
ADVERSARIAL LEARNING ON ROBUSTNESS AND
GENERATIVE MODELS

by

Qingyi Gao

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Statistics

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Xiao Wang, Chair

Department of Statistics, Purdue University

Dr. Hyonho Chun, Co-Chair

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology

Dr. Guang Cheng

Department of Statistics, Purdue University

Dr. Jun Xie

Department of Statistics, Purdue University

Approved by:

Dr. Jun Xie

2

To my family.

3

ACKNOWLEDGMENTS

Throughout the academic journey these years, I have received a great deal of supports

and helps from the department of statistics at Purdue University.

First and foremost, I would like to express my sincere and deepest gratitude towards

my esteemed advisor, Dr. Xiao Wang, who led me to join the fantastic and mysterious

deep learning field. Dr. Xiao Wang has provided me many invaluable supports and guidance

during my PhD study. His patience and enthusiasm on research motivate me to catch up with

the updated developments in this field. I have learned a lot from him, such as independent

and critical thinking, rigorous attitude for research and scientific writing.

Besides my advisor, I would like to thank my other three committee members, Dr. Hy-

onho Chun, Dr. Guang Cheng, and Dr. Jun Xie, for their insightful comments and questions

that help me complete my dissertation. Especially, I am extremely grateful to my co-advisor

Dr. Hyonho Chun for the corporation with Dr. Hubo Cai from the School of Civil Engineer-

ing, from which I learnt how to efficiently and neatly present work to people with different

backgrounds.

I appreciate to work in STAT 301 team as a TA coordinator. Dr. Laura Cayon gave

me many useful guidance and suggestions on running the TA sessions especially during the

pandemic year.

My sincere thanks also go to my fellow students that I spent with at Purdue, Yixuan

Qiu, Yixi Xu, Sophie Sun, Yao Chen, Jiapeng Liu, Jungeum Kim, Yijia Liu, Siqi Liang,

Tianning Dong, Xiaochen Yang, Bingjing Tang, Haoyun Yin, Huiming Xie and Chuanhui

Liu. I especially thank my best friends Botao Hao and Peiyi Zhang, for their unlimited helps

and all the fun we have had during the past five years.

Last but not the least, I would like to thank my family for their unconditional love and

supports.

4

TABLE OF CONTENTS

LIST OF TABLES . 8

LIST OF FIGURES . 9

LIST OF SYMBOLS . 11

ABBREVIATIONS . 12

ABSTRACT . 13

1 INTRODUCTION . 14

1.1 Dissertation Organisation . 19

2 PRELIMINARIES . 20

2.1 Feed-forward Neural Networks . 20

2.2 Generative Models . 21

2.2.1 Generative Adversarial Networks . 22

2.2.2 Variational Auto-Encoders . 23

2.2.3 Normalizing Flows . 24

3 STATISTICAL LEARNING . 26

3.1 Overview . 26

3.2 Uniform Convergence . 28

3.2.1 Rademacher Complexity . 29

3.2.2 Growth function and VC dimension 31

3.2.3 Covering Number . 32

4 GENERALIZATION ERROR BOUNDS ON ADVERSARIAL LEARNING OF

DEEP NEURAL NETWORKS . 35

4.1 Related Works . 36

4.1.1 The Spectral Norm and The Rank in DNN 36

4.1.2 Natural Learning and Adversarial Robust Learning 37

5

4.2 Generalization Bounds for Adversarial Learning 38

4.2.1 An Upper Bound on Rademacher Complexity for Adversarial Learning 38

4.2.2 A Tighter Upper Bound on Rademacher Complexity for Adversarial

Learning . 41

4.3 Natural Learning vs. Adversarial Learning 44

4.4 Numerical Results . 48

4.5 Related Proofs . 50

4.5.1 Proof of Lemma 4.2.1 . 50

4.5.2 Proof of Lemma 4.2.2 . 56

4.5.3 Proof of Lemma 4.2.3 . 57

5 ON THE LATENT SPACE OF GENERATIVE MODELS 61

5.1 Latent Dimension Mismatch and the Encoder 61

5.2 Latent Wasserstein GAN . 66

5.3 Theoretical Results . 71

5.3.1 Estimation Consistency . 72

5.3.2 Generalization Error Bound . 75

5.4 Experimental Results . 78

5.4.1 Toy Data . 78

5.4.2 MNIST . 82

5.4.3 CelebA . 84

5.5 Related Proofs . 89

5.5.1 Proof of Theorem 5.1.1 . 89

5.5.2 Proof of Corollary 5.1.1 . 91

5.5.3 Proof of Theorem 5.2.1 . 93

5.5.4 Proof of Theorem 5.3.1 . 93

5.5.5 Proof of Theorem 5.3.2 . 95

6 CONCLUSION . 101

REFERENCES . 103

6

A MODEL ARCHITECTURES OF SECTION 5.4 109

A.1 Toy Examples . 109

A.2 MNIST . 110

A.3 CelebA . 110

VITA . 112

PUBLICATIONS AND PREPRINTS . 113

7

LIST OF TABLES

4.1 Adversarial generalization errors under FGSM attacks for various model struc-
tures with different constraints on weight matrices. 49

5.1 Comparison of LWGAN, iWGAN, WAE, WGAN-GP 88

8

LIST OF FIGURES

1.1 A demonstration of fast adversarial example generation applied to GoogLeNet
on ImageNet. By adding an imperceptibly small vector whose elements are equal
to the sign of the elements of the gradient of the cost function with respect to
the input, we can change GoogLeNet’s classification of the image. 15

2.1 Deep Neural Networks . 20

2.2 Three categories of generative models. 22

4.1 Original testing data and adversarial testing data: (a) Original data with label 0
and label 1; (b), (c), (d) Original data with label 0 and label 1 are perturbed by
the FGSM scheme that uses the model NN-5-10-2 with spectral normalization,
and the attack size is 0.5, 1.0 and 1.5 respectively. It becomes harder to separate
the data as the attack size increases. 48

5.1 Illustrations of data generation with wrong dimensional latent space of WGAN
and WAE. (a) Real data of S-Curve from PX ; (b) Generative samples by WGAN
trained with a 1-dimensional standard normal distribution PZ ; (c) Generative
samples by WAE trained with 3-dimensional standard normal distribution PZ ;
(d) The ith component of Q(X) against the jth component of Q(X) of the learned
latent distribution PQ(X) by WAE. 63

5.2 (a) The transformations X → Z and its inverse Z → X in Theorem 5.1.1 are both
deterministic. (b) In Corollary 5.1.1 , the transformation X → Z is deterministic,
while its reverse Z → X is stochastic. 65

5.3 Two Manifolds . 79

5.4 Toy Datasets: The first column plots the relationship between the regularisation
power λ3s and the errors of each model. The second column shows the eigenvalues
at the optimal λ3. The third column is the generated data. And the last column
shows the testing reconstructions. 80

5.5 Toy Datasets: Latent space in R5
 . 81

5.6 Mixture of Gaussians: The first column show the eigenvalues of AAT with dif-
ferent dimensions. The second column show the reconstructed samples G(Q(X))
and generated samples G(Z), where Z ∼ N(0, AAT). 83

5.7 Digits 1 and 2: The first column are the eigenvalues of digit 1 and digit 2, the
second column presents the generating samples of digit 1 and digit 2, the third
column are reconstructed samples of digit 1 and digit 2. 84

5.8 MNIST: Results of LWGAN on 64-dimensional latent space. 84

5.9 CelebA: Eigenvalues of AAT
 . 85

5.10 CelebA: Generation by different methods . 86

9

5.11 CelebA: Interpolation and reconstruction by different methods 87

10

LIST OF SYMBOLS

bold-faced letter vector, e.g., x = (x1, . . . , xp0) and z = (z1, . . . , zd0)

capital letter matrix, e.g., W and A

[L] set {1, 2, . . . , L}

‖x‖p `p-norm of a vector x for p > 0, e.g., ‖x‖p = (∑p0
i=1 |xi|p)1/p. When p = 2,

we may ignore its subscript and denote ‖x‖.

‖W‖p,q Lp,q-norm of a matrix W for p > 0 and q > 0, e.g., ‖W‖p,q =(∑
j(
∑

i |Wi,j|p)q/p
)1/q

‖W‖F Frobenius norm of a matrix W , which equals to ‖W‖2,2.

‖W‖2 spectral norm of a matrix W , which equals to its largest singular value.

‖W‖∗ nuclear norm of a matrix W , which equals to the sum of its singular values.

11

ABBREVIATIONS

CelebA CelebFaces Attributes Datase

CNN convolutional neural network

DNN deep neural network

ELBO evidence lower bound

FGSM fast gradient sign method

FID Frechet inception distance

GAN generative adversarial network

IS inception score

Isomap isometric mapping

KL divergence Kullback-Leibler divergence

LLE locally linear embedding

LWGAN latent Wasserstein generative adversarial network

MCMC Markov chain Monte Carlo

MDS multi-dimensional scaling

MLE maximum likelihood estimation

MMD maximum mean discrepency

MNIST Modified National Institute of Standards and Technology dataset

PGD projected gradient descent

RE reconstruction error

SVD singular value decomposition

VAE variational auto-encoder

WAE Wasserstein auto-encoder

WGAN Wasserstein generative adversaril network

12

ABSTRACT

In this dissertation, we study two important problems in the area of modern deep learning:

adversarial robustness and adversarial generative model. In the first part, we study the

generalization performance of deep neural networks (DNNs) in adversarial learning. Recent

studies have shown that many machine learning models are vulnerable to adversarial attacks,

but much remains unknown concerning its generalization error in this scenario. We focus

on the `∞ adversarial attacks produced under the fast gradient sign method (FGSM). We

establish a tight bound for the adversarial Rademacher complexity of DNNs based on both

spectral norms and ranks of weight matrices. The spectral norm and rank constraints imply

that this class of networks can be realized as a subset of the class of a shallow network

composed with a low dimensional Lipschitz continuous function. This crucial observation

leads to a bound that improves the dependence on the network width compared to previous

works and achieves depth independence. We show that adversarial Rademacher complexity

is always larger than its natural counterpart, but the effect of adversarial perturbations can

be limited under our weight normalization framework.

In the second part, we study deep generative models that receive great success in many

fields. It is well-known that the complex data usually does not populate its ambient Euclidean

space but resides in a lower-dimensional manifold instead. Thus, misspecifying the latent

dimension in generative models will result in a mismatch of latent representations and poor

generative qualities. To address these problems, we propose a novel framework called Latent

Wasserstein GAN (LWGAN) to fuse the auto-encoder and WGAN such that the intrinsic

dimension of data manifold can be adaptively learned by an informative latent distribution.

In particular, we show that there exist an encoder network and a generator network in such a

way that the intrinsic dimension of the learned encodes distribution is equal to the dimension

of the data manifold. Theoretically, we prove the consistency of the estimation for the

intrinsic dimension of the data manifold and derive a generalization error bound for LWGAN.

Comprehensive empirical experiments verify our framework and show that LWGAN is able to

identify the correct intrinsic dimension under several scenarios, and simultaneously generate

high-quality synthetic data by samples from the learned latent distribution.

13

1. INTRODUCTION

In modern machine learning and statistics, there are two main types of tasks: supervised

learning and unsupervised learning. The goal of supervised learning is to learn a function

that best approximates the relationship between input and observable output in the data.

Unsupervised learning, on the other hand, does not have labeled outputs, so its goal is to

infer the natural structure present within a set of data points. These are the essential and

fundamental problem in many complex scenarios. For example, providing the the words in

a document (input) and its corresponding topic (output), we seek a mapping f(·) that can

classify future document correctly. On the other hand, if we are trying to segment consumers,

unsupervised clustering methods would be a great starting point.

Deep neural networks (DNNs), one of the powerful function approximators in recent

decades, have made significant progresses for the problem of learning from data in both

supervised and unsupervised tasks. In particular, DNNs have demonstrated an amazing

performance in solving complicated artificial intelligence tasks such as image generation,

object recognition and identification, text understanding and translation, and many other

domains [1]. They have become popular due to their predictive power and flexibility in

model fitting. However, from both theoretical and applicant point of views, several essential

issues have aroused.

In the first part of the dissertation, we focus on the supervised learning. Many studies

have shown that DNNs are vulnerable to adversarial attacks [2]–[4]. The adversarial inputs

are called adversarial examples, which are typically generated by adding small perturbations

that are imperceptible to human eyes [5] to the original data. Formally, if we take an example

x ∈ Rp belonging to the class c1 as input, there are several efficient algorithms to find the

adversarial example x′ such that x′ is very close to x but the classifiers incorrectly predict it as

belonging to class c2 6= c1. Other methods of generating adversarial examples include rotation

and translation [6] and background changing [7]. Many deep learning models achieve state-

of-the-art performance in benchmark datasets, but they perform poorly on these adversarial

examples. For example, the adversarial test accuracy on CIFAR10 is reported as only 47%

in [8], instead the natural test accuracy on CIFAR10 is around 95% [9]. Here CIFAR10

14

Figure 1.1. A demonstration of fast adversarial example generation applied
to GoogLeNet on ImageNet. By adding an imperceptibly small vector whose
elements are equal to the sign of the elements of the gradient of the cost
function with respect to the input, we can change GoogLeNet’s classification
of the image.

is a benchmark dataset which consists of 60,000 32 × 32 color images in 10 classes [10].

Particularly, in the area of cybersecurity, learning models face adversaries that try to deceive

learning models and avoid being detected. The notorious example is DeepFake [11], which is

an AI-based technology used to produce or alter video content so that it presents something

that did not, in fact, occur.

Recently, there has been much progress towards the development of models achieving

robustness [8], [12]–[15] through the adversarial learning, which is a technique that attempts

to fool models by supplying deceptive input. Suppose that the sample (x, y) ∈ X × Y is

drawn according to some unknown underlying distribution P , where X and Y are input and

label domains respectively. Let F be a class of DNNs with a particular architecture and

g(f(x), y) be the loss function associated with f ∈ F . Then the adversarially robust model

is learned by minimizing the empirical adversarial risk, that is,

min
f∈F

1
m

m∑
i=1

max
‖x′

i−xi‖p≤ε
g(f(x′

i), yi). (1.1)

15

Suppose x̃∗
i s, for i = 1, . . . ,m, are the optimal solution to the inner maximize problem, then

the generalization error in the adversarial setting is

E(x̃∗,y)[g(f(x̃∗), y)]− 1
m

m∑
i=1

g(f(x̃∗
i), yi). (1.2)

Adversarial generalization behavior measures how accurately a model is able to predict out-

come values for previously unseen data, and a small value is expected to avoid over-fitting.

Unfortunately, Equation 1.1 is an intractable optimization problem for DNNs, so several

adversarial strategies are proposed to approximate x̃∗ such as Fast Gradient Method (FGM)

[16] and Projected Gradient Descent (PGD) [8]. These methods produce white-box attacks

where the attacker has access to the model’s parameters, which implies that the attack relies

on the model f .

However, [17] shows that the performance of adversarially trained DNNs over test sam-

ples can be significantly worse than their training performance, and this gap can be far

greater than the generalization gap achieved in the natural setting, i.e., inputs without ad-

versarial attacks. To close the discrepancy, [18] applies the spectral-norm regularization

during adversarial training, and extends PAC-Bayes framework to bound the generalization

error for DNNs under FGM and PGD, but they only focus on `2 attacks. When `∞-norm

attacks and multi-class linear classifiers are considered, [19] establishes an adversarial gen-

eralization bound depending on the number of class K and the dimension of input p with

an order of
√
K3p if L2,∞-norm constraint is adapted. [20] derives the surrogate risk bound

relying on `∞-operator norms, Frobenius norms, and Lp,∞ norms of weight matrices, which

is polynomially depend on the depth of DNNs. Overall, existing works only consider simple

models or depend on the size of the network, so we further investigate the generalization

property of `∞ attack on DNNs to theoretically gain deeper understanding of this problem.

For example, whether the generalization error under the `∞ attack could be size-free given

some assumptions.

In this part of the dissertation, we provide a tighter sample complexity bounds for ad-

versarially robust generalization of DNNs based on both spectral norms and ranks of weight

matrices under the `∞ adversarial attacks. We compare the adversarial Rademacher com-

16

plexity with the natural Rademacher complexity. The adversarial complexity is never smaller

than its natural counterpart, but the effect of adversarial perturbations can be limited under

our weight normalization framework. We further conduct experiments on neural networks

with different depth to verify our theoretical findings.

In the second part of my dissertation, we study deep generative model in the context of

unsupervised learning. In the past few years, deep learning based generative models have

gained a lot of interest due to the amazing improvements in the field [21]–[26]. Leveraging

huge amount of data, well-designed networks architectures and advanced training techniques,

deep generative models have shown an incredible ability to produce highly realistic pieces

of content of various kind, such as images, texts and sounds. Given a random sample

x ∈ X ⊂ Rp drawn from an unknown distribution PX , the goal is to train a generative

model that can produce synthetic data points that look similar to the real data. While there

are several ways to quantify the similarity, the most common approach is to directly employ

some of the known divergence measures, such as the Kullback-Leibler divergence and the

Wasserstein distance, between the real data distribution and synthetic data distribution.

There are three major frameworks for generative models: Variational Auto-Encoders

(VAEs) [21], Generative Adversarial Networks (GANs) [22], and Normalizing Flows [25]. The

generative models are usually latent variable models through a latent variable Z ∈ Z ⊂ Rd

drawn from a simple and accessible prior distribution PZ , such as PZ = N(0, I). Then, the

synthetic data are generated by either a deterministic transformation G(z) or a conditional

distribution p(x|z). In particular, VAEs maximize the lower bound of the log likelihood

log pθ(x), so they have strong theoretical justifications and typically can cover all modes of

the data distribution. However, they often produce blurry images. GANs simultaneously

learn a generator and a discriminator by pushing the powerful discriminator to distinguish

between real data and generative samples. GANs can generate visually realistic images, but

suffer from unstable training and mode collapsing. Normalizing Flows learn a generative

model by directly maximizing the exact log-likelihood of well-specified probabilistic models,

so they require the dimension of the latent space to be identical to that of the original

data space. This results in an invertible generator and a tractable density that inhabits

17

the full data space. However, high-dimensional latent space usually prohibits an efficient

representation learning.

There are several limitations for the above generative models. It is a requirement for

current approaches of training generative models to pre-specify the dimension of the latent

distribution PZ and treat it as fixed during the training process. For example, the latent

dimensions for VAEs and GANs are pre-specified by users, and the latent dimension for

Normalizing Flows is instead kept the same as the dimension of the data. It is known that

many observed data such as natural images lie on a low-dimensional manifold embedded

in a higher dimensional space. Therefore, an inappropriate choice of the latent dimension

could lead to a wrong latent representation that does not populate the full ambient space

[27]. The wrongly specified latent dimension will fail to uncover the structure of the data.

Overall, the corresponding generative models may suffer from mode collapse, under-fitting,

mismatch of representation learning, and poor generative qualities. Furthermore, some fun-

damental divergences such as Maximum Likelihood Estimation (MLE) and KL divergence

are ill-defined that brings additional challenges for model training. Although there are many

interesting works take advantages of both VAEs and GANs [28]–[30], it remains unclear what

the principles are underlying the framework combining the best of WAEs and WGANs.

To handle the aforementioned drawbacks, we propose a novel approach, called Latent

Wasserstein GAN (LWGAN), to identify the intrinsic dimension of a data distribution that

lies on a continuous manifold. This approach could greatly improve the quality of genera-

tive modeling as well as representation learning. Specifically, to learn a informative prior

distribution PZ , we utilize a deterministic encoder Q borrowed from the WAE. On the other

hand, a generator G is combined to generate images from the latent code Z ∼ PZ that look

like the real ones. To get rid of possible invalid divergences, we focus on the 1-Wasserstein

distance to measure the similarities between two distributions, which apply to any two dis-

tributions as long as they can be sufficiently sampled. After training, the estimated intrinsic

dimension of the prior distribution PZ consists with the true intrinsic dimension. We conduct

comprehensive experiments to confirm that LWGAN is able to detect the correct intrinsic

dimension under several settings using both toy example as well as real data such as MNIST

and CelebA.

18

1.1 Dissertation Organisation

The remaining parts of the dissertation is organized as follows. In chapter 2 , we provide

a brief view of some neural network architectures, including the basic feed-forward neural

networks as well as three major types of generative models such as VAEs, GANs and Nor-

malizing Flows. In chapter 3 , we introduce the fundamental techniques of statistical learning

theory, whose goal is to control the difference between population risk and empirical risk,

a.k.a, generalization error. For example, the Rademacher complexity and VC dimension are

used to describe the capacity of a class of functions, which are the links to the upper bound

of generalization error.

In chapter 4 , we establish our first contribution on the theoretical study of adversarial

learning. Section 4.1 describes the role of spectral norm and low-rank weight matrix in DNN.

Section 4.2 establishes the generalization bounds for adversarial learning. This includes a

regular upper bound and a tight upper bound on Rademacher complexities for adversarial

learning. Section 4.3 compares the generalization behaviors between natural learning and

adversarial learning. Numerical results are provided in Section 4.4 to validate our theoretical

conclusions. Section 4.5 gives the proofs of our theories.

Starting from chapter 5 , we switch to our second contribution, which studies the adver-

sarial generative models on the latent space. Section 5.1 investigates the phenomenon of

dimensional mismatch between the latent distribution and data distribution, and establishes

the existence of an encoder and generator that can solve the mismatch dilemma. Section

5.2 presents the new LWGAN framework that provides a feasible way of obtaining the men-

tioned encoder and generator. Theoretical guarantees are given in Section 5.3 , including rank

consistency and generalization error bounds. Section 5.4 demonstrates extensive numerical

experiments under different settings to verify that LWGAN is able to detect the correct

intrinsic dimension for both toy examples and natural data such as MNIST and CelebA.

Section 5.5 provides related proofs of this chapter.

Chapter 6 is a summary of the dissertation and some future works.

19

2. PRELIMINARIES

2.1 Feed-forward Neural Networks

Feed-forward neural networks, also called multilayer perceptrons, are the quintessential

deep learning models. The goal of a feed-forward neural network is to approximate some

true functions. [31] stated that a feedforward network with at least one hidden layer with

any “squashing” activation function (such as the logistic sigmoid activation function) can

approximate any Borel measurable function from one finite-dimensional space to another

with any desired non-zero amount of error, provided that the network is given enough hidden

units. This universal property makes it the basis of many important commercial applications.

For instance, the convolutional neural networks used for object recognition from photos are

a specialized kind of feedforward network. It is also a conceptual stepping stone on the path

to recurrent networks, which power many natural language applications.

x1

x2

x3

xp

...

Output

Hidden
layer

Input
layer

Hidden
layer

Hidden
layer

W2W1

Output
layer

WL

Figure 2.1. Deep Neural Networks

The architecture of neural networks is shown in Figure 2.1 , which is composed of a input

layer, multiple hidden layers and a output layer. Each layer contains one or more neurons,

the basic block of a network. The total number of layers is called the depth of a network, and

the maximum number of neurons in each layer is the width of the network. Mathematically,

20

given the input domain X = {x ∈ Rp}, we use fWL
(x) to denote a neural networks of the

form

fWL
(x) = TL ◦ σL ◦ TL−1 ◦ σL−1 ◦ · · · σ1 ◦ T1 ◦ x, (2.1)

where Ti(u) = Wiu+bi, i ∈ [L], are affine transformations with unknown parameters (Wi, bi)

with Wi ∈ Rpi×pi−1 and bi ∈ Rpi , and σi(·), i ∈ [L], are the element-wise activation functions.

For simplicity, we use WL = ((W1, b1), . . . , (WL, bL)) to denote all the weight matrices and

bias terms. In the above, we denote L as the depth and p as the width of the neural network.

Typical examples of activation functions include sigmoid, tanh and Relu. Note that Relu

owns good properties, satisfying σ(0) = 0 and 1-Lipschitz continuousness.

We now introduce the loss function for the purpose of solving and training our model.

Feed-forward neural networks can be used to deal with both regression and classification

problem. The mainly used loss functions include the quadratic loss for regression and the

cross-entropy loss for classification. We minimize the loss function and apply backprop-

agation to obtain the optimal WL. Although this minimization problem is often highly

non-convex, stochastic gradient descent and its variations, the primary algorithms of train-

ing neural networks, can nearly achieve the optimal solution. To accelerate the training

process and avoid overfitting, explicit or implicit regularizations on weight matrices have

been applied in practice such as weight decay [32], dropout [33], [34], and early stopping

[35]. This encourages us to study the capacity bound for DNNs through regularizations on

weight matrices.

2.2 Generative Models

Among these deep generative models, three major families stand out and deserve a special

attention: Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) and

Normalizing Flows.

21

Figure 2.2. Three categories of generative models.

2.2.1 Generative Adversarial Networks

GANs are the most popular type of neural network architecture that allow neural net-

works to generate data. They are able to learn a generative model by framing the problem

as a supervised learning problem with two sub-models: the generator model that we train to

generate new examples, and the discriminator model that tries to classify examples as either

real (from the target) or fake (generated). The first plot of Figure 2.2 shows the architec-

ture of GANs. Training GANs is like a two player game. The two networks, the generator

and discriminator, are simultaneously learned by pushing the powerful discriminator to dis-

tinguish between real data and generative samples. As a result, the generator is trying to

maximize its probability of having its outputs recognized as real, while the discriminator is

trying to minimize this same value. This leads to the following minimax objective function,

min
G∈G

max
f∈F

EX [log(f(X)] + EZ [log(1− f(G(Z)))], (2.2)

22

where f ∈ F is a discriminator, G ∈ G is a generator. Optimizing Equation 2.2 is equivalent

to minimizing Jensen-Shannon divergence between the generative and data distribution.

GANs can generate visually realistic images, but suffer from unstable training and mode

collapsing.

The Wasserstein GAN (WGAN) [23] is an extension to the vanilla GAN that improves

the stability of training by leveraging the 1-Wasserstein distance between two probability

measures. The 1-Wasserstein distance between PX and PG(Z) is defined as

W1(PX , PG(Z)) = inf
π∈Π(PX ,PZ)

E(X,Z)∼π‖X −G(Z)‖, (2.3)

where ‖ ·‖ represents the `2-norm and Π(PX , PZ) is the set of all joint distributions of (X,Z)

with marginal measures PX and PZ . It is hard to find the optimal coupling π through this

constrained primal problem. However, thanks to the Kantorovich-Rubinstein duality, the

WGAN can learn the generator G by minimizing the nice dual format

W1(PX , PG(Z)) = sup
f∈F

{
EXf(X)− EZf(G(Z))

}
, (2.4)

where F is a set of all bounded 1-Lipschitz functions. Weight clipping [23] and gradient

penalty [36] are two strategies to maintain the Lipschitz continuity of f . Weight clipping

utilizes a tuning parameter c to clamp each weight parameter to a fixed interval [− c, c]

after each gradient update, but this method is very sensitive to the choice of parameter c.

Instead, gradient penalty adds a term EX(‖f(X)‖ − 1)2 in the loss function to enforce the

1-Lipschitz.

2.2.2 Variational Auto-Encoders

The VAE [21] defines a “probabilistic decoder” pθ(x|z) with the unknown parameter θ.

Then the marginal distribution of X is pθ(x) =
∫
pθ(x|z)p(z)dz. Due to the intractability of

this integration, the maximum likelihood estimation is prohibited. Instead, a “probabilistic

encoder” qφ(z|x) with the unknown parameter φ is defined to approximate the posterior

23

distribution pθ(z|x) = pθ(x|z)p(z)/pθ(x). The objective is to maximize the lower bound of

the log likelihood log pθ(x), which is called the evidence lower bound (ELBO):

ELBO = Eqφ(z|x)
[

log pθ(x|z)
]
−KL

(
qφ(z|x) || p(z)

)
,

where the first term can be efficiently obtained by the sampling technique and the second

term has a closed form expression when qφ is Gaussian. VAEs have strong theoretical jus-

tifications and typically can cover all modes of the data distribution. However, they often

produce blurry images due to the normal approximation of the true poseterior.

The Wasserstein Auto-encoder (WAE) [37] makes two modifications based on the VAE.

It uses a deterministic encoder Q : X → Z to approximate the conditional distribution of Z

given X, and a deterministic encoder G : Z → X to approximate the conditional distribution

of X given Z. In addition, the WAE adopts the 1-Wasserstein distance between real data

PX and generative distribution PG(Z), rather than the Kullback-Leibler divergence used in

VAEs, to train the model. Specifically, it minimizes the following reconstruction error with

respect to the generator G,

inf
Q∈Q

EX‖X −G(Q(X))‖+ λD(PQ(X), PZ), (2.5)

where D is any divergence measure between two distributions PQ(X) and PZ , and λ > 0 is

a regularization coefficient. The regularization term distributionally forces the aggregated

posterior PQ(X) to match the prior distribution PZ .

2.2.3 Normalizing Flows

A Normalizing Flow is a transformation of a simple probability distribution, such as a

standard normal, into a more complex distribution by a sequence of invertible and differ-

entiable mappings. The density of a sample can be evaluated by transforming it back to

the original simple distribution and then computing the product of i) the density of the

inverse-transformed sample under this distribution and ii)the associated change in volume

induced by the sequence of inverse transformations.

24

In detail, Let Z ∈ Rd be a random variable with a known and tractable probability

density function PZ : Rd → R. Let G : Rd → Rd be an invertible function and X = G(Z).

Then using the change of variables formula, one can compute the probability density function

of the random variable X:

PX(x) = PZ(Q(x))|det(DQ(x))| = PZ(Q(x))|det(DG(Q(X)))|−1

where Q is the inverse of G, DQ(x) = ∂Q/∂x is the Jacobian of Q and DG(z) = ∂G/∂z

is the Jacobian of G. Maximizing the log likelihood of PX(x) can obtain the model Q.

However, constructing arbitrarily complicated non-linear invertible functions (bijections) can

be difficult. One approach to this is to note that the composition of invertible functions is

itself invertible and the determinant of its Jacobian has a specific form. Let G1, . . . , GN be

a set of N bijective functions and define G = GN ◦GN−1 ◦ · · · ◦G1 to be the composition of

the functions. Then it can be shown that G is also bijective, with inverse

Q = Q1 ◦ · · · ◦QN−1 ◦QN

and the determinant of the Jacobian is

det(DQ(x)) =
N∏

i=1
det(DQi(xi)),

where xi denotes the value of the i-th intermediate flow as xi = Gi ◦ · · · ◦ G1(z) = Qi+1 ◦

· · · ◦QN(x) and so xN = X. Thus, a set of nonlinear bijective functions can be composed to

construct successively more complicated functions. Affine coupling layers [25], [38], [39] are

one of the most popular methods such that the Normalizing Flow is sufficiently expressive to

model the distribution of interest, and computationally efficient, both in terms of computing

Q and G but also in terms of the calculation of the determinant of the Jacobian.

25

3. STATISTICAL LEARNING

3.1 Overview

In supervised learning problems such as classification and regression, our target is to

predict an output y ∈ Y based on a set of features x ∈ X . Informally, we choose a predictor

f : X → Y from the hypothesis class F such that f(x) is a good prediction of y. Let (x, y)

be from an unknown distribution P , and the loss function be g(·, ·) : Y ×Y 7→ R. Define the

expected risk as

R(f) = E(x,y)∼D [g(f(x), y)] ,

and our goal is to find the expected risk minimizer which is denoted by f ∗ ∈ argminf∈FR(f).

Given m i.i.d. samples S = {(x1, y1), . . . , (xm, ym)}, where each pair is from P over X × Y ,

the approximation of f ∗ is obtained by minimizing the empirical risk:

R̂(f) = 1
m

m∑
i=1

g(f(xi), yi). (3.1)

The trained predictor f is also called the empirical risk minimizer (ERM) defined as any

hypothesis f ∈ F that minimizes Equation 3.1 f̂ ∈ argminf∈FR̂(f). In practice, we often

choose the quadratic loss for regression problems, while the hinge loss and the cross entropy

loss are commonly used in classification tasks. Statistical learning is an active area of research

in the past two decades: well-known monographs in this area include [40]–[42].

The key question of statistical learning is to analyze and control the excess risk, which is

the difference between R(f ∗) and R(f̂). The excess risk characterizes the gap between the

expected risk of f̂ and the optimal f ∗. Another related concept is called the generalization

error, which is the difference between R(f̂) and R̂(f̂). Mathematically, the generalization

error is a measure of how accurately an algorithm is able to predict outcome values for

previously unseen data. The generalization error can be minimized by avoiding overfitting

in the learning algorithm. We will show later that the generalization error is easy to control

if the excess risk is bounded. So, how do we analyze the excess risk? Note that the excess

risk is a random variable depending on the training set via f̂ , and the sample size m is finite.

Therefore, the central limit theorem in asymptotics cannot be directly applied here. We

26

formulate the analysis as a probability statement. Given θ ∈ (0, 1), the excess risk is upper

bounded by some ε with probability at least 1 − θ, thaƒt is, P
(
R(f̂)−R(f ∗) ≤ ε

)
≥ 1 − θ,

or equivalently,

P
(
R(f̂)−R(f ∗) ≥ ε

)
≤ θ, (3.2)

where ε is a function relying on θ and the complexity of the hypothesis class F .

To explicitly describe ε, we rewrite the excess risk as

R(f̂)−R (f ∗) = R(f̂)− R̂(f̂)︸ ︷︷ ︸
(a)

+ R̂(f̂)− R̂ (f ∗)︸ ︷︷ ︸
(b)

+ R̂ (f ∗)−R (f ∗)︸ ︷︷ ︸
(c)

.

Term (b), R̂(f̂) − R̂(f ∗), is non-positive, because f̂ is chosen to minimize R̂(f) in the hy-

pothesis class F . Term (c) is the difference between a sample average and an expectation in

terms of the fixed function f ∗, such that

R̂ (f ∗)−R (f ∗) = 1
m

m∑
i=1

g (f ∗(xi), yi)− E(x,y)∼D [g (f ∗(x), y)] .

The law of large numbers shows that this term converges to zero. With information about

the tails of g(f ∗(x), y) such as boundedness, we can use concentration inequalities to bound

its value. Term (a), R(f̂) − R̂(f̂), is more interesting and complicated, since f̂ is random

based on the chosen data. An easy approach is to provide a uniform upper bound,

R(f̂)− R̂(f̂) ≤ sup
f∈F

∣∣∣R(f)− R̂(f)
∣∣∣ ,

which motivates us to study the uniform convergence. Suppose we can ensure that R(f) and

R̂(f) were close (say within ε/2) for all f ∈ F . Then, we could guarantee that R(f̂) and

R̂(f̂) were within ε/2, as well as R(f ∗) and R̂(f ∗). Therefore, Equation 3.2 can be written

formally as:

P
(
R(f̂)−R (f ∗) ≥ ε

)
≤ P

(
sup
f∈F

∣∣∣R(f)− R̂(f)
∣∣∣ ≥ ε

2

)
. (3.3)

On the right-hand side is a statement about uniform convergence, which describes the prob-

ability of the event that the largest difference between the empirical and expected risk is at

27

least ε/2 , or equivalently, the event that this difference exceeds ε/2 for at least one f ∈ F .

Using uniform convergence, we bound the difference between the test error and training error

of any f by the complexity of F , that is,

|R (f)− R̂ (f) | ≤ Op

√ Complexity (F)
m

To describe the complexity of function class F , several tools have been developed such

as VC dimension, covering number and Rademacher complexity that we will cover later.

3.2 Uniform Convergence

In this section, we will introduce some commonly used techniques for establishing uniform

convergence. One of the most important tools is the McDiarmid’s inequality, which is used

to bound not the average of random variables X1 . . . , Xm, but any function on X1, . . . , Xm

satisfying an appropriate bounded differences condition.

Theorem 3.2.1 (McDiarmid’s inequality). Let X1, . . . , Xm be independent random variables

with support on X . Let f : Xm 7→ R be a function satisfying the following bounded difference

condition,

(∀i,∀x1, . . . ,xm,x′
i) |f (x1, . . . ,xi, . . . ,xm)− f (x1, . . . ,x′

i, . . . ,xm)| ≤ Bi,

then,

P (|f(X1, . . . , Xm)− E[f(X1, . . . , Xm)]| ≥ t) ≤ 2 exp
(
− 2t2∑

i B
2
i

)
.

We apply martingale to prove this inequality, and please refer to [40] for more details.

This is a quite powerful result, as it holds for any independent random variables, even if f is

complex such as neural networks. As long as the function is not too sensitive to perturbations

in one of its arguments, we get good concentration.

To have a better understanding, we now use them to analyze the generalization results

for a finite hypothesis class. This is accomplished by a two-step concentration and the union

bound.

28

Example 3.2.1. Let S = {(x1, y1), . . . , (xm, ym)} be m i.i.d samples from the unknown

distribution D. Assume that F is a finite hypothesis class, i.e. F = {f1, . . . , fk} where

k <∞ and fj : X 7→ Y for ∀j. Let g be the zero-one loss, i.e. g(f(x), y) = I[f(x) 6= y]. Let

f̂ be the empirical risk minimizer. For fix θ ∈ (0, 1), with probability at least 1− θ, we have

R(f̂)−R (f ∗) ≤
√

2(log k + log(2/θ))
m

.

3.2.1 Rademacher Complexity

In the previous section, we analyzed the excess risk with a finite hypothesis class F ,

i.e., |F| < ∞. However, the union bound cannot be applied to infinite hypothesis classes.

This motivates us to explore more sophisticated approaches to measure the capacity of a

hypothesis class. It leads to a introduction to a framework called Rademacher complexity to

uniformly bound the difference between the expected and empirical risk for any f ∈ F .

Definition 3.2.1. The empirical Rademacher complexity of the function class F with

respect to a data set {x1 . . .xm} is defined as:

R̂m(F) = Eδ

[
sup
f∈F

(
1
m

m∑
i=1

δif(xi)
)]

,

and the Rademacher complexity is defined as:

Rm(F) = Eδ,x

[
sup
f∈F

(
1
m

m∑
i=1

δif(xi)
)
,

]

where δ = {δ1, . . . , δm} are m independent Rademacher random variables, that is P[δi =

−1] = P[δi = +1] = 1/2.

Here we give an intuitive explanation about the Rademacher complexity. Consider the

simple binary classification problem with inputs x1, . . . ,xm. If the corresponding labels are

random δ1, . . . , δm, this becomes a meaningless learning problem. Therefore, the Rademacher

complexity is used to capture how well the best function from the function class F can fit

29

these random labels. A large F will be able to fit noise better and thus have a larger

Rademacher complexity. In practice, we would like Rm(F) to go to zero as m increases.

The basic properties of Rademacher complexity are listed as follows.

• Rm(F) = 0 for F = {f}.

• Rm(F1) ≤ Rm(F2) if F1 ⊆ F2.

• Rm(F1 + F2) ≤ Rm(F1) + Rm(F2) for F1 + F2 = {f1 + f2 : f1 ∈ F1, f2 ∈ F2}

• Rm(cF) = |c|Rm(F)

Next, we show the crucial theorem that links the uniform convergence and Rademacher

complexity.

Theorem 3.2.2. Let S = {(x1, y1), . . . , (xm, ym)} be m i.i.d. samples drawn from the

unknown distribution D. Let F be a hypothesis class and g be the loss function where g ◦ F

belongs to {g(f(x), y) | g ◦ f : X × Y → [0, 1], f ∈ F}. Fix θ ∈ (0, 1). With probability at

least 1− θ, we have:

(∀f ∈ F) R(f) ≤ R̂(f) + 2Rm(g ◦ F) +
√

log (1/θ)
2m .

Theorem 3.2.3 (Ledoux-Talagrand contraction inequality). Assume that the function class

F ⊆ {f | f : X → R}. Assume that the function φ : R→ R is M-Lipschitz continuous. De-

fine the shorthand notation: φ(F) = {φ(f) | f ∈ F}. We have:

R̂m(φ(F)) ≤MR̂m(F)

The Ledoux-Talagrand contraction inequality is quite useful when analyzing the Rademacher

complexity of loss class g◦F , since we can transfer it to analyze the complexity of our hypoth-

esis class F . Equipped with above theorems, we can bound Equation 3.2 with probability

at least 1− θ

R(f̂)−R (f ∗) ≤ 4Rm(g ◦ F) +
√

2 log(2/θ)
m

.

30

Once we have the Rademacher complexity of hypothesis class F , we can easily bound the

difference between empirical risk and expected risk as well as the excess risk. There are

several tools helping control Rm(F) such as VC dimension and covering number introduced

in the next section.

3.2.2 Growth function and VC dimension

So far, we have set up Rademacher complexity as a measure of the capacity of infi-

nite hypothesis class. Let us instantiate Rademacher complexity when the function class

has finite possible outputs such as binary classification problem. Assume the dataset S =

{x1, . . . ,xm} contains m i.i.d. samples from distribution PX . In general, we assume a

function class F ⊆ {f |f : X → {0, 1}}. We introduce the following shorthand notation:

F(S) = {(f(x1), . . . , f(xm)) ∈ {0, 1}m|f ∈ F}. That is, F(S) contains all the {0, 1}m

vectors that can produced by applying all functions in F to the dataset S.

Definition 3.2.2 (Growth Function). The growth function (or shatter coefficient) of a class

of functions F ⊆ {f |f : X → {0, 1}} for m samples is:

G(F ,m) = max
S∈X m

|F(S)|.

For boolean functions, if G(F ,m) = 2m, meaning we obtain all possible labels, we say

F shatters any m points z1, . . . , zm that achieve the maximum of F(S). One advantage of

growth function is that it turns the infinite function class to a finite coefficient. Therefore, we

can directly use the following Massart’s finite lemma to link with Rademacher complexity.

Lemma 3.2.1 (Massart’s Finite Lemma). For A ⊆ Rm with R2 = maxa∈A ‖a‖2
2

m
,

E
[
sup
a∈A

1
m

m∑
i=1

δiai

]
≤
√

2R2 log |A|
m

,

where δ = {δ1, . . . , δm} are m i.i.d Rademacher random variables.

31

Taking A = F(S), we have R2 ≤ 1. By Massart’s finite lemma, it is straightforward that

R̂m(F) ≤
√

2 logG(F ,m)
m

.

Thus, to get meaningful bounds, we want G(F ,m) to grow sub-exponentially with m. Oth-

erwise, the Rademacher complexity will not go to zero, and we will not obtain uniform

convergence. This is expected since if F can really hit all labels for all m, we would be able

to fit any label of the data, leading to massive overfitting.

Although the growth function nicely captures the behavior of an infinite F , it is not

necessarily the most convenient quantity to get a handle on. In the following, we use a

concept called VC dimension to gain more intuition about the growth function.

Definition 3.2.3. The VC dimension of a class of functions F with Boolean outputs is the

maximum number of points that can be shattered by F :

V C(F) = max
m∈M
{m|G(F ,m) = 2m}

Lemma 3.2.2 (Sauer-Shelah Lemma). For a function class F with Boolean outputs and VC

dimension d, then we have

G(F ,m) ≤
d∑

i=0

 m

i

 ≤ (m+ 1)d.

Combining this theorem with the previous conclusions, we have

R̂m(F) ≤
√

2 logG(F ,m)
m

≤
√

2V C(F) log(m+ 1)
m

.

3.2.3 Covering Number

For infinite hypothesis classes, we observe that growth function and VC dimension are

appropriate measures since all that mattered was the behavior of a function class on a finite

set of points. However, these two approaches only work for functions that return a finite

32

number of values. Can we retain the combinatorial nature of growth function, but allow

for real-valued functions such as regression problems? We explore covering numbers in the

section to solve this problem. Covering numbers count the number of balls of size ε one needs

to cover the hypothesis class, then the Massart’s finite lemma can be applied to control the

representatives. In essence, covering numbers allow us to discretize the problem.

Definition 3.2.4. A metric space (Y , ρ) is a set Y and a function ρ : Y × Y → [0,∞)

satisfying

• Identity of indiscernibles: ρ(y, y) = 0

• Symmetry: ρ(y, z) = ρ(z, y)

• Triangle inequality: ρ(y, z) ≤ ρ(y, x) + ρ(x, z)

If ρ(x, y) = 0 is possible for x 6= y, then we say ρ is a pseudometric. In this section, we

will work with the pseudometric. For example, the pseudometric for a set of functions F

mapping from X to R is ρm(f, f ′) = ‖f − f ′‖L2(Pm) := (1
m

∑m
i=1 (f (xi)− f ′ (xi))2)1/2.

Definition 3.2.5. The τ -covering number N(F , τ, ρ) of a class of function F ⊆ A with

respect to the metric ρ is the size of the smallest cover:

min{n : ∃{f1, . . . , fn} ⊆ A,F ⊆ ∪n
i=1Bρ

τ (fi)},

where Bρ
τ (fi) is the ball with radius τ > 0 centered at fi ∈ A, defined as Bρ

τ (fi) = {f ′ ∈ A :

ρ(fi, f
′) ≤ τ}.

For the metric ρ, if A is a family of functions mapping Rp to R, we define the metric

ρm = (1
m

∑m
i=1(f(xi)− f ′(xi))2) 1

2 , or the metric ρ∞ = supi∈[m] |f(xi)− f ′(xi)|, where x ∈ Rp.

When A maps a class of functions from Rp to Rr, we generalize the definition as ρm =

(1
m

∑m
i=1

∥∥∥f(xi)− f ′(xi)
∥∥∥2

2)
1
2 , or ρ∞ = supi∈[m]

∥∥∥f(xi)− f ′(xi)
∥∥∥2.

From above definitions, it is straightforward that as τ decreases, f ′ in the cover F ′ is a

better approximation of f , but N(F , τ, ρ) also increases. In general, we would like N(F , τ, ρ)

to be small, so what is the trade-off? The following theorems establish that the covering

33

number enable to upper bound the Rademacher complexity, which also provide hints for this

trade-off.

Theorem 3.2.4 (Dudley’s theorem). Let F be a family of functions f : X → R. Consider

the ρm pseudometric on F , then

R̂m(F) ≤ 12
∫ ∞

0

√
2 logN(F , τ, ρm)

m
dε.

The theorems we mentioned above are the main techniques that we use to obtain the

generalization bound for neural networks, which has been extensively studied in literature,

especially norm-constrained fully connected DNNs [43]–[49]. In particular, spectral norm-

constrained fully connected DNNs were studied in [45], [47], [49]. Assume that the spectral

norm of the weight matrix in each layer equals to 1, and the width of each hidden layer is

p. Then the corresponding bound of generalization error is of order
√
p3L2/m [45], [47] and√

pLr/m [49], respectively, where m is the sample size, L is the depth, and r is the rank

of weight matrices. On the other hand, a lower bounds for the generalization error with an

order of
√
p/m is established in [48]. In addition, some special cases of the matrix mixed

Lp,q norm-constrained fully connected DNNs were studied in [43], [44], [46], [48], [50]. For

example, [44] provided an exponential bound on the width p based on the Frobenius norm

of the weight matrices; [47] provided a polynomial bound on L and p based on the spectral

norm and the L2,1 norm.

34

4. GENERALIZATION ERROR BOUNDS ON ADVERSARIAL

LEARNING OF DEEP NEURAL NETWORKS

As we mentioned in chapter 1 , the generalization behavior under the adversarial attacks

are much worse than the situation without adversarial perturbations. In this work, we

study the adversarial robust generalization property of DNNs to theoretically gain deeper

understanding of this problem.

We concentrate on `∞ adversarial attacks produced under the Fast Gradien Sign Method

(FGSM) [16], which proposes to compute the adversarial examples via the gradient of the

loss on clean data x, i.e.,

x̃i = xi + ε · sign
(
∇xg(f(xi), yi)

)
, for i = 1, . . . ,m. (4.1)

Our goal is to study the generalization behavior of the FGSM, i.e., the difference between

the expected adversarial risk and the empirical adversarial risk for any f ∈ F

E(x,y)[g(f(x̃), y)]− 1
m

m∑
i=1

g(f(x̃i), yi). (4.2)

Specifically, we provide tight sample complexity bounds for adversarially robust generaliza-

tion of DNNs based on both spectral norms and ranks of weight matrices under the `∞

adversarial attacks. Our main contributions can be summarized as follows.

1. By novelly viewing a DNN as a composition of a shallow network and a Lipschitz

continuous function on a low dimension, we achieve a tighter upper bound on the

Rademacher complexity of the DNN class with spectral normalization and low-rank

weight matrices under the FGSM attack. This bound is depth-free comparing to

existing works [19], [20] that polynomially depend on the depth.

2. We compare the adversarial Rademacher complexity with the natural Rademacher

complexity. The adversarial complexity is never smaller than its natural counterpart,

but the effect of adversarial perturbations can be limited under our weight normaliza-

tion framework.

35

3. We conduct experiments on neural networks with different depth to verify our the-

oretical findings. In particular, our numerical results establish that the adversarial

generalization bound is depth-free if there exists a low-rank weight matrix, and the

adversarial generalization error is proportional to the attack size ε.

4.1 Related Works

4.1.1 The Spectral Norm and The Rank in DNN

For x ∈ X ⊂ Rp0 , let fWL
(x) denote a DNN of the form

fWL
(x) = WLσL−1(WL−1 · · ·σ1(W1x)),

where WL = (W1, . . . ,WL) are weight matrices, and σi(·) are element-wise nonlinear activa-

tion functions, satisfying σi(0) = 0, for i = 1, . . . , L. Here L denotes the depth of the neural

network, and p is the width that is the maximal row or column dimension of W1, . . . ,WL.

Notice that the spectral norms of weight matrices of a DNN reflect the Lipschitz coefficient

of fWL
. The spectral weight normalization for DNNs has achieved remarkable successes in

many complex learning tasks [51], [52]. The advantages of using spectral normalization in-

clude that Lipschitz constant is the only hyper-parameter to be tuned and implementation is

simple with a small additional computational burden. Moreover, many implicit regulariza-

tion methods have been used for training DNNs such as dropout [33] and early stopping [35].

Recently, [53], [54] have shown that dropout can be treated as a low-rank regularizer with

data dependent singular-value threshold. All these promising results motivate us to consider

the class of DNNs with constraints on both spectral norms and ranks of weight matrices. In

addition, the following observation based on the compositional structure of DNNs is crucial

for our theoretical development. The SVD of Wl = UlΣlV
>

l gives the function

fWL
(x) = WLσL−1(· · ·σl(UΣV >σl−1(· · ·σ1(W1x)).

36

This function is the composition of a rl-dimensional Lipschitz continuous function

WLσL−1(WL−1 · · ·σl(UΣx)),

and a depth l network

V >σl−1(Wl−1 · · ·σ1(W1x)),

where rl is the rank of Wl. This decomposition, which is related to both spectral norms and

ranks of weight matrices, reveals some intrinsic structures of DNNs.

4.1.2 Natural Learning and Adversarial Robust Learning

Consider the class of DNNs with constraints on both spectral norms and ranks of weight

matrices,

FWL
=
{
fWL

:
∥∥∥Wj

∥∥∥2 ≤ cj, rank(Wj) ≤ rj,∀j ∈ [L]
}
,

where cj’s are the upper bounds on the spectral norms of corresponding weight matrices, and

rj’s are the upper bounds on the ranks. Let g(fWL
(·), ·) : X × Y → R be the loss function.

We first introduce the function class

g ◦ FWL
:=
{

(x, y) 7→ g(fWL
(x), y) : fWL

∈ FWL

}
.

The goal of natural learning is to find fWL
∈ FWL

such that the population risk

E(x,y)∼D[g(fWL
(x), y)]

is minimized. Recall that x̃ = x + ε · sign(∇xg(fWL
(x)), y) is the adversarial example via the

FGSM, so x̃ is a function of (x, y), fWL
, and g. Define the class of DNNs under the FGSM

as

F̃WL
=
{

(x, y) 7→ fWL
(x̃) : fWL

∈ FWL
, x̃ = x + ε · sign(∇xg(fWL

(x), y))
}
. (4.3)

37

Combining with the loss function, we similarly introduce another function class

g ◦ F̃WL
=
{

(x, y) 7→ g(fWL
(x̃), y) : fWL

∈ FWL
, x̃ = x + ε · sign(∇xg(fWL

(x), y))
}
.

The goal of adversarial robust learning is to find fWL
∈ FWL

such that the population

adversarial risk

E(x,y)∼D[g(fWL
(x̃), y)]

is minimized. In practice, we minimize the adversarial empirical risk to obtain the fWL
. We

care about the upper bound of Equation 4.2 so that the adversarial empirical risk can be

close to the adversarial population risk.

The key challenge for adversarial learning is that the adversarial example x̃ depends on

both neural network fWL
and loss function g, so deriving the generalization upper bound

is more complex. It should be pointed out that our theoretical development can be easily

extended to adversarial examples obtained by the k-step PGD method.

4.2 Generalization Bounds for Adversarial Learning

4.2.1 An Upper Bound on Rademacher Complexity for Adversarial Learning

In this section, we establish an upper bound on the Rademacher complexity for the

function class g ◦ F̃WL
. Key technical tools are covering numbers and the Dudley’s entropy

integral that we introduced before. We first establish the covering number of the function

class F̃WL
.

Lemma 4.2.1. Assume the activation function σ(·) is 1-Lipschitz and 1-smooth, and the

loss function g(·, y) is 1-Lipschitz and 1-smooth for any fixed label y. Let xi ∈ X = {x ∈

Rp :
∥∥∥x∥∥∥ ≤ B} for i = 1, . . . ,m. Then the covering number of F̃WL

with respect to the metric

ρm satisfies

N(F̃WL
, τ, ρm) ≤

(
9L(B +√pε+ Γ)∏L

j=1 cj

τ

)(2p+1)
∑L

j=1 rj

,

where

Γ = ε
1
κ

(
1 + 1

κ

L∏
j=1

cj

)
L∏

j=1
cj

(
1 + B

L

L∑
j=1

(
j

j∏
k=1

ck

))
,

38

and κ ≤ mint∈[p] |∇(t)
xi
g(fWL

(xi), yi)| with ∇(t)
xi

being the t-th element of ∇xi for t = 1, . . . , p.

Here we require that |∇(t)
xi
g(fWL

(xi), yi)| ≥ κ for all t ∈ [p]. For example, in the simple

linear logistic regression, we can set κ to be proportional to mint{|wt|} to satisfy this con-

dition, where w1, . . . , wp are linear coefficients. In addition, this condition actually controls

the change rate for the loss function around test samples to be at least κ, therefore it gives

a baseline for measuring the attack power. Once we have the covering number of F̃WL
, it is

easy to access an upper bound on R̂(F̃WL
) via Dudley’s entropy integral. According to the

Ledoux-Talagrand contraction inequality in Theorem 3.2.3 , R̂(g ◦ F̃WL
) ≤ R̂(F̃WL

) since we

assume that the loss function g(·, y) is 1-Lipschitz for a fixed y. As a result, we establish the

following theorem as the first contribution of our work.

Theorem 4.2.1. Under the same assumptions as in Lemma 4.2.1 , the Rademacher com-

plexity of g ◦ F̃WL
is upper bounded by

O

 ∆√
m

√√√√√p L∑
j=1

rj ln
(
L
√
m

(
1 + Γ

B +√pε

)) , (4.4)

where ∆ = ∏L
j=1 cj(B +√pε) and Γ is given in Lemma 4.2.1 .

Proof. By standard Dudley’s entropy integral, we have

R̂m(F̃WL
) . inf

β>0

{
β + 1√

m

∫ α

β

√
lnN(F̃WL

, τ, ρm)dτ
}

≤ inf
β>0

{
β + 1√

m

∫ α

β

√√√√√(2p+ 1)
L∑

j=1
rj ln

(
9L(B +√pε+ Γ)∏L

j=1 cj

τ

)
dτ

}

≤ inf
β>0

{
β + α√

m

√√√√√(2p+ 1)
L∑

j=1
rj ln

(
9L(B +√pε+ Γ)∏L

j=1 cj

β

)}

Here α = ∏L
j=1 cj(B +√pε). Take β = α/

√
m, we have

R̂m(g ◦ F̃WL
) ≤ R̂m(F̃WL

) ≤ O
∏L

j=1 cj(B +√pε)
√
m

√√√√√p L∑
j=1

rj ln
(
L
√
m
(

1 + Γ
B +√pε

)) .

39

Remark 4.2.1. Since logarithm is an order of constant, the upper bound in Theorem 4.2.1

can be simplified as Õ(∆
√
p
∑
rj/m). Hence, it is clear that the effect of adversarial attacks

on generalization performance is an additional linear term with ε. The corresponding linear

coefficient includes the width of the neural network, the sum of ranks of weight matrices, and

the product of spectral norms of weight matrices, which is exactly the Lipschitz constant of the

neural network. Assuming the ranks are all equal to r, ∑L
j=1 rj turns to be a linear function

of the depth, which implies that the depth influences the generalization error of adversarial

learning to a certain extent. In the next section, we improve this result and establish a

tighter bound, so that the bound achieves depth-free. Note that when ε = 0, it recovers the

case for natural learning. We leave the comparison of risk bounds between natural learning

and adversarial learning to Section 4.

It is worthwhile to compare Theorem 4.2.1 with several existing works. When the DNN

fWL
reduce to a linear classifier, the adversarial example x̃ produced by FGSM is the exact

solution to argmaxx′:‖x′−x‖∞≤ε
g(fWL

(x′), y), which corresponds to the case in [19]. For multi-

class linear classification, the bound in [19] relies on the width by an order of p2, while

our bound is O
(
(B + √pε)

√
pr1/m

)
, which is sharper than theirs by a factor of √p if

r1 = p. Instead, for binary linear classification, the upper bound in Theorem 4.2.1 reduces

to O
(
(B+√pε)

√
p/m

)
. This is comparable to the result in [19] by an additional √p-factor.

Under similar assumptions, [18] provides an upper bound for the generalization error of

DNNs under the FGM, which constrains the attacks within an `2-ball. Their result relies

on the depth by a factor of L and the width by a factor of √p. We focus on the `∞ attacks

and thus we believe that these two approaches are not directly comparable. [20] establishes

upper bounds on the surrogate tree transform, resting on `∞-operator norms and Frobenius

norms of weight matrices. For multi-class neural networks, their bound is polynomially

dependent on the depth and the width of the DNN by a factor of
√
L and p, respectively.

This adversarial Rademacher complexity upper bound is similar to ours. In the next section,

we provide a tighter depth-free upper bound.

40

4.2.2 A Tighter Upper Bound on Rademacher Complexity for Adversarial Learn-
ing

As we discussed previously, an L-layer neural network fWL
: Rp0 → RpL ∈ FWL

is a∏L
j=1 cj-Lipschitz continuous function if all activation functions are 1-Lipschitz. It is easy to

show that the covering number of DNNs class is independent of the network depth if we

regard the whole network as a Lipschitz continuous function. Furthermore, weight matrices

tend to be low rank in many empirical results, and drop out can be treated as the low-rank

regularization. These take-home points motivate us to decompose fWL
as a shallow network

and a low dimensional Lipschitz continuous function. Relying on this important observation,

we establish a tighter upper bound on the Rademacher complexity in adversarial setting,

and further limit the effect of adversarial perturbations on the adversarial generalization

performance.

Suppose Wl = UlΣlV
>

l for ∀ l ∈ [L], where Ul and Vl are column-orthogonal matrices,

and Σl ∈ Rrl×rl is a diagonal matrix whose entries are non-zero singular values of Wl. Then

we rewrite fWL
(x̃) as

fWL
(x̃) = hrl

◦ fWl
(x̃),

where

fWl
(x̃) = V >

l σl−1(· · ·σ1(W1(x̃)))

is a depth-l neural network and

hrl
(z) = WLσL−1(WL−1 · · ·σl(UlΣlz))

is a Lipschitz continuous function with low dimensional input, mapping from Rrl to RpL .

The composition implies that g ◦ F̃WL
is a subset of g ◦ Hrl

◦ F̃Wl
, where

Hrl
=
{

z 7→ hrl
(z)
∣∣∣∣∥∥∥z∥∥∥ ≤ l−1∏

j=1
cj(B +√pε), Lipschitz constant is

L∏
j=l

cj

}
.

41

According to the properties of Rademacher complexity, we have

R̂m(g ◦ F̃WL
) ≤ R̂m(g ◦ Hrl

◦ F̃Wl
).

Since this decomposition holds true for any l ∈ [L], we further obtain the upper bound on

R̂m(g ◦ F̃WL
) by choosing the minimum among all R̂m(g ◦ Hrl

◦ F̃Wl
) for l ∈ [L].

To derive an upper bound on R̂m(g ◦ Hrl
◦ F̃Wl

), we additionally need the covering

number for the class of Lipschitz continuous functions. The following lemma generalized

from Theorem 17 of [55] provides the result.

Lemma 4.2.2. Assume that H̃ is a class of M-Lipschitz continuous functions mapping from

Rr to R. Let zi ∈ Z = {z ∈ Rr :
∥∥∥z∥∥∥ ≤ A} for i = 1, . . . ,m. Then, the covering number of

H̃ with respect to the metric ρ∞ satisfies

N
(
H̃, τ, ρ∞

)
≤
(

2
⌈4MA

τ

⌉
+ 1

)(6MA
τ

)r

.

Notice that Lemma 4.2.1 holds true for DNNs with any number of layers. With the aid

of Lemma 4.2.1 and Lemma 4.2.2 , next Lemma 4.2.3 provides the Rademacher complexity

for g ◦ Hrl
◦ F̃Wl

under different assumptions on the rank rl. It is interesting and surprising

that different rank constraints lead to different sample complexities for g ◦ Hrl
◦ F̃Wl

.

Lemma 4.2.3. Under the same assumptions as in Lemma 4.2.1 , we have the following three

bounds:

1. When rl = 1, R̂m(g ◦ Hrl
◦ F̃Wl

) satisfies

R1
l := O

(
∆√
m

√√√√√p
l∑

j=1
rj ln

(
l
√

m
(
1 + Γ

B +√pε

)))
, (4.5)

where ∆ and Γ are defined in Theorem 4.2.1 and Lemma 4.2.1 .

42

2. When rl = 2, R̂m(g ◦ Hrl
◦ F̃Wl

) satisfies

R2
l := O

(
∆√
m

(√
(ln
√

m)3 +

√√√√√p
l∑

j=1
rj ln

(
l
√

m
(
1 + Γ

B +√pε

))))
. (4.6)

3. When rl ≥ 3, R̂m(g ◦ Hrl
◦ F̃Wl

) satisfies

Rrl
l := O

(
∆

rl
√

m

(√24rl ln(rl
√

m)
rl

+

√√√√√p
l∑

j=1
rj ln

(
l rl
√

m
(
1 + Γ

B +√pε

))))
. (4.7)

Remark 4.2.2. When rl ≥ 3, R̂m(g ◦ Hrl
◦ F̃Wl

) exponentially depends on the rank rl.

Instead, we can choose to use the Rademacher complexity bound of g ◦ F̃WL
established in

Theorem 4.2.1 . Hence, the upper bound for this case should be the minimum of Equation 4.4

and Equation 4.7 .

Consider some special cases to better illustrate results in Lemma 4.2.3 . When two weight

matrices at layer l1 and l2 with l1 < l2 have the same rank r, Lemma 4.2.3 shows that

Rr
l1 < Rr

l2 . Hence, the bound on R̂m(g◦Hrl
◦F̃Wl

) can be tighter if the depth l of the shallow

network can be as small as possible. On the other hand, if the depth l is fixed, the larger the

rank is, the larger the bound on R̂m(g ◦ Hrl
◦ F̃Wl

) is. Therefore, the ideal decomposition

of a network is to find the smallest layer whose weight matrix produces the smallest rank.

To achieve this, we first find the corresponding weight matrix with the smallest depth for

all possible ranks ranging from 1 to p. Then R̂m(g ◦Hrl
◦ F̃WL

) is obtained as the minimum

among all these initial upper bounds on different ranks. The conclusion is formalized in

Theorem 4.2.2 .

Theorem 4.2.2. For i = 1, . . . , p, define l(i) = minj∈[L]{j : rank(Wj) = i}. Then, R̂m(g ◦

F̃WL
) ≤ mini∈[p] R

i
l(i), where the Ri

l(i) is defined in Lemma 4.2.3 .

Proof. The conclusion of this theorem is a natural consequence of Lemma 4.2.3 .

43

Theorem 4.2.2 considers all possible decomposition of g ◦ F̃WL
and chooses the optimal

one. It provides a new and tighter bound on the Rademacher complexity for adversarial

learning assuming the spectral norm and the rank constraints on the weight matrix at each

layer. It is interesting that this upper bound is the minimum of p bounds, which may suggest

that DNNs behave like an ensemble.

Remark 4.2.3. We ignore logarithmic factors for simplicity and consider two different

scenarios. The first case is that there are low rank matrices with rank 1 or 2 at layer l.

Theorem 4.2.2 shows that the upper bound on the Rademacher complexity of g ◦ F̃WL
is at

most of order ∆
√
p
∑l

j=1 rj/m. The second case is that the ranks of weight matrices are all

greater than or equal to 3. Theorem 4.2.2 shows that the upper bound is at most of order

∆ ·min
(√

p
∑L

j=1 rj

m
,

√
p
∑l

j=1 rj +
√

24rl/rl

rl
√
m

)
.

These bounds are depth free, depend on the Lipschitz constant ∏L
j=1 cj, and has a linear

relationship with ε whose coefficient is linear in the width p.

Comparing these new bounds with Equation 4.4 , Theorem 4.2.2 establishes a tighter

bound. To be more precise, the Rademacher complexity of DNNs under adversarial setting

only relies on the shallow part if a low rank weight matrix exists. Correspondingly, the

linear coefficient of adversarial perturbations reduces to O(
√∑l

j=1 rj), which indicates that

adversarial attacks have a smaller influence on the Rademacher complexity. As we discussed

in the previous section, current existing works analyze the adversarial generalization bound

for linear classifier and surrogate of DNNs. Their bounds polynomially depends on the depth

and the width. However, we work on the neural network space directly and the bound is

depth free and linear in ε.

4.3 Natural Learning vs. Adversarial Learning

To compare the generalization behaviors between natural learning and adversarial learn-

ing, it would be more convenient if the Rademacher complexity for natural learning can

44

be computed explicitly. Corollary 4.3.1 and Corollary 4.3.2 establish upper bounds on the

Rademacher complexity of g ◦ FWL
by setting ε = 0 in Theorem 4.2.1 and Lemma 4.2.3 .

Corollary 4.3.1. Assume the activation function σ(·) is 1-Lipschitz, satisfying σ(0) = 0, and

the loss function g(·, y) is 1-Lipschitz for any fixed label y. Let xi ∈ X = {x ∈ Rp :
∥∥∥x∥∥∥ ≤ B}

for i = 1, . . . ,m. Then the Rademacher complexity R̂m(g◦FWL
) for natural learning is upper

bounded by

O
(∏L

j=1 cjB√
m

√√√√√p L∑
j=1

rj ln
(
L
√
m
))

.

The bound obtained by Corollary 4.3.1 recovers preexisting natural learning risk bounds

[49]. Similar to Lemma 4.2.3 , we provide a tighter upper bound for R̂(g◦FWL
) by realizing a

DNN as the decomposition of a low-dimensional Lipschitz continuous function and a shallow

network.

Corollary 4.3.2. Under the same assumptions as in Corollary 4.3.1 , define ∆ = ∏L
j=1 cjB

and Γ = 0. The bounds of R̂m(g◦Hrl
◦FWl

) are obtained by plugging ∆ and Γ in Equation 4.5 ,

Equation 4.6 , and Equation 4.7 respectively.

Again, we take the bound for R̂m(g ◦FWL
) as the minimum among all R̂m(g ◦Hrl

◦FWl
),

so Theorem 4.2.2 can be applied here directly.

This new Rademacher complexity bound for natural learning has its own independent

interests, which is the tightest upper bound in the literature [44]–[50]. For example, [44]

provides a generalization error exponentially depending on depth L. [47] shows a bound

based on spectral norm and L2,1 norm, but this bound is still polynomial dependent on

depth L. [45] also establishes a bound polynomially depending on depth L and width p. [49]

achieves a bound scaling as O
(
B
∏L

j=1

∥∥∥Wj

∥∥∥2

√
Lpr/m

)
by assuming all ranks are the same.

Our bound reach an order of O
(
B
∏L

j=1

∥∥∥Wj

∥∥∥2
√
p
∑l

j=1 rj/m
)
, which is apparently tighter

than current existing bounds.

45

Remark 4.3.1. For ease of illustration, we ignore the logarithm term in the following.

Assume there are weight matrices with rank at most 2 at layer l, we have

R̂(U)
m (g ◦ F̃WL

)− R̂(U)
m (g ◦ FWL

) = O
(∏L

j=1 cjεp√
m

√√√√√ l∑
j=1

rj

)
,

where R̂(U)
m (g ◦ F̃WL

) and R̂(U)
m (g ◦FWL

) denote the upper bound of R̂m(g ◦ F̃WL
) and R̂m(g ◦

FWL
) respectively. If there are no low-rank matrices, we have

R̂(U)
m (g ◦ F̃WL

)− R̂(U)
m (g ◦ FWL

) = O
(∏L

j=1 cjεp√
m

√√√√√ L∑
j=1

rj

)
.

This confirms that the adversarial Rademacher complexity is always as large as its natural

counterpart with an additional term O(ε/
√
m), which infers that it could be larger than the

natural Rademacher complexity. The gap between these two Rademacher complexities can be

further limited if there exists a low-rank weight matrix in the DNN. This is consistent with

the previous conclusion that the low-rank structure is able to reduce the effect of adversarial

attacks on generalization error.

The trade-off between robustness and natural accuracy has been consistently reported

in the literature [4], [15]. Training models to be robust may lead to a reduction of standard

natural accuracy. The general study on this topic is beyond the scope of this paper. To

achieve both robustness and high natural accuracy, [56] proposed to learn the robust model

by using both natural examples and adversarial examples during the training process. For

samples {x1, . . . ,xm} from X , we choose a subset of the training examples to create adver-

sarial examples, denoted as Sa, while the remaining subset is natural examples, denoted as

Sn. A new loss function that can independently control the size of adversarial examples is

defined as
1
m

(∑
xi∈Sn

g(fWL
(xi), yi) +

∑
x̃i∈Sa

g(fWL
(x̃i), yi)

)
. (4.8)

46

We then define the function class G ◦ FWL
= {(x, y) 7→ G(fWL

(x), y)} for this new loss

function, where
G(fWL

(x), y)

=g(fWL
(x), y)I(x ∈ Sn) + g(fWL

(x̃), y)I(x̃ ∈ Sa)

An upper bound on the Rademacher complexity for G◦FWL
is established in Theorem 4.3.1 .

Theorem 4.3.1. Given {x1, . . . ,xm} from X , let Sa be the adversarial set and Sn be the

natural set. The Rademacher complexity of G ◦ FWL
satisfies

R̂m(G ◦ FWL
) ≤ |Sn|

m
R̂|Sn|(g ◦ FWL

) + |Sa|
m

R̂|Sa|(g ◦ F̃WL
),

where R̂|Sn|(g ◦FWL
) and R̂|Sa|(g ◦ F̃WL

) are the Rademacher complexities computed on data

samples in Sn and Sa respectively.

Proof. Following the definition, we have

R̂m(G ◦ FWL
) = Eδ

[
sup

G◦fWL
∈G◦FWL

1
m

m∑
i=1

δi

(
g(fWL

(xi), yi)I(xi ∈ Sn) + g(fWL
(x̃i), yi)I(x̃i ∈ Sa)

)]

≤ Eδ

[
sup

g◦fWL
∈g◦FWL

1
m

m∑
i=1

δi

(
g(fWL

(xi), yi)I(xi ∈ Sn)
)]

+ Eδ

[
sup

g◦fWL
∈g◦F̃WL

1
m

m∑
i=1

δi

(
g(fWL

(x̃i), yi)I(x̃i ∈ Sa)
)]

= |Sn|
m

Eδ

[
sup

g◦fWL
∈g◦FWL

1
|Sn|

∑
xi∈Sn

δig(fWL
(xi), yi)

]

+ |Sa|
m

Eδ

[
sup

g◦fWL
∈g◦F̃WL

1
|Sa|

∑
x̃i∈Sa

δig(fWL
(x̃i), yi)

]

= |Sn|
m

R̂|Sn|(g ◦ FWL
) + |Sa|

m
R̂|Sa|(g ◦ F̃WL

).

This completes the proof.

Theorem 4.3.1 shows that the Rademacher complexity bound for G ◦ FWL
is a linear

combination between the Rademacher complexities computed on natural examples and ad-

versarial examples. The coefficients are related to the sample sizes |Sn| and |Sa|. If the

47

training is based on the loss function (Equation 4.8), Theorem 4.3.1 confirmed that control-

ling the sample sizes |Sn| and |Sa| can contribute to the trade-off between robustness and

natural accuracy.

4.4 Numerical Results

In this section, we provide a set of experiments to validate our theoretical findings. In

particular, we show 1) the spectral normalization reduces the gap between the population

adversarial risk and empirical adversarial risk; 2) the adversarial generalization bound is

depth-free if there exists a low-rank weight matrix; 3) the generalization error is proportional

to the attack size.

(a) (b)

(c) (d)

Figure 4.1. Original testing data and adversarial testing data: (a) Original
data with label 0 and label 1; (b), (c), (d) Original data with label 0 and label
1 are perturbed by the FGSM scheme that uses the model NN-5-10-2 with
spectral normalization, and the attack size is 0.5, 1.0 and 1.5 respectively. It
becomes harder to separate the data as the attack size increases.

48

Table 4.1. Adversarial generalization errors under FGSM attacks for various
model structures with different constraints on weight matrices.

Model ε = 0.0 ε = 0.5 ε = 1.0 ε = 1.5

With SN
NN-5-10-2 0.0012 0.0128 0.0234 0.0332

NN-5-10-2-5 0.0042 0.0096 0.0204 0.0364
NN-5-10-2-5-8 0.0028 0.0090 0.0222 0.0320

Without SN
NN-5-10-2 0.0062 0.0156 0.0308 0.0404

NN-5-10-2-5 0.0068 0.0158 0.0230 0.0302
NN-5-10-2-5-8 0.0056 0.0114 0.0340 0.0386

We consider the simple two-spirals dataset demonstrated in Figure 4.1a , where the train-

ing set includes 5000 samples and testing set has 1000 samples. Several network structures

are constructed to verify our depth-free conclusion. For convenience, we denote a neural

network with L− 1 hidden layers as NN-p1-· · · -pL−1. Because this is a binary classification

problem and the dimension of the input is 2, both the input layer and output layer have 2

units and we omit it in the notation. The FGSM attack adversarial training is applied to

minimize the empirical adversarial risk in Equation 1.1 . In each iteration, we first take the

gradient of current loss on clean data to generate adversarial data, then update the model

with the adversarial data. Once the model is obtained, we use FGSM attack to check the

adversarial training and testing error. The attack sizes are set as 0.5, 1.0 and 1.5 respectively.

We also constrain the spectral norm of every weight matrix to be 1. Under each setting, we

train the model for 150 epochs using Adam with a batch size of 50, and the learning rate

is 0.001. Figure 4.1b , Figure 4.1c and Figure 4.1d plot adversarial examples generated by

model NN-5-10-2 under the FGSM attack. It is obvious that the larger the attack size is,

the more difficult it is to separate these two spirals.

We present the adversarial generalization errors under the FGSM attack in Table 4.1 .

As we can see, the generalization error for the model with spectral normalization is gener-

ally smaller than that for the model without spectral normalization under the same attack

power. Thus constraining spectral norms of weight matrices indeed reduce the adversarial

generalization error under the FGSM attack.

To check whether the adversarial generalization error for FGSM is depth-free under con-

straints of spectral normalization and low-rank weight matrices, we construct three networks

49

NN-5-10-2, NN-5-10-2-5, and NN5-10-2-5-8. They have different numbers of hidden layers,

but all models have one two-units layer. For each attack size, it is clear that generalization

errors of these three models are similar, which indicates that the generalization error only

relies on the small shallow network and is independent on the depth of the whole network.

In terms of the relationship between generalization error and attack size, we can tell that

the adversarial generalization errors increase as the attack size increases regardless of whether

the spectral normalization is adapted. However, the linearity between these two terms are

more significant for models with spectral normalization. Overall, our experiments confirms

that applying spectral norm and low rank regularization can improve the generalization

behavior of adversarial learning.

4.5 Related Proofs

4.5.1 Proof of Lemma 4.2.1

Lemma 4.5.1. Let Sc,r = {W : W ∈ Rp2×p1 ,
∥∥∥W∥∥∥2 ≤ c, rank(W) ≤ r}. Then there exists

an τ -covering of Sc,r with respect to the spectral norm obeying

N(Sc,r, τ,
∥∥∥ · ∥∥∥2) ≤

(
9c
τ

)r(p2+p1+1)

.

Proof. We prove the lemma by extending the arguments from [57]. We do SVD of W in Sc,r,

W = UΣV > = cU
Σ
c
V > := cUΣ̃V >, (4.9)

where Σ ∈ Rr×r is the diagonal matrix with singular values, U ∈ Rp2×r and V ∈ Rp1×r are

column orthogonal matrices. Thus, ‖U‖2 = ‖V ‖2 = 1, and ‖Σ̃‖2 ≤ 1. We will construct an

τ -covering for Sc,r by covering the set of U , Σ̃ and V . we assume p1 = p2 = p for simplicity.

Let Λ be the set of diagonal matrices with non-negative entries and spectral norm less

than 1. We take Λ′ to be an τ/(3c)-net for Λ with

|Λ′| ≤
(

9c
τ

)r

.

50

Let Op,r = {U ∈ Rp×r :
∥∥∥U∥∥∥2 = 1}. There also exists an τ/(3c)-net O′

p,r for Op,r obeying

|O′
p,r| ≤

(
9c
τ

)pr

.

We now let S ′
c,r = {cU ′Σ′V ′> : U ′, V ′ ∈ O′

p,r,Σ′ ∈ Λ′}.Thus,

|S ′
r| ≤ |O′

p,r|2|Λ′| ≤
(

9c
τ

)r(2p+1)

.

It remains to show that there exists S ′
c,r for Sc,r, such that

∥∥∥W −W ′
∥∥∥2 ≤ τ .

∥∥∥W −W ′
∥∥∥2

=c
∥∥∥UΣ̃V > − U ′Σ′V ′>

∥∥∥2

=c
∥∥∥UΣ̃V > − U ′Σ̃V > + U ′Σ̃V > − U ′Σ′V > + U ′Σ′V > − U ′Σ′V ′>

∥∥∥2

≤c
(∥∥∥(U − U ′)Σ̃V >

∥∥∥2 +
∥∥∥U ′(Σ̃− Σ′)V >

∥∥∥2 +
∥∥∥U ′Σ′(V − V ′)>

∥∥∥2

)

For the first term,

∥∥∥(U − U ′)Σ̃V >
∥∥∥2 ≤

∥∥∥U − U ′
∥∥∥2

∥∥∥Σ̃∥∥∥2

∥∥∥V ∥∥∥2 ≤
τ

3c.

The same argument gives
∥∥∥U ′Σ′(V − V ′)>

∥∥∥2 ≤ τ/(3c). For the second term,

∥∥∥U ′(Σ̃− Σ′)V >
∥∥∥2 ≤

∥∥∥Σ̃− Σ′
∥∥∥2 ≤

τ

3c.

Therefore,
∥∥∥W −W ′

∥∥∥2 ≤ τ . This completes the proof.

Lemma 4.5.2. Given (x1, . . . ,xm) from X = {x ∈ Rp :
∥∥∥x∥∥∥ ≤ B}, each xi is perturbed

by ε · sign(∇xig(fWL
(xi), yi)). Assume the activation function σ(·) is 1-Lipschitz and 1-

smooth. Assume the loss function g(·, y) is 1-Lipschitz and 1-smooth for any fixed label y, and

mint∈[p] |∇(t)
xi
g(fWL

(xi), yi)| ≥ κ holds for a constant κ > 0, where ∇(t)
xi
g(fWL

(xi), yi) is the t-th

51

element of ∇xig(fWL
(xi), yi). Given WL = (W1, . . . ,WL), there exists W ′

L = (W ′
1, . . . ,W

′
L),

where W ′
j is from the τj-covering of Scj,rj, for j = 1, . . . , L. Then

∥∥∥∇xg(fWL
(x), y)−∇xg(fW ′

L
(x), y)

∥∥∥2 ≤
L∏

j=1
cj

L∑
j=1

(
τj

cj
+B

j∏
k=1

ck

j∑
k=1

τk

ck

)
.

Proof. According to the Lipschitz and smooth assumptions of the activation function and

loss function, we have

∥∥∥∇xg(fWL
(x), y)−∇xg(fW ′

L
(x), y)

∥∥∥2

≤
∥∥∥∇xfWL

(x)(∇g)(fWL
(x), y))−∇xfW ′

L
(x)(∇g)(fWL

(x), y))
∥∥∥2

+
∥∥∥∇xfW ′

L
(x)(∇g)(fWL

(x), y))−∇xfW ′
L
(x)(∇g)(fW ′

L
(x), y))

∥∥∥2

≤
∥∥∥∇xfWL

(x)−∇xfW ′
L
(x)

∥∥∥2 +
∥∥∥∇xfW ′

L
(x)

∥∥∥2

∥∥∥(∇g)(fWL
(x), y))− (∇g)(fW ′

L
(x), y))

∥∥∥2

≤
∥∥∥∇xfWL

(x)−∇xfW ′
L
(x)

∥∥∥2 +
∥∥∥∇xfW ′

L
(x)

∥∥∥2

∥∥∥fWL
(x)− fW ′

L
(x)

∥∥∥2 (4.10)

≤
∥∥∥∇xfWL

(x)−∇xfW ′
L
(x)

∥∥∥2 +
L∏

j=1
c2

jB
L∑

j=1

τj

cj
. (4.11)

Note that Equation 4.10 holds because g(·) is 1-smooth, and

∥∥∥fWL
(x)− fW ′

L
(x)

∥∥∥2 ≤
L∏

j=1
cjB

L∑
j=1

τj/cj

in Equation 4.11 can be obtained from [47]. Next, we prove the following inequality by

induction. ∥∥∥∇xfWL
(x)−∇xfW ′

L
(x)

∥∥∥2 ≤
L∏

j=1
cj

L∑
j=1

(
τj

cj
+B

j−1∏
k=1

ck

j−1∑
k=1

τk

ck

)
. (4.12)

When L = 0, fW0(x) = x,
∥∥∥∇xfW0(x) −∇xfW ′

0
(x)

∥∥∥2 = 0. Assume Equation 4.12 holds

when there are L− 1 layers for DNN. Then, we have

52

∥∥∥∇xfWL
(x)−∇xfW ′

L
(x)

∥∥∥2

=
∥∥∥∇xfWL−1(x)(∇σL−1)(fWL−1(x))W>

L −∇xfW ′
L−1

(x)(∇σL−1)(fW ′
L−1

(x))W ′>
L

∥∥∥2

≤
∥∥∥∇xfWL−1(x)(∇σL−1)(fWL−1(x))W>

L −∇xfWL−1(x)(∇σL−1)(fW ′
L−1

(x))W>
L

∥∥∥2

+
∥∥∥∇xfWL−1(x)(∇σL−1)(fW ′

L−1
(x))W>

L −∇xfWL−1(x)(∇σL−1)(fW ′
L−1

(x))W ′>
L

∥∥∥2

+
∥∥∥∇xfWL−1(x)(∇σL−1)(fW ′

L−1
(x))W ′>

L −∇xfW ′
L−1

(x)(∇σL−1)(fW ′
L−1

(x))W ′>
L

∥∥∥2

≤
L−1∏
j=1

cj

∥∥∥fWL−1(x)− fW ′
L−1

(x)
∥∥∥2cL +

L−1∏
j=1

cjτj +
∥∥∥∇xfWL−1(x)−∇xfW ′

L−1
(x)

∥∥∥2cL

≤
L∏

j=1
cj

L−1∏
j=1

cjB
L−1∑
j=1

τj

cj
+

L−1∏
j=1

cjτj +
L∏

j=1
cj

L−1∑
j=1

(
τj

cj
+B

j−1∏
k=1

ck

j−1∑
k=1

τk

ck

)

≤
L∏

j=1
cj

L∑
j=1

(
τj

cj
+B

j−1∏
k=1

ck

j−1∑
k=1

τk

ck

)

Combining Equation 4.11 and Equation 4.12 , we can get the conclusion.

Lemma 4.5.3. Under the same assumptions of Lemma 4.5.2 , we have

∥∥∥sign(∇xg(fWL
(x), y))−sign(∇xg(fW ′

L
(x), y))

∥∥∥2 ≤
1
κ

(1+1
κ

L∏
j=1

cj)
L∏

j=1
cj

L∑
j=1

(
τj

cj
+B

j∏
k=1

ck

j∑
k=1

τk

ck

)

Proof. According to the definition,

sign(∇xg(fWL
(x), y)) = Φ−1∇xg(fWL

(x), y),

where

Φ =

|∇(1)
x g(fWL

(x), y)|

|∇(2)
x g(fWL

(x), y)|
. . .

|∇(p)
x g(fWL

(x), y)|

,

53

in which ∇(t)
x g(fWL

(x), y) is the t-th element of ∇xg(fWL
(x), y). Similarly, define Φ′ =

diag(|∇xg(fW ′
L
(x), y)|). Then, for fixed y,

∥∥∥sign(∇xg(fWL
(x), y))− sign(∇xg(fW ′

L
(x), y))

∥∥∥2

=
∥∥∥Φ−1∇xg(fWL

(x), y)− (Φ′)−1∇xg(fW ′
L
(x), y)

∥∥∥2

≤
∥∥∥Φ−1∇xg(fWL

(x), y)− Φ−1∇xg(fW ′
L
(x), y)

∥∥∥2 +
∥∥∥Φ−1∇xg(fW ′

L
(x), y) + (Φ′)−1∇xg(fW ′

L
(x), y)

∥∥∥2

≤
∥∥∥Φ−1

∥∥∥2

∥∥∥∇xg(fWL
(x), y)−∇xg(fW ′

L
(x), y)

∥∥∥2 +
∥∥∥Φ−1 − (Φ′)−1

∥∥∥2

∥∥∥∇xg(fW ′
L
(x), y)

∥∥∥2

≤
(∥∥∥Φ−1

∥∥∥2 + 1
κ2

∥∥∥∇xg(fW ′
L
(x), y)

∥∥∥2

)∥∥∥∇xg(fWL
(x), y)−∇xg(fW ′

L
(x), y)

∥∥∥2 (4.13)

≤1
κ

(1 + 1
κ

L∏
j=1

cj)
∥∥∥∇xg(fWL

(x), y)−∇xg(fW ′
L
(x), y)

∥∥∥2 (4.14)

≤1
κ

(1 + 1
κ

L∏
j=1

cj)
L∏

j=1
cj

L∑
j=1

(
τj

cj
+B

j∏
k=1

ck

j∑
k=1

τk

ck

)
. (4.15)

Under the assumptions, Equation 4.13 is obtained by

∥∥∥Φ−1 − (Φ′)−1
∥∥∥2 = max

t∈[p]

∣∣∣|∇(t)
x g(fW ′

L
(x), y)| − |∇(t)

x g(fWL
(x), y)|

∣∣∣
|∇(t)

x g(fWL
(x), y)||∇(t)

x g(fW ′
L
(x), y)|

≤ 1
κ2 max

t∈[p]

∣∣∣|∇(t)
x g(fW ′

L
(x), y)| − |∇(t)

x g(fWL
(x), y)|

∣∣∣
≤ 1
κ2 max

t∈[p]
|∇(t)

x g(fW ′
L
(x), y)−∇(t)

x g(fWL
(x), y)|

≤ 1
κ2

∥∥∥∇xg(fWL
(x), y)−∇xg(fW ′

L
(x), y)

∥∥∥2.

Equation 4.14 is obtained by
∥∥∥Φ−1

∥∥∥2 = maxt∈[p](1/∇(t)
x g(fWL

(x), y)) ≤ 1/κ and∇xg(fW ′
L
(x), y)) =

∇xfW ′
L
(x)(∇g)(fW ′

L
(x), y)) ≤ ∏L

j=1 cj. Equation 4.15 is obtained from Lemma 4.5.2 .

Now, we prove that under the assumptions of Lemma 4.5.2 , given τ > 0,

ρm =
(1
m

m∑
i=1

∥∥∥fWL
(xi+ε·sign(∇xig(fWL

(xi), y)))−fW ′
L
(xi+ε·sign(∇xig(fW ′

L
(xi), y)))

∥∥∥2
2

) 1
2
≤ τ

by choosing

τj = τcj

L(B +√pε+ Γ)∏L
i=1 ci

, (4.16)

54

where Γ = ε 1
κ
(1 + 1

κ

∏L
j=1 cj)

∏L
j=1 cj(1 + B

L

∑L
j=1(j

∏j
k=1 ck)).

First, we inductively prove that

∥∥∥fWL
(x + ε · sign(∇xg(fWL

(x), y)))− fW ′
L
(x + ε · sign(∇xg(fW ′

L
(x), y)))

∥∥∥2

≤
L∏

j=1
cj

L∑
j=1

τj

cj
(B +√pε) +

L∏
j=1

cjε
∥∥∥sign(∇xg(fWL

(x), y))− sign(∇xg(fW ′
L
(x), y))

∥∥∥2

When L = 0, it is obvious that the above inequality holds. Then,

∥∥∥fWL
(x + ε · sign(∇xg(fWL

(x), y)))− fW ′
L
(x + ε · sign(∇xg(fW ′

L
(x), y)))

∥∥∥2

≤
∥∥∥WLσL−1(fWL−1(x + ε · sign(∇xg(fWL

(x), y))))−W ′
LσL−1(fWL−1(x + ε · sign(∇xg(fWL

(x), y))))
∥∥∥2

+
∥∥∥W ′

LσL−1(fWL−1(x + ε · sign(∇xg(fWL
(x), y))))−W ′

LσL−1(fW ′
L−1

(x + ε · sign(∇xg(fW ′
L
(x), y))))

∥∥∥2

≤τL

L−1∏
j=1

cj(B +√pε) + cL

∥∥∥fWL−1(x + ε · sign(∇xg(fWL
(x), y)))− fW ′

L−1
(x + ε · sign(∇xg(fW ′

L
(x), y)))

∥∥∥2

≤τL

L−1∏
j=1

cj(B +√pε) +
L∏

j=1
cj

L−1∑
j=1

τj

cj
(B +√pε) +

L∏
j=1

cjε
∥∥∥sign(∇xg(fWL

(x), y))− sign(∇xg(fW ′
L
(x), y))

∥∥∥2

≤
L∏

j=1
cj

L∑
j=1

τj

cj
(B +√pε) +

L∏
j=1

cjε
∥∥∥sign(∇xg(fWL

(x), y))− sign(∇xg(fW ′
L
(x), y))

∥∥∥2.

Applying Lemma 4.5.3 and Equation 4.16 , we have

∥∥∥fWL
(x + ε · sign(∇xg(fWL

(x), y)))− fW ′
L
(x + ε · sign(∇xg(fW ′

L
(x), y)))

∥∥∥2

≤
L∏

j=1
cj

(
L∑

j=1

τj

cj
(B +√pε) + ε

1
κ

(1 + 1
κ

L∏
j=1

cj)
L∏

j=1
cj

L∑
j=1

(
τj

cj
+B

j∏
k=1

ck

j∑
k=1

τk

ck

))
≤τ

55

Therefore, the covering number of F̃WL
is

N(F̃WL
, τ, ρm) ≤

L∏
j=1

sup
W1,...,Wj−1

∀i<j,Wi∈Sci,ri

N

({
Wj : Wj ∈ Scj,rj

}
, τj,

∥∥∥ · ∥∥∥2

)

≤
L∏

j=1

(
9cj

τj

)rj(pj+pj−1+1)

≤
(

9L(B +√pε+ Γ)∏L
j=1 cj

τ

)(2p+1)
∑

rj

.

4.5.2 Proof of Lemma 4.2.2

Proof. We first scale z ∈ Z to be a unit ball, denoting as Z/A for simplicity. For any τ1 > 0,

there exists a τ1-covering of Z/A consisting of N(Z/A, τ1, ρ∞) balls: B1, . . . ,BN(Z/A,τ1,ρ∞).

By [58], we have

N(Z/A, τ1, ρ∞) =
(3
τ1

)r

Choose the center ot in each of the ball Bt, for t ∈ [N(Z/A, τ1, ρ∞)]. The function h̃(z) on

the set Z will be approximated by the construction:

h̃′(z) =
[

2h̃(Aot)
τ2

]
τ2
2 for z ∈ Bt

Take τ1 = τ2/(2MA), we have

sup
z
|h̃(z)− h̃′(z)| ≤ sup

z

∣∣∣∣∣h̃(z)− 2h̃(Aot)
τ2

τ2

2

∣∣∣∣∣+ sup
z

∣∣∣∣∣2h̃(Aot)
τ2

τ2

2 −
[2h̃(Aot)

τ2

]
τ2

2

∣∣∣∣∣
≤ sup

z
|h̃(z)− h̃(Aot)|+

τ2

2
≤M sup

z

∥∥∥z− Aot

∥∥∥2 + τ2

2
≤MA sup

z

∥∥∥z/A− ot

∥∥∥2 + τ2

2 ≤MAτ1 + τ2

2 ≤ τ2

56

Let s = 2[4AM/τ2] + 1. The function h̃′(z) assumes no more than N(Z/A, τ1, ρ∞) values

on each set s and therefore, the total number of all functions is no greater than the number

sN(Z/A,τ1,ρ∞), that is,

N(H̃, τ2, ρ∞) ≤
(

2
⌈4MA

τ2

⌉
+ 1

)(6MA
τ2

)r

.

4.5.3 Proof of Lemma 4.2.3

Proof. Note that Lemma 1 is also applied for any fixed l ∈ [L]. Using Lemma 1 and Lemma

2, we compute the Rademacher complexity for the decomposed DNN. First, we argue that

for τ > 0

N(g ◦ Hrl
◦ F̃Wl

, τ, ρm) ≤ N(g ◦ Hrl
,
τ

2 , ρ∞)N(F̃Wl
,

τ

2∏L
j=l cj

, ρm).

Pick any function h̃rl
:= g ◦ hrl

∈ g ◦ Hrl
and fWl

∈ F̃Wl
, and let h̃′

rl
and f ′

Wl
be the closest

function in g ◦ Hrl
and F̃Wl

respectively. Since h̃′
rl

is ∏L
j=l cj-Lipschitz, we have

ρm(h̃rl
fWl

, h̃′
rl
f ′

Wl
) =

√√√√ 1
m

m∑
i=1
|h̃rl

fWl
− h̃′

rl
f ′

Wl
|2

≤

√√√√ 1
m

m∑
i=1
|h̃rl

fWl
− h̃′

rl
fWl
|2 + 1

m

m∑
i=1
|h̃′

rl
fWl
− h̃′

rl
f ′

Wl
|2

≤ sup
x̃
|h̃rl

(x̃)− h̃′
rl

(x̃)|+
L∏

j=l

cj

√√√√ 1
m

m∑
i=1
‖fWl

− f ′
Wl
‖2

2

≤τ2 + τ

2 = τ

57

Therefore, we can choose h̃′
rl

and f ′
Wl

from the covers of g◦Hrl
and F̃Wl

to cover g◦Hrl
◦F̃Wl

.

By standard Dudley’s entropy integral, we have

R̂m(g ◦ Hrl
◦ F̃Wl

) . inf
β>0

{
β + 1√

m

∫ α

β

√
lnN(g ◦ Hrl

◦ F̃Wl
, τ, ρm)dτ

}

≤ inf
β>0

{
β + 1√

m

∫ α

β

√
lnN(g ◦ Hrl

,
τ

2 , ρ∞)dτ + 1√
m

∫ α

β

√
lnN(F̃Wl

,
τ

2∏L
j=l cj

, ρm)dτ
}

≤ inf
β>0

{
β + 1√

m

∫ α

β

√√√√(12(B +√pε)∏L
j=1 cj

τ

)rl

ln
(

2
⌈8(B +√pε)∏L

j=1 cj

τ

⌉
+ 1

)
dτ

+ 1√
m

∫ α

β

√√√√√(2p+ 1)
l∑

j=1
rj ln

(18∏L
j=1 cjl(B +√pε+ Γl)

τ

)
dτ

}

:= inf
β>0
{P +Q},

where

α = sup
x∈X

ghrl
fWl

∈g◦Hrl
◦F̃Wl

ρm(ghrl
fWl

(x), 0) = (B +√pε)
L∏

j=1
cj.

We consider Q,

Q = 1√
m

∫ α

β

√√√√√(2p+ 1)
l∑

j=1
rj ln

(18∏L
j=1 cjl(B +√pε+ Γl)

τ

)
dτ

≤ α√
m

√√√√√(2p+ 1)
l∑

j=1
rj ln

(18l(α +∏l
j=1 cjΓl)

β

)

Then we consider P ,

P =β + 1√
m

∫ α

β

√(12α
τ

)rl

ln
(

2
⌈8α
τ

⌉
+ 1

)
dτ

.β + 1√
m

∫ α

β

√(16α
τ

)rl

ln
(16α
τ

)
dτ

≤β + 32α√
m

∫ −
√

ln 16

−
√

ln 16α
β

e(rl/2−1)t2
t2pt

58

(a) When rl/2− 1 < 0, i.e., rl = 1,

P ≤ β + 32α√
m

∫ −
√

ln 16

−
√

ln 16α
β

e(rl/2−1)t2
t2pt ≤ β + 16α√

m

√
2π

2− rl

Et2 = β +
√

2π

m

16α
(2− rl)3/2

Therefore,

P +Q ≤ β +
√

2π

m

16α
(2− rl)3/2 + α√

m

√√√√√(2p+ 1)
l∑

j=1
rj ln

(18l(α +∏l
j=1 cjΓl)

β

)

Take β = α/
√
m, we have

R̂m(g ◦ Hrl
◦ F̃Wl

) . α√
m

(
1 + 16

√
2π +

√√√√√(2p+ 1)
l∑

j=1
rj ln

(
18l
√
m(1 + Γl

B +√pε)
))

(b) When rl/2− 1 = 0, i.e., rl = 2,

P ≤ β + 32α√
m

∫ −
√

ln 16

−
√

ln 16α
β

t2pt = β + 32α
3
√
m

((
ln 16α

β

)3/2
− (ln 16)3/2

)

Hence,

P +Q ≤ β+ 32α
3
√
m

((
ln 16α

β

)3/2
− (ln 16)3/2

)
+ α√

m

√√√√√(2p+ 1)
l∑

j=1
rj ln

(18l(α +∏l
j=1 cjΓl)

β

)

Choose β = α/
√
m, we have

R̂m(g◦Hrl
◦F̃Wl

) . α√
m

(
1+16

((
ln(16

√
m)
)3/2
−(ln 16)3/2

)
+

√√√√√(2p+ 1)
l∑

j=1
rj ln

(
18l
√
m(1 + Γl

B +√pε)
))
.

(c) When rl/2− 1 > 0, i.e., rl > 2,

P ≤ β + 32α√
m

∫ −
√

ln 16

−
√

ln 16α
β

e(rl/2−1)t2
t2pt ≤ β + 16α

rl/2− 1

√
ln(16α/β)

m

((16α
β

)rl/2−1
− 16rl/2−1

)

59

Therefore,

P+Q ≤ β+ 16α
rl/2− 1

√
ln(16α/β)

m

((16α
β

)rl/2−1
−16rl/2−1

)
+ α√

m

√√√√√(2p+ 1)
l∑

j=1
rj ln

(18l(α +∏l
j=1 cjΓl)

β

)

Let β = α/ rl
√
m, we have

R̂m(g◦Hrl
◦F̃Wl

) . α
rl
√
m

(
1+ 32

rl − 2

√
16rl−2 ln(16 rl

√
m)+

√√√√√(2p+ 1)
l∑

j=1
rj ln

(
18l rl
√
m(1 + Γl

B +√pε)
))
.

This completes the proof.

60

5. ON THE LATENT SPACE OF GENERATIVE MODELS

In chapter 1 , we briefly depict the harm of dimensional mismatch between the latent dis-

tribution and data distribution, such as mode collapsing and wrong representation learning.

To handle these drawbacks, we further explore the reason behind the mismatch phenomena,

and propose a novel approach, called Latent Wasserstein GAN (LWGAN), to identify the in-

trinsic dimension of a data distribution that lies on a continuous manifold. In particular, we

take the advantages of WAE and WGAN to learn an informative prior distribution PZ rather

than using a fixed distribution such as standard Gaussian in the conventional methods. Our

main contributions are summarized below:

• By modifying the latent distribution, we propose a new framework called LWGAN

that combines the WGAN and WAE to adaptively learn the intrinsic dimension of a

data distribution PX .

• We theoretically establish the existence of a generatorG and an encoderQ such that the

intrinsic dimension of the encodes distribution PQ(X) is equal to the intrinsic dimension

of PX , and the generated data by these encodes follows the distribution PX .

• We provide theoretical verification that our estimated intrinsic dimension is consistent

with the true intrinsic dimension, and establish an upper bound to the generalization

error of the LWGAN.

• We experimentally confirm that the LWGAN is able to detect the correct intrinsic

dimension under several settings using both simulated examples as well as real datasets

such as MNIST and CelebA. Meanwhile, LWGAN can generate high-quality synthetic

data by the latent variable from our learned latent distribution.

5.1 Latent Dimension Mismatch and the Encoder

Assume the data sample x ∼ PX to be a p-dimensional vector in Rp, whose distribution

PX is supported on a r-dimensional manifold X . Consequently, define the intrinsic dimension

of data distribution as the dimension of the manifold X , denoted by InDim(PX), and its am-

61

bient dimension as the dimension of the ambient Euclidean space, denoted by AmDim(PX).

Here InDim(PX) = r, AmDim(PX) = p, and it is obvious that InDim(PX) cannot be larger

than AmDim(PX). In terms of the latent prior distribution PZ with domain Z, it is usually

selected as a d-dimensional standard normal distribution N(0, Id) in most existing genera-

tive models, so InDim(PZ) = AmDim(PZ) = d. The dimension d is typically predetermined

to be a number that is smaller than p, thus InDim(PZ) may not equal to InDim(PX). In

GAN-based models, if the generator G is a continuous function then the synthetic sample

G(Z) mapped from the latent space will be supported on a manifold of dimension at most

InDim(PZ). When InDim(PZ) < InDim(PX), pushing PG(Z) with unmatched intrinsic di-

mension to close to PX is a challenging task. On the other hand, in encoder-based models,

the same phenomena of mismatch occurs for the encoded distribution PQ(X) obtained by the

continuous encoder Q. In other words, it is difficult to enforce PQ(X) to be similar to PZ if

InDim(PX) < InDim(PZ) as filling a plane with a one dimensional curve is difficult.

Towards investigating the cause, we employ a toy example to provide intuition for the

effects and consequences resulting from model and data distributions that possess differing

intrinsic dimension. We consider a 3D S-Curve dataset as shows in Figure 5.1a , where

each sample x = (x1, x2, x3) ∈ R3 is a vector with x1 = sin(3π(i − 0.5)), x2 = 2j, x3 =

sign(3π(i − 0.5)) cos(3π(i − 0.5)), for i ∼ U [0, 1) and j ∼ N(0, 1). This example results in

AmDim(PX) = 3 and InDim(PX) = 2. If we choose the latent distribution PZ to be a 1-

dimensional normal distribution N(0, 1), the generative samples from the WGAN are plotted

in Figure 5.1b . To minimize the 1-Wasserstein distance between the real distribution PX

and generated distribution PG(Z), the WGAN can only learn an outer contour of the S-Curve

but cannot fill points on the surface. Instead, we choose a 3-dimensional standard normal

N(0, I3) as the latent distribution and train the data by the WAE. The WAE is forced to

reconstruct the images well, while at the same time trying to fill the latent space evenly as

a normal distribution with the 2-dimensional data manifold. The only way to do this is by

curling the manifold up in the latent space as shows in Figure 5.1d . This disparity between

PZ and PQ(X) in the latent space induces a poor generation of PG(Z) in Figure 5.1c .

A natural solution to this mismatch problem is to select a prior distribution PZ whose

intrinsic dimension is the same as that of the data distribution. However, InDim(PX) is

62

(a) S-Curve (b) WGAN: Generation (c) WAE: Generation (d) WAE: Latent Space

Figure 5.1. Illustrations of data generation with wrong dimensional latent
space of WGAN and WAE. (a) Real data of S-Curve from PX ; (b) Generative
samples by WGAN trained with a 1-dimensional standard normal distribu-
tion PZ ; (c) Generative samples by WAE trained with 3-dimensional standard
normal distribution PZ ; (d) The ith component of Q(X) against the jth com-
ponent of Q(X) of the learned latent distribution PQ(X) by WAE.

unknown explicitly, so one option involves to instead learn it from the data distribution.

When both the continuous generator G and the continuous encoder Q are combined in an

encoder generative model, PG(Z) = PX and PQ(X) = PZ cannot be reached simultaneously

unless InDim(PX) = InDim(PZ) according to our previous discussion. This motivates us

to search for an encoder Q such that Q(X) reflects the latent space supported on a r-

dimensional manifold, and a corresponding generator G such that generated samples using

these latent encodes are high-quality. To be concrete, we need an auto-encoder generative

model that satisfies the following four goals at the same time: (a) The prior distribution PZ

is supported on a r-dimensional manifold; (b) The encodes Q(X) has a similar distribution

with Z; (c) The distribution of G(Z) is similar to PX ; (d) The difference between X and

G(Q(X)) is small.

Unlike those conventional generative models applying a fixed standard normal distribu-

tion to be the latent distribution, we consider a latent prior distribution whose intrinsic

dimension could be less than d to achieve the first goal. This idea is realized by the gener-

alized definition of the normal distribution. In particular, let Z0 be a standard multivariate

63

normal distribution from N(0, Id), then for a d × d lower triangular matrix A, Z = AZ0 is

also a normal distribution with the form

PZ = N(0, AAT),

where AAT is constrained to be a positive semi-definite covariance. When A is a full-rank

matrix, PZ is a multivariate normal distribution on Rd. When rank(A) < d, some elements

of Z can be represented as the linear combination of other elements, so PZ degenerates to

a normal distribution supported on rank(A)-dimensional subspace, and its corresponding

intrinsic dimension becomes rank(A). If rank(A) = r, the latent variable Z can be mapped

to G(Z) supported on a r-dimensional manifold, meanwhile, the intrinsic dimensions of PZ

and the encodes distribution PQ(X) can be the same. This consequently solves the mismatch

phenomenon. The following Theorem Theorem 5.1.1 and Corollary 5.1.1 confirm that for

any distribution residing on a smooth Riemannian manifold, there always exist an encoder

Q∗ : X → Z which guarantees meaningful encodings on r-dimensional manifold, and a

generator G∗ : Z → X which generates samples with the same distribution as data points

by using these meaningful codes.

According to the Whitney embedding theorem [59], [60], every r-dimensional smooth

manifold admits a smooth embedding into the Euclidean space R2r. Let us denote this

embedding as u : X → R2r, and its image embedded in R2r as S = u(X). Then the manifold

X is diffeomorphic to image S. Different property of S will lead to different conclusions as

follows.

Theorem 5.1.1. Consider a continuous random variable X from the distribution PX sup-

ported on a r-dimensional smooth manifold X . Denote S = u(X) as an embedded sub-

manifold in R2r, where u : X → R2r is a smooth function. Assume that there exists a

continuous function h, such that S can be represented as a graph of this continuous function,

i.e.,

S = {(X̃(1), X̃(2)) ∈ Rr × Rr : X̃(1) ∈ V ⊆ Rr and X̃(2) = h(X̃(1))},

64

(a) Bijective (b) Surjective

Figure 5.2. (a) The transformations X → Z and its inverse Z → X in The-
orem 5.1.1 are both deterministic. (b) In Corollary 5.1.1 , the transformation
X → Z is deterministic, while its reverse Z → X is stochastic.

where V ⊆ Rr is an open set. Then there exist a d-dimensional degenerated multivariate

normal distribution N(0, A∗A∗T) supported on r-dimensional manifold Z with rank(A∗) = r,

and two mappings Q∗ : X → Z and G∗ : Z → X , such that Q∗(X) ∼ N(0, A∗A∗T) and

G∗ ◦Q∗ is an identity mapping, i.e., X = G∗(Q∗(X)).

Theorem Theorem 5.1.1 establishes the existence of both the encoder Q∗ and the gen-

erator G∗ under the circumstance when S is a continuous function graph. Theorem Theo-

rem 5.1.1 also indicates that Q∗ is at least an injective mapping, hence we can regard G∗

as its left inverse. Moreover, since PQ∗(X) = PA∗Z0 and X = G∗(Q∗(X)), it is obvious that

PX = PG∗(A∗Z0). On the other hand, when S does not possess the property of a continuous

function graph, we provide a more general conclusion with the help of the Noise-Outsourcing

Lemma [61], [62].

Lemma 5.1.1 (Noise-Outsourcing Lemma). Let (X,Z) be a random pair taking values in

X ×Z with joint distribution PX,Z. Suppose X and Z are standard Borel spaces. Then there

exist a random variable η ∼ Pη and a Borel-measurable function G : R× Z → X such that

η is independent of Z and

(X,Z) = (G(η, Z), Z) almost surely.

The noise-outsourcing lemma provides a unified view of distribution estimation. If the

joint distribution of (G(η, Z), Z) is the same as that of (X,Z), it is equivalent to matching

65

the marginal distribution PX with G(η, Z) when the same marginal distribution of Z is

involved. Typically Pη is a simple distribution such as uniform distribution U [0, 1) and

standard Gaussian N(0, 1).

Corollary 5.1.1. Consider a continuous random variable X from the distribution PX sup-

ported on a r-dimensional smooth manifold X . Then there exist a d-dimensional degenerated

multivariate normal distribution N(0, A∗A∗T) supported on r-dimensional manifold Z with

rank(A∗) = r, a mapping Q∗ : X → Z such that Q∗(X) ∼ N(0, A∗A∗T), and a stochastic

transformation G∗ : R × Z → X with a random variable η ∼ Pη such that G∗(η,Q∗(X))

follows the same distribution as X.

The Q∗ constructed in the Corollary 5.1.1 could be a subjective function, but it is not

invertible since multiple inputs can map to the same output. Hence we need to construct

a stochastic inverse G∗ that transforms the code z ∈ Z to the data distribution PX as

illustrates in Figure 5.2b . Corollary 5.1.1 presents that Q∗(X) has the same distribution as

Z ∼ N(0, A∗A∗T), thus with the help of Lemma 5.1.1 , we are able to claim that G∗(η,Q∗(X))

follows the same distribution as X.

So far, Theorem Theorem 5.1.1 and Corollary 5.1.1 provide us a feasible way to identify

the dimension of the data manifold X by learning a latent distribution with the same intrinsic

dimension via the encoder Q. Since InDim(PZ) = InDim(PAZ0) = rank(AAT), in practice,

we can compute rank(AAT) by counting the number of non-zero eigenvalues of the matrix

AAT through the eigenvalue decomposition. This allows for identification of the intrinsic

dimension of the data manifold X as InDim(PX) = rank(A∗A∗T) = r.

5.2 Latent Wasserstein GAN

We are ready to take advantages of both the WGAN and the WAE to formulate our

new auto-encoder generative model, called LWGAN, which is capable of learning A∗, Q∗,

and G∗ that simultaneously accomplish our four goals. We will mainly focus on the case in

Theorem 1 where S is assumed to be a continuous graph. The algorithm for the general case

in Corollary 1 is similar and we provide the discussion in chapter 6 .

66

We start from the primal and dual format of Wasserstein distance. Let the latent variable

Z ∈ Rd be from a normal distribution whose covariance is AAT where A is a rank-r matrix.

Hence, Z = AZ0 where Z0 ∈ Rd is a standard multivariate normal vector. Recall that

the primal format of 1-Wasserstein distance between data distribution PX and generative

distribution PG(Z) is

W1(PX , PG(Z)) = inf
π∈Π(PX ,PZ)

E(X,Z)∼π‖X −G(Z)‖, (5.1)

and its beautiful dual format is

W1(PX , PG(Z)) = sup
f∈F

{
EXf(X)− EZf(G(Z))

}
. (5.2)

Both the primal Wasserstein distance Equation 5.1 and dual Wasserstein distance Equa-

tion 5.2 are constrained optimization problems. For the primal problem, two constraints are

that the marginal distributions of π(x, z) are equivalent to PX and PZ respectively. Since the

primal variable f in the dual problem Equation 5.2 is also a dual variable for the primal prob-

lem Equation 5.1 , the optimal value of the primal problem using the Lagrange multipliers

is

infπ Eπ

∥∥∥∥X −G(Z)
∥∥∥∥+

∫
x f(x)

(
pX(x)−

∫
z π(x, z)dz

)
dx−

∫
z f(G(z))

(
pZ(z)−

∫
x π(x, z)dx

)
dz

= inf
Q∈Q

EX

[
‖X −G(Q(X))‖+ f(G(Q(X)))

]
− EZ0

[
f(G(AZ0))

]
, (5.3)

where an encoder Q is introduced to approximate the conditional distribution of Z given

X, and two Lagrange multipliers are f(x) and −f(G(z)) respectively. On the other hand,

the constraint for the dual problem is that f needs to be 1-Lipschitz for the input f(x) −

f(G(z)) ≤ ‖x−G(z)‖. Similarly, we can write the optimal value of the dual problem as

sup
f∈F

EX

{
f(X)

}
− EZ

{
f(G(Z))

}
−
∫

X ×Z
π(x, z)

(
f(x)− f(G(z))− ‖x−G(z)‖

)
dxdz

= sup
f∈F

{
EX

[
‖X −G(Q(X))‖+ f(G(Q(X)))

]
− EZ0

[
f(G(AZ0))

]}
, (5.4)

67

where we use the Lagrange multiplier π(x, z) for the 1-Lipschitz constraint.

Corresponding to the iterative update between the minimization problem Equation 5.3

and maximization problem Equation 5.4 , we define a novel distance between the real data

distribution PX and generated data distribution PG(AZ0) given a generator G as

W 1(PX , PG(AZ0)) = inf
Q∈Q

sup
f∈F

{
EX‖X −G(Q(X))‖+ EX

[
f(G(Q(X)))

]
− EZ0

[
f(G(AZ0))

]}
.

(5.5)

Here F is a set of all bounded 1-Lipschitz functions, and Q is a set of encoder mappings.

The term EX‖X −G(Q(X))‖ can be treated as the autoencoder reconstruction error in the

WAE as well as a loss to match the distributions between X and G(Q(X)). Another term

EX [f(G(Q(X)))]−EZ0 [f(G(AZ0))] can be treated as a loss for the generator as well as a loss

to match the distribution between G(Q(X)) and G(AZ0). We emphasize that this term is

different with the objective function of the WGAN in Equation 5.2 . Based on this definition,

finding the W 1 distance between PX and PG(AZ0) exactly matches solving the primal problem

Equation 5.3 and dual problem Equation 5.4 iteratively. Obviously, Equation 5.5 reaches

its minimum as the 1-Wasserstein distance W1(PX , PG(AZ0)) when PQ∗(X) = PAZ0 , which is

illustrated by the following theorem.

Theorem 5.2.1. The W 1 distance has the following property

W 1(PX , PG(AZ0)) = inf
Q∈Q

{
W1(PX , PG(Q(X))) +W1(PG(Q(X)), PG(AZ0))

}
. (5.6)

Therefore, W1(PX , PG(AZ0)) ≤ W 1(PX , PG(AZ0)), and the equality hold if there exists a Q∗ ∈ Q

such that Q∗(X) has the same distribution with AZ0.

Finally, we obtain the generator G and matrix A by minimizing the new distance W 1:

min
G∈G,A∈A

W 1(PX , PG(AZ0)), (5.7)

where G is a set of generator mappings, and A ⊆ Rd×d is a set of low-rank matrices. As a

result, our goals that PQ∗(X) = PA∗Z0 and PX = PG∗(A∗Z0) are attained when Equation 5.7

achieves the optimal solution. In practice, we minimize the empirical version of W 1 by

68

replacing the expectation by the Monte Carlo average. The mappings Q, G and f are

parametrised with deep neural nets by parameters θQ, θG and θf respectively, in which

case back propagation can be used with stochastic gradient descent techniques to optimize

the objective. We assume that these network spaces are large enough to include the true

rank-r matrix A∗, encoder Q∗, generator G∗, and the optimal discriminator f ∗ such that

Equation 5.7 achieve the minimum value. This is not a strong assumption due to the

universal approximation theorem of DNNs [63]. Furthermore, some regularization terms are

added in order to push Q(X) to Z, and guarantee A to be a low rank matrix. Thus, LWGAN

is a minimax optimization problem solving

min
θG,θQ,A

max
θf

{ 1
m

m∑
i=1

`(xi, zi; θG, θQ, A, θf)− λ1J1(θf) + λ2J2(θQ, A) + λ3J3(A),
}

(5.8)

where

`(x, z; θG, θQ, A, θf) = ‖x−G(Q(x; θQ); θG)‖+ f(G(Q(x; θQ); θG); θf)− f(G(Az0; θG); θf).

(5.9)

Since f is assumed to be 1-Lipschitz, we adopt the gradient penalty defined as J1(θf) =

EX

{
(‖∇Xf(X; θf)‖2 − 1)2

}
in [36] to enforce the 1-Lipschitz constraint on f ∈ F . We use

the MMD penalty [64], denoted by J2(θQ, A) = MMDκ(PQ(X;θQ), PAZ0), to enforce Q(X) to

converge to PAZ0 . The exact form of J2(θQ, A) is

J2(θQ, A) = 1
m(m− 1)

∑
i6=j
κ(Az0,i, Az0,j)+

1
m(m− 1)

∑
i6=j
κ(Q(xi), Q(xj))−

2
m2

∑
i,j
κ(Az0,i, Q(xj)),

where κ is set to be the Gaussian radial kernel function κ(x, y) = exp(−‖x−y‖2

2). Additionally,

since A needs to be a low rank matrix, the nuclear norm defied as the sum of singular value

‖A‖∗ = ∑d
l=1 σl(A), which is a convex envelope of the rank function rank(A), is used as

J3(A). We initialize A as an identity matrix. We pre-specify some values for λ1, λ2 and λ3,

then the optimal tuning parameters are selected by grid search using cross validation. What

is more, our new defined distance W 1 provides the following duality gap as a natural measure

69

Algorithm 1 The training algorithm of LWGAN
Require: The regularization coefficients λ1, λ2, and λ3, tolerance for loss ε1 and DualGap ε2, and

running steps T
1: Initialization (θ0

G, θ0
Q, θ0

f , A0)
2: while 1

m

∑m
i=1 `(xi, zi; θk

G, θk
Q, Ak, θk

f) > ε1 or DualGap(θk
G, θk

Q, Ak, θk
f) > ε2 do

3: for t = 1, ..., T do
4: Sample real data {xk

i }mi=1 ∼ PX , latent data {zk
0,i}mi=1 ∼ N(0, Id) and {εi}mi=1 ∼ U [0, 1]

5: Set x̂k
i ← εixk

i + (1− εi)G(Akzk
0,i; θk

G), i = 1, ..., m for the calculation of gradient penalty
6: Calculate: R̂k = 1

m

∑m
i=1 `(xk

i , zk
i ; θk

G, θk
Q, Ak, θk

f), J1(θk
f) = (‖∇x̂kf(x̂k; θk

f)‖2 − 1)2, and
−∇f (R̂k

m + J1(θk
f))

7: Update θf by Adam: θk+1
f ← θk

f + Adam(−∇f (R̂k + J1(θk
f)))

8: end for
9: for t = 1, ..., T do

10: Sample real data {xk
i }mi=1 ∼ PX , latent variable {zk

0,i}mi=1 ∼ N(0, Id)
11: Calculate: R̂′k = 1

m

∑m
i=1 `(xk

i , zk
i ; θk

G, θk
Q, Ak, θk+1

f), J2(θk
Q, Ak), J3(Ak) and

∇G,Q,A(R̂′k + J2(θk
Q, Ak) + J3(Ak))

12: Update θG, θQ, A by Adam: (θk+1
G , θk+1

Q , Ai+1) ← (θk
G, θk

Q, Ak) + Adam(∇G,Q,A(R̂′k +
J2(θk

Q, Ak) + J3(Ak)))
13: end for
14: k ← k + 1
15: end while

to the convergence of the optimization Equation 5.8 . For a given tuple (θG, θQ, A, θf), the

duality gap is defined as

DualGap(θG, θQ, A, θf) = max
θf

R(θG, θQ, A, θf)− min
θG,θQ,A

R(θG, θQ, A, θf), (5.10)

where R̂(θG, θQ, A, θf) = 1
m

∑m
i=1 `(xi, zi; θG, θQ, A, θf) andR(θG, θQ, A, θf) = ER̂(θG, θQ, A, θf).

When the duality gap goes to 0, our optimization converge.

The complete algorithm is given in Algorithm 1 , where back propagation is used with

stochastic gradient descent techniques to optimize the objective. To be concrete, we adopt

a stochastic gradient descent algorithm called the ADAM [65] to estimate the unknown

parameters in neural networks. The ADAM is an algorithm for first-order gradient-based

optimization of stochastic objection functions, based on adaptive estimates of lower-order

moments. Given the current tuple (θk
G, θ

k
Q, θ

k
f , A

k) at the k-th iteration, we sample a batch

of observations {xk
i }m

i=1 ∼ PX , latent variable {zk
i }m

i=1 ∼ PZ , and {εi}m
i=1 ∼ U [0, 1]. Then

70

we construct x̂k
i ← εixk

i + (1 − εi)G(Akzk
0,i; θk

G), i = 1, ...,m for computing the gradient

penalty. Let R̂k = 1
m

∑m
i=1 `(xk

i , zk
i ; θk

G, θ
k
Q, A

k, θk
f) and J1(θk

f) = (‖∇x̂kf(x̂k; θk)‖2 − 1)2. We

can evaluate the gradient with respect to θf , which is denoted by

−∇θf
(R̂k + J1(θk

f)) = ∇θf

[1
m

m∑
i=1

(
f(G(Akzk

0,i; θk
G); θk

f)− f(G(Q(xk
i ; θk

Q); θk
G); θk

f) + λ1J1(θk
f)
)]
.

Then we can update θk
f by the ADAM using this gradient. Similarly, we can evaluate the

gradient with respect to θG, θQ and A, which is denoted by

∇θG,θQ,A(R̂k + J2(θk
Q, A

k) + J3(Ak))

=∇θG,θQ,θA

[1
m

m∑
i=1

(
‖xk

i −G(Q(xk
i ; θk

Q); θk
G)‖+ f(G(Q(xk

i ; θk
Q); θk

G); θk+1
f)− f(G(Akzk

0,i; θk
G); θk+1

f)

+ λ2J2(θk
Q, A

k) + λ3J3(Ak)
)]
.

Then we can update (θk
G, θ

k
Q, A

k) by the ADAM using this gradient. The stopping cri-

teria are both the DualGap(θk
G, θ

k
Q, A

k, θk
f) in Equation 5.10 and the objective function

R̂(θk
G, θ

k
Q, A

k, θk
f) are less than pre-specified error tolerances ε1 and ε2, respectively. Specifi-

cally, based on the definition of the duality gap in Equation 5.10 , we approximate DualGap(θk
G, θ

k
Q, A

k, θk
f)

by the difference between R̂(θk
G, θ

k
Q, A

k, θk+1
f) and R̂(θk+1

G , θk+1
Q , Ak+1, θk+1

f).

5.3 Theoretical Results

From the population level, the LWGAN minimizes the new W 1 divergence

inf
G∈G,A∈A

W 1(PX , PG(AZ0)), (5.11)

which is equivalently to the optimization of the minimax problem

inf
θG,θQ,A

sup
θf

E`(X,Z; θG, θQ, A, θf). (5.12)

71

During the training, we instead minimize the empirical vision of this divergenceW 1(P̂X , P̂G(AZ0))

based on m samples {x1, . . . ,xm} from the distribution PX , and m samples {z0,1, . . . , z0,m}

from the distribution N(0, Id):

inf
G∈G,A∈A

W 1(P̂X , P̂G(AZ0)), (5.13)

where

W 1(P̂X , P̂G(Z∗)) = inf
Q∈Q

sup
f∈F

{ 1
m

m∑
i=1

[
‖xi −G(Q(xi))‖+ f(G(Q(xi)))

]
− 1
m

m∑
i=1

[
f(G(Az0,i))

]}
.

Similarly, it equals to optimizing the empirical minimax problem

inf
θG,θQ,A

sup
θf

1
m

m∑
i=1

`(xi, zi; θG, θQ, A, θf). (5.14)

We are interested in answering the following two theoretical questions: Whether solving the

empirical optimization problem is able to identify the correct intrinsic dimension? Whether

the generator G generalizes well, which means do we actually push PG(AZ0) to be close to PX

from the population perspective? Our theoretical analysis establishes the rank consistency,

and provide an upper bound to the population divergence between PX and PG(AZ0).

5.3.1 Estimation Consistency

Our approach seeks to identify the intrinsic dimension of PX via learning an informative

prior degenerate normal distribution whose covariance matrix is a rank-r matrix. Hence the

optimal solutions to our problem are not singletons but set-valued as long as rank(A∗) = r

is satisfied. We consider the estimation consistency through a distance between sets called

Hausdorff distance [66]. For any two non-empty bounded subsets S1 and S2 of some Euclidean

space, the Hausdorff distance between S1 and S2 is defined as

dH(S1, S2) = max{sup
a∈S1

d(a, S2), sup
b∈S2

d(b, S1)},

72

where d(a, S2) = infb∈S2 ‖a − b‖ is the shortest distance from a point a to the set S2. The

Hausdorff distance dH is a metric for the non-empty compact sets, and dH(S1, S2) = 0 if and

only if S1 = S2.

Denote Θ = {(θG, θQ, A, θf)} as the set of parameters for the LWGAN. Assume that

`(x, z; θG, θQ, A, θf) is continuous on Θ. In the following part, we interchangeably use ei-

ther notation θ or notation (θG, θQ, A, θf) for the elements of Θ. Let us focus on the

population optimization problem first. Assume that {(G∗, Q∗, A∗, f ∗)} is a set of solu-

tions to the minimization problem Equation 5.11 , that is, they satisfy PQ∗(X) = PA∗Z0 ,

PG∗(A∗Z0) = PX and rank(A∗) = r. Their corresponding parameters compose the set

Θ∗ = {(θ∗
G, θ

∗
Q, A

∗, θ∗
f)}, which is also a set of solutions to the population optimization

Equation 5.12 . To conveniently and comprehensively describe the optimal solutions Θ∗, we

denote L(θG, θQ, A, θf) = E`(X,Z; θG, θQ, A, θf), and the optimal value of Equation 5.12

as V ∗ = infθG,θQ,A supθf
L(θG, θQ, A, θf). We also introduce a max-function φ(θG, θQ, A) =

supθf
L(θG, θQ, A, θf). An optimal solution (θ∗

G, θ
∗
Q, A

∗, θ∗
f) ∈ Θ∗ solves Equation 5.12 when

it is a solution to both the inner maximization problem and outer minimization problem.

Therefore, Θ∗ can be expressed as

Θ∗ = {(θ∗
G, θ

∗
Q, A

∗, θ∗
f) :L(θ∗

G, θ
∗
Q, A

∗, θ∗
f) = sup

θf

L(θ∗
G, θ

∗
Q, A

∗, θf) = φ(θ∗
G, θ

∗
Q, A

∗)

and φ(θ∗
G, θ

∗
Q, A

∗) = inf
θG,θQ,A

φ(θG, θQ, A) = V ∗}.

73

Similarly, consider the optimal solution Θ̂ to the empirical minimax problem Equa-

tion 5.14 . Define the sample analogues as

L̂m(θG, θQ, A, θf) = 1
m

m∑
i=1

`(xi, zi; θG, θQ, A, θf)

V̂m = inf
θG,θQ,A

sup
θf

L̂m(θG, θQ, A, θf)

φ̂m(θG, θQ, A) = sup
θf

L̂m(θG, θQ, A, θf)

Θ̂m =
{

(θ̂G, θ̂Q, Â, θ̂f) : L̂m(θ̂G, θ̂Q, Â, θ̂f) = sup
θf

L̂m(θ̂G, θ̂Q, Â, θf) = φ̂m(θ̂G, θ̂Q, Â)

and φ̂m(θ̂G, θ̂Q, Â) = inf
θG,θQ,A

φ̂m(θG, θQ, A) = V̂m

}

During the training, algorithms typically search for approximated solutions rather than exact

solutions to Equation 5.14 . We therefore allow the slackness by a power of τm, where τm is

a sequence of non-negative random variables such that τm
p−→ 0. Define

Θ̂m(τm) =
{

(θ̂G, θ̂Q, Â, θ̂f) :L̂m(θ̂G, θ̂Q, Â, θ̂f) ≥ sup
θf

L̂m(θ̂G, θ̂Q, Â, θf)− τm

and φ̂m(θ̂G, θ̂Q, Â) ≤ inf
θG,θQ,A

φ̂m(θ̂G, θ̂Q, Â) + τm

}

as the set of approximated solutions to the empirical problem Equation 5.14 .

We will adopt some ideas from [67] to prove the estimation consistency. To prove the

consistency under the Hausdorff distance, i.e., dH(Θ̂m(τm),Θ∗) p−→ 0, we need to separately

show the one-sided Hausdorff consistency

sup
θ∈Θ̂m(τm)

d(θ,Θ∗) p−→ 0 and sup
θ∈Θ∗

d(θ, Θ̂m(τm)) p−→ 0.

The former one follows the standard proof of consistency and relies on a suitable uniform

law of large numbers combined with an appropriate set-identification condition for Θ∗. The

latter one is based on the uniform convergence. We make some necessary assumptions on

LWGAN:

74

Assumptions.

1. `(θ) is continuous on Θ, and E[supθ∈Θ |`(x, z; θ)|] <∞.

2. LWGAN is smooth, which means the function `(x, z; θ) is continuously differentiable

on Θ for all (x, z) ∈ X × Z with E[supθ∈Θ |∂`(X,Z, θ)/∂θ|2] <∞.

The mild moment conditions facilitate ruling out degenerate cases, while differentiability

is a common requirement for training methods employed in GAN applications.

Theorem 5.3.1. Suppose supθ∈Θ m
1/2|L̂m(θ) − L(θ)| = Op(1) hold with the function L(θ)

continuous in θ. And suppose τm is a sequence of positive random variables such that τm
p−→ 0

and m−1/2/τm
p−→ 0. Then dH(Θ̂m(τm),Θ∗) p−→ 0.

Here Op(1) stands for a sequence of random variables that is bounded in probabil-

ity. Note that Assumption 1 on LWGAN implies that supθ∈Θ |L̂m(θ) − L(θ)| p−→ 0 by

[68], and Assumption 2 about smoothness of LWGAN indicates |`(x, z, θ1) − `(x, z, θ2)| ≤

supθ∈Θ |∂`(x, z, θ)/∂θ||θ1−θ2| using mean value theorem, where E[supθ∈Θ |∂`(X,Z, θ)/∂θ|2] <

∞. Thus the first assumption of Theorem Theorem 5.3.1 holds. Theorem Theorem 5.3.1

assures that the estimation of LWGAN is consistent regardless to the number of solutions,

hence it is straightforward to claim that the rank of estimated Â consists with the intrinsic

dimension of PX .

5.3.2 Generalization Error Bound

In the context of supervised learning, the generalization error is defined as the gap be-

tween the empirical risk (a.k.a. the training error) and the expected risk (a.k.a. the testing

error). It is a measure of how accurately an algorithm is able to predict outcome values

for previously unseen data. Similarly in the framework of the LWGAN, we can define its

generalization error as follows [69].

75

Definition 5.3.1. Given P̂X , an empirical version of the true distribution with m samples,

a generated distribution PG(AZ0) generalizes under the divergence W 1(·, ·) with generalization

error ε if the following holds with high probability

∣∣∣W 1(PX , PG(AZ0))−W 1(P̂X , P̂G(AZ0))
∣∣∣ ≤ ε

where P̂G(AZ0) is an empirical version of the generated distribution PG(AZ0) with polynomial

number of samples that are drawn after PG(AZ0) is fixed.

Our target is to make the former population distance small, whereas the latter empirical

one is what we can access and minimize in practice. Therefore, a smaller generalization

error is expected because it implies the population distance W 1(·, ·) between the true and

generated distribution is close to the empirical distance between the empirical distributions.

Theorem 5.3.2. Given a fixed LG-Lipschitz generator G, a set of 1-Lipschitz discriminator

F , and a set of decoders Q whose functions are LQ-Lipschitz with respect to the input, and

LθQ
-Lipschitz with respect to its parameter θQ ∈ ΘQ, let Θ̂Q be a ε/(16LGLθQ

)-net of the

parameter space ΘQ of Q, and Â be a ε/(8
√

5dLG)-net of the parameter space A of A. Then

the following inequality holds with a probability of at least

1− e−d − 2|Θ̂Q||Â| exp
{
− ε2m

8(1 + 2LGLQ +
√

5dLG‖A‖)2

}

over the choice of m samples Sx from the data distribution PX and m samples Sz0 from the

standard normal distribution N(0, Id),

sup
A∈A

∣∣∣W 1(PX , PG(AZ0))−W 1(P̂X , P̂G(AZ0))
∣∣∣ ≤ 2Rm(F ◦G ◦ Q) + 2Rm(F ◦G ◦ A) + ε,

(5.15)

where Rm(F ◦G ◦ Q) = Eδ

{
supf∈F m

−1∑m
i=1 δif(G(Q(xi)))

}
is the Rademacher complexity

of the function set F ◦G ◦ Q, and Rm(F ◦G ◦ A) = Eδ

{
supf∈F m

−1∑m
i=1 δif(G(Az0,i))

}
is

the Rademacher complexity of the function set F ◦ G ◦ A, in which δi is the Rademacher

variable.

76

Theorem Theorem 5.3.2 describes how the function classes F , Q and A contribute to

the generalization error bound in our framework. Given a fixed generator G, there exists a

uniform upper bound for any discriminator f ∈ F , decoder Q ∈ Q, and low-rank matrix A

with appropriate numbers of samples from PX and PZ0 . More concretely, if |Θ̂Q| and |Â|

are small, and we have a large amount of samples, the generalization error is consequentially

guaranteed to hold with a higher probability. In [70], it has been proved that log(|Θ̂Q|) ≤

O(K2
QDQ log(DQLQLGLθQ

/ε)), where KQ and DQ denote the width and the depth of Q

respectively, and log(|Â|) ≤ O(rank(A)d log(σmax
√
dLG/ε)), where σmax is the maximum

singular value of A. Additionally, Lipschitz constants of networks Q, G and f are under the

control of the spectral normalization of their weights. As a result, when the sample size

m ≥ C

ε2

(
1 + 2LGLQ +

√
5dLG‖A‖

)2(
K2

QDQ log(DQLQLGLθQ
/ε) + rd log(σmax

√
dLG/ε)

)
(5.16)

for some constant C, Equation 5.15 holds with a probability at least 1−exp(−K2
QDQ−rd)−

exp(d).

The Rademacher complexities in Equation 5.15 measure richness of a class of real-valued

functions with respect to a probability distribution. There are several existing results on

the Rademacher complexity of neural networks. For example, under some mild conditions,

Rm(F ◦G ◦ Q) is upper bounded by an order scaling as O(LGLQ(
√

(K2
QDQ +K2

fDf)/m)),

where Kf and Df denote the width and depth of the discriminator f , and an upper bound

on Rm(F ◦G◦A) scales as O(LGσmax(
√

(rd+K2
fDf)/m)) [70]. Combining this information

with Equation 5.16 and plugging into Equation 5.15 , we are able to conclude that for some

constant Cmodel based on the model property

sup
A∈A

∣∣∣∣W 1(PX , PG(AZ0))−W 1(P̂X , P̂G(AZ0))
∣∣∣∣ ≤ Cmodelε

with probability at least 1− exp(−d)− exp(−K2
QDQ − rd).

77

Since W 1(PX , PG(AZ0)) is a tight upper bound on the 1-Wasserstein distance between PX

and PG(AZ0) from Theorem 5.2.1 , we further have

W1(PX , PG(AZ0)) ≤ W 1(P̂X , P̂G(AZ0)) + 2Rm(F ◦G ◦ Q) + 2Rm(F ◦G ◦ A) + ε

with high probability. This implies that from the population perspective, the real distribution

is close to the generated distribution with respective to 1-Wasserstein distance when we

minimize our loss function W 1(P̂X , P̂G(AZ0)) in practice.

5.4 Experimental Results

In this section, we will demonstrate a comprehensive numerical experiments which vali-

date that the LWGAN is able to reach the our four goals simultaneously: detecting the cor-

rect intrinsic dimension, generating high-quality samples, decoding meaningful latent codes,

and obtaining small reconstruction errors. Our codes in PyTorch are available at https:

//drive.google.com/drive/folders/1piLXjguswG0Nn_npAFgAW-74uzkqRUjs?usp=sharing .

5.4.1 Toy Data

We first verify our method using three toy examples supported on smooth manifold with

increasing dimensions. Besides the S-curve data we mentioned in the Section 2, the other

two datasets are described as:

1. Swiss Roll: x1 = 3π(1+2i)
2 cos(3π(1+2i)

2), x2 = 3π(1+2i)
2 sin(3π(1+2i)

2)), for i ∼ N(0, 1).

2. Hyperplane: x1, x2, x3, x4 ∼ N(0, 1), x5 = x1 + x2 + x3 + x2
4.

It is straightforward that the intrinsic dimension of the Swiss Roll, S-curve and Hyper-

plane are 1, 2, 4 respectively. In particular, if we embed the images of S-curve in R4 and

that of Hyperplane in R8, they can be represented as graphs of continuous functions, so

that an identity mapping G ◦ Q exists according to Theorem Theorem 5.1.1 for these two

cases. For the training, all models are trained with a batch size 256 for 16k iterations. Two

different dimension of the latent space d = {5, 10} are adapted to confirm that our approach

78

https://drive.google.com/drive/folders/1piLXjguswG0Nn_npAFgAW-74uzkqRUjs?usp=sharing
https://drive.google.com/drive/folders/1piLXjguswG0Nn_npAFgAW-74uzkqRUjs?usp=sharing

(a) Swiss Roll (b) S-curve

Figure 5.3. Two Manifolds

is stable to pick the right intrinsic dimension of the data manifold X . We further train 4

LWGANs on each dimension of Z with λ1 = 5.0, λ2 = 10.0, and a variety of values for

λ3 = {0, 0.001, 0.01, 0.1}. All other model structures and training parameters are the same

for these three datasets.

Intrinsic Dimension For each dataset, we compare the performance on different choices

of λ3s with respect to the test reconstruction errors, MMDs between Q(X) and Z as well

as MMDs between G(Z) and X obtained at the end of training. The optimal λ3 for each

dimension of the latent space is selected to have the smallest reconstruction error and MMDs.

Therefore, the best λ3s for Swiss Roll with two latent dimensions d = 5 and d = 10 are the

same to be 0.1; in terms of S-curve, the optimal λ3s are also identical for d = 5 and d = 10,

and chosen as 0.01; for Hyperplane, we select λ3 = 0.001 when d = 5, and λ3 = 0.01 when

d = 10. The eigenvalues of AAT at the best λ3 from the second column in Figure 5.4 show

that our approach enables to detect the correct intrinsic dimension of the data manifold no

matter what the dimension of the latent space is. This implies that our model can tell that

the intrinsic dimensions of these three datasets are is 1, 2 and 4 respectively. Meanwhile,

the last two columns in Figure 5.4 conveys that we are able to generate high quality sample

using the latent variable from N(0, AAT) and recover the original data X using the encodes

Q(X).

79

Sw
is

s
R

ol
l:

d
=

5
Errors V.S. λ3s Eigenvalues at the best λ3 Generation at the best λ3 Reconstruction at the best λ3

Sw
is

s
R

ol
l:

d
=

10
S-

cu
rv

e:
d

=
5

Sw
is

s
R

ol
l:

d
=

10
H

yp
er

pl
an

e:
d

=
5

H
yp

er
pl

an
e:

d
=

10

Figure 5.4. Toy Datasets: The first column plots the relationship between
the regularisation power λ3s and the errors of each model. The second column
shows the eigenvalues at the optimal λ3. The third column is the generated
data. And the last column shows the testing reconstructions.

80

Latent space After training, the distribution of Q(X) is expected to be close to the dis-

tribution of Z, which is confirmed by MMDs between Q(X) and Z in the first column of

Figure 5.4 . We visually demonstrate the 5-dimensional latent distribution of Q(X) at the

best λ3 for above three toy datasets. Specifically, we plot the ith component of Q(X),

Q(X)i, against the jth component of Q(X), Q(X)j, for all i 6= j in Figure 5.5 . We can tell

that there exist correlations of different strength between any two dimensions of Q(X). Some

of them are highly correlated with a coefficient close to 1, while some of them are almost

uncorrelated. It validates that the encodes Q(X) follows a degenerated normal distribution

N(0, A∗A∗T). We also noticed that although the latent space of the Swiss Roll shows the

shape of a normal distribution, their points are not evenly scattered as the other two. The

possible explanation is that the images of Swiss Roll in R2 cannot be expressed as a graph

of a continuous function, so its corresponding Q∗ is a surjective function mapping multiple

inputs to one output, which results in clustering points in the latent space.

(a) Swiss Roll (b) S-curve (c) Hyperplane

Figure 5.5. Toy Datasets: Latent space in R5

Datasets on non-smooth manifold Although our approach assumes that the data lies

on a smooth manifold, we would like to check if our model works for noncontinuous datasets

that are parametrised by a finite number of parameters. Then the intrinsic dimension refers

to the minimal number of parameters needed. We consider two datasets described by mixture

of Gaussians: (a). RING: a mixture of 8 Gaussians with means {(2 · cos 2πi
8 , 2 · sin 2πi

8)|i =

0, . . . 7} and standard deviation 0.02; (b). GRID: a mixture of 25 Gaussians with means

{(2 · i, 2 · j)|i = −2,−1, . . . , 2, j = −2,−1, . . . , 2} and standard deviation 0.02. We observe

81

that our model can successfully identify the intrinsic dimension of the RING is 1 and that

of GRID is 2 from their eigenvalues in Figure 5.6 . At the same time, the generator G is able

to produce high-quality data using latent variables from N(0, AAT). The reconstructions

between X and G(Q(X)) also perform well.

5.4.2 MNIST

The MNIST database (Modified National Institute of Standards and Technology database)

is a large database of handwritten digits 0 ∼ 9 that is commonly used for training various

image processing systems. The MNIST database contains 70, 000 28 × 28 grey images. It

was shown that different digits have different intrinsic dimension [71]. Hence the distribu-

tion of MNIST may be supported on several disconnected manifold with various intrinsic

dimensions.

We first train models on digit 1 and digit 2 separately using a 64-dimensional latent

variable. The first column of Figure 5.7 plots the eigenvalues of learned AAT for these two

digits. It can be observed the eigenvalues smaller than the 4th largest one diminish to 0

for digit 1, while those eigenvalues converge to 0 after the 13th largest eigenvalue for digit

2. Therefore, our estimation of the intrinsic dimension for digit 1 is smaller than the one in

[71] whose estimation is 8, but these two estimations for digit 2 match to be around 13. The

generative digits and reconstructed digits are presented in the last two columns of Figure 5.7 .

Previously we have confirmed that our model can be used to datasets that are not be

supported on a smooth manifold using mixture of Gaussians. We further check it with all

digits from MNIST. The intrinsic dimension of MNIST is suggested to be about 13 from

Figure 5.8a . Corresponding generated samples and reconstructed samples are provided in

Figure 5.8b and Figure 5.8c . Interpolation on the latent space between two digits given in

Figure 5.8d establishes that our model can get rid of mode collapsing. In particular, we

sample pairs of testing examples x1 and x2 and project them into z1 and z2 by the encoder

Q. We then linearly interpolate between z1 and z2 and pass the intermediary points through

the generator G to plot the input-space interpolations.

82

R
IN

G
:

d
=

5

Eigenvalues Generation and reconstruction

R
IN

G
:

d
=

10
G

R
ID

:
d

=
5

G
R

ID
:

d
=

10

Figure 5.6. Mixture of Gaussians: The first column show the eigenvalues of
AAT with different dimensions. The second column show the reconstructed
samples G(Q(X)) and generated samples G(Z), where Z ∼ N(0, AAT).

83

D
ig

it
1

Eigenvalues Generation Reconstruction
D

ig
it

2

Figure 5.7. Digits 1 and 2: The first column are the eigenvalues of digit 1
and digit 2, the second column presents the generating samples of digit 1 and
digit 2, the third column are reconstructed samples of digit 1 and digit 2.

(a) Eigenvalues (b) Generation (c) Reconstruction (d) Interpolation

Figure 5.8. MNIST: Results of LWGAN on 64-dimensional latent space.

5.4.3 CelebA

CelebA (CelebFaces Attributes Dataset) is another ideal benchmark datasets for training

models to generate synthetic images. It is a large-scale face attributes dataset with 202, 599

64× 64 colored celebrity face images, which cover large pose variations and diverse people.

84

CelebA is a more complex dataset than MNIST, and is available at http://mmlab.ie.cuhk.

edu.hk/projects/CelebA.html .

Figure 5.9. CelebA: Eigenvalues of AAT

We train CelebA using a latent dimension d = 128. Figure 5.9 demonstrates that the

eigenvalues of CelebA are close to 0 after the 20th largest eigenvalue, so the intrinsic di-

mension of CelebA is at least 20. We further compare our method with WGAN, WAE and

iWGAN visually and numerically. Here iWGAN refers to our preprint work where A is

fixed as the identity matrix during the training. The generative faces from four methods are

demonstrated in Figure 5.10 . Our LWGAN is able to generate images with higher qualities

than other four methods, and we notice that the images generated by WAE are very blurry

due to the dimensional mismatch between PQ(X) and PZ . Figure 5.11b provides the com-

parisons between reconstructed faces through G(Q(X)) and real faces. Note that WGAN

cannot provide reconstructed images since it does not produce the latent codes. Figure 5.11a

shows the interpolation between two faces of LWGAN, iWGAN and WAE.

We numerically compare these methods with respect to four metrics, including inception

scores (IS), Frechet inception distances (FID), reconstruction errors (RE), and maximum

mean discrepancy (MMD) between encodes and normal random variables.

85

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

(a) WGAN (b) WAE

(c) iWGAN (d) LWGAN

Figure 5.10. CelebA: Generation by different methods

IS. Proposed by [72], the IS involves using a pre-trained Inception v3 model to predict the

class probabilities for each generated image. These predictions are then summarized into

the IS by the KL divergence as following,

IS = exp
(
Ex∼PG(Z)DKL (p(y|x)‖p(y))

)
, (5.17)

where p(y|x) is the predicted probabilities conditioning on the generated images, and p(y) is

the corresponding marginal distribution. Higher scores are better, corresponding to a larger

KL-divergence between the two distributions.

86

(a) Interpolation

(b) Reconstruction

Figure 5.11. CelebA: Interpolation and reconstruction by different methods

FID. The FID is proposed by [73] to improve the IS by actually comparing the statistics

of generated samples to real samples. It is defined as the Fréchet distance between two

multivariate Gaussians,

FID = ‖µr − µG‖2 + Tr
(
Σr + ΣG − 2(ΣrΣG)1/2

)
, (5.18)

where Xr ∼ N(µr,Σr) and XG ∼ N(µG,ΣG) are the 2048-dimensional activations of the

Inception-v3 pool-3 layer for real and generated samples respectively. For the FID, the lower

the better.

Reconstruction Error. The reconstruction error (RE) is defined as

RE = 1
N

N∑
i=1
‖x̂i − xi‖2, (5.19)

87

Table 5.1. Comparison of LWGAN, iWGAN, WAE, WGAN-GP
Methods IS FID RE MMD
True 1.91(0.19) 25.52 – –
LWGAN 1.61(0.10) 43.99 10.31(1.94) 1.8× 10−3

iWGAN 1.56(0.06) 45.60 12.06(3.25) 4.1× 10−3

WAE 1.43(0.09) 54.35 7.09(0.99) 2.3× 10−3

WGAN 1.64(0.11) 39.93 – –

where X̂i is the reconstructed sample for Xi. RE is used to measure if the method has gener-

ated meaningful latent encodings. Smaller reconstruction errors indicate a more meaningful

latent space which can be decoded into the original samples.

MMD. MMD is defined as

MMD = 1
N(N − 1)

∑
l 6=j
κ(zl, zj) + 1

N(N − 1)
∑
l 6=j
κ(z̃l, z̃j)−

2
N2

∑
l,j
κ(zl, z̃j) (5.20)

where κ is a positive-definite reproducing kernel, zi’s are drawn from prior distribution

PAZ0 , and z̃i = Q(xi) are the latent encodings of real samples. MMD is used to measure the

difference between distribution of latent encodings and standard normal random variables.

Smaller MMD indicates that the distribution of encodings is close to the standard normal

distribution.

Table 5.1 shows that in terms of the performance of generative models, LWGAN is

slightly worse than the WGAN due to its sacrifice to the detection of intrinsic dimension,

but is significantly better than WAE that suffers from generating clear faces. In terms of

reconstruction and similarities on the latent space, LWGAN can achieve comparable results

to WAE. Overall, our LWGAN enable to successfully detect the correct intrinsic dimension,

produce meaningful encodes and reliable images at the same time.

88

5.5 Related Proofs

5.5.1 Proof of Theorem 5.1.1

According to the Whitney embedding theorem, for every d-dimensional compact smooth

manifold X , there exists an embedding u : X → R2d from X to R2d. Since u is a diffeomor-

phism onto its image u(X), u(X) is also a d-dimensional submanifold embedded in R2d, and

its inverse mapping u−1 : u(X) → X exists. Then we will construct Q∗ : X → Z from the

input domain X to a degenerated normal distribution by applying the well-known Rosen-

blatt transformation [74] to u(X), which can transform an absolutely continuous d-variate

distribution into the uniform distribution on the d-dimensional hypercube.

Let X̃ = u(X) ∈ R2d, and write X̃ = (X̃1, . . . , X̃2d). Suppose the manifold u(X) embed-

ded in R2d is globally a graph of the continuous function h : V → Rd, where V ⊆ Rd is an

open subset. This indicates that u(X) is a subset of Rp defined by

P = {(X̃(1), X̃(2)) ∈ Rd × Rd : X̃(1) ∈ V and X̃(2) = h(X̃(1))}.

Let π1 : Rd×Rd → Rd denote the projection onto the first factor, and let ψ : P → V be the

restriction of π1 to P :

ψ(X̃(1), X̃(2)) = X̃(1), (X̃(1), X̃(2)) ∈ P.

Then ψ is a continuous map and a homeomorphism since its continuous inverse is given by

ψ−1(X̃(1)) = (X̃(1), h(X̃(1))).

Next, we would like to transform X̃(1) to a d-dimensional variable from the uniform

distribution. Denote the marginal cdfs as Fi(x) = P(X̃i ≤ x), for i = 1, . . . , d. By applying

the probability integral transformation to each component, the random vector

(
U1, U2, . . . , Ud

)
:=
(
F1(X̃1), F2(X̃2), . . . , Fd(X̃d)

)
(5.21)

89

has uniformly distributed marginals. Let C : [0, 1]d → [0, 1] be the copula of X̃, which is

defined as the joint cdf of (U1, . . . , Ud):

C(u1, u2, . . . , ud) = P
(
U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud

)
. (5.22)

The copula C contains all information on the dependence structure among the components

of X̃, while the marginal cumulative distribution functions Fi contain all information on

the marginal distributions. Therefore, the joint cdf of X̃ is C
(
F1(x̃1), F2(x̃2), . . . , Fd(x̃d)

)
.

Denote the conditional distribution of Uk, given U1, . . . , Uk−1, by

Ck(uk|u1, . . . , uk−1) = P
(
Uk ≤ uk|U1 = u1, . . . , Uk−1 = uk−1

)
(5.23)

for k = 2, . . . , d. Then d independent uniform random variables can be defined by

 Ũ1 = U1,

Ũk = Ck

(
Uk|U1, . . . , Uk−1

)
, k = 2, . . . , d.

(5.24)

We can readily show that Ũ1, . . . , Ũd are independent uniform random variables. This is

because

P(Ũk ≤ ũk : k = 1, . . . , d) =
∫

C1

(
v1

)
≤ũ1
· · ·

∫
Cp

(
vd|v1,...,vd−1

)
≤ũd

dCd

(
vd|v1, . . . , vd−1

)
· · · dC1

(
v1
)

=
∫ ũ1

0
· · ·

∫ ũd

0
dzd · · · dz1 =

d∏
k=1

ũk.

Finally, let Z ′
i = Φ−1(Ũi) for i = 1, . . . , d, where Φ−1 is the inverse cdf of a standard

normal random variable. We further modify this d-dimensional continuous random variable

Z ′ ∼ N(0, Id) to a p-dimensional Z through the linear transformation,

Z = T1(Z ′) = (Id B)TZ ′,

such that Z is from the degenerated multivariate normal distribution N(0, AAT), and AAT

is a singular matrix with rank(AAT) = d < p. Here B ∈ Rd×(p−d) is a matrix and

90

AAT = (Id B)T (Id B) is a singular matrix. This completes the transformation Q∗ from

X to a variable Z = (Z1, . . . , Zp) from the p-dimensional degenerated normal distribution

N(0, AAT).

We can get G∗ : Z → X by reversing the above transformation. we first reverse p-

dimensional Z to a d-dimensional Z ′ from the standard normal distribution by

Z ′ = T2(Z) = (Id 0d×(p−d))Z

Then, Z ′ can be transformed to d independent uniform random variables by Ũi = Φ(Z ′
i) for

i = 1, . . . , d. Next, define

 U1 = Ũ1,

Uk = C−1
k (Ũk|Ũ1, . . . , Ũk−1), i = 2, . . . , d,

where C−1
k (·|u1, . . . , uk) is the inverse of Ck and can be obtained by numerical root finding.

Then let X̃(1)
i = F−1

i (Ui) for i = 1, . . . , d. Since any point from u(X) can be expressed

as (X̃(1), h(X̃(1))), and ψ is a bijective function, we have X̃ = (X̃(1), X̃(2)) = ψ−1(X̃(1)),

and finally X = u−1(X̃). This completes the transformation G∗ from Z to X, and hence

G∗(Q∗(X)) = X.

5.5.2 Proof of Corollary 5.1.1

Note that any d-dimensional manifold embedded in R2d locally looks like the graph of

a continuous mapping from Rd to Rd. That is, every point of u(X) lies in an open subset

S ⊆ R2d such that P = S ∩ u(X) is a d-dimensional patch. Therefore, there exists a

continuous function hP : V → Rd defined on the open set V ⊆ Rd, such that

P = {(X̃(1), X̃(2)) ∈ Rd × Rd : X̃(1) ∈ V and X̃(2) = hP (X̃(1))}.

91

Let π1 : Rd × Rd → Rd denote the projection onto the first factor, and let ψP : P → V be

the restriction of π1 to P :

ψP (X̃(1), X̃(2)) = X̃(1), (X̃(1), X̃(2)) ∈ P,

which is a continuous map. (P, ψP) is called a chart for the manifold u(X). Because every

d-dimensional manifold admits a cover by d + 1 charts, i.e., u(X) = ∪d+1
j=1 Pj, we will have

d + 1 different mappings hPj : V → Rd, which maps X̃(1) to different X̃(2)s. Now, for any

point X̃ ∈ u(X), we may define a function ψ : u(X)→ V as follows

ψ(X̃) =
d+1∑
j=1

I{X̃ ∈ Pj, X̃
(2) = hPj(X̃(1))}ψPj(X̃(1), hpj(X̃(1))) = X̃(1),

where I is the indicator function, and let ψPj(X̃(1), hPj(X̃(1))) = X̃(1) for X̃ ∈ Pj. Then simi-

larly to the proof of Theorem 1, we apply the transformation Equation 5.21 , Equation 5.22 ,

Equation 5.23 and Equation 5.24 in the above proof to X̃(1), we have Ũi, for i = 1, . . . , d

being independently from the uniform distribution. Finally a p-dimensional random variable

from the degenerated normal distribution N(0, AAT) is obtained by let Z ′
i = Φ−1(Ũi) and

Z = T1(Z ′). This completes the transformation Q∗ from X to Z = (Z1, . . . , Zp).

On the opposite direction of transforming Z to X, we first reverse Zi for i = 1, . . . , p to

X̃(1) based on the reverse procedure in the proof of Theorem 1. Transforming X̃(1) to the

original X̃ is not guaranteed since Ψ(X̃) is a surjective function, and d+1 functions hPj may

map X̃(1) to a different X̃(2). However, we can construct a stochastic transformation from

X̃(1) to ˆ̃X(2):
ˆ̃X(2) = eP � (hP1(X̃(1)), . . . , hPd+1(X̃(1))),

where eP is a d+ 1-dimensional vector with one element being 1 and others being 0, � refers

to the Hadamard product. The location of element 1 can be determined by a multinormial

distribution whose probabilities are based on the frequency of a set of samples from X . In

this way, G∗(Z) = u−1(X̃(1), ˆ̃X(2)) follows the same distribution as X.

92

5.5.3 Proof of Theorem 5.2.1

By the LWGAN objective Equation 5.5 , Equation 5.6 holds. Since W1 is a distance

between two probability measures, W1(PX , PG(AZ0)) ≤ W 1(PX , PG(AZ0)). If there exists a

Q∗ ∈ Q such that Q∗(X) has the same distribution as PAZ0 , we have

W 1(PX , PG(AZ0)) ≤ W1(PX , PG(Q∗(X))) +W1(PG(Q∗(X)), PG(AZ0)) = W1(PX , PG(AZ0)).

Hence, W1(PX , PG(AZ0)) = W 1(PX , PG(AZ0)).

5.5.4 Proof of Theorem 5.3.1

We introduce the function Q(θ) and Q̂m(θ):

Q(θ) = Q(θG, θQ, A, θf) = sup{φ(θG, θQ, A)− L(θG, θQ, A, θf), φ(θG, θQ, A)− V ∗}.

Q̂m(θ) = Q̂m(θG, θQ, A, θf) = sup{φ̂m(θG, θQ, A)− L̂m(θG, θQ, A, θf), φ̂m(θG, θQ, A)− V̂m}.

The function Q(θ) is non-negative for all θ. θ∗ ∈ Θ∗ if and only if Q(θ∗) = 0, so the solutions

in Θ∗ can be characterized as

Θ∗ = {θ∗ ∈ Θ : Q(θ∗) = 0}.

Similarly, the solutions in Θ̂m(τm) can be written as

Θ̂m(τm) = {θ̂ ∈ Θ : Q̂m(θ̂) ≤ τm}.

With this notation, we first show that

sup
θ∈Θ
|Q̂m(θ)−Q(θ)| p→ 0 with the function Q(θ) continuous in θ. (5.25)

93

We have

|Q̂m(θ)−Q(θ)|

=|φ̂m(θG, θQ, A)− φ(θG, θQ, A)− (inf{L̂m(θG, θQ, A, θf), V̂m} − inf{L(θG, θQ, A, θf), V ∗})|

≤|φ̂m(θG, θQ, A)− φ(θG, θQ, A)|+ sup{|L̂m(θ)− L(θ)|, |V̂m − V ∗|}

≤|φ̂m(θG, θQ, A)− φ(θG, θQ, A)|+ sup{|L̂m(θ)− L(θ)|, sup
θG,θQ,A

|φ̂m(θG, θQ, A)− φ(θG, θQ, A)|}

≤2 sup
θ∈Θ
|L̂m(θ)− L(θ)|

The above inequalities result from the triangle inequality and elementary properties of

min and max. Note that the assumption supθ∈Θ m
1/2|L̂m(θ) − L(θ)| = Op(1) implies that

supθ∈Θ |L̂m(θ)− L(θ)| p−→ 0, thus we have supθ∈Θ |Q̂m(θ)−Q(θ)| p→ 0. As for the continuity

of Q(θ), the function L(θ) is continuous on the compact set Θ, and thus by Berge’s maxi-

mum theorem the function φ(θG, θQ, A) = supθf
L(θG, θQ, A, θf) is continuous on (θG, θQ, A).

Consequently, Q(θ) is continuous. The continuity of Q and the definition of Θ∗ imply that

for all ε > 0 there exists an η(ε) > 0 such that

inf
θ∈Θ\Θ∗

ε

Q(θ) ≥ η(ε), (5.26)

where Θ∗
ε denotes the ε-net of the set Θ∗ in Θ defined as Θ∗

ε := {θ ∈ Θ : d(θ,Θ∗) ≤ ε} and

Θ \Θ∗
ε is the complement of Θ∗

ε in Θ.

Now we are ready to show that supθ∈Θ̂m(τm) d(θ,Θ∗) p→ 0. Let small εp, εd > 0 be arbitrary,

choose an η = η(εd) such that infθ∈Θ\Θ∗
εd
Q(θ) ≥ η holds, and choose an mεp such that for all

m ≥ mεp both supθ∈Θ |Q̂m(θ)−Q(θ)| ≤ η/4 and τm ≤ η/4 hold with probability larger than

1− εp. We now have

sup
θ∈Θ̂m(τm)

Q(θ) ≤ sup
θ∈Θ̂m(τm)

|Q̂m(θ)−Q(θ)|+ sup
θ∈Θ̂m(τm)

Q̂m(θ)

≤ sup
θ∈Θ
|Q̂m(θ)−Q(θ)|+ τm ≤ η/2 < inf

θ∈Θ\Θ∗
εd

Q(θ).

94

Therefore Θ̂m(τm) ⊆ Θ∗
εd

and supθ∈Θ̂m(τm) d(θ,Θ∗) ≤ εd, for all m ≥ mεp with probability

larger than 1− εp. Thus supθ∈Θ̂m(τm) d(θ,Θ∗) p→ 0.

Then we prove supθ∈Θ∗ d(θ, Θ̂m(τm)) p→ 0. Using the assumption that supθ∈Θ m
1/2|L̂m(θ)−

L(θ)| = Op(1), we have supθ∈Θ m
1/2|Q̂m(θ)−Q(θ)| = Op(1). Note that

sup
θ∈Θ∗

Q̂m(θ) ≤ sup
θ∈Θ∗
|Q̂m(θ)−Q(θ)|+ sup

θ∈Θ∗
Q(θ) ≤ sup

θ∈Θ
|Q̂m(θ)−Q(θ)|,

as Θ∗ ⊆ Θ and supθ∈Θ∗ Q(θ) = 0 by the definition of Θ∗. By assumption m−1/2/τm
p→ 0, for

any εp > 0 we can find a mεp such that for all m ≥ mεp

sup
θ∈Θ∗

Q̂m(θ) ≤ Op(m−1/2) = Op(1)(m−1/2/τm)τm ≤ τm

with probability larger than 1− εp. By the definition of Θ̂m(τm) we now have Θ∗ ⊆ Θ̂m(τm)

and thus supθ∈Θ∗ d(θ, Θ̂m(τm)) = 0 for all m ≥ mεp with probability larger than 1− εp. This

shows that supθ∈Θ∗ d(θ, Θ̂m(τm)) p→ 0. This completes the proof that dH(Θ̂m(τm),Θ∗) p→ 0.

5.5.5 Proof of Theorem 5.3.2

Lemma 5.5.1. Given a LG-Lipschitz generator G, a set of 1-Lipschitz discriminators F ,

and a set of decoders Q whose functions are LQ-Lipschitz with respect to the input, and

LθQ
-Lipschitz with respect to its parameter θQ ∈ ΘQ, let Θ̂Q be a ε/(16LGLθQ

)-net of the

parameter space ΘQ of Q, and Â be a ε/(8
√

5dLG)-net of the parameter space A of A. Then

the following inequality holds with a probability of at least

1− exp{−d} − 2|Θ̂Q||Â| exp{− ε2m

8(1 + 2LGLQ +
√

5dLG‖A‖)2
}

95

over the choice of m samples Sx from the data distribution PX and m samples Sz0 from the

standard normal distribution N(0, I).

sup
A∈A,Q∈Q

∣∣∣∣E‖X −G(Q(X))‖+ E sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}

−
{
ÊSx‖x−G(Q(x))‖+ sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}}∣∣∣∣ ≤ ε

where |Θ̂Q| denote the size of the finite set Θ̂Q, and |Â| denote the size of the finite set Â

Proof. Since z0 ∼ N(0, Id), we have

P(‖z0‖ ≤
√

5d) ≥ 1− exp(−d)

Then we have

P
[

sup
A∈A,Q∈Q

∣∣∣∣E‖X −G(Q(X))‖+ E sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}

−
{
ÊSx‖x−G(Q(x))‖+ sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}}∣∣∣∣ ≥ ε

]
≤P

[
‖z0‖ ≤

√
5d, sup

A∈A,Q∈Q

∣∣∣∣E‖X −G(Q(X))‖+ E sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}

−
{
ÊSx‖x−G(Q(x))‖+ sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}}∣∣∣∣ ≥ ε

]
+ P

[
‖z0‖ >

√
5d
]
.

Let us first prove the former part. Without loss of generality, we combine two sets Sx and

Sz0 together, and write it as S = {(x1, z0,1), . . . , (xm, z0,m)} For convenience, we define

Ψ((x1, z0,1), . . . , (xm, z0,m)) = ÊSx‖x−G(Q(x))‖+ sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}

96

Suppose that there is another sample set S ′ = {(x1, z0,1), . . . , (x′
i, z′

0,i), . . . , (xm, z0,m)}, which

differs from S by exactly one element. Then it is clear that

∣∣∣∣ÊSx‖x−G(Q(x))‖ − ÊS′
x
‖x−G(Q(x))‖

∣∣∣∣ =
∣∣∣ 1
m
‖xi −G(Q(xi))‖ −

1
m
‖x′

i −G(Q(x′
i)‖
∣∣∣

≤‖xi − x′
i‖+ ‖G(Q(xi))−G(Q(x′

i))‖
m

≤2(1 + LGLQ)
m

,

where the last inequality is due to to the Lipschitz continuity of f , G and Q. And

∣∣∣∣ sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}
− sup

f∈F

{
ÊS′

x
f(G(Q(x)))− ÊS′

z0
f(G(Az0))

}∣∣∣∣
≤ sup

f∈F

∣∣∣∣ÊSxf(G(Q(x)))− ÊS′
x
f(G(Q(x)))

∣∣∣∣+ sup
f∈F

∣∣∣∣ÊSz0
f(G(Az0))− ÊS′

z0
f(G(Az0))

∣∣∣∣
= 1
m

sup
f∈F

∣∣∣∣f(G(Q(xi)))− f(G(Q(x′
i)))

∣∣∣∣+ 1
m

sup
f∈F

∣∣∣∣f(G(Az0,i))− f(G(Az′
0,i))

∣∣∣∣
≤2LG(LQ +

√
5d‖A‖)

m
,

Therefore,

∣∣∣∣Ψ((x1, z0,1), . . . , (xi, z0,1), . . . , (xm, z0,m))−Ψ((x1, z0,1), . . . , (x′
i, z′

0,1), . . . , (xm, z0,m))
∣∣∣∣

≤2(1 + 2LGLQ +
√

5dLG‖A‖)
m

Applying McDiamond’s inequality, it holds that

P
[∣∣∣∣Ψ((x1, z0,1), . . . , (xm, z0,m))− EΨ((x1, z0,1), . . . , (xm, z0,m))

∣∣∣∣ ≥ ε

2

]
≤2 exp

{
− ε2m

8(1 + 2LGLQ +
√

5dLG‖A‖)2

}

97

Then by a union bound over all QΘ̂Q
and Â, we have

P
[

sup
A∈Â,Q∈QΘ̂Q

∣∣∣∣Ψ((x1, z0,1), . . . , (xm, z0,m))− EΨ((x1, z0,1), . . . , (xm, z0,m))
∣∣∣∣ ≥ ε

2

]

≤2|Θ̂Q||Â| exp{− ε2m

8(1 + 2LGLQ +
√

5dLG‖A‖)2
}.

Since Θ̂Q is a ε/(16LGLθQ
)-net of the parameter space ΘQ of Q, every point in ΘQ is within

distance ε/(16LGLθQ
) of a point in Θ̂Q. Similarly, every point in A is within distance

ε/(8
√

5dLG) of a point in Â. For any Q ∈ Q and A ∈ A, there exists a Q′ ∈ QΘ̂Q
and

A′ ∈ Â, such that

∣∣∣∣E‖X −G(Q(X))‖+ E sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}

−
{
E‖X −G(Q′(X))‖+ E sup

f∈F

{
ÊSxf(G(Q′(X)))− ÊSz0

f(G(A′Z0))
}}∣∣∣∣

≤
∣∣∣∣E‖X −G(Q(X))‖ − E‖X −G(Q′(X))‖

∣∣∣∣
+
∣∣∣∣E sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}
− E sup

f∈F

{
ÊSxf(G(Q′(x)))− ÊSz0

f(G(A′z0))
}∣∣∣∣

≤LGLθQ

ε

16LGLθQ

+ E sup
f∈F

{∣∣∣∣ÊSxf(G(Q(x)))− ÊSxf(G(Q′(x)))
∣∣∣∣+ ∣∣∣∣ÊSz0

f(G(Az0))− ÊSz0
f(G(A′z0))

∣∣∣∣}
≤ ε

16 + LGLθQ

ε

16LGLθQ

+
√

5dLG
ε

8
√

5dLG

= ε

4

Using the same strategy, we have

∣∣∣∣Ê‖x−G(Q′(x))‖+ sup
f∈F

{
ÊSxf(G(Q′(x)))− ÊSz0

f(G(A′z0))
}

−
{
Ê‖x−G(Q(x))‖+ sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}}∣∣∣∣ ≤ ε

4

98

Therefore,

∣∣∣∣E‖X −G(Q(X))‖+ E sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}

−
{
ÊSx‖x−G(Q(x))‖+ sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}}∣∣∣∣

≤
∣∣∣∣E‖X −G(Q(X))‖+ E sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}

−
{
E‖X −G(Q′(X))‖+ E sup

f∈F

{
ÊSxf(G(Q′(X)))− ÊSz0

f(G(A′Z0))
}}∣∣∣∣

+
∣∣∣∣E‖X −G(Q′(X))‖+ E sup

f∈F

{
ÊSxf(G(Q′(X)))− ÊSz0

f(G(A′Z0))
}

−
{
ÊSx‖x−G(Q′(x))‖+ sup

f∈F

{
ÊSxf(G(Q′(x)))− ÊSz0

f(G(A′z0))
}}∣∣∣∣

+
∣∣∣∣ÊSx‖x−G(Q′(x))‖+ sup

f∈F

{
ÊSxf(G(Q′(x)))− ÊSz0

f(G(A′z0))
}

−
{
ÊSx‖x−G(Q(x))‖+ sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}}∣∣∣∣

≤ ε4 + ε

2 + ε

4 = ε

Finally, combining with P[‖z0‖ >
√

5d] ≤ exp(−d), we have

sup
A∈A,Q∈Q

∣∣∣∣E‖X −G(Q(X))‖+ E sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}

−
{
ÊSx‖x−G(Q(x))‖+ sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}}∣∣∣∣ ≤ ε

holding with probability at least 1− 2|Θ̂Q||Â| exp{− ε2m
8(1+2LGLQ+

√
5dLG‖A‖)2} − exp{−d}.

Lemma 5.5.2. Given the function class F , Q, and a set of parameter A,

sup
A∈A,Q∈Q

∣∣∣ sup
f∈F

{
Ef(G(Q(X)))− Ef(G(AZ0))

}
− E sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}∣∣∣

≤2Rm(F ◦G ◦ Q) + 2Rm(F ◦G ◦ A).

99

Proof.

sup
A∈A,Q∈Q

∣∣∣∣ sup
f∈F

{
Ef(G(Q(X)))− Ef(G(AZ0))

}
− E sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}∣∣∣∣

≤ sup
A∈A,Q∈Q

E
∣∣∣∣ sup

f∈F

{
Ef(G(Q(X)))− Ef(G(AZ0))

}
− sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}∣∣∣∣

≤ sup
A∈A,Q∈Q

E sup
f∈F

∣∣∣∣[Ef(G(Q(X)))− ÊSxf(G(Q(x)))
]

+
[
ÊSz0

f(G(Az0))− Ef(G(AZ0))
]∣∣∣∣

≤E sup
A∈A,Q∈Q,f∈F

∣∣∣∣[Ef(G(Q(X)))− ÊSxf(G(Q(x)))
]

+
[
ÊSz0

f(G(Az0))− Ef(G(AZ0))
]∣∣∣∣

≤E sup
Q∈Q,f∈F

∣∣∣∣Ef(G(Q(X)))− ÊSxf(G(Q(x)))
∣∣∣∣+ E sup

A∈A,f∈F

∣∣∣∣Ef(G(AZ0))− ÊSz0
f(G(Az0))

∣∣∣∣
≤2Rm(F ◦G ◦ Q) + 2Rm(F ◦G ◦ A),

The last inequality is obtained by the standard technique of symmetrization in [75].

Equipped with the above two lemmas, we are now able to prove the main theorem.

Firstly, we have

sup
A∈A

∣∣∣W 1(PX , PG(Z∗))−W 1(P̂X , P̂G(Z∗))
∣∣∣

= sup
A∈A

∣∣∣∣ inf
Q∈Q

sup
f∈F

{
E‖X −G(Q(X))‖+ Ef(G(Q(X)))− Ef(G(AZ0))

}
− inf

Q∈Q
sup
f∈F

{
ÊSx‖x−G(Q(x))‖+ ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0)
}∣∣∣∣

≤ sup
A∈A,Q∈Q

∣∣∣∣E‖X −G(Q(X))‖ − ÊSx‖x−G(Q(x))‖+ sup
f∈F

{
Ef(G(Q(X)))− Ef(G(AZ0))

}
− sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}∣∣∣∣

≤ sup
A∈A,Q∈Q

∣∣∣∣E‖X −G(Q(X))‖+ E sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}

− ÊSx‖x−G(Q(x))‖ − sup
f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}∣∣∣∣

+ sup
A∈A,Q∈Q

∣∣∣∣ sup
f∈F

{
Ef(G(Q(X)))− Ef(G(AZ0))

}
− E sup

f∈F

{
ÊSxf(G(Q(x)))− ÊSz0

f(G(Az0))
}∣∣∣∣

≤2Rm(F ◦G ◦ Q) + 2Rm(F ◦G ◦ A) + ε

with probability at least 1− 2|Θ̂Q||Â| exp{− ε2m
8(1+2LGLQ+

√
5dLG‖A‖)2} − exp{−d}.

100

6. CONCLUSION

As a summary, in the first part of the dissertation, we study the generalization behavior

for robust adversarial learning. We focus on the `∞ adversarial attacks and analyze gen-

eralization through the lens of Rademacher complexity. In particular, we view deep neural

networks as a composition of a shallower network and a Lipschitz continuous function on a

low dimension and study the weight normalization based on both the spectral norm and the

rank constraints. We establish tight complexity bounds for adversarial learning and realize

that the effect of adversarial perturbations can be limited under this weight normalization.

Several future directions for research will be pursued. Our theoretical establishment im-

plies that high-probability learning can be guaranteed for algorithms which provide predictors

within this class. We are investigating efficient and practical algorithms in the context of

norm and rank based constraints. One possible algorithm is to combine the spectral normal-

ization in [52] with the dropout. Much of this would be experimental. Another theoretical

problem is to develop generalization bounds for more sophisticated networks such as CNNs.

One remaining theoretical problem is to develop the sharp lower bound for the adversarial

Rademacher complexity for neural works.

In the second part of this dissertation, we have developed a novel LWGAN framework

that enables us to adaptively learn the intrinsic dimension of the data distribution. This

framework fuses the WAE and the WGAN in a natural primal and dual way, so that the

encoder learns a latent normal distribution whose rank of the covariance matrix is exactly

equivalent to the dimension of the data manifold. We have provide the estimation consistency

and an upper bound on the generalization error. Our algorithm have shown that the intrinsic

dimension of the data can be successfully detected under several settings on both synthetic

dataset and benchmark dataset. The empirical results have showed that the generative data

by the LWGAN is high-quality.

In the future direction of research on LWGAN, we will investigate a more general scenario

with a stochastic generator G as illustrate in Corollary 5.1.1 . Using the noise-outscoring

lemma, theoretically only an extra noise η ∼ N(0, 1) is needed to be added to the input of

the generator G. Practically, we may need to use a higher dimensional noise vector to ease

101

the representation of G. In addition, it is interesting to incorporate the stochastic LWGAN

into the recent GAN moduls such as BigGAN [76] so that high-resolution and high-fidelity

images can be simultaneously produced when the intrinsic dimension is detected.

The new LWGAN framework has many potential applications in other fields. For ex-

ample, the LWGAN can be used for structural estimation. Structural estimation is a useful

tool to quantify economic mechanisms and learn about the effects of policies that are yet

to be implemented wei20. An economic structural model specifies some outcome g(x, ε; θ)

that depends on a set of observables x, unobservables ε, and structural parameters θ. The

function g can represent a utility maximization problem or other observed outcomes. Un-

der many scenarios, the likelihood function and moment functions are not easy to obtain.

This makes the MLE and GMM infeasible, and other simulation based methods can cause

additional computational burden. By the training of the LWGAN on the data from (x, y),

we are able to adaptively learning the data representation by the encoder, instead of using

moments. We are also able to boost the sample size by the generator. By comparing the

generated data (x, g(x, ε; θ)) and the observed data (x, y) in the latent space, we can estimate

θ efficiently.

102

REFERENCES

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cam-
bridge, 2016, vol. 1.

[2] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial machine
learning,” vol. 84, 2017.

[3] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adversarial classifica-
tion,” 2004.

[4] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “There is no free
lunch in adversarial robustness (but there are unexpected benefits),” 2018.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus, “Intriguing properties of neural networks,” Computer Science, 2013.

[6] L. Engstrom, D. Tsipras, L. Schmidt, and A. Madry, “A rotation and a translation
suffice: Fooling cnns with simple transformations,” 2017.

[7] J. Gilmer, R. P. Adams, I. Goodfellow, D. Andersen, and G. E. Dahl, “Motivating the
rules of the game for adversarial example research,” 2018.

[8] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” 2017.

[9] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity:
The all convolutional net,” Eprint Arxiv, 2014.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” 2012, pp. 1097–1105.

[11] O. Schwartz, “You thought fake news was bad? deep fakes are where truth goes to
die,” The Guardian, 2018.

[12] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adversarial
examples,” arXiv preprint arXiv:1801.09344, 2018.

[13] K. Y. Xiao, V. Tjeng, N. M. Shafiullah, and A. Madry, “Training for faster adversarial
robustness verification via inducing relu stability,” arXiv preprint arXiv:1809.03008,
2018.

[14] J. Z. Kolter and E. Wong, “Provable defenses against adversarial examples via the
convex outer adversarial polytope,” 2018.

103

[15] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, and M. I. Jordan, “Theoretically principled
trade-off between robustness and accuracy,” 2019.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” Computer Science, 2014.

[17] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Mądry, “Adversarially robust
generalization requires more data,” 2018.

[18] F. Farnia, J. M. Zhang, and D. Tse, “Generalizable adversarial training via spectral
normalization,” arXiv preprint arXiv:1811.07457, 2018.

[19] D. Yin, K. Ramchandran, and P. Bartlett, “Rademacher complexity for adversarially
robust generalization,” arXiv preprint arXiv:1810.11914, 2018.

[20] J. Khim and P.-L. Loh, “Adversarial risk bounds for binary classification via function
transformation,” arXiv preprint arXiv:1810.09519, 2018.

[21] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural infor-
mation processing systems, 2014, pp. 2672–2680.

[23] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial net-
works,” in International conference on machine learning, PMLR, 2017, pp. 214–223.

[24] Y. Li, K. Swersky, and R. Zemel, “Generative moment matching networks,” in Inter-
national Conference on Machine Learning, PMLR, 2015, pp. 1718–1727.

[25] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real nvp,” arXiv
preprint arXiv:1605.08803, 2016.

[26] Y. Qiu and X. Wang, “Almond: Adaptive latent modeling and optimization via neu-
ral networks and langevin diffusion,” Journal of the American Statistical Association,
pp. 1–13, 2019.

[27] P. K. Rubenstein, B. Schoelkopf, and I. Tolstikhin, “On the latent space of wasserstein
auto-encoders,” arXiv preprint arXiv:1802.03761, 2018.

[28] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding be-
yond pixels using a learned similarity metric,” in International Conference on Machine
Learning, 2016, pp. 1558–1566.

104

[29] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A.
Courville, “Adversarially learned inference,” in International Conference on Learning
Representations (ICLR), 2017.

[30] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” in Inter-
national Conference on Learning Representations (ICLR), 2017.

[31] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are uni-
versal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[32] A. Krogh and J. A. Hertz, “A simple weight decay can improve generalization,” 1992,
pp. 950–957.

[33] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.

[34] J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,” 2013, pp. 3084–
3092.

[35] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient descent learn-
ing,” Constructive Approximation, vol. 26, no. 2, pp. 289–315, 2007.

[36] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved
training of wasserstein gans,” in Advances in Neural Information Processing Systems,
2017, pp. 5767–5777.

[37] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein auto-encoders,”
in International Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=HkL7n1-0b .

[38] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling,
“Improved variational inference with inverse autoregressive flow,” Advances in neural
information processing systems, vol. 29, pp. 4743–4751, 2016.

[39] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolu-
tions,” arXiv preprint arXiv:1807.03039, 2018.

[40] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning:
2012.

[41] V. Vapnik, The nature of statistical learning theory. Springer science & business media,
2013.

105

https://openreview.net/forum?id=HkL7n1-0b

[42] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[43] P. L. Bartlett, “The sample complexity of pattern classification with neural networks:
The size of the weights is more important than the size of the network,” IEEE trans-
actions on Information Theory, vol. 44, no. 2, pp. 525–536, 1998.

[44] B. Neyshabur, R. Tomioka, and N. Srebro, “Norm-based capacity control in neural
networks,” in Conference on Learning Theory, 2015, pp. 1376–1401.

[45] B. Neyshabur, S. Bhojanapalli, and N. Srebro, “A PAC-bayesian approach to spectrally-
normalized margin bounds for neural networks,” 2018.

[46] S. Sun, W. Chen, L. Wang, X. Liu, and T.-Y. Liu, “On the depth of deep neural
networks: A theoretical view,” 2016, pp. 2066–2072.

[47] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized margin bounds
for neural networks,” 2017, pp. 6240–6249.

[48] N. Golowich, A. Rakhlin, and O. Shamir, “Size-independent sample complexity of
neural networks,” arXiv preprint arXiv:1712.06541, 2017.

[49] X. Li, J. Lu, Z. Wang, J. Haupt, and T. Zhao, “On tighter generalization bound for
deep neural networks: Cnns, resnets, and beyond,” arXiv preprint arXiv:1806.05159,
2018.

[50] Y. Xu and X. Wang, “Understanding weight normalized deep neural networks with
rectified linear units,” 2018, pp. 130–139.

[51] Y. Yoshida and T. Miyato, “Spectral norm regularization for improving the generaliz-
ability of deep learning,” arXiv preprint arXiv:1705.10941, 2017.

[52] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for
generative adversarial networks,” 2018.

[53] J. Cavazza, P. Morerio, B. Haeffele, C. Lane, V. Murino, and R. Vidal, “Dropout as a
low-rank regularizer for matrix factorization,” arXiv preprint arXiv:arXiv:1710.05092,
2017.

[54] P. Mianjy, R. Arora, and R. Vidal, “On the implicit bias of dropout,” arXiv preprint
arXiv:arXiv:1806.09777, 2018.

[55] U. v. Luxburg and O. Bousquet, “Distance-based classification with lipschitz func-
tions,” Journal of Machine Learning Research, vol. 5, no. Jun, pp. 669–695, 2004.

106

[56] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,”
arXiv preprint arXiv:1611.01236, 2016.

[57] E. J. Candes and Y. Plan, “Tight oracle inequalities for low-rank matrix recovery from
a minimal number of noisy random measurements,” IEEE Transactions on Information
Theory, vol. 57, no. 4, pp. 2342–2359, 2011.

[58] E. J. Candes and Y. Plan, “Tight oracle bounds for low-rank matrix recovery from
a minimal number of random measurements,” Mathematics, vol. 57, no. 4, pp. 2342–
2359, 2010.

[59] H. Whitney, J. Eells, and D. Toledo, Collected Papers of Hassler Whitney. Nelson
Thornes, 1992, vol. 1.

[60] J. M. Lee, “Smooth manifolds,” in Introduction to Smooth Manifolds, Springer, 2013,
pp. 1–31.

[61] O. Kallenberg and O. Kallenberg, Foundations of modern probability. Springer, 1997,
vol. 2.

[62] T. Austin, “Exchangeable random measures,” in Annales de l’IHP Probabilités et statis-
tiques, vol. 51, 2015, pp. 842–861.

[63] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural
networks, vol. 4, no. 2, pp. 251–257, 1991.

[64] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel
two-sample test,” Journal of Machine Learning Research, vol. 13, no. Mar, pp. 723–
773, 2012.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd In-
ternational Conference for Learning Representations, San Diego, 2015, 2015. [Online].
Available: http://arxiv.org/abs/1412.6980 .

[66] R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer Science & Business
Media, 2009, vol. 317.

[67] M. Meitz, “Statistical inference for generative adversarial networks,” arXiv preprint
arXiv:2104.10601, 2021.

[68] J. Hoffmann-Jørgensen, Probability with a view towards statistics. Chapman and Hall,
New York., 1994, vol. 2.

107

http://arxiv.org/abs/1412.6980

[69] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and equilibrium in
generative adversarial nets (gans),” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70, JMLR. org, 2017, pp. 224–232.

[70] Q. Gao and X. Wang, “Theoretical investigation of generalization bounds for adver-
sarial learning of deep neural networks,” Journal of Statistical Theory and Practice,
vol. 15, no. 2, pp. 1–28, 2021.

[71] J. A. Costa and A. O. Hero, “Determining intrinsic dimension and entropy of high-
dimensional shape spaces,” in Statistics and Analysis of Shapes, Springer, 2006, pp. 231–
252.

[72] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-
proved techniques for training gans,” in Advances in neural information processing
systems, 2016, pp. 2234–2242.

[73] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained
by a two time-scale update rule converge to a local nash equilibrium,” in Advances in
Neural Information Processing Systems, 2017, pp. 6626–6637.

[74] M. Rosenblatt, “Remarks on a multivariate transformation,” Annals of Mathematical
Statistics, vol. 23, no. 3, pp. 470–472, 1952.

[75] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT
press, 2018.

[76] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high fidelity
natural image synthesis,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=B1xsqj09Fm .

108

https://openreview.net/forum?id=B1xsqj09Fm

A. MODEL ARCHITECTURES OF SECTION 5.4

In this section, we present the architectures used for each experiment.

A.1 Toy Examples

For Swiss Roll, S-curve, Hyperplane and Mixture Guassians, the latent space Z ∈ R5

and Z ∈ R10, for each batch, the sample size is 256.

Encoder architecture:

x ∈ Rdimx → FC1024 → RELU

→ FC512 → RELU

→ FC256 → RELU

→ FC128 → RELU → FC5(FC10)

Generator architecture:

z ∈ R5(R10)→ FC512 → RELU

→ FC512 → RELU

→ FC512 → RELU → FCdimx

Discriminator architecture:

x ∈ Rdimx → FC512 → RELU

→ FC512 → RELU

→ FC512 → RELU → FC1

109

A.2 MNIST

For MNIST, the latent space Z ∈ R64 and batch size is 256.

Encoder architecture:

x ∈ R28×28 → Conv128 → RELU

→ Conv256 → RELU

→ Conv512 → RELU → FC64

Generator architecture:

z ∈ R64 → FC4×4×512 → RELU

→ ConvTrans256 → RELU

→ ConvTrans128 → RELU → ConvTrans1

Discriminator architecture:

x ∈ R28×28 → Conv128 → RELU

→ Conv256 → RELU

→ Conv512 → RELU → FC1

A.3 CelebA

For CelebA, the latent space Z ∈ R128 and batch size is 128.

110

Encoder architecture:

x ∈ R64×64×3 → Conv128 → LeakyRELU

→ Conv256 → InstanceNorm→ LeakyRELU

→ Conv512 → InstanceNorm→ LeakyRELU

→ FC4×4×1024 → FC128

Generator architecture:

z ∈ R128 → FC4×4×1024

→ ConvTrans512 → BN → RELU

→ ConvTrans256 → BN → RELU

→ ConvTrans128 → BN → RELU → ConvTrans3

Discriminator architecture:

x ∈ R64×64×3 → Conv128 → LeakyRELU

→ Conv256 → InstanceNorm→ LeakyRELU

→ Conv512 → InstanceNorm→ LeakyRELU → Conv1

111

VITA

Qingyi Gao was born in 1992 in Yunnan, China. She obtained a B.S. degree in Statistics

from the School of Mathematical Sciences and a M.S. degree in Statistics from School of

Statistics and Data Science at Nankai University. After then, she joined Department of

statistics at Purdue University in January 2017 and earned a Ph.D. degree in Statistics in

August 2021. Qingyi’s research interests include statistical machine learning, learning theory,

adversarial learning and deep generative models. After graduation, Qingyi would join the

Facebook as a research data scientist.

112

PUBLICATIONS AND PREPRINTS

Publications:

• Gao, Q., Wang, X. (2021). Theoretical Investigation of Generalization Bounds for

Adversarial Learning of Deep Neural Networks. Journal of Statistical Theory and

Practice. DOI: 10.1007/s42519-021-00171-6 .

• Gao, Q., Wang, X. (2020). Statistical Learning. Springer Handbook of Engineering

Statistics, 2nd ed. In press.

• Chen, Y., Gao, Q., Liang, F., Wang, X. (2020). Nonlinear Variable Selection via

Deep Neural Networks. Journal of Computational and Graphical Statistics. DOI:

10.1080/10618600.2020.1814305 .

• Cai, J., Gao, Q., Chun, H., Cai, H., Nantung, T. (2019). Spatial Autocorrelation

in Soil Compaction and Its Impact on Earthwork Acceptance Testing. Transportation

Research Record: Journal of the Transportation Research Board.

Preprints:

• Gao, Q., Wang, X. (2021). On the Latent Space of Generative Models. Preprint.

• Chen, Y., Gao, Q., Wang, X. (2021). iWGAN: an Encoder-Decoder WGAN for

Inference. Under revision at Journal of the Royal Statistical Society: Series B.

• Mo, Z., Chen, H., Gao, Q., Wang, X. (2020). Uniform Generalization Bound for

Generative Adversarial Networks. Preprint.

• Gao, Q., Cai, J., Cai, H., Chun, H., Nantung, T. (2019). Risk Control in Acceptance

Testing with Percent Within Limit. Preprint.

113

10.1007/s42519-021-00171-6
10.1080/10618600.2020.1814305

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Dissertation Organisation

	PRELIMINARIES
	Feed-forward Neural Networks
	Generative Models
	Generative Adversarial Networks
	Variational Auto-Encoders
	Normalizing Flows

	STATISTICAL LEARNING
	Overview
	Uniform Convergence
	Rademacher Complexity
	Growth function and VC dimension
	Covering Number

	GENERALIZATION ERROR BOUNDS ON ADVERSARIAL LEARNING OF DEEP NEURAL NETWORKS
	Related Works
	The Spectral Norm and The Rank in DNN
	Natural Learning and Adversarial Robust Learning

	Generalization Bounds for Adversarial Learning
	An Upper Bound on Rademacher Complexity for Adversarial Learning
	A Tighter Upper Bound on Rademacher Complexity for Adversarial Learning

	Natural Learning vs. Adversarial Learning
	Numerical Results
	Related Proofs
	Proof of Lemma 4.2.1
	Proof of Lemma 4.2.2
	Proof of Lemma 4.2.3

	ON THE LATENT SPACE OF GENERATIVE MODELS
	Latent Dimension Mismatch and the Encoder
	Latent Wasserstein GAN
	Theoretical Results
	Estimation Consistency
	Generalization Error Bound

	Experimental Results
	Toy Data
	MNIST
	CelebA

	Related Proofs
	Proof of Theorem 5.1.1
	Proof of Corollary 5.1.1
	Proof of Theorem 5.2.1
	Proof of Theorem 5.3.1
	Proof of Theorem 5.3.2

	CONCLUSION
	REFERENCES
	MODEL ARCHITECTURES OF SECTION 5.4
	Toy Examples
	MNIST
	CelebA

	VITA
	PUBLICATIONS AND PREPRINTS

