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ABSTRACT 

There is a growing demand for indoor farm management systems that can track plant growth, allow 

automatic control and aid in real-time decision making. Internet of Thing (IoT)-based solutions 

are being applied to meet these needs and numerous researchers have created prototypes for 

meeting specific needs using sensors, algorithms, and automations. However, limited studies are 

available that report on comprehensive large-scale experiments to test various aspects related to 

availability, scalability and reliability of sensors and actuators used in low-cost indoor farms. The 

purpose of this study was to develop a low-cost, IoT devices driven indoor farm as a testbed for 

growing microgreens and other experimental crops. The testbed was designed using off-the-shelf 

sensors and actuators for conducting research experiments, addressing identified challenges, and 

utilizing remotely acquired data for developing an intelligent farm management system. The 

sensors were used for collecting and monitoring electrical conductivity (EC), pH and dissolved 

oxygen (DO) levels of the nutrient solution, light intensity, environmental variables, and imagery 

data. The control of light emitting diodes (LEDs), irrigation pumps, and camera modules was 

carried out using commercially available components. All the sensors and actuators were remotely 

monitored, controlled, and coordinated using a cloud-based dashboard, Raspberry Pis, and 

Arduino microcontrollers. To implement a reliable, real-time control of actuators, edge computing 

was used as it helped in minimizing latency and identifying anomalies. 

Decision making about overall system performance and harvesting schedule was 

accomplished by providing alerts on anomalies in the sensors and actuators and through 

installation of cameras to predict yield of microgreens, respectively. A split-plot statistical design 

was used to evaluate the effect of lighting, nutrition solution concentration, seed density, and day 

of harvest on the growth of microgreens. This study complements and expands past efforts by 

other researchers on building a low cost IoT-based indoor farm. While the experience with the 

testbed demonstrates its real-world potential of conducting experimental research, some major 

lessons were learnt along the way that could be used for future enhancements. 
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 INTRODUCTION 

The global farming industry is trying various measures for mitigating impacts due to 

climate change, dwindling natural resources due to rapid urbanization, and meeting demands to 

achieve food and nutritional security for a rapidly increasing population. These challenges are 

being met head-on by farmers through the adoption of advances in agro-technologies that enable 

practicing of science-based, efficient, and sustainable farming to complement years of traditional 

farming experience (Astill et al., 2020; Schimmelpfennig, 2016). Advances in the field of 

machinery and Internet of Things (IoT) devices are helping generate various kinds of sensor data 

from agricultural operational environments that are creating opportunities for 

development/application of Artificial Intelligence (AI) methods to interpret and understand this 

huge amount of data.  

Today, there is a growing trend towards the design and establishment of controlled 

environments for agriculture (CEA), involving automated monitoring and control, to increase the 

capacity, economic viability, and efficiency of indoor farms (Gómez et al., 2019). Many of the 

modern indoor farms rely on sensors and controls for specific purposes that inspired other 

researchers to create new concepts and experimental models of closed-loop systems (Jaiswal et al., 

2019; Zamora-Izquierdo et al., 2019). This study created one such closed-loop system equipped 

with low-cost sensors, controls, and smart monitoring (approximate total cost $10k, for details 

refer to Appendix A) for an experimental indoor farm, that was used for investigating effect of 

different treatments on microgreens production. 

1.1 Motivation/ Significance 

Interest in precision indoor farming is growing due to advances in artificial sources of 

illumination (Paucek et al., 2020), efficient heating and cooling technologies (Huang and Niu, 

2016), water-efficient farming methods (AlShrouf, 2017), and the use of IoT devices for 

monitoring and controlling various functionalities of the farm (Madushanki et al., 2019) interest is 

reinforced by a shrinking skilled workforce available for farm work (Zahniser et al., 2018). 

However, indoor farming is 3-5 times more expensive than traditional farming owing to high initial 

capital cost, energy, and labor expenses (Admeasure, 2014). The present study was undertaken to 
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explore development of a low-cost, indoor farm, that uses IoT devices and relies on open-source-

based monitoring and control systems because of their promising benefits. 

Although, the field of IoT has benefitted from research activities across domains over the 

past few years, there are several unsolved issues about management and performance of IoT 

devices and networks. Common issues relate to availability, reliability, scalability, mobility, data 

confidentiality, security, and compatibility of networks (Khanna and Kaur, 2019). Further the cost 

of IoT devices, constraint-free communication, correct identification and deployment, and 

heterogeneity of devices and protocols remains a few identified challenges within an IoT 

application.  

There is a noticeable void in the literature on how to improve and adapt IoT solutions for 

real-world indoor farms beyond simple prototypes. Direct scaling in most cases implies that the 

number of hardware components grow very quickly with the size of the system. A careful 

requirement analysis and integrated system design are indispensable for a viable IoT solution in a 

real-world scenario. Also, identification and handling of anomalous events are essential to manage 

sensor/ actuator malfunctions and ensure reliability especially with low-cost sensors. Efficient 

real-time control poses latency-sensitive requirements that require looking beyond solely cloud-

based systems and instead bring in edge computing as sort of a plug-in. But studies related to 

validation of edge-driven services on operational farms is limited (O’Grady et al., 2019). 

Another challenge with deploying IoT solutions in farms is reaching out to remote pockets 

via cabling and electronics without interfering with regular farm operations. In this context, there 

has been a growth in usage of images for decision making in farms because of the increased 

availability of satellite imagery, affordable unmanned aerial vehicles (UAVs), and advancements 

in AI for extracting valuable information from images. Nevertheless, vision-based techniques for 

indoor farms still have a lot of room for exploration to help understand the effects of lighting, 

nutrition, and other environmental conditions (temperature, relative humidity (RH) etc.) on plant 

growth and yield. 

1.2 Problem Statement 

Indoor farms are most often located close to urban areas and have access to electricity and a 

reliable internet connectivity. Availability, affordability (both by the cost of sensors and resource 

optimization) and reliability of necessary technologies are the barriers to widespread adoption of 
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IoT devices, especially in a small-to-medium scale experimental indoor farm. Developing a 

solution with off-the-shelf sensors, implementing valid error handling, alerts, remote monitoring, 

and running indoor farm operations through deployment of smart logarithms that integrate 

monitored data for decision making, has a potential to motivate growers in their wide-scale 

adoption. The rationale of the study and detailed description of the design and implementation has 

potential to serve as an end-to-end reference for an interested grower or an IoT system developer. 

The ability to obtain detailed information on plant growth and yield without employing destructive 

techniques could be particularly interesting as it provides an example for using automation to 

reduce reliance on labor during critical operations (Franchetti et al., 2019). 

Though the testbed was used for studying the effect of lighting, nutrition solution 

concentration, seed density, and day of harvest on microgreens production but it has potential to 

be used for conducting experiments with other plant species or treatment combinations. 

1.3 Research Objectives and Approach 

The aim of this research was two-fold: First, to develop an IoT indoor farm as an example 

of a real-world testbed for conducting experiments and addressing challenges concerning an IoT 

system. Second, build on the existing knowledge related to yield prediction and further it towards 

developing an intelligent farm. More specifically, the objectives of the study were to: 

1. Design and implement an automated indoor farm production system by using off-the-shelf 

sensors and related components  

2. Implement edge computing solutions and a cloud-based dashboard for real-time control 

and monitoring of the automated indoor farm 

3. Build anomaly detection models to alert farmers and develop vision-based yield prediction 

models 

4. Evaluate performance of the sensors and control system on variable application of nutrition, 

light intensity/duration, and seed density to microgreens production 
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1.4 Contributions 

1.4.1 Design of automated indoor farm production system 

• Designed an automated indoor farm production system that facilitated automated lighting, 

irrigation, nutrient application and monitoring environmental parameters (temperature, 

relative humidity (RH), Carbon Dioxide (CO2)) in the greenhouse. This system was the 

foundation for growing multiple batches of microgreens and source for acquiring data from 

the sensors. 

• Developed a dashboard from scratch and hosted on Purdue server. It facilitated two-way 

communication between the user and the sensors/ actuators for implementing real-time 

control of the indoor farm.  

• Installed a set of gantries for moving red, blue, green (RGB) sensors and thermal sensors 

over the growing trays to capture images of plant canopy. The gantry was remote controlled 

and a cartesian co-ordinate system was used to guide the motion. 

• Designed calibration setups and procedures for light, flow, temperature, and RH sensors to 

determine the accuracy of measured data and make a choice about a particular make and 

model of the sensors. 

1.4.2 Algorithms 

• Benchmarked the performance of various anomaly detection algorithms to identify the best 

model for the data captured from temperature and RH sensors used in the indoor farm. The 

best model was utilized in realizing a framework for identification and storage of anomalies 

in the cloud. 

• Developed a novel anomaly detection framework for fault localization in the sensor data 

capture pipeline. 

• Designed an edge-fog-cloud operating pipeline for the system to reduce latency, ensure 

reliable real-time control by leveraging the computational power at edge nodes. 
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1.5 Thesis Organization 

• Chapter 2 : Contains sections of a brief on IoT in agriculture and related work, A brief of 

AI-ML in applications in agriculture with focus on anomaly detection paradigms in sensor 

systems, related works, and yield prediction. 

• Chapter 3 : Debriefs system architecture as various sub-systems with materials and 

methods employed in developing and deploying it, data preparation and choice of 

algorithms for anomaly detection and yield predictions. 

• Chapter 4 : Results discussed as  

o Explanations of various design decisions and learnings from field 

o Experiments with edge computing and real-time control frameworks 

o Application of anomaly detection in system and results pertaining to various ML 

algorithms 

o Image dataset collected and analysis for yield prediction. 

• Chapter 5 : Conclusion 
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 LITERATURE REVIEW 

IoT devices, robotics, AI are some of the key technology components of an automated indoor 

farm. This chapter provides synthesis of various research studies related to application of IoT 

devices in indoor farms and identified gaps under the section titled “IoT in Agriculture”. A 

summary of edge computing is also provided there. The discussion is further expanded by focusing 

on applications of “AI in Agriculture” in the next section where two applications, ‘anomaly 

detection’ and ‘yield prediction’ are discussed. Anomalies and their types, research trends in 

agriculture and common techniques used to handle them are presented. Under yield prediction, 

vision-based techniques for plant phenotyping and relevant work discussed. 

2.1 IoT in Agriculture 

2.1.1 Overview 

Organizations and researchers have defined IoT systems in a multitude of forms based on 

applications and assets a specific proponent wants to emphasize. One such definition provided by 

OASIS (Open Protocols, 2014) describes IoT as: “System where the Internet is connected to the 

physical world via ubiquitous sensors.” A high-level functional model provided by the Alliance 

for Internet of Things Innovation (AIOTI) consists of 3 layers – Application, IoT, and Network. 

Many researchers and technology companies have built on it. Multiple architectures have been 

proposed from various standpoints like domain, service, function, etc. (Ray, 2018; Verdouw et al., 

2019). In the field of agro-industrial and environmental applications, a review of 72 studies 

suggested an architecture by incorporating commonly used and relevant methodologies (Talavera 

et al., 2017). This IoT architecture shown in Figure 2.1. contains physical, communication, service 

and application layer and was adapted in the design of the testbed in this project.  

IoT devices (e.g., wireless sensor networks, network-connected weather stations, cameras, 

and smartphones) can be used to collate a vast amount of environmental and crop performance 

data, ranging from time-series data from sensors to spatial data from cameras to human 

observations captured via mobile smartphone applications or other network-connected user 

interfaces. Analysis of this data in real-time from a remote location, off the farm, is possible 
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because of internet connectivity. By extending the sensing system to include actuators, necessary 

control tasks like irrigation, ventilation, misting etc. can be performed based on input(s) from a 

rule-based system, an AI algorithm, or a user action.  

 

Figure 2.1 Basic IoT Architecture for agro-industrial and environmental applications (Talavera et al., 2017) 

2.1.2 Context 

Numerous benefits of IoT devices have led to their increased adoption and the domain of 

IoT has been enhanced by research activities persistently over the past few years. However, there 

are several unsolved issues about proper management and performance of IoT devices. Some of 

them are related to availability, reliability, scalability, mobility, data confidentiality, security, 

optimization, and compatibility of networks, etc. (Elijah et al., 2018; Khanna and Kaur, 2019; M 

et al., 2020). Several peer-reviewed studies also note that within an IoT environment, cost, 

constraint-free communication, proper deployment, and heterogeneity are additional challenges 
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that are to be addressed by further research (Elijah et al., 2018; Khanna and Kaur, 2019; 

Ummesalma et al., 2020). 

A lot of literature exists about application protocols (Glaroudis et al., 2020) and 

connectivity methods (like Wi-Fi, Satellite, Bluetooth, cellular) (Ahmad et al., 2019; 

Vannieuwenborg et al., 2018). Data security and privacy issues are emerging as a domain that are 

primarily been of interest to computer scientists and financial institutions across the world. To deal 

with availability and cost of commonly available sensors/components, numerous solutions have 

been proposed (Danita et al., 2019; Ruengittinun et al., 2017). However, there is a noticeable void 

in the literature on how to improve and adapt IoT solutions for real-world indoor farms beyond 

simple prototypes. Direct scaling in most cases implies that the number of hardware components 

grows very quickly with the size of the system. Careful requirement analysis and system design 

are indispensable for a viable IoT solution in a real-world scenario. Along with it, a series of checks 

in the system over hardware and software are required to steer through the reliability challenges 

that are especially associated with the use of low-cost sensors.  

Data management is yet another aspect of IoT devices that calls for attention. Sensors and 

devices can connect indirectly through the cloud, where data is centrally managed or utilize the 

concept of edge computing wherein data is sent directly to other local devices to collect, store, and 

analyze, and then share selected findings or information through the cloud. An Edge/Cloud 

combination offers a particularly attractive approach to deliver an efficient workflow. However, 

validation of edge-driven services on operational farms is limited (O’Grady et al., 2019). Along 

with reaping the benefits of the technology, exploration of the paradigm of edge-computing in an 

indoor farm is required to identify systemic challenges. 

2.1.3 Related work 

A brief synthesis of recent research papers related to automation in greenhouses/indoor farms is 

presented in Table 2.1 below. 
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Table 2.1. Review of literature related to IoT for automated greenhouses. 

Reference System Contribution and advantages Disadvantages Scale 

(Jaiswal et 

al., 2019) 

IoT and machine learning based 

approach for fully automated 

greenhouse 

Uses Thingspeak platform for development; 

live streaming, unlocking of greenhouse 

based on facial recognition/ fingerprint 

No human in loop 
Prototype - two plants 

in a plastic covered tray 

(Long, 2019) 

 

Agricultural internet of things 

system based on cloud 

computing and machine 

learning 

Uses Zigbee for communication, AWS 

cloud, Wechat application, machine learning 

(ML) based prediction for control 

No details about 

implementation are provided 
- 

(Hemming et 

al., 2019) 

 

Remote control of greenhouse 

vegetable production with 

artificial intelligence —

greenhouse climate, irrigation, 

and crop production 

Grew cucumbers in a greenhouse without 

human intervention for 3 months -fully AI 

based control; comparison between different 

control, growth strategies and cost analysis 

Experiment in an expensive 

industrial grade facility,  
yield measurements are 

performed manually 

greenhouse 

(Ruengittinun 

et al., 2017) 

 

Applied internet of thing for 

smart hydroponic farming 

ecosystem (HFE) 

Low-cost sensors are used and are listed 

explicitly 

No results from sensors data or 

system performance 

Prototype - with 12-unit 

hydroponic system 

(Danita et al., 

2019) 

IoT-based automated 

greenhouse monitoring system 

Automate irrigation and ventilation; 

greenhouse is divided into sections and one 

soil moisture sensor is placed in each section 

Basic visualization:  
No human in loop. 

The proposed solution works 

for continuous media but not 

for hydroponics 

greenhouse with soil 

grown crop 

(Zamora-

Izquierdo et 

al., 2019) 

 

Smart farming IoT platform 

based on edge and cloud 

computing 

A control strategy is implemented at the edge 

node (PC) that plugged into existing 

hardware controls of the greenhouse; 

cleaned, recirculated drainage water; 

Validation via growing two tomato cycles 

Only irrigation is discussed, no 

details about user interface 
greenhouse 

(Chang et al., 

2019) 

Integrated monitoring platform 

of plant growth based on IoT 

edge computing in greenhouse 

Moving Zigbee module for enabling 

connectivity in the greenhouse; Details of 

system implementation and uses image 

processing at edge 

Only environmental controls 

are taken care of 
greenhouse 
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2.1.4 Edge Computing 

In the context of IoT, with increasing number of devices and data in a network, traditional 

cloud computing has limitations in terms of latency, bandwidth, round the clock accessibility and 

update frequency of devices, and data security (Shi et al., 2019). Increased energy consumption 

and scalability challenges at cloud servers have pushed the rapid growth of edge computing over 

the past 4 years (Shi et al., 2019). Despite a rapid growth, the concept of edge computing is still in 

its infancy (Varghese et al., 2016).  A summary of motivation, challenges,  and opportunities in 

edge-computing is shown in Figure 2.2 (Varghese et al., 2016). A survey of 46 state-of-the-art 

research papers on the use of edge computing for precision dairy, irrigation, fire detection, wildlife 

surveillance etc. highlights utilization of techniques for reducing latency and computational 

offloading (O’Grady et al., 2019). The survey points out that the systems reviewed were mostly 

prototypes and the application of edge computing was still in initial stages. In the current study, a 

requirement to perform real-time control led to performing computation at the edge. 

 

Figure 2.2. Motivation, challenges, and opportunities in edge computing (Varghese et al., 2016) 
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2.2 AI in Agriculture 

2.2.1 Overview 

Both indoor and row-crop farms produce a multitude of data points every day on 

temperature, humidity, soil moisture, water usage, etc. that can be leveraged and analyzed in real-

time with the help of AI for obtaining useful insights (Liakos et al., 2018). The importance of such 

AI enabled applications increases with scale as it is infeasible for a human analyst to handle all the 

generated data manually. These applications can plug-in at multiple phases in the farming data 

pipeline and improve a wide range of tasks. By automatically processing the field data, AI-enabled 

systems can help improve the overall crop quality, yield, and resource utilization (Gertphol et al., 

2018; Liakos et al., 2018). Weather forecasting can help crop planning, crop health monitoring can 

help take preventative measures, and farm robots can make tasks more efficient. A broad overview 

of the applications of AI in agriculture can be seen in Figure 2.3. 

 

Figure 2.3. Broad picture of applications of AI in agriculture (Revanth, 2019) 

In the context of increasing reliability of IoT systems and requiring clean data for predictive 

analytics, the current study is also focused on implementing anomaly detection algorithms for 

monitoring sensor data and for automated controls. In the context of moving towards closed loop 

and adaptive systems, AI for yield monitoring is also explored. 
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2.2.2 Anomaly Detection 

Overview 

As much as IoT paves a way for convenient data collection, the data needs to be accurate 

to make inferences and decisions about the farm. Abnormalities in the data captured by a sensor 

can occur because of multitude of reasons and their sources can be organized into two major 

categories (Ou et al., 2020)-  

Sensor failures: Sensor misses or fails to capture data. This can directly cause an automated control 

system to make wrong decisions or indirectly be a source of bias in the data resulting in wrong 

inferences. 

System failures: Sensor correctly captures the data of an anomalous event occurring in the system. 

This means, there is a fault occurrence in the system and corrective measures might be needed 

immediately and on a long-term basis to prevent crop/ equipment losses on farm.  

Anomaly detection is the process of identification of such events in the system that deviate 

from the expected behavior. The relevance of anomaly detection is increasing by the day with 

deployment of increasing number of sensors on both outdoor and indoor farms and a general shift 

towards automation, thereby, making it extremely troublesome to manually check a huge amount 

of data acquired from the automated farms. Anomaly detection is based on the hypothesis that 

anomalies stand out trivially/ explicitly from rest of the data and can be quantitatively 

differentiated from the clean data. Different detection and handling techniques have been 

developed across diverse domains based on their nature and application. The types of anomalies, 

popular techniques used to handle them in different IoT applications and related applications in 

agriculture are discussed below. This section considers anomaly detection only in the context of 

an IoT-based system and exclude other management issues affecting crops in the farm such as 

presence of obstacles, weeds, diseases, etc.  

Types of anomalies 

Numerous classifications exist for differentiating anomalies in a dataset based on nature of 

input data and domain of application (such as agriculture, security, banking, etc.) (Foorthuis, 2020). 

In the context of time-series and spatial data, a broad classification approach that differentiates 
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between three diverse categories is described below along with a graphical representation of 

anomalies for a sample temperature sensor data (Chandola et al., 2009) (Figure 2.4):  

Point anomalies (Global anomalies) – An individual data instance that is significantly different 

from rest of the dataset wherever it occurs. 

Contextual anomalies (Conditional anomalies) – An individual data instance that is anomalous in 

a specific context but an identical instance in another context need not be considered so.  

Collective anomalies – A collection of data instances together deviate from the rest of the dataset; 

the individual values need not be anomalies in themselves either globally or in the context. 

 

Figure 2.4. Types of anomalies shown on a sample of temperature data from indoor farm. 

Common anomaly detection techniques in IoT applications 

An extensive review of different techniques used in anomaly detection across domains is 

presented in (Chandola et al., 2009). In the context of IoT applications, discussion on broad 

categorization of anomalies/ outlier detection approaches are available (Ayadi et al., 2017; 

Gaddam et al., 2020) and shown in Figure 2.5. The pros and cons of each one of these approaches 

has also been systematically investigated. Based on the past studies, some of the important 
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questions to be posed before designing/developing an IoT-based anomaly detection algorithm are 

as follows–  

1. Where is the computation performed – Is it centralized or distributed? 

2. When is the computation performed – Is it in real-time or in post data analysis?  

3. What are the resource constraints – What is the memory required, energy usage, network 

bandwidth etc.?  

4. What is the nature of data being looked – Is it labeled or unlabeled? Is it univariate or 

multivariate? What is the type of data? 

5. What is the computational complexity of the algorithm – Is it scalable? 

Different algorithms are explored in the present study based on these considerations on the data 

generated from the farm and publicly available data. 

 

Figure 2.5. Outlier detection techniques in wireless sensor networks (Ayadi et al., 2017) 

Related work 

Although anomaly detection is a well explored field and a lot of systems inherently have 

some techniques in place to handle erroneous events, there is a gap in the documentation of models 

used in indoor farms. In fact, very few research papers explicitly mentioned anomaly detection 

techniques in smart farms or sensor networks in agriculture. A brief bibliometric analysis based 

on Scopus (title-abstract-keyword search) and Springer (conference paper search) databases 

between 2005-2021 for documents in English is provided in Figure 2.6. The trend is increasing with 

the search terms, but the subject area pie-diagram for the past 5 years (2015-2020) shows that only 

9.8% of the studies come from agriculture and biological sciences, 16.5% belong to environmental 
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studies. A search was also carried out in Google Scholar, IEEE, Sensors Databases. Further 

filtering out relevant works based on quality criteria of whether the study presents a solution for 

the problem in a real farm/ greenhouse setting, shows some details of implementation etc. left 

about 22 papers between 2015-2021. A review of such papers found and filtered after extensive 

search in research databases for anomaly detection in agriculture is in Table 2.2. 

 

Database Search Query 1 : '("Anomaly" OR "Outlier" OR "Sensor Failure" OR "Predictive maintenance") AND 

("Agriculture" OR "Farming" OR "hydroponics" OR "greenhouse")' 

 

Database Search Query 2 : '("Anomaly" OR "Outlier" OR "Sensor Failure" OR "Predictive maintenance") AND 

("Indoor farming" OR "hydroponics" OR "greenhouse")' 

 

(a) Search queries used for Abstract, Title, Keywords in Scopus database, Entire conference paper database in Springer 

 

 
(b)Trends in search query by year 

 

 

(c) Cumulative of documents by subject area from 2015-2020 returned by Query 1 in Scopus 

Figure 2.6. Bibliometric analysis of anomaly detection algorithms in agriculture
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Table 2.2. Review of research papers focusing on anomaly detection in Ag IoT systems 

Reference Issue addressed/ area of focus Brief technique proposed/ used Data used  

(Yin et al., 2020) 

Representations from deep learning (DL) 

networks require labeling training samples and 

the features extracted might not be suitable for 

anomaly detection in IoT 

• Transformations on labeled data and 

augmentation 

• Convoluted neural network (CNN) for 

feature extraction 

• Classification using an anomaly scoring 

function 

Public data : Images – CIFAR-10 

and CIFAR-100; Net-flow – CTU 
 
Specific: 603 garlic images 

manually collected, 37 hours net-

flow data from an online Ag IoT 

platform 

(Sharma and Jain, 

2018) 

With no knowledge about data distribution, it 

is difficult to identify outliers in multivariate 

datasets  

• Range specification by the user in the tool 

and keep/ delete the flagged point 

Data in the application AGRETL 

– a hand coded ETL tool 

(Liu et al., 2020) 
Exploring application of ML based anomaly 

detection methods to vertical plant wall systems 

• Different neural network (NN) models are 

tested 

• Autoencoder (AE) for point anomalies, 

long short-term memory (LSTM) for 

contextual anomalies proved best 

Temperature (137, 592) and CO2 

data (115, 431 data points) 

collected in the university 

(L. Wang et al., 2017) 
Traditional anomaly detection methods cannot 

effectively handle contextual anomalies 

• A two-stage anomaly detection in Apache 

Spark 
• Stage 1 – Support vector machine to 

classify day/night. 

• Stage 2 – Gaussian mixture model (GMM) 

to find anomaly 

45000 datapoints from Tomato 

greenhouse – Temp, RH, CO2, 

PAR 

(Torres et al., 2017) 
Increase the accurate data from low-cost 

sensors in IoT 

• Data fusion from multiple sensors of same 

kind + use statistics-based outlier detection 

• Filters to smooth out any existing noise 

~168 data points/ sensor. 12 soil 

moisture sensors in Cashew field 

(Ou et al., 2020) 
Real-time anomaly detection as opposed to 

reactive 

• Prediction using regression + Quartiles for 

outlier detection 

Soil Temp, Moisture, EC, PAR, 

Temp, RH 

(Min and Hwang, 

2021) 
To forecast environment in a tomato farm  

• Prediction of multiple variables for 

anomaly detection using LSTM 

Internal Temp., external Temp., 

PAR, cumulative light volume, 

ventilation set Temp., heating set 

Temp., dew point Temp., RH 



 

 

 

3
0
 

Table 2.2. continued 

(Y.-B. Lin et al., 2019; 

Y.-W. Lin et al., 2020) 
Sensor failure detection in farm 

• Homogenous tests from multiple sensors 

of same kind based on calibration mappings 
 
• Heterogenous tests from multiple sensors 

at same node of different kind or sensor-

actuator combination using adaptive 

thresholding 

Soil Temp, Moisture, EC 

 

Barometric Pressure, Temp, CO2, 

RH, Ultraviolet light 

(Karimanzira et al., 

2021) 

Case study to introduce Intelligent 

information management in IoT aquaponics 

system  

• LSTM for anomaly detection  

 

• Bayesian network for fault localization 

from possible fault set 

2 years of Water salinity, DO, 

Nitrates, PH, EC, Air Temp, RH, 

Light, Plant, Fish growth rate 

from images 

(Abdallah et al., 2021) 
Predictive maintenance problem in IoT 

sensors 

• Tested Autoregressive integrated moving 

average (ARIMA), LSTM 

 

• Offline training for prediction and real-

time classification based on 20% threshold 

from predicted value 

Public Data: 5 WHIN Sensors - 

58,019 datapoints for each of 

Temp, RH, Soil - EC, dielectric, 

temp, nitrate, water-nitrate 

(de Souza et al., 2020) 
Conceptual architecture for selection of ML 

based algorithms for detecting abnormal sensors 

• Common unsupervised learning 

algorithms are tested in proposed 

architecture  

Public Data: Forest cover – 

286048 
 
Various algorithms are compared 

for performance based on 

precision, recall, specificity, 

power consumption, execution 

time  
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2.2.3 Yield Prediction 

Overview 

Yield prediction is one of the most essential components of precision agriculture and spans 

the topics of yield mapping, yield estimation, matching of crop supply with demand, and crop 

management to increase productivity (Liakos et al., 2018). Traditionally, mathematical, or 

empirical crop models that use certain crop growth variables as inputs have been used to predict 

plant growth for research applications. However, those models required extensive agronomy and 

physiology experiments that limited their use for various crops.  

With the rise of ML, more efforts have been directed towards the use of data-centric models 

that are based on correlation but do not necessarily deal with causation (Basso et al., 2013). 

Supervised learning models have been developed that use crop yield data from previous years to 

predict future yield (Liakos et al., 2018). Deep Learning models utilizing either satellite or UAV 

imagery (hyper-spectral, multi-spectral, RGB) for yield mapping are increasingly becoming 

popular. Imaging systems for various phenotyping applications are also gaining momentum where 

yield is one such variable proxied by stem diameter, leaf count, leaf area etc. (Li et al., 2020; 

Mochida et al., 2018). Nevertheless, vision-based techniques for indoor farms still have a lot of 

room for exploration to help understand the effects of lighting, nutrition, and other environment 

factors on plant growth and yield.  

Data acquisition 

Different types of imaging sensors have been used to collect multi-dimensional phenotypic 

data. Phenotyping is the quantitative assessment of structural and functional properties of plants. 

A basic digital RGB camera is adopted for color, texture-based applications. Hyperspectral 

camera, thermal infrared camera, near-infrared cameras has been used for providing 

complementary information to the RGB cameras to detect conditions like stress, drought etc. With 

advances in 3-D reconstruction and affordable options, RGB-depth (RGB-D) camera, light 

detection and ranging (LiDAR) devices are also being used for capturing entire plant level 

morphological changes (Mochida et al., 2018). In an open farm, satellite images are used to retrieve 
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information from field (Sishodia et al., 2020). In this application, a cheap RGB Camera and 

thermal camera are used to capture plant canopy.  

Typical scenario in Computer Vision (CV) based phenotyping 

Computer vision (CV) applications for phenotyping studies are gaining momentum (Li et 

al., 2020; Mochida et al., 2018). These studies are relevant for a crop like microgreens where stem 

length, leaf area and leaf count are directly related to crop yield. A typical scenario in a CV based 

plant phenotyping is shown in Figure 2.7. Schematic representation of a typical example scenario in 

computer vision-based plant phenotyping (Mochida et al., 2019)In the system proposed in current 

research, pre-processing of data particularly becomes important due to the quality of images 

captured owing to components used, distortions due to motion and detection, and image cropping 

required to extract target tray from a larger image. A single transfer learning model or other deep 

learning models can be utilized to perform segmentation, feature extraction, and finally predict the 

yield. Since it is formulated as a regression problem; hence the last step of classification would not 

be essential. 

 

Figure 2.7. Schematic representation of a typical example scenario in computer vision-based plant 

phenotyping (Mochida et al., 2019) 
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Related work 

 A critical review of ML+ yield prediction algorithms, features and evaluation approaches 

used for crop yield prediction has recently been published (van Klompenburg et al., 2020). Out of 

the 50 papers that are critically reviewed, only 8 papers used images as features to predict yield 

while most relied on temperature (24), rainfall (17), soil information like soil type (17), soil maps 

(12), pH value (11) or crop information (13). The most used algorithms reported were CNNs, 

LSTMs, deep neural networks (DNNs). The critical review also revealed that models have been 

developed for limited data and that no specific conclusion can be drawn as to which model is better. 

This prompts for an independent study for the use case in this experiment with microgreens. 

 A summary of methods used for extracting leaf area/ count from images is presented in 

Table 2.3.  
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Table 2.3. Summary of literature extracting features like leaf count, leaf area from images 

Reference Title Crop Method 

Image 

Background

/ Condition 

Image 

Type 

 (K. Lin et al., 

2013) 

A Real Time Image Segmentation Approach 

for crop leaf Multiple 

Fuzzy C-means based on color 

quantization greenhouse RGB 

 (Franchetti et al., 

2019) 

Vision Based Modeling of Plants Phenotyping 

in Vertical Farming under Artificial Lighting Basil 

Mask R-CNN for 2D image 

segmentation which later is processed 

for 3D reconstruction  

Vertical 

Farm RGBD 

 (Chaudhary et 

al., 2012) 

Fast and Accurate Method for Leaf Area 

Measurement Multiple Otsu's method  

White 

background RGB 

(Z. Wang et al., 

2018) 

Image segmentation of overlapping leaves 

based on Chan–Vese model and Sobel 

operator Cucumber Chan–Vese model and Sobel operator Field RGB 

(Praveen Kumar 

and Domnic, 

2019) 

Image based leaf segmentation and counting in 

rosette plants 

Arabidopsis, 

Tobacco 

Graph based method and Circular 

Hough Transform Soil (Lab) RGB 

(Aich and 

Stavness, 2017) 

Leaf Counting with Deep Convolutional and 

Deconvolutional Networks 

Arabidopsis, 

Tobacco SegNet Soil (Lab) RGB 

(Ward et al., 

2018) Deep Leaf Segmentation Using Synthetic Data 

Arabidopsis, 

Tobacco Mask-RCNN Soil (Lab) RGB 

(Nagano et al., 

2019) 

Leaf-Movement-Based Growth Prediction 

Model Using Optical Flow Analysis and 

Machine Learning in Plant Factory Lettuce Optical Flow Analysis 

Vertical 

Farm RGB 

(Itzhaky et al., 

2018) 

Leaf Counting: Multiple Scale Regression and 

Detection Using Deep CNNs 

Arabidopsis, 

Tobacco FPN (Feature Pyramid Network) Soil (Lab) RGB 
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 MATERIALS AND METHODS 

3.1 Setup 

Microgreens were grown in a 9x12 m walk‐in glass greenhouse by blocking natural light to 

simulate an indoor farm with Light Emitting Diode (LED) fixtures used as the sole source of 

lighting. The testbed comprised of fifty-four experimental units distributed across three tables 

(Figure 3.1). Each experimental unit was broken into two layers: 1) a bottom 1020 tray with no 

drain holes to hold nutrient solution 2) a top layer of eight 12.7x12.7 cm seed tray inserts with 

Biostrate substrate on which microgreens are grown. LED fixtures were mounted at a height of 

45cm above the top of the bench. All the circuitry, power supply, and required components were 

positioned underneath (or) adjacent to the corresponding tables. 

 

Figure 3.1. Conceptual layout of the experiment in greenhouse zone. Inset experimental unit which is an 

ebb and flow style tray system. 

3.2 Statistical Design 

The testbed was used to study factorial effect of lighting, nutrient solution concentration, 

seeding density and day of harvest on growth of microgreens (growth is indirectly inferred by 

weight or height measurements taken over 4 days of harvest). Each table consisted of three LED 

zones each of which accommodated 6 experimental units that were treated with three different 
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nutrient levels and two seeding densities. A split-plot design was used in this setting with a 

combination of LED spectra and intensity as whole plot factor, and nutrient solution concentration 

and seeding density as subplot factors. This design was randomized and replicated three times 

(Figure 3.2). A full-factor effects model (Equation 3.1) that considers all single factors, factor 

interactions and random effects of interaction of replicates and whole plot factor was used. 

 

Figure 3.2. Statistical design of experiment used to evaluate factor effects on microgreen growth (A,B,C 

are 3 nutrient solution concentrations) 

 

𝑊𝑒𝑖𝑔ℎ𝑡 ~ 𝐿𝐸𝐷 + 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝐷𝑎𝑦 + 𝐿𝐸𝐷 ∗ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝐿𝐸𝐷

∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 +  𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝐷𝑎𝑦 + 𝐿𝐸𝐷 ∗ 𝐷𝑎𝑦

+ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝐷𝑎𝑦 +  𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝐷𝑎𝑦 +  𝐿𝐸𝐷 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

∗ 𝐷𝑎𝑦 + 𝐿𝐸𝐷 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝐿𝐸𝐷 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

∗ 𝐷𝑎𝑦 + (1|𝑇𝑎𝑏𝑙𝑒 ∗ 𝐿𝐸𝐷) 

Equation 3.1. Full model for factor effects for the experimental design 

3.3 Testbed Design Rationale 

A modular design approach was followed to facilitate adding or removal of noes as per need 

and the points stated below were adopted for every functionality provided in the system.  

• Use minimal number of components, thereby reducing both initial one-time setup and later 

maintenance costs as well as the electronics interfering with operations. 

• Implement a series of checks for hardware and software used to ensure safety and 

reliability of the testbed. 

• Remotely access and control the sensors and actuators to ensure regular monitoring and 

minimize human intervention for running the indoor farm. 
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3.4 System Architecture 

The proposed system comprised of a network of sensors, actuators, Arduino microcontroller 

units (MCUs), Raspberry-Pis (RPis), IoT gateways, cloud database and user interfaces. An 

overview of hardware and software architectures is provided in Figure 3.3 and Figure 3.4. The IoT 

architecture contained physical, communication, service and application layers were adapted in 

the design of the testbed as explained below.  

 

Figure 3.3. Hardware architecture showing network connectivity of various functional modules and nodes 

 

Figure 3.4. Software architecture showing typical flow of data, commands in the system 
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3.4.1 Physical Layer 

The physical layer can be viewed as a collection of modules/ sub-systems that perform 

specific functions as guided by the MCUs (Arduino or RPi) (Figure 3.3). The MCU along with 

sensors and actuators attached to it is referred to as a node. The physical layer comprised of several 

nodes. Sensors collected data at specified intervals or whenever triggered by a user and then 

transmitted the data to the aggregator (gateway). Actuators (for example- LEDs, valves, pumps, 

and gantries) were controlled from client-side application/ edge node/ predefined set of 

instructions. A discussion on each of these is provided below.  

MCUs 

Ideally to facilitate a cloud based IoT system, each sensor should be equipped with its own 

network capability. Most of such wireless sensors or cloud-store type data loggers are extremely 

expensive, generate data held by proprietary systems making it difficult to integrate. Given the 

design intent of the system (i.e., low-cost), it was deemed more practical, cost effective to procure 

off-the-shelf sensors and add Wi-Fi capabilities using existing MCUs. Thus, Arduino Uno Wi-Fi 

Rev2 was chosen, which offered the benefits of having digital, analog I/O pins suitable to be 

interfaced with almost any sensor in the market and built in Wi-Fi.  

In case of necessity of edge computing, a Raspberry Pi 3 B+ or 4 B was used in the node. 

Along with providing control via Input/Output (I/O) pins, serial ports, it enables data storage and 

processing on board. Given the requirement of a high number of relays in the current system design 

(40+ per table), the USB control was extremely handy in irrigation control. 

Power supply 

The phase voltage of the AC mains was stepped down from 120V to 5V using adapters (to 

power micro-controller) alongside which a 5V bus was maintained on the Veroboard (to power 

the sensors). Similarly, the relays and motors were powered by a 12 V supply. To feed the 5V data 

signal from the sensor to RPi general purpose input/outputs (GPIOs), level shifters to 3.3V were 

used. When choosing new devices, their operational ability at these three voltage levels i.e., 3.3V, 

5V, and 12V DC were preferred, to avoid creation of more power rails and safety considerations. 

However, a variable adapter that can provide voltages in the range of 5-20 V powered the Pulse 
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Width Modulated (PWM) amplifier to control light intensities. Amperage was not a concern with 

sensors as they draw currents in the range of few milli Amperes and commercial adapters typically 

have higher ratings over 1 Ampere. On the other hand, it was an important criterion for driving 

motors to provide enough operating pressure in pumping or enough torque for pulling the gantry. 

Hence, a 12V 2A supply was used for driving pumps and 12V 3.5A was used for driving stepper 

motors. Official supplies were used for powering RPis. 

Lighting module 

Three different full-spectrum white LEDs two of which were sheet type, and one bar type 

were studied for effects (Table 3.1). They operate in the photosynthetically active radiation (PAR) 

range which is light in 400-700 nanometer wavelength range. The photosynthetic photon flux 

density (PPFD) of these lighting fixtures varies linearly with voltage and was powered via an LED 

driver. A 0-10V PWM control signal was sourced from Arduino through a simple amplifier circuit 

to dim the light from 0-100%. The light intensity was constantly monitored by measuring the PPFD 

under it using a Quantum Sensor (SQ-225-SS, Apogee, Logan, Utah, USA). This sensor was 

calibrated specifically for use under electric light and correction factors were used according to 

the output spectra of LEDs to obtain the measurements within an error of 5%. The intensity at 

plant canopy depends on the mounting height and during the experiment an 18” height was 

maintained from the base of the bench. 

PAR sensor calibration 

For a PWM intensity control, a specific intensity value can be obtained by varying either 

the duty cycle or maximum voltage of the control signal. Also, the sensor output varies by the 

spectrum of the light, so a correction factor has been specified by the manufacturer. A mapping 

between intensity to duty cycle was needed to enable taking user inputs. Hence a comprehensive 

calibration table was created taking into consideration the variables of light spectrum, control 

voltage and duty cycle snippets of which are shown in Figure 3.5.  
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Table 3.1. Specifications of LEDs used in the experiment 

Ref. LED A LED B LED C 

Image 

   

Spec-

trum 

   

Full Spectrum Full Spectrum - red, blue emphasis Full Spectrum 

PPF 1014 μmol/sec 1281 μmol/sec 108-200 μmol/sec 

Angle Lambertian Lambertian 120° 

Power 620W 620W 85W * 3 

 

 

 

Figure 3.5. Snippets of data tables obtained from PAR Sensor calibration experiment 
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Irrigation module 

A low voltage pump (12 V) was used to feed nutrient solution to the growth tray through 

a solenoid valve from a reservoir placed on the ground. A water flow meter/ sensor (FL-308T, 

Digiten, ShenZhen City, China) located on the line between the pump and valve was used to gauge 

the amount of solution flowing through. The output from this flow sensor was used to determine 

switching of the solenoid valves. A dedicated 12V motor was used to pump the water out of the 

tray. All the valves and pumps were interfaced with RPi via 16-Channel, 9-36V USB Relay 

Module (Sainsmart, Lenexa, Kansas, USA). The flow meter communicated with RPi via GPIOs.  

Since there were 54 trays in the system, 54 such modules would be needed. But for the 

ease of management and minimizing costs, only one pump per treatment per bench was used, 

solenoid manifolds having multiple valves were chosen, and flow meter was positioned such that 

it could be used with all the valves in its line. For e.g., two 1-in 4-out normally closed DC12V 

solenoid valves (FPD-270A, Yanmis, Guangdong, China) were used for inflow control of a 

treatment that can feed up to 8 trays. The flow meter was between the pump and the valves and at 

any instance, only one of the valves was opened to control inflow of the corresponding tray. A 

typical setup for one bench is shown in Figure 3.6. 

Three different nutrient solutions were used per cycle for each of the experiment to 

establish optimal combinations. EC ranges 1.2 – 2 milli Siemens(mS)/cm of the solution were 

tested with pH values 5.5-6.5 to ensure availability of nutrients to the plants. To prevent the escape 

of oxygen from reservoirs, an array of air stones with a timer were used.  

 

Figure 3.6. Typical setup of irrigation control placed under corresponding bench 
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Flow sensor calibration 

Five different sensors with price varying from $7 - $270 were gravimetrically calibrated 

and contrasted. The number of pulses resulting in 1 liter of water was established based on the 

datasheet and iteratively validated in place, recalibrated for flow conditions of the system. The 

setup for calibrating and analyzing pulses, flows is shown in Figure 3.7. A liquid level sensor (PN-

12110215TC-12, Milone Technologies, Sewell, New Jersey, USA) was used to assist in 

automatically capturing the volume of water, thus facilitating collection of more data points for 

future anomaly detection algorithms. A snapshot of the data captured from the experiment to arrive 

at a calibration table is shown in Figure 3.8 

 

Figure 3.7. Flow meter calibration setup 

 

Figure 3.8. Snippets of data tables obtained from flow meter calibration experiment 
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Water quality module 

Nutrient usage of the plants was monitored using these sensors from Atlas Scientific (Long 

Island City, NY, USA) – EC probe (Conductivity Probe K 0.1) + circuit (EZO Conductivity 

circuit), pH probe (Lab Grade pH Probe) + circuit (EZO pH circuit), DO probe (Lab Grade 

Dissolved Oxygen Probe) + circuit (EZO Dissolved Oxygen circuit). These sensor circuits were 

interfaced via an isolator (tentacle shield for Arduino, Whitebox labs, Switzerland) with Arduino. 

The sensors communicate with the MCU using I2C protocol (I2C, 2003) and were triggered to 

obtain readings once the solution from a growth tray was emptied into the measuring jug. This 

module worked very much in tandem with the irrigation module upon trigger from the user 

dashboard or command line interface. The process flow is shown in Figure 3.9. 

Imaging module 

A system containing an RPi RGB camera (Raspberry Pi Camera V2.1), Thermal imaging 

camera (Grove MLX90640 110°, Seeed Studio, Shenzhen, China) for capturing the canopy 

imagery, and infrared proximity sensor (GP2Y0E02A, Sharp Electronics Corporation, Montvale, 

NJ, USA) to estimate plant height was setup to monitor plant growth. At the given standard height 

of LEDs mount in an indoor farm, multiple cameras would be required to capture the images from 

a single table. In the best case of using a single camera for a single tray, there would be a need for 

18 camera systems and this setup would block the light on the tray underneath throughout the cycle. 

Moreover, since the frequency of capturing images is low, once in 15 mins, the utilization of the 

cameras in a fixed setup was also infrequent. Hence, the camera system was mounted on a robotic 

gantry which allowed a highly customizable and scalable imaging. 

The gantry was assembled in-house using components sourced from a local hardware store 

to operate over the tables and the assembly is shown in Figure 3.10. A setup like this could be useful 

and budget friendly to indoor farm operators where one such gantry could be used to cover an 

entire connected level effectively. Stepper motors (NEMA-17, Quimat) controlled by Arduino 

drive the motion of the module. The current setup had two parallel gantry rails moving over the 

tracks using a single drive unit. 
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Figure 3.9. Process flow chart of irrigation and water quality measurement modules 
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Figure 3.10. Robotic Gantry that carries imaging module over plant canopy 

Rig calibration 

 Although the required number of rotations for stepper motors to go to a destination could 

be obtained by theoretical calculation, validation and adjustment was necessary because of the 

load, varying belt tension with length and camera position within a mount. The steppers of gantry 

and camera were moved to desired positions via Arduino serial interface and corresponding values 

were noted down when a satisfactory picture frame was observed in the camera preview in VNC 

viewer (RealVNC Ltd, UK) window. A snapshot of this is presented in Figure 3.11. 

 

Figure 3.11. Snapshot of imaging system calibration process 
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Climate module and other similar environment sensors 

The general climate of the indoor farm was monitored from a central location. Temperature 

(±1.0°C accuracy), Humidity (±3% accuracy) were taken from the measurements of a four-in-one 

sensor BME680 (Bosch Sensortec, Reutlingen, Germany) sending data to the Arduino MCU via 

I2C. For obtaining CO2 concentration from the environment, Gravity v1.1 sensor (SEN0219, 

DFRobot, China) was used, and it measures concentration in the range of 0-5000 parts per million 

(ppm) with an accuracy of ± (50ppm 3% reading). 

During the experiment, to be able to test new sensors/ add more functionality to the system, 

the additional I/O pins on Arduino of Node 1 were utilized. Currently, to note the microclimate 

conditions at tray level, waterproof sensor DS18B20 (Maxim Integrated, San Jose, California) 

having ±1.0°C accuracy was immersed to the bottom in three trays, one under each LED of a table. 

To monitor at the top of the canopy, DHT11 (Adafruit, NYC, USA) temperature (±1.0°C accuracy) 

and humidity sensor (1% accuracy) was used. 

Temp., RH sensor calibration 

All the environmental sensors used were connected to Arduino. The temperature, RH, and 

atmospheric pressure data readings were recorded for seven days by keeping the sensors side-by-

side in a central location in the indoor farm as shown in Figure 3.12. A comparison was also made 

between an expensive research grade sensor, ATMOS 14 (Meter Environment, WA, USA). 

  

 

Figure 3.12. Set of environment sensors placed side by side for calibration 
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3.4.2 Communication Layer 

Communication layer included both physical networks and protocols used in the ecosystem. 

All the devices in the indoor farm were connected over Wi-Fi network and located behind a secure 

firewall. Wi-Fi was chosen as transmission mode because of the reliable internet connections in 

indoor farms, given their proximity to urban areas, requirement to establish a two-way 

communication with remote devices and ease of availability of MCUs with inbuilt Wi-Fi 

functionality. A hybrid topology was used. A local server (running on RPi) was used as an IoT 

gateway and to receive data from all the nodes in the indoor farm via message queuing telemetry 

transport (MQTT), hypertext transfer protocol (HTTP) protocols. This data was periodically 

synced with a cloud database (DB) via secure shell protocol (SSH) due to the restrictions on 

greenhouse Wi-Fi network. Since the devices were connected to the internet in themselves, the 

edge computing nodes could communicate with cloud directly. But they were allowed to do so 

only in limited capacity to receive pre-defined control commands from dashboard and send 

corresponding progress back to minimize traffic at server in terms of number of devices connecting 

to cloud. All the devices thus ran MQTT clients. Additionally, all the nodes and IoT gateway were 

enabled remote access via VNC viewer within the network in addition to secure shell access for 

effortless application development/ deployment at node. 

3.4.3 Service Layer 

Cloud-based MySQL database synchronized periodically with local MySQL DB and 

facilitated multiple reads, write, and no overwrite functionality. This data was sent to dashboard 

for visualization or pulled via python for further analysis from backend. A secure MQTT broker 

was also hosted on cloud and relayed communications between all the clients. 

Data Management  

Tables for storing data from each node, functionality were created in the local and cloud 

servers. For e.g., WaterSensors_1 is a database table that stored data sent from water quality node 

from experiment table 1. PHP scripts received data annotated with client id via HTTP and each 

entry was added with a timestamp at the local server and later synced with cloud Database. A 

PhpMyAdmin was installed on this local server for quick administration in the farm.  
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Sensor sent data periodically to a local DB. However, actuators sent a few structured logs 

during operation directly to cloud DB for access from dashboard. Other than that, most of the 

actuator related data were stored as detailed log texts on the edge node that were processed in-situ 

for anomaly detection or high-quality storage and could be retrieved later from command line 

interface (CLI). For images, an MQTT client and auxiliary scripts dedicated to receiving them 

from the remote farm and sending them to relevant folders for dashboard access or storage ran on 

the server. Folders were organized by run number/ duration, with name of the file containing the 

sub-tray number and timestamp.  

The intervals at which data was received varied. Sensor data was usually received once 

every 5-15 min based on the sensor, actuator data was on-the-go basis based or when the action 

was performed, and image data was retrieved only as per user’s request. A summary of the database 

structure at the end of the experiment is shown in Figure 3.13. 

 

Figure 3.13. Database structure for storing sensor data with expected frequency of update 

3.4.4 Application Layer 

A client-side web application was developed to visualize sensor data and control actuators 

remotely. Dash python framework was used for building powerful visualizations with the data and 

enable quick deployment. Connection to cloud database was achieved using PyMySQL whereas 

climate, treatment monitoring, camera data was continuously retrieved by frequent callbacks 

facilitated by Dash. Multiple MQTT clients ran at the backend of the application to provide control 

functions in real-time. A sample software pipeline for triggering an irrigation cycle is shown in 
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Figure 3.14. Since the tasks were not instantaneous to keep the user in loop, the progress/ status of 

the actuator function was streamed till the task was completed.  

 

Figure 3.14. Example of a control operation pipeline (irrigation) 

3.5 Edge Computing 

3.5.1 Use cases 

The value proposition of edge/ fog computing lies in leveraging the processing power of 

multiple local devices to enable enough quality of service (QoS) for some computationally 

intensive tasks as well as reduce latency. The testbed was designed under such paradigm and edge 

computing was used in the following manner:  

• Reducing latency - When the user triggered irrigation of a specific tray, the flow sensor 

values were polled at the RPi upon receiving the user signal, sensor data was locally 

assessed for anomalies for action and periodic progress notifications were sent to the user 

as opposed to sending every pulse.  

• Computation offloading - Images were processed locally on the RPi edge and a summary 

of the information obtained from them was sent over to the cloud. 

• Reducing data traffic - Since the edge has in-built data storage capability, instead of 

sending data as soon as it was captured, the data points were bundled at the local server 

and synchronized with the cloud every 15 mins. The data that was captured from 

continuous reading of sensors like flow meters was stored locally at the node and only sent 

over in case of anomaly or upon request by the user. 
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3.5.2 Experiments 

• To establish the necessity of edge computing for latency sensitive applications, one way 

latency tests were conducted for different QoS levels over 3 days each. An MQTT Client 

(Partner A) ran on RPi node in the greenhouse while another client (Partner B) ran on the 

cloud server. Latency was measured at the receiving client as the time elapsed between 

message origin at sending client to arrival at the receiving client. The measurements of 

average latency and observations from the experiment are provided in results section. 

• To strategize the reduction of traffic at the local network or cloud, an analysis of a typical 

operation at the local server was performed under two scenarios – A) Data is uploaded 

from local DB into cloud every time a sensor sends data, B) Periodic update every 15 mins  

3.6 Anomaly Detection 

3.6.1 Use cases 

 A mapping of use cases was created between the types of anomalies that can arise from 

different sensors on the farm and techniques to handle them and is shown in Table 3.2. Numerous 

experiments were conducted on data from climate sensors and different techniques were explored. 

The data preparation and details of the process are discussed in the following sections.   

3.6.2 Exploratory Data Analysis and Pre-processing 

For time-series based algorithms, it is essential that the data is in continuous blocks. 

However, the system had significant chunks of missing data owing to issues faced because of 

MQTT, internet protocol (IP) address changes and Wi-Fi. The longest possible interval of data 

with no issues or least issues of discontinuity is considered as training set and the rest of them are 

used for different test sets, validation set. In case of a discontinuity, if the data was missing for less 

than 1 hour, it was filled with previous known value automatically by the code. If the data was 

missing between 1 to 3 hours, it was filled with values from a similar interval on the day before or 

later after manual verification. If more than 3 hours were missing, the day was deleted. 

Data cleaning required identification of normal and abnormal points. Empirically, anomalies 

rarely appear in the dataset, but time series plots, box plots were drawn to observe any potential 
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ones. Literature also suggested that climate parameters follow binormal distribution, so density 

plots were drawn to verify this and further obtain thresholds for eliminating extreme points. Z-

scores were used to detect outliers and points beyond threshold 𝜇 − 3𝜎 and 𝜇 + 3𝜎 are removed 

iteratively until there is a clean dataset. A manual inspection was also done to remove any further 

deviant points. 

Table 3.2. Different types of anomalies, their use cases, and techniques to handle them 

Anomaly 

Type 
Use cases Techniques to handle 

Point 

anomalies 

• Occasional spurious values by sensors because of 

interference or noise or software error 

• Missing data chunks which might point to network 

connectivity issues at the node 

• Standard quantile-based outlier 

detection methods, prediction-based 

methods like regression, NNs 

• Threshold on data receiving intervals at 

the server 

Contextual 

anomalies 

• Deviation from expected correlation between multiple 

climate sensors in use at the same time 

• Deviation from expected correlation between water 

quality sensors of similar treatments 

• PAR sensor values not reflecting the 18h photoperiod 

condition which might mean that LED is not working or 

software error with the controlling code. 

• Pattern detection methods like auto-

encoder, LSTM 

• Validation with expected patterns from 

previous data 

Collective 

anomalies 

• Gradual failing of an actuator, for e. g. reduced flow rate 

in water sensors indicating a blockage at the valve, pump 

failing or power supply issues. 

• Water flow sensor failure, if designated number of pulses 

exhibit deviant pattern from data captured at calibration. 

• Height of the microgreens in a tray not increasing over 

days calling for reactive operation 

• Time series-based methods 

• Pattern detection methods like auto-

encoder, LSTM 

 

3.6.3 Anomalous Data Generation 

For inducing anomalies into the clean training datasets, a contamination % of the training 

data was chosen and point, contextual, collective anomalies were imputed in a ratio of ~3:2:5. A 

lower overall number for contextual anomalies was chosen given the non-triviality of imputing 

these anomalies and the data size we have. Collective anomalies need to be in groups, so a higher 

fraction was allocated for them. Rest of the fraction were made point anomalies. 

For point anomalies, random indices were chosen from the dataset and the corresponding 

points were replaced by anomalous values that were generated from a uniform distribution between 
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[theoretical minimum value, 𝜇 − 3𝜎] and [𝜇 + 3𝜎, theoretical maximum value]. For contextual 

anomalies, random windows corresponding to 12 h length were chosen and either the maximum 

value was replaced by minimum, or the minimum was replaced by maximum value. For collective 

anomalies, several consecutive data points with variant length values between 3 to 6 were selected 

and replaced with values that were 10 to 15 hrs away from the selected points.  

3.6.4 Modeling pipeline for the experiments 

For ease of reference, the original dataset was referred to as 𝐷𝑟𝑎𝑤, the clean dataset with 

outliers removed was referred to as 𝐷𝑐𝑙𝑒𝑎𝑛 and the dataset imputed with anomalies was denoted as 

𝐷𝑎𝑛𝑜. A subscript of train/ test data like 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑟𝑎𝑖𝑛 or 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑒𝑠𝑡 was used to depict the training 

and testing sets as used. The property of interest was shown in the brackets following the dataset 

like 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑟𝑎𝑖𝑛(𝑇𝑒𝑚𝑝).  

Unsupervised models were trained to output two classes (anomaly/ not) from the data fed 

into them. Unlabeled 𝐷𝑎𝑛𝑜,𝑡𝑟𝑎𝑖𝑛  was used for training and 𝐷𝑎𝑛𝑜,𝑡𝑒𝑠𝑡  for testing. Supervised 

learning models as classification problems were not implemented due to the known pitfalls with 

imbalanced datasets and their lesser popularity for anomaly detection. Also, the dataset we have 

becomes very small to explore these in attempts to balance it. For supervised prediction-based 

algorithms 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑟𝑎𝑖𝑛  was used for training and 𝐷𝑐𝑙𝑒𝑎𝑛,𝑡𝑒𝑠𝑡  for predicting the future values. 

𝐷𝑎𝑛𝑜,𝑡𝑒𝑠𝑡 was compared with this set and based on a quartile or fixed threshold a point is flagged 

as anomaly/not. The working pipeline of data processing, modeling is shown in Figure 3.15.  

3.6.5 Models used in experiments 

Numerous unsupervised learning algorithms that were discussed in literature were 

explored. A general summary, with the strategy to extract the best performance from a particular 

model and comments are mentioned in Table 3.3. Numbers supporting the comments follow in the 

results section. In prediction-based models, to start from the simplest, linear regression was 

considered. Taking advantage of the Scikit-learn (Pedregosa et al., 2011) linear model library 

different regression methods were evaluated. ARIMA model was chosen initially, it performed 

well on the training data but generating a rolling forecast for the testing data took long hours (at 

least 6 hrs for 2000 points) and parameter tuning was more time consuming. Hence ARIMA model 
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was not chosen for further consideration. A tree-based model Gradient boosting regressor (GBR) 

was also tested out. Moving to neural networks, a simple artificial neural network (ANN) with two 

dense layers was evaluated. Similarly, LSTM and Bi-LSTM with one LSTM/ Bi-LSTM layer 

followed by one dense layer were evaluated. All the neural networks were trained to 10 epochs, 

although in most cases they converged within 2-3 epochs. A point is flagged as anomaly if the 

relative error between predicted value and actual value is greater than threshold. The threshold was 

chosen from receiver operator characteristic (ROC) curve or precision-recall (PRC) curve.  

 

 

Figure 3.15. Data preparation and modeling pipeline for experimenting with different anomaly detection 

algorithms 
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Table 3.3. Summary of hyperparameter strategy and general performance of unsupervised models for 

anomaly detection 

Model Nature Hyperparameter strategy Comments 

Histogram-

based 

outlier 

score 

(HBOS) 

Statistical, Non-Parametric, 

Proximity-based 

Fixed no. bins = 

√𝑁𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

Proximity based methods 

usually only work well 

with global outliers 
Kernel 

density 

estimation 

(KDE) 

Statistical, Non-Parametric, 

Proximity-based 

GridSearch over different kernels 

and bandwidths. Cutoff quantile 

for threshold = 0.01 

K-nearest 

neighbors 

(KNN) 

Clustering, Proximity-based 

Iteratively choose 

num_neighbors. Cutoff distance 

quantile = 0.01 

Local 

outlier 

factor 

(LOF) 

Clustering, Proximity-based GridSearch over num_neighbors 

The model is either 

sensitive to only one of 

local or global outliers, 

but not both at any time 

Elliptic 

envelope 

(EE) 

Probabilistic Contamination = 0.01 

Expects underlying data 

to be Gaussian and good 

for global outliers 

Cumulative 

sum control 

chart 

(CUSUM) 

Probabilistic Choose h, k iteratively 

Sensitive to small changes 

but fails to detect larger 

ones. So does not work 

well when the base data is 

erratic 

GMM Probabilistic 

Num. clusters set to 2 assuming 

normal points & outliers fall 

under different Gaussians 

If underlying distribution 

is multi-Gaussian like 

RH, it fails 

Isolation 

forest 

(iForest) 

Ensemble, Tree-based 
GridSearch over different max 

tree size 

Does not work for 

contextual anomaly 

3.7 Yield Prediction 

3.7.1 Problem Formulation 

The goal was to predict yield based on canopy images captured at certain time intervals 

pre- harvest. This was formulated as a regression problem for deep learning model where an RGB 

image collected ‘t’ time ago from the harvest was tagged as ‘x’ variable with the weight at harvest 

as ‘y’ variable. Height was also considered one of the ‘x’ variables when available in one 

experiment. 
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3.7.2 Data Preparation 

 

Figure 3.16. Flow chart showing data frame preparation from images captured by the gantry for feeding 

into deep learning models 
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Images acquired of microgreen canopy from gantry system were processed as shown in 

Figure 3.16 to feed the deep learning model. Trays that do not have any growth (Weight 0) were 

removed as it was raising issues in calculating the error metrics mean absolute percent error 

(MAPE) along with not having any significance. The images when acquired were 1024x768 pixels 

which were cropped roughly into half, i.e., brought down to 512x768 pixels per sub-tray which in 

turn were resized to 224x224 pixels for being fed to the deep learning architectures.   

3.7.3 Code flow 

Models were built in python using Keras and TensorFlow backend on Google Colab. A 

typical workflow of the code is shown in Figure 3.17. All fitting and callbacks were written in a 

generic function which can take a specific model as input and keep rest of the setup same for 

comparison. Each model gets its own separate function and experiments were performed with a 

custom CNN (referred to as SmallCNN further), ResNet50 (He et al., 2015) with no top layer, 

custom layers added (referred to as ResNet50 further) and Efficient Net B0 (Tan and Le, 2019) 

with no top layer, custom layers added for regression (referred to as EffNetB0).  

 

Figure 3.17. Code flow in Keras for yield prediction problem 
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3.8 Plant Growth 

A growth cycle lasted between 10-14 days for the crops grown in this research. Light duration, 

nutrient solution concentration, and seeding density were varied based on the experimental design. 

The timeline of a typical cycle is shown in Figure 3.18. Seeds were sown in the growth trays lined 

with Biostrate substrate and kept for germination in dark for 2-3 days. The trays were later moved 

to the indoor farm wherein irrigation and light duration were handled by scheduled automations 

throughout the growth cycle. Two sub trays per tray were sampled to harvest on the last four days 

of the cycle (referred to as day n-3, n-2, n-1, and n with n being the length of the growth cycle for 

the corresponding crop). The height and weight measurements of the plants were carried out 

manually using a hand-held digital roller electric ruler (DZT1968, Guang Dong, China) least count 

0.1cm and an electronic portable balance (SPX6201, Ohaus, Parsippany, New Jersey) least count 

0.1gm. Once the data was captured, a statistical analysis to study factor effects on weight was 

performed according to the method displayed in Figure 3.19 

 

Figure 3.18. Timeline of a typical growth cycle of microgreens 

Figure 3.19 Analysis method for establishing factor-effects on microgreen weight 

Filter values < Threshold 
(Cabbage, Radish - 15 

gms, Broccoli – 12 gms)

Manually verify if there is 
a decreasing trend in the 
trays values, if there’s 

more than 10gms 
difference-removed val

EDA and interactive plots 
to check for effects

Fit full model (Make sure 
to set the reference level ), 

then remove 3 factor 
effects and fit model

Run model diagnostics
Reduce model to 

significant interaction 
terms 

Run model diagnostics 
again

Store model summaries
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 RESULTS AND DISCUSSION 

4.1 Design and Implementation of the system 

Numerous challenges were encountered during the system development. Emphasis had been 

placed on the safety, reliability, and reusability while design. The number of components had also 

been kept minimal and isolated enough to facilitate scaling. I have listed out a few aspects taken 

into consideration and challenges faced so that they can serve as a reference to practitioners.  

4.1.1 Power supply 

• There had been several system crashes of RPis triggered by power fluctuations despite 

using the specific rated adapters or sometimes even from the approved vendors. Hence, it 

was essential to choose a stable AC to DC adapter that could provide enough current for 

powering the sensors and the controller. Power supplies that have a slightly higher wattage 

than the required, but within the specified limits of the micro-processor were used for 

reliable operation. 

• It was essential to plan for power supply provision for the whole setup of sensors. The 

current system required us to expand supply lines multiple times to accommodate more 

devices in a greenhouse that originally only had provision for powering LEDs. 

4.1.2 Lighting module 

• Individual dimmers were replaced with digital PWM dimming from a central controller 

which helped reduce hardware and achieve synchronized control of all the LEDs.  

• To accurately measure PPFD incident on a horizontal surface, the sensor must be level. 

Hence a leveling plate was also bought from Apogee, spirit level was checked before each 

run to prevent inaccurate measurements. 

• Calibration factors for the quantum sensor varied with LEDs due to non-ideal spectral 

response of the sensor in photosynthetically active radiation range. Thus, a co-ordination 

with the LED manufacturers was required to obtain detailed spectral intensity 

characteristics. This data was in turn uploaded into Apogee calibration tool available 



 

59 

 

publicly to obtain correction factors. For instance, LED B which had emphasis on blue 

and red wavelengths had an error of 11.8% in the reported PPFD without a correction 

factor (which was determined as 1.13 from the tool to bring the error within 5%)  

• To prevent sudden fluctuation of voltages and tripping of mains due to sudden shutting 

down/ turning on of LEDs, as a good practice with switching of high voltages, a delay of 

30s was maintained between the shutting off LEDs in the greenhouse. Additionally, the 

LEDs were gradually turned up to the desired intensity (soft start to minimize start-up 

surge current) 

• Although the LED intensity has a linear response to control voltage, the variability in 

components and application makes it imperfect, especially with PWM. Hence, the voltage 

was adjusted iteratively by using the monitoring sensor to attain desired PPFD.  

• Specifications of LEDs vary based on coverage area, the height at which LEDs are 

mounted and the standard used by the manufacturer. For instance, one of the LEDs had a 

light distribution angle of 120°. At a height on 45 cm and maximum voltage of 10V at the 

controller, a tray of microgreens receives only 2/3 of what it receives when at 30 cm. 

4.1.3 Irrigation and water quality modules 

• Lab-grade water quality sensors were expensive with the setup of three sensor circuits+ 

probes+ tentacle costing ~$750. Hence only one such sensor setup was built at each table 

and the irrigation module was programed to use it sequentially i.e., a tray was emptied to 

the measurement jug where the readings were taken, and this jug was cleaned out before 

draining of next tray begins. This added about 10 mins to the time it took to finish the 

irrigation cycle of each tray. Clean water was used to rinse the measuring jug between 

treatments to prevent contamination from earlier readings.  

• Physical compatibility of components on the irrigation pipeline had been a huge challenge, 

especially because of the imposed budget constraints and ready availability. The current 

pipeline for input water supply is shown in Figure 4.1. Pump was chosen based on delivery 

height, distance, and voltage compatibility. Solenoid manifold was used to facilitate 

convenient splitting of the inflow to supply to 6 trays and voltage compatibility. Flow 

meter size was chosen based on the tubing size upstream. There was also the issue of hose, 

barbed or threaded connectors. Choice of tubing followed the choice of hardware 
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compatibility and flexibility required to reach from solenoid to tray. Thus, a carefully 

deliberated irrigation system planning is essential. 

• No significant differences were observed between accuracy of flows between the cheap 

and expensive sensors in a constant pressure setup. However, the expensive flow sensors 

were truer to their specifications sheet and followed the number of pulses/liter number 

very closely, while the cheap sensors required heavy recalibration. Additionally, cheap 

sensors were more sensitive to the placement in the water line, flow rate (even within the 

range of the sensor) with occasional spurious values. 

• To facilitate automated inflow and outflow, holding the tubing in place was imperative. 

So, the standard 1020 trays were modified by drilling a hole in the sidewall and securing 

with grommets to insert tubing. A safety hole was also drilled to prevent excess watering 

in case of flow sensor/ relay failure. 

• Since the irrigation system carried nutrient solution, to steer clear of algae in the system it 

was considered ideal to block light from all the water flow routes by means of using black 

tubing or covering the solenoids. 

• Water level sensors were connected to Arduino pins in two runs to test if they could be 

used to make irrigation decisions. But fixing them in position was challenging and their 

accuracy in sensing level, response speed was questionable. They could be used to detect 

the presence of water but might not be reliable enough for turning the motors on/ off.  

 

Figure 4.1. Inflow part of the irrigation pipeline 

4.1.4 Climate modules 

• BME680 was connected via I2C and was sensitive to length. So, sensor needed to be close 

to the MCU. 

• From the calibration setup, it was found that the differences in the parameters between 

local climate sensors vs BME680 increased sharply when the temperature is high. 

BME680 showed sharp ups and downs in daytime temperatures as compared to ATMOS. 

One potential reason could be that ATMOS was housed in a radiation shield which might 
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smooth out changes in microclimate around the measurement area of the sensor. Pairs of 

DS18B20 and DHT11 that were physically located close by behaved similarly, with DHTs 

averaging a 0.6° higher measure than DSs. However there had been a difference between 

DS1 and DS3, which could be attributed to the distance in space between the sensors in 

the setup. Thus, it was observed that sensors of similar kind behave similarly and can be 

compared with each other, but comparison between sensors of different kinds measuring 

the same parameters should be made with caution. A few plots demonstrating these 

observations are shown in Figure 4.2. 

 

Figure 4.2. Readings and differences between some sets of microclimate sensors 

• It was observed that environment conditions around the central sensors were different 

from those around the trays. This was attributed to heating from LEDs, plant transpiration, 

difference in air circulation over the plants given they are more closed. To gauge this 

difference, sensors were placed on some trays. Regions below sheet LEDs turned out to 

be 1-3° C warmer than outside, while the ones below bar LEDs did not exceed 0.5° C.  

4.1.5 Data and Connectivity 

• To prevent loss of data, it was stored at multiple locations. It was captured and stored 

temporarily at the edge to account for network discontinuities and retrieved at the end of 

the cycle. It was also stored in a local DB which was periodically synced with the cloud 

and both the copies were retained.  



 

62 

 

• The frequency at which different data points were captured was chosen discretely. For e.g., 

BME680 can provide a reading at few second intervals (1-3s), but this application only 

read it every 5 mins as the indoor settings imply no sudden changes in environment 

conditions. By taking such measures, power consumed at the nodes was reduced. This also 

helped avoid data traffic, storage overflow and post-processing efforts to down-sample. 

• The system in the greenhouse zone was behind a secure firewall and the only mode of 

two-way communication with devices was via MQTT over transport layer security (TLS). 

This MQTT broker was hosted on another secure server that also hosted dashboard, DBs. 

• A static IP could not be obtained for the devices which created troubles with access via 

VNC as well as sending the data over HTTP. Hence a script to notify changes in IP was 

deployed on the nodes (RPis). 

4.2 Real-Time Control and Monitoring 

4.2.1 Experiment to measure latency in the system  

Average latency measurements of raw and filtered measurements (removing >10s values) 

are provided in Table 4.1. The high values of average and standard deviation of latency in QoS 1,2 

were observed around client reconnect period or occasional traffic at the broker and these values 

occur <1% of over 10,000 measurements. However, from a safety and precision standpoint, it is 

essential that our application handles these cases reliably. For e.g., with a cloud-based anomaly 

detection in the event of flow meter failure, a delay of 100 secs would imply 5l of water being sent 

to the tray which leads to heavy overflow. Hence, it is essential to have such functions run at edge.  

Table 4.1. Raw and filtered measurements of one-way latency observed over 3 days 

Case Client 

Subscribe 

QoS Publish QoS 

Raw measurements (ms) Filtered measurements (ms) 

Avg. 

Latency 

Std. Dev. of 

Latency 

Avg. 

Latency 

Std. Dev. of 

Latency 

1 

Partner A 2 2 46 302 46 228 

Partner B 2 2 940 9784 62 342 

2 

Partner A 1 1 148 1758 67 470 

Partner B 1 1 6836 56535 49 446 

3 

Partner A 0 0 12 87 12 87 

Partner B 0 0 38 827 20 190 

4 

Partner A 2 1 17 155 16 104 

Partner B 0 0 279 5090 19 213 
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4.2.2 Analysis of local-cloud sync operation 

A typical code block to sync a data table from local server to cloud along with the time 

taken for each step is shown in Figure 4.3 (averaged over 100 runs). It goes from establishing a 

secure shell connection to cloud to finally committing the changes in the corresponding cloud 

database. This profiling revealed that 80% of the time was consumed in operations related to 

establishing connectivity. Thus, minimizing the number of times this code is run helps reduce the 

resource utilization at the local DB. It in turn also reduces the data traffic both at the local gateway 

and cloud by reducing the number of times a connection is initiated to synchronize both DBs. An 

analysis of the two scenarios over 4 data tables in the DB is presented in Table 4.2. Scenario A) 

Data is uploaded from local DB into cloud every time a sensor sends data, B) Periodic update 

every 15 mins. Hence for sensors that do not relate to control operations and are not latency 

sensitive, a periodic synchronization with the cloud was carried out once every 15 mins. 

 

Figure 4.3 Time consumption distribution in a typical local<->cloud sync operation 

 

Table 4.2. Analysis of time and memory consumption in scenarios A and B 

 Scenario A Scenario B 

Num update operations 12 4 

Num of times cronjob is run 45 1 

Avg memory usage by cronjob/ program run 55 MiB 55 MiB 

Amount of time Pi this memory would be occupied  34116 ms 985 ms 

   

{(Total connection times * Num of connections made) +  

(Total fetching time * Num of fetches) +  

(Total updating times * Num of updates)} 

{292 ms * 45 +  

148 ms * 45 * 3 +  

83 ms * 12} 

{292 ms * 1 + 

148 ms * 3 +  

83 ms * 3} 

Bandwidth 100 kB/s *12 100 kB/s *4 

Data Latency (max) 20 sec 15 mins 
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4.2.3 Adoption of results 

A sample strategy of connectivity of nodes along with the functionalities that can be 

performed by them in-situ is shown in Figure 4.4. This framework was formulated after deliberating 

potential alternative paths to achieve minimization of latency in real-time applications, trade-off 

with latency and data traffic for passive sensor data and utilization of storage, computational 

capacity at the nodes.  

 

Figure 4.4. A typical edge-fog-cloud pipeline. Connectivity and functionalities at node devices 

4.3 Anomaly Detection Algorithms 

The data captured by BME680 sensor was used for anomaly detection experiments. The 

period of ‘4/29/2021’ to ‘5/29/2021’ had been the longest and most reliable after all the identified 

issues were fixed. So, this data is used for training. In the training set, 8196 data points were 

captured in 5 mins intervals with 5 hours of data missing on ‘5/5/2021’ due to internet downtime. 

Hence, the data from this day was deleted to reduce impact on further machine learning tasks and 

maintain continuity. The rest of the data was resampled to 5 mins intervals which resulted in a 

total of 8479 points. Similarly, other chunks of data were used for testing, validation and their 
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summary are given in Table 4.3 with Test1 being the primary testing set. From this data outliers 

were removed to obtain clean datasets. Figure 4.5 which has density and box plots reveals that 

temperature, RH did not have any outliers, but CO2 data had a considerable number. So those 

points were removed and replaced with previous correct values. Once a clean data was obtained, 

anomalies were imputed based on the process described in 3.6.3. For instance, at 1% contamination 

rate, out of 8479 datapoints, 85 points were modified to introduce anomalies property by property. 

A plot of sensor values in period of interests in training and Test1 datasets is shown in Figure 4.6.   

Table 4.3. Different periods of data considered for experiments of anomaly detection 

Data Number of samples 

Number of anomalies 
(by contamination) Period 

1% 5% 

Train 8479 85 422 04/29/2021 - 05/29/2021 

Test1 2818 43 138 04/06/2021 - 04/15/2021 

Test2 3315 34  10/16/2021 - 27/10/2021 

Test3 1401 15  11/24/2021 - 11/29/2021 

Validation 1186   03/25/2021 - 03/29/2021 

 

Figure 4.5. Density and box plots of BME680, Gravity v1.1 data for identification of outliers 
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Figure 4.6. Time series plots of data captured by BME680 and Gravity 1.1 sensors by training and testing 

sets as well as different measured parameters 
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4.3.1 Experiments on temperature dataset 

Comparison of all identified models 

A comparison of performance between different models from an overall anomaly detection 

perspective in temperature dataset is shown in Table 4.4. It can clearly be seen that prediction-based 

methods are superior to unsupervised learning methods as they were able to capture more 

anomalies correctly with fewer false positives. Among the unsupervised models, density-based 

methods like KDE, HBOS, EE performed better albeit capturing only point anomalies most of the 

time. In prediction-based models, regressions perform surprisingly well, with performance at par 

with neural networks (Note that for prediction-based methods, these results correspond to a dataset 

processed at lag 3 value, i.e., past 3 values of the parameter were treated as features to predict the 

next interval). All-in-all prediction-based models were deemed better and chosen for further 

experiments and fine-tuning to derive better performance.  

Table 4.4. A comparison of models used for detecting anomalies in temperature data in terms of the 

number of anomalies identified correctly based on the type.  

Model Train Test 

false 

positives 

collective 

(47) 

context 

(10) 

point 

(30) 

false 

positives 

collective 

(16) 

context 

(3) 

point 

(9) 

ANN 3 26 9 30 3 16 3 9 

BayesianRidge 3 26 9 30 3 16 3 9 

BiLSTM 3 26 9 30 3 16 3 9 

ElasticNetCV 27 37 10 30 13 16 3 9 

HuberRegressor 3 25 9 30 3 16 3 9 

LSTM 3 26 9 30 3 16 3 9 

LassoCV 3 26 9 30 3 16 3 9 

LassoLarsCV 3 26 9 30 3 16 3 9 

LinearRegression 3 26 9 30 3 16 3 9 

PassiveAggressive

Regressor 

4 25 10 30 3 16 3 9 

RidgeCV 3 26 9 30 3 16 3 9 

KNN 0 0 0 23 0 0 0 9 

iForest 24 0 1 20 0 0 0 9 

LOF 55 0 0 0 26 0 0 0 

GMM 0 0 0 28 0 0 0 8 

CUSUM 22 0 0 22 12 0 0 7 

EE 24 0 1 30 47 0 0 9 

HBOS 16 0 1 30 45 0 0 9 

KDE 52 5 1 30 53 0 0 9 
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Comparison of prediction-based models at different lags 

Lag values 1 to 7 that correspond to 5 mins to 35 mins were experimented with as predictors 

for the next interval. False positive rates (FPR) are close to 0 for all the cases, given the nature of 

the problem. True positive rate (TPR), precision and root mean square error (RMSE) for the 

models under consideration on test data are shown in Table 4.5. RMSE remains constant with the 

increasing lag value implying that temperature values are best predicted just using a single 

previous interval excepting for gradient boosted regression (GBR). RMSE of GBR at a lag value 

of 2 is less than rest of the models for both train and test datasets which makes it the best predictor. 

However, precision and TPR are still the same as others which might be attributed to the fact that 

thresholds were incremented only in steps of 0.025 i.e., 2.5% relative error. Further 

experimentation with thresholds might be required to see if a better classification performance can 

be derived. Lag values of up to 4 are only shown in the table due to space constraints and the trend 

revealing no new information. 

Table 4.5 Performance of prediction-based methods for different lag values on test data 

  RMSE PRECISION TPR 

Model 1 2 3 4 1 2 3 4 1 2 3 4 

ANN 0.27 0.27 0.27 0.27 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12 

BayesianRidge 0.27 0.27 0.27 0.26 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12 

BiLSTM 0.27 0.27 0.27 0.27 71.79 93.33 90.32 87.5 65.12 65.12 65.12 65.12 

ElasticNetCV 0.27 0.27 0.27 0.27 71.79 70 68.29 87.5 65.12 65.12 65.12 65.12 

GBR 0.27 0.23 0.23 0.23 71.79 93.33 71.79 66.67 65.12 65.12 65.12 65.12 

HuberRegressor 0.27 0.27 0.28 0.3 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12 

LassoCV 0.27 0.27 0.27 0.27 71.79 70 90.32 87.5 65.12 65.12 65.12 65.12 

LassoLarsCV 0.27 0.27 0.27 0.26 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12 

LinearRegression 0.27 0.27 0.27 0.26 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12 

LSTM 0.27 0.27 0.27 0.27 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12 

PassiveAggressive 
Regressor 0.32 0.31 0.31 0.37 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12 

RidgeCV 0.27 0.27 0.27 0.26 96.55 93.33 90.32 87.5 65.12 65.12 65.12 65.12 

Comparison of prediction-based models with different temporal, windowing factors 

A common practice is to add temporal features while dealing with time series. Hence, a 

feature ‘time of the day’ (calculated as hour*60 + minutes) is added as a predictor variable and 

performance was tested (Scenario T). Similarly, window related features like difference, mean, 
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standard deviation were added as predictors (Scenario W). Finally, both were tested together 

(Scenario T+W). LSTM, Bi-LSTM, GBR showed very slight improvement in RMSE for a lag 

value of 2. Higher lag values showed an improved performance, but still less than lag 2. Thus, 

finally a lag value of 2, with temporal and window features were chosen as predictor variables 

(referred to as WT2 and used in experiments further). The details of the experiment are given in 

Table 4.6. 

Table 4.6 Performance of prediction-based methods with window, temporal features on test data 

 RMSE PRECISION TPR 

Model T W T+W T W T+W T W T+W 

ANN 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12 

BayesianRidge 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12 

BiLSTM 0.27 0.25 0.25 93.33 93.33 93.33 65.12 65.12 65.12 

ElasticNetCV 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12 

GBR 0.22 0.23 0.22 80 70 77.78 65.12 65.12 65.12 

HuberRegressor 0.33 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12 

LassoCV 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12 

LassoLarsCV 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12 

LinearRegression 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12 

LSTM 0.27 0.26 0.26 93.33 68.29 93.33 65.12 65.12 65.12 

PassiveAggressiveRegressor 0.33 0.29 0.29 93.33 93.33 93.33 65.12 65.12 65.12 

RidgeCV 0.27 0.27 0.27 93.33 93.33 93.33 65.12 65.12 65.12 

Comparison of prediction-based models for different test datasets 

 To verify if the models become obsolete after some time and to establish a frequency for 

re-training, models trained on the training period are tested on data from different time periods in 

the past (refer Table 4.3 for details of the time periods). Results are shown in Table 4.7. The 

generalization of GBR seems very poor, which again might be a thresholding problem. Rest of the 

models behave very similarly with linear regression outperforming rest in precision on Test1 

dataset. This experiment revealed that in the context of indoor climate, frequent updating of models 

might not be necessary as testing with data from 6 months away did not deteriorate the performance 

achieved. 
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Table 4.7 Performance of prediction-based methods on different test sets 

Model 
PRECISION TPR 

Train Test1 Test2 Test3 Train Test1 Test2 Test3 

ANN 97.06 93.33 84.38 87.5 75.86 65.12 79.41 93.33 

BayesianRidge 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33 

BiLSTM 97.01 93.33 82.35 87.5 74.71 65.12 82.35 93.33 

ElasticNetCV 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33 

GBR 88.37 77.78 17.65 58.33 87.36 65.12 97.06 93.33 

HuberRegressor 97.01 93.33 84.85 87.5 74.71 65.12 82.35 93.33 

LassoCV 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33 

LassoLarsCV 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33 

LinearRegression 97.01 93.33 90.32 87.5 74.71 65.12 82.35 93.33 

LSTM 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33 

PassiveAggressiveRegressor 97.01 93.33 84.85 87.5 74.71 65.12 82.35 93.33 

RidgeCV 97.01 93.33 87.5 87.5 74.71 65.12 82.35 93.33 

Comparison of prediction-based models for different contamination rates in test data 

The original train and test data were imputed with 1% anomalies, i.e., contamination rate 

= 0.01. Thus, the threshold was also chosen based on classification performance with respect to 

this rate. To check what happens in a real scenario if more anomalies start to appear, the same test 

data is made up to contamination rates of 0.05 and 0.1. It can be seen from Table 4.8 that point 

anomalies are identified correctly and there are close to 0 false positives. Collective and contextual 

anomalies exhibited poor performance. Upon deep dive into the data, it was observed that this was 

more because of the way the data was prepared for the experiment. For e.g., out of the collective 

anomalies that were not captured in most cases, 37 instances were <= 1° C from the original clean 

values that were replaced. GBR was able to capture a few of them between 0.8°C - 1° C because 

of its better prediction capability and tighter threshold. Therefore, larger dataset would be needed 

to impute anomalies discrete from actual values and test the performance. Theoretically however, 

it should not matter as the prediction is made for clean data and if 100% of the data deviates from 

the expected value, it should be reported.  

4.3.2 Experiments on CO2 dataset 

 CO2 dataset provided a peculiar case. It was a noisy signal with too many fluctuations from 

interval to interval. All the prediction models failed with very poor precision-recall curves that 
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suggested thresholds over 0.7. This implies to label data that is more than 70% away from predicted 

value as anomaly. Still, an estimate of around 0.1- 0.15 was chosen based on ROC curve to check 

the trade-offs which explain the massive number of anomalies predicted, low precision in  Table 

4.9. Modifications of deep-learning models by introducing an extra layer and dropouts did not yield 

any results. KNN, HBOS managed to capture most of the point anomalies despite the noise, with 

KNN keeping up the status in test set as well. Noise removal or sensor fusion could be explored to 

reliably detect anomalies in this data. 

Table 4.8 Performance of prediction-based methods at different contamination rates 

Model Contamination = 0.1 Contamination = 0.05 

false 

positives 

collective 

(151) 

context 

(33) 

point 

(99) 

false 

positives 

collective 

(73) 

context 

(16) 

point 

(49) 

ANN 2 90 22 99 2 33 9 49 

BayesianRidge 2 91 22 99 2 34 9 49 

BiLSTM 2 91 22 99 2 33 9 49 

ElasticNetCV 2 91 22 99 2 34 9 49 

GBR 8 107 24 99 8 43 9 49 

HuberRegressor 2 91 22 99 2 34 9 49 

LSTM 2 91 22 99 2 33 9 49 

LassoCV 2 91 22 99 2 34 9 49 

LassoLarsCV 2 91 22 99 2 34 9 49 

LinearRegression 2 91 22 99 2 34 9 49 

PassiveAggressive 

Regressor 

2 90 22 99 2 33 9 49 

RidgeCV 2 91 22 99 2 34 9 49 

 

Table 4.9. A comparison of models used for detecting anomalies in CO2 data in terms of false positive 

rate, true positive rate, precision and RMSE when applicable. 
 

Training dataset (N_ano = 87) Test dataset (N_ano = 43) 

Model N_ano FPR TPR Prec RMSE N_ano FPR TPR Prec RMSE 

CUMSUM 23 0 0.18 0.7 
 

4 0 0.09 1 
 

EE 84 0.01 0.36 0.37 
 

9 0 0.21 1 
 

GMM 
 

0 0 0 
  

0 0 0 
 

HBOS 38 0 0.36 0.82 
 

18 0 0.19 0.44 
 

KDE 85 0.01 0.36 0.36 
 

42 0.01 0.23 0.24 
 

KNN 30 0 0.34 1 
 

11 0 0.19 0.73 
 

LOF 61 0.01 0 0 
 

25 0.01 0.02 0.04 
 

iForest 84 0.01 0.32 0.33 
 

28 0.01 0.21 0.32 
 

LSTM 1640 0.19 0.71 0.04 86.06 549 0.19 0.44 0.03 71.08 

PassiveAggressive 

Regressor 

1094 0.13 0.48 0.04 82.42 292 0.1 0.35 0.05 73.08 
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4.3.3 Adoption of results 

 With a comprehensive consideration of the modeling experiments and real-world 

scenarios, the following anomaly detection framework is suggested. 

1. Script running on cloud server to check for updates in database and point suggestive actions 

to the user (Figure 4.7. Algorithm for system monitoring at cloudFigure 4.7) based on fault 

localization. The actions and operating procedures should be learnt, standardized over time 

for a robust system with updating of the faults database when a new issue is noted.  

2. Deployment of algorithms at the edge node (Figure 4.8). In practice, point anomalies do not 

usually reflect any control failures, but they lead to biased analysis later. Hence, a suitable 

algorithm can be used to flag anomalies (which is also a regression model in the case of 

temperature data) and later a regression model can be used to predict, replace the 

anomalous point before updating to database.  

3. Periodic model update at the node given the seasonality and change in conditions/ crop 

cycles to keep the model relevant.  

Table 4.9 continued 

HuberRegressor 1670 0.19 0.75 0.04 71.95 550 0.19 0.58 0.05 61.88 

BiLSTM 2144 0.25 0.75 0.03 71.46 739 0.26 0.53 0.03 64.93 

ANN 1713 0.2 0.74 0.04 71.08 553 0.19 0.56 0.04 61.15 

LassoLarsCV 1803 0.21 0.67 0.03 70.54 595 0.21 0.53 0.04 60.76 

LassoCV 1803 0.21 0.68 0.03 70.54 596 0.21 0.53 0.04 60.77 

ElasticNetCV 1798 0.21 0.68 0.03 70.53 594 0.21 0.53 0.04 60.78 

BayesianRidge 1798 0.21 0.68 0.03 70.52 592 0.21 0.53 0.04 60.79 

RidgeCV 1798 0.21 0.68 0.03 70.52 592 0.21 0.53 0.04 60.79 

LinearRegression 1769 0.2 0.69 0.03 70.51 579 0.2 0.53 0.04 60.72 
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Figure 4.7. Algorithm for system monitoring at cloud 
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Figure 4.8. Flow of events in an anomaly detection pipeline at edge node 

4.4 Yield Prediction Algorithms 

Over two runs of Broccoli, six days of data was available which made up to a total of 170 

images. Histogram of the filtered harvested weights is shown in Figure 4.9. With these weights as 

target variable and images as predictors, deep learning models were run. 
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Figure 4.9. Distribution of weights of Broccoli microgreens in the Data Frame 

4.4.1 Results 

The train, validation, test datapoints were 137,17,16 in number, respectively. A baseline 

for the metrics mean absolute error (MAE), MAPE is created by assuming that training mean is 

the predicted value for all validation data. Rest of the models were compared against this naïve 

baseline which is 23% for this dataset and is shown by the red horizontal line in Figure 4.10. A 

freedom to train to 100 epochs was given to the model, but they stop at different points due to the 

implementation of early stopping callback which was a very generous 0.25 improvement of MAE 

over 10 epochs. The overall performance on validation and testing data, number of epochs the 

models ran to are shown in Table 4.10. Transfer learning models converged faster than the 

SmallCNN as anticipated. However, the confidence intervals of these predictions are questionable 

for two reasons. 1) The size of the dataset is too small to generalize. The model would result in 

very different values when run with different seeds. 2) The images are very similar to each other, 

especially at later stages of growth and in real-world too, yield is a function of leaf cover and 

height. Including a height data and other relevant parameters with respect to differential nutrient 

solutions etc. might help predictions better. Other CNN architectures that are discussed in literature 

for leaf-counting applications can be explored. 
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Figure 4.10. Training and validation MAPE plotted against number of epochs 

 

Table 4.10. Performance metrics of neural networks on predicting yield 

Model No. of 

epochs 

Val MAE Val MAPE Test MAE Test MAPE 

ResNet50 24 6.25 22.30% 6.92 32.20% 

EffNetB0 20 6.96 22.49% 7.13 30.41% 

SmallCNN 50 5.82 12.21% 6.76 29.79% 

4.5 Evaluation using plant growth 

The system was deployed 12 months ago in the greenhouse and functionalities were added to 

it on a gradual basis to achieve the configuration discussed in the paper. It had been used to collect 

over 300k sensor measurements and 5000 images of various experiments. It was used to 

successfully grow 5 batches of different microgreens (+2 test runs) under variable application of 

nutrition, light intensity, and seed density.  

The yields of these batches per tray by harvest day are shown in Figure 4.11. Cabbage was the 

first experiment at a scale of 3 benches and its yield suffered due to erratic irrigation. Radish run 

2 was the cleanest of all runs, with new grommets installed and sealed in place, safety hole to 

prevent overwatering which is very different from radish run 1 where there were issues due to 

trays over watering. Both broccolis run 1 and 2 showed similar pattern of growth, but broccoli 2 
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yield was slightly lower which might have been a result of rising temperature in the greenhouse or 

difference in nutrient solutions or few hours difference in harvesting times.  

 

Figure 4.11 Microgreen yield (weight in grams/ tray) by crop by day of harvest 

  

 

Based on the method discussed in Figure 3.19, analysis was performed on the yield data 

obtained from the previously mentioned runs. The significance of factor effects is shown in Table 

4.11. Density as expected had a significant effect on all the crops, but the impact varied from crop 

to crop. For instance, for radish, yields in density 1 oz are on an average 29% higher as opposed 

to density 0.75 oz across all nutrient solutions and lights whereas for broccoli it was 23% higher, 

cabbage 5% higher. It can be observed that nutrient solution was a significant effect for cabbage 

and radish, but not broccoli. The EC values tested for the former were 1.2-1.6 mS/cm as opposed 

to for the latter which were 1.4-1.8 mS/cm, hence the greens might have received abundant 

nutrients already to show any significant difference. The density-nutrient solution interaction is 

more pronounced in radish with density 1 oz at concentration 1.2 mS/cm being 15% lower than 

that at 1.6 mS/cm.  

It is evident from the graph earlier that weight increased by day and hence, day would have 

a significant effect. An interesting point to note in radish was that increase in day n-2 to day n-1 is 

not significant with a mere 5% change in average yield, but it picks up again by day n with a 
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difference of 23% between day 12 and day 14. This could be a considerable factor in performing 

cost-benefit analysis.  

Although light did not have any significant impact standalone, there were significant 

interaction effects with density or nutrient solution in radish. Higher concentration of nutrient 

solution under LED B did not show any significant impact but had 13-20% improvement over the 

lowest concentration under LEDs A, C. Within a given light density 1 oz is better than 0.75 oz, 

but by the light, density interaction, density 1 oz under LED C is 9% higher than the same density 

under LED B. For cabbage, density 0.75 oz under LED B had no difference compared to density 

1 oz under LED A and C and 1 oz under LED B is at least 12% greater than all the other LED-

density combinations.  

 

Table 4.11 Results of analysis of variance for factor effects on weight for different microgreens 

Factor Cabbage Radish (Run 2) Broccoli (Run 1,2) 

Light 
 

    

Density . *** *** 

Nutrient Sol ** ***   

Day *** *** *** 

Light*Density ** **   

Light* Nutrient Sol   *   

Density* Nutrient Sol   ***   

Light*Day       

Nutrient Sol*Day       

Density*Day       

Light* Nutrient Sol*Day       

Density* Nutrient Sol*Day       

Light*Density*Day .     

Light* Nutrient Sol*Density       

 

Significance codes : 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’ 
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 CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

An automated IoT-based testbed was developed by utilizing low-cost off-the-shelf sensors 

and components. This is one of the few studies that had implemented a system at a laboratory scale, 

conducted long duration experiments to report on anomalies with low-cost sensors and actuators, 

and reported the outcome in a detailed manner. A discussion on implementation challenges related 

to sensor calibrations in an indoor farm, design of irrigation systems, and providing reliable power 

supplies to electronics, is expected to help during future enhancements to the current design. 

In establishing a reliable control remotely and setting up the dashboard, challenges with 

communication protocols, latency in operations were overcome. A user dashboard was developed 

from scratch. Edge computing was utilized to mobilize resources and realize various functionalities.  

To ensure reliable operations and cleanliness of data, anomaly detection was implemented. 

Many techniques and experiments were performed to identify models that best detects anomalies. 

A practical and novel framework for fault localization in the sensor data capture pipeline was 

developed. 

A novel imaging system was built to explore yield prediction from images. A well performing 

model could not be identified with the data at hand and this aspect will require further exploration.  

Effects of lighting, nutrition solution concentration, seed density, and day of harvest on the 

growth of microgreens was evaluated using a split-plot design. Different microgreens showed 

different results. Light did not have a significant effect by itself in all cases but had some significant 

two-factor interaction effects. Nutrient concentration of 1.2 mS/cm had significantly lower yields 

than higher concentrations but increasing it beyond 1.4 mS/cm did not make any difference to the 

growth. Seeding density of 1oz had more yield than 0.75oz, but the percentage gain varied with 

nutrient concentration or lighting in cabbage and radish. Yield increased by the day of harvest, but 

sharp increases were noticed between first two days of harvest whereas, the rate of growth was 

slower beyond the second harvest day.  

This study can be seen as a start point of bringing in more automation, data-centric approach 

into microgreen growth or any hydroponic system and there are several aspects worthy of 

exploration. 
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5.2 Future Scope 

The overall goal of the study was to develop a system with low-cost, IoT devices driven 

indoor farm with reliable real-time remote control and move towards an intelligent farm 

management system. Some aspects that can be pursued in the future to advance these goals are 

mentioned under different headers as follows:   

5.2.1 System  

• In terms of choice of MCUs, cheaper alternatives like Pi-zero or particle photons or 

ESP8266 can be chosen. These choices were not explored due to a large inventory of RPis 

available in the lab and flexibility to experiment with sensors and actuators was a major 

consideration. Now that major features of the system have been designed, all these features 

could be implemented with the suggested alternatives in a more compact way. Cheaper 

chips could also facilitate for trade-offs between using more nodes, less wiring or more 

wiring originating from fewer nodes while keeping the cost of the system at a similar level.  

• Weather-proof packaging of the solution developed for commercial use and deploying in 

farm without interfering with operations will be a ground level challenge. This challenge 

is furthermore a motivation to explore vision-based applications using something like the 

imaging system designed in this study.  

• Advances are being made in the field of IoT at a rapid pace and the capabilities, costs of 

commercial cloud platforms are becoming competitive. Different IoT platforms like 

Thingspeak, Google cloud platform, IBM Watson IoT, Azure IoT can be contrasted as 

opposed to developing a dashboard from scratch for mid-scale operation, if the data 

ownership policies are not an issue. 

5.2.2 Algorithms  

• Developing a decision support system with prescriptive actions can help bridge the skill-

gap between field workers and technology. This requires capturing sufficient data across 

multiple runs and exploring further applications like nutrient requirement, predictive 

maintenance suggestions.   

• Opportunities with thermal images captured by the system need further exploration. 
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• Different models need to be explored for improving yield prediction and a reliable height 

measurement system is to be experimented with before integrating with the current design.  

• Flow meter anomaly detection requires further exploration to improve precision in 

irrigation and reduce the response time required in flagging of erroneous events. 

5.2.3 Databases 

• Better data management strategies to facilitate easy integration of new sensors into the 

system should be investigated. NoSQL could be one option to explore.  

• In the current setup, more images make the application very heavy as they are stored in a 

docker-container that is packaged along with the user application. The storage system as 

such is very primitive and optimizations can be brought in by making choices for ‘where 

and when to store what’.  

5.2.4 Miscellaneous 

• Further research is needed to develop affordable and precise moisture sensors for thin 

hydroponic substrates like Biostrate. Alternate methods for making irrigation decisions by 

replacing moisture sensors with a vision-based or nutrient-uptake based method could be 

explored. 

• Stronger growth trays with provision for in and outflows are to be considered for 

reusability and for reducing material movement in indoor farms. 

• Harvesting and seeding are the next labor-intensive tasks where precision is required for 

seeding and time management for harvesting. Automation for these operations is to be 

explored. 



 

82 

 

APPENDIX A. COST OF COMPONENTS IN THE SYSTEM 

Component 

Cost/ 

component 

Num in this 

Experiment Total Cost 

IRRIGATION SYSTEM    

Solenoid valves $28 18 $504 

Flow Meters $160 9 $1,440 

Sensor setup $750 3 $2,250 

Inflow Pumps $50 9 $450 

Outflow pumps $12 63 $756 

Relays $33 9 $297 

Power Supply $10 12 $120 

Tubing   $300 

LIGHTING SYSTEM    

PWM $50 3 $150 

PAR Sensors $269 9 $2,421 

Power Supply $20 3 $60 

IMAGING SYSTEM    

Gantry Rails $27 6 $162 

Thermal Sensors $110 2 $220 

IR Proximity Sensors $15 2 $30 

Pi Cameras $30 2 $60 

 RPis + kit + SD Card $70 2 $140 

Steppers + Belt + Pulleys + Drivers $46 4 $184 

Arduino $40 1 $40 

Wiring + Power Outlets + PCB + Power Adapters $82 1 $82 

CLIMATE    

Gravity CO2 + BME680 $82 1 $82 

DHT + DS local climate sensors $6 3 $18 

CONTROLLERS    

 RPi $70 4 $280 

Arduino $40 3 $120 

OTHERS    

Power Supplies (General 5V,9V) $20 3 $60 

Router $130 1 $130 

TOTAL*   $10,356 

 

*These costs are added costs from the experiment over the basic infrastructure needed for growing 

i.e., benches, LEDs, reservoirs for water/ nutrient solution, growth trays   
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