareto-optimal points according to the validation set and the corresponding testing set re-

sults. Figure 6.8 shows the spike count reduction for various levels of acceptable validation

reduction, compared to the baseline network at equivalent levels of acceptable accuracy

reduction.

Cifar-100 on VGG-11

Figure 6.9 shows many iterations of training VGG-11 on CIFAR-100 for different sparsity

scalars, with the results pushing to the bottom right. Figure 6.10 shows the identification of

the Pareto-optimal points according to the validation set and the corresponding testing set

results. Figure 6.11 shows the spike count reduction for various levels of acceptable accuracy

reduction, compared to the baseline network at equivalent levels of acceptable accuracy

reduction.
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Spikes vs Accuracy During Training (CIFAR-10 on a pre-trained, converted VGG-5)

Figure 6.3. A converted VGG-5 network trained for an additional 50 epochs
with spike-based training, comparing the baseline (no ETSS), to various con-
stant ETSS methods with their sparsity scalars shown. To the bottom-right
is better. Connected dots show the progress during training as they push to
the right and down. (a) Validation. (b) Testing.
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Pareto Optimal Spikes vs Accuracy (CIFAR-10 on a pre-trained, converted VGG-5)

Figure 6.4. The same data as in Figure 6.3 with the Pareto-optimal points
identified (according to the validation set). (a) Validation. (b) Testing.
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Figure 6.5. Comparison of Pareto-optimal ETSS constant-scalar trade-offs
with Pareto-optimal baseline trade-offs for CIFAR-10 on VGG-5. (Note that
the pre-trained baseline never had accuracy less than 2% below its final best.
Therefore, its lowest spike state is chosen as a comparison in the larger bins–
represented with grayed out bars.)
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Spikes vs Accuracy During Training (CIFAR-10 on a pre-trained, converted RESNET-20)

Figure 6.6. A converted RESNET-20 network trained for an additional 20
epochs with spike-based training, comparing the baseline (no ETSS), to various
constant ETSS methods with their sparsity scalars shown. To the bottom-right
is better. Connected dots show the progress during training as they push to
the right and down. (a) Validation. (b) Testing.
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Pareto Optimal Spikes vs Accuracy (CIFAR-10 on a pre-trained, converted RESNET-20)

Figure 6.7. The same data as in Figure 6.6 with the Pareto-optimal points
identified (according to the validation set). (a) Validation. (b) Testing.
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Figure 6.8. Comparison of Pareto-optimal ETSS constant-scalar trade-offs
with Pareto-optimal baseline trade-offs for CIFAR-10 on RESNET-20.

152



200,000

250,000

300,000

350,000

400,000

450,000

500,000

550,000

600,000

50% 55% 60% 65% 70%

200,000

250,000

300,000

350,000

400,000

450,000

500,000

550,000

600,000

80% 85% 90% 95% 100%

0

100,000

200,000

300,000

400,000

500,000

600,000

0% 20% 40% 60% 80% 100%

In
fe

re
n

ce
 S

p
ik

es

Classification Accuracy

baseline 2.50E-06 3.75E-06 5.00E-06 6.25E-06 7.50E-06

8.75E-06 1.00E-05 1.25E-05 2.50E-05 3.75E-05 5.00E-05

6.25E-05 7.50E-05 8.75E-05 1.00E-04

0

100,000

200,000

300,000

400,000

500,000

600,000

0% 20% 40% 60% 80% 100%

In
fe

re
n

ce
 S

p
ik

es

Classification Accuracy

baseline 2.50E-06 3.75E-06 5.00E-06 6.25E-06 7.50E-06

8.75E-06 1.00E-05 1.25E-05 2.50E-05 3.75E-05 5.00E-05

6.25E-05 7.50E-05 8.75E-05 1.00E-04

(a) Validation (b) Test

Spikes vs Accuracy During Training (CIFAR-100 on a pre-trained, converted VGG-11)

Figure 6.9. A converted VGG-11 network trained for an additional 20 epochs
with spike-based training, comparing the baseline (no ETSS), to various con-
stant ETSS methods with their sparsity scalars shown. To the bottom-right
is better. Connected dots show the progress during training as they push to
the right and down. (a) Validation. (b) Testing.
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Pareto Optimal Spikes vs Accuracy (CIFAR-100 on a pre-trained, converted VGG-11)

Figure 6.10. The same data as in Figure 6.9 with the Pareto-optimal points
identified (according to the validation set). (a) Validation. (b) Testing.
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Figure 6.11. Comparison of Pareto-optimal ETSS constant-scalar trade-offs
with Pareto-optimal baseline trade-offs for CIFAR-100 on VGG-11. (Note that
the pre-trained baseline never had accuracy less than 7.5% below its final best.
Therefore, its lowest spike state is chosen as a comparison in the 10% drop
bins–represented with a grayed out bar.)
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6.5.4 Dynamic runs for comparison

Although we were able to get sufficient trade-off using constant sparsity scalars on larger,

pre-trained networks, we still need to compare with dynamically adjusting the sparsity scalar

during training. Because RESNET-20 and VGG-11 take a considerably larger amount of

time and memory to train with temporal, spike-based backpropagation, not very many hy-

perparameters could be searched. We therefore replace the sparsity scalar functions tried

previously in the preliminary results with a feedback function that only includes the sparsity

loss in the current epoch if the current validation accuracy is within 1% of the max validation

accuracy it has seen up until that point. Whenever the validation accuracy falls below that

level, the dynamic network will switch to training only for classification error minimization

to regain the lost accuracy.

We compare a few runs of this dynamic sparsity scalar method at different intensities

against the Pareto-optimal points of the constant scalars. Figure 6.12 shows that trade-off

comparison for CIFAR-10 on a pre-trained VGG-5, Figure 6.13 shows comparison for CIFAR-

10 on a pre-trained RESNET-20, and Figure 6.14 shows the comparison for CIFAR-100 on

a pre-trained VGG-11.

For the smaller VGG-5, the dynamic methods are able to push up to the Pareto-boundary,

but do not significantly pass it with the testing set. However, for the larger RESNET-20,

the less-intense dynamic function (orange) was able to drop the spiking activity significantly

lower than the constant approaches. Stricter constant scalars in that area had all failed.

Similarly, for VGG-11 the dynamic functions were able to push past the constants’ Pareto

frontier, in some places regaining 3-5% accuracy at a given spike count level.

For the larger networks, a constant scalar may be insufficient because the multi-objective

loss landscape may continue to contain far more local minima with their higher parameter

counts, even after pre-training. Further hyperparameter search in this space was, however,

beyond the scope of this work due to computational constraints. This exploration merits

further research.
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Figure 6.12. Trade-off results of a few dynamic scalar runs compared to the
constant scalar pareto-optimal points for CIFAR-10 on a pre-trained VGG-5.
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Figure 6.13. Trade-off results of a couple dynamic scalar runs compared
to the constant scalar pareto-optimal points for CIFAR-10 on a pre-trained
RESNET-20.
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Figure 6.14. Trade-off results of a few dynamic scalar runs compared to the
constant scalar pareto-optimal points for CIFAR-100 on a pre-trained VGG-11.
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