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GLOSSARY 

CNN: Convolutional neural network. A type of neural network layer most commonly applied 

in computer vision applications. 

Max pooling: A downsampling method where the max value from a chosen rectangular 

region is outputted. 

ReLU: Rectified Linear Unit. A common activation function applied to the output of neural 

network layers, particularly in CNNs. Defined by the function ���� = max ��, 0�. 

Leaky ReLU: A ReLU that allows a small positive gradient when the unit is not active. 

Defined by the function ���� = max ��, 
��, where 
 is the leakage rate. 

Batch normalization: A method used to make neural networks faster and more stable through 

normalization of the layers’ inputs by re-centering and re-scaling the gradients. 

Dropout: A regularization technique for reducing overfitting in neural networks by 

preventing complex co-adaptations on training data. The process involves randomly omitting units 

during training steps. 

Learning rate: A tuning parameter in an optimization algorithm that determines the step size 

at each iteration while moving toward a minimum of a loss function. 
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ABSTRACT 

U-net is an image segmentation technique developed primarily for medical image analysis 

that can precisely segment images using a scarce amount of training data. These traits provide U-

net with a high utility within the medical imaging community and have resulted in extensive 

adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of 

U-net is evident in its widespread use in nearly all major image modalities from CT scans and MRI 

to X-rays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have 

been instances of the use of U-net in other applications. Given that U-net's potential is still 

increasing, this review examines the numerous developments and breakthroughs in the U-net 

architecture and provides observations on recent trends. We also discuss the many innovations that 

have advanced in deep learning and discuss how these tools facilitate U-net. In addition, we review 

the different image modalities and application areas that have been enhanced by U-net. 

In recent years, deep learning for health care is rapidly infiltrating and transforming medical 

fields thanks to the advances in computing power, data availability, and algorithm development. 

In particular, U-Net, a deep learning technique, has achieved remarkable success in medical image 

segmentation and has become one of the premier tools in this area. While the accomplishments of 

U-Net and other deep learning algorithms are evident, there still exist many challenges in medical 

image processing to achieve human-like performance. In this thesis, we propose a U-net 

architecture that integrates a residual skip connections and recurrent feedback with EfficientNet as 

a pretrained encoder. Residual connections help feature propagation in deep neural networks and 

significantly improve performance against networks with a similar number of parameters while 

recurrent connections ameliorate gradient learning. We also propose a second model that utilizes 

densely connected layers aiding deeper neural networks. And the proposed third model that 

incorporates fractal expansions to bypass diminishing gradients. EfficientNet is a family of 

powerful pretrained encoders that streamline neural network design. The use of EfficientNet as an 

encoder provides the network with robust feature extraction that can be used by the U-Net decoder 

to create highly accurate segmentation maps. The proposed networks are evaluated against state-

of-the-art deep learning based segmentation techniques to demonstrate their superior performance. 
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 INTRODUCTION 

 A version of this chapter was previously published by IEEE Access [1] 

[https://doi.org/10.1109/ACCESS.2021.3086020]. 

Thanks to recent advances in deep learning in computer vision within the past decade, deep 

learning has been increasingly utilized in the analysis of medical images. While the use of deep 

learning in computer vision has seen rapid growth in many different fields, it still faces some 

challenges in the medical imaging field. There have been many breakthrough techniques over the 

years to overcome these various challenges, and new research is continuously leading to the 

development of more novel and innovative methods. One such technique that will be discussed in 

this literature review will be the U-net, a deep learning technique widely adopted within the 

medical imaging community. 

U-net is a neural network architecture designed primarily for image segmentation [2]. The 

basic structure of a U-net architecture consists of two paths. The first path is the contracting path, 

also known as the encoder or the analysis path, which is similar to a regular convolution network 

and provides classification information. The second is an expansion path, also known as the 

decoder or the synthesis path, consisting of up-convolutions and concatenations with features from 

the contracting path. This expansion allows the network to learn localized classification 

information. Additionally, the expansion path also increases the resolution of the output, which 

can then pass to a final convolutional layer to create a fully segmented image. The resulting 

network is almost symmetrical, giving it a u-like shape. The main canonical task performed by 

most convolutional networks is to classify the whole image into a single label. However, 

classification networks fail to provide pixel-level contextual information, which is of vital 

importance in medical image analysis. While there have been previous attempts at segmentation 

tasks, it was not until U-net by Ronneberger et al. [2] that a significant improvement in medical 

image segmentation performance occurred. The U-net network was developed based on the works 

of Long, J et al. [3] using fully convolutional networks. Their implementation achieved better 

performance than the previous best on the ISBI 2012 challenge and won the ISBI cell tracking 

challenge in 2015, beating the state of the art at the time by a considerable margin. 

What makes U-net particularly useful is its creation of highly detailed segmentation maps 

using highly limited training samples. The latter trait is of great importance in the medical imaging 
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community, as properly labeled images are often limited. This is achieved by utilizing random 

elastic deformation on the training data, which enables the network to learn these variations 

without requiring new labeled data [2]. Another challenge is to separate touching objects of the 

same class, which is resolved by applying a weighted loss function that penalizes the model if it 

fails to separate the two objects. Finally, U-net is also much faster to train than most other 

segmentation models due to its context-based learning. 

 Since its inception in 2015, U-net has seen an explosion in usage in medical imaging. And 

naturally, there have been many advancements in U-net architecture by researchers implementing 

new methods or incorporating other imaging methods into U-net. In this thesis, we examine papers 

that utilize U-net in the application of medical image analysis. To avoid redundancy, we only 

reviewed papers from 2017 onward. Given that there are numerous sources of scientific 

publicization, in order to find the most relevant quality of research papers, we limited ourselves to 

three major publishers: IEEE, Springer, and Elsevier. From there, we searched their databases with 

related keywords to find the top papers in each database and collected the appropriate publications. 

Since new papers are being published regularly, we selected a designated endpoint of 12/31/2020. 

Figure 1 showcases some statistics from our survey. 

Figure 1. Distribution of (a) U-net related papers in our survey by year of publication starting 
with 2017, (b) image modality in U-net related papers, and (c) application area in U-net related 

papers. It should be noted that some papers had multiple image modalities and application areas, 
and each instance was counted separately. 
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 The novel coronavirus (COVID-19) pandemic has created a staggering global medical 

crisis. As of June 7th 2021, a total of 172,956,039 confirmed cases and 3,726,466 confirmed deaths 

have been recorded globally [4]. To combat this challenge, the medical imaging community has 

involved itself in the research of multiple deep learning techniques, including U-net, for the 

diagnosis of COVID-19. The primary diagnostic images taken for COVID-19 are chest CT scans, 

which are ideal given that U-net has seen extensive exploration in that modality. The versatility of 

the U-net network has allowed rapid development and deployment of early screening diagnostic 

algorithms for field use as early as March 2020 [5]. Further improvements on early screening tests 

have been made by augmenting attention and residual methods with U-net [6], [7]. Wu et al. [8] 

have implemented a hybrid network with U-net for segmentation and a classifier for classification, 

while Yan et al. [9] developed a network with feature variation that allowed for an easier 

distinction of COVID-19 infection. U-net research has also been ongoing in X-ray-based screening 

of COVID-19 [10], [11], and Alom et al. [12] established a multi-stage model to detect COVID-

19 from X-ray and CT images. A survey on deep learning techniques for COVID-19 diagnosis 

reveals that U-net is one of the primary models of choice for segmentation-related tasks [13]. This 

is no surprise, as we have already explored the various utilities of U-net based models. We expect 

research on U-net-based algorithms for the diagnosis of COVID-19 to continue and to be a major 

asset to the medical imaging community during this global crisis. 
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 LITERATURE REVIEW 

 A version of this chapter was previously published by IEEE Access [1] 

[https://doi.org/10.1109/ACCESS.2021.3086020]. 

 U-net Architectures 

 In this section, we explore the different variations and augmentations that have been 

applied to the U-net model. While there are numerous implementations of U-net, we selected the 

most commonly implemented architectures for this review. 

 Base U-net 

 As mentioned earlier, the U-net network can be divided into two parts: The first is the 

contracting path that uses a typical CNN architecture. Each block in the contracting path consists 

of two successive 3x3 convolutions followed by a ReLU activation unit and a max-pooling layer. 

This arrangement is repeated several times. The novelty of U-net comes in the second part, called 

the expansive path, in which each stage upsamples the feature map using 2x2 up-convolution. 

Then, the feature map from the corresponding layer in the contracting path is cropped and 

concatenated onto the upsampled feature map. This is followed by two successive 3x3 

convolutions and ReLU activation. At the final stage, an additional 1x1 convolution is applied to 

reduce the feature map to the required number of channels and produce the segmented image. The 

cropping is necessary since pixel features in the edges have the least amount of contextual 

information and therefore need to be discarded. This results in a network resembling a u-shape 

and, more importantly, propagates contextual information along the network, which allows it to 

segment objects in an area using context from a larger overlapping area. Figure 2 illustrates the 

overall U-net architecture. 

 The energy function for the network is given by: 

� = � ���� log ���������� (1) 

where �� is the pixel-wise SoftMax function applied over the final feature map, defined as: 
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�� = exp �
����� � exp �
����′��
����  (2) 

and 
� denotes the activation in channel k. 

Figure 2. Basic U-net architecture. The arrows represent the different operations, the blue boxes 
represent the feature map at each layer, and the gray boxes represent the cropped feature maps 

from the contracting path. 

 3D U-net 

 3D U-net is an augmentation of the basic U-net framework that enables 3D volumetric 

segmentation [14]. The core structure still contains a contracting and expansive path. However, all 

of the 2D operations are replaced with corresponding 3D operations, namely 3D convolutions, 3D 

max pooling, and 3D up-convolutions, thereby resulting in a three-dimensional segmented image. 

This network is able to segment images using minimal annotated examples. This is due to 3D 

images having many repeating structures and shapes, thereby enabling a faster training process 

even with scarcely labeled data. 3D U-net has seen extensive use in volumetric CT and MR image 

segmentation applications, including diagnosis of the cardiac structures [15]–[22], bone structures 

[23]–[26], vertebral column [27], [28], brain tumors [29]–[31], liver tumors [32]–[34], lung 
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nodules [35], nasopharyngeal cancer [36], multi-organ segmentation [37]–[39], head and neck 

organ at risk assessment [40], and white matter tracts segmentation [41]. 3D U-net has been used 

to great effect in many biomedical applications. Zeng et al. [23] created a network that produced 

multi-level segmented images that allow abstraction when making a diagnosis. 

 Attention U-net 

 An often-desirable trait in an image processing network is the ability to focus on specific 

objects that are of importance while ignoring unnecessary areas. The attention U-net achieves this 

by making use of the attention gate [42], [43]. An attention gate is a unit that trims features that 

are not relevant to the ongoing task. Each layer in the expansive path has an attention gate through 

which the corresponding features from the contracting path must pass through before the features 

are concatenated with the upsampled features in the expansive path. Repeated uses of the attention 

gate after each layer significantly improves segmentation performance without adding excessive 

computational complexity to the model. 

 The attention unit is useful in encoder-decoder models such as the U-net since it can 

provide localized classification information as opposed to global classification. In U-net, this 

allows different parts of the network to focus on segmenting different objects. Furthermore, with 

properly labeled training data, the network can attune to particular objects in an image. The 

attention gate applies a function in which the feature map is weighted according to each class, and 

the network can be tuned to focus on a particular class [44] and hence pay attention to particular 

objects in an image. While there are different types of attention gates, additive attention is more 

popular in image processing due to it resulting in higher accuracy [32]. Figure 3 illustrates a basic 

additive attention gate. The additive attention gate is described by: 

!
""# = $% �&1'(�%�)# * (+%+) * ,+-� * ,$ (3) 

.)# = &2�!
""# ��)#, +); 1
""�� (4) 

where �2 is the features from the contracting path and + is the gating signal. The term &3'�4,5- 

represents the sigmoid function: 

&2'�),6- = 11 * exp �7�),6� (5) 
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 Attention U-net has been successfully applied to problems such as ocular disease diagnosis 

[45]–[49], melanoma [50], lung cancer [45], cervical cancer [51], abdominal structure 

segmentation [43], fetus development [43], and brain tissue quantification [52]. 

Figure 3. Additive attention gate schematic. The input signal xl and the gating signal g both pass 
through separate 1x1x1 convolutions. The signals are then added and undergo a series of linear 
transformation which are ReLU activation (σ1), a 1x1x1 convolution, sigmoid activation (σ2), 

and an optional grid resampler. Finally, the original input is concatenated to the output from the 
sigmoid unit or the resampler. 

 Inception U-net 

 Most image processing algorithms tend to use fixed-size filters for convolutions. However, 

tuning the model to find the correct filter size can often be cumbersome. Moreover, fixed-size 

filters are appropriate only for images with similar-sized salient parts. In many applications, the 

analysis looks through images with large variations in shapes and sizes in the salient region. One 

solution to this problem would be to use deeper networks that can read high-level details across a 

spectrum of sizes and shapes. However, such deep networks are quite computationally expensive. 

An alternative solution, called the inception network, uses filters of multiple sizes on the same 

layer in the network.  [53]. The outputs from the different filters are concatenated and transferred 

onto the next layer. The inception network is able to analyze images with different salient regions 

quite effectively due to the different filter sizes. To reduce computational complexity, the inception 

network adds a 1x1 convolution before every 3x3 or larger filter for dimensionality reduction. 

Additionally, pooling layers may also be added in parallel in each inception module. 

 The original inception network, called GoogLeNet, attained the state of the art outcomes 

in the ILSVRC14 competition [53]. This was soon followed by more improvements to the network, 

including the application of factorization methods and the replacement of 5x5 convolution with 

two successive 3x3 convolutions. In the latter case, a single 5x5 convolution is 2.78 times more 

computationally expensive than two equivalent 3x3 convolutions [54]. Further factorization can 
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be applied by splitting nxn filters into a 1xn and nx1 filter, respectively. Factorizing a 3x3 filter by 

this method makes the network 33% less expensive. Figure 4 displays two configurations of the 

inception module. 

 Inception modules of different configurations have been applied on a multitude of U-net 

applications, including brain tumor detection [30], [55], [56], brain tissue mapping [57], cardiac 

segmentation [18], [58], lung nodule detection [59], human embryo segmentation [60], and 

ultrasound nerve segmentation [61]. 

Figure 4. (a) The original inception block used in GoogLeNet. (b) Improved inception block with 
factorized filters. At the end of the inception block, the feature maps from each filter are 

concatenated together and passed onto the next layer. It should be noted that both networks in 
figures (a) and (b) are equivalent, though the factorized network requires less computational 

power. 

 Residual U-net 

 This variant of U-net is based on the ResNet [62] architecture. The motivation behind 

ResNet was to overcome the difficulty in training highly deep neural networks. It is known that 

neural networks are able to converge faster to a solution when more layers are present. However, 

experimental results have shown that increasing the number of layers results in saturation, and 

further increases can cause degradation of performance [62]. This degradation arises due to the 

loss of feature identities in deeper neural networks caused by diminishing gradients in the weight 

vector. ResNet lessens this problem by utilizing skip connections, which take the feature map from 

one layer and add it to another layer deeper in the network. This behavior allows the network to 
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better preserve feature maps in deeper neural networks and provide improved performance for 

such deeper networks. The unit design of ResNet blocks is pictured in Fig 5. 

Figure 5. Three successive ResNet blocks with skip connections. The skipped signal is joined 
with the channel output via element-wise addition. The most common ResNet implementations 

are double-layer skips (as shown in this figure) or triple-layer skips. 

 

 In the residual U-net, at each block in the network, the input to the first convolutional layer 

is added to the output from the second convolutional layer using a skip connection. This skip 

connection is applied before the downsampling or upsampling in the corresponding paths in the 

U-net. The usage of residual skip connections helps to alleviate the vanishing gradient problem 

[62], thereby allowing for U-net models with deeper neural networks to be designed. Each residual 

unit can be denoted by: 

8# = ℎ��#� * ℱ��#, ;#� (6) 

�2<� = ��82� (7) 

where �2 and �2<� correspond to the input and output of the residual unit, ℱ�∙� corresponds to the 

residual function, ��∙� is the activation function, and ℎ�∙� is the identity mapping function. 

 We have found papers in which deep residual U-nets have been used to great effect in many 

biomedical imaging applications such as nuclei segmentation [63], [64], brain tissue quantification 

[52], brain structure mapping [65], retinal vessel segmentation [66], breast cancer [67], liver cancer 

[34], [68], prostate cancer [69], endoscopy [70], melanoma [70], osteosarcoma [71], bone structure 

analysis [72], and cardiac structure analysis [69], [73]. Deep residual U-nets are ideal for complex 

image analysis. 
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 Recurrent U-net 

 Recurrent neural networks are a type of neural network initially designed to analyze 

sequential data such as text or audio data. The network is designed in such a way that a node's 

output changes based on the previous output from the same nodes, i.e., a feedback loop as opposed 

to a traditional feedforward network, as illustrated in Figure 6. This feedback loop also called a 

recurrent connection, creates an internal state or memory that provides the node with temporal 

properties that change the output at discrete time steps. When extended to the entire layer, this 

allows the network to process contextual information from the preceding data. 

Figure 6. Recurrent neural network. In this simple network, the second and third layers are 
recurrent layers. Each neuron in a recurrent layer receives feedback from its output as well as 

new information from the previous layer at discrete time periods and correspondingly produces a 
new output. This component allows the network to process sequential information. 

 

 The recurrent U-net makes use of recurrent convolutional neural networks (RCNN) [74], 

by incorporating the recurrent feedback loops into a convolutional layer. The feedback is applied 

after both convolution and an activation function and feeds the feature map produced by a filter 

back into the associated layer. The feedback property allows the units to update their feature maps 

based on context from adjoining units, providing better accuracy and performance. The output y 

of the recurrent convolutional neural network can be expressed as: 

84>�2 �"� = '��?-@�2?�4,>��"� * ���A�@�2A�4,>��" 7 1� * ,� (8) 

where �2?�"� is the feedforward input and �2A�" 7 1� is the recurrent input for the lth layer, ��? is 

the feedforward weight, ��A  is the recurrent weight, and ,�  is the bias of the kth feature map. 

Recurrent U-nets have been used in [75], [76]. Alom et al. [63], [77] devised a U-net model 
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containing both recurrent connections and residual connections. The resulting network 

outperformed solely residual and recurrent U-net models as well as prior state of the art methods 

using a similar number of parameters. 

 Dense U-net 

 Dense U-nets employ DenseNet [78] blocks in place of regular layers. While the ResNet 

model allows for deeper neural networks, it does not eliminate the problem of vanishing gradients. 

The ResNet architecture also eventually degrades in performance with increasing layers. To 

remedy this, DenseNet is a deep learning architecture built on top of ResNet with two key changes. 

Firstly, every layer in a block receives the feature or identity map from all of its preceding layers 

[78]. The second major change is that the identity maps are combined via channel-wise 

concatenation into tensors [78], as opposed to ResNet in which the identity maps are summed via 

element-wise addition. Therefore, the identity mapping of each layer is dependent not only on the 

previous layer but on all of the layers before it in the block. This configuration is visualized in 

Figure 7. This allows DenseNet to preserve all identity maps from prior layers and significantly 

promote gradient propagation. The implication is that each layer can have fewer channels, as 

information is more easily preserved between layers, thereby resulting in higher accuracy with 

fewer computations, which in turn allows deep learning models with a greater number of layers. 

The output for each layer in a dense block is described as: 

�# = B#�C�0, �1, �2, … , �#71E� (9) 

where B2�∙� represents the dense mapping function, which typically includes batch normalization, 

ReLU activation, and a convolutional layer while [⋅] denotes channel-wise concatenation. 

 When implementing a U-net, each traditional U-net block is replaced with a dense block 

of two or more convolutional layers. The adoption of dense blocks allows for deeper U-net models, 

which can segment objects in an image with greater distinction. This attribute of dense U-nets is 

highly desired in medical image analysis due to objects in such images being highly close together, 

often to the point of overlapping. Applications of dense U-net have been found in analysis of brain 

tumors [31], [56], retinal blood vessel segmentation [56], cerebral blood vessel segmentation [79], 

[80], melanoma [81], lung cancer [81], liver cancer [82], and multi-organ segmentation [83]. 
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Figure 7. A five-layer dense block. The concatenation unit receives the feature map from all 
previous layers and passes it onto the next layer. This ensures that any given layer has contextual 

information from any of the previous layers in the block. 

 U-net++ 

 U-net++ is another powerful form of the U-net architecture inspired from DenseNet [78]. 

It uses a dense network of skip connections as an intermediary grid between the contracting and 

expansive paths [84]. This aids the network by propagating more semantic information between 

the two paths, thereby enabling it to segment images more accurately. 

 In traditional U-net, the feature maps of the contracting path are directly concatenated onto 

the corresponding layers in the expansive path. U-net++, however, has a number of skip connection 

nodes between each corresponding layer, as represented in Figure 8. Each skip connection unit 

receives all of the feature maps from all previous units at the same level, as well as an upsampled 

feature map from its immediate lower unit. Therefore, each level is equivalent to a dense block. 

This arrangement minimizes the loss of semantic information between the two paths. The 

operation of the skip connection unit in which x represents the feature map and i and j correspond 

to the index down the contracting path and across the skip connections, respectively, is defined as: 

�),F = G ℋ'�)71,F-, F = 0
ℋ �IJ�),KLK=0

F71 , M'�)*1,F71-N� , F O 0 (10) 
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 Here, ℋ�∙�  denotes a convolution and the activation operation, M�∙� , represents the 

upsampling operation, and [] signifies a concatenation. The number of intermediary skip 

connection units depends on the layer number and decreases linearly when traversing the 

contracting path. Applications in U-net++ include segmentation of cell nuclei [84], cancer tissue 

[84], cardiac structures and vessels [85], [86], and pelvic organs [87]. 

Figure 8. U-net++ schematic representation. Each square denotes a convolutional block. Unlike 
the base U-net, which has a single direct concatenation from the contracting path to the 

expansive path, U-net++ has a series of intermediary convolutional blocks between the two 
paths. Each intermediary and expansive block receives the concatenated feature maps from all of 

the previous blocks at the same level as well as the upsampled feature map from the block 
immediately below it. 
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 Adversarial U-net 

 An adversarial model is a setup in which two networks compete against each other in order 

to improve their performance. Generative adversarial networks (GAN) are a novel type of 

adversarial process used to generate new data [88]. The framework consists of two networks: a 

discriminator and a generator. The discriminator network, D, is a classifier that is trained to identify 

whether a given input image is from the data set or is produced by the generator G. D undergoes 

standard CNN supervised training, and for each image input, it outputs the probability of the image 

being produced by G with the goal of minimizing its error rate of classifying 'fakes' as real data set 

images. The generator G produces images that are periodically fed to the discriminator. To help 

the generator produce convincing images, the generator's gradient function is a function of the 

discriminator’s gradient function during the step in which the discriminator is fed a fake image. 

This allows the generator to adjust its weight in response to the output of the discriminator. 

Furthermore, to create variations in the images produced by the generator, random noise is passed 

to it. The goal of the generator is to deceive the discriminator, i.e., maximize the error rate of the 

discriminator. This minimax relationship results in an adversarial network in which the two 

networks compete with each other, defined as: 

minR maxS T�U, V� = W�~YZ[\[�]� log U��� * W^~Y_�_� log �1 7 U'V�`�-� (11) 

where given enough time, the adversarial network should reach an optimal state in which the 

discriminator always outputs a probability of ½ regardless of whether the image is from the data 

set or the generator [88], meaning that it can no longer distinguish the real images from the 

synthetic images produced by the generator. The resulting generator can then be used to artificially 

create images of a particular subject. Figure 9 presents the basic relational diagram of a GAN. 

Figure 9. GAN block diagram. The goal of network D is to classify all inputs from x and network 
G as real and fake respectively. The goal of G is to have its output evaluated as real. 
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 This framework can be further extended to restrict the GAN into producing a limited band 

of synthetic images by controlling its labels and input images. This alteration is known as a 

conditional GAN [89]. Adversarial U-nets are a type of conditional GANs. The generator network 

is constructed based on the U-net architecture while the discriminator remains the same. The U-

net design allows the generator to take an image as an input instead of random noise. The key 

difference in adversarial U-nets is that the goal of the generator is not to produce new images but 

rather transformed images. This output of G is evaluated against D, which is trained on manually 

transformed images. Figure 10 provides an example of this design. Ideally, after proper training, 

the generator will be able to achieve the same transformation ability as the manual human 

transformation. The resulting generator can then be used to apply its transformation function on 

new images, which would be considerably faster than a physician manually converting the image. 

Adversarial U-nets have seen a wide spectrum of applications, including quantitative susceptibility 

mapping of the brain [90], detection of brain tumors [91], [92] and breast cancer [93], segmentation 

of retinal vessels [49], segmentation of cardiac structures [94], and image registration of brain 

structures [95]. 

Figure 10. Simplified schematic of U-net based GAN. The generator synthesizes predictions for 
the tumor area from the input images. The predictions are fed into the discriminator, which in 
turn judges the accuracy of the prediction by evaluating its similarity to the ground truth. If the 

prediction is similar to the ground truth, then the discriminator will be unable to distinguish 
between them and classify the prediction as real. Given enough training, the GAN will be able to 

segment images to the same accuracy and precision as manual annotations [81]. 
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 Ensemble U-net 

 In addition to the aforementioned architectures, many other network configurations have 

also been tested that make use of an ensemble of U-nets together. One such method is cascading 

two or more U-nets. In this arrangement, the first U-net performs a high-level segmentation, with 

each successive U-net performing segmentation on smaller objects. Feng et al. [96] designed a 

two-stage U-net model in which the first U-net segments the liver from other organs and the second 

U-net segments tumors within the liver. Liu et al. [68] designed a two-stage U-net for liver 

segmentation with an intermediate processing module between the two U-nets. Xu et al. [19] and 

Li et al. [55] have both designed two-stage cascaded U-nets in which the first network is a 2D U-

net and the second network is a 3D U-net. Other two-stage U-net models are implemented in [16], 

[17], [40], [64], [82], [97]–[100]. While two-stage networks are the most common type of cascaded 

U-nets, we have found two instances of cascaded U-nets with variable numbers of stages [101], 

[102]. In all of these papers, the cascaded U-net performed better than a single U-net. 

 Yet another arrangement of the overall architecture can be found in the form of a parallel 

arrangement of part or the entirety of a U-net network. Abd-Ellah et al. [103] arranged two parallel 

U-nets and aggregated the results for improved segmentation accuracy. Soltanpour et al. [104] 

implemented four parallel U-nets with each segmenting a different CT map and then merging the 

results. A halfway point can be achieved by parallel encoders, which allow for better extraction of 

features [105]–[107]. Murugesan et al. [108] implemented a network with parallel decoders that 

provide different levels of segmentation. 

 2.5D U-net is a special architecture where three 2D U-net networks are run parallelly on 

different 2D projections of a 3D image to produce a 3D segmentation map. The 2D U-nets perform 

slice-by-slice segmentation on the 3D volume along three different axes, and the final 3D 

segmentation is computed by fusing the results [109]–[112]. The advantage of the 2.5D parallel 

arrangement is reduced computational load for segmentation when juxtaposed with an equivalent 

3D network. 

  



 
 

28 

 Comparison with Other Architectures 

 While there have been numerous deep learning models developed for segmentation, in this 

section, we briefly describe some of the popular alternatives to U-net, namely FCN, Segnet, FPN, 

and DeepLab. The first deep learning models for semantic segmentation were fully convolutional 

networks (FCN) [3]. FCNs use regular downsampling paths to extract contextual information and 

a single upsampling layer to produce a fully segmented image. FCNs also employ optional skip 

connections; however, due to the design of FCNs, the skipped gradients are often of different 

dimensions and require additional processing to be upscaled. One of the significant disadvantages 

of FCNs is their inability to learn global context information [113]. FCNs ultimately fall behind 

other state-of-the-art segmentation models in terms of performance [113]. Following U-net came 

Segnet, another encoder-decoder model [114]. However, Segnet does not use skip connections to 

send low-level contextual information to deeper layers. The main advantage Segnet enjoys over 

other segmentation models is its lower number of training parameters. 

 Feature pyramid networks (FPN) also have an encoder-decoder structure that was initially 

designed for object detection [115]. Similar to U-net, here, gradient information is concatenated 

to the decoder via skip connections from the encoder. However, unlike U-net, the decoder also 

transmits gradient information from each layer to another series of convolution layers. FPNs are 

designed to detect objects from each layer in the decoder and are particularly useful in producing 

multi-class segmentation maps [116]. DeepLab is yet another popular segmentation model that 

utilizes atrous spatial pyramid pooling [117]. Spatial pyramid pooling enables DeepLab models to 

take input of different sizes. Atrous or dilated convolution allows the layer to extract contextual 

information from a larger area without increasing the filter size. Combining these two techniques 

enables DeepLab models to be highly robust without a significant increase in computational 

complexity. 
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 Image Modalities 

 Segmentation is the primary task for U-net models. The goal of segmentation tasks is to 

outline and separate different objects in an image, i.e., to classify different objects rather than 

classifying the whole image. This is of particular importance in the medical imaging community, 

as the diagnosis of medical conditions requires careful analysis of local regions in an image. For 

instance, the diagnosis of brain tumors would require separating the tumors from the rest of the 

brain structures. We have found extensive use of the U-net architecture for a wide assortment of 

medical imaging analysis. Figure 11 illustrates some applications of U-net in various areas. In the 

next section, we discuss the major image modalities on which U-net has been applied. 

Figure 11. Examples of U-net applications. Images have been collected from papers in this 
survey, including: (a) Retinal vessel segmentation [118]; (b) Brain tumor detection and 

segmentation [119]; (c) Multi-organ abdominal segmentation (liver; spleen; left and right 
kidneys; pancreas; gallbladder; aorta; and inferior vena cava) on CT scans [38]; (d) Liver tumor 

segmentation, left to right: original CT image, liver segmentation image, and lesion segmentation 
image [120]; (e) Nuclei prediction, from left to right: original cell images, prediction of nuclei, 

labeling nuclei in the original images [51]; (f) Cell segmentation [70]; (g) Skin lesion 
segmentation [70]; and (h) Corneal nerve segmentation [121]. 
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 Magnetic Resonance Imaging (MRI) 

 MRI is a very popular radiology imaging technique used to take pictures of soft tissue 

inside the body. In our review, we have found MRI to be the most popular image modality for 

segmentation using U-net. MRI is a useful diagnostic tool, particularly for the analysis of the brain. 

U-net has been used extensively in this regard for the segmentation of brain structures as many 

different U-net models have been applied on MR images for brain tumor diagnosis [29], [30], [55], 

[56], [70], [92], [98], [103], [122]–[136]. U-net has also been applied on brain tissue for 

investigation of neurological conditions [65], [112], [119], [137]–[140], analysis of white matter 

tissue [141]–[143], [100], fetal brain development [144]–[147], and stroke lesions [80], [148]–

[152]. U-net has also been implemented on cardiovascular MR images [15]–[17], [19]–[22], [58], 

[69], [73], [85], [94], [97], [101], [153]–[162] to segment structures of the heart. Cancer is a 

leading cause of death worldwide, and MR is one of the strongest methods for the proper prognosis 

of different types of cancers. In addition to brain cancer, we have found applications on prostate 

cancer [58],  [64], [152]–[156], liver cancer [32], [168], [169], nasopharyngeal cancer [36], [109], 

[170], and breast cancer [110], [171]. Other implementations include segmentation of the femur 

[23]–[25], spinal cord [172], [173], blood vessels [111], vertebral column [28], human placenta 

[174], and the uterus [175]. Table 1 indexes all of the papers that used MRI as an image mode, as 

well as the application area and the methods used in the corresponding U-net. 

 Computed Tomography (CT) 

 CT scans are another major non-invasive medical analysis tool for analyzing internal 

organs and tissue. As with MRI, cancer diagnosis is a major that involves the application of CT 

imaging; including liver cancer [33], [34], [68], [82], [84], [96], [105], [120], [176]–[178], lung 

cancer [35], [45], [56], [59], [81], [84], [179]–[183], bone cancer [71], and cervical cancer [184]. 

CT scans are also used for multiorgan abdominal segmentation [37], [38], [43], [83], [167], [185] 

as well as the segmentation of hard tissue such as bones [25]–[27], [71], [87], [186]. Along with 

MR imaging, CT is one of the few imaging techniques that can produce 3D images. The versatility 

of CT imaging makes it a favored modality in medical diagnosis. Table 2 indexes all of the papers 

that used CT scans as an image mode in our review, as well as the application area and the methods 

used.  
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Table 1. Applications of U-net based models for MR image analysis. 

Reference Model/Methods used Reference Model/Methods used 
Brain tumor  Cardiovascular structures 

[122], [123], [126]–[128], 
[130]–[134], [187]–[193] 

Base U-net [154], [156]–[158], [160], 
[162], [194], [195] 

Base U-net 

[29], [125], [136] 3D U-net [69], [73], [155], [159], 
[161], [196] 

Residual block 
[92] Adversarial net; GAN 
[197] Attention gate [15], [20], [21], [39] 3D U-net 
[70], [124], [198], [199] Residual block [97], [101] Cascaded U-net 
[129] Dense block [200] Attention gate 
[201] U-net++ [16], [19] Cascaded 3D U-net 
[98] Cascaded U-net [22], [202] Base U-net; 3D U-net 
[203] Dense block; Residual block [94], [204] Adversarial net; GAN 
[205] 3D U-net; Attention gate [206] Attention gate; Dense block 
[103] Residual block; Parallel U-net [118] 3D U-net; Attention gate 
[55] Inception block; Up skip  [153] Dense block 
 connections [85] U-net++ 
[56] Dense block; Inception block [58] Inception block; Residual  
[135] 3D U-net; Residual block  block 
[30] 3D U-net; Inception block;  [17] Cascaded 3D U-net; Residual  
 Residual block  block 
Brain tissue  Prostate cancer  
[119], [137]–[140], [208] Base U-net [163], [165]–[167], [207] Base U-net 
[39], [209]–[211] 3D U-net [39] 3D U-net 
[212] 2.5D U-net [202] Base U-net; 3D U-net 
[65] Residual block [213] Attention gate 
[112] Parallel U-net [204] Adversarial net; GAN 
[52] Attention gate; Residual block [75] Recurrent net 
  [69] Residual block 
White matter tracts    
[142], [143] U-net with modified skip  Liver cancer  
 connections [168], [169] Base U-net 
[141] Base U-net [32] 3D U-net 
[100] Cascaded U-net [214] Attention gate; U-net++ 
    
Fetal brain  Nasopharyngeal cancer  
[144]–[146] Base U-net [36] 3D U-net; Residual block 
[147] Base U-net; 3D U-net [109] Parallel U-net 
  [170] Modified convolution block 
Stroke lesion/thrombus    
[149]–[152] Base U-net Breast cancer  
[148] 3D U-net [171] Base U-net 
[80] Dense block; Inception block [110] Parallel U-net 
    
Spinal cord  Blood vessels  
[172], [173] Base U-net [111] Base U-net 
    
Femur  Uterus  
[23]–[25] 3D U-net [175] Base U-net 
    
Placenta  Vertebral column  
[174] Base U-net [28] 3D U-net 
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Table 2. Applications of U-net based models for CT image analysis. 

Reference Model/Methods used Reference Model/Methods used 
Liver cancer  Lung cancer  
[120], [176], [177], [215] Base U-net [179]–[181], [216] Base U-net 
[33], [39] 3D U-net [217], [218] 3D U-net 
[34] 3D U-net; Residual block [182], [183], [219]–[221] Residual block 
[84] U-net++ [45] Attention gate 
[96], [222] Cascaded U-net [35], [223] 3D U-net; Residual block 
[68] Cascaded U-net; Residual  [59] Dense block; Inception block 
 block [224] Dense block; Residual block 
[82] Cascaded U-net; Dense block [84] U-net++ 
[214] Attention gate; U-net++   
[225] Dense block; Inception block Pulmonary tissue  
[105] Modified U-net with dual  [226], [227] Base U-net 
 parallel encoders [228], [229] Residual block 
Cardiovascular structures   
[15] 3D U-net Abdominal organs  
[230] Attention gate [167], [185], [232] Base U-net 
[231] Adversarial net; GAN [37], [38] 3D U-net 
[97] Cascaded U-net [43] Attention gate 
[16] Cascaded 3D U-net [83] Dense block 
[135] 3D U-net; Residual block   
[18] 3D U-net; Inception block Pancreas  
[86] U-net++ [172], [232]–[234] Base U-net 
  [39] 3D U-net 
Bones    
[186] Base U-net Stroke lesions  
[25] 3D U-net [104], [235] Base U-net 
[26] 3D U-net; Residual block [148] Base U-net; 3D U-net 
[71] Residual block [80] Dense block; Inception block 
[87] U-net++   
  Gallstones  
Head and neck  [237] U-net++ 
[236] 3D U-net [99] Cascaded U-net 
[40] Cascaded 3D U-net   
  Prostate cancer  
Kidney tumor  [240] Base U-net 
[238], [239] 3D U-net [241] Attention gate 
    
Liver and spleen  Blood vessels  
[178] Dense block [242] Attention gate 
  [243] Residual block 
Brain    
[244] Base U-net Cervical cancer  
[245] Attention gate [184] Base U-net 
[57] Inception block; Residual block   
[106] Modified U-net with dual  Fetus  
 parallel encoders [43] Attention gate 
Stomach cancer    
[246] Residual block Melanoma  
  [81] Dense block 
Vertebral column    
[247] Base U-net Muscle tissue  
[27] 3D U-net [248] Base U-net 



 
 

33 

 Retinal Fundus Imaging 

 Color fundus imaging is an ophthalmology technique used for the detection and diagnosis 

of ocular diseases such as glaucoma, diabetic retinopathy, and age-related macular degeneration 

(AMD). Proper prognosis depends on the precise segmentation of key structures such as retinal 

blood vessel segmentation [66], [249]. Accurate screening is of chief importance since such 

diseases often need to be diagnosed early for treatment. Though ophthalmic imaging has a far 

narrower scope than MR and CT, the retinal fundus is one of the most analyzed structures in our 

survey, after the brain and cardiovascular system. Given that it is the primary method of imaging 

the retina, we expect more research on fundus image analysis to continue as well as research on 

more complex retinal fundus images. Table 3 collects all of the use cases of U-net models applied 

in the analysis of the retinal fundus. 

Table 3. Applications of U-net based models for fundus image analysis 

Reference Model/Methods used 
[249]–[262] Base U-net 
[45]–[47], [242], [263], [264] Attention gate 
[66], [183], [265]–[268] Residual block 
[81] Dense block 
[269] U-net++ 
[49] Adversarial net; GAN; Attention gate 
[102] Cascaded U-net 
[270] Cascaded U-net; Residual block 
[271] Attention gate; Residual block 
[56] Dense block; Inception block 
[224], [272] Dense block; Residual block 
[273] Inception block; Residual block 
[274] Attention gate; Dense block; Residual block 
[108] U-net with parallel decoders 
[275] Recurrent residual block; Up skip connections 

 Microscopy 

 Microscopy refers to the examination of microscopic objects that cannot be observed with 

the naked eye. It should be noted that in our survey, we refer to microscopy to mean only optical 

microscopy. This modality is used extensively in pathology. One of the major challenges in 

microscopy imaging is identifying overlapping cells as well as identifying the boundary between 

cells. These are unique challenges to microscopy, as smaller structures such as cells and tissues 

often do not have well-defined landmarks and similarities, thereby making the image processing 

much more difficult. However, U-net has overcome such challenges [2] and continues to be a 
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strong implementation for this modality. Applications of U-net based models applied on 

microscopy imaging are collected and indexed in Table 4. 

Table 4. Applications of U-net based models for ultrasound image analysis. 

Reference Model/Methods used Reference Model/Methods used 
Cell nuclei  Cell contour  
[276], [277] Base U-net [191], [278]–[281] Base U-net 
[70], [282], [283] Residual U-net [51] Attention gate 
[63] Recurrent net; Residual block [284] Cascaded U-net 
[64] Cascaded U-net; Residual block [285] Attention gate; Recurrent  
[286] Cascaded U-net; Dense block  residual block 
[84] U-net++ [287] Dense block; Inception block;  
   Residual block 
Human embryo  Corneal nerve  
[288] Base U-net [121] Base U-net 
[60] Inception block [47] Attention gate 
    
Chromosomes  Blood vessels  
[289]–[291] Base U-net [292] Base U-net 
    
Pathogen detection Cancer cell detection 
[293], [294] Base U-net [295]–[297] Base U-net 
  [298] Residual U-net 
Sclerosis    
[299] Base U-net   

 Dermoscopy 

 Dermoscopy is a detailed examination of the skin. It is almost exclusively used to examine 

skin diseases such as skin lesions. The primary medical condition diagnosed using Dermoscopy 

images in our survey is melanoma or skin cancer, though we have also found a single paper on 

psoriasis diagnosis [300]. The performance of Dermoscopy image analysis methods is of keen 

interest in the medical imaging community since it is often used for early detection of melanoma 

and is less costly than other noninvasive diagnostic tools. Table 5 summarizes the papers and 

models focusing on Dermoscopy images. 
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Table 5. Applications of U-net based models for Dermoscopy image analysis. 

Reference Model/Methods used 
Melanoma  
[259], [301]–[311] Base U-net 
[50] Attention gate 
[70], [221] Residual block 
[81] Dense block 
[271], [312] Attention gate; Residual block 
[274] Attention gate; Recurrent residual block 
[203] Dense block; Residual block 
[284] Cascaded U-net 
[275] Up skip connections 
  
Psoriasis  
[300] Base U-net 

 Ultrasound 

 Medical ultrasound is yet another noninvasive imaging technique for the analysis of 

internal structures. Ultrasound is mostly used for early and real-time diagnosis. Additionally, 

unlike many other image modalities, ultrasound devices are more maneuverable and can capture 

images from multiple angles. Ultrasound is also safe since it does not use radiation; hence it is the 

primary imaging modality for pregnancy-related diagnosis [313]–[315]. Medical ultrasound use 

cases also include analysis of soft tissue such as nerve bundles [50], [61], [167], [316], [317]. Its 

real-time image capture abilities make it a vital tool for tracking objects [107]. Applications of U-

net in ultrasound imaging are outlined in Table 6. 

 X-ray 

 X-ray is a radiograph method used mainly for the imaging of hard tissue. It is the most 

widely used technique for the analysis of bones. U-net models have been applied to X-rays of 

bones for diagnosis of rheumatoid arthritis and osteoporosis [72], [318], as well as other bone-

related diseases. Chest x-rays are also fairly prevalent and are used for the detection of a myriad 

of pulmonary diseases such as tuberculosis [271]. Aside from that, we have found applications of 

U-net in the detection of coronary stenosis [319], breast tumors [93], and surgical catheters [320]. 

Table 7 encapsulates all of the papers that used X-ray as an image mode for analysis. 
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Table 6. Applications of U-net based models for ultrasound image analysis. 

Reference Model/Methods used Reference Model/Methods used 
Nerve segmentation  Breast lesion  
[167], [316] Base U-net [321] Base U-net 
[61] Inception block [50], [322] Attention gate 
[317] Residual block [323] Cascaded U-net 
[324] Modified parallel U-net   
  Cardiovascular structures 
Arterial wall  [325] Base U-net 
[326]–[328] Base U-net [192] Attention gate 
[329] Cascaded U-net [330] Residual block 
    
Fetal head  Gastrointestinal tumor  
[313], [331] Base U-net [332] Base U-net 
[333] Cascaded U-net   
  Preterm birth prediction  
Knee cartilage  [314] Base U-net 
[107] U-net with dual parallel    
 encoders Transcranial detection  
Thyroid  [315] Base U-net 
[334] Residual block   
  Kidney  
Cervical lymph node  [335] Base U-net 
[336] Dense block; Residual    
 block; Inception block Ovary detection  

[337] Base U-net 

 

Table 7. Applications of U-net based models for X-ray image analysis. 

Reference Model/Methods used Reference Model/Methods used 
Phalange bones   Pelvic bones  
[318], [338] Base U-net [339] Base U-net 
[72] Residual block   
  Calcaneus bones  
Chest organs  [340] Base U-net 
[341]–[343] Base U-net   
[45], [192] Attention gate Blood vessels  
[271] Attention gate; Residual 

block 
[319], [344] Base U-net 

Surgical catheter detection  Breast tumor  
[320] Residual block [93] Adversarial net; GAN 

 Other Modalities 

 In addition to commonly used image modalities, we have also found U-net applications on 

more inconspicuous modalities. Endoscopy is an invasive imaging procedure in which the imaging 

device is inserted into an organ or cavity to take pictures. U-net has been applied to endoscopy 

images for segmentation of polyps in the gastrointestinal tract [108], [284], [312], [345], colon 

objects [70], detection of laryngeal leukoplakia [76], and detection of surgical instruments [346]. 
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On electron microscopy images, applications include the detection of neuronal structures [172], 

[347], cell contour [172], [183], [242], and viruses [348]. Optical coherence tomography (OCT) is 

an imaging method for taking cross-sectional images of the retina. OCT is used for the diagnosis 

of different ocular diseases, such as age-related macular degeneration (AMD), retinal vein 

occlusion, and diabetic macular edema [349]. U-net has been used on OCT for segmentation of 

retinal layers [350]–[352], blood vessels [353], fluid regions [354], [355], and Drusen [356]. Other 

uncommon applications are segmentation of blood vessels in digital subtraction angiography (DSA) 

[79], [357], [358], white matter tract segmentation in diffusion tensor imaging (DTI) [41], iris 

segmentation in iris imaging [48], tumor detection in mammograms [67], and capillary 

segmentation in nailfold capillaroscopy [359]. Table 8 collects the applications of U-net based 

models on some uncommon image modalities. 

Table 8. Applications of U-net based models for various image modalities. 

Reference Model/Methods used Image Modality 
[119], [345] Base U-net Endoscopy 
[70] Residual block Endoscopy 
[284] Cascaded U-net Endoscopy 
[312] Attention gate; Residual block Endoscopy 
[76] Cascaded U-net; Recurrent residual net Endoscopy 
[108] Modified U-net with parallel decoders Endoscopy 
   
[172], [347], [348] Base U-net Electron microscopy 
[242] Attention gate Electron microscopy 
[183] Residual block Electron microscopy 
   
[349], [352]–[354], [356] Base U-net OCT 

[350], [351] Residual block OCT 

[355] Adversarial net OCT 
   
[357], [358] Base U-net DSA 
[79] Dense block DSA 
   
[41] 3D U-net DTI 
   
[48] Attention gate Iris imaging 
   
[67] Residual block Mammogram 
   
[359] Residual block Nailfold capillaroscopy 
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 Other Canonical Tasks By U-Net 

 Even though U-net is an algorithm developed for segmentation, it has seen a modest 

amount of augmentation for other types of tasks. Image analysis is often hampered by the presence 

of noise or loss of detail during imaging. Consequently, we have found three papers that 

implemented U-net to remove artifacts from images by reconstructing the images [90], [360]–

[363], as well as a paper that used U-net for de-aliasing [91]. Image registration is also an area in 

which U-net models have seen experimentation [95], [364]–[367]. Other reconstruction tasks 

include the correction of infant cortical surface [368] and EPID dosimetry correction of the 

cerebrospinal region [369]. Other outlier usages include synthesis of medical images [370], image 

super-resolution [31], and data augmentation for enabling easier annotation of medical images 

[371]. Applications of U-net based models applied on canonical tasks other than segmentation 

tasks are summarized in Table 9. 

Table 9. Applications of U-net based models on other canonical tasks. 

Reference Image modality Canonical task Model/Methods Application area 
[360] CT Denoising Modified U-net Cervix 
[361] Ultrasound Denoising Base U-net Brain tissue 
[90] MR Denoising 3D adversarial net Brain tumor 
[362] MR Denoising Cascaded U-net Brain tissue 
[363] Photoacoustic tomography Denoising Base U-net Blood vessels 
     
[91] MR De-aliasing Adversarial net Brain tumor 
     
[364]–[366] MR Image registration Base U-net Brain tissue 
[367] MR Image registration 3D U-net Liver tissue 
[95] MR Image registration Adversarial net Brain tissue 
     
[368] MR Image correction 3D U-net Brain surface 
[369] EPID dosimetry Image correction Base U-net Brain and spinal cord 
     
[370] CT; MR Image synthesis Base U-net Brain tissue 
     
[371] MR Data augmentation Base U-net Brain tissue 
     
[31] MR Superresolution 3D U-net; Dense 

block 
Brain tumor 
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 Limitations 

 In this survey, we present the most popular U-net architectures as well as their typical 

applications. However, it should be highlighted that this survey does not cover all possible U-net 

variations due to the large body of ongoing research in medical image segmentation. Many other 

network designs incorporate novel ideas into U-net, such as Bayesian U-net [372] and Capsule U-

net [218]. Furthermore, many U-net implementations have hitherto unique modifications, and it is 

beyond the scope of this survey to cover them all on a case-by-case basis. Nevertheless, we have 

tried to present the most prevalent and generalized U-net algorithms in this survey. 

Additionally, almost all of the U-net architectures surveyed in this study were supervised models. 

 This is ostensible since the majority of medical image segmentation tasks involve 

supervised learning due to the low acceptable margin of error. Unsupervised U-net models are 

quite primitive and rare in biomedical imaging; however, there has been steady ongoing research 

in this area. For completeness, in this section, we present some unsupervised U-net models not 

limited to the biomedical imaging domain. Xia et al. [373] developed a network with two cascaded 

U-nets, where the reconstruction loss of the whole network and the normalized cut loss of the first 

U-net is minimized iteratively to saliently segment images. Khan et al. [374] designed a dense U-

net that segments images via representation oriented clustering. Chen et al. [375] developed an 

attention gated U-net that had promising results on the ISBI 2017 Challenge. 

 Challenges 

 The success of deep learning is vital for improved medical diagnosis. Although there has 

been tremendous progress in deep learning techniques such as U-net in the past decade, the nature 

of medical analysis demands algorithms to perform with minimal error. A major limitation of 

reducing this error in deep learning techniques is computational power. Powerful deep learning 

algorithms require more time to train and hence are less feasible. U-net algorithms have applied 

transfer learning as one solution to alleviate this problem [341]. EfficientNet is a framework for 

optimizing neural network construction that has the potential to streamline U-net design, thereby 

making it more powerful using a similar number of parameters [376]. Another critical problem is 

the scarcity of annotated data for training. Ronneberger et al. [2] proposed a solution in their 

original U-net paper of applying random deformation to create new samples. An alternative 
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solution is the use of adversarial models like GAN to synthesize new image samples. GAN, in 

particular, has seen tremendous success in synthesizing medical images [377]. Finally, deep 

learning models have the problem of being ‘black boxes’; the input and output to the network are 

well understood, but the behavior of the internal hidden layers is not. This creates a problem in 

which researchers often do not understand how to fix errors in the network or which layers or 

filters are more important to the task. Additionally, black boxes are difficult to interpret properly, 

and their properties are difficult to replicate [378]. These are some key reasons why deep learning 

is yet to be used in any large-scale real-world medical trial [379], despite its tremendous promise. 

However, day by day, these problems are becoming easier to overcome, and we expect to see even 

greater adoption of deep learning within the medical imaging community in the future. In this 

regard, we expect U-net to be a major stepping stone in deep learning within the realm of medical 

image analysis. 
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 METHODOLOGY 

 A portion of this chapter was previously published by SPIE [380] 

[https://doi.org/10.1117/12.2591343]. 

 A significant advantage of the U-net design is its high modularity and adaptability. The 

low-level design of U-net can be easily altered with other modules and architectures while keeping 

the high-level design the same. This allows U-net to be tuned for specific applications. 

Furthermore, this means that U-net can be continually improved with novel state-of-the-art 

methods. Such modifications have allowed U-net variants to outperform base U-net [77]. In our 

implementation, we have combined the U-net architecture with R2U-net [63], [77], DenseNet [78], 

FractalNet [381], and EfficientNet [382]. 

 Efficient R2U-net 

 R2U-net borrows and combines deep residual learning (ResNet) [62] and recurrent 

convolutional neural network (RCNN) [74] onto U-net. The motivation behind this is twofold. 

Firstly, residual learning allows for the building of deeper neural networks. Standard CNNs can 

suffer from degradation of performance if too many hidden layers are introduced. This is due to 

the loss of feature identities in deeper neural networks caused by diminishing gradients in the 

weight vector [62]. ResNets overcome this problem by application of residual skip connections 

that transfer feature maps from a prior layer to a layer deeper in the network. Repeated use of such 

residual skip connections can significantly improve gradient propagation, allowing for deeper 

neural networks. By skipping layers, this configuration helps adjacent layers and their activations 

learn their weights to avoid the problem of diminishing gradients. 

 The second novel aspect of R2U-net is the integration of RCNN. RCNN incorporates the 

recurrent feedback loops into a convolutional layer. These recurrent connections provide the output 

feature map as input to the preceding layer at discrete time steps. The recurrent connections allow 

RCNNs to be better able to extract contextual information [74]. R2U-net incorporated both ResNet 

and RCNN modules. The design of these modules is provided in Figure 12. 
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Figure 12. Different variants of residual and recurrent convolutional blocks (a) Forward only 
block, (b) Recurrent block, (c) Residual block, (d) Recurrent Residual block (R2), (e) Proposed 

R2 block with channel-wise concatenation. 

 

 Considering the input of the #"ℎ as �2 and ), F as the pixel locations of K"ℎ feature map, the 

output of the residual RCNN block is expressed as: 

a4>�2 �"� = ���?�@ × �2?�4,>��"� * ���A�@ × �2A�4,>��" 7 1� * ,� (12) 

where ��∙� and c�∙� correspond to the activation of the forward and recurrent output, respectively, 

while ��?and ��A denote the weights of the forward layer and recurrent layer of the K"ℎ feature 

map. The term ,� is a bias term. The output of a recurrent convolution layer is passed into a ReLU 

activation function: 

ℱ��2, �2� = max �0, a4>�2 �"�� (13) 

 The overall output of the residual RCNN block can be simplified as: 

�2<� = �2 * ℱ��2 , �2� (14) 

 Here �2<�  is the output of the residual RCNN block. Finally, we propose a small 

modification in our implementation of the residual RCNN block. We replace channel-wise 

addition in favor of channel-wise concatenation. This is because summing the layers can cause the 

information to be altered between layers [78]. Additionally, the K"ℎ feature map across different 

layers are not necessarily correlated. Performing concatenation preserves the features maps as they 

were, thereby improving information flow in the network. Our proposal alters Equation 14 into: 
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�2<� = C�2, ℱ��2 , �2�E (15) 

where [⋅] represents channel-wise concatenation. Our proposed model replaces all standard 

convolutional blocks in the expansive path with the modified residual RCNN blocks. We designate 

this model as Efficient R2U-net. 

Figure 13. (a) Baseline network. (b)-(d) Conventional scaling methods that only increase one 
dimension of the network: width, depth, or resolution. (e) Compound scaling method that 

uniformly scales all three dimensions with a fixed ratio [382]. 

 

 Yet another challenging aspect of designing deep neural networks is allocating resources 

efficiently. While scaling up to improve the performance of the network, it is often unclear what 

is the best approach. The common ways of scaling up a network are usually done by adding more 

layers or more filters. EfficientNet is a family of pretrained encoders that uses compound scaling 

to determine the network design [382]. Compound scaling uses fixed ratios to automatically select 

the appropriate depth, width, and resolutions for the model. Figure 13. illustrates the different 

network scaling methods. When applied to a suitable baseline network, compound scaling can 

scale it up more optimally than other methods. EfficientNet encoders require up to 8 times fewer 

parameters when juxtaposed with similarly performing models [382]. This is ideal when building 

deep neural networks with limited resources. In our proposed model, we replace the contracting 

path of the U-net with an EfficientNet encoder. The application of the EfficientNet encoder allows 

us to have a much deeper contracting path that can perform classification with higher accuracy. 

Furthermore, since EfficientNet is a fixed budget network, we can divert our focus on optimizing 



 
 

44 

the decoder with residual RCNNs. Another advantage of EfficientNet is that these encoders are 

pretrained, which allows for significantly faster training allowing us to save up on valuable 

research time. The proposed model is illustrated in Figure 14. 

Figure 14. Our proposed model of residual recurrent U-net, using EfficientNet encoder. 

 Efficient Dense U-net 

 We also implemented a second convolution block based on densely connected 

convolutional networks (DenseNet) [78]. DenseNet is a design inspired by residual connections. 

While residual learning does indeed improve the problem of vanishing gradients, it does not 

entirely remove it. As such, ResNet models also degrade in performance after a certain threshold 

of layers is added. Unlike ResNet, DenseNet utilizes skip connections between every layer in the 

block. This configuration is presented in Figure 15. The concatenation block receives the feature 

maps from all previous layers and passes them onto the next layer. This ensures that any given 

layer has contextual information from all of the previous layers in the block. This significantly 

improves gradient propagation and allows for the building of deeper neural networks. The output 

for each layer in a dense block is described as: 

�2 = B2�C��, �3, �d, ⋯ , �2f�E� (16) 
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where B2 represents the dense mapping function. Our second U-net model replaces all standard 

convolutional blocks in the expansive path with the DenseNet blocks. We designate this model as 

Efficient Dense U-net. 

Figure 15. A five-layer DenseNet block. 

 Efficient Fractal U-net 

 FractalNet is a neural network architecture design based on the principle of fractal 

geometry expansion and similarity. This network uses repeated fractal expansions to generate unit 

blocks with multiple paths where each path has a geometrically increasing number of hidden layers 

[381]. Widening the network by adding multiple paths is an idea partially inspired by the Inception 

module [53]. Intermediary join layers merge outputs from different paths at regular geometric 

intervals. The final result is a network architecture that promotes gradient propagation without the 

typical residual skip connections. This behavior is achieved due to the different paths outputting 

different levels of gradient information. The fractal neural network designed by Larsson et al. [381] 

outperformed the ResNet architecture by a significant margin. Figure 16 showcases the basic 

representation of the fractal architecture. Let �g��� denote the output of the Cth fractal truncation. 

����� is defined as the unit base case, which can be customized according to the needs of the 

algorithms. 

����� = layer_operation��� (17) 
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 With ����� defined, successive fractals can be generated by the following relationship: 

�g<���� = �5'�5���- ⨁ ����� (18) 

where ⨁ represents the join operation. The join operation aggregates the output of two or more 

hidden layers. A consequence of this expansion rule is that the number of operations increases 

exponentially as C increases. It is also possible to generate networks with different expansion rules 

to produce the desired result, though this requires further experimentation. 

 The fractal architecture has seen some adoption in U-net applications. Bai et al. [383] 

implemented a U-net model where the fractal block employs variable filter sizes and a residual 

skip connection. Kumar et al. [384] designed a U-net model where the fractal expansion resembles 

the original FractalNet architecture. The unit block consists of a convolution layer, batch 

normalization, leaky ReLU, and dropout in our implementation. For the join operation, there are 

several choices of layers. The original execution of FractalNet employed channel-wise addition. 

However, in our application, we replace channel-wise addition with channel-wise concatenation. 

This is due to the same reasons outlined in section 3.1.1; summing the layers can cause the 

information to be altered between layers and feature maps across different layers are not 

necessarily correlated [78]. Performing concatenation, therefore, preserves the features maps as 

they were and improves information flow in the network. The expansion rule of our 

implementation is simplified in Equation 19. 

�g<���� = J�5'�5���-, �����L (19) 

 We perform two tests, with two different fractal U-net models. The first model is an entirely 

fractal-based network. This is used for a baseline comparison against R2U-net where is narrowly 

outperforms R2U-net. The second implementation is a combination of EfficientNet with the fractal 

architectures, dubbed, Efficient Fractal U-net. Both models had C = 3. 
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Figure 16. (a) Expansion rule to generate fractal architecture. The base case ����� has a single set 
of chosen layers. (b) Fractal block with C=3. (c) Fractal block with C=4.
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 Loss Functions 

 Aside from network architecture, one of the essential characteristics of a deep learning 

model is its loss function. In this section, we briefly describe some key loss functions used in image 

segmentation. One of the most common loss functions used in medical image segmentation is 

cross-entropy loss. 

mgn = 7 � "4log ��4�
o

4��
 (20) 

 Here, "4  denotes to the ground truth, �4  denotes the probability for the )"ℎ class, and p 

denotes the number of classes [385]. One variant of cross-entropy loss is the weighted cross-

entropy loss. This loss function gives certain weights to classes based on class imbalance. Another 

emerging variant of cross-entropy loss is the focal loss, where well-classified training samples are 

weighted down. 

 Besides cross-entropy, the other standard loss function in image segmentation is the Dice 

loss, obtained from the Sørensen–Dice coefficient [386]. Here GT refers to the ground truth, and 

SR refers to the segmentation result. 

U)6q = 2|V% ∩ tu||V%| * |tu| (21) 

 Intersection over union (IoU) loss, derived from the Jaccard index, measures the ratio of 

the intersection of the samples to their union [387]. Dice loss and IoU loss are often used to 

strengthen their respective evaluation metrics. 

v
66
cw/yz{ = |V% ∩ tu||V% ∪ tu| (22) 

 Tversky loss is a modification of the Dice loss that gives different weights to false positive 

and false negative results [388]. This makes it useful in training datasets with unbalanced classes. 

m = |V% ∩ tu||V% ∩ tu| * .|tu\V%| * ~|V%\tu| (23) 

 Lastly, boundary loss is a family of loss functions that aim to minimize the distance 

between the ground truth and the segmentation results on a regional basis [389]. This loss function 

is useful for training models on highly unbalanced data. 
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 RESULTS AND DISCUSSION 

 A portion of this chapter was previously published by SPIE [380] 

[https://doi.org/10.1117/12.2591343] and IEEE Access [1] 

[https://doi.org/10.1109/ACCESS.2021.3086020]. 

 Datasets 

 Our proposed network model is tested on two popular medical image datasets, 

CHASE_DB1 [390] and ISIC 2018 [391], [392]. CHASE_DB1 is a retinal fundus dataset 

consisting of 28 colored images of dimensions 999×960 pixels, as well as their corresponding 

blood vessel segmentation maps. 23 of the images are selected for training, and the remaining 5 

are left for testing the model, for an approximate 82:18 split. Due to the limited data samples, we 

opt for a patch-based approach. Each sample in the training and testing sets is randomly sampled 

to produce 160 patches of size 192×192 pixels. This results in a total of 3680 patches for training 

and 800 patches for testing. ISIC 2018 is a skin lesion dataset comprising of 2594 Dermoscopy 

images of different resolutions. Due to resource constraints, and to standardize the data, all images 

and ground truths have been resized to 256×256 pixels. The resized dataset is randomly split in an 

80:20 ratio, resulting in 2075 training samples and 519 testing samples. Examples of both datasets 

are shown in Figure 17. 
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Figure 17. Samples from (a) CHASE_DB1 and (b) ISIC 2018 datasets, including both images 
and segmentation maps. 

 Evaluation Metrics 

 As crucial as designing image processing models are, it is equally important to evaluate 

their performance correctly. In this section, presented are some of the most popular and widely 

used image segmentation evaluation metrics. Many of these metrics have been derived from the 

resulting confusion matrix and the associated true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) values. 

 The accuracy metric measures the number of correctly predicted samples against the total 

number of samples. In image processing, these samples are usually pixels or voxels. Accuracy, 

however, is not helpful in unbalanced data distributions that may arise in image processing and is 

rarely considered by itself [393]. 

�66�c
68 = %� * %�%� * %� * �� * �� (24) 

 Precision measures the number of correctly predicted positive samples against all positive 

predictions. Analogous to precision, specificity measures the number of correctly predicted 

negative samples among all negative samples. Both precision and specificity are useful to evaluate 

the number of false positive pixels in an image [393]. 
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�cq6)�)zp = %�%� * �� (25) 

t�q6)�)6)"8 = %�%� * �� (26) 

 Recall or sensitivity measures the proportion of positive samples that have been identified 

correctly as positive. Recall/sensitivity is useful to gauge the number of false negative pixels in an 

image [393]. It is common practice to pair precision with recall or specificity with sensitivity to 

get a much broader evaluation of a model or algorithm. 

uq6
##/tqp�)")�)"8 = %�%� * �� (27) 

 F-score, F1-score, or F-measure, is the harmonic mean of precision and recall. The F-score 

is often used to measure the overall performance of a model by combining precision and recall 

[393]. 

� �6zcq = 2 ∙ �cq6)�)zp ∙ uq6
##�cq6)�)zp * uq6
##  (28) 

 The Sørensen–Dice coefficient, commonly known as Dice score, compares the similarity 

between two samples [386]. Equation 21 describes the Dice score. In binary data evaluation, the 

Dice score is equivalent to F-score. 

 The Jaccard index, also known as intersection over union (IoU), is a measure of the overlap 

between two samples [387]. The Jaccard index is expressed in Equation 22. 

 The area under curve score (AUC) is another popular metric in image processing, 

particularly in biomedical image processing. It uses receiver operating characteristics (ROC) to 

evaluate different thresholds to convert continuous data to discrete data for classification [394]. It 

is a measure of how easily a model can distinguish between different classes [394]. 

 Parameter Settings 

 In our implementation of EfficientNet based U-net architectures, we use EfficientNet-B7 

[382] as the encoder, which is the deepest pretrained encoder in the EfficientNet family. The 

encoder layers are not modified. All other convolutional blocks are replaced with either DenseNet 

blocks, modified residual RCNN blocks, or fractal blocks. 

 We apply batch normalization after each convolution, where the output from each layer is 

normalized to have zero mean and a variance of one. This helps deal with training problems that 
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arise due to poor initialization and helps gradient flow in deeper models [395]. The activation 

function used in our models is leaky ReLU. Leaky ReLU allows a small, positive gradient when a 

unit is not active, improving the overall performance of the network [396]. Finally, dropout is also 

applied to prevent overfitting issues [397]. The models are trained using adaptive learning rate for 

up to 500 epochs with early stopping criteria. The batch size for training the CHASE_DB1 dataset 

is 16, while for ISIC 2018, it is 8. 

 The EfficientNet models had 20,127,897 (Dense), 17,638,169 (R2), and 18,879,328 

(Fractal) parameters. The experimental environment was TensorFlow 2.1. implementation of 

Keras written in Python 3. The experiment was run on Google Colab Pro. Google Colab Pro 

provides access to T4 or P100 GPU based on availability and a RAM size of 25.6 GB. The average 

training time for each model on each dataset was about 10 hours. It should be noted that training 

was done in multiple sessions by taking model checkpoints in between. The testing time was less 

than 2 minutes. 
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 Results 

 We first evaluate the performance of our models on the CHASE_DB1 dataset. The 

segmentation results for CHASE_DB1 are presented in Figure 18, alongside the fundus images 

and the ground truths. From observation, it is evident that most of the structures are properly 

identified and segmented. The quantitative results of our models are compared against state-of-

the-art models and presented in Table 10. Our proposed models achieve better accuracy and F1-

scores against other segmentation models. 

Figure 18. Sample segmentation results on the CHASE_DB1 dataset. Top to bottom: input 
patches; ground truths; Efficient Dense U-net segmentation result; Efficient R2U-net 

segmentation result. 

 

Table 10. Evaluation metrics between other state-of-the-art and the proposed models on the 
CHASE_DB1 dataset. 

Model Year Acc F1 AUC 
U-net [2] 2015 0.9578 0.7783 0.9772 
Residual U-Net [398] 2017 0.9553 0.7800 0.9779 
R2U-Net [77] 2018 0.9634 0.7928 0.9815 
VGN [399] 2018 ̶ 0.8034 0.9830 
LadderNet [400] 2019 0.9656 0.8031 0.9839 
IterNet [401] 2019 0.9655 0.8073 0.9851 

Fractal U-net 2021 0.9665 0.8035 0.9816 
Efficient Dense U-net 2021 0.9667 0.8092 0.9777 
Efficient R2U-net 2021 0.9668 0.8103 0.9808 
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 Our second evaluation is on the ISIC 2018 dataset. The segmentation results are previewed 

in Figure 19. The quantitative metrics for the dataset are presented in Table 11 against other 

comparable models. 

Figure 19. Sample segmentation results on the ISIC 2018 dataset. Top to bottom: input images; 
ground truths; Efficient Dense U-net segmentation result; Efficient R2U-net segmentation result; 
images with contours for ground truth (red), Efficient Dense U-net result (green), and Efficient 

R2U-net result (blue). 

 

Table 11. Evaluation metrics between other state-of-the-art and the proposed models on the ISIC 
2018 dataset. 

Model Year Dice JAC 
U-Net 46 [301] 2019 ̶ 0.9336 
U-Net + FTL [50] 2018 0.8290 ̶ 
BCDU-Net [81] 2019 0.8510 0.9370 
Attn U-Net + Multi-Input + FTL [50] 2018 0.8560 ̶ 
U-Net + DCNN-SVM [302] 2020 0.8700 0.8000 
Fractal U-net 2021 0.8599 0.9476 
Efficient Fractal U-net 2021 0.8702 0.9480 
Efficient R2U-net 2021 0.8794 0.9519 
Efficient Dense U-net 2021 0.8862 0.9534 
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 Ablation Study 

 We perform ablation studies on our results to compare the metrics of the different network 

architectures and note which structure resulted in improved performance. 

 Comparison between EfficientNet and non-EfficientNet models 

 The first comparison is between models with and without the EfficientNet encoder. For the 

ISIC 2018 dataset, all of the EfficientNet models outperformed the non-EfficientNet models. In 

the case of the CHASE_DB1 dataset, the EfficientNet models outperformed the other models in 

accuracy and F1-score. However, they lagged behind in the area under curve (AUC) score. The 

improved performance scores can be attributed to the increased number of layers in the Efficient 

encoder and the compound scaling which distributes them for optimal performance. The lag in the 

AUC score between IterNet [401] and the EfficientNet models can be attributed to a narrow 

classification threshold in the latter models. 

 A possible reason this could arise is due to shortcomings in the decoder segment of the 

EfficientNet models. Since EfficientNet compound scaling is not available as a decoder, we had 

to implement different architectures for the decoder. In particular, the decoder has significantly 

fewer parameters than the encoder. As such, some of the performance gains in the encoder could 

be lost in the decoder. This loss has two consequences; firstly, it is plausible that the decoder 

bottlenecks all U-net models that use the EfficientNet encoder. Secondly, this implies that there is 

further room for improvement in such models by adjusting the decoder. Overall, the expansion of 

networks with the EfficientNet encoder increases networks’ segmentation capabilities. It should 

be noted that we did not take the number of parameters or training time into consideration when 

making these comparisons. However, it can be confidently assumed that the Efficient U-net models 

have a higher number of parameters and greater training time than the non-Efficient U-net models, 

although this tradeoff does result in better performance metrics. 

 Comparison between Fractal U-net and non-EfficientNet models 

 Our second comparison is between vanilla Fractal U-net and other models. We ignore the 

EfficientNet models to evaluate the practicality of the fractal block on its own. Fractal U-net 

performs comparably with other models in its metrics. In particular, we would like to point out its 
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performance against other simplified models; Fractal U-net outperformed vanilla U-net, Residual 

U-net, and R2U-net. These results show the potential of fractal designs over residual connections 

and recurrent connections. This result is significant since the design goal of all of the mentioned 

modules is to promote gradient propagation. In this regard, we can confidently say that the fractal 

mode is more effective in promoting gradient propagation in deep neural networks than both the 

recurrent and residual blocks. 

 The other important observation is against the attention models. It has a similar 

performance to models utilizing attention gate models. In the ISIC 2018 dataset Fractal U-net 

outperformed the attention gate models (Attn U-Net + Multi-Input + FTL [50]). In the 

CHASE_DB1 dataset, Fractal U-net had mixed results against LadderNet [400] and IterNet [401], 

both of which use some variant of the attention module. Fractal U-net had higher accuracy but 

lowered F1-score and AUC. The inconsistent result shows that the attention gate model to be on 

par or superior to the fractal block. This result is more intriguing since the fractal block, and the 

attention gates have different purposes. The key insight here is that the fractal block provides 

improved gradient propagation, resulting in higher pixel accuracy. However, the attention gate 

designed to target objects in an image produces more relevant improvements. Furthermore, since 

neither design competes with each other in terms of functionality, combining them could result in 

much more desirable results. The final observation is that the VGN [399] and DCNN-SVM [302] 

models outperform the vanilla Fractal U-net. 

 Comparison within EfficientNet models 

 The final evaluation comparison is within the Efficient U-net models themselves. For the 

CHASE_DB1 dataset, we compare Efficient R2U-net and Efficient Dense U-net. In this dataset, 

the Efficient R2U-net was better in all metrics versus the Efficient Dense U-net. This phenomenon 

is somewhat unexpected since the dense block has greater skip connections than the R2 block. As 

such, it should result in better gradient propagation and perform better in a one-to-one comparison. 

Furthermore, the number of convolution layers has been consistent across both. This surprising 

behavior might be explained due to the Dense block having more frequent concatenations, which 

results in a higher number of parameters. A higher number of parameters can lead to slight 

overfitting problems [113], and this might be why the Efficient R2U-net outperforms the Efficient 
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Dense U-net. Overfitting issues can be solved by specialized techniques such as compound scaling 

in EfficientNet [382] or supplementing other modules. 

 For the ISIC 2018 dataset, we compare Efficient R2U-net, Efficient Dense U-net, and 

Efficient Fractal U-net. In this dataset, the Dense block does indeed outperform the R2 block, as 

we hypothesized prior. We expect the Dense block to produce better segmentation maps than the 

R2 block, all other things being equal. And it is plausible that training on this dataset does not 

cause overfitting for the dense block. We also have the Efficient Fractal U-net for comparison, 

which is the worst of the three. This result is also unforeseen since the base Fractal U-net has better 

metrics than the base R2U-net; one would assume the same trend for their EfficientNet variants. 

This disparity could be explained due to the addition of the EfficientNet encoder itself. The fractal 

block has a higher number of parameters than the R2 block. The addition of the EfficientNet 

encoder could result in the fractal U-net architecture crossing the ideal parameter threshold and 

becoming overfitted. Overfitting does not happen in the vanilla variants since the number of 

parameters is sufficiently low, but the Efficient encoder adds a significantly higher number of 

layers and operations. Lastly, Efficient Dense U-net has higher performance metrics than Efficient 

Fractal U-net. There is no direct comparison between vanilla Dense U-net and Fractal U-net; 

however, we can still theorize a possible reason for the Dense block performing better. The Dense 

block has greater interconnectivity between its convolution layers than the fractal block since every 

layer is connected to all preceding layers in a Dense block. The fractal block ends up with a similar 

number of parameters as the Dense block since the fractal block in our models had seven 

convolution layers across all its paths versus the four layers in the Dense block. As such, it can be 

concluded that the higher interconnectivity makes up for the reduced number of layers in the Dense 

block, which makes it superior to the fractal block. 
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 CONCLUSION 

 U-net is a powerful deep learning architecture that has been successfully applied to many 

biomedical image segmentation problems. In this thesis, we explored the many variants of U-net 

and its diverse applications on a multitude of image modalities. We also examined the major deep 

learning methods and their application areas for all of the papers in this thesis. Indeed U-net based 

architecture is quite ground-breaking and valuable in medical image analysis. The growth of U-

net papers since 2017 lends credence to its status as a premier deep learning technique in medical 

image diagnosis. Thus, despite the many challenges remaining in deep learning-based image 

analysis, we expect U-net to be one of the major paths forward. 

 Precise segmentation of medical images is of vital importance for proper diagnosis by 

physicians. In this regard, U-net is a powerful deep learning architecture that achieves very strong 

performance on biomedical image segmentation. Additionally, U-net itself is quite adaptable and 

can be integrated with more deep learning techniques. The implementation of residual skip 

connections and recurrent feedback connections allows for the design of a much deeper U-net with 

a higher number of convolutions. Similar performance is achieved using densely connected 

convolutional networks. And finally, the addition of EfficientNet allows us to leverage the 

performance of a powerful pretrained classifier for our U-net encoder. Our proposed models 

achieve anticipated results on two popular benchmarking datasets. 

 Future work for this topic should be focused on implementing compound scaling for the 

expansive path to have symmetry on both U-net paths and produce further performance 

enhancement on segmentation tasks.  
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APPENDIX A. FRAMEWORKS AND SDKS 

FRAMEWORKS 

 There are many open-source deep learning frameworks, among which some of the more 

popular and widely used frameworks are listed below: 

• TensorFlow (Python, C, Java, Go, JavaScript, Swift): https://www.tensorflow.org/ 

• Keras (Python): https://keras.io/ 

• PyTorch (Python, C++): https://pytorch.org/ 

• Caffe (Python, MATLAB): http://caffe.berkeleyvision.org/ 

• Chainer (Python): https://chainer.org/ 

• Deeplearning4j (Java, Scala, Python, Clojure, Kotlin): https://deeplearning4j.org/ 

• Microsoft Cognitive Toolkit (CNTK) (Python, C#, C++): https://docs.microsoft.com/en-

us/cognitive-toolkit/ 

• Theano (Python): http://www.deeplearning.net/software/theano/ 

• MXNet (Python, Scala, Julia, R, Clojure, Java, C++, Perl): https://mxnet.apache.org/ 

• ONNX (Python): https://microsoft.github.io/onnxruntime/ 

• Sonnet (Python): https://github.com/deepmind/sonnet 

• PaddlePaddle (Python): https://github.com/PaddlePaddle/Paddle 

• DeepGraphLibrary (Python): https://www.dgl.ai/ 

SDK 

• NVIDIA CUDA-X AI platforms: https://developer.nvidia.com/deep-learning-software 

• Qualcomm mobile platforms: https://developer.qualcomm.com/solutions/artificial-

intelligence  
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APPENDIX B. DATASETS 

 The following includes some popular benchmarking datasets and databases for medical 

image segmentation tasks: 

• ISBI 2012 cell segmentation challenge: Electron microscopy cell slices. 

http://brainiac2.mit.edu/isbi_challenge/ 

• ISBI cell tracking challenge: Database collecting 2D and 3D time-lapse videos of moving 

cells from past and ongoing ISBI challenges. http://celltrackingchallenge.net/ 

• LiTS: Liver CT scans for tumor detection. 

https://competitions.codalab.org/competitions/17094 

• LIDC-IDRI: Lung CT scans for cancer detection. 

https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI 

• DRIVE: A popular retinal fundus image dataset. https://drive.grand-challenge.org/ 

• CT Colonography: CT scan dataset for colon cancer detection. 

https://wiki.cancerimagingarchive.net/display/Public/CT+COLONOGRAPHY  

• Kaggle Data Science Bowl 2018: Nuclei segmentation challenge in microscopy images. 

https://www.kaggle.com/c/data-science-bowl-2018 

• ISIC archive: Database of Dermoscopy images from past and ongoing ISIC challenges. 

https://www.isic-archive.com/ 

• SICAS Medical Image Repository: Archive for MICCAI Brain Tumor Segmentation 

Challenge (BRATS), MICCAI Ischemic Stroke Lesion Segmentation Challenge (ISLES), 

and ISBI Statistical Shape Model Challenge (SHAPE). https://www.smir.ch/Home/Browse 

• Medical Segmentation Decathlon: Collection of MR and CT databases for various target 

areas. http://medicaldecathlon.com/ 

• OASIS: Brain MRI and PET images. https://www.oasis-brains.org/ 

• ABIDE: Brain MRI datasets. http://fcon_1000.projects.nitrc.org/indi/abide/ 

• ICCVB: Prostate MRI and retinal fundus datasets. http://i2cvb.github.io/ 

• STARE: Retinal fundus dataset. http://cecas.clemson.edu/~ahoover/stare/ 

• CHASE_DB1: Retinal fundus dataset. https://blogs.kingston.ac.uk/retinal/chasedb1/ 

• SCR: Chest X-ray dataset. http://www.isi.uu.nl/Research/Databases/SCR/ 
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• DDSM: Mammogram dataset. http://www.eng.usf.edu/cvprg/Mammography/Database.html 

• BCDR: Mammogram database. https://bcdr.eu/ 

• mini-MIAS: Mammogram dataset. http://peipa.essex.ac.uk/info/mias.html 

• PanNuke: Histology dataset for nuclei instance segmentation. 

https://jgamper.github.io/PanNukeDataset/ 

• University of Cyprus: Multiple sclerosis MRI, tele-orthopedics X-ray, and carotid ultrasound 

datasets. http://www.ehealthlab.cs.ucy.ac.cy/index.php/facilities/32-software/218-datasets 

• The cancer imaging archive: A large public repository of cancer image datasets. 

https://www.cancerimagingarchive.net/ 

• Cardiac atlas project: Repository of cardiovascular image datasets. 

http://www.cardiacatlas.org/ 

COVID-19 DATASETS 

 The following are some publicly available COVID-19 image datasets. 

• COVID-CT: https://github.com/UCSD-AI4H/COVID-CT 

• COVID-19 CT: http://medicalsegmentation.com/covid19/ 

• University of Montreal COVID-19 Image Data Collection: 

https://github.com/ieee8023/covid-chestxray-dataset 

• RadiologyAi Consortium: https://www.radiologyaiconsortium.org/view  
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