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tanh Hyperbolic tangent function

U Weight matrix between hidden units for simple RNN

Uc Weight matrix between hidden units and intermediate cell state for LSTM

Uf Weight matrix between hidden units and forget gate for LSTM

Uh Weight matrix between hidden units, reset gate and intermediate hidden

state for GRU

Ui Weight matrix between hidden units and input gate for LSTM
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Uo Weight matrix between hidden units and output gate for LSTM

Ur Weight matrix between hidden units and reset gate for GRU

Uz Weight matrix between hidden units and update gate for GRU

V Weight matrix between hidden unit and output for simple RNN

vr Weight matrix between cell state and reset gate for SRU

W Weight matrix between input and hidden unit for simple RNN, Weight ma-

trix between input and cell state for SRU

Wc Weight matrix between input and intermediate cell state for LSTM

Wf Weight matrix between input and forget gate for LSTM and SRU

Wh Weight matrix between input and intermediate hidden state for GRU

Wi Weight matrix between input and input gate for LSTM

Wo Weight matrix between input and output gate for LSTM

Wr Weight matrix between input and reset gate for GRU and SRU

Wz Weight matrix between input and update gate for GRU

ŷt Output after softmax activation for simple RNN at time t

x(t) Input at time t

zt Update gate for GRU at time t
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ABBREVIATIONS

°C Degree Celsius

A Ampere

AGL Above ground level

cm Centimeter

CPU Central processing unit

DoS Denial of service

EKF Extended Kalman filter

ESC Electric speed controller

FDI False data injection

FLOPS Floating point operations per second

FLOPs Floating point operations

ft Feet

g Grams

GCS Ground control station

GPS Global positioning system

GRU Gated recurrent units

HITL Hardware-in-the-loop

Hz Hertz

ICMP Internet control message protocol

IDS Intrusion detection system

in Inches

IMU Inertial measurement unit

KB Kilobytes

kts Knots

lb Pounds

LOIC Low orbit ion cannon

LSTM Long short-term memory

m Meter
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mm Millimeter

MSL Mean sea level

PoD Ping of death

PX4 PX4 autopilot system

RNN Recurrent neural network

s Seconds

SRUs Simple recurrent units

SITL Software-in-the-loop

STL Self-taught learning

SYN Synchronize

SVM Support vector machine

TCP Transmission control protocol

UAVs Unmanned aerial vehicles

V Voltage
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ABSTRACT

Unmanned aerial vehicles (UAVs) have gained more attention in recent years because of

their ability to execute various missions. However, recent works have identified vulnerabilities

in UAV systems that make them more readily prone to cyberattacks. In this work, the

vulnerabilities in the communication channel between the UAV and ground control station

are exploited to implement cyberattacks, specifically, the denial of service and false data

injection attacks. Unlike other related studies that implemented attacks in simulations, we

demonstrate the actual implementation of these attacks on a Holybro S500 quadrotor with

PX4 autopilot firmware and MAVLink communication protocol.

The goal was to create a lightweight intrusion detection system (IDS) that leverages

recurrent neural networks (RNNs) to accurately detect cyberattacks, even when implemented

on a resource-constrained platform. Different types of RNNs, including simple RNNs, long

short-term memory, gated recurrent units, and simple recurrent units, were trained and

tested on actual experimental data. A recursive feature elimination approach was carried

out on selected features to remove redundant features and to create a lighter RNN IDS

model. We also studied the resource consumption of these RNNs on an Arduino Uno board,

the lowest-cost companion computer that can be implemented with PX4 autopilot firmware

and Pixhawk autopilot boards. The results show that a simple RNN has the best accuracy

while also satisfying the constraints of the selected computer.
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1. INTRODUCTION

1.1 Background and Motivation

With lower operational costs and the maturing of autonomous control in recent years,

unmanned aerial vehicles (UAVs) have gained increasing popularity in various fields. UAVs

can also reduce risks to human life by remotely executing complex and potentially danger-

ous tasks without an onboard pilot. Usually, UAVs execute these missions by following the

waypoints or reference inputs sent by a ground control station (GCS) to the onboard au-

topilot system via wireless communication. In return, such a communication channel can

obtain periodic status reports about the UAV and, in an emergency, regain control of the

UAV from the GCS. These functionalities indicate that continuous communication between

UAVs and the GCS is indispensable for the safe execution of missions. Thus, the loss of this

communication link can lead to mission delays, loss of control, or collisions.

Because UAVs execute missions in high-frequency and highly dynamic environments,

communications must be handled with a fast and lightweight message transmitting protocol.

Therefore, the communication between UAVs and the GCS is often not encrypted, as is the

case with the MAVlink protocol used in PX4 autopilot firmware. Such a feature helps with

facilitating high-frequency communication and ensures the safety of the mission. However,

it can also be readily prone to cyberattacks. For example, adversaries can easily disrupt the

communication between UAVs and the GCS by launching a denial of service (DoS) attack,

such as a jamming or flooding attack, or can take over the UAV using false data injection

(FDI) attack by implementing a de-authentication attack or injecting false waypoints. In [1 ]

and [2 ], the authors demonstrated that the communication channel between UAVs and the

GCS can be easily tampered with. Given these dangers, the development of an intrusion

detection system (IDS) is important when considering the unique challenges of UAVs.

Furthermore, because an attacker can disrupt the communication channel, an emergency

command cannot be executed remotely after the GCS detects the attack. Therefore, in this

thesis, we consider the problem of implementing an onboard IDS for UAVs. This goal means

we also must address the challenge of the resource-constrained environment on UAVs.
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This work aims to develop a data-driven recurrent neural network (RNN)-based lightweight

IDS to detect DoS and FDI attacks. At the same time, the onboard constraints pertain-

ing to limited memory size, weight, and power are taken into account in the design of the

RNN-based IDS.

1.2 Related Works

1.2.1 UAV Vulnerabilities

In the past few decades, the number of cyberattacks has increased dramatically, thereby

driving more people to identify vulnerabilities and develop detection methods for systems

such as power grids [3 ] and the internet of things [4 ]. However, it was not until a boom in

the use of UAVs in recent years that research identifying UAV systems’ vulnerabilities and

developing detection schemes has started growing.

A comprehensive study of different UAV vulnerabilities was conducted by Kim et al.

[5 ] which focused on hardware, wireless, and sensor spoofing attacks on a general autopilot

architecture. The researchers also presented a hardware-in-the-loop (HITL) analysis of post-

attack behavior. In [6 ], Dahiya et al. explored the different levels of vulnerabilities and their

preventive measures. Anis et al. [1 ] provided an overview of the MAVlink communication

protocol, which is mainly used in the common commercial autopilot systems ArduPilot and

PX4. The identified security issues with and feasible cyberattacks on the MAVLink protocol

pertain to confidentiality and privacy, integrity, availability, and authenticity of messages [1 ].

Denial of Service (DoS)

A DoS attack, such as jamming and flooding, aims to disrupt a network or system and

make the resources unavailable to intended users [7 ], [8 ]. In [8 ], two principal classes of DoS

attacks, logic and flooding attack, were presented. A logic attack such as a ping of death

(PoD) uses software flaws to crash or decrease the performance of a remote device. The PoD

attack, which is a well-known example of a logic attack, pings the computer with a packet

larger than 65535 bytes. Although software updates can help prevent logic attacks, they are

still a severe issue today.
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The second method, a flooding attack, overwhelms the resources, such as the central

processing unit (CPU), memory, or network resources, of the target device by sending many

unauthorized requests. Due to the nature of request messages, it is hard to differentiate

legitimate requests from unauthorized ones. An example is the SYN-flood attack, in which

an attacker transmits a large number of synchronize (SYN) packages to the transmission

control protocol (TCP) port of a target device to initiate a connection but does not provide

final confirmation. The target spends resources waiting for the connection, which leaves the

target unavailable for authorized communications.

Vulnerability surveys of UAVs often group jamming and flooding attacks under commu-

nication interruptions of availability attacks [1 ]. Adversaries can launch a jamming attack

using different strategies, such as constant jammer, deceptive jammer, random jammer, or

reactive jammer, according to [9 ]. One of the most common strategies is injecting high-power

noise into the frequency that UAVs use to receive information or commands [10 ]. Jamming

attacks often come with global positioning system (GPS) spoofing because one of the meth-

ods of achieving spoofing is to disrupt communications with jamming attacks to induce a

reconnection [11 ].

In [12 ], Vasconcelos et al. launched a flooding attack using a low orbit ion cannon (LOIC),

Netwox, and Hping3. The study showed that when an AR.Drone is under a flooding attack,

the frame rate of video streaming, one of the critical features for a pilot using a cell phone

and camera onboard, is significantly affected. In [13 ], an internet control message protocol

(ICMP) flooding attack using the hping3 tool was implemented on the MAVLink protocol-

based 3DR X8+ drone. ICMP flooding works by sending ICMP request messages to the

target UAV, requesting a response to the sender. When an adversary sends a large number

of ICMP request messages with high frequency, the target system gets overloaded with

processing and responding to these messages, and thus, a successful DoS attack is executed.

Kwon et al. showed that the inter-reception time of packets in UAVs and the GCS increased

by 35 and 10 times, respectively [13 ].

Jeong et al. [14 ] demonstrated a DoS attack by implementing three different types of false

MAVLink message injection attacks: heartbeat flooding, ping flooding, and request flooding

[14 ]. The heartbeat flooding attack sends heartbeat request messages to be received by the

21



target UAV, without any trigger from the autopilot. The ping flooding attack requests the

target system to transmit ping responses to the sender and is mainly used on communication

channels without ICMP support. Request flooding requests the target system send back the

specific parameter values of the UAV, thus increasing the computation power being used due

to the increased kernel task [15 ].

False Data Injection (FDI)

FDI attacks inject a false signal into the original data to compromise the mission or dis-

connect communication with system components. This attack has been successfully demon-

strated on complex systems, such as a power grid monitor system [16 ], [17 ].

FDI attacks can be mainly divided into two classes—sensor spoofing and unauthorized

command injection. Sensor spoofing injects false sensor data into the onboard autopilot

system and causes a UAV to deviate from their original planned trajectory or even collide

with a surrounding obstacle. In [18 ], the authors compromised inertia measurement unit

(IMU) sensor data by injecting false data following step and Gaussian functions in the roll,

yaw, and pitch rate of a UAV. The GPS sensor is another common target of sensor spoofing

attacks. In this form, the onboard GPS module is disconnected from the legitimate GPS

signal, connected to an adversarial signal, and then controlled by the attacker [19 ].

Unlike sensor spoofing attacks, unauthorized command injection attacks inject false in-

formation into the autopilot system after a successful man-in-the-middle attack. The au-

thors in [1 ] showed two methods for achieving unauthorized command injection—skyjacking

and radio jacking. Skyjacking uses the lack-of-authentication vulnerability in the MAVLink

protocol by sending a de-authentication message to disconnect a UAV from the GCS [20 ].

Attackers can use off-the-shelf software, such as aireplay-ng, to send such messages to dis-

connect legitimate users, while the attacker tries to establish a connection to take control of

a UAV. Radio jacking also exploits the MAVLink protocol vulnerability to take control of

UAVs. The MAVLink communication protocol is used in UAVs to establish NETID to allow

the user to control UAVs via telemetry. Once an attacker recognizes the NETID informa-
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tion, which can be done with a sniffing attack [21 ], they can send malicious packets and false

information to take control of the UAV.

1.2.2 Intrusion Detection System (IDS)

Thanks to the increasing number of computers in use and a booming number of networks,

IDSs have drawn a lot of attention since the 1990s [22 ]–[25 ]. However, it was not until recently

that people began paying attention to the use of an IDS for UAVs.

Depending on the taxonomy used, according to [26 ], UAV IDSs can be divided into

various categories. The first, an information gathering source, indicates the origin of the

data used to analyze and detect an anomaly. Sensors, communication links, GCSs, and UAV

components are typical sources that can be used to gather data. The chosen deployment

strategy, such as ground/network-based or autonomous/UAV host-based, is another way of

categorizing different IDSs. The detection state taxonomy indicates whether the detection

state is evaluated in real-time or analyzed based on all collected data. In contrast, the

response taxonomy differentiates IDSs based on whether it can respond to an anomaly in

real time or if the analysis takes place after the period of data collection. In addition, IDSs

can be categorized based on what kind of anomaly or adversary it is designed to detect, with

typical scenarios including malicious software, modification of information, UAV control

takeover, and spoofing. The last and most important type of categorization is based on the

mechanism of the IDS, which the following:

• Specification-based

• Signature-based

• Anomaly-based

• Hybrid-based

The next section will further discuss these four detection methods.
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Detection Methods

The specification-based detection method develops rules based on the expected behavior

of a UAV and implements the rules for monitoring a UAV’s operations [27 ]–[30 ]. Mitchell

and Chen [29 ] identified several such rules, including disarming weapons if they are detected

outside the target area, using minimum thrust if a UAV is loitering, and stowing landing gear

when the UAV is outside an airbase. These rules are transferred to state machines, where

attack states indicate any violations of the rules. The state machine, which encompasses

4,443 unsafe states and 165 safe ones for a total of 4,608 states, assigns probabilities of a

state transfer and uses binary grading to identify how close a state is to safe behavior. The

measure of compliance with specified rules is in proportion to the number of times the UAVs

are in safe states. In [30 ], Mitchell and Chen further extended their work [29 ] by showing

the flexibility of considering new attacks and adaptively adjusting the detection strength to

balance the false negative and false positive rates. The disadvantage of a specification-based

IDS is that a great number of states need to be specified to accurately capture a UAVs’ safe

behavior, and it is therefore not practical for current applications.

The signature-based detection method intends to detect and/or identify known attacks

by matching an attack to a set of available pre-defined signatures, features, and patterns

[31 ]–[36 ]. While enjoying a high detection rate with known attacks pattern, signature-based

IDS lacks the ability to detect previously unknown attacks patterns. In [32 ]–[34 ], Vuong et

al. implemented DoS, FDI, and malware attacks on ground robotic vehicles and employed a

Snort signature-based IDS [32 ] and a decision tree-based IDS [33 ], [34 ] to detect them. Their

results showed that incorporating physical features with network-related features can help

increase the attack detection accuracy of an IDS. The researchers claimed that detection

latency can be a more critical metric than accuracy for an IDS in a highly dynamic system

due to the severe consequences of late detection. Weng [35 ] used a bank of Kalman filters to

detect the actuator intrusions of control systems. Two Kalman filters were used, one of which

was the system dynamic under normal conditions and the other was compromised system

dynamic. The author then obtained the conditional probability of each state estimation
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being treated as true by the bank. The system was under attack when the conditional

probability of compromised system dynamic is higher and vice versa.

DoS attacks, command injection attacks, and malware were applied in 4x4 robotic vehi-

cles in [36 ]. This study compared the performance of different IDSs developed using logistic

regression, decision trees, random forest, SVM, neural networks and RNNs. While decision

tree outperformed the others with malware detection, and SVM with a radial kernel had

the greatest accuracy in detecting DoS attacks, RNN was the best at detecting command

injection attacks and overall accuracy.

The anomaly-based detection method aims to detect intrusion by observing failures or

abnormal behaviors in a UAV [37 ]. The filtering [38 ] or learning mechanism often used to

construct an anomaly-based IDS improves the ability to detect unknown attacks that do not

have associated signatures in the database. Filtering mechanisms like a Kalman filter [38 ],

[39 ] require a state-space model of selected features and threshold value settings. Therefore,

using an accurate dynamic model and setting precise threshold values becomes a primary

challenge for these methods. In [39 ], a residual calculated from the steady-state Kalman

filter was used in the monitoring system. In cases where there is no attack, the residual

should have a normal distribution with zero mean and a constant covariance matrix. The

compound scalar testing checking residual power is used for hypothesis testing with a user-

defined threshold value. Because this method uses a Kalman filter to calculate the residual,

an accurate dynamic model is needed.

Conversely, a learning-based method, such as machine learning [14 ], [40 ], [41 ], does not

require a thorough understanding of the selected feature’s dynamics, and the learning-based

method considers the correlation of different features. In particular, learning-based methods

that use RNNs can explore the correlation of different features across specific time windows.

Various machine learning-based IDSs, such as support vector machine (SVM), reinforcement

learning, neural networks, and game theories are applied to UAVs to detect attacks using

eavesdropping, jamming, GPS spoofing, and more. [40 ].

Xiao et al. [41 ] applied a simple RNN, long short-term memory (LSTM) and gated

recurrent units (GRUs) to a UAV’s arriving angle for the detection of anomalies caused

by GPS spoofing attacks. The authors in [14 ] presented heartbeat flooding, ping flooding,
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and request flooding attacks on the MAVLink protocol. Two monitoring methods were

presented by Jeong et al. [14 ]. The first method directly used LSTM as the IDS and

message ID sequences as features to detect whether an attack occurred. The software-in-

the-loop (SITL) result for the heartbeat flooding attack showed that it required much more

training to achieve comparable accuracy. The second method used LSTM as a predictor of

the message ID sequence, training the network with normal case data and setting a threshold

value for the accuracy of LSTM prediction. Because the normal case data were used to

train the LSTM, the attack-free cases were expected to have high levels of accuracy. In

contrast, the other three attack cases would result in less accuracy with message ID sequence

prediction. Therefore, the second method can detect anomalies by setting a threshold of

average prediction accuracy.

The hybrid detection method fuses two or more approaches to generate robust detection

rules and achieve better detection rates [42 ], [43 ].

Challenges

Effectiveness and efficiency are essential features when designing an IDS, especially for

highly dynamic and resource-constrained UAV systems [26 ], [44 ]. Typically, lowering the

consumption of computation and communication resources while decreasing the false detec-

tion rate and level of interruption are primary considerations when designing an IDS for

UAVs. The authors in [26 ] illustrated several challenges to achieving these goals.

Detection latency represents how agile the IDS is when an attack is implemented. Most

IDSs used in other systems pursue the fastest possible response; however, UAVs need to

balance latency with onboard resource consumption to make the IDS practical for real-world

implementation. Computational costs and implementation overhead are also significant chal-

lenges for constructing these IDSs. While high computational costs normally help increase

detection accuracy, they can also lead to a high implementation overhead and large memory

consumption, making methods with high computational costs unsuitable for UAV applica-

tions. In addition, high computational costs can lead to excess battery consumption, and

increasing the size of an IDS can drain the memory space of a system.
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In addition to the constraints of the UAV system, accurate attack modeling and a prac-

tical threat assessment design are other essential categories to be considered when designing

an IDS. Finally, the IDS should detect attacks effectively and respond appropriately to avoid

critical damage or further intrusion in a system.

1.3 Overview

1.3.1 Contribution

Given the challenges just discussed, this thesis presents findings that make the following

contributions:

• An investigation of the strengths and sensitivities of UAVs under DoS and FDI attacks.

• An analysis of an IDS constructed with actual experimental data collected from a PX4

autopilot system on a Holybro S500 quadrotor.

• Designed a lightweight IDS with RNN for detecting DoS and FDI attacks.

1.3.2 Thesis Layout

This thesis is organized as follows. Chapter 2 describes the overall system, attack meth-

ods, and IDS design, where Section 2.2 introduces the overall system, Section 2.3 provides a

detailed description of attack methods, Section 2.4 introduces the IDS method, and Section

2.5 reviews the IDS design process. This is followed by a review of the experimental setup

in Chapter 3, and Chapter 4 concludes with a detailed analysis of the experimental results.
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2. VULNERABILITY AND IDS DESIGN

This chapter provides an overview of the UAV system and its vulnerabilities, along with

the IDS design process. Section 2.1 covers the system overview, including the UAV (Section

2.1.1), the autopilot system (Section 2.1.2), data link (Section 2.1.3), and control schemes

(Section 2.1.4). Section 2.2 details the vulnerabilities considered in this work, including

assumptions (Section 2.2.1), DoS attacks (Section 2.2.2), and FDI attacks (Section 2.2.3).

Section 2.3 presents an overview of the considered IDS (Section 2.3.1) and the factors included

in the IDS design (Section 2.3.2).

2.1 System

2.1.1 Unmanned Aerial Vehicles (UAVs)

Recent technological advances have pushed robotics toward more automation, especially

with regard to UAVs. A UAV is an autonomous or remotely piloted aerial vehicle, including

fixed-wing, VTOL, blimp, balloon, and hybrid types [45 ]. According to the US Department

of Defense, UAVs can be categorized into five classes [46 ].

Table 2.1. UAV classification according to the US Department of Defense [46 ].
UAV group Size Maximum gross

takeoff weight (lb)

Normal operating

altitude (ft)

Speed (kts)

Group 1 Small 0–20 <1200 above ground

level (AGL)

100

Group 2 Medium 21–55 <3500 AGL <250

Group 3 Large <1320 <18000 mean sea

level (MSL)

<250

Group 4 Larger >1320 <18000 MSL Any airspeed

Group 5 Largest >1320 >18000 MSL Any airspeed
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UAVs are commonly used because their variety of sizes and features can be customized

for a wide range of applications of UAVs, they can be organized into the following taxonomy

[47 ].

• Remote sensing

1. Photogrammetric applications

2. Precision agriculture

3. Natural resource management

• Industrial inspection

1. Civil infrastructure

2. Electric power industry

3. Wind turbine inspection

4. Tower/Antenna inspection

5. Oil/Gas inspection

• Aerial filming and photography

1. Filmmaking

2. Real estate

3. Marketing

4. News reporting

• Intelligence, surveillance, and reconnaissance and emergency response

1. Law enforcement

2. Search and rescue

3. Communications relay

4. Signal intelligence
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• Atmospheric information collection

1. Meteorology

2. Hazardous material detection

3. Radioactive material detection

• Applications requiring physical interaction with substances, materials, or objects

1. Aerial chemical applications

2. Water sampling

3. Cargo/Package delivery

In this work, we are considering popular, commercial multi-rotor UAVs, which are suitable

for a range of missions because of their agility and ability to hold a position in the air.

Components commonly on multi-rotor UAVs include the following:

• Autopilot: Autopilot gathers all sensor data and incoming commands from a radio

transmitter or GCS to process and implement control of the UAV.

• Body frame: The Body frame provides support for sensors, payloads, power units, and

motors to satisfy mission needs.

• Motor and electronic speed controller (ESC): The motor provides control power for a

UAV, while the ESC helps autopilot control each motor separately and thus provides

6 degrees of freedom control of a UAV.

• Power Unit: The power unit provides the power for entire UAV and is usually a battery.

2.1.2 Autopilot

The advantage of UAV operation is its ability to execute the pre-defined mission without

human intervention. In today’s UAV applications, the autopilot system can help achieve this

goal. An autopilot system collects the necessary sensor readings and incoming commands

through wireless telemetry, including manual radio transmitter inputs or GCS, to calculate

and provide the control signal to the onboard control surface.
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PX4 Firmware

PX4 is an open-source autopilot software used in various unmanned vehicles, including

UAVs, rovers, and underwater vehicles [48 ]. To provide stabilization and control, it uses

support sensors, including GPS/compass, airspeed, distance, and optical flow [49 ]. Com-

panion computers such as Raspberry Pi, Arduino, and Nvidia board can help extend the

functionality and computational power of PX4 [50 ]. The firmware is usually flashed onto the

Pixhawk-series flight controller board through a USB connection with the QGroundControl

desktop app [51 ].

To prevent critical situations while testing the development code or mission, PX4 provides

a simulation feature, which is a quick, easy, and safe way to test changes before trying to

fly in the real world. PX4 supports SITL simulation, where the whole flight simulation is in

the computer, and HITL simulation, where the simulation is run on a real flight controller

board [52 ], [53 ]. In additon to any parameters set up on the computer for the PX4 firmware

using SITL and simulation firmware on the flight controller board for HITL, simulators

such as Gazebo [54 ] and jMAVSim [55 ] need to be installed on the development computer.

Furthermore, the robot operating system and a general-purpose robotics library need to be

installed before starting any PX4-related development, such as a UAV application [56 ].

Pixhawk

The PX4 firmware requires that the Pixhawk series flight controller board is running on

a UAV or any other autonomous platform. The following are some commonly used Pixhawk

series boards, according to [57 ]

• Holybro Pixhawk 4

• Holybro Pixhawk 4 Mini

• Drotek Pixhawk 3 Pro

• mRo Pixracer

• CUAV Pixhack v3
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• Hex Cube Black

• mRo Pixhawk

• Holybro pix32

• Holybro Pixhawk Mini

2.1.3 Data Link

An essential factor for achieving autonomous missions is the data link used to transmit

information, including the UAV’s status and control commands, between the UAV and GCS.

In this study, we focused on Wi-Fi communication, which transmits odometry information,

such as the 6 DoF states of the UAV, and offboard control commands. Although radio

frequency signal control also plays a significant role in controlling a UAV, it is not within

the scope of this thesis.

WiFi Module

Wi-Fi, an 802.11 wireless protocol digital data link, allows devices such as laptops, smart

devices, and UAVs to interface with the internet and form a local network. With PX4, Wi-Fi

telemetry facilitates MAVLink communication between the Wi-Fi modules onboard a UAV

and the GCS through a UDP port [58 ]. Typically, Wi-Fi supports higher data transmission

rates, but it suffers from a much shorter range than radio transmission. In PX4, Wi-Fi

telemetry supports a higher data rate, with a 921600 baud rate (bit/s) in parameter settings,

than radio telemetry, which has a 57600 default baud rate. In this study, external vision

data and offboard control commands were sent via Wi-Fi telemetry.

MAVLink Protocol

MAVLink is a lightweight message protocol used for communication between a GCS,

UAVs, and UAV components. It can support most operating systems, including ARM7,

ATMega, dsPic, STM32, Windows, Linux, macOS, Android, and iOS. MAVLink shows ex-
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cellent potential because of its lightweight mechanism that fits nicely in limited bandwidth

applications. MAVLink version 1 (MAVLink 1), released in 2009, only has 8 bytes of over-

head per packet, while MAVLink version 2 (MAVLink 2), introduced in 2017, uses 14 bytes

overhead per packet. More missions now require multi-agent collaboration, and MAVLink

enables up to 255 systems, including UAVs and the GCS, on the network. In addition to

communication between UAVs and the GCS, MAVLink also allows communication between

autopilot and onboard sensors.

In MAVLink 1, the smallest packet is an acknowledgment packet without payload, which

is 8 bytes in length. Conversely, the largest packet is 263 bytes with full payloads. Figure

2.1 and Table 2.2 show the structure of MAVLink 1 and its contents, respectively.

Figure 2.1. MAVLink 1 structure.
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Table 2.2. MAVLink 1 structure content.
Acronym Content Description

STX 0XFE Defines the start of the frame; should always be 0XFE,

as defined in MAVLink 1.

LEN 0 to 255 Defines the length of a payload.

SEQ 0 to 255 Defines the sequence of packets; used to detect packet

loss.

SYS ID 1 to 255 Defines the ID of a system.

COMP ID 0 to 255 Defines which component the system is sending the

message to.

MSG ID 0 to 255 Defines the message type.

PAYLOAD 0 to 255 bytes Contains real information about a message that is

dependent on the message type.

CHECK-

SUM

2 bytes contents Contains CKA (1 byte) and CKB (1 byte), which ensure

that the sender and receiver have the same message.

MAVLink 2 shares the same fields with MAVLink 1 and also has multiple new fields,

including two flags and a signature, to add more functionality. The first type is incompati-

bility flags, which notify systems of the MAVLink library’s features that support the packet.

For instance, if the packet is signed and a signature is appended at the end of the message,

the 0x01 bit of the incompatibility flag field (C flag = MAVLINK_IFLAG_SIGNED) must

be set as true. The second type, compatibility flags, does not change the message structure

and indicates the flags that a system can ignore if they are not understood. The main dif-

ference between incompatibility flags and compatibility flags is that if the system does not

understand the incompatibility flags, the system will discard the packet. Conversely, even if

a system does not understand a compatibility flag, it can still handle the packet.

Signature fields provide additional security for communications by verifying that a mes-

sage is from a legitimate source. To use the signature feature, the 0x01 bit of the incompat-

ibility flags must be true, at the end of the message, there must be appended 13 bytes of
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the signature field. Figure 2.2 and Table 2.3 provide, respectively, the basic structure of the

signature field and a description of its content.

Figure 2.2. MAVLink 2 signature field structure.

Table 2.3. MAVLink 2 signature structure content.
Acronym Size Description

Link ID 8 bits ID of link regarding which packet is sent.

timestamp 48 bits Timestamp in 10 microsecond units; since January 1, 2015, this

has been GMT.

signature 48 bits Signature for the packet, obtained by first 48 bits of SHA-256

hash of combination of secret key and complete message without

signature data.

The 48-bit signature data in the signature field is the first 48 bits of the SHA-256 hash

of the complete message without signature data appended to the secret key. The secret key

is 32 bytes of binary data stored on both ends of the MAVLink communication channel.

Equation (2.1 ) is the calculations of signature data, where + indicates concatenation.

signature = sha256_48(secretkey + header + payload + checksum + linkid + timestamp)

(2.1)

The structure of MAVLink 2 and its content description are provided in, respectively,

Figure 2.3 and Table 2.4 .
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Figure 2.3. MAVLink 2 structure.

Table 2.4. MAVLink 2 structure content.
Acronym Content Description

STX 0XFD Defines the start of the frame; should always be

0XFD, as defined in MAVLink 2.

LEN 0 to 255 Defines the length of payload.

INC FLAGS Defines the flags that MAVLink needs to be

supported.

CMP FLAGS Defines the flags that MAVLink does not need to

understand; flags can be ignored if MAVLink does

not support.

SEQ 0 to 255 Defines the sequence of packets; used to detect

packet loss.

SYS ID 1 to 255 Defines the ID of a system.

COMP ID 0 to 255 Defines to which component the system is sending

the message.

MSG ID 0 to 255 Defines message type.

PAYLOAD 0 to 255 bytes Contains real information of message dependent on

the message type.

CHECKSUM 2 bytes contents Contains CKA (1 byte) and CKB (1 byte), which

can ensure sender and receiver have the same

message.

SIGNATURE Optional. Contains the signature used to ensure

the communication is tamper-free.
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PX4 uses MAVLink to communicate with the GCS, such as QGroundControl, and extra

components onboard such as a companion computer and camera [59 ]. The set of messages

and services are pre-defined for exchanging data and sending commands.

2.1.4 Control Schemes

UAVs can be controlled through two main methods—manual or autonomous control.

Manual control requires the user to provide control input through a radio transmitter or

joystick. In contrast, autonomous control is conducted through an autopilot function and

requires no pilot input. Table 2.5 shows all of the available control modes for multi-copter

in PX4 [60 ].

Table 2.5. Control modes for multi-copter in PX4
Manual Autonomous

Position, Altitude, Manual/Stabilized,

Orbit, Acro

Hold, Return, Mission, Takeoff, Land,

Follow Me, Offboard

Control Mode

• Position mode: Position mode, which is considered the safest manual control, uses

a roll and pitch stick to control the acceleration level in lateral and longitudinal direc-

tions. Differently, the throttle and yaw stick manages the ascend/descend speed and

spin of the UAV. When both sticks on the radio transmitter are released and centered,

the autopilot system will lock the UAV in a position in 3D space by compensating

for any external forces and drift. If the roll and pitch stick is not centered while the

throttle and yaw stick is centered, the UAV will start cruising in a straight line at a

constant speed.

• Altitude mode: Altitude mode also uses a roll and pitch stick to control the accel-

eration of the left/right and forward/backward directions. The yaw and throttle stick

controls the spin rate and manages the ascend/descend speed. When all sticks are re-
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leased and centered, the onboard autopilot maintains the UAV at its current altitude.

The UAV will start drifting in the horizontal plane if any force is applied and stop

until all momentum has dissipated.

• Manual/Stabilized mode: The manual mode uses a roll and pitch stick to control

the attitude of the UAV and a yaw and throttle stick to manage spin speed and

ascend/descend speed. When all sticks are centered, the autopilot will stabilize the

UAV and hover in the current position. However, unlike the position and altitude

mode, the UAV under manual mode will not maintain position or attitude if drifting

occurred.

• Acro mode: Acro mode enables users to perform acrobatic maneuvers, such as flips

and rolls. The roll, pitch, and yaw sticks manage the speed of attitude rotation in each

axis, while the throttle stick sends the signal directly to the output mixer. When all

sticks are centered, all rotation stops, but current orientations remain, and the UAV

moves in the direction of its current momentum.

• Orbit mode: Orbit mode enables the UAV to move in a circle and maintain a yaw

direction toward the circle’s center. This mode requires GCS, where users can set up

the radius and center of orbit. A radio transmitter is optional in this mode, but it

can help to change the altitude, radius of the UAV’s orbit, speed, and direction. The

throttle stick controls speed along the altitude axis, while the roll stick manages the

acceleration clockwise/counterclockwise, and the pitch stick manages the radius of the

orbit.

• Hold mode: Hold mode makes the UAV stop, hover at its current position in three-

dimensional (3D) space, and maintain position against external forces or drift. Hold

mode can help to pause a mission or regain control of a UAV in an emergency. A

predefined switch on a radio transmitter or pause button in a GCS (QGroundControl)

can trigger hold mode.

• Return mode: Return mode helps the UAV fly a path to a secure location, where the

course may follow a mission path or mission landing route, depending on the parameter
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setting. A predefined radio transmitter switch or fail-safe activation can trigger this

mode. The default behavior of return mode is to cause the UAV to reach a safe altitude,

fly to the home position, and land.

• Mission mode: Mission mode allows the UAV to execute predefined flight plans that

are uploaded to autopilot from the GCS. The predefined flight plan can be configured

in GCS, such as the QGroundControl app, by selecting the actions and waypoints.

• Takeoff mode: Takeoff mode causes the UAV to ascend to a selected altitude and

hover in position.

• Land mode: Land mode directs the UAV to land at the location where the mode is

activated.

• Follow me mode: In follow me mode, the UAV follows the user autonomously by

tracking user-provided position setpoints. A portable device provides the setpoints

through a QGroundControl app or a MAVSDK app.

• Offboard mode: The UAV follows the position, velocity, or attitude setpoints pro-

vided by a user-defined script through MAVLink. Typically, this mode is engaged if

the user wants to control the UAV from companion computers and GCS.

In this study, position mode was used in ICMP flooding attacks, while offboard mode

was used in false waypoint injection.

Extended Kalman Filter Estimation

Control of UAVs usually involves estimation to provide better position and attitude

sensing. PX4 uses the extended Kalman filter (EKF) algorithm in the estimation and control

library to estimate the following states [61 ]:

• Quaternion of UAVs from the north, east, and down local earth frame to the x,y, and

z body frame.

• Velocity at the IMU, including north, east, and down in meters per second.
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• Position at the IMU, including north, east, and down, in meters.

• IMU delta angle bias estimates, including x, y, and z in radians.

• IMU delta velocity bias estimates, including x, y, and z in meters per second.

• Earth magnetic field components, including north, east, and down directions in gauss.

• Vehicle body frame magnetic field bias, including x, y, and z in gauss.

• Wind velocity, including north and east directions in meters per second.

Though each sensor has its sensing frequency and sampling time, the EKF algorithm can

run on a delayed fusion time horizon, enabling the fusion of various sensor measurements at

a different time relative to the IMU. The sensor measurements will be stored in the buffer

and used at the proper time, which is set by EKF2_*_DELAY parameters. Following are

the sensors used by the EKF2 algorithm when available and enabled through parameter

settings.

• IMU: X, y, and z body axis delta angle and delta velocity measured by IMU at a

minimum 100 Hz rate.

• Magnetometer: X, y, and z body axis magnetometer data or external vision system

pose at a minimum 5 Hz rate. EKF either combines and transforms the magnetometer

data to yaw angle for estimation or directly uses the separate measurements. While

the former is more robust but less accurate, the later gives a more precise estimation

but performs weakly when anomalies occur.

• Height: Data from either GPS, barometer, range finder, or external vision system at

a 5 Hz minimum rate.

• GPS: Position, velocity, and yaw measurements from a GPS/GNSS sensor. The

EKF2_AID_MASK parameter must change and there must be a passing quality of

GPS measurement to enable EKF to take these measurements.

• Range finder: Measurement of distance to the ground.
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• Airspeed: Equivalent airspeed can estimate wind velocity and help reduce drift from

GPS loss.

• Optical flow: Velocity estimation through downward-facing camera and distance sen-

sor.

• External vision system: Position, velocity, and orientation measurements from external

vision system such as Qualisys. By setting the value for EKF2_AID_MASK, the user

can obtain several combinations of measurements.

For this study, the IMU, magnometer, and external vision system were used in the EKF2

estimator.

2.2 Vulnerability

The MAVLink protocol best serves as the UAVs’s communications protocol because of its

lightweight mechanism that enables bandwidth and processing power limited applications.

However, this benefit comes with the liability that the channel is normally not encrypted,

which opens the door for adversaries to infiltrate the system in various ways.

2.2.1 Assumptions

Typically, to achieve an advanced attack, some assumptions are made beforehand that

basic intrusions can be successfully implemented. In this study, we considered the ICMP

flooding of DoS and the false waypoint injection of FDI. We made the following assumptions

to achieve these two attacks.

• The IP address of the UAV is known.

• The port number of the UAV is known.

• The connection is in the same network as the Wi-Fi telemetry between the UAV and

the GCS.
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The first two assumptions can be achieved through sniffing attacks on the specific Wi-Fi

modules, such as an ESP8266 [21 ]. The last assumption is valid because many examples

have shown the way to crack a Wi-Fi network [62 ], [63 ]. Furthermore, the default Wi-Fi

password for the ESP8266 on a PX4 is open to the public [64 ], which makes it easy for an

attacker to connect if the legitimate user does not change the setting of the Wi-Fi module.

2.2.2 DoS—ICMP Flooding

ICMP inspects the connection status between a host and client and returns a warning

if there are any problems with a packet transfer. A ping command in Windows, macOS,

or Linux terminal can send an ICMP message to the target IP address. An ICMP message

request packet be sent to the receiver when an ICMP message is transmitted, and the receiver

of the request packet will respond to the sender. Suppose the sender transmits a large number

of ICMP packets to a single receiver. In that case, the receiver will have to expend numerous

resources checking and replying, causing an overload on the receiving system and triggering

a DoS.

Tools such as LOIC, Netwox, and hping3 can help launch an ICMP flooding attack,

sending a large number of ICMP messages to specific targets. In this study, we used hping3

to execute an ICMP flooding attack. hping3, the newest version of hping, is a command line

controlled TCP/IP packet assembler and analyzer [65 ]. According to [65 ], hping3 supports

the TCP, UDP, ICMP, and RAW-IP protocols and has the following features:

• Firewall testing

• Advanced port scanning

• Network testing

• Manual path maximum transmission unit (MTU) discovery

• Advanced traceroute

• Remote OS fingerprinting
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• Remote uptime guessing

• TCP/IP stacks auditing

It also supports various operating systems, including Linux, FreeBSD, NetBSD, OpenBSD,

Solaris, macOS, and Windows. In hping3, the commend ”hping3 –flood” given with a spec-

ified protocol, target IP address, and target port number will cause packets to be sent as

rapidly as possible and achieve an ICMP flooding attack.

For this research, ICMP flooding was launched against the Wi-Fi module onboard UAVs

in the position model controlled by the radio transmitter. The ICMP flooding attack caused

delays with external vision position data and failed deliveries of accurate EKF2 estimations.

These obstacles can cause UAVs to drift due to increasing errors in the estimator covariance

or from velocity changes when the UAV incorrectly assumes it is still in the previous location.

2.2.3 FDI—False Waypoint Injection

The false waypoint injection is an FDI that injects an unauthorized waypoint command

into the autopilot on a UAV with an offboard script on a malicious GCS. In this study, we

assumed an attacker would know the IP address and port number of a target UAV, which

allowed us to launch MAVROS using a modified launch script to create a ROS node between

the UAV and a malicious GCS. Once a connection is established, the offboard script using

different waypoints can be run through the malicious GCS and cause the UAV to drift from

its original waypoints without warning the legitimate GCS.

After setting data rate for sending commands in both the legitimate user and attacker

offboard script control, we observe that when the ratio of attacker offboard data rate to

legitimate user offboard data rate was approximately greater than five, the attacker could

force the UAV to land at the location the attacker set in the offboard script. Therefore,

we conducted experiments with high-frequency and low-frequency data rates. The results

were that at high-frequency data rates, the attack could force the UAV to disarm at a a

specific location, while with low-frequency data rates, they could not. Figure 2.4 shows the

legitimate user frequency and the associated attacker frequency at which the attacker could
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successfully force the UAV to land and disarm. Table 2.6 shows the ratios legitimate data

rate to attacker data rate at which the attacker could cause the UAV to disarm.

Figure 2.4. Attacker offboard data rate that successfully forces UAVs to
disarm vs. legitimate user frequency.

Table 2.6. Ratio of attacker data rate successfully forcing UAVs to disarm to
legitimate user data rate.

Legitimate user data rate (Hz) Attacker frequency (Hz) Ratio

10 50 5

20 90 4.5

30 130 4.33

40 220 5.5

50 250 5

2.3 Intrusion Detection System (IDS)

An IDS detects a malicious infiltration in a UAV that has an intention to delay a mission,

take over a UAV, or destroy a UAV by crashing it. The IDS can also trigger emergency

actions such as switching to hold mode or emergency landing once an attack is detected.
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For this study, we chose a supervised signature-based detection method over a specification-

based or anomaly-based method for several reasons. First, the specification-based detection

methods require users to specify a large number of states that accurately represent a UAV’s

normal behaviors, and it is thus not practical for today’s complex applications. Second, the

anomaly-based detection methods cannot identify specific threats, which helps recognize the

type of attack.

Conversely, signature-based methods match the features, patterns, and signatures to

detect and identify attacks. In this way, signature-based methods avoid the need to have

a large number of rules input, as is the case with specification-based detection methods.

In addition, the anomaly-based method has an improved ability to understand the type

of attack by matching the associate signature. Understanding the type of attack can help

us provide suitable emergency actions. For example, DoS attacks that block the necessary

position information for navigation require an emergency landing to avoid unpredictable

drift. Differently, FDI attacks that inject false waypoints and cause immediate deviation

from the original course need a return-to-home action to avoid a collision.

We constructed a signature-based IDS with a learning mechanism to allow the IDS to

identify attacks without considering a dynamic model of selected features. The learning

mechanism can also find correlations across multiple features and autonomously identify

signatures.

2.3.1 Recurrent Neural Network (RNN)

We chose to use an RNN, which is a class of neural networks, in this study rather than

other machine learning methods because RNNs have the ability to process time series data

and identify long-term temporal correlations. Instead of looking at a single time step, an

RNN IDS can detect attacks when, within a certain window of time, selected features are

tampered with or show deviations from normal conditions. To identify the best type of RNN

for our IDS, we considered a simple RNN, LSTM, GRUs, and simple recurrent units (SRUs).
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Simple RNN

Three types of simple RNN are available. The first type of simple RNN, shown in Figure

2.5 , creates output at each time step and recurrences between hidden units. W , U , and V

are weight matrices that are required to be learned during training, while x(t), h(t), and o(t)

represent input, hidden units, and output at time t, respectively.

Figure 2.5. Simple RNN type 1.

The second type of simple RNN, shown in Figure 2.6 , creates output at each time step

and recurrences the output to the next hidden unit.

Figure 2.6. Simple RNN type 2.
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The third type of simple RNN, shown in Figure 2.7 , creates recurrences between hidden

units, but only outputs after going through an entire sequence.

Figure 2.7. Simple RNN type 3.

Equations (2.2 ) through (2.4 ) are the basic structure of one recurrence of a simple RNN.

In addition to the W , U , and V weight matrices, b and c are bias vectors that also need to be

learned during the training phase. Equation (2.2 ) takes current input xt and previous hidden

unit ht−1 to calculate the current hidden unit ht. In the second type of simple RNN, the

Uht−1 term in Equation (2.2 ) is replaced by Uot−1, which due to the structure of this simple

RNN type, is the recurrent output used to calculate the next hidden unit. Equation (2.3 )

calculates the output from the hidden unit, and Equation (2.4 ) uses the softmax function to

transfer outputs and obtain probabilities of the output. In the third type, simple RNN will

not calculate ot and yt until the last step because this type of RNN outputs only after an

entire data length has passed.

ht = tanh(Wxt + Uht−1 + b), (2.2)

ot = V ht + c, (2.3)

ŷt = softmax(ot), (2.4)
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It is noteworthy that with this last type of simple RNN, the hidden units are often

considered to be a direct output, and therefore, Equations (2.3 ) and (2.4 ) are not required.

For this work, we selected the third type of simple RNN with the hidden unit as output,

which goes through a sequence of selected features to decide, without using Equation (2.3 )

and (2.4 ), whether an attack happened.

Long-Short Term Memory (LSTM)

LSTM, developed in 1997 by Hochreiter and Schmidhuber [66 ], has shown high levels

of accuracy in multiple application domains. In a simple RNN, the vanishing gradient

problem is encountered during the training phase with a gradient-learning based method

and backpropagation. LSTM introduces three gates—an input, an output, and a forget

gate—to address this issue, controls the amount of information passed over time, and avoids

the vanishing gradient problem. Equations (2.5 ) through (2.10 ) and Figure 2.8 form the

basic structure of a single LSTM cell, which can in larger quantities, further construct a

layer. Wf , Wi, Wo, Wc, Uf , Ui, Uo, and Uc are weighted matrices, and bf , bi, bo, and bc are

vectors that must be learned during training.

Equations (2.5 ), (2.6 ), and (2.7 ) represent, respectively, the forget gate, the input gate,

and the output gate. These three equations determine, respectively, the amount of informa-

tion to forget from the last cell state ct−1, keep from the current input xt, and output to a

current hidden state ht. This gating mechanism greatly aids LSTM to memorize important

information over long time frames.

Equation (2.8 ) serves as the intermediate cell state that will then be multiplied by the

input gate in an element-wisely manner in Equation (2.9 ). Equation (2.9 ) represents the

current cell state, which is the weighted sum of the forget gate, ft, times the previous cell

state, ct−1, and the input gate, it, times the intermediate cell state, ĉt. Equation (2.10 )

calculates the current hidden unit by element-wise multiplication of the output gate, ot, and

the current cell state under the tangent hyperbolic function, tanh(ct).

ft = σ(Wfxt + Ufht−1 + bf ), (2.5)
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it = σ(Wixt + Uiht−1 + bi), (2.6)

ot = σ(Woxt + Uoht−1 + bo), (2.7)

ĉt = tanh(Wcxt + Ucht−1 + bc), (2.8)

ct = ft � ct−1 + it � ĉt, (2.9)

ht = ot � tanh(ct). (2.10)

Figure 2.8. Single LSTM cell.
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Gated Recurrent Units (GRUs)

GRUs, developed in 2014 by Kyunghyun Cho et al. [67 ], reduce the required number of

gates down to two from the LSTM. Equations (2.11 ) through (2.14 ) and Figure 2.9 form a

single GRU cell, which can in number further construct a layer. Wz, Wr, Wh, Uz, Ur, and

Uh are weighted matrices that, together with the bias vectors bz, br, and bh must be learned

during training. Equations (2.11 ) and (2.12 ) represent an update gate and a reset gate,

respectively. The update gate, Equation (2.11 ), determines the amount of information to

forget from the previous hidden unit, ht−1, and to keep from the intermediate hidden unit,

ĥt. Equation (2.12 ) represents the reset gate, which determines the amount of information

to take into account from the previous hidden unit, ht−1, for the intermediate hidden unit,

ĥt. Equation (2.13 ) serves as the intermediate state, which will be multiplied by the update

gate in an element-wise fashion in Equation (2.14 ). The current hidden state is calculated in

Equation (2.14 ) by the weighted sum of the previous hidden state, ht−1, and the intermediate

hidden state, ĥt, with respect to the update gate, Equation (2.11 ).

zt = σ(Wzxt + Uzht−1 + bz), (2.11)

rt = σ(Wrxt + Urht−1 + br), (2.12)

ĥt = tanh(Whxt + Uh(rt � ht−1) + bh), (2.13)

ht = (1 − zt) � ht−1 + zt � ĥt. (2.14)
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Figure 2.9. Single GRU cell.

Simple Recurrent Units (SRUs)

An SRU is a type of RNN that requires fewer parameters than more popular RNNs such

as LSTM and GRU, thereby sufficiently speeding up computations and reducing memory

requirements. While LSTM uses three gates and GRU uses two gates to control the amount

of information passed over time, the SRU structure uses light recurrence and highway con-

nection to handle the information over time, which decreases the number of parameters

required.

The light recurrence captures sequential information by reading the input from the last

step and computing the state vector. Although LSTM and GRU also contain such com-

ponents, SRU surpasses these two methods by parallelizing the computation and substi-

tuting matrix multiplication with point-wise multiplication. Highway connections facilitate

gradient-based training for deep networks, meaning they allow gradients to propagate di-

rectly. Equations (2.15 ) through (2.18 ) and Figure 2.10 show the structure of a single SRU
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cell, which can further construct a layer in numbers. W , Wf , and Wr are the weight matrices

and vf , vr, bf , and br are the vectors that must be learned during training.

Equations (2.15 ) and (2.16 ) correspond to the light recurrence step, while Equations

(2.17 ) and (2.18 ) correspond to the highway connections. The forget gate ft in Equation

(2.15 ) controls the information flow with input vector xt and previous state vector ct−1.

The current state vector ct is computed in Equation (2.16 ) by adaptively averaging the

previous state vector ct−1 and current information Wxt according to forget gate ft. The key

advantage in Equations (2.15 ) and (2.16 ) is the point-wise multiplication. In LSTM and

GRU, the previous state vector ct−1 is multiplied by a weight matrix in the forget gate ft.

This means all of the dimensions of the forget gate ft and current state vector ct depend

on all of the entries of the previous state vector ct−1. Therefore, the following computation

cannot be completed until the matrix multiplication of the previous state vector ct−1 is fully

computed. In SRU, point-wise multiplication makes all dimensions of vf � ct−1 independent,

thus parallelizing and accelerating the computation. In addition, SRU reduces the number

of parameters needed by substituting the weight matrix with the vector vf . The reset

gate, Equation (2.17 ), adaptively averages the input vector xt and current state vector ct in

Equation (2.18 ). The second term in Equation (2.18 ), (1 − rt) � xt, allows the gradient to

propagate directly to the previous layer and thus facilitates gradient-based learning.

ft = σ(Wfxt + vf � ct−1 + bf ), (2.15)

ct = ft � ct−1 + (1 − ft) � (Wxt), (2.16)

rt = σ(Wrxt + vr � ct + br), (2.17)

ht = rt � ct + (1 − rt) � xt. (2.18)
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Figure 2.10. Single SRU cell.

According to [68 ], even with a smaller number of parameters, SRUs deliver better re-

sults than LSTM and convolutional neural networks (CNNs) on natural language processing

(NLP) tasks. Furthermore, SRUs achieved a fivefold to ninefold improvement in speed over

NVIDIA CUDA deep neural network (cuDNN)-LSTM in the classification and question-

answer data set.

Recently, a new variant of SRU, called SRU++ [69 ], was developed by replacing the linear

projection of input (i.e., batched multiplication between the input vector xt, W , Wf , and

Wr) with a self-attention module. According to [69 ], SRU++ further decreases the number

of parameters needed in the SRU cell and increases the computation speed while delivering

better results compared to other existing models.

2.3.2 Features

A complete set of training features obtained from the PX4 logs will increase the number of

parameters in the IDS model, causing the IDS model’s memory size and computational power

to grow. Therefore, it is necessary to reduce the number of parameters. Instead of directly
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looking into vehicle dynamics, which usually respond later than other parameters when an

attack occurs, we selected 65 features from 11 messages related to sensor bias, estimator

error, covariance, and so on. Figure 2.11 shows the telemetry rate rx and vehicle local

position for hover mission under ICMP flooding attack. While rate rx responds immediately

after the attack is launched, the UAV’s position, representing vehicle dynamics, does not

show any effects until 9 seconds after the attack occurs.

Figure 2.11. Telemetry status rate rx and vehicle local position for hover mis-
sion under ICMP flooding attack. (Top): Telemetry status-rate rx; (bottom):
local position x and y, (purple): x, (blue): y.

The following table shows the complete list of selected features.

Table 2.7. Selected features.

Message Name Description

cpuload load Processor load from 0 to 1.

cpuload ram usage RAM usage from 0 to 1.

ekf2 timestamp visual odometry

timestamp rel

Relative timestamp of the odometry

input by ekf2.
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Table 2.7. Selected features

Message Name Description

estimator innovation

test ratios

ev_hpos[0] Horizontal external vision position axis 1

innovation test ratio.

estimator innovation

test ratios

ev_hpos[1] Horizontal external vision position axis 2

innovation test ratio.

estimator innovation

test ratios

ev_vpos Vertical external vision position x

innovation test ratio.

estimator innovation

test ratios

ev_hvel[0] Horizontal external vision velocity in axis

1 innovation test ratio.

estimator innovation

test ratios

ev_hvel[1] Horizontal external vision velocity in axis

2 innovation test ratio.

estimator innovation

test ratios

ev_vvel Vertical external vision velocity

innovation test ratio.

estimator innovation

test ratios

heading Heading innovation test ratio.

estimator innovation

variances

ev_hpos[0] Horizontal external vision position axis 1

innovation variance.

estimator innovation

variances

ev_hpos[1] Horizontal external vision position axis 2

innovation variance.

estimator innovation

variances

ev_vpos Vertical external vision position

innovation variance.

estimator innovation

variances

ev_hvel[0] Horizontal external vision velocity in axis

1 innovation variance.

estimator innovation

variances

ev_hvel[1] Horizontal external vision velocity in axis

2 innovation variance.

estimator innovation

variances

ev_vvel Vertical external vision velocity

innovation variance.
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Table 2.7. Selected features

Message Name Description

estimator innovation

variances

heading Heading innovation variance.

estimator innovations ev_hpos[0] Horizontal external vision position axis 1

innovation.

estimator innovations ev_hpos[1] Horizontal external vision position axis 2

innovation.

estimator innovations ev_vpos Vertical external vision position

innovation.

estimator innovations ev_hvel[0] Horizontal external vision velocity in axis

1 innovation.

estimator innovations ev_hvel[1] Horizontal external vision velocity in axis

2 innovation.

estimator innovations ev_vvel Vertical external vision velocity

innovation.

estimator innovations heading Heading innovation.

estimator sensor bias gyro bias[0] Gyroscope in-run bias in body frame axis

1.

estimator sensor bias gyro bias[1] Gyroscope in-run bias in body frame axis

2.

estimator sensor bias gyro bias[2] Gyroscope in-run bias in body frame axis

3.

estimator sensor bias accel bias[0] Accelerometer in-run bias in body frame

axis 1.

estimator sensor bias accel bias[1] Accelerometer in-run bias in body frame

axis 2.
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Table 2.7. Selected features

Message Name Description

estimator sensor bias accel bias[2] Accelerometer in-run bias in body frame

axis 3.

estimator status covariances[0] Quaternion 1 variance.

estimator status covariances[1] Quaternion 2 variance.

estimator status covariances[2] Quaternion 3 variance.

estimator status covariances[3] Quaternion 4 variance.

estimator status covariances[4] Velocity in north direction variance.

estimator status covariances[5] Velocity in east direction variance.

estimator status covariances[6] Velocity in down direction variance.

estimator status covariances[7] Position in north direction variance.

estimator status covariances[8] Position in east direction variance.

estimator status covariances[9] Position in down direction variance.

estimator status covariances[10] IMU delta angle bias in x direction.

estimator status covariances[11] IMU delta angle bias in y direction.

estimator status covariances[12] IMU delta angle bias in z direction.

estimator status covariances[13] IMU delta velocity bias in x direction.

estimator status covariances[14] IMU delta velocity bias in y direction.

estimator status covariances[15] IMU delta velocity bias in z direction.

estimator status pos test ratio Ratio of the largest horizontal position

innovation component to the innovation

test limit.

estimator status pos horiz accuracy 1-Sigma estimated horizontal position

accuracy relative to the estimator’s origin.

estimator status pos vert accuracy 1-Sigma estimated vertical position

accuracy relative to the estimator’s origin.
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Table 2.7. Selected features

Message Name Description

estimator status mag test ratio Ratio of the largest magnetometer

innovation component to the innovation

test limit.

estimator status vibe[0] IMU vibration metric—gyroscope delta

angle coning metric.

estimator status vibe[1] IMU vibration metric—gyroscope

high-frequency vibe.

estimator status vibe[2] IMU vibration metric—accelerometer

high-frequency vibe.

rate ctrl status rollspeed Roll speed integrator.

rate ctrl status pitchspeed Pitch speed integrator.

rate ctrl status yawspeed Yaw speed integrator.

telemetry status rate rx Telemetry receiving rate.

telemetry status rate tx Telemetry transmitting rate.

vehicle imu status accel vibration

metric

High-frequency vibration level in the IMU

accelerometer data.

vehicle imu status gyro vibration

metric

High-frequency vibration level in IMU

gyroscope data.

vehicle imu status gyro coning

vibration

Level of coning vibration in the IMU

delta angle.

vehicle local position eph Standard deviation of horizontal position

error.

vehicle local position epv Standard deviation of vertical position

error.

vehicle local position evh Standard deviation of horizontal velocity

error.
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Table 2.7. Selected features

Message Name Description

vehicle local position evv Standard deviation of vertical velocity

error.

We used recursive feature elimination (RFE) to find suitable representatives for detecting

attacks and decreasing the number of selected features. RFE is a systematic feature selection

method that can help in choosing a subset of features when necessary. RFE will recursively

fit the selected model with a smaller set of features by eliminating the weakest feature (or

features) in each iteration until the target number of features is reached. The following table

shows the 32 features selected by RFE using the random forest model.

Table 2.8. Features selected using RFE and random forest.
Message Features

cpuload load, ram usage

estimator innovation test ratios ev_hpos[1], ev_hvel[1]

estimator innovation variances ev_hpos[1]

estimator sensor bias gyro bias[0], gyro bias[2], accel bias[0], accel bias[2]

estimator status covariances[0], covariances[1], covariances[2],

covariances[4], covariances[5], covariances[6],

covariances[7], covariances[8], covariances[9],

covariances[10], covariances[11], pos horiz accuracy,

vibe[0], vibe[1], vibe[2]

integ rate ctrl status yawspeed

telemetry status rate rx

vehicle imu status accel vibration metric, gyro vibration metric, gyro

coning vibration

vehicle local position eph, evh, evv
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2.3.3 Design

A neural network IDS typically requires a high level of computational power and sizeable

onboard memory to store the model onboard. Traditional IDS fields, such as the internet of

things and smart power grids have enough power and memory space, so they rarely face such

disadvantages. However, high level of computational power and sizeable onboard memory

become a critical concern for UAV applications because they are typically size, weight, and

power-constrained with the software and hardware onboard.

Memory

The memory required for a neural network IDS can be determined by the number of

parameters in the neural network model. Let n represent the number of hidden units in

one layer of RNNs and m represent the input dimension. Table 2.9 compares the number

of parameters used in a layer of simple RNN, LSTM, GRU, and SRU. We do not consider

Equations (2.3 ) and (2.4 ) in this table.
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Table 2.9. Number of parameters in a single layer of simple RNN, LSTM,
GRU, and SRU.

RNN Parameters Total parameters

Simple

RNN

W ∈ n × m, U ∈ n × n, b ∈ n n2 + nm + n

LSTM Wf ∈ n × m, Uf ∈ n × n, bf ∈ n

Wi ∈ n × m, Ui ∈ n × n, bi ∈ n

Wo ∈ n × m, Uo ∈ n × n, bo ∈ n

Wc ∈ n × m, Uc ∈ n × n, bc ∈ n

4 × (n2 + nm + n)

GRU Wz ∈ n × m, Uz ∈ n × n, bz ∈ n

Wr ∈ n × m, Ur ∈ n × n, br ∈ n

Wh ∈ n × m, Uh ∈ n × n, bh ∈ n

3 × (n2 + nm + n)

SRU Wf ∈ n × m, vf ∈ n, bz ∈ n

W ∈ n × m

Wr ∈ n × m, vr ∈ n, br ∈ n

3nm + 4n

Based on the machine learning library, the number of parameters might vary a little

due to algorithms. In PyTorch, the machine learning library developed by Facebook’s AI

Research lab, the bias vectors for input and hidden unit in simple RNN, LSTM, and GRU

are separate. Therefore, we needed to add additional n parameters to each equation with

bias vectors. Table 2.10 compares the number of parameters used in a layer of simple RNN,

LSTM, GRU, and SRU in PyTorch. We do not consider Equations (2.3 ) and (2.4 ) in this

table.
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Table 2.10. Number of parameters in a single layer of simple RNN, LSTM,
GRU, and SRU in PyTorch.

RNN Parameters Total parameters

Simple RNN W ∈ n × m, U ∈ n × n, b for Wxt ∈ n,

b for Uht−1 ∈ n

n2 + nm + 2n

LSTM Wf ∈ n × m, Uf ∈ n × n, b for Wfxt ∈ n,

b for Ufht−1 ∈ n

Wi ∈ n × m, Ui ∈ n × n, b for Wixt ∈ n,

b for Uiht−1 ∈ n

Wo ∈ n × m, Uo ∈ n × n, , b for Woxt ∈ n,

b for Uoht−1 ∈ n

Wc ∈ n × m, Uc ∈ n × n, b for Wcxt ∈ n,

b for Ucht−1 ∈ n

4 × (n2 + nm + 2n)

GRU Wz ∈ n × m, Uz ∈ n × n, b for Wzxt ∈ n,

b for Uzht−1 ∈ n

Wr ∈ n × m, Ur ∈ n × n, b for Wrxt ∈ n,

b for Urht−1 ∈ n

Wh ∈ n × m, Uh ∈ n × n, b for Whxt ∈ n,

b for Uh(rt � ht−1) ∈ n

3 × (n2 + nm + 2n)

SRU Wf ∈ n × m, vf ∈ n, bz ∈ n

W ∈ n × m

Wr ∈ n × m, vr ∈ n, br ∈ n

3nm + 4n

Typically, after the last layer of RNNs, the classification problem will use a single dense

layer to shrink the number of hidden units from the last layer to the number of classes to get

classification probabilities. Thus, an additional (n+1)×output dimension (i.e., number of classes)

parameters need to be added to each model. The n×output dimension (i.e., number of classes)

parameters are weights and 1 × output dimension (i.e., number of classes) parameters are

bias. Equations (2.19 ), (2.20 ), (2.21 ), and (2.22 ) show the final total parameters for k layers

of RNN with a dense layer attached in PyTorch. Where n is the number of hidden units in
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one layer, m is the number of inputs in a single time step, and o is the number of the final

outputs, meaning number of classes,

simple RNN total parameters = k × (n2 + nm + 2n) + o × (n + 1) (2.19)

LSTM total parameters = k × (4 × (n2 + nm + 2n)) + o × (n + 1) (2.20)

GRU total parameters = k × (3 × (n2 + nm + 2n)) + o × (n + 1) (2.21)

SRU total parameters = k × (3nm + 4n) + o × (n + 1) (2.22)

After calculating the total parameters, we can calculate how big the model is in bytes

according to parameter variable type. In this work, we used the 32-bit floating-point numbers

that occupy 4 bytes per number. However, the actual final model memory might be larger

than the memory calculated by the number of parameters due to additional information the

model needs to carry. Table 2.11 shows the ratio of the final RNN model’s memory to the

memory calculated by the number of parameters in PyTorch.

Table 2.11. Ratio of final model memory in PyTorch to memory calculated
by number of parameters in RNN, LSTM, GRU, and SRU in PyTorch.

RNN Ratio

Simple RNN 1.76×

LSTM 1.25×

GRU 1.31×

SRU 1.44×

In addition to model memory, some libraries and software required to running an IDS

also need to account for onboard memory usage. For instance, the torch library for PyTorch
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can take 169 MB of space onboard. It should be noted that memory for storing temporary

feature data, which has number of features × number of timestep parameters, should also

be considered in total memory. Equation (2.23 ) shows that total memory usage should be

less than the free space available onboard.

memory of (F inal IDS model+software+library+temporary feature data) ≤ onboard free space

(2.23)

Computational Cost

The computational cost of an RNN can be calculated by the number of floating-point

operations (FLOPs) [70 ]. Table 2.12 is the standard arithmetic operators with their FLOPs

according to [71 ] (p. 116), which can be used to analyze the number of FLOPs required for

each RNN model.

Table 2.12. FLOPs for standard arithmetic operators according to [71 ].
Arithmetic operation Complexity

Addition (+) 1 FLOP

Subtraction (−) 1 FLOP

Multiplication (×) 1 FLOP

Division (÷) 4 FLOPs

Exponential (exp) 8 FLOPs

Where m is the input size and n is the hidden dimension, Tables 2.13 through 2.16 show

the number of FLOPs for each standard arithmetic operation in a single forward pass of

simple RNN, LSTM, GRU, and SRU.
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Table 2.13. FLOPs for single simple RNN layer forward pass.
Arithmetic operation FLOPs for simple RNN

Addition (+) n2 + nm (without bias vector)

n2 + nm + n (with bias vector)

n2 + nm + 2n (PyTorch with two bias vector)

Subtraction (−) n

Multiplication (×) n2 + nm + n

Division (÷) 4 × n

Exponential (exp) 8 × n

Total 2n2 + 2nm + 14n (without bias vector)

2n2 + 2nm + 15n (with bias vector)

2n2 + 2nm + 16n (PyTorch with two bias vectors)

Table 2.14. FLOPs for single LSTM layer forward pass.
Arithmetic operation FLOPs for LSTM

Addition (+) 4n2 + 4nm + 2n (without bias vector)

4n2 + 4nm + 6n (with bias vector)

4n2 + 4nm + 10n (PyTorch with two bias vectors)

Subtraction (−) 2n

Multiplication (×) 4n2 + 4nm + 7n

Division (÷) 4 × 5n

Exponential (exp) 8 × 5n

Total 8n2 + 8nm + 71n (without bias vector)

8n2 + 8nm + 75n (with bias vector)

8n2 + 8nm + 79n (PyTorch with two bias vectors)
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Table 2.15. FLOPs for single GRU layer forward pass.
Arithmetic operation FLOPs for GRU

Addition (+) 3n2 + 3nm (without bias vector)

3n2 + 3nm + 3n (with bias vector)

3n2 + 3nm + 6n (PyTorch with two bias vectors)

Subtraction (−) 2n

Multiplication (×) 3n2 + 3nm + 6n

Division (÷) 4 × 3n

Exponential (exp) 8 × 3n

Total 6n2 + 6nm + 44n (without bias vector)

6n2 + 6nm + 47n (with bias vector)

6n2 + 6nm + 50n (PyTorch with two bias vectors)

Table 2.16. FLOPs for single SRU layer forward pass.
Arithmetic operation FLOPs for SRU

Addition (+) 3nm + 2n (without bias vector)

3nm + 4n (with bias vector)

Subtraction (−) 2n

Multiplication (×) 3nm + 8n

Division (÷) 4 × 2n

Exponential (exp) 8 × 2n

Total 6nm + 36n (without bias vector)

6nm + 38n (with bias vector)

In one complete forward pass of the RNN model, each layer will pass the number of time

steps of an instance. Therefore, we need to multiply FLOPs by the number of time steps

before the number of layers. In addition, the dense layer that is last for the classification

problem also takes (n + 1) × number of classes FLOPs. The final equations calculating the
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number of FLOPs for a complete forward pass of simple RNN, LSTM, GRU, and SRU IDSs

in PyTorch with bias terms are shown in Equations (2.24 ) through (2.27 ).

simple RNN total FLOPs =

((2n2 + 2nm + 16n) × number of timesteps) × number of layers + (n + 1) × number of classes
(2.24)

LSTM total FLOPs =

((8n2 + 8nm + 79n) × number of timesteps) × number of layers + (n + 1) × number of classes
(2.25)

GRU total FLOPs =

((6n2 + 6nm + 50n) × number of timesteps) × number of layers + (n + 1) × number of classes
(2.26)

SRU total FLOPs =

((6nm + 38n) × number of timesteps) × number of layers + (n + 1) × number of classes
(2.27)

In resources-constrained applications, it is essential to ensure that the RNN IDS model

can run a complete forward pass with a specific frequency for time-based detection or within

a specific time frame for event-based detection. For this study, we chose to measure FLOPS

performance with the RNN IDS using the Arduino Uno, the lowest-cost companion computer

that can be implemented with PX4 firmware and Pixhawk autopilots as the target system.

The time required for Arduino Uno to complete specific arithmetic operations, according to
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[72 ] and [73 ], are provided in Table 2.17 . In addition, the FLOPS can be calculated with

Equation (2.28 ) for each arithmetic operation, which are also shown in Table 2.17 .

FLOPS =

1/(10−6 × nanoseconds per operations × number of FLOPs for single arithmetic operation)
(2.28)

Table 2.17. Time for floating point operations on Arduino Uno.
Arithmetic operation Nanoseconds per operations FLOPS

Addition (+) 9.09 110011.00

Subtraction (−) 9.19 108813.93

Multiplication (×) 9.69 103199.17

Division (÷) 30.82 129785.85

We chose to use an event-based IDS mechanism that requires a complete forward pass of

IDS once the selected message arrives. Thus, selecting an appropriate message with enough

of a time interval for the IDS to run a complete forward pass became critical. Equation

(2.29 ) would need to be observed in order for the IDS to complete a complete forward pass;

that is, deciding whether the attack happened within the selected message interval.

FLOPs of one complete forward pass for IDS model
FLOPS of selected computer performance

≤ Time interval of selected message

(2.29)

According to Equation (2.27 ), the FLOPs required to run an SRUmodel complete forward

pass with difference settings and the associated time required if Arduino Uno FLOPS equals

103199.17 is used are shown in Table 2.18 . All settings in Table 2.18 have the number of

timesteps set at 8, the number of layers at 1, and the number of classes at 3.
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Table 2.18. FLOPs for SRU in various settings and required time for one
complete forward pass.

Input size (number of features) Hidden unit

size

FLOPs Time required

for one forward

pass (s)

128 64 412867 4.00

65 64 219331 2.13

32 16 29491 0.29

Table 2.19 shows the messages we chose and their associated time intervals. To be

implementable onboard a UAV with Arduino Uno, the time required for one forward pass

had to be less than the minimum time interval of the message, and we therefore selected the

cpuload message to be the event. This meant that the IDS should run a complete forward

pass and decide whether an attack happened once a new cpuload message arrived.

Table 2.19. Selected messages and associated time interval.
Message Mean (s) Standard

deviation (s)

Max (s) Min (s)

cpuload 0.5625 0.2085 1.5009 0.4989

estimator innovation test ratios 0.0112 0.0216 0.7612 0.0099

estimator innovation variances 0.0112 0.0241 0.7814 0.0050

estimator innovations 0.0112 0.0241 0.7814 0.0050

estimator sensor bias 0.0112 0.0241 0.7814 0.0050

estimator status 0.0112 0.0241 0.7814 0.0050

rate ctrl status 0.0039 0.0143 0.7702 0.0012

telemetry status 0.5745 0.3797 2.0020 0.0098

vehicle imu status 0.1132 0.0994 1.3023 0.1000

vehicle local position 0.0113 0.0244 0.7814 0.0050
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3. EXPERIMENT CONFIGURATION

3.1 UAV

The UAV platform selected for this study is the Holybro S500 quadrotor shown in Figure

3.1 , which is one of the most commonly used UAV platforms. It is supported by the PX4

airframe [48 ] and operated by the PX4 autopilot system. Table 3.1 provides the specifications

of the Holybro S500.

Figure 3.1. Holybro S500 UAV platform.

Table 3.1. Specifications of the selected UAV platform.
UAV model Type Span Length Wheelbase Weight

Holybro S500 Quadrotor 15.07 in/383 mm 15.16 in/385 mm 18.90 in/48 mm 2.06 lb/935 g

3.2 Autopilot

For the autopilot used in this study, the Holybro Pixhawk 4, shown in Figure 3.2 , was

selected because of its various supported ports and newest onboard processor.
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Figure 3.2. Holybro Pixhawk 4.

The following are the specifications of the Holybro Pixhawk 4.

Interface:

• 8–16 pulse width modulation (PWM) servo outputs

• 3 dedicated PWM/capture inputs on the flight management unit (FMU)

• Dedicated radio-controlled (R/C) input for combined pulse position modulation (CPPM)

• Dedicated R/C input for Spektrum/digitial system multiplexer (DSM) and serial bus

(S.Bus) with analog/PWM received signal strength indication (RSSI) input

• Dedicated S.Bus output

• 5 general purpose serial ports

• 3 inter-integrated circuit (I2C) ports

• 4 serial peripheral interface (SPI) buses
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• 2 controller area network (CAN) buses for dual CAN with serial ESC

• Analog input for voltage and current of 2 batteries

Table 3.2. Holybro Pixhawk 4 technical specifications.
Main FMU

Processor

IO Processor Onboard Sensor GPS

STM32F765

• 32 Bit Arm

Cortex-M7

• 216 MHz

• 2 MB memory

• 512 KB RAM

STM32F100

• 32 Bit Arm

Cortex-M3

• 24 MHz

• 8 KB SRAM

• Accel/Gyro:

ICM-20689

• Accel/Gyro:

BMI055

• Mag: IST8310

• Barometer:

MS5611

• ublox Neo-M8N

GPS/GLONASS

receiver

• Magnetometer

IST8310

Table 3.3. Holybro Pixhawk 4 mechanical and environment specifications.
Dimension Weight Operating temperature Storage temperature

44 x 84 x 12 mm 15.8 g -40–85 °C -40–85 °C

Table 3.4. Holybro Pixhawk 4 electrical specifications.
Power module

output

Max input

voltage

Max current

sensing

USB power

input

Servo rail

input

4.9–5.5 V 6V 120A 4.75–5.25V 0–36V

Figure 3.3 shows all the connection ports on the Holybro Pixhawk 4.
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Figure 3.3. Holybro Pixhawk 4 connection scheme.

Table 3.5 and Figure 3.4 provide details about the connections used in this work.

Table 3.5. Holybro Pixhawk 4 connection on Holybro S500 platform used in this study.
Port Description

POWER1 Connection to 4S 4000mAh Battery.

TELEM1 Connection to ESP8266 Wi-Fi module for Wi-Fi telemtry.

DSM/SBUS RC Connection FrSKY X8R radio receiver for RC control and

emergency control takeover.

GPS module Connection to GPS sensor for compass reading.

I/O PWM out Connection to ESC and motors for control.
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Figure 3.4. Holybro Pixhawk 4 connection on Holybro S500 platform used in this study.

3.3 Wi-Fi Module

The onboard Wi-Fi module used in this study was the ESP8266 [74 ], shown in Figure

3.5 , which is a popular low-cost Wi-Fi chip supported by any Pixhawk series controller board

[64 ]. Table 3.6 gives the specifications of the ESP8266.
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Figure 3.5. ESP8266 Wi-Fi module

Table 3.6. Specifications of onboard Wi-Fi module.
Wi-Fi

Model

Type Power Length Width Weight

ESP8266 IEEE

802.11

b/g/n

Wi-Fi

3.3 V 0.98 in/24.89 mm 0.59 in/14.99 mm 0.00625 lb/2.83 g

3.4 Radio

A radio transmitter is required for the position mode in the ICMP flooding and the

emergency control takeovers in both attack scenarios. The radio transmitter we used was

a FrSKY TARANIS, shown in Figure 3.6 , and its associated receiver onboard the Holybro

S500 was the FrSKY X8R, shown in Figure 3.7 .
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Figure 3.6. FrSKY TARANIS. Figure 3.7. FrSKY X8R.

3.5 GCS

The following are the specifications of the computer that acted as the GCS.

• Model: Intel NUC

• Processor: Intel Core i7-7567U @ 3.5 GHz

• Graphics: Mesa Intel Iris Plus Graphics 650

• Memory (RAM): 31.3 GB

• Disk Capacity: 250.1 GB

• OS: Ubuntu 20.04.2 LTS 64 bit

QGroundControl, shown in Figure 3.8 , was selected as the GCS application used to mon-

itor the UAV’s status during experiments. The offboard mode experiments were conducted

using offboard Python scripts in a terminal window.
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Figure 3.8. Screen shot of QGroundControl GCS.

3.6 Attacker

The following are the specifications of the computer that acted as the attacker.

• Model: Intel NUC

• Processor: Intel Core i7-7567U @ 3.5 GHz

• Graphics: Mesa Intel Iris Plus Graphics 650

• Memory (RAM): 31.2 GB

• Disk Capacity: 250.1 GB

• OS: Ubuntu 20.04.1 LTS 64 bit

The ICMP flooding attack tests ran a shell script that contained the hping3 flooding com-

mand to launch the attack. The FDI false waypoint injection tests executed the malicious

offboard Python script in a terminal window.
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3.7 External Vision System

The external vision system was used in this work to facilitate indoor experiments. An

external vision system can provide 6 DoF information on the UAV to the GCS and autopilot

for the EKF estimator and UAV navigation. The experiments conducted in this study were

completed in Purdue University’s Indoor UAS Research and Test Facility (PURT) in order

to collect actual experimental data. The PURT facility is equipped with 53 Quailsys motion

capture (MoCap) cameras that can accurately track the position and orientation of UAVs

with around 1.5 mm tracking error. Figure 3.9 shows the PURT Qualisys MoCap system

setup.

Figure 3.9. Qualisys motion capture camera setup in Purdue University’s
Indoor UAS Research and Test (PURT) Facility; each apex of pyramid shape
represents one motion capture camera.

The following are the specifications of the computer that ran the Qualisys motion capture

system:

• Model: Qualisys QTM

• Processor: Intel Core i9-9900K @ 3.6 GHz

• Memory (RAM): 32 GB (31.8 GB usable)

• OS: Windows 10 Pro 64 bit
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3.8 Experiment Sequence

3.8.1 DoS—ICMP Flooding

Hover

1. 10 seconds for takeoff and hovering at certain heights.

2. 10 seconds hover as the no-attack data.

3. Launch DoS attack for 10 seconds, as the attack data.

4. R/C control takeover and land.

Cruise

• Attack tests

1. 15 seconds for takeoff, hovering at certain heights, and start cruising (at around

13 seconds).

2. Launch DoS attack for 5 seconds as the attack data.

3. R/C control takeover and land.

• Normal tests

1. 10 seconds for takeoff and hovering at certain heights.

2. 10 seconds for cruising as the no-attack data.

3. Land.

3.8.2 FDI—False Waypoint Injection

We conducted the FDI-false waypoint injection tests with both low-frequency and high-

frequency settings. The legitimate user offboard script data rate was set between 10 Hz and

50 Hz. In a low-frequency setting, the ratio of attacker data rate to legitimate user data

rate was below 5. The low-frequency tests aimed to delay the mission or cause a collision.

In addition, random setpoints and fixed setpoint were used in the low-frequency settings.
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Random setpoints injects a random setpoint in every command packet sent, while fixed

setpoint set an attacker-desired stationary point target within the complete attack sequence.

Conversely, the high-frequency setting involved attempting to land the drone in the attacker’s

desired location. The attacker data rate was greater than 5 times the legitimate user data

rate, as detailed in Figure 2.4 and Table 2.6 .

Hover

1. 10 seconds to takeoff and hovering at certain heights.

2. 10 seconds hovering as no-attack data.

3. While the original offboard script was running hover command, FDI attack was launched

as attack data.

• High frequency: 10 seconds to the attacker-defined waypoint, then 5s to force the

UAV to land and disarm.

• Low frequency with random setpoints: 15 seconds of random waypoints was given

to the UAV.

• Low frequency with a fixed setpoint: 10 seconds to the attacker-defined waypoint,

then 5 seconds to force the UAV to land and disarm.

4. Landing.

• High frequency: If not disarm by the attacker, 5 seconds to original waypoint,

hovering, and then 10 seconds to land.

• Low frequency with random setpoints: 5 seconds to original waypoint, hovering,

and then 10 seconds to land.

• Low frequency with a fixed setpoint: If not disarm by the attacker, 5 seconds to

original waypoint, hovering, and then 10 seconds to land.
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Cruise

• Attack tests:

1. 10 seconds to takeoff and hovering at certain heights.

2. While the original offboard script was running cruise, the FDI attack launched

as attack data.

– High frequency: 10 seconds to attacker-defined waypoint, and then 5 seconds

to force the UAV to land and disarm.

– Low frequency with random setpoints: 10 seconds of random waypoints was

given to the UAV.

– Low frequency with a fixed setpoint: 10 seconds to attacker-defined waypoint,

and then 5 seconds to force the UAV to land and disarm.

3. Landing.

– High frequency: If not disarm by the attacker, takeover by the original script

and 5 seconds to land where original script targeted.

– Low frequency with random setpoints: 10 seconds to land.

– Low frequency with a fixed setpoint: If not disarm by the attacker, takeover

by the original script and 5 seconds to land where original script targeted.

• Normal tests.

1. 10 seconds to takeoff and hovering at certain heights.

2. 20 seconds for cruising as no-attack data.

3. Land.
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4. ANALYSIS

To better demonstrate our experiments, we routed the real-time Qualisys MoCap system

information to the gazebo Abu Dhabi simulation environment. This allowed us to illustrate

the effects of the DoS and FDI attacks by showing the figures under these two environments

with the cell phone video recordings and PX4 log odometry data visualized by MATLAB.

4.1 DoS—ICMP Flooding

4.1.1 Normal—No Attack

Figures 4.1 and 4.2 show the hover test under no attack. We held the Holybro S500 in

a 3D location for the hover mission via the position mode. Figures 4.3 and 4.4 show the

cruise test under no attack. The cruise mission for the UAV involved cruising straight at a

constant speed.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Landing. (f) Landing.

Figure 4.1. Hover in no-attack scenario: (Left) Gazebo Abu Dhabi simulation
environment; (right) Qualisys MoCap system environment.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Landing. (f) Landing.

Figure 4.2. Hover in no attack scenario: (Left) Cell phone record; (right) MATLAB.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Landing. (f) Landing.

Figure 4.3. Cruise in no-attack scenario: (Left) Gazebo Abu Dhabi simula-
tion environment; (right) Qualisys MoCap system environment.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Landing. (f) Landing.

Figure 4.4. Cruise in no-attack scenario: (Left) Cell phone record; (right) MATLAB.
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4.1.2 Hover

Figures 4.5 and 4.6 demonstrate the hover mission under 10 seconds of the ICMP flooding

attack. To show the critical reactions of the UAV under a longer attack, Figures 4.7 and

4.8 demonstrate the hover mission under 30 seconds of the ICMP flooding attack. It should

noted that it was not safe to perform an ICMP flooding attack for longer than 30 seconds in

the PURT indoor environment because the UAV could crash into the boundary of the test

field.

The trajectories shown in Figure 4.5d and Figure 4.6d for 10 second ICMP flooding

attack and in Figure 4.7f and Figure 4.8f for 30 second ICMP flooding attack reveal large

deviations from the hover location. Figures 4.5d and 4.6d show the deviations when the

UAV should have been hovering at origin. Figures 4.7e and 4.7f show the UAV crashing

into the simulated virtual building in the gazebo and the Qualisys MoCap system under 30

seconds of the ICMP flooding attack.

Figures 4.9 and 4.10 present the comparison of trajectories under no attack and in the two

attack cases. The deviations from the hover location were caused by unavailable, delayed or

slow transmitted external vision system information, such as odometry messages. Because

of the ICMP flooding attack on the WiFi module, the odometry messages being transmitted

through the Wi-Fi channel began to send at a very low frequency or became unavailable. As

the EKF2 continuously either received the odometry messages at a low frequency or received

them only after a delay of a couple of seconds, the UAV position estimation became unstable,

and the UAV started drifting.
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(a) Takeoff. (b) Takeoff.

(c) Hover under 10 seconds of ICMP flooding at-
tack

(d) Hover under 10 seconds of ICMP flooding at-
tack

(e) Landing. (f) Landing.

Figure 4.5. Hover under 10 seconds of ICMP flooding attack: (Left) Gazebo
Abu Dhabi simulation environment; (right) Qualisys MoCap system environ-
ment.
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(a) Takeoff. (b) Takeoff.

(c) Hover under 10 seconds of ICMP flooding at-
tack.

(d) Hover under 10 seconds of ICMP flooding at-
tack.

(e) Landing. (f) Landing.

Figure 4.6. Hover under 10 seconds of ICMP flooding attack: (Left) Cell
phone record; (right) MATLAB.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Hover under 30 seconds of ICMP flooding at-
tack.

(f) Hover under 30 seconds of ICMP flooding at-
tack.

Figure 4.7. Hover under 30 seconds of ICMP flooding attack: (Left) Gazebo
Abu Dhabi simulation environment; (right) Qualisys MoCap system environ-
ment.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Hover under 30 second of ICMP flooding at-
tack.

(f) Hover under 30 second of ICMP flooding at-
tack.

Figure 4.8. Hover under 30 seconds of ICMP flooding attack: (Left) Cell
phone record; (right) MATLAB.
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(a) No attack.

(b) Hover under 10 second of ICMP flooding attack.

(c) Hover under 30 second of ICMP flooding attack.

Figure 4.9. Hover trajectory under: (Top) no-attack scenario; (middle) 10
seconds of ICMP flooding attack; (bottom) 30 seconds of ICMP flooding at-
tack. 92



Figure 4.10. Hover trajectories under no attack, 10 seconds of ICMP flooding
attack, and 30 seconds of ICMP flooding attack.

4.1.3 Cruise

Figures 4.11 and 4.12 demonstrate the cruise mission under 5 seconds of the ICMP

flooding attack. It should be noted that it was unsafe to perform the ICMP flooding attack

for a cruise mission longer than 5 seconds in the PURT indoor environment because the

UAV could crash into the boundary of the test field.

The trajectories shown in Figures 4.11d and 4.12d are the first reaction of the UAV

under the ICMP flooding attack during the cruise mission. We observed that the UAV

pitched forward and increased speed within 1 to 2 seconds of the attack being launched.

This behavior is caused by unavailable or delayed odometry messages in the Wi-Fi channel.

When the UAV did not receive the odometry messages, it was assumed that the current

position was the prior one. Therefore, the UAV increases speed to reach what was believed

to be the expected location.

The trajectories shown in Figures 4.11f and 4.12f are the later reaction of the UAV

under the ICMP flooding attack during the cruise mission. We observed that the UAV

began drifting from its original course. Similar to the hover case, the delay or unavailable
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odometry messages caused position estimation to be unstable, and therefore, the UAV began

drifting.

Figure 4.14 presents a comparison of the complete trajectories in the cases of no attack

and the ICMP flooding attacks. A substantial difference can be seen.
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(a) Takeoff and start cruising. (b) Takeoff and start cruising.

(c) Cruise under 5 seconds of ICMP flooding at-
tack.

(d) Cruise under 5 seconds of ICMP flooding at-
tack.

(e) Cruise under 5 seconds of ICMP flooding at-
tack.

(f) Cruise under 5 seconds of ICMP flooding at-
tack.

Figure 4.11. Cruise under 5 seconds of ICMP flooding attack: (Left) Gazebo
Abu Dhabi simulation environment; (right) Qualisys MoCap system environ-
ment.
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(a) Takeoff and start cruising. (b) Takeoff and start cruising.

(c) Cruise under 5 seconds of ICMP flooding at-
tack.

(d) Cruise under 5 seconds of ICMP flooding at-
tack.

(e) Cruise under 5 seconds of ICMP flooding at-
tack.

(f) Cruise under 5 seconds of ICMP flooding at-
tack.

Figure 4.12. Cruise under 5 seconds of ICMP flooding attack: (Left) Cell
phone record; (right) MATLAB.
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(a) No attack. (b) Cruise under 5 seconds of ICMP flooding at-
tack.

Figure 4.13. (Left) Cruise trajectory for no-attack scenario; (right) cruise
trajectory under 5 seconds of ICMP flooding attack.

Figure 4.14. Cruise trajectory under no attack and 5 seconds of ICMP flooding attack.
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4.2 FDI—False Waypoint Injection

4.2.1 Normal—No attack

Figures 4.15 and 4.16 show the hover test under no attack. We held the Holybro S500

at the origin at a height equal to 0.7 meters. Figures 4.17 and 4.18 show the cruise test

under no attack. The cruise mission for the UAV involved cruising straight from the origin

at a height equal to 0.7 meters to the point where x, y, and z equaled 8, 0, and 0.7 meters,

respectively.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Landing. (f) Landing.

Figure 4.15. Hover in no-attack scenario: (Left) Gazebo Abu Dhabi simula-
tion environment; (right) Qualisys MoCap system environment.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Landing. (f) Landing.

Figure 4.16. Hover in no-attack scenario: (Left) Cell phone record; (right) MATLAB.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Landing. (f) Landing.

Figure 4.17. Cruise in no-attack scenario: (Left) Gazebo Abu Dhabi simu-
lation environment; (right) Qualisys MoCap system environment.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Landing. (f) Landing.

Figure 4.18. Cruise in no-attack scenario: (Left) Cell phone record; (Right) MATLAB.
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4.2.2 Low Frequency

Random Waypoints Injection

Figures 4.19 and 4.20 show the hover mission under the low-frequency random setpoints

FDI attack. The attacker injected random setpoints within [-2m, 2m] in x and y and [0.5m,

1.5m] in z to delay or cause the UAV to drift away from the hover location. Figure 4.21 com-

pares the hover trajectories under no attack and under the low-frequency random setpoints

FDI attack. It was observed that, during the attack, the UAV drifted about 0.25m from the

hover location and showed unstable poses. The drift distance from the origin increased if

the attacker injected more distant waypoints and had extended attack time.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Hover under the low-frequency random set-
points FDI attack.

(f) Hover under the low-frequency random set-
points FDI attack.

Figure 4.19. Hover under the low-frequency random setpoints FDI attack:
(Left) Gazebo Abu Dhabi simulation environment; (right) Qualisys MoCap
system environment.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Hover under the low-frequency random set-
points FDI attack.

(f) Hover under the low-frequency random set-
points FDI attack.

Figure 4.20. Hover under the low-frequency random setpoints FDI attack:
(Left) Cell phone record; (right) MATLAB.
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Figure 4.21. Hover trajectories under no attack and the low-frequency ran-
dom setpoints FDI attack.

Figures 4.22 and 4.23 show the cruise mission under the low-frequency random setpoints

FDI attack. The attacker injected random setpoints within [0m, +8m] in x, [-8m, 8m] in y,

and [0.5m, 1.5m] in z to delay or drive the UAV away from the cruise course. Figure 4.24 

compares the cruise trajectories under no attack and the low-frequency random setpoints FDI

attack. The UAV deviated significantly from the expected cruise trajectory, particularly in

the y-axis. The y setpoint was a constant value in the legitimate user offboard script for this

cruise test, which means there should be no momentum on the y-axis. Therefore it is easy

to perturb if any false waypoint is injected into the y-axis.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Cruise under the low-frequency random set-
points FDI attack.

(f) Cruise under the low-frequency random set-
points FDI attack.

Figure 4.22. Cruise under the low-frequency random setpoints FDI attack:
(Left) Gazebo Abu Dhabi simulation environment; (right) Qualisys MoCap
system environment.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Cruise under the low-frequency random set-
points FDI attack.

(f) Cruise under the low-frequency random set-
points FDI attack.

Figure 4.23. Cruise under the low-frequency random setpoints FDI attack:
(Left) Cell phone record; (right) MATLAB.
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Figure 4.24. Cruise trajectories under no attack and the low-frequency ran-
dom setpoints FDI attack.

Fixed Waypoint Injection

Figures 4.25 and 4.26 show the hover mission under the low-frequency fixed point FDI

attack. The attacker aimed to take the UAV to x = 2m and y = -2m. Figure 4.27 compares

the hover trajectories under no attack and the low-frequency fixed point FDI attack. The

trajectory under attack deviated from the hover point as the UAV tried reach the attacker’s

desired location. However, because the frequency of the attack was not rapid enough, the

UAV was not precisely at the attacker’s desired location. Additionally, because of the attack’s

low-frequency setting, the UAV could not be landed and disarmed. Figure 4.28 shows the

recovery trajectory of an attacker trying to land the UAV at the attacker-desired location,

but the attacker was unable to disarm the UAV, and therefore, the UAV was recovered by

the legitimate user.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Hover under the low-frequency fixed setpoint
FDI attack.

(f) Hover under the low-frequency fixed setpoint
FDI attack.

Figure 4.25. Hover under the low-frequency fixed setpoint FDI attack: (Left)
Gazebo Abu Dhabi simulation environment; (right) Qualisys MoCap system
environment.
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(a) Takeoff. (b) Takeoff.

(c) Hover. (d) Hover.

(e) Hover under the low-frequency fixed setpoint
FDI attack.

(f) Hover under the low-frequency fixed setpoint
FDI attack.

Figure 4.26. Hover under the low-frequency fixed setpoint FDI attack: (Left)
Cell phone record; (right) MATLAB.
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Figure 4.27. Hover trajectories under no attack and the low-frequency fixed
setpoint FDI attack.

Figure 4.28. Recovery trajectory in hover test after the low-frequency fixed
setpoint FDI attack.

Figures 4.29 and 4.30 show the cruise mission under the low-frequency fixed point FDI

attack. The attacker aimed to take the UAV to x = 6m and y = -2m. Figure 4.31 compares

the cruise trajectory under no attack and the fixed point FDI attack. The trajectory under

the attack deviated from the original straight-line course as the UAV tried to reach the
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attacker’s desired location. However, because the frequency of attacks was slow, the UAV

was not precisely at the attacker’s desired location. Additionally, as with the low-frequency

fixed point FDI attack in the hover case, the UAV could not be disarmed even when the

attacker successfully drove the UAV to the ground. In the Figure 4.32 , the trajectory close

to the ground was the legitimate offboard script trying to recover the UAV and return it to

the original target point.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Cruise under the low-frequency fixed setpoint
FDI attack.

(f) Cruise under the low-frequency fixed setpoint
FDI attack.

Figure 4.29. Cruise under the low-frequency fixed setpoint FDI attack: (Left)
Gazebo Abu Dhabi simulation environment; (right) Qualisys MoCap system
environment.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Cruise under the low-frequency fixed setpoint
FDI attack.

(f) Cruise under the low-frequency fixed setpoint
FDI attack.

Figure 4.30. Cruise under low-frequency fixed setpoint FDI attack: (Left)
Cell phone record; (right) MATLAB.
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Figure 4.31. Cruise trajectory under no attack and the low-frequency fixed
setpoint FDI attack.

Figure 4.32. Cruise trajectory after the low-frequency fixed setpoint FDI attack.

4.2.3 High Frequency

In high-frequency tests, the attacker was able to take control and disarm the UAV at the

attacker’s desired location. We used a fixed setpoint to force the UAV to move to a malicious

waypoint and then force it to land and disarm. Figures 4.33 and 4.34 show the hover mission
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under high-frequency fixed point FDI attack. The attacker aimed to take the UAV to x =

2m and y = -2m. Figure 4.35 compares the hover trajectories under no attack and the high-

frequency fixed point FDI attack. The trajectory under the attack deviated from the hover

point and the UAV was successfully directed to the attacker’s desired location. In Figure

4.36 , we can observe that the advantage of sending at a higher frequency is that it allows

the attacker to take the UAV further toward the attacker’s desired location.
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(a) Takeoff and hover. (b) Takeoff and hover.

(c) Hover under the high-frequency fixed setpoint
FDI attack.

(d) Hover under the high-frequency fixed setpoint
FDI attack.

(e) Landing by the high-frequency fixed setpoint
FDI attack.

(f) Landing by the high-frequency fixed setpoint
FDI attack.

Figure 4.33. Hover under the high-frequency fixed setpoint FDI attack:
(Left) Gazebo Abu Dhabi simulation environment; (right) Qualisys MoCap
system environment.
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(a) Takeoff and hover. (b) Takeoff and hover.

(c) Hover under the high-frequency fixed setpoint
FDI attack.

(d) Hover under the high-frequency fixed setpoint
FDI attack.

(e) Landing by the high-frequency fixed setpoint
FDI attack.

(f) Landing by the high-frequency fixed setpoint
FDI attack.

Figure 4.34. Hover under the high-frequency fixed setpoint FDI attack:
(Left) Cell phone record; (right) MATLAB.
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Figure 4.35. Hover trajectories under no attack and the
highfrequencyf ixedsetpointFDIattack.

Figure 4.36. Hover trajectories under no attack, the low-frequency fixed
setpoint attack, and the high-frequency fixed setpoint FDI attack.

Figures 4.29 and 4.30 show the cruise mission under the high-frequency fixed point FDI

attack. The attacker intended to take the UAV to x = 6m and y = -2m, then land and

disarm it. Figure 4.31 compares the cruise trajectories under no attack and the fixed point
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FDI attack. The trajectory under the attack deviated from the original straight-line course,

and the UAV was successfully guided to the attacker’s desired location. In Figure 4.40 , we

can see that when the attack was at a higher frequency, it was more likely that the attacker

could drive the UAV toward the attacker’s desired location.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Cruise under the high-frequency fixed setpoint
FDI attack.

(f) Cruise under the high-frequency fixed setpoint
FDI attack.

Figure 4.37. Cruise under the high-frequency fixed setpoint FDI attack:
(Left) Gazebo Abu Dhabi simulation environment; (right) Qualisys MoCap
system environment.
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(a) Takeoff. (b) Takeoff.

(c) Cruise. (d) Cruise.

(e) Cruise under the high-frequency fixed setpoint
FDI attack.

(f) Cruise under the high-frequency fixed setpoint
FDI attack.

Figure 4.38. Cruise under the high-frequency fixed setpoint FDI attack:
(Left) Cell phone record; (right) MATLAB.
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Figure 4.39. Cruise trajectories under no attack and the high-frequency fixed
setpoint FDI attack.

Figure 4.40. Cruise trajectories under no attack, the low-frequency fixed
setpoint FDI attack, and the high-frequency fixed setpoint FDI attack.

4.3 IDS

We have collected 4,739 no-attack, 1,002 ICMP flooding attack, and 2,476 FDI attack

samples and randomly separated 80% of the data into a training set and the remaining 20%
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into a testing set. Table 4.1 and Figure 4.41 show the performance and resource consumption

of the simple RNN, LSTM, GRU, and SRU with 65 features, hidden units size equal to 64,

1 layer, and 3 output classes.

To create a lighter RNN IDS model, we used RFE to eliminate unnecessary features

and thereby decreased the memory and number of FLOPs required per forward pass. RFE

also identified and differentiated the subsets of characteristic features for different attack

scenarios from the original set of 65 features to further reduce resource consumption and

avoid using redundant features. Table 4.2 and Figure 4.42 show the performance and resource

consumption of the simple RNN, LSTM, GRU, and SRU with 32 out of 65 features selected

by the RFE, with a random forest model, hidden units size equal to 16, 1 layer, and 3 output

classes. The RNNs were trained using the Adam optimizer, with a learning rate equal to

0.0001 for simple RNN and SRU and 0.00001 for LSTM and GRU.

While in the case of 65 input features, the accuracy was around 95% for all of the models,

with 32 input features, the simple RNN achieved the greatest accuracy, with the lowest

number of parameters and FLOPs required for a complete forward pass. Despite having the

fewest parameters, simple RNN had the greatest accuracy because the number of time steps

required for this problem was low enough that the simple RNN did not have a vanishing

gradient problem. Conversely, with more parameters than simple RNN, LSTM and GRU

ran into the overfitting problem, which caused them to have less accuracy in testing data.

More trainable parameters had increased the model complexity, and thus tightly fitting the

model to the training data, which caused overfitting.

Table 4.1. RNN IDS performance with 65 features data set and 64 hidden units.
RNN Accuracy, % Parameters Memory

(KB)

FLOPs per

complete forward

pass

Simple RNN 95.3771 8579 59 140483

LSTM 95.0730 33731 162.79 569027

GRU 95.4380 25347 128.40 422083

SRU 95.2555 12931 72 219331
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Figure 4.41. Accuracy performance of RNNs with 65 features (%).

Table 4.2. RNN IDS performance with 32 features data set.
RNN Accuracy,

%

Parameters Memory

(KB)

FLOPs per

complete forward

pass

Simple RNN 96.2895 851 5.864 14387

LSTM 92.0925 3251 15.69 59315

GRU 92.9440 2451 12.42 43315

SRU 95.1338 1651 9.206 29491
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Figure 4.42. Accuracy performance of RNNs with 32 features (%).

We also compared the performance of the RNN-based IDSs with other filtering meth-

ods by setting threshold values for specific features. In the control and estimation field,

Kalman filter parameters are often used as the threshold feature. However, computer sci-

ence researchers typically consider network properties to be the important features. Here,

for the features, we chose estimator velocity covariances in the north, east, and down direc-

tions (message: estimator status, features: covariances[4], covariances[5], covariances[6]) and

telemetry receiving rate (message: telemetry status, feature: rate rx).

The threshold value was set by two methods—maximum and minimum test and mean

and standard deviation. The maximum velocity covariance values in each directions standard

case were set as the maximum and minimum test threshold values. Any value above the

threshold was treated as an attack. In contrast, the maximum and minimum values of rate

rx were the threshold boundaries. If the rate rx was above the maximum value or below the

minimum value, it was classified as an attack.

The second method used the mean and standard deviation of the features to set the

threshold values, also known as sigma threshold, so that the mean and standard deviation of

velocity covariance in each direction and rate rx was calculated as the normal cases. Then,

we set the threshold value at the mean value plus a factor of the standard deviation for each

velocity covariance. Any value above the threshold was classified as an attack. For the rate

rx, the upper bound of the threshold value was the mean value plus a factor of standard
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deviation. Similarly, the lower bound was the mean value minus a factor of the standard

deviation. If the rate rx was higher than the upper bound threshold value or lower than the

lower bound threshold value, we classified it as an attack.

The following table shows the maximum accuracy of each threshold method with the

selected features. Figure 4.43 shows the accuracy versus the factor of standard deviation

used for threshold value setting. We confirm that the accuracy of the threshold methods

was much lower than with any of the RNN methods. In addition, threshold method was not

able to identify the type of attack.

Table 4.3. Threshold methods maximum accuracy.
Feature Max and Min value Mean and standard deviation

Covariances [4] 65.11% 73.00% at ratio of std = 0.24

Covariances [5] 64.96% 72.90% at ratio of std = 0.27

Covariances [6] 58.07% 63.62% at ratio of std = 0.96

Rate rx 81.87% 86.21% at ratio of std = 1.66
ratio of std = ratio of standard deviation.

Figure 4.43. Detection accuracy versus the factor of standard deviation used
for the threshold.
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Considering the resource-constrained characteristic of UAVs, the resource consumption

with different IDSs also needs to be evaluated and compared. If the user wants to put

the IDS model on the computer’s flash memory, the memory limit needs to be met. For

example, Arduino Uno only has 32 KB of flash memory, which means that only the RNN

IDS constructed with 32 input features and 16 hidden units, with a time step window of 8

and 3 output classes can fit the board, according to Tables 4.1 and 4.2 . Similarly, the FLOPs

required for one complete forward pass is another critical category to be examined. Using

Equation (2.29 ) and 0.4989 seconds as the time interval of the selected cpuload message,

we could calculate the maximum FLOPs of one complete forward pass for the IDS models

with the FLOPS of the selected computer. Here, we used Arduino Uno as an example.

According to Table 2.17 , we selected 103199.17 FLOPS to calculate the maximum FLOPs of

one complete forward pass for the IDS model. The following equation shows that 51486.066

was the max number of FLOPs that the IDS can use for a full forward pass on Arduino Uno.

FLOPs of one complete forward pass for IDS model ≤ 103199.17 × 0.4989 = 51486.066
(4.1)

According to Tables 4.1 and 4.2 , only the simple RNN, GRU, and SRU with a 32 features

data set, 16 hidden units, 1 layer, and 3 classes could meet the requirements of Arduino Uno.

Obviously, one could choose to add a more powerful computer to satisfy the computation

needs of a larger model. However, doing so also increases power consumption.

Considering both memory and computational cost constrains, Table 4.4 shows that only

the simple RNN, GRU, and SRU with 32 features in the data set and 16 hidden units are

implementable on the target computer. Among these three options, the simple RNN has

highest accuracy rate with the least memory and fewest FLOPS required. Thus, we conclude

that simple RNN is the best choice among RNNs and the selected threshold methods for

detecting an attack onboard limited-resources platforms.
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Table 4.4. Overall performance of RNNs IDS methods.
IDS model Number of

features

Hidden

units

Accuracy,

%

Memory

(KB)

FLOPs

per

complete

forward

pass

Simple RNN 65 64 95.3771 59 140483

LSTM 65 64 95.0730 162.79 569027

GRU 65 64 95.4380 128.40 422083

SRU 65 64 95.2555 72 219331

Simple RNN 32 16 96.2895 5.864 14387

LSTM 32 16 92.0925 15.69 59315

GRU 32 16 92.9440 12.42 43315

SRU 32 16 95.1338 9.206 29491

Arduino Uno

constraint

32 51486.066

Red = Parameters that does not meet the constrains of selected computer.

To verify that our proposed Simple RNN IDS can detect and identify the type of attack,

we injected ICMP flooding attack and FDI attack into the final IDS model. Figures 4.44 and

4.45 show the probability of normal condition and each type of attack under, respectively,

ICMP flooding attack and FDI attack. Additionally, the classification decision based on

these probabilities is also shown in both figures. The results show that simple RNN IDS can

detect the attacks in 1 to 1.5 seconds after the attacks occurred and correctly classify the

attack type.
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Figure 4.44. Simple RNN IDS probability of each attack and classification
under ICMP flooding attack.

Figure 4.45. Simple RNN IDS probability of each attack and classification
under FDI attack.
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5. CONCLUSION

This work explored the vulnerability in the communication channel between an unmanned

aerial vehicle (UAV) and a ground control station (GCS), and conducted real-world ex-

periments to demonstrate the implementation of different cyberattacks, and developed a

lightweight IDS using a recurrent neural network (RNN). The overall system details and

attack strategies were presented in this paper, along with thorough explanation of the de-

sign of the RNN structure and the challenges of deploying an intrusion detection system

(IDS) onboard a UAV. Various parameters were proposed for testing whether the simple

RNN, long short-term memory (LSTM), gated recurrent units (GRU) or simple recurrent

units (SRU)-based IDSs are suitable for the selected resources-constrained system. Unlike

other works, extensive actual experiments were conducted for this thesis to demonstrate the

attacks and collect the training data for IDS models.

The experiments implemented attacks on a Holybro S500 quadrotor with PX4 autopilot

firmware and MAVLink protocol. It was shown that the UAV was in fact vulnerable to an

Internet control message protocol (ICMP) flooding attack, resulting in a denial of service

(DoS) attack and a false waypoint injection attack once the attacker knew the network

parameters of the UAV and GCS. Deviations from the normal mission trajectory and loss

of control, such as the sudden acceleration of the Holybro S500 quadrotor, were observed

during the experiments.

The simple RNN, GRU, and SRU were tested for suitability of implementation on the

Arduino Uno board, the lowest-cost companion that can be implemented with the PX4, by

checking the memory size of the IDS model and number of floating point operations (FLOPs)

required for a complete forward pass. Among RNNs, the simple RNN achieved the highest

rate of attack detection accuracy at 96 %, with the lowest memory size of 5.864 kilobytes.

The number of FLOPs required for one complete forward pass of the simple RNN was 14,387.

In addition, RNNs outperformed the threshold value based method that used the covariance

of velocity in each direction and telemetry receiving rate as features. Thus, we confirmed

that the simple RNN is our best choice of IDS for resources-constrained platforms.
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5.1 Future Directions

Future extensions of this work can include the following:

• Conduct more experiments with various attack methods to gather more data in the

training data set, thus making the IDS robust for various malicious actions.

• Instead of using the default PX4 features, create custom features that can help the

IDS detect attacks more accurately.

• Online learning for an IDS model to perform updates and corrections to the model.

• Try different approaches for designing IDSs for different attacks. It may be found that

one method is more accurate for detecting a particular type of attack.
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