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ABSTRACT 

Adults aged 65 years and older have become the fastest-growing age group worldwide and 

are known to face perceptual, cognitive, and physical challenges in later stages of life. Automation 

may help to support these various age-related declines. However, many current automated systems 

often suffer from design limitations and occasionally require human intervention. To date, there is 

little guidance on how to design human-machine interfaces (HMIs) to help a wide range of users, 

especially older adults, transition to manual control. Multimodal interfaces, which present 

information in the visual, auditory, and/or tactile sensory channels, may be one viable option to 

communicate roles in human-automation systems, but insufficient empirical evidence is available 

for this approach. Also, the aging process is not homogenous across individuals, and physical and 

cognitive factors may better indicate one’s aging trajectory. Yet, the benefits that such individual 

differences have on task performance in human-automation systems are not well understood. Thus, 

the purpose of this dissertation work was to examine the effects of 1) multimodal interfaces and 2) 

one particular non-chronological age factor, engagement in physical exercise, on transitioning 

from automated to manual control dynamic automated environments. Automated driving was used 

as the testbed. The work was completed in three phases.  

The vehicle takeover process involves 1) the perception of takeover requests (TORs), 2) 

action selection from possible maneuvers that can be performed in response to the TOR, and 3) 

the execution of selected actions. The first phase focused on differences in the detection of 

multimodal TORs between younger and older drivers during the initial phase of the vehicle 

takeover process. Participants were asked to notice and respond to uni-, bi- and trimodal 

combinations of visual, auditory, and tactile TORs. Dependent measures were brake response time 

and maximum brake force. Overall, bi- and trimodal warnings were associated with faster 

responses for both age groups across driving conditions, but was more pronounced for older adults. 

Also, engaging in physical exercise was found to be correlated with smaller maximum brake force.  

The second phase aimed to quantify the effects of age and physical exercise on takeover 

task performance as a function of modality type and lead time (i.e., the amount of time given to 

make decisions about which action to employ). However, due to COVID-19 restrictions, the study 

could not be completed, thus only pilot data was collected. Dependent measures included decision 

making time and maximum resulting jerk. Preliminary results indicated that older adults had a 
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higher maximum resulting jerk compared to younger adults. However, the differences in decision-

making time and maximum resulting jerk were narrower for the exercise group (compared to the 

non-exercise group) between the two age groups.  

Given COVID-19 restrictions, the objective of phase two shifted to focus on other (non-

age-related) gaps in the multimodal literature. Specifically, the new phase examined the effects of 

signal direction, lead time, and modality on takeover performance. Dependent measures included 

pre-takeover metrics, e.g., takeover and information processing time, as well as a host of post-

takeover variables, i.e., maximum resulting acceleration. Takeover requests with a tactile 

component were associated with the faster takeover and information processing times. The shorter 

lead time was correlated with poorer takeover quality. 

The third, and final, phase used knowledge from phases one and two to investigate the 

effectiveness of meaningful tactile signal patterns to improve takeover performance. Structured 

and graded tactile signal patterns were embedded into the vehicle’s seat pan and back. Dependent 

measures were response and information processing times, and maximum resulting acceleration. 

Overall, in only instructional signal group, meaningful tactile patterns (either in the seat back or 

seat pan) had worse takeover performance in terms of response time and maximum resulting 

acceleration compared to signals without patterns. Additionally, tactile information presented in 

the seat back was perceived as most useful and satisfying. 

Findings from this research can inform the development of next-generation HMIs that 

account for differences in various demographic factors, as well as advance our knowledge of the 

aging process. In addition, this work may contribute to improved safety across many complex 

domains that contain different types and forms of automation, such as aviation, manufacturing, 

and healthcare. 
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 INTRODUCTION 

Adults aged 65 years and older have become the fastest-growing age group worldwide 

(United Nations, 2019). Declines in perceptual, cognitive, and physical abilities are common with 

age (Anstey et al., 2005; Czaja et al., 2019; Erber, 2012), which may make performing certain 

daily activities challenging. Automated systems, such as smart home technologies, automated 

speech recognition systems, automated vehicles, and service robots, are systems that are capable 

of performing operations without continuous input from human operators (Lee et al., 2017; Zhang 

et al., 2017). With respect to the aging population, these systems may augment various age-related 

changes, and help older adults to maintain independence, good health, mobility, or safety, all which 

contribute to a greater quality of life (e.g., Pak, McLaughlin, Leidheiser, & Rovira, 2017).  

However, interacting with these intelligent systems, in many cases, often still requires 

considerable cognitive and physical effort, for example, to quickly perceive and process 

information from the systems, select an appropriate action, and execute that action, especially 

when they malfunction and need human intervention. In this case, age-related declines may hinder 

older adults from successfully completing their intended task. For instance, even though future 

autonomous vehicles are expected to bring a number of benefits to society, such as improving 

safety, decreasing drivers’ workload, and reducing travel costs and time (e.g., Anderson et al., 

2014; Bishop, 2000; Saffarian, de Winter, & Happee, 2012; Wan & Wu, 2018; Young & Stanton, 

2007), several publications suggest that for at least the next 20-30 years, the majority of vehicles 

on highways will only have semi-autonomous capabilities (Litman, 2017; Niles, 2019). This means 

that in off-nominal situations, such as missing lane markers, road construction zones, and/or high 

traffic volume, automated vehicles may struggle to perform and will need help from drivers to take 

over, or resume, manual control  (Eriksson & Stanton, 2017; Körber et al., 2018; Molnar et al., 

2017). This takeover process requires drivers to 1) perceive and process a takeover alert, 2) 

preempt motor readiness (i.e., move eyes on the road, hands on steering wheel, and foot on 

gas/brake pedals), and 3) control the vehicle as in manual driving (McDonald et al., 2019; Zeeb et 

al., 2015). Yet, in general, age-related changes may limit the extent to which older drivers can 

effectively complete this complex takeover task.  

While there are commonly-known physiological changes that occur with age, a large body 

of research suggests that chronological age alone (i.e., years a person has been living) may not be 
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the best predictor of cognitive and physical functioning nor task performance. Rather, non-

chronological age factors, such as continuous engagement in daily physical, cognitive, and social 

activities may mitigate age-related declines. Specifically, older adults who engage in physical 

exercise often benefit from improved/less declined executive function (e.g., Barnes, Yaffe, 

Satariano, & Tager, 2003), perceptual and processing speed (e.g., Marmeleira, Godinho, & 

Fernandes, 2009), attention (e.g., Pesce, Cereatti, Casella, Baldari, & Capranica, 2007), and motor 

learning abilities (e.g., Huebner, Godde, & Voelcker-Rehage, 2017). Similarly, cognitive and 

social activities (such as reading and conversing, respectively) are also known to lead to enhanced 

cognition (e.g., Ghisletta, Bickel, & Lövdén, 2006; Glei et al., 2005). However, the benefits of 

these non-chronological age factors are often reported for simple cognitive tests such as Mini-

mental state (MMSE; Folstein, Folstein, & McHugh, 1975) exam (as used in Carlson et al., 2012) 

or simple physical exams such as walking speed or balance test/measures (e.g., Rogers, Larkey, & 

Keller, 2009). These effects have not been demonstrated for more complex tasks, such as taking 

over control from an automated system. Currently, there is a lack of empirical data on the 

influence of non-chronological age factors on (takeover) task performance in complex 

environments in older adults (Gap 1).  

Additionally, with respect to interactions within human-autonomation systems, research 

has found that improving operators’ performance can be achieved through the use of multimodal 

displays (i.e., interfaces that present information in visual (V), auditory (A), and/or tactile (T) 

sensory channels). This approach has been shown to increase alertness and response rate to critical 

information, as well as to aid humans in decision-making (Sarter, 2007; Sarter, 2006; Wickens, 

2008). For example, in automated vehicles, studies have found that when multimodal signals (i.e., 

VA, VT, AT, and VAT) are used as takeover warning signals, they are often associated with faster 

response times compared to unimodal signals (i.e., single V, A, or T) (e.g., Petermeijer, 

Bazilinskyy, Bengler, & de Winter, 2017; Politis, Brewster, & Pollick, 2017; Yoon, Kim, & Ji, 

2019). However, it is unclear to what extent multimodal displays can assist drivers, especially 

older adults, in recovering manual control from automated systems (Gap 2). 

The purpose of this dissertation work was to fill the above gaps in the research literature 

and to examine the effects of 1) the non-chronological age factor, engagement in physical activity, 

and 2) multimodal interfaces on transitioning from automated to manual control in human-

automation systems. This dissertation focuses on physical exercise (as a starting point into 
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investigating non-chronological age factors) because engagement in physical activities has been 

found to slow down the rate of cognitive and physical decline in older adults – both of which are 

critical for vehicle takeover. Automated driving was used as the testbed. This dissertation was 

completed in three phases and three human-subject experiments, respectively.  

The first phase focused on differences in the detection of multimodal TORs between 

younger and older drivers during the initial phase of the vehicle takeover process. Participants 

were asked to notice and respond to uni-, bi- and trimodal combinations of visual, auditory, and 

tactile TORs. Dependent measures were brake response time and maximum brake force. 

The second phase aimed to quantify the effects of age and physical exercise on takeover 

task performance as a function of modality type and lead time (i.e., the amount of time given to 

make decisions about which action to employ). Dependent measures were decision-making time 

and maximum resulting jerk. However, due to COVID-19 restrictions, this study was not able to 

recruit a sufficient number of older participants, and thus only pilot data was collected. For the 

same reason, the objective of the phase two shifted to examine the effects of signal direction, lead 

time, and modality on takeover performance. Dependent measures included pre-takeover metrics, 

e.g., takeover and information processing time, as well as a host of post-takeover variables, i.e., 

maximum resulting acceleration. 

 The third, and final, phase used knowledge from phases 1 and 2 to investigate the 

effectiveness of meaningful tactile signal patterns to improve takeover performance. Structured 

and graded tactile signal patterns were embedded into the vehicle’s seat pan and back. Dependent 

measures were response and information processing times, and maximum resulting acceleration.  

The structure of this dissertation is organized as follows: Chapter 2: Literature Review 

discusses the current knowledge of older adults, automated systems, and multimodal interfaces. 

Chapters 3 to 6 present methodologies and findings from the four human-subject studies. Chapter 

7: Conclusion summarizes key findings, highlights the broader implications of this dissertation 

work, and proposes future directions for research.   
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 LITERATURE REVIEW 

2.1 Worldwide Aging 

 Current status of older adults 

As shown in Figure 2.1, older adults (aged 65 years old or over) have become the fastest-

growing population globally. According to the United Nations, Department of Economic and 

Social Affairs (2019), in 2019, the proportion of older adults among all populations was 9%, which 

is projected to be at least 12% by the year 2030 and 16% in 2050. For countries in Europe and 

Northern America, older populations could account for 25% of the general population in 2050 

(United Nations, 2019). Specifically, in the United States, this rapid increase may due to the baby 

boomer generation (i.e., individuals who were born between the years of 1946 to 1964), who began 

to turn 65 years of age in 2011. This trend is expected to continue and is coupled with increased 

of life expectancy for this generation (Czaja et al., 2019; Erber, 2012; Ortman et al., 2014).  

 

 

Figure 2.1. Projected global population by age groups (excluding Australia and New Zealand) 

(United Nations, 2019) 
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 Age-related declines 

One major concern with a rapidly growing aging population is that perceptual, cognitive, 

and psychomotor abilities are known to change with age, and most often decline (e.g., Eby & 

Molnar, 2012; Erber, 2012), which may make performing daily tasks difficult. For instance, a 

decline in vision can impair driving abilities, while decrements in psychomotor abilities may cause 

physical mobility issues. The following section will briefly introduce the most common declines 

found in the aging literature. 

Perceptual decline 

Visual acuity is an index of ability to discriminate objects such as letters or numbers at a 

given distance, while visual contrast sensitivity is the ability to distinguish between similar shades 

of light and dark (Monge & Madden, 2016). According to Monge and Madden (2016), visual 

contrast sensitivity is more associated with deteriorated daily task performance (such as driving 

and judging distances) compared to visual acuity. For useful field-of-view, the visual area that 

objects can be localized/recognized without eye/head movement (Kline & Scialfa, 1996), is also 

known to reduce as a function of age (Ball et al., 1988). Similarly, the sense of hearing is another 

perceptual system that experiences declines with age and is common in that at least 30% of older 

adults have apparent impairments (Czaja et al., 2019; Kausler et al., 2007). These may include 

declines in perceiving high-frequency sounds (i.e., presbycusis), hearing acuity which may lead to 

difficulties in distinguishing sounds in noisy environments (Tun & Wingfield, 1999), and sound 

localization (Dobreva et al., 2011). Finally, the sense of touch, also declines due to age, and 

manifests itself as reduced pressure sensitivity (resulting in difficulties perceiving and 

distinguishes absolute forces), tactile sensitivity, and spatial acuity (ability to distinguish between 

two points of touch) (Czaja et al., 2019; Tremblay & Master, 2016). Especially for the tactile sense, 

older adults have substantial declines of sensitivity in detecting high frequency (such as 250 Hz) 

vibrations (Verrillo, 1980). 

Cognitive decline 

In the human information processing framework, cognition is the step that involves 

collecting the products of perception and then providing interpretations for action execution (Czaja 
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et al., 2019). Age-related declines in cognition have been observed in cognitive constructs, most 

notably processing speed, attention, memory, and executive function (Harada et al., 2013). 

Processing speed refers to the rate of processing the information, which may impair overall 

cognitive functioning if processing speed is slowed (Salthouse, 1996). Older adults typically have 

slower processing speed when performing a task, such as verbal fluency (Elgamal et al., 2011), 

speech comprehension (Wingfield et al., 1985), or spatial information (Jenkins et al., 2000). 

Attention represents the ability and capacity to concentrate and process information (Czaja et al., 

2019; Harada et al., 2013). According to Harada et al. (2013), age-related declines in divided 

attention, i.e., the ability to timeshare tasks (Salthouse et al., 1995) and selective attention, the 

ability to ignore task-irrelevant information (Carlson et al., 1995), are more apparent in complex 

attention tasks, such as driving. Additionally, older adults have been shown to experience 

challenges in maintaining vigilance over an extended period of time (McAvinue et al., 2012). Age-

related declines are also observed in memory, including working memory (Baddeley, 1992) that 

temporarily stores and manipulates information for cognitive activity (Cabeza et al., 2009; 

Salthouse & Babcock, 1991), and long-term memory, including episodic memory, prospective 

memory, and procedural memory (Luo & Craik, 2008). For instance, in driving, working memory 

is used to hold temporary information such as position and speed information of adjacent vehicles, 

while long-term memory helps to remember the daily routine of driving home as well as the 

regulations of traffic. Thus, declines in memory may cause safety issues. Finally, executive 

function relates to mental processes that are critical for cognitive control of abilities and behaviors, 

such as response inhibition control, attention management, action adaption, and working memory 

(Bryan & Luszcz, 2000; Diamond, 2013). Deterioration of executive function has been widely 

observed in the literature (e.g., Wecker et al., 2000, 2005) and may lead to difficulties in regulating 

emotions, staying focused, self-regulating behaviors, and organizing and planning. 

Psychomotor decline 

Age-related declines in psychomotor aspects include movement control and strength 

(Czaja et al., 2019). For movement control, declines mainly affect movement speed (Stelmach & 

Hömberg, 1993) and accuracy (Fraser et al., 2009), and balance and gait control (Tang & 

Woollacott, 2004). Specifically, older adults in general move are slower and with less precision 

than younger adults, and have a higher chance to fall due to poorer balance and gait control. 
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Reduction in strength is another type of physical decline with age, such as less muscle strength 

and reduced endurance (Czaja et al., 2019; Metter et al., 1997; Narici et al., 1991) and can result 

in difficulties of performing simple tasks, such as grasping and holding an item for a short period 

of time.  

 Individual differences and non-chronological age factors 

While in general, the above perceptual, cognitive, and psychomotor abilities tend to decline 

with age, researchers understand that these declines are not homogeneous across individuals. In 

other words, these abilities change at different rates for different people (e.g., Franklin & Tate, 

2009; Şoitu, 2015). As a result, chronological age (i.e., the number of years a person has lived) 

alone may not be the best predictor of task performance, given the many factors in one’s life that 

influence how a person ages. These relate to physical, cognitive, and social aspects of one’s 

lifestyle and are known as non-chronological age factors (Ballesteros, Kraft, Santana, & Tziraki, 

2015; Baltes & Baltes, 1990; Franklin & Tate, 2009; Hertzog, Kramer, Wilson, & Lindenberger, 

2008; Rowe & Kahn, 1997; Seeman & Chen, 2002; Stein & Moritz, 1999; Strawbridge, Cohen, 

Shema, & Kaplan, 1996; Vaillant & Mukamal, 2001). 

Physical factor/activities 

Researchers have found that engaging in physical activities can benefit physical body 

functioning and body health such as improving glucose metabolism, vital capacity, balance 

control, and body flexibility, as well as mitigate perceptual and cognitive related declines 

(Ballesteros et al., 2015). Evidence has been found in three different categories of physical 

activities: physical exercise, sportive activities (including meditative movement and martial arts), 

and complex activities (Ballesteros et al., 2015).  

Physical exercise 

Aerobic and non-aerobic exercises are types of physical exercises that can benefit physical 

and cognitive functioning. Example aerobic exercises are intense walking, jogging, swimming, or 

bicycling (Tomporowski & Ellis, 1986), and have been shown to be associated with better 

executive function (Barnes et al., 2003; Voelcker-Rehage, Godde, & Staudinger, 2010), perceptual 
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and processing speed (Ballesteros et al., 2013; Marmeleira et al., 2009; Voelcker-Rehage et al., 

2010), attention (Barnes et al., 2003; Marmeleira et al., 2009; Pesce, Cereatti, Casella, Baldari, & 

Capranica, 2007), memory (Cassilhas et al., 2012; Erickson et al., 2011), and motor learning 

(Huebner et al., 2017) in older adults. Non-aerobic exercise, on the other hand, according to 

Ballesteros et al. (2015), includes resistance (e.g., weight lifting), stretching (e.g., shoulder 

stretch), and coordination training (e.g., standing balance training). Studies have found that 

coordination training can also improve executive function (Niemann et al., 2014), but the effects 

were more salient when non-aerobic exercise was combined with aerobic exercise (e.g., Voelcker-

Rehage, Godde, & Staudinger, 2011). Similarly, resistance training was observed to improve older 

adults’ executive function (Liu-Ambrose et al., 2010) and memory (Cassilhas et al., 2012). 

However, evidence of the benefits of resistance training was more observed in combination with 

aerobic exercise, as reported by a meta-analysis (Colcombe & Kramer, 2003). For stretching 

training, no direct benefits on cognition but physical function (enhanced postural stability and 

balance, and improved joint of motion, e.g., Garber et al., 2011; Lee, Jackson, & Richardson, 2017) 

was found, and therefore, stretching training was usually used as a control group in exercise effect 

on older adults’ cognition studies (e.g., Colcombe et al., 2006, 2004; Erickson et al., 2011; 

Niemann et al., 2014; Voelcker-Rehage et al., 2011). A recent review article on the benefits of 

physical activity states that aerobic and coordination training seemed to be most beneficial to 

cognition compared to other physical exercises (Muiños & Ballesteros, 2018). Combining these 

findings, aerobic exercise appears to be the most crucial physical exercise type that mitigates age-

related declines in cognitive and physical functioning. 

Sportive activities (meditative movement and martial arts) 

Meditative movement (e.g., Tai Chi or Qi Gong) and martial arts (e.g., Judo, Kung Fu, or 

Taekwondo) also present benefits to older adults in terms of cognitive and physical functions 

(Ballesteros et al., 2015). Specifically, a meta-analysis compared 36 aging studies and found that 

Tai Chi and Qi Gong can reduce fall risk, increase grip strength and walking speed, reduce blood 

pressure, and reduce depression and anxiety (Rogers et al., 2009). Martial arts also showed benefits 

to older adults in both cognitive and physical aspects, such as visual attention and processing speed 

(Mónica Muiños & Ballesteros, 2014), dynamic visual acuity (the ability to discriminate critical 
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details of an object when there is relative motion) (Mónica Muiños & Ballesteros, 2015), and 

postural control (Krampe et al., 2014). 

Complex activities 

Complex activities here refer to physical activities in which aerobic exercise is only one 

component of the activity – such as dance, which involves emotions, sensory simulation, motor 

coordination, and social interaction (Kattenstroth et al., 2010, 2013), were found to be associated 

with both cognitive and physical functions for older adults (Ballesteros et al., 2015), such as 

facilitating balance and posture (Alpert et al., 2009; Granacher et al., 2012; Kattenstroth et al., 

2010; Keogh et al., 2009), executive function (Coubard et al., 2011), and perceptual speed 

(Kattenstroth et al., 2013). 

Cognitive factor/activities 

Engagement in intentional cognitive activities may also be correlated with better cognition 

(Bielak et al., 2012; Ghisletta et al., 2006; Hertzog et al., 2008; Wilson et al., 2012). Examples of 

cognitive activities including playing games (e.g., crossword puzzles, cards, chess), singing, 

reading, cooking, and watching TV (Ghisletta et al., 2006; Schinka et al., 2005). Carlson et al. 

(2012) divided these activities into three levels based on their cognitive demands: high (e.g., 

playing, singing, drawing, and reading), moderate (e.g., cooking, playing cards, or discussing 

politics), and low (watching TV/movies, or listening to music/radio) levels, based on nine 

psychologists’ ratings, and found that engaging in a variety (or a large number) of cognitive 

activities predicted more variance in older adults’ overall scores on cognitive functioning tests(i.e., 

the Mini-Mental State Exam; Folstein, Folstein, & McHugh, 1975) and memory tests (i.e., the 

Hopkins Verbal Learning Test-Revised; Benedict, Schretlen, Groninger, & Brandt, 1998), than the 

levels of cognitive demand or frequency of engaging in any single activity alone. Similar findings 

were reported in Baer et al. (2013) which found that a larger variety of cognitive activities 

positively correlated with higher cognitive test scores (measured by the Montreal Cognitive 

Assessment; Nasreddine et al., 2005). Yet, other studies have found that the frequency of engaging 

in cognitive activities may also be associated with global cognitive function, memory, perceptual 

speed, and executive function (e.g., Bielak et al., 2012; Wilson et al., 2012). In all, while the 
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frequency of engaging in cognitive activities can benefit cognition, the number of activity types 

produces even more benefits. One possible explanation is that participating in multiple activities 

exercises several aspects cognitive of abilities such as task switching and flexibility (Carlson et 

al., 2012).  

Social factor/activities 

Research has also found engagement in social activities to contribute to positive cognitive 

functioning (Ballesteros et al., 2015; Bassuk et al., 1999; Glei et al., 2005; Kelly et al., 2017; 

Zunzunegui et al., 2003). According to these research studies, three categories were identified: 

social engagement, social network, and social support. 

Social engagement 

Social engagement involves interactions with people, attending social events/activities, 

maintaining and reinforcing social roles, and obtaining a sense of value and attachment (Berkman 

et al., 2000). A large body of research evidence has found that participating more in social activities 

can prevent or slow down cognitive declines, based on global cognitive tests (Glei et al., 2005; 

James et al., 2011; Kimura et al., 2017; Lee & Kim, 2016; Lee et al., 2009; Wang et al., 2013). For 

example, Wang et al. (2013) investigated the effects of cognitive, physical, and social activities on 

cognitive functioning, and found that higher levels of social engagement led to less decline in 

global cognition, and that engagement in all three types of activities actually improved global 

cognition score. However, no effects on specific cognitive domains, such as memory or executive 

function, were observed in this study. Conversely, James et al. (2011) found that social 

engagement not only reduced global cognitive declines, but also slowed declines in executive 

function, memory, and perceptual speed. 

Social network 

Social network consists of different types of social contacts (e.g., close friends, family 

members, or neighbors) (Wrzus et al., 2013), which may have different sizes, relationships, and 

frequency of interaction (Berkman et al., 2000; Kelly et al., 2017). Similar to social engagement, 

a larger social network, as well as a high frequency of contacts, positively correlated with better 
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cognitive functions (e.g., Barnes et al., 2004; Béland, Zunzunegui, Alvarado, Otero, & Del Ser, 

2005; Holtzman et al., 2004; Hughes, Andel, Small, Borenstein, & Mortimer, 2008; Zunzunegui 

et al., 2003). 

Social support 

Social support refers to perceived emotional, instrumental, and/or informative support from 

social network, to share feelings and experiences, and to get help with daily tasks and decision 

makings (Berkman et al., 2000). According to the literature, positive support generally leads to 

better global cognitive functions, especially with positive emotional support and greater 

satisfaction with the support (Ellwardt, Aartsen, Deeg, & Steverink, 2013; Holtzman et al., 2004; 

Seeman, Lusignolo, Albert, & Berkman, 2001; Windsor, Gerstorf, Pearson, Ryan, & Anstey, 2014; 

Yeh & Liu, 2003). One study investigated the effects of social support on specific domains of 

cognitive functions and found that social support was positively correlated with better perceptual 

speed, attention, and memory (Hughes et al., 2008). Given that instrumental (e.g., help with daily 

tasks) and informative support (e.g., advice/information about medical problems) mean that a 

person generally has poorer  (cognitive) health (Hughes et al., 2008), studies that investigated 

healthy older adults did not find correlations between these types of social support and cognitive 

functioning (e.g., Ellwardt, Aartsen, Deeg, & Steverink, 2013; Hughes et al., 2008; Seeman, 

Lusignolo, Albert, & Berkman, 2001). 

In conclusion, all three factors: physical, cognitive, and social have positive impacts on 

older adults’ cognition. However, the physical factor has been widely examined and consistently 

reported to contribute to both improved cognitive and physical functions, whereas cognitive and 

social factors are more reported to benefit mainly (or just) cognition. As a result, physical activities 

(especially aerobic exercise) may be the more appropriate non-chronological age factor to better 

understand interactions with complex systems that require high demands of both cognitive and 

physical resources. 
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2.2 Automation 

 Complex automated systems 

Automation is often developed to help humans perform tasks that are beyond their abilities 

and/or unpleasant to be performed, which contribute to improved safety (Scerbo, 2018; Wickens, 

Hollands, Banbury, & Parasuraman, 2015). Automated systems can be found in a wide range of 

environments, including transportation, manufacturing, construction, healthcare, retail services, 

and education (Mouloua & Hancock, 2019).  

Automated systems provide a number of benefits (e.g., Davis, Curry, Wiener, & Harrison, 

1983; Endsley & Kiris, 1995; Parasuraman, Molloy, Mouloua, & Hilburn, 2018; Scerbo, 2018; 

Wickens et al., 2015; Woods, 2018). First, they can reduce human operators’ workload, making 

available both attentional and physical resources. Second, they are able to lessen sources of 

variability related to human performance. Finally, they can help to decrease the amount of time 

needed to complete tasks. Given the rapid rise of technological developments in today’s society, 

designers and engineers have the responsibility of thinking about what aspects of tasks should be 

performed by the human and which can be carried out by automation (Raja Parasuraman et al., 

2000). Parasuraman et al. (2000) proposed a 10-level automation framework for describing the 

roles of humans and machines in joint human-automation systems. 

As presented in Figure 2.2, this common taxonomy for representing the different levels of 

automation is on a 10-point scale, where the lowest level (1) is no automation (or fully manual) 

and the highest level (10) is full automation. As the automation level increases, so does the role 

that the system plays in performing certain tasks, from no contribution at all (no automation), to 

assisting with decision making and execution (partial automation), and to completely performing 

tasks without human intervention (full automation). This general automation scheme is applicable 

for automated systems across a wide range of machines and devices. However, similar versions of 

such taxonomy have been developed for specific automated systems, such as vehicle driving 

systems.  
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Figure 2.2. Levels of automation (based on decision and action selection) (Raja Parasuraman et 

al., 2000) 

Problems with automation 

While there are numerous potential benefits of automation, its design has also raised a 

variety of concerns regarding how humans interact with automation, given that these systems are 

not perfect. One concern is the chance for the loss or degradation of skills necessary for task 

operations (Endsley & Kiris, 1995; Scerbo, 2018). For example, a driver may lose the ability to 

proficiently control vehicle operations after extensive use of semi- and autonomous vehicle 

functions. Secondly, although automation aims to reduce workload, automation can sometimes 

increase mental workload in that additional planning, monitoring, and diagnosis may be required, 

which together can be more work for the human than pure manual input alone (Raja Parasuraman 

et al., 2018).  For example, when automation failure occurs, an operator needs to first figure out 

the reasons, then make decisions regarding how to handle the situation, and finally execute 

appropriate actions. In addition, monitoring automation systems may require certain levels of 

vigilance, which is not a task that humans are particularly good at doing. Lower vigilance may 

lead to passive, as opposed to, active monitoring or may cause a person to shift their attention to 

other tasks (Raja Parasuraman, 1987). Relatedly, Endsley (2018) stated that automation might take 

operators out-of-the-loop, leading to a decreased awareness about the system and environment 

(i.e., their situation awareness). This would especially be a concern in the case of automated 

vehicle failures, which may require operators to spend a great deal of time to regain 
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environment/situation awareness in order to intervene successfully. Furthermore, overreliance on 

automation has been cited as another potential issue (Raja Parasuraman & Manzey, 2010). This 

phenomenon happens when a person establishes a sense of complacency in automation as a result 

of high system reliability. This may result in the operator not paying attention to particular aspects 

of the automation behavior because of the built-up expectation that the system will perform as 

intended. Thus, the operator may not be ready to resume manual control when needed. In summary, 

these common problems in automaton suggest a gap in the literature regarding how best to support 

operators while using automation, such as the design of human-machine interfaces (HMIs). 

 Aging and automation 

Even though there are some potential concerns related to human-automation interaction, 

certain characteristics of this technology may benefit particular demographics, e.g., older adults 

who are suffering from age-related declines. In this case, the assistance of automation can help 

maintain independence, good health (e.g., via automated health monitoring technologies), mobility 

(e.g., via autonomous vehicles), or safety (e.g., via automated fall detection systems) (e.g., Pak, 

McLaughlin, Leidheiser, & Rovira, 2017) – all which contribute to a greater quality of life. 

Early research reported that new technologies (e.g., automated systems) were generally 

less accepted by older populations (Kantowitz et al., 1993). Initially, this was explained by older 

adults’ lessened capacity to process information. However, more recent studies have found older 

adults to have more positive attitudes toward automated systems, such as smart home technologies 

(e.g., Demiris et al., 2004; Mann, Belchior, Tomita, & Kemp, 2007; Mitzner et al., 2010), once 

they sufficiently learn and feel comfortable using technologies. Many researchers cite this 

receptivity as older individuals perceiving particular technologies to be useful and easy to use  

(Mann et al., 2007; Mitzner et al., 2010; Zimmer & Chappell, 1999). For example, a systematic 

review on older adults’ perceptions of Information and Communication Technologies (ICT) 

reported that they were more motivated to adopt automated systems that can maintain their 

independence and safety at home (such as fall prevention) (Hawley-Hague et al., 2014). Similarly, 

Arthanat et al. (2020) investigated older adults’ smart home ownership and found that older adults 

had higher smart home ownership when the usability of ICT, and home safety and security levels 

were perceived higher. Furthermore, factors such as physical and cognitive functions, and social 

relationships, may also impact older adults’ technology acceptance, as examined in the senior 
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technology acceptance model (STAM) (Chen & Chan, 2014). Specifically, older adults with more 

cognitive and physical declines may influence the successful use of technologies, but better social 

relationships enable older adults to learn the benefits of technologies from their families and 

friends. Findings across studies suggest that to increase older adults’ technology acceptance, it is 

necessary to increase the exposure of new technology to older adults and emphasize the benefits 

of technology.  

The literature on aging and automation has shown more evidence that older adults are 

adopting using automated systems to maintain or improve task performance. Specifically, Sanchez 

et al. (2014) compared younger and older adults’ detection task performance with and without 

automated decision aid while operating simulated agricultural vehicles, and found that both 

younger and older adults can adjust their reliance and behavior on automated systems when the 

reliability of the systems varied, even though older adults may take longer time to do so. In a 

different study, Sanchez et al. (2005) compared age-related differences in using automated aid for 

tracking the ingredients in a specific recipe, and found older adults to rely more on the automated 

aid when the workload was higher, and prefer real-time feedback from the system, while younger 

adults used the automated aid only for verification purposes. McBride et al. (2011, 2010) examined 

the effects of age on dual-task performance, where participants performed as a warehouse manager 

to receive packages into inventory and dispatch fully loaded trucks. An automated messaging 

system was used to provide real-time feedback to participants. The authors found that with more 

practice with automation, older adults relied more on the automation compared to younger adults, 

even when the automation failed. This finding is similar to the results in Ho et al. (2005) that older 

adults relied more on decision aids in dual-tasks compared to younger adults. One possible reason 

was that the declined cognitive ability, such as working memory, had diminished ability to detect 

automation failures, resulting in a relatively higher trust in the system. The results indicated that 

older adults who may particularly benefit from automated systems in complex task environments 

need more support to identify system failures.  

Two studies compared younger and older adults’ task performance in a luggage screening 

task in chromatic X-ray images with/without automated aids (McCarley et al., 2003; Wiegmann 

et al., 2006). Even though younger adults had better performance (as measured by sensitivity) with 

text cueing compared to older adults (McCarley et al., 2003), with more advanced automated 

features, e.g., spatial cueing, age-related differences were mitigated (Wiegmann et al., 2006). This 
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finding suggests that with appropriate designs that consider the capabilities and limitations of older 

individuals, older adults’ task performance can be improved. Thus, it is necessary to consider older 

adults’ needs and identify features that may particularly benefit this population when designing 

automated support, which is the main gap to address in this dissertation. 

2.3 Decision Support: Multimodal Information Presentation 

One design approach that can facilitate communication between automated systems and 

human operators is multimodal information displays or multimodal information presentation, 

which integrate use the visual, auditory, and/or tactile sensory channels to display information 

(Giang et al., 2010; Ho & Spence, 2008; Ho, Nikolic, & Sarter, 2001; Sarter, 2007; Sarter, 2006; 

Spence & Ho, 2008). The idea is supported by research that resulted in the conceptualization of 

the Multiple-Resource Theory (MRT) (Wickens, 2008), which explains that humans can process 

information concurrently in multiple sensory channels, and that each channel is relatively 

independent. Also, each channel has limited capacity, and overloading one channel may result in 

poor task performance (Sarter, 2007; Wickens, 2008). For instance, it may be easier to miss the 

ringing of a phone in a noisy environment, whereas a phone vibration would instead be detected 

in the same (noisy) context. As such, multimodal displays can be very helpful in communicating 

to humans when automated systems have reached their limits by signifying to the operator the need 

for takeover. To successfully implement multimodal display designs, it is important to 

acknowledge that each sensory modality has its own characteristics and set of strengths for 

supporting various tasks/task environments (Sarter, 2006). 

The attributes of visual displays, include color (frequency), size (pixels), or shape 

differentiation, contrast, or luminance differentiation (Chung & Byrne, 2004; Giang et al., 2010; 

Ho et al., 2001). For instance, a large flashing static color abstract (no associated meaning) cue 

may indicate the state of a system. On the other hand, a flashing visual icon (e.g., a steering wheel 

icon on the vehicle dashboard) implies a more meaningful visual cue, such as instructing drivers 

to put their hands on the steering wheel. Presenting information in the visual channel allows a large 

amount of information to be conveyed and at a high rate of information transfer (Sarter, 2006). 

However, the visual channel is often overloaded in many of today’s data-rich environments, and 

therefore, the efficiency of visual displays may be degraded (e.g., as a visual alert) (Liu, 2001). In 
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addition, visual displays require information to be presented in the operator’s field-of-view and 

gaze direction (Hirst & Graham, 1997). 

Auditory display parameters include frequency, loudness, tempo, and rhythm (Walker & 

Kramer, 2004). Changing these parameters can produce different types of auditory cues. For 

example, abstract auditory signals can be used for alerting, whereas meaningful auditory cues, via 

sonification, can be used to convey more complex messages to humans (Giang et al., 2010). 

Auditory cues are often used when the visual channel is occupied, are effective at quickly seeking 

a person’s attention, and can be sent from any direction (Hirst & Graham, 1997; Sarter, 2006; 

Spence & Ho, 2008a). However, limitations of auditory displays can sometimes include 1) 

obtrusiveness, 2) difficultly in localizing (especially when surrounded by other auditory signals), 

and  3) the potential to cause pain when loudness threshold is reached (such as over 100 dB of 

loudness) (Eldridge, 2006; Neuhoff et al., 2002).  

 Tactile signal characteristics include frequency, rhythmic structure, spatial location, and 

amplitude (Brown, 2007; Giang et al., 2010; Spence & Ho, 2008a). Varying tactile parameters can 

also produce different abstract alerts or meaningful messages (Giang et al., 2010; Spence & Ho, 

2008a, 2008b). Here, meaningful messages are generated by a single tactor (i.e., tacton) or a series 

of sequential activation of tactors (i.e., spatio-temporal tactile patterns) (Giang et al., 2010), which 

are encoded messages that can convey meaningful and complex concepts and information using 

the tactile modality. Common meaningful tactile patterns include informative (i.e., that 

communicate the status of systems) and instructional tactile signals (i.e., that command some 

action) (e.g., Cohen-Lazry et al., 2019; Meng et al., 2015). Tactile displays can be placed at 

different body locations, such as head, hands, wrists, and torso (Spence & Ho, 2008a). Also, similar 

to auditory displays, tactile displays are omnidirectional (Jones et al., 2006; Jones & Sarter, 2008). 

Finally, tactile displays offer communication to humans in a private manner (Petermeijer, De 

Winter, & Bengler, 2016). However, tactile displays, in general, convey less amount and 

complexity of information compared to visual and auditory displays (Lu et al., 2011). 

When the same information that is presented at the same time using more than one of the 

above modalities, it is known as a redundant multimodal display (Sarter, 2006). This type of 

display has been shown to increase the bandwidth of information presented in complex 

environments (Jones & Sarter, 2008). Also, redundant multimodal displays may be particularly 

beneficial for older adults. Since information is presented in more than one sensory channel, it 
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helps to compensate for deficits or losses experienced in any one modality. Research has found 

that performing tasks with the assistance of redundant multimodal displays can be associated with 

higher accuracy and faster response times in computer manual tasks (Emery et al., 2003; Jacko et 

al., 2004), touch screen interaction (Lee, Poliakoff, & Spence, 2009), and driving (Lundqvist & 

Eriksson, 2019; Pitts & Sarter, 2018).  

2.4 Application in Automated Driving 

This chapter has focused on the three main elements in human-automation interaction: the 

human (i.e., older adults), the machine (i.e., automated systems), and the interface (i.e., multimodal 

display). For the human, non-chronological age factors may be better predictors of task 

performance and capabilities than age alone; for the machine, automated systems may support age-

related declines and help to maintain independence; and for the interfaces, multimodal displays 

seem to be a feasible approach to enable communication between humans and machines. This 

dissertation aims to use automated driving as the application domain to further investigate how 

older adults interact with partial automation, with the assistance of multimodal displays. 

 Aging and driving 

As mentioned, older adults have become the fastest-growing population, which also means 

that there will be more older drivers. According to the Federal Highway Administration (2018), in 

2017, about 20% of U.S. drivers were older adults. Driving is a complex task that requires the use 

of visual resources to monitor the road environment, cognitive resources, including processing 

speed in order to process driving information and make timely decisions, working memory used 

to temporarily store environmental information, executive function used to integrate information 

and manage attention quickly, and sustained attention to maintain alertness during driving; and 

physical resources to control the steering wheel, gas/brake pedals, and check side/rear mirrors 

(Anstey et al., 2005). In driving, to compensate for age-related declines, older adults may exercise 

self-regulatory driving strategies, such as reducing driving frequencies and distances, driving at 

lower speeds and with larger headway distances, and avoiding night time driving (Charlton et al., 

2006; Gwyther & Holland, 2012; Meng & Siren, 2012; Molnar et al., 2015). Still, with age-related 

perceptual, cognitive, and physical declines, performing driving tasks may compromise safety. 
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However, older drivers take driving as a positive sign of maintaining mobility and independence 

(Hassan et al., 2015; Molnar et al., 2007), because driving cessation has been shown to lead to 

health/mental issues, such as depression (Chihuri et al., 2016; Ragland et al., 2005) or social 

isolation (Liddle et al., 2014; Molnar et al., 2007).  

In this case, automated vehicles may help older drivers retain autonomy and ultimately 

achieve a higher quality of life. However, according to the literature regarding the older adults’ 

perceptions of autonomous vehicles, they are less willing to use automated vehicles compared to 

younger adults (e.g., Abraham et al., 2017; Rovira et al., 2019). For example, about 40% of older 

adults expressed concerns about using automated vehicles as a transportation method even if it 

was the only option, compared to only approximately 20% of younger adults (Schoettle & Sivak, 

2016). One reason for lower automated vehicle acceptance in older adults may be due to a lack of 

experience and knowledge on the operations of automated vehicles (Rovira et al., 2019). 

Specifically, studies have found that demographic factors, such as age, education, and living 

location, and common technology acceptance factors such as perceived usefulness and ease of use, 

were associated with automated vehicle acceptance (Acheampong & Cugurullo, 2019; Bansal & 

Kockelman, 2018; Czaja et al., 2006; Hudson et al., 2017, 2019; Hulse et al., 2018; Rovira et al., 

2019). For instance, Haboucha et al. (2017) reported that older and lower educated individuals had 

lower automated vehicle acceptance due to a lack of knowledge and understanding of the benefits 

of these vehicles. Evidence showed that once being demonstrated with system capabilities, older 

adults’ automated vehicle acceptance increased (Haghzare et al., 2021; Rahman et al., 2019). 

Alternatively, older adults’ lower acceptance level may be because the self-regulatory behavior 

observed in manual driving is translated to the semi-autonomous driving context since automated 

vehicles still require takeover and perform manual driving. Thus, they may not find the need to 

use automated vehicles. Given these feelings of reservation, it is important that automated vehicles 

be designed in a way where the HMI clearly communicates to the driver the system status and 

decisions. 

 Automated driving 

Automated vehicles are capable of controlling the dynamics of the vehicle without constant 

input from human drivers and are designed to reduce driver’s workload and increase roadway 

safety (Anderson et al., 2014; Bishop, 2000; Litman, 2019; Saffarian, de Winter, & Happee, 2012; 
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Wan & Wu, 2018; Young & Stanton, 2007). In comparison to the 10 levels of automation 

framework discussed in Section 2.2 (Raja Parasuraman et al., 2000), the taxonomy for vehicle 

automation includes six levels (SAE International, 2018), as shown in Figure 2.3. Level 0 

represents traditional manual driving; Level 1 means there is one automated system on the vehicle, 

such as adaptive cruise control or automated lane keeping; Level 2 (i.e., partial driving automation) 

indicates that two automated systems are activated on the vehicle. Levels 0-2 still require drivers 

to continuously monitor the driving task. Beginning with Level 3 (i.e., conditional driving 

automation), drivers are not expected to constantly monitor the driving environment, but are 

expected to be ready to resume manual control of the vehicle at any time. In Level 4 (i.e., high 

driving automation) automated vehicle systems will require human drivers for only very few and 

certain driving maneuvers. Finally, in Level 5 (i.e., full driving automation), drivers have no role 

as these vehicles have not steering wheel and foot pedals. As such, in Levels 3-5, drivers may 

choose to engage in non-driving related tasks (NDRTs), such as watching videos or sending 

emails. It is predicted that Level 5 automated vehicles may not be dominant on the public roadways 

for at least two decades, and therefore, Levels 2-4 will remain the main focus of research for the 

foreseeable future (Litman, 2018; Wan & Wu, 2018a). With system limitations of Levels 2-4, 

takeover requests will be sent by the vehicle to signify drivers to transition to manual driving when 

it encounters difficult or unusual conditions, such as in poor visibility or high traffic density, or 

the presence of construction (Eriksson & Stanton, 2017; Llaneras, Salinger, & Green, 2013; 

McDonald et al., 2019; Zhang, de Winter, Varotto, Happee, & Martens, 2019).  

 

 

Figure 2.3. SAE levels of automation (NHTSA, 2018) 
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As presented in Figure 2.4, a takeover process is complex and consists of a: 1) Signal 

response phase, where drivers need to perceive and process takeover warning signals, and interpret 

the meaning of signals, and 2) Post-takeover phase, for which drivers need to be prepared ready to 

takeover (i.e., eyes on road, hands on steering wheel, and foot on pedal), analyze the driving 

environment, make a decision about how to execute the takeover as well as which post-takeover 

strategies to employ, and then execute the action (e.g., McDonald et al., 2019; Petermeijer, de 

Winter, & Bengler, 2016; Zeeb, Buchner, & Schrauf, 2015). The entire takeover process utilizes 

perceptual, cognitive, and motor resources, and can take anywhere from 3-21 seconds (Eriksson 

& Stanton, 2017), depending on many factors, such as age, NDRTs, the driving environment, and 

drivers’ mental states (McDonald et al., 2019). 

 

 

Figure 2.4. A vehicle takeover process  (adapted from  Petermeijer et al. (2016) and Zeeb et al. 

(2015)) 

In general, takeover performance is measured by both time- and driving-related metrics 

(see reviews: Eriksson & Stanton, 2017; McDonald et al., 2019; Zhang et al., 2019). For time-

related measures, response time (the time between TORs and the initial brake/gas pedal or steering 

wheel contact) and takeover time (the time between TORs and the first conscious input to the 

vehicle) are most common. Here, conscious input is defined by a 2-degree change of the steering 

wheel or a 10% change of gas pedal inputs. Additionally, takeover quality, or post-takeover 

performance, is often measured using driving-related metrics, such as maximum/minimum/mean 

lateral and longitudinal accelerations, (maximum) brake force and input rate, minimum/mean time-

to-collision (TTC), and maximum resulting acceleration. Currently, there is no consensus 

regarding which driving-related metrics are most representative of the overall takeover quality. 

Thus, more research is needed in the driving field to develop standards to regularize takeover 

performance measurements. One particular variable, maximum resulting acceleration, is seen as a 
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good option because it encompasses a broader set of longitudinal and lateral aspects of vehicle 

handling, such as maximum longitudinal/lateral accelerations, steering wheel angle and velocity, 

and standard deviation of vehicle speed. It has been cited as an indicator of takeover quality and 

comfort in related literature (e.g., Gold et al., 2013; Hergeth et al., 2017; Wandtner et al., 2018). 

 Multimodal displays in automated vehicles 

Multimodal displays have been largely used as warning signals in both manual driving 

studies (Biondi et al., 2017; Kramer et al., 2007; Lundqvist & Eriksson, 2019; Pitts & Sarter, 2018; 

Politis et al., 2014), and automated driving studies as takeover requests (TORs) (Huang, Steele, 

Zhang, & Pitts, 2019; Petermeijer, Bazilinskyy, Bengler, & de Winter, 2017; Politis, Brewster, & 

Pollick, 2017; Yoon, Kim, & Ji, 2019).  

Types and Forms of Takeover Requests  

Currently, TORs are presented using the visual (V), auditory (A), and/or tactile (T) sensory 

modalities. Often, visual signals are presented either on the vehicle’s windshield using a heads-up 

display (HUD) or an augmented reality (AR) interface (e.g., Lindemann, Muller, & Rigolll, 2019), 

or on the in-vehicle display (center) console (e.g., Petermeijer et al., 2017), represented as abstract 

icons or messages in text form. Auditory TORs are played through in-vehicle speakers as abstract 

sounds (e.g., a beep) and/or verbal messages (e.g., Petermeijer, Bazilinskyy, Bengler, & de Winter, 

2017). Finally, tactile alerts are generally presented using vibrotactile/haptic interfaces embedded 

into drivers’ seats (e.g., Yoon, Kim, & Ji, 2019). In many cases, a single modality TOR may not 

be effective since drivers may engage in non-driving-related tasks (NDRTs), which may use the 

same perceptual resource that is needed to perceive the TOR (Naujoks et al., 2018; Roche et al., 

2019; Yoon et al., 2019). For example, drivers may not notice an auditory TOR if they are listening 

to music or holding a phone conversation. Thus, researchers have investigated the benefits of 

multimodal TORs, which are combinations of visual, auditory, and/or tactile signals.  

TORs can be used as alerts to inform drivers of the need to take over or as aids to guide 

them on how to takeover. For alerting purposes, studies have found that takeover performance is 

often better with multimodal signals than unimodal signals (e.g., Huang & Pitts, 2020; Huang, 

Steele, Zhang, & Pitts, 2019; Petermeijer et al., 2017; Politis, Brewster, & Pollick, 2017; Roche et 
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al., 2019; Salminen, Farooq, Rantala, Surakka, & Raisamo, 2019; Yoon et al., 2019). For example, 

within the signal response phase, Yoon et al. (2019) compared all seven types of signals (single V, 

A, and T, combinations of two: VA, VT, and AT, and combination of all three: VAT), and found 

that multimodal signals (i.e., VT, VT, AT, and VAT) were associated with shorter takeover times 

compared to single modal stimuli (i.e., V, A, and T).  

Directional Takeover Requests 

In terms of using TORs to instruct drivers on how to take over, two commonly used HMIs 

have been employed: 1) Ipsilateral display: the interface presents a signal that is spatially 

compatible with the required action, based on the stimulus-response compatibility (SRC) (Proctor 

& Vu, 2006); and 2) contralateral display: the signal is incompatible with the required action 

(reversed SRC). For example, an ipsilateral signal shown on the left side of the vehicle’s 

windshield instructs the driver to move into the left lane to avoid a possible collision with an 

adjacent vehicle in the right lane, while a contralateral signal shown on the left side informs the 

driver of a potential obstacle in the left lane, and thus the driver should instead steer away from 

the direction of the signal and move into the right lane.  

The effectiveness of ipsi- and contralateral approaches have been explored in both manual   

(e.g., Ho, Tan, & Spence, 2005; Müsseler, Aschersleben, Arning, & Proctor, 2009; Straughn, Gray, 

& Tan, 2009; Wang, Pick, Proctor, & Ye, 2007) and automated driving (e.g., Chen, Šabić, Mishler, 

Parker, & Yamaguchi, 2020; Cohen-Lazry, Katzman, Borowsky, & Oron-Gilad, 2019; Petermeijer 

et al., 2017) contexts. These studies often compare time-related metrics, such as response times to 

signals between the two directional signals, without measuring actual driving performance such as 

maximum lateral acceleration. Table 2.1 summarizes these studies and highlights the variability in 

findings among them. 

Specifically, in manual driving, Ho et al. (2005) and Müsseler et al. (2009) found that 

people responded faster to ipsilateral signals compared to contralateral signals, while Wang et al. 

(2007) reported that an opposite finding, i.e., contralateral had shorter response times than 

ipsilateral signals. Furthermore, Straughn et al. (2009) compared two lead times: 2 and 4 seconds, 

which represented the timing before a collision would occur. In the 2-second lead time condition, 

participants reacted faster to ipsilateral signals compared to contralateral signals. This trend was 

the same, but slower, with the 4-second lead time. The authors propose that this difference may 
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have been driven by whether drivers had enough time to evaluate the driving situation and make 

timely decisions. Findings are also conflicting in recent automated driving studies. For example, 

Cohen-Lazry et al. (2019) reported that drivers responded faster to ipsilateral signals, while Chen 

et al. (2020) found contralateral signals to be associated with shorter responses. No differences 

between these signal directions were found in Petermeijer et al. (2017). Two possible factors may 

explain these conflicting findings, namely the warning lead time and signaling modality, which 

are discussed in Chapter 5.  

Table 2.1. Summary of studies that compared directional cues 

Studies Signal modality Lead time/TTC Participants’ reaction times 

Automated driving: 

(Cohen-Lazry et al., 2019) T 4 seconds Ipsilateral < Contralateral 

(J. Chen et al., 2020) A 2 – 4 seconds Ipsilateral > Contralateral 

(Petermeijer et al., 2017) A, V, and AV 7 seconds No difference 

Manual driving: 

(Ho et al., 2005) T 1.8 seconds Ipsilateral < Contralateral 

(Müsseler et al., 2009) V – Ipsilateral > Contralateral 

(Straughn et al., 2009) A and T 2 and 4 seconds 

For 2-second lead time: 

Ipsilateral < Contralateral 

For 4-second lead time: 

Ipsilateral > Contralateral 

(Wang et al., 2007) A 1 second Ipsilateral > Contralateral 

2.5 Summary 

Overall, non-chronological age factors may be better predictors of cognition and task 

performance in older adults. However, the benefits of non-chronological age factors reported in 

the literature have not been evaluated in the context of complex task environments. Additionally, 

multimodal displays can be used to better facilitate communication between humans and 

automation. However, the extent to which these displays can assist humans, especially older adults, 

in function allocation with automation in complex environments is not known. This dissertation 

aimed to contribute to filling these gaps through four studies. As described in Chapters 1 and 2, 

the goals of the dissertation work aim to address the following questions: 

Q1: Does engagement in physical exercise (a non-chronological age factor) affect takeover 

task performance in human-automation systems?  
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Q2: To what extent can multimodal displays assist humans in transitioning from automated 

to manual control during semi-autonomous operations? 

The two research questions were addressed in four separate studies. Study 1 investigated 

the effects of engagement in physical exercise on the detection of multimodal takeover signals 

during the signal response phase. Study 2 focused on the impacts of age, physical exercise, and 

signal modality on the post-takeover phase. However, due to COVID 19 restrictions, Study 2 

served only as a pilot study. Study 3 investigated the effects of signal direction, lead time, and 

modality on takeover performance in the entire automated vehicle takeover process. Finally, based 

on findings from studies 1, 2, and 3, study 4 examined the ability of meaningful tactile displays to 

improve performance in the takeover process. 

The most common non-chronological age factors relate to physical, cognitive, and social 

aspects of a person’s life. However, to date, there is comparatively more evidence suggesting that 

physical exercise improves both cognitive and physical functioning in older adults. Given that a 

vehicle takeover process demands the use of cognitive and physical resources, this dissertation 

first investigated engagement in physical exercise on interactions with automation in a complex 

environment (automated driving). Furthermore, three categories of physical activities were 

described in Chapter 2: physical exercise, sportive activities (meditative movement and martial 

arts), and complex activities. Compared to the other two physical activities, physical exercise has 

more varieties, e.g., intense walking, running, jogging, swimming, ball games, and bicycling. A 

recent study compared the types of physical activities that U.S. adults regularly participated in 

among a sample of 22,545, and found that 34% participated in walking, followed by bicycling 

(12%). As a complex activity, dance was found to have 8% participation (Dai et al., 2015). I 

assumed that engagement in physical exercise (especially aerobic exercise) is the most common 

physical activities and has demonstrated numerous benefits in terms of slowing down declines in 

physical and cognitive domains. Therefore, engagement in physical exercise was studied as the 

first non-chronological age factor in the experiment.  

  



 

 

40 

 QUANTIFYING AGE-RELATED TIME DIFFERENCES IN NOTICING 

MULTIMODAL TRANSITION REQUESTS 

A version of this chapter has been accepted by the Applied Ergonomics journal for publication. 

3.1 Introduction 

Given the complexity of a takeover event (as described in Section 2.4.2), it is necessary to 

delineate performance at different stages along the takeover continuum, i.e., signal response and post-

takeover phase, in order to compare age-related differences and signal modalities. To date, very few 

studies have compared performance in the takeover signal response phase between older and 

younger drivers, and the results are somewhat conflicting (Clark & Feng, 2017; Körber et al., 2016; 

Li, Blythe, Guo, & Namdeo, 2018, 2019; Miller et al., 2016; Molnar et al., 2017). For instance, 

Clark and Feng (2017) and Körber et al. (2016) found no age differences in hands-on/feet-

on/takeover times, which is equivalent to signal response time, while Li et al. (2018, 2019) found 

that older adults took longer to move their hands to the steering wheel and put feet on pedals 

compared to the younger group. A few possible explanations exist for the lack of consensus across 

these studies.  

 First, all of these studies used different types of sensory signals. Takeover warning signals 

are generally presented in single visual, auditory, or tactile, or in any combination of these three 

(see reviews in Eriksson & Stanton, 2017; McDonald et al., 2019). Specifically, Clark and Feng 

(2017) and Körber et al. (2016) used a single auditory alert, while Li et al. (2018) used a combined 

visual-auditory signal and Molnar et al. (2017) employed combined visual-verbal-haptic cues. 

However, research on multimodal signal detection and age has reported that compared to single 

visual (V), auditory (A), or tactile (T) signals, multimodal signals (i.e., redundant bi- or trimodal 

combinations of V, A, and T: VA, VT, AT, and VAT) often leads to faster response times, and 

higher detection and response accuracies in simple and complex environments, such as psychology 

experiments and manual driving tasks, respectively, regardless of age (e.g., Gottlob, 2007; 

Laurienti, Burdette, Maldjian, & Wallace, 2006; Liu, 2001; Lundqvist & Eriksson, 2019; Pitts & 

Sarter, 2018).  

With respect to age, older adults generally have longer response times compared to younger 

adults, but the difference is relatively small (e.g., 130 – 270 msec in Gottlob (2007); 42 – 91 msec 
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in Laurienti et al. (2006); and 200 msec in Lundqvist and Eriksson (2019)). In some cases, 

multimodal (compared to unimodal) signals were associated with larger response time reductions 

for older adults than for their younger counterparts (e.g., Laurienti et al., 2006). To date, no study 

has directly compared the effects of age and the 7 signal types on response times in the automated 

driving context to determine whether these results hold true across tasks and environments. This 

knowledge will be especially important given that in the automated driving environment, the 

attention allocation of the driver will be different as he/she becomes disengaged from the driving 

task (Politis et al., 2017; Yoon et al., 2019). For instance, in SAE Level 3, drivers may shift their 

attention away from the driving task and engage in non-driving related tasks (NDRTs; such as 

texting, watching a movie, or eating) (Naujoks et al., 2018), and differences may exist in how 

younger and older drivers allocate their attention. A recent study that focused on age differences 

in NDRTs selection and takeover (Clark & Feng, 2017) found that younger adults preferred 

engaging with electronic devices, while older adults enjoyed conversing with others during Level 

3 automated driving. Engaging in NDRTs may negatively affect signal response performance. For 

example, Yoon et al. (2019) varied NDRT type (i.e., phone conversation, phone interaction, and 

video watching) and occasionally asked participants to takeover after receiving all 7 types of 

warning signals. They found that response times to takeover alerts varied based on the type of 

engagement and the sensory modalities occupied by the NDRT. But age was not a factor in their 

study and, thus, it is unclear how age and attention allocation interact to affect response times to 

the 7 signals.  

A second reason for the inconsistent findings among the few studies that measured age 

differences in responses within the takeover signal response could be that even though the mean 

age of older adult participants were all between 65-75 years, which is often referred to as “young 

old” (Binstock, 1985), the age ranges in their studies were different (e.g., 60-81 years of age in Li 

et al, 2016; 70-81 years of age in Miller et al., 2016). While there are basic biological changes that 

occur with age, in general, as mentioned in Chapter 2, aging is a heterogeneous process in that 

perceptual, cognitive, and physical abilities deteriorate at varying rates for different people (e.g., 

Baldock, Mathias, McLean, & Berndt, 2007; Czaja et al., 2019). Thus, the findings from these 

studies may be influenced by co-variates and/or non-chronological age factors (such as physical 

and cognitive activities or lifestyle) that might have not been accounted for (e.g., Adrian, Postal, 
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Moessinger, Rascle, & Charles, 2011; Lemke, 2009; National Research Council, 2004; 

Ravichander, Steve, & Joe, 2010).  

The goal of this study was to fill the above research gaps in the aging literature by 

examining whether the non-chronological age factor, engagement in physical exercise, is 

associated with performance differences in multimodal signal perception (under different attention 

allocation conditions) between younger and older drivers. Physical exercise and multimodal 

warning signals (compared to unimodal) were expected to be associated with shorter response 

times for all ages, but with a larger reduction in response time for older adults. Given the nature 

of the task, which more closely resembled a response time task, we also expected any age- and/or 

exercise-related differences to be relatively small (Ballesteros, Mayas, & Reales, 2013; Huang, 

Steele, Zhang, & Pitts, 2019; Laurienti et al., 2006; Muiños & Ballesteros, 2018; Petermeijer, 

Bazilinskyy, Bengler, & de Winter, 2017; Yoon et al., 2019).  

3.2 Method 

 Participants 

Forty-eight participants took part in this study. All participants were evenly recruited into 

four groups: 12 in a younger exercise group, 12 in a younger non-exercise group, 12 in an older 

exercise group, and 12 in an older non-exercise group. Younger participants were recruited from 

Purdue University, while all older participants were healthy residents recruited through Purdue’s 

Center on Aging and the Life Course (CALC), and independent-living communities and senior 

activity centers in Lafayette/West Lafayette, Indiana area. For the physical exercise groups, 

volunteers were required to perform aerobic exercise at least 3 times per week and 45 minutes per 

time during the past five years, based on criteria used in previous research on related topics (e.g., 

Ballesteros, Mayas, & Reales, 2013; Gauchard, Gangloff, Jeandel, & Perrin, 2003; Marmeleira, 

Godinho, & Fernandes, 2009; Voelcker-Rehage, Godde, & Staudinger, 2011; Voss et al., 2010). 

As shown in Table 3.1, walking/jogging was the most common aerobic exercise type for both age 

groups. Both non-exercise groups were individuals who had not exercised regularly during the 

past 5 years. All participants were required to possess a valid driver’s license, have a normal or 

corrected-to-normal vision, and have no impairments to hearing nor the sense of touch. All 

volunteers were paid $25 for their time. This study was approved by the Purdue University 
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Institutional Review Board (IRB Protocol ID: 1802020214). Demographic information for each 

group is presented in Table 3.2. 

Table 3.1. Distribution of aerobic exercises performed by type and age group 

 Walking/Jogging Ball sports Swimming Biking Other 

Younger adults 9 (75%) 5 (42%) 1 (8%) 2 (17%) 4 (33%) 

Older adults 7 (58%) 2 (17%) 5 (42%) 3 (25%) 5 (42%) 

Note: the number outside of the parenthesis represents the number of participants who reported performing that 

activity (out of a total of 12); the percentage inside of the parenthesis is the proportion of people in each group who 

conducted the respective activity. Also, some participants performed more than one type of exercise. The ‘Other’ 

category includes, but is not limited to, exercises such as dancing, high-intensity interval training (HIIT), and 

trampoline jumping. 

Table 3.2. Demographic information for each age group 

 Apparatus/Stimulus 

Driving Simulator 

A medium-fidelity fixed-base National Advanced Driving Simulator (NADS), miniSim, 

with 138-degree horizontal field-of-view was used for this experiment. This system consists of 

three 48-inch TV monitors, one LED monitor as the dashboard, control panel, life-size seat, 

steering wheel, and foot pedals (Figure 3.1). All driving-related metrics were collected at 60 Hz. 

 

Factor 

 

Younger adults Older adults 

Exercise Non-exercise Exercise Non-exercise 

Mean age in years (SD) 21.25 

(0.62) 

 

 

22.58 (1.73) 72.50 (5.71) 70.83 (4.26) 

Age range 20 – 22 20 – 26 66 – 84 66 – 77 

Male 8 5 4 4 

Female 4 7 8 8 

Mean years of driving 

(SD) 

5.33 (1.07) 5.08 (3.12) 54.17 (5.31) 54.09 (4.64) 

Mean years of exercise 

(SD) 

5.42 (3.13) – 18.67 (15.66) –  

Miles driven per year (SD) 
8,115.86 

(7,221.66) 

7,301.00 

(7,206.90) 

6,860.91 

(4,280.07) 

7,046.36 

(5,225.77) 
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Figure 3.1. Experimental setup and devices (featured: NADS driving simulator, Fovio eye 

tracker, and C-2 Tactors) 

Warning Signals  

The visual signal was a red circle (200 × 200 pixels) displayed on the center main monitor 

(presented in Figure 3.1). Auditory signals were 6-burst, 400 Hz beeps with a loudness range from 

0-100 dB. Tactile signals were presented by two 1’’ × 0.5’’ × 0.25’’ piezo-buzzers (called C-2 

Tactors developed by Engineering Acoustics, Inc.) at a frequency of 250 Hz with an intensity range 

of 1-255 gain units. Both Tactors were attached to the lower back center region (e.g., Eriksson et 

al., 2019; Pitts & Sarter, 2018). The duration of all signals was 1 second. Given the range of ages 

represented in this study, the intensities of the auditory and tactile signals were chosen by 

participants through the use of a crossmodal matching procedure (see details in Pitts, Riggs, & 

Sarter, 2016) conducted prior to the experiment. 

 Experimental Design 

This study employed a 2 (age group: younger and older) × 2 (exercise type: exercise and 

non-exercise) × 7 (takeover request signal type: V, A, T, VA, VT, AT, and VAT) × 4 (task 

condition) full factorial design. For signal type, V = visual, A = auditory, and T = tactile. For task 

condition, participants completed four separate driving sessions/tasks: 1) no task, 2) a video 

watching task, 3) a headway estimation task, and 4) a video watching and headway estimation 

(combination) task. Each session consisted of 28 warning signals (i.e., each of the 7 signal types 

repeated four times in four similar blocks) that were presented randomly throughout each drive. 

 1 

Figure 2. Experimental setup and devices (featured: NADS driving simulator, Fovio eye 2 

tracker, and C-2 Tactors) 3 

Eye tracker 

Tactors 
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The driving task was designed to represent Level 3 automated driving, where speed and lane 

position were both controlled by the automation, on a four-lane highway (two adjacent lanes in 

each traveling direction) with random, and occasional traffic appearing in the two opposite lanes. 

The average time between warning signals was 20 seconds (e.g., Lundqvist and Eriksson, 2019; 

Pitts and Sarter, 2018; Politis et al., 2017), and the order of the four conditions and signals was 

counterbalanced. 

In the 1) no task (or baseline) condition, participants responded to the 7 warning signals by 

pressing the brake pedal (with their right foot) as soon as they saw/heard/felt any of the multimodal 

signals (e.g, Dogan et al., 2017). In the 2) video watching task condition (a non-driving related 

secondary task that has been used in previous studies (e.g., Carsten, Lai, Barnard, Jamson, & Merat, 

2012; Clark & Feng, 2017; Mok et al., 2015; Yoon et al., 2019), participants were asked to watch 

a TED talk video related to intelligent technologies, and also respond to the 7 warning signals as 

soon as they appeared. This video played on the windshield in the lower right-hand corner of the 

main display. Here, participants were informed that a video knowledge assessment (or quiz), that 

contained questions that required recalling of facts spoken by the speaker in the video, would be 

administered after the driving session. This assessment was used to encourage drivers to focus on 

the video and disengage from the driving task. In the 3) headway estimation task condition (a 

driving-related secondary task), the experimenter randomly asked the driver, 12 separate times, 

“how many seconds to a collision are you behind the car in front of you?” Here, headway was 

defined as the timing between the leading vehicle and the current/subject vehicle (Yanko & Spalek, 

2014). These queries were made in-between, and least 5 seconds before or after, the presentation 

of the warning signals to avoid interference with the signal detection task. Participants’ options 

were: 3, 5, or 7 seconds (i.e., the time to collision), corresponding to a close, medium, and far 

distance, respectively (see Figure 3.2). This condition was created to emulate drivers attending to 

the forward roadway as they would if automated functions – most notably, Adaptive Cruise 

Control (ACC) – are deactivated during real-world situations that require takeover. Finally, in the 

4) video watching and headway estimation (combination) task condition, participants watched a 

similar type of video (as in condition 2) while, at the same time, being asked to make headway 

judgments (as in condition 3) and respond to all warning signals. The goal was to simulate a more 

complex situation that could occur in real-life and that requires greater cognitive demands (i.e., 
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video watching, headway judgments, and signal perception) than those in task conditions 2) and 

3).  

 

 

Figure 3.2. Sample scenes for headway estimation and combination (of video watching and 

headway estimation) task conditions: (a) 3-second, (b) 5-second, and (c) 7-second headway  

 Procedure 

The experiment lasted 90 minutes. Participants first signed the experimental consent form 

and then completed a pre-experiment questionnaire that asked about demographic information, 

driving experiences, and physical exercises. Then, the Montreal Cognitive Assessment (MoCA) 

was administered to assess capabilities for participating in our study (e.g., Nasreddine et al., 2005). 

Next, participants were introduced to the experimental setup and asked to perform crossmodal 

matching. After, a 10-minute training session, similar to the actual experiment, was performed. 

During the actual experiment, since Level 3 automation does not require constant manual control 

of the vehicle, participants were asked to place their hands in their laps and their feet on the floor 

(base) of the driving simulator. They were informed that the vehicle can fail due to operational 

limits and that the study was designed to mimic the moment when a failure occurs. The 7 types of 

warning signals would be presented to signify when the system was failing. They were instructed 

to respond to the warning signals as quickly as possible after receiving an alert by pressing the 

brake pedal as to avoid a collision, which deactivated the automated driving mode (e.g, Dogan et 

al., 2017). However, since a takeover event was not required, no actual collision would occur if 

participants missed a signal. This approach was employed to avoid inducing anxiety (especially in 

older participants) from a vehicle collision. Immediately afterwards, participants needed to 

reactivate the automation by pressing a button on the steering wheel and then prepare for the next 

signal(s). A 5-minute break was given between each of the four driving conditions. After the 

    1 

(a)                                            (b)                                             (c)  2 
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experiment, participants filled out a post-experiment questionnaire that asked about their 

performance and strategies they employed throughout the experiment.  

 Dependent Measures  

Dependent measures were classified into three categories: a) driving-related, b) eye 

movements, and c) secondary task performance. 

Driving-related measures 

Driving-related measures included brake response time and maximum brake force 

(Winkler et al., 2018). Brake response time (in milliseconds (msec)) was defined in SAE J2944 as 

the time between the presentation of any warning signal and the initial contact of the brake pedal 

(Society of Automotive Engineers, 2015). Maximum brake force (Newtons; N) was defined as the 

maximum force applied to the brake pedal within the time period between the presentation of a 

takeover warning signal and the releasing of brake pedal (Winkler et al., 2018), with range of 0-

180 N. Here, a smaller value indicates a better brake control (Roche & Brandenburg, 2020). 

Secondary task performance 

For task conditions 2 (video watching) and 4 (combination), the video knowledge accuracy 

was calculated as the percentage of correct answers out of the total number of questions asked after 

the video. In total, 6 questions (after each of the two task conditions) were evaluated based on the 

length of the video and the information extracted from the video. For task conditions 3 (headway 

estimation) and 4 (combination), headway estimation accuracy was defined as the percentage of 

correct responses to the total number of inquiries made during the experiment. 

 Data Analysis 

For driving-related measures, Pearson correlation did not reveal a significant correlation 

between the brake response time and maximum brake force (𝑟 =  − .099) and thus, two separate 

4-way mixed-model Analysis of Variance (ANOVA) tests were conducted for measures, where 



 

 

48 

age and exercise type were between-subject (quasi-independent) factors, and signal type and task 

condition were both within-subject factors.  

For secondary task performance, a 3-way mixed-model ANOVA was performed. Signal 

type was not included in the model because for secondary tasks, performance was not necessarily 

assessed near a signal presentation. Thus, age and exercise type were between-subject factors, and 

task condition was a within-subject factor.  

For all statistical tests, post-hoc comparisons with Bonferroni corrections were performed 

to identify significant differences and interactions between means. Also, Greenhouse-Geisser 

corrections were applied for violations of the assumption of sphericity. Significance level was set 

at 𝑝 <  0.05.  

3.3 Results 

 Driving-related measures 

There was a significant main effect of age (𝐹(1, 44) =  4.503, 𝑝 =  .040, 𝜂𝑝
2 =  .093), 

signal type(𝐹(4.0, 177.7) = 517.384, 𝑝 <  .001,  𝜂𝑝
2 =.922), and task condition (𝐹(2.5, 109.8) =

21.267, 𝑝 < .001, 𝜂𝑝
2 = .326) on brake response time. For age, post-hoc comparisons revealed that 

older adults (mean = 1014 msec, standard error of the mean (SEM) = 30) had longer brake response 

times compared to the younger group (mean = 923 msec, SEM = 30). For signal type, the VAT 

(mean = 834 msec, SEM = 24) and VT (mean = 837 msec, SEM = 23) signals, were correlated 

with the shortest brake response time, followed by AT (mean = 883 msec, SEM = 23) and T (mean 

= 877 msec, SEM = 26) (see Figure 3.3). Finally, for task condition, the headway estimation (mean 

= 1008 msec, SEM = 24) and combination (mean = 986 msec, SEM = 21) tasks had longer brake 

response times than the baseline (mean = 926 msec, SEM = 23) and the video watching (mean = 

955 msec, SEM = 21) conditions. No main effect of exercise was found (𝐹(1, 44) =  0.854, 𝑝 =

 .360, 𝜂𝑝
2 = .019). 

There was a significant age × signal type interaction (F (4.0, 177.7) = 7.260, p < .001, 

𝜂𝑝
2 = .142) on brake response time. Specifically, for single V and A signals, younger adults had 

shorter response times (for V: mean = 1003 msec, SEM = 28; for A: mean = 1186 msec, SEM = 

31) than older adults (for V: mean = 1092 msec, SEM = 28; for A: mean = 1354 msec, SEM = 31). 
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However, no age differences were found between multimodal signals (see Table 3.3 for summary 

statistics). 

 

 

Figure 3.3. Brake response time as a function of age and signal type 

Maximum brake force was significantly affected by age ( 𝐹(1, 36) =  4.121, 𝑝 =

.050, 𝜂𝑝
2 =  .103) and exercise type ( 𝐹(1, 36) =  4.316, 𝑝 =  .045, 𝜂𝑝

2 =  .107 ). Older adults 

(mean = 19.359 N, SEM = 1.443) had a larger maximum brake force compared to younger adults 

(mean = 15.217 N, SEM = 1.443). Also, the non-exercise group (mean = 19.407 N, SEM = 1.443) 

had a larger maximum brake force compared to the exercise group (mean = 15.168 N, SEM = 

1.443). In addition, there was a significant age × exercise type interaction (𝐹(1, 36) =  6.535, 𝑝 =

 .015, 𝜂𝑝
2 = .154) such that for younger adults, the maximum brake force in the exercise group 

(mean = 10.489 N, SEM = 2.040) was significantly less than the non-exercise group (mean = 

19.944 N, SEM = 2.040), see Figure 3.4. 

 Maximum brake force was not affected by signal type (𝐹(4.5, 161.7) =  1.385, 𝑝 =  .237, 

𝜂𝑝
2 =  .037) nor task condition (𝐹(3, 108) =  1.781, 𝑝 =  .155, 𝜂𝑝

2 =  .047), and there were no 

interaction effects between the two factors. 
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Figure 3.4. Maximum brake force as a function of age and exercise type 

 Secondary task performance 

For headway estimation accuracy, there was a significant main effect of age (𝐹(1, 44) =

 8.167, 𝑝 =  .006, 𝜂𝑝
2 =  .157) on headway judgements. Specifically, older adults (mean = 72.7%, 

SEM = 3.2) had a lower headway estimation accuracy than younger drivers (mean = 85.5%, SEM 

= 3.2).  

For performance on the video knowledge assessment, a significant age × task condition 

interaction (𝐹(1, 44) =  4.474, 𝑝 = .040, 𝜂𝑝
2 =  .092) was observed. In particular, in the video 

watching task condition, the difference in accuracy percentage (difference = 0.0%, 𝑝 =  1.000) 

between the older (mean = 61.8%, SEM = 3.1) and younger groups (mean = 61.8%, SEM = 3.1) 

was smaller than in the combined (video watching and headway estimation) task condition 

(difference = 15.3%, 𝑝 =  .027) between older (mean = 52.8%, SEM = 4.7) and younger adults 

(mean = 68.1%, SEM = 4.7).

0

5

10

15

20

25

Younger adults Older adults

M
a

x
im

u
m

 b
ra

k
e 

fo
rc

e 
(N

)

Age group

Exercise Non-exercise



 

 

 

5
1

 

 

Table 3.3. Summary statistics of the dependent measures for all independent variables 

 Age Exercise Signal Type Task Condition Interactions 

 YA OA E NE V A T VA VT AT VAT T1 T2 T3 T4  

BRT 

(msec) 

923 

(30) 

1014 

(30) 

949 

(30) 

988 

(30) 

1047 

(20) 

1270 

(22) 

877 

(26) 

1033 

(19) 

837 

(23) 

883 

(23) 

834 

(24) 

926 

(23) 

955 

(21) 

1008 

(24) 

986 

(21) 
Age × Signal: 

F (4.0, 177.7) = 

7.260 

p < .001* 

𝜂𝑝
2 = .142 

F (1, 44) = 4.503 

p = .040* 

𝜂𝑝
2 = .093 

F (1, 44) = 0.854 

p = .360 

𝜂𝑝
2 = .019 

F (4.0, 177.7) = 517.384 

p < .001* 

𝜂𝑝
2 = .922 

F (2.5, 109.8) = 21.267 

p < .001* 

𝜂𝑝
2 = .326 

MBF 

(N) 

15.22 

(1.443) 

19.36 

(1.44) 

15.17 

(1.44) 

19.41 

(1.44) 

17.03 

(1.05) 

17.80 

(1.14) 

17.25 

(.96) 

17.04 

(1.09) 

17.49 

(1.01) 

16.85 

(1.05) 

17.56 

(1.08) 

16.28 

(1.04) 

18.08 

(1.16) 

17.20 

(1.26) 

17.59 

(1.07) 
Age × Exercise: 

F (1, 36) = 6.535 

p = .015* 

𝜂𝑝
2 = .154 

F (1, 36) = 4.121 

p = .050 

𝜂𝑝
2 = .103 

F (1, 36) = 4.316 

p = .045 

𝜂𝑝
2 = .107 

F (4.5, 161.7) = 1.385 

p = .237 

𝜂𝑝
2 = .037 

F (3, 108) = 1.781 

p = .155 

𝜂𝑝
2 = .047 

HEA 

(%) 

85.5 

(3.2) 

72.7 

(3.2) 

82.2 

(3.2) 

76.0 

(3.2) 
– 

– 79.6 

(2.4) 

– 78.6 

(2.6) 

– F (1, 44) = 8.167 

p = .006* 

𝜂𝑝
2 =  .157 

F (1, 44) = 1.903 

p = .175 

𝜂𝑝
2 = .041 

– 

F (1, 44) = .189 

p = .666 

𝜂𝑝
2 = .004 

VKA 

(%) 

64.9 

(3.1) 

57.3 

(3.1) 

64.2 

(3.1) 

58.0 

(3.1) 
– 

– 61.8 

(2.2) 

– 60.4 

(3.3) 
Age × Task: 

F (1, 44) = 4.474 

p = .040* 

𝜂𝑝
2 = .092 

F (1, 44) = 3.113 

p = .085 

𝜂𝑝
2 = .066 

F (1, 44) = 2.084 

p = .156 

𝜂𝑝
2 = .045 

– 

F (1, 44) = .148 

p = .702 

𝜂𝑝
2 = .003 

Note: YA = younger adults; OA = older adults; T1 = baseline task condition; T2 = video watching task condition; T3 = headway estimation task condition; T4 = 

combination task condition; BRT = brake response time; MBF = maximum brake force; HEA = headway estimation accuracy; and VKA = video knowledge 

accuracy 
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3.4 Discussion 

The goal of this study was to investigate the effects of age and physical exercise on 

performance differences in multimodal signal responses under different attention allocation 

conditions. Overall, bi- and trimodal signals were associated with faster brake response times for 

both age groups, but older adults responded more slowly and also had a higher brake force 

compared to younger adults. Additionally, physical exercise was associated with a smaller 

maximum braking force for younger drivers only. 

 Driving-related measures 

Brake response time 

Somewhat contrary to our expectations, aerobic exercise, did not produce a significant 

main effect on brake response time. Since the response time difference between the younger and 

older groups is already relatively small (i.e., 91 milliseconds), the effects of physical exercise may 

not be apparent for response time. The time differences reported in previous studies that found 

physical exercise to be associated with faster response speeds in older adults were also very small 

(e.g., 65 – 78 milliseconds between exercise and non-exercise group in Ballesteros et al. (2013); 

and 12 - 69 milliseconds in Marmeleira et al. (2009)) and these effects may be masked by the age 

effects. However, these studies did not generate data on the gains associated with exercise for 

younger adults, thus it is difficult to know whether the results are attributable only to exercise. 

Also, in this study, the signal response phase of a takeover process only included perception, 

processing, and movement (i.e., contact with the brake pedal). It did not contain significant 

decision-making components, such as planning for how to deactivate the automation, regaining 

environment and situation awareness, selecting courses of action (i.e., deciding the dynamic state 

of the vehicle after resuming control), nor executing actions (deciding how to maneuver). Thus, 

the benefits of physical exercise might reveal themselves in later, more involved, phases of the 

vehicle takeover process, such as decision-making regarding space availability in adjacent lanes 

and/or manual control of longitudinal and lateral accelerations and positions during post-takeover.  

With respect to chronological age, older adults had longer brake response times to warning 

signals than younger adults across the four driving conditions. This finding is consistent with 

previous studies mostly in manual driving (e.g., Lundqvist & Eriksson, 2019; Pitts & Sarter, 2018) 
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and only a few in automated driving (Li et al., 2018, 2019), and potentially points to biological 

changes in perception, cognition, and physical abilities observed with age (Anstey et al., 2005). 

We also found both age groups to respond faster to trimodal signals, followed by bimodal alerts, 

then single modality signals (Huang et al., 2019; Petermeijer et al., 2017; Politis et al., 2017; Yoon 

et al., 2019). In addition, any signal type that included a tactile component (i.e., T, AT, VT, and 

VAT) was associated with shorter brake response times for all ages (compared to those that did 

not; V, A, and VA, as shown in Figure 3.3). Lundqvist and Eriksson (2019) explained that the 

benefits of trimodal warning signals are still debated, but Pitts and Sarter (2018) proposed that the 

inclusion of the tactile modality (with fastest conduction velocity) is what ultimately dictates the 

response time to multimodal signals. An additional, and alternative, explanation for why the 

signals that included the tactile modality were associated with a faster response time compared to 

signals without a tactile cue may relate to the driving environment. It consisted of constant auditory 

input (i.e., sounds of the tires-on-road, the vehicle engine, and the video) as well as continuous 

visual information (i.e., monitoring the road in baseline condition, video watching and headway 

estimation in other conditions). Here, the tactile channel was most available (free) for detecting 

vibration information compared to the already occupied visual and auditory channels (Meng & 

Spence, 2015; Wickens, 2008).  

The advantages of tactile signaling were also found for both age groups. Specifically, older 

adults were only slower than younger adults in responding to single visual and auditory signals, 

but no differences were found between the two age groups for all other signals. This implies that 

older adults may benefit from multimodal signals, especially if the signal combination includes 

tactile information. In other words, age-related declines, resulting in delayed responses to warning 

signals, may be mitigated by multisensory integration (Laurienti et al., 2006; Peiffer et al., 2007). 

For task condition, response times in the headway estimation and combination (of video 

watching and headway estimation) task conditions were longer compared to the baseline and video 

watching conditions. One possible explanation for this finding is that a higher level of precision 

was needed to accurately estimate headway in these conditions. Here, participants might have been 

performing a complex spatial mental calculation, and when the signals were presented, it took 

them slightly longer to task switch and recognized the warning signals. 
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Maximum brake force 

Maximum brake force has been used as an indicator of collision risk (Aries, 2019; Dziuk, 

2015). In our study, physical exercise and age both affected maximum brake force. Participants 

who did not perform aerobic exercises had a higher maximum brake force. This finding may be 

attributed to the fact that aerobic exercise makes use of repetitive leg movement and muscle 

activation. In this case, those who engage in activity of their legs more frequently may benefit 

from better motor control. This hypothesis may be confirmed by comparing data collected from 

tasks that utilize arm movements, such as steering while driving, since aerobic exercise also makes 

use of upper body movements. However, steering metrics were not collected as part of this study. 

For age, there was a tendency for older drivers to brake harder than younger adults. This 

supports the results of Clark and Feng (2017) and could highlight the uncertain feelings that older 

adults express about automated driving (Abraham et al., 2017). For example, to date, many older 

adults have not yet had the chance to experience intermediate levels of vehicle automation. It may 

take some time to accept the fact that they can divert their attention from forward driving, to some 

extent, and perform secondary tasks freely in the vehicle. Additionally, Marchese (2019) showed 

that older adults brake harder during manual driving while performing NDRTs to slow down in 

order to compensate for their slower responses and their attention lost due to the secondary tasks, 

and thus this behavior may simply be carrying over to automated driving.   

Finally, there was an interaction effect between age and exercise on maximum brake force. 

Here, younger participants in the exercise group had a lower maximum brake force compared to 

older adults in the exercise group, while no difference was found between the two age groups in 

the non-exercise category. One possibility for this phenomenon is that the benefits of physical 

exercise, in terms of braking control, may not be determined only by aerobic exercise. In other 

words, in addition to aerobic exercises, many younger participants in this study are also likely 

performing anaerobic exercises (such as weightlifting), as well as other high-intensity workouts 

that make use of leg and overall body strength.  

 Secondary task performance 

Older adults had worse performance on the headway estimation task, which is consistent 

with previous work (DeLucia et al., 2003) that reports lower accuracy in estimating time-to-
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collision in older adults. Boot, Stothart, and Charness (2014) and Czaja et al. (2019) explained that 

older drivers, in general, have difficulty judging headway distances, such as when turning across 

opposing traffic to make a left-hand turn. They explain that headway estimations require the use 

of visual resources, spatial processing, and working memory, and that age-related decrements in 

any of these abilities will limit such judgment abilities (Boot et al., 2014; Czaja et al., 2019; 

DeLucia et al., 2003; Scialfa et al., 1991; Sekuler et al., 1980). 

For the video knowledge assessment, as expected, older adults recalled fewer facts about 

the video (compared to younger adults) when they had to watch the video and estimate headway 

at the same time (combination task condition). Also, consistent with previous studies, while no 

age-related performance difference was found in the video watching condition alone, this 

observation may further highlight the relative difficulty older adults experience when divided 

attention is required to complete multiple unrelated tasks – a phenomenon highlighted by several 

decades of research (e.g., Erber, 2012; Horberry, Anderson, Regan, Triggs, & Brown, 2006; 

Kemper, Schmalzried, Herman, & Mohankumar, 2011; McDowd & Craik, 1988; McKnight & 

McKnight, 1993; Somberg & Salthouse, 1982; Son, Lee, & Kim, 2011). In our study, older drivers 

performed worse on both the video knowledge assessment and the headway estimation task (in the 

combination task condition) when multiple tasks needed to be conducted simultaneously.  Here, 

older adults seemed to prioritize the tasks related to safety, i.e., focusing more attention on the 

road and the warning signals (as indicated by eye-tracking data), which is in accordance with 

previous studies in terms of a safety prioritization strategy (e.g., Horberry et al., 2006; Son et al., 

2011).  

 Limitations 

One potential limitation of this study is the manner in which participants who exercise were 

recruited. Participants were grouped based on their self-reported exercising frequency. However, 

there was no upper limit (so some participants might have exercised daily), and engagement in 

particular types of physical activities (per person) might have changed within the 5 or more years. 

These factors could have caused variability even within the exercise groups. In addition, the MoCA 

was used to assess participants’ cognitive capabilities for participating in the study. But, no actual 

cognitive abilities were measured to be considered as a potential co-variate. Thus, future follow-

up studies may use additional cognitive tests, such as the Trial Making Test (Groth-Marnat, 2009), 
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to quantify cognitive ability, e.g., processing speed and executive control, and include in analysis 

on the relationship between physical exercise and takeover performance.  

In this experiment, baseline maximum brake force was not measured, which could have 

helped to support explanations of our findings regarding muscle control and braking intensity. 

Similarly, steering wheel-related measures were not collected, which may reflect the benefits of 

physical activities with respect to upper body functionality. Instead, the focus was on brake pedal 

behavior because deciphering when the signal response phase stops and the post-takeover phase 

starts can be difficult when using steering wheel activity.  

3.5 Conclusion 

The bi- and trimodal signals, especially those with a tactile component, were associated 

with shorter brake response times for both age groups, with a more pronounced effect for older 

adults. The non-chronological age factor, engagement in physical activity, was associated with 

better brake pedal control for younger adults, but did not help older adults as originally expected. 

However, chronological age differences were observed in that, compared to younger individuals, 

older adults had longer response times to warnings, larger maximum brake force, and poorer 

secondary task performance.  

Nonetheless, this research fills gaps in the aging and (vehicle) automation literature by 

taking first steps to generate empirical data on the effects that signaling modality and physical 

activity have on performance in the signal response phase of the takeover process. Given the 

complexity of the task, the goal of Study 2 (in Chapter 4) was to examine the effects of age, 

physical exercise, and signal modality on the post-takeover phase.   
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 DETERMINING THE EFFECTS OF AGE AND PHYSICAL EXERCISE 

ON TAKEOVER TASK PERFORMANCE AS A FUNCTION OF 

MODALITY TYPE AND LEAD TIME 

A version of this chapter has been submitted for publication. 

4.1 Introduction 

As described in Chapters 1 – 3, the goal of this study (Study 2) was to extend the focus of 

Study 1 (the signal response phase) to the post-takeover phase, and quantify the effects of age, 

engagement in physical exercise, and takeover request alert modality on post-takeover driving 

performance. I expected that, while age-related differences may exist, engagement in physical 

exercise and multimodal warning signal (compared to unimodal) would be associated with better 

post-takeover quality (Clark & Feng, 2017; McDonald et al., 2019; Wan & Wu, 2018b). 

4.2 Method 

 Participants 

A total of 16 participants were recruited for this pilot study. Younger adults were students 

recruited from Purdue University, while older adults were healthy residents of the Lafayette/West 

Lafayette, Indiana area. Different from the criteria used in Study 1 to define the physical exercise 

group, this study used the score from the Godin Leisure-Time Exercise Questionnaire (Godin, 

2011), which quantifies both frequencies and intensities of weekly aerobic exercises, to categorize 

participants into exercise and non-exercise groups. Specifically, to qualify for the exercise group, 

volunteers were required to have a score of 24 or more on this assessment (identified as the active 

group in Godin, 2011), while non-exercise group members only needed a score 14 or less (marked 

as the sedentary group). Additional eligibility requirements included: 1) possession a valid U.S. 

driver’s license; 2) no sensory or cognitive impairments; and 3) normal or correct-to-normal vision. 

All participants were paid $30/hour for their time. The study was approved by Purdue University 

Institutional Review Board (IRB Protocol ID: 1802020214). Participants’ demographic 

information is presented in Table 4.1. 
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Table 4.1. Demographic information for participants in the study 

Factor 
Younger adults Older adults 

Exercise Non-exercise Exercise Non-exercise 

Mean age 24.5 ± 2.1 26.0 ± 1.5 74.3 ± 2.6 72.0 ± 3.4 

Number of participants 4 4 4 4 

 Apparatus/Stimulus 

Driving simulator 

A National Advanced Driving Simulator (NADS), simplified cab miniSim, was used to 

conduct this study. The driving simulator is equipped with three 48-inch monitors, which displays 

the main driving scene, and one 18.5-inch, which serves as the vehicle dashboard display. This 

system also includes, a steering wheel and associated driving foot pedals, an adjustable seat, and 

a control panel (see Figure 4.1). Driving data was collected at 60 Hz. 

Takeover requests 

Takeover requests (TOR) were presented as visual, auditory, and/or tactile stimuli. As 

shown in Figure 4.1, the visual cue (V) was a 200 × 200 pixels red dot presented on the center 

main display. The auditory cue (A) was a 0-100 dB 6-burst, 400 Hz beep. The tactile cue (T) was 

vibrations presented using two C-2 tactors developed by Engineering Acoustics, Inc, with an 

intensity range of 30-48 dB. Tactors were attached to a belt placed on participants’ lower back 

center area (see Figure 4.1). The intensities of both the auditory and tactile cues were selected by 

participants through a crossmodal matching task (see details in Pitts, Riggs, & Sarter, 2016), using 

the visual cue as the reference stimulus. All takeover requests lasted for 1 second.  

 

 

Figure 4.1. Experimental devices and setup (featured: miniSim (left) and C-2 

Tactors (right)) 
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 Experimental Design 

The study employed a 2 (age group: younger and older) × 2 (exercise type: exercise and 

non-exercise) × 7 (TOR signal type: V, A, T, VA, VT, AT, and VAT) full factorial design. During 

the experiment, participants rode in a simulated SAE Level 3 automated vehicle in the center lane 

of a three-lane highway. The traveling speed of the vehicle was 60 mph. The subject vehicle was 

followed by two fleets of vehicles in both left and right adjacent lanes with an equal distance from 

the subject vehicle. At the same time, a leading vehicle was randomly 4 and 7 seconds (or 352 and 

616 feet, respectively) ahead of the subject vehicle. A construction zone occasionally appeared in 

the center lane, but its view was obstructed by the leading vehicle. In this case, the leading vehicle 

immediately stopped in front of the construction zone. The subject vehicle would then issue a 

takeover request. Once participants perceived and processed this TOR, they were instructed to first 

tap the brake pedal to deactivate the automation, then control the vehicle as they would in manual 

driving. During the time, the two fleets of vehicles in both adjacent lanes had then changed their 

headway and were at different distances with respect to the subject vehicle (see Figure 4.2 for 

example takeover scenario, where the left fleet was at 88 feet away from the subject vehicle and 

the right fleet was 264 feet away, representing a trailing headway of one second and three seconds, 

respectively). To avoid both a rear-end collision and a collision with the leading vehicle, drivers 

needed to determine which lane to move into by scanning the environment using the side-view and 

rear mirrors, and deciding which of the two adjacent lanes had the most available space. Once 

participants changed to an adjacent lane, they were asked to remain in that lane at a speed of 60 

mph until they passed the construction zone, and then move back to the center lane and reactivate 

the automation. They were also informed that their handling of the vehicle during the takeover 

process was being monitored. Given that there were seven different types of TOR alerts, each 

participant completed a total 28 takeover events (e.g., Clark & Feng, 2017), separated by an 

average 2-minute time interval. Each TOR was randomly presented in four similar driving blocks 

(i.e., 7 takeovers per block). Participants were given 5-minute breaks between blocks. 

 

 

Figure 4.2. Example of one takeover scenario 
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 Procedure 

Participants were first asked to sign the consent form, then fill out a pre-experiment 

questionnaire that queried demographic information and their engagement in daily activities (i.e., 

physical exercise and driving experience). Afterwards, they performed the crossmodal matching 

task and a 15-minute training session to become familiar with experiment equipment and takeover 

procedures. During the experiment, participants were required to place their hands in their laps 

and feet on the base of the driving simulator until they were presented with a takeover request. To 

divert participants’ attention away from the road (to avoid being prepared for a takeover event in 

advance), they were also required to play a game located in the right-hand corner of the main 

screen. The game required participants to select, from multiple-choice options, the one item that 

was different from the other three, in terms of the color and locations of different shapes, and the 

spelling of words. This task was representative of drivers being engaged in a non-driving related 

task. 

 Dependent Measures 

Decision-making time: Decision-making time (in milliseconds (ms)) was measured as the 

time between when participants deactivated the automation and the first steering input made 

towards an adjacent lane.  

Maximum resulting jerk: Maximum resulting jerk (in m/s3), the time rate of change of 

longitudinal and lateral accelerations, is an indicator of post-takeover quality, such as shift quality 

and ride comfort (Huang & Wang, 2004). It is calculated using the following formula:  

     𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑗𝑒𝑟𝑘 = √𝑚𝑎𝑥 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑗𝑒𝑟𝑘2 + 𝑚𝑎𝑥 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑗𝑒𝑟𝑘2  

Here, a smaller maximum resulting jerk represents better vehicle control and higher 

takeover quality. 

 Data Analysis 

A linear mixed-effects model was used to compare the effects of age and exercise type 

(between-subject factors), and TOR signal type (within-subject factor) on the two dependent 

measures. The significance level was set at p < 0.05. 
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4.3 Results 

 Decision-Making Time 

Decision-making time was not significantly affected by age (𝐹(1, 260) =  2.220, 𝑝 =

 .138, 𝜂𝑝
2 =  .001), exercise type (𝐹(1, 260) =  0.005, 𝑝 =  .942, 𝜂𝑝

2 <  .001), nor TOR signal 

type (𝐹(6, 260) =  1.977, 𝑝 =  .069, 𝜂𝑝
2 =  .040). However, there was a significant age × exercise 

type interaction effect (𝐹(1, 260) =  21.752, 𝑝 < .001, 𝜂𝑝
2 =  .080). As shown in Figure 4.3, the 

mean differences in decision-making times between older (mean = 2088.03 ms, standard error of 

mean (SEM) = 256.68) and younger (mean = 1548.81, SEM = 266.55) adults was larger in the 

non-exercise group compared to the exercise group (older adults: mean = 1995.98 ms, SEM = 

256.09; younger adults: mean = 1794.44 ms, SEM = 187.84). 

 

 

Figure 4.3. Interaction effect for age and exercise type on decision-making time 

 Maximum Resulting Jerk 

Age had a significant main effect on maximum resulting jerk (𝐹(1, 260) =  40.792, 𝑝 <

.001, 𝜂𝑝
2 =  .140). Specifically, older adults had a higher maximum resulting jerk (mean = 72.44 

m/s3, SEM = 9.62) compared to younger adults (mean = 64.45 m/s3, SEM = 8.95). There was also 

a significant interaction effect between age and exercise type ( 𝐹(1, 260) =  12.844, 𝑝 <

.001, 𝜂𝑝
2 =  .050) (see Figure 4.4). Here, older adults tended to have a higher maximum resulting 

jerk (mean = 77.65 m/s3, SEM = 12.42) than younger adults (mean = 66.26 m/s3, SEM = 10.01), 
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but only in the non-exercise group. No significant main effect of TOR signal type on maximum 

resulting jerk (𝐹(6, 260) =  .225, 𝑝 =  .968, 𝜂𝑝
2 =  .001) was found. 

 

 

Figure 4.4. Interaction effect for age and exercise type on maximum resulting jerk 

4.4 Discussion 

This goal of this study was to collect pilot data regarding the effects of age, engagement in 

physical exercise, and takeover request signal type on task performance in the post-takeover phase. 

Preliminary results indicate that older adults had a higher maximum resulting jerk compared to 

younger adults. However, the differences in decision-making time and maximum resulting jerk 

were narrower for the exercise group (compared to the non-exercise group) between the younger 

and older groups. Finally, takeover request (TOR) signal type did not result in performance 

differences.  

Even though age and engagement in physical exercise alone did not significantly affect the 

decision-making time, an interaction effect was found between age and engagement in physical 

exercise. Specifically, the difference in decision-making time between the two age groups was 

smaller for the exercise group compared to the non-exercise group. One possible explanation for 

this finding is that the benefits of physical exercise on decision-making may be more predominant 

in, and beneficial to, older populations. Decision-making in the takeover process requires 

significant utilization of many cognitive resources, e.g., information processing, working memory, 
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and divided and sustained attention, within a short period of time (e.g., Knauff & Wolf, 2010; 

Prezenski, Brechmann, Wolff, & Russwinkel, 2017). As suggested by previous research, the 

decline of these cognitive components may be mitigated by continued engagement in physical 

exercise (e.g., Ballesteros, Mayas, & Reales, 2013; Barnes, Yaffe, Satariano, & Tager, 2003; 

Cassilhas et al., 2012) and these benefits appear to be manifesting in our study.  In addition, these 

preliminary results indicate that the benefits of physical activity also apply to more complex tasks, 

not just to simple cognitive tests.  

With respect to takeover quality, older adults had a higher maximum resulting jerk during 

the manual control of the vehicle compared to younger adults, indicating a poorer takeover quality. 

This finding is consistent with prior chronological age studies that report that older adults may 

experience declines in psychomotor abilities, such as hand-eye coordination and motor control 

(e.g., Fraser et al., 2009; Guan & Wade, 2000), due to biological changes that occur with age. 

However, similar to the results for decision-making time, there was also a significant interaction 

between age and engagement in physical exercise for maximum resulting jerk. In particular, the 

difference in maximum resulting jerk between the two age groups was larger for the non-exercise 

group than for the exercise group. This finding provides even more evidence that older adults who 

engage in active physical exercise may retain or improve their psychomotor abilities, which could 

be advantageous for the performance on both simple and complex tasks. Overall, the decision-

making time and maximum resulting jerk findings further highlight the importance of considering 

non-chronological age factors in human-automation interaction research and could aid in 

developing theories regarding successful aging (Franklin & Tate, 2009).  

Finally, in contrast to previous studies that examined the effects of signal type on 

response/takeover times in only the signal response phase (e.g., Politis, Brewster, & Pollick, 2017; 

Yoon, Kim, & Ji, 2019), the current study extended the measurement range to include the decision-

making and manual driving stages. Contrary to our expectations, no significant main nor 

interaction effects of TOR signal type on decision-making time and maximum resulting jerk were 

found. One possible explanation could be that since the length of the warning signal was 1 second, 

its influence may have not lasted throughout the duration of post-takeover phase in order to affect 

decision-making and vehicle maneuver. However, more research is needed to confirm this 

hypothesis.  
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4.5 Conclusion 

This pilot study quantified the effects of age, engagement in physical exercise, and takeover 

request signal type on decision-making time and maximum resulting jerk in the post-takeover 

phase of the takeover process. Preliminary findings suggest that for older adults, engaging in 

physical exercise may be beneficial to performing complex tasks in terms of both decision-making 

speed and physical control. Given that this is a pilot study, a larger sample size will be achieved 

in a future follow-up study and, thus results should be interpreted with caution. As mentioned, due 

to COVID 19 restrictions, the modified goal of the phase two (after this pilot study) was to address 

non-age-related gaps in the literature regarding multimodal information presentation. Specifically, 

the new goal was to examine the effects of signal direction, lead time, and modality on takeover 

performance, using timing between signals that is more representative of actual takeover events. 
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  EXAMINING TAKEOVER PERFORMANCE AS A FUNCTION OF 

LEAD TIME AND SENSORY MODALITY/MODALITIES 

NOTIFICATION 

A version of this chapter has been submitted to a journal for review. 

5.1 Introduction 

Study 1, in Chapter 3, quantified the effects of age and engagement in physical exercise on 

multimodal takeover warning signal response time. Study 2 in Chapter 4 quantified the effects of 

these same factors on post-takeover performance. However, due to COVID-19 restrictions, Study 

2 was only served as a pilot study. To continue addressing the gaps identified in Chapter 1, the 

focus of this study (in Chapter 5) shifted to explore the effects of various characteristics of human-

machine interfaces on takeover performance. However, findings are still expected to inform the 

design for a wide range of user groups.  

As described in Section 2.4.2, the takeover process is comprised of multiple steps. Here, 

the takeover request (TOR) is presented only a few seconds prior to the event requiring the 

takeover (also known as the lead time or time-to-collision), and if the driver does not takeover 

within this timeframe, a collision may occur. Therefore, it is critical to develop effective human-

machine interfaces (HMIs) that support drivers in successfully transitioning from automated to 

manual control of vehicles (e.g., Carsten & Martens, 2019; National Science and Technology 

Council and the United States Department of Transportation, 2020). 

Section 2.4.3 introduced the applications of ipsi- and contralateral signals as an HMI option 

in automated vehicle. However, findings, in the very limited studies that examined the effects of 

this directional signal approach, were conflicting. Specifically, Cohen-Lazry et al. (2019) reported 

that drivers responded faster to ipsilateral TORs, while Chen et al. (2020) found contralateral 

signals to be associated with shorter response times. However, no differences between these signal 

directions were found in Petermeijer et al. (2017), where drivers could choose which action to 

make based on their own intuitive interpretation of the signals. Two possible factors may explain 

these conflicting findings, namely the warning lead time and signaling modality.  

For warning lead time, Chen et al. (2020) evaluated five discrete lead times between 2 – 4 

seconds, but did not find significant differences in response times between ipsilateral and 
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contralateral signals. The lead times used in this study are considered to be short, based on a review 

that summarized findings from a series of takeover studies (Eriksson & Stanton, 2017) and 

classified times shorter than 4 seconds as short, whereas 7 seconds (or longer) were labeled as 

relatively longer takeover time budgets. With a longer lead time, the effects of the two directional 

signals on response times may be different. For example, Petermeijer et al. (2017) used 7 seconds 

and did not find significant differences between the signal types, while Cohen-Lazry et al. (2019) 

employed a 4-second lead time and reported that response times to ipsilateral (compared to 

contralateral) signals were shorter. A similar reversed effect of lead time was found in manual 

driving. Specifically, one study showed that drivers who were given a longer time allotment to 

make responses to auditory alerts, used to inform them about pedestrians walking across the road, 

responded faster to contralateral signals, but with a shorter time budget, they responded faster to 

ipsilateral signals (Straughn et al., 2009). The authors propose that with longer times, people had 

more time to evaluate the driving situation and make timely decisions. However, it is unclear 

whether longer vs. shorter lead times have this reversed effect on responding to directional signals 

during automated driving.  

Secondly, signal modality can also impact drivers’ responses to the two directional signals 

as they showed different effects on time-related metrics. For example, Cohen-Lazry et al. (2019) 

and Chen et al. (2020) employed single tactile and auditory signals, respectively, with a relatively 

short takeover lead time, and showed two opposite relationships between ipsi- and contralateral 

signals. Ipsilateral signals were associated with shorter reaction times in Cohen-Lazry et al. (2019), 

but with longer reaction times in Chen et al. (2020), compared to contralateral signal. Also, 

Petermeijer et al. (2017) compared V, A, and VA signals, but the interaction between signal type 

and direction was not reported. In order to resolve these contradicting findings, additional research 

is needed to more comprehensively examine the effects of signal modality/type on the responses 

to the two directional signals.  

Therefore, this study aimed to examine the effects of signal directions, lead time, and signal 

modality on takeover performance. Particularly, participants rode in an SAE Level 3 simulated 

vehicle and took over control of the vehicle in response to TORs that varied in terms of direction 

(ipsilateral and contralateral), lead time (4 and 7 seconds), and modality (uni-, bi-, and trimodal 

combinations of visual, auditory, and tactile signals). Performance in both the signal response and 

post-takeover phases were measured. Our expectation was that with a shorter lead time, takeover 
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performance would be better with ipsilateral compared to contralateral signals, but the benefits of 

ipsilateral signals would be dissipate as the lead time increased. We also expected that the benefits 

of multimodal signals would be observed in the post-takeover phase and would be associated with 

better vehicle takeover quality.  

5.2 Method 

 Participants 

Twenty-four volunteers ranging between the ages of 20 – 29 years (mean age = 24.0 years, 

standard deviation (SD) = 3.0) participated in this study. The average number of years of driving 

experience across participants was 4.9 years (SD = 3.2). All participants were students from Purdue 

University, West Lafayette, IN. Eligibility requirements included: 1) possession of a valid driver’s 

license for at least one year; 2) regular driving at least once per week; 3) normal/correct-to-normal 

vision, and 4) no impairments to the senses of hearing and touch. Participants were compensated 

at a rate of $30 per hour. The study received approval from the Purdue University Institutional 

Review Board (IRB protocol #: 1802020214). 

 Apparatus/Stimuli 

The experiment was conducted in a fixed-base driving simulator – miniSim, developed by 

National Advanced Driving Simulator (NADS). This system consists of three 42-inch monitors 

(which displays the main driving scene; resolution 1920 × 1080) and one 18.5-inch monitor (which 

serves as the vehicle dashboard display). Additional system accessories include driving foot pedals, 

a steering wheel, a control panel, and a driver seat (see Figure 5.1). Driving data was collected at 

60 Hz. 
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Figure 5.1. Experiment setup and apparatus/stimulus 

The visual signal (V) was a 200 × 200 pixel yellow circle presented either on the left or 

right lane of the highway (e.g., visual signal on the left lane required drivers to move into the left 

lane for ipsilateral signals or the right lane for contralateral signals). Similarly, the auditory signal 

(A) was 400 Hz beeps presented via a headset, with an intensity range from 0 – 100 dB. The tactile 

signal (T) was presented using four C-2 tactors (by Engineering Acoustics, Inc.) attached to a belt 

and fastened around participants’ upper waist.  In particular, two tactors were placed on each side 

of the participant’s lower back area (Figure 5.1). The intensity range of tactile signals was 30 – 48 

dB. A crossmodal matching task was performed wherein each participant adjusted the intensities 

of the auditory and tactile signals to match that of a reference visual cue (Pitts et al., 2016). All 

visual, auditory, and tactile signals lasted for one second. 

 Driving Scenario 

The driving scenario was similar to Study 2 in Chapter 4. Participants rode in a simulated 

SAE Level 3 automated vehicle, which automatically controlled lane position and speed. The 

automated vehicle traveled in the middle lane of a three-lane highway at a constant speed of 60 

mph. A leading vehicle was continuously present either 4 or 7 seconds ahead of the subject vehicle. 

Also, two fleets of vehicles, also traveling at 60 mph in both left and right adjacent lanes, trailed 

the subject vehicle at a constant following distance of 176 feet, see Figure 5.2 (a). Occasionally, 

during the drive, a construction zone would appear in the center lane, which precipitated a sudden 

Left Right 
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stop of the lead vehicle. When this happened, the subject vehicle detected the obstacle (road 

construction) 352 or 616 feet ahead (corresponding to a 4- or 7-second lead time, respectively) 

(Eriksson & Stanton, 2017), and initiated a takeover request (TOR) using one of the seven signal 

types. Simultaneously, the following distances of the two fleets of adjacent vehicles (with respect 

to the subject vehicle) randomly changed from 176 feet to either 88 or 264 feet away 

(correspondingly to 1- or 3-second headway, see Figure 5.2 (b) for an example). This was done to 

increase the complexity of driving task and environment. Here, in addition to avoiding the obstacle 

ahead, drivers also needed to avoid possible rear-end collisions with trailing vehicles. After 

receiving a TOR, participants were told to move into the lane with the most available space (in 

this case, the 264-feet distance). To do this, they needed to first deactivate the automation by 

stepping on the brake pedal, and then position their hands on the steering wheel and their foot on 

the accelerator pedal to maintain the speed. Directional TORs were used to guide drivers to the 

correct adjacent lane. After processing the TOR and information in the driving environment, 

participants needed to change lanes and manually control the vehicle at 60 mph, just as they would 

in real-life driving until they passed the construction zone. Once they were clear of this zone, they 

needed to move back into their original lane and reactivate the automation by pressing a button on 

the steering wheel.  

 

 

(a) 

 

(b) 

Figure 5.2. Example bird’s eye-view of the driving scenario: (a) absence of a 

takeover event: the subject vehicle (red) is following a leading vehicle (white), 

which is being followed by two fleets of vehicles (green) in both left and right 

adjacent lanes with equal distances; (b) during a takeover event: the subject 

vehicle (red) was expected to move into the right adjacent lane to avoid a collision 

with the leading vehicle (white), which was hindered by a construction zone in 

front, as well as with the approaching vehicles in the left lane (green) 
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 Procedure 

Upon arrival, participants first signed the study’s consent form and completed a 

demographic data form. Then, each participant performed the crossmodal matching task and a 10-

minute training session where they practiced takeover procedures and maneuvering the vehicle 

with all signal types and lead times, which was the same as those needed in the actual experiment. 

For the experiment, similar to Petermeijer et al. (2017), each participant completed a total of four 

driving blocks, with two blocks using the ipsilateral signals (i.e., ipsilateral condition) and two 

blocks employing contralateral signals (i.e., contralateral condition). With respect to Figure 5.2 

(b), where the right lane had the most available space, in the ipsilateral condition, the visual signal 

was presented on the right side of drivers’ screen (in the right lane), the auditory signal was 

presented only in the right side of the headset, and the tactile signal was presented as vibrations 

only of the two tactors on the right side, all of which indicated that the driver should move to the 

right lane after the TOR. In contrast, in the contralateral condition, all visual, auditory, and tactile 

signals were instead presented on the left side. For bi- and trimodal combinations, signals were 

presented concurrently. In each condition, 14 takeover requests with two lead times (i.e., 4 and 7 

seconds) were presented, with each of the seven signal types randomly presented once in each 

block. The average interval between each takeover request was 2 minutes (Li et al., 2019; 

Petermeijer et al., 2017). To prevent potential order effects, the two ipsi- and contralateral 

conditions and the two lead times were counterbalanced. Additionally, 5-minute breaks were given 

to avoid task fatigue caused by the experiment.  

To control drivers’ attention allocation and prevent them from preparing for a TOR in 

advance, participants were required to interact with a game - “Spot the Difference,” located in the 

(right or left, counterbalanced) corner of the main display. This task was used to represent 

engagement in non-driving-related tasks during naturalistic automated driving. As shown in Figure 

5.3, the game consists of four separate items, and participants needed to identify the one that was 

different from the other three based on the cue (i.e., color, location, shape, or spelling of words) 

presented at the top of the game interface. For example, in Figure 5.3 (b), the cue indicates that a 

“word” is different. Participants should identify the box containing the word “Late,” which is 

different from the other boxes labeled “Mate” by simply telling the experimenter the location of 

the box. The experimenter selected the answer provided by participants. This approach aimed to 

minimize participants’ physical demands during the driving session. Once the selection was made, 
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a new trial will begin. The game was automatically paused during a takeover and automatically 

resumed once participants reactivated the automation. 

 

 

Figure 5.3. Three example trials of the game (circle position, the spelling of words, and circle 

color, respectively) 

During each block, they were required to keep their feet on the base of the simulator and 

hands in their laps, and continuously interact with, and focus on, the game task until the onset of 

a TOR. After the four blocks, participants engaged in a 10-minute debriefing session where they 

completed a post-experiment questionnaire about their preferences of TOR signal type and 

directions. The experiments lasted around 75 minutes. 

 Dependent Measures 

Post-takeover driving performance metrics included takeover time, information processing 

time, and maximum resulting acceleration. Also, perceived usefulness and satisfaction of each type 

of signal as well as preference for signal direction were assessed. 

Takeover time: Takeover time (in seconds) measures the time between the presentation of 

a TOR and the first conscious input to the vehicle (McDonald et al., 2019). Here, conscious input 

is defined by a 2-degree change of the steering wheel or a 10% change of gas pedal inputs. This 

particular measure is used as an indicator of how quickly drivers prepare to control the vehicle.  

Information processing time: Information processing time (in seconds) measures the time 

between the onset of a TOR and the initiation of a lane change (absolute deviation from the lane 
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center larger than 6 feet, Petermeijer et al., 2017). It is used to determine how quickly drivers 

perceive and process takeover requests, and make appropriate decisions to avoid possible 

collisions. 

Maximum resulting acceleration: Maximum resulting acceleration (in m/s2) is calculated 

based on longitudinal and lateral accelerations during the post-takeover phase (see the equation 

below). This particular metric was used because it encompasses a broader set of longitudinal and 

lateral aspects of vehicle handling, such as maximum longitudinal/lateral accelerations, steering 

wheel angle and velocity, and standard deviation of vehicle speed. In general, it serves as an 

indicator of takeover quality and comfort (e.g., Hergeth, Lorenz, & Krems, 2017; Li et al., 2019), 

such that a smaller value represents better takeover quality. 

𝑀𝑎𝑥 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = √𝑚𝑎𝑥 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛2 + 𝑚𝑎𝑥 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛2  

Subjective measures: To examine the potential influence of drivers’ perceptions of the 

TOR signals on takeover performance, a qualitative approach was employed that assessed 

subjective attitudes towards the signal types. Particularly, perceived usefulness and satisfaction of 

each signal type was measured using a 9-item technology acceptance questionnaire, where 

participants rate each item using a 5-point Likert scale that ranges from -2 to 2 (Petermeijer et al., 

2017; Van Der Laan et al., 1997); see Table 5.1 in the Results section for a summary of the score 

of each signal type.  The overall usefulness and satisfaction scores were computed based on the 

scores of the nine items. The preference of signal direction was assessed using a question in the 

post-experiment questionnaire: “What type of directional signal do you prefer?” The answer was 

either “ipsilateral signal” or “contralateral signal.” The definition of the two terms was provided.  

 Data Analysis 

A 2 (direction: ipsilateral and contralateral) × 2 (lead time: 4 and 7 seconds) × 7 (signal 

type; V, A, T, VA, VT, AT, and VAT) full factorial design was employed in this study. 

Performance variables were analyzed using a three-way repeated-measures analysis of variance 

(ANOVA) with signal direction, lead time, and signal type as factors. For violations of sphericity 

tests, degrees of freedom were corrected using Greenhouse–Geisser estimates. Bonferroni 

corrections were applied for multiple comparisons. For all statistical tests, results were considered 

significant at p < 0.05. Effect size was presented as partial eta squared (𝜂𝑝
2). 
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5.3 Results 

 Takeover Time 

There was a significant main effect of lead time (𝐹(1, 23) =  5.068, 𝑝 = .034, 𝜂𝑝
2 =  .181) 

and signal type (𝐹(6, 138) =  24.838, 𝑝 < .001, 𝜂𝑝
2 =  .519) on takeover times. For lead time, 

takeover times for the 4-second lead time (M = 1.749 s, standard error of mean (SEM) = .057) 

were shorter compared to the 7-second lead time (M = 1.789 s, SEM = .063; p = 0.034). For signal 

type (Figure 5.4), signals that included a tactile cue, i.e., T  (M = 1.714 s, SEM = .069), VT  (M = 

1.625 s, SEM = .068), AT  (M = 1.707 s, SEM = .067), and VAT  (M = 1.632 s, SEM = .063), had 

shorter takeover times compared to those without a tactile signal, i.e., V  (M = 1.899 s, SEM = .071), 

A  (M = 1.995 s, SEM = .061), and VA  (M = 1.810 s, SEM = .056). Also, takeover times were 

marginally affected by signal direction (𝐹(1, 23) =  3.200, 𝑝 =  .087, 𝜂𝑝
2 =  .122). Specifically, 

takeover times for ipsilateral signals (mean (M) = 1.746 seconds (s), standard error of mean (SEM) 

= .058) were marginally shorter compared to contralateral signals (M = 1.791 s, SEM = .064). 

Figure 5.5 (a) shows the average takeover trajectories for each of the seven signal types, 

lasting for 20 seconds from the presentation of each takeover request. This 20-second time window 

was determined by the time needed to complete each takeover trial. The trajectories indicate that 

after receiving a TOR that included a tactile cue, drivers both initiated the lane change and centered 

themselves in the adjacent lanes faster than with TORs that did not contain a tactile signal. 

There was also a significant direction × signal type interaction on takeover times 

(𝐹(3.5, 80.872) =  2.776, 𝑝 = .038, 𝜂𝑝
2 =  .108). As shown in Figure 5.4, the difference between 

two takeover directions was present only for the V and AT signal types. For these two signal types, 

takeover times were faster with ipsilateral signals (for V: M = 1.804 s, SEM = .062; for AT: M = 

1.658 s, SEM = .068) compared to contralateral signals (for V: M = 1.993 s, SEM = .093; for AT: 

M = 1.756 s, SEM = .072) (p = .010 and .024). 
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Figure 5.4. Takeover time as a function of signal direction and type 

 
(a) takeover trajectories for each signal type 

 
(b) takeover trajectories for each lead time 

 
(c) takeover trajectories for each signal direction 

Figure 5.5. Takeover trajectories 20 seconds within takeover request 
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 Information Processing Time 

There was a significant main effect of signal type (𝐹(6, 138) =  21.528, 𝑝 < .001, 𝜂𝑝
2 =

 .484) on information processing time (Figure 5.6). Similar to takeover times, signals using the 

tactile modality, i.e., T  (M = 2.880 s, SEM = .073), VT  (M = 2.765 s, SEM = .072), AT  (M = 

2.802 s, SEM = .066), and VAT  (M = 2.748 s, SEM = .062) had shorter information processing 

times compared to signals without a tactile cue, i.e., V  (M = 3.080 s, SEM = .061), A  (M = 3.092 

s, SEM = .051), and VA  (M = 2.955 s, SEM = .048). However, no significant main effect of signal 

direction ( 𝐹(1, 23) =  2.260, 𝑝 = .146, 𝜂𝑝
2 =  .089 ) nor lead time ( 𝐹(1, 23) =  .059, 𝑝 =

.810, 𝜂𝑝
2 =  .003) on information processing time was found. 

 

 

Figure 5.6. Information processing time as a function of lead time and signal type 

 Maximum Resulting Acceleration 

Lead time had a significant main effect on maximum resulting acceleration (𝐹(1, 23) =

 8.601, 𝑝 = .007, 𝜂𝑝
2 =  .272). Here, the 4-second lead time was associated with a larger maximum 

resulting acceleration (M = 11.23 m/s2, SEM = .073) compared to the 7-second lead time (M = 

10.67 m/s2, SEM = .347). The average takeover trajectories for each lead time (Figure 5.5 (b)) 

suggest that with a longer lead time, the trajectory was smoother. No significant main effect of 

direction ( 𝐹(1, 23) =  2.245, 𝑝 = .148, 𝜂𝑝
2 =  .089 ) nor signal type ( 𝐹(6, 138) =  .453, 𝑝 =
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.842, 𝜂𝑝
2 =  .019) was observed. As shown in Figure 5.5 (c), the average takeover trajectories of 

ipsilateral and contralateral signals were overlapping. 

 Subjective measures 

Table 5.1 summarizes the average scores for each of the nine items in the technology 

acceptance questionnaire, as well as the overall scores of usefulness and satisfaction. A one-way 

ANOVA was employed to compare the means of usefulness and satisfaction ratings between each 

signal type.  

Table 5.1. Average usefulness and satisfaction scores for each signal type 

Negative (– 2) Positive (+2) V A T VA VT AT VAT 

Useless Useful 0.04 0.71 1.13 1.00 1.33 1.58 1.92 

Bad Good -0.08 0.38 0.79 0.58 0.92 1.21 1.21 

Superfluous Effective -0.17 0.42 1.00 0.71 0.96 1.13 1.29 

Worthless Assisting 0.00 0.38 0.92 0.58 0.88 1.13 1.38 

Sleep-inducing Raising Alertness -0.54 0.71 1.21 0.58 0.96 1.50 1.71 

Overall usefulness score -0.15 0.52 1.01 0.69 1.01 1.31 1.50 

Unpleasant Pleasant 0.54 0.17 0.38 0.46 0.50 0.21 0.00 

Annoying Nice 0.33 -0.13 0.08 -0.08 0.38 0.17 0.04 

Irritating Likeable 0.17 0.04 0.67 0.33 0.71 0.54 0.42 

Undesirable Desirable 0.17 0.08 0.75 0.46 0.88 0.92 0.71 

Overall satisfaction score 0.30 0.04 0.47 0.29 0.61 0.46 0.29 

 

There was a significant main effect of signal type on usefulness (𝐹(2.537, 58.340) =

 14.443, 𝑝 <  .001, 𝜂𝑝
2 =  .386 ), but not on satisfaction ( 𝐹(2.498, 86.612) =  1.274, 𝑝 =

.291, 𝜂𝑝
2 =  .053). Also, as shown in Figure 5.7, the VAT signal (M = 1.50, SEM = .095) was 

perceived to be comparably the most useful signal type, followed by AT (M = 1.31, SEM = .115), 

VT (M = 1.01, SEM = .174), and T (M = 1.01, SEM = .168). The single visual signal was reported 

to be the most useless signal (M = -.15, SEM = .276). 
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Figure 5.7. Perceived usefulness and satisfaction for each signal type 

Finally, for the preference between ipsilateral and contralateral signals, 92% of participants 

preferred ipsilateral signals, compared to only 8% percent for contralateral signals. 

5.4 Discussion 

This study investigated the effects of signal direction, lead time, and signal modality on 

automated vehicle takeover performance. Within the signal response phase of the takeover process, 

single and multimodal signals that included a tactile cue were associated with shorter takeover and 

information processing times, while signal direction and lead time only showed differences in 

takeover times. Additionally, better takeover quality within the post-takeover phase was observed 

when drivers had a longer lead time. Finally, in terms of drivers’ perception of the signals, takeover 

requests (TORs) that contained a tactile signal also received the highest usefulness rating, and 

ipsilateral signals were preferred compared to contralateral signals. 
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 Signal response phase 

Takeover time indicates how quickly a driver prepares to take over, while information 

processing time indicates the speed at which a driver initiates a lane change after receiving a TOR. 

Overall, both takeover time and information processing times were faster with modality signals 

that consisted of a tactile cue. Previous research has shown multimodal signals to be associated 

with faster response times and higher detection accuracy compared to unimodal signals (Diederich 

& Colonius, 2004; Hecht & Reiner, 2009; Hecht, Reiner, & Halevy, 2006; Ho, Reed, & Spence, 

2007; Lu et al., 2013, 2012; Pitts & Sarter, 2018; Wickens, Prinet, Hutchins, Sarter, & Sebok, 

2011), but in our study, we also found that even the single tactile cue had better performance 

compared to bi-modal signal – VA. This further confirms findings from prior work in the 

automated environment that suggested that tactile signaling may benefit takeover transitions in 

terms of speed (e.g., Huang & Pitts, 2020; Huang et al., 2019). One possible reason could be that 

the tactile channel was most available for receiving information, since the visual and auditory 

channels were already occupied by continuous input from the road and secondary tasks (Meng & 

Spence, 2015; Wickens, 2008). Alternatively, tactile stimuli may be processed faster compared to 

visual and auditory information (e.g., Pitts & Sarter, 2018). This advantage also suggests that 

tactile cueing may be useful for communicating a broader range of information to drivers. For 

example, structured tactile patterns can be used to indicate the location and speed of adjacent 

vehicles to support situation awareness after the TOR.  

Different from our expectations, signal direction produced only a marginally significant 

effect on takeover time, suggesting that ipsilateral signals, where the vehicle instructs the driver 

on what action(s) to take, may be more beneficial for guiding drivers through a takeover situation. 

In contrast, Petermeijer et al. (2017) did not find a difference between signal direction. In their 

study, drivers were not informed that signals were directional and were instead able to make 

driving maneuvers based on their own interpretation of the meaning of signals. But, in our study, 

participants were informed of the signal direction and needed to act based on this knowledge. 

However, the outperformance of ipsilateral signals did not last throughout the entire signal 

response phase, since there were no differences in the information processing time measurement 

(which is the time length of the entire signal response phase). This is consistent with previous work 

(Cohen-Lazry et al., 2019) that also found drivers to respond faster to ipsilateral signals compared 

to contralateral signals. However, Cohen-Lazry et al. (2019) did not use the longer time range 
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measurement, i.e., information processing time. Our study shows empirically that the benefits of 

ipsilateral signals may only be present in the initial response phase of the takeover process. One 

explanation for this finding could be that drivers’ attention was not focused on the road, since they 

were engaged in a non-driving-related task. When takeover requests were presented, participants  

immediately experienced a response selection phenomenon, a process for which discriminating 

stimuli and executing an action is required, and that involves stimulus-to-response mapping 

(McPeek, 2014; Proctor & Vu, 2006). More specifically, during this response selection process, 

participants had not developed an execution plan after the takeover, but rather simply followed the 

signal direction to deactivate the automation and take hold of the steering wheel as quickly as 

possible (Cohen-Lazry et al., 2019). However, the benefits of ipsilateral, or instructional, signals 

in terms of takeover time could have been diluted given the time allotted (i.e., 4 and 7 seconds). 

With the longer headway (i.e., 7-second lead time), drivers may have not felt obligated to change 

lanes immediately, but rather when a possible collision was imminent (e.g., Chen et al., 2020; 

Petermeijer et al., 2017). In other words, when drivers received the TOR, and after assessing the 

time-to-collision, they might have voluntarily delayed executing their action in order to take time 

to determine the most appropriate maneuver to make. On the other hand, drivers in the shorter lead 

time condition (4 seconds) only had faster takeover times, but not information processing times 

(when compared to the 7-second lead time). This may be attributable to the urgency of the situation 

(Muttart, 2005; Scott & Gray, 2008), where drivers judged the urgency level using the distance 

between the subject and the lead vehicle.  

 The interaction effect between signal direction and modality on takeover time revealed 

that the effect of signal direction only existed in signals V and AT. Takeover times were faster 

with ipsilateral compared to contralateral signals for V and AT, but no differences were found 

between other signal types. This finding supported our speculation that different signal modalities 

used in previous studies may be one of the main reasons that findings between the two signal 

directions were conflicting (e.g., Chen et al., 2020; Cohen-Lazry et al., 2019; Petermeijer et al., 

2017). While prior work only used one or two signal modalities to examine the effects of signal 

direction, our study compared all seven signal types. Contrary to our expectations that differences 

between the two signal directions would be found with unimodal signals, only the single visual 

and bimodal auditory-tactile signals were associated with differences in takeover times. The 

reasons for these differences are unclear and future research should seek to delineate explanations.  
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 Post-takeover phase 

Takeover quality was compared among the levels for signal direction, lead time, and signal 

modality after drivers successfully resumed control of the vehicle, measured by maximum 

resulting acceleration. Here, maximum resulting acceleration was only affected by lead time. 

Specifically, the 7-second time was associated with a smaller maximum resulting acceleration, 

thus a better takeover quality, which is in line with previous studies (Mok et al., 2015; Wan & Wu, 

2018; see reviews: McDonald et al., 2019; Zhang et al., 2019). No differences were found in 

vehicle handling between the signal direction and signal modality factors. This indicates that the 

effects of signal direction and modality only existed in the signal response phase, but did not last 

long enough to impact post-takeover performance. In other words, after processing the TOR, 

drivers focused their attention on making decisions about which course of action to pursue and 

executing that action. Thus, the effects of signal direction and modality quickly decayed as time 

lapsed beyond the signal response phase. With a longer lead time, drivers have more time to 

process information in the driving environment and better prepare to respond to the TOR (Wan & 

Wu, 2018b). To improve takeover quality, Wan & Wu (2018) recommend using a minimum of 

10-second lead time after they compared driving performance among six different takeover lead 

times, ranging from 3 to 60 seconds. Alternatively, the lead time can be designed to be context-

dependent based on the urgency of the situation. Studies have found that a mismatch between the 

timing of a warning and the urgency of that situation may be incorrectly interpreted (Abe & 

Richardson, 2004; Jamson et al., 2008; R Parasuraman et al., 1997). For example, if the lead time 

is too long, drivers may regard an urgent signal as a false alarm and ignore/forget it, while if the 

lead time is too short, drivers may not have enough time to make (correct) responses and achieve 

a good takeover quality. In this case, the system may tailor its warning lead time to the urgency of 

the situation.  

 Users’ preference 

The usefulness and satisfaction comparisons among signal modalities revealed that the 

combined visual-auditory-tactile (VAT) cue was perceived to be most useful, followed by AT, VT, 

and T. This finding is consistent with our previous study that assessed participants’ subjective 

perceived ease of detecting signals and found younger drivers to rate VAT, VT, and AT as the 
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easiest to perceive (G. Huang & Pitts, 2020a). Combining this finding and results from objective 

measures, we infer that signals with a tactile component may be most helpful to drivers during the 

takeover. This may be explained by the demographics of participants in our study. It is possible 

that younger adults are more frequently exposed to technology that contains some form of 

vibration alerts. In fact, 25% of our study participants reported that their current vehicles were 

equipped with some type of tactile displays, such as lane departure or collision warning systems. 

With high utilization of visual and auditory resources in automated driving, e.g., engaging in 

NDRTs, drivers may find tactile signaling to be the most useful display. Additionally, 92% of 

participants preferred the ipsilateral over the contralateral signal. One explanation for this result 

could be that contralateral signals are designed based on the reverse SRC phenomenon, which is 

not instinctual. Thus, it may be more challenging for drivers to first identify the signal direction 

and then think about an action in the opposite direction of the signal. This additional step may 

result in less satisfaction. However, a more systematic qualitative study on signal direction 

preferences should be conducted.  

 Limitations and future work 

Participants in this study experienced a total of 28 takeover events on an average 120-

second internal. Even though our goal was to comprehensively compare all seven modality types, 

and we intentionally divided the experiment into four separate blocks to prevent task fatigue, this 

frequency of takeovers may not be completely representative of real-life automated driving. Future 

work may seek to reduce the number of repeated trials per participant. Similarly, variations in the 

takeover scenarios should be explored. We only used one type of takeover event – a construction 

zone. Follow-up research may include different driving environments (e.g., urban and rural areas) 

and conditions (e.g., varied weather). Finally, future work may also increase the sample size 

needed to generate more conclusive results (such as marginally significant findings). In this study, 

only 24 participants were recruited (during the COVID-19 pandemic).  

5.5 Conclusion 

This study examined the effects of signal direction, lead time, and signal modality on 

takeover performance in the signal response and post-takeover phases of an automated vehicle 
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takeover process. Single and multimodal signals with tactile components showed the greatest 

benefits in terms of takeover and information processing times, and also were perceived as most 

useful. Signal direction presented only a marginally significant benefit to takeover time, 

particularly for ipsilateral signals that instruct drivers on which action(s) to take. Finally, the 

shorter lead time was associated with a faster takeover time and worse takeover quality. Since both 

phases one and two found significant benefits of tactile displays for takeover tasks, Chapter 6 

presents an experiment that explored variations of particular types of tactile displays for improving 

human performance. 
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 INVESTIGATING THE EFFECTIVENESS OF MEANINGFUL 

TACTILE SIGNAL PATTERNS TO ENHANCE TAKEOVER 

PERFORMANCE 

A version of this chapter will be submitted to a journal for publication. 

6.1 Introduction 

Findings from phases one and two support the theory that tactile displays, when used as an 

abstract human-machine interface, benefit response times and takeover performance. This 

particular display type could be more important in instances where drivers engage in more non-

driving-related tasks (such as texting, watching a movie, reading a book, or writing emails) that 

utilize visual and auditory channels (Naujoks et al., 2018). In fact, a body of literature has reported 

that the use of tactile cueing in complex environments could improve operators’ situation 

awareness, result in more accurate interpretation of spatial information, and is relevant to faster 

processing speeds compared to visual and auditory signals (e.g., Baldwin et al., 2012; Meng & 

Spence, 2015; Morrell & Wasilewski, 2010; Petermeijer et al., 2015; Pitts & Sarter, 2018; Prinet 

et al., 2016). However, there is a lack of empirical evidence on how tactile signaling can be used 

to express more complex information to improve takeover performance. Therefore, this study 

investigated the effectiveness of a particular variation of tactile displays, i.e., meaningful tactile 

signal patterns, which are encoded messages that can convey meaningful and complex concepts 

and information using the tactile modality (Giang et al., 2010; Meng & Spence, 2015), to improve 

situation awareness, reduce transition times, and increase overall takeover quality.  

As described in Studies 1 – 3 (Chapters 3 – 5, respectively), a takeover process is very 

complex since operators need to perceive and process driving and environment information, and 

make decisions and execute decisions in a very short time. This process can be more complicated 

when the driving environment has many elements that need to be processed by the driver, such as 

traffic and highway obstacles. Not only do drivers need to know the lane position and the speed of 

their own vehicle, but they also need to understand the characteristics of the external environment, 

such as surrounding vehicles’ position and status, the road conditions, speed limits, and road signs. 

Given the ability of tactile cues to convey information about various parameters, e.g., direction, 

position (such as location), and status (such as urgency) (e.g., Meng & Spence, 2015; Tan et al., 
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2003; Van Erp & Van Veen, 2004), it is important to determine the extent to which meaningful 

tactile cues can support drivers throughout the complex takeover process.  

The use of meaningful tactile signals has been explored in driving, in either an informative 

or instructional format. For informative signals, the tactile display was used only to represent 

information in the driving environment, such as the location and speed of surrounding vehicles 

(e.g., Telpaz et al., 2015) or potential collisions with lead vehicles (e.g., Meng, Gray, et al., 2015) 

in both manual and automated driving. For instructional signals, the tactile display commanded a 

particular action, such as instructing drivers to change to a certain lane to avoid danger or to slow 

down (e.g., Cohen-Lazry et al., 2019).  

Studies have found both informative and instructional tactile signals to be associated with 

better takeover performance, such as shorter response times to TORs compared to tactile signals 

used only for warning purposes (Cohen-Lazry et al., 2019) or vehicles without a tactile display at 

all (Telpaz et al., 2015). In this study, Cohen-Lazry et al. (2019) compared the effects of 

meaningful (both informative and instructional) and generic (only for warning purpose) tactile 

signals, and found that instructional signals had shorter response times to TORs compared to 

informative and generic signals. However, with very limited studies on meaningful tactile signals 

as TORs, it is unclear whether the differences between (the two) meaningful and generic tactile 

signals also produce differences in other takeover performance metrics, such as information 

processing time or post-takeover driving performance (as used in Study 2). Thus, given their ability 

to convey various types of meaningful information, there is a need to examine the extent to which 

meaningful tactile signals could impact the entire takeover process.  

Additionally, meaningful tactile displays have been presented through the seat pan and seat 

back (e.g., Petermeijer et al., 2017; Wan & Wu, 2018), but it is also unclear to what extent the 

location of the tactile information determines takeover performance. For example, Wan and Wu 

(2018) compared six tactile patterns that were presented on either the seat pan or seat back, or a 

mix of both locations, and found that signals first presented on the seat back had shorter response 

times. However, the tactile signals in their study did not have an associated meaning. Petermeijer 

et al. (2017), on the other hand, compared the effects of different tactile patterns in either back or 

pan, but the location was not the factor in their study. 

Therefore, the goal of this study was to use tactile signals to create meaningful displays in 

both informative and instructional formats, that were embedded into the seat pan and seat back of 



 

 

85 

a simulated vehicle, to support drivers in takeover. It was expected that both informative and 

instructional tactile signals would have better takeover performance in terms of response and 

information processing time and takeover quality compared to tactile signals without patterns. 

Similarly, signals presented in seat back would be associated with better takeover performance 

compared to seat pan (Cohen-Lazry et al., 2019; Petermeijer et al., 2017; Telpaz et al., 2015; Wan 

& Wu, 2018a). 

6.2 Method 

 Participants 

Forty participants (24 males, 16 females) were recruited to take part in this study. All 

participants were college students, with an average age of 23.1 years (range: 19 – 30). The self-

report years of driving experience were 5.7 (range: 1 – 13). Participants were required to hold a 

valid U.S. driver’s license, have a normal or corrected-to-normal vision, no known disorders or 

injuries that affect tactile sensitivity, and no known motion sickness experience. Upon the 

completion of the experiment, each participant was compensated at an hourly rate of $40. The 

study was approved by the Purdue University Institutional Review Board (IRB Protocol #: 

1802020214). 

 Apparatus/Stimulus 

Driving simulator 

As in Studies 1 – 3, we used a medium-fidelity driving simulator, miniSim, developed by 

National Advanced Driving Simulator. The simulator has three 42-inch screens that display the 

main driving environment and one 19-inch screen that was used as the dashboard to present vehicle 

status information such as speed. Other accessories include a steering wheel, foot pedals, a control 

panel, and an adjustable seat. All data were collected at 60 Hz. The experiment setup was presented 

in Figure 6.1. 
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Figure 6.1. Experiment setup 

Tactile patterns 

A total of 14 C-2 tactors (developed by Engineering Acoustics, Inc.) were used in this study, 

with seven tactors on seat pan and seven tactors on seat back. The distribution of tactors was 

presented in Figure 6.2. The minimum distance between each tactor was 3.5 inches (range: 3.5 – 

5.5 inches) (Ji et al., 2011; Petermeijer et al., 2015). Based on the driving scenarios, three action 

types that drivers needed to make were represented by tactile displays: 1) drive into the left lane 

(to avoid a possible collision with the lead vehicle and the vehicle located at the right blind spot, 

Figure 6.3 (a)); 2) drive into the right lane (to avoid a possible collision with the lead vehicle and 

the vehicle located at the left blind spot, Figure 6.3 (b)); 3) slow down then switch into a lane (to 

avoid a possible collision with the lead vehicle and vehicles in both left and right blind spots, 

Figure 6.3 (c)). As shown in Table 6.1, for informative signal, the vibration pattern was used to 

represent the surrounding vehicle status. For example, if a car was approaching behind from the 

left adjacent lane and the subject vehicle needed to move into the right adjacent lane, the tactile 

pattern simulated movement by vibrating serially tactor locations 6 → 5 → 4 on the seat back, or 

11 → 12 → 13 on the seat pan. If two vehicles in both left and right adjacent lanes were 

approaching, all six tactors vibrated simultaneously (#s 1 – 6 for seat back or #s 8 – 13 for seat 

pan). For instructional signal, on the other hand, to avoid an approaching vehicle in the left blind 

spot, the sequential pattern 6 → 7 → 3 was played on the seat back, or 11 → 14 → 8 was presented 

on the seat pan. To represent both vehicles behind that were in the left and right blind spots, the 

signal pattern was serially 1 → 2 → 3 and 4 → 5 → 6 (two arrays of patterns vibrated at the same 
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time) on seat back, or 10 → 9 → 8 and 13 → 12 → 11 (two arrays of patterns vibrated at the same 

time) on seat pan. Also, tactors #s 3, 6, 8, and 11 vibrated altogether as the baseline TOR that had 

no spatial meanings. In this case, drivers needed to make the appropriate maneuvering plan based 

on cues in the driving environment without assistance from the system. All signal patterns lasted 

645 milliseconds (ms) at 250 Hz (Gray et al., 2014). That is, three a duration of 215 ms for 

sequential vibrations for meaningful patterns, or a single 645-ms vibration for the baseline TOR. 

Signal patterns were developed based on previous studies (e.g., Gray et al., 2014; Ji et al., 2011; 

Meng, Gray, et al., 2015; Tan et al., 2003; Telpaz et al., 2015; Wan & Wu, 2018) as well as an in-

lab pilot study that evaluated the effectiveness of each signal pattern. 

 

 

Figure 6.2. Distribution of tactors 
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Table 6.1. Meaningful tactile patterns in both seat back and seat pan locations 

 

Informative 

Move to left (seat back): Move to right (seat back): Brake (seat back): 

3 → 2 → 1 6 → 5 → 4 1, 2, 3, 4, 5, and 6 (altogether) 

   

Move to left (seat pan): Move to right (seat pan): Brake (seat pan): 

8 → 9 → 10 11 → 12 → 13 8, 9, 10, 11, 12, and 13 (altogether) 
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Table 6.1 continued 

Instructional 

Move to left (seat back): Move to right (seat back): Brake (seat back): 

3 → 7 → 6 6 → 7 → 3 1 → 2 → 3 and 4 → 5 → 6 

 
  

Move to left (seat pan): Move to right (seat pan): Brake (seat pan): 

8 → 14 → 11 11 → 14 → 8 10 → 9 → 8 and 13 → 12 → 11 
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Table 6.1 continued 

Baseline: 

3, 6, 8, and 11 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.3. Three required takeover action types based on the location of surrounding vehicles 

and the obstacle ahead: drive into to the left lane (a); drive into to the right lane (b); and slow 

down (c) 
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 Driving scenario 

Similar to Study 2, participants rode in an SAE Level 3 automated vehicle in the center of 

a three-lane highway at the speed of 60 mph. A leading vehicle was constantly 7 seconds ahead of 

the subject vehicle (Eriksson & Stanton, 2017; Petermeijer et al., 2017). Two vehicles maintained 

a steady distance of 176 feet behind the subject vehicle in both left and right adjacent lanes. A 

construction zone could appear at any point during the drive. When this happened, the vehicle 

would send a TOR in one of the seven tactile formats, indicating a need to take over. At the same 

time, the lead vehicle immediately stopped in front of the construction zone, leaving a 7-second 

lead time for drivers to complete the takeover and make action plans (i.e., either switch the lane 

immediately or brake then change the lane). To execute the takeover, participants first needed to 

tap on the brake to cancel the automation, then move their hands to the steering wheel and foot to 

the brake/gas pedal. After the takeover, two response types were available: change lanes (drive 

into either left lane or right lane) or brake (slow down to allow the two vehicles behind pass the 

subject vehicle first) then change lanes, based on the locations of the two vehicles behind (Figure 

6.3 a,b,c, above). The two response types were similar to real-world driving when an obstacle is 

present ahead, and drivers can only move to adjacent lanes or brake to avoid a collision. For the 

lane-change response, participants were required to directly switch to the most available lane after 

processing the tactile information and the information in the driving environment, and maintain 

good driving performance (e.g., maintain the speed at 60 mph and stay in the center of the lane) as 

they would in real-life driving during manual driving. After passing the construction zone, drivers 

needed to immediately move back to the middle lane and reactivate the automation by pressing a 

button on the steering wheel. For the brake response, participants needed to decrease the speed of 

the vehicle (to avoid hitting the lead vehicle) and wait until the trailing vehicles in both adjacent 

lanes passed their vehicle, then move into either the left or right lane. Similar to the lane-change 

response, after changing the lane, drivers were asked to maintain good driving until passing the 

construction zone and move back to their original lane, then reactivate the automation. 

 Procedure 

Participants first signed the consent form, indicating the agreement of participating in the 

study. Next, a pre-questionnaire was provided to collect participants’ demographic information. 
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Then, participants performed a 15-min training session. For the first part of training, tactile patterns 

were presented to participants to learn their meanings. Half of the participants were only exposed 

to the informative signal, and the other half experienced the instructional signal (a between-subject 

design). After successfully interpreting all tactile patterns, they participated in the second part of 

the training, where they practiced takeover procedures and manually drove the vehicle with all 

tactile patterns and locations. For the actual experiment, 18 takeover trials were completed, with 

an interval of 2 to 3 minutes between each takeover event (Li et al., 2019; Petermeijer et al., 2017). 

Correspondingly, 18 TORs, i.e., 16 meaning tactile signals and two baseline signals, were 

presented. Eight out of the 16 meaningful tactile signals were presented in the seat back, and the 

other eight were presented in the seat pan. Additionally, half of the takeover trials required 

immediate lane changes (i.e., lane-change response), and the other half needed a brake response 

first (i.e., brake response). To prevent fatigue due to the number of takeover tasks, the 18 takeover 

trials were divided into four blocks, with the 16 meaningful tactile patterns in four blocks and the 

two baseline patterns in one block. A five-minute break was provided between each of the two 

blocks, during which participants also completed a short questionnaire about their subjective 

ratings on signal patterns and locations. All signal locations and response types were randomized, 

and the block sequence and signal information type were counterbalanced. To divert participants' 

attention away from the road (prevent participants from preparing for takeover in advance), a TED 

talk video was played during each block, which utilized visual and auditory modalities, but would 

not interfere with the tactile channel. The experiment lasted approximately 80 minutes. After the 

experiment, participants completed a 10-minute debriefing session where they filled out a post-

experiment questionnaire about the experiment. 

 Dependent Measures 

Takeover performance was measured using time- and driving-related metrics. Time-related 

metrics included response time and information processing time. Response time (in seconds) was 

measured between the onset of TOR and the initial contact of the brake pedal (Society of 

Automotive Engineers, 2015). Information processing time (in seconds) was calculated as the time 

between the presentation of the tactile signal and the initiation of a lane change, as used in Study 

2. Response time indicated how quickly a driver reacted to tactile signals, while information 

processing time measured signal information processing and decision-making efficiencies. 
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Maximum resulting acceleration (in m/s2) was the driving-related metric, calculated by the 

square root of the sum of squared maximum longitudinal and lateral accelerations, as used in Study 

2. Here, a smaller value indicates better vehicle control and higher takeover quality. 

Similarly to Study 2, to assess drivers’ subjective ratings on tactile patterns and locations, 

which may provide additional design insights on tactile displays, as well as examining possible 

impacts of subjective preferences on takeover performance, a technology acceptance questionnaire 

was used  (Petermeijer et al., 2017; Van Der Laan et al., 1997). It consists of nine items with a 5-

point Likert scale ranging from -2 to 2. The usefulness score was the average score of items 1, 3, 

5, 7, and 9, and the satisfaction score was computed by averaging items 2, 4, 6, and 8. See Table 

6.2 for a summary. 

 Data Analysis 

This study employed a 2 (information type: informative and instructional) × 2 (response 

type: lane change and brake) × 3 (location: seat back, seat pan, and baseline) full factorial design. 

A linear mixed-effects model was used to compare the effects of information type (between-

subject factor), and response type and signal location (within-subject factors) on the dependent 

measures. Post-hoc comparisons with Bonferroni corrections were conducted to compare means 

between factor levels. Greenhouse–Geisser estimates were used to correct the degrees of freedom 

for sphericity tests that were violated. The significance level was set at p < 0.05. Partial eta squared 

(𝜂𝑝
2) was presented as the effect size. 

6.3 Results 

 Response time 

There was a significant main effect of location (𝐹(2, 76) =  13.418, 𝑝 < .001, 𝜂𝑝
2 =  .261) 

and response type (𝐹(1, 38) =  41.047, 𝑝 < .001, 𝜂𝑝
2 =  .519) on response times (see Figure 6.4). 

Specifically, the baseline (mean (M) = 1.326 s, standard error of mean (SEM) = .052) had shortest 

response times compared to seat back (M = 1.448 s, SEM = .041) and seat pan (M = 1.507 s, SEM 

= .044). Also, drivers in lane change responses (M = 1.542 s, SEM = .051) had longer response 

times compared to brake responses (M = 1.312 s, SEM = .038). No main effect of information type 

(𝐹(1, 38) =  .277, 𝑝 = .602, 𝜂𝑝
2 =  .007) on response time was found. 
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Two significant interaction effects: location × information type (𝐹(2, 76) = 3.237, 𝑝 =

.045, 𝜂𝑝
2 =  .078), and location × response type (𝐹(2, 76) =  10.364, 𝑝 < .001, 𝜂𝑝

2 =  .214) were 

found. For location × information type, no difference between locations was found with 

informative signal. However, with instructional signal, seat back (M = 1.505 s, SEM = .058) and 

seat pan (M = 1.545 s, SEM = .063) had longer response times compared to the baseline (M = 

1.297 s, SEM = .074). For location × response type, the baseline (M = 1.362 s, SEM = .069) had 

the shortest response time compared to seat back (M = 1.581 s, SEM = .053) and seat pan (M = 

1.684 s, SEM = .064) in lane-change response, but no difference was found in brake response, see 

Figure 6.4. 

 

 

Figure 6.4. Response time as a function of location and response type 

 Information processing time 

A significant main effect of response type (𝐹(1, 38) =  813.832, 𝑝 < .001, 𝜂𝑝
2 =  .955) 

was found on information processing time (see Figure 6.5). Here, participants with lane-change 

response (M = 4.708 s, SEM = .079) had shorter information processing time compared to brake 

response (M = 6.721 s, SEM = .076). No main effect of location (𝐹(1.64, 62.2) =  .788, 𝑝 =

.436, 𝜂𝑝
2 =  .020) nor information type (𝐹(1, 38) =  .305, 𝑝 = .584, 𝜂𝑝

2 =  .008) was found. 
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The analysis also revealed a significant location × response type ( 𝐹(1.70, 64.66) =

 4.526, 𝑝 = .019, 𝜂𝑝
2 =  .106) interaction effect. Specifically, seat pan (M = 4.821 s, SEM = .094) 

had marginally longer information processing time than the baseline (M = 4.563 s, SEM = .105) 

in lane-change response. No other differences were found. 

 

 

Figure 6.5. Information processing time as a function of location and response type 

 Maximum resulting acceleration 

There was a significant main effect of location (𝐹(2, 76) =  7.178, 𝑝 = .001, 𝜂𝑝
2 =  .159) 

and response type (𝐹(1, 38) =  8.851, 𝑝 = .005, 𝜂𝑝
2 =  .189) on maximum resulting acceleration 

(Figure 6.6). Post-hoc analyses revealed that drivers in the baseline (M = 10.82 m/s2, SEM = .079) 

had smaller maximum resulting acceleration compared to participants who received signals on seat 

back (M = 12.00 m/s2, SEM = .425) and seat pan (M = 11.64 m/s2, SEM = .254). Also, lane-change 

response (M = 12.02 m/s2, SEM = .344) had larger maximum resulting acceleration compared to 

brake response (M = 10.96 m/s2, SEM = .343). The trajectories of the two response types (see 

Figure 6.7) indicated that after receiving a TOR, even though the initial lane-change time with 

brake response may longer, but the overall trajectory was smoother than the lane-change response. 

No main effect of information type was found (𝐹(1, 38) =  .108, 𝑝 = .744, 𝜂𝑝
2 =  .003).  

There was also a significant location × information type ( 𝐹(2, 76) =  3.352, 𝑝 =

.043, 𝜂𝑝
2 =  .081) interaction effect. Specifically, with instructional signals, seat back (M = 12.36 
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m/s2, SEM = .602) and seat pan (M = 11.44 m/s2, SEM = .360) had larger maximum resulting 

acceleration compared to the baseline (M = 10.38 m/s2, SEM = .482). But with informative signals, 

no difference was found.  

 

Figure 6.6. Maximum resulting acceleration as a function of location and information type 

 

 

Figure 6.7. Takeover trajectories for each response type 20 seconds within takeover request 

 Subjective measures 

As shown in Table 6.2, there was a significant main effect of location (𝐹(2, 76) =

 5.797, 𝑝 = .005, 𝜂𝑝
2 =  .132 ) on usefulness score. Post-hoc analyses showed that seat back 
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received the highest usefulness rating (M = 1.21, SEM = .090) compared to seat pan (M = 0.81, 

SEM = .113) and the baseline (M = 0.74, SEM = .138). No main effect of information type 

(𝐹(1, 38) =  .023, 𝑝 = .880, 𝜂𝑝
2 =  .001) nor interaction effect were found. Similarly, there was a 

significant main effect of location ( 𝐹(1.61, 61.32) =  8.794, 𝑝 = .001, 𝜂𝑝
2 =  .188 ) on 

satisfaction score. Here, seat back gained higher satisfaction score (M = 0.73, SEM = .100) 

compared to seat pan (M = 0.13, SEM = .152).  No main effect of information type (𝐹(1, 38) =

 .053, 𝑝 = .819, 𝜂𝑝
2 =  .001) nor interaction effect were found. 

Table 6.2. Average usefulness and satisfaction scores for each location 

Negative (– 2) Positive (+2) Seat back Seat pan Baseline 

Useless Useful 
1.35 0.88 0.73 

Bad Good 
1.13 0.35 0.60 

Superfluous Effective 
1.10 0.65 0.63 

Worthless Assisting 
1.25 0.98 0.65 

Sleep-inducing Raising Alertness 
1.23 1.18 1.10 

Overall usefulness score 1.21 0.81 0.74 

Unpleasant Pleasant 
0.80 0.18 0.53 

Annoying Nice 
0.63 0.18 0.63 

Irritating Likeable 
0.60 0.05 0.40 

Undesirable Desirable 
0.90 0.10 0.53 

Overall satisfaction score 0.73 0.13 0.52 

6.4 Discussion 

This study investigated the effects of meaningful tactile patterns in informative and 

instructional formats embedded in the seat back and seat pan of a semi-autonomous vehicle. 

Overall, meaningful tactile signals (presented either in the seat back or pan) had longer response 

times and worse takeover quality compared to the baseline signal. However, no takeover 

performance difference was found between informative and instructional signals. Subjective 

ratings revealed that signals presented in the seat back were perceived as most useful and satisfying. 
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 Signal response phase 

Similar to the findings in Study 3, takeover performance measures were categorized into 

time- and driving-related metrics, representing the takeover signal response and post-takeover 

phases, respectively. For the signal response phase, response and information processing times 

were measured. Contrary to our expectations, the baseline signal (without a pattern) had shorter 

response times compared to meaningful signals presented in the seat back and seat pan. This 

finding is consistent with a previous study (Petermeijer et al., 2017), which also found the static 

signal (similar to our baseline signal) had faster response times compared to signals with patterns. 

This could be explained by the amount of information that needed to be processed. Signals without 

patterns only served as a TOR or warning signal, while signals in the seat back and pan not only 

served as an alert, but also conveyed information about surrounding vehicles and about how to 

maneuver. For meaningful signals, drivers needed additional time to perceive and comprehend the 

meaning of the signals, which led to a longer response time. Especially for patterned signals, which 

consists of three tactors, people may not be able to interpret the meaning after the activation of the 

very first tactor of the pattern, and thus they waited until (all vibrations of) the signal was complete 

before responding. But with the baseline signal, for which all four tactors vibrated concurrently, 

drivers could have interpreted the meaning of the signal within 215 ms, resulting in a faster 

response. Alternatively, the baseline condition in our study may have a higher intensity, given that 

it utilized four tactors vibrating at the same time. In contrast, only one tactor was vibrating at any 

moment for all signal patterns for lane-change responses (which accounted for 50% of response 

types). According to the literature, higher intensities of tactile stimuli have been found to be 

associated with higher perceived urgency and faster response times (e.g., Diederich & Colonius, 

2008; Lee & Spence, 2008). This explanation may be further illustrated by the finding that drivers 

had longer response times when making lane-change responses compared to brake responses. Here, 

either six or two tactors were activated instantaneously for the brake response in informative or 

instructional signal patterns, respectively. An increase in the number of tactors could have led to 

higher signal intensity and thus faster response times. Future follow-up work should investigate 

the effects of signal intensity on responses. If the finding still holds true, an intra-modal matching 

task may be needed to equate the intensities of tactile signals. Regardless, the finding that 

meaningful signals had longer response times compared to baseline signals is an important 
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consideration for the design of interfaces that convey instructional/informative information to 

drivers.   

Additionally, no main effects of location on information processing time was found, which 

did not meet our expectation. This suggests that the difference between the meaningful tactile 

patterns (in the seat back and pan) and the baseline signal only existed in response time, but not in 

information processing time. This result is consistent with the findings in Study 2 that the main 

effects of multimodal TORs was found in the initial takeover signal response phase (as measured 

by takeover time), but no difference was observed when it came to the entire signal response phase 

(measured by information processing time). One possible reason for this could be that the effects 

of signals, which lasted for only 645 ms, may be decayed in the memory since they were not 

continuously presented during the takeover, such as real-time tactile feedback to present the 

surrounding vehicle position or show the available lanes to move into through the entire signal 

response phase. This finding implied that the performance impairments of the meaningful tactile 

patterns in response time might have been mitigated as the driver processed more information in 

the driving environment and prepared to takeover.  

 Post-takeover performance 

Post-takeover performance was measured by maximum resulting acceleration. 

Surprisingly, meaningful signals (presented via the seat back and pan) had larger maximum 

resulting acceleration compared to signals in the baseline condition, indicating a poorer post-

takeover quality with meaningful signal patterns. Furthermore, the discovery of an interaction 

between location and information type showed that the seat back and pan only had a larger 

maximum resulting acceleration compared to the baseline for instructional signals. A similar effect 

was also found in time-metrics, i.e., that patterned signals only had longer response times 

compared to the baseline only when the signal was instructional. One possible explanation for this 

finding may be that with informative signals, which provide information about the location and 

status of elements in the environment, drivers could have had a higher level of situation awareness 

(Endsley, 1995), leading to better takeover performance. In addition to drivers’ visual search in 

the driving environment after perceiving TOR, the informative signal used the tactile modality to 

convey information about the driving environment, which, according to the Multiple Resource 

Theory (Wickens, 2008), should facilitate concurrent processing, leading to a shorter time to regain 
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awareness and better vehicle control. On the other hand, with instructional signals, drivers were 

commanded to follow the instruction to make maneuvers without learning about the driving 

environment. Deprived of the ability to focus on regaining situation and environmental awareness 

by being engaged in the non-driving-related task, drivers may have performed the post-takeover 

task with more uncertainty and greater task load (e.g., not only maneuvering the vehicle, but also 

trying to regain situation awareness during the post-takeover phase), which impaired their takeover 

quality. Future research can confirm this hypothesis using eye-tracking to compare drivers eye 

gaze points on the side mirrors to check the surrounding vehicles between the informative and 

instructional signal conditions. 

 Informative vs. instructional signals 

Our study took an initial attempt to compare the tactile patterns that represent two 

information types in automated vehicle takeover. Overall, no main effects of information type were 

found on response time, information time, nor maximum resulting acceleration. This indicates that 

the effects of the two tactile patterns on takeover performance were similar, regardless of the 

differences in their actual meanings. In other words, people may have spent similar amounts of 

time and efforts to process and comprehend both informative or instructional signals, and execute 

the maneuvering plan. In theory, once a person has been trained to interpret the meaning of patterns, 

it may not matter whether the signal is informative or instructional. For example, a left-turn green 

arrow and a red traffic light being presented simultaneously is similar to the two information types 

in our study. In general, the red traffic light (i.e., the instructional signal) requested drivers to stop, 

while the green arrow (i.e., the informative signal) informs people that they are allowed to turn 

left. Even though drivers may need a longer time to process and comprehend the meanings of the 

green arrow and red light, with more traffic knowledge and experience, they can interpret these 

meanings automatically (without a deeper information processing). This implies that meaningful 

tactile displays could be used to convey multiple types of information to facilitate communications 

between users and the system, and improve situation awareness once people know the meaning of 

signals well enough.   
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 Perceived usefulness and satisfaction 

Subjective ratings on signal information type and location revealed that drivers had higher 

perceived usefulness and satisfaction on signals embedded in the seat back. However, no 

preference difference was found between the two information types. Wan and Wu (2018) also 

compared the six vibration patterns that started from one location then moved to the other locations,  

e.g., seat back → seat pan → seat back → seat pan or back left → back right → back left → back 

right, and also found no subjective score differences. In their study, patterns initially presented in 

the seat back had faster response times compared to those in the seat pan, even though all signal 

patterns were generic (non-informative and non-instructional) and only served as TOR. According 

to the authors, tactile sensitivity in the back region is higher than the hip, which may also explain 

why in our study, participants reported higher usefulness for signals in the seat back. Additionally, 

vibrations presented in the seat pan may be more invasive, based on a few participants’ reports 

during the experiment debriefing session. Also, no subjective rating difference between the two 

information types further confirms the objective measure findings in that the effects of the two 

meaningful patterns on the takeover task may be very similar. A more systematic user study may 

be necessary to compare preferences between locations that may have tactile interfaces (e.g., seat 

back, seat pan, seat belt, steering wheel, or pedals), as well as patterns of signals that have various 

meanings.  

 Limitations 

One limitation of the study is that the driving scenario was relatively simple, even though 

drivers had three maneuvering action options (i.e., drive into the left lane, right lane, or brake first 

then switch lanes). Once participants were familiarized with the takeover scenarios, they might 

have been less motivated to collect as much information from the driving environment as they 

would in the real-life scenario when the takeover is required. For example, in a real-life scenario, 

drivers may need to quickly obtain characteristics of the external environment, such as the speed 

limits, road conditions, the surrounding vehicle locations and speeds, or the cause of the takeover 

event. However, in our study, drivers only needed to understand the meanings of the tactile cues 

and avoid collisions, and the cause of the takeover event was always the construction site. Future 
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studies may increase the elements in the driving environment, as well as the variabilities of 

takeover events. 

6.5 Conclusion 

In summary, this study examined how meaningful tactile patterns in informative and 

instructional formats embedded in seat back and seat pan affected takeover performance. Overall, 

when the signal is instructional, signals with patterns (either on seat back or seat pan) had worse 

takeover performance in terms of response time and maximum resulting acceleration compared to 

signals without patterns which only had a warning purpose. Additionally, tactile information 

presented in the seat back was perceived as most useful and satisfying. 
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 CONCLUSION 

7.1 Summary 

Multimodal displays that present information in the visual (V), auditory (A), and/or tactile 

(T) sensory channels have been found to be associated with better task performance (e.g., 

Diederich & Colonius, 2004; Hecht et al., 2006; Ho et al., 2007; Lu et al., 2013, 2012; Pitts & 

Sarter, 2018; Wickens et al., 2011) in many complex environments. Given the pervasion of 

automated systems, such as automated vehicles, speech systems, or smart homes technology, 

multimodal displays could serve as reliable human-machine interfaces (HMIs) to facilitate 

communication between human operators and automated systems. Especially since nearly all 

current systems have some form of limitation, and often need humans to intervene. To date, there 

is still limited empirical evidence on human performance with respect to transitioning from 

automated to manual control in human-automation systems – a context where multimodal displays 

could be used as decision support.   

Additionally, a wide range of users have been suggested to benefit from automated systems, 

such as the ever-growing older adult population, i.e., those aged 65 years and above, who may 

have declines in perceptual, cognitive, and/or psychomotor abilities. Yet, it is unclear how 

individual differences, such as the non-chronological age factors that make up one’s daily life 

activities, impact performance when transitioning from automated to manual control in joint 

human-automation systems. 

Therefore, the goal of this dissertation was to fill the above gaps in the research literature 

and to examine the effects of 1) multimodal displays, and 2) factors related to individual 

differences (most notably, non-chronological age factors) on transitioning from automated to 

manual control in human-automation systems. Automated driving was used as the testbed.  

Four human-subject experiments were conducted to answer this research question, and are 

presented in Chapters 3 – 6. Study 1 (Chapter 3) examined whether the non-chronological age 

factor, engagement in physical exercise, was associated with performance differences in the 

automated vehicle takeover signal response phase between younger and older drivers. The findings 

revealed that bi- and trimodal signals, especially with a tactile component, was associated with 
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faster brake response times for both age groups, but more pronounced for older adults. Also, 

engaging in physical exercise was found to be correlated with smaller maximum brake force. 

Study 2 (Chapter 4) went one step further and investigated the effects of age, physical 

exercise, and signal modality on post-takeover phase. Preliminary results indicated that older 

adults had a higher maximum resulting jerk compared to younger adults. However, the differences 

in decision-making time and maximum resulting jerk were narrower for the exercise group 

(compared to the non-exercise group) between the two age groups, further highlighting the benefits 

of physical exercise on task performance in complex environments. 

Due to COVID-19 restrictions, Study 2 was only considered a pilot study. The focus of 

Study 2 shifted to address non-age-related gaps in the multimodal literature and explored the 

effects of various characteristics of human-machine interfaces on takeover performance. 

Specifically, Study 3 (Chapter 5) examined the effects of takeover signal direction (ipsilateral vs. 

contralateral), lead time (4 vs. 7 seconds), and modality (uni-, bi-, and trimodal combinations of 

visual, auditory, and tactile signals) on automated vehicle takeover performance. Overall, similarly, 

single and multimodal signals with a tactile component were associated with the faster takeover 

and information processing times, and were perceived as most useful. Ipsilateral signals showed a 

marginally significant benefit to takeover times compared to contralateral signals. Finally, a 

shorter lead time was associated with faster takeover times, but also poorer takeover quality. 

Findings in Studies 1 – 3 revealed particular benefits of tactile displays in takeover 

performance. Finally, Study 4 (Chapter 6) used this knowledge to examine how meaningful tactile 

patterns, as opposed to abstract tactile signals in Studies 1 – 3, affected takeover performance. 

Overall, in only the instructional signal group, meaningful tactile patterns (either in the seat back 

or seat pan) had worse takeover performance in terms of response time and maximum resulting 

acceleration compared to signals without patterns. Additionally, tactile information presented in 

the seat back was perceived as most useful and satisfying. 

In summary, this work represents critical first steps towards examining the effects of 

employing multimodal and meaningful tactile displays, as well as considering non-chronological 

age factors in the design of systems in complex human-automation systems to improve human task 

performance. 
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7.2 Intellectual Merit and Broader Impact 

This dissertation work contributes to the knowledge base in three research areas: aging 

(and gerontechnology), multimodal interfaces, and automation. 

For aging, as the fastest-growing age group, it is important to determine non-chronological 

age factors that may cause individual differences in how older adults interact with technology. 

This work investigated the effects of engagement in physical exercise, on older adults’ cognition 

and physical abilities to interact with complex technologies. Results could help aging, human 

factors, and inclusive design researchers develop more substantial frameworks that describe how 

non-chronological factors affect performance on complex tasks. Specifically, the effects of non-

chronological factors reported in the current literature were only investigated in simple tasks or 

tasks in simple environments. The findings related to physical exercise in this dissertation 

contribute to the literature by showing that the benefits of non-chronological age factors also exist 

in complex environments. Our findings further highlight the need to consider non-chronological 

age factors in research on older adults and in the development of theories on successful aging (e.g., 

living in healthy and engaging lifestyles; Franklin & Tate, 2009). Additionally, findings from this 

dissertation research may help designers to better develop the next-generation of automated 

systems that may help older adults to maintain active and productive lifestyles. For example, the 

positive correlation between physical exercise and automation takeover performance found in this 

dissertation work could inform the design of adaptive technologies that are sensitive to various 

cognitive and physical abilities. 

With respect to multimodal displays, this work evaluated its application in assisting with 

machine-to-human transitions in complex environments, especially the use of meaningful tactile 

information. Results contribute to the multimodal information literature, which can be used in 

future HMI studies to investigate the effects of meaningful multimodal (compared to only tactile) 

cues in complex systems for a wide range of user groups. Traditionally, in the literature, the 

benefits of multimodal signaling have been mostly found for abstract signals (e.g., only for 

warning purposes) and/or with only younger populations. The findings from this dissertation add 

to this literature and show that displays containing a tactile component can convey more complex 

information in human-automation systems. It also highlighted that the benefits of multimodal 

information presentation carry over to older populations in the context of human-automated 

systems. Results may have broader implications for the design of next-generation human-machine 
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interfaces to facilitate communication within joint human-automation systems. In particular, in 

complex environments, one sensory modality may be overloaded with information. Thus, the 

application of multimodal displays could help to better distribute information across multiple 

sensory channels. For example, during a takeover event, if the visual channel is occupied, a 

concurrent meaningful tactile interface can inform the driver of a potential threat and/or the most 

appropriate maneuvering plan without interference by information conveyed in the visual channel. 

Additionally, the findings regarding ipsi- and contralateral signals may also inform the design of 

multimodal displays. Given potential differences in takeover times, designers should employ only 

one of the two display types to avoid drivers confusing the meaning of alerts.  

Finally, for automation, this work can aid research communities in informing models 

specific to automation takeovers as well as function/task allocation between machines and humans. 

The empirical data related to handoffs in this dissertation provided unique details for both phases 

of the automated vehicle takeover process. These findings can help researchers refine takeover 

models and develop automated takeover specific frameworks. Additionally, this research adds 

more support for the expected roles of humans when interacting with intermediate levels of 

automation. Thus, results may also assist researchers, practitioners, and designers to better 

understand 1) methods for transferring control from a machine to a human and 2) approaches for 

communicating machine intention to humans. This work used takeover requests presented via 

multiple sensory channels, and objective and subjective findings showed that a multimodal 

approach could be reliable in terms of guiding the attention of a wide range of operators in complex 

automated systems. Thus, multimodal displays should be considered as one possible method to 

facilitate communications between operators and automated systems, as well as to convey critical 

system information when it is necessary. 

7.3 Future work 

This dissertation work contributes a better understanding of aging, multimodal display, and 

automated systems. However, many unanswered questions still exist in the three areas.  

First, for aging, this dissertation first identifies one physical factor – engagement in aerobic 

physical exercise. Follow-up research should explore ways to collect more precise data on exercise 

frequency and type, and/or conduct longitudinal studies over a specific timeframe to compare 

performance before and after the intervention of physical exercise (Marottoli et al., 2007). For 
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instance, a longitudinal study with interventions of physical exercise could help to determine 

whether exercise leads to improvements in task performance (compared to only correlations). 

Similarly, some participants performed different types of aerobic exercises, and previous work 

(Diamond, 2015; Peruyero et al., 2017) suggests that enhancements to cognition are a function of 

exercise type, intensity, and duration. Thus, future work may attempt to control these variables. 

Additionally, future research may also quantify the influence of other types of exercises, such as 

anaerobic, as well as cognitive and social non-chronological age factors on task performance in 

complex systems. 

Additionally, the meaningful tactile patterns in this dissertation only represent two types 

of information in automated systems. Future work may design patterns that can convey more 

complex information and messages that are similar to how human communicates in verbal 

language, to enable humans to make decisions while their visual and auditory channels are 

occupied. It may be most appropriate to commence conducting in-lab experiments by designing, 

fabricating, and testing innovative tactile displays, and later evaluating applications of tactile 

information presentation in more applied automated systems, such as autonomous vehicles, 

surgical operating rooms, and flight decks. 

Finally, for automated systems, common designed-induced Human Factors issues, such as 

operations that lead to various mental states (e.g., fatigue, mind wandering, or emotion) at the time 

when a takeover is needed, may cause unwanted consequences. The next step of research could be 

to investigate the impacts of various mental states on the control of autonomous dynamic systems, 

and use human performance modeling to predict mental states, human behavior, and performance, 

based on real-time data (e.g., physiological measurements and performance metrics). 
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