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ABSTRACT

This research investigates characteristics of PT (parity-time) symmetry breaking in a sys-

tem of two optically-coupled, time-delayed semiconductor lasers. A theoretical rate equation

model for the lasers’ electric fields is presented and then reduced to a 2x2 Hamiltonian model,

which, in the absence of time-delay, is PT-symmetric. The important parameters we control

are the temporal separation of the lasers (τ), the frequency detuning (∆ω), and the coupling

strength (κ). The detuning is experimentally controlled by varying the lasers’ temperatures,

and intensity vs. ∆ω behavior are examined, specifically how the PT-transition and the

period and amplitude of sideband intensity oscillations change with κ and τ . Experiments

are compared to analytic predictions and numerical results, and all are found to be in good

agreement. Eigenvalues, eigenvectors, and exceptional points of the reduced Hamiltonian

model are numerically and analytically investigated, specifically how nonzero delay affects

existing exceptional points.
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1. INTRODUCTION

This chapter gives a brief introduction to semiconductor laser operation and the relatively

new field of PT (parity-time) symmetry. The work presented in this paper utilizes a system

of coupled semiconductor lasers (SCLs) to provide a test bed for investigating the effects

of time-delay on an optical PT-symmetric system. We outline some previous work in PT-

symmetric optics and discuss how the content of this research fits within the theoretical and

experimental studies of this field.

1.1 Semiconductor Lasers (SCLs)

Soon after the demonstration of the first optical laser in 1960 by Theodore Maiman, the

laser was described as ”a solution looking for a problem”. Indeed, many ”problems” have

been studied over the past 60 years which have been elegantly solved with the help of this

relatively new technology. A significant number of Nobel Prizes have been handed out to

work involving lasing, even as recently as Arthur Ashkin’s 2018 prize in Physics for optical

tweezers [1 ]. Semiconductor lasers in particular provide a wonderful test bed for nonlinear

dynamics due to their sensitivity to optical feedback and their phase and amplitude coupling

[2 ]–[5 ].

In semiconductor lasers, light is generated by recombination of electron-hole pairs in the

active region of a forward-biased p-n junction. As seen in Fig. 1.1, the applied voltage

across the junction forces the electrons in the n-region toward the p-region, and the holes

move in the opposite direction [6 ]. This influx of electron-hole pairs constitutes the SCL

gain mechanism, and the cleaved facets of the SCL itself form an optical cavity. With the

two necessary components for lasing – gain and optical feedback – the light inside the active

region is coherently amplified by the process of stimulated emission. SCLs are widely used

in many industrial applications due to their small size, high efficiency, and low threshold

current requirement. The GaAlAs diodes we use in our experiments have an active region

16



Figure 1.1. Schematic diagram of a semiconductor laser. A forward voltage
is applied across a p-n junction, and the light emission from the laser is due
to electron-hole pairs in the junction region. The semiconductor material’s
cleaved facets form an optical cavity, resulting in stimulated emission.

thickness on the order of 0.1-10µm, and the semiconductor material has lateral dimensions

on the order of 0.1 - 1mm. Such diode lasers are commonly used for fiber communications,

optical data storage, and for pumping other solid-state lasers.

One of the most important features of semiconductor lasers is a unique phase-amplitude

coupling. In 1982 Charles Henry investigated the theory of SCL linewidths, which at the

time were on the order of 10 times higher than predicted [7 ]. His work showed that the

linewidth broadening was explained by a factor of 1 + α2, where α (now referred to as the

linewidth enhancement factor) is defined as the coupling between SCL phase and amplitude.

Explicitly, α is given by

α = ∆µR

∆µI

, (1.1)

where ∆µR,I is the change in the real and imaginary parts of the SCL’s refractive index with

respect to carrier density [6 ], [7 ]. We’ll see the effect of this α factor on laser dynamics when

we present our SCL rate equations in chapter 2.

In this report we will investigate the effects of time-delayed coupling in the form of bidi-

rectional injection between two SCLs. The phenomenon of time-delayed optical feedback

17



in semiconductor lasers has been studied extensively [2 ]–[5 ], [8 ]–[12 ], with a focus on laser

stability and chaotic intensity behavior. In 1986 Tkach and Chraplyvy carried out an in-

vestigation into the effects of optical feedback for various delay times and feedback rates,

defining five distinct regimes with well-defined transitions [13 ]. Previous work in our group

at IUPUI involved spectrally filtered, time-delayed SCL feedback [12 ].

Our current work involves the implementation of time-delayed SCL feedback in the con-

text of PT-symmetry, a relatively new area of quantum mechanics. Therefore the results

presented here will be couched more in the language of PT-symmetry than in nonlinear SCL

dynamics. Specifically, we investigate time-averaged steady-state laser intensities, where

much of the chaotic behavior and relaxation phenomena associated with SCL feedback is

washed-out. A brief introduction to PT-symmetry and its relation to optics will now be

presented.

1.2 PT-symmetry in Optics

There has been considerable interest in recent years concerning a new class of non-

hermitian Hamiltonians which may yield real eigenvalues under certain conditions [14 ]–[24 ].

These Hamiltonians are know as Parity-Time (PT) symmetric Hamiltonains, and are of-

ten used to describe open quantum systems with gain and loss. In standard quantum

mechanics there is a requirement that all operators representing physical values must be

hermitian, as this guarantees real eigenvalues (observables), unitary evolution, and proba-

bility/energy/particle conservation. However, in 1998 Carl Bender and his graduate student

Stefan Boettcher discovered that this requirement was too strict, and that there are Hamil-

tonians which permit real eigenvalues despite not exhibiting hermitian symmetry [14 ]. This

novel class of Hamiltonains has the property that they remain unchanged under simultane-

ous parity (P) and time (T) reversal operations – in other words, the PT operator commutes

with the Hamiltonian H: [H PT ] = 0. The parity operation has the effect of reversing the

system in space (x → −x, p → −p), and the time operation reverses the system in time
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(t → −t). The fundamental interest in PT-symmetry arises from the ability to extend quan-

tum mechanics to open systems and complex space, where non-hermiticity is associated with

energy and probability dissipation [15 ], [25 ]–[28 ].

Interestingly, these Hamiltonians can be moved from regions of real to complex eigneval-

ues by tuning a parameter that characterizes the system’s non-hermiticity. The regime of

real eigenvalues is referred to as the PT-unbroken region, where the eigenvectors commute

with the PT operator, and the regime of complex eigenvalues is referred to as the PT-broken

region, where the eigenvectors no longer commute with the PT operator. The ability to steer

a PT-symmetric system between these regions has important applications in the field of op-

tics, such as laser physics[29 ]–[31 ] and synthetic optical isolators [32 ]. This system phase

change is known as the PT-transition and is typically marked by an exceptional point, which

is a simultaneous eigenvalue and eigenvector degeneracy. These transition points and their

properties have been extensively explored in nuclear physics [33 ], quantum chaotic systems

[34 ], and coupled microwave cavities [35 ]. Exceptional points have been of great interest in

optics over the past few years (see [36 ] and the references therein). In particular, EPs can

be exploited for enhanced sensing – if a PT-symmetric system is operated near an EP with

n degeneracies, then a small perturbation ε will result in a signal response on the order ε1/n,

as opposed to a linear response in a hermitian system.

To demonstrate some basic features of PT-symmetry in optics we now present a simple

2-state example system. In 2009 Guo et al. presented an implementation of PT-symmetry

in two coupled optical waveguides [37 ]. One channel was optically pumped to produce an

electric field gain γ while the other channel experienced natural attenuation at the same rate

−γ. The physical proximity of the channels provided a transverse evanescent coupling κ.

Light was injected longitudinally into the waveguides and the output intensity was observed.
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Their work showed that the paraxial wave equation for the electric fields in the waveguide

can be written as a 2x2 Hamiltonian model, given by

i

dE1
dt

dE2
dt

 =

iγ κ

κ −iγ


E1

E2

 , (1.2)

where Ei are the electric fields in each channel. This set of coupled rate equations is reminis-

cent of the Schrödinger equation, which is why the 2x2 matrix in Eq. (1.2) is referred to as the

system ”Hamiltonian”. This Hamiltonian, while non-hermitian, is in fact PT-symmetric. In

the language of matrix mechanics the P operator swaps the Hamiltonian’s diagonal elements

and the T operator performs complex conjugation [38 ]. Under this combined operation the

Hamiltonian in Eq. (1.2) remains invariant.

The eigenvalues of the Hamiltonian will determine each channel’s intensity output, as

solutions for Ei are given by Ei ∝ eiλt; thus, real and complex eigenvalues will produce

dramatically different intensity behavior. The Hamiltonian’s eigenvalues are easily obtained:

λ = ±
√

κ2 − γ2. Depending on the relative values of the diagonal and off-diagonal elements

γ and κ the system can be moved between regions of real and imaginary eigenvalues. Real

eigenvalues will generate bounded intensities, and imaginary eigenvalues will lead to expo-

nentially divergent intensities. The PT-transition marks the phase transition between these

regions, and is precisely when γ = κ. At this point the corresponding eigenvalues become

degenerate with λ = 0, and the eigenvectors become parallel at this location as well (marking

an exceptional point). We therefore expect completely different intensity results depending

on the ratio γ/κ.

Example intensity profiles are given in Fig. 1.2. These intensities were generated by

numerically integrating Eq. 1.2. The top row shows waveguide intensity for the case of

γ < κ (Fig. 1.2a) and for γ > κ (Fig. 1.2b). We see that depending on the ratio of γ/κ the

system does in fact exhibit dramatically different behavior. An alternate way of examining

this phenomenon is to plot the waveguide intensity as a function of the ratio γ/κ, where the
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(a) Waveguide intensity vs. time for γ < κ (b) Waveguide intensity vs. time for γ > κ

(c) Waveguide intensity vs. γ/κ. The total in-
tensity in the system is probed after some fixed
time t and plotted as a function of γ/κ. There is
a clear phase transition from bounded to diver-
gent behavior at the PT-transition (γ = κ).

Figure 1.2. Intensity profiles for the waveguide system. The top row shows
intensity vs. time and the bottom plot is intensity vs. γ/κ.
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system’s intensity is probed after a fixed time t and recorded as a function of this parameter

ratio. It’s clear from Fig. 1.2c that there is a phase transition at γ/κ = 1 (at the PT-

transition) from bounded to divergent intensity behavior. In the next chapter we begin our

investigation into the effects of time-delay on a system similar to this one.

1.3 Our contribution

In this report we present our contribution to the field of PT-symmetric optics – namely,

an investigation of how time-delay affects a traditionally PT-symmetric system. The devel-

opment of the model and experimental procedure was carried out by Dr. Joseph Suelzer

in 2015 during his time as a graduate student in this group. To our knowledge there has

been no outside work done on the implementation of time-delay or delayed coupling in the

context of PT-symmetry, although studies in nonlinear dynamics and coupled semiconduc-

tor lasers have often included delay in various implementations [39 ], [40 ]. However, these

studies were often concerned with instantaneous laser intensity and carrier dynamics; in this

work we examine the time-averaged laser intensities and are not concerned with transient or

chaotic responses of the SCL fields and carrier inversion. We will show that a system of two

bidirectionally coupled semiconductor lasers can be configured in a manner that produces

intensity behavior reminiscent of a PT-symmetric dimer. Rate equations are presented and

reduced to a 2x2 pseudo-Hamiltonian rate model, describing the evolution of lasers 1 and

2. This model is completely PT-symmetric in the absence of time-delay. However, when

nonzero delay is introduced the system is no longer PT-symmetric, though it does retain key

features of PT-symmetry – a phase change between bounded and divergent intensity out-

puts. Our system has several advantages over traditional PT-symmetric implementations in

optics, those being the easy control of the coupling strength between lasers and a relatively

easy experimental implementation, using only ”off-the-shelf” equipment [37 ].

Specifically, we analytically describe three key features of the SCL intensity profiles as a

function of important system parameters (time delay, coupling strength, and the frequency
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detuning between the lasers). These features are (1&2) the width and amplitude of broad

intensity oscillations when the laser frequency detuning is larger than the coupling strength

and (3) the location of the PT-transition. The oscillation features are important because

they arise solely due to nonzero time delay, and are not present in the zero-delay PT-

symmetric regime. The effect of delay on the PT-transition is also interesting because there

has been no previous study regarding this phenomenon. We then present numerical and

experimental observations of these features and how they are affected by time delay and

coupling strength. Good agreement is found between the theory, numerical results, and

experimental data. Finally, we investigate the exceptional points of the system and how

they are affected by nonzero delay. This work is more exploratory than goal-oriented, as we

are effectively ”going in blind”. As stated before, to our knowledge the effects of time-delay

have not been studied in the context of PT-symmetry.

The thesis is outlined as follows: In Chapter 2 we present our system, the full rate

equations which describe the laser dynamics, and a reduced analytic model for SCL electric

fields. The experimental setup and measurement procedures are also discussed. In Chapter

3 we investigate the width of delay-induced broad intensity oscillations. Chapter 4 concerns

the amplitude of these oscillations. Chapter 5 presents work done on characterizing the effect

of time-delay on the PT-transition. Chapter 6 is an investigation of the analytic model’s

eigenvalues, eigenvectors, and exceptional points. We then conclude with a brief summary

in Chapter 7.
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2. MODEL AND EXPERIMENTAL SETUP

2.1 Introduction

The system we use to investigate time-delayed PT-symmetry is composed of two semicon-

ductor lasers in which light from each laser is injected into the active region of the other (see

Fig. 2.1). The lasers are operated such that they are completely identical except for their

free-running output frequencies, the difference being on the order of 50GHz. A time-delayed

coupling arises naturally in this system due to the physical separation between the lasers.

Light from SCL1 is not ”felt” by SCL2 until it has traveled the cavity distance between the

laser facets, and this injected light then influences the laser dynamics in SCL2. The delay

time τ is comparable to the characteristic time scales involved in the laser dynamics (carrier

and photon lifetimes), and thus cannot be neglected. We will see that time-delay introduces

a novel complexity into an otherwise simple PT-symmetric system. The strength of the

mutual coupling κ is controlled via a variable neutral density (VND) filter placed between

the lasers.

In this chapter we will begin by introducing a rate equation model that describes the

evolution of the SCL electric fields and carrier inversions. We will then, with reasonable

assumptions, reduce these equations to resemble pseudo-Hamiltonian dimer model for the

Figure 2.1. Simple diagram of our system. Two lasers, operating at fre-
quencies ωi, are coupled via mutual optical injection. Due to their physical
separation there is an inherent time-delay τ . The coupling strength κ is easily
controlled with a variable neutral density (VND) filter.
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SCL electric fields. A brief introduction to the intensity dynamics will be presented based

on each model. Finally, the experimental setup will be presented and discussed.

2.2 Model

2.2.1 Rate Equation (LK) Model

We use a modified version of the well-known Lang-Kobayashi (LK) SCL rate equation

model to describe the evolution of the lasers’ electric fields E and carrier inversions N [41 ].

This is a phenomenological model that has been shown to faithfully simulate semiconductor

laser behavior across many systems [42 ]–[49 ]. This model can also be derived from funda-

mentals (Maxwell’s equations) [42 ]. The four coupled nonlinear rate equations are as follows:

dE1

dt
= (1 + iα)N1(t)E1(t) + i∆ωE1(t) + κe−iθτ E2(t − τ), (2.1a)

dE2

dt
= (1 + iα)N2(t)E2(t) − i∆ωE2(t) + κe−iθτ E1(t − τ), (2.1b)

T
dN1

dt
= P1 − N1(t) − (1 + 2N1(t)) | E1(t) |2, (2.1c)

T
dN2

dt
= P2 − N2(t) − (1 + 2N2(t)) | E2(t) |2, (2.1d)

where E1,2 are the electric field amplitudes, N1,2 are the carrier inversions above threshold

for each laser, P1,2 are the pump currents above threshold, α is the linewidth enhancement

factor, τ is the time delay, κ is the coupling strength (taken to be equal for both lasers), and

T is the ratio of the carrier lifetime (1ns) to the photon lifetime (10ps). All timescales are in

units of the SCL photon lifetime, 10ps. This model assumes that the two lasers are identical

and operate on a single longitudinal mode but have slightly different optical frequencies ω1,2.

The relative detuning between them is given by ∆ω = (ω1 − ω2)/2, and the rate equations

are written in a frame that is rotating at the average frequency of the lasers, θ = (ω1 +ω2)/2.

This model is valid for weak coupling, neglects multiple feedback reflections, and assumes
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Table 2.1. Typical values for various parameters
Quantity Symbol Scaled value
Linewidth enhancement factor α 5
Coupling strength κ 0 - 0.5
Cavity length τ 0-500
Ratio of carrier to photon lifetime T 100
Pump rate P 1.03

that both lasers have identical gain coefficients despite a slight difference in their optical

frequencies. The exp(−iθτ) term accounts for the phase accumulation as light propagates

from one laser to the other. The two PT parameters are the coupling strength κ and the

frequency detuning ∆ω. Typical parameter values are given in Table 2.1, where all units are

scaled according to Ref. [49 ].

The first term in equations 2.1a&b accounts for the growth/decay of the E field, de-

pending on the sign and size of N. The imaginary piece iα causes a phase shift due to the

linewidth enhancement factor α. The term containing ∆ω describes the frequency pulling

effect felt by the lasers, and the final term describes the delayed coupling between the two

fields. For equations 2.1c&d the first term is the pump rate, the second term is spontaneous

emission, and the third accounts for stimulated emission and gain saturation.

Typical intensity results generated by these equations is given in Fig. 2.2a&b, which

shows the intensities of both lasers versus the frequency detuning between them for two

different delay values. The left plot is for zero time delay, and shows the SCL instantaneous

intensity (blue) and the time-averaged intensity (red) for κ = 0.02. These intensity profiles

are obtained by numerically integrating the four delay-coupled rate equations using a Runge-

Kutta 4th order algorithm, in which the delay term is evaluated by storing and recalling

the electric field values depending on the delay time τ . We choose a set of parameters

κ, τ, θ, and ∆ω, integrate the rate equations for some time t until a steady state is reached,

average over 10ns, and then record the intensity values of each laser. By doing this for

many values of detuning we can generate the plots seen in Fig. 2.2. Ultimately we are
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(a) Instantaneous (blue) and average (red) inten-
sities for κ = 0.02, τ = 0, and θ = 0 as a function
of ∆ω/κ. Both SCL1 and SCL2 share the same
intensity profiles.
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(b) Average intensities for SCL1 (blue) and SCL2
(red) for κ = 0.02, τ = 200, and θ = 0 as a func-
tion of ∆ω/κ. The two lasers do not share the
same intensity profile, but they are quite similar.

Figure 2.2. Numerical intensity solutions from the LK rate equations as a
function of ∆ω/κ. In the absence of delay (left) the average intensity sits at
threshold for large ∆ω/κ and diverges for small ∆ω/κ. Similarly, for nonzero
delay (right) the average intensity for both lasers oscillates about threshold
for large ∆ω/κ and diverges for small ∆ω/κ, retaining the key features of
PT-symmetric behavior.
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interested experimentally observable intensities, and so we average the intensities over 10ns

to mimic experimental detector response (red curve). In all plots to follow we only show

the average intensities. When |∆ω| > κ there are rapid bounded intensity oscillations, and

when |∆ω| < κ the laser intensities do not oscillate and instead saturate to levels above

threshold (I/Ith = 1). For zero delay both SCL1 and SCL2 share the same intensity profiles.

This mirrors the waveguide behavior seen in Section 1.2, though the regions in which we see

these behaviors is reversed. This is due to the fact that our system is defined to be anti-PT

symmetric, as will be discussed in the following subsection.

For nonzero delay the results are given in Fig. 2.2b. The delay does alter the intensity

profiles, but the overall behavior remains largely the same, namely that beyond |∆ω|/κ = 1

the average intensity values are bounded near threshold and within |∆ω|/κ = 1 the intensity

values saturate to a level above threshold. We still observe an abrupt increase in the inten-

sities of the lasers near ∆ω = κ. For the zero delay case this transition is exactly at ∆ω = κ;

we will explain this fact when we discuss the analytic model. Additionally, for nonzero delay

there are oscillations in the intensity as the detuning is increased — these are referred to

as sideband oscillations, and they are a direct result of the delayed coupling. Note that

these are not time oscillations, but rather transitions of steady state intensities from above

to below some average intensity level.The properties of these oscillations will be discussed in

Chapters 3 and 4. The delay also has the effect of widening the central ”dome”, the region

of intensity saturation above threshold. This detuning range for which the intensities remain

above threshold is referred to as the domewidth, and will be discussed in Chapter 5. For

zero delay the domewidth is exactly 2∆ω/κ (see Fig. 2.2a), but for nonzero delay it appears

that the transition is larger than 2∆ω/κ (see Fig. 2.2b). These two delay-induced features,

the sideband oscillations and the widening domewidth, are the main focus of this work.

The phase accumulation term is of great importance when it comes to the analytic

predictions discussed in later chapters. Ideally, an experiment could be constructed such

that the phase accumulation term θτ is an integer multiple of 2π, effectively eliminating the
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term from the rate equations. This would simply involve tuning either the laser frequencies or

the delay time so that the product θτ is exactly 2π. We will refer to this configuration as ”zero

PA”, or no phase accumulation, as θτ would be 0 modulo 2π. Another possible configuration

would be if the average frequency θ were some nonzero constant θ0. This is referred to as

the ”static PA” case, a generalization of the zero PA case. There is no significant difference

between these two cases when it comes to the impact on intensity dynamics. Finally, in

the experiment we have what is known as ”variable PA”, where the phase accumulation

depends on the frequency detuning ∆ω. This arises from the fact that experimentally we

fix one laser’s frequency while the other is actively swept over some frequency range; using

the definition of θ we can write θ = ω2 + ∆ω, where ω2 is the SCL2 static frequency. This

configuration makes the resulting equations much more complicated, as we will see later.

When discussing experimental, theoretical, and numerical work we must include both the

static and variable cases of PA in order for proper comparison.

Figure 2.3 shows the impact of phase accumulation on intensity dynamics. For static PA

both lasers exhibit sideband oscillations, but for variable PA only the laser whose frequency

is changed (SCL1, blue) exhibits sideband oscillations. Furthermore, the period of these

sideband oscillations is different between the two cases. The overall shape of the central

dome is minimally affected, but it is unclear visually how the domewidth is impacted. These

effects will be investigated in later chapters.

While the LK rate equations are useful for numerically simulating the experimental sys-

tem, they are too complicated to provide insight into the dependence of the sideband oscil-

lations and domewidth on system parameters. It’s also unclear how this system reduces to

a PT-symmetric one in the absence of delay. We now present a reduced model that, with

reasonable approximations, allows for analytic solutions concerning these delay-dependent

phenomena.
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(a) Numerical intensities for κ = 0.02, τ = 100,
and θ = 0. This is the ”zero” PA case. Notice
that both lasers exhibit sideband oscillations be-
yond ∆ω = κ.
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(b) Numerical intensities for κ = 0.02, τ = 100,
and θ = ω2 + ∆ω. This is the ”variable” PA
case. Notice that only the laser whose frequency
is swept (blue) exhibits sideband oscillations be-
yond ∆ω = κ. The intensity of SLC2 (red) is
static in this region.

Figure 2.3. Numerical intensities vs. ∆ω/κ for zero (left) and variable
(right) phase accumulations. The variable case corresponds to the experi-
mental method.
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2.2.2 Analytic Model

In order to massage the LK equations into something that resembles the 2x2 waveguide

Hamiltonian model in Eq. (1.2), we first make the assumption that the lasers are operating in

a steady state and are pumped just above the threshold required for lasing. This means that

the population inversion above optical transparency is very close to zero (N1,2 ≈ 0) and that

the carrier inversion does not change significantly in time. Thus, the carrier rate equations

2.1c&d can effectively be ignored. Next, in steady state operation the average value of the

electric fields will not change significantly in time, and together with an assumption that

the field solutions E1,2 can be written as eλt the delay terms E1,2(t − τ) can be expressed

as E(t)e−λτ , where λ are the system’s eigenvalues. This substitution results in a pseudo-2x2

rate equation model for the SCL electric fields E1,2:dE1
dt

dE2
dt

 =

 i∆ω κe−λτ e−iθτ

κe−λτ e−iθτ −i∆ω


E1

E2

 , (2.2)

which resembles the Hamiltonian representation of the waveguide example in Section 1.

The effective Hamiltonian H is given by the 2x2 matrix in the above equation. Our new

analytic model, though, is slightly different from the waveguide model in two ways – first,

it is missing the i in front of the dE1,2
dt

terms. This separates our system from a traditional

Schrödinger equation found in quantum mechanics and traditional PT-symmetry. The lack

of an i actually makes our system anti-PT symmetric; however, for the purposes of this report

we do not emphasize this difference. In the context of all to follow, the only difference between

traditional PT-symmetry and anti-PT symmetry is that in our system real eigenvalues will

correspond to exponentially changing laser intensities, and imaginary eigenvalues correspond

to bounded intensities. We also emphasize that while this reduced model may resemble a 2x2

dimer, it is actually infinite dimensional due to the inclusion of the eigenvalue λ inside the

effective Hamiltonian. We will investigate the effects of nonzero delay on the characteristic

equation in the following chapters.
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In the case of zero delay the effective Hamiltonian reduces to that of a simple PT-

symmetric dimer (Eq. (1.2)),dE1
dt

dE2
dt

 =

i∆ω κ

κ −i∆ω


E1

E2

 . (2.3)

We now see that the diagonal gain term in Eq. (1.2) is replaced by the frequency detuning

∆ω, and the coupling term κ is on the off-diagonal. Unlike the coupled waveguide system

where the coupling is determined by the physical proximity of the channels, our setup allows

for easy, continuous control of κ via the VND. Furthermore, in our system the ”gain” term

∆ω is always exactly equal and opposite for the two lasers, and we do not have to worry

about tuning the gain and attenuation rates such that they are equal in magnitude. The

effective Hamiltonian in Eq. 2.3 has eigenvalues λ = ±
√

κ2 − ∆ω2, which are plotted in Fig.

2.4. Depending on the magnitudes of the diagonal and off-diagonal elements the eigenvalues

can either be purely real or purely imaginary, resulting in divergent or bounded intensity

behavior, respectively. Comparing this eigenvalue plot to the zero-delay intensities in Fig.

2.2a we see that the region of intensity saturation above threshold corresponds to the region

of real eigenvalues, while the region of fast oscillations about threshold corresponds to the

region of imaginary eigenvalues. In other words, for zero-delay the system is perfectly PT-

symmetric, and this is reflected both in the analytic model and the LK model where there

is considerably more complexity.

2.3 Experimental Setup

As stated before, our attempt to capture SCL intensity behavior as a function of frequency

detuning has the advantage of being low-cost and having low-complexity when compared to

other optical PT-symmetric investigations. The experimental schematic is given in Fig. 2.5.

We use Hitachi HL7851G GaAlAs laser diodes with multi-quantum well structures, which

have free-running single-mode frequencies near 782nm. An HP optical spectrum analyzer
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Figure 2.4. Eigenvalues of the effective Hamiltonian in Eq. (2.3). The real
parts are plotted on the top row and the imaginary parts are plotted on the
bottom row, all as a function of ∆ω/κ. There is a clear phase transition at
the location ∆ω/κ = 1, which explains the corresponding phase transition at
this location in Fig. 2.2a.

SCL1

SCL2
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BS1

BS2

GS1

GS2
Temp

SCL3

Temp

Τ𝑱𝟐 𝑱𝒕𝒉𝒓

PD1

PD3

PD2

Figure 2.5. Experimental setup. The SCLs are controlled by current and
temperature controllers. GS: glass slide, BS: beam splitters, VND: variable
neutral density filter, PD: photodiodes. A third SCL is used to characterize
the transmission through the VND and hence measures the value of κ.
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and a 2GHz Fabry-Perot analyzer are used to observe the mode structure of each laser,

ensuring that both operate in the single-mode regime. Light is emitted from each laser and

directed into the active region of the other laser. The SCLs are identical except for their

operating temperatures and optical frequencies. The output of these diodes is regulated

via current and temperature controllers, which stabilize the injection current and allow for

continuous control of the SCL operating temperatures. Pump currents and temperatures

can be set to within accuracies of 0.1mA and 0.01°C, respectively. The frequency of the SCL

output is dependent on the operating temperature, and thus we can easily and continuously

control the frequency detuning between the lasers by sweeping over one laser’s operating

temperature range. By measuring the external distance between the diodes we can measure

the delay time τ . The coupling strength κ is defined theoretically as

κ = (1 − r2)
rτin

ξτp, (2.4)

where r is the laser facet reflectivity, ξ2 is the transmitted optical power through the VND,

τp is the photon lifetime, and τin is the internal laser round-trip lifetime. By monitoring the

transmitted power through the VND via a third SCL and photodiode (SCL3 in Fig. 2.5) we

can calculate the exact value of κ. However, due to the relative sizes of the incoming beam

profile (>100µm) and the laser active region ( 10µm), only a portion of the incoming light

is actually coupled into the laser. This mismatch results in a phenomenologically consistent

reduction of κ by a factor of 10, κeff = 0.1κtheory, which is included in all coupling strengths

in this report [50 ]. The glass slides (GS) reflect a portion of light to be sent to 1GHz

photodiodes (PD), and their signals are sent to a 1GHz oscilloscope.

In order to generate intensity plots comparable to those seen in Fig. 2.3b we experi-

mentally detune the two lasers by continuously changing the temperature of one laser while

keeping the other fixed. The PID settings on the temperature controller allow for adjustment

of the actual temperature trajectory, as unlike the pump current controller the laser’s oper-

ating temperature does not respond to changes instantaneously. For changes in temperature
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less than 4°C the frequency dependence of the laser on temperature is comfortably assumed

to be linear:

ω1(T ) = ω10 − kT T, (2.5)

where kT is experimentally determined to be 153GHz/°C. This is determined by using an

optical spectrum analyzer with 0.001nm resolution to measure SCL wavelength for various

temperature settings. This was also verified by using a fixed 2GHz free spectral range Fabry-

Perot etalon. If the laser is swept through a fixed temperature range ∆T , n number of peaks

will be observed in the etalon, and kT is therefore kT = (2GHz)n/∆T .

Due to our inability to exactly detune each laser in an equal and opposite manner such

that their average value θ = (ω1 + ω2)/2 is a constant, we must compare all experimental

results to the analytic and numerical cases of variable PA, where θ depends on ∆ω. Perhaps

with more precise equipment a static phase accumulation could be achieved experimentally.

Figure 2.6 shows a typical experimental intensity plot as a function of ∆ω/κ. The

frequency of SCL1 is slowly swept over a suitable range, and the intensities are recorded

via the oscilloscope. The oscilloscope voltages are then turned into intensity values with a

Matlab program. The detuning is swept with a rate 153GHz/(5sec) so that there are no

transient responses from the lasers. In Fig. 2.6 we see that the laser whose frequency is

swept (blue) exhibits sideband oscillations outside of |∆ω/κ| = 5 − 6, and that there is a

clear phase transition from bounded to unbounded intensities near this value. SCL2 does

not oscillate but still exhibits this phase transition at the same value. Compared with Fig.

2.3b (variable PA LK solution) there is overall good agreement between the features in both

plots.

The experimental work reported here concerns the measurement of the period and am-

plitude of the sideband oscillations as the delay and coupling are varied, as well as the

measurement of the central domewidth, the region of exponential growth and decay when

|∆ω| < κ. Each set of experimental results will be reported in the corresponding chapters.
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Figure 2.6. Experimental intensity vs. ∆ω/κ for τ = 180 and κ = 0.008.
Intensities for SCL1 are in blue and SCL2 is in red. The main feature of PT-
symmetry is present here, even with all experimental complications: a phase
transition near ∆ω = κ. This plot also shows sideband oscillations only for
the laser whose frequency is swept (blue), in agreement with Fig. 2.3b.
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3. SIDEBAND OSCILLATION WIDTH

3.1 Introduction

We have seen that the introduction of time-delay in our system results in several observ-

able effects on the intensity behavior, most importantly the creation of sideband intensity

oscillations when |∆ω|/κ > 1 and a widening of the PT-transition near |∆ω|/κ = 1. We will

attempt to explain the features associated with these delay-dependent phenomena using an

analytic approach based on a simplified system model. An investigation of the validity of

that analysis will be carried out using a more complicated numerical model and with exper-

imental data. To begin, we’ll start with the sideband oscillation width (SOW), the period

of the broad time-averaged intensity oscillations in the region |∆ω|/κ > 1. This period is

defined as the detuning gap between successive intensity transitions from above to below the

threshold value (see Fig. 3.1 ). The specific reason for this somewhat obtuse definition will

become clear in Section 3.2. Since the SOW is defined in frequency space (i.e. detuning,

a frequency, is the x-axis of Fig. 3.1 ), we choose to refer to this quantity simply as SOW

in order to avoid confusion. Of course, in real experimental units the SOW is a frequency

(Hz). The value of the SOW actually changes depending on oscillation number, although

this effect is hard to notice visually, and the SOW saturates to a steady value when the

detuning is far from the central dome. The SOW in particular has given us the best results

when comparing the analytic solution to the numerical and experimental data.

This chapter will be organized as follows. First, an analytic prediction will be derived for

the cases of zero and variable PA using an eigenvalue analysis based on the reduced Hamil-

tonian model. The eigenvalues of the pseudo-Hamiltonian will be evaluated by separating

the real and imaginary parts, and the features of these eigenvalues will be discussed. This

will lead to an expression of the SOW as a function of κτ , and then both numerical and ex-

perimental results will be presented and discussed. We find that there is excellent agreement

between the three scenarios (Hamiltonian model, numerical model, and experiment).
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Figure 3.1. Typical intensity vs. detuning plot for variable PA, κ = 0.02 and
τ = 100. The sideband oscillation width (SOW) is defined as the detuning
gap between intensity transitions from above to below threshold (I/Ith = 1,
horizontal black line), as indicated in the figure with black dashed lines.
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3.2 Eigenvalue Analysis (FG Equations)

In order to understand the origins of the sideband oscillations and to see how their

widths depend on system parameters, we begin with the most simple model for our system,

the pseudo-2x2 Hamiltonian model for the lasers’ electric fields. This model ignores carrier

inversion dynamics and assumes that the lasers are operating in the steady state regime.

The two coupled rate equations, derived from the LK rate equations, are given as follows:

dE1
dt

dE2
dt

 =

 i∆ω κe−λτ e−iθτ

κe−λτ e−iθτ −i∆ω


E1

E2

 , (3.1)

where Ei are the lasers’ electric fields, ∆ω is the frequency detuning, κ is the feedback

strength, τ is the delay time, and θ is the average laser frequency (ω1 + ω2)/2. Due to the

time-delay the eigenvalue λ is present inside the Hamiltonian, which will give us some trouble

when attempting to explicitly solve the characteristic equation. We again stress that this is

an inf inite-dimensional system due to the time-delay.

3.2.1 Eigenvalues as a Prediction of SCL Intensity

Ultimately we are interested in intensity behavior, as this is what will be measured in

the lab. Why are we then starting with the system’s eigenvalues? The answer is simple. In

the derivation of Eq (3.1) we make the assumption that solutions for the electric field can be

written as E(t) ∝ eλt. By definition the lasers’ intensities are I(t) = |E(t)|2; therefore the

behavior of λ ultimately determines the behavior of the lasers’ intensities. However, now we

must address the complication of infinitely many eigenvalues associated with Eq. (3.1). If

there are infinitely many λ, how does each solution affect the overall intensity? It turns out

that for our system only the eigenvalues with the greatest real parts determine the intensity

behavior. Each eigenvalue λ represents a mode in each laser’s electric field evolution. The

infinite modes do not combine linearly, as the Hamiltonian model is nonlinear due to the time-
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delay. It is reasonable to say that the mode with the largest real part will ultimately dominate

the laser’s behavior, as a large real part drives that particular mode toward saturation faster

than any other mode. We are not concerned with the imaginary parts, as these result in fast

temporal electric field oscillations, and will ultimately be averaged out by the detectors.

This assumption can be tested numerically. Figure 3.2 shows the correspondence between

the eigenvalues with the largest real part and numerical laser intensity for similar parameters.

In the top row we show the real parts of the eigenvalues with the largest real parts as a func-

tion of ∆ω/κ. The red/blue regions correspond to regions where Re(λ) are positive/negative,

which signify regions of electric field growth/decay. Because of the nonlinearities and satu-

ration present in both the LK model and in the physical system, exponential growth/decay

from positive/negative eigenvalues can’t continue forever. For positive/negative eigenvalues

the laser intensity will grow/decay to a higher/lower intensity value compared to the thresh-

old level, which is defined as the intensity in the absence of SCL coupling (λ = 0). This can

be seen by comparing the top row of Fig. 3.2 to the bottom row, where the overall shape of

the intensity curves mimic the eigenvalue curves. Notice that the sideband oscillations arise

due to the eigenvalues crossing from positive to negative, and that the detuning locations

that mark this transition are shared in the intensity plot.

3.2.2 Characteristic Equation

Now that we have demonstrated that the SCL intensities are effectively determined by the

eigenvalues with the largest real parts, we can begin our eigenvalue analysis. The ultimate

goal is to solve for the width of the sideband oscillations. We’ll begin by evaluating the

characteristic equation of the Hamiltonian in Eq. (3.1):

λ2 + ∆ω2 − κ2e−2λτ e−2θτ = 0 (3.2)

40



(a) Eigenvalues with largest real part as func-
tion of ∆ω/κ for zero delay. Only the real part
of λ is plotted. The system is completely PT-
symmetric in this regime, eigenvalue solutions
are either purely imaginary or purely real. The
red region corresponds to positive Re(λ) and the
blue region is negative Re(λ).

(b) Eigenvalues with largest real part as function
of ∆ω/κ for nonzero delay (τ = 80). Only the
real part of λ is plotted. For nonzero delay there
are regions where λ is complex and where Re(λ)
is negative. The red region corresponds to posi-
tive Re(λ) and the blue region is negative Re(λ).
)

(c) Intensities for same parameters as Fig. 3.2a.
Both lasers share the same intensity profile. For
zero delay the system is PT-symmetric, hence
the phase transition at ∆ω/κ = 1. The intensi-
ties never dip below 1, which is the laser steady-
state intensity in the absence of coupling.

(d) Intensities for same parameters as Fig. 3.2b.
For nonzero delay the intensities may dip below
1. Notice how the sideband oscillations line up
with the above eigenvalue plot.

Figure 3.2. Correspondence between eigenvalues (with largest real part) and
SCL intensity. The top row shows the real part of eigenvalues with largest
Re(λ) generated from the Hamiltonian in Eq. (3.1). The red/blue regions
correspond to positive/negative Re(λ), i.e. regions where the overall intensity
saturates above/below threshold. The bottom row shows numerical SCL in-
tensity generated from the LK rate equation model. All four plots have the
x-axis as detuning scaled by the coupling strength. Notice how the shape of
each eigenvalue plot is mirrored by the corresponding intensity plot. Only the
eigenvalues with the largest real parts significantly affect intensity behavior.
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Solutions of this equation are the system’s eigenvalues. We cannot obtain a closed-form

solution for λ, which means we will have to find a more clever way to get what we’re

after. Unfortunately, λ is generally complex, which means we cannot graph the eigenvalues

directly and see the dependence on ∆ω. What we do is the following: write the eigenvalues

as λ = λR + iλI and separate Eq. (3.2) into its real and imaginary parts. Each resulting

real equation can then be plotted, and the intersections of the two will be the eigenvalue

solutions. By making this substitution we arrive at the following important equations:

F (λR, λI) = ∆ω2 + λ2
R − λ2

I − κ2e−2λRτ cos(2τ(λI + θ)) = 0 (3.3a)

G(λR, λI) = 2λRλI + κ2e−2λRτ sin(2τ(λI + θ)) = 0, (3.3b)

where F contains the real parts of Eq. (3.2) and G contains the imaginary parts. The

behavior and shape of each equation is intricately linked to the system’s overall intensity

behavior, as we will see. A thorough understanding of these equations will provide great

insight into the system’s behavior.

Figure 3.3 shows two sets of typical F and G curves for zero (left) and nonzero (right)

phase accumulation. The F and G equations will be discussed in great detail in Chapter 6,

so for now we will describe the features relevant for the sideband and domewidth analyses.

First, it’s important to note that except in the case of variable PA, only the F equation

depends on ∆ω. As the detuning is swept the F equation’s two ”antennae” branches, the

branches that shoot off to Re(λ = +∞), shift up along the vertical axis. These ”antennae”

curves, wherever they intersect the G curve, generate the eigenvalues with the greatest real

part (i.e. the intersections furthest to the right for any given detuning). Both the F and

G curves have ”finger” branches that come in from Re(λ) = −∞, approach the vertical

axis, and then return to Re(λ) = −∞. These ”fingers” are numbered by their appearance

above and below the horizontal axis (see Fig. 3.3a). Notice how the G curve undulates

about the vertical axis – this curve will be important to the sideband analysis. Static phase

accumulation has the effect of breaking the symmetry of each curve across the x-axis, but
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(a) F (blue) and G (red) curves for ∆ω = 0.04,
τ = 75, κ = 0.02, and θ = 0. Black arrows label
the G ”fingers”.
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(b) F (blue) and G (red) curves for ∆ω = 0.04,
τ = 75, κ = 0.02, and θ = 0.025. Notice how the
nonzero phase theta breaks the symmetry across
the x-axis.

Figure 3.3. F (blue) and G (red) curves plotted for various parameters. The
x-axis is Re(λ) and the y-axis is Im(λ). Intersections of the two curves are
solutions to Eq. (3.2). The left plot is for zero PA and the right plot is for
nonzero PA. The spacing of the ”fingers”, or the branches that protrude from
Re(λ) = −∞, have the vertical spacing π/2τ .

the overall behavior is quite similar (Fig. 3.3b). In fact, for eigenvalue solutions far from

the x-axis the two cases are nearly identical.

As the detuning is increased from zero, the topmost F ”antenna” solution will move

upward intersect every part of G that lies to the right of the vertical axis for some detuning.

This means that the real part of the rightmost intersection will cross from positive to negative

whenever the G curve crosses the vertical axis. We know from examining Fig. 3.2 that the

SCL intensities will also cross from above to below threshold when the eigenvalues cross

from positive to negative – therefore, if we can solve for the locations where G intersects the

Im(λ) axis we will then know where the intensities cross their threshold value.

3.2.3 SOW Analytic Solution

The following SOW theoretical analysis was first carried out by Dr. Yogesh Joglekar for

the case of zero phase accumulation. My contribution was to extend the analysis to nonzero
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phase accumulation, both static and variable, as well as a special case of variable frequency

pulling (section 3.5).

In order to obtain an analytic expression for the SOW we first require a solution for

detuning locations where G intersects the vertical axis (Re(λ) = 0). Setting λR = 0 in Eq.

(3.3b) results in the following relation:

κ2sin(2τ(λI + θ)) = 0 (3.4)

which has solutions λI = nπ

2τ
− θ, where n corresponds to the nth crossing of the vertical axis.

Plugging this back into the F equation yields the detunings for which these crossings occur:

∆ωn = ±κ

√√√√(−1)n + (nπ)2

(2κτ)2 + θ2

κ2 − nπθ

κ2τ
. (3.5)

Now, we are looking for the period between successive crossings from positive to nega-

tive Re(λ) (or negative to positive). This means we can define the sideband width as

SOW=κ
(
∆ω2n+2 − ∆ω2n

)
. We choose the even n to simplify the calculations, but we can

also use odd n – the important part is that we take the difference between every other ∆ωn.

To evaluate the SOW we need to carry out a difference between two square root terms.

For demonstration purposes we’ll set the phase accumulation θ to zero in order to simplify

calculations. The problem is this:

SOW = κ

√√√√(−1)(2n+2) + ((2n + 2)π)2

(2κτ)2 − κ

√√√√(−1)(2n) + ((2n)π)2

(2κτ)2 , (3.6)

which cannot be simplified for arbitrary n. However, in the limit of large n (i.e. oscillations

far from the central dome) we can rearrange some terms and make the binomial approxima-

tion to get rid of the square roots. This results in the following solution for the SOW:

SOW = π

τ
− 1

2
κ2τ

πn(n + 1) . (3.7)
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There are a few interesting consequences of this expression. First, when n (which is

proportional to the oscillation number) is large, the SOW saturates to the value π/τ , which

is independent of κ. This means that far from the central dome the sideband oscillations

have a constant period. Second, the SOW is inversely proportional to the delay time. Both

of these predictions can easily be checked numerically and experimentally. The final feature

of the SOW solution is that the period of oscillation increases with n until it saturates; this

is somewhat hard to see, even in the numerical solution (Fig. 3.1). However, since large n is

required for this solution to hold, this feature is not investigated further. Interestingly, by

performing the same calculation with nonzero θ we arrive at the same asymptotic solution for

the sideband width: SOW = π/τ . Thus the SOW is not affected by static phase accumulation

(at least for large n). Of course, for the case of static PA both SCL1 and SLC2 oscillate

with the same sideband period, and the two lasers share this same SOW prediction.

Amazingly, this same method can be used to obtain a closed solution for the SOW in

the case of variable PA. Variable PA is defined as θ = θ0 + ∆ω, which corresponds to the

physical scenario where one laser’s frequency is swept while the other remains fixed. Because

the detuning is present inside the phase accumulation term the resulting F and G equations

become much more complicated; however, by following the above procedure to find ∆ωn the

following solution is obtained:

∆ωn = κ2(−1)n(
nπ

τ
− 2θ0

) + 1
4
(nπ

τ
− 2θ0

)
. (3.8)

Taking the difference ∆ω2n+2 − ∆ω2n results in a similar expression for the SOW:

SOW = π

2τ
− κ2π

τ

[(
(n + 1)π

τ
− θ

)(
nπ

τ
− θ

)]−1

. (3.9)

Thus, in the same limit of large n, the SOW has the asymptotic value π/2τ , which is exactly

half the period of the static PA case. In fact, all of the three predictions concerning the
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SOW from the static case apply to the variable case, with the only difference being a factor

of 2 in the asymptotic solution. We’ll encounter this factor of 2 again when analyzing the

sideband oscillation amplitude. For the variable PA case only one laser expresses sideband

oscillations; however, the analytic prediction provides only one prediction value, π/2τ . In

other words, this analytic method cannot explain or predict the fact that SCL2 does not

oscillate. This is just something to keep in mind, as we’ll find a more robust way of solving

for the SOW in section 3.5. It’s important to note that Eq. (3.7) is not a limiting case of

Eq. (3.9), since each expression comes from a fundamentally different system setup.

Now that we have an analytic prediction we can check the SOW both numerically and

experimentally, looking for 1) a constant period independent of the coupling strength and

2) an inverse relation between SOW and the delay time.

3.3 Numerical Results

The above predictions were first investigated numerically. In short, the analytic predic-

tion is exactly reproduced by the rate equation model. Figure 3.4 contains two intensity

profiles that encapsulate these results. For the case of zero PA, two different intensity curves

are plotted, one (blue) for κ = 0.04 and one (magenta) for κ = 0.02. Both plots have the

same delay (τ = 100), and only SCL1’s intensity is shown. The first prediction of Eq. (3.7) is

that the sideband oscillation width should be independent of the coupling strength. Indeed,

by examining the period of oscillation for the blue and magenta curves it’s obvious that

the two curves share the same sideband period when sufficiently far from zero detuning. In

fact, n only needs to be around 5-6 for this to hold true. This phenomenon was checked for

many different combinations of κτ , and the result was always the same: the numerical SOW

does not depend on κ for large n. The coupling strength only affects the amplitude of the

oscillations. This result also holds for the case of variable PA.

Next, the dependence of the sideband oscillation width was checked as a function of the

delay time. In Fig. 3.4 the SOW is measured to be 0.0315, which is extremely close to
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Figure 3.4. Intensity vs. detuning for two values of κ generated by integrating
the LK rate equations. Only SCL1’s intensity is plotted. In this plot τ = 100
and θ = 0. The blue curve is for κ = 0.04, while the magenta plot is κ = 0.02.
The numerical data reproduces both predictions made by Eq. (3.7), namely
that the SOW is independent of κ (the period of the blue and magenta curves
is equal for large n) and that the SOW is equal to π/τ .
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Figure 3.5. Numerical and experimental results for SOW as a function of
1/τ . The black squares/diamonds are numerical data from integrating the
LK equations in the cases of static (square) and variable (diamond) phase
accumulation. The dash-dotted line indicates the analytic prediction for static
PA and the solid black line indicates the analytic prediction for variable PA.
The colored data points are experimental data, and the colors correspond to
different values of κ (see legend). The dotted line is the experimental fit.

the predicted value of π/τ = 0.03145. The numerical procedure for SOW measurement is

to first generate an intensity plot and then either run an FFT (fast Fourier transform) on

the intensity data for SOW frequency or run a peak search algorithm and directly obtain

the peak-to-peak detuning widths. Even though both of these methods do not exactly use

the definition laid out in section 3.2 (that the SOW is defined as the detuning gap between

successive intensity transitions from above to below threshold), the end result is the exact

same value.
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But does the SOW change with the proper inverse τ dependence? The answer is yes

– the numerical SOW is inversely related to the delay time τ . Figure 3.5 summarizes the

results, where the SOW is plotted as a function of inverse delay time. The black square

points are numerical solutions of SOW from the LK equations in the case of static PA,

and the dash-dot line is the corresponding analytic prediction of π/τ . It’s clear that the

numerical data nearly perfectly matches the prediction; in fact, the error bars associated

with the numerical measurements are so small that they can barely be seen. The variable

PA case is represented by black diamonds (numerical data) and a black solid line (analytic

prediction, π/2τ). Again the agreement is virtually perfect. This is very surprising, as the

LK model is much more complicated than the Hamiltonian model, with nonlineraities and

carrier dynamics influencing the SCL intensities. It just goes to show how reasonable our

assumptions were when reducing the LK equations to the Hamiltonian model.

3.4 Experimental Results

Now on to the experimental results. The experimental detuning is generated by keep-

ing one laser’s frequency fixed and sweeping the other’s frequency over some range, which

corresponds to the variable PA case. Therefore, we compare all experimental results to Eq.

(3.9). The procedure for measuring the experimental SOW is as follows: first, the detuning

of laser 1 is swept and an intensity vs. detuning plot is generated for some κ and τ far from

the central dome (Fig. 3.6). Generally we capture 20 oscillations in one data set in order

to obtain a roust SOW measurement. Next, an FFT is run on the intensity data and the

oscillation frequency is determined. The FWHM (full width half max) value of the SOW

frequency peak determines the size of the vertical error bars in Fig. 3.5. This frequency is

then turned into a proper SOW value and recorded. Alternatively the SOW can be obtained

by running a peak search algorithm on the data in Fig. 3.6 and then taking the average of

the peak-to-peak detuning widths. This process is repeated for multiple values of κ and τ ,

and the results of this experiment are given in Fig. 3.5. The colored square points repre-
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Figure 3.6. Typical experimental SCL intensity as a function of detuning.
Only the swept laser’s intensity is shown. In this plot τ = 138 and κ =
0.0053; the phase accumulation is variable. Despite noisy data the SOW can
be obtained by both an FFT and by using a peak search program to determine
the peak-to-peak oscillation widths. For this plot the SOW=0.16.

sent experimental measurements of SOW as a function of inverse delay 1/τ – the different

colors correspond to different values of κ (see figure legend). Horizontal error bars are due

to uncertainties in delay measurement. The dotted line is the linear fit of the experimental

data.

Let’s examine the two main predictions of Eq. (3.9). The first is that the SOW is

independent of κ if the oscillations are sufficiently far from the dome. The experimental

data confirms this prediction – by examining Fig. 3.5 it’s clear that for any given detuning

there is no tendency for one set of κ data to lie above/below another. In other words, there

is no evidence that the coupling strength consistently affects the value of SOW; otherwise

an obvious ”color pattern” would be seen on the plot. As for the second prediction, there is

great evidence for the inverse dependence of the SOW on the delay time. The experimental
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forms a nice linear trend, as indicated by the dotted line in Fig. 3.5. However, the slope

of this trendline is not equal to either the variable or static PA predictions. Ideally the

experimental trend line would have slope π/2, but it is in fact equal to 2.273, which almost

exactly bisects the variable and static predictions! This is evident just by examining the

three lines in Fig. 3.5 – the experimental dotted line looks to be halfway between the two

analytic predictions. It almost seems too perfect to be coincidence... we’ll attempt to explain

this in the next section.

In summary, the experimental data confirms the two main predictions associated with

the SOW: 1) that the SOW is independent of the coupling strength κ and 2) that the SOW

in inversely proportional to the delay time τ . The exact slope of the 1/τ dependence does

not exactly match the variable PA prediction, although it is relatively close. What could be

causing this discrepancy? There are two experimental complications that could explain the

difference:

1. The calibration method used to turn SCL temperature into frequency is not quite

linear. As the temperature of each laser is scanned, the center frequency of the single-

mode SCLs shift up or down; however, due to the discrete nature of the supported

cavity modes the shifting is not perfectly smooth. At certain temperatures the laser

mode will ”hop” from one wavelength to another, usually only on the order of 0.3nm,

but this hopping will affect the detuning calibration used to generate the x-axis in

Fig. 3.6. Between mode-hoppings the frequency curves are almost perfectly linear,

and we try to choose temperature ranges where there is no apparent mode hopping;

however, such delicate detuning measurements can be affected by any inconsistencies

in the frequency/temperature relation.

2. The analytic and numerical models assume single-mode SCL operation, and the fre-

quency of each laser is assumed to be independent of the other. There is no frequency

pulling in either model. However, it is not unreasonable to expect some degree of influ-
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ence of one laser’s frequency on the other – these are, after all, coupled oscillators, and

by changing one laser’s frequency there may be a tangible effect on the other’s. This

frequency pulling effect would manifest itself in the definition of phase accumulation,

which would in turn affect the analytic prediction. Can the value of the experimental

data linear fit be explained by adjusting our model to include frequency pulling?

Surprisingly, the second complication – frequency pulling – can be investigated analyti-

cally, numerically, and experimentally, which we now present.

3.5 Frequency Pulling

If there is indeed SCL frequency pulling present in the experimental setup we’ll need

to modify the analytic and numerical models to reflect that. Let’s begin with the analytic

model. We’ll also limit the analysis to linear frequency pulling, where the frequency of SCL2

depends linearly on the frequency of SCL1. We’ll assume, perhaps non-physically, that this

is a non-reciprocal process and that SCL1 is not in turn influenced by SCL2. Explicitly we

can write the frequency of SCL2 as

ω2 = ω20 + bω1, (3.10)

where ω20 is the free-running frequency of SCL2 in the absence of coupling (a constant) and

b is a parameter that determines the strength of the frequency pulling effect. If b is positive,

any positive change in ω1 will result in ω2 being ”pulled” toward the new ω1 value. Normally,

frequency pulling means that the b parameter is always positive, so the change of ω2 follows

the change of ω1; however, for this analysis we’ll let b take any real value, regardless of the

”physicality” of such a constant. We’re simply interested in seeing what happens if we let

ω1 affect ω2.
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Using the same definitions of ∆ω = (ω1 − ω2)/2 and θ = (ω1 + ω2)/2 we can generate

their ”frequency pulled” versions by substituting in Eq. (3.10):

∆ω = 1
2

[
(1 − b)ω1 − ω2

]
(3.11a)

θ = 1
2

[
ω20 + (1 + b)

(1 − b)
(
2∆ω + ω20

)]
(3.11b)

Using these definitions we can then re-do the analysis in section 3.2 where we solve for the

detunings for which the F and G branches intersect on the y-axis. The ultimate goal is

to analytically solve for the SOW in the case of frequency pulling. In fact, this frequency

pulling definition actually includes both the static and variable PA cases – they are built

in to the expressions in Eq. (3.11a&b)! If we substitute b = −1 we see that the value of

ω2 changes at the same rate as ω1 but in the opposite direction, such that the quantity θ

remains constant. If we then set ω20 to nπ/τ we obtain the zero PA case. Furthermore, if

we set b = 0 the frequency of ω2 remains fixed for all values of ω1; this corresponds to the

case of variable PA, the experimental case. If we are able to obtain an analytic expression

for the SOW in terms of b we can check these limiting cases explicitly.

Starting with the G equation (Eq. (3.3b))and substituting λR = 0 we arrive at the

following condition for λI :

λI = nπ

2τ
− 1

2

[
ω20 + (1 + b)

(1 − b)
(
2∆ω + ω20

)]
. (3.12)

This expression can then be substituted back into the F equation (Eq. (3.3a)) to obtain an

expression that we can use to find the detunings ∆ω for which there are eigenvalue transitions

from positive to negative λR:

κ2(−1)n − ∆ω2 +
nπ

2τ
− 1

2

[
ω20 + (1 + b)

(1 − b)
(
2∆ω + ω20

)]2

= 0. (3.13)
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Solving this results in a quadratic equation for ∆ω:

∆ω2

− 1 + (1 + b)2

(1 − b)2

+ ∆ω

(1 + b)
(1 − b)

(1 + b)
(1 − b)ω20 + ω20 − nπ

τ


+
κ2(−1)n + n2π2

4τ 2 +
ω2

20

4 − nπ

2τ
ω20 +

ω2
20(1 + b)2

4(1 − b)2 +
ω2

20(1 + b)
2(1 − b) − nπ

2τ

(1 + b)
(1 − b)ω20

 = 0

(3.14)

Needless to say the resulting solution for ∆ω is quite messy, and not particularly illu-

minating by itself. Let’s check the limiting cases of static (b = −1) and variable (b = 0)

phase accumulation to verify the accuracy of Eq. (3.14). For static PA we set b = −1, which

results in

∆ωn = ±κ

√√√√(−1)n + (nπ)2

(2κτ)2 + ω2
20

4κ2 − nπω20

2κ2τ
. (3.15)

When writing the phase accumulation θ = (1/2)ω20 from Eq. (3.11b) it’s clear that Eq.

(3.15) is exactly same as what was obtained before in Eq. (3.5). Thus the same SOW

prediction is contained in the general frequency pulling case (Eq. 3.14). How about the case

of variable PA? For that situation b = 0, and Eq. (3.14) simplifies to

∆ωn = κ

(−1)n +
(

ω20
κ

− nπ

2κτ

)2

nπ

κτ
− 2ω20

κ

. (3.16)

From Eq. (3.11b) we see that for b = 0, θ = ω20 , and with this substitution we recover

the exact same detuning solution as in Eq. (3.8). Thus the two main SOW predictions for

both static and variable PA are contained in our ”universal” frequency pulling model (Eq.

(3.14)), which is quite remarkable.
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That’s all well and good, but our interest for this section lies in positive values of b. For

simplicity we’ll set ω20 = nπ/τ , which is functionally the same as setting ω20 = 0. This

results in a closed expression for ∆ωn for arbitrary b:

∆ωn = κ(1 − b)
8b

nπ

κτ
(1 + b) ±

√√√√(nπ

κτ

)2

(1 + b)2 − 16b

[
(−1)n +

(
nπ

2κτ

)2] (3.17)

Now that we have an expression for the ∆ω at which the eigenvalues cross the y-axis we

can continue the SOW analysis and find the detuning gap between successive crossings from

positive to negative. Again, the SOW is defined as ∆ωn+2 −∆ωn. Performing this evaluation

and taking the limit of large n results in the following expression for the sideband oscillation

width:

SOW = (1 − b)
b

π

4τ

(
(b + 1) ± (b − 1)

)
. (3.18)

Curiously this expression provides two values for the SOW depending on the choice of sign

inside the parentheses. These two widths are

SOW1 = π

τ

1 − b

2 (3.19a)

SOW2 = π

τ

1 − b

2b
. (3.19b)

What is the physical interpretation of two SOW predictions? Let’s check the familiar case

of static PA, b = −1. Plugging this into Eq. (3.19a&b) we obtain the result SOW1,2 = ±π/τ .

We get two sideband periods, one positive and one negative, but with the same magnitude.

The magnitude matches the prediction found earlier in Eq. (3.7). How about the case of

variable PA? By plugging in b = 0 we find that SOW1 = π/2τ and SOW2 = ∞. The

first value matches what we’ve seen before in Eq. (3.9), but the second value is inf inity.

With this information we can finally interpret the two values of SOW: the magnitude of one

solution of SOW describes the oscillation period of SCL1 and the magnitude of the other

SOW solution describes the oscillation period of SCL2. It’s unclear what exactly a negative
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Figure 3.7. Numerical intensities for the case of frequency pulling, with
parameters τ = 100, κ = 0.02, and b = 0.41. These intensities show sideband
oscillations far from the central dome. Each laser oscillates, but at different
frequencies. The blue curve is SCL1 and the red curve is SCL2. The measured
SOW are 0.0093 and 0.0227 for SCL1 and SCL2, respectively, which is exactly
equal to the analytic prediction.

oscillation width means physically, but the magnitudes are clearly correct. In the static PA

case both lasers oscillate with the same period;n the variable PA case one laser oscillates and

the other doesn’t. Another way of saying SCL2 doesn’t oscillate is to say that it’s oscillation

period is inf inity. By trying to solve the problem of frequency pulling we’ve stumbled upon

a more robust solution for the SOW, one that can predict the oscillation period of both lasers.

Now, the reason we started this investigation was to examine the physical scenario of

frequency pulling as it applied to the experimental setup, where b would be a small positive

number. If we substitute a value of b = 0.7 (arbitrary) into Eq. (3.19a&b) we get the

values SOW1 = 0.47/τ and SOW2 = 0.67/τ , which means that both lasers oscillate but

with different periods. This can be checked numerically by integrating the LK equations.

We’ll choose a b value such that the experimental slope obtained in Fig. 3.5 is predicted, i.e.
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SOWi = 2.273/τ . This slope means we choose b = 0.41. Both lasers may oscillate in this

case, but at least one of them should give us the desired SOW relation.

Figure 3.7 shows a numerical example of this frequency pulling phenomenon. Intensities

are generated by integrating the LK equations with parameters τ = 100, κ = 0.02, and

b = 0.41. The blue curve is for SCL1 and the red curve is for SCL2. Clearly both lasers

oscillate about the threshold intensity value, but their periods are different. The measured

SOW are 0.0093 and 0.0227 for SCL1 and SCL2, respectively, which are for all intents and

purposes exactly equal to the analytic prediction from Eq. (3.19a&b). An interesting feature

of the sideband oscillations is seen in Fig. 3.7, that the amplitude of the sideband oscillations

is proportional to the period. This will be discussed in more detail in the following chapter.

Our goal was to explain the altered experimental SOW vs. 1/τ slope with frequency

pulling. If this is the explanation then the frequency of SCL2 needs to be pulled by SCL1 at

a rate of 0.41ω1. A brief measurement of this pulling was made by measuring the frequency

of SCL2 with and without coupling, i.e. with and without light from SCL1 coupled into the

active region. No apparent change in frequency was observed. Furthermore, the numerical

intensities show that both lasers oscillate with relatively similar amplitudes. If such a fre-

quency pulling was present in the experiment then we should just as easily see the intensity

oscillations of SCL2 – however, this is not observed either. Figure 3.8 shows experimental

data for the same parameters as in Fig. 3.6, τ = 138 and κ = 0.0053. The left scale (blue)

is for SCL1 (blue curve), and the red scale/curve is for SCL2. Clearly SCL2 does not show

any evidence of sideband oscillations, certainly not at the same amplitude as SCL1.

We conclude that there is no good evidence for frequency pulling in our experimental

system. However, the analytic solution for arbitrary b provided us with a more robust

prediction method for the cases of static and variable PA, in that it allowed for predictions

concerning each laser’s oscillation widths. It’s a bit of a shame, as the experimental trendline

in Fig. 3.5 sits so perfectly between the two analytic predictions – it seems to be more than

just coincidence. Unfortunately, frequency pulling is not the reason for this discrepancy.
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Figure 3.8. Experimental intensities vs. detuning for SCL1 (blue) and SCL2
(red) for τ = 138 and κ = 0.0053. The intensity scale for SCL1 is on the left
in blue, and the scale for SCL2 is on the right in red. There is no evidence of
frequency pulling in this experimental data, as the intensity of SCL2 does not
appear to oscillate at all.
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3.6 Conclusion

We conclude this section by observing that the SOW results give us good reason to

trust our eigenvalue approach for explaining intensity behavior. It’s remarkable that the

Hamiltonian model, which ignores various system nonlinearities and carrier dynamics, is

capable of generating robust, closed form predictions for intensity phenomena despite having

a transcendental characteristic equation. The numerical data exactly reproduces the analytic

predictions, and the experimental data also matches the predictions to a very high degree.

Next we’ll turn to another feature of the delay-induced sideband oscillations – namely, the

amplitude and how it depends on system parameters. Again, we are interested these sideband

oscillations because they are only present with non-zero time delay, which is the unique built-

in feature our system posses.

59



4. SIDEBAND OSCILLATION AMPLITUDE

4.1 Introduction

Similar to the period of the sideband oscillations, we can obtain analytic predictions

about the amplitude as well, specifically the rate at which the oscillation amplitudes in-

crease/decrease with detuning. The sideband oscillation amplitude (SOA) is something that

can be easily measured in the lab, and thus will provide another good experimental ”check”

to investigate the validity of both the pseudo-Hamiltonian model and rate equation models

for our system. We define the SOA as the peak-to-trough intensity amplitude of each side-

band oscillation (see Fig. 4.1 for reference), and this value can be tracked as a function of

various system parameters. Again, the sideband oscillations are of great interest due to the

fact that they arise solely due to the time-delay. First an analytic prediction will be made

based on the reduced Hamiltonian model, and then numerical and experimental data will be

presented concerning these predictions.

4.2 Analytic Solution

Because of the successes we had with the sideband oscillation width, we will again start

with the pseudo-2x2 Hamiltonian model for the electric fields. In the lab we ultimately

measure the intensity amplitude of the oscillations – therefore, an understanding of the

amplitude of the eigenvalue oscillations will allow for comparison, as the steady-state laser

electric fields seem to be proportional to the real parts of the eigenvalues. Of course, since

we don’t know the direct numerical correspondence between eigenvalues and intensities, the

following analysis will only provide a prediction for the functional form of the SOA rate of

change.

Our road map is straightforward. The sideband oscillation amplitudes can be calculated

by subtracting the minima of λR from the maxima of λR for eigenvalue solutions with the

largest real part; if we can find expressions for both then our job is done. In the following
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Figure 4.1. Typical intensity vs. detuning plot for variable PA, κ = 0.02 and
τ = 100. The sideband oscillation amplitude (SOA) is defined as the peak-to-
trough intensity value for each sideband oscillation, as indicated in the figure
with black horizontal bars.
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analysis we’ll stick with the static phase accumulation case (θ = 0) for simplicity – we’ll

discover that the variable PA case (θ = θ0 + ∆ω) is a straightforward extension of the static

version.

Let’s begin with the λR maxima: starting from the F and G equations (whose shared

solutions are the system’s eigenvalues) it’s clear that the λR maxima correspond to the

horizontal maxima of G, since (for fixed PA) G does not depend on detuning. The F

”antennae” branches always intersect the maxima of G for some detuning. To solve for the

rightmost values of G we simply evaluate the first derivative of G with respect to λI and set

the result equal to zero. This gives us two coupled equations for λ:

G = 2λRλI + κ2e−2λRτ sin(2τ(λI + θ)) = 0 (4.1a)
dG

dλI

= 2λR + 2τκe−2τλRcos(2τ(λI + θ)) = 0 (4.1b)

Each equation contains the term e−2τλR – by isolating the term in each equation we find the

following relation for λI :

2τλI = tan(2τ(λI + θ)). (4.2)

This relation, while transcendental, is well approximated by the following:

λI = (2n + 1)π
4τ

− θ, (4.3)

where n is an integer representing the extrema number starting from the λR axis. This

approximation works particularly well, since the difference ∆λI = λIactual
− λIapprox will

produce some ∆λR, but at the maxima — by definition — ∆λR isn’t significant. It’s also

important to note that this condition is independent of κ.
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Figure 4.2. Typical F and G plot, with the x-axis representing λR and the
y-axis λI . In this figure τ = 75, κ = 0.02, and θ = 0. The indices n from Eq.
(4.4) are labeled in the figure, and the black arrows point to the maxima to
which the indices refer. Notice that there is no n = 2, since the G curve is
broken at that location.

To find the λR for which these maxima occur we simply substitute Eq. (2.3) into Eq.

(2.1a), which produces the following relation for λR:

2τλRe2τλR = −κ2τ 2cos(nπ)
(2n+1)π

4 − θτ
(4.4)

Only odd n provide the maxima of λR (see Fig. 4.2 ), and by utilizing the Lambert W

function λR can be written explicitly as

λRmax = 1
2τ

W0

(
(2κτ)2

(2n + 1)π − 4θτ

)
. (4.5)

The W0(x) term is the zeroth branch of the Lambert W function, which is defined as the

inverse of xex. The Lambert function will be covered in detail in chapter 6; for now the

intricacies of W are not important, only that it allows for closed solutions of λR.
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Now we turn to the minima of λR. There are two ways for minima λR to occur:

1. When G is broken (discontinuous) across the λR axis (i.e. for κτ ≥ 1/
√

2e) the minima

come from F and G intersections where one solution moves left along the λR axis and

the next solution over moves right.

2. When G is continuous, the minima come from the even n in Eq. (4.5).

Let’s begin with the first condition – at a certain detuning, two neighboring intersections of

F and G with different λI values will have the same λR value. This leads to a set of four

coupled equations for the two sets of coordinates (λR, λI1) and (λR, λI2) and the detuning

∆ω for which they occur:

λ2
R − λ2

I1 + ∆ω2 − κ2e−2λRτ cos(2τ(λI1 + θ)) = 0 (4.6a)

λ2
R − λ2

I2 + ∆ω2 − κ2e−2λRτ cos(2τ(λI2 + θ)) = 0 (4.6b)

λRλI1 + κ2e−2λRτ sin(2τ(λI1 + θ)) = 0 (4.6c)

λRλI2 + κ2e−2λRτ sin(2τ(λI2 + θ)) = 0 (4.6d)

It turns out that these cannot be solved analytically, since by combining the third and

fourth equations we arrive at a transcendental equality for the λI :

λI1

sin(2τ(λI1 + θ)) = λI2

sin(2τ(λI2 + θ)) . (4.7)

However, since for typical values of κτ G is only broken for small n, it turns out that condition

(1) is not relevant for large n, i.e. far from the central dome. This region of large n was

also investigated in the SOW analysis, as the analytic prediction was only valid for high

oscillation number. In that unbroken G region minima condition (2) holds, and we already

have an analytic expression for that — Eq. (4.4). By choosing even n this time we can write

the λRmin as

λRmin = 1
2τ

W0

(
−(2κτ)2

(2n + 3)π − 4θτ

)
. (4.8)
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Note the slight change in the denominator inside the Lambert function from (2n + 1) to

(2n+3) when comparing Eqs. (4.5) & (4.8). Now the SOA can be evaluated as the difference

between λRmax and λRmin :

SOA = 1
2τ

[
W0

(
(2κτ)2

(2n + 1)π − 4θτ

)
− W0

(
−(2κτ)2

(2n + 3)π − 4θτ

)]
(4.9)

The question is now this: what is the behavior of the SOA for large n? That is, of course,

the region for which this analysis is valid. By large n we mean that the arguments of the W

functions are much less than 1: 2κ2τ2

nπ
<< 1. For large n the phase accumulation term θτ is

washed out, and therefore PA has no impact on the SOA, just like the SOW analysis. The

Lambert W function can be approximated by the series

W0(x) ≈ x − x2 + 3
2x3 − ... (4.10)

which becomes linear for small x. However, since the expansion terms are rather large for

the W function, for a linear approximation to be valid x must be on the order of 0.1. This

corresponds to an n value of around 10-20 oscillations. After making a linear approximation

of Eq. (4.9) we find that the sideband oscillation amplitude has the following dependence

on κτ :
SOA

κ
= 2κτ

nπ
. (4.11)

The SOA scaled by κ has 1) an inverse dependence on n and 2) a linear dependence on κτ ,

which can both be checked numerically and experimentally. The first part of this prediction

seems reasonable, as both numerical and experimental intensity profiles show a decreasing

sideband amplitude as |∆ω| increases. Of course, the constants involved in this prediction

may differ from numerical and experimental results due to the unknown correspondence

between eigenvalue and intensity, but the functional form should be valid.
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4.3 Numerical SOA Results

Using the LK rate equation model we can numerically measure the SOA as a function

of both n and κτ . First, an intensity profile is generated by integrating the LK equations

and plotting the results as a function of detuning. For consistency we choose to measure

oscillations on the positive ∆ω side of the central dome. Only oscillations far from the dome

are measured. Figure 4.3a shows a typical intensity profile for experimental parameters

(κ = 0.02, τ = 100). The SOA is measured by numerically searching for the intensity

maxima and minima and taking the difference. The inverse of SOA/κ is then plotted vs.

oscillation number n, for which we expect a linear fit. The slope of the fit should in theory

be equal to π/(2κτ). The intercept of the fit gives the initial oscillation number, which is

not anything we’re interested in. Figure 4.3b shows the (SOA/κ)−1 vs. n curve for the

intensity data in Fig. 4.3a – the results are almost perfectly linear, confirming the first

prediction about the dependence on n. Surprisingly, the actual value (0.755) is very close to

the prediction (0.785), but only for the variable PA case. Of course, we were not expecting

such correspondence between the exact prefactors of the theoretical results and the numerical

data.

By finding the slope of these linear fits for multiple values of κτ and plotting the inverse

of these slopes (which we call M) as a function of κτ we are able to generate Fig. 4.3c, which

shows the linear dependence of M on κτ . The analytic predictions for this slope is 2/π. The

star points are for variable PA and the circle points are for zero PA. The different colors in

Fig. 4.3c correspond to different values of κ, and the linear trends hold well for κτ < 5 in

both cases. This result confirms the second prediction of Eq. (4.11). It really is remarkable

that there is so much correspondence between the pseudo-Hamiltonian model and the rate

equation model, as the Hamiltonian model lacks many of the complicating pieces of the LK

equations. For higher κτ we need access to very high oscillation numbers n, and since the

rate equation model is only valid for small detunings (∆ω < 1) we are unable to actually
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(a) SCL 1 intensity vs. detuning for
variable PA. In this plot κ = 0.02 and
τ = 100. Only one laser is shown in
this figure.
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(b) SOA inverse vs. n. This data as
taken from Fig. 4.3a (same parameters).
The slope of the fit (0.755) is very close
to the analytic prediction (0.785).
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(c) M as a function of κτ . The star points are for the variable PA
case, and the circle points are for zero PA. The colors correspond to
different values of κ (see figure legend). The solid and dashed lines
are the linear fits for zero PA and variable PA, respectively.

Figure 4.3. A summary of numerical SOA results. Plots a and b are for κτ =
2. Once an intensity profile (Fig. 4.3a) is generated, the SOA is numerically
calculated and the inverse is plotted against index number n (Fig. 4.3b). By
repeating this process for many combinations of κτ Fig. 4.3c is generated;
both the variable PA and zero PA cases were studied.
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generate such high oscillation numbers numerically; this is what slightly throws the data off

the linear trend. For the zero PA case the slope of this trend is 0.33 – surprisingly, for the

variable PA case the slope is almost exactly twice the zero PA slope, at 0.65. Similar to the

SOW phenomenon, a factor of 2 separates the results from each case. Furthermore, the slope

for the variable PA case is almost exactly equal to the analytic prediction of 2/π. Again, we

were not expecting any such correspondence.

As an aside, the factor of 2 difference between the variable PA and zero PA models can be

explained by the following logic. The variable PA has the effect of generating twice as many

sideband oscillations for a fixed detuning when compared to the zero PA case. Furthermore,

for every other sideband oscillation, the F and G equations in each case must overlap by

definition. Therefore we expect the amplitudes in the variable PA case to change twice as

slowly, which results in a steeper M vs. κτ plot.

4.4 Experimental Results

The procedure for experimental measurement of the SOA is similar to the numerical

case: generate an intensity profile as a function of detuning and measure the peak-to-trough

amplitude of the sideband oscillations. A slight complication arises due to experimental

realities, however; for larger κτ values the sidebands are hard to experimentally observe,

as their amplitudes are very small. Therefore we make the compromise of measuring the

oscillations immediately following the central dome, since those oscillations are large. We

then have the added benefit of measuring the SOA in a region in which the amplitude rate of

change is the greatest, which may allow for better results due to limited detector resolution.

This means the large n approximation will not hold, but even with this complication the

data still fits the predictions reasonably well.

Figure 4.4a shows a typical experimental intensity profile for κ = 0.008 and τ = 138.

These oscillations are somewhat noisy, but there is enough resolution to measure the peaks

and troughs. From this data we are able to generate a (SOA/κ)−1 vs. n plot, shown in Fig.
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4.4b. Again we see a very good linear fit, confirming the first prediction of Eq. (4.11). Slopes

are measured for several combinations of κτ , and the resulting M vs. κτ plot is given in Fig.

4.4c. Here there is less agreement with the analytic prediction. A linear trend is not clear

– there is a monotonic increase in M, but the value of M seems to saturate for higher κτ ,

almost looking like a square root curve. There are many experimental complications that

may explain the poorness of this fit:

1. We do not have access the high n region needed for the analytic prediction to be valid.

2. The intensity signal is noisiest near the central dome, which is very close to where we

are measuring the SOA.

3. Unlike the SOW measurements, the sideband amplitudes depend on the actual SCL

intensity values. Care must be taken to ensure a proper detector calibration between

data sets of different parameters. By decreasing the coupling strength the net intensity

level of both lasers drops (due to the mutual injection and beam alignment) – this effect

is not present in the numerical model. By scaling each data set by a base intensity

level we attempt to overcome this complication, but it is not perfect.

4. As always there is uncertainty in κ, both due to the transmitted power vs. voltage

curve from calibrating the detector and due to the fact that not all of the incoming light

is actually injected into the lasers’ active regions (something that we did not attempt

to measure). There is phenomenological evidence for reducing the final value of κ by a

factor of 10, which we already include in our coupling strength definition.

There is much room for improvement in this experiment, and perhaps better agreement can

be obtained by future graduate students with more time. With the success of the SOW

results and the good linearity of the (SOA/κ)−1 vs. n plots, it’s reasonable to assume that

the final piece should match the prediction a bit better than it does.
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(a) Experimental SCL 1 intensity vs. de-
tuning. In this plot τ = 138 and κ =
0.008. Only one laser is shown in this fig-
ure (the one that oscillates).
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(b) SOA inverse vs. n. This data was
taken from Fig. 4.4a (same parame-
ters). The slope of the fit (0.00923) is
not anywhere near the analytic prediction
(1.423).
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(c) M as a function of κτ . The overall behavior is not quite
linear, though it does seem to monotonically increase, perhaps
saturating for large κτ .

Figure 4.4. A summary of experimental SOA results. Plots a and b are
for κτ = 1.10. Once an intensity profile (Fig. 4.4a) is generated, the SOA
is numerically calculated and the inverse is plotted against index number n
(Fig. 4.4b). By repeating this process for many combinations of κτ Fig. 4.4c
is generated. The linear trend in Fig. 4.4b is good confirmation of the first
SOA prediction – however, there is not a linear trend in Fig. 4.4c, which does
not confirm the second SOA prediction.
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It’s somewhat surprising that the first prediction of Eq. (4.11) is experimentally repro-

duced so well, but the second is not. Nevertheless, the experimental results are further proof

that the analytic model is very useful for explaining the underlying reasons for complicated

intensity behavior. agarwal_spontaneous_2012
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5. CENTRAL DOMEWIDTH

5.1 Introduction

In this chapter we will discuss the central domewidth of the SCL intensity, which is

proportional to the frequency detuning at which the PT-transition occurs. For convenience

we will refer to the domewidth as ∆ωc, as it is ultimately a detuning measurement. Of

course, for nonzero delay the system is no longer PT-symmetric; however, the SCL intensities

still show a sort of ”phase transition” between bounded and divergent behavior near the PT-

symmetric detuning ∆ω = κ. Figure 5.1 shows an example intensity profile for the two lasers

for the case of variable PA. There is a transition between bounded behavior (|∆ω| > κ) and

divergent behavior (|∆ω| < κ), although the transition is no longer as clear as the zero delay

case. We therefore experimentally define the domewidth as the detuning region for which

the central dome intensity stays above a threshold value for each laser (horizontal dash-dot

line). The domewidth is then the detuning range for which this condition holds (vertical

dashed lines). The time delay has the effect of widening this divergent intensity region

non-monotonically, and we attempt to investigate this feature analytically, numerically, and

experimentally. Unlike the previous two chapters, the domewidth is an inherently PT-

symmetric phenomenon (at least in the absence of delay), as so we will now see firsthand

how the complication of nonzero time delay affects PT system features.

First, an analytic prediction will be obtained via the Hamiltonian model. Next, this

prediction will be checked against numerical and experimental intensity data. Ultimately we

find that there is less agreement between the experimental results and the theoretical pre-

dictions, but that the qualitative features of the predictions are present in the data. We also

briefly explore parameters spaces that may explain discrepancies between the experiment,

LK model, and theory.
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Figure 5.1. Example of the central domewidth for variable PA with param-
eters τ = 100 and κ = 0.02. Intensities of SCL1 (blue) and SCL2 (red) are
plotted as functions of detuning. There is a phase transition between bounded
behavior (|∆ω| > κ) and divergent behavior (|∆ω| < κ), but this detuning
location may not be equal to the PT-symmetric value. The domewidth ∆ωc is
defined by the detuning range for which the SCL1 intensity stays above some
threshold value (dash-dot horizontal line). The vertical dashed lines show the
detuning locations for where this transition occurs.
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5.2 Eigenvalue Analysis

The following theoretical analysis is based on a method first carried out by Dr. Yogesh

Joglekar for the case of zero phase accumulation. My contribution was to extend the analysis

to nonzero and variable PA.

Just like the sideband oscillation width and amplitude, the domewidth can be explained

by examining the Hamiltonian model’s eigenvalues, specifically the eigenvalues with the

greatest real part. In the limit of zero time-delay the PT-transition is defined by the phase

transition from real to imaginary eigenvalues; in other words, when the real parts of the

eigenvalue solutions transition from zero to nonzero. We’ll define the analytic domewidth

in a similar way: the domewidth ∆ωc is the frequency detuning for which, starting from

∆ω = 0, the real part of the dominant eigenvalues first becomes zero. Because we do not

have experimental access to eigenvalues we use a slightly different definition when it comes to

numerical and experimental observation, the definition being laid out in the first paragraph

of the previous section.

For this analysis we again start with the F and G equations (Eq. 3.3e&b) and try to

find an expression for the location of where the dominant eigenvalue solutions first cross the

y-axis. In chapter 3 we obtained an expression for the detunings at which the real part of

the dominant eigenvalues cross the y-axis:

∆ωn = ±κ

√√√√(−1)n + (nπ)2

(2κτ)2 + θ2

κ2 − nπθ

κ2τ
(5.1a)

∆ωn = κ2(−1)n(
nπ

τ
− 2θ0

) + 1
4
(nπ

τ
− 2θ0

)
. (5.1b)

Equation (5.1a) is for static phase accumulation and Eq. (5.1b) is for variable phase accumu-

lation. The n value describes which crossing we’re dealing with, as the dominant eigenvalues

oscillate back and forth across the y-axis. Since we’re looking for the crossing for which the

dominant eigenvalue’s real part first becomes zero we naively set n = 0 and solve for ∆ω0,
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which should then give us the domewidth ∆ωc. However, when κτ is larger than 1 the n = 0

choice is not valid for ∆ωc – yes, there is an eigenvalue crossing of the y-axis at this detuning,

but just before that crossing the next eigenvalue over overtakes the crossing eigenvalue’s real

part and stays positive. In other words, the dominant eigenvalue stays positive past the first

∆ωn detuning value, and we must use the next crossing over, n2. This is demonstrated in

Fig. 5.2, which shows the F (blue) and G (red) curves for static PA with the parameters

τ = 100, κ = 0.03, and θ = 0. The dominant eigenvalue (the rightmost intersection of F

and G) has positive real part in Fig. 5.2a. As the detuning is increased towards ∆ω0, the

first y-axis crossing, that dominant eigenvalue’s real part decreases towards zero. However,

the eigenvalue with the second most real part begins moving toward the y-axis (Fig. 5.2b).

Depending on the value κτ the second eigenvalue can actually overtake the first’s real part

and become the dominant eigenvalue before the original eigenvalue crosses the y-axis, and

so the dominant eigenvalue stays positive past ∆ω0 (Fig. 5.2c). The dominant eigenvalue

hops from one intersection to the next.
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(a) ∆ω = 0.023
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(c) ∆ω = 0.043

Figure 5.2. F (blue) and G (red) curves for zero PA, τ = 100, and κ = 0.03.
For values of κτ > 1 the dominant eigenvalue remains positive beyond ∆ω0 in
Eq. (5.1a). As the detuning is increased (subplots left to right) the dominant
eigenvalue moves left along the Re(λ) axis, while the next eigenvalue over
moves right. It’s possible for the second most dominant eigenvalue to surpass
the real part of the existing dominant eigenvalue such that the overall real part
stays positive. These two eigenvalues, dominant and second most dominant,
are circled in the subplots. Notice that in Fig. 5.2c the second most dormant
eigenvalue has become the dominant eigenvalue.
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So, how do we know which n value to use? If one eigenvalue’s real part crosses from

positive to negative while at the same time the adjacent eigenvalue’s real part crosses from

negative to positive, the system exhibits a dominant eigenvalue that is always positive. This

reasoning will let us solve for the discontinuities (κτ)n for which we must change our value

of n in order to accurately find ∆ωc.

With the above condition for finding (κτ)n we get, for the case of zero PA, the expression

1 + (2nπ)2

(2κτ)2 = −1 + ((2n + 1)π)2

(2κτ)2 (5.2)

which gives the values of (κτ)n

(κτ)n = π

2
√

2
√

4n + 1 (5.3)

which in conjunction with Eq. (5.1a) gives a complete analytic solution for the domewidth.

For variable PA a similar method is used to find (κτ)n:

(κτ)n = π

2

√
2n(2n + 1)

4n + 1 (5.4)

The behavior of these equations is plotted in Fig. 5.3. Domewidth scaled by κ is plotted

as a function of κτ . The solid curve is for zero PA and the dashed curve is for variable PA. The

central domewidth will increase non-monotonically as a function of κτ , essentially ”widening”

beyond the PT-symmetric value of ∆ω/κ = 1. In both PA scenarios the domewidth jumps

discontinuously at the prescribed locations (κτ)n, with the variable case having twice as

many ”sawteeth” for a given κτ range (again, the factor of 2 appears when comparing the

variable to static case!). Asymptotically, for large κτ the domewidth increases linearly with

a slope 2π. This asymptotic slope is common to both PA cases and can be derived from Eq.

(5.1a&b). Taking the limit of large κτ and combining expressions (κτ)n and ∆ωn reduces

the domewidth solutions to ∆ωc/κ ≈ 2
π
κτ for both PA cases.
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Figure 5.3. Analytic solution for ∆ωc/κ as a function of κτ . The domewidth
is expected to increase non-monotonically as a function of coupling strength
and delay. The solid curve is for zero PA and the dashed curve is for variable
PA.
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Interestingly, the domewidth predictions differ dramatically when κτ < 1; in the zero PA

case the domewidth is constant, equal to the zero-delay PT-symmetric case. In the variable

PA case the domewidth diverges for small κτ . This is due to the fact that for variable PA

the eigenvalue solutions with positive Im(λ) obey Eq. (5.1b); for eigenvalues with negative

Im(λ) that equation does not work. We are not sure exactly as to why this is; however,

for consistency we choose to analyze only the dominant eigenvalues in the Im(λ) half of the

plane. A consequence of this is that if κτ < 1.9 then there are no dominant eigenvalues

with positive real parts, leading to divergent and incorrect domewidths. After κτ = 1.9 the

domewidth prediction is valid.

There are two main predictions for the domewidth, for either PA case: 1) the domewidth

increases non-monotonically as a function of κτ with an asymptotic slope 2/π, and 2) there

are discontinuous jumps at prescribed κτ locations. We now examine the numerical results.

5.3 Numerical Results

By integrating the LK equations and generating intensity plots we can check the above

prediction via numerical analysis. The procedure is to generate an intensity vs. detuning

plot for a given κτ , find the detuning range over which the intensity of SCL1 stays above

some threshold value, and then recording that data. This can be done for many combinations

of κτ until a corresponding ∆ωc/κ vs. κτ plot is filled out. The threshold intensity is chosen

such that the zero-delay domewidth is exactly equal to κ. This ensures the domewidth plot

starts at 1 on the y-axis.

5.3.1 Zero Phase Accumulation

Figure 5.4 shows numerically generated domewidth plots for zero PA. The y-axis is ∆ωc

and the x-axis is κτ . For the top plot, κ is fixed to be 0.2 while τ is swept from 0 to 25; in the

bottom plot κ = 0.1 and τ runs from 0 to 50. Both plots use the same intensity threshold to

measure ∆ωc. The data does not exactly reproduce the prediction in Fig. 5.3, but there is
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(a) κ = 0.2, τ = 0 − 25
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(b) κ = 0.1, τ = 0 − 50

Figure 5.4. Numerical domewidth for zero PA. The y-axis is the measured
domewidth ∆ω/κ and the x-axis is κτ . In both plots we fix κ and sweep
τ . The two predictions from Fig. 5.3 are present in the top plot, less so in
the bottom plot: 1) a non-monotonic increase in ∆ωc/κ and 2) discontinuous
jumps near the predicted κτ (compare to Fig. 5.3). It seems that the accuracy
of the domewidth prediction requires τ to be small.

strong evidence for the two main predictions. The domewidth increases non-monotonically

with an apparent slope of 0.3 (for the top plot, about half the prediction), and there are
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discontinuous jumps near where the analytic model predicts. The exact size of the jumps do

not necessarily match the prediction, but since the definition for domewidth differs between

the two models we find that there is reasonably good agreement. Similar behavior is seen for

SCL2. Figure 5.4b does not match the prediction as well as Fig. 5.4a. This is due to the fact

that the domewidth depends on κ and τ independently when it comes to the LK equations

and experiment. For whatever reason the accuracy of the analytic solution requires τ to be

small ( 0-30), which is physically hard to implement (cavity length of 0-10cm). In both plots

the coupling strength is very large, which is also not achievable in the lab.

5.3.2 Variable Phase Accumulation

For variable PA the domewidth plot is given in Fig. 5.5, where κ = 0.2 and τ is swept

from 0 to 25. This domewidth measurement used the same threshold level as in Fig. 5.4a&b.

Again, to a reasonable degree the numerical results matches the prediction in Fig. 5.3 for

variable PA. After κτ = 1.9 the domewidth increases non-monotonically with a similar

slope ( 0.4), and it appears to have discontinuities near the prescribed values (κτ)n. Before

κτ = 1.9 the results are hard to decipher, but they stay close to ∆ωc/κ = 1.5. Again, we

emphasize that the analytic prediction for variable PA is not valid for this range.

5.3.3 Timescale Variation

How can the numerical results be improved? We attempted to find better agreement

between the analytic and numerical results by modifying the physical parameters of the

system to drive the numerical model more toward the analytic reduction. The parameter we

alter is the ratio of the carrier to photon lifetime, T. One of the assumptions made to reduce

the LK equations to the Hamiltonian model is that the carrier dynamics can be ignored.

This can be achieved by setting T to a higher number than it’s current value (100), since

the rate of change dNi
dt

is inversely related to T (Eq. 2.1c&d). If T is large, the carrier

inversion does not change. This is not a parameter that we can alter in the lab, as it is tied

80



0 1 2 3 4 5
1

1.5

2

2.5

Figure 5.5. Numerical domewidth plot for variable PA, κ = 0.2 and τ = 0 −
25. The y-axis is the measured domewidth ∆ω/κ and the x-axis is κτ . When
κτ > 1.9 the observed behavior reasonably matches the analytic prediction in
Fig. 5.3 (dashed line).
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to semiconductor material characteristic, but such an alterations easy to vary numerically.

This T behavior was investigated numerically by repeating the domewidth measurement for

large and small T, T=1000 and T=10. The results are plotted in Fig. 5.6a&b. Figure 5.6a

is for T = 1000 and Fig. 5.6b is for T=10. Surprisingly we get the opposite of what we

expected: the domewidth measurements are better for smaller T. This can be explained by

noting that a small ratio T means the carrier lifetime is comparable to the photon lifetime; in

other words, a change in SCL intensity is almost immediately followed by the corresponding

change in carrier inversion. In this limit the carrier dynamics mirror the intensity dynamics

with a small time lag (depending on T), and if this time lag is small then the carrier dynamics

can be effectively be ignored.

In summary, the LK equations show reasonably good agreement with the analytic pre-

diction, albeit for a limited parameter range.

5.4 Experimental Results

The experimental method for determining the domewidth as a function of κτ is the same

as the numerical case: generate an intensity vs. detuning curve for SCL1 (swept laser),

find the detuning range for which the intensity remains above some threshold value, and

record this range as the domewidth ∆ωc. Figure 5.7 shows the experimental results. The

orange points are for a delay of 95 and the blue points are for a delay of 180, and κ is

swept to obtain the corresponding κτ points. At first glance there doesn’t seem to be much

correspondence between this plot and the dashed-curve in Fig. 5.3. However, we argue that

there is evidence for agreement with the analytic variable PA model. First, Fig. 5.7 shows

that the experimental data has discontinuous jumps near the prescribed locations (κτ)n.

There is a jump near κτ = 1.7, 2.5, 3, 3.6, and 4, although the magnitudes certainly do not

match the prediction. Comparing these values with those in Fig. 5.3 and we see they are

not far off the jumps in the dashed curve. Next, the domewidth remains constant before

κτ = 1.5, which is also present in the numerical results in Fig. 5.5. This constant ∆ωc/κ
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(a) κ = 0.2, τ = 0 − 25, θ = 0, T = 1000
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(b) κ = 0.1, τ = 0 − 25, θ = 0, T = 10

Figure 5.6. Domewidth plots for two different values of T, the ratio of carrier
to photon lifetimes. The top plot is for T=1000 and the bottom is for T=10.
We naively expect better results for large T; however, the opposite is true.
Notice how the slope of the bottom plot (T=10) is very close to the prediction
of 2/π.

83



Figure 5.7. Experimental domewidth ∆ωc/κ vs. κτ . The orange points are
for τ = 95 and the blue points are for τ = 180. Arguably, the main features
of the analytic prediction are present in this plot, namely large discontinuities
near the prescribed (κτ)n, a static domewidth before κτ = 1.9, and an overall
increasing domewidth until κτ ≈ 4 where the value saturates.

behavior is predicted in the zero PA case as well. Finally we see that the overall domewidth

increases non-monotonically until κτ ≈ 4 upon which the value saturates for larger κτ .

This saturation is present in the numerical results as well, and of course the experiment

is expected to share more features with the LK model than the analytic model. Figure 5.8

shows the domewidth saturation for large κτ . For κ = 0.2 and θ = 0 the delay time is swept

over a range 0-75. The domewidth increases non-monotonically until it eventually saturates

to a constant value. The value of κτ for which this saturation occurs decreases as the value

of κ decreases. In other words, for experimental values of κ and τ the domewidth saturates

for κτ on the order of 4-8. This may explain why the experimental data appears to saturate

near κτ ≈ 4.

5.5 Summary

While the domewidth measurements seem less robust when compared to the sideband

measurements, there is still good evidence that the central domewidth can be explained via
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Figure 5.8. Domewidth saturation. The parameters for this plot are κ = 0.2,
τ = 0 − 75 θ = 0, and T = 100. The measured ∆ωc/κ increases until it
saturates to a constant value. The κτ for which the domewidth saturates
depends on τ .
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an eigenvalue method based on the reduced Hamiltonian model. In the absence of delay

this Hamiltonian model agrees extremely well with the LK equation intensities, and the

system exhibits a PT-transition exactly when ∆ω = κ. The added complexity of time

delay serves to widen this transition in a non-monotonic fashion, which is supported by

analytic, numerical, and experimental results. The instantaneous SCL intensities in and

near the central dome are subject to chaotic behavior, and for a given detuning the SCL

intensities may fluctuate with large amplitudes in time, reaching values of I/Ith = 1.3 − 1.4.

Therefore we expect noisier data in this region, even after time-averaging the numerical

and experimental data. The asymmetric dependence of the domewidth on κ and τ , seen

in the numerical investigation, also makes this feature unique when compared to the SOW

and SOA results. Finally, the domewidth measurement is highly dependent on the intensity

threshold used to determine the domewidth detuning range. Due to the chaotic behavior of

the lasers near ∆ω = κ and the emergence of high-amplitude sideband oscillations near that

same transition, a small change in threshold intensity can completely alter the domewidth

results. Overall the central PT-transition is much more sensitive to system parameters, and

it is unclear how much more improvement in experimental measurement there can be with

our current ”off-the-shelf” equipment.
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6. EXCEPTIONAL POINTS

This chapter is written as a theory paper to be submitted for publication. It is presented here

in its entire form, with minor editing.

6.1 Introduction

Recent years have seen an explosion of interest in parity-time symmetric (PT ) systems

which are described by a class of non-hermitian Hamiltonians that may yield real eigenvalues

under some conditions [14 ]–[24 ]. PT-symmetric Hamiltonians are invariant under simulta-

neous application of parity (x → −x, p → −p) and time-reversal (t → −t) operators [14 ],

[15 ], and a system described by such a Hamiltonian can be tuned via a non-Hermiticity

parameter such that the eigenvalues undergo a transition from real to complex. The fun-

damental interest in PT-symmetric Hamiltonians arises from the possibility of extending

quantum mechanics to open systems and complex space, where non-Hermiticity is associ-

ated with energy or probability dissipation. PT-symmetry requires a complex potential, and

since the refractive index in optics (which is related to gain/loss) plays the role of potential,

optical systems have been a fertile playground for the implementation of PT-symmetry, and

various configurations with balanced gain and loss have been proposed and demonstrated

[24 ], [51 ]–[54 ]. On the applied front, PT-symmetric systems have applications that include

unidirectional light propagation and single-mode lasing, among others [30 ], [55 ]–[57 ].

One common realization of a PT-symmetric dimer consists of two evansecently coupled,

single-mode waveguides, one of which has gain and the other an equal amount of loss [24 ].

Denoting the gain/loss by ±γ and the mutual coupling by κ, the resulting Hamiltonian is

H =

iγ κ

κ −iγ

 . (6.1)
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The eigenvalues of this matrix are given by λ = ±
√

κ2 − γ2, which are real for γ < κ, com-

plex for γ > κ, and for γ = κ the two eigenvalues become degenerate and the corresponding

eigenvectors coalesce. The regime with real eigenvalues is referred to as the PT-unbroken

phase, and the regime with complex eigenvalues is the PT-broken phase. In the unbroken

regime the wavefunction norm is bounded, but in the PT-broken regime the norm grows

or decays exponentially. The transition from one phase to the other is marked by a sharp

threshold, γ = κ in this case, and this point is called an exceptional point (EP), defined by

degenerate eigenvalues and parallel eigenvectors at this threshold. EPs are generic properties

of non-hermitian matrices and as such appear in classical and quantum systems that can

be characterized as eigenvalue problems. They were extensively discussed in nuclear physics

[33 ], predicted in quantum chaotic systems [34 ], and shown to occur in coupled microwave

cavities [35 ]. The EP boundary between the PT-broken and unbroken regions is a key feature

of PT-symmetric systems, and there has been considerable effort devoted to investigating

the properties of EPs [36 ], [58 ]–[70 ]. Indeed, very recently the importance of EPs in PT-

symmetric photonic systems has received much attention (see e.g. Ref. 36). In particular,

because the variation across an EP leads to an abrupt increase in the norm of the wavefunc-

tion, there has been an interest in exploiting EPs for enhanced sensing applications. It has

been shown that when operating a non-Hermitian system near an EP with n degeneracies,

a small perturbation ε produces an eigenvalue response of order ε1/n, as opposed to a linear

response in Hermitian systems [29 ], [71 ]–[73 ]. For ε < 1 this can enormously increase sensing

resolution.

This section is motivated by a recent experimental implementation [74 ] of a classical PT-

symmetric dimer in a pair of mutually coupled semiconductor lasers (SCLs), wherein light

from one SCL is injected into the active region of the other SCL and vice-versa, as shown

schematically in Fig. 6.1. A time-delayed coupling arose naturally in this system because the

physical separation between the lasers was comparable to the characteristic time scales of the

lasers (photon and carrier inversion lifetimes), thereby introducing a novel element into the
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study of PT-symmetry [75 ]. It is important to emphasize that even though only two lasers

are coupled to each other, this dimer configuration now becomes infinite-dimensional due to

the delayed coupling. Without the time-delay our system has, under certain approximations,

an effective Hamiltonian reminiscent of Eq. (6.1), with the diagonal elements now being the

relative detuning between the lasers (±∆ω) and the off-diagonal elements being the coupling

strength of light from one laser into the other (κ) [73 ], [74 ]. The relative detuning ∆ω is

therefore the non-hermiticity parameter for the coupled SCLs. As we have shown in prior

work [40 ], [58 ], despite a time-delayed coupling the SCLs continue to show remnants of PT-

symmetric behavior commonly seen for zero delay, i.e. an abrupt phase transition across a

boundary determined by the EP at ∆ω = κ. The delay also introduces new features into

the behavior of the system, e.g. additional transitions (referred to as “sideband transitions”)

which manifest themselves as oscillations in a laser’s intensity as the relative detuning is

varied. These additional transitions were observed experimentally and faithfully reproduced

in our numerical analysis based on a model that is commonly used to study coupled SCLs

[42 ]. Typical numerical and experimental results are given in Fig. 6.2a&b, respectively,

which show the intensity of the two SCLs as the relative frequency detuning is swept. In

Ref. 75 we characterized the dependence of these additional transitions on coupling strength

and time-delay through experiments, simulations, and analytic calculations.

The aforementioned sideband transitions and the infinite-dimensional nature of the sys-

tem provided the stimuli for our examination of the nature of EPs in delay-coupled SCLs.

Are there EPs in a PT-symmetric dimer if a time-delay is introduced in the coupling term?

If so, how many are permitted, and under what conditions do these EPs appear? To ad-

dress these questions, the emphasis of this paper is on an analysis of the eigenvalues and

eigenvectors of the infinite-dimensional effective Hamiltonian that arises when a time-delayed

coupling is introduced into an otherwise conventional PT-symmetric system. We begin our

investigation by presenting a rate equation model that is used to describe a pair of mutually

coupled SCLs, which we have shown in a previous work to reduce to the form of Eq. (6.1)
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under certain reasonable approximations [43 ]. The inclusion of a time-delay in the coupling

term makes analytical solutions very difficult, so we first report numerical results on the

eigenvalues and eigenvectors of the system. We then use the Lambert W function, which we

have shown recently can be used to study the dynamics of a laser with time-delayed coupling

[44 ], to obtain analytical results which are in excellent agreement with the numerical results

[74 ]. The analytic results allow us to establish constraints on parameters of the system which

lead to EPs. In addition to revealing the overall behavior of the eigenvalues and eigenvectors

in a time-delayed PT-symmetric system, our work establishes, numerically and analytically,

that depending on parameter choices this system can have one, two, or zero second-order

EPs and one third-order EP, in contrast to the zero-delay configuration wherein there is only

one EP at ∆ω = κ.

SCL1

ω1

SCL2

ω2

BS1

BS2

VND

Figure 6.1. System diagram. Light emitted from each semiconductor laser
(SCL) is directed by beam splitters (BS) back into the other’s active re-
gion. The coupling strength is controlled with a variable neutral density filter
(VND), and the frequencies of the lasers (ω1,2) are modulated by adjusting the
SCLs’ operating temperatures.

In Section 6.2 we present the rate equations for the lasers’ intracavity electric fields and

carrier inversions and reduce them to a pseudo-2x2 effective Hamiltonian. A numerical anal-

ysis of the eigenvalues and eigenvectors of this effective Hamiltonian is presented in Section

6.3, with special attention paid to the parameter conditions under which EPs can occur.

Since the time-delayed system has infinite eigenvalues (and therefore infinite eigenvectors),

we focus only on the seven largest ones which have the greatest influence on the intensity
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Figure 6.2. Numerical (panel a) and experimental (panel b) intensities for
delay-coupled SCLs. The x-axis is the frequency detuning between the lasers
(scaled by the coupling strength) and the y-axis is SCL intensity scaled to
the background intensity. In both plots the scaled delay time τ is 120 and
the scaled coupling rate κ is 0.02. All timescales are in units of the SCL
photon lifetime, 10ps. There is a phase transition near ∆ω/κ = 1 where the
intensities change from oscillatory to exponential growth/decay. The sideband
oscillations are not temporal oscillations due to complex eigenvalues; rather,
these are slow oscillations that remain after a 10ns averaging process and arise
solely due to the non-zero delay. The asymmetry between lasers is due to the
fact that only one laser’s frequency is swept (blue) while the other is held fixed
(red).

dynamics of the SCLs. Section 6.4 contains analytical results wherein we derive constraints

on the relevant parameters which delineate regimes in which the EPs arise. The analysis is

based on the use of the Lambert W function [44 ], and predictions of the analytical results

are in excellent agreement with the numerical results. Finally, we conclude with a summary

and discussion of the results.

6.2 Model

We begin by reviewing the reduction of the rate equation model that describes coupled

SCLs to an effective Hamiltonian that resembles a conventional PT-symmetric system. The
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rate equations are based on the Lang-Kobayashi model [41 ], which is often used to simulate

SCL behavior [41 ], [45 ]–[48 ], [76 ], [77 ]. They are as follows:

dE1

dt
= (1 + iα)N1(t)E1(t) + i∆ωE1(t) + κe−iθτ E2(t − τ), (6.2a)

dE2

dt
= (1 + iα)N2(t)E2(t) − i∆ωE2(t) + κe−iθτ E1(t − τ), (6.2b)

T
dN1

dt
= P1 − N1(t) − (1 + 2N1(t)) | E1(t) |2, (6.2c)

T
dN2

dt
= P2 − N2(t) − (1 + 2N2(t)) | E2(t) |2, (6.2d)

where E1,2 are the electric field amplitudes, N1,2 are the carrier inversions above threshold

for each laser, P1,2 are the pump currents above threshold, α is the linewidth enhancement

factor, τ is the time delay (which depends on the separation between the lasers), κ is the

coupling strength of light from one laser into the other (taken to be equal for both lasers),

and T is the ratio of the carrier lifetime to the photon lifetime. All timescales are in units

of the SCL photon lifetime, 10ps. This phenomenological model assumes that the two lasers

are identical and operate on a single longitudinal mode but have slightly different optical

frequencies ω1,2, and the relative detuning between them is given by ∆ω = ω1 − ω2. The

rate equations are written in a frame that is rotating at the average frequency of the lasers,

θ = (ω1+ω2)/2. This model is valid for weak coupling, neglects multiple feedback reflections,

and assumes that both lasers have identical gain coefficients despite a slight difference in

their optical frequencies. The exp(−iθτ) term accounts for the phase accumulation as light

propagates from one laser to the other. The two PT parameters are the coupling strength κ

and the frequency detuning ∆ω. A typical result generated by these equations is given in Fig.

6.2a, which shows the intensities of both lasers versus the frequency detuning between them.

Alongside this plot is a representative experimental measurement for similar parameters (Fig.

6.2b), as reported in Ref. 75. The blue profiles are for the laser whose frequency is swept

to change the relative detuning. In both experiments and simulations we observe an abrupt

increase in the intensities of the lasers near ∆ω = κ. Additionally, there are oscillations in
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the intensity as the detuning is increased — these sideband oscillations are a direct result of

the delayed coupling.

We now follow arguments similar to those in Ref. 43 and assume that when the lasers

are operating in a steady state the population inversion above transparency is very close to

zero (N1,2 ≈ 0), and so the population rate equations Eq. (6.2c) & (6.2d) can be ignored.

Assuming electric field solutions of the form eλt, the delay term E1,2(t − τ) in Eq. (6.2a) &

(6.2b) is expressed as e−λτ E1,2(t). This substitution results in a pseudo-2x2 model for the

electric field dynamics,

dE1
dt

dE2
dt

 =

 i∆ω κe−λτ e−iθτ

κe−λτ e−iθτ −i∆ω


E1

E2

 , (6.3)

which for zero delay reduces to a Hamiltonian reminiscent of the usual PT-symmetric dimer

(Eq. (6.1)), dE1
dt

dE2
dt

 =

i∆ω κ

κ −i∆ω


E1

E2

 . (6.4)

Note that the gain/loss terms in Eq. (6.1) are replaced by ±∆ω [43 ]. The the eigenvalues

of Eq. (6.4) are given by λ = ±
√

κ2 − ∆ω2. Due to the classical nature of the model, this

effective Hamiltonian actually describes an anti-PT symmetric system [78 ]–[80 ]; however,

we will continue to refer to it as PT-symmetric since the conclusions of our work are not

sensitive to this nuance.

In the general case with non-zero delay the model leads to an eigenvalue-like problem

defined by

det


 i∆ω κe−λτ e−iθτ

κe−λτ e−iθτ −i∆ω

− 1λ

 = 0. (6.5)
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It is important to note that when τ 6= 0 the Hamiltonian is not a 2x2 eigenvlaue problem;

rather, it is infinite dimensional due to the time delay, resulting in infinite solutions for λ.

The characteristic equation is evaluated with the substitution λ = λR + iλI , where λR

and λI are real. Separating the real and imaginary components generates a pair of coupled

equations, with F (λR, λI) containing the real parts and G(λR, λI) containing the imaginary

parts:

F (λR, λI) = ∆ω2 + λ2
R − λ2

I − κ2e−2λRτ cos(2τ(λI + θ)) = 0 (6.6a)

G(λR, λI) = 2λRλI + κ2e−2λRτ sin(2τ(λI + θ)) = 0 (6.6b)

The G equation is independent of ∆ω, an observation that will be important later in the

discussion. We find solutions for the eigenvalues, λ, by numerically solving the coupled F

and G equations and looking for their intersections.

The eigenvalues found by solving the F and G equations are then used to generate

corresponding eigenvectors. Assuming a generic eigenvector (α, β)T and substituting it into

the matrix equation Eq. (6.3) results in coupled equations for α and β:

λα = i∆ωα + κe−λτ e−iθτ β (6.7a)

λβ = κe−λτ e−iθτ α − i∆ωβ. (6.7b)

We can set α =1 without a loss of generality, so

β = λ − i∆ω

κe−λτ e−iθτ
. (6.8)

The evolution of the eigenvectors (1, β)T can therefore be tracked by following the evolution

of β. The behavior of eigenvalues λ and eigenvectors β are discussed in the next section.

Multiple values of delay will be examined, both small delays (i.e. less than the relaxation

oscillation period of the SCLs) and longer delays. Experimentally accessible delays that arise
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from the physical footprints of the SCLs and other optics lie between τ = 80 to τ = 300

[74 ]. From the observations on degeneracy of eigenvalues and eigenvectors we will obtain

information about the EPs of the time-delayed system.

6.3 Results
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Figure 6.3. Plots of F (blue) and G (red) equations for different values of κτ
(without phase accumulation, θτ = 2nπ where n is an integer). The x-axis is
Re(λ) and the y-axis is Im(λ). Intersections correspond to eigenvalue solutions.
The ”fingers”, or the branches that protrude from Re(λ) = −∞, are labeled for
the G equation. The black arrows indicates where the G ”fingers” reach their
maximum Re(λ) value, which is only greater than zero when (κτ)2 > 0.185
(1/2e) (Fig. 6.3b). The inset plot in 3.1a shows a close-up view of the central
G branch that straddles the Im(λ)=0 axis when κτ = 0.4. For all plots
∆ω = 2κ = 0.04 (though actual value of ∆ω is not important). Note that the
”finger” spacing is equal to π/2τ , as indicated on plot (a).

We begin with a discussion of the behavior and evolution of the F and G equations,

as they underlie the behavior and evolution of the system’s eigenvalues and eigenvectors.

Typical plots of F (λR, λI)(blue) and G(λR, λI)(red) are given in Fig. 6.3. To illustrate the

important features, we will, for now, set the phase accumulation term θτ to be 2nπ (where

n is an integer), which corresponds to sweeping each laser’s frequency at an equal rate but

with opposite sign such that the relation θ = (ω1 + ω2)/2 = 2nπ/τ is always satisfied.
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Each F and G plot has “fingers” which extend from Re(λ)=-∞ and curve back around near

Re(λ)=0, and the spacing of each “finger” corresponds to the period of the sine and cosine

terms in Eq. (6.6), π/2τ . We label these “fingers” with indices 0, ±1, ±2, etc., with the 0th

finger corresponding to the one that straddles the Re(λ)-axis and the index labels increasing

(decreasing) as the fingers shift up (down) along the Im(λ)-axis (see Fig. 6.3 for an example

of this labeling). The location of the turning point for each finger (i.e. the rightmost point

the finger reaches on the Re(λ)-axis) depends on the coupling strength (κ) and time-delay

(τ). We found numerically that only if κτ > 1/
√

2e does the turning point lie beyond

Re(λ)=0, shown with the black arrows in Fig. 6.3. As the detuning approaches zero, the F

plot’s “antennae”, the two branches that extend outward toward Re(λ)=±∞, move closer to

the origin (result not shown). The G plot, as stated earlier, does not depend on ∆ω, and the

line Im(λ)=0 is always a solution to the G equation. One particular branch of G is important

in the eigenvalue dynamics, namely the branch that straddles the Re(λ)=0 axis (pictured in

Fig. 6.4a insert). This branch is continuous for κτ<1/
√

2e and is broken otherwise – as we

will see in the next section, this breaking condition is critical to the existence of exceptional

points. This value of 1/
√

2e ≈ 0.43 was first observed numerically; in the analysis section we

will derive this analytically by using the Lambert W function. Finally, it is clear from these

plots that besides the solutions on the Im(λ)=0 axis, all the intersections of F and G come

in complex conjugate pairs. To examine the eigenvalues of our system, we need to plot the

intersections of F and G and see how those points evolve.

6.3.1 Eigenvalue Results

In Fig. 6.4 are shown the real and imaginary parts of the eigenvalues as a function of

∆ω for a delay of 0 (Fig. 6.4 a,c) and 100 (Fig. 6.4 b,d). The coupling strength is chosen to

be κ = 0.02, a typical experimental value. The zero delay case yields the expected behavior

wherein the real and imaginary parts of the two eigenvalues coalesce at the EP, i.e. when

∆ω = κ. When θτ = 2nπ the eigenvalues appear in complex conjugate pairs and the plots
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Figure 6.4. Eigenvalue and eigenvector plots for various delays. In all plots
κ = 0.02 and θτ = 2nπ. With the exception of the zero-delay case, seven
eigenvalue/eigenvector branches are plotted. Panels (a) & (c) are the real
parts of the eigenvalues and panels (b) & (d) are the imaginary parts, the
x-axes being ∆ω/κ and the y-axes Re(λ) and Im(λ) respectively. Panels (e) &
(f) show the evolution of the eigenvectors as a function of detuning, where the
color of the points corresponds to the detuning (red corresponds to ∆ω = 1
and blue is the most negative ∆ω). The x-axis is the real part of β and the
y-axis is the imaginary part of β, where β is the second component of the
eigenvectors.
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Figure 6.5. Eigenvalue and eigenvector plots for various delays. In all plots
κ = 0.02 and θτ = 2nπ. Seven eigenvalue/eigenvector branches are plotted.
Panels (a) & (c) are the real parts of the eigenvalues and panels (b) & (d)
are the imaginary parts, the x-axes being ∆ω/κ and the y-axes Re(λ) and
Im(λ) respectively. Panels (e) & (f) show the evolution of the eigenvectors
as a function of detuning, where the color of the points corresponds to the
detuning (red corresponds to ∆ω = 1 and blue is ∆ω=-10/τ). The x-axis is
the real part of β and the y-axis is the imaginary part of β, where β is the
second component of the eigenvectors. The inset plot in panel (a) shows a
close-up view of the eigenvalue degeneracy at ∆ω = 1.022κ.
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Figure 6.6. Individual eigenvector plots for τ = 100. In all plots κ = 0.02
and θτ = 2nπ. Red points correspond to ∆ω = 1 and blue points correspond
to ∆ω=-10/τ .
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are symmetric about ∆ω = 0. Since the equations become infinite-dimensional for a non-zero

delay, we have chosen only seven of the infinite eigenvalues to track as we change ∆ω when

τ 6= 0. One of these eigenvalues comes from the intersection of F and G on the Im(λ)=0 axis,

and the other six are the next intersections of F and G closest to the Im(λ)=0 axis, three on

either side (see Fig. 6.3 for reference). Each eigenvalue is shown in a different color for ease

of viewing. There are a few immediately noticeable differences between the zero-delay and

nonzero-delay cases, one being that there is no longer a detuning at which the eigenvalues

coalesce. Also, the real part of λ is no longer zero for |∆ω| > κ, and similarly the imaginary

part of λ is non-zero for |∆ω| < κ. We will return to Fig. 6.4 e&f when we discuss the

eigenvectors.

In Fig. 6.5 we explore the nature of the eigenvalues for a couple of intermediate τ values.

If τ = 10, as in Fig. 6.5a, the two most positive branches of Re(λ) (dark blue and red)

coalesce at ∆ω = 1.022κ (see inset to Fig. 6.5a). In the next section we will discuss why the

coalescence happens at ∆ω = 1.022κ instead of at ∆ω = κ. While these two branches mimic

the behavior of the two real eigenvalue branches for τ = 0, there are additional eigenvalues

beneath the Re(λ)=0 axis which obviously do not coalesce at any point. The plot for the

imaginary parts of the eigenvalues (Fig. 6.5c) also resembles the zero-delay case, with two

branches (dark blue and red) coalescing at ∆ω = 1.022κ and the rest being almost parallel

to the Im(λ)=0 axis (orange, yellow, green, light blue). At ∆ω = 1.022κ, both the real and

imaginary parts of these two eigenvalues coalesce; however, these are the only two branches

whose real and imaginary branches simultaneously coalesce. Thus, for τ = 10, we conclude

that there is one EP in this detuning range, provided the corresponding eigenvectors are

degenerate - we will return to this point in the next section and show that indeed, for

τ = 10, there is only one EP.

Upon increasing τ to more experimentally accessible delays (τ = 50, Fig. 6.5), the

most positive branches of Re(λ) (dark blue and red) oscillate about Re(λ)=0 with a greater

amplitude (Fig. 6.5b), and the solutions under Re(λ)=0 become less negative compared to
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τ = 10. The imaginary parts of λ begin to deform as well (Fig. 6.5d) –the “v” shaped linear

solutions (dark blue and red) no longer intersect the Im(λ)=0 solution, and the remaining

branches become less parallel to Im(λ)=0. There is no detuning at which we see any pair

of eigenvalues coalesce. When τ is very large (τ = 100, a typical experimental value) the

solutions for Re(λ) do not bear any resemblance to the zero-delay case, and there are no

continuous ”v” shaped solutions in the Im(λ) plot (Fig. 6.4b,d). Again, we do not see any

eigenvalue degeneracy for τ = 100. Since an EP requires not only that eigenvalues coalesce,

but also that the corresponding eigenvectors are parallel, we now investigate the eigenvectors

generated by these seven eigenvalues for various delays.

6.3.2 Eigenvector Results

To put the eigenvector results in context, we first discuss the well-known result for zero

delay case, shown in Fig. 6.4e. When the detuning is most negative (blue), one eigenvector

starts from β = (0, 1) and moves toward β = (0, 1√
2) as detuning is increased towards zero,

while the other eigenvector starts near β = (0, 0.1) and evolves upward to β = (0, 1√
2). At

∆ω = κ (the zero-delay PT transition) the two eigenvectors bow outward and eventually

settle to β = ±( 1√
2 , 0) at ∆ω = 0. When ∆ω = κ the two eigenvectors are degenerate, with

β = (0, 1√
2), and since their eigenvalues are also degenerate at that detuning we can say that

there exists an EP at the PT transition.

Fig. 6.4f & 6.5e,f show eigenvector plots for various τ . For non-zero delays we plot seven

eigenvector trajectories corresponding to the seven eigenvalues, and the color of each point

represents the detuning value. In these figures the detuning is swept from −10/τ (blue)

to 0 (red) with 60 equally spaced detunings between these two values. These trajectories,

which show the second compontent of the eigenvectors (β), were generated by substituting

the eigenvalues into Eq. (6.8). Since we set the first component of the eigenvectors α to be

1 the evolution of β therefore represents the evolution of the eigenvector. The behavior of
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the eigenvectors is more complicated than the eigenvalue pictures, yet for all delays (except

τ=0) the plots are similar.

To untangle the behavior of individual eigenvectors we show each of the seven eigenvectors

for τ = 100 in individual panels in Fig. 6.6 a-g. Panels (a) and (b) show two eigenvector

trajectories that spiral clockwise inward as ∆ω approaches zero, which form the circular

shape see in Fig. 6.4f. The other five trajectories evolve much slower, as seen in panels (e),

(f), and (g), where the spacing between each data point is smaller than in panels (a) and

(b). In panels (c) and (d) the eigenvectors spiral clockwise outward, moving faster as the

detuning approaches zero. These eigenvectors are, generally, always complex, as opposed

to the solutions for τ = 0 where the eigenvectors are purely imaginary for ∆ω/κ > 1.

It’s important to point out that all eigenvectors approach either ( 1√
2 , 1√

2) or ( 1√
2 , −1√

2) as ∆ω

approaches 0. This is due to the fact that when ∆ω=0 the Hamiltonian (Eq. (6.3)) becomes

a multiple of σx, and the eigenvectors of σx are ( 1√
2 , 1√

2) and ( 1√
2 , −1√

2)). To prove this we first

write the Hamiltonian in Eq. (6.3) as  0 f(λ)

f(λ) 0

 , (6.9)

where f(λ) = κe−λτ e−iθτ . The characteristic equation becomes λ2 - f 2(λ) = 0, or λ = ±f(λ),

and so the eigenvector evaluation becomes

λ

α

β

 = f(λ)

0 1

1 0


α

β

 =⇒

α

β

 = ±

β

α

 , (6.10)

which give the usual σx eigenvectors, independent of κτ .

6.3.3 Exceptional Points Results

From visually examining the eigenvector plots it’s unclear where (or if) there are any

eigenvector degeneracies. By increasing the detuning resolution and numerically combing

102



the raw data we find that there are detunings where the eigenvector degeneracies arise for

the same parameters where the corresponding eigenvalues coalesce. In other words, the

degeneracies occur between the same pairs of eigenvales/eigenvectors (the same F and G

intersections). We can, therefore, confirm the existence of EPs, although the exact conditions

for their existence are somewhat complicated, as we will show later.
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A

(a) Exceptional points as a function of κτ (when
θτ = 2nπ). The x-axis is κτ and the y-axis is
∆ω/κ. There is a transition from continuous
to discrete solutions at κτ = 1/

√
2e. Curve A

is generated by the Lambert W function’s 0th

branch and curve B is generated by the −1st

branch.

(b) Magnitude of the normalized complex inner-
product for the two eigenvectors responsible for
the eigenvalue degeneracy solutions closest to the
zero-delay case (near ∆ω/κ = 1, curve A). When
the magnitude is equal to 1 the two eigenvectors
are parallel.

Figure 6.7. Exceptional point behavior as a function of κτ . Panel a shows
exceptional points as a function of κτ and panel b shows the magnitude of the
complex inner-product of two specific eigenvectors responsible for the excep-
tional points in the region 0 < (κτ)2 ≤ 1/2e.

Figure 6.7a is a summary plot of the EPs that arise in our system on a ∆ω/κ vs κτ plane.

Curve A shows continuously occurring EPs up to a κτ of about 0.5. Similarly, curve B is

a series of continuously occurring EPs for κτ between approximately 0.4-0.5. We conclude

from these features that there is a range of κτ values, κτ < 0.4, for which there is only one

EP, and for 0.4 < κτ < 0.5 there are two EPs. The existence of this latter regime is a direct

consequence of the time-delayed coupling — that is, for zero time-delay there are no EPs

near these values. We will show later that the exact condition for one EP is that κτ < 1/e.
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This EP lies very close to the parameters that give rise to an EP for the zero delay case,

i.e. ∆ω = κ. The slight concavity of curve A is the reason that the EP in Fig. 6.5a,c is at

∆ω = 1.022κ. The exact condition for two EPs is 1/e ≤ κτ ≤ 1/
√

2e, with one EP very

close to the zero-delay PT-symmetric EP (curve A in Fig. 6.7a) and the other (curve B in

Fig. 6.7a) starting from ∆κ = 0 and rapidly approaching curve A. For κτ > 1/
√

2e there

are broadly spaced EPs for certain κτ with regions in between without any EPs. Again, we

emphasize that these conditions for one, two, or zero EPs were first determined numerically

and later derived analytically, as described in the next section.

Figure 6.7b displays the magnitude of the complex inner-product of the two eigenvectors

which produce the exceptional points near ∆ω/κ = 1 — not all eigenvector pairs are shown.

When the magnitude of the inner-product is 1 the two eigenvectors are degenerate, and from

the plot it’s clear that this curve matches the same curve in Fig. 6.7a (curve A). Beyond the

breaking point κτ = 1/
√

2e there is a clear phase transition, and the inner-product displays

vastly different behavior, instantly jumping to completely different values.

6.3.4 Phase Accumulation

In the preceding discussion we have neglected the phase-accumulation term, θτ , to con-

sider the simplest time-delay problem and emphasize the features that lead to EPs. Non-zero

phase-accumulation does have some effect on the existence of EPs, and so we briefly summa-

rize the consequences of its inclusion. With the introduction of non-zero θτ in Eq. (6.6a&b)

the cosine and sine terms pick up a phase shift, and the solutions for λ are no longer com-

plex conjugate pairs (the F and G plots are no longer symmetric about the Re(λ)=0 axis).

Furthermore, since Eq. (6.6b) has a phase shift θ in the sine term there can be no solutions

with Im(λ)=0. A consequence of this is that now we will only track six eigenvalues/eigen-

vectors for non-zero θτ . The lack of symmetry in F and G is reflected in Fig 6.8a&b, where

the six eigenvalues for τ = 100 appear as distinct curves, in contrast to the corresponding

θτ = 2nπ case in Fig. 6.4b&d wherein three pairs of eigenvalues coincide and the seventh
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Figure 6.8. Plots of eigenvalues and eigenvectors for κ = 0.02, τ = 100, and
θτ = 2.4. Eigenvalue solutions are no longer complex conjugate pairs, but
overall behavior is very similar to the θτ = 2nπ case. Axes and colors are the
same as in Figures 6.4 and 6.5.
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is distinct. In particular, the Im(λ) plot clearly shows that the eigenvalue solutions are not

symmetric about the Im(λ)=0 axis, meaning that λ no longer form complex-conjugate pairs.

The eigenvectors (Fig. 6.8c) behave similarly to the zero phase accumulation case, with all

eigenvectors approaching ( 1√
2 , 1√

2) or ( 1√
2 , −1√

2) as ∆ω approaches 0. A notable difference we

find with the inclusion of phase accumulation is that for κτ ≤ 1/
√

2e there are no values

of θτ which allow for degenerate eigenvalues/eigenvectors. Interestingly, for any value of

κτ greater than 1/
√

2e, there are only two supplementary values (i.e. add up to π) of θτ

that produce EPs for specif ic detunings. This result will be discussed in more detail in the

following section.

6.4 Analytic Results

Time-delayed differential equations are often analytically intractable, but the Lambert W

function can be used under some conditions to extract analytical solutions. In the following,

the W function is used to get results that support our numerical observations discussed in

the previous section. We refer the reader to Ref. [81 ] for an excellent description of the

Lambert W function.

6.4.1 Second-order EPs

The characteristic equation for the Hamiltonian in Eq. (6.3) is given by:

λ2 + ∆ω2 − κ2e−2τ(λ+iθ) = 0, (6.11)

which can be factored as

λ2 + ∆ω2 − κ2e−2τ(λ+iθ) = (λ − a1)(λ − a2)(λ − a3)... = 0, (6.12)
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where an are solutions to Eq. (6.11). In the case of a second order eigenvalue degeneracy,

Eq. (6.12) can be written as

(λ − a1)2(λ − a2)(λ − a3)... = 0, (6.13)

where a1 is the degenerate eigenvalue; a consequence of this degeneracy is that the derivative

of Eq. (6.13) with respect to λ is also equal to 0, since the term (λ − a1) is present in all

terms after differentiation. Higher order degeneracies are treated similarly – we will address

them later in this section. The derivative of Eq. (6.11) is

2λ + 2τκ2e−2τ(λ+iθ) = 0, (6.14)

and using Eq. (6.14) with Eq. (6.11) we attempt to solve for the detuning ∆ω for which

there is a second order degeneracy. After eliminating λ we arrive at

1 ∓
√

1 − (2∆ωτ)2 − 2κ2τ 2e−2iθτ e1∓
√

1−(2∆ωτ)2 = 0, (6.15)

which can be written as

−ze−z = −2κ2τ 2e−2iθτ , (6.16)

where z = 1 ∓
√

1 − (2∆ωτ)2. The solutions of Eq. (6.16) are given by the Lambert W

function:

z = Wn(−2κ2τ 2e−2iθτ ) (6.17)

where n is an integer. Eq. (6.16) is written in the standard form of the Lambert W function,

which is defined as the inverse of f(ω) = ωeω. The Lambert W function is commonly found

in spectral analyses of systems with time delay due to the inclusion of terms like eλτ in the

characteristic equations [81 ]. It is real valued only when f(ω) is real and greater than -1/e
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Figure 6.9. The Lambert W function’s real branches for real x. The blue
curve is W0(x) and the red is W−1(x). Note the turning point at x = −1/e,
marked with a dashed line.

(Fig. 6.9). From Eq. (6.17) we derive an expression for the critical detuning ∆ωc at which

a degeneracy occurs:

∆ωc = ±1
2τ

√
1 − [Wn(−2κ2τ 2e−2iθτ ) + 1]2. (6.18)

We require that ∆ωc be real, which means the term under the radical must be positive.

Assuming a general solution Wn(−2κ2τ 2e−2iθτ ) = a + ib results in the requirement that Wn

have the form Wn(−2κ2τ 2e−2iθτ ) = a or Wn(−2κ2τ 2e−2iθτ ) = −1+ ib, where a and b are real.

This requirement places constraints on the argument of Wn, and therefore the parameter

space swept by κ, τ , and θ is narrowed.

When substituted into Eq. (6.18), the first solution Wn(−2κ2τ 2e−2iθτ ) = a gives

∆ωc = ±1
2τ

√
−(a2 + 2a), (6.19)

which, because ∆ωc must be real, produces an additional requirement that a must lie

between -2 and 0. Now, since the Lambert W function is only real-valued when the argument
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is purely real and is greater than −1/e, −2κ2τ 2e−2iθτ must be real and greater than −1/e,

which implies that the phase accumulation must be a multiple of π, θτ = nπ (where n is

an integer). When evaluating the Lambert W function with a real argument there are two

branches that can produce purely real outputs, namely the 0 and -1 branches. A plot of

these real-valued solutions is given in Fig. 6.9. The W0(x) branch (blue) is bounded on the

left by the point (−1/e, -1) and goes to infinity as x increases, while the W−1(x) branch

(red) is bounded on the left by (−1/e,-1) and travels down asymptotically to the y-axis

as x approaches zero. W−1(x) has no real solutions for x > 0. It’s clear from the graph

that W0(x) satisfies −2 ≤ W0(x) ≤ 0 for all −1/e ≤ x ≤ 0; however, W−1(x) satisfies

−2 ≤ W−1(x) ≤ 0 only for −1/e ≤ x ≤ 2/e2. This translates into the following constraints

on κτ : for the W0(x) branch κτ must satisfy 0 ≤ 2κ2τ 2 ≤ 1/e, and for the W−1(x) branch

κτ must satisfy 2/e2 ≤ 2κ2τ 2 ≤ 1/e.
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(a) Before breaking (κτ = 0.42)
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-0.1

0

0.1

0.2

(b) Before breaking (κτ = 0.44)

Figure 6.10. Breaking of G (red) as (κτ)2 crosses 1/2e. The black circle
indicates the breaking point.

In the context of the F and G equations, the existence of the W0 solution depends on

the continuity of the G branch that straddles the Re(λ)=0 axis — when 2κ2τ 2 > 1/e, that

branch becomes discontinuous near the origin and the two ”antennae” branches of F will

never merge (Fig. 6.10 a & b). The existence of the W−1 solution is related to the merging

of the first two tongues of the F plot – when 2/e2 ≤ 2κ2τ 2 ≤ 1/e, there exists a detuning for
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which the ±1 tongues merge into the 0th tongue, and the merging location on the Im(λ)=0

axis is determined by where the 0th tongue of G crosses the Im(λ)=0 axis (Fig. 6.11 a & b).
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0

0.1

0.2

(a) Before breaking (κτ = 0.36)

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

(b) Before breaking (κτ = 0.38)

Figure 6.11. Merging of F tongues (blue) as κτ crosses 1/e. ∆ω=0 for both
plots. The black circle indicates the breaking point.

From these constraints we conclude that there exists a single exceptional point for 0 ≤

κτ ≤ 1/e and two for 1/e ≤ κτ ≤ 1/
√

2e, which is in exact agreement with our numerical

results. The corresponding ∆ωc can be found by evaluating Eq. (6.18) with the appropriate

branch numbers (0 and -1) (Fig. 6.7a). Of special note are the solutions coming from W0,

whose detunings are very close to the exceptional point detunings in the zero-delay case

(∆ω = κ ).

The second solution of Wn = −1 + ib is more complicated. Starting from Eq. (6.17),

−1 + ib = Wn(−2κ2τ 2e−2iθτ ) (6.20)

we take the inverse and solve for θ:

e−2iθτ = (−1 + ib)
−2eκ2τ 2 eib. (6.21)
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Figure 6.12. Solutions for θcτ given κτ . The two solutions, blue and red, are
supplementary.

Taking the complex logarithm of both sides and separating the real and imaginary parts

allows us to solve for b:

b2 = (2eκ2τ 2) − 1. (6.22)

When substituted, the resulting equation provides solutions for θc, the phase accumulations

for which, given both κ and τ , there exists an eigenvalue degeneracy:

θcτ = 1
2

[
±
√

(2eκ2τ 2)2 − 1 ∓ arctan (
√

(2eκ2τ 2)2 − 1)
]

+ nπ, (6.23)

where n is an integer. A plot of θcτ vs. κτ is shown in Fig. 6.12. For κτ ≤ 1/e there are

no values of θ that produce a degeneracy, which agrees with our previous conclusion (when

Wn = a) and is a consequence of requiring that θ be real. When κτ > 1/e there are two

supplementary solutions for θcτ in the range 0 ≥ θτ ≥ π , their sum being π. It should

be noted that when θτ 6= nπ there is no region where the exceptional points continuously

change; rather, the degeneracies are isolated points in the κτ vs. ∆ωc

κ
plane. Of special

note are the points in Fig. 6.12 where θcτ=0. These are the sources of the isolated EPs for

κτ > 1/
√

2e in Fig. 6.7a.
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Figure 6.13. Demonstration of tongue merging as θτ varies. Here the -5th
tongue merges with the -6th as θτ increases, the black circle indicates the
merging point. κτ and ∆ω are fixed for both plots.

The detunings associated with these degeneracies can be found using Eq. (6.18) with

the proper values of κτ and θτ ; however, the proper branch of Wn must be used as well.

Graphically, the solutions provided by Eq. (6.23) come from the separation of tongues in the

G plot as κτ increases. The proper index in Eq. (6.18) is chosen based on the observation

of which tongue m is being created – explicitly, the index is n = m ± 1 (positive for tongues

above the Im(λ)=0 axis and vice versa). For example, when κτ=2.5 and θτ=0.51 we see

that the -5th tongue is separating, and therefore we use n = −6 in Eq. (6.18), giving us the

proper detuning ∆ω/κ=6.8 (see Fig. 6.13 for a visualization of this merging process).
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6.4.2 Higher-order EPs

Of course, all the preceding work is for a second order degeneracy; can this system

exhibit higher order exceptional points? For a third order degeneracy, we again start with

the assertion that Eq. (6.11) can be factored as

λ2 + ∆ω2 − κ2e−2τ(λ+iθ) = (λ − a1)(λ − a2)(λ − a3)... = 0, (6.24)

where an are solutions to Eq. (6.11). In the case of a third order eigenvalue degeneracy, Eq.

(6.12) can be written as

(λ − a1)3(λ − a2)(λ − a3)... = 0, (6.25)

where ai are solutions to Eq. (6. 24). Now both the first and second derivatives of Eq.

(6.24) must be zero – these derivatives, along with the original equation, produce a set of

three coupled equations that can be solved for the degenerate λ and the detunings ∆ω for

which they occur:

λ2 + ∆ω2 − κ2e−2τ(λ+iθ) = 0 (6.26a)

2λ + 2τκ2e−2τ(λ+iθ) = 0 (6.26b)

1 − 2(κτ)2e−2τ(λ+iθ) = 0 (6.26c)

By rearranging Eq. (6.26c), it’s clear that the exponential term has to satisfy the re-

lation e−2τ(λ+iθ) = 1/2(κτ)2. Since the right-hand side of the expression is always real,

this constrains θτ to be an integer multiple of π/2. This expression, when substituted into

Eq. (6.26b), gives the singular eigenvalue for which there exists a third-order degeneracy:

λ = − 1
2τ

. With this eigenvalue we can then evaluate Eq. (6.26a) and find the detunings for
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which this degeneracy occurs: ∆ω = ± 1
2τ

. Taking the eigenvalue solution and substituting

it back into Eq. (6.26c) results in a familiar expression for the constraints on κ and τ :

κτ = 1√
2e

(6.27)

This means that there is only a single combination of κτ for which there exists a third-order

exceptional point (Fig. 6.14) – the corresponding eigenvectors also coalesce at the specified

detuning. This value of κτ places the third-order EP at the cusp formed by the second-order

EP curves A and B in Fig. 6.7a.

For the case of N ≥ 4 degeneracies, Eq. (6.25) becomes

(λ − a1)N(λ − a2)(λ − a3)... = 0, (6.28)

and the N -th derivative of Eq. (6.28) is then

−κ2(−2τ)Ne−2τ(λ+iθ) = 0. (6.29)

For any non-zero delay or feedback strength this equation has no solutions for λ, and thus

there are no N -th order eigenvalue degeneracies. The system only allows for second and

third-order exceptional points.

We see from the discussion in this section that the major features that were observed

numerically for a time-delayed PT-symmetric system can be understood analytically via the

use of the W function. The analytic approach not only elucidates some of the numerically

calculated features, but also allows one to precisely establish the conditions under which

certain features arise.
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Figure 6.14. Third-order degeneracy. For all three plots (κτ)2 = 1/2e (with
τ = 1). As the detuning is increased, three eigenvalue solutions move closer
together, eventually merging at λ = −1/2τ when ∆ω = 1/2τ .

6.5 Discussion

The work presented in this section has demonstrated via numerical modeling and analytic

derivations that a time-delay coupled, PT-symmetric system displays rich EP behavior when

compared with the corresponding zero-delay dimer case. By tuning the system’s delay time,

coupling rate, or phase accumulation, we can move the system through three distinct regions

in the exceptional point landscape, i.e. regions with 0, 1, or 2 second-order exceptional

points. In addition, the system can exhibit a third-order exceptional point provided the

delay and coupling rate are carefully chosen. Our experimental and numerical results have

verified predictions, based on the Hamiltonian in Eq. (6.3), about the period and amplitude

of the “sideband transitions” in Fig. 6.2 and the existence of the phase transition near

∆ω = κ, demonstrating the effectiveness of our simplified Hamiltonian [44 ]. The impact

of these exceptional points on intensity behavior is still not well understood, however, as

numerical simulations based on the full rate equations (Eqns. (6.2a-d)) show no evidence

of any major transition at κτ = 1/
√

2e or any other transition point (Figure 6.15). In

both plots there is a clear phase transition near ∆ω = κ, but only in the left plot is that

transition supported by an exceptional point. It’s possible that the added complexity of

carrier population interaction and gain saturation wash out the exceptional point behavior,
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Figure 6.15. Numerical simulation of SCL intensities. For both plots κ =
0.02. Despite the lack of exceptional points for κτ = 0.44 in the pseudo-2x2
model, the right plot is nearly identical to the left, each with a PT transition
near ∆ω = κ.

or it could be that the effects of this exceptional point breaking predicted by our pseudo-

2x2 model produce more subtle effects, perhaps in the carrier populations, phase behaviors,

etc.. The focus of this section has been on the EPs that arise in the time-delayed effective

Hamiltonian, and the delay-coupled SCL system provides a good test bed for verifying the

predictions made here. Among the open questions that can be addressed in future work are

the effects of carrier population interaction and gain saturation on the EPs, and whether

the effects of EPs in a time-delayed system produced observable signature in the carrier

populations and phase-locking evolution.
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7. SUMMARY

This work describes our research on the effects of time-delay in an optical implementation

of PT-symmetry. We used a system of two delay-coupled semiconductor lasers as a test

bed to study the interaction of nonzero delay with traditionally PT-symmetric features,

namely a phase transition from bounded to unbounded laser intensities. This transition, the

domewidth, was analytically described using a reduced Hamiltonian model, and predictions

were checked via numerical solutions from the LK rate equation model and experimental

data. Additionally we found that nonzero delay gave rise to broad intensity oscillations

in the bounded region, when the laser frequency detuning was larger than the coupling

strength, and we characterized the period and amplitude of these oscillations analytically,

numerically, and experimentally. Good agreement between all three for both the sideband

oscillations and domewidth, though there is room for improvement. This agreement is in

spite of large gaps in complexity between the analytic model, the numerical model, and the

experiment. We also numerically and analytically investigated the impact of nonzero delay on

the exceptional points in the Hamiltonian model, finding that the presence of nonzero delay

has the effect of warping the existing EPs, and for some parameter values either creating

additional EPs or destroying them completely. The eigenvalues and eigenvectors associated

with this Hamiltonian were also investigated, both in the exceptional point work and in

the domewidth/sideband work. It was found that an understanding of the reduced model’s

eigenvalues provided good explanations for the SCL intensity behavior, again in spite of large

gaps in complexity between the Hamiltonian model and experiment.

Future work will include an examination of other system aspects and extending this

system beyond its current limits. Over the past few years incursions have been made into

the following territories, but there has not been enough time to develop significant results:

• How does the addition of quantum noise affect the delay-induced intensity features.

Are these robust in the presence of noise?
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• The carrier inversion as a function of system parameters has not been thoroughly

addressed. Is there anything significant to be discovered concerning the effects of time-

delay? To our knowledge the carrier inversion only mirrors the intensity profiles.

• By separating the phase and amplitude in the LK equations, in the limit of zero delay an

Adler equation is obtained for phase locking that has the same transition requirement

as the zero-delay PT-transition. How is phase locking between SCLs impacted by

delay?

• SCL frequency is also dependent on the injection current. Therefore we can experimen-

tally change the frequency detuning by varying the lasers’ pump currents. This was

briefly explored by both Dr. Joseph Suelzer and more recently by graduate student

Luke Thomas. How are intensity profile features impacted by delay and coupling in

this setup?

• Currently both lasers experience the same coupling strength κ. What happens in the

case of uneven coupling, or unidirectional coupling?

• What are the consequences of extending the system to three coupled lasers?

• With easy control over system parameters, and with the help of additional polarizers

and rotators, is it possible to engineer exceptional point surfaces in the system?

These questions remain for future graduate students to explore.
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