
IOT BASED LOW-COST PRECISION INDOOR FARMING

by

Madhu Lekha Guntaka

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Industrial Engineering

School of Industrial Engineering

West Lafayette, Indiana

August 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Dharmendra Saraswat, Co-chair

School of Agricultural and Biological Engineering

Dr. Vaneet Aggarwal, Co-chair

School of Industrial Engineering

Dr. Vincent Duffy

School of Industrial Engineering

Approved by:

Dr. Abhijit Deshmukh

3

Dedicated to my family and amazing friends at Purdue for their continuous support and care

4

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Dharmendra

Saraswat for his continuous support and belief in me throughout my research, for his patience,

motivation, and enthusiasm. His mentoring helped me overcome numerous obstacles through the

study and write this thesis. Next, I would like to thank Dr. Petrus Langenhoven for guiding me

through the plant growth and helping me with all the facilities needed to make this study possible.

I would also like to thank Dr. Vaneet Aggarwal for agreeing to be a co-chair on my

committee and for his insightful comments about the algorithms developed. I offer my sincere

appreciation for the perspective added by Dr. Vincent Duffy.

I thank my fellow mates in digital agriculture discovery group : Varun Aggarwal and Aanis

Ahmad for helping me with the numerous questions I had and sharing their experiences. I am

grateful to Benjamin Hancock for enlightening me the first glance of work in the software and

helping me debug codes practically anytime of the day.

My completion of this project could not have been accomplished without the help of two

students – Alfonso and Adesh for preparing the seeds and harvesting the plants timely. I also thank

Nathan Deppe, the HLA plant growth facility manager for providing inputs in some of the

hardware decisions made. In addition, I thank statistical consulting service for their continual

services in experimental design and assistance in data analysis.

I would like to acknowledge the AgSEED program for funding the study, department of

ABE for providing with a research assistantship to pursue this opportunity and department of HLA

for the facilities.

Finally, and most importantly, I am extremely grateful for the continuous support of my

family in pursuing my interests and their efforts to understanding my work. A special thanks to

all my friends at Purdue, especially Lakshman and Ashwin for all the encouragement and

emotional support.

5

TABLE OF CONTENTS

Contents

LIST OF TABLES .. 8

LIST OF FIGURES .. 9

ABBREVIATIONS .. 11

ABSTRACT .. 13

 INTRODUCTION ... 14

1.1 Motivation/ Significance ... 14

1.2 Problem Statement .. 15

1.3 Research Objectives and Approach .. 16

1.4 Contributions... 17

1.4.1 Design of automated indoor farm production system .. 17

1.4.2 Algorithms ... 17

1.5 Thesis Organization .. 18

 LITERATURE REVIEW .. 19

2.1 IoT in Agriculture ... 19

2.1.1 Overview .. 19

2.1.2 Context ... 20

2.1.3 Related work .. 21

2.1.4 Edge Computing .. 23

2.2 AI in Agriculture ... 24

2.2.1 Overview .. 24

2.2.2 Anomaly Detection .. 25

2.2.3 Yield Prediction ... 31

 MATERIALS AND METHODS .. 35

3.1 Setup ... 35

3.2 Statistical Design .. 35

3.3 Testbed Design Rationale ... 36

3.4 System Architecture .. 37

3.4.1 Physical Layer ... 38

6

3.4.2 Communication Layer ... 47

3.4.3 Service Layer ... 47

3.4.4 Application Layer .. 48

3.5 Edge Computing ... 49

3.5.1 Use cases .. 49

3.5.2 Experiments ... 50

3.6 Anomaly Detection ... 50

3.6.1 Use cases .. 50

3.6.2 Exploratory Data Analysis and Pre-processing ... 50

3.6.3 Anomalous Data Generation .. 51

3.6.4 Modeling pipeline for the experiments .. 52

3.6.5 Models used in experiments .. 52

3.7 Yield Prediction .. 54

3.7.1 Problem Formulation ... 54

3.7.2 Data Preparation .. 55

3.7.3 Code flow ... 56

3.8 Plant Growth ... 57

 RESULTS AND DISCUSSION .. 58

4.1 Design and Implementation of the system .. 58

4.1.1 Power supply ... 58

4.1.2 Lighting module ... 58

4.1.3 Irrigation and water quality modules ... 59

4.1.4 Climate modules .. 60

4.1.5 Data and Connectivity ... 61

4.2 Real-Time Control and Monitoring .. 62

4.2.1 Experiment to measure latency in the system .. 62

4.2.2 Analysis of local-cloud sync operation .. 63

4.2.3 Adoption of results .. 64

4.3 Anomaly Detection Algorithms .. 64

4.3.1 Experiments on temperature dataset .. 67

4.3.2 Experiments on CO2 dataset ... 70

7

4.3.3 Adoption of results .. 72

4.4 Yield Prediction Algorithms ... 74

4.4.1 Results.. 75

4.5 Evaluation using plant growth .. 76

 CONCLUSION AND FUTURE SCOPE .. 79

5.1 Conclusion .. 79

5.2 Future Scope ... 80

5.2.1 System.. 80

5.2.2 Algorithms ... 80

5.2.3 Databases ... 81

5.2.4 Miscellaneous .. 81

APPENDIX A. COST OF COMPONENTS IN THE SYSTEM .. 82

REFERENCES ... 83

PUBLICATION .. 89

8

LIST OF TABLES

Table 2.1. Review of literature related to IoT for automated greenhouses. 22

Table 2.2. Review of research papers focusing on anomaly detection in Ag IoT systems 29

Table 2.3. Summary of literature extracting features like leaf count, leaf area from images 34

Table 3.1. Specifications of LEDs used in the experiment ... 40

Table 3.2. Different types of anomalies, their use cases, and techniques to handle them 51

Table 3.3. Summary of hyperparameter strategy and general performance of unsupervised models

for anomaly detection ... 54

Table 4.1. Raw and filtered measurements of one-way latency observed over 3 days 62

Table 4.2. Analysis of time and memory consumption in scenarios A and B 63

Table 4.3. Different periods of data considered for experiments of anomaly detection 65

Table 4.4. A comparison of models used for detecting anomalies in temperature data in terms of

the number of anomalies identified correctly based on the type. ... 67

Table 4.5 Performance of prediction-based methods for different lag values on test data 68

Table 4.6 Performance of prediction-based methods with window, temporal features on test data

... 69

Table 4.7 Performance of prediction-based methods on different test sets 70

Table 4.8 Performance of prediction-based methods at different contamination rates 71

Table 4.9. A comparison of models used for detecting anomalies in CO2 data in terms of false

positive rate, true positive rate, precision and RMSE when applicable. 71

Table 4.10. Performance metrics of neural networks on predicting yield 76

Table 4.11 Results of analysis of variance for factor effects on weight for different microgreens

... 78

9

LIST OF FIGURES

Figure 2.1 Basic IoT Architecture for agro-industrial and environmental applications (Talavera et

al., 2017) ... 20

Figure 2.2. Motivation, challenges, and opportunities in edge computing (Varghese et al., 2016)

... 23

Figure 2.3. Broad picture of applications of AI in agriculture (Revanth, 2019) 24

Figure 2.4. Types of anomalies shown on a sample of temperature data from indoor farm. 26

Figure 2.5. Outlier detection techniques in wireless sensor networks (Ayadi et al., 2017) 27

Figure 2.6. Bibliometric analysis of anomaly detection algorithms in agriculture 28

Figure 2.7. Schematic representation of a typical example scenario in computer vision-based plant

phenotyping (Mochida et al., 2019) .. 32

Figure 3.1. Conceptual layout of the experiment in greenhouse zone. Inset experimental unit which

is an ebb and flow style tray system. .. 35

Figure 3.2. Statistical design of experiment used to evaluate factor effects on microgreen growth

(A,B,C are 3 nutrient solution concentrations) ... 36

Figure 3.3. Hardware architecture showing network connectivity of various functional modules

and nodes .. 37

Figure 3.4. Software architecture showing typical flow of data, commands in the system 37

Figure 3.5. Snippets of data tables obtained from PAR Sensor calibration experiment 40

Figure 3.6. Typical setup of irrigation control placed under corresponding bench 41

Figure 3.7. Flow meter calibration setup .. 42

Figure 3.8. Snippets of data tables obtained from flow meter calibration experiment 42

Figure 3.9. Process flow chart of irrigation and water quality measurement modules 44

Figure 3.10. Robotic Gantry that carries imaging module over plant canopy 45

Figure 3.11. Snapshot of imaging system calibration process .. 45

Figure 3.12. Set of environment sensors placed side by side for calibration................................ 46

Figure 3.13. Database structure for storing sensor data with expected frequency of update 48

Figure 3.14. Example of a control operation pipeline (irrigation) .. 49

Figure 3.15. Data preparation and modeling pipeline for experimenting with different anomaly

detection algorithms .. 53

10

Figure 3.16. Flow chart showing data frame preparation from images captured by the gantry for

feeding into deep learning models .. 55

Figure 3.17. Code flow in Keras for yield prediction problem ... 56

Figure 3.18. Timeline of a typical growth cycle of microgreens .. 57

Figure 3.19 Analysis method for establishing factor-effects on microgreen weight 57

Figure 4.1. Inflow part of the irrigation pipeline .. 60

Figure 4.2. Readings and differences between some sets of microclimate sensors 61

Figure 4.3 Time consumption distribution in a typical local<->cloud sync operation 63

Figure 4.4. A typical edge-fog-cloud pipeline. Connectivity and functionalities at node devices 64

Figure 4.5. Density and box plots of BME680, Gravity v1.1 data for identification of outliers .. 65

Figure 4.6. Time series plots of data captured by BME680 and Gravity 1.1 sensors by training and

testing sets as well as different measured parameters ... 66

Figure 4.7. Algorithm for system monitoring at cloud ... 73

Figure 4.8. Flow of events in an anomaly detection pipeline at edge node 74

Figure 4.9. Distribution of weights of Broccoli microgreens in the Data Frame 75

Figure 4.10. Training and validation MAPE plotted against number of epochs 76

Figure 4.11 Microgreen yield (weight in grams/ tray) by crop by day of harvest 77

11

ABBREVIATIONS

ACRONYM FULL FORM

AE Autoencoder

AI Artificial Intelligence

ANN Artificial Neural Network

ARIMA
Auto Regressive Integrated Moving

Average

CNN Convolutional Neural Network

CUSUM Cumulative Sum

DO Dissolved Oxygen

EC Electric Conductivity

EE Elliptic Envelope

FPR False Positive Rate

GMM Gaussian Mixture Model

GPIO General Purpose Input/Output

HBOS Histogram based outlier score

iForest Isolation Forest

IoT Internet of Things

KDE Kernel Density Estimation

KNN K-Nearest Neighbors

LOF Local Outlier Factor

LSTM Long Short-Term Memory

MCU Micro Controller Unit

NN Neural Network

PAR Photosynthetically Active Radiation

PPFD Photosynthetic Photon Flux Density

PWM Pulse Width Modulation

QoS Quality of Service

RH Relative Humidity

12

RMSE Root Mean Squared Error

RPi Raspberry Pi

SVM Support Vector Machine

Temp. Temperature

TPR True Positive Rate

WSN Wireless Sensor Network

13

ABSTRACT

There is a growing demand for indoor farm management systems that can track plant growth, allow

automatic control and aid in real-time decision making. Internet of Thing (IoT)-based solutions

are being applied to meet these needs and numerous researchers have created prototypes for

meeting specific needs using sensors, algorithms, and automations. However, limited studies are

available that report on comprehensive large-scale experiments to test various aspects related to

availability, scalability and reliability of sensors and actuators used in low-cost indoor farms. The

purpose of this study was to develop a low-cost, IoT devices driven indoor farm as a testbed for

growing microgreens and other experimental crops. The testbed was designed using off-the-shelf

sensors and actuators for conducting research experiments, addressing identified challenges, and

utilizing remotely acquired data for developing an intelligent farm management system. The

sensors were used for collecting and monitoring electrical conductivity (EC), pH and dissolved

oxygen (DO) levels of the nutrient solution, light intensity, environmental variables, and imagery

data. The control of light emitting diodes (LEDs), irrigation pumps, and camera modules was

carried out using commercially available components. All the sensors and actuators were remotely

monitored, controlled, and coordinated using a cloud-based dashboard, Raspberry Pis, and

Arduino microcontrollers. To implement a reliable, real-time control of actuators, edge computing

was used as it helped in minimizing latency and identifying anomalies.

Decision making about overall system performance and harvesting schedule was

accomplished by providing alerts on anomalies in the sensors and actuators and through

installation of cameras to predict yield of microgreens, respectively. A split-plot statistical design

was used to evaluate the effect of lighting, nutrition solution concentration, seed density, and day

of harvest on the growth of microgreens. This study complements and expands past efforts by

other researchers on building a low cost IoT-based indoor farm. While the experience with the

testbed demonstrates its real-world potential of conducting experimental research, some major

lessons were learnt along the way that could be used for future enhancements.

14

 INTRODUCTION

The global farming industry is trying various measures for mitigating impacts due to

climate change, dwindling natural resources due to rapid urbanization, and meeting demands to

achieve food and nutritional security for a rapidly increasing population. These challenges are

being met head-on by farmers through the adoption of advances in agro-technologies that enable

practicing of science-based, efficient, and sustainable farming to complement years of traditional

farming experience (Astill et al., 2020; Schimmelpfennig, 2016). Advances in the field of

machinery and Internet of Things (IoT) devices are helping generate various kinds of sensor data

from agricultural operational environments that are creating opportunities for

development/application of Artificial Intelligence (AI) methods to interpret and understand this

huge amount of data.

Today, there is a growing trend towards the design and establishment of controlled

environments for agriculture (CEA), involving automated monitoring and control, to increase the

capacity, economic viability, and efficiency of indoor farms (Gómez et al., 2019). Many of the

modern indoor farms rely on sensors and controls for specific purposes that inspired other

researchers to create new concepts and experimental models of closed-loop systems (Jaiswal et al.,

2019; Zamora-Izquierdo et al., 2019). This study created one such closed-loop system equipped

with low-cost sensors, controls, and smart monitoring (approximate total cost $10k, for details

refer to Appendix A) for an experimental indoor farm, that was used for investigating effect of

different treatments on microgreens production.

1.1 Motivation/ Significance

Interest in precision indoor farming is growing due to advances in artificial sources of

illumination (Paucek et al., 2020), efficient heating and cooling technologies (Huang and Niu,

2016), water-efficient farming methods (AlShrouf, 2017), and the use of IoT devices for

monitoring and controlling various functionalities of the farm (Madushanki et al., 2019) interest is

reinforced by a shrinking skilled workforce available for farm work (Zahniser et al., 2018).

However, indoor farming is 3-5 times more expensive than traditional farming owing to high initial

capital cost, energy, and labor expenses (Admeasure, 2014). The present study was undertaken to

15

explore development of a low-cost, indoor farm, that uses IoT devices and relies on open-source-

based monitoring and control systems because of their promising benefits.

Although, the field of IoT has benefitted from research activities across domains over the

past few years, there are several unsolved issues about management and performance of IoT

devices and networks. Common issues relate to availability, reliability, scalability, mobility, data

confidentiality, security, and compatibility of networks (Khanna and Kaur, 2019). Further the cost

of IoT devices, constraint-free communication, correct identification and deployment, and

heterogeneity of devices and protocols remains a few identified challenges within an IoT

application.

There is a noticeable void in the literature on how to improve and adapt IoT solutions for

real-world indoor farms beyond simple prototypes. Direct scaling in most cases implies that the

number of hardware components grow very quickly with the size of the system. A careful

requirement analysis and integrated system design are indispensable for a viable IoT solution in a

real-world scenario. Also, identification and handling of anomalous events are essential to manage

sensor/ actuator malfunctions and ensure reliability especially with low-cost sensors. Efficient

real-time control poses latency-sensitive requirements that require looking beyond solely cloud-

based systems and instead bring in edge computing as sort of a plug-in. But studies related to

validation of edge-driven services on operational farms is limited (O’Grady et al., 2019).

Another challenge with deploying IoT solutions in farms is reaching out to remote pockets

via cabling and electronics without interfering with regular farm operations. In this context, there

has been a growth in usage of images for decision making in farms because of the increased

availability of satellite imagery, affordable unmanned aerial vehicles (UAVs), and advancements

in AI for extracting valuable information from images. Nevertheless, vision-based techniques for

indoor farms still have a lot of room for exploration to help understand the effects of lighting,

nutrition, and other environmental conditions (temperature, relative humidity (RH) etc.) on plant

growth and yield.

1.2 Problem Statement

Indoor farms are most often located close to urban areas and have access to electricity and a

reliable internet connectivity. Availability, affordability (both by the cost of sensors and resource

optimization) and reliability of necessary technologies are the barriers to widespread adoption of

16

IoT devices, especially in a small-to-medium scale experimental indoor farm. Developing a

solution with off-the-shelf sensors, implementing valid error handling, alerts, remote monitoring,

and running indoor farm operations through deployment of smart logarithms that integrate

monitored data for decision making, has a potential to motivate growers in their wide-scale

adoption. The rationale of the study and detailed description of the design and implementation has

potential to serve as an end-to-end reference for an interested grower or an IoT system developer.

The ability to obtain detailed information on plant growth and yield without employing destructive

techniques could be particularly interesting as it provides an example for using automation to

reduce reliance on labor during critical operations (Franchetti et al., 2019).

Though the testbed was used for studying the effect of lighting, nutrition solution

concentration, seed density, and day of harvest on microgreens production but it has potential to

be used for conducting experiments with other plant species or treatment combinations.

1.3 Research Objectives and Approach

The aim of this research was two-fold: First, to develop an IoT indoor farm as an example

of a real-world testbed for conducting experiments and addressing challenges concerning an IoT

system. Second, build on the existing knowledge related to yield prediction and further it towards

developing an intelligent farm. More specifically, the objectives of the study were to:

1. Design and implement an automated indoor farm production system by using off-the-shelf

sensors and related components

2. Implement edge computing solutions and a cloud-based dashboard for real-time control

and monitoring of the automated indoor farm

3. Build anomaly detection models to alert farmers and develop vision-based yield prediction

models

4. Evaluate performance of the sensors and control system on variable application of nutrition,

light intensity/duration, and seed density to microgreens production

17

1.4 Contributions

1.4.1 Design of automated indoor farm production system

• Designed an automated indoor farm production system that facilitated automated lighting,

irrigation, nutrient application and monitoring environmental parameters (temperature,

relative humidity (RH), Carbon Dioxide (CO2)) in the greenhouse. This system was the

foundation for growing multiple batches of microgreens and source for acquiring data from

the sensors.

• Developed a dashboard from scratch and hosted on Purdue server. It facilitated two-way

communication between the user and the sensors/ actuators for implementing real-time

control of the indoor farm.

• Installed a set of gantries for moving red, blue, green (RGB) sensors and thermal sensors

over the growing trays to capture images of plant canopy. The gantry was remote controlled

and a cartesian co-ordinate system was used to guide the motion.

• Designed calibration setups and procedures for light, flow, temperature, and RH sensors to

determine the accuracy of measured data and make a choice about a particular make and

model of the sensors.

1.4.2 Algorithms

• Benchmarked the performance of various anomaly detection algorithms to identify the best

model for the data captured from temperature and RH sensors used in the indoor farm. The

best model was utilized in realizing a framework for identification and storage of anomalies

in the cloud.

• Developed a novel anomaly detection framework for fault localization in the sensor data

capture pipeline.

• Designed an edge-fog-cloud operating pipeline for the system to reduce latency, ensure

reliable real-time control by leveraging the computational power at edge nodes.

18

1.5 Thesis Organization

• Chapter 2 : Contains sections of a brief on IoT in agriculture and related work, A brief of

AI-ML in applications in agriculture with focus on anomaly detection paradigms in sensor

systems, related works, and yield prediction.

• Chapter 3 : Debriefs system architecture as various sub-systems with materials and

methods employed in developing and deploying it, data preparation and choice of

algorithms for anomaly detection and yield predictions.

• Chapter 4 : Results discussed as

o Explanations of various design decisions and learnings from field

o Experiments with edge computing and real-time control frameworks

o Application of anomaly detection in system and results pertaining to various ML

algorithms

o Image dataset collected and analysis for yield prediction.

• Chapter 5 : Conclusion

19

 LITERATURE REVIEW

IoT devices, robotics, AI are some of the key technology components of an automated indoor

farm. This chapter provides synthesis of various research studies related to application of IoT

devices in indoor farms and identified gaps under the section titled “IoT in Agriculture”. A

summary of edge computing is also provided there. The discussion is further expanded by focusing

on applications of “AI in Agriculture” in the next section where two applications, ‘anomaly

detection’ and ‘yield prediction’ are discussed. Anomalies and their types, research trends in

agriculture and common techniques used to handle them are presented. Under yield prediction,

vision-based techniques for plant phenotyping and relevant work discussed.

2.1 IoT in Agriculture

2.1.1 Overview

Organizations and researchers have defined IoT systems in a multitude of forms based on

applications and assets a specific proponent wants to emphasize. One such definition provided by

OASIS (Open Protocols, 2014) describes IoT as: “System where the Internet is connected to the

physical world via ubiquitous sensors.” A high-level functional model provided by the Alliance

for Internet of Things Innovation (AIOTI) consists of 3 layers – Application, IoT, and Network.

Many researchers and technology companies have built on it. Multiple architectures have been

proposed from various standpoints like domain, service, function, etc. (Ray, 2018; Verdouw et al.,

2019). In the field of agro-industrial and environmental applications, a review of 72 studies

suggested an architecture by incorporating commonly used and relevant methodologies (Talavera

et al., 2017). This IoT architecture shown in Figure 2.1. contains physical, communication, service

and application layer and was adapted in the design of the testbed in this project.

IoT devices (e.g., wireless sensor networks, network-connected weather stations, cameras,

and smartphones) can be used to collate a vast amount of environmental and crop performance

data, ranging from time-series data from sensors to spatial data from cameras to human

observations captured via mobile smartphone applications or other network-connected user

interfaces. Analysis of this data in real-time from a remote location, off the farm, is possible

20

because of internet connectivity. By extending the sensing system to include actuators, necessary

control tasks like irrigation, ventilation, misting etc. can be performed based on input(s) from a

rule-based system, an AI algorithm, or a user action.

Figure 2.1 Basic IoT Architecture for agro-industrial and environmental applications (Talavera et al., 2017)

2.1.2 Context

Numerous benefits of IoT devices have led to their increased adoption and the domain of

IoT has been enhanced by research activities persistently over the past few years. However, there

are several unsolved issues about proper management and performance of IoT devices. Some of

them are related to availability, reliability, scalability, mobility, data confidentiality, security,

optimization, and compatibility of networks, etc. (Elijah et al., 2018; Khanna and Kaur, 2019; M

et al., 2020). Several peer-reviewed studies also note that within an IoT environment, cost,

constraint-free communication, proper deployment, and heterogeneity are additional challenges

21

that are to be addressed by further research (Elijah et al., 2018; Khanna and Kaur, 2019;

Ummesalma et al., 2020).

A lot of literature exists about application protocols (Glaroudis et al., 2020) and

connectivity methods (like Wi-Fi, Satellite, Bluetooth, cellular) (Ahmad et al., 2019;

Vannieuwenborg et al., 2018). Data security and privacy issues are emerging as a domain that are

primarily been of interest to computer scientists and financial institutions across the world. To deal

with availability and cost of commonly available sensors/components, numerous solutions have

been proposed (Danita et al., 2019; Ruengittinun et al., 2017). However, there is a noticeable void

in the literature on how to improve and adapt IoT solutions for real-world indoor farms beyond

simple prototypes. Direct scaling in most cases implies that the number of hardware components

grows very quickly with the size of the system. Careful requirement analysis and system design

are indispensable for a viable IoT solution in a real-world scenario. Along with it, a series of checks

in the system over hardware and software are required to steer through the reliability challenges

that are especially associated with the use of low-cost sensors.

Data management is yet another aspect of IoT devices that calls for attention. Sensors and

devices can connect indirectly through the cloud, where data is centrally managed or utilize the

concept of edge computing wherein data is sent directly to other local devices to collect, store, and

analyze, and then share selected findings or information through the cloud. An Edge/Cloud

combination offers a particularly attractive approach to deliver an efficient workflow. However,

validation of edge-driven services on operational farms is limited (O’Grady et al., 2019). Along

with reaping the benefits of the technology, exploration of the paradigm of edge-computing in an

indoor farm is required to identify systemic challenges.

2.1.3 Related work

A brief synthesis of recent research papers related to automation in greenhouses/indoor farms is

presented in Table 2.1 below.

2
2

Table 2.1. Review of literature related to IoT for automated greenhouses.

Reference System Contribution and advantages Disadvantages Scale

(Jaiswal et

al., 2019)

IoT and machine learning based

approach for fully automated

greenhouse

Uses Thingspeak platform for development;

live streaming, unlocking of greenhouse

based on facial recognition/ fingerprint

No human in loop
Prototype - two plants

in a plastic covered tray

(Long, 2019)

Agricultural internet of things

system based on cloud

computing and machine

learning

Uses Zigbee for communication, AWS

cloud, Wechat application, machine learning

(ML) based prediction for control

No details about

implementation are provided
-

(Hemming et

al., 2019)

Remote control of greenhouse

vegetable production with

artificial intelligence —

greenhouse climate, irrigation,

and crop production

Grew cucumbers in a greenhouse without

human intervention for 3 months -fully AI

based control; comparison between different

control, growth strategies and cost analysis

Experiment in an expensive

industrial grade facility,
yield measurements are

performed manually

greenhouse

(Ruengittinun

et al., 2017)

Applied internet of thing for

smart hydroponic farming

ecosystem (HFE)

Low-cost sensors are used and are listed

explicitly

No results from sensors data or

system performance

Prototype - with 12-unit

hydroponic system

(Danita et al.,

2019)

IoT-based automated

greenhouse monitoring system

Automate irrigation and ventilation;

greenhouse is divided into sections and one

soil moisture sensor is placed in each section

Basic visualization:
No human in loop.

The proposed solution works

for continuous media but not

for hydroponics

greenhouse with soil

grown crop

(Zamora-

Izquierdo et

al., 2019)

Smart farming IoT platform

based on edge and cloud

computing

A control strategy is implemented at the edge

node (PC) that plugged into existing

hardware controls of the greenhouse;

cleaned, recirculated drainage water;

Validation via growing two tomato cycles

Only irrigation is discussed, no

details about user interface
greenhouse

(Chang et al.,

2019)

Integrated monitoring platform

of plant growth based on IoT

edge computing in greenhouse

Moving Zigbee module for enabling

connectivity in the greenhouse; Details of

system implementation and uses image

processing at edge

Only environmental controls

are taken care of
greenhouse

23

2.1.4 Edge Computing

In the context of IoT, with increasing number of devices and data in a network, traditional

cloud computing has limitations in terms of latency, bandwidth, round the clock accessibility and

update frequency of devices, and data security (Shi et al., 2019). Increased energy consumption

and scalability challenges at cloud servers have pushed the rapid growth of edge computing over

the past 4 years (Shi et al., 2019). Despite a rapid growth, the concept of edge computing is still in

its infancy (Varghese et al., 2016). A summary of motivation, challenges, and opportunities in

edge-computing is shown in Figure 2.2 (Varghese et al., 2016). A survey of 46 state-of-the-art

research papers on the use of edge computing for precision dairy, irrigation, fire detection, wildlife

surveillance etc. highlights utilization of techniques for reducing latency and computational

offloading (O’Grady et al., 2019). The survey points out that the systems reviewed were mostly

prototypes and the application of edge computing was still in initial stages. In the current study, a

requirement to perform real-time control led to performing computation at the edge.

Figure 2.2. Motivation, challenges, and opportunities in edge computing (Varghese et al., 2016)

24

2.2 AI in Agriculture

2.2.1 Overview

Both indoor and row-crop farms produce a multitude of data points every day on

temperature, humidity, soil moisture, water usage, etc. that can be leveraged and analyzed in real-

time with the help of AI for obtaining useful insights (Liakos et al., 2018). The importance of such

AI enabled applications increases with scale as it is infeasible for a human analyst to handle all the

generated data manually. These applications can plug-in at multiple phases in the farming data

pipeline and improve a wide range of tasks. By automatically processing the field data, AI-enabled

systems can help improve the overall crop quality, yield, and resource utilization (Gertphol et al.,

2018; Liakos et al., 2018). Weather forecasting can help crop planning, crop health monitoring can

help take preventative measures, and farm robots can make tasks more efficient. A broad overview

of the applications of AI in agriculture can be seen in Figure 2.3.

Figure 2.3. Broad picture of applications of AI in agriculture (Revanth, 2019)

In the context of increasing reliability of IoT systems and requiring clean data for predictive

analytics, the current study is also focused on implementing anomaly detection algorithms for

monitoring sensor data and for automated controls. In the context of moving towards closed loop

and adaptive systems, AI for yield monitoring is also explored.

25

2.2.2 Anomaly Detection

Overview

As much as IoT paves a way for convenient data collection, the data needs to be accurate

to make inferences and decisions about the farm. Abnormalities in the data captured by a sensor

can occur because of multitude of reasons and their sources can be organized into two major

categories (Ou et al., 2020)-

Sensor failures: Sensor misses or fails to capture data. This can directly cause an automated control

system to make wrong decisions or indirectly be a source of bias in the data resulting in wrong

inferences.

System failures: Sensor correctly captures the data of an anomalous event occurring in the system.

This means, there is a fault occurrence in the system and corrective measures might be needed

immediately and on a long-term basis to prevent crop/ equipment losses on farm.

Anomaly detection is the process of identification of such events in the system that deviate

from the expected behavior. The relevance of anomaly detection is increasing by the day with

deployment of increasing number of sensors on both outdoor and indoor farms and a general shift

towards automation, thereby, making it extremely troublesome to manually check a huge amount

of data acquired from the automated farms. Anomaly detection is based on the hypothesis that

anomalies stand out trivially/ explicitly from rest of the data and can be quantitatively

differentiated from the clean data. Different detection and handling techniques have been

developed across diverse domains based on their nature and application. The types of anomalies,

popular techniques used to handle them in different IoT applications and related applications in

agriculture are discussed below. This section considers anomaly detection only in the context of

an IoT-based system and exclude other management issues affecting crops in the farm such as

presence of obstacles, weeds, diseases, etc.

Types of anomalies

Numerous classifications exist for differentiating anomalies in a dataset based on nature of

input data and domain of application (such as agriculture, security, banking, etc.) (Foorthuis, 2020).

In the context of time-series and spatial data, a broad classification approach that differentiates

26

between three diverse categories is described below along with a graphical representation of

anomalies for a sample temperature sensor data (Chandola et al., 2009) (Figure 2.4):

Point anomalies (Global anomalies) – An individual data instance that is significantly different

from rest of the dataset wherever it occurs.

Contextual anomalies (Conditional anomalies) – An individual data instance that is anomalous in

a specific context but an identical instance in another context need not be considered so.

Collective anomalies – A collection of data instances together deviate from the rest of the dataset;

the individual values need not be anomalies in themselves either globally or in the context.

Figure 2.4. Types of anomalies shown on a sample of temperature data from indoor farm.

Common anomaly detection techniques in IoT applications

An extensive review of different techniques used in anomaly detection across domains is

presented in (Chandola et al., 2009). In the context of IoT applications, discussion on broad

categorization of anomalies/ outlier detection approaches are available (Ayadi et al., 2017;

Gaddam et al., 2020) and shown in Figure 2.5. The pros and cons of each one of these approaches

has also been systematically investigated. Based on the past studies, some of the important

27

questions to be posed before designing/developing an IoT-based anomaly detection algorithm are

as follows–

1. Where is the computation performed – Is it centralized or distributed?

2. When is the computation performed – Is it in real-time or in post data analysis?

3. What are the resource constraints – What is the memory required, energy usage, network

bandwidth etc.?

4. What is the nature of data being looked – Is it labeled or unlabeled? Is it univariate or

multivariate? What is the type of data?

5. What is the computational complexity of the algorithm – Is it scalable?

Different algorithms are explored in the present study based on these considerations on the data

generated from the farm and publicly available data.

Figure 2.5. Outlier detection techniques in wireless sensor networks (Ayadi et al., 2017)

Related work

Although anomaly detection is a well explored field and a lot of systems inherently have

some techniques in place to handle erroneous events, there is a gap in the documentation of models

used in indoor farms. In fact, very few research papers explicitly mentioned anomaly detection

techniques in smart farms or sensor networks in agriculture. A brief bibliometric analysis based

on Scopus (title-abstract-keyword search) and Springer (conference paper search) databases

between 2005-2021 for documents in English is provided in Figure 2.6. The trend is increasing with

the search terms, but the subject area pie-diagram for the past 5 years (2015-2020) shows that only

9.8% of the studies come from agriculture and biological sciences, 16.5% belong to environmental

28

studies. A search was also carried out in Google Scholar, IEEE, Sensors Databases. Further

filtering out relevant works based on quality criteria of whether the study presents a solution for

the problem in a real farm/ greenhouse setting, shows some details of implementation etc. left

about 22 papers between 2015-2021. A review of such papers found and filtered after extensive

search in research databases for anomaly detection in agriculture is in Table 2.2.

Database Search Query 1 : '("Anomaly" OR "Outlier" OR "Sensor Failure" OR "Predictive maintenance") AND

("Agriculture" OR "Farming" OR "hydroponics" OR "greenhouse")'

Database Search Query 2 : '("Anomaly" OR "Outlier" OR "Sensor Failure" OR "Predictive maintenance") AND

("Indoor farming" OR "hydroponics" OR "greenhouse")'

(a) Search queries used for Abstract, Title, Keywords in Scopus database, Entire conference paper database in Springer

(b)Trends in search query by year

(c) Cumulative of documents by subject area from 2015-2020 returned by Query 1 in Scopus

Figure 2.6. Bibliometric analysis of anomaly detection algorithms in agriculture

2
9

Table 2.2. Review of research papers focusing on anomaly detection in Ag IoT systems

Reference Issue addressed/ area of focus Brief technique proposed/ used Data used

(Yin et al., 2020)

Representations from deep learning (DL)

networks require labeling training samples and

the features extracted might not be suitable for

anomaly detection in IoT

• Transformations on labeled data and

augmentation

• Convoluted neural network (CNN) for

feature extraction

• Classification using an anomaly scoring

function

Public data : Images – CIFAR-10

and CIFAR-100; Net-flow – CTU

Specific: 603 garlic images

manually collected, 37 hours net-

flow data from an online Ag IoT

platform

(Sharma and Jain,

2018)

With no knowledge about data distribution, it

is difficult to identify outliers in multivariate

datasets

• Range specification by the user in the tool

and keep/ delete the flagged point

Data in the application AGRETL

– a hand coded ETL tool

(Liu et al., 2020)
Exploring application of ML based anomaly

detection methods to vertical plant wall systems

• Different neural network (NN) models are

tested

• Autoencoder (AE) for point anomalies,

long short-term memory (LSTM) for

contextual anomalies proved best

Temperature (137, 592) and CO2

data (115, 431 data points)

collected in the university

(L. Wang et al., 2017)
Traditional anomaly detection methods cannot

effectively handle contextual anomalies

• A two-stage anomaly detection in Apache

Spark
• Stage 1 – Support vector machine to

classify day/night.

• Stage 2 – Gaussian mixture model (GMM)

to find anomaly

45000 datapoints from Tomato

greenhouse – Temp, RH, CO2,

PAR

(Torres et al., 2017)
Increase the accurate data from low-cost

sensors in IoT

• Data fusion from multiple sensors of same

kind + use statistics-based outlier detection

• Filters to smooth out any existing noise

~168 data points/ sensor. 12 soil

moisture sensors in Cashew field

(Ou et al., 2020)
Real-time anomaly detection as opposed to

reactive

• Prediction using regression + Quartiles for

outlier detection

Soil Temp, Moisture, EC, PAR,

Temp, RH

(Min and Hwang,

2021)
To forecast environment in a tomato farm

• Prediction of multiple variables for

anomaly detection using LSTM

Internal Temp., external Temp.,

PAR, cumulative light volume,

ventilation set Temp., heating set

Temp., dew point Temp., RH

3
0

Table 2.2. continued

(Y.-B. Lin et al., 2019;

Y.-W. Lin et al., 2020)
Sensor failure detection in farm

• Homogenous tests from multiple sensors

of same kind based on calibration mappings

• Heterogenous tests from multiple sensors

at same node of different kind or sensor-

actuator combination using adaptive

thresholding

Soil Temp, Moisture, EC

Barometric Pressure, Temp, CO2,

RH, Ultraviolet light

(Karimanzira et al.,

2021)

Case study to introduce Intelligent

information management in IoT aquaponics

system

• LSTM for anomaly detection

• Bayesian network for fault localization

from possible fault set

2 years of Water salinity, DO,

Nitrates, PH, EC, Air Temp, RH,

Light, Plant, Fish growth rate

from images

(Abdallah et al., 2021)
Predictive maintenance problem in IoT

sensors

• Tested Autoregressive integrated moving

average (ARIMA), LSTM

• Offline training for prediction and real-

time classification based on 20% threshold

from predicted value

Public Data: 5 WHIN Sensors -

58,019 datapoints for each of

Temp, RH, Soil - EC, dielectric,

temp, nitrate, water-nitrate

(de Souza et al., 2020)
Conceptual architecture for selection of ML

based algorithms for detecting abnormal sensors

• Common unsupervised learning

algorithms are tested in proposed

architecture

Public Data: Forest cover –

286048

Various algorithms are compared

for performance based on

precision, recall, specificity,

power consumption, execution

time

31

2.2.3 Yield Prediction

Overview

Yield prediction is one of the most essential components of precision agriculture and spans

the topics of yield mapping, yield estimation, matching of crop supply with demand, and crop

management to increase productivity (Liakos et al., 2018). Traditionally, mathematical, or

empirical crop models that use certain crop growth variables as inputs have been used to predict

plant growth for research applications. However, those models required extensive agronomy and

physiology experiments that limited their use for various crops.

With the rise of ML, more efforts have been directed towards the use of data-centric models

that are based on correlation but do not necessarily deal with causation (Basso et al., 2013).

Supervised learning models have been developed that use crop yield data from previous years to

predict future yield (Liakos et al., 2018). Deep Learning models utilizing either satellite or UAV

imagery (hyper-spectral, multi-spectral, RGB) for yield mapping are increasingly becoming

popular. Imaging systems for various phenotyping applications are also gaining momentum where

yield is one such variable proxied by stem diameter, leaf count, leaf area etc. (Li et al., 2020;

Mochida et al., 2018). Nevertheless, vision-based techniques for indoor farms still have a lot of

room for exploration to help understand the effects of lighting, nutrition, and other environment

factors on plant growth and yield.

Data acquisition

Different types of imaging sensors have been used to collect multi-dimensional phenotypic

data. Phenotyping is the quantitative assessment of structural and functional properties of plants.

A basic digital RGB camera is adopted for color, texture-based applications. Hyperspectral

camera, thermal infrared camera, near-infrared cameras has been used for providing

complementary information to the RGB cameras to detect conditions like stress, drought etc. With

advances in 3-D reconstruction and affordable options, RGB-depth (RGB-D) camera, light

detection and ranging (LiDAR) devices are also being used for capturing entire plant level

morphological changes (Mochida et al., 2018). In an open farm, satellite images are used to retrieve

32

information from field (Sishodia et al., 2020). In this application, a cheap RGB Camera and

thermal camera are used to capture plant canopy.

Typical scenario in Computer Vision (CV) based phenotyping

Computer vision (CV) applications for phenotyping studies are gaining momentum (Li et

al., 2020; Mochida et al., 2018). These studies are relevant for a crop like microgreens where stem

length, leaf area and leaf count are directly related to crop yield. A typical scenario in a CV based

plant phenotyping is shown in Figure 2.7. Schematic representation of a typical example scenario in

computer vision-based plant phenotyping (Mochida et al., 2019)In the system proposed in current

research, pre-processing of data particularly becomes important due to the quality of images

captured owing to components used, distortions due to motion and detection, and image cropping

required to extract target tray from a larger image. A single transfer learning model or other deep

learning models can be utilized to perform segmentation, feature extraction, and finally predict the

yield. Since it is formulated as a regression problem; hence the last step of classification would not

be essential.

Figure 2.7. Schematic representation of a typical example scenario in computer vision-based plant

phenotyping (Mochida et al., 2019)

33

Related work

 A critical review of ML+ yield prediction algorithms, features and evaluation approaches

used for crop yield prediction has recently been published (van Klompenburg et al., 2020). Out of

the 50 papers that are critically reviewed, only 8 papers used images as features to predict yield

while most relied on temperature (24), rainfall (17), soil information like soil type (17), soil maps

(12), pH value (11) or crop information (13). The most used algorithms reported were CNNs,

LSTMs, deep neural networks (DNNs). The critical review also revealed that models have been

developed for limited data and that no specific conclusion can be drawn as to which model is better.

This prompts for an independent study for the use case in this experiment with microgreens.

 A summary of methods used for extracting leaf area/ count from images is presented in

Table 2.3.

3
4

Table 2.3. Summary of literature extracting features like leaf count, leaf area from images

Reference Title Crop Method

Image

Background

/ Condition

Image

Type

 (K. Lin et al.,

2013)

A Real Time Image Segmentation Approach

for crop leaf Multiple

Fuzzy C-means based on color

quantization greenhouse RGB

 (Franchetti et al.,

2019)

Vision Based Modeling of Plants Phenotyping

in Vertical Farming under Artificial Lighting Basil

Mask R-CNN for 2D image

segmentation which later is processed

for 3D reconstruction

Vertical

Farm RGBD

 (Chaudhary et

al., 2012)

Fast and Accurate Method for Leaf Area

Measurement Multiple Otsu's method

White

background RGB

(Z. Wang et al.,

2018)

Image segmentation of overlapping leaves

based on Chan–Vese model and Sobel

operator Cucumber Chan–Vese model and Sobel operator Field RGB

(Praveen Kumar

and Domnic,

2019)

Image based leaf segmentation and counting in

rosette plants

Arabidopsis,

Tobacco

Graph based method and Circular

Hough Transform Soil (Lab) RGB

(Aich and

Stavness, 2017)

Leaf Counting with Deep Convolutional and

Deconvolutional Networks

Arabidopsis,

Tobacco SegNet Soil (Lab) RGB

(Ward et al.,

2018) Deep Leaf Segmentation Using Synthetic Data

Arabidopsis,

Tobacco Mask-RCNN Soil (Lab) RGB

(Nagano et al.,

2019)

Leaf-Movement-Based Growth Prediction

Model Using Optical Flow Analysis and

Machine Learning in Plant Factory Lettuce Optical Flow Analysis

Vertical

Farm RGB

(Itzhaky et al.,

2018)

Leaf Counting: Multiple Scale Regression and

Detection Using Deep CNNs

Arabidopsis,

Tobacco FPN (Feature Pyramid Network) Soil (Lab) RGB

35

 MATERIALS AND METHODS

3.1 Setup

Microgreens were grown in a 9x12 m walk‐in glass greenhouse by blocking natural light to

simulate an indoor farm with Light Emitting Diode (LED) fixtures used as the sole source of

lighting. The testbed comprised of fifty-four experimental units distributed across three tables

(Figure 3.1). Each experimental unit was broken into two layers: 1) a bottom 1020 tray with no

drain holes to hold nutrient solution 2) a top layer of eight 12.7x12.7 cm seed tray inserts with

Biostrate substrate on which microgreens are grown. LED fixtures were mounted at a height of

45cm above the top of the bench. All the circuitry, power supply, and required components were

positioned underneath (or) adjacent to the corresponding tables.

Figure 3.1. Conceptual layout of the experiment in greenhouse zone. Inset experimental unit which is an

ebb and flow style tray system.

3.2 Statistical Design

The testbed was used to study factorial effect of lighting, nutrient solution concentration,

seeding density and day of harvest on growth of microgreens (growth is indirectly inferred by

weight or height measurements taken over 4 days of harvest). Each table consisted of three LED

zones each of which accommodated 6 experimental units that were treated with three different

36

nutrient levels and two seeding densities. A split-plot design was used in this setting with a

combination of LED spectra and intensity as whole plot factor, and nutrient solution concentration

and seeding density as subplot factors. This design was randomized and replicated three times

(Figure 3.2). A full-factor effects model (Equation 3.1) that considers all single factors, factor

interactions and random effects of interaction of replicates and whole plot factor was used.

Figure 3.2. Statistical design of experiment used to evaluate factor effects on microgreen growth (A,B,C

are 3 nutrient solution concentrations)

𝑊𝑒𝑖𝑔ℎ𝑡 ~ 𝐿𝐸𝐷 + 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝐷𝑎𝑦 + 𝐿𝐸𝐷 ∗ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝐿𝐸𝐷

∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝐷𝑎𝑦 + 𝐿𝐸𝐷 ∗ 𝐷𝑎𝑦

+ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝐷𝑎𝑦 + 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝐷𝑎𝑦 + 𝐿𝐸𝐷 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

∗ 𝐷𝑎𝑦 + 𝐿𝐸𝐷 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝐿𝐸𝐷 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

∗ 𝐷𝑎𝑦 + (1|𝑇𝑎𝑏𝑙𝑒 ∗ 𝐿𝐸𝐷)

Equation 3.1. Full model for factor effects for the experimental design

3.3 Testbed Design Rationale

A modular design approach was followed to facilitate adding or removal of noes as per need

and the points stated below were adopted for every functionality provided in the system.

• Use minimal number of components, thereby reducing both initial one-time setup and later

maintenance costs as well as the electronics interfering with operations.

• Implement a series of checks for hardware and software used to ensure safety and

reliability of the testbed.

• Remotely access and control the sensors and actuators to ensure regular monitoring and

minimize human intervention for running the indoor farm.

37

3.4 System Architecture

The proposed system comprised of a network of sensors, actuators, Arduino microcontroller

units (MCUs), Raspberry-Pis (RPis), IoT gateways, cloud database and user interfaces. An

overview of hardware and software architectures is provided in Figure 3.3 and Figure 3.4. The IoT

architecture contained physical, communication, service and application layers were adapted in

the design of the testbed as explained below.

Figure 3.3. Hardware architecture showing network connectivity of various functional modules and nodes

Figure 3.4. Software architecture showing typical flow of data, commands in the system

38

3.4.1 Physical Layer

The physical layer can be viewed as a collection of modules/ sub-systems that perform

specific functions as guided by the MCUs (Arduino or RPi) (Figure 3.3). The MCU along with

sensors and actuators attached to it is referred to as a node. The physical layer comprised of several

nodes. Sensors collected data at specified intervals or whenever triggered by a user and then

transmitted the data to the aggregator (gateway). Actuators (for example- LEDs, valves, pumps,

and gantries) were controlled from client-side application/ edge node/ predefined set of

instructions. A discussion on each of these is provided below.

MCUs

Ideally to facilitate a cloud based IoT system, each sensor should be equipped with its own

network capability. Most of such wireless sensors or cloud-store type data loggers are extremely

expensive, generate data held by proprietary systems making it difficult to integrate. Given the

design intent of the system (i.e., low-cost), it was deemed more practical, cost effective to procure

off-the-shelf sensors and add Wi-Fi capabilities using existing MCUs. Thus, Arduino Uno Wi-Fi

Rev2 was chosen, which offered the benefits of having digital, analog I/O pins suitable to be

interfaced with almost any sensor in the market and built in Wi-Fi.

In case of necessity of edge computing, a Raspberry Pi 3 B+ or 4 B was used in the node.

Along with providing control via Input/Output (I/O) pins, serial ports, it enables data storage and

processing on board. Given the requirement of a high number of relays in the current system design

(40+ per table), the USB control was extremely handy in irrigation control.

Power supply

The phase voltage of the AC mains was stepped down from 120V to 5V using adapters (to

power micro-controller) alongside which a 5V bus was maintained on the Veroboard (to power

the sensors). Similarly, the relays and motors were powered by a 12 V supply. To feed the 5V data

signal from the sensor to RPi general purpose input/outputs (GPIOs), level shifters to 3.3V were

used. When choosing new devices, their operational ability at these three voltage levels i.e., 3.3V,

5V, and 12V DC were preferred, to avoid creation of more power rails and safety considerations.

However, a variable adapter that can provide voltages in the range of 5-20 V powered the Pulse

39

Width Modulated (PWM) amplifier to control light intensities. Amperage was not a concern with

sensors as they draw currents in the range of few milli Amperes and commercial adapters typically

have higher ratings over 1 Ampere. On the other hand, it was an important criterion for driving

motors to provide enough operating pressure in pumping or enough torque for pulling the gantry.

Hence, a 12V 2A supply was used for driving pumps and 12V 3.5A was used for driving stepper

motors. Official supplies were used for powering RPis.

Lighting module

Three different full-spectrum white LEDs two of which were sheet type, and one bar type

were studied for effects (Table 3.1). They operate in the photosynthetically active radiation (PAR)

range which is light in 400-700 nanometer wavelength range. The photosynthetic photon flux

density (PPFD) of these lighting fixtures varies linearly with voltage and was powered via an LED

driver. A 0-10V PWM control signal was sourced from Arduino through a simple amplifier circuit

to dim the light from 0-100%. The light intensity was constantly monitored by measuring the PPFD

under it using a Quantum Sensor (SQ-225-SS, Apogee, Logan, Utah, USA). This sensor was

calibrated specifically for use under electric light and correction factors were used according to

the output spectra of LEDs to obtain the measurements within an error of 5%. The intensity at

plant canopy depends on the mounting height and during the experiment an 18” height was

maintained from the base of the bench.

PAR sensor calibration

For a PWM intensity control, a specific intensity value can be obtained by varying either

the duty cycle or maximum voltage of the control signal. Also, the sensor output varies by the

spectrum of the light, so a correction factor has been specified by the manufacturer. A mapping

between intensity to duty cycle was needed to enable taking user inputs. Hence a comprehensive

calibration table was created taking into consideration the variables of light spectrum, control

voltage and duty cycle snippets of which are shown in Figure 3.5.

40

Table 3.1. Specifications of LEDs used in the experiment

Ref. LED A LED B LED C

Image

Spec-

trum

Full Spectrum Full Spectrum - red, blue emphasis Full Spectrum

PPF 1014 μmol/sec 1281 μmol/sec 108-200 μmol/sec

Angle Lambertian Lambertian 120°

Power 620W 620W 85W * 3

Figure 3.5. Snippets of data tables obtained from PAR Sensor calibration experiment

41

Irrigation module

A low voltage pump (12 V) was used to feed nutrient solution to the growth tray through

a solenoid valve from a reservoir placed on the ground. A water flow meter/ sensor (FL-308T,

Digiten, ShenZhen City, China) located on the line between the pump and valve was used to gauge

the amount of solution flowing through. The output from this flow sensor was used to determine

switching of the solenoid valves. A dedicated 12V motor was used to pump the water out of the

tray. All the valves and pumps were interfaced with RPi via 16-Channel, 9-36V USB Relay

Module (Sainsmart, Lenexa, Kansas, USA). The flow meter communicated with RPi via GPIOs.

Since there were 54 trays in the system, 54 such modules would be needed. But for the

ease of management and minimizing costs, only one pump per treatment per bench was used,

solenoid manifolds having multiple valves were chosen, and flow meter was positioned such that

it could be used with all the valves in its line. For e.g., two 1-in 4-out normally closed DC12V

solenoid valves (FPD-270A, Yanmis, Guangdong, China) were used for inflow control of a

treatment that can feed up to 8 trays. The flow meter was between the pump and the valves and at

any instance, only one of the valves was opened to control inflow of the corresponding tray. A

typical setup for one bench is shown in Figure 3.6.

Three different nutrient solutions were used per cycle for each of the experiment to

establish optimal combinations. EC ranges 1.2 – 2 milli Siemens(mS)/cm of the solution were

tested with pH values 5.5-6.5 to ensure availability of nutrients to the plants. To prevent the escape

of oxygen from reservoirs, an array of air stones with a timer were used.

Figure 3.6. Typical setup of irrigation control placed under corresponding bench

42

Flow sensor calibration

Five different sensors with price varying from $7 - $270 were gravimetrically calibrated

and contrasted. The number of pulses resulting in 1 liter of water was established based on the

datasheet and iteratively validated in place, recalibrated for flow conditions of the system. The

setup for calibrating and analyzing pulses, flows is shown in Figure 3.7. A liquid level sensor (PN-

12110215TC-12, Milone Technologies, Sewell, New Jersey, USA) was used to assist in

automatically capturing the volume of water, thus facilitating collection of more data points for

future anomaly detection algorithms. A snapshot of the data captured from the experiment to arrive

at a calibration table is shown in Figure 3.8

Figure 3.7. Flow meter calibration setup

Figure 3.8. Snippets of data tables obtained from flow meter calibration experiment

43

Water quality module

Nutrient usage of the plants was monitored using these sensors from Atlas Scientific (Long

Island City, NY, USA) – EC probe (Conductivity Probe K 0.1) + circuit (EZO Conductivity

circuit), pH probe (Lab Grade pH Probe) + circuit (EZO pH circuit), DO probe (Lab Grade

Dissolved Oxygen Probe) + circuit (EZO Dissolved Oxygen circuit). These sensor circuits were

interfaced via an isolator (tentacle shield for Arduino, Whitebox labs, Switzerland) with Arduino.

The sensors communicate with the MCU using I2C protocol (I2C, 2003) and were triggered to

obtain readings once the solution from a growth tray was emptied into the measuring jug. This

module worked very much in tandem with the irrigation module upon trigger from the user

dashboard or command line interface. The process flow is shown in Figure 3.9.

Imaging module

A system containing an RPi RGB camera (Raspberry Pi Camera V2.1), Thermal imaging

camera (Grove MLX90640 110°, Seeed Studio, Shenzhen, China) for capturing the canopy

imagery, and infrared proximity sensor (GP2Y0E02A, Sharp Electronics Corporation, Montvale,

NJ, USA) to estimate plant height was setup to monitor plant growth. At the given standard height

of LEDs mount in an indoor farm, multiple cameras would be required to capture the images from

a single table. In the best case of using a single camera for a single tray, there would be a need for

18 camera systems and this setup would block the light on the tray underneath throughout the cycle.

Moreover, since the frequency of capturing images is low, once in 15 mins, the utilization of the

cameras in a fixed setup was also infrequent. Hence, the camera system was mounted on a robotic

gantry which allowed a highly customizable and scalable imaging.

The gantry was assembled in-house using components sourced from a local hardware store

to operate over the tables and the assembly is shown in Figure 3.10. A setup like this could be useful

and budget friendly to indoor farm operators where one such gantry could be used to cover an

entire connected level effectively. Stepper motors (NEMA-17, Quimat) controlled by Arduino

drive the motion of the module. The current setup had two parallel gantry rails moving over the

tracks using a single drive unit.

44

Figure 3.9. Process flow chart of irrigation and water quality measurement modules

45

Figure 3.10. Robotic Gantry that carries imaging module over plant canopy

Rig calibration

 Although the required number of rotations for stepper motors to go to a destination could

be obtained by theoretical calculation, validation and adjustment was necessary because of the

load, varying belt tension with length and camera position within a mount. The steppers of gantry

and camera were moved to desired positions via Arduino serial interface and corresponding values

were noted down when a satisfactory picture frame was observed in the camera preview in VNC

viewer (RealVNC Ltd, UK) window. A snapshot of this is presented in Figure 3.11.

Figure 3.11. Snapshot of imaging system calibration process

46

Climate module and other similar environment sensors

The general climate of the indoor farm was monitored from a central location. Temperature

(±1.0°C accuracy), Humidity (±3% accuracy) were taken from the measurements of a four-in-one

sensor BME680 (Bosch Sensortec, Reutlingen, Germany) sending data to the Arduino MCU via

I2C. For obtaining CO2 concentration from the environment, Gravity v1.1 sensor (SEN0219,

DFRobot, China) was used, and it measures concentration in the range of 0-5000 parts per million

(ppm) with an accuracy of ± (50ppm 3% reading).

During the experiment, to be able to test new sensors/ add more functionality to the system,

the additional I/O pins on Arduino of Node 1 were utilized. Currently, to note the microclimate

conditions at tray level, waterproof sensor DS18B20 (Maxim Integrated, San Jose, California)

having ±1.0°C accuracy was immersed to the bottom in three trays, one under each LED of a table.

To monitor at the top of the canopy, DHT11 (Adafruit, NYC, USA) temperature (±1.0°C accuracy)

and humidity sensor (1% accuracy) was used.

Temp., RH sensor calibration

All the environmental sensors used were connected to Arduino. The temperature, RH, and

atmospheric pressure data readings were recorded for seven days by keeping the sensors side-by-

side in a central location in the indoor farm as shown in Figure 3.12. A comparison was also made

between an expensive research grade sensor, ATMOS 14 (Meter Environment, WA, USA).

Figure 3.12. Set of environment sensors placed side by side for calibration

47

3.4.2 Communication Layer

Communication layer included both physical networks and protocols used in the ecosystem.

All the devices in the indoor farm were connected over Wi-Fi network and located behind a secure

firewall. Wi-Fi was chosen as transmission mode because of the reliable internet connections in

indoor farms, given their proximity to urban areas, requirement to establish a two-way

communication with remote devices and ease of availability of MCUs with inbuilt Wi-Fi

functionality. A hybrid topology was used. A local server (running on RPi) was used as an IoT

gateway and to receive data from all the nodes in the indoor farm via message queuing telemetry

transport (MQTT), hypertext transfer protocol (HTTP) protocols. This data was periodically

synced with a cloud database (DB) via secure shell protocol (SSH) due to the restrictions on

greenhouse Wi-Fi network. Since the devices were connected to the internet in themselves, the

edge computing nodes could communicate with cloud directly. But they were allowed to do so

only in limited capacity to receive pre-defined control commands from dashboard and send

corresponding progress back to minimize traffic at server in terms of number of devices connecting

to cloud. All the devices thus ran MQTT clients. Additionally, all the nodes and IoT gateway were

enabled remote access via VNC viewer within the network in addition to secure shell access for

effortless application development/ deployment at node.

3.4.3 Service Layer

Cloud-based MySQL database synchronized periodically with local MySQL DB and

facilitated multiple reads, write, and no overwrite functionality. This data was sent to dashboard

for visualization or pulled via python for further analysis from backend. A secure MQTT broker

was also hosted on cloud and relayed communications between all the clients.

Data Management

Tables for storing data from each node, functionality were created in the local and cloud

servers. For e.g., WaterSensors_1 is a database table that stored data sent from water quality node

from experiment table 1. PHP scripts received data annotated with client id via HTTP and each

entry was added with a timestamp at the local server and later synced with cloud Database. A

PhpMyAdmin was installed on this local server for quick administration in the farm.

48

Sensor sent data periodically to a local DB. However, actuators sent a few structured logs

during operation directly to cloud DB for access from dashboard. Other than that, most of the

actuator related data were stored as detailed log texts on the edge node that were processed in-situ

for anomaly detection or high-quality storage and could be retrieved later from command line

interface (CLI). For images, an MQTT client and auxiliary scripts dedicated to receiving them

from the remote farm and sending them to relevant folders for dashboard access or storage ran on

the server. Folders were organized by run number/ duration, with name of the file containing the

sub-tray number and timestamp.

The intervals at which data was received varied. Sensor data was usually received once

every 5-15 min based on the sensor, actuator data was on-the-go basis based or when the action

was performed, and image data was retrieved only as per user’s request. A summary of the database

structure at the end of the experiment is shown in Figure 3.13.

Figure 3.13. Database structure for storing sensor data with expected frequency of update

3.4.4 Application Layer

A client-side web application was developed to visualize sensor data and control actuators

remotely. Dash python framework was used for building powerful visualizations with the data and

enable quick deployment. Connection to cloud database was achieved using PyMySQL whereas

climate, treatment monitoring, camera data was continuously retrieved by frequent callbacks

facilitated by Dash. Multiple MQTT clients ran at the backend of the application to provide control

functions in real-time. A sample software pipeline for triggering an irrigation cycle is shown in

49

Figure 3.14. Since the tasks were not instantaneous to keep the user in loop, the progress/ status of

the actuator function was streamed till the task was completed.

Figure 3.14. Example of a control operation pipeline (irrigation)

3.5 Edge Computing

3.5.1 Use cases

The value proposition of edge/ fog computing lies in leveraging the processing power of

multiple local devices to enable enough quality of service (QoS) for some computationally

intensive tasks as well as reduce latency. The testbed was designed under such paradigm and edge

computing was used in the following manner:

• Reducing latency - When the user triggered irrigation of a specific tray, the flow sensor

values were polled at the RPi upon receiving the user signal, sensor data was locally

assessed for anomalies for action and periodic progress notifications were sent to the user

as opposed to sending every pulse.

• Computation offloading - Images were processed locally on the RPi edge and a summary

of the information obtained from them was sent over to the cloud.

• Reducing data traffic - Since the edge has in-built data storage capability, instead of

sending data as soon as it was captured, the data points were bundled at the local server

and synchronized with the cloud every 15 mins. The data that was captured from

continuous reading of sensors like flow meters was stored locally at the node and only sent

over in case of anomaly or upon request by the user.

50

3.5.2 Experiments

• To establish the necessity of edge computing for latency sensitive applications, one way

latency tests were conducted for different QoS levels over 3 days each. An MQTT Client

(Partner A) ran on RPi node in the greenhouse while another client (Partner B) ran on the

cloud server. Latency was measured at the receiving client as the time elapsed between

message origin at sending client to arrival at the receiving client. The measurements of

average latency and observations from the experiment are provided in results section.

• To strategize the reduction of traffic at the local network or cloud, an analysis of a typical

operation at the local server was performed under two scenarios – A) Data is uploaded

from local DB into cloud every time a sensor sends data, B) Periodic update every 15 mins

3.6 Anomaly Detection

3.6.1 Use cases

 A mapping of use cases was created between the types of anomalies that can arise from

different sensors on the farm and techniques to handle them and is shown in Table 3.2. Numerous

experiments were conducted on data from climate sensors and different techniques were explored.

The data preparation and details of the process are discussed in the following sections.

3.6.2 Exploratory Data Analysis and Pre-processing

For time-series based algorithms, it is essential that the data is in continuous blocks.

However, the system had significant chunks of missing data owing to issues faced because of

MQTT, internet protocol (IP) address changes and Wi-Fi. The longest possible interval of data

with no issues or least issues of discontinuity is considered as training set and the rest of them are

used for different test sets, validation set. In case of a discontinuity, if the data was missing for less

than 1 hour, it was filled with previous known value automatically by the code. If the data was

missing between 1 to 3 hours, it was filled with values from a similar interval on the day before or

later after manual verification. If more than 3 hours were missing, the day was deleted.

Data cleaning required identification of normal and abnormal points. Empirically, anomalies

rarely appear in the dataset, but time series plots, box plots were drawn to observe any potential

51

ones. Literature also suggested that climate parameters follow binormal distribution, so density

plots were drawn to verify this and further obtain thresholds for eliminating extreme points. Z-

scores were used to detect outliers and points beyond threshold 𝜇 − 3𝜎 and 𝜇 + 3𝜎 are removed

iteratively until there is a clean dataset. A manual inspection was also done to remove any further

deviant points.

Table 3.2. Different types of anomalies, their use cases, and techniques to handle them

Anomaly

Type
Use cases Techniques to handle

Point

anomalies

• Occasional spurious values by sensors because of

interference or noise or software error

• Missing data chunks which might point to network

connectivity issues at the node

• Standard quantile-based outlier

detection methods, prediction-based

methods like regression, NNs

• Threshold on data receiving intervals at

the server

Contextual

anomalies

• Deviation from expected correlation between multiple

climate sensors in use at the same time

• Deviation from expected correlation between water

quality sensors of similar treatments

• PAR sensor values not reflecting the 18h photoperiod

condition which might mean that LED is not working or

software error with the controlling code.

• Pattern detection methods like auto-

encoder, LSTM

• Validation with expected patterns from

previous data

Collective

anomalies

• Gradual failing of an actuator, for e. g. reduced flow rate

in water sensors indicating a blockage at the valve, pump

failing or power supply issues.

• Water flow sensor failure, if designated number of pulses

exhibit deviant pattern from data captured at calibration.

• Height of the microgreens in a tray not increasing over

days calling for reactive operation

• Time series-based methods

• Pattern detection methods like auto-

encoder, LSTM

3.6.3 Anomalous Data Generation

For inducing anomalies into the clean training datasets, a contamination % of the training

data was chosen and point, contextual, collective anomalies were imputed in a ratio of ~3:2:5. A

lower overall number for contextual anomalies was chosen given the non-triviality of imputing

these anomalies and the data size we have. Collective anomalies need to be in groups, so a higher

fraction was allocated for them. Rest of the fraction were made point anomalies.

For point anomalies, random indices were chosen from the dataset and the corresponding

points were replaced by anomalous values that were generated from a uniform distribution between

52

[theoretical minimum value, 𝜇 − 3𝜎] and [𝜇 + 3𝜎, theoretical maximum value]. For contextual

anomalies, random windows corresponding to 12 h length were chosen and either the maximum

value was replaced by minimum, or the minimum was replaced by maximum value. For collective

anomalies, several consecutive data points with variant length values between 3 to 6 were selected

and replaced with values that were 10 to 15 hrs away from the selected points.

3.6.4 Modeling pipeline for the experiments

For ease of reference, the original dataset was referred to as 𝐷𝑟𝑎𝑤, the clean dataset with

outliers removed was referred to as 𝐷𝑐𝑙𝑒𝑎𝑛 and the dataset imputed with anomalies was denoted as

𝐷𝑎𝑛𝑜. A subscript of train/ test data like 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑟𝑎𝑖𝑛 or 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑒𝑠𝑡 was used to depict the training

and testing sets as used. The property of interest was shown in the brackets following the dataset

like 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑟𝑎𝑖𝑛(𝑇𝑒𝑚𝑝).

Unsupervised models were trained to output two classes (anomaly/ not) from the data fed

into them. Unlabeled 𝐷𝑎𝑛𝑜,𝑡𝑟𝑎𝑖𝑛 was used for training and 𝐷𝑎𝑛𝑜,𝑡𝑒𝑠𝑡 for testing. Supervised

learning models as classification problems were not implemented due to the known pitfalls with

imbalanced datasets and their lesser popularity for anomaly detection. Also, the dataset we have

becomes very small to explore these in attempts to balance it. For supervised prediction-based

algorithms 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑟𝑎𝑖𝑛 was used for training and 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑒𝑠𝑡 for predicting the future values.

𝐷𝑎𝑛𝑜,𝑡𝑒𝑠𝑡 was compared with this set and based on a quartile or fixed threshold a point is flagged

as anomaly/not. The working pipeline of data processing, modeling is shown in Figure 3.15.

3.6.5 Models used in experiments

Numerous unsupervised learning algorithms that were discussed in literature were

explored. A general summary, with the strategy to extract the best performance from a particular

model and comments are mentioned in Table 3.3. Numbers supporting the comments follow in the

results section. In prediction-based models, to start from the simplest, linear regression was

considered. Taking advantage of the Scikit-learn (Pedregosa et al., 2011) linear model library

different regression methods were evaluated. ARIMA model was chosen initially, it performed

well on the training data but generating a rolling forecast for the testing data took long hours (at

least 6 hrs for 2000 points) and parameter tuning was more time consuming. Hence ARIMA model

53

was not chosen for further consideration. A tree-based model Gradient boosting regressor (GBR)

was also tested out. Moving to neural networks, a simple artificial neural network (ANN) with two

dense layers was evaluated. Similarly, LSTM and Bi-LSTM with one LSTM/ Bi-LSTM layer

followed by one dense layer were evaluated. All the neural networks were trained to 10 epochs,

although in most cases they converged within 2-3 epochs. A point is flagged as anomaly if the

relative error between predicted value and actual value is greater than threshold. The threshold was

chosen from receiver operator characteristic (ROC) curve or precision-recall (PRC) curve.

Figure 3.15. Data preparation and modeling pipeline for experimenting with different anomaly detection

algorithms

54

Table 3.3. Summary of hyperparameter strategy and general performance of unsupervised models for

anomaly detection

Model Nature Hyperparameter strategy Comments

Histogram-

based

outlier

score

(HBOS)

Statistical, Non-Parametric,

Proximity-based

Fixed no. bins =

√𝑁𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

Proximity based methods

usually only work well

with global outliers
Kernel

density

estimation

(KDE)

Statistical, Non-Parametric,

Proximity-based

GridSearch over different kernels

and bandwidths. Cutoff quantile

for threshold = 0.01

K-nearest

neighbors

(KNN)

Clustering, Proximity-based

Iteratively choose

num_neighbors. Cutoff distance

quantile = 0.01

Local

outlier

factor

(LOF)

Clustering, Proximity-based GridSearch over num_neighbors

The model is either

sensitive to only one of

local or global outliers,

but not both at any time

Elliptic

envelope

(EE)

Probabilistic Contamination = 0.01

Expects underlying data

to be Gaussian and good

for global outliers

Cumulative

sum control

chart

(CUSUM)

Probabilistic Choose h, k iteratively

Sensitive to small changes

but fails to detect larger

ones. So does not work

well when the base data is

erratic

GMM Probabilistic

Num. clusters set to 2 assuming

normal points & outliers fall

under different Gaussians

If underlying distribution

is multi-Gaussian like

RH, it fails

Isolation

forest

(iForest)

Ensemble, Tree-based
GridSearch over different max

tree size

Does not work for

contextual anomaly

3.7 Yield Prediction

3.7.1 Problem Formulation

The goal was to predict yield based on canopy images captured at certain time intervals

pre- harvest. This was formulated as a regression problem for deep learning model where an RGB

image collected ‘t’ time ago from the harvest was tagged as ‘x’ variable with the weight at harvest

as ‘y’ variable. Height was also considered one of the ‘x’ variables when available in one

experiment.

55

3.7.2 Data Preparation

Figure 3.16. Flow chart showing data frame preparation from images captured by the gantry for feeding

into deep learning models

56

Images acquired of microgreen canopy from gantry system were processed as shown in

Figure 3.16 to feed the deep learning model. Trays that do not have any growth (Weight 0) were

removed as it was raising issues in calculating the error metrics mean absolute percent error

(MAPE) along with not having any significance. The images when acquired were 1024x768 pixels

which were cropped roughly into half, i.e., brought down to 512x768 pixels per sub-tray which in

turn were resized to 224x224 pixels for being fed to the deep learning architectures.

3.7.3 Code flow

Models were built in python using Keras and TensorFlow backend on Google Colab. A

typical workflow of the code is shown in Figure 3.17. All fitting and callbacks were written in a

generic function which can take a specific model as input and keep rest of the setup same for

comparison. Each model gets its own separate function and experiments were performed with a

custom CNN (referred to as SmallCNN further), ResNet50 (He et al., 2015) with no top layer,

custom layers added (referred to as ResNet50 further) and Efficient Net B0 (Tan and Le, 2019)

with no top layer, custom layers added for regression (referred to as EffNetB0).

Figure 3.17. Code flow in Keras for yield prediction problem

57

3.8 Plant Growth

A growth cycle lasted between 10-14 days for the crops grown in this research. Light duration,

nutrient solution concentration, and seeding density were varied based on the experimental design.

The timeline of a typical cycle is shown in Figure 3.18. Seeds were sown in the growth trays lined

with Biostrate substrate and kept for germination in dark for 2-3 days. The trays were later moved

to the indoor farm wherein irrigation and light duration were handled by scheduled automations

throughout the growth cycle. Two sub trays per tray were sampled to harvest on the last four days

of the cycle (referred to as day n-3, n-2, n-1, and n with n being the length of the growth cycle for

the corresponding crop). The height and weight measurements of the plants were carried out

manually using a hand-held digital roller electric ruler (DZT1968, Guang Dong, China) least count

0.1cm and an electronic portable balance (SPX6201, Ohaus, Parsippany, New Jersey) least count

0.1gm. Once the data was captured, a statistical analysis to study factor effects on weight was

performed according to the method displayed in Figure 3.19

Figure 3.18. Timeline of a typical growth cycle of microgreens

Figure 3.19 Analysis method for establishing factor-effects on microgreen weight

Filter values < Threshold
(Cabbage, Radish - 15

gms, Broccoli – 12 gms)

Manually verify if there is
a decreasing trend in the
trays values, if there’s

more than 10gms
difference-removed val

EDA and interactive plots
to check for effects

Fit full model (Make sure
to set the reference level),

then remove 3 factor
effects and fit model

Run model diagnostics
Reduce model to

significant interaction
terms

Run model diagnostics
again

Store model summaries

58

 RESULTS AND DISCUSSION

4.1 Design and Implementation of the system

Numerous challenges were encountered during the system development. Emphasis had been

placed on the safety, reliability, and reusability while design. The number of components had also

been kept minimal and isolated enough to facilitate scaling. I have listed out a few aspects taken

into consideration and challenges faced so that they can serve as a reference to practitioners.

4.1.1 Power supply

• There had been several system crashes of RPis triggered by power fluctuations despite

using the specific rated adapters or sometimes even from the approved vendors. Hence, it

was essential to choose a stable AC to DC adapter that could provide enough current for

powering the sensors and the controller. Power supplies that have a slightly higher wattage

than the required, but within the specified limits of the micro-processor were used for

reliable operation.

• It was essential to plan for power supply provision for the whole setup of sensors. The

current system required us to expand supply lines multiple times to accommodate more

devices in a greenhouse that originally only had provision for powering LEDs.

4.1.2 Lighting module

• Individual dimmers were replaced with digital PWM dimming from a central controller

which helped reduce hardware and achieve synchronized control of all the LEDs.

• To accurately measure PPFD incident on a horizontal surface, the sensor must be level.

Hence a leveling plate was also bought from Apogee, spirit level was checked before each

run to prevent inaccurate measurements.

• Calibration factors for the quantum sensor varied with LEDs due to non-ideal spectral

response of the sensor in photosynthetically active radiation range. Thus, a co-ordination

with the LED manufacturers was required to obtain detailed spectral intensity

characteristics. This data was in turn uploaded into Apogee calibration tool available

59

publicly to obtain correction factors. For instance, LED B which had emphasis on blue

and red wavelengths had an error of 11.8% in the reported PPFD without a correction

factor (which was determined as 1.13 from the tool to bring the error within 5%)

• To prevent sudden fluctuation of voltages and tripping of mains due to sudden shutting

down/ turning on of LEDs, as a good practice with switching of high voltages, a delay of

30s was maintained between the shutting off LEDs in the greenhouse. Additionally, the

LEDs were gradually turned up to the desired intensity (soft start to minimize start-up

surge current)

• Although the LED intensity has a linear response to control voltage, the variability in

components and application makes it imperfect, especially with PWM. Hence, the voltage

was adjusted iteratively by using the monitoring sensor to attain desired PPFD.

• Specifications of LEDs vary based on coverage area, the height at which LEDs are

mounted and the standard used by the manufacturer. For instance, one of the LEDs had a

light distribution angle of 120°. At a height on 45 cm and maximum voltage of 10V at the

controller, a tray of microgreens receives only 2/3 of what it receives when at 30 cm.

4.1.3 Irrigation and water quality modules

• Lab-grade water quality sensors were expensive with the setup of three sensor circuits+

probes+ tentacle costing ~$750. Hence only one such sensor setup was built at each table

and the irrigation module was programed to use it sequentially i.e., a tray was emptied to

the measurement jug where the readings were taken, and this jug was cleaned out before

draining of next tray begins. This added about 10 mins to the time it took to finish the

irrigation cycle of each tray. Clean water was used to rinse the measuring jug between

treatments to prevent contamination from earlier readings.

• Physical compatibility of components on the irrigation pipeline had been a huge challenge,

especially because of the imposed budget constraints and ready availability. The current

pipeline for input water supply is shown in Figure 4.1. Pump was chosen based on delivery

height, distance, and voltage compatibility. Solenoid manifold was used to facilitate

convenient splitting of the inflow to supply to 6 trays and voltage compatibility. Flow

meter size was chosen based on the tubing size upstream. There was also the issue of hose,

barbed or threaded connectors. Choice of tubing followed the choice of hardware

60

compatibility and flexibility required to reach from solenoid to tray. Thus, a carefully

deliberated irrigation system planning is essential.

• No significant differences were observed between accuracy of flows between the cheap

and expensive sensors in a constant pressure setup. However, the expensive flow sensors

were truer to their specifications sheet and followed the number of pulses/liter number

very closely, while the cheap sensors required heavy recalibration. Additionally, cheap

sensors were more sensitive to the placement in the water line, flow rate (even within the

range of the sensor) with occasional spurious values.

• To facilitate automated inflow and outflow, holding the tubing in place was imperative.

So, the standard 1020 trays were modified by drilling a hole in the sidewall and securing

with grommets to insert tubing. A safety hole was also drilled to prevent excess watering

in case of flow sensor/ relay failure.

• Since the irrigation system carried nutrient solution, to steer clear of algae in the system it

was considered ideal to block light from all the water flow routes by means of using black

tubing or covering the solenoids.

• Water level sensors were connected to Arduino pins in two runs to test if they could be

used to make irrigation decisions. But fixing them in position was challenging and their

accuracy in sensing level, response speed was questionable. They could be used to detect

the presence of water but might not be reliable enough for turning the motors on/ off.

Figure 4.1. Inflow part of the irrigation pipeline

4.1.4 Climate modules

• BME680 was connected via I2C and was sensitive to length. So, sensor needed to be close

to the MCU.

• From the calibration setup, it was found that the differences in the parameters between

local climate sensors vs BME680 increased sharply when the temperature is high.

BME680 showed sharp ups and downs in daytime temperatures as compared to ATMOS.

One potential reason could be that ATMOS was housed in a radiation shield which might

61

smooth out changes in microclimate around the measurement area of the sensor. Pairs of

DS18B20 and DHT11 that were physically located close by behaved similarly, with DHTs

averaging a 0.6° higher measure than DSs. However there had been a difference between

DS1 and DS3, which could be attributed to the distance in space between the sensors in

the setup. Thus, it was observed that sensors of similar kind behave similarly and can be

compared with each other, but comparison between sensors of different kinds measuring

the same parameters should be made with caution. A few plots demonstrating these

observations are shown in Figure 4.2.

Figure 4.2. Readings and differences between some sets of microclimate sensors

• It was observed that environment conditions around the central sensors were different

from those around the trays. This was attributed to heating from LEDs, plant transpiration,

difference in air circulation over the plants given they are more closed. To gauge this

difference, sensors were placed on some trays. Regions below sheet LEDs turned out to

be 1-3° C warmer than outside, while the ones below bar LEDs did not exceed 0.5° C.

4.1.5 Data and Connectivity

• To prevent loss of data, it was stored at multiple locations. It was captured and stored

temporarily at the edge to account for network discontinuities and retrieved at the end of

the cycle. It was also stored in a local DB which was periodically synced with the cloud

and both the copies were retained.

62

• The frequency at which different data points were captured was chosen discretely. For e.g.,

BME680 can provide a reading at few second intervals (1-3s), but this application only

read it every 5 mins as the indoor settings imply no sudden changes in environment

conditions. By taking such measures, power consumed at the nodes was reduced. This also

helped avoid data traffic, storage overflow and post-processing efforts to down-sample.

• The system in the greenhouse zone was behind a secure firewall and the only mode of

two-way communication with devices was via MQTT over transport layer security (TLS).

This MQTT broker was hosted on another secure server that also hosted dashboard, DBs.

• A static IP could not be obtained for the devices which created troubles with access via

VNC as well as sending the data over HTTP. Hence a script to notify changes in IP was

deployed on the nodes (RPis).

4.2 Real-Time Control and Monitoring

4.2.1 Experiment to measure latency in the system

Average latency measurements of raw and filtered measurements (removing >10s values)

are provided in Table 4.1. The high values of average and standard deviation of latency in QoS 1,2

were observed around client reconnect period or occasional traffic at the broker and these values

occur <1% of over 10,000 measurements. However, from a safety and precision standpoint, it is

essential that our application handles these cases reliably. For e.g., with a cloud-based anomaly

detection in the event of flow meter failure, a delay of 100 secs would imply 5l of water being sent

to the tray which leads to heavy overflow. Hence, it is essential to have such functions run at edge.

Table 4.1. Raw and filtered measurements of one-way latency observed over 3 days

Case Client

Subscribe

QoS Publish QoS

Raw measurements (ms) Filtered measurements (ms)

Avg.

Latency

Std. Dev. of

Latency

Avg.

Latency

Std. Dev. of

Latency

1

Partner A 2 2 46 302 46 228

Partner B 2 2 940 9784 62 342

2

Partner A 1 1 148 1758 67 470

Partner B 1 1 6836 56535 49 446

3

Partner A 0 0 12 87 12 87

Partner B 0 0 38 827 20 190

4

Partner A 2 1 17 155 16 104

Partner B 0 0 279 5090 19 213

63

4.2.2 Analysis of local-cloud sync operation

A typical code block to sync a data table from local server to cloud along with the time

taken for each step is shown in Figure 4.3 (averaged over 100 runs). It goes from establishing a

secure shell connection to cloud to finally committing the changes in the corresponding cloud

database. This profiling revealed that 80% of the time was consumed in operations related to

establishing connectivity. Thus, minimizing the number of times this code is run helps reduce the

resource utilization at the local DB. It in turn also reduces the data traffic both at the local gateway

and cloud by reducing the number of times a connection is initiated to synchronize both DBs. An

analysis of the two scenarios over 4 data tables in the DB is presented in Table 4.2. Scenario A)

Data is uploaded from local DB into cloud every time a sensor sends data, B) Periodic update

every 15 mins. Hence for sensors that do not relate to control operations and are not latency

sensitive, a periodic synchronization with the cloud was carried out once every 15 mins.

Figure 4.3 Time consumption distribution in a typical local<->cloud sync operation

Table 4.2. Analysis of time and memory consumption in scenarios A and B

 Scenario A Scenario B

Num update operations 12 4

Num of times cronjob is run 45 1

Avg memory usage by cronjob/ program run 55 MiB 55 MiB

Amount of time Pi this memory would be occupied 34116 ms 985 ms

{(Total connection times * Num of connections made) +

(Total fetching time * Num of fetches) +

(Total updating times * Num of updates)}

{292 ms * 45 +

148 ms * 45 * 3 +

83 ms * 12}

{292 ms * 1 +

148 ms * 3 +

83 ms * 3}

Bandwidth 100 kB/s *12 100 kB/s *4

Data Latency (max) 20 sec 15 mins

64

4.2.3 Adoption of results

A sample strategy of connectivity of nodes along with the functionalities that can be

performed by them in-situ is shown in Figure 4.4. This framework was formulated after deliberating

potential alternative paths to achieve minimization of latency in real-time applications, trade-off

with latency and data traffic for passive sensor data and utilization of storage, computational

capacity at the nodes.

Figure 4.4. A typical edge-fog-cloud pipeline. Connectivity and functionalities at node devices

4.3 Anomaly Detection Algorithms

The data captured by BME680 sensor was used for anomaly detection experiments. The

period of ‘4/29/2021’ to ‘5/29/2021’ had been the longest and most reliable after all the identified

issues were fixed. So, this data is used for training. In the training set, 8196 data points were

captured in 5 mins intervals with 5 hours of data missing on ‘5/5/2021’ due to internet downtime.

Hence, the data from this day was deleted to reduce impact on further machine learning tasks and

maintain continuity. The rest of the data was resampled to 5 mins intervals which resulted in a

total of 8479 points. Similarly, other chunks of data were used for testing, validation and their

65

summary are given in Table 4.3 with Test1 being the primary testing set. From this data outliers

were removed to obtain clean datasets. Figure 4.5 which has density and box plots reveals that

temperature, RH did not have any outliers, but CO2 data had a considerable number. So those

points were removed and replaced with previous correct values. Once a clean data was obtained,

anomalies were imputed based on the process described in 3.6.3. For instance, at 1% contamination

rate, out of 8479 datapoints, 85 points were modified to introduce anomalies property by property.

A plot of sensor values in period of interests in training and Test1 datasets is shown in Figure 4.6.

Table 4.3. Different periods of data considered for experiments of anomaly detection

Data Number of samples

Number of anomalies
(by contamination) Period

1% 5%

Train 8479 85 422 04/29/2021 - 05/29/2021

Test1 2818 43 138 04/06/2021 - 04/15/2021

Test2 3315 34 10/16/2021 - 27/10/2021

Test3 1401 15 11/24/2021 - 11/29/2021

Validation 1186 03/25/2021 - 03/29/2021

Figure 4.5. Density and box plots of BME680, Gravity v1.1 data for identification of outliers

66

Figure 4.6. Time series plots of data captured by BME680 and Gravity 1.1 sensors by training and testing

sets as well as different measured parameters

67

4.3.1 Experiments on temperature dataset

Comparison of all identified models

A comparison of performance between different models from an overall anomaly detection

perspective in temperature dataset is shown in Table 4.4. It can clearly be seen that prediction-based

methods are superior to unsupervised learning methods as they were able to capture more

anomalies correctly with fewer false positives. Among the unsupervised models, density-based

methods like KDE, HBOS, EE performed better albeit capturing only point anomalies most of the

time. In prediction-based models, regressions perform surprisingly well, with performance at par

with neural networks (Note that for prediction-based methods, these results correspond to a dataset

processed at lag 3 value, i.e., past 3 values of the parameter were treated as features to predict the

next interval). All-in-all prediction-based models were deemed better and chosen for further

experiments and fine-tuning to derive better performance.

Table 4.4. A comparison of models used for detecting anomalies in temperature data in terms of the

number of anomalies identified correctly based on the type.

Model Train Test

false

positives

collective

(47)

context

(10)

point

(30)

false

positives

collective

(16)

context

(3)

point

(9)

ANN 3 26 9 30 3 16 3 9

BayesianRidge 3 26 9 30 3 16 3 9

BiLSTM 3 26 9 30 3 16 3 9

ElasticNetCV 27 37 10 30 13 16 3 9

HuberRegressor 3 25 9 30 3 16 3 9

LSTM 3 26 9 30 3 16 3 9

LassoCV 3 26 9 30 3 16 3 9

LassoLarsCV 3 26 9 30 3 16 3 9

LinearRegression 3 26 9 30 3 16 3 9

PassiveAggressive

Regressor

4 25 10 30 3 16 3 9

RidgeCV 3 26 9 30 3 16 3 9

KNN 0 0 0 23 0 0 0 9

iForest 24 0 1 20 0 0 0 9

LOF 55 0 0 0 26 0 0 0

GMM 0 0 0 28 0 0 0 8

CUSUM 22 0 0 22 12 0 0 7

EE 24 0 1 30 47 0 0 9

HBOS 16 0 1 30 45 0 0 9

KDE 52 5 1 30 53 0 0 9

68

Comparison of prediction-based models at different lags

Lag values 1 to 7 that correspond to 5 mins to 35 mins were experimented with as predictors

for the next interval. False positive rates (FPR) are close to 0 for all the cases, given the nature of

the problem. True positive rate (TPR), precision and root mean square error (RMSE) for the

models under consideration on test data are shown in Table 4.5. RMSE remains constant with the

increasing lag value implying that temperature values are best predicted just using a single

previous interval excepting for gradient boosted regression (GBR). RMSE of GBR at a lag value

of 2 is less than rest of the models for both train and test datasets which makes it the best predictor.

However, precision and TPR are still the same as others which might be attributed to the fact that

thresholds were incremented only in steps of 0.025 i.e., 2.5% relative error. Further

experimentation with thresholds might be required to see if a better classification performance can

be derived. Lag values of up to 4 are only shown in the table due to space constraints and the trend

revealing no new information.

Table 4.5 Performance of prediction-based methods for different lag values on test data

 RMSE PRECISION TPR

Model 1 2 3 4 1 2 3 4 1 2 3 4

ANN 0.27 0.27 0.27 0.27 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12

BayesianRidge 0.27 0.27 0.27 0.26 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12

BiLSTM 0.27 0.27 0.27 0.27 71.79 93.33 90.32 87.5 65.12 65.12 65.12 65.12

ElasticNetCV 0.27 0.27 0.27 0.27 71.79 70 68.29 87.5 65.12 65.12 65.12 65.12

GBR 0.27 0.23 0.23 0.23 71.79 93.33 71.79 66.67 65.12 65.12 65.12 65.12

HuberRegressor 0.27 0.27 0.28 0.3 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12

LassoCV 0.27 0.27 0.27 0.27 71.79 70 90.32 87.5 65.12 65.12 65.12 65.12

LassoLarsCV 0.27 0.27 0.27 0.26 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12

LinearRegression 0.27 0.27 0.27 0.26 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12

LSTM 0.27 0.27 0.27 0.27 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12

PassiveAggressive
Regressor 0.32 0.31 0.31 0.37 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12

RidgeCV 0.27 0.27 0.27 0.26 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12

Comparison of prediction-based models with different temporal, windowing factors

A common practice is to add temporal features while dealing with time series. Hence, a

feature ‘time of the day’ (calculated as hour*60 + minutes) is added as a predictor variable and

performance was tested (Scenario T). Similarly, window related features like difference, mean,

69

standard deviation were added as predictors (Scenario W). Finally, both were tested together

(Scenario T+W). LSTM, Bi-LSTM, GBR showed very slight improvement in RMSE for a lag

value of 2. Higher lag values showed an improved performance, but still less than lag 2. Thus,

finally a lag value of 2, with temporal and window features were chosen as predictor variables

(referred to as WT2 and used in experiments further). The details of the experiment are given in

Table 4.6.

Table 4.6 Performance of prediction-based methods with window, temporal features on test data

 RMSE PRECISION TPR

Model T W T+W T W T+W T W T+W

ANN 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12

BayesianRidge 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12

BiLSTM 0.27 0.25 0.25 93.33 93.33 93.33 65.12 65.12 65.12

ElasticNetCV 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12

GBR 0.22 0.23 0.22 80 70 77.78 65.12 65.12 65.12

HuberRegressor 0.33 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12

LassoCV 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12

LassoLarsCV 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12

LinearRegression 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12

LSTM 0.27 0.26 0.26 93.33 68.29 93.33 65.12 65.12 65.12

PassiveAggressiveRegressor 0.33 0.29 0.29 93.33 93.33 93.33 65.12 65.12 65.12

RidgeCV 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12

Comparison of prediction-based models for different test datasets

 To verify if the models become obsolete after some time and to establish a frequency for

re-training, models trained on the training period are tested on data from different time periods in

the past (refer Table 4.3 for details of the time periods). Results are shown in Table 4.7. The

generalization of GBR seems very poor, which again might be a thresholding problem. Rest of the

models behave very similarly with linear regression outperforming rest in precision on Test1

dataset. This experiment revealed that in the context of indoor climate, frequent updating of models

might not be necessary as testing with data from 6 months away did not deteriorate the performance

achieved.

70

Table 4.7 Performance of prediction-based methods on different test sets

Model
PRECISION TPR

Train Test1 Test2 Test3 Train Test1 Test2 Test3

ANN 97.06 93.33 84.38 87.5 75.86 65.12 79.41 93.33

BayesianRidge 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33

BiLSTM 97.01 93.33 82.35 87.5 74.71 65.12 82.35 93.33

ElasticNetCV 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33

GBR 88.37 77.78 17.65 58.33 87.36 65.12 97.06 93.33

HuberRegressor 97.01 93.33 84.85 87.5 74.71 65.12 82.35 93.33

LassoCV 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33

LassoLarsCV 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33

LinearRegression 97.01 93.33 90.32 87.5 74.71 65.12 82.35 93.33

LSTM 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33

PassiveAggressiveRegressor 97.01 93.33 84.85 87.5 74.71 65.12 82.35 93.33

RidgeCV 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33

Comparison of prediction-based models for different contamination rates in test data

The original train and test data were imputed with 1% anomalies, i.e., contamination rate

= 0.01. Thus, the threshold was also chosen based on classification performance with respect to

this rate. To check what happens in a real scenario if more anomalies start to appear, the same test

data is made up to contamination rates of 0.05 and 0.1. It can be seen from Table 4.8 that point

anomalies are identified correctly and there are close to 0 false positives. Collective and contextual

anomalies exhibited poor performance. Upon deep dive into the data, it was observed that this was

more because of the way the data was prepared for the experiment. For e.g., out of the collective

anomalies that were not captured in most cases, 37 instances were <= 1° C from the original clean

values that were replaced. GBR was able to capture a few of them between 0.8°C - 1° C because

of its better prediction capability and tighter threshold. Therefore, larger dataset would be needed

to impute anomalies discrete from actual values and test the performance. Theoretically however,

it should not matter as the prediction is made for clean data and if 100% of the data deviates from

the expected value, it should be reported.

4.3.2 Experiments on CO2 dataset

 CO2 dataset provided a peculiar case. It was a noisy signal with too many fluctuations from

interval to interval. All the prediction models failed with very poor precision-recall curves that

71

suggested thresholds over 0.7. This implies to label data that is more than 70% away from predicted

value as anomaly. Still, an estimate of around 0.1- 0.15 was chosen based on ROC curve to check

the trade-offs which explain the massive number of anomalies predicted, low precision in Table

4.9. Modifications of deep-learning models by introducing an extra layer and dropouts did not yield

any results. KNN, HBOS managed to capture most of the point anomalies despite the noise, with

KNN keeping up the status in test set as well. Noise removal or sensor fusion could be explored to

reliably detect anomalies in this data.

Table 4.8 Performance of prediction-based methods at different contamination rates

Model Contamination = 0.1 Contamination = 0.05

false

positives

collective

(151)

context

(33)

point

(99)

false

positives

collective

(73)

context

(16)

point

(49)

ANN 2 90 22 99 2 33 9 49

BayesianRidge 2 91 22 99 2 34 9 49

BiLSTM 2 91 22 99 2 33 9 49

ElasticNetCV 2 91 22 99 2 34 9 49

GBR 8 107 24 99 8 43 9 49

HuberRegressor 2 91 22 99 2 34 9 49

LSTM 2 91 22 99 2 33 9 49

LassoCV 2 91 22 99 2 34 9 49

LassoLarsCV 2 91 22 99 2 34 9 49

LinearRegression 2 91 22 99 2 34 9 49

PassiveAggressive

Regressor

2 90 22 99 2 33 9 49

RidgeCV 2 91 22 99 2 34 9 49

Table 4.9. A comparison of models used for detecting anomalies in CO2 data in terms of false positive

rate, true positive rate, precision and RMSE when applicable.

Training dataset (N_ano = 87) Test dataset (N_ano = 43)

Model N_ano FPR TPR Prec RMSE N_ano FPR TPR Prec RMSE

CUMSUM 23 0 0.18 0.7

4 0 0.09 1

EE 84 0.01 0.36 0.37

9 0 0.21 1

GMM

0 0 0

0 0 0

HBOS 38 0 0.36 0.82

18 0 0.19 0.44

KDE 85 0.01 0.36 0.36

42 0.01 0.23 0.24

KNN 30 0 0.34 1

11 0 0.19 0.73

LOF 61 0.01 0 0

25 0.01 0.02 0.04

iForest 84 0.01 0.32 0.33

28 0.01 0.21 0.32

LSTM 1640 0.19 0.71 0.04 86.06 549 0.19 0.44 0.03 71.08

PassiveAggressive

Regressor

1094 0.13 0.48 0.04 82.42 292 0.1 0.35 0.05 73.08

72

4.3.3 Adoption of results

 With a comprehensive consideration of the modeling experiments and real-world

scenarios, the following anomaly detection framework is suggested.

1. Script running on cloud server to check for updates in database and point suggestive actions

to the user (Figure 4.7. Algorithm for system monitoring at cloudFigure 4.7) based on fault

localization. The actions and operating procedures should be learnt, standardized over time

for a robust system with updating of the faults database when a new issue is noted.

2. Deployment of algorithms at the edge node (Figure 4.8). In practice, point anomalies do not

usually reflect any control failures, but they lead to biased analysis later. Hence, a suitable

algorithm can be used to flag anomalies (which is also a regression model in the case of

temperature data) and later a regression model can be used to predict, replace the

anomalous point before updating to database.

3. Periodic model update at the node given the seasonality and change in conditions/ crop

cycles to keep the model relevant.

Table 4.9 continued

HuberRegressor 1670 0.19 0.75 0.04 71.95 550 0.19 0.58 0.05 61.88

BiLSTM 2144 0.25 0.75 0.03 71.46 739 0.26 0.53 0.03 64.93

ANN 1713 0.2 0.74 0.04 71.08 553 0.19 0.56 0.04 61.15

LassoLarsCV 1803 0.21 0.67 0.03 70.54 595 0.21 0.53 0.04 60.76

LassoCV 1803 0.21 0.68 0.03 70.54 596 0.21 0.53 0.04 60.77

ElasticNetCV 1798 0.21 0.68 0.03 70.53 594 0.21 0.53 0.04 60.78

BayesianRidge 1798 0.21 0.68 0.03 70.52 592 0.21 0.53 0.04 60.79

RidgeCV 1798 0.21 0.68 0.03 70.52 592 0.21 0.53 0.04 60.79

LinearRegression 1769 0.2 0.69 0.03 70.51 579 0.2 0.53 0.04 60.72

73

Figure 4.7. Algorithm for system monitoring at cloud

74

Figure 4.8. Flow of events in an anomaly detection pipeline at edge node

4.4 Yield Prediction Algorithms

Over two runs of Broccoli, six days of data was available which made up to a total of 170

images. Histogram of the filtered harvested weights is shown in Figure 4.9. With these weights as

target variable and images as predictors, deep learning models were run.

75

Figure 4.9. Distribution of weights of Broccoli microgreens in the Data Frame

4.4.1 Results

The train, validation, test datapoints were 137,17,16 in number, respectively. A baseline

for the metrics mean absolute error (MAE), MAPE is created by assuming that training mean is

the predicted value for all validation data. Rest of the models were compared against this naïve

baseline which is 23% for this dataset and is shown by the red horizontal line in Figure 4.10. A

freedom to train to 100 epochs was given to the model, but they stop at different points due to the

implementation of early stopping callback which was a very generous 0.25 improvement of MAE

over 10 epochs. The overall performance on validation and testing data, number of epochs the

models ran to are shown in Table 4.10. Transfer learning models converged faster than the

SmallCNN as anticipated. However, the confidence intervals of these predictions are questionable

for two reasons. 1) The size of the dataset is too small to generalize. The model would result in

very different values when run with different seeds. 2) The images are very similar to each other,

especially at later stages of growth and in real-world too, yield is a function of leaf cover and

height. Including a height data and other relevant parameters with respect to differential nutrient

solutions etc. might help predictions better. Other CNN architectures that are discussed in literature

for leaf-counting applications can be explored.

76

Figure 4.10. Training and validation MAPE plotted against number of epochs

Table 4.10. Performance metrics of neural networks on predicting yield

Model No. of

epochs

Val MAE Val MAPE Test MAE Test MAPE

ResNet50 24 6.25 22.30% 6.92 32.20%

EffNetB0 20 6.96 22.49% 7.13 30.41%

SmallCNN 50 5.82 12.21% 6.76 29.79%

4.5 Evaluation using plant growth

The system was deployed 12 months ago in the greenhouse and functionalities were added to

it on a gradual basis to achieve the configuration discussed in the paper. It had been used to collect

over 300k sensor measurements and 5000 images of various experiments. It was used to

successfully grow 5 batches of different microgreens (+2 test runs) under variable application of

nutrition, light intensity, and seed density.

The yields of these batches per tray by harvest day are shown in Figure 4.11. Cabbage was the

first experiment at a scale of 3 benches and its yield suffered due to erratic irrigation. Radish run

2 was the cleanest of all runs, with new grommets installed and sealed in place, safety hole to

prevent overwatering which is very different from radish run 1 where there were issues due to

trays over watering. Both broccolis run 1 and 2 showed similar pattern of growth, but broccoli 2

77

yield was slightly lower which might have been a result of rising temperature in the greenhouse or

difference in nutrient solutions or few hours difference in harvesting times.

Figure 4.11 Microgreen yield (weight in grams/ tray) by crop by day of harvest

Based on the method discussed in Figure 3.19, analysis was performed on the yield data

obtained from the previously mentioned runs. The significance of factor effects is shown in Table

4.11. Density as expected had a significant effect on all the crops, but the impact varied from crop

to crop. For instance, for radish, yields in density 1 oz are on an average 29% higher as opposed

to density 0.75 oz across all nutrient solutions and lights whereas for broccoli it was 23% higher,

cabbage 5% higher. It can be observed that nutrient solution was a significant effect for cabbage

and radish, but not broccoli. The EC values tested for the former were 1.2-1.6 mS/cm as opposed

to for the latter which were 1.4-1.8 mS/cm, hence the greens might have received abundant

nutrients already to show any significant difference. The density-nutrient solution interaction is

more pronounced in radish with density 1 oz at concentration 1.2 mS/cm being 15% lower than

that at 1.6 mS/cm.

It is evident from the graph earlier that weight increased by day and hence, day would have

a significant effect. An interesting point to note in radish was that increase in day n-2 to day n-1 is

not significant with a mere 5% change in average yield, but it picks up again by day n with a

78

difference of 23% between day 12 and day 14. This could be a considerable factor in performing

cost-benefit analysis.

Although light did not have any significant impact standalone, there were significant

interaction effects with density or nutrient solution in radish. Higher concentration of nutrient

solution under LED B did not show any significant impact but had 13-20% improvement over the

lowest concentration under LEDs A, C. Within a given light density 1 oz is better than 0.75 oz,

but by the light, density interaction, density 1 oz under LED C is 9% higher than the same density

under LED B. For cabbage, density 0.75 oz under LED B had no difference compared to density

1 oz under LED A and C and 1 oz under LED B is at least 12% greater than all the other LED-

density combinations.

Table 4.11 Results of analysis of variance for factor effects on weight for different microgreens

Factor Cabbage Radish (Run 2) Broccoli (Run 1,2)

Light

Density . *** ***

Nutrient Sol ** ***

Day *** *** ***

Light*Density ** **

Light* Nutrient Sol *

Density* Nutrient Sol ***

Light*Day

Nutrient Sol*Day

Density*Day

Light* Nutrient Sol*Day

Density* Nutrient Sol*Day

Light*Density*Day .

Light* Nutrient Sol*Density

Significance codes : 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’

79

 CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

An automated IoT-based testbed was developed by utilizing low-cost off-the-shelf sensors

and components. This is one of the few studies that had implemented a system at a laboratory scale,

conducted long duration experiments to report on anomalies with low-cost sensors and actuators,

and reported the outcome in a detailed manner. A discussion on implementation challenges related

to sensor calibrations in an indoor farm, design of irrigation systems, and providing reliable power

supplies to electronics, is expected to help during future enhancements to the current design.

In establishing a reliable control remotely and setting up the dashboard, challenges with

communication protocols, latency in operations were overcome. A user dashboard was developed

from scratch. Edge computing was utilized to mobilize resources and realize various functionalities.

To ensure reliable operations and cleanliness of data, anomaly detection was implemented.

Many techniques and experiments were performed to identify models that best detects anomalies.

A practical and novel framework for fault localization in the sensor data capture pipeline was

developed.

A novel imaging system was built to explore yield prediction from images. A well performing

model could not be identified with the data at hand and this aspect will require further exploration.

Effects of lighting, nutrition solution concentration, seed density, and day of harvest on the

growth of microgreens was evaluated using a split-plot design. Different microgreens showed

different results. Light did not have a significant effect by itself in all cases but had some significant

two-factor interaction effects. Nutrient concentration of 1.2 mS/cm had significantly lower yields

than higher concentrations but increasing it beyond 1.4 mS/cm did not make any difference to the

growth. Seeding density of 1oz had more yield than 0.75oz, but the percentage gain varied with

nutrient concentration or lighting in cabbage and radish. Yield increased by the day of harvest, but

sharp increases were noticed between first two days of harvest whereas, the rate of growth was

slower beyond the second harvest day.

This study can be seen as a start point of bringing in more automation, data-centric approach

into microgreen growth or any hydroponic system and there are several aspects worthy of

exploration.

80

5.2 Future Scope

The overall goal of the study was to develop a system with low-cost, IoT devices driven

indoor farm with reliable real-time remote control and move towards an intelligent farm

management system. Some aspects that can be pursued in the future to advance these goals are

mentioned under different headers as follows:

5.2.1 System

• In terms of choice of MCUs, cheaper alternatives like Pi-zero or particle photons or

ESP8266 can be chosen. These choices were not explored due to a large inventory of RPis

available in the lab and flexibility to experiment with sensors and actuators was a major

consideration. Now that major features of the system have been designed, all these features

could be implemented with the suggested alternatives in a more compact way. Cheaper

chips could also facilitate for trade-offs between using more nodes, less wiring or more

wiring originating from fewer nodes while keeping the cost of the system at a similar level.

• Weather-proof packaging of the solution developed for commercial use and deploying in

farm without interfering with operations will be a ground level challenge. This challenge

is furthermore a motivation to explore vision-based applications using something like the

imaging system designed in this study.

• Advances are being made in the field of IoT at a rapid pace and the capabilities, costs of

commercial cloud platforms are becoming competitive. Different IoT platforms like

Thingspeak, Google cloud platform, IBM Watson IoT, Azure IoT can be contrasted as

opposed to developing a dashboard from scratch for mid-scale operation, if the data

ownership policies are not an issue.

5.2.2 Algorithms

• Developing a decision support system with prescriptive actions can help bridge the skill-

gap between field workers and technology. This requires capturing sufficient data across

multiple runs and exploring further applications like nutrient requirement, predictive

maintenance suggestions.

• Opportunities with thermal images captured by the system need further exploration.

81

• Different models need to be explored for improving yield prediction and a reliable height

measurement system is to be experimented with before integrating with the current design.

• Flow meter anomaly detection requires further exploration to improve precision in

irrigation and reduce the response time required in flagging of erroneous events.

5.2.3 Databases

• Better data management strategies to facilitate easy integration of new sensors into the

system should be investigated. NoSQL could be one option to explore.

• In the current setup, more images make the application very heavy as they are stored in a

docker-container that is packaged along with the user application. The storage system as

such is very primitive and optimizations can be brought in by making choices for ‘where

and when to store what’.

5.2.4 Miscellaneous

• Further research is needed to develop affordable and precise moisture sensors for thin

hydroponic substrates like Biostrate. Alternate methods for making irrigation decisions by

replacing moisture sensors with a vision-based or nutrient-uptake based method could be

explored.

• Stronger growth trays with provision for in and outflows are to be considered for

reusability and for reducing material movement in indoor farms.

• Harvesting and seeding are the next labor-intensive tasks where precision is required for

seeding and time management for harvesting. Automation for these operations is to be

explored.

82

APPENDIX A. COST OF COMPONENTS IN THE SYSTEM

Component

Cost/

component

Num in this

Experiment Total Cost

IRRIGATION SYSTEM

Solenoid valves $28 18 $504

Flow Meters $160 9 $1,440

Sensor setup $750 3 $2,250

Inflow Pumps $50 9 $450

Outflow pumps $12 63 $756

Relays $33 9 $297

Power Supply $10 12 $120

Tubing $300

LIGHTING SYSTEM

PWM $50 3 $150

PAR Sensors $269 9 $2,421

Power Supply $20 3 $60

IMAGING SYSTEM

Gantry Rails $27 6 $162

Thermal Sensors $110 2 $220

IR Proximity Sensors $15 2 $30

Pi Cameras $30 2 $60

 RPis + kit + SD Card $70 2 $140

Steppers + Belt + Pulleys + Drivers $46 4 $184

Arduino $40 1 $40

Wiring + Power Outlets + PCB + Power Adapters $82 1 $82

CLIMATE

Gravity CO2 + BME680 $82 1 $82

DHT + DS local climate sensors $6 3 $18

CONTROLLERS

 RPi $70 4 $280

Arduino $40 3 $120

OTHERS

Power Supplies (General 5V,9V) $20 3 $60

Router $130 1 $130

TOTAL* $10,356

*These costs are added costs from the experiment over the basic infrastructure needed for growing

i.e., benches, LEDs, reservoirs for water/ nutrient solution, growth trays

83

REFERENCES

Abdallah, M., Lee, W. J., Raghunathan, N., Mousoulis, C., Sutherland, J. W., & Bagchi, S. (2021).

Anomaly detection through transfer learning in agriculture and manufacturing IoT systems.

Retrieved from http://arxiv.org/abs/2102.05814

Adenaeuer, L. (2014). Up, up and away! The economics of vertical farming. J. of Agric. Stud., 2,

40–60. https://doi.org/10.5296/jas.v2i1.4526

Ahmad, M., Ishtiaq, A., Habib, M. A., & Ahmed, S. H. (2019). A review of internet of things (IoT)

connectivity techniques. In M. A. Jan, F. Khan, & M. Alam (Eds.), Recent Trends and Adv.

in Wireless and IoT-Enabled Netw. (pp. 25–36). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-319-99966-1_3

Aich, S., & Stavness, I. (2017). Leaf counting with deep convolutional and deconvolutional

networks. Proc. IEEE Int. Conf. Comput. Vis. Workshops, pp. 2080-2089. Piscataway, NJ:

IEEE.

AlShrouf, A. (2017). Hydroponics, aeroponic and aquaponic as compared with conventional

farming. Am. Scientific Res. J. Eng., Technol., Sci. (ASRJETS), 27(1), 247–255.

https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/2543

Astill, G., Perez, A., & Thornsbury, S. (2020). Developing automation and mechanization for

specialty crops: A review of U.S. department of agriculture programs. Administrative

publication 082. Washington, DC: USDA-ERS. Retrieved October 30, 2020 from

https://www.ers.usda.gov/webdocs/publications/95828/ap-082.pdf?v=561

Ayadi, A., Ghorbel, O., Obeid, A. M., & Abid, M. (2017). Outlier detection approaches for

wireless sensor networks: A survey. Comput. Netw., 129, 319–333.

https://doi.org/10.1016/J.COMNET.2017.10.007

Basso, B., Cammarano, D., & Carfagna, E. (2013). Review of crop yield forecasting methods and

early warning systems. Proc. First Meet. of the Sci. Advis. Comm. of the Glob. Strateg. to

Improv. Agric. and Rural Stat. FAO Headquarters, Rome, Italy.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Comput.

 Surv. (CSUR), 41(3), 1-58. https://doi.org/10.1145/1541880.1541882

Chang, C.-L., Tian, J.-Y., Fu, W.-L., & Chang, K.-P. (2019). Integrated monitoring platform of

plant growth based on IoT edge computing in greenhouse. ASABE Paper No. FL19-01.

St. Joseph, MI: ASABE. https://doi.org/10.13031/FL201901

Chaudhary, P., Godara, S., Cheeran, A. N., & Chaudhari, A. (2012). Fast and accurate method for

leaf area measurement. Int. J. of Comput. Appl., 49(9), 22–25.

https://doi.org/10.5120/7655-0757

84

Danita, M., Mathew, B., Shereen, N., Sharon, N., & Paul, J. J. (2019). IoT based automated

greenhouse monitoring system. Proc. 2nd Int. Conf. on Intell. Comput. and Control Syst.,

ICICCS 2018, pp. 1933–1937. Piscataway, NJ: IEEE

https://doi.org/10.1109/ICCONS.2018.8662911

de Souza, P. S. S., Rubin, F. P., Hohemberger, R., Ferreto, T. C., Lorenzon, A. F., Luizelli, M. C.,

& Rossi, F. D. (2020). Detecting abnormal sensors via machine learning: An IoT farming

WSN-based architecture case study. Measurement, 164, 108042.

https://doi.org/10.1016/j.measurement.2020.108042

Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An overview of

internet of things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE

Internet of Things J., 5(5), 3758–3773. https://doi.org/10.1109/JIOT.2018.2844296

Foorthuis, R. (2020). On the nature and types of anomalies: a review of deviations in data.

Retrieved from https://arxiv.org/abs/2007.15634v3

Franchetti, B., Ntouskos, V., Giuliani, P., Herman, T., Barnes, L., & Pirri, F. (2019). Vision based

modeling of plants phenotyping in vertical farming under artificial lighting. MDPI Sensors,

19(20), 4378. https://doi.org/10.3390/s19204378

Gaddam, A., Wilkin, T., Angelova, M., & Gaddam, J. (2020). Detecting sensor faults, anomalies

and outliers in the internet of things: A survey on the challenges and

solutions. Electronics, 9(3), 511. https://doi.org/10.3390/ELECTRONICS9030511

Gertphol, S., Chulaka, P., & Changmai, T. (2018). Predictive models for lettuce quality from

internet of things-based hydroponic farm. Proc. 22nd Int. Comput. Sci. and Eng. Conf.,

(ICSEC), pp. 1-5 . Piscataway, NJ: IEEE https://doi.org/10.1109/ICSEC.2018.8712676

Glaroudis, D., Iossifides, A., & Chatzimisios, P. (2020). Survey, comparison and research

challenges of IoT application protocols for smart farming. Comput. Netw., 168, 107037.

https://doi.org/10.1016/j.comnet.2019.107037

Gómez, C., Currey, C. J., Dickson, R. W., Kim, H.-J., Hernández, R., Sabeh, N. C., … Burnett, S.

E. (2019). Controlled environment food production for urban agriculture. HortScience,

54(9), 1448–1458. https://doi.org/10.21273/HORTSCI14073-19

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. Proc.

IEEE Comput. Soc. Conf. Comput. Vis. and Pattern Recognit., pp. 770–778. Piscataway,

NJ: IEEE. https://arxiv.org/abs/1512.03385v1

Hemming, S., Zwart, F. de, Elings, A., Righini, I., & Petropoulou, A. (2019). Remote control of

greenhouse vegetable production with artificial intelligence—greenhouse climate,

irrigation, and crop production. Sensors, 19(8), 1807. https://doi.org/10.3390/s19081807

Huang, Y., & Niu, J. (2016). A review of the advance of HVAC technologies as witnessed in ENB

publications in the period from 1987 to 2014. Energy and Build., 130, 33–45.

https://doi.org/10.1016/j.enbuild.2016.08.036

85

Itzhaky, Y., Farjon, G., Khoroshevsky, F., Shpigler, A., & Bar-Hillel, A. (2018). Leaf counting:

Multiple scale regression and detection using deep CNNs. Proc. British Mach. Vis.

Conf., pp. 328. Durham, UK: BMVA

Jaiswal, H., Singuluri, R., & Sampson, S. A. (2019). IoT and machine learning based approach for

fully automated greenhouse. Proc. 2019 IEEE Bombay Sect. Signat. Conf., (IBSSC), pp. 1-

6. Piscataway, NJ: IEEE. https://doi.org/10.1109/IBSSC47189.2019.8973086

Karimanzira, D., Na, C., Hong, M., & Wei, Y. (2021). Intelligent information management in

aquaponics to increase mutual benefits. Intell. Inf. Manag., 13(1), 50–69.

https://doi.org/10.4236/iim.2021.131003

Khanna, A., & Kaur, S. (2019). Evolution of internet of things (IoT) and its significant impact in

the field of precision agriculture. Comput. Electron. Agric., 157, 218–231.

https://doi.org/10.1016/j.compag.2018.12.039

Li, Z., Guo, R., Li, M., Chen, Y., & Li, G. (2020). A review of computer vision technologies for

plant phenotyping. Comput. Electron. Agric., 176, 105672.

https://doi.org/10.1016/j.compag.2020.105672

Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in

agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674

Lin, K., Wu, J., Chen, J., & Si, H. (2013). A real time image segmentation approach for crop leaf.

Proc. 5th Conf. Meas. Technol. and Mechatron. Autom., ICMTMA, pp. 74–77. Washington,

DC: IEEE Computer Society. https://doi.org/10.1109/ICMTMA.2013.30

Lin, Y.-B., Lin, Y.-W., Lin, J.-Y., & Hung, H.-N. (2019). Sensortalk: An IoT device failure

detection and calibration mechanism for smart farming. Sensors, 19(21), 4788.

https://doi.org/10.3390/s19214788

Lin, Y.-W., Lin, Y.-B., & Hung, H.-N. (2020). CalibrationTalk: A farming sensor failure detection

and calibration technique. IEEE Internet of Things J., 1-1.

https://doi.org/10.1109/JIOT.2020.3036859

Liu, Y., Pang, Z., Karlsson, M., & Gong, S. (2020). Anomaly detection based on machine learning

in IoT-based vertical plant wall for indoor climate control. Build. and Environ., 183,

107212. https://doi.org/10.1016/j.buildenv.2020.107212

Long, Y. (2019). Agricultural internet of things system based on cloud computing and machine

learning. Proc. 12th Int. Conf. Intell. Comput. Technol. and Autom., (ICICTA), pp. 364–

367. Piscataway, NJ: IEEE. https://doi.org/10.1109/ICICTA49267.2019.00084

Ummesalma, M., Subbaiah, R., & Narasegouda, S. (2020). A decade survey on internet of things

in agriculture. In Internet of Things (IoT) (pp. 351-370). Cham: Springer.

https://doi.org/10.1007/978-3-030-37468-6_19

86

Madushanki, A. A. R., Halgamuge, M. N., Wirasagoda, W. A. H. S., & Syed, A. (2019). Adoption

of the internet of things (IoT) in agriculture and smart farming towards urban greening: A

review. Int. J. Adv. Comput. Sci. Appl., 10(4), 11–28.

https://doi.org/10.14569/ijacsa.2019.0100402

Min, K. T., & Hwang, I.-C. (2021). Tomato farm environment forecasting system using machine

learning. Proc. Int. Conf. on Electron., Inf., and Commun. (ICEIC), pp. 1–2. Piscataway,

NJ: IEEE. https://doi.org/10.1109/ICEIC51217.2021.9369753

Mochida, K., Koda, S., Inoue, K., Hirayama, T., Tanaka, S., Nishii, R., & Melgani, F. (2018).

Computer vision-based phenotyping for improvement of plant productivity: A machine

learning perspective. GigaScience, 8(1), 1–12. https://doi.org/10.1093/gigascience/giy153

Nagano, S., Moriyuki, S., Wakamori, K., Mineno, H., & Fukuda, H. (2019). Leaf-movement-based

growth prediction model using optical flow analysis and machine learning in plant factory.

Front. Plant Sci., 10, 227. https://doi.org/10.3389/fpls.2019.00227

O’Grady, M. J., Langton, D., & O’Hare, G. M. P. (2019). Edge computing: A tractable model for

smart agriculture? Artif. Intell. Agric., 3, 42–51. https://doi.org/10.1016/j.aiia.2019.12.001

Ou, C., Chen, Y., Huang, T., & Huang, N. (2020). Design and implementation of anomaly

condition detection in agricultural IoT platform system. Proc. Int. Conf. Inf. Netw. (ICOIN),

pp. 184–189. Piscataway, NJ: IEEE. https://doi.org/10.1109/ICOIN48656.2020.9016618

Paucek, I., Appolloni, E., Pennisi, G., Quaini, S., Gianquinto, G., & Orsini, F. (2020). LED lighting

systems for horticulture: Business growth and global distribution. Sustainability, 12(18),

7516. https://doi.org/10.3390/su12187516

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, É.

(2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12(85), 2825–2830.

Retrieved from http://jmlr.org/papers/v12/pedregosa11a.html

Praveen Kumar, J., & Domnic, S. (2019). Image based leaf segmentation and counting in rosette

plants. Inf. Process. Agric., 6(2), 233–246. https://doi.org/10.1016/J.INPA.2018.09.005

Ray, P. P. (2018). A survey on internet of things architectures. J. King Saud Univ. - Comput. and

Inf. Sci., 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003

Revanth. (2019, November). Towards future farming : how artificial intelligence is transforming

the agriculture industry. Retrieved October 30, 2020, from

https://www.wipro.com/holmes/towards-future-farming-how-artificial-intelligence-is-

transforming-the-agriculture-industry/

Ruengittinun, S., Phongsamsuan, S., & Sureeratanakorn, P. (2017). Applied internet of thing for

smart hydroponic farming ecosystem (HFE). 10th Int. Conf. Ubi-media Comput. and

Workshops (Ubi-Media), pp. 1-4. Piscataway, NJ: IEEE.

https://doi.org/10.1109/UMEDIA.2017.8074148

87

Schimmelpfennig, D. (2016, October). Farm profits and adoption of precision agriculture.

Economic research report 217. Washington, DC: USDA-ERS. Retrieved October 30, 2020

from www.ers.usda.gov/publications/err-economic-research-report/err217

I2C (2003). Application Note - I2C Bus. Retrieved July 23, 2021 from

https://www.nxp.com/docs/en/application-note/AN10216.pdf

Sharma, S., & Jain, R. (2018). Outlier detection in agriculture domain: application and techniques.

In V. B. Aggarwal, V. Bhatnagar, & D. K. Mishra (Eds.), Big Data Analytics (pp. 283–

296). Singapore: Springer. https://doi.org/10.1007/978-981-10-6620-7_28

Shi, W., Pallis, G., & Xu, Z. (2019). Edge computing [scanning the issue]. Proc. the IEEE, 107(8),

1474–1481. https://doi.org/10.1109/JPROC.2019.2928287

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision

agriculture: A review. Remote Sens., 12(19), 3136. https://doi.org/10.3390/rs12193136

Talavera, J. M., Tobón, L. E., Gómez, J. A., Culman, M. A., Aranda, J. M., Parra, D. T., … Garreta,

L. E. (2017). Review of IoT applications in agro-industrial and environmental fields.

Comput. Electron. Agric., 142, 283–297. https://doi.org/10.1016/j.compag.2017.09.015

Tan, M., & Le, Q. v. (2019). EfficientNet: Rethinking model scaling for convolutional neural

networks. Proc. 36th Int. Conf. Mach. Learn., ICML, pp. 10691–10700. JMLR.

https://arxiv.org/abs/1905.11946v5

Torres, A., Adriano Filho, J., da Rocha, A., Gondim, R., & de Souza, J. (2017). Outlier detection

methods and sensor data fusion for precision agriculture. Proc. IX Brazilian Symp.

Ubiquitous and Pervasive Comput. https://doi.org/10.5753/sbcup.2017.3316

van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine

learning: A systematic literature review. Comput. Electron. Agric., 177, 105709. Elsevier

B.V. https://doi.org/10.1016/j.compag.2020.105709

Vannieuwenborg, F., Verbrugge, S., & Colle, D. (2018). Choosing IoT-connectivity? A guiding

methodology based on functional characteristics and economic considerations. Trans.

Emerg. Telecommun. Tech., 29(5), e3308. https://doi.org/10.1002/ett.3308

Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., & Nikolopoulos, D. S. (2016). Challenges

and opportunities in edge computing. Proc. 2016 IEEE Int. Conf. Smart Cloud

(SmartCloud), pp. 20–26. Piscataway, NJ: IEEE.

https://doi.org/10.1109/SMARTCLOUD.2016.18

Verdouw, C., Sundmaeker, H., Tekinerdogan, B., Conzon, D., & Montanaro, T. (2019).

Architecture framework of IoT-based food and farm systems: A multiple case study.

Comput. Electron. Agric., 165, 104939. https://doi.org/10.1016/j.compag.2019.104939

Wang, L., Yu, Y., Deng, L., & Pang, H. (2017). A two-stage agriculture environmental anomaly

detection method. In Adv. Comput. Methods in Energy, Power, Electr. Vehicles, and Their

http://www.ers.usda.gov/publications/err-economic-research-report/err217

88

Integration (pp. 779-789). Singapore: Springer. https://doi.org/10.1007/978-981-10-6364-

0_77

Wang, Z., Wang, K., Yang, F., Pan, S., & Han, Y. (2018). Image segmentation of overlapping

leaves based on Chan–Vese model and Sobel operator. Inf. Process. Agric., 5(1), 1–10.

https://doi.org/10.1016/J.INPA.2017.09.005

Ward, D., Moghadam, P., & Hudson, N. (2018). Deep Leaf Segmentation Using Synthetic Data.

Retrieved from https://arxiv.org/abs/1807.10931v3

Yin, X., Wang, L., Jia, W., & Jin, C. (2020). Semi-supervised transformation and deep embedding-

based anomaly identification for agricultural internet of things. IEEE Sensors J.,

https://doi.org/10.1109/JSEN.2020.3047841

Zahniser, S., Taylor, J. E., Hertz, T., & Charlton, D. (2018). Farm labor markets in the United

States and Mexico pose challenges for U.S. agriculture. Bulletin 201. Washington, DC:

USDA-ERS. Retrieved from https://www.ers.usda.gov/webdocs/publications/90832/eib-

201.pdf?v=5940

Zamora-Izquierdo, M. A., Santa, J., Martínez, J. A., Martínez, V., & Skarmeta, A. F. (2019). Smart

farming IoT platform based on edge and cloud computing. BioSyst. Eng., 177, 4–17.

https://doi.org/10.1016/J.BIOSYSTEMSENG.2018.10.014

89

PUBLICATION

Guntaka, M. L., Saraswat, D., & Langenhoven, P. (2021). IoT based low-cost testbed for

 precision indoor farming. ASABE Paper No. 202100617. St. Joseph, MI: ASABE.

 https://doi.org/10.13031/AIM.2021006

