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ABSTRACT

Accuracy in turbulence modeling remains a hurdle in the widespread use of Computa-

tional Fluid Dynamics (CFD) as a tool for furthering fluids dynamics research. Meanwhile,

computational power remains a significant concern for solving real-life wall-bounded flows,

which portray a wide range of length and time scales. The tools for turbulence analysis at

our disposal, in the decreasing order of their accuracy, include Direct Numerical Simulation

(DNS), Large Eddy Simulation (LES), and Reynolds-Averaged Navier Stokes (RANS) based

models. While DNS and LES would remain exorbitantly expensive options for simulating

high Reynolds number flows for the foreseeable future, RANS is and continues to be a viable

option utilized in commercial and academic endeavors. In the first part of the present work,

flow over the back-step test case was solved, and parametric studies for various parameters

such as re-circulation length (Xr), coefficient of pressure (Cp), and coefficient of skin friction

(Cf ) are presented and validated with experimental results. The back-step setup was chosen

as the test case as turbulent modeling of flow past backward-facing step has been pivotal

to understand separated flows better. Turbulence modeling is done on the test case using

RANS (k-ε and k-ω models), and LES modeling, for different values of Reynolds number

(Re ∈ {2, 2.5, 3, 3.5} × 104) and expansion ratios (ER ∈ {1.5, 2, 2.5, 3}). The LES results

show good agreement with experimental results, and the discrepancy between the RANS

results and experimental data was highlighted. The results obtained in the first part reveal

a pattern of under-prediction noticed with using RANS-based models to analyze canonical

setups such as the backward-facing step. The LES results show close proximity to experi-

mental data, as mentioned above, which makes it an excellent source of training data for the

machine learning analysis outlined in the second part. The highlighted discrepancy and the

inability of the RANS model to accurately predict significant flow properties create the need

for a better model. The purpose of the second part of the present study is to make systematic

efforts to minimize the error between flow properties from RANS modeling and experimental

data, as seen in the first part. A machine learning model was constructed in the second part

of the present study to predict the eddy viscosity parameter (µt) as a function of turbulent

kinetic energy (TKE) and dissipation rate (ε) derived from LES data, effectively working
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as an ad hoc eddy-viscosity based turbulence model. The machine learning model does not

work well with the flow domain as a whole, but a zonal analysis reveals a better prediction

of eddy viscosity than the whole domain. Among the zones, the area in the vicinity of the

re-circulation zone gives the best result. The obtained results point towards the need for a

zonal analysis for the better performance of the machine learning model, which will enable

us to improve RANS predictions by developing a reduced order turbulence model.
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1. INTRODUCTION

In the modern world, where computers dictate every aspect of our lives, the importance of

computational work and data-driven physics are more relevant than ever. Computer simu-

lations have replaced the proverbial “Engineering handiwork”, which shapes everyday life.

High-fidelity simulations have played an essential role in understanding complex physical

processes like turbulence and, with time, have proved to be an excellent tool for compound-

ing theories for explaining such phenomena. This chapter presents an overview of turbulence

and how to model it, emphasizing on data-driven turbulence modeling.

1.1 Overview of Data-Driven Turbulence Modeling

The discussion shown below gives a brief literature review of the past and emerging ideas

in the field of data-driven turbulence modeling. The year 2015 was used as a natural breaking

point between the sections as somewhere around that time, the existing norms changed, and

new ideas began emerging; therefore, a separate section has been presented to highlight the

more recent studies in this field.

1.1.1 Previous Work on Data-Driven Turbulence Modeling (Prior 2015)

The existence of a multitude of turbulence models is an indicator that no single model

can explain the characteristics of all flow systems satisfactorily. Whether or not we can

develop such a “Universal Model” is a discussion for another day. The current tools for

turbulence modeling at our disposal, in the decreasing order of their accuracy, include Direct

Numerical Simulation (DNS), Large Eddy Simulation (LES), and Reynolds-Averaged Navier

Stokes (RANS) based models. A growing belief in the high-power computing community

that LES was the next big thing, as the low pass filtering in the LES model is more accurate

than RANS averaging. It is supposed to be a viable trade-off between DNS and RANS,

presenting a computationally judicious option without compromising on accuracy.

17



It is not a generally believed notion that high-fidelity models are a better alternative to

the eddy-viscosity models that have been in use for so long. They have not led to any notice-

able improvements despite the theoretical advantages they offer over RANS modeling due to

its empirical nature [1 ]. Over the years, many changes have been proposed to Eddy-viscosity

models to increase their credibility. These are done to make the models more responsive to-

wards the transition from laminar to turbulent flows [2 ], anisotropy due to near wall effects

[3 ], and simple Galilean effects such as rotation and curvature [4 ] [5 ] [6 ]. Despite its many

limitations RANS model continues to be the industry workhorse after many decades of its

conception.

Meanwhile, data-driven physics has gained much popularity in the last decade and a half.

Data science has meandered its way into every facet of human existence: image processing

[7 ], advanced linguistics [8 ], and speech recognition [9 ]. The growth in the data science sector

is unprecedented in terms of both number and application. The massive surge is indicative

of a need for better classification and processing of the vast amount of data collected on the

world wide web every day. The dissemination of ideas between the physical sciences and

data science community has been a slow albeit fascinating problem-solving method. The

gradual nature of the development can be primarily attributed to the fact that data science

concepts have to be modified to respect the laws of physics.

Although high fidelity data exists for simple geometric turbulent flows at low Reynolds

number, it has seldom been used to improve RANS models summarily. The high volume of

available data and the massive growth in the data science sector has presented researchers

with an excellent opportunity to improve turbulence models in an organized manner. The

following section presents a brief literature review of the previous work done in the field of

data-driven turbulence modeling. The process of using data-driven techniques to improve

turbulence modeling has been underway for the past few decades now, with better strate-

gies emerging over time. A case can be made that turbulence models have always headed

towards data calibration due to their inherently empirical nature, as the theoretical ap-

proach cannot fill some big holes. For instance, some significant examples attest to this fact,
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such as predicting the coefficient of skin friction for zero pressure gradient for flow over a

flat plate or predicting the RANS model constants by data calibration to better fit equations.

In 1998, Paraneix et al. [10 ] developed a comprehensive study using DNS datasets to

target the improvement of second-moment closure equations. They conducted the a priori

testing using DNS data to solve the transport equations for one isolated component of the

Reynolds stress tensor. The posteriori testing involves modifying the model equations to fit

the variable values obtained from their DNS dataset. Raiesi et al. [11 ] attempted to improve

the accuracy of one and two-equation models using LES and DNS results for turbulent ki-

netic energy and dissipation rate.

In the early 2000s, Neural Networks (NNs) were fast becoming the primary tool for pre-

dicting the near-wall behavior in channel flows. Unlike unbounded and isotropic flows, many

researchers run into a precarious situation when predicting the near-wall behavior in channel

flows. This is due to the formation of boundary layer and the mainstream turbulent mod-

els failing to capture the wall effects. In 2002, Milano and Koumoutsakos [12 ] used Neural

Networks to understand the near-wall effects in a better way. They recreated their wall

model with second-order discretization by using wall quantities to express the higher-order

terms. Several studies came forward between 2011 to 2014 [13 ] [14 ] [15 ] [16 ] using Proba-

bility Density Function (PDF) and Joint PDF of model parameters to reduce inaccuracies

in models. Edeling et al. [14 ] quantified the statistical error in quantities such as velocity

and coefficient of skin friction by gathering data from numerous experiments on boundary

layer development. The above discussion points to the deficiency of a priori testing and the

absence of model form discrepancies.

Even though data-driven modeling was heavily integrated into the traditional turbulence

analysis paradigm by the 2010s, research about systematically improving eddy-viscosity mod-

els was still scarce. Dow and Wang [17 ] [18 ] developed an NN to understand eddy viscosity’s

structural uncertainties better using the velocity and pressure data from direct numerical

19



simulations. This served as a motivation for the current research, an effort to use high-fidelity

results obtained from LES modeling to improve results obtained from RANS-based analysis.

1.1.2 New Ideas Emerging Post-2015

Machine learning algorithms in improving turbulence analysis can be considered a recent

endeavor as it all but started two decades ago. However, somewhere around 2015, the ex-

isting norms changed, and new ideas began emerging; therefore, a separate section has been

presented to highlight the more recent studies in this field.

Xiao et al. [19 ] [20 ] used DNS data to calculate the spatial arrangement of perturbations

in aij. The Anisotropic tensor, aij, is related to the velocity fluctuations and turbulent kinetic

energy in the following way [21 ]:

aij = 〈u′
iu

′
j〉 − 2

3kδij, (1.1)

where 〈u′
iu

′
j〉 denote the Reynolds stress, k denotes the turbulent kinetic energy, and δij de-

notes the kronecker delta.

The stresses resulting from the induced perturbations are calculated by transforming the

eigenvalues of the aij into Barycentric coordinates. They remodeled the perturbations in the

Cartesian coordinate system using machine learning. This machine learning model was com-

bined with the RANS model to predict improved results for a different flow setup. Weatheritt

[22 ] from the University of Southampton had an interesting take on algebraic modeling using

machine learning for his graduate dissertation. He used DNS data to construct an algebraic

stress-strain expression for RANS equations using an evolutionary machine learning algo-

rithm to understand the anisotropic tensor better.

A natural precursor to the current work was presented by Matai et al. [23 ] in 2018 where

he used LES modeling to simulate flow over a set of parametric bumps and used Artificial

Neural Network (ANN) to predict the drag over the bumps. The current work is based on
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a similar line, to construct a machine learning (ML) model using Random Forest algorithm

to predict the eddy viscosity, µt, in flow over a back-step. The ML model is intended to

minimize the error observed between flow properties from RANS modeling and experimental

data. The experimental results were used to validate the LES modeling making it an excellent

source of training data for the machine learning analysis outlined in the following sections. A

further zonal analysis is performed to isolate the specific zones of the flow domain where the

model performs the best, which will enable us to improve RANS predictions by developing

a reduced order turbulence model.

1.2 Overview of Turbulence in Fluid Flow

The discussion shown below gives a brief literature review of the past and present norms

in turbulence modeling. The section contains a clear picture of the problem statement that

is addressed further in this study.

1.2.1 Characteristics of Turbulence

Turbulence is the common trait for all chaotic and seemingly random phenomena occur-

ring in nature. Although defining turbulence explicitly is a challenging endeavor, but most

of the literature found on this subject use the following metrics to characterize turbulence

[21 ] [24 ]:

• Randomness in flow characteristics

• Increasingly diffusive flow

• Increasingly dissipative flow

• 3-D fluctuations

As turbulence is a characteristic trait of the flow and not the fluid, various flow parame-

ters must be taken into account to quantify turbulence accurately. One such dimensionless

quantity, Reynolds number, Re, is a quantifiable measure of the state of the flow: laminar,
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turbulent, or a transitional state between the two. Re can be defined as the ratio of inertial

forces to the viscous forces and is written as:

Re = UL

ν
, (1.2)

where U is the characteristic velocity, L is the characteristic length, and ν is the kinematic

viscosity. A flow with high Re is often characterized by a high degree of turbulence which

indicates energy is injected into smaller scales of motion through cascading. In highly turbu-

lent flows, the largest eddies can be orders of magnitude more prominent than the smallest

ones. As the turbulence increases, the range of scales of motion also tends to increase, and

hence solving the set equations characterizing the flow for all the scales becomes a gargan-

tuan task. As most flows of interest in the aerospace community are high Re flows, therefore

containing a high degree of turbulence, it is essential to understand the turbulent scales of

motion.

1.2.2 Scales of Turbulent Motion

In 1941, A.N. Kolmogorov [25 ] put forward a comprehensive analysis about the smallest

scales in a turbulent flow. In this article, he compounded the Kolmogorov Hypotheses, which

state, "At sufficiently high Reynolds number, the small-scale turbulent motions are statisti-

cally isotropic. In every turbulent flow at sufficiently high Reynolds number, the statistics of

the small-scale motions have a universal form that is uniquely determined by the kinematic

viscosity, ν, and the specific dissipation, ε." Given the two parameters, ν, and ε, Kolmogorov

formed unique length, velocity, and time scales collectively known as the Kolmogorov’s mi-

croscales.

η ≡
(

ν3

ε

) 1
4

, uη ≡ (εν)
1
4 , τη ≡

(
ν

ε

) 1
2
, (1.3)

where η, µη, and τη are Kolmogorov’s length, velocity and time scale respectively.
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Kolmogorov’s hypotheses proved to be the first comprehensive work on linking the small

and large scale properties. As mentioned before, the energy cascades from the larger scales

into the smaller scales of flow by the continual breaking of larger eddies into smaller ones.

For simplicity of analysis, we assume that during cascading, there is energy transfer without

any loss. Using the scaling for specific dissipation, ε ∼ U3/L, we can obtain the following

relations:

η/L ∼ Re− 3
4 , uη/U ∼ Re− 1

4 , τη/T ∼ Re− 1
2 , (1.4)

where L is the large scale length, U is the large scale velocity, and T is the large scale

time. The ratio of the smallest and largest scale quantities can be expressed as a function

of Reynolds number.

1.2.3 Turbulence Modeling

The previous section highlighted the importance and ubiquity of turbulence in hydro-

dynamic flows. Therefore it is equally important to model turbulence experimentally and

analytically to get a real sense of everyday phenomena. Analytical turbulence modeling in-

volves solving mathematical equations in their discretized forms. Physical modeling involves

complex mathematical equations to explain the nuances of a system, and more often than

not, they are derived from first principles. For example, the Navier-Stokes (NS) equations,

which are the governing equations of fluid dynamics, are a derivative of the conservation of

mass, momentum, energy. Empirical models are on the other extreme, which involves fitting

the model to a dataset. Most models currently in use are an amalgamation of both extremes,

involving first principles and empirical modeling.

The key to the accuracy of simulations for explaining complex physical phenomenon lies

in solving mathematical equations in discretized form. So, for a simulation to be accurate,

the underlying mathematical model has to be equally accurate and the discretization errors,

minimum. To sum it up, obtaining accurate results depends on using proper methods to

solve the right set of equations. A quality solution to a set of discretized equations is a
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Figure 1.1: A notional time-line of development in turbulence simulations.

scale velocity and length scales. This results in the following relationships,

η/L ∼ Re−3/4, uη/U ∼ Re−1/4, τη/T ∼ Re−1/2. (1.3)

The smallest length and time scales therefore depend on the Reynolds number of the

flow. These range of scales makes it hard to solve the NS equations numerically with

sufficient resolution for high Reynolds number flows.

1.2 Turbulence Modeling

The Navier-Stokes (NS) equations are non-linear partial differential equations and

the non-linearity leads to a complex interaction between different scales of the flow.

We solve the NS equations computationally, by discretizing them in some form. For

this work, we focus on a mesh-based discretization.

The mesh resolution–the distance between two neighboring mesh points–governs

the quality of the solution along with the numerical scheme. If all the scales in

a flow are resolved, both in space and time, the solution is fully resolved and can

be considered on par with the analytical solution1. However, most high Reynolds

number simulations are not fully resolved because of excessive requirements of the

1Numerical errors associated with finite precision of the computers are always present.

4

Figure 1.1. An approximate timeline of the graduation in turbulence simu-
lations. The figure was taken from Singh [26 ].

careful balance between the computational time and accuracy - especially in turbulent flows,

where resolving the smallest scales can be of utmost importance. A complicated flow where

all scales of the flow are fully resolved is still a pipe dream as the current computational stan-

dards are insufficient to achieve such a result. Even when realizable, it will require months

of computation time on the most powerful systems on earth, severely restricting its viability

as a repeatable process.

In most applications of Computational Fluid Dynamics (CFD), the set of NS, continuity,

and energy equations are sufficient to analyze all flow properties. The NS equations can

take myriad forms, and the non-linearities present in the PDEs explain the flow complexities

occurring between the various scales. The incompressible, unsteady form of NS equations

can be expressed in the following way using Einstein’s index notation:

∂ui

∂xi
= 0, (1.5)

∂ui

∂t
+ ∂uiuj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xi∂xj
, (1.6)

where ui is the velocity in the ith direction, p is the pressure and ρ is the density.
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Turbulence modeling involves discretizing and solving the NS equations for all flow scales

to get an accurate solution of flow properties. If the discretization schemes allow us to solve

the NS equation for all flow scales, i.e., the flow is fully resolved, then the solution can be

deemed equally accurate to the analytical solution1
 . Such flow solutions are known as DNS

[27 ] [28 ] and the high computational costs associated with it disqualify DNS as a practical

candidate for running complex high Reynolds number simulations.

Figure 1.1 shows a plot for various breakthroughs in turbulent simulations with the in-

creasing sophistication of computing units using Floating Point Operations (FLOPS) as a

metric. The DNS of a full airplane is at the extreme end in terms of processing power, and

that milestone is still a few decades away. Even with a system powerful enough to resolve

all scales [29 ] [30 ], we are looking at years of run-time. Dealing with the considerable run-

time poses a significant problem, especially when coupled with the viability of the whole

simulation. Therefore, we depend on alternate turbulence models, which are a trade-off on

resolving scales but accurate enough to be viable in terms of run-time.

As we have discussed the positives and negatives of using DNS in turbulence analysis, the

current work focuses on the LES model to obtain high fidelity data without compromising

numerical accuracy. Flow over the back-step test case was solved, and parametric studies

for various parameters such as re-circulation length (Xr), coefficient of pressure (Cp), and

coefficient of skin friction (Cf ) are presented and validated with experimental results. The

back-step setup was chosen as the test case as turbulent modeling of flow past backward-

facing step has been pivotal to understand separated flows better. The validation of LES

results with experimental data establishes a good agreement between the two and highlights

the discrepancy between the RANS results and the experimental results. Thus, the LES

data can be used to derive the training variables to feed into the ML model during the

data-driven part of the analysis. The present study is intended to identify the critical need

for a new turbulence model as the existing RANS models show limited closure. The work
1↑ This solution does not include the numerical errors due to finite precision of solvers.
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will enable us to construct a reduced order turbulence model to which new features can be

easily added, showing better predictions than RANS analysis.

1.3 Major Research Contributions

The major research contributions derived from the present work are listed below:

• The primary goal of this thesis is to analyze the turbulence for flow over a back-step

test case and use a machine learning framework to improve upon the RANS analysis

pre-existing in this arena.

• Problems related to canonical flow domains such as back-step are addressed, and sus-

tained efforts are made to improve the analysis.

• A thorough comparison of RANS, LES, and experimental data is conducted, highlight-

ing the limitations RANS-based models pose to solving canonical flow cases such as

back-step.

• An ad hoc machine learning model is constructed using the LES model’s training

data to improve RANS results systematically. This represents a new framework for

constructing a reduced order turbulence model and showing improved predictions over

RANS analysis. This will enable our future work on adding and fine-tuning parameters

to the preliminary model to further improve upon results.

• Based on the turbulence and machine learning analysis, significant conclusions are

drawn about the positives and negatives of using machine learning in turbulence anal-

ysis.

1.4 Thesis Outline

The current thesis is divided into a total of six chapters. Chapter 1 is focused on pre-

senting a brief introduction to the turbulence and machine learning analysis shown in the

following chapters. In addition, a literature review showcasing the work of previous re-
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searchers in both fields has been presented.

Chapter 2 delineates the detailed machine learning approach used in the present study.

Various facets of a machine learning model, including feature selection, normalization, cross-

validation, and quality determination, have been explained in the chapter. In addition, a

detailed account of the basic principles involved Random Forest method is also shown in this

chapter.

Chapter 3 discusses the details of the computational methodology used for simulating the

flow over a back-step and extracting usable training data from the LES model. Additionally,

various details such as computational domain, grids, and turbulence modeling approach are

also discussed in this chapter.

After detailed discussions regarding the flow parameters in the previous chapters, Chap-

ter 4 shows multiple parametric studies conducted to analyze the flow behavior with respect

to Reynolds number, expansion ratios, and wall functions in turbulence models. Other than

that, a detailed grid convergence analysis is shown in this chapter to choose the optimum

grid for accurate results.

Chapter 5 talks about the construction and application of the machine learning model

in the present work. This chapter points out the limitations of RANS modeling in canonical

cases like the flow over a back-step. The mathematical methods for training data extraction

from the LES modeling are also discussed here. A further zonal analysis is elaborated to

discuss the performance of the machine learning model in different zones of the flow domain.

Based on the above chapters, significant conclusions are drawn, and the future scope of

work is discussed in Chapter 6 .
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2. MACHINE LEARNING APPROACH FOR PHYSICAL

MODELING

In this chapter, a detailed background and framework of the machine learning approach used

in the present study are discussed. Section 2.1 gives a general overview of machine learning,

and Sections 2.2 to 2.5 present the different factors contributing to forming a good ML model.

Section 2.6 gives us some idea about Random Forest as tool for data analytics. Section 2.7 

shows the usage of machine learning in physical modeling of real-life flow phenomena.

2.1 Machine Learning

Machine learning (ML), when simply put, is a mathematical tool used for data classifica-

tion and efficient decision making. The meteoric rise in the data analytics sector is indicative

of a need for innovative methods to manage the vast amount of data pouring into the world

wide web every day. The amount of data channeling through the internet is staggering; for

example, in a Digital Universe Study on Big Data sponsored by a corporation called the

EMC2 [31 ], it was predicted that by the year 2020, every human on earth would generate

1.7 MB of data every second.

Three significant sub-classes of machine learning problems as shown in Figure 2.1 are

supervised, unsupervised, and reinforcement learning. When we consider a pair of input-

output variables, N = [xi, fi]Ni=1 the three categories vary in terms of the method used to

map a correlation between them. Supervised learning is a method to plot a relationship

between the inputs, xi, and the outputs, fi. the process of developing this mapping is known

as training, and using the resulting model to predict output for a different set of id inputs

is known as testing. Usually, the input variable is a vector, known as a feature set, and

the output variable is a scalar. Classification a type of supervised learning problem where

the output variable takes its values from a discreet set. In 2016, Ling et al. [32 ] published

a study where they solved a classification problem by establishing a region of uncertainty

in RANS simulation by using DNS data. On the other hand, when the output variable can
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Machine Learning

Supervised Learning

(Regression, Classification etc.)

Unsupervised Learning

(Clustering)

Reinforcement Learning

Figure 2.1. Types of sub-classes of Machine learning models: Supervised,
Unsupervised, and Reinforcement learning.

take any real number as its value, the problem is referred to as Regression.

Unsupervised learning differs from supervised learning in the way that there is no fixed

output variable to construct a mapping, and the algorithm solely utilizes the input data,

N = [xi]Ni=1, to form patterns. Unsupervised learning is a beneficial tool to analyze gene

clustering, social media analysis of a region or demographic, study market segmentation,

and astronomical data analysis. Reinforcement learning is another sub-class of machine

learning which deals with cumulative reward functions to simulate intelligent decision mak-

ing. It is primarily used in Artificial Intelligence (AI) programs to mimic how intelligent

beings make decisions in a particular environment.

Figure 2.2 demonstrates a simple flow chart to understand the working of supervised

learning method. The present work deals mainly with supervised learning, using Random

Forest to predict turbulent viscosity in fluid flows using k and ε from LES data. The following

sections focus on the different aspects of the machine learning approach in the current work.
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Figure 2.2. A simple flow-chart to demonstrate supervised machine learning.
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2.2 Selection of Features

The input feature set, xi, in an ML model is an essential characteristic. It should represent

the primary attributes of the raw data; the better the representation, the better the model

works. Irrelevant or redundant features can negatively impact the performance of an ML

model. Some advantages of good feature selection techniques are listed below:

• Good feature selection leads to reduction in over-fitting.

• There is overall minimization of misleading data, which increases the accuracy of so-

lution.

• Good feature set reduces the complexity of training algorithm and the solution is

obtained faster.

Desirable traits while selecting a feature set are univariate selection and the non-dimensionality

of the features. Univariate selection refers to statistical tests to determine which fea-

ture has the most substantial relationship with the output variable. Combined with non-

dimensionality, they help create a robust ML model capable of operating in a general setting.

Standard practice is to use algorithms [33 ] to determine the importance of feature when con-

sidering a large feature set. But, it is equally important to use domain knowledge for feature

selection.

2.3 Normalization

Normalization is a good practice when the input variable contains features of varying

orders of magnitude, which is the case for the present work, as demonstrated in later sections.

It also helps is faster and more accurate training of the ML model. The following formula is

used for normalization:

xi
normalized = xi − xi

σxi
, (2.1)

where xi is the mean, and σxi is the standard deviation of the ith component of the feature

vector x. Normalization should also be used during testing of the ML model.
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2.4 Cross-Validating

Most regression models in use today work well for dispersed data in a fluid domain, as

in turbulent flows. However, highly flexible models tend to over-fit the raw data, which

becomes an essential consideration for turbulence analysis. An ML model which works for

a wide range of data is considered robust, but more often than not, it leads to inaccuracy

in prediction due to over-fitting. While over-fitting may seem like a necessary evil, it can be

prevented by following some simple steps. Cross-validation (CV) while training is one of the

most effective methods used today [34 ].

The basic algorithm for CV consists of dividing the training data in to M folds and for

each m∈{1,. . . ,M}, the training is done for all folds except the mth and then tested on the

mth. The total error is determined by averaging the error within all folds and the final data

predicted is also the averaged result of the prediction by all M folds. Figure 2.3 represents a

simple schematic diagram to demonstrate the process of cross-validation (CV). The diagram

shows the working of a 3-fold CV. As the number of folds increases, the accuracy of the

CV increases as well, and in many cases, a clustering CV program is used to group training

and testing folds. Cross-validation (CV) is also an effective strategy for selecting optimal

features for training and testing.

CV fold-3
CV fold-2
CV fold-1

Original Data

•• • •••• • ••••• •••Data used for training

•• • •• •••

••••••• •Data used for testing

Figure 2.7: Schematic describing the process of cross-validation (CV). The example
uses a 3-fold CV. The figure is adapted from https://tex.stackexchange.com/a/

154121.

This work focuses on supervised learning, specifically regression algorithms on

pairs of flow features and the model discrepancy, which is derived from the inverse

solution. The goal is to build a generalized regression model of the discrepancy. The

following sections discuss the various aspects of machine learning in the context of

the current work.

2.3.1 Problem Setup

The inverse approach presented in the previous section results in an optimal spa-

tial discrepancy field for a given problem setup. In predictive modeling, the problem-

specific information encoded in δ1(x1), δ2(x2), . . . , δn(xn) must be transformed into

modeling knowledge. This is done by extracting the functional relationship δ(η),

where η = [η1, η2, . . . , ηm] are input features derived from the solution. The functional

relationship must be developed by considering the output of many inverse problems

representative of the modeling deficiencies relevant to the predictive problem. Fur-

thermore, as will be explained in the following, elements of the feature vector η are

chosen to be locally nondimensional quantities such that the functional relationship

δ(η) is useful for different problems in which the flow-features are realizable.

2.3.2 Feature Selection

The input features ηi plays a crucial role in any machine learning process; they

should be carefully selected to represent all the major traits of the data. Two desired
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Figure 2.3. A figure to demonstrate the process of a three-fold cross-
validation (CV). The figure is available at the url: https://tex.stackexchange.
com/a/154121 .
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2.5 Quality of ML Model

Several factors can determine the quality of an ML model. The most common parameter

to judge quality is called the coefficient of determination, or R2. Consider a set of output

data, {f1,true, f2,true,. . . ,fn,true}, and the ML predicted output set, {f1,pred, f2,pred,. . . ,fn,pred},

then R2 is defined as,

R2 ≡ 1 − SSres

SStot

, (2.2)

where SSres is the summation of the square of residuals, defined as,

SSres =
∑

i
(fi,true − fi,pred)2. (2.3)

SStot is a function of variance and is defined as,

SStot =
∑

i
(fi,true − y)2, (2.4)

y = 1
n

∑
i

fi,true. (2.5)

Ideally, the value of R2 = 1 implies a pristine ML model. But, any value of R2<1

warrants human consideration to account for overall credibility of data and complexity of

the ML model.

2.6 Random Forest (RF) Model

Random forest is a class of decision tree algorithm ideally suited for handling large

data segments without compromising statistical efficiency. The random forest algorithm was

devised originally by Breiman [33 ] in 2001, based on the earlier contributions of [35 ] [36 ] [37 ].

The basic principle of the algorithm is based on the following simple steps:

• Divide the large chunk of raw data into smaller sample sizes.

• Develop a randomized tree predictor for each sample size.
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• Aggregate the tree predictors together.

The popularity of random forest is further fueled by its applicability and the need for

tuning fewer parameters than other commercial regression software. The RF model has

already been successfully integrated into various realistic scenarios, as evidenced by numerous

studies including an EMC sponsored global data science hackathon on air-quality prediction1
 .

To mention a few, Diaz-Uriarte and De Andres [38 ] were one of the first to introduce RF

model into the field of bioinformatics for sample classification for their gene expression study.

Prasad et al. [39 ] used RF for ecological prediction and Svetnik et al. [40 ] used it for data

analysis in chemical engineering. On a theoretical note, the RF model is still a bit obscure as

very little analysis is available on the mathematical formulation on the back-end. Figure 2.4 

represents a simplified schematic of the network diagram of a Random Forest (RF) model.

1↑ https://www.kaggle.com/c/dsg-hackathon  

Figure 2.4. A figure depicting the network diagram for a simplified Random
Forest model. The figure is adapted from this source .
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The term Random Forest is a bit ambivalent as for some, it might mean both clustering

decision trees, and for others, it might refer to Breiman’s [33 ] original algorithm. In this

section, we look at the mathematical definition of the Random Forest (RF) model put forth

by Breiman in 2001 [41 ]. Consider the input vector X ∈ X ⊂ Rp, and our goal is to predict

the random output vector, Y ∈ R from the regression function m(x) = E[Y | X = x]. We

have a training dataset Dn = ((X1, Y1) , . . . , (Xn, Yn)) which can be used to construct an

estimate mn : X → R such that E [mn(X) − m(X)]2 → 0 as n → ∞.

202 G. Biau, E. Scornet

Algorithm 1: Breiman’s random forest predicted value at x.
Input: Training set Dn , number of trees M > 0, an ∈ {1, . . . , n}, mtry ∈ {1, . . . , p},

nodesize ∈ {1, . . . , an}, and x ∈ X .
Output: Prediction of the random forest at x.

1 for j = 1, . . . , M do
2 Select an points, with (or without) replacement, uniformly in Dn . In the following steps, only

these an observations are used.
3 Set P = (X ) the list containing the cell associated with the root of the tree.
4 Set Pfinal = ∅ an empty list.
5 while P 	= ∅ do
6 Let A be the first element of P .
7 if A contains less than nodesize points or if all Xi ∈ A are equal then
8 Remove the cell A from the list P .
9 Pfinal ← Concatenate(Pfinal, A).

10 else
11

12

13

14

15

Select uniformly, without replacement, a subset Mtry ⊂ {1, . . . ,  p} of cardinality mtry. 
Select the best split in A by optimizing the CART-split criterion along the coordinates in
Mtry.
Cut the cell A according to the best split. Call AL and AR the two resulting cells. 
Remove the cell A from the list P .

P ← Concatenate(P, AL , AR ).
16 end
17 end
18 Compute the predicted value mn(x; Θ j ,Dn) at x equal to the average of the Yi falling in the cell

of x in partition Pfinal.
19 end
20 Compute the random forest estimate mM,n (x; Θ1, . . . , ΘM , Dn ) at the query point x.

We still have to describe how the CART-split criterion operates. As for now, we
consider for the ease of understanding a tree with no subsampling, which uses the
entire and original data set Dn for its construction. In addition, we let A be a generic
cell and denote by Nn(A) the number of data points falling in A. A cut in A is a pair
( j, z), where j is some value (dimension) from {1, . . . , p} and z the position of the cut
along the j th coordinate, within the limits of A. Let CA be the set of all such possible
cuts in A. Then, with the notation Xi = (X(1)

i , . . . , X(p)
i ), for any ( j, z) ∈ CA, the

CART-split criterion takes the form

L reg,n( j, z) = 1

Nn(A)

n∑

i=1

(Yi − ȲA)21Xi ∈A

− 1

Nn(A)

n∑

i=1

(Yi − ȲAL1X( j)
i <z

− ȲAR1X( j)
i ≥z

)21Xi ∈A, (2)

where AL = {x ∈ A : x( j) < z}, AR = {x ∈ A : x( j) ≥ z}, and ȲA (resp., ȲAL , ȲAR )
is the average of the Yi such that Xi belongs to A (resp., AL , AR), with the convention
that the average is equal to 0 when no point Xi belongs to A (resp., AL , AR). For each
cell A, the best cut ( j�n , z�

n) is selected by maximizing L reg,n( j, z) overMtry and CA;
that is,

123

Figure 2.5. A figure to demonstrate Breiman’s random forest algorithm
devised in 2001 [41 ].
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The random forest predictor comprises of M randomized trees where the jth tree takes

the form,

mn (x; Θj, Dn) =
∑

i∈D∗
n(Θj)

1xi ∈ An (x; Θj, Dn) Yi

Nn (x; Θj, Dn) , (2.6)

where mn (x; Θj, Dn) is the predicted value at point x, D∗
n is the set of points before the tree

construction, An (x; Θj, Dn) is the cell containing x, and Nn (x; Θj, Dn) are the points which

fall into An (x; Θj, Dn).

The combinations of all trees take the (finite) form:

mM,n (x; Θ1, . . . , ΘM , Dn) = 1
M

M∑
j=1

mn (x; Θj, Dn) . (2.7)

When M → ∞ the combination takes the (infinite) form:

m∞,n (x; Dn) = EΘ [mn (x; Θ, Dn)] , (2.8)

where EΘ is the calculated expectation with respect to Θ, conditional on Dn.

Figure 2.5 represents the original algorithm proposed by Breiman in 2001 using R package

to estimate RF predicted output for a regression problem. The three important parameters

for the algorithm are described below:

• an ∈ {1, . . . , n} : data points sampled per tree.

• mtry ∈ {1, . . . , p} : permutations of all directions in which each node can be split at

each tree.

• nodesize ∈ {1, . . . , an} : number of samples in each cell below which the cell is not

split.
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2.7 Physical Modeling Using Machine Learning

Machine learning has been widely used for physical turbulence modeling, as is evident

from the discussions presented above. Most hydrodynamic flows are physics-based, but

choosing between a physics-based model and a data-driven model is problem-dependent.

The problems can be classified into two categories:

• No direct analytical data is available on the system in question, but experimental data

about its behavior exists.

• Mathematical description of the system is possible along with good theoretical under-

standing.

The problem investigated in the current work belongs to the second category. Combining

data-driven modeling with system physics is an up-and-coming prospect. In this subsec-

tion, a simplifying flowchart is presented to clearly understand the processes involved in the

supervised learning aspect of the current work.

Training data
(Raw data)

Feature
Extraction

(k, ε)

MML 
Algorithm

Unseen data
Feature

Extraction

Final
Output (μt)

MODEL

Test
Model

Eval.
Model

(MSE, R2)

Tr
ai

n
in

g
Te

st
in

g

Feature
Matrix

Figure 2.6. A schematic flow chart to explain the working of the supervised
learning algorithm used in the current work. The diagram was inspired from
the works of Nguyen et al. [42 ].
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Figure 2.6 shows a typical flowchart for a supervised learning algorithm for regression.

Firstly, the raw data is processed to identify relevant features which will aid the best algo-

rithm to satisfy the dataset. Next, the extracted feature matrix (k and ε is the present case)

is passed through the training model where ML algorithms construct a model that satisfac-

torily maps the input to output (eddy viscosity) values. The evaluation model often consists

of an optimization algorithm that feedbacks into the feature extraction and learning models

to minimize error as we move forward. This feedback process continues until a desired level

of accuracy has been achieved. The constructed model is then used to predict output values

for unseen (testing) data.
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3. COMPUTATIONAL METHODOLOGY

This chapter presents a detailed account of the computational modeling approach used in the

present work. Section 3.1 gives a general overview of the turbulence modeling approach used

in the present work. Sections 3.2 and 3.3 show a detailed walkthrough of the mathematical

aspect of the RANS-based and LES analysis, respectively. Section 3.4 gives a clear idea

about the geometrical aspects of the test case and simulation details.

3.1 Overview of Modeling Approach

In this study, both RANS and LES models were employed to evaluate the fluid flow

data and collect training data for the machine learning model. Both k-ε and k-ω models

were used in RANS simulations, and the results were validated with the previous literature.

For LES simulations, Smagorinsky-Lilly and Wall-Adapting Local Eddy-Viscosity (WALE)

model were employed, and the results were validated using experimental data. The LES

velocity and pressure data are used to derive the turbulent kinetic energy (k), and the rate

of dissipation (ε), which subsequently serve as the training data for the ML model to predict

eddy viscosity (µt).

For a Newtonian fluid, the viscosity relation where the shear stress between fluid layers

is linearly dependent on the velocity gradient is valid. In the case of a turbulent flow,

Newton’s constitutive relation for eddy viscosity (as shown in equation 3.1 ) implies that

Reynolds stress is a linear function of the velocity gradient.

〈u′
iu

′
j〉 = −2νtSij + 2

3δijk. (3.1)

The constitutive relation is ’Boussinesq approximated1
 ’, and it uses eddy viscosity as the

proportionality coefficient. Therefore these models are referred to as LEVMs or linear eddy

viscosity models. The major challenge in modeling the Reynolds stress is the estimation of

νt, and the following section addresses this challenge in various ways.

1↑ Boussinesq approximation ignores the variation in fluid properties other than density (ρ) and the density
only appears when it is multiplied by the gravitational acceleration (g).
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3.2 Ryenolds-Averaged Navier Stokes

RANS-based CFD tools are some of the most popular commercially used turbulence

models available in today’s date. They are computationally cheap and require less technical

expertise than DNS or LES analysis. These qualities have significantly contributed towards

RANS as an industry workhorse many decades after its conception.

In Reynolds decomposition, the flow variables are expressed as a superposition of two

flow: the mean flow2
 , and the fluctuation. Reynolds decomposition using using Pope’s

notation [21 ] is shown below:

φ = 〈φ〉 + φ′, (3.2)

〈φ′〉 = 0, (3.3)

where 〈�〉 represents mean flow, and �′ represents fluctuation. When we apply Reynolds

decomposition to flow properties in the NS equations we get the following form:

∂〈ui〉
∂xi

= 0, (3.4)

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

= −1
ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂xj∂xj

−
∂〈u′

iu
′
j〉

∂xj
. (3.5)

The term 〈u′
iu

′
j〉 also known as the Reynolds stress tensor leads to a closure problem as

the number of unknowns are greater than the number of available equations. The unclosed

set of equations can not be solved unless the Reynolds stress term is determined in terms of

averaged quantities. The Reynolds stress is similar to the viscous stress and therefore it is

possible to model the transport relations for the Reynolds stress tensor starting with Navier-

Stokes equations. However, such derivations lead to further unclosed equations requiring

higher order correlations (Section 3.2.1 ).
2↑ Also known as Reynolds averaged or Ensemble averaged flow.
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3.2.1 Reynolds Stress Closure

The explicit transport equations of Reynolds stresses can be obtained by simplifying and

taking moments of NS equations, as shown below [21 ]:

D
Dt

〈uiuj〉 + ∂

∂xk

Tkij = Pij + Rij − εij. (3.6)

To get an exact idea of the magnitude of the problem we are dealing with, the set of

closed and unclosed parameters are shown in Table 3.1 .

Table 3.1. Form of various parameters in the Reynolds-stress transport equation.

Parameters Definition Form
D
Dt

〈uiuj〉 Mean-flow convection Closed

Pij Production tensor Closed

Tkij Reynolds stress-flux Unclosed

Rij Pressure strain-rate tensor Unclosed

εij Dissipation tensor Unclosed

The unclosed parameters require closure with the aid of additional transport equations

in the form of ε which lead to a total of 7 transport equations. The Reynolds-stress models

are equipped to capture the mean rotation or curvature in a flow. They are also suitable for

characterizing secondary flow characteristics due to their anisotropic nature. The various

closure models used in the present work have been outlined in the following sections.

3.2.2 Two-Equation Closure Models

Majority of models in this category generally involve modeling the turbulent kinetic

energy (k) and a second adjunct parameter. The two most popular models of this kind are

the k-ε and k-ω models.
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k-ε Model

The k-ε model is the most versatile and widely used model in CFD to simulate turbulent

flows among the two-equation closure models. The original motivation for developing the

k-ε model was the improvement of mixing length models and better prediction of algebraic

length scales in moderately complex turbulent flows. The description of turbulent properties

of the flow is achieved by two transport equations (PDEs):

• The first transport equation is for the turbulent kinetic energy (k).

• The second transport equation is for the dissipate rate of the turbulent kinetic energy

or ε.

The original k equation is shown below:

Dk

Dt
= −∇ · T + P − ε. (3.7)

where the term Ti = 1
2〈u′

iu
′
ju

′
j〉 + 〈u′

ip
′〉/ρ − 2ν〈u′

iS
′
ij〉 remains unclosed and are replaced by

the gradient transport model shown in Equations 3.8 and 3.9 . The standard k-ε model by

first introduced by Jones and Launder [43 ] in 1972 to overcome the many uncertainties in

the exact transport equations of k and ε.

Dk

Dt
= 2νt|S|2 − ε + ∇ · (ν + νt) ∇k, (3.8)

Dε

Dt
= 2cε1

ε

k
|S|2 − cε2

ε2

k
+ ∇ · (ν + σενt) ∇ε. (3.9)

The eddy viscosity is related to k and ε in the following way,

µt = ρCµ
k2

ε
, (3.10)

where Cε1 = 1.44, Cε2 = 1.92, and Cµ = 0.09. These constants have been evaluated by

numerous iterations of data-fitting.
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The k-ε model generally works well for planar flows with shear layer formation and recir-

culating flows. In addition, it is instrumental in flows where there is formation of a free-shear

layer with a low-pressure gradient and channel flows where Reynolds stresses dictate matter.

In today’s date, it is the most robust turbulence model yet simple enough where we supply

the initial and boundary conditions to simulate flow.

However, it requires the solution of two extra PDEs and hence computationally more

expensive than mixing length models. It is generally unsuitable for flows with a significant

adverse pressure gradient (APG), such as compressors and pumps. The k-ε model also

shows poor results near the walls for channel flows which can be improved by implementing

enhanced wall treatment while simulating flows.

k-ω Model

Like its other counterpart under the RANS umbrella, the k-ω model is a standard two-

equation model used in CFD for turbulence analysis. The model was first independently put

forth by Kolmogorov [44 ] and later by Saffman [45 ]. Wilcox [46 ] [47 ] continued to refine the

model for many decades, revisiting the model in 2008 [48 ] to publish his final remarks, at

which point it had reached widespread utility in the CFD community.

The transport PDEs solved in the k-ω model are for the turbulent kinetic energy (k),

and specific rate of dissipation (ω). The equations are shown below:

Dk

Dt
= 2νt|S|2 − Cµkω + ∇ · (ν + νt) ∇k, (3.11)

Dω

Dt
= 2cω1|S|2 − cω2ω

2 + ∇ · (ν + σωk/ω) ∇ω + (σd/ω) ∇k · ∇ω. (3.12)

The eddy viscosity relation is given as:

µt = ρ
k

ω
. (3.13)
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The parameters are modified by substituting ε = Cµkω which makes the ω equation ad-

hoc. The last term of the ω transport equation, (σd/ω) ∇k · ∇ω is called the cross-diffusion

term which aids in reducing the free-stream susceptibility of the model [48 ].

3.3 Large Eddy Simulation

Large-eddy simulation is a trade-off between the DNS and RANS modeling in terms of

accuracy, where the larger scales are filtered, and the minor scales are modeled according

to the filtering operation employed. Similar to RANS decomposition, the LES filtering

operation is shown below:

φ = φ̃ + φ′′, (3.14)

where �̃ represents the filtered (or resolved) component, and �′′ represents the residual (or

subgrid-scale, SGS) component. The filtering operation is inherently mesh-dependent, as

the grid resolution decides the smallest scales of motion.

The filtering operation is applied to the NS equations to derive the velocity field, which

gives us the filtered momentum and continuity equations.

∂ũi

∂xi
= 0, (3.15)

∂ũi

∂t
+ ũj

∂ũi

∂xj
= −1

ρ

∂p̃

∂xi
+ ν

∂2ũi

∂xj∂.xj
− ∂τij

∂xj
(3.16)

The momentum equation contains the the term, τij, otherwise known as the residual

stress tensor (or SGS stress tensor) which is an unclosed equation due to the unresolved

terms arising from residual motion. This closure problem can be resolved by an eddy-

viscosity model proposed by Smagorinsky, which calculates the SGS stress tensor as shown

in Equation 3.17 .

τij = −2νtS̄ij, (3.17)
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where S̄ij = 1
2

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
is called the strain rate deformation tensor. The eddy viscosity

term is modeled as function of grid resolution as shown below:

µt = ρ (Cs∆g)2
√

2S̄ijS̄ij, (3.18)

where Cs is known as the Smagorinsky model constant and ∆g is the grid spacing. Near the

wall-region, the required grid points for solving LES increases as ∼ Re1.8 [49 ]. This makes

LES an impractical candidate for high Re channel flows. Implementing wall models to relax

the resolution sensitivity in the near wall region is a viable plan.

3.4 Back-Step Test Case and Simulation Details

Figure 3.1 shows the schematic diagram for computational domain of the back-step used

for fluid flow and preliminary machine learning analysis. The geometry of the test case was

adopted from the experimental setup of Armaly et al. [50 ] as shown in Figure 3.1 . The

expansion ratio (ER) is defined as ER = H/h, where H is the total channel height, h is the

inlet height, and S is the step height.

Side wall

Symmetry plane

U0

Umax

h

S

H = h+S

LdLu

y

x
z

Figure 3.1. A schematic diagram of the back-step test case used for turbu-
lence and machine learning analysis.
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The simulations were carried out for four values of ER, i.e., 1.5, 2, 2.5, and 3 in accordance

with the experimental setup by Armaly et al. [50 ]. Note that all domain measurements have

been scaled into dimensionless quantities on the basis of inlet height, h. For a 3-D model,

the span-wise width, W/h is set as 10, whereas Figure 3.1 shows half of the total span-wise

thickness bisected by a plane of symmetry. For two-dimensional simulations, the symmetric

plane was used as a domain. Additional simulations carefully checked the assumption of

span-wise symmetry in the 3-D flow based on periodic boundary conditions in the span-wise

direction. The computed results for flow properties seem to vary negligibly in the span-wise

direction, e.g., the error percentage in the re-circulation length with and without the span-

wise width was <0.01%.

The upstream and downstream channel lengths are Lu, and Ld respectively. The up-

stream length, Lu > 5h does not affect the flow predictions, therefore, Lu = 5h was chosen

as the suitable limit. A short downstream distance has the disadvantage of hampering

flow characteristics and preventing it from becoming full-developed. It was observed that

Ld = 15h was a suitable measurement to allow the flow to become fully-developed at the out-

let. The inlet channel height, h is used for calculating the flow Reynolds number, Re = Ubh
ν

,

where Ub denotes the bulk velocity at the inlet [51 ].

Figure 3.2 shows the mesh resolution for the computational domain used in the present

work. The grid points are particularly refined in the vicinity of inlet and the re-circulation

zone to capture the accurate essence of the re-circulation length. To present a reliable view of

the grid, the area near the step (where re-circulation occurs) is zoomed in for better clarity.

46



 

Figure 3.2. The grid resolution used for 2-D simulations with a zoomed view
of the re-circulation zone.

3.4.1 Initial and Boundary Conditions

The initial and boundary conditions for the simulations in the present work are discussed

below in Table 3.2 :

Table 3.2. The list of initial and boundary conditions used in the current work.

Parameters IC/BC

Turbulence models k-ε, k-ω, and LES models

Reynolds number Four values, Re ∈ {2, 2.5, 3, 3.5} × 104

Inlet Parabolic velocity inlet, with a Turbulent
intensity = 13%, and Length scale = 0.01 mm

Outlet Pressure outlet

Walls No-slip boundary condition
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This chapter summarizes the details of the turbulence aspect of the present study, the

overview of turbulence models, and the simulation details about the back-step test case used

in the current work. This is a precursor to the turbulence results shown in Chapter 4 which

establishes a comparative study between the experimental, LES, and RANS-based results.

The comparison is crucial to correlate sound turbulence analysis with machine learning used

to improve upon existing norms. This will enable us to construct a reduced order turbulence

model to improve RANS predictions, which shows under-prediction for flow properties due

to limited closure.
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4. BACK-STEP TURBULENCE SIMULATION RESULTS AND

DISCUSSION

This chapter presents detailed parametric studies for the properties of flow over a back-

step. Section 4.1 shows a detailed grid convergence analysis, Sections 4.2 and 4.3 show

the parametric studies to investigate effect of Reynolds number, expansion ratio, and wall

functions on the flow domain. Sections 4.4 and 4.5 present a comparison of LES and RANS

data to highlight the limitations of RANS modeling.

4.1 Grid Independence Study

A detailed grid-convergence study for the current domain is presented in Section 4.1.1 .

The convergence study is carried out for five different grids with increasing resolution, as

shown in Figure 4.1 , and a moderate grid is chosen to plots all results. The parameters

chosen for the grid convergence test are the re-circulation length (Xr), coefficient of pressure

(Cp), and coefficient of skin friction (Cf ).

4.1.1 Grid Convergence Study

A total of five grids were used for the grid convergence test, and a multiplicative parameter

P was used as the index to decide the grid resolution. The details of grid points are shown

in Table 4.1 .

Table 4.1. Grid parameters for the resolutions used for the grid independence study.

Grid (At Re = 35, 000) Nx Ny Nz Nxyz ∆ymin/h

P = 0.25 15 13 10 1950 0.2

P = 0.5 31 25 20 15500 0.1

P = 1 62 50 40 124000 0.05

P = 2 125 100 80 1×106 0.025

P = 4 250 200 120 8×106 0.0125
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Figure 4.1. A schematic diagram of the different mesh resolutions used for
the present analysis.
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Figure 4.1 represents the schematic diagram of all five grid resolutions in and around

the re-circulation zone used in the present work. The grids are presented in increasing order

of grid resolution indicated by a multiplicative factor P. The grids P = 0.25, 0.5 represent

coarse grids, P = 1 represents a medium grid and P = 2, 4 represent fine grid meshes. A

detailed grid convergence analysis is shown in Section 4.1.2 . The normalized re-circulation

length (Xr/S) for Re = 20, 000 and ER = 1.5 is the chosen parameter for this analysis.
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Figure 4.2. Grid convergence plot for re-circulation length (Xr) normalized
by step height (S) for different Reynolds number (experimental data is obtained
from Driver et al. [52 ]).
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4.1.2 Grid Convergence Analysis

Table 4.2 shown below presents the grid data and parameter comparison for the prelim-

inary grid convergence analysis.

Table 4.2. Normalized re-circulation length for various grid resolutions.

Normalized Grid Grid spacing Cell count Xr/S

1 1 124000 5.48756

2 2 1×106 5.52875

3 4 8×106 5.53999

As we are doing the analysis for three grid resolutions, doubling the cell count in each

axis, hence our refinement ratio, r = 2. We calculate the order of convergence, P , using the

equation below:

P =
∣∣∣∣ln(P3 − P2

P2 − P1
)/ln(r)

∣∣∣∣ . (4.1)

P is obtained as,

P =
∣∣∣∣ln(5.53999 − 5.52875

5.52875 − 5.48756

)
/ln(2)

∣∣∣∣ = 1.87392. (4.2)

Technically, a second order solver would have P = 2, but the difference can be chalked

off to grid-stretching, non-linearities in the discretization, and boundary conditions defined

for the specific problem.

The Grid convergence index (GCI) is calculated by using the formula:

GCI = Fs|e|
rP − 1 , (4.3)

where e is the error between the two grids and Fs is a safety factor.
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By choosing a Wilcox safety factor of Fs = 1.25, the coarse and medium GCI are calcu-

lated as follows:

GCI12 = 1.25|(5.48756 − 5.52875)/5.48756| × 100%
21.87392 − 1 = 0.352.% (4.4)

GCI23 = 1.25|(5.52875 − 5.53999)/5.52875| × 100%
21.87392 − 1 = 0.095.% (4.5)
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Figure 4.3. Log-scale plot of re-circulation length error and square of mini-
mum grid spacing.
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Figure 4.2 represents the grid convergence plot for re-circulation length (Xr) normalized

by step height (S) for ER = 1.5 and different Reynolds number. The experimental data

validation for the re-circulation length is obtained from Adams et al.[53 ]. We observe an

increase in re-circulation length with increasing Reynolds number for the same expansion

ratio. Along with the LES, the k-ε, k-ω, and k-ω model without wall functions are shown in

Figure 4.2 . As evident from the figure, the RANS models (with and without wall functions)

show a sizeable difference for the re-circulation length data, even for the finest grid resolu-

tions.

Figure 4.3 shows the log-scale plot of re-circulation length error and square of minimum

grid spacing. As we simulate the flows using a second-order discretization scheme, the log

plot of the Xr/s error should form a straight line with a slope = 2. To confirm this finding,

we have also plotted the log-scale plot of the square of the minimum grid spacing in a nor-

malized manner. As both the lines are parallel to each other, it can be confirmed that the

grid has reached an asymptotic convergence in the second order.

Figures 4.4 and 4.5 represent the grid convergence plot of the coefficient of skin friction

(Cf ), and coefficient of pressure (Cp), respectively. All plots shown below are simulated using

the LES model having an ER = 1.5 and Re ∈ {2, 2.5, 3, 3.5} × 104. The experimental data

for plot validation was obtained from Adams et al.[53 ]. For both the plots shown below, we

can observe good convergence as we move from P = 1 to P = 4. The plots converge towards

the experimental curve obtained from literature. P = 4 and P = 2 give equally good results

for Cf and Cp hence P = 2 grid is used for all the results shown in the following sections.

The grid convergence analysis enables us to choose the best grid for our analysis without

running the risk of encountering errors in flow properties due to mesh-related discretization.

A reliable grid will present accurate results for the high fidelity LES data, which further aid

our reduced order turbulence model as a source of training data.
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The experimental data used for the validation of the LES results are obtained from four

different studies pertaining to different values of expansion ratios. Data from the works of

Driver et al. [52 ], used to validate the LES results for ER = 1.5, shows the deployment of a

backward-facing step in a subsonic wind tunnel setup. The static pressure on the wall near

the step was measured using 0.2mm diameter slits placed along the test section centerline.

the uncertainty in measuring the static pressure coefficient near the wall is assessed to be

±0.9% with a confidence limit of 95%. The skin friction drag is measured using an oil flow

laser interferometer technique [52 ]. This technique produces an uncertainty of ±8% in the

measurement of the skin friction coefficient of the step sidewall with a confidence limit of

95%. The re-circulation length is also measured using the same technique as the skin friction

drag and shows an uncertainty of ±6%, these are represented by the error bars in Figure 4.17 .

The data presented by Adams et al. [53 ] used to validate the LES results for ER = 2

also deploys a low-speed wind tunnel with a backward step channel to obtain experimental

calculations. the static pressure coefficient near the step sidewall was measured by placing

intermittent pressure tap sensors along the wall. These sensors project an uncertainty of

±0.5% at a reference velocity of 11m/s. The skin friction drag was measured by employing

a pulsed wire probe as described in the studies published by Westphal et al.[54 ]. The three

wires present in the pulsed wire probe can easily measure both the magnitude and direction

of skin friction and work especially well in regions of reversing flow. The uncertainty for skin

friction is projected at ±5%. The re-circulation length is measured using a thermal tuft,

which is not unlike a pulsed wire probe: the uncertainty for the re-circulation is calculated

at ±0.1S (where S is the step height).

The findings of Kim et al. [55 ] used for the validation of the LES results for ER =

2.5 employed a custom-made manometric transducer inside a subsonic quiet wind tunnel.

The transducers strips were placed along the step sidewall to measure the static pressure

coefficient with an uncertainty of ±0.025mm of water. A combination of thermal tufts and

oil flow visualization techniques were employed to observe the flow in the re-circulation zone

as well as to measure the skin friction drag. The uncertainty in re-circulation length is
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projected as Xr/S = 7 ± 0.35 and also represented in Figure 4.17 . The data from Eaton et

al. [56 ] used for validating the LES results for ER = 3 employ hot wire anemometers inside

a subsonic wind tunnel to measure the general turbulence features for a backward-facing

step. The uncertainty in the measure of re-circulation length is presented in Figure 4.17 .
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Figure 4.4. Grid convergence test for coefficient of pressure (Cp) for five
different grid resolutions (ER = 1.5 and Re ∈ {2, 2.5, 3, 3.5} × 104).
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Figure 4.5. Grid convergence test for coefficient of skin friction (Cf ) for five
different grid resolutions (ER = 1.5 and Re ∈ {2, 2.5, 3, 3.5} × 104).
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4.2 Effect of Reynolds Number and Expansion Ratio

The coefficient of pressure at a point in the vicinity of a bluff body is generally indepen-

dent of the body dimensions. As a result, a model of the actual body can be tested using

a water or wind tunnel, and the Cp data can be indiscriminately used to predict the pres-

sure near the critical points of a full-size engineering object. The response of a flow system

towards change in geometrical flow domain and flow velocity is the most common approach

towards determining the system’s stability. The studies shown in this section consider two

flow features, namely, coefficients of pressure and skin friction, to determine the system’s

sensitivity towards changes in Reynolds number and expansion ratio.

Figures 4.6 -4.9 show the variation of coefficient of pressure (Cp) for ER ∈ {1.5, 2, 2.5, 3}

and Re ∈ {2, 2.5, 3, 3.5}×104. The experimental data for result validation was obtained from

Adams et al.[53 ]. All the Cp plots shown below pertain to the lower wall of the flow domain,

adjacent to the step. The plots show a positive bias towards an increase in expansion ratio,

as the extreme value can be seen as increasing as the step height increases. The plots change

characteristics as we increase the Reynolds number; they tend to broaden more towards the

step vicinity are as we approach higher Re values. The increase in the Cp value as we go

past the step region in the downstream direction implies a re-circulation zone in that location.

The coefficient of skin friction (Cf ) follows Prandtl’s one-seventh-power law for turbulent

flow systems and is related to the Reynolds number in the following way:

Cf = 0.027
Re1/7

x

. (4.6)

where x is the distance from the reference point of boundary layer formation.
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Figure 4.6. Variation of coefficient of pressure (Cp) for ER = 1.5 and Re ∈
{2, 2.5, 3, 3.5} × 104 (experimental data is obtained from Driver et al. [52 ]).
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Figure 4.7. Variation of coefficient of pressure (Cp) for ER = 2 and Re ∈
{2, 2.5, 3, 3.5} × 104 (experimental data is obtained from Adams et al. [53 ]).
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Figure 4.8. Variation of coefficient of pressure (Cp) for ER = 2.5 and Re ∈
{2, 2.5, 3, 3.5} × 104 (experimental data is obtained from Kim et al. [55 ]).
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Figure 4.9. Variation of coefficient of pressure (Cp) for ER = 3 and Re ∈
{2, 2.5, 3, 3.5} × 104 (experimental data is obtained from Eaton et al. [56 ]).
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Skin friction drag is a component of viscous drag, caused by the fluid viscosity, and

evolves from laminar to turbulent drag as the body moves through a fluid. Figures 4.10 -4.13 

show the variation of coefficient of skin friction (Cf ) for ER ∈ {1.5, 2, 2.5, 3} and Re ∈

{2, 2.5, 3, 3.5} × 104. As shown in Equation 4.6 , the coefficient of skin friction is inversely

proportional to the seventh root of Re. We can observe a decrease in the extreme values of

the Cf plot as we increase the Re, although there no change in the shape of the plots.
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Figure 4.10. Variation of coefficient of skin friction (Cf ) for ER = 1.5 and
Re ∈ {2, 2.5, 3, 3.5} × 104 (experimental data is obtained from Driver et al.
[52 ]).
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Figure 4.11. Variation of coefficient of skin friction (Cf ) for ER = 2 and
Re ∈ {2, 2.5, 3, 3.5} × 104 (experimental data is obtained from Adams et al.
[53 ]).
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Figure 4.12. Variation of coefficient of skin friction (Cf ) for ER = 2.5 and
Re ∈ {2, 2.5, 3, 3.5}×104 (experimental data is obtained from Kim et al. [55 ]).
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Figure 4.13. Variation of coefficient of skin friction (Cf ) for ER = 3 and
Re ∈ {2, 2.5, 3, 3.5} × 104 (experimental data is obtained from Eaton et al.
[56 ]).
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The comparison shown above tests the response of a flow system towards change in

geometrical flow domain and flow velocity. The studies shown in this section consider two

flow features, namely, coefficients of pressure and skin friction, to determine the system’s

sensitivity towards changes in Reynolds number and expansion ratio. The significance of

this parametric study lies in the fact that both coefficients of pressure and skin friction are

highly susceptible to boundary conditions, and exploring those changes will help us select

the best input parameters for the construction of our machine learning model. Section 4.3 

presented below shows the effect of wall functions enabled in the turbulence model and how

that can be parameterized to aid our analysis.

4.3 Effect of Wall Functions in RANS Modeling

Boundary layer is a thin region in the vicinity of the wall, where the velocity gradient

normal to the wall is very high (as the velocity is zero at the walls and increases to the

free-stream value at the end of the boundary layer). Boundary layer formation is a complex

hydrodynamic phenomenon, and wall functions are necessary to predict flow behavior near

the wall accurately. From a CFD standpoint, it is essential for turbulence models to predict

the boundary layer behavior accurately. Ideally, the first grid cell should lie inside the thin

viscous sub-layer to capture the boundary layer satisfactorily. Therefore, most models are

retrofitted with an enhanced wall function feature for this very reason. This section discusses

the effects of forced removal of wall functions from k-ω model, and the results are outlined

below.

Figures 4.14 represent the normalized velocity and Reynolds stress plots at different

domain locations respectively. As expected, the wall function disabled results show a dis-

crepancy from the k-ω results near the wall. The Cp and Cf plots shown in Figures 4.15 and

4.16 demonstrate a similar trend near the wall, whereas the flow is relatively comparable in

the rest of the flow domain.
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Driver et al. [52 ]).
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Figure 4.16. Coefficient of skin friction (Cf ) comparison at different domain
locations for ER = 1.5 and Re = 20, 000 (experimental data is obtained from
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The section presented above discusses the effects of forced removal of wall functions from a

RANS-based model, and the results are outlined. The primary goal for doing a wall function

analysis is to determine if the reduced order turbulence model should only be developed for

the boundary layer near the wall or work for the whole flow domain. The results discussed

above do not show a massive discrepancy between wall function enabled and disabled models.

Therefore, it is prudent to develop a machine learning model that would improve the flow

predictions in the whole flow domain. Section 4.4 shown below discusses the comparison

between k-ε based results and LES results to establish the discrepancy between both, pointing

out the limitation of RANS-based results, which can be overcome by developing a reduced

order turbulence model using machine learning.

4.4 Analysis of k-ε Model Using LES Data

The parametric studies conducted in the Sections 4.1.2 , 4.2 , and 4.3 already highlight the

discrepancy between RANS based results and experimental data for parameters such as the

re-circulation length (Xr), the coefficient of pressure (Cp), and the coefficient of skin friction

(Cf ). The k-ε model under-predicts the normalized re-circulation length (Xr/S ) by 15-20%

for the finest grid simulations. The Cp and Cf plots show a deviation of 5-10% from experi-

mental plots at the extreme points. This systematic discrepancy (consistent across the range

of Reynolds number and expansion ratios used for the analysis) observed for RANS based

models stems from either of two factors: numerical inaccuracies arising due to insufficient

discretization, or, discrepancy in the prediction of flow features, stemming from inaccurate

calculations of Reynolds stresses.

The LES model proves to be a handy substitute to RANS modeling, as evidenced in

figures 4.17 , 4.18 , and 4.19 . The LES results show little to no deviation from the experimental

values as shown in the Xr, Cp, and Cf plots below. Figure 4.17 shows the normalized re-

circulation length (Xr/) for ER ∈ {1.5, 2, 2.5, 3} and Re = 20, 000. The plots show a good

agreement of LES results with experimental data and a visible under-prediction in case of

k-ε model results. The error percentage is estimated to be around 15-20%. Figures 4.18 

71



and 4.19 show the lower wall coefficient of skin friction (Cp) and coefficient of skin friction

(Cf ) respectively. The lower wall results are chosen due to all complicated flows mechanisms,

such as the re-circulation zone forming near the step. As established in the previous sections,

the plots show a good agreement with the LES plots and a systematic difference from the

RANS-based models.
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Figure 4.17. Comparison of Experimental, LES, and RANS normalized re-
circulation length (Xr/) for ER ∈ {1.5, 2, 2.5, 3} and Re = 20, 000 (experi-
mental data is obtained from Driver et al. [52 ], Adams et al. [53 ], Kim et al.
[55 ], and Eaton et al. [56 ]).
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Figure 4.18. Comparison of Experimental, LES, and RANS coefficient of
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Figure 4.19. Comparison of Experimental, LES, and RANS coefficient of
skin friction (Cf ) for ER = 1.5 and Re ∈ {2, 2.5, 3, 3.5} × 104 (experimental
data is obtained from Driver et al. [52 ]).
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4.5 Limitations of k-ε Model

The reason behind presenting this section shows the motivation behind the current work,

in simple words, "Systematically improving RANS results using machine learning." The anal-

ysis shown in the previous sections present a comprehensive view of highlighting the pros

and con of using RANS-based models, and the limitations it poses in the current scenario.

The parametric studies conducted in the Sections 4.1.2 , 4.2 , and 4.3 reflect the importance

of changes to flow factors such as Reynolds number, geometrical factors such as expansion

ratios, and wall functions or instead how the absence of it can cause a radical change in flow

properties.

The following section outlines the use of machine learning analysis to improve the RANS

results shown in the previous sections systematically. Section 5.1 highlights the mathematical

procedures followed to obtain RANS-based parameters from LES data to be used as a training

data set in the ML model. The original formulae for the extrinsic flow quantities such

as turbulent kinetic energy, production (P), strain rate tensor (Sij), and eddy viscosity

(µt) are obtained from Pope [21 ]. Section 5.2 depicts the working of the actual machine

learning model and the parameters involved in the calculations. Although, the analysis is

at a nascent stage, the results show promise of an independent eddy-viscosity ML model

capable of predicting results at par with the LES model.
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5. EXPLORATION OF MACHINE LEARNING FOR

TURBULENCE MODEL DEVELOPMENT

This chapter discusses the construction and application of the machine learning model in the

present work. Section 5.1 outlines the mathematical methods for training data extraction

from the LES modeling. Section 5.2 shows the comparison of the results for the reduced

order turbulence model using machine learning. The subsequent sections consist of a further

zonal analysis to determine the working of the machine learning model at different locations

of the flow domain.

5.1 Extraction of Training Data from LES Model

The machine learning analysis requires the model usable form of turbulent kinetic energy

(k) and dissipation rate (ε), which have to be derived from LES data as they are not readily

available. The subsections are shown below chalk out the mathematical formulation of the

machine form usable training data from the LES model.

As we have established in the previous sections:

• RANS Decomposition: φ = 〈φ〉 + φ.

• LES filtering: φ = φ̃ + φ′′.

5.1.1 Turbulent Kinetic Energy (k)

The original equation for turbulent kinetic energy is shown below [21 ]:

ktot = 1
2〈u′

i
2〉 = 1

2〈(ui − 〈ui〉)2〉. (5.1)

To express turbulent kinetic energy in terms of LES quantities we have to decompose the

velocity into LES filtered and sub-grid scale quantities:

ktot = 1
2〈(ũi + u′′

i − 〈ũi〉)2〉. (5.2)
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Assumptions:

• The Reynolds average of sub-grid scale quantities are assumed to be zero for simplicity,

i.e. 〈u′′
i 〉 = 0.

• The total TKE is obtained as a sum of filtered TKE and sub-grid scale TKE, i.e.

ktot = kf iltered + ksgs.

After simplifying, the kf iltered is obtained as shown below:

kf iltered = 1
2 [〈ũiũi〉 − 〈ũi〉〈ũi〉], (5.3)

where the ksgs is obtained from the solving its transport equation inherently in LES modeling

using Fluent 19.0.

5.1.2 Production (P)

Obtaining the dissipation rate data from LES quantities poses a problem as major contri-

bution of the dissipation comes from the smaller scales, which when ignored would not give

an accurate estimate of the calculated data. Therefore it is prudent to equate the production

term with the dissipation term in the energy budget and estimate the production instead.

The original formulation of production is shown below [21 ]:

P ≡ ε = −〈u′
iu

′
j〉

∂〈ui〉
∂xj

= (〈ui〉〈uj〉 − 〈uiuj〉)
∂〈ui〉
∂xj

. (5.4)

After expanding and simplifying the relevant terms we get the final form,

P ≡ ε = (〈ũi〉〈ũj〉 − 〈ũiũj〉)
∂〈ũi〉
∂xj

. (5.5)

5.1.3 Strain rate tensor (Sij)

Using the original form of strain rate tensor, Sij, as shown in Pope’s book [21 ]:

Sij = 1
2

[
∂〈ui〉
∂xj

+ ∂〈uj〉
∂xi

]
, (5.6)
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Sij = 1
2

[
∂〈ũi + u′′

i 〉
∂xj

+
∂〈ũj + u′′

j 〉
∂xi

]
. (5.7)

Expanding and simplifying using the assumptions stated in Section 5.1.1 ,

Sij = 1
2

[
∂〈ũi〉
∂xj

+ ∂〈ũj〉
∂xi

]
. (5.8)

5.1.4 Eddy viscosity (µt)

Using the original formula for eddy viscosity from Pope’s book [21 ]:

µt =
ρ
[

1
3ktδij − 0.5(〈u′

iu
′
j〉)
]

Sij
. (5.9)

Modeling the Reynolds stress term as in the production term above:

µt =
ρ
[

1
3ktδij − 0.5(〈ũiũj〉 + 〈u′′

i ũj〉 + 〈ũiu
′′
j 〉 + 〈u′′

i u′′
j 〉 − 〈ũi〉〈ũj〉)

]
Sij

. (5.10)

Final form of the equation is shown below:

µt =
ρ
[

1
3ktδij − 0.5(〈ũiũj〉 + 〈u′′

i u′′
j 〉 − 〈ũi〉〈ũj〉)

]
Sij

. (5.11)

5.2 Reduced Order Turbulence Model Using Machine Learning

As mentioned previously, Random Forest (RF) model is used in the machine learning

analysis in this section. Random forest is a class of decision tree algorithm ideally suited for

handling large data segments without compromising statistical efficiency. The random forest

algorithm was devised originally by Breiman [33 ] in 2001, based on the earlier contributions

of [35 ] [36 ] [37 ]. The basic principle of the algorithm is based on the following simple steps:

• Divide the large chunk of raw data into smaller sample sizes.

• Develop a randomized tree predictor for each sample size.
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• Aggregate the tree predictors together.

The validity of the machine learning model was tested using previously obtained k-ε eddy

viscosity data. As previously stated, the eddy viscosity relation in the k-ε model is given as:

µt = ρCµ
k2

ε
, (5.12)

where Cµ = 0.09 is a model constant. Figure 5.1 shows the training of the Random Forest

ML model using previously obtained eddy viscosity data. As evidenced below, the predicted

value of eddy viscosity shows a perfect match with the actual value in the training dataset.

The value of the coefficient of determination, R2 ∼ 1, for the training plot which implies a

pristine training algorithm. The figure also shows the testing of ML algorithm on unseen

data, which shows good agreement for the most part proving the validity of our model.
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and around the re-circulation zone to study the effect in the most complicated
part of the flow domain.
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Figure 5.2 shows the eddy viscosity plot comparison for the LES and RANS model at

different domain locations, as shown below. As we have established before, the LES model

shows close proximity to experimental results in terms of essential flow features. There is

a visible discrepancy in the k-ε, and LES derived eddy viscosity values as expected. This

serves as a motivation for developing the ML model, which essentially acts as an ad hoc k-ε

model to predict eddy viscosity (µt), using turbulent kinetic energy, and dissipation rate (ε)

as features.

Figure 5.3 shows the training of the ML model using the eddy viscosity data derived

from the LES model. The training plot does not show a perfect match as in the case of the

eddy viscosity data obtained form the k-ε model. This can be attributed to the fact that the

sub-grid scale averaging was ignored while calculating the training data using LES variables,

leading to imperfect data. A zonal analysis is carried out in this section to further analysis

the machine learning results.
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Figure 5.3. Training and testing of the machine learning model using µt

obtained from LES model for the whole back-step domain.
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5.3 Zonal Analysis Using Machine Learning

Figure 5.4 shows the schematic diagram of the zonal division of the back-step flow domain

further to understand the implications of the machine learning analysis. The flow domain is

divided into the Inlet, Re-circulation, and Downstream zones as shown below. Figures 5.5 ,

5.6 , and 5.7 represent the training and testing of ML model at the inlet, re-circulation, and

downstream zone respectively. The zonal analysis indicates a shift in prediction plots as the

individual domain plots give better results than the domain taken as a whole. Among the

zones, the ML model gives the best match in the re-circulation zone compared to the other

two zones. This is a significant conclusion that potentially proves that the ML model gives us

a good prediction when the training data from zonal fractions are passed through the model

instead of the data obtained from the whole domain. The predictions in the re-circulation

zone are encouraging, and further analysis is done in the following sections.

The zonal analysis’s purpose lies in the need to make the machine learning model work in

specific zones of the flow domain to determine the viability of the reduced order turbulence

model. The predictions observed in the zonal analysis will set up a basis for our future work

to develop a machine learning model for specific flow zone to obtain the best results.

INLET ZONE RE-CIRCULATION
ZONE

DOWNSTREAM
ZONE

h

6hS 9h

Figure 5.4. Schematic diagram of the zonal division of the back-step domain.
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Figure 5.5. Training and testing of the machine learning model using µt

obtained from LES model for the inlet zone as shown in Figure 5.2 .
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Figure 5.6. Training and testing of the machine learning model using µt

obtained from LES model the re-circulation zone as shown in Figure 5.2 .

83



0 0.002 0.004 0.006 0.008 0.01

Eddy Viscosity
true

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

R2 is 0.684614 and MSE is 0.000002

Model tested on unseen data (test data)

0 0.002 0.004 0.006 0.008 0.01

Eddy Viscosity
true

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

E
d
d
y
 V

is
c
o
s
it
y

p
re

d
R2 is 0.613057 and MSE is 0.000001

Model tested on training data 

0% Error Line

30% Error line

Figure 5.7. Training and testing of the machine learning model using µt

obtained from LES model for the downstream zone as shown in Figure 5.2 .

5.4 Eddy Viscosity (µt) Comparison

The aim of this section is to further analysis the potential ramifications of the zonal

analysis using machine learning. Figure 5.8 shows the eddy viscosity plot comparison for

the LES, RANS, and ML model at different domain locations. The locations are chosen in

and around the re-circulation zone to study the effect in the most complicated part of the

flow domain. The ML model results, although they show a slight improvement over RANS

results, still deviate from the original LES-derived eddy viscosity values.

Figure 5.9 shows the eddy viscosity plot comparison for the LES, RANS, and ML model

at different domain locations in and around the downstream zone to study the contrast

between the eddy viscosity values in different parts of the flow domain. The ML model still

shows intermediate results between the k-ε and LES values, but the discrepancy between the

ML results and the k-ε data is slightly lower than the re-circulation zone.
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Figure 5.8. Comparison of LES, RANS, and ML model eddy viscosity (µt)
for ER = 1.5 and Re = 20, 000 at different domain locations. The locations
are chosen in and around the re-circulation zone to study the effect in the most
complicated part of the flow domain.
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Figure 5.9. Comparison of LES, RANS, and ML model eddy viscosity (µt)
for ER = 1.5 and Re = 20, 000 at different domain locations. The locations
are chosen in and around the downstream part of the flow domain.
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5.5 Functional Analysis of the Zonal Data

The functional analysis within the zones attempts to determine if the eddy viscosity is

a unique function of the chosen parameters (k and ε) within that zone. Figure 5.10 shows

the scatter plot of eddy viscosity (represented by the color bar) varying with turbulent

kinetic energy (k) and dissipation rate (ε). The scatter plots for the whole domain, inlet,

and downstream zones are similar, revealing huge point-to-point variation, hence a chaotic

scatter plot. It is safe to assume that eddy viscosity can not be expressed as a unique function

of k and ε. On the other hand, the re-circulation scatter plot shows a smooth transition

of color across the domain, implying the derived values of eddy viscosity from LES data

can potentially be expressed as a unique function of k and ε. This further validates our

observations in the previous sections, where the re-circulation zone shows better prediction

than the other zones.
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6. CONCLUSIONS

This chapter summarizes the principal conclusions drawn from the analysis shown in the

above sections and the future challenges presented in the current work. Based on the com-

putational analysis done above, the following conclusions are drawn:

• For the turbulence analysis, the back-step was chosen as the flow domain due to its

simplicity and application in several high-profile engineering systems. The problem

area was identified as the properties under-prediction from RANS-based analysis, and

sustained efforts were made to improve upon those areas.

• Grid convergence analysis was conducted on five different grids as shown in Section

4.1.1 including a multiplicative parameter P to determine the coarseness of grids. A

medium grid indexed by P = 2 was chosen for RANS and LES analysis followed in

Chapters 4 and 5 .

• Parametric studies concerning flow effects controlled by Reynolds number, geometric

effects controlled by expansion ratio, and wall functions were conducted. The nor-

malized re-circulation length (Xr/S), coefficient of pressure (Cp), and skin friction

coefficient (Cf ) were the chosen parameters of interest.

• The maximum values of re-circulation length and the coefficient of skin friction show

a positive correlation to the increase in Reynolds number, whereas the coefficient of

pressure broadens towards the step vicinity with increasing Reynolds number. All

parameters show an increase in value with an increase in expansion ratio.

• Chapter 5 introduces the working of the Random Forest model as a tool for the machine

learning analysis in the present work. The training data for the machine learning model

was derived from the LES variables using the mathematical procedures as shown in

Section 5.1 .

• The ML model was validated using the eddy viscosity data derived from the k-ε model

to ensure reliable results. The training and testing of training data derived from LES
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variables do not show a good match between the predicted and true values of eddy

viscosity.

• A zonal analysis was done by dividing the flow into 3 zones i.e. Inlet, Re-circulation,

and Downstream zones. The ML model was applied to each zone individually to check

its viability. The zonal analysis reveals that the ML model gives better results for each

zone than the whole flow domain. Further analysis reveals that the re-circulation zone

shows the best prediction of eddy viscosity compared to the other two.

• The significance of this zonal analysis lies in the fact that it enables us to make a

workable reduced order turbulence model for specific zones of the flow domain. It has

enabled us to predict RANS results better using a new machine learning framework

aided by high fidelity LEs data.

6.1 Future Work

Due to time limitations, only a preliminary ML model was constructed. The prospective

future scope of the current work is discussed below:

• The turbulence analysis scope can be widened to include more complicated flow do-

mains which will provide a chance chance to develop a truly independent machine

learning model.

• Some passive control methods can be employed in the RANS-based analysis to improve

flow characteristics without the use of machine learning.

• The machine learning model can be extended to include several other input and output

parameters to present a more comprehensive analysis. The ML model shown in the

current works presents a preliminary version to which extra parameters can be added

with ease.
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