
DEM PARAMETER CALIBRATION METHODOLOGY FOR COHESIVE 

POWDERS USING A RING SHEAR TESTER 

by 

Prathamesh Nilesh Sankhe 

 

A Thesis 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Master of Science in Mechanical Engineering 

 

 

School of Mechanical Engineering 

West Lafayette, Indiana 

August 2021 

  



 

 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Carl Wassgren, Chair 

School of Mechanical Engineering 

Dr. Stephen Beaudoin 

School of Chemical Engineering 

Dr. Marcial Gonzalez 

School of Mechanical Engineering 

 

Approved by: 

Dr.  Nicole L. Key 

 

 



 

 

3 

Dedicated to my parents for their unwavering love and belief. 

 



 

 

4 

ACKNOWLEDGMENTS 

I would like to thank my advisor, Prof. Carl Wassgren, for giving me the opportunity to 

work on this project sponsored by AbbVie. This work would not have been possible without his 

continued support and guidance throughout the project. I appreciate the multiple opportunities he 

provided me to show initiative and showcase the research more effectively. I want to express my 

gratitude to Prof. Gonzalez and Prof. Beaudoin for their guidance and for serving on my examining 

committee. I would like to also thank the School of Mechanical Engineering for giving me the 

opportunity to work as a TA for a semester. The experience helped me refine my knowledge and 

communication skills. I appreciate all the help the wonderful people from the ME Graduate Office 

provided me with that helped me through any issues I faced through the two years of graduate 

school. 

I would also like to thank the wonderful team I worked with at AbbVie on this project. Dr. 

Ketterhagen, Dr. Vogt, and Dr. Capece were there with aid whenever I needed help. I appreciate 

the help I got from my research colleagues at CP3 especially from Zhengpu, Cara, Nathan, and 

Abhishek. I am also thankful to all the fantastic professors I had throughout all the courses I took 

at Purdue. 

I was lucky enough to have an amazing group of peers and friends supporting me 

throughout my time at Purdue. Among others, I would like to thank Varshi, Akash, Aryamaan, 

and Kaan for always being there for me and help create wonderful memories in the six years at 

Purdue. I would like to thank Varshi again for being there for me throughout the COVID-19 

pandemic and helping me get through graduate school. 

Finally, I would also like to thank my parents for their continuous and unconditional 

encouragement and love, and for always being there for me even while being thousands of 

kilometers away. They have done everything in their power to help me succeed and help me 

achieve my dreams and goals.  



 

 

5 

TABLE OF CONTENTS 

LIST OF TABLES .......................................................................................................................... 6 

LIST OF FIGURES ........................................................................................................................ 7 

NOMENCLATURE ..................................................................................................................... 10 

ABSTRACT .................................................................................................................................. 12 

 INTRODUCTION ................................................................................................................. 13 

 BACKGROUND ................................................................................................................... 15 

2.1 Experimental bulk calibration measurements ................................................................... 15 

2.2 Literature summary ........................................................................................................... 20 

 OBJECTIVES ........................................................................................................................ 25 

 DEM MODELING ................................................................................................................ 26 

4.1 DEM Contact Models ....................................................................................................... 26 

4.2 Shear Cell Discrete Element Model and Setup ................................................................. 29 

4.3 Flodex Discrete Element Model and Setup ...................................................................... 32 

 DIMENSIONAL ANALYSIS AND DESIGN OF EXPERIMENTS ................................... 35 

5.1 Dimensional Analysis ....................................................................................................... 35 

5.2 Parameter Selection and Design of Experiments .............................................................. 38 

 CALIBRATION METHODOLOGY AND VALIDATION RESULTS .............................. 43 

6.1 Predictive Models ............................................................................................................. 43 

6.1.1 Incipient Internal Friction Angle ............................................................................... 45 

6.1.2 Critical State Internal Friction Angle ........................................................................ 48 

6.1.3 Dimensionless Bulk Cohesion ................................................................................... 50 

6.2 Parameter Correlation ....................................................................................................... 53 

6.3 Model Optimization .......................................................................................................... 55 

6.4 Modification for HPMC: Addition of particle shape factor.............................................. 59 

6.5 Validation using Flodex Tester ......................................................................................... 63 

 SUMMARY AND CONCLUSIONS .................................................................................... 71 

 RECOMMENDATION FOR FUTURE WORK .................................................................. 75 

REFERENCES ............................................................................................................................. 79 

  



 

 

6 

LIST OF TABLES 

Table 5.1: List of independent input parameters in a DEM shear cell simulation........................ 36 

Table 5.2: List of dimensionless parameters in a DEM shear cell simulation. ............................. 37 

Table 5.3: Baseline DEM simulation parameter values. ............................................................... 39 

Table 5.4: Dimensionless DEM input parameters used in the design of experiments ................. 40 

Table 6.1: Summary of experimental density measurements for lactose, HPMC, ABT-089 ....... 57 

Table 6.2: Summary of experimental shear cell measurements at different end consolidation 

stresses for lactose, HPMC, ABT-089 .......................................................................................... 57 

Table 6.3: Summary of calibration and partial validation error results ........................................ 58 

Table 6.4: Updated calibration and partial validation error results for HPMC with an increased 

aspect ratio (Ar= 2) ....................................................................................................................... 61 

Table 6.5: Summary of calibrated parameter values for all three powder samples at different end 

consolidation stresses .................................................................................................................... 62 

Table 6.6: Summary of Flodex experimental measurements and simulation results ................... 64 

Table 6.7: Summary of results for the Flodex factory sensitivity study ....................................... 66 

  



 

 

7 

LIST OF FIGURES 

Figure 2.1: Schematic showing first few steps of an incipient yield measurement (left) and the 

incipient yield locus generated using the values (right) ................................................................ 16 

Figure 2.2: Plot comparing the measured incipient yield locus compared to the linear 

approximation used for calculation for a lactose powder sample at 2000 Pa ............................... 17 

Figure 2.3: Plot showing the yield locus with the Mohr’s circles for the unconfined yield strength, 

fc, and the consolidating stress, 𝜎1 represented (Schulze, 2008) .................................................. 17 

Figure 2.4: Schulze ring shear cell tester RST-XS (left) and Hanson Research’s Flodex tester (right) 

(Hanson Research Corporation 2004) ........................................................................................... 18 

Figure 2.5: Representation of a DEM particle (circle with a dashed outline) modeling a collection 

of real particles (solid grey circles) ............................................................................................... 19 

Figure 4.1: Hertz-Mindlin model compared to the JKR theoretical model and its EDEM 

implementation (DEM Solutions, 2014) ....................................................................................... 27 

Figure 4.2: Schematic of the 3-D computational domain that models an annular shear cell as a 

parallel plate simulation ................................................................................................................ 30 

Figure 4.3: EDEM simulation of a shear cell with parallel plates and the periodic boundaries along 

with the computational domain boundaries highlighted in red ..................................................... 30 

Figure 4.4: 2-D representation of the shear cell procedure used in the simulation ...................... 31 

Figure 4.5: 2-D representation of the Flodex operating procedure used in the DEM simulations 33 

Figure 4.6: Schematic of the 3-D computational domain that models the Flodex tester in DEM 34 

Figure 5.1: Diagram showing significance of using design of experiments to run full factorial 

studies over varying one factor at a time ...................................................................................... 38 

Figure 5.2: Shear cell data output and processing from DEM simulations – (a) Raw top plate shear 

stress data outputted from the ring shear cell DEM simulations, (b) Window average of raw data 

across 100 data points (1 second simulation time), and range for the steady state value calculation

....................................................................................................................................................... 42 

Figure 6.1: Example of a box plot with all appropriate data points represented .......................... 44 

Figure 6.2: Interaction effects for combination of parameters in pairs on the bulk cohesion response 

of a simulated annular shear cell, where, sigma_end refers to 𝜎𝑒𝑛𝑑, PSD refers to 𝜎𝑑𝑑, Y_pp 

refers to 𝛾𝑝𝑝 and u_pp refers to 𝜇𝑝𝑝 ............................................................................................ 45 

Figure 6.3: Main effects of each design of experiments parameter on the incipient internal friction 

angle, the values corresponding to very low, low, and high for each parameter can be found in 

Table 5.4 ....................................................................................................................................... 47 



 

 

8 

Figure 6.4: Pareto chart showing standardized effects for all terms for incipient internal friction 

angle response of a simulated annular shear cell. ......................................................................... 48 

Figure 6.5: Main effects of each design of experiments parameter on the critical state internal 

friction angle, the values corresponding to very low, low, and high for each parameter can be found 

in Table 5.4 ................................................................................................................................... 49 

Figure 6.6: Pareto chart showing standardized effects for all terms for critical state internal friction 

angle response of a simulated annular shear cell .......................................................................... 50 

Figure 6.7: Main effects of each design of experiments parameter on the dimensionless bulk 

cohesion, the values corresponding to very low, low, and high for each parameter can be found in 

Table 5.4 ....................................................................................................................................... 51 

Figure 6.8: Pareto chart showing standardized effects for all terms for dimensionless bulk cohesion 

response of a simulated annular shear cell .................................................................................... 52 

Figure 6.9: Correlation between incipient internal friction angle and dimensionless bulk cohesion

....................................................................................................................................................... 54 

Figure 6.10: Correlation between incipient internal friction angle and critical internal friction angle

....................................................................................................................................................... 54 

Figure 6.11: Surface plot representing the fitting of the predictive model from equation 6.3 with 

the dimensionless bulk cohesion simulation data at 2kPa represented as blue dots ..................... 55 

Figure 6.12: HPMC particle morphology showing fibrous particles captured by HPMC 

characterization work done by Allenspach et al., (2020) .............................................................. 60 

Figure 6.13: Capsule-shaped particle modeled in DEM using five particles in a glued-sphere model 

(an individual particle part of the glued-sphere highlighted in red) ............................................. 60 

Figure 6.14: Change in the calibrated 𝛾𝐸′𝑑 value with a change in the end consolidation stress for 

all three powder samples (lactose, HPMC, ABT-089) ................................................................. 62 

Figure 6.15: Flodex DEM simulation (without cohesion) slice showing mechanical arching for 

larger particle diameter for particle diameter to orifice diameter ratio of 12 ............................... 64 

Figure 6.16: HPMC DEM simulation slice showing the particle fill (left) and one of the final 

successful passes (right) for particles with non-spherical shapes ................................................. 65 

Figure 6.17: The three separate factory cases tested in the factory radius and height sensitivity 

analysis .......................................................................................................................................... 66 

Figure 6.18: Flodex DEM simulation showing larger mound formation for ABT-089 for smaller 

factory diameters ........................................................................................................................... 67 

Figure 6.19: Flodex DEM simulation showing the resulting failure due to the high mound 

formation causing extensive arches for ABT-089 at a disk diameter of 32mm ........................... 68 

Figure 6.20: Flodex DEM simulation slice showing clogging of factories for lower factory sizes 

with the particle factory highlighted in cyan at the top ................................................................ 69 



 

 

9 

Figure 8.1: Schematic of the linear Hysteretic Spring contact model force-displacement 

relationship showing different loading and unloading curves with the red arrows showing the 

loading directions .......................................................................................................................... 77 

  



 

 

10 

NOMENCLATURE 

𝑓𝑐 Unconfined yield strength 

𝜎1 Consolidating stress 

𝜙𝑐𝑟𝑖𝑡 Shear cell critical state internal friction angle 

𝜎𝑒𝑛𝑑 Shear cell end consolidation stress 

𝜙𝑖𝑛𝑐 Shear cell incipient yield internal friction angle 

𝑐 Bulk cohesion 

𝜏 Shear stress 

𝜎 Normal stress 

𝐹𝑛 Normal contact force 

𝛾 Cohesive surface energy density 

𝛿𝑛 Normal overlap 

𝐸′ Effective elastic modulus 

𝑅∗ Equivalent radius 

𝜈 Poisson’s ratio 

𝛿𝑐 JKR model normal overlap threshold 

𝐹𝑛
𝑑 Normal damping force 

𝑣𝑛
𝑟𝑒𝑙 Normal component of the relative velocity 

𝑚∗ Equivalent mass 

𝑆𝑛 Normal stiffness 

휀 Coefficient of restitution 

𝛿𝑡 Tangential overlap 

𝑆𝑡 Tangential stiffness 

𝐺∗ Equivalent shear modulus 

𝐹𝑡
𝑑 Tangential damping force 

𝜇𝑅 Coefficient of rolling friction 

�̂�𝑟𝑒𝑙 Relative rotational velocity unit vector 

�̅� Mean particle diameter 

ρ Particle density 
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𝜎𝑑 Particle diameter standard deviation 

𝑣𝑤𝑎𝑙𝑙  Shear cell bottom wall velocity 

𝜓𝑚𝑎𝑥  Angle of max dilation 

𝐴𝑟 Particle aspect ratio 
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ABSTRACT 

 Discrete element method (DEM) modeling is a common way to model particulate systems 

and processes. Since the number of particles in most pharmaceutical processes is incredibly large, 

modeling these substantial magnitudes of particles individually using DEM is not computationally 

reasonable. To simplify the DEM modeling, agglomerates or groups of particles are modeled 

instead. This change creates a disconnect between the real particle parameter values and the 

simulated particle parameter values. Thus, efficient and accurate calibration is needed for effective 

modeling.  

The methodology proposed in this thesis utilized a single commonly used bulk flowability 

measurement device, an annular shear cell, to calibrate for these DEM parameters with the help of 

dimensional analysis, design of experiments, and statistical tools. Three bulk responses were 

studied from the ring shear cell: the incipient yield internal friction angle, the critical state internal 

friction angle, and the bulk cohesion. The most important DEM parameters were isolated and 

subjected to a dimensional analysis to increase the generality of the results. A modified full-

factorial study was then set up using the identified dimensionless parameters. The final calibration 

results were then validated using an independent flow through an orifice test using a FlodexTM.  

This thesis demonstrates this proposed calibration methodology using three different 

powder samples, lactose, (hydroxypropyl) methyl cellulose (HPMC), and ABT-089. Using the 

DEM simulation results and the experimental measurements, predictive models were created for 

all three powder samples. For HPMC, the calibration errors were large while using spherical 

particles, so a non-spherical particle shape was introduced using the glued-sphere model in DEM. 

The calibration process was repeated with simulated non-spherical particles with an aspect ratio 

of two to create a new model for HPMC.  

The overall calibration procedure and the three models, when validated with the Flodex 

simulations and measurements, successfully predicted the Flodex results within one Flowability 

index range for all three powder samples. This demonstrates that this methodology can be used to 

successfully calibrate various DEM simulation parameters. 
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 INTRODUCTION 

Particles in all forms play an important role in a variety of industries dealing with materials 

ranging from pharmaceutical powders to food grains to geotechnical samples. The discrete element 

method (DEM) is an increasingly important tool for studying these particulate systems. With 

innovations in computing hardware, DEM simulations are more extensively used in different 

industries to model particle interactions and granular flow. DEM is notably used in the fields of 

chemical engineering, agriculture, pharmaceuticals, and metallurgy. 

Initially developed by Cundall and Strack, (1979) DEM models two particles as rigid 

bodies, and interaction forces are calculated based on the overlap between the particles. This soft-

sphere model has been since then iterated upon by numerous researchers (e.g., Di Renzo and Di 

Maio, 2004; Vu-Quoc and Zhang, 1999). However, quantitatively accurate values and qualitatively 

meaningful trends are contingent on the accuracy of the contact model along with the values of 

particle property parameters chosen as input to the simulation (Benvenuti et al., 2016). The choice 

of these input parameters is a key limitation for the effective application of DEM (Wilkinson et 

al., 2017). The values of these parameters used in the simulations need to be reasonable for the 

accurate modeling of systems.  

These particle level DEM parameters are difficult to measure. Obtaining a measured value 

for input parameters on a particle level is extremely time consuming and requires extensive 

measurement techniques for a comprehensive dataset. Recently, there has been work in accurately 

determining particle properties like the elastic modulus on a particle level (Leisen et al., 2012; 

Marigo et al., 2014). Due to computational limitations, the scale of DEM simulations is limited in 

terms of particle size and number. Frequently, particle size is artificially increased to decrease the 

computational load while maintaining the accuracy of results (Obermayr et al., 2014; Ucgul et al., 

2014). Thus, using individual particle parameters will still lead to a mismatch since the typical 

particle sizes used in DEM simulations are larger than real life particle sizes. This mismatch is also 

the case with modeling complex particle shapes. Complex particles can be modeled as an 

individual sphere with an additional parameter of rolling resistance (Ketterhagen et al., 2007) or a 

multi-sphere model (Lu and McDowell, 2007) in DEM to reduce the computational load. 

Since particle level DEM parameters are difficult to measure, bulk scale calibration is 

relied on to obtain DEM input parameters. Some common bulk tests used for this purpose are shear 



 

 

14 

cell tests, angle of repose tests, and the FT4 rheometer measurements. These bulk test input values 

will usually not result in the same output value as that of particle level parameters and thus 

calibration is done to scale the values to the correct level. Ideally, these bulk scale tests should be 

simple to perform experimentally and computationally, and they should depend on a single DEM 

parameter so that the parameter can be calibrated with confidence. Multi-parameter dependent 

calibration tests can cause interactive effects between the parameters being ignored and thus 

leading to a sub-optimal calibration. 

This thesis investigates the incipient and critical state bulk response of a shear cell 

simulated using DEM. Shear cells are commonly used as part of DEM calibration, but to date, 

there have been no published studies that comprehensively look at a wide parameter space and 

interactive dependence while using dimensional analysis. The purpose of this work is to investigate 

a wide range of parameters to determine their effects on the bulk level response of a shear cell. 

Using the design of experiments to reduce the number of simulations needed and to measure 

interactive effects and comparing the simulation results with experimental measurements, a 

calibrated model to predict powder behavior is created. To validate the calibrated model, the 

parameter values are used to model flow through an orifice using the Flodex. 
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 BACKGROUND 

2.1 Experimental bulk calibration measurements 

 Annular shear cells have been used for flowability measurements and bulk calibration 

previously in multiple studies (Angus et al., 2020; Karkala et al., 2019; Simons et al., 2015). A 

shear cell is generally used to measure a powder’s yield strength as a function of the consolidation 

stress (Schwedes and Schulze, 1990). The measurements made using the shear cell enable the 

calculations for the unconfined yield strength, fc, consolidating stress, 𝜎1 and can help determine 

the material’s flow function.  

Shear cells do not directly measure the two stresses, the unconfined yield strength, fc, 

consolidating stress, 𝜎1, but use Mohr’s circle analysis to get the stress values. In addition to the 

two stresses, they can also be used to measure a material’s internal friction angle and bulk cohesion. 

A common shear cell used for these measurements is the Schulze ring shear cell tester RST-XS. 

A shear cell can operate in two ways: a critical state measurement and an incipient yield 

measurement. A critical state measurement involves measuring the shear stress a particle bed 

requires to continue flow at no volume change for a certain normal consolidation stress. It is an 

individual point instead of a locus and can be the first point in the incipient yield locus at that 

normal stress and solid fraction.  

𝜏 = tan(𝜙𝑐𝑟𝑖𝑡) . 𝜎 𝐸𝑞. 2.1 

𝜏 = tan(𝜙𝑖𝑛𝑐) . 𝜎 + 𝑐 𝐸𝑞. 2.2 

The relationship between the normal stress and shear stress is given by Eq. 2.1 and can be 

numerically given by the critical state internal friction angle, 𝜙𝑐𝑟𝑖𝑡 . The incipient yield 

measurement involves multiple measurement points for a particle bed at a certain fixed solid 

fraction but at different stresses. The measurements create a locus that represents the shear stress 

required to initiate powder flow at that solid fraction and consolidation stress. The solid fraction 

is maintained between measurements by using a fixed end consolidation stress, 𝜎𝑒𝑛𝑑 . The 

procedure begins with this initial stress and then each measurement after is done at lower normal 

stresses to create a locus by plotting the normal stress and the max shear stress at each normal 

stress. This procedure is better represented in Figure 2.1 via steps.  
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The ideal Mohr-coulomb material results in a linear fit to this yield locus as given by Eq. 

2.2. Real materials show significant curvatures at lower normal stresses in the incipient yield locus, 

but the approximation can be used to compute the incipient internal friction angle, 𝜙𝑖𝑛𝑐, and bulk 

cohesion, 𝑐, for real materials as well.  An experimental measurement with curvature compared 

with the linear approximation for a lactose powder sample at 2kPa end consolidation stress is 

shown in Figure 2.2. The yield locus can be used to find the two aforementioned stresses, the 

unconfined yield strength, fc, and the consolidating stress, 𝜎1, using the Mohr’s circles and yield 

locus. This relationship is shown in Figure 2.3 with the two Mohr’s circles with a visual illustration 

of what both the stresses represent (Schulze, 2008). 

 

 

Figure 2.1: Schematic showing first few steps of an incipient yield measurement (left) and the 

incipient yield locus generated using the values (right) 
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Figure 2.2: Plot comparing the measured incipient yield locus compared to the linear 

approximation used for calculation for a lactose powder sample at 2000 Pa 

 

Figure 2.3: Plot showing the yield locus with the Mohr’s circles for the unconfined yield 

strength, fc, and the consolidating stress, 𝜎1 represented (Schulze, 2008) 
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The flowability of material used in tablet formulation is of paramount importance in tablet 

production. The term powder flowability is used to represent the ability of the powder to flow 

evenly in a variety of processes like feed flow through a hopper, compaction, or fluidization. 

Numerous parameters determine powder flowability some of which include particle size, particle 

density, powder bulk density, particle shape, porosity, and powder cohesion. Additionally, this 

measurement is often closely related to the measurement technique used. Since there is variability 

based on the measurement technique used, it is often used as a comparative measure to compare 

flow behavior between different materials. The flowability index can also be used in correlations, 

for example in Schiano et al., (2018), the flowability index measured was used to correlate with 

the critical filling speed in an experimental study with pharmaceutical powders for a rotary die 

filling system. 

The powder flowability can be measured using a flow through an orifice as discussed in USP 

chapter <1174> Powder Flow (USP, 2016). A common way of testing this flowability measure is 

by using the FlodexTM tester. The flowability is quantified by the smallest diameter through which 

the powder flows through in three consecutive attempts. A flowing powder could become non-

flowing when forced through small openings leading to jams (Lavoie et al., 2002). The two 

flowability measurement devices, the Schulze shear cell tester RST-XS, and the Flodex tester are 

shown in Figure 2.4. 

       

Figure 2.4: Schulze ring shear cell tester RST-XS (left) and Hanson Research’s Flodex tester 

(right) (Hanson Research Corporation 2004) 
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The flow characteristics of a material can also be determined using the poured bulk density 

and the tapped bulk density of the material in the form of a Hausner ratio. Hausner ratio is the ratio 

of the tapped bulk density and the poured bulk density as given by Equation 2.3. Poured bulk 

density is measured using the mass of a powder sample and the volume of the sample after it is 

first poured into a cylinder. Tapped bulk density is measured using the same mass of a powder 

sample but the volume of the sample is measured after the cylinder containing the sample has been 

tapped in a standard manner as prescribed in the USP chapter <1174> Powder Flow (USP, 2016).  

𝐻𝑎𝑢𝑠𝑛𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝜌𝑡𝑎𝑝𝑝𝑒𝑑

𝜌𝑝𝑜𝑢𝑟𝑒𝑑
 𝐸𝑞. 2.3 

 The Hausner ratio test can be used as a calibration or a validation test for DEM simulations. 

But after an initial set of Hausner ratio simulations, it was observed that the powder column did 

not densify as much after tapping as compared to the experimental measurement. This difference 

was attributed to the DEM particles being larger than the real particles. In the DEM simulations, 

each DEM particle is approximately modeling a collection of real interior particles as shown in 

Figure 2.5. As the particle column is tapped, the real materials fill the voids in an experiment, and 

the particle column densifies leading to a higher solid fraction. But the same is not the case with 

the DEM simulations as the DEM particle has a predetermined solid fraction that does not change 

over simulation time. So even if the larger DEM particles can move around and fill larger voids, 

the smaller interior particles that these large DEM particles are representing cannot move or 

densify the column further. This leads to incorrect modeling of the process. This can be avoided 

by varying the particle size during the simulation to accurately model this densification. As a result 

of this limitation in modeling the Hausner ratio experiment, it was not used any further in this work 

for calibration or validation. 

 

Figure 2.5: Representation of a DEM particle (circle with a dashed outline) modeling a collection 

of real particles (solid grey circles) 
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2.2 Literature summary 

The literature has established that DEM has been successfully used to model a diverse set 

of particle handling processes like the flow from a hopper (Anand et al., 2008; Ketterhagen et al., 

2009), bulk compression (Hassanpour and Ghadiri, 2004; Martin and Bouvard, 2003), powder 

mixing (Alizadeh et al., 2014; Marigo et al., 2011), screw conveyors (Owen and Cleary, 2009; 

Shimizu and Cundall, 2001), and die filling (Guo et al., 2011; Wu, 2008). But the accurate and 

efficient modeling of processes is dependent on reliable calibration. 

The typical parameters to be calibrated include the coefficient of sliding friction between 

materials, cohesion interaction parameters between materials, coefficient of restitution, the elastic 

modulus, Poisson’s ratio, coefficient of rolling resistance, and particle size distribution parameters. 

Particle shape also plays a critical role in DEM modeling and typically particles are modeled as 

spheres with a rolling resistance to consider any irregular shape effects that cause rolling resistance. 

If a non-spherical particle has to be modeled, it is frequently modeled using the glued-sphere 

approach (Favier et al., 1999) by modeling a non-spherical particle as a cluster of multiple spheres. 

Some common bulk calibration tests include static angle of repose test, dynamic angle of repose 

test, the ring shear cell test, uniaxial compression test, and FT4 rheometer test. These parameters 

can also be directly measured on a particle level using a particle level measurement, but particle 

level measurements might not directly translate to a good model as DEM particles tend to be larger 

than real particles.  

 Coetzee, (2017) reviewed multiple different calibration practices for DEM parameters in 

his work. The work covers both a particle level measuring approach and a bulk calibration 

approach. It was concluded that a direct particle level measurement technique is ideal but hard to 

realize with smaller particles. Several properties can be measured using this approach like particle 

density, Young’s modulus, sliding friction coefficients, and coefficient of restitution. Values 

measured using a direct measurement approach are independent of the contact model used, 

however, they are difficult to measure and cannot be used directly when particles are scaled up for 

modeling. The results obtained using this approach frequently had to resort to using the bulk 

calibration approach to obtain more accurate results. As mentioned in the previous section, 

Coetzee’s work also concluded that if particle sizes are scaled up due to computational limitations, 

this approach would not result in accurate bulk behavior. Further, it was noted that the bulk 

calibration approach was more popular because of the simple application of the tests used. 
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However, the experiments might have to be repeated numerically for more accurate calibration. 

Another major limitation of this bulk calibration method is the dependence of the parameter values 

on the contact model used.  

Ranjan, (2017) presented a calibration methodology for DEM parameters. The work first 

identified the most important DEM input parameters required for successful modeling. Next, 

appropriate calibration tests were designed for these identified parameters. Finally, the parameter 

calibration results were validated by comparing a simulation and the experimental measurement 

of a dynamic test in a rheometer using three different materials: glass beads, Ottawa sand, and 

mustard seeds. The key DEM parameters identified were the coefficient of sliding friction, 

coefficient of rolling friction, coefficient of restitution, particle stiffness, moduli of elasticity and 

shear, and Poisson’s ratio. All these parameters were calibrated or measured using different sets 

of measurements. For the coefficient of sliding friction and rolling friction, two bulk tests in the 

form of an angle of repose test and a shear cell test were used. The results from both tests were 

combined to get a better calibration for the parameters. A uniaxial compression test was used for 

the Young’s modulus and a vibrated bed test was used to calibrate for the coefficient of restitution. 

Finally, the calibrated values of the parameters were validated using a FT4 rheometer simulation 

and experimental measurement where the torque due to the blades of the mixer was monitored and 

compared. A key limitation was that particle size was not varied and no cohesion parameters were 

calibrated.  

Another calibration approach that used artificial neural networks was carried out by 

Benvenuti et al., (2016). In this study, a feed forward artificial neural network was trained using a 

bulk calibration experiment and DEM simulation data for the shear cell test. This was used to get 

an estimate of the sensitivity of the output to the parameters chosen. Next, this artificial neural 

network and sensitivity results were used to predict the macroscopic ensemble behavior in relation 

to different sets of bulk calibration tests. The trained artificial neural network was utilized to 

forecast the output of a larger set of bulk calibration simulations compared to the initial set of input 

parameters. This led to a predicted set of parameters that could accurately predict the particle 

properties of the material used. It was found that the new set of parameters was smaller than the 

initial set of combinations thus optimizing the solution map to a narrower region. For each 

calibration test, the network needs to be trained once. Thus, multiple bulk calibration tests and 
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their respective artificial neural networks can be used to accurately narrow the solution down to a 

single set of input parameters.  

 Wilkinson et al., (2017) made use of the design of experiments technique to reduce the 

complexity and number of simulations involved in a parameter dependence study of a Freeman 

rheometer. They performed a full factorial analysis for five particle properties: Young’s modulus, 

sliding friction coefficient, rolling friction coefficient, coefficient of restitution, and cohesion 

energy density using three sets of values (low, baseline, and high). The study showed that full 

factorial design transitioning to a reduced factorial design can be used to accurately predict key 

parameters from a bulk calibration test. Finally, it was concluded that the FT4 Rheometer can be 

used to calibrate the particle sliding friction coefficients and rolling friction coefficients as DEM 

input parameters for powders. Statistical design of experiments (DoE) has been also used to 

provide a more efficient approach to investigating roller compaction (Souihi et al., 2013). Similar 

techniques were used by Yoon, (2007) and Hanley et al., (2011) for reduction of the number of 

simulations and exploring wider parameter spaces. 

 Simons et al., (2015) performed a sensitivity analysis of individual parameters on an 

agitated mixer by coupling it with a ring shear cell for a mixture of cohesive particles. They varied 

a set of parameters independently to conduct a sensitivity analysis on each. The study concluded 

that Young’s modulus, particle-particle sliding friction, and particle-particle rolling friction 

individually influence the bulk response of the shear cell. It should be noted that this sensitivity 

analysis was done for cohesive particles while varying one parameter at a time and thus any 

interactive effects were ignored. Further, the particle size and distribution were not varied in this 

study.  

Work by Ketterhagen, (2018) looked at a periodic section of an annular ring shear tester 

and FT4 rheometer to simulate the effects of various particle properties on the bulk flow behavior. 

This analysis was conducted to simulate the behavior of a wide array of parameters for typical 

pharmaceutical powders. Thousands of cloud-based DEM simulations were conducted to develop 

an extensive simulation dataset that can provide a starting point to a potential DEM calibration 

project using a lookup table. The parameters that varied were the friction coefficients, coefficients 

of restitution, and the surface energy for particle-particle and particle-geometry interactions. The 

study concluded that the coefficients of restitution did not affect the bulk response of either the 

shear cell or the FT4 rheometer. It was concluded that as a set, the two bulk calibration tests were 
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dependent on the particle-particle sliding friction the most followed by the cohesion/adhesion 

surface energy density for both contacts and the particle-geometry sliding friction. 

There have been more investigations into wider DEM parameter spaces for other processes. 

Asaf et al., (2007) investigated the discrete element parameter space for soil tillage. They 

concluded that the determination of two primary model parameters, sliding friction, and spring 

constant, was sufficient to model the soil-tool interaction. Kretz et al., (2016) investigated a screw 

feeder system using DEM simulations using durum wheat semolina as the material using the 

Blender software. The model was created by setting a fitting criteria between the simulations and 

the experiments for an angle of repose, and measurements of shear force constant and wall friction 

using a Jenike shear cell. After validating the model using mass flow rate measurements, it was 

concluded that these parameters were adequate to model the process effectively. 

The scaling of DEM particle parameters is critical in reducing computational time. Work 

done by Hærvig et al., (2017) on reduced particle stiffness DEM simulations focuses on guidelines 

for these computational time reductions. They note that this is necessary because the models in 

DEM combined with high particle stiffness result in time steps in the order of nanoseconds, which 

makes this DEM impractical for use. To ensure reasonable timesteps, they scale the Young’s 

modulus down significantly. However, this affects the implementation of the cohesion model used, 

the Johnson-Kendall-Roberts (JKR) model in this work, and thus they end up scaling the cohesion 

surface energy density to accommodate for these particles with lower stiffness. This secondary 

scaling is to ensure that even with reduced stiffness the border between sticking and rebounding 

behavior is intact. 

A major problem with modeling particles with irregular shapes in DEM is the cohesion 

models used and the parameter values associated with them. Multiple models have been used to 

model cohesion across various works to model this cohesive behavior. But since these model 

parameters are calibrated using bulk calibration approaches and particle sizes are usually scaled 

up, these models are very specific to the application they are calibrated for. Some common models 

used to model cohesion in granular flow are the Johnson-Kendall-Roberts (JKR) model used in 

studies by Behjani et al., (2017); X. Chen and Elliott, (2020); and Loreti and Wu, (2018), parallel 

bond contact model (PBCM) used in studies by Chen et al., (2013), Sadek et al., (2011), and R. 

Zhang and Li, (2006), and elasto-plastic adhesive contact models used in studies by Yuan Guo et 

al., (2021), Kamrin, (2010), and Vu-Quoc and Zhang, (1999). 
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The literature shows a variety of approaches have been adopted for bulk calibration for 

accurate use of DEM to model powder particle behavior. A common bulk calibration test used is 

the shear cell test. But most studies have focused on individual parameter dependence and past 

studies have not investigated a wider look into the complete experimental space of parameters for 

the shear cell. Furthermore, interactive dependence on parameters for the bulk response of a shear 

cell using parametric studies or design of experiments analysis has not been considered and neither 

has the use of dimensional analysis to improve adaptability. This investigation of the effect of 

single or multiple parameter dependence of the bulk response of a shear cell using DEM is a good 

foundation for the path to efficient and fast calibration. 
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 OBJECTIVES 

The goal of this thesis is to utilize a widely used bulk flow testing device, an annular shear 

cell, to calibrate for selective DEM parameters and generate a model in order to predict cohesive 

powder flow behavior with efficiency and accuracy. The predictive model will assist in 

pharmaceutical process design and development. To help achieve this, the objectives of this thesis 

work are: 

1) Isolate a wide range of parameters that affect the bulk incipient yield and critical state 

response of a shear cell 

2) Perform a design of experiment analysis using a factorial study on these isolated parameters 

and simulate the bulk behavior using DEM 

3) Understand the impact of these DEM input parameters on the incipient internal friction 

angle, critical state internal friction angle, and dimensionless bulk cohesion 

4) Develop a model by calibrating the DEM simulations with the experimental measurements 

and validate the model using an independent study 
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 DEM MODELING 

The commercial Discrete Element Method solver, EDEM ©, and EDEMPy © were used for 

modeling, simulating, and post-processing the simulation results and calculations. The proceeding 

sub-sections describe the DEM contact models, simulation setups, and procedures used to analyze 

the shear cell and the Flodex tester. 

4.1 DEM Contact Models 

The contact model used in EDEM to compute the normal force component is based on 

Hertzian contact theory. The tangential force is computed based on the work of Mindlin- 

Deresiewicz (Mindlin and Deresiewicz, 1953). The normal and tangential forces both have 

damping components with the damping coefficient dependent on the coefficient of restitution 

(Tsuji et al., 1993). The cohesion model is based on the JKR contact theory developed by Johnson, 

Kendall, and Roberts, (1971). In addition to the normal force in the Hertzian contact theory, there 

is an additional cohesion force involved as well. 

The normal force is calculated as a function of normal overlap 𝛿𝑛 and the cohesion surface 

energy density, 𝛾, with the dimensions of energy per unit area, between the two materials as: 

𝐹𝑛 = −4√𝜋𝛾𝐸′𝑎
3
2  +

4𝐸′

3𝑅∗
 𝑎3 𝐸𝑞. 4.1 

And the normal overlap can be given as: 

𝛿𝑛 =
𝑎2

𝑅∗
− √

4𝜋𝛾𝑎

𝐸′
𝐸𝑞. 4.2 

where 𝐸′ is the equivalent elastic modulus and R* is the equivalent radius as defined as: 

1

𝐸′
=

(1 − 𝜈𝑖
2)

𝐸𝑖
+

(1 − 𝜈𝑗
2)

𝐸𝑗
𝐸𝑞. 4.3 

1

𝑅∗
=

1

𝑅𝑖
+

1

𝑅𝑗
𝐸𝑞. 4.4 

with 𝐸𝑖, 𝜈𝑖 , 𝑅𝑖 and 𝐸𝑗 , 𝜈𝑗 , 𝑅𝑗  being the elastic modulus, Poisson’s ratio, and radius of the spheres in 

contact. The Hertz-Mindlin contact model compared to the JKR model and its EDEM 

implementation is shown in detail as a plot in Figure 4.1. The negative term in the equation just 
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represents the cohesive force between the two materials. The two models have a slight offset due 

to the extra term in the JKR model and the JKR model extends beyond the range of the Hertz-

Mindlin model. For the case where 𝛾 = 0, the JKR model normal force turns into the Hertz-

Mindlin normal force. For the EDEM implementation, there is a maximum gap between particles 

for a non-zero force as shown in Figure 4.1 by 𝛿𝑐, the overlap threshold below which the model 

returns zero force discontinuously (DEM Solutions, 2014). 

 

Figure 4.1: Hertz-Mindlin model compared to the JKR theoretical model and its EDEM 

implementation (DEM Solutions, 2014) 

Additionally, there is a normal damping force 𝐹𝑛
𝑑, which is given by 

𝐹𝑛
𝑑 = −2 ∗ √

5

6
 𝛽√𝑆𝑛𝑚∗ 𝑣𝑛

𝑟𝑒𝑙 𝐸𝑞. 4.5 

where  𝑣𝑛
𝑟𝑒𝑙 is the normal component of the relative velocity and the equivalent mass (𝑚∗), 𝛽, and 

the normal stiffness (𝑆𝑛) are given by: 

1

𝑚∗
=

1

𝑚1
+

1

𝑚2
𝐸𝑞. 4.6 
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𝛽 =  
−ln 휀

√ln2 휀 + 𝜋2
𝐸𝑞. 4.7 

𝑆𝑛 = 2𝐸′√𝑅∗𝛿𝑛 𝐸𝑞. 4.8 

with 휀 being the coefficient of restitution. 

The tangential friction follows the Coulomb law of friction model (Cundall and Strack, 

1979) and is dependent on the tangential overlap (𝛿𝑡) and the tangential stiffness (𝑆𝑡) as follows: 

𝐹𝑡 = −𝑆𝑡𝛿𝑡 𝐸𝑞. 4.9 

with  

𝑆𝑡 = 8𝐺∗√𝑅∗𝛿𝑛 𝐸𝑞. 4.10 

where 𝐺∗ is the equivalent shear modulus. Additionally, the tangential damping is given by: 

𝐹𝑡
𝑑 = − min (𝑢𝑠|𝐹𝑛|, 2 ∗ √

5

6
 𝛽√𝑆𝑡𝑚∗ 𝑣𝑡

𝑟𝑒𝑙) 𝐸𝑞. 4.11 

where  𝑣𝑡
𝑟𝑒𝑙 is the tangential component of the relative velocity. 

 In addition to the tangential force, a particle rolling resistance is also often included and is 

modeled as a torque (Zhou et al., 2002): 

𝑀 =  −𝜇𝑅|𝐹𝑁|𝑅∗�̂�𝑟𝑒𝑙 𝐸𝑞. 4.12 

where 𝜇𝑅 is coefficient of rolling resistance, �̂�𝑟𝑒𝑙 is the unit vector of relative rotational velocity 

and 𝑅∗ is the equivalent radius of the two elements in contact.  

This rolling resistance torque is added to the torque due to the tangential force to account 

for resistance to rolling due to particle surface irregularities. Since real particles are not true spheres 

like they are modeled in DEM, there are surface imperfections that act to resist the rolling of the 

particles. To account for this behavior in DEM simulations, the rolling resistance is added as an 

additional torque. This model has been successfully used in several previous DEM studies to model 

hopper flow (Ketterhagen et al., 2009), flow down an incline (Zhang et al., 2004), and angle of 

repose experiments (Zhou et al., 2002). Rolling resistance is included to accurately model the non-

spherical shapes of most granular material. The present work is completed with particle rotation 

completely eliminated to replicate the rotational dynamics of non-spherical particles in dense 

granular flows. In this case, the contact models mentioned previously are the same. However, the 

coefficient of rolling resistance and the moment of inertia for each particle are set to large numbers 

and therefore the tangential forces do not affect the rotation of the particles. 
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4.2 Shear Cell Discrete Element Model and Setup 

The discrete element method is used to model the shearing of a granular bed of material in 

an annular shear cell. The system consists of cohesive, frictional spheres with varying diameters d 

and a specified density ρ. The sphere diameters are selected from a Gaussian distribution with a 

small, fixed standard deviation 𝜎𝑑. 

 The computational domain is a section of a 3D annular shear cell tester with the horizontal 

sides modeled as two parallel plates with vertical sides modeled as periodic boundary conditions. 

Gravity is included in the DEM simulations. Similar to the Schulze ring shear tester, the top, and 

the bottom plates are modeled as planar surfaces with fins protruding out to prevent particles from 

sliding directly along the plates. Due to extensive computational demands for modeling a full 

annular shear cell, rectangular periodic boundary conditions were implemented in the horizontal 

direction. The use of periodic boundary conditions decreases the computational time and 

computational power required significantly and only a part of the shear cell tester needs to be 

simulated to predict the behavior of the whole system. The usage of periodic boundary conditions 

allows us to model the particle without any effect from the shear cell inner and outer wall. Further, 

it allows the particles the two translational degrees of freedom in the horizontal direction. 

The geometry is defined by the following dimensions: the top plate width (𝑤), the top plate 

length (𝑙), plate separation distance (𝐻), fin width (𝑤𝑓𝑖𝑛), fin length (𝑙𝑓𝑖𝑛), and fin separation 

distance (𝑑𝑓𝑖𝑛). The fin separation distance is chosen such that when one fin exits the periodic 

boundary, another enters on the other end of the periodic boundary. The number of particles in the 

domain is determined by a specified initial plate separation distance. This specified plate 

separation distance changes during the simulation. The values for the remaining parameters are 

based on the Schulze shear cell tester used for experimental measurements. The geometry is shown 

in Figure 4.2 and an EDEM simulation state modeling the shear cell is shown in Figure 4.3. Since 

the bottom plate is the only geometry that moves within the domain of the simulation and to 

accommodate for the periodic boundaries, it is modeled as one long piece with repeated fins at 

constant intervals that extend beyond the domain of the simulation. The length of the bottom plate 

is determined based on the total time of the simulation while the width is the same as that of the 

top plate. The top plate is just modeled as an individual geometry since it does not move in the 

DEM simulation. 
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Figure 4.2: Schematic of the 3-D computational domain that models an annular shear cell as a 

parallel plate simulation 

 

Figure 4.3: EDEM simulation of a shear cell with parallel plates and the periodic boundaries 

along with the computational domain boundaries highlighted in red 
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The general computational procedure for a set of shear cell simulations is as outlined as 

follows in Figure 4.4. First, a particle column is generated by assigning each particle a random 

position and until the specified plate, separation height matches the particle column height. The 

particles are allowed to settle under gravity on top of the bottom plate until the total kinetic energy 

decreases below a threshold through inelastic, frictional contacts. Now, the top plate comes down 

with a specified end consolidation normal stress 𝜎𝑒𝑛𝑑  onto the particle column. After some time, 

the bottom plate is displaced by a specified velocity 𝑣𝑤𝑎𝑙𝑙 . During the shearing process, the 

variable values relevant to the parameters of interest, the tangential stress 𝜎𝑇 , are recorded at 

predefined time steps. Finally, the simulation concludes when the total specified simulation time 

is reached, or steady state is reached, whichever one occurs first. This process is repeated for the 

incipient yield measurements at normal stress values lower than 𝜎𝑒𝑛𝑑  with reconsolidation 

between two separate values. Since DEM simulation states can be exported, the simulation state 

at the conclusion of the initial simulation with the consolidation stress equal to the 𝜎𝑒𝑛𝑑 value can 

be exported. This state can be reused as a starting point for all the lower normal stress values in 

the incipient yield locus simulations without the need to rerun the initial simulation. This approach 

also enables the user to run multiple simulations in parallel once the initial 𝜎𝑒𝑛𝑑 simulation has 

finished running. 

 

Figure 4.4: 2-D representation of the shear cell procedure used in the simulation 
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4.3 Flodex Discrete Element Model and Setup 

The discrete element method is used to model the flow through an orifice experiment using 

the FlodexTM tester. The particles used in this setup were similar to the particles used in the shear 

cell experiment with a specified size distribution and density. 

The Flodex tester consists of a cylinder with an open top and replaceable disks with orifices 

of varying diameters at the bottom. (Geiger et al., 2007; Kumar et al., 2013). In this study, the 

calibrated parameters were tested on a flow through an orifice experiment using a Flodex tester. 

The geometry for the DEM simulations was replicated using the device measurements. The 

procedure used was referenced and given in the Flodex Operation Manual procedure (Hanson 

Research Corporation, 2004). The bottom orifice can be closed using a stopper connected to the 

assembly which can be released when needed using a lever. The cylinder was loaded using a funnel 

setup 2 cm above the cylinder. After the material added had settled for a minute, the bottom 

stopping plate was released using the release lever on the device. The test was considered a success 

if the hole at the bottom was visible from the top of the cylinder. The Flowability Index is the 

diameter of the smallest opening in mm through which the powder flows through successfully on 

three consecutive attempts. The test was started with the 16-mm disk and depending on the success 

or failure of the 16-mm disk, the diameter of the disk was decreased or increased repeatedly until 

the outcome changed.  

The Flodex DEM model was created to replicate the experiment so that there were no 

discrepancies in the measurements and simulations. The Flodex geometry was replicated in a CAD 

file with the same dimensions as the original Flodex. The loading funnel was replicated using a 

factory at the top opening of the Flodex. The operating procedure was identical to the one laid out 

by Hanson Research Corporation, (2004) and is described in detail in Figure 4.5. The material was 

loaded into the Flodex cylinder using an EDEM factory with random particle position generation 

within the factory and zero velocity. The material was allowed to settle for an adequate amount of 

time, 30 seconds in the experiment and 1 second in the simulation. The bottom orifice was opened 

later. The test was deemed a success if there was a clear pass of material in the center and failure 

if not. A clear pass of material was defined as being able to see the bottom orifice clearly when 

looking through the top of the Flodex cylinder. Unlike the shear cell, since each Flodex simulation 

run is dependent on a completely new particle fill, each Flodex run must start anew without using 

previous end states. 
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Figure 4.5: 2-D representation of the Flodex operating procedure used in the DEM simulations 

The geometry is defined by the following dimensions: the Flodex height (𝐻𝐹𝑙𝑜𝑑𝑒𝑥), the 

Flodex diameter (𝑑𝐹𝑙𝑜𝑑𝑒𝑥), the Flodex factory height from the top of the Flodex (𝐻𝐹𝑙𝑜𝑑𝑒𝑥 𝑓𝑎𝑐𝑡𝑜𝑟𝑦), 

the Flodex factory diameter (𝑑𝐹𝑙𝑜𝑑𝑒𝑥 𝑓𝑎𝑐𝑡𝑜𝑟𝑦), and the orifice diameter (𝑑𝐹𝑙𝑜𝑑𝑒𝑥 𝑏𝑜𝑡𝑡𝑜𝑚 𝑜𝑟𝑖𝑓𝑖𝑐𝑒). The 

number of particles in the domain is determined by the height of the Flodex, the Flodex is filled 

until around two-thirds of the Flodex is filled. The geometry is shown in Figure 4.6. The values 

for the real Flodex device measurements were used for the Flodex height (𝐻𝐹𝑙𝑜𝑑𝑒𝑥) and the Flodex 

diameter (𝑑𝐹𝑙𝑜𝑑𝑒𝑥) values. The orifice diameter (𝑑𝐹𝑙𝑜𝑑𝑒𝑥 𝑏𝑜𝑡𝑡𝑜𝑚 𝑜𝑟𝑖𝑓𝑖𝑐𝑒) was changed based on the 

case being tested. The values for the Flodex factory height from the top of the Flodex 

(𝐻𝐹𝑙𝑜𝑑𝑒𝑥 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 ) and the Flodex factory diameter (𝑑𝐹𝑙𝑜𝑑𝑒𝑥 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 ) were chosen to model the 

filling conditions in the experimental setup. 
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Figure 4.6: Schematic of the 3-D computational domain that models the Flodex tester in DEM 
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 DIMENSIONAL ANALYSIS AND DESIGN OF EXPERIMENTS 

5.1 Dimensional Analysis 

The hypothesis of a dimensional analysis is that the value of the dependent variable in a 

well-defined process will be the same if all the quantities that define that process are known and 

have the same values. For example, if the quantity of interest is Xo and it is a dependent variable 

in the process, we can find the number of dimensionless parameters that Xo depends on using 

dimensional analysis. These dimensionless parameters can be then found using combined 

information from experiments, experience, and analysis. In the present work dimensional analysis 

is performed to simplify the study and determine the relevant parameters to check dependence on.  

Before conducting the dimensional analysis, the following assumptions were made: 

1. The particle size distribution can be expressed by two parameters, e.g., a normal 

distribution. 

2. All of the particles are solid spheres. 

3. Wall parameters have no influence on the shear strength of the particle bed. 

4. The shear cell dimensions are sufficiently large so that they have no influence on the 

shear strength of the particle bed. 

5. The flow behavior is a function of the effective elastic modulus (defined in Equation 4.3) 

rather than the elastic modulus and Poisson’s ratio independently. 

The first step in the dimensional analysis is to isolate a complete set of independent variables 

in the system that the parameters of interest could depend on. Based on the assumptions made, the 

three key bulk parameters measured in a shear cell in both the incipient yield mode and critical 

state mode which are the incipient internal friction angle (𝜙𝑖𝑛𝑐), the critical state internal friction 

angle (𝜙𝑐𝑟𝑖𝑡), and the bulk cohesion (𝑐) are expected to be a function of independent parameters 

listed in Table 5.1. 
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Table 5.1: List of independent input parameters in a DEM shear cell simulation. 

# Parameter Symbol Dimensions 

1 mean particle size �̅� L 

2 size distribution standard deviation 𝜎𝑑 L 

3 particle density 𝜌 M/L3 

4 effective elastic modulus (from Eq. 4.3) 𝐸∗ F/L2 = M/(LT2) 

5 particle-particle sliding friction coefficient 𝜇𝑝𝑝 - 

6 particle-particle coefficient of restitution 휀𝑝𝑝 - 

7 cohesive surface energy density 𝛾𝑝𝑝 E/L2 = M/T2 

8 applied normal stress 𝜎𝑒𝑛𝑑 F/L2 = M/(LT2) 

9 wall speed 𝑉 L/T 

 

Again, the effective elastic modulus (𝐸∗) incorporates both Young’s modulus (𝐸) and Poisson’s 

ratio (𝜈) and is given by the following: 

𝐸∗ = [
(1 − 𝜈2)

𝐸
]

−1

𝐸𝑞. 5.1 

Following this, a set of reference dimensions is set for the dependent variable, in the case 

of a purely mechanical problem, all quantity dimensions can be defined as a factor of length, mass, 

and time. Next, the Buckingham-Pi Theorem is used to identify the number of dimensionless 

parameters. The Buckingham-Pi theorem defines that the total number of dimensionless 

parameters, also known as Π-terms, is given by the difference between the number of parameters 

and the reference dimensions. The present work has 9 independent parameters as mentioned in 

Table 5.1 and 3 reference dimensions. Thus, the Buckingham-Pi theorem gives us the following 

number of dimensionless parameters. 

(# Π terms) = (#independent variables) − (#ref. dimensions) = 9 − 3 = 6 𝐸𝑞. 5.2 

The dimensionless parameters formed using the set of independent parameters outlined in 

Table 5.1 are given below in Table 5.2: 
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Table 5.2: List of dimensionless parameters in a DEM shear cell simulation. 

# Parameter Symbol 

1 relative standard deviation of PSD 𝜎𝑑 �̅�⁄  

2 eff. elastic modulus to applied stress ratio 𝜎𝑒𝑛𝑑 𝐸′⁄  

3 eff. elastic modulus to dynamic pressure 𝐸′ (𝜌𝑉2)⁄  

4 particle-particle sliding friction coefficient 𝜇𝑝𝑝 

5 particle-particle coefficient of restitution 휀𝑝𝑝 

6 ratio of cohesive-to-elastic force 𝛾𝑝𝑝 (𝐸′�̅�)⁄  

 

 This study can be further simplified by eliminating parameters without significant impact 

on the parameters of interest. It is reasonable to assume that at sufficiently slow wall speeds, the 

coefficient of restitution and effective elastic modulus to dynamic pressure ratio effects can be 

ignored. This assumption is supported by results from previous analysis by Ketterhagen, (2018). 

Further, to maintain dimensional integrity, the bulk cohesion  (𝑐)  is also represented as a 

dimensionless ratio, (
𝑐

𝐸′), between the bulk cohesion and the effective elastic modulus (𝐸′). 

 Hence, as a result of the dimensional analysis, the incipient internal friction angle, the 

critical state internal friction angle, and the dimensionless bulk cohesion are expected to be 

functions of the following Π terms, 

(𝜙𝑖𝑛𝑐𝑝) = 𝑓 [
𝜎𝑑

�̅�
,
𝜎𝑒𝑛𝑑

𝐸′
, 𝜇𝑝𝑝,

𝛾𝑝𝑝

𝐸′�̅�
] 𝐸𝑞. 5.3 

(𝜙𝑐𝑟𝑖𝑡) = 𝑔 [
𝜎𝑑

�̅�
,
𝜎𝑒𝑛𝑑

𝐸′
, 𝜇𝑝𝑝,

𝛾𝑝𝑝

𝐸′�̅�
] 𝐸𝑞. 5.4 

𝑐

𝐸′
= ℎ [

𝜎𝑑

�̅�
,
𝜎𝑒𝑛𝑑

𝐸′
, 𝜇𝑝𝑝,

𝛾𝑝𝑝

𝐸′�̅�
] 𝐸𝑞. 5.5 

where f, g, and h are unknown functions. 

 These three bulk responses, 𝜙𝑖𝑛𝑐𝑝 , 𝜙𝑐𝑟𝑖𝑡 , and 
𝑐

𝐸′
, are functions of the dimensionless 

parameters, 
𝜎𝑑

�̅�
,

𝜎𝑒𝑛𝑑

𝐸′
, 𝜇𝑝𝑝, and 

𝛾𝑝𝑝

𝐸′�̅�
. Thus, the values of individual parameters can be changed while 

keeping the dimensionless parameter value constant and as a result not changing the value of the 

bulk response. For example, if the value of �̅� is halved, the bulk response values can be kept 

constant by halving 𝜎𝑑 and 𝛾𝑝𝑝, since the values of 
𝜎𝑑

�̅�
 and 

𝛾𝑝𝑝

𝐸′�̅�
 stay constant. This is a useful benefit 
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of dimensional analysis when it comes to DEM simulations as individual input variable values 

often have to be changed to reduce computational load. This can be done without any issues by 

using dimensional analysis. 

5.2 Parameter Selection and Design of Experiments  

Traditionally, experiments and simulations are carried out using a linear approach where 

one parameter is varied at a time while keeping the rest constant. The effect of the parameter varied 

on the output is then measured. This approach leads to an incomplete mapping of the sensitivity 

of the output variable as only the corners of the parameter space are captured in this method. In 

this approach, the interactive effects of various parameters are completely ignored while only 

exploiting a limited small part of the experimental space. The true relationship between the 

multiple variables and the experimental output cannot be completely explained with this analysis 

if there are any potential interactive effects, thus resulting in a sub-optimal solution. This 

difference in the two methods of experimental analysis, varying one factor at a time vs factorial 

analysis, is shown visually in Figure 5.1. The highlighted regions and the parameter value sets 

show the additional range of experimental space explored with just 4 additional sets of experiments 

using factorial analysis. 

 

Figure 5.1: Diagram showing significance of using design of experiments to run full factorial 

studies over varying one factor at a time 
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The design of experiments approach covers the complete experimental space while 

reducing the amount of computation required. Further, interactive effects between two or more 

factors can be explored with the same, resulting in a more directional approach towards an optimal 

solution. Along with that, a design of experiments approach leads to a robust database of 

experimental values for multivariate analysis. A similar approach is used in this study to accurately 

predict the individual and interactive dependence of the experimental output, bulk friction 

coefficient, and solid fraction, on the variables isolated using the dimensional analysis. The design 

of experiments dataset is an excellent starting point for checking further dependence of individual 

parameters. The independent parameters were given baseline values as shown in Table 5.3. 

Table 5.3: Baseline DEM simulation parameter values. 

# Parameter Symbol Baseline Value 

1 mean particle diameter �̅� 2 mm 

2 particle size distribution standard deviation 𝜎𝑑 0.2 mm 

3 particle density 𝜌 1000 kg/m3 

4 effective elastic modulus 𝐸′ 10 MPa 

5 particle-particle sliding friction coefficient 𝜇𝑝𝑝 0.40 

6 particle-particle coefficient of restitution 휀𝑝𝑝 0.9 

7 cohesive surface energy density 𝛾𝑝𝑝 0.1 J/m2 

8 applied normal stress 𝜎𝑒𝑛𝑑 2 kPa 

9 wall speed 𝑣𝑤𝑎𝑙𝑙 3 mm/s 

 

The particle parameter, mean particle diameter, particle density, effective particle elastic 

modulus, particle-particle sliding friction coefficient, particle-particle coefficient of restitution, 

cohesive surface energy density, baseline values were selected using literature and previous DEM 

work. The particle diameter standard deviation is chosen at 10% of the mean diameter. The wall 

speed was selected to be 3 mm/s based on past work on DEM modeling of a shear cell using 

parallel plates (Ketterhagen et al., 2009). The applied normal stress is a typical value used in 

annular shear cell experiments.  
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To conduct a full-factorial study on the four dimensionless parameters to a level of 2, a 

total of 16 simulations are required. Thus, an array of values covering the entire experimental space 

was created by varying the parameter values from the baseline value based on a design of 

experiments variation. This initial design of experiments array was modified by extending the 

range of values for 𝜎𝑒𝑛𝑑 and 𝛾𝑝𝑝 by one additional low value to investigate low consolidation loads 

and low cohesion, respectively after the initial set of results. The modified 2k full factorial study 

would thus require 36 simulations in total, including the 16 mentioned previously. The resulting 

values to be varied for the design of experiments array are as given in Table 5.4. 

Table 5.4: Dimensionless DEM input parameters used in the design of experiments 

# Parameter Symbol Values 

1 
relative standard deviation of PSD 

(normal distribution) 
𝜎𝑑 �̅�⁄  0.07, 0.13 

2 
applied end point normal stress to 

effective elastic modulus 

𝜎𝑒𝑛𝑑

𝐸′
 

0.70e-4, 3.47e-4, 6.94e-4 

(𝑓𝑜𝑟 𝜎𝑒𝑛𝑑 = 0.4 kPa, 2kPa, 4kPa) 

3 ratio of cohesive-to-elastic force  
𝛾𝑝𝑝

𝐸′�̅�
 

8.68e-7, 4.34e-6, 4.34e-5 

(𝑓𝑜𝑟 𝛾𝑝𝑝 = 0.01, 0.05, 0.50 J/m2) 

4 
particle-particle sliding friction 

coefficient 
𝜇𝑝𝑝 0.3, 0.5 

 

 For each set of parameter values in Table 5.4, a shear cell simulation was run to get the 

incipient and critical state bulk response. A full-factorial analysis was conducted on the results of 

these simulations to find the parameters that had a statistically significant effect on the bulk output, 

which is discussed further in the following section. 

 The shear cell simulations once finished were post-processed. The shear stress and normal 

stress values on the top plate and on the particle bed were exported to a datasheet for processing. 

After exporting the values, the data is checked for noise as DEM simulations tend to have noise 

and constant fluctuations in their exported data. To avoid this issue of noise in the data and have 

smoother processing, this stress data is taken through a window mean to reduce the noise. A 
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window mean calculation across 100 datapoints which is 1 second of simulation data is done and 

the new smoother data is used for further calculation.  

An example of raw data that has been post-processed using the window mean method is 

shown in Figure 5.2. To get the steady state value for the first measurement of the incipient yield 

or for the critical state measurement, the final 2 seconds are checked for convergence within 5%. 

To get the maximum value for the remaining measurements of the incipient yield, the maximum 

value in the smoothed data set is chosen. Although this method underpredicts the maximum value 

due to averaging across points, it is essential to get rid of extreme fluctuations that can severely 

affect the final results. This steady state value and the maximum shear stress values are then 

tabulated to get the incipient yield locus and the critical state internal friction angle by comparing 

it to the normal stress. The incipient yield locus is linearly approximated to get the values for the 

incipient yield internal friction angle and the bulk cohesion. 

DEM simulations can be sensitive to the initial particle fill or the way the particles pack 

based on how they are generated in the simulation. This combined with EDEM particle factories 

generating particles at random positions can result in non-repeatable measurements. Thus, at the 

start of the study, four random sets of parameter values were tested with a unique particle fill and 

their results were compared to each other. A set of 3 simulations were run for each of the four 

cases for a total of 12 simulations. The final bulk response results were within 5% of each other 

and going forward, only one simulation per one parameter set was run. These duplicate results 

were not included in any of the analysis that follows.  
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(a) 

 

(b) 

 Figure 5.2: Shear cell data output and processing from DEM simulations – (a) Raw top plate 

shear stress data outputted from the ring shear cell DEM simulations, (b) Window average of raw 

data across 100 data points (1 second simulation time), and range for the steady state value 

calculation 

 



 

 

43 

 CALIBRATION METHODOLOGY AND VALIDATION RESULTS 

6.1 Predictive Models 

The results from the shear cell simulations were analyzed using factorial analysis. The 

effects of each individual design of experiment parameter and interaction effects between 

parameters on the shear cell response were then calculated. Regression is then performed on these 

datapoints to generate a predictive model using only the statistically significant parameters. First, 

the visual representation of the main effects is shown followed by the explanation of the statistical 

analysis and the predictive model creation. 

The main effects showcase how each parameter affects the bulk responses individually and 

the width of the range of values for the bulk responses for a change in any of the other parameters. 

This can be visually represented using a box and whisker plot. The box and whisker plot is used 

to represent the main effects to get a better idea of the spread of the data points and analyze the 

extent of outliers. The interaction effects are better represented numerically through the statistical 

analysis, but a visual can be shown using line plots as well. 

Box and whisker plots are used to highlight five statistical data points using one plot 

(Williamson et al., 1989): the minimum, the maximum, the median, the first quartile, and the 

third quartile as shown in Figure 6.1. In addition to the usual five datapoints, a mean can also be 

represented on the box plot using an ‘x’ marker. The interquartile range is characterized by the 

data points in between the first and the third quartile. The minimum and maximum fences are 

calculated using this interquartile range value and the quartiles. The datapoints outside the 

interquartile range but within the minimum and maximum fences are considered mild outliers 

whereas datapoints outside the minimum and maximum fences are considered extreme outliers. 
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Figure 6.1: Example of a box plot with all appropriate data points represented 

The benefit of using a design of experiments approach is that interaction effects can be 

analyzed effectively. Interaction effects are the effects that can potentially show up in analysis of 

real behavior where the independent variables might interact with each other. Since this behavior 

cannot be captured by the main effects, it is important to incorporate this behavior in a predictive 

model for higher model accuracy and better results. In this study, the interaction order is restricted 

to two parameters at a time, but higher order interaction effects can also appear in complex particle 

behavior modeling. 

The interaction effects can be visually represented as shown in Figure 6.2, which shows 

the interaction effects for the DEM bulk cohesion prediction. Parameters with no significant 

interaction effects will show behavior similar to other combinations of the two parameter values 

as shown in the top left plot in Figure 6.2 with the particle size distribution (
𝜎𝑑

�̅�
) parameter and 

applied end point normal stress to the effective elastic modulus  

(
𝜎𝑒𝑛𝑑

𝐸′ )  parameter. Parameters with significant interaction effects will have behavior different from 

other combinations of values for the same two parameters. This can be seen in the bottom right 

plot with dimensionless particle-particle cohesive surface energy density (
𝛾𝑝𝑝

𝐸′�̅�
)  and particle-

particle sliding friction (𝜇𝑝𝑝) behavior. Although the visual representation gives a good indicator 
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of which parameters might be significant, it is not possible to gauge the numerical and statistical 

magnitude of the sensitivity of the final bulk response to each parameter interaction. 

 

Figure 6.2: Interaction effects for combination of parameters in pairs on the bulk cohesion 

response of a simulated annular shear cell, where, sigma_end refers to 𝜎𝑒𝑛𝑑, PSD refers to (
𝜎𝑑

�̅�
), 

Y_pp refers to 𝛾𝑝𝑝 and u_pp refers to 𝜇𝑝𝑝 

The main and interaction effects can be numerically calculated using a factorial analysis 

on the design of experiments simulation results. This is done using a Multivariate Analysis of 

Variance (MANOVA) (Bray and Maxwell, 1985; Weinfurt, 1995) table by calculating the p-values 

for each main and interaction effect. Any p-value larger than the significance level chosen is 

considered statistically significant and, thus, will be a part of the predictive model equation. For 

this study, the significance level chosen is p = 0.05 or 5%. 

6.1.1 Incipient Internal Friction Angle 

The main effects of all the parameters on the incipient internal friction angle (𝜙𝑖𝑛𝑐) are 

represented in Figure 6.3. The median (shown with a horizontal line) and the mean (shown with 

an x) represent how the incipient internal friction angle (𝜙𝑖𝑛𝑐) changes with changes in individual 
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parameters, whereas the interquartile range band shows the interaction effects that each individual 

parameter has with the remaining three parameters. All the points on the plots represent datapoints 

and the points outside the interquartile range (represented by bars) correspond to outliers. For 

particle-particle sliding friction (𝜇𝑝𝑝), the change in median and mean is significant, and the 

interquartile range band is thin, which shows that the incipient internal friction angle (𝜙𝑖𝑛𝑐) is 

significantly dependent on particle-particle sliding friction (𝜇𝑝𝑝) as a parameter individually. The 

other three parameters do not show similar behavior. Thus, it can be inferred that in the range of 

values chosen, the incipient internal friction angle should be unaffected by the remaining three 

parameters (
𝜎𝑑

�̅�
, 

𝛾𝑝𝑝

𝐸′�̅�
, and 

𝜎𝑒𝑛𝑑

𝐸′
)  individually. This result will be further substantiated by the 

statistical analysis. 

The interaction effects will be considered using the regression analysis as represented using 

the Pareto chart in Figure 6.4. The Pareto chart (Mathews, 2005) shows the absolute value of the 

standardized effects for each of the main effects and interaction effects to an order of two. The 

absolute value is representative of how the response is affected by each parameter, but not whether 

it increases or decreases the response. The red line at 2.120 represents the significance level cutoff 

for a significance level of 0.05, and terms with a standardized effect larger than that value are 

considered statistically significant.  

The individual effect of the particle-particle sliding friction (𝜇𝑝𝑝) and the interaction effect 

between the particle-particle sliding friction (𝜇𝑝𝑝) and dimensionless particle-particle cohesive 

surface energy density term (
𝛾𝑝𝑝

𝐸′�̅�
) are statistically significant. Thus, for the range of values chosen 

and using the parameters, we can predict the incipient internal friction angle using the following 

empirical model: 

𝜙𝑖𝑛𝑐 = 𝑏1(𝜇𝑝𝑝) + 𝑏2 (
𝛾𝑝𝑝

𝐸′�̅�
) (𝜇𝑝𝑝)                                             𝐸𝑞.  6.1 

Where 𝑏1 and 𝑏2 are unknown coefficients specific to the material.  

The calculation methodology of these unknown coefficients is described after all three bulk 

response models are presented. The model shown in Equation 6.1 and the models that follow are 

applicable only over the range of the simulated parameter values. It is possible that another model 

may be appropriate over a different region of the same parameter space. This is the result of 
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different parameters being statistically significant over a different range of simulated parameter 

values leading to a different predictive model. 

 

Figure 6.3: Main effects of each design of experiments parameter on the incipient internal 

friction angle, the values corresponding to very low, low, and high for each parameter can be 

found in Table 5.4 
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Figure 6.4: Pareto chart showing standardized effects for all terms for incipient internal friction 

angle response of a simulated annular shear cell. 

6.1.2 Critical State Internal Friction Angle 

The main effects of all the parameters on the critical state internal friction angle (𝜙𝑐𝑟𝑖𝑡) 

are represented in Figure 6.5. For the particle size distribution parameter, the change in the median 

and mean does not affect the critical state internal friction angle (𝜙𝑐𝑟𝑖𝑡) significantly, at least over 

the range of values investigated here. The remaining three parameters show a significant change 

in the median and mean with a change in their values and, thus, could be a factor in the model. 

The particle-particle sliding friction (𝜇𝑝𝑝) has a thin interquartile range bar along with a noticeable 

change in values of the median and means. Thus, 𝜇𝑝𝑝 should especially be one of the significant 

factors in the model. 

The Pareto plot in Figure 6.6 shows that the individual main effects for all the 

parameters, except the particle size distribution parameter, are statistically significant. In addition 

to the main interaction effects, the interaction effect between the particle-particle sliding friction 

(𝜇𝑝𝑝) and dimensionless particle-particle cohesive surface energy density term (
𝛾𝑝𝑝

𝐸′�̅�
) is also 
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significant. Thus, for the range of values chosen and using the parameters, we can predict the 

critical state internal friction angle using the following model: 

𝜙𝑐𝑟𝑖𝑡 = 𝑑1(𝜇𝑝𝑝) + 𝑑2 (
𝜎𝑒𝑛𝑑

𝐸′
) + 𝑑3 (

𝛾𝑝𝑝

𝐸′�̅�
) + 𝑑4(𝜇𝑝𝑝) (

𝛾𝑝𝑝

𝐸′�̅�
)                            𝐸𝑞. 6.2 

Where 𝑑1, 𝑑2, 𝑑3, and 𝑑4 are unknown coefficients specific to the material.  

 

Figure 6.5: Main effects of each design of experiments parameter on the critical state internal 

friction angle, the values corresponding to very low, low, and high for each parameter can be 

found in Table 5.4 
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Figure 6.6: Pareto chart showing standardized effects for all terms for critical state internal 

friction angle response of a simulated annular shear cell 

6.1.3 Dimensionless Bulk Cohesion 

The main effects of all the parameters on dimensionless bulk cohesion (
𝑐

𝐸′) are represented 

in Figure 6.7. Similar to the critical state incipient internal angle, the dimensionless bulk cohesion 

median and mean do not show any significant change with the change in particle size distribution 

parameter in the value range chosen. Thus, this parameter would not be a part of the model. The 

other three parameters all show significant changes in the median and mode of the response and 

could thus be a part of the model. The dimensionless bulk cohesion response is seen to be highly 

dependent on the dimensionless particle-particle cohesive surface energy density term (
𝛾𝑝𝑝

𝐸′�̅�
) and 

the dimensionless end consolidation stress term (
𝜎𝑒𝑛𝑑

𝐸′ ).  
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Figure 6.7: Main effects of each design of experiments parameter on the dimensionless bulk 

cohesion, the values corresponding to very low, low, and high for each parameter can be found 

in Table 5.4 

The Pareto plot for dimensionless bulk cohesion in Figure 6.8 shows that individual main 

effects for all the parameters, except for the particle size distribution parameter, are statistically 

significant. The interaction effects of the dimensionless particle-particle cohesive surface energy 

density term (
𝛾𝑝𝑝

𝐸′�̅�
)  with particle-particle sliding friction (𝜇𝑝𝑝)  and the dimensionless end 
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consolidation stress term (
𝜎𝑒𝑛𝑑

𝐸′ ) are also observed to be statistically significant. Thus, for the range 

of values chosen and using the parameters, we can predict the dimensionless bulk cohesion using 

the following model: 

𝑐

𝐸′
= 𝑒1 (

𝛾

𝐸′�̅�
) +  𝑒2 (

𝜎𝑒𝑛𝑑

𝐸′
) + 𝑒3(𝜇𝑝𝑝) + 𝑒4 (

𝛾𝑝𝑝

𝐸′�̅�
) (𝜇𝑝𝑝) + 𝑒5 (

𝜎𝑒𝑛𝑑

𝐸′
) (

𝛾𝑝𝑝

𝐸′�̅�
)               𝐸𝑞. 6.3 

Where 𝑒1, 𝑒2, 𝑒3, 𝑒4 and 𝑒5 are unknown coefficients specific to the material.  

 

 

Figure 6.8: Pareto chart showing standardized effects for all terms for dimensionless bulk 

cohesion response of a simulated annular shear cell 

 The models described in equations 6.1, 6.2, and 6.3 have their respective coefficients 

(𝑏𝑖, 𝑑𝑖, 𝑒𝑖) that can be calculated by surface fitting the equations to simulation data results. This 

surface fitting was done by linearly regressing the predictive model created and the data points for 

each simulation using the built-in MATLAB function ‘regress(y, X)’. Further, as the design of 

experiments parameter value ranges do not cover the complete range of values for each parameter, 

there was a constant term added to each of the models to ensure a better fit for the coefficients in 

each equation. 
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6.2 Parameter Correlation 

The predictive models found using the DEM shear cell simulations will be ideally used to 

calibrate for particle parameters. This is not possible if there is a strong interdependence or 

correlation between any of the parameters being used for calibration. Thus, to avoid such an issue, 

the parameters were checked for any correlation. For each parameter set, the values found for each 

of the bulk responses were plotted against another to see if there is a significant trend to be seen. 

The correlation plot between incipient internal friction angle and dimensionless bulk cohesion is 

shown in Figure 6.9 and the incipient internal friction angle and the critical state internal friction 

angle correlation plot is shown in Figure 6.10.  

There is no significant correlation between the dimensionless bulk cohesion and the 

incipient internal friction angle.  This was done quantitatively by trying to fit multiple typical 

models to the data points, but all models resulted in statistically insignificant R-squared values. 

Thus, it was concluded that there is no correlation between the two parameters. Since there is no 

correlation, the two parameters can be used together in a calibration effort. The two internal 

friction angles have a linear correlation and thus the two cannot be used together for calibration. 

Now, the models modeling these two parameters as given by Equation 6.1 and Equation 6.2 are 

not identical. The two parameters do not necessarily need to have an identical form because they 

are correlated. As these parameter values are two distinct quantities, the offset between the two 

can be explained by these different terms. The correlation between them can be seen in their 

models by their shared terms which are (𝜇𝑝𝑝) and [(
𝛾𝑝𝑝

𝐸′�̅�
) . (𝜇𝑝𝑝)]. 

This linear relationship between the two internal friction angles has been previously 

looked at by Bolton's (1986) work on the strength and dilatancy of sands. They reported the 

relationship between the two internal friction angles for quartz sand using the angle of max 

dilation (𝜓𝑚𝑎𝑥) and a constant value (𝑎) dependent on the material as shown in Equation 6.4.  

𝜙𝑐𝑟𝑖𝑡 − 𝜙𝑖𝑛𝑐 = 𝑎. (𝜓𝑚𝑎𝑥)                                                      𝐸𝑞. 6.4  
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Figure 6.9: Correlation between incipient internal friction angle and dimensionless bulk cohesion 

 

Figure 6.10: Correlation between incipient internal friction angle and critical internal friction 

angle 
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6.3 Model Optimization 

The predictive models for the incipient internal friction angle (𝜙𝑖𝑛𝑐) , the critical state 

internal friction angle (𝜙𝑐𝑟𝑖𝑡), and dimensionless bulk cohesion (
𝑐

𝐸′) are incomplete without the 

values of the coefficients. These values can be found by surface fitting the model to the DEM 

simulation data. As mentioned earlier, this was done using a simple linear regression using the in-

built MATLAB function ‘regress(y, X). The surface fit was restricted to an R-squared value greater 

than 0.95 to maintain the significance level chosen previously. The resulting equation then would 

be a function dependent only on the values of the design of experiments parameters and bulk 

response predictions can be made using these final models. Since the interest was in calibrating 

for material parameters like 
𝛾𝑝𝑝

𝐸′�̅�
 or 𝜇𝑝𝑝 and not the experimental parameters like 

𝜎𝑒𝑛𝑑

𝐸′ , the surface 

fit was done for a fixed value of 𝜎𝑒𝑛𝑑 . The work and discussion going forward will be for 

individual 𝜎𝑒𝑛𝑑  values. The surface plot for dimensionless bulk cohesion (
𝑐

𝐸′) at 𝜎𝑒𝑛𝑑  value of 

2kPa with an R-squared value of 0.98 is shown in Figure 6.11 for the two material parameters, 
𝛾𝑝𝑝

𝐸′�̅�
 

and 𝜇𝑝𝑝 , along with the individual points highlighted in blue. 

 

 

Figure 6.11: Surface plot representing the fitting of the predictive model from equation 6.3 with 

the dimensionless bulk cohesion simulation data at 2kPa represented as blue dots 
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The fitting-parameters and the model equation together is the prediction for each of the 

three response parameters for specific values of the design of experiments parameters. These 

material parameter values differ for different materials and need to be found using calibration via 

optimization. For optimization, objective functions were created for the two response parameters, 

𝜙𝑖𝑛𝑐 and 
𝑐

𝐸′
, is used in calibration. These objective functions were defined as the absolute relative 

error between the experimental measurements and the predictive model created as shown in 

Equations 6.5 and 6.6. Here, the DEM predictions, (𝜙𝑖𝑛𝑐)𝐷𝐸𝑀 and (
𝑐

𝐸′
)

𝐷𝐸𝑀
, are functions of 𝜇𝑝𝑝 

and 
 𝛾𝑝𝑝

𝐸′𝑑
 at a certain fixed 𝜎𝑒𝑛𝑑  value. The experimental values, (𝜙𝑖𝑛𝑐)𝑒𝑥𝑝. and (

𝑐

𝐸′)
𝑒𝑥𝑝.

, are the 

average numerical value of all experimental measurements taken at the same 𝜎𝑒𝑛𝑑 value using the 

shear cell for the material being calibrated for.  

𝑂𝑏𝑗1 =  
((𝜙𝑖𝑛𝑐)𝐷𝐸𝑀 − (𝜙𝑖𝑛𝑐)𝑒𝑥𝑝. )𝑎𝑏𝑠

(𝜙𝑖𝑛𝑐)𝑒𝑥𝑝.
                                                  𝐸𝑞. 6.5 

𝑂𝑏𝑗2 =

((
𝑐

𝐸′)
𝐷𝐸𝑀

− (
𝑐

𝐸′)
𝑒𝑥𝑝.

 )
𝑎𝑏𝑠

(
𝑐
𝐸′

)
𝑒𝑥𝑝.

                                                     𝐸𝑞. 6.6 

The three powder samples tested are lactose, (hydroxypropyl) methyl cellulose (HPMC), 

and ABT-089.  The apparent particle density of each powder was measured using the 

Micromeritics AccuPyc Helium pycnometer, and the poured and tapped bulk density (after 600 

taps) was measured using an Agilent tapped bulk density tester. The experimental values for all 

these density measurements are summarized in Table 6.1. Although the density of the powders 

was measured, in the DEM simulations a fixed density of 1.0 g/cm3 or 1000 kg/m3 was used. A 

fixed value was chosen for the density throughout the simulations since the density was not a factor 

to be varied in the design of experiments set up nor does it play a role in the shear cell simulations. 

The average particle diameter measurements for lactose, HPMC, and ABT-089 as measured using 

the Mastersizer 3000 by laser diffraction were 19.1 μm, 15.9 μm, and 10.6 μm respectively  

In addition to the density measurements, the incipient yield and critical state behavior of 

the three powder samples was measured using a Schulze ring shear cell tester RST-XS. The bulk 

responses measured using the shear cell were the incipient internal friction angle, critical state 

internal friction angle, and the bulk cohesion. The experimental values for all the shear cell 

measurements are summarized in Table 6.2. 
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Table 6.1: Summary of experimental density measurements for lactose, HPMC, ABT-089 

Sample Name 
Apparent density 

(g/cm
3

) 

Poured bulk density 

(g/cm
3

) 

Tapped bulk density  

(g/cm
3

) 

Lactose 1.65 0.424 0.657 

 HPMC 1.34 0.329 0.481 

ABT-089 1.43 0.330 0.473 

Table 6.2: Summary of experimental shear cell measurements at different end consolidation 

stresses for lactose, HPMC, ABT-089 

Sample 

Name 

𝜎𝑒𝑛𝑑 

(kPa) 

𝜙𝑖𝑛𝑐 

(deg) 

Bulk cohesion (c) 

(kPa) 

𝜙𝑐𝑟𝑖𝑡 

(deg) 

Lactose 

0.4 31.7 0.164 43.7 

2 34.7 0.461 40.8 

4 34.7 0.930 41.3 

HPMC 

0.4 42.5 0.0565 45.0 

2 46.7 0.263 49.1 

4 45.7 0.408 47.4 

ABT-089 

0.4 42.9 0.140 47.5 

2 38.2 0.602 46.1 

4 38.4 1.04 45.0 

 

These objective functions were subject to a genetic algorithm for multiple-objective 

optimization with constraints on the parameter values until the model converges with a given 

residual value. This optimization was done using the in-built MATLAB optimization tool and the 

‘gamultobj’ function. The success of the calibration effort was measured using the final value of 

these two objective functions. The residual value was chosen to be 5% in accordance with the 

previous significance levels. In addition to the convergence residual error value, the lowest error 

was set to 0.01% to reduce computational time. The constraints were put in place to ensure non-

negativity and large magnitude limits on the parameter values being varied by the algorithm. The 

values at which the optimization algorithm converges within the residual values for both functions 

are the calibrated values for the parameters at that 𝜎𝑒𝑛𝑑 value. 
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 The calibrated parameter values found using 𝜙𝑖𝑛𝑐 and 
𝑐

𝐸′
 models were then tested with a 

DEM simulation for 𝜙𝑐𝑟𝑖𝑡 to get partial validation results. The success of the partial validation was 

measured using residual error as well. Since there is a degree of correlation between the two 

internal friction angles, the partial validation cannot be used as a reasoning for calibration success, 

but it serves as a quick indicator during the modeling phase of the work. Later validation using an 

independent experiment was conducted to confirm and validate the calibration effort. The 

calibration residual error and partial validation error results for the optimization are summarized 

in Table 6.3.  

 The calibration and partial validation error results for both the lactose and the ABT-089 

powder sample results were within the significance level chosen (<5%). Hence, the calibrated 

values for these two powder samples can be used for independent validation directly. The HPMC 

powder sample consistently had high calibration errors and a resulting high partial validation error 

for the current set of parameters. This result shows that the powder flow behavior of HPMC was 

not being captured completely with the set of parameters or the range of values in the model. The 

powder sample was thus investigated further. 

Table 6.3: Summary of calibration and partial validation error results 

Sample 

Name 

𝜎𝑒𝑛𝑑 

(kPa) 

Calibration error % 

for 𝜇𝑝𝑝 

Calibration error % 

for 
𝛾𝑝𝑝

𝐸′�̅�
 

Partial validation 

error % 

Lactose 

0.4 0.01% 0.01% 1.42% 

2.0 0.01% 0.01% 1.62% 

4.0 0.01% 0.01% 0.56% 

HPMC 

0.4 ~17% ~15% 18.42% 

2.0 ~14% ~13% 12.49% 

4.0 ~14% ~13% 13.89% 

ABT-089 

0.4 0.01% ~1% 2.78% 

2.0 0.01% ~1% 2.28% 

4.0 0.01% ~1% 1.72% 
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6.4 Modification for HPMC: Addition of particle shape factor 

HPMC particles have been previously characterized as fiber-like particles with small 

particle size as shown in Figure 6.12 but a comparatively high surface area that can combine to 

form larger, elongated particles (Allenspach et al., 2020). This characterization directly affects the 

flow behavior, and the flow behavior apparently cannot be captured accurately using spherical 

particles in DEM. The fibrous HPMC particles were modeled as capsule-shaped particles with 

larger aspect ratios in another work by (Allenspach, 2020) to capture this behavior. 

The non-spherical shape can also be replicated in DEM using the glued-sphere approach 

which is also referred to as the multi-sphere approach (Gallas and Sokolowski, 1993; Kodam et 

al., 2009; Nolan and Kavanagh, 1995; Ristow, 1994). In the glued-sphere approach, a non-

spherical particle is modeled as multiple particles fused together to create the same shape. This 

makes sure that the spherical contact models can be continued to be used while also replicating the 

more complex shape. Thus, to ensure better model calibration for the HPMC powder 

measurements, the DEM design of experiments simulations were repeated with capsule-shaped 

particles with an increased aspect ratio (𝐴𝑟) of two. These particles were also not allowed to rotate 

similar to previous spherical particles. This is not the typical approach taken when modeling non-

spherical particles. If the particles have irregular shapes, the actual particle shape accounts for their 

resistance to rolling. The spherical particles not being allowed to rotate is to accommodate for the 

deviation of the real particle shape from spheres. An individual capsule-shaped particle was 

modeled with five particles using the glued-sphere model in DEM as shown in Figure 6.13. The 

five particles in the glued-sphere model ensure that there are no sharp changes in the particle 

surface topography.  
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Figure 6.12: HPMC particle morphology showing fibrous particles captured by HPMC 

characterization work done by Allenspach et al., (2020) 

 

Figure 6.13: Capsule-shaped particle modeled in DEM using five particles in a glued-sphere 

model (an individual particle part of the glued-sphere highlighted in red) 

The calibration procedure was repeated including the model generation, calculating the 

fitting coefficients, and the optimization. The models for the three parameters, incipient internal 

friction angle (𝜙𝑖𝑛𝑐), the critical state internal friction angle (𝜙𝑐𝑟𝑖𝑡), and dimensionless bulk 

cohesion (
𝑐

𝐸′), were found to be the same but with different coefficients. The calibration errors and 

partial validation errors for HPMC with an increased aspect ratio are summarized in Table 6.4. 
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Table 6.4: Updated calibration and partial validation error results for HPMC with an increased 

aspect ratio (Ar= 2) 

Sample 

Name 

𝜎𝑒𝑛𝑑 

(kPa) 

Calibration error % 

for 𝜇𝑝𝑝 

Calibration error % 

for 
𝛾𝑝𝑝

𝐸′�̅�
 

Partial validation 

error % 

HPMC 

(𝐴𝑟= 2) 

0.4 ~2% ~3% 2.44% 

2.0 ~1% ~1% 1.24% 

4.0 ~0.01% ~1% 0.72% 

 

With an updated aspect ratio value, the calibration errors and the partial validation errors 

for HPMC are within the significance level (5%) specified. The new calibrated values can be used 

for HPMC in the independent validation. The errors for HPMC are still relatively high compared 

to the other two samples. This suggests that including aspect ratio as another parameter for 

calibration could potentially increase the result accuracy. Work by Y Guo et al., (2013) 

investigated granular shear flow behavior of particles with non-spherical particles using DEM. In 

this work by Guo, the particles with friction were seen to align themselves in a preferential 

orientation with their largest dimensions aligned at a small angle in the flow direction. This 

alignment reduces the stresses and leads to better flow behavior. But at higher solid fractions before 

this alignment, they observed that there was a sharp increase in stress which implies a higher 

resistance to shearing initially. But as the particles align, they noticed that these stresses decreased. 

The final calibrated values for 𝜇𝑝𝑝 and 
𝛾𝑝𝑝

𝐸′�̅�
 for the respective 𝜎𝑒𝑛𝑑 values are summarized 

in Table 6.5. The calibrated values for lactose and ABT-089 are for simulations with an aspect ratio 

of one whereas the calibrated values for HPMC are with an aspect ratio of two. The calibrated 

values for 𝜇𝑝𝑝 have minimal change with a change in the 𝜎𝑒𝑛𝑑 values for all three powder samples. 

The calibrated values for 
𝛾𝑝𝑝

𝐸′�̅�
 showed significant change with a change in 𝜎𝑒𝑛𝑑 values. For all three 

powder samples, the 
𝛾𝑝𝑝

𝐸′�̅�
 decreased with a decrease in 𝜎𝑒𝑛𝑑 as shown in Figure 6.14. 
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Figure 6.14: Change in the calibrated 
𝛾

𝐸′�̅�
 value with a change in the end consolidation stress for 

all three powder samples (lactose, HPMC, ABT-089) 

Table 6.5: Summary of calibrated parameter values for all three powder samples at different end 

consolidation stresses 

Sample Name 
𝜎𝑒𝑛𝑑 

(kPa) 

Calibrated value for 

𝜇𝑝𝑝 

Calibrated value for 
𝛾𝑝𝑝

𝐸′�̅�
 

(𝛾𝑝𝑝) 

Lactose 

(𝐴𝑟= 1) 

0.4 0.250 3.13E-06 (0.036 
𝐽

𝑚2) 

2.0 0.250 1.88E-05 (0.216 
𝐽

𝑚2) 

4.0 0.252 3.57E-05 (0.411 
𝐽

𝑚2) 

HPMC 

(𝐴𝑟= 2) 

0.4 0.311 1.04E-07 (0.0012 
𝐽

𝑚2) 

2.0 0.316 3.47E-07 (0.004 
𝐽

𝑚2
) 

4.0 0.306 6.08E-07 (0.007 
𝐽

𝑚2) 
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Table 6.5 continued 

ABT-089 

(𝐴𝑟= 1) 

0.4 0.300 1.22E-06 (0.014 
𝐽

𝑚2) 

2.0 0.295 2.43E-05 (0.280 
𝐽

𝑚2
) 

4.0 0.304 3.34E-05 (0.385 
𝐽

𝑚2) 

6.5 Validation using Flodex Tester 

The DEM simulation setup for the Flodex mimicked the experimental procedure. The 

funnel opening was duplicated by using a particle factory at the top of the simulated cylinder. The 

particle diameter of 2 mm as used previously is close to the diameters used for the disks in the 

Flodex and would have led to mechanical arching as shown in Figure 6.15. To avoid mechanical 

arching issues in DEM, the particle diameter was reduced to 1 mm from 2 mm. Since the 

dimensional analysis approach was used in the calibration, the individual parameters were free to 

be varied as long as the calibrated dimensionless values were the same. The calibrated 

dimensionless parameters and all the remaining dimensionless parameter values were kept 

constant by changing other parameters to offset the change in the particle diameter.  

The calibrated dimensionless cohesion value is dependent on the end consolidation stress 

value which relates to the stress the powder particles experience. Since experiments unlike the 

shear cell, like the Flodex, do not have direct measurements of stress on the particle bed, the stress 

value on the particles has to be approximated. For the Flodex, the stress value corresponding to 

the calibrated parameter value was found using the hydrostatic pressure at the bottom layer of the 

particle bed. The known calibrated values of 
𝛾𝑝𝑝

𝐸′�̅�
 were found at 𝜎𝑒𝑛𝑑 values of 0.4 kPa, 2 kPa, and 

4 kPa. Any value between these values can be found using the values acquired. The hydrostatic 

pressure was found directly using EDEM after the particle bed had settled, using this value the 

specific calibrated value was found by interpolation. The results of the validation using the 

calibrated DEM parameter values are summarized in Table 6.6. 
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Figure 6.15: Flodex DEM simulation (without cohesion) slice showing mechanical arching for 

larger particle diameter for particle diameter to orifice diameter ratio of 12 

Table 6.6: Summary of Flodex experimental measurements and simulation results 

Sample Name 

Flodex Flowability Index 

Experimental 

Measurements 

DEM 

Simulations 

Lactose 28 
30 

(𝐴𝑟= 1) 

HPMC 22 
20 

(𝐴𝑟= 2) 

ABT-089 34 
34 

(𝐴𝑟= 1) 

  

 The calibrated model predicted the Flowability index results with success. The lactose and 

HPMC Flowability index predictions were off by one disk diameter increment. The calibrated 

model overpredicted the Flowability index for one of the simulations with an aspect ratio of one 
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and it underpredicted the Flowability index for the simulation with an aspect ratio of two. This 

result suggests that the increased aspect ratio particles have a better simulated flow as shown by 

the lower Flowability index. The initial fill and the final success for HPMC with non-spherical 

particles with an aspect ratio of two can be seen in Figure 6.16. 

 

Figure 6.16: HPMC DEM simulation slice showing the particle fill (left) and one of the final 

successful passes (right) for particles with non-spherical shapes  

 A sensitivity analysis was performed based on the factory size and location. This sensitivity 

analysis was done to ensure the particles are not packing in a specific way due to the factory 

geometry in the original factory. Two additional cases were tested against the original DEM 

particle factory. The initial factory, referred to as factory 1, had a radius equal to the inner diameter 

of the Flodex and was aligned with the top opening of the Flodex. For factory 2, this diameter was 

halved and for factory 3, factory 2 was raised 2 cm above the Flodex top surface. The three 

factories are visually shown in Figure 6.17. The 2 cm distance was chosen to reproduce the actual 

distance of the funnel in the experimental measurement. The results of the sensitivity analysis are 

summarized in Table 6.7. 
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Figure 6.17: The three separate factory cases tested in the factory radius and height sensitivity 

analysis 

Table 6.7: Summary of results for the Flodex factory sensitivity study 

Sample 

Name 

Flodex Flowability Index 

Experimental 

Measurements 

DEM 

Simulations 

(Factory 1) 

DEM 

Simulations 

(Factory 2) 

DEM 

Simulations 

(Factory 3) 

Lactose 28 
30 

(𝐴𝑟= 1) 

32 

(𝐴𝑟= 1) 

32 

(𝐴𝑟= 1) 

HPMC 22 
20 

(𝐴𝑟= 2) 

20 

(𝐴𝑟= 2) 

20 

(𝐴𝑟= 2) 

ABT-089 34 
34 

(𝐴𝑟= 1) 

34 

(𝐴𝑟= 1) 

34 

(𝐴𝑟= 1) 

 

 As the summarized results suggest, the Flodex Flowability index measurement as 

simulated by DEM is not highly sensitive to the factory size or factory height up to 2 cm. The 
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decreased factory size and increased factory height resulted in minor changes for lactose and no 

change for the other two powder samples. The reason for the minor change for lactose is due to 

mound formation on the powder free surface for smaller factory diameter. This was also seen in 

the other two powder samples as well, an example from ABT-089 is shown in Figure 6.18 and the 

resulting failure due to it in Figure 6.19. This sort of mound formation was also seen in the 

experiments performed but to a significantly lower extent. The large mound formation could be a 

result of a larger DEM particle diameter compared to real powder particles. Since the ratio of the 

powder diameter to the funnel height is significantly higher in the case of DEM particles compared 

to the measurements with real powder, it might have resulted in formations of these larger mounds.  

 

 

Figure 6.18: Flodex DEM simulation showing larger mound formation for ABT-089 for smaller 

factory diameters 
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Figure 6.19: Flodex DEM simulation showing the resulting failure due to the high mound 

formation causing extensive arches for ABT-089 at a disk diameter of 32mm 

 Lower factory diameters were not explored in this sensitivity analysis as at lower particle 

diameters, the EDEM factories would start jamming. The particles would start piling up due to 

high cohesion until the particle column reached the factory. This resulted in the factory volume 

being completely covered by already generated particles leaving no room for new particles to be 

generated. A slice from a simulation case with a factory diameter quarter of the Flodex inner 

diameter is shown in Figure 6.20. The slice is across the center of the Flodex during the filling step 

with the factory highlighted in cyan. As mentioned previously, the particle column of the cohesive 

material built upon itself to clog to factory leading to no new particles being generated, and thus 

the simulations had to be halted. 

 It is important to note that there will be additional parameters of significance for the Flodex. 

For example, particle density does not play a significant role in the shear cell simulations, but it 

can play a role in the Flodex simulations. Since this density is not calibrated for the particles being 

modeled, it can certainly affect the validation results. The current Flodex simulation results 

predicted the Flowability index values with success with a fixed value of density. But it should be 
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expected that the Flodex system is sensitive to the particle density as a DEM input parameter. Thus, 

the Flodex system should have an additional dimensionless parameter of 
𝜌𝑔�̅�2

𝛾𝑝𝑝
 to better capture the 

inertial effects. This parameter was not necessary for the shear cell due to the unimportance of 

gravity and inertial effects in that system. 

 

 

Figure 6.20: Flodex DEM simulation slice showing clogging of factories for lower factory sizes 

with the particle factory highlighted in cyan at the top 

 This additional dimensionless parameter 
𝜌𝑔�̅�2

𝛾𝑝𝑝
, also referred to as the Bond number, was 

not investigated in the analysis, but the validation using the Flodex was still successful. The shear 

cell simulations were expected to be not sensitive to density as was confirmed by preliminary 

simulations and prior DEM experience. So, the value chosen for density in the shear cell 

simulations did not affect the results. But successful validation using the Flodex without density 

scaling was unexpected as the Flodex simulations were expected to be sensitive to the density 

values. This validation result was further investigated by looking at the values of the Bond number 

through the calibration process.  
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To begin the investigation, the density value that should have been used for the shear cell 

simulations was found first. This was done by using the poured bulk density measurements for 

each powder sample. Since DEM particles are essentially modeling a collection of smaller real 

particles as shown previously in Figure 2.5, the poured bulk density was scaled up by the random 

packing solid fraction of spheres which is approximately equal to 0.6 (Finney, 1970; Scott and 

Kilgour, 1969). Now after calibration of 𝜇𝑝𝑝 and 𝛾𝑝𝑝, the simulation particle size was reduced to 

half the original size while keeping all the dimensionless parameter values the same. But at this 

point previously in this work, the Bond number was not scaled since it was not a part of the original 

set of dimensionless parameters. Thus, to continue the investigation, the Bond number was scaled 

as well.  

When the particle size was scaled, the 𝛾𝑝𝑝 variable also had to be scaled down to half to 

maintain the calibrated value for 
𝛾𝑝𝑝

𝐸′�̅�
. Thus, the scaling of the Bond number (

𝜌𝑔�̅�2

𝛾𝑝𝑝
) could only be 

done successfully by doubling the 𝜌 parameter as 𝑔 is a constant and changing the halved 𝛾𝑝𝑝 will 

affect the values of the other dimensionless parameters. Hence, the particle density, 𝜌, was doubled 

while keeping the dimensionless parameter values constant. At this point, the density values that 

were used for the Flodex simulations were compared to the density value that should have been 

used for these simulations found using the Bond number scaling. These two density values were 

found to be close to each other in magnitude which explains the calibration success. 

To give an example of the numerical analysis described above, the ABT-089 powder 

sample can be used. The poured bulk density of ABT-089 is 0.330 g/cm3, this value when scaled 

up by 0.6 is equal to 0.550 g/cm3. This 0.550 g/cm3 is the value that should have been used in the 

shear cell simulations. But a fixed particle density value of 1.0 g/cm3 was used instead. Now, the 

shear cell is not sensitive to this parameter and consequently, this value being different from the 

scaled-up value did not affect the shear cell results. But, if the right value for the particle density 

was used in the initial shear cell simulation, the Flodex particle density after scaling the Bond 

number should have been 1.1 g/cm3. This value is very close to the fixed value of density, 1.0 

g/cm3, used for all the DEM simulations. Thus, the fixed value resulted in accurate modeling of 

the Flodex simulations even while not considering the density parameter values. This sensitivity 

of Flodex simulations to density can be further explored and the test could be used as a bulk 

calibration test for particle density.  
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 SUMMARY AND CONCLUSIONS 

 The primary goal of this work was to develop a validated methodology to calibrate DEM 

parameters using dimensional analysis to increase generality. This methodology was developed 

using a DEM simulation of an annular shear cell. A single device with multiple possible bulk 

measurements was used for calibration to make it as simple as possible and robust in its practical 

application.  

The experimental measurements for three powders were carried out using a Schulze ring 

shear cell tester RST-XS and a section of the shear cell was modeled in DEM with the use of 

EDEM using periodic boundaries while using the Hertzian contact model with simplified JKR 

cohesion. The input parameters required for the DEM simulation were isolated and a dimensional 

analysis was conducted on these parameters to find dimensionless parameters that can capture the 

bulk responses of the shear cell. The three bulk responses used were the incipient yield internal 

friction angle, critical state internal friction angle, and the bulk cohesion. 

 A factorial study was set up using a design of experiments and a set of simulations were 

set up using these preset dimensionless parameter values to select the DEM input parameter values. 

All insignificant parameters were eliminated prior to the setup of the factorial study to reduce the 

number of simulation sets to be run. The use of a factorial study enabled the study of interaction 

effects between parameters along with the main effects of each parameter on the bulk response. 

This is critical in mapping the complete parameter space instead of only the corners as typically 

only one parameter is changed at a time. Using MANOVA analysis on the results of these 

simulations, models were created for each of the three bulk responses. A constant term was added 

to each model to better accommodate the non-significant remaining parameter contributions. It 

was found that all the three bulk responses had either primary and/or secondary dependence on 

both the sliding friction and dimensionless cohesion parameter. The consolidation stress was also 

shown to be statistically significant but since it is an experimental parameter, the future calibration 

was done for each fixed value of the consolidation stress and its contribution was absorbed by the 

constant term in the models.  

 The models created using the shear cell had unknown coefficients which were then found 

using regression. At this stage, the predicted models created were ready to be calibrated against 

experimental measurements made using the shear cell on each powder at different end 
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consolidation stress values. Since there were only two parameters to be calibrated, only two bulk 

responses were used, the incipient internal friction angle and the bulk cohesion. The calibration 

was done using a multi-objective function optimization using residual error comparisons between 

the predictive model and the experimental measurements. A genetic algorithm was used to do the 

multi-objective optimization.  

DEM parameter calibrations typically result in multiple parameter value solutions (Grima 

and Wypych, 2011; Ranjan, 2017). This issue was anticipated and thus when doing the multiple 

objective optimization using the genetic algorithm, a convergence parameter was utilized. Thus, 

to eliminate this issue, the convergence of both residual values for the objective functions was 

required and the best set of values was chosen. Ideally, two bulk calibration tests should be used 

to calibrate for the same parameter and the calibrated values that overlap should be used for the 

final validation. This eliminates the issue of multiple solutions while helping find the best optimal 

calibrated value for that specific parameter. This was done in the current work by using two bulk 

outputs each dependent on two parameters and calibrating by using the overlap where both the 

bulk outputs were modeled with the least error. 

 Additionally, it was found that the calibrated sliding friction value for different end 

consolidation stress values did not change significantly but the cohesion surface energy density 

value increased with an increase in the end consolidation stress value. Thus, a major limiting factor 

of this work is the interdependence of the calibrated cohesion parameter value with the end 

consolidation stress value. Ideally, the model should only have one value for a calibrated parameter 

for multiple stress values in a range. But due to the simplified nature of the cohesion model used, 

the stress dependence of cohesion forces was not incorporated in the model and led to this 

limitation. This restricts the applications of the model to experiments or simulations where stress 

states are known or do not vary considerably. A more involved cohesion model or a modification 

of the current model to incorporate the stress dependence would address this limitation. This could 

potentially require calibration of an additional parameter value and thus another bulk calibration 

experiment. 

 The calibration success was measured using the value of the residual at the calibrated value 

and partially validated using a simulation for the third bulk response, the critical state internal 

friction angle, at the calibrated values and comparing it to experimental measurement. It was 
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noticed that the HPMC calibration error and the partial validation errors were significantly high 

compared to Lactose and ABT-089.  

This unusual difference was amounted to the HPMC powder particles being smaller and 

fibrous which would interlock during shear leading to different behavior compared to the 

simulations. This was addressed by changing the particle shape from spherical particles to a glued 

sphere particle with an aspect ratio of two made up of five overlapping spheres. This improved the 

accuracy significantly and progressed results within the chosen error convergence value of 5%. 

Thus, particle shape factor was concluded to be an important parameter in terms of DEM 

calibration especially for powder particles with more deviation from spherical particles. 

 To test the success of the calibration, the calibrated parameter values need to be tested on 

an independent test. A flow through an orifice test using a Flodex was used as the validation 

experiment. But since one of the two calibrated parameters is dependent on the stress on the 

particle, a regression model had to be created with the data points available. To find the stress on 

a particle in the Flodex, hydrostatic pressure calculation at the bottom particle layer was used and 

the calibrated value was found using interpolation between the known values.  

 The Flodex device has a standard deviation of ±1 mm for the measurements. The validation 

using the Flodex showed that the model slightly overpredicted the Flowability index by 2 mm for 

Lactose while accurately predicting the results for ABT-089 with simulations with spherical 

particles. For HPMC, the simulations with non-spherical particles with an aspect ratio of two 

slightly underpredicted by the Flowability index by 2 mm. All the differences were within one disk 

diameter change (2 mm) in the Flodex. Further, a factory size and height sensitivity analysis was 

done for the Flodex test. This analysis showed no significant sensitivity to the factory size and 

diameter. For Lactose, the overprediction increased by another disk diameter change. This change 

was amounted to large mound formations due to the substantially high ratio of DEM particle 

diameter to the factory heigh compared to real particle diameter and factory height. 

 This work highlighted the importance of dimensional analysis by illustrating the ease at 

which the parameter values can be changed while maintaining the dimensionless parameter values. 

It can be concluded that an annular shear cell is a great device for bulk calibration. It has two 

different outputs, incipient internal friction angle and bulk cohesion, that can be used to calibrate 

two different parameters with one measurement. It also highlighted how adaptable the parameter 

value changes are while not affecting the simulation results as long as dimensionless parameter 
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values are kept constant. This can be used extensively to simplify simulations and radically 

improve simulation times. While there are multiple ways the calibration success of DEM 

parameters can be improved, this work highlights that simpler methodologies are efficient in the 

calibration of DEM parameters and predicting real world powder behavior. Furthermore, these 

simpler methodologies can be used as a starting point in extensive calibration studies by 

eliminating parameters prior to the massive computational costs associated with larger studies.  
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 RECOMMENDATION FOR FUTURE WORK 

The current work utilized an annular shear cell bulk response and calibrated DEM 

parameters using it. This calibrated model effectively predicted flow behavior by replicating the 

results of an independent validation experiment using a DEM simulation. Although the models 

made using DEM presented in this work predicted flow behavior accurately, there are still 

improvements to be made. Based on the experience gained through the procedure, and the 

observations made, several future recommendations can be made. 

The calibration was performed for the particle-particle sliding friction (𝜇𝑝𝑝) and particle-

particle cohesive surface energy density (𝛾𝑝𝑝) parameters. Additionally, the current work utilized 

an annular shear cell with fins to eliminate any significant particle-geometry interactions. Since 

the particle-geometry interaction parameters were not investigated, they should be explored next. 

Particle-geometry interactions are critical to predicting flow behavior in various processes 

involving extensive particle-geometry contact. The calibration methodology can be repeated 

utilizing the current calibrated particle-particle parameters and utilizing a shear cell with no fins 

along with a material slab of the geometry being investigated to accurately look at particle-

geometry interactions.  

Since the statistically significant parameters were found to be the sliding friction parameter 

and the cohesive surface energy parameter, it is important to explore these two parameters further. 

A suggestion would be to extend the parameter values to see how the dependence changes at more 

extreme values for both parameters and which parameter takes precedence. The bulk responses 

sensitive to the two parameters could potentially increase exponentially in their sensitivity at 

higher value ranges. 

In addition, the cohesion model used in this work is a simplified JKR model with cohesion 

parameter only, the particle-particle cohesive surface energy density (𝛾𝑝𝑝). This limits the extent 

to which the model can predict the cohesive behavior of the material while decreasing calibration 

time significantly. To address this limitation, the recommendation would be to extend the study 

with a better cohesion model with more parameters than the simplified JKR model to better capture 

the cohesive behavior while continuing to use the methodology laid out in the current work. This 

might also address the issue with the interdependence between the stress on the particle bed and 
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the cohesion surface energy density. If not, a more robust cohesion model can be created to 

incorporate this dependence within the model. 

A recommendation for a more involved cohesion model would be using an Edinburg 

Elasto-Plastic Adhesion (EEPA) model as implemented in EDEM (Morrissey et al., 2014). This 

model is an extension of the linear hysteretic model by Walton and Braun, 1986. The six input 

parameters for this model would increase the computational work and time needed for the 

calibration effort considerably. This is because each of the six parameters would need to be 

calibrated depending on the sensitivity of the bulk output to each of them. This model can be 

implemented and calibrated using the approach laid out in the current work. Although the name 

includes adhesion between dissimilar materials, the model can be used for cohesion between 

similar materials as well. Material subjected to high consolidation can experience plastic 

deformation which can affect the cohesive behavior because of the change in the surface contact 

area. This model addresses this specific issue by simulating this behavior.  

The force models used in DEM simulations also need to be explored. The model used in 

this thesis is a Hertzian contact model, but other models should be tested. A hysteretic spring model 

could be used to allow for plastic deformation behaviors to be added to the computation. It is a 

better representation of a compressible material since while using this model, large overlaps are 

possible without extreme forces acting on the particles like in the current model. The hysteretic 

spring model follows different curves for the loading and unloading of material. The force-

displacement behavior for the same is as shown in Figure 8.1 below. In the EDEM implementation 

of the hysteretic spring model, the tangential force component is modeled identically to the 

tangential forces from a linear spring model. 
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Figure 8.1: Schematic of the linear Hysteretic Spring contact model force-displacement 

relationship showing different loading and unloading curves with the red arrows showing the 

loading directions 

The dimensionless particle size distribution parameter showed little to no statistical 

significance on all three of the output responses for the shear cell. This could be due to a restrictive 

small range of values chosen, a wider parameter value range could confirm that the particle size 

distribution does not significantly affect the bulk response output. The DEM particle sizes are 

larger than the particles being studied to reduce the simulation time. When DEM particle size is 

too close to the geometry being analyzed, there can be issues with particle packing and mechanical 

arching, leading to inaccurate process modeling. Thus, the particle size could be reduced further 

for more confirmation in the DEM results. 

Another aspect of the particle size distribution to look at would be the type of distribution 

used. The current thesis work utilizes a normal Gaussian distribution, but other studies have 
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successfully used log-normal distributions to also predict cohesive powder flow behavior 

accurately. Thus, to conclude, the recommendation for the particle size distribution parameter 

would be to widen the range of values used, try decreased particle diameter size, and to model it 

using a different type of distribution. 

For the HPMC calibration, the particle shape factor in the form of an aspect ratio was added 

to improve calibration results. It significantly increased the calibration accuracy for the HPMC 

powder sample. Including a particle shape factor like an aspect ratio and developing a non-

spherical particle geometry to use in these bulk calibration simulations would improve the 

calibration robustness and improve the characterization of different material behavior. This aspect 

ratio parameter could be incorporated directly as an addition to the design of experiments 

parameters in the factorial study. It can be an additional parameter to calibrate for after checking 

the sensitivity of the bulk response to the parameter. 

The flow through an orifice is a good indicator of powder flowability. The Flodex operating 

procedure as given by Hanson Research utilizes this principle in their three successful passes 

approach. This is adequate but utilizing a more robust approach is recommended. A recommended 

approach would be to run 10 tests for each orifice diameter and check for failure or success for 

each pass. The result would be a percentage indicator for each orifice diameter. This approach is 

more reliable and repeatable compared to the three consecutive passes method. It gives a better 

representation of the powder flowability as well and facilitates the comparison of powder 

flowability between samples using the percent success curves. The downside being the time 

required to run the simulations and perform the experimental measurements as this method 

involves a substantially larger number of simulations. To minimize the number of simulations, a 

preliminary check with one run each can be done at each orifice diameter and only investigate the 

orifice sizes in the vicinity of the flow and no-flow region. 
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