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ABSTRACT

In this thesis we study two different types of self-interacting random walks. First, we

study excited random walk in a deterministic, identically-piled cookie environment under

the constraint that the total drift δ contained in the cookies at each site is finite. We show

that the walk is recurrent when |δ| < 1 and transient when |δ| > 1. In the critical case

|δ| = 1, we show that the walk is recurrent under mild assumptions on the environment. We

also construct an environment where the total drift per site is 1, but in which the walk is

transient. This behavior was not present in previously-studied excited random walk models.

Second, we study the “have your cookie and eat it” random walk proposed by Pinsky,

who already proved criteria for determining when the walk is recurrent or transient and when

it is ballistic. We establish limiting distributions for both the hitting times and position of

the walk in the transient regime which, depending on the environment, can be either stable

or Gaussian.
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1. INTRODUCTION

In this chapter, we will summarize the main results of this dissertation and outline its

structure. We will primarily be concerned with studying different facets of the long-term

behavior of two different types of self-interacting random walks. Both are discrete stochastic

processes on Z, and in both cases the evolution of the process is influenced by the actions

that the walker takes as they move around their environment.

The first part of this thesis is concerned with excited random walk, which we will describe

now. First, we select a cookie environment ω ∈ Ω = [0, 1]Z×N, which is comprised of a

collection of cookie strengths ω(x, j). Once a we have fixed a cookie environment, a walker

is released into it. When the walker arrives at site x for the jth time, they consume the

jth cookie at that site, then step right with probability ω(x, j) and left with probability

1− ω(x, j).

Since their introduction by Benjamini and Wilson [4 ], excited random walks have been

studied extensively. Because the model is so general, in order to prove results it is necessary

to place restrictions on the types of cookie environments that we will consider. No matter

what class of environments we consider, the first three questions we ask are always the same:

1. Under what conditions does excited random walk return infinitely often to its starting

point, and when does it not? Put another way, when is excited random walk recurrent,

and when is it transient?

2. When excited random walk is transient, when does it have a nonzero asymptotic speed?

3. What are the limiting distributions of excited random walk?

In Chapter 2, we will give a historical survey of the answers to these three questions

in various types of cookie environments. One of the main difficulties in studying excited

random walk is that the walk itself is not a Markov chain, and so the standard tools for

analyzing random walks cannot be applied. The most fruitful approach in the literature has

been to instead study two Markov chains that are associated to the walk called branching-like

processes. This approach is classical, dating back at least to Kesten, Kozlov, and Spitzer’s

1975 study of limiting distributions for random walk in random environment [14 ], which is
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a special case of excited random walk. Chapter 2 also contains a thorough introduction to

the branching-like processes and a discussion of how they have been used in the literature

to answer the above three questions.

In Chapter 3, we introduce one of the main objects of our study: finite-drift cookie

environments, which are subject to the constraint that

δ = lim
n→∞

n∑
j=1

(2ω(x, j)− 1)

exists and is finite. Our first main result is Theorem 3.2.1 , where we prove that excited

random walk in a finite-drift environment is recurrent when |δ| < 1, transient when |δ| > 1,

and is recurrent when |δ| = 1 and we have

∣∣∣∣∣∣
∞∑

j=n

(2ω(x, j)− 1)

∣∣∣∣∣∣ = o

(
1

log n

)
.

In Theorem 3.2.2 , we show that excited random walk in a finite-drift environment can be

transient even when |δ| = 1. This behavior is interesting, because in previously-studied

models excited random walk has been shown to be recurrent in the corresponding critical

case. We end Chapter 3 with some discussion of why finite-drift environments admit this

behavior, but other types of environments cannot.

In Chapter 4, we introduce our second self-interacting random walk: Pinsky’s “have your

cookie and eat it” random walk [23 ]. In this model, we place a single cookie of strength

p ∈ (0, 1) at each site in Z. Whenever the walker arrives at a site with a cookie, they choose

to step right with probability p and left with probability 1− p. The key difference between

this walk and excited random walk comes in the next step: if the walker decides to step right,

they do not consume the cookie at their present site (and on subsequent visits, it can be

used again). However, if the walker decides to step left, they eat the cookie at their present

site before they go. This constitutes a (somewhat mild) additional layer of self-interaction,

since the environment that the walker experiences is not fixed before the walk begins.

Pinsky showed that the walk is transient when p > 2/3 and has positive limiting speed

when p > 3/4. Our final main result, Theorem 4.2.1 , identifies the limiting distributions of
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the “have your cookie and eat it” random walk when the walk is transient. We establish

these limiting distributions using the approach that was pioneered by Kesten, Kozlov, and

Spitzer in [14 ] and built upon by Kosygina and Mountford [15 ] and Kosygina and Peterson

[16 ].

To describe the result, we will need to use the parameter α = 2p−1
1−p

. Roughly speaking,

when p ∈
(

2
3 , 5

6

)
the limiting distributions for the walk are transformations of stable laws

with index α/2, and when p ≥ 5/6 the limiting distributions are Gaussian. The limiting

distribution in the case p = 3/4 (where the walk transitions to positive speed) are especially

delicate.
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2. BACKGROUND

Excited random walk is a nearest-neighbor, self-interacting random walk on Zd where the

probability distribution that the walker uses to decide their next step from each site depends

on the number of visits the walker has already made to that site. Excited random walks

are often called cookie random walks due to the following intuitive interpretation: before the

walk begins, a stack of cookies is placed at each site in Zd. When the walker visits a site for

the jth time, they consumes the jth cookie in the stack at that site. Eating this cookie excites

the walker, who chooses their next step according to a probability distribution encoded in

that cookie.

We will primarily be concerned with the one-dimensional excited random walk in Z. In

that setting, a cookie environment ω is an element of Ω = [0, 1]Z×N. The number ω(x, j) is

the strength of the jth cookie at site x, and upon eating this cookie the walker steps right

with probability ω(x, j) and left with probability 1− ω(x, j).

Therefore, the excited random walk in the cookie environment ω is the stochastic process

{Xn}n≥0 such that X0 = 0 and

P (Xn+1 = Xn + 1 | X0, . . . , Xn) = ω (Xn, #{j ∈ N : Xj = Xn}) .

In this chapter, we will give a brief historical survey of results known about excited

random walks and describe some of the tools that are used to prove them. Before doing so,

it will be helpful to give some additional terminology. If a cookie does not give any bias to

the walker’s next step, i.e. ω(x, j) = 1/2, we will call that cookie a placebo. If there exists

an M ∈ N such that every cookie in a stack beyond the Mth is a placebo, i.e. ω(x, j) = 1/2

whenever j > M , we will say that there are M cookies at site x (imagining that the walker’s

default behavior is symmetric steps, and that they return to that behavior whenever cookies

are not present).
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2.1 Excited Random Walks on Z

Excited random walk (ERW) in Z was first studied by Benjamini and Wilson [4 ]. The

cookie environment in their original model consisted of a single cookie of strength p ∈ (1/2, 1)

at each site, and they were able to show by a short calculation that this type of ERW is

always recurrent. Zerner [25 ] further generalized ERW to allow for any number of cookies

at each site, and furthermore that the cookie stacks at each site could be chosen according

to a probability distribution, subject to the constraint that px
j ∈ [1/2, 1] for all j ∈ N, x ∈ Z,

along with the mild condition that the first cookie in each stack does not have strength

1 almost surely, i.e. that P(px
1 = 1) < 1. Under these assumptions, Zerner identified a

recurrence/transience criterion for the ERW. The key parameter for determining whether

the walk will be recurrent or transient in this setting is the expected total drift δ, given by

δ = E

 ∞∑
j=1

(2px
j − 1)

 . (2.1)

We will refer to 2px
j − 1, which is the expected displacement of the walker after consuming

a cookie of strength px
j , as the drift contained in the jth cookie at site x. When px

j >

1/2 the drift contained in the cookie is positive, and so we will call such cookies positive

cookies. Zerner proved that ERW in environments with only positive cookies is recurrent if

the expected total drift δ ≤ 1 and transient to +∞ when δ > 1.

It is then natural to wonder about the asymptotic speed of a transient ERW:

lim
n→∞

Xn

n
,

assuming the limit exists. If this limit is nonzero, we will say that the ERW is ballistic.

Basdevant and Singh [2 ] showed that ERW with finitely many positive cookies at each site

is ballistic if and only if δ > 2. Their approach, which relied on the analysis of branching

processes associated to the walk, fundamentally changed the direction of research in ERW.

Indeed, most of the results for ERW that followed this paper were established by studying

these branching processes. We will discuss them in detail in the next section.
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Kosygina and Zerner [18 ] later removed the assumption of positive cookies and established

criteria for recurrence/transience and ballisticity, although they retained the assumption of

finitely many cookies per site. In particular, they showed that ERW in environments with

finitely many cookies per site is recurrent when δ ∈ [ − 1, 1], transient to +∞ if δ > 1,

transient to −∞ if δ < −1, and ballistic if |δ| > 2. Scaling limits for the “M cookies

per site” model have also been established, in the nonballistic transient case |δ| ∈ (1, 2]

by Basdevant and Singh [3 ], in the ballistic transient case |δ| ∈ (2, 4], by Kosygina and

Mountford [15 ], and in the recurrent case |δ| ≤ 1 by Kosygina and Dolgopyat [8 ].

The natural next step was to study ERW with infinitely many cookies per site. Note

that Zerner’s recurrence/transience criterion for ERW in environments with only positive

cookies [25 ] applies to environments with infinitely many positive cookies at each site, but

his methods, which we discuss briefly in the next section, relied heavily on the assumption of

positive cookies. Allowing cookie stacks that contain infinitely many positive and negative

cookies leads to several complications that cause previous techniques and results to break

down. For instance, the expected total drift at each site (2.1 ) may not even exist. ERW in

environments that can have infinitely many positive and negative cookies have been studied

by imposing special structure on the cookie stacks at each site, either by some form of

regularity within the cookie stacks or by requiring cookie strengths to “taper off” as we look

deeper in the stack.

In the track of “tapering off” cookie strengths, Chakthoun [5 ] studied cookie environments

with an unbounded, but almost surely finite number of cookies at each site, subject to the

constraints that δ (2.1 ) is well-defined and the (random) height M(x) of the cookie stack at

x satisfies P (M(z) > n) ≤ Cn−α, where α > (|δ| ∨ 4). Chakthoun established that ERW

in cookie environments that meet these conditions is recurrent when |δ| ≤ 1, and transient

otherwise. We remark that the recurrence/transience criterion in this case, along with other

results dealing with limit laws and functional limit theorems proved in [5 ], hold under the

same conditions as in the case of a bounded number of cookies per site.

Along the lines of requiring regular structure within cookie stacks, Kozma, Orenshtein,

and Shinkar [19 ] considered ERW in environments with periodic cookie stacks. To describe

these cookie environments formally, fix M ∈ N, and let p = (p1, . . . , pM) be a vector of cookie

16



strengths. Then the jth cookie at each site has strength pi, where j ≡ i mod M . Kosygina

and Peterson [16 ] generalized the periodic model and studied ERW in environments where

the cookie stacks at each site are generated by a Markov chain. In both cases, note that δ as

defined in (2.1 ) may not exist. Recurrence/transience criteria are known for these models,

but they are given in terms of parameters of the branching-like processes associated to ERW

described in the next section. Although these parameters can be computed explicitly, their

formulas are complicated.

2.2 Branching Processes and Branching-Like Processes

One of the main difficulties in dealing with ERW is the fact that the walk is not a Markov

chain: the distribution of the walker’s next step from a site depends on the number of times

the walker has previously visited that site. Rather than studying the ERW directly, many

of the known results for ERW were proven by analyzing two Markov chains that can be

associated to ERW called branching-like processes. Basdevant and Singh [2 ] were the first to

use branching processes in the study of ERW, and their technique quickly became the main

tool for analyzing the long-term behavior of ERW.

2.2.1 Forward Branching-Like Process

In this section we will define the forward branching-like process (FBLP), which we will

denote by {Un}n≥0, and explain its relationship to ERW. We can construct the FBLP and

ERW from a single independent collection of Bernoulli random variables, which we will think

of as coin tosses. To do this, fix a cookie environment p = {px
j }j∈N, x∈Z, and let {ξx

j }j∈N,x∈Z

be a collection of independent Bernoulli random variables, where P (ξx
j = 1) = px

j . For a

fixed x0 ∈ Z, we can imagine the collection {ξx0
j }j∈N as a pile of coins sitting at x0 ∈ Z.

We then “toss all the coins at each site” and record their outcomes, regarding ξx
j = 1 as a
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“success” and ξx
j = 0 as a “failure.” Then, we can construct the FBLP from this coin-tossing

data: let

F x
m = inf

k ∈ N :
k∑

j=1
(1− ξx

j ) = m

 , Sx(m) =
F x

m∑
j=1

ξx
j .

That is, F x
m is the trial on which the mth failure occurs at site x, and so Sx(m) counts

the number of successes in the sequence of coin tosses at x before the mth failure in that

sequence. The FBLP {Un}n≥0 is the Markov process on N0 with transition probabilities

P (Un = k | Un−1 = j) = P (Sn(j) = k) , n ≥ 1.

To explain why {Un}n≥0 is similar to a branching process, it is helpful to consider the FBLP

which corresponds to ERW in the cookieless environment ω0, which has px
j = 1/2 for all

x ∈ Z and all j ∈ N. We can regard Un as modelling the number of organisms in the nth

generation of a population. The offspring of these organisms, which will comprise generation

n + 1, can be generated from the coin-tossing data according to the following procedure.

Suppose that Un = j. Then:

1. Count the number of successes in the sequence of coin tosses at site n+1 that occurred

before the first failure in that sequence. This is the number of offspring that the first

organism in generation n produces, which we will denote η1. Note that in this case,

η1 ∼ Geo(1/2).

2. Repeat this procedure for each of the remaining organisms in the nth generation,

producing values for η2, . . . , ηj.

3. The total number of successes in the coin tosses at site n + 1 before the kth failure,

given by Sn+1(j) = η1 + · · · + ηj corresponds to the total number of organisms in

generation (n + 1). Since we assume Un = j, we have that Sn+1(j) ∼ NegBin(j, 1/2).

From this description, we see that {Un}n≥0 is in fact a Galton-Watson process with Geo(1/2)

offspring distribution, and so in the case of ERW in ω0 (which is a simple symmetric random

walk), {Un}n≥0 truly is a branching process.
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It is straightforward to construct an ERW in ω0 from the coin-tossing data. To do so,

we release a walker starting at 0. When the walker arrives at site x for the jth time, they

step to x + 1 if ξx
j = 1 and step to x − 1 if ξx

j = 0. If we let Yn denote the position of the

walker after the nth step, then the path of the walker will be that of an ERW in ω0 because

P (Yn = Yn−1 + 1|Y0, . . . , Yn−1) = P (ξx
j = 1) = px

j .

Intuitively, the FBLP tracks right excursions of the ERW from 0. For instance, if we set

U0 = 1, the walker steps right along the directed edge (0 → 1) and begins an excursion to

the right. Each right step that the walker takes along the edge (1→ 2) before returning to

0 corresponds to a descendent of the initial right step along (0 → 1). Similarly, each right

step along (2 → 3) before the first step along (1 ← 2) corresponds to a descendent of the

first right step along (1→ 2), and so on.

In addition, there is a natural correspondence between the path of the random walk

and the tree that depicts the branching process. Given a tree diagram for {Un}n≥0, the

corresponding walk path can be recovered by “tracing through” the vertices of the tree as if

we were completing a depth-first search. We start from the root and move up and left along

the edges of the tree whenever possible. While completing this procedure, a step “up the

tree” corresponds to a right step in the walk, and a step “down the tree” corresponds to a

left step. Figure 2.1 shows an example.

Figure 2.1. Recovering walk path from tree diagram
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On the other hand, the tree diagram can be obtained from the random walk path by

a “gluing” procedure. To carry it out, we imagine spreading glue on the underside of the

walk path, squeezing the walk path together horizontally, and then pulling it apart again.

If two edges with glue on them come into contact, they combine into a single edge. Figure

2.2 below shows an example of how to obtain the branching process’s tree diagram from a

walk path. For clarity, we have used colors to indicate which edges in the walk path are

being glued together to form edges in the tree diagram. For instance, the blue edge in the

tree diagram that connects to the root is obtained by combining together the first step of

the excursion along (0→ 1) and the last step of the excursion along (0← 1).

Figure 2.2. Gluing procedure that converts walk path to tree diagram

Having handled this construction in ω0, we will now bridge the gap between that simple

case and general ERW. A good first step is to consider ERW in the cookie environments

studied by Basdevant and Singh [2 ], with M non-placebo cookies at each site. Denote by

ωM the cookie environment where pj
x = p for all x ∈ Z and for all j ≤ M , and pj

x = 1/2

whenever j > M . In this setting, only at most M of the organisms will use the unfair

coin tosses to determine how many offspring they have (since each organism uses at least

one coin toss). Therefore, we imagine the organisms reproducing according to a slightly

modified procedure. Again, suppose that Un = j.

1. The first M organisms emigrate, taking the results of the first M coin tosses with them

(if there are fewer than M organisms, they all leave). These M organisms reproduce
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according to the procedure described above, supplementing with fair coin tosses as

necessary.

2. The remaining (M − j)+ organisms reproduce using the remaining coin tosses, and

since they only use fair coin tosses, each has a ηi ∼ Geo(1/2) number of offspring, for

i = 1, . . . , (M − j)+

3. The offspring of the first M organisms, which we denote ηM , immigrate back to the

population, joining the offspring of those that did not leave to form generation n + 1.

Then {Un}n≥0 is essentially a branching process, but with the additional feature that a

random number of immigrants join the population in each generation. Such processes are

called branching processes with migration.

It is more difficult to interpret {Un}n≥0 as a branching process if there are (potentially)

infinitely many nonplacebo cookies at each site. Nevertheless, it will still be useful to think of

{Un}n≥0 as a branching process to guide our intuition. To remind ourselves of this connection,

we will refer to {Un}n≥0 as a branching-like process.

We close out this section by pointing out that there can be a slight difference in the

value of Un and the number of right steps the walk takes from n before returning to 0 which

we will denote by Rn. However, Un = Rn for all n as long as T0 < ∞. Formally, let

Rn = ∑T0−1
j=0 1{Xj=n, Xj+1=n+1}. If T0 < ∞, Rn will be the number of right steps that the

walker takes from n before T0, and if T0 =∞ then Rn is the total number of right steps that

the walker takes from n.

Proposition 2.2.1. If T0 <∞, then Un = Rn for all n ∈ N. If T0 =∞, then Un ≥ Rn for

all n ∈ N.

The first part of the proposition is clear from the coin-toss construction of the FBLP and

the walk, along with the correspondence between the FBLP trees and walk paths described

above. The second part can be proved by induction, but to give intuition for when it

happens that Rn < Un we will provide an example. Figure 2.3 below shows the coin tosses

that are used to generate the FBLP and the path of the walk (right arrows indicate successes,
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left arrows indicate failures), along with the corresponding path of the ERW. In the given

example, after the marked step, the walker never returns to 3.

Figure 2.3. Coin tosses generate ERW path

The relevant values of Un and Rn are:

R0 = 1, R1 = 2, R2 = 3, R3 = 5, . . .

U0 = 1, U1 = 2, U2 = 7, U3 ≥ 5, . . . .

Essentially, if T0 = ∞ the FBLP may count successes that the walker never uses. In this

example, the walker visits the site 2 only 4 times, and so the walker never “sees” the additional

4 successes that occur at 2 before the second failure. Because R2 = 3, the walker will only

“see” the coin tosses up to (but not including) the third failure at site 3, but since U2 = 7

the FBLP “sees” all the successes at 3 until the 7th failure there. If the next four coin-tosses

at 3 are failures, then U3 = R3, but if there are any successes between the third and seventh

failures at 3 we will have that U3 > R3.

2.2.2 Backward Branching-Like Process

In this section we will define the backward branching-like process (BBLP), which we will

denote by {Vn}n≥0. Intuitively, the BBLP keeps track of the amount of “backtracking” done

by ERW before reaching a specified level n > 0. There is also a coin-toss construction of the

BBLP, but it may seem artificial without proper context. For that reason, we will begin with
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a more intuitive construction of the BBLP and address the coin-toss construction afterward.

Let Tn = inf{j ≥ 1 : Xj = n} denote the first time the ERW reaches level n, and let Dx
n be

the number of left steps from site x before the ERW reaches n for the first time,

Dx
n =

Tn∑
k=1

1{Xk−1=x,Xk=x−1}.

Then Dx
n tracks the amount of backtracking (i.e. moving away from level n) the walker does

at site x. We will now rewrite Tn in terms of the Dx
n. In order to travel from 0 to n, the

walker must take n right steps, but if the walker takes a left step from a site x during their

journey from 0 to n, this left step will have to be balanced by a future right step in order

for the walker to reach n. Therefore, we can rewrite Tn in the following way:

Tn = n + 2
∑
x<n

Dx
n. (2.2)

We claim that the sequence (Dn
n, Dn−1

n , . . . , D1
n, D0

n) has a Markovian structure. To see this,

consider the following example. Let {Xn}n≥0 denote the ERW in the cookieless environment

ω0, and suppose that Dx−1
n = j for some x ∈ {1, 2, . . . , n− 1}, so that the walker took j left

steps from x before reaching level n for the first time. Using only this information, we can

determine the distribution for Dx−1
n . Before reaching n, the walker took j left steps from

x, and therefore stepped right from x − 1 exactly j + 1 times: once to get from x − 1 to

x for the first time, then j more times to counteract the j left steps from x to x − 1. Let

ηi, i = 1, 2, . . . , j+1 denote the number of left steps the walker took from x−1 before their ith

right step from x−1. Since ERW in ω0 always steps left from each site with probability 1/2,

we have that ηi ∼ Geo(1/2) for each i ∈ {1, . . . , j + 1}, and therefore Dx−1
n = η1 + · · ·+ ηj+1,

given that Dx
n = j (note that Dn

n = 0, since at Tn the walker hasn’t taken any left steps from

n). To summarize,

P (Dx−1
n = k|Dx

n = j) = P (η1 + · · ·+ ηj+1 = k),
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and so (Dn
n, . . . , D0

n) is not only Markovian, but can in fact be interpreted as a branching

process with migration: in each generation, a single immigrant joins the population before

reproduction, then each organism in the population has a Geo(1/2) number of offspring, and

these offspring comprise the next generation.

There are two key differences between the branching process we have just described and

the FBLP. First, this branching process always adds an extra immigrant to the population

before reproduction (even when it corresponds to the ERW in ω0). Second, because the

distribution for Dx−1
n depends only on the value of Dx

n, this second branching process is

indexed backward, which is why it is often referred to as the backward branching-like process.

We will remove this troublesome notation in the coin-toss construction of the BBLP.

To that end, let {ξx
j }j∈N,x∈Z be the independent collection of Bernoulli random variables

with P (ξx
j = 1) = px

j . As in the construction of the FBLP, we imagine ξx
j as the jth coin at

site x, and then we “toss all the coins at each site.” We then define

Sx
m = inf

k ∈ N :
k∑

j=1
ξx

j = m

 , Fx(m) =
Sx

m∑
j=1

(1− ξx
j ),

so that Sx
m is the trial on which the mth success occurs at site x, and Fx

m is the number

of failures at x before Sx
m. Then, we let {Vn}n≥0 be the Markov process with transition

probabilities

P (Vn = k|Vn−1 = j) = P (Fn(j + 1) = k), n ≥ 1.

If we set V0 = 0, we claim that (Dn
n, Dn−1

n , . . . , D0) law= (V0, V1, . . . , Vn). To see this, let

V
(n)

i be the same as the BBLP as defined above, but using the coin tosses {ξn−i
j }j∈N instead

of {ξi
j}j∈N. If we set V

(n)
0 = 0, then we will have V

(n)
i = Dn−i

n for all i = 0, 1, . . . , n, but

then V
(n)

i
law= Vi because the two collections of Bernoulli random variables used in their

construction, {ξn−i
j }j∈N and {ξi

j}j∈N respectively, have the same distribution. That is, this

property is a consequence of the fact that the cookie stacks at each site are either identical,

as in the case of deterministic cookie stacks, or independent and identically distributed as in

the case of cookie stacks generated by an independent copy of a Markov chain at each site.
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2.3 Using the Branching-Like Processes

We will now explain how the two branching-like processes in the preceding sections have

been used in the literature. Since we will discuss results in the literature that apply to excited

random walk in particular classes of cookie environments, it will be useful to describe the

different models in detail.

Example 1 – Random walk in random environment: For each site x ∈ Z, select

αx ∈ (0, 1) randomly so that {αi}i∈Z is a collection of i.i.d. random variables, then place

infinitely many cookies of strength αx at site x, so that px
j = αx for all j ∈ N. Let ΩRW RE

denote the collection of environments that can be generated in this way, with P the measure

on environments. Given a specific environment ω ∈ ΩRW RE, we will use Pω to denote

probabilities associated to the walk in that environment.

Example 2 – Positive cookies: For each site x ∈ Z, randomly place a stack of cookies at

each site, subject to the constraint that for all j ∈ N and for all x ∈ Z, we have px
j ≥ 1/2. Let

Ω+ denote the collection of possible cookie environments, and let P denote the distribution

of cookie environments on Ω+. We assume that the cookie stacks are i.i.d. spatially, but

cookie strengths within the same stack may not be independent. Given a cookie environment

ω, we will use Pω to denote the law of ERW in ω.

Example 3 – M cookies per site: Fix M ∈ N, then for each site x ∈ Z randomly place

a cookie stack that contains at most M cookies (i.e. px
j = 1/2 whenever j > M) at each site

according to some probability measure P so that the cookie stacks are i.i.d. spatially (note

that cookie strengths within the same stack may not be independent). Let ΩM denote the

collection of M -cookie environments, and given a cookie environment ω, let Pω denote the

law of ERW in ω.

Example 4 – Periodic cookie stacks: Fix a finite-length vector of cookie strengths

p = (p1, p2, . . . , pM), then for each x ∈ Z place a periodic cookie stack, so that for each

x ∈ Z we have px
j = pi whenever j ≡ i (mod M). This results in an identically piled,

deterministic cookie environment which we will denote by ωp.

Example 5 – Markovian cookie stacks: Fix a Markov chain on finite state space R

which contains a unique closed irreducible set R0, and let K be its transition matrix. We
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associate to each i ∈ R a probability pi ∈ (0, 1). Then, for each x ∈ Z, we run an i.i.d. copy

of this Markov chain to generate a cookie stack at each site: if the Markov chain at site x is

in state i at time t, then we set px
t = pi. Again, let P denote the distribution of the cookie

environment on ΩK , and let Pω denote the law of the walk in a given environment ω. Note

that the periodic cookies model is a special case of this model.

Now that we have introduced the primary models that we will consider, we will start by

discussing how the branching-like processes have been used to establish criteria for recurrence

and transience of ERW.

2.3.1 Recurrence and Transience

The first use of the BLP to prove a criterion for recurrence and transience of ERW is due

to Kosygina and Zerner [18 ]. Their result applies to ERW in environments with M cookies

per site.

Theorem 2.3.1 (Theorem 1 of [18 ]). Let Xn be an M-cookie excited random walk, let P

denote the probability measure on environments ω ∈ ΩM and let Pω denote the probability

measure for the walk in ω. Let δ be the expected total drift as defined in 2.1 . Then

1. If δ ∈ [ − 1, 1], the walk is recurrent. That is, for P-a.e. environment the walk will

return to its starting point infinitely many times Pω-almost surely.

2. If δ > 1, the walk is transient to +∞, so that for P-a.e. environment we have that

Pω (limn→∞ Xn =∞) = 1.

3. If δ < −1, the walk is transient to −∞, so that for P-a.e. environment we have that

Pω (limn→∞ Xn = −∞) = 1.

Note that for ERW in M -cookie environments, whether the walk is recurrent or transient

depends only on the expected total drift δ. We will now briefly describe the proof of Theorem

2.3.1 . Let {Xn}n≥0 be ERW in an environment ω chosen from ΩM according to P, and let

{Uk}k≥0 be the associated FBLP as defined in Section 2.2.1 . Recall that this FBLP tracks

the walker’s right excursions, and so we will need a separate FBLP to keep track of left
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excursions. Let {Ũk}k≥0 be the FBLP associated to ERW in the reflected environment ω̃:

given an environment ω, we construct ω̃ by replacing px
j by 1−px

j for all x ∈ Z and all j ∈ N.

Then {Ũk}k≥0 tracks left excursions of ERW in ω, since a left excursion in ω corresponds to

a right excursion in ω̃.

We will say that ERW is recurrent from the right if the walker’s first right excursion is

Pω-a.s. finite, if there is one. We define an ERW which is recurrent from the left analogously.

The authors quickly show that if ERW is recurrent from the right, then all of the walk’s

right excursions are Pω-a.s. finite. On the other hand, if ERW is not recurrent from the

right, then the walk Pω-a.s. makes only finitely many right excursions. Similar statements

hold from ERW which are recurrent from the left.

Therefore, if ERW is recurrent from the left but not recurrent from the right, the walker

takes finitely many right excursions and each of their left excursions are Pω-a.s. finite.

The walker cannot return to 0 infinitely many times, because if they do they would Pω-

a.s. take infinitely many right excursions. It follows that the walker’s final excursion must

be an infinite excursion to the right, and so lim infn Xn ≥ 0. Coupled with the fact that

lim infn Xn, lim supn Xn ∈ {−∞,∞} for ERW in ωM (this follows essentially from ellipticity

and the Borel-Cantelli lemma), we see that in this case Pω(lim Xn = ∞) = 1. Similarly,

one proves that if ERW is recurrent from the right but not from the left, then Pω(lim Xn =

−∞) = 1. Finally, if the walk is recurrent from both the right and left, every excursion

the walker takes is Pω-a.s. finite, and so the walker returns to 0 infinitely many times with

probability 1. Note that the case where ERW is not recurrent from the right or left is

theoretically possible, but we will not encounter it here.

In light of the above discussion, if we want to establish a recurrence/transience criterion

it will be enough to find conditions under which the walk is recurrent from the right or left.

The key to proving Theorem 2.3.1 is to observe that the long-term behavior of the walk and

the branching-like process are bound together. The following proposition relates the length

of the walker’s first right excursion to the survival of the associated FBLP.

Proposition 2.3.1. Let Xn be ERW in an elliptic cookie environment, and let {Un}n≥0 be

the associated FBLP. Assume that the walk’s first step is to the right, i.e. X1 = 1, and let
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T0 = inf{n ≥ 1 : Xn = 0} be the time of the walker’s first return to 0. Then P (T0 =∞) > 0

if and only if P (Un > 0 for all n) > 0.

To see why this is the case, suppose that X1 = 1 and that T0 <∞. Let n∗ = max{Xk :

k < T0} be the furthest point to the right that the walk reaches. Then Un∗+1 = Wn∗+1 = 0

by Proposition 2.2.1 , and so Un = 0 for some n ∈ N.

On the other hand, if T0 = ∞, then we must have Wn ≥ 1 for all n ≥ 0: if we do not,

and Wn∗ = 0 for some n∗ ∈ N, then the walker never steps right from n∗, and is therefore

trapped in the interval [0, n∗]. Because we assume that the cookie environment is elliptic,

this would imply that T0 < ∞. Now, if Un = 0 for some n, by Proposition 2.2.1 we would

have that 1 ≤ Wn ≤ Un = 0, a contradiction.

Therefore, T0 =∞ if and only if Un > 0 for all n > 0, and so we must have P (T0 =∞)

if and only if P (Un > 0 for all n > 0) > 0.

Proposition 2.3.1 reduces the problem of determining whether ERW in ωM is recurrent

or transient to identifying when the FBLPs {Un}n≥0 and {Ũn}n≥0 have a positive probability

of survival and when they die out almost surely.

Recall that in the case of ERW in M -cookie environments, the FBLPs can be thought

of as branching processes with migration. These processes are well-studied [11 ], [12 ], and so

Kosygina and Zerner were able to appeal to known results about their long-term behavior.

The long-term behavior of {Un}n≥0 and {Ũn}n≥0 are each governed by a single parameter,

which we will respectively call β and β̃.

Remark: This parameter is called θ in [18 ], but we will use θ for a different parameter

associated to the FBLP for ERW in a different class of environments. The parameter β is

given by

β = λ

b
,

where λ is the average migration in the BLP and b = 1
2E[S(S − 1)], where S follows the

offspring distribution of the BLP (in this case, S is geometric). Although β and θ are defined

somewhat differently, the two parameters agree with each other in this case (see the definition

θ below).
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In short, if β > 1, then P (Uk > 0 for all k ∈ N) > 0, and if β ≤ 1, we have that

P (Uk = 0 for some k ∈ N) = 1. In this case β = E[S(0)
M ] −M , where S

(0)
M is the number of

successes that occur at a site before M failures. By considering the number of successes that

occur after the first M trials S
(0)
M −(M−F ) and conditioning on the number of failures in the

first M trials, a short calculation shows that β = δ, and by symmetry β̃ = −δ. Combining

this calculation with the discussion in the preceding paragraph completes the proof of the

theorem.

This general approach has become the standard technique for determining when ERW in a

particular class of environments is recurrent or transient. One selects a class of environments

to consider, constructs the FBLPs associated to the walk, and attempts to understand when

the FBLPs die out almost surely and when they have a positive survival probability. One

key result in this vein is a zero-one law for directional transience, due to Amir, Berger, and

Orenshtein [1 ]:

Theorem 2.3.2 (Theorem 1.2 of [1 ]). Let Xn be an ERW, and let µ be a stationary ergodic

and elliptic probability measure on the space Ω of cookie environments. Then

P ( lim
n→∞

Xn =∞), P ( lim
n→∞

Xn = −∞) ∈ {0, 1}.

The proof of this fact extends the ideas of the proofs of Lemma 7 and Lemma 8 of

[18 ], but are more combinatorial than probabilistic. Theorem 2.3.2 helps to formalize the

approach to proving a recurrence/transience criterion for M -cookie environments. Suppose

we want to prove that Xn in a particular class of cookie environments is transient to ∞, i.e.

that P (limn→∞ Xn =∞) = 1. We have already seen that

P (Xn →∞) > 0⇐⇒ P (T0 =∞) > 0,

P (T0 =∞) > 0⇐⇒ P (Un > 0 for all n) > 0.

Therefore, P (Xn →∞) > 0 if and only if P (Un > 0 for all n) > 0, and in light of Theorem

2.3.2 we have that ERW is transient to ∞ if and only if P (Un > 0 for all n) > 0. Similar

considerations for the left FBLP Ũn yields the following theorem.
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Theorem 2.3.3. Let ω be an elliptic cookie environment, and let Xn be ERW in ω. Let

Pn(·) = P (·|U0 = n) Then

1. P1(Un > 0 for all n) > 0 if and only if P (Xn →∞) = 1,

2. P1(Ũn > 0 for all n) > 0 if and only if P (Xn → −∞) = 1,

3. P1(Un = 0 for some n) = P1(Ũn = 0 for some n) = 1 if and only if P (Xn = 0 i.o.) = 1.

In the case of ERW in environments with periodic cookie stacks, it is more difficult to

interpret Uk and Ũk as branching processes with migration. The approach that worked in

the case of M -cookie environments, which essentially treats the offspring generated from the

first M coin tosses at each site as a small perturbation to a branching process with Geo(1/2)

offspring distribution, fails because we cannot “use up” all the cookies at a site and then

be left with a common underlying offspring distribution for the rest of reproduction. In

fact, even relating the FBLPs associated to ERW in M -cookie environments to branching

processes with migration (as had been previously studied in the literature) required inter-

polation between the two using several intermediate processes. Kozma, Orenshtein, and

Shinkar [19 ] proved a general criteria for determining when the FBLPs die out and when

they have a chance to survive. Although their result applies to any Markov chain that satis-

fies the conditions of the theorem, we will state it in terms of the FBLPs that we will apply

it to. In order to do so, we must define a few parameters associated to the FBLPs. For ease

of notation, let Pn(·) = P (·|U0 = n) and let En[ · ] denote the corresponding expectation.

The parameters we will be interested in are:

µ(n) = En[U1]
n

ρ(n) = En[U1 − µn]

ν(n) = En [(U1 − µn)2]
n

θ(n) = 2ρ(n)
ν(n) ,

where we define

µ = lim
n→∞

En[U1]
n

ρ = lim
n→∞

En[U1 − µn]

ν = lim
n→∞

En [(U1 − µn)2]
n

θ = lim
n→∞

2ρ(n)
ν(n) ,
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provided the limits exist. We will denote the corresponding parameters for the FBLP that

tracks left excursions {Ũk}k≥0 by µ̃, ρ̃, ν̃, θ̃ respectively, provided the limits exist. As the

next theorem shows, it is possible to determine recurrence and transience by computing these

parameters of the FBLP.

Theorem 2.3.4 (Theorem 1.3 of [19 ]). Let {Un}n≥0 be the forward branching-like process

associated to ERW. Assume that the limit µ = limn→∞
En[U1]

n
exists, and that there is a

constant C such that for all ε > 0, it holds that

Pn

(∣∣∣∣U1

n
− µ

∣∣∣∣ > ε
)
≤ 2 exp

{
−Cε2n

2 + ε

}
.

If µ > 1, then P (Un > 0 for all n) > 0. If µ < 1, then P (Un = 0 for some n) = 1. If µ = 1,

then

1. if θ(n) < 1 + 1
log n
− α(n)n−1/2 for all sufficiently large n, where α(n) is such that

α(n)ν(n)→∞ as n→∞, then P (Un = 0 for some n) = 1,

2. if θ(n) > 1 + 2
log n

+ α(n)n−1/2 for all sufficiently large n, where α(n) is such that

α(n)ν(n)→∞ as n→∞, then P (Un > 0 for all n) > 0.

The proof of Theorem 2.3.4 relies on Lyapunov function techniques. Since the proof

would constitute a major digression from our present subject, we omit it and refer the curious

reader to Appendix A of [19 ]. Before proceeding further, we will give some explanation for

the parameters of the FBLP that appear in Theorem 2.3.4 . The first part of the theorem is

somewhat intuitive: if µ > 1, then on average the size of the population grows over time and

so we expect that the FBLP has a positive probability of surviving. Similarly if µ < 1, the

population shrinks on average with each generation, and so we expect the FBLP dies out.

The critical case µ = 1 requires more careful analysis to unpack. If we set Y
(n)

t = Ubntc/n,

then we should be able to approximate Y
(n)

t with a certain squared Bessel process. Given

that Y
(n)

0 = y, the increment Yt+δt−Yt is on average ρδt, with variance ν ·y, and so we would

expect that the scaling limit Yt will satisfy the stochastic differential equation

dYt = ρdt +
√

2νdBt. (2.3)

31



Therefore, Yt is a squared Bessel process with generalized dimension 2θ. Now, a d-dimensional

squared Bessel process hits 0 with probability 1 if d < 2, but when d ≥ 2 this probability is

0. Since the Bessel process hitting 0 roughly corresponds to the FBLP dying out, we might

expect that the FBLP dies out a.s. if θ < 1 and has a chance of surviving if θ > 1. If θ = 1

we are in a borderline case, and it could make a difference how quickly θ converges to 1. If

θ → 1 quickly, the FBLP should a.s. die out, but if θ → 1 slowly enough, the FBLP should

have positive survival probability.

Combined with the zero-one law for directional transience of ERW, Theorem 2.3.4 gives

another method for determining conditions under which ERW is recurrent or transient: one

computes the relevant parameters and their rates of convergence.

It is important to note the slight gap in the criteria given in Theorem 2.3.4 , which is

an artifact of technical details in its proof. If θ(n) − 1 ∈
(

1
log n

, 2
log n

)
, the theorem cannot

tell us anything about the long term behavior of the walk. In the cases of M -cookies per

site, periodic cookie stacks, and Markovian cookie stacks, θ(n) converges quickly enough to

θ that this gap doesn’t come into play. However, the gap will be relevant in the next chapter

when we study ERW in finite-drift cookie environments.

2.3.2 Ballisticity

Basdevant and Singh [2 ] were the first to use branching-like processes to establish a

ballisticity criteria for ERW. Their technique, which they used in the context of ERW with

deterministic stacks of M identical positive cookies at each site, was generalized in [18 ] to

apply to spatially i.i.d. stacks of M cookies per site. If the walk is recurrent, then clearly its

speed is 0, so assume that the walk is transient to the right (left transience can be handled

by symmetry). We will begin with the following equivalence:

Xn

n
→ v a.s.⇐⇒ Tn

n
→ 1

v
a.s.

with the convention that if 1/v = ∞, then v = 0. Therefore, if we want to establish a law

of large numbers for the position of the walk, we can do so by first establishing one for the

hitting times Tn. The key observation to make is that the hitting times can be rewritten in
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terms of the number of downcrossings the walk makes before reaching level n for the first

time. Recall that Dk
n represents the number of left steps that the walker makes from k before

Tn. Then we can decompose Tn:

Tn = n + 2
∑
k≤n

Dk
n, (2.4)

because the walker must take n steps to travel from 0 to n, and any left steps the walker

takes must be paired with a right step in order for the walker to reach n. Since we assume

that the walk is transient to ∞, the amount of time the walker spends to the left of the

origin ∑k<0 Dk
n is almost surely finite. Therefore

Tn

n
≈ 1 + 2

n

n∑
k=0

Dk
n

law= 1 + 2
n

n∑
k=0

Vk,

where the last equality follows from the definition of the backward branching-like process.

Now, one can check that {Vk}k≥0 is an irreducible, positive recurrent Markov chain, and so

it converges to its unique stationary distribution, which we will denote by V∞. Therefore,

we have that

1
v

= lim
n→∞

Tn

n
= lim

n→∞
1 + 2

n

n∑
k=0

Vk = 1 + 2E[V∞].

Therefore v = 1
1+2E[V∞] . For that reason, we will have v = 0 if E[V∞] = ∞, and otherwise

we will have v > 0. In order to determine when E[V∞] = ∞, Basdevant and Singh used

the probability generating function E[sV∞ ] to study the asymptotics of ∑P (V∞ > k), and

determined that v > 0 if and only if δ > 2.

Remark: If δ ∈ (1, 2), the above results imply that ERW is transient to∞ with asymptotic

speed 0 (i.e. sublinear speed). This feature was first observed for random walk in random

environment in 1975 by Solomon [24 ], but has also appeared in each of the commonly-studied

ERW models mentioned at the beginning of this section.

Because this argument relies on the existence of the stationary distribution V∞ but does

not identify it, the formula given above cannot actually be used to calculate v, even in the
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relatively simple case where each site has an identical pile of M cookies each with strength

p. Upper and lower bounds for the speed have been obtained in the case of 2 or 3 cookies of

strength p by Madden et al. [21 ], but their methods, which rely on analyzing the probability

generating function of V∞, seem difficult to extend to M > 3 or other ERW models. The

following problem therefore remains open, much to our collective embarrassment.

Problem 1. Compute the asymptotic speed v of ERW when it is nonzero.

Aside from the bounds mentioned above, the only progress on this problem seems to be

a proof that the formula for v does not depend only on δ. For details, including an explicit

construction to demonstrate this fact, we refer the reader to Theorem 4.2 of [7 ]. However,

significant progress has been made in determining when ERW satisfies a strong law of large

numbers.

Theorem 2.3.5 (Theorem 1.4 of [1 ], Theorem 4.1 of [17 ]). Let Xn be an excited random

walk, and suppose that µ is a stationary ergodic and elliptic probability measure on the space

Ω of cookie environments. Then there exists a deterministic v ∈ [− 1, 1] such that

lim
n→∞

Xn

n
= v P-almost surely,

where P is the averaged measure defined by P(·) =
∫

Ω Pω(·)dµ(ω).

This theorem is an immediate consequence of combining Theorem 4.1 of [17 ] with Theo-

rem 2.3.2 , which was contained in [1 ]. The former theorem states that a strong law of large

numbers holds provided that a zero-one law holds, and the latter result identifies the mild

conditions under which this is the case.

Remark: Theorem 2.3.5 implies that for P-a.e. environment ω, Xn/n converges Pω-a.s. to

a deterministic limit v.

It should be noted that although 2.3.5 describes when the limiting speed exists, it does

not give a criteria for ballisticity. Instead, ballisticity criteria must be established on a model-

by-model basis. Proofs of a ballisticity criteria in the literature generally rely on Basdevant

and Singh’s [2 ] main idea: that the speed v is positive when E[V∞] <∞.
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The general structure of these arguments is as follows: we start by using (2.2 ) to rewrite

Tn/n:

Tn

n
= 1 + 2

n

∑
k≤n

Vk. (2.5)

If we assume that the walk is transient to∞, then the total amount of time the walk spends

below 0 is almost surely finite, and so we have

Tn

n
≈ 1 + 2

n

n∑
k=0

Vk.

We will now decompose ∑n
k=0 Vk further. Let σ0 = 0, and define σk = inf{t > σk : Vt = 0}

be the time of the kth extinction of the BBLP (note that the BBLP is not absorbed at 0 due

to the extra immigrant in each generation). If we let Wk = ∑σk−1
j=σk−1

Vj be the total progeny

of the BBLP between the k − 1st and kth extinction and let Nn = #{k ≤ n : Vk = 0} be

the number of extinctions that occur by time n, then we can write

Tn

n
= 1 + 2 · Nn

n
· 1

Nn

Nn∑
j=1

Wk

+ 1
n

n∑
j=σn

Vk. (2.6)

The benefit of decomposing Tn/n in this way is that, while the number of offspring in each

generation of the BBLP Vk are not i.i.d. random variables, the Wj are. Since we can bound∑n
j=σn

Vk above by WNn+1, we expect that the SLLN for renewal processes will give us:

lim
n→∞

Tn

n
= 1

v
= 1 + 2E[W1]

E[σ1]
, (2.7)

though in principle it could happen that E[W1] =∞, that E[σ1] =∞, or both. In the case

that E[W1] = ∞ and E[σ1] < ∞, we have that Tn/n → ∞, and so v = 0. If E[W1] < ∞

and E[σ1] = ∞, we will have that v > 0 (and in fact that v = 1). If both E[W1] and

E[σ1] are finite, we will have v > 0. The last remaining case, where both expectations are

infinite, would be delicate, and whether v > 0 or not would depend on the relative rates of

convergence of the two terms.
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In practice, we can determine when each of the above expectations is finite by studying

the tail probabilities P (W1 > n) and P (σ1 > n). For instance, in the case of ERW in

M -cookie environments, Kosygina and Zerner [18 ] showed that

P (W1 > n) ∼ Cn−δ/2,

P (σ1 > n) ∼ Cn−δ.

Recall that the M -cookie ERW is transient to ∞ when δ > 1. Considering the four cases

above, we see that the M -cookie ERW is ballistic when δ > 2 and has asymptotic speed 0

when δ ∈ (1, 2).

The tail probability estimates above can be obtained by using a squared Bessel process

approximation similar to the one given for the FBLP in (2.3 ). Essentially, one shows that

the BBLP is sufficiently well-approximated by a particular squared Bessel process, then one

can transfer the tail decay rate for the area under the squared Bessel process to W1 and the

tail decay rate for the time between successive visits to 0 by the squared Bessel process to

σ1.

2.3.3 Limiting Distributions

We will now explain how limiting distributions for excited random walk can be obtained

by using the branching-like processes. Although Basdevant and Singh [2 ] were the first to

use branching-like processes to study ERW, the correspondence between random walk paths

and branching processes was utilized at least as far back as 1975 by Kesten, Kozlov, and

Spitzer [14 ] in the context of random walk in a random environment (RWRE).

Recall that in RWRE, a random walker is released into a random environment that is

created by generating a random variable αx ∈ (0, 1) for each x ∈ Z. Whenever the walker is

at site x, they step right with probability αx and left with probability 1−αx. We will assume

that the collection of random variables {αx}x∈Z are independent and identically distributed.

The RWRE model can be viewed as a special case of ERW, where for each x ∈ Z, we set

px
j = αx for all j ∈ N. If we construct the BBLP {Vn}n≥0 corresponding to this random
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walk, we see that conditional on Vn−1 = j, Vn = η1 + · · · + ηj+1, where ηi ∼ Geo(αn). Then

{Vn}n≥0 is like a branching process (with an extra immigrant added before reproduction),

but with a random parameter αn that governs the reproduction rule in each generation.

Note that because the αx are i.i.d. we could obtain the same stochastic process by running

a Galton-Watson process with an extra immigrant and resampling the parameter αi before

each generation reproduces. For that reason, the BBLP in this case is sometimes called a

branching process in a random environment.

The general method for establishing limiting distributions for transient ERW (which is

essentially the same method used by Kesten, Kozlov, and Spitzer [14 ] in the RWRE case)

is to first prove limiting distributions for the walk’s hitting times Tn = inf{j : Xj = n}. To

see how this method works, suppose we have proven that for some centering constant a 6= 0,

scaling constant b, and scaling exponent γ

P
(

Tn − na

bnγ
≤ x

)
→ L(x), (2.8)

where L(·) is the cdf of some random variable. Let X̄n = sup1≤k≤n Xk be the running

maximum of the walk, and note that

{X̄n ≤ m} = {Tm ≥ n}. (2.9)

We will then have, for (as of yet unidentified) centering and scaling constants α and β and

scaling exponent ε that

P

(
X̄n − nα

βnε
≤ x

)
= P

(
X̄n ≤ dβnεx + nαe

)
= P

(
Tdβnεx+nαe ≥ n

)
.

= P

(
Tdβnεx+nαe − adβnεx + nαe

b (dβnεx + nαe)γ ≥ n− adβnεx + nαe
b (dβnεx + nαe)γ

)
.
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Taking α = 1/a, β = baγ−1, and ε = γ and using the limiting distributions from (2.8 ), we

see that

P

(
X̄n − n/a

baγ−1nγ
≤ x

)
→ 1− L(−x).

The case where the centering constant a = 0 can be handled in a similar way. In that case,

one can show that

P

(
X̄n

(1/b)1/γnγ
≤ x

)
→ 1− L(x−γ).

This establishes limiting distributions for the running maximum of the walk X̄n, and one can

extend the result to Xn by showing that X̄n and Xn do not differ by too much. In light of

this discussion, we will first establish limiting distributions for Tn, then use them to deduce

the corresponding limiting distributions for Xn.

The proof of limiting distributions for Tn will again make use of the decomposition from

the preceding section, namely that

Tn
law= n + 2

∑
k≤n

Vk.

Centering (assuming for now Tn/n→ 1/v > 0) and dividing through by nγ, we see that

Tn − n/v

nγ

law=
2∑n

j=0 Vj − (1/v − 1)n
nγ

+ 2
nγ

∑
k<0

Vk

=
2∑Nn

j=1 Wj

nγ
− (1/v − 1)n

nγ
+ 2

nγ

n∑
k=σn

Vk + 2
nγ

∑
k<0

Vk.

Moreover, the {Wj}j≥1 are i.i.d. random variables, and by (2.7 ) we have that E[W1] =
E[σ1]

2 (1/v − 1). Centering the Wj by this value, we obtain

Tn − n/v

nγ

law=
2∑Nn

j=1 (Wj − E[W1])
nγ

+ 2E[W1]
Nn − n/E[σ1]

nγ
+ 2

nγ

n∑
k=σn

Vk + 2
nγ

∑
k<0

Vk. (2.10)

Since we assume Xn is transient to ∞, the last two terms will converge to 0 in probability.
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The second term in (2.10 ) requires some care. If E[σ2
1] < ∞, then by the renewal

central limit theorem we can show that for any ε > 0 there exists a constant C so that

P (|Nn − n/E[σ1]| > C
√

n) < ε, and so this term will tend to 0 in probability (see, for

instance, Theorems II.5.1 and II.5.2 of [13 ]). If σ1 does not have finite second moment, this

term would require further analysis. Fortunately, in RWRE E[σ2
1] is always finite, because

in that case P (σ1 > n) ∼ e−Cn for some constant C > 0. Therefore, for RWRE the limiting

distribution for Tn is determined solely by the term

∑Nn
j=1 (Wj − E[W1])

nγ
.

It remains to identify the scaling exponent γ and the corresponding limiting distribution.

We can do so by establishing tail asymptotics for W1. For instance, in the case of RWRE

Kesten, Kozlov, and Spitzer [14 ] show that P (W1 > n) ∼ n−κ and that P (σ1 > n) ∼ e−Cn,

where κ is the unique value such that E
[(

1−α0
α0

)κ]
= 1. In fact, these tail asymptotics show

that Wi is in the domain of attraction for a κ-stable random variable (when κ ≥ 2, Wi is in

the domain of attraction for a Gaussian random variable).

To identify the stable limits when they arise, we will need some notation. Let Lα,b denote

the α-stable distribution whose characteristic function satisfies

logE
[
eiuLα,b

]
=


−b|u|α

(
1− i u

|u| tan
(

πα
2

))
for α 6= 1,

−b|u|
(
1 + 2i

π

u
|u| log |u|

)
for α = 1.

where α ∈ (0, 2] and b > 0. Note that the limiting distributions for the hitting times are

totally skewed to the right. We summarize the limiting distributions for transient RWRE

in the table below. The boundary cases where κ = 1 and κ = 2 are delicate, since RWRE

changes from nonballistic to ballistic across κ = 1 and from stable to Gaussian limiting

distributions across κ = 2. We will not give the details in this section, and instead refer the

reader to the last chapter where similar considerations are given to the boundary cases of

the “have your cookie and eat it” random walk model.
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Table 2.1. Limiting distributions for transient RWRE
Parameter Limiting Dist. for Tn Limiting Dist. for Xn

κ ∈ (0, 1) P
(

Tn

n1/κ
≤ x

)
→ Lκ,b(x) P

(
Xn

nκ
≤ x

)
→ 1− Lκ,b(x−1/κ)

κ ∈ (1, 2) P
(

Tn − n/v

n1/κ
≤ x

)
→ Lκ,b(x) P

(
Xn − nv

v1+1/κn1/κ
≤ x

)
→ 1− Lκ,b(−x)

E
[(1− α0

α0

)2]
< 1 P

(
Tn − n/v

σ
√

n
≤ x

)
→ Φ(x) P

(
Xn − nv

v3/2√n
≤ x

)
→ Φ(x)

Limiting distributions for ERW in various types of cookie environments have been estab-

lished using this same method. In the M -cookies case for instance, one has that P (W1 >

n) ∼ n−δ/2 and P (σ1 > n) ∼ n−δ. Recall that the M -cookie ERW is transient to ∞ when

δ > 1 and has positive speed when δ > 2. By the discussion above, we expect that the M -

cookie ERW has limiting distributions which are transformations of δ/2-stable distributions

when δ ∈ (1, 4). When δ ≥ 4, the M -cookie ERW admits Gaussian limiting distributions.

Basdevant and Singh [3 ] handled the case δ ∈ (1, 2) (using generating function methods

instead of the technique described above), Kosygina and Mountford [15 ] handled the case

δ ∈ (2, 4), and Kosygina and Zerner [18 ] dealt with the case δ ≥ 4. Their results are sum-

marized in the table below. For a self-contained reference, we recommend Kosygina and

Zerner’s thorough survey paper [17 ].

In the above table D(n) and Γ(n) are functions such that D(n) ∼ log n and Γ(n) ∼

1/ log n, and c is the constant such that (when δ = 2) we have

Tn

n log n
→ 1

c
,

Xn

n/ log n
→ c.

Remark: The borderline case δ = 2 (which corresponds to κ = 1 in RWRE) is especially

delicate. From the tail asymptotics on W and σ we know that the centering term for Tn

should be on the order of n log n, and therefore the centering term Xn should be on the

order of n/ log n. However, it turns out that significantly more work is required to translate

the limiting distribution for Tn into a limiting distribution for Xn in this case. To see
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Table 2.2. Limiting Distributions for transient M -cookie ERW
Parameter Limiting Dist. for Tn Limiting dist. for Xn

δ ∈ (1, 2) Tn

n2/δ
⇒ Lδ/2,b

Xn

nδ/2 ⇒
(
Lδ/2,b

)−δ/2

δ = 2∗ Tn − nD(n)/c

n
⇒ L1,b

Xn − cnΓ(n)
c2n log−2 n

⇒ −L1,b

δ ∈ (2, 4) Tn − n/v

n2/δ
⇒ Lδ/2,b

Xn − nv

v1+2/δn2/δ
⇒ −Lδ/2,b

δ = 4 Tn − n/v√
n log n

⇒ L2,b
Xn − nv

v3/2
√

n log n
⇒ −L2,b

δ > 4 Tn − n/v√
n

⇒ L2,b
Xn − nv

v3/2√n
⇒ −L2,b

the complete details of the argument worked out in the case of Markovian cookie stacks,

we refer the reader to Appendix B of [16 ]. Our proof of the limiting distribution in the

corresponding case for the “have your cookie and eat it” random walk, which follows very

closely to Appendix B of [16 ], can be found in Section 4.3.3 .

We will not give an exhaustive list of ERW limiting distribution results here, but should

point out that the limiting distributions for M -cookie ERW also arise in the case of other

ERW models, including the Markov cookie stacks model (of which periodic cookie stacks is

a special case) which was studied by Kosygina and Peterson [16 ]. The long-term behavior

of ERW with Markov cookie stacks is determined by the parameters p̄, θ, and θ̃. In short,

if p̄ 6= 1/2 the walk admits Gaussian limiting distributions, and if p̄ = 1/2 the limiting

distributions (along with recurrence/transience and ballisticity) depend on the parameters θ

and θ̃ as defined in Section 2.3.1 . In fact, the particular limiting distributions in the critical

case p̄ = 1/2 of the Markov cookies model matches those in the table above, with δ replaced

by θ.
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3. EXCITED RANDOM WALK IN FINITE-DRIFT

ENVIRONMENTS

This section contains material that has been posted as part of a preprint to arXiv.org by
the author [20 ] and submitted for publication. The preprint version can be accessed at
https://arxiv.org/abs/2103.05570 .

3.1 Description of model

In this section, we will study excited random walk in environments with deterministic,

identical cookie stacks at each site. Let p = (p1, p2, p3, . . .) be a vector of cookie strengths,

and for each x ∈ Z set ωj
x = pj. Throughout this section, we will refer to the environment

with cookie stack p at each site as the cookie environment p. We will assume that the

environment is elliptic, so that pi ∈ (0, 1) for all i ∈ N, and that the total drift

δ(p) = lim
n→∞

n∑
j=1

(2pj − 1) (3.1)

exists and is finite. In particular, p can potentially contain infinitely many non-placebo

cookies at each site, and so this model can be viewed as an extension of the M -cookies

model studied in [2 ], [15 ], [18 ]. Previously-studied ERW models that allowed for infinitely

many cookies at each site required special structure within the cookie stack: that the cookie

stacks be periodic [19 ], generated by independent copies of a Markov chain at each site [16 ],

or that all of the cookies be non-negative [25 ], i.e. ωj
x ≥ 1/2 for all x ∈ Z and j ∈ N. In

the first two cases, the parameter δ = limn→∞ E
[∑n

j=1(2pj − 1)
]

may not exist, and all three

could have δ ∈ {−∞,∞}. Before stating the main results of this chapter, we define some

additional notation. We will frequently need to refer to the total drift contained in the first

m cookies of p, which we will represent by δm :

δm =
m∑

j=1
(2pj − 1).
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Remark: In this chapter, we will use Tn to represent the trial in the sequence of Bernoulli

trials {ξj}j≥1 on which the nth failure occurs, i.e.

Tn = inf{m :
m∑

k=1
(1− ξk) = n}.

This differs from the other chapters where Tn denotes the time the walk reaches level n for

the first time. We hope that no confusion arises from this difference in notation. Before

stating our main results, we collect a few examples of finite-drift cookie environments that

we will refer to throughout the chapter.

Example 1 (Positive Cookie Environment). Zerner [25 ] studied ERW with infinitely many

positive cookies at each site. For instance, let

pj = 1
2 +

(1
2

)j+1
.

Then, we have that δ = ∑(
1
2

)j
= 1. According to [25 ], ERW in this environment is recurrent.

Example 2 (Alternating Environments). Environments where the pj are chosen such that

δ = ∑(2pj − 1) is an alternating series will be useful as examples. Suppose f : N → (0, 1)

with the property that f(n) decreases monotonically to 0 as n→∞. Let

pj = 1
2 + (−1)jf(j)

2 ,

so that we have

δ =
∞∑

j=1
(−1)jf(j).

Note that f(j) = |2pj − 1|. This class of examples will be useful because δ necessarily exists

and is finite, but |2pj − 1| can tend to 0 arbitrarily slowly.

Example 3 (Spaced Out Cookies). When constructing finite-drift cookie environments, we

can manipulate how quickly the series that defines δ converges by adding blocks of placebo
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cookies between the cookies in the stack that contain nonzero drift. For instance, we could

define

pj =



5
6 k = 1, 2, 3

1
2 −

(
1
2

)m+1
k = 44m

, m = 1, 2, . . .

1
2 otherwise

.

In this case, we will have that

δ =
∞∑

j=1
(2pj − 1) = 2 +

∞∑
m=1
−
(1

2

)m

= 1.

Note, however, that δm → 1 very slowly. Indeed, for m > 3 we have

|δm − δ| = 1 +
m∑

j=4
(2pj − 1),

and the value of ∑m
j=4(2pj − 1) remains stable for (increasingly) long periods of time. For

reference, the sum first becomes nonzero when m = 256, then next changes when m ≈ 4×109.

However, with the placebo cookies removed the series converges exponentially fast, since in

that case (for m > 3):

|δm − δ| = 1−
m∑

n=4

(1
2

)m−3
= 2−m.

We will conclude this chapter by showing that ERW in the environment of Example 3 is

transient even though the total drift at each site δ = 1.

3.2 Main Results

Our first result is a criteria for recurrence/transience of ERW in p.

Theorem 3.2.1. Let {Xn}n≥0 be an excited random walk in a deterministic, identically-piled

elliptic cookie environment p with finite total drift δ(p).

1. If δ > 1, then P (limn→∞ Xn =∞) = 1.
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2. If δ < −1, then P (limn→∞ Xn = −∞) = 1.

3. If |δ| < 1, then P (Xn = 0 infinitely often) = 1.

4. If |δ| = 1 and it holds that

∣∣∣∣∣∣
∞∑

j=n

(2pj − 1)

∣∣∣∣∣∣ = o

(
1

log n

)
, (3.2)

then P (Xn = 0 infinitely often) = 1.

We should note that Theorem 3.2.1 does not characterize the behavior of ERW in p where

δ = 1 and the tail of the series in (3.1 ) tends to 0 slower than 1
log n

. It is worthwhile to discuss

what happens in the corresponding boundary cases in similar models: for ERW in M -cookie

environments or environments with only (potentially infinitely many) positive cookies at

each site, when δ = 1 the walk is recurrent. In the cases of periodic or Markovian cookie

stacks, the parameter δ = limn→∞ E
[∑n

j=1(2pj − 1)
]

may not exist or could be ±∞. The

corresponding borderline case in those models occurs when θ = 1, where θ is the parameter

of the FBLP associated to the walk defined in Section 2.2.1 above. In fact, we will soon show

that for ERW in p, we have θ = δ(p). For ERW in periodic or Markovian cookie stacks, the

walk is recurrent when θ = 1 . In light of these facts, it would be natural to suspect that

ERW in p is always recurrent when δ = 1. We will not prove that the condition in (3.2 ) is

necessary for ERW in p to be recurrent, but we do show that it is possible for ERW in p to

be transient even when |δ| = 1.

Theorem 3.2.2. There exist cookie environments p such that |δ| = 1 and excited random

walk in p is transient.

Theorem 3.2.2 shows that ERW in p can contain behavior that was not present in

previously-studied ERW models with infinitely many cookies per site. Indeed, determing

recurrence/transience for ERW in p depends not only on the FBLP parameters µ, θ, and θ̃,

but also on the rate of convergence of the series that defines δ. We will prove Theorem 3.2.2 

by showing that ERW in the cookie environment from Example 3 is transient.
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Our main tool for proving Theorem 3.2.1 will be Theorem 2.3.4 , which was used by

Kozma, Orenshtein, and Shinkar [19 ] to prove a recurrence/transience criteria for ERW with

periodic cookie stacks and by Kosygina and Peterson [16 ] to do the same for Markovian

cookie stacks.

Before proceeding, it will be useful to recall that parameters of the FBLP that we are

interested in. If we use the notation Pn(·) := P (·|U0 = n) with expectation En[·] := E[·|U0 =

n], then we define the parameters of interest by

µ(n) = En[U1]
n

ρ(n) = En[U1 − µn]

ν(n) = Var(U1|U0 = n)
n

θ(n) = 2ρ(n)
ν(n) ,

where µ, ρ, ν, and θ denote the respective limits as n→∞, provided they exist. Recall also

that we will use a tilde to mark the parameters of the left-excursion FBLP Ũ : µ̃, ρ̃, ν̃, and

θ̃.

Remark: Note that the way we define ν(n) above is slightly different from the definition

given in Section 2.3.1 . As we will see later, defining ν(n) in this way does not make a

difference for our purposes. To see exactly why this is the case, see the proof of Lemma 2 

below.

We will show in the next section that, under the assumptions of our model, we always

have µ = 1, and are therefore always in the “critical case” of Theorem 2.3.4 . Therefore, we

will give a version of Theorem 2.3.4 specialized to that particular case.

Theorem 3.2.3 (Theorem 1.3 of [19 ]). Let {Un}n≥0 be the forward branching-like process

associated to ERW in p. Assume that µ = limn→∞
En[U1]

n
= 1, and that there is a constant C

such that for all n sufficiently large and for all ε > 0 it holds that

Pn

(∣∣∣∣U1

n
− 1

∣∣∣∣ > ε
)
≤ 2 exp

{
−Cε2n

2 + ε

}
.

Then
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1. if θ(n) < 1 + 1
log n
− α(n)n−1/2 for all sufficiently large n, where α(n) is such that

α(n)ν(n)→∞ as n→∞, then P (Un = 0 for some n) = 1, and

2. if θ(n) > 1 + 2
log n

+ α(n)n−1/2 for all sufficiently large n, where α(n) is such that

α(n)ν(n)→∞ and n→∞, then P (Un > 0 for all n) > 0.

In short, we will prove Theorem 3.2.1 by showing that the FBLPs are concentrated

about their means in the necessary way, then compute the parameters of the FBLPs and

their respective rates of convergence. We close this section by verifying that the FBLPs are

concentrated. The proof is taken directly from [20 ].

Theorem 3.2.4 (Concentration of FBLP). Let Un be the forward branching-like process

associated to ERW in p. Then

Pn

(∣∣∣∣U1

n
− 1

∣∣∣∣) ≤ 2 exp
{
−C1ε

2n

2 + ε

}
. (3.3)

Proof. First, we note that

Pn(U1 > m) = P

(
m+n∑
i=1

ξi > m

)
,

where {ξi}i≥1 are the “coin-toss” Bernoulli random variables, ξi ∼ Ber(pi). By centering, we

see that

P

(
m+n∑
i=1

ξi > m

)
= P

(
m+n∑
i=1

(ξi − pi) > m−
m+n∑
i=1

pi

)

= P

(
m+n∑
i=1

(ξi − pi) >
m− n

2 − 1
2

m+n∑
i=1

(2pi − 1)
)

= P

(
m+n∑
i=1

(ξi − pi) >
m− n− δm+n

2

)
.

47



Note that when m > n and is sufficiently large, (m− n− δn+m/2 > 0 because the sequence

{δk}k≥1 is bounded. Applying Hoeffding’s inequality yields

Pn(U1 > m) = P

(
m+n∑
i=1

(ξi − pi) >
m− n− δm+n

2

)

≤ exp
{
−((m− n)− δm+n)2

2(m + n)

}

= exp
{
−

(m− n)2 − 2(m− n)δm+n + δ2
m+n

2(m + n)

}

≤ exp
{
− (m− n)2

2(m + n)

}
exp

{
(m− n)δm+n

m + n

}
(3.4)

as long as m is large enough. A corresponding bound on Pn(U1 < m) can be obtained in a

similar way. We can use the bound in (3.4 ) to obtain the necessary concentration bound:

Pn

(∣∣∣∣U1

n
− 1

∣∣∣∣ > ε
)

= Pn (|U1 − n| > nε)

= Pn (U1 > n(1 + ε)) + Pn (U1 < n(1− ε))

≤ Pn (U1 > bn(1 + ε)c) + Pn (U1 < dn(1− ε)e)

≤ 2 exp
{
− C2n

2ε2

(2 + ε)n

}
exp

{
C3εδb(2+ε)nc

2 + ε

}

≤ 2 exp
{
−C4nε2

2 + ε

}
,

where the constant C4 depends only on the sequence {δk}k≥1.

As a final note, observe that since conditional on the event {U0 = n}

Tn := Tn = inf{m :
m∑

k=1
(1− ξk) = n} = U1 + n,

since in that case U1 counts the number of successes in {ξj}j≥1 before the nth failure. There-

fore, we can use Theorem 3.2.4 to put a concentration bound on Tn as well:

P
(∣∣∣∣Tn

n
− 2

∣∣∣∣ > ε
)
≤ 2 exp

{
−C4ε

2n

2 + ε

}
. (3.5)
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3.3 Calculating Parameters of the Forward Branching-Like Process

We will now compute the parameters of the forward branching-like process and establish

bounds on their rates of convergence where needed. Before we do so, note that by symmetry

the left-excursion FBLP {Ũn}n≥0 for ERW in p has the same distribution as {Un}n≥0 in

the reflected environment 1 − p = (1− p1, 1− p2, . . .). Therefore, it will suffice to compute

the parameters µ, ρ, ν, and θ, then use this symmetry to obtain the parameters of Ũ .

Furthermore, any rates of convergence we establish for the parameters of U will carry over

to Ũ due to this symmetry. With this in mind, we will compute the parameters of U .

Theorem 3.3.1 (Parameters of FBLP). Let p be a cookie environment with finite total drift

δ(p), and let {Un}n≥0 be the forward branching-like process associated to the excited random

walk in p. Then

1. We have µ = 1, ρ = δ(p), ν = 2, and θ = δ(p).

2. We have |ν(n) = 2| = O
(
n−1/2 log4 n + bn log4 bn

)
, where bn = 1

4n

∑n
j=1(2pj − 1)2.

Under the assumption in (3.2 ), we have that |ν(n)− 2| = o
(

1
log n

)
.

3. Under the assumption in (3.2 ), |ρ(n)− δ| = o
(

1
log n

)
.

4. Under the assumption in (3.2 ), |θ(n)− δ| = o
(

1
log n

)
.

Before proving Theorem 3.3.1 , we will show how to prove the recurrence/transience

criteria for ERW in finite drift environments. Our proof is taken directly from [20 ].

Proof of Theorem 3.2.1 assuming Theorem 3.3.1 . Let p be a cookie environment with finite

total drift δ(p). Let {Un}n≥0 and {Ũ}n≥0 be the forward branching-like processes associated

to the ERW in p.

Intuitively, while the branching-like process U is positive the ERW takes an excursion

to the right, and when the branching-like process dies out the ERW returns to 0. In a

similar way, Ũ tracks left excursions of the ERW (by symmetry, a left excursion in the cookie

environment p corresponds to a right excursion in the “reflected cookie environment” 1 − p).

We showed in Theorem 3.2.4 that both the branching-like processes are concentrated in the
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way that we need to apply Theorem 3.2.3 , and a quick calculation shows that δ(1 − p) =

−δ(p). We consider each of the cases described in Theorem 3.2.1 in turn:

• Suppose that δ(p) > 1, and therefore δ(1 − p) < −1. By Theorem 3.2.3 , P1(Un >

0 for all n) > 0 and P̃1(Ũn = 0 for some n) = 1. Therefore the ERW in p is transient

to ∞ a.s. by Theorem 2.3.3 .

• Similarly, when δ(p) < −1, we have δ(1 − p) > 1. It then follows from Theorem 3.2.3 

that we have P1(Un = 0 for some n) = 1 and P̃1(Ũn > 0 for all n) > 0. Therefore ERW

in p is transient to −∞ a.s. in this case.

• In the case that δ(p) ∈ (−1, 1), we also have that δ(1 − p) ∈ (−1, 1). By Theorem

3.2.3 , we see that P1(Un = 0 for some n) = P̃1(Ũn = 0 for some n) = 1, and so in this

case the ERW in p is recurrent a.s.

• In the critical case where δ = ±1, extra care is needed. In this case, we must rely on

the fact that the assumption in (3.2 ) is sufficient to guarantee that part I. of Theorem

3.2.3 is satisfied. Under that assumption, we can apply the theorem to show that the

ERW in p is recurrent a.s. when δ = ±1.

To complete our proof of Theorem 3.2.1 , we only need to compute the parameters of the

FBLPs and determine their rates of convergence.

3.3.1 Computing ρ and µ

Conditional on {U0 = n}, we can express U1 as

U1 =
Tn∑

k=1
ξk,
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where Tn = inf{k : ∑m
k=1(1 − ξk) = n} is the trial in the sequence {ξj}j≥1 on which the nth

failure occurs. We will now related Tn and U1 in two different ways. First, we have that

En[U1] = E
[

Tn∑
k=1

pk

]
= E

[
1
2

Tn∑
k=1

(2pk − 1) + Tn

2

]
= 1

2 (E [δTn ] + E[Tn]) ,

where the first equality follows from Lemma 7 , a version of Wald’s identity (see Section 3.5 

below for details). We then have that E[Tn] = 2En[U1]−E[δTn ]. To relate Tn and U1 another

way, recall that on the event {U0 = n}, Tn = U1 + n, and so E[Tn] = En[U1] + n. Equating

these expressions and solving for En[U1] gives

En[U1] = n + E[δTn ],

and therefore

ρ = lim
n→∞

En[U1 − n] = lim
n→∞

En[δTn ] = δ(p),

where for the final equality we have used the fact that Tn ≥ n, the sequence {δk}k≥1 is

bounded, and the dominated convergence theorem. Using the assumption in (3.2 ), we can

bound the rate at which ρn → ρ:

|ρ(n)− ρ| = |E[δTn − δ]| =

∣∣∣∣∣∣E
 ∞∑

j=Tn+1
(2pj − 1)

∣∣∣∣∣∣ ≤ sup
m≥n

∣∣∣∣∣∣
∞∑

j=m+1
(2pj − 1)

∣∣∣∣∣∣ = o

(
1

log n

)
.

We can also use this expression to compute µ:

µ = lim
n→∞

E[U1]
n

= 1.

We now turn our attention to calculating ν, which will prove to be much more involved.

3.3.2 Computing ν

We begin by defining two additional parameters associated to the cookie environment p:

the average cookie strength contained in the first n cookies given by p̄n = 1
n

∑n
j=1 and the
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“average sample variance” in cookie strengths experienced by the walker in the first n visits

to a site given by An = 1
n

∑n
j=1 pj(1− pj). Since we assume that δ(p) exists and is finite, we

expect that p̄n → 1/2 and An → 1/4. The next lemma shows that this is indeed the case.

Lemma 1. Let p be a deterministic, identically-piled elliptic cookie environment such that

δ(p) exists and is finite, and let p̄n = 1
n

∑n
j=1 pj and An = 1

n

∑n
j=1 pj(1− pj). Then

(a) p̄n → 1
2 as n → ∞, and there exists a constant C5 such that |p̄n − 1

2 | ≤
C5
n

for all

n ∈ N.

(b) An → 1
4 as n→∞.

Proof of Lemma 1 . To prove part (a), we observe that

∣∣∣∣p̄n −
1
2

∣∣∣∣ = 1
n

∣∣∣∣∣∣
n∑

j=1

(
pj −

1
2

)∣∣∣∣∣∣ = |δn|
2n

.

The fact that {δk}k≥1 is convergent, hence bounded, proves the claim. Similar considerations

take care of part (b):

∣∣∣∣An −
1
4

∣∣∣∣ = 1
n

∣∣∣∣∣∣
n∑

j=1
(pj(1− pj)− 1/4)

∣∣∣∣∣∣ = 1
n

∣∣∣∣∣∣
n∑

j=1

(
pj −

1
2

)(1
2 − pj

)∣∣∣∣∣∣ = 1
4n

∣∣∣∣∣∣
n∑

j=1
(2pj − 1)2

∣∣∣∣∣∣ .
We assume that ∑(2pj− 1) converges, and so (2pj− 1)→ 0 as j→∞. Therefore ∑n

j=1(2pj−

1)2 = o(n), and so An → 1
4 as n→∞.

Remark: Note that although we have good control over how fast p̄n → 1
2 , we could not

expect the same for An. For instance, if we consider Example 2 with

pj = 1
2 + (−1)j

2
√

j + 1 ,

then clearly δ(p) = ∑∞
j=1(−1)j(j + 1)−1/2 converges since it is an alternating series and

(j + 1)−1/2 ↘ 0. However,

∣∣∣∣An −
1
4

∣∣∣∣ = 1
4n

n∑
j=1

1
j + 1 ≈

log(n)
4n

.
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As we shall see below, this issue crops up when we attempt to calculate ν.

We will now introduce our main tool for calculating ν, which is a modified version of

Lemma 2.5 of [19 ].

Lemma 2 (Modified from Lemma 2.5 of [19 ]). Let p be a deterministic, identically-piled

elliptic cookie environment such that δ(p) exists and is finite, and let bn = |An − 1
4 |. Then

ν = lim
n→∞

ν(n) = lim
n→∞

1
n

Var(U1|U0 = n) = 2.

Furthermore, we can bound the rate of convergence:

|ν(n)− 2| =
∣∣∣∣ 1nVar(U1|U0 = n)− 2

∣∣∣∣ = O
(

log4 n√
n

+ bn log4 bn

)
,

where the constant implied by O(·) depends only on the cookie environment p.

Remark: Note that n−1/2 log4 n will be the dominant term when bn � n−1/2 (in the example

given above, for instance), but the other term will dominate when bn � n−1/2. Consider

Example 2 where the cookie strengths decay to 1/2 very slowly, say with

pj = 1
2 +

(−1)j
√

(j + 1)2/3 − j2/3

2 .

Then we will have bn = 1
4n

∑n
j=1

(
(j + 1)2/3 − j2/3

)
= (n+1)2/3

4n
� n−1/2.

We will now prove Lemma 2 . The proof we present below is taken directly from [20 ],

though we make the necessary adjustments to notation and include a few additional details.

Proof of Lemma 2 . The proof is the same in spirit as the proof of Lemma 2.5 in [19 ]. The

key difference comes in obtaining the rate of convergence for 1
n
En [(U1 − n)2], and we will

point out adjustments that need to be made along the way. First, we can use the fact that

En[U1] = n + E[δTn ] to see that

Var(U1|U0 = n) = E
[
(U1 − n)2

]
− E[δTn ]2,
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and so there exists a constant C such that 1
n
|Var(U1|U0 = n)− E[(U1 − n)2]| ≤ C

n
. It will

therefore suffice to work with E[(U1 − n)2]. We will start by rewriting this quantity:

En

[
(U1 − n)2

]
=

∞∑
t=0

(2t + 1)Pn (|U1 − n| > t)

= 2
∞∑

t=0
t · Pn (|U1 − n| > t) +

∞∑
t=0

Pn(|U1 − n|) > t

= 2
∞∑

t=0
t · Pn(|U1 − n| > t) + En [|U1 − n|] .

Due to the concentration bound in Theorem 3.2.4 , En[|U1− n|] = O(
√

n), and so 1
n
En[|U1−

n|] = O(n−1/2). Therefore, to prove our claim we only need to bound

∣∣∣∣∣ 1n
∞∑

t=0
t · Pn(|U1 − n| > t)− 1

∣∣∣∣∣ .
In fact, we will show that for any sequence a = an such that an

n→∞−→ ∞ and an ≤
√

n (for n

sufficiently large) that

∣∣∣∣∣ 1n
∞∑

t=0
t · Pn(|U1 − n| > t)− 1

∣∣∣∣∣ = O
(

a4n−1/2 +
∣∣∣∣An −

1
4

∣∣∣∣ a2 + e−Ca
)

,

then we will choose an appropriate sequence an to obtain the conclusion. To obtain the

bound we need, we will rewrite the events involving U1 in terms of the number of failures

that occur in the coin tosses that determine the value of U1. Let Fn be the number of failures

in this sequence of coin tosses after the nth toss:

Fn :=
n∑

j=1
(1− ξj) .

Then we have that

∣∣∣∣∣ 1n
∞∑

t=0
t · Pn(|U1 − n| > t)− 1

∣∣∣∣∣ =
∣∣∣∣∣ 1n

∞∑
t=0

t (Pn(U1 > n + t) + P (U1 < n− t))− 1
∣∣∣∣∣

=
∣∣∣∣∣ 1n

∞∑
t=0

t · (P (F2n+t < n) + P (F2n−t−1 ≥ n))− 1
∣∣∣∣∣ .
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As in the periodic cookies case, we divide the sum into its “head” and “tail.” Let

Hn(a) =
ba

√
nc∑

t=0
t · (P (F2n+t < n) + P (F2n−t−1 ≥ n))

Tn(a) =
∞∑

t=ba
√

nc
t · (P (F2n+t < n) + P (F2n−t−1 ≥ n)) ,

where a = an can be any sequence which grows slowly with n (again, we will specify an

appropriate choice of an at the end of the proof). We can handle the tail Tn(a) by using the

following result from the periodic cookies setting.

Lemma 3 (Claim 2.8 of [19 ]). Let a = an such that limn→∞ an =∞. Then for all sufficiently

large n ∈ N,

1
n

Tn(a) ≤ Ce−C′a.

The proof of Lemma 3 is the same as the proof of Claim 2.8 in [19 ] in our setting, but

we include it for completeness.

Proof of Lemma 3 . By the concentration bound in Theorem 3.2.4 , we have

Tn(a) =
∞∑

t=ba
√

nc+1
t · Pn[|U1 − n| > t] ≤

∞∑
i=a

b(i+1)c
√

n∑
t=bi

√
nc+1

t · exp
(
− Ct2

2n + t

)

Each of the terms in the inner sum is bounded by 4i
√

n exp
(
− Ci2n

2n+i
√

n

)
≤ 4i
√

n exp (−Ci) for

some constant C. Then

Tn(a) ≤
∞∑

i=a

√
n · 4i

√
n · exp (−Ci) ≤ 4n

∞∑
i=a

i · exp (−Ci) ≤ Cn exp (−Ca) ,

completing our proof of the claim.

We now turn our attention to the head of the sum Hn(a). The main thrust of the

argument is that Hn(a) can be approximated by a sum over the standard normal cdf Φ.
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Lemma 4 (Claim 2.6 of [19 ]). Let a > 0 and let n ∈ N be such that a ≤
√

n. Then

∣∣∣∣∣∣ 1nHn(a)− 1
n

ba
√

nc∑
t=0

2t · Φ
(
−t√
8An

)∣∣∣∣∣∣ ≤ C

(
a4
√

n
+
∣∣∣∣An −

1
4

∣∣∣∣ a2
)

Lemma 5 (Claim 2.7 of [19 ]). Let a = an such that limn→∞ an =∞. Then

lim
n→∞

1
n

ba
√

nc∑
t=0

2t · Φ
(
−t√
8An

)
= 1,

where Φ is the standard normal cdf. Moreover,

1
n

ba
√

nc∑
t=0

2t · Φ
(
−t√
8An

)
= 1 +O

(
a√
n

+ exp (−Ca)
)

.

The proof of Lemma 5 is the same as the proof of Claim 2.7 in [19 ] because it does not

depend on the specifics of the model, and therefore we refer the curious reader there.

Proof of Lemma 4 . Let q̄n = 1
n

∑n
j=1(1 − pj), let σ2

j = E
[
((1− ξj)− (1− pj))2

]
= pj(1 − pj),

and let ρj = E
[∣∣∣∣((1− ξj)− (1− pj)

)3
∣∣∣∣] for all j ∈ N. By the Berry-Esseen theorem, there is

a constant C such that for all α ∈ R,

∣∣∣∣∣P
(

Fn − nq̄n√
nAn

≤ α

)
− Φ(α)

∣∣∣∣∣ ≤ C ·
(

n∑
i=1

σ2
i

)−3/2

·
(

n∑
i=1

ρi

)
,

where Φ is the standard normal cdf. Since ρi ≤ 1 for each i and An is bounded, we have that

(
n∑

i=1
σ2

i

)−3/2

·
(

n∑
i=1

ρi

)
≤ (nAn)−3/2 · n ≤ Cn−1/2.

Therefore

P

(
Fn − nq̄n√

nAn

≤ α

)
= Φ(α) +O(n−1/2). (3.6)

We will now prove that we can replace An and q̄n by their respective limits 1
4 and 1

2 . The

following lemma shows that we can do just that, and is analogous to Claim 2.9 in [19 ].

56



Lemma 6.
∣∣∣∣∣∣P
(

Fn − nq̄n√
nAn

≤ α

)
− P

 Fn − 1
2n√

n(1/4)
≤ α

∣∣∣∣∣∣ ≤ Cn−1/2 + C ′
∣∣∣∣An −

1
4

∣∣∣∣ .
Proof of Lemma 6 . The proof follows the same technique as the proof of Claim 2.9 in [19 ],

but we must keep track of the error in terms of bn = |An − 1/4|:

∣∣∣∣∣P
(

Fn − nq̄n√
nAn

≤ α

)
− P

 Fn − 1
2n√

n(1/4)
≤ α

∣∣∣∣∣∣
=

∣∣∣∣∣∣P
(

Fn − nq̄n√
nAn

≤ α

)
− P

Fn − nq̄n√
nAn

≤
√

(1/4)
An

α +
n
(

1
2 − q̄n

)
√

nAn

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Φ(α)− Φ
√(1/4)

An

α +
n
(

1
2 − q̄n

)
√

nAn

∣∣∣∣∣∣+ Cn−1/2,

where this last inequality follows from (3.6 ). Using the fact that Φ is 1√
2π
−Lipschitz, we can

bound this expression by

1√
2π

∣∣∣∣∣∣α−
√(1/4)

An

α +
n
(

1
2 − q̄n

)
√

nAn

∣∣∣∣∣∣+ Cn−1/2 ≤ 1√
2π

α

∣∣∣∣∣∣1−
√

(1/4)
An

∣∣∣∣∣∣+
n
∣∣∣12 − q̄n

∣∣∣
√

nAn

+ Cn−1/2.

By Lemma 1 , q̄n = 1
2 +O(1/n), and so we can bound n

(
1
2 − q̄n

)
by a constant to obtain

1√
2π

α

∣∣∣∣∣∣1−
√

(1/4)
An

∣∣∣∣∣∣+
n
∣∣∣12 − q̄n

∣∣∣
√

nAn

+ Cn−1/2 ≤ 1√
2π

α

∣∣∣∣∣∣1−
√

(1/4)
An

∣∣∣∣∣∣+ C√
nAn

+ Cn−1/2

∗= 1√
2π

α

∣∣∣An − 1
4

∣∣∣
|
√

An

(√
An + 1

4

)
|

+ C√
nAn

+ Cn−1/2,

where the starred equality follows from multiplying the numerator and denominator of the

first term by
√

An +
√

1
4 . Recall that An → 1

4 , and moreover An = 1
n

∑n
j=1 pj(1 − pj) ≥
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(minj pj(1− pj)) > 0 because we assume that pj → 1
2 and that pj /∈ {0, 1} for all j ∈ N.

Therefore the term above is O
(
|An − 1

4 |+ n−1/2
)
, and so we have established that

1√
2π

∣∣∣∣∣∣α−
√ A

An

α +
n
(

1
2 − q̄n

)
√

nAn

∣∣∣∣∣∣+ Cn−1/2 ≤ Cn−1/2 + C
∣∣∣∣An −

1
4

∣∣∣∣ ,
which completes the proof of Lemma 6 .

We now have the tools that we need to finish the proof of Lemma 4 . By Lemma 6 , we

have that

Hn(a) =
ba

√
nc∑

t=0
t

Φ
 −t

2
√

(2n + t)(1/4)

+ 1− Φ
 t + 1

2
√

(2n− t− 1)(1/4)

+O
(

n−1/2 +
∣∣∣∣An −

1
4

∣∣∣∣)
 .

Again using the fact that Φ is 1√
2π
−Lipschitz yields

∣∣∣∣∣∣Φ
 −t

2
√

(2n + t)(1/4)

− Φ
 −t√

8n(1/4)

∣∣∣∣∣∣ ≤ 1√
2π

∣∣∣∣∣∣ −t√
(2n + t)

− −t√
2n

∣∣∣∣∣∣
= 1√

2π

∣∣∣∣∣∣ t2√
2n(2n + t)(

√
2n + t +

√
2n)

∣∣∣∣∣∣
≤ Ct2

n3/2 .

The other term can be bounded in a similar way. Therefore,

∣∣∣∣∣∣Hn(a)−
ba

√
nc∑

t=0
t

[
Φ
(
−t√
2n

)
+ 1− Φ

(
t√
2n

)]∣∣∣∣∣∣ ≤ C
ba

√
nc∑

t=0

(
t3

n3/2 + tn−1/2 +
∣∣∣∣An −

1
4

∣∣∣∣ t
)

≤ C
(

a4n1/2 + a2n1/2 +
∣∣∣∣An −

1
4

∣∣∣∣ a2n
)

.

Therefore, for some constant C independent of n, we have

1
n

∣∣∣∣∣∣Hn(a)−
ba

√
nc∑

t=0
t

[
2Φ

(
−t√
2n

)]∣∣∣∣∣∣ ≤ C
(

a4n−1/2 +
∣∣∣∣An −

1
4

∣∣∣∣ a2
)

,

thereby proving Lemma 4 .
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We can now complete our proof by combining the error estimates for Hn(a) and Tn(a)

given above. We see that

∣∣∣∣∣ 1n
∞∑

t=0
t · Pn (|U1 − n| > t)− 1

∣∣∣∣∣ =
∣∣∣∣ 1n (Hn(a) + Tn(a))− 1

∣∣∣∣
≤
∣∣∣∣ 1nHn(a)− 1

∣∣∣∣+ 1
n
|Tn(a)|

= O
(

a4n−1/2 +
∣∣∣∣An −

1
4

∣∣∣∣ a2 + e−Ca
)

.

To finish our proof that limn→∞ En[(U1 − n)2] = 2, we only need to choose an appropriate

sequence an. In the case that bn ≤ n−1/2, we can take a(n) = C log n to obtain a rate of

convergence of O
(

log4 n√
n

)
, because we have that

bn log4 bn ≤
(log n−1/2)4
√

n
= O

(
log4 n√

n

)
.

On the other hand, if bn ≥ n−1/2, we will take a(n) = − 1
C

log (bn) to obtain a rate of

convergence of O
(
bn log4 bn

)
. Finally, note that in this case bn log4 bn is the dominant term,

since

log4 n√
n

= 16(log n−1/2)4
√

n
≤ 16bn(log bn)4 = O

(
bn log4 bn

)
.

Combining the two cases, we see that |ν(n)− 2| = O
(
n−1/2 log4 n + bn log4 bn

)
.

Remark: As an immediate consequence of Lemma 2 and the calcuation of ρ in Section

3.3.1 , we have that

θ = lim
n→∞

θ(n) = lim
n→∞

2ρ(n)
ν(n) = δ(p).
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Furthermore,

|θ(n)− δ| =
∣∣∣∣∣2ρ(n)

ν(n) − δ

∣∣∣∣∣
=
∣∣∣∣∣2ρ(n)− ρ(n)ν(n) + ρ(n)ν(n)− ν(n)δ

ν(n)

∣∣∣∣∣
≤ ρ(n)

ν(n) |ν(n)− 2|+ |ρ(n)− δ| .

Therefore, the rate at which θ(n)→ θ depends on the rate at which ρ(n)→ ρ and ν(n)→ ν.

In Lemma 2 , we showed that

|ν(n)− n| = O
(

log4 n√
n

+ bn log4 bn

)
, (3.7)

where bn = 1
4n

∑n
j=1(2pj − 1)2. Therefore, the rate of convergence for θ(n) depends on the

rate at which pj → 1/2 (recalling Example 2 , this can be arbitrarily slowly). Also recall that

|ρ(n)− ρ| =

∣∣∣∣∣∣
∞∑

j=Tn+1

(2pj − 1)

∣∣∣∣∣∣ ≤ sup
m≥n

∣∣∣∣∣∣
∞∑

j=m+1
(2pj − 1)

∣∣∣∣∣∣ ,
and so the rate of convergence for θ(n) also relies on how quickly the tail of the δ series

converges to 0 (recalling Example 3 , this can also be arbitrarily slowly). If we wish to

apply Theorem 3.2.3 to prove recurrence/transience of ERW, these two facts necessitate an

assumption like the one in (3.2 ). We will now show that this assumption is sufficient to apply

Theorem 3.2.3 . We have already seen that under that assumption |ρ(n)− δ| = o
(

1
log n

)
. To

bound |ν(n)− 2|, note that if bn ≤ n−1/2 then the term n−1/2 log4 n will dominate (3.7 ), and

so |ν(n)− 2| = O
(

log4 n√
n

)
= o

(
1

log n

)
. If instead we have that bn ≥ n−1/2, then bn log4 bn will

dominate (3.7 ). We claim that this bound is also o
(

1
log n

)
. To see this, note that since we

assume ∑∞
j=n(2pj − 1) = o

(
1

log n

)
, then for all ε > 0 there exists nε such that

∣∣∣∣∣∣
∞∑

j=n

(2pj − 1)

∣∣∣∣∣∣ <
ε

log n
, ∀n ≥ nε.
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Then for any ε > 0 we will have that

|2pn − 1| =

∣∣∣∣∣∣
∞∑

j=n

(2pj − 1) =
∞∑

j=n−1
(2pj − 1)

∣∣∣∣∣∣ <
2ε

log n
∀n ≥ nε,

and so |2pj − 1| = o
(

1
log n

)
. Because bn = 1

4
∑n

j=1(2pj − 1)2, this implies that

bn = O
(

1
log2 n

)
,

and plugging this in to (3.7 ) shows that

|ν(n)− 2| = O
(

(log(log n))4

(log n)2

)
= o

(
1

log n

)
.

Consequently, |θ(n)− δ| = o
(

1
log n

)
.

3.4 Example of Transient ERW with δ = 1

In this section we will prove Theorem 3.2.2 by showing that ERW in the cookie environ-

ment in Example 3 is transient. We will give the same example that was given in [20 ]. Let

p = (p1, p2, . . .), where pj is given by

pj =



5
6 k = 1, 2, 3

1
2 −

(
1
2

)m+1
k = 44m

, m = 1, 2, . . .

1
2 otherwise

.

By Theorem 3.3.1 , we have that ν = 2 and ρ = θ = δ(p). Recall that for this environment

δ(p) = 1. Intuitively, after the walker visits a site in the environment p three times, the

amount of drift they have consumed is already greater than 1. Subsequent visits to the site

give either no drift or a slight negative drift, so that the total drift experienced by the walker

slowly decreases to 1. Since the total drift the walker experiences at a site is only 1 “in the

limit,” we may expect that ERW in p behaves like an ERW with δ > 1.
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We will show that

θ(n)− 1 ≥ 2
log n

for all n sufficiently large, and therefore by Theorem 3.2.3 ERW in p is transient. First note

that

θ(n)− 1 = ρ(n)
ν(n) (2− ν(n)) + (ρ(n)− 1) .

To handle the term with ν(n), note that

bn =
∣∣∣∣An −

1
4

∣∣∣∣ = 1
4n

n∑
j=1

(2pj − 1)2 ≤ C

n

because ∑(2pj− 1)2 converges, and so by Theorem 3.3.1 we have |ν(n)− 2| = O
(

log4 n√
n

)
. We

will now find an expression for ρ(n)− 1. Recall that ρ(n) = E[δTn ], and so for n > 3 we have

ρ(n)− 1 = E [δTn ]− 1 n>3= E
[
2 +

Tn∑
k=4

]
− 1 = 1 + E

[
Tn∑

k=4
(2pk − 1)

]
.

Now, let Cp(x) = #{j ≤ x : pj < 1/2} be the number of negative drift cookies in the cookie

stack p up to cookie x. We can then write

1 + E
[

Tn∑
k=4

(2pk − 1)
]

= 1 + E

Cp(Tn)∑
m=1

−
(1

2

)m
 = E

[(1
2

)Cp(Tn)]
.

Then we have that

E
[(1

2

)Cp(Tn)]
≥
(1

2

)log4(log n)
P (Cp(Tn) ≤ log4(log n)) = 1√

log n
P (Cp(Tn) ≤ log4(log n)) .

Due to our choice of environment, the number of negative drift cookies in the first 3n cookies

is no more than log4(log n). Therefore

1√
log n

P (Cp(Tn) ≤ log4(log n)) ≥ 1√
log n

P (Tn ≤ 3n) ≥ 1− e−Cn

√
log n

,
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where the last inequality follows from the concentration bound for Tn in Theorem 3.2.4 .

Combining this bound with the one for the ν(n) term, we see that for sufficiently large n

θ(n)− 1 ≥ 1− e−Cn

√
log n

+O
(

log4 n√
n

)
≥ 2

log n
.

By Theorem 3.2.3 , ERW in p is a.s. transient to ∞.

Remark: We close this section with a comparison between our model and previously studied

ERW models with infinitely many non-placebo cookies per site. In the Markovian cookie

stacks model, Kosygina and Peterson [16 ] showed that

|ρ(n)− ρ| ≤ Ce−C′n

|ν(n)− ν| ≤ C ′′

n
.

Note that the bound on |ν(n) − ν| given for the periodic case (a special case of Markovian

cookie stacks) in [19 ] is of the order n−1/2 log4(n). These bounds help explain why critical

ERW can be transient in finite-drift environments but not in Markovian cookie stack envi-

ronments: environments with Markovian cookie stacks will always satisfy the first part of

Theorem 2.3.4 , essentially because under the assumptions in [16 ] Markov chains converge

to their stationary distribution exponentially fast (and this is reflected in the rate at which

ρ(n) → ρ). However, we are able to construct finite-drift environments where ρ(n) → ρ as

slowly as we like.

3.5 Additional Results Used

Lemma 7. Let U1 denote the number of offspring in the first generation of the forward

branching-like process associated to excited random walk in p, and let Tn be the trial in the

sequence {ξj}j≥1 on which the nth failure occurs. Then

En[U1] = E

 Tn∑
j=1

ξj

 = E

 Tn∑
j=1

pj

 .
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Proof. Our proof is taken directly from [20 ]. The statement is essentially a version of Wald’s

identity, and is proved in a similar way. First, we write

E

 Tn∑
j=1

ξk

 =
∞∑

j=1
E
[
ξj1{Tn≥j}

]
. (3.8)

Because the event {Tn ≥ j} = {Tn > j−1} depends only on ξ1, . . . , ξj, we have E
[
ξj1{Tn≥j}

]
=

pjP (Tn ≥ j). Using this fact, we can rewrite the right-hand side of (3.8 ) as

∞∑
j=1

pjP (Tn ≥ j) =
∞∑

j=1
pjE[1{Tn≥j}] = E

 ∞∑
j=1

pj1{Tn≥j}

 = E

 Tn∑
j=1

pj

 ,

thereby proving the claim.
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4. LIMITING DISTRIBUTIONS OF TRANSIENT “HAVE

YOUR COOKIE AND EAT IT” RANDOM WALK

In this chapter, we will study random walk in “have your cookie and eat it” environments

(HYCRW) proposed by Pinsky [23 ]. We will begin with a description of the model. For each

site x ∈ Z, we place a single cookie of strength p at each site. Then, a walker is released at

0. Whenever the walker is at a site x with a cookie present, they choose to step to x + 1

with probability p and to x − 1 with probability 1 − p. If the walker decides to step left

to x − 1, they consume the cookie at x before taking the step, but the walker does not

consume the cookie at x if they decide to step right. At sites with no cookie, the walker

takes simple symmetric steps. This transition mechanism differs from ERW because after

the walker arrives at a site, they first choose where to step next before (potentially) eating

the cookie at that site. To keep track of this difference, it may be helpful to remember that

in excited random walk, the “excitement” comes from eating cookies, but in the “have your

cookie and eat it” random walk the excitement comes from having a cookie available.

Remark: At first blush, it may seem that HYCRW is simply ERW with Geo(1− p) cookies

of strength p at each site. However, the HYCRW model has an additional level of self-

interaction: the effective number of cookies at each site is not fixed ahead of time, but

depends on the path that the walker takes. In spite of this, our main result can be explained

at a heuristic level by comparing these two models (see remark below Theorem 4.2.1 ).

Our main task for this chapter will be to identify the limiting distributions for transient

HYCRW. We will begin by reviewing some of the necessary background results that are due

to Pinsky [23 ].

4.1 Review of Pinsky’s HYCRW Results

In the following results, we use P1(·) to denote the law of HYCRW started from 1, i.e.

with P (X0 = 1) = 1. We note that many of Pinsky’s results hold in more generality, for
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instance, with random cookie strengths at each site or for deterministic, spatially periodic

“have your cookie and eat it” environments. We will state these results only for the HYCRW

with a cookie of deterministic strength p at each site, since that is the model that our main

result pertains to.

Theorem 4.1.1 (Lemma 1 of [23 ]). Let {Xn}n≥0 be a random walk in a “have your cookie

and eat it” environment with p ∈ [1/2, 1). Then

1. if P1(T0 =∞) = 0, the walk is recurrent, i.e. P (Xn visits each site i.o.) = 1.

2. if P1(T0 =∞) > 0, the walk is transient, i.e. P (limn→∞ Xn =∞) = 1.

Theorem 4.1.2 (Recurrence/Transience of HYCRW, Theorem 1 of [23 ]). Let {Xn}n≥0 be

a random walk in a “have your cookie and eat it” environment with p ∈ [1/2, 1]. Then

1. if p ≤ 2/3, P1(T0 =∞) = 0, and so the walk is recurrent.

2. if p > 2/3, then

P1(T0 =∞) ∈
(

3p− 2
p

,
3p− 2

p(2p− 1)

)
,

and so the walk is transient.

Theorem 4.1.3 (Ballisticity of HYCRW, Theorem 3 of [23 ]). Let {Xn}n≥0 be a random

walk in a “have your cookie and eat it” environment. Then

1. if p < 3/4, then Xn

n
→ 0 almost surely.

2. if p > 3/4, then limn→∞
Xn

n
≥ 4p− 3, with equality if p ∈ (4/5, 1].

Remark: In [23 ], Pinsky states that the second part of Theorem 4.1.3 holds for p ∈

(10/11, 1]. This seems to be due to a slight error in arithmetic. If one carefully carries

out the calculations in the proof of Theorem 4.1.3 from [23 ], one obtains the version of the

theorem listed above. Pinsky conjectures in [23 ] that equality holds all the way down to

p = 3/4, which would demonstrate non-ballisticity in the borderline case p = 3/4. Theorem

4.2.1 below implies that when p = 3/4, Xn

n
→ 0 in probability as n→∞.
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4.2 Main Result

Theorem 4.2.1 (Limiting Distributions for Transient HYCRW). Let {Xn}n≥0 be a random

walk in a “have your cookie and eat it” environment, suppose p ∈ (2/3, 1) so that the walk

is transient, and let Tn = inf{t : Xt = n} be the corresponding hitting times. Finally, let

α = 2p−1
1−p

. If p ∈
(

2
3 , 3

4

)
, then for some constant b and for all x ∈ R,

P
(

Tn

n2/α
≤ x

)
→ Lα/2,b(x), P

(
Xn

nα/2 ≤ x
)
→ 1− Lα/2,b

(
x−2/α

)
.

If p = 3/4, then for some b and for all x ∈ R

P

(
Tn − nD(n)/c

n
≤ x

)
→ L1,b(x), P

(
Xn − cnΓ(n)
c2n log−2 n

≤ x

)
→ 1− L(−x2/a),

where D(n) ∼ log n and Γ(n) ∼ log−1 n. Furthermore, there exists a constant c such that

Tn

log n
→ 1

c
and Xn

n/ log n
→ c as n→∞.

If p ∈
(

3
4 , 5

6

)
, then for some b and for all x ∈ R we have

P

(
Tn − n/v

n2/α
≤ x

)
→ Lα/2,b(x), P

(
Xn − nv

v1+2/αn2/α
≤ x

)
→ 1− Lα/2,b(x).

If p = 5/6, then

P

(
Tn − n/v

b
√

n log n
≤ x

)
→ Φ(x), P

(
Xn − nv

bv3/2
√

n log n
≤ x

)
→ 1− Φ(x) = Φ(x).

Finally, if p > 5/6, then

P

(
Tn − n/v

b
√

n
≤ x

)
→ Φ(x), P

(
Xn − nv

bv3/2√n
≤ x

)
→ 1− Φ(x) = Φ(x).

Remark: The limiting distributions for transient HYCRW are very similar to those of the

M -cookie ERW listed in Table 2.2 , only with δ replaced by α = 2p−1
1−p

. At a heuristic level,

the walker in a HYCRW experiences a drift of size 2p − 1 whenever they visit a site with
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a cookie, and since the number of right steps before the first left step at a site follows a

Geo(1 − p) distribution the walker will on average visit a site 1
1−p

times before consuming

the cookie at that site. Therefore, the amount of drift the walker experiences at each site

should be on average 2p−1
1−p

.

Our proof of Theorem 4.2.1 will follow the technique discussed in Section 2.3.3 . In

particular, we will prove the following tail asymptotics for σ1 and for W1. Recall that we

define

σ0 = 0, σk = inf{t > σk−1 : Vt = 0}, Wk =
σk−1∑

j=σk−1

Vj,

and that the (σk − σk−1, Wk) are i.i.d. random variables. We must then prove the following

two statements.

Theorem 4.2.2. Let p > 2/3 and let α = 2p−1
1−p

. Then

lim
n→∞

nαP V
0 (σ1 > n) = C1 ∈ (0,∞). (4.1)

Theorem 4.2.3. Let p > 2/3 and let α = 2p−1
1−p

. Then

lim
n→∞

nα/2P V
0 (W1 > n) = C2 ∈ (0,∞). (4.2)

These two statements will allow us to identify the limiting distributions for the hitting

times Tn in the manner described in Section 2.3.3 . Then, we will need to do some technical

work to translate them into limiting distributions for the walk Xn. Our proof will follow the

same strategy used by Kosygina and Mountford [15 ] and Kosygina and Peterson [16 ], but

some of the technical results must be redone. In fact, to prove Theorems 4.2.2 and 4.2.3 we

can repeat verbatim the proof of Theorems 2.1 and 2.2 in [15 ], provided that we prove the

following four technical results.
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Before stating them, we provide some additional notation. Let {Zt}t≥0 be a stochastic

process. The probability measure associated to {Zt}t≥0 with P (Z0 = z) = 1 will be written

P Z
z (·). We will also need to define the the lower and upper exit times of Z:

σZ
x = inf{j > 0 : Zj ≥ x},

τZ
x = inf{j > 0 : Zj ≤ x}.

With this notation in hand, we can now state the four technical results to be proved.

Lemma 8 (Diffusion Approximation). Fix arbitrary ε > 0, y > ε, and a sequence yn → y as

n→∞. Define Y ε,n(t) = Vbntc∧σεn

n
, t ≥ 0. Then the process Y ε,n converges in the Skorokhod

(J1) topology to Y
(
· ∧ σY

ε

)
, where Y is the solution of the following stochastic differential

equation:

dY (t) =
(

1− 2p− 1
1− p

)
dt +

√
2Y (t)+dBt, Y (0) = y.

This lemma shows that the BBLP, when appropriately scaled, can be approximated by

a squared Bessel process of generalized dimension 2(1 − α) on [εn,∞). To handle the case

where the BBLP drops below εn, we will use the fact that Y α (or log Y when p = 2/3) is a

local martingale, and as such for all a > 1 and j ∈ N we have that

P
(
τaj−1 < τaj+1|Y (0) = aj

)
= aα

1 + aα
.

The rescaled version of the BBLP is close to being a martingale, and so we can put a bound

on the probability that this process exits the interval (aj−1, aj+1) from below.

Lemma 9 (Exit Distributions). Let a > 1, |x− aj| ≤ a2j/3, and let γ be the exit time of the

interval (aj−1, aj+1). Then for all sufficiently large j ∈ N

∣∣∣∣P V
x

(
Vγ ≤ aj−1

)
− aα

1 + aα

∣∣∣∣ ≤ a−j/4.
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Since the rescaled BBLP is still a discrete process, whenever it leaves the interval (aj−1, aj+1)

it is possible that it is far away from the two endpoints (this cannot happen for the lim-

iting process since it is continuous). Therefore, part of proving Lemma 9 is to control the

probability of the rescaled BBLP “overshooting” the boundary of the interval by a large

amount.

Lemma 10 (Overshoot Lemma). There are positive constants C3 and C4 and N ∈ N such

that for all x ≥ N and y ≥ 0, we have that

max
0≤z≤x

P (Vτx > x + y|τx < σ0) ≤ C3
(
e−C4y2/x + e−C5y

)
,

and

max
x<z<4x

P (Vσx∧τ4x < x− y) ≤ C3e−C4y2/x.

In short, when the rescaled process exits an interval, it is overwhelmingly likely that it

is near the boundary. Once we have proven Lemma 10 , the proof of Lemma 9 is identical

to the proof of the corresponding result in [15 ] (with Lemma 10 replacing a similar result

there), and so we will not repeat it here.

Lemma 11 (Main Lemma). For each a ∈ (1, 2] there exists an `0 ∈ N and a small positive

number λ such that if `, m, u, x ∈ N satisfy `0 ≤ ` < m < u and let |x− am| < a2m/3 then

h−(m)− h−(`)
h−(u)− h−(`) ≤ P V

x

(
σV

a`
> τV

au

)
≤ h+(m)− h+(`)

h+(u)− h+(`) ,

where for j ≥ 1

h±(j) =



∏j
i=1

(
aα ∓ a−λi

)
, for α > 0∏j

i=1

(
a−α ∓ a−λi

)−1
, for α < 0

j∓ 1
j , for α = 0.
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For α 6= 0, we also have that there functions K1 : N → (0,∞) and K2 : N → (0,∞) such

that Ki(`)→ 1 as `→∞ and for all j > `

K1(`)a(j−`)α ≤ h±(j)
h±(`) ≤ K2(`)a(j−`)α.

The proof of Lemma 11 is identical to the proof of Lemma 5.3 of [15 ]. The only dif-

ference in the proof is that we must use the results from Lemmas 9 and 10 instead of the

corresponding results in that paper. Therefore, we will omit the proof here and refer the

reader to [15 ] for complete details.

Before discussing the proofs of Theorems 4.2.2 and 4.2.3 given these results, it will be

helpful to compute the necessary parameters of the BBLP. In particular, we will compute

µ̂ = lim
n→∞

En[V1]
n

ρ̂ = En[V1 − µ̂n]

ν̂ = lim
n→∞

En[(V1 − µ̂n)2]
n

θ̂ = 2ρ̂

ν̂
,

where in this section En[ · ] = E[ · |V0 = n]. Note that these parameters are defined in the

same way as those of the FBLP as defined in Section 2.2.1 . We collect the values of these

limits and note the asymptotics of ρ̂ and ν̂ in the following proposition.

Proposition 4.2.1 (Parameters of BBLP associated to HYCRW). Let Xn be excited random

walk in a “have your cookie and eat it” environment with p ∈ (0, 1), and let {Vk}k≥0 be the

associated backward branching-like process. Then

µ̂ = 1 ρ̂ = 1− 2p− 1
1− p

= 1− α

ν̂ = 2 θ̂ = 1− 2p− 1
1− p

= 1− α.

Furthermore there exist constants C1 and C2 so that for all n ∈ N we have

|En[V1 − n]− (1− α)| ≤ C1npn+1∣∣∣∣∣En[(V1 − n)2]
n

− 2
∣∣∣∣∣ ≤ C2

n
.
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Proof of Proposition 4.2.1 . We will begin by computing µ̂. Recall how the BBLP is defined:

given V0 = n, the value of V1 is determined by the number of failures that occur in the

sequence of Bernoulli trials {ξj}j≥1 before the (n + 1)th success (the “+1” comes from the

extra immigrant that is added to each generation of the BBLP before reproduction). For

HYCRW, the ξj ∼ Ber(p) if ξk = 1 for all k < j, but otherwise ξj ∼ Ber(1/2). For that

reason, it will be advantageous to condition on how many successes occur in this sequence

of trials before the first failure. Let Sk be the event that exactly k successes occur in {ξj}j≥1

before the first failure in the sequence, or formally that Sk = {ξ1 = · · · = ξk = 1, ξk+1 = 0}.

Also, let {Hi}i≥1 denote a family of independent geometric random variables Hi ∼ Geo(1/2)

each with mean 1, let Gx = H1 + · · ·+ Hx, where we use the convention that G0 = 0. Then

Gx is a branching process where each organism has Geo(1/2) offspring. Then

En[V1] =
n+1∑
k=0

En[V1|Sk]P (Sk)

=
n∑

k=0
(1 + E[Gn+1−k]) pk(1− p)

= (n + 2)
n∑

k=0
pk(1− p)−

n∑
k=0

kpk(1− p)

= (n + 2)
(
1− pn+1

)
−

n∑
k=0

kpk(1− p).

Dividing through by n and taking limits shows that µ̂ = 1. To compute ρ̂, observe that

ρ̂ = lim
n→∞

En[V1 − n] = lim
n→∞

(
2
(
1− pn+1

)
−

n∑
k=0

kpk(1− p)− npn+1
)

= lim
n→∞

(
2
(
1− pn+1

)
− p

1− p

(
npn+1 − (n + 1)pn + 1

)
− npn+1

)
(4.3)

= 2− p

1− p

= 1− 2p− 1
1− p

.

To prove the asymptotic statement about ρ̂ above, note that by (4.3 ) we have that

∣∣∣∣∣En[V1 − n]−
(

1− 2p− 1
1− p

)∣∣∣∣∣ = 1
1− p

(
(3− 2p)pn+1 + npn+1

)
,
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and so there exists a constant C such that |En[V1− n]− ρ̂| ≤ Cnpn+1 for all n ∈ N. We now

turn our attention to calculating ν̂. Since nν̂ = En[(V1 − n)2] = En[V 2
1 ]− 2nEn[V1] + n2, the

only ingredient we are missing is En[V 2
1 ], which we can compute by again conditioning on

the event Sk :

En[V 2
1 ] =

n+1∑
k=0

En[V 2
k |Sk]P (Sk) =

n∑
k=0

E[(1 + Gn+1−k)2]pk(1− p).

Now, E[(1 + Gn+1−k)2] = Var(Gn+1−k) +E[1 + Gn+1−k]2 = (n + 1− k)Var(H1) + (n + 2− k)2,

and since H1 ∼ Geo(1/2) we have Var(H1) = 2. Therefore, we can write

En[V 2
1 ] =

n∑
k=0

(
2(n + 1− k) + (n + 2− k)2

)
pk(1− p)

=
n∑

k=0

(
k2 − 2nk − 6k + n2 + 6n + 6

)
pk(1− p)

=
n∑

k=0
k2pk(1− p)− (2n + 6)

n∑
k=0

kpk(1− p) + (n2 + 6n + 6)
n∑

k=0
pk(1− p).

If we set

An =
n∑

k=0
k2pk(1− p) = p

(1− p)2

(
(2n2 + 2n + 1)pn+1 − n2pn+2 − (n + 1)2pn + p + 1

)
,

Bn =
n∑

k=0
kpk(1− p) = p

1− p

(
npn+1 − (n + 1)pn + 1

)
,

Cn =
n∑

k=0
pk(1− p) = 1− pn+1,

the above expression becomes

En[V 2
1 ] = An − (2n + 6)Bn + (n2 + 6n + 6)Cn.

Note also that An = O (n2pn) and Bn = O (npn). Together with the fact that En[V1] =

(n + 2)Cn −Bn, we can see that

En

[
(V1 − n)2

]
= En[V 2

1 ]− 2nEn[V1] + n2
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= An − (2n + 6)Bn + (n2 + 6n + 6)Cn − 2n ((n + 2)Cn −Bn) + n2

= An − 6Bn + n2pn+1 + (2n + 6)Cn

= (2n + 6)
(
1− pn+1

)
+O(n2pn).

Dividing through by n and taking n→∞ shows that ν = 2. Furthermore, we have that

∣∣∣∣∣En [(V1 − n)2]
n

− 2
∣∣∣∣∣ ≤ C · npn + 6

n
(1− pn+1) ≤ C2

n

for some constant C2. To finish the proof, note that θ̂ = 2ρ̂
ν̂

= ρ̂ = 1− α.

We close this section with a discussion of the proofs of Theorems 4.2.2 and 4.2.3 . Again,

once we have proven the technical results in Lemmas 8 - 11 , we can simply repeat the proofs

of Theorems 2.1 and 2.2 in [15 ], replacing the technical results in that argument with Lemmas

8 - 11 . For that reason, we will only give a summary of the proofs, and refer the reader to

[15 ] for complete details.

The main idea of the proof is to approximate the BBLP, stopped upon its first time

reaching 0, by a squared Bessel process of dimension 2(1 − α). Lemma 8 shows that this

approximation is good until the BBLP drops below εn for the first time. Furthermore, the

approximating process Y (t) has the property that the area under its path is of the correct

order, so that

lim
y→∞

yαP Y
1

(∫ τ0

0
Y (t) dt > y2

)
= C ∈ (0,∞).

The vast majority of the proof is technical work with the purpose of verifying that this

property is shared by the BBLP. This can be done because V is unlikely to overshoot the

boundary of an interval by too much due to Lemma 10 , and because it is close to being

a martingale we can estimate the probability that it exits a given interval . Finally, a few

technical results must be proven in order to show P
(∑σ1−1

j=1 Vj > n
)

decays at a commensurate

rate with P Y
1 (
∫ τ0

0 Yt dt > y2), including among others that

lim
n→∞

P V
εn(W1 > n2) = P Y

1

(∫ τ0

0
Y (t) dt > ε−2

)
.
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In sum, the approximation of the BBLP by this squared Bessel process is good enough that

we can transfer the tail decay for the area under its path to the total progeny between two

extinction times of the BBLP.

We will now show how to use Theorems 4.2.2 and 4.2.3 to deduce the limiting distributions

of Xn.

4.3 Proof of Theorem 4.2.1 

In this section we will prove our main result, assuming Theorems 4.2.2 and 4.2.3 in the

preceding section. First, we define some additional notation. Throughout this section, we

will use Za,b to represent the stable random variable with distribution function La,b(x) (refer

to Section 2.3.3 for the characteristic function of these random variables).

Recall that the hitting times Tn of the HYCRW can be expressed in terms of Dk
n, the

number of left steps from site k by the time the walk reaches n for the first time:

Tn = n + 2
n∑

k=0
Dk

n + 2
∑
k<0

Dk
n

law= n + 2
n∑

j=0
Vj + 2

∑
j<0

Vj. (4.4)

We will use this connection to establish limit laws for the hitting times Tn, which by a

relatively simple calculation can be converted into a limit law for the position of the walk

Xn. We will address the cases in increasing order of complexity.

4.3.1 Zero Speed, p ∈ (2/3, 3/4)

Let p ∈ (2
3 , 3

4), so that the HYCRW is transient to +∞ but has speed v = 0. Then

observe that

Tn

n2/α

law= n1−2/α +
2∑n

j=0 Vj

n2/α
+

2∑j<0 Vj

n2/α
. (4.5)

75



Note that for p < 3/4, we have 1− 2/α < 0. Also, since the walk is transient to ∞, ∑j<0 Vj

is almost surely finite, so the last term in the above sum will converge to 0. Therefore, if we

wish to prove a scaling limit for Tn, it suffices to prove one for ∑n
j=0 Vj. To this end, we write

∑n
j=0 Vj

n2/α
=
∑Nn

i=1 Wi

n2/α
+
∑n

j=σn+1 Vj

n2/α
,

where Nn = max{i ≥ 0 : σi ≤ n} is the number of times the BBLP reaches 0 by time n. The

rightmost term is bounded above by WNn+1/n2/α, which converges to 0 in probability (see,

for instance, section XI.5 of [10 ]). Moreover, due to the tail asymptotics for W1 in Theorem

4.2.3 there exists b̃ > 0 such that the first term converges to the stable random variable

Zα/2,b̃ by Theorem I.3.2 of [13 ] (note the lack of centering term since α/2 < 1). That is, we

have proven that there exists b > 0 such that

lim
n→∞

P
(

Tn

n2/α
≤ x

)
= P (Zα/2,b ≤ x) ∀x ∈ R.

We must now translate this statement into a statement about the walk Xn. Let Xn =

supi≤n Xi, and note that P (Tm > n) = P (Xn < m). Then

P

(
Xn

nα/2 < x

)
= P

(
Xn < xnα/2

)
= P

(
Xn < dxnα/2e

)
= P

(
Tdxnα/2e > n

)
= P

(
Tdxnα/2e

(dxnα/2e)2/α
>

n

(dxn2/αe)2/α

)

= P

(
Tdxnα/2e

(dxnα/2e)2/α
>

1
x2/α

+ o(1)
)

n→∞−→ P
(

Zα/2,b >
1

x2/α

)
= 1− Lα/2,b(x−2/α).

This proves the limiting distribution for Xn. To prove the same statement with X̃n =

inf i≥n Xi, note that for all m, n, p ∈ N

{
Xn > m

}
⊂
{
X̃n < m

}
⊂
{
Xn < m + p

}
∪
{
X̃Tm+p < m

}
. (4.6)
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We can then complete the proof by using the following lemma from [15 ].

Lemma 12 (Lemma 9.1 of [15 ]).

lim
n→∞

sup
n≥1

P
(
X̃Tn < n− k

)
= 0.

Lemma 12 shows that the probability of the rightmost event will tend to 0. Then, we

can simply choose p := p(n) to be any sequence which grows more slowly than nα/2, then

use 4.6 to prove that X̃n has the same limiting distribution as X̄n. Since X̃n ≤ Xn ≤ X̄n,

we see that Xn follows the same limiting distribution as X̄n and X̃n.

4.3.2 Positive Speed

We divide the cases where p > 3/4 according to whether we obtain Gaussian or non-

Gaussian limits.

Non-Gaussian Limits, p ∈ (3/4, 5/6)

Now, let p ∈ (3
4 , 5

6). In this regime, the HYCRW is transient and has speed v ≥ 4p−3 > 0.

Since α/2 > 1 in this case, we will require a centering term. Recall that the random variables

(σn − σn−1, Wn)n≥1 are independent, and that σn − σn−1
law= σ1 and Wn

law= W1 for all n ∈ N.

By the tail asymptotics of W1 given in (4.2 ), W1 is in the domain of attraction for Zα/2,b.

By a standard fact from renewal theory, we have that

lim
n→∞

Nn

n
= 1

EV
0 [σ1]

=: λ.

Note that the expectation in the denominator is finite due to the asymptotics for σ1 given in

4.2.2 . Additionally, there is a constant C4 such that, for any ε > 0, it is true for sufficiently

large n that

P V
0

(
|Nn − λn| > C4

√
n
)

< ε.
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We expect the centering term for Tn to be n
v

because limn→∞
Tn

n
= 1

v
almost surely. This will

help us to calculate the proper centering term for ∑Wi. As before, we use (4.4 ) and (4.5 )

to express Tn in terms of Wi:

lim
n→∞

Tn

n
= lim

n→∞

n + 2∑n
j=0 Vj

n
= lim

n→∞
1 +

2∑Nn
i=1 Wi + 2∑n

j=σn
Vj

n
= 1 + 2λEV

0 [W1].

A little algebra reveals that EV
0 [W1] = 1

2(v−1 − 1)λ. With this information in hand, we can

identify the limiting distribution for Tn in this case.

∑n
j=0 Vj − (v−1 − 1)n/2

n2/α
=
∑Nn

i=1 Wi +∑n
j=σNn+1

Vj − (v−1 − 1)n/2
n2/α

=
∑Nn

i=1(Wi − EV
0 [W1]) + NnEV

0 [W1] +∑n
j=σNn+1

Vj − (v−1 − 1)n/2
n2/α

=
∑Nn

i=1(Wi − EV
0 [W1])

n2/α
+ EV

0 [W1]
Nn − λn

n2/α
+
∑n

j=σNn+1
Vj

n2/α
.

When we take n → ∞, the first term will converge to Zα/2,b̃ for some b̃ > 0 by Theorem

I.3.2 of [13 ]. For the second term, we use the fact Nn − λn = O(
√

n) and 2/α > 1/2 in this

regime, and again we bound the third term by WNn+1/n2/α, which converges in probability

to 0. The upshot is that, for some b > 0, we have that

lim
n→∞

P

(
Tn − v−1n

n2/α
< x

)
= P (Zα/2,b < x) ∀x ∈ R.

As before, we can translate this into a statement about Xn by using the relationship {Tm >

n} = {Xn < m}:

P

(
Xn − nv

βn2/α

)
= P

(
Xn < βxn2/α + vn

)
= P

(
Xn < dβxn2/α + vne

)
= P

(
Tdβxn2/α+vne > n

)
= P

(
Tdβxn2/α+vne − v−1dβxn2/α + vne

dβxn2/α + vne2/α
>

n− v−1dβxn2/α + vne
dβxn2/α + vne2/α

)
.

= P

(
Tdβxn2/α+vne − v−1dβxn2/α + vne

(βxn2/α + vn)2/α
>

n− v−1(βxn2/α + vn)
(βxn2/α + vn)2/α

+ o(1)
)

.
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= P

(
Tdβxn2/α+vne − v−1dβxn2/α + vne

(βxn2/α + vn)2/α
>

−βxn2/α

v(βxn2/α + vn)2/α
+ o(1)

)
.

= P

Tdβxn2/α+vne − v−1dβxn2/α + vne
(βxn2/α + vn)2/α

>
−βxn2/α

v1+ 2
α n2/α(β

v
xn2/α−1 + 1)2/α

+ o(1)
 .

= P

Tdβxn2/α+vne − v−1dβxn2/α + vne
(βxn2/α + vn)2/α

>
−βx

v1+ 2
α (β

v
xn2/α−1 + 1)2/α

+ o(1)
 .

Now, if we were to take n → ∞, the right-hand side of the inequality would converge to

−βx/v1+2/α (note that 2/α < 1 since p > 3/4). Therefore, if we take β = v1+2/α we have

shown that

lim
n→∞

P

(
Xn − nv

v1+2/αn2/α

)
= 1− P (Zα/2,b > −x) = P (Zα/2,b > −x) = 1− P (Zα/2,b ≤ x) ∀x ∈ R.

We can then translate the limiting distribution for Xn into a limiting distribution for Xn as

we did in the previous section.

Gaussian Limits, p ∈ (5/6, 1)

Let p ∈ (5
6 , 1). Since α > 4 when p > 5/6, the tail asymptotics in (4.2 ) imply that

EV
0 [W 2

1 ] < ∞. This case can therefore be handled by applying the central limit theorem

for Markov chains to V , for instance Theorem I.16.1 of [6 ]. Using that theorem and the

connection between Tn and V , there is a constant b > 0 such that

lim
n→∞

P

(
Tn − v−1n

b
√

n
< x

)
= Φ(x).

We can then write the following regarding the maximum position of the walk:

P

(
Xn − vn

β
√

n
< x

)
= P (Xn < dβ

√
nx + vne

= P (Tdβ
√

nx+vne > n)

= P

(
Tdβ

√
nx+vne − v−1dβ

√
nx + vne

bdβ
√

nx + vne1/2 >
n− v−1dβ

√
nx + vne

bdβ
√

nx + vne1/2

)
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= P

(
Tdβ

√
nx+vne − v−1dβ

√
nx + vne

bdβ
√

nx + vne1/2 >
n− v−1(β

√
nx + vn)

b(β
√

nx + vn)1/2 + o(1)
)

= P

(
Tdβ

√
nx+vne − v−1dβ

√
nx + vne

bdβ
√

nx + vne1/2 >
−β
√

nx

bv3/2(β
v

√
nx + n)1/2

+ o(1)
)

If we select β = bv3/2 and take n→∞, we obtain

lim
n→∞

P

(
Xn − vn

bv3/2√n
< x

)
= 1− Φ(−x) = Φ(x) ∀x ∈ R.

4.3.3 Boundary Cases

We will now handle the boundary cases p = 3/4 and p = 5/6. We will begin with the

more mild of the two.

When p = 5/6 we have α = 4, and the tail asymptotics for σ and W are

P V
0 (σ1 > n) ∼ n−4 and P V

0 (W1 > n) ∼ n−2.

We can then directly apply chapter XVII.5 of [10 ] to see that the distribution of W is in the

domain of attraction for a normal distribution, requiring normalization by C
√

n log n.

The case p = 3/4 is by far the most delicate. We will closely follow the approach taken

in Appendix B of [16 ]. Let p = 3/4, so that α = 2. Then Theorems 4.2.2 and 4.2.3 give that

P V
0 (σ1 > n) ∼ n−2 and P V

0 (W1 > n) ∼ n−1. (4.7)

Let m(t) = EV
0 [W11{W1>t}] be the mean of W1 truncated at t, and note that by (4.7 ) we have

that m(t) ∼ C2 log t. By Theorem 3.7.2 of [9 ], there exist constants b′ > 0 and ξ′ ∈ R such

that

lim
n→∞

P V
0

(∑n
k=1 Wk − nm(n)

n
≤ x

)
= L1,b′,ξ′(x), ∀x ∈ R, (4.8)
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where L1,b′,ξ′ is the distribution of the 1-stable random variable with characteristic exponent

log
∫
R

eiuxL1,b′,ξ′(dx) = iuξ′ − b′|u|
(

1 + 2i
π

log |u| sign(u)
)

.

The same theorem also implies the existence of A > 0 such that

lim
n→∞

P V
0

(
σn − nσ̄

A
√

n log n

)
= Φ(x), ∀x ∈ R, (4.9)

where σ̄ = E[σ1]. We now claim that the difference between n−1∑n
i=1 Vi and n−1∑bn/σ̄c

k=1 Wk

converges to 0 in probability. Let R = {|rn/σ̄ − n| > n3/4}, then indeed for any ε > 0

P V
0

∣∣∣∣∣∣
n∑

i=1
Vi −

bn/σ̄c∑
k=1

Wk

∣∣∣∣∣∣ > εn


= P V

0

∣∣∣∣∣∣
n∑

i=1
Vi −

bn/σ̄c∑
k=1

Wk

∣∣∣∣∣∣ > εn | R

P (R) + P V
0

∣∣∣∣∣∣
n∑

i=1
Vi −

bn/σ̄c∑
k=1

Wk

∣∣∣∣∣∣ > εn | Rc

P (Rc)

≤ P V
0 (R) + P V

0

∣∣∣∣∣∣
n∑

i=1
Vi −

bn/σ̄c∑
k=1

Wk

∣∣∣∣∣∣ > εn | Rc


= P V

0 (R) + P V
0

 ∑
k:|k−n/σ̄|≤n3/4+1

Vk > εn


≤ P V

0 (R) + P V
0

 ∑
k:|k−n/σ̄|≤n3/4+1

Wk > εn


= P V

0 (R) + P V
0

∣∣∣∣∣∣
2bn3/4c+3∑

k=1
Wk

∣∣∣∣∣∣ > εn

 .

As n → ∞, both of these terms go to 0, the first due to (4.9 ) and the second due to (4.8 ),

proving our claim. Because of the relationship noted in (4.5 ), Tn and n + 2∑n
i=1 Vi have the

same limiting distributions. In particular, we have

lim
n→∞

P V
0

(
Tn − 2(n

σ̄
)m(n

σ̄
)

n
≤ x

)
= lim

n→∞
P V

0

(
n + 2∑n

i=1 Vi − 2(n
σ̄
)m(n

σ̄
)

n
≤ x

)

= lim
n→∞

P

∑bn/σ̄c
k=1 Wk − n

σ̄
m(n

σ̄
)

(n
σ̄
) ≥ (x− 1)σ̄

2
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= L1,b′,ξ′

(
(x− 1)σ̄

2

)
= L1,b,ξ(x),

where b = 2b′

σ̄
and ξ = 1 + 2ξ′

σ̄
− 4b′

πσ̄
log( 2

σ̄
). That is, we have shown

lim
n→∞

P

(
Tn − nD(n)

n
≤ x

)
= L1,b,ξ(x) ∀x ∈ R,

where D(n) = ξ + 2
σ̄
m(n

σ̄
), so that D(t) ∼ a−1 log t, where a = σ̄

2C2
. It remains to translate

this result into a statement about the walk Xn. Toward this end, we define a function Γ(t)

that will be similar to an inverse of sD(s):

Γ(t) = inf{s > 0 : sD(s) ≥ t}.

Note that Γ(t) has the property that Γ(t) ∼ at
log t

. We will now justify our claim that

Γ(t) is “close” to being an inverse of sD(s). First, sD(s) = s(ξ + 2
σ̄
EV

0 [W11{W1≤s}]) is a

strictly increasing function once s is sufficiently large since lims→∞ EV
0 [W11{W1≤s}] = ∞, so

eventually ξ + EV
0 [W11{W1≤s}] > 0. Additionally, sD(s) is right continuous. If sD(s) has a

discontinuity at s0, it will be a jump discontinuity of size no larger than 2( s0
σ̄

)2P (W1 = s0
σ̄

).

Therefore,

|Γ(t)D(Γ(t))− t| ≤ 2
(

Γ(t)
σ̄

)2

P

(
W1 = Γ(t)

σ̄

)
≤ o(Γ(t))

because (4.7 ) implies that tP (W1 = t) = o(1). In sum, Γ(t) has the property that

Γ(t)D(Γ(t)) = t + o(Γ(t)).

Now let mn,x = dΓ(n) + xn
(log n)2 e ∨ 0. Since mn,x ∼ Γ(n) as n→∞, we have that

lim
n→∞

n−mn,xD(mn,x)
mn,x

= lim
n→∞

n−mn,xD(Γ(n))
mn,x

= lim
n→∞

n− (Γ(n) + xn
(log n)2 D(Γ(n))

Γ(n) + xn
(log n)2
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= lim
n→∞

− xn
(log n)2 D(Γ(n))

Γ(n) + xn
(log n)2

= − x

a2 .

Letting Mn,x = mn,x + d
√

ne, we can also see that

lim
n→∞

n−Mn,xD(Mn,x)
Mn,x

= − x

a2 . (4.10)

To complete the proof, we use the fact that {Tm+r > n} = {Xn < m + r} to rewrite (4.6 ) in

the form:

{Tm > n} = {Xn > m} ⊂ {Xn < m} ⊂ {Tm+r > n} ∪
{

inf
k≥Tm+r

Xk < m
}

. (4.11)

Having done so, we can use (4.11 ) to see that

P

(
Tmn,x −mn,xD(mn,x)

mn,x

>
n−mn,xD(mn,x)

mn,x

)
= P (Tmn,x > n)

= P (Xn < mn,x)

≤ P (Xn < mn,x)

= P

(
Xn − Γ(n)
n/(log n)2 < x

)

≤ P
(
TMn,x > n

)
+O(n−1/2).

Taking n→∞ shows that

lim
n→∞

P

(
Xn − Γ(n)
n(log n)2 < x

)
= 1− L1,b,ξ(−x2/a),

and this final limit completes the proof of the main result.

4.4 Proofs of Lemmas Supporting Tail Asymptotics

In this section we will provide proofs for Lemmas 8 – 11 . In order to prove Lemma 8 , we

will appeal to a technical lemma due to Kosygina and Peterson [16 ].
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Lemma 13 (Lemma 7.1 of [16 ]). Let b ∈ R, D > 0, and Y (t), t ≥ 0 be a solution of

dY (t) = b dt +
√

DY (t)+dB(t), Y (0) = x > 0, (4.12)

where B(t), t ≥ 0 is a standard Brownian motion. Let Zn := {Zn,k}k≥0 be integer-valued

Markov chains such that:

(i) there is a sequence Nn ∈ N, Nn →∞, Nn = o(n) as n→∞, function f : N→ [0,∞)

such that f(x)→ 0 as x→∞, and function g : N→ [0,∞), g(x)↘ 0 as x→∞ such

that

(E) |E[Zn,1 − Zn,0|Zn,0 = m]| ≤ f(m ∨Nn)

(V)
∣∣∣∣∣Var(Zn,1|Zn,0=m

(m ∨Nn) −D

∣∣∣∣∣ ≤ g(m ∨Nn)

(ii) for each T , r > 0

E
[

max
1≤k≤(T n)∧τZn

rn

(Zn,k − Zn,k−1)2
]

= o(n2) as n→∞,

where τZn
x = inf{k ≥ 0 : Zn,k ≥ x}.

Set Zn,0 = bnxnc, xn → x as n → ∞ and Yn(t) = Zn,bntc/n, t ≥ 0. Then as n → ∞, Yn

converges in distribution to Y with respect to the Skorokhod (J1) topology.

We can derive Lemma 8 from Lemma 13 in the same way it was done in [16 ]. Namely,

we will construct a modified version of the BBLP, denoted by V̄ , for which it will be easier

to check the conditions of Lemma 13 . Then, we can couple V and V̄ together, so that the

two processes match until the first time that they fall below Nn, and since Nn = o(n) this

yields a diffusion approximation until falling below nε for the first time for every ε > 0.

Proof of Lemma 8 . We will begin by constructing the modified branching process that we

will apply Lemma 13 to. Recall that the BBLP can be written as

Vk =
Vk−1+1∑

m=1
Gk

m,
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where Gx
m is the number of failures between the m− 1th and mth success in the coin tosses

at site x {ξx
j }j≥1. We can then write

Vk = Vk−1 + 1 +
Vk−1+1∑

m=1

(
Gk

m − 1
)

, k ≥ 1.

Now, for any sequence Nn = o(n) and for n large enough that Nn � nyn, we define

V̄n,0 = bnync, V̄n,k := V̄n,k−1 + 1 +
(V̄n,k−1+1)∨Nn∑

j=1

(
Gk

j − 1
)

, k ≥ 1.

The only difference between the two processes is that if V̄n,k ever falls below Nn, we “top

up” the process by increasing the number of organisms to Nn before reproduction. Since we

assume that Nn � bnync, the modified process V̄n,k agrees with the BBLP Vk for as long

as the two processes stay above level Nn < εn, and so the two agree at least until exiting

[nε,∞). We must now verify the conditions of Lemma 13 for V̄ . Note that by Proposition

4.2.1 , condition (i) is satisfied with f(x) = C1xpx+1, g(x) = C2/x, D = ν = 2 and b = 1−α,

and so the bulk of the work will be to show that condition (ii) is met. To that end, fix

T, r > 0. Then, we need to show that

lim
n→∞

1
n2E

 max
1≤k≤(T n)∧τ V̄n

rn

∣∣∣∣∣∣1 +
(V̄n,k−1)∨Nn∑

j=1

(
Gk

j − 1
)∣∣∣∣∣∣

2 = 0,

where τ V̄n
rn = inf{k : V̄n,k ≥ rn}. In order to do so, observe that if we take n large enough

that rn > Nn we have

1
n2E

 max
1≤k≤(T n)∧τ V̄n

rn

∣∣∣∣∣∣1 +
(V̄n,k−1)∨Nn∑

j=1

(
Gk

j − 1)
)∣∣∣∣∣∣

2 ≤ 1
n2E

 max
1≤k≤(T n)

max
Nn≤m≤rn+1

∣∣∣∣∣∣
m∑

j=1
(Gk

j − 1)

∣∣∣∣∣∣
2


≤ 1
n2

∞∑
y=0

P

 max
1≤k≤(T n)

max
Nn≤m≤rn+1

∣∣∣∣∣∣
m∑

j=1
(Gk

j − 1)

∣∣∣∣∣∣
2

> y


≤ r3/2
√

n
+ rT max

Nn≤m≤rn+1

∑
y≥(rn)3/2

P

∣∣∣∣∣∣
m∑

j=1
(Gk

j − 1)

∣∣∣∣∣∣ >
√

y

 ,
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where the last line comes from bounding the probabilities for y < (rn)3/2 by 1. Therefore,

we have reduced the problem of verifying condition (i) to finding appropriate bounds on

P
(∣∣∣∑(Gk

j − 1)
∣∣∣ >
√

y
)
. To do so, we will need Lemma A.2 from [16 ].

Lemma 14 (Lemma A.2 of [16 ], Theorem III.15 of [22 ]). Let Y1, Y2, . . . be a sequence of

i.i.d. non-negative random variables with E[Y1] = µ and E[eλ0Y1 ] < ∞ for some λ0 > 0.

Then there exists a constant C > 0 such that

P

(∣∣∣∣∣
n∑

k=1
Yk − µn

∣∣∣∣∣ ≥ y

)
≤ exp

{
−C

y2

y ∨ n

}
.

The calculations that follow will not depend on k, and so we will suppress the k su-

perscript, writing Gj for Gk
j . We will start by considering the right-tail probabilities. Let

{ξj}j≥1 be the sequence of Bernoulli random variables that occur at a fixed site k, and recall

that ξj ∼ Ber(p) until a failure has occurred at that site, after which ξj ∼ Ber(1/2). Also

let {γj}j≥1 be a collection of i.i.d. Ber(1/2) random variables and let Hj ∼ Geo(1/2) be a

geometric random variable with mean 1. Then

P

 m∑
j=1

(Gj − 1) > y

 = P

 m∑
j=1

Gj > m + y

 = P

2m+y∑
j=1

ξj < m


because y+n failures occur before n successes in {ξj}j≥1 exactly when the number of successes

in the first 2n + y Bernoulli trials is less than n. Now, we condition on when the first failure

occurs. Let Ey/2 be the event that the first failure occurs before the by/2c trial:

Ey/2 =
{
ξ1 + · · ·+ ξby/2c < by/2c

}
,

Then we have that

P

2m+y∑
j=1

ξj < m

 ≤ P

2m+y∑
j=1

ξj < m

∣∣∣∣∣∣Eby/2c

P (Eby/2c) + P
(
EC

by/2c

)

≤ P

 2m+y∑
j=by/2c

γj < m

+ py/2
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≤ P

2m+dy/2e∑
j=1

γj < m

+ py/2

= P

 m∑
j=1

Hj > m + y/2
+ py/2

= P

 m∑
j=1

(Hj − 1) > y/2
+ py/2

≤ exp
{
−C

y2

y ∨m

}
+ py/2,

where in the last line we have used Lemma 14 . We can handle the left tail probabilities in

a similar way. To that end, we can write

P

 m∑
j=1

Gj < m− y

 = P

2m−y−1∑
j=1

(1− ξj) < m− y

 ,

since fewer than m− y failures occur before m successes if and only if the number of failures

in the first 2m − y − 1 trials does not exceed m − y. Note that (1 − ξj) are Ber(1 − p)

random variables before the first failure occurs in {ξj}j≥1, and are Ber(1/2) afterward. If we

set m′ = m−y (we assume m > y, otherwise the probability in question is 0) we can rewrite

the above expression:

P

2m−y−1∑
j=1

(1− ξj) < m− y

 = P

2m′+y−1∑
j=1

(1− ξj) < m′

 ,

and this places us in the same situation we had for the right tail probability. Repeating that

argument yields

P

 m∑
j=1

Gj < m− y

 ≤ exp
{
−C

y2

y ∨m′

}
+ py/2 ≤ exp

{
−C

y2

y ∨m

}
+ py/2.

We can now apply these estimates to complete our proof of Lemma 8 :

max
Nn≤m≤rn+1

∑
y≥(rn)3/2

P

∣∣∣∣∣∣
m∑

j=1
(Gj − 1)

∣∣∣∣∣∣ >
√

y

 ≤ max
Nn≤m≤rn+1

∑
y≥(rn)3/2

exp
{
−C

y
√

y ∨m

}
+ p

√
y/2
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≤
∑

y≥(rn)3/2

exp
{
−C

y
√

y ∨ (rn + 1)

}
+ p

√
y/2

≤

 ∑
y≥(rn)3/2

exp
{
−C

y
√

y ∨ (y2/3 + 1)

}
+ p

√
y/2

 n→∞−−−→ 0,

which shows that V̄ satisfies the stated diffusion approximation. Since V and V̄ agree with

each other until the two fall below Nn = o(n), V satisfies the same diffusion approximation

before exiting the interval [nε,∞), which completes our proof of Lemma 8 .

Next, We will prove the Overshoot Lemma (Lemma 10 ) since we will need it to prove

Lemma 9 .

Proof of Lemma 10 . Our proof will closely follow the proof of Lemma 6.3 in [16 ]. To prove

the first part of Lemma 10 , we will use the following inequality from pp. 595-596 of [15 ]:

max
0≤z<x

P V
z (Vτx > x + y|τx < σ0) ≤ max

0≤z<x

P V
z (V1 > x + y)
P V

z (V1 ≥ x) . (4.13)

Rewriting V1 above as a sum of Gj random variables as above, we can see that

max
0≤z<x

P V
z (Vτx > x + y | τx < σ0) ≤ max

0≤z<x

P
(
z + 1 +∑z+1

j=1 (Gj − 1) > x + y
)

P
(
z + 1 +∑z+1

j=1 (Gj − 1) ≥ x
)

= max
0≤m<x

P
(∑x−m

j=1 (Gj − 1) > y + m
)

P
(∑x−m

j=1 (Gj − 1) ≥ m
) , (4.14)

where in (4.14 ) we have made the substitution m = x− z − 1. To bound the probability of

interest, we will need to place an upper bound on the numerator and lower bound on the

denominator of (4.14 ). For the lower bound, we will need the following lemma.

Lemma 15.

inf
n≥1

P

 n∑
j=1

(Gj − 1) ≥ 0
 > 0.
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We will leave the proof of Lemma 15 for Section 4.5 . Now, let ρm = min
{
n ≥ 1 : ∑n

j=1(Gj − 1) ≥ m
}
.

Then

P

x−m∑
j=1

(Gj − 1) ≥ m

 =
x−m∑
n=1

P

x−m∑
j=1

(Gj − 1) ≥ m, ρm = n


≥

x−m∑
n=1

P

 x−m∑
j=n+1

(Gj − 1) ≥ 0, ρm = n


=

x−m∑
n=1

P

 x−m∑
j=n+1

(Gj − 1) ≥ 0
P (ρm = n)

≥
x−m∑
n=1

inf
k≥1

P

 k∑
j=1

(Gj − 1) ≥ 0
P (ρm = n) ≥ CP (ρm ≤ x−m),

where the last inequality follows from Lemma 15 . Now, we will place an upper bound on

the numerator of (4.13 ). To do so, observe that

P

x−m∑
j=1

(Gj − 1) > m + y


≤ P

x−m∑
j=1

(Gj − 1) > m + y/2


≤
x−m∑
n=1

P

 n∑
j=1

(Gj − 1) > m + y/2, ρm = n

+
x−m∑
n=1

P

 x−m∑
j=n+1

(Gj − 1) > y/2, ρm = n


≤

x−m∑
n=1

max
l<m

P (G1 > m− l + y/2 | G1 − 1 ≥ m− l)P (ρm = n)

+
x−m∑
n=1

max
k<x

P

 k∑
j=1

(Gj − 1) > y/2
P (ρm = n)

=
max

l<m
P (G1 − 1 > m− l + y/2 | G1 − 1 ≥ m− l) + max

k<x
P

 k∑
j=1

(Gj − 1) > y/2
P (ρm ≤ x−m)

≤
((1

2

)by/2c
+ py/2 max

k<x
exp

{
−C

(y/2)2

(y/2) ∨ k

})
P (ρm ≤ x−m)

=
((1

2

)by/2c
+ py/2 + exp

{
−C ′ y2

y ∨ x

})
P (ρm ≤ x−m),
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where the last inequality comes from the right-tail proven above. Combined with the lower

bound on the denominator, we have that

Pz (Vτx > x + y|τx < σ0) ≤ max
0≤m<x

((
1
2

)by/2c
+ py/2 + exp

{
−C ′ y2

y∨x

})
P (ρm ≤ x−m)

CP (ρm ≤ x−m)

≤ C3 exp
{
−C4

y2

y ∨ x

}
,

where C3 and C4 come from adjusting constants appropriately. This concludes the proof of

the first part of Lemma 10 . The proof of the second part is similar, but we will present it

here for completeness since it is not contained in either of [15 ], [16 ]. We are considering

max
x<z<4x

Pz(Vσx∧τ4x < x− y).

We will begin by establishing an inequality similar to the first step in the proof of the first

part of Lemma 10 , which we formulate as a lemma:

Lemma 16.

Pz(Vσx∧τ4x < x− y) ≤ max
x<r<4x

Pr(V1 < x− y)
Pr(V1 ≤ x) .

The proof of Lemma 16 is a somewhat tedious calculation, and so we banish it to Section

4.5 below. Once it is proven, though, we can rewrite V1 as we did in the proof of the first

part of Lemma 10 , and then we can quickly obtain

max
x<z<4x

Pz(V1 < x− y)
Pz(V1 ≤ x) = max

−3x<m<0

Pz

(∑x−m
j=1 (Gj − 1) < m− y

)
Pz

(∑x−m
j=1 (Gj − 1) ≤ m

) , (4.15)

where we have again made the substitution m = x − z − 1. As before, we will put a lower

bound on the denominator and an upper bound on the numerator of (4.15 ). To put a lower

bound on the denominator, we need to use the fact that

inf
n≥1

P

 n∑
j=1

(Gj − 1) ≤ 0
 > 0. (4.16)
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Since the proof of (4.16 ) is essentially the same as the proof of Lemma 15 , we omit it. To

place a lower bound on the denominator, let ρ′
m = min{n ≥ 1 : ∑n

j=1(Gj − 1) ≤ m}, then

P

x−m∑
j=1

(Gj − 1) ≤ m

 =
x−m∑
n=1

P

x−m∑
j=1

(Gj − 1) ≤ m, ρ′
m = n

 ≥ x−m∑
n=1

P

 x−m∑
j=n+1

(Gj − 1) ≤ 0
P (ρ′

m = n)

≥ C ′P (ρ′
m ≤ x−m),

where in the last line we have used (4.16 ). For the upper bound on the numerator, in the

spirit of the proof of the first part of Lemma 10 we write

P

x−m∑
j=1

(Gj − 1) ≤ m


≤

x−m∑
n=1

P

 n∑
j=1

(Gj − 1) < m− y/2, ρ′
m = n

+
x−m∑
n=1

P

 x−m∑
j=n+1

(Gj − 1) < −y/2, ρ′
m = n


≤

max
l<m

P (G1 − 1 < m− y/2 + l | G1 − 1 < m + l) + max
x<k<4x

P

 k∑
j=1

(Gj − 1) < −y/2
 x−m∑

n=1
P (ρ′

m = n)

≤ P (ρ′
m ≤ x−m)

(1
2

)by/2c
+ max

x<k<4x
P

 k∑
j=1

(Gj − 1) < −y/2
 .

Applying the left-tail estimates proven above and adjusting constants as necessary gives the

desired bound on the numerator, and we can then finish the proof of the second part of

Lemma 10 in the same way as the first part.

Having proved Lemma 10 , we now have all the tools we need to prove Lemma 9 . The

proof is essentially the same as the proof of Lemma 5.2 in [15 ], and so we will only summarize

it here. Let s(x) ∈ C∞ ([0,∞)) be a function with compact support such that

s(x) =


xα, α 6= 0

log x, α = 0
,
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for all x ∈
(

2
3a

, 3a
2

)
. We then show that s (Vk) is close to being a martingale before it exits

the interval (aj−1, aj). To that end, let Hk = σ (Vi : i ≤ k) and consider

E
[
s
(

Vk+1

aj

)∣∣∣∣Hk

]
.

By Taylor expansion of s(x) on the event {γ > k}, we have that

E
[
s
(

Vk+1

aj

)∣∣∣∣Hk

]
= s

(
Vk

aj

)
+

s′
(

Vk

aj

)
aj E [Vk+1 − Vk|Hk] +

s′′
(

Vk

aj

)
2a2j E

[
(Vk+1 − Vk)2

∣∣∣Hk

]
+ rn,k,

where rn,k is the Taylor remainder term. Now, we can use Proposition 4.2.1 to note that:

|E [Vk+1 − Vk|Hk]− (1− α)| ≤ C1e−C′Vk ≤ C1e−C′aj−1
,∣∣∣E [(Vk+1 − Vk)2

∣∣∣Hk

]
− 2Vk

∣∣∣ ≤ C2.

We can also bound rn,k:

rn,k ≤
1
6‖s

′′′‖∞

(
E
[(

Vk+1 − Vk

aj

)4∣∣∣∣∣Hk

])3/4

,

and we can then use a fourth moment bound like the one found in Lemma A.3 of [16 ] and

the fact that Vk ≤ aj+1 to show rn,k ≤ Ca−3j/2. Taking each of these bounds together, we

have that

E
[
s
(

Vk+1

aj

)∣∣∣∣Hk

]
= s

(
Vk+1

aj

∣∣∣∣Hk

)
+ 1

aj

[
(1− α)s′

(
Vk

aj

)
+ Vk

aj s′′
(

Vk

aj

)]
+ Rj,k, (4.17)

where |Rj,k| ≤ Ca−3j/2 on {γ > k}. Since s(x) = xα in [1/a, a], the middle term in the right-

hand side of (4.17 ) is 0 on {γ > k}, and therefore s
(

Vn∧γ

aj

)
−∑(n∧γ)−1

k=0 Rj,n is a martingale

with respect to Hn. We can then use Lemmas 8 and 10 to complete the proof in the same

way it is done in the proof of Lemma 5.3 of [15 ], showing that both

E
[
s
(

Vγ

aj

)]
≈ s

(
x

aj

)
,
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E
[
s
(

Vγ

aj

)]
≈ P (Vγ ≤ aj−1)a−α + P (Vγ ≥ aj+1)aα,

and Lemma 9 follows.

4.5 Proofs of Needed Technical Results

Here we collect proofs of the technical results necessary to prove of Lemmas 8 – 11 .

Proof of Lemma 15 . We want to show that

inf
n≥1

P

 n∑
j=1

(Gj − 1) ≥ 0
 > 0.

Now, the event {∑n
j=1(Gj − 1) ≥ 0} occurs if and only if there are less than n successes in

the first 2n− 1 Bernoulli trials. Therefore, we have

P

 n∑
j=1

(Gj − 1) ≥ 0
 = P

2n−1∑
j=1

ξj < n

 ,

where ξj represent the jth Bernoulli trial and let γj be i.i.d. Bernoulli(1/2) random variables.

Then we can write

P

2n−1∑
j=1

ξj < n

 ≥ (1− p)P
(2n−2∑

i=1
γj < n

)
≥ (1− p)P

( 2n∑
i=1

γj < n

)

= (1− p)P
( 2n∑

i=1
(γj − 1/2) < 0

)
. (4.18)

The probability in (4.18 ) converges to 1/2 by the Central Limit Theorem. This, combined

with the fact that P
(∑n

j=1(Gj − 1) ≥ 0
)

is positive for each n completes the proof.

Proof of Lemma 16 . We want to show that

Pz(Vσx∧τ4x < x− y) ≤ max
x<r<4x

Pr(V1 < x− y)
Pr(V1 ≤ x) . (4.19)
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First, we split the probability in (4.19 ) according to which of τ4x and σx is smaller:

Pz(Vσx∧τ4x < x− y) = Pz(Vσx∧τ4x < x− y, σx < τ4x) + Pz(Vσx∧τ4x < x− y, τ4x < σx)

= Pz(Vσx < x− y, σx < τ4x) + Pz(Vτ4x < x− y, σx < τ4x).

Then, we condition on the value of σx and do some arithmetic:

Pz(Vσx < x− y, σx < τ4x)

=
∞∑

n=1
Pz(Vσx < x− y, σx = n, σx < τ4x)

=
∞∑

n=1
Pz(Vn < x− y, Vn ≤ x, σx = n, σx < τ4x)

=
∞∑

n=1

4x−1∑
r=x+1

Pz(Vn < x− y, Vn ≤ x, Vn−1 = r, x < Vj < 4x ∀j ∈ {1, 2, . . . , n− 2})

=
∞∑

n=1

4x−1∑
r=x+1

Pz(Vn < x− y | Vn ≤ x, Vn−1 = r)

× P (Vn < x− y, Vn ≤ x, Vn−1 = r, x < Vj < 4x ∀j ∈ {1, 2, . . . , n− 2})

=
∞∑

n=1

4x−1∑
r=x+1

Pz(Vn < x− y, Vn ≤ x, Vn−1 = r)
Pz(Vn ≤ x, Vn−1 = r) Pz(σx < τ4x, σx = n, Vn−1 = r)

=
∞∑

n=1

4x−1∑
r=x+1

Pz(Vn < x− y | Vn−1 = r)(((((((
Pz(Vn−1 = r)

Pz(Vn ≤ x | Vn−1 = r)(((((((
Pz(Vn−1 = r) Pz(σx < τ4x, σx = n, Vn−1 = r)

≤ max
x<r<4x

Pr(V1 < x− y)
Pr(V1 ≤ x)

∞∑
n=1

4x−1∑
r=x+1

Pz(σx < τ4x, σx = n, Vn−1 = r)

= max
x<r<4x

Pr(V1 < x− y)
Pr(V1 ≤ x) Pz(σx < τ4x).

Repeating the same calculation with Pz (Vτ4x < x− y, τ4x < σx) allows us to extract the

desired inequality.
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