
CIRCULAR CODING IN HALFTONE IMAGES AND OTHER
DIGITAL IMAGING PROBLEMS

by

Yufang Sun

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Jan P. Allebach, Chair

School of Electrical Computer Engineering

Dr. Amy Reibman

School of Electrical Computer Engineering

Dr. Mark J.T. Smith

Dean of the Graduate School Senior Vice Provost for Academic Affairs and Department of

Electrical and Computer Engineering University of Texas at Austin, TX

Dr. Robert Ulichney

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

To my parents and family.

3

ACKNOWLEDGMENTS

Before starting my dissertation, I would like to acknowledge everyone important to me

during my Ph.D. journey at Purdue University.

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Jan

P. Allebach for his continuous support. He always encourages me when I have difficulties.

What we are exploring is quite new, so it is very common to encounter challenges. That

is why we are here to research, and in hope that it can be beneficial for the upcoming

researchers. With his strong support, I can take time to rethink the methodologies and find

new clues from literature, with peace of mind. He provides me tremendous useful guidance,

also recommends me extra resources, which help me to avoid detours.

I would also like to acknowledge my advisory committee members: Prof. Reibman Amy,

Prof. Mark J.T. Smith, and Dr. Robert Ulichney. I would like to thank Prof. Reibman for

her valuable guidance on the presentation, she helps me to explain the profound theories in

simple languages and clarify my research claims with the global picture in mind, and also

without losing the focus on technical details. I also would like to thank Dr. Ulichney for

his detailed suggestion through my research and dissertation writing. He gives me timely

correction when I make mistakes. Besides, I would like to thank Prof. Mark J.T. Smith

providing me with new perspectives to level up my research work.

Thirdly, I would like to thank all the EISL members who have been working with me

over the past few years. I enjoy the time we were attending the same classes, collaborating

on projects and discussing research problems. The time flies away but the cherished memory

stays.

Moreover, I would like to thank Hewlett-Packard Company for supporting my Ph.D.

research. Also, I would like to thank Purdue University and Department of Electrical and

Computer Engineering, and all the professors and staff members that helped me to finish

my Ph.D. study.

4

TABLE OF CONTENTS

Page

LIST OF TABLES . 8

LIST OF FIGURES . 9

LIST OF SYMBOLS . 13

ABBREVIATIONS . 16

ABSTRACT . 17

1 INTRODUCTION . 18

2 DEVELOPMENT OF THE CIRCULAR CODING METHOD WITH INTER-
LEAVING PHASE PERIOD . 22

2.1 Problem Statement . 22

2.2 Overview of the Data Embedding Framework for Circular Coding 24

2.3 Channel Encoder . 25

2.3.1 Create the data array for payload P 26

2.3.2 A toy example of creating the encoded data array 27

2.4 Channel Decoder . 28

2.4.1 The majority and minority bits . 30

2.4.2 Decoding method . 31

2.4.3 An example of decoding . 31

2.5 Coding Channel: Embedding Data in Halftone Images 33

2.5.1 Abstention and carrying sub-cells . 35

2.5.2 Highlight and shadow region . 36

2.5.3 Embed the data array into a halftone image 37

2.5.4 Balanced shifting rule . 38

2.5.5 Example of the image with embedded data array 39

2.6 Coding Channel: Data Retrieval From Captured Image 39

2.7 Calculate the Decoding Rate . 46

2.8 Conclusion . 47

3 ANALYZE THE PERFORMANCE IN A NOISE FREE COMMUNICATION CHAN-
NEL . 49

5

Page

3.1 Find the Bit Position Index of Shifted Locations 49

3.1.1 Row shift . 49

3.1.2 Column shift . 51

3.1.3 Combine row shift and column shift 51

3.2 Canonical Crop Window Location Set (CCWLS) 51

3.2.1 Size of CCWLS . 52

3.2.2 An example of the CCWLS . 53

3.3 Calculate the Bit Position Repeating Count (BPRC) in a Crop Window . . . 54

3.3.1 Develop a closed form equation to calculate the BPRC in a crop window 54

3.3.2 Validate the formula . 59

3.4 Performance Review . 60

3.5 Conclusion . 62

4 ANALYZE THE DECODING PERFORMANCE IN A NOISY CHANNEL USING
PROBABILITY MODELING . 64

4.1 Model the Communication Channel and Transmission Error 64

4.2 Represent the Decoding Process . 65

4.2.1 Model the status of change as a random variable 66

4.2.2 Model the data array after corruption by transmission errors as a
sequence of random variables . 69

4.2.3 Separate the payload and phase and then decode the payload 70

4.3 Develop a Closed Form Solution for the Probability of Successful Decoding . 72

4.3.1 Step 1: Compute the probability of separating the phase from the
payload . 72

Payload bit length of one: B = 1 . 72

Extend the number of payload bits from B = 1 to B > 1 79

4.3.2 Step 2: Compute the conditional probability of successfully decoding
the payload . 81

4.3.3 Step 3: Compute the conditional probability of successfully decoding
the phase . 82

4.3.4 Step 4: Compute the final decoding rate 83

6

Page

4.4 Validate the Closed Form Solution . 84

4.4.1 Design of the simulation process . 84

4.4.2 Validate simulation results with theoretical results 85

4.5 Summary of the Assumptions . 92

4.6 Examine the Similarity of the Bit Values Between Payload and Phase 93

4.6.1 Design the experiment to examine the similarity 94

4.6.2 Experiment and result . 94

4.7 Conclusion . 96

5 WEB-BASED PRINT QUALITY TROUBLESHOOTING (PQTS) 97

5.1 Problem Description . 97

5.2 Structure of the PQTS Tool . 97

5.3 PQTS Tool Development . 99

5.4 Conclusion . 99

6 TEXT LINE DETECTION . 101

6.1 Problem Description . 101

6.2 Text Line Detection Pipeline Review . 102

6.3 Implementation of the Algorithm . 102

6.4 Conclusion . 103

7 SUMMARY . 111

REFERENCES . 113

VITA . 121

7

LIST OF TABLES

2.1 The candidate payload decoding rate with different levels of transmission error
rate, and different sizes of the crop window. Here, the crop window is of size
W × H. The average Bit Position Repeating Count (BPRC), to be discussed
in Sec. 3.3 , is also listed here. Payload bit length B = 67, interleaving phase
period V = 4, row to row shift D = 4. Each rate is calculated based on all
the possible crop windows of data within the Canonical Crop Window Location
Set (CCWLS), to be discussed in Sec. 3.2 , and 3 different random samples of
transmission error for each crop window of data. 47

2.2 The decoded payload decoding rate with different levels of transmission error rate, and
different sizes of crop window. The average Bit Position Repeating Count (BPRC),to be
discussed in Sec. 3.3 , is also listed here. Payload bit length B = 67, interleaving phase
period V = 4, row to row shift D = 4. Each rate is calculated based on all the possible
crop windows of data within the Canonical Crop Window Location Set(CCWLS), to
be discussed in Sec. 3.2 , and 3 different random samples of transmission error for each
crop window of data. Note, the result of “N/A” means that due to the insufficient
number of bit repeats for phase, the final decoding failed. 48

4.1 The conditions under which the pure payload selection A has fewer minority bits than
the mixture of payload and phase selection B, when the phase original value is the
same as the payload value. 76

4.2 The conditions under which the pure payload selection A has fewer minority bits than
the mixture of payload and phase selection B, when the phase original value is different
from the payload value. 77

5.1 The print quality trouble shooting products that been developed. 99

8

LIST OF FIGURES

1.1 Block diagram of a typical data transmission system. 20

1.2 Framework of the data transmission system. A message u is circularly coded and
embedded in the carrier image I, and then transmitted in the coding channel, where
noise may impact the result. . 21

2.1 Flow chart for creating the encoded data array. 27

2.2 Example of encoding the data array. P = [1110000], B = 7, D = 2, V = 3. . . . 28

2.3 Overview of the circular coding decoding process. The transmission error will
impact the process of these four events: Event A: separating the payload and phase
data; Event B: decoding the shifted sequence of the payload; Event C: decoding
the shifted sequence of the phase; Event D: decoding the payload. All the other
processes are deterministic. . 30

2.4 Example of a crop window of data array with size of 5 × 6, with bit length B = 7,
row to row shift D = 2, and interleaving phase period V = 3. The restored crop
window is expanded to 5 × 7 to accommodate the circular shift of the payload. . 32

2.5 Example of a crop window of data array with size of 12×12, with bit length B = 7,
row to row shift D = 2, and interleaving phase period V = 3. The restored crop
window is expanded to 12 × 14 to accommodate the circular shift of the payload. 32

2.6 Example of decoding the payload. (a) The restored (rows circularly shifted back)
crop window of data array with size of 12 × 12, with bit length B = 7, row to row
shift D = 2, and interleaving phase period V = 3. The restored crop window is
expanded to 12 × 14 to accommodate the circular shift of the payload. The blue
highlighted rows are assumed to be the phase rows and moved for to decode the
candidate payload P̂ . Every V -th row starting with row v = 0 in sub figure (a) will
be selected and used to decode the candidate phase Û 34

2.7 Example of finding the payload from candidate payload and the phase. payload
length B = 7. . 34

2.8 Illustration of the four quadrants of an 8 × 8 halftone cell. 36

2.9 Halftone cells with different gray scale values. 37

2.10 Example of halftone cell and sub-cell. Each halftone cell has size 8 × 8 pixels, and
each sub-cell has size 4 × 4 pixels. . 38

2.11 Examples of (a) carrying sub-cell in shadow region, (b) carrying sub-cell in highlight
region, (c) non-carrier sub-cell, and (d) carrying sub-cell in shadow region where
the majority neighboring sub-cells are shadow. 38

9

2.12 Balanced shifting pattern for (a) shadow region and (b)highlight region. There are
totally 33 different gray levels, indexed from 1 to 33. The first rows in (a) and (b)
are the unsifted versions, where indices from 2 to 16 are the dot clusters that can
be used to carry information in the shadow regions; indices from 18 to 32 are the
dot clusters that can be used to carry information in the highlight regions. The
second and third rows illustrate the shifts to the northwest (0-NW) and southeast
(0-SE) directions, respectively, to represent the bit value of 0. The third and forth
rows illustrate the shift to the northeast (1-NE) and southwest (1-SW) directions,
respectively, to represent the bit value of 1. Please note that the dot cluster of
index 1 is the whole shadow region; for index 17, it is the perfect checkerboard
pattern; and for index 33, it is the highlight region. None of these three cluster
dots can be used to carry information, so they are not shown here. 40

2.13 Balanced shifted sub-cell patterns for (a) shadow region and (b) highlight region. . 41

2.14 Example illustrating the embedding of a data array into a gray ramp image. P =
[10110100001110010], U = [00001111000000100], B = 17, D = 2, V = 3. 42

2.15 Example illustrating the embedding of a data array into a halftone image. P =
[11111111111111111], U = [00000000000000000], B = 17, D = 2, V = 3. (a) gray
scale image, (b) halftoned image, (c) halftone image with embedded data array. . 43

2.16 Plot of the centroids for balanced shifted sub-cell patterns and abstentions. . . . 44

2.17 Flowchart of data retrieval from the captured image using the centroid method
when the data was embedded according to the balanced shifting rule. See Fig. 2.8

for the illustration of the four sub-cells I, II, III and IV. 45

3.1 Example of the bit position index for shifted location (∆m, n). Assume the bit
position index at the un-shifted location is 0. 49

3.2 A example of the canonical crop window location set (CCWSL). Here, the payload
bit length B = 7, and the bit index j = 0, 1, ..., 6. The row to row shift D = 1,
and the interleaving phase period V = 3. The CCWLS has size V × 2B. Any crop
window W has a related crop window W∗ with a bit position within the CCWLS
that contains exactly the same bit repeating positions, including the phase rows,
which can be found in W∗. . 53

3.3 Illustration of the bit repeat count. Here, the crop window size is 8 × 8, and the
row to row shift D = 3. Total bit repeat count for bit index j = 0 is 5. 56

3.4 Minimum bit repeat count for B = 17, V = 3 (a) from reproduced from simulation
[21] and (b) from closed form Eq. 3.17 . These two approaches show the same
results. . 60

10

3.5 Bit position repeat count for (a) payload and (b) phase for each bit position and
for all possible starting locations of the crop window within the CCWLS. Payload
bit length B = 7, row to row shift D = 2, interleaving phase period V = 3. The
yellow star is the maximum bit repeat count over all the crop windows that start
at the different starting positions in the CCWSL; the orange star is the minimum
bit repeat count over all the crop windows in the CCWLS; the blue star is the mean. 61

3.6 Bit position repeat count for (a) payload and (b) phase for each bit position and
for all possible starting locations of the crop window within the CCWLS. Payload
bit length B = 67, row to row shift D = 4, interleaving phase period V = 6. The
yellow star is the maximum bit repeat count over all the crop windows that start
at the different starting positions in the CCWSL; the orange star is the minimum
bit repeat count over all the crop windows in the CCWLS; the blue star is the mean. 63

4.1 Binary Symmetric Channel with probability of transmission error p. 64

4.2 Illustration of bit position repeat count. The total bit position repeat count in a
crop window of data is R, the phase bit position repeat count in a crop window of
data is M , and the payload bit position repeat count in a crop window of data is
R − M . We define N = R − 2M . Thus, R − M = N + M 66

4.3 Illustration of the (a) pure payload subset in Case 1 and (b) mixture of payload
and phase subset in Case 2, using a Venn diagram. In this example N = 7, M = 3,
and R = 13. . 67

4.4 Flowchart to simulate the payload decoding rate. 85

4.5 Comparison of probability of successfully separating payload and phase bits based
on theory and simulation for N = 128, M = 12, B = 1. Here, the phase period V ,
row to row shift D, crop window size W and H are not relevant. 86

4.6 Comparison of probability of successfully separating payload and phase bits based
on theory and simulation for N = 128, M = 12, B = 4. Here, the phase period V ,
row to row shift D, crop window size W and H are not relevant. 87

4.7 Comparison of probability of successfully separating payload and phase bits based
on theory and simulation for N = 67, M = 12, B = 17. Here the phase period V ,
row to row shift D, crop window size W and H are not relevant. 88

4.8 Validation of the theory by simulation: the final decoding rate. The simulated
decoding success rate is the average of 40k different samples of error at each trans-
mission error rate. B = 67, W = 13, H = 13, V = 13. The lower bound and upper
bound results are achieved when the confidence is exactly 50%. We use the floor
and ceiling, respectively, of the bits that need to switch value to determine a suc-
cessful decoding result. And the average decoding rate is the average of the lower
bound and upper bound results. . 89

11

4.9 Validation of the theory by simulation: the final decoding rate. The simulated de-
coding success rate is the average of 40k different samples of error at each transmis-
sion error rate. For the first comparison group (the green curve), B = 25, N = 15,
M = 4, and V = 5, D = 2, W = 25, H = 25; for the second comparison group
(the blue curve), B = 67, N = 14, and M = 2; V = 13, D = 2, W = 13, H = 13
for the last comparison group (the black curve), B = 127, N = 22, M = 1, and
V = 24, D = 2, W = 127, H = 24. . 90

4.10 Effect of increasing the number of simulation trials on the match between the
theoretical ad simulation results. (a) Decoding success rate as a function of error
rate. (b) The Euclidean distance between the simulated and theoretical results. . 91

4.11 The approximation of the final decoding rate. P1: the probability of separating
payload and phase defined in Eq. 4.27 ; P2: the conditional probability of decoding
the payload in Eq. 4.30 ; P3: the conditional probability of decoding the phase in
Eq. 4.36 ; P1P2P3: the final probability of decoding the original payload in Eq.

 4.37 . P2P3: the approximation of the final probability of decoding the original
payload in Eq. 4.37 . The simulated decoding success rate is the average of 40k
different samples of the error at each transmission error rate. 92

4.12 The similarity of the payload and phase, using the double bit encoding method,
see Sec. 2.3.1 . . 95

5.1 The PQTS three-layer architecture illustration. 98

5.2 The total page views for PQTS products during the time period of Jun. 1, 2013
to Mar. 14, 2014. There are totally four different websites that link to the PQTS
tools: cpso-support-new, cs:generic-link, cs:ipg-support:pqts and go/printquality.
The statistical data was provided by HP Inc. 100

6.1 The flowchart of the text line detection process 104

6.2 The flow chart - main . 105

6.3 The flow chart - reference 1 . 106

6.4 The flow chart - reference 2 . 107

6.5 The flow chart - reference 3 . 108

6.6 The flow chart - reference 4 . 109

6.7 Average Running time is 2.79 seconds per image (per page) based on total 261 im-
ages detection result, including (1) Mixed pictures and text; (2) Horizontal vertical
lines; (3) Skewed text lines and (4) Different fonts, contents. 110

12

LIST OF SYMBOLS

B number of bits in the payload

P payload

S standard form of payload

C number of circular shift to get the payload

c number of bits needed to represent the circular shift

V phase code row interleave period

D row to row shift

W (W, H) crop window of data array

H crop window height

W crop window weight

U phase code representation of C

P̃ candidate recovered payload

Ũ candidate recovered phase

T (k, l) halftone screening array

P̂ candidate recovered payload

Û candidate recovered phase

T (k, l) halftone screening array

B total number of bit occurrence within a crop window

B+ number of majority occurrence of bits

B− number of minority occurrence of bits

M sub-sampling mask

m, n bit location index in data array

P(m, n) bit position index at location (m, n) in the data array

∆m, ∆n number of bit location shift

f(∆m, ∆n) bit position shift for location shift.

W crop window of data array

q(h, j) column index for row h and bit position index j

µ uncertainty calculated for each bit in the payload decoding

13

C confidence calculated for the payload decoding

P(v∗) sub sets of the cropped data of all the actual payload

P(v∗) sub sets of the cropped data of mixture of payload and phase

K number of half of the bit occurrence

p probability of transmission error

P probability of some events

Xj payload value in bit index j repeating positions

Zj phase value in bit index j repeating positions

Yj decoded payload value in bit index j repeating positions

NP̃ number of experiments of correct detection of candidate payload

NP̂ number of experiments of correct detection of detected payload

rP̃ candidate payload decoding rate

rP̂ payload decoding rate

Cr(x) centroid in horizontal direction

Cr(y) centroid in vertical direction

s(i, j) sub-cell, where 0 ≤ i, j ≤ 3

h(k; i, j) unique sub-cell patterns, where 0 ≤ i, j ≤ 3, 0 ≤ k ≤ 105

k̂(s(i, j)) sub-cell which has the smallest SSD value for all the sub-cells

Q number of bits to shift to standard payload form

Nn,j number of positions for each row in the crop window W

B̃row bit position repeat count of a row before rounding to the next larger integer

Brow bit position repeat count for a row

Bpay bit repeat count for payload rows

Bpha bit repeat count for phase rows

H bit repeat count for the phase rows in a crop window of data array

Hpay set of payload row indices in a crop window

Hpha set of phase row indices in a crop window

R total number of rows

M number of phase rows

14

N number of payload rows

S1 mathematical representation of the pure payload set without any error

S2 mathematical representation of the mixture of payload and phase set

S̃1 mathematical representation of the pure payload set with error

S2 mathematical representation of the mixture of payload and phase set with

error

Ȳ
(j)

1 sample mean for the pure payload subset

Ȳ
(j)

2 sample mean for the mixture payload and phase subset

Ŷk

(j)
estimated bit value for each data set

A data set in the pure payload data set

B data set in the mixture of payload and phase

α number of minority bits in data set A

β number of minority bits in data set B.

ε probability of bit error

C1 confidence value to select pure payload set

C2 confidence value to select mixture of payload and phase set

U̇ binary string that transferred from the decimal value C

ˆ̇U decoded binary string that transferred from the decimal value C

Ṁ actual bit repeat count for phase
ˆ̇M decoded actual bit repeat count for phase

15

ABBREVIATIONS

AM Amplitude Modulated

BPRC Bit Position Repeat Count

BSC Binary Symmetric Channel

CCWLS Canonical Crop Window Location Set

FEC Forward Error Correction

FM Frequency Modulated

PQTS Print Quality Troubleshooting Tool

16

ABSTRACT

Embedding information into a printed image is useful in many aspects, in which reliable

channel encoding/decoding systems are crucial due to the information loss and error prop-

agation during transmission. So how to improve the transmission accuracy and control the

decoding error rate under a predictable level is always crucial to the channel design.

The current dissertation aims to discuss the design and performance of a two-dimensional

coding method for printed materials – Circular Coding. It is a general two-dimensional

coding method that allows data recovery with only a cropped portion of the code, and

without the knowledge of the carrier image. While some traditional methods add redundancy

bits to extend the length of the original massage length, this method embeds the message

into image rows in a repeated and shifted manner with redundancy, then uses the majority

votes of the redundant bits for recovery.

We introduce the encoding and decoding system and investigate the performance of the

method for noisy and distorted images. For a given required decoding rate, we model the

transmission error and compute the minimum requirement for the number of bit repeats.

Also, we develop a closed form solution to find the the corresponding cropped-window size

that will be used for the encoding and decoding system design.

Finally, we develop a closed-form formula to predict its decoding success rate in a noisy

channel under various transmission noise levels, using probabilistic modeling. The theoretical

result is validated with simulations. This result enables the optimal parameter selection in

the encoder and decoder system design, and decoding rate prediction with different levels of

transmission error.

We also briefly discuss two other projects: development of print quality troubleshooting

tools and text line detection in scanned pages.

17

1. INTRODUCTION

Nowadays we use electronic media more than ever before, like the emails, ebooks, website,

etc. However, according to researches, paper usage is still increasing these days rather than

decreasing [1]–[3].

Printed documents serve as an interface between humans and the digital world [2]. One

category of researches that has been done is to investigate the opportunities for abuse of trust

through the generation of fallacious documents and illegal duplication of existing documents,

including embedding of messages in these documents. For example, embedding information

in printed documents can be used for a number of applications such as authentication of

document content, proof of ownership, and identification of the printer that produced these

documents. [4]–[9] On the other hand, some researches propose methods to improve the data

embedding techniques, such as using intrinsic and extrinsic signatures to embed information

inhalftoned images to be printed with a laser, electrophotographic printer [4], [10]–[15].

In this dissertation, we will focus on information embedding techniques for printed doc-

uments. One category of these data embedding techniques embeds data in a region that is

solely dedicated to containing the message; but the visual appearance of the coded image is

compromised. 1-D and 2-D barcodes [16], [17] and DataGlyphs [18], [19] are the predominant

techniques in this class.

The other category of data embedding technologies carries the information in a manner

that retains the original image in the content. Various methods for print information hiding

have been proposed [2], [11], [20]–[28]. Among these methods, Bulan [22] used orientation

modulation for data hiding in clustered-dot halftone prints. In this method, the message is

represented by the different orientations of the dot clusters.

The circular coding with interleaving phase method was first proposed by Ulichney [20],

[21] for channel encoding and decoding. It is a general two-dimensional coding method that

allows recovery of data with only a cropped portion of the code, and without the knowledge

of the carrier image. This method separates the message into two parts: the first part is

the payload information which includes a sequence of all the values of the information bits;

the second part is the phase code information which includes the starting point of the bit

18

sequence. It is enabled by circularly shifting the bit sequence according to embedded code

in the phase line that is interleaved with the payload lines. This embedded the circular shift

will be used to decode the payload. In other words, the circular coding method separates

the message into two parts, and encodes both parts separately within a block of the image.

Compared with some traditional methods that add redundancy bits to extend the length

of the message, circular coding uses repeats of the message in the following rows, but in

a circularly shifted fashion to add the redundancy. The decoding method then uses the

majority votes of the redundant bits to recover the message.

Once the image is encoded and printed, and has been captured by some device, there

will be different errors involved, such as the local distortion in printing, and the rotation

and distortion in the image capturing device. These errors and the erosion of data require a

robust channel coding method to ensure the decoding success.

From a communication systems point of view, the information can be hidden in halftone

images and reliably transmitted after printing, and then extracted by a scanner [10], [11],

[29]–[33].

As shown in Fig.1.1 , an information embedding system usually contains the following

components [34]: information source, source encoder, channel encoder, modulator, channel

(storage media), demodulator, channel decoder, source decoder, and then destination. The

source encoder transfers the information into a sequence of binary digits, or bits, called the

information sequence. The channel encoder transfers the information sequence into a discrete

encoded sequence called the code word. The code word then will be transferred in the coding

channel (modulator + channel + demodulator) where noise is introduced. The output of

the coding channel is called the received sequence. The channel decoder will transfer the

received sequence back to the information sequence, called the estimated sequence.

The specific circular coding encoding and decoding communication system to be studied

in this dissertation is shown in Fig. 1.2 .

In Chapter 2 , we introduce the error control coding system, and compare the similarity

and differences between circular coding and other codes. We also introduce how the circular

coding algorithm is applied to printed images for information embedding.

19

Figure 1.1. Block diagram of a typical data transmission system.

The design and development of the encoder and decoder of the circular coding algorithm

is also discussed in Chapter 2 . In addition, a simulation of the noise in the communication

channel is discussed to analyze the decoding success rate.

In Chapter 3 , we analyze the decoding performance in a noise free communication chan-

nel, including the minimum requirement of the crop window size of the data set, and develop

a closed form solution of the bit repeat count for a given crop window of the data set.

In Chapter 4 , we analyze the system performance by developing a closed-form expression

to predict the decoding success rate in a noisy channel under various transmission noise

levels, using probabilistic modeling. The theoretical result is validated with simulations.

This result enables optimal parameter selection in the encoder and decoder system design,

and decoding rate prediction with different levels of transmission error.

Some other projects are discussed in Chapters 5 and 6 , including:

1. Print quality troubleshooting. We simulate the defects of the printers and provide

online solutions for customer. Based on our work, print quality troubleshooting tools were

released for six different products.

20

Figure 1.2. Framework of the data transmission system. A message u is circularly
coded and embedded in the carrier image I, and then transmitted in the coding
channel, where noise may impact the result.

2. Text line detection. For the document pre-processing purposes, we detect the text

lines in a document by finding features of the symbols, and cluster the symbols into text

lines.

21

2. DEVELOPMENT OF THE CIRCULAR CODING METHOD

WITH INTERLEAVING PHASE PERIOD

2.1 Problem Statement

In 1948, Shannon [35] demonstrated that by proper encoding of the information, errors

induced by a noisy channel can be reduced to any desired level without sacrificing the rate of

information transmission. Since then, a lot of effort has been expended to find the efficient

encoding and decoding methods for error control in a noisy channel [36].

The diagram shown in Fig. 1.1 represents a one-way system, which means that the

transmission is in one direction only. Every message transmitted through the channel will be

affected by some noise. Naturally,the aim of any communication channel is reliable delivery

of information, that is to minimize the error in the transferred information. Error control

for a one-way system must be accomplished using Forward Error Correction (FEC), so that

the error correction will be automatically implemented by the receiver.

Generally speaking, FEC means the addition of redundancy to the transfer of information

in a certain way, so that the errors after transmission can be detected and corrected. Simple

examples of error correcting codes include:

1. Parity check. This is done simply by adding a single redundant bit as the sum modulo

2 of all data bits, and the repetition code (see below), which repeats every character

multiple times. The simple parity check can detect, but not correct, single bit errors

within a block.

2. Repetition code. This is done by repeating every data bit multiple times in order to

ensure that it was sent correctly.

There are many other popular coding methods that have been developed to accomplish

error correction. Here is a brief introduction to these codes:

• Hamming Code

The Hamming Code [37] was invented by Richard Hamming in 1950. It is very efficient

regarding the redundant bits used. The Hamming Code uses extra parity bits to allow

22

the identification and correction of errors. For example, Hamming’s algorithm adds

three additional check bits to every four data bits of the message. It can detect all

single-bit and two-bit errors, and correct any single-bit error. To decode the message,

each received word is assigned the nearest code word with respect to the Hamming

distance, which corresponds to a minimization of the error probability.

• Linear Block Codes

A linear block codes are a FEC code which encodes blocks of characters instead of

single characters. Hamming code is a special case of linear block code.

• Reed–Solomon Codes

The Reed-Solomon codes (RS codes) [38] were invented by Reed and Solomon in 1960.

RS codes constitute a special case of linear block codes.

In addition to the noise in the transmission, some information may be lost during the

transmission. Some codes are designed to recover this information loss. They are in

the category of erasure codes [39]–[41].

• Fountain Codes

Fountain codes (also known as rateless erasure codes) [42]–[45] are a class of erasure

codes. Potentially, a limitless sequence of encoding symbols can be generated from

a given set of source symbols such that the original source symbols can ideally be

recovered from any subset of the encoding symbols of size equal to or only slightly

larger than the number of source symbols. The term fountain or rateless refers to the

fact that these codes do not exhibit a fixed code rate.

• LT Codes

Luby Transform (LT) codes [46], [47] are the first class of practical fountain codes that

are near-optimal erasure correcting codes. They were invented by Luby in 1998 and

published in 2002. The encoding process begins by dividing the uncoded message into

many blocks of roughly equal length. Encoded packets are then produced with the

help of a pseudorandom number generator [48].

23

• Raptor Codes

Raptor codes shokrollahi2007raptor, [49], [50] are also in the class of fountain codes.

They are formed by the concatenation of two codes. A fixed rate erasure code, usually

with a fairly high rate, is applied as a ’pre-code’ or ’outer code’. The inner code takes

the result of the pre-coding operation and generates a sequence of encoding symbols.

The inner code is a form of LT code. Each encoding symbol is the XOR of a pseudo-

randomly chosen set of symbols from the pre-code output. The number of symbols

that are XOR’ed together to form an output symbol is chosen pseudo-randomly for

each output symbol according to a specific probability distribution. This distribution,

as well as the mechanism for generating a pseudo-random numbers for sampling this

distribution and for choosing the symbols to be XOR’ed, must be known to both the

sender and receiver.

2.2 Overview of the Data Embedding Framework for Circular Coding

The data embedding framework for circular coding to be studied in this dissertation is

shown in Fig. 1.2 . The message is denoted as u, and will be embedded into the continuous-

tone image (carrying image) denoted as I [m, n], which has first been halftoned. The data is

embedded in the dot-cluster (highlight regions) or hole-clusters (shadow regions). The data

embedded halftone image is denoted as I h[m, n]. This image is then physically printed and

captured by some device, such as a scanner, or a camera. The captured image is denoted

as I c[m, n]. The decoded message û is then decoded from the captured image. To overcome

the data erosion and errors in the print-capture channel, we employ a channel encoder with

data redundancy.

The pipeline of the circular encoding/decoding framework can be summarized as the

following procedures:

1. Encode the digital message u using the circular coding method to get the coded 2D

data array v;

2. Halftone the continuous-tone carrier image I[m, n];

24

3. Shift dots within a selected subset of halftone cells corresponding to the metadata to

be embedded into the image, denoted as Ih[m, n];

4. Print the encoded image;

5. Capture the printed image, denoted as Ic[m, n];

6. Decode the data array, denoted as r̂;

7. The recovered data array r̂ is then decoded to get back the message, denoted as û.

2.3 Channel Encoder

Digital image halftoning quantizes a gray-scale image to one bit per pixel. It may be

classified as Amplitude Modulated (AM), Frequency Modulated (FM), or an AM-FM hybrid.

Block-error diffusion [51] is one such method of producing FM halftones for printing and

display. It has been used to generate hardcopy bar codes. Circular Coding [20] [21] is a

general two-dimensional coding method that allows recovery of data with only a cropped

portion of the code, and without the knowledge of the carrier image. It is used with AM

halftoning. This is how it encodes the data: It repeats a payload with a fixed number of bits,

while interleaving phase rows that embed the information of the circular shift for payload

recovery, and shifts a fixed number of bits from row to row. The recovery system is given

the number of bits of the payload, the interleaving phase period, and the row to row shift.

It evaluates each candidate phase row and ranks its confidence based on the variance of the

payload bits.

The goal of the encoding is to represent a payload using a 2-dimensional array of binary

symbols. The data carrying unit is one halftone cell in the image that containing either a

single dot cluster or a single hole cluster. It is usually a 4 × 4 array of pixels. The payload

consists of B binary symbols. It is then repeated in the first row of the data array, until the

end of the row. For each row below, every symbol is circularly shifted by a given bit value

D. However, at every V -th row, the payload is replaced by a phase row. The phase row has

the same length as the payload. But it is used to represent the following information: As

we circularly shift the payload, and transfer each version of the payload to a decimal value,

25

there will be some versions that have the smallest decimal value. We define the circular

shifted version that has the smallest decimal value as the standard version of the payload P ,

denoted as S. Then the payload P can be represented as the standard version S, and the

circular shifting bits C. The circular shifting bits C are encoded in a phase line using some

method. To avoid any confusion in the further decoding, we will select a payload that has a

unique standard version S.

There are three steps for image encoding:

1. Create the data array for payload P with length B, row to row shift D, and interleaving

phase period V .

2. Halftone the carrying image and embed the data array into it.

2.3.1 Create the data array for payload P

Given a payload with length B, row to row shift D, and interleaving phase period V ,

here are the steps for generating the data array:

1. Find the standard form S, which is one of the circularly shifted versions of the binary

payload P that has the smallest decimal value for the binary string.

2. Find out the minimum number of bit shifts from the standard form S to the payload

P . Denote it as C.

3. The maximum number of bits c that will be needed to represent the decimal value C

is denoted as c, and is give by Eq. 2.1 .

c = dlog2 Be (2.1)

Encode the number of shifts C into another string of bits of length B (the same as the

payload length), using some repeating strategy. One example of how to encode C is

to double the bits and repeat this string until we fill in all the B bits. This new string

that embeds the shift number of bits C is called the phase U .

26

4. Repeat the standard form of the payload S until the end of each row.

5. At each row below, circularly shift the payload S by a certain number of bits D.

6. Do the same row to row shift to the phase U .

7. Replace every V -th row of the circularly shifted standard form of the payload S with

the accordingly circularly shifted phase rows.

8. Then we get the circularly shifted data array with interleaving period V .

The flowchart to create the data array is shown in Fig. 2.1 .

Figure 2.1. Flow chart for creating the encoded data array.

Note that the following parameters will be known to the encoder: B, V, D.

2.3.2 A toy example of creating the encoded data array

Here is an example to illustrate the encoding. The payload we would like to encode

is P = [1110000], So the payload length B = 7. The row to row shift is D = 2,

interleaving period is V = 3.

(a) Find the standard form S = [0000111].

(b) It will take 4 shifts to go from the standard form S to the payload P , or C = 4.

(c) Thus, c = dlog2 7e = 3. Double the bits and repeat the string to fill in the 7 bits.

Then we have the phase code U = [0011110].

27

(d) Repeat the payload in the successive rows.

(e) Replace each V -th row of payload with phase.

(f) Circularly shift each row by D bits from the previous row.

This toy example is illustrated in Fig. 2.2 .

Figure 2.2. Example of encoding the data array. P = [1110000], B = 7, D = 2, V = 3.

2.4 Channel Decoder

Generally speaking, the decoder knows the parameters that include the payload length

B, the row-to-row shift D, and the interleaving phase period V . Also a cropped portion of

the data array will be the input to the decoder. But the decoder does not know in which row

the phase row first appears in the cropped data array. The decoder tries every possible case

where that the first phase row could be, removes the assumed phase rows, and calculates the

confidence that the remaining rows are pure payload rows. If the assumption of which rows

are phase rows is correct (In other words, the assumption of payload rows is correct.), and if

there is no error in the data array, then every bit will be repeated in its predefined position.

So this will yield perfect consistency. Even if there are some bit errors, the consistency is

high. On the other hand, if the assumption of phase rows is incorrect, then the remaining

payload rows will contain both payload rows and phase rows. For each bit and its repeating

positions, it contains the value of the payload and phase, which will have a lower consistency.

The higher the consistency of the repeating bits, the higher probability that these are the

28

payload rows. So we can separate the payload and phase rows by selecting the one with

highest consistency.

Then, the decoder takes the majority bit value of each repeating bit position of the

payload rows, to find the shifted version of the payload, denoted as P . Similarly, by checking

the majority bit value of each repeating bit position of the phase rows, we can find a shifted

version of the phase, denoted as U .

For every payload, since the standard version is unique, there is a unique circular shift C

that shifts from the standard version S to the original payload P . We can find the standard

version from P , and figure out the circular shift C that will take us from P to Ŝ. It will

be the same shift that shifts the phase U to Û . The circular shift Ĉ that takes us from the

original payload to the standard form can be decoded from the phase Û , and then can be

used to predict the decoded payload P̂ , referring to Fig. 2.3 .

29

Figure 2.3. Overview of the circular coding decoding process. The transmission
error will impact the process of these four events: Event A: separating the payload
and phase data; Event B: decoding the shifted sequence of the payload; Event C:
decoding the shifted sequence of the phase; Event D: decoding the payload. All the
other processes are deterministic.

2.4.1 The majority and minority bits

Given a crop window of the the data array, for bit index j where the bit indices are

assigned starting with row 1 column 1 within the crop window, as shown in Fig. 2.2 (a),

we denote the total number of bit occurrences within this crop window as B(j). Note, as

also shown in Fig. 2.2 (a), that each succeeding row of the bit index array is shifted by D

positions relative the the previous row. Thus, each position in the bit index corresponds

uniquely to one of the B bits in the payload. We call B(j) the bit repeat count for bit

30

position j. There is a number of B+(j) bit occurrences that have the majority bit value, and

a number B−(j) of bit occurrences that have the minority bit value.

2.4.2 Decoding method

For each value of the bit position index j in the payload, we use the value of the ma-

jority occurrence of this bit index as the decoding value. This estimate has an uncertainty

associated with it, that is the fraction of the minority value bits occurrence divided by the

total bit position occurrence:

µ(j) = B−(j)
B(j) (2.2)

Once we have estimated the bit values of the entire payload with length B, we will have

an overall confidence value for the payload estimation, which is calculated as:

C = 1 − 2
B

B−1∑
j=0

µ(j) (2.3)

2.4.3 An example of decoding

The same example in Fig 2.2 that was used to illustrate encoding is continued here in

Fig. 2.4 to illustrate how the decoding is works.

The first step is to restore the data array. By shifting each row back D bits circularly

relative to the payload length B, we will get the restored data array, as shown in Fig. 2.4 ,

the crop window width is 5, but the payload length B is 6. We can first fill in the one bit that

is missing, and then circularly shift back D bits to restore the original aligned bit positions.

Note that here the bit index is labeled as 1, 2, ..., 6 to indicate this is the bit position relative

to the crop window. So when we decode this payload, the payload bit index is a circularly

shifted version that is related to the position of the crop window in the original data array.

Since the example in Fig. 2.4 does not have enough repeat bits for every bit index, we

will use another example that has a larger crop window of 12 × 12 pixels. See the example

in Fig. 2.5 . Here, abstentions are halftone cells in which the dot-cluster or hole-cluster is

not shifted. So abstentions carry no information.

31

Figure 2.4. Example of a crop window of data array with size of 5 × 6, with bit
length B = 7, row to row shift D = 2, and interleaving phase period V = 3. The
restored crop window is expanded to 5 × 7 to accommodate the circular shift of the
payload.

Figure 2.5. Example of a crop window of data array with size of 12 × 12, with bit
length B = 7, row to row shift D = 2, and interleaving phase period V = 3. The
restored crop window is expanded to 12 × 14 to accommodate the circular shift of
the payload.

32

Second, we divide the crop data array into payload and phase rows, and find the confi-

dence for each separation. Let v denote the row index of first phase row in the crop window,

then there are totally V possible separations. For the same 12 × 12 example shown in Figs.

2.4 and 2.5 , we illustrate this step in Fig. 2.6 . Note that the confidence is calculated as

C = 1 − 2
B

∑B−1
j=0 µ(j), see Eq. 2.3 .

Third, from the candidate payload P̂ , we can find the standard form of the payload Ŝ

by circularly shifting P̂ and selecting the one with the smallest decimal value. Note that

during the design of the payload, we will make sure that the standard form of the payload is

unique. And the original phase row will be aligned with the standard version of the payload

row without any row to row shift. So once we find the standard form of the payload, we also

can detect the phase Û .

Fourth, from the phase Û , we will be able to decode the circular shift Û using the same

method that was used to decode the payload, but taking into account the extra replication

of bits in each phase row. In this example shown in Fig. 2.6 , the circular shift decoded from

the phase is Ĉ = 4.

Now that we have the standard form Ŝ and the circular shift Ĉ, we will be able to

reconstruct the payload P̂ by circularly shifting Ĉ bits from the standard form Ŝ. See Fig.

2.7 .

2.5 Coding Channel: Embedding Data in Halftone Images

There are various methods [6], [7], [10], [30], [33], [52] that can be used to embed data into

halftone images. Halftone images are typically binary images. Each pixel of the halftone

image is either on or off, indicating whether ink/toner is deposited on this pixel or not,

respectively.

33

Figure 2.6. Example of decoding the payload. (a) The restored (rows circularly
shifted back) crop window of data array with size of 12 × 12, with bit length B = 7,
row to row shift D = 2, and interleaving phase period V = 3. The restored crop
window is expanded to 12×14 to accommodate the circular shift of the payload. The
blue highlighted rows are assumed to be the phase rows and moved for to decode
the candidate payload P̂ . Every V -th row starting with row v = 0 in sub figure (a)
will be selected and used to decode the candidate phase Û .

Figure 2.7. Example of finding the payload from candidate payload and the phase.
payload length B = 7.

34

The gray scale image is block thresholded with a screening array T (k, l):

T (k, l) = 1
64 ·



50 52 48 44 15 13 17 21

54 64 62 46 11 1 3 19

56 58 60 42 9 7 5 23

36 38 40 34 31 27 25 29

16 14 18 22 49 51 47 43

12 2 4 20 53 63 61 45

10 8 6 24 55 57 59 41

32 28 26 30 35 37 39 33



(2.4)

Let I(m, n) denote the grayscale image, which is assumed to be scaled to values between

0 and 1. Then, the halftone image Ih(m, n) is obtained as in Eq. 2.5 .

Ih(m, n) =


1, if I(m, n) ≥ T (Mod(m, 8), Mod(n, 8))

0, if I(m, n) < T (Mod(m, 8), Mod(n, 8))
(2.5)

The halftone cell has size 8 × 8 pixels, and each halftone cell contains four sub-cells, each

has size 4 × 4 pixels. See Fig. 2.8

For a constant gray scale image between gray levels 0 and 1, there are only 33 different

halftone patterns, as shown in Fig. 2.9 .

In order to make the halftone patterns be limited to these patterns, we will first average

the gray scale value with each 4 × 4 sub-cell.

2.5.1 Abstention and carrying sub-cells

For each sub-cell, if it is all black or all white, we call it an “abstention” sub-cell. Oth-

erwise, if it is white holes surrounded by black, or black surrounded by white, we call these

potential “carrying” sub-cells. An example of the sub-cells is shown in Fig. 2.10 .

35

Figure 2.8. Illustration of the four quadrants of an 8 × 8 halftone cell.

2.5.2 Highlight and shadow region

For each potential carrying sub-cell, we examine its four neighboring sub-cells: upper,

lower, left and right. If this potential carrying sub-cell’s neighboring sub-cells are all solid

black abstention sub-cells, then we define this potential carrying cell to be in the shadow

region. On the other hand, if this potential carrying sub-cell is surrounded by four solid

white abstention sub-cells, then we define this carrying cell to be in the highlight region.

There are cases where the upper, lower, left and right neighboring sub-cells are not all

solid abstentions. We treat these cases as follows: (1) if there are more white abstentions than

black abstentions, then we claim this potential carrying sub-cell is in the highlight region;

(2) if there are more black abstentions than white abstentions, then we claim this potential

carrying sub-cell is in the shadow region; (3) otherwise, if there are the same number of

white and black abstentions in the four neighboring sub-cells, then this potential carrying

sub-cell is neither in the highlight nor the shadow region. We will not use this sub-cell as a

carrier. Examples of shadow regions and highlight regions are shown in Fig. 2.11 .

36

Figure 2.9. Halftone cells with different gray scale values.

2.5.3 Embed the data array into a halftone image

The data array symbols are hidden into each of the halftone sub-cells, row by row, and

sub-cell by sub-cell. If the sub-cell is an abstention, then we cannot embed any symbol in

this sub-cell, but this sub-cell still takes one position in the data array.

For the potential carrier sub-cell, first we need to examine its neighboring sub-cells (see

Fig. 2.11) to determine which region (highlight or shadow) it belongs to, and replace this

sub-cell with the balance shifted sub-cells to represent zero or one in the data array as shown

in Fig. 2.12 . Note we have two directions of shift for each symbol value, and alternatively,

we select the directions of the shift based on the data array.

37

Figure 2.10. Example of halftone cell and sub-cell. Each halftone cell has size 8
× 8 pixels, and each sub-cell has size 4 × 4 pixels.

Figure 2.11. Examples of (a) carrying sub-cell in shadow region, (b) carrying sub-
cell in highlight region, (c) non-carrier sub-cell, and (d) carrying sub-cell in shadow
region where the majority neighboring sub-cells are shadow.

2.5.4 Balanced shifting rule

The symbol can be embedded into the halftone cluster by changing the orientation of

the cluster [22], [53]. Or it can be embedded into the dot cluster halftone image by shifting

the dot cluster within the sub-cell [54]. For example, we can let the un-shifted halftone sub-

cell represent a zero, and shift the dot cluster right and down one pixel within the halftone

sub-cell to represent a one.

38

In order to have a homogeneous shift of the dot clusters for the whole encoded halftone

image, we use the balanced shift rule. For each gray level, we push the dot cluster either to

the north-west or to the south-east direction to represent a zero, and push the dot cluster

either to the north-east or to the south-west to represent a one. We alternately select the

direction each time we need to encode that bit value. The balanced shifting patterns for

shadow and highlight sub-cells are shown in Fig. 2.12 .

2.5.5 Example of the image with embedded data array

In Figs. 2.14 and 2.15 , we see that the gray-scale image is halftoned first, then the cluster

of the black dots or white holes is shifted within each halftone sub-cell to embed the data

array.

2.6 Coding Channel: Data Retrieval From Captured Image

When the data array embedded halftone image is printed and captured by some device,

we might only have a cropped version of the image from which to retrieve the data. In order

to decode the payload, the first step is to decode the data array from the halftone image.

Assume that the captured image is aligned with each halftone cell, and we can retrieve

each sub-cell. We tried two methods to recover the data array symbols that have been

embedded into this image. One method is to compute the Euclidean distance from each sub-

cell to each of the possible halftone patterns (in Fig. 2.12), and to find the best matching

pattern, which has the smallest Euclidean distance to the target pattern. Another method is

to find the centroid of the black dot clusters in the highlight region or the white hole clusters

in the shadow region for each sub-cell, and to determine the symbol value from the centroid

location. These two methods are described in detail below.

1. Minimum Euclidean distance pattern matching method to decode the halftone image

The sub-cell patterns for highlight and shadow regions are shown in Fig. 2.13 . Note

that the balance shifted version of pattern number 2 is the same as the balance shifted

versions of pattern number 18. So are patterns 3 vs 19, patterns 15 vs 31, and patterns

39

(a)

(b)

Figure 2.12. Balanced shifting pattern for (a) shadow region and (b)highlight
region. There are totally 33 different gray levels, indexed from 1 to 33. The first
rows in (a) and (b) are the unsifted versions, where indices from 2 to 16 are the dot
clusters that can be used to carry information in the shadow regions; indices from
18 to 32 are the dot clusters that can be used to carry information in the highlight
regions. The second and third rows illustrate the shifts to the northwest (0-NW)
and southeast (0-SE) directions, respectively, to represent the bit value of 0. The
third and forth rows illustrate the shift to the northeast (1-NE) and southwest (1-
SW) directions, respectively, to represent the bit value of 1. Please note that the
dot cluster of index 1 is the whole shadow region; for index 17, it is the perfect
checkerboard pattern; and for index 33, it is the highlight region. None of these
three cluster dots can be used to carry information, so they are not shown here.

40

(a)

(b)

Figure 2.13. Balanced shifted sub-cell patterns for (a) shadow region and (b) highlight region.

41

Figure 2.14. Example illustrating the embedding of a data array into a gray ramp
image. P = [10110100001110010], U = [00001111000000100], B = 17, D = 2, V = 3.

16 vs 32. But the symbol values they represent are the same. So there are totally 104

different sub-cell patterns for carrying sub-cells, in addition to the two abstention

sub-cells.

Let s(i, j) where 0 ≤ i, j ≤ 3 denote the sub-cell, and h(k; i, j) where 0 ≤ i, j ≤ 3,

0 ≤ k ≤ 105 (including the two abstention sub cell patterns) denote the unique sub-cell

patterns. Thus, we can compute the Sum of Squared Distance (SSD) from the sub-cell

s(m, n) to each sub-cell pattern:

SSD(k) =
i=3∑
i=0

j=3∑
j=0

(s(i, j) − h(k; i, j))2 (2.6)

42

Figure 2.15. Example illustrating the embedding of a data array into a halftone
image. P = [11111111111111111], U = [00000000000000000], B = 17, D = 2, V = 3.
(a) gray scale image, (b) halftoned image, (c) halftone image with embedded data
array.

Then the pattern index k̂(s(i, j)) for s(i, j) is the one with smallest SSD value.

k̂(s(i, j)) = arg min
k

SSD(k)

= arg min
k

3∑
i=0

3∑
j=0

(s(i, j) − h(k; i, j))2
(2.7)

Once we have determined the sub-cell pattern, we can figure out the symbol value

based on Fig. 2.13 .

2. Centriod method to decode the halftone image

The centroid calculations for shadow sub-cell patterns and highlight sub-cell patterns

are performed differently. For shadow patterns, we calculate the centroid of the white

cluster holes; and for highlight patterns, we calculate the centroid of the black cluster

dots.

From the plot in Fig. 2.16 , we can see that symbols 0 and 1 fall into four different

quadrants. So we can classify the symbol value for each sub-cell based on the centroid

calculation.

43

x pixels
0 0.5 1 1.5 2 2.5 3 3.5 4

y
pi

xe
ls

0

0.5

1

1.5

2

2.5

3

3.5

4

Centroid of balanced shifted patterns

symbol 0
symbol 0
symbol 1
symbol 1
abstention

Figure 2.16. Plot of the centroids for balanced shifted sub-cell patterns and abstentions.

The centroid of a sub-cell is calculated based on the spatial distribution of the clus-

ter (black dots in the highlight region and white holes in the shadow region). The

horizontal and vertical centroids of the sub-cell are given in Eq. 2.8 .

Cx =
∑3

i=0
∑3

j=0(i − 0.5)g[i, j] · b[i, j]∑3
i=0

∑3
j=0 g[i, j] · b[i, j]

Cy =
∑3

i=0
∑3

j=0(j − 0.5)g(i, j) · b[i, j]∑3
i=0

∑3
j=0 g[i, j] · b[i, j]

(2.8)

where b[i, j] is a binary mask generated using the Otsu’s method [55]. The array g[i, j]

is the reflective value of the white holes in the shadow region, or the opposite of the

dark dots in the highlight region at the pixel with coordinates [i, j]. The 0.5 pixel

offset in Eq. 2.8 shifts the effective coordinate location of each pixel to its center.

44

The flowchart of data retrieval using the centroid decoding method is shown in Fig.

2.17 .

Figure 2.17. Flowchart of data retrieval from the captured image using the
centroid method when the data was embedded according to the balanced shifting
rule. See Fig. 2.8 for the illustration of the four sub-cells I, II, III and IV.

Some further research has been done more recently on the decoding of halftoned images

[56], [57].

45

2.7 Calculate the Decoding Rate

We calculate the candidate payload decoding rate and the payload decoding rate sepa-

rately. Let N denote the total number of experiments for each level of transmission error

rate and crop window size; let NP̃ denote the number of experiments for which every bit in

the candidate payload is correct; and let NP̂ denote the number of experiments for which

every bit in the decoded payload is correct. So the candidate payload decoding rate rP̃ and

the payload decoding rate rP̂ can be calculated in Eq. 2.9 , respectively.

rP̃ = NP̃
N

rP̂ = NP̂
N

(2.9)

Tables 2.1 and 2.2 show the results of the simulation. Based on the data contained in

Table 2.2 , we may conclude that the circular coding method is quite effective.

46

Table 2.1. The candidate payload decoding rate with different levels of trans-
mission error rate, and different sizes of the crop window. Here, the crop win-
dow is of size W × H. The average Bit Position Repeating Count (BPRC),
to be discussed in Sec. 3.3 , is also listed here. Payload bit length B = 67,
interleaving phase period V = 4, row to row shift D = 4. Each rate is calcu-
lated based on all the possible crop windows of data within the Canonical Crop
Window Location Set (CCWLS), to be discussed in Sec. 3.2 , and 3 different
random samples of transmission error for each crop window of data.

W,H 20 30 40 50 60
BPRC 2 12 22 34 48
Transmission
error

Candidate payload decoding rate rP̃

10% 61.5% 100% 100% 100% 100%
9% 69.6% 100% 100% 100% 100%
8% 74.4% 100% 100% 100% 100%
7% 78.0% 100% 100% 100% 100%
6% 82.0% 100% 100% 100% 100%
5% 91.3% 100% 100% 100% 100%
4% 91.3% 100% 100% 100% 100%
3% 91.3% 100% 100% 100% 100%
2% 100% 100% 100% 100% 100%
1% 100% 100% 100% 100% 100%
0% 100% 100% 100% 100% 100%

2.8 Conclusion

In this chapter, we reviewed the data embedding framework for Circular Coding, intro-

duced the encoding and decoding method, and illustrated these methods with examples. In

addition, we introduced the methods of embedding data into the image, and how to retrieval

these information using different approaches. Finally, we designed the framework, simulated

the whole process, and predicted the decoding rate with different parameters. From the sim-

ulated decoding result, we may select the proper parameter settings with a desired decoding

rate.

47

Table 2.2. The decoded payload decoding rate with different levels of transmission
error rate, and different sizes of crop window. The average Bit Position Repeating
Count (BPRC),to be discussed in Sec. 3.3 , is also listed here. Payload bit length
B = 67, interleaving phase period V = 4, row to row shift D = 4. Each rate
is calculated based on all the possible crop windows of data within the Canonical
Crop Window Location Set(CCWLS), to be discussed in Sec. 3.2 , and 3 different
random samples of transmission error for each crop window of data. Note, the result
of “N/A” means that due to the insufficient number of bit repeats for phase, the
final decoding failed.

W,H 20 30 40 50 60
BPRC 2 12 22 34 48
Transmission
error

Payload decoding rate rP̂

10% N/A 79.4% 96.4% 99.9% 100%
9% N/A 81.4% 96.8% 99.9% 100%
8% N/A 85.0% 98.2% 99.9% 100%
7% N/A 86.5% 99.8% 99.9% 100%
6% N/A 86.7% 99.6% 99.9% 100%
5% N/A 89.7% 100% 100% 100%
4% N/A 93.9% 100% 100% 100%
3% N/A 95.2% 100% 100% 100%
2% N/A 98.7% 100% 100% 100%
1% N/A 99.8% 100% 100% 100%
0% N/A 100% 100% 100% 100%

48

3. ANALYZE THE PERFORMANCE IN A NOISE FREE

COMMUNICATION CHANNEL

3.1 Find the Bit Position Index of Shifted Locations

In the circular coding algorithm, the bit position index is circularly shifted row by row

with a given number D. Given the bit position index at location (m, n) in a circularly shifted

data array, we would like to know the bit position index at a shifted location.

The bit position index at location (m, n) is denoted as P(m, n). Now let us move the bit

position to a new location (m+∆m, n+∆n), so the new bit position is P(m+∆m, n+∆n).

3.1.1 Row shift

First, we only consider the row shift. If there are ∆m rows shift down, and the row-to-row

offset is D, then the total bit shift from location P(m, n) to (m + ∆m, n) can be denoted as

f(∆m, 0).

f(∆m, 0) = ∆m · D (3.1)

0

𝐵 − 1

𝑓(∆𝑚, 0)

𝒫(m + ∆𝑚, 𝑛)

𝐵 2𝐵−𝐵−2𝐵−3𝐵

……

Bit position index 𝒫

Bit position shift ∆𝒎

𝒫(m, 𝑛)

Figure 3.1. Example of the bit position index for shifted location (∆m, n). As-
sume the bit position index at the un-shifted location is 0.

49

If we set the bit position at the original position (m, n) to be zero, then the bit position

at the shifted position (m + ∆m, n + ∆n) is a function of ∆m, the row-to-row shift D, and

the payload bit length B. See Fig. 3.1 .

P(m + ∆m, n) = mod(f(∆m, 0)), B)

= mod(∆m · D, B)
(3.2)

Now let us consider the bit position at the original position (m, n) to be an arbitrary

number from 0 to B − 1, then the bit position at the shifted position (m + ∆m, n) is a

function of ∆m, the row-to-row shift D, the payload bit length B, and the bit position at

the original location (m, n). It is given by

P(m + ∆m, n) = P(m, n) − ∆m · D + Q (3.3)

where

Q =
⌈

∆m · B − P(m, n)
B

⌉
· B (3.4)

Proof:

In order to find a bit position shifted from the original location with bit position value

P(m, n), first move the origin to the left starting point of the bit position. The number of

bits needed to shift is denoted as Q. The distance from the original location to the shifted

location, in pixels, is ∆m · D. Since the signal has a slope of one, we have this relationship:

Q − P(m + ∆m, n) = ∆M · D − P(m, n) (3.5)

Rearranging the equation, we get

P(m + ∆m, n) = P(m, n) − ∆M · D + Q (3.6)

50

3.1.2 Column shift

Now let us consider the column shift. Similarly, let us consider the bit position at the

original position (m, n) as an arbitrary number from 0 to B − 1, then the bit position at the

shifted position (m, n + ∆n) is a function of ∆n, the row-to-row shift D, the payload bit

length B, and the bit position at the original location (m, n). We find that

P(m, n + ∆n) = mod(P(m, n) + ∆n, B) (3.7)

3.1.3 Combine row shift and column shift

Now, let us combine the column and row shift. We get

P(m + ∆m, n + ∆n)

= mod(P(m + ∆m, n) + ∆n, B)

= mod
(

P(m, n) − ∆m · D +
⌈

∆m · B − P(m, n)
B

⌉
· B, B

) (3.8)

This equation shows that for given B, D and two locations (m1, n1) and (m2, n2), if their

bit position indices are the same, say P(m1, n1) = P(m2, n2), then for any shift (∆m, ∆n)

for these two original locations, respectively, the shifted bit position indices will also be the

same; and vice versa.

This relationship can be written as

P(m1, n1) = P(m2, n2)

⇔ P(m1 + ∆m, n1 + ∆n) = P(m2 + ∆m, n2 + ∆n)
(3.9)

3.2 Canonical Crop Window Location Set (CCWLS)

From Eq. 3.9 we can see that for a given crop window of data cropped from a data array

(with payload length B, row-to-row shift D, and interleaving phase period V), the entire set

of bit position indices of this cropped data is determined by the starting bit position index

at the upper left corner of the crop window.

51

In order to evaluate every possible cropped data arrangement, we need to consider every

unique starting bit position index of the crop window. There exists a minimum size rectan-

gular region of data that includes every unique starting position index for the crop window.

We call this minimum size rectangular region the Canonical Crop Window Location Set

(CCWLS).

3.2.1 Size of CCWLS

First, let us ignore the interleaving phase period V . We have the parameters of payload

length B and row to row shift D. To cover every possible starting index, we note that a

rectangular region with size 1 × B covers every possible starting position index from 0 to

B − 1. So we have the CCWLS rectangular region size of 1 × B.

Second, let us consider the interleaving phase period V . Now we have parameters B, V ,

and D. In this case, the crop window may consist of a combination of payload rows and

phase rows. These two sets of rows comprise different data sets. So we need to be able to

evaluate every possible cropped data arrangement in this pair of sets.

In a rectangular region of data with row index m, the first phase row may be any one

of the V rows with index 0 ≤ m ≤ V − 1. In any phase row, the phase code repeats with

period B. Thus, the CCWLS only need to contain a length B segment of one phase row.

This means that there are V different pairs of payload and phase data sets. So we need to

expand the CCWLS rectangular region to size V × B.

Finally, let us consider the sub-sampling mask M(m, n). It is a checkerboard pattern

defined by M(m, n) = mod(m + n, 2).

Since the length of the payload is always an odd number, we have that the sub-sampling

mask value at one position and the sub-sampling mask value at the position that is shifted

by B bits in the row will change. Therefore, any consecutive set of 2B rows will include each

of the B unique bit position indices in an unmasked position.

The same argument applies when we consider the interleaving phase period V . So we

conclude that the CCWLS rectangular region has size V × 2B.

52

3.2.2 An example of the CCWLS

Let the payload bit length B = 7, the bit index j = 0, 1, ..., 6. The row to row shift

D = 1, and the interleaving phase period V = 3.

Let the index numbers that are written in the color red indicate that this is a phase

position, and the index numbers that are written in black indicate that this is a payload

position. Note that half of the data has been masked to simulate the halftoning process that

will cause half of the sub-cells to be abstentions.

In the example shown in Fig. 3.2 , we can see that for a randomly selected crop window

W1, we will be able to find the related crop window W∗
1 that starts within the CCWLS, and

contains the same bit indices for the entire crop window.

Figure 3.2. A example of the canonical crop window location set (CCWSL). Here,
the payload bit length B = 7, and the bit index j = 0, 1, ..., 6. The row to row shift
D = 1, and the interleaving phase period V = 3. The CCWLS has size V × 2B.
Any crop window W has a related crop window W∗ with a bit position within the
CCWLS that contains exactly the same bit repeating positions, including the phase
rows, which can be found in W∗.

53

3.3 Calculate the Bit Position Repeating Count (BPRC) in a Crop Window

In a crop window of a data set, the bit position for a bit position index will repeat due

to the repeats within rows, and shifts from row to row. We are interested to calculate the

bit position repeating count for each bit position index.

3.3.1 Develop a closed form equation to calculate the BPRC in a crop window

Let us denote by W a crop window with row index 0 ≤ h ≤ H − 1 and column index

0 ≤ w ≤ W − 1. Without loss of generality, we assume that the bit position index j = 0 at

the starting position in W, where (h, w) = (0, 0).

Some notations:

• B: bit length of payload

• D: row to row bit position shift

• V : interleaving phase period

• W, H: width and height of the crop window

• Xj: the original payload value at position j

• Yj: the estimated payload value at position j

• p: the transmission error

1. We find the column index q(h, j) in row h of the crop window, where the bit position

index j first appears. Note that q(h, j) will be inside the crop window W, if q(h, j) ≤

W − 1 and h ≤ H − 1; otherwise, q(h, j) will be outside of W.

By observing how the bit position index repeats with period B, and is shifted by D

from row to row, we find that

q(h, j) = mod(j + hD, B) (3.10)

54

2. For each row in the crop window W, we will find the number of positions Nn,j for

bit position index j, starting from the column index qh(j) to the end of row h. Here

h < H since we only consider rows within the crop window W. This can be split into

two cases, either q(h, j) ≤ W − 1 (inside of W), or q(h, j) ≥ W (outside of W), and

can be formulated as

Nn,j =


W − q(h, j), if q(h, j) < W

0, if q(h, j) ≥ W

(3.11)

The above two cases can be combined to form Eq. 3.12

Nh,j = W − min(q(h, j), W) (3.12)

For example, let us evaluate the bit repeat count for bit position index j = 1 for a crop

window size of H × W = 6 × 6 as shown in Fig. 3.3 . The bit position index j = 0 is

colored in red. In the first row, q(0, 0) = 0, the first repeat bit position (the red colored

position) is within the crop window, and N0,0 = 8; In the fourth row q(3, 0) = 9, and

the first repeat bit position is outside of the crop window, so N3,0 = 0.

3. We can find the number of times that the bit position index j appears in row h, denoted

as Brow(h, j; B, D, W), in terms of Nh,j. This simple relationship can be written as

Brow(h, j; B, D, W) =
⌈
B̃row(h, j, q; B, D, W)

⌉
(3.13)

where

B̃row(h, j; B, D, W) = Nh,j

B

= W − min(q(h, j), W)
B

(3.14)

which is the bit position repeat count for bit position index j, in row h, and before

rounding to the next larger integer.

55

Let us combine the above two equations to get

Brow(h, j; B, D, W) =
⌈

Nh,j

B

⌉
=
⌈

W − min(q(h, j), W)
B

⌉ (3.15)

Figure 3.3. Illustration of the bit repeat count. Here, the crop window size is 8
× 8, and the row to row shift D = 3. Total bit repeat count for bit index j = 0 is
5.

The above illustrations are all based on the bit position index j = 0. However, the

formulas we derived as shown in Eq. 3.15 are applicable to any bit position j ∈ [0, B−1]

within a single row h.

4. To obtain the bit position repeat count for all the rows within the crop window, we

sum over the rows.

B(j; B, D, W) =
H−1∑
h=0

Brow(h, j, q; B, D, W) (3.16)

Then, substituting the expressions for Brow(h, j; B, D, W) and q(h, j) into the above

equation, we get

B(j; B, D, W) =
H−1∑
h=0

⌈
W − min(q, W)

B

⌉
(3.17)

where q = mod(j + hD, B).

56

5. Now let us consider the sub sampling mask M[m, n]. It is a checkerboard pattern

defined as

M[m, n] = mod(m + n, 2) (3.18)

If we shift the position from (m, n) a number of bits ∆m and ∆n, respectively, then

the new mask value at the shifted location can be shown as

M[m + ∆m, n + ∆n] =


M(m, n), if mod(∆m + ∆n, 2) = 0

1 − M(m, n), if mod(∆m + ∆n, 2) = 1
(3.19)

Let k ∈ {0, 1} be the mask value at the upper left corner of the crop window. Then

to count the bit position repeat count, we first need to apply the mask to every bit

occurrence within the crop window.

There could be more than one occurrence of bit position j in a given row of the crop

window. Since B is always odd, we know that if bit position j is masked in the first

position of any row, then it will not be masked in its next occurrence in that row, if

there is one. This pattern of alternating appearances of bit position j , either masked

or unmasked, will repeat with period B until the end of the crop window row.

To account for this alternating pattern, we need to separate the occurrences of bit

position j in each row, according to whether they occur in an even-numbered or an

odd-numbered B-length period in that row. Here, we assume that the B-length periods

are numbered starting from zero.

In a given row, if the occurrences of bit position j occur in even-numbered B-length

periods, the first occurrence of bit position j will be at bit location q(h, j). On the other

hand, if the occurrences of bit position j occur in odd-numbered B-length periods, the

first occurrence of bit position j will be at bit location q(h, j) + B.

57

Then, the total bit position occurrence count for bit position j is summed over all the

rows in the crop window:

B(j, k; B, D, W, H) =
H−1∑
h=0

Brow(h, j, k; B, D, W, H) (3.20)

where now the bit repeat count for each row can be represented as:

Brow(h, j, q; B, D, W) =
⌈

B̃row(h, j, q; B, D, W) · g(k, h, q)
2

⌉

+
⌈

B̃row(h, j, q + B; B, D, W) · g(k, h, q + B)
2

⌉ (3.21)

where

B̃row(h, j, q; B, D, W) = W − min(q(h, j), W)
B

(3.22)

g(k, h, q) = mod(k + h + q, 2) (3.23)

q(h, j) = mod(j + hD, B) (3.24)

6. Now we consider the interleaving phase with period V . In this case, the crop window

W, which has size W × H, may consist of a combination of payload rows and phase

rows.

We define the set of all the row indices in W as

H = {k : 0 ≤ k ≤ K − 1} (3.25)

58

These rows will be divided into phase rows and payload rows. There will be V possible

partitions of H into the sets of payload row indices denoted as Hpay and the set of

phase row indices denoted as Hpha, where

H = Hpay ∪ Hpha (3.26)

Let v denote the first index of the first phase row in the crop window W. Then we

can define the set of phase row indices as:

Hpha =
{

v + lV : l = 0, 1, · · · ,
⌊

H

V

⌋
, v = 0, 1, · · · , V − 1

}
Hpay = H − Hpha

(3.27)

To account for the role of the interleaving phase in our analysis of the bit repeat count,

we separate the summation over the rows h in our previous expression for the bit repeat

count according to the partition between phase rows and payload rows.

So the number of times a given bit position index j repeats within the crop window

W is given by

Bpay(j, k; B, D, W, H) =
∑

h∈Hpay

Brow(h, j, k; B, D, W, H) (3.28)

Bpha(j, k; B, D, W, H) =
∑

h∈Hpha

Brow(h, j, k; B, D, W, H) (3.29)

where Brow(h, j, k; B, D, W, H) is defined in Eq. 3.21 .

3.3.2 Validate the formula

To validate the correctness of our formula in Eq. 3.28 , we simulate the circular coding

bit repeat, crop the window in different locations, and count how many bits are actually

repeated in the crop window. We choose B = 17, V = 3, and the test row to row shift from

0 to 16 bits. The crop window size is tested from 0 to 22 bits. The minimum bit repeat

59

Figure 3.4. Minimum bit repeat count for B = 17, V = 3 (a) from reproduced
from simulation [21] and (b) from closed form Eq. 3.17 . These two approaches show
the same results.

count is checked from all the starting positions of the crop window within the CCWLS set.

The results for both closed form calculation and simulation are the same as can be seen in

Fig. 3.4 .

3.4 Performance Review

To simulate the decoding rate for each level of transmission error and crop window size,

we use the crop window of data array that starts at every possible position in the CCWLS,

and add different trials of transmission error rate to each crop window of data. Recall that

the CCWLS size is V · 2B.

In the decoding process, we will be able to decode the candidate payload P̃, which is a

circularly shifted version of the payload from the payload rows and the circular shift C̃ from

the phase rows. Then using P̃ and C̃, we will be able to figure out the decoded payload P̂.

Without loss of generality, we use the square crop window size W = H in the experiments.

Using the formulas developed in Eq. 3.28 and Eq. 3.29 , and examining every possible

crop window starting position in the CCWLS, we can calculate the BPRC for the payload

60

(a)

(b)

Figure 3.5. Bit position repeat count for (a) payload and (b) phase for each
bit position and for all possible starting locations of the crop window within the
CCWLS. Payload bit length B = 7, row to row shift D = 2, interleaving phase
period V = 3. The yellow star is the maximum bit repeat count over all the crop
windows that start at the different starting positions in the CCWSL; the orange
star is the minimum bit repeat count over all the crop windows in the CCWLS; the
blue star is the mean.

61

and phase for every bit position. The payload and phase bit repeat count for payload bit

length B of 7 is calculated and shown in Fig. 3.5 (a) and (b), respectively. Then we increase

the bit length B to 67 and ran the same simulation, see Fig. 3.6 .

3.5 Conclusion

In this chapter, we analyze decoding performance of the circular coding method in a

noise free communication channel. For each bit in a shifted location, we mathematically

determined the bit position index, and introduced the concept of the Canonical Crop Window

Location Set (CCWLS). In addition, we developed a closed form equation to calculate the

Bit Position Repeating Count (BPRC) in each crop window. Now we are able to predict

the number of bit repeats for each size of the crop window without the simulation. The

theoretical result was validated with the simulation result.

62

(a)

(b)

Figure 3.6. Bit position repeat count for (a) payload and (b) phase for each
bit position and for all possible starting locations of the crop window within the
CCWLS. Payload bit length B = 67, row to row shift D = 4, interleaving phase
period V = 6. The yellow star is the maximum bit repeat count over all the crop
windows that start at the different starting positions in the CCWSL; the orange
star is the minimum bit repeat count over all the crop windows in the CCWLS; the
blue star is the mean.

63

4. ANALYZE THE DECODING PERFORMANCE IN A NOISY

CHANNEL USING PROBABILITY MODELING

We use simulation combined with a theoretical framework to study the payload decoding

rate with different levels of the transmission error rate [58].

The process of developing this methodology consists of four steps:

1. Model the communication channel and transmission error;

2. Represent the decoding process;

3. Develop a closed form solution for the probability of successful decoding rate;

4. Simulate each step in this encoding/decoding process and validate the decoding result

using the closed form solution.

4.1 Model the Communication Channel and Transmission Error

If the information sequence has length of k bits, and the code word has length of n bits,

then the ratio R = k
n

is called the code rate. This is the number of information bits entering

the encoder for each transmission symbol. If the output of n bits code words only depends

on the k bit information message, then the encoding is called memory-less.

Regarding the types of errors in memory-less channels, the noise affects each transmitted

symbol independently. For example, in a binary-symmetric-channel, each transmitted bit

has a probability of p being received incorrectly and a probability of 1 − p of being received

correctly, independently of other transmitted bits [34]. See Fig. 4.1 .

Figure 4.1. Binary Symmetric Channel with probability of transmission error p.

64

The message embedded in the image is memory-less, so we use a Binary Symmetric

Channel to model the communication channel. It has binary input and output, with a

probability of transmission error ε, i.e. the probability of switching values between 0 and

1. So the probability of successful transmission of one bit is P (Success) = 1 − ε, and the

probability of failure of transmission of one bit is P (Fail) = ε. We assume that the probability

of successful transmission at each position is independent and identically distributed (i.i.d.).

4.2 Represent the Decoding Process

As noted in Section 2.3 , the crop window of the data array v̂ is mixed with payload rows

and phase rows, with a fixed interleaving period V . But the starting row index of the phase

is unknown.

In order to separate the phase from the payload, we try every possible starting row index

of the phase (V possible starting row indices), and select the one with highest confidence.

Once we try to remove M “phase” rows in the data array, either correctly or incorrectly,

there will be R − M rows of data left. There are only two possible cases:

• Case 1: get all the phase rows out, leave R −M repeats of payload rows. There is only

one chance over the V possible positions that this case will occur.

• Case 2: get none of the phase rows out, leave R − M rows that are a mixture of

payload and phase rows. There will be V − 1 chances for this to occur. So the number

of payload rows left is R − 2M . Define N = R − 2M .

Thus, the relationship between R, M, and N is illustrated in Fig. 4.2 . And an example

of the two cases is shown in Fig. 4.3

In either case, the remaining data array contains the common N rows of payload repeats,

and the M rows of payload or phase repeats.

65

Figure 4.2. Illustration of bit position repeat count. The total bit position repeat
count in a crop window of data is R, the phase bit position repeat count in a crop
window of data is M , and the payload bit position repeat count in a crop window
of data is R − M . We define N = R − 2M . Thus, R − M = N + M .

4.2.1 Model the status of change as a random variable

Once the data is transferred in the communication channel, the bit values might be

switched due to a transmission error. We model the switch of a bit value as a random

variable, and it does not depend on the bit position, so it is i.i.d. for each bit.

Then, for each case (Case 1 gets all the phase rows out, or Case 2 gets none of the phase

rows out), here is the mathematical representation of the random variables (switch value for

or not) at each data array position:

• For each column of data (each bit position index j) and row of data (each bit repeat

index i), let the status of switching its original value be the random variables X
(j)
i and

Z
(j)
i for payload and phase, respectively. So j = 0, · · · , B − 1, and i = 1, 2, · · · , M for

Z; and j = 0, · · · , B − 1 and i = 1, 2, · · · , R − M = N + M for X.

• X
(j)
i = 0: status NOT changed at bit position j and row position i. P{X

(j)
i = 0} =

1 − ε.

• X
(j)
i = 1: payload status changed at bit position j and row position i. P{X

(j)
i = 1} = ε.

• Similarly for Z
(j)
i , Z

(j)
i = 1: phase status changed at bit position j and row position i.

66

Figure 4.3. Illustration of the (a) pure payload subset in Case 1 and (b) mixture
of payload and phase subset in Case 2, using a Venn diagram. In this example
N = 7, M = 3, and R = 13.

67

Thus, the two sets (pure payload set and mixture of payload and phase set) can be

written as shown in in Eqs. 4.1 and 4.2 , respectively.

S1 =



X
(0)
1 X

(1)
1 ... X

(j)
1 ... X

(B−1)
1

X
(0)
2 X

(1)
2 ... X

(j)
2 ... X

(B−1)
2

X
(0)
3 X

(1)
3 ... X

(j)
3 ... X

(B−1)
3

...

X
(0)
N X

(1)
N ... X

(j)
N ... X

(B−1)
N

X
(0)
N+1 X

(1)
N+1 ... X

(j)
N+1 ... X

(B)
N+1

...

X
(0)
N+M X

(1)
N+M ... X

(j)
N+M ... X

(B−1)
N+M



(4.1)

S2 =



X
(0)
1 X

(1)
1 ... X

(j)
1 ... X

(B−1)
1

X
(0)
2 X

(1)
2 ... X

(j)
2 ... X

(B−1)
2

X
(0)
3 X

(1)
3 ... X

(j)
3 ... X

(B−1)
3

...

X
(0)
N X

(1)
N ... X

(j)
N ... X

(B−1)
N

Z
(0)
1 Z

(1)
1 ... Z

(j)
1 ... Z

(B−1)
1

...

Z
(0)
M Z

(1)
M ... Z

(j)
M ... Z

(B−1)
M



(4.2)

Note that for a crop window of data r̂, we are able to calculate the bit repeat count for

each bit position index. The bit repeat count for each bit position index might be slightly

different, depending on the size and position of the crop window. Here, we assume that each

bit position index has the same repeat number R.

68

4.2.2 Model the data array after corruption by transmission errors as a sequence
of random variables

For the original payload P and the phase U both with length B bits, we can write their

original values as the data arrays:

P = [P (0), P (1), . . . , P (B−1)] (4.3)

U = [U (0), U (1), . . . , U (B−1)] (4.4)

Note that we already defined the status of switching value as the random variables in

Eqs. 4.1 and 4.2 , so we can define the value of the data sets in Cases 1 and 2 at each position,

as the original value XOR the random variable of a status change at that position, as shown

in Eqs. 4.5 and 4.6 .

S̃1 =



X̃
(0)
1 X̃

(1)
1 ... X̃

(j)
1 ... X̃

(B−1)
1

X̃
(0)
2 X̃

(1)
2 ... X̃

(j)
2 ... X̃

(B−1)
2

X̃
(0)
3 X̃

(1)
3 ... X̃

(j)
3 ... X̃

(B−1)
3

...

X̃
(0)
N X̃

(1)
N ... X̃

(j)
N ... X̃

(B−1)
N

X̃
(0)
N+1 X̃

(1)
N+1 ... X̃

(j)
N+1 ... X̃

(B)
N+1

...

X̃
(0)
N+M X̃

(1)
N+M ... X̃

(j)
N+M ... X̃

(B−1)
N+M



(4.5)

where X̃
(j)
i = X

(j)
i

⊗
P (j), for i = 1, 2, . . . , N + M and j = 0, 1, ..., B − 1.

69

Similarly,

S̃2 =



X̃
(0)
1 X̃

(1)
1 ... X̃

(j)
1 ... X̃

(B−1)
1

X̃
(0)
2 X̃

(1)
2 ... X̃

(j)
2 ... X̃

(B−1)
2

X̃
(0)
3 X̃

(1)
3 ... X̃

(j)
3 ... X̃

(B−1)
3

...

X̃
(0)
N X̃

(1)
N ... X̃

(j)
N ... X̃

(B−1)
N

Z̃
(0)
1 Z̃

(1)
1 ... Z̃

(j)
1 ... Z̃

(B−1)
1

...

Z̃
(0)
M Z̃

(1)
M ... Z̃

(j)
M ... Z̃

(B−1)
M



(4.6)

where X̃
(j)
i = X

(j)
i ⊗ P (j), for i = 1, 2, . . . , N and j = 0, 1, ..., B − 1.

And Z̃
(j)
i = Z

(j)
i ⊗ U (j), for i = 1, 2, . . . , M and j = 0, 1, ..., B − 1.

Here ⊗ denotes the XOR operation.

4.2.3 Separate the payload and phase and then decode the payload

When we compare any two sets (the pure payload set in Case 1 and the mixture of

payload and phase set in Case 2), we calculate their confidence values, and then select the

one with higher value as the pure payload set.

For the pure payload data set in Eq. 4.1 and for the mixture of payload and phase data

set in Eq. 4.2 , the methods to estimate the bit value are the same. That is, we calculate

the confidence value of each data set, and select the one with higher confidence as the pure

payload set. It includes the following four steps:

1. Calculate the sample mean of each subset. Let Ȳ
(j)

1 denote the sample mean for the

pure payload subset and Ȳ
(j)

2 for the mixture payload and phase subset:

Ȳ1
(j) = 1

N + M


N∑

i=1
X̃

(j)
i +

N+M∑
i=N+1

X̃
(j)
i

 (4.7)

Ȳ2
(j) = 1

N + M

{
N∑

i=1
X̃

(j)
i +

M∑
i=1

Z̃
(j)
i

}
(4.8)

70

2. Calculate the estimated bit value for each data set:

Ŷk

(j)
=



1, if Ȳk
(j)

> 0.5

0, if Ȳk
(j)

< 0.5

random choice of 0 or 1, if Ȳk
(j) = 0.5

(4.9)

∆(j)
k =| Ŷk

(j)
− Ȳk

(j) | (4.10)

for k = 1, 2.

For the values of bit position repeats, we define the minority bits as the bits with value

that appear less frequently than bits with the other value. The other bits with the

value that appeared more than half the time are called majority bits. Thus, ∆(j) is

actually calculating the proportion of the minority bits for bit position index j.

3. The confidence value in Eq. 2.3 then can be calculated for each data set as Eq. 4.11 :

Ck = 1 − 2
B

B−1∑
j=0

∆(j)
k (4.11)

for k = 1, 2.

Note that the confidence is in the range of 0 and 0.5, where the higher the confidence

is, the more likely this selection is a pure payload data set. For the pure payload data

set in Case 1, k = 1; for the mixture of payload and phase data set in Case 2, k = 2.

And the confidence is negatively proportional to the sum of ∆(j), j = 0, 1, . . . , B − 1.

Select the payload data set with the higher confidence value, and assign each bit its

value that has been calculated in Step 2.

[Ŷ 0, Ŷ 1, ..., Ŷ B−1] =



[Ŷ 0
1 , Ŷ 1

1 , ..., Ŷ B−1
1], if C1 > C2

[Ŷ 0
2 , Ŷ 1

2 , ..., Ŷ B−1
2], if C1 < C2

[Ŷ 0
1 , Ŷ 1

1 , ..., Ŷ B−1
1], if C1 = C2

(4.12)

71

There will be totally V possible starting row positions for the phase rows. For a successful

decoding, it is required that the pure payload data set has higher confidence than any mixture

payload data set in each comparison.

4.3 Develop a Closed Form Solution for the Probability of Successful Decoding

Recall that the decoding process has three steps that involves the error estimation: 1.

separate the phase from the payload; 2. decode the standard form of the payload; 3. decode

the phase. We need to estimate the success rate of each of these three steps, and combine

the success rate of these three to get the final decoding rate.

4.3.1 Step 1: Compute the probability of separating the phase from the payload

The phase rows and payload rows are selected based on the confidence estimation, see

Eqs. 4.11 and 4.12 . Note that in order to correctly decode the payload, we can conclude that

at least half of the bits need to retain their original value during the transmission. So we can

assume that the probability of transmission error ε < 0.5. Higher confidence is equivalent to

lower uncertainty, and equivalent to fewer minority bits. Thus, the probability of separating

the phase from the payload can be computed by summing the probabilities that the pure

payload data set has fewer minority bits than the mixed phase and payload data set, for

each possible number of bits that switched value in the pure payload data set.

We first consider the easier case that the payload only has one bit. Then, we extend the

payload bit length to multiple bits.

Payload bit length of one: B = 1

Let the payload length be one bit only, i.e. B = 1. So the phase is also one bit. Note

this cannot be done in the real case.

The original payload value is P (1), and the phase value is U (1). So there are two possible

situations: the original payload value is either the same or different, compared with the

phase value (i.e. P (1) = U (1), or P (1) 6= U (1)).

72

After we rearrange the crop window of the data array, let us assume that there are M +N

bits of repeats. Thus, the bit repeats in case 1 (get all phases out) and in case 2 (get none

of the phases out) will be simplified as S1|B=1 and S2|B=1, defined in Eq. 4.13 .

S1|B=1 =



X1

X2

X3
...

XN

XN+1
...

XN+M



and S2|B=1 =



X1

X2

X3
...

XN

Z1
...

ZM



(4.13)

Let A represent the data set in Case 1, i.e. the pure payload data set, and let B represent

the data set in Case 2, i.e. the mixture of payload and phase.

For the comparison of the bit repeats in Cases 1 and 2, there are always N bits of payload

X1, X2, . . . , XN shared in common. In other words, if any bits have switched value in the

common payload bits area, they will be the same for the data sets A and B. But the status

of switching value in the remaining parts are different and independent of each other.

Our goal is to find the probability that the total number of minority bits in data set A

is less than the number of minority bits in data set B.

We define α as the number of minority bits in data set A, and β as the number of

minority bits in data set B. And we assume that fewer than half of the bits have switched

value. Then, the number of minority bits is the same as the number of bits that switched

value in each data set. For each number of minority bits in data set B, there should be fewer

minority bits in data set A, or α < β. Also, the number of minority bits α in data set A

should be fewer than half of the total number of bit repeats. Thus, we define:

K = bM + N

2 − 1c (4.14)

73

So the number of minority bits α and β can be any number between zero and K. The α bits

of positions that switched value could be in either the N bits of common payload or the M

bits of uncommon payload in data set A.

By the nature of the circular encoding process, the number of payload bit repeats N is

much larger than the number of phase bit repeats M in each data set, i.e. N � M . So if

the number of bits whose values are switched in the data set A is no more than the number

M , i.e α ∈ [0, M], then these bits can be anywhere in the payload or phase. Otherwise, if

the number of bits with switched values is greater than M , there will be at maximum M

bits with switched values in the uncommon payload in data set A or the phase in data set

B, and the remaining bits that switched value will be in the common payload.

As noted before, with the assumption that fewer than half of the bits switched value,

the number that switched value in the pure payload data set is the minority bit number α.

Among these α bits that switched value, let m denote the number of bits that switched value

in the uncommon payload. Thus,

• Part 1: When α ∈ [0, M], then the number of bits m that switched value in the data

set A in the uncommon payload could be any number between 0 and α, or m ∈ [0, α].

And the number of bits that switched value in the data set A in the common payload

is α − m.

• Part 2: When α ∈ (M, K], then m could be any number between 0 and the minimum

of α and M , or m ∈ [0, M]. And the number of bits that switched value in the data

set A in the common payload is also α − m.

Let k be the number of bits that switched value in the M bits of the phase in the data

set B. In order to successfully separate the pure payload data set, it is required that the

minority bit number α in the data set A be less than the minority bit number β in data set

B.

First, if the original payload value is the same as the phase value (P (1) = U (1)), then the

number α of bits that switched can take any value between 0 and half of the total number

of bit repeats K. So we sum the probability that data set A has fewer minority bits than

data set B for each α value. It includes two parts. Part 1: α ∈ [0, M]; Part 2: α ∈ (M, K].

74

For the data set A, the minority bits are the ones that switched value. There are α such

bits. For the data set B, the number of bits that switched value must be greater than α, but

smaller than the total number of the bits in each data set minus α, or M + N − α. In other

words, in order to have the number of bits that switched value in the data set A be smaller

than the number of bits that switched value in the data set B, there should be fewer bits

that switched value in the uncommon payload in data set A than the number that switched

value in the payload in data set B, given the condition that the payload and phase have the

same original value. Thus, these five conditions need to be met:



α ∈ [0, M]

α < β < M + N − α

β = (α − m) + k

m < k

m ∈ [0, α]

From these five conditions, we can obtain the range of k:

m < k < M + N − 2α + m (4.15)

For Part 2, α ∈ (M, K]. Since there are only M bits in the uncommon payload part,

there will be a maximum of M bits that could switch value in the uncommon payload, the

remaining α − m bits must switch value in the common payload. The conditions for data

set B are the same as those as those in Part 1. Please refer to Table 4.1 for details. Note

that K = bM+N
2 − 1c.

Next, we consider the case where the original payload value is different from the phase

value. This is very similar to the case where the original payload value is the same as the

phase value, except that for the mixture payload and phase data set B, the phase data will

be originally treated as the minority bits. This is because the number of payload bits is

usually much larger than the number of phase bits, or N � M . So for any bit position

j, we expect that there will be fewer phase rows than payload rows. Also, we assume that

75

Table 4.1. The conditions under which the pure payload selection A has fewer
minority bits than the mixture of payload and phase selection B, when the phase
original value is the same as the payload value.

Original payload value is same as the phase value
A has α minority bits B has β minority bits , β > α

Part 1: α ∈
[0, M]

m bits switch value in the un-
common payload, and α − m bits
switch value in the common pay-
load, where m ∈ [0, α]

the same α − m bits switch value
in the common payload, and k
bits switch value in the phase,
where β = α − m + k, α < β <
(M + N − α)

Part 2: α ∈
(M, K]

m bits switch value in the un-
common payload, and α − m bits
switch value in the common pay-
load, where m ∈ [0, M]

the same α − m bits switch value
in the common payload, and k
bits switch value in the phase,
where β = α − m + k, α < β <
(M + N − α)

fewer than half of the bits switched their values. So the minority bits contain the bits that

switched value in the common payload part in data set B and the bits that retained their

original value in the phase part of data set B. Thus, we again have five conditions that need

to be met:



α ∈ (M, K]

α < β < M + N − α

β = (α − m) + (M − k)

m < M − k

m ∈ [0, M]

From these five conditions, we can obtain the range of k:

2α − m − N < k < M − m (4.16)

The details are summarized in Table 4.2 . Note that K = bM+N
2 − 1c.

Now we can write out the probability that the pure payload set will be correctly distin-

guished from the mixture subset.

76

Table 4.2. The conditions under which the pure payload selection A has fewer
minority bits than the mixture of payload and phase selection B, when the phase
original value is different from the payload value.

Original payload value is different from the phase value
A has α minority bits B has β minority bits , β > α

Part 1: α ∈
[0, M]

m bits switch value in the un-
common payload, and α − m bits
switch value in the common pay-
load, where m ∈ [0, α]

the same α − m bits switch value
in the common payload, and M −
k bits switch value in the phase,
where β = (α − m) + (M − k),
α < β < (M + N − α)

Part 2: α ∈
(M, K]

m bits switch value in the un-
common payload, and α − m bits
switch value in the common pay-
load, where m ∈ [0, M]

the same α − m bits switch value
in the common payload, and M −
k bits switch value in the phase,
where β = (α − m) + (M − k),
α < β < (M + N − α)

First, let us define the probability mass function for the binomial distribution. We define

the status of switching value at each bit position as a random variable with a binomial

distribution. The probability of getting exactly a successes in A independent Bernoulli trials

is given by the probability mass function:

P (A, a, ξ) =

 A

a

 ξa(1 − ξ)A−a (4.17)

This calculates the probability that for every A bit positions, a bits switch value, when

the probability of switching value at each position is ξ.

Under the assumption that the original payload value is the same as the phase value, i.e

P (1) = U (1), the probability that the number of minority bits α in the data set A being less

than the number of minority bits β in the data set B is P{α < β|P (1) = U (1)}. It is the

cumulative distribution that for every possible number of bits i that switched value, where

i ∈ ([0, M − 1] ∪ [M, K]), the number of bits α that switched value in the data set A is less

than the number of bits β that switched value in the data set B.

From Table 4.1 , we add the probabilities for first and second parts. For the first part,

i ∈ [0, M −1], the probability that m bits switched value in the M bits of uncommon payload

is P (M, m, ε). For the remaining bits that switched value in the common payload area, the

77

probability is P (N, i − m, ε); and the probability that k bits switched value in the phase

data set is P (M, k, ε). So the Part 1 conditional probability P{(α < β) ∩ (0 ≤ α ≤ M)|B =

1, P (0) = U (0)} that there are fewer minority bits in the pure payload data set A than in the

mixture of payload and phase data set B, when the original payload value is the same as

phase value, is shown in Eq. 4.18 . It is similar for Part 2, which is shown in Eq. 4.19 . See

Table 4.1 for the definition of Parts 1 and 2.

P{(α < β) ∩ (0 ≤ α ≤ M)|B = 1, P (0) = U (0)} =
M−1∑
i=0


i∑

m=0
P (M, m, ε) · P (N, i − m, ε) ·

M+N−2i+m−1∑
k=m+1

P (M, k, ε)


(4.18)

P{(α < β) ∩ (M < α ≤ K)|B = 1, P (0) = U (0)} =
b M+N

2 −1c∑
i=M


M∑

m=0
P (M, m, ε) · P (N, i − m, ε) ·

M+N−2i+m−1∑
k=m+1

P (M, k, ε)


(4.19)

Then, we sum the probabilities of these two parts to get the probability that the data

set A has fewer minority bits than B when the original phase value is the same as payload

value, defined as P{α < β|B = 1, P (0) = U (0)} in Eq. 4.20 .

P{α < β|B = 1, P (0) = U (0)} = P{(α < β) ∩ (0 ≤ α ≤ M)|B = 1, P (0) = U (0)}

+ P{(α < β) ∩ (M < α ≤ K)|B = 1, P (0) = U (0)}
(4.20)

Under the assumption that the original payload value is different from the phase value, i.e

P (0) 6= U (0), the calculation of the probability that the data set A has fewer minority bits

than the data set B is very similar to the assumption of P (0) = U (0), except that we need to

count the number of bits that retain their original value in the phase data in the data set B

78

as the minority bits. The probability that the data set A has fewer minority bits than set B

is calculated in Eqs. 4.21 and 4.22 for Parts 1 and 2, respectively.

P{(α < β) ∩ (0 ≤ α ≤ M)|B = 1, P (0) 6= U (0)} =
M−1∑
i=0


i∑

m=0
P (M, m, ε) · P (N, i − m, ε) ·

M−m−1∑
k=2i−m−N+1

P (M, k, ε)


(4.21)

P{(α < β) ∩ (M < α ≤ K)|B = 1, P (0) 6= U (0)} =
b M+N

2 −1c∑
i=M


M∑

m=0
P (M, m, ε) · P (N, i − m, ε) ·

M−m−1∑
k=2i−m−N+1

P (M, k, ε)


(4.22)

We sum the probabilities of these two parts to get the probability that the data set A

has fewer minority bits than set B, defined as P{α < β|B = 1, P (0) 6= U (0)} in Eq. 4.23 .

P{α < β|B = 1, P (0) 6= U (0)}

= P{(α < β) ∩ (0 ≤ α ≤ M)|B = 1, P (0) 6= U (0)}

+ P{(α < β) ∩ (M < α ≤ K)|B = 1, P (0) 6= U (0)}

(4.23)

Then, the total probability that the data set A has fewer minority bits than the data set

B is calculated in Eq. 4.24 based on the total probability law.

P{α < β|B = 1} = P{α < β|B = 1, P (0) = U (0)} · P{P (0) = U (0)}

+ P{α < β|B = 1, P (0) 6= U (0)} · P{P (0) 6= U (0)}
(4.24)

Extend the number of payload bits from B = 1 to B > 1

When the payload length B is greater than one bit, the confidence can be calculated in

Eq. 4.11 . The confidence is the sum of ∆j, j ∈ (0, B − 1). So the probability that the

confidence is greater in the data set A than in the data set B is the same as the probability

that the sum of ∆j in the data set A is smaller than in the data set B in Eq. 4.25 , where

79

C1 is the confidence value for pure payload set, and C2 is the confidence value for mixture of

payload and phase set.

P{C1 > C2} = P


B−1∑
j=0

∆j
1 <

B−1∑
j=0

∆j
2

 (4.25)

Note that we already discussed that for bit payload length B = 1, if we assume that

fewer than half of the bits switched value for a given number of bit repeats R, the confidence

is just the proportion of how many bits switched value over the total number of bit repeats.

Now the payload is more than one bit in length, and we assume that fewer than half of the

bits switched value for each bit position. Thus, the confidence, calculated as the sum of ∆j,

j ∈ (0, B − 1) for the data set A and the data set B, is the sum of the number of bits that

switched value among the total number of bit positions.

In Eq. 4.24 , we already developed a closed form solution for each bit position assuming

that the pure payload set has fewer minority bits α than the mixture of payload and phase,

which has β minority bits. It is a function of the common payload bit repeat count N , the

phase bit repeat count M in the mixture of payload and phase data sets, and the bit error

probability ε. So for B = 1 we can rewrite Eq. 4.24 as Eq. 4.26 :

P{α < β|B = 1} ≡ Ψ(α < β; N, M, ε) (4.26)

For B > 1, with the assumption that fewer than half of the bits switched value in each

bit position index, the number of minority bits in each bit position index is the same as

the number of bits that switched value in that bit position index. In addition, from our

experiments to be discussed in Sec. 4.6 , we found that when the payload bit length is large

(i.e. B > 63), the probability that the payload value is the same as the phase value at each

bit position index is about 0.5. Thus, the sum of the minority bits for the whole payload bit

length B can be separated into two parts: one for those bit position indices where the phase

bit has the same original value as the payload, and the other for those bit position indices

where the phase original value is different from the payload.

80

Since the random variables that determine whether or not the bits switch value are i.i.d.,

at each bit repeat, the minority bit difference mainly comes from the second part: those bits

where the payload and phase have different original values.

So, we can rewrite the probability P (C1 > C2) using the formula developed for payload

bit length B = 1, as shown in Eq. 4.26 , but with the new variables in Eq. 4.27 . This

approximation is validated using simulation.

P{C1 > C2} = P{α < β} ≈ Ψ(α < β; N

2 B,
M

2 B, ε) (4.27)

4.3.2 Step 2: Compute the conditional probability of successfully decoding the
payload

Now assume that we already correctly separated the phase from the payload; so for

each bit position, we have N + M bit repeats for data sets A and B. We will compute the

probability of successfully decoding the payload conditioned on the event C1 > C2.

The conditional probability that the detected bit value P̂
(j)

is the same as the original

bit value P(j) is equal to the conditional probability that fewer than half of the bits switched

value. It can we calculated as:

P{P̂
(j) = P(j)|C1 > C2}

=
K∑

k=0

 (N + M)

k

 (ε)k(1 − ε)(N+M)−k
(4.28)

where K is half of the number of bit repeats for the payload:

K =
⌊

(N + M)
2 − 1

⌋
(4.29)

The conditional probability that the entire payload is correctly decoded is the joint

conditional probability that every bit in the payload is correctly decoded. Recall that we

model the transmission error as identical and independent at each bit position, so the joint

81

probability of successfully decoding the entire payload is just the product of the probabilities

of successfully decoding at each bit position.

P{P̂ = P|C1 > C2}

=
B−1∏
j=0

P{P̂
(j) = P(j)|C1 > C2}

=


K∑

k=0

 (N + M)

k

 (ε)k(1 − ε)(N+M)−k


B

(4.30)

4.3.3 Step 3: Compute the conditional probability of successfully decoding the
phase

Note that for the phase encoding, we will encode the minimum number of bit shifts to go

from the standard form S to the payload P . This number is denoted as C. We transfer the

decimal value C to a binary string, denoted as U̇. The maximum number of bits c needed to

represent the decimal value C can be calculated in Eq. 4.31 . The method we use to encode

the phase row is to repeat the string U̇ until all the B bits are used to form the phase. So

for a phase row U with bit length B, the actual bit-repeat count Ṁ can be calculated as

shown in Eq. 4.31 , since in each phase row, we repeat each bit in the binary representation

of C approximately B
c

times.

c = dlog2 Be (4.31)

Ṁ ≈ B

c
M (4.32)

Let’s denote the decoded circularly shifted phase as ˆ̇U; so we have:

Û = [Û(0)
, Û

(1)
, . . . , Û

(c−1)] (4.33)

ˆ̇U = [ˆ̇U(0), ˆ̇U(1), . . . , ˆ̇U(c−1)] (4.34)

82

Similar to the requirement to correctly decode the payload, in order to decode the phase,

we require that fewer than half of the phase bits change their value during the transmission.

Note that here we assume that each phase bit has the same number M of repeat rows. Thus,

K̇ =
⌊

Ṁ

2 − 1
⌋

(4.35)

P{ ˆ̇U = U̇|C1 > C2} =
c−1∏
j=0

P{ ˆ̇U(j) = U̇(j)|C1 > C2}

=


K̇∑

k=0

 M

k

 (ε)k(1 − ε)M −k


c (4.36)

4.3.4 Step 4: Compute the final decoding rate

Without correctly separating the payload and phase data array, the chance to correctly

decode the payload and phase bits is very low. Thus, we can approximate the probability of

successfully decoding the payload as the product of the conditional probability of successfully

decoding the payload and phase given that the payload and phase data are successfully

separated, and the probability of successfully separating the payload and phase data.

Thus, the final decoding rate can be computed as the product of Eqs. 4.25 , 4.30 , and

4.36 :

P{P̂ = P} = P{P̂ = P} · P{ ˆ̇U = U̇}

= P{P̂ = P|C1 > C2} · P{ ˆ̇U = U̇|C1 > C2} · P{C1 > C2}
(4.37)

83

4.4 Validate the Closed Form Solution

The closed form solution of successful decoding the payload probability in Eq. 4.37 is

validated with experimental results.

4.4.1 Design of the simulation process

When the encoded halftone image is printed and captured by some image capturing de-

vice, and then the symbols (0 or 1) in the halftone sub-cell are decoded, there might be errors

involved. We need to study the probability of successfully decoding with a predetermined

transmission error. We model the the transmission error (switch value) as an i.i.d. random

variable at each bit position. Here is the design of the process to simulate the probability of

successfully decoding according to the following steps:

1. Randomly generate one sequence of payload data with a given payload length as in

Sec. 2.3.1 .

2. Encode the data array as in Sec. 2.3 .

3. Mask half the data in a checkerboard pattern to simulate information embedding in a

halftone image. See Sec. 2.5 .

4. Generate an i.i.d. sequence of error values.

5. Crop the data array at every possible position within the Canonical Crop Window

Location Set (CCWLS), so it will include every possible number of repeats for each

bit position. See Sec. 3.2 .

6. Decode the payload, including separating the payload and phase, decoding the stan-

dard form of the payload and decoding the phase. See Sec. 2.4 . Then the final payload

will be recovered.

7. Calculate the average decoding success rate. See Sec. 2.7 .

Multiple choices of random errors at different percentages are simulated to calculate the

statistical decoding rate. See the flowchart in Fig. 4.4 .

84

Figure 4.4. Flowchart to simulate the payload decoding rate.

4.4.2 Validate simulation results with theoretical results

The number of bit repeats for each position might be different due to the crop window

size and location. To simplify the calculation, we set the crop window height H to be an

integer, which is a multiple of the interleaving phase period V . Thus, among the H rows of

data in the crop window, there are H/V rows of phase, and H · (V − 1)/V rows of payload.

In addition, we assume that the number of columns W is also an integer multiple of the

payload length B. So for each row in the crop window, there will be the same number of

occurrences for each value of the bit position index j.

We start from the simplest case, B = 1, and then extend it to many bits, i.e. B > 1.

The transmission error ε is randomly generated, and sampled from 1% to 50%, with a step

size of 1%. The validation is done for each major equation, including:

• Probability of separating payload and phase data set in Eq. 4.27 (refer to Figs. 4.5 ,

4.6 , 4.7). Here N is the number of payload bit repeats, M is the number of phase bit

repeats. See Sec. 4.3.1 . The simulated curve closely matches the theoretical curve,

which proves the closed-form formula is well approximated.

85

• Conditional probability of decoding the payload in Eq. 4.30 . This part was validated

by Sun et al. [59].

• Conditional probability of decoding the phase in Eq. 4.36 . The closed form solution

and validation process is very similar to that for Eq. 4.30 .

• The final probability of decoding the original payload in Eq. 4.37 . The validation of

the simulation result with theoretical solution is shown in Fig. 4.9 . Here it also shows

that the theoretical and simulated results are well matched.

Figure 4.5. Comparison of probability of successfully separating payload and
phase bits based on theory and simulation for N = 128, M = 12, B = 1. Here, the
phase period V , row to row shift D, crop window size W and H are not relevant.

Note that for the simulation, when the confidence is exactly 50%, the decoder will select

the first phase row. But in the formula, we require that fewer than half of the repeating bits

86

Figure 4.6. Comparison of probability of successfully separating payload and
phase bits based on theory and simulation for N = 128, M = 12, B = 4. Here, the
phase period V , row to row shift D, crop window size W and H are not relevant.

switch value. To accommodate this situation, we take an average of the floor and ceiling

operations of the bits that switched value for which the confidence is 50%. The simulation

result is shown in Fig. 4.8 .

The Euclidean distance between the simulated and theoretical results will decrease when

the number of simulation trials increases (10k → 40k → 100k), which is shown in Fig. 4.10 .

In other words, the simulation approaches the theory asymptotically.

When the bit length becomes very large (B ≥ 67), the probability P1 of separating the

payload and phase becomes very high compared to the probability P2 and P3 of decoding

87

Figure 4.7. Comparison of probability of successfully separating payload and
phase bits based on theory and simulation for N = 67, M = 12, B = 17. Here the
phase period V , row to row shift D, crop window size W and H are not relevant.

88

0 5 10 15 20 25 30 35 40 45 50

Error rate, %

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

e
c
o

d
in

g
 s

u
c
c
e

s
s
 r

a
te

Validate the decoding success rate

B=67

V=13

D=2

W=67, H=13

theory (lower bound)

theory (upper bound)

theory (average)

simulation

Figure 4.8. Validation of the theory by simulation: the final decoding rate. The
simulated decoding success rate is the average of 40k different samples of error at
each transmission error rate. B = 67, W = 13, H = 13, V = 13. The lower bound
and upper bound results are achieved when the confidence is exactly 50%. We use
the floor and ceiling, respectively, of the bits that need to switch value to determine
a successful decoding result. And the average decoding rate is the average of the
lower bound and upper bound results.

the payload and the phase, respectively. So we can use P2P3 ≈ P1P2P3 to simplify the

computation (refer to Fig. 4.11).

89

0 5 10 15 20 25 30 35 40 45 50

Error rate, %

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

c
o

d
in

g
 s

u
c
c
e

s
s
 r

a
te

Validate the decoding success rate

theory B=25

simulation B=25

theory B=67

simulation B=67

theory B=127

simulation B=127

Figure 4.9. Validation of the theory by simulation: the final decoding rate. The
simulated decoding success rate is the average of 40k different samples of error at
each transmission error rate. For the first comparison group (the green curve),
B = 25, N = 15, M = 4, and V = 5, D = 2, W = 25, H = 25; for the second
comparison group (the blue curve), B = 67, N = 14, and M = 2; V = 13, D =
2, W = 13, H = 13 for the last comparison group (the black curve), B = 127,
N = 22, M = 1, and V = 24, D = 2, W = 127, H = 24.

90

0 5 10 15 20 25 30 35 40 45 50

Error rate, %

0

0.2

0.4

0.6

0.8

1

D
e

c
o

d
in

g
 s

u
c
c
e

s
s
 r

a
te

(a)

B = 127

V = 24

D = 2

W = 127, H = 24

theory

simulation (10k trials)

simulation (40k trials)

simulation (100k trials)

(b)

5 10 15 20 25 30 35 40 45

Error rate, %

0

0.005

0.01

0.015

0.02

D
is

ta
n

c
e

 b
e

tw
e

e
n

 s
im

u
la

ti
o

n
 a

n
d

 t
h

e
o

ry

distance1 (10k)

distance2 (40k)

distance3 (100k)

Figure 4.10. Effect of increasing the number of simulation trials on the match
between the theoretical ad simulation results. (a) Decoding success rate as a function
of error rate. (b) The Euclidean distance between the simulated and theoretical
results.

91

0 5 10 15 20 25 30 35 40 45 50

Error rate, %

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

e
c
o

d
in

g
 s

u
c
c
e

s
s
 r

a
te

Approximate the decoding success rate

B = 67

N = 12

M = 1

P
1

P
2

P
3

P
1
P

2
P

3

P
2
P

3

Figure 4.11. The approximation of the final decoding rate. P1: the probability of
separating payload and phase defined in Eq. 4.27 ; P2: the conditional probability
of decoding the payload in Eq. 4.30 ; P3: the conditional probability of decoding the
phase in Eq. 4.36 ; P1P2P3: the final probability of decoding the original payload in
Eq. 4.37 . P2P3: the approximation of the final probability of decoding the original
payload in Eq. 4.37 . The simulated decoding success rate is the average of 40k
different samples of the error at each transmission error rate.

4.5 Summary of the Assumptions

Without loss of generality, we have made some assumptions for easier derivation of the

closed form solutions in this chapter:

• During the design of the payload, we will check make sure that the standard form of

the payload is unique by circularly shifting the bits. And the length of the payload is

always an odd number.

92

• When halftoning the carrier image for embedding bit shifts, in order to make the

halftone patterns be limited to the patterns shown in Fig. 2.9 , we will first average

the gray scale value within each 4 × 4 sub-cell.

• We assume that each bit position index has the same repeat number R. Because

for a crop window of data r̂, we are able to calculate the bit repeat count for each

bit position index. The actual bit repeat count for each bit position index might be

slightly different, depending on the size and position of the crop window.

• For a successful detection, we assume that the probability of transmission error ε < 0.5.

Thus, the error rate is less than 50%.

• We assume that fewer than half of the bits switched their values. Since the number of

payload bits is usually much larger than the number of phase bits, or N � M , for any

bit position j, we expect that there will be fewer phase rows than payload rows.

• Without correctly separating the payload and phase data array, the chance to correctly

decode the payload and phase bits is very low. Thus, we can approximate the proba-

bility of successfully decoding the payload as the product of the conditional probability

of successfully decoding the payload and phase given that the payload and phase data

are successfully separated, and the probability of successfully separating the payload

and phase data.

4.6 Examine the Similarity of the Bit Values Between Payload and Phase

The bit value for each repeating bit position, if it is belongs to a payload row, can be

denoted as P (j); and if this bit is in a phase row, then the bit value can be denoted as U(j).

The phase code depends on the payload and encoding method. We define the similarity

as the number of bits between the payload and the phase that have the same value, divided

by the total number of the payload (or the phase) bits.

similarity = number of same bits between payload and phase
total number of bits

(4.38)

93

4.6.1 Design the experiment to examine the similarity

The similarity between payload and phase depends on the payload value, and also depends

on the method of how the phase is encoded. However, we can still examine the similarity

using the some experiments. Here is how to set up the experiment:

1. Set payload bit length B.

2. Generate every possible form of payload. There will be totally 2B different possible

forms of the payload.

3. Generate the sequence of phase bits for each selected sequence of payload bits.

4. Calculate the similarity for each payload and phase pair based on Eq. 4.38 .

5. Calculate the average similarity rate.

4.6.2 Experiment and result

We examined the similarity from payload bit length 7 to 512, and calculated their sim-

ilarity. For the bits length smaller than 27, we examined every possible payload value; for

bit length from 27 to 512, we sampled 10,000 different payload values and calculated the

average similarity. The result is shown in Fig. 4.12 .

So we can assume that the bit values of the payload and phase are independent. That

is, the probability that the payload bit value is the same as phase bit value for a particular

bit position index j is 0.5, and so is the probability that the payload bit value is different

from the phase bit value.

P{U(j) = P (j)} = 0.5;

P{U(j) 6= P (j)} = 0.5;
(4.39)

94

0 100 200 300 400 500 600

Bit length B

0.46

0.48

0.5

0.52

0.54

0.56

0.58

P
a

y
lo

a
d

 a
n

d
 p

h
a

s
e

 s
im

ila
ri
ty

The payload and phase similarity of different payload bit length

Figure 4.12. The similarity of the payload and phase, using the double bit en-
coding method, see Sec. 2.3.1 .

95

4.7 Conclusion

There are various ways for information embedding. One of the popular approaches is

through the bar code. However, the methods covered here are called information coding,

which hide information under the carrier information and can only be read when the decoding

key is provided. These kinds of methods add an extra layer of security and are not easy to

notice unless someone scans the carrying signal with a key.

Conventional information coding methods, such as Hamming Code [37], Reed Solomon

Code [38], Luby Code [46], Raptor Code [49] are error-prone, since they encode information

in a single dimension and may fail to be corrected if there is a bit loss. This dissertation

applies a 1D information method in a 2D image, which allows more error correction tolerance

and enhances the robustness of information embedding.

Secondly, in the conventional 1D approach, bit positional synchronization is required,

where the positional information must be retained for recovery. Whereas in this proposed

2D approach, this synchronization is no longer required, since the positional information is

also included in the encoding process.

The information is repetitively embedded in every location in the image, except in the

following areas: the shadow regions (too few hole clusters), highlight regions (too few dot

clusters) and the mid-tone regions (no place to shift dot clusters), see Sec. 2.5.2 . Therefore,

to scan the information, the user can literally start from any place in the image.

Given a particular region of the image at a specific resolution, the confidence level can

be theoretically computed, to suggest the user to either zoom in (increase the resolution

on a smaller region) or zoom out (decrease the resolution but enlarge the scanning region)

for a better confidence score. The developed formula has been experimentally proven to

approximate all kinds of simulated scenarios with different parameters, such as bit error

rate, information length, resolution in dpi, etc. It can be efficiently used to estimate the

results for various simulations, without performing time-consuming experiments.

96

5. WEB-BASED PRINT QUALITY TROUBLESHOOTING

(PQTS)

5.1 Problem Description

This project is aimed to develop web-based self-diagnostic Print Quality Troubleshooting

(PQTS) tools, that can help HP Inc.’s customers not only to self-diagnose their printer’s

quality issues, but also to solve those problems. As these high-end printers are sold world-

wide, customer service becomes important and necessary. In addition, since the print quality

issues are difficult to describe verbally with the traditional customer phone service, it is

very difficult to identify what is really the problem that the customer is facing, and it

will be a time-consuming and costly process. The PQTS tool provides simulated print

quality examples to help the customer identify their issue, and also follows with step-by-step

instructions to solve most of the common problems. Based on the web page viewing history,

we can see that this tool has been widely used.

5.2 Structure of the PQTS Tool

The PQTS tool was fist described in a journal paper by Santos [60], et al., and our team

members have continued to work on this project for many printer models [61]–[67]. This

work built on earlier work with print defect simulation [68], and is only one example of a

web-based troubleshooting tool. Another example is [69]. It uses a three-layer architecture

diagnostic model that gives easy and practical problem-solving solutions:

• First layer: Problem Initialization. In this layer, the user prints out test pages, and

then check the defects in the printed test pages on each color test page, and determines

which color(s) need to be examined for further diagnostics.

• Second layer: Issue Identification. In this layer, the user observes more detailed qual-

ity issue simulations under each color category, and links the particular issues with

potential causes by checking the simulated examples of defects.

97

Figure 5.1. The PQTS three-layer architecture illustration.

• Third layer, Guided Troubleshooting. Here, a step-by-step solution is provided to solve

these common issues.

For example, in the first layer, the customer may notice some abnormality on the green-

yellow test page. So he or she clicks this test page and goes to the second layer. On the second

layer, there are different simulations of possible defects. By comparing these simulation with

what he or she has, he or she may identify the issue that the boundary between where the

toner is present or not creates a wavy pattern. By clicking the most similar simulated detect

page, the website will direct the customer to the third layer, where possible causes are listed.

In this example, there are two possible causes:

1. Toner level is low in the cyan image drum;

2. There is a problem replenishing the toner from the cyan toner cartridge.

Also, the troubleshooting and solutions are provided to the user, including step-by-step

instructions with hands-on examples (see Fig. 5.1).

98

Table 5.1. The print quality trouble shooting products that been developed.
Model Release dates PQTS tool URL
CP5525 1/17/2014 http://www.hp.com/go/printquality/cljcp5525

M775 1/15/2014 http://www.hp.com/go/printquality/m775

M551 10/21/2013 http://www.hp.com/go/printquality/lj500colorM551

M575 8/14/2013 http://www.hp.com/go/printquality/lj500colorMFPM575

CM4540 7/1/2013 http://www.hp.com/go/printquality/cljcm4540mfp

5.3 PQTS Tool Development

Our team had developed the PQTS tools for totally eighteen printers models before I

joined the group. Since each printer has its own PQTS tool, for the newly released models,

I reproduced and generalized the website content, including:

1. Write the trouble shooting procedures;

2. Simulate the print quality diagnostic pages;

3. Write the problem solving procedures;

4. Capture the step-by-step problem solving illustrations

During Summer 2013 to Spring 2014, I developed an additional five tools for the current

models. Here is the list of each model, its release dates, and the URL for its Print Quality

Troubleshooting Tool at HP’s website, see Table 5.1 .

5.4 Conclusion

Most of the print quality problems are very difficult to accurately describe verbally,

especially for customers that lack printing quality knowledge training. The web-based self-

diagnostic tool enables the customers to print out the test pages, and compare their printing

quality with the most common issues, which are simulated and shown on the website. So

the customer can diagnose the problem without contacting the customer service specialist,

which saves both the time and cost. From Fig. 5.2 , we can see that there were more than

sixteen thousand views during Jun. 1, 2012 to Mar. 14, 2014.

99

http://www.hp.com/go/printquality/cljcp5525
http://www.hp.com/go/printquality/m775
http://www.hp.com/go/printquality/lj500colorM551
http://www.hp.com/go/printquality/lj500colorMFPM575
http://www.hp.com/go/printquality/cljcm4540mfp

Figure 5.2. The total page views for PQTS products during the time period
of Jun. 1, 2013 to Mar. 14, 2014. There are totally four different websites that
link to the PQTS tools: cpso-support-new, cs:generic-link, cs:ipg-support:pqts and
go/printquality. The statistical data was provided by HP Inc.

100

6. TEXT LINE DETECTION

6.1 Problem Description

Text line detection with low computational cost and high accuracy is a critical step for

applications in document image processing. There are many methods have been proposed for

text line detection. One category is the Hough transform-based text line detection method.

[70]–[72] This method proposes the text lines as hypotheses in the Hough transform domain

and validates them in the image domain. This “hypothesis-validation” strategy is very

computationally expensive, and often pre-processing and post-processing is required for a

higher detection accuracy.

Another category is smearing methods [73], [74]. Different from the Hough transform

method which is a“top-to-down” approach, the smearing method is “bottom-up”: it grows

the text line region by recursively finding and incorporating the closest characters. So the

smearing methods handle curved text lines better than the Hough transform based method,

but since it searches only a small region, the smearing methods are more sensitive to noise,

and they require accurate parameters. Some more text line detection methods can be found

in [75]–[77].

In this project, a novel method has been developed by Dr. Yandong Guo [78]. First,

we find the connected components of the image as symbols. Then, we find features of these

symbols to classify them into different classes, such as text, table, logo, etc. Next, a cost

function is designed to estimate the local text line direction and the relationship of character

pairs within the local region, based on the observation that the text line is typically formed

by a set of characters densely distributed along a smooth curve in a region. Once the text

line in the local region is found, then a graphical model is built: we model each character

as a node, and then group the characters into text lines by separating the graph into sub

graphs based on the estimation result in the first step.

Compared with the Hough transform based method, our method is more computationally

efficient. In addition, since we find the text line segment in a local region, it handles the

curved text line better than the Hough transformed method. Compared with the smearing

101

method, our approach use a global optimization to group text line segments into text lines,

which yields a better detection accuracy.

Experiments with a variety of images demonstrate that the proposed method is very fast

and robust.

6.2 Text Line Detection Pipeline Review

The text line detection flowchart is shown in Fig. 6.1 .

To better understand the whole pipeline, we use the following diagrams to explain how

each step is executed. Fig. 6.2 is the main flowchart, and Figs. 6.3 , 6.4 , 6.5 , 6.6 are the sub

figures to discuss the details.

6.3 Implementation of the Algorithm

The input and output of the text line decoding program are listed here:

• Input: Supported PBM (P4), PGM (P5) or PPM (P6) formats.

• Output: Gray-scale image in PGM (P5) format that only includes the detected text

lines. It also includes some optional files that can be used for debugging purposes,

including: Feature vectors including the meta and histogram files, debug images for

detected text lines, bounding boxes, and other detected logos/tables/small dots in

different colors.

The average Running time is 2.79 seconds per image (per page) based on total 261 images,

see Fig. 6.7 .

102

6.4 Conclusion

In this project, I continued working with the text line decoding algorithm that was first

developed by Dr. Yandong Guo, developed the pipeline, changed the libraries to suit our

sponsor HP’s requirements, and ran more experiments to analyze the performance.

103

Figure 6.1. The flowchart of the text line detection process

104

Figure 6.2. The flow chart - main

105

Figure 6.3. The flow chart - reference 1

106

Figure 6.4. The flow chart - reference 2

107

Figure 6.5. The flow chart - reference 3

108

Figure 6.6. The flow chart - reference 4

109

Figure 6.7. Average Running time is 2.79 seconds per image (per page) based
on total 261 images detection result, including (1) Mixed pictures and text; (2)
Horizontal vertical lines; (3) Skewed text lines and (4) Different fonts, contents.

110

7. SUMMARY

This dissertation mainly discussed the circular coding algorithm and its performance predic-

tion, and also some other image processing projects that have been done during my Ph.D.

journey, including the web-based printing quality troubleshooting tool project, and the text

line detection project.

The literature review about channel coding and current data embedding methods is

written in Chapter 1 .

In Chapter 2 , We introduced the encoding and decoding systems and investigated the

performance of the methods for noisy and distorted images.

In Chapter 3 , we validated that the experimental payload decoding rates are consistent

with their theoretical results, given particular parameters and with various cropped-window

sizes. Therefore, given the required decoding rate and anticipated transmission error, we

can compute the minimum requirement for the number of repeats or the corresponding

cropped-window size.

In Chapter 4 , we modeled the transmission error as a stochastic random process. Then

we developed a closed-form solution for the payload decoding rate step by step, following

the procedures of the decoding process.

Also, we designed the simulation of the decoding process to validate the closed-form

solution.

The contributions to the circular coding project include the following:

• Developed a model for the circular coding encoding and decoding system.

• Developed a closed form formula to calculate the bit repeat count for the given crop

window of data.

• Developed the Canonical Crop Window Location Set (CCWLS) to identify the mini-

mum requirement of the bit repeat counts.

• Analyzed the performance of the circular coding method in a noisy channel. A closed-

form solution was developed to calculate the decoding success rate for a given message

payload length and bit position repeat count under different transmission error rates.

111

• Validated this closed-form solution by simulating the decoding process with noisy sam-

ples. With this decoding rate prediction, we can design the encoding/decoding system

with the desired performance under different given transmission error rates. On the

other hand, for a given encoding/decoding system, we will have the expected success

rate as a measure of confidence for users.

In addition, some other image processing projects were discussed. The web-based Print

Quality Troubleshooting Tool (PQTS) is discussed in Chapter 5 . For this project, we re-

produced and generalized the PQTS websites for newly released printers, and reduced the

troubleshooting time for HP’s customer supporting team, according to HP’s statistical data.

The text line detection and its application is discussed in Chapter 6 . In this chapter, the

pipeline of the text line detection method was developed, we modified the code to suit the

sponsor HP’s requirements, and ran more experiments to analyze the performance.

112

REFERENCES

[1] P.-J. Chiang, N. Khanna, A. K. Mikkilineni, M. V. O. Segovia, S. Suh, J. P. Allebach,
G. T.-C. Chiu, and E. J. Delp, “Printer and Scanner Forensics,” IEEE Signal Processing
Magazine, vol. 26, no. 2, pp. 72–83, 2009.

[2] M. V. O. Segovia, G. T.-C. Chiu, and J. P. Allebach, “Using Forms for Informa-
tion Hiding and Coding in Electrophotographic Documents,” in Information Forensics
and Security, 2009. WIFS 2009. First IEEE International Workshop on, IEEE, 2009,
pp. 136–140.

[3] P.-J. Chiang, N. Khanna, A. K. Mikkilineni, M. V. O. Segovia, J. P. Allebach, G. T.
Chiu, and E. J. Delp, “Printer and Scanner Forensics: Models and Methods,” in Intel-
ligent Multimedia Analysis for Security Applications, Springer, 2010, pp. 145–187.

[4] G. N. Ali, A. K. Mikkilineni, J. P. Allebach, E. J. Delp, P.-J. Chiang, and G. T. Chiu,
“Intrinsic and Extrinsic Signatures for Information Hiding and Secure Printing with
Electrophotographic Devices,” in NIP & Digital Fabrication Conference, Society for
Imaging Science and Technology, vol. 2003, 2003, pp. 511–515.

[5] G. N. Ali, A. K. Mikkilineni, E. J. Delp, J. P. Allebach, P.-J. Chiang, and G. T.
Chiu, “Application of Principal Components Analysis and Gaussian Mixture Models
to Printer Identification,” in NIP & Digital Fabrication Conference, Society for Imaging
Science and Technology, vol. 2004, 2004, pp. 301–305.

[6] P.-J. Chiang, A. K. Mikkilineni, E. J. Delp, J. P. Allebach, and G. T.-C. Chiu, “De-
velopment of an Electrophotographic Laser Intensity Modulation Model for Extrinsic
Signature Embedding,” in NIP & Digital Fabrication Conference, Society for Imaging
Science and Technology, vol. 2007, 2007, pp. 561–564.

[7] S. Suh, J. P. Allebach, G. T.-C. Chiu, and E. J. Delp, “Printer Mechanism-level Data
Hiding for Halftone Documents,” in NIP & Digital Fabrication Conference, Society for
Imaging Science and Technology, vol. 2006, 2006, pp. 436–440.

[8] S. Suh, J. P. Allebach, G. T.-C. Chiu, and E. J. Delp, “Printer Mechanism-Level Infor-
mation Embedding and Extraction for Halftone Documents–New Results,” in NIP &
Digital Fabrication Conference, Society for Imaging Science and Technology, vol. 2007,
2007, pp. 549–553.

[9] Z. Li, W. Jiang, D. Kenzhebalin, A. Gokan, and J. Allebach, “Intrinsic Signatures
for Forensic Identification of SOHO Inkjet Printers,” in NIP & Digital Fabrication
Conference, Society for Imaging Science and Technology, vol. 2018, 2018, pp. 231–236.

113

[10] P.-J. Chiang, J. P. Allebach, and G. T.-C. Chiu, “Extrinsic Signature Embedding and
Detection in Electrophotographic Halftoned Images Through Exposure Modulation,”
IEEE Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 946–959,
2011.

[11] A. K. Mikkilineni, G. N. Ali, P.-J. Chiang, G. T.-C. Chiu, J. P. Allebach, and E. J. Delp,
“Signature-embedding in Printed Documents for Security and Forensic Applications,”
in Security, Steganography, and Watermarking of Multimedia Contents, 2004, pp. 455–
466.

[12] A. K. Mikkilineni, P.-J. Chiang, G. N. Ali, G. T. Chiu, J. P. Allebach, and E. J. Delp
III, “Printer Identification Based on Graylevel Co-occurrence Features for Security and
Forensic Applications,” in Security, Steganography, and Watermarking of Multimedia
Contents VII, International Society for Optics and Photonics, vol. 5681, 2005, pp. 430–
440.

[13] N. Khanna, A. K. Mikkilineni, A. F. Martone, G. N. Ali, G. T.-C. Chiu, J. P. Allebach,
and E. J. Delp, “A Survey of Forensic Characterization Methods for Physical Devices,”
Digital Investigation, vol. 3, pp. 17–28, 2006.

[14] Y.-Y. Chen, R. Ulichney, M. Gaubatz, S. Pollard, C.-J. Tai, and J. P. Allebach, “Stega-
tone Performance Characterization,” in Media Watermarking, Security, and Forensics
2013, International Society for Optics and Photonics, vol. 8665, 2013, 86650Q.

[15] Y. Xu and J. P. Allebach, “Printed Image Watermarking with Synchronization Using
Direct Binary Search,” Electronic Imaging, vol. 2019, no. 5, pp. 526–1, 2019.

[16] O. Bulan, V. Monga, and G. Sharma, “High Capacity Color Barcodes using Dot Orien-
tation and Color Separability,” in Media Forensics and Security, International Society
for Optics and Photonics, vol. 7254, 2009, p. 725 417.

[17] V. Sebastian, R. Fisher, S. Voloshynovskyy, O. Koval, and T. Pun, “Multilevel 2D
Bar Codes: Towards High Capacity Storage Modules for Multimedia Security and
Management,” vol. 1, no. 4, pp. 405–420, 2005. [Online]. Available: http://cvml.unige.
ch/publications/postscript/2005/VillanVoloshynovskiyKovalPun_SPIE2005.pdf .

[18] D. L. Hecht, “Printed Embedded Data Graphical User Interfaces,” Computer, vol. 34,
no. 3, pp. 47–55, 2001.

[19] D. L. Hecht, “Embedded Data Glyph Technology for Hardcopy Digital Documents,”
SPIE-Color Hard Copy and Graphics Arts III, vol. 2171, pp. 341–352, 1994.

114

http://cvml.unige.ch/publications/postscript/2005/VillanVoloshynovskiyKovalPun_SPIE2005.pdf
http://cvml.unige.ch/publications/postscript/2005/VillanVoloshynovskiyKovalPun_SPIE2005.pdf

[20] R. Ulichney, M. Gaubatz, and S. Simske, “Circular Coding for Data Embedding,” in
NIP & Digital Fabrication Conference, Society for Imaging Science and Technology,
vol. 2013, 2013, pp. 142–147.

[21] R. Ulichney, M. Gaubatz, and S. Simske, “Circular Coding with Interleaving Phase,”
in Proceedings of the 2014 ACM Symposium on Document Engineering, ACM, 2014,
pp. 21–24.

[22] O. Bulan, G. Sharma, and V. Monga, “Orientation Modulation for Data Hiding in
Clustered-dot Halftone Prints,” IEEE Transactions on Image Processing, vol. 19, no. 8,
pp. 2070–2084, 2010.

[23] J. T. Brassil, S. Low, N. F. Maxemchuk, and L. O’Gorman, “Electronic Marking and
Identification Techniques to Discourage Document Copying,” IEEE Journal on Selected
Areas in Communications, vol. 13, no. 8, pp. 1495–1504, 1995.

[24] Z. Baharav and D. Shaked, “Watermarking of Dither Halftoned Images,” in Security
and Watermarking of Multimedia Contents, vol. 3657, 1999, pp. 307–316.

[25] S.-G. Wang, Digital Watermarking using Phase-shifted Stoclustic Screens, US Patent
6,252,971, Jun. 2001.

[26] G. Sharma and S.-G. Wang, “Show-through Watermarking of Duplex Printed Docu-
ments,” in Security, Steganography, and Watermarking of Multimedia Contents, SPIE,
Jan. 2004, pp. 670–684.

[27] R. L. de Queiroz, K. M. Braun, and R. P. Loce, “Detecting Spatially Varying Gray
Component Replacement with Application in Watermarking Printed Images,” Journal
of Electronic Imaging, vol. 14, no. 3, pp. 033 016–033 016, 2005.

[28] F. Wang and J. P. Allebach, “Printed Image Watermarking Using Direct Binary Search
Halftoning,” in Image Processing (ICIP), 2016 IEEE International Conference on,
IEEE, 2016, pp. 2727–2731.

[29] A. K. Mikkilineni, P.-J. Chiang, S. Suh, G. T. Chiu, J. P. Allebach, and E. J. Delp,
“Information Embedding and Extraction for Electrophotographic Printing Processes,”
in Security, Steganography, and Watermarking of Multimedia Contents VIII, Interna-
tional Society for Optics and Photonics, vol. 6072, 2006, p. 607 210.

[30] A. K. Mikkilineni, P.-J. Chiang, G. T.-C. Chiu, J. P. Allebach, and E. J. Delp, “Data
Hiding Capacity and Embedding Techniques for Printed Text Documents,” in NIP &
Digital Fabrication Conference, Society for Imaging Science and Technology, vol. 2006,
2006, pp. 444–447.

115

[31] P.-J. Chiang, G. N. Ali, A. K. Mikkilineni, E. J. Delp, J. P. Allebach, and G. T.-C. Chiu,
“Extrinsic Signatures Embedding Using Exposure Modulation for Information Hiding
and Secure Printing in Electrophotography,” in NIP & Digital Fabrication Conference,
Society for Imaging Science and Technology, vol. 2004, 2004, pp. 295–300.

[32] P.-J. Chiang, T.-C. Chiu, A. K. Mikkilineni, O. Arslan, R. Moshe, G. Kumontoy, E. J.
Delp, and J. P. Allebach, “Extrinsic Signature Embedding in Text Document Using
Exposure Modulation for Information Hiding and Secure Printing in Electrophotog-
raphy,” in NIP & Digital Fabrication Conference, Society for Imaging Science and
Technology, vol. 2005, 2005, pp. 231–234.

[33] P.-J. Chiang, A. K. Mikkilineni, E. J. Delp, J. P. Allebach, and G. T.-C. Chiu, “Ex-
trinsic Signatures Embedding and Detection in Electrophotographic Halftone Images
Through Laser Intensity Modulation,” in NIP & Digital Fabrication Conference, Soci-
ety for Imaging Science and Technology, vol. 2006, 2006, pp. 432–435.

[34] S. Lin and D. J. Costello, Error Control Coding. Prentice Hall, 2001, vol. 2.

[35] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical
Journal, vol. 27, no. 3, pp. 379–423, 1948.

[36] R. G. Gallager, Information Theory and Reliable Communication. Springer, 1968,
vol. 2.

[37] R. W. Hamming, “Error Detecting and Error Correcting Codes,” The Bell System
Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[38] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their Applications. John
Wiley & Sons, 1999.

[39] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communication Protocols,”
ACM SIGCOMM Computer Communication Review, vol. 27, no. 2, pp. 24–36, 1997.

[40] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen,
and D. Borthakur, “Xoring Elephants: Novel Erasure Codes for Big Data,” in Proceed-
ings of the VLDB Endowment, VLDB Endowment, vol. 6, 2013, pp. 325–336.

[41] M. N. Krohn, M. J. Freedman, and D. Mazieres, “On-the-fly Verification of Rateless
Erasure Codes for Efficient Content Distribution,” in IEEE Symposium on Security
and Privacy, 2004. Proceedings. 2004, IEEE, 2004, pp. 226–240.

[42] D. J. MacKay, “Fountain Codes,” IEE Proceedings-Communications, vol. 152, no. 6,
pp. 1062–1068, 2005.

116

[43] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain Approach
to Reliable Distribution of Bulk Data,” ACM SIGCOMM Computer Communication
Review, vol. 28, no. 4, pp. 56–67, 1998.

[44] M. C. Bogino, P. Cataldi, M. Grangetto, E. Magli, and G. Olmo, “Sliding-window
Digital Fountain Codes for Streaming of Multimedia Contents,” in 2007 IEEE Inter-
national Symposium on Circuits and Systems, IEEE, 2007, pp. 3467–3470.

[45] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder, “RaptorQ
Forward Error Correction Scheme for Object Delivery,” RFC, vol. 6330, pp. 1–69,
2011.

[46] M. Luby, “LT Codes,” in The 43rd Annual IEEE Symposium on Foundations of Com-
puter Science, 2002. Proceedings., IEEE, 2002, pp. 271–280.

[47] R. Palanki and J. S. Yedidia, “Rateless Codes on Noisy Channels,” in ISIT, Citeseer,
2004, p. 37.

[48] F. James, “A Review of Pseudorandom Number Generators,” Computer Physics Com-
munications, vol. 60, no. 3, pp. 329–344, 1990.

[49] A. Shokrollahi, “Raptor Codes,” IEEE/ACM Transactions on Networking (TON),
vol. 14, no. SI, pp. 2551–2567, 2006.

[50] O. Etesami and A. Shokrollahi, “Raptor Codes on Binary Memoryless Symmetric
Channels,” IEEE Transactions on Information Theory, vol. 52, no. 5, pp. 2033–2051,
2006.

[51] N. Damera-Venkata, J. Yen, V. Monga, and B. L. Evans, “Hardcopy Image Barcodes
via Block-Error Diffusion,” IEEE Transactions on Image Processing, vol. 14, no. 12,
pp. 1977–1989, 2005.

[52] D. Kacker, T. Camis, and J. P. Allebach, “Electrophotographic Process Embedded in
Direct Binary Search,” IEEE Transactions on Image Processing, vol. 11, no. 3, pp. 243–
257, 2002.

[53] O. Bulan, V. Monga, G. Sharma, and B. Oztan, “Data Embedding in Hardcopy Images
via Halftone-dot Orientation Modulation,” in Security, Forensics, Steganography, and
Watermarking of Multimedia Contents, 2008, p. 68190C.

[54] R. Ulichney, M. Gaubatz, and S. Simske, “Encoding Information in Clustered-dot
Halftones,” in NIP & Digital Fabrication Conference, Society for Imaging Science and
Technology, vol. 2010, 2010, pp. 602–605.

117

[55] W. K. Gilliland, C. G. Midgley, A. M. Murphy, and W. T. Bowerman, Printer Toner
Usage Indicator with Image Weighted Calculation, US Patent 5,349,377, Sep. 1994.

[56] Z. Zhao, R. Ulichney, M. Gaubatz, S. Pollard, and J. P. Allebach, “Advances in the
Decoding of Data-Bearing Halftone Images,” in NIP & Digital Fabrication Conference,
Society for Imaging Science and Technology, vol. 2019, 2019, pp. 162–167.

[57] Z. Zhao, Y. Xu, R. Ulichney, M. Gaubatz, S. Pollard, and J. P. Allebach, “Data-
bearing Halftone Image Alignment and Assessment on 3D Surface,” Electronic Imaging,
vol. 2020, no. 15, pp. 196–1, 2020.

[58] Y. Sun and J. P. Allebach, “Analyzing the Decoding Rate of Circular Coding in a Noisy
Transmission Channel,” Proceedings of Media Watermarking, Security, and Forensics
2020, pp. 26–20, 2020.

[59] Y. Sun, R. Ulichney, M. Gaubatz, S. Pollard, S. Simske, and J. P. Allebach, “Analysis
of a Visually Significant Bar Code System Based on Circular Coding,” Color Imag-
ing XXIII: Displaying, Processing, Hardcopy, and Application, vol. 2018, no. 16, 29
Janurary - 2 February 2018.

[60] H. Santos-Villalobos, H. J. Park, C. Kim, P. Choe, R. Kumontoy, K. Low, K. Olden-
burger, M. Ortiz, X. Lehto, M. Lehto, et al., “A Web-based Self-diagnosis Tool to Solve
Print Quality Issues,” in NIP & Digital Fabrication Conference, Society for Imaging
Science and Technology, vol. 2006, 2006, pp. 465–471.

[61] W. Jang, M.-C. Chen, J. P. Allebach, and G. T.-C. Chiu, “Print Quality Test Page,”
Journal of Imaging Science and Technology, vol. 48, no. 5, pp. 432–446, 2004.

[62] C. Kim, P. Choe, M. Lehto, and J. Allebach, “Development of a Web-based Inter-
active Self-help Troubleshooting Tool for Print Quality Problems,” in International
Conference on Human-Computer Interaction, Las Vegas, Nevada USA, 2005, pp. 22–
27.

[63] P. Choe, C. Kim, M. R. Lehto, X. Lehto, and J. Allebach, “Evaluating and Improving
a Self-help Technical Support Web Site: Use of Focus Group Interviews,” International
Journal of Human-Computer Interaction, vol. 21, no. 3, pp. 333–354, 2006.

[64] P. Choe, C. Kim, M. R. Lehto, and J. Allebach, “Experimental Comparison of Adap-
tive vs. Static Thumbnail Displays,” in International Conference on Human-Computer
Interaction, Springer, 2007, pp. 41–48.

[65] P. Choe, M. R. Lehto, and J. Allebach, “Self-help Troubleshooting by Q-KE-CLD
Based on a Fuzzy Bayes Model,” in Symposium on Human Interface and the Manage-
ment of Information, Springer, 2007, pp. 391–400.

118

[66] H. J. Santos-Villalobos, V. Loewen, and J. P. Allebach, “Houston, We Have A Color
Issue!” In Color Imaging XIV: Displaying, Processing, Hardcopy, and Applications,
International Society for Optics and Photonics, vol. 7241, 2009, p. 72411D.

[67] R. Kumontoy, K. Low, M. Ortiz, C. Kim, P. Choe, S. Leman, K. Oldenburger, M. Lehto,
X. Lehto, H. Santos-Villalobos, et al., “Web-based Diagnosis Tool for Customers to
Self-solve Print Quality Issues,” Journal of Imaging Science and Technology, vol. 54,
no. 4, pp. 40 503–1, 2010.

[68] W. Jang and J. P. Allebach, “Simulation of Print Quality Defects,” Journal of Imaging
Science and Technology, vol. 49, no. 1, pp. 1–18, 2005.

[69] H. J. Santos-Villalobos, V. Loewen, M. Lehto, and J. Allebach, “A Web-based Trou-
bleshooting Tool to Help Customers Self-solve Color Issues With a Digital Printing
Workflow,” in Imaging and Printing in a Web 2.0 World II, International Society for
Optics and Photonics, vol. 7879, 2011, p. 787 906.

[70] L. A. Fletcher and R. Kasturi, “A Robust Algorithm for Text String Separation From
Mixed Text/Graphics Images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 10, no. 6, pp. 910–918, 1988.

[71] L. Likforman-Sulem, A. Hanimyan, and C. Faure, “A Hough Based Algorithm for
Extracting Text Lines in Handwritten Documents,” in Proceedings of 3rd International
Conference on Document Analysis and Recognition, IEEE, vol. 2, 1995, pp. 774–777.

[72] Y. Pu and Z. Shi, “A Natural Learning Algorithm Based on Hough Transform for Text
Lines Extraction in Handwritten Documents,” in Advances In Handwriting Recogni-
tion, World Scientific, 1999, pp. 141–150.

[73] Z. Shi and V. Govindaraju, “Line Separation for Complex Document Images Using
Fuzzy Runlength,” in First International Workshop on Document Image Analysis for
Libraries, 2004. Proceedings., IEEE, 2004, pp. 306–312.

[74] F. Le Bourgeois, H. Emptoz, E. Trinh, and J. Duong, “Networking Digital Document
Images,” in Proceedings of Sixth International Conference on Document Analysis and
Recognition, IEEE, 2001, pp. 379–383.

[75] G. Louloudis, B. Gatos, I. Pratikakis, and C. Halatsis, “Text Line Detection in Hand-
written Documents,” Pattern Recognition, vol. 41, no. 12, pp. 3758–3772, 2008.

[76] G. Louloudis, B. Gatos, and C. Halatsis, “Text Line Detection in Unconstrained Hand-
written Documents Using a Block-based Hough Transform Approach,” in Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR 2007), IEEE,
vol. 2, 2007, pp. 599–603.

119

[77] Y. Li, Y. Zheng, and D. Doermann, “Detecting Text Lines in Handwritten Documents,”
in 18th International Conference on Pattern Recognition (ICPR’06), IEEE, vol. 2, 2006,
pp. 1030–1033.

[78] Y. Guo, Y. Sun, P. Bauer, J. P. Allebach, and C. A. Bouman, “Text Line Detection
Based on Cost Optimized Local Text Line Direction Estimation,” in Color Imaging XX:
Displaying, Processing, Hardcopy, and Applications, International Society for Optics
and Photonics, vol. 9395, 2015, p. 939 507.

120

VITA

Yufang Sun received her BS in Electrical Engineering from the University of Jilin from

China (2004). She is currently a PhD student, working as image processing and data analysis

research assistant with Prof. Jan Allebach, in the School of Electrical and Computer Engi-

neering at Purdue University. Her research interests are in image information embedding,

decoding error analysis, etc. She has been working on the projects of circular coding and

stegaframe detection, both sponsored by HP Labs.

121

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	DEVELOPMENT OF THE CIRCULAR CODING METHOD WITH INTERLEAVING PHASE PERIOD
	Problem Statement
	Overview of the Data Embedding Framework for Circular Coding
	Channel Encoder
	Create the data array for payload P
	A toy example of creating the encoded data array

	Channel Decoder
	The majority and minority bits
	Decoding method
	An example of decoding

	Coding Channel: Embedding Data in Halftone Images
	Abstention and carrying sub-cells
	Highlight and shadow region
	Embed the data array into a halftone image
	Balanced shifting rule
	Example of the image with embedded data array

	Coding Channel: Data Retrieval From Captured Image
	Calculate the Decoding Rate
	Conclusion

	ANALYZE THE PERFORMANCE IN A NOISE FREE COMMUNICATION CHANNEL
	Find the Bit Position Index of Shifted Locations
	Row shift
	Column shift
	Combine row shift and column shift

	Canonical Crop Window Location Set (CCWLS)
	Size of CCWLS
	An example of the CCWLS

	Calculate the Bit Position Repeating Count (BPRC) in a Crop Window
	Develop a closed form equation to calculate the BPRC in a crop window
	Validate the formula

	Performance Review
	Conclusion

	ANALYZE THE DECODING PERFORMANCE IN A NOISY CHANNEL USING PROBABILITY MODELING
	Model the Communication Channel and Transmission Error
	Represent the Decoding Process
	Model the status of change as a random variable
	Model the data array after corruption by transmission errors as a sequence of random variables
	Separate the payload and phase and then decode the payload

	Develop a Closed Form Solution for the Probability of Successful Decoding
	Step 1: Compute the probability of separating the phase from the payload
	Payload bit length of one: B=1
	Extend the number of payload bits from B=1 to B>1

	Step 2: Compute the conditional probability of successfully decoding the payload
	Step 3: Compute the conditional probability of successfully decoding the phase
	Step 4: Compute the final decoding rate

	Validate the Closed Form Solution
	Design of the simulation process
	Validate simulation results with theoretical results

	Summary of the Assumptions
	Examine the Similarity of the Bit Values Between Payload and Phase
	Design the experiment to examine the similarity
	Experiment and result

	Conclusion

	WEB-BASED PRINT QUALITY TROUBLESHOOTING (PQTS)
	Problem Description
	Structure of the PQTS Tool
	PQTS Tool Development
	Conclusion

	TEXT LINE DETECTION
	Problem Description
	Text Line Detection Pipeline Review
	Implementation of the Algorithm
	Conclusion

	SUMMARY
	REFERENCES
	VITA

