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ABSTRACT

This work aims to provide solutions to two significant issues in the effective use and

practical application of tensor completion as a machine learning method. The first solution

addresses the challenge in designing fast and accurate recovery methods in tensor completion

in the presence of highly sparse and highly missing data. The second takes on the need for

robust uncertainty quantification methods for the recovered tensor.

Covariate-assisted Sparse Tensor Completion

In the first part of the dissertation, we aim to provably complete a sparse and highly-

missing tensor in the presence of covariate information along tensor modes. Our motivation

originates from online advertising where users click-through-rates (CTR) on ads over various

devices form a CTR tensor that can have up to 96% missing entries and has many zeros

on non-missing entries. These features makes the standalone tensor completion method

unsatisfactory. However, beside the CTR tensor, additional ad features or user characteristics

are often available. We propose Covariate-assisted Sparse Tensor Completion (COSTCO)

to incorporate covariate information in the recovery of the sparse tensor. The key idea

is to jointly extract latent components from both the tensor and the covariate matrix to

learn a synthetic representation. Theoretically, we derive the error bound for the recovered

tensor components and explicitly quantify the improvements on both the reveal probability

condition and the tensor recovery accuracy due to covariates. Finally, we apply COSTCO to

an advertisement dataset from a major internet platform consisting of a CTR tensor and

ad covariate matrix, leading to 23% accuracy improvement over the baseline methodology.

An important by-product of our method is that clustering analysis on ad latent components

from COSTCO reveal interesting and new ad clusters, that link different product industries

which are not formed in existing clustering methods. Such findings could be directly useful

for better ad planning procedures.

Uncertainty Quantification in Covariate-assisted Tensor Completion

In the second part of the dissertation, we propose a framework for uncertainty quantification

for the imputed tensor factors obtained from completing a tensor with covariate information.

We characterize the distribution of the non-convex estimator obtained from using the algorithm
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COSTCO down to fine scales. This distributional theory in turn allows us to construct proven

valid and tight confidence intervals for the unseen tensor factors. The proposed inferential

procedure enjoys several important features: (1) it is fully adaptive to noise heteroscedasticity,

(2) it is data-driven and automatically adapts to unknown noise distributions and (3) in

the high missing data regime, the inclusion of side information in the tensor completion

model yields tighter confidence intervals compared to those obtained from standalone tensor

completion methods.
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1. INTRODUCTION

Low-rank tensor completion aims to impute missing entries of a partially observed tensor by

forming a low-rank decomposition on the observed entries. It has been widely used in various

scientific and business applications, including recommender systems [  1 ]–[ 3 ], neuroimaging

analysis [  4 ]–[ 6 ], signal processing [  7 ], [  8 ], social network analysis [  9 ], [  10 ], personalized medicine

[ 11 ], [ 12 ], and time series analysis [  13 ]. We refer to the recent surveys on tensors for more

real applications [  14 ], [  15 ].

In spite of its popularity, it is also well known that when the percent of missing entries in

the tensor is very high, a standalone tensor completion method often fails to yield desirable

recovery results. Fortunately, in many real applications, we also have access to some side

covariate information. This dissertation focuses on the effective integration of this additional

information in the tensor completion problem.

1.1 Role of Side Information in Tensor Completion

Our motivation originates from online advertising applications, where advertisement (ad)

information is usually described by both users’ click behavior data and ad characteristics

data. More formally, the users click data, referred to as the click-through rate (CTR)

of the ads, quantifies the user click behavior on different ads, various platforms, different

devices or over time etc. The CTR data are therefore often represented as a tensor of three,

four or five dimensions, e.g., the user × ad × device tensor shown in Figure  1.1 . The ad

characteristic data on the other hand is usually represented in the form of a matrix which

contains context information for each ad or background information for each user. Typically

in online advertising not all users are presented with all ads, thus creating many missing

entries in the CTR tensor. Moreover, users typically engage with only a small subset of the

ads presented to them. Low rates of ads engagement is a common phenomenon in online

advertising which begets a highly sparse CTR tensor (many zero entries) with high percentage

of missing entries. For instance, in our real data described in Section  3.6 , the ad CTR tensor

has 96% missing entries and is highly sparse with only 40% of the revealed entries being

nonzero. We show in Chapters  3.5 and  3.6 that methods using a standalone tensor completion
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often fail at recovering the missing entries of a tensor with such high missing rate. On the

contrary the ad characteristic matrix is usually relatively complete and dense. It therefore

becomes advantageous to incorporate the ad characteristic information in a model to recover

the missing entries of the CTR tensor. The structure of the sparse CTR tensor with missing

entries coupled with the ad characteristic data is illustrated in Figure  1.1 . As shown in Figure

 1.1 the two sources of data; CTR tensor and ad covariates matrix are coupled along the ad

mode.

A. Sparse incomplete CTR tensor B. Coupled sparse incomplete CTR tensor

Figure 1.1. A. sparse (user × ad × device) CTR tensor with missing entries;
B. sparse CTR tensor with missing entries coupled with matrix of ad covariates.
The red cells represent missing entries; blue cells represent zeros, grey cells
represent non-zero entries.

In the first part of this dissertation, we aim to complete a sparse and highly-missing tensor

in the presence of covariate information along tensor modes. We propose Covariate-assisted

Sparse Tensor Completion (COSTCO) to recover missing entries in a highly sparse tensor with

a large percent of missing entries. Under the low-rank assumption on both the tensor and

covariate matrix, we assume the latent components corresponding to the coupled mode are

shared by both the tensor and matrix decomposition. This model encourages a synthetic

representation of the coupled mode by leveraging the additional covariate information into

tensor completion. We formulate the parameter estimation as a non-convex optimization with

sparsity constraints, and propose an efficient sparse alternating least-squares approach with

an extra refinement step. Our algorithm jointly extracts latent features from both tensor
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and covariate matrix and uses the covariate information to improve the recovery accuracy of

the unknown tensor components. We showcase, through extensive numerical studies, that

COSTCO is able to successfully recover entries for a tensor even with 98% missing entries.

In addition to the above methodological contributions, we also make theoretical contri-

butions to the understanding of how side covariate information affects the performance of

tensor completion. In particular, we derive the non-asymptotic error bound for the recovered

tensor components and explicitly quantify the improvements on both the reveal probability

condition and the tensor recovery accuracy due to additional covariate information. We show

that COSTCO allows for a relaxation on the lower bound of the reveal probability p compared

to that required in tensor completion with no covariates, see Assumption 5 for details. In

the extreme case where all tensor modes are coupled with covariate matrices, we can still

recover the tensor entries even when the reveal probability of the tensor is close to zero.

Moreover, we present the statistical errors for the shared tensor component (corresponding

to the coupled mode) and non-shared tensor components separately to demonstrate the gain

brought in through the coupling of covariates information in the model. We show that given

some mild assumptions on noise levels and condition numbers, our COSTCO guarantees an

improved recovery accuracy for the shared component. Unlike existing theoretical analysis

on low-rank tensors which assumes the error tensor to be Gaussian, we do not impose any

distributional assumption on the error tensor or the error matrix. Our theoretical results

depends on the error term only through its sparse spectral norm.

Finally, we apply our COSTCO to the advertising data from a major internet company

to demonstrate its practical advantages. COSTCO makes use of both ad CTR tensor and

ad covariate matrix to extract the latent component which leads to about 23% accuracy

improvement in recovering the missing entries when compared to the standalone sparse

tensor completion method. Moreover, an important by-product from our COSTCO is to use

the recovered ad latent components for better ad clustering. Ad clustering is an essential

task for targeted advertising that helps lead useful ad recommendation for online platform

users. Cluster analysis on our ad latent components reveals interesting and new clusters

that link different product industries which are not formed in existing clustering methods.
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Such findings could directly help the marketing team to strategize the ad planing procedure

accordingly for better ad targeting.

1.2 The Need for Uncertainty Quantification in Tensor Recovery

In addition to the recovery task in tensor completion, there is a need to assess the trust-

worthiness of these predictions in order to communicate the risk attached to the recovered

components. This can be done by characterizing the distribution of the recovered tensor

factors, which in turn can be used to construct confidence intervals for the recovered compo-

nents. However, due to the non-convexity of most tensor completion problems, combined

with the high missing entry rate, characterizing the distribution of the recovered components

is a challenging problem.

In the second part of this dissertation, we propose a robust uncertainty quantification

method for the recovered tensor components. We provide the theoretical work which charac-

terizes, under mild assumptions, the distribution of recovered tensor factors and we provide a

data driven method for constructing entry-wise confidence intervals for the unknown tensor

factors. We then show, both theoretically and through a series of simulations, the validity of

the constructed confidence intervals. This reveals the fact that our method generates shorter

confidence intervals compared to those obtained using standalone tensor completion methods,

primarily due to the fact that we are including covariate information.

Dissertation Outline: The remainder of the dissertation is organized as follows. We

begin in Section  2.1 with a review of work on tensor completion and map the gap that exists

for both tensor recovery and uncertainty quantification of tensor estimates in the highly

sparse and highly missing data regime. In Section  2.2 , we review some notations and present

some preliminaries of tensor algebra. In Chapter  3 , we propose COSTCO an algorithm for

tensor completion with side information and provide theoretical guarantees for the method

in Section  3.2 , along with simulation and real data analysis results in Sections  3.5 and  3.6 .

Section  3.7 contains proof details for the theoretical analysis of Chapter  3 .

In Chapter  4 we characterise the distribution of the recovered tensor components and

propose a method for building confidence intervals. In Section  4.3 we text the validity of the
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confidence interval and their robustness to noise level and missing entry percentage through

simulations. Proof details for Chapter  4 are provided in Section  4.4 .

Concluding remarks on the results derived in the dissertation as well as a discussion on

potential study extension and future research in the tensor completion field are provided in

Chapter  5 .
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2. BACKGROUND ON TENSOR COMPLETION

In this section we provide a literature review on tensor completion, including some background

on tensor notation and tensor algebra.

2.1 Existing Tensor Completion Results

Low-rank tensor completion is a popular subject of theoretical study in a wide range of fields

such as statistics and mathematics [ 16 ]–[ 20 ] as well as computer science and engineering [  20 ]–

[ 24 ]. In its most general form, the tensor completion problem aims at imputing missing entries

of a partially observed noisy tensor. The practical uses of tensor completion methods abound

and are pervasive in application driven studies in computer vision[  25 ], [  26 ], signal processing

[ 7 ], [  8 ], [  27 ], recommender systems [  1 ], [  2 ], community detection [ 28 ] and personalized medicine

[ 11 ], [  12 ]. For instance, in recommender systems, tensor completion methods have been

adapted for collaborative filtering when the scope of the dataset is beyond the traditional two

dimensional (user, item) pair [  2 ]. These tensor-based recommender systems, not only allow

for an improved recommendation algorithm, but also make collaborative filtering feasible

on multidimensional data. At its origin, recommender systems methods relied on matrix

factorization, however recent studies have shown that tensor-based recommender systems

often outperform those matrix factorization methods provided the tensor is not highly sparse.

In the field of personalized medicine, the past lustrum has witnessed a marked increase in the

use of tensor completion to refine treatment protocols. In a 2019 study, Wang, Zhang, Chen,

et al. [ 12 ] use tensor completion to predict the onset of new chronic diseases for individual

patients. This is done by representing high-order interactions of patients, chronic diseases and

patient-specific characteristics as a tensor with missing data. Tensor completion is therefore

used in their work to reveal latent patterns of co-occurring chronic diseases which enables a

more effective prediction of the onset of chronic diseases in a patient.

The overwhelming majority of work in the tensor completion literature relies on a critical

low-rank assumption [ 14 ]. Solving the completion problem is therefore often formulated

as a rank constrained optimization problem which is known to be NP-hard [ 29 ], [  30 ]. To

circumvent such a hurdle, researchers often relax the problem by assuming knowledge of the
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tensor rank, which allows the completion problem to be solved in polynomial time [ 23 ]. The

Alternating Least-Square methods (ALS) is an example of such tensor completion method

with rank relaxation. The ALS method approaches the tensor completion problem by simply

conducting the CANDECOMP/PARAFAC (CP) tensor decomposition on the tensor with

missing entries [  31 ]. In their theoretical work on tensor completion, Jain and Oh [  24 ] used the

ALS approach to derive theoretical guarantees for noiseless, symmetric, orthogonal tensors

with missing entries. However, their algorithm and theoretical analysis do not address the

case of the non-orthogonal and noisy tensor which completion problem is acknowledged to be

non trivial. Although the simplicity of the ALS method makes it an attractive option for

tensor completion, it is also well known that as the percent of missing entries increases, a

standalone ALS method often fails at yielding desirable recovery results.

On the other hand, Singh and Gordon [ 32 ] and Smilde, Westerhuis, and Boqué [  33 ]

showed in their theoretical analysis of matrix completion that allowing side information along

with the observed matrix entries improved the convergence rate of the matrix completion

algorithm and reduced the required number of observed entries for perfect recovery for a

n×n matrix from O(n ln (2n)) to O(ln (n)). Therefore, it is natural to explore an ALS based

tensor completion algorithm that allows the inclusion of side information under the form of a

covariate matrix.

2.1.1 Tensor Completion with Side Information:

The simultaneous extraction of latent information from multiple sources of data can be

interpreted as a form of data fusion [  34 ]–[ 45 ]. Among them, there are a few works related

to tensor completion with side information. The most related work to our approach is the

gradient-based all-at-once optimization method proposed by Acar, Kolda, and Dunlavy [ 36 ],

which updates the matrix and tensor components simultaneously. We assess its performance

to in our experiments in Section  3.5 and find that it is consistently inferior to COSTCO.

Zhou, Qian, Shen, et al. [ 39 ] proposed a Riemannian conjugate gradient descent algorithm

to solve the tensor completion problem in the presence of side information. However, their

procedure does not address the tensor completion problem in the presence of a high percent

20



of missing entries combined with high sparsity. Choi, Jang, and Kang [  42 ] developed a fast

and scalable algorithm for the estimation of shared latent features in coupled tensor matrix

model. However, their approach does not allow missing entries, therefore only works for

complete data.

Importantly, all the aforementioned works do not provide any theoretical analysis for

their methods. Kishan, Makoto, and Hiroshi [  41 ] proposed a convex coupled tensor-matrix

completion method through the use of coupled norms and derived its excess risk bound.

In a more general setting, Huang, Liu, and Zhu [  43 ] applied the tensor ring decomposition

method on the coupled tensor-tensor problem and derived the excess risk bound. However,

the methods considered in these two works do not account for noise in the tensor or matrix,

(i.e., their model is noiseless), nor do they consider the sparse tensor case. To the best of

our knowledge, our work is the first method with theoretical guarantee, that is tailored for

completing a highly sparse and highly missing tensor in the presence of covariate information.

2.1.2 Tensor Completion with Theoretical Guarantees:

Our theoretical analysis is related to a list of recent theoretical work in standalone tensor

completion that does not incorporate covariate information [  16 ]–[ 18 ], [  24 ], [  46 ]. In particular,

Jain and Oh [  24 ] provided recovery guarantee for symmetric and orthogonal tensors with

missing entries, but did not explore recovery for the tensor completion with coupled covariates

nor did they address the case of the non-orthogonal, noisy and sparse tensor. Zhang [  18 ]

established a sharp recovery error for a special tensor completion problem, where the missing

pattern was not uniformly missing but followed a cross structure. Xia and Yuan [  46 ] proved

exact recovery for the noiseless tensor completion problem under a uniform random sampling

schema. Unlike our analysis which is based on the CP model, they do not address the noisy

tensor case and analyze the completion problem under the Tucker model representation which

leads to different assumptions than those required in our case. In their recent work, Xia,

Yuan, and Zhang [  16 ] proposed a two-step algorithm (a spectral initialization method followed

by the power method) for the noisy Tensor completion case and established the optimal

statistical rate in low-rank tensor completion. Different from our model, they assumed the
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error tensor to be sub-gaussian and did consider sparsity in tensor completion. Cai, Li,

Poor, et al. [ 17 ] also independently proposed a provable two stage algorithm (initialization

followed by gradient descent) for the noisy tensor completion problem. These two works

provide ground breaking theoretical contributions to tensor completion. Importantly, none of

the aforementioned work accommodates the inclusion of covariate information in the tensor

completion model. The coupled sparse tensor and matrix formulation in our COSTCO poses

unique difficulties in the theoretical analysis. The unequal weights of the tensor and matrix

prevent us from obtaining a close-form solution for the alternative least-squares problem

compared to the traditional tensor completion. Moreover, the presence of non-orthogonality,

general noise, and sparsity in our model introduce additional challenges. These make our

theoretical analysis far from a simple extension to the standard tensor completion problem

as it calls for new techniques and assumptions.

2.1.3 Tensor completion and uncertainty quantification

The problem of uncertainty quantification for recovered tensor factors and corresponding

tensor entries is quite challenging. This is reflected in the negligible numbers of works in

the literature that address this problem. Only in recent years have a couple works with

theoretical guarantees appeared on the subject. Due to the non-convexity of most tensor

completion problems, characterizing the distribution of the recovered components becomes

challenging. Cai, Poor, and Chen [ 47 ] take on this task for the case of the standalone tensor

completion, by proposing a construction technique for confidence intervals of the tensor factor

entries through the use of a debiased estimator obtained from their two-stage completion

algorithm [  17 ]. Beside the aforementioned work, we are only aware of the work of Xia, Zhang,

and Zhou [  48 ] who approach the inference task in tensor estimation through the use of tensor

regression estimation method under the Tucker model. They develop confidence regions

for the singular subspace of the tensor factors based on the asymptotic distribution of the

estimates obtained from alternating minimization algorithm. However, they do not address

the case of the high missing percent regime and the reliance on tensor matricization in their
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algorithm yields non-optimal sample complexity results.

2.2 Notation and Tensor Algebra

In this section, we introduce some notation, and review some background on tensors.

Throughout the dissertation, we denote tensors by Euler script letters, e.g., T , E . Matrices

are denoted by boldface capital letters, e.g., A,B,C ; vectors are represented with boldface

lowercase letters, e.g., a,v, and scalars are denoted by lowercase letters, e.g., a, λ. Further-

more, the n× n identity matrix In is simply written as I when the dimension can be easily

implied from the context.

Following Kolda and Bader [  29 ], we use the term tensor to refer to a multidimensional

array; a concept that generalizes the notion of matrices and vectors to higher dimensions. A

first-order tensor is a vector, a second-order tensor is a matrix and a third-order tensor is

a three dimensional array. Each order of a tensor is referred to as a mode. For example a

matrix (second-order tensor) has two modes with mode-1 and mode-2 being the dimensions

represented by the rows and columns of the matrix respectively.

Let T ∈ Rn1×n2×n3 be a third-order non-symmetric tensor. We denote its (i, j, k)th entry

as Tijk. A tensor fiber refers to a higher order analogue of matrix row and column and is

obtained by fixing all but one of the indices of the tensor(see Figure  2.1 ). For the tensor T

defined above, the mode-1 fiber is given by T:jk; the mode-2 fiber by Ti:k and mode-3 fiber by

Tij:. Next the slices of the tensor T are obtained by fixing all but two of the tensor indices

(see Figure  2.2 ). For example the frontal, lateral and horizontal slices of the tensor T as

denoted as T::k, T:j: and Ti::.

We define three different types of tensor vector products. For vectors u ∈ Rn1 ,v ∈

Rn2 ,w ∈ Rn3 , the mode-1, mode-2 and mode-3, tensor-vector product is a matrix defined

as a combinations of tensor slices: T ×1 u = ∑n1
i=1 uiTi::, T ×2 v = ∑n2

j=1 vjT:j:, T ×3 w =∑n3
k=1 wkT::k. The tensor multiplying two vectors along its two modes is a vector defined as:

T ×2 v×3 w = ∑
j,k vjwkT:jk, T ×1 u×2 v = ∑

i,j uivjTij:, T ×1 u×3 w = ∑
i,k uiwkTi:k.
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Finally the tensor-tensor product is a scalar defined as T ×1u×2v×3w = ∑
i,j,k uivjwkTijk.

We denote ‖M‖ and ‖M‖F to be the spectral norm and the Frobenius norm of a matrix M,

Mode-1 fibers T:jk Mode-2 fibers Ti:k Mode-3 fibers Tij:

Figure 2.1. Fibers of a third-order tensor. Image obtained from [  29 ]

respectively. The spectral norm of a tensor T is defined as

‖T ‖ := sup
‖u‖2=‖v‖2=‖w‖2=1

∣∣∣∣T ×1 u×2 v×3 w
∣∣∣∣, (2.1)

and its Frobenius norm is ‖T ‖F :=
(∑

i,j,k T 2
ijk

)1/2
. We define the sparse spectral norm of

a matrix M as ‖M‖<d1> := sup‖u‖2=1,‖u‖0=d1 ‖M×1 u‖2 and the sparse spectral norm of a

tensor T as

‖T ‖<d1,d2,d3> := sup
‖u‖2=‖v‖2=‖w‖2=1

‖u‖0=d1,‖u‖0=d2,‖u‖0=d3

∣∣∣∣T ×1 u×2 v×3 w
∣∣∣∣,

where d1 < n1, d2 < n2, d3 < n3. When d1 = d2 = d3 = d, we simplify ‖T ‖<d,d,d> as ‖T ‖<d>.

Horizontal slices Ti:: Lateral slices T:j: Frontal slices T::k

Figure 2.2. Slices of a third-order tensor. Image obtained from [  29 ]
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Given a third-order tensor T ∈ Rn1×n2×n3 , we denote its CP decomposition as

T =
∑
r∈[R]

λrar ⊗ br ⊗ cr, (2.2)

where [R] indicates the set of integer numbers {1, . . . , R}, and ⊗ denotes the outer product

of two vectors. For example, the outer product of three vectors ar ∈ Rn1 , br ∈ Rn2 and

cr ∈ Rn3 forms a third order tensor of dimension n1 × n2 × n3 whose (i, j, k)th entry is equal

to ari × brj × crk where ari is the ith entry of ar. In ( 2.2 ), ar,br, cr are of unit norm; that

is ‖ar‖2 = ‖br‖2 = ‖cr‖2 = 1 for all r ∈ [R]; λr ∈ R+ is the rth decomposition weight of

the tensor. We denote matrices A ∈ Rn1×R, B ∈ Rn2×R and C ∈ Rn3×R whose columns are

ar,br and cr for r ∈ [R] respectively as,

A = [a1, a2, . . . , aR] B = [b1,b2, . . . ,bR] C = [c1, c2, . . . , cR].
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3. COVARIATE ASSISTED SPARSE TENSOR COMPLETION

In this chapter we propose COSTCO, an algorithm which aims to complete a sparse tensor

with missing data coupled to covariate information matrice(s) along mode(s) of the tensor.

The model, optimization problem and algorithm, along with procedures for initialization and

parameter tuning are provided in Section  3.1 . Section  3.2 presents the main theoretical results.

Section  3.5 contains a series of simulation studies and Section  3.6 applies our algorithm to an

advertisement data set to illustrate its practical advantages. All proof details are provided in

Section  3.7 .

3.1 Methodology

In this section we introduce our sparse tensor completion model when covariate information

is available and propose a non-convex optimization for parameter estimation. Our algorithm

employs an alternative updating approach and incorporates a refinement step to boost the

algorithm performance. For conciseness in the proofs derivations, we present this work for the

special case in which one covariate matrix is coupled along one mode of the tensor. However

our method can be generalised to the case in which all tensor modes are coupled to covariate

matrices as is the case in the second part of this dissertation in Chapter  4 .

3.1.1 Model

We observe a third-order tensor T ∈ Rn1×n2×n3 and a covariate matrix M ∈ Rn1×nv

corresponding to the feature information along the first mode of the tensor T . Here, without

loss of generality, we consider the case where the tensor has three modes and the tensor and

the matrix are coupled along the first mode. Our method can be easily extended to the case

where more than one mode of the tensor has a covariates matrix.
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Let Ω be the subset of indexes of the tensor T for which entries are not missing. We

define a projection function PΩ(T ) that projects the tensor onto the observed set Ω, such that

[PΩ(T )]ijk =

 Tijk if (i, j, k) ∈ Ω

0 otherwise.
(3.1)

In other words PΩ(·) is a function that is applied element-wise to the tensor entries and

indicates which entries of the tensor are missing. We assume a noisy observation model,

where the observed tensor and matrix are noisy versions of their true counterparts. That is,

PΩ(T ) = PΩ(T ∗ + ET ); M = M∗ + EM , (3.2)

where ET and EM are the error tensor and the error matrix respectively; T ∗ and M∗ are

the true tensor and the true matrix, which are assumed to have low-rank decomposition

structures [ 29 ];

T ∗ =
∑
r∈[R]

λ∗
ra∗

r ⊗ b∗
r ⊗ c∗

r; M∗ =
∑
r∈[R]

ω∗
ra∗

r ⊗ v∗
r, (3.3)

where λ∗
r and ω∗

r ∈ R+, and a∗
r ∈ Rn1 ,b∗

r ∈ Rn2 , c∗
r ∈ Rn3 and v∗

r ∈ Rnv with ‖a∗
r‖2 =

‖b∗
r‖2 = ‖c∗

r‖2 = ‖v∗
r‖2 = 1 for all r ∈ [R] with R representing the rank of the tensor and

matrix. As motivated from the online advertisement application, we impose an important

sparsity structure on the tensor and matrix components a∗
r ,b∗

r, c∗
r and v∗

r such that they

belong to the set S(n, di) with i = 1, 2, 3, v, where

S(n, di) :=
u ∈ Rni

∣∣∣∣‖u‖2 = 1,
ni∑

j=1
1{uj 6=0} ≤ di

 . (3.4)

The values di for i = 1, 2, 3, v are considered to be the true sparsity parameters for the tensor

and matrix latent components.

Given a tensor T with many missing entries and a covariate matrix M, our goal is to

recover the true tensor T ∗ as well as its sparse latent components. We formulate the model

estimation as a joint sparse matrix and tensor decomposition problem. This comes down to
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finding a sparse and low-rank approximation to the tensor and matrix that are coupled in

the first mode.

min
A,B,C,V

{
‖PΩ

(
T )− PΩ

( ∑
r∈[R]

λrar ⊗ br ⊗ cr
)
‖2
F + ‖M−

∑
r∈[R]

ωrar ⊗ vr‖2
F

}
(3.5)

subject to ‖ar‖2 = ‖br‖2 = ‖cr‖2 = ‖vr‖2 = 1, ‖ar‖0 ≤ s1, ‖br‖0 ≤ s2, ‖cr‖0 ≤ s3, ‖vr‖0 ≤ sv.

Here si, i = 1, 2, 3, v, are the sparsity parameters and can be tuned via a data-driven way.

The problem in ( 3.5 ) is a non-convex optimization when considering all parameters at once,

however the objective function is convex in each parameter while other parameters are

fixed. Such multi-convex property motivates us to consider an efficient alternative updating

algorithm.

3.1.2 Algorithm

In order to solve the optimization problem formulated in ( 3.5 ), we use an Alternating

Least-Squares (ALS) approach and incorporate an extra refinement step as introduced in

Jain and Oh [ 24 ]. In each iteration of ALS, all but one of the components are fixed and the

optimization problem reduces to a convex least-squares problem. to order to enforce `0 norm

penalization in the optimization and therefore sparsity, we apply a truncation step after each

component update similar to that used in Sun, Lu, Liu, et al. [ 49 ], Zhang and Han [  50 ],

and Hao, Zhang, and Cheng [  51 ]. For a vector u ∈ Rn and an index set F ⊆ [n] we define

Truncate(u, F ) such that its i-th entry is

[Truncate(u, F )]i =


ui if i ∈ F

0, otherwise.

For a scalar s < n, we denote Truncate(u, s)=Truncate(u, supp(u, s)), where supp(u, s)

is the set of indices of u which have the largest s absolute values. For example, consider

u = (0.1, 0.2, 0.5,−0.6)>, we have supp(u, 2) = {3, 4} and Truncate(u, 2) = (0, 0, 0.5,−0.6)>.

Note that existing sparse tensor models encourage the sparsity either via a Lasso penalized
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approach [  52 ], dimension reduction approach [ 53 ], or sketching [  54 ]. We extend the truncation-

based sparsity approach in traditional high-dimensional vector models [  55 ], [ 56 ] and tensor

factorization [  49 ]–[ 51 ] to the tensor completion problem. As shown in [ 49 ], [ 56 ], the truncation-

based sparsity approach often leads to improved estimation performance in practice.

Algorithm 1 COSTCO: Covariate-assisted Sparse Tensor Completion for Solving ( 3.5 )
1: Input: Observed tensor PΩ(T ) ∈ Rn1×n2×n3 , observed matrix M ∈ Rn1×nv , maximal

number of iterations τ , tolerance tol, rank R, and cardinality (s1, s2, s3, sv).
2: Initialize (λ1, . . . , λr), (A,B,C), (ω1, . . . ωr),V.
3: ar,br, cr,vr ← the rth columns of A,B,C and V respectively, ∀r ∈ [R]
4: While t ≤ τ and

(
‖Aold−A‖F

‖Aold‖F
+ ‖Bold−B‖F

‖Bold‖F
+ ‖Cold−C‖F

‖Cold‖F

)
≥ tol,

5: Aold ← A, Bold ← B, Cold ← C, Vold ← V
6: For r = 1, . . . , R
7: resT ← PΩ(T )−PΩ( ∑

m 6=r
λmam⊗bm⊗ cm) and resM ←M− ∑

m6=r
ωmam⊗vm

8: ãr ←
λrresT (I,br,cr)+ωrresM vr

λ2
rPΩ(I,b2

r,cr
2)+ω2

r

9: ãr ← Truncate(ãr, s1), ar ← ãr/‖ãr‖2

10: b̃r ←
resT (ar,I,cr)
PΩ(a2

r ,I,c2
r) , c̃r ←

resT (ar,br,I)
PΩ(a2

r ,b2
r,I) and ṽr ← res>

Mar
11: b̃r ← Truncate(b̃r, s2) c̃r ← Truncate(c̃r, s3), ṽr ← Truncate(ṽr, sv)
12: λr ← ‖cr‖2, ωr ← ‖vr‖2
13: br ← b̃r/‖b̃r‖2, cr ← c̃r/‖c̃r‖2, vr ← ṽr/‖ṽr‖2
14: End For
15: End While

Our COSTCO in Algorithm  1 takes a matrix M and a tensor T with missing entries as input

and computes the components of the matrix and tensor. Due to the non-convexity of the

optimization problem, there could be multiple local optima. In our algorithm we initialize the

tensor and matrix components using the procedure in Section  3.1.3 which is shown through

extensive simulations to provide good starting values for the tensor and matrix components.

Line 6 of the algorithm has an inner loop on r ∈ [R] which loops on each tensor rank. This

inner loop on r performs an “extra refinement” step that was first introduced in Jain and

Oh [  24 ] for tensor completion; and is, therein, proved to improve the error bounds of tensor

recovery.

The main component updates are performed in Lines 8 and 10 which are solutions to

the least-squares problem while other parameters are fixed. Note that the horizontal double

line in Lines 8 and 10 indicate element-wise fraction and the squaring in the denominator
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Figure 3.1. Illustration of COSTCO showing recovery procedure for missing
entries through joint tensor matrix decomposition; red cells represent missing
entries. The tensor and matrix are coupled along the first mode and the
components ar, r ∈ [R] are shared by the tensor and matrix decomposition.

applies entry-wise on the vectors. After obtaining these non-sparse components, Lines 9 and

11 perform the truncation operator to encourage the sparsity on the latent components. The

detailed derivation of this algorithm is shown in Lemma  1 in the supplementary material.

Finally, the algorithm stops if either the maximum number of iterations τ is reached or the

normalized Frobenius norm difference of the current and previous components are below a

threshold tol.

Figure  3.1 is an illustration of COSTCO that reveals the intuition behind the working of

Algorithm  1 . As the percentage of missing entries in the tensor increases, recovering the

tensor components using only the observed tensor entries leads to a reduction in the accuracy

of the recovered tensor components. However, with COSTCO, we leverage the additional

latent information coming from the matrix of covariates on the shared mode. The signal

obtained from the matrix contributes in improving the recovery of the shared components

and indirectly that of the non-shared components as well. This observation is reflected on

Line 8 of Algorithm  1 for the shared component update, where we see in the denominator
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that even when PΩ(I,b2
r, cr2) is close to zero (meaning most entries of the tensor are missing)

the denominator remains a non-zero value due to the signal from the covariate matrix. In

this case we are still able to estimate the shared component ar. This would not be the case

without the addition of the covariates matrix information, where the denominator for the

update would only be PΩ(I,b2
r, cr2) which is close to zero. Therefore, a standalone tensor

completion algorithm would become unstable. In the more general case where all three

modes of the tensor are coupled to their own covariates matrices, it is easy to see from the

illustration in Figure  3.1 that the missing percentage of the tensor could be close to 100%.

This is because in such case, the covariates matrix components could still be used in the

algorithm to recover the tensor components for all three modes and therefore recover the

tensor entries.

3.1.3 Initialization Procedure

This section presents details about the method used for the initialization procedure on

Line 2 of Algorithm  1 . Unlike matrix completion, success in designing an efficient and accurate

algorithm for the tensor completion problem is contingent to starting with a good initial

estimates. In fact, the convergence rate of low-rank tensor algorithms is typically written as

a function of the tensor components weights as well as the initialization error [  16 ], [  17 ], [  24 ],

[ 49 ], [  57 ]. It is therefore imperative to design an initialization procedure efficient enough to

help rule out local stationary points and produce initial component estimates within a local

region of the global solution. However such initialization procedures should also be simple

enough so not to dominate the computation complexity of the main algorithm.

We use to our advantage, the fact that in our model, the tensor and matrix share at least

one mode and use the singular value decomposition (SVD) [  58 ], [  59 ] of the observed matrix M

to initialize the shared components of the tensor A along with the matrix weights ω1, · · · , ωR
and matrix component V respectively. We then use the robust tensor power method (RTPM)

from Anandkumar, Ge, Hsu, et al. [ 57 ] to initialize the non-shared components B and C and

the tensor weights. This is done by setting all missing entries in the tensor to be zero before

running RTPM. In practice we show in our simulations in Section  3.5 that this is an adequate
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initialization procedure and produces much better initials compared to a random initialization

scheme. In the more general case where all tensor modes have covariate matrices, the SVD

on the covariate matrices can be used to initialize all the tensor components. In this case,

the RTPM for non-shared components initialization would not be needed.

3.1.4 Rank and Cardinality Tuning

Our COSTCO method relies on two key parameters: the rank R and the sparsity parameters.

It has been shown that exact tensor rank calculation is a NP-hard problem [  29 ]. In this

section, following the tuning method in [  49 ], [  60 ], we provide a BIC-type criterion to tune

these parameters. Given a pre-specified set of rank values R and a pre-specified set of

cardinality values S, we choose the parameters which minimizes

BIC = log


‖PΩ

(
T − ∑

r∈[R]
λrar ⊗ br ⊗ cr

)
‖2
F

n1n2n3
+
‖M− ∑

r∈[R]
ωrar ⊗ vr‖2

F

n1nv

 (3.6)

+ log (n1n2n3 + n1nv)
(n1n2n3 + n1nv)

∑
r∈[R]

(‖a‖0 + ‖b‖0 + ‖c‖0 + ‖v‖0)

To further speed up the computation, in practice, we tune these parameters sequentially.

That is, we first fix si = ni and tune the rank R via (  3.6 ). Then given the tuned rank, we

tune the sparsity parameters. This tuning procedure works very well through simulation

studies in Section  3.5 .

3.2 Theoretical Analysis

In this section, we derive the error bound of the recovered tensor components obtained

from Algorithm  1 . We present the recovery results for the estimated shared components ar
and non-shared tensor components br and cr separately to highlight the sharp improvement

in recovery accuracy resulting from incorporating the covariate information.

The theory is presented in two phases, first we focus on a simplified case in which the

true tensor and matrix components a∗
r ,b∗

r, c∗
r and v∗

r are non-sparse and both tensor and
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matrix weights are equal (i.e, ω∗
r = λ∗

r, ∀r ∈ [R]). Presenting this simplified case allows

us to showcase clearly the interplay between the reveal probability, the tensor and matrix

dimensions as well as how the noises in the tensor and matrix affect the statistical and

computational errors of the algorithm. In the second case, we then present the results for

the general scenario where the tensor and matrix weights are allowed to be unequal and the

tensor and matrix components are assumed to be sparse.

3.3 Case 1: Non-sparse Tensor and Matrix with Equal Weights

Before presenting the theorem for the simplified case, we introduce assumptions on the

true tensor T ∗ and matrix M∗ and then discuss their utility. Denote n := max (n1, n2, n3, nv).

3.3.1 Assumptions

Assumption 1: (Tensor and matrix structure)

i. Assume T ∗ and M∗ are specified as in ( 3.3 ) with unique low-rank decomposition up to a

permutation, and assume rank R = o(n1/2) and λ∗
r = ω∗

r (equal weight), ∀r ∈ [R].

ii. The entries of the decomposed components for both T ∗ and M∗ satisfy the µ-mass

condition,

max
r
{‖a∗

r‖∞, ‖b∗
r‖∞, ‖c∗

r‖∞, ‖v∗
r‖∞} ≤

µ√
n
,

where µ is a constant.

iii. The components across ranks for both T ∗ and M∗ meet the incoherence condition,

max
i6=j

{
|〈a∗

i ,a∗
j 〉|, |〈b∗

i ,b∗
j 〉|, |〈c∗

i ,c∗
j 〉|, |〈v∗

i ,v∗
j 〉|
}
≤ c0√

n
,

where c0 is a constant.

Assumption (1i) is a common assumption in the tensor decomposition literature to ensure

identifiability [ 24 ], [  29 ], [  49 ], [  57 ]. It imposes the condition that the tensor admits a low rank

CP decomposition that is unique. This is the case of the undercomplete tensor decomposition,
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where the rank of the tensor is assumed to be lower than the dimension of the component.

The condition λ∗
r = ω∗

r is a simplification of the problem that allows us to simplify the

derivation and sharpen the convergence rate compared to that in the general non-equal

weight case (described in Section  3.4 ). Assumption (1ii) ensures that the mass of the tensor

is not contained in only a few entries and is necessary if one hopes to recover any of the

non-share components of the tensor with acceptable accuracy. Assumption (1iii) is related to

the non-orthogonality of the tensor components and imposes a soft orthogonality condition

on the tensor and matrix components. That is, the tensor components are allowed to be

correlated only to a certain degree. Anandkumar, Ge, and Janzamin [ 61 ] and [  49 ] show that

such a condition is met when the tensor and matrix component are randomly generated from

a Gaussian distribution. Both the µ-mass condition and the incoherence conditions have

been commonly assumed in low-rank tensor models [  17 ], [  24 ], [  46 ], [  47 ], [  49 ], [  57 ].

.

Assumption 2: (Reveal probability)

Denote λ∗
min := min

r∈[R]
{λ∗

r} and λ∗
max := max

r∈[R]
{λ∗

r}. We assume that each entry (i, j, k) of the

tensor T ∗ for all i ∈ [n1], j ∈ [n2] and k ∈ [n3] is observed with equal probability p which

satisfies,

p ≥ CR2µ3λ∗2
max log2(n)

(λ∗
min + ω∗

min)2n3/2 ,

where C is a constant.

Assumption 2 guarantees that the tensor entries are revealed uniformly at random with

probability p. The lower bound on p is an increasing function of the tensor rank since

recovering tensors with a larger rank is a harder problem which requires more observed

entries. The bound on p is also an increasing function of the µ-mass parameter since a larger

µ-mass parameter in Assumption (1ii) indicates a smaller signal in each tensor entry and

hence more reveal entries for accurate component recovery would be needed. Moreover, the

bound on p is a decreasing function of the tensor component dimension n and relates as

n−3/2 up to a logarithm term. This is the optimal dependence on the dimension in tensor

completion literature [  24 ], [ 46 ]. Most importantly, the lower bound on p is relaxed when

the minimal weight λ∗
min of the tensor or the minimal weight ω∗

min of the matrix increases.
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This reflects a critical difference when compared to the lower bound condition required in

traditional tensor completion [ 24 ], [  46 ] which corresponds to the case ω∗
min = 0. It shows the

advantage of coupling the matrix of covariates for the tensor completion. This new lower

bound on p translates to requiring less observed entries for the tensor recovery in the presence

of covariates. Note that in the present simplified case ω∗
r = λ∗

r, we still choose to write ω∗
min

explicitly in the lower bound condition to showcase the effect of the covariate information.

The improvement on p over existing literature will be clearer in Assumption 5 for the general

non-equal weight case.

.

Assumptions 3 (Initialization error)

Define the initialization errors for the tensor components as ε0T
:= maxr∈[R]{‖a0

r−a∗
r‖2, ‖b0

r−

b∗
r‖2, ‖c0

r − c∗
r‖2,

|λ0
r−λ∗

r |
λ∗

r
} and the initialization error for the matrix components as ε0M

:=

maxr∈[R]{‖v0
r − v∗

r‖2,
|ω0

r−ω∗
r |

ω∗
r
}. Assume that

ε0 := max{ε0T
, ε0M
} ≤ λ∗

min
100Rλ∗

max

− c0

3
√
n
. (3.7)

Here the component c0/
√
n is due to the non-orthogonality of the tensor factors. When

the components are orthogonal, we allow a larger initialization error. This observation aligns

with the common knowledge in tensor recovery as the problem is known to be harder for

non-orthogonal tensor factorization [ 61 ]. Similarly, a larger rank R of the tensor leads to a

harder problem and a stronger condition on the initialization error. Under Assumption (1i)

R = o(n1/2), when the condition number λ∗
max/λ

∗
min = O(1), this initial condition reduces to

ε0 = O(1/R). As shown in [ 24 ], [ 61 ], the robust tensor power method initialization procedure

used in our Algorithm satisfies O(1/R) error bound.

.

Assumptions 4 (Signal-to-noise condition)

We assume that spectral norm of the noise tensor and matrix satisfy the following condition

‖ET‖ ≤
λ∗
min(p+ 1)

p
and ‖EM‖ ≤ λ∗

min(p+ 1). (3.8)
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Assumption 4 can be considered a variant of the commonly used signal to noise ratio in

noisy tensor decomposition.

3.3.2 Main Theoretical Results

Theorem 3.3.1 (Non-sparse tensor and matrix components with equal weights). Assuming

Assumptions 1, 2 , 3 and 4 are met. After running Ω
(
log2

( (p+1)λ∗
minε0

p‖ET ‖+‖EM ‖ ∨
λ∗

minε0
‖ET ‖

))
iterations

of Algorithm  1 with si = ni, for i = 1, 2, 3, v, we have

• Shared Component ar:

max
r∈[R]

(‖ar − a∗
r‖2) = O

(
p‖ET‖+ ‖EM‖

[p+ 1]λ∗
min

)
, (3.9)

where ‖ET‖, ‖EM‖ is the spectral norm of the error tensor and error matrix, respectively.

• Non-Shared Components br, cr:

max
r∈[R]

(
‖br − b∗

r‖2, ‖cr − c∗
r‖2,
|λr − λ∗

r|
λ∗
r

)
= O

(
‖ET‖
λ∗
min

)
. (3.10)

Theorem  3.3.1 indicates that the shared component error is a weighed average of the

spectral norm of the error tensor and error matrix. Whereas the non-shared component error

is simply a function of the error tensor. In the extreme case in which the covariates matrix

M is noiseless, then the recovery error of the shared component becomes,

p‖ET‖
λ∗
min(p+ 1) ,

which is much smaller than the recovery error of the non-shared component ‖ET ‖
λ∗

min
. Moreover

even in the case in which the coupled covariates matrix is not noiseless, since p ≤ 1 we notice

an improvement in the statistical error of the recovered shared component compared to that

of the non-shared components as long as the spectral norm of the error matrix is no larger

than the spectral norm of the error tensor. To see why that is usually the case in practice,

recall that EM ∈ Rn1×nv and ET ∈ Rn1×n2×n3 , hence when entries of EM and ET are of the
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same scale, ‖EM‖ is much smaller than ‖ET‖ as nv is much smaller than n2 × n3 in our real

application. In the next subsection, we consider the general weight case and will explicitly

showcase the improvement of the shared component over traditional completion methods due

to the additional covariate information.

3.4 Case 2: Sparse Tensor and Matrix with General Weights

We now present the result for the general case with low rank sparse tensor and matrix T ∗

and M∗ and the weights of the tensor and matrix are allowed to be unequal. The theoretical

analysis for the general case is much more challenging than that covered in Theorem  3.3.1 .

For example, unlike the setting in Case 1, we are no longer able to derive the closed form

solution to the optimization problem in ( 3.5 ) for the shared tensor component. Instead,

we construct an intermediate estimate in the analysis of the shared component recovery.

Fortunately, this general result allows us to explicitly quantify the improvement due to the

covariates on the missing percentage requirement and the final error bound.

The following conditions are needed for the general scenario. Recall that d = max{d1, d2, d3, dv}

is the maximal true sparsity parameter defined in ( 3.4 ) and define s := max{s1, s2, s3, sv}.

3.4.1 Assumptions

Assumption 5 (sparse tensor and matrix structure)

i. Assume T ∗ and M∗ have the sparse structure in ( 3.3 ) and ( 3.4 ) with unique low-rank

decomposition up to a permutation, and assume rank R = o(d1/2).

ii. The entries of the decomposed components for T ∗ satisfy the following µ-mass condition

max
r
{‖a∗

r‖∞, ‖b∗
r‖∞, ‖c∗

r‖∞, ‖v∗
r‖∞} ≤

µ√
d
.

iii. The components across ranks for both T ∗ and M∗ meet the incoherence condition,

max
i6=j

{
|〈a∗

i ,a∗
j 〉|, |〈b∗

j ,b∗
i 〉|, |〈c∗

j ,c∗
i 〉|, |〈v∗

j ,v∗
i 〉|
}
≤ c0√

d
.
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Notice that since the components of tensor and matrix are assumed to be sparse, the µ-mass

and incoherence condition are functions of the maximum number of non-zero elements d in

the tensor and matrix components rather than the dimension n. In the case in which d� n,

this constitutes a milder assumption compared to Assumptions 1(ii) and 1(iii).

.

Assumption 6 (Reveal probability)

We assume that each tensor entry (i, j, k) for all i ∈ [n1], j ∈ [n2] and k ∈ [n3] is observed

with equal probability p which satisfies,

p ≥ CR2µ3λ∗2
max log2(d)

(λ∗
min + ω∗

min)2d3/2 . (3.11)

Similar to the equal-weight case, the required lower bound on the reveal probability in

( 3.11 ) improves the established lower bound for the tensor completion with no covariates

matrix. Specifically, [  24 ], [ 62 ], [ 63 ] show that the lower bound for non-sparse tensor completion

is of the order λ∗2
max log2(n)
λ∗2

minn
3/2 while our lower bound is of the order λ∗2

max log2(n)
(λ∗

min+ω∗
min)2n3/2 when the

components are not sparse (d = n). This highlights the fact that a weaker assumption on the

reveal probability is required in the presence of covariates matrix than in the case with no

covariates.

An interesting phenomenon is that when the minimal weight of the matrix ω∗
min is very

large, we could allow the reveal probability to be even close to zero. As demonstrated in our

simulations, our COSTCO is still satisfactory even when 98% of the tensor entries are missing,

while the traditional tensor completion method fails with more than 90% missing entries.

Moreover, in the sparse case, the lower bound is now a decreasing function of the sparsity

parameter d. This is intuitive as when d decreases, the non-zero tensor components will

concentrate on fewer dimensions which makes the tensor recovery problem harder.

.

Assumption 7 (Initialization error)

Assume that

ε0 := max{ε0T
, ε0M
} ≤ 95/96λ∗2

min + ω∗2
min

144R(λ∗2
max + ω∗2

max)
− c0

3
√
d
, (3.12)
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with ε0T
and ε0M

as defined in Assumption 3.

Compared to that in Assumption 3, the initialization condition for Case 2 is slightly

stronger. This is reflected on two parts. First, the term c0/
√
d is due to the non-orthogonality

of sparse tensor components and is larger in the sparse case. This requires a stronger condition

on the rank R as shown in Assumption (1i) in order to ensure the positivity of the right-

hand side of (  3.12 ). Second, the ratio (95/96λ∗2
min + ω∗2

min)/144(λ∗2
max + ω∗2

max)) is smaller than

λ∗
min/(100λ∗

max) in Assumption 3. Even when λ∗
r = ω∗

r and d = n, this condition is still slightly

stronger than Assumption 3 since λ∗2
min/λ

∗2
max < λ∗

min/λ
∗
max. This additional term is due to

handling the non-equal weights. Fortunately, when condition numbers λ∗
max/λ

∗
min = O(1)

and ω∗
max/ω

∗
min = O(1), we have ε0 = O(1/R), which is again satisfied by the initialization

procedure in our algorithm.

.

Assumption 8 (Signal-to-noise condition)

We assume that the sparse spectral norm of the noise tensor and noise matrix satisfy

‖ET‖<d+s> ≤
λ∗2
minp+ ω∗2

min
λ∗
maxp

and ‖EM‖<d+s> ≤
λ∗2
minp+ ω∗2

min
ω∗
max

. (3.13)

Assumption 8 can be considered a variant of the commonly used signal to noise ratio in

noisy tensor decomposition with the caveat that the tensor and matrix noise level should be

bounded by a function of the tensor and matrix signals (weights).

3.4.2 Main Theoretical Results

Theorem 3.4.1 (Sparse tensor and matrix components with general weights). Assuming as-

sumptions 5, 6, 7 and 8 are met. After running Ω
(

log2

(
[pλ∗2

min+ω∗2
min]ε0

pλ∗
max‖ET ‖<d+s>+ω∗

max‖EM ‖<d+s>
∨ λ∗

minε0
‖ET ‖<d+s>εT

))
iterations of Algorithm  1 with si ≥ di, for i = 1, 2, 3, v, we have

• Shared Component ar:

max
r∈[R]

(‖ar − a∗
r‖2) = O

(
pλ∗

max‖ET‖<d+s> + ω∗
max‖EM‖<d+s>

pλ∗2
min + ω∗2

min

)
, (3.14)
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where ‖ET‖<d+s>, ‖EM‖<d+s> are the sparse spectral norm of error tensor ET and error

matrix EM . Remind that the sparse spectral norm is defined in Section  2.2 .

• Non-Shared Components br, cr:

max
r∈[R]

(
‖br − b∗

r‖2, ‖cr − c∗
r‖2,
|λr − λ∗

r|
λ∗
r

)
= O

(
‖ET‖<d+s>

λ∗
min

)
. (3.15)

3.4.3 Discussion

Similar to that in Theorem  3.3.1 , the statistical error for the shared tensor component in

Theorem  3.4.1 is a weighed average of the sparse spectral norm of the error tensor ET and

error matrix EM . The key difference is that the weight is now related to λ∗
max and ω∗

max and

the spectral norm is now much smaller than the non-sparse counterparts in Theorem  3.3.1 

since typically d+ s < n and hence ‖ET‖<d+s> ≤ ‖ET‖. Similarly, the recovery error for the

non-shared tensor component in the general case is also smaller than that in ( 3.10 ) due to a

smaller spectral norm. This observation highlights the advantage of considering sparse tensor

components. In addition, we highlight a few important scenarios in Table  3.1 where the error

of shared tensor component is smaller than that of the non-shared component. Such scenario

indicates when the additional covariate information is useful to reduce the estimation error of

the tensor components. In summary, such improvement is observed when the sparse spectral

norm of the error matrix is smaller than or comparable to that of the error tensor. Otherwise,

it is not conclusive whether such improvement exists.

3.5 Simulations

In this section we evaluate the performance of our COSTCO algorithm via a series of

simulations. We compare it with two competing state of the arts methods: tenALSsparse by

Jain and Oh [ 24 ] and OPT by Acar, Kolda, and Dunlavy [ 36 ]. The algorithm tenALSsparse

is an alternating minimization based method for tensor completion which incorporates a

refinement step in the standard ALS method. In contrast to our method, tenALSsparse does

not incorporate side covariate information in tensor completion. Comparing our algorithm to
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Table 3.1. Statistical error of shared tensor component in Theorem  3.4.1 under
various conditions. Improvement represent improvement over the recovery error
of the non-shared components

Condition
Number

Noise Statistical Error Improved?

‖EM‖<d+s> = 0 O
(
p‖ET ‖<d+s>

pλ∗
min+ω∗

min

)
X

λ∗
max
λ∗

min
= O(1)
&

‖EM‖<d+s> =
‖ET ‖<d+s>

O
(

‖ET ‖<d+s>(p+1)
pλ∗

min+ω∗
min

)
X

ω∗
max
ω∗

min
= O(1) ‖EM‖<d+s> <

‖ET ‖<d+s>

O
(
pλ∗

max‖ET ‖<d+s>+ω∗
max‖EM ‖<d+s>

pλ∗2
min+ω∗2

min

)
X

‖EM‖<d+s> >
‖ET ‖<d+s>

O
(
pλ∗

max‖ET ‖<d+s>+ω∗
max‖EM ‖<d+s>

pλ∗2
min+ω∗2

min

)
inconclusive

tenALSsparse helps to highlight the impact of incorporating addition information through

coupling with a covariate matrix. It is also worth noting that the original algorithm from

Jain and Oh [ 24 ] was built for the recovery of non-sparse tensors. In order to allow a

fair comparison between our algorithm and theirs, we modify their original algorithm by

introducing the same truncation scheme presented in Algorithm  1 to generate the sparse

version of their algorithm.

The second comparison method is the OPT algorithm, which approaches the coupled

matrix and tensor component recovery by solving for all components simultaneously using a

gradient-based optimization approach. The all-at-once optimization method is known to be

robust to rank mis-specification [ 14 ], however it is computationally less efficient then ALS

based methods, especially when the tensor is highly missing [  31 ].

In the previous sections, we discuss our models and theories via a third-order tensor

to simplify the presentation. Note that COSTCO is applicable to tensors with more than

three modes. For example, in the simulation studies, we generate a fourth-order tensor

T ∗ ∈ Rd1×30×30×30 and a matrix M∗ ∈ Rd1×30. We assume that the matrix and the tensor

share components across the first mode just as is the case in the aforementioned sections. In

order to form the tensor T ∗ and the matrix M∗, we draw each entry of A∗ ∈ Rd1×R,B∗ ∈

R30×R,C∗ ∈ R30×R,D∗ ∈ R30×R and V∗ ∈ R30×R, from the iid standard normal distribution.
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We enforce sparsity to the tensor components by keeping only the top 40% of the entries in

each column in B∗,C∗ and D∗ and set the rest of the entries to zero.

In all of our simulations we consider the coupled modes A∗ to be dense to mimic the real

data scenario in Section  3.6 where the coupled matrix is dense. We define λ∗
1, . . . , λ

∗
R and

ω∗
1, . . . , ω

∗
R as the product of the non-normalized component norms in each mode, that is,

λ∗
r = ‖a∗

r‖2 × ‖b∗
r‖2 × ‖c∗

r‖2 × ‖d∗
r‖2 and ω∗

r = ‖a∗
r‖2 × ‖v∗

r‖2.

We then normalize each of the columns of A∗, B∗ ,C∗ ,D∗ ,V∗ to unit norm. To illustrate,

the first mode component matrix A∗ becomes A∗ = [ a∗
r

‖a∗
r ‖2
, · · · , a∗

R

‖a∗
R‖2

]. The sparse tensor T ∗

and matrix M∗ are then formed as T ∗ = ∑
r∈[R]

λ∗
ra∗

r ⊗ b∗
r ⊗ c∗

r ⊗ d∗
r and M∗ = ∑

r∈[R]
ω∗
ra∗

r ⊗ v∗
r.

We then add noise to the tensor and matrix using the following setup T = T ∗ + ηTNT ‖T ∗‖F

‖NT ‖F

and M = M∗ +ηMNM ‖M∗‖F

‖NM ‖F
, where NT and NM are a tensor and a matrix of the same size as

T ∗ and M∗ respectively, whose entries are generated from the standard normal distribution.

A similar noise generation procedure has been considered in Acar, Kolda, and Dunlavy [  36 ].

We simulate the uniformly missing at random pattern in the tensor data by generating entries

of the reveal tensor Ω ∈ Rd1×30×30×30 from the binomial distribution with reveal probability

p. The sparse and noisy tensor PΩ(T ) with missing data is finally obtained as PΩ(T ) = T ∗Ω,

where ∗ is the element-wise multiplication.

To assess the goodness of fit for the tensor and tensor components recovery, we use the

normalized Frobenius norm of the difference between the recovered component and the true

component. We compute the tensor estimation error, the tensor component error and tensor

weights error as:

tensor error := ‖T ∗ − T ‖F/‖T ∗‖F ; component error := ‖U∗ −U‖F/‖U∗‖F ;

weight error :=‖λ∗ − λ‖2/‖λ∗‖2, (3.16)

where T ,U, are the estimated tensor and tensor components with U ∈ {A,B,C,D}, and

λ := (λ1, · · · , λR)> is the vector of estimated tensor weights returned by Algorithm  1 . In

all simulations we return the mean error of 30 replicas of each experiment. Throughout all

the experiments, we set the maximum number of iterations τ to be 200, the tolerance tol in

Algorithm  1 is set to be 1e−7. To avoid bad local solutions, we conduct 10 initializations for
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each replicate in all methods. We set the tuning range for the rank R to be {1, 2, 3, 4, 5}.

The tuning range for the sparsity is set to be {20%, 40%, 60%, 80%, 90%, 100%}, each value

representing the percentage of non-zero entries in the latent components as performed on

Lines 9 and 11 of Algorithm  1 .

3.5.1 Missing Percent

In this first simulation we consider the case with varying levels of missing percentages.

We set the dimension of the couple mode to be d1 = 30 and therefore generate PΩ(T ) ∈

R30×30×30×30 . We set the rank to be R = 2 and the noise level ηT , ηM to be both 0.001. We

measure the recovery error under four different settings of the reveal probability parameter

p = {0.2, 0.1, 0.05, 0.01}. In other words, 80%, 90%, 95% and 99% of the tensor entries are

missing in each setting.

Table  3.2 indicates that under all varying missing probability, our COSTCO algorithm

provides a better fit in tensor recovery relative to tenALSsparse and OPT. Notably, with a

higher level of missing data, missing percentage ≥ 90 COSTCO significantly outperforms both

tenALSsparse and OPT methods of tensor recovery. This is more evident when we compare

our algorithm to tenALSsparse for the case where missing percentage ranges from 90% to

98%; in these scenarios the recovery error of COSTCO is at least 10 folds better than that of

tenALSsparse. This agrees with the two advantages of incorporating covariate information

into tensor completion as we discussed in the theoretical results: (1) allowing higher missing

percentage; (2) reducing estimation errors. Moreover, we notice that the estimation error

for the shared component Comp Ä is better than that of the non-shared components. This

also aligns with the theoretical result which shows that the recovery of the couple component

improves over that of non-coupled components due to additional covariate information.

Finally, although OPT also uses coupling, it underperforms compared to COSTCO because

the all at once optimization method suffers with unstable gradient when the missing entry

percentage is large.
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Table 3.2. Estimation errors with varying missing percentages. Reported
values are the average and standard deviation (in parentheses) of tensor, tensor
components and weight recovery error based on 30 data replications. COSTCO:
the proposed method; tenALSsparse: sparse version of the tensor completion
method by [ 24 ]; OPT: the gradient based all at once optimization method of
[ 36 ]; symbol (Ä) used to put shared tensor-matrix component A in emphasis.

Estimation Error
Missing % Component COSTCO tenALSsparse OPT

80% T 3.38e-05 (2.36e-12) 3.66e-05 (2.73e-12) 3.56e-05 (2.31e-12)
Comp Ä 1.52e-05 (2.37e-12) 2.22e-05 (3.93e-12) 1.52e-05 (2.36e-12)
Comp B 2.12e-05 (4.39e-12) 2.13e-05 (3.64e-12) 2.26e-05 (5.05e-12)
Comp C 1.98e-05 (4.69e-12) 1.99e-05 (4.83e-12) 2.24e-05 (4.35e-12)
Comp D 2.17e-05 (2.92e-12) 2.18e-05 (2.78e-12) 2.26e-05 (2.99e-12)

λ 1.18e-06 (4.67e-13) 1.17e-06 (4.95e-13) 1.18e-06 (4.67e-13)
90% T 3.93e-05 (6.12e-12) 4.47e-02 (2.71e-11) 4.94e-05 (6.07e-12)

Comp Ä 1.80e-05 (2.79e-12) 5.65e-02 (2.74e-11) 1.80e-05 (2.82e-12)
Comp B 2.16e-05 (1.31e-11) 4.84e-02 (2.02e-11) 3.17e-05 (1.31e-11)
Comp C 2.12e-05 (9.54e-12) 4.96e-02 (3.22e-11) 3.13e-05 (9.75e-12)
Comp D 2.17e-05 (1.38e-11) 5.79e-02 (2.00e-11) 3.18e-05 (1.39e-11)

λ 1.65e-06 (7.98e-13) 4.84e-02 (8.31e-13) 1.65e-06 (7.98e-13)
95% T 5.69e-05 (1.92e-11) 1.19e-01 (8.70e-03) 6.93e-05 (1.90e-11)

Comp Ä 1.92e-05 (5.60e-12) 1.44e-01 (2.01e-02) 1.50e-05 (6.30e-12)
Comp B 3.44e-05 (2.29e-11) 1.28e-01 (1.61e-02) 4.45e-05 (2.30e-11)
Comp C 3.39e-05 (3.36e-11) 1.30e-01 (1.02e-02) 4.39e-05 (3.34e-11)
Comp D 3.74e-05 (1.84e-11) 1.40e-01 (1.39e-02) 4.74e-05 (1.80e-11)

λ 1.26e-06 (8.99e-13) 1.25e-01 (1.08e-02) 1.76e-06 (8.99e-13)
98% T 2.36e-02 (3.50e-11) 5.05e-01 (1.75e-02) 5.02e-02 (1.98e-02)

Comp Ä 2.17e-02 (1.18e-11) 6.58e-01 (2.03e-02) 6.87e-02 (2.61e-03)
Comp B 2.63e-02 (5.60e-11) 6.18e-01 (1.29e-02) 6.31e-02 (2.95e-02)
Comp C 2.58e-02 (5.81e-11) 5.89e-01 (1.49e-02) 6.27e-02 (3.86e-02)
Comp D 2.16e-02 (5.39e-11) 5.94e-01 (2.16e-02) 6.96e-02 (2.03e-02)

λ 2.14e-02 (5.67e-13) 5.19e-01 (1.75e-02) 5.00e-02 (2.14e-02)
99% T 7.13e-01 (5.93e-11) 9.99e-01 (5.35e-02) 8.80e-01 (2.33e-02)

Comp Ä 3.60e-01 (1.28e-10) 1.17e+00 (1.17e-01) 4.17e-01 (4.39e-02)
Comp B 7.40e-01 (1.04e-10) 1.14e+00 (9.65e-02) 7.94e-01 (3.70e-02)
Comp C 8.25e-01 (3.75e-11) 1.17e+00 (9.15e-02) 9.14e-01 (3.65e-02)
Comp D 5.90e-01 (4.57e-11) 9.77e-01 (9.83e-02) 7.12e-01 (4.51e-02)

λ 6.48e-01 (5.73e-11) 9.77e-01 (6.04e-02) 8.68e-01 (2.33e-02)

3.5.2 Noise Level

In the next set of experiments we vary the noise level parameter for the tensor ηT and

noise level for the matrix ηM to test algorithms’ robustness to noise. These two parameters

control the signal-to-noise ratio in the model. The missing probability for these experiments
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is set to 90% and tensor rank and sparsity of the true tensor are set to R = 2 and 60%

respectively.

As can be seen in Table  3.3 , when the tensor noise ηT is greater than that of the

matrix noise ηM , our algorithm outperforms the two competing methods with a large gap

in recovery error. Even when the matrix has a slightly larger noise level than the tensor

(ηM = 0.01, ηT = 0.001), COSTCO still outperforms the other two algorithms. It shows that in

high missing data regime coupling a matrix that has a slightly larger noise than the tensor

still provides enough information to improve the tensor recovery rate. On the other hand,

when the matrix noise level is much higher than that of the tensor (ηM = 0.1, ηT = 0.001 in

Table  3.3 ), we observe that our algorithm COSTCO and the other coupled algorithm OPT are

inferior compared to tenALSsparse. In this case, the recovery of the shared component A

suffers the most in COSTCO and OPT and is responsible for the inferior tensor recovery error

compared to tenALSsparse which does not use the coupled matrix. This is expected as a

matrix with much larger noise than that of a tensor no longer brings in enough signals in the

coupling and therefore makes the tensor completion problem harder than when the matrix is

completed omitted from the model. Finally, an interesting phenomenon is that the noise level

of the error matrix ηM only affects the estimation error of the shared component but not

those of the non-shared components. To see it, in the last two settings in Table  3.3 , when ηT
is fixed and ηM increases, only the recovery accuracy of the shared component A significantly

drops, but those of the non-shared components have no significant changes. However, in the

first two settings in Table  3.3 , when ηM is fixed and ηT increases, the recovery accuracy of

both shared and non-shared components significantly drops. These findings agree well with

our theoretical results in Theorem  3.4.1 .

In the following two additional simulations, we focus solely on the recovery accuracy of

the shared and non-shared tensor components under our COSTCO to investigate the practical

effect of component dimensions size and the rank on our algorithm.
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3.5.3 Component Size

This part of the simulation considers the effect of varying the size of the coupled compo-

nents A∗ of the true tensor on the tensor recovery. We set the tensor missing entry percentage

to be 90%; the noise level parameters are set to be ηT = 0.001 and ηM = 0.001 respectively

and the sparsity level is kept at 60%. The complete simulation results are presented in Table

 3.4 . The tensor completion error improves with increasing size of the shared dimension since

there is more information provided by the covariate matrix. With more and more information

provided from the covariate matrix, the latent structure of the shared component dominates

those of the non-shared components, making it easier to complete the whole tensor.

Table 3.4. Estimation errors of COSTCO with varying coupled dimension d1.

Estimation Error
Coupled Dimension d1 T Comp Ä Comp B Comp C Comp D λ

20 5.64e-05 1.77e-05 3.67e-05 3.51e-05 3.68e-05 1.60e-06
(1.24e-11) (6.09e-12) (1.41e-11) (1.88e-11) (2.20e-11) (6.09e-13)

50 3.71e-05 1.72e-05 2.35e-05 2.39e-05 2.44e-05 1.25e-06
(3.29e-12) (2.66e-12) (2.59e-12) (4.06e-12) (4.72e-12) (5.14e-13)

100 2.66e-05 1.73e-05 1.72e-05 1.76e-05 1.77e-05 7.65e-07
(1.43e-12) (5.69e-13) (2.86e-12) (3.50e-12) (1.96e-12) (1.34e-13)

3.5.4 Rank

In this case we investigate the impact of the rank of the tensor and matrix on the tensor

recovery performance of our COSTCO algorithm. We set the missing percentage of the tensor

to 90%, the sparsity to be 60% and the tensor and matrix noise levels ηT and ηM to be

both 0.001. We still tune the rank and cardinality using the procedure in Section  3.1.4 . As

shown in Table  3.5 , the recovery error is an increasing function of the tensor rank. It is well

documented that the noisy tensor completion problem in general gets harder as the rank

increases [  14 ]. This result also aligns well with the theoretical derivation provided in Section

 3.2 . In Assumption 7, we see that the initialization error is a decreasing function of the rank

R. Hence tensor with larger R requires the initialization algorithm to be more accurate than

tensors with smaller ranks.
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Table 3.5. Estimation errors of COSTCO with varying rank.

Estimation Error
Tensor Rank T Comp Ä Comp B Comp C Comp D λ

1 4.78e-05 2.76e-05 1.97e-06 2.77e-05 2.62e-05 5.31e-06
(1.34e-11) (1.67e-11) (6.72e-14) (7.50e-12) (1.38e-11) (1.29e-11)

2 6.50e-05 6.78e-05 1.39e-05 6.63e-05 6.66e-05 1.26e-05
(1.04e-11) (6.82e-11) (4.67e-11) (5.07e-11) (7.16e-11) (3.76e-11)

3 8.57e-05 7.82e-05 2.76e-05 7.99e-05 7.81e-05 1.32e-05
(2.52e-11) (5.27e-11) (1.11e-10) (8.10e-11) (5.97e-11) (4.14e-11)

3.6 Real Data Analysis

We apply our COSTCO method to an advertisement (ad) data to showcase its practical

advantages. COSTCO makes use of multiple sources of ad data to extract the ad latent

component which is a comprehensive representation of ads. We demonstrate that the

obtained ad latent components are able to deliver interesting ad clustering results that are

not achievable by a stand-alone method.

Online advertising is a type of marketing strategy that uses the internet to promote a

given product to potential customers. Extracting patterns in data gathered from online

advertisement allows ad platforms and companies to churn data into knowledge, which is

then used to improve customer satisfaction. Clustering algorithms have been applied to the

ad data to discover ad or user clusters for better ad targeting. After computing the similarity

between the new ad and each ad cluster, the ad agency can determine whether a new ad

should be assigned to a specific user group. Most ad-user clustering research focuses on

a single correlation matrix. What makes our method different is that we not only have a

third-order user-by-ad-by-device click tensor data but we also possess additional information

which describe specific features of ads. Our COSTCO algorithm uses both click tensor data

and ad matrix data to extract the ad latent component for better ad clustering.

The data we analyze in this section is advertising data collected from a major internet

company for 4 weeks in May-June 2016. A user preference tensor was obtained by tracking

the behavior of 1000 users on 140 ads accessed through 3 different devices. The 1000×140×3

tensor is formed by computing the click-through-rate (CTR) of each (user, ad, device) triplet
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over the four weeks period; which is the number of times a user has clicked an ad from a

certain device divided by the number of times the user has seen that ad from the specific

device. As illustrated in Figure  3.2 , this ad CTR tensor has 96% missing entries and is highly

sparse with only 40% of the revealed entries being nonzero. A missing entry in the ad CTR

data occurs when a given user is not presented with a certain ad from a specific device, while

zeros (sparsity) in the ad CTR data are used to represent user choosing not to interact with

an ad that was presented to them on a specific device.

Figure 3.2. Illustration of missing data and sparsity in our ad CTR tensor.

Beside the ad CTR tensor, we also have access to the ad text raw data that store the

content of all ads. We use Latent Dirichlet Allocation (LDA) [ 64 ] to process the ad text data.

LDA is an unsupervised topic modeling algorithm that attempts to describe a set of text

observations as a mixture of different topics. We first follow Blei, Ng, and Jordan [  64 ] to tune

the parameters of LDA such as the number of topics and the Dirichlet distribution parameter

that give the best trade-off between low perplexity value and efficient computing time. The

best perplexity is obtained for 20 topics. This means that all the 140 advertisement data

can be considered as a combination of 20 topics. Due to space constraints, we illustrate an

example of 7 out of 20 topics in Table  3.6 , and only display the top 10 words for each of the 7

topics returned by LDA. Each topic column was labeled based on overall meaning of the top

words. Once trained, LDA returns a matrix that contains the proportion of topics in each

ad. We use this matrix of proportions of dimension R140×20 as the ad covariate matrix that

will be used jointly with the ad CTR tensor to obtain ad latent components in our COSTCO

algorithm.
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Table 3.6. Top ten words for 7 chosen topics. Top words were obtained through LDA.

Topics Ride Gaming Security Mortgage Insurance Online dating Fashion retail
T

op
W

or
ds

uber game vivint mortgage get single buy
pay controller home apr insurance pic sale
car experience front payment less man gilt

people gameplay security free see profile zulily
weekly accessory smart new month click lulus

fare ebay call arm drive meet charlotterusse
ride level control quotes day browse neimanmarcus
give time camera calculate miles look maurices
work joystick adt easy low free lastcall
drive wide look process qualify pay spring

We first evaluate the tensor recovery error by randomly splitting the observed tensor entries

into 80% training and 20% testing. Let T̂ indicate the recovered tensor from the training

set. We use T̂ for training and compute the recovery error on the testing set. The metrics

used to access the recovery error of the tensor is defined as ‖PΩT est
(T − T̂ )‖F/‖PΩT est

(T )‖F ,

where PΩT est
(T ) = ΩT est ∗ T with ΩT est being a binary tensor of the same size as T that has

ones on the test entries and zeros elsewhere. The tensor recovery error for COSTCO is 0.825,

leading to 23% accuracy improvement over the baseline tenALSsparse whose error is 1.083.

This again highlights the benefit of fusing the ad content matrix to the ad CTR tensor. The

OPT algorithm was not used for comparison as the algorithm optimization package failed with

error messages after multiple trials on this data. We conjecture this is due to the unstable

performance of the all at once optimization when the missing percentage is very high.

We then compare the ad latent components returned from COSTCO and tenALSsparse in

Figure  3.3 . As a comparison, we also include the result of SVD which directly decomposes

the ad covariate matrix data. The ad clusters shown in Figure  3.3 are obtained by applying

the K-means clustering algorithm to the ad latent component data from each method. As

shown in Figure  3.3 , the first two columns of the latent components returned from our COSTCO

show a clear clustering structure with 5 clusters. On the other hand, the ad components

extracted from tenALSsparse are all clustered around zeros. This is because the ad CTR

tensor is highly sparse and the latent components based on decomposing the tensor itself

50



contain many small values. Therefore, ad clusters generated using tenALSsparse tend to

have very large and very small clusters.

Figure 3.3. Scatter plot of the ad latent components obtained from three
methods. Different clusters are represented via different colors.

Finally, Figure  3.4 demonstrates some interesting ad clustering results obtained from

our COSTCO algorithm which links different ad industries into the same cluster. For example

based on cluster 1 from COSTCO, ads about male and female online dating are clustered

together with ads about women retail stores and man clothing accessories. In cluster 2 from

COSTCO, ads about weight lost and weight lost surgery are clustered together with ads about

gourmet cuisine and restaurant which indicates that users who interact with weight loss ads

are also interested in nutrition related ads. Cluster 3 of COSTCO contains ads about house

mortgage, home security devices, auto, home and auto insurance, house weather control

devices which indicates that users that are homeowners tend to be interested in home and

auto related things. These interesting clusters are not obtained in the SVD method nor the

tenALSsparse method. The clusters from SVD are solely related to the topic of each ad

as shown in Figure  3.4 and the clusters from tenALSsparse are highly unbalanced and do

not contain any understandable relationship between ads. These clustering results illustrate

the practical value of our COSTCO method. By incorporating ad covariate matrix into the

completion of the ad CTR tensor, we are able to obtain a more synthetic description of ads

and find interesting links between different advertising industries, which directly helps the

marketing team to strategize the ad planing procedure accordingly for better ad targeting.
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Figure 3.4. Result of ad clusters obtained using different methods
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3.7 Proof of Main Theorems

In this section we provide the proofs of the main theoretical results presented in  3.3.1 

and  3.4.1 . As elaborated in the discussion paragraphs in section  3.2 proving first the

particular case in theorem  3.3.1 allows for a better presentation and explanation for the proof

technique used for the general case in theorem  3.4.1 . For simplicity, in the following proofs

we consider the case where all tensor and matrix modes have the same dimensions n that

is n1 = n2 = n3 = nv = n. We also assume that the sparsity parameters for each mode are

equal (d1 = d2 = d3 = dv = d). It follows from the two simplification aforementioned that in

Algorithm  1 we let s1 = s2 = s3 = sv = s. Proving the case, in which the dimensions of the

tensor and matrix’ modes are allowed to be unequal is a trivial yet notation heavy extension

of the technique we use in the proof of Theorem  3.3.1 and Theorem  3.4.1 . As defined in

equation ( 3.17 ), we use the euclidean distance between the component estimates and true

components to measure the error for component recovery. We also use the relative absolute

difference between estimated and true weights to capture the recovery error for the weights

as defined in equation ( 3.18 ). Define dur to be,

dur =: ur − u∗
r, and ‖dur‖2 = ‖ur − u∗

r‖2, (3.17)

and

∆λr := |λr − λ
∗
r

λ∗
r

| and ∆ωr := |ωr − ω
∗
r

ω∗
r

|, (3.18)

where ur could be any of ar,br, cr,vr, ∀r ∈ [R].

3.7.1 Proof of Theorem  3.3.1 

Theorem  3.3.1 provides the sufficient conditions which guarantee that the shared tensor

components ar and non-shared components br,cr recovered in Algorithm  1 converge to the

truth a∗
r and b∗

r, c∗
r respectively with the assumption that the tensor and matrix are dense

and their decomposition weights are equal in each mode i.e λ∗
r = ω∗

r ∀r ∈ [R]. The theorem

also provides the explicit convergence rates for the tensor components in Algorithm  1 and

highlights the difference in rates between the shared and non-shared components.
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Our proof consists of three steps. In Step 1 we use Lemma  1 to derive the close form

for the optimization problem presented in equation ( 3.5 ). This step is only specific to the

dense tensor and equal weights case as it makes it possible to derive a close form solution to

the optimization formula presented in equation ( 3.5 ). In Step 2, we derive a general bound

for the share and non-shared tensor estimates by proving Lemmas  2 and  3 given that the

components obtained from the initialization method satisfy a specific error constraint. In

Step 3, we simplify the error bound obtained in Lemma  2 and  3 to ensure that the share

and non-shared tensor component estimate contract at a geometric rate in one iteration.

Theorem  3.3.1 is then completed by showing that after enough iterations the contraction

error vanishes to only leave a statistical error.

Step 1: The next lemma accomplishes the first step in proving Theorem  3.3.1 . Since the

tensor and matrix weights are assumed to be equal, without loss of generality we use λ∗
r and

λr ∀r ∈ [R] to represent true and estimated weights respectively for both tensor and matrix.

3.7.2 Key Lemmas

Lemma 1. Let resM = M− ∑
m6=r

λmam ⊗ vm and resT = PΩ(T )− PΩ( ∑
m 6=r

λmam ⊗ bm ⊗ cm)

be the residual matrix and residual tensor, respectively defined on line (7) of Algorithm  1 . In

each ALS update of Algorithm  1 , the solution to the optimization problem in equation ( 3.5 )

for the shared and non-shared components of the tensor and matrix in the rth iteration of the

inner loop are,

Share Components: ar = λrresT (I,br,cr)+ωrresM vr

λ2
rPΩ(I,b2

r,cr
2)+ω2

r
, (3.19)

Tensor non-shared components: br = b̃r/‖b̃r‖2, cr = c̃r/‖c̃r‖2, λr = ‖c̃r‖2,

(3.20)

Matrix non-shared components: vr = ṽr/‖ṽr‖2 and ωr = ‖ṽr‖2, (3.21)

where b̃r, c̃r, ṽr have the following form

b̃r = resT (ar,I,cr)
PΩ(a2

r ,I,c2
r) c̃r = resT (ar,br,I)

PΩ(a2
r ,b2

r,I) and ṽr = resTar. (3.22)
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Note that the horizontal double lines in the expressions above indicate element-wise

fraction and the squares in the denominator represent the element-wise squaring. The proof

of Lemma  1 is provided in Section  3.8 . It involves deriving the close form of the optimization

problem presented in equation (  3.5 ) in the non-sparse tensor case.

Step 2: The second step builds the error contraction results in one iteration of Algorithm

 1 . We achieve step two through Lemmas  2 and  3 which address the non-shared and shared

component cases respectively.

Lemma 2. Assume Assumption 1 holds and p ≥ Cµ3(1+γ/3) log2(n10)
n3/2γ2 for some positive γ.

Also assume estimates ar, br, λr of our algorithm with si = ni, i = 1, 2, 3, v, satisfy

max{‖dar‖, ‖dbr‖, λ∗
r∆λr} ≤ εT ∀r ∈ [R] with dar ,dbr ,∆λr defined in ( 3.17 ). Then, the

update for the non-shared tensor component cr satisfies with probability 1− 2n−9,

max
r∈[R]
‖cr − c∗

r‖2 ≤
16Rλ∗

max max (c0/
√
n+ 3εT , γ) εT + (1 + γ)‖E‖

λ∗
min(1− γ) . (3.23)

The detailed proof of Lemma  2 is presented in Section  3.8 . We later show in step 3 of

the proof of Theorem  3.3.1 that the upper bound in ( 3.23 ) can we written as the sum of a

contracting term and a non contracting statistical error term.

Lemma 3. Assume Assumption 1 holds and p ≥ Cµ3(1+γ/3) log2(n10)
n3/2γ2 for some positive γ. In

addition, assume estimators cr, br, vr, λr, ωr of our algorithm with si = ni, i = 1, 2, 3, v,

satisfy max{‖dcr‖, ‖dbr‖, λ∗
r∆λr} ≤ εT and {‖dvr‖, ω∗

r∆ωr} ≤ εM ∀r ∈ [R]. Then the update

for the shared tensor component ar satisfies with probability 1− 2n−9,

max
r∈[R]
‖ar − a∗

r‖2 ≤ g(p, εT , ζ, R)εT + f(εM , ζ, R)εM + 1
λ∗
min

p(1 + γ)‖ET‖+ ‖EM‖
p(1− γ) + 1 (3.24)

with g(p, εT , ζ, R) := 16pRλ∗
max(ζ+3εT ,γ)

λ∗
min(p(1−γ)+1) ; f(εM , ζ, R) := 6Rλ∗

max(ζ+3εM )εM
λ∗

min(p(1−γ)+1) , and ζ = c0/
√
n.

The proof of Lemma  2 and Lemma  3 show that each iteration of Algorithm  1 results in

an error contraction for the estimates of the non-shared (br and cr) and shared (ar) tensor

components respectively. Such results imply that after a sufficient number of iterations,

Algorithm  1 can yield good estimates for these components. The detailed proof of Lemma  3 
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is discussed in Section  3.8 .

Step 3: To complete the proof of the theorem, we carefully employ the assumptions on the

initialization in order to guarantee that expressions ( 3.23 ) and ( 3.24 ) in Lemmas  2 and  3 can

be written in the form εR + qε0 with q ≤ 1
2 . This entails showing that for f(εM , ζ, R) and

g(εM , ζ, R) in the Lemma  3 adds up to less than 1
2 given the assumptions in Theorem  3.3.1 .

Denote ε0 := max{εT0 , εM0}, q1 := 16Rλ∗
max(ζ+3ε0)(p+ 6

16 )
λ∗

min(p(1−γ)+1) and q2 := 16Rλ∗
max(pγ+ 6

16 (ζ+3ε0))
λ∗

min(p(1−γ)+1) . Set

γ := λ∗
min

64Rλ∗
max

. According to Assumption 3, we get that q1 ≤ p+6/16
2p+2 ≤ 1

2 . Also q2 ≤
p

4( 63
64p+1) + 3

16 ≤
1
4 + 3

16 <
1
2 since p ≤ 1. This implies that q := max{q1, q2} ≤ 1/2.

Finally, we bound the error term of max
r∈[R]
‖ar − a∗

r‖2 by showing that it can be written as a

sum of a contracting term and a constant non-contracting term. Specifically, according to

( 3.24 ) in each iteration we have,

max
r∈[R]
‖ar − a∗

r‖2 ≤ g(p, εT0 , ζ, R)εT0 + f(εM0 , ζ, R)εM0 + 1
λ∗
min

p(1 + γ)‖ET‖+ ‖EM‖
p(1− γ) + 1

≤ max{q1, q2}ε0 + 1
λ∗
min

p(65/64)‖ET‖+ ‖EM‖
p(63/64) + 1

≤ qε0 + 1
λ∗
min

p(65/64)‖ET‖+ ‖EM‖
p(63/64) + 1 , (3.25)

where qε0 is a contracting term and the term after it is non contracting. By iteratively

applying the above inequality, after τ = Ω
(
log2

(
(p(63/64)+1)ε0

(65/64)p‖ET ‖+‖EM ‖

))
, we get

max
r∈[R]
‖ar − a∗

r‖2 ≤ O
(

1
λ∗
min

(65/64)p‖ET‖+ ‖EM‖
p(63/64) + 1

)
.

Similar derivation can be applied on the upper bound of max
r∈[R]
‖cr − c∗

r‖2 in ( 3.23 ) to get

a contracting and non contracting term. Then taking the maximun over all non-shared

components and tensor weights lead to getting after running τ = Ω
(
log2

( (63/64)λ∗
minε0

(65/64)‖ET ‖

))
iterations of Algorithm  1 ,

max
r∈[R]

(
‖br − b∗

r‖2, ‖cr − c∗
r‖2,
|λr − λ∗

r|
λ∗
r

)
≤ O

(
(65/64)‖ET‖
(63/64)λ∗

min

)
,
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which completes the proof of Theorem  3.3.1 . �

3.7.3 Proof of Theorem  3.4.1 

In this section we establish the results for the analysis of Theorem  3.4.1 which is the

general and sparse case where the matrix and tensor weights are not assumed to be equal.

In order to prove the general case we make use of some of the intermediate results derived

in the analysis of Theorem  3.3.1 . Namely, we follow the 3 three steps analysis approach

introduced in the analysis of Theorem  3.3.1 and highlight the key difference which makes

the analysis of Theorem  3.4.1 non trivial in comparison. As presented in the formulation of

the optimization problem in ( 3.5 ) we use the `0 norm regularization as a mean to introduce

sparsity in the model. However, deriving a close form solution to this sparse optimization

problem becomes very difficult with this choice of regularization function. In step 1 of the

analysis, we circumvent this issue by using a greedy truncation method defined on lines (9)

and (11) of Algorithm  1 to approximate the sparse solution to the optimization problem in

( 3.5 ). We show that using the truncation method to only preserve the s largest entries of the

components with the condition that s ≥ d is suitable for accurate components recovery. In

practice for Algorithm  1 the parameter s can be tuned in a data-driven manner following the

sequential tuning schema presented in Algorithm  3.1.4 . In step 2 of the analysis, we derive

a general bound for the shared tensor component through Lemma  4 . In step 3 we simplify

the general bound derived in step 2 to show that one iteration of the algorithm results in a

geometric error contraction. Theorem  3.4.1 is then completed by showing that after enough

iterations the contraction error vanished to only leave a statistical error.

Lemma 4. Assume Assumptions 4, 5 and 6 hold, and that s ≥ d. In addition, assume

estimators cr, br, vr, λr, ωr of our algorithm satisfy max{‖dcr‖, ‖dbr‖, λ∗
r∆λr} ≤ εT and
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{‖dvr‖, ω∗
r∆ωr} ≤ εM ∀r ∈ [R] and si ≥ di for i = 1, 2, 3, v. Then the update for the shared

tensor component ar satisfies with probability 1− 2n−9,

max
r∈[R]
‖ar − a∗

r‖2 ≤ g(p, εT , ζ, R)εT + f(εM , ζ, R)εM

+ λ∗
maxp(1 + γ)‖ET‖<d+s> + ω∗

max‖EM‖<d+s>

λ∗2
minp(1− γ) + ω∗2

min
, (3.26)

with g(p, εT , ζ, R) ≤ 24pRλ∗2
max max(ζ+3εT ,γ)

λ∗2
minp(1−γ)+ω∗2

min
; f(εM , ζ, R) ≤ 9Rω∗2

max(ζ+3εM )
λ∗2

minp(1−γ)+ω∗2
min

and where ζ = c0/
√
d.

The detailed proof of Lemma  4 is discussed in Section  3.8 .

Step 3: The last step in the proof of Theorem  3.4.1 , consists in using the assumptions on the

initialization error in order to guarantee that expression ( 3.26 ) in Lemmas  4 can be written in

the form εR + qε0 with q ≤ 1
2 . Just like was the case in the proof of Theorem  3.3.1 , this entails

showing that for f(εM , ζ, R) and g(εM , ζ, R) adds up to less than 1
2 given the assumptions in

Theorem  3.4.1 .

Given the initialization condition in Assumption 6 we get

g(p, εT , ζ, R) ≤ 24pRλ∗2
max max(ζ + 3εT , γ)

λ∗2
minp(1− γ) + ω∗2

min
; f(εM , ζ, R) ≤ 9Rω∗2

max(ζ + 3εM)
λ∗2
minp(1− γ) + ω∗2

min

Denote ε0 := max{εT0 , εM0}, q1 := 24R(ζ+3ε0)(λ∗2
maxp+ 9

24ω
∗2
max)

λ∗2
minp(1−γ)+ω∗2

min
and q2 := 24R(λ∗2

maxpγ+ 9
24ω

∗2
max(ζ+3ε0))

λ∗2
minp(1−γ)+ω∗2

min
.

We choose γ = 1/2λmin+1/2ωmin
96Rλmax

. According to Assumption 6 we get that q1 ≤ pλ∗2
max+3/8ω∗2

max

2(pλ∗2
max+ω∗2

max) ≤
1
2 .

Also q2 ≤ pmin{λ∗2
min,ω

∗2
min}

4(λ∗2
minp

95
96 +ω∗2

min) + 3ω∗2
max

16(pλ∗2
max+ω∗2

max) ≤
p

4(p 95
96 +1) + 3

16 . Hence q2 ≤ 1
4 + 3

16 <
1
2 since p ≤ 1.

This implies that q := max{q1, q2} ≤ 1/2.

Finally, we bound the error term of max
r∈[R]
‖ar − a∗

r‖2 by showing that it can be written as a
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sum of a contracting term and a constant non-contracting term. Specifically, according to

( 3.24 ) in each iteration we have,

max
r∈[R]
‖ar − a∗

r‖2 ≤ g(p, εT0 , ζ, R)εT0 + f(εM0 , ζ, R)εM0

+ (λ∗
max + εT )p(1 + γ)‖ET‖<d+s> + (ω∗

max + εT )‖‖EM‖<d+s>

(λ∗
min + εT )2p(1− γ) + (ω∗

min + εM)2

≤ max{q1, q2}ε0 + (97/96)pλ∗
max‖ET‖<d+s> + ω∗

max‖EM‖<d+s>
95
96pλ

∗2
min + ω∗2

min

≤ qε0 + (97/96)pλ∗
max‖ET‖<d+s> + ω∗

max‖EM‖<d+s>
95
96pλ

∗2
min + ω∗2

min
, (3.27)

where qε0 is a contracting term. By iteratively applying the above inequality, after the

number of iterations stated in Theorem  3.4.1 , we get

max
r∈[R]
‖ar − a∗

r‖2 ≤ O
(

(97/96)pλ∗
max‖ET‖<d+s> + ω∗

max‖EM‖<d+s>

(95/96)pλ∗2
min + ω∗2

min

)
,

The proof for the non-shared component in Theorem  3.4.1 is very similar to that of the

non-share component in Theorem  3.3.1 we therefore leave it out. This completes the proof of

Theorem  3.4.1 . �

3.8 Additional Results

In this section we provide details of the derivation for the proofs of Lemmas  1 - 4 .

3.8.1 Proof of Lemma  1 

The dense version of the optimization problem in ( 3.5 ) can be formulated as follows:

Optimization: Non-Sparse formulation

min
A,B,C,V

{
‖PΩ

(
T )− PΩ

( ∑
r∈[R]

λrar ⊗ br ⊗ cr
)
‖2
F + ‖M−

∑
r∈[R]

ωrar ⊗ vr‖2
F

}
(3.28)

subject to ωr, λr ∈ R+,
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Given resM = M− ∑
m 6=r

ωmam⊗vm and resT = PΩ(T )−PΩ( ∑
m6=r

λram⊗bm⊗cm) the residual

matrix and residual tensor, respectively. In each ALS update of Algorithm  1 we need to solve

the following least-squares optimizations problem.

min
ar

{
‖resM − ωrar ⊗ vr‖2

F + ‖resT − PΩ(λrar ⊗ br ⊗ cr)‖2
F

}
. (3.29)

The optimization problem in ( 3.29 ) is convex in ar. Therefore, we can find ar by taking its

derivative and setting it to zero. In order to do this we first derive the equivalent of the

optimization function in ( 3.29 ) explicitly in terms of the entries of the tensor and matrix

components:

min
ar

{∑
i,j

(
resM i,l − ωrar(i)× vr(l)

)2
+

∑
{i,j,k}∈Ω

(
resT i,j,k − λrar(i)× br(j)× cr(k)

)2
}
, (3.30)

where resT i,j,k is the (i, j, k)th entry of resT and resM i,l is the (i, l)th entry of resM . The notation

{i, j, k} ∈ Ω with Ω defines in ( 3.1 ), guarantees that the summation only applies on the

observed entries of tensor resT ; ar(i) is the ith component of ar where i ∈ [n].

Taking the derivative of ( 3.30 ) with respect to ar(i) for all i ∈ [n] and setting it to zero

we get:

ar(i) =
λr
∑
j,k

(resT i,j,kbr(j)cr(k)) + ωr
∑
j

resM i,lvr(l)

λ2
r

∑
j,k

b2
r(j)c2

r(k) + ω2
r

∑
l

v2
r(l)

(3.31)

for all i ∈ [n]. The first summation in the numerator of equation ( 3.31 ) is the definition of

the modes 2 and 3 tensor matrix product of resT with the matrix obtained from br ⊗ cr.

Following the notation provided in section  2.2 this product can be rewritten as:

resT (I,br, cr) = resT ×2 br ×3 cr, (3.32)
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for all i ∈ [n], where I is the identity matrix. It is worth noting that the vector tensor product

in ( 3.32 ) is a vector of length n. We can write the second term in the numerator as a matrix

vector left multiplication. The vector ar can therefore be written as:

ar = λrresT (I,br,cr)+ωrresM vr

λ2
rPΩ(I,b2

r,c2
r)+ω2

r
, (3.33)

where the double line fraction indicates element-wise division and (·)2 denotes elements-wise

power.

In order to solve the optimization problem for components other than the first component

that are not shared with the matrix we proceed similarly. We start from:

min
br

{
‖resT − PΩ(λrar ⊗ br)‖2

F

}
, (3.34)

which is equivalent to

∑
{i,j,k}∈Ω

(
resT i,j,k − λrar(i)× br(j)× cr(k)

)2
. (3.35)

Taking the derivative of ( 3.35 ) with respect to br(j) or cr(k) then setting to them to zero

and solving for br(j) or cr(k) we get the following update:

b̃r(j) := λrbr(j) =

∑
{i,.,k}∈Ω

(resT i,j,kar(i)cr(k))∑
{i,.,k}∈Ω

a2
r(i)c2

r(k) , c̃r(k) := λrcr(k) =

∑
{i,j,.}∈Ω

(resT i,j,kar(i)br(j))∑
{i,j,.}∈Ω

a2
r(i)b2

r(j)
,

(3.36)

respectively. In vector form this is written as,

b̃r = resT (ar,I,cr)
PΩ(a2

r ,I,c2
r) and c̃r = resT (ar,br,I)

PΩ(a2
r ,b2

r,I) . (3.37)

These are the un-normalized updates in line 10 of Algorithm  1 . Since by definition br and

cr are unit vectors then ‖c̃r‖2 = ‖λrcr‖2 = |λr| as defined in line 12 of Algorithm  1 and

cr = c̃r/‖c̃r‖2 as in line 13 of the main algorithm. The update for b is obtained in a similar

manner. The above derivation corresponds to the non-sparse scenario, i.e., Algorithm 1
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without the truncation steps on lines 9 and 11. However for the sparse case, to incorporate

sparsity in the resulting update equations, we use the truncation scheme proposed in Sun, Lu,

Liu, et al. [ 49 ]. We get the estimate of the matrix component vr, using a similar derivation

and get,

ṽr := ωrvr = resTar, (3.38)

and since vr is a unit vector we get ωr = ‖ṽr‖2 and vr = ṽr/‖ṽr‖2 as in lines 12 and 13 of

Algorithm  1 . This complete the proof of Lemma  1 . �

3.8.2 Proof of Lemma  2 

The main challenge in the proof of Lemma  2 lies in finding a tight upper bound for the

error of cr. In the following derivation only provide the analysis for the non-shared tensor

components cr since the proof of the other non-shared component br is very similar.

In ( 3.20 ) we derived the close form formula for the update cr to be c̃r/‖c̃r‖2. To bound the

expression ‖cr − c∗
r‖2 , we make use of the intermediate estimate c̃r which is define in ( 3.22 )

as,

c̃r = resT (ar,br,I)
PΩ(a2

r ,b2
r,I) . (3.39)

From Lemma  1 , notice that c̃r can be written as λrcr. That is, c̃r can be thought of

as the un-normalized version of the estimate cr. Proving Lemma  2 therefore consists in

deriving an error bound for ‖c̃r − λ∗
rc∗
r‖2, followed by using Lemma  10 which shows that

‖cr − c∗
r‖2 ≤ 2

λ∗
r
‖c̃r − λ∗

rc∗
r‖2.

Let D, E, F, G, be n× n diagonal matrices with the following diagonal elements,

Dkk =
∑
i,j
δijka2

r(i)b2
r(j) ; Ekk =

∑
i,j
δijka∗

r(i)b∗
r(j)ar(i)br(j);

Fkk =
∑
i,j
δijka∗

m(i)b∗
m(j)ar(i)br(j) ; Gkk =

∑
i,j
δijkam(i)bm(j)ar(i)br(j),
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where δijk is a Bernoulli random variable with success probability p and indicates whether

the ijkth tensor entry is observed or not. Then the vector c̃r obtained after one pass of the

inner loop of Algorithm  1 can be written as

c̃r = D−1

λ∗
rEc∗

r +
∑

m∈[R]\r
(λ∗

mFc∗
m − λmGcm) + ET (ar,br, I)

 . (3.40)

We make use of the fact that ‖c̃r − λ∗
rc∗
r‖2 = ‖c̃r − λ∗

rD−1Dc∗
r‖2, to yield,

‖c̃r − λ∗
rc∗
r‖2 = ‖λ∗

rD−1(E−D)c∗
r︸ ︷︷ ︸

err1

+ D−1 ∑
m∈[R]\r

(λ∗
mFc∗

m︸ ︷︷ ︸
err2

−λmGcm) + D−1ET (ar,br, I)︸ ︷︷ ︸
err3

‖2

Applying the triangle inequality to the above expression is very convenient as it breaks its

into the three different error terms shown below, each characterizing different sources of error

affecting the non-shared component update,

‖c̃r − λ∗
rc∗
r‖2 ≤ ‖err1‖2 + ‖err2‖2 + ‖err3‖2, (3.41)

where err1 = λ∗
rD−1(E−D)c∗

r can be characterized as the error due to the power method.

This error is well understood and does not require meticulous bound control in order to yield

the desire result. Also if T ∗ was a rank 1 and noiseless tensor, the proof of Lemma  2 would

reduce to bounding this error term.

Unlike err1 discussed above, bounding err2 = D−1 ∑
m∈[R]\r

(λ∗
mFc∗

m − λmGcm) represents the

main challenge in the proof. It is worth noting that err2 is the error due to the deflation

method applied in Algorithm  1 . Two issues arises with bounding this error, the first resides

in the non-orthogonality of the tensor T ∗. If the tensor T ∗ was orthogonal then a deflation

algorithm would have little to no difficulty differentiating between the ranks of the tensor.

However with the non-orthogonality assumption we are left with a non disappearing residual

due to fact that for example two component vectors of the tensor cr and cj could be close

to parallel making it difficult for the algorithm to differentiate between the two. Moreover

err2 exposes the relationship that exists between recovering a component cr and the error
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for the other mode components aj,bj and with j 6= r. If not carefully controlled, err2 could

cause the estimate cr to diverge from c∗
r. Assumption (1.iii) is therefore used and required

to control the magnitude of err2.

The third error term err3 = D−1ET (ar,br, I) is simply the error due to the noise of the tensor

and can be easily bounded after standard assumptions are made about the spectral norm

of ET . Another challenge in bounding the error of the cr update comes from the fact that

the tensor has missing entries. As represented in equation ( 3.39 ) the operations involved

in computing the update cr is only carried on the observed entries of the tensor. This

computation caveat forces the use of concentration inequalities in the analysis of the error

bound of the component. Choosing the right concentration inequality becomes therefore very

important in order to guarantee a given convergence rate while allowing some reasonable

constraints on the tensor entry reveal probability to p. The rest of the proof consists in

finding a bound for each of the three errors discussed above. We start with bounding the

first error term. Using the fact that ‖c∗
r‖2 = 1 and since D−1(E−D) is a diagonal matrix its

spectral norm is the maximum absolute value of its diagonal elements, we get

‖err1‖2 ≤ ‖λ∗
rD−1(E−D)‖2

= λ∗
r max

k
|D−1(E−D)|kk

≤ λ∗
r max

k
|D−1|kk max

k
|(E−D)|kk.

Next is finding an upper bound for the maximum of each of the random elements in the

equation above with high probability. To do that we first get an upper bound for each of the

diagonal elements with high probability and make use of the union bound method. This is

derived as:

|(E−D)kk| = |
∑

ij
δijka∗

r(i)b∗
r(j)ar(i)br(j)−

∑
jk
δijka2

r(i)b2
r(j)|

= |
∑

ij
δijka∗

r(i)dbr(j)ar(i)br(j)−
∑

ij
δijkdar(i)b∗

r(j)ar(i)br(j)

−
∑

ij
δijkdar(i)dbr(j)ar(i)br(j)|.
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The expression on the right side of the equality are obtained from the fact that ar(i) =

a∗
r(i) + dar(i) and br(j) = b∗

r(j) + dbr(j). Next Lemma  7 is used to bound the three random

elements inside the absolute value. Combined with the triangle inequality and the fact that

|〈dar , a∗
r〉| = 1

2‖dar‖2
2 (Lemma  12 ) yields the following,

|(E−D)kk| ≤ p (|〈a∗
r ,ar〉〈dbr ,br〉|+ |〈dar ,ar〉〈b∗

r,br〉|+ |〈dar ,ar〉〈dbr ,br〉|)

+ pγ (‖dar‖2 + ‖dbr‖2 + ‖dar‖2‖dbr‖2)

≤ 6p
 max

ur∈{ar,br}

{√
1− ‖dur‖2

2 ‖dur‖2
2, ‖dur‖4

2, γ‖dur‖2
}

= 6p max
ur∈{ar,br}

√1− ‖dur‖2

2 ‖dur‖2, ‖dur‖3
2, γ

 ‖dur‖2. (3.42)

The above inequality holds with probability 1 − 2n−10 provided the reveal probability

p ≥ Cµ3(1+γ/3) log2(n10)
n3/2γ2 . Using (  3.42 ) and the bound from Lemma  6 , we get

‖err1‖2 ≤
6pλ∗

r max
ur∈{ar,br}

(√
1− ‖dur ‖2

2 ‖dur‖2, ‖dur‖3
2, γ

)
‖dur‖2

p(1− γ) , (3.43)

with probability 1− 2n−9.

Next we work on bounding err2. Note that

‖err2‖ = ‖D−1 ∑
m∈[R]\r

(λ∗
mFc∗

m − λmGcm)‖2

≤ max
kk
|D−1|kk

∑
m∈[R]\r

‖(λ∗
mFc∗

m − λmGcm)‖2

= λ∗
m max

kk
|D−1|kk

∑
m∈[R]\r

‖Fc∗
m −Gcm + ∆λmGcm‖2

≤ λ∗
m max

kk
|D−1|kk

∑
m∈[R]\r

‖(F−G)c∗
m‖2 + ‖Gdcm‖2 + ‖∆λmGcm‖2. (3.44)
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We focus on bounding each of the four components in the last inequality above as

‖Fc∗
m −Gcm‖2 ≤ ‖(F−G)c∗

m‖+ ‖Gdcm‖2

= max
i
|Fii −Gkk|‖c∗

m‖2 + max
i
|Gkk|‖dcm‖2. (3.45)

Just like we did for err1 we bound each element |Fkk −Gkk| then apply the union bound to

get the bound its maximum,

|Fkk −Gkk| = |
∑
jk
δijka∗

m(i)b∗
m(j)ar(i)br(j)−

∑
jk
δijkam(i)bm(j)ar(i)br(j)|

≤ |
∑
jk
δijkdam(i)b∗

m(j)ar(i)br(j)|+ |
∑
jk
δijka∗

m(i)dbm(j)ar(i)br(j)|

+ |
∑
jk
δijkdam(i)dbm(j)ar(i)br(j)|

≤ p (|〈dam ,ar〉〈b∗
m,br〉|+ |〈a∗

m,ar〉〈dbm ,br〉|+ |〈dam ,ar〉〈dbm ,br〉|)

+ γ(‖dam‖2 + ‖dbm‖2 + ‖dam‖2‖dbm‖2)

≤ 6p max
u∈{am,bm,ar,br,}

( c0√
(n)

+ ‖du‖2)‖du‖2, γ‖du‖2

 .
The last inequality above holds with probability 1−2n−10 provided the reveal probability p ≥
Cµ3(1+γ/3) log2(n10)

n3/2γ2 . The second inequality is obtained by using Lemma  8 and the last inequality

is obtained using the incoherence assumption (1.iii) to get that max{|〈a∗
m,ar〉|, |〈b∗

m,br〉|} ≤
c0√
(n)

+ max{‖dar‖2, ‖dbr‖2}. Using the union bound we get that

max
k
|Fkk −Gkk| ≤ 6p max

u∈{am,bm,ar,br,}

( c0√
(n)

+ ‖du‖2), γ
 ‖du‖2, (3.46)
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with probability 1− 2n−9.

Similarly using Lemma  8 , and applying the union bound and the fact that,

|〈am,ar〉〈bm,br〉| ≤ max{〈am,ar〉2, 〈bm,br〉2} (3.47)

≤

 c0√
(n)

+ max
ur∈{ar,br}

3‖dur‖2

2

, (3.48)

yields the following inequality,

max
k
|Gkk| ≤ p max

ur∈{ar,br,am,bm}

( c0√
(n)

+ 3‖dur‖2)2, γ

 , (3.49)

with probability 1− 2n−9.

Putting equations (  3.44 ), (  3.45 ), (  3.49 ) and using Lemma  6 to bound D−1 yields,

‖err2‖2 ≤
8p ∑

m∈[R]\r
λ∗
m max

u∈{am,bm,ar,br,}

(
( c0√

(n)
+ ‖du‖2), ( c0√

(n)
+ 3‖du‖2)2, γ

)
‖du‖2

p(1− γ) ,

(3.50)

with probability 1− 2n−9 provided p ≥ Cµ3(1+γ/3) log2(n10)
n3/2γ2 .

Next we use Lemma  11 , combined with Lemma  6 and apply the union bound to get the

bound on the tensor noise ‖err3‖2 as

‖err3‖2 ≤
p(1 + γ)‖ET‖
p(1− γ) , (3.51)

with probability 1− 2n−9 provided p ≥ Cµ3(1+γ/3) log2(n10)
n3/2γ2 .Combining the error bounds results

of ‖err1‖2, ‖err2‖2, ‖err3‖2 in equations (  3.43 ), (  3.50 ) and (  3.51 ) respectively, yields

‖c̃r − λ∗
rc∗
r‖2

≤
8pRλ∗

max max
u∈{am,bm,ar,br,}

(√
1− ‖du‖2

2 ‖du‖2, ( c0√
(n)

+ ‖du‖2), ( c0√
(n)

+ 3‖du‖2)2, ‖du‖3
2, γ

)
‖du‖2

p(1− γ)

+ p(1 + γ)‖E‖
p(1− γ) , (3.52)
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with probability 1− 2n−9. The proof of Lemma  2 is then completed by applying the results

of Lemma  10 which shows that ‖cr − c∗
r‖2 ≤ 2

λ∗
r
‖c̃r − λ∗

rc∗
r‖2 and Lemma  9 (|λr − λ∗

r| ≤

‖c̃r − λ∗
rc∗
r‖2) and by letting max{‖du‖2} = εT . �

3.8.3 Proof of Lemma  3 

We now prove the contraction result in one iteration of Algorithm  1 for the shared

components of the tensor and matrix ar in the special case where the tensor and matrix

weights are equal and both tensor and matrix are dense. When the tensor and matrix

weight are assumed to be equal, the close form solution for the update of the shared tensor

component derived in Lemma  1 simplifies to ar = (resT (I,br,cr)+resM vr)
λr(PΩ(I,(br).2,(cr).2)+1) . In this special case we

can still employ the same technique used in bounding the non-shared components by using

the intermediate step of bounding the expression ‖ãr−λ∗
ra∗

r‖2 where ãr = (resT (I,br,cr)+resM vr)
PΩ(I,(br).2,(cr).2)+1 .

This is the main advantage of restricting the problem to the equal tensor matrix weight case

as it allows the proof technique derived for the non-shared component to be easily extended to

the case of the shared component. As we will show in the analysis of Lemma  4 this advantage

disappears when the weight of the tensor ans matrix are allowed to be different.

Let D, E, F, G, H, J, P be n× n diagonal matrices with diagonal elements,

Dii =
∑
j,k
δijkb2

r(j)c2
r(k) + 1 ; Eii =

∑
j,k
δijkb∗

r(j)c∗
r(k)br(j)cr(k);

Fii =
∑
j,k
δijkb∗

m(j)c∗
m(k)br(j)cr(k) ; Gii =

∑
j,k
δijkbm(j)cm(k)br(j)cr(k);

Hii =
∑
l

v∗
r(l)vr(l) ; Jii =

∑
l

v∗
m(l)vr(l) ; Pii =

∑
l

vm(l)vr(l).

Then the vector ãr obtained after one pass of the inner loop of Algorithm  1 can be written as

ãr = D−1

λ∗
rEa∗

r +
∑

m∈[R]\r
(λ∗

mFa∗
m − λmGam) + PΩ(ET (I,br, cr))


+ D−1

λ∗
rHa∗

r +
∑

m∈[R]\r
(λ∗

mJa∗
m − λmPam) + EMvr

 . (3.53)
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In the next steps we bound

‖ãr − λ∗
ra∗

r‖2 ≤ ‖λ∗
rD−1 (E + H−D) a∗

r︸ ︷︷ ︸
err1

‖2 + ‖D−1 ∑
m∈[R]\r

(λ∗
mFa∗

m − λmGam

︸ ︷︷ ︸
err2

)‖2

+ ‖D−1 ∑
m∈[R]\r

(λ∗
mJa∗

m − λmPam)
︸ ︷︷ ︸

err3

‖2 + ‖D−1(PΩ(ET (I,br, cr)) + EMvr)︸ ︷︷ ︸
err4

‖2.

(3.54)

In the shared component case, the right hand side of equation ( 3.54 ) can be characterized

as the sum of 4 sources of errors, where err1 = λ∗
rD−1 (E + H−D) a∗

r can be characterized

as the error due to the power method applied to both the tensor and matrix. This error

is similar to err1 discussed in the proof of Lemma  2 with the exception that it factors in

the contribution of the matrix. Again, if T ∗ was a rank 1, noiseless tensor, then proving

Lemma  3 would reduce to bounding this term. The second and third sources of error

err2 = D−1 ∑
m∈[R]\r

(λ∗
mFa∗

m − λmGam) and err3 = D−1 ∑
m∈[R]\r

(λ∗
mJa∗

m − λmPam) again

represents the main challenge in the proof. The challenge in bounding these two errors are

very similar to those exposed for err2 in the analysis of Lemma  2 in addition to the fact that

we have an extra residual due to the matrix. If both the tensor and matrix components were

orthogonal this error would be non existent. We therefore partly control these errors magnitude

through the bound imposed on the components vector inner product namely Assumption

(1.iii)the incoherence assumption. The fourth error term err4 = D−1(PΩ(ET (I,br, cr))+EMvr
is simply the error due to the noise of the tensor and the matrix and can be easily bounded

after standard Assumptions are made about the spectral norms of ET and EM . At first glance

it might seem that right hand-side of the inequalities in equation ( 3.54 ) is larger than that

found in equation ( 3.41 ) making therefore the bound on the shared component larger than

that of the that of the non-shared component. However as we demonstrate in the proof

below, the component D−1 plays the role of a weight which averages the tensor and matrix

sources of error in equation (  3.54 ).
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We start with bounding the first error term,

‖err1‖2 = ‖λ∗
rD−1 (E + H−D) a∗

r‖2

≤ λ∗
r‖D−1 (E + H−D) ‖2‖a∗

r‖2

≤ λ∗
r max

i
|D−1

ii || (E + H−D)ii |,

where last inequality above is obtained by observing that D−1 (E + H−D) is a diagonal

matrix whose spectral norm is the maximum absolute value of its diagonal elements and that

‖a∗
r‖2 = 1. We proceed to getting an upper bound for each of the maximum of each of the

random variable elements in the equation above with high probability. To do that we first

get an upper bound on each of the diagonal elements with high probability and make use of

the union bound method to get a high probability bound on the maximums.

|(E + H−D)ii| ≤ |〈v∗
r,vr〉 − 1|+ |

∑
jk
δijkb∗

r(j)c∗
r(k)br(j)cr(k)−

∑
jk
δijkb2

r(j)c2
r(k)|

= 1
2‖dv‖

2
2 + |

∑
ij
δijka∗

r(i)dbr(j)ar(i)br(j)−
∑

ij
δijkdar(i)b∗

r(j)ar(i)br(j)

−
∑

ij
δijkdcr(i)dbr(j)cr(i)br(j)|

≤ 1
2‖dv‖

2
2 + p (|〈c∗

r,cr〉〈dbr ,br〉|+ |〈dcr ,cr〉〈b∗
r,br〉|+ |〈dcr ,cr〉〈dbr ,br〉|)

+ pγ (‖dcr‖2 + ‖dbr‖2 + ‖dcr‖2‖dbr‖2) .

The expression on the right side of the equality is obtained by combining the triangle

inequality to the fact that cr(i) = c∗
r(i) + dcr(i) br(j) = b∗

r(j) + dbr(j) and using the results

from Lemma  12 . We then use Lemma  7 to bound the three random elements inside the

absolute value. Hence, provided the reveal probability p ≥ Cµ3(1+γ/3) log2(n10)
n3/2γ2 we get,

|(E + H−D)ii||(E + H−D)ii| ≤
1
2‖dv‖

2
2 + 6p

 max
ur∈{cr,br}

{√
1− ‖dur‖2

2 ‖dur‖2
2, ‖dur‖4

2, γ‖dur‖2
}

≤ 1
2‖dv‖

2
2 + 6p max

ur∈{cr,br}

√1− ‖dur‖2

3 ‖dur‖2, ‖dur‖3
2, γ

 ‖dur‖2,

(3.55)
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with probability 1− 2n−10. Using the union bound on the result in equation ( 3.55 ) combined

with the results of Lemma  6 . We get,

‖err1‖2 ≤
λ∗
r

(
6p max

ur∈{ar,br}

(√
1− ‖dur ‖2

2 ‖dur‖2, ‖dur‖3
2, γ

)
‖dur‖2 + 1/2‖dv‖2

2

)
p(1− γ) + 1 (3.56)

with probability 1− 2n−9.

Next we proceed to bound ‖err3‖2 before coming back to ‖err2‖2,

‖err3‖2 = ‖D−1 ∑
m∈[R]\r

(λ∗
mJa∗

m − λmPam)‖2.

We start by bounding the component inside the summation.

‖λ∗
mJa∗

m − λmPam‖2 = ‖λ∗
m〈v∗

m,vr〉a∗
m − λm〈vm,vr〉am‖2

= λ∗
m‖(〈v∗

m,vr〉 − 〈vm,vr〉)a∗
m + 〈vm,vr〉dam + ∆λm〈vm,vr〉am‖2

≤ 3λ∗
m max

‖dvm‖2,
c0√
(n)

+ 3‖dvr‖2

 ‖dvr‖2, (3.57)

where the last inequality is due to the fact that 〈vm,vr〉 ≤ ( c0√
(n)

+ 3‖dvr‖2). This, combined

with the results of Lemma  6 to bound |D−1| yields,

‖err3‖2 ≤
3 ∑
m∈[R]\r

λ∗
m max(‖dvm‖2,

c0√
(n)

+ 3‖dvr‖2)‖dvr‖2

p(1− γ) + 1 , (3.58)

with probability 1− 2n−9.

The technique used to bound ‖err2‖2 in this section is very similar to the one used to

bound expression in section. We therefore provide the bound and incite the reader to review

the section mention to understand the process involved. The main difference recedes in
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substituting the components c for a and finding a lower bound for D−1 using Lemma  6 . This

yields,

‖err2‖2 ≤
8p ∑

m∈[R]\r
λ∗
m max

u∈{cm,bm,cr,br,}

(
( c0√

(n)
+ ‖du‖2), ( c0√

(n)
+ 3‖du‖2)2‖, γ

)
‖du‖2

p(1− γ) + 1 ,

(3.59)

with probability 1− 2n−9.

Next ‖err4‖2 is bounded using Lemma  11 , combined with Lemma  6 and the fact that

‖EMvr‖2 ≤ ‖EM‖ since ‖vr‖2=1 and by definition ‖EM‖ = sup‖u‖=1 ‖EMu‖2. This therefore

yields

‖err4‖2 ≤
p(1 + γ)‖ET‖+ ‖EM‖

p(1− γ) + 1 (3.60)

with probability 1− 2n−9.

Combining the error bounds results of ‖err1‖2, ‖err3‖2, ‖err2‖2, ‖err4‖2 in equations ( 3.56 ),

( 3.59 ), (  3.58 ) and (  3.60 ) respectively, we get

‖ãr − λ∗
ra∗

r‖2

≤
8pRλ∗

max max
u∈{cm,bm,cr,br,}

(√
1− ‖du‖2

2 ‖du‖2, ( c0√
(n)

+ ‖du‖2), ( c0√
(n)

+ 3‖du‖2)2, ‖du‖3
2, γ

)
‖du‖2

p(1− γ) + 1

+
3Rλ∗

max max
(
‖dvr‖2,

c0√
(n)

+ 3‖dvr‖2

)
‖dvr‖2 + p(1 + γ)‖ET‖+ ‖EM‖

p(1− γ) + 1 (3.61)

with probability 1− 2n−9.

The proof of Lemma  3 is then completed by applying the results of Lemma  10 which shows

that ‖ar − a∗
r‖2 ≤ 2

λ∗
r
‖ãr − λ∗

ra∗
r‖2 and letting max{‖du‖2} = εT and max{‖dv‖2} = εM . �

3.8.4 Proof of Lemma  4 

We now prove Lemma  4 which establishes an error contraction result for the shared tensor

components in one iteration of Algorithm  1 when the input tensor and matrix are assumed to

be sparse and their respective components weight are allowed to differ. First, we introduce
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some notation below in order reveal how we address the sparse components in the analysis .

Define Fa := supp(a∗
r)∪ supp(ar), Fb := supp(b∗

r)∪ supp(br), Fc := supp(c∗
r)∪ supp(cr) and

Fv := supp(v∗
r) ∪ supp(vr) where supp(u) refers to the set of indices in a vector u that are

nonzero. Then let F and F be compositions of support sets defined as F := Fa ◦ Fb ◦ Fc and

F := F1 ◦ Fv respectively. We use the notation T \r := ∑
m∈[R]\r λmam ⊗ bm ⊗ cm to repre-

sent the CP decomposition of the tensor T minus its rth rank 1 tensor element (λrar⊗br⊗cr).

Denote the truncated vectors u∗
r and ur to be ū∗

r = Truncate(u∗
r, Fu) and ūr = Truncate(ur, Fu)

with u ∈ {a,b, c,v} and r = 1, . . . , R.

Note that in the update of ar in our algorithm, we first obtain non-sparse estimator ar in

line (8) of algorithm  1 then update it by applying the truncation method and normalization

method in (9). We let ȧr be the update on line (8) of algorithm  1 before the truncation and

ar be the truncated update on line (9) of the algorithm. That is ar = ȧr

‖ȧr‖2
with,

ȧr = (λrresTF
(I,br,cr)+ωrresMF

vr)
(λ2

rPΩ(I,(br).2,(cr).2)+ω2
r)

where resTF
denotes the restriction of the residual tensor resT on the three modes indexed by

Fa, Fb and Fc and resTF
is the equivalent for the residual matrix resM . That is

resTF
=

∑
m∈[R]

λ∗
mā∗

m ⊗ b̄∗
m ⊗ c̄∗

m −
∑

m∈[R]\r
λmām ⊗ b̄m ⊗ c̄m,

resMF
=

∑
m∈[R]

ω∗
mā∗

m ⊗ v̄∗
m −

∑
m∈[R]\r

λmām ⊗ v̄m.

Proving Lemma  4 involves bounding ‖ar − a∗
r‖2 which we do in two steps. First we notice

that ‖ar − a∗
r‖2 ≤ ‖ar − ȧr‖2 + ‖ȧr − a∗

r‖2 using the triangle inequality. Then we bound each

of the two norms in the expression above. As will be demonstrated in the proof,

‖ar − a∗
r‖2 ≤ ‖ar − ȧr‖2 + ‖ȧr − a∗

r‖2 ≤ 2‖ȧr − a∗
r‖2.

While bounding ‖ar − a∗
r‖2 directly is a challenge, getting relatively tight upper bounds for

‖ar − ȧr‖2 and ‖ȧr − a∗
r‖2 although challenging is feasible.

Step1: We begin with bounding ‖ȧr − a∗
r‖2.
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Let D, E, F, G, H, J, P be n× n diagonal matrices with diagonal elements,

Dii = λ2
r

∑
j,k
δijkb2

r(j)c2
r(k) + ω2

r ; Eii =
∑
j,k
δijkb̄∗

r(j)c̄∗
r(k)br(j)cr(k);

Fii =
∑
j,k
δijkb̄∗

m(j)c̄∗
m(k)br(j)cr(k) ; Gii =

∑
j,k
δijkb̄m(j)c̄m(k)br(j)cr(k);

Hii =
∑
l

v̄∗
r(l)vr(l) ; Jii =

∑
l

v̄∗
m(l)vr(l) ; Pii =

∑
l

v̄m(l)vr(l).

Then the vector ar obtained after one pass of the inner loop of Algorithm  1 and before

normalization can be written as

ȧr = λrD−1

λ∗
rEā∗

r +
∑

m∈[R]\r
(λ∗

mFā∗
m − λmGām) + ETF

×2 br ×3 cr


+ ωrD−1

ω∗
rHā∗

r +
∑

m∈[R]\r
(ω∗

mJā∗
m − ωmPām) + EMF

vr

 . (3.62)

This means that

‖ȧr − a∗
r‖2 = ‖D−1 (λrλ∗

rE + ωrω
∗
rH−DI) ā∗

r︸ ︷︷ ︸
err1

‖2 + ‖λrD−1 ∑
m∈[R]\r

(λ∗
mFā∗

m − λmGām)
︸ ︷︷ ︸

err2

‖2

+ ‖ωrD−1 ∑
m∈[R]\r

(ω∗
mJa∗

m − ωmPām)
︸ ︷︷ ︸

err3

‖2 + ‖D−1(λrETF
×2 br ×3 cr + ωrEMF

vr)︸ ︷︷ ︸
err4

‖2.

(3.63)

The right hand side of the inequality above is split into four sources of errors where err2 and

err3 are due to tensor rank being greater than one, err3 is the error associated tot the tensor

and matrix noise and err1 is the error from the power iteration used in the algorithm. We

notice in the case where the tensor and matrix have different weight expression of ar contains

the estimated weights unlike when the tensor weights can be assumed to be equal. This

main difference requires careful derivation of the error bound for the update of the shared

components.
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We start with bounding the first error term

‖err1‖2 = ‖D−1 (λrλ∗
rE + ωrω

∗
rH−DI) ā∗

r‖2

≤ ‖D−1 (λrλ∗
rE + ωrω

∗
rH−DI) ‖2‖ā∗

r‖2

≤ max
i
|D−1

ii |︸ ︷︷ ︸
err11

| (λrλ∗
rE + ωrω

∗
rH−DI)ii |︸ ︷︷ ︸

err12

,

where the third inequality is due to the fact that ‖ā∗
r‖2 ≤ ‖a∗

r‖2 = 1 and since,

D−1 (λrλ∗
rE + ωrω

∗
rH−DI) is a diagonal matrix hence its spectral norm is obtained by

taking the maximum absolute value of its diagonal elements. We therefore proceed to getting

an upper bound each of the maximum of each of the random variable elements in the equation

above with high probability. To do that we first get an upper bound on each of the diagonal

elements with high probability and make use of the union bound method to get a high

probability bound on the maximums.

err12 = |λrλ∗
r

∑
jk
δijkb̄∗

r(j)c̄∗
r(k)br(j)cr(k) + ωrω

∗
r〈v̄∗

r,vr〉 − (λ2
r

∑
jk
δijkb2

r(j)c2
r(k) + ω2

r)|

≤ |λrλ∗
r

∑
jk
δijkb̄∗

r(j)c̄∗
r(k)br(j)cr(k)− λ2

r

∑
jk
δijkb2

r(j)c2
r(k)|

︸ ︷︷ ︸
I121

+ |ωrω∗
r〈v∗

r,vr〉 − ω2
r)|︸ ︷︷ ︸

I122

.

We can bound I121 and I122 next

I122 = |ωrω∗
r〈v̄∗

r,vr〉 − ω2
r)|

≤ ωrω
∗
r(|〈v∗

r,vr〉 − 1|+ ∆ωr)

≤ ωrω
∗
r(

1
2‖dv‖

2
2,+∆ωr) (3.64)
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where the first inequality is due to using the triangle inequality, the fact that ωr = ωr−ω∗
r +ω∗

r

and Lemma  13 by noting that supp(vr) ⊆ Fb. The second inequality is obtained from the

results of Lemma  12 . Next we also bound I121.

I121 = |λrλ∗
r

∑
jk
δijkb̄∗

r(j)c̄∗
r(k)br(j)cr(k)− λ2

r

∑
jk
δijkb2

r(j)c2
r(k)|

≤ λrλ
∗
r(|
∑
jk

(
δijkb̄∗

r(j)c̄∗
r(k)br(j)cr(k)− δijkb2

r(j)c2
r(k)

)
|+ ∆λr

∑
jk
δijkb2

r(j)c2
r(k))

≤ |
∑
jk
δijkb∗

r(j)d∗
cr

(k)br(j)cr(k)|+ |
∑
jk
δijkd∗

br
(j)c∗

r(k)br(j)cr(k)|

+ |
∑
jk
δijkd∗

br
(j)d∗

cr
(k)br(j)cr(k)|,

where the last inequality is obtained using the triangle inequality and the fact that br(j) =

b∗
r(j) + dbr(j) and cr(j) = c∗

r(j) + dcr(j) combined with the fact that Fb = supp(b∗
r) ⊆

supp(b̄∗
r) = F and Fc = supp(c∗

r) ⊆ supp(c̄∗
r) = F which means that b̄∗

r(k)− b∗
r(k) = 0 and

c̄∗
r(k)− c∗

r(k) = 0. Next applying the results of Lemma  6 and Lemma  9 , we get

I121 ≤ λ∗
rλrp (|〈b∗

r,br〉〈dcr ,cr〉|+ |〈dbr ,br〉〈c∗
r,cr〉|+ |〈dbr ,br〉〈dcr ,cr〉|+ ∆λr)

+ pγ(‖dcr‖2 + ‖dbr‖2 + ‖dcr‖2‖dbr‖2 + ∆λr)

≤ 8λ∗
rλrp

 max
ur∈{cr,br}

{√
1− ‖dur‖2

2 ‖dur‖2
2, ‖dur‖4

2,∆λr , γ‖dur‖2, γ∆λr

} , (3.65)

where the last inequality above holds with probability 1−2d−10 provided the reveal probability

p ≥ Cµ3(1+γ/3) log2(d10)
d3/2γ2 . Combining equations ( 3.64 ) and ( 3.65 ) followed by making use of

lemma (  6 ) to bound the denominator of ‖err1‖2, we get

‖err1‖2 ≤
8λ∗

rλrp

(
max

ur∈{cr,br}

{√
1− ‖dur ‖2

2 ‖dur‖2
2, ‖dur‖4

2,∆λr , γ‖dur‖2, γ∆λr

})
+ ωrω

∗
r(1

2‖dv‖
2
2 + ∆ωr)

λ2
rp(1− γ) + ω2

r

,

(3.66)
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with probability 1− 2d−9.

We now move on to bounding the expression ‖err3‖2.

‖err3‖2 ≤ ωr‖D−1 ∑
m∈[R]\r

(ω∗
mJā∗

m − ωmPām)‖2

≤ ωr max
i
|D−1

ii |
∑

m∈[R]\r
‖ω∗

m〈v̄∗
m,vr〉ā∗

m − ωm〈v̄m,vr〉ām‖2

≤ ωr max
i
|D−1

ii |
∑

m∈[R]\r
ω∗
m (|〈v̄∗

m,vr〉 − 〈v̄m,vr〉|‖ā∗
m‖2 + |〈v̄m,vr〉|‖dam‖2)

+ ωr max
i
|D−1

ii |
∑

m∈[R]\r
ω∗
m (∆ωm|〈v̄m,vr〉|‖ām‖2) , (3.67)

where for inequality three, we use the fact that ‖〈v̄∗
m,vr〉ā∗

m‖2 ≤ ‖〈v∗
m,vr〉a∗

m‖2 since ‖ā∗
m‖2 ≤

1 and that the truncation process is invariant to scaling. We also used the fact that

ωr = ωr−ω∗
r +ω∗

r . Next, since {supp(v∗
m), supp(vm)} ⊆ F it follows that 〈v̄∗

m,vr〉−〈v̄m,vr〉 =

〈dvm ,vr〉. Then noticing that 〈vm,vr〉 ≤ ( c0√
d

+ 3‖dvr‖2) and using the results of Lemma  6 to

bound max
i
|D−1

ii | yields

‖err3‖2 ≤
ωr

∑
m∈[R]\r

ω∗
m

(
‖dvm‖2 + ( c0√

d
+ 3‖dvr‖2)‖dam‖2 + ∆ωm( c0√

d
+ 3‖dvr‖2)

)
λ2
rp(1− γ) + ω2

r

, (3.68)

with probability 1− 2d−9 provided the reveal probability p ≥ Cµ3(1+γ/3) log2(d10)
d3/2γ2 .

Next we bound the expression ‖err2‖2 as

‖err2‖2 = ‖λrD−1 ∑
m∈[R]\r

λ∗
m(Fā∗

m −Gām + ∆λmGām)‖2

≤ λr‖D−1‖2
∑

m∈[R]\r
λ∗
m (‖(F−G)ā∗

m‖2 + ‖Gdam‖2 + ‖∆λmGām‖2)

≤ λr‖D−1‖2
∑

m∈[R]\r
λ∗
m

max
i
|(F−G)ii|︸ ︷︷ ︸
I21

+(‖dam‖2 + ∆λm) max
i
|Gii|︸ ︷︷ ︸

I22

 , (3.69)

where the second inequality is due to the triangle inequality and the third inequality is

due to the fact that ‖ā∗
m‖2 ≤ ‖a∗

m‖2 = 1 and ‖ām‖2 ≤ ‖am‖2 = 1 as well as the fact that
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the matrices ‖F−G‖2 and ‖G‖2 are diagonal matrices hence there spectral norm is their

maximum absolute diagonal value. We focus on bounding bounding I21 and I22 next.

I21 = |
∑
jk
δijkc̄∗

m(k)b̄∗
m(j)cr(k)br(j)−

∑
jk
δijkc̄m(k)b̄m(j)cr(k)br(j)|

≤ |
∑
jk
δijkdcm(k)b̄∗

m(j)cr(k)br(j)|+ |
∑
jk
δijkc̄∗

m(k)dbm(j)cr(k)br(j)|

+ |
∑
jk
δijkdcm(k)dbm(j)cr(k)br(j)|

≤ p
(
|〈dcm ,cr〉〈b̄∗

m,br〉|+ |〈c̄∗
m,cr〉〈dbm ,br〉|+ |〈dcm ,cr〉〈dbm ,br〉|

)
+ γ(‖dcm‖2 + ‖dbm‖2 + ‖dcm‖2‖dbm‖2)

≤ 6p max
u∈{cm,bm,cr,br,}

(
( c0√

d
+ ‖du‖2), ‖du‖2, γ

)
‖du‖2. (3.70)

The last inequality above holds with probability 1−2d−10 provided the reveal probability p ≥
Cµ3(1+γ/3) log2(d10)

d3/2γ2 . The third inequality is due to Lemma  7 by noting that since supp(b∗
m) ⊆ Fb

then b̄∗
m(j) ≤ µ√

d
. Similarly using Lemma  8 , and applying the union bound and the fact

that |〈cm,cr〉〈bm,br〉| ≤ max{〈cm,cr〉2, 〈bm,br〉2}, ≤
(
c0√
d

+ max
ur∈{cr,br}

3‖dur‖2

)2

yields the

following inequality

I22 ≤ p max
ur∈{cr,br,cm,bm}

(
( c0√

d
+ 3‖dur‖2)2, γ

)
, (3.71)

with probability 1− 2d−9.

Putting equations (  3.69 ), (  3.70 ),( 3.71 ), and Lemma  6 together yields

‖err2‖2 ≤
λr8p

∑
m∈[R]\r

λ∗
m max

u∈{am,bm,ar,br,}

(
( c0√

d
+ ‖du‖2), ( c0√

d
+ 3‖du‖2)2, ‖du‖2, γ

)
‖du‖2

λ2
rp(1− γ) + ω2

r

,

(3.72)

with probability 1− 2d−9 provided p ≥ Cµ3(1+γ/3) log2(d10)
d3/2γ2 .

Next, we bound the error matrix and error matrix through ‖err4‖2 which is bounded by
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applying Lemma 11 , combined with Lemma  6 and the fact that ‖EMvr‖2 ≤ ‖EM‖ since

‖vr‖2=1 and by definition ‖EM‖ = sup‖u‖=1 ‖EMu‖2 yields,

‖err4‖2 ≤
λrp(1 + γ)‖ET‖<d+s> + ωr‖EM‖<d+s>

λ2
rp(1− γ) + ω2

r

, (3.73)

with probability 1− 2d−9 provided p ≥ Cµ4(1+γ/3) log2(d10)
d2γ2 . Combining the error bounds results

of ‖err1‖2, ‖err3‖2, ‖err2‖2, ‖err4‖2 in equations ( 3.66 ), ( 3.72 ), ( 3.68 ) and ( 3.73 ), lettings

‖du‖2 = εT , for u ∈ {ar,br, cr}, ‖dv‖2 = εM , ∆λr = εT
λ∗

r
and ∆ωr = εM

ω∗
r
∀r ∈ [R] and using

the fact that λ∗
r − εT ≤ λr ≤ λ∗

r + εT and ω∗
r − εT ≤ ωr ≤ λ∗

r + εT for all r ∈ [R], yields

‖ȧr − a∗
r‖2

≤
8pRλ∗

max(λ∗
r + εT ) max

u∈{cm,bm,cr,br,}

(√
1− εT

2 εT , (
c0√
d

+ εT ), ( c0√
d

+ 3εT )2, εT , γ, 1/λ∗
min

)
εT

(λ∗
min − εT )2p(1− γ) + (ω∗

min − εM)2

+
3Rωmax(ω∗

r + εM) max
(
εM , 1/ω∗

min,
c0√
d

+ 3εM
)
εM

(λ∗
min − εT )2p(1− γ) + (ω∗

min − εM)2

+ (λ∗
r + εT )p(1 + γ)‖ET‖<d+s> + (ω∗

r + εT )‖EM‖<d+s>

(λ∗
min − εT )2p(1− γ) + (ω∗

min − εM)2 , (3.74)

with probability 1− 2d−9. Simplifying the expression completes the proof for step 1 of the

Lemma  4 .

Step2: We now get an upper bound for ‖ar − ȧr‖2. Note that

‖ar − ȧr‖2 = ‖ ȧr
‖ȧr‖2

− ȧr‖2 = ‖ ȧr
‖ȧr‖

‖2|1− ‖ȧr‖2| = |1− ‖ȧr‖2|.

Hence bounding ‖ar − ȧr‖2 simplifies to bounding |1− ‖ȧr‖2|.Using the expression of ȧr in

( 3.62 ) and applying the triangle inequality we get,

|1− ‖ȧr‖2| ≤ |1− ‖λrD−1λ∗
rEā∗

r + ωrD−1ω∗
rHā∗

r‖2|︸ ︷︷ ︸
I

+ ‖λrD−1 ∑
m∈[R]\r

(λ∗
mFā∗

m − λmGām)‖2

︸ ︷︷ ︸
II

+ ‖ωrD−1 ∑
m∈[R]\r

(ω∗
mJā∗

m − ωmPām)‖2

︸ ︷︷ ︸
III

+ ‖ETF
×2 br ×3 cr + EMF

vr‖2︸ ︷︷ ︸
IV

. (3.75)
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Bounds for elements (II) (III) and (IV ) in the equation above are derived in ( 3.72 ), ( 3.68 )

and (  3.73 ) respectively. Hence we only focus on bounding elements (I).

I = |‖a∗
r‖2 − ‖λrD−1λ∗

rEā∗
r + ωrD−1ω∗

rHā∗
r‖2|

≤ ‖a∗
r −D−1(λrλ∗

rE + ωrω
∗
rH)ā∗

r‖2

= ‖D−1 (λrλ∗
rE + ωrω

∗
rH−DI) ā∗

r‖2

= ‖err1‖2, (3.76)

where err1 is the error component defined in ( 3.63 ) and bounded in ( 3.66 ). The first equality

is obtained by using the fact that ‖a∗
r‖2 = 1, vector norm property is then use to get the first

inequality and finally second equality is due to a∗
r = D−1Da∗

r and the fact that ā∗
r = a∗

r since

Fa = supp(a∗
r) ⊆ supp(ā∗

r) = F . Hence combining the results in equations ( 3.76 ) and ( 3.75 )

yields,

‖ar − ȧr‖2 ≤ I + II + III + III + IV

≤ ‖ȧr − a∗
r‖2, (3.77)

which ends step 2 of the proof. The proof of Lemma  4 is completed by combining results of step

1 and step 2 which shows that ‖ar−a∗
r‖2 ≤ 2‖ȧr−a∗

r‖2, and taking the maximum over all r.�

3.9 Auxillary Lemmas

Lemma 5. Fix r and let art+1 be obtained by the update on line (9) of Algorithm  1 and .

Given the conditions in Theorem  3.4.1 hold, we get with probability 1−n−9 that at+1 ≤ 3µ/
√
d.
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Proof: Let ãt+1
r be the update on line (8) of Algorithm  1 , then we can decompose its

absolute valued in the following way.

|ãt+1(i)| ≤ 1
Dii

λ∗
r|Eii|

µ√
n︸ ︷︷ ︸

:=κ1

+
∑

m∈[R]\r
λ∗
m|Fii|

µ√
n

+
∑

m∈[R]\r
λm|Gii|

µ√
n︸ ︷︷ ︸

:=κ2

+

1
Dii

ω∗
r |Hii|

µ√
n︸ ︷︷ ︸

:=κ3

+
∑

m∈[R]\r
ω∗
m|Jii|

µ√
n

+
∑

m∈[R]\r
ωm|Pii|

µ√
n︸ ︷︷ ︸

:=κ4

+

1
Dii

|
∑
i,j,k
ET δi,j,kbr(j)cr(k)|

︸ ︷︷ ︸
:=κ5

+ |
∑
i,l
EMvr(l)|︸ ︷︷ ︸
:=κ6

 , (3.78)

Using the results of Lemmas  20 - 22 along with the decomposition of db = b−b∗ and db = c−c∗

and the incoherence condition on the tensor components we get the following bounds:

κ1 ≤ λ∗
rp(

µ√
n

+ γ); κ2 ≤ (r − 1)pλ∗
max

(
2c

2
0
n

+ 19‖d‖max + 2γ
)

µ√
n

κ3 ≤ ω∗
r

µ√
n

; κ4 ≤ (r − 1)ω∗
max

(
2 c0√

n
+ 4‖d‖max+

)
µ√
n

κ5 ≤ n2 µ√
n
|pmax(ET ) + γ| µ√

n
; κ6 ≤ n|max(EM)| µ√

n
.

Using the initialization condition presented in Assumption 6 and letting d = ε0 we get that

1
Dii

∑
r

κr ≤
λ∗
rp(1 + γ) + ω∗

r

p(1− γ) + 1
µ√
n
,

where γ = o(1). It now remains to show that κ5 and κ6 are constants. To do so we use

impose the following condition

|max(ET )|
λ∗
min

≤ p(1− γ) + 1
n3/2µ

and |max(EM)|
ω∗
min

≤ p(1− γ) + 1
n
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Using the condition above and the expression of |at+1| in ( 3.78 ) and noting that

|ãt+1(i)|λ∗
r ≥ |at+1(i)|; which completes the proof of the lemma. �

Lemma 6. Let u and w be unit vectors in Rn such that |u(i)| ≤ µ√
d

and |w(j)| ≤ β√
d
. Also

let δi,j,k be i.i.d. Bernoulli random variables with P (δijk = 1) = p and 1 ≤ i ≤ n, 1 ≤ j ≤ n,

1 ≤ k ≤ n.

Then provided p ≥ Cµ2β2(1+γ/3) log(d10)
d2γ2 we have

|
∑
j,k
δijku2

r(j)w2
r(k)| ≤ p〈u,u〉〈w,w〉 − pγ,

with probability 1− d−10.

Proof: Let Xjk = 1
p

(δijku2(j)w2(k)− E(δijku2(j)w2(k))). Using the bound on the elements

of u and w, we have |Xjk| = |1p(δijk − p)u2(j)w2(k)| ≤ µ2β2

pd2 . Also

∑
j,k
E[X2

jk] = 1
p

(1− p)
∑
j,k

u4
r(j)w4

r(k) ≤ µ2β2

pd2 .

Applying Bernstein tail bound inequality we get:

P

|∑
j,k
δijku2

r(j)w2
r(k)− p〈u,u〉〈w,w〉| ≥ pt

 ≤ exp ( −d
2pt2/2

µ2β2(1 + 1
3t)

).

Setting the right side of the inequality to be less than q yields:

P

|∑
j,k
δijku2

r(j)w2
r(k)| ≤ p〈u,u〉〈w,w〉 − pγ

 ≥ 1− q,

for p ≥ µ2β2(1+γ/3) log(1/q)
d2γ2 . Choosing q ≤ d−10 completes the proof of Lemma  6 . �

Lemma 7. Let u∗, u and w be unit vectors in Rn such that |u∗
i | ≤ µ√

d
, |u| and |w| ≤ β√

d
.

Let d be another vector with ‖d‖2 ≤ 1. Also let δi,j,k be i.i.d. Bernoulli random variables with
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P (δijk = 1) = p and 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n. Provided p ≥ Cµβ2(1+γ/3) log2( 1
2d

10)
d3/2γ2 , with

probability greater than 1− 2d−10, we have

|
∑
j,k
δijku∗(j)d(k)u(j)w(k)− p〈u∗,u〉〈d,w〉| ≤ pγ‖d‖2.

Proof: Let Xjk = 1
p

(δijku∗(j)d(k)u(j)w(k)− E(δijku∗(j)d(k)u(j)w(k))). Then we have

That is |Xjk| = 1
p
(δijk − p)u∗(j)d(k)u(j)w(k) ≤ 1

p
(1− p) µβ2

d3/2‖d‖2. Also,

∑
j,k
E[X2

jk] = 1
p

∑
j,k

(u(j)2d(k)2u(j)2w(k)2) ≤ µβ2‖d‖2
2

pd3/2 .

Applying Bernstein tail bound inequality we get:

P

|∑
j,k
δijku∗(j)d(k)u(j)w(k)− p〈u∗,u〉〈d,w〉| ≥ pt

 ≤ 2 exp ( −d3/2pt2

µβ2‖d‖2(‖d‖2 + 1
3t)

).

(3.79)

Setting the right side of the inequality to be less than q and choosing t ≤ γ‖d‖2 then solving

for p yields:

P

|∑
j,k
δijku∗(j)d(k)u(j)w(k)− p〈u∗,u〉〈d,w〉| ≤ pγ‖b‖2

 ≥ 1− 2q,

for p ≥ µβ2(1+γ/3) log( 1
q

)
d3/2γ2 . Choosing q ≤ d−10 completes the proof of Lemma  7 . �

Lemma 8. Let u∗, w∗, u and w be unit vectors in Rn such that |u∗(i)| and |w∗(j)| ≤ µ√
d
,

|ui| and |wi| ≤ β√
d
. Let δi,j,k be i.i.d. Bernoulli random variables with P (δijk = 1) = p and

1 ≤ i, j, k ≤ n. Provided p ≥ Cµ2β2(1+γ/3) log( 1
2d

10)
d2γ2 , with probability greater than 1− 2d−10, we

have

|
∑
j,k
δijku∗(j)w∗(k)u(j)w(k)| ≤ p|〈u∗,u〉〈w∗w〉|+ pγ.
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Proof: Let Xjk = 1
p

(δijku∗(j)w∗(k)u(j)w(k)− E(δijku∗(j)w∗(k)u(j)w(k))). Then we have

|Xjk| = 1
p
(δijk − p)u∗(j)w∗(k)u(j)w(k) ≤ 1

p
(1− p)µ2β2

d2 .Also

∑
j,k
E[X2

jk] = 1
p

(1− p)
∑
j,k

(u(j)2∗w(k)∗2u(j)2w(k)2) ≤ 1
p

(1− p)µ
2β2

d2 .

Applying Bernstein tail bound inequality we get:

P

|∑
j,k
δijku∗(j)d(k)u(j)w(k)− p〈u∗,u〉〈d,w〉| ≥ pt

 ≤ 2 exp ( −d2pt2

µ2β2(1− p)(1 + 1
3t)

).

Setting the right side of the inequality to be less than q and choosing t ≤ γ then solving for

p yields:

P

|∑
j,k
δijku∗(j)w∗(k)u(j)w(k)− 〈u∗,u〉〈w∗w〉| ≤ pγ

 ≥ 1− 2q,

and p ≥ µ2β2(1+γ/3) log( 1
q

)
d2γ2 . Letting q ≤ d−10 completes the proof of Lemma  8 . �

Lemma 9. Let λr be the update of the rth weight of the tensor after one iteration of Algorithm

 1 and let λ∗
r be the true rth weight of the tensor decomposition in the dense tensor and dense

matrix case. Let c̃ be as defined in ( 3.22 ) and c as defined in ( 3.20 ) then with probability

greater than 1− 2n−9 we have

|λr − λ∗
r| ≤ ‖c̃r − λ∗

rc∗
r‖2.

Proof: We know that ‖c∗
r‖2 = ‖cr‖2 = 1 hence we can write,

|λr − λ∗
r| = |‖λrcr‖2 − ‖λ∗

rcr∗‖2|

≤ ‖λrcr − λ∗
rcr∗‖2

= ‖c̃r − λ∗
rcr∗‖2

The last equality above is obtained by observing that c̃r = λrcr as shown in the proof of

Lemma 1 . This complete the proof of the Lemma. Notice that the above Lemma can also be

84



applied on ωr to obtain |ωr − ω∗
r | ≤ ‖ṽr − ω∗

rv∗
r‖2. �

Lemma 10. Let c̃ be as defined in ( 3.22 ) and c as defined in ( 3.20 ). Also let λr be the

update of the rth weight of the tensor after one iteration of Algorithm  1 and let λ∗
r be the true

rth weight of the tensor decomposition in the dense tensor and dense matrix case. Then with

probability greater than 1− 2n−9 we have

‖cr − c∗
r‖2 ≤

2
λ∗
r

‖c̃r − λ∗
rcr∗‖2,

‖cr − c∗
r‖2 + ∆λr ≤

3
λ∗
r

‖c̃r − λ∗
rcr∗‖2,

where ∆λr is as defined in ( 3.18 ).

Proof:

λ∗
r‖cr − c∗

r‖2 = ‖λ∗
rcr − λ∗

rcr∗‖2

= ‖λrcr − λ∗
rcr∗ − ελrcr‖2 ≤ ‖λrcr − λ∗

rcr∗‖2 + ‖ελrcr‖2

= ‖c̃r − λ∗
rcr∗‖2 + |λr − λ∗

r|

≤ 2‖c̃r − λ∗
rcr∗‖2, (3.80)

which proves the first inequality of the Lemma. The proof of the second inequality in the

lemma is obtained by combining (  3.80 ) with the results of Lemma  9 . �

Lemma 11. For any tensor ET ∈ Rn×n×n and any vectors u and v ∈ Rn with

‖u‖2 = ‖v‖2 = 1, we have

‖ET ×1 u×2 v‖2 ≤ ‖ET‖,

where ‖ET‖ represents the spectral norm of the tensor defined in ( 2.1 ).
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Proof:

‖ET ×1 u×2 v‖2 = ‖ET ×1 u×2 v‖2
2

‖ET ×1 u×2 v‖2

=
∣∣∣∣ET ×1 u×2 v×3

(
ET ×1 u×2 v
‖ET ×1 u×2 v‖2

) ∣∣∣∣
≥ sup

‖u‖=‖v‖=‖w‖=1

∣∣∣∣ET ×1 u×2 v×3 w
∣∣∣∣

= ‖ET‖.

The first inequality is due to ‖u‖2 = ‖v‖2 = 1 and the fact that ET ×1u×2v
‖ET ×1u×2v‖2

= 1. The last

equality is obtained by applying the definition of the tensor spectral norm provided in ( 2.1 ). �

Lemma 12. Let u and w be unit vectors and let d be a vector such that d = u−w then

|〈w,d〉| = 1
2‖d‖

2
2.

Proof: Note that ‖u‖2
2 = ∑ (w(i) + d(i))2. Hence given that u is a unit vector we get

∑
w(i)2 + 2

∑
w(i)d(i) +

∑
d(i)2 = 1

2
∑

w(i)d(i) +
∑

d(i)2 = 0

2
∑

w(i)d(i) = −
∑

d(i)2

|〈w,d〉| = 1
2‖d‖

2
2,

Which completes the proof of the lemma. �

Lemma 13. Let u and w be unit vectors define F1 := supp(u), F2 := supp(w) be the support

sets for u and w respectively with Fi ⊆ {1, · · · d} and F := Fu ∪ Fw be the union of the two

vectors’ support sets. Let ū := Truncate(u, F ) then it follows that

〈ū,w〉 = 〈u,w〉.
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Proof: Since by definition, ū := Truncate(u, F ), then we can write 〈ū,w〉 explicitly as

〈ū,w〉 = ∑
i∈[d]

ū(i)w(i). Since ū(i) 6= 0 only when i ∈ F1 and i ∈ F2, we get ∑
i∈[d]

ū(i)w(i) =∑
i∈F

u(i)w(i). However, we know that supp(w) = F2 ⊆ F hence we get

〈ū,w〉 =
∑
i∈F

u(i)w(i) =
∑
i∈[d]

u(i)w(i) = 〈u,w〉.

�
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4. UNCERTAINTY QUANTIFICATION IN COVARIATE

ASSISTED TENSOR COMPLETION

In Chapter  3 we proposed COSTCO, an algorithm which aims to complete a sparse and highly-

missing tensor in the presence of covariate information along at least one tensor mode. Using

a low-rank assumption on both the tensor and a single covariate matrix, the methodology in

Chapter  3 assumes that the latent components corresponding to the coupled modes are shared

by both the tensor and matrix’s decomposition therefore leveraging the additional covariate

information to improve the accuracy of the recovered tensor. The parameter estimation in

COSTCO is formulated as a non-convex optimization with sparsity constraints, and employs a

sparse alternating least-squares approach to recover tensor components. It was shown that

COSTCO allows for a relaxation in the bound of the tensor entries reveal probability and enjoys

better recovery accuracy compared to stand alone tensor completion methods.

In this chapter we focus on building tools to facilitate inference for the recovered tensor

components. In fact, recovery of the tensor components alone does not suffice to enable

practical use of the recovered tensor in real problems. A need to assess the trustworthiness

of these predictions arises if completion methods are to be used in practice. Due to the

non convexity of most tensor completion problems, this constitutes a challenge, with very

few methods providing theoretical guarantees. We therefore aims to: (1) characterize the

distributional property of the recovered tensor components, (2) propose a reliable risk

assessment method for the recovered components through the building of confidence intervals

and (3) demonstrate that the inclusion of side information in the tensor completion model

leads to shorter confidence intervals compared to those obtained from stand alone tensor

completion methods.

In Chapter  3 the methodology for COSTCO is formulated for an arbitrary rank, sparse

tensor and matrix. In this chapter, we focus on the rank one 3-way tensor case with covariate

matrices coupled alongside all three modes of the tensor (see Figure  4.1 ). Although this work

involves a much simplified tensor structure than that provided in Chapter  3 , to our knowledge

this is the first work that aims to characterize the distribution and uncertainty quantification

88



for tensor factors recovered using a tensor completion method which incorporates covariate

information.

The rest of the chapter is organized as follows. In Section  4.1 we revisit the model and the

optimization problem of COSTCO and present it in the special case of the rank one non-sparse

tensor with matrices coupled along all three modes of the tensor. Section  4.2 presents the

main theoretical results. Section  4.3 contains a series of simulation studies. All proof details

are provided in Section  4.4 .

A. Incomplete tensor B. Coupled Incomplete tensor

Figure 4.1. A. Order-3 (user × ad × device) tensor with missing entries;
B. Order-3 tensor with missing entries coupled with matrices of ad, user and
device covariates Ma, Mb, Mc respectively. The red cells represent missing
entries; grey and white cells represent non-zero entries.

4.1 Methodology

In this section we revisit the non-convex optimization method for parameter estimation in

COSTCO for the case of the rank one non-sparse tensor with all three modes coupled to covariate

matrices. For ease of notation we also assume that the tensor and matrix components are of

equal dimension.
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4.1.1 Model and Algorithm

Let T ∈ Rn×n×n and Ma ∈ Rn×n, Mb ∈ Rn×n, Mc ∈ Rn×n be the observed third-order

tensor and covariate matrices corresponding to the feature information along the three modes

of the tensor T . Let Ω be the subset of indexes of the tensor T for which entries are not

missing. Throughout this chapter, we shall let

δi,j,k := I{(i, j, k) ∈ Ω}, for 1 ≤ i, j, k ≤ n.

We assume a noisy observation model, where the observed tensor and matrices are noisy

versions of their true counterparts. That is,

PΩ(T ) = PΩ(T ∗ + ET ); Ma = M∗
a + EMa; Mb = M∗

b + EMb; Mc = M∗
c + EMc, (4.1)

where ET , EMa, EMb and EMc are the error tensor and the error matrices respectively; T ∗,

M∗
a, M∗

b and M∗
c are the true tensor and the true matrices, which are assumed to have each

a rank one CP decomposition structure [ 29 ] represented as,

T ∗ = λ∗a∗ ⊗ b∗ ⊗ c∗; M∗
a = ω∗

aa∗ ⊗ v∗
a (4.2)

M∗
b = ω∗

bb∗ ⊗ v∗
b ; M∗

c = ω∗
cc∗ ⊗ v∗

c , (4.3)

where λ∗, ω∗
a, ω

∗
b and ω∗

c ,∈ R+, and a∗ ∈ Rn,b∗ ∈ Rn, c∗ ∈ Rn,v∗
a ∈ Rn,v∗

b ∈ Rn and

v∗
c ∈ Rn with ‖a∗‖2 = ‖b∗‖2 = ‖c∗‖2 = ‖v∗

a‖2 = ‖v∗
b‖2 = ‖v∗

c‖2 = 1.

Given a rank one tensor T with missing entries and covariate matrices Ma, Mb and Mc

COSTCO recovers the true tensor T ∗ and its latent components using the following model

formulation.

min
a,b,c,va,vb,vc

{
‖PΩ

(
T )− PΩ

(
λa ⊗ b⊗ c

)
‖2
F + ‖Ma − ωaa ⊗ va‖2

F

}
+

{
‖Mb − ωbb⊗ vb‖2

F + ‖Mc − ωcc⊗ vc‖

}
F .

subject to ‖a‖2 = ‖b‖2 = ‖c‖2 = ‖va‖2 = ‖vb‖2 = ‖vc‖2 = 1. (4.4)
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As shown in Chapter  3 , the problem in (  4.4 ) is a non-convex optimization when considering

all parameters at once. However the objective function is convex in each parameter, given

the other parameters are kept fixed.

The algorithm COSTCO is an alternative minimization procedure, which at each step fixes

all but one of the tensor components to be estimated. In its general form, COSTCO enforces

sparcity in the model via a truncation step. However, because in this chapter we only focus on

the dense case, we present the COSTCO algorithm without that truncation step in Algorithm

 2 . We also adjust the Algorithm  1 to reflect the fact that all three modes of the tensor are

coupled instead of one mode as presented in Chapter  3 .

Algorithm 2 COSTCO: Covariate-assisted Tensor Completion (No truncation)
1: Input: Observed tensor PΩ(T ) ∈ Rn×n×n, observed matrix Ma ∈ Rn×nva , Mb ∈ Rn×nvb ,

Mc ∈ Rn×nvc maximal number of iterations τ , tolerance tol.
2: Initialize λ, (a,b, c), (ωa, ωb, ωc), (va,vb,vc).
3: While t ≤ τ and

(
‖aold−a‖2

‖aold‖2
+ ‖bold−b‖2

‖bold‖2
+ ‖cold−c‖2

‖cold‖2

)
≥ tol,

4: aold ← a, bold ← b, cold ← c, (va)old ← va, (vb)old ← vb, (vc)old ← vc
5: a← λPΩ(T )(I,b,c)+ωaMava

λ2PΩ(I,b2,c2)+ω2
a

, a← a/‖a‖2

6: b← λPΩ(T )(a,I,c)+ωbMbvb

λ2PΩ(a2,I,c2)+ω2
b

, b← b/‖b‖2

7: c← λPΩ(T )(a,b,I)+ωcMcvc

λ2PΩ(a2,b2,I)+ω2
a

, c← c/‖c‖2

8: va ←M>
a a, vb ←M>

b b, vc ←M>
c c

9: λ← PΩ(T )(a,b,c)
PΩ(a2,b2,c2) , ωa ← ‖va‖2, ωb ← ‖vb‖2, ωc ← ‖vc‖2

10: va ← va/‖va‖2, vb ← vb/‖vb‖2, vc ← vc/‖vc‖2
11: End While

Initialization: In Chapter  3 we argued that there could be multiple local optima due

to the non-convexity of the optimization problem and propose a procedure to initialize the

tensor and matrix components. The procedure uses SVD decomposition as the initialization

method for the shared tensor components and the robust tensor power method proposed in

Anandkumar, Ge, Hsu, et al. [ 57 ] for the non-shared tensor components. Since we assume

in this chapter that all three modes of the tensor are coupled to a covariate matrix, we

apply the SVD initialization on all tensor and matrix components. This new initialization

procedure forces us to redefine the formula for updating the tensor tensor weight λ. In fact,

in Algorithm  1 , λ was defined as the 2-norm of the un-normalized and non-coupled tensor
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component b. It is worth noting that the norm of the coupled component would not only

contain the tensor weight but also the matrix weight, therefore making it an inadequate

estimate for the tensor weight. Since we now focus on the case in which all three modes of

the tensor are coupled, we redefine the update of λ to the formula provided on line 9 of the

Algorithm  2 . This new update method produces an equivalent error bound for λ compared

to that obtained when defining λ as the 2-norm of the un-normalized non-coupled tensor

component.

Figure 4.2. Illustration of COSTCO showing recovery procedure for missing
entries through joint decomposition of a rank 1 tensor and rank 1 matrices; red
cells represent missing entries. The tensor and matrices Ma, Mb and Mc are
coupled along mode 1, mode 2 and mode 3 respectively. The components a, b
and c are shared by the tensor and matrices Ma, Mb and Mc decomposition
respectively.

Figure  4.2 illustrates COSTCO with a rank one decomposition and when all three modes

of the tensor are coupled each to a covariate matrix. It reveals how COSTCO, leverages the

additional latent information coming from the matrices of covariates on the shared modes. In
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the general rank and sparse case discussed in Chapter  3 , a tuning procedure with BIC-type

criterion is employed in order to estimate the rank and sparsity parameters required in the

initialization of the algorithm. However, since we focus on the non-sparse and rank one case,

there is no more need for such tuning procedures in Algorithm  2 .

4.2 Theoretical Analysis

In this section, we present the distributional theory for the recovered estimates of the

tensor factors using COSTCO. We also demonstrate how to conduct data-driven uncertainty

quantification for the affordmentioned estimates through the construction of confidence

intervals. We start with presenting a set of assumptions required for the main theoretical

results.

4.2.1 Assumptions

The theoretical analysis is built on the following assumptions:

.

Assumption 1 (Tensor and matrix structure):

Assume T ∗, M∗
a, M∗

b , M∗
c are rank one tensors and matrices respectively coupled along the

modes of the tensor and the entries of their decomposed components respect the µ-mass

condition,

max{‖a∗‖∞, ‖b∗‖∞, ‖c∗‖∞, ‖v∗
a‖∞, ‖v∗

b‖∞, ‖v∗
c‖∞} ≤

µ√
n
,

where µ is a fixed constant.

Assumption 1 here is a special case of Assumption 1 from Chapter  3 . Notice, the fact

that the incoherence assumption, which was necessary to guarantee soft orthogonality of the

tensor and matrix factors is no longer required since we are working on the special case of

the rank one tensor and matrices. The µ-mass condition is still required for this special case

as there is still a need to ensure that the mass of the tensor and the matrices are evenly

distributed and not centered around just a couple of entries.

.
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Assumption 2: (Tensor and matrix noise)

Assume {Ei,j,k}1≤i,j,k≤n, {(EMa)i,l}1≤i,l≤n

{(EMb)j,l}1≤j,l≤n, {(Ec)k,l}1≤k,l≤n are independent sub-Gaussian random variables satisfying:

E[Ei,j,k] = 0, V ar(Ei,j,k) = (σ2
T )i,j,k; E[(EMa)i,l] = 0, V ar((EMa)i,l) = (σ2

Ma)i,l;

E[(EMb)j,l] = 0, V ar((EMb)j,l) = (σ2
Mb)j,l; E[(EMc)k,l] = 0, V ar((EMc)k,l) = (σ2

Mc)k,l.

Denote the maximum and minimum variance for the noise tensor and matrices as follows:

σ2
max := max

1≤i,j,k≤n
(σ2

T )i,j,k and σ2
min := min

1≤i,j,k≤n
σ2

i,j,k, also let

(σ2
Mu)max := max

1≤i,l≤n
(σ2

Mu)i,l and (σ2
Mu)min := min

1≤i,l≤n
(σ2

Mu)i,l for u ∈ {a,b, c}.

Then we also assume that σ2
max/σ

2
min = O(1) and (σ2

Mu)max/(σ2
Mu)min = O(1),

for u ∈ {a,b, c}.

Assumption 2 provides specification for the noise tensor and noise matrices. The key

elements for this assumption are the independence condition coupled with the possibility

for non-equal variance. In fact, the noise tensor and noise matrix entries are required to be

independent not only to each other but also to the true tensor entries. This specification is

important as it will be exploited later for decoupling the true tensor components from the

associated noise tensor and matrix noise entries.

Another important feature of Assumption 2 is the the fact that it allows for heteroskedas-

ticty in both the noise tensor and matrices. That is, the variance of each entry in the noise

tensor and noise matrices are allowed to be different. This represents a key advantage for

the theory derived in this chapter since, in practice, data often exhibit non equal variance

properties. Lastly the assumption that the largest variance and smallest variance be of the

same order is added to ease the presentation of the theoretical results. More general results

can be obtained without this specification however quite convoluted in form.

.

Assumption 3: (Reveal probability)
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We assume that each tensor entry (i, j, k) for all i ∈ [n], j ∈ [n] and k ∈ [n] is observed with

independent and equal probability p which satisfies,

p ≥ Cµ3λ∗2 log2(d)
(λ∗ + min

u∈{a,b,c}
σ∗
Mu)2d3/2 , (4.5)

where C is a constant.

.

Assumptions 4: (Initialization error)

Define the initialization errors for the tensor components as ε0T
:= max

r∈[R]
{‖a0 − a∗‖2, ‖b0 −

b∗‖2, ‖c0− c∗‖2,
|λ0−λ∗|
λ∗ } and let the initialization error for the matrix components be defined

as ε0M
:= max

u∈{a,b,c}
{‖v0

u − v∗
u‖2,

|ω0
u−ω∗

u|
ω∗

u
}. Assume that

ε0 := max{ε0T
, ε0M
} = O(1). (4.6)

Assumptions 3 and 4 are special cases of the corresponding assumptions provided in

Chapter  3 with the rank of the tensor and matrix being set to one.

.

Assumption 5 (Signal-to-noise condition)

We assume that tensor and matrices weights satisfy the following condition,

σmax �
λ∗2
minp+ ω∗2

min

λ∗
maxp

√
pn2 log2 (n)

and (σMu)max �
λ∗2
minp+ ω∗2

min

ω∗
max

√
n log (n)

with u ∈ {a,b, c},

(4.7)

where � is used to represent asymptotic inequality.

Assumption 5 is a special case of the signal to noise ratio condition which general form

was introduced in Chapter  3 . In the special case in which the noise of the matrix and tensor

are assumed to be sub-Gaussian, as specified in Assumption 2. The signal-to-noise condition

takes the form presented above in Assumption 5. This derivation is obtained as a result

of concentration inequalities of sub-Gaussian random variables coupled with the fact that
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the spectral norm sub-Gaussian tensor scales as O(σkn log(k)) where k is the number of

dimensions of the tensor [  65 ].

4.2.2 Distributional Guarantee of Tensor Factors

In this section we present the results of the distributional analysis for the tensor factors

recovered through Algorithm  2 . We present the results for the factor estimate using the

first component a∗ as reference since the distributional guarantees for the other two factors

b∗ and c∗ are identical. Also for conciseness, we introduce the following additional vectors

and matrices notations. Let A ∈ Rn2 be a vector and Q∗
i ∈ Rn2×n2 and (Q∗

M)i ∈ Rn×n be

diagonal matrices with diagonal elements defined respectively as follows,

A∗ := vec(b∗ ⊗ c∗),

(Q∗
i )(j,k),(j,k) := (σ∗2

T )i,j,k, for 1 ≤ j, k ≤ n; ((Q∗
M)i)l,l := (σ∗2

M)i,l, for 1 ≤ l ≤ n,

where we use (j, k) to denote (j− 1)n+ k.

Theorem 4.2.1 (Distributional guarantees for tensor factor estimates under Gaussian noise).

Provided Assumptions 1, 2, 3, 4 and 5 are met and given that {ETi,j,k}1<i,j,k<n, {EMai,l}1<i,l<n,

{EMbj,l}1<j,l<n and {EMck,l
}1<k,l<n are Gaussian, after running the require number of iterations

mentioned in Theorem  3.4.1 , with high probability the following holds,

ui − u∗
i = Y +W,

where u ∈ {a,b, c}, ‖W‖∞ = o
(
λ∗pσTmax +ω∗(σM )max

λ∗2p+ω∗2

)
, Yi ∼ N(0,Σi) and

Σi = λ∗2pA∗>Q∗
i A∗ + ω∗2v∗>(Q∗

M)iv∗

(λ∗2p+ ω∗2)2 for 1 ≤ i ≤ n. (4.8)

Theorem  4.2.1 reveals that the estimation error of the recovered tensor factor a can be

decomposed into a Gaussian component Y and a residual term W with the residual term

being dominated by the Gaussian term and hence can be neglected. Theorem  4.2.1 therefore
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reveals that the estimates of the tensor components a, b and c are nearly un-biased estimates

of the true tensor factors a∗, b∗ and c∗, with estimation errors being approximately Gaussian.

Moreover, it is worth noting that the variance for the tensor factor errors derived in ( 4.8 ) is

always smaller than that derived in Cai, Poor, and Chen [  47 ] when the noise of the matrix is

smaller or equivalent to that of the tensor noise. This property becomes more apparent in

the case where the reveal probability p gets smaller. We see in Chapter  4.2.3 and later in

the simulation results that this translate into tighter confidence intervals for tensor factors

compared to those derived through the use of a standalone tensor completion methods in the

high missing data regime.

Next, in Theorem  4.2.2 we show that the distributional properties presented in Theorem

 4.2.1 can be extended to accommodate a broader family of noise beyond Gaussian noise.

Theorem 4.2.2 (Distributional guarantees for tensor factor estimates under general noise).

Assume that {ETi,j,k}1<i,j,k<n, {EMai,l}1<i,l<n, {EMbj,l}1<j,l<n and {EMck,l
}1<k,l<n are not nec-

essarily Gaussian but still satisfy Assumption 2, then the statement in Theorem  4.2.1 still

holds, with the exception that Y is no longer necessarily Gaussian but instead satisfies the

following condition

|P{Yi ∈ A} − P{gi ∈ A}| ≤ o(1), (4.9)

for any convex set A ⊂ R, where gi ∼ N(0,Σ∗
i ) with variance Σ∗

i defined as in ( 4.8 ).

4.2.3 Confidence Interval for Tensor Factors

The distributional guarantees highlighted in Theorem  4.2.1 and  4.2.2 , gives us the tools to

tackle the problem of uncertainty quantification for the tensor factors. To do that, it remains

to be shown how to compute the variances Σi in since its expression in ( 4.8 ) depends on the

true tensor and associated matrices components and weights a∗, b∗, c∗, v∗, λ∗ and ω∗ as well

as the true variance (σ2
T )i,j,k and (σ2

M)i,l of the noise tensor and noise matrices respectively

which in practice are all unknown. We show that despite the lack of knowledge of these

parameters we can still use a data driven approach to reliably estimate them using a simple

plug-in procedure.

Variance Estimation: Although we do not have the true parameters mentioned above, we
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still get reliable estimates of the variance parameter Σi. The overall construction relies on

a plug-in estimation technique. Rather than trying to estimate the noise tensor and noise

matrix entry variances (σ2
T )i,j,k and (σ2

M )i,j,k, we rely on estimating the noise tensor and noise

matrix entries directly. These are then plugged into the formula of the Σ∗
i provided in ( 4.8 )

to produce an estimate of the factor error variance which we refer to as Σ̂. The following

steps are taken for computing the variance of the estimated tensor factor errors.

1. Estimate the noise tensor and noise matrices {ETi,j,k}1<i,j,k<n, {EMai,l}1<i,l<n,

{EMbj,l}1<j,l<n and {EMck,l
}1<k,l<n as:

ÊTi,j,k = 1
p

(T obsi,j,k − Ti,j,k) with (i, j, k) ∈ Ω; (ÊMa)i,l = (Mobs
a )i,j,k − (Ma)i,j,k,

(ÊMb)i,l = (Mobs
b )i,j,k − (Mb)i,j,k; (ÊMc)i,l = (Mobs

c )i,j,k − (Mc)i,j,k. (4.10)

We then construct the estimates diagonal matrices Q∗ and Q∗
M as :

(Q̂i)(j,k),(j,k) := Ê2
i,j,kI{(i,j,k)∈Ω}, ((Q̂Ma)i)l,l := (ÊMa)2

i,l,

((Q̂Mb)i)l,l := (ÊMb)2
j,l (Q̂Mc)i)l,l := (ÊMc)2

k,l,

where we use (j, k) to denote (j− 1)n+ k.

2. We estimate A∗, using the plug-in estimator: A = b⊗ c, where b and c are estimated

using COSTCO. Similarly we use v, λ and ω to be the estimates of v∗ λ∗ and ω∗ obtained

from Algorithm  2 respectively.

3. We then use the above estimators to substitute into expression ( 4.8 ) to get an estimator

for Σ∗
i ,

Σ̂i = λ2pA>Q̂iA + ω2v>(Q̂M)iv
(λ2p+ ω2)2 for 1 ≤ i ≤ n. (4.11)

Confidence Interval: Given the important parameters plug-in estimates derived above we

construct an entry wise confidence interval for the tensor factors which serves as a procedure

for uncertainty quantification for the unknown tensor.
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For each 1 ≤ i, j, k ≤ n, we construct a (1− α)-confidence interval for the ith entry of the

tensor component u∗ as:

CI1−α
u∗

i
:=
[
ui ±

√
ΣiΦ̇−1(1− α/2)

]
, (4.12)

where u ∈ {a,b, c}, Φ−1 is the inverse CDF of a standard Gaussian and Σi is as constructed

in ( 4.11 ). Next we prove the validity of the constructed confidence intervals in Theorem  4.2.3 .

Theorem 4.2.3 (Validity of tensor factors confidence interval). Assuming all assumptions

required for Theorem  4.2.2 holds. For any 0 < α < 1 the confidence interval constructed in

( 4.12 ) obeys:

P{u∗
i ∈ CI1−α

u∗
i
} = 1− α + o(1), ∀1 ≤ i ≤ n and u ∈ {a,b, c}.

Theorem  4.2.3 demonstrates the validity of the uncertainty quantification procedure we

proposed. In the following paragraph we highlight the properties of the proposed procedure

for constructing the confidence interval for tensor factors.

i. Entrywise uncertainty quantification: Our results enables valid uncertainty quantification

for each entry of the tensor factor. This allows us to assess the risk of the estimation

process at a factor entry level. To the best of our knowledge, this is the first work that

provides uncertainty quantification at an entry level for tensor completion in the presence

of covariate information.

ii. Heteroscedasticity compliance: The proposed procedure adapts to heterogeneous and

unknown noise distribution. The confidence intervals do not require knowledge of the

tensor or covariate matrices noise distribution and hence is a distributal-free procedure

which is highly desirable in practice.

iii. Tighter Confidence intervals: As mentioned in the discussion of Theorem  4.2.1 , the

variance obtained in ( 4.8 ) is smaller than that produced using a standalone tensor

completion method which translates to tighter confidence intervals as illustrated in

Figure  4.5 . Combined with the improvement in factors recovery accuracy proven in
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Chapter  3 , tighter confidence intervals for the factor entries means overall a more

trustworthy and useful uncertainty quantification for the unknown tensor.

4.3 Simulations

In each simulation, we generate a third-order rank one tensor T ∗ ∈ R×50×50×50 and rank

one matrices M∗
a ∈ R50×50, M∗

b ∈ R50×50, M∗
c ∈ R50×50. We assume that the matrices M∗

a, M∗
b

and M∗
c share components across the first, second and third mode of the tensor respectively

just as is the case in the theory section. In order to form tensor T ∗ and the matrices, we draw

each entry of a∗ ∈ R50×1,b∗ ∈ R50×1, c∗ ∈ R50×1 and v∗
a ∈ R50×1,v∗

b ∈ R50×1,v∗
c ∈ R50×1 from

the iid standard normal distribution. We define λ∗ = ‖a∗ × b∗ × c∗‖2 and ω∗
a = ‖a∗ × v∗

a‖2,

same goes for ω∗
b and ω∗

c . We normalize each of the vectors of a∗, b∗ ,c∗ ,v∗
a, v∗

b , v∗
c to

unit norm. The tensor T ∗ and matrices are then formed as T ∗ = λ∗a∗ ⊗ b∗ ⊗ c∗ and

M∗
a = ω∗a∗

1 ⊗ v∗
a, same goes for M∗

b and M∗
c . We then add noise to the tensor and matrices

using the following setup T = T ∗ + σTNT and M = M∗ + σMNM , where NT and NM are a

tensor and a matrix of the same size as T ∗ and M∗ respectively, whose entries are generated

from the standard normal distribution. We simulate the uniformly missing at random pattern

in the tensor data by generating entries of the reveal tensor Ω ∈ R50×50×50 from the binomial

distribution with reveal probability p. The noisy tensor PΩ(T ) with missing data is finally

obtained as PΩ(T ) = T ∗Ω, where ∗ is the element-wise multiplication.

4.3.1 Empirical Distribution

Recall that in Chapter  4.2.2 , we characterized the distribution of the tensor components

error as being Gaussian with variance parameter Σ∗. In this section, we investigate through

simulation experiments whether this claim holds when the variance parameter Σ∗ is replaced

with the estimate Σ̂ constructed in (  4.11 ).

Define the normalized estimation error for each tensor component entry as follows

Rai := a∗
i − ai

Σ̂a(i)
; Rbj :=

b∗
j − bi

Σ̂b(i)
; Rck := c∗

k − ci

Σ̂c(i)
for 1 ≤ i, j, k ≤ n,
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where Σ̂u(i) with u ∈ {a,b, c} are constructed using the procedure proposed in ( 4.11 ).

Figure  4.3 represents the Q-Q plots of Rai, Rbj and Rck where i, j, k ∈ {1, 25, 50} plotted

against that of a standard Gaussian random variable (red line). Data for the figure were

obtained over 100 trials of estimating the tensor and matrix components using COSTCO

followed by computing Σ̂ using ( 4.11 ). The reveal probability in this experiment was set

to p = 0.1 and the parameter for the tensor and matrix noise were σT = σM = 0.01. We

notice in Figure  4.3 that as demonstrated in the theory, the empirical distributions of the

normalized estimation error for tensor factor entries are all well approximated by a standard

Gaussian distribution.

a. Ra1 b. Rb1 c. Rc1

d. Ra25 e. Rb25 f. Rc25

e. Ra50 j. Rb50 k. Rc50

Figure 4.3. Q-Q (quantile-quantile) plots of normalized factor entry error
with p = 0.1 and σT = σM = 0.01.
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4.3.2 Empirical Coverage Rate of Confidence Intervals

We have shown in Section  4.2 that the proposed construction of confidence intervals

for tensor factor entries are valid and we have also discussed the fact that under certain

condition, the variance for the tensor factors the estimation error Σ∗ using COSTCO is smaller

than that achieved using a standalone tensor completion method. We explore these properties

through a series of experiments where we compared the performance of COSTCO to that of a

standalone tensor completion method. We start by exploring the effects of tensor noise and

the reveal probability p on the coverage rate of the constructed confidence intervals.

We let CDi denote the empirical coverage rate for the 95% confidence interval for ai

over 100 independent trials. That is, we compute the percentage of time the estimate Rai

fall in the interval [ − 1.96, 1.96]. We use the notation Mean(CD) and Sd(CD) to refer

to the mean and standard deviation of the coverage rate over all 100 replicates and over

1 ≤ i ≤ 50. Table  4.1 and Table  4.2 provide a side by side comparison of the coverage

rate of the constructed confidence intervals using COSTCO versus using a standalone tensor

completion method. In the case of COSTCO, both tensor and matrix factors where initialized

using SVD decomposition. For the standalone tensor completion method we use Jain and Oh’s

completion algorithm tenALS [ 24 ] where the RTPM method was used to initialized the tensor

factors (as recommended by the authors). In order to facilitate comparison of the results

from both algorithms, the number of iterations for both algorithms was set to 200 or iteration

stopped when the tolerance condition from Algorithm  2 tol ≤ 10−5 was reached. In Table

 4.1 the reveal probability was set to 0.1 and σM = 0.01, while the tensor noise parameter σT
was varied between {0.001, 0.01, 0.1, 1, 2}. Note that for sake of comparison between the two

algorithms we could not set a lower reveal probability as the tenAlS algorithm would fail to

converge when the reveal probability was lower than 0.1 unlike COSTCO.

Table  4.1 shows that the empirical coverage rate for confidence interval constructed using

COSTCO are mostly around 95% however, the coverage obtained using tenALS underestimates

the true coverage rate as the tensor noise level increases. These results highlight again the

need for including side information in the process of the tensor completion since the standalone

tensor completion method are very sensitive to noise level when the reveal probability is
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very low as is the case in this experiment. We then investigated the effect of the reveal

Table 4.1. Empirical coverage rate for 95% confidence interval of COSTCO
versus tenALS with varying tensor noise parameter σ.

COSTCO tenALS
Tensor Noise level σ Mean(CD) Sd(CD) Mean(CD) Sd(CD)

0.001 0.9576 0.0194 0.9370 0.0596
0.01 0.9542 0.0209 0.9310 0.0654
0.1 0.9558 0.0222 0.9370 0.0788
1 0.9538 0.0239 0.9350 0.0797
2 0.9440 0.0218 0.8980 0.0953

probability p on the coverage rate in a second experiment. In Table  4.2 the noise parameter

for both tensor and matrix were set to σT = σM = 0.01 and the reveal probability p was

varied from {0.01, 0.05, 0.1, 0.2} which corresponds to {99, 95, 90, 80, 50} percent missing data

respectively. Again we notice that the coverage rate for COSTCO are all close to the true 95%

making it robust to the missing probability level. Yet the coverage rate for the standalone

tensor completion method tenALS is largely affected by the reveal probability. The results

in Table  4.2 highlights the benefit of including side information in the model of the tensor

completion problem. Indeed as the reveal probability decreases estimates obtained using

COSTCO remain reliable as proven in Chapter  3 and therefore provide a better estimate for

the estimation error variance used in the construction of the confidence intervals. Whereas

standalone tensor completion method do not have such an advantage, resulting in poor

estimation results leading to very bias variance estimates and poor coverage rates.

Table 4.2. Empirical coverage rate for 95% confidence interval of COSTCO
versus tenALS with varying tensor reveal probabilities p.

COSTCO tenALS
Tensor reveal probability p Mean(CD) Sd(CD) Mean(CD) Sd(CD)

0.5 0.9520 0.0200 0.9560 0.0459
0.2 0.9562 0.0230 0.9520 0.0474
0.1 0.9572 0.0193 0.9380 0.0540
0.05 0.9572 0.0205 0.8310 0.0920
0.01 0.9588 0.0172 0.7520 0.1924
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4.3.3 Tightness of Confidence Intervals

In Chapter  4.2.2 we discussed the fact that provided the noise of the matrix does not

dominate that of the tensor the variance Σ∗ is smaller than what would be obtained using a

standalone tensor completion method. Leading to relatively tighter confidence interval for

the recovered tensor factor estimates. In the series of experiments to follow, we investigate

the effect of the tensor noise and tensor reveal probability on the length of the confidence

intervals obtained using the construction proposed in Subsection  4.2.3 for COSTCO and the

confidence interval obtained by using a standalone tensor completion method tenALS. The

set up for the experiments which results are presented in Figure  4.4 and Figure  4.5 are similar

to the set up for those provided in Table  4.1 and Table  4.2 respectively.

Figure  4.4 shows the effects of tensor noise on the length of the confidence interval for

Figure 4.4. Width of constructed confidence interval with varying tensor
noise level for COSTCO versus tenALS

the recovered tensor factor entries. We notice that for both algorithms, the width of the

confidence interval increases with an increasing noise tensor variance. However, the rate of

increase of the confidence interval is drastically different between COSTCO and tenALS with

the later exhibiting a must faster increase in the width of the confidence interval. Moreover,

we notice that at each value of the tensor noise, the confidence interval width for COSTCO is

much smaller than that of the standalone tensor completion method. This phenomenon is
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due to the addition of the matrices information in the the tensor completion problem. Since

the matrix noise was set to be smaller or equal to that of the tensor in this experiment, the

overall variance estimate in ( 4.8 ) which can be seen as a weighted average between matrix and

tensor noise becomes smaller than the variance obtained through a standalone completion

method.

Figure  4.5 showcases the relationship between the reveal probability p and the width of the

Figure 4.5. Width of constructed confidence interval with varying tensor
reveal probability for COSTCO versus tenALS

confidence interval for the recovered tensor factors. Notice that the trends in the curves for

the two algorithms are very different, width the curve for COSTCO exhibiting a positive slope

while the curve for tenALS shows a negative slope. Although downward sloping, the width

of the confidence intervals for tenALS is always above that of COSTCO for every value of p.

Both curves then converge to an asymptote with the asymptote of the red line being greater

than that of the blue line. This shows that the width of the confidence interval using COSTCO

when the variance of the noise tensor and noise matrix a similar leads to tighter confidence

intervals than that obtained from a standalone completion method.
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4.4 Proof of Main Theorem

In this section we provide the proofs of the main theoretical results presented in Theorems

 4.2.1 ,  4.2.2 and  4.2.3 . For simplicity, in the following proofs we drop the subscript which

serves to differentiate the three covariate matrices Ma, Mb and Mc and only refer to each as

M. Hence EMa and nva become EM and nv respectively. We also consider the case where all

tensor and matrices modes have the same dimensions n that is n = n = n = nv = n. Recall

the definition of du from Chapter  3 ,

du =: u− u∗, and ‖du‖2 = ‖u− u∗‖2, (4.13)

and

∆λ := |λ− λ
∗

λ∗ | and ∆ω := |ω − ω
∗

ω
|, (4.14)

where u could be any of a,b, c,v.

4.4.1 Proof of Theorem  4.2.1 : Gaussian Noise

The proof of Theorem  4.2.1 consists in showing that the estimate of tensor component

recovered at the end of Algorithm  2 can we written as a sum of a Gaussian random variable

and a vanishing residual. We provide the proof for the tensor component a since the proof

for the two other components b and c follow a similar analysis.

We start by recalling the expression for the update for a in Algorithm  2 .

Tensor Components: a = λPΩ(T )(I,b,c)+ωaMava

λ2PΩ(I,b2,c2)+ω2
a

. (4.15)

Note that the horizontal double lines in the expressions above indicates element-wise fraction

and the squares in the denominator represent the element-wise squaring. The expression of a

in ( 4.15 ) can be decomposed in the following way.

a = D−1
(
unfold(PΩ(λET ))A + ωEMv

)
+ D−1

(
unfold(PΩ(λT ∗))A + ωM∗v

)
(4.16)
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where D : is defind as D := (λ2A>A + ω2v>v); that is D is a n× n diagonal matrix with

diagonal elements Dii = λ2∑
j,k
δi,j,kb2(j)c2(k) + ω2 and A is as defined in ( 4.16 ).

Let a be the estimate obtained after the required number of iterations recommended in

Theorem  3.4.1 for estimating the tensor factors. We can express the error between the

estimate a and the true component a∗ as,

a − a∗ = D∗−1
(
unfold(PΩ(λ∗ET ))A∗ + ω∗EMv∗

)
︸ ︷︷ ︸

:=Y

+
3∑

i=1
Wi, (4.17)

with Wi taking the following forms,

W2 = unfold(PΩ(ET ))
(
λ∗D∗−1A∗ − λD−1A

)
(4.18)

W3 = EM
(
ω∗D∗−1v∗ − ωD−1v

)
(4.19)

W1 = a∗ −D−1
(
unfold(PΩ(λT ∗))A + ωM∗v

)
, (4.20)

where for the tensor T ∈ Rn×n×n, the notation unfold(T ) represent a Rn×n2 matrix obtained

from the mode 1 matricization of tensor T as defined in Kolda and Bader [  29 ]. Given

the decomposition in ( 4.17 ), proving Theorem  4.2.1 then boils down to proving that Y is

approximately Gaussian and that
3∑

i=1
Wi can be bounded by a term which is dominated by

Y. We achieve that by stating and proving the following lemmas:

• Lemma  14 which reveals that under Gaussian noise, each entry of Y is approximately

a Gaussian random variable.

• Lemmas  15 - 17 which deliver upper bounds for the l∞ norm of the residual quantities

W1, W2 and W3 respectively and show that these quantities are negligible compared to

a typical entry of Y.

Theorems  4.2.1 then follows immediately by combining the results of Lemma  14 - Lemma  17 .

Next we state the key Lemmas mentioned above.
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Lemma 14. Given the assumptions in Theorem  4.2.1 holds, with high probability the ex-

pression Y in ( 4.17 ) can be written as Y = Z + X + W0 such that for any 1 ≤ i ≤ n,

Zi + Xi ∼ N(0,Σ∗
i ) with variance matrix Σ∗

i defined as in ( 4.8 ) and

‖W0‖∞ ≤
λσmax

λ∗2p+ ω∗2

(
µ2 log (n)

n

)
. (4.21)

Lemma  14 shows that Y is approximately Gaussian where the Gaussian approximation

residual is characterized by W0. The proof of the lemma involves bounding the infinite norm

of W0 and showing that the variance of Zi + Xi is well approximated by Σ∗
i . This is done by

using various concentration inequality results as well as applying properties of sub-Gaussian

and sub-exponential random variables. Next we state the three other lemmas used to bound

the expressions of W1,W2 and W3.

Lemma 15. Given the assumptions of Theorem  4.2.1 hold we have,

‖W2‖∞ ≤
λ∗σmax‖d‖2

√
np log (n)

λ∗2p+ ω∗2 , (4.22)

with probability 1− n−9.

Lemma 16. Given the assumptions of Theorem  4.2.1 hold we have,

‖W3‖∞ ≤
ω∗(σM)max‖dv‖2

√
n log (n)

λ∗2p+ ω∗2 , (4.23)

with probability 1− n−9

Lemma 17. Given the assumptions of Theorem  4.2.1 after the number of interactions

recommended for Algorithm  2 in Theorem  3.4.1 , we have with probability 1− n−9,

‖W1‖ ≤
4λ∗2p‖d‖2

(
‖d‖2 +

√
µ3 log (n)
pn1.5

)
+ ω∗2(1

2‖d‖
2
2 + ∆ω)

λ∗2p+ ω∗2 . (4.24)

Notice that given the condition of p in Assumption 3, the bounds in ( 4.22 ), ( 4.23 ) and

( 4.24 ) are dominated by that of ( 4.21 ). Using this knowledge and recalling the fact that
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a − a∗ := Y +
4∑

i=1
Wi completes the proof of the theorem. �

4.4.2 Proof of Theorem  4.2.2 : General Noise

Theorem  4.2.2 extends the normality result obtained in Theorem  4.2.1 to the case with a

tensor and matrices with non-Gaussian noise. Given Theorem  4.2.1 the proof of Theorem

 4.2.2 consists in applying the results of Lemma  18 then showing that the bound derived in

( 4.25 ) has a rate of o(1).

Lemma 18. Given the assumptions in Theorem  4.2.2 , with probability at least 1 − n−9

Lemma  14 still holds excepts that Y obeys,

|P{Yi ∈ A} − P{gi ∈ A}| ≤
25/2
√

π

(√
p(σ3

T )maxµ2/n

(σ3
T )min

+ (σ3
M)maxµ/

√
n

(σ3
M)min

)
, (4.25)

for any convex set A ⊂ Rd, where gi ∼ N(0,Σ∗
i ) where the variance Σ∗

i defined as in ( 4.8 ).

Notice that when (σT )max � (σT )min and (σM)max � (σM)min right side of the inequality

in ( 4.25 ) can be simplified to reveal a rate equal to o(n−1). The proof of Lemma  18 is provided

in section  4.5 . This result shows that the estimation error for tensor factor is approximately

Gaussian even when the noise distribution is not necessarily Gaussian which completes the

proof of the theorem.

4.4.3 Proof of Theorem  4.2.3 : Confidence Intervals for Tensor Factors

Given the results in Theorem  4.2.2 and using the continuous mapping theorem, it is true

that,

sup
τ∈R
|P{a − a∗ ≤ τ

√
Σ∗

i } − Φ(τ)| = o(1). (4.26)
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The proof of the theorem consists in showing that equation ( 4.26 ) still holds even after

substituting Σ∗
i with the plug-in estimate Σi proposed in (  4.11 ).

To do that, notice that the standardized error for each entry of a can be written as follows,

ai − a∗
i√

Σi
= ai − a∗

i√
Σ∗

i

+ ai − a∗
i√

Σi
− ai − a∗

i√
Σ∗

i︸ ︷︷ ︸
:=θi

. (4.27)

We show in Lemma  19 that the residual θi is negligible. More specifically that θi = o(1) with

high probability. Using the decomposition of ai−a∗
i√

Σi
above combined with the union bound

and making use of the property of the CDF of standard normal variables, we get that for

τ ∈ R we have,

P{a − a∗ ≤ τ
√

Σi} − Φ(τ) ≤ P{a − a∗ ≤ (τ + ε)
√

Σ∗
i }+ P{|θi ≥ ε} − Φ(τ)

≤ Φ(τ + ε)− Φ(τ) + o(1) + P{|θi ≥ ε}

≤ ε+ o(1) + P{|θi ≥ ε},

where the second inequality is due to the bound in ( 4.27 ) and the third inequality is due to

the property of the standard normal CDF. Given that the bound on θi proven in Lemma

 19 holds with probability at least 1− n−9, we can define ε above to be equal to the upper

bound of θi. If that is the case and using the union bound we get,

sup
τ∈R
|P{a − a∗ ≤ τ

√
Σi} − Φ(τ)| = o(1).

which completes the proof the of theorem. �

Lemma 19. Given the assumptions of of Theorem  4.2.3 , with probability 1− n−9 we have,

|θi| = o(1). (4.28)
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The bound in Lemma  19 allows us to show that the estimate Σi using the construction and

plug-in estimate proposed in Chapter  4.2.3 is close to the true error variance Σ∗
i . Obtaining

this bound requires showing that the tensor variance estimate used in the construction of the

confidence interval ÊTi,j,k = 1
p
(T obsi,j,k − Ti,j,k) with (i, j, k) ∈ Ω; and

(ÊMa)i,l = (Mobs
a )i,j,k − (Ma)i,j,k, are good enough so that the plug-in estimate Σi is good

approximation of Σ∗
i . Details of the proof of Lemma  19 are left for Chapter  4.5 .

4.5 Additional Results

In this section we provide details of the derivation for the proofs of Lemmas  14 -  19 .

4.5.1 Proof of Lemma  14 

Define {zi,j,k}1≤i,j,k≤n and {yi,l}1≤i,l≤n as follows:

zi,j,k = λ∗Ei,j,kδi,j,kA∗
(jk)D∗−1

ii for 1 ≤ i, j, k ≤ n, (4.29)

xi,l = ω∗EMi,lv
∗
l D∗−1

ii for 1 ≤ i, l ≤ n, (4.30)

where recall the expression(jk) is defined as (jk) := (j− 1)n+ k. Also define QT ∈ Rn2×n2

and QM ∈ Rn×nas :

(Q∗
T (i))(jk)(jk) := σ∗2

i,j,k for 1 ≤ i, j, k ≤ n, (4.31)

(Q∗
M(i))l,l := (σ∗2

M)i,l for 1 ≤ i, l ≤ n, (4.32)

Then we can decompose Y in the following way,

Yi = Zi + Xi =
∑
jk
zi,j,k +

∑
l

xi,l. (4.33)
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Notice the form of the following expected values,

Σ∗
T (i) := E(Z>

i Zi) = λ∗2pD∗−1
ii A∗>(Q∗

T )iA∗D−1
ii , (4.34)

Σ∗
M(i) := E(X>

i Xi) = ω∗2D∗−1
ii v∗>(Q∗

M)iv∗D−1
ii . (4.35)

We define the following two variables S∗
T (i) and S∗

M(i) for 1 ≤ i ≤ n which conditional

of {δi,j,k}1≤i,j,k≤n meets the following property E(S∗
T (i)) = Σ∗

T (i) and E(S∗
M(i)) = Σ∗

M(i)

respectively in the following way,

S∗
T (i) := λ∗2∑

jk
σ2

i,j,kδi,j,kD∗−1
ii A∗>

(jk)(jk)A∗
(jk)(jk)D∗−1

ii (4.36)

S∗
M(i) := ω∗2∑

l

σ2
i,lD∗−1

ii v∗>
l v∗

l D∗−1
ii . (4.37)

It is then easy to see that conditional on {δi,j,k}1≤i,j,k≤n Zi is zero mean Gaussian with variance

parameter S∗
T (i) and Xi is also zero mean Gaussian with variance S∗

M(i) = Σ∗
M(i). We now

need to show that Σ∗
T (i) is a good approximation forS∗

T (i).

Given the expression in ( 4.34 ) we can bound Σ∗
T (i) in the following way pλ

∗2σ∗2
min

D2
ii
≤ Σ∗

T (i) ≤

pλ
∗2σ∗2

max

D2
ii

by using the fact that A∗>A∗ = ∑
jk

b∗2
j c∗2

k = 1 since ‖b∗‖2 = ‖c∗‖2 = 1 and by

applying the results of Lemma  20 . Notice that (ST )(i) is positive hence we can take its square

root. Also since we have shown that Zi is Gaussian with mean zero and variance Σ∗
T (i), it

follows that the variable Zi(S∗−1/2
T )(i)(Σ∗−1/2

T )(i) is also a Gaussian random variable with zero

mean and variance Σ∗
T (i).

For convenience sake, in the rest of the proof of this lemma we use the following simplified

notations: (S∗
T )(i) = S∗

i and (Σ∗−1/2
T )(i) = Σ∗−1/2

i . We now prove that under the high
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probability event of Lemma  14 , Z∗
i and Z∗

i S
∗−1/2
i Σ∗1/2

i are very close. To accomplish that, we

bound their absolute difference as,

|Z∗
i − Z∗

i S
∗−1/2
i Σ∗1/2

i | ≤ |Z∗
i S

∗−1/2
i

(
S∗1/2

i − Σ∗1/2
i

)
|

≤ |Z∗
i ||S

∗−1/2
i ||S∗1/2

i − Σ∗1/2
i |

≤ |Z∗
i ||S

∗−1/2
i || 1

S∗1/2
i + Σ∗1/2

i
|| (Si − Σi) |

≤ |Z∗
i |

(λ∗2p+ ω∗2)2

λ∗2pσ∗2
min + ω∗2σ∗2

min
| (Si − Σi) |,

with probability 1− n−11. Where the third inequality above is obtained using the fact that

for any positive real numbers a and b it holds that |(a− b)| = |(a1/2 − b1/2)(a1/2 + b1/2)|. The

fourth inequality is obtained from the bound |S∗−1/2
i | derived using Lemma  26 . Then using

the bound on on |Z∗
i | and | (Si − Σi) | from Lemma  24 and  25 and applying the union bound

we get that

‖W0‖∞ := max
i
|Z∗

i − Z∗
i S

∗−1/2
i Σ∗1/2

i |

≤ λσmax
λ∗2p+ ω∗2

(
µ2 log (n)

n

)
, (4.38)

with probability 1−n−9, were the last inequality holds for p ≥ µ4 log (n)2

n2 and σmin � σmax.

Hence Zi is well approximated by a Gaussian distribution with mean zero and variance

(Σ∗
T )(i).

Combining this result to the fact that Xi is also Gaussian with mean zero and variance

(Σ∗
M )(i) and defining (Σ∗)(i) := (Σ∗

T )(i)+(Σ∗
M )(i) and the fact that Zi and Xi are independent,

leads to the desired results. That is Y = Z + X + W0 is approximately Gaussian with mean

zero and variance Σ∗. �

113



4.5.2 Proof of Lemma  15 

Before we start the proof of Lemma  15 we visit the notion of the Leave-one-out method

first introduced in [  47 ]. We adapt the method to the case of the coupled tensor and matrices

and use this new version of the method as an essential part in the proof of this lemma.

The method entails decoupling certain slides of the tensor, so that the entries used for

the estimation of a particular tensor entry is independent to the tensor and matrix noise.

Using this method allows us to circumvent the hurdle of using concentration inequalities

when the assumption of independence between the variables are not met. Full detail of the

Leave-one-out method for the couple tensor and matrix is provided in Chapter  4.7.1 . We

refer the reader to that section before proceeding with the rest of the the lemma’s proof.

Given the expression of W2 in ( 4.18 ), we can fix i and decompose each entry of W2 in the

following manner,

W2(i) =e>
i unfold(PΩ(ET ))

(
λ∗D∗−1A∗ − λD−1A

)
= e>

i unfold(PΩ(ET ))(λA− λ∗A∗)D−1︸ ︷︷ ︸
res1

+ e>
i unfold(PΩ(ET ))λ∗A∗(D−1 −D∗−1︸ ︷︷ ︸

res2

).

We proceed with bounding |res1| and |res2| respectively. Since res1 is a scalar it holds that

|res1| = ‖res1‖2 the same goes for res2. Hence we can write,

‖res1‖2 = ‖e>
i unfold(PΩ(ET ))(λA− λ∗A∗)D−1‖2

≤ ‖D−1‖2|e>
i unfold(PΩ(ET ))(λA− λ∗A∗)|

= ‖D−1‖2|e>
i (λPΩ(ET )×2 b×3 c− λ∗PΩ(ET )×2 b∗ ×3 c∗)︸ ︷︷ ︸

:=res11

|.
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Given the definition of the estimate b(i) and c(i) introduced in Chapter  4.7.2 , that is we let

m = i, we can decompose res11 as following,

res11 =

λPΩ(ET )×2 b(i) ×3 c(i) − λ∗PΩ(ET )×2 b∗ ×3 c∗︸ ︷︷ ︸
:=res111

+

λPΩ(ET )×2 b×3 c− λ∗PΩ(ET )×2 b(i) ×3 c(i)︸ ︷︷ ︸
:=res112

 .

Recall the definition of d := b−b∗ and define d(i) := b(i)−b∗. The ith element of the vector

res111 can be written as:

res111(i) = λb(i)>PΩ(ET )i,:,:c(i) − λ∗b∗>PΩ(ET )i,:,:c∗

≤ 4λ∗d(i)>PΩ(ET )i,:,:c∗ + 2λ∗d(i)>PΩ(ET )i,:,:d(i), (4.39)

where PΩ(ET )i,:,: represents the ith mode-1 slice of the tensor PΩ(ET ). The inequality above

was obtained from the fact that ‖λb− λ∗b8‖ ≤ 2λ∗d.

Notice that by construction, d(i) is independent of the ith mode-1 slice of PΩ(ET ) ( refer to

the details of the leave-one-out method in Chapter  4.7.2 ). We can therefore write ( 4.39 )

as the sum of independent zero mean random variables. That is

d(i)>PΩ(ET )i,:,:c∗ = ∑
jk
Ei,j,kδi,j,kd(i)

j c∗
k and d(i)>PΩ(ET )i,:,:d(i)

b = ∑
jk
Ei,j,kδi,j,kd(i)

j d(i)
k .

Making use of the the u-mass condition and using the fact that Ei,j,k is Gaussian, we get,

L3 := ‖Ei,j,kδi,j,kd(i)
j c∗

k‖ψ1 ≤ σmax
µ√
n
‖d(i)‖∞

B3 :=
∑
jk
E2

i,j,kδ
2
i,j,k(d

(i)
j c∗

k)2 ≤ pσ2
max‖d(i)‖2

2

L4 := ‖Ei,j,kδi,j,kd(i)
j d(i)

k ‖ψ1 ≤ σmax‖d(i)‖2
∞

B3 :=
∑
jk
E2

i,j,kδ
2
i,j,k(d

(i)
j c∗

k)2 ≤ pσ2
max‖d(i)‖4

2,

where ‖ ∗ ‖ψ1 , represents the sub-exponential norm and the first and third equations above

are obtained by applying the properties of sub-Gaussian and sub-exponential norms similar
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to that used in Lemma  25 .

Applying Bernstein inequality on each of the random variables in ( 4.39 ) we get with probability

1− n−11,

|res111| ≤ 6λ∗σmax‖d(i)‖2

(√
2p log (n) + µ√

n
log n

)
(4.40)

Next we bound res112. Using the Cauchy-Schwartz inequality we get

‖res112‖2 = ‖(λb− λ(i)b(i))>PΩ(ET )i,:,:c(i) + (λb− λ(i)b(i))>PΩ(ET )i,:,:(λb− λ(i)b(i))‖2

≤ ‖(λb− λ(i)b(i))‖2‖PΩ(ET )i,:,:c(i)‖2 + ‖PΩ(ET )i,:,:‖2‖λb− λ(i)b(i)‖2
2 (4.41)

We then make use of Lemmas  27 in order to bound the right hand side of the inequality

above, which yields with probability 1− n−11,

‖res112‖2 ≤ σmax‖(λb− λ(i)b(i))‖2

(
(
√
np log (n) + µ√

n
log n) + ‖(λb− λ(i)b(i))‖2(

√
np+ log n)

)
(4.42)

Combining the ( 4.40 ) and ( 4.42 ) and the bound in Lemma  20 for ‖D−1‖2 we get that with

probability 1− n−9,

‖res1‖2 ≤
1

λ∗2p+ ω∗2 6λ∗σmax‖d(i)‖2

(√
2p log (n) + µ√

n
log n

)
+

σmax‖(λb− λ(i)b(i))‖2

λ∗2p+ ω∗2

(√
np log (n) + µ√

n
log n)

)
+

σmax‖(λb− λ(i)b(i))‖2

λ∗2p+ ω∗2

(
‖λb− λ(i)b(i)‖2(

√
np+ log n)

)
. (4.43)

We move to bounding ‖res2‖2 in the following way.

‖res2‖2 = |e>
i unfold(PΩ(ET ))λ∗A∗(D−1 −D∗−1)|

≤ ‖e>
i unfold(PΩ(ET ))λ∗A∗‖2|(D−1 −D∗−1)|
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We bound each of the terms on the right side of the inequality above. Notice that

e>
i unfold(PΩ(ET ))λ∗A∗ = λ∗∑

jk
Ei,j,kδi,j,kA∗

(jk)is the sum of independent random variables.

Hence,

L5 := max
jk
‖Ei,j,kδi,j,kA∗

(jk)‖ψ1 ≤ σ∗
max‖A∗

(jk)‖∞ ≤ σ∗
max

µ2

n

B5 :=
∑
jk
E(E2

i,j,kδ
2
i,j,kA∗2

(jk)) ≤ σ2
maxp

It follows from the Bernstein inequality that

‖e>
i unfold(PΩ(ET ))λ∗A∗‖2 ≤ λ∗σ∗

max(
√
p log (n) + µ2

n
log n) (4.44)

� σ∗
max(

√
p log (n), (4.45)

with probability 1− n−11.

Next we have

‖D−1 −D∗−1‖2 ≤ ‖D−1‖2‖D−D∗‖2‖D∗−1‖2

≤ 6λ∗2p‖d‖2 + o(λ∗‖∆‖2 + ω∗‖∆‖2)
(λ∗2p+ ω∗2)2 (4.46)

with probability 1−n−9, were for the last inequality we applied Lemmas  20 and  21 . Combining

( 4.45 ) and (  4.46 ) we get

‖res2‖2 ≤ λ∗σ∗
max(

√
p log (n) + µ2

n
log n)6λ∗2p‖d‖2 + o(λ∗‖∆‖2 + ω∗‖∆‖2)

(λ∗2p+ ω∗2)2 (4.47)

with probability 1− n−9.

The proof of the Lemma  15 is then completed by combining (  4.43 ) and (  4.47 ). �
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4.5.3 Proof of Lemma  16 

Given the expression of W in ( 4.18 ) we get

W3(i) =EM
(
ω∗D∗−1V∗ − ωD−1V

)
≤ e>

i unfold(EM)(ωV− ω∗V∗)D−1︸ ︷︷ ︸
resM1

+ e>
i unfold(EM)ω∗Ṽ∗(D−1 −D∗−1︸ ︷︷ ︸

resM2

)

We bound |resM1| and |resM2| in what follows.

‖resM1‖2 = ‖e>
i unfold(EM)(ωv− ω∗v∗)D−1‖2

≤ ‖D−1‖2|e>
i unfold(ET )(ωv− ω∗v∗)|

= ‖D−1‖2| e>
i (ωEM × v− ω∗EM × v∗)︸ ︷︷ ︸

resM11

|

Since we already have a bound for ‖D−1‖2 we proceed with bounding the term resM11 in the

inequality above.

resM11 =

ωEM × v(i) − ω∗EM × v∗︸ ︷︷ ︸
resM111

+

ωEM × v− ω∗EM × v(i)︸ ︷︷ ︸
res112

 .

Recall the definition of dv := v− v∗ and define d(i)
v := v(i) − v∗. Then the ith element of the

vector above can be written as:

resM111(i) = ω(EM)i,:v(i) − ω∗(EM)i,:v∗

= ω∗(EM)i,:,:d(i)
v , (4.48)

where we (EM)i,: represents the ith row slice of the matrix EM .

By construction, d(i) is independent of the ith row of (EM ). We can therefore write ( 4.48 ) as
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the sum of independent zero mean random variables. That is (EM)i,:,:d(i) = ∑
l
EMi,ld

(i)
l . By

applying the u-mass assumption we get

LM3 := ‖EMi,ld
(i)
l ‖ψ1 ≤ (σM)max‖d(i)‖∞

BM3 :=
∑
l

E2
Mi,l

d(i)2
l ≤ σ2

Mmax‖d
(i)‖2

2.

Applying Bernstein inequality on each of the random variables resM111(i) we get with

probability 1− n−11

|resM111| ≤ ω∗(σM)max
(
‖d(i)

v ‖2 + ‖d(i)
v ‖∞ log n

)
. (4.49)

Next we bound res112 by applying the Cauchy Schwartz inequality followed by the Bernstein

inequality to get,

‖resM112‖2 ≤ ‖ωv− ωv(i)‖2‖(EM)i,:‖∞

≤ (σM)max‖ωv− ωv(i)‖2(
√
n+ log(n)). (4.50)

Combining the ( 4.49 ) and ( 4.50 ) and the bound on ‖D−1‖2 we get with probability 1− n−11

‖resM1‖2 ≤
ω∗(σM)max

(
‖d(i)

v ‖2 + ‖d(i)
v ‖∞ log n

)
+
(
(σM)max‖ωv− ωv(i)‖2(

√
(n) + log(n))

)
λ∗2p+ ω∗2 .

(4.51)

We move on to bounding resM2

‖resM2‖2 = e>
i EMω∗v∗(D−1 −D∗−1)

≤ ‖e>
i EMω∗v∗‖2|(D−1 −D∗−1)|.
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Notice that e>
i EMω∗v∗ = ω∗∑

l
Ei,lv∗

l is the sum of independent random variables. Hence

LM6 := max
l
‖EMi,lv

∗
l ‖ψ1 ≤ (σM)max‖v∗

l ‖∞ ≤ (σM)max
µ√
n

BM6 :=
∑
l

E(E2
Mi,l

)v∗2
l ≤ (σ2

M)max.

It follows from the Bernstein inequality that,

‖e>
i EMω∗v∗‖2 ≤ ω∗(σM)max(1 + µ√

n
log n), (4.52)

with probability 1− n−11.

Combining ( 4.52 ) and the bound on ‖D−1 −D∗−1‖2 established in (  4.46 ) we get

‖resM2‖2 ≤ ω∗σ∗
max(1 + µ√

n
log n)6λ∗2p‖d‖2 + o(λ∗‖∆‖2 + ω∗‖∆‖2)

(λ∗2p+ ω∗2)2 , (4.53)

with probability 1 − n−9. The proof of the Lemma is completed by combining ( 4.51 ) and

( 4.53 ). �

4.5.4 Proof of Lemma  17 

Let E and H be n× n diagonal matrices with diagonal elements,

Eii =
∑
j,k
δi,j,kb∗(j)c∗(k)b(j)c(k) ; Hii =

∑
l

v∗(l)v(l).

We can then expresses ‖W1‖ as

‖W1‖ = ‖a∗ −D−1
(
unfold(PΩ(λT ∗))A + ωM∗v

)
‖2

= ‖D−1 (λλ∗E + ωω∗H−DI) a∗‖

≤ ‖D−1 (λλ∗E + ωω∗H−DI) ‖2‖a∗‖2

≤ max
i
|D−1

ii |︸ ︷︷ ︸
err11

| (λλ∗E + ωω∗H−DI)ii |︸ ︷︷ ︸
err12

, (4.54)
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where the third inequality is due to the fact D−1 (λλ∗E + ωω∗H−DI) is a diagonal matrix

hence its spectral norm is obtained by taking the maximum absolute value of its diagonal

elements. We therefore proceed to getting an upper bound each of the maximum of each of

the random variable elements in the equation above with high probability. To do that we

first get an upper bound on each of the diagonal elements with high probability and make

use of the union bound method to get a high probability bound on the maximums.

err12 = |λλ∗∑
jk
δi,j,kb∗(j)c∗(k)b(j)c(k) + ωω∗〈v∗,v〉 − (λ2∑

jk
δi,j,kb2(j)c2(k) + ω2)|

≤ |λλ∗∑
jk
δi,j,kb∗(j)c∗(k)b(j)c(k)− λ2∑

jk
δi,j,kb2(j)c2(k)|

︸ ︷︷ ︸
I121

+ |ωω∗〈v∗,v〉 − ω2)|︸ ︷︷ ︸
I122

.

We can bound I121 and I122 next

I122 = |ωω∗〈v∗,v〉 − ω2)|

≤ ωω∗(|〈v∗,v〉 − 1|+ ∆ω)

≤ ω∗2(1−∆ω)(1
2‖dv‖

2
2,+∆ω) (4.55)

where the first inequality is due to using the triangle inequality, the fact that ω = ω−ω∗ +ω∗.

The second inequality is obtained from the results of Lemma  23 .

Next we also bound I121.

I121 = |λλ∗∑
jk
δi,j,kb∗(j)c∗(k)b(j)c(k)− λ2∑

jk
δi,j,kb2(j)c2(k)|

≤ λλ∗(|
∑
jk

(
δi,j,kb∗(j)c∗(k)b(j)c(k)− δi,j,kb2(j)c2(k)

)
|+ ∆λ

∑
jk
δi,j,kb2(j)c2(k))

≤ |
∑
jk
δi,j,kb∗(j)d∗(k)b(j)c(k)|+ |

∑
jk
δi,j,kd∗(j)c∗(k)b(j)c(k)|

+ |
∑
jk
δi,j,kd∗(j)d∗(k)b(j)c(k)|,
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where the last inequality is obtained using the triangle inequality and the fact that b(j) =

b∗(j) + d(j) and c(k) = c∗(k) + d(k) . Next applying the results of Lemma  20 , we get

I121 ≤ λ∗2p (|〈b∗,b〉〈d,c〉|+ |〈d,b〉〈c∗,c〉|+ |〈d,b〉〈d,c〉|+ ∆λ)

+ λ∗2p

‖d‖2

√
µ3 log (n)
pn1.5


≤ 4λ∗2p‖d‖2

‖d‖2 +
√
µ3 log (n)
pn1.5

 , (4.56)

where the last inequality above holds with probability 1− 2n−11 and holds for p ≥ µ3 log (n)
n1.5 .

Combining equations ( 4.55 ) and (  4.56 ) followed by making use of lemma (  20 ) to bound the

denominator of ‖err1‖2, we get

‖W1‖ ≤
4λ∗2p‖d‖2

(
‖d‖2 +

√
µ3 log (n)
pn1.5

)
+ ω∗2(1

2‖d‖
2
2 + ∆ω)

λ∗2p+ ω∗2 (4.57)

with probability 1− 2n−9.

Provided the initialization error specified in Theorem  4.2.1 and after the number of iterations

specified in Theorem 2 of COSTCO we get that ‖W1‖ = λ∗2po(1)+ω∗2o(1)
λ∗2p+ω∗2 , which completes the

proof of the lemma. �

4.5.5 Proof of Lemma  18 

The proof consists of showing that Yi converges in distribution to a Gaussian random

variable gi ∼ N(0,Σ∗
i ). Specifically it involves quantifying the rate of the approximation error

and showing that under the assumption of Theorem  4.2.2 it is negligible. To do so we make
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use a Lyapunov-type theorem [  66 ] stated in section  4.7.1 . More specifically we look to bound

the value of ρ defined in (  4.79 ). In our case the ρ takes the following form,

ρ =
∑

1≤i≤n
E
[
‖Σ∗−1/2

i Yi‖3
2

]
≤

∑
1≤i≤n

E
[
‖(Σ∗−1/2

T )iZi‖3
2

]
+

∑
1≤i≤n

E
[
‖(Σ∗−1/2

M )iXi‖3
2

]
≤

∑
1≤i≤n

E
[
‖λ∗(ET )i,j,kδi,j,k(Σ∗−1/2

T )iA∗
(jk),:D−1‖3

2

]
+

∑
1≤i≤n

E
[
‖ω∗(EM)i,l(Σ∗−1/2

M )iv∗
l,:D−1‖3

2

]
≤

∑
1≤i≤n

E[λ∗3(ET )3
i,j,kδi,j,k]‖(Σ∗−1/2

T )i‖3|A∗
(jk),:|3|D−1|3 + E

[
ω∗3(EM)3

i,l

]
‖(Σ∗−1/2

M )i‖3|v∗
l |3|D−1‖3,

where in the first inequality we made use of the triangle inequality and in the third inequality

we applied the Cauchy Schwarz inequality. We further simplify the right side of the inequality

above by making use of the derivation of the raw absolute moment of standard Gaussian

random variables from Winkelbauer [  67 ] which yields,

ρ ≤ 25/2pλ∗3σ3
T√

π
|(Σ∗−1/2

T )i|3|A∗
(jk)||D−1|3 + 25/2ω∗3σ3

M√
π

|(Σ∗−1/2
M )i|3|v∗

l ||D−1|3
]

≤ 25/2
√

π

(√
p(σ3

T )maxµ2/n

(σ3
T )min

+ (σ3
M)maxµ/

√
n

(σ3
M)min

)
, (4.58)

The inequality in ( 4.58 ) is obtained by using the µ-mass condition and the unit norm condition

on the normalized tensor and matrix factors. Given the bound on ρ in ( 4.58 ) and invoking

Theorem  4.78 with d = 1 completes the proof of the Lemma. �

4.5.6 Proof of Lemma  19 

We start with fixing 1 ≤ i ≤ n. We can decompose the expression of θi in the following

manner,

|θi| := |
ai − a∗

i√
Σi
− ai − a∗

i√
Σ∗

i

| =

:=β1︷ ︸︸ ︷
|(ai − a∗

i )|
:=β2︷ ︸︸ ︷

|(Σi − Σ∗
i )|√

ΣiΣ∗
i︸ ︷︷ ︸

:=β3

|(
√

Σi +
√

Σ∗
i )|︸ ︷︷ ︸

:=β4

. (4.59)
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In what follows, we work on bounding β1, β2, β3 and β4 defined above.

Bounding β1:

|ai − a∗
i | ≤ ‖a − a∗‖2 ≤

√
Σi(1 + µ√

n
log n), (4.60)

where the last inequality is obtained by using the bound on ‖a − a∗‖2 in Theorem  3.4.1 

provided in Chapter  3 with both tensor and matrix noise being Gaussian.

Bounding β3 and β4: We know that,

√
Σ∗

i ≥

√
λ∗2pσ2

min + ω∗2(σM)2
min

λ∗2p+ ω∗2 . (4.61)

We claim that √
Σi ≥

√
Σ∗

i − |
√

Σi −
√

Σ∗
i | =

√
Σ∗

i (1− o(1)).

If that is the case then it follows that

β3 :=
√

ΣiΣ∗
i ≥ Σ∗

i (1− o(1)) and β4 :=
√

Σi +
√

Σ∗
i ≥ 2

√
Σ∗

i (1− o(1)). (4.62)

It remains for us to show that |Σi − Σ∗
i | ≤ o(1)Σ∗

i , which is done by bounding β2.

Bounding β2:

Let Ȧ := A�D−1, where we recall that the symbol � represents the element-wise product

operator. We can now decompose the expression of β2 in the following manner,

|Σi − Σ∗
i | = λ2Ȧ>QiȦ + ω2V̇>(QM)iV̇− λ∗2Ȧ∗>Q∗

i Ȧ∗ − ω∗2V̇∗>(Q∗
M)iV̇∗

= λ2Ȧ>(Qi − Q̂i)Ȧ + ω2V̇>((QM)i − (Q̂M)i)V̇︸ ︷︷ ︸
β21

+

λ2Ȧ>Q̂iȦ + ω2V̇>(Q̂M)iV̇− λ∗2Ȧ∗>Q∗
i Ȧ∗ − ω∗2V̇∗>(Q∗

M)iV̇∗︸ ︷︷ ︸
β22

.
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We proceed with bounding the two variables β21 and β22 above.

Bounding β21:

We begin by decomposing β21 in the following way,

β21 = λ∗2Ȧ∗>(Qi − Q̂i)Ȧ∗ + ω∗2V̇∗>((QM)i − (Q̂M)i)V̇∗︸ ︷︷ ︸
β211

+

2λ∗(λ∗Ȧ∗ − λȦ)>(Qi − Q̂i)Ȧ∗ + ω∗(ω∗V̇∗ − ωV̇)>((QM)i − (Q̂M)i)V̇∗︸ ︷︷ ︸
β212

+

(λ∗Ȧ∗ − λȦ)>(Qi − Q̂i)(λ∗Ȧ∗ − λȦ) + (ω∗V̇∗ − ωV̇)>((QM)i − (Q̂M)i)(ω∗V̇∗ − ωV̇)︸ ︷︷ ︸
β213

.

The expression of β211 can be written as

|β211| = |λ∗2∑
jk

(
Ê2

i,j,k − Ei,j,k
)
δi,j,kȦ∗2

(j,k) + ω∗2∑
l

(
(Ê2
M)i,l − (Em)i,l

)
V̇∗2
l |

≤ λ∗2 max
i,j,k
|Ê2

i,j,k − Ei,j,k|
∑
jk
δi,j,kȦ∗2

(j,k) + ω∗2 max
i,l
|(Ê2

M)i,l − (Em)i,l|
∑
l

V̇∗2
l . (4.63)

Note that since max
i,j,k
|T obsi,j,k − Ti,j,k − Ei,j,k| ≤ ‖T − T ∗‖∞ and max

i,l
|Mobs

i,l −Mi,l − (EM)i,l| ≤

‖M−M∗‖∞, it follows that

max
i,j,k
|Ê2

i,j,k − Ei,j,k| ≤ ‖T − T ∗‖∞ and max
i,l
|(Ê2

M)i,l − (Em)i,l| ≤ ‖M−M∗‖∞. (4.64)

Also from the general results of Sub-Gaussian theory [  68 ], we know that

‖E‖∞ ≤ σmax

√
log(n) and ‖EM‖∞ ≤ (σM)max

√
log(n), (4.65)

with probability 1− n−11. Next we have |(δjk − p)Ȧ∗2
(j,k)| ≤ (1− p)(µ/

√
n)4

and E(δjk − p)
∑
j,k

Ȧ∗4
(j,k) ≤ p(1− p)(µ/

√
n)4. Using Bernstein inequality we get that

|
∑
jk
δi,j,kȦ∗2

(j,k)| ≤
p+

√
p(1− p)(µ/

√
n)4 log (n) + (1− p)(µ/

√
n)4 log (n)

(λ∗2p+ ω∗2)2 ≤
p(1 + µ4log(n)

n2 )
(λ∗2p+ ω∗2)2 ,

(4.66)
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with probability 1 − n−11. Combining the results of ( 4.63 ) - ( 4.66 ) and using Bernstein

inequality to bound ∑jk δi,j,kȦ∗2
(j,k) we get

|β211| ≤
λ∗2σmax

√
log (n)‖T − T ∗‖∞ ∗ p(1 + o(1)) + ω∗2(σM)max

√
log (n)‖M−M∗‖∞

(λ2p+ ω2)2 ,

(4.67)

with probability 1− n−11 and where the inequality hold for (λ∗2p+ ω∗2)2 ≤ λ2 µ4 log (n)
n2 .

Next we can express β212 as

|β212| ≤ |λ∗∑
jk

(
Ê2

i,j,k − Ei,j,k
)
δi,j,kȦ∗

(j,k)(λ∗Ȧ∗ − λȦ)(j,k)|+

|ω∗∑
l

(
(Ê2
M)i,l − (Em)i,l

)
V̇∗
l (ω∗V̇∗ − ωV̇)l|

≤ ‖T − T ∗‖∞
∑
jk
δi,j,kȦ∗

(j,k)(λ∗Ȧ∗ − λȦ)(j,k) + ‖M−M∗‖∞
∑
l

V̇∗
l (ω∗V̇∗ − ωV̇)l

≤
λ∗2σmax

√
log (n)‖T − T ∗‖∞‖a − a∗‖2 ∗ p+ ω∗2(σM)max

√
log (n)‖M−M∗‖∞‖v− v∗‖2

(λ2p+ ω2)2 ,

(4.68)

with probability 1− n−11 and where the last inequality is obtained by applying the Berstein

inequality to bound ∑
jk
δi,j,kȦ∗

(j,k)(λ∗Ȧ∗ − λȦ)(j,k) and the fact that 〈b∗,b − b∗〉 + 〈c∗, c −

c∗〉 + 〈b − b∗, c − c∗〉 ≤ 3 max
u={a,b,c}

‖u − u∗‖ and we assumed for ease of notation that

‖a − a∗‖ = max
u={a,b,c}

‖u− u∗‖.

Using a similar method as the one used to bound |β212| we get that

|β123| ≤≤
λ∗2σmax

√
log (n)‖T − T ∗‖∞‖a − a∗‖2

2 ∗ p+ ω∗2(σM)max
√

log (n)‖M−M∗‖∞‖v− v∗‖2
2

(λ2p+ ω2)2 .

(4.69)
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Combining the bounds on β211,β212 and β213 in ( 4.67 ),( 4.68 ) and (  4.69 ) respectively we get

|β21| ≤
λ∗2σmax

√
log (n)‖T − T ∗‖∞p (1 + ‖a − a∗‖2 + ‖a − a∗‖2

2)
(λ2p+ ω2)2 +

ω∗2(σM)max
√

log (n)‖M−M∗‖∞ (1 + ‖v− v∗‖2 + ‖v− v∗‖2
2)

(λ2p+ ω2)2 . (4.70)

Bounding β22: We start by decomposing the expression of β22 as follows,

|β22| = |λ2Ȧ>Q̂iȦ− λ∗2Ȧ∗>Q∗
i Ȧ∗ + ω2V̇>(Q̂M)iV̇− ω∗2V̇∗>(Q∗

M)iV̇∗|

2

λ∗Ȧ∗>Q̂i(λȦ− λ∗Ȧ∗) + ω∗V̇∗>(Q̂M)i(ωV̇− ω∗V̇∗)︸ ︷︷ ︸
β221

+

(λȦ− λ∗Ȧ∗)>Q̂i(λȦ− λ∗Ȧ∗) + (ωV̇− ω∗V̇∗)>(Q̂M)i(ωV̇− ω∗V̇∗)︸ ︷︷ ︸
β222

+

λ∗2Ȧ∗>(Q̂i −Q∗
i )Ȧ∗> + ω∗2V̇∗>((Q̂M)i − (Q∗

M)i)V̇∗>︸ ︷︷ ︸
β223

We bound the expressions β221, β221 and β221 in what follows. We invoke the Cauchy-Schwartz

inequality to bound the first expression

|β221| = |λ∗∑
j,k
E2

i,j,kδi,j,kȦ∗
(jk)(λȦ− λ∗Ȧ∗)(jk) + ω∗∑

l

(E2
M)i,lV̇∗

l (ωV̇− ω∗V̇∗)l|

≤ λ∗2‖a − a2‖2
∑
j,k
E2

i,j,kδi,j,kȦ∗
(jk) + ω∗2‖v− v∗‖2

∑
l

(E2
M)i,lV̇∗

l

≤ λ∗2‖a − a∗‖2(µ2pnσ2
max + µ2 log (n)/n) + ω∗2‖v− v∗‖2(µ

√
n(σM)2

max + µ2(log (n)/
√
n))

(λ∗2p+ ω∗2)2

≤ λ∗2‖a − a∗‖2(µ2pnσ2
max + o(1)) + ω∗2‖v− v∗‖2(µ

√
n(σM)2

max + o(1))
(λ∗2p+ ω∗2)2 (4.71)

where the second inequality is obtained by using the inequality ‖λa−λ∗a∗‖2 = λ∗‖a−a∗‖2 +

o(1) and the third inequality is obtained by noting that

max ‖E2
i,j,kδi,j,kȦ∗

(jk)‖φ1 ≤
σ2
max(µ/

√
n)2

(λ∗2p+ ω∗2)2 and E

∑
jk
E4

i,j,kδ
2
i,j,kȦ∗2

(jk)

 ≤ pσ4
max

(λ∗2p+ ω∗2)4 ,
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and ‖E‖∞ ≤ σmax
√
log(n) with high probability, followed by applying Bernstein inequality.

The third and fourth inequality holds with probability 1− n−11 In a similar manner we get

the following bounds for β222 and β223.

|β222| ≤
λ∗2‖a − a∗‖2

2pσ
2
max log (n) + ω∗2‖v− v∗‖2

2(σM)2
max log (n) + o(1)

(λ∗2p+ ω∗2)2 , (4.72)

|β223| ≤
λ∗2σ2

max(µ4(log(n)/pn2) +
√
µ4(log(n)/pn2)) + ω∗2(σ2

M)max(µ2(log(n)/n) +
√
µ2(log(n)/n))

(λ∗2p+ ω∗2)2 ,

(4.73)

Combining the results in (  4.71 ),( 4.72 ),( 4.73 ), we get the bound on β22 to be

|β22| ≤
λ∗2σ2

max(‖a − a∗‖2µ
2pn+ ‖a − a∗‖2

2p log (n) + (µ4(log (n)/pn2) +
√
µ4(log (n)/pn2)))

(λ∗2p+ ω∗2)2 +

ω∗2(σ2
M)max(‖v− v∗‖2(µ

√
n+ ‖v− v∗‖2

2 log (n) + (µ2(log (n)/n) +
√
µ2(log (n)/n)))

(λ∗2p+ ω∗2)2 .

(4.74)

Finally combining the bounds on β12,β12,β12 ans simplifying the expression yields the following

bound on |Σi − Σ∗
i |

|Σi − Σ∗
i | ≤ Σ∗

i o(1). (4.75)

With the bound on |Σi−Σ∗
i | established we then finish the proof of the lemma by combining the

results of ( 4.75 ), ( 4.59 ), ( 4.60 ), ( 4.61 ) and ( 4.62 ), which completes the proof of the Lemma. �

4.6 Auxillary Lemmas

In this section we state an prove a series of helper lemmas.

Lemma 20. Let u and w be unit vectors in Rn such that |u(i)| ≤ µ√
d

and |w(j)| ≤ β√
d
. Also

let δi,j,k be i.i.d. Bernoulli random variables with P (δi,j,k = 1) = p and 1 ≤ i ≤ n, 1 ≤ j ≤ n,

128



1 ≤ k ≤ n.

Then provided p ≥ Cµ2β2(1+γ/3) log(d10)
d2γ2 we have

|
∑
j,k
δi,j,ku2(j)w2(k)| ≤ p〈u,u〉〈w,w〉 − pγ,

with probability 1− d−10.

Proof: Let Xjk = 1
p

(δi,j,ku2(j)w2(k)− E(δi,j,ku2(j)w2(k))). Using the bound on the

elements of u and w, we have |Xjk| = |1p(δi,j,k − p)u2(j)w2(k)| ≤ µ2β2

pd2 . Also

∑
j,k
E[X2

jk] = 1
p

(1− p)
∑
j,k

u4(j)w4(k) ≤ µ2β2

pd2 .

Applying Bernstein tail bound inequality we get:

P

|∑
j,k
δi,j,ku2(j)w2(k)− p〈u,u〉〈w,w〉| ≥ pt

 ≤ exp ( −d
2pt2/2

µ2β2(1 + 1
3t)

).

Setting the right side of the inequality to be less than q yields:

P

|∑
j,k
δi,j,ku2(j)w2(k)| ≤ p〈u,u〉〈w,w〉 − pγ

 ≥ 1− q,

for p ≥ µ2β2(1+γ/3) log(1/q)
n2γ2 . Choosing q ≤ n−10 completes the proof of Lemma  20 . �

Lemma 21. Let u∗, u and w be unit vectors in Rn such that |u∗
i | ≤ µ√

d
, |u| and |w| ≤ β√

d
.

Let d be another vector with ‖d‖2 ≤ 1. Also let δi,j,k be i.i.d. Bernoulli random variables with

P (δi,j,k = 1) = p and 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n. Provided p ≥ Cµβ2(1+γ/3) log2( 1
2n

10)
n3/2γ2 ,

with probability greater than 1− 2n−10, we have

|
∑
j,k
δi,j,ku∗(j)d(k)u(j)w(k)− p〈u∗,u〉〈d,w〉| ≤ pγ‖d‖2.
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Proof: Let Xjk = 1
p

(δi,j,ku∗(j)d(k)u(j)w(k)− E(δi,j,ku∗(j)d(k)u(j)w(k))). Then we have

That is |Xjk| = 1
p
(δi,j,k − p)u∗(j)d(k)u(j)w(k) ≤ 1

p
(1− p) µβ2

d3/2‖d‖2. Also,

∑
j,k
E[X2

jk] = 1
p

∑
j,k

(u(j)2d(k)2u(j)2w(k)2) ≤ µβ2‖d‖2
2

pd3/2 .

Applying Bernstein tail bound inequality we get:

P

|∑
j,k
δi,j,ku∗(j)d(k)u(j)w(k)− p〈u∗,u〉〈d,w〉| ≥ pt

 ≤ 2 exp ( −d3/2pt2

µβ2‖d‖2(‖d‖2 + 1
3t)

).

(4.76)

Setting the right side of the inequality to be less than q and choosing t ≤ γ‖d‖2 then solving

for p yields:

P

|∑
j,k
δi,j,ku∗(j)d(k)u(j)w(k)− p〈u∗,u〉〈d,w〉| ≤ pγ‖b‖2

 ≥ 1− 2q,

for p ≥ µβ2(1+γ/3) log( 1
q

)
d3/2γ2 . Choosing q ≤ n−10 completes the proof of Lemma  21 . �

Lemma 22. Let u∗, w∗, u and w be unit vectors in Rn such that |u∗(i)| and |w∗(j)| ≤ µ√
d
,

|ui| and |wi| ≤ β√
d
. Let δi,j,k be i.i.d. Bernoulli random variables with P (δi,j,k = 1) = p and

1 ≤ i, j, k ≤ n. Provided p ≥ Cµ2β2(1+γ/3) log( 1
2d

10)
d2γ2 , with probability greater than 1− 2n−10, we

have

|
∑
j,k
δi,j,ku∗(j)w∗(k)u(j)w(k)| ≤ p|〈u∗,u〉〈w∗w〉|+ pγ.

Proof: Let Xjk = 1
p

(δi,j,ku∗(j)w∗(k)u(j)w(k)− E(δi,j,ku∗(j)w∗(k)u(j)w(k))). Then we

have |Xjk| = 1
p
(δi,j,k − p)u∗(j)w∗(k)u(j)w(k) ≤ 1

p
(1− p)µ2β2

d2 .Also

∑
j,k
E[X2

jk] = 1
p

(1− p)
∑
j,k

(u(j)2∗w(k)∗2u(j)2w(k)2) ≤ 1
p

(1− p)µ
2β2

d2 .

Applying Bernstein tail bound inequality we get:

P

|∑
j,k
δi,j,ku∗(j)d(k)u(j)w(k)− p〈u∗,u〉〈d,w〉| ≥ pt

 ≤ 2 exp ( −d2pt2

µ2β2(1− p)(1 + 1
3t)

).
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Setting the right side of the inequality to be less than q and choosing t ≤ γ then solving for

p yields:

P

|∑
j,k
δi,j,ku∗(j)w∗(k)u(j)w(k)− 〈u∗,u〉〈w∗w〉| ≤ pγ

 ≥ 1− 2q,

and p ≥ µ2β2(1+γ/3) log( 1
q

)
d2γ2 . Letting q ≤ n−10 completes the proof of Lemma  22 . �

Lemma 23. Let u and w be unit vectors and let d be a vector such that d = u−w then

|〈w,d〉| = 1
2‖d‖

2
2.

Proof: Note that ‖u‖2
2 = ∑ (w(i) + d(i))2. Hence given that u is a unit vector we get

∑
w(i)2 + 2

∑
w(i)d(i) +

∑
d(i)2 = 1

2
∑

w(i)d(i) +
∑

d(i)2 = 0

2
∑

w(i)d(i) = −
∑

d(i)2

|〈w,d〉| = 1
2‖d‖

2
2,

Which completes the proof of the lemma. �

Lemma 24. Let S∗
i and Σ∗

i be as defined in ( 4.36 ) and ( 4.34 ). Given the assumptions in

Lemma  14 , with probability 1− n10, we have

max
n
|S∗

i − Σ∗
i | ≤

√
2λ∗2σ∗2

max(1− p)µ
2

n

(
1 + µ2

n
log(n)

)
(λ∗2p+ ω∗2)2 . (4.77)

Proof: Define Fjk as, Fjk := σ∗2
i,j,k(δi,j,k−p)A∗>

(jk)A∗
(jk). Notice that |S∗

1−Σ∗
i | = λ∗2 ∑

i,j,k
D∗2

ii Fjk.

Using the u-mass condition we get,

L1 := |Fjk| ≤ σ∗2
max(1− p)

µ4

n2
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and

B1 :=
∑
jk
E[F2

jk] ≤ 2σ∗4
maxp(1− p)

µ4

n2

Using Bernstein inequality we get

P
( 1
λ∗2 |S

∗
i − Σ∗

i | ≥ t
)
≤ exp

(
−1/2t2

B1 + 1/3L1t

)

with probability 1− n−11. Using the results of Lemma  4.6 and as long as p < (1− p) and p

meets the assumption provided in section  4.2 it follows then that with probability 1− n−11.

|S∗
i − Σ∗

i | ≤
√

2λ∗2σ∗2
max(1− p)µ

2

n

(
1 + µ2

n
log(n)

)
(λ∗2p+ ω∗2)2

applying the union bound completes the proof of the lemma.

Lemma 25. Let Z∗
i be as defined in ( 4.33 ). Given the assumptions of Lemma  14 , with

probability 1− n−10, we have

|Z∗
i | ≤

λ∗σmax
(√

2p+ 2C/3µ2

n
log(n)

)
λ∗2p+ ω∗2 .

Proof: Recall the that Z∗
i = ∑

jk
zi,j,k and zi,j,k := λ∗Ei,j,kδi,j,kA∗

(jk)D
∗−1
ii

for 1 ≤ i, j, k ≤ n,. Let z̃i,j,k = λ∗Ei,j,kδi,j,kA∗
(jk). Since Ei,j,k and δi,j,k are both sub-Gaussian

random variables, it follows that z̃i,j,k is a sub exponential random variable. Hence its sub

exponential norm ψ1 can be bounded in the following way,

L2 := ‖Ei,j,kδi,j,kA∗
(jk)‖ψ1 ≤

µ2

n
‖Ei,j,k‖ψ2‖δi,j,k‖ψ2

≤ C
µ2

n
σ∗
max‖δi,j,k‖∞

≤ C
µ2

n
σ∗
max,

where ‖ ∗ ‖ψ2 , represents the sub-Gaussian norm and C is an absolute constant. The second

inequality above is obtained by using the µ-mass condition on the tensor factor entries

provided in Section  4.2 and also applying the property of sub-exponential and sub-Gaussian
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norms namely that the sub exponential norm of the product of two sub-Gaussian random

variables is less than the product of the sub-Gaussian norms of the two random variables.

Also, since δi,j,k and Ei,j,k are independent we have

B2 :=
∑
jk

E(E2
i,j,kδ

2
i,j,kA∗2

(jk)) ≤ σ∗2
maxp.

The above inequality is obtained by applying the µ-mass condition of the tensor factor entries.

Using the Bernstein inequality and the results of Lemma  4.6 we get that with probability

1− n−11

|Z∗
i | ≤

λ∗σmax
(√

2p+ 2C/3µ2

n
log(n)

)
λ∗2p+ ω∗2 ,

Which completes the proof of the lemma. �

Lemma 26. Let S∗
i be as defined as in ( 4.36 ). Then given the assumptions in Lemma  14 ,

with probability 1− n−11 we have,

S∗1/2
i ≥

√
λ∗2pσ2

min + ω∗2(σ∗2
M)min

λ∗2p+ ω∗2 .

Proof: The expression of S∗
i can be decomposed as

S∗
i ≥ Σ∗

i − |S∗
i − Σ∗

i | ≥
λ∗2pσ2

min + ω∗2(σ∗2
M)min

(λ∗2p+ ω∗2)2 ,

where the last inequality is obtained by applying the results of Lemma  24 as well as bounding

Σ∗
i using the µ-mass condition stated in section  4.2 . Since S∗

i is positive, applying the square

root function to both side of the inequality yields the desired results for the lemma. �
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Lemma 27. Given the assumption in Lemma  15 . Let PΩ(ET )i,:,: and c(i) be as defined in

( 4.41 ), then with probability 1− n−11 we have

‖PΩ(ET )i,:,:‖2 ≤ σmax(
√
pn+ log n) and

‖PΩ(ET )i,:,:c(i)‖2 ≤ σmax(
√
np+ µ√

n
log n)

Proof: Given the construction of c(i), it follows that PΩ(ET )i,:,:c(i) is a sum of independents

random variables and can be written as PΩ(ET )i,:,:c(i) = ∑
jk
Ei,j,kδi,j,keje>

k c(i). We start by

bounding the norms of these random variables. Using the u-mass assumption and property

of exponential norm we get

L6 := max
jk
‖Ei,j,kδi,j,k‖ψ1 ≤ σ∗

max,

L7 := max
jk
‖Ei,j,kδi,j,keje>

k c(i)‖ψ1 ≤ σ∗
max‖c(i)‖∞ ≤ σ∗

max

µ√
n

B6 :=
∑
jk
E(E2

i,j,kδ
2
i,j,k) ≤ σ2

maxn
2p

B7 :=
∑
jk
E(E2

i,j,kδ
2
i,j,kc

(i)2
k ) ≤ σ2

maxnp

Hence by Bernstein inequality we have with probability 1− n−11

‖PΩ(ET )i,:,:‖2 ≤ σmax(
√
pn+ log n) and

‖PΩ(ET )i,:,:c(i)‖2 ≤ σmax(
√
np+ µ√

n
log n)

4.7 Additional Material

For convenience this section contain a list of TheoremS and mathematical derivations

which were used in the proofs of the paper. We refer the reader to the original papers for the

proof of these results.
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4.7.1 Lyapunov-type Bound

In the proof of Theorem  4.2.2 we use make use of the following Lyapunov-type bound

results which allows us to explicitly quantify the rate of convergence of the central limit

theorem. This done by establishing a bound on the maximal approximation error the

normal distribution and the true distribution of the sum of random variables. Al thought in

Theorem  4.2.2 the random variables of interest live in one dimension we still make use of

the d-dimensional version of the theorem as a way to allow us to extent our results to high

dimension in the future.

Theorem 4.7.1. Let {xi}1≤i≤n be a sequence of independent zero-mean random vectors in

Rd and let Σ be the covariance matrix of ∑
1≤i≤n

xi and z ∼ N(0,Σ) be a Gaussian vector in

Rd. Then we have,

sup
A∈C
|P{

∑
1≤i≤n

xi ∈ A} − P{z ∈ A}| ≤ d1/4ρ, (4.78)

where C is the set of all convex subset of Rd and ρ is defined as follows,

ρ :=
∑

1≤i≤n
E[‖Σ−1/2xi‖3

2]. (4.79)

4.7.2 The Leave-One-Out Method

In this section we present the details of the leave one out method which is used in the

proofs of various lemmas in the paper. We follow the procedure presented in Cai, Poor,

and Chen [  47 ] but adjust their method to the case of the non-symmetric tensor coupled

to a matrix. This procedure is used in order to decoupled a given slice of the tensor and

matrix from the noise tensor and noise matrix, allowing us therefore to partially remove the
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statistical dependency that exists between the error tensor and error matrix with a given

tensor factor. We present the method based on the recovered of tensor component a.

T (m) := PΩ−m
(
T ) + pPm(T ∗); M(m)

a := P−m
(
Ma) + Pm(M∗

a)

M(m)
b := P−m

(
Mb) + Pm(M∗

b); M(i)
c := P−m

(
Mc) + Pm(M∗

c),

where PΩ−m and P−m is the projection of the tensor onto the set {(i, j, k) ∈ Ω : i 6= m and j 6=

m and k 6= m} and the set {(i, l) : i 6= m and l 6= m} respectively and Pm is there complement

sets. This means that the m − th slice along all three modes is independent tot he noise

tensor and noise matrices We use and example to illustrate the impact of this decomposition

on the tensor factor and tensor noise.

a. Tensor mode 3 slice 1 b. Tensor mode 3 slice 2 c. Tensor mode 3 slice 3

d. Matrix

Figure 4.6. Illustration of the leave one out procedure applied to a third
order tensor and a matrix. The tensor was sliced along the third mode. The
green shades values represent tensor and matrix entries which still contain
some noise. Whereas the non shades values are replaced by the true value of
tensor. The missing probability is set to p = 1 for the sake of the illustration.
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5. CONCLUDING REMARKS

Tensor completion is a popular subject of theoretical and applied study in a wide range of

research fields such as statistics, mathematics, computer science and engineering. The method

offers great potential in application driven studies in computer vision, recommender systems,

community detection, personalized medicine etc. Due to the natural representation of high-

order interactions as tensor data it has been shown that tensor completion based algorithms

such as recommender systems generally outperform their matrix based counterparts. However,

in practice, high percents of missing entries and high sparsity levels often observed in real

tensor data, forbid the use of those tensor completion based algorithms. This is the case

for instance in online advertising where users click-through-rates tensors can have up to

96% missing entries in addition to being highly sparse, making standard tensor completion

algorithms fail to produce reasonable recovery results.

We effectively addressed this issue in the first part of the dissertation, by proposing

COSTCO, a framework for tensor completion, suited for very sparse tensors with high percent

of missing entries. Our method leverage the power of extra information often present under

the form of covariate data, beside the tensor data, to deliver ameliorated tensor recovery

results. COSTCO uses a joint latent components extraction mechanism along with a truncation

procedure to learn a synthetic representation of the tensor with missing entries and to enforce

sparsity. The proposed method is easy to implement and general enough to be applied to

tensors of various dimensions in the presence of any number of covariate matrices coupled

along the tensor modes.

Theoretically, we showed that the error bound derived for the recovered components using

COSTCO represents an improvement over known standard tensor completion methods, provided

the noise levels in the covariate matrices do not dominate that of the tensor. We also showed

that our method leads to a relaxation in the number of required tensor entries observed for

the completion algorithm to work. The performance of our method was illustrated through

several simulation studies which revealed COSTCO to outperform the state of the art tensor

completion methods. It was also demonstrated through a real data analysis on advertisement
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data that our method can be used to boost the performance of other machine learning

methods such as clustering.

The topic of uncertainty quantification in tensor completion is an area which lacks

theoretical research contribution. Therefore, beside proposing a powerful completion algorithm

for sparse and high missing tensors, in the second part of the dissertation we provided a

theoretical analysis for the uncertainty quantification for the tensor components recovered

using COSTCO. We focused our theoretical analysis to the case of the rank one tensor.

Theoretically, we characterized the distribution of the recovered tensor components under

various noise distribution assumptions and then proposed a simple yet valid confidence interval

construction technique for the recovered tensor components. The proposed construction

allows for heteroskedasticity in the tensor data entries and generate confidence intervals at

an entry level for the tensor components. We also proved the validity of the constructed

confidence intervals. We then showed through a series of simulation studies the improvement

in tightness of these proposed confidence intervals compared to those generated using standard

tensor completion methods.

Given the method proposed in the dissertation, numerous directions for further studies

naturally arise. One such interesting direction is in extending our method to work for the

online data setting. In fact, in real scenarios, tensor and/or covariate matrix information

are rarely available all at once and are rather revealed sequentially. In this case, the batch

updating algorithm proposed in this dissertation is no longer feasible as accessing the entire

data for every added observation is impractical. To fill this gap, it would be advantageous to

adapt our algorithm to the online setting. This could be done by utilizing stochastic gradient

decent (SGD) to solve the optimization problem proposed in our work by updating only one

row of the latent component matrix at a time. The proof for the recovery results for such a

method would then rely of non-convex SGD methods beside the proof techniques developed

in this work.

Another avenue for extending the work in this dissertation is to study the uncertainty

quantification of the recovered tensor components for the general rank R tensor case. Also

bootstrap methods represent a very popular and often hassle free technique for constructing

confidence intervals. It would be interesting to compared the properties of the confidence
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intervals generated using our proposed construction technique which first characterises the

distribution of the tensor components and engineers a variance estimation technique to the

confidence intervals obtained through the resampling approach used under boostrap methods.
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