
INTEGRAL CLOSURES OF IDEALS AND COEFFICIENT
IDEALS OF MONOMIAL IDEALS

by

Lindsey Hill

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Mathematics

West Lafayette, Indiana

August 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Bernd Ulrich, Chair

Department of Mathematics

Dr. Giulio Caviglia

Department of Mathematics

Dr. William Heinzer

Department of Mathematics

Dr. Irena Swanson

Department of Mathematics

Approved by:

Dr. Plamen Stefanov

2



This dissertation is dedicated to Michael, Geoffrey, and my parents.

3



ACKNOWLEDGMENTS

I would like to thank those who made completing this dissertation possible.

I am immensely grateful to my advisor, Bernd Ulrich, for his support throughout my

time as his student. It has been a privilege to learn from him, and I am especially grateful

for his time and patience in helping me prepare this dissertation. I would also like to express

my gratitude for the community that he has built amongst his students and in the field of

commutative algebra in general.

Thank you to Rachel Lynn for being a wonderful collaborator and friend throughout

graduate school. For most of our graduate school experience, Rachel and I spent several

hours a day working together in our office. After my son was born, Rachel was especially

kind and accommodating to me by coming to my home to continue our collaboration. Rachel

kept me motivated most of the time, but especially during that time. Thank you to Mark

Lynn as well for being a supportive friend to our family.

Thank you to Professors Bill Heinzer and Giulio Caviglia for teaching insightful classes.

In particular, Professor Heinzer has taught me the value of working with examples. Thank

you to Professor Irena Swanson whose book Integral Closure of Ideals, Rings, and Modules

I have valued so much for several years. I am grateful to each of you for serving on my

committee.

Thank you to Claudia Polini for giving me an opportunity to speak at Notre Dame’s

Algebraic Geometry and Commutative Algebra seminar and for writing a letter of recom-

mendation for me. Thank you to Kuei-Nuan Lin and Alessandra Costantini as well for

inviting me to speak at conferences over the years. Thank you to Gabriel Sosa-Castillo for

sharing helpful advice about navigating the job market.

Thank you to my mathematical siblings and fellow commutative algebraists whose time

at Purdue has overlapped with mine, including Alessandra Costantini, Eddie Price, Monte

Cooper, Tan Dang, Roberto Ulloa-Esquivel, Jenna Tarasova, Matt Weaver, Vinh Nguyen,

Adam LaClair, Cheng Meng, Anna-Rose Wolff and Youngsu Kim. I have enjoyed shar-

ing this experience with you all. Thank you to Katy Yochman, Vianney Filos-Gonzalez,

4



Chris Creighton, Dan Bath, Harrison Wong, Ellen Weld and Nick Egbert for friendship and

camaraderie.

Thank you to those who have helped me develop as an instructor during my time at

Purdue, including Dominic Naughton, Joe Chen, and Owen Davis. Thank you to the De-

partment of Mathematics for funding a year of research.

I would like to extend my gratitude to the mathematics professors of Knox College. In

particular, Professors Dennis Schneider and Pedro Teixeira were generous with their time

when I expressed interest in preparing for graduate school for mathematics. Pedro Teixeira’s

algebra course was particularly influential on me as an undergraduate. I am appreciative of

their continued support throughout graduate school and inviting me back to Knox College

to speak.

Thank you to Mei Ng, whose advice and support over the past three years I have valued

so highly.

Finally, I’d like to thank my family for supporting me throughout this process. My

mother, Debbie, has sacrificed so much to help me complete my PhD. She has been a

constant source of support, allowing me to have time to complete my education with the

assurance that my son is in the best hands while I am away. My mother’s dedication to me

and my family can not be overstated and I will forever be grateful for how she has helped

us.

My son, Geoffrey, has brought so much joy to my life during the last two and a half years.

Geoffrey finds excitement in most things we take for granted, including neighbors cutting

their grass, waving to garbage men every week, and passing road construction on a highway.

Seeing life through his eyes has made mine much happier. Taking breaks with Geoffrey to

go to the park, read and dance are always highlights of my day.

It is hard to find the words to express how much gratitude I have for my husband,

Michael Kaminski. We have navigated graduate school side by side. Michael’s enthusiasm

for learning mathematics is infectious. Michael has helped me find motivation when I’ve felt

discouraged, and celebrated me when I’ve had successes. He has graciously listened to long,

rambling ideas for proofs. He has believed that I am capable of earning a PhD every time I

have doubted it.

5



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 PRELIMINARIES: PART 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Integral Closure of a Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 General Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Properties of rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Blowup algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 The integral closure of the Rees algebra . . . . . . . . . . . . . . . . . . . . 21

2.6 Properties of Integral Extensions . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Graded rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Analytically Unramified Rings . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.10 Serre’s Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.11 Excellent rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.12 Local cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 SPECIALIZATION OF THE INTEGRAL CLOSURE OF AN IDEAL . . . . . . 30

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Local Bertini Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Vanishing of Local Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Reducing to the normal ring case . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Proof of the Specialization of the Integral Closure . . . . . . . . . . . . . . . 40

3.7 Specialization for Powers of I  . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6



4 SPECIALIZATION OF THE INTEGRAL CLOSURE OF AN IDEAL BY A GEN-

ERAL LINEAR FORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 PRELIMINARIES: PART 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Corso-Polini-Vasconcelos Characterization of Coefficient Ideals . . . . . . . . 57

5.2 Graded Hom, Graded Ext and the Graded Canonical Module . . . . . . . . 59

5.3 The S2-ification of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 SPECIALIZATION OF COEFFICIENT IDEALS . . . . . . . . . . . . . . . . . . 66

6.1 Containment Preservation Property for Coefficient Ideals . . . . . . . . . . . 72

7 COEFFICIENT IDEALS IN A POLYNOMIAL RING IN TWO VARIABLES . . 74

7.1 The First Coefficient Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 The Ratliff-Rush Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 Behavior of Coefficient Ideals Under Specialization . . . . . . . . . . . . . . 84

8 FIRST COEFFICIENT IDEALS . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9 THE CORE AND THE FIRST COEFFICIENT IDEAL . . . . . . . . . . . . . . 100

9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.2 Adjoint Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.3 Cores of Monomial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7



LIST OF FIGURES

7.1 Coefficient ideals for I = (x8, x6 y2, y8) . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Coefficient ideals for I = (x12, x2y10, x8y4, y12) . . . . . . . . . . . . . . . . . . . 83

8



ABSTRACT

The integral closure I of an ideal I in a ring R consists of all elements x ∈ R that are

integral over I. If R is an algebra over an infinite field k, one can define general elements of

I = (x1, . . . , xn) as xα = ∑n
i=1 αixi with (α1, . . . , αn) belonging to a Zariski-open subset of

kn.

We prove that for any ideal I of height at least 2 in a local, equidimensional excellent

algebra over a field of characteristic zero, the integral closure specializes with respect to a

general element of I. That is, we show that I/(x) = I/(x).

In a Noetherian local ring (R,m) of dimension d, one has a sequence of ideals approxi-

mating the integral closure of I for I an m-primary ideal. The ideals

I ⊆ I{d} ⊆ · · · ⊆ I{1} ⊆ I{0} = I

are the coefficient ideals of I. The ith coefficient ideal I{i} of I is the largest ideal containing

I and integral over I for which the first i+ 1 Hilbert coefficients of I and I{i} coincide.

With a goal of understanding how coefficient ideals behave under specialization by gen-

eral elements, we turn to the case of monomial ideals in polynomial rings over a field. A

consequence of the specialization of the integral closure is that the ith coefficient ideal spe-

cializes when the ith coefficient ideal coincides with the integral closure. To this end, we give

a formula for first coefficient ideals of m-primary monomial ideals generated in one degree

in 2 variables in order to describe when I{1} = I. In the 2-dimensional case, we characterize

the behavior of all coefficient ideals with respect to specialization by general elements.

In the d-dimensional case for d ≥ 3, we give a characterization of when I{1} = I for m-

primary monomial ideals generated in one degree. In the final chapter, we give an application

to the core, by characterizing when core(I) = adj(Id) for such ideals.

Much of this dissertation is based on joint work with Rachel Lynn.
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1. INTRODUCTION

The integral closure of an ideal I in a ring R is an ideal consisting of all elements x ∈ R that

satisfy an equation of integral dependence over the ideal I, meaning

xn + a1x
n−1 + · · · + an = 0 (1.1)

for some ai ∈ I i. The integral closure of an ideal is an analogue of the integral closure of a

ring, which is a generalization of the algebraic closure of a field.

This dissertation focuses first on the question of whether the property of an ideal being

integrally closed is preserved modulo a sufficiently general element of the ideal I, as well as

a sufficiently general element of the maximal ideal m. When the property P passes when

going modulo an element, we say that the property P specializes.

The specialization of the integral closure was first proved by Itoh in [Ito92 ] and later

generalized by Hong and Ulrich in [HU14 ]. Itoh proved that in a Cohen-Macaulay local

ring, for a parameter ideal I = (a1, . . . , an), after passing from R to the faithfully flat

extension R[T ]mR[T ], that the integral closure specializes with respect to a generic element

of IR[T ]mR[T ]. Later, Hong and Ulrich generalized the result by eliminating the Cohen-

Macaulay assumption on the ring and the assumption that I is a parameter ideal to prove

rather generally for ideals of height at least 2 that the integral closure specializes with respect

to a generic element after passing to R[T ].

The main motivation for proving the specialization of the integral closure is to be able

to prove results about the integral closure of the ideal by induction on the height of the

ideal. Passing to a polynomial ring over R changes the dimension of the ring, and passing to

R[T ]mR[T ] changes some properties of the residue field. Therefore, it is desirable to see that

the integral closure specializes without extending the base ring.

In Chapter 3, we prove the following theorem.

Theorem 1.0.1. Let (R,m) be a local equidimensional excellent k-algebra, with k is a field

of characteristic 0. Let I = (a1, . . . , an) be an R-ideal such that ht I ≥ 2, and let x be a

general element of I. Then I/(x) = I/(x).
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Our proof fundamentally uses that the integral closure of an ideal I can be recovered

from the integral closure of the extended Rees algebra R[It, t−1] in R[t, t−1]. Local Bertini

Theorems proved by Flenner allow us to say that the R[It, t−1]R[t,t−1]
/xtR[It, t−1]R[t,t−1] is

locally normal at certain primes. This is key to proving that the natural map

ϕ : R[It, t−1]R[t,t−1]
/xtR[It, t−1]R[t,t−1] −→ R

(x)

[
I

(x)t, t
−1

]R/(x)[t,t−1]

is an isomorphism locally at certain primes. The local isomorphisms allow us to prove that

the cokernel of ϕ sits inside a local cohomology module, which by a result of Hong and

Ulrich, vanishes in the appropriate degree. We ultimately can say that the cokernel of ϕ

vanishes in degree 1, which tells us that I/(x) = I/(x).

Next, we consider specialization of the integral closure modulo elements of the maximal

ideal of R. We give counterexamples showing that when dimR/I ≤ 1, the integral closure of

I often does not specialize with respect to general elements of the maximal ideal. However,

we do prove that if R/I is reduced and depth(R/I) ≥ 2, then I remains integrally closed

when one specializes with respect to a general element of the maximal ideal.

We also consider the case of squarefree monomial ideals. It is well known that every

squarefree monomial ideal is an intersection of finitely many primes generated by variables.

We prove that if I is a squarefree monomial ideal that is an intersection of finitely many

such primes generated by disjoint sets of variables, then the integral closure of I specializes

with respect to a general linear form.

The second part of the dissertation focuses on coefficient ideals, a sequence of ideals that

approximates the integral closure. We assume (R,m) is a local ring of dimension d > 0,

or R = k[x1, . . . , xd] is a polynomial ring over a field with m = (x1, . . . , xd). Let I be an

m-primary ideal. The Hilbert-Samuel polynomial of I can be written as

PI(n) = e0(I)
(
n+ d− 1

d

)
− e1(I)

(
n+ d− 2
d− 1

)
+ · · · + (−1)ded(I).

11



We define e0(I) to be the Hilbert-Samuel multiplicity of I and ei(I) to be the ith Hilbert

coefficient of I.

Kishor Shah proved the existence of a largest ideal I{i} containing I and integral over

I such that the Hilbert coefficients e0(I), . . . , ei(I) coincide with e0(I{i}), . . . , ei(I{i}). Thus,

we have a sequence of ideals

I ⊆ I{d} ⊆ · · · ⊆ I{1} ⊆ I{0} = I.

Rees’s theorem states that in an equidimensional and universally catenary ring, the

integral closure of I is the unique largest ideal containing I with the same Hilbert-Samuel

multiplicity. Hence, in an equidimensional and universally catenary ring, one need not

assume that that the coefficient ideals are integral over I. Ratliff and Rush previously proved

that if I contains a nonzerodivisor, then there is a unique largest ideal containing I such

that the entire Hilbert-Samuel polynomial coincides. Such an ideal is called the Ratliff-Rush

closure, denoted Ĩ. One has that Ĩ = I{d}.

Since we have proved that the integral closure specializes with respect to a general element

of the ideal, it is natural to ask whether the ideals approximating I also behave well with

respect to specialization by a general element.

In general, it is not true that the coefficient ideals specialize. Rossi and Swanson in

[RS03 ] give classes of examples for which the Ratliff-Rush closure, Ĩ, does not specialize

with respect to general elements of the ideal.

We prove that for general x ∈ I, there are containments

I{i}/(x) ⊆ (I/(x)){i} (1.2)

for 1 ≤ i ≤ d− 1 and

Ĩ/(x) = I{d}/(x) ⊆ (I/(x)){d−1} = Ĩ/(x). (1.3)

For i < d, we say that I{i} specializes with respect to general x ∈ I if I{i}/(x) = (I/(x)){i}.

For general x ∈ I, we say that the Ratliff-Rush closure specializes if Ĩ/(x) = Ĩ/(x), i.e.

12



I{d}/(x) = (I/(x)){d−1}. It is easy to see that the ith coefficient ideal specializes with respect

to general elements of I if I{i} = I for i < d and the Ratliff-Rush closure specializes with

respect to general elements of I if Ĩ = I. Moreover, we observe that if Ĩ = I{d} ( I{d−1},

then the Ratliff-Rush closure does not specialize.

This leads to several questions: When do coefficient ideals coincide with the integral

closure? When does the Ratliff-Rush closure coincide with the (d − 1)st coefficient ideal?

Are there ideals for which the ith coefficient ideal is not equal to the integral closure, but the

ith coefficient ideal still specializes?

In a polynomial ring in two variables over a field k of characteristic zero, we get a complete

picture of the behavior of coefficient ideals under specialization for 0-dimensional monomial

ideals generated in one degree. Since the dimension of such a ring is two, the sequence of

coefficient ideals is

I ⊆ I{2} ⊆ I{1} ⊆ I{0} = I. (1.4)

As previously stated, the Ratliff-Rush closure does not specialize if I{2} ( I{1}. We are also

able to say that in this case, I{1} specializes regardless of whether I{1} = I, and from this

it follows that the Ratliff-Rush closure specializes if I{2} = I{1}. Moreover, in the dimension

2 case, we are able to get a very concrete description of when I{2} = I{1} and when those

ideals coincide with I{0}.

In a polynomial ring in d ≥ 3 variables over a field k, for 0-dimensional monomial

ideals generated in one degree, we are able to characterize when the first coefficient ideal

coincides with the integral closure. We do so by utilizing a result of Corso, Polini and

Vasconcelos in [CPV06 ], generalizing Ciupercă in [Ciu01 ], which characterizes I{1} as the

degree 1 component of the S2-ification of the Rees algebra of I, R[It]. From this result, we

give a criterion to check whether a monomial belongs to the first coefficient ideal. We use

this criterion to give a formula for the first coefficient ideal as a sum of finitely many colon

ideals, and to characterize when I{1} = I.

Theorem 1.0.2. Let R = k[x1, . . . , xd] be a polynomial ring over a field k with d ≥ 2. Let

m = (x1, . . . , xd). Let I be an m-primary monomial ideal generated in degree n. Let A denote

the matrix whose columns are the exponent vectors of monomial generators of I of degree n

13



excluding the exponent vectors associated to xn
1 , . . . , x

n
d . Let Ad−1 denote the submatrix of A

consisting of the first d− 1 rows of A. Let B1, . . . , Bl denote the d− 1 by d− 1 submatrices

of Ad−1. Then gcd(|B1| , . . . , |Bl| , n) = 1 if and only if I{1} = I = mn. In particular, if I is

generated by fewer than 2d− 1 elements, then I{1} ( mn.

This gives a class of ideals in polynomial rings in arbitrary numbers of variables whose

first coefficient ideals specialize with respect to general elements of the ideal.

Lastly, we apply the results on the first coefficient ideal to the core. In a Noetherian

ring, an ideal J ⊆ I is a reduction of I if I is integral over J . A reduction is minimal if it

is minimal with respect to containment. There are usually infinitely many reductions, even

minimal reductions, of an ideal I. Therefore, one takes the intersection of all reductions,

called the core of I. The core of I is a subideal of I that in some way serves as an analogue

of the integral closure of I.

Since the core of I is a possibly infinite intersection of ideals, it is difficult to compute.

Lipman in [Lip94 ] has proved that in a regular domain of dimension d, the core is related

to the adjoint ideal in the following way: adj(Id) ⊆ core(I). Much work has been done to

understand when this containment is an equality.

Polini, Ulrich and Vitulli in [PUV07 ] have shown that in a polynomial ring over a field of

characteristic zero, the first coefficient ideal I{1} is the unique largest ideal containing I and

integral over I for which core(I) = core(I{1}). For m-primary ideals which are generated in

degree n, we see that adj(Id) = core(mn). Hence, by characterizing when I{1} = I = mn for

m-primary monomial ideals generated in degree n, we have characterized when core(I) =

adj(Id).

We now describe the contents of each chapter. In Chapter 2, we review preliminaries

for Chapter 3 and 4. In Chapter 3, we prove the main theorem on the specialization of the

integral closure of an ideal I with respect to a general element of the I. In Chapter 4, we

give counterexamples to the specialization of the integral closure with respect to a general

element of the maximal ideal, as well as classes of ideals for which the integral closure does

specialize in this sense.
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In Chapter 5, we review background information on coefficient ideals. Chapter 6 contains

the most general results in this dissertation on how coefficient ideals behave after going

modulo a general element of the ideal. Chapter 6 also contains a note that coefficient ideals

respect containments of reductions, a generalization of a result in [Hei+93 ].

In Chapters 7 through 9, we restrict to the case of polynomial rings over a field and m-

primary monomial ideals generated in one degree. In Chapter 7, we consider the 2-variable

case. In a polynomial ring in two variables, we characterize how all coefficient ideals of 0-

dimensional monomial ideals generated in one degree behave with respect to specialization by

general elements. In Chapter 8, we describe the first coefficient ideal of m-primary monomial

ideals generated in one degree in the d ≥ 2 variable case. In Chapter 9, we apply the results

on the first coefficient ideal from Chapter 8 to the core of the ideal.
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2. PRELIMINARIES: PART 1

We first define the central object of this dissertation, the integral closure of an ideal.

Definition 2.0.1. Let R be a ring and let I be an R-ideal. An element x ∈ R is integral

over I if I satisfies an equation of integral dependence

xn + a1x
n−1 + · · · + an = 0, (2.1)

where ai ∈ I i for 1 ≤ i ≤ n.

The integral closure I of I is defined to be the set of all elements x ∈ R which are integral

over I.

We say that an ideal I is integrally closed if I = I, and normal if In = In for all n ∈ N.

Next, we review some of the most essential properties of the integral closure of an ideal.

Remark 2.0.1. (i) The integral closure I of I is an integrally closed R-ideal. See [SH06 ,

Corollary 1.3.1].

(ii) I ⊆ I. Indeed, for any a ∈ I, x − a = 0 is an equation of integral dependence that a

satisfies.

(iii) Integral closure respects containments, i.e. if J ⊆ I, then J ⊆ I. This is clear because

J i ⊆ I i for all i and hence an equation of integral dependence over J is also an equation

of integral dependence over I.

(iv)
√

0 ⊆ I. Indeed, let x ∈
√

0. Then xn = 0 for some n, and this is an equation of

integral dependence of x over I.

(v) I ⊆
√
I. Let x ∈ I. Since x is integral over I, there exists ai ∈ I i for 1 ≤ i ≤ n such

that

xn + a1x
n−1 + · · · + an = 0 (2.2)

for some n. Then

xn = −a1x
n−1 − · · · − an ∈ I (2.3)

16



and hence x ∈
√
I.

(vi) ht I = ht I. Since I ⊆ I ⊆
√
I and V (I) = V (

√
I), it immediately follows that

V (I) = V (I) = V (
√
I) where V (J) := {p ∈ Spec(R) | p ⊇ J}. Since the primes

containing I are exactly the primes containing I, I and I have the same height.

(vii) If ϕ : R → S is a ring homomorphism, then ϕ(I) ⊆ ϕ(I)S. This property is called

persistence. Given an equation of integral dependence of x over I, after applying ϕ,

we have an equation of integral dependence of ϕ(x) over ϕ(I)S.

(viii) Integral closures commute with localization. If W be a multiplicatively closed subset

of R, then I(W−1R) = IW−1R. See [SH06 , Proposition 1.1.4].

(ix) If R → S is a faithfully-flat extension or integral extension, and I is an R-ideal, then

IS ∩R = I. See [SH06 , Proposition 1.6.1, 1.6.2].

Next, we define reductions of an ideal.

Definition 2.0.2. A subideal J ⊆ I is a reduction of I if JIk = Ik+1 for some nonnegative

integer k.

Reductions are very closely related to integral closures. If the ring R is Noetherian, or

more generally, if I is finitely generated, then J ⊆ I is a reduction of I if and only if I ⊆ J

(see [SH06 , Corollary 1.2.5]). That is, J is a reduction of I if and only if every element of I

is integral over J .

2.1 Integral Closure of a Ring

The integral closure of an ideal is an analogue of the integral closure of a ring, which we

now define.

Definition 2.1.1. Let R be a ring and S an overring of R. An element x ∈ S is integral

over R if there exists an equation of integral dependence of the form:

xn + a1x
n−1 + · · · + an = 0, (2.4)

17



with ai ∈ R for 1 ≤ i ≤ n.

The integral closure of R in S, denoted R
S is the set of all elements in S integral over

R.

Definition 2.1.2. An extension R ⊆ S is called an integral extension if RS = S. We say

R is integrally closed in S if RS = R.

The integral closure RS is an integrally closed subring of S containing R.

2.2 General Elements

A general element of an ideal I in an algebra over an infinite field is defined as follows.

Definition 2.2.1. Let R be a k-algebra, with k an infinite field. Let I = (x1, . . . , xn) be an

R-ideal. Then a general element xα of I is xα = ∑n
i=1 αixi where α = (α1, . . . , αn) is in a

nonempty Zariski-open subset of kn.

A nonempty Zariski-open subset is dense in kn, so we think of a general element of I as

a random k-linear combination of the generators of I.

Remark 2.2.1. (i) If U is open in kn, then U is dense if and only if it is nonempty.

(ii) If properties P1, . . . , Ps hold for general elements x ∈ I, then P1 ∧ P2 ∧ . . . ∧ Ps holds

for general elements x ∈ I.

If I is not contained in a given prime ideal p, then there is a nonempty open set U in

kn such that for any (a1, . . . , an) ∈ U , a1x1 + · · · + anxn 6∈ p. By Remark 2.2.1 (ii), if I is

not contained any of the primes {p1, . . . , pn}, then it is a general condition to avoid ⋃n
i=1 pi.

In particular, if R is Noetherian and grade I > 0, then I 6⊆ ⋃
p∈Ass(R) p, the collection of

zerodivisors on R. Hence we may assume that general x ∈ I are nonzerodivisors on the ring

R.

2.3 Properties of rings

Definition 2.3.1. A domain R is normal if R is integrally closed in its quotient field

Quot(R). A ring R is normal if it is locally a normal domain at each m ∈ m-Spec(R).
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Definition 2.3.2. An element a of a ring is nilpotent if there exists n ≥ 0 such that an = 0.

A ring that has no nonzero nilpotents is called a reduced ring.

The nilradical
√

0 of a ring R is defined to be the intersection of all prime ideals, or

equivalently, the ideal consisting of all nilpotent elements of the ring. From a ring R, one

can construct a reduced ring Rred by going modulo the nilradical.

Noetherian reduced rings have several useful properties, such as that all associated primes

of a reduced ring are minimal primes. Moreover, a Noetherian ring is reduced if and only if

it is reduced locally at associated primes.

Definition 2.3.3. A ring R is equidimensional if dimR = dimR/p for any minimal prime

of R.

Definition 2.3.4. A ring R is catenary if for any two prime ideals p, q with p ⊆ q, there

exists a chain of prime ideals

p = p0 ⊆ p1 ⊆ · · · ⊆ pn = q (2.5)

that cannot be refined any further and any such chain has the same length.

Definition 2.3.5. A Noetherian ring R is universally catenary if every finitely generated

R-algebra is catenary.

Remark 2.3.1. A local ring that is equidimensional and catenary has the property that for

any ideal I,

ht I + dimR/I = dimR. (2.6)

The following theorem is known as the Dimension Formula.

Theorem 2.3.2. Let R be a universally catenary Noetherian ring and let S be a domain

that is essentially of finite type over R. Then for q ∈ Spec(S) and p = q ∩R,

dimSq = dimRp + trdegR S − trdegκ(p) κ(q), (2.7)

where κ(p) = Rp/pRp and κ(q) = Sq/qSq.
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2.4 Blowup algebras

Next we define two structures that are essential to the study of integral closures of ideals,

the Rees algebra and the extended Rees algebra.

Definition 2.4.1. Let R be a ring, I an R-ideal, and t a variable over R. We define the

Rees algebra of I to be the subring of R[t] defined as

R[It] = ⊕n≥0I
ntn = R ⊕ It⊕ I2t2 ⊕ · · · . (2.8)

Definition 2.4.2. Let R be a ring, I an R-ideal, and t a variable over R. We define the

extended Rees algebra of I to be the subring of the Laurent polynomial ring R[t, t−1] defined

as

R[It, t−1] = ⊕n∈ZI
ntn (2.9)

where In = R for n ≤ 0.

Theorem 2.4.1 ([SH06 , Theorem 5.1.4]). Let R be a Noetherian ring and let I be an R-ideal.

If dimR is finite, then:

(i) If I 6⊆ p for any p ∈ Spec(R) with dimR/p = dimR, then dimR[It] = dimR + 1.

(ii) If I ⊆ p for some p ∈ Spec(R) with dimR/p = dimR, then dimR[It] = dimR.

(iii) dimR[It, t−1] = dimR + 1.

Moreover, one proves that the minimal primes of R[It] and R[It, t−1] are precisely pR[t]∩

R[It] and pR[t, t−1] ∩R[It, t−1] for p ∈ Min(R). Moreover, one shows that

dimR[It] = max
{

dim R

p

[
I + p

p
t

]
| p ∈ Min(R)

}

and

dimR[It, t−1] = max
{

dim R

p

[
I + p

p
t, t−1

]
| p ∈ Min(R)

}
.

Proposition 2.4.1. Let R be an equidimensional ring. Then R[It, t−1] is equidimensional.
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Proof. This follows immediately from Section 2.4 since

dim R

p

[
I + p

p
t, t−1

]
= dimR/p+ 1 = dimR + 1, (2.10)

for all p ∈ Min(R). �

Proposition 2.4.2. Let R be an equidimensional ring and I an R-ideal that is not contained

in any minimal prime of R. Then R[It] is equidimensional.

Proof. Let P ∈ Min(R[It]). Then P = pR[t, t−1] ∩ R[It] with p ∈ Min(R). Since R is

equidimensional, dimR/p = dimR. Notice that

R[It]/P = R[It]/(pR[t, t−1] ∩R[It]) ∼=
R

p

[
I + p

p
t

]
. (2.11)

Since I 6⊆ p, dim R
p

[
I+p

p
t
]

= dimR/p+ 1 = dimR + 1 by [SH06 , Theorem 5.1.4]. �

A blowup algebra that plays an important role in the theory of reductions is the special

fiber ring.

Definition 2.4.3. Let (R,m) be a local ring and let I be an R-ideal. Then the special fiber

ring of I is

FR(R) = R[It]/mR[It] = R/m⊕ I/mI ⊕ I2/mI2 ⊕ · · · .

The dimension of FI(R) is called the analytic spread of I and denoted `(I).

Proposition 2.4.3 ([SH06 , Corollary 8.3.9]). Let (R,m) be a Noetherian local ring and let

I be a proper R-ideal. Then ht I ≤ `(I) ≤ dimR.

2.5 The integral closure of the Rees algebra

Taking the integral closure of either the Rees algebra or the extended Rees algebra in the

polynomial ring R[t] or Laurent polynomial ring R[t, t−1], respectively, recovers the integral

closure of all powers of I, as we see below.
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Proposition 2.5.1 ([SH06 , Proposition 5.2.1]). Let R be a ring and t be a variable over R.

For any ideal I in R,

R[It]R[t] = R ⊕ It⊕ I2t2 ⊕ I3t3 · · ·

and

R[It, t−1]R[t,t−1] = · · · ⊕Rt−2 ⊕Rt−1 ⊕R ⊕ It⊕ I2t2 ⊕ I3t3 ⊕ · · · .

For this reason, to compute or study the integral closure of an ideal or its powers, we

often investigate the integral closure of its Rees algebra or extended Rees algebra.

We also sometimes use the absolute integral closure of the Rees algebra in its total ring

of quotients Quot(R[It]).

Proposition 2.5.2 ([SH06 , Proposition 5.2.4]). Let R be a ring and R be the integral closure

of R in its total ring of quotients Quot(R). The integral closure of the Rees algebra R[It] in

its total ring of quotients is

R[It]Quot(R[It]) = R ⊕ IRt⊕ I2Rt2 ⊕ I3Rt3 ⊕ · · · (2.12)

and the integral closure of the extended Rees algebra R[It, t−1] in its total ring of quotients

is

R[It, t−1]Quot(R[It,t−1]) = · · · ⊕Rt−2 ⊕Rt−1 ⊕R ⊕ IRt⊕ I2Rt2 ⊕ I3Rt3 ⊕ · · · . (2.13)

Notice that the integral closure of a Rees algebra in the polynomial ring and the total

ring of quotients coincide if R is normal. Likewise, the integral closure of the extended Rees

algebra in the Laurent polynomial ring and its total ring of quotients coincide if R is normal.

2.6 Properties of Integral Extensions

Since we study integral closures of ideals via integral closures of Rees algebras or extended

Rees algebras, properties of integral extensions are used extensively. We review some key

properties of integral extensions.

Proposition 2.6.1. Let R ⊆ S be an integral extension of rings. Then dimR = dimS.
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Proposition 2.6.2 ([SH06 , Proposition 2.1.2]). Let R → S be an integral extension of rings.

Let I be an S-ideal. Then R/(I ∩R) → S/I is an integral extension of rings.

2.7 Graded rings

Definition 2.7.1. A ring R is graded if it can be written as a direct sum ⊕n∈ZRn, in which

each Rn is an Abelian group and RmRn ⊆ Rm+n. We say R is nonnegatively graded if Ri = 0

for i < 0.

Definition 2.7.2. An element x ∈ R is homogeneous of degree n if x ∈ Rn for some n. An

R-ideal I is homogeneous if I is generated by homogeneous elements of R.

Definition 2.7.3. A module M over a graded ring R is graded if it is a direct sum M =

⊕n∈ZMn, in which each Mn is an Abelian group and RmMn ⊆ Mm+n.

We define a shift of the graded module M , M(i), to be the graded module whose com-

ponents are [M(i)]n = Mn+i.

Given graded R-modules M,N , an R-linear map f : M → N is homogeneous of degree j

if f(Mi) ⊆ Ni+j for all i ∈ Z and homogeneous if it is homogeneous of degree 0. We discuss

graded homomorphisms in more detail in Preliminaries: Part 2.

Theorem 2.7.1 ([BH93 , Theorem 1.5.5]). If R is a graded ring, i.e. R = ⊕i∈ZRi, then R

is Noetherian if and only if R0 is Noetherian and R is a finitely generated R0-algebra.

Graded rings that are ∗local are an analogue of local rings.

Definition 2.7.4. Let R be a graded ring. If R has a unique maximal homogeneous ideal

m, then (R,m) is called ∗local.

Notice that if (R,m) is a Noetherian local ring, then the Rees algebra R[It] is a non-

negatively graded ring with maximal homogeneous ideal mR[It] + ItR[It]. The extended

Rees algebra R[It, t−1] is a graded ring and if I is a proper ideal, R[It, t−1] has maximal

homogeneous ideal t−1R[It, t−1] +mR[It, t−1] + ItR[It, t−1].
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2.8 Analytically Unramified Rings

Definition 2.8.1. Let (R,m) be a Noetherian local ring. Let R̂ denote the m-adic completion

of R. The ring R is analytically unramified if R̂ is reduced.

Many of the results of the next sections require the analytically unramified assumption

on the ring for the following purpose.

Proposition 2.8.1 ([SH06 , Corollary 9.2.1]). Let R be an analytically unramified local ring.

Let I be an R-ideal and t a variable over R. Then the integral closure of R[It] in R[t] is a

finite R[It]-module.

Moreover, the integral closure of R[It, t−1] in R[t, t−1] is a finite R[It, t−1]-module. This

property ensures that the integral closures of the Rees algebras and extended Rees algebras

are Noetherian.

2.9 Depth

We first define a regular sequence:

Definition 2.9.1. Let R be a ring and M be an R-module. We say that a1, . . . , an is an

M -regular sequence if for 1 ≤ i ≤ n, ai is a nonzerodivisor on M/(a1, . . . , ai−1)M and

M 6= (a1, . . . , an)M .

The following proposition indicates that if M is a finite module over a Noetherian ring

R, then we have a well-defined notion of the maximal length of a regular sequence.

Proposition 2.9.1. Let R be a Noetherian ring, M a finite R-module, and I an R-ideal

such that IM 6= M . Then

(a) There is a maximal M-regular sequence contained in I.

(b) The length of each such maximal M-regular sequence is

min{i ∈ Z≥0 | Exti
R(R/I,M) 6= 0}.
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We then define the depth of M with respect to I to be the maximal length of an M -

regular sequence in I. If the ring (R,m) is local and the ideal is not specified, the depth of

M is the depth of M with respect to m.

A finite module M over a Noetherian local ring R is Cohen-Macaulay if depth(M) =

dimM or if M = 0. If R is not local, M is Cohen-Macaulay if it is Cohen-Macaulay locally

at all prime ideals of R or equivalently, Cohen-Macaulay locally at all maximal ideals of R.

A subset of the class of Cohen-Macaulay rings are regular rings.

Definition 2.9.2. Let (R,m) be a Noetherian local ring. We say R is a regular local ring if

the minimal number of generators of the maximal ideal m is equal to the dimension of the

ring.

Definition 2.9.3. Let R be a Noetherian ring. We say R is regular if Rm is a regular local

ring for all m ∈ m-Spec(R).

2.10 Serre’s Conditions

Next we define Serre’s Conditions Sk for finite modules over Noetherian rings and Rk for

Noetherian rings. The Sk property approximates Cohen-Macaulayness of the module and

the Rk property approximates regularity of the ring.

Definition 2.10.1. Let R be a Noetherian ring and M a finite R-module. Let k ≥ 0. We

say that M satisfies Sk if depth(M)p ≥ min{dimMp, k} for all p ∈ Supp(M).

If M satisfies Sk for all k ≥ 0, then M is Cohen-Macaulay.

Definition 2.10.2. Let R be a Noetherian ring and k ≥ 0. We say that R satisfies Rk if Rp

is regular for every p ∈ Spec(R) such that dimRp ≤ k.

Notice that if R satisfies Rk for every k ≥ 0, then R is regular.

Proposition 2.10.1. A Noetherian ring R is reduced if and only if R satisfies S1 and R0.

Proposition 2.10.2. A Noetherian ring R is normal if and only if R satisfies S2 and R1.
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2.11 Excellent rings

Let R be a Noetherian ring. Let Reg(R) = {p ∈ Spec(R) | Rp is regular}.

Definition 2.11.1. A Noetherian ring R is J − 1 if Reg(R) is open in Spec(R).

Definition 2.11.2. A Noetherian ring R is J−2 if any finitely generated R-algebra is J−1.

Definition 2.11.3. Let R be a Noetherian algebra over a field k. R is geometrically regular

over k if for any finite field extension K of k, R ⊗k K is regular.

Definition 2.11.4. A homomorphism of Noetherian rings ϕ : R → S is regular if it is flat

and if for each p ∈ Spec(R), S ⊗R κ(p) is geometrically regular over κ(p).

Definition 2.11.5. A Noetherian ring R is a G-ring if for any p ∈ Spec(R), the natural

map Rp → R̂p is regular.

Definition 2.11.6. A Noetherian ring R is excellent if it is universally catenary, a J − 2

ring and a G-ring.

Classes of rings which are excellent include complete Noetherian local rings, Dedekind

domains of characteristic zero, and convergent power series rings over R or C. Moreover,

any localization of an excellent ring is excellent and any finitely generated algebra over an

excellent ring is excellent. In particular, any finitely generated algebra over a field or the

integers, or any localization thereof is excellent. See [Mat80 , Chapter 13].

For our purposes, one of the most useful properties of an excellent ring is the following.

Proposition 2.11.1. Let R be an excellent reduced ring. Then R is analytically unramified.

This follows because Serre’s conditions pass from R to R̂ using that R is a G-ring.

Therefore, since R is reduced and hence satisfies R0 and S1, R̂ is reduced as well.

2.12 Local cohomology

Let R be a ring, I an R-ideal and M an R-module. We define

ΓI(M) = {x ∈ M | xIn = 0 for some n}
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and call ΓI(−) the section functor with respect to I. We can see that

ΓI(M) =
⋃

n≥0
(0 :M In)

= lim
→

(0 :M In)

= lim
→

HomR(R/In,M).

From this one sees that ΓI(−) is a left-exact additive functor.

Definition 2.12.1. We define the ith local cohomology functor with support in I, H i
I(−),

to be the right derived functor of ΓI(−).

Remark 2.12.1. Assume R is Noetherian. Let M be an R-module and I an R-ideal. Then

Inx = 0 for some x ∈ M if and only if In ⊆ ann x. This is equivalent to I ⊆
√

ann x because

R is Noetherian. This means that V (I) ⊇ V (
√

ann x) = V (ann x) = Supp(Rx). Therefore,

H0
I (M) = {x ∈ M | Supp(Rx) ⊆ V (I)} . (2.14)

Theorem 2.12.2. Given a short exact sequence of R-modules

0 M ′ M M ′′ 0,

the section functor ΓI(−) induces a long exact sequence of local cohomology

0 ΓI(M ′) ΓI(M) ΓI(M ′′) H1
I (M ′) H1

I (M) · · ·

Local cohomology with support in I is intrinsically related to the depth of a module with

respect to I.

Theorem 2.12.3. Let R be a Noetherian ring, I an R-ideal and M an R-module. Then

depthI(M) = min{i | H i
I(M) 6= 0}. (2.15)
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One useful fact about local cohomology is that it can be computed via the Čech complex.

Definition 2.12.2. Let x ∈ R. The Čech complex of x is

C•(x) : 0 R Rx 0 (2.16)

where R → Rx is given by the natural map.

If x = x1, . . . , xn is a sequence of elements in R, then we define the Čech complex of x

as follows

C•(x) = C•(x1) ⊗R · · · ⊗R C
•(xn). (2.17)

If M is an R-module, then C•(x,M) = C•(x) ⊗R M is the Čech complex of x with

coefficients in M .

Theorem 2.12.4. Let R be a Noetherian ring. Let I = (x1, . . . , xn) be an R-ideal. Let M

be any R-module. Then H i
I(M) = H i(C•(x,M)).

Using that local cohomology can be computed via the Čech complex, one easily gets the

following theorem.

Theorem 2.12.5. Let ϕ : R → S be a homomorphism of Noetherian rings. Let I be an

R-ideal and M an S-module. Then H i
I(M) ∼= H i

IS(M) for all i.

The following two observations about local cohomology are used in the proof of the main

theorem in the next chapter.

Remark 2.12.6. Let R be a Noetherian ring. Let M denote an R-module and I an R-ideal.

If Mp = 0 for p 6∈ V (I), then H0
I (M) = M .

Proof. By Remark 2.12.1 , H0
I (M) = {x ∈ M | V (I) ⊃ Supp(Rx)}. Notice that for any

x ∈ M , Rx ⊂ M and hence (Rx)p ⊂ Mp for any p ∈ Spec(R). Therefore, (Rx)p = 0 for

p 6∈ V (I), and so Supp(Rx) ⊂ V (I). This implies H0
I (M) = M. �

Remark 2.12.7. Let R be a Noetherian ring, M an R-module, and I an R-ideal. If H0
I (M) =

M , then H i
I(M) = 0 for i ≥ 1.
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Proof. Let I = (a1, . . . , an). Let C•(a,M) denote the Čech complex of M with respect to a.

C•(a,M) : 0 M ⊕n
i=1Mai

⊕0≤i≤j≤nMaiaj
· · ·ϕ

Then H i
I(M) ∼= H i(C•(a,M)) for all i. In particular, M = H0

I (M) = kerϕ, thus ϕ = 0 and

hence Mai
= 0 for all i. Thus any further localization of M is also zero. Hence the Čech

complex has the form

C•(a,K) : 0 M 0 0 · · ·

So H i
I(M) = 0 for all i ≥ 1. �
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3. SPECIALIZATION OF THE INTEGRAL CLOSURE OF AN

IDEAL

This chapter is based on joint work with Rachel Lynn.

A property P of an ideal is said to specialize with respect to an element x if after going

modulo x, the property P still holds. In this chapter, we explore how the property of being

integrally closed as an ideal specializes with respect to general elements of the ideal.

We first discuss the previous results in this direction: a result by Itoh for complete

intersections and a generalization of this result by Hong and Ulrich.

3.1 Background

The first two approaches to proving the specialization of the integral closure involve

faithfully flat extensions of the ring and generic elements. Let R be a Noetherian ring

and I = (a1, . . . , an) be an R-ideal. We define T1, . . . , Tn to be variables over R. Then

R[T1, . . . , Tn] is a faithfully flat extension of R and x = a1T1 + a2T2 + · · · + anTn is called

a generic element of IR[T ]. In the case where R is local with maximal ideal m, then

R(T ) = R[T1, . . . , Tn]mR[T ] is a faithfully flat extension of R, and x = a1T1 +a2T2 + · · ·+anTn

is a generic element of IR(T ). Since faithfully flat extensions preserve heights of ideals,

ht I = ht IR[T ] = ht IR(T ). (3.1)

By [SH06 , Lemma 8.4.2],

IR[T ] = IR[T ] and IR(T ) = IR(T ). (3.2)

Both Itoh (in [Ito92 ]) and Hong-Ulrich (in [HU14 ]) prove that after passing from the original

ring to one of the faithfully flat extensions, one can specialize by the generic element x and

maintain the property of being integrally closed.

More specifically, Itoh proves in [Ito92 ] the following theorem.
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Theorem 3.1.1. Let (R,m, k) be an analytically unramified, Cohen-Macaulay local ring of

dimension d ≥ 2 such that |k| = ∞. Let I = (a1, . . . , ad) be a parameter ideal of R. Let

x = ∑
i Tiai with T1, . . . , Td indeterminates. Then IR(T )/(x) = IR(T )/(x).

Hong and Ulrich generalized the above result to rings which are not necessarily Cohen-

Macaulay and ideals that are not parameter ideals in [HU14 ].

Theorem 3.1.2. Let R be a Noetherian, locally equidimensional, universally catenary ring

such that Rred is locally analytically unramified. Let I = (a1, . . . , an) be an R-ideal of height

at least 2. Let x = ∑
i Tiai. Then IR[T ]/(x) = IR[T ]/(x).

The significance of these results is that it allows one to induct on the height of an

integrally closed ideal. For example, Theorem 3.1.2 can be used to give a simple proof of

Huneke and Itoh’s notable result that for a complete intersection I, In+1 ∩ In = IIn for all

n ≥ 0. A limitation of this method, however, is that it requires passing to the extension

R[T ] or R(T ) of R. In the case where one passes to R[T ], the dimension of the ring is no

longer preserved. In the case where one passes to R(T ), properties of the residue field, such

as being algebraically closed or perfect, are not preserved by the ring extension. For this

reason, we sought to find a setting in which we can specialize the integral closure of an ideal

without extending the base ring.

3.2 Our approach

We aim to prove that for an ideal I in a ring R and an element x ∈ I, I/(x) is integrally

closed and hence equal to I/(x).

We first note that this is not true for every element of I, as the following example shows.

Example 3.2.1. Let R = k[x, y] and I = (x2, xy, y2). Then I = I, but I/(x2) is not integrally

closed since x+ (x2) ∈ I/(x2) \ I/(x2).

However, for any element a ∈ I, the containment I/(a) ⊆ I/(a) follows immediately

from the definition of the integral closure of an ideal: Let z ∈ I. Then z satisfies an equation

of integral dependence

zn + a1z
n−1 + · · · + an = 0, (3.3)

31



for ai ∈ I i. Modulo (a), this yields an equation of integral dependence of z+ (a) over I/(a),

and therefore z + (a) ∈ I/(a).

The proof of the reverse containment requires more assumptions on the ring, that the

height of the ideal is at least 2, and that the element in the ideal is sufficiently general.

The strategy of proof mimics the proof of Hong and Ulrich. Let A = R[It, t−1] denote the

extended Rees algebra of I in R and let A denote the integral closure of A in R[t, t−1].

Let B = R/(x)[I/(x)t, t−1] denote the extended Rees algebra of I/(x) in R/(x) and let B

denote the integral closure of B in R/(x)[t, t−1]. By [SH06 , Proposition 5.2.1], [A]1 is I and

[B]1 = I/(x) (see also Proposition 2.5.1 ). The natural map R → R/(x) induces a natural

map on R[t, t−1] → R/(x)[t, t−1] which restricts to a natural map A → B. Since xtA is

contained in the kernel of this map, we have a natural map ϕ : A/xtA → B. Notice that

[A/xtA]1 = I/(x) since

A = · · · ⊕Rt−2 ⊕Rt−1 ⊕R ⊕ It⊕ I2t2 ⊕ · · · (3.4)

and

xtA = · · · ⊕Rxt−1 ⊕Rx⊕Rxt⊕ Ixt2 ⊕ I2xt3 ⊕ · · · . (3.5)

Let C = coker(ϕ). Then [C]1 =
(
I/(x)

)
/
(
I/(x)

)
. The strategy of proof is to show that

[C]1 = 0 and hence I/(x) = I/(x) by showing that

(i) ϕ is locally an isomorphism at certain primes, and then

(ii) [C]1 embeds into a component of a local cohomology module which vanishes.

3.3 Local Bertini Theorems

We now state local Bertini theorems of Flenner which are essential to our proof. Flenner

proves that when factoring out a general element, Serre’s conditions are preserved locally at

certain primes. These theorems allow us to prove that ϕ is locally an isomorphism at certain

primes. Applying these theorems requires that we pass first to the case that R is normal.
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Theorem 3.3.1 ([Fle77 , Corollary 4.7]). Let S be a local excellent k-algebra over the field k

of characteristic 0, let I = (x1, . . . , xn) ⊆ mS, and let D(I) := Spec(S) \ V (I). Assume that

for every p ∈ U = D(I), the ring Sp satisfies Serre’s condition (Sk). For α ∈ kn general,

let xα := ∑n
i=1 αixi. Then for every p ∈ U ∩ V (xα) the ring (S/xαS)p also satisfies Serre’s

condition (Sk).

Theorem 3.3.2 ([Fle77 , Corollary 4.7]). Let S be a local excellent k-algebra over the field k

of characteristic 0, let I = (x1, . . . , xn) ⊆ mS, and let D(I) := Spec(S) \ V (I). Assume that

for every p ∈ U = D(I), the ring Sp satisfies Serre’s condition (Rk). For α ∈ kn general,

let xα := ∑n
i=1 αixi. Then for every p ∈ U ∩ V (xα) the ring (S/xαS)p also satisfies Serre’s

condition (Rk).

Since a ring is normal if and only if it satisfies Serre’s conditions S2 and R1, we have the

following corollary:

Corollary 3.3.3 ([Fle77 , Corollary 4.8]). Let S be a local excellent k-algebra over the field k

of characteristic 0 and let (x1, . . . , xn) ⊆ mS. Let Nor(S) := {p ∈ Spec(S) | Sp is normal}.

For general α ∈ kn, let xα := ∑n
i=1 αixi, as in Theorem 3.3.1 . Then

Nor(S) ∩ V (xα) ∩D(x1, . . . , xn) ⊆ Nor(S/xαS).

3.4 Vanishing of Local Cohomology

The following vanishing of local cohomology theorem of Hong and Ulrich is also essential

to our proof. We prove that [C]1 is contained in a component of H2
J(A) which vanishes by

the following theorem. We apply the theorem to J = (It, t−1)A. Since the following theorem

requires that J has height at least 3, this assumption forces us to assume that the height of

I is at least 2.

Theorem 3.4.1 ([HU14 , Theorem 1.2]). Let R be a Noetherian, locally equidimensional,

universally catenary ring such that Rred is locally analytically unramified. Let I be a proper

R-ideal with ht I > 0, A = R[It, t−1] the extended Rees ring of I, and A the integral closure

of A in R[t, t−1]. Let J be an A-ideal of height at least 3 generated by t−1 and homogeneous

elements of positive degree. Then [H2
J(A)]n = 0 for all n ≤ 0.
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3.5 Reducing to the normal ring case

In this section we state and prove technical lemmas necessary to reduce to the case

in which the ring R is normal. Lemma 3.5.1 allows us to assume the ring is reduced,

Lemma 3.5.2 allows us to assume the ring is normal, and Lemma 3.5.3 shows the height of

an ideal is preserved under these reductions.

Lemma 3.5.1. Let R be an algebra over an infinite field k, let Rred := R/
√

0, and let J

be an R-ideal. Let I = (a1, . . . , an) be an R-ideal. Let x be a general element of I. If the

integral closure of IRred specializes with respect to the image of x in Rred, then the integral

closure of I specializes with respect to the element x. That is, if

IRred + (x)Rred/(x)Rred = IRred + (x)Rred/(x)Rred,

then I + (x)/(x) = I + (x)/(x).

Proof. Note that I+ (x)/(x) ⊆ I + (x)/(x) by the persistence of the integral closure applied

to the natural map R → R/(x). We prove the reverse containment.

Let ψ denote the natural map from R/(x) to Rred/(x)Rred. Applying persistence to the

ideal I + (x)/(x) under the map ψ, we see that

ψ(I + (x)/(x)) ⊆ IRred + (x)Rred/(x)Rred. (3.6)

Taking preimages, we have that

I + (x)/(x) ⊆ ψ−1(ψ(I + (x)/(x))) (3.7)

⊆ ψ−1(IRred + (x)Rred/(x)Rred). (3.8)

Since IRred + (x)Rred/(x)Rred = IRred + (x)Rred/(x)Rred by assumption, by taking preim-

ages, we see that

ψ−1(IRred + (x)Rred/(x)Rred) = ψ−1(IRred + (x)Rred/(x)Rred), (3.9)
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and hence

I + (x)/(x) ⊆ ψ−1(IRred + (x)Rred/(x)Rred). (3.10)

By [SH06 , Proposition 1.1.5], IRred = IRred, which implies that

ψ−1(IRred + (x)Rred/(x)Rred) = ψ−1(IRred + (x)Rred/(x)Rred). (3.11)

Then

ψ−1(IRred + (x)Rred/(x)Rred) = {a+ (x) | a+ (x) +
√

0 ∈ I + (x) +
√

0} (3.12)

= I + (x)/(x), (3.13)

since
√

0 ⊆ I. This shows the desired containment: I + (x)/(x) ⊆ I + (x)/(x). �

Lemma 3.5.2. Let R be an algebra over an infinite field k. Let R denote R
Quot(R). Let

I = (a1, . . . , an) be an R-ideal, and let x be a general element of I. If the integral closure of

the image of I in Rm specializes with respect to the image of x in Rm for every maximal ideal

m ∈ m-Spec(R), then then the integral closure of I specializes with respect to the element x.

That is, if

IRm/(x)Rm = IRm/(x)Rm

for all m ∈ m-Spec(R), then I/(x) = I/(x).

Proof. We first show that the integral closure of I extended to R specializes with respect to

the image of x in R. That is, we show that IR/(x)R = IR/(x)R. Persistence applied to the

ideal IR and the natural map R → R/(x)R gives the containment IR/(x)R ⊆ IR/(x)R.

Since
(
IR/(x)R

)
/
(
IR/(x)R

)
is an R/(x)R-module, it is zero if and only if it is zero locally

at all maximal ideals of R/(x)R. Therefore, to prove IR/(x)R = IR/(x)R, we check that

at maximal ideals m ∈ m-Spec(R/(x)R), (IR/(x)R)m = (IR/(x)R)m.

Identifying m-Spec(R/(x)R) with m-Spec(R)∩V ((x)) and utilizing that integral closures

commute with localization, we have

(
IR/(x)R

)
m

= IRm/(x)Rm (3.14)
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and (
IR/(x)R

)
m

= IRm/(x)Rm. (3.15)

Since IRm/(x)Rm = IRm/(x)Rm by assumption, this proves the desired equality. Therefore,

IR/(x)R = IR/(x)R.

By persistence of integral closure applied to the ideal I and the natural map R → R/(x),

we have I/(x) ⊆ I/(x). It remains to show the reverse containment. Let ψ denote the

natural map from R/(x) to R/(x)R. Applying persistence to the ideal I/(x) and the map

ψ, we see that

ψ(I/(x)) ⊆ IR/(x)R. (3.16)

Taking preimages, we have that

I/(x) ⊆ ψ−1(ψ(I/(x)))

⊆ ψ−1(IR/(x)R).

Since we have shown that IR/(x)R = IR/(x)R, we can conclude that

I/(x) ⊆ ψ−1(IR/(x)R). (3.17)

Note that

ψ−1((IR/(x)R) = {a+ (x) ∈ R/(x) | a+ (x)R ∈ IR + (x)R}. (3.18)

Since x ∈ I, and hence (x)R ⊆ IR,

ψ−1(IR/(x)R) = {a+ (x) ∈ R/(x) | a ∈ IR}. (3.19)

Therefore, since a ∈ R ∩ IR and R → R is an integral extension of rings, a ∈ I by [SH06 ,

Proposition 1.6.1]. Therefore,

ψ−1(IR/(x)R) = I/(x), (3.20)
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and we conclude that I/(x) ⊆ I/(x).

�

Lemma 3.5.3. Let (R,m) be a local equidimensional excellent ring. Let I be an R-ideal.

Then ht IRred = ht I.

Proof. Since
√

0 ⊆ p for all p ∈ Spec(R), there is a one-to-one correspondence between

Spec(R) and Spec(Rred). Therefore, since R is local with maximal ideal m, its image mRred

is the unique maximal ideal of Rred. The minimal primes of R correspond to the minimal

primes of Rred. By the correspondence of primes, we see that since R is equidimensional, Rred

is equidimensional. SinceRred is a factor ring of an excellent ring, it is excellent. Furthermore,

ht I = ht IRred. Therefore, we assume that R is a reduced local equidimensional excellent

ring, and prove that ht IR = ht I.

Notice that if R is catenary and locally equidimensional of the same dimension at every

maximal ideal m ∈ m-Spec(R), then for every p ∈ Spec(R) one can easily see that,

dimR/p+ ht p = dimR. (3.21)

and hence for any ideal I of R,

dimR/I + ht I = dimR. (3.22)

Since R → R is an integral extension, IR∩R = I and R/I → R/IR is an integral extension.

Hence dimR/IR = dimR/I. Therefore,

ht I = dimR − dimR/I

= dimR − dimR/I

= dimR/IR + ht IR − dimR/I

= dimR/I + ht IR − dimR/I

= ht IR.
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Since any ideal and its integral closure have the same height, this shows that ht I = ht IR,

as desired.

We now show that R is catenary and locally equidimensional of the same dimension at

every maximal ideal m ∈ m-Spec(R).

Since R is excellent, it is universally catenary. Since R is excellent and reduced, R is a

finitely generated R-module, and therefore R is catenary.

We show that R is locally equidimensional of the same dimension at every maximal ideal

m ∈ m-Spec(R). We claim that there is a one-to-one correspondence of minimal primes of

R and R.

Let S denote the set of nonzerodivisors on R, and let W denote the set of nonzerodi-

visors on R. Every nonzerodivsor on R is a nonzerodivisor on Quot(R), and hence is a

nonzerodivisor on R. Therefore, S ⊆ W . Since R ⊆ R and S ⊆ W ,

Quot(R) = S−1R ⊆ S−1R ⊆ W−1R = Quot(R). (3.23)

Next, we see that every element of W is a unit in Quot(R): Let w ∈ W . Then since

W ⊆ Quot(R), w = u/v for u ∈ R and v ∈ S. Moreover, since u/v is a nonzerodivisor on R,

u is a nonzerodivisor on R. Hence w = u/v is a unit in Quot(R). Then since R ⊆ Quot(R)

and W ⊆ (Quot(R))∗, the units of Quot(R), we conclude that

Quot(R) = W−1R ⊆ W−1 Quot(R) = Quot(R). (3.24)

This shows that R → R is a birational extension: Quot(R) = Quot(R).

Note that for any Noetherian ring T , since the total ring of quotients Quot(T ) is the

localization of T with respect to the complement of the union of the associated primes

of T , the minimal primes of T correspond to the minimal primes of Quot(T ). Since the

minimal primes of R and R are both in one-to-one correspondence with the minimal primes

of Quot(R) = Quot(R), we conclude that Min(R) is in one-to-one correspondence with

Min(R). Therefore, every minimal prime of R contracts to a minimal prime of R.
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Now let m ∈ m-Spec(R). Let q ∈ Min(R) be contained in m. Notice m ∩R must be the

unique maximal ideal of R since R → R is an integral extension, and q ∩ R is a minimal

prime of R by the above. Since R is equidimensional and local, dimR/(q ∩R) = dimR.

Since R is universally catenary, applying the dimension formula yields:

dim
(
R/q

)
m

= dimR/(q ∩R) + trdegR/(q∩R) R/q − trdegκ((m∩R)/(q∩R)) κ(m/q). (3.25)

Since R → R is an integral extension, R/(q ∩ R) → R/q is also integral by [SH06 , Proposi-

tion 2.1.2]. Therefore,

trdegR/(q∩R) R/q = 0. (3.26)

Moreover, R/(m ∩R) → R/m is an integral extension, and therefore

κ((m ∩R)/(q ∩R)) ⊆ κ(m/q) (3.27)

is integral. Therefore,

trdegκ((m∩R)/(q∩R)) κ(m/q) = 0. (3.28)

Therefore,

dim(R/q)m = dimR/(q ∩R) = dimR = dimR. (3.29)

This shows that R is locally equidimensional of dimension equal to dimR at every maximal

ideal m ∈ m-Spec(R). �

The following lemma was proved by Hong and Ulrich for their proof of Theorem 3.1.2 ,

which we are able to utilize for our proof.

Lemma 3.5.4 ([HU14 , Lemma 1.1]). Let R be a Noetherian, equidimensional, universally

catenary local ring of dimension d such that Rred = R/
√

0 is analytically unramified. Let

I = (a1, . . . , an) be a proper R-ideal with ht I > 0 and write A = R[It, t−1] for the extended

Rees ring of I. Let A denote AR[t,t−1], the integral closure of A in the Laurent polynomial

ring. Then grade It(A/t−1A) > 0.

We use the following consequence of the lemma above.
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Remark 3.5.5. Assume the notation of Lemma 3.5.4 . In addition, assume R contains an

infinite field k. Let x be a general element of I. We may assume xt is regular on A/t−1A.

Therefore, t−1, xt is a regular sequence of length 2 on A.

3.6 Proof of the Specialization of the Integral Closure

Theorem 3.6.1. Let (R,m) be a local equidimensional excellent k-algebra, where k is a field

of characteristic 0. Let I = (a1, . . . , an) be an R-ideal such that ht I ≥ 2, and let x be a

general element of I. Then I/(x) = I/(x).

Proof. By Lemma 3.5.1 , we may pass from R to Rred to assume R is a reduced local equidi-

mensional excellent k-algebra. Then by Lemma 3.5.2 we may pass from R to Rm for any

m ∈ m-Spec(R) to assume in addition that R is a local normal ring, hence also a domain,

and by Lemma 3.5.3 we may still assume that I has height at least 2.

Let A = R[It, t−1], the extended Rees algebra of I, and B = R/(x)[(I/(x))t, t−1], the

extended Rees algebra of I/(x). Let A denote the integral closure of A in the Laurent

polynomial ring R[t, t−1] and B denote the integral closure of B in R/(x)[t, t−1]. Define J to

be the A-ideal (It, t−1) A.

The natural map R → R/(x) induces a natural map of the Laurent polynomial rings

R[t, t−1] → R/(x)[t, t−1]. The image of an element of A under this natural map will be

integral over B, and therefore the map restricts to a natural map

A −→ B. (3.30)

Notice that xtA is contained in the kernel of the above map, which implies the existence of

the natural map

ϕ : A/xtA −→ B. (3.31)

We show that ϕp is an isomorphism for p ∈ Spec(A) \ V (JA). We consider two cases:

t−1 6∈ p or It 6⊆ p.
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First suppose t−1 6∈ p. Localizing at the element t−1, we have

At−1 = R[t, t−1], (xtA)t−1 = xR[t, t−1], and Bt−1 = R/(x)[t, t−1]. (3.32)

Therefore, we see that

(
A/xtA

)
t−1

∼= At−1/(xtA)t−1

∼= R[t, t−1]/xR[t, t−1]

∼= R/(x)[t, t−1]

∼= Bt−1 .

Since p does not contain t−1, localization at p is a further localization of the rings above.

Therefore,
(
A/xtA

)
p

∼= Bp.

Now let p ∈ Spec(A) \ V (ItA). We first show ϕp : Ap/xtAp → Bp is injective. To do so,

it suffices to show that xtAp is the kernel of the natural map

ψp : Ap −→ Bp. (3.33)

It is clear that xtAp ⊆ ker(ψp). To show that the two ideals of Ap are equal, it is enough to

show equality locally at associated primes of xtAp.

Since R is normal, the integral closure A of A in R[t, t−1] is equal to AQuot(A) and

hence is normal. Since R is an excellent domain, A = AQuot(A) is a finitely generated R-

algebra, and therefore is also excellent. Since the properties of normality and excellence

pass to a localization, Ap is excellent and normal. Since xt is a general element of It, by

Corollary 3.3.3 , (A/xtA)p is normal and therefore a domain. Therefore, (xtA)p is prime and

Ass(xtAp) = {xtAp}.

Let q = xtAp. Since q is principal, ht q ≤ 1. Since t−1, xt is an A-regular sequence by

Remark 3.5.5 and any ideal with grade at least 2 has height at least 2, t−1 6∈ q. By the

previous case (xtA)q = kerψq. This shows that (xtA)p = kerψp. Thus ϕp is injective for all

p ∈ Spec(A) \ V (ItA).
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We now show that for p ∈ Spec(A) \ V (ItA), ϕp is a surjection. Since A surjects onto

B, the extension

im(A)p∩A = Bp∩A ⊂ Bp∩A (3.34)

is an integral extension. Since im(A) ⊆ im(A) ⊆ B, the intermediate extension

im(A)p∩A ⊆ Bp∩A (3.35)

is an integral extension, and thus im(A)p = im
(
A/xtA

)
p

⊆ Bp is also an integral extension.

Next we show that im(A/xtA)p ⊆ Bp is a birational extension. Notice that

(A/xtA)t−1 ∼= R/(x)[t, t−1], (3.36)

(B)t−1 ∼= R/(x)[t, t−1] , (3.37)

and hence

(A/xtA)t−1 ∼= (B)t−1 . (3.38)

The rings remain isomorphic after localizing at the image of A \ p in B. By the argument

above, t−1 6∈ xtAp. Since (A/xtA)p is a domain, t−1 is a nonzerodivisor on (A/xtA)p. More-

over, t−1 is a nonzerodivisor on R/(x)[t, t−1], hence on B, and therefore is a nonzerodivisor

on Bp. Therefore, Quot(im(A/xtA)p) and Quot(Bp) are both naturally isomorphic to the

total ring of quotients of the localization of R/(x)[t, t−1] at the image of A \ p in B. Since

im(A/xtA)p ⊆ Bp,

Quot(im(A/xtA)p) = Quot(Bp). (3.39)

Since (A/xtA)p is normal by Corollary 3.3.3 , and
(
A/xtA

)
p

∼= im
(
A/xtA

)
p
, im

(
A/xtA

)
p

is normal. Since im
(
A/xtA

)
p

⊆ Bp is an integral extension in the total ring of quotients

of im
(
A/xtA

)
p
, we conclude that im

(
A/xtA

)
p

= Bp. Therefore, ϕp is surjective, hence an

isomorphism.
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Let K denote the kernel of ϕ and C denote the cokernel of ϕ. Recall that

[A/xtA]1 = I/(x) and [B]1 = I/(x) ,

and therefore it suffices to show that [C]1 = (I/(x))/(I/(x)) = 0. In order to do so, we

identify C with a submodule of H2
J(A).

Since ϕp is an isomorphism for all p 6∈ V (JA) as shown above, Kp = Cp = 0 for all

p 6∈ V (JA). By Remark 2.12.6 , H0
JA(K) = K and thus by Remark 2.12.7 , H i

JA(K) = 0 for

all i > 0. Moreover, since A → A is a map of Noetherian rings, H i
JA(K) = H i

J(K) for all

i by Theorem 2.12.5 . Similarly H0
J(C) = H0

JA(C) = C. We note that t−1 ∈ J is a regular

element on B and therefore yJ i 6= 0 for any y ∈ B \ {0} and any nonnegative integer i.

Hence, H0
J(B) = 0.

The long exact sequence of local cohomology induced by the exact sequence

0 K A/xtA ϕ(A/xtA) 0ϕ

yields the exact sequences

H i
J(K) H i

J(A/xtA) H i
J(ϕ(A/xtA)) H i+1

J (K)

for all i ≥ 0. Since H i
J(K) = 0 for i ≥ 1, we obtain H i

J(A/xtA) ∼= H i
J(ϕ(A/xtA)) for all

i ≥ 1.

From the long exact sequence of local cohomology induced by the exact sequence

0 ϕ(A/xtA) B C 0 (3.40)

we obtain the exact sequence

0 = H0
J(B) H0

J(C) H1
J(ϕ(A/xtA)).
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Since H1
J(ϕ(A/xtA)) ∼= H1

J(A/xtA), this shows that

C = H0
J(C) ↪→ H1

J(A/xtA). (3.41)

By Remark 3.5.5 , depthJ(A) ≥ 2. Thus H1
J(A) = 0 by Theorem 2.12.3 . Applying the

long exact sequence of local cohomology to the short exact sequence

0 xtA A A/xtA 0

we obtain the exact sequence

0 = H1
J(A) H1

J(A/xtA) H2
J(xtA).

Therefore C ↪→ H1
J(A/xtA) ↪→ H2

J(xtA).

Since x is a general element of I and I is a nonzero ideal in a domain and hence has

positive grade, we may assume that x is a nonzerodivisor on R. Therefore, we assume xt is a

nonzerodivisor on R[t, t−1] and therefore on A. Note that R[t, t−1] and hence A is Z-graded

by giving t degree 1. Since xt is a nonzerodivisor on A with degree 1, the map given by

multiplication by xt on A is an injective homogeneous map of degree 1. Therefore, we have

a graded isomorphism

A(−1) ∼= xtA. (3.42)

This shows that C ↪→ H2
J(A(−1)), which implies that

[C]n ↪→ [H2
J(A(−1))]n ∼= [H2

J(A)]n−1 (3.43)

for all n. In order to apply Theorem 3.4.1 , we must now show that the height of J is at least

3.

Since R is excellent and hence universally catenary, and A is a finitely generated R-

algebra, A is catenary. Since R is equidimensional, so is A. Since R is local, A is ∗local with
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maximal homogeneous ideal m = mA +ItA +t−1 A. Since m is also a maximal ideal of A,

dim Am = dim A = dimR + 1.

Since J is a homogeneous A-ideal, the minimal primes of J are homogeneous. Hence

ht J = ht Jm. Since Am is equidimensional and catenary, we have that

ht Jm = dim Am − dim(A /J)m.

Since J is homogeneous, dim(A /J)m is equal to dim(A /J). Notice that A /J ∼= R/I and

therefore,

ht J = dimR + 1 − dimR/I

= dimR + 1 − dimR + ht I

= 1 + ht I

≥ 3.

Since J is an A-ideal of height at least 3 generated by t−1 and homogeneous elements of

positive degree, by Theorem 3.4.1 , [H2
J(A)]n = 0 for n ≤ 0. Then since

[C]1 ⊆ [H2
J(A)]0, (3.44)

we conclude that [C]1 = 0. �

3.7 Specialization for Powers of I

We now consider the behavior of the integral closure of powers of I with respect to

specialization by general elements of I.

Itoh in [Ito92 ] proved that the integral closure of sufficiently large powers of I is compat-

ible with specialization by generic elements in a faithfully flat extension of R for parameter

ideals in Cohen-Macaulay rings.

Theorem 3.7.1. [Ito92 , Theorem 1(c)] Let (R,m, k) be an analytically unramified, Cohen-

Macaulay local ring of dimension d ≥ 2 such that |k| = ∞. Let I = (a1, . . . , ad) be a
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parameter ideal of R. Let x = ∑
i Tiai with T1, . . . , Td indeterminates. Then Is(R(T )/(x)) =

IsR(T ) + (x)/(x) for s sufficiently large.

The following result shows that for sufficiently large powers of I, and general elements

x ∈ I, specialization is compatible with integral closure without extending the base ring.

We require the assumptions of Theorem 3.6.1 and add the assumption that the base ring

is normal. We have been unable to reduce to the normal case as in Theorem 3.6.1 , due to

the added complication of our general element x not belonging to the ideal Is which we are

specializing.

Proposition 3.7.1. Let (R,m) be a local normal equidimensional excellent algebra over a

field k of characteristic zero. Let I be an R-ideal such that ht I ≥ 2, and let x be a general

element of I. Then Is + (x)/(x) = (I/(x))s for s sufficiently large.

Proof. We first show that we may assume R/(x) is an excellent reduced ring. Since R/(x) is

a factor ring of an excellent ring, it is excellent. Since R is a domain and hence reduced, by

Theorem 3.3.1 , R/(x) satisfies R0 locally at primes which do not contain I. Since the primes

of height zero in R/(x) correspond to primes of height at most one in R, and I has height

at least 2, all primes of height zero in R/(x) do not contain I and hence R/(x) satisfies R0

globally. Since R is a domain and I is a nonzero ideal, we may assume x is a nonzerodivisor

on R. Since R is normal and hence satisfies S2, R/(x) satisfies S1. Therefore, R/(x) is

reduced.

As in Theorem 3.6.1 , let A denote the extended Rees algebra of I and let B denote the

extended Rees algebra of I/(x). Let A and B denote the integral closures of A and B in the

Laurent polynomial rings R[t, t−1] and R/(x)[t, t−1], respectively. Let J denote the A-ideal

(It, t−1) A. Consider the natural map ϕ : A/xtA → B. Denote the cokernel of ϕ by C.

Since R/(x) is reduced, so is R/(x)[t, t−1]. Therefore, B is reduced. Since R/(x) is

excellent and B is a finitely generated R/(x)-algebra, B is excellent. Since B is excellent and

reduced, BQuot(B) is a finite B-module. Since B is a Noetherian ring, BQuot(B) is a Noetherian

B-module. Therefore, B ⊂ BQuot(B) is a finite B-module, and hence a finite A-module. Since

B is finitely generated as an A-module, so is C.
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We claim that since C is a finite A-module, then [C]s = 0 for s sufficiently large. Note

that C inherits a grading from B. Let z1, . . . , zr be a set of homogeneous generators of

C as an A-module. As in the proof of Theorem 3.6.1 , H0
J(C) = C. Therefore, by the

definition of the section functor, there exists ki such that Jkizi = 0 for 1 ≤ i ≤ r. Let

k = max{ki | 1 ≤ i ≤ r}. Then Jkzi = 0 for all i and since It ⊆ J , (It)kzi = 0 for all i.

Let s > max{deg(zi) | 1 ≤ i ≤ r}. Notice that

[C]s = [A z1 + · · · + A zr]s

= (It)s−deg(z1)z1 + · · · + (It)s−deg(zr)zr

If s ≥ k + max{deg(zi) | 1 ≤ i ≤ r}, then s − deg(zi) ≥ k for 1 ≤ i ≤ r. Hence

(It)s−deg(zi)zi = 0 for 1 ≤ i ≤ r and we conclude that [C]s = 0.

Since [A/xtA]s = Is + (x)/(x) and [B]s = Is + (x)/(x), we see that

Is + (x)/(x) = Is + (x)/(x)

for s > k + max{deg(zi) | 1 ≤ i ≤ r}. �
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4. SPECIALIZATION OF THE INTEGRAL CLOSURE OF AN

IDEAL BY A GENERAL LINEAR FORM

This chapter is based on joint work with Rachel Lynn.

Next, we consider the case in which we specialize the integral closure of an ideal by a

general element of the unique maximal ideal rather than a general element of the ideal I.

The integral closure of an ideal does not behave as well with respect to specialization by

a general element of the maximal ideal as it does with respect to a general element of the

ideal. We give an example of an integrally closed monomial ideal of height 2 which does

not specialize with respect to a general linear form, and give classes of ideals for which the

integral closure does specialize with respect to a general linear form.

Example 4.0.1. Let R = Q[x, y, z]. Let I = (x2, y z). Note that I is an integrally closed

height 2 ideal of R. Let

a = αx+ β y + γ z

with α, β, γ nonzero. We see below that I+(a)/(a) is not an integrally closed ideal of R/(a).

We first show that z2 + (a) satisfies an equation of integral dependence over I + (a)/(a)

in R/(a). Since yz ∈ I, β y z ∈ I. Therefore, αx z + γ z2 ∈ I + (a). Notice that

(z2)2 + (2 β
γ
y z − α2

γ2 x
2)(z2) + 1

γ2 (αx z + γ z2)2

= z4 + 2 β
γ
y z3 − α2

γ2 x
2 z2 + 1

γ2 (α2 x2 z2 + 2α γx z3 + γ2 z4)

= 2 z4 + 2 β
γ
yz3 + 2α

γ
x z3 − α2

γ2 x
2 z2 + α2

γ2 x
2 z2

= 2 z4 + 2 β
γ
yz3 + 2α

γ
x z3

= 2
γ
z3(γ z + β y + αx) ∈ (a).

Since 2β
γ
yz − α2

γ2 x
2 ∈ I ⊆ I + (a) and 1

γ2 (αx z + γ z2)2 ∈ (I + (a))2, this shows that

z2 + (a) ∈ I + (a)/(a).

We show that z2 + (a) 6∈ I + (a)/(a). Suppose toward contradiction that z2 is in the

image of the ideal I in R/(a). Let r ∈ I such that z2 + r ∈ (a). Since (a) is a homogeneous
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ideal, we may assume that z2 + r is a homogeneous element of degree 2. Therefore, we may

assume that there exists s, t ∈ Q such that

p(x, y, z) = z2 + s x2 + t y z ∈ (a). (4.1)

It follows that

p(x, y, z) = (d x+ e y + f z)(αx+ β y + γ z) (4.2)

for some d, e, f ∈ Q. Since the coefficient of z2 in p(x, y, z) is 1, f = 1
γ
. Since the coefficient

of x2 in p(x, y, z) is s, d = s
α
. Since the coefficient of y2 in p(x, y, z) is 0, we conclude that

eβ = 0. Since β 6= 0 by assumption, e = 0.

Therefore,

p(x, y, z) =
(
s

α
x+ 1

γ
z

)
(αx+ β y + γ z)

= s x2 + s β

α
x y +

(
sγ

α
+ α

γ

)
x z + β

α
y z + z2.

If s = 0, then the above expression has a nonzero x z term, a contradiction. If s 6= 0,

then the above expression has a nonzero x y term, a contradiction. Therefore, z2 + (a) ∈

I + (a)/(a) \ I + (a)/(a).

Next, we give a class of ideals whose integral closures do not specialize with respect to a

general linear form.

Example 4.0.2. Let R = k[x1, . . . , xd] be a polynomial ring over an infinite field k. Let m =

(x1, . . . , xd) denote the homogeneous maximal ideal of R. Let I be an integrally closed ideal

of height d− 1 generated by t forms of degree n with t <
(

n+d−2
n

)
. Let a = α1x1 + · · · +αdxd

be a general linear form. Then I + (a)/(a) is not an integrally closed R/(a)-ideal.

Note that we may assume a 6∈ I.

Since ht I = d− 1 and hence

dimR/I = dimR − ht I = 1, (4.3)
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dimR/(I + (a)) = 0. Hence I + (a)/(a) is an m/(a)-primary ideal in R/(a).

Note that we have an isomoprhism

ϕ : R/(a) −→ k[x1, . . . , xd−1], (4.4)

defined by mapping xd 7→ 1
αd

(−α1x1 − . . . − αd−1xd−1). Let n = (x1, . . . , xd−1) denote the

homogeneous maximal ideal of k[x1, . . . , xd−1]. Let J = ϕ(I + (a)/(a)). Since I + (a)/(a) is

m/(a)-primary, J is n-primary. Moreover, J is generated by forms of degree n.

Suppose that J is integrally closed. Since J is generated by forms of degree n, J ⊆ nn.

Since J is n-primary, there is ns ⊆ J ⊆ nn for some s ≥ n. Therefore, there exists t ≥ 1 such

that

nnt ⊆ ns ⊆ J ⊆ nn. (4.5)

Since J ⊆ nn, J(nn)t−1 ⊆ (nn)t. Since (nn)t ⊆ J , and J is generated in degree n, (nn)t ⊆

J(nn)t−1. Hence J(nn)t−1 = nnt, and therefore J = nn.

Therefore, the minimal number of generators of J must be
(

n+d−2
n

)
. Since I is generated

by t <
(

n+d−2
n

)
forms, so is ϕ(I + (a)/(a)). We conclude that ϕ(I + (a)/(a)) is not integrally

closed. Therefore, I + (a)/(a) is not integrally closed.

However, there are cases in which going modulo a general element of the maximal ideal

does preserve the property of being integrally closed, such as when R/I is reduced and

depth(R/I) ≥ 2:

Proposition 4.0.1. Let (R,m) be a local excellent algebra over an infinite field k. Let

m = (x1, . . . , xn). Let I be an R-ideal such that R/I is reduced and depth(R/I) ≥ 2. Let

a = ∑n
i=1 αixi be a general element of m. Then I + (a)/(a) is an integrally closed ideal of

R/(a).

Proof. We claim that R/(I + (a)) is reduced. Since R/I is reduced and a is a general

element of the maximal ideal m, by [Fle77 , Corollary 4.2], R/(I + (a)) is reduced locally on

the punctured spectrum. We will show that R/(I + (a)) is reduced globally.

Since depth(R/I) ≥ 2 and a is a general element of m, depth(R/(I+(a))) ≥ 1. Therefore,

the maximal ideal m/(I+(a)) contains a nonzerodivisor on R/(I+(a)) and hence m/(I+(a))
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is not an associated prime of R/(I + (a)). Since a ring is reduced if and only if it is reduced

locally at associated primes, R/(I + (a)) is reduced.

Therefore, I + (a)/(a) =
√
I + (a)/(a), and hence

I + (a)/(a) = I + (a)/(a).

�

Let I be a squarefree monomial ideal. Then by [HH11 , Corollary 1.3.4], I has a primary

decomposition

I =
n⋂

j=1
pj, (4.6)

where pj = (xj1 , . . . , xjk
) with 1 ≤ j1 < . . . < jk ≤ d for each 1 ≤ j ≤ n. Note that if the

generating sets of variables of the ideals pj are disjoint, then I = ∏n
j=1 pj and is generated

in degree n.

The following result shows that the integral closures of squarefree monomial ideals which

are intersections of prime ideals generated by disjoint sets of variables specialize with respect

to a general linear form.

Proposition 4.0.2. Let R = k[x1, . . . , xd] be a polynomial ring over an infinite field k. Let

I = ⋂n
i=1 pi, where each pi is generated by a disjoint set of variables. Let a = ∑d

i=1 αixi be a

general linear form. Then I + (a)/(a) is an integrally closed ideal of R/(a).

Proof. Since I = ⋂n
i=1 pi and the ideals pi for 1 ≤ i ≤ n are generated by disjoint sets

of variables, every monomial generator of I is in ∏n
i=1 pi. Since ∏n

i=1 pi ⊆ ⋂n
i=1 pi = I,

I = ∏n
i=1 pi.

We prove the result by induction on n.

Base case: We first prove the result for n = 1. Notice that if I = p, a prime ideal

generated by variables, then I + (a) is a prime ideal of R, and hence I + (a)/(a) is a prime

ideal of R/(a). Since any prime ideal is integrally closed, I + (a)/(a) = I + (a)/(a).

Next we prove the result for n = 2. Let I = p ∩ q. For ease of notation, we redefine R

to be k[x1, . . . , xm, y1, . . . , yn] and let p = (x1, . . . , xj) and q = (y1, . . . , yl), with j ≤ m and

l ≤ n. Let m = (x1, . . . , xm, y1, . . . , yn) denote the homogeneous maximal ideal of R.
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Case 1: Suppose p+q ( m, or equivalently 0 < j < m or 0 < l < n. Note that I+(a)/(a)

is integrally closed if and only if it is integrally closed after passing to the localization at the

homogeneous maximal ideal m/(a). Therefore, we may assume R is local. Since I is equal

to the intersection of its minimal primes, R/I is reduced.

Next, we show that depth(R/I) ≥ 2. Notice that dimR/I = max{dimR/p, dimR/q}.

Since p + q ( m and p and q are generated by nonempty disjoint sets of variables we have

that p ( p + (y1) ( m and q ( q + (x1) ( m. These chains of primes ideals indicate that

dimR/p ≥ 2 and dimR/q ≥ 2, and hence dimR/I ≥ 2.

Without loss of generality, assume yn 6∈ q. Since all generators of I do not involve

yn, the image of I under the natural map R → R/(yn) is a squarefree monomial ideal

with the same generators as I, and is therefore reduced. Since dimR/I ≥ 2 and hence

dimR/(I, yn) ≥ 1, we conclude that depth(R/(I, yn)) ≥ 1. Therefore, depth(R/I) ≥ 2.

Applying Proposition 4.0.1 , we conclude that I + (a)/(a) is integrally closed.

Case 2: Suppose p+q = m. That is, assume j = m and l = n. Let ω+(a) ∈ I + (a)/(a).

Then there exists n ∈ N and ai ∈ (I + (a))i such that

(ω + (a))n + a1(ω + (a))n−1 + . . .+ an = 0 (4.7)

in R/(a). This is equivalent to the existence of n ∈ N and ai ∈ I i such that

ωn + a1ω
n−1 + . . .+ an ∈ (a) (4.8)

in R. We may assume that ω is homogeneous of degree at least 2 since (a) is a homogeneous

ideal and I is generated in degree 2.

Notice that since I + (a)/(a) ⊆ I + (a)/(a), we may assume that ω = ω1 + ω2, in which

Suppω1 ⊆ p \ q and Suppω2 ⊆ q \ p since any term containing both an xj and yi belongs to

I.

We notice that

(ω1 + ω2)n + a1(ω1 + ω2)n−1 + . . .+ an ∈ (
m∑

i=1
αixi +

n∑
j=1

βjyj), (4.9)

52



modulo q = (y1, . . . , yn) yields

(ω1)n ∈ (
m∑

i=1
αixi) + (y1, . . . , yn) (4.10)

Since (∑m
i=1 αixi, y1, . . . , yn) is a prime ideal in R, then we see that

ω1 ∈ (
m∑

i=1
αixi) + (y1, . . . , yn). (4.11)

Since Suppω1 ⊆ p \ q, we see that

ω1 ∈ (
m∑

i=1
αixi). (4.12)

Moreover, by assumption ω1 has degree at least 2 and therefore

ω1 ∈ (
m∑

i=1
αixi) ∩ p2 ⊆ (

m∑
i=1

αixi)p. (4.13)

Let ω1 = s(∑m
i=1 αixi) with s ∈ p. Then

ω1 + (a) = s(
m∑

i=1
αixi) + (a)

= s(−
n∑

j=1
βiyi) + (a)

∈ I + (a).

Repeating this argument modulo p = (x1, . . . , xm) shows that ω2+(a) ∈ I+(a) and therefore,

I + (a)/(a) = I + (a)/(a).

Now let n ≥ 3, and suppose the result holds for any intersection of n− 1 disjoint primes

generated by variables.

Let I = ⋂n
i=1 pi. We consider two cases.

Case 1: If ∑n
i=1 pi ( m, the proof follows as in the n = 2 case.
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Case 2: Suppose ∑n
i=1 pi = m. Let ω + (a) ∈ I + (a)/(a). Since I = ∏n

i=1 pi ⊆ ∏n−1
i=1 pi,

one has that

ω + (a) ∈
n−1∏
i=1

pi + (a)/(a). (4.14)

By the inductive hypothesis,

ω + (a) ∈
n−1∏
i=1

pi + (a)/(a). (4.15)

Since ω + (a) ∈ I + (a)/(a), there exists n ∈ N and ai ∈ (I + (a))i such that

(ω + (a))n + a1(ω + (a))n−1 + . . .+ an = 0 ∈ R/(a). (4.16)

This is equivalent to the existence of n ∈ N and ai ∈ I i such that

ωn + a1ω
n−1 + . . .+ an ∈ (a). (4.17)

Without loss of generality, since I + (a)/(a) ⊆ I + (a)/(a), we may assume that

Suppω ⊆
n−1∏
j=1

pj \ pn. (4.18)

Denote

p1 = (x1,1, . . . , x1,i1)

p2 = (x2,1, . . . , x2,i2)
...

pn = (xn,1, . . . , xn,in).

Since ∑n
i=1 pi = m, let

a =
n∑

j=1

ij∑
k=1

αj,kxj,k (4.19)
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denote the general linear form. Then since

ωn + a1ω
n−1 + . . .+ an ∈ (

n∑
j=1

ij∑
k=1

αj,kxj,k), (4.20)

and each ai ∈ I ⊆ pn, we conclude that modulo pn,

ωn ∈ (
n−1∑
j=1

ij∑
k=1

αj,kxj,k) + pn. (4.21)

Notice that (∑n−1
j=1

∑ij

k=1 αj,kxj,k) + pn is a prime ideal of R, and hence

ω ∈ (
n−1∑
j=1

ij∑
k=1

αj,kxj,k) + pn. (4.22)

Since Suppω ⊆ ∏n
j=1 pj \ pn, we conclude that

ω ∈ (
n−1∑
j=1

ij∑
k=1

αj,kxj,k). (4.23)

Let s ∈ R such that

ω = s(
n−1∑
j=1

ij∑
k=1

αj,kxj,k). (4.24)

Then since we assume ω ∈ ∏n−1
j=1 pj and (∑n−1

j=1
∑ij

k=1 αj,kxj,k) 6∈ pj for any 1 ≤ j ≤ n− 1, we

conclude that s ∈ ∏n−1
j=1 pj. Therefore,

ω + (a) = s(
n−1∑
j=1

ij∑
k=1

αj,kxj,k) + (a)

= s(−
in∑

k=1
αn,kxn,k) + (a)

∈ I + (a).

This completes the proof that I + (a)/(a) = I + (a)/(a). �
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5. PRELIMINARIES: PART 2

Let (R,m) be a Noetherian local ring of dimension d > 0 or R = k[x1, . . . , xd] with d > 0 be

a polynomial ring over a field k with homogeneous maximal ideal m = (x1, . . . , xd).

For an m-primary ideal I, the Hilbert-Samuel function HI(i) of I, is defined as HI(i) =

λ(R/I i). The Hilbert-Samuel function is a polynomial in n of degree d for sufficiently large

n. This polynomial is called the Hilbert-Samuel polynomial of I. The Hilbert-Samuel poly-

nomial can be written in the form

PI(n) = e0(I)
(
n+ d− 1

d

)
− e1(I)

(
n+ d− 2
d− 1

)
+ · · · + (−1)ded(I).

The coefficient e0(I) is referred to as the Hilbert-Samuel multiplicity of I, and ei(I) the ith

Hilbert coefficient of I. See [Mat86 , Section 5.13] for more information on the Hilbert-Samuel

polynomial.

Kishor Shah proved in [Sha91 ] that in an equidimensional and universally catenary

Noetherian local ring (R,m) with infinite residue field, there exists a largest ideal containing

I and contained in I for which the first several Hilbert-Samuel coefficients coincide. This

was generalized in [CPV06 ] for any m-primary ideal in a Noetherian local ring (R,m). These

ideals are defined below.

Definition 5.0.1. Let (R,m) be a Noetherian local ring of dimension d. Let I be an m-

primary ideal. For 0 ≤ k ≤ d, we define I{k} to be the largest ideal in I containing I for

which ei(I) = ei(I{k}) for i = 0, . . . , k. We call I{k} the kth coefficient ideal of I.

This definition yields the following sequence of ideals

I ⊆ I{d} ⊆ · · · ⊆ I{1} ⊆ I{0} = I. (5.1)

Note that I{d} is the largest ideal integral over I whose entire Hilbert-Samuel polynomial

coincides with the Hilbert-Samuel polynomial of I, and I{0} is the largest ideal integral over

I whose Hilbert-Samuel multiplicity coincides with I.
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The following theorem of Rees implies that in an equidimensional and universally cate-

nary ring, it is not necessary to assume that the coefficient ideals are contained in I.

Theorem 5.0.1 ([Ree61 , Theorem 3.2]). Let (R,m) be an equidimensional and universally

catenary local ring. Let I, J be two m-primary ideals with I ⊆ J . Then J ⊆ I if and only if

e0(J) = e0(I).

When I contains a nonzerodivisor, Ratliff and Rush proved that there is a unique largest

ideal Ĩ containing I for which (Ĩ)n = In for n sufficiently large [RR78 , Theorem 2.1]. Such

an ideal is referred to as the Ratliff-Rush closure of I and Ratliff and Rush showed that

Ĩ = ⋃
n≥0 (In+1 : In). Since large powers of I and Ĩ coincide, the Hilbert-Samuel polynomial

of I is equal to the Hilbert-Samuel polynomial of Ĩ. Moreover, Ratliff and Rush showed that

Ĩ is the unique largest ideal I containing I and integral over I for which the Hilbert-Samuel

polynomials coincide, and hence Ĩ = I{d}.

Both the integral closure and the Ratliff-Rush closure are significantly more well-understood

than any of the intermediate coefficient ideals. However, the first coefficient ideal is connected

to the S2-ification of the Rees algebra and arises naturally in the study of the core.

5.1 Corso-Polini-Vasconcelos Characterization of Coefficient Ideals

In [CPV06 ], Corso, Polini and Vasconcelos give a characterization of the jth coefficient

ideal as the ideal of degree 1 forms in a subalgebra of R[It, t−1]R[t,t−1], generalizing work of

Ciupercă in [Ciu01 ].

Lemma 5.1.1 ([CPV06 , Lemma 4.1]). Let (R,m) be a Noetherian local ring of dimension

d > 0. Let I ⊆ L be m-primary ideals integral over I with Hilbert coefficients ei(I) and

ei(L). For any integer 0 ≤ j ≤ d, one has ei(I) = ei(L) for all 0 ≤ i ≤ j if and only if the

cokernel C in the exact sequence of R[It, t−1]-modules

0 R[It, t−1] R[Lt, t−1] C 0

has dimension at most d− j.
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Let R be a Noetherian ring of dimension d. Let I be an R-ideal, and A = R[It, t−1] the

extended Rees algebra of I. Recall that dim A = d+ 1. For 0 ≤ j ≤ d+ 1, define B(j) to be

B(j) = {h ∈ AR[t,t−1] | dim(A/A :A h) ≤ d− j}.

We first observe that B(j) is a subalgebra of R[It, t−1]R[t,t−1]. Notice that 1 ∈ B(j) since

A :A 1 = A and hence dim(A/A :A 1) ≤ −1. Let h, k ∈ B(j). Then (A :A (h − k)) ⊇

(A :A h) ∩ (A :A k). Since V ((A :A h) ∩ (A :A k)) = V ((A :A h)) ∪ V ((A :A k)),

dim(A /(A :A h)) ≤ d− j and dim(A : (A :A k)) ≤ d− j, we see that

dim(A /((A :A h) ∩ (A :A k))) ≤ d− j. (5.2)

Since (A :A (h− k)) ⊇ ((A :A h) ∩ (A :A k)),

dim(A /(A :A (h− k))) ≤ d− j. (5.3)

Furthermore, since A :A h ⊆ A :A hk,

dim(A /(A :A hk)) ≤ dim(A /(A :A h)) ≤ d− j. (5.4)

Hence, hk ∈ B(j). Hence B(j) is a subalgebra of R[It, t−1]R[t,t−1] for 1 ≤ j ≤ d+ 1.

Notice that if h ∈ B(j), then dim(A/A :A h) ≤ d− j < d− (j−1). Therefore, h ∈ B(j−1).

Hence we have containments B(j) ⊆ B(j−1) for 1 ≤ j ≤ d+ 1.

Notice also that

h ∈ A ⇐⇒ A :A h = A

⇐⇒ A /(A :A h) = 0

⇐⇒ dim(A /(A :A h)) ≤ −1 .

Hence A = B(d+1).
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Notice that for any h ∈ AR[t,t−1], there exists n ∈ N such that t−nh ∈ A and hence

t−n ∈ A :A h. Therefore ht (A :A h) ≥ 1. Then for any h ∈ AR[t,t−1],

dim(A/A :A h) ≤ dim A − ht (A :A h)

≤ (d+ 1) − 1

= d.

This shows B(0) = AR[t,t−1].

Therefore we have a containment of subalgebras of AR[t,t−1]:

A = B(d+1) ⊆ B(d) ⊆ . . . ⊆ B(1) ⊆ B(0) = AR[t,t−1]
. (5.5)

The following theorem of Corso, Polini and Vasconcelos says that the ideals generated by

forms of degree 1 in the subalgebras B(j) of R[t, t−1] are the coefficient ideals of Shah.

Theorem 5.1.2 ([CPV06 , Theorem 4.2]). Let (R,m) be a Noetherian local ring of dimension

d > 0 and let I be an m-primary ideal. Let 0 ≤ j ≤ d. Then I{j} is the R-ideal consisting

of all forms of degree 1 in B(j).

Corso, Polini and Vasconcelos note that [B(1)]≥0 is the S2-ification of the Rees algebra

R[It] provided R is S2 and universally catenary.

Remark 5.1.3. The results of Corso, Polini and Vasconcelos hold if one takes a graded *local

ring rather than a Noetherian local ring as the base ring.

5.2 Graded Hom, Graded Ext and the Graded Canonical Module

Let R be a nonnegatively graded ring. Given graded R-modules M,N , an R-linear map

f : M → N is homogeneous of degree j if f(Mi) ⊆ Ni+j for all i ∈ Z and homogeneous if

it is homogeneous of degree 0. Let ∗ ModR denote the category whose objects are graded

R-modules and morphisms are homogeneous R-linear maps. The free objects in ∗ ModR

are ⊕i∈IR(−ni) with ni ∈ Z. We notice that if M is a graded R-module, we can write
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M = ∑
i∈I Rzi with zi homogeneous of degree ni. Then M is the image of the homogeneous

R-linear map

⊕i∈IR(−ni) → M

defined by sending ei 7→ zi. Kernels and images of homogeneous R-linear maps are graded.

Therefore, it follows that every graded module M has a homogeneous free resolution. More-

over, homology modules remain in the category ∗ ModR.

Definition 5.2.1. Let R be a graded ring. Let M,N be graded R-modules. We define

HomR(M,N) to be the direct sum ⊕n∈Z Homi(M,N) where Homi(M,N) denotes the R-

linear maps from M to N which are homogeneous of degree i.

We see that HomR(M,N) ⊆ HomR(M,N). Furthermore, HomR(M,N) is graded and

a submodule of HomR(M,N) with [HomR(M,N)]i = Homi(M,N). Given r ∈ Ri and

ϕ ∈ Homj(M,N), rϕ is homogeneous of degree i + j. One can check that HomR(−, N) is

an additive contravariant functor from ∗ ModR to ∗ ModR.

Definition 5.2.2. Let R be a graded ring and N a graded R-module. We define

Exti
R(−, N) = Ri(HomR(−, N))

Remark 5.2.1. If M is a finite R-module, HomR(M,N) = HomR(M,N). Let x1, . . . , xn

be homogeneous elements of M such that M = Rx1 + · · · + Rxn. If ϕ : M → N is

a homomorphism of R-modules, then ϕ(xi) = y1 + · · · + ys ∈ ⊕ks
j=k1Nj for 1 ≤ i ≤ n.

This implies that ϕ is a finite sum of homogeneous maps in finitely many degrees. Hence

HomR(M,N) ⊆ HomR(M,N).

It follows that if M is finite and R is Noetherian, then Exti
R(M,N) = Exti

R(M,N) for

all i.

Definition 5.2.3. Let R be a Gorenstein ring. Let S = R[X1, . . . , Xn] be a polynomial ring

over R with deg(Xi) > 0, and I be a homogeneous S-ideal of height g. Let T = S/I. Then

we define

ωT = Extg
S(T, S)(−

n∑
i=1

deg(Xi)).

to be a graded canonical module of T .
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One can show that ωT is uniquely determined up to homogeneous isomorphisms.

Remark 5.2.2. Since T is a finite S-module, ωT = Extg
S(T, S)(−∑n

i=1 deg(Xi)).

Proposition 5.2.1. Let T be as in Definition 5.2.3 . The graded canonical module ωT

satisfies Serre’s condition S2 as a T -module.

Proof. It suffices to check that ωT satisfies S2 locally at maximal homogeneous ideals. Let

m be a maximal homogeneous ideal of T . Then ht ITm ≥ ht I. If ht ITm > ht I = g, then

(ωT )m is zero, and hence satisfies S2 as a T -module.

Assume ht ITm = ht I = g. Since g = ht ITm, ITm contains a regular sequence of length

g, say f1, . . . , fg. Let a = (f1, . . . , fg). Then since f1, . . . , fg ⊆ ann(Tm),

Extg
Sm

(Tm, Sm)(−
n∑

i=1
deg(Xi)) ∼= HomSm(Tm, Sm/(f1, . . . , fg))(−

n∑
i=1

deg(Xi)) (5.6)

∼= HomSm/a(Tm, Sm/a)(−
n∑

i=1
deg(Xi)). (5.7)

Notice that Sm/a is a Cohen-Macaulay ring and hence satisfies S2. Therefore, HomSm/a(Tm, Sm/a)

satisfies S2. �

Definition 5.2.4. A ring R is generically Gorenstein ring if Rp is Gorenstein for all p ∈

Ass(R).

If R is reduced, then R is generically Gorenstein ring. Therefore, any Rees algebra of an

ideal in a reduced ring is generically Gorenstein ring.

Theorem 5.2.3 ([NV93 , Theorem 1.3]). Let T be as in Definition 5.2.3 . Assume T is

generically Gorenstein ring. Assume all minimal primes of I have the same height. Then

HomT (ωT , ωT ) is a commutative ring naturally containing T which satisfies S2, is a finite

T -module and satisfies S2 as a T -module. Moreover, it can be identified with a subring of

Quot(T ). Furthermore, it is minimal with this property. Given a T -module W ⊆ Quot(T )

such that T ⊆ W , W is finite as a T -module, and W satisfies S2 as a T -module, then

HomT (ωT , ωT ) ⊆ W .

61



5.3 The S2-ification of a ring

Definition 5.3.1. Let R be a Noetherian ring with total ring of quotients Quot(R). We say

that an overring S of R is an S2-ification of R if:

(i) R ⊆ S ⊆ Quot(R) and S is a finite R-module;

(ii) S is S2 as an R-module;

(iii) S is minimal with respect to having properties (i) and (ii).

Remark 5.3.1. When an S2-ification of R exists, it must be unique, and is equal to

{t ∈ R
Quot(R) | ht (R :R t) ≥ 2}.

We can see this by following the proof of [HH94 , Proposition 2.4].

By Theorem 5.2.3 , HomT (ωT , ωT ) is an S2-ification of T with T as in Theorem 5.2.3 .

Proposition 5.3.1. Let A → B be a faithfully flat extension of Gorenstein rings. Let

X1, . . . , Xn be variables such that deg(Xi) > 0. Let I be a homogeneous A[X1, . . . , Xn]-ideal

of height g. Let T = A[X1, . . . , Xn]/I and let U = B[X1, . . . , Xn]/IB[X1, . . . , Xn] = T ⊗AB.

Then

ωU = ωT ⊗A B.

Proof. Notice that since A → B is a faithfully flat extension of Gorenstein rings, so is

A[X1, . . . , Xn] → B[X1, . . . , Xn]. Since faithfully flat extensions preserve heights of ideals,

ht I = ht IB[X1, . . . , Xn] = g. Then by the definition of the graded canonical module of U ,

we see that

ωU = Extg
B[X1,...,Xn](U,B[X1, . . . , Xn])(−

n∑
i=1

deg(Xi)). (5.8)

Since B[X1, . . . , Xn] is a flat A[X1, . . . , Xn]-module, and T = A[X1, . . . , Xn]/I is a finite

A[X1, . . . , Xn]-module, one has
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Extg
B[X1,...,Xn](U,B[X1, . . . , Xn])(−

n∑
i=1

deg(Xi))

= Extg
A[X1,...,Xn](T,A[X1, . . . , Xn])(−

n∑
i=1

deg(Xi)) ⊗A[X1,...,Xn] B[X1, . . . , Xn]

= Extg
A[X1,...,Xn](T,A[X1, . . . , Xn])(−

n∑
i=1

deg(Xi)) ⊗A B

= ωT ⊗A B.

�

Proposition 5.3.2. Let A → B be a faithfully flat extension of Gorenstein rings. Let

X1, . . . , Xn be variables such that deg(Xi) > 0. Let I be a homogeneous A[X1, . . . , Xn] ideal

of height g. Let T = A[X1, . . . , Xn]/I and let U = B[X1, . . . , Xn]/IB[X1, . . . , Xn] = T ⊗AB.

Then there is a graded isomorphism

HomT (ωT , ωT ) ⊗A B ∼= HomU(ωU , ωU). (5.9)

Proof. Since B is a flat A-module, U = T ⊗A B is a flat T -module. Since ωT is a finite

T -module,

HomT (ωT , ωT ) ⊗T U ∼= HomU(ωT ⊗T U, ωT ⊗T U). (5.10)

Notice that

ωT ⊗T U = ωT ⊗T (T ⊗A B)

= (ωT ⊗T T ) ⊗A B

= ωT ⊗A B.

By Proposition 5.3.1 , ωT ⊗A B ∼= ωU . Hence, HomT (ωT , ωT ) ⊗T U ∼= HomU(ωU , ωU).

�
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Remark 5.3.2. Let T and U be defined as in Proposition 5.3.1 . We claim that if T is

generically Gorenstein, then U is generically Gorenstein.

Let q be an associated prime of U , and p be the contraction of q to T . We must show that

Uq is Gorenstein to see that U is generically Gorenstein. Recall that a flat local extension

of Noetherian rings (R,m) → (S, n) has the property that S if Gorenstein if and only if R

and S/mS are Gorenstein [BH93 , Corollary 3.3.15].

Notice that since A and B are Gorenstein, so are A[X1, . . . , Xn] and B[X1, . . . , Xn].

Localizing at the primes p and q of A[X1, . . . , Xn] and B[X1, . . . , Xn] as above, one has

A[X1, . . . , Xn]p and B[X1, . . . , Xn]q are Gorenstein, and the map

(A[X1, . . . , Xn]p, pA[X1, . . . , Xn]p) −→ (B[X1, . . . , Xn]q, qB[X1, . . . , Xn]q) (5.11)

is a flat local extension of Gorenstein rings. Hence B[X1, . . . , Xn]q/pB[X1, . . . , Xn]q ∼=

Uq/pUq is Gorenstein.

Therefore, applying [BH93 , Corollary 3.3.15] to the flat local map

(Tp, pTp) −→ (Uq, qUq) (5.12)

we see that sinceB[X1, . . . , Xn]q/pB[X1, . . . , Xn]q is Gorenstein andB[X1, . . . , Xn]q/pB[X1, . . . , Xn]q ∼=

Uq/pUq, Uq/pUq is Gorenstein. Since Tp is Gorenstein, then we conclude that Uq is Goren-

stein.

Next, we claim that if the minimal primes of T have the same height, then the min-

imal primes of U have the same height. Let q be a minimal prime of IB[X1, . . . , Xn] in

B[X1, . . . , Xn]. Let p = q ∩ A[X1, . . . , Xn]. Notice that p is an associated prime of I, and

hence minimal. Notice that

A[X1, . . . , Xn]p −→ B[X1, . . . , Xn]q
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is a flat local homomorphism. Notice that I ⊆ p and hence IB[X1, . . . , Xn]q ⊆ pB[X1, . . . , Xn]q.

Therefore, the fiber of the flat local homomorphism is an epimorphic image of

B[X1, . . . , Xn]q/IB[X1, . . . , Xn]q,

which is a zero-dimensional ring since q is a minimal prime of IB[X1, . . . , Xn]. This implies

that dimA[X1, . . . , Xn]p = dimB[X1, . . . , Xn]q. Since we assume all minimal primes of I

have the same height, it follows that all minimal primes of IB[X1, . . . , Xn] have the same

height.

This shows that if T satisfies assumptions of Theorem 5.2.3 , then so does U . Hence

HomU(ωU , ωU) ∼= HomT (ωT , ωT ) ⊗A B is an S2-ification of U .
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6. SPECIALIZATION OF COEFFICIENT IDEALS

This chapter is based on joint work with Rachel Lynn.

In Chapter 3, we have shown that for ideals I of height at least 2 in a large class of

rings, I/(x) = (I/(x)) for general x ∈ I. Given that for m-primary ideals I in a local ring

R, the sequence of coefficient ideals approximates I = I{0}, a natural question arises. Is

I{j}/(x) = (I/(x)){j} for 1 ≤ j ≤ d − 1? In the case where j = d and grade I > 0, we

note that (I/(x)){d} is undefined since the dimension of R/(x) is d− 1. Since I{d} coincides

with the Ratliff-Rush closure of I, and (I/(x)){d−1} coincides with the Ratliff-Rush closure

of I/(x), the natural question in this case is: When does the Ratliff-Rush closure specialize?

When is I{d}/(x) = (I/(x)){d−1}?

Rossi and Swanson consider the behavior of the Ratliff-Rush closure under specialization

in [RS03 ]. Note that an element a of an ideal I is said to be superficial if there exists c ∈ N

such that for all n ≥ c,

(In : a) ∩ Ic = In−1. (6.1)

By [SH06 , Proposition 8.5.7], when R is a local ring with an infinite residue field, an element

being superficial is a general condition. Rossi and Swanson give two classes of examples of

Ratliff-Rush closed ideals which are not Ratliff-Rush closed after specialization by superficial

elements:

Proposition 6.0.1 ([RS03 , Proposition 2.3]). Let R = k[[x, y]] be a power series ring in 2

variables over a field. Then for l ≥ 3, I =
(
xl, xyl−1, yl

)
is Ratliff-Rush closed and so is each

power of I, yet I/(a) is not Ratliff-Rush closed for any superficial element a ∈ I.

Proposition 6.0.2 ([RS03 , Proposition 2.4]). Let R = k[x1, . . . , xd] be a polynomial ring in

d ≥ 2 variables over a field. Let l ≥ 3 and let I be the ideal generated by all monomials of

degree l except xl−1
1 x2. Then I and all powers of I are Ratliff-Rush closed, yet I/(a) is not

Ratliff-Rush closed for any superficial element a ∈ I.

In this section, we prove that

I{i}/(x) ⊆ (I/(x)){i} for 1 ≤ i ≤ d− 1 (6.2)
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and

I{d}/(x) ⊆ (I/(x)){d−1} . (6.3)

These containments allow us to say that whenever a coefficient ideal coincides with the

integral closure, the coefficient ideal specializes in the sense described above. Moreover, we

prove that if the dth coefficient ideal does not coincide with the (d − 1)st coefficient ideal,

then the Ratliff-Rush closure does not specialize.

The following lemma is needed for the proof that I{i}/(x) ⊆ (I/(x)){i} for 0 ≤ i ≤ d− 1.

Lemma 6.0.1. Let (R,m) be a Noetherian local k-algebra, with k an infinite field. Let I be

an R-ideal and x a general element of I. Let M be a nonzero finitely generated R-module.

Then

dim(M/xM) = max{dim(M/IM), dimM − 1}.

Proof. Suppose dim(M/IM) = dimM . Since ann(M/xM) ⊆ ann(M/IM),

dim(M/xM) ≥ dim(M/IM) = dimM. (6.4)

Since ann(M) ⊆ ann(M/xM), dimM ≥ dim(M/xM). Hence

dim(M/xM) = dimM = max{dim(M/IM), dimM − 1}. (6.5)

Now suppose dim(M/IM) < dimM . We claim that I is not contained in any p ∈

Min(() annM) with dimR/p = dimM . Suppose toward contradiction I ⊆ p with p ∈

Min(() annM) such that dimR/p = dimM . Then (annM, I) ⊆ p. Since M is a finite

R-module,
√

(annM, I) =
√

ann(M/IM). Hence ann(M/IM) ⊆ p. Therefore,

dimM = dimR/p ≤ dim(M/IM), (6.6)
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a contradiction. Since I is not contained in any prime p ∈ Min(() annM) with dimR/p =

dimM , we may assume x is not contained in any such prime. Since
√

ann(M/xM) =√
(annM,x),

dim(M/xM) = dimR/(annM,x) = dimR/(annM) − 1 = dimM − 1. (6.7)

�

We are now ready to prove that I{i}/(x) ⊆ (I/(x)){i} for 1 ≤ i ≤ d− 1.

Proposition 6.0.2. Let (R,m) be a Noetherian local k-algebra of dimension d > 0, with k

an infinite field. Let I be an m-primary ideal of R, and let x be a general element of I.

Then I{i}/(x) ⊆ (I/(x)){i} for all 1 ≤ i ≤ d− 1, where I{i} is the ith coefficient ideal of I.

Proof. By [CPV06 , Lemma 4.1], I{i} is the unique largest ideal integral over I containing

I such that dimM ≤ d − i, where M is the cokernel of the natural inclusion of R[It, t−1]-

modules

0 R[It, t−1] R[I{i}t, t
−1] M 0

(see Lemma 5.1.1 ). Since I{i}/(x) ⊆ I/(x) ⊆ I/(x), I{i}/(x) is integral over I/(x). Since R

is local with positive dimension and I is m-primary, we may assume that x is not contained

in any minimal primes of maximal dimension, and hence dimR/(x) = d− 1. Thus, to show

the desired containment, it suffices to show that the cokernel N in the short exact sequence

0 R
(x)

[
I

(x)t, t
−1
]

R
(x)

[
I{i}
(x) t, t

−1
]

N 0

satisfies dimN ≤ (d − 1) − i. Note that the result is trivial if I = I{i}, and hence we may

assume M 6= 0.

Notice that the natural maps

R[It, t−1] −→ R

(x)

[
I

(x)t, t
−1
]

and R[I{i}t, t
−1] −→ R

(x)

[
I{i}

(x) t, t
−1
]

(6.8)
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are surjections. These maps induce a natural map M → N . Applying the Snake Lemma to

the following diagram

0 R[It, t−1] R[I{i}t, t
−1] M 0

0 R
(x)

[
I

(x)t, t
−1
]

R
(x)

[
I{i}
(x) t, t

−1
]

N 0 ,

(6.9)

we see that the natural map M → N is surjective. Moreover, xtM is contained in the kernel

of the natural map M → N and hence N is the epimorphic image of M/xtM . Therefore,

dimN ≤ dim(M/xtM). To show dimN ≤ d − i − 1, it suffices to show dim(M/xtM) ≤

d− i− 1.

By Lemma 6.0.1 ,

dim(M/xtM) = max{dim(M/ItM), dimM − 1}. (6.10)

We claim that dim(M/ItM) ≤ 0. It is clear that It annihilates M/ItM . Notice

R[It, t−1] ⊆ R[I{i}t, t
−1] ⊆ R[It, t−1] ⊆ R[It, t−1]R[t,t−1]

. (6.11)

Hence R[I{i}t, t
−1] is a finite R[It, t−1]-module, as it is an integral extension of R[It, t−1] and a

finitely generated R[It, t−1]-algebra. ThereforeM is a finite R[It, t−1]-module. Furthermore,

M is concentrated in positive degrees and therefore, there exists n ∈ N such that t−nM = 0.

Hence

(It, t−1) ⊆
√

annR[It,t−1](M/ItM). (6.12)

Therefore,

dimM/ItM ≤ dimR[It, t−1]/(It, t−1) = dimR/I = 0. (6.13)
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Since dimM ≤ d− i, we conclude that

dimN ≤ dimM/xtM

= max{dimM/ItM, dimM − 1}

≤ max{0, d− i− 1}

= d− i− 1.

This completes the proof that I{i}/(x) ⊆ (I/(x)){i}. �

The following result gives the analogous containment for the dth coefficient ideal.

Proposition 6.0.3. Let (R,m) be a Noetherian local k-algebra of dimension d with k an

infinite field with depth(R) ≥ 2. Let I be an m-primary ideal of R. Let x be a general element

of I. Then I{d}/(x) ⊆ (I/(x)){d−1}. Moreover, if Ĩ = I{d} ( I{d−1}, then the Ratliff-Rush

closure Ĩ does not specialize with respect to general elements of I.

Proof. Recall that in a d-dimensional ring, when I contains a nonzerodivisor,

I{d} = Ĩ =
⋃

n≥0

(
In+1 : In

)
.

Notice that since depth(R) ≥ 2, gradem ≥ 2. Since I is m-primary, this implies that

grade I ≥ 2.

Let y ∈ I{d} = Ĩ. Then y ∈ In+1 : In for some n ≥ 0. Since yIn ⊆ In+1,

(y + (x))(I/(x))n ⊆ (I/(x))n+1. (6.14)

Hence

y + (x) ∈ (I/(x))n+1 : (I/(x))n ⊆ ˜(I/(x)). (6.15)

Hence Ĩ/(x) ⊆ Ĩ/(x). Since we may assume x is a nonzerodivisor on the ring R, R/(x) is a

ring of dimension d− 1 and depth(R/(x)) ≥ 1. Therefore, I/(x) contains a nonzerodivisor.

Hence Ĩ/(x) = (I/(x)){d−1}. This proves the containment I{d}/(x) ⊆ (I/(x)){d−1}.
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Since I ⊆ I{d} ⊆ I{d−1} and x ∈ I,

I{d}/(x) ⊆ I{d−1}/(x). (6.16)

Moreover, if I{d} ( I{d−1}, then I{d}/(x) ( I{d−1}/(x).

By 6.0.2 , I{d−1}/(x) ⊆ (I/(x)){d−1}. Therefore, if Ĩ = I{d} ( I{d−1}, then

Ĩ/(x) = I{d}/(x) ( I{d−1}/(x) ⊆ (I/(x)){d−1} = Ĩ/(x). (6.17)

�

In the next chapter, we will see that in a polynomial ring in two variables, the ideals

Rossi and Swanson gave as counterexamples to the specialization of the Ratliff-Rush closure

in [RS03 ] are ideals for which Ĩ = I{2} ( I{1}.

The following corollaries say that if any coefficient ideal of I coincides with the integral

closure of I, then the coefficient ideal specializes with respect to general x ∈ I.

Corollary 6.0.4. Let (R,m) is a local excellent k-algebra of dimension d ≥ 2 with k a field

of characteristic zero. Let I be an m-primary R-ideal. Let x be a general element of I. If

I{i} = I for some i ∈ {1, . . . , d− 1}, then

I{j}/(x) = (I/(x)){j} for 0 ≤ j ≤ i.

Proof. Let 1 ≤ i ≤ d− 1. Then

I{i}/(x) ⊆ (I/(x)){i} (6.18)

⊆ I/(x) (6.19)

= I/(x). (6.20)

Note that Eq. (6.18 ) follows from Proposition 6.0.2 , Eq. (6.19 ) follows from the definition

of coefficient ideals, and Eq. (6.20 ) follows from Theorem 3.6.1 . Since I{i}/(x) = I/(x), the

above containments are equalities.
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Furthermore, the coefficient ideals between the integral closure and the ith coefficient

ideal specialize, since if I{i} = I, then I{j} = I for all j < i. �

Corollary 6.0.5. Let (R,m) is a local excellent k-algebra of dimension d ≥ 2 with k a field

of characeristic zero and depth(R) ≥ 2. Let I be an m-primary R-ideal. Let x be a general

element of I. If I{d} = I, then

Ĩ/(x) = I{d}/(x) = (I/(x)){d−1} = Ĩ/(x). (6.21)

and

I{i}/(x) = (I/(x)){i} for all 0 ≤ i ≤ d− 1. (6.22)

Proof. Since depth(R) ≥ 2 and I is m-primary, I contains a nonzerodivisor. Therefore,

Ĩ = I{d}. Hence

Ĩ/(x) = I{d}/(x) (6.23)

⊆ (I/(x)){d−1} (6.24)

⊆ I/(x) (6.25)

= I/(x) (6.26)

Note that Eq. (6.24 ) follows from Proposition 6.0.3 , Eq. (6.25 ) follows from the definition of

coefficient ideals, and Eq. (6.26 ) follows from Theorem 3.6.1 . Since Ĩ = I, all containments

are equalities.

Furthermore, since Ĩ = I, I{i} = I for all 1 ≤ i ≤ d− 1, and the specialization of the ith

coefficient ideal follows from Corollary 6.0.4 . �

6.1 Containment Preservation Property for Coefficient Ideals

Recall that the integral closure preserves containments for all ideals: if J ⊆ I, then

J ⊆ I. Heinzer, Johnston, Lantz and Shah in [Hei+93 ] gave an example of J ⊆ I for which

J̃ 6⊆ Ĩ. In Chapter 5, we give an example showing that the first coefficient ideal does not
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preserve containments in general. While coefficient ideals do not preserve containments in

general, coefficient ideals preserve containments of reductions.

The next proposition was proved by Heinzer, Johnston, Lantz, and Shah with some

additional assumptions on the ring (see [Hei+93 , Corollary 3.20]).

Proposition 6.1.1. Let (R,m) be a Noetherian local ring of dimension d > 0. Let J ⊆ I

be m-primary ideals such that J is a reduction of I. Then J{k} ⊆ I{k} for 0 ≤ k ≤ d.

Proof. Define DJ(h) = R[Jt, t−1] :R[Jt,t−1] h and DI(h) = R[It, t−1] :R[It,t−1] h. By [CPV06 ],

the coefficient ideal I{j} is the degree one component of the algebra

B(j) = {h ∈ R[It, t−1]R[t,t−1] | dim(R[It, t−1]/DI(h)) ≤ d− j}.

Let b ∈ J{k}. Then

dim(R[Jt, t−1]/DJ(bt)) ≤ d− k. (6.27)

We show that dim(R[It, t−1]/DI(bt)) ≤ d− k to see that b ∈ I{k}.

Since J is a reduction of I, the extension R[Jt, t−1] ⊆ R[It, t−1] is integral. Therefore

R[Jt, t−1]/(DI(bt) ∩R[Jt, t−1]) ⊆ R[It, t−1]/DI(bt) is integral. Hence

dim(R[Jt, t−1]/(DI(bt) ∩R[Jt, t−1])) = dim(R[It, t−1]/DI(bt)). (6.28)

It is clear that DI(bt) ∩R[Jt, t−1] = DJ(bt). Hence

dim(R[It, t−1]/DI(bt)) = dim(R[Jt, t−1]/DJ(bt)) ≤ d− k. (6.29)

Hence b ∈ I{k}.

�
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7. COEFFICIENT IDEALS IN A POLYNOMIAL RING IN

TWO VARIABLES

In this chapter, we restrict to polynomial rings in two variables over an infinite field k. We

give a formula for the first coefficient ideal for allm-primary monomial ideals generated in one

degree. We use a formula for the Ratliff-Rush closure due to Veronica Crispin Quiñonez to

characterize when the Ratliff-Rush closure coincides with the first coefficient ideal. With the

additional assumption that the field k has characteristic zero, we give a complete description

of how coefficient ideals for m-primary monomial ideals generated in one degree behave with

respect to specialization by a general element of the ideal.

7.1 The First Coefficient Ideal

To begin, we compute the first coefficient ideal of 0-dimensional monomial ideals gener-

ated in one degree.

Lemma 7.1.1. Let (R,m) → (S, n) be a faithfully flat extension of Gorenstein local rings

of dimension d ≥ 1. Let I be an m-primary R-ideal. Then

I{1}S = (IS){1}.

Proof. Recall that I{1} is the degree 1 component of the S2-ification of R[It].

Let I = (a1, . . . , an). Then the Rees algebra of I, R[It], is naturally isomorphic to

R[X1, . . . , Xn]/J

with deg(Xi) = 1 and J a homogeneous ideal, referred to as the defining ideal of the Rees

algebra R[It]. We now see that R[It] is generically a Gorenstein ring. Let p ∈ Ass(R[It]).

Then p contracts to an associated prime of R. Since I is an m-primary ideal in a Cohen-

Macaulay ring of dimension at least 1, I 6⊆ p ∩ R. This implies that R[It]p is a polynomial

ring over the Gorenstein ring Rp∩R. Hence R[It]p is Gorenstein.
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We must show that all minimal primes of J have the same height. Notice that R is local,

equidimensional and universally catenary. Since R is equidimensional and I is not contained

in any minimal primes of maximal dimension, R[It] is equidimensional. Let q be a minimal

prime of J . To show that ht q = ht J , since R[X1, . . . , Xn] is equidimensional and universally

catenary, it suffices to show that

dimR[X1, . . . , Xn]/J = dimR[X1, . . . , Xn]/q.

This equality is clear since R[X1, . . . , Xn]/J is equidimensional and q/J is a minimal prime

of R[X1, . . . , Xn]/J .

Likewise, S[ISt] is generically Gorenstein, the associated primes of the defining ideal of

the Rees algebra have the same height.

This shows that we can use Theorem 5.2.3 to compute the S2-ifications of the Rees alge-

bras R[It] and S[ISt]. By Theorem 5.2.3 , the S2-ification of R[It] is HomR[It](ωR[It], ωR[It]).

By Proposition 5.3.2 , there is a graded isomorphism,

HomR[It](ωR[It], ωR[It]) ⊗R S ∼= HomS[ISt](ωS[ISt], ωS[ISt]). (7.1)

Therefore, the degree 1 components are naturally isomorphic, so I{1}S = (IS){1}. �

Proposition 7.1.1. Let R = k[x, y] be a polynomial ring over a field k, and m = (x, y). Let

I be an m-primary monomial ideal generated in degree n. Write

I =
(
xn, yn, xa1yb1 , . . . , xarybr

)

with ai + bi = n for all i. Let a = gcd(n, a1, . . . , ar). Then

I{1} =
(
xn, yn, xayn−a, x2ayn−2a, . . . , xβayn−βa

)
,

for β = n
a

− 1. In particular, I{1} = I if and only if gcd(n, a1, . . . , ar) = 1.

Proof. We note that S = k[xa, ya] ↪→ R = k[x, y] is a free extension of Gorenstein domains.

Given theR-ideal I, there is an S-ideal J = ((xa)n/a, (ya)n/a, (xa)a1/a(ya)b1/a, . . . , (xa)ar/a(ya)br/a).
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Notice that JR = I, and gcd(n/a, a1/a, . . . , ar/a) = 1. By Lemma 7.1.1 , J{1}R = I{1}.

Therefore, we may assume that gcd(n, a1, . . . , ar) = 1 and show that I{1} = mn.

We now show that xkyn−k ∈ I{1} for 1 ≤ k ≤ n− 1. Let A = R[It, t−1].

As in [CPV06 ], define

B(1) = {h ∈ AR[t,t−1] | dim(A /A :A h) ≤ d− 1} ,

or equivalently, in this case,

B(1) = {h ∈ AR[t,t−1] | ht A :A h ≥ 2} .

By [CPV06 ], to show that xkyn−k ∈ I{1}, we show that xkyn−kt ∈ B(1). Let A =

R[It, t−1]. To show xkyn−kt ∈ B(1), we must show that ht(A :A xkyn−kt) ≥ 2.

First, notice that (xn, yn, t−1) ⊂ (A :A xkyn−kt), since

xnxkyn−kt = xkyn−k(xnt) ∈ It

ynxkyn−kt = xkyn−k(ynt) ∈ It

t−1xkyn−kt = xkyn−k ∈ R

We show that there exist nonnegative integers α1, . . . , αr such that

(xa1yb1t)α1 . . . (xarybrt)αr ∈ (A :A xkyn−kt). (7.2)

To do so, we show that there exist nonnegative integers α1, . . . , αr such that

(xa1yb1t)α1 . . . (xarybrt)αrxkyn−kt ∈ (xnt, ynt)(
∑r

i=1 αi)+1. (7.3)

Since gcd(n, a1, . . . , ar) = 1, there exist integers β0, . . . , βr such that

β0n+ β1a1 + · · · + βrar = 1.
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Multiplying through by k, we have coefficients γ0, . . . , γr such that

γ0n+ γ1a1 + · · · + γrar = k.

Modulo (n), we see that

k − γ1a1 − · · · − γrar ≡ 0.

Adding multiples of n if necessary to make the coefficients positive, we see that there are

positive integers α1, . . . , αr such that

k + α1a1 + · · · + αrar ≡ 0 mod (n).

It follows immediately that

n− k + α1(n− a1) + · · · + αr(n− ar) ≡ 0 mod (n).

Hence,

(xa1yb1t)α1 . . . (xarybrt)αrxkyn−kt = xnuynvt(
∑r

j=1 αj)+1.

We claim that this is an element of R[It, t−1]. Notice that the total degree in x and y on the

left-hand side is n((∑r
i=1 αi) + 1). Hence

nu+ nv = n((
r∑

i=1
αi) + 1). (7.4)

Therefore, u+ v = (∑r
i=1 αi) + 1. Hence

xnuynv = (xn)u(yn)v ∈ I(
∑r

i=1 αi)+1. (7.5)

This shows that (xa1yb1t)α1 . . . (xarybrt)αr ∈ A :A xkyn−kt.

We now show that ht(A :A xkyn−kt) ≥ 2. Notice that (x, y, t−1) ⊆
√

(A :A xkyn−kt).

Since

R[It, t−1]/(x, y, t−1) ∼= FI(R),
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the special fiber ring of I, and `(I) = 2 since ht I ≤ `(I) ≤ dimR, we see that ht(x, y, t−1) =

1. Let p, q ∈ FI(R) be nonzero. Let pi ∈ I i/mI i be the first nonzero component of p

and qj ∈ Ij/mIj be the first nonzero component of q. Since pi and qj are nonzero, there

exists nonzero Pi and Qj consisting of sums of elements of degree ni and nj, respectively,

in I i \ mI i and Ij \ mIj such that Pi + mI i = pi and Qj + mIj = qj. Then since R is a

domain, PiQj is nonzero and contained in I i+j. Since Pi is a sum of elements of degree ni

and Qj is a sum of elements of degree nj, PiQj is a sum of elements of degree ni+nj. Hence

piqj = (Pi +mI i)(Qj +mIj) = PiQj +mI i+j is nonzero, since PiQj must have degree exactly

n(i+ j). Since this term cannot cancel with any other terms, pq is nonzero.

Thus, (x, y, t−1) is a prime ideal of height 1 in R[It, t−1]. We now observe that

(xa1yb1t)α1 . . . (xarybrt)αr 6∈ (x, y, t−1) A .

It suffices to see that

(xa1yb1t)α1 . . . (xarybrt)αr 6∈ (x, y)I
∑r

j=1 αj ,

which is clear by degree considerations. Therefore,
√

(A :A xkyn−kt) properly contains a

height one prime. This shows that ht(A :A xkyn−kt) = ht
√

A :A xkyn−kt ≥ 2. Hence,

xkyn−k ∈ I{1} for 1 ≤ k ≤ β.

�

We note that the result above was known in the case where gcd(n, a1, . . . , ar) = 1 by

Polini, Ulrich, and Vitulli. Their proof in [PUV07 , Corollary 6.5] uses the core of ideals to

compute the first coefficient ideal.

Remark 7.1.2. Notice that Proposition 7.1.1 demonstrates that in for all m-primary mono-

mial ideals I generated in one degree, that the first coefficient ideal I{1} is generated in the

same degree. This is not true in higher dimensions. We will see a counterexample in a

polynomial ring in 3 variables in the next chapter.

Recall that we saw in the previous chapter that first coefficient ideals preserve contain-

ments when J ⊆ I is a reduction (see Proposition 6.1.1 ). We use Proposition 7.1.1 to
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Figure 7.1.
(a) I

I

(b) The first coefficient ideal of I

I{1}

(c) The integral closure of I

I{0} = I

construct an example showing that the first coefficient ideal does not respect containments

in general.

Example 7.1.1. Let R = k[x, y] be a polynomial ring over a field k and m = (x, y). Let

J = (x9, x5y4, y9) and I = (x8, x4y4, y8). Then I, J are m-primary ideals with J ⊆ I. By

Proposition 7.1.1 , the first coefficient ideals are

J{1} = m9

and

I{1} =
(
x8, x4y4, y8

)
.

In particular, x7y2 ∈ J{1} \ I{1}.

Example 7.1.2. One can visualize the relationship between the ideal itself, the first coefficient

ideal I{1} and the integral closure I{0} for the ideal I = (x8, x6y2, y8) in the following graphs.

The lattice points (a, b) in the shaded regions correspond to elements xayb contained in the

ideal.

Remark 7.1.3. Combining Proposition 6.1.1 and Proposition 7.1.1 , we have a larger class of

ideals for which I{1} = I = mn. Let J be an m-primary monomial ideal generated in degree

n for which J{1} = J = mn. That is, J = (xn, yn, xa1yb1 , . . . , xarybr) with ai + bi = n for all i

and gcd(n, a1, . . . , ar) = 1.
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Let K be any ideal contained in mn.

Then we claim that I = J +K is an ideal for which I{1} = I = mn. Notice that I = mn

since

J ⊆ I ⊆ mn

implies

J ⊆ I ⊆ mn

and J = mn and mn = mn. Notice that J is a reduction of I = J + K since I = J + K ⊆

J = mn. Hence, by Proposition 6.1.1 ,

J{1} ⊆ I{1} .

Since J{1} = mn and I{1} ⊆ I = mn, we conclude that I{1} = I. This extends the class of

examples whose first coefficient ideal coincides with the integral closure to monomial ideals

that are not generated in the same degree and even non-monomial ideals.

Example 7.1.3. Let I = (x4, y4, xy3, x3y2). Then the above remark implies that I{1} = I.

Notice that I is generated in degrees 4 and 5.

Let I = (x5, y5, x4y, x3y2 + xy4). Then I is a non-monomial ideal whose first coefficient

ideal coincides with its integral closure.

7.2 The Ratliff-Rush Closure

Recall that the Ratliff-Rush closure of an ideal I containing a nonzerodivisor is defined

to be

Ĩ :=
⋃

n≥0
In+1 : In, (7.6)

and that the 2nd coefficient ideal coincides with the Ratliff-Rush closure form-primary ideals

in 2-dimensional rings.

Veronica Crispin Quiñonez has given the following description for the Ratliff-Rush closure

of m-primary monomial ideals generated in one degree in k[x, y].
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Proposition 7.2.1 ([Qui06 , Proposition 3.7]). Let R = k[x, y] be a polynomial ring over a

field k and m = (x, y). Let I be an m-primary monomial ideal generated in degree n. Write

I =
(
xn, yn, xa1yb1 , . . . , xarybr

)
with ai + bi = n for 1 ≤ i ≤ r ordered so that ai < ai+1.

Let S denote the numerical semigroup 〈ai〉r
i=1 and T denote the numerical semigroup 〈bi〉r

i=1.

Define IS = (xsyn−s | s ∈ S, s ≤ n) and IT = (xn−tyt | t ∈ T, t ≤ n). Then

Ĩ = IS ∩ IT . (7.7)

This result along with the computation of the first coefficient ideal for these ideals allows

us to characterize when Ĩ = I{1}.

Proposition 7.2.2. Let R = k[x, y] be a polynomial ring over a field k and m = (x, y). Let I

be an m-primary monomial ideal generated in degree n. Write I =
(
xn, yn, xa1yb1 , . . . , xarybr

)
with ai + bi = n for 1 ≤ i ≤ r ordered so that ai < ai+1. Let gcd(n, a1, . . . , ar) = a. Then

Ĩ = I{1} if and only if a1 = br = a. Moreover, Ĩ = I{1} = I if and only if a1 = br = 1.

Proof. First suppose a1 = br = a. Since a = gcd(n, a1, . . . , ar), S = 〈a〉. Since

gcd(n, b1, . . . , br) = gcd(n, n− a1, . . . , n− ar) = gcd(n, a1, . . . , ar) = a,

T = 〈a〉. Therefore, IS = IT . By Proposition 7.1.1 , IS = IT = I{1} and therefore, Ĩ = I{1}.

Next, suppose that a1 6= a. Then a 6∈ S and hence xayn−a 6∈ IS. Therefore, xayn−a 6∈ Ĩ,

but xayn−a ∈ I{1} by Proposition 7.1.1 . Similarly, suppose br 6= a. Then a 6∈ T and hence

xn−aya 6∈ IT . Therefore, by Proposition 7.2.1 , xn−aya 6∈ Ĩ, but xn−aya ∈ I{1}.

Furthermore, we note that from Proposition 7.1.1 , I{1} = I if and only if a = 1. Hence

Ĩ = I if and only if a1 = br = 1. �

Example 7.2.1. LetR = k[x, y] be a polynomial ring over a field k. Let I = (x7, y7, x2y5, x5y2).

Then

I{2} = (x7, y7, x2y5, x5y2, x4y4) (7.8)

I{1} = I = m7. (7.9)
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Note that Eq. (7.8 ) follows from Proposition 7.2.1 and Eq. (7.9 ) follows from Proposi-

tion 7.1.1 . Notice that this example shows that when I is generated in one degree, the

Ratliff-Rush closure need not be generated in one degree.

Example 7.2.2. LetR = k[x, y] be a polynomial ring over a field k. Let I = (x8, x6y2, x4y4, y8).

Then

I{2} = I (7.10)

I{1} = (x8, x6y2, x4y4, x2y6, y8) (7.11)

I = m8. (7.12)

Note that Eq. (7.10 ) follows from Proposition 7.2.1 and Eq. (7.13 ) follows from Proposi-

tion 7.1.1 .

Example 7.2.3. LetR = k[x, y] be a polynomial ring over a field k. Let I = (x12, x2 y10, x8 y4, y12).

Then

I{2} = (x12, x2 y10, x4 y8, x8 y4, y12) (7.13)

I{1} = (x12, x2 y10, x4 y8, x6 y6, x8 y4, x10 y2, y12) (7.14)

I = m12. (7.15)

Note that Eq. (7.13 ) follows from Proposition 7.2.1 and Eq. (7.14 ) follows from Proposi-

tion 7.1.1 . This is an example of an ideal for which

I ( I{2} ( I{1} ( I.

We depict the relationship between the coefficient ideals of I in the figures below.
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Figure 7.2.
(a) I

I

(b) The Ratliff-Rush closure of I

I{2}

(c) The first coefficient ideal of I

I{1}

(d) The integral closure of I

I{0}
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7.3 Behavior of Coefficient Ideals Under Specialization

Proposition 7.3.1. Let S = k[x, y] be a polynomial ring over a field k of characteristic zero.

Let I be an m-primary monomial ideal generated in degree n. Write

I =
(
xn, yn, xa1yb1 , . . . , xarybr

)

with ai + bi = n for all i. Let a be a general element of I. Then

I{1}/(a) = (I/(a)){1}.

Proof. Note that if gcd(n, a1, . . . , ar) = 1, then I{1} = I by Proposition 7.1.1 and hence I{1}

specializes by Corollary 6.0.4 .

Suppose gcd(n, a1, . . . , ar) = δ > 1. Let R = k[xδ, yδ]. Then R → S is a free extension of

Gorenstein rings. Let J =
(
(xδ)n/δ, (yδ)n/δ, (xδ)a1/δ(yδ)b1/δ, . . . , (xδ)ar/δ(yδ)br/δ

)
. Notice that

gcd(n/δ, a1/δ, . . . , ar/δ) = 1.

Hence, by the previous case, J{1} = J = (xδ, yδ)n/δ and hence as R/(a)-ideals, J{1}/(a) =

(J/(a)){1}.

We want to show that the first coefficient ideal of JS specializes with respect to aS.

Recall that R → S is a free and hence faithfully flat extension of Gorenstein rings. Since we

may assume a is a nonzerodivisor on R and S, R/(a) and S/aS are Gorenstein. Moreover,

R/(a) → S/aS is a faithfully flat extension because R → S is.

Then

((J/(a))S/(a)S){1} = (J/(a)){1} ⊗R/(a) S/(a)S (7.16)

= J{1}/(a) ⊗R/(a) S/(a)S (7.17)

= J{1}S/(a)S (7.18)

= (JS){1}/(a)S. (7.19)
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Notice that Eq. (7.16 ) and Eq. (7.19 ) follow from Lemma 7.1.1 , Eq. (7.17 ) is shown above,

and Eq. (7.18 ) follows from S/(a)S being flat over R/(a). �

Next, we restate the result from the Specialization of Coefficient Ideals chapter in the

dimension d = 2 case.

Proposition 7.3.2. Let (R,m) be a Noetherian local Cohen-Macaulay k-algebra of dimension

2 with k an infinite field. Let I be an m-primary ideal of R. Let x be a general element

of I. Then I{2}/(x) ⊆ I{1}/(x) ⊆ (I/(x)){1}. In particular, if Ĩ = I{2} ( I{1}, then the

Ratliff-Rush closure Ĩ does not specialize with respect to general elements of I.

Let R = k[x, y] be a polynomial ring over a field of characteristic zero, m = (x, y) and

I an m-primary ideal. The above proposition implies that the Ratliff-Rush closure does not

specialize if Ĩ = I{2} ( I{1}. Assume I is an m-primary monomial ideal generated in one

degree. Since we have shown that I{1}/(a) = (I/(a)){1} for general a ∈ I in Proposition 7.3.1 ,

if I{2} = I{1}, then

Ĩ/(a) = I{2}/(a) = I{1}/(a) = (I/(a)){1} = Ĩ/(a). (7.20)

Hence, the Ratliff-Rush closure specializes if and only if Ĩ = I{1}.

Therefore, to summarize, if I is an m-primary monomial ideal generated in one degree

and (a) is a general element of I. Then

(i) I{0} = I specializes with respect to (a) by Theorem 3.6.1 

(ii) I{1} specializes with respect to (a) by Proposition 7.3.1 

(iii) I{2} = Ĩ specializes with respect to (a) if and only if I{2} = I{1} by the discussion

above.

85



8. FIRST COEFFICIENT IDEALS

In this chapter, we describe the first coefficient ideal of 0-dimensional monomial ideals gen-

erated in one degree in a polynomial ring over a field.

Let R = k[x1, . . . , xd] be a polynomial ring over a field, let m = (x1, . . . , xd) denote the

homogeneous maximal ideal of R, and let I be m-primary. Notice that the Hilbert-Samuel

polynomial of I is equal to the Hilbert-Samuel polynomial of Im in Rm, and hence we may

apply the results of Corso, Polini and Vasconcelos in [CPV06 ] to compute I{1}.

Heinzer and Lantz proved that coefficient ideals of monomial ideals in a polynomial ring

over an infinite field are monomial ideals (see [HL97 , Observation 3.3]).

The first result gives a criterion for a monomial to be contained in the first coefficient

ideal of a 0-dimensional monomial ideal generated in one degree.

Proposition 8.0.1. Let R = k[x1, . . . , xd] be a polynomial ring over a field k. Let m =

(x1, . . . , xd). Let I be an m-primary monomial ideal generated in degree n. Write I =

(xn
1 , . . . , x

n
d , v1, . . . , vs) with v1, . . . , vs monomials of degree n. Let J = (v1, . . . , vs).

The following are equivalent:

(i.) xa ∈ I{1}

(ii.) There exists a monomial ω ∈ Ik \mIk for some k ≥ 0 such that xaω ∈ Ik+1.

If I is generated by at least d+ 1 elements, then (i) and (ii) are equivalent to:

(iii.) There exists a monomial ρ ∈ Jk \mJk for some k ≥ 0 such that xaρ ∈ (xn
1 , . . . , x

n
d)k+1.

Proof. We first prove (i) ⇐⇒ (ii). We then prove (ii) ⇐⇒ (iii) with the additional

assumption that I is generated by at least d+ 1 elements.

(i) =⇒ (ii): Let xa be a monomial in R. Suppose that for every k ≥ 0, and for all

monomials ω ∈ Ik \mIk, xaω 6∈ Ik+1. Let

b−nt
−n + . . .+ b0 + b1t+ . . .+ bst

s ∈ R[It, t−1] :R[It,t−1] x
at. (8.1)
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Then since

b−nx
at−n+1 + . . .+ b0x

at+ b1x
at2 + . . .+ bsx

ats+1 ∈ R[It, t−1] , (8.2)

we see that bix
a ∈ I i+1 for 0 ≤ i ≤ s. By assumption, since bi ∈ I i for 0 ≤ i ≤ s and

bix
a ∈ I i+1, bi ∈ mI i. Hence,

b−nt
−n + . . .+ b0 + b1t+ . . .+ bst

s ∈ t−1R[It, t−1] +mR[It, t−1]. (8.3)

This shows that R[It, t−1] :R[It,t−1] x
at ⊆ t−1R[It, t−1] +mR[It, t−1]. We will now show that

t−1R[It, t−1] + mR[It, t−1] is a prime ideal of R[It, t−1] with height one, so that the height

of
(
R[It, t−1] :R[It,t−1] x

at
)
is at most one.

Notice that

R[It, t−1]/(t−1R[It, t−1] +mR[It, t−1]) ∼= R/m⊕ I/mI ⊕ I2/mI2 ⊕ . . . , (8.4)

the special fiber ring of I, FI(R). Since I is generated in degree n, we can see that FI(R)

is a domain: Let p, q ∈ FI(R) be nonzero. Let pi ∈ I i/mI i be the first nonzero component

of p and qj ∈ Ij/mIj be the first nonzero component of q. Since pi and qj are nonzero, there

exists nonzero Pi and Qj consisting of sums of elements of degree ni and nj, respectively,

in I i \ mI i and Ij \ mIj such that Pi + mI i = pi and Qj + mIj = qj. Then since R is a

domain, PiQj is nonzero and contained in I i+j. Since Pi is a sum of elements of degree ni

and Qj is a sum of elements of degree nj, PiQj is a sum of elements of degree ni+nj. Hence

piqj = (Pi +mI i)(Qj +mIj) = PiQj +mI i+j is nonzero, since PiQj must have degree exactly

n(i+ j). Since this term cannot cancel with any other terms, pq is nonzero.

87



Since FI(R) is a domain, by Eq. (8.4 ), (t−1R[It, t−1] + mR[It, t−1]) is a prime ideal of

R[It, t−1]. Since ht I ≤ `(I) ≤ dimR, `(I) = d. Since R is a universally catenary domain,

and hence so is R[It, t−1],

ht (t−1R[It, t−1] +mR[It, t−1]) = dimR[It, t−1] − dim FI(R)

= d+ 1 − d

= 1.

Therefore, R[It, t−1] :R[It,t−1] x
at has height at most one. Therefore, xat 6∈ B(1) and hence

xa 6∈ I{1}.

(ii) =⇒ (i): Suppose there exists a monomial ω ∈ Ik \ mIk for some k ≥ 0 such that

xaω ∈ Ik+1. We show that xa ∈ I{1} by showing that xat ∈ B(1). To do so, we must show

that htR[It, t−1] :R[It,t−1] x
at ≥ 2.

It is clear that (xn
1 , . . . , x

n
d , t

−1, ωtk) ⊆ R[It, t−1] :R[It,t−1] x
at. It immediately follows that

mR[It, t−1] + t−1R[It, t−1] ⊆
√
R[It, t−1] :R[It,t−1] xat .

As in the proof of (i) =⇒ (ii), mR[It, t−1] + t−1R[It, t−1] is a prime ideal of height 1 in

R[It, t−1].

Since ω ∈ Ik \ mIk and I is generated in degree n, ω has degree exactly kn. Then

ωtk 6∈ mR[It, t−1] + t−1R[It, t−1], since [mR[It, t−1] + t−1R[It, t−1]]k is generated by ele-

ments of the form ztk, where z is a monomial in R of degree at least nk + 1. Therefore,√
R[It, t−1] :R[It,t−1] xat properly contains a height one prime. This shows that

ht(R[It, t−1] :R[It,t−1] x
at) = ht

√
R[It, t−1] :R[It,t−1] xat ≥ 2.

Hence, xa ∈ I{1}.

Now assume I is generated by at least d+ 1 elements.
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(ii) =⇒ (iii) Let ω ∈ Ik \mIk be a monomial such that xaω ∈ Ik+1. Then

xaω = (xn
1 )α1(xn

2 )α2 · · · (xn
d)αd(v1)β1 · · · (vs)βsu (8.5)

where∑d
i=1 αi+

∑s
i=1 βi ≥ k+1, and u ∈ R. Notice that we may assume that u is a monomial

of the form xa1
1 · · ·xad

d with 0 ≤ ai < n for 1 ≤ i ≤ d. We first show that we can assume

βi = 0 for 1 ≤ i ≤ s. Notice that vn
i can be written as products of xn

1 , . . . , x
n
d . Therefore, we

may assume that βi < n for 1 ≤ i ≤ s.

Now assume that 0 < βi < n for 1 ≤ i ≤ s. Then we multiply both sides of Eq. (8.5 ) by

vn−βi
i to see that

xaωvn−β1
1 · · · vn−βs

s = (xn
1 )α1(xn

2 )α2 · · · (xn
d)αd(v1)n · · · (vs)nu. (8.6)

Since each vi has degree exactly n, we maintain that ωvn−β1
1 · · · vn−βs

s ∈ IK \ mIK and

(xn
1 )α1(xn

2 )α2 . . . (xn
d)αd(v1)n . . . (vs)n ∈ IK+1, for K = k + sn−∑s

i=1 βs.

Let ρ = ω vn−β1
1 · · · vn−βs

s . Since each vn
i can be rewritten as products of xn

1 , . . . , x
n
d , this

shows that

xaρ = (xn
1 )γ1 · · · (xn

d)γdu, (8.7)

where (∑d
i=1 αi) + sn = ∑d

i=1 γi. Therefore, (xn
1 )γ1 · · · (xn

d)γd ∈ IK+1. Notice that if ω 6∈ Jk,

then factors of (xj)n for 1 ≤ j ≤ d appear on both left-hand and right-hand sides of Eq. (8.7 )

which will cancel. Therefore, we may assume ω has no factors of xn
j for 1 ≤ j ≤ d. Therefore,

we may assume ω ∈ Jk. With ρ defined as above, we have ρ ∈ JK \ mJK+1 such that

ρxa ∈ (xn
1 , . . . , x

n
d)K+1.

(iii) =⇒ (ii): This is immediate because Jk ⊆ Ik, (xn
1 , . . . , x

n
d)k ⊆ Ik for all k and for

degree reasons (Jk \mJk) ∩ Ik ⊆ Ik \mIk.

�

The following result can easily be seen in other ways since the Rees algebra of a complete

intersection is known to be Cohen-Macaulay and hence S2, but we record it as an immediate

consequence of Proposition 8.0.1 .
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Corollary 8.0.1. Let R = k[x1, . . . , xd] be a polynomial ring over a field k. Let I =

(xn
1 , . . . , x

n
d). Then I = I{1}.

Proof. This follows immediately from Proposition 8.0.1 because

Ik =
(

(xn
1 )a1 · · · (xn

d)ad |
d∑

i=1
ai = k

)
(8.8)

for all k. Hence if ω ∈ Ik \mIk multiplies xa into Ik+1, xa must be in I = (xn
1 , . . . , x

n
d). �

The following corollary of Proposition 8.0.1 gives a formula for the first coefficient ideal

of an almost complete intersection as a sum of finitely many ideals.

Corollary 8.0.2. Let R = k[x1, . . . , xd] be a polynomial ring over a field k with d ≥ 2. Let

I be an m-primary almost complete intersection monomial ideal generated in degree n. That

is, I = (xn
1 , . . . , x

n
d) + J where J = (xe1

1 · · ·xed
d ) with ei ≥ 0 for 1 ≤ i ≤ d and ∑d

i=1 ei = n.

Then the first coefficient ideal of I is

I{1} =
n−1∑
k=0

(
(xn

1 , . . . , x
n
d)k+1 : Jk

)
.

Proof. Let xe denote the element xe1
1 · · · xed

d . Let K = (xn
1 , . . . , x

n
d). Since I is a monomial

ideal, so is I{1}. By Proposition 8.0.1 , xa ∈ I{1} if and only if there is a power (xe)k such

that

xa · (xe)k ∈ Kk+1. (8.9)

Therefore, xa ∈ I{1} if and only if xa ∈ Kk+1 : Jk for some k ≥ 0. It now suffices to show

that ∑
k≥0

(
Kk+1 : Jk

)
=

n−1∑
k=0

(
Kk+1 : Jk

)
. (8.10)

Assume s ≥ n. Then s = qn + r, for some integer r with 0 ≤ r < n. We show that

Ks+1 : Js ⊆ Kr+1 : Jr. Suppose

(xa)(xe)qn+r ∈ Kqn+r+1. (8.11)
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Then

(xa)(xe)r(xn
1 )qe1 · · · (xn

d)qed ∈ Kqn+r+1. (8.12)

Hence (xa)(xe)r ∈ Kqn+r+1 : (xn
1 )qe1 · · · (xn

d)qed . We claim that

Kqn+r+1 : (xn
1 )qe1 · · · (xn

d)qed = Kr+1.

It is clear that Kr+1 ⊆ Kqn+r+1 : (xn
1 )qe1 · · · (xn

d)qed , since

(xn
1 )qe1 · · · (xn

d)qed ∈ Kq(e1+...+ed) = Kqn. (8.13)

Let w ∈ Kqn+r+1 : (xn
1 )qe1 · · · (xn

d)qed . Then

w(xn
1 )qe1 · · · (xn

d)qed = r(xn
1 )k1 · · · (xn

d)kd , (8.14)

for some r ∈ R and ∑d
i=1 ki ≥ qn+ r+ 1. We may assume r 6∈ (xn

1 ) ∪ (xn
2 ) ∪ · · · ∪ (xn

d). Then

(xn
i )qei | r(xn

1 )k1 · · · (xn
d)kd and r 6∈ (xn

i ). Hence qei ≤ ki.

Hence

w = r(xn
1 )k1−qe1 · · · (xn

d)kd−qed . (8.15)

Since

d∑
i=1

(ki − qei) =
d∑

i=1
ki − q

d∑
i=1

ei (8.16)

≥ qn+ r + 1 − qn (8.17)

= r + 1, (8.18)

we conclude that w ∈ Kr+1.

This proves the claim. Therefore, since (xa)(xe)r ∈ Kqn+r+1 : (xn
1 )qe1 · · · (xn

d)qed = Kr+1,

xa ∈ Kr+1 : Jr. (8.19)

Therefore, I{1} = ∑n−1
k=0 K

k+1 : Jk. �
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Remark 8.0.3. By the same reasoning, if I is an m-primary monomial ideal generated in

degree n, one has a formula for I{1} as a sum of finitely many ideals. Write I = (xn
1 , . . . , x

n
d)+J

where J = (v1, . . . , vs) with each vi a monomial of degree n. Then I{1} is the sum of ideals

(xn
1 , . . . , x

n
d)k+1 : (va1

1 . . . vas
s ) with 0 ≤ ai ≤ n− 1 for 1 ≤ i ≤ s and ∑s

i=1 ai = k.

Proposition 8.0.4. Let R = k[x1, . . . , xd] be a polynomial ring over a field k with d ≥ 2.

Let I be an m-primary ideal generated in degree n. Write I = (xn
1 , . . . , x

n
d , v1, . . . , vk) with

each vi for 1 ≤ i ≤ k a monomial of degree n. Let vi = x
a1,i

1 . . . x
ad,i

d for 1 ≤ i ≤ k. Let

b1 = gcd(n, a1,j | 1 ≤ j ≤ k)

b2 = gcd(n, a2,j | 1 ≤ j ≤ k)

...

bd = gcd(n, ad,j | 1 ≤ j ≤ k).

Let S = k[xb1
1 , x

b2
2 , . . . , x

bd
d ]. Then [I{1}]n ⊆ Sn. In particular, if some bi > 1, then I{1} ( mn.

Proof. Let xa be a monomial of degree n. By Proposition 8.0.1 , xa ∈ I{1} if and only if there

exist α1, . . . , αk ≥ 0, δ1, . . . , δd ≥ 0 and u ∈ R such that

xavα1
1 . . . vαk

k = (xn
1 )δ1 . . . (xn

d)δdu ,

with (∑k
i=1 αi) + 1 = ∑d

i=1 δd. Comparing degrees of the left-hand and right-hand sides, we

conclude that u = 1. Hence

xavα1
1 . . . vαk

k = (xn
1 )δ1 . . . (xn

d)δd .
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In matrix form, this equation is equivalent to:



a1

a2
...

ad


+



a1,1 a1,2 . . . a1,k

a2,1 a2,2 . . . a2,k

...

ad,1 ad,2 . . . ad,k





α1

α2
...

αk


=



δ1n

δ2n
...

δdn


. (8.20)

Then for 1 ≤ i ≤ d,

ai = δin− (ai,1α1 + ai,2α2 + . . .+ ai,kαk) (8.21)

and therefore bi must divide ai for each 1 ≤ i ≤ d. Hence, xa ∈ Sn. �

Example 8.0.1. Note that even if each bi = 1, then we may have a proper inclusion of

I{1} ( mn. Let R = k[x, y, z]. Consider I = (x5, y5, z5, xyz3, x2y2z). By Remark 8.0.3 ,

I{1} = I +
(
x3y3, x4z2, y4z2, y3z4, x3z4

)
( m5. (8.22)

Notice also that this shows the first coefficient ideal of an m-primary monomial ideal gener-

ated in degree n may have generators in degrees greater than n.

The next result characterizes when the first coefficient ideal coincides with the integral

closure for m-primary monomial ideals generated in degree n.

Theorem 8.0.5. Let R = k[x1, . . . , xd] be a polynomial ring over a field k with d ≥ 2. Let

m = (x1, . . . , xd). Let I be an m-primary monomial ideal generated in degree n. Let A denote

the matrix whose columns are the exponent vectors of monomial generators of I of degree n

excluding the exponent vectors associated to xn
1 , . . . , x

n
d . Let Ad−1 denote the submatrix of A

consisting of the first d− 1 rows of A. Let B1, . . . , Bk denote the d− 1 by d− 1 submatrices

of Ad−1. Then gcd(|B1| , . . . , |Bk| , n) = 1 if and only if I{1} = I = mn. In particular, if I is

generated by fewer than 2d− 1 elements, then I{1} ( mn.

Proof. We first prove that if gcd(|B1|, . . . , |Bk|, n) = 1, then I{1} = I = mn.
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There exist integers α1, . . . , αl, β such that

k∑
i=1

αi |Bi| + βn = 1. (8.23)

Without loss of generality, we may assume that |Bi| is nonzero for each i.

Let xa1
1 . . . xad

d ∈ mn with ∑d
i=1 bi = n. We show that xa1

1 . . . xad
d ∈ I{1}. By Propo-

sition 8.0.1 , it suffices to show that there exists a monomial of Ik \ mIk which multiplies

xa1
1 . . . xad

d into Ik+1 for some k.

To do so, we show that there exists a vector v with nonnegative entries and nonnegative

integers δ1, . . . , δd−1 such that

Ad−1 v =



δ1n− a1

δ2n− a2
...

δd−1n− ad−1


.

For each Bi with |Bi| 6= 0, we notice that the equation

Bi xi =


−a1
...

−ad−1


has a solution given by

xi = 1
|Bi|

adj(Bi)


−a1
...

−ad−1

 .

Let yi = |Bi|xi. Then

Bi yi = |Bi|


−a1
...

−ad−1

 . (8.24)
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We may extend yi to ỹi by inserting zeros into entries corresponding to columns of Ad−1 not

included in Bi. Then one has

Ad−1 ỹi = B yi = |Bi|


−a1
...

−ad−1

 . (8.25)

Then

Ad−1(
k∑

i=1
αiỹi) = (

k∑
i=1

αi |Bi|)


−a1
...

−ad−1



= (1 − βn)


−a1
...

−ad−1



=


βa1n− a1

...

βad−1n− ad−1

 .

Notice that if any entry of the vector ∑l
i=1 αiỹi is negative, one may add n sufficiently

many times to any such entry yielding a vector z with nonnegative entries. This vector z is

a solution to

Ad−1 z =



δ1n− a1

δ2n− a2
...

δd−1n− ad−1


, (8.26)
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where the vector δ =


δ1
...

δd−1

 is the sum of vectors


βa1
...

βad−1

 and positive scalar multiples of

columns of Ad−1. Since Ad−1 and z have all nonnegative entries, so does



δ1n− a1

δ2n− a2
...

δd−1n− ad−1


.

Therefore, each δi is nonnegative.

Let

z =


z1
...

zl

 .

Let the ith column of A be the exponent vector of the generator xa1,i

1 . . . x
ad,i

d . By Eq. (8.26 ),

we have that

ai + ai,1z1 + ai,2z2 + · · · + ai,lzl = δin

for 1 ≤ i ≤ d− 1. This directly implies that

(xa1
1 · · ·xad−1

d−1 )(xa1,1
1 · · · xad−1,1

d−1 )z1 · · · (xa1,l

1 · · ·xad−1,l

d−1 )zl = (xn
1 )δ1 · · · (xn

d−1)δd−1 . (8.27)

Notice that

(xa1
1 · · ·xad

d )(xa1,1
1 · · · xad,1

d )z1 · · · (xa1,l

1 · · ·xad,l

d )zl = (xn
1 )δ1 · · · (xn

d−1)δd−1(xd)w (8.28)

for some w ≥ 0. The monomial on the left-hand side has degree n(1 + α1 + . . . + αd−1).

Therefore, since the exponents of the x1, . . . , xd−1 on the right-hand side are divisible by n, we

conclude that w must be divisible by n. Let w = δdn. Therefore, z1+. . .+zl+1 = δ1+. . .+δd .

This shows that there is a monomial in Iz1+...+zl \mIz1+...+zl which multiplies xa1
1 . . . xad

d into

Iz1+...+zl+1. Therefore, xa1
1 . . . xad

d ∈ I{1} and hence I{1} = mn.
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We now show the reverse implication. Let A denote the matrix whose columns are the

exponent vectors associated to the generators of I other than xn
1 , . . . , x

n
d . If I has fewer than

2d − 1 generators, append zero vectors to make A a d by d − 1 matrix. Let Ad−1 denote

the submatrix of A consisting of the first d − 1 rows. Let B1, . . . , Bk be the d − 1 by d − 1

submatrices of Ad−1. Suppose gcd(|B1| , . . . , |Bk| , n) 6= 1.

We have two cases: rank(Ad−1) < d− 1 or rank(Ad−1) = d− 1 as matrices over Q.

Case 1: Assume rank(Ad−1) < d−1. Then the column space of A contains fewer than d−1

independent vectors. We show that I{1} does not contain at least one of x1x
n−1
d , . . . , xd−1x

n−1
d

so that I{1} ( mn. Suppose toward contradiction that for all 1 ≤ i ≤ d − 1, xix
n−1
d ∈ I{1}.

Let I = (xn
1 , . . . , x

n
d , v1, . . . , vs) with vi monomials of degree n. By Proposition 8.0.1 , this

implies that there exist nonnegative integers αi,1, . . . , αi,s such that

v
αi,1
1 · · · vαi,s

s xix
n−1
d ∈ (xn

1 , . . . , x
n
d)
∑s

j=1 αi,j+1. (8.29)

This implies the existence of vectors αi and δi in Nd−1 such that

Ad−1 · αi = nδi − ei (8.30)

where ei denotes the standard basis vector in Zd−1 with 1 in the ith component and 0

elsewhere.

Therefore, for 1 ≤ i ≤ d− 1, nδi − ei is in the column space of Ad−1.

Let C denote the d− 1 by d− 1 matrix with vectors nδi − ei as columns. For any prime

divisor p of n, over Z/(p),

C =



−1 0 · · · 0

0 −1 · · · 0
... · · ·

0 0 · · · −1


and detZ/(p)(C) = (−1)d−1. Therefore, as a matrix over Q, the determinant of C is nonzero.

This implies that the columns of C are linearly independent and the rank of C is d − 1, a

contradiction. Therefore, for some 1 ≤ j ≤ d− 1, xjx
n−1
d 6∈ I{1}. Hence I{1} ( mn.
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Case 2: Assume rank(Ad−1) = d−1. Suppose toward contradiction that x1x
n−1
d , . . . , xd−1x

n−1
d

are elements of I{1}. LetM denote a d−1 by d−1 submatrix of Ad−1 whose columns generate

the column space of Ad−1 over Z. Then gcd(det(M), n) is not one by assumption. Therefore,

there is a prime p that divides det(M) and n. As a matrix over Z/(p), det(M) = 0. Let C

be defined as in Case 1. Since we are assuming xix
n−1
d ∈ I{1} for 1 ≤ i ≤ d− 1, the columns

of C are contained in the column space of Ad−1 and hence ofM . But since the d−1 columns

of C are linearly independent over Z/(p) and rankZ/(p)(M) < d − 1, this is not possible.

Therefore, for some 1 ≤ j ≤ d− 1, xjx
n−1
d 6∈ I{1}. Hence I{1} ( mn. �

We will see an application of Theorem 8.0.5 to the core of an ideal in the next chapter.

However, now we can state a consequence of Theorem 8.0.5 regarding the behavior of the

first coefficient ideal under specialization by general elements.

Corollary 8.0.6. Let R = k[x1, . . . , xd] be a polynomial ring over a field k of characteristic

zero with d ≥ 2. Let I be an m-primary monomial ideal generated in degree n. Let x be a

general element of I. Let A be the matrix whose columns are the exponent vectors of monomial

generators of I of degree n excluding the exponent vectors associated to xn
1 , . . . , x

n
d . Let Ad−1

denote the submatrix of A consisting of the first d− 1 rows. Let B1, . . . , Bk denote the d− 1

by d− 1 submatrices of Ad−1. If gcd(|B1| , . . . , |Bk| , n) = 1, then I{1}/(x) = (I/(x)){1}.

Proof. This is an immediate consequence of Theorem 8.0.5 and Corollary 6.0.4 . �

Remark 8.0.7. As in Remark 7.1.3 , we can use Proposition 6.1.1 to produce a larger class of

ideals whose first coefficient ideal is equal to its integral closure.

Let J be an m-primary monomial ideal generated in degree n for which J{1} = J = mn.

Let K be any ideal contained in mn.

By the argument in Remark 7.1.3 , I = J+K has first coefficient ideal equal to its integral

closure.

Example 8.0.2. Let J = (x6, y6, z6, xyz4, x2yz3). Then with notation as in Theorem 8.0.5 ,

A =


1 2

1 1

4 3

 . (8.31)
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The 2 by 2 minor

1 2

1 1

 = −1, hence is relatively prime to 6. Therefore J{1} = J = mn by

Theorem 8.0.5 .

Moreover, by Remark 8.0.7 , the ideal I = J + (x2z5, y3z4) is a monomial ideal such that

I{1} = I = mn.
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9. THE CORE AND THE FIRST COEFFICIENT IDEAL

The core of an ideal I is the intersection of all reductions of I. The core of I is in general

difficult to compute, and it is desirable to know when it is equal to an adjoint ideal, since the

adjoint ideal has an explicit combinatorial description. In this section, we classify when the

core of an ideal I is equal to an adjoint ideal for 0-dimensional monomial ideals generated

in one degree by computing first coefficient ideals.

9.1 Background

Definition 9.1.1. Let R be a ring and I an ideal of R. An ideal J such that J ⊆ I is called

a reduction of I if JIk = Ik+1 for some integer k ≥ 0. A reduction is said to be minimal if

it is minimal with respect to containment.

If R is Noetherian or I is finitely generated, then J ⊆ I is a reduction if and only if I is

integral over J . Therefore, if J is a reduction of I, one has

J ⊆ I ⊆ I, (9.1)

where I is integral over J and I is integral over I. However, unlike the integral closure of an

ideal, a reduction of an ideal is highly non-unique.

Theorem 9.1.1 ([NR54 , Theorem 1]). Let (R,m) be a Noetherian local ring with infinite

residue field. Then any ideal generated by `(I) general elements of I is a minimal reduction

of I.

This theorem indicates that even when minimal reductions are known to exist, there are

usually infinitely many minimal reductions. In order to find a unique subideal of the ideal I

to act as an analogue of the integral closure of the ideal I, the core of I was defined by Sally

and Rees in [RS88 ].

Definition 9.1.2. The core of an ideal I is the intersection of all reductions of I.
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Since the core is by definition an intersection of possibly infinitely many ideals, it is in

general difficult to compute. Much work has been done to understand what the core is in

local rings and to a lesser extent in graded rings.

We are primarily interested in the classifying when the core of I coincides with an adjoint

ideal. We now give some background on adjoint ideals.

9.2 Adjoint Ideals

In order to define the adjoint ideal, we first define valuations, valuation rings and divisorial

valuations.

Definition 9.2.1. Let K be a field. A valuation on K is a group homomorphism V from the

multiplicative group K \ {0} to a totally ordered abelian group G such that for all x, y ∈ K,

v(x+ y) ≥ min{v(x), v(y)}.

Definition 9.2.2. Let K be a field. A domain V with field of fractions K is called a valuation

ring if for every nonzero x ∈ K, x ∈ V or x−1 ∈ V .

A valuation ring is local with unique maximal ideal mV = {x ∈ V | x = 0 or x−1 6∈ V }.

Given a valuation, one has a valuation ring Rv = {x ∈ K∗ | v(x) ≥ 0} ∪ {0}.

By [SH06 , Proposition 6.2.3], every valuation ring comes from a valuation.

Definition 9.2.3. Let R be a Noetherian domain with field of fractions K. Let (V,mV ) be

a valuation ring of K containing R and let p = mV ∩R. If trdegκ(p) κ(mV ) = ht p− 1, then

V is said to be a divisorial valuation ring of K with respect to R.

If R is a Noetherian domain which is locally analytically unramified, then every divisorial

valuation V with respect to R is essentially of finite type over R. See [SH06 , Theorem 9.3.2].

Next, we record the definition of an adjoint ideal due to Lipman ([Lip94 ]).
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Definition 9.2.4. Let R be a regular domain. Let D(R) denote the set of divisorial valuations

with respect to R. Let JV/R denote the Jacobian ideal of V with respect to R. Then the adjoint

ideal of an R-ideal I is

adj(I) =
⋂

V ∈D(R)
{r ∈ R | rJV/R ⊆ IV }. (9.2)

The integral closure of I also has a description in terms of divisorial valuations.

Proposition 9.2.1 ([SH06 , Proposition 6.8.2]). Let R be a Noetherian domain. Let D(R)

denote the set of divisorial valuations with respect to R. Then

I =
⋂

V ∈D(R)
{r ∈ R | r ∈ IV }.

From this description of the integral closure, one immediately sees that I ⊆ adj(I).

Furthermore, the adjoint ideal is itself integrally closed.

Craig Huneke and Irena Swanson in [HS95 ] were the first to obtain a description of the

core for a large class of ideals by relating it to an adjoint ideal.

Theorem 9.2.1 ([HS95 , Theorem 3.14]). Let (R,m) be a regular local ring of dimension 2

with an infinite residue field. Let I be an integrally closed m-primary ideal. Then core(I) =

adj(I2).

The result above does not generalize to higher dimensions. Kohlhaas in [Koh10 ] gives an

example of an integrally closed ideal m-primary ideal in a 3-dimensional regular ring such

that adj(I3) ( core(I).

However, it has been shown by Lipman in ([Lip94 ]) that the following containment is

true for arbitrary ideals in regular domains.

Theorem 9.2.2. Let R be a regular domain of dimension d and I an R-ideal. Then

adj(Id) ⊆ core(I).
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The Briançon-Skoda Theorem implies that Id ⊆ core(I), and Lipman’s theorem is a

strengthening of this fact since

Id ⊆ adj(Id) ⊆ core(I) .

Hence adj(Id) is an integrally closed ideal which is closer to the core of I.

9.3 Cores of Monomial Ideals

Definition 9.3.1. Let R = k[x1, . . . , xd] be a polynomial ring over a field k. Let I be a

monomial ideal of R. We define the exponent set of I to be

Γ(I) = {(a1, . . . , ad) | xa1
1 · · ·xad

d ∈ I} . (9.3)

Definition 9.3.2. Let R = k[x1, . . . , xd] be a polynomial ring over a field k. Let I be a

monomial ideal. The Newton polyhedron of I, denoted NP (I) is the convex hull in Qd or

Rd of the exponent set of I.

It is well known that the integral closure of a monomial ideal is determined by its Newton

polyhedron.

Proposition 9.3.1 ([SH06 , Proposition 1.4.6]). Let R = k[x1, . . . , xd] be a polynomial ring

over a field k. The exponent set of I consists of all integer lattice points in the Newton

polyhedron of I.

If I is a monomial ideal, the adjoint ideal of Lipman can be described in terms of the

interior of the Newton polyhedron of I, denoted NPo(I).

Theorem 9.3.1 ([How01 , Main Theorem],[HS08 , Theorem 4.1]). Let R = k[x1, . . . , xd] be a

polynomial ring over a field k. Let I be a monomial ideal. The adjoint ideal of I is

adj(I) = (xa | a+ (1, 1, . . . , 1) ∈ NPo(I)) .
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By Lipman’s result, we know that adj(Id) ⊆ core(I). It is desirable to know when this

containment is an equality, which would give a nice combinatorial description of the core.

We now review the known results about when the core of a monomial ideal coincides with

the adjoint ideal of Id.

The following theorem says that if I is a 0-dimensional monomial ideal with a reduction

generated by a regular sequence of monomials, then core(I) = adj(Id) if powers of I are close

to being integrally closed.

We note that if J is a reduction of I, then the reduction number of J with respect to I,

denoted rJ(I), is the smallest integer such that JIk = Ik+1.

Theorem 9.3.2 ([PUV07 , Theorem 4.11]). Let R = k[x1, . . . , xd] be a polynomial ring over

an infinite field k. Let I be a 0-dimensional monomial ideal with a reduction J generated by

a regular sequence of monomials. Assume the characteristic of k is zero, greater than rJ(I)

or I is generated by monomials of the same degree. Let J 〈t+1〉 denote the ideal generated

by t + 1 powers of minimal monomial generators of J . If Idt ⊆
(
Idt, J 〈t+1〉

)
for some

t ≥ max{rJ(I), d− 1}, then core(I) = adj(Id).

The next result of Polini, Ulrich and Vitulli gives two classes of ideals for which core(I) =

adj(Id).

Theorem 9.3.3 ([PUV07 , Corollary 6.6],[PUV07 , Corollary 7.11]). (i.) Let R = k[x, y]

with k an infinite field. Let

I =
(
xn, yn, xn−k1yk1 , . . . , xn−ksyks

)

with gcd(k1, . . . , ks, n) = 1. Then core(I) = adj(I2).

(ii.) Let R = k[x, y, z] with k an infinite field. Let

I =
(
xn, yn, zn, {xn−kiyki}, {xn−lizli}, {yn−mizmi}

)

with gcd(n, ki, li) = 1, gcd(n, ki,mi) = 1, and gcd(n, li,mi) = 1. Then core(I) =

adj(I3).
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Kohlhaas in [Koh10 ] has given equivalent conditions to core(I) = adj(Id) with the as-

sumption that I is a 0-dimensional monomial ideal with a reduction generated by a regular

sequence of monomials.

Theorem 9.3.4 ([Koh10 , Theorem 4.1.3]). Let R = k[x1, . . . , xd] be a polynomial ring over

a field k of characteristic zero. Let I be a 0-dimensional monomial ideal with a reduction

generated by a regular sequence of monomials. Then the following are equivalent:

(i.) core(I) = adj(Id)

(ii.) core(I) is integrally closed.

(iii.) R[It] has Serre’s condition R1 .

In this chapter, we will give an additional equivalence with the additional assumption

that I is generated in degree n. Notice that when I is a 0-dimensional monomial ideal

generated in degree n, then the condition that I has a reduction generated by a regular

sequence of monomials is satisfied. In this case, I contains (xn
1 , . . . , x

n
d) and I ⊆ (xn

1 , . . . , x
n
d),

and hence (xn
1 , . . . , x

n
d) is a reduction of I generated by a regular sequence of monomials.

In order to obtain an additional equivalence, we need the following result which relates

the core to the first coefficient ideal of I.

Theorem 9.3.5 ([PUV07 , Corollary 4.9(b)]). Let R = k[x1, . . . , xd] be a polynomial ring

over a field k of characteristic 0. Let I be a 0-dimensional monomial ideal with a reduction

generated by a regular sequence of monomials. Then I{1} is the largest ideal containing I

and integral over I for which core(I) = core(I{1}).

Remark 9.3.6. Note that by [PUV07 , Corollary 4.9], we only need k infinite to see that

core(I) = core(I{1}).

Polini, Ulrich and Vitulli also computed the core for powers of the homogeneous maximal

ideal, which we now state.

Proposition 9.3.2 ([PUV07 , Proposition 5.2]). Let R = k[x1, . . . , xd] be a polynomial ring

over an infinite field. Let m = (x1, . . . , xd) denote the homogeneous maximal ideal. Then

core(mn) = mdn−(d−1).
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We now combine the results above to give a corollary to Theorem 8.0.5 .

Corollary 9.3.7. Let R = k[x1, . . . , xd] be a polynomial ring over a field k of characteristic

zero. Let m = (x1, . . . , xd) denote the homogeneous maximal ideal of R. Let I be an m-

primary monomial ideal generated in degree n. Let A denote the matrix whose columns are

the exponent vectors associated to monomial generators of degree n of I excluding exponent

vectors associated to xn
1 , . . . , x

n
d . Let Ad−1 denote the submatrix of A consisting of the first

d− 1 rows of A. Let B1, . . . , Bk denote the d− 1 by d− 1 submatrices of Ad−1.

Then the following are equivalent:

(i) gcd(|B1| , . . . , |Bk| , n) = 1

(ii) core(I) = adj(Id)

Proof. By Theorem 9.3.1 ,

adj(Id) =
(
xa1

1 · · · xad
d | (a1, . . . , ad) + (1, . . . , 1) ∈ NP o(Id)

)
. (9.4)

Since Id contains (xdn
1 , . . . , x

dn
d ), the Newton polyhedron of Id contains all lattice points

associated to monomials of degree dn. Hence a+1 ∈ NPo(Id) if and only if∑d
i=1(ai+1) > dn,

which is equivalent to ∑d
i=1 ai ≥ dn− (d− 1). Therefore, adj(Id) = mdn−(d−1).

We now prove the equivalence of (i) and (ii).

(i) =⇒ (ii): Suppose A has a d−1 by d−1 minor relatively prime to n. By Theorem 8.0.5 ,

I{1} = mn. Hence,

core(I) = core(I{1}) (9.5)

= core(mn) (9.6)

= mdn−(d−1) (9.7)

= adj(Id) (9.8)

where Eq. (9.5 ) follows from Theorem 9.3.5 , Eq. (9.7 ) follows from Proposition 9.3.2 , and

Eq. (9.8 ) follows from the argument above.

106



(ii) =⇒ (i): Suppose that A does not have a d− 1 by d− 1 minor relatively prime to n.

By Theorem 8.0.5 , I{1} ( mn. By Theorem 9.3.5 , since I{1} is the largest ideal containing I

and integral over I for which core(I) = core(I{1}), we conclude that

core(I) 6= core(mn) = mdn−(d−1) = adj(Id) .

�

By [Koh10 , Theorem 4.1.3], we immediately get the following corollary.

Corollary 9.3.8. Let R = k[x1, . . . , xd] be a polynomial ring over a field k of characteristic

zero. Let m = (x1, . . . , xd) denote the homogenous maximal ideal. Let I be an m-primary

monomial ideal generated in degree n. Let A denote the matrix whose columns are exponent

vectors of monomial generators of degree n of I other than exponent vectors associated to

xn
1 , . . . , x

n
d . Let Ad−1 denote the submatrix of A consisting of the first d − 1 rows of A. Let

B1, . . . , Bk denote the d− 1 by d− 1 submatrices of Ad−1. Then the following are equivalent:

(i) gcd(|B1| , . . . , |Bk| , n) = 1

(ii) R[It] satisfies Serre’s condition R1.

We now give a few examples demonstrating how Corollary 9.3.7 and Corollary 9.3.8 can

be used to detect whether some Rees algebras have Serre’s condition R1 or how to build

examples of Rees algebras with or without Serre’s condition R1 which are not normal.

Example 9.3.1. LetR = k[x, y, z], with k a field of characteristic zero. Let I = (x5, y5, z5, xyz3, x2y2z).

Using the notation of Corollary 9.3.7 ,

A =


1 2

1 2

3 1

 .

Notice that the 2 by 2 minors are 0 or −5, and hence core(I) 6= adj(I3) by Corollary 9.3.7 .

By Corollary 9.3.8 , R[It] does not satisfy R1.
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Example 9.3.2. LetR = k[x, y, z] with k a field of characteristic zero. Let I = (x5, y5, z5, xyz3, x2yz2).

Using the notation of Corollary 9.3.7 ,

A =


1 2

1 1

3 2

 .

Notice that

∣∣∣∣∣∣∣
1 2

1 1

∣∣∣∣∣∣∣ = −1 is relatively prime to 5, and hence by Corollary 9.3.7 , core(I) =

adj(I3). By Corollary 9.3.8 , R[It] satisfies R1. Notice that R[It] is not normal since I is not

integrally closed.

Example 9.3.3. Let R = k[x1, . . . , xd] with k a field of characteristic zero. Let

I =
(
xn

1 , x
n
2 , . . . , x

n
d , x1x

n−1
d , x2x

n−1
d , . . . , xd−1x

n−1
d

)
. (9.9)

Then

A =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
... · · · ...

0 0 0 · · · 1

n− 1 n− 1 n− 1 · · · n− 1


. (9.10)

By Corollary 9.3.7 and Corollary 9.3.8 , core(I) = adj(Id) and R[It] satisfies R1.
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