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ABSTRACT

Stochastic programs are standard models for decision-making under uncertainty and have

been extensively studied in the operations research literature. In general, stochastic program-

ming involves minimizing an expected cost function, where the expectation is with respect

to fully specified stochastic models that quantify the aleatoric or ‘inherent’ uncertainty in

the decision-making problem. In practice, however, the stochastic models are unknown

but can be estimated from data, introducing an additional epistemic uncertainty into the

decision-making problem. The Bayesian framework provides a coherent way to quantify the

epistemic uncertainty through the posterior distribution by combining prior beliefs of the

decision-makers with the observed data. Bayesian methods have been used for data-driven

decision-making in various applications such as inventory management, portfolio design,

machine learning, optimal scheduling, and staffing, etc.

Bayesian methods are challenging to implement, mainly due to the fact that the poste-

rior is computationally intractable, necessitating the computation of approximate posteriors.

Broadly speaking, there are two methods in the literature implementing approximate pos-

terior inference. First are sampling-based methods such as Markov Chain Monte Carlo.

Sampling-based methods are theoretically well understood, but they suffer from various

issues like high variance, poor scalability to high-dimensional problems, and have complex

diagnostics. Consequently, we propose to use optimization-based methods collectively known

as variational inference (VI) that use information projections to compute an approximation

to the posterior. Empirical studies have shown that VI methods are computationally faster

and easily scalable to higher-dimensional problems and large datasets. However, the the-

oretical guarantees of these methods are not well understood. Moreover, VI methods are

empirically and theoretically less explored in the decision-theoretic setting.

In this thesis, we first propose a novel VI framework for risk-sensitive data-driven decision-

making, which we call risk-sensitive variational Bayes (RSVB). In RSVB, we jointly compute

a risk-sensitive approximation to the ‘true’ posterior and the optimal decision by solving a

minimax optimization problem. The RSVB framework includes the naive approach of first

computing a VI approximation to the true posterior and then using it in place of the true
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posterior for decision-making. We show that the RSVB approximate posterior and the corre-

sponding optimal value and decision rules are asymptotically consistent, and we also compute

their rate of convergence. We illustrate our theoretical findings in both parametric as well

as nonparametric setting with the help of three examples: the single and multi-product

newsvendor model and Gaussian process classification. Second, we present the Bayesian

joint chance-constrained stochastic program (BJCCP) for modeling decision-making prob-

lems with epistemically uncertain constraints. We discover that using VI methods for pos-

terior approximation can ensure the convexity of the feasible set in (BJCCP) unlike any

sampling-based methods and thus propose a VI approximation for (BJCCP). We also show

that the optimal value computed using the VI approximation of (BJCCP) are statistically

consistent. Moreover, we derive the rate of convergence of the optimal value and compute the

rate at which a VI approximate solution of (BJCCP) is feasible under the true constraints.

We demonstrate the utility of our approach on an optimal staffing problem for an M/M/c

queue. Finally, this thesis also contributes to the growing literature in understanding sta-

tistical performance of VI methods. In particular, we establish the frequentist consistency

of an approximate posterior computed using a well known VI method that computes an

approximation to the posterior distribution by minimizing the Rényi divergence from the

‘true’ posterior.
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1. INTRODUCTION

Consider the following parameterized optimization problem:

minimize R(a, θ) (TP)

s.t. gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m},

where a ∈ A is the decision variable and θ ∈ Θ is the model parameter. The function

R(a, θ) : A×Θ 7→ R encodes the cost/risk and the functions gi(a, θ) : A×Θ 7→ R define the

constraints. Under certain regularity conditions on the cost and the constraint functions,

and for a given value of parameter θ, we assume that (TP) can be solved to compute a set

of optimal decisions a∗. These types of problems are studied in the OR/MS community as

stochastic programs [ 1 ], [  2 ]. In particular, (TP) can be represented as the following general

stochastic program [ 3 ],

minimize R0
Pθ

[`(a, ξ)] (SPP)

s.t. Ri
Pθ

[ḡi(a, ξ)] ≤ 0, i ∈ {1, 2, 3, . . . ,m},

where Ri
Pθ

(·), i ∈ {0, 1, 2, . . . ,m} are well-defined risk measures for a given distribution Pθ

that measures the aleatoric uncertainty in the random variable ξ. Compare (TP) and (SPP)

to note that R(a, θ) = R0
Pθ

[`(a, ξ)] and gi(a, θ) = Ri
Pθ

[ḡi(a, ξ)] for appropriate measurable

functions `(·, ·) and ḡi(·, ·). Some of the popular risk measures are expectation, Value-at-

risk (VaR), Conditional Value-at-risk (CVaR), and entropic risk-measure [ 3 ].

To illustrate the (TP) with an example, consider the problem of optimally staffing a

stochastic system modeled as an M/M/c queue. A queueing system with exponentially

distributed inter-arrival times (T ) and service times (S) with c number of servers is denoted

as an M/M/c queue. We assume that the arrival and service rates are λ and µ respectively,

and they together constitute the model parameter θ = {λ, µ}. The DM chooses the number
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of servers c to ensure that the steady-state probability that the customer waits in the queue,

denoted as 1−Wq(c, λ, µ), is no more than α. The corresponding staffing problem is to

minimize c (TP-Q)

subject to ({1−Wq(c, λ, µ)} − α) < 0 (Quality of Service),

(λ− cµ) < 0 (Stability),

where α ∈ (0, 1/2) is the desired efficiency. The second constraint is to ensure that the

queue is stable. This staffing problem and its variations are well studied in the queueing

literature [ 4 ]–[ 6 ].

In many applications, the constraint set defined by functions gi in (TP) does not depend

on the model parameter θ. As an example, consider the newsvendor problem, a canonical

data-driven decision-making problem, which has been extensively studied in the stochastic

programming literature [ 1 ], [  7 ]–[ 9 ]. Recall that the newsvendor loss function is defined as

`(a, ξ) := hmax(a − ξ, 0) + bmax(ξ − a, 0), where h (underage cost) and b (overage cost)

are given positive constants, ξ ∈ [0,∞) the random demand, and a the inventory or decision

variable. The optimal decision problem in this case is to

minimizea∈AR(a, θ) = EPθ [`(a, ξ)], (1.1)

where Pθ is the distribution over future random demands ξ. Stochastic programs with de-

terministic constraints are also common in machine learning applications such as Bayesian

regression and classification, and their variations incorporating regularization [ 10 ], [ 11 ]. For

instance, consider the problem of classifying an input pattern or features Y ∈ [0, 1]d into one

of the two classes {−1, 1}, where ξ ∈ {−1, 1} denote the class of Y . For a given Y , the clas-

sifier is modelled using a Bernoulli distribution p(ξ|Y, θ) = Ψξ(θ(Y )), where θ : [0, 1]d → R is

a non-parametric model parameter in a separable Banach space Θ and measurable functions

Ψ1(x) = (1 + e−x)−1 and Ψ−1(x) = 1 − Ψ1(x). Assuming Y is independent of ξ and has

distribution ν(·), the sequence of independent observations {Ỹn, X̃n} = {(Y1, ξ1), (Y2, ξ2), . . .

, (Yn, ξn)} are generated from model Pθ(ξ, Y ) = p(ξ|Y, θ)ν(Y ). The loss function `(a, ξ) is
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0 if a = ξ , c+ if {a = +1, ξ = −1}, and c− if {a = −1, ξ = +1}, where c+ and c− are

known positive constants. Now the objective is to minimize the following model risk

R(a, θ) = EPθ [`(a, ξ)] =


c+Eν [Ψ−1(θ(y))], a = +1,

c−Eν [Ψ1(θ(y))], a = −1.
(1.2)

Notice that if the parameter θ is known, then the optimal staffing, newsvendor, and binary

classification problems are deterministic optimization problems, assuming the risk functions

can be computed. We denote true model parameters by θ0. In practice, however, the true

model parameters are unknown which further introduces epistemic uncertainty into the for-

mulation of the stochastic programs. Epistemic uncertainties can be reduced by estimating

the true model parameters from data. Plug-in estimators such as maximum likelihood esti-

mates typically produce sub-optimal or counterintuitive solutions in decision-making prob-

lems [ 12 , Section 2]. This has spurred a significant body of research on decision-making and

optimization methodology that accounts for this epistemic uncertainty; for instance, dis-

tributionally robust optimization (DRO) methods [  13 ], [ 14 ] optimize worst case deviations

from the empirical objective, while Bayesian decision-theoretic methods [ 12 ], [ 15 ] penalize

the predictive uncertainty from the Bayes posterior distribution over the parameters. The

authors in [  16 ], [ 17 ] discuss other methods of modeling epistemic uncertainty. In this thesis,

we are interested in the Bayesian framework, which provides a coherent way to quantify

the epistemic uncertainty through the posterior distribution by combining prior belief of the

decision-maker (DM) with data. Bayesian methods have been used for data-driven decision-

making in various applications such as inventory management [ 18 ], [ 19 ], portfolio design [  12 ],

machine learning [  10 ], [  11 ], engineering [ 20 ], simulation optimization [ 21 ]–[ 23 ], etc.

In general, the Bayesian inferential problem is hard owing to the intractable posterior

computation. Consequently, DM’s typically make restrictive modeling choices, such as as-

suming that the likelihood model has a conjugate prior. However, conjugate priors are not

available for many interesting and practical likelihood models, thereby limiting the use and

utility of the Bayesian framework. To mitigate this limitation of computational intractabil-

ity, there is a substantial body of work on approximate Bayesian computation focused on
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the question of efficiently and accurately approximating the posterior distribution. Broadly,

these posterior approximation techniques are categorized into sampling and optimization-

based approaches. Markov Chain Monte Carlo (MCMC) is the canonical sampling method,

where the objective is to design an ergodic Markov chain whose invariant or stationary distri-

bution is precisely the posterior distribution. MCMC, however, is known to suffer from high

variance, complex diagnostics, and has poor scaling properties with the problem dimension

and size of the dataset [ 24 ].

Variational Inference (VI) or Variational Bayesian (VB) methods, in contrast, use opti-

mization to compute an approximation to the posterior distribution from a class of ‘simpler’

distribution functions (that does not, necessarily, contain the posterior) called the variational

family, by minimizing the divergence of distributions in the variational family from the pos-

terior distribution. Importantly, the posterior distribution being intractable, VI methods

optimize a surrogate objective that upper bounds the divergence measure, and the optimizer

of the surrogate is precisely the posterior distribution when the variational family includes

it. The Kullback-Leibler (KL) divergence is a standard choice in VI methods [ 25 ], though

there is increasing interest in other choices such as α-Rényi divergence as well [  26 ] which

yield approximations that have better support coverage. Moreover, VI methods have been

empirically demonstrated to be a faster and easier-to-scale alternative to sampling-based

methods for Bayesian inference in various high-dimensional and complex hierarchical prob-

abilistic models with large datasets [ 25 ] . Despite their popularity in machine learning and

statistics community, the statistical performance of these methods were only studied re-

cently [ 27 ]–[ 30 ]. Nonetheless, VI methods are empirically and theoretically less explored in

the decision-theoretic setting.

Through this thesis, we develop VI methods to compute tractable approximations to

stochastic programs with epistemic uncertainty. More crucially, we analyze the statistical

inferential properties of these approximations and establish theoretical guarantees on the

predictive performance of inferred decision rules and values. We would also like to note that

the theoretical results established in this thesis also extends to the decision rules and values

computed using the true posterior, since VI posterior is identical to true posterior when

the variational family includes it. Furthermore, this thesis also contributes to the growing
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literature in understanding statistical performance of VI methods. In particular, we establish

the frequentist consistency of an approximate posterior computed using a well known VI

method that computes an approximation to the posterior distribution by minimizing the

Rényi divergence from the ‘true’ posterior.

In the next two sections, we first consider the class of stochastic programs where the

constraint set is known a priori or deterministic like newsvendor problem and then we study

stochastic programs with epistemically uncertain constraint set like optimal staffing problem.

1.1 Stochastic Programs with Deterministic Constraints

The stochastic programs with deterministic constraint set have been an active topic of

research among statisticians, economists, and engineers since early 20th century. Among var-

ious theories to model epistemic uncertainty in such stochastic programs, a seminal unifying

framework was proposed by Abraham Wald [ 31 ], [  32 ]. In Wald’s general decision theory, the

unknown model parameter θ is treated as a random variable, defined on a probability space

(Θ, T ,Π), where the set of possible values of a parameter is denoted by Θ with σ−algebra T

and probability distribution Π(·). In essence, the distribution Π(·) measures the epistemic

uncertainty in θ. The decision space (known a priori) is denoted as A. Then for a fixed Π(·)

and a given cost/risk function R(·, ·) the Wald’s decision making problem is defined as

minimizea∈A EΠ[R(a, θ)]. (1.3)

Recall that the model parameter is unknown but the DM has access to data which

can be used to quantify the epistemic uncertainty in θ. The DM can use data to forecast a

distribution over it. A natural question that arises in context of this formulation is, what is an

appropriate distribution Π that facilitates data-driven decision making? Bayesian statistics

delineates natural principles to forecast distributions over parameters in a coherent way by

combining prior knowledge with the observed data. Now let us suppose that the DM observes

n samples from the stochastic model P∞θ0 denoted as X̃n := {ξ1, ξ2, . . . , ξn}, with unknown
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θ0. In the Bayesian framework, we posit a prior distribution Π(θ) and use the likelihood of

observing X̃n, that is pnθ (X̃n), to define the posterior distribution as

dΠn ≡ dΠ(θ|X̃n) := dΠ(θ)pnθ (X̃n)∫
Θ dΠ(θ)pnθ (X̃n)

. (1.4)

The objective in  1.3 is popularly known as Bayes risk when Π is the posterior distribution

in  1.3 .

A second crucial question in relation to ( 1.3 ) is: Is expectation with respect to the posterior

distribution Πn the most appropriate way of capturing uncertainty over the model parameters,

θ? To answer this, recall that the expectation is a risk measure and it averages the risk

of uncertainty in the future costs in ( 1.3 ). In various applications, like portfolio design,

the decision-maker (DM) could be risk-averse and would like to use a risk measure that

reflects this risk attitude, unlike the risk-neutral expectation. Recently, there has also been

significant interest in the machine learning and operations research community in studying

models that are sensitive to tail and subgroups effects [ 12 ], [ 15 ], [ 33 ]–[ 35 ]. Therefore, to

facilitate the DM in making risk sensitive decisions, we investigate the use of a risk sensitive

measure known as the entropic risk measure, defined as

%γΠn(R(a, θ)) := 1
γ

log EΠn [ exp(γR(a, θ))], (1.5)

where γ ∈ R. The entropic risk models a range of risk-averse or risk-seeking behaviors in a

succinct manner through the parameter γ. Suppose γ → 0, then observe that

lim
γ↓0

%γΠn(R(a, θ)) = EΠn(R(a, θ));

that is, there is no sensitivity to potential risks due large tail effects and the DM is risk

neutral. On the other hand,

lim
γ→∞

%γΠn(R(a, θ)) = ess sup
Πn

(R(a, θ)),
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where ess sup is the essential supremum of the random function R(a, θ) (almost surely). In

other words, a decision maker is completely risk averse and anticipates the worst possible

realization (almost surely). Similar conclusions can be drawn when γ < 0, resulting in a

risk-seeking behavior.

Observe that ( 1.5 ) strictly generalizes the standard Bayesian decision-theoretic formula-

tion of a decision-making problem, where the goal is to solve mina∈A EΠn [R(a, θ)]. Further-

more, it also coincides with other risk-based Bayesian methods, such as the penalized poste-

rior variance method studied in [ 12 ] for solving the Markowitz portfolio optimization problem,

under certain parameterizations. More precisely, for R(a, θ) = %γPθ(`(a, ξ)) (for any loss func-

tion `(·, ·)) and small, but strictly positive γ, a Taylor expansion of %γΠn(R(a, θ)) straight-

forwardly shows that (  1.5 ) is equivalent to problem (3.1) in [ 12 ], that is %γΠn(R(a, θ)) =

%γ
π(ξ|X̃n)(`(a, ξ))

γ'0
' γVar

π(ξ|X̃n)[`(a, ξ)] + E
π(ξ|X̃n)[`(a, ξ)], where π(ξ|X̃n) :=

∫
p(ξ|θ)dΠ(θ|X̃n)

is the posterior predictive distribution and Var[ · ] denotes the variance functional.

Our setting is most related to recent work on Bayesian risk optimization (BRO) in [ 15 ],

[ 36 ]. In BRO, the authors consider optimal decision-making using various risk measures

(other than the entropic risk measure) computed under the posterior distribution. The

authors establish several important results, including that the optimal value and decisions

are asymptotically consistent as the sample size tends to infinity, and central limit type

theorem for the optimal values. Moreover, they also assume that X̃n are independent and

identically distributed (i.i.d.) samples from P∞θ0 , θ0 ∈ Θ ⊂ Rd.

In practice, Bayesian inference is challenging owing to the fact that computing the pos-

terior distribution is intractable. More precisely, computing the integral in the denominator

in ( 1.4 ) poses severe computational challenges, thereby rendering the inference problem

in (  1.3 ) (with Π as Πn) and ( 1.5 ) intractable in general. The works in [  12 ], [ 15 ], [ 36 ] pre-

sumes that the posterior distribution is actually computable. The authors do not address the

critical computational questions surrounding Bayesian methods or the impact of (inevitable)

computational approximations. As motivated before, in this thesis we address the compu-

tational intractability of the posterior distribution by using an optimization-based posterior

approximation technique VI instead of sampling-based methods.
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In particular, in Chapter  2 we introduce a novel computationally tractable framework

which we call risk-sensitive variational Bayes (RSVB) to approximate ( 1.5 ) when the dis-

tribution over parameter θ is the posterior distribution. The proposed general framework

can be used to extract computational methods for doing risk-sensitive approximate Bayesian

inference. We show that our general framework includes two well known computational al-

gorithms for doing approximate Bayesian inference viz. naive VI (NVB) and loss-calibrated

VI (LCVB) [ 10 ]. We also study the impact of RSVB computational approximations on the

predictive performance of the inferred decision rules and values. We show that the RSVB

approximate posterior and the corresponding optimal value and decision rules are asymptot-

ically consistent, and we also compute their rate of convergence. We establish these result

under regularity conditions that do not require X̃n to be i.i.d. samples from P∞θ0 , θ0 ∈ Θ, and

where Θ can be any arbitrary model space with norm. We illustrate our theoretical findings

in both parametric as well as nonparametric setting with the help of three examples: the

single and multi-product newsvendor model and Gaussian process classification. Further-

more, in Chapter  3 we establish asymptotic guarantees on the decision rules computed using

LCVB approximation method under relatively milder set of assumptions when Θ ⊂ Rd.

1.2 Stochastic Programs with Epistemically Uncertain Constraints

Recall (TP), stated here again,

minimize R(a, θ) (TP)

s.t. gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}.

Since the model parameters are unknown, we again adopt a Bayesian approach and model the

epistemic uncertainty over the parameters θ by computing a posterior distribution Π(θ|X̃n).
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We approximate the true problem (TP), using the posterior distribution, with the following

joint chance-constrained problem:

minimize EΠ(θ|X̃n)[R(a, θ)] (BJCCP)

s.t. Π
(
gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ β, ∀a ∈ A,

where β ∈ (0, 1) is the specified confidence level desired by the decision DM based on the

requirement, usually β > 1
2 . We provide a supporting example in Chapter 4 to motivate

the chance-constrained formulation as opposed to using expectations, in which case the con-

straints are only satisfied on an average. To the best of our knowledge, Bayesian models

of data-driven chance constrained optimization have not been considered before in the lit-

erature. On the other hand, we note that there is precedence for Bayesian formulations of

data-driven stochastic optimization problems studied in [ 15 ], [  37 ]–[ 39 ].

We would also like note that (BJCCP) is fundamentally different from the usual stochastic

programs with chance constraints [ 2 ]. In particular, the objective there is to solve the

following problem using samples from the unknown data generating distribution Pθ0

minimize EPθ0 [`(a, ξ)] (JCCP)

s.t. Pθ0
(
ḡi(a, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ α, ∀a ∈ A,

for some fixed mappings ḡi(·, ·) and α ∈ (0, 1). There is an extensive literature on data-

driven methods for solving (JCCP), specifically scenario-based (SB) approaches [ 40 ]–[ 42 ],

distributionally robust optimization (DRO) [ 40 ], [ 43 ]–[ 45 ] and sample average approxima-

tion (SAA) [ 46 ], [ 47 ]. We direct the reader to the excellent recent review paper [ 48 ] for

a comprehensive overview of the literature on data-driven chance constrained optimization

to solve (JCCP). In particular, we observe that the ambiguity set in DRO quantifies the

epistemic uncertainty when ‘centered’ (defined, for instance, through the Wasserstein met-

ric) around the empirical measure, which converges to the data-generating measure in the

large sample limit; see [ 49 ] which establishes the consistency of chance-constrained DRO

with Wasserstein ambiguity sets. This highlights an important difference with our current
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setting, where the posterior distribution (or its approximation) is used as a quantification of

the epistemic uncertainty about the ‘true’ parameter θ0, and is shown to weakly converge to

a Dirac delta distribution concentrated at θ0 as the number of samples n tends to infinity.

Recall that computing posterior distributions is challenging and mostly intractable, and

is typically approximated using MCMC or VI methods. As noted before, MCMC methods

have their own drawbacks like poor mixing, large variance, and complex diagnostics, which

have been the usual motivation for using VI [ 50 ]. Here, we provide another important mo-

tivation for using VI in the chance-constrained Bayesian inference setting. In particular, we

present an example (motivated from [ 51 ]) where a sampling based approach to approximate

the chance-constrained convex feasibility set (constraint set) in (BJCCP), results in a non-

convex approximation; whereas an appropriate VI approximation retains its convexity (for

an appropriate choice of variational family). Therefore, we approximate (BJCCP) using a

VI approximate posterior Q∗(θ|X̃n) to Π(θ|X̃n) as:

minimize EQ∗(θ|X̃n)[R(a, θ)] (VBJCCP)

s.t. Q∗
(
gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ β, ∀a ∈ A.

However, since VI posterior can be a biased approximation to the true posterior and thus

may result into an approximate feasible set which could include infeasible points. Therefore,

it is important to study the consistency properties of the feasible set, the optimal values

and solutions of (VBJCCP) with respect to the sample size n. Consequently, in Chapter  4 

we study (VBJCCP) approximation of the true stochastic programming problem when the

model parameters are unknown. We show that the optimal value of (VBJCCP) are consistent

with the optimal value of (TP). More precisely, we show that the optimal value computed in

(VBJCCP) converges to the true optimal value as the number of samples tends to infinity.

We augment this by also establishing a probabilistic rate of convergence of the optimal

value. We also provide bounds on the probability of qualifying a true infeasible point (with

respect to the true constraints) as feasible under the VI approximation for a given number of

samples. Finally, we demonstrate the utility of our approach on an optimal staffing problem

for an M/M/c queueing model.
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1.3 Variational Bayesian Inference - Beyond KL divergence

Recall that the high level idea behind VI is to approximate the intractable posterior

Π(θ|X̃n) with an element Q(θ) of some simpler class of distributions Q known as variational

family. The variational solution Q∗(θ|X̃n) is the element of Q that is closest to Π(θ|X̃n),

where closeness is measured in terms of the KL divergence. Thus, Q∗(θ|X̃n) is the solution

to:

Q∗(θ|X̃n) = argminQ̃∈QKL(Q̃(θ)‖Π(θ|X̃n)). (1.6)

Despite its popularity, classical VI (KLVI) has a number of well-documented limitations.

An important one is its tendency to produce approximations that under estimate the spread

of the posterior distribution [ 52 ]–[ 55 ]: in essence, the KLVI solution tends to match closely

with the dominant mode of the posterior. This arises from the choice of the divergence

measure KL(Q(θ)‖Π(θ|X̃n)) := EQ[ log(dQ(θ)/dΠ(θ|X̃n))], which does not penalize solutions

where dQ(θ) is small while dΠ(θ|X̃n) is large. While many statistical applications only focus

on the mode of the distribution, definite calculations of the variance and higher moments

are critical in predictive and decision-making problems.

A natural solution is to consider different divergence measures than those used in varia-

tional Bayes. Expectation propagation (EP) [ 54 ] was developed to minimize EΠn [ log(Πn/Q)]

instead, though this requires an expectation with respect to the intractable posterior. Conse-

quently, EP can only minimize an approximation of this objective. Moreover, there are some

extensions of EP with alternate divergence measures [ 56 ], [ 57 ].The authors in [  58 ] replaces KL

divergence in EP to χ2−divergence to compute variational approximations that significantly

improve upon the KLVI and EP in accurately approximating the posterior variance.

More recently, Rényi’s α-divergence [ 59 ] has been used as a family of parameterized

divergence measures for variational inference [  52 ], [ 60 ]. The α-Rényi (α > 1) approximate

posterior Q∗r(θ|X̃n) is defined as

Q∗r(θ|X̃n) := argminQ̃∈QDα

(
Π(θ|Xn)‖Q̃(θ)

)
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where Dα (P (y)‖Q(y)) = 1
α−1 log

∫
dP (y)

(
dP (y)
dQ(y)

)α
. Unlike KLVI approximate posterior, the

α−Rényi approximate posterior does not underestimate the posterior variance, resulting in

predictions that captures the high-risk regions in the support of the posterior [ 52 ]. Since,

a DM is ultimately interested in using α−Rényi approximate posterior for approximate

Bayesian inference, establishing its large sample properties will help in analyzing the pre-

dictive performance of the inferred decision rules. In fact, our statistical consistency results

in Chapter  4 , for the KLVI approximate posterior can be easily extended to the α−Rényi

approximate posterior. Moreover, α-Rényi divergence minimization has empirically demon-

strated very promising results for a number of machine learning applications [ 52 ], [  60 ].

In recent work, Zhang and Gao [ 61 ] have shown conditions under which α-Rényi vari-

ational methods are consistent when α is less than one. The setting with α greater than

1 is qualitatively different from both KL and Rényi divergence with α < 1 and the re-

sults in Zhang and Gao [ 61 ] does not extend to this setting. Consequently, in Chapter  5 ,

we address the question of asymptotic consistency of the approximate posterior distribu-

tion obtained by minimizing the α−Rényi divergence for α > 1. Our primary result

identifies sufficient conditions under which consistency holds, centering around the exis-

tence of a ‘good’ sequence of distributions in the approximating family. Furthermore, since

Dα

(
Π(θ|Xn)‖Q̃(θ)

)
→ KL

(
Π(θ|Xn)‖Q̃(θ)

)
, as α → 1, we recover the asymptotic con-

sistency of the EP approximate posterior from our results on the consistency of α-Rényi

approximate posterior.

23



2. RISK-SENSITIVE VARIATIONAL BAYES

This chapter focuses on a risk-sensitive Bayesian formulation of the data-driven decision-

making problem of the form

min
a∈A

%γΠn(R(a, θ)) := 1
γ

log EΠn [ exp(γR(a, θ))], (SO)

where A ⊂ Rs (s ≥ 1) is the decision/action space, θ is a random model parameter lying

in an arbitrary measurable space (Θ, T ) distributed according to Πn the Bayesian poste-

rior distribution over the parameters Πn(θ) := Π(θ|X̃n), and R(a, θ) : A × Θ 7→ R is a

problem-specific model risk function. The scalar γ ∈ R is user-specified and characterizes

the sensitivity of the decision-maker (DM) to the distribution Πn. A prior probability distri-

bution Π(θ) capturing the subjective belief of the decision maker is posited over θ, and that

belief is updated according to Bayes rule to compute a posterior distribution Πn(θ) over the

parameters using a set of n observations X̃n = {ξ1, . . . , ξn} sampled from a data-generating

distribution P n
θ with density pnθ . Mathematically, the posterior distribution is defined as

dΠ(θ|X̃n) = dΠ(θ)pnθ (X̃n)∫
Θ dΠ(θ)pnθ (X̃n)

, (2.1)

where pnθ (X̃n) is the likelihood of observing X̃n.

The functional %γ· is also known as the entropic risk measure, and models a range of

risk-averse or risk-seeking behavior in a succinct manner through the parameter γ. Consider

only strictly positive γ, and observe that

lim
γ↓0

1
γ

log EΠn [ exp(γR(a, θ))] = EΠn(R(a, θ));

that is, there is no sensitivity to potential risks due to large tail effects and the decision-maker

is risk neutral. On the other hand,

lim
γ→+∞

%γΠn(R(a, θ)) = ess sup
Πn

(R(a, θ)),
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where ess sup is the essential supremum of the model risk R(a, θ). In other words, a decision

maker is completely risk averse and anticipates the worst possible realization (Πn-almost

surely). While similar conclusions can be drawn when γ < 0, resulting in risk-seeking

behavior, we restrict ourselves to γ > 0 in this thesis. Observe that (SO) strictly generalizes

the standard Bayesian decision-theoretic formulation of a decision-making problem, where

the goal is to solve mina∈A EΠn [R(a, θ)]. Furthermore, it also coincides with other risk-

based Bayesian methods, such as the penalized posterior variance method studied in [ 12 ]

for solving the Markowitz portfolio optimization problem, under certain parameterizations.

More precisely, for R(a, θ) = %γPθ(`(a, ξ)) (for any loss function `(·, ·)) and small, but strictly

positive γ, a Taylor expansion of %γΠn(R(a, θ)) straightforwardly shows that (SO) is equivalent

to problem (3.1) in [ 12 ].

The risk-sensitive formulation (SO) is very general and can be used to model a wide

variety of decision-making problems in operations research/ management science [ 19 ], [ 62 ],

[ 63 ], simulation optimization [ 15 ], [  64 ], and finance [ 12 ], [  65 ], [  66 ]. Moreover, it presents a

natural way to address epistemic model uncertainty by being Bayesian and risk sensitive. Our

approach can be an alternative to distributional robust optimization (DRO) framework [ 13 ],

where the decision maker models the ambiguity in the choice of distributions by being robust

against the unknown data generating distribution (or model).

Although versatile, solving (SO) to compute an optimal decision over A is challenging.

The difficulty mainly lies in computing the denominator in ( 2.1 ) for any given prior distri-

bution (except conjugate priors) that makes the posterior distribution intractable. The use

of conjugate priors is restrictive and moreover, for many important likelihood models, they

often do not exist. Canonically, posterior intractability is addressed using either a sampling-

or optimization-based approach. Sampling-based approaches, such as Markov chain Monte

Carlo (MCMC), offer a tractable way to compute the integrals and theoretical guarantees of

exact inference in the large computational budget limit. However, these asymptotic guaran-

tees are offset by issues like poor mixing, large variance and complex diagnostics in practical

settings with finite computational budgets.

In response, optimization-based methods such as variational Bayes (VB) or variational

inference (VI) have emerged as a popular alternative [ 67 ]. The VB approximation of the true
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posterior is a tractable distribution, chosen from a ‘simpler’ family of distributions (known as

variational family) by minimizing the discrepancy between the true posterior and members

of that family. Kullback-Liebler (KL) divergence is the most often used measure of the

approximation discrepancy, although other divergences (such as the α-Rényi divergence [ 30 ],

[ 52 ], [  53 ]) have been used. The minimizing member (termed the VB approximate posterior)

can be used as a proxy for the true posterior. Empirical studies have shown that VB

methods are computationally faster and far more scalable to higher-dimensional problems

and large datasets. Theoretical guarantees, such as large sample statistical inference, have

been a topic of recent interest in theoretical statistics community. Asymptotic properties

such as convergence rate and asymptotic normality of the VB approximate posterior have

been established recently in [ 28 ], [  68 ] and [ 27 ] respectively.

Our ultimate goal is not to merely approximate the posterior distribution, but to also

make decisions when that posterior is intractable. A naive approach would be to plug in the

VB approximation in place of the true posterior in (SO) and compute the optimal decision.

However, it has been noted in [ 10 ] that such a loss unaware (or ‘naive’) approach can be

‘suboptimal’. In particular, [ 10 ] demonstrated, through an example, that a naive posterior

approximation only captures the most dominant mode of the true posterior which may not

be relevant from decision-making perspective. Consequently, they proposed a loss-calibrated

variational Bayesian (LCVB) algorithm for solving Bayesian decision making problems where

the underlying risk function is discrete. [ 11 ] extended their approach to continuous risk func-

tions. Despite these algorithmic advances in developing decision-centric variational Bayesian

methods, their statistical properties such as asymptotic consistency and convergence rates of

the loss-aware posterior approximation and the associated decision rule are not well under-

stood. In fact, it is not even clear that the convergence rates of VB approximate posterior

established in [ 28 ], [ 68 ] can be used to establish statistical guarantees on the decision rules

learnt using the näive approach. With an aim to address these gaps, we summarize our

contribution in this chapter below:

1. We introduce a minimax optimization framework titled ‘risk sensitive variational Bayes’

(RSVB), extracted from the dual representation of (SO) using the so-called Donsker-
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Varadhan variational free-energy principle [ 69 ]. The decision-maker computes a risk-

sensitive approximation to the true posterior (termed as RSVB posterior) and the

decision rule simultaneously by solving a minimax optimization problem. Moreover,

for γ → 0+ and γ = 1, we recover the naive and LCVB approaches as special cases of

RSVB.

2. We identify verifiable regularity conditions on the prior, likelihood model and the risk

function under which the RSVB posterior enjoys the same rate of convergence as the

true posterior to a Dirac delta distribution concentrated at the true model parameter

θ0, as the sample size increases. Using this result, we also prove the rate of convergence

of the RSVB decision rule, when the decision space A is compact. Moreover, our

theoretical results directly imply the asymptotic properties of the LCVB posterior and

the associated decision rule. It is also worth noting that our results are applicable to

non-parametric problems such as Gaussian process classification, where the parameter

space is infinite-dimensional, as well as non independent and identically distributed

data generating processes. Moreover, our analysis also recovers consistency and rate of

convergence of decision-rules under the ‘true’ posterior distribution as a special case.

3. We demonstrate our theoretical results with help of three applications:

(a) First, we consider the classic single-product newsvendor problem and verify all

the regularity conditions required to establish the convergence rate of the RSVB

posterior and the decision rule. We recover the frequentist rate of convergence
√
n

upto logarithmic factor. Moreover, we present simulation results demonstrating

the interplay between the risk-sensitive parameter γ and number of samples n.

(b) Second, we consider the multi-product newsvendor problem and establish the rate

of convergence of the corresponding RSVB posterior and decision rule. Here also,

we recover the frequentist rate of convergence
√
n upto logarithmic factor.

(c) Finally, we consider a binary Gaussian process classification problem, where the

model parameter θ lie in a set of continuous functions on a compact subset of

Rd. We construct a wavelet prior and prove all the regularity conditions and
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compute the rate of convergence of the RSVB posterior (on function space) and

the decision rule. The rate of convergence of the RSVB posterior matches to that

of the true posterior as established in Vaart and Zanten [ 70 , Theorem 4.5] for the

same wavelet prior.

In our theoretical analyses, we mainly establish three important results. First, in Theo-

rem  2.3.1 , we compute a bound on the expected distance of a model from the true model,

where expectation is taken with respect to the RSVB posterior. The bound depends on the

risk sensitivity parameter γ and the number of samples n, and is a sum of two terms: first one

quantifies the rate of convergence of the true posterior and the second one is a consequence of

the variational approximation. We further establish regularity conditions on the variational

family to compute the rate of convergence of the second term in the bound. In the next two

results, we use Theorem  2.3.1 to derive high probability bounds on the optimality gaps in

values (Theorem  2.3.2 ) and decisions (Theorem  2.3.3 ) computed using the RSVB approach.

We define optimality gap in decisions as the deviation of the true optimal decision (when

true model is known) from the RSVB decision and define optimality gap in values as the

absolute difference between oracle risk R(·, θ0) evaluated at true and RSVB decision rules.

In our simulation results, we first demonstrate the consistency of the RSVB decision with

respect to n for various values of γ. We then demonstrate the effect of changing γ on the

optimality gaps and the variance of the RSVB posterior for a given n. In particular, we

observe that for smaller n, increasing γ (after a certain value) result into a significantly more

risk-averse decision, however the effect of increasing γ on risk-averse decision-making reduces

as n increases.

Here’s a brief roadmap for the rest of the chapter. In the next section we provide a liter-

ature survey of relevant results from machine learning, theoretical statistics and operations

research, placing our results in appropriate context. In Section  2.2 , we present the problem

formulation and introduce RSVB framework with relevant notations, definitions and regular-

ity conditions. We develop our theoretical results in Section  2.3 . Thereafter, in Section  2.4 ,

we discuss naive and loss-calibrated VB as special cases of RSVB. We then illustrate the

bounds obtained in Section  2.3 by specializing the results to the single and multi-product
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newsvendor problem and Gaussian process classification problem in Section  2.5 and also

present some numerical results. We end with concluding remarks in Section 6.

2.1 Existing literature and our work

Our work fits in with a growing body of work in operations research that lies at the

intersection of decision-making under uncertainty and statistical estimation. Our results are

also aligned with recent developments of a rigorous theoretical understanding of variational

Bayesian methods in statistics and machine learning.

2.1.1 Operations research literature

The primary goal in data-driven decision-making is to learn empirical decision-rules (or

predictive prescriptions as Bertsimas and Kallus [ 71 ] term them) a∗(X̃n) that prescribes a

decision, given an observation of the covariates X̃n. Early work in this direction, including

classic work by Herbert Scarf on Bayesian solutions to the newsvendor problem [  72 ], focused

on two-stage solutions - estimation followed by optimization. Our setting is most related to

recent work on Bayesian risk optimization (BRO) in [ 15 ], [ 36 ]. In BRO, the authors consider

optimal decision-making using various coherent risk measures computed under the posterior

distribution. The authors establish several important results, including that the optimal

values and decisions are asymptotically consistent as the sample size tends to infinity, and

central limit theorems for these quantities. However, there are substantial differences with

our work. First, all of the analysis in Wu, Zhu, and Zhou [ 15 ] presumes that the posterior

risk measures are actually computable. The authors do not address the critical computa-

tional questions surrounding Bayesian methods or the impact of (inevitable) computational

approximations on BRO – indeed, this is not their focus. Second, extended coherent risk

measures are not considered (in particular, the log-exponential risk measure used here), and

it is unclear if the asymptotic results continue hold otherwise. Third, while we use a risk

measure to derive the computational framework (RSVB), the focus in Wu, Zhu, and Zhou

[ 15 ] is purely on the analytical properties of optimal decisions.
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More recently, there has been significant interest in methods that use empirical risk min-

imization (ERM) or sample average approximation (SAA) for directly estimating decision-

rules that optimize Monte Carlo or empirical approximations [ 71 ], [ 73 ]–[ 78 ]. The survey

by Homem-de-Mello and Bayraksan [ 79 ] consolidates recent results on Monte Carlo meth-

ods for stochastic optimization. It is important to note that this recent surge of work in

data-driven decision-making has largely focused on explicit black-box models. On the other

hand, there are many situations where optimal decisions must be made in the presence of

a well-defined parametrized stochastic model. Bayesian methods are a natural means for

estimating distributions over the parameters of a stochastic model; though, as noted before,

the computational complexity of Bayesian algorithms can be high. The interplay between

optimization and estimation, in the sense of discovering predictive prescriptions for Bayesian

models has largely been ignored. Furthermore, as Liyanage and Shanthikumar [ 80 ] show in

the newsvendor context, SEO methods can be suboptimal in terms of expected regret and

long-term average losses. Liyanage and Shanthikumar [ 80 ] introduced operational statistics

(OS) as an alternative to SEO (see [ 19 ], [ 81 ] as well), whereby the optimal empirical order

quantity is determined as a function of an optimization parameter that can be determined for

each sample size. OS has demonstrably better performance, especially on single parameter

newsvendor problems (though there is much less known about its statistical properties).

2.1.2 Statistics and machine learning literature

Lacoste-Julien, Huszár, and Ghahramani [ 10 ] observe that calibrating a Gaussian process

classification algorithm to a fixed loss function can improve classification performance over

a loss-insensitive algorithm – indeed, this is the first documented presentation of the LCVB

algorithm. Similarly, surrogate loss functions [ 82 ], [ 83 ] that are regularized upper bounds

that depend on the cost function, also implicitly loss-calibrate frequentist classification algo-

rithms. While standard VB methods for posterior estimation have been extensively used in

machine learning [ 67 ], it is only recently that the theoretical questions surrounding VB have

been addressed. In particular, we note [ 27 ] who prove asymptotic consistency of VB in the

large sample limit, Zhang and Gao [  28 ] and Pati, Bhattacharya, and Yang [ 68 ] on the other
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hand establish bounds on the rate of convergence of the VB posterior to the ‘true’ posterior

providing a more refined analysis, and [ 30 ] where asymptotic consistency of α-Rényi VB

was demonstrated. Our analysis in this chapter, extends these results to establish conver-

gence rates of the approximate posterior and learnt decision rules in risk-sensitive variational

Bayesian decision-making framework. These bounds, in turn, are complementary to large

sample analyses in Jaiswal, Honnappa, and Rao [ 84 ].

2.2 Problem Setup

Let ξ ∈ X ⊆ Rm represent an Rm-valued random variable, with density p(·|θ) associated

with the distribution/model Pθ with parameter θ ∈ Θ. Let (⊗nX ,Sn, P n
θ ) be a measure

space with sigma-algebra Sn generated by ⊗nX , where, in general, ⊗nA denote the n-fold

product of a set A. Let X̃n := {ξ1, . . . , ξn} represent a set of n samples from the true model

P n
0 with parameter θ0 ∈ Θ. Denoting the likelihood of observing X̃n as pnθ (X̃n) and the prior

distribution Π(θ), we define the posterior distribution as dΠ(θ|X̃n) = pnθ (X̃n)dΠ(θ)∫
Θ pn

θ
(X̃n)dΠ(θ) . We also

write Π(θ|X̃n) as Πn for brevity. Moreover, we denote the corresponding prior and posterior

density (if they exist) as π(·) and π(·|X̃n).

As noted in the introduction, our objective is to optimize the posterior log-exponential

or entropic risk measure of R(a, θ), that is

min
a∈A

%γΠn(a) = 1
γ

log EΠn [eγR(a,θ)], where γ ∈ R. (SO)

In practical settings, the posterior Π(θ|X̃n) typically cannot be easily computed, and

decision makers are often led to restrictive modeling choices such as assuming the likelihood

function has a conjugate prior. Indeed, one might argue that this is a predominant reason

Bayesian methods are not widely used in operations research and engineering. Nonetheless,

incorporating non-conjugate priors and complicated likelihood functions is critical for real-

izing the full utility of decision-theoretic Bayesian methods - however this entails the use

of computational approximations. Therefore, in the next paragraph we introduce a frame-

work from which can be extracted computational methods for approximately computing and

optimizing posterior decision risk.
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2.2.1 Risk-Sensitive Variational Bayes

Our approach exploits the dual representation of the log-exponential risk measure in (SO),

which is convex (or extended coherent) [ 85 ], [ 86 ]. From the Donsker-Varadhan variational

free energy principle [ 69 ], [  87 ]–[ 89 ] we observe that,

%γΠn(a) =


minQ∈M

{
EQ[R(a, θ)]− 1

γ
KL(Q‖Πn)

}
γ < 0,

maxQ∈M
{
EQ[R(a, θ)]− 1

γ
KL(Q||Πn)

}
γ > 0,

(DV)

whereM is the set of all distribution functions that are absolutely continuous with respect to

the posterior distribution Πn and ‘KL’ represents the Kullback-Leibler divergence. Formally,

for any two distributions P and Q defined on measurable space (Θ, T ) , the KL divergence

is defined as

KL(Q‖P ) =


∫

Θ dQ(θ) log dQ(θ)
dP (θ) if Q� P,

∞ otherwise ,
(2.2)

where Q� P denotes that measure Q is absolutely continuous with respect to P . Notice

that this dual formulation exposes the reason we choose to use the log-exponential risk – the

right hand side provides a combined assessment of the risk associated with model estimation

(computed by the KL divergence KL(Q‖Πn)) and the decision risk under the estimated

posterior Q (computed by EQ[R(a, θ)]).

In this thesis, we restrict our analyses to the risk-averse case, that is γ > 0. However, it

can be extended easily to the case when γ < 0 to obtain similar theoretical insights.

As stated above, the reformulation presented in (DV) offers no computational gains.

However, restricting ourselves to an appropriately chosen subset Q ⊂ M, that consists

of distributions where the integral Eq[R(a, θ)] can be tractably computed, we immediately

obtain a risk-sensitive variational Bayesian (RSVB) formulation of (DV):

1
γ

log EΠn

[
eγR(a,θ)

]
≥ max

Q∈Q

{
EQ[R(a, θ)]− 1

γ
KL(Q||Πn)

}
=: F(a;Q(·), X̃n, γ), (RSVB)
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RSVB is our framework for data-driven risk-sensitive decision-making. The family of dis-

tributions Q is popularly known as the variational family. The choice of the family Q,

disutility/ risk R, and parameter γ encodes specific problem settings. Our analysis in subse-

quent Section  2.3.1 below reveals general guidelines on how to choose Q that ensures a small

optimality gap (defined below) with high probability.

With an appropriate choice of Q, the optimization on the RHS can yield a good approx-

imation to the log-exponential risk measurement on the left hand side (LHS). For brevity,

for a given a ∈ A we define the RSVB approximation to the true posterior Π(θ|X̃n) as

Q∗a,γ(θ|X̃n) := argmax{Q ∈ Q : F(a;Q(·), X̃n, γ)}

and the RSVB optimal decision as

a∗RS := argmina∈A F(a;Q∗a,γ(θ|X̃n), X̃n, γ).

Observe that Q∗a,γ(θ|X̃n) and a∗RS are random quantities, conditional on the data X̃n. Intu-

itively, it can be observed that the risk averseness of a∗RS increases with increase in γ. To

observe this consider the RSVB formulation and note that KL > 0, therefore as γ increases

there is more incentive to deviate from the true posterior and choose Q ∈ Q that maxi-

mizes expected risk for a given a ∈ A. Consequently as γ increases, the RSVB decision rule

becomes more risk-averse.

Examples of Q include the family of Gaussian distributions, delta functions, or the family

of factorized ‘mean-field’ distributions that discard correlations between components of θ.

The choice of Q is decisive in determining the performance of the algorithm. In general,

however the requirements on Q are minimal, and part of the analysis in this chapter is to

articulate sufficient conditions on Q that ensure small optimality gap (defined below) for

the optimal decision, a∗RS. This establishes the “statistical goodness” of the procedure as

number of samples increase. In this chapter, we analyze the efficacy of the decision rules

obtained using the RSVB approximation, by providing finite sample probabilistic bounds on

the optimality gap. We define the optimality gap for any a ∈ A with value V = R(a, θ0) as,
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Definition 2.2.1 (Optimality Gap). Let V ∗0 := mina∈AR(a, θ0) and a∗0 := argmina∈AR(a, θ0)

be the optimal value and decision respectively for the true model parameter θ0. Then, the

optimality gap in the value is the difference V − V ∗0 , and the optimality gap in decision

variables is ‖a∗0 − a‖ , where ‖ · ‖ is the Euclidean norm.

A similar performance measure was used in [ 11 ], to measure the effectiveness of loss-

calibrated VB (LCVB) approach, which can be obtained by setting γ = 1, as a special case

of our RSVB formulation. Nonetheless, in Section  2.4 , we discuss two well-known variational

Bayesian algorithms (one of them is LCVB) for decision making, which are special cases of

RSVB. Moreover, we establish bounds on their respective optimality gaps as a corollary to

the bounds derived for RSVB.

Note that the RSVB algorithm described above is idealized – clearly the objective F(a;

Q(·), X̃n, γ) cannot be computed since it requires the calculation of the posterior distribution

– the very object we are approximating! Note, however that optimizing F(a;Q(·), X̃n, γ) is

equivalent to optimizing {γEQ[R(a, θ)]−KL(Q(θ)‖P (θ, X̃n))}, where P (θ, X̃n) is known, and

for which the optimizers are the same. Since our focus is on bounding the optimality gap,

in the remainder of the chapter any reference to the RSVB algorithm is an allusion to the

idealized objective F(a;Q(·), X̃n, γ).

In the following section, we lay down important assumptions and definitions used through-

out the chapter to establish our theoretical results.

2.2.2 Notations and Definitions

We provide the definitions of important terms used throughout the chapter. First, recall

the definition of covering numbers:

Definition 2.2.2 (Covering numbers). Let P := {Pθ, θ ∈ Θ} be a parametric family of

distributions and d : P × P 7→ [0,∞) be a metric. An ε−cover of a subset PK := {Pθ :

θ ∈ K ⊂ Θ} of the parametric family of distributions is a set K ⊂ K such that, for

each θ ∈ K there exists a θ ∈ K that satisfies d(Pθ, Pθ) ≤ ε. The ε−covering number of

PK is N(ε,PK , d) = min{card(K) : K is an ε−cover of K}, where card(·) represents the

cardinality of the set.
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Next, recall the definition of a test function [ 32 ]:

Definition 2.2.3 (Test function). Let X̃n be a sequence of random variables on measurable

space (Rq×n,Sn). Then any Sn-measurable sequence of functions {φn}, φn : X̃n 7→ [0, 1] ∀n ∈

N, is a test of a hypothesis that a probability measure on Sn belongs to a given set against

the hypothesis that it belongs to an alternative set. The test φn is consistent for hypothesis

P n
0 against the alternative P n ∈ {P n

θ : θ ∈ Θ\{θ0}} if EPn [φn] → 1{θ∈Θ\{θ0}}(θ),∀θ ∈ Θ as

n→∞, where 1{·} is an indicator function.

A classic example of a test function is φKS
n = 1{KSn>Kν}(θ) that is constructed using

the Kolmogorov-Smirnov statistic KSn := supt |Fn(t) − Fθ(t)|, where Fn(t) and Fθ(t) are

the empirical and true distribution respectively, and Kν is the confidence level. If the null

hypothesis is true, the Glivenko-Cantelli theorem [  90 , Theorem 19.1] shows that the KS

statistic converges to zero as the number of samples increases to infinity.

Furthermore, we define the Hellinger distance between two measures Pθ1 and Pθ2 as

Definition 2.2.4 (Hellinger distance). The Hellinger distance h(θ1, θ2) between the two prob-

ability distributions Pθ1 and Pθ2 is defined as dH(θ1, θ2) =
(∫ (√

dPθ1 −
√
dPθ2

)2)1/2
.

We define the one-sided Hausdorff distance between sets A and B in Rs as:

Definition 2.2.5 (Hausdorff distance). The one-sided Hausdorff distance H(A‖B) between

sets A and B in a metric space D with distance function d is defined as:

H(A‖B) = sup
x∈A

dh(x,B), where dh(x,B) = inf
y∈B

d(x, y).

Next, we define an arbitrary loss function Ln : Θ × Θ 7→ R that measures the distance

between models (P n
θ1 , P

n
θ2)∀{θ1, θ2} ∈ Θ. At the outset, we assume that Ln(θ1, θ2) is always

positive. We use the following ‘control sequence’ to establish our probabilistic bounds.

Definition 2.2.6 (Control Sequence). {εn} is a sequence such that εn → 0 as n → ∞ and

nε2n ≥ 1.

We also define
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Definition 2.2.7 (Γ−convergence). A sequence of functions Fn : U 7→ R, for each n ∈ N,

Γ−converges to F : U 7→ R, if

• for every u ∈ U and every {un, n ∈ N} such that un → u, F (x) ≤ lim infn→∞ Fn(un);

• for every u ∈ U , there exists some {un, n ∈ N} such that un → u, F (x) ≥ lim supn→∞ Fn(un).

In addition, we define

Definition 2.2.8 (Primal feasibility). For any two functions f : U 7→ R and b : U 7→ R, a

point u∗ ∈ U is primal feasible to the following constraint optimization problem

inf
u∈U

f(u) subject to b(u) ≤ c,

if b(u∗) ≤ c, for a given c ∈ R.

2.2.3 Assumptions

In order to bound the optimality gap, we require some control over how quickly the

posterior distribution concentrates at the true parameter θ0. Our next assumption in terms

of a verifiable test condition on the model (sub-)space is one of the conditions required to

quantify this rate.

Assumption 2.2.1 (Model indentifiability). Fix n ≥ 1. Then, for any ε > εn in Defini-

tion  2.2.6 , ∃ a test function φn,ε : X̃n 7→ [0, 1] and sieve set Θn(ε) ⊆ Θ such that

(i) EPn0 [φn,ε] ≤ C0 exp(−Cnε2), and (ii) sup
{θ∈Θn(ε):Ln(θ,θ0)≥C1nε2}

EPn
θ

[1− φn,ε] ≤ exp(−Cnε2).

Observe that Assumption  2.2.1 (i) quantifies the rate at which a type 1 error diminishes

with the sample size, while the condition in Assumption  2.2.1 (ii) quantifies that of a type 2

error. Notice that both of these are stated through test functions; indeed, what is required are

consistent test functions. Opportunely, [ 91 , Theorem 7.1] (stated below in Lemma  2.3.1 for

completeness) roughly implies that a bounded model subspace {P n
θ , θ ∈ Θ} (the size of which

is measured using covering numbers) guarantees the existence of consistent test functions,
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to test the null hypothesis that the true parameter is θ0 against an alternate hypothesis –

the alternate being defined using the ‘distance function’ Ln(θ1, θ2). Subsequently, we will

use a specific distance function to obtain finite sample bounds for the optimality gap in

decisions and values. In some problem instances, it is also possible to construct consistent

test functions directly without recourse to Lemma  2.3.1 . We demonstrate this in Section  2.5.1 

below.

Next, we assume a condition on the prior distribution that ensures that it provides

sufficient mass to the set Θn(ε) ⊆ Θ, as defined above in Assumption  2.2.1 .

Assumption 2.2.2. Fix n ≥ 1. Then, for any ε > εn in Definition  2.2.6 the prior distribu-

tion satisfies

Π(Θc
n(ε)) ≤ exp(−Cnε2).

Notice that Assumption  2.2.2 is trivially satisfied if Θn(ε) = Θ. The next assumption

ensures that the prior distribution places sufficient mass around a neighborhood – defined

using Rényi divergence – of the true parameter θ0.

Assumption 2.2.3 (Prior thickness). Fix n ≥ 1 and a constant λ > 0. Let An :=
{
θ ∈

Θ : D1+λ (P n
0 ‖P n

θ ) ≤ C3nε
2
n

}
, where D1+λ (P n

0 ‖P n
θ ) := 1

λ
log

∫ (dPn0
dPn
θ

)λ
dP n

0 is the Rényi

Divergence between P n
0 and P n

θ , assuming P n
0 is absolutely continuous with respect to P n

θ .

The prior distribution satisfies

Π(An) ≥ exp(−nC2ε
2
n).

Notice that the set An defines a neighborhood of the distribution corresponding to θ0 in

the model subspace {P n
θ : θ ∈ Θ}. The assumption guarantees that the prior distribution

covers this neighborhood with positive mass. This is a standard assumption and if it is

violated then the posterior too will place no mass in this neighborhood ensuring asymptotic

inconsistency. The above three assumptions are adopted from [ 91 ] and has also been used

in [  28 ] to prove convergence rates of variational posteriors. Interested readers may refer

to [  91 ] and [ 28 ] to read more about the above assumptions.

37



It is apparent by the first term in (RSVB) that in addition to Assumption  2.2.1 ,  2.2.2 ,

and  2.2.3 , we also require regularity conditions on the risk function R(a, ·). Thus, the next

assumption restricts the prior distribution with respect to R(a, θ).

Assumption 2.2.4. Fix n ≥ 1 and γ > 0. For any ε > εn, a ∈ A,

EΠ[1{γR(a,θ)>C4(γ)nε2}eγR(a,θ)] ≤ exp(−C5(γ)nε2),

where C4(γ) and C5(γ) are scalar positive functions of γ.

Note that the set {γR(a, θ) > C4(γ)nε2} represents the subset of the model space where

the risk R(a, θ) (for a fixed decision a) is large, and the prior is assumed to place small mass

over such sets. Moreover, using Cauchy-Schwarz inequality observe that

EΠ[1{γR(a,θ)>C4(γ)nε2}eγR(a,θ)] ≤
(
EΠ[1{γR(a,θ)>C4(γ)nε2}]

)1/2 (
EΠ[e2γR(a,θ)]

)1/2

≤ e−C4(γ)nε2nEΠ[e2γR(a,θ)],

which implies that if the risk function is bounded in (a, θ), then above condition can be

trivially satisfied. Finally, we also require the following condition lower bounding the risk

function R.

Assumption 2.2.5. R(a, θ) is assumed to satisfy

W := inf
θ∈Θ

inf
a∈A

eR(a,θ) > 0.

Note that any risk function which is bounded from below in both the arguments satisfies

this condition. Furthermore, following [ 92 ] we define a growth condition on the ‘true’ risk

function R(a, θ0).
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Assumption 2.2.6 (Growth condition). Let Ψ(d) : [0,∞) 7→ [0,∞) be a growth function

if it is strictly increasing as d → ∞ and limd→0 Ψ(d) = 0. Then for any A ⊂ A, R(a, θ0)

satisfies a growth condition with respect to Ψ(·), if

R(a, θ0)) ≥ inf
z∈A

R(z, θ0) + Ψ
(
H

(
A, arg min

z∈A
R(z, θ0)

))
. (2.3)

The growth condition above is a generalization of strong-convexity. Indeed, if the true

risk is strongly convex, then this condition is automatically satisfied.

In the next, section we derive finite sample bounds on the optimality gap in values and

decisions, by proving a series of results.

2.3 Asymptotic Analysis of the Optimality Gaps

In this section, we establish high-probability bounds on the optimality gap in values

and decision rules computed using RSVB approach for sufficiently large n. Our results in

here identify the regularity conditions on the data generating model {P n
θ , θ ∈ Θ}, the prior

distribution Π(θ), the variational family Q, the risk function R(a, θ) to compute the bounds.

We can now state our first result, establishing an upper bound on the expected deviation

from the true model P0, measured using distance function Ln(·, θ0), under the RSVB ap-

proximate posterior. We also note that the following result generalizes Theorem 2.1 of [ 28 ],

which is exclusively for the case when γ → 0+. However, the proof techniques are motivated

from the proof of Theorem 2.1 in [  28 ].

Theorem 2.3.1. Fix a ∈ A and γ > 0. For any Ln(θ, θ0) ≥ 0, under Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,

 2.2.4 , and  2.2.5 , and for min(C,C4(γ) + C5(γ)) > C2 + C3 + C4(γ) + 2 and

ηRn (γ) := 1
n

inf
Q∈Q

EPn0

[
KL(Q(θ)‖Π(θ|X̃n))− γ inf

a∈A
EQ[R(a, θ)]

]
,

the RSVB approximator of the true posterior Q∗a,γ(θ|X̃n) satisfies,

EPn0

[∫
Θ
Ln(θ, θ0)dQ∗a,γ(θ|X̃n)

]
≤ n

(
M(γ)ε2n +MηRn (γ)

)
, (2.4)
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for a positive mapping M(γ) = 2 (C1 +MC4(γ)) , where M = 2C1
min(C,λ,1) , for sufficiently

large n.

First recall that εn is the convergence rate of the true posterior [ 91 , Theorem 7.3]. Notice

that the additional term ηRn (γ) emerges from the posterior approximation and depends on the

choice of the variational family Q, risk function R(·, ·), and the parameter γ. The appearance

of this term in the bound also signifies that, to minimize expected gap between true model

and any other model, defined using n−1Ln(θ, θ0), under the RSVB posterior, the average

(with respect to P n
0 ) RSVB objective has to be maximized. Later in this section, we specify

the conditions on the family of distributions {P n
θ , θ ∈ Θ}, the prior and the variational family

Q that ensure ηRn (γ) → 0 as n → ∞. Moreover, we also identify mild regularity conditions

on Q to show that ηRn (γ) is O(ε2n). Furthermore, we show that as γ increases ηRn (γ) decreases.

We discuss this result and the bound therein later in the next subsection. Before that, we

establish our main result (the bounds on the optimality gap) using the theorem above.

Since the result in Theorem  2.3.1 holds for any positive distance function, we now fix

Ln(θ, θ0) = n

(
sup
a∈A
|R(a, θ)−R(a, θ0)|

)2

. (2.5)

Notice that for a given θ, n−1/2
√
Ln(θ, θ0) is the uniform distance between the R(a, θ) and

R(a, θ0). Intuitively, Theorem  2.3.1 implies that the expected uniform difference 1
n
Ln(θ, θ0)

with respect to the RSVB approximate posterior is O(M(γ)ε2n +MηRn (γ)), and if M(γ)ε2n +

MηRn (γ)→ 0 as n→∞ then it converges to zero at that rate.

Also, note that in order to use ( 2.5 ) we must demonstrate that it satisfies Assump-

tion  2.2.1 . This can be achieved by constructing bespoke test functions for a given R(a, θ).

We demonstrate this approach by an example in Section  2.5.2 . Nonetheless, we also pro-

vide sufficient conditions for the existence of the test functions later in the section. These

conditions are typically easy to verify when the loss function R(·, ·) are bounded, for instance.

Now, we first bound the optimality gap between R(a∗RS, θ0) and V ∗0 .
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Theorem 2.3.2. Fix γ > 0. Suppose that the set A is compact. Then, under Assump-

tions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 , and  2.2.5 , for min(C,C4(γ) +C5(γ)) > C2 +C3 +C4(γ) + 2

and for any τ > 0, the P n
0 − probability of the following event

{
X̃n : R(a∗RS, θ0)− inf

z∈A
R(z, θ0) ≤ 2τ

[
M(γ)ε2n +MηRn (γ)

] 1
2

}
(2.6)

is at least 1 − τ−1, for a positive mapping M(γ) = 2 (C1 +MC4(γ)) , where M = 2C1
min(C,λ,1)

for sufficiently large n.

Next, we bound the optimality gap between the approximate optimal decision rule a∗RS

and the true optimal decision. The bound, in particular, depends on the curvature of R(a, θ0)

around the true optimal decision, defined using the growth condition in Assumption  2.2.6 .

Theorem 2.3.3. Fix γ > 0. Suppose that the set A is compact and R(a, θ0) satisfies the

growth condition in Assumption  2.2.6 , with Ψ(d) such that Ψ(d)/dδ = κ, for any δ > 0.

Then, under Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 , and  2.2.5 , for min(C,C4(γ) +C5(γ)) >

C2 + C3 + C4(γ) + 2 and for any τ > 0, the P n
0 − probability of the following event

X̃n : H
(

a∗RS(X̃n), arg min
z∈A

R(z, θ0)
)
≤

2τ
[
M(γ)ε2n +MηRn (γ)

] 1
2

κ


1
δ


is at least 1 − τ−1, for a positive mapping M(γ) = 2 (C1 +MC4(γ)) , where M = 2C1

min(C,λ,1)

for sufficiently large n.

To fix the intuition, suppose δ = 2 and Ψ(d) = κ
2d

2, then κ represents the Hessian of

the true risk, R(a, θ0), near its optimizer. It is easy to see from the above result the rate of

convergence of a∗RS is scaled by a factor κ−1. That is, higher the curvature near the optimizer,

the faster a∗RS converges.

Evidently, the bounds obtained in all three results that we have proved so far depends

on ηRn (γ). Consequently, in the next section, with an aim to understand the properties of

the bounds in Theorem  2.3.1 ,  2.3.2 , and  2.3.3 , we prove some of the important properties of

ηRn (γ) with respect to n and γ under some additional regularity conditions.
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2.3.1 Properties of ηRn (γ)

In order to characterize ηRn (γ), we specify conditions on variational family Q such that

ηRn (γ) = O(ε2n), for some εn ≥ 1√
n

and εn → 0. We impose following condition on the

variational family Q that lets us obtain a bound on ηRn (γ) in terms of n and γ.

Assumption 2.3.1. There exists a sequence of distribution {qn(·)} in the variational family

Q such that for a positive constant C9,

1
n

[
KL (Qn(θ)‖Π(θ)) + EQn(θ)

[
KL

(
dP n

0 (X̃n)‖dP n
θ (X̃n)

)]]
≤ C9ε

2
n. (2.7)

If the observations in X̃n are i.i.d, then observe that

1
n

EQn(θ)
[
KL

(
dP n

0 (X̃n))‖dP n
θ (X̃n)

)]
= EQn(θ) [KL (dP0)‖dPθ(ξ))] .

Intuitively, this assumption implies that the variational family must contain a sequence

of distributions that converges weakly to a Dirac delta distribution concentrated at the

true parameter θ0 otherwise the second term in the LHS of ( 2.7 ) will be non-zero. Also

note that the above assumption does not imply that the minimizing sequence Q∗a,γ(θ|X̃n)

(automatically) converges weakly to a dirac-delta distribution at the true parameter θ0.

Furthermore, unlike Theorem 2.3 of [ 28 ], our condition on Q in Assumption  2.3.1 , to obtain

a bound on ηRn ( γ), does not require the support of the distributions in Q to shrink to the

true parameter θ0 at some appropriate rate, as the numbers of samples increases.

Proposition 2.3.1. Under Assumption  2.3.1 and for a constant C8 = − infQ∈Q infa∈A EQ[R(a, θ)]

and C9 > 0,

ηRn (γ) ≤ γn−1C8 + C9ε
2
n.

In Section  2.5 , we present an example where the likelihood is exponentially distributed,

the prior is inverse-gamma (non-conjugate), and the variational family is the class of gamma

distributions, where we construct a sequence of distributions in the variational family that

satisfies Assumption  2.3.1 . We also provide another example where the likelihood is mul-

tivariate Gaussian with unknown mean and variational family is uncorrelated Gaussian re-
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stricted to compact subset of Rd with an uniform prior on the same compact set satisfy

Assumption  2.3.1 .

By definition ε2n → 0 and εn → 0 as n→∞, and therefore it follows from Proposition  2.3.1 

that M(γ)ε2n +MηRn (γ)→ 0. However, the bound obtained in the last proposition might be

loose with respect to γ, when C8 < 0. To see this, we prove the following result.

Proposition 2.3.2. If the solution to the optimization problem in ηRn (γ) is primal feasible

then ηRn (γ) decreases as γ increases.

Our next result shows that, under the RSVB approximate posterior distributionQ∗a,γ(θ|X̃n),

Ln(·, ·) as defined in ( 2.5 ) converges to zero at the rate (ε2n+ηRn (γ)) in P n
0 −probability. Here,

Q∗a,γ(S|X̃n) :=
∫
S dQ

∗
a,γ(θ|X̃n), for any S ⊆ Θ.

Corollary 2.3.1. For any a ∈ A, γ > 0, and diverging sequence Mn, under Assump-

tions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 ,  2.2.5 , and  2.3.1 , for min(C,C4(γ) + C5(γ)) > C2 +

C3 + C4(γ) + 2,

lim
n→∞

Q∗a,γ

θ ∈ Θ :
(

sup
a∈A
|R(a, θ)−R(a, θ0)|

)2

> Mn(M(γ)ε2n +MηRn (γ))

∣∣∣∣X̃n

 = 0

in P n
0 -probability, where M(γ) = 2 (C1 +MC4(γ)) , and M = 2C1

min(C,λ,1) .

Observe that if ∑n≥1
1
Mn

< ∞, then the first Borel-Contelli Lemma [ 93 , Theorem 2.3.1]

implies that the sequence converges almost-surely. First, recall from Theorem  2.3.1 that

εn → 0 as n→∞ and nε2n ≥ 1. The diverging sequence Mn can be chosen in three possible

ways. First, Mn = o
(

1
(M(γ)ε2n+MηRn (γ))b

)
, for some b < 1, which ensures that the radius of the

ball in Corollary  2.3.1 decreases to 0 as n→∞. Second, Mn =
(

1
M(γ)ε2n+MηRn (γ)

)
, in this case

ball will be of constant radius 1. Also observe that in the last two cases ∑n≥1
1
Mn

=∞, since

ε2n is not summable, therefore we do not have almost-sure convergence in these cases. In the

final case, Mn = o
(

1
(M(γ)ε2n+MηRn (γ))b

)
for any b > 1 is summable, since, nηRn (γ) < ∞ due to

Assumption  2.2.5 and Proposition  2.3.1 . Note that, in this case the radius of the ball will

diverge and hence we obtain almost-sure convergence.
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2.3.2 Sufficient conditions on the risk function for existence of tests

To show the existence of test functions, as required in Assumption  2.2.1 , we will use the

following result from Ghosal, Ghosh, and Vaart [ 91 , Theorem 7.1], that is applicable only to

distance measures that are bounded above by the Hellinger distance.

Lemma 2.3.1 (Theorem 7.1 of [ 91 ]). Suppose that for some non-increasing function D(ε),

some εn > 0 and for every ε > εn,

N
(
ε

2 , {Pθ : ε ≤ m(θ, θ0) ≤ 2ε} ,m
)
≤ D(ε),

where m(·, ·) is any distance measure bounded above by Hellinger distance. Then for every

ε > εn, there exists a test φn (depending on ε > 0) such that, for every j ≥ 1,

EPn0 [φn] ≤ D(ε) exp
(
−1

2nε
2
) 1

1− exp
(
−1

2nε
2
) , and

sup
{θ∈Θn(ε):m(θ,θ0)>jε}

EPn
θ

[1− φn] ≤ exp
(
−1

2nε
2j
)
.

For the remaining part of this subsection we assume that Θ ⊆ Rd. In the subsequent

paragraph, we state further assumptions on the risk function to show Ln(·, ·) as defined

in ( 2.5 ) satisfies Assumption  2.2.1 . For brevity we denote n−1/2
√
Ln(θ, θ0) by dL(θ, θ0), that

is

dL(θ1, θ2) := sup
a∈A
|R(a, θ1)−R(a, θ2)|, ∀{θ1, θ2} ∈ Θ (2.8)

and the covering number of the set T (ε) := {Pθ : dL(θ, θ0) < ε} as N(δ, T (ε), dL), where δ > 0

is the radius of each ball in the cover. We assume that the risk function R(a, ·) satisfies the

following bound.

Assumption 2.3.2. The model risk satisfies

dL(θ1, θ2)| ≤ K1dH(θ, θ0),

where dH(θ1, θ2) is the Hellinger distance between two models Pθ1 and Pθ2.
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For instance, suppose the definition of model risk is R(a, θ) =
∫
X `(x, a)p(y|θ)dx, where

`(x, a) is an underlying loss function. Then, observe that Assumption  2.3.2 is trivially

satisfied if `(x, a) is bounded in x for a given a ∈ A and A is compact, since dL(θ1, θ2) can

be bounded by the total variation distance dTV (θ1, θ2) = 1
2
∫
|dPθ1(x)− dPθ2(x)| and total

variation distance is bounded above by the Hellinger distance [ 94 ]. Under the assumption

above it also follows that we can apply Lemma  2.3.1 to the metric dL(·, ·) defined in ( 2.8 ).

Now, we will also assume an additional regularity condition on the risk function.

Assumption 2.3.3. For every {θ1, θ2} ∈ Θ, there exists a constant K2 > 0 such that

dL(θ1, θ2) ≤ K2‖θ1 − θ2‖,

We can now show that the covering number of the set T (ε) satisfies

Lemma 2.3.2. Given ε > δ > 0, and under Assumption  2.3.3 ,

N(δ, T (ε), dL) <
(2ε
δ

+ 2
)d
. (2.9)

Observe that the RHS in ( 2.9 ) is a decreasing function of δ, infact for δ = ε/2, it is a

constant in ε. Therefore, using Lemmas  2.3.1 and  2.3.2 , we show in the following result that

Ln(θ, θ0) in ( 2.5 ) satisfies Assumption  2.2.1 .

Lemma 2.3.3. Fix n ≥ 1. For a given εn > 0 and every ε > εn, such that nε2n ≥ 1. Under

Assumption  2.3.2 and  2.3.3 , Ln(θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2 satisfies

EPn0 [φn] ≤ C0 exp(−Cnε2), (2.10)

sup
{θ∈Θ:Ln(θ,θ0)≥C1nε2}

EPn
θ

[1− φn] ≤ exp(−Cnε2), (2.11)

where C0 = 2 ∗ 10s and C = C1
2K2

1
for a constant C1 > 0.

Since Ln(θ, θ0) = 1
n
d2
L satisfies Assumption  2.2.1 , Theorem  2.3.1 implies the following

finite sample bound.
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Corollary 2.3.2. Fix a ∈ A and γ > 0. Let εn be a sequence such that εn → 0 as n→∞,

nε2n ≥ 1 and

Ln(θ, θ0) = n

(
sup
a∈A
|R(a, θ)−R(a, θ0)|

)2

.

Then under the Assumptions of Theorem  2.3.1 and Lemma  2.3.3 ; for C = C1
2K2

1
, C0 = 2∗10s,

C1 > 0 such that min(C,C4(γ) +C5(γ)) > C2 +C3 +C4(γ) + 2 , and for ηRn (γ) as defined in

Theorem  2.3.1 , the RSVB approximator of the true posterior Q∗a,γ(θ|X̃n) satisfies,

EPn0

[∫
Θ
Ln(θ, θ0)dQ∗a,γ(θ|X̃n)

]
≤ n(M(γ)ε2n +MηRn (γ)), (2.12)

for sufficiently large n and for a function M(γ) = 2 (C1 +MC4(γ)) , where M = 2C1
min(C,λ,1) .

2.4 Special Cases of RSVB

Recall from the RSVB formulation that γ encodes the risk sensitivity of the decision

maker. In this section, we show that RSVB generalizes two well-known variational Bayesian

approaches for decision making, ‘naive’ VB (NVB) and loss-calibrated VB(LCVB). In par-

ticular, the RSVB method is equivalent to NVB when γ → 0+ and LCVB for γ = 1. In

what follows, we discuss NVB and LCVB briefly and demonstrate our theoretical results to

these settings.

2.4.1 Naive VB

The naive VB (NVB) method, summarized below in Algorithm  1 , is a “separated esti-

mation and optimization” method wherein we use the VB approximation to the posterior

distribution as a plug-in estimator for computing the posterior predictive loss, and then

optimize the resulting approximate posterior predictive loss.

The NVB method completely isolates the statistical estimation problem from the decision-

making problem. Observe that as γ → 0+, Q∗a,γ(θ|X̃n) and a∗RS converges to Q∗(θ|X̃n) and

a∗NV respectively; that is
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Algorithm 1: Naive VB
Input : R(·, ·), X̃n,Q
Output: a∗NV

Step 1. Compute approximate posterior:
Q∗(θ|X̃n) := arg minQ∈QKL(Q(·)‖Π(·|X̃n));

Step 2. Compute: a∗NV := arg mina∈A EQ∗(θ|X̃n)[R(a, θ)].

lim
γ→0+

Q∗a,γ(θ|X̃n) = lim
γ→0+

argmaxQ∈Q
{

EQ[R(a, θ)]− 1
γ

KL(Q||Πn)
}

= argminQ̃∈QKL(Q̃(θ)‖Π(θ|X̃n)) := Q∗(θ|X̃n).

To see this, recall the RSVB formulation and multiply by γ > 0 on either side to obtain:

log EΠn [exp(γR(a, θ))] ≥ max
Q∈Q
{γEQ[R(a, θ)]−KL(Q||Πn)} (2.13)

= −min
Q∈Q
{KL(Q||Πn)− γEQ[R(a, θ)]} .

Note that, since KL(Q||Πn) − γEQ[R(a, θ)] converges uniformly in γ to KL(Q||Πn) as

γ → 0+, therefore former Γ−converges to the latter and hence their respective minimizers

and minimum values [ 95 ]. In particular, to prove the uniform convergence, let {rk} be a

sequence of rational numbers on R+, such that {rk}, k ∈ N is dense in R+ and rk → 0+ as

k →∞. Now observe that for every ε > 0 and given a ∈ A and θ ∈ Θ, there exists a K ∈ N,

such that for all k ≥ K and Q ∈ Q, |rkEQ[R(a, θ)]| < ε, hence uniform convergence follows.

Now taking limit γ → 0+, the equation ( 2.13 ) reduces to the well known evidence lower

bound [ 67 ] , that is

0 ≥ max
Q∈Q
{−KL(Q||Πn)} ≡ log

∫
Θ
dP n

θ (X̃n)Π(θ)dθ ≥ max
Q∈Q

{
−KL(Q(θ)‖Π(θ)) + EQ[dP n

θ (X̃n)]
}
,

where Π(θ) is the prior density. Therefore, it follows that for any γ > 0

argmina∈A
{

EQ∗(θ|X̃n)[R(a, θ)]− 1
γ

KL(Q∗(θ|X̃n)‖Π(θ|X̃n))
}

= argmina∈AEQ∗(θ|X̃n)[R(a, θ)] = a∗NV.
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Since limγ→0+ γR(·, ·) = 0, we do not require Assumption  2.2.4 and  2.2.5 to obtain an analo-

gous result to Theorem  2.3.2 for NVB method. Therefore, the condition on the constants in

Theorem  2.3.2 ( min(C,C4(γ)+C5(γ)) > C2+C3+C4(γ)+2 ) is simplified to C > C2+C3+2

by choosing C4(γ) as a small and C5(γ) as a large number.

Theorem 2.4.1. Let εn be a sequence such that εn → 0 and nε2n →∞ as n→∞ and

Ln(θ, θ0) = n

(
sup
a∈A
|R(a, θ)−R(a, θ0)|

)2

.

Then under Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 , and  2.2.5 , and for C > C2 + C3 + 2 the

NVB approximation of the true posterior satisfies,

EPn0

[∫
Θ
Ln(θ, θ0)dQ∗(θ|X̃n)

]
≤ M̄n(ε2n + ηn(0)), (2.14)

where positive constant M̄ depends only on C,C0, C1, and λ, and

ηn(0) := ηRn (0) = 1
n

inf
Q∈Q

EPn0 [KL(Q(θ)‖Π(θ|X̃n))].

The next result establishes a bound on the optimality gap of the naive VB estimated

optimal value R(a∗NV, θ0) from the true optimal value V0 = infz∈AR(z, θ0).

Theorem 2.4.2. Suppose that the set A is compact and Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 ,

and  2.2.5 are satisfied with C > C2 + C3 + 2. Then for any τ > 0, the P n
0 − probability of

the following event

{
X̃n : R(a∗NV, θ0)− inf

z∈A
R(z, θ0) ≤ 2τ

[
M̄(ε2n + ηn(0))

] 1
2

}
(2.15)

is at least 1− τ−1, where M̄ is a positive constant.

Next, we bound the optimality gap between the approximate optimal decision rule a∗NV

and the true optimal decision. The bound, in particular, depends on the curvature of R(a, θ0)

around the true optimal decision. The growth function is denoted as Ψ(·). The following

theorem is a special case of the general result for a∗RS in Theorem  2.3.3 .
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Theorem 2.4.3. Suppose that the set A is compact and R(a, θ0) satisfies the growth condi-

tion, with Ψ1(d) such that Ψ(d)/dδ = κ, for a δ > 0. Moreover, Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 ,

and  2.2.5 are satisfied with C > C2 + C3 + 2. Then for any τ > 0 , the P n
0 − probability of

the following event

X̃n : H
(

a∗NV(X̃n), arg min
z∈A

R(z, θ0)
)
≤

2τ [M(ε2n + ηn(0))]
1
2

κ


1
δ


is at least 1− τ−1, where M is the positive constant as defined in Theorem  2.4.1 .

2.4.2 Loss Calibrated VB

Algorithm 2 summarizes the Loss-calibrated VB (LCVB) method [  10 ]. Observe that

Algorithm 2: Loss-calibrated VB
Input : R(·, ·), X̄n,Q
Output: a∗LC

Step 1. Compute:
a∗LC := arg mina∈AmaxQ∈Q

{
−KL(Q(·)‖Π(·|X̄n)) + EQ[R(a, θ)]

}
.

this method combines the posterior approximation and decision-making problems into one

minimax optimization problem. The objective here can be directly contrasted with that in

Algorithm 1. Note that the inner maximization will result in an approximate (loss calibrated)

posterior distribution at each decision point a ∈ A.

In this section, we compute a bound on the loss-calibrated optimal decision a∗LC and

optimal value.

Theorem 2.4.4. Fix a0 ∈ A and let εn be a sequence such that εn → 0 and nε2n → ∞ as

n→∞ and

Ln(θ, θ0) = n

(
sup
a∈A
|R(a, θ)−R(a, θ0)|

)2

.
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Then under Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 , and  2.2.5 , for some positive constants

C,C2, C3, C4(1), and C5(1) such that min(C, (C4(1) +C5(1))) > C2 +C3 +C4(1) + 2, and for

ηRn (1) := 1
n

inf
Q∈Q

EPn0

[
KL(Q(θ)‖Π(θ|X̃n))− inf

a∈A
EQ[R(a, θ)]

]
,

the Loss calibrated VB approximation of the true posterior satisfies,

EPn0

[∫
Θ
Ln(θ, θ0)dQ∗a0(θ|X̃n)

]
≤ n(M(1)ε2n +MηRn (1)), (2.16)

where M(1) = 2 (C1 +MC4(1)) , and M = 2C1
min(C,λ,1) .

Note that, the second term (inside the expectation) in the definition of ηRn (1) could result

in either ηn(0) > ηRn (1) or vice versa and therefore could play an important role in comparing

the LCVB and naive VB approximations to the true optimal decision.

The next result establishes a bound on the optimality gap of the LCVB estimated optimal

value R(a∗LC, θ0) from the true optimal value V0 = infz∈AR(z, θ0).

Theorem 2.4.5. Suppose that the set A is compact and Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 ,

and  2.2.5 are satisfied with min(C, (C4(1) + C5(1))) > C2 + C3 + C4(1) + 2 for some posi-

tive constants C,C2, C3, C4(1), and C5(1). Then, for any τ > 0, the P n
0 − probability of the

following event

{
X̃n : R(a∗LC, θ0)− inf

z∈A
R(z, θ0) ≤ 2τ

[
(M(1)ε2n +MηRn (1))

] 1
2

}
(2.17)

is at least 1− τ−1, where M(1) = 2 (C1 +MC4(1)) , and M = 2C1
min(C,λ,1) .

Next, we bound the optimality gap between the approximate LC optimal decision rule

a∗LC and the true optimal decision.

Theorem 2.4.6. Suppose that the set A is compact and R(a, θ) has a growth function Ψ(d)

such that Ψ(d)/dδ = κ for a δ > 0. Moreover, Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 ,

and  2.2.5 are satisfied with min(C, (C4(1) +C5(1))) > C2 +C3 +C4(1) + 2 for some positive
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constants C,C2, C3, C4(1), and C5(1). Then, for any τ > 0, the P n
0 − probability of the

following event

H(a∗LC, arg min
z∈A

R(z, θ0)) ≤

2τ
[
(M(1)ε2n +MηRn (1))

] 1
2

κ


1
δ


is at least 1− τ−1, where M(1) = 2 (C1 +MC4(1)) , and M = 2C1

min(C,λ,1) .

2.5 Applications

We illustrate our theoretical findings with the help of three examples: the single and

multi-product newsvendor model and Gaussian process classification. In the examples, we

study the interplay between sample size n and the risk parameter γ, and their effect on the

optimality gap in decisions and values.

2.5.1 Single-product Newsvendor Model

In this section, we study a canonical data-driven decision-making problem with a ‘well-

behaved’ risk function R(a, θ), the data-driven newsvendor model. This problem has received

extensive study in the literature, and remains a cornerstone of inventory management [ 7 ]–[ 9 ].

Recall that the newsvendor loss function is defined as

`(a, ξ) := h(a− ξ)+ + b(ξ − a)+

where h (underage cost) and b (overage cost) are given positive constants, ξ ∈ [0,∞) the

random demand, and a the inventory or decision variable, typically assumed to take values

in a compact decision space A with a := min{a : a ∈ A} and ā := max{a : a ∈ A}, and

a > 0. The distribution over the random demand, Pθ is assumed to be exponential with

unknown rate parameter θ ∈ (0,∞). The model risk can easily be derived as

R(a, θ) := EPθ [`(a, ξ)] = ha− h

θ
+ (b+ h)e−aθ

θ
, (2.18)
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which is convex in a. We assume that X̃n := {ξ1, ξ2 . . . ξn} be n observations of the random

demand, assumed to be i.i.d random samples drawn from P0.

We fix the model space Θ = [T,∞) for some T > 0 and assume that θ0 lies in the interior

of Θ. We now assume a non-conjugate truncated inverse-gamma (Inv−Γ) prior distribution

restricted to Θ, with shape and rate parameter α and β respectively, that is for a set A ⊆ Θ,

we define Π(A) = Inv−ΓΘ(A;α, β) = Inv−Γ(A∩Θ;α, β)/Inv−Γ(Θ;α, β) . We now verify

Assumptions  2.2.2 ,  2.2.1 ,  2.2.3 ,  2.2.5 and  2.2.4 (in that order) in this newsvendor setting.

The proofs of the lemmas are delayed to the electronic companion for readability.

First, we fix the sieve set Θn(ε) = Θ, which clearly implies that the restricted inverse-

gamma prior Π(θ), places no mass on the complement of this set and therefore satisfies

Assumption  2.2.2 .

Second, under the condition that the true demand distribution is exponential with pa-

rameter θ0 (and P0 ≡ Pθ0), we demonstrate the existence of test functions satisfying As-

sumption  2.2.1 .

Lemma 2.5.1. Fix n ≥ 5. Then, for any ε > εn := 1√
n

with εn → 0, and nε2n ≥ 1, there exists

a test function φn (depending on ε) such that LNVn (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2

satisfies

EPn0 [φn] ≤ C0 exp(−Cnε2), (2.19)

sup
{θ∈Θ:LNVn (θ,θ0)≥C1nε2}

EPn
θ

[1− φn] ≤ exp(−Cnε2), (2.20)

where C0 = 20 and C = C1
2(KNV

1 )2 for a constant C1 > 0 and KNV
1 =

[(
h
θ0
− h
T

)2
+(b+h)2

(
e−aT
T
− e−aθ0

θ0

)2
]1/2

dH(T,θ0) .

The proof of the above result follows by showing that dNVL = n−1/2
√
LNVn (θ, θ0) can be

bounded above by the Hellinger distance between two exponential distributions on Θ (under

which a test function exists) in Lemma  2.7.8 in the appendix.

Third, we show that there exist appropriate constants such that the inverse-gamma prior

satisfies Assumption  2.2.3 when the demand distribution is exponential.
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Lemma 2.5.2. Fix n2 ≥ 2 and any λ > 1. Let An := {θ ∈ Θ : D1+λ (P n
0 ‖P n

θ ) ≤ C3nε
2
n},

where D1+λ (P n
0 ‖P n

θ ) is the Rényi divergence between P n
0 and P n

θ . Then for ε2n = logn
n

and any

C3 > 0 such C2 = αC3 ≥ 2, the truncated inverse-gamma prior Inv− ΓΘ(A;α, β) satisfies

Π(An) ≥ exp(−nC2ε
2
n),∀n ≥ n2.

Fourth, it is straightforward to see that the newsvendor model risk R(a, θ) is bounded

below for a given a ∈ A.

Lemma 2.5.3. For any a ∈ A and positive constants h and b, the newsvendor model risk

R(a, θ) =
(
ha− h

θ
+ (b+ h)e−aθ

θ

)
≥
(

ha2θ∗

(1 + aθ∗)

)
,

where a := min{a ∈ A} and θ∗ satisfies h− (b+ h)e−aθ∗(1 + aθ∗) = 0.

This implies that R(a, θ) satisfies Assumption  2.2.5 . Finally, we also show that the

newsvendor model risk satisfies Assumption  2.2.4 .

Lemma 2.5.4. Fix n ≥ 1 and γ > 0. For any ε > εn and any a ∈ A, R(a, θ) satisfies

EΠ[1{R(a,θ)γ>C4(γ)nε2}eγR(a,θ)] ≤ exp(−C5(γ)nε2),

for any C4(γ) > 2γ
(
ha+ b

T

)
and C5(γ) = C4(γ)− 2γ

(
ha+ b

T

)
, where a := max{a ∈ A}.

Note that Lemma  2.5.1 implies that C = C1
2(KNV

1 )2 for any constant C1 > 0. Fixing α = 1

and using Lemma  2.5.2 we can choose C2 = C3 = 2. Now, C1 can be chosen large enough

such that C > C4(γ) + C5(γ) for a given risk sensitivity γ > 0. Therefore, the condition on

constants in Theorem  2.3.1 reduces to C5(γ) > 2+C2 +C3 = 5, and it can be satisfied easily

by fixing C5(γ) = 5.1(say).

These lemmas show that when the demand distribution is exponential and with a non-

conjugate truncated inverse-gamma prior, our results in Theorem  2.3.2 and  2.3.3 can be used

for RSVB method to bound the optimality gap in decisions and values for various values of

the risk-sensitivity parameter γ. Recall that the bound obtained in Theorem  2.3.3 depends

on ε2n and ηRn (γ).
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Lemma  2.5.2 implies that ε2n = logn
n

, but in order to get the complete bound we fur-

ther need to characterize ηRn (γ). Recall that, as a consequence of Assumption  2.3.1 in

Proposition  2.3.1 , for a given C8 = − infQ∈Q infa∈A EQ[R(a, θ)] that C9 > 0 and ηRn (γ) ≤

γn−1C8 + C9ε
2
n.

Therefore, in our next result, we show that in the newsvendor setting, we can construct a

sequence {Qn(θ)} ⊂ Q that satisfies Assumption  2.3.1 , and thus identify εn and the constant

C9. We fix Q to be the family of shifted gamma distributions with support [T,∞).

Lemma 2.5.5. Let {Qn(θ)} be a sequence of shifted gamma distributions with shape pa-

rameter a = n and rate parameter b = n
θ0

, then for truncated inverse gamma prior and

exponentially distributed likelihood model

1
n

[
KL (Qn(θ)‖Π(θ)) + EQn(θ)

[
KL

(
dP n

0 (X̃n))‖dP n
θ (X̃n)

)]]
≤ C9ε

2
n,

where ε2n = logn
n

and C9 = 1
2 + max

(
0, 2 + 2β

θ0
− log

√
2π− log

(
βα

Γ(α)

)
+ α log θ0

)
and prior

parameters are chosen such that C9 > 0.

As a specific instance, consider the naive VB case. Since γ → 0+, the term ηn(0) in The-

orem  2.4.3 is bounded above by C9ε
2
n , where C9 and ε2n are derived in the result above. For

the LCVB case, observe that Lemma  2.5.3 implies that R(·, ·) is bounded below and therefore

C8 ≤ −
(

ha2θ∗

(1+āθ∗)

)
, where h, a, ā, and θ∗ are given to the modeler or are easily computable.

Now since C8 < 0, it is straight forward to observe that ηRn (γ) term in Theorem  2.4.6 is

bounded above by C9ε
2
n.

Now, using the result established in Lemmas above, we bound the optimality gap in

values for the single product newsvendor model risk.

Theorem 2.5.1. Fix γ > 0. Suppose that the set A is compact. Then, for the newsvendor

model with exponentially distributed demand with rate θ ∈ Θ = [T,∞), prior distribution

Π(·) = Inv− ΓΘ(·;α, β) = Inv− Γ(A ∩Θ;α, β)/Inv− Γ(Θ;α, β), and the variational family
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fixed to shifted (by T > 0) gamma distributions, and for any τ > 0, the P n
0 − probability of

the following event

{
X̃n : R(a∗RS, θ0)− inf

z∈A
R(z, θ0) ≤ 2τM(γ)

(
log n
n

)1/2 }
(2.21)

is at least 1− τ−1 for sufficiently large n and for some mapping M : R+ → R+, where R(·, θ)

is the newsvendor model risk.

Proof. The proof is a direct consequence of Theorem  2.3.2 , Lemmas  2.5.1 ,  2.5.2 ,  2.5.3 ,  2.5.4 ,  2.5.5 ,

and Proposition  2.3.2 .

Next, we bound the optimality gap between the approximate optimal decision rule a∗RS

and the true optimal decision. The bound, in particular, depends on the curvature of R(a, θ0)

around the true optimal decision, defined using the growth condition in Assumption  2.2.6 .

Theorem 2.5.2. Fix γ > 0. Suppose that the set A is compact and R(a, θ0) satisfies the

growth condition in Assumption  2.2.6 , with Ψ(d) such that Ψ(d)/dδ = κ, for any δ > 0. Then,

for the newsvendor model with exponentially distributed demand with rate θ ∈ Θ = [T,∞),

prior distribution Π(·) = Inv− ΓΘ(·;α, β) = Inv− Γ(A ∩ Θ;α, β)/Inv− Γ(Θ;α, β), and the

variational family fixed to shifted (by T > 0) gamma distributions, and for any τ > 0, the

P n
0 − probability of the following event

X̃n : H
(

a∗RS(X̃n), arg min
z∈A

R(z, θ0)
)
≤

2τ
κ
M(γ)

(
log n
n

)1/2
 1
δ


is at least 1− τ−1 for sufficiently large n and for some mapping M : R+ → R+, where R(·, θ)

is the newsvendor model risk.

Proof. The proof is a direct consequence of Theorem  2.3.3 , Lemmas  2.5.1 ,  2.5.2 ,  2.5.3 ,  2.5.4 ,  2.5.5 ,

and Proposition  2.3.2 .

Next, we demonstrate the effect of varying the risk-sensitivity parameter γ. We fix

θ0 = 0.1, b = 1, h = 5, α = 1, and β = 4.1. We run RSVB algorithm with γ ∈

{0( naive ), 1, 2, 4.5, 5, 6} and repeat the experiment over 100 sample paths. We plot the
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(a) OG in Values (b) OG in Decisions (c) Variance

Figure 2.1. Optimality gap in values and decisions, and the variance of the
RSVB posterior (mean over 100 sample paths) against the number of samples
(n) for various values of γ.

results in Figure  2.1 . In Figure  2.1 (a) and (b), we plot the optimality gap in values and

decisions, that is R(a∗RS(γ), θ0) − R(a∗0, θ0) and |a∗RS(γ) − a∗0| respectively, for various values

of γ. We observe that the gap decreases when n increases. This observation supports our

results in Propositions  2.3.1 and  2.3.2 that establishes the properties of ηRn (γ) as n increases.

Lastly, in Figure  2.1 (c), we plot the variance of the RSVB posterior as n increases for various

values of γ; as anticipated the variance reduces as n increases. To observe the effect of γ,

first recall that as γ increases the decision maker become more risk averse and so is our

algorithmic framework RSVB. Indeed, from the rightmost variance plot in Figure  2.1 it is

evident that for larger value of γ (> 4) the RSVB posterior is more concentrated on the

subset of Θ, where risk is more and consequently we observe large optimality gaps in values

and decision (see first two plots in Figure  2.1 ). Moreover, as n increase the effect of larger

γ reduces, since as n increases the incentive to deviate from the posterior reduces (due to

increased KL divergence dominance for larger n in RSVB).

2.5.2 Multi-product newsvendor problem

Analogous to the one-dimensional newsvendor loss function, the loss function in its multi-

product version is defined as

`(a, ξ) := hT (a− ξ)+ + bT (ξ − a)+
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where h and b are given vectors of underage and overage costs respectively for each product

and mapping (·)+ is defined component-wise. We assume that there are d items or products

and ξ ∈ Rd denotes the random vector of demands. Let a ∈ A ⊂ Rd+ be the inventory

or decision variable, typically assumed to take values in a compact decision space A with

a := {{min{ai : ai ∈ Ai}}di=1 and ā := {{max{ai : ai ∈ Ai}}di=1, and a > 0, where Ai is

the marginal set of ith component of A. The random demand is assumed to be multivariate

Gaussian, with unknown mean parameter θ ∈ Rd but with known covariance matrix Σ.

We also assume that Σ is a symmetric positive definite matrix and can be decomposed as

QTΛQ, where Q is an orthogonal matrix and Λ is a diagonal matrix consisting of respective

eigenvalues of Σ. We also define Λ = maxi∈{1,2,...d} Λii and Λ = mini∈{1,2,...d} Λii. The model

risk

R(a, θ) = EPθ [`(a, ξ)] =
d∑

i=1
EPθi [hi(ai − ξi)+ + bi(ξi − ai)+]

=
d∑

i=1

(hi + bi)aiΦ
(

(ai − θi)
σii

)
− biai + θi(bi − hi) + σii

hφ
(

(ai−θi)
σii

)
Φ
(

(ai−θi)
σii

) + b
φ
(

(ai−θi)
σii

)
1− Φ

(
(ai−θi)
σii

)
 ,

which is convex in a. Here Pθi is the marginal distribution of ξ for ith product, φ(·) and Φ(·)

are probability and cumulative distribution function of the standard Normal distribution.

We also assume that the true mean parameter θ0 lies in a compact subspace Θ ⊂ Rd. We fix

the prior to be uniformly distributed on Θ with no correlation across its components, that

is π(A) = m(A)
m(Θ) = ∏d

i=1
m(Aii)

m(Θi) , where m(B) is the Lebesgue measure (or volume) of B ⊂ Rd

As in the previous example, we fix the sieve set Θn(ε) = Θ, which clearly implies that Π(θ)

places no mass on the complement of this set and therefore satisfies Assumption  2.2.2 .

Then under the condition that the true demand distribution has a multivariate Gaussian

distribution (with known Σ) and mean θ0 (P0 ≡ Pθ0), we demonstrate the existence of

test functions satisfying Assumption  2.2.1 by constructing a test function unlike the single-

product newsvendor problem with exponential demand..

Lemma 2.5.6. Fix n ≥ 1. Then, for any ε > εn := 1√
n

with εn → 0, and nε2n ≥ 1 and test

function φn,ε := 1{
X̃n:‖θ̂n−θ0‖>

√
C̃ε2
}, LMNV

n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2 satisfies
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EPn0 [φn] ≤ C0 exp(−Cnε2), (2.22)

sup
{θ∈Θ:LMNV

n (θ,θ0)≥C1nε2}
EPn

θ
[1− φn] ≤ exp(−Cnε2), (2.23)

with C0 = 1, C1 = 4K2C and C = 1/8
(
C̃

dΛ − 1
)

for sufficiently large C̃ such that C > 1 and

Λ = maxi∈{1,2,...d} Λii, where K = supA,Θ ‖∂θR(a, θ)‖.

In the following result, we show that there exist appropriate constants such that prior dis-

tribution satisfies Assumption  2.2.3 when the demand distribution is a multivariate Gaussian

with unknown mean.

Lemma 2.5.7. Fix n2 ≥ 2 and any λ > 1. Let An := {θ ∈ Θ : D1+λ (P n
0 ‖P n

θ ) ≤ C3nε
2
n},

where D1+λ (P n
0 ‖P n

θ ) is the Rényi Divergence between P n
0 and P n

θ . Then for ε2n = logn
n

and any C3 > 0 such that C2 = 4d

Λ(λ+1)
(∏d

i=1 m(Θi)
)2/dC3 ≥ 2 and for large enough n, the

uncorrelated uniform prior restricted to Θ satisfies

Π(An) ≥ exp(−nC2ε
2
n).

Next, it is straightforward to see that the multi-product newsvendor model risk R(a, θ) is

bounded below for a given a ∈ A on a compact set Θ and thus it satisfies Assumption  2.2.5 .

Finally, we also show that the newsvendor model risk satisfies Assumption  2.2.4 .

Lemma 2.5.8. Fix n ≥ 1 and γ > 0. For any ε > εn and a ∈ A, R(a, θ) satisfies

EΠ[1{G(a,θ)γ>C4(γ)nε2}eγG(a,θ)] ≤ exp(−C5(γ)nε2n),

for any C4(γ) > 2γ sup{a,θ}∈A⊗ΘG(a, θ) and C5(γ) = C4(γ)− 2γ sup{a,θ}∈A⊗ΘG(a, θ).

Similar to single product example, in our next result, we show that in the multi-product

newsvendor setting, we can construct a sequence {Qn(θ)} ∈ Q that satisfies Assump-

tion  2.3.1 , and thus identify εn and constant C9. We fix Q to be the family of uncorrelated

Gaussian distributions restricted to Θ.
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Lemma 2.5.9. Let {Qn(θ)} be a sequence of product of d univariate Gaussian distribution

defined as qi
n(θ) ∝ 1√

2πσ2
i,n

e
− 1

2σ2
i,n

(θ−µi,n)2

1Θi = N (θi|µi,n,σi,n)1Θi
N (Θi|µi,n,σi,n) and fix σi,n = 1/

√
n and θi = θi

0

for all i ∈ {1, 2, . . . , d}. Then for uncorrelated uniform distribution restricted to Θ and

multivariate normal likelihood model

1
n

[
KL (Qn(θ)‖Π(θ)) + EQn(θ)

[
KL

(
dP n

0 (X̃n))‖dP n
θ (X̃n)

)]]
≤ C9ε

2
n,

where ε2n = logn
n

and C9 := d
2 + max

(
0,−∑d

i=1 [ log(
√

2πe)− log(m(Θi))] + d
2Λ−1

)
.

Now, using the result established in Lemmas above, we bound the optimality gap in

values for the multi-product newsvendor model risk.

Theorem 2.5.3. Fix γ > 0. Suppose that the set A is compact. Then, for the multi-product

newsvendor model with multivariate Gaussian distributed demand with known covariance

matrix Σ and unknown mean vector θ lying in a compact subset Θ ⊂ Rd, prior Π(·) =∏d
i=1

m({·}∩Θi)
m(Θi) , and the variational family fixed to uncorrelated Gaussian distribution restricted

to Θ, and for any τ > 0, the P n
0 − probability of the following event

{
X̃n : R(a∗RS, θ0)− inf

z∈A
R(z, θ0) ≤ 2τM(γ)

(
log n
n

)1/2 }
(2.24)

is at least 1− τ−1 for sufficiently large n and for some mapping M : R+ → R+, where R(·, θ)

is the multi-product newsvendor model risk.

Proof. The proof is a direct consequence of Theorem  2.3.2 , Lemmas  2.5.6 ,  2.5.7 ,  2.5.8 ,  2.5.9 ,

and Proposition  2.3.2 .

Next, we bound the optimality gap between the approximate optimal decision rule a∗RS

and the true optimal decision.

Theorem 2.5.4. Fix γ > 0. Suppose that the set A is compact and R(a, θ0) satisfies

the growth condition in Assumption  2.2.6 , with Ψ(d) such that Ψ(d)/dδ = κ, for any δ > 0.

Then, for the multi-product newsvendor model with multivariate Gaussian distributed demand

with known covariance matrix Σ and unknown mean vector θ lying in a compact subset
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Θ ⊂ Rd, prior Π(·) = ∏d
i=1

m({·}∩Θi)
m(Θi) , and the variational family fixed to uncorrelated Gaussian

distribution restricted to Θ, and for any τ > 0, the P n
0 − probability of the following event

X̃n : H
(

a∗RS(X̃n), arg min
z∈A

R(z, θ0)
)
≤

2τ
κ
M(γ)

(
log n
n

)1/2
 1
δ


is at least 1 − τ−1 for sufficiently large n and for a known function M(γ), where R(·, θ) is

the multi-product newsvendor model risk.

Proof. The proof is a direct consequence of Theorem  2.3.3 , Lemmas  2.5.6 ,  2.5.7 ,  2.5.8 ,  2.5.9 ,

and Proposition  2.3.2 .

2.5.3 Gaussian process classification

Consider a problem of classifying an input pattern or features Y lying in measure space

([0, 1]d,Y , ν) into one of two classes {−1, 1}, where ξ ∈ {−1, 1} denote the class of Y .

For a given Y , we model the classifier using a Bernoulli distribution p(ξ|Y, θ) = Ψξ(θ(Y )),

where θ : [0, 1]d → R is a non-parametric model parameter in a separable Banach space

(Θ, ‖ · ‖) and measurable functions Ψ1(x) = (1 + e−x)−1 and Ψ−1(x) = 1 − Ψ1(x). Note

that Ψ1(·) is a logistic function. We denote ψ(·) as the derivative of Ψ1(·). We assume

that ν(·) is independent of ξ. Thus the sequence of independent observations {Ỹn, X̃n} =

{(Y1, ξ1), (Y2, ξ2), . . . , (Yn, ξn)} are assumed to be generated from model

Pθ(ξ, Y ) = p(ξ|Y, θ)ν(Y ).

In the above binary classification problem, the objective is to estimate θ(·) using the

observation vector {Ỹn, X̃n}. We posit a Gaussian process (GP) prior Π(·) on θ(·) ∈ Θ (to

be defined later). We also assume that ν(·) is known and we do not place any prior on it.

Consequently, the posterior distribution over θ(·) given observations {Ỹn, X̃n} can be defined

as

dΠ(θ|{Ỹn, X̃n}) = dΠ(θ)∏n
i=1 Ψξi(θ(Yi))ν(Yi)∫ ∏n

i=1 Ψξi(θ(Yi))ν(Yi)dΠ(θ) = dΠ(θ)∏n
i=1 Ψξi(θ(Yi))∫ ∏n

i=1 Ψξi(θ(Yi))dΠ(θ) .
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Consider the loss function `(a, ξ) defined as

`(a, ξ) :=



0, if a = ξ,

c+, if a = +1, ξ = −1,

c−, if a = −1, ξ = +1,

(2.25)

where c+ and c− are known positive constants. The model risk is given by

R(a, θ) = EPθ [`(a, ξ)] =


c+Eν [Ψ−1(θ(y))], a = +1,

c−Eν [Ψ1(θ(y))], a = −1.
(2.26)

We define the distance function as LGPn (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2. In antic-

ipation of demonstrating that the binary classification model with GP prior and distance

function LGPn satisfy the desired set of assumptions, we recall the following result, from [ 70 ],

which will be central in establishing Assumptions  2.2.1 ,  2.2.2 , and  2.2.3 .

Lemma 2.5.10. [Theorem 2.1 [ 70 ]] Let θ(·) be a Borel measurable, zero-mean Gaussian

random element in a separable Banach space (Θ, ‖ · ‖) with reproducing kernel Hilbert space

(RKHS) (H, ‖·‖H) and let θ0 be contained in the closure of H in Θ. For any ε > εn satisfying

ϕθ0(ε) ≤ nε2 , where

ϕθ0(ε) = inf
h∈H:‖h−θ0‖<ε

‖h‖2
H − log Π(‖θ‖ < ε) (2.27)

and any C10 > 1 with e−C10nε2n < 1/2, there exists a measurable set Θn(ε) ⊂ Θ such that

logN(3ε,Θn(ε), ‖ · ‖) ≤ 6C10nε
2, (2.28)

Π(θ 6∈ Θn(ε)) ≤ e−C10nε2 , (2.29)

Π(‖θ − θ0‖ < 4εn) ≥ e−nε2n . (2.30)

The proof of their result can be easily adapted from the proof of Vaart and Zanten [ 70 ,

Theorem 2.1], which is specifically for ε = εn. Notice that the result above is true for any
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norm ‖ · ‖ on the Banach space if that satisfies ϕθ0(ε) ≤ nε2. Moreover, if ϕθ0(εn) ≤ nε2n is

true, then it also holds for any ε > εn, since by definition ϕθ0(ε) is a decreasing function of ε.

All the results in the previous lemma depend on ϕθ0(ε) being less than nε2. In particular,

observe that the second term in the definition of ϕθ0(ε) depends on the prior distribution on

Θ. Therefore, Vaart and Zanten [ 70 , Theorem 4.5] show that ϕθ0(εn) ≤ nε2n ( with ‖ · ‖ as

supremum norm) is satisfied by the Gaussian prior of type

W (·) =
J̄α∑
j=1

2jd∑
k=1

µjZj,kϑj,k(·), (2.31)

where {µj} is a sequence that decreases with j, {Zi,j} are i.i.d. standard Gaussian random

variables and {ϑj,k} form a double-indexed orthonormal basis (with respect to measure ν),

that is Eν [ϑj,kϑl,m] = 1{j=l,k=m}). J̄α is the smallest integer satisfying 2J̄αd = nd/(2α+d) for

a given α > 0. In particular, the GP above is constructed using the function class that is

supported on [0, 1]d and has a wavelet expansion,

w(·) =
∞∑

j=1

2jd∑
k=1

wj,kϑj,k(·).

The wavelet function space is equipped with the L2−norm: ‖w‖2 = ∑∞
j=1

(∑2jd

k=1 |wj,k|2
)1/2

;

the supremum norm: ‖w‖∞ = ∑∞
j=1 2jd max1≤k≤2jd |wj,k|; and the Besov (β,∞,∞)−norm:

‖w‖β;∞,∞ = sup1≤j<∞ 2jβ2jd max1≤k≤2jd |wj,k|. Note that W induces a measure over the

RKHS H, defined as a collection of truncated wavelet functions

w(·) =
J̄α∑
j=1

2jd∑
k=1

wj,kϑj,k(·),

with norm induced by inner-product on H as ‖w‖2
H = ∑J̄α

j=1
∑2jd

k=1
w2

j,k
µ2

j
. The RKHS kernel

K : [0, 1]d × [0, 1]d 7→ R can be easily derived as

K(x, y) = E[W (x)W (y)] = E

 J̄α∑
j=1

2jd∑
k=1

µjZj,kϑj,k(y)
 J̄α∑

j=1

2jd∑
k=1

µjZj,kϑj,k(x)
 =

J̄α∑
j=1

2jd∑
k=1

µ2
j ϑj,k(y)ϑj,k(x).
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Indeed, by the definition of this kernel and inner product, observe that

〈K(x, ·), w(·)〉 =
J̄α∑
j=1

2jd∑
k=1

wj,kµ
2
j ϑj,k(x) 1

µ2
j

= w(x).

Moreover, 〈K(x, ·), K(y, ·)〉 = ∑J̄α
j=1

∑2jd

k=1 µ
2
j ϑj,k(x)µ2

j ϑj,k(y) 1
µ2

j
= K(x, y). It is clear from its

definition that W is a centered Gaussian random field on the RKHS.

Next, using the definition of the kernel, we derive the covariance operator of the Gaussian

random field W . Recall that Y ∼ ν, which enables us to define the covariance operator,

following [ 20 , (6.19)] as

(Chν)(x) =
∫

[0,1]d
K(x, y)hν(y)dν(y).

Also, observe that {µ2
j , ϕj,k} is the eigenvalue and eigen function pair of the covariance

operator C. Consequently, using Karhunen Loéve expansion [ 20 , Theorem 6.19] the prior

induced by W on H is a Gaussian distribution denoted as N (0, C). We also recall the

Cameron-Martin space denoted as Im(C1/2) associated with a Gaussian measure N (0, C) on

H to be the intersection of all linear spaces of full measure under N (0, C) [ 20 , (page 530)].

In particular, Im(C1/2) is the Hilbert space with inner product 〈·, ·〉C = 〈C−1/2·, C−1/2·〉.

Next, we show the existence of test functions in the following result.

Lemma 2.5.11. For any ε > εn with εn → 0, nε2n ≥ 2 log 2, and ϕθ0(ε) ≤ nε2, there exists

a test function φn (depending on ε) such that LGPn (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2

satisfies

EPn0 [φn] ≤ C0 exp(−Cnε2), (2.32)

sup
{θ∈Θ:LGPn (θ,θ0)≥C1nε2}

EPn
θ

[1− φn] ≤ exp(−Cnε2), (2.33)

where C = 1/6, C0 = 2 and C1 = (max(c+, c−))2.

Assumption  2.2.2 is a direct consequence of ( 2.29 ) in Lemma  2.5.10 . Next, we prove

that prior distribution and the likelihood model satisfy Assumption  2.2.3 using ( 2.30 ) of

Lemma  2.5.10 .
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Lemma 2.5.12. For any λ > 1, let An := {θ ∈ Θ : D1+λ (P n
0 ‖P n

θ ) ≤ C3nε
2
n}, where D1+λ (P n

0 ‖P n
θ )

is the Rényi Divergence between P n
0 and P n

θ . Then for any ε > εn satisfying ϕθ0(ε) ≤ nε2

and C3 = 16(λ+ 1) and C2 = 1, the GP prior satisfies

Π(An) ≥ exp(−nC2ε
2
n).

Assumption  2.2.4 and  2.2.5 are straightforward to satisfy since the model risk function

R(a, θ) is bounded from above and below.

Now, suppose the variational family QGP is a class of Gaussian distributions on Θ,

defined as N (mq, Cq), mq belongs to Θ and Cq is the covariance operator defined as Cq =

C1/2(I − S)C1/2, for any S which is a symmetric and Hilbert-Schmidt (HS) operator on Θ

(eigenvalues of HS operator are square summable). Note that S andmq span the distributions

in QGP .

The following lemma verifies Assumption  2.3.1 , for a specific sequence of distributions in

Q.

Lemma 2.5.13. For a given J ∈ N, let {Qn} be a sequence variational distribution such

that Qn is the measure induced by a GP, WQ(·) = θJ0 (y) + ∑J
j=1

∑2jd

k=1 ζ
2
j Zj,kϑj,k(·), where

θJ0 (·) = ∑J
j=1

∑2jd

k=1 θ0;j,kϑj,k(·) and ζ2
j = µ2

j
1+nε2nτ2

j
. Then for GP prior induced by W =∑J

j=1
∑2jd

k=1 µjZj,kϑj,k and µj = 2−jd/2−ja for some a > 0, ‖θ0‖β;∞,∞ < ∞, and θJ0 (y) lie in

the Cameron-Martin space Im(C1/2), we have

1
n

KL(N (θ̄J0 , Cq)‖N (0, C)) + 1
n

EQnKL(P n
0 ‖P n

θ ) ≤ C9ε
2
n,

where

εn =



n−β/(2α+d) log n ifa ≤ β ≤ α

n−α/(2α+d) log n ifa ≤ α ≤ β

n−a/(2a+d)(log n)d/(2a+d) ifα ≤ a ≤ β

n−β/(2a+d)(log n)d/(2a+d) ifα ≤ β ≤ a.

(2.34)
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and C9 := max
(
‖θ0‖2

β,∞,∞,
2−2a−2−2Ja−2a

1−2−2a , 2d/(2d − 1), C
)
, where C is a positive constant sat-

isfying ‖θ0(y)− θJ0 (y))‖2
∞ ≤ C2−2Jβ.

Using the result above together with Proposition  2.3.2 implies that the RSVB posterior

converges at the same rate as the true posterior, where the convergence rate of the true pos-

terior is derived in [ 70 , Theorem 4.5] for the binary GP classification problem with truncated

wavelet GP prior.

Finally, we use the Lemmas above to obtain bound on the optimality gap in values of

the binary GP classification problem.

Theorem 2.5.5. Fix γ > 0 and for a given J ∈ N. For the binary GP classification problem

with GP prior induced by W = ∑J
j=1

∑2jd

k=1 µjZj,kϑj,k and µj = 2−jd/2−ja for some a > 0,

‖θ0‖β;∞,∞ <∞, and θJ0 (y) lie in the Cameron-Martin space Im(C1/2), the variational family

QGP , and for any τ > 0, the P n
0 − probability of the following event

{
X̃n : R(a∗RS, θ0)− inf

z∈A
R(z, θ0) ≤ 2τM(γ)εn

}
(2.35)

is at least 1− τ−1 for sufficiently large n and for some mapping M : R+ → R+, where R(·, θ)

is defined in ( 2.26 ) and εn as derived in ( 2.34 ).

Proof. The proof is a direct consequence of Theorem  2.3.2 , Lemmas  2.5.11 ,  2.5.12 ,  2.5.13 ,

and Proposition  2.3.2 .

2.6 Conclusion

Data-driven decision-making has received significant research interest in the recent lit-

erature, in particular since the nature of the interplay between data and optimal decision-

making can be quite different from the standard machine learning setting. While much of

the literature focuses on empirical methods, Bayesian methods afford advantages particu-

larly when making decisions in context of stochastic models. However, Bayesian methods

are also hampered by integration requirements that can be hard to satisfy in practice.

In this paper we presented the risk-sensitive variational Bayesian computational frame-

work for Bayes-predictive data-driven decision-making, and analyzed the statistical per-
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formance of any computational algorithm derived from this framework by providing non-

asymptotic bounds on the optimality gap. We also analyzed two specific algorithms, and for

both the naive VB (NVB) and loss-calibrated VB (LCVB) algorithms we provide statisti-

cal analyses of the ‘goodness’ of the optimal decisions in terms of the true data generating

model. We also compared the methods against the Bayes optimal solution on a newsvendor

problem.

Our current methodology essentially relies on optimizing lower bounds to the ‘true’ prob-

lem at hand. One of our future objectives is to obtain sharp upper bounds on the true

objective that can then provide a means of ‘squeezing’ the true optimal solution between

these bounds. A second objective is to fully understand the interplay between robustness

and our variational approximations. In some sense, robust methods aim to find the ‘worst’

distribution out of a set of distributions centered (in an appropriate sense) around a nominal

distribution. On the other hand, VB methods find the closest distribution from a family

that does not include the nominal distribution (if it did, then we could compute the poste-

rior). There is almost a sense of duality between these perspectives that is worthy of further

investigation. Third, from a methodological viewpoint, we are investigating the role of vari-

ational autoencoders ([ 96 ]) in the context of data-driven decision-making. Currently, our

decision-making model requires us to fully specify the likelihood and prior models, while in

practice it would be beneficial to make this fully data-driven – precisely where autoencoder

technology would be useful. To the best of our knowledge very little is known about the

statistical properties of these models, or their role in decision-making contexts.
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2.7 Proofs

2.7.1 Alternative derivation of LCVB

We present the alternative derivation of LCVB. Consider the logarithm of the Bayes

posterior risk,

log EΠ(θ|X̃n)[ exp(R(a, θ))] = log
∫

Θ
exp(R(a, θ))dΠ(θ|X̃n)

= log
∫

Θ

dQ(θ)
dQ(θ) exp(R(a, θ))dΠ(θ|X̃n)

≥ −
∫

Θ
dQ(θ) log dQ(θ)

exp(R(a, θ))dΠ(θ|X̃n)
=: F(a;Q(·), X̃n) (2.36)

where the inequality follows from an application of Jensen’s inequality (since, without loss

of generality, exp(R(a, θ)) > 0 for all a ∈ A and θ ∈ Θ), and Q ∈ Q. Then, it follows that

min
a∈A

log EΠ(θ|X̃n)[ exp(R(a, θ))] ≥ min
a∈A

max
q∈Q
F(a;Q(θ), X̃n)

= min
a∈A

max
q∈Q
−KL

(
Q(θ)||Π(θ|X̃n)

)
+
∫

Θ
R(a, θ)dQ(θ).

(2.37)

2.7.2 Proof of Theorem  2.3.1 :

We prove our main result after series of important lemmas. For brevity we denote

LRn(θ, θ0) = p(X̃n|θ)
p(X̃n|θ0) .

Lemma 2.7.1. For any a ∈ A, γ > 0, and ζ > 0,

EPn0

[
ζ
∫

Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n)

]
≤ log EPn0

[∫
Θ

eζLn(θ,θ0) eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
+ inf

Q∈Q
EPn0

[
KL(Q(θ)‖Π(θ|X̃n))

− γ inf
a∈A

EQ[R(a, θ)]
]

+ log EPn0

[∫
Θ

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ LRn(θ, θ0)dΠ(θ)

]
. (2.38)
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Proof. For any fixed a ∈ A, γ > 0, and ζ > 0, and using the fact that KL is non-negative,

observe that the integral in the LHS of equation ( 2.38 ) satisfies,

ζ
∫

Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n) ≤

∫
Θ

log eζLn(θ,θ0) dQ∗a,γ(θ|X̃n)

+ KL
(
dQ∗a,γ(θ|X̃n)

∥∥∥∥∥ eζLn(θ,θ0)eγR(a,θ) dΠ(θ|X̃n)∫
Θ eζLn(θ,θ0)eγR(a,θ) dΠ(θ|X̃n)

)

=
∫

Θ
logeζLn(θ,θ0) dQ∗a,γ(θ|X̃n) + log

∫
Θ

eζLn(θ,θ0)eγR(a,θ) dΠ(θ|X̃n)

+
∫

Θ
dQ∗a,γ(θ|X̃n) log

dQ∗a,γ(θ|X̃n)
eζLn(θ,θ0)eγR(a,θ) dΠ(θ|X̃n)

= log
∫

Θ
eζLn(θ,θ0)eγR(a,θ) dΠ(θ|X̃n) +

∫
Θ
dQ∗a,γ(θ|X̃n) log

dQ∗a,γ(θ|X̃n)
eγR(a,θ) dΠ(θ|X̃n)

.

Next, using the definition of Q∗a,γ(θ|X̃n) in the second term of last equality, for any other

Q(·) ∈ Q

ζ
∫

Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n) ≤ log

∫
Θ

eζLn(θ,θ0)eγR(a,θ) dΠ(θ|X̃n) +
∫

Θ
dQ(θ) log dQ(θ)

eγR(a,θ) dΠ(θ|X̃n)
.

Finally, it follows from the definition of the posterior distribution that

ζ
∫

Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n)

≤ log
∫

Θ
eζLn(θ,θ0)eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫

Θ LRn(θ, θ0)dΠ(θ) +
∫

Θ
dQ(θ) log dQ(θ)

eγR(a,θ) dΠ(θ|X̃n)
,

= log
∫

Θ
eζLn(θ,θ0) eγR(a,θ)LRn(θ, θ0)dΠ(θ)∫

Θ eγR(a,θ)LRn(θ, θ0)dΠ(θ) +
∫

Θ
dQ(θ) log dQ(θ)

eγR(a,θ) dΠ(θ|X̃n)

+ log
∫

Θ
eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫

Θ LRn(θ, θ0)dΠ(θ) , (2.39)
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where the last equality follows from adding and subtracting log
∫

Θ eγR(a,θ)LRn(θ, θ0)dΠ(θ).

Now taking expectation on either side of equation ( 2.39 ) and using Jensen’s inequality on

the first and the last term in the RHS yields

EPn0

[
ζ
∫

Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n)

]
≤ log EPn0

[∫
Θ

eζLn(θ,θ0) eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
+ inf

Q∈Q
EPn0

[ ∫
Θ
dQ(θ) log dQ(θ)

dΠ(θ|X̃n)

− γ inf
a∈A

∫
Θ
Q(θ)R(a, θ)dθ

]
+ log EPn0

[∫
Θ

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ LRn(θ, θ0)dΠ(θ)

]
, (2.40)

where in the second term in RHS of ( 2.39 ), we first take infimum over all a ∈ A which upper

bounds the second term in ( 2.39 ) and then take infimum over all Q ∈ Q, since the LHS does

not depend on Q.

Next, we state a technical result that is important in proving our next lemma.

Lemma 2.7.2 (Lemma 6.4 of [ 28 ]). Suppose random variable X satisfies

P(X ≥ t) ≤ c1 exp(−c2t),

for all t ≥ t0 > 0. Then for any 0 < β ≤ c2/2,

E[ exp(βX)] ≤ exp(βt0) + c1.

Proof. Refer Lemma 6.4 of [ 28 ].

In the following result, we bound the first term on the RHS of equation ( 2.38 ).

Lemma 2.7.3. Under Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 , and  2.2.5 and for min(C,C4(γ)+

C5(γ)) > C2 + C3 + C4(γ) + 2 and any ε ≥ εn,

EPn0

[∫
Θ

eζLn(θ,θ0) eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
≤ eζC1nε2 + (1 + C0 + 3W−γ), (2.41)

for 0 < ζ ≤ C10/2, where C10 = min{λ,C, 1}/C1 for any λ > 0.
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Proof. First define the set

Bn :=
{
X̃n :

∫
Θ
LRn(θ, θ0)dΠ(θ) ≥ e−(1+C3)nε2Π(An)

}
, (2.42)

where set An is defined in Assumption  2.2.3 . We demonstrate that, under Assumption  2.2.3 ,

P n
0 (Bc

n) is bounded above by an exponentially decreasing(in n) term. Note that for An as

defined in Assumption  2.2.3 :

Pn0

(
1

Π(An)

∫
Θ
LRn(θ, θ0)dΠ(θ) ≤ e−(1+C3)nε2

)

≤ Pn0

(
1

Π(An)

∫
Θ∩An

LRn(θ, θ0)dΠ(θ) ≤ e−(1+C3)nε2
)
. (2.43)

Let dΠ̃(θ) := 1{Θ∩An}(θ)
Π(An) dΠ(θ), and use this in ( 2.43 ) for any λ > 0 to obtain,

Pn0

(
1

Π(An)

∫
Θ
LRn(θ, θ0)dΠ(θ) ≤ e−(1+C3)nε2

)
≤ Pn0

(∫
Θ
LRn(θ, θ0)dΠ̃(θ) ≤ e−(1+C3)nε2

)

= Pn0

([∫
Θ
LRn(θ, θ0)dΠ̃(θ)

]−λ
≥ e(1+C3)λnε2

)
.

Then, using the Chernoff’s inequality in the last equality above, we have

Pn0

(
1

Π(An)

∫
Θ
LRn(θ, θ0)dΠ(θ) ≤ e−(1+C3)nε2

)
≤ e−(1+C3)λnε2EPn0

([∫
Θ
LRn(θ, θ0)dΠ̃(θ)

]−λ)

≤ e−(1+C3)λnε2
∫

Θ
EPn0

[ p(X̃n|θ)
p(X̃n|θ0)

]−λ dΠ̃(θ)


= e−(1+C3)λnε2
[∫

Θ
exp(λDλ+1 (P n

0 ‖P n
θ ))dΠ̃(θ)

]
≤ e−(1+C3)λnε2eλC3nε2n ≤ ε−λnε

2
, (2.44)

where the second inequality follows from first applying Jensen’s inequality (on the term

inside [ · ]) and then using Fubini’s theorem, and the penultimate inequality follows from

Assumption  2.2.3 and the definition of Π̃(θ).

Next, define the set Kn := {θ ∈ Θ : Ln(θ, θ0) > C1nε
2}. Notice that set Kn is the set

of alternate hypothesis as defined in Assumption  2.2.1 . We bound the calibrated posterior
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probability of this set Kn to get a bound on the first term in the RHS of equation ( 2.38 ).

Recall the sequence of test function {φn,ε} from Assumption  2.2.1 . Observe that

EPn0

[∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]

= EPn0

[
(φn,ε)

∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
+ EPn0

[
(1− φn,ε)

∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]

≤ EPn0 φn,ε + EPn0
[
(1− φn,ε)1BCn

]
+ EPn0

[
(1− φn,ε)1Bn

∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]

≤ EPn0 φn,ε + EPn0
[
1BCn

]
+ EPn0

[
(1− φn,ε)1Bn

∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
, (2.45)

where in the second inequality, we first divide the second term over set Bn and its comple-

ment, and then use the fact that
∫
Kn

eγR(a,θ) LRn(θ,θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ,θ0)dΠ(θ) ≤ 1. The third inequality is due the

fact that φn,ε ∈ [0, 1]. Next, using Assumption  2.2.3 and  2.2.5 observe that on set Bn

∫
Θ

eγR(a,θ) LRn(θ, θ0)dΠ(θ) ≥ W γ
∫

Θ
LRn(θ, θ0)dΠ(θ)

≥ W γe−(1+C2+C3)nε2n ≥ W γe−(1+C2+C3)nε2 .

Substituting the equation above in the third term of equation ( 2.45 ), we obtain

EPn0

[
(1− φn,ε)1Bn

∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]

≤ W−γe(1+C2+C3)nε2EPn0

[
(1− φn,ε)1Bn

∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)
]

≤ W−γe(1+C2+C3)nε2EPn0

[
(1− φn,ε)

∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)
]
. (?)

Now using Fubini’s theorem observe that,

(?) = W−γe(1+C2+C3)nε2
∫
Kn

eγR(a,θ)EPn
θ

[(1− φn,ε)] dΠ(θ)

≤ W−γe(1+C2+C3+C4(γ))nε2
[∫

Kn∩{eγR(a,θ)≤eC4(γ)nε2}
EPn

θ
[(1− φn,ε)] dΠ(θ)

+ e−C4(γ)nε2
∫
Kn∩{eγR(a,θ)>eC4(γ)nε2}

eγR(a,θ)dΠ(θ)
]
,
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where in the last inequality, we first divide the integral over set {θ ∈ Θ : eγR(a,θ) ≤ eC4(γ)nε2}

and its complement and then use the upper bound on eγR(a,θ) in the first integral. Now, it

follows that

(?) ≤ W−γe(1+C2+C3+C4(γ))nε2
[∫

Kn
EPn

θ
[(1− φn,ε)] dΠ(θ) + e−C4(γ)nε2

∫
{eγR(a,θ)>eC4(γ)nε2}

eγR(a,θ)dΠ(θ)
]

= W−γe(1+C2+C3+C4(γ))nε2
[∫

Kn∩Θn(ε)
EPn

θ
[(1− φn,ε)] dΠ(θ) +

∫
Kn∩Θn(ε)c

EPn
θ

[(1− φn,ε)] dΠ(θ)

+ e−C4(γ)nε2
∫
{eγR(a,θ)>eC4(γ)nε2}

eγR(a,θ)dΠ(θ)
]

≤ W−γe(1+C2+C3+C4(γ))nε2
[∫

Kn∩Θn(ε)
EPn

θ
[(1− φn,ε)] dΠ(θ) + Π(Θn(ε)c)

+ e−C4(γ)nε2
∫
{eγR(a,θ)>eC4(γ)nε2}

eγR(a,θ)dΠ(θ)
]
,

where the second equality is obtained by dividing the first integral on set Θn(ε) and its

complement, and the third inequality is due the fact that φn,ε ∈ [0, 1]. Now, using the

equation above and Assumption  2.2.1 ,  2.2.2 , and  2.2.4 observe that

EPn0

[
(1− φn,ε)1Bn

∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
≤ W−γe(1+C2+C3+C4(γ))nε2

[
2e−Cnε2 + e−(C5(γ)+C4(γ))nε2

]
.

Hence, choosing C,C2, C3, C4(γ) and C5(γ) such that−1 > 1+C2+C3+C4(γ)−min(C, (C4(γ)+

C5(γ))) implies

EPn0

[
(1− φn,ε)IBn

∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
≤ 3W−γe−nε2 . (2.46)

By Assumption  2.2.1 , we have

EPn0 φn,ε ≤ C0e−Cnε2 . (2.47)
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Therefore, substituting equation ( 2.44 ), equation (  2.46 ), and ( 2.47 ) into ( 2.45 ), we obtain

EPn0

[∫
Kn

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
≤ (1 + C0 + 3W−γ)e−C10C1nε2 , (2.48)

where C10 = min{λ,C, 1}/C1. Using Fubini’s theorem, observe that the LHS in the equa-

tion ( 2.48 ) can be expressed as µ(Kn), where

dµ(θ) = EPn0

[
LRn(θ, θ0)∫

Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
Π(θ)eγR(a,θ)dθ.

Next, recall that the set Kn = {θ ∈ Θ : Ln(θ, θ0) > C1nε
2}. Applying Lemma  2.7.2 above

with X = Ln(θ, θ0), c1 = (1 + C0 + 3W−γ) , c2 = C10 , t0 = C1nε
2
n, and for 0 < ζ ≤ C10/2,

we obtain

EPn0

[∫
Θ

eζLn(θ,θ0) eγR(a,θ) LRn(θ, θ0)Π(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)dθ

]
≤ eζC1nε2n + (1 + C0 + 3W−γ). (2.49)

Further, we have another technical lemma, that will be crucial in proving the subsequent

lemma that upper bounds the last term in the equation (  2.38 ).

Lemma 2.7.4. Suppose a positive random variable X satisfies

P(X ≥ et) ≤ c1 exp(−(c2 + 1)t),

for all t ≥ t0 > 0, c1 > 0, and c2 > 0. Then,

E[X] ≤ exp(t0) + c1

c2
.

Proof. For any Z0 > 1,

E[X] ≤ Z0 +
∫ ∞
Z0

P(X ≥ x)dx = Z0 +
∫ ∞

lnZ0
P(X ≥ ey)eydy ≤ Z0 + c1

∫ ∞
lnZ0

exp(−c2y)dy.

Therefore, choosing Z0 = exp(t0),
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E[X] ≤ exp(t0) + c1

c2
exp(−c2t0) ≤ exp(t0) + c1

c2
.

Next, we establish the following bound on the last term in equation (  2.38 ).

Lemma 2.7.5. Under Assumptions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 ,  2.2.5 , and for C4(γ)+C5(γ) >

C2 + C3 + 2,

EPn0

[∫
Θ

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ LRn(θ, θ0)dΠ(θ)

]
≤ eC4(γ)nε2n + 2C4(γ). (2.50)

Proof. Define the set

Mn := {θ ∈ Θ : eγR(a,θ) > eC4(γ)nε2}. (2.51)

Using the set Bn in equation ( 2.42 ), observe that the measure of the set Mn, under the

posterior distribution satisfies,

EPn0

[∫
Mn
LRn(θ, θ0)dΠ(θ)∫

Θ LRn(θ, θ0)dΠ(θ)

]
≤ EPn0

[
1Bcn

]
+ EPn0

[
1Bn

∫
Mn
LRn(θ, θ0)dΠ(θ)∫

Θ LRn(θ, θ0)dΠ(θ)

]
. (2.52)

Now, the second term of equation ( 2.52 ) can be bounded as follows: recall Assumption  2.2.3 

and the definition of set Bn, both together imply that,

EPn0

[
1Bn

∫
Mn
LRn(θ, θ0)dΠ(θ)∫

Θ LRn(θ, θ0)dΠ(θ)

]
≤ e(1+C2+C3)nε2EPn0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)
]

≤ e(1+C2+C3)nε2EPn0

[∫
Mn

LRn(θ, θ0)dΠ(θ)
]
. (??)

Then, using Fubini’s Theorem (??) = e(1+C2+C3)nε2Π(Mn). Next, using the definition of set

Mn and then Assumption  2.2.4 , we obtain

EPn0

[
1Bn

∫
Mn
LRn(θ, θ0)dΠ(θ)∫

Θ LRn(θ, θ0)dΠ(θ)

]
≤ e(1+C2+C3)nε2e−C4(γ)nε2

∫
Mn

eγR(a,θ)dΠ(θ)

≤ e(1+C2+C3)nε2e−C4(γ)nε2e−C5(γ)nε2 ,
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Hence, choosing the constants C2, C3, C4(γ) and C5(γ) such that −1 > 1 +C2 +C3 −C5(γ)

implies

EPn0

[
1Bn

∫
Mn
LRn(θ, θ0)dΠ(θ)∫

Θ LRn(θ, θ0)dΠ(θ)

]
≤ e−(1+C4(γ))nε2 (2.53)

Therefore, substituting ( 2.44 ) and ( 2.53 ) into (  2.52 )

EPn0

[∫
Mn
LRn(θ, θ0)dΠ(θ)∫

Θ LRn(θ, θ0)dΠ(θ)

]
≤ 2e−C4(γ)(C11(γ)+1)nε2 , (2.54)

where C11 = min{λ, 1 + C4(γ)}/C4(γ) − 1. Using Fubini’s theorem, observe that the RHS

in ( 2.54 ) can be expressed as ν(Mn), where the measure

dν(θ) = EPn0

[
LRn(θ, θ0)∫

Θ LRn(θ, θ0)dΠ(θ)

]
dΠ(θ).

Applying Lemma  2.7.4 for X = eγR(a,θ),c1 = 2 , c2 = C11(γ) , t0 = C4(γ)nε2n and λ ≥

1 + C4(γ), we obtain

EPn0

[∫
Θ

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ LRn(θ, θ0)dΠ(θ)

]
≤ eC4nε2n + 2

C11(γ) ≤ eC4nε2n + 2C4(γ). (2.55)

Proof. Proof of Theorem  2.3.1 : Finally, recall ( 2.38 ),

ζEPn0

[∫
Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n)

]
≤ log EPn0

[∫
Θ

eζLn(θ,θ0) eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ eγR(a,θ) LRn(θ, θ0)dΠ(θ)

]
+ inf

Q∈Q
EPn0

[
KL(Q(θ)‖Π(θ|X̃n))

− γ inf
a∈A

EQ[R(a, θ)]
]

+ log EPn0

[∫
Θ

eγR(a,θ) LRn(θ, θ0)dΠ(θ)∫
Θ LRn(θ, θ0)dΠ(θ)

]
. (2.56)
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Substituting ( 2.50 ) and ( 2.41 ) into the above equation and then using the definition of

ηRn (γ), we get

EPn0

[∫
Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n)

]
≤ 1
ζ

{
log(eζC1nε2n + (1 + C0 + 3W−γ)) + log

(
eC4(γ)nε2n + 2C4(γ)

)
+ nηRn (γ)

}
≤
(
C1 + 1

ζ
C4(γ)

)
nε2n + 1

ζ
nηRn (γ) + (1 + C0 + 3W−γ)e(−ζC1nε2n)

ζ
+ 2C4(γ)e−C4(γ)nε2n

ζ
,

where the last inequality uses the fact that log x ≤ x− 1. Choosing ζ = C10/2 = min(C,λ,1)
2C1

,

EPn0

[∫
Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n)

]

≤M(γ)n(ε2n) +MnηRn (γ) + 2(1 + C0 + 3W−γ)e(−C10
2 nε2n)

C10
+ 4C4(γ)e−C4(γ)nε2n

C10
(2.57)

where M(γ) = C1 + 1
ζ
C4(γ) and M = 1

ζ
depend on C,C1, C4(γ),W and λ. Since the last two

terms in (  2.57 ) decrease and the first term increases as n increases, we can choose M large

enough, such that for all n ≥ 1

MnηRn (γ) > 2(1 + C0 + 3W−γ)
C10

+ 4C4(γ)
C10

,

and therefore for M = 2M ,

EPn0

[∫
Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n)

]
≤M(γ)n(ε2n) +MnηRn (γ). (2.58)

Also, observe that the LHS in the above equation is always positive, therefore M(γ)ε2n +

MηRn (γ) ≥ 0 ∀n ≥ 1 and γ > 0.
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2.7.3 Proof of Theorem  2.3.2 and  2.3.3 

Lemma 2.7.6. Given a ∈ A and for a constant M, as defined in Theorem  2.3.1 

EPn0

[
sup
a∈A

∣∣∣EQ∗a,γ(θ|X̃n)[R(a, θ)]−R(a, θ0)
∣∣∣] ≤ [M(γ)ε2n +MηRn (γ)

] 1
2 . (2.59)

Proof. First, observe that

(
sup
a∈A

∣∣∣EQ∗a,γ(θ|X̃n)[R(a, θ)]−R(a, θ)
∣∣∣)2

≤
(∫

sup
a∈A
|R(a, θ)−R(a, θ0)|dQ∗a,γ(θ|X̃n)

)2

≤
∫ (

sup
a∈A
|R(a, θ)−R(a, θ0)|

)2

dQ∗a,γ(θ|X̃n),

where the last inequality follows from Jensen’s inequality. Now, using the Jensen’s inequality

again

(
EPn0

[
sup
a∈A

∣∣∣EQ∗a,γ(θ|X̃n)[R(a, θ)]−R(a, θ0)
∣∣∣])2

≤ EPn0

(sup
a∈A

∣∣∣EQ∗a,γ(θ|X̃n)[R(a, θ)]−R(a, θ0)
∣∣∣)2

 .
Now, using Theorem  2.3.1 the result follows immediately.

Proof of Theorem  2.3.2 . Observe that

R(a∗RS, θ0)− inf
z∈A

R(z, θ0)

= |R(a∗RS, θ0)− inf
z∈A

R(z, θ0)|

= R(a∗RS, θ0)−
∫
R(a∗RS, θ)dQ∗a∗RS,γ

(θ|X̃n) +
∫
R(a∗RS, θ)dQ∗a∗RS,γ

(θ|X̃n)− inf
z∈A

R(z, θ0)

≤
∣∣∣∣R(a∗RS, θ0)−

∫
R(a∗RS, θ)dQ∗a∗RS,γ

(θ|X̃n)
∣∣∣∣+ ∣∣∣∣∫ R(a∗RS, θ)dQ∗a∗RS,γ

(θ|X̃n)− inf
a∈A

R(a, θ0)
∣∣∣∣

≤ 2 sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗a∗RS,γ
(θ|X̃n)−R(a, θ0)

∣∣∣∣ .
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Given a∗RS ∈ A and for a constant M (defined in Theorem  2.3.1 ), we have from Lemma  2.7.6 

for a = a∗RS

EPn0

[
sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗a∗RS,γ
(θ|X̃n)−R(a, θ0)

∣∣∣∣
]
≤
[
M(γ)ε2n +MηRn (γ)

] 1
2 . (2.60)

It follows from above that the P n
0 − probability of the following event is at least 1− τ−1:

{
X̃n : R(a∗RS, θ0)− inf

z∈A
R(z, θ0) ≤ 2τ

[
M(γ)ε2n +MηRn (γ)

] 1
2

}
. (2.61)

Proof of Theorem  2.3.3 : Since, the above result holds for any a ∈ A, fix a = a∗RS and observe

that for any γ > 0 and τ > 0, the result in Lemma  2.7.6 implies that P n
0 − probability of

{[
M(ε2n + ηRn (γ))

]− 1
2 sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗a∗RS,γ
(θ|X̃n)−R(a, θ0)

∣∣∣∣ > τ

}
(2.62)

is at most τ−1. For a∗RS, it follows from the definition of Ψ(·) that

Ψ
(
H(a∗RS, arg min

a∈A
R(a, θ0))

)

≤ R(a∗RS, θ0)− inf
z∈A

R(a, θ0)

= R(a∗RS, θ0)−
∫
R(a∗RS, θ)dQ∗a∗RS,γ

(θ|X̃n) +
∫
R(a∗RS, θ)dQ∗a∗RS,γ

(θ|X̃n)− inf
z∈A

R(z, θ0)

≤
∣∣∣∣R(a∗RS, θ0)−

∫
R(a∗RS, θ)dQ∗a∗RS,γ

(θ|X̃n)
∣∣∣∣+ ∣∣∣∣∫ R(a∗RS, θ)dQ∗a∗RS,γ

(θ|X̃n)− inf
a∈A

R(a, θ0)
∣∣∣∣

≤ 2 sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗a∗RS,γ
(θ|X̃n)−R(a, θ0)

∣∣∣∣ . (2.63)

It follows from the above inequality that

{ [
M(ε2n + ηRn (γ))

]− 1
2 Ψ

(
H(a∗RS, arg min

z∈A
R(a, θ0))

)
> 2τ

}

⊆
{[
M(ε2n + ηRn (γ))

]− 1
2 sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗a∗RS,γ
(θ|X̃n)−R(a, θ0)

∣∣∣∣ > τ

}
.

(2.64)
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Therefore, using the condition on the growth function in the statement of the theorem that,
Ψ
(
H

(
a∗RS,arg min

a∈A
R(a,θ0)

))
H

(
a∗RS,arg min

a∈A
R(a,θ0)

)δ = κ, the P n
0 − probability of the following event is at least 1− τ−1:

{
H(a∗RS, arg min

a∈A
R(a, θ0)) ≤ τ

1
δ

2
[
M(γ)ε2n +MηRn (γ)

] 1
2

κ


1
δ }

. (2.65)

This concludes the proof.

2.7.4 Proofs in Section  2.3.1 

Proof of Proposition  2.3.1 . Using the definition of ηRn (γ) and the posterior distribution Π(θ|X̃n),

observe that

nηRn (γ) = inf
Q∈Q

EPn0

[
KL(Q(θ)‖Π(θ|X̃n))− γ inf

a∈A
EQ[R(a, θ)]

]

= inf
Q∈Q

EPn0

[
KL(Q(θ)‖Π(θ)) +

∫
Θ
dQ(θ) log

(∫
dΠ(θ)p(X̃n|θ)
p(X̃n|θ)

)
− γ inf

a∈A
EQ[R(a, θ)]

]

= inf
Q∈Q

[
KL(Q(θ)‖Π(θ))− γ inf

a∈A
EQ[R(a, θ)] + EPn0

[∫
Θ
dQ(θ) log

(∫
dΠ(θ)p(X̃n|θ)
p(X̃n|θ)

)]]
.

Now, using Fubini’s in the last term of the equation above, we obtain

nηRn (γ) = inf
Q∈Q

KL(Q(θ)‖Π(θ))− γ inf
a∈A

EQ[R(a, θ)]

+ EQ

[
KL

(
dP n

0 ‖p(X̃n|θ)
)
−KL

(
dP n

0

∥∥∥∥∥
∫
dΠ(θ)p(X̃n|θ)

)]. (2.66)
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Observe that,
∫
Xn
∫
dΠ(θ)p(X̃n|θ)dX̃n = 1. Since, KL is always non-negative, it follows from

the equation above that

ηRn (γ)

≤ 1
n

inf
Q∈Q

[
KL (Q(θ)‖Π(θ))− γ inf

a∈A
EQ[R(a, θ)] + EQ

[
KL

(
dP n

0 ‖p(X̃n|θ)
)]]

≤ 1
n

inf
Q∈Q

[
KL (Q(θ)‖Π(θ)) + EQ

[
KL

(
dP n

0 ‖p(X̃n|θ)
)]]
− 1
n
γ inf
Q∈Q

inf
a∈A

EQ[R(a, θ)], (2.67)

where the last inequality follows from the following fact, for any functions f(·) and g(·),

inf(f − g) ≤ inf f − inf g.

Recall εn ≥ 1√
n
. Now, using Assumption  2.3.1 , it is straightforward to observe that the first

term in (  2.67 ),

1
n

inf
Q∈Q

[
KL (Q(θ)‖Π(θ)) + EQ

[
KL

(
dP n

0 ‖p(X̃n|θ)
)]]
≤ C9ε

2
n. (2.68)

Now consider the last term in (  2.67 ). Notice that the coefficient of 1
n

is independent of n and

is bounded from below. Therefore, there exist a constant C8 = − infQ∈Q infa∈A EQ[R(a, θ)],

such that with equation ( 2.68 ) it follows that ηRn (γ) ≤ γn−1C8 +C9ε
2
n and the result follows.

Proof of Proposition  2.3.2 . First recall that

nηRn (γ) = inf
Q∈Q

EPn0

[
KL(Q(θ)‖Π(θ|X̃n))− γ inf

a∈A
EQ[R(a, θ)]

]
= inf

Q∈Q
EPn0

[
KL(Q(θ)‖Π(θ|X̃n))

]
− γ inf

a∈A
EQ[R(a, θ)]. (2.69)

Observe that the optimization problem is equivalent to solving :

min
Q∈Q

EPn0
[
KL(Q(θ)‖Π(θ|X̃n))

]
s.t. − inf

a∈A
EQ[R(a, θ)] ≤ 0. (2.70)
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Now for any γ > 0, Q∗γ(θ) ∈ Q that minimizes the objective in (  2.69 ) is primal feasible if

− inf
a∈A

∫
Θ
dQ∗γ(θ)R(a, θ) ≤ 0.

Therefore, it is straightforward to observe that as γ increases nηRn (γ) decreases that is

EPn0

[∫
Θ
dQ∗γ(θ) log

dQ∗γ(θ)
dΠ(θ|X̃n)

− γ inf
a∈A

∫
Θ
dQ∗γ(θ)R(a, θ)

]
.

Proof. Proof of Corollary  2.3.1 : For any δ > 0, using Markov inequality

P n
0

(
Q∗a,γ

[{ 1
n
Ln(θ, θ0) > Mn(ε2n + ηRn (γ))

} ∣∣∣∣X̃n

]
> δ

)
≤ 1
δ

EPn0 Q
∗
a,γ

[{ 1
n
Ln(θ, θ0) > Mn(ε2n + ηRn (γ))

} ∣∣∣∣X̃n

]
≤ 1
nδMn(ε2n + ηRn (γ))EPn0

[∫
Θ
Ln(θ, θ0)dQ∗a,γ(θ|X̃n)

]

≤ nM(ε2n + ηRn (γ))
nδMn(ε2n + ηRn (γ)) = M

δMn

,

where the last inequality follows from Theorem  2.3.2 . Since Mn is a diverging sequence,

convergence in P n
0 -probability follows.

2.7.5 Proofs in Section  2.3.2 

Proof of Lemma  2.3.1 : Refer Theorem 7.1 of [ 91 ].

Proof of Lemma  2.3.2 : For any positive k and ε, let θ ∈ [θ0 − kε, θ0 + kε]d ⊂ Θ ⊂ Rd. Now

consider a set Hi = {θ0
i , θ

1
i , . . . θ

J
i , θ

J+1
i } and H = ⊗

dHi with J = b2kε
δ
c, where θj

i = θ0−kε+iδ

for j = {0, 1, . . . , J} and θJ+1
i = θ0 + kε. Observe that for any θ ∈ [θ0 − kε, θ0 + kε]d, there

exists a θj ∈ H such that ‖θ − θj‖ < δ. Hence, union of the δ−balls for each element in set

H covers [θ0 − kε, θ0 + kε]d, therefore N(δ, [θ0 − kε, θ0 + kε]d, ‖ · ‖) = (J + 2)d.

Now, due to Assumption  2.3.3 , for any θ ∈ [θ0 − kε, θ0 + kε]d

dL(θ, θ0) ≤ K2‖θ − θj‖ ≤ K2δ,
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For brevity, we denote n−1Ln(θ, θ0) by dL(θ, θ0), that is

dL(θ1, θ2) := sup
a∈A
|R(a, θ1)−R(a, θ2)|, ∀{θ1, θ2} ∈ Θ, (2.71)

and the covering number of the set T (ε) := {Pθ : dL(θ, θ0) < ε} as N(δ, T (ε), dL), where

δ > 0 is the radius of each ball in the cover.

Hence, δ-cover of set [θ0 − kε, θ0 + kε]d is K1δ cover of set T (ε) with k = 1/K2. Finally,

N(K2δ, T (ε), dL) ≤ (J + 2)d ≤
(

2kε
δ

+ 2
)d

=
( 2ε
K2δ

+ 2
)d

which implies for δ = K2δ,

N(δ, T (ε), dL) ≤
(2ε
δ

+ 2
)s
.

Proof of Lemma  2.3.3 : Recall dL(θ, θ0) = (supa∈A |R(a, θ)−R(a, θ0)|) and T (ε) = {Pθ :

dL(θ, θ0) < ε}. Using Lemma  2.3.2 , observe that for every ε > εn > 0,

N
(
ε

2 , {θ : ε ≤ dL(θ, θ0) ≤ 2ε}, dL
)
≤ N

(
ε

2 , {θ : dL(θ, θ0) ≤ 2ε}, dL
)
< 10d.

Next, using Assumption  2.3.2 we have

dL(θ, θ0) ≤ K1dH(θ, θ0).

It follows from the above two observations and Lemma 2 that, for every ε > εn > 0, there

exist tests {φn,ε} such that

EPn0 [φn,ε] ≤ 10d exp(−Cnε2)
1− exp(−Cnε2) , (2.72)

sup
{θ∈Θ:dL(θ,θ0)≥ε}

EPn
θ

[1− φn,ε] ≤ exp(−Cnε2), (2.73)
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where C = 1
2K2

1
. Since the above two conditions hold for every ε > εn, we can choose a

constant K > 0 such that for every ε > εn

EPn0 [φn,ε] ≤ 10d exp(−CK2nε2)
1− exp(−CK2nε2) ≤ 2(10d) exp(−CK2nε2), (2.74)

sup
{θ∈Θ:Ln(θ,θ0)≥K2nε2}

EPn
θ

[1− φn,ε] = sup
{θ∈Θ:dL(θ,θ0)≥Kε}

EPn
θ

[1− φn,ε] ≤ exp(−CK2nε2), (2.75)

where the second inequality in ( 2.74 ) holds ∀n ≥ n0, where n0 := min{n ≥ 1 : CK2nε2 ≥

log(2)} Hence, the result follows for C1 = K2 and C = CK2.

Proof of Corollary  2.3.2 : Using Lemma  2.3.3 observe that for any Θn(ε) ⊆ Θ, Ln(θ, θ0)

satisfies Assumption  2.2.1 with C0 = 2 ∗ 10s, C = C1
2K2

1
and for any C1 > 0, since

sup
{θ∈Θn(ε):Ln(θ,θ0)≥C1nε2n}

EPn
θ

[1− φn,ε] ≤ sup
{θ∈Θ:Ln(θ,θ0)≥C1nε2n}

EPn
θ

[1− φn,ε] ≤ exp(−Cnε2n).

Hence, applying Theorem  2.3.1 the proof follows.

2.7.6 Proof of Theorem  2.4.1 ,  2.4.2 , and  2.4.3 

Proof of Theorem  2.4.1 : The proof follows immediately from Theorem  2.3.1 by taking limit

γ → 0+ on either side of its main result, that is

EPn0

[∫
Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n)

]
≤Mn(ε2n + ηRn (γ)). (2.76)

Fix n ≥ 1. Now first consider the LHS, use the fact that for any a ∈ A, limγ→0+ Q∗a,γ(θ|X̃n) =

Q∗(θ|X̃n) (  2.13 ), the integrand is also non-negative , and nηRn (γ) < ∞ due to Proposi-

tion  2.3.2 (since a decreasing sequence is bounded given ηRn (0) <∞), therefore, using Fatou’s

Lemma we have

EPn0

[∫
Θ
Ln(θ, θ0) dQ∗(θ|X̃n)

]
≤ lim inf

γ→0+
EPn0

[∫
Θ
Ln(θ, θ0) dQ∗a,γ(θ|X̃n)

]
(2.77)
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On the other hand, using similar argument as used in ( 2.13 ) to show that Q∗a,γ(θ|X̃n)→

Q∗(θ|X̃n) as γ → 0+, it follows that

lim inf
γ→0+

ηRn (γ) = ηRn (0).

Thus the result follows.

Next, we obtain a finite sample bound on the regret, defined as the uniform difference

between the Naive VB approximate posterior risk and the expected loss under the true data

generating measure P0.

Lemma 2.7.7. For a constant M as defined in Theorem  2.4.1 

EPn0

[
sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗(θ|X̃n)−R(a, θ0)
∣∣∣∣
]
≤
[
M(ε2n + ηn(0))

] 1
2 . (2.78)

Proof. The result follows immediately from the following inequalities

(
sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗(θ|X̃n)−R(a, θ0)
∣∣∣∣
)2

≤
(∫

sup
a∈A
|R(a, θ)−R(a, θ0)|dQ∗(θ|X̃n)

)2

≤
∫ (

sup
a∈A
|R(a, θ)−R(a, θ0)|

)2

dQ∗(θ|X̃n),

where the last inequality is a consequence of Jensens’ inequality. Now, using Jensen’s in-

equality again

(
EPn0

[
sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗(θ|X̃n)−R(a, θ0)
∣∣∣∣
])2

≤ EPn0

(sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗(θ|X̃n)−R(a, θ0)
∣∣∣∣
)2
 .

Now the result follows immediately using Theorem  2.4.1 .

Proof of Theorem  2.4.2 and  2.4.3 . The proof is similar to Theorem  2.3.2 and  2.3.3 and

hence omitted.
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2.7.7 Proof of Theorem  2.4.4 ,  2.4.5 and  2.4.6 

Proof of Theorem  2.4.4 : The proof follows immediately from Theorem  2.4.4 by substituting

γ = 1.

Proof. Proof of Theorem  2.4.5 and  2.4.6 : The proof is similar to Theorem  2.3.2 and  2.3.3 

and hence omitted.

2.7.8 Newsvendor Problem

We fix n−1/2
√
LNVn (θ, θ0) = (supa∈A |R(a, θ) − R(a, θ0)|). Next, we aim to show that

the exponentially distributed model Pθ satisfies Assumption  2.2.1 , for distance function

LNVn (θ, θ0). To show this, in the next result we first prove that dNVL (θ, θ0) = n−1/2
√
LNVn (θ, θ0)

satisfy Assumption  2.3.2 . Also, recall that the square of Hellinger distance between two ex-

ponential distributions with rate parameter θ and θ0 is d2
H(θ, θ0) = 1− 2

√
θθ0

θ+θ0 = 1− 2
√
θ0/θ

1+θ0/θ .

Lemma 2.7.8. For any θ ∈ Θ = [T,∞), and a ∈ A,

dNVL (θ, θ0) ≤


(
h
θ0
− h

T

)2
+ (b+ h)2

(
e−aT
T
− e−aθ0

θ0

)2

d2
H(T, θ0)


1/2

dH(θ, θ0)

where a := min{a ∈ A} and a > 0 and θ0 lies in the interior of Θ.

Proof. Observe that for any a ∈ A,

|R(a, θ)−R(a, θ0)|2 =
∣∣∣∣∣ hθ0
− h

θ
+ (b+ h)

(
e−aθ
θ
− e−aθ0

θ0

)∣∣∣∣∣
2

=
(
h

θ0
− h

θ

)2

+ (b+ h)2
(

e−aθ
θ
− e−aθ0

θ0

)2

+ 2
(
h

θ0
− h

θ

)
(b+ h)

(
e−aθ
θ
− e−aθ0

θ0

)

≤
(
h

θ0
− h

θ

)2

+ (b+ h)2
(

e−aθ
θ
− e−aθ0

θ0

)2

, (2.79)
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where the last inequality follows since for θ ≥ θ0,
(
h
θ0
− h

θ

)
≥ 0 and

(
e−aθ
θ
− e−aθ0

θ0

)
< 0

and vice versa if θ < θ0 that together makes the last term in the penultimate equality

negative for all θ ∈ Θ. Moreover, the first derivative of the upperbound with respect to θ is

2
(
h

θ0
− h

θ

)
h

θ2 − 2(b+ h)2
(

e−aθ
θ
− e−aθ0

θ0

)
e−aθ

[ 1
θ2 + a

θ

]
,

and it is negative when θ ≤ θ0 and positive when θ > θ0 for all b > 0, h > 0, and a ∈ A.

Therefore, the upperbound in ( 2.79 ) above is decreasing function of θ for all θ ≤ θ0 and

increasing function of θ for all θ > θ0. The upperbound is tight at θ = θ0.

Now recall that the squared Hellinger distance between two exponential distributions

with rate parameter θ and θ0 is

d2
H(θ, θ0) = 1− 2

√
θθ0

θ + θ0
= 1− 2

√
θ0/θ

1 + θ0/θ
=

(1−
√
θ0/θ)2

1 + (
√
θ0/θ)2

.

Note that for θ ≤ θ0, d2
H(θ, θ0) is a decreasing function of θ and for all θ > θ0 it is an

increasing function of θ. Also, note that as θ → ∞, the squared Hellinger distance as well

as the upperbound computed in ( 2.79 ) converges to a constant for a given h, b, θ0 and a.

However, as θ → 0, the d2
H(θ, θ0)→ 1 but the upperbound computed in ( 2.79 ) diverges.

Since, Θ = [T,∞) for some T > 0 and T ≤ θ0, observe that if we scale d2
H(θ, θ0) by factor

by which the upperbound computed in ( 2.79 ) is greater than dH at θ = T , then

(
h

θ0
− h

θ

)2

+ (b+ h)2
(

e−aθ
θ
− e−aθ0

θ0

)2

≤

(
h
θ0
− h

T

)2
+ (b+ h)2

(
e−aT
T
− e−aθ0

θ0

)2

d2
H(T, θ0) d2

H(θ, θ0)

≤

(
h
θ0
− h

T

)2
+ (b+ h)2

(
e−aT
T
− e−aθ0

θ0

)2

d2
H(T, θ0) d2

H(θ, θ0),

(2.80)

where a = inf{a : a ∈ A} and in the last inequality we used the fact that
(

e−aT
T
− e−aθ0

θ0

)2

is a decreasing function of a for any b, h, T, and θ0 . Since, the RHS in the equation above
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does not depend on a, it follows from the result in ( 2.79 ) and the definition of LNVn (θ, θ0)

that dNVL (θ, θ0) ≤


(
h
θ0
− h
T

)2
+(b+h)2

(
e−aT
T
− e−aθ0

θ0

)2

d2
H(T,θ0)


1/2

dH(θ, θ0).

Lemma 2.7.9. For any θ ∈ Θ = [T,∞), for sufficiently small T > 0, and θ0 lying in the

interior of Θ, we have

d2
H(θ, θ0) = 1− 2

√
θθ0

θ + θ0
≤

 θ0

(T + θ0)2

√θ0

T
−
√
T

θ0

 |θ − θ0|.

Proof. Observe that

∂d2
H(θ, θ0)
∂θ

= −2
(θ + θ0)

√
θ0

2
√
θ
−
√
θθ0

(θ + θ0)2 = −(θ + θ0)
√
θ0 − 2θ

√
θ0√

θ(θ + θ0)2
= θ
√
θ0 − θ0

√
θ0√

θ(θ + θ0)2
= θ0

(θ + θ0)2

√ θ

θ0
−
√
θ0

θ

 .

Observe that θ → 0, ∂d
2
H(θ,θ0)
∂θ

→∞. Since,θ ∈ Θ = [T,∞), therefore the supθ∈Θ

∣∣∣∣∂d2
H(θ,θ0)
∂θ

∣∣∣∣ <
∞. In fact, for sufficiently small T > 0, supθ∈Θ

∣∣∣∣∂d2
H(θ,θ0)
∂θ

∣∣∣∣ =
∣∣∣ θ0
(T+θ0)2

(√
T
θ0
−
√

θ0
T

)∣∣∣ =(
θ0

(T+θ0)2

(√
θ0
T
−
√

T
θ0

))
. Now the result follows immediately since the derivative of d2

H(θ, θ0)

is bounded on Θ, which implies that d2
H(θ, θ0) is Lipschitz on Θ.

Lemma 2.7.10. For any θ ∈ Θ = [T,∞), and a ∈ A,

dNVL (θ, θ0) ≤ h

T 2 |θ − θ0|.

Proof. Recall,

R(a, θ) = ha− h

θ
+ (b+ h)e−aθ

θ
.

First, observe that for any a ∈ A,

∂R(a, θ)
∂θ

= h

θ2 − a(b+ h)e−aθ
θ
− (b+ h)e−aθ

θ2 = 1
θ2

(
h− (b+ h)e−aθ(1 + aθ)

)
≤ h

θ2 . (2.81)

The result follows immediately, since supθ∈Θ
∂R(a,θ)
∂θ
≤ h

T 2 .

Proof. Proof of Lemma  2.5.1 
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It follows from Lemma  2.7.8 that dNVL (θ, θ0) for any θ ∈ Θ = [T,∞) and θ0 lying the

interior of Θ, satisfies Assumption  2.3.2 with K1 =


(
h
θ0
− h
T

)2
+(b+h)2

(
e−aT
T
− e−aθ0

θ0

)2

d2
H(T,θ0)


1/2

:=

KNV
1 . Similarly, it follows from Lemma and  2.7.10 that for sufficiently small T > 0, dNVL (θ, θ0)

satisfies Assumption  2.3.3 with K2 = h/T 2 := KNV
2 . Now using similar arguments as used

in Lemma  2.3.2 and Lemma  2.2.1 , for a given εn > 0 and every ε > εn, such that nε2n ≥ 1, it

can be shown that , LNVn (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2 satisfies

EPn0 [φn] ≤ C0 exp(−Cnε2), (2.82)

sup
{θ∈Θ:LNVn (θ,θ0)≥C1nε2}

EPn
θ

[1− φn] ≤ exp(−Cnε2), (2.83)

where C0 = 20 and C = C1
2(KNV

1 )2 for a constant C1 > 0.

Proof. Proof of Proposition  2.5.2 :

First, we write the Rényi divergence between P n
0 and P n

θ ,

D1+λ (P n
0 ‖P n

θ ) = 1
λ

log
∫ (

dP n
0

dP n
θ

)λ
dP n

0 = n
1
λ

log
∫ (

dP0

dPθ

)λ
dP0 = n

(
log θ0

θ
+ 1
λ

log θ0

(λ+ 1)θ0 − λθ

)
,

when ((λ+ 1)θ0 − λθ) > 0 andD1+λ (P n
0 ‖P n

θ ) =∞ otherwise. Also, observe that, D1+λ (P n
0 ‖P n

θ )

is non-decreasing in λ (this also follows from non-decreasing property of the Rényi divergence

with respect to λ). Therefore, observe that

Π(D1+λ (P n
0 ‖P n

θ ) ≤ C3nε
2
n) ≥ Π(D∞ (P n

0 ‖P n
θ ) ≤ C3nε

2
n) = Π

(
0 ≤ log θ0

θ
≤ C3ε

2
n

)
= Π

(
θ0e−C3ε2n ≤ θ ≤ θ0

)
.

Now, recall that for a set A ⊆ Θ = [T,∞), we define Π(A) = Inv−Γ(A∩Θ)/Inv−Γ(Θ).

Now, observe that for sufficiently small T and large enough n, we have

Π
(
θ0e−C3ε2n ≤ θ ≤ θ0

)
≥ Inv− Γ

(
θ0e−C3ε2n ≤ θ ≤ θ0

)

The cumulative distribution function of inverse-gamma distribution is Inv− Γ({θ ∈ Θ : θ <

t}) := Γ(α,βt )
Γ(α) , where α(> 0) is the shape parameter, β(> 0) is the scale parameter, Γ(·) is
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the Gamma function, and Γ(·, ·) is the incomplete Gamma function. Therefore, it follows

for α > 1 that

Inv− Γ
(
θ0e−C3ε2n ≤ θ ≤ θ0

)
=

Γ (α, β/θ0)− Γ
(
α, β/θ0eC3ε2n

)
Γ(α) =

∫ β/θ0eC3ε
2
n

β/θ0
e−xxα−1dx

Γ(α)

≥ e−β/θ0eC3ε
2
n+αC3ε2n

αΓ(α)

(
β

θ0

)α [
1− e−αC3ε2n

]

≥ e−β/θ0eC3

αΓ(α)

(
β

θ0

)α [
e−αC3nε2n

]

where the penultimate inequality folows since 0 < ε2n < 1 and the last inequality follows from

the fact that, 1−e−αC3ε2n ≥ e−αC3nε2n , for large enough n. Also note that, 1−e−αC3ε2n ≥ e−αC3nε2n

can’t hold true for ε2n = 1/n. However, for ε2n = logn
n

it holds for any n ≥ 2 when αC3 > 2.

Therefore, for inverse-Gamma prior restricted to Θ, C2 = αC3 and any λ > 1 the result

follows for sufficiently large n.

Proof. Proof of Proposition  2.5.3 : Recall,

R(a, θ) = ha− h

θ
+ (b+ h)e−aθ

θ
.

First, observe that for any a ∈ A,

∂R(a, θ)
∂θ

= h

θ2 − a(b+ h)e−aθ
θ
− (b+ h)e−aθ

θ2 = 1
θ2

(
h− (b+ h)e−aθ(1 + aθ)

)
. (2.84)

Using the above equation the (finite) critical point θ∗ must satisfy, h− (b + h)e−aθ∗(1 +

aθ∗) = 0. Therefore,

R(a, θ) ≥ R(a, θ∗) = h

(
a− 1

θ∗
+ 1
θ∗(1 + aθ∗)

)
= ha2θ∗

(1 + aθ∗) .

Since h, b > 0 and aθ∗ > 0, hence

R(a, θ) ≥ ha2θ∗

(1 + aθ∗) ,
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where a := min{a ∈ A} and a > 0.

Proof. Proof of Proposition  2.5.4 :

First, observe that R(a, θ) is bounded above in θ for a given a ∈ A

R(a, θ) = ha− h

θ
+ (b+ h)e−aθ

θ

≤ ha+ b

θ
.

Using the above fact and the Cauchy-Schwarz inequality, we obtain

∫{
eγR(a,θ)>eC4(γ)nε2n

} eγR(a,θ)
π(θ)dθ ≤

(∫
e2γR(a,θ)

π(θ)dθ
)1/2 (∫

1eγR(a,θ)>eC4(γ)nε2nπ(θ)dθ
)1/2

≤
(∫

e2γ(ha+ b
θ )π(θ)dθ

)1/2
(∫

1
{eγ(ha+ b

θ )>eC4(γ)nε2n}
π(θ)dθ

)1/2

≤ e−C4(γ)nε2n
(∫

e2γ(ha+ b
θ )π(θ)dθ

)
, (2.85)

where the last inequality follows from using the Chebyshev’s inequality.

Now using the definition of the prior distribution, which is an inverse gamma prior

restricted to Θ = [T,∞), we have

∫{
eγR(a,θ)>eC4(γ)nε2n

} eγR(a,θ)
π(θ)dθ ≤ e−C4(γ)nε2n

(∫
e2γ(ha+ b

θ )π(θ)dθ
)

≤ e−C4(γ)nε2ne2γ(ha+ b
T ),

where a := max{a ∈ A} and a > 0. Since nε2n ≥ 1, we must fix C4(γ) such that eC4(γ) >

e2γ(ha+ b
T ), that is C4(γ) > 2γ

(
ha+ b

T

)
and C5(γ) = C4(γ)− 2γ

(
ha+ b

T

)
.
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Proof. Proof of Proposition  2.5.5 : Since family Q contains all shifted-gamma distributions,

observe that {qn(·) ∈ Q}∀n ≥ 1. By definition, qn(θ) = nn

θn0 Γ(n)(θ − T )n−1e−n
(θ−T )
θ0 . Now

consider the first term; using the definition of the KL divergence it follows that

KL(qn(θ)‖π(θ)) =
∫ ∞
T

qn(θ) log(qn(θ))dθ −
∫ ∞
T

qn(θ) log(π(θ))dθ. (2.86)

Substituting qn(θ) in the first term of the equation above and expanding the logarithm term,

we obtain

∫ ∞
T

qn(θ) log(qn(θ))dθ = (n− 1)
∫ ∞
T

log(θ − T ) nn

θn0 Γ(n)(θ − T )n−1e−n
θ−T
θ0 dθ − n+ log

(
nn

θn0 Γ(n)

)

= − log θ0 + (n− 1)
∫ ∞
T

log θ − T
θ0

nn

θn0 Γ(n)(θ − T )n−1e−n
θ−T
θ0 dθ − n+ log

(
nn

Γ(n)

)
(2.87)

Now consider the second term in the equation above. Substitute θ = tθ0
n

+T into the integral,

we have

∫ ∞
T

log θ − T
θ0

nn

θn0 Γ(n)(θ − T )n−1e−n
θ−T
θ0 dθ =

∫ ∞
0

log t

n

1
Γ(n)t

n−1e−tdt

≤
∫ (

t

n
− 1

) 1
Γ(n)t

n−1e−tdt = 0. (2.88)

Substituting the above result into ( 2.87 ), we get

∫ ∞
T

qn(θ) log(qn(θ))dθ ≤ − log θ0 − n+ log
(
nn

Γ(n)

)

≤ − log θ0 − n+ log
(

nn√
2πnnn−1e−n

)

= − log
√

2πθ0 + 1
2 log n, (2.89)
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where the second inequality uses the fact that
√

2πnnne−n ≤ nΓ(n). Recall π(θ) = βα

Γ(α)θ
−α−1e−βθ .

Now consider the second term in ( 2.86 ). Using the definition of inverse-gamma prior and

expanding the logarithm function, we have

−
∫ ∞
T

qn(θ) log(π(θ))dθ = − log
(
βα

Γ(α)

)
+ (α + 1)

∫ ∞
T

log θ nn

θn0 Γ(n)(θ − T )n−1e−n
θ−T
θ0 dθ + β

n

(n− 1)θ0

= − log
(
βα

Γ(α)

)
+
∫ ∞
T

log θ

θ0

nn

θn0 Γ(n)(θ − T )n−1e−n
θ−T
θ0 dθ

+ β
n

(n− 1)θ0
+ (α + 1) log θ0

≤ − log
(
βα

Γ(α)

)
+
∫ ∞
T

θ − T
θ0

nn

θn0 Γ(n)(θ − T )n−1e−n
θ−T
θ0 dθ

+ β
n

(n− 1)θ0
+ (α + 1) log θ0

= − log
(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α + 1) log θ0, (2.90)

where the first inequlity is due to fact that Eqn [β/θ] ≤ Eqn [β/(θ − T )] for any θ > T

and the penultimate inequality follows from the observation in ( 2.88 ) and the fact that

log θ
θ0
≤ θ

θ0
− 1 ≤ θ

θ0
− T

θ0
for any θ0 > T . Substituting ( 2.90 ) and ( 2.89 ) into (  2.86 ) and

dividing either sides by n, we obtain

1
n

KL(qn(θ)‖π(θ)) ≤ 1
n

(
− log

√
2πθ0 + 1

2 log n− log
(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α + 1) log θ0

)

= 1
2

log n
n

+ β
1

(n− 1)θ0
+ 1
n

(
− log

√
2π− log

(
βα

Γ(α)

)
+ (α) log θ0

)
.

(2.91)

Now, consider the second term in the assertion of the lemma. Since ξi, i ∈ {1, 2 . . . n} are

independent and identically distributed, we obtain

1
n

Eqn(θ)
[
KL

(
dP n

0 ‖p(X̃n|θ)
)]

= Eqn(θ) [KL (dP0‖p(ξ|θ))]
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Now using the expression for KL divergence between the two exponential distributions, we

have

1
n

Eqn(θ)
[
KL

(
dP n

0 ‖p(X̃n|θ)
)]

=
∫ ∞
T

(
log θ0

θ
+ θ

θ0
− 1

)
nn

θn0 Γ(n)(θ − T )n−1e−n
θ−T
θ0 dθ ≤ n

n− 1 + 1− 2 = 1
n− 1 ,

(2.92)

where second inequality uses the fact that log x ≤ x − 1 ≤ x − T
θ0

for θ0 > T . Combined

together ( 2.92 ) and ( 2.91 ) for n ≥ 2 implies that

1
n

[
KL (qn(θ)‖π(θ)) + Eqn(θ)

[
KL

(
dP n

0 )‖p(X̃n|θ)
)]]

≤ 1
2

log n
n

+ 1
n

(
2 + 2β

θ0
− log

√
2π− log

(
βα

Γ(α)

)
+ α log θ0

)
≤ C9

log n
n

. (2.93)

where C9 := 1
2 +max

(
0, 2 + 2β

θ0
− log

√
2π− log

(
βα

Γ(α)

)
+ α log θ0

)
and the result follows.

Proof. Proof of Proposition  2.5.5 : Since family Q contains all gamma distributions, observe

that {qn(·) ∈ Q}∀n ≥ 1. By definition, qn(θ) = nn

θn0 Γ(n)θ
n−1e−n

θ
θ0 . Now consider the first

term; using the definition of the KL divergence it follows that

KL(qn(θ)‖π(θ)) =
∫
qn(θ) log(qn(θ))dθ −

∫
qn(θ) log(π(θ))dθ. (2.94)

Substituting qn(θ) in the first term of the equation above and expanding the logarithm term,

we obtain

∫
qn(θ) log(qn(θ))dθ = (n− 1)

∫
log θ nn

θn0 Γ(n)θ
n−1e−n

θ
θ0 dθ − n+ log

(
nn

θn0 Γ(n)

)

= − log θ0 + (n− 1)
∫

log θ

θ0

nn

θn0 Γ(n)θ
n−1e−n

θ
θ0 dθ − n+ log

(
nn

Γ(n)

)
(2.95)
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Now consider the second term in the equation above. Substitute θ = tθ0
n

into the integral,

we have

∫
log θ

θ0

nn

θn0 Γ(n)θ
n−1e−n

θ
θ0 dθ =

∫
log t

n

1
Γ(n)t

n−1e−tdt

≤
∫ (

t

n
− 1

) 1
Γ(n)t

n−1e−tdt = 0. (2.96)

Substituting the above result into ( 2.95 ), we get

∫
qn(θ) log(qn(θ))dθ ≤ − log θ0 − n+ log

(
nn

Γ(n)

)

≤ − log θ0 − n+ log
(

nn√
2πnnn−1e−n

)

= − log
√

2πθ0 + 1
2 log n, (2.97)

where the second inequality uses the fact that
√

2πnnne−n ≤ nΓ(n). Recall π(θ) = βα

Γ(α)θ
−α−1e−βθ .

Now consider the second term in ( 2.94 ). Using the definition of inverse-gamma prior and

expanding the logarithm function, we have

−
∫
qn(θ) log(π(θ))dθ = − log

(
βα

Γ(α)

)
+ (α + 1)

∫
log θ nn

θn0 Γ(n)θ
n−1e−n

θ
θ0 dθ + β

n

(n− 1)θ0

= − log
(
βα

Γ(α)

)
+ (α + 1)

∫
log θ

θ0

nn

θn0 Γ(n)θ
n−1e−n

θ
θ0 dθ

+ β
n

(n− 1)θ0
+ (α + 1) log θ0

≤ − log
(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α + 1) log θ0, (2.98)

where the last inequality follows from the observation in ( 2.96 ). Substituting ( 2.98 ) and ( 2.97 )

into ( 2.94 ) and dividing either sides by n, we obtain

1
n

KL(qn(θ)‖π(θ)) ≤ 1
n

(
− log

√
2πθ0 + 1

2 log n− log
(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α + 1) log θ0

)

= 1
2

log n
n

+ β
1

(n− 1)θ0
+ 1
n

(
− log

√
2π− log

(
βα

Γ(α)

)
+ (α) log θ0

)
.

(2.99)
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Now, consider the second term in the assertion of the lemma. Since, ξi, i ∈ {1, 2 . . . n} are

independent and identically distributed, we obtain

1
n

Eq(θ)
[
KL

(
dP n

0 ‖p(X̃n|θ)
)]

= Eqn(θ) [KL (dP0‖p(ξ|θ))]

Now using the expression for KL divergence between the two exponential distributions, we

have

1
n

Eq(θ)
[
KL

(
dP n

0 ‖p(X̃n|θ)
)]

=
∫ (

log θ0

θ
+ θ

θ0
− 1

)
nn

θn0 Γ(n)θ
n−1e−n

θ
θ0 dθ ≤ n

n− 1 + 1− 2 = 1
n− 1 ,

(2.100)

where second inequality uses the fact that log x ≤ x − 1. Combined together ( 2.100 )

and (  2.99 ) for n ≥ 2 implies that

1
n

[
KL (q(θ)‖π(θ)) + Eq(θ)

[
KL

(
dP n

0 )‖p(X̃n|θ)
)]]

≤ 1
2

log n
n

+ 1
n

(
2 + 2β

θ0
− log

√
2π− log

(
βα

Γ(α)

)
+ α log θ0

)
≤ C9

log n
n

. (2.101)

where C9 := 1
2 +max

(
0, 2 + 2β

θ0
− log

√
2π− log

(
βα

Γ(α)

)
+ α log θ0

)
and the result follows.

2.7.9 Multi-product Newsvendor problem

In the multi-dimensional newsvendor problem, we fix n−1/2
√
LMNV
n (θ, θ0) = (supa∈A |R(a, θ)−

R(a, θ0)|), where

R(a, θ) =
d∑

i=1

[
(hi + bi)aiΦ(ai)− biai + θi(bi − hi) + σii

[
h
φ((ai − θi)/σii)
Φ((ai − θi)/σii)

+ b
φ((ai − θi)/σii)

1− Φ((ai − θi)/σii)

]]
.

For brevity, we denote dMNV
L (θ, θ0) = n−1/2

√
LMNV
n (θ, θ0). First, we show that

Lemma 2.7.11. For any compact decision space A and compact model space Θ,

dMNV
L (θ, θ0) ≤ K‖θ − θ0‖,
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for a constant K depending on compact sets A and Θ and given b, h and Σ.

Proof. Observe that

∂θiR(a, θ) = (bi − hi) + (ai − θi)/σiiφ((ai − θi)/σii)
[

h

Φ((ai − θi)/σii)
+ b

1− Φ((ai − θi)/σii)

]

+ σiiφ

(
(ai − θi)
σii

)[
hφ((ai − θi)/σii)
σiiΦ((ai − θi)/σii)2 −

bφ((ai − θi)/σii)
σii(1− Φ((ai − θi)/σii))2

]

= (bi − hi) + (ai − θi)/σiiφ((ai − θi)/σii)
[

h

Φ((ai − θi)/σii)
+ b

1− Φ((ai − θi)/σii)

]

+ φ

(
(ai − θi)
σii

)[
hφ((ai − θi)/σii)
Φ((ai − θi)/σii)2 −

bφ((ai − θi)/σii)
(1− Φ((ai − θi)/σii))2

]
. (2.102)

Since, A and Θ are compact sets, therefore {(ai − θi)/σii}di=1 lie in a compact set. Con-

sequently, φ((ai − θi)/σii) and Φ((ai − θi)/σii) also lie in bounded subset of R and thus

supA,Θ ‖∂θiR(a, θ)‖ ≤ K for a given b, h and Σ. Since , the norm of the derivative of R(a, θ)

is bounded on Θ for any a ∈ A, therefore, dMNV
L (θ, θ0) is uniformly Lipschitz in A with

Lipschitz constant K, that is

dMNV
L (θ, θ0) ≤ K‖θ − θ0‖.

Next, we show that the Pθ satisfies Assumption  2.2.1 , for distance function LMNV
n (θ, θ0).

Proof. Proof of Lemma  2.5.6 :

First consider the following test function, constructed using X̃n = {ξ1, ξ2, . . . , ξn}.

φn,ε := 1{X̃n:‖θ̂n−θ0‖>
√
Cε2},

where θ̂n =
∑n

i=1 ξi
n

. Note that θ̂n − θ0 ∼ N (·|0, 1
n
Σ), where 1

n
Σ is a symmetric positive

definite matrix. Therefore it can be decomposed as Σ = QTΛQ, where Q is an orthogonal

matrix and Λ is a daigonal matrix consisting of respective eigen values and consequently

θ̂n − θ0 ∼ QN (·|0, 1
n
Λ). So, we have ‖θ̂n − θ0‖2 ∼ ‖N (·|0, 1

n
Λ)‖2. Notice that ‖N (·|0, 1

n
Λ)‖2

is a linear combination of d χ2
(1) random variable weighted by elements of the diagonal matrix
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1
n
Λ. Using this observation, we first verify that φn,ε satisfies condition (i) of the Lemma.

Observe that

EPn0 [φn] = P n
0

(
X̃n :

∥∥∥θ̂n − θ0

∥∥∥2
> Cε2

)
= P n

0

(
X̃n : ‖N (·|0,Λ)‖2 > Cnε2

)
.

Note that χ2
(1) is Γ distributed with shape 1/2 and scale 2, which implies χ2

(1) − 1 is a sub-

gamma random variable with scale factor 2 and variance factor 2. Now observe that for

Λ̂ = maxi∈{1,2,...d} Λii,

P n
0

(
X̃n : ‖N (·|0,Λ)‖2 > Cnε2

)
≤ P n

0

(
X̃n : χ2

(1) >
1
dΛ̂

Cnε2
)
≤ P n

0

(
X̃n : χ2

(1) >
1
dΛ̂

Cnε2
)

= P n
0

(
X̃n : χ2

(1) − 1 > 1
dΛ̂

Cnε2 − 1
)

≤ e
−

( 1
dΛ̂

Cnε2−1)2

2(2+2( 1
dΛ̂

Cnε2−1))

≤ e−1/8 1
dΛ̂
Cnε2+1/8 ≤ e−1/8( C

dΛ̂
−1)nε2 ,

(2.103)

where in the third inequality we used the well known tail bound for sub-gamma random

variable (Lemma 3.12 [  97 ]) assuming that C is sufficiently large such that
(

1
dΛ̂Cnε

2 − 1
)
> 1

and in the last inequality follows from the assumption that nε2 > nε2n ≥ 1.

Now, we fix the alternate set to be {θ ∈ Rd : ‖θ − θ0‖ ≥ 2
√
Cε2}. Next, we verify that

φn,ε satisfies condition (ii) of the lemma. First, observe that

EPn
θ

[1− φn] = P n
θ

(
X̃n :

∥∥∥θ̂n − θ0

∥∥∥2
≤ Cε2

)
≤ P n

θ

(
X̃n : ‖θ̂n − θ‖ ≥ ‖θ − θ0‖ −

√
Cε2

)
,

(2.104)
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where in the last inequality, we used the fact that ‖θ − θ0‖ ≤ ‖θ̂n − θ‖+
∥∥∥θ̂n − θ0

∥∥∥. Now on

alternate set {θ ∈ Rd : ‖θ − θ0‖ ≥ 2
√
Cε2},

EPn
θ

[1− φn] ≤ P n
θ

(
X̃n : ‖θ̂n − θ‖ ≥ ‖θ − θ0‖ −

√
Cε2

)
≤ P n

θ

(
X̃n : ‖θ̂n − θ‖ ≥ ‖θ − θ0‖ −

√
Cε2

)
≤ P n

θ

(
X̃n : ‖θ̂n − θ‖ ≥

√
Cε2

)
. (2.105)

Now, it follows from ( 2.103 ) and Θ ⊂ Rd that

EPn0 [φn] ≤ e−1/8( C

dΛ̂
−1)nε2 , (2.106)

sup
{θ∈Θ:‖θ−θ0‖≥2

√
Cε2}

EPn
θ

[1− φn] ≤ sup
{θ∈Rd:‖θ−θ0‖≥2

√
Cε2}

EPn
θ

[1− φn] ≤ e−1/8( C

dΛ̂
−1)nε2 . (2.107)

Using Lemma  2.7.11 ,

{θ ∈ Θ : n−1/2
√
LMNV
n (θ, θ0) ≥ 2K

√
Cε2} = {θ ∈ Θ : dMNV

L (θ, θ0) ≥ 2K
√
Cε2} ⊆ {θ ∈ Θ : ‖θ−θ0‖ ≥ 2

√
Cε2},

which implies that

sup
{θ∈Θ:LMNV

n (θ,θ0)≥4K2Cnε2}
EPn

θ
[1− φn] ≤ sup

{θ∈Θ:‖θ−θ0‖≥2
√
Cε2}

EPn
θ

[1− φn].

Therefore, Pθ for θ ∈ Θ, satisifes Assumptions  2.2.1 for Ln(θ, θ0) = LMNV
n (θ, θ0) for

C0 = 1, C1 = 4K2C and C = 1/8
(
C

dΛ̂ − 1
)
.

Proof. Proof of Proposition  2.5.7 :

First, we write the Rényi divergence between two multivariate Gaussian distribution with

known Σ as

D1+λ(N (·|θ0)‖N (·|θ)) = λ+ 1
2 (θ − θ0)TΣ(θ − θ0), (2.108)

and D1+λ(N (·|θ)‖N (·|θ0)) <∞ if and only if Σ−1 is positive definite [  98 ].
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Since, we assumed that the sequence of models are iid, therefore,

D1+λ (P n
0 ‖P n

θ ) = 1
λ

log
∫ (

dP n
0

dP n
θ

)λ
dP n

0 = n
1
λ

log
∫ (

dP0

dPθ

)λ
dP0 = n

(
λ+ 1

2 (θ − θ0)TΣ(θ − θ0)
)
,

when Σ−1 is positive definite and D1+λ (P n
0 ‖P n

θ ) =∞ otherwise. Now observe that

Π(D1+λ (P n
0 ‖P n

θ ) ≤ nC3ε
2
n) = Π

((
(θ − θ0)TΣ(θ − θ0)

)
≤ 2
λ+ 1C3ε

2
n

)
= Π

((
[(θ − θ0)Q]TΛ[Q(θ − θ0)]

)
≤ 2
λ+ 1C3ε

2
n

)
≥ Π

((
[(θ − θ0)Q]T [Q(θ − θ0)]

)
≤ 2

Λ̂(λ+ 1)
C3ε

2
n

)
,

= Π
((

[(θ − θ0)]T [(θ − θ0)]
)
≤ 2

Λ̂(λ+ 1)
C3ε

2
n

)
, (2.109)

where Λ̂ = maxi∈{1,2,...d} Λii and in the second equality we used eigen value decomposition of

Σ = QTΛQ. Next, observe that,

Π(D1+λ (P n
0 ‖P n

θ ) ≤ nC3ε
2
n) = Π

((
[(θ − θ0)]T [(θ − θ0)]

)
≤ 2

Λ̂(λ+ 1)
C3ε

2
n

)

= Π
‖(θ − θ0)‖ ≤

√√√√ 2
Λ̂(λ+ 1)

C3ε2n


≥ Π

‖(θ − θ0)‖∞ ≤
√√√√ 2

Λ̂(λ+ 1)
C3ε2n


=

d∏
i=1

Πi

|(θi − θi
0)| ≤

√√√√ 2
Λ̂(λ+ 1)

C3ε2n

 ,
where in the last equality we used the fact that the prior distribution is uncorrelated. Now,

the result follows immediately for sufficiently large n, if the prior distribution is uncorrelated

99



and uniformly distributed on the compact set Θi, for each i ∈ {1, 2, . . . , d} . In particular

observe that for large enough n, we have

Π(D1+λ (P n
0 ‖P n

θ ) ≤ nC3ε
2
n) ≥

d∏
i=1

θi
0 +

√
2

Λ̂(λ+1)C3ε2n − θi
0 +

√
2

Λ̂(λ+1)C3ε2n

m(Θi)

=
2d
(

2
Λ̂(λ+1)C3ε

2
n

)d/2
∏d

i=1 m(Θi)
=

 8

Λ̂(λ+ 1)
(∏d

i=1m(Θi)
)2/dC3ε

2
n


d/2

,

(2.110)

where m(A) is the Lebesgue measure (volume) of any set A ⊂ R. Now if ε2n = logn
n

, then

for 8

Λ̂(λ+1)
(∏d

i=1m(Θi)
)2/dC3 > 2, 8

Λ̂(λ+1)
(∏d

i=1m(Θi)
)2/dC3ε

2
n ≥ e

− 8

Λ̂(λ+1)
(∏d

i=1 m(Θi)
)2/dC3nε2n

for all

n ≥ 2, therefore,

Π(D1+λ (P n
0 ‖P n

θ ) ≤ nC3ε
2
n) ≥ e

− 4d

Λ̂(λ+1)
(∏d

i=1 m(Θi)
)2/dC3nε2n

.

Proof. Proof of Proposition  2.5.9 : Since family Q contains all uncorrelated Gaussian dis-

tributions restricted to Θ, observe that {qn(·) ∈ Q}∀n ≥ 1. By definition, qi
n(θ) ∝

1√
2πσ2

i,n
e
− 1

2σ2
i,n

(θ−µi,n)2

1Θi = N (θi|µi,n,σi,n)1Θi
N (Θi|µi,n,σi,n) and fix σi,n = 1/

√
n and θi = θi

0 for all i ∈

{1, 2, . . . , d}. Now consider the first term; using the definition of the KL divergence it

follows that

KL(qn(θ)‖π(θ)) =
∫
qn(θ) log(qn(θ))dθ −

∫
qn(θ) log(π(θ))dθ. (2.111)
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Substituting qn(θ) in the first term of the equation above and expanding the logarithm term,

we obtain

∫
qn(θ) log(qn(θ))dθ =

d∑
i=1

∫
qi
n(θi) log(qi

n(θi))dθi

≤
d∑

i=1

∫
N (θi|µi,n, σi,n) logN (θi|µi,n, σi,n)dθi

= −
d∑

i=1
[ log(

√
2πe) + log σi,n], (2.112)

where in the last equality, we used the well known expression for the differential entropy of

Gaussian distributions. Recall π(θ) = ∏d
i=1

1
m(Θi) . Now consider the second term in ( 2.111 ).

It is straightforward to observe that,

−
∫
qn(θ) log(π(θ))dθ =

d∑
i=1

log(m(Θi)). (2.113)

Substituting ( 2.113 ) and ( 2.112 ) into ( 2.111 ) and dividing either sides by n and substituting

σi,n, we obtain

1
n

KL(qn(θ)‖π(θ)) ≤ − 1
n

d∑
i=1

[ log(
√

2πe)− log(m(Θi))−
1
2 log n]

= d

2
log n
n
− 1
n

d∑
i=1

[ log(
√

2πe)− log(m(Θi))]. (2.114)

Now, consider the second term in the assertion of the lemma. Since ξi, i ∈ {1, 2 . . . n} are

independent and identically distributed, we obtain

1
n

Eqn(θ)
[
KL

(
dP n

0 ‖p(X̃n|θ)
)]

= Eqn(θ) [KL (dP0‖p(ξ|θ))]
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Now using the expression for KL divergence between the two multivariate Gaussian distri-

butions, we have

1
n

Eqn(θ)
[
KL

(
dP n

0 ‖p(X̃n|θ)
)]

= 1
2Eqn(θ)

[
(θ − θ0)TΣ−1(θ − θ0)

]
≤ Λ̌−1

2 Eqn(θ)
[
(θ − θ0)T (θ − θ0)

]
≤ d

n

Λ̌−1

2 (2.115)

where Λ̌ = mini∈{1,2,...d} Λii, and Σ−1 = QTΛ−1Q, where Q is an orthogonal matrix and Λ is

a daigonal matrix consisting of the respective eigen values of Σ. Combined together ( 2.115 )

and (  2.114 ) implies that

1
n

[
KL (qn(θ)‖π(θ)) + Eqn(θ)

[
KL

(
dP n

0 )‖p(X̃n|θ)
)]]

≤ d

2
log n
n
− 1
n

d∑
i=1

[ log(
√

2πe)− log(m(Θi))] + d

n

Λ̌−1

2 ≤ C9
log n
n

. (2.116)

where C9 := d
2 + max

(
0,−∑d

i=1 [ log(
√

2πe)− log(m(Θi))] + d
2 Λ̌−1

)
and the result follows.

2.7.10 Gaussian process classification

Proof of Proposition  2.5.11 . In view of Theorem 7.1 in [ 91 ], it suffices to show that

N (ε,Θn(ε), dTV) ≤ eC̄nε2 ,

for some C̄ > 0. Now, first observe that

dTV(Pθ(y), Pθ0(y)) = 1
2Eν (|Ψ1(θ(y))−Ψ1(θ0(y))|+ |Ψ−1(θ(y))−Ψ−1(θ0(y))|)

= Eν (|Ψ1(θ(y))−Ψ1(θ0(y))|)

≤ Eν (|θ(y)− θ0(y)|) ≤ ‖θ(y)− θ0(y)‖∞, (2.117)
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where the second equality uses the definition of Ψ−1(·). Since, total-variation distance is

bounded above by supremum norm, hence there exists a constant 0 < c < 1/2, such that

N (ε,Θn(ε), dTV) ≤ N (cε,Θn(ε), ‖ · ‖∞) ≤ e 2
3 c

2C10nε2 , (2.118)

where the last inequality follows from ( 2.28 ) in Lemma  2.5.10 . Then if follows from Theo-

rem 7.1 in [  91 ] that for every ε > εn, there exists a test φn (depending on ε > 0) such that,

for every j ≥ 1,

EPn0 [φn] ≤ e 2
3 c

2C10nε2e− 1
2nε

2 1
1− exp

(
−1

2nε
2
) , and

sup
{θ∈Θn(ε):dTV (Pθ,Pθ0 )>jε}

EPn
θ

[1− φn] ≤ exp
(
−1

2nε
2j
)
.

Now for all n such that nε2 > nε2n > 2 log 2 and C10 = c−2/4 > 1 and j = 1, we have

EPn0 [φn] ≤ 2e− 1
3nε

2
, and (2.119)

sup
{θ∈Θn(ε):dTV (Pθ,Pθ0 )>ε}

EPn
θ

[1− φn] ≤ e− 1
2nε

2 ≤ e− 1
3nε

2
. (2.120)

Now observe that

sup
a∈A
|G(a, θ)−G(a, θ0)| = max (c+|Eν [Ψ−1(θ(y))]− Eν [Ψ−1(θ0(y))]|, c−|Eν [Ψ1(θ(y))]− Eν [Ψ1(θ0(y))]|)

= max (c+|Eν [Ψ1(θ0(y))]− Eν [Ψ1(θ(y))]|, c−|Eν [Ψ1(θ(y))]− Eν [Ψ1(θ0(y))]|)

= max(c+, c−)|Eν [Ψ1(θ0(y))]− Eν [Ψ1(θ(y))]|

≤ max(c+, c−)Eν [|Ψ1(θ0(y))−Ψ1(θ(y))|]

≤ max(c+, c−)dTV (Pθ, Pθ0) (2.121)

where the second equality uses the fact that Ψ−1(·) = 1−Ψ1(·).Consequently,

{θ ∈ Θn(ε) : sup
a∈A
|G(a, θ)−G(a, θ0)| > max(c+, c−)ε} ⊆ {θ ∈ Θn(ε) : dTV (Pθ, Pθ0) > ε}
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Therefore, it follows from ( 2.119 ) and ( 2.120 ) and the definition of Ln(θ, θ0) that

EPn0 [φn] ≤ 2e− 1
3nε

2
, and (2.122)

sup
{θ∈Θn(ε):Ln(θ,θ0)>(max(c+,c−))2nε2}

EPn
θ

[1− φn] ≤ e− 1
2nε

2 ≤ e− 1
3nε

2
. (2.123)

Finally, the result follows for C = 1/3, C0 = 2 and C1 = (max(c+, c−))2.

Proof of Proposition  2.5.12 . The Rényi divergence

D1+λ(P n
0 ‖P n

θ ) = n
1
λ

ln
∫ (

Ψ1(θ0(y))1+λΨ1(θ(y))−λ + Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ
)
ν(dy)

= n
1
λ

ln
∫

eλ
1
λ

ln(Ψ1(θ0(y))1+λΨ1(θ(y))−λ+Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ)ν(dy).

Note that the derivative of the exponent in the integrand above with respect to θ(y) is

(
−λΨ1(θ0(y))1+λΨ1(θ(y))−λ−1ψ(θ(y)) + λΨ−1(θ0(y))1+λΨ−1(θ(y))−λ−1ψ(θ(y))

)
(Ψ1(θ0(y))1+λΨ1(θ(y))−λ + Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ)

= λψ(θ(y))

(
−Ψ1(θ0(y))1+λΨ1(θ(y))−λ−1 + Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ−1

)
(Ψ1(θ0(y))1+λΨ1(θ(y))−λ + Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ)

= λ
ψ(θ(y))

Ψ1(θ(y))Ψ−1(θ(y))

(
−Ψ1(θ0(y))1+λΨ−1(θ(y))λ+1 + Ψ−1(θ0(y))1+λΨ1(θ(y))λ+1

)
(Ψ1(θ0(y))1+λΨ−1(θ(y))λ + Ψ−1(θ0(y))1+λΨ1(θ(y))λ)

= λ

(
−Ψ1(θ0(y))1+λΨ−1(θ(y))λ+1 + Ψ−1(θ0(y))1+λΨ1(θ(y))λ+1

)
(Ψ1(θ0(y))1+λΨ−1(θ(y))λ + Ψ−1(θ0(y))1+λΨ1(θ(y))λ)

= λ

(
−e−(λ+1)θ(y) + e−(1+λ)θ0(y)

)
(e−λθ(y) + e−(λ+1)θ0(y)) (1 + e−θ(y))

= λ
e−(1+λ)θ0(y)

(
1− e−(λ+1)(θ(y)−θ0(y))

)
(e−λθ(y) + e−(λ+1)θ0(y)) (1 + e−θ(y))

≤ λ
(λ+ 1)(θ(y)− θ0(y))

(e−λθ(y)+(λ+1)θ0(y) + 1) (1 + e−θ(y))

≤ λ(λ+ 1)|θ(y)− θ0(y)|, (2.124)

where in the fourth equality we used definition of the logistic function and the penultimate

inequality follows from the well known inequality that 1 − e−x ≤ x. Consequently, using
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Taylor’s theorem it follows that the exponent in the integrand is bounded above by λ(λ +

1)|θ(y)− θ0(y)|2 and thus by λ(λ+ 1)‖θ(y)− θ0(y)‖2
∞. Therefore,

D1+λ(P n
0 ‖P n

θ ) = n
1
λ

ln
∫ (

Ψ1(θ0(y))1+λΨ1(θ(y))−λ + Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ
)
ν(dy)

≤ n
1
λ

ln
∫

eλ(λ+1)‖θ(y)−θ0(y)‖2∞ν(dy)

= n(λ+ 1)‖θ(y)− θ0(y)‖2
∞.

Now using the inequality for C3 = 16(λ+ 1) above observe that

Π(An) = Π(D1+λ (P n
0 ‖P n

θ ) ≤ C3nε
2
n)

≥ Π(n(λ+ 1)‖θ(y)− θ0(y)‖2
∞ ≤ C3nε

2
n)

= Π(‖θ(y)− θ0(y)‖∞ ≤ 4εn) ≥ e−nε2n (2.125)

and the result follows from ( 2.30 ) of Lemma  2.5.10 .

Proof of Proposition  2.5.13 . Let us first analyze the KL divergence between the prior dis-

tribution and variational family. Recall that two Gaussian measures on infinite dimensional

spaces are either equivalent or singular. [ 20 , Theorem 6.13] specify the condition required for

the two Gaussian measures to be equivalent. In particular, note that θJ0 (·) ∈ Im(C1/2). Now

observe that the covariance operator of Qn has eigenvalues {ζ2
j }Jj=1

2jd

k=1, therefore operator S

in the definition of Cq has eigenvalues {1− ζ2
j /µ

2
j }Jj=1

2jd

k=1. For τ 2
j = 2−2ja−jd for any a > 0,∑J

j=1 2jd
(

nε2n2−2ja−jd

1+nε2n2−2ja−jd

)2
= ∑J

j=1 2−jd
(

nε2n2−2ja

1+nε2n2−2ja−jd

)2
<∞, therefore S is an HS operator.
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For any integer J ≤ Jα define θ̄J0 =
∫
θJ0 (y)ν(dy), where θJ0 (·) = ∑J

j=1
∑2jd

k=1 θ0;j,kϑj,k(·).

Since, θJ0 (·) ∈ Im(C1/2) and S is a symmetric and HS operator, we invoke Theorem 5 in [  99 ],

to write

KL(N (θ̄J0 , Cq)‖N (0, C)) = 1
2‖C

−1/2θ̄J0 ‖2 − 1
2 log det(I − S) + 1

2tr(−S),

= 1
2

J∑
j=1

2jd∑
k=1

θ2
0;k,j

µ2
j
− 1

2 log
J∏

j=1

2jd∏
k=1

(1− κ2
j )− 1

2

J∑
j=1

2jd∑
k=1

κ2
j

= 1
2

J∑
j=1

2jd∑
k=1

θ2
0;k,j

µ2
j
− 1

2 log
J∏

j=1
(1− κ2

j )2jd − 1
2

J∑
j=1

2jdκ2
j

= 1
2

J∑
j=1

2jd∑
k=1

θ2
0;k,j

µ2
j
− 1

2

J∑
j=1

2jd log(1− κ2
j )− 1

2

J∑
j=1

2jdκ2
j .

Now for µj2jd/2 = 2−ja, and using the definition of Besov norm of θ0 denoted as ‖θ0‖2
β,∞,∞,

and denoting 1− κ2
j = 1

1+nε2nτ2
j
, we have

KL(N (θ̄J0 , Cq)‖N (0, C)) ≤ 1
2

J∑
j=1

2j(2a−2β+d)‖θ0‖2
β,∞,∞ −

1
2

J∑
j=1

2jd log(1− κ2
j )− 1

2

J∑
j=1

2jdκ2
j

= 1
2

J∑
j=1

2j(2a−2β+d)‖θ0‖2
β,∞,∞ −

1
2

J∑
j=1

2jd
(
log(1− κ2

j ) + κ2
j

)

= 1
2

J∑
j=1

2j(2a−2β+d)‖θ0‖2
β,∞,∞ + 1

2

J∑
j=1

2jd
(

log(1 + nε2nτ
2
j )−

nε2nτ
2
j

1 + nε2nτ
2
j

)

≤ 1
2

J∑
j=1

2j(2a−2β+d)‖θ0‖2
β,∞,∞ + 1

2

J∑
j=1

2jd
(
nε2nτ

2
j

)
,

where the last inequality follows from the fact that, log(1 + x) − x
1+x ≤

x2

1+x ≤ x for x > 0.

Substituting τ 2
j = 2−2ja−jd, we have

1
n

KL(N (θ̄J0 , Cq)‖N (0, C)) ≤ 1
2n

J∑
j=1

2j(2a−2β+d)‖θ0‖2
β,∞,∞ + ε2n

2

J∑
j=1

2−2ja

≤
‖θ0‖2

β,∞,∞

2n

J∑
j=1

2j(2a−2β+d) + 2−2a

2
1− 2−2Ja

1− 2−2a ε
2
n.
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The summation in the first term above is bounded by ε2n as derived in [ 70 , Theorem 4.5].

Therefore,

1
n

KL(N (θ̄J0 , Cq)‖N (0, C)) ≤ max
(
‖θ0‖2

β,∞,∞,
2−2a − 2−2Ja−2a

1− 2−2a

)
ε2n. (2.126)

Now consider the second term

1
n

EQnKL(P n
0 ‖P n

θ ) = EQn

∫ (
Ψ1(θ0(y)) log Ψ1(θ0(y))

Ψ1(θ(y)) + Ψ−1(θ0(y)) log Ψ−1(θ0(y))
Ψ−1(θ(y))

)
ν(dy)

≤ EQn

∫
〈θ(y)− θ0(y), θ(y)− θ0(y)〉ν(dy)

= EQn

∫
‖θ(y)− θJ0 (y)− (θ0(y)− θJ0 (y))‖2

2ν(dy)

= EQn

∫
‖θ(y)− θJ0 (y)‖2

2 + ‖θ0(y)− θJ0 (y))‖2
2 − 2〈θ(y)− θJ0 (y), θ0(y)− θJ0 (y)〉ν(dy)

≤ EQn

∫
‖θ(y)− θJ0 (y)‖2

2ν(dy) + ‖θ0(y)− θJ0 (y))‖2
∞

= EQn

∫
|
J∑

j=1

2jd∑
k=1

ζjZj,kϑj,k(y)|2ν(dy) + ‖θ0(y)− θJ0 (y))‖2
∞

≤ EQn
J∑

j=1

2jd∑
k=1

ζ2
j Z

2
j,k

∫
ϑj,k(y)2ν(dy) + ‖θ0(y)− θJ0 (y))‖2

∞

=
J∑

j=1

2jd∑
k=1

ζ2
j EQn [Z2

j,k] + ‖θ0(y)− θJ0 (y))‖2
∞

=
J∑

j=1

2jd∑
k=1

µ2
j (1− κ2

j ) + ‖θ0(y)− θJ0 (y))‖2
∞

=
J∑

j=1
2jd µ2

j

1 + nε2nτ
2
j

+ ‖θ0(y)− θJ0 (y))‖2
∞

≤ 1
nε2n

J∑
j=1

2−2ja

τ 2
j

+ ‖θ0(y)− θJ0 (y))‖2
∞

= 1
nε2n

J∑
j=1

2jd + ‖θ0(y)− θJ0 (y))‖2
∞

= 2d
nε2n

2dJ − 1
2d − 1 + ‖θ0(y)− θJ0 (y))‖2

∞

≤ 2d/(2d − 1)
(log n)2 + Cε2n,

107



where in the second inequality we used the second assertion of Lemma 3.2 [ 70 ] for logistic

function, the fifth inequality uses the fact that θ(y) − θJ0 (y) is orthogonal to θ0(y) − θJ0 (y).

For any a ≤ α fix J = Jα otherwise J = Ja, and then it is straight forward to check from the

definition of εn given in the assertion of the theorem that (2dJ−1/nε2n) ≤ (log n)−2. The term

‖θ0(y)− θJ0 (y))‖2
∞ is also bounded by Cε2n as shown in the proof of Theorem 4.5 in [ 70 ].
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3. ASYMPTOTIC CONSISTENCY OF LOSS-CALIBRATED

VARIATIONAL BAYES

This chapter establishes the asymptotic consistency of the loss-calibrated variational Bayes

(LCVB) method, a special case of the RSVB approach discussed in Chapter  2 . This method

of loss-aware posterior approximation was first proposed by [  10 ]. Also, the theory in this

chapter is applicable only to parametric (finite-dimensional) likelihood models unlike Chap-

ter  2 , where the theory was general enough to include non-parametric models. Here, we

establish the asymptotic consistency of both the loss-calibrated approximate posterior and

the resulting decision rules under relatively easy-to-verify regularity conditions than those

required for establishing the rate of convergence for RSVB method. We also establish the

asymptotic consistency of decision rules obtained from a “naive” two-stage procedure that

first computes a standard variational Bayes approximation and then uses this in the decision-

making procedure.

3.1 Introduction

Consider a loss function R(a, θ) : A × Θ 7→ R, where a ∈ A ⊂ Rs is a decision variable

and θ ∈ Θ ⊂ Rd is the model parameter. Given a set of observations X̃n = {ξ1, . . . , ξn}

drawn from a distribution with unknown parameter θ0, p(X̃n|θ0), our goal is to compute the

Bayes optimal decision rule

a∗(X̃n) := arg min
a∈A

Eπn [R(a, θ)] =
∫

Θ
R(a, θ)π(θ|X̃n)dθ, (3.1)

where π(θ|X̃n) is the posterior distribution. The latter results when a Bayesian decision-

maker places a prior distribution π(θ) over the parameter space Θ, capturing a priori in-

formation about θ such as location or spread. Given X̃n, the prior and likelihood p(X̃n|θ)

together define a posterior distribution π(θ|X̃n) ∝ p(X̃n|θ)π(θ) =: p(θ, X̃n), the conditional

distribution over θ given observations. The posterior distribution represents uncertainty

over the unknown parameter θ, and contains all information required for further inferences

or optimization.
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In general, under most realistic modeling assumptions, closed-form analytic expressions

are unavailable for π(θ|X̃n), making the subsequent integration and optimization problems

intractable. In practice, therefore, one uses an approximation to the posterior in the inte-

gration in ( 3.1 ). It is easy to see that posterior computation can be expressed as a convex

optimization problem:

min
q(·)∈M

KL(q(θ)‖π(θ|X̃n)) = KL(q(θ)‖p(θ, X̃n)) + log p(X̃n) (3.2)

= KL(q(θ)‖π(θ))−
∫

Θ
log p(X̃n|θ) q(θ)dθ + log p(X̃n)

where KL is the Kullback-Leibler divergence andM is the space of all distributions that are

absolutely continuous with respect to the posterior (or, equivalently, the prior). This problem

can be immediately recognized as minimizing the ‘variational free energy’ [  100 ]. Variational

Bayesian (VB) procedures [  101 ], in standard form, restrict the optimization in ( 3.2 ) to a

fixed subset Q ⊂ M. Here, we are interested in a generalized version of this procedure

where the posterior computation is calibrated by the loss function R(a, θ) for each a ∈ A:

min
q(·)∈Q

KL(q(θ)‖π(θ|X̃n))−
∫

Θ
logR(a, θ) q(θ)dθ (3.3)

= KL(q(θ)‖p(θ, X̃n)) + log p(X̃n)−
∫

Θ
logR(a, θ)q(θ)dθ.

Observe that the set Q need not be convex. Consequently, this optimization problem is

non-convex, in full generality, and practical algorithms for solving ( 3.3 ) can only guarantee

convergence to local minima. We leave the analysis of these optimization-related issues for

future work, and focus instead on the global solution and its associated asymptotics. As we

show later in Section  3.2.2 that the optimal value of this loss-calibrated VB objective turns

out to be a lower bound to log Eπ[R(a, θ)], the logarithm of the loss in ( 3.1 ).

Loss-calibration was introduced in [ 10 ] as a method for approximately computing a gener-

alized Bayesian posterior, where the likelihood is re-weighted or calibrated by a loss function

over the parameter space Θ. As with most VB methods, theoretical properties of the ap-

proximations present largely unanswered questions. Recently, the theoretical properties of
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the variational Bayesian methods have been studied extensively in [ 27 ], [  29 ], [  39 ], [  61 ], [  102 ],

[ 103 ]. [ 27 ] established the asymptotic consistency of the VB approximate posterior and also

proved a Bernstein-von Mises’ type result for the same. Whereas, the authors in [ 61 ] studied

the convergence rate of the VB approximate posterior. [ 39 ] presented a general framework for

computing a risk-sensitive VB approximation and also studies the statistical performance of

the inferred decision rules using these methods. Furthermore [ 30 ], [ 104 ]–[ 106 ] studied theoret-

ical properties of variational Bayesian methods defined using Hellinger distance, Wasserstein

distance, and Rényi divergence respectively instead of Kullback-Liebler (KL) divergence. In

this chapter, we study the asymptotic consistency of the loss-calibrated approximate poste-

rior and the optimal decisions computed using the this approximate posterior, as the number

of samples n→∞.

More precisely, in Proposition  3.3.1 , we show (for fixed a ∈ A and an appropriate subset

of distributions Q) that as n→∞ the optimizer of (  3.3 ) weakly converges to a Dirac delta

distribution concentrated on the true parameter θ0 for almost every sequence generated from

the true data generating process. This result shows that the posterior concentrates for any

a ∈ A. The reason for this is manifest: observe that R(a, θ)π(θ|X̃n) ∝ (R(a, θ)π(θ)) p(X̃n|θ).

Thus, the loss function can be seen as only changing the prior distribution in the posterior

computation. As the number of samples increases, we should anticipate that any calibration

effect is diminished. Extending this result, in Proposition  3.4.3 we show that the optimizers of

the approximate decision making problem, computed using the loss calibrated VB posterior,

are asymptotically consistent, in the sense that this set of optimizers will necessarily be

included in the optimizers of the ‘true’ objective R(a, θ0).

Finally, we illustrate our results on the so-called newsvendor problem, studied extensively

in the operations research literature as a prototypical decision-making problem. In this

problem, a newsvendor must decide on the number of newspapers to stack up before selling

any over a given day. We operate under the assumption that the newsvendor can observe

realizations of the demand, but does not know the precise data generation process. The goal

is to find the optimal number of newspapers to stack that minimizes losses. We conduct

numerical studies to show that both the loss calibrated and naive VB methods on this

problem are consistent.
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The remainder of the chapter is organized as follows. In Section  3.2 we formally introduce

decision-theoretic variational Bayesian methods. In Section  3.3 we prove that the LCVB

approximate posterior is asymptotically consistent. We build on this result and prove the

consistency of the optimal decisions, using both the LCVB and NVB methods, in Section  3.4 .

Finally, we present our numerical results in Section  3.5 .

3.2 Decision-theoretic Variational Bayes

3.2.1 The Naive Variational Bayes (NVB) Algorithm

The idea behind standard VB is to approximate the intractable posterior π(θ|X̃n) with

an element q∗(θ) of a simpler class of distributions Q known as variational family. Popular

examples of Q include the family of Gaussian distributions, or the family of factorized ‘mean-

field’ distributions that discard correlations between components of θ. A natural caveat to

the choice of Q is that these distributions should be absolutely continuous with respect to

the posterior (or equivalently, the prior). The variational solution q∗ is the element of Q

that is ‘closest’ to π(θ|X̃n) in the sense of the Kullback-Leibler (KL) divergence:

min
q(θ)∈Q

KL(q(θ)‖π(θ|X̃n)) = KL(q‖p(θ, X̃n)) + log p(X̃n) (3.4)

= KL(q(θ)‖π(θ))−
∫

Θ
log p(X̃n|θ) q(θ)dθ + log p(X̃n).

VB approaches allow practitioners to bring tools from optimization to the challenging prob-

lem of Bayesian inference, with expectation-maximization [ 100 ] and gradient-based [ 107 ]

methods being used to minimize equation ( 3.4 ). Note that this optimization problem is non-

convex, since the constraint set Q is non-convex in general. Also, observe that the objective

KL(q(θ‖π(θ|X̃n))) in (  3.4 ) only requires the knowledge of posterior distribution π(θ|X̃n) up

to the proportionality constant, since the normalizing term log p(X̃n) does not depend on q.
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The natural variational approximation to the optimization in ( 3.1 ) is to calculate the

variational approximate expected posterior loss of taking an action a, and then perform the

following optimization

a∗NV(X̃n) := argmin Eq∗(θ|X̃n)[R(a, θ)]. (3.5)

We call this the naive variational Bayes (NVB) decision rule. This algorithm involves two

optimization steps in sequence, separating the approximation of the posterior in ( 3.4 ) from

the decision optimization ( 3.5 ). This sequential procedure, in general, involves a loss in

performance compared to ( 3.1 ). This creates the desideratum for a calibrated approach that

takes the loss function into consideration in computing an appropriate posterior.

3.2.2 Loss-Calibrated Variational Bayes (LCVB) Algorithm

A more sophisticated approach is to jointly optimize q and a; one would expect this to out-

perform the naive two-stage NVB algorithm. Assuming that the objective infa,θ R(a, θ) > 0,

a loss-calibrated lower bound can be derived by applying Jensen’s inequality to the logarithm

of the objective in ( 3.1 ), obtaining

log E
π(θ|X̃n)[R(a, θ)] = log

∫
Θ

q(θ)
q(θ)R(a, θ)π(θ|X̃n)dθ ≥ −

∫
Θ
q(θ) log q(θ)

R(a, θ)π(θ|X̃n)
dθ ∀a ∈ A.

In particular, it can be seen that

min
a∈A

log E
π(θ|X̃n)[R(a, θ)] ≥ min

a∈A
max
q∈Q
−KL(q(θ)||π(θ|X̃n))

+
∫

Θ
logR(a, θ)q(θ)dθ =: F(a, q; X̃n). (3.6)

We call (  3.6 ) the loss-calibrated (LC) variational objective. Since log(·) is a monotone trans-

formation, minimizing the logarithmic objective on the left hand side above is equivalent
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to ( 3.1 ). Now, for any given a ∈ A we denote the (globally maximal) LCVB approximate

posterior as

q∗a(θ|X̃n) := argmaxq∈QF(a, q; X̃n). (3.7)

If the risk function R(a, θ) is constant then q∗a(θ|X̃n), for every a ∈ A, is the same as

q∗(θ|X̃n). Akin to q∗(θ|X̃n) in ( 3.4 ), computing q∗a(θ|X̃n) only requires knowledge of the

posterior distribution π(θ|X̃n) up to a proportionality constant. The corresponding LCVB

decision-rule is defined as

a∗LC(X̃n) := arg min
a∈A

max
q∈Q
F(a, q; X̃n). (3.8)

Observe that the lower bound achieves the log posterior value precisely for q such that
q(θ)
R(a,θ) is proportional to the posterior π(θ|X̃n). Furthermore, ( 3.6 ) shows that the maxi-

mization in the lower bound computes a ‘regularized’ approximate posterior. Regularized

Bayesian inference [ 108 ] views posterior computation as a variational inference problem with

constraints on the posterior space represented as bounds on certain expectations with re-

spect to the approximate posterior. The loss-calibrated VB methodology can be viewed as

a regularized Bayesian inference procedure where the regularization constraints are imposed

through the logarithmic risk term
∫

Θ logR(a, θ)q(θ)dθ. Observe, however, that our setting

also involves a minimization over the decisions (which does not exist in the regularized

Bayesian inference procedure).

3.3 Consistency of the LCVB Approximate Posterior

Recall the definition of the LCVB approximate posterior q∗a(θ|X̃n) in ( 3.7 ) for any a ∈ A.

In this section, we show regularity conditions on the prior distribution, the risk function, the

likelihood model, and the variational family, under which q∗a(θ|X̃n), for any a ∈ A, converges

weakly to a Dirac-delta distribution at the true parameter θ0. We first assume that the prior

distribution satisfies
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Assumption 3.3.1. The prior density function π(θ) is continuous with non-zero measure

in the neighborhood of the true parameter θ0 and it is bounded by a positive constant M , that

is π(θ) < M,∀θ ∈ Θ.

The prior distribution with bounded density can be chosen from a large class of dis-

tribution, like the exponential-family distributions. The first condition, that the prior has

positive density at θ0 is a common assumption in Bayesian consistency analysis, otherwise

the posterior will not have any measure in the ball around the true parameter θ0.

We also assume the expected loss, or risk function, R(a, θ) satisfies the following

Assumption 3.3.2. The risk function R(a, θ) is

1. bounded from below by positive number W for any (a, θ),

2. measurable and continuous for every a ∈ A, and R(·, θ) are continuous for almost

every θ ∈ Θ.

3. R(·, θ) is locally Lipschitz continuous in a with for almost every θ ∈ Θ, such that for

a1, a2 in compact set A, |R(a1, θ)−R(a2, θ)| ≤ KA(θ)‖x1− x2‖ for some KA(θ) ≤ K̄A

for almost every θ ∈ Θ.

4. uniformly integrable with respect to any q in the variational family Q, that is for any

ε > 0 and a ∈ A, there exist a compact set Kε ⊂ Θ, such that
∫

Θ\Kε R(a, θ)q(θ)dθ < ε.

In order to analyze the consistency of the decisions in this case, we make a further

assumption on the log-likelihood function (which follows [ 27 ]):

Assumption 3.3.3. The likelihood satisfies the local asymptotic normality (LAN) con-

dition. In particular, fix θ0 ∈ Θ. The sequence of log-likelihood functions {logPn(θ) =∑n
i=1 log p(ξi|θ)} satisfies a local asymptotic normality (LAN) condition, if there exists a

sequence of matrices {rn}, a matrix I(θ0) and a sequence of random vectors {∆n,θ0} weakly

converging to N (0, I(θ0)−1) as n→∞, such that for every compact set K ⊂ Rd

sup
h∈K

∣∣∣∣logPn(θ0 + r−1
n h)− logPn(θ0)− hT I(θ0)∆n,θ0 + 1

2h
T I(θ0)h

∣∣∣∣ Pn0−→ 0 as n→∞ .
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This LAN condition is typical in asymptotic analyses, holding for a wide variety of models

and allowing the likelihood to be asymptotically approximated by a scaled Gaussian centered

around θ0 [ 109 ]. We use ∆n,θ =
√
n(θ̂n − θ0) in the proofs of our results, where θ̂n is the

maximum likelihood estimate of θ0.

Next, we define the rate of convergence of a sequence of distributions to a Dirac delta

distribution.

Definition 3.3.1 (Rate of convergence). A sequence of distributions {qn(θ)} converges

weakly to δθ1, ∀θ1 ∈ Θ at the rate of γn if

(1) the sequence of means {θ̌n :=
∫
θqn(θ)dθ} converges to θ1 as n→∞, and

(2) the variance of {qn(θ)} satisfies

Eqn(θ)[‖θ − θ̌n‖2] = O

(
1
γ2
n

)
.

We also define rescaled density functions as follows.

Definition 3.3.2 (Rescaled density). For a random variable ξ distributed as d(ξ) with ex-

pectation ξ̃, for any sequence of matrices {tn}, the density of the rescaled random variable

µ := tn(ξ − ξ̃) is

ďn(µ) = |det(t−1
n )|d(t−1

n µ+ ξ̃),

where det(·) represents the determinant of the matrix.

Next, we place a restriction on the variational family Q:

Assumption 3.3.4.

1. The variational family Q must contain distributions that are absolutely continuous with

respect to the posterior distribution π(θ|X̃n).

2. There exists a sequence of distributions {qn(θ)} in the variational family Q that con-

verges to a Dirac delta distribution δθ0 at the rate of
√
n and with mean

∫
θqn(θ)dθ = θ̂n,

the maximum likelihood estimate.
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3. The differential entropy of the rescaled density of such sequence of distributions is

positive and finite.

The first condition is necessary, since the KL divergence in (  3.4 ) and ( 3.6 ) is undefined

for any distribution q ∈ Q, that is not absolutely continuous with respect to the posterior

distribution. The Bernstein von-Mises theorem shows that under mild regularity conditions,

the posterior converges to a Dirac delta distribution at the true parameter θ0 at the rate

of
√
n, and the second condition is just to ensure that the KL divergence is well defined

for all large enough n. This condition does not, by any means, imply that the LCVB and

NVB approximate posterior converges to Dirac delta distribution at the true parameter θ0

as n→∞.

The primary result in this section shows that the loss-calibrated approximate posterior

q∗a(θ|X̃n) for any a ∈ A is consistent and converges to the Dirac-delta distribution at θ0. We

establish the frequentist consistency of LCVB approximate posterior, extending and building

on the results in [  27 ].

Proposition 3.3.1. Fix a ∈ A. Then, under Assumptions  3.3.1 ,  3.3.2 ,  3.3.3 , and  3.3.4 

q∗a(θ|X̃n) ∈ arg min
q∈Q

KL
(
q(θ)

∥∥∥∥∥ R(a, θ)π(θ|X̃n)∫
ΘR(a, θ)π(θ|X̃n)dθ

)
⇒ δθ0 in P n

0 − probability as n→∞.

(3.9)

Some comments are in order for this result. Recall that loss-calibration of the posterior

distribution ‘weights’ it by the risk of taking decision a, R(a, θ). The optimization then

finds the closest density functions in the family Q to this re-weighted posterior distribu-

tion. The posterior re-weighting has the effect of ‘directing’ the VB optimization to the

most informative regions of the parameter sample space for the decision problem of interest.

However, R(a, θ), which does not involve the data X̃n, effectively serves to change the prior

distribution, and in the limit, modulo our regularity assumptions, the consistency of the

approximate posterior is to be anticipated. The proof of the proposition is presented in the

appendix.
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Since for a constant risk function R(a, θ), the LCVB approximate posterior q∗a(θ|X̃n) is

same as NVB approximate posterior q∗(θ|X̃n), we recover the result obtained in Theorem

5(1) of [ 27 ]. We rewrite the result as a corollary for completeness.

Corollary 3.3.1. Under Assumptions  3.3.1 ,  3.3.3 , and  3.3.4 

q∗(θ|X̃n) ∈ arg min
q∈Q

KL
(
q(θ)

∥∥∥π(θ|X̃n)
)
⇒ δθ0 in P n

0 − probability as n→∞. (3.10)

3.4 Consistency of Decisions

In this section we prove that the optimal decision estimated by the LCVB and NVB

algorithms are consistent, in the sense that for almost every infinite sequence, the optimal

decision rules a∗NV and a∗LC concentrate on the set of ‘true’ optimizers

A∗ := arg min
a∈A

R(a, θ0) =
∫
`(y, a)p(y|θ0)dy.

For brevity, we define Hq(a) := Eq[R(a, θ)] for any distribution q(·) on θ and H0(a) :=

R(a, θ0). We place a typical, but relatively strong condition on the decision space that

Assumption 3.4.1. The decision space A is compact.

Coupled with Assumption  3.3.2 , this implies that the risk function is uniformly bounded

in the decision space.

Now, suppose that the true posterior π(θ|X̃n)) is in the set Q. Then, the NVB approxi-

mate posterior in ( 3.4 ) q∗(θ|X̃n) equals π(θ|X̃n), so that the empirical decision-rule a∗NV(X̃n)

coincides exactly with the Bayes optimal decision rule a∗(X̃n). The consistency of the true

posterior has been well-studied, and under Assumption  3.3.1 it is well known [ 110 ], [ 111 ]

that for any neighborhood U of the true parameter θ0

π(U |X̃n))→ 1 P0 − a.s. as n→∞, (3.11)
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where P0 represents the true data-generation distribution. Then, it follows from Assump-

tion  3.3.2 that

sup
a∈A

∣∣∣H
π(θ|X̃n)(a)−H0(a)

∣∣∣→ 0 P0 − a.s. as n→∞. (3.12)

It is straightforward to see that the limit result follows pointwise, and the uniform conver-

gence result follows from the uniform boundedness of the loss functions. In the following

section, we consider the typical case when the posterior π(θ|X̃n)) 6∈ Q.

3.4.1 Analysis of the NVB Decision Rule

The first result of this section proves that the Bayes predictive loss, Hq∗(a) is (uniformly)

asymptotically consistent as the sample size grows. We relegate the proof to the appendix.

Proposition 3.4.1. Under the assumptions stated above, we have

sup
a∈A
|Hq∗(a)−H0(a)| → 0 in P n

0 − probability as n→∞. (3.13)

This proposition builds on [ 27 , Theorem 5], which shows that modulo Assumptions  3.3.1 ,

 3.3.3 , and  3.3.4 , the NVB approximate posterior distribution is asymptotically consistent(see

Corollary  3.3.1 ). Using the consistency of q∗(θ|X̃n) and Assumption  3.3.2 (1), we first estab-

lish the pointwise convergence of Hq∗(a) to H0(a). Then we argue, using continuity of the

risk function R(a, θ) in a and the compactness of set A, that uniform convergence follows.

A straightforward corollary of Proposition  3.4.1 implies that the optimal value Vq∗ :=

mina∈AHq∗(a) is asymptotically consistent as well; the proof is in the appendix.

Corollary 3.4.1. Under Assumptions  3.3.1 ,  3.3.2 ,  3.3.3 ,  3.3.4 , and  3.4.1 , with V0 :=

mina∈AH0(a), |Vq∗ − V0| → 0 in P n
0 − probability as n→∞.

The primary question of interest is the asymptotic consistency of the optimal decision-

rule a∗NV. Our main result proves that in the large sample limit a∗NV is a subset of the true

optimal decisions A∗ for almost all samples X̃n.
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Proposition 3.4.2. Under Assumptions  3.3.1 ,  3.3.2 ,  3.3.3 ,  3.3.4 , and  3.4.1 , we have

{
a∗NV(X̃n) ⊆ A∗

}
in P n

0 − probability as n→∞. (3.14)

We use the uniform convergence of Hq∗(a) to H0(a) and argue that any decision which is

not in the true optimal decision set A∗, must not exist in NVB approximate optimal decision

set a∗NV(X̃n) for large enough n. Once again, we relegate the proof to the appendix. Conse-

quently, it follows that NVB optimal actions are asymptotically oracle regret minimizing:

Corollary 3.4.2. Under Assumptions  3.3.1 ,  3.3.2 ,  3.3.3 ,  3.3.4 , and  3.4.1 for any a ∈ A∗

and a∗ ∈ a∗NV(X̃n)), H0(a∗)→ H0(a) in P n
0 -probability as n→∞.

The result above is a straightforward implication of the continuity of R(a, θ0) in a and

Proposition  3.4.2 and therefore the proof is omitted.

3.4.2 Analysis of the LCVB decision rule

Now, recall from (  3.6 ) that the LC decision-rule is

a∗LC(X̃n) = arg min
a∈A

max
q∈Q
−KL

(
q(θ)‖π(θ|X̃n)

)
+
∫

Θ
q(θ) logR(a, θ)dθ.

The next proposition shows that a∗LC(X̃n) is a subset of the true optimal decision set A∗

in the large sample limit for almost all sample sequences. We use similar ideas as used in

Section  3.4.1 .

Proposition 3.4.3. Under Assumptions  3.3.1 ,  3.3.2 ,  3.3.3 ,  3.3.4 , and  3.4.1 , we have

{
a∗LC(X̃n) ⊆ A∗

}
in P n

0 − probability as n→∞. (3.15)

The proof is in the appendix. This result naturally implies that the loss-calibrated VB

optimal decisions are also oracle regret minimizing

Corollary 3.4.3. For any a ∈ A∗ and a∗∗ ∈ a∗LC(X̃n), H0(a∗∗) → H0(a) as in P n
0 −

probability as n→∞.
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3.5 Numerical Example

In this section we present a simulation study of a canonical optimal decision making

problem called the newsvendor problem. This problem has been extensively studied in the

inventory management literature [  7 ]–[ 9 ]. Recall that the newsvendor loss function is defined

as

`(a, ξ) := h(a− ξ)+ + b(ξ − a)+

where ξ ∈ [0,∞) is the random demand, a is the inventory or decision variable, and h and

b are given positive constants. We assume that the decision variable a take values in a

compact decision space A. We also assume that the the random demand ξ is exponentially

distributed with unknown rate parameter θ0 ∈ (0,∞). The model risk can easily be derived

as

R(a, θ) = EPθ [`(a, ξ)] = ha− h

θ
+ (b+ h)e−aθ

θ
, (3.16)

which is convex in a. Let X̃n := {ξ1, ξ2 . . . ξn} be n observations of the random demand,

assumed to be independent and identically distributed. Next, we posit a non-conjugate

inverse-gamma prior distribution over the rate parameter θ with shape and rate parameter

α and β respectively. Finally, we run a simulation experiment using the newsvendor model

described above for a fix θ0 = 0.68, b = 0.1, α = 1, and β = 4.1. We use naive VB and LCVB

algorithms to obtain the respective optimal decision a∗NV and a∗LC for 9 different values of

h ∈ {0.001, 0.002, . . . 0.009} and repeat the experiment over 1000 sample paths. In Figure 1,

we plot the 50th quantile of the |a∗− a∗0|, where a∗ ∈ {a∗NV, a∗LC} for this model. Observe that

the optimality gap decreases quite rapidly for both the naive VB (left) and the loss-calibrated

VB (right) methods.
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(a) Naive VB. (b) LCVB.

Figure 3.1. Optimality gap in decisions (the 50th quantile over 1000 sample
paths) against the number of samples (n) for a∗NV (left) and a∗LC (right).

3.6 Proofs

Proof of Proposition  3.3.1 

Lemma 3.6.1. For any risk function R(a, θ) that satisfies Assumption  3.3.2 and a given

sequence of distributions {qn(θ)} that converges weakly to any distribution q(θ) other than the

Dirac-delta distribution at θ0, the KL
(
qn(θ)

∥∥∥∥∥ R(a,θ)π(θ)p(X̃n|θ)∫
Θ R(a,θ)π(θ)p(X̃n|θ)dθ

)
is undefined in the limit

as n→∞ P0 − a.s.

Proof. Using the definition of the posterior distribution π(θ|X̃n) = π(θ)p(X̃n|θ)∫
Θ π(θ)p(X̃n|θ)dθ

, first ob-

serve that

KL
(
qn(θ)

∥∥∥∥∥ R(a, θ)π(θ)p(X̃n|θ)∫
ΘR(a, θ)π(θ)p(X̃n|θ)dθ

)

= KL
(
qn(θ)‖π(θ|X̃n)

)
−
∫

Θ
log(R(a, θ))qn(θ)dθ − log

∫
Θ
R(a, θ)π(θ|X̃n)dθ.

≥ KL
(
qn(θ)‖π(θ|X̃n)

)
−
∫

Θ
R(a, θ)qn(θ)dθ −

∫
Θ
R(a, θ)π(θ|X̃n)dθ, (3.17)
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where the last inequality uses the fact that log x < x. Now taking the lim inf on either side,

we have

lim inf
n→∞

KL
(
qn(θ)

∥∥∥∥∥ R(a, θ)π(θ)p(X̃n|θ)∫
ΘR(a, θ)π(θ)p(X̃n|θ)dθ

)

≥ lim inf
n→∞

KL
(
qn(θ)‖π(θ|X̃n)

)
− lim sup

n→∞

∫
Θ
R(a, θ)qn(θ)dθ − lim sup

n→∞

∫
Θ
R(a, θ)π(θ|X̃n)dθ.

(3.18)

Recall that the posterior distribution π(θ|X̃n) converges weakly to δθ0 P0 − a.s. Due to

[ 112 , Theorem 16] we know that KL(q(θ)‖p(θ)) is a lower semi-continuous function of the

pair (q(θ), p(θ)) in the weak topology on the space of probability measures. Using lower

semi-continuity, it follows that the first term in ( 3.18 ) satisfies

lim inf
n→∞

KL
(
qn(θ)‖π(θ|X̃n)

)
> KL(q(θ)‖δθ0) =∞, (3.19)

where the last equality is by definition of the KL divergence, since q(θ) 6= δθ0 (as qn(θ) does

not weakly converge to δθ0) and therefore it is not absolutely continuous with respect to δθ0 .

Since the last two terms are finite due to Assumption  3.3.2 , we have shown that for any

sequence of distribution {qn(θ)} that converges weakly to any distribution q(θ) 6= δθ0 , the

KL
(
qn(θ)

∥∥∥∥∥ R(a,θ)π(θ)p(X̃n|θ)∫
Θ R(a,θ)π(θ)p(X̃n|θ)dθ

)
diverges in the limit as n→∞ P0 − a.s.

Lemma 3.6.2. Let {Kn} ⊆ Θ be a sequence of compact balls such that for all n ≥ 1, θ0 ∈ Kn

and Kn → Θ as n→∞. Then, under Assumption  3.4.1 and for any δ > 0, the sequence of

random variables
{∫

Θ\Kn π(θ)R(a, θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ
}

is of order oPn0 (1); that is

lim
n→∞

P n
0

(∫
Θ\Kn

π(θ)R(a, θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ > δ

)
= 0.

Proof. Using Markov’s inequality, it follows that,

P n
0

(∫
Θ\Kn

π(θ)R(a, θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ > δ

)
≤ 1
δ

EPn0

[∫
Θ\Kn

π(θ)R(a, θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ

]
.

(3.20)
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Next, using Fubini’s Theorem in the RHS above and then the fact that EPn0
[(

p(X̃n|θ)
p(X̃n|θ0)

)]
≤ 1,

observe that

P n
0

(∫
Θ\Kn

π(θ)R(a, θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ > δ

)
≤ 1
δ

∫
Θ\Kn

π(θ)R(a, θ)dθ. (3.21)

Since θ0 /∈ Θ\Kn for all n ≥ 1 and Θ\Kn → ∅ as n → ∞, 1Θ\KnR(a, θ) is monotonic,

and therefore using the monotone convergence theorem,
∫

Θ\Kn R(a, θ)π(θ)dθ → 0 as n→∞.

Hence, taking limits on either side of ( 3.21 ) the result follows.

Next, we show that for fixed a ∈ A, the KL divergence between the LC approximate

posterior q∗a(θ|X̃n) and the rescaled posterior R(a,θ)π(θ)p(X̃n|θ)∫
ΘR(a,θ)π(θ)p(X̃n|θ)dθ

is finite in the limit. Also,

the following lemma uses similar proof techniques as used in [ 27 ].

Lemma 3.6.3. Fix a ∈ A. Then, under Assumptions  3.3.1 ,  3.3.2 ,  3.3.3 , and  3.3.4 ,

lim
n→∞

P n
0

(
min
q∈Q

KL
(
q(θ)

∥∥∥∥∥ R(a, θ)π(θ)p(X̃n|θ)∫
ΘR(a, θ)π(θ)p(X̃n|θ)dθ

)
<∞

)
= 1.

Furthermore, the LC variational posterior q∗a(θ|X̃n) can converge only at the rate of
√
n.

Proof. Following Assumption  3.3.4 there exists a sequence of distributions {qn(θ)} ∈ Q that

converges to δθ0 at the rate of γn =
√
n. Specifically, we consider the sequence where qn(θ)

has mean θ̂n, the maximum likelihood estimate. It suffices to show that for such sequence

{qn(θ)} ⊂ Q,

lim sup
n→∞

KL
(
qn(θ)

∥∥∥∥∥ R(a, θ)π(θ)p(X̃n|θ)∫
ΘR(a, θ)π(θ)p(X̃n|θ)dθ

)
= KL

qn(θ)
∥∥∥∥∥ R(a, θ)π(θ)

(
p(X̃n|θ)
p(X̃n|θ0)

)
∫

ΘR(a, θ)π(θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ

 <∞.
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For brevity let us denote KL
(
qn(θ)

∥∥∥∥∥ R(a,θ)π(θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
∫

Θ R(a,θ)π(θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ

)
as KL. First, observe that

for a compact set K ⊂ Θ containing the true parameter θ0, we have

KL =
∫

Θ
qn(θ) log(qn(θ))dθ −

∫
Θ
qn(θ) log(R(a, θ)π(θ))dθ −

∫
K
qn(θ) log

(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ

−
∫

Θ\K
qn(θ) log

(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ + log

(∫
Θ
R(a, θ)π(θ)

(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ

)
. (3.22)

Now we approximate
∫
K qn(θ) log

(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ using the LAN condition in Assumption  3.3.3 .

Let ∆n,θ0 :=
√
n(θ̂n − θ0), and reparameterizing the expression with θ = θ0 + n−1/2h and

denoting K as the reparameterized set K we have

∫
K
qn(θ) log

(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ

= n−1/2
∫
K
qn(θ0 + n−1/2h) log

(
p(X̃n|θ0 + n−1/2h)

p(X̃n|θ0)

)
dh (3.23)

= n−1/2
∫
K
qn(θ0 + n−1/2h)

(
hI(θ0)∆n,θ0 −

1
2h

2I(θ0) + oPn0 (1)
)
dh

=
(
oPn0 (1)

) ∫
K
qn(θ)dθ +

∫
K
qn(θ)

(
√
n(θ − θ0)I(θ0)∆n,θ0 −

1
2n(θ − θ0)2I(θ0)

)
dθ

=
(1

2nI(θ0)(θ̂n − θ0)2 + oPn0 (1)
) ∫

K
qn(θ)dθ −

∫
K

1
2nI(θ0)qn(θ)(θ − θ̂n)2dθ. (3.24)

Now consider the last term in ( 3.22 ). Let {Kn} ⊆ Θ be a compact sequence of balls such

that for all n ≥ 1, θ0 ∈ Kn and Kn → Θ as n→∞. Next, using the same re-parametrization

we obtain,

∫
Kn
R(a, θ)π(θ)

(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ = eoPn0 (1)e

nI(θ0)
2 (θ̂n−θ0)2

∫
Kn
R(a, θ)π(θ)e−

nI(θ0)
2 (θ−θ̂n)2

dθ.

(3.25)

Now, Lemma  3.6.2 implies that

∫
Θ\Kn

R(a, θ)π(θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ = oPn0 (1). (3.26)
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Hence, by the results in ( 3.25 ) and ( 3.26 ), the last term in ( 3.22 ) satisfies

log
(∫

Θ
R(a, θ)π(θ)

(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ

)

= log
(∫

Kn
R(a, θ)π(θ)

(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ +

∫
Θ\Kn

R(a, θ)π(θ)
(
p(X̃n|θ)
p(X̃n|θ0)

)
dθ

)

∼nI(θ0)
2 (θ̂n − θ0) + log

∫
Kn
R(a, θ)π(θ)e−

nI(θ0)
2 (θ−θ̂n)2

dθ + oPn0 (1), (3.27)

where an ∼ bn implies that limn→∞
an
bn

= 1. Now, by substituting ( 3.24 ) and ( 3.27 ) into

( 3.22 ) we obtain,

KL ∼
∫

Θ
qn(θ) log qn(θ)dθ −

∫
Θ
qn(θ) log(R(a, θ)π(θ))dθ

+
(1

2nI(θ0)(θ̂n − θ0)2 + oPn0 (1)
) [

1−
∫
K
qn(θ)dθ

]
+ log

∫
Kn
R(a, θ)π(θ)e−

nI(θ0)
2 (θ−θ̂n)2

dθ + 1
2nI(θ0)

∫
K

(θ − θ̂n)2qn(θ)dθ + oPn0 (1).

Since, the qn(θ)⇒ δθ0 as n→∞ and θ0 ∈ K,

(1
2nI(θ0)(θ̂n − θ0)2 + oPn0 (1)

) [
1−

∫
K
qn(θ)dθ

]
∼ oPn0 (1),

implying that,

KL ∼
∫

Θ
qn(θ) log qn(θ)dθ −

∫
Θ

log(R(a, θ)π(θ))qn(θ)dθ − 1
2 log n+ 1

2 log
(

2π

I(θ0)

)

+ log
∫
Kn

(R(a, θ)π(θ))N (θ; θ̂n, (nI(θ0))−1)dθ + 1
2nI(θ0)

∫
K

(θ − θ̂n)2qn(θ)dθ + oPn0 (1),

(3.28)

where N (θ; θ̂n, (nI(θ0))−1) represents the Gaussian density function. Since qn(θ) has mean

θ̂n and rate of convergence
√
n, then by a change of variable to µ =

√
n(θ − θ̂n)

∫
Θ
qn(θ) log qn(θ)dθ = 1√

n

∫
qn

(
µ√
n

+ θ̂n

)
log qn

(
µ√
n

+ θ̂n

)
dµ = 1

2 log n+
∫
q̌n(µ) log q̌n(µ)dµ,

(3.29)
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where q̌n(µ) is the rescaled density as defined in Definition  3.3 . Substituting ( 3.29 ) into ( 3.28 ),

we obtain

KL ∼
∫
q̌n(µ) log q̌n(µ)dµ−

∫
Θ

log(R(a, θ)π(θ))qn(θ)dθ + 1
2 log

(
2π

I(θ0)

)

+ log
∫
Kn

(R(a, θ)π(θ))N (θ; θ̂n, (nI(θ0))−1)dθ + 1
2nI(θ0)

∫
K

(θ − θ̂n)2qn(θ)dθ + oPn0 (1).

(3.30)

Since, 1
2nI(θ0)

∫
K(θ− θ̂n)2qn(θ)dθ ≤ 1

2nI(θ0)
∫

Θ(θ− θ̂n)2qn(θ)dθ ≤ 1
2I(θ0), due to the specific

choice of qn(θ) with variance O(n−1)(see Definition  3.3.1 ), it follows from ( 3.30 ) that for

large enough n,

KL .
∫
q̌n(µ) log q̌n(µ)dµ−

∫
Θ

log(π(θ))qn(θ)dθ −
∫

Θ
log(R(a, θ))qn(θ)dθ + 1

2 log
(

2π

I(θ0)

)

+ log
∫
Kn

(R(a, θ)π(θ))N (θ; θ̂n, (nI(θ0))−1)dθ + 1
2I(θ0) + oPn0 (1). (3.31)

Now take limsup on either side of the above equation. Observe that the first term is finite

by Assumption  3.3.4 . The second term is finite since the prior distribution is continuous in

θ bounded due to Assumption  3.3.1 , therefore using the the defintion of weak convergence,

limn→∞
∫

Θ log(π(θ))qn(θ)dθ = log π(θ0) and π(θ) is non-zero in the neighbourhood of θ0. The

third term is bounded by − log(W ) due to Assumption  3.3.2 (1). Since, θ0 ∈ Kn∀n ≥ 1, the

fifth term is bounded by Laplace’s approximation,

∫
Kn

(R(a, θ)π(θ))N (θ; θ̂n, (nI(θ0))−1)dθ ∼ R(a, θ0)π(θ0).

Since the last term is finite in P n
0 −probability, therefore it follows that,

lim
n→∞

P n
0

(
min
q∈Q

KL
(
q(θ)

∥∥∥∥∥ R(a, θ)π(θ)p(X̃n|θ)∫
ΘR(a, θ)π(θ)p(X̃n|θ)dθ

)
<∞

)

≥ lim
n→∞

P n
0

(
KL

(
qn(θ)

∥∥∥∥∥ R(a, θ)π(θ)p(X̃n|θ)∫
ΘR(a, θ)π(θ)p(X̃n|θ)dθ

)
<∞

)
= 1.
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Proof of Proposition  3.3.1 . Recall from the Lemma  3.6.1 that for any risk function R(a, θ)

that satisfies Assumption  3.3.2 and for a given sequence of distributions {qn(θ)} that con-

verges weakly to any distribution q(θ) other than δθ0 , KL
(
qn(θ)

∥∥∥∥∥ R(a,θ)π(θ)p(X̃n|θ)∫
Θ R(a,θ)π(θ)p(X̃n|θ)dθ

)
di-

verges as n→∞ P0 − a.s. On the other hand, Lemma  3.6.3 shows that for any a ∈ A,

lim
n→∞

P n
0

(
min
q∈Q

KL
(
q(θ)

∥∥∥∥∥ R(a, θ)π(θ)p(X̃n|θ)∫
ΘR(a, θ)π(θ)p(X̃n|θ)dθ

)
<∞

)

≥ lim
n→∞

P n
0

(
KL

(
qn(θ)

∥∥∥∥∥ R(a, θ)π(θ)p(X̃n|θ)∫
ΘR(a, θ)π(θ)p(X̃n|θ)dθ

)
<∞

)
= 1.

Therefore, Lemma  3.6.1 and  3.6.3 combined together imply that for any a ∈ A, and for

any risk function R(a, θ) that satisfies Assumption  3.3.2 , the LC approximate posterior

must converge weakly to δθ0 in P n
0 -probability as n → ∞; that is q∗a(θ|X̃n) ⇒ δθ0 in P n

0 −

probability as n→∞.

Proof of Proposition  3.4.1 

Proof. First, we establish point-wise convergence using similar ideas as used in the proof

of [ 113 , Theorem 3.7]. Fix a ∈ A. Due to Assumption  3.3.2 (3), R(a, θ) is uniformly integrable

with respect to any q ∈ Q, which implies that for q∗(θ|X̃n) and for any ε > 0, there exists a

compact set Kε such that for all n ≥ 1
∫

Θ\Kε |R(a, θ)|q∗(θ|X̃n)dθ < ε.

Now fix γε := maxθ∈Kε |R(a, θ)|. Note that γε < +∞, since Kε is compact and R(a, ·) is

a continuous mapping for any a ∈ A. Define Rε(a, θ) be the truncation of R(a, θ), that is

Rε(a, θ) =



R(a, θ) if |R(a, θ)| < γε

γε if R(a, θ) > γε

−γε if R(a, θ) < −γε.

(3.32)

It follows from the definition above that |Rε(a, θ)| ≤ |R(a, θ)|, which implies that

∫
Θ\Kε

|Rε(a, θ)|q∗(θ|X̃n)dθ < ε (3.33)
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Note the Rε(a, θ) is bounded and continuous in θ, therefore, it follows using the definition

of weak convergence and Corollary  3.3.1 that

lim
n→∞

Eq∗(θ|X̃n)[Rε(a, θ)]
Pn0= Rε(a, θ0). (3.34)

Next observe that

|Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)|

=
∣∣∣Eq∗(θ|X̃n)[R(a, θ)]− Eq∗(θ|X̃n)[Rε(a, θ)] + Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)

+Rε(a, θ0)−R(a, θ0)|

≤
∣∣∣Eq∗(θ|X̃n)[R(a, θ)]− Eq∗(θ|X̃n)[Rε(a, θ)]

∣∣∣+ ∣∣∣Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)
∣∣∣

+ |Rε(a, θ0)−R(a, θ0)|

=
∣∣∣Eq∗(θ|X̃n)[R(a, θ)]− Eq∗(θ|X̃n)[Rε(a, θ)]

∣∣∣+ ∣∣∣Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)
∣∣∣

+ |Rε(a, θ0)−R(a, θ0)| .

(3.35)

Now using the definition of Rε(a, θ) note that

∣∣∣Eq∗(θ|X̃n)[R(a, θ)]− Eq∗(θ|X̃n)[Rε(a, θ)]
∣∣∣ =

∣∣∣∣∣
∫

Θ\Kε
(R(a, θ)−Rε(a, θ))q∗(θ|X̃n)dθ

∣∣∣∣∣
≤
∫

Θ\Kε
|R(a, θ)|q∗(θ|X̃n)dθ +

∫
Θ\Kε

|Rε(a, θ)|q∗(θ|X̃n)dθ ≤ 2ε.

Similarly, |Rε(a, θ0)−R(a, θ0)| ≤ 2ε, since due to Assumption  3.3.2 (4)
∫

Θ\Kε |R(a, θ)|q∗(θ|X̃n)dθ <

ε is true for all n ≥ 1 and consequently for δθ0 as well. Hence, substituting the above two

observations into ( 3.35 ) yields

|Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)| ≤ 4ε+
∣∣∣Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)

∣∣∣ .
Consequently, it follows for any ε > 0 that,

P n
0

(
|Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)| > 5ε

)
≤ P n

0

(
|Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)| > ε

)
. (3.36)
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Now taking limits n→∞ on either side of the inequality above, the result follows straight-

forwardly using the observation in ( 3.34 ).

Since A is compact and R(a, θ0) is continuous in a, using Corollary 2.2 in [ 114 ] the

uniform convergence follows from point-wise convergence if there exist a bounded sequence

Bn and for all a1, a2 ∈ A, |Eq∗(θ|X̃n)[R(a1, θ)] − Eq∗(θ|X̃n)[R(a2, θ)]| ≤ Bn‖a1 − a2‖. Since,

R(a, θ) is locally Lipschitz in a due to Assumption  3.3.2 (3), therefore for a1, a2 ∈ A,

|Eq∗(θ|X̃n)[R(a1, θ)]− Eq∗(θ|X̃n)[R(a2, θ)]| ≤ Eq∗(θ|X̃n)[|R(a1, θ)−R(a2, θ)|]

≤ Eq∗(θ|X̃n)[KA(θ)]‖a1 − a2‖. (3.37)

The uniform convergence follows since by Assumption  3.3.2 (3) Eq∗(θ|X̃n)[KA(θ)] ≤ K̄A.

Proof of Corollary  3.4.1 

Proof. Let aq ∈ a∗NV(X̃n) and a0 ∈ A∗ then, by definition, Vq∗ = Hq∗(aq) and V0 = H0(a0).

Then,

Vq∗ − V0 = [Hq∗(aq)−H0(a0)] ≤ [Hq∗(a0)−H0(a0)] ≤ sup
a∈A
|Hq∗(a)−H0(a)|. (3.38)

On the other hand, observe that

Vq∗ − V0 ≥ [Hq∗(aq)−H0(aq)] ≥ −|Hq∗(aq)−H0(aq)| ≥ −sup
a∈A
|Hq∗(a)−H0(a)|. (3.39)

Therefore from ( 3.38 ), (  3.39 ), and Proposition  3.4.1 , it follows that

lim
n→∞

|Vq∗ − V0| ≤ lim
n→∞

sup
a∈A
|Hq(a,X)−H0(a)| P

n
0= 0 in,

and the result follows.
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Proof of Proposition  3.4.2 

Proof. Equivalently, we can show that a ∈ A \ A∗ implies that a 6∈ a∗NV(X̃n) in P n
0 −

probability as n → ∞. Fix a ∈ A \ A∗, then we have H0(a) > V0. Next define ε :=

inf
a∈A\A∗

H0(a)− V0. Using Proposition  3.4.1 , for any δ > 0, there exists an n0 ≥ 1 (depending

on ε) such that ∀n ≥ n0, P n
0

(
|Vq∗ − V0| < ε

2

)
≥ P n

0

(
sup
a∈A
|Hq∗(a)−H0(a)| < ε

2

)
≥ 1 − δ.

Therefore, we have P n
0

(
Vq∗ < V0 + ε

2

)
≥ 1 − δ for all n ≥ n0. Using the definition of ε and

Proposition  3.4.1 , it also follows that for any a ∈ A \ A∗ and for all n ≥ n0

P n
0

(
V0 + ε < Hq∗(a) + ε

2

)
= P n

0

(
inf

a∈A\A∗
H0(a) < Hq∗(a) + ε

2

)

≥ P n
0

(
H0(a) < Hq∗(a) + ε

2

)
≥ P n

0

(
sup
a∈A
|Hq∗(a)−H0(a)| < ε

2

)

≥ 1− δ.

Therefore for any a ∈ A \ A∗ ,

P n
0 (a 6∈ a∗NV(X̃n)) ≥ P n

0 (Vq∗ < Hq∗(a)) ≥ P n
0

({
V0 + ε

2 < Hq∗(a)
}
∩
{
Vq∗ < V0 + ε

2

})
≥ 1− δ.

Hence the proposition follows.

Proof of Proposition  3.4.3 

Proof. Fix ā ∈ A and recall from ( 3.6 ) that

F(a, q; X̃n) = −KL(q(θ)‖π(θ|X̃n)) +
∫

Θ
logR(a, θ)q(θ)dθ.
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Also recall that the LC approximate posterior q∗ā(θ|X̃n) converges weakly to a Dirac delta

distribution at θ0 due to Propostion  3.3.1 . It now follows that, due to Assumption  3.3.2 (2)

on R(a, θ) and using the definition of weak convergence

lim
n→∞

∫
Θ

logR(a, θ)q∗ā(θ|X̃n)dθ Pn0= logR(a, θ0) ∀a ∈ A. (3.40)

Now since the set A is compact, logarithm function is continuous, and R(a, θ) is contin-

uous in ∀a ∈ A, it follows using similar arguments as used in Proposition  3.4.1 that for any

ā ∈ A,

sup
a∈A

∣∣∣∣∫
Θ

logR(a, θ)q∗ā(θ|X̃n)dθ − logR(a, θ0)
∣∣∣∣ Pn0→ 0 as n→∞. (3.41)

Now again using similar arguments as in Proposition  3.4.2 and monotonicity of logarithm

function, we can show that the LC approximate decision rule for any ā ∈ A, that is

a∗LC(X̃n, ā) := argmina∈A
∫

Θ
logR(a, θ)q∗ā(θ|X̃n)dθ

is subset of the true decision set A∗ in P n
0 − probability as n→∞. Since the result is true

for any ā ∈ A, it is true for any a that lies in LC approximate decision set a∗LC and therefore

the proposition follows.

132



4. BAYESIAN JOINT CHANCE CONSTRAINED

OPTIMIZATION

In this chapter, we consider data-driven chance-constrained stochastic optimization problems

in a Bayesian framework. Bayesian posteriors afford a principled mechanism to incorporate

data and prior knowledge into stochastic optimization problems. However, the computation

of Bayesian posteriors is typically an intractable problem, and has spawned a large literature

on approximate Bayesian computation. Here, in the context of chance-constrained opti-

mization, we focus on the question of statistical consistency (in an appropriate sense) of the

optimal value, computed using an approximate posterior distribution. To this end, we rig-

orously prove a frequentist consistency result demonstrating the convergence of the optimal

value to the optimal value of a fixed, parameterized constrained optimization problem. We

augment this by also establishing a probabilistic rate of convergence of the optimal value.

We also prove the convex feasibility of the approximate Bayesian stochastic optimization

problem. Finally, we demonstrate the utility of our approach on an optimal staffing problem

for an M/M/c queueing model.

4.1 Introduction

Consider a constrained optimization problem,

min
x∈X

R(a, θ0) (TP)

s.t. gi(a, θ0) ≤ 0, i ∈ {1, 2, 3, . . . ,m},

where a ∈ A ⊆ Rp is a decision vector in some convex set A and θ0 ∈ Rq parametrizes

the problem. The function R : A × Rq 7→ R encodes the cost/risk and the functions gi :

A × Rq 7→ R define the constraints. We assume that such a nominal optimization problem

and its solution(s) exists, under suitable regularity conditions.

In practice, the parameter is often unknown beyond lying in some set Θ ⊆ Rq. It is

natural, therefore, to assume the existence of a probability distribution P (·) with support
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Θ that quantifies the decision-maker’s (DM) epistemic uncertainty about the parameter,

leading to a joint chance constrained optimization problem

min
x∈X

EP [R(a, θ)] (JCCP)

s.t. P (gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}) ≥ β.

Note that a solution to (JCCP) is feasible for (TP) with probability at least β. Joint

chance constrained problems have been used extensively to model a range of constrained

optimization problems with parametric uncertainty [ 2 ], [  115 ].

In this chapter we are interested in data-driven settings where only a dataset of n samples

– so-called ‘covariates’ – is available, and whose joint distribution P n
θ0(·) depends on the ‘true’

parameter θ0. For instance, consider a staffing problem in a queueing system, where the goal

is to compute the minimal number of servers required to ensure, with high probability, that

the typical customer applying for service waits no more than a fixed amount of time to

be served. The waiting time distribution for the typical customer depends on the arrival

and service rates, which are unknown in a data-driven setting. Datasets here might include

waiting times, inter-arrival and service times, whose distributions depend on the (unknown)

rates. Problems of this type are prevalent across operations management [ 18 ], [  44 ], [  116 ],

finance [ 117 ], and engineering [ 118 ].

In this data-driven setting, one might expect the epistemic uncertainty to diminish with

an increasing number of samples, with each additional sample providing ‘new information’

about the true parameter θ0. Bayesian methods provide a coherent way to quantify the devo-

lution of the epistemic uncertainty through a posterior density π(θ|X̃n) over the parameters

θ ∈ Θ.The latter is computed by combining a prior density, quantifying a priori information

(and biases) about the parameters, and a likelihood function, quantifying the probability of

observed data under any parameter θ. Specifically, from Bayes’ formula, it is well known

that

π(θ|X̃n) = pnθ (X̃n)π(θ)∫
pnθ (X̃n)π(θ)dθ

, (4.1)
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where π(θ) is the prior density, pnθ (X̃n) is the likelihood of observing X̃n, and the denom-

inator is the so-called data evidence. Bayesian methods have the advantage of calibrating

uncertainty about hidden variables given partial observations. Further, in many applica-

tions, incorporating prior knowledge is preferable to straight empirics. For example, in the

queueing system design problem the prior distribution maybe specified by a modeler based

on expert input and require that the arrival rate be strictly less than the total system ca-

pacity (ensuring that the system is stochastically stable). Of course, in the absence of such

knowledge, uninformative priors (such as Jeffrey’s prior or uniform priors) can be used, but

the same calculus holds.

this chapter focuses on the formulation of a Bayesian joint chance constrained program

(BJCCP) model, wherein a posterior distribution is used as the measure of epistemic uncer-

tainty in (JCCP) to obtain,

min
x∈X

E
π(θ|X̃n)[R(a, θ)] (BJCCP)

s.t. Π
(
gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ β,

where, for any set A ⊆ Θ, Π(A|X̃n) =
∫
A π(θ|X̃n)dθ. The (BJCCP) formulation provides

a principled way to combine data with parametric models of the uncertainty in (JCCP).

To the best of our knowledge, this formulation has not been considered in the literature on

data-driven chance constrained optimization before and, we believe, a useful addition to the

growing toolbox of methodology for solving such problems; see Section  4.1.1 .

The posterior can be computed in closed-form under conjugacy assumptions. However,

these assumptions are restrictive and untenable for many application settings. The computa-

tion of the posterior under more general conditions is intractable, since the evidence cannot

be easily calculated. Consequently, there is a substantial body of work on approximate

Bayesian computation focused on the question of efficiently and accurately approximating

the posterior distribution. Broadly speaking, there are two classes of methods in approximate

Bayesian computation: sampling methods and optimization-based methods. Markov chain

Monte Carlo (MCMC) is the canonical sampling method, where the objective is to design a

stationary Markov chain whose invariant distribution is precisely the posterior distribution.
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Initializing the Markov chain in an arbitrary initial state, after a ‘burn-in’ period the state

of the designed Markov chain is (roughly speaking) a sample from a distribution that closely

approximates the invariant/posterior distribution (where closeness is typically measured in

terms of the total variation distance). MCMC, however, is known to suffer from high vari-

ance, complex diagnostics, and has poor scaling properties with the problem dimension [ 25 ].

Furthermore, as we will show below, sample-based methods in chance constrained settings

can produce non-convex feasible sets, even when the ‘true’ problem is convex feasible. Cou-

pled with the high variance of the methods, it may not be appropriate to use MCMC (or

other sampling methods) to solve data-driven chance constrained problems like (BJCCP).

Variational Bayesian (VB) methods [ 25 ], in contrast, use optimization to compute an

approximation to the posterior distribution from a class of ‘simpler’ distribution functions

(that does not, necessarily, contain the posterior) called the variational family, by mini-

mizing divergence from the posterior distribution. Importantly, the posterior distribution

being intractable, VB methods optimize a surrogate objective that lower bounds the di-

vergence measure, and the optimizer of the surrogate is precisely the posterior distribution

when the class of distributions includes it. The Kullback-Leibler divergence is a standard

choice in VB methods [ 25 ], though there is increasing interest in α-Rényi divergence as

well [  26 ] which yield approximations that have better support coverage. Broadly speaking,

VB methods trade variance for bias; specifically, there is no sampling variance, but since the

variational family does not contain the ‘true’ posterior, there is often an unavoidable bias

that is introduced. From the perspective of solving data-driven chance constrained stochastic

optimization problems, this trade-off may be appropriate, since the approximation (under

very general conditions, as we show) is often necessarily convex feasible. Consequently, we

focus on Kullback-Leibler divergence-based VB methods and consider the question of asymp-

totic consistency (in the large sample limit) of the variational approximation (VBJCCP) to

(BJCCP).

Besides proposing (BJCCP) and (VBJCCP) (see Section  4.3 below), our primary contri-

butions are to
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1. Demonstrate the convex feasibility of the joint chance constraint (VBJCCP) when the

posterior distribution belongs to a ‘nice’ class of distributions.

2. Establish the ‘frequentist’ statistical consistency of the value of both (BJCCP) and

(VBJCCP) in the limit of a large data-set and a single chance constraint.

3. Quantify the consistency results for the value of both (BJCCP) and (VBJCCP), by

establishing a probabilistic rate of convergence for a single chance constraint.

Frequentist consistency of Bayesian methods demonstrate that the Bayesian posterior

concentrates on the ‘true’ parameter θ0 of the data generating distribution in the large sam-

ple limit. Typically this is demonstrated by showing that the posterior converges weakly to

a Dirac delta distribution concentrated at θ0 in probability or almost surely under the data-

generating distribution [ 111 ]. Here, we consider the frequentist consistency of the value of

(VBJCCP), and establish convergence in probability results demonstrating the consistency

of VB approximations in Theorem  4.4.3 and a probabilistic rate of convergence in Theo-

rem  4.4.2 . Furthermore, as direct corollaries, we can easily recover consistency and rates of

convergence for (BJCCP).

4.1.1 Relevant Literature

To the best of our knowledge, Bayesian models of data-driven chance constrained opti-

mization have not been considered before in the literature. At the outset, we note that there

is precedence for Bayesian formulations of data-driven stochastic optimization problems –

for instance, [ 15 ] develop the so-called Bayesian risk optimization (BRO) decision-making

framework and establish frequentist consistency of the optimal value in the large sample

limit; see recent follow-on work [ 37 ], [ 38 ] as well. In [ 39 ], an approximate Bayesian for-

mulation of the risk-sensitive decision-making problem is considered and, again, frequentist

consistency results are established. Neither of these papers consider the chance constrained

setting of this chapter.

Nonetheless, there is an extensive literature on data-driven methods for solving chance

constrained optimization problems, specifically scenario-based (SB) approaches [ 40 ]–[ 42 ],
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distributionally robust optimization (DRO) [ 40 ], [ 43 ]–[ 45 ] and sample average approximation

(SAA) [ 46 ], [ 47 ]. This is by no means a comprehensive literature review, but highlights

the range of approaches that have been explored. We direct the reader to the excellent

recent review paper [ 48 ] for a comprehensive overview of the literature on data-driven chance

constrained optimization.

Both scenario and SAA approaches use samples from the uncertainty probability measure

in (TP) to compute an estimate of the solution. However, this presumes that it is possible

to access the uncertainty measure, which may not be possible in practice. In the DRO ap-

proach, the uncertainty measure is assumed to belong to a pre-defined class of probability

measures and the chance constraints are required to be satisfied by every probability measure

in this ‘ambiguity set.’ In the data-driven setting, the ambiguity set is constructed ‘centered’

(defined, for instance, through the Wasserstein metric) around the empirical measure com-

puted using samples of the parameter, which in the large sample limit converges to the true

uncertainty measure; see [ 49 ] which establishes the consistency of chance-constrained DRO

with Wasserstein ambiguity sets. This highlights an important difference with our current

setting, where the posterior distribution (or its approximation) is used as a quantification of

the epistemic uncertainty about the ‘true’ parameter θ0, and is shown to weakly converge

to a Dirac delta distribution concentrated at θ0, in the limit of a large covariate sample size

X̃n.

The rest of the chapter is laid out as follows. In the next section we introduce necessary

notation and definitions that will be used throughout the chapter. In Section  4.3 we detail

both (BJCCP) and (VBJCCP) providing a clean rationale for the modeling framework,

and demonstrate the convex feasibility of (VBJCCP). Next, in Section  4.4 we first establish

the asymptotic consistency of the optimal value and the optimizers of (VBJCCP) under

general conditions on the objective and constraint functions and then establish convergence

rates for values of (VBJCCP) and (BJCCP). We end in Section  4.5 with a simulation result

demonstrating the efficacy of our approach in solving an optimal staffing problem.
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4.2 Notations and Definitions

In this section, we introduce important notations and definitions used throughout

the chapter. We define an indicator function for any arbitrary set A as IA(t) :=

1 if t ∈ A or 0 if t /∈ A . Let ‖ · ‖ denote the Euclidean norm. Let δθ represent the Dirac

delta distribution function, or singularity, concentrated at the parameter θ. Given an en-

semble of random variables X̃n distributed as P n
0 for any n ≥ 1, following [ 91 ] we define the

convergence of a sequence of random mappings {fn : X̃n → R} to f in P n
0 - probability as

limn→∞ P
n
0 (|fn − f | > ε) = 0 for any ε > 0. We also use the notation limn→∞ fn

Pn0= f or

fn
Pn0→ f as n → ∞ to denote convergence in P n

0 - probability. Next, we define degenerate

distributions as

Definition 4.2.1 (Degenerate distributions). A sequence of distributions {qn(θ)} converges

weakly to δθ that is, qn(θ)⇒ δθ for a θ ∈ Θ, if and only if ∀η > 0 limn→∞
∫
{‖θ−θ‖>η} qn(θ)dθ =

0.

Definition 4.2.2 (Rate of convergence). A sequence of distributions {qn(θ)} converges

weakly to δθ1, ∀θ1 ∈ Θ at the rate of γn if

(1) the sequence of means {θ̌n :=
∫
θqn(θ)dθ} converges to θ1 as n→∞, and

(2) the variance of {qn(θ)} satisfies Eqn(θ)[‖θ − θ̌n‖2] = O
(

1
γ2
n

)
.

We also define rescaled density functions as follows.

Definition 4.2.3 (Rescaled density). For a random variable ξ distributed as d(ξ) with ex-

pectation ξ̃, for any sequence of matrices {tn}, the density of the rescaled random variable

µ := tn(ξ − ξ̃) is ďn(µ) = |det(t−1
n )|d(t−1

n µ + ξ̃), where det(·) represents the determinant of

the matrix.

Next, recall the definition of a test function [ 110 ].

Definition 4.2.4 (Test function). Let X̃n be a sequence of random variables on measurable

space (Rq×n,Sn). Then any Sn-measurable sequence of functions {φn}, φn : X̃n 7→ [0, 1] ∀n ∈

N, is a test of a hypothesis that a probability measure on Sn belongs to a given set against
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the hypothesis that it belongs to an alternative set. The test φn is consistent for hypothesis

P n
0 against the alternative P n ∈ {P n

θ : θ ∈ Θ\{θ0}} if EPn [φn] → I{θ∈Θ\{θ0}}(θ),∀θ ∈ Θ as

n→∞, where I{·} is an indicator function.

A classic example of a test function is φKS
n = I{KSn>Kν}(θ) that is constructed using

the Kolmogorov-Smirnov statistic KSn := supt |Fn(t) − Fθ(t)|, where Fn(t) and Fθ(t) are

the empirical and true distribution respectively, and Kν is the confidence level. If the null

hypothesis is true, the Glivenko-Cantelli theorem [ 109 , Theorem 19.1] shows that the KS

statistic converges to zero as the number of samples increases to infinity.

4.3 Variational Bayesian Chance Constrained Optimization

Consider a parameterized joint probability distribution P n
θ over Rd×n, where θ ∈ Rq

and let pnθ (·) represent the corresponding density. We observe a random sample X̃n =

{X1, X2, . . . , Xn} drawn from P n
θ0 ≡ P n

0 . Note that X̃n need not be an independent and

identically distributed (IID) sequence. Recall from ( 4.1 ) that the Bayesian approach com-

putes a posterior over the unknown ‘true’ parameter θ0, giving rise to the Bayesian joint

chance-constrained optimization problem (BJCCP).

As noted in the introduction, there are the two significant challenges in solving (BJCCP):

(i) Computing the posterior distribution. While in some cases conjugate priors can be

used, this is not appropriate in most problems. In general, posterior computation is

intractable, and it is the common motivation for using approximate Bayesian inference

methods [ 25 ] .

(ii) Convexity of the feasible set. Observe that, even if the posterior distribution is com-

putable, to qualify (BJCCP) as a convex program, the feasible set,

{a ∈ A : Π
(
gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ β} (4.2)

must be convex. However, it is possible that this set is not convex, even when the

underlying constraint functions gi(a, θ), i ∈ {1, 2, . . .m} are (in a) and, thus, finding a

140



global optimum becomes challenging [ 119 ]. This raises the canonical question of when

(VBJCCP) and (BJCCP) are convex feasible.

Note that, if the constraint function has some structural regularity and the posterior

distribution belongs to an appropriate class of distributions, then it can be shown that the

feasible set in ( 4.2 ) is convex. For instance,

Proposition 4.3.1. [ 2 , Theorem 2.5] If the constraint functions gi(a,y), i ∈ {1, 2, . . .m}

for a ∈ X and y ∈ Rq are quasi-convex in (a,y) and θ is a random variable with log-concave

probability distribution, then the feasible set in (BJCCP) is convex.

Proof. The proof is a direct consequence of the result in Theorem 2.5 in [  2 ].

Furthermore, [ 120 ] showed that if the constraint function gi(a, θ) is of the form {aTa ≤ b},

where θ = (aT ,b)T and has a symmetric log-concave density then with β > 1
2 the feasible

set in (BJCCP) is convex.

To address the posterior intractability, Monte Carlo (MC) methods offer one way to

do approximate Bayesian inference with asymptotic guarantees. However, their asymptotic

guarantees are offset by issues like poor mixing, large variance and complex diagnostics in

practical settings with finite computational budgets [ 24 ], [ 121 ]. Apart from these common

issues, there is another important reason due to which any sampling-based method can-

not be used directly to solve (BJCCP): using the empirical approximation to the posterior

distribution (constructed using the samples generated from MCMC algorithm) to approxi-

mate the chance-constraint feasible set in (BJCCP), results in a non-convex feasible set [ 51 ].

To illustrate this, consider the following simple example of a chance-constraint feasible set

motivated by [ 51 ].

Example 4.3.1. Figure  4.1 (a) plots the chance-constraint feasible set

{
a ∈ R2 : N

(
θTa− 1 ≤ 0|µ = [0, 0]T ,ΣA = [1,−0.1;−0.1, 1]

)
> β

}
, (4.3)

and its empirical approximator using 8000 MCMC samples (Metropolis-Hastings with a

‘burn-in’ of 3000 samples) generated from the underlying correlated multivariate Gaussian
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(a) σA12 = −0.1 (b) σB12 = −0.025 (c) σB12 = 0.025 (d) σB12 = 0.1

Figure 4.1. Feasible Region : True Distribution vs Monte Carlo Approxima-
tion (5000 samples) vs. VB (mean field approximation).

distribution. We fix β = 0.9. We observe that the resulting MC approximate feasible set is

non-convex.

Next, we show that using the popular ‘mean-field variational family’ [ 25 ] to approximate

the correlated multivariate Gaussian distribution in the same example in ( 4.3 ), we obtain a

smooth and convex approximation to the (BJCCP) feasible set. First, we compute mean-field

approximation qA(θ) and qB(θ) of N
(
θ|µ = [0, 0]T ,Σ

)
for four different covariance matrices

Σ, with fixed variance σ11 = σ22 = 1 but varying covariance σ12 = {−0.1,−0.025, 0.025, 0.1}.

Then, we plot the respective approximate VB chance-constraint feasibility region in Fig-

ure  4.1 . We observe that VB approximation provides a smooth convex approximation to

the true feasibility set, but it could be outside the true feasibility region if the ξ1 and ξ2 are

positively correlated.

4.3.1 Variational Bayes

Variational Bayes (VB) methods are an alternative method for computing an approximate

posterior. Standard VB minimizes the Kullback-Leibler (KL) divergence measure to compute

q∗, the element in a given class of distributions Q that is ‘closest’ to the posterior π(θ|X̃n):

q∗(θ|X̃n) ∈ argminq∈Q KL(q(θ)‖π(θ|X̃n)) :=
∫
q(θ) log q(θ)

π(θ|X̃n)
dθ. (4.4)
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Using this, we approximate (BJCCP) with,

min
x∈X

EQ∗(θ|X̃n)[R(a, θ)] (VBJCCP)

s.t. Q∗
(
gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ β,

where β is the confidence level and for any set A ⊆ Θ, Q∗(A|X̃n) =
∫
A q
∗(θ|X̃n)dθ. Observe

that the optimization problem ( 4.4 ) is infeasible, since the posterior is unknown. However,

unpacking the KL divergence, we see that

KL(q(θ)‖π(θ|X̃n)) =
∫
q(θ) log q(θ)

π(θ, X̃n)
dθ + log

∫
pnθ (X̃n)π(θ)dθ. (4.5)

Since, log
∫
pnθ (X̃n)π(θ)dθ is a constant (with respect to q), minimizing the KL divergence is

equivalent to maximizing
∫
q(θ) log π(θ,X̃n)

q(θ) dθ. Since, KL divergence is non-negative, it follows

that the log-evidence satisfies

log
∫
pnθ (X̃n)π(θ)dθ ≥

∫
q(θ) log π(θ, X̃n)

q(θ) dθ

= −KL(q(θ)‖π(θ)) +
∫

log pnθ (X̃n) q(θ)dθ, (ELBO)

and the bound is tight if and only if the optimizer q∗(·) is the ‘true’ posterior distribution.

Thus, an approximate posterior can be computed by maximizing the so-called evidence lower

bound (ELBO) in the final expression above:

q∗(θ|X̃n) ∈ arg max
q∈Q

∫
log pnθ (X̃n) q(θ)dθ −KL(q(θ)‖π(θ)). (4.6)

Choosing the approximation to the posterior distribution from a class of ‘simple’ distri-

butions would facilitate in addressing the two critical problems associated with (BJCCP).

Besides the tractability of the posterior distribution, for instance, using the results in [  2 ]

and [ 120 ] the choice of a log-concave family of distributions as the approximating family

could retain the convexity of the feasible set, if the constraint functions have certain struc-

tural regularity.
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As Example  4.3.1 shows, the VB approximation of the feasbility set could include in-

feasible points, in general. This raises the question of whether the VB approximation can

be consistent (in some appropriate sense) when the sample size n is large. In other words,

is there a notion of ‘frequentist’ consistency of the feasbility set, the optimal values and

solutions? We address this question in the remainder of the chapter.

4.4 Asymptotic Analysis

In this section, we first identify regularity conditions on the prior distribution, the

likelihood model, the variational family, and the risk and constraint functions to establish

the rate at which the feasible region of (VBJCCP) coincides with the true feasible region.

Then, under similar regularity conditions, we derive the convergence rate of the optimal

value of (VBJCCP) to that of (TP), in the setting with a single constraint function (i.e.,

m = 1). We derive the convergence rate result under very mild conditions on the prior

distribution and the likelihood models that are, nonetheless, hard to verify in practice for

many problems of interest. Therefore, under more restrictive, but easily verifiable, regularity

conditions we show that the the optimal values V ∗V B of (VBJCCP) converges to the optimal

value V ∗ of (TP) at θ = θ0 (respectively), in P n
0 −probability as the number of samples

converges to infinity, again in the setting with a single constraint function. Note that it

follows from the definition of the VB posterior q∗(θ|X̃n) in ( 4.4 ) that when the variational

family Q consists of all possible distributions then q∗(θ|X̃n) coincides with the true posterior

distribution. Consequently, all of our theoretical results for (VBJCCP) trivially extend to

(BJCCP).

4.4.1 Convergence rate and feasibility guarantee

We state the assumptions under which we establish the rate of convergence and feasibility

guarantee results. Let Ln : Θ×Θ 7→ [0,∞) be an arbitrary loss function that measures the

distance between parameters and also depends on n.
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Assumption 4.4.1. Let {εn} ⊂ (0,∞) be a sequence such that εn → ∞ and nε2n ≥ 1

as n → ∞. Fix n ≥ 1. Then, for Ln(θ, θ0) ≥ 0 and any ε > εn, ∃ a test function

φn,ε : X̃n 7→ [0, 1] and sieve set Θn(ε) ⊆ Θ such that

(i) EPn0 [φn,ε] ≤ C0 exp(−Cnε2), and

(ii) sup
{θ∈Θn(ε):Ln(θ,θ0)≥C1nε2}

EPn
θ

[1− φn,ε] ≤ exp(−Cnε2).

Assumption  4.4.1 (i) quantifies the rate at which a Type-1 error diminishes with the

sample size, while the condition in Assumption  4.4.1 (ii) quantifies that of a Type-2 error.

Assumption  4.4.2 below ensures the prior distribution places ‘sufficient’ mass on the sieve

set Θn(ε) defined in Assumption  4.4.1 .

Assumption 4.4.2. Let {εn} ⊂ (0,∞) be a sequence such that εn → ∞ and nε2n ≥ 1 as

n→∞. Fix n ≥ 1. Then, the prior distribution satisfies EΠ[I{Θcn(ε)}] ≤ exp(−Cnε2).

Notice that Assumption  4.4.2 is trivially satisfied if Θn(ε) = Θ. The next assumption

ensures that the prior distribution places sufficient mass around a neighborhood An, defined

using the Rényi divergence, of the true parameter θ0.

Assumption 4.4.3. Fix n ≥ 1 and a constant λ > 0. Let An :=

{θ ∈ Θ : D1+λ (P n
0 ‖P n

θ ) ≤ C3nε
2
n} , where D1+λ (P n

0 ‖P n
θ ) := 1

λ
log

∫ (dPn0
dPn
θ

)λ
dP n

0 is the Rényi

divergence between P n
0 and P n

θ , assuming P n
0 is absolutely continuous with respect to P n

θ .

The prior distribution satisfies EΠ[I{An}] ≥ exp(−nC2ε
2
n).

Observe that the set An defines a neighborhood of the distribution corresponding to θ0.

If Assumption  4.4.3 is violated then the posterior too will place no mass in this neighborhood

of θ0, implying asymptotic inconsistency. Assumptions  4.4.1 ,  4.4.2 , and  4.4.3 are adopted

from [  91 ] and has also been used in [ 122 ] to prove convergence rates of variational posteriors.

Our main result demonstrating the rate of convergence follows a series of lemmas. All

the proofs (except main results) can be found in Section  4.6 . We first recall the following

result from [ 122 ],

Lemma 4.4.1 (Theorem 2.1 [ 122 ]). For any Ln(θ, θ0) ≥ 0 and δ > 0, un-

der Assumptions  4.4.1 ,  4.4.2 , and,  4.4.3 , and for C > C2 + C3 + 2 and η2
n :=
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1
n

infq∈Q EPn0
[∫
θ q(θ) log q(θ)

π(θ|X̃n)dθ
]
, the VB approximator of the true posterior, q∗(θ|X̃n), sat-

isfies,

P n
0

[∫
θ
Ln(θ, θ0)q∗(θ|X̃n)dθ > nδ

]
≤ M

δ
(ε2n + η2

n) (4.7)

for some constant M that depends on the C,C1, C2, and C3.

As noted before in Assumption  4.4.1 , the distance function Ln(θ, θ0) is arbitrary and it

quantifies the distance between model P n
θ and P n

0 . For instance, Ln(θ, θ0) could be chosen to

be n‖θ − θ0‖. Also, note that the rate comprises of two sequences ε2n and η2
n. The sequence

εn is the rate of convergence of the true posterior. In particular, [ 91 ] established εn as the

rate of convergence of the true posterior under Assumptions  4.4.1 ,  4.4.2 , and  4.4.3 . On the

other hand, evident from its definition, the second sequence in the VB convergence rate is

due to the variational approximation. Moreover, it is straightforward to observe that when

Q is the family of all possible distributions, η2
n is 0. Furthermore, under certain conditions

on the variational family Q (see Assumption  4.4.4 ), it can be shown that η2
n is bounded

above by another convergent sequence ε2n. In fact, in Lemma  4.5.3 we show that εn = εn for

the prior, the likelihood and the variational family chosen for the optimal staffing problem

discussed in Section  4.5 .

We first use the result above to prove the finite sample feasibility guarantee of the (VB-

JCCP) solution. Let us define the set where the true constraint i ∈ {1, 2, . . .m} is satis-

fied as F i
0 := {a ∈ A : {gi(a, θ0) ≤ 0}, }, and VB-approximate feasible set is denoted as

F̂V B(X̃n) := {a ∈ A : Q∗
(
gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ β}. We show that the

solutions obtained for (VBJCCP) are feasible for (TP) with high probability. In particular,

we show that if a point does not satisfy any of the constraints, then the probability of that

point being in the VB approximate feasible set decays at a certain rate. We quantify that

rate in the following result.

146



Theorem 4.4.1. For any i ∈ {1, 2, . . . ,m} let a ∈ A\F i
0 and Li

n(θ, θ0) :=

n supa∈A I(0,∞)(gi(a, θ0)−gi(a, θ)) satisfies Assumption  4.4.1 . Then under Assumptions  4.4.2 

and  4.4.3 , there exists a constant Ci > 0 for each i ∈ {1, 2, . . .m}, such that

P n
0 [a ∈ F̂V B(X̃n)] ≤ Ci

β
(ε2n + η2

n),

where ε2n → 0 as n→∞ and η2
n = 1

n
infq∈Q EP0

[
KL(q(θ)‖π(θ|X̃n))

]
.

Proof. Using Markov’s inequality observe that for any a ∈ A,

P n
0 [Q∗

(
gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ β] ≤ 1

β
E0[Q∗

(
∩mi=1{gi(a, θ) ≤ 0}|X̃n

)
]

≤ 1
β

E0[Q∗
(
{gi(a, θ) ≤ 0}|X̃n

)
] (4.8)

for any i ∈ {1, . . . ,m}. Fixing i ∈ {1, . . . ,m}, since a ∈ A\F i
0 implies that a ∈ {gi(a, θ0) >

0}, it follows that {gi(a, θ) ≤ 0} ⊆ {gi(a, θ) < gi(a, θ0)}. Therefore, for all a ∈ A\F i
0, it

follows from ( 4.8 ) that

P n
0 [Q∗

(
gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ β] ≤ 1

β
E0[Q∗

(
{gi(a, θ) < gi(a, θ0)}|X̃n

)
].

(4.9)

Now using [ 122 , Theorem 2.1], it follows that if Li
n(θ, θ0) := n supa∈A I(0,∞)(gi(a, θ0) −

gi(a, θ)) satisfies Assumption  4.4.1 , then there exists a constant Ci

such that E0[Q∗
(
{gi(a, θ) < gi(a, θ0)}|X̃n

)
] ≤ Ci(ε2n + η2

n), where η2
n :=

1
n

infq∈Q EP0

[∫
θ q(θ) log q(θ)

π(θ|X̃n)dθ
]
. Finally, using Theorem  4.4.1 in ( 4.9 ), the assertion

follows immediately.

Now, we state a straightforward corollary of the result above establishing feasibility

guarantee of the (BJCCP) solution.
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Corollary 4.4.1. For any i ∈ {1, 2, . . . ,m} let a ∈ A\F i
0 and Li

n(θ, θ0) :=

n supa∈A I(0,∞)(gi(a, θ0)−gi(a, θ)) satisfies Assumption  4.4.1 . Then under Assumptions  4.4.2 

and  4.4.3 , there exists a constant Ci > 0 for each i ∈ {1, 2, . . .m}, such that

P n
0 [a ∈ F̂B(X̃n)] ≤ Ci

β
ε2n,

where F̂B(X̃n) := {a ∈ A : Π
(
gi(a, θ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|X̃n

)
≥ β}, ε2n → 0 as n→∞.

Proof. The proof follows straightforwardly from Theorem  4.4.1 and the fact that q∗(θ|X̃n)

is the same as the true posterior distribution and η2
n = 0, when the variational family Q is

fixed to the set of all possible distributions on Θ.

To leverage the result in Lemma  4.4.1 in establishing the rate of convergence of the

optimal value of (VBJCCP), we now fix Ln(θ, θ0) to specific positive distance functions in

the following two lemmas. Lemma  4.4.2 establishes a rate of convergence of the VB posterior

constraint set to the true constraint set.

Lemma 4.4.2. If L1
n(θ, θ0) = n supa∈A |I(−∞,0](g(a, θ))− I(−∞,0](g(a, θ0))| satisfies Assump-

tion  4.4.1 , then under the conditions of Lemma  4.4.1 , for any δ > 0, we have

P n
0

[
sup
a∈A
|Q∗

(
g(a, θ) ≤ 0|X̃n

)
− I(−∞,0](g(a, θ0))| > δ

]
≤ M1

δ
(ε2n + η2

n), (4.10)

for a positive constant M1.

In the following lemma, we establish the rate of convergence of the expected cost function

under VB posterior to the true cost function.

Lemma 4.4.3. If L2
n(θ, θ0) = n supa∈A |R(a, θ)−R(a, θ0)| satisfies Assumption  4.4.1 , then

under conditions of Lemma  4.4.1 for any δ > 0,

P n
0 [ sup

a∈A
|Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)| > δ] ≤ M2

δ
(ε2n + η2

n). (4.11)

The next theorem proves a rate of convergence on the optimal value of (VBJCCP) as a

consequence of the lemmas above.
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Theorem 4.4.2. If L1
n(θ, θ0) = n supa∈A |I(−∞,0](g(a, θ))− I(−∞,0](g(a, θ0))| and L2

n(θ, θ0) =

n supa∈A |R(a, θ) − R(a, θ0)| satisfy Assumption  4.4.1 , then under Assumption  4.4.2 

and  4.4.3 , and when X is compact, for (fixed) constants M1 > 0 and M2 > 0 , we have

for any η > 0 and δ ∈ (0, β)

P n
0 [|V ∗V B(X̃n)− V ∗| > 2η] ≤

[
M1

min(δ, 1− β) + M2

η

]
(ε2n + η2

n),

where ε2n → 0 as n→∞ and η2
n := 1

n
infq∈Q EP0

[∫
θ q(ξ) log q(ξ)

π(ξ|X̃n)dξ
]
.

Proof. Recall S∗V B(X̃n) is the solution of (VBJCCP) and S∗ is the solution of (TP) with

θ = θ0. Observe that, since both Q∗
(
g(a, θ) ≤ 0|X̃n

)
and I(−∞,0](g(a, θ0)) are upper- semi-

continuous their corresponding super-level sets are closed, and since A is compact the corre-

sponding feasible sets are also compact. Also, if the corresponding feasible sets are non-empty

then the corresponding optimal sets S∗V B(X̃n) and S∗ are too.

Next fix a point a∗ in the true solution set of (TP). Since A is compact, for any ε > 0,

there is a ∈ A such that for any ε > 0, there exists a ∈ A such that ‖a − a∗‖ < ε and

g(a, θ0) ≤ 0. This implies that there exists a sequence {ak} ⊂ A such that ak → a∗ as

k → ∞ and g(ak, θ0) ≤ 0 for all k ≥ 1 Now fix a ∈ A such that g(a, θ0) ≤ 0 and, using

Lemma  4.4.2 , observe that for all n ≥ n0

P n
0 [|Q∗

(
g(a, θ) ≤ 0|X̃n

)
− I(−∞,0](g(a, θ0))| > δ]

= P n
0 [|Q∗

(
g(a, θ) ≤ 0|X̃n

)
− 1| > δ] ≤ M1

δ
(ε2n + η2

n).

Now, fix β ∈ (0, 1) and let δ = 1−β. It follows from the above inequality that, for all n > n0

P n
0 [Q∗

(
g(a, θ) ≤ 0|X̃n

)
< 1− δ] = P n

0 [Q∗
(
g(a, θ) ≤ 0|X̃n

)
≤ β] ≤ M1

1− β (ε2n + η2
n).

Notice that for a ∈ A such that g(a, θ0) ≤ 0, {a ∈ X : Q∗
(
g(a, θ) ≤ 0|X̃n

)
> β} ⊆ {a ∈ X :

Eq∗(θ|X̃n)[R(a, θ)] ≥ V ∗V B(X̃n)}. Hence, for all n ≥ n0,

P n
0 [Eq∗(θ|X̃n)[R(a, θ)] < V ∗V B(X̃n)] ≤ M1

1− β (ε2n + η2
n). (4.12)
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Next, using the result in part(1) of Lemma  4.4.3 , for all n ≥ n0, any x ∈ A, and δ > 0

P n
0 [|Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)| > δ] ≤ M2

δ
(ε2n + η2

n). (4.13)

Observe that, for any η > 0

P n
0 [R(a, θ0)− V ∗V B(X̃n) < −2η]

≤ P n
0 [Eq∗(θ|X̃n)[R(a, θ)]− V ∗V B(X̃n) < −η] + P n

0 [R(a, θ0)− Eq∗(θ|X̃n)[R(a, θ)] < −η]

≤ P n
0 [{Eq∗(θ|X̃n)[R(a, θ)]− V ∗V B(X̃n) < −η}] + M2

η
(ε2n + η2

n)

≤ P n
0 [{Eq∗(θ|X̃n)[R(a, θ)]− V ∗V B(X̃n) < 0}] + M2

η
(ε2n + η2

n)

≤ M1

1− β (ε2n + η2
n) + M2

η
(ε2n + η2

n) =
[
M1

1− β + M2

η

]
(ε2n + η2

n),

where the second inequality follows from ( 4.13 ) and the last inequality uses ( 4.12 ). Now,

since a can be chosen arbitrarily close to a∗, it follows that

P n
0 [V ∗ − V ∗V B(X̃n) < −2η] = P n

0 [V ∗ − V ∗V B(X̃n) < −2η] ≤
[
M1

1− β + M2

η

]
(ε2n + η2

n). (4.14)

Next, let ân ∈ S∗V B; that is ân ∈ A, Q∗
(
g(ân, θ) ≤ 0|X̃n

)
≥ β and V ∗V B(X̃n) =

Eq∗(θ|X̃n)[R(ân, θ)]. Since A is compact, we assume that ân → a0 (the limit point of the

sequence {ân} ⊆ A).

Recall that Lemma  4.4.2 holds uniformly over any a ∈ A, therefore using the fact

that Q∗ (g(ân, θ) ≤ 0|Xn) − I(−∞,0](g(ân, θ0)) ≤ |Q∗ (g(ân, θ) ≤ 0|Xn) − I(−∞,0](g(ân, θ0))| ≤

supa∈A |Q∗ (g(a, θ) ≤ 0|Xn)− I(−∞,0](g(a, θ0))|, we have for all n ≥ n0 and δ > 0,

P n
0

[
Q∗ (g(ân, θ) ≤ 0|Xn) ≤ I(−∞,0](g(ân, θ0)) + δ

]
≥ 1− M1

δ
(ε2n + η2

n). (4.15)
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Next using the fact that Q∗
(
g(ân, θ) ≤ 0|X̃n

)
≥ β for every n ≥ 1, it follows that ân is a feasi-

ble point of (TP) for δ ≤ β, that is
{
a ∈ X : Q∗ (g(ân, θ) ≤ 0|Xn) ≤ I(−∞,0](g(ân, θ0)) + δ

}
⊂

{a ∈ X : I(−∞,0](g(ân, θ0)) + δ ≥ β}. Therefore, it follows that

{
Q∗ (g(ân, θ) ≤ 0|Xn) ≤ I(−∞,0](g(ân, θ0)) + δ

}
⊆ {I(−∞,0](g(ân, θ0)) + δ ≥ β}

⊆ {R(ân, θ0) ≥ V ∗}, (4.16)

since the penultimate condition implies that the ân is a feasible point of (TP). There-

fore, for any δ ≤ β, P n
0 [R(ân, θ0) ≤ V ∗] ≤ M1

δ
(ε2n + η2

n). Since Lemma  4.4.3 holds

uniformly over all a and therefore using the fact that R(ân, θ0) − Eq∗(θ|X̃n)[R(ân, θ)] ≤

|Eq∗(θ|X̃n)[R(ân, θ)]−R(ân, θ0)| ≤ supa∈A |Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)|, for any δ > 0, we have

P n
0

[
Eq∗(θ|X̃n)[R(ân, θ)] + δ ≥ R(ân, θ0)

]
= P n

0

[
V ∗V B(Xn) + δ ≥ R(ân, θ0)

]
≥ 1− M2

δ
(ε2n + η2

n),

and therefore P n
0

[
V ∗V B(X̃n) + δ ≤ R(ân, θ0)

]
≤ M2

δ
(ε2n + η2

n). Observe that for any η > 0

P n
0 [V ∗ − V ∗V B(Xn) ≥ 2η]

≤ P n
0 [V ∗ −R(ân, θ0) ≥ η] + P n

0 [R(ân, θ0)− V ∗V B(Xn) ≥ η]

≤ P n
0 [V ∗ −R(ân, θ0) ≥ 0] + P n

0 [R(ân, θ0)− V ∗V B(Xn) ≥ η]

≤ M1

δ
(ε2n + η2

n) + M2

η
(ε2n + η2

n) =
[
M1

δ
+ M2

η

]
(ε2n + η2

n), (4.17)

where δ < β.

Combining equation ( 4.14 ) and ( 4.17 ), we obtain

P n
0 [|V ∗ − V ∗V B(Xn)| ≥ 2η] ≤ max

([
M1

δ
+ M2

η

]
,

[
M1

1− β + M2

η

])
(ε2n + η2

n)

=
[

M1

min(δ, 1− β) + M2

η

]
(ε2n + η2

n). (4.18)

The next result establishes the convergence rate of the optimal value of (BJCCP) with

single constraint.
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Corollary 4.4.2. If L1
n(θ, θ0) = n supa∈A |I(−∞,0](g(a, θ))− I(−∞,0](g(a, θ0))| and L2

n(θ, θ0) =

n supa∈A |R(a, θ) − R(a, θ0)| satisfy Assumption  4.4.1 , then under Assumption  4.4.2 

and  4.4.3 , and when X is compact, for (fixed) constants M1 > 0 and M2 > 0 , we have

for any η > 0 and δ ∈ (0, β)

P n
0 [|V ∗B(X̃n)− V ∗| > 2η] ≤

[
M1

min(δ, 1− β) + M2

η

]
ε2n,

where V ∗B(X̃n) is the optimal value of (BJCCP) with single constraint and ε2n → 0 as n→∞.

Proof. The proof is a direct consequence of Theorem  4.4.2 and the fact that V ∗V B is the

same as V ∗B and η2
n = 0, when the variational family Q is fixed to the set of all possible

distributions on Θ.

Characterizing η2
n

In order to characterize η2
n, we specify conditions on variational family Q such that

η2
n = O(ε2n), for some εn ≥ 1√

n
and εn → 0 as n→∞. We impose following condition on the

variational family Q that lets us obtain a bound on η2
n.

Assumption 4.4.4. There exists a sequence of distributions {qn(·)} ⊂ Q such that for a

positive constant C1, 1
n

[
KL (qn(θ)‖π(θ)) + Eqn(θ)

[
KL

(
dP n

0 (X̃n)‖dP n
θ (X̃n)

)]]
≤ C1ε

2
n.

If the observations in X̃n are i.i.d, then observe that
1
n
Eqn(θ)

[
KL

(
dP n

0 (X̃n))‖dP n
θ (X̃n)

)]
= Eqn(θ) [KL (dPλ0)‖dPθ(ξ))] . Intuitively, this as-

sumption implies that the variational family must contain a sequence of distributions

that converges weakly to a Dirac delta distribution concentrated at the true parameter θ0

otherwise the second term in the LHS of Assumption  4.4.4 will be non-zero. We demonstrate

the satisfaction of Assumption  4.4.4 for a specific variational family in Lemma  4.5.3 .

Proposition 4.4.1. Under Assumption  4.4.4 and C9 > 0, η2
n ≤ C9ε

2
n.
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Existence of Tests

Recall that our convergence rates and finite sample feasibility guarantee depend on exis-

tence of certain tests for the specified distance functions. We prove a general result which is

applicable to distance functions for which the set {θ ∈ Θ : Ln(θ, θ0) > nε2} is fixed for any

ε ∈ (0, 1] and is a null set for any ε > 1 (for example such distance functions should satisfy

n−1Ln(θ, θ0) ∈ {0, 1}). Notice that the distance functions L1
n(θ, θ0) in Theorem  4.4.2 and

Li
n(θ, θ0) in Theorem  4.4.1 satisfy these conditions.

We recall the following result from [ 91 , Lemma 7.2] which is due to Le Cam.

Lemma 4.4.4. Suppose that there exist tests ωn such that for fixed sets P0 and P1, of

probability measures

sup
Pn0 ∈P0

EPn0 [ωn]→ 0 and sup
Pn∈P1

EPn [1− ωn]→ 0 as n→∞,

then there exist tests φn and constants K > 0 such that

sup
Pn0 ∈P0

EPn0 [φn] ≤ e−Kn and sup
Pn∈P1

EPn [1− φn] ≤ e−Kn.

Proposition 4.4.2. Given Θ ⊆ Rd, if there exists a sequence of test function φn,ε for any

ε > 1, such that EPn0 [φn,ε] ≤ e−Knε2, then the distance functions Li
n(θ, θ0) in Theorem  4.4.1 

for any i ∈ {1, . . . ,m} and L1
n(θ, θ0) in Theorem  4.4.2 satisfy Assumption  4.4.1 .

For the distance function L2
n(θ, θ0) in Theorem  4.4.2 , we have to use [ 91 , Lemma 7.1] or

construct an explicit test function to satisfy Assumption  4.4.1 . Interested readers may refer

to [  39 ], [  91 ], [  122 ] for further discussions on existence of tests and/or constructing bespoke

test functions.

4.4.2 Asymptotic consistency

Although, the rate of convergence result implies asymptotic consistency, it will be evident

from the application presented in Section  4.5 that the regularity conditions required to

compute the rate are difficult to verify in practice. Consequently, in this section, we identify
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slightly more restrictive, but more easily verifiable, conditions on the prior, likelihood, and

the variational family to guarantee asymptotic consistency of the optimal value and solution

of (VBJCCP). We assume that m = 1 in the remainder of this section.

First, we impose the following conditions on the prior distribution.

Assumption 4.4.5 (Prior Density).

(1) The prior density function π(θ) is continuous with non-zero measure in the neighbor-

hood of the true parameter θ0, and

(2) there exists a constant Mp > 0 such that π(θ) ≤Mp ∀θ ∈ Θ and Eπ(θ)[|θ|] <∞.

Assumption  4.4.5 is satisfied by a large class of prior distributions. Next, we assume that

the likelihood function satisfies the following asymptotic normality property. Recall that

P n
0 ≡ P n

θ0 .

Assumption 4.4.6 (Local Asymptotic Normality). Fix θ0 ∈ Θ. The sequence of log-

likelihood functions {logP n
θ (X̃n)} satisfies a local asymptotic normality (LAN) condition, if

there exists a sequence of matrices {rn}, a matrix I(θ0) and a sequence of random vectors

{∆n,θ0} weakly converging to N (0, I(θ0)−1) as n → ∞, such that for every compact set

K ⊂ Rd

sup
h∈K

∣∣∣∣logP n
θ0+r−1

n h
(X̃n)− logP n

θ0(X̃n)− hT I(θ0)∆n,θ0 + 1
2h

T I(θ0)h
∣∣∣∣ Pn0−→ 0 as n→∞ .

The LAN condition is standard, and holds for a wide variety of models. The assumption

affords significant flexibility in the analysis by allowing the likelihood to be asymptotically

approximated by a scaled Gaussian centered around θ0 [ 109 ]. Any likelihood model that is

twice-continuously differentiable satisfies the LAN condition [ 109 , Eq. 7.15].

Next, we place a restriction on the variational family Q:

Assumption 4.4.7.

1. The variational family Q must contain distributions that are absolutely continuous with

respect to the prior distribution.
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2. There exists a sequence of distributions {qn(θ)} in the variational family Q that con-

verges to a Dirac delta distribution δθ0 at the rate of
√
n and with mean

∫
θqn(θ)dθ = θ̂n,

the maximum likelihood estimate.

3. The differential entropy of the rescaled density (Definition  4.2 ) of such sequence of

distributions is positive and finite.

The first condition ensures that the KL divergence in ( 4.4 ) is not undefined for all dis-

tributions in Q, that is not absolutely continuous with respect to the posterior distribution.

The Bernstein von-Mises theorem [ 109 ] shows that under mild regularity conditions, the pos-

terior converges to a Dirac delta distribution at the true parameter θ0 at the rate of
√
n, and

the second condition ensures that the KL divergence is well defined for all large enough n.

These three assumptions together imply that the VB approximate posterior weakly converges

to δθ0 as number of samples increases.

Lemma 4.4.5 ([ 27 ], [  123 ]). Under Assumptions  4.4.5 ,  4.4.6 , and  4.4.7 

q∗(θ|X̃n) ∈ arg min
q∈Q

KL
(
q(θ)‖π(θ|X̃n)

)
⇒ δθ0 in P n

0 − probability as n→∞. (4.19)

Proof. See [  27 , Theorem 5(1)] or [ 123 , Corollary 1] for a proof.

Now to establish asymptotic properties of the optimal value and optimal solution to

(VBJCCP), we assume that the following regularity conditions are satisfied by the cost and

the constraint functions.

Assumption 4.4.8. We assume that

1. R(a, ·) and gi(a, ·) are measurable and continuous for every a ∈ A, and R(·, θ) and

g(·, θ) are continuous for almost every θ ∈ Θ.

2. R(·, θ) is locally Lipschitz continuous in a with for almost every θ ∈ Θ, such that for

a1, a2 in compact set A, |R(a1, θ)−R(a2, θ)| ≤ KA(θ)‖x1− x2‖ for some KA(θ) ≤ K̄A

for almost every θ ∈ Θ.
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3. R(a, ·) is uniformly integrable with respect to any q in the variational family Q,

that is for any ε > 0 and a ∈ A, there exist a compact set Kε ⊂ Θ, such that∫
Θ\Kε R(a, θ)q(θ)dθ < ε.

We first establish consistency of the constraint function, under the ‘true’ data generating

distribution.

Lemma 4.4.6. Under Assumptions  4.4.5 ,  4.4.6 ,and  4.4.7 , we show that for any δ > 0

lim
n→∞

P n
0

(
sup
x∈A

∣∣∣∣∣Eq∗(θ|X̃n)

[
m∏

i=1
I(−∞,0](gi(a, θ)

]
−

m∏
i=1

I(−∞,0](gi(a, θ0))
∣∣∣∣∣ > δ

)
= 0

The next lemma establishes the point-wise and uniform convergence of the expected cost.

Lemma 4.4.7. Under Assumptions  4.4.5 ,  4.4.6 ,  4.4.7 , and  4.4.8 , we show that,

1. For each a ∈ A, Eq∗(θ|X̃n)[R(a, θ)]→ R(a, θ0) in P n
0 − probability as n→∞.

2. Suppose A is compact, then supx∈A |Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)| converges to 0 in P n
0 −

probability as n→∞; that is for any δ > 0

lim
n→∞

P n
0

(
sup
x∈A

∣∣∣Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)
∣∣∣ > δ

)
= 0.

Using the results in Lemma  4.4.6 and  4.4.7 , Theorem  4.4.3 establishes the asymptotic

consistency of the optimal values of (VBJCCP) and, as a consequence, (BJCCP) with single

constraint.

Theorem 4.4.3. Under Assumptions  4.4.5 ,  4.4.6 ,  4.4.7 , and  4.4.8 and when A is a compact

set, we have V ∗V B(X̃n) Pn0→ V ∗ as n→∞.

Proof. Recall S∗V B(X̃n) is the solution set of (VBJCCP) and S∗ is the solution set of (TP).

Observe that since both Q∗
(
g(a, θ) ≤ 0|X̃n

)
and I(−∞,0](g(a, θ0)) are upper-semicontinuous,

their corresponding super-level sets are closed and, since A is compact, the corresponding

feasible sets are compact. Furthermore, if the corresponding feasible sets are non-empty then

the corresponding optimal sets S∗V B(X̃n) and S∗ are also non-empty.
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Next fix a point a∗ in the true solution set S∗ of (TP). Since A is compact, for any ε > 0,

there is a ∈ A such that ‖a−a∗‖ < ε and g(a, θ0) ≤ 0. It follows that there exists a sequence

{ak} ⊂ A such that ak → a∗ as k →∞ and g(ak, θ0) ≤ 0 for all k ≥ 1. Now fix a ∈ A such

that g(a, θ0) ≤ 0. By Lemma  4.4.6 , Q∗
(
g(a, θ) ≤ 0|X̃n

) Pn0→ I(−∞,0](g(a, θ0)) as n → ∞, and

therefore there exists an n0 depending on ε > 0 such that for all n ≥ n0 and any η > 0, we

have for a given confidence level β ∈ (0, 1),

P n
0

(
Q∗

(
g(a, θ) ≤ 0|X̃n

)
≥ β

)
≥ P n

0

(
Q∗

(
g(a, θ) ≤ 0|X̃n

)
≥ 1

)
≥ P n

0

(
I(−∞,0](g(a, θ0))−Q∗

(
g(a, θ) ≤ 0|X̃n

)
≤ 0

)
≥ P n

0

(
I(−∞,0](g(a, θ0))−Q∗

(
g(a, θ) ≤ 0|X̃n

)
≤ −η

)
≥ 1− ε.

Hence for all n ≥ n0, a is a feasible solution of (VBJCCP) with P n
0 -probability of at least

1− ε, and therefore

P n
0

(
Eq∗(θ|X̃n)[R(a, θ)] ≥ V ∗V B(X̃n)

)
≥ P n

0

(
Q∗

(
g(a, θ) ≤ 0|X̃n

)
≥ β

)
≥ 1− ε.

Now, since a can be chosen arbitrarily close to a∗, it follows from the equation above and

the bounded convergence theorem that

P n
0

(
Eq∗(θ|X̃n)[R(a∗, θ)] ≥ V ∗V B(X̃n)

)
≥ 1− ε. (4.20)

for all n ≥ n0. For any δ > 0 observe that

P n
0

(
V ∗V B(X̃n)−R(a∗, θ0) > δ

)
= P n

0

(
V ∗V B(X̃n)− Eq∗(θ|X̃n)[R(a∗, θ)] + Eq∗(θ|X̃n)[R(a∗, θ)]−R(a∗, θ0) > δ

)
≤ P n

0

(
V ∗V B(X̃n)− Eq∗(θ|X̃n)[R(a∗, θ)] > δ/2

)
+ P n

0

(
Eq∗(θ|X̃n)[R(a∗, θ)]−R(a∗, θ0) > δ/2

)
≤ P n

0

(
V ∗V B(X̃n)− Eq∗(θ|X̃n)[R(a∗, θ)] > 0

)
+ P n

0

(
Eq∗(θ|X̃n)[R(a∗, θ)]−R(a∗, θ0) > δ/2

)
.
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By Lemma  4.4.7 (1), for every a ∈ A, Eq∗(θ|X̃n)[R(a, θ)] P
n
0→ R(a, θ0) as n → ∞. Therefore it

follows from the inequality above and ( 4.20 ) that

lim
n→∞

P n
0

(
V ∗V B(X̃n)−R(a∗, θ0) > δ

)
= lim

n→∞
P n

0

(
V ∗V B(X̃n)− V ∗ > δ

)
= 0. (4.21)

We are left to show that limn→∞ P
n
0

(
V ∗V B(X̃n)−R(a∗, θ0) < −δ

)
=

limn→∞ P
n
0

(
V ∗V B(X̃n)− V ∗ < −δ

)
= 0 for any δ > 0. Let ân ∈ S∗V B; that is

Q∗
(
g(ân, θ) ≤ 0|X̃n

)
≥ β and V ∗V B(X̃n) = Eq∗(θ|X̃n)[R(ân, θ)]. Since A is compact, we

assume that as n→∞ ân → a0 ∈ A (the limit point of the sequence {ân} ⊆ A).

Recall that Lemma  4.4.6 holds uniformly over all a ∈ A. Therefore using the fact

that Q∗ (g(ân, θ) ≤ 0|Xn) − I(−∞,0](g(ân, θ0)) ≤ |Q∗ (g(ân, θ) ≤ 0|Xn) − I(−∞,0](g(ân, θ0))| ≤

supa∈A |Q∗ (g(a, θ) ≤ 0|Xn)− I(−∞,0](g(a, θ0))|, we have for any η > 0,

lim
n→∞

P n
0

[
Q∗ (g(ân, θ) ≤ 0|Xn) ≤ I(−∞,0](g(ân, θ0)) + η

]
= 1. (4.22)

Next using the fact that Q∗
(
g(ân, θ) ≤ 0|X̃n

)
≥ β for every n ≥ 1, it follows that ân is a feasi-

ble point of (TP) for η ≤ β; that is,
{
a ∈ X : Q∗ (g(ân, θ) ≤ 0|Xn) ≤ I(−∞,0](g(ân, θ0)) + η

}
⊂

{a ∈ X : I(−∞,0](g(ân, θ0)) + η ≥ β}. Therefore, it follows that

{
Q∗ (g(ân, θ) ≤ 0|Xn) ≤ I(−∞,0](g(ân, θ0)) + η

}
⊆
{
I(−∞,0](g(ân, θ0)) + η ≥ β

}
⊆ {R(ân, θ0) ≥ V ∗} , (4.23)

since the penultimate condition implies that ân is a feasible point of (TP). Therefore, for any

η ≤ β, limn→∞ P
n
0 [R(ân, θ0) ≤ V ∗] = 0. Using the fact that R(ân, θ0)− Eq∗(θ|X̃n)[R(ân, θ)] ≤

|Eq∗(θ|X̃n)[R(ân, θ)] − R(ân, θ0)| ≤ supa∈A |Eq∗(θ|X̃n)[R(a, θ)] − R(a, θ0)|, for any δ > 0

Lemma  4.4.7 (2) implies that

lim
n→∞

P n
0

[
Eq∗(θ|X̃n)[R(ân, θ)] + δ ≥ R(ân, θ0)

]
= lim

n→∞
P n

0

[
V ∗V B(Xn) + δ ≥ R(ân, θ0)

]
= 1,
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and therefore limn→∞ P
n
0

[
V ∗V B(X̃n) + δ ≤ R(ân, θ0)

]
= 0. Observe that for any δ > 0

P n
0 [V ∗ − V ∗V B(Xn) ≥ δ] ≤ P n

0 [V ∗ −R(ân, θ0) ≥ δ/2] + P n
0 [R(ân, θ0)− V ∗V B(Xn) ≥ δ/2]

≤ P n
0 [V ∗ −R(ân, θ0) ≥ 0] + P n

0 [R(ân, θ0)− V ∗V B(Xn) ≥ δ/2] .

Taking limit n→∞ on either side of the inequality above, we have

lim
n→∞

P n
0 [V ∗ − V ∗V B(Xn) ≥ δ] = 0. (4.24)

Combining equation ( 4.21 ) and ( 4.24 ), we conclude that for any δ > 0,

lim
n→∞

P n
0 [|V ∗ − V ∗V B(Xn)| ≥ δ] = 0.

Next, we state the corollary of the result above that guarantees asymptotic consistency

of the optimal value V ∗B(X̃n) of (BJCCP) with a single constraint.

Corollary 4.4.3. Under Assumptions  4.4.5 ,  4.4.6 ,  4.4.7 , and  4.4.8 and when A is a compact

set, we have V ∗B(X̃n) Pn0→ V ∗ as n→∞.

Proof. The proof follows straightforwardly from Theorem  4.4.3 and the fact that V ∗V B(X̃n)

is the same as V ∗B(X̃n) when the variational family Q is fixed to the set of all possible

distributions on Θ.

4.5 Application

Data-driven chance constrained optimization problems abound throughout operations

research, finance, engineering and the sciences. In this section we present an example ap-

plication of Bayesian chance constrained optimization to solving a staffing problem in a

queueing system.
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4.5.1 Optimal Staffing

Consider a situation where a decision maker (DM) has to decide the optimal number

of servers in a multi-server M/M/c queueing system, using arrival times and service time

data. We assume that the rate parameters of the exponentially distributed inter-arrival and

service time distributions, denoted as λ and µ respectively, are unknown. Note that λ and

µ, together constitute the system parameter ξ = {λ, µ} and the number of servers c is the

decision/input variable. The DM collects n realizations of the random vector V := {T, S,E},

denoted as X̃n := {V1, . . .Vn} where T , S, and E are the random variables denoting the

arrival, service-start, and service-end time of each customer i ∈ {1, 2, . . . n} respectively. We

also assume that the inter-arrival and service times are independent, that is Ti − Ti−1 is

independent of Ei−Si for each i ≥ 1. The joint likelihood of the arrival and departure times

for n customers is dPθ(X̃n) := ∏n
i=1 λe−λ(Ti−Ti−1)µe−µ(Ei−Si).

Constraint functions: The DM chooses the number of servers c to maintain a constant

measure of congestion. Congestion is usually measured as 1−Wq(c, λ, µ), where Wq(c, λ, µ)

is the steady-state probability that the customer did not wait in the queue. A closed-form

expression for 1−Wq(c, λ, µ) for an M/M/c queue is known to be (see [ 5 ])

1−Wq(c, λ, µ) = rc

c!(1− ρ)

/(
rc

c!(1− ρ) +
c−1∑
t=0

rt

t!

)
,

where r = λ
µ

and ρ = r
c

with ρ < 1. ρ is also known as traffic intensity and ρ < 1 is a

necessary and sufficient condition for an M/M/c queue to be in steady-state (or stable).

The DM fixes α, the desired maximum fraction of customers delayed in the queue and

the smallest c is chosen that satisfies (α−{1−Wq(c, λ, µ)}) > 0 and (cµ−λ) > 0. Referring

to the queueing literature, we will use the term the quality of service(QoS) constraint for
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the first constraint. In fact, the QoS constraint is only valid when ρ < 1. The corresponding

constraint optimization problem is

minimize c (TP-Q)

subject to (α− {1−Wq(c, ξ)}) > 0(QoS)

(cµ− λ) > 0.

This so-called staffing problem and its variants are well studied in the queueing literature.

As noted before, we are interested in the data-driven setting where the parameters of the

problem are unknown. This data-driven staffing problem has been considered as well and

the interested reader may referred to [ 4 ] and [ 6 ].

Next, we fix a non-conjugate inverse Gamma (Inv − Γ(·)) distribution prior on both λ

and µ, that is dΠ(λ, µ) = Inv − Γλ(λ;αq, βq)Inv − Γµ(µ;αs, βs)dλdµ. In our experiments,

we fix αq = αs = 1 and βq = βs = 1. We fix the variational family Q =
{
q(λ, µ) :

q(λ, µ; aq, bq, as, bs) = Γ(λ; aq, bq)Γ(µ; as, bs)
}

, where Γ(·; a(·), b(·)) denotes the Gamma distri-

bution with rate b(·) and shape a(·). In the simulation experiment, we fix λ0 = 16 and µ0 = 1

and generate 2000 samples of service and inter-arrival times. We then solve the (VBJCCP)

for 250 sample paths and denote its solution as C∗V B. We then solve the corresponding

(BJCCP) using a sample average approximation (SAA) of the chance constrained problem,

by generating samples from the posterior distribution using MCMC. We denote the optimal

staffing level computed using MCMC as C∗MCMC .

The results of this simulation experiment are summarized in Figure  4.2 . We observe in

Figure  4.2 (a) that C∗V B is consistent and moreover, for larger confidence level β, C∗V B is more

conservative (i.e., the optimal number of servers is larger) as expected. In Figure  4.2 (b), we

compare C∗V B and C∗MCMC for β = 0.7. We compute C∗MCMC at each n using two sequences of

MCMC samples from the ‘true’ posterior distribution generated using Metropolis–Hastings

algorithm [ 124 ]: 1) 1000 samples with 200 burn-in (magenta) and 2) 200 samples with 50

burn-in (cyan). Observe that, as n increases both C∗V B and C∗MCMC (magenta) converges to

the true solution almost at the same rate and there is no significant difference between the

two approaches. In fact, we will later show in Theorem  4.5.1 and Corollary  4.5.1 that the
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(b) C∗V B vs. C∗MCMC

Figure 4.2. λ0 = 16, µ0 = 1, (a) Optimal Staffing Level (5th, 50th, and 95th
quantile over 250 sample paths) for β = {0.7, 0.8, 0.9} (b) C∗V B vs. C∗MCMC

-Optimal Staffing Level (5th, 50th, and 95th quantile over 250 sample paths)
against the number of samples (n) , green line is the solution of (TP-Q) at
{λ0 µ0}.

optimal staffing levels computed using the (VBJCCP) and (BJCCP) approaches converge

at the same rate. Moreover, the average computation time taken by the VB and MCMC

(magenta) approaches to compute an optimal staffing level at a given n are of the same order

(30 seconds (average) on Sky Lake CPU @ 2.60GHz). Unsurprisingly, the computation time

in an MCMC approach can be reduced by reducing the number of samples; however, it may

result in computing a suboptimal solution. We observe that computing C∗MCMC (cyan) is

faster (8 seconds (on average) on Sky Lake CPU @ 2.60GHz) but suboptimal.

Next, we verify the conditions on the prior, the likelihood model and the variational family

to compute the convergence rate of C∗V B. First note that the risk function f(c, θ) = c in the

optimal staffing problem, therefore L2
n(θ, θ0) is 0. Hence, Lemma  4.4.5 is trivially true even

without existence of tests conditions (Assumption  4.4.1 ) defined using Ln(θ, θ0) = L2
n(θ, θ0).

Next, we consider L1
n(θ, θ0) and Li

n(θ, θ0) for i ∈ {1, . . . ,m} and recall Proposition  4.4.2 .

We satisfy the conditions of Proposition  4.4.2 in the following result so that these distance

functions satisfy Assumption  4.4.1 .
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Lemma 4.5.1. For the sequence of tests

φn,ε = I{
X̃n:

∣∣∣∣ n∑n

i=1 Ti−Ti−1
−λ0

∣∣∣∣>λ0

√
n+2

(n−2)2
eCnε2

}
∩
{
X̃n:

∣∣∣∣ n∑n

i=1 Ei−Si
−µ0

∣∣∣∣>µ0

√
n+2

(n−2)2
eCnε2

},

it can be shown that

EPn0 [φn,ε] ≤ e−Knε2 ,

for C = K/2.

We assume that Θn(ε) = Θ = (0,∞)2. Observe that Assumption  4.4.2 is trivially satisfied

by the product of Inverse Gamma priors on λ and µ. Next, we show that the prior and the

likelihood model satisfy Assumption  4.4.3 .

Lemma 4.5.2. Fix n2 ≥ 2 and any ρ > 1. Let An := {θ ∈ Θ : D1+ρ (P n
0 ‖P n

θ ) ≤ C3nε
2
n},

where D1+ρ (P n
0 ‖P n

θ ) is the Rényi divergence between P n
0 and P n

θ . Then for ε2n = logn
n

the

prior satisfies

Π{An} ≥ exp(−nC2ε
2
n),∀n ≥ n2

with C3 > 4 max{α−1
s , α−1

q } and C2 = 0.5(αs + αq)C3.

The results above verify the conditions required to establish the convergence rate of the

optimal staffing level computed using (VBJCCP). However, to explicitly quantify the rate of

convergence, we also need to identify a bound on η2
n using Proposition  4.4.1 . Therefore, in

the next result, we identify a sequence of distribution in Q that satisfies Assumption  4.4.4 

required for Proposition  4.4.1 to hold.

Lemma 4.5.3. Let {Qn(λ, µ)} be a sequence of distributions defined as

Γ(λ;n, n/λ0)Γ(µ;n, n/µ0), then

1
n

[
KL (Qn(λ, µ)‖Π(θ)) + EQn(θ)

[
KL

(
dP n

0 (X̃n))‖dP n
θ (X̃n)

)]]
≤ C9ε

2
n,
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where ε2n = logn
n

and C9 = 1 + max
(
0, 2 + 2βq

λ0
− log

√
2π− log

(
βq
αq

Γ(αq)

)
+ αq log λ0

)
+

max
(

0, 2 + 2βs
µ0
− log

√
2π − log

(
βαss

Γ(αs)

)
+ αs log µ0

)
and the parameters of the prior dis-

tribution are such that C9 > 0.

Lemmas  4.5.2 and  4.5.3 , combined together, identify that the optimal staffing level com-

puted using (VBJCCP) converges at the rate of εn =
√

logn
n

. More formally,

Theorem 4.5.1. For L1
n(θ, θ0) = n supc∈A |I(−∞,0](1 − Wq(c, λ, µ) − α) − I(−∞,0](1 −

Wq(c, λ0, µ0) − α)| and L2
n(θ, θ0) = n supc∈A |c − c| = 0, where A is a finite set of posi-

tive integers, there exists a constant M > 0 (that depends on all the fixed hyper-parameters),

such that for any η > 0,

P n
0 [|C∗V B(X̃n)− C∗| > 2η] ≤Mε2n,

where ε2n = logn
n

.

Proof. The proof is a direct consequence of Lemmas  4.5.1 ,  4.5.2 ,  4.5.3 , Proposi-

tions  4.4.1 ,  4.4.2 , and Theorem  4.4.2 .

Using the result above, we can directly establish the following result that quantifies the

convergence rate of optimal staffing level computed using (BJCCP) approach.

Corollary 4.5.1. For L1
n(θ, θ0) = n supc∈A |I(−∞,0](1 − Wq(c, λ, µ) − α) − I(−∞,0](1 −

Wq(c, λ0, µ0) − α)| and L2
n(θ, θ0) = n supc∈A |c − c| = 0, where A is a finite set of posi-

tive integers, there exists a constant M̄ > 0 (that depends on all the fixed hyper parameters),

such that for any η > 0,

P n
0 [|C∗B(X̃n)− C∗| > 2η] ≤ M̄ε2n,

where C∗B is the optimal staffing level computed using (BJCCP) and ε2n = logn
n

.

Proof. The proof follows straightforwardly from Theorem  4.5.1 and the fact that q∗(θ|X̃n)

is the same as the true posterior distribution when the variational family Q is fixed to all

possible distributions.

Next, we discuss that the prior, the likelihood model, and the variational family easily

satisfy Assumptions  4.4.5 ,  4.4.6 , and  4.4.7 , that are required to show consistency of C∗V B.
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Notice that the prior density Π(λ, µ) = Inv − Γλ(λ;αq, βq)Inv − Γµ(µ;αs, βs) is continuous

in θ = {λ, µ} and places positive mass in the neighbourhood of the true parameter θ0 and

moreover it is bounded, therefore it satisfies Assumption  4.4.5 . The exponential models are

twice continuously differentiable therefore it satisfies the LAN condition in Assumption  4.4.6 .

Moreover, the variational family, the product of Gamma distributions on λ and µ, is abso-

lutely continuous with respect to the prior distribution and also consists of a sequence of

distribution that converges at the true parameter at the rate of
√
n (refer the construction

in Lemma  4.5.3 ). Therefore, the Q satisfies Assumption  4.4.7 . Under these assumptions, it

can be shown using the result in Theorem  4.4.3 that the optimal number of servers computed

using (VBJCCP) (and (BJCCP)) are consistent.

4.6 Proofs

Proof of Lemma  4.4.2 . First observe that

∫
Θ
L1
n(θ, θ0)q∗(θ|X̃n)dθ = n

∫
Θ

sup
a∈A
|I(−∞,0](g(a, θ))− I(−∞,0](g(a, θ0))|q∗(θ|X̃n)dθ

≥ n sup
a∈A

∫
Θ
|I(−∞,0](g(a, θ))− I(−∞,0](g(a, θ0))|q∗(θ|X̃n)dθ

≥ n sup
a∈A

∣∣∣∣∫
Θ

(
I(−∞,0](g(a, θ))− I(−∞,0](g(a, θ0))

)
q∗(θ|X̃n)dθ

∣∣∣∣
= n sup

a∈A

∣∣∣∣∫
Θ

I(−∞,0](g(a, θ))q∗(θ|X̃n)dθ − I(−∞,0](g(a, θ0))
∣∣∣∣

= n sup
a∈A

∣∣∣Q∗ (g(a, θ) ≤ 0|X̃n

)
− I(−∞,0](g(a, θ0))

∣∣∣ .
Now using Theorem  4.4.1 and the inequality above, it is straightforward to observe that

P0[ sup
a∈A
|Q∗

(
g(a, θ) ≤ 0|X̃n

)
− I(−∞,0](g(a, θ0))| > δ] ≤ P0

[∫
Θ
L1
n(θ, θ0)q∗(θ|X̃n)dθ > nδ

]
≤ M1

δ
(ε2n + η2

n).
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Proof of Lemma  4.4.3 . Proof is similar to Lemma  4.4.2 hence omitted.

Proof of Proposition  4.4.1 . The proof follows straightforwardly using the definition of η2
n and

Assumption  4.4.4 .

Proof of Proposition  4.4.2 . Note that consistent tests always exist for finite-dimensional

models on fixed null and alternate sets; for instance, the Kolmogorov-Smirnov test statis-

tic [ 109 , Theorem 19.1]. Therefore, the condition of Lemma  4.4.4 is always satisfied for finite

dimensional (or parametric) models. Now for distance functions L1
n(θ, θ0) in Theorem  4.4.2 

and Li
n(θ, θ0) in Theorem  4.4.1 fix P0 = P0 and P1 = {Pθ : L(·)

n (θ, θ0) > nε2}, where we use

L(·)
n to reference either L1

n(θ, θ0) or Li
n(θ, θ0) for brevity. Note that for any ε ∈ (0, 1], P1 is

fixed. Therefore, it follows from Lemma  4.4.4 that for any ε ∈ (εn, 1],

EP0 [φn] ≤ e−Kn ≤ e−Knε2 and sup
P∈P1

EP [1− φn] ≤ e−Kn ≤ e−Knε2 .

For ε > 1, by assumption in the assertion of the proposition we have,

EP0 [φn,ε] ≤ e−Knε2 and sup
P∈P1

EP [1− φn,ε] = 0 ≤ e−Knε2 ,

where the second equality follows since P1 is null set for ε > 1. Therefore, it follows that

there exists a test φn,ε = φnI{ε∈(0,1])} + φn,εI{ε∈(1,∞)} such that distance function L(·)
n satisfies

Assumption  4.4.1 .

Proof of Lemma  4.4.6 . Lemma  4.4.5 implies that the VB approximate posterior q∗(θ|X̃n) is

consistent, and it follows from Definition  4.2.1 that for every η > 0

∫
‖θ−θ0‖>η

q∗(θ|X̃n)dθ Pn0→ 0 as n→∞. (4.25)
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In fact, q∗(θ|X̃n) converges pointwise to δθ0 almost everywhere with respect to Lebesgue

measure. Consequently, Scheffé’s lemma [ 109 , Corollary 2.30] implies that q∗(θ|X̃n) converges

to δθ0 in total-variation distance, that is

dTV (q∗(θ|X̃n), δθ0) = sup
A⊆Θ
|Q∗(A|X̃n)− δθ0(A)| P

n
0→ 0 as n→∞, (4.26)

where for any set A ⊆ Θ, Q∗(A|X̃n) =
∫
A q
∗(θ|X̃n)dθ. Using this observation note that

sup
a∈A

∣∣∣∣∣
∫

Θ

m∏
i=1

I(−∞,0](gi(a, θ))q∗(θ|X̃n)dθ −
m∏

i=1
I(−∞,0](gi(a, θ0))

∣∣∣∣∣
= sup

a∈A
|Q∗(∩mi=1{gi(a, θ) < 0} − δθ0(∩mi=1{gi(a, θ) < 0}|

= |Q∗(∩mi=1{gi(ā, θ) < 0} − δθ0(∩mi=1{gi(ā, θ) < 0}|

≤ dTV (q∗(θ|X̃n), δθ0), (4.27)

for some ā ∈ A at which supremum is attained in the RHS of the first equality above. Now

the result follows straightforwardly from ( 4.26 ).

Proof of Lemma  4.4.7 . Part 1: Point-wise convergence The proof uses similar ideas as

used in the proof of [ 113 , Theorem 3.7]. Fix a ∈ A. Due to Assumption  4.4.8 (3), R(a, θ) is

uniformly integrable with respect to any q ∈ Q, which implies that for q∗(θ|X̃n) and for any

ε > 0, there exists a compact set Kε such that for all n ≥ 1
∫

Θ\Kε |R(a, θ)|q∗(θ|X̃n)dθ < ε.

Now fix γε := maxθ∈Kε |R(a, θ)|. Note that γε < +∞, since Kε is compact and R(a, ·) is

a continuous mapping for any x ∈ A. Define Rε(a, θ) be the truncation of R(a, θ), that is

Rε(a, θ) =



R(a, θ) if |R(a, θ)| < γε

γε if R(a, θ) > γε

−γε if R(a, θ) < −γε.

(4.28)
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It follows from the definition above that |Rε(a, θ)| ≤ |R(a, θ)|, which implies that

∫
Θ\Kε

|Rε(a, θ)|q∗(θ|X̃n)dθ < ε (4.29)

Note the Rε(a, θ) is bounded and continuous in θ, therefore, it follows using the definition

of weak convergence and Lemma  4.4.5 that

lim
n→∞

Eq∗(θ|X̃n)[Rε(a, θ)]
Pn0= Rε(a, θ0). (4.30)

Next observe that

|Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)|

=
∣∣∣Eq∗(θ|X̃n)[R(a, θ)]− Eq∗(θ|X̃n)[Rε(a, θ)] + Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)

+Rε(a, θ0)−R(a, θ0)|

≤
∣∣∣Eq∗(θ|X̃n)[R(a, θ)]− Eq∗(θ|X̃n)[Rε(a, θ)]

∣∣∣+ ∣∣∣Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)
∣∣∣

+ |Rε(a, θ0)−R(a, θ0)|

=
∣∣∣Eq∗(θ|X̃n)[R(a, θ)]− Eq∗(θ|X̃n)[Rε(a, θ)]

∣∣∣+ ∣∣∣Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)
∣∣∣

+ |Rε(a, θ0)−R(a, θ0)| .

(4.31)

Now using the definition of Rε(a, θ) note that

∣∣∣Eq∗(θ|X̃n)[R(a, θ)]− Eq∗(θ|X̃n)[Rε(a, θ)]
∣∣∣ =

∣∣∣∣∣
∫

Θ\Kε
(R(a, θ)−Rε(a, θ))q∗(θ|X̃n)dθ

∣∣∣∣∣
≤
∫

Θ\Kε
|R(a, θ)|q∗(θ|X̃n)dθ +

∫
Θ\Kε

|Rε(a, θ)|q∗(θ|X̃n)dθ ≤ 2ε.

Similarly, |Rε(a, θ0)−R(a, θ0)| ≤ 2ε, since due to Assumption  4.4.8 (3)∫
Θ\Kε |R(a, θ)|q∗(θ|X̃n)dθ < ε is true for all n ≥ 1 and consequently for δθ0 as well.

Hence, substituting the above two observations into ( 4.31 ) yields

|Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)| ≤ 4ε+
∣∣∣Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)

∣∣∣ .
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Consequently, it follows for any ε > 0 that,

P n
0

(
|Eq∗(θ|X̃n)[R(a, θ)]−R(a, θ0)| > 5ε

)
≤ P n

0

(
|Eq∗(θ|X̃n)[Rε(a, θ)]−Rε(a, θ0)| > ε

)
. (4.32)

Now taking limits n→∞ on either side of the inequality above, the result follows straight-

forwardly using the observation in ( 4.30 ).

Part 2: Uniform convergence:

Since A is compact and R(a, θ0) is continuous in a, using Corollary 2.2 in [ 114 ] the

uniform convergence follows from point-wise convergence (Part 1) if there exist a bounded

sequence Bn and for all a1, a2 ∈ A, |Eq∗(θ|X̃n)[R(a1, θ)] − Eq∗(θ|X̃n)[R(a2, θ)]| ≤ Bn‖a1 − a2‖.

Since, R(a, θ) is locally Lipschitz in a due to Assumption  4.4.8 (2), therefore for a1, a2 ∈ A,

|Eq∗(θ|X̃n)[R(a1, θ)]− Eq∗(θ|X̃n)[R(a2, θ)]| ≤ Eq∗(θ|X̃n)[|R(a1, θ)−R(a2, θ)|]

≤ Eq∗(θ|X̃n)[KA(θ)]‖a1 − a2‖. (4.33)

The uniform convergence follows since by Assumption  4.4.8 (2) Eq∗(θ|X̃n)[KA(θ)] ≤ K̄A.

Proof of Lemma  4.5.1 . Due to independence of arrival and service time distributions, first

note that

EPn0 [φn,ε] =P n
0

X̃n :
∣∣∣∣∣ n∑n

i=1 Ti − Ti−1
− λ0

∣∣∣∣∣ > λ0

√
n+ 2

(n− 2)2 eCnε2


× P n
0

X̃n :
∣∣∣∣∣ n∑n

i=1 Ei − Si
− µ0

∣∣∣∣∣ > µ0

√
n+ 2

(n− 2)2 eCnε2


Denote ξi = Ti − Ti−1. Using Chebyschev’s inequality observe that

P n
0

 ∣∣∣∣∣ n∑n
i=1 ξi

− λ0

∣∣∣∣∣ > λ0

√
n+ 2

(n− 2)2 eCnε2


≤ (n− 2)2

λ2
0(n+ 2)e−2Cnε2EPn0

∣∣∣∣∣ n∑n
i=1 ξi

− λ0

∣∣∣∣∣
2


= (n− 2)2

λ2
0(n+ 2)e−2Cnε2EPn0

( n∑n
i=1 ξi

)2

+ λ2
0 −

(
2nλ0∑n

i=1 ξi

) .
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Now using the fact that the sum of n i.i.d exponential random variable with rate parameter

λ0 is Gamma distributed with rate and shape parameter λ0 and n (respectively), we obtain

that the RHS in the equation above is bounded above by

(n− 2)2

θ2
0(n+ 2)e−2Cnε2θ2

0

[
n2

(n− 1)(n− 2) + 1− 2n
n− 2

]
= (n− 2)2

n+ 2 e−2Cnε2
[

n+ 2
(n− 1)(n− 2)

]

≤ e−2Cnε2 . (4.34)

Now, choosing C = K/2, we have

EPn0 [φn,ε] ≤ e−Knε2 ,

and the proposition follows.

Proof of Lemma  4.5.2 . First, we write the Rényi divergence between P n
0 and P n

θ ,

D1+ρ (P n
0 ‖P n

θ ) = 1
ρ

log
∫ (

dP n
0

dP n
θ

)ρ
dP n

0 = n
1
ρ

log
∫ (

dPλ0

dPλ

)ρ
dP0 + n

1
ρ

log
∫ (

dPµ0

dPµ

)ρ
dPµ0

= n

(
log λ0

λ
+ 1
ρ

log λ0

(ρ+ 1)λ0 − ρλ

)

+ n

(
log µ0

µ
+ 1
ρ

log µ0

(ρ+ 1)µ0 − ρµ

)
,

when ((ρ+ 1)λ0 − ρλ) > 0 and ((ρ+ 1)λ0 − ρλ) > 0, otherwise D1+ρ (P n
0 ‖P n

θ ) = ∞. Using

the straightforward inequality for two independent random variables A and B that P (A+B ≤

2c) ≥ P ({A ≤ c} ∪ {B ≤ c}) = P ({A ≤ c})P ({B ≤ c}), it follows that

Π(D1+ρ (P n
0 ‖P n

θ ) ≤ C3nε
2
n) ≥ Inv− Γλ(D1+ρ

(
P n
λ0‖P

n
θ

)
≤ 0.5C3nε

2
n)×

Inv− Γµ(D1+ρ
(
P n
µ0‖P

n
θ

)
≤ 0.5C3nε

2
n). (4.35)
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Now consider the first term of the product in the RHS of the equation above. Observe that,

D1+ρ (P n
0 ‖P n

λ ) is non-decreasing in ρ (this also follows from non-decreasing property of the

Rényi divergence with respect to ρ). Therefore, observe that

Inv− Γλ(D1+ρ (P n
0 ‖P n

λ ) ≤ 0.5C3nε
2
n) ≥ Inv− Γλ(D∞ (P n

0 ‖P n
λ ) ≤ 0.5C3nε

2
n)

= Inv− Γλ
(

0 ≤ log λ0

λ
≤ 0.5C3ε

2
n

)

= Inv− Γλ
(
λ0e−0.5C3ε2n ≤ λ ≤ λ0

)
.

The cumulative distribution function of inverse-gamma distribution is Inv − Γλ({λ <

t}) :=
Γ
(
αq ,

βq
t

)
Γ(αq) , where αq(> 0) is the shape parameter, βq(> 0) is the scale parameter, Γ(·)

is the Gamma function, and Γ(·, ·) is the incomplete Gamma function. Therefore, it follows

for α ≥ 1 that

Inv− Γλ
(
λ0e−0.5C3ε2n ≤ λ ≤ λ0

)
=

Γ (αq, βq/λ0)− Γ
(
αq, βq/λ0e0.5C3ε2n

)
Γ(αq)

=
∫ βq/λ0e0.5C3ε

2
n

βq/λ0
e−xxαq−1dx

Γ(αq)

≥ e−βq/λ0e0.5C3ε
2
n+αq0.5C3ε2n

αqΓ(αq)

(
βq
λ0

)αq [
1− e−αq0.5C3ε2n

]

≥ e−βq/λ0e0.5C3

αqΓ(αq)

(
βq
λ0

)αq [
e−αq0.5C3nε2n

]

where the penultimate inequality follows since 0 < ε2n < 1 and the last inequality follows from

the fact that, 1−e−αq0.5C3ε2n ≥ e−αq0.5C3nε2n , for large enough n. Also note that, 1−e−αq0.5C3ε2n ≥

e−αq0.5C3nε2n can’t hold true for ε2n = 1/n. However, for ε2n = logn
n

it holds for any n ≥ 2 when

αqC3 > 4. Using similar steps as above we can also bound

Inv− Γµ(D1+ρ
(
P n
µ0‖P

n
µ

)
≤ 0.5C3nε

2
n) ≥ e−βs/µ0e0.5C3

αsΓ(αs)

(
βs
µ0

)αs [
e−αs0.5C3nε2n

]
,
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for αsC3 > 4 Therefore, substituting the above two results we have for the prior distribution

defined as the product of two inverse-Gamma priors on λ and µ, C3 > 4 max(α−1
s , α−1

q ),

C2 = 0.5(αq + αs)C3 and any ρ > 1 the result follows for sufficiently large n.

Proof of Lemma  4.5.3 . Since family Q contains all product Gamma distributions, observe

that {qn(·) ∈ Q}∀n ≥ 1. First, due to independence of queue and server data observe that

KL (qn(λ, µ)‖π(θ)) + Eqn(θ)
[
KL

(
dP n

0 (X̃n))‖dP n
θ (X̃n)

)]
= KL (qn(λ)‖π(λ)) + Eqn(λ)

[
KL

(
dP n

λ0(X̃n(q)))‖dP n
λ (X̃n(q))

)]
(4.36)

+ KL (qn(µ)‖π(µ)) + Eqn(µ)
[
KL

(
dP n

µ0(X̃n(s)))‖dP n
µ (X̃n(s))

)]
, (4.37)

where qn(·) = nn

(·)n0 Γ(n)(·)
n−1e−n

(·)
(·)0 , X̃n(q) and X̃n(s) denote the data pertaining to arrival

and service times respectively, π(·) denote the Inv − Γ· prior. Now consider the first term

in ( 4.36 ); using the definition of the KL divergence it follows that

KL(qn(λ)‖π(λ)) =
∫
qn(λ) log(qn(λ))dλ−

∫
qn(λ) log(π(λ))dλ. (4.38)

Substituting qn(λ) in the first term of the equation above and expanding the logarithm term,

we obtain

∫
qn(λ) log(qn(λ))dλ = (n− 1)

∫
log λ nn

λn0 Γ(n)λ
n−1e−n

λ
λ0 dλ− n+ log

(
nn

λn0 Γ(n)

)

= − log λ0 + (n− 1)
∫

log λ

λ0

nn

λn0 Γ(n)λ
n−1e−n

λ
λ0 dλ− n+ log

(
nn

Γ(n)

)
(4.39)

Now consider the second term in the equation above. Substitute λ = tλ0
n

into the integral,

we have

∫
log λ

λ0

nn

λn0 Γ(n)λ
n−1e−n

λ
λ0 dλ =

∫
log t

n

1
Γ(n)t

n−1e−tdt

≤
∫ (

t

n
− 1

) 1
Γ(n)t

n−1e−tdt = 0. (4.40)
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Substituting the above result into ( 4.39 ), we get

∫
qn(λ) log(qn(λ))dλ ≤ − log λ0 − n+ log

(
nn

Γ(n)

)

≤ − log λ0 − n+ log
(

nn√
2πnnn−1e−n

)

= − log
√

2πλ0 + 1
2 log n, (4.41)

where the second inequality uses the fact that
√

2πnnne−n ≤ nΓ(n). Recall π(λ) =
βq
αq

Γ(αq)λ
−αq−1e−

βq
λ . Now consider the second term in ( 4.38 ). Using the definition of inverse-

gamma prior and expanding the logarithm function, we have

−
∫
qn(λ) log(π(λ))dλ = − log

(
βq

αq

Γ(αq)

)
+ (αq + 1)

∫
log λ nn

λn0 Γ(n)λ
n−1e−n

λ
λ0 dλ

+ βq
n

(n− 1)λ0

= − log
(
βq

αq

Γ(αq)

)
+ (αq + 1)

∫
log λ

λ0

nn

λn0 Γ(n)λ
n−1e−n

λ
λ0 dλ

+ βq
n

(n− 1)λ0
+ (αq + 1) log λ0

≤ − log
(
βq

αq

Γ(αq)

)
+ βq

n

(n− 1)λ0
+ (αq + 1) log λ0, (4.42)

where the last inequality follows from the observation in ( 4.40 ). Substituting ( 4.42 )

and (  4.41 ) into ( 4.38 ) and dividing either sides by n, we obtain

1
n

KL(qn(λ)‖π(λ))

≤ 1
n

(
− log

√
2πλ0 + 1

2 log n− log
(
βq

αq

Γ(αq)

)
+ βq

n

(n− 1)λ0
+ (αq + 1) log λ0

)

= 1
2

log n
n

+ βq
(n− 1)λ0

+ 1
n

(
− log

√
2π− log

(
βq

αq

Γ(αq)

)
+ (αq) log λ0

)
. (4.43)
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Now, consider the second term in ( 4.36 ). Since the observations are independent and iden-

tically distributed, we obtain

1
n

Eq(λ)
[
KL

(
dP n

λ0‖p(X̃n|λ)
)]

= Eqn(λ) [KL (dPλ0‖p(ξ|λ))]

Now using the expression for KL divergence between the two exponential distributions, we

have

1
n

Eq(λ)
[
KL

(
dP n

λ0‖p(X̃n|λ)
)]

=
∫ (

log λ0

λ
+ λ

λ0
− 1

)
nn

λn0 Γ(n)λ
n−1e−n

λ
λ0 dλ (4.44)

≤ n

n− 1 + 1− 2 = 1
n− 1 ,

where second inequality uses the fact that log x ≤ x−1. Combined together ( 4.45 ) and ( 4.43 )

for n ≥ 2 implies that

1
n

[
KL (q(λ)‖π(λ)) + Eq(λ)

[
KL

(
dP n

λ0)‖p(X̃n|λ)
)]]

≤ 1
2

log n
n

+ 1
n

(
2 + 2βq

λ0
− log

√
2π− log

(
βq

αq

Γ(αq)

)
+ αq log λ0

)
≤ C9

log n
n

. (4.45)

where C9 := 1
2 + max

(
0, 2 + 2βq

λ0
− log

√
2π− log

(
βq
αq

Γ(αq)

)
+ αq log λ0

)
. Now using similar

arguments as used for ( 4.36 ), we can bound (  4.36 ) as

1
n

[
KL (q(µ)‖π(µ)) + Eq(µ)

[
KL

(
dP n

µ0)‖p(X̃n|µ)
)]]

≤ 1
2

log n
n

+ 1
n

(
2 + 2βs

µ0
− log

√
2π− log

(
βs
αs

Γ(αs)

)
+ αs log µ0

)
≤ C9

log n
n

. (4.46)

where C9 := 1
2 + max

(
0, 2 + 2βs

µ0
− log

√
2π− log

(
βs
αs

Γ(αs)

)
+ αs log µ0

)
. Combining the above

two results the proposition follows with εn = logn
n

, and C9 = C9 + C9.
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5. ASYMPTOTIC CONSISTENCY OF α−

RÉNYI-APPROXIMATE POSTERIORS

In this chapter, we study the asymptotic consistency properties of α-Rényi approximate pos-

teriors, a class of variational Bayesian methods that approximate an intractable Bayesian

posterior with a member of a tractable family of distributions, the member chosen to mini-

mize the α-Rényi divergence from the true posterior. Unique to our work is that we consider

settings with α > 1, resulting in approximations that upperbound the log-likelihood, and

consequently have wider spread than traditional variational approaches that minimize the

KL divergence from the posterior. Our primary result identifies sufficient conditions under

which consistency holds, centering around the existence of a ‘good’ sequence of distributions

in the approximating family that possesses, among other properties, the right rate of conver-

gence to a limit distribution. We further characterize the good sequence by demonstrating

that a sequence of distributions that converges too quickly cannot be a good sequence. We

also extend our analysis to the setting where α equals one, corresponding to the minimizer of

the reverse KL divergence, and to models with local latent variables. We also illustrate the

existence of good sequence with a number of examples. Our results complement a growing

body of work focused on the frequentist properties of variational Bayesian methods.

5.1 Introduction

Recall that the idea behind VB is to approximate the intractable posterior π(θ|X̃n) with

an element q(θ) of some simpler class of distributions Q. Examples of Q include the family of

Gaussian distributions, delta functions, or the family of factorized ‘mean-field’ distributions

that discard correlations between components of θ. The variational solution q is the element

of Q that is closest to π(θ|X̃n), where closeness is measured in terms of the Kullback-Leibler

(KL) divergence. Thus, q is the solution to:

q(θ) = argminq̃∈QKL(q̃(θ)‖π(θ|X̃n)). (5.1)
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We term this as the KL-VB method. From the non-negativity of the Kullback-Leibler

divergence, we can view this as maximizing a lower-bound to the logarithm of the model

evidence, log p(X̃n) = log
(∫
p(X̃n, θ)dθ

)
. This lower-bound, called the variational lower-

bound or evidence lower bound (ELBO) is defined as

ELBO(q̃(θ)) = log p(X̃n)−KL(q̃(θ)‖π(θ|X̃n)). (5.2)

Optimizing the two equations above with respect to q does not involve either calculating

expectations with respect to the intractable posterior π(θ|X̃n), or evaluating the posterior

normalization constant. As a consequence, a number of standard optimization algorithms

can be used to select the best approximation q(θ) to the posterior distribution, examples in-

cluding expectation-maximization [ 100 ] and gradient-based [  107 ] methods. This has allowed

the application of Bayesian methods to increasingly large datasets and high-dimensional

settings. Despite their widespread popularity in the machine learning, and more recently,

the statistics communities, it is only recently that variational Bayesian methods have been

studied theoretically [  27 ], [  29 ], [  61 ], [  102 ], [  103 ].

5.1.1 Rényi divergence minimization

Despite its popularity, variational Bayes has a number of well-documented limitations.

An important one is its tendency to produce approximations that underestimate the spread

of the posterior distribution [ 52 ], [  53 ]: in essence, the variational Bayes solution tends to

match closely with the dominant mode of the posterior. This arises from the choice of

the divergence measure KL(q(θ)‖π(θ|X̃n)) = Eq[ log(q(θ)/π(θ|X̃n))], which does not penalize

solutions where q(θ) is small while π(θ|X̃n) is large. While many statistical applications

only focus on the mode of the distribution, definite calculations of the variance and higher

moments are critical in predictive and decision-making problems.

A natural solution is to consider different divergence measures than those used in vari-

ational Bayes. Expectation propagation (EP) [  54 ] was developed to minimize Eπ[ log(π/q)]

instead, though this requires an expectation with respect to the intractable posterior. Con-

sequently, EP can only minimize an approximation of this objective.
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More recently, Rényi’s α-divergence [ 59 ] has been used as a family of parametrized di-

vergence measures for variational inference [ 52 ], [  60 ]. The α-Rényi divergence is defined as

Dα

(
π(θ|X̃n)‖q(θ)

)
:= 1

α− 1 log
∫

Θ
q(θ)

(
π(θ|X̃n)
q(θ)

)α
dθ.

The parameter α spans a number of divergence measures and, in particular, we note that as

α → 1 we recover the EP objective KL(π(θ|X̃n)‖q(θ)), we will call its minimizer 1−Rényi

approximate posterior. Settings of α > 1 are particularly interesting since, in contrast to

VB which lower-bounds the log-likelihood of the data (equation (  5.2 )), one obtains tractable

upper bounds. Precisely, using Jensen’s inequality,

p(X̃n)α =
(∫

p(θ, X̃n) q(θ)
q(θ) dθ

)α
≤ Eq

[(
p(θ, X̃n)
q(θ)

)α]
.

Applying the logarithm function on either side,

α log p(X̃n) ≤ log Eq

[(
p(θ, X̃n)
q(θ)

)α]
(5.3)

= α log p(X̃n) + log Eq

[(
π(θ|X̃n)
q(θ)

)α]
:= F2(q). (5.4)

Observe that the second term in the expression for F2(q) is just (α − 1)Dα(p(θ|X̃n)‖q(θ)).

Like with the ELBO lower bound, evaluating this upperbound only involves expectations

with respect to q(θ), and only requires evaluating p(θ, X̃n), the unnormalized posterior dis-

tribution. Optimizing this upper bound over some class of distributions Q, we obtain the

α-Rényi approximation. As noted before, standard variational Bayes, which optimizes a

lower-bound, tends to produce approximating distributions that underestimate the posterior

variance, resulting in predictions that are overconfident and ignore high-risk regions in the

support of the posterior. We illustrate this fact in Figure  5.1 below that reproduces a result

from Li and Turner [ 52 ]. The true posterior distribution is an anisotropic Gaussian distribu-

tion and the variational family consists of isotropic (or mean field) Gaussian distributions.

Standard KL-VB, represented by the green curve titled (α = 0), clearly fits the mode of the

posterior, but completely underestimates the dominant eigen-direction. On the other hand,
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for large values of α (the teal shows α→ +∞), the α-Rényi approximate posterior matches

the mode and does a better job of capturing the spread of the posterior. The figure also

presents results for the α = 1 (or EP) and the α→ −∞ cases. As an aside, we observe that

our parametrization of the Rényi divergence is different from Li and Turner [ 52 ], where the

upper-bounds considered in Li and Turner [ 52 ] emerge as α→ −∞. We note, furthermore,

Figure 5.1. Isotropic variational α-Rényi approximations to an anisotropic
Gaussian, for different values of α (see also Li and Turner [ 52 ])

that in tasks such as model selection, the marginal likelihood of the data is of fundamental in-

terest [  125 ], and the α-Rényi upper bound provides an approximation that complements the

VB lower bound. Recent developments in stochastic optimization have allowed the α-Rényi

objective to be optimized fairly easily; see Li and Turner [ 52 ] and Dieng, Tran, Ranganath,

et al. [ 60 ].

5.1.2 Large sample properties

Despite often state-of-the-art empirical results, variational methods still present a num-

ber of unanswered theoretical questions. This is particularly true for α-Rényi divergence

minimization which has empirically demonstrated very promising results for a number of ap-

plications [ 52 ], [ 60 ]. In recent work, Zhang and Gao [  61 ] have shown conditions under which

α-Rényi variational methods are consistent when α is less than one. Their results followed

from a proof for the regular Kullback-Leibler variational algorithm, and thus only apply to

situations when a lower-bound is optimized. As we mentioned before, the setting with α
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greater than 1 is qualitatively different from both Kullback-Leibler and Rényi divergence

with α < 1. This setting, which is also of considerable practical interest, is the focus of this

chapter and we address the question of asymptotic consistency of the approximate posterior

distribution obtained by minimizing the Rényi divergence.

Asymptotic consistency [ 109 ] is a basic frequentist requirement of any statistical method,

guaranteeing that the ‘true’ parameter is recovered as the number of observations tends to

infinity. Table  5.1 summarizes the current known results on consistency of VI and EP, and

highlights the gap that this chapter is intended to fill. We also want clarify that in this

chapter, we are not analyzing the actual EP algorithm [ 126 ], but our analysis is a step

towards understanding the global minimizer of the EP objective.

Table 5.1. Known results on the asymptotic consistency of variational methods.
Methods Existing works
KL-VB Wang and Blei [  27 ],Zhang and Gao [ 61 ]

α-Rényi (α < 1) Zhang and Gao [ 61 ]
α-Rényi (α > 1) This chapter

1-Rényi (α→ 1, global EP ) This chapter

As we will see, filling these gaps will require new developments. This follows from two

complicating factors: 1) Rényi divergence with α > 1 upper-bounds the log-likelihood, and 2)

this requires new analytical approaches involving expectations with respect to the intractable

π(θ|X̃n). We thus emphasize that the results in this chapter are not a consequence of recent

analysis in Wang and Blei [ 27 ] and Zhang and Gao [  61 ] for the KL-VB, and our proofs differ

substantially from these results.

We establish our main result in Theorem  5.3.1 under mild regularity conditions. First,

in Assumption  5.2.1 we assume that the prior distribution places positive mass in the neigh-

borhood of the true parameter θ0 and that it is uniformly bounded. The former condition

is a reasonable assumption to make - clearly, if the prior does not place any mass in the

neighborhood of the true parameter (assuming one exists) then neither will the posterior.

The uniform boundedness condition on the other hand is attendant to a loss of generality.

In particular, we cannot assume certain heavy-tailed priors (such as Pareto) which might be

important for some engineering applications. Second, we also make the mild assumption that
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the likelihood function is locally asymptotically normal (LAN) in Assumption  5.2.2 . This

is a standard assumption that holds for a variety of statistical/stochastic models. However,

while the LAN assumption will be critical for establishing the asymptotic consistency results,

it is unclear if it is necessary as well. We observe that Wang and Blei [ 27 ] make a similar

assumption in analyzing the consistency of KL-VB. We note that any model Pθ that is twice

differentiable in the parameter θ satisfies the LAN condition [  109 ]. The properties of the

variational family are critical to the consistency result. Assumption  5.2.3 is a mild condition

that insists on there existing Dirac delta distributions in an open neighborhood of the true

parameter θ0. While it may appear that this condition is hard to verify, if the variational

family consists of Gaussian distributions, for instance, then Dirac delta distributions are

present at all points in the parameter space. Consequently, we assert that Assumption  5.2.3 

is easy to satisfy in practice. Next, we assume that the variational family contains ‘good

sequences’, that are constructed so as to converge at the same rate as the true posterior (in

sequence with the sample size) and the first moment of an element in the sequence is pre-

cisely the maximum likelihood estimator of the parameter (at a given sample size). We also

require the tails of the good sequence to bound the tails of the true posterior. We provide

examples that verify the existence of good sequences in commonly used variational families,

such as the mean-field family.

The proof of Theorem  5.3.1 is a consequence of a series of auxiliary results. First, in

Lemma  5.3.1 we characterize α-Rényi minimizers and show that the sequence must have

a Dirac delta distribution at the true parameter θ0 in the large sample limit. Then, in

Lemma  5.3.2 we argue that any convex combination of a Dirac delta distribution at the true

parameter θ0 with any other distribution can not achieve zero α-Rényi divergence in the limit.

Next, we show in Proposition  5.3.1 that the α-Rényi divergence between the true posterior

and the closest variational approximator is bounded above in the large sample limit. We

demonstrate this by showing that a ‘good sequence’ of distributions (see Assumption  5.2.4 )

has asymptotically bounded α-Rényi divergence, implying that the minimizers do as well.

Note that this does not yet prove that the minimizing sequence converges to a Dirac delta

distribution at θ0.
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The next stage of the analysis is concerned with demonstrating that the minimizing

sequence does indeed converge to a Dirac delta distribution concentrated at the true pa-

rameter. We demonstrate this fact as a consequence of Proposition  5.3.1 , Lemma  5.3.1 , and

Lemma  5.3.2 . In essence, Theorem  5.3.1 shows that, α-Rényi minimizing distributions are

arbitrarily close to a good sequence, in the sense of Rényi divergence with the posterior in

the large sample limit.

In our next result in Theorem  5.3.2 , under additional regularity conditions, we further

characterize the rate of convergence of the α−Rényi minimizers. We demonstrate that the

α−Rényi minimizing sequence cannot concentrate to a point in the parameter space at a

faster rate than the true posterior concentrates at the true parameter θ0. Consequently,

the tail mass in the α-Rényi minimizer could dominate that of the true posterior. This

is in contrast with KL-VB, where the evidence lower bound (ELBO) maximizer typically

under-estimates the variance of the true posterior.

Here is a brief roadmap of the chapter. In Section  5.2 , we formally introduce the α-Rényi

methodology, and rigorously state the necessary regularity assumptions. We present our

main result in Section  5.3 , presenting only the proofs of the primary results. In Section  5.4 

we also recover the consistency of 1−Rényi, approximate posteriors, the global minimizer of

EP objective as a consequence of the results in Section  5.3 . In Section  5.5 , we generalize the

notion of good sequence to the models with local latent parameters and under some additional

regularity conditions we prove asymptotic consistency of the α-Rényi approximate posterior

over global latent parameters. All proofs of auxiliary and technical results are delayed to

the Appendix.

5.2 Variational Approximation using α−Rényi Divergence

We assume that the data-generating distribution is parametrized by θ ∈ Θ ⊆ Rd,

d ≥ 1 and is absolutely continuous with respect to the Lebesgue measure, so that the

likelihood function p(·|θ) is well-defined. We place a prior π(θ) on the unknown θ, and

denote π(θ|X̃n) ∝ p(θ, X̃n) as the posterior distribution, where X̃n = {ξ1, . . . , ξn} are the n
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independent and identically distributed (i.i.d.) observed samples generated from the ‘true’

measure Pθ0(≡ P0) in the likelihood family.

In this chapter we will study the α−Rényi-approximate posterior q∗n that minimizes the

α−Rényi divergence between π(θ|X̃n) and q̃(·) in some set Q ∀α > 1; that is,

q∗r(θ|X̃n) := argminq̃∈Q
{
Dα

(
π(θ|X̃n)‖q̃(θ)

)
:= 1

α− 1 log
∫

Θ
q̃(θ)

(
π(θ|X̃n)
q̃(θ)

)α
dθ

}
. (5.5)

Recall that

Definition 5.2.1 (Dominating distribution). The distribution Q dominates the distribution

P (P � Q), when P is absolutely continuous with respect to Q; that is, supp(P ) ⊆ supp(Q).

Clearly, the α−Rényi divergence in ( 5.5 ) is infinite for any distribution q(θ) ∈ Q that

does not dominate the true posterior distribution [  59 ]. Intuitively, this is the reason why the

α-Rényi approximation can better capture the spread of the posterior distribution.

Our goal is to study the statistical properties of the α−Rényi-approximate posterior

as defined in (  5.5 ). In particular, we show that under certain regularity conditions on

the likelihood, the prior and the variational family the α−Rényi-approximate posterior is

consistent or converges weakly to a Dirac delta distribution at the true parameter θ0 as the

number of observations n→∞.

5.2.1 Asymptotic Notations

We first define asymptotic notations that frequently appear in our proofs and assump-

tions. We write an ∼ bn when the sequence {an} can be approximated by a sequence {bn}

for large n, so that the ratio an
bn

approaches 1 as n→∞, an = O(bn) as n→∞, when there

exists a positive number M and n0 ≥ 1, such that an ≤ Mbn ∀n ≥ n0, and an . bn when

the sequence {an} is bounded above by a sequence {bn} for large n.

5.2.2 Assumptions and Definitions

First, we assume the following restrictions on permissible priors.
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Assumption 5.2.1 (Prior Density).

(1) The prior density function π(θ) is continuous with non-zero measure in the neighbor-

hood of the true parameter θ0, and

(2) there exists a constant Mp > 0 such that π(θ) ≤Mp ∀θ ∈ Θ and Eπ(θ)[|θ|] <∞.

Assumption  5.2.1 (1) is typical in Bayesian consistency analysis - quite obviously, if the

prior does not place any mass on the true parameter then the (true) posterior will not either.

Indeed, it is well known [ 110 ], [ 111 ] that for any prior that satisfies Assumption  5.2.1 (1),

under very mild assumptions,

π(U |X̃n) =
∫
U

π(θ|X̃n)dθ ⇒ 1 P0 − a.s. as n→∞, (5.6)

where P0 represents the true data-generating distribution, U is some neighborhood of the

true parameter θ0 and ⇒ represents weak convergence of measures. Assumption  5.2.1 (2),

on the other hand, is a mild technical condition which is satisfied by a large class of prior

distributions, for instance, most of the exponential-family distributions. For simplicity, we

write qn(θ) ⇒ q(θ) to represent weak convergence of the distributions corresponding to the

densities {qn} and q.

We define a generic probabilistic order term, oPθ(1) with respect to measure Pθ as follows

Definition 5.2.2. A sequence of random variables {ξn} is of probabilistic order oPθ(1) when

lim
n→∞

Pθ(|ξn| > δ) = 0, for any δ > 0 .

Next, we assume the likelihood function satisfies the following asymptotic normality

property (see [ 109 ] as well),

Assumption 5.2.2 (Local Asymptotic Normality). Fix θ0 ∈ Θ. The sequence of log-

likelihood functions {logPn(θ) = ∑n
i=1 log p(ξi|θ)} satisfies a local asymptotic normality

(LAN) condition, if there exists a sequence of matrices {rn}, a matrix I(θ0) and a sequence
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of random vectors {∆n,θ0} weakly converging to N (0, I(θ0)−1) as n→∞, such that for every

compact set K ⊂ Rd

sup
h∈K

∣∣∣∣logPn(θ0 + r−1
n h)− logPn(θ0)− hT I(θ0)∆n,θ0 + 1

2h
T I(θ0)h

∣∣∣∣ Pn0−→ 0 as n→∞ .

The LAN condition is standard, and holds for a wide variety of models. The assumption

affords significant flexibility in the analysis by allowing the likelihood to be asymptotically

approximated by a scaled Gaussian centered around θ0 [ 109 ]. We observe that [ 27 ] makes a

similar assumption in their consistency analysis of the variational lower bound. All statistical

models Pθ, which are differentiable in quadratic mean with respect to parameter θ, satisfy

the LAN condition with rn =
√
nI, where I is an identity matrix [ 109 , Chapter-7]. Also, all

models Pθ which are twice continuously differentiable in θ are also differentiable in quadratic

mean and thus satisfy LAN condition, for instance most of the exponential family model

satisfy LAN condition.

Now, let δθ represent the Dirac delta distribution function, or singularity, concentrated

at the parameter θ.

Definition 5.2.3 (Degenerate distribution). A sequence of distributions {qn(θ)} converges

weakly to δθ that is, qn(θ)⇒ δθ for some θ ∈ Θ, if and only if ∀η > 0

lim
n→∞

∫
{|θ−θ|>η}

qn(θ)dθ = 0.

We use the term ‘non-degenerate’ for a sequence of distributions that does not converge

in distribution to a Dirac delta distribution. We also use the term ‘non-singular’ to refer to a

distribution that does not contain any singular components (i.e., it is absolutely continuous

with respect to the Lebesgue measure). And, conversely, if a distribution contains both

singularities and absolutely continuous components we term it a ‘singular distribution’. More

formally,
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Definition 5.2.4 (Singular distributions). Let d(θ) be a distribution with support Θ and for

any i ∈ {1, . . . , K} and K < ∞ denote δθi , as the Dirac delta distributions at θi for any

θi ∈ Θ, then we define singular distribution q(θ);

q(θ) := wd(θ) +
K∑

i=1
wiδθi ,

where w, {wi}Ki=1 ∈ [0, 1) and w+∑K
i=1w

i = 1 with at least one of the weights {wi}Ki=1 strictly

positive.

Finally, we come to the conditions on the variational family Q. We first assume that

Assumption 5.2.3 (Variational Family). The variational family Q must contain all Dirac

delta distributions in some open neighborhood of θ0 ∈ Θ.

Since we know that the posterior converges weakly to a Dirac delta distribution function,

this assumption is a necessary condition to ensure that the variational approximator exists

in the limit. Next, we define the rate of convergence of a sequence of distributions to a Dirac

delta distribution as follows.

Definition 5.2.5 (Rate of convergence). A sequence of distributions {qn(θ)} converges

weakly to δθ1, ∀θ1 ∈ Θ at the rate of γn if

(1) the sequence of means {θ̌n :=
∫
θqn(θ)dθ} converges to θ1 as n→∞, and

(2) the variance of {qn(θ)} satisfies

Eqn(θ)[|θ − θ̌n|2] = O

(
1
γ2
n

)
.

A crucial assumption, on which rests the proof of our main result, is the existence of

what we call a ‘good sequence’ in Q.

Assumption 5.2.4 (Good sequence). For any M̄ > 0, the variational family Q contains a

sequence of distributions {q̄n(θ)} with the following properties:

185



(1) there exists n1 ≥ 1 such that
∫

Θ θq̄n(θ)dθ = θ̂n, where θ̂n is the maximum likelihood

estimate, for each n ≥ n1,

(2) there exists nM̄ ≥ 1 such that the rate of convergence is γn =
√
n , that is Eq̄n(θ)[|θ −

θ̂n|2] ≤ M̄
γ2
n

for each n ≥ nM̄ ,

(3) there exist a compact ball K ⊂ Θ containing the true parameter θ0 and n2 ≥ 1, such

that the sequence of Radon-Nikodym derivatives of the Bayes posterior density with

respect to the sequence {q̄n} exists and is bounded above by a finite positive constant

Mr outside of K for all n ≥ n2 ; that is,

π(θ|X̃n)
q̄n(θ) ≤Mr, ∀θ ∈ Θ\K and ∀n ≥ n2, P0 − a.s.

(4) there exists n3 ≥ 1 such that the good sequence {q̄n(θ)} is log-concave in θ for all

n ≥ n3.

We term such a sequence of distributions as ‘good sequences’.

The first two parts of the assumption hold so long as the variational family Q contains

an open neighborhood of distributions around δθ0 . The third part essentially requires that

for n ≥ n2, the tails of {q̄n(θ)} must decay no faster than the tails of the posterior distribu-

tion. Since, the good sequence converges weakly to δθ0 , this assumption is a mild technical

condition. The last assumption implies that the good sequence is, for large sample sizes, a

maximum entropy distribution under some deviation constraints on the entropy maximiza-

tion problem [ 127 ]. Note that this does not imply that the good sequence is necessarily

Gaussian (which is the maximum entropy distribution specifically under standard deviation

constraints).

We note that this assumption is on the family Q, and not on the minimizer of the Rényi

divergence. We demonstrate the existence of good sequences for some example models.

Example 5.2.1. Consider a model whose likelihood is an m-dimensional multivariate Gaus-

sian likelihood with unknown mean vector µµµ and known covariance matrix Σ. Using an m-
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dimensional multivariate normal distribution with mean vector µ0µ0µ0 and covariance matrix Σ

as conjugate prior, the posterior distribution is

π(µµµ|X̃n) =

√√√√ (n+ 1)m
(2π)mdet (Σ)e

−n+1
2

(
µµµ−
∑n

i=1 ξi+µ0µ0µ0
n+1

)T
Σ−1

(
µµµ−
∑n

i=1 ξi+µ0µ0µ0
n+1

)
,

where exponents ‘T ’ and ‘−1’ denote transpose and inverse. Next, consider the mean-field

variational family, that is the product of m 1-dimensional normal distributions. Consider a

sequence in the variational family with mean {µj
qn , j ∈ {1, 2, . . . ,m}} and variance

{
σ2

j
γ2
n
, j ∈

{1, 2, . . . ,m}
}

:

qn(µµµ) =
m∏

j=1

√√√√ γ2
n

2πσ2
j
e
− γ2

n
2σ2

j
(µj−µj

qn)2

=

√√√√ γ2m
n

(2π)mdet(Iσ)e−
γ2
n
2 (µµµ−µµµqn )T I−1

σ (µµµ−µµµqn ),

where µµµqn = {µ1
qn , µ

2
qn , . . . , µ

m
qn} and Iσ is an m×m diagonal matrix with diagonal elements

{σ2
1, σ

2
2, . . . , σ

2
m}. Notice that γn is the rate at which the sequence {qn(µµµ)} converges weakly.

It is straightforward to observe that the variational family contains sequences that satisfy

properties (1) and (2) in Assumption  5.2.4 , that is

γn =
√
n and µqnµqnµqn =

∑n
i=1 ξi + µ0µ0µ0

n+ 1 .

For brevity, denote µ̃̃µ̃µn := µµµ − µµµqn = µµµ −
∑n

i=1 ξi+µ0µ0µ0
n+1 . To verify property (3) in Assump-

tion  5.2.4 consider the ratio,

π(µµµ|X̃n)
qn(µµµ) =

√
(n+1)m

(2π)mdet(Σ)e
−n+1

2 µ̃̃µ̃µTnΣ−1µ̃̃µ̃µn√
γ2m
n

(2π)mdet(Iσ)e
− γ

2
n
2 µ̃̃µ̃µ

T
n I−1
σ µ̃̃µ̃µn

.

Using the fact that γ2
n = n < n+ 1, the ratio above can be bounded above by

π(µµµ|X̃n)
qn(µµµ) ≤

√√√√2mdet(Iσ)
det (Σ)

e−n+1
2 µ̃̃µ̃µTnΣ−1µ̃̃µ̃µn

e−n+1
2 µ̃̃µ̃µTn I−1

σ µ̃̃µ̃µn
=

√√√√2mdet(Iσ)
det (Σ) e−

n+1
2 µ̃̃µ̃µTn(Σ−1−I−1

σ )µ̃̃µ̃µn .
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Observe that if the matrix (Σ−1 − I−1
σ ) is positive definite then the ratio above is bounded

by
√

2mdet(Iσ)
det(Σ) and if Q is large enough it will contain distributions that satisfy this condition.

To fix the idea, consider the univariate case, where the positive definiteness implies that the

variance of the good sequence is greater than the variance of the posterior for all large enough

‘n’. That is, the tails of the good sequence decay slower than the tails of the posterior.

Example 5.2.2. Consider a model whose likelihood is a univariate Normal distribution with

unknown mean µ and known variance σ. Using a univariate normal distribution with the

mean µ0 and the variance σ as prior, the posterior distribution is

π(µ|X̃n) =
√
n+ 1
2πσ2 e

− (n+1)
2σ2

(
µ−

µ0+
∑n

i=1 ξi
n+1

)2

. (5.7)

Next, suppose the variational family Q is the set of all Laplace distributions. Consider a

sequence {qn(µ)} in Q with the location and the scale parameter kn and bn respectively, that

is

qn(µ) = 1
2bn

e−
|µ−kn|
bn .

To satisfy properties (1) and (2) in Assumption  5.2.4 , we can choose kn = µ0+
∑n

i=1 ξi
n+1 and

bn =
√

πα
1

α−1 σ2

2n , ∀α > 1. For brevity denote µ̃n = µ − µ0+
∑n

i=1 ξi
n+1 . To verify property (3) in

Assumption  5.2.4 consider the ratio,

π(µ|X̃n)
qn(µ) =

√
n+1
2πσ2 e−

(n+1)
2σ2 µ̃2

n

1
2

√
2n

πα
1

α−1 σ2
e
−

√
2n|µ̃n|√

πα
1

α−1 σ2

≤
√

2
α

1
α−1

e
− (n+1)

πα
1

α−1 σ2
µ̃2
n

e
−

∣∣∣∣√2(n+1)|µ̃n|√
πα

1
α−1 σ2

∣∣∣∣ ≤
√

2
α

1
α−1

e1/2,

where the last inequality follows due to the fact that e−(x
2
2 −|x|) < e1/2.

For the same posterior, we can also choose Q to be the set of all Logistic distributions.

Consider a sequence {qn(µ)} in this variational family with the mean and the scale parameter

mn and sn respectively; that is

qn(µ) = 1
sn

(
e
µ−mn

2sn + e−
µ−mn

2sn

)−2
.
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To satisfy properties (1) and (2) in Assumption  5.2.4 , we can choose mn = µ0+
∑n

i=1 ξi
n+1 and

sn =
√

2πα
1

α−1 σ2

n+1 , ∀α > 1. For brevity denote µ̃n = µ− µ0+
∑n

i=1 ξi
n+1 . To verify property (3) in

Assumption  5.2.4 observe that,

π(λ|X̃n)
qn(λ) =

√
n+1
2πσ2 e

− (n+1)
2σ2

(
µ−

µ0+
∑n

i=1 ξi
n+1

)2

1
sn

(
e
µ−mn

2sn + e−
µ−mn

2sn

)−2 = 1√
α

1
α−1

e−( µ̃nsn )2 (
e( µ̃n

2sn ) + e−( µ̃n
2sn )

)
≤ 1√

α
1

α−1

2e1/16,

where the last inequality follows due to the fact that e−x2
(
ex/2 + e−x/2

)
< 2e1/16.

Example 5.2.3. Finally, consider a univariate exponential likelihood model with the un-

known rate parameter λ. For some prior distribution π(λ), the posterior distribution is

π(λ|X̃n) = π(λ)λne−λ
∑n

i=1 ξi∫
π(λ)λne−λ

∑n

i=1 ξidλ
.

Choose Q to be the set of Gamma distributions. Consider a sequence {qn(µ)} in the varia-

tional family with the shape and the rate parameter kn and βn respectively, that is

qn(λ) = βknn
Γ(kn)λ

kn−1e−λβn ,

where Γ(·) is the Γ− function. To satisfy properties (1) and (2) in Assumption  5.2.4 , we can

choose kn = n+ 1 and βn = ∑n
i=1 ξi. To verify property (3) in Assumption  5.2.4 consider the

ratio,

π(λ|X̃n)
qn(λ) = π(λ)λne−λ

∑n

i=1 ξi

βknn
Γ(kn)λ

kn−1e−λβn
∫

π(λ)λne−λ
∑n

i=1 ξidλ
= π(λ)Γ(n+ 1)

(∑n
i=1 ξi)n+1 ∫

π(λ)λne−λ
∑n

i=1 ξidλ
.

Now, observe that (∑n

i=1 ξi)
n+1

Γ(n+1) λne−λ
∑n

i=1 ξi is the density of Gamma distribution with the

mean n+1∑n

i=1 ξi
and the variance 1

n+1

(
n+1∑n

i=1 ξi

)2
. Since, we assumed in Assumption  5.2.1 (2) that
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π(λ) is bounded from above by Mp, therefore for large n, (∑n

i=1 ξi)
n+1

Γ(n+1)
∫

π(λ)λne−λ
∑n

i=1 ξidλ ∼

π

(
n+1∑n

i=1 ξi

)
. Hence, it follows that for large enough n

π(λ|X̃n)
qn(λ) ≤ Mp

π(λ0) ,

where
∑n

i=1 ξi
n+1 → 1

λ0
as n→∞.

5.3 Consistency of α−Rényi Approximate Posterior

Recall that the α−Rényi-approximate posterior q∗n is defined as

q∗r(θ|X̃n) := argminq̃∈Q
{
Dα

(
π(θ|X̃n)‖q̃(θ)

)
:= 1

α− 1 log
∫

Θ
q̃(θ)

(
π(θ|X̃n)
q̃(θ)

)α
dθ

}
. (5.8)

We now show that under the assumptions in the previous section, the α−Rényi ap-

proximators are asymptotically consistent as the sample size increases in the sense that

q∗n ⇒ δθ0 P0 − a.s. as n→∞. To illustrate the ideas clearly, we present our analysis assum-

ing a univariate parameter space, and that the model Pθ is twice differentiable in parameter

θ, and therefore satisfies the LAN condition with rn =
√
n [ 109 ]. The LAN condition to-

gether with the existence of a sequence of test functions [ 109 , Theorem 10.1] also implies

that the posterior distribution converges weakly to δθ0 at the rate of
√
n. The analysis can

be easily adapted to multivariate parameter spaces.

We will first establish some structural properties of the minimizing sequence of distribu-

tions. We show that for any sequence of distributions converging weakly to a non-singular

distribution the α−Rényi divergence is unbounded in the limit.

Lemma 5.3.1. Under Assumptions  5.2.1 ,  5.2.2 ,  5.2.3 , and  5.2.4 , the α−Rényi divergence

between the true posterior and the sequence of distribution {qn(θ)} ⊂ Q can only be finite

in the limit if qn(θ) converges weakly to a singular distribution q(θ), with a Dirac delta

distribution at the true parameter θ0.
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The result above implies that the α−Rényi approximate posterior must have a Dirac

delta distribution component at θ0 in the limit; that is, it should converge in distribution

to δθ0 or a convex combination of δθ0 with singular or non-singular distributions as n→∞.

Next, we consider a sequence {qn(θ)} ⊂ Q that converges weakly to a convex combination

of δθ0 and singular or non-singular distributions qi(θ), i ∈ {1, 2, . . .} such that for weights

{wi ∈ (0, 1) : ∑∞i=1w
i = 1},

qn(θ)⇒ wjδθ0 +
∞∑

i=1,i6=j
wiqi(θ). (5.9)

In the following result, we show that the α−Rényi divergence between the true posterior and

the sequence {qn(θ)} is bounded below by a positive number.

Lemma 5.3.2. Under Assumption  5.2.1 , the α−Rényi divergence between the true posterior

and sequence {qn(θ) ∈ Q} is bounded away from zero; that is

lim inf
n→∞

Dα(π(θ|X̃n)‖qn(θ)) ≥ η > 0 P0 − a.s.

We also show in Lemma  5.6.5 in the appendix that if in ( 5.9 ) the components {qi(θ) i ∈

{1, 2, . . .}} are singular then

lim inf
n→∞

Dα(π(θ|X̃n)‖qn(θ)) ≥ 2(1− wj)2 > 0 P0 − a.s,

where wj is the weight of δθ0 .

A consistent sequence asymptotically achieves zero α−Rényi divergence. To show its

existence, we first provide an asymptotic upper-bound on the minimal α−Rényi divergence

in the next proposition. This, coupled with the previous two structural results, will allow us

to prove the consistency of the minimizing sequence.
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Proposition 5.3.1. For a given α > 1 and under Assumptions  5.2.1 ,  5.2.2 ,  5.2.3 , and  5.2.4 ,

and for any good sequence q̄n(θ) there exist n0 ≥ 1 and M̄ > 0 such thatfor all n ≥ n0, the

minimal α−Rényi divergence satisfies

min
q∈Q

Dα(π(θ|X̃n)‖q(θ)) ≤ Dα(π(θ|X̃n)‖q̄n(θ)) ≤ B = 1
2 log

(
ēM̄I(θ0)
α

1
α−1

)
+ oPn0 (1), (5.10)

where I(θ0) is defined in Assumption  5.2.2 and ē is the Euler’s constant.

Now Proposition  5.3.1 , Lemma  5.3.1 , and Lemma  5.3.2 allow us to prove our main result

that the α−Rényi approximate posterior converges weakly to δθ0 .

Theorem 5.3.1. Under Assumptions  5.2.1 ,  5.2.2 ,  5.2.3 , and  5.2.4 , the α−Rényi approxi-

mate posterior q∗r(θ|X̃n) converges weakly to a Dirac delta distribution at the true parameter

θ0; that is,

q∗n ⇒ δθ0 in-P n
0 probability as n→∞.

Proof. First, we argue that there always exists a sequence {q̃n(θ)} ⊂ Q such that for every

η > 0

lim
n→∞

P n
0

(
Dα(π(θ|X̃n)‖q̃n(θ)) ≤ η

)
= 1.

We demonstrate the existence of q̃n(θ) by construction. Recall from Proposition  5.3.1 (2)

that there exist 0 < M̄ <∞ and n0 ≥ 1, such that for all n ≥ n0

Dα(π(θ|X̃n)‖q̄n(θ)) ≤ 1
2 log ēM̄I(θ0)

α
1

α−1
+oPn0 (1),

where q̄n(θ) is the good sequence as defined in Assumption  5.2.4 and ē is the Euler’s constant.

Now using the definition of oPn0 (1), for every η > 0, it follows from the inequality above that

lim
n→∞

P n
0

(
Dα(π(θ|X̃n)‖q̄n(θ))− 1

2 log ēM̄I(θ0)
α

1
α−1

> η

)
≤ lim

n→∞
P n

0

(
oPn0 (1) > η

)
= 0. (5.11)

Now a specific good sequence can be chosen by fixing M̄ = M̃ := α
1

α−1

ēI(θ0) , implying that

lim
n→∞

P n
0

(
Dα(π(θ|X̃n)‖q̃n(θ)) > η

)
= 0. (5.12)
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The above result implies that there exist a sequence in family Q such that

Dα(π(θ|X̃n)‖q̃n(θ))→ 0 in P n
0 -probability.

Next, we will show that the minimizing sequence must converge to a Dirac delta distribution

in probability. The previous result shows that the minimizing sequence must have zero α-

Rényi divergence in the limit. Lemma  5.3.1 shows that the minimizing sequence must have

a delta at θ0, since otherwise the α-Rényi divergence is unbounded. Similarly, Lemma  5.3.2 

shows that it cannot be a mixture of such a delta with other components, since otherwise

the α-Rényi divergence is bounded away from zero.

Therefore, it follows that the α−Rényi approximate posterior q∗r(θ|X̃n) must converge weakly

to a Dirac delta distribution at the true parameter θ0, in P n
0 − probability, thereby completing

the proof.

Note that the choice of M̄ in the proof essentially determines the variance of the good

sequence. As noted before, the asymptotic log-concavity of the good sequence implies that it

is eventually an entropy maximizing sequence of distributions [ 127 ]. It does not necessarily

follow that the sequence is Gaussian, however. If such a choice can be made (i.e., the

variational family contains Gaussian distributions) then the choice of good sequence amounts

to matching the entropy of a Gaussian distribution with variance α
1

α−1

ēI(θ0) .

We further characterize the rate of convergence of the α−Rényi approximate posterior

under additional regularity conditions. In particular, we establish an upper bound on the

rate of convergence of the possible candidate α−Rényi approximators when the variational

family is sub-Gaussian. Additionally, we require that the posterior distribution satisfies the

Bernstein-von Mises Theorem, that is for any compact set K containing θ0

∫
K

π(θ|X̃n)dθ =
∫
K
N (θ; θ̂n, (nI(θ0))−1)dθ + oPn0 (1). (5.13)

According to Theorem 10.1 in [ 109 ], the Bernstein-von Mises Theorem holds under Assump-

tion  5.2.1 ,  5.2.2 , and the following additional assumption on the existence of consistent test

functions:
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Assumption 5.3.1 (Consistent Tests). For every ε > 0 there exists a sequence of tests

φn(X̃n) such that i) limn→∞ EPn0 (φn(X̃n)) = 0, and limn→∞ sup‖θ−θ0‖≥ε EPn0 (1− φn(X̃n)) = 0.

A further modeling assumption is to choose a sub-Gaussian variational family Q that

limits the variance. We choose a sub-Gaussian sequence of distributions {qn(θ)} ⊂ Q, that

is for some positive constant B and any t ∈ R,

Eqn(θ)[etθ] ≤ eθ̃nt+
B

2γ2
n
t2

, (5.14)

where θ̃n is the mean of qn(θ) and γn is the rate (see Definition  5.2.5 ) at which qn(θ) converges

weakly to a Dirac delta distribution as n→∞.

Lemma 5.3.3. Consider a sequence of sub-Gaussian distributions {qn(θ)} ⊂ Q, with pa-

rameters B and t, that converges weakly to some Dirac delta distribution faster than the

posterior converges weakly to δθ0 (that is, γn >
√
n), and suppose the true posterior distri-

bution satisfies the Bernstein-von Mises Theorem ( 5.13 ). Then, there exists an n0 ≥ 1 such

that the α−Rényi divergence Dα(π(θ|X̃n)‖qn(θ)) is infinite for all n > n0.

We use the above result to show that, when the variational family Q is sub-Gaussian,

then the α−Rényi appropriate posterior cannot converge at a rate γn faster than
√
n, that

is the rate at which the posterior converges weakly to δθ0 .

Theorem 5.3.2. Under Assumptions  5.2.1 ,  5.2.2 ,  5.2.3 ,  5.2.4 , and  5.3.1 , and Q is a family

of sub-Gaussian distribution, then the rate of convergence, γn, of α−Rényi approximate

posterior is bounded above by
√
n, that is γn ≤

√
n.

Proof. Since we choose the variational family to be sub-Gaussian, the α−Rényi approx-

imate posterior must be one of the sequences satisfying ( 5.14 ) and as a consequence of

Theorem  5.3.1 , θ̃n must converge to θ0 as n→∞. On the other hand, using Lemma  5.3.3 , it

follows that the rate of convergence γn of α−Rényi approximate posterior must be bounded

above by
√
n, that is γn ≤

√
n.
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5.4 Consistency of α− Rényi Approximate Posterior as α converges to 1

Our results on the consistency of α-Rényi variational approximators in Section  5.3 can

be a step forward in understanding the consistency of posterior approximations obtained

using expectation propagation (EP) [  54 ], [  55 ]. Observe that for any n ≥ 1, as α→ 1,

Dα

(
π(θ|X̃n)‖q̃(θ)

)
→ KL

(
π(θ|X̃n)‖q̃(θ)

)
, (5.15)

where the limit is the EP objective using KL divergence. We define the 1-Rényi-approximate

posterior s∗n as the distribution in the variational family Q that minimizes the KL divergence

between π(θ|X̃n) and s̃(θ), where s̃(θ) is an element of Q:

s∗n(θ) := argmins̃∈Q
{

KL
(
π(θ|X̃n)‖s̃(θ)

)
:=
∫

Θ
π(θ|X̃n) log

(
π(θ|X̃n)
s̃(θ)

)
dθ

}
. (5.16)

We note that the EP algorithm [ 54 ] is a message-passing algorithm that optimizes an approx-

imations to this objective [ 126 ]. Nevertheless, understanding this idealized objective is an

important step towards understanding the actual EP algorithm. Furthermore, ideas from [ 52 ]

can be used to construct alternate algorithms that directly minimize equation ( 5.16 ). We

thus focus on this objective, and show that under the assumptions in Section  5.2 , the 1-

Rényi-approximate posterior is asymptotically consistent as the sample size increases, in the

sense that s∗n ⇒ δθ0 , P0 − a.s. as n → ∞. The proofs in this section are corollaries of the

results in the previous section.

Recall that the KL divergence lower-bounds the α−Rényi divergence when α > 1; that

is

KL (p(θ)‖q(θ)) ≤ Dα (p(θ)‖q(θ)) . (5.17)

This is a direct consequence of Jensen’s inequality. Analogous to Proposition  5.3.1 , we

first show that the minimal KL divergence between the true Bayesian posterior and the

variational family Q is asymptotically bounded.
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Proposition 5.4.1. For a given α > 1, and under Assumptions  5.2.1 ,  5.2.2 ,  5.2.3 ,  5.2.4 ,

and for any good sequence q̄n(θ) there exist n0 ≥ 1 and M̄ > 0 such that the minimal KL

divergence satisfies

min
s̃∈Q

KL
(
π(θ|X̃n)‖s̃(θ)

)
< B = 1

2 log
(

ēM̄I(θ0)
α

1
α−1

)
+ oPn0 (1). (5.18)

where I(θ0) is defined in Assumption  5.2.2 and ē is the Euler’s constant.

Proof. The result follows immediately from Proposition  5.3.1 and (  5.17 ), since for any s̃(θ) ∈

Q and α > 1,

KL
(
π(θ|X̃n)‖s̃(θ)

)
≤ Dα

(
π(θ|X̃n)‖s̃(θ)

)
.

Next, we demonstrate that any sequence of distributions {sn(θ)} ⊂ Q that converges

weakly to a distribution s(θ) ∈ Q with positive probability outside the true parameter θ0

cannot achieve zero KL divergence in the limit. Observe that this result is weaker than

Lemma  5.3.1 , and does not show that the KL divergence is necessarily infinite in the limit.

This loses some structural insight.

Lemma 5.4.1. There exists an η > 0 in the extended real line such that the KL divergence

between the true posterior and sequence {sn(θ)} is bounded away from zero; that is,

lim inf
n→∞

KL(π(θ|X̃n)‖sn(θ)) ≥ η > 0 P0 − a.s.

Now using Proposition  5.4.1 and Lemma  5.4.1 we show that the 1-Rényi-approximate

posterior converges weakly to the δθ0 .

Theorem 5.4.1. Under Assumptions  5.2.1 ,  5.2.2 ,  5.2.3 , and  5.2.4 , the 1-Rényi-approximate

posterior s∗n(θ) satisfies

s∗n ⇒ δθ0 in-P n
0 probability as n→∞.
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Proof. Recall (  5.12 ) from the proof of Theorem  5.3.1 that there exists a good sequence q̃n(θ),

such that

Dα(π(θ|X̃n)‖q̃n(θ))→ 0 in-P n
0 probability as n→∞.

Since the KL divergence is always non-negative, using ( 5.17 ) it follows that

KL(π(θ|X̃n)‖q̃n(θ))→ 0 in-P n
0 probability as n→∞.

Consequently, the sequence of 1-Rényi-approximate posteriors must also achieve zero KL

divergence from the true posterior in the large sample limit with high probability. Finally,

as demonstrated in Lemma  5.4.1 , any other sequence of distribution that converges weakly to

a distribution, that has positive probability at any point other that θ0 cannot achieve zero KL

divergence. Therefore, it follows that the 1-Rényi-approximate posterior s∗n(θ) must converge

weakly to a Dirac delta distribution at the true parameter θ0, in-P n
0 probability as n→∞,

thereby completing the proof.

5.5 Models with Local Latent Parameters

We generalize the model we have worked with so far to include a collection of n in-

dependent local latent variables z1:n := {z1, z2, . . . , zn} ∈ Zn, one for each observation ξi.

We assume these are distributed as π(zi|θ) for each i, with the observations distributed as

p(ξi|zi, θ). Recall that θ is the global latent variable with prior distribution π(θ). Denote by

z0 and θ0 the true local and global latent parameters respectively. In this section,P0 denotes

the true model Pθ0,z0 . The posterior distribution over θ and z1:n is defined as

π(θ, z1:n|X̃n) := π(θ)∏n
i=1 π(zi|θ)p(ξi|zi, θ)∫ ∫

π(θ)∏n
i=1 π(zi|θ)p(ξi|zi, θ)dθdz1:n

.
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We denote the denominator above as P (X̃n), the model evidence, and the numerator as

p(θ, X̃n, z1:n). Since computing P (X̃n) is difficult, an approximate posterior can be obtained

by minimizing the following objective over a carefully chosen variational family Q:

Dα

(
π(θ, z1:n|X̃n)‖q(θ, z1:n)

)
:= 1

α− 1 log
∫

Θ×Zn
q(θ, z1:n)

(
π(θ, z1:n|X̃n)
q(θ, z1:n)

)α
dθdz1:n, where α > 1.

This objective can be derived as an upper-bound to the model evidence similar to equa-

tion ( 5.4 ). It is common to assume that the variational family Q can be factorized into

subsets Qn (local) and Q̄ (global), and define the Rényi approximate posterior over the

global latent parameter θ as

q∗r(θ|X̃n) := argminq(θ)∈Q̄ min
q(z1:n)∈Qn

log
∫

Θ×Zn
q(θ)q(z1:n)

(
p(θ, z1:n, X̃n)
q(θ)q(z1:n)

)α
dθdz1:n. (5.19)

Notice that the objective above does not require computing the model evidence P (X̃n).

In this section, we aim to show that q∗r(θ|X̃n) converges weakly to the Dirac delta distribution

at θ0. To show this we require the following additional assumptions:

First, we define the profile likelihood at θ = θ0 +n−1/2hn for any bounded and stochastic

hn = oPn0 (1) as p(X̃n|θ0 + n−1/2hn, z
p
1:n), where zp1:n = argmaxz1:n p(X̃n|θ0 + n−1/2hn, z1:n) is

the maximum profile likelihood estimate of z1:n at θ = θ0 +n−1/2hn. Denote dH(z1:n, z
p
1:n) :=

H(Pθ0,z1:n , Pθ0,zp1:n
) as the Helinger distance between models Pθ0,z1:n and Pθ0,zp1:n

Furthermore,

for any ρ > 0 and for all bounded and stochastic hn = oPn0 (1), we define D(θ0 +n−1/2hn, ρ) =

{z1:n : dH(z1:n, z
p
1:n) < ρ} as the Hellinger ball of radius ρ around zp1:n.

Next we impose regularity conditions on the conditioned latent posterior p(z1:n|X̃n, θ0).

Following Wang and Blei [ 27 , Proposition 10] and motivated by Bickel, Kleijn, et al. [ 128 ,

Theorem 4.2], we assume that

Assumption 5.5.1 (Conditioned latent posterior). The conditioned latent posterior

p(z1:n|X̃n, θ0) satisfies
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1. The conditioned latent posterior is consistent under n−1/2-perturbation at some rate

ρn with ρn ↓ 0 and nρ2
n → ∞; that is for all bounded, stochastic hn = OPn0

(1),

p(z1:n|X̃n, θ0) converges as

∫
Dc(θ0+n−1/2hn,ρn)

p(z1:n|X̃n, θ = θ0 + n−1/2hn)dz1:n = OPn0
(1).

2. The sequence {ρn} as defined above should also satisfy the following conditions for all

bounded and stochastic hn = OPn0
(1):

(i) sup
z1:n∈{z1:n:dH(z1:n,z

p
1:n)<ρn}

EPθ0,z1:n

[
p(X̃n|z1:n, θ0 + n−1/2hn)

p(X̃n|z1:n, θ0)

]
= O(1),

(ii) dH(z0, z
p
1:n) = o(ρn).

The first condition ensures that conditioned latent posterior converges slower than the

true posterior and the second condition is an additional regularity condition on the expected

likelihood ratio. Bickel, Kleijn, et al. [ 128 , Lemma 4.3] identifies mild differentiablity condi-

tions on the likelihood ratio that imply condition 2(i) above. Also, Theorem 3.1 in Bickel,

Kleijn, et al. [ 128 ] provide the regularity conditions under which the the conditioned latent

posterior satisfies the first condition above.

The next assumption, adapted from Bickel, Kleijn, et al. [ 128 ], is an extension of LAN

condition in Assumption  5.2.2 to models with both global and local latent parameters.

Assumption 5.5.2 (Stochastic LAN (s-LAN)). Fix θ0 ∈ Θ and recall that zp1:n is the profile

likelihood maximizer. The sequence of log-likelihood functions {P n
θ0,z

p
1:n

:= p(X̃n|θ0, z
p
1:n)}

satisfies stochastic local asymptotic normality (s-LAN) condition if there exists a matrix

I(θ0, z0) and a sequence of random vectors {∆n,(θ0,z0)} ∈ L2(P n
θ0,z1:n) such that for every

bounded and stochastic sequence {hn}, that is hn = OPn0
(1), we have

log
P n
θ0+n−1/2hn,z

p
1:n

P n
θ0,z

p
1:n

= hTnI(θ0, z0)∆n,(θ0,z0) −
1
2h

T
nI(θ0, z0)hn + oPn0 (1),

where P0 = Pθ0,z0.
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Stochastic LAN is slightly stronger than the usual LAN property. In most of the ex-

amples, the ordinary LAN property often extends to stochastic LAN without significant

difficulties [ 128 ]. Also, Theorem 1 in Murphy and Vaart [ 129 ] identifies conditions under

which the above LAN assumption is satisfied by models with both global and local latent

variables. It must be noted that if θ̂n is an asymptotically efficient estimator of θ0, then

according to Lemma 25.25 in [ 109 ]
√
n
(
θ̂n − θ0

)
= ∆n,(θ0,z0) + oPn0 (1).

Next we state a modified version of Assumption  5.2.4 (3) for the models that contain local

latent variables:

Assumption 5.5.3 (Good Sequence-Local). For any M̄ > 0, the variational family Q̄

contains a sequence of distributions {q̄n(θ)} with the following properties:

(1) there exists n1 ≥ 1 such that
∫

Θ θq̄n(θ)dθ = θ̂n, where θ̂n is the maximum likelihood

estimate, for each n ≥ n1,

(2) there exists nM̄ ≥ 1 such that the rate of convergence is γn =
√
n, that is Eq̄n(θ)[|θ −

θ̂n|2] ≤ M̄
γ2
n

for each n ≥ nM̄ ,

(3) there exist a compact ball K ⊂ Θ containing the true parameter θ0 and n2 ≥ 1, such

that the sequence of Radon-Nikodym derivatives of the Bayes posterior density with

respect to the sequence {q̄n} exists and is bounded above by a finite positive constant

Mr outside of K for all n ≥ n2 ; that is,

π(θ|X̃n, z
0
1:n)

q̄n(θ) ≤Mr, ∀θ ∈ Θ\K and ∀n ≥ n2, P0 − a.s,

where z0
1:n is the first n components of the true local latent parameter z0.

(4) there exists n3 ≥ 1 such that the good sequence {q̄n(θ)} is log-concave in θ for all

n ≥ n3.
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Example 5.5.1 (Bayesian mixture model). Consider a mixture of uncorrelated L uni-variate

Gaussians, each with mean µi, i ∈ {1, 2, . . . , L} and unit variance. Each observation ξi is

assumed to be generated using the following model:

µl ∼ π(µl),∀l ∈ {1, 2, . . . , L}

zi ∼ Categorical
( 1
L
,

1
L
, . . . ,

1
L

)
,∀i ∈ {1, 2, . . . , n}

ξi ∼ N (zTi µµµ, 1)∀i ∈ {1, 2, . . . , n}

Notice that µµµ is the global and z1:n are the local latent parameters. Now observe that

π(µµµ|X̃n, z
0
1:n) =

∏L
l=1 π(µl)

∏n
i=1 p(z0

i , ξi|µµµ)∫ ∏L
l=1 π(µl)

∏n
i=1 p(z0

i , ξi|µµµ)dµµµ
=

∏L
l=1 π(µl)

∏n
i=1 p(ξi|µµµ, z0

i )∫ ∏L
l=1 π(µl)

∏n
i=1 p(ξi|µµµ, z0

i )dµµµ

=
∏L
l=1 π(µl)

∏n
i=1N (ξi|µµµT z0

i , 1)∫ ∏L
l=1 π(µl)

∏n
i=1N (ξi|µµµT z0

i , 1)dµµµ
(5.20)

=
∏L
l=1

[
π(µl)

∏nl
j=1N (ξlj |µl, 1)

]
∫ ∏L

l=1 π(µl)
∏nl

j=1N (ξlj |µl, 1)dµµµ
, (5.21)

where ξlj is the jth observation in the lth cluster and nl = ∑n
i=1 z

0
i,l is the total number of

observations in the lth cluster . In practice, π(µl) ∼ N (µl|m,σ2)} is assumed to be Gaussian

(conjugate) with known mean (m) and variance (σ2) hyper-parameters, hence the distribution

in ( 5.21 ) can be computed analytically, that is

π(µ|X̃n, z
0
1:n) =

∏L
l=1 π(µl)

∏n
i=1 p(z0

i , ξi|µ)∫ ∏L
l=1 π(µl)

∏n
i=1 p(z0

i , ξi|µ)dµ
=

L∏
l=1
N

µl
∣∣∣∣∣ 1

1
σ2 + nl

m
σ2 +

nl∑
j=1

ξlj

 ,( 1
σ2 + nl

)−1
 .

In practice Q̄ is chosen to be a mean-field approximate family, in particular it is a product

of L uni-variate Gaussians. Now consider the following sequence of distributions in Q̄, that

is

qn(µ) =
L∏
l=1
N
(
µl|mn,l, σ

2
n,l

)
.

Clearly, by choosing mn,l = 1
1
σ2 +nl

(
m
σ2 +∑nl

j=1 ξ
l
j

)
and σ2

n,l =
(

1
σ2 + nl

)−1
, the ratio

π(µ|X̃n,z0
1:n)

q̄n(θ) is bounded by 1.
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The s-LAN assumption for finite mixtures model follows from the finiteness of the support

of local latent variables [ 129 ], [ 130 ].

In the next result we show that a consistent sequence asymptotically achieves zero

α−Rényi divergence. To show its existence, we first provide an asymptotic upper-bound

on the minimum of the LHS in ( 5.25 ) in the next proposition. This will allow us to prove

the consistency of the minimizing sequence.

Proposition 5.5.1. For a given α > 1 and under Assumptions  5.2.1 ,  5.2.3 (for

Q̄),  5.5.1 ,  5.5.2 ,  5.5.3 , and for any good sequence there exist n0 ≥ 1 and M̄ > 0 such

that for all n ≥ n0, the minimal α−Rényi divergence satisfies

min
q∈Q̄

min
q(z1:n)∈Qn

Dα(π(θ, z1:n|X̃n)‖q(θ)q(z1:n)) ≤ min
q(z1:n)∈Qn

Dα(π(θ, z1:n|X̃n)‖q̄n(θ)q(z1:n))

≤ B = 1
2 log

(
ēM̄I(θ0, z0)

α
1

α−1

)
+ oPn0 (1) (5.22)

where ē is the Euler’s constant and I(θ0, z0) is as defined in Assumption  5.5.2 .

Since the term on the RHS above in ( 5.22 ) is non-negative for all n ≥ n0, implying

that M̄ ≥ α
1

α−1

ēI(θ0,z0) for all n ≥ n0. Therefore, a specific good sequence can be chosen by

fixing M̃ = α
1

α−1

ēI(θ0,z0) , implying that lim supn→∞minq(z1:n)∈Qn Dα(π(θ, z1:n|X̃n)‖q̃n(θ)q(z1:n)) =

0 ∀n ≥ n0. Now analogous to the parametric case we are only left to show that the global

Rényi approximator necessarily converges to a Dirac delta distribution concentrated at the

true global parameter θ0 to achieve zero Rényi divergence.

Now notice that for any n ≥ 1,

min
q(z1:n)∈Qn

log
∫

Θ
q(θ)

(
π(θ)
q(θ)

)α ∫
Zn
q(z1:n)

(
p(z1:n, X̃n|θ)
q(z1:n)

)α
dz1:ndθ

≥ log
∫

Θ
q(θ)

(
π(θ)
q(θ)

)α
min

q(z1:n)∈Qn

∫
Zn
q(z1:n)

(
p(z1:n, X̃n|θ)
q(z1:n)

)α
dz1:ndθ

= log
∫

Θ
q(θ)

(
π(θ)M(X̃n|θ)

q(θ)

)α
dθ, (5.23)
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where M(X̃n|θ) is the variational likelihood define as

M(X̃n|θ) :=
[

min
q(z1:n)∈Qn

∫
Zn
q(z1:n)

(
p(z1:n, X̃n|θ)
q(z1:n)

)α
dz1:n

]1/α

. (5.24)

Observe that subtracting the logP (X̃n)α from either side of ( 5.23 ) yields:

min
q(z1:n)∈Qn

Dα(π(θ, z1:n|X̃n)‖q(θ)q(z1:n)) ≥ Dα(π
∗(θ|X̃n)‖q(θ)), (5.25)

where the ideal posterior π∗(θ|X̃n) is defined as

π
∗(θ|X̃n) := π(θ)M(X̃n|θ)∫

π(θ)M(X̃n|θ)dθ
. (5.26)

In the subsequent lemma we show that under certain regularity conditions M(X̃n|θ)

satisfies the LAN condition with the similar expansion as of the true likelihood model for a

given local latent parameter z0. The proof parallels that of Wang and Blei [ 27 , Proposition

10].

Lemma 5.5.1. Fix θ ∈ Θ. Under Assumptions  5.5.1 and  5.5.2 , the sequence of variational

log-likelihood functions {Mn(θ) := logM(X̃n|θ) satisfies s-LAN condition, that is there ex-

ists a matrix I(θ0, z0) and a sequence of random vectors {∆n,(θ0,z0)} as defined in Assump-

tion  5.5.2 , such that for every bounded and stochastic sequence {hn}, that is hn = OPn0
(1),

we have

log Mn(θ0 + n−1/2hn)
Mn(θ0) = hTnI(θ0, z0)∆n,(θ0,z0) −

1
2h

T
nI(θ0, z0)hn + oPn0 (1).

Next, we will show that the minimizing sequence must converge to a Dirac delta distri-

bution at θ0 using the results in Proposition  5.5.1 and Lemma  5.5.1 .

Theorem 5.5.1. For a given α > 1 and under Assumptions  5.2.1 ,  5.2.3 (for Q̄) ,  5.5.1 ,

and  5.5.3 , the α−Rényi approximate posterior q∗r(θ|X̃n) over global latent parameters θ as
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defined in ( 5.19 ) converges weakly to a Dirac delta distribution at the true parameter θ0; that

is,

q∗r(θ|X̃n)⇒ δθ0 in P n
0 − probability as n→∞.

Proof. Using the result in Proposition  5.5.1 and following similar steps as used in Theo-

rem  5.3.1 , we can show that the minimizing sequence must have zero α-Rényi divergence in

the limit with high probability. Recall the inequality in (  5.25 )

min
q(z1:n)∈Qn

Dα(π(θ, z1:n|X̃n)‖q(θ)q(z1:n)) ≥ Dα(π
∗(θ|X̃n)‖q(θ)). (5.27)

Also note that q∗r(θ|X̃n) is the minimizer of the LHS in the equation above. Since the

variational likelihood satisfies the LAN condition due to Lemma  5.5.1 , under the consis-

tent testability assumption, the ideal posterior π∗(θ|X̃n) also degenerates to a Dirac delta

distribution at the true parameter θ0 [ 131 ].

Now recall Lemma  5.3.1 and  5.3.2 . Following the arguments in Lemma  5.3.1 , and using

the inequality in ( 5.27 ) we can argue that any sequence of distributions in Q̄ that minimizes

the LHS in ( 5.27 ) must converge weakly to a Dirac delta distribution at the true parameter

θ0 in the large sample limit, since otherwise the objective in the LHS of ( 5.27 ) is unbounded.

In addition, using Lemma  5.3.2 and the inequality in ( 5.27 ) we can also show that any

sequence of distribution in Q̄ that converges weakly to a convex combination of a Dirac

delta distribution at θ0 with any other distribution can not achieve zero α−Rényi divergence

in the limit. This completes the proof.

5.6 Proofs

We begin with the following standard lemma.

Lemma 5.6.1. [Laplace Approximation of integrals] Consider an integral of the form

I =
∫ b

a
h(y)e−ng(y)dy,
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where g(y) is a smooth function which has a local minimum at y∗ ∈ (a, b) and h(y) is a

smooth function. Then

I ∼ h(y∗)e−ng(y∗)
√

2π

ng(y∗) as n→∞.

Proof. Readers are directed to Wong [ 132 , Chapter-2] for the proof.

Now we prove a technical lemma that bounds the differential entropy of the good se-

quence.

Lemma 5.6.2. For a good sequence q̄n(θ), there exist an nM ≥ 1 and M̄ > 0, such that for

all n ≥ nM

−
∫
q̄n(µ) log q̄n(µ) ≤ 1

2 log
(

2πēM̄
n

)
,

where ē is the Euler’s constant.

Proof. Recall from Assumption  5.2.4 that the q̄n(θ) converges weakly to δθ0 at the rate of
√
n. It follows from the Definition  5.2.5 for rate of convergence that,

Eq̄n(θ)[|θ − θ̂n|2] = O
( 1
n

)
.

There exist an nM ≥ 1 and M̄ > 0, such that for all n ≥ nM

Eq̄n(θ)[(θ − θ̂n)2] ≤ M̄

n
.

Using the fact that, the differential entropy of random variable with a given variance is

bounded by the differential entropy of the Gausian distribution of the same variance [ 133 ,

Theorem 9.6.5]), it follows that the differential entropy of q̄n(µ) is bounded by 1
2 log(2πēM̄

n
),

where ē is the Euler’s constant.

Next, we prove the following result on the prior distributions. This result will be useful

in proving Lemma  5.6.4 and  5.3.1 .
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Lemma 5.6.3. Given a prior distribution π(θ) with Eπ(θ)[|θ|] < ∞, for any β > 0, there

exists a sequence of compact sets {Kn} ⊂ Θ such that

∫
Θ\Kn

π(γ)dγ = O(n−β).

Proof. Fix θ1 ∈ Θ. Define a sequence of compact sets

Kn = {θ ∈ Θ : |θ − θ1| ≤ nβ}∀β > 0.

Clearly, as n increases Kn approaches Θ. Now, using the Markov’s inequality followed by

the triangular inequality,

∫
Θ\Kn

π(γ)dγ =
∫
{γ∈Θ:|γ−θ1|>nβ}

π(γ)dγ ≤ n−βEπ(θ)[|γ − θ1|]

≤ n−β
(
Eπ(θ)[|γ|] + |θ1|

)
. (5.28)

Since, Eπ(γ)[|γ|] <∞, it follows that ∀β > 0,
∫

Θ\Kn π(γ)dγ = O(n−β).

The next result approximates the normalizing sequence of the posterior distribution using

the lemma above and the LAN condition.

Lemma 5.6.4. There exists a sequence of compact balls {Kn ⊂ Θ}, such that θ0 ∈ Kn and

under Assumptions  5.2.1 and  5.2.2 , the normalizing sequence of the posterior distribution

∫
Θ

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ

=
√

2π

nI(θ0)e( 1
2nI(θ0)((θ̂n−θ0)2))

(
eoPn0 (1)

∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)
)
. (5.29)

Proof. Let {Kn ⊂ Θ} be a sequence of compact balls such that θ0 ∈ Kn, where θ0 is any

point in Θ where prior distribution π(θ) places positive density. Using Lemma  5.6.3 , we can
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always find a sequence of sets {Kn} for a prior distribution, such that θ0 ∈ Kn and for any

positive constant β > 3
2 ,

∫
Θ\Kn

π(γ)dγ = O(n−β). (5.30)

Observe that

∫
Θ

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ =

(∫
Kn

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ +

∫
Θ\Kn

π(γ)
n∏

i=1

p(ξi|γ)
p(ξi|θ0)dγ

)
. (5.31)

Consider the first term in (  5.31 ); following similar steps as in ( 5.49 ) and ( 5.50 ) and using

Assumption  5.2.2 , we have

∫
Kn

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ

= eoPn0 (1) exp
(1

2nI(θ0)
(
(θ̂n − θ0)2

)) ∫
Kn

π(γ) exp
(
−1

2nI(θ0)
(
(γ − θ̂n)2

))
dγ

= eoPn0 (1) exp
(1

2nI(θ0)
(
(θ̂n − θ0)2

))√ 2π

nI(θ0)

∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ, (5.32)

where the last equality follows from the definition of Gaussian density, N (·; θ̂n, (nI(θ0))−1).

Substituting (  5.32 ) into (  5.31 ), we obtain

∫
Θ

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ

= exp
(1

2nI(θ0)
(
(θ̂n − θ0)2

))√ 2π

nI(θ0)

(
eoPn0 (1)

∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ

+ exp
(
−1

2nI(θ0)
(
(θ̂n − θ0)2

))√nI(θ0)
2π

∫
Θ\Kn

π(γ)
n∏

i=1

p(ξi|γ)
p(ξi|θ0)dγ

)
. (5.33)
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Next, using the Markov’s inequality and then Fubini’s Theorem, for arbitrary δ > 0, we

have

P n
0

√nI(θ0)
2π

∫
Θ\Kn

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ > δ

 ≤
√
nI(θ0)
δ22π

EPn0

[∫
Θ\Kn

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ

]

=
√
nI(θ0)
δ22π

∫
Θ\Kn

EPn0

[
n∏

i=1

p(ξi|γ)
p(ξi|θ0)

]
π(γ)dγ

=
√
nI(θ0)
δ22π

∫
Θ\Kn

π(γ)dγ, (5.34)

since EPn0
[∏n

i=1
p(ξi|γ)
p(ξi|θ0)

]
= 1.

Hence, using ( 5.30 ) for β > 3/2, it is straightforward to observe that

P n
0

√nI(θ0)
2π

∫
Θ\Kn

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ > δ

 ≤
√
I(θ0)
δ22π

1
nβ−1/2 .

Since the upper bound above is summable, using First Borel-Cantelli Theorem it follows

that
√
nI(θ0)

2π

∫
Θ\Kn

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ = o(1) P0 − a.s.. (5.35)

Since, exp
(
−1

2nI(θ0)
(
(θ̂n − θ0)2

))
≤ 1, it follows from substituting ( 5.35 ) into ( 5.33 )

that

∫
Θ

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ

= exp
(1

2nI(θ0)
(
(θ̂n − θ0)2

))√ 2π

nI(θ0)

(
eoPn0 (1)

∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)
)
.

Next we prove Lemma  5.3.1 , showing that the α−Rényi divergence between the posterior

and any non-degenerate distribution diverges in the large sample limit.

Proof of Lemma  5.3.1 . Let Kn ⊂ Θ be a sequence of compact sets such that θ0 ∈ Kn, where

θ0 is any point in Θ where prior distribution π(θ) places positive density. Using Lemma  5.6.3 ,
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we can always find a sequence of sets {Kn} for a prior distribution, such that θ0 ∈ Kn and

for any positive constant β > 1
2 ,

∫
Θ\Kn

π(γ)dγ = O(n−β). (5.36)

Now, observe that

α− 1
α

Dα(π(θ|X̃n)‖qn(θ))

= 1
α

log
(∫

Kn
qn(θ)

(
π(θ|X̃n)
qn(θ)

)α
dθ +

∫
Θ\Kn

qn(θ)
(

π(θ|X̃n)
qn(θ)

)α
dθ

)

≥ 1
α

log
(∫

Kn
qn(θ)

(
π(θ|X̃n)
qn(θ)

)α
dθ

)
, (5.37)

where the last inequality follows from the fact that the integrand is always positive.

Next, we approximate the ratio in the integrand on the right hand side of the above

equation using the LAN condition in Assumption  5.2.2 . Let ∆n,θ0 :=
√
n(θ̂n− θ0), such that

θ̂n → θ0, P0 − a.s. and ∆n,θ0 converges in distribution to N (0, I(θ0)−1). Re-parameterizing

the expression with θ = θ0 + n−1/2h, we have

∫
Kn
qn(θ)

(
π(θ|X̃n)
qn(θ)

)α
dθ = n−1/2

∫
Kn
qn(θ0 + n−1/2h)

 π(θ0 + n−1/2h)∏n
i=1

p(ξi|(θ0+n−1/2h))
p(ξi|θ0)

qn(θ0 + n−1/2h)
∫

Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dh

= n−1/2
∫
Kn
qn(θ0 + n−1/2h)

 π(θ0 + n−1/2h)∏n
i=1

p(ξi|(θ0+n−1/2h))
p(ξi|θ0)

qn(θ0 + n−1/2h)
∫

Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dh (5.38)

= n−1/2
∫
Kn
qn(θ0 + n−1/2h)

(
π(θ0 + n−1/2h)

exp(hI(θ0)∆n,θ0 − 1
2h

2I(θ0) + oPn0 (1))
qn(θ0 + n−1/2h)

∫
Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ

)α
dh.

(5.39)
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Resubstituting h =
√
n(θ − θ0) in the expression above and reverting to the previous

parametrization,

=
∫
Kn
qn(θ)

π(θ)
exp

(√
n(θ − θ0)I(θ0)∆n,θ0 − 1

2n(θ − θ0)2I(θ0) + oPn0 (1)
)

qn(θ)
∫

Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ

α dθ
=
∫
Kn
qn(θ)

π(θ)
eoPn0 (1) exp

(
−1

2nI(θ0)
(
(θ − θ0)2 − 2(θ − θ0)(θ̂n − θ0)

))
qn(θ)

∫
Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dθ.

Now completing the square by dividing and multiplying the numerator by

exp
(

1
2nI(θ0)

(
(θ̂n − θ0)2

))
we obtain

=
∫
Kn
qn(θ)

π(θ)
eoPn0 (1) exp

(
1
2nI(θ0)

(
(θ̂n − θ0)2

))
exp

(
−1

2nI(θ0)
(
(θ − θ̂n)2

))
qn(θ)

∫
Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dθ

=
∫
Kn
qn(θ)

π(θ)
eoPn0 (1) exp

(
1
2nI(θ0)

(
(θ̂n − θ0)2

))√
2π

nI(θ0)N (θ; θ̂n, (nI(θ0))−1)
qn(θ)

∫
Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dθ,

(5.40)

where, in the last equality we used the definition of Gaussian density, N (·; θ̂n, (nI(θ0))−1).

Next, we approximate the integral in the denominator of (  5.50 ). Using Lemma  5.6.4 it

follows that, there exist a sequence of compact balls {Kn ⊂ Θ}, such that θ0 ∈ Kn and

∫
Θ

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ

=
√

2π

nI(θ0)e( 1
2nI(θ0)((θ̂n−θ0)2))

(
eoPn0 (1)

∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)
)
. (5.41)

Substituting (  5.41 ) into (  5.40 ) and simplifying, we obtain

∫
Kn
qn(θ)

(
π(θ|X̃n)
qn(θ)

)α
dθ

=
∫
Kn
qn(θ)1−α

 eoPn0 (1)
π(θ)N (θ; θ̂n, (nI(θ0))−1)(

eoPn0 (1) ∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)
)

α

dθ. (5.42)
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Observe that:

(
N (θ; θ̂n, (nI(θ0))−1)

)α
=
√nI(θ0)

2π

α (√ 2π

nαI(θ0)

)
N (θ; θ̂n, (nαI(θ0))−1).

Substituting this into the right hand side of ( 5.42 )

1
α

log
∫
Kn
qn(θ)1−α

 π(θ)N (θ; θ̂n, (nI(θ0))−1)(
eoPn0 (1) ∫

Kn
π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)

)

α

dθ

=− log
(

eoPn0 (1)
∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)
)

+ α− 1
2α log n− logα

2α

+ α− 1
2α log I(θ0)

2π
+ 1
α

log
∫
Kn
qn(θ)1−α

π(θ)αN (θ; θ̂n, (nαI(θ0))−1)dθ. (5.43)

From the Laplace approximation (Lemma  5.6.1 ) and the continuity of the logarithm, we

have

− log
(

eoPn0 (1)
∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)
)
∼ − log

(
eoPn0 (1)

π(θ̂n)
)
.

Next, using the Laplace approximation on the last term in ( 5.43 )

1
α

log
∫
Kn
qn(θ)1−α

π(θ)αN (θ; θ̂n, (nαI(θ0))−1)dθ ∼ α− 1
α

log 1
qn(θ̂n)

+ log π(θ̂n).

Substituting the above two approximations into ( 5.43 ), we have

1
α

log
∫
Kn
qn(θ)1−α

 π(θ)N (θ; θ̂n, (nI(θ0))−1)(
eoPn0 (1) ∫

Kn
π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)

)

α

dθ

∼− log
(
eoPn0 (1)

π(θ̂n)
)
− logα

2α + α− 1
2α log I(θ0)

2π

+ α− 1
2α log n− α− 1

α
log qn(θ̂n) + log π(θ̂n)

∼− log
(
π(θ̂n)

)
− logα

2α + α− 1
2α log I(θ0)

2π
+ α− 1

2α log n− α− 1
α

log q(θ̂n) + log π(θ̂n) + oPn0 (1)

=− logα
2α + α− 1

2α log I(θ0)
2π

+ α− 1
2α log n− α− 1

α
log q(θ̂n) + oPn0 (1), (5.44)
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where the penultimate approximation follows from the fact that

qn(θ̂n) ∼ q(θ̂n).

Note that θ̂n → θ0, P0 − a.s. Therefore, if q(θ0) = 0, then the right hand side in ( 5.44 )

will diverge as n → ∞ because α−1
2α log n also diverges as n → ∞. Also observe that, for

any q(θ) that places finite mass on θ0, the α−Rényi divergence diverges as n→∞. Hence,

α−Rényi approximate posterior must converge weakly to a distribution that has a Dirac

delta distribution at the true parameter θ0.

Next, we show that the α−Rényi divergence between the true posterior and the sequence

{qn(θ)} ∈ Q as defined in ( 5.9 ) is bounded below by a positive number.

Proof of Lemma  5.3.2 . Van Erven and Harremos [  59 , Theorem 19] shows that, for any α >

0, the α−Rényi divergence Dα(p(θ)‖q(θ)) is a lower semi-continuous function of the pair

(p(θ), q(θ)) in the weak topology on the space of probability measures. Recall from ( 5.6 )

that the true posterior distribution π(θ|X̃n) converges weakly to δθ0 P0−a.s. Using this fact

it follows that

lim inf
n→∞

Dα(π(θ|X̃n)‖qn(θ)) ≥ Dα

δθ0
∥∥∥∥∥wjδθ0 +

∞∑
i=1,i 6=j

wiqi(θ)
 P0 − a.s.

Next, using Pinsker’s inequality [ 133 ] for α > 1, we have

Dα

δθ0
∥∥∥∥∥wjδθ0 +

∞∑
i=1,i 6=j

wiqi(θ)
 ≥ 1

2

∫
Θ

∣∣∣∣∣∣δθ0 − wjδθ0 −
∞∑

i=1,i6=j
wiqi(θ)

∣∣∣∣∣∣ dθ
2

= 1
2

∫
Θ

∣∣∣∣∣∣(1− wj)δθ0 −
∞∑

i=1,i6=j
wiqi(θ)

∣∣∣∣∣∣ dθ
2

.
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Now dividing the integral over ball of radius ε centered at θ0, B(θ0, ε) and its complement,

we obtain

lim inf
n→∞

Dα(π(θ|X̃n)‖qn(θ))

≥ 1
2

∫
B(θ0,ε)

∣∣∣∣∣∣(1− wj)δθ0 −
∞∑

i=1,i6=j
wiqi(θ)

∣∣∣∣∣∣ dθ +
∫
B(θ0,ε)C

∣∣∣∣∣∣(1− wj)δθ0 −
∞∑

i=1,i 6=j
wiqi(θ)

∣∣∣∣∣∣ dθ
2

≥ 1
2

∫
B(θ0,ε)C

∣∣∣∣∣∣(1− wj)δθ0 −
∞∑

i=1,i 6=j
wiqi(θ)

∣∣∣∣∣∣ dθ
2

= 1
2

∫
B(θ0,ε)C

∣∣∣∣∣∣−
∞∑

i=1,i 6=j
wiqi(θ)

∣∣∣∣∣∣ dθ
2

P0 − a.s. (5.45)

Since, wi ∈ (0, 1), observe that for any ε > 0, there exists η(ε) > 0, such that

1
2

∫
B(θ0,ε)C

∣∣∣∣∣∣−
∞∑

i=1,i 6=j
wiqi(θ)

∣∣∣∣∣∣ dθ
2

≥ η(ε).

Therefore, it follows that

lim inf
n→∞

Dα(π(θ|X̃n)‖qn(θ)) ≥ η(ε) > 0 P0 − a.s.

In the following result, we show that if qi(θ), i ∈ {1, 2, . . .} in the definition of {qn(θ)}

in ( 5.9 ) are Dirac delta distributions then

lim inf
n→∞

Dα(π(θ|X̃n)‖qn(θ)) ≥ 2(1− wj)2 > 0 P0 − a.s,

where wj is the weight of δθ0 . Consider a sequence {qn(θ)}, that converges weakly to a convex

combination of δθi , i ∈ {1, 2, . . .} such that for weights {wi ∈ (0, 1) : ∑∞i=1 w
i = 1},

qn(θ)⇒
∞∑

i=1
wiδθi , (5.46)

where for any j ∈ {1, 2, . . .} , θj = θ0 and for all i ∈ {1, 2, . . .}\{j}, θj 6= θ0.
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Lemma 5.6.5. The α−Rényi divergence between the true posterior and sequence {qn(θ)} is

bounded below by a positive number 2(1− wj)2; that is,

lim inf
n→∞

Dα(π(θ|X̃n)‖qn(θ)) ≥ 2(1− wj)2 > 0 P0 − a.s,

where wj is the weight of δθ0 in the definition of sequence {qn(θ)}.

Proof. Van Erven and Harremos [ 59 , Theorem 19] shows that, for any α > 0, the α−Rényi

divergence Dα(p(θ)‖q(θ)) is a lower semi-continuous function of the pair (p(θ), q(θ)) in the

weak topology on the space of probability measures. Recall from ( 5.6 ) that the true posterior

distribution π(θ|X̃n) converges weakly to δθ0 , P0 − a.s. Using this fact it follows that

lim inf
n→∞

Dα(π(θ|X̃n)‖qn(θ)) ≥ Dα

(
δθ0

∥∥∥∥∥
∞∑

i=1
wiδθi

)
P0 − a.s.

Next, using Pinsker’s inequality [ 133 ] for α > 1, we have

Dα

(
δθ0

∥∥∥∥∥
∞∑

i=1
wiδθi

)
≥ 1

2

(∫
Θ

∣∣∣∣∣δθ0 −
∞∑

i=1
wiδθi

∣∣∣∣∣ dθ
)2

= 1
2

∫
Θ

∣∣∣∣∣∣(1− wj)δθ0 −
∞∑

i=1,i6=j
wiδθi

∣∣∣∣∣∣ dθ
2

= 1
2

∫
B(θ0,ε)

(1− wj)|δθ0|dθ +
∞∑

i=1,i6=j
wi
∫
B(θi,ε)

| − δθi |dθ

2

= 1
2

(1− wj) +
∞∑

i=1,i 6=j
wi

2

= 2(1− wj)2, (5.47)

where B(θi, ε) is the ball of radius ε centered at θi. Note that, there always exist an

ε > 0, such that ⋂∞i=1 B(θi, ε) = φ. Since, by the definition of sequence {qn(θ)}, wj ∈ (0, 1),

therefore 2(1− wj)2 > 0 and the lemma follows.

Now we show that any sequence of distributions {sn(θ)} ⊂ Q that converges weakly to a

distribution s(θ) ∈ Q, that has positive density at any point other than the true parameter

θ0, cannot achieve zero KL divergence in the limit.
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Proof of Proposition  5.3.1 . Observe that for any good sequence {q̄n(θ)}

min
q∈Q

Dα(π(θ|X̃n)‖q(θ)) ≤ Dα(π(θ|X̃n)‖q̄n(θ)).

Therefore, for the second part, it suffices to show that

Dα(π(θ|X̃n)‖q̄n(θ)) < B + oPn0 (1).

The subsequent arguments in the proof are for any n ≥ max(n1, n2, n3, nM), where n1, n2, and

n3 are defined in Assumption  5.2.4 . First observe that, for any compact ball K containing

the true parameter θ0,

α− 1
α

Dα(π(θ|X̃n)‖q̄n(θ))

= 1
α

log
(∫

K
q̄n(θ)

(
π(θ|X̃n)
q̄n(θ)

)α
dθ +

∫
Θ\K

q̄n(θ)
(

π(θ|X̃n)
q̄n(θ)

)α
dθ

)
. (5.48)

First, we approximate the first integral on the right hand side using the LAN condition

in Assumption  5.2.2 . Let ∆n,θ0 :=
√
n(θ̂n−θ0), where θ̂n → θ0, P0−a.s. and ∆n,θ0 converges

in distribution to N (0, I(θ0)−1). Re-parameterizing the expression with θ = θ0 + n−1/2h, we

have

∫
K
q̄n(θ)

(
π(θ|X̃n)
q̄n(θ)

)α
dθ = n−1/2

∫
K
q̄n(θ0 + n−1/2h)

 π(θ0 + n−1/2h)∏n
i=1

p(ξi|(θ0+n−1/2h))
p(ξi|θ0)

q̄n(θ0 + n−1/2h)
∫

Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dh

= n−1/2
∫
K
q̄n(θ0 + n−1/2h)

 π(θ0 + n−1/2h)∏n
i=1

p(ξi|(θ0+n−1/2h))
p(ξi|θ0)

q̄n(θ0 + n−1/2h)
∫

Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dh

= n−1/2
∫
K
q̄n(θ0 + n−1/2h)

(
π(θ0 + n−1/2h)

exp(hI(θ0)∆n,θ0 − 1
2h

2I(θ0) + oPn0 (1))
q̄n(θ0 + n−1/2h)

∫
Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ

)α
dh.

(5.49)
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Resubstituting h =
√
n(θ − θ0) in the expression above and reverting to the previous

parametrization,

=
∫
K
q̄n(θ)

π(θ)
exp

(√
n(θ − θ0)I(θ0)∆n,θ0 − 1

2n(θ − θ0)2I(θ0) + oPn0 (1)
)

q̄n(θ)
∫

Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ

α dθ
=
∫
K
q̄n(θ)

π(θ)
eoPn0 (1) exp

(
−1

2nI(θ0)
(
(θ − θ0)2 − 2(θ − θ0)(θ̂n − θ0)

))
q̄n(θ)

∫
Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dθ.

Now completing the square by dividing and multiplying the numerator by

exp
(

1
2nI(θ0)

(
(θ̂n − θ0)2

))
we obtain

=
∫
K
q̄n(θ)

π(θ)
eoPn0 (1) exp

(
1
2nI(θ0)

(
(θ̂n − θ0)2

))
exp

(
−1

2nI(θ0)
(
(θ − θ̂n)2

))
q̄n(θ)

∫
Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dθ

=
∫
K
q̄n(θ)

π(θ)
eoPn0 (1) exp

(
1
2nI(θ0)

(
(θ̂n − θ0)2

))√
2π

nI(θ0)N (θ; θ̂n, (nI(θ0))−1)
q̄n(θ)

∫
Θ
∏n

i=1
p(ξi|γ)
p(ξi|θ0)π(γ)dγ


α

dθ,

(5.50)

where, in the last equality we used the definition of Gaussian density, N (·; θ̂n, (nI(θ0))−1).

Next, we approximate the integral in the denominator of ( 5.50 ). Using Lemma  5.6.4 (in

the appendix) it follows that, there exist a sequence of compact balls {Kn ⊂ Θ}, such that

θ0 ∈ Kn and

∫
Θ

n∏
i=1

p(ξi|γ)
p(ξi|θ0)π(γ)dγ

=
√

2π

nI(θ0)e( 1
2nI(θ0)((θ̂n−θ0)2))

(
eoPn0 (1)

∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)
)
. (5.51)

Now, substituting ( 5.51 ) into ( 5.50 ), we obtain

∫
K
q̄n(θ)

(
π(θ|X̃n)
q̄n(θ)

)α
dθ =

∫
K
q̄n(θ)1−α


eoPn0 (1)

π(θ)N (θ; θ̂n, 1
nI(θ0))(

eoPn0 (1) ∫
Kn

π(γ)N (γ; θ̂n, 1
nI(θ0))dγ + o(1)

)

α

dθ.

(5.52)
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Now, recall the definition of compact ball K, n1 and n2 from Assumption  5.2.4 and fix

n ≥ n0, where n0 = max(n1, n2). Note that n2 is chosen, such that for all n ≥ n2, the bound

in Assumption  5.2.4 (3) holds on the set Θ\K. Next, consider the second term inside the

logarithm function on the right hand side of ( 5.48 ). Using Assumption  5.2.4 (3), we obtain

∫
Θ\K

q̄n(θ)
(

π(θ|X̃n)
q̄n(θ)

)α
dθ ≤Mα

r

∫
Θ\K

q̄n(θ)dθ P0 − a.s. (5.53)

Recall that the good sequence {q̄n(·)} exists P0 − a.s with mean θ̂n, for all n ≥ n1 and

therefore it converges weakly to δθ0 (as assumed in Assumption  5.2.4 (2)). Combined with

the fact that compact set K contains the true parameter θ0, it follows that the second term

in (  5.48 ) is of o(1), P0 − a.s. Therefore, the second term inside the logarithm function on

the right hand side of ( 5.48 ) is o(1):

∫
Θ\K

q̄n(θ)
(

π(θ|X̃n)
q̄n(θ)

)α
dθ = o(1) P0 − a.s. (5.54)

Substituting (  5.52 ) and ( 5.54 ) into ( 5.48 ), we have

α− 1
α

Dα(π(θ|X̃n)‖q̄n(θ))

= 1
α

log


∫
K
q̄n(θ)1−α

 eoPn0 (1)
π(θ)N (θ; θ̂n, (nI(θ0))−1)(

eoPn0 (1) ∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)
)

α

dθ + o(1)



= 1
α

log

eoPn0 (1)
∫
K
q̄n(θ)1−α

 π(θ)N (θ; θ̂n, (nI(θ0))−1)(
eoPn0 (1) ∫

Kn
π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)

)

α

dθ + o(1)

 .
(??)
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Now observe that,

(??) ∼ 1
α

log


∫
K
q̄n(θ)1−α

 π(θ)N (θ; θ̂n, (nI(θ0))−1)(
eoPn0 (1) ∫

Kn
π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)

)

α

dθ


= 1
α

log
(∫

K
q̄n(θ)1−α

π(θ)αN (θ; θ̂n, (nI(θ0))−1)αdθ
)

− log
(

eoPn0 (1)
∫
Kn

π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ + o(1)
)

∼ 1
α

log
(∫

K
q̄n(θ)1−α

π(θ)αN (θ; θ̂n, (nI(θ0))−1)αdθ
)

− log
(∫

Kn
π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ

)
+oPn0 (1). (5.55)

Note that
(
N (θ; θ̂n, (nI(θ0))−1)

)α
=
(√

nI(θ0)
2π

)α (√
2π

nαI(θ0)

)
N (θ; θ̂n, (nαI(θ0))−1).

Substituting this into ( 5.55 ), for large enough n, we have

α− 1
α

Dα(π(θ|X̃n)‖q̄n(θ))

∼α− 1
2α log n− logα

2α + α− 1
2α log I(θ0)

2π
+ 1
α

log
∫
K
q̄n(θ)1−α

π(θ)αN (θ; θ̂n, (nαI(θ0))−1)dθ

− log
(∫

Kn
π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ

)
. (5.56)

From the Laplace approximation (Lemma  5.6.1 ) and the continuity of the logarithm, we

have

1
α

log
∫
K
q̄n(θ)1−α

π(θ)αN (θ; θ̂n, (nαI(θ0))−1)dθ ∼ 1− α
α

log q̄n(θ̂n) + log π(θ̂n).

Next, using the Laplace approximation (Lemma  5.6.1 ) on the last term in ( 5.56 ) yields

− log
(∫

Kn
π(γ)N (γ; θ̂n, (nI(θ0))−1)dγ

)
∼ − log

(
π(θ̂n)

)
.
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Substituting the above two approximations into ( 5.56 ), for large enough n, we obtain

α− 1
α

Dα(π(θ|X̃n)‖q̄n(θ))

∼1− α
α

log q̄n(θ̂n) + log π(θ̂n)− logα
2α + α− 1

2α log I(θ0)
2π

+ α− 1
2α log n− log π(θ̂n)+oPn0 (1)

=1− α
α

log q̄n(θ̂n)− logα
2α + α− 1

2α log I(θ0)
2π

+ α− 1
2α log n+oPn0 (1). (5.57)

Now, recall Assumption  5.2.4 (4) which, combined with the monotonicity of logarithm

function, implies that log q̄n(·) is concave for all n ≥ n3. Using Jensen’s inequality,

log q̄n(θ̂n) = log q̄n
(∫

θq̄n(θ)dθ
)
≥
∫
q̄n(θ) log q̄n(θ)dθ.

Since α > 1,
1− α
α

log q̄n(θ̂n) ≤ −α− 1
α

∫
q̄n(θ) log q̄n(θ)dθ.

Now using Lemma  5.6.2 (in the appendix), there exists nM ≥ 1 and 0 < M̄ <∞, such that

for all n ≥ nM

−α− 1
α

∫
q̄n(θ) log q̄n(θ)dθ ≤ α− 1

2α log
(

2πēM̄
n

)
= α− 1

2α log(2πēM̄)− α− 1
2α log n,

(5.58)

where ē is the Euler’s constant. Substituting ( 5.58 ) into the right hand side of (  5.57 ), we

have for all n ≥ n0, where n0 = max(n0, n3, nM),

1− α
α

log q̄n(θ̂n)− logα
2α + α− 1

2α log I(θ0)
2π

+ α− 1
2α log n.

≤α− 1
2α log(2πēM̄)− α− 1

2α log n− logα
2α + α− 1

2α log I(θ0)
2π

+ α− 1
2α log n

=α− 1
2α log(2πēM̄)− logα

2α + α− 1
2α log I(θ0)

2π

=α− 1
α

1
2 log ēM̄I(θ0)

α
1

α−1
. (5.59)
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Observe that the left hand side in (  5.57 ) is always non-negative, implying the right hand

side must be too for large n. Therefore, the following inequality must hold for all n ≥ n0:

ēM̄I(θ0)
α

1
α−1

≥ 1.

Consequently, substituting ( 5.59 ) into (  5.57 ), we have

Dα(π(θ|X̃n)‖q̄n(θ)) ≤ 1
2 log ēM̄I(θ0)

α
1

α−1
+oPn0 (1) ∀n ≥ n0, (5.60)

and the result follows.

Proof of Lemma  5.4.1 . Posner [ 112 , Theorem 1] shows that, the KL divergence

KL(p(θ)‖s(θ)) is a lower semi-continuous function of the pair (p(θ), s(θ)) in the weak topol-

ogy on the space of probability measures. Recall from ( 5.6 ) that the true posterior distribu-

tion π(θ|X̃n) converges weakly to δθ0 , P0 − a.s. Using this fact it follows that

lim inf
n→∞

KL(π(θ|X̃n)‖sn(θ)) ≥ KL (δθ0‖s(θ)) P0 − a.s.

Next, using Pinsker’s inequality [ 133 ] for α > 1, we have

KL (δθ0‖s(θ)) ≥
1
2

(∫
Θ
|δθ0 − s(θ)| dθ

)2
.

Now, fixing ε > 0 such that s(θ) has positive density in the complement of the ball of radius

ε centered at θ0, B(θ0, ε)C , we have

lim inf
n→∞

KL(π(θ|X̃n)‖sn(θ)) ≥ 1
2

(∫
B(θ0,ε)

|δθ0 − s(θ)| dθ +
∫
B(θ0,ε)C

|δθ0 − s(θ)| dθ
)2

≥ 1
2

(∫
B(θ0,ε)C

|δθ0 − s(θ)| dθ
)2

= 1
2

(∫
B(θ0,ε)C

|−s(θ)| dθ
)2

P0 − a.s. (5.61)
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Since s(θ) has positive density in the set B(θ0, ε)C , there exists η(ε) > 0, such that

1
2

(∫
B(θ0,ε)C

|−s(θ)| dθ
)2

≥ η(ε),

completing the proof.

Next, we state an important inequality, that is a direct consequence of Hölder’s inequality.

We use the following result in the proof of Theorem  5.3.3 .

Lemma 5.6.6. For any set K ⊂ Θ and α > 1 and any sequence of distributions {qn(θ)} ⊂ Q,

the following inequality holds true

∫
Θ
qn(θ)

(
π(θ|X̃n)
qn(θ)

)α
dθ ≥

(∫
K π(θ|X̃n)dθ

)α
(
∫
K qn(θ)dθ)α−1 . (5.62)

Proof. Fix a set K ⊂ Θ. Since α > 1, using Hölder’s inequality for f(θ) = π(θ|X̃n)
qn(θ)1− 1

α
and

g(θ) = qn(θ)1− 1
α ,

∫
K

π(θ|X̃n)dθ =
∫
K
f(θ)g(θ)dθ

≤
(∫

K

π(θ|X̃n)α
qn(θ)α−1 dθ

) 1
α (∫

K
qn(θ)dθ

)1− 1
α

.

It is straightforward to observe from the above equation that,

∫
K

π(θ|X̃n)α
qn(θ)α−1 dθ ≥

(∫
K π(θ|X̃n)dθ

)α
(
∫
K qn(θ)dθ)α−1 .

Also note that, for any set K, the following inequality holds true,

∫
Θ
qn(θ)

(
π(θ|X̃n)
qn(θ)

)α
dθ ≥

∫
K

π(θ|X̃n)α
qn(θ)α−1 dθ ≥

(∫
K π(θ|X̃n)dθ

)α
(
∫
K qn(θ)dθ)α−1 , (5.63)

and the result follows immediately.
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Proof of Lemma  5.3.3 . First, we fix n ≥ 1 and let Mr be a sequence such that Mr →∞ as

r →∞. Recall that θ̂n is the maximum likelihood estimate and denote θ̃n = Eqn(θ)[θ]. Define

a set

Kr := {θ ∈ Θ : |θ − θ̂n| > Mr}
⋃
{θ ∈ Θ : |θ − θ̃n| > Mr}.

Now, using Lemma  5.6.6 with K = Kr, we have

∫
Θ
qn(θ)

(
π(θ|X̃n)
qn(θ)

)α
dθ ≥

(∫
Kr

π(θ|X̃n)dθ
)α

(∫
Kr
qn(θ)dθ

)α−1 . (5.64)

Note that the left hand side in the above equation does not depend on r and when r →∞

both the numerator and denominator on the right hand side converges to zero individually.

For the ratio to diverge, however, we require the denominator to converge much faster than

the numerator. To be more precise, observe that for a given n, since α − 1 < α the tails of

qn(θ) must decay significantly faster than the tails of the true posterior for the right hand

side in ( 5.64 ) to diverge as r →∞.

We next show that there exists an n0 ≥ 1 such that for all n ≥ n0, the right hand side

in ( 5.64 ) diverges as r → ∞. Since the posterior distribution satisfies the Bernstein-von

Mises Theorem [ 109 ], we have

∫
Kr

π(θ|X̃n)dθ =
∫
Kr
N (θ; θ̂n, (nI(θ0))−1)dθ + oPn0 (1).

Observe that the numerator on the right hand side of ( 5.64 ) satisfies,

(∫
Kr

π(θ|X̃n)dθ
)α

=
(∫

Kr
N (θ; θ̂n, (nI(θ0))−1)dθ + oPn0 (1)

)α
≥
(∫
{|θ−θ̂n|>Mr}

N (θ; θ̂n, (nI(θ0))−1)dθ + oPn0 (1)
)α

=
(∫
{θ−θ̂n>Mr}

N (θ; θ̂n, (nI(θ0))−1)dθ +
∫
{θ−θ̂n≤−Mr}

N (θ; θ̂n, (nI(θ0))−1)dθ + oPn0 (1)
)α

≥
(∫
{θ−θ̂n>Mr}

N (θ; θ̂n, (nI(θ0))−1)dθ + oPn0 (1)
)α

. (5.65)
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Now, using the lower bound on the Gaussian tail distributions from [  134 ]

(∫
Kr

π(θ|X̃n)dθ
)α

=
(∫

Kr
N (θ; θ̂n, (nI(θ0))−1)dθ + oPn0 (1)

)α

≥

 1√
2π

 1√
nI(θ0)Mr

− 1
(
√
nI(θ0)Mr)3

 e−
nI(θ0)

2 M2
r + oPn0 (1)

α

∼

 1√
2π

1√
nI(θ0)Mr

e−
nI(θ0)

2 M2
r + oPn0 (1)

α , (5.66)

where the last approximation follows from the fact that, for large r,

 1√
nI(θ0)Mr

− 1
(
√
nI(θ0)Mr)3

 ∼ 1√
nI(θ0)Mr

.

Next, consider the denominator on the right hand side of ( 5.64 ). Using the union bound

(∫
Kr
qn(θ)dθ

)α−1
≤
(∫
{|θ−θ̃n|>Mr}

qn(θ)dθ +
∫
{|θ−θ̂n|>Mr}

qn(θ)dθ
)α−1

. (5.67)

Since, θ̃n and θ̂n are finite for all n ≥ 1, there exists an ε > 0 such that for large n,

|θ̃n − θ̂n| ≤ ε. Applying the triangle inequality,

|θ − θ̂n| ≤ |θ − θ̃n|+ |θ̃n − θ̂n| ≤ |θ − θ̃n|+ ε.

Therefore, {|θ − θ̂n| > Mr} ⊆ {|θ − θ̃n| > Mr − ε} and it follows from ( 5.67 ) that

(∫
Kr
qn(θ)dθ

)α−1
≤
(∫
{|θ−θ̃n|>Mr}

qn(θ)dθ +
∫
{|θ−θ̃n|>Mr−ε}

qn(θ)dθ
)α−1

.

Next, using the sub-Gaussian tail distribution bound from [ 135 , Theorem 2.1], we have

(∫
{|θ−θ̃n|>Mr}

qn(θ)dθ +
∫
{|θ−θ̃n|>Mr−ε}

qn(θ)dθ
)α−1

≤
(

2e−
γ2
nM

2
r

2B + 2e−
γ2
n(Mr−ε)2

2B

)α−1
. (5.68)
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For large r, Mr ∼Mr − ε, and it follows that

(∫
{|θ−θ̃n|>Mr}

qn(θ)dθ +
∫
{|θ−θ̃n|>Mr−ε}

qn(θ)dθ
)α−1

.
(

4e−
γ2
nM

2
r

2B

)α−1
. (5.69)

Substituting ( 5.66 ) and ( 5.69 ) into ( 5.64 ), we obtain

∫
Θ
qn(θ)

(
π(θ|X̃n)
qn(θ)

)α
dθ &


1√
2π

1√
nI(θ0)Mr

e−
nI(θ0)

2 M2
r + oPn0 (1)(

4e−
γ2
nM

2
r

2B

)α−1
α


α

,

for large r. Observe that

1√
2π

1√
nI(θ0)Mr

e−
nI(θ0)

2 M2
r

(
4e−

γ2
nM

2
r

2B

)α−1
α

= 1
4α−1

α

√
2π

1
Mr

 1√
nI(θ0)

eM
2
r

(
α−1
α

γ2
n

2B−
nI(θ0)

2

) . (5.70)

Since γ2
n > n, choosing n0 = min

{
n :

(
α−1
α

γ2
n

2B −
nI(θ0)

2

)
> 0

}
implies that for all n ≥ n0,

as r →∞, the left hand side in ( 5.70 ) diverges and the result follows.

Proof of Lemma  5.5.1 . We prove the assertion of the Lemma for the class of local latent

parameters zi that have discrete and finite support. First observe that for α > 1, using

Jensen’s inequality

M(X̃n|θ)α = min
q(z1:n)∈Qn

∫
Zn
q(z1:n)

(
p(z1:n, X̃n|θ)
q(z1:n)

)α
dz1:n ≥

[∫
Zn
p(z1:n, X̃n|θ)dz1:n

]α
. (5.71)

Now since family Qn contains point masses, we choose a member of family Qn which is a

joint distribution of point masses at zp1:n := {zp1 , zp2 , . . . , zpn} to obtain

M(X̃n|θ)α = min
q(z1:n)∈Qn

∫
Zn
q(z1:n)

(
p(z1:n, X̃n|θ)
q(z1:n)

)α
dz1:n ≤

[
p(zp1:n, X̃n|θ)

]α
, (5.72)

where zp1:n is as defined in Assumption  5.5.1 .
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Since, f(x) = xα is increasing for α > 1 and x > 0, it follows from ( 5.71 ), (  5.72 ), and

monotonicity of the logarithm function that

log
∫
Zn
p(z1:n, X̃n|θ)dz1:n ≤ logM(X̃n|θ) ≤ log p(zp1:n, X̃n|θ). (5.73)

Now using Assumption  5.5.1 (1) and (2(ii)), that is dH(z0, z
p
1:n) = o(ρn), it follows that

at some rate ρn with ρn ↓ 0 and nρ2
n →∞; that is for all bounded, stochastic hn = OPn0

(1),

∫
{z1:n:dH(z1:n,z0)≥ρn}

p(z1:n|X̃n, θ = θ0 + n−1/2hn)dz1:n

≤
∫
{z1:n:dH(z1:n,z

p
1:n)+dH(z0,zp1:n)≥ρn}

p(z1:n|X̃n, θ = θ0 + n−1/2hn)dz1:n

≤
∫
{z1:n:dH(z1:n,z

p
1:n)≥ρn(1−ε)}

p(z1:n|X̃n, θ = θ0 + n−1/2hn)dz1:n = OPn0
(1),

where the first inequality follows from using the fact that dH(z1:n, z0) ≤ dH(z1:n, z
p
1:n) +

dH(z0, z
p
1:n), the second inequality uses the fact that dH(z0, z

p
1:n) = o(ρn), that is for some

ε ∈ (0, 1), dH(z0, z
p
1:n) < ερn for sufficiently large n, and the last inequality is due to As-

sumption  5.5.1 (1).

Therefore, it can be observed from the above result that the conditioned latent posterior

p(z1:n|X̃n, θ0) concentrates at z0. Consequently, when the local latent parameters are discrete

it follows that

log
∫
Zn
p(z1:n, X̃n|θ0)dz1:n = log

∫
Zn

p(z1:n|X̃n, θ0)
p(z1:n|X̃n, θ0)

p(z1:n, X̃n|θ0)dz1:n = log p(z0, X̃n|θ0) + oPn0 (1).

Now it follows that

logM(X̃n|θ0) = log p(z0, X̃n|θ0) + oPn0 (1) = log
∫
Zn
p(z1:n, X̃n|θ0)dz1:n + oPn0 (1). (5.74)

Subtracting logM(X̃n|θ0) from (  5.73 ) and using (  5.74 ) yields

log
∫
Zn p(z1:n, X̃n|θ)dz1:n∫
Zn p(z1:n, X̃n|θ0)dz1:n

+ oPn0 (1) ≤ log M(X̃n|θ)
M(X̃n|θ0)

≤ log p(z0, X̃n|θ)
p(z0, X̃n|θ0)

+ oPn0 (1). (5.75)
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Now, substituting θ = θ0+n−1/2hn for all bounded and stochastic hn = OPn0
(1), and using the

result in Bickel, Kleijn, et al. [ 128 , Theorem 4.2] under the conditions in Assumption  5.5.1 

the RHS and LHS above have the same LAN expansion and the result follows. Notice

that, by definition, the s-LAN condition in Assumption  5.2.2 is also true at z1:n = zp1:n.

Assumption  5.5.1 (2(ii)) implies dH(z0, z
p
1:n) = o(ρn) with ρn ↓ 0 and nρ2

n →∞, so that

log
P n
θ0+n−1/2hn,z

p
1:n

P n
θ0,z

p
1:n

= log
P n
θ0+n−1/2hn,z0

P n
θ0,z0

+ o(1).

Therefore, log p(z0,X̃n|θ0+n−1/2hn)
p(z0,X̃n|θ0) = log p(X̃n|z0,θ0+n−1/2hn)

p(X̃n|z0,θ0) + log p(z0|θ0+n−1/2hn)
p(z0|θ0) =

log
Pn
θ0+n−1/2hn,z0

Pn
θ0,z0

+ o(1) also have the same expansion as given in the s-LAN condition

in Assumption  5.2.2 .

Proof of Proposition  5.5.1 . Observe that for any good sequence {q̄n(θ)} and q(z1:n) as point

masses (discrete distribution) at the truth z0
1:n := {z0

1 , z
0
2 , . . . , z

0
n}, we have

min
q∈Q

min
q(z1:n)∈Qn

Dα(π(θ, z1:n|X̃n)‖q(θ)q(z1:n))

= min
q(θ)∈Q̄,q(z1:n)∈Qn

1
α− 1 log

∫
Θ×Zn

q(θ)q(z1:n)
(

p(θ, z1:n, X̃n)
p(X̃n)q(θ)q(z1:n)

)α
dθdz1:n

≤ 1
α− 1 log

∫
Θ
q̄n(θ)

(
p(θ, z0

1:n, X̃n)
p(X̃n)q̄n(θ)

)α
dθ

≤ 1
α− 1 log

∫
Θ
q̄n(θ)

(
π(θ, z0

1:n|X̃n)
q̄n(θ)

)α
dθ. (5.76)

Also note that, using the definition of π(θ, z0
1:n|X̃n), we have

π(θ, z0
1:n|X̃n) = π(θ)π(z0

1:n|θ)p(X̃n|θ, z0
1:n)∫

Θ×Zn π(θ)π(z1:n|θ)p(X̃n|θ, z1:n)dθdz1:n
≤ π(θ)π(z0

1:n|θ)p(X̃n|θ, z0
1:n)∫

Θ π(θ)π(z0
1:n|θ)p(X̃n|θ, z0

1:n)dθ
,

(5.77)
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where the second inequality follows from the fact that z1:n is a discrete random variable.

Therefore substituting ( 5.77 ) into ( 5.76 ) yields

min
q∈Q

min
q(z1:n)∈Qn

Dα(π(θ, z1:n|X̃n)‖q(θ)q(z1:n)) ≤ 1
α− 1 log

∫
Θ
q̄n(θ)

(
π(θ)p(X̃n, z

0
1:n|θ)

q̄n(θ)
∫

Θ π(θ)p(X̃n, z0
1:n|θ)dθ

)α
dθ

= 1
α− 1 log

∫
Θ
q̄n(θ)

(
π(θ|X̃n, z

0
1:n)

q̄n(θ)

)α
dθ

=: Dα(π(θ|X̃n, z
0
1:n)‖q̄n(θ)). (5.78)

Therefore, for the second part, it suffices to show that

Dα(π(θ|X̃n, z
0
1:n)‖q̄n(θ)) < B + oPn0 (1).

The subsequent arguments in the proof are for any n ≥ max(n1, n2, n3, nM), where n1, n2,

and n3 are defined in Assumption  5.2.4 . First observe that, for any compact ballK containing

the true parameter θ0,

α− 1
α

Dα(π(θ|X̃n, z
0
1:n)‖q̄n(θ))

= 1
α

log
(∫

K
q̄n(θ)

(
π(θ|X̃n, z

0
1:n)

q̄n(θ)

)α
dθ +

∫
Θ\K

q̄n(θ)
(

π(θ|X̃n, z
0
1:n)

q̄n(θ)

)α
dθ

)
. (5.79)

First, we approximate the first integral on the right hand side using the LAN condition

in Assumption  5.2.2 . Let ∆n,(θ0,z0) :=
√
n(θ̂n − θ0), where θ̂n → θ0, P0 − a.s. and ∆n,(θ0,z0)

converges in distribution to N (0, I(θ0, z0)−1) [ 109 , Lemma 25.23 and 25.25]. Now the proof

follows similar steps as used in the proof of Proposition  5.3.1 .
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6. CONCLUSION

Data-driven decision-making has received significant research interest in the recent literature,

in particular since the nature of the interplay between data and optimal decision-making can

be quite different from the standard machine learning setting. While much of the literature

focuses on empirical methods, Bayesian approaches afford advantages, particularly when

making decisions in the context of stochastic models. However, Bayesian methods also suffer

from an issue of posterior intractability, which is hard to resolve in practice.

This thesis proposed computationally tractable Bayesian methodologies to approximate

stochastic programs (SP) with deterministic and epistemically uncertain constraints. We first

proposed a novel VI framework for risk-sensitive data-driven decision-making in Chapter  2 ,

which we call risk-sensitive variational Bayes (RSVB) to approximate SP with determinis-

tic constraints. Thereafter, we introduced the Bayesian joint chance-constrained stochastic

program (BJCCP) for modeling decision-making problems with epistemically uncertain con-

straints and its VB approximation (VBJCCP) in Chapter  4 . Broadly, such methodologies

can be theoretically studied under two categories: 1) statistical (accuracy) and 2) computa-

tional (speed). Statistical properties such as asymptotic consistency and convergence rates

provide theoretical guarantees on learning the truth, given an infinite (large) amount of

data. On the other hand, evaluating the computational performance is more towards under-

standing their algorithmic efficiency both in terms of the number of data points used and

computational time (or steps) required to optimize the risk/loss of quantifying the deviation

from the truth or taking a sub-optimal decision. In this thesis, we mainly focus on estab-

lishing the statistical performance of the proposed methods. The work in this thesis can be

extended to several directions as part of the future works.

First, an obvious set of open problems is to develop computational algorithms to solve

the minimax optimization in RSVB and the chance-constrained optimization in VBJCCP

efficiently and study its computational complexity for a given number of samples. It would

also be interesting to establish their theoretical properties to understand trade-offs between

statistical accuracy and computational complexity. Second, recall from Chapter  5 that using

KL divergence in the VB framework tends to produce an ‘overconfident’ approximate poste-
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rior that underestimates the tails of the posterior, therefore it would be useful to extend the

theoretical results in the first three chapters of this thesis to divergence measures other than

the KL divergence. For instance, the α-Rényi divergence [ 26 ], [ 136 ] has been demonstrated

to provide better support coverage. Third, recall that our rate of convergence results in

Chapters  2 and  4 only hold for a large enough sample size. A sample complexity result is

significantly harder but can be immensely useful for applications where large datasets are

hard to collect (healthcare, for instance).

Furthermore, also note that the KL optimization problem in the VB method could be

a non-convex program either in measure-space or the parameterized case, and therefore

obtaining a global solution is difficult. On the other hand, to the best of our knowledge,

all the extant statistical inferential works establishing large sample properties of the VB

optimizer implicitly assume that the global optimizer is computable. Since in practice finding

global optima is difficult, it is an important problem to study the theoretical properties of

the local VB optimizer. In a similar vein, this problem arises in the RSVB objective too,

where we implicitly assumed that the inner optimization can be solved globally, which is not

true in general. Studying the statistical performance of the RSVB approach, while relaxing

this implicit assumption, would be an important analytical contribution.

Recently, [ 137 ] proposed likelihood-free variational inference, a VB algorithm to incorpo-

rate implicit probabilistic (likelihood) models which are defined using a simulation process.

These implicit probabilistic models usually represent some real-world physical systems and

are so rich in their structure to be represented by a tractable likelihood function. To the best

of our knowledge, all the extant theoretical work on the analysis of VB methods assumes

that the likelihood form is known a priori. Finally, extending the work in this thesis to

understand the inferential properties of such likelihood-free variational Bayesian algorithms

would be a significant contribution.

229



REFERENCES

[1] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic programming:
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