
DATA-DRIVEN UNCERTAINTY ANALYSIS IN NEURAL NETWORKS

WITH APPLICATIONS TO MANUFACTURING PROCESS

MONITORING

by

Bin Zhang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Mechanical Engineering

West Lafayette, Indiana

August 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Yung C. Shin, Chair

School of Mechanical Engineering

Dr. Peter H. Meckl

School of Mechanical Engineering

Dr. Bin Yao

School of Mechanical Engineering

Dr. Stanislaw H. Zak

School of Electrical and Computer Engineering

Approved by:

Dr. Nicole L. Key

3

ACKNOWLEDGMENTS

First and foremost, I would like to appreciate my major advisor Professor Yung C. Shin for

his insightful guidance and enthusiastic support for my Ph.D. program.

Second, I would like to thank my colleagues who provided invaluable help for my studies,

including Christopher Katinas for his contribution to the data-driven tool wear monitoring works,

Shunyu Liu for her support on the laser additive manufacturing experiments and the preparation

of porosity measurement samples, Kyung-Min Hong for his assistance on the laser welding

experiments and Phuong Ngo for his help on the neural-fuzzy model training. I would like to also

appreciate Prof. Peter H. Meckl, Prof. Bin Yao, and Prof. Stanislaw H. Zak for serving on my

advisory committee.

Finally, I’m grateful to my parents and all other family members for their patience and support

for my Ph.D. study.

4

TABLE OF CONTENTS

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

ABSTRACT .. 10

1. INTRODUCTION ... 12

1.1 Background ... 12

1.2 Motivation ... 14

1.3 Literature Review .. 16

1.3.1 Uncertainty Propagation in Neural Networks .. 16

1.3.2 Nonlinear Bayesian State Estimation ... 19

1.3.3 Probabilistic Neural Network for Uncertainty Prediction.................................. 22

1.3.4 Monitoring of Manufacturing Processes using Data-driven Approaches 25

1.4 Research Objectives .. 31

1.5 Dissertation Outline ... 32

2. ADAPTIVE NONLINEAR UNCERTAINTY PROPAGATION IN NEURAL NETWORKS ..

 ... 36

2.1 Problem Formulation and Preliminaries ... 36

2.2 Methodologies ... 39

2.2.1 A Kullback–Leibler Criterion for Nonlinearity Detection 40

2.2.2 Gaussian Splitting Scheme... 44

2.2.3 Gaussian Mixture Propagation ... 46

2.2.4 Gaussian Mixture Reduction .. 47

2.2.5 Preliminary Tests on Activation Functions .. 48

2.3 Application Examples ... 50

2.3.1 Example I: A Noise-driven Nonlinear Damping Oscillator 50

2.3.2 Example II: Low-earth-orbit Uncertainty Tracking ... 53

2.3.3 Example III: Path Uncertainty Prediction for a Quadrotor Drone 55

2.3.4 Example IV: Power Output Prediction of a Power Plant 57

2.3.5 Example V: MNIST Dataset Classification ... 59

2.4 Summary ... 61

3. ADAPTIVE GAUSSIAN MIXTURE FILTER FOR NONLINEAR STATE ESTIMATION 63

5

3.1 Preliminaries and Problem Statement ... 63

3.1.1 Recursive Bayesian State Estimation ... 63

3.1.2 Gaussian Mixture Filter ... 64

3.2 The Adaptive Gaussian Mixture Filter .. 66

3.2.1 State Prediction using Gaussian Mixture Uncertainty Propagation 67

3.2.2 Bayesian Measurement Update with Adaptive Refinement 70

3.2.3 The Analysis of the Adaptive Gaussian Mixture Filter 72

3.3 Application Examples ... 78

3.3.1 Example I ... 78

3.3.2 Example II .. 80

3.3.3 Example III .. 82

3.4 Summary ... 84

4. PROBABILISTIC NEURAL NETWORK FOR UNCERTAINTY PREDICTION 86

4.1 The Gaussian Mixture Probabilistic Neural Network ... 86

4.1.1 Linear Transformation in GM-PNN .. 87

4.1.2 Nonlinear Transformation in GM-PNN ... 89

4.2 Backpropagation with Parameter Uncertainty .. 92

4.3 Application Examples ... 96

4.4 Summary ... 97

5. APPLICATION OF PROBABILISTIC NEURAL NETWORKS TO CONDITION

MONITORING OF MANUFACTURING PROCESSES.. 98

5.1 Tool Wear Monitoring of Turning Processes with Consideration of Uncertainties 98

5.1.1 Instrumentation, Experiments Design and Feature Extraction 98

5.1.2 Methodologies .. 102

5.1.3 Results and Discussions ... 108

5.2 Porosity Monitoring of Laser Additive Manufacturing Processes 117

5.2.1 Instrumentation and Experiments .. 118

5.2.2 Methodologies .. 120

5.2.3 Results and Discussions ... 125

5.3 Summary ... 134

6. CONCLUSIONS AND FUTURE WORK .. 135

APPENDIX A. DERIVATION OF THE KL DIVERGENCE FOR NONLINEARITY

DETECTION .. 137

6

APPENDIX B. THE QUADROTOR DRONE DYNAMICS .. 140

APPENDIX C. PROOF OF LEMMA 1 ... 143

APPENDIX D. PROOF OF LEMMA 3 ... 146

REFERENCES ... 149

PUBLICATIONS .. 166

7

LIST OF TABLES

Table 1-1 Summary of benchmark CNNs for the ImageNet challenge .. 25

Table 2-1 Activation functions considered in this work ... 39

Table 2-2 The splitting schemes for the standard Gaussian distribution 44

Table 2-3 Network and uncertainty propagation parameters in the application examples 51

Table 2-4 Comparison of the results for uncertainty propagation Example I 53

Table 2-5 Comparison of output uncertainty predictions on the MNIST test dataset 61

Table 3-1 Comparison of filter performance for Example I ... 80

Table 3-2 Comparison of filter performance on Example II .. 81

Table 3-3 Comparison of filter performance on Example III ... 84

Table 4-1 Average test RMSE and negative log-likelihood (NLL) for the selected models 96

Table 5-1 Information of the sensors used .. 99

Table 5-2 Cutting conditions in tool wear tests .. 100

Table 5-3 Cutting conditions for normalization.. 101

Table 5-4 Admissible signal preprocessing parameters of candidate features 109

Table 5-5 The features with R2 higher than 0.5 .. 111

Table 5-6 Multi-band analysis of y-direction vibration RMS and wavelet feature 111

Table 5-7 Results from frequency feature fusion (truncated to highest 5 entries) 112

Table 5-8 Result of backward feature elimination .. 113

Table 5-9 Comparison of tool wear monitoring model performance ... 115

Table 5-10 Experimental conditions in direct laser deposition .. 119

Table 5-11 Architecture of the convolutional neural network for direct laser deposition 126

Table 5-12 Cross-validation of the pore size threshold .. 127

Table 5-13 Cross-validation of the number of layers ... 128

Table 5-14 Comparison of porosity monitoring model performance ... 129

Table 5-15 The volume porosity measured from cross-sections .. 131

Table B-1 Drone parameter values for simulation .. 142

8

LIST OF FIGURES

Figure 1-1 An illustration of probabilistic neural networks [16] .. 13

Figure 1-2 A roadmap of this study .. 16

Figure 2-1 Activation functions and their transforms of Gaussian distributions 39

Figure 2-2 The splitting schemes for the standard Gaussian distribution 45

Figure 2-3 Approximation of a univariate skewed distribution from a tanh function 49

Figure 2-4 Approximation of multimodal distributions from a ReLU and a Leaky ReLU function

... 49

Figure 2-5 Approximation of a bivariate distorted distribution from a logistic function 50

Figure 2-6 Comparison of theoretical, MC and predicted PDFs for Example I 52

Figure 2-7 Predicted PDF contours compared with Monte Carlo samples at one orbit period 54

Figure 2-8 Position PDF compared with the Monte Carlo histogram at one orbit period 55

Figure 2-9 Position PDF compared with the Monte Carlo histogram at two orbit period............ 55

Figure 2-10 Predicted X-Y position PDF contours compared with Monte Carlo samples 57

Figure 2-11 X-Z position PDF compared with the Monte Carlo histogram 57

Figure 2-12 The uncertainty bounds predicted for output power ... 59

Figure 2-13 Comparison of the Gaussian mixture PDF and histogram PDF from data 59

Figure 2-14 Comparison of predicted output PDFs for a MNIST image 61

Figure 3-1 Comparison of true and estimated posterior PDFs for Example I 80

Figure 3-2 Comparison of RMSE for state estimation in Example II .. 82

Figure 3-3 Comparison of estimated state PDFs in Example II ... 82

Figure 3-4 Comparison of RMSE for state estimation in Example III ... 84

Figure 3-5 Comparison of estimated tricyclist trajectories ... 84

Figure 5-1 Instrumentation diagram of the test bed .. 99

Figure 5-2 Overall architecture and data flow of the proposed tool wear monitoring system ... 102

Figure 5-3 Flow chart of the coupled feature and preprocessing parameter selection 105

Figure 5-4 Comparison of the mean power feature before and after normalization 110

Figure 5-5 The correlation of y-direction vibration RMS against tool wear 110

Figure 5-6 Statistical Significance of y-direction vibration features .. 112

9

Figure 5-7 Tool wear prediction for the selected tool wear tests .. 115

Figure 5-8 Comparison of the T2FBFN prediction upper bounds and tool wear measurements when

the tool change alert issued ... 116

Figure 5-9 Comparison of the GM-PNN prediction upper bounds (99% CI) and tool wear

measurements when the tool change alert issued ... 117

Figure 5-10 The instrumentation setup of direct laser deposition monitoring 118

Figure 5-11 Image processing procedure for porosity extraction from cross-section images 121

Figure 5-12 Illustration of the filtering to recognize true porosity ... 122

Figure 5-13 Illustration of quality inspection and data preparation .. 123

Figure 5-14 Classification of porosity status using CNN+PNN ... 129

Figure 5-15 Confusion matrices of porosity status prediction .. 130

Figure 5-16 Pie charts of misclassified samples for porosity status prediction 130

Figure 5-17 The evaluation of local volume porosity from a longitudinal cross-section 132

Figure 5-18 Predictions for local volume porosity ... 133

Figure 5-19 Prediction of the overall distribution of local volume porosity by CNN+PNN 133

Figure B-1 The inertial and body frames of a quadrotor drone .. 140

10

ABSTRACT

Artificial neural networks, including deep neural networks, play a central role in data-driven

science due to their superior learning capacity and adaptability to different tasks and data structures.

However, although quantitative uncertainty analysis is essential for training and deploying reliable

data-driven models, the uncertainties in neural networks are often overlooked or underestimated

in many studies, mainly due to the lack of a high-fidelity and computationally efficient uncertainty

quantification approach. In this work, a novel uncertainty analysis scheme is developed. The

Gaussian mixture model is used to characterize the probability distributions of uncertainties in

arbitrary forms, which yields higher fidelity than the presumed distribution forms, like Gaussian,

when the underlying uncertainty is multimodal, and is more compact and efficient than large-scale

Monte Carlo sampling. The fidelity of the Gaussian mixture is refined through adaptive scheduling

of the width of each Gaussian component based on the active assessment of the factors that could

deteriorate the uncertainty representation quality, such as the nonlinearity of activation functions

in the neural network.

Following this idea, an adaptive Gaussian mixture scheme of nonlinear uncertainty

propagation is proposed to effectively propagate the probability distributions of uncertainties

through layers in deep neural networks or through time in recurrent neural networks. An adaptive

Gaussian mixture filter (AGMF) is then designed based on this uncertainty propagation scheme.

By approximating the dynamics of a highly nonlinear system with a feedforward neural network,

the adaptive Gaussian mixture refinement is applied at both the state prediction and Bayesian

update steps to closely track the distribution of unmeasurable states. As a result, this new AGMF

exhibits state-of-the-art accuracy with a reasonable computational cost on highly nonlinear state

estimation problems subject to high magnitudes of uncertainties. Next, a probabilistic neural

network with Gaussian-mixture-distributed parameters (GM-PNN) is developed. The adaptive

Gaussian mixture scheme is extended to refine intermediate layer states and ensure the fidelity of

both linear and nonlinear transformations within the network so that the predictive distribution of

output target can be inferred directly without sampling or approximation of integration. The

derivatives of the loss function with respect to all the probabilistic parameters in this network are

derived explicitly, and therefore, the GM-PNN can be easily trained with any backpropagation

method to address practical data-driven problems subject to uncertainties.

11

The GM-PNN is applied to two data-driven condition monitoring schemes of manufacturing

processes. For tool wear monitoring in the turning process, a systematic feature normalization and

selection scheme is proposed for the engineering of optimal feature sets extracted from sensor

signals. The predictive tool wear models are established using two methods, one is a type-2 fuzzy

network for interval-type uncertainty quantification and the other is the GM-PNN for probabilistic

uncertainty quantification. For porosity monitoring in laser additive manufacturing processes,

convolutional neural network (CNN) is used to directly learn patterns from melt-pool patterns to

predict porosity. The classical CNN models without consideration of uncertainty are compared

with the CNN models in which GM-PNN is embedded as an uncertainty quantification module.

For both monitoring schemes, experimental results show that the GM-PNN not only achieves

higher prediction accuracies of process conditions than the classical models but also provides more

effective uncertainty quantification to facilitate the process-level decision-making in the

manufacturing environment.

Based on the developed uncertainty analysis methods and their proven successes in practical

applications, some directions for future studies are suggested. Closed-loop control systems may

be synthesized by combining the AGMF with data-driven controller design. The AGMF can also

be extended from a state estimator to the parameter estimation problems in data-driven models. In

addition, the GM-PNN scheme may be expanded to directly build more complicated models like

convolutional or recurrent neural networks.

12

1. INTRODUCTION

1.1 Background

In the last decade, data science has emerged as a prevalent paradigm in the modeling and

analysis of real-world problems in almost every quantitative and scientific discipline [1], such as

finance (e.g., fraud detection [2] and stock prediction [3]), healthcare (e.g., medical diagnosis with

tomography images [4] and electrocardiography signals [5]) and engineering (e.g., control system

design [6], condition monitoring [7] and maintenance [8] of industrial equipment), among others,

for which the first-principle-based models are often not available or difficult to establish [9].

Among the numerous data-driven methods studied in the machine learning and deep learning

community, artificial neural networks appear to be one of the most popular and versatile classes

of models. A neural network uses a layered architecture and interconnected neurons with learnable

parameters for information processing. Due to its flexible structure, it can be adapted to different

tasks (e.g., regression [10] and classification [11]) and data modalities (e.g., recurrent neural

networks for time-series data [12] and convolutional neural networks for image data [13]).

Learning neural network models, as well as other types of machine learning models, always

involves addressing uncertainties, including the epistemic uncertainty within the underlying

process or system from which data are collected and aleatoric uncertainty introduced during data

collection like measurement noise [14]. Therefore, uncertainty analysis is essential for any data-

driven modeling effort and the Bayesian machine learning methods that work with probabilistic

models have attracted more research interests in recent years [15]. For instance, the probabilistic

neural network, as illustrated in Figure 1-1, incorporates the probability distributions of network

parameters to quantify uncertainties [16]. It could provide quantitative uncertainty information

associated with its predictions by inferring the predictive probability distributions of output and

thus exhibits higher reliability than its deterministic counterpart in many fields of applications.

The uncertainty analysis in neural networks is valuable for a broad range of data-driven problems.

For example, given the neural network’s capability of approximating any nonlinear function, it

might be used for the data-driven system identification [17], state estimation [18], and control [19]

of nonlinear dynamic systems under stochastic uncertainties.

13

Figure 1-1 An illustration of probabilistic neural networks [16]

(left: a classical neural network with deterministic parameters; right: a probabilistic neural

network whose weighting factors have probability distributions)

The health condition monitoring of systems and processes is also a field where data-driven

models are extensively used and uncertainty assessment is needed [20][21]. Instead of relying on

profound field knowledge to develop first-principle-model-based monitoring schemes [22], the

data-driven monitoring methods learn normal and abnormal condition patterns of a system from

run-time sensor signal data to develop predictive models for fault detection [23], isolation [24],

remaining life prediction [25] and maintenance management [26]. Since the data measurement will

be inevitably impacted by noises and the target system may exhibit unpredictable variations during

operation, uncertainty quantification is crucial for the data-based monitoring models [27]-[29],

with which diagnostic decisions could be made more confidently.

While data-driven condition monitoring has been studied for a variety of systems, this work

will focus on the monitoring of manufacturing processes. A manufacturing plant is composed of a

variety of machine units handling different material processing and assembling tasks, through

which raw materials are transformed to functional products. To keep such a system running with

high productivity and consistent product quality, the conditions of the process being operated on

each machine unit should be closely monitored such that any abnormality can be detected and

eliminated with timely intervention actions before causing any loss. The necessity of condition

monitoring might be exemplified with additive manufacturing (AM) processes. In recent decades,

laser additive manufacturing, which uses a laser beam to melt metallic powders and then deposits

solidified materials layer-by-layer, has been widely used to fabricate high-performance metallic

components. However, during the melting-solidification process, a variety of quality defects, such

as porosity, cracking and delamination [30][31], may occur in the fabricated parts, which

14

deteriorates the parts’ performance (durability, strength, etc.) and hinders their uses in mission-

critical scenarios. Hence, a trial-and-error procedure to determine the optimal defect-free process

parameters (e.g., laser power and beam scan speed) is required [32]. Even so, because of the

variability of AM processes, defects may still occur unexpectedly, which necessitates expensive

and time-consuming post-process measurement for quality inspection and assurance. In a survey

in 2014, 47.2% of the 108 manufacturer respondents indicated that the uncertain quality of final

products was a barrier to their adoption of AM [33]. Therefore, to ensure product reliability and

quality consistency, an in-situ condition monitoring scheme is critically needed for the laser AM

processes, as recognized in several recent strategic initiatives [34]-[36].

1.2 Motivation

Condition monitoring is vital for the quality assurance and process-level automation of not

only laser AM but also almost all the other manufacturing processes. Therefore, almost all the

latest data-driven models have been applied to the predictive modeling of process conditions by

different researchers. In a conventional machine learning fashion, features relevant to the process

conditions are extracted via signal processing of measurable process data (e.g., power, vibration,

acoustic, thermal) and then machine learning models are trained to predict the process conditions

based on the selected features. In recent years, deep learning models have also been applied to

directly learn patterns from raw measurement data. However, in spite of the numerous efforts that

have been made, most manufacturing systems in the industry are still operated in an open-loop

manner at the process level. Why the process condition monitoring systems have not been widely

deployed can be attributed to multiple reasons, such as the lack of affordable data sensing devices

and the insufficiency of predictive models to cover a wide range of operating conditions. Among

them, one of the biggest obstacles is that the uncertainties associated with manufacturing processes

have not been properly addressed. While the monitoring systems are aimed to make the processes

more reliable, the fidelity of a monitoring scheme itself can be questionable, given the variability

of manufacturing processes and noise in the industrial environment. For example, a change of

material supplier and the batch of tools may cause noticeable variations of the signals from drilling

processes under the same operating conditions. As a result, the performance of a tool-wear

monitoring model trained for one drilling operation may degrade on its nominally identical

counterpart, as described in a case study in [37].

15

The insufficient consideration of uncertainty is a key bottleneck for not only manufacturing

process monitoring but also many other practical applications where neural networks are widely

used, such as the design of data-driven state estimators and controllers [38][39][40]. The existing

neural network applications with uncertainty-modeling effort are mainly based on interval-type

uncertainty quantification [42], while only estimating prediction intervals can not provide useful

probability distribution information within the lower and upper bounds. On the other hand, the

probabilistic neural network, though has emerged as a popular topic within the machine learning

community, has not been widely used in practice. This is mainly because training a probabilistic

neural network is much more difficult than training a classical one. Especially, estimating the

probability distribution of network parameters in an exact Bayesian scheme is intractable in most

cases. Hence, some approximation methods must be utilized and a trade-off between uncertainty

quantification fidelity and computational efficiency must be made [43]. In some works, to make

the Bayesian inference tractable and efficient, the distributions of network parameters and states

are assumed to be in certain forms, such as diagonal Gaussian distribution [16]. However, the true

distributions of uncertainty in data can be intricate and multimodal, and those presumed forms may

introduce a risk of oversimplifying or underestimating the uncertainty. In contrast, the approximate

inference methods based on Monte Carlo sampling, though possess higher fidelity, may be

computationally intensive and less scalable to complex models and large datasets [44]. Therefore,

a new uncertainty analysis scheme that can characterize general-form probabilistic uncertainties

in neural networks with both high fidelity and reasonable computational cost is highly desired.

Moreover, if the probabilistic network could be then trained efficiently using the well-developed

backpropagation methods without invoking large-scale Monte Carlo sampling, this scheme will

be invaluable for a broad range of data-driven problems subject to uncertainties, including the

predictive modeling of process conditions for manufacturing process monitoring.

The objective of this study is to develop such an innovative uncertainty analysis scheme for

neural networks and explore its application to practical problems. To achieve this, the nonlinearity

effects in propagating probability distributions through neural networks should be addressed first,

as it is fundamental to the following works. With this uncertainty propagation solution, a neuro-

Bayesian filter for state estimation of highly nonlinear systems can be derived and a probabilistic

neural network training scheme can be designed. The new probabilistic network will be bench-

marked against the state-of-the-art methods and applied to the manufacturing process monitoring

16

applications. A brief roadmap of this study is provided in Figure 1-2. To more clearly recognize

the limits in the current state of the art and set the direction of this study, the existing works in the

literature relevant to each of the deliverables in this roadmap are reviewed below.

Figure 1-2 A roadmap of this study

(Dashed arrows denote potential works for the future)

1.3 Literature Review

1.3.1 Uncertainty Propagation in Neural Networks

A fundamental challenge in training and deploying a neural network model with uncertainty

is the uncertainty propagation through the network, especially through the nonlinear activation

functions. Although the propagation of Gaussian uncertainty through linear layers still results in

Gaussian distributions, the nonlinear transformation of a Gaussian variable will produce a non-

Gaussian distribution that needs to be approximated. This challenge is not only raised by the

probabilistic network parameters, but also by the input uncertainty that needs to be propagated

forward towards output and the uncertainties in initial conditions and feedback states in a context

layer of a recurrent neural network that needs to be propagated to subsequent time steps. Hence,

improving the fidelity and efficiency of uncertainty propagation is essential for the inference of

predictive distributions in probabilistic neural networks and a variety of uncertainty propagation

methods have been proposed in the literature.

For Gaussian uncertainties, the most commonly used propagation paradigm is to estimate the

17

mean and covariance after nonlinear functions to reconstruct an output Gaussian distribution. This

Gaussian-to-Gaussian mapping preserves the form of uncertainty representation and hence can be

used for the recursive propagation through time in recurrent networks and layer-wise propagation

in deep networks. The linearization method, including local linearization via the first-order Taylor

expansion and stochastic linearization by minimizing the expectation of approximation error [45],

might be the most intuitive method, though it may not yield accurate results when the magnitude

of uncertainty is large. To attain higher fidelity, moment matching solutions have been developed

for the specific activation functions in neural networks. Gast et al. [46] developed a variational

inference scheme for deep neural networks using the closed-form moment solutions of rectified

linear unit (ReLU) and leaky ReLU functions derived by Frey in [47]. Wang et al. [48] derived the

analytical solutions of Gaussian distribution moment matching for commonly used activation

functions and also discussed the solutions of other exponential-family distributions. Abdelaziz et

al. [49] approximated the logistic function with two piecewise exponential functions for

uncertainty propagation in deep neural networks. Bui et al. [50] used an approximate expectation

propagation scheme to estimate the means and variances in Gaussian processes. Lee et al. [51]

derived the covariance kernels in Gaussian processes for the ReLU and hyperbolic tangent

functions and implemented the propagation using lookup tables.

Different from the above function-approximation-based methods, there are also sampling-

based methods that propagate a set of samples through the nonlinear function as a black box and

then evaluate uncertainty from output samples. The unscented transform (UT) in the unscented

Kalman filter, which could approximate the output mean and covariance up to the second order

accuracy using weighted sigma points [52], is one of the most significant approaches in this

category and is often used as the baseline to evaluate other methods. Abdelaziz et al. [49] applied

the UT to deep neural networks and achieved better uncertainty estimation accuracy than the

exponential function approximation method. The Monte Carlo (MC) simulation that utilizes the

random samples drawn from an input distribution to predict the statistic information of output is

the most versatile approach, as it is applicable to almost any functions and distributions. Dong et

al. [53] applied the MC-based particle filters to the state estimation of battery systems modeled

with neural networks. Gal [15] used small MC sets (10~20 samples) to estimate the mean and

variance after nonlinear layers in the variational inference through neural networks. However, if it

is of interest to predict the output probability distribution instead of just estimating the moments,

18

then a massive amount of samples needs to be generated and it can be computationally intensive

to propagate these samples and reconstruct a probability distribution from the output.

On the contrary, the Gaussian mixture model, which has the capacity to approximate any non-

Gaussian distributions [54], could incorporate more information than a single Gaussian

distribution and can be used as a more compact uncertainty representation than Monte Carlo

samples [55]. To use the Gaussian mixture model in non-Gaussian uncertainty propagation, a high-

fidelity output mixture needs to be estimated from the input mixture. Though each Gaussian

component can be easily propagated via any moment matching methods, determining the optimal

number of components and weights is often a challenge. Terejanu et al. [57] showed that the weight

of a Gaussian component can be assumed invariant through a nonlinear mapping only if its

variance is infinitesimal. They then proposed two quadratic-programming methods for weight

updating through nonlinear systems and applied them to the Gaussian sum filter design [58].

Faubel et al. [59] built an unscented Gaussian mixture filter that recursively splits each Gaussian

filter into a number of mixtures to handle non-Gaussian noises and then merges the mixture filter

based on estimated posterior density to regulate the number of mixtures. Horwood et al. [60] also

developed a similar Gaussian splitting-merging scheme using the Gauss-Hermite quadrature.

DeMars et al. [61] used the difference of rates of change of a Gaussian distribution’s entropy

evaluated by linear and UT methods to measure the level of nonlinearity and split the distribution

if the difference was larger than a threshold. Tuggle et al. [62] developed a combined criterion to

split a Gaussian distribution along the eigendirection at which the directional derivative of

Jacobian (a measure of nonlinearity level) and directional variance (a measure of uncertainty

magnitude) are both large.

It can be learned from the above review that 1) the moment matching methods for Gaussian-

to-Gaussian propagation could not predict the non-Gaussianity caused by nonlinearity; 2) the non-

Gaussian propagation methods using Monte Carlo and Gaussian mixtures, in spite of their higher

fidelity of uncertainty representation, could be significantly slower than Gaussian propagation due

to the sampling, optimization or recursive splitting routines adopted [57][59], which makes them

not practical for deployment in neural networks; 3) the adaptive Gaussian splitting schemes based

on the detection of nonlinearity, if combined with a suitable mixture reduction routine, could

achieve a high fidelity with a reasonable computational cost; however, none of such schemes has

ever been designed for neural networks. In particular, the existing splitting criteria designed for

19

general nonlinear functions may not yield the best performance for the activation functions in

neural networks. Therefore, a new adaptive Gaussian mixture scheme for high-fidelity and

efficient uncertainty propagation in neural networks needs to be developed.

1.3.2 Nonlinear Bayesian State Estimation

The estimation of unmeasurable state quantities in the dynamic system subject to stochastic

uncertainty is of great importance in a broad range of applications, such as signal processing,

positioning and navigation, and control system design [63]. Given a system model, the recursive

inference of state information over time from noisy measurements based on Bayesian statistics is

referred to as Bayesian filtering [64]. Since Bayesian filtering naturally involves the propagation

of state uncertainty, it is a field where the uncertainty propagation scheme mentioned at the end of

section 1.3.1 might be applicable, given that such a scheme can be developed. Therefore, the

existing Bayesian filtering methods are reviewed below.

For linear systems with Gaussian white noise, the renowned Kalman filter is proved to be the

optimal Bayesian state estimator [65]. For nonlinear systems, the extended Kalman filter (EKF)

that linearizes the system model and then applies the Kalman filter is a commonly used solution.

However, the EKF may produce inaccurate or even divergent results for highly nonlinear systems

as it only retains the first-order Tayler expansion [66]. Therefore, a variety of nonlinear versions

of the Kalman filter have been developed over the past few decades. The unscented Kalman filter

(UKF) utilizes the unscented transform to estimate the moments of nonlinearly transformed state

variables at a second-order accuracy [66]. Similarly, the quadrature Kalman filter (QKF) employs

the Gauss–Hermite quadrature [67], and the cubature Kalman filter (CKF) uses the cubature rules

[68] to evaluate the moment integrals at a higher-order accuracy. Moreover, the ensemble Kalman

filter (EnKF) draws random samples from a Gaussian state distribution and applies a Kalman filter

to the ensemble of samples [69]. What these nonlinear filters have in common is that the

distribution of state variables is assumed to be always Gaussian, while they utilize different integral

evaluation techniques to estimate the mean and covariance. However, due to the nonlinearity in

the system, the state distribution may exhibit non-Gaussianity like skewness and multimodality,

even if the initial state uncertainty is Gaussian. Hence, only assessing the first two moments can

not fully characterize the probability density function (PDF) of states and the state estimation result

may be suboptimal [70].

20

For nonlinear and non-Gaussian state estimation problems, the particle filter (PF) is one of

the most popular methods [71]. Through sequential importance sampling, the PF can draw random

particles from non-Gaussian distributions to represent the state PDF [8], and then the particles are

propagated through the system dynamics and reweighted according to measurement likelihood to

track the PDF’s evolution over time. However, though PF is applicable to almost any system and

PDF [70], the number of particles needed to achieve a satisfactory result for a high-dimensional

problem could be overwhelming, and consequently, the computational cost might be unaffordable

[55][73].

Another non-Gaussian Bayesian estimation paradigm alternative to PF is the Gaussian sum

filter (GSF) or Gaussian mixture filter (GMF). Compared with the particles in PF that act as Dirac

delta functions with infinitesimal width, a Gaussian mixture component with non-zero covariance

contains probability information in a nonnegligible sub-domain of the state space. Therefore, to

approximate a PDF to the same degree of accuracy, a Gaussian mixture should need many fewer

components than the particles needed by a PF, and thus may resolve the curse of dimensionality

[55]. Then for GMF, it is of central importance to determine the Gaussian mixture parameters and

ensure the PDF tracking quality. As proved in [73], a GMF approaches the optimal estimation if

the covariance of each component is sufficiently small. Nevertheless, using too many narrow

components to approximate a PDF will dramatically increase the computational cost and thus a

compromise must be made. By reviewing the literature, the existing GMF schemes can be roughly

classified into three groups:

1) A fixed number of parallel Gaussian filters. In the conventional GMFs, with the state PDF

represented as a Gaussian mixture, a bank of Gaussian filters (e.g., EKF [74] and QKF [75]) can

be applied parallelly to each component without altering mixture size. In [74], Sorenson et al. used

an Lk norm objective function to optimize the Gaussian mixture approximation. However, even if

it is optimized to be amply fine for the initial uncertainty, the components are not guaranteed to

retain narrow as they evolve over time, while numerically re-optimizing the entire Gaussian

mixture in each time step can be too costly. Hence, Tam et al. [76] proposed a method to

analytically update the Gaussian mixture likelihood based on in-process measurement, and

Terejanu et al. [58] used a quadratic programming scheme to refine the approximation by only re-

optimizing the component weights.

2) Re-approximation via resampling. One way to regulate the widths of covariance in GMF

21

is to resample a collection of narrow components from the calculated Gaussian mixture to re-

approximate the state PDF. Kotecha et al. [77] built a series of particle GMFs and a resampling

step was used to prevent the number of PFs from increasing exponentially when combined with

Gaussian sum noises. Raihan et al. [78] improved the particle GMF by combining all the particles

from different PFs to refit a new Gaussian mixture from the entire particle pool, instead of running

PFs parallelly. Stordal et al. [79] derived a GMF from EnKF, in which the ensemble covariance is

scaled down by a bandwidth parameter before being assigned to samples so that the attained

Gaussian mixture is fine enough to approximate non-Gaussian PDFs. Psiaki [80] created a

resampling scheme to generate Gaussian mixture components with bounded covariance matrices

[10], based on which a GMF called blob filter was developed.

3) Adaptive splitting of components. The resampling methods will put a universal bound on

the covariance so that all the components are uniformly fine. However, since the complexity of

state PDF changes over time and varies across the state space, it should be more efficient to refine

the Gaussian mixture adaptively, i.e., more and finer components are used when the PDF is

complex, while fewer and coarser components can be used when the PDF is simple. The adaptive

splitting method is designed to actively assess the impact of nonlinearity such that any distorted

component that exhibits nonnegligible non-Gaussianity will be detected and split into narrower

sub-components. Although many GMF works in this category have been mentioned in sub-section

1.3.1 as the idea of adaptive Gaussian mixture refinement coincides, these works are briefed below

again from a filter design perspective. Faubel et al. [59] built an unscented GMF that recursively

splits UKF components until the sigma points are linearly spaced after the measurement function.

Horwood et al. [60] proposed to compare the Gaussian moments from the current QKF and a finer

one after splitting to decide whether the splitting is needed. Leong et al. [81] presented a cubature

GMF that assesses the nonlinearity in measurement function by the deviation of cubature points

from a linear fitting. DeMars et al. [61] established an uncertainty propagation scheme that

assesses nonlinearity by the difference of Gaussian entropies estimated using a linear and a

nonlinear method. Tuggle et al. [62] created a measurement update scheme that splits Gaussian

components based on the Kullback–Leibler divergence between the PDFs from an EKF and a

second-order EKF.

It can be seen from the above review that a Gaussian mixture refinement scheme is essential

to sustain the GMF fidelity, whereas extra computational resources will then be required. Also,

22

the refinement schemes involve additional hyperparameters, such as the number of components

and the upper bound of covariance, whose optimal values are problem-dependent and have to be

determined via trial-and-error. For GMFs, how well they can adapt to the varying complexity of

state PDF with a practical computational cost and without tedious tunning will be the key metric

of their performance. In light of this, the adaptive splitting method should be the most promising

solution as it could adapt to the impact of nonlinearity and refine Gaussian mixtures only when

necessary. Nevertheless, though state estimation is a two-step procedure in nature, most of the

existing splitting schemes are solely designed for the measurement update step [59][60][81][62]

with only a few for the state prediction step [61]. Also, many of the quantities used to measure

nonlinearity, such as the deviation of sigma points [59] and the discrepancies between two

Gaussian PDFs [60][62], are not explicitly related to the non-Gaussianity of distorted PDFs.

Although the non-Gaussianity and its induced state estimation error will eventually vanish as these

quantities decay to zero, how fast this convergence will be during the splitting process still lacks a

quantitative analysis, and the error magnitude of state PDF estimation is not quantified in most

studies. If the adaptive Gaussian mixture scheme for uncertainty propagation, as mentioned at the

end of section 1.3.1, is developed, it should be helpful in resolving the above issues. Thereby, a

new adaptive Gaussian mixture filter could be designed, which will be particularly suitable for

addressing highly nonlinear state estimation problems subject to high magnitudes of non-Gaussian

uncertainties.

1.3.3 Probabilistic Neural Network for Uncertainty Prediction

In recent years, owing to the fast advancing of computing platforms and training algorithms,

neural networks, including deep neural networks, have achieved a remarkable leap of prediction

accuracy and extensive successes in the data-driven modeling of real-world problems. However,

the uncertainties in the neural network models are often overlooked or underestimated in many

studies. Many of the existing neural networks with uncertainty quantification are designed based

on interval-type uncertainties [42][82]. Prediction intervals of output targets can be constructed

using a variety of methods, such as type-2 fuzzy sets [83], interval-type network parameters [84],

and bootstrap of networks [85][86]. However, the prediction intervals may be incompetent in

providing essential probability density information, especially if the distribution of output target

is skewed or multimodal. In this sense, the probabilistic neural networks (PNN) that incorporate

23

probability distributions of network parameters to infer predictive distributions are more powerful

in providing informative uncertainty quantification [16].

The Bayesian neural network (BNN), as a major class of PNN, provides a methodical way to

address probabilistic uncertainties in neural networks. Because the exact Bayesian inference of

posterior distributions over neural network parameters is not tractable, the BNNs typically use

Markov Chain Monte Carlo (MCMC), variational inference (VI), or expectation propagation (EP)

methods to estimate the posterior distributions, given a presumed prior distribution and training

dataset [87]. The MCMC methods like Hamilton Monte Carlo [88] have been applied to Bayesian

learning in neural networks since the 1990s. Lately, Deng et al. [89] proposed an adaptive MCMC

scheme of stochastic gradients to learn sparse deep learning models. Nevertheless, the MCMC

methods based on sampling from engineered distributions may have poor scalability to large

datasets [90]. Alternatively, the VI methods create an approximation of the true posterior by

maximizing the evidence lower bound (ELBO). Graves et al. [91] developed a VI scheme scalable

to large datasets, in which diagonal Gaussian posterior is adopted and Monte Carlo integration is

used to estimate the intractable loss functions. Blundell et al. [16] created a similar scheme based

on Monte Carlo gradients called Bayes by backpropagation. Gal et al. [92] revealed that a neural

network with Bernoulli weight dropout is equivalent to a BNN with approximate VI, and a concrete

dropout strategy is proposed in [93]. The EP is also an approximate inference method and it’s

different from VI as it minimizes the Kullback-Leibler divergence between the true and

approximate posteriors via moment matching. Lobato et al. [90] designed an EP backpropagation

scheme by combining the forward propagation of probabilities with backward propagation of

gradients, which is considerably faster than Graves’ VI method [91] because there is no Monte

Carlo approximation of gradients needed. They then developed an alpha divergence scheme that

can be scaled between EP and VI to take advantage of both [94]. Recently, Zhao et al. [95]

presented a generalized EP scheme that can learn multimodal posterior distributions of parameters

as Gaussian mixtures.

In spite of the recent development, there’re still several limitations on the existing BNNs: 1)

Many of the training schemes require Monte Carlo sampling to evaluate expectation integrals

[89][91], which incurs higher computational cost and poor scalability to large-scale datasets. 2) To

make the inference with VI or EP tractable, the posterior distribution of parameters is mostly

assumed to be in certain simple forms, such as diagonal Gaussian distribution [91], whereas the

24

true posterior can be complex and multimodal [95]. 3) The performance of Bayesian learning

largely depends on the choice of prior and likelihood functions, which must be selected carefully

before or during training [96], and some extra hyperparameters, such as the model precision

parameter in Gaussian likelihood function, need to be tuned for each problem. 4) The predictive

distribution in VI or EP requires the integration of model predictions over the learned posterior

parameter space, typically through the ensemble of model prediction samples drawn from the

posterior, which can be computationally inefficient [48].

To address those problems, probabilistic networks that are not in fully Bayesian form have

been studied. Wang et al. [48] proposed the natural parameter network (NPN), in which all the

weights and neuron states are treated as exponential-family distributions. The forward inference

of probabilities via moment matching and backpropagation of gradients for natural parameters

were derived analytically such that the NPN model can be trained using any gradient-based

method. To achieve faster inference, Gast et al. [46] proposed a lightweight probabilistic network

that only approximates the distribution of activation states in hidden neurons but not the weights.

Tran et al. [97] proposed a Bayesian layer as a new constitutive layer of deep neural networks so

that the uncertainty can be dealt with only in this layer instead of the whole network. Training deep

neural networks as Gaussian processes has also been studied, whereas the deep Gaussian processes

can only predict the output as multivariate Gaussian distributions [50][51]. To model general-form

uncertainty, Pawlowski et al. [98] proposed an implicit weight uncertainty scheme that uses an

extra Hypernetwork to generate non-Gaussian distributions for the weights in the main network,

which outperformed the Bayes by backpropagation method in [16]. The mixture density network

[99] has also been employed to fit the output distributions of deep networks [100] and recurrent

networks [101] as Gaussian mixtures, whereas the uncertainties in input and hidden neurons cannot

be addressed in these mixture density networks.

Although the studies above all provide invaluable inspirations to improve the probabilistic

modeling in neural networks, each of them can mainly resolve only one aspect of the BNN’s

insufficiencies (e.g., the computational efficiency or the modeling of general-form uncertainties).

Moreover, in recent years, the neural networks for deep learning are becoming more complex. For

example, Table 1-1 summarizes the state-of-the-art convolutional neural networks (CNN) [102]-

[107] in the ImageNet Large Scale Visual Recognition Challenge, a data competition to classify

millions of images into 1000 categories [108]. As can be seen, while the classification accuracy

25

has been improved significantly over the years, the CNN architectures are also growing deeper

and deeper, with tens of millions of learnable parameters to train and billions of numeric operations

(multiplications and additions) to make one prediction [109]. Transforming a deep neural network

with a complex structure into a BNN, or any other type of PNN, by assigning distributions to its

parameters to do uncertainty modeling is still challenging with the existing approaches because

the high fidelity and high efficiency could not be achieved in a unitive way.

Table 1-1 Summary of benchmark CNNs for the ImageNet challenge

Name Year Top-5 error Layers Parameters

(Millions)

Operations per prediction

(Billions) [110]

Alexnet [102] 2012 16.4% 8 61 0.72

Vgg-19 [103] 2014 7.4% 19 144 19.6

GoogleNet [104] 2014 6.7% 22 7 1.58

Resnet-101 [105] 2015 3.6% 101 45 7.6

Squeezenet [106] 2016 14.7% 18 1.23 0.39

Inception-Resnet [107] 2016 3.1% 164 56 13.2

Therefore, a new probabilistic neural network that can be trained and implemented in a

manner similar to the classical networks without invoking any computationally intensive method

for approximate uncertainty inference should be developed. Especially, if the adaptive Gaussian

mixture scheme mentioned at the end of section 1.3.1 is realized, the new network will be able to

accurately and efficiently quantify the arbitrary probability distributions of its inputs, parameters,

intermediate-layer states, and output predictions, which is a capacity that has never be owned by

the existing PNN schemes.

1.3.4 Monitoring of Manufacturing Processes using Data-driven Approaches

The condition monitoring of manufacturing processes is considered as the main application

field in this study to implement the probabilistic neural networks because uncertainty analysis is

critical for the monitoring systems. Since there are so many manufacturing processes that an

exhaustive review of their condition monitoring schemes is impossible, only two representative

applications, i.e., tool condition monitoring in machining processes and quality monitoring of

laser-based additive manufacturing processes will be reviewed here. These two applications bear

common characteristics with other monitoring tasks, and the conclusions drawn from the review

26

of these two applications will also hold for other processes and conditions.

1.3.4.1 Tool condition monitoring of machining processes

Tool condition monitoring in machining processes is one of the most widely investigated

subjects in manufacturing process monitoring owing to the long history and widespread use of

machining operations in the industry. A significant amount of research effort has been made in

tool condition monitoring over the past several decades [111][112]. Among the various monitoring

schemes investigated, tool wear monitoring has gained great interest [113] as tool wear is

unavoidable during machining and might negatively impact product quality [114][115]. Thus,

knowing the tool wear condition allows for scheduling timely tool changes prior to adverse

situations. While tool wear can be measured directly by digital cameras, the direct measurements

can only be conducted intermittently when the cutting tool is not engaged with the workpiece.

Therefore, the indirect methods, which continuously sense in-process measurable signals and infer

the tool wear status using data-driven artificial intelligence models, are more suitable for real-time

monitoring [113].

Measurable quantities during machining operation include cutting force [116]-[118],

vibration [119]-[122], acoustic emission [123]-[125], and spindle power [126][127], all of which

contain potentially useful information for indirect tool wear monitoring. From the raw measured

data, signal features can be extracted in the time-domain [116][118][126][127], frequency-domain

[119][120], and/or time-frequency (wavelet) domain [119][128][129]. To predict tool wear, many

of these signal features can be combined to achieve a more reliable prediction in a scheme referred

to as ‘sensor fusion’ [111][130]. However, not every signal feature correlates to tool wear, and

instead, a subset of features that best predicts tool wear needs to be selected. Features can be

selected by ranking the features based on some criterion independent of the model to eliminate the

low-ranking features [116][118] or by using techniques like principal component analysis (PCA)

[129][131]. These model-independent feature selections are computationally efficient and scalable

to large candidate feature pools, though the performance of subsequent tool wear models may not

be optimized. In contrast, features can also be selected by considering the tool wear model using

a wrapper or embedded approach [132]. In a wrapper approach, the model is treated as a black box

to search the optimal feature subset that minimizes the model prediction error [133]. In an

embedded approach, a scaling factor is added for each candidate feature to indicate its relative

27

importance and the factors are optimized during model training [134]. For model-dependent

methods, the size of the candidate feature pool should be relatively small; otherwise, a large

quantity of training data is required and the model training will be slow due to the curse of

dimensionality [140]. Hence, to find useful features a feature selection scheme that takes advantage

of both model-dependent and model-independent feature selections is highly desirable but not

found in the available literature.

Taking selected signal features as inputs, a predictive model can be established and must be

capable of estimating tool wear in real-time. To build the predictive model, data-driven machine

learning techniques are used for training from experimental data so that an in-depth understanding

of system physical behaviors is not a prerequisite [144]. Examples of machine learning techniques

which have been successfully applied to tool wear monitoring include artificial neural networks

[113][116][135][136], fuzzy systems [124][137], neuro-fuzzy systems [138][139], support vector

machines [118][140], hidden Markov models [141][142], Gaussian mixture models [143], random

forests [144] and belief network [145]. These models are mostly constructed as predictive feature-

wear mappings for the regression of progressive tool wear growth or classification of tool wear

stage (e.g., sharp, workable, and dull). However, the robustness under uncertainty was not

sufficiently considered in these studies although it is vital for the reliability of the monitoring

systems.

Considerable uncertainties have been observed in the machining process and reproducibility

of wear data is difficult due to many factors, such as variations of material properties, application

of cutting fluid, environmental noises, and tool wear measurement errors. Addressing uncertainty

in tool wear monitoring with probabilistic models emerged in recent years. Karandikar et al. (2014)

used Bayesian updating with discrete grid and Markov Chain Monte Carlo (MCMC) methods to

predict the probability distribution of tool life by estimating the constants in the Taylor tool life

equation considering parameter uncertainty [146][147]. Akhavan et al. [148] also presented an

MCMC-based probabilistic approach to learn the parameters in a tool wear mechanics model with

uncertainty term using Bayes’ rule. Tracking the progressive development of tool wear with

uncertainty intervals has also been studied. Ren et al. [149] used the type-2 fuzzy system to predict

tool wear with uncertainty bounds. By formulating state-space models to describe the tool wear

dynamics and using measurable features such as the RMS of vibration signals as observation

variables, the tool wear could be estimated using extended Kalman filter [150] and particle filter

28

[151][152]. Especially, the particle filter also enabled the use of Gaussian mixtures to approximate

the non-Gaussian initial uncertainty of a process [153]. Akhavan et al. [154] combined the

Bayesian-based parameter estimation with an extended Kalman filter to minimize the amount of

data required for building the tool wear model for a difficult-to-machine material. Kong et al. [155]

trained the support vector regression model as a probabilistic model to predict tool wear with

confidence intervals. Though it has been proved that reporting the tool wear in an interval form

gives more reliable results than crisp-value predictions [151], these proposed methods are still not

able to consider the variance of cutting tools, workpiece materials, and cutting conditions.

In addition, deep learning techniques have also been introduced to tool wear monitoring in

recent two years. Signal “images” were constructed by stacking signal data from multiple sensors

[156] or by decomposing signals into the time-frequency domain using wavelet transform [157].

Then convolutional neural networks were trained to predict tool wear directly from signal data

without explicit feature extraction [156]-[159]. However, the applications of deep learning on tool

wear monitoring are still preliminary studies and the performance achieved is not superior to those

by conventional machine learning techniques, probably because based on the existing signal

processing techniques, all the information embedded in a signal can be fully revealed and hence

the explicit feature extraction will be sufficient for signal-based tool wear monitoring. Other than

tool wear, the detections of chatter [160]-[163] and tool breakage [164][165] have also been

studied for the monitoring of machining processes. Since these failures will result in distinct signal

patterns upon occurrence, rather than the gradual signal changes due to tool wear, their detections

should be relatively easier than tool wear monitoring, and thus will not be considered in this work.

It can be concluded from the above review that the tool wear monitoring systems have only

achieved limited success in the industry mainly due to: 1) the insufficient generalizability to the

cutting tools, workpiece materials and cutting conditions different from those in the training data,

2) the absence of systematic selection of optimal feature sets; 3) the insufficient consideration of

uncertainties in the complicated machining environment. All these issues, in particular the last one,

will be addressed in this study.

1.3.4.2 Quality monitoring of additive manufacturing processes

Given that additive manufacturing (AM) is widely used in fabricating metallic components,

there have been numerous research efforts that address the monitoring of AM processes for quality

29

assurance [35][36]. Laser-based AM of metallic parts requires high laser power intensity at the

laser-material interaction area, which prevents the use of traditional contact sensors. Therefore,

non-contact sensors are mostly used to collect high-dimensional process data with spatial-temporal

patterns. The melt-pool monitoring appears to be the most prevalent monitoring paradigm because

of its suitability for online measurement. Sensing the thermographic and morphological

information of melt pool by instrumenting laser AM systems with sensors might date back to the

1990s [166][167] and has been consistently pursued [168]-[170]. The melt-pool radiation intensity,

temperature, and geometry (e.g. area, length, or width) could be measured by a photodetector, an

infrared (IR) thermal camera, or a high-speed vision camera, and then used to predict a variety of

quality attributes, such as layer thickness [171], thermal deformation [172], build condition [173]

and particularly porosity.

For porosity monitoring, Krauss et al. [171] found that a bossing pattern in the irradiance

signal is indicative of sublayer cavities (>100 µm). Barua et al. [174] used the deviation of melt-

pool temperature gradient from a reference defect-free cooling curve to predict defects like crack

or porosity. Clijsters et al. [175] mapped the melt-pool area data to 3-D positions on the specimen

and then used a thresholding method to locate pores larger than 100 µm. Mireles et al. [176] also

used a thresholding method on the temperature obtained from IR images to detect pores (600~900

μm). Zenzinger et al. [177] presented an optical tomography method to construct a 3-D mapping

of possible structural defects by recording the hot and cold spots of melt-pool radiation. Toeppel

et al. [178] demonstrated a commercial monitoring system called QM Meltpool 3D, which can

detect pores larger than 1/10 mm using an IR camera and a photodetector. Another monitoring

module called ThermaViz was demonstrated in [179] for melt-pool temperature and size

measurement using a pyrometer and an IR sensor. Khanzadeh et al. processed the data from the

ThermaViz system using unsupervised learning methods such as multilinear principal component

analysis (MPCA) [180] and self-organizing map (SOM) [181] for automatic feature extraction.

The former achieved a defect-detection accuracy of 90.97%, while the latter achieved a detection

accuracy of 96.07% for pores ranging from 0.05 to 0.93 mm, but the SOM method was validated

only on a single data set. As can be seen, the porosity monitoring schemes in the literature are

mostly addressing large porosity defects above 100 μm.

Other than melt-pool-based porosity monitoring, Zhang et al. [182] investigated the track

width classification using melt-pool data and achieved an accuracy of 90.1% by a support vector

30

machine (SVM) with artificially defined features and 92.8% by a convolutional neural network

(CNN) with automatically learned features. Gao et al. [183] presented a two-camera scheme for

droplet transition and keyhole status monitoring using FFT-based image denoising and statistical

feature extraction. Xiong et al. [184] used two cameras (top-view and side-view) focused behind

the melt pool to measure track width and height. Slotwinski et al. [185] developed an ultrasonic

sensor for off-line porosity measurement. Rieder et al. [186] developed an ultrasonic setup for on-

line measurement of track height. Zhang et al. [187] presented an in-situ surface topography

measurement method using fringe projection. DePond et al. [188] presented an optical coherence

tomography method for in-situ measurement of layer surface roughness. In general, the non-melt-

pool monitoring schemes are less suitable for in-process metrology due to the intervention of the

process laser beam and melt-pool radiations.

Furthermore, the in-process quality monitoring of laser welding has been investigated. The

laser welding process is governed by similar melt-pool physics as laser AM processes and hence

its monitoring methods will also be valuable for the laser AM. Ancona et al. [189] found that the

mean and standard deviation of plasma’s electron temperature calculated from spectrometer data

has a correlation to weld defects like lack of penetration and weld disruptions. Nicolosi et al. [190]

described a camera-based full penetration extraction method using cellular neural network. Kim

et al. [191] presented a keyhole area estimation method based on coaxial image sensing. You et al.

found that with the fusion of photodiode and camera data, it was possible to classify sound and

defective weldings [192]. By using the wavelet packet decomposition and principal component

analysis for feature extraction, neural networks and support vector machines were then built to

detect defects like blowouts and undercut, which achieved an accuracy of 81.34% [193]. Luo et

al. [194] developed a coaxial camera setup for weld-pool boundary extraction and keyhole size

measurement, and with the use of a radial basis function network, it was possible to predict the

keyhole penetration depth and inclination angle. A correlation between porosity and keyhole size

was also observed, which revealed that the coaxial images could be potentially used for porosity

prediction [195]. Xu et al. [196] have also found that the large fluctuation of keyhole was

responsible for the pore formation. However, an in-process porosity monitoring scheme for laser

welding hasn’t been developed in the literature.

Based on in-process data sensing, the closed-loop control of laser AM processes has also

become an area of interest. Via building an empirical [197][198] or physics-based [199] model

31

between the melt-pool temperature and controllable process parameters, mainly the laser power,

PID [189], internal-model-principle [197], model predictive control [198] and feedback

linearization [199] controllers can be designed to maintain the melt-pool temperature at a constant

level. Closed-loop control has also been used to regulate the melt-pool height [199] and width

[200]. Besides, the microstructures in deposited materials can also be controlled indirectly, via

regulation of melt-pool size [201] and cooling rate [202].

It can be learned from the above review that: 1) even in the latest monitoring works, the

quality attributes that can be surveilled are still the deposition geometry like height and width,

indirect attributes like melt-pool temperature and size, and large interior defects like cavities and

porosities over 100 µm, but the detection of pores smaller than 100 µm is still not available; 2) the

features used for monitoring are still mostly conventional melt-pool features like area, aspect ratio

and temperature gradient; the automatic feature learning techniques, such as SOM and CNN, have

only been adopted in recent years; 3) Because of the lack of reliable monitoring schemes to detect

interior quality defects, the process control schemes are mostly indirect schemes designed to

maintain a constant melt-pool size or temperature, instead of directly correct defects and assure

satisfactory product quality.

Therefore, a process monitoring scheme that could reliably detect interior defects like micro

porosity needs to be developed, as such a scheme may enable direct process control for quality

assurance. The deep learning models that can automatically learn suitable melt-pool patterns from

data are the most promising solution to achieve this goal. However, the porosity may only produce

a limited impact on the melt pool, and the accurate post-process measurement of porosity is

difficult. Consequently, both the input (melt-pool images) and output (porosity measured from

fabricated specimens) data to train the deep learning model may be corrupted by noises, and

uncertainty analysis is essential for the monitoring scheme, which can be potentially solved by the

probabilistic neural network discussed in section 1.3.3.

1.4 Research Objectives

This study aims to develop an innovative uncertainty analysis scheme for neural networks

and explore its application on practical problems like manufacturing process monitoring. To

achieve this goal, the study will be carried out with the following breakdown tasks:

I. An adaptive Gaussian mixture scheme for nonlinear uncertainty propagation in neural

32

networks will be developed first as the foundation of all the following works. To achieve

high-fidelity uncertainty propagation, a new nonlinearity assessment criterion customized

for the commonly used activation functions and a set of high-precision splitting schemes

to refine Gaussian distributions will be established.

II. An adaptive Gaussian mixture filter for Bayesian state estimation will be designed. By

modeling the nonlinear system dynamics with a neural network, the adaptive Gaussian

mixture scheme will be extended to refine the estimated state distributions at both the

prediction and measurement update stages of Bayesian filtering. A quantitative analysis of

the state estimation error will also be provided.

III. A probabilistic neural network with Gaussian mixture distributions of parameters will be

developed. Based on adaptive layer-wise refinement of Gaussian mixtures, the analytical

inference of predictive distributions will be derived and the gradients for backpropagation

training will be formulated. This probabilistic network will be benchmarked against the

state-of-the-art methods in the literature.

IV. Application of the proposed probabilistic neural network will be made on the condition

monitoring of manufacturing processes.

a. A tool wear monitoring system for the turning process will be developed based on

features extracted from sensor signals. The predictive tool wear model built with

the new probabilistic network will be compared with the model trained using a

classical network with interval-type uncertainty.

b. A porosity monitoring system for the laser additive manufacturing process will be

developed using deep learning to directly learn features from raw camera image

data. The porosity prediction performances of convolutional neural networks with

and without incorporating the probabilistic network module will be compared.

In brief, the core of this study will be the adaptive Gaussian mixture scheme and the final

outcome will be a unitive set of data-driven uncertainty analysis tools for uncertainty propagation,

Bayesian filtering and probabilistic network modeling, with demonstrated successes on

manufacturing applications.

1.5 Dissertation Outline

The research objectives listed above have been pursued progressively. This dissertation

33

demonstrates the accomplished research with the following six chapters:

Chapter 1 Introduction:

This chapter briefs the background and motivation of this study. The necessity of data-driven

uncertainty analysis for neural networks and its importance on the condition monitoring of

manufacturing processes are highlighted. A brief literature review of relevant topics, including

nonlinear uncertainty propagation, nonlinear Bayesian filtering, probabilistic neural network

modeling and manufacturing process monitoring, is provided to identify the challenges that have

not been sufficiently addressed and position our research proposals with respect to the existing

works. A breakdown of research objectives is also outlined.

Chapter 2 Adaptive nonlinear uncertainty propagation in neural networks:

In this chapter, a Gaussian-mixture-based uncertainty propagation scheme is developed. The

propagation of uncertainty through a network’s nonlinear layers is usually a bottleneck because

the existing techniques designed to transmit Gaussian distributions via moment estimation are not

capable of predicting non-Gaussian distributions. Given that any input uncertainty can be

characterized as a Gaussian mixture with a finite number of components, the developed scheme

actively examines each mixture component and adaptively splits those whose representation

fidelity of uncertainty might be deteriorated by the network’s nonlinear activation layer. A novel

Kullback–Leibler nonlinearity detection criterion is derived to trigger splitting. Five nonlinear

uncertainty propagation examples are presented, in all of which the developed scheme exhibits a

high fidelity and efficiency in predicting the evolution of non-Gaussian distributions through

recurrent and multi-layer neural networks.

Chapter 3 Adaptive Gaussian mixture filter for nonlinear state estimation:

In this chapter, an adaptive Gaussian mixture filter is developed. The state estimation of

highly nonlinear dynamic systems is difficult because the probability distribution of their states

can be highly non-Gaussian. To address this problem, the adaptive Gaussian mixture scheme in

Chapter 2 is extended to the filter proposed in this chapter, so that the Gaussian mixture models

can be refined based on the system’s local severity of nonlinearity to achieve a high-fidelity

estimation of the state distribution. Nonlinearity assessment criteria are designed to trigger the

splitting of Gaussian components at both the prediction and update stages of Bayesian filtering

34

and the error bound of estimated state distribution is established. The new filter is benchmarked

against the existing methods on multiple challenging problems and it consistently offers among-

the-best accuracy with a rational computational cost, which proves that it can be used as a reliable

state estimator for highly nonlinear systems subject to high magnitudes of uncertainties.

Chapter 4 Probabilistic neural network for uncertainty prediction:

In this chapter, a probabilistic neural network with Gaussian-mixture distributed parameters

is developed. Modeling the uncertainty from data is an essential quest in the learning of neural

network models but has not been well addressed. The probabilistic network proposed in this

chapter provides an efficient and high-fidelity solution for learning multimodal uncertainties in

neural networks. The adaptive Gaussian mixture scheme from Chapter 2 is adopted to refine the

Gaussian mixture probability distributions and ensure the fidelity of uncertainty propagation in

both linear and nonlinear transformations through the network. As its predictive distribution can

be inferred analytically, this probabilistic network can be trained efficiently via backpropagation

based on any gradient descent algorithm. The proposed network achieves a state-of-the-art

performance when benchmarked on a series of public datasets.

Chapter 5 Application on condition monitoring of manufacturing processes:

This chapter describes the applications of the probabilistic neural network in Chapter 4 on

two manufacturing process monitoring schemes. First, a tool wear monitoring scheme for turning

processes is developed. A systematic feature normalization and selection procedure is proposed to

eliminate the features’ dependence on cutting conditions, cutting tools and work materials and

select the features that have the best performance in predicting tool wear. Two tool wear models

are trained, one using a type-2 fuzzy network for interval uncertainty quantification and the other

using the network proposed in Chapter 4 for probabilistic uncertainty quantification. Secondly, a

porosity monitoring scheme for laser AM processes is developed. A High-speed digital camera is

mounted coaxially to the process laser beam for in-process melt-pool sensing and convolutional

neural network models are designed to directly learn melt-pool features to predict the porosity

attributes. The classical CNN models without uncertainty quantification are compared with the

CNN models in which the probabilistic network is incorporated as an uncertainty quantification

module. Experimental results show that for both monitoring schemes, the probabilistic network

35

not only achieves higher prediction accuracies of process conditions than the classical models but

also provides more effective uncertainty quantification to facilitate the process-level decision

making and intervention in the manufacturing environment.

Chapter 6 Conclusions and Future Work:

This chapter summarizes all the works in the preceding chapters. Some directions for future

studies based on the accomplished works are suggested. The adaptive Gaussian mixture filter can

be combined with feedback controller design to regulate closed-loop systems. The filter may also

be extended from state estimation to parameter estimation problems in data-driven models. In

addition, the probabilistic neural network framework, though mainly formulated for multi-layer

feedforward neural networks in this study, may be extended to more complicated models like

convolutional or recurrent neural networks.

36

2. ADAPTIVE NONLINEAR UNCERTAINTY PROPAGATION IN

NEURAL NETWORKS

This chapter aims to develop an adaptive Gaussian mixture scheme for high-fidelity and

computationally efficient uncertainty propagation in neural networks. A criterion for nonlinearity

detection is designed by using the properties of activation functions to simplify the computation

so that a Gaussian mixture can be propagated through a nonlinear activation function layer with

the adaptive splitting operation triggered for each component only when the level of nonlinearity

deteriorates fidelity. The developed scheme is validated on three examples of nonlinear dynamic

systems and two data-driven examples, in all of which a high fidelity in forecasting non-Gaussian

probability distributions is achieved with satisfactory computational efficiency. This adaptive

Gaussian mixture scheme will be fundamental to the subsequent works.

2.1 Problem Formulation and Preliminaries

This chapter is to design an uncertainty propagation scheme so that the probability density

function (PDF) of a neural network’s states passing through a nonlinear activation layer can be

accurately predicted as a compact Gaussian mixture model. Then by using the neural network as

a function approximator and the Gaussian mixture as a PDF approximator, the Gaussian mixture

mapping can be applied repetitively to address a wide range of uncertainty propagation problems,

such as the temporal uncertainty evolution in recurrent neural networks and layer-wise uncertainty

propagation in a deep neural network. For simplicity and without loss of generality, the

formulation in this chapter starts from the two-layer feedforward neural network, which could

approximate any nonlinear functions given a sufficient number of hidden nodes [203]. A

feedforward neural network with m input, n output, and k hidden nodes can be expressed as:

 ()2 1 1 2= + +y W f W x b b (2.1)

where mx is the vector of input variables, ny is the vector of output variables,

1

k mW and
1

kb are the weight and bias in the hidden layer,
2

n kW and
2

nb are

the weight and bias in the output layer and f is the activation function. Assume that the input x is

subject to uncertainty whose PDF can be represented by a Gaussian mixture:

37

() ()

() ()
() ()

() ()

1 1

1

 with 1

1 1
| , exp

22 det

M M
i i i

i i

T
i i i i i i

m i

p w p w

p



= =

−

= =

 
= = − − − 

 

 x x x

x x x x x x

x

x x

x x μ Σ x μ Σ x μ

Σ

N
 (2.2)

where M is the number of components,  0,1iw 
x

 and ()ip x are the weight and density of the i-

th component, and i m
x
μ and i m m

x
Σ are the mean and covariance of the i-th component,

respectively. Given a sufficient number of components, a Gaussian mixture can be trained using

the expectation-maximization algorithm to approximate any general non-Gaussian PDFs [54].

To propagate uncertainty through the network, a linear transformation will be first applied to

map the input PDF p(x) to the PDF of pre-activation states p(z):

() ()

1 1

1 1

1 1 1

| ,

i i

i iM
i i i

i i T
i

w w

p w
=

 == +


 = +
= 

=


z x

z x

z z z

z x

z W x b

μ Wμ b
z z μ Σ

Σ WΣ W
N

 (2.3)

where kz is the vector of the network’s states before activation function. Similarly, the PDF

of post-activation states p(s) can be mapped to the output PDF as

() () ()

() ()

1

2 2

2 2

1
2 2

| ,

| ,

N
i i i

i

i i

i iN
i i i

i i T
i

p w

w w

p w

=

=

= =

 == +


 = +
= 

=





s s s

y s

y s

y y y

y s

s f z s s μ Σ

y W s b

μ W μ b
y y μ Σ

Σ W Σ W

N

N

 (2.4)

where ks is the vector of states after activation function and N is the number of components

in the post-activation mixture. In both mappings, the linear transformation of Gaussian variables

is utilized to propagate the mean and covariance of each Gaussian component, while the weight

and number of components are invariant. Despite this, the nonlinear PDF mapping from pre-

activation states to post-activation states is typically the bottleneck:

 () () () () ()
1 1

| , | ,
M N

i i i i i i

i i

p w p w
=

= =

= ⎯⎯⎯→ = 
s f z

z z z s s s
z z μ Σ s s μ ΣN N

In general, a pre-activation Gaussian PDF will become non-Gaussian after transformation by

a nonlinear activation function. If the function is monotonic and differentiable, then the non-

Gaussian PDF of post-activation states can be expressed as [204]:

38

 () ()
d

p p
d

=
z

s z
s

 (2.5)

where | | denotes the matrix determinant. For example, a Gaussian variable transformed with the

logistic function will have a logit-norm distribution, which may be skewed or multimodal and

doesn’t have analytical solutions of mean and covariance [205]. This type of transform is only

suitable for propagating the uncertainty once because the PDF is not maintained in Gaussian form

and thus it is not as tractable as a Gaussian mixture for moment extraction and repetitive

propagations in the following layers. Therefore, the goal of our uncertainty propagation scheme is

to find a Gaussian mixture parameter set  , ,i i iw
s s s
μ Σ to approximate the post-activation PDF in

Eq. (2.5). In this work, the approximation quality is assessed by the Kullback–Leibler (KL)

divergence, which is a commonly used measure of the difference between two PDFs [206]:

 () ()
()

()
ˆ|| log

ˆ
KL

p
D p p p d

p



−
= 

s
s s

s
 (2.6)

where ()p s is the true post-activation PDF and ()p̂ s is its Gaussian mixture approximation. The

KL divergence is always non-negative and converges to zero only if the approximating PDF equals

the true one, i.e., () ()p̂ p=s s .

Propagating each Gaussian component using local linearization or unscented transform (UT)

while assuming the weights and number of components to be invariant could not attain accurate

results except when all the covariances are infinitesimal [57]. Therefore, the idea in this work is to

recursively split each Gaussian component in the pre-activation mixture until the covariances of

all the components become small enough so that the activation function is nearly linear in their

spans and their post-activation PDFs are nearly Gaussian. To facilitate this splitting scheme, the

activation functions are assumed to be piecewise differentiable and monotonic, so that the true

post-activation PDF can be derived using Eq. (2.5) to assess its proximity to a Gaussian PDF.

Moreover, only the single fold activation functions are considered so that its Jacobian matrix is

always diagonal and the determinant in Eq. (2.5) can be simplified as
1

k

i ii
d d dz ds

=
=z s .

Most of the activation functions in neural networks satisfy all these assumptions, though some

functions such as softmax and radial basis function have to be excluded. Four activation functions

that are most frequently used in neural networks and their derivatives (for computing the Jacobian

matrix) are listed in Table 2-1, which include the logistic function, hyperbolic tangent function

39

(tanh), rectified linear unit (ReLU) and leaky ReLU. The graphs of the functions and their

transformed PDFs from Gaussian distribution input are shown in Figure 2-1. As can been seen,

the post-activation PDF can be highly non-Gaussian and hence a high-fidelity Gaussian mixture

approximation method needs to be derived, as discussed in the next section.

Table 2-1 Activation functions considered in this work

 Logistic Tanh ReLU Leaky ReLU

()f x

1

1 xe−+

x x

x x

e e

e e

−

−

−

+

0 0

 0

x

x x






 0, 0 1

 0

cx x c

x x

 




()'f x

() ()()1f x f x−
 ()

2
1 f x−

0 0

1 0

x

x






 0

1 0

c x

x






Figure 2-1 Activation functions and their transforms of Gaussian distributions

1st row: graphs of functions, 2nd row: transformed PDFs of a Gaussian input N (x|0,1), 3rd row:

transformed PDFs of a Gaussian input N (x|1,1)

2.2 Methodologies

To establish the adaptive Gaussian mixture scheme for nonlinear uncertainty propagation in

neural networks, a nonlinearity detection criterion is proposed first to examine whether a pre-

activation Gaussian mixture component will be significantly distorted by the nonlinear activation

function. If yes, the detected component will be split into narrower sub-components until the level

of nonlinearity will not deteriorate the Gaussian propagation fidelity. Finally, a Gaussian mixture

40

reduction method is applied to reduce the number of post-activation mixture components. The

algorithm details are elaborated in the following subsections.

2.2.1 A Kullback–Leibler Criterion for Nonlinearity Detection

In a neural network, if the pre-activation PDF before a nonlinear activation layer is given as

an M-component Gaussian mixture, the true post-activation PDF can be derived using Eq. (2.5) as

() ()
1

M i i

i
p w p

=
= s

s s . By applying a certain propagation method to each Gaussian component, an

approximating PDF can be obtained as () ()
1

ˆ ˆ
M i i

i
p w p

=
= s

s s . Substitute ()p s and ()p̂ s into Eq.

(2.6), although the KL divergence doesn’t have an analytical solution [206], an upper bound can

be found using the log sum inequality (
1

log log
n

i
i

i i

aa
a a

b b=

 with
1

n

i

i

a a
=

= and
1

n

i

i

b b
=

=):

() ()
()

()

()
()

()

()

1

1

1

1

1

ˆ|| log

ˆ

log
ˆ

ˆ||

M
i i

M
i i i

KL M
i ii

i

i iM
i i

i i
i

M
i i i

KL

i

w p

D p p w p d

w p

w p
w p d

w p

w D p p


=

−
=

=



−
=

=

=



=






 



s

s

s

s

s

s

s

s

s s

s

s
s s

s
 (2.7)

An upper bound of the overall KL divergence between two mixture PDFs is the weighted

sum of the divergence between each component pair. Therefore, a practical strategy to minimize

the overall KL divergence is to minimize the divergences of each pair. If the covariance of the i-

th Gaussian component is so small that the activation function is almost linear within its span, then

the true transformed density pi will be nearly Gaussian and its approximation ˆ ip via linearization

should be sufficient to achieve a small KL divergence. Hence, the KL divergence between the true

transformed PDF and its approximation via linearization is a measure of how much a Gaussian

PDF will be distorted by the nonlinearity of activation function and will be used as the criterion to

examine whether a Gaussian distribution needs to be split.

To formulate the KL-divergence-based nonlinearity criterion, a single Gaussian distribution

is considered as the pre-activation PDF, such that:

41

() ()  
()

() () () ()

() ()
()

()
()()

() ()

() ()() ()

1

1 2

1 2

1

1

| , , , ,

The true transform

 , , ,

 | ,

The local linearization

ˆ | ,

T

k

T

k

T

p z z z

f z f z f z

dd
p p

d d

d
p

d

−

=

−

−

=

 + −

=

= =

⎯⎯⎯→

= =   

 
= = 
 

⎯⎯⎯⎯⎯→

 
= =  

 

s f z

z f s

s f μ A z μ

z μ

z z μ Σ z

s f z

f sz
s z f s μ Σ

s s

f z
s s f μ AΣA A

z

N

N

N

 (2.8)

where f −1 denotes the inverse of function and k is the dimension of vectors z and s. Substitute the

()p s and ()p̂ s in Eq. (2.8) into Eq. (2.6), the KL divergence for nonlinearity detection of a single

Gaussian distribution, after the derivation detailed in Appendix A, can be expressed as:

() ()
()

()

()() () ()()

() () () () ()() () ()()

1 1

,
1 1

ˆ|| log
ˆ

log ' log '
2

1

2 ' '

i

i j

KL

k k

i ip z
i i

k k
ij

i i j jp z z
i j i j

p
D p p p d

p

k
f E f z

c
E f z f f z f

f f



 
 



−

= =

= =

=

 = − + −  

 
  + − −
  

 



 



s
s s

s

 (2.9)

where cij is the element in the i-th row and j-th column in the inverse of covariance matrix Σ−1 and

Ep denotes the expectation with respect to the probability distribution p. In Eq. (2.9), the last two

terms involve a set of 1-D and 2-D expectation integrals, which can be estimated by the unscented

transform (UT) with an accuracy to the second-order Tayler expansion. The UT method might be

less accurate when the covariance is large and the higher-order expansion terms are significant.

However, the Eq. (2.9) is only used to determine whether a Gaussian PDF needs to be split, while

it would not directly affect the uncertainty propagation accuracy. Moreover, the main computation

cost of UT, i.e., the singular value decomposition, concurs with the Gaussian splitting scheme that

will be discussed later. In many works regarding uncertainty propagation in neural networks, the

pre-activation states are assumed to be uncorrelated, so that the covariance matrix is diagonal and

the expectation integrals can be decoupled as a series of independent 1-D integrals [15][46][97].

However, such an assumption may not always hold. For example, even if a diagonal covariance

Σx is assigned to the network input x, after transformation by the linear layer using Eq. (2.3), the

42

pre-activation covariance Σz is in general not diagonal. Therefore, non-diagonal covariance

matrices are considered in this work.

For a Gaussian distribution N (z|µ, Σ), a set of weighted sigma points (2k+1 points for a k-

dimensional distribution) matching the first two moments can be generated in UT as [52]:

()

()

()

()

0

0

1, ,

1, , 2

1/ 2 / 1, , 2

i i

i i L

i

Z

Z k i k

Z k i k k

W k

W k i k





 



−

=

= + + =

= − + = +

= +

= + =

μ

μ P

μ P (2.10)

where the scaling parameter λ is typically selected as λ+k=3 for a Gaussian distribution, P is the

square root of the covariance matrix Σ= PPT and Pi denotes the i-th column of P. The sigma points

match the input moments as
2 1

0

k

i ii
W Z

+

=
= μ and ()()

2 1

0

k T

i i ii
W Z Z

+

=
− − = μ μ Σ . The square root

of covariance can be obtained using the singular value decomposition (SVD), which is equivalent

to the eigen-decomposition for a symmetric and positive definite covariance matrix:

  
1

1

1 1

T

k

k

T

k k





 

=

 
 

= =
 
  

 = =
 

Σ VΛV

V v v Λ

P v v Σ PP

 (2.11)

where v1, …, vk are the orthonormal singular vectors (eigenvectors) and λ1, …, λk are the singular

values (eigenvalues). Given this decomposition, the inverse of covariance matrix can be computed

as
1 1 T− −=Σ VΛ V without invoking the matrix inverse routine.

Using nonlinear transformation of the sigma points, the expectation integrals in Eq. (2.9) can

be estimated in vector form as:

 () ()() ()()
2

0
log ' log '

k

i ip i
E W Z

=
    z

f z f (2.12)

and in matrix form as

() () ()() () ()()

() ()() () ()()
2

0

T

p

Tk

i i ii

E

W Z Z
=

 − −
 

 − −

z
f z f μ f z f μ

f f μ f f μ

 (2.13)

43

Then by summing up all the vector elements, the 1-D expectation term can be obtained as:

 () ()() () ()() 
1

log ' sum log '
i

k

i pp z
i

E f z E
=

   =    z
f z (2.14)

and by summing up all the matrix elements, the 2-D expectation term can be obtained as:

 () () () () ()() () ()()

() () ()() () ()() ()() ()() 

,
1 1

1

' '

sum 1/ 1/

i j

k k
ij

i i j jp z z
i j i j

T T

p

c
E f z f f z f

f f

E

 
 = =

−

 
  − −
  

 

   = − −
   



z
f z f μ f z f μ Σ f μ f μ

 (2.15)

where denotes element-wise matrix multiplication.

The degenerate case: the above analysis is based on the assumption that the covariance

matrix is non-singular so that it is invertible and has k independent eigenvectors. Nevertheless,

singular covariance matrices could occur in neural networks. Assuming the covariance matrix Σ

has a rank of r (r<k), then the PDF is only supported on a r-dimensional subspace. In such a

degenerate case, the k/2 term in Eq. (2.9) should be replaced with r/2 since it comes from the

differential entropy and the entropy also degenerates. The inverse of covariance matrix can be

obtained using the truncated pseudoinverse approximation
1

1

r T

i i ii
−

=
Σ v v , where vi are the

singular vectors and λi are the non-zero singular values [207]. In this way, the KL divergence in

Eq. (2.9) could be estimated for a degenerated distribution on the r-dimensional subspace. A

primary cause of singular covariance in a neural network is because the number of inputs n is

typically less than the number of hidden nodes k. Even if the input x has a non-singular covariance

Σx, after the transformation in Eq. (2.3), the rank r of the pre-activation covariance Σz is at most n,

i.e., r ≤ n < k. In such a scenario, the SVD can be performed on the low-dimensional covariance

Σx instead of Σz for better computation efficiency.

Now the KL-divergence criterion to assess the level of nonlinearity has been established. For

a pre-activation Gaussian PDF, if its KL divergence in Eq. (2.9) is larger than a threshold, it will

be split into narrower ones as described in the next subsection.

44

2.2.2 Gaussian Splitting Scheme

To develop the Gaussian splitting scheme, the univariate Gaussian distribution is studied first

and then the scheme is extended to multivariate cases. A standard univariate Gaussian distribution

p(z) = N (z|0,1) could be approximated by a Gaussian mixture with P components as:

 () ()2

1

| ,
P

i i

i

p z w z  
=

= N (2.16)

where iw , i are the weights and means of mixture components and all the components share the

same standard deviation  . These Gaussian mixture parameters can be found by minimizing the

KL divergence between the standard Gaussian distribution and the approximating mixture as:

() ()()
, ,

1

ˆmin ||

subject to 1 0< 1

i i
KL

w

P

i

i

D p z p z P

w

 
 


=

+

= 

 (2.17)

where α is a scaling factor of the penalty term to enforce that with more components P, a more

aggressive splitting with smaller standard deviation should be adopted to reduce the magnitude of

uncertainty carried by each component. By setting α = 0.001 and using odd numbers of P with a

center component always located at the origin, the optimization in Eq. (2.17) was solved using the

genetic algorithm. The optimization results for three, five and seven components are summarized

in Table 2-2 and Figure 2-2.

Table 2-2 The splitting schemes for the standard Gaussian distribution

Number of components iw i  KLD

3
0.6364 0 0.7687

1.77×10-4

0.1818 ±1.0579 0.7687

5

0.4444 0 0.5654

2.34×10-4 0.2455 ±0.9332 0.5654

0.0323 ±1.9776 0.5654

7

0.3048 0 0.4389

3.56×10-4
0.2410 ±0.7056 0.4389

0.0948 ±1.4992 0.4389

0.0118 ±2.4601 0.4389

45

Figure 2-2 The splitting schemes for the standard Gaussian distribution

Solid bold: true distribution, dashed bold: Gaussian mixture approximation, dashed thin:

components

For a multivariate Gaussian distribution p(z) = N (z|µ, Σ), given that its covariance matrix has

been decomposed into singular vectors as in Eq. (2.11), a univariate splitting scheme can be

extended to split this multivariate distribution along a certain singular vector:

  2

1p j j j rdiag     = + = =μ μ v Σ VΛV Λ (2.18)

where λi and vi are the singular values and singular vectors, r is the rank of Σ, and j is the index

of the principal axis selected for splitting. In this work, the singular vector corresponding to the

largest singular value will be selected for splitting since this is the direction with the most

significant magnitude of uncertainty.

To show that the KL divergence of splitting a multivariate Gaussian distribution equals the

KL divergence of the univariate splitting scheme adopted, first consider a standard k-dimensional

Gaussian distribution with zero mean vector and identity covariance matrix p(x) = N (x|0, Ik). Since

the k variables are uncorrelated, the multivariate PDF is the product of k univariate PDFs, which

means a splitting on one dimension doesn’t affect the KL-divergence integrations on other

dimensions. Then by a change of variable, the standard Gaussian distribution can be transformed

to an arbitrary Gaussian distribution without altering the value of KL divergence integration. The

invariance of KL divergence under linear coordinate transformations makes the quality of

Gaussian distribution splitting consistent regardless of the mean and covariance.

46

2.2.3 Gaussian Mixture Propagation

If the pre-activation distribution in a neural network is characterized as a Gaussian mixture,

then the nonlinearity detection and Gaussian splitting methods discussed above can be applied to

each mixture component. For a Gaussian component, its KL-divergence measure of nonlinearity

in Eq. (2.9) is scaled by its weight w and then compared with a threshold thD. If the divergence is

larger than the threshold, i.e., ()ˆ ˆ||KL DwD p p th , a scheme in Table 2-2 will be used to split this

component. This comparison is made by considering the weight so that those components with

minor contributions to the overall PDF will be less likely to get involved in splitting. The new

components from splitting with weights
pww will be added to the mixture to replace the original

one. The split components share the same singular vectors and singular values inherited from the

original component except that the singular value selected for splitting has been scaled down.

Hence, the SVD doesn’t need to be repeated for any of the new split components.

The above process will be repeated until the KL divergences of all the components are less

than the threshold. Then all the components can be easily propagated through activation function

using the unscented transform (UT) with minor computation cost since the SVDs have already

been available for each component. For a pre-activation component () ()| ,i i i ip w=
z z z

z z μ ΣN , the

optimal post-activation Gaussian approximation that matches the first two moments can be

estimated using the UT as:

() ()

()
() ()

()
()() ()()

()() ()()

2

0

2

0

| ,

i

i

i i i i

i i

ki i i

j jp j

T
i i i

p

Tk i i i i i

j j jj

p w

w w

E W Z

E

W Z Z

=

=

=

=

=   

 = − −
  

 − −





s s s

s z

s z

s s sz

s s

s s μ Σ

μ f z f

Σ f z μ f z μ

f μ f μ

N

 (2.19)

where z and s are the pre-activation and post-activation state vectors, i is the index of the i-th

component, and Zj
i and Wj

i are the sigma points and weights. The algorithm of Gaussian mixture

propagation through a nonlinear activation layer is summarized below in Algorithm I.

47

Algorithm I: adaptive uncertainty propagation in a nonlinear activation layer

Input: the M-component pre-activation Gaussian mixture PDF () ()
1

| ,
M i i i

i
p w

=
= z z z

z z μ ΣN

 and the nonlinearity threshold thD

Nonlinearity Evaluation and Splitting

(1) For a component i, perform SVD its covariance matrix

(2) Use UT to calculate Eq. (2.12) ~ (2.15)

(3) Substitute Eq. (2.14) and (2.15) into Eq. (2.9) to get the KL divergence ()ˆ||i i

KLD p p

(4) If ()ˆ||i i i

KL Dw D p p th
z

, split this component using Eq. (2.18) with a scheme from Table

2-2. All the components from splitting have the same covariance.

(5) Repeat (1)-(4) for all the M components

(6) Repeat (2)-(5) for all the new components from splitting until there is no new splitting

Gaussian Mixture Propagation

(7) Use UT in Eq. (2.19) to estimate the post-activation PDF for each of the N components

after splitting (N>M)

Output: the post-activation PDF as an N-component mixture () ()
1

| ,
N i i i

i
p w

=
= s s s

s z μ ΣN

2.2.4 Gaussian Mixture Reduction

A problem that may arise from the splitting scheme in uncertainty propagation is that the

number of components will keep increasing though the actual probability density function is not

going to be infinitely complicated. Therefore, a Gaussian mixture reduction step is often used to

merge the components to maintain computational efficiency. There have been various Gaussian

mixture reduction methods in the literature, among which the Kullback-Leibler approach in [208]

is found to better preserve the PDF shapes and hence is adopted in this chapter.

A Gaussian mixture reduction algorithm successively selects a pair of components that are

close together and similar in shape and merges them into one component. Assuming that the two

components are parameterized by  , ,i i i ip w μ Σ and  ~ , ,j j j jp w μ Σ , the moment-preserving

merging of these two components  ~ , ,ij ij ij ijp w μ Σ is given as:

()()

()
2

ij i j

i i j j

ij

i j

T

i j i j i ji i j j

ij

i j i j

w w w

w w

w w

w ww w

w w w w

= +

+
=

+

− −+
= +

+ +

μ μ
μ

μ μ μ μΣ Σ
Σ

 (2.20)

48

where pij has the same weight, mean and covariance as the mixture of pi and pj. It may be intuitive

to select the pair of components with the least KL divergence for merging so that the PDF

misrepresentation can be minimized. Although this divergence does not have a closed-form

solution, an easy-to-compute upper bound of it has been derived by Runnalls [208] as:

 (),

1
log log log

2
i j i j ij i i j jB w w w w = + − −

 
Σ Σ Σ (2.21)

This upper bound is a conservative estimation of the PDF distortion caused by merging two

components. In the proposed uncertainty propagation scheme, a component pi will be paired with

each of the rest components and the one that yields the lowest bound Bi,j will be merged with pi, if

the bound is also lower than a threshold thB. The threshold is imposed to prevent a large mis-

representation from being introduced by the reduction. Given the symmetricity (Bi,j = Bj,i), an N-

component mixture needs a total of N(N−1)/2 bound evaluations in one reduction procedure, and

this procedure can be repeated until no upper bound evaluation drops below the threshold.

2.2.5 Preliminary Tests on Activation Functions

Before applying the established uncertainty propagation scheme onto neural networks, it was

first tested on some of the nonlinear activation functions to examine its fidelity in approximating

non-Gaussian post-activation PDFs. Figure 2-3 shows the transformation of a Gaussian

distribution by the hyperbolic tangent function (tanh). The true distribution appears to be highly

skewed due to the nonlinearity of tanh function and the Gaussian mixture obtained using the

proposed method approximated this distribution accurately with a KL divergence of 0.0020. Figure

2-4 (a) presents the transformation of a Gaussian distribution by ReLU function, which is the most

commonly used activation function in deep neural networks. On the negative half axis of ReLU, a

bias of 0.001 was added to the derivative to prevent the zero derivatives to make the logarithm

terms in Eq. (2.9) become infinity. As can be seen, the proposed method successfully predicted

the post-activation PDF, including both the Dirac delta distribution part lumped at 0 and the

truncated Gaussian part on the positive half axis. The transformation of the same Gaussian

distribution by a leaky ReLU function is also shown in Figure 2-4 (b), for which the proposed

method attained a level of fidelity similar to the ReLU transformation.

49

Figure 2-3 Approximation of a univariate skewed distribution from a tanh function

Input Gaussian: μ = 0.25, σ2 =1; Threshold: thD = 0.01, thB = 0.001; 7-component splitting

Results: number of components: 29, KL divergence: 0.0020, computation time: 1.6ms

(a) ReLU (b) Leaky ReLU (c=0.1)

Figure 2-4 Approximation of multimodal distributions from a ReLU and a Leaky ReLU function

Input Gaussian: μ = 1, σ2 = 1; Threshold: thD = 0.001, thB = 0.001; 7-component splitting

Results: (a) ReLU: number of components: 36, KL divergence: 0.0039, computation time: 1.7ms

(b) Leaky ReLU: number of components: 27, KL divergence: 0.0048, computation time: 1.6ms

Then in Figure 2-5, a 2-dimensional Gaussian distribution was propagated through the logistic

function, and the proposed method successfully constructed a Gaussian mixture that approximates

the distorted post-activation PDF with a KL divergence of 0.0037. In addition, the computation

time was at millisecond level in all the tests. Therefore, both the fidelity and computational

efficiency of the proposed Gaussian mixture scheme have been verified.

50

Figure 2-5 Approximation of a bivariate distorted distribution from a logistic function

Input Gaussian: μ = [0.5, 0.5]T, σ2 = [2.72, 0.80; 0.80, 0.32];

Threshold: thD = 0.001, thB = 0.001; 7-component splitting

Results: number of components: 77, KL divergence: 0.0025, computation time: 4ms

2.3 Application Examples

Upon the success in preliminary tests, the proposed scheme was applied to a series of

nonlinear uncertainty propagation problems to further prove its effectiveness for propagating

uncertainties through time in recurrent networks and layers in multilayer networks

2.3.1 Example I: A Noise-driven Nonlinear Damping Oscillator

The first application example is a noise-driven nonlinear damping oscillator. The equation of

motion of this damping system is given as:

 () ()2 2x x x x x x gG t + + + + = (2.22)

where β = −0.5, α = 0.5, g2 = 0.75 were selected for simulation and a Gaussian white noise G(t)

with a variance of 2 was added. To implement the proposed method, the dynamics of this system

need to be approximated by a neural network. By using a sampling interval of 0.05 seconds and a

simulation time of 10 seconds, 1000 data samples were collected from 5 simulations using Eq.

(2.22). Then a recurrent neural network (a two-layer network with output feedback) with 5 hidden

nodes was trained to approximate the system dynamics in the following form:

51

()

 

2 1 1 1 1 2,
T

T

k k k

T

k k k

G

x x

− −
 = + + 

=

x W f W x b b

x

 (2.23)

where xk,
kx and Gk are the oscillator position, velocity, and noise at time step k, respectively.

Such an oscillator has a stationary PDF that can be expressed as [209]:

 () () ()
2

2 2 2 2

2

1
, exp

2
p x x C x x x x

g
 

  = − + + +    
 (2.24)

where C is a normalization constant. The proposed uncertainty propagation method was applied

to the trained recurrent network to predict this stationary PDF. The network structure parameters

and uncertainty propagation parameters are summarized in Table 2-3. The initial uncertainty was

given as a Gaussian distribution with the mean at the origin and a diagonal covariance with

standard deviations of 0.1 for both the position and velocity.

Table 2-3 Network and uncertainty propagation parameters in the application examples

 Example I Example II Example III Example IV Example V

Input size

3

(1 external+2

feedback)

4

(all

feedback)

16

(4 external+12

feedback)

4

(all external)

784

(all external)

Output size 2 4 12 1 10

Number of

hidden layers

1 1 1 3 4

Number of

hidden nodes

5 20 50 20 ea. layer 200 ea. layer

Activation

function

Logistic Logistic Tanh Leaky ReLU ReLU

Nonlinearity

threshold thD

10-4 10-4 10-3 10-4 10-2

Splitting scheme 5 5 5 5 5

Reduction

threshold thB

10-3 N/A 10-2 10-3 10-1

After propagating uncertainty for 10 seconds, the PDF predicted by the proposed method and

the theoretical stationary PDF in Eq. (2.24) are compared in Figure 2-6. It can be seen that the

predicted Gaussian mixture correctly reconstructed the “volcano” shaped stationary PDF. In

addition, a Monte Carlo (MC) simulation with 10 million samples was also performed and the PDF

52

at t =10 second was extracted from the output histogram. The result predicted using the proposed

method, the MC result and the result in [57] using a quadratic programming approach were

compared in Table 2-4. As can be seen, the proposed method achieved the lowest KL divergence

and absolute error with respect to the true theoretical PDF, while its computation time was only

4% of the MC simulation time. Compared with the result in [57], the proposed method used many

fewer Gaussian mixture components (112 vs. 1000), while the absolute error was reduced

significantly by 75%. Since the proposed method outperformed the MC simulation when assessed

using the theoretical solution as the ground truth, it may be used as a reliable and efficient PDF

prediction scheme for the nonlinear damping systems without theoretical solutions, given that their

nonlinear damping dynamics can be approximated by neural networks.

Figure 2-6 Comparison of theoretical, MC and predicted PDFs for Example I

53

Table 2-4 Comparison of the results for uncertainty propagation Example I

 Number of

components

KL divergence

to the true

distribution

Absolute error

to the true

distribution

Computation

time

Proposed Method 112 0.0033 0.0477 2.1 sec

Monte Carlo 10 million (107) 0.0057 0.0760 ~ 52 sec

Method in [57] 1000 N/A 0.19 N/A

2.3.2 Example II: Low-earth-orbit Uncertainty Tracking

The second example is the uncertainty propagation in a low-earth-orbit tracking problem from

[61]. The equations of motion for an object’s position and velocity in the orbit plane are:

 () () () ()

() ()

3
2 2 2

,

3
2 2 2

,

1

2

1

2

r r x

r r y

x

x y

y
t t x x y h v v

x

y
y x y h v v

  

  

−

−

 
  
  
  = = − + −  
  
  
− + − 
 

x x (2.25)

where μ is the gravitational constant of the earth,
,r xv x y= + and

,r yv y x= − are the object’s

relative velocity with respect to the atmosphere, 2 2

, ,r r x r yv v v= + is the resultant velocity, ω is the

angular velocity of the earth, β is the object’s ballistic coefficient (β = 1.4 in this example), ρ is the

atmospheric density ()0 0exp sh h h = − −   with ρ0 = 3.614×10−13 kg/m3, h0 = 700 km and hs

= 88.667 km,
2 2

eh x y R= + − is the altitude of the orbit and Re is the radius of the earth. The

initial state uncertainty was assumed to be Gaussian with the mean on a circular orbit with an

altitude of 225 km starting from y = 0 and a diagonal covariance with standard deviations of 1.3

km in x position, 0.5 km in y position, 2.5 m/s in x velocity, and 5 m/s in y velocity.

A neural network with 20 hidden nodes was trained to approximate the orbit dynamics, i.e.,

the x to x mapping in Eq. (2.25), by collecting 3600 training samples from simulations of Eq.

(2.25). Then the neural network was implemented in a recurrent form with output feedback, and a

sampling time dt = 0.1 seconds was used to discretize the system using the Euler method:

()1 2 1 1 1 2

1 1

k k

k k k dt

− −

− −

= + +

= +

x W f W x b b

x x x
 (2.26)

54

The initial uncertainty was fed into the recurrent network for propagation using the proposed

method. The network structure and uncertainty propagation parameters are summarized in Table

2-3. Since there was no extra uncertainty (as the Gaussian white noise in Example I) added in each

time step, the Gaussian mixture reduction was turned off. A Monte Carlo simulation of 105 samples

was performed to estimate the ground truth distributions since there was no analytical solution for

this problem. The PDF contours predicted by the proposed method after one period of nominal

orbit (about 1.5 hours) are compared with MC samples in Figure 2-7 and the predicted position

PDF is compared with the histogram of MC samples in Figure 2-8. As can be seen, the Gaussian

mixture obtained using the proposed method correctly predicted the “banana” shaped PDF for both

position and velocity. The KL divergence of the predicted PDF with respect to the PDF extracted

from the MC histogram was 0.0114 for position and 0.0139 for velocity. The computation time of

the proposed method to propagate uncertainty for one orbit period was about 40 seconds on a

single thread CPU, while the MC simulation took about 2200 seconds on the same platform. The

test was then extended to two orbit periods (about 3 hours), and the predicted PDF of position is

compared with the MC histogram in Figure 2-9. The proposed method predicted the distribution

of position correctly in this long-term forecasting with the KL divergence increased moderately to

0.0596. Compared with the Gaussian mixture results achieved in [61], the proposed method used

fewer components (25 vs. 150 at one period and 125 vs. 350 at two periods) without compromising

fidelity, and thus it is expected to be more computationally efficient.

Figure 2-7 Predicted PDF contours compared with Monte Carlo samples at one orbit period

The orange contours are for probabilities of 68.3%, 95.4%, and 99.7%

55

Figure 2-8 Position PDF compared with the Monte Carlo histogram at one orbit period

Figure 2-9 Position PDF compared with the Monte Carlo histogram at two orbit period

2.3.3 Example III: Path Uncertainty Prediction for a Quadrotor Drone

The third example is the path uncertainty propagation for a quadrotor drone. Estimating the

trajectory uncertainty is important for path planning and collision avoidance of unmanned aerial

vehicles [210]. The drone system considered in this work has 12 state variables and 4 inputs:

 

 1 2 3 4

T

T

x y z x y z p q r  

   

=

=

x

u
 (2.27)

where the first 6 states are x, y, z locations of the drone in the inertial frame and their velocities, φ,

ψ, θ are the pitch (rotation around x axis), roll (around y axis) and yaw (around z axis) angles of

the drone in inertial frame and p, q, r are the angular velocities in the body frame. The four inputs

in u are angular velocities of the four propellers, which are used to control the total thrust force

56

and torques around pitch, roll and yaw angles. The equation of motion of this drone system is too

complicated to be detailed in this section. A full description of the quadrotor drone dynamics can

be found in Appendix B.

In this example, 10000 training data samples were collected from the simulations using the

equations of motion and drone parameters given in [211], and a neural network with output

feedback and 50 hidden nodes was trained to approximate this dynamic system. At the initial state,

the drone was assumed to take off from rest at the origin of the inertial frame. The pitch angle had

a Gaussian distribution with the mean at 1° while the roll angle had the mean at −1°, and both of

their standard deviations were 0.05°. All the other positions, angles and velocities were taken to

be zero at time t = 0 seconds without uncertainty. The angular velocities of four propellers were

all maintained at 650 rad/s by the controller. A zero-mean Gaussian disturbance with 32.5 rad/s

standard deviation was added to each propeller velocity as input uncertainty. The proposed method

was applied to the network to predict the uncertainty of the drone’s motion. The uncertainty

propagation parameters are summarized in Table 2-3. In Figure 2-10, the predicted PDF contours

of the drone’s position in the X-Y plane at t = 10 seconds are compared with a Monte Carlo

simulation of 1 million samples. And the predicted X-Z position PDF is compared with the

histogram of MC samples in Figure 2-11. It can be seen that the PDFs obtained by the proposed

method correctly predicted the distribution of the drone’s location around its nominal path. The

KL divergence of the predicted marginal PDF with respect to the PDF extracted from the MC

histogram was 0.0319 for the X-Y position and 0.0957 for the X-Z position. Therefore, the

proposed method can be possibly used for trajectory uncertainty prediction in path planning of

quadrotor drones, especially in the scenarios when the environment is so complicated that the

physics-based model is not sufficient to predict the drone’s behavior and a neural network model

trained from sensor measurement data is preferably used for system identification.

57

Figure 2-10 Predicted X-Y position PDF contours compared with Monte Carlo samples

The orange contours are for probabilities of 68.3%, 95.4% and 99.7%

Figure 2-11 X-Z position PDF compared with the Monte Carlo histogram

2.3.4 Example IV: Power Output Prediction of a Power Plant

The fourth example is a data-driven example to predict the power generation in a combined

cycle power plant. The power plant consists of 2 gas turbines and 1 steam turbine and is designed

with a nominal generating capacity of 480 megawatts (MW). Four features measured by sensors

are used as input variables, which include the ambient temperature, atmospheric pressure, relative

humidity and vacuum. The full-load electrical power output is the target variable to predict, which

ranges from 420.26 to 495.76 MW. The dataset contains 9568 data points of hourly averaged

measurements of input features and power output, collected over 6 years (2006–2011). The

58

detailed analysis of the data can be found in [212] and the dataset can be downloaded from the

UCI website [213]. In this example, to test the proposed method’s capacity of layer-wise

uncertainty propagation in a deeper neural network, a feedforward neural network with three

hidden layers and leaky ReLU activation function was designed to fit a regression model from the

dataset. The trained model achieved a root mean square error of 5.2 MW, which was on the same

level of performance as the machine learning models reported in [15] and [212].

To implement the uncertainty propagation on this multilayer network model, the dataset was

sorted by the output power magnitude. Then for each data instance, the uncertainty associated with

input features was quantified as a Gaussian distribution with the mean at the instance feature values

and the covariance calculated from 7 adjacent instances, including this instance, 3 instances below

it and 3 above it. The quantified input uncertainty was propagated through the multilayer network

and the output uncertainty was predicted as a Gaussian mixture. The 99% confidence intervals of

the predicted Gaussian mixture are compared with the true output powers in Figure 2-12 for a

random draw of 100 instances. As can be seen, the proposed method correctly predicted the

intervals that enclosed true output powers by propagating the virtually reconstructed input

uncertainty. Next, the proposed method was tested to propagate the probability distribution of the

entire dataset instead of individual instances. A Gaussian mixture model with 6 components was

fitted to characterize the joint PDF of four input features and this Gaussian mixture was fed into

the trained neural network for propagation. The fitted marginal PDF of ambient temperature, which

is the input feature most correlated to output power, is compared with the histogram of data in

Figure 2-13 (a) to present the accuracy of the fitted input Gaussian mixture. The output power PDF

predicted by propagating the input Gaussian mixture is compared with the histogram PDF

estimated from the entire dataset in Figure 2-13 (b). It can be seen that the predicted power PDF

matched all the modes and magnitudes of the probability in the histogram. Therefore, given that

the input-output mapping has been learned by a neural network and the distribution of input

features are represented as a Gaussian distribution or a Gaussian mixture, the proposed method

could reliably predict the distribution of electrical power output generated by the power plant.

59

Figure 2-12 The uncertainty bounds predicted for output power

(a) (b)

Figure 2-13 Comparison of the Gaussian mixture PDF and histogram PDF from data

(a) PDFs for an input feature, the Gaussian mixture was fitted from data. (b) PDFs for the output

power, the Gaussian mixture was predicted by the proposed method.

The histogram PDFs were obtained by normalizing the histogram counts.

2.3.5 Example V: MNIST Dataset Classification

The last example is on the classification of the famous MNIST dataset for handwritten digits

recognition [214]. To achieve robust results, the 60000 training data samples (28×28 pixel images)

were augmented by four times using the elastic distortion method in [215] to increase the total size

of training set to 3×105. A feedforward neural network with four hidden layers and 200 ReLU

hidden nodes in each layer was designed. The class labels of original and distorted images were

encoded as a one-hot regression target (10 channels, with -0.1 for all the incorrect classes and 0.9

60

for the correct class) [51], so that the network can be trained on the mean square error (MSE) loss

without a softmax layer. The training via the stochastic gradient descent (SGD) algorithm achieved

an error rate of 0.86% on the 10000 test samples, which implies that the network’s size and

performance were both close to the multilayer perceptron models in [215].

To test uncertainty propagation on the multilayer neural network, a bimodal noise, which is

characterized as a Gaussian mixture of two equally weighted members with ±5 mean vectors and

diagonal covariance matrices with standard deviations of 10, was added to the pixels of images.

The proposed method was implemented to propagate this input uncertainty using the parameters

in Table 2-3. For comparison, two UT-based methods were also applied: one is UT for the entire

neural network that only generates sigma points once at the input for each of the two noise

components and the other is layer-wise UT that performs SVD and generates sigma point before

each ReLU layer. The accuracies of the proposed method and the two UT methods are evaluated

by comparing their predicted distributions with the ground truth estimated using a Monte Carlo

simulation of 10000 samples for each image, as summarized in Table 2-5. All the evaluations were

on the output channels of the correct classes (i.e., the ideal output should be 0.9 according to the

one-hot encoding) and averaged over the 10000 test dataset images. As can be seen, the proposed

method with adaptive splitting achieved a noticeable improvement over the layer-wise UT method

that straightly propagates the two input noise components, though the computation cost also

increased moderately. The Entire-NN UT method was the least accurate as the sigma points

produced at the input will lose accuracy in matching the moments through subsequent layers, while

its computation time was the longest owing to the costly SVD on the 784-dimensional input. Then

in Figure 2-14, the predicted output PDFs for a test image (a handwritten digit 9) are compared, in

which the proposed method outperformed the layer-wise UT in matching the MC histogram.

Therefore, the proposed method proves to be effective in propagating uncertainty through the

multilayer structures of neural networks, though the high dimensional SVD might still be a

computational bottleneck for real-time implementation on very large networks.

61

Figure 2-14 Comparison of predicted output PDFs for a MNIST image

The PDFs are marginalized on the one-hot channel for digit 9

Table 2-5 Comparison of output uncertainty predictions on the MNIST test dataset

 KL divergence Error of

predicted mean

Error of

predicted

variance

Computation

Time

Proposed Method 0.093 1.03 % 1.56 % 0.23 sec/image

Layer-wise UT 0.171 1.97 % 3.13 % 0.15 sec/image

Entire-NN UT 1.136 5.38 % 5.79 % 0.38 sec/image

2.4 Summary

In this chapter, a nonlinear uncertainty propagation method based on adaptive Gaussian

mixture splitting is developed for artificial neural networks. An innovative nonlinearity evaluation

criterion based on the Kullback–Leibler divergence between the true transformation of a

componential Gaussian distribution and its approximation via local linearization is derived to

select the components for splitting. The splitting will only be applied to those Gaussian

components which are carrying a high magnitude of uncertainty (large covariance), have more

contribution to the mixture (large weights), and encounter more severe nonlinearity from the

activation layer. A set of univariate Gaussian splitting schemes are established, which can be

extended to decompose multivariate Gaussian distributions without degradation of accuracy. The

nonlinearity examination, Gaussian splitting, and unscented-transform-based propagation of

examined Gaussian components are all utilizing the same set of singular value decompositions of

covariance matrices, and a Gaussian mixture reduction routine is adopted to further regulate the

62

number of components and minimize the computation cost.

Three examples of nonlinear dynamic systems approximated by recurrent networks and two

data-driven examples modeled by multilayer networks are presented to validate the effectiveness

of the proposed method. By comparing the results with Monte Carlo simulations and other methods

in the literature, the proposed scheme is proved to be capable of accurately propagating Gaussian

mixture uncertainties through neural networks to predict output distributions. The computation

times of the proposed method are considerably shorter than the Monte Carlo simulation times and

the predicted Gaussian mixtures are more compact than those from the existing Gaussian mixture

methods. Therefore, it could be used as a versatile scheme to address both uncertainty propagation

through time in recurrent neural networks and layer-wise propagation in deep neural networks.

63

3. ADAPTIVE GAUSSIAN MIXTURE FILTER FOR NONLINEAR

STATE ESTIMATION

This chapter develops an adaptive Gaussian mixture filter (AGMF) with active nonlinearity

assessment and Gaussian mixture refinement. For state prediction, a feedforward neural network

is used to approximate the state equation and thus the complex dynamics of the system is converted

to tractable sigmoid activation functions. Then the nonlinearity in state transition is assessed using

the Kullback–Leibler criterion from Chapter 2 at the network’s hidden layer so that the Gaussian

mixture can be refined before predicting the prior PDF. For Bayesian update, the measurement

nonlinearity is assessed by the divergence between true and approximated likelihoods so that the

prior can be refined before estimating the posterior. The convergence rates of designed

nonlinearity measures and the bound of state PDF estimation errors are quantified. The proposed

AGMF is compared with the widely used nonlinear Kalman filters, particle filters, and latest GMFs

in the literature on multiple examples, which proves that the proposed filter can achieve state-of-

the-art accuracy with a reasonable computational cost on highly nonlinear state estimation

problems subject to high magnitudes of uncertainties.

3.1 Preliminaries and Problem Statement

3.1.1 Recursive Bayesian State Estimation

This study considers the state estimation of the following nonlinear dynamic systems in the

discrete-time domain:

()

()

1, ,k k k k

k k k

−=

= +

x f x u w

y g x v
 (3.1)

where k=1, 2, … is the discrete-time index, xk is the n-dimensional state vector at time k, uk is the

nu-dimensional vector of control input, yk is the ny-dimensional vector of measurable output, wk is

the nw-dimensional process noise and vk is the nv-dimensional measurement noise. For simplicity

of derivation, both wk and vk are assumed to be zero-mean Gaussian white noises, i.e., wk ~ N (0,

Qk) and vk ~ N (0, Rk) with Qk and Rk be the covariance matrices. The vector-valued nonlinear

functions f and g are the state transition function and measurement function respectively, both of

which are assumed to be continuous and g is assumed to be differentiable.

64

In recursive Bayesian estimation, assume that the probability density function (PDF) of state

variables based on the measurements up to time k−1 is known as p(xk−1|y1:k−1), then the inference

of state PDF at time k consists of two steps. Firstly, a prior PDF is predicted using the state

transition integral below to track the evolution of state under system dynamics:

 () () ()1: 1 1 1 1: 1 1| | |k k k k k k kp p p d


− − − − −
−

= x y x x x y x (3.2)

where p(xk|xk−1) is the conditional state transition PDF. If the process noise is an additive Gaussian

noise, then p(xk|xk−1)=N (xk|f(xk−1,uk), Qk). However, because the function f is nonlinear, the state

transition PDF is still non-Gaussian with respect to xk−1 and hence the above integral is intractable,

even if p(xk−1|y1:k−1) is Gaussian. Secondly, upon the receiving of a measurement yk, the Bayes’

rule is used to update the prior PDF and calculate the posterior PDF p(xk|y1:k):

 ()
() ()

() ()

1: 1

1:

1: 1

| |
| =

| |

k k k k

k k

k k k k k

p p
p

p p d

−



−
−

y x x y
x y

y x x y x
 (3.3)

where p(yk|xk) is the conditional likelihood function. This posterior PDF at k can be sent to Eq.

(3.2) to predict the prior PDF at the next time step k+1, and repeat recursively. However, even with

a Gaussian prior PDF, the posterior PDF in Eq. (3.3) may not have a closed-form solution because

the likelihood function p(yk|xk)=N (yk|g(xk), Rk) is non-Gaussian with respect to xk.

As can be seen, the intractability of state prediction and Bayesian update is mainly caused by

the nonlinearity in the functions f and g. If f and g are only weakly nonlinear so that they can be

accurately approximated by their first-order Taylor expansions, then the state transition PDF and

measurement likelihood can be written as Gaussian functions with respect to the state xk. Thereby,

both the Eq. (3.2) and (3.3) will have analytical Gaussian-form solutions [73].

3.1.2 Gaussian Mixture Filter

Since the EKF and other high-order Kalman filters (e.g., UKF, QKF) all estimate the state

PDF in Gaussian form, their fidelity will depend on the severity of nonlinearity in the system [80].

In contrast, the Gaussian mixture filter (GMF) is designed with the capacity to characterize any

non-Gaussian state PDFs. For simplicity of notation, we omit the conditioning on measurements

and write the posterior state PDF in a GMF as:

65

() () ()

() ()
() ()

() ()1

1: 1

1

2

| with

1
| ,

2 det

k

T
i i i

k k k k k

N i i

k k k k ki

i i i

k k k k
n i

k

p p w p

p e



−

=

− − −

=

= =


x μ Σ x μ

x x y x

x x μ Σ

Σ

N
 (3.4)

where Nk is the number of components at time k,
,

i

x kw and (), ,| ,i i

k x k x kx μ ΣN are the weight and

Gaussian density of the i-th component, in which
,

i n

x k μ and
,

i n n

x k

Σ is the mean vector and

covariance matrix respectively. When k=0, p(x0) represents the initial state uncertainty. Besides,

the Gaussian mixture of prior PDF is denoted by the superscript ‘–’ as:

 () () () ()1: 1 1 1
| | ,

k kN Ni i i i i

k k k k k k k k ki i
p p w p w

− −
− − − − − −

− = =
= = x x y x x μ ΣN (3.5)

Given a posterior mixture PDF at k−1 with Nk−1 components, substituting Eq. (3.5) into Eq.

(3.2) will result in a prior PDF with unchanged mixture size and weights:

 () () ()1

1 1 1 11
|

kN i i

k k k k k ki
p w p p d

−


−

− − − −= −
= x x x x x (3.6)

For a given prior mixture PDF with Nk
− components, substituting Eq. (3.6) into Eq. (3.3) will also

result in a posterior mixture PDF with the same number of components:

 ()
() ()

() ()
()1

1

1

|

|

k

k

k

N i i
Nk k k k i ii

k k kiN i i

k k k k ki

w p p
p w p

w p p d

−

−

−

− −

=

 =− −

= −

= =



 

y x x
x x

y x x x
 (3.7)

where the updated posterior density in each component is defined as:

 ()
() ()

() ()

|

|

i

k k ki

k
i

k k k k

p p
p

p p d

−


−

−

=



y x x
x

y x x x
 (3.8)

The integral on the denominator is a normalization factor called the marginal likelihood, which

reflects the possibility that the measurement yk is generated by the state in pi−(xk). The posterior

weights wi
k are renormalized according to marginal likelihoods so that the components closer to

the actual measurement will become more dominant:

() ()

() ()
1

|

|
k

i i

k k k k ki

k N i i

k k k k ki

w p p d
w

w p p d
−


− −

−


− −

= −

=


 

y x x x

y x x x
 (3.9)

At any time step, the estimated state of a GMF in the sense of minimum mean square error

(MMSE) can be easily extracted as the mean and covariance of the Gaussian mixture:

66

 

()() ()()

1

1

ˆ

ˆ ˆ ˆ ˆ ˆ

k

k

N i i

k k k k ki

TNT i i i

k k k k k k k k k ki

E w

E

=

=

= = =

  = − − = + − −
    





x μ x μ

Σ x x x x Σ μ x μ x
 (3.10)

The filter performance in this work is thus mainly rated by the mean square error (MSE). Besides,

as the GMF is designed to accurately track the state PDF, the Kullback–Leibler (KL) divergence

and L1 norm are used to measure the distance between the true and estimated state PDFs:

 () ()
()

()
ˆ|| log

ˆ

k

KL k k

k

p
D p p p d

p



−
= 

x
x x

x
 (3.11)

 () ()ˆ ˆ
k k kp p p p d



−
− = − x x x (3.12)

While the KL divergence has been introduced in Eq. (2.6), it is refined here for the PDF of state

vector xk. These two measures both belong to the f-divergence family and hence are invariant to

invertible transformations [217]. The KL divergence is easy to calculate for exponential family

distributions including the Gaussian distribution, and the L1 norm satisfies the triangle inequality

that facilitates the error decomposition, which will be useful in the error analysis.

For a given dynamic system whose model can not be altered, the way to minimize nonlinear

distortion in a GMF is to keep the covariance of each component narrow so that the linearization

of the system model at a Gaussian center can provide a close approximation within the range of

that component. Therefore, how to determine whether a Gaussian component is narrow enough

and how to narrow down the wide components without causing misrepresentation in state PDF

will be the major challenges to be addressed in the next section.

3.2 The Adaptive Gaussian Mixture Filter

Considering that the nonlinear distortion that deteriorates filter fidelity could occur in both

the state prediction and Bayesian update stages, the Gaussian mixtures in both prior and posterior

PDFs should be refined so that their components can be assured of high fidelity when processed

by Gaussian filters. The nonlinearity assessment and adaptive splitting scheme, which is adopted

from Chapter 2, is applied to state prediction in Section 3.2.1. Then this scheme is extended to the

Bayesian update in Section 3.2.2. A quantitative analysis of the filter performance is provided in

Section 3.2.3.

67

3.2.1 State Prediction using Gaussian Mixture Uncertainty Propagation

In a nonlinear system, while the measurement function based on sensor principles may fall

into certain normally used forms (e.g., the L2 norm for distance measurement and arctan for angle

measurement in radar tracking), the state equation defining system dynamics can be more diverse

and complex, which makes the state transition integral intricate. If there is no process noise, the

state transition PDF will be a Dirac delta function, i.e., p(xk|xk−1) =δ[xk−f(xk−1,uk)]. However, even

in this case, the prior PDF may still not be analytically solvable, especially if the function f is not

bijective. Hence, though it is known that the prior PDF will be non-Gaussian when f is nonlinear,

most of the GMFs are still assessing the impact of nonlinearity without explicitly probing the non-

Gaussianity. To devise a better nonlinearity assessment scheme, this work considers converting

the state transition function f into more tractable forms. If function f is differentiable and

monotonic, then the prior PDF without process noise can be calculated as:

() () ()

()
() () ()

()
()

()

()
()()

1

1 1 1

1
1 1 1

1

1

11
1

1
k k

k k k k k

k
k k k k

k

kk
k k

k k

p p d

d
p d

d

dd
p p

d d





−


−

− − −
−


−

− − −
−

−

−

−−
−

−
=

= −  

= −  

= =





f x x

x x f x x x

x
x f x x f x

f x

f xx
x f x

f x x

 (3.13)

where | | denotes the determinant of a matrix, and a change of variables is used from the first to the

second line. If f is a vector of univariate functions, its Jacobian matrix will be diagonal and the

determinant will be easy to compute. One instance that satisfies all these conditions is the sigmoid

function, which is widely used as the activation function in artificial neural networks.

Inspired by the tractability of the sigmoid function, the filter in this work is devised to solve

the state prediction problem by approximating the state transition function f with a feedforward

neural network (FFNN). An FFNN with a single sigmoid-function hidden layer and sufficiently

many hidden nodes can approximate any continuous function to any degree of accuracy [203].

Hence, the FFNN’s error in approximating the function f can be minimized by choosing a proper

network size, so that it will have a trivial effect on the filter’s accuracy. Besides, the FFNN can be

trained offline with data collected from experiments on the physical system or simulations of the

system model, while it facilitates on-line state prediction. As shown in Eq. (3.13), the state

transition integral in a sigmoid function layer is more tractable than that for the original system

68

model, which enables a more efficient assessment of nonlinearity.

The state prediction is fundamentally an uncertainty propagation problem, i.e., propagating

the uncertainty quantified by the posterior state PDF at k−1 through the system to predict the prior

PDF at k. Therefore, the Gaussian mixture scheme for uncertainty propagation in neural networks

developed in Chapter 2 is adopted. Define the augmented state vector as xa,k−1=[xk−1; uk; wk], then

the single-hidden-layer FFNN to approximate the state equation can be formulated as:

 ()2 1 , 1 1 2k a k k −= + + +x W W x b b ε (3.14)

where ()
1

u wm n n n + +
W and

1

mb are the weight and bias in the hidden layer, m is the number

of hidden nodes,
2

n mW and
2

nb are the weight and bias in the output layer, ϕ is the

sigmoid function (e.g. logistic or hyperbolic tangent function), and εk is the approximation error

of the FFNN. The impact of error εk will be analyzed in Section 3.2.3. Given the posterior PDF at

k−1, the normally distributed control input N (uk, Σu,k) (Σu,k=0 if the controller is deterministic)

and the process noise wk, the joint PDF of the augmented state vector is:

() ()1

, 1 , 1 , 1 , 1 , 11

, 1 1 , 1 1 , 1 1 ,

| , with

; ; diag , ,

kN i i i

a k a k a k a k a ki

i i i i i i

a k k a k k k a k k u k k

p w

w w

−

− − − − −=

− − − − − −

=

   = = =   

x x μ Σ

μ μ u 0 Σ Σ Σ Q

N
 (3.15)

The algorithm to propagate p(xa,k−1) through the FFNN has been elaborated in Section 2.2.

But since the notations of variables are a little different between Chapter 2 and this chapter, some

key steps in the propagation are briefly presented below for clarity. First, p(xa,k−1) is mapped to the

PDF of the state before activation function by a linear transformation z =W1xa,k−1+b1:

() ()1

1

, 1 1 , 1 1 1 , 1 1

| , with
kN i i i

z x zi

i i i i i i T

z a k z a k z a k

p w

w w

−

=

− − −

=

= = + =

z z μ Σ

μ Wμ b Σ WΣ W

N
 (3.16)

where z is the m-dimensional vector of the FFNN’s pre-activation states. This linear mapping is

equivalent to the state transition integral in Eq. (3.6) with a linear function f.

Then for the Gaussian density in the i-th component of p(z), i.e., pi(z) = N (μz
i, Σz

i), its true

post-activation density ()ip s and the density approximated by linearization ()ˆ ip s will be in the

same form as Eq. (2.8), where s is the m-dimensional vector of the FFNN’s post-activation states.

The difference is that this Chapter uses m to denote the number of hidden nodes and ϕ to denote

the sigmoid function, while Chapter 2 uses k and f respectively. The nonlinearity in ϕ is assessed

by the KL divergence between the true and approximated post-activation densities:

69

() ()() ()

() ()

() () ()() () () ()()
1

1
ˆ|| log log with

2 2
i

i i i

KL p

T
i i i iT i

z z z

m d
D p p E

d


   
−

 
= − + + − 

 

= − −

z

z
s s A z

z

z z μ A Σ A z μ

F

F

 (3.17)

The Eq. (3.17) is a reorganization of Eq. (2.9) and the expectation integral can be evaluated

using UT. For the m-dimensional Gaussian density pi(z), 2m+1 sigma points Zj
i and their weights

Wj
i (j=1,…,2m+1) can be generated using Eq. (2.10) based on the SVD in Eq. (2.11). Then the

expectation integral in Eq. (3.17) can be evaluated as:

()

() () () ()
2

0
0.5 log ' 0.5 log 'i

m i i i

j j jp j
E W Z Z 

=
  − = −   z

z zF F (3.18)

If the KL divergence exceeds a threshold thD, it means the pre-activation density pi(z) will be

noticeably distorted and its post-activation density can not be precisely approximated in Gaussian

form. Hence, this component will be split into a set of narrower sub-components to alleviate the

distortion. For a weighted component wz
ipi(z) with density pi(z)=N (μz

i, Σz
i), the splitting along its

j-th singular vector can be obtained as a sub-mixture of P components:

() (), , , ,

1

, , 2

1

| , | , with

diag

P
i p i p i p i i i i p i

z z z z z z z z p

p

i p i i p

z z p j j z j m

w w w w w

     

=

 =

 = + = =  

 z μ Σ z μ Σ

μ μ v Σ VΛV Λ

N N
 (3.19)

where
pw ,

p ,  are the weights, means, and shared standard deviation of sub-components in a

splitting scheme from Table 2-2. In this work, the splitting is performed along the singular vector

on which the sigma points have the largest norm of deviation from a linear extrapolation:

() ()

()

() ()

()
 max 1, ,

i i i i

j z j m z

i i i i i ij
j z j m z

Z Z
j m

Z Z

   +

+

− −
+ 

− −

μ μ

A μ A μ
 (3.20)

If the pre-activation PDF is a Gaussian mixture, this nonlinearity assessment and splitting

process will be repeated on each component until the KL divergences of all the components drop

below the threshold. Then the refined mixture () ()
1

| ,
kN i i i

z z zi
p w

−

=
=z z μ ΣN , of which the number

of components has increased from Nk−1 to Nk
−, can be propagated using UT as:

70

() ()

()

()() ()()

1

2

0

2

0

ˆ | ,
kN i i i i i

s s s s zi

mi i i

s j jj

Tmi i i i i i

s j j s j sj

p w w w

W Z

W Z Z



 

−

=

=

=

= =

=

= − −







s s μ Σ

μ

Σ μ μ

N

 (3.21)

Next, the linear transformation xk =W2s+b2 is applied to this post-activation PDF, and the

prior state PDF ()kp−
x can be predicted with the following Gaussian mixture parameters:

2 2 2 2

i i i i i i T

k s k s k sw w− − −= = + =μ W μ b Σ W Σ W (3.22)

Lastly, a Gaussian mixture reduction step, such as the one described in Section 2.2.4, can be

applied to merge components and prevent the splitting operation from increasing the mixture size

exponentially over time, which is necessary to maintain the computational efficiency.

3.2.2 Bayesian Measurement Update with Adaptive Refinement

A Bayesian state estimator incorporates measurements from the actual system to correct the

prior PDFs predicted based on the system model. Applying the uncertainty propagation method in

Section 3.2.1 to the measurement equation can provide a refined prediction of measurement PDF

p(yk), but may not explicitly improve the fidelity of the posterior state PDF. Therefore, a

nonlinearity assessment and Gaussian mixture refinement scheme dedicated to the Bayesian

update should be designed. As shown in Eq. (3.8), the shape of each posterior density is defined

by the product of its corresponding prior density and the measurement likelihood. Therefore, given

a Gaussian mixture prior PDF, the impact of nonlinearity is mainly associated with the likelihood

function [76].

With the additive Gaussian measurement noise, the true likelihood function can be written as

p(yk|xk)=N (yk|g(xk), Rk), which is non-Gaussian with respect to xk as the function g is nonlinear.

If g is differentiable, the approximated likelihood by linearizing g at the i-th prior Gaussian density

pi−(xk)=N (µk
i−, Σk

i−) can be written as a Gaussian function of xk:

() () ()()

()()()
()

1 1

ˆ | | ,

| ,

i
k k

i i i

k k k k k k k k

i i i i i T

k k k k k k k k

ki

k

k

p

d

d −

− −

− − − − −

=

= + −

 + −

 
=  
 x μ

y x y g μ H x μ R

x μ H y g μ H R H

g x
H

x

N

N (3.23)

71

where the matrix Hk
i should be invertible or have a pseudoinverse. This likelihood makes the

Bayesian update analytically solvable (i.e., the EKF solution). How well this likelihood can

approximate the true likelihood depends on the severity of nonlinearity of g within the span of

pi−(xk). Hence, the following divergence between the true and approximated likelihoods is defined

to assess the impact of nonlinearity in the Bayesian measurement update:

()
()

() ()
() ()

() ()() ()()

() ()() ()()

1

1

| 1
ˆlog

ˆ | 2

with

ˆ

i
k

k ki

k k k kp
k k

T

k k k k k k

T
i i i i i i i i

k k k k k k k k k k k k k k

p
p d E

p
−


−

−

−

− − − − −

 = −
 

= − −

= − + − − + −

 x

y x
x x x x

y x

x g x y R g x y

x H x H μ g μ y R H x H μ g μ y

G G

G

G

 (3.24)

For a Gaussian mixture prior PDF, the above likelihood divergence can be estimated for each

of its n-dimensional Gaussian density pi−(xk) using UT as:

()

() () () ()
2

0
ˆ ˆ

i
k

n i i i

k k j j jp j
E W X X−

=
 − = −
  x

x xG G G G (3.25)

where Xj
i and Wj

i are the sigma points and weights (j=1,…,2n+1) of the i-th component generated

using Eq. (2.10) based on the SVD of Σk
i− as in Eq. (2.11). If the likelihood divergence of a prior

component exceeds a threshold, this component will be split into narrower sub-components in the

same way as Eq. (3.19), along the singular vector with the largest directional divergence:

 () () () ()  ˆ ˆmax 1, ,i i i i

j j j n j n
j

X X X X j n+ +− + − G G G G (3.26)

By repeating the splitting process until the likelihood divergences of all the components drop

below a threshold thL, the refined prior PDF is obtained () ()
1

| ,
kN i i i

k k k k ki
p w− − − −

=
=x x μ ΣN , in

which the number of components has increased from Nk
− to Nk. The refined prior densities should

have been amply narrow to yield near-Gaussian posterior densities. Given that the linearization of

g and sigma points are both available, either EKF or UKF can be applied to each component. The

UKF is adopted in this work as it is in general more accurate than EKF. The posterior PDF can be

estimated using UKF with the following Gaussian mixture parameters:

()

()

()

,

,1

,

| ,

| ,
k

i i i

k k k k yyi

k N i i i

k k k k yyi

i i i i

k k k k k

i i i i i T

k k k k yy k

w
w

w
−

−

−

=

−

−

=

= + −

= −



y y Σ

y y Σ

μ μ K y y

Σ Σ K Σ K

N

N

 (3.27)

72

where the weights are renormalized using Eq. (3.9), and the UKF gains Kk
i are obtained as [66]:

()

()

() ()

2 2

0 0

2

, 0

2

, 0

1

, ,

n ni i i i i i

k j j k j jj j

Tni i i i i i

k xy j j k j kj

Tni i i i i i

k yy j j k j kj

i i i

k k xy k yy

W X W X

W X X

W X X

= =

=

=

−

= =

  = − −   

   = − −
   

=

 





x y g

Σ x g y

Σ g y g y

K Σ Σ

 (3.28)

Lastly, the Gaussian mixture reduction method in Section 2.2.4 can be applied again to

simplify the posterior PDF if the mixture size exceeds a limit Nmax, before proceeding to the next

time step k+1. The complete AGMF algorithm, including both state prediction and Bayesian

update, is summarized in Algorithm II.

Algorithm II: adaptive Gaussian mixture filter (AGMF)

Given the system model and the initial uncertainty () ()0

0 0 0 0 01
| ,

N i i i

i
p w

=
=x x μ ΣN , set k=1.

(1) Training of the FFNN in Eq. (3.14) by backpropagation to approximate the function f;

State Prediction for the Prior PDF

(2) Linear transformation from p(xa,k−1) to p(z) using Eq. (3.16);

(3) For each component in p(z), evaluate Eq. (3.17) using UT;

(4) If () ()()ˆ||i i

KL DD p p ths s , split the component i using Eq. (3.19);

(5) Repeat steps (3) and (4) until all components drops below thD;

(6) Linear transformation to predict the prior state PDF p−(xk) using Eq. (3.22);

(7) Gaussian mixture reduction on p−(xk) if the mixture size Nk
− is larger than Nmax;

Bayesian Measurement Update for the Posterior PDF

(8) For each component in p−(xk), evaluate Eq. (3.24) using UT;

(9) If
()

() ()ˆlog | |i
k

k k k k Lp
E p p th−   x

y x y x , split the component i;

(10) Repeat steps (8) and (9) until all components drops below thL;

(11) Apply the UKF in Eq. (3.27) to obtain the posterior state PDF p(xk);

(12) Gaussian mixture reduction on p(xk) if the mixture size Nk is larger than Nmax;

(13) k=k+1, go to step (2).

3.2.3 The Analysis of the Adaptive Gaussian Mixture Filter

In this section, the performance of the AGMF in estimating the state PDF is analyzed. First,

it is shown that the splitting process at the sigmoid hidden layer of an FFNN could refine a

73

Gaussian density to the level of any threshold value thD.

Lemma 1. Let the pre-activation Gaussian density N (z|μz, Σz) have a bounded mean vector,

i.e., ||μz||∞ <Mµ<∞, and the singular values λi (i=1,…,m) of covariance matrix Σz satisfy λmax/λmin

<Mλ<∞, then for any arbitrarily small positive value of thD, there exist σD>0 such that if the trace

()tr z DΣ , the KL divergence in Eq. (3.17) satisfies () ()()ˆ||
KL D

D p p ths s .

The proof of Lemma 1 is provided in Appendix C. Since each splitting on a singular value λj

reduces tr(Σz) by ()21 j − , repeating the splitting will eventually make tr(Σz) amply small such

that the refined component can yield a KL divergence lower than thD. Next, the error of the prior

PDF predicted based on this splitting method is analyzed.

Lemma 2. Assume the L1 norm between the true and estimated posterior PDFs at k−1 is

known () ()1 1 1
ˆ

k k kp p − − −− =x x and the FFNN’s approximation error is a zero-mean Gaussian

process εk~N (0, Σε), then the L1 norm error of the predicted prior PDF at k is bounded by:

() ()

()() ()

1
1 ,

1 1

, 1

ˆ= 2 2
1

with tr log
k

k k
k k k k KL D k

N i i i

k k k ki

N N
p p D th

P

w



  

  


−

−
− − −

−

− −
− − −

=

−
−  + + +

−

= − +

x x

Σ Σ I Σ Σ

 (3.29)

where
KLD and P are the KL divergence and number of components in the splitting scheme from

Table 2-2, and Nk
− −Nk−1 is the increase of mixture size due to the splitting to meet thD.

Proof: Given that the L1 norm is invariant under linear transformations, the error after Eq.

(3.16) is still () () 1
ˆ

kp p  −− =z z . Then assume that the components ()i i

zw p z in the estimated

pre-activation PDF ()p̂ z are split into sub-mixtures ()
1

Pi i

z p pp
w w p

= z in the refined PDF ()p z .

By using the triangle inequality of L1 norm and the Pinsker’s inequality that the L1 norm is bounded

by the KL divergence ()2 ||KLp p D p p−  , it can be shown that:

() () () ()

() ()

() ()()

ˆ

2 || 2

i i i

z p pi

i i i

z p pi

i i i i

z KL p p z KLi i

p p w p w p

w p w p

w D p w p w D

 − = − 

 −

 =

 

 

  

z z z z

z z

z z

 (3.30)

74

Since each splitting adds P−1 new components and the component weight has wz
i<1, if the mixture

size is increased by Nk
−−Nk−1, the total L1 norm error caused by splitting is bounded by:

 () () 1ˆ 2 2
1

i k k
z KL KLi

N N
p p w D D

P

−

−−
−  

−
z z (3.31)

Then to propagation the Gaussian mixture through the sigmoid function:

() () ()() ()()

()() ()() ()() ()()

ˆ
A

A

p p p p

p p p p

− =  −

  − +  −

s s z z

z z z z
 (3.32)

where Φ is the exact PDF mapping through function ϕ, and ΦA is the approximated mapping via

linearization. As the sigmoid function ϕ is continuous and monotonic, it is an invertible

transformation to which the L1 norm is invariant [217], and thus the L1 norm between exact

mapping solutions is:

()() ()() () ()

() () () () 1
1

ˆ ˆ 2
1

k k
k KL

p p p p

N N
p p p p D

P


−

−
−

 − = −

−
 − + − = +

−

z z z z

z z z z
 (3.33)

Then provided that all the refined components have been narrow enough to yield KL divergences

lower than thD under the approximated mapping, it can be shown that:

()() ()() ()() ()()

() ()()

1

1 1
2 || 2 2

k

k k

N i i i

A z Ai

N Ni i i i

z KL A z D Di i

p p w p p

w D p p w th th

−

− −

=

= =

 −   −

    =



 

z z z z
 (3.34)

Next, the linear transformation in Eq. (3.22) will not alter the L1 norm in Eq. (3.32). Lastly,

due to the approximation error εk, when the state predicted by FFNN is xk ~ (),i i i

k k kw − − −

 μ ΣN , the

state from the actual system should be xk+εk ~ (),i i i

k k kw 

− − − + μ Σ ΣN . Using the formula for the

KL divergence between two Gaussians [218], the impact of error εk can be quantified as:

() ()

() ()()

()() ()

,

1

1 1

1

ˆ ˆ

2 , || ,

tr log

k

k

k k k k

N i i i i i

k KL k k e k ki

N i i i

k k ki

p p

w D

w



 



−

−

− −

− − − − −

=

− −
− − −

=

= − +

 +

= − +





x x ε

μ Σ Σ μ Σ

Σ Σ I Σ Σ

N N (3.35)

Combine Eq. (3.33)~(3.35), the L1 norm error in Lemma 2 can be established. Q.E.D.

The L1 norm in Eq. (3.29) consists of the error from the previous time step, the error due to

75

splitting, the error of approximated propagation, and the error introduced by approximating the

system with an FFNN. In practice, the error covariance Σε can be estimated by the MSE in FFNN

training, which can be made desirably small given a sufficient number of hidden nodes. Then the

magnitude of δε can be minimized. If the splitting scheme is also precise and the Gaussian mixture

is refined to a small value of thD, the total L1 norm error in the prior PDF can be regulated to a

minimal level. Next, the error of the posterior state PDF will be analyzed.

Lemma 3. Assume that 1) the Gaussian prior PDF p−(xk)=N (μk
−, Σk

−) has a finite distance

to the measurement ()
2

k k gM−−   y g μ ; 2) the measurement function g is differentiable and

the norm of its Jacobian matrix is bounded
2k HM  H ; 3) Taylor’s expansion of g has a

bounded second-order remainder:

 () () () ()
2

2 2 2 2
 with k k k k k k r k kM− − −= + − +  −g x g μ H x μ r x r x μ (3.36)

then for any arbitrarily small positive value of thL, there exist σL>0 such that if the trace tr(Σk
−)<σL,

the likelihood divergence in Eq. (3.24) will be lower than thL, and the KL divergence between the

exact and estimated posterior PDFs will be lower than M×thL for a finite factor M<∞.

The proof of Lemma 3 is provided in Appendix D. A sufficient condition to satisfy Eq. (3.36)

is that the function g is second-order differentiable and its Hessian matrices have bounded 2-norms.

Next, the error analysis of posterior PDF is extended to the Gaussian mixture case.

Lemma 4. Assume that 1) the L1 norm between the true and estimated prior PDFs at k is

known as () ()ˆ
k k kp p − − −− =x x ; 2) given the L1 error of initial condition () ()0 0 0

ˆp p − =x x

and a sequence of measurements {y1, y2, …, yk}, there exists C<∞ and ρ<1 such that the exact

solution of filtered state PDF satisfies:

 ()()()() ()()()()1 1 0 1 1 0 0
ˆ k

k k k kp p C − −   −   x x (3.37)

with Γk be the PDF mapping under Bayesian update with measurement yk, then the L1 norm error

of the estimated posterior PDF at k is bounded by:

 () ()ˆ 2 2
1

k k
k k k k KL L

N N
p p C D M th

P
  

−
− −

= −  + +  
− 

x x (3.38)

76

where M is the finite factor as in Lemma 3 and Nk
 −Nk

− is the increase of mixture size from prior

to posterior PDF due to the splitting to meet thL.

Proof: First, the predicted prior PDF ()ˆ
kp−

x is refined by splitting to get ()kp−
x . Same as

Eq. (3.31), the L1 norm error after splitting is

() () () () () ()ˆ ˆ

2
1

k k k k k k

k k
k KL

p p p p p p

N N
D

P


− − − − − −

−
−

−  − + −

−
= +

−

x x x x x x

 (3.39)

Then to update the prior PDF and get the posterior PDF:

() () ()() ()()

()() ()() ()() ()()

ˆ
kk k k A k

k k k A k

p p p p

p p p p

− −

− − − −

− =  −

  − +  −

y
x x x x

x x x x
 (3.40)

where Γ is the exact Bayesian update, and Γ A is the approximated update using the likelihood in

Eq. (3.23). Same as Eq. (3.32), while the error is measured between the exact mapping of true PDF

and the approximated mapping of estimated PDF, the exact mapping of estimated PDF is used as

a medium for error decoupling. Applying Eq. (3.37) to the first decoupled term implies:

 ()() ()() () ()k k k kp p C p p− − − − −  −x x x x (3.41)

And the KL divergence between ()() ()
1

ˆ ˆkN i i

A k k ki
p w p−

=
 =x x and ()() ()

1

kN i i

k k ki
p w p−

=
 =x x

is bounded by the weighted sum of componential divergences [218]:

 ()() ()()() ()
()

()1

ˆ ˆ
ˆ ˆ|| log

ˆ

k

i i
N k ki i

KL A k k k k ki ii
k k

w p
D p p w p d

w p


− −

= −
   

x
x x x x

x
 (3.42)

Substituting the weights and densities in Eq. (3.8) and (3.9) into each component implies:

()
()

()

()
()

()

() ()

() ()

()

()

()

() ()

() ()

1

1

ˆ

ˆ ˆ
ˆ log

|ˆ |
ˆ log log

| ˆ |

|ˆ |
max log

| ˆ |

k

k

i
k

i i

k ki

k ki i

k k

N j j

k k k k kjk ki

k k N j j
k k

k k k k kj

j

k k k kk k

p j j
k k

k k k k

w p
p d

w p

w p p dp
p d

p w p p d

p p dp
E

p p p d



−


− −

 = −

− − −

= −


−

−


−

−

= +

 
 + 

  



 


 




x

x
x x

x

y x x xy x
x x

y x y x x x

y x x xy x

y x y x x x

 (3.43)

As shown in Appendix D, both terms are bounded by linear functions of the covariance trace. If

all the traces are less than σL, the componential divergence will be lower than M×thL for some

finite factor M. Then, applying Pinsker’s inequality to Eq. (3.42) gives:

77

()() ()() ()() ()()()

()
1

2 ||

ˆ2 2
k

A k k KL A k k

N i

k L Li

p p D p p

w M th M th

− − − −

=

 −   

  = 

x x x x

 (3.44)

Combining Eq. (3.39), (3.41) and (3.44), the L1 norm error in Lemma 4 can be established.

Q.E.D.

Lemma 5. Assume 1
,2 2 2

1

k k
KL D k L

N N
D th M th

P


−−
+ + +   

−
 for some Δ<∞ in all

time steps, then given that the condition in Eq. (3.37) holds, the L1 norm error of estimated

posterior PDF at k has 0

1

1

k

k

C
C


  



+
 + 

−
.

Proof: For convenience, redefine the operator Γ as the mapping of L1 error through exact

Bayesian update, and thus it satisfies ()0 0

k kC    and ()1 2 1 2C C    +  + . Combining

the prior error in Eq. (3.29) and posterior error in Eq. (3.38) recursively gives:

1
1 ,

1 2
2 , 1

1 0
0 ,1

0 0

1

2 2 2
1

2 2
1

2 2
1

1

1

k k
k k KL D k L

k k
k KL D k

KL D

k
k i k

i

N N
D th M th

P
N N

D th
P

N N
D th

P

C
C C C







  

 

 


    



−
−

− −
− −

=

− 
  + + + +  

− 
 −  

   + + + +  +   
−  

  −  
    + + + +  +  +    

−   
+

 +  +   + 
−



 (3.45)

where Nk
 −Nk−1 is the total increase of mixture size from time step k−1 to k. Q.E.D.

The Lemmas 1 and 3 proved that the refinement scheme could reach any small thresholds thD

and thL as the trace of covariance matrix shrinks, with a square-root rate of convergence for the

former and a linear rate for the latter. And then the Lemmas 2, 4 and 5 established the boundedness

of the L1 error of estimated state PDF. Although under what conditions the exponential forgetting

assumption in Eq. (3.37) holds is still an active area of research [78], many dynamic systems in

practice do exhibit the “forgetting initial condition” behavior under Bayesian filtering [222]. Under

this forgetting assumption, the bound of state PDF error mainly depends on the magnitude of Δ in

Lemma 5, which could be minimized by choosing proper neural network size to approximate the

state equation and appropriate thresholds to refine the Gaussian mixture PDFs.

Remarks: 1) The thresholds thD and thL should not be selected lower than the KL divergence

78

of the adopted splitting scheme, otherwise, the gain of reducing nonlinear distortion error may not

compensate the loss caused by splitting misrepresentation. 2) Since the new components from

splitting inherit singular values and vectors from the original component, the SVD doesn’t need to

be repeated. Therefore, the AGMF that combines the linearization in EKF and sigma points in

UKF to process each component has a computational complexity O(EKF+UKF)×Nk−1< O(AGMF)

<O(EKF+UKF)×Nk, given that the mixture size is increased from Nk−1 to Nk at step k. 3) The

increased computational cost in AGMF is to handle the high nonlinearity and high magnitude of

uncertainty in the system. If the system is only weakly nonlinear such that the divergences defined

in Eq. (3.17) and (3.24) are inherently small without any splitting, then trivial improvement can be

expected from the AGMF. Also, if the magnitude of state uncertainty is so small that the inverse

Σk
−1 is overwhelming compared to a feasible FFNN error Σε, then the δε term will be nonnegligible

and approximating the state equation with an FFNN may not help to improve filter fidelity. In

these scenarios, the UKF or other non-mixture filters would be more efficient choices. 4) Though

the AGMF is derived for Gaussian noises, it can be extended to non-Gaussian noises provided that

the noise can be characterized as a Gaussian mixture. Then, the p(xa) in Eq. (3.15) will have Nk−1×

Nw components by combining the state PDF with a Nw-component noise wk, and the measurement

likelihood will also need to be assessed for each component in vk. Consequently, the Gaussian

mixture reduction will be more critically needed to regulate the exponential growth of mixture size

in addition to the increase due to splitting.

3.3 Application Examples

In this section, to evaluate the proposed AGMF, three numerical examples are presented, in

which the AGMF is compared with the widely used nonlinear Kalman filters, particle filters and

other latest filters in terms of state estimation accuracy and computational efficiency.

3.3.1 Example I

The first example focuses on testing the new Bayesian update scheme with Gaussian mixture

refinement, given that the uncertainty propagation scheme for state prediction has been tested on

various neural network examples in Chapter 2. Using a range function () Tg =x x x , the

measurement equation in this example is Ty v= +x x , where x=[x1, x2]
T is the state vector and v

79

~N (0, 0.02) is Gaussian white noise. As a replica of Example II in [62], the prior PDF of x was

set to be p−(x)~N (μ, Σ) with μ=[−3, 0]T and Σ=diag[4, 4]. Then assume that a measurement y=1

was received, the posterior PDFs estimated by different filters were compared.

The true posterior PDF was evaluated numerically on a grid of points in the state plane and

its mean value was used as the true state location. The AGMF was implemented with a maximum

mixture size Nmax=200 and a splitting threshold thL=0.001. For comparison, an EKF, a UKF with

UT parameters α=0.001, β=2, κ=0, a sequential importance resampling (SIR) particle filter (PF)

with 2.5×104 particles, and a state-of-the-art GMF, i.e., the blob filter in [80], were also applied.

For blob filter, 1000 Gaussian components were used and the lower bound of the information

matrix was chosen to be Rmin=diag ([5, 5]) such that the resampled covariance would be bounded

by Σ≤ Rmin
-TRmin

−1. The performances of these filters were compared in Table 3-1 in terms of the

error of estimated mean state locations, the KL divergence between estimated and true posterior

PDFs, and the mean computation time. As can be seen, the EKF and UKF failed to estimate the

state accurately because of the nonlinear effect caused by the high magnitude of prior uncertainty.

In contrast, the AGMF achieved the best accuracy while its computation time was similar to those

of the PF and blob filter. Also, as shown in Figure 3-1, through the adaptive splitting of Gaussian

prior PDF, the AGMF accurately predicted the volcano-shaped posterior PDF. Though the

accuracies of PF and blob filter may be improved to the same level as the AGMF by increasing

the number of samples, their computation times will then be considerably longer. Therefore,

compared with these two filters, the AGMF can attain the best accuracy under the same level of

computational cost, or has the best computational efficiency to attain the same level of accuracy.

80

Figure 3-1 Comparison of true and estimated posterior PDFs for Example I

Table 3-1 Comparison of filter performance for Example I

 Error of mean KL divergence Computation time

EKF 0.641 20.64 0.56ms

UKF 0.458 1.708 0.53ms

PF 8.4×10-3 0.017 55.5ms

Blob filter 0.096 0.099 62.8ms

AGMF 4.5×10-4 0.026 59.3ms

3.3.2 Example II

The second example considers a complete state estimation problem for a nonlinear dynamic

system with the following model [78]:

()1
2

2

25
8cos 1.2

2 1

20

k k
k k

k

k
k k

x x
x k w

x

x
y v

+ = + + +
+

= +

 (3.46)

where the noises are assumed to be wk~N(0,10) and vk ~N(0,1). The time-independent part of this

state equation has two locally attractive equilibrium points at ±7 while the cosine term excites the

jumping between these two modes, and thus the system may exhibit a bimodal state distribution.

Also, the measurement function only contains the magnitude of xk but not the sign, which makes

it difficult for a filter to discern the mode. For this problem, an FFNN with 5 hidden nodes was

trained to approximate the state equation, and then the AGMF was implemented. An EKF, a UKF

with the same parameters from [78], a PF based on SIR, and a blob filter were also simulated on

81

this system for 52 time steps with an initial state uncertainty p(x0)=N(0, 2). The parameters used

by these filters are summarized in Table 3-2.

 The filters are compared in terms of the root mean square error (RMSE) and computation

time averaged over 100 Monte Carlo runs in Table 3-2 and Figure 3-2. It can be seen that the

AGMF outperformed the EKF and UKF and achieved an RMSE similar to those of the PF and

blob filter. Due to the low dimensionality of this problem, the PF could use fewer particles and

hence had a better computational efficiency. In Figure 3-3, the state PDFs predicted by different

filters at two representative cases are compared. The true PDF was estimated by the histogram

extracted from a PF with 50000 particles, and the PDF of the 500-particle PF in Table 3-2 was

obtained in the same way. As is shown, the EKF yielded too narrow Gaussians at local modes

while the UKF produced too wide Gaussians to capture the global variance. The AGMF accurately

predicted the bimodal PDFs with the best agreement with ground truth, while the PDFs of the PF

and blob filter looked like ensembles of sparse impulses due to their limited sampling sizes. For

the blob filter, though it had an RMSE similar to AGMF, using a narrow covariance upper bound

for all components would lead to a coarse global approximation of state PDF if its number of

components was not large enough while using a wider upper bound would increase the risk of

local nonlinear distortion. In contrast, the AGMF was able to adjust the width of each Gaussian

component adaptively and thus could achieve a better estimation of state PDF with fewer

components.

Table 3-2 Comparison of filter performance on Example II

 RMSE Computation time Filter parameters

EKF 20.87 0.021s

UKF 7.47 0.019s α=1.3, β=1.5, κ=0.2

PF 4.20 0.065s 500 particles

Blob filter 4.73 0.275s 100 components, Rmin=100

AGMF 4.28 0.211s Nmax=25, thD=0.01, thL=0.01

82

Figure 3-2 Comparison of RMSE for state estimation in Example II

 Figure 3-3 Comparison of estimated state PDFs in Example II

3.3.3 Example III

The third example explores a benchmark nonlinear filtering problem developed in [223], the

“blind tricyclist” problem. Assume that a blind man is navigating a tricycle across an amusement

park without knowing his own exact position. Two friends on two merry-go-rounds are shouting

to him intermittently. The blind tricyclist measures the relative bearing angle between his forward

direction and the direction to a friend by using his hearing to listen for shouts. He doesn’t know

each friend’s rotation angle and rotation rate, though the center location and radius of each merry-

go-round are known. The navigation involves 7 state variables xk=[Xk, Yk, θk, φ1k, φ2k, ω1k, ω2k]
T,

which consists of his X-Y position coordinates, his heading angle, and the angular positions and

83

velocities of the two friends on their respective merry-go-rounds. More details of this problem,

including the state and measurement equations, initial uncertainty, and a nominal trajectory to test

filters, can be found in [223]. The duration of the test trajectory is 141 seconds, the sampling

interval is 0.5-seconds, and the measurement with respect to each friend occurs every 2 seconds.

An FFNN with 20 hidden nodes was trained to approximate the state equation and then the AGMF

was applied along with an EKF, a UKF, a PF and two blob filters, whose parameters are

summarized in Table 3-3. The lower bounds of information matrix for blob filters were adopted

from [80] as Rmin = diag[1/2.6; 1/2.6; 1/1.04; 1/0.3467; 1/0.4; 1/2000; 1/2000].

The filters were tested for 100 Monte Carlo runs with randomly drawn start positions. The

RMSEs of the estimated terminal positions (at t=141 s) are compared in Table 3-3, and the RMSEs

along the trajectory are compared in Figure 3-4. In addition, in Figure 3-5, the trajectories

estimated by different filters are plotted and compared with the true trajectory for one simulation

case. Since a fairly large initial uncertainty was used, the impact of nonlinearity was significant

for the filters. As a result, the RMSEs of the EKF and UKF were not satisfactory, though they had

the shortest computation time. Even the PF had a sub-optimal performance on this problem, as

also observed in [80]. The AGMF and two blob filters exhibited reasonable accuracies. As shown

in Figure 3-5, though these three filters deviated at the beginning, they all converged to the true

trajectory after some time while the other filters were still confused, which means these Gaussian-

mixture-based filters are more resistant to the impact of nonlinearity. The RMSE of the AGMF

was almost the same as the blob filter with 7000 components, while its computation time was only

8% of the latter. The blob filter with 700 components had a similar computation time as the AGMF,

while its RMSE was moderately larger. Therefore, it can be concluded that among all the filters

tested, the AGMF made the best compromise between filter accuracy and computational efficiency

on this seven-dimensional highly nonlinear problem with a high magnitude of uncertainty.

84

Figure 3-4 Comparison of RMSE for state estimation in Example III

Table 3-3 Comparison of filter performance on Example III

 RMSE of position Computation time Filter parameters

EKF 4.66 0.069s

UKF 10.14 0.140s α=0.001, β=2, κ=0

PF 9.30 69.80s 10000 particles

Blob filter-1 0.247 317.2s 7000 components

Blob filter-2 0.630 24.29s 700 components

AGMF 0.250 24.63s Nmax=200, thD=0.01, thL=0.01

Figure 3-5 Comparison of estimated tricyclist trajectories

3.4 Summary

This chapter investigates the probabilistic state estimation in nonlinear dynamic systems. A

novel adaptive Gaussian mixture filter is developed by using Gaussian mixture models to estimate

85

the non-Gaussian distribution of state variables. To attain a high-fidelity global approximation of

state distributions, the Gaussian mixtures are refined adaptively by splitting components based on

the local severity of nonlinearity. In the state prediction stage, it is proposed to approximate the

complex dynamic state equation with a feedforward neural network so that the nonlinearity can be

assessed more tractably at the sigmoid function layer. A likelihood divergence criterion is also

proposed to assess the nonlinearity associated with measurements in the Bayesian update stage.

The splitting process triggered by these designed criteria, as it shrinks the covariance of Gaussian

components, can refine the Gaussian mixtures to any desired level with quantified rates of

convergence. It has also been proved that under mild conditions, the L1 norm between the estimated

state PDFs and exact Bayesian solutions is upper bounded and can be regulated to a minimal level.

The proposed filter has been evaluated on multiple challenging nonlinear filtering problems.

Compared to the widely used filters (e.g., EKF, UKF, particle filter) and state-of-the-art methods

in the literature (e.g., blob filter), the AGMF designed in this work provides among-the-best state

estimation accuracy with a reasonable computational cost. Especially, it can estimate any non-

Gaussian state distribution with a compact Gaussian mixture size and uncompromised fidelity,

which makes it a promising solution for highly nonlinear state estimation applications.

86

4. PROBABILISTIC NEURAL NETWORK FOR UNCERTAINTY

PREDICTION

In this chapter, a Gaussian mixture probabilistic neural network (GM-PNN) with adaptive

Gaussian mixture refinement is proposed. The network’s inputs, activation states, parameters and

outputs are all treated probabilistically as Gaussian mixtures, which enables the characterization

of arbitrary probability distributions. The Gaussian mixtures are refined before each nonlinear

activation layer using the adaptive Gaussian mixture scheme from Chapter 2 to minimize their

distortions. The refinement scheme is also extended to ensure the linear transformation fidelity

with probabilistic weights. With this Gaussian mixture scheme, the predictive distributions that

combine the input uncertainties, nonlinear effect of the network, and parameter uncertainties can

be obtained directly and analytically without sampling or integration. The derivatives of all the

probabilistic parameters are derived analytically so that the GM-PNN can be trained efficiently

using any backpropagation method based on gradient descent. The GM-PNN achieved state-of-

the-art performance when benchmarked against other methods on a series of public datasets.

Therefore, it is a promising solution to address real-world applications subject to uncertainties.

4.1 The Gaussian Mixture Probabilistic Neural Network

This work considers the probabilistic parameterization of the multi-layer feedforward neural

networks. A feedforward neural network with L layers can be written as:

 ()()1 1 1 1L L L Lf f− −= + + +y W W W x b b b (4.1)

where mx is the m-dimensional vector of input features,
ny is the n-dimensional vector of

output targets, 1l lk k

l
−

W and lk

l b are the weight and bias of the l-th layer with kl hidden

neurons (l=1,…,L), and f is the nonlinear activation function. Also, for the l-th layer, define

lk

l o as the pre-activation states and lk

l a as the post-activation states (note that the pre-

activation and post-activation states are denoted as z and s in Chapters 2 and 3):

()

1l l l l

l lf

−= +

=

o W a b

a o
 (4.2)

with 0 =a x and L =o y at the input and output layers. For the GM-PNN studied in this work, the

87

probability density functions (PDF) of all its parameters are assumed as Gaussian mixtures, which

enable the modeling of arbitrary multimodal non-Gaussian distributions:

 () () () ()() () ()()()

1
, | , | ,

lN i i i i i

l l l ll l l l li
p w

=
=

W

W W W b b
W b W Μ Σ b μ ΣN N (4.3)

where the weight and bias in the same layer share the same mixture size
()l

N
W

and component

weights ()
i

l
w

W
. For the bias vector lb , ()

lki

l


b
μ and ()

l lk ki

l




b
Σ denote its mean vector and

covariance matrix in the i-th component, respectively, as for an ordinary multivariate Gaussian

PDF. Then it is worth noting that for the weight matrix lW , ()
1l lk ki

l
−


W

Μ and ()
1l lk ki

l
−


W

Σ are

matrices with the same size as lW with each element denoting the mean and variance of each

weighting factor at the corresponding position. Though it is assumed that the weighting factors are

uncorrelated, the multiplication operation in Eq. (4.2) will introduce correlation for the states in

lo , even if the covariance matrices of 1l−a and lb are also diagonal.

4.1.1 Linear Transformation in GM-PNN

To infer the predictive distribution layer-wisely through the GM-PNN, assume that the PDF

of activation states from the previous layer is () () () ()()()1

1 11 1 11
| ,

lN i i i

l ll l li
p w−

− −− − −=
=

a

a a a
a a μ ΣN , then

the exact PDF of lo at the current layer should be:

 () () ()

() ()()

() ()() () ()()

() ()1
1 1

1
, 1

| ,

 , ,

l l
i i T

N N
l l l l ll l

i j

l l l
j j j j

i j
l ll l l l

p w w
d d

− 
− −

−
=

+
=


 

a W
a a

a W

W W b b

o Wμ b WΣ W
o

Μ Σ μ Σ W b

N

N N
 (4.4)

Although this transformation from 1l−a to lo is linear, the integration is in general intractable. This

is mainly due to the multiplication of probabilistic state 1l−a with probabilistic weight lW , given

that the product of two Gaussian random variables is non-Gaussian. Hence, rather than pursuing

exact integration, the moment matching solution is used instead to approximate the integration for

each pair of components [48] and maintain ()lp o in a tractable Gaussian mixture form:

88

() () ()
()

() () ()()
()

() () () ()

() () () ()

() () () ()

() () ()  () () ()() 

() () () ()

1 1

1 1

1

1

1 1 1

1

| ,

with

1, ,

1, ,

diag diag

l lN N

h h h h h

l l ll l l l
h h

l l l l

h i j

l l l l

h j i j

l l l l

h j i j i i

l l l l l l

j i j T j

l l l l

p w p w

N N N i N

w w w j N

= =

− −

−

−

− − −

−

= =

=  =

= =

= +

= +

+ +

 
o o

o o o o

o a W a

o a W W

o W a b

o W a W a a

W a W b

o o o μ Σ

μ Μ μ μ

Σ Σ s Σ μ μ

Μ Σ Μ Σ

N

 (4.5)

where denotes element-wise product, diag denotes the operation of converting a vector to a

diagonal matrix and ()1

i

l−a
s is the vector of diagonal elements of ()1

i

l−a
Σ . The four terms in ()

h

lo
Σ

correspond to the covariance due to the coupling between ()1

i

l−a
Σ and ()

j

lW
Σ , the covariance when

only the weight lW is probabilistic, the covariance when only the state 1l−a is probabilistic, and

the covariance of bias lb , respectively.

This moment matching solution may have approximation errors. But, if ()1

i

l−a
Σ is so narrow

that ()1

i

lp −a degenerates into a Dirac delta function, then the integrals in Eq. (4.4) will converge

to the solution in Eq. (4.5). A relaxed condition for a componential density in lo to be Gaussian is

the coupling term
() ()1l l−W a

Σ s is zero for that component. The proof can be straightforward by

considering the single Gaussian PDF case: given the weight matrix
, ,l l i jW =  W (i = 1, …, kl, j =

1, …, kl−1), a state in ,1 ,, ,
l

T

l l l ko o =  o has 1

, , , , 1,1

lk

l i l i l i j l jj
o b W a

−

−=
= + . The coupling term for

,l io

equals zeros means () ()1

, , 1,1
var var 0

lk

l i j l jj
W a

−

−=
= . Since all the variances are non-negative, either

(), ,var l i jW or ()1,var l ja − must be 0, which implies one of
, ,l i jW or

1,l ja −
 for the same index j is

deterministic such that their product is a deterministic weight (or state) times a probabilistic state

(or weight). In such a case,
,l io equals the sum of kl−1 Gaussian variables scaled by deterministic

factors and will have a Gaussian distribution, as the scaling and summation of Gaussian variables

is still Gaussian. Therefore, the smaller the coupling term is, the better the moment matching

89

Gaussians can approximate the exact solution. Based on the above discussion of the condition for

a density in lo to be Gaussian and following the covariance equation in last line in Eq. (4.5), a

measure of the covariance coupling, denoted as CPCov , between ()1

i

lp −a and ()j

lp W is defined

as:

() ()() () ()()

() () () () ()() ()()

1 1

1

1 1 1

||

T
i j j i

CP l l l l

j i j i i i

l l l l l l

D p p− −

−

− − −

=

 + +

W a

W a W a a o

a W Σ s

Σ s Σ μ μ s

 (4.6)

where ()
i

lo
s is the vector of diagonal elements of () () ()1

j i j T

l l l−W a W
Μ Σ Μ and the superscript −1 denotes

the element-wise reciprocal operation on a column vector. How to use this quantity to ensure the

fidelity of predictive distribution inference will be discussed in the next subsection.

4.1.2 Nonlinear Transformation in GM-PNN

Given a pre-activation Gaussian mixture PDF ()lp o , the nonlinear activation function f will

distort each of its Gaussian components such that the components in the PDF ()lp a of post-

activation state ()l lf=a o will no longer be Gaussian. If the activation function f is piecewise

differentiable and monotonically increasing, like those listed in Table 2-1, then ()lp a have an

analytical solution. However, as discussed in Section 2.2.1, this exact solution is no longer

Gaussian and thus may not be tractable in the following layers. For this reason, the approximate

solution by linearizing f at the center of each Gaussian component is often used, which will

converge to the exact solution if the covariance ()
i

lo
Σ is infinitesimal [57].

The adaptive Gaussian mixture scheme developed in Chapter 2 can be applied to assure the

fidelity of PDF propagation in the nonlinear transformation of f. The quality of a linearization-

based density is assessed by its KL divergence with respect to its exact solution counterpart

() ()()ˆ||i i

KL l lD p pa a , as derived in Appendix A. The evaluation of this KL divergence based on

unscented transform and SVD of covariance matrices has been elaborated in Section 2.2.1. If the

KL divergence of a component i exceeds a threshold, it means the linearization-based solution will

yield a considerable error in propagating ()i

lp o . Therefore, this component will be refined by

splitting it into a set of sub-components with narrower covariance.

90

Before proceeding to the refinement, let’s revisit the linear transformation in Section 4.1.1.

As has been mentioned, the moment matching solution in Eq. (4.5) will be close to the exact

solution in Eq. (4.4) if the covariance coupling term is small. The coupling term can be minimized

if lW is deterministic (i.e., non-probabilistic network, which is outside the scope of this work) or

if the components in ()1lp −a are narrow. Therefore, similar to the nonlinear transformation, the

fidelity of linear transformation could also be improved by splitting components to narrow their

covariance matrices. Besides, to save computational cost, it is preferred that the splittings for linear

and nonlinear transformations can be performed together so that the SVD of covariance matrices

required by splitting only needs to be performed once. For a pre-activation density ()i

lp o , the total

covariance coupling between its approximate post-activation density ()ˆ i

lp a and the next layer’s

weight
() ()()1

1 111

lN i j

l lli
w p+

+ ++=
W

W
W W~ can be assessed by the weighted sum of the componential

couplings defined in Eq. (4.6):

 () ()() () () ()()()1

1 111
ˆ ˆ|| ||lNi i i j

CP l l CP l lli
Cov p p w D p p+

+ ++=
=

W

W
a W a W (4.7)

In addition to the KL divergence assessment using UT to ensure the nonlinear transformation

fidelity at layer l, this coupling assessment by looking ahead at the next layer’s weight could trigger

refinement to ensure the linear transformation fidelity at layer l+1. If the covariance ()
i

lo
Σ is refined

such that () ()
i i i iT

l l
=

a o
Σ A Σ A is sufficiently narrow, then the magnitude of () ()1

j i

l l+W a
Σ s can be much

lower than the
() () ()() ()1

j i i i

l l l l+
+

W a a o
Σ μ μ s in Eq. (4.6), because the latter also depends on the mean

magnitude of la and 1l+W , and thus will not be infinitesimal. Thereby, the covariance coupling is

negligible and the PDF of 1l+o after the linear transformation at layer l+1 could be closely

approximated as a Gaussian mixture using Eq. (4.5).

The KL divergence and covariance coupling will be assessed for every component in ()lp o .

For a component
() () ()()| ,i i i

ll l l
w

o o o
o μ ΣN , if either of these two quantities exceeds their respective

thresholds, it will be split into a sub-mixture of P components along its singular vector with the

largest singular value. The splitting operation using a scheme selected from Table 2-2 is the same

as Eq. (2.18) and Eq. (3.19). Assume that by repeating the splitting process until no component

91

triggers new splitting, the PDF of lo is refined as () () () ()()()

1
| ,lN i i i

l ll l li
p w

=
=

o

o o o
o o μ ΣN (note that

the mixture size increases to ()l
N

o
), then this refined Gaussian mixture PDF can be propagated

through the activation function f using UT, as in Eq. (2.19).

The obtained post-activation PDF ()lp a is then sent to Eq. (4.5) again to perform the linear

transformation at layer l+1. The advantage of this unitive refinement process by extending the one

in Section 2.2 is that by considering both the criteria of KL divergence and covariance coupling,

it not only minimizes the nonlinear transformation distortion of ()lp a at layer l, but also ensures

the linear transformation fidelity of ()1lp +o at layer l+1. By performing the linear and nonlinear

transformations layer by layer using this adaptive Gaussian mixture scheme until the last layer

(l=L), the PDF of output () ()Lp p=y o can be predicted.

To infer predictive distributions, the existing BNNs typically have to presume a Gaussian

likelihood function with a problem-specific model precision hyperparameter and then integrate the

likelihood over the posterior distribution of weights [90][93]. The integration is intractable in most

cases and thus approximate inference methods like Monte Carlo sampling have to be used. In

contrast, the predictive distribution of output in our GM-PNN can be inferred analytically by

propagating Gaussian mixture probabilities forward layer by layer with all the uncertainties of

input, states and parameters considered. The direct prediction of high-fidelity output distributions

without sampling or evaluation of integration is the main advantage of the proposed GM-PNN

over other probabilistic networks like BNNs. The predictive distribution inference algorithm of

GM-PNN is summarized in Algorithm III.

Lastly, since the refinement and linear transformation will increase the number of Gaussian

components in ()lp o and ()lp a exponentially over layers while the actual PDF is not going to be

infinitely complex, the mixture size of ()lp W should be limited when defining the structure of

GM-PNN (
()l

N
W

= 2 or 3 should be adequate to model any multimodal distribution of parameters)

and a Gaussian mixture reduction step, like the one in Section 2.2.4, can be used to merge

components and reduce the computational complexity for very deep networks.

92

Algorithm III: inference of predictive distribution in GM-PNN

Given the input with Gaussian mixture uncertainty () ()
1

,
N i i i

i
p w

=
=

x

x x x
x μ ΣN (or

() (),p =x x 0N for a crisp-value input)

(1) Let () ()0p p=a x and use Eq. (4.5) to predict ()1p o , set l=1.

(2) For each component in ()lp o , evaluate the KL divergence KLD and compare with the

threshold KLth .

(3) Evaluate the covariance coupling CPCov and compare with the threshold CPth

(4) If KL KLD th or CP CPCov th split this component

(5) Repeat steps (2)-(4) until there is no new splitting triggered.

(6) Use UT to predict ()lp a from the nonlinear transformation through f.

(7) Use Eq. (4.5) to predict ()1lp +o from the linear transformation with 1l+W and 1l+b .

(8) Set l=l+1, repeat steps (2)-(7) until l=L−1.

(9) Extract the predictive distribution of output () ()Lp p=y o .

4.2 Backpropagation with Parameter Uncertainty

Training a feedforward neural network as a deterministic model can be quite easy given the

well-developed backpropagation techniques. In contrast, the training of probabilistic networks like

BNN is difficult because the inference of posterior distributions of parameters is intractable and

hence some approximate methods, like VI or EP, must be used. In this work, since the GM-PNN

can infer predictive distributions analytically, it will be possible to build a backpropagation scheme

in which its probabilistic parameters can be learned like in deterministic networks, instead of using

a sampling-based approximation of gradients as in [16] and [91].

The structure of a GM-PNN is defined by a hyperparameter set
()  

1, ,
, , , ,l l

l L
L m n k N

=
=

W

where L is the number of layers, m is the input dimension, n is the output dimension, kl is the

number of hidden nodes and
()l

N
W

is the number of components for the distribution of  ,l lW b in

layer l. Given a dataset consisting of N samples  ,D = X Y with  1 2, , , N=X x x x and

 1 2, , , N=Y y y y , the training of GM-PNN is to find a parameter set

() () () () () 
()1,

1, ,

, , , ,
l

i i i i i

i Nl l l l l

l L

w =

=

=
WW W W b b

Μ Σ μ Σ that minimizes a loss function. The loss function used in

this work is negative log-likelihood (NLL):

93

 () ()
1

, , log | ,
N

i i

i

L p
=

 =− X Y y x (4.8)

where ()| ,i ip y x is the likelihood of measurement iy under the predictive distribution of input

ix and parameter set  . The NLL loss indicates how well the model with parameter  describes

the dataset D and is widely used in the maximum likelihood estimation (MLE) learning schemes.

For GM-PNN, its likelihood for each data pair (),i ix y could be readily computed from the

predictive distribution generated in Section 4.1, and thus the NLL is an analytical expression of

the parameter set  . If the derivatives of NLL with respect to each parameter in  are derived,

then a gradient-descent method can be applied to train the GM-PNN. Following this idea, each

epoch in the gradient-based training will consist of a feedforward step and a backpropagation step.

In the feedforward stage, each input sample ix is propagated forward through GM-PNN with the

current parameter set  , with appropriate refinements performed and the distributions of states

lo and la recorded at each intermediate layer. The likelihood ()| ,i ip y x is acquired by

substituting iy into the predicted output distribution. Then in the backpropagation stage, the

gradient (), ,L X Y at the current parameter set  is evaluated backwardly from output to

input based on the recorded intermediate-layer distributions, and the parameters in  are updated

along the opposite gradient direction. Since the feedforward inference has been detailed in Section

4.1 and the gradient-descent algorithms have been well developed in the literature [224], the

remaining of this section will focus on deriving the gradients of the NLL loss function.

First, the gradients of NLL for each sample ()log | ,j

j jL p=− y x with respect to the PDF at

the output layer () () () () ()()()

1
| ,

LN i i i

L LL L Li
p p w

=
= =

o

o o o
y o o μ ΣN can be derived as:

94

()

() ()()

() () ()()()

()

() () ()()

() () ()()()

()

() () ()()

() () ()()() ()()

() ()()

1

1

1

1

1

| ,

| ,

| ,

| ,

0.5 | ,

| ,

with

L

L

L

i i
j

j L L

Ni i i i
L jL L Li

i i i
j

jL L L

Ni i i i
L jL L Li

i i i

jL L L T i

LNi i i i
L jL L Li

i i

jL L

L

w w

wL

w

wL

w

=

=

−

=

−


= −




= − 




= −  −



= −







o

o

o

o o

o o o o

o o o

o o o o

o o o

o

o o o o

o o

y μ Σ

y μ Σ

y μ Σ
t

μ y μ Σ

y μ Σ
tt Σ

Σ y μ Σ

t Σ y μ

N

N

N

N

N

N

 (4.9)

Then by knowing
() () ()

, ,
j j j

i i i

l l l

L L L

w

    
 
    o o o

μ Σ
 at layer l and based on the transformation in Eq.

(4.5), the gradients with respect to the weight
() () ()()()

1
~ | ,

lN k k k

l ll l lk
w

=
W

W W W
W W Μ ΣN are:

()
()

()

()

() ()
()

()
() ()

()

()
() () () ()()()

1

,

1

, ,

1 ,

11

1 11

,

1 1 11

2

l

i k

l

i k i k

l i k

j j
N i

l hk i

l l

j j j
N i T k i

l l lh hk i

l L L

j
N j h i i i

l l l lk i

l

L L
w

w w

L L L

L

−

−

−

−=

− −=

− − −=

 
=

 

   
 =  +
   
 

  =  +
 







a

a

a

a

W o

a W a

W o o

o a a a

W

μ Μ Σ
Μ μ Σ

d s μ μ
Σ

 (4.10)

where is element-wise product,  is the Kronecker product,
,i kh is the index of components in

()lp o that are generated by the i-th Gaussian component from ()1lp −a and k-th component from

()lp W . In addition, ()1

i

l−a
s is the vector of diagonal elements of ()1

i

l−a
Σ and

()
,, i kj h

lo
d is the vector of

diagonal elements in

()
,i k

j

h

L

L


o

Σ
. Similarly, the gradients with respect to the bias lb are:

() ()

()

() ()

()

1

,

1

,

1

1

l

i k

l

i k

j j
N

hk i

l L

j j
N

hk i

l L

L L

L L

−

−

=

=

 
=

 

 
=

 





a

a

b o

b o

μ μ

Σ Σ

 (4.11)

The bias lb has the same mixture size and component weights as lW , while the gradients about

it are much easier to evaluate since the bias is only additive to the states.

95

Next, to move one layer back, the gradients of NLL with respect to the post-activation PDF

at layer l−1 can be evaluated as:

()
()

()

()

()
()

()
() () ()

()

()
()

()
() () ()()()

,

,

,

,

,

1

1

,

11

1

,

1

1

2

diag

l

i k

l i k

i k

l i k

i k

j j
N k

l hi k

l l

j j
N j hk T k T i

l l l lhi k

l L

j j
N j hk T k k T

l l l lhi k

l L

L L
w

w w

L L

L L

=

−

−=

−

=

−

 
=

 

  
 = +
  
 

  
 = +

   







W

W

W

W

a o

W W o a

a o

W W W o

a o

Μ Σ d μ
μ μ

Μ Μ Σ d
Σ Σ

 (4.12)

Further, to move through the nonlinear activation function f:

() ()

() ()

() ()

1 1

1 1

1 1

j j

i i

l l

j j
iT

i i

l l

j j
iT i

i i

l l

L L

w w

L L

L L

− −

− −

− −

 
=

 

 
=

 

 
=

 

o a

o a

o a

A
μ μ

A A
Σ Σ

 (4.13)

where i
A is the Jacobian matrix of f at ()

i

lo
μ . The above gradients are all derived based on matrix

calculus. The Eq. (4.10) and (4.11) are used to update the parameters in layer l, while Eq. (4.12)

and (4.13) are used to backpropagate to layer l−1. The gradients in Eq. (4.13) are then sent to Eq.

(4.10) and (4.11) to update the parameters in layer l−1 repetitively until the input layer.

Based on the explicitly given gradients, any gradient-descent algorithm can be used to train

the GM-PNN. In this work, the stochastic gradient descent with momentum (SGDM) is adopted,

as will be presented in the next section. Though the training scheme in this section is not Bayesian

as it does not explicitly involve a prior distribution of  , it’s implicitly related to Bayesian

networks because the negative log-likelihood term is also in the loss function of BNNs. While

BNNs also have a KL-divergence term with respect to the prior distribution in their loss function,

this term typically just acts like a regularization term to limit the model complexity and prevent

overfitting [82]. For the GM-PNN, a regularization term could also be added in Eq. (4.8) to achieve

the same effect as using a prior, while it does not necessarily make the training explicitly Bayesian.

96

4.3 Application Examples

In this section, the GM-PNN is tested on a series of benchmark datasets and compared with

other state-of-the-art methods in the literature to validate its efficiency in learning from noisy data

by considering uncertainties. Four popularly used datasets of regression tasks from the UCI

machine learning repository, on which many machine learning models are benchmarked, were

selected to test the GM-PNN. The datasets include the Boston housing dataset (506 samples with

13 features), concrete strength dataset (1030 samples with 9 features), energy efficiency dataset

(768 samples with 8 features), and yacht hydrodynamics dataset (308 samples with 7 features).

Three state-of-the-art machine learning models, all with an emphasis on uncertainty learning, were

selected for comparison: the deep Gaussian process (Deep GP) in [50], the concrete dropout (C-

Dropout) model in [93], and the generalized expectation propagation (GEP) model in [95]. All the

models compared were composed of a single hidden layer and 50 hidden nodes, which means the

model complexity was roughly the same for all the learning methods evaluated. The GM-PNN

training was carried out using stochastic gradient descent with momentum (SGDM) with a learning

rate of 0.01 and a momentum of 0.9. The splitting thresholds for both DKL and DCP were selected

as 0.01, and the number of components in the PDFs of Wl and bl was set to be 2 for all layers.

The datasets were randomly split into a 90% training set and a 10% test set for each round of

evaluation. The splitting and evaluation were repeated 20 times for each dataset, and the average

RMSE and negative log-likelihood (NLL) on test sets were compared for the selected models, as

shown in Table 4-1. The GM-PNN ranked 1st three times out of the four datasets for test RMSE

and two times for test NLL. On those datasets where it is not the champion, its performance was

also fairly close to the best one. Therefore, the overall performance of GM-PNN in this comparison

was remarkably better than other models.

Table 4-1 Average test RMSE and negative log-likelihood (NLL) for the selected models

 Avg. Test RMSE Avg. Test NLL

Deep GP C-

Dropout

GEP GM-

PNN

Deep GP C-

Dropout

GEP GM-

PNN

Boston 3.02±0.20 2.65±0.17 2.96±0.13 2.57±0.15 2.33±0.06 2.72±0.01 2.40±0.10 2.46±0.04

Concrete 7.33±0.25 4.46±0.16 4.67±0.09 4.16±0.07 3.13±0.03 3.51±0.00 2.89±0.02 2.89±0.01

Energy 0.84±0.03 0.46±0.02 1.13±0.05 0.69±0.01 1.32±0.03 2.30±0.00 1.89±0.01 1.04±0.01

Yacht 1.58±0.37 0.57±0.05 1.08±0.06 0.47±0.05 1.39±0.14 1.75±0.00 1.08±0.06 1.14±0.09

97

4.4 Summary

In this chapter, a probabilistic neural network is developed based on the adaptive Gaussian

mixture scheme in Chapter 2. The network’s inputs, parameters, intermediate-layer neuron states,

and outputs are all characterized with Gaussian mixture distributions. The Gaussian mixture states

are refined adaptively before propagated through each layer, as triggered by two proposed criteria,

to not only minimize the nonlinear distortion at the current layer but also ensure the fidelity of

linear transformation at the next layer. Thereby, the predictive distributions of output can be

inferred analytically without sampling or integration, to provide high-fidelity probabilistic

uncertainty quantification. The gradients of the negative log-likelihood loss function with respect

to all the Gaussian mixture parameters have also been derived analytically so that the proposed

GM-PNN can be trained with any gradient-descent method. The GM-PNN in this work exhibits a

state-of-the-art performance when benchmarked against other latest methods on a series of famous

public datasets. Based on the success on benchmark datasets, next, the GM-PNN will be applied

to address practical data-driven problems subject to uncertainties, as will be presented in the next

chapter.

98

5. APPLICATION OF PROBABILISTIC NEURAL NETWORKS TO

CONDITION MONITORING OF MANUFACTURING PROCESSES

This chapter describes the applications of the probabilistic neural network in Chapter 4 on

two manufacturing process monitoring schemes. First, a robust tool wear monitoring scheme for

turning processes is developed. Signal features that can best predict tool wear are extracted from

sensors on the machine tool and selected using a systematic scheme. Two tool wear models are

trained, one using a type-2 fuzzy network for interval uncertainty quantification and the other using

the network in Chapter 4 for probabilistic uncertainty quantification. Secondly, a porosity

monitoring scheme for laser AM processes is developed. A high-speed camera is used for in-

process melt-pool sensing and CNN models are trained to directly learn melt-pool features for

porosity prediction. The classical CNN models without uncertainty quantification are compared

with the CNN models in which the probabilistic network is incorporated as an uncertainty

quantification module. For both monitoring schemes, experimental results show that the

probabilistic network not only achieves higher prediction accuracies of process conditions than the

classical models but also provides more effective uncertainty quantification to facilitate the

process-level decision-making in the manufacturing environment.

5.1 Tool Wear Monitoring of Turning Processes with Consideration of Uncertainties

The tool wear monitoring scheme is developed in this section. The sensor instrumentation

setup, experiment design, signal processing and feature selection methods are detailed. The GM-

PNN developed in Chapter 4 is applied to tool wear prediction based on the selected features and

compared with a classical type-2 fuzzy neural network.

5.1.1 Instrumentation, Experiments Design and Feature Extraction

5.1.1.1 Instrumentation Setup

The tool wear testbed consists of a 20 HP Jones and Lampson CNC turret lathe with five

sensors used for data collection during the turning operation. A diagram of the instrumentation

setup is shown in Figure 5-1. A Hall-effect power meter is installed on the spindle motor drive.

99

Two PCB 307A quartz accelerometers are mounted on the tool holder in the Y-(cutting) and Z-

(feed) directions. Additionally, two AE sensors with different frequency ranges are attached to the

tool holder. All sensors used in this experimental setup are summarized in Table 5-1. The

accelerometer and power meter signals are sampled by a National Instrument DAQ board while

the AE signals are sampled by a Physical Acoustics PCI-2 board. All the five sensors adopted are

affordable and non-intrusive to the machining process.

Figure 5-1 Instrumentation diagram of the test bed

Table 5-1 Information of the sensors used

Sensor
Model

Number
Specifications Symbol

Sampling

rate (Hz)
Purpose

Power meter

Load

Controls

UPC

Response time: 0.5s Power 10k

Measure the power

input to the spindle

motor

Accelerometer PCB 307A

Freq. Range: 1-5000Hz

Ampl. Range: ±50g

Sensitivity: 100mV/g

AccY 10k

Measure the tool

vibration in cutting

direction

Accelerometer PCB 307A

Freq. Range: 1-5000Hz

Ampl. Range: ±50g

Sensitivity: 100mV/g

AccZ 10k

Measure the tool

vibration in feed

direction

AE sensor

Physical

Acoustics

R15a

Freq. Range: 50-

200kHz
AEL 2M

Measure the acoustic

emission in low

frequency range

AE sensor

Physical

Acoustics

WSa

Freq. Range: 100-

900kHz
AEH 2M

Measure the acoustic

emission in high

frequency range

100

5.1.1.2 Experiment Design

To examine the generalization capability of the tool wear monitoring scheme that would be

developed, three types of workpiece materials were used for tool wear tests: hardened 4140 steel

(HRC35), Inconel 718 and Ti-6Al-4V. The 4140 steel and Inconel 718 workpieces were round

bars of 6 inches in length and 1.5 inches in diameter, while the Ti-6Al-4V workpieces were round

bars of 6 inches in length and 2 inches in diameter. The 4140 steel and Ti-6Al-4V were machined

with Kennametal K68 carbide inserts (SPGN 422), while Inconel 718 was machined with

Greenleaf WG-300 ceramic inserts (SNGN 452). Coolant was not used during any of these tests.

The materials and cutting conditions of tool wear tests are listed in Table 5-2.

Table 5-2 Cutting conditions in tool wear tests

(Flank: tests used for the flank wear model; Crater: tests used for the crater wear model)

 Material Cutting Speed

(m/min)

Feedrate

(mm/rev)

Depth of

Cut (mm)

Usage Model

Test #1 4140 Steel 90 0.20 0.25 Training Flank

Test #2 4140 Steel 90 0.10 0.25 Training Flank

Test #3 4140 Steel 90 0.20 0.15 Training Flank

Test #4 4140 Steel 120 0.20 0.25 Training Flank

Test #5 Inconel 718 120 0.075 0.25 Validation Flank

Test #6 Inconel 718 120 0.075 0.15 Validation Flank

Test #7 Inconel 718 100 0.075 0.25 Validation Flank

Test #8 Inconel 718 120 0.10 0.25 Validation Flank

Test #9 Ti-6Al-4V 100 0.075 0.75 Training Crater

Test #10 Ti-6Al-4V 125 0.075 0.75 Training Crater

Test #11 Ti-6Al-4V 100 0.10 0.75 Validation Crater

Tool wear is measured after each tool pass. It is well documented that the machining of steel

and Inconel is dominated by flank wear [225], while the machining of Ti-6Al-4V is dominated by

crater wear [226]. The flank wear (VB) is measured by a Zeiss optical microscope while the crater

depth (KT) is measured by a BRUKER 3D optical profiler. Each measurement is repeated five

times, with the mean, minimum and maximum measurement values being used as the nominal tool

wear and the uncertainty bounds, respectively. The inserts are replaced when flank wear reaches

200 µm or when tool chipping is observed, whichever occurs first.

In addition to the tool wear tests, since the sensor signals’ dependence on cutting conditions

need to be studied to establish a feature normalization scheme and the parameters in this scheme

101

also need to be determined experimentally, a set of normalization tests were also performed, as

summarized in Table 5-3. The cutting conditions in Test#1, Test#5 and Test#9 are selected as the

nominal conditions for the three materials. By machining at these conditions with fresh tools, the

value of any feature can be extracted. By varying the cutting conditions around the nominal

conditions, the signal feature’s dependence on cutting conditions can be identified quantitatively,

as will be discussed later.

Table 5-3 Cutting conditions for normalization

Material Cutting Speed (m/min) Feedrate (mm/rev) Depth of Cut (mm)

4140 Steel 80, 90, 100 0.100, 0.150, 0.200, 0.250 0.15, 0.25, 0.35

Inconel 718 80, 100, 120 0.050, 0.075, 0.100, 0.125 0.15, 0.25, 0.35

Ti-6Al-4V 75, 100, 125 0.050, 0.075, 0.100, 0.125 0.25, 0.50, 0.75, 1.00

5.1.1.3 Feature Extraction

To represent the characteristic information embedded in the raw signal data in a compact and

interpretable form, signal features are extracted from diverse signal processing schemes, including

time-domain, frequency-domain and time-frequency-domain analyses. In this work, the power

spectral density (PSD) is used for frequency-domain feature extraction. A four-level wavelet

packet decomposition (WPD) with 6th order Symlets wavelet is utilized for time-frequency-

domain feature extraction. The wavelet coefficients at each decomposition node can be viewed as

a signal in the corresponding frequency band, from which wavelet features can be extracted. The

list of features that are potentially useful for tool wear monitoring can be obtained from prior

knowledge and literature review [134]. Among the sensors used, the power meter outputs an

averaged power signal with minimal bandwidth, and thus only time-domain features are extracted

from its signal. Since the AE signals are sampled at one or two megahertz and any complicated

signal processing schemes should be avoided in consideration of computational efficiency, only

time-domain and basic frequency-domain features are extracted. The vibration signals measured

by the accelerometers are sampled at the kilohertz range, and are more suitable for feature

extraction with different signal processing schemes. The candidate features are listed below by

physical sensor:

Power meter: Time-domain features include the mean, RMS, standard deviation, skewness,

kurtosis, peak-to-peak amplitude and crest factor.

102

Accelerometers: Time-domain features are the same as those of the power meter. Frequency-

domain features include PSD mean (mean power level of the spectrum), frequency centroid

(weighted frequency center of the spectrum), normalized PSD moment of inertia (spectrum

distribution around the center) and normalized PSD entropy (flatness of the spectrum). Wavelet

features include the powers of wavelet coefficients at different decomposition nodes.

AE sensors: Time-domain features are the same as those of the power meter. Frequency-

domain features calculated from periodograms include the frequency centroid, peak spectrum

amplitude and peak frequency.

5.1.2 Methodologies

The collected sensor signal data need to be processed properly before predicting tool wear.

Firstly, the analog signals are preprocessed to obtain digital signals. Next, interpretable features

are extracted from the digital signals in the time-domain, or transformations in other domains, as

described in Section 5.1.1.3. The extracted features are normalized to minimize their sensitivity to

variant cutting conditions, at which point, an optimal subset of features highly correlated to tool

wear is selected. Finally, a predictive tool wear model is trained with the selected features. The

architecture and data flow of the proposed monitoring system is summarized in Figure 5-2.

Figure 5-2 Overall architecture and data flow of the proposed tool wear monitoring system

5.1.2.1 Feature Normalization

Feature normalization is the key to making the monitoring system applicable to generalized

conditions. The magnitudes of signal features vary due to one or more of the following factors: 1)

the nature and units of different signals and features, 2) the changes of tools and workpiece

103

materials, 3) the changes of cutting conditions, and/or 4) the changes of process conditions such

as tool wear. The idea of feature normalization is to properly scale the signal features into more

uniform ranges to minimize the variations caused by the first three factors while preserving

variations caused by the fourth factor. A normalization scheme is proposed as follows:

Assume that the raw signal feature at cutting speed V , feedrate f and depth of cut
pa is sf

and the feature value at a nominal cutting condition with fresh cutting tool is known as 0sf , then

the normalized feature value Nsf can be obtained as Eq (5.1).

()

0

0 0 ,0

, ,

*

p

N

p

p

sf V f a
sf

aV f
sf

V f a

 
=

    
      

     

 (5.1)

where α, β, γ are the coefficients to be identified for each feature and 0V , 0f ,
,0pa are the nominal

cutting speed, feedrate and depth of cut at which 0sf is extracted. The three ratio terms in the

denominator are used to eliminate the influence of cutting conditions, while 0sf accounts for the

effects of raw feature magnitudes, machine and measurement setups, workpiece materials and

cutting tools. It is expected that the normalized features of fresh tools are always close to 1,

regardless of cutting conditions. Then, as tool wear increases, the normalized features deviate from

1 and give indicative information of tool wear.

For a given set of cutting tests using fresh tools at different cutting conditions, raw features

can be extracted for each condition, and the coefficients (α, β, γ) can be determined from the

following optimization in Eq (5.2).

 ()
2

 , ,

1
 , , 1N

n

sf
n

  

   −  

find

to minimize (5.2)

where n is the total number of feature samples obtained from all the cutting conditions. The initial

searching ranges of α, β and γ are suggested as [−1,1], but can be broadened if necessary. After

the coefficients α, β, γ are identified, they can be stored in a database. For a new workpiece material

or cutting tool, only one cutting test with a fresh tool under the nominal cutting condition is

required to calibrate 0sf .

104

5.1.2.2 Feature Selection

Even in a sensor fusion scheme, feeding a redundant set of features into a machine learning

model might not improve, or could even degrade the model’s performance. Instead, a compact

feature set that best predicts tool wear should be selected. In addition, the signal preprocessing

parameters (sampling rate and filter frequencies) do affect the features’ correlation to tool wear

and thus need to be determined together with the feature selection. In this work, the features and

their preprocessing parameters are selected systematically in the following steps:

First, a preliminary feature selection is carried out to downselect candidate features. In this

step, different signal preprocessing parameters are applied to the same feature and the optimal

preprocessing parameters are selected as those maximizing the feature’s correlation with tool wear.

Features showing low correlation, even with their best preprocessing parameters, will be

eliminated from the candidate list. Since the commonly used Pearson correlation coefficient can

only assess the linear correlation [132], in this work, a feature’s correlation with tool wear is

instead measured by the coefficient of determination (R2) of the best single-feature regression

model among linear, parabolic or exponential functions. The preliminary selection procedure is

presented in Figure 5-3. Since the training of tedious neural network models is not involved, this

procedure, though exhaustive, can be executed efficiently and is scalable to large candidate pools

of features and signal preprocessing parameters.

Next, a systematic frequency band analysis is performed. If a feature’s correlation to tool

wear depends on frequency bands, the above procedure in Figure 5-3 only gives the single best

passband for that feature. The effect of frequency bands can be more systematically analyzed with

the following three manipulations:

1) Merging frequency bands. If a feature has good correlations in several frequency bands,

merging these separate bands into a larger one can give a more compact feature set and might

enhance the feature’s performance. This can be addressed by comparing the regression using the

feature in the merged band with the regressions using the features in the original bands. The F-

statistic and p-value from an analysis of variance (ANOVA) test can be used to assess regression

models. The F-statistic indicates the statistical significance of the model while the p-value is the

probability that the null hypothesis (the regression model is equal to a constant model) is true. If a

larger F-statistic and a lower p-value are observed for the regression model with merged bands, it

can be concluded that merging the frequency bands could be beneficial.

105

Figure 5-3 Flow chart of the coupled feature and preprocessing parameter selection

2) Multi-band analysis. Features at different frequency bands might have information

complementary to each other. Instead of merging the bands, another strategy is to use the same

type of feature in multiple bands to predict tool wear. This can be addressed by assessing the multi-

band regression in Eq. (5.3):

()

0

1

log Feature @ band #i

 is the measured tool wear

n
i

i i

i

x
y a a x

y=

 =
= + 


 (5.3)

If a multi-band regression from Eq. (5.3) (n>1) is better than the single-band regression (n=1),

then it can be said that using the features in multiple bands is beneficial.

3) Band feature fusion. Combining different types of features at the same frequency band may

better describe the system behavior at that band, which can be assessed by a feature fusion analysis.

Assume that three features are selected for the analysis, a permutation pool can be created via

multiplication and/or division of the features with each other, as shown in Eq. (5.4):

()

   2

log Feature #i @ the band 1,2

, , ,

,3

 , , 1, 2,/ , , / 3 , i i i j i

i

j i j k i j kV x x x x x x x x x x x

x i

i j k i j kx

= =

=  
 (5.4)

With three features, the size of the permutation pool is 19. Linear regressions by choosing

items from the permutation pool are assessed as shown in Eq. (5.5):

106

 0

1 is the measured tool wear

n
i

i i

i

v V
y a a v

y=


= + 


 (5.5)

A potential fusion of permutation terms is identified if R2 of the regression is higher than

those of single-term regressions. ANOVA test is also applied to ensure each permutation term in

the identified regression model is above a significance level (p<0.01). Since a compact feature set

is desired, the n in Eq. (5.3) and Eq. (5.5), which controls the number of bands and features, should

be small (n≤3).

At last, the optimal feature set is selected. After the first two steps of feature selection, the

tool wear model hasn’t been involved yet nor has its performance been optimized in terms of input

variables. Assuming that N features have been selected after the first two steps, the optimal feature

set is subsequently selected using a backward elimination method:

(1) Exclude one feature from the N candidates, use the remaining N−1 features to train a tool

wear prediction model and record the MSE (mean square error) as the performance index.

(2) Repeat (1) for all the N features and remove the feature whose N−1 complementary set has

the lowest MSE, because this feature yields the minimum performance reduction when

excluded from the tool wear prediction model.

(3) Set N=N−1 and repeat (1) ~ (2) until the minimum number of features left.

The above procedure is applicable regardless of which machine learning model is adopted as

the tool wear model. Since the initial number of features N is small, the procedure will not be

unacceptably time-consuming although the data-driven model training is iteratively involved.

5.1.2.3 Type-2 Fuzzy Basis Function Network

There are always uncertainties in the machining process; therefore, even after the same length

of machining time, the tool wear could be different in two wear tests with the same cutting

condition. Even with the same amount of tool wear, it is impossible to replicate the same feature

values. While the tool wear models in the literature are mostly trained to minimize the prediction

errors, for more reliable decision-making regarding tool wear, it is also of interest to know the

magnitude of uncertainty associated with the crisp tool wear prediction at any given moment. For

this reason, the GM-PNN developed in Chapter 4 will be applied to the predictive modeling of

tool wear with uncertainties. To provide a performance baseline of uncertainty quantification, tool

107

wear models will also be constructed using the interval type-2 fuzzy basis function network

(T2FBFN) proposed in [17], and the GM-PNN models will be benchmarked against the T2FBFN

models. The T2FBFN is briefly introduced below.

Type-2 fuzzy basis function network is a two-layer network constructed using a fuzzy

inference system, with interval type-2 fuzzy sets at the output layer. A T2FBFN with n input

variables and J fuzzy rules can be formulated to approximate a nonlinear function in an interval

form, as shown in Eq (5.6):

    () ()

()
()

()()

1 1

1

1 1

, , ,
J Jj j

l u l u l j u jj j

n j

i ii
j nJ j

i ij i

y y y w p w p

x
p

x





= =

=

= =

 = = =
 

=

 



 

pw pw x x

x
 (5.6)

where x1, x2, …, xn are the input variables, ()jp x is the fuzzy basis function in the j-th fuzzy rule,

()j

i ix is the fuzzy membership function,  , l uy y are the lower and upper bounds of the output,

and  ,l uw w are the lower- and upper-bound weighting factors in the sense of neural network, or

the end points of interval type-2 fuzzy sets in the sense of fuzzy logic.

To build a T2FBFN, a training set of N samples () () () () , , ,n l uk y k y k y kx with k=1,2, …,

N, can be obtained from experiments, in which each vector ()kx contains n processed signal

features, and yn(k), yl(k), yu(k) are the nominal value, lower-bound and upper-bound of tool wear

measurements, respectively. Fuzzy rules are added to the network sequentially by searching fuzzy

membership function parameters using generic algorithm (GA) to minimize the prediction error

with respect to nominal tool wear measurements. The weighting factors  ,l uw w are then

determined from the constrained optimization problems in Eq. (5.7):

min ,

min ,

l

u

l n l l

u n u u

 − 



− 

w

w

Pw y Pw y

Pw y Pw y
 (5.7)

where the response matrix () N Jk P is defined as () ()(), jk j p k=P x with k=1,2, …, N and

j= 1,2, …, J, and J is the number of fuzzy rules that have been added where ly and uy are the

vectors of lower- and upper-bound of tool wear measurements. The least square problems can be

solved using the active-set method [17]. In brief, the T2FBFN captures the uncertainties in both

the input-output (feature-wear) mapping and tool wear measurements by finding the weighting

108

factors using Eq. (5.7). The trained T2FBFN gives tool wear prediction in a lower- and upper-

bound interval form enclosing the tool wear measurements, and the average of lower- and upper-

bounds can be used as the nominal tool wear prediction.

Fluctuation in the model prediction is unavoidable, but monotonically increasing tool wear is

expected in practice since the tool is never self-healing. To ensure monotonicity, the median value

from the previous five tool wear predictions is compared to the present T2FBFN output, and the

maximum is used as the corrected tool wear prediction. Once the corrected prediction reaches a

certain value, it is latched so that the predictions afterward never drops below that value. After the

correcting and latching mechanism, predictions of the T2FBFN can be assigned into discrete

classes to indicate the quantized level of tool wear. The number of classes can be chosen based on

the degree of uncertainties in the process and the visualization needs of users. The same post-

processing will also be applied to predictions of GM-PNN.

5.1.3 Results and Discussions

5.1.3.1 Results of Feature Extraction, Normalization and Selection

After raw signal data were collected from the designed experiments and candidate features

were extracted, the proposed feature selection procedure was applied. The features were selected

by only analyzing the data of 4140 steel (Test#1~Test#4 in Table 5-2) and the effectiveness of

selected feature set was validated for other materials.

First, the preliminary feature selection was applied to search the best signal preprocessing

parameters for each candidate feature and eliminate the features with low correlations. The ranges

of signal preprocessing parameters are provided in Table 5-4. To better capture the trend of spindle

power, the raw signal was smoothed with a moving average filter before calculating the mean

power feature. Remaining features from the power signal reflect the power fluctuation at different

orders, and thus low-pass filters were used to remove noise while preserving the variation below

the cut-off frequencies. The vibration and AE signals were processed with band-pass filters to

inspect the features’ correlation to tool wear at different frequency bands. For the vibration signals,

the natural frequencies should be avoided as they are setup-dependent. In this work, the first natural

frequency of the testbed was about 1000Hz, and thus only the bands below 1000Hz were

considered. Since a node in the wavelet packet decomposition (WPD) inherently corresponds to a

109

frequency band, band-pass filters were not used for wavelet features.

Table 5-4 Admissible signal preprocessing parameters of candidate features

Sensor Features

Admissible Preprocessing Parameters

Down-sampling

rate (Hz)
Filter Type Filter Parameter

Power Mean
500, 200, 100,

50, 25

Moving

average

Window size (s): 0.1, 0.2, 0.5,

1, 2, 5

Power Others
500, 200, 100,

50, 25
Low-pass

Cut-off frequency (Hz): 5, 10,

25, 50, 100, 200

AccY &

AccZ

All except

WPD features

5000, 3333,

2500
Band-pass

Passband (Hz): 0-100, 100-

200, …, 900-1000

AEL All 500k, 333k Band-pass
Passband (Hz): 50k-100k,

100k-150k, 150k-200k

AEH All 1000k, 500k Band-pass
Passband (Hz): 100k-150k,

150k-200k, …, 850k-900k

The features were normalized before feature selection. Figure 5-4 compares the mean spindle

power feature before and after normalization. The normalization scheme collapsed the feature

values from different cutting conditions into a uniform range, so that the feature’s overall

performance in different conditions could be evaluated through a single regression analysis. Figure

5-5 shows the correlation of normalized y-direction vibration RMS in different passbands. The

RMS had a high correlation around the 300-700Hz frequency range, while the impact of the

sampling rate was negligible. The observation that the sampling rate minimally impacts a feature’s

correlation to tool wear also holds for other features. Given this, it is preferred to use the lowest

sampling rate compatible with the optimal filter parameters to minimize the burden of data

transferring, processing, and storage during implementation.

110

Figure 5-4 Comparison of the mean power feature before and after normalization

Figure 5-5 The correlation of y-direction vibration RMS against tool wear

In Table 5-5, the features with R2 higher than 0.5 are listed. The power meter and the y-

directional accelerometer (AccY) both had features highly correlated to tool wear (R2>0.8). For

vibration and AE signals, since the standard deviation (STD) was almost equal to RMS, and the

peak-to-peak amplitude was more susceptible to noise, they could be eliminated if RMS had been

considered. The z-directional accelerometer (AccZ) and the two AE sensors (AEL and AEH) only

contributed features with moderate correlation (0.5<R2<0.7). For industrial implementation, it is

preferred to minimize the number of sensors to reduce the cost. Therefore, these sensors were

excluded from further analysis in this work and only the features from the power meter and y-

directional accelerometer (AccY) were selected.

111

Table 5-5 The features with R2 higher than 0.5

Features R2 Features R2

Power mean: 2s moving average 0.89 AccY wavelet coeff. power: node [3,2] 0.86

AccY RMS/STD: 400-500Hz 0.88 AccZ RMS/STD: 500-600Hz 0.60

AccY peak-to-peak: 400-500Hz 0.80 AccZ PSD mean: 500-600Hz 0.57

AccY PSD mean: 600-700Hz 0.84 AccZ wavelet coeff. power: node [3,2] 0.60

AccY frequency centroid: 900-1000Hz 0.51 AEL RMS/STD: 100k-150kHz 0.65

AccY PSD moment of inertia: 900-1000Hz 0.50 AEH frequency centroid: 200k-250kHz 0.55

The AccY features (RMS, PSD mean, frequency centroid and PSD moment of inertia) were

used for frequency band analysis. By merging frequency bands, the RMS achieved the highest F-stat

in a 300Hz band, at 400-700Hz, while the PSD mean achieved the highest F-stat in a 200Hz band,

at 500-700Hz. The frequency centroid and PSD moment of inertia were more statistically

significant in wider bands, but their significances were not comparable to those of the RMS and

PSD mean, as shown in Figure 5-6. These observations further confirmed that the AccY features’

correlations to tool wear are band-dependent and it is necessary to perform the frequency band

analysis. The RMS was used for multi-band analysis to see if combining the vibration amplitudes

in several frequency bands could give better tool wear prediction. A similar multi-node analysis

was applied to the wavelet coefficient power. As can be seen from Table 5-6, the regressions with

three bands or nodes provided considerably better tool wear predictions, in terms of R2 and root

mean square error (RMSE), than those with single band or single node (n=1). Therefore, the

features in the n=3 rows would be used as candidates for the optimal feature set selection.

Table 5-6 Multi-band analysis of y-direction vibration RMS and wavelet feature

 Best Features R2 RMSE (µm)

n=1 RMS 400-700Hz 0.89 16.29

n=2 RMS 375-475Hz; RMS 500-700Hz 0.91 14.46

n=3 RMS 25-125Hz; RMS 375-475Hz; RMS 500-700Hz 0.92 13.46

n=1 WPD Node [3,2] 0.86 16.86

n=2 WPD Node [2,1]; WPD Node [4,1] 0.89 15.85

n=3 WPD Node [2,1]; WPD Node [4,1]; WPD Node [3,5] 0.90 15.08

In addition, the three PSD features were used for the band feature fusion in Eq. (5.4) and (5.5)

to see if the frequency centroid and moment of inertia could enhance the performance of PSD

mean. The three PSD features created a total of 1159 combinations of regression for each

112

frequency band. Table 5-7 shows the results from PSD feature fusion. The first three rows show

that a linear combination of the three PSD features in three frequency bands provided the highest

correlation to tool wear with a p-value much less than 0.01. Since the R2 achieved with feature

fusion was considerably higher than that of PSD mean alone, it could be said that the feature fusion

improves the performance of the PSD mean feature. Therefore, the three PSD features at the 75-

775Hz band would be used as candidates for the optimal feature set selection.

Figure 5-6 Statistical Significance of y-direction vibration features

(Freq Ctrd: Frequency centroid, PSD MoI: PSD moment of inertia)

Table 5-7 Results from frequency feature fusion (truncated to highest 5 entries)

x1: PSD mean, x2: frequency centroid, x3: PSD moment of inertia

Frequency Band Best Fit Model Form from

Regression

R2 p-Value

75-775Hz a0+a1*x1+a2*x2+a3*x3 0.920 3.67E-46

50-750Hz a0+a1*x1+a2*x2+a3*x3 0.919 8.22E-55

0-800Hz a0+a1*x1+a2*x2+a3*x3 0.913 4.46E-48

475-675Hz a0+a1*x2+a2*x1^2+a3*x1*x2 0.908 1.05E-33

150-650Hz a0+a1*x2+a2*x3+a3*x1^2 0.907 4.64E-51

Next, the backward feature elimination was applied to the 10 candidates (mean spindle power

and 9 AccY features from the frequency band analysis) to determine the optimal feature set that

could maximize the performance of tool wear prediction. The performance was evaluated by the

113

MSE between the tool wear measurement and the nominal prediction of T2FBFN. The T2FBFN

model was trained using the 4140 steel test data and validated using the Inconel 718 test data.

However, it was found that though the features extracted for Inconel 718 had similar levels of

correlation, their slopes with respect to tool wear were slightly different from their 4140 steel

counterparts, probably due to the variance of material properties. The difference of slopes can be

compensated using Eq (5.8):

 (),718 ,718 4140 7181 * / 1n nsf sf k k= − + (5.8)

where
,718nsf is the normalized feature of Inconel 718, 4140k is the baseline slope of 4140 steel feature,

and 718k is the slope of Inconel 718 feature. This compensation makes the features from two

materials have a consistent trend and hence can be used in the same tool wear model.

The result of feature elimination is given in Table 5-8. As can be seen, removing a few

features reduced the RMSE, which indicated that a compact optimal feature set should be used for

sensor fusion rather than using as many features as possible. The minimum RMSE was achieved

with 6 features. However, from 7 to 4 features, the changes of RMSE were trivial. For simplicity,

it was decided to use 4 features as the inputs of tool wear models. The 4 features were the power

mean with 2-second moving average, the AccY RMS in 375-475Hz and 500-700Hz bands, and

the frequency centroid in 75-775Hz band, which formed the optimal feature set.

Table 5-8 Result of backward feature elimination

Order of

elimination

Number of

remaining features

Feature eliminated RMSE after

Elimination (µm)

0 10 N/A 10.72

1 9 PSD Moment of inertia 75-775Hz 9.67

2 8 RMS 25-125Hz 8.35

3 7 Wavelet Coefficient Power Node [4,1] 7.86

4 6 PSD Mean 75-775Hz 7.70

5 5 Wavelet Coefficient Power Node [3,5] 7.71

6 4 Wavelet Coefficient Power Node [2,1] 7.81

7 3 Frequency Centroid 75-775Hz 9.02

8 2 RMS 375-475Hz 10.32

9 1 Power Mean 13.10

10 0 RMS 500-700Hz N/A

114

5.1.3.2 Tool Wear Prediction and Uncertainty Quantification

With the above feature set, flank wear models were trained using the 4140 steel test data (815

samples) and validated using the Inconel 718 test data (376 samples). The GM-PNN newly

developed in Chapter 4 and the T2FBFN were applied respectively to build tool wear models, so

that the probabilistic uncertainty quantification capacity of GM-PNN could be compared with the

interval uncertainty quantification capacity of T2FBFN. Although in Section 5.1.3.1, the optimal

feature set was selected using T2FBFN, it was assumed that this feature set was also the optimal

set for GM-PNN. When training the T2FBFN model, hidden nodes were added to the network

sequentially until the MSE of validation dataset starts to increase (overfitting), and the outcome

model have 60 hidden nodes. The GM-PNN model was then also trained with the same structure

as T2FBFN (a single hidden layer with 60 hidden nodes), so that their performances could be

compared at the same level of model complexity. Besides, same as in Section 4.3, the GM-PNN

training was carried out using SGDM algorithm with a learning rate of 0.01 and a momentum of

0.9. The splitting thresholds for both DKL and DCP were selected as 0.01, and the number of

components in the PDFs of Wl and bl was set to be 2 for all layers. Since the cutting tool is never

self-healing, the latching mechanism described at the end of Section 5.1.2.3 was applied to the

outputs of both T2FBFN and GM-PNN models so that once the predicted tool wear reached a

certain level, it would never drop below that level afterward.

The tool wear prediction performances of T2FBFN and GM-PNN models are summarized

and compared in Table 5-9, and their predictions for the validation set (Inconel 718 tests) are

compared in Figure 5-7. As can be seen, the T2FBFN model achieved a decent performance. Its

nominal predictions tracked the tool wear measurements closely with a R2 of 0.97. Besides, the

lower and upper bounds of T2FBFN predictions always enclosed the tool wear measurements,

which means the prediction intervals were guaranteed to contain the true tool wear values. As will

be shown later, this enables reliable decision-making about tool change. On the other hand, the

performance of the GM-PNN model was even better, with a considerably higher R2, smaller RMSE

and lower negative log-likelihood (NLL). Note that the likelihood of T2FBFN was estimated by

assuming a uniform distribution within its prediction intervals. In addition, the 95% and 99%

confidence intervals (CI) were also extracted for GM-PNN from its predicted PDFs. As shown in

Figure 5-7, the CIs of GM-PNN were significantly narrower than the intervals of T2FBFN, while

115

the true tool wear values were still consistently enveloped. Therefore, the GM-PNN quantified the

uncertainty in tool wear less conservatively without compromising reliability.

Table 5-9 Comparison of tool wear monitoring model performance

 Validation

R2

Validation

RMSE

Avg. NLL Avg. Interval

Width

Tool change

Margin

T2FBFN 0.974 6.69 µm 3.24 27.9 µm 6.2%

GM-PNN 0.990 3.77 µm 2.66
95%: 13.6µm

99%: 18.0µm

95%: 4.2%

99%: 5.3%

Figure 5-7 Tool wear prediction for the selected tool wear tests

While both of GM-PNN and T2FBFN could provide uncertainty quantification around their

nominal tool wear predictions, for industrial users, it is of more interest to know when to change

116

tools than knowing the exact values of tool wear. To address this concern, for either model, once

the upper-bound prediction exceeded the tool life limit, which is 200 µm in this work, a tool-

change alert would be issued. The percentage by which the true tool wear was below the tool life

limit when an alert issued was defined as the tool change margin, as Eq. (5.9):

Tool life limit - tool wear measurement when alert issued

margin 100%
Tool life limit

=  (5.9)

The tool change margins of T2FBFN are shown in Figure 5-8. In average, the T2FBFN model

issued the alert 12.4 µm ahead, which is 6.2% of the tool life limit. By considering uncertainty in

the T2FBFN model, the actual tool wear was always lower than its upper-bound prediction and

thus would never exceed the tool life limit when the alter was issued. For tool wear monitoring,

false negative is more undesirable than false positive. The upper-bound-based false-positive alert

with acceptable lead is conservative, but could reliably prevent any premature tool failure. The

tool change margins of GM-PNN based on its upper bound of CIs are shown in Figure 5-9. As can

be seen from Figure 5-9 and Table 5-9, the tool change margin of GM-PNN was also smaller than

that of T2FBFN, which means the monitoring scheme based on GM-PNN would better take

advantage of the usable life of a tool while still effectively preventing tool failure.

Figure 5-8 Comparison of the T2FBFN prediction upper bounds and tool wear

measurements when the tool change alert issued

As for the machining of Ti-6Al-4V using a carbide tool, tool wear is dominated by crater

wear rather than flank wear and hence the tool wear measurements and signal feature behaviors

are different. Therefore, separate crater wear prediction models were trained with the same set of

117

features but using the Ti-6Al-4V test data (354 samples). For crater wear prediction, the GM-PNN

model was also performing slightly better than the T2FBFN model. While both models had R2 of

0.97, the prediction intervals of GM-PNN (0.67 µm for 95% CIs and 0.73 for 99% CIs) were

narrower than the intervals of T2FBFN (0.79 µm). The improvement of GM-PNN models over

T2FBFN models for both flank wear and crater wear is mainly because the T2FBFN uses a hard

constraint to enforce its prediction intervals to enclose all the data. In contrast, GM-PNN addresses

uncertainty from a probabilistic perspective to learn the model parameters that maximize the

likelihood in describing the data, which is a soft constraint less prone to outliers.

Figure 5-9 Comparison of the GM-PNN prediction upper bounds (99% CI) and tool wear

measurements when the tool change alert issued

5.2 Porosity Monitoring of Laser Additive Manufacturing Processes

The porosity monitoring scheme is developed in this section. The melt-pool sensing setup,

experiment design, porosity measurement and image processing methods are presented in detail.

A compact CNN architecture is designed for porosity prediction. The CNNs with and without the

uncertainty quantification module based on GM-PNN are compared.

118

5.2.1 Instrumentation and Experiments

5.2.1.1 Instrumentation Setup

The non-contact sensors that are most widely used for laser AM process monitoring include

photodetector, infrared camera, and high-speed digital camera, because they are all sensitive to the

process, and do not interfere with the AM processes. The high-speed digital camera is able to sense

the 2-D melt-pool morphology and brightness and compared with other sensors, it offers the widest

range of choices of specifications, optics (lenses and filters), interfaces, and software to configurate

the monitoring scheme. Owing to its informativeness and flexibility, the high-speed digital camera

is selected in this study for instrumentation of the laser AM system.

A digital camera is mounted coaxially to the process laser beam on an OPTOMEC LENS750

system (with 500W fiber laser), as shown in Figure 5-10. The camera used is a DMK 33UX174

monochrome industrial camera with a USB 3.0 interface, which can record 640×480-pixel images

at 395 fps (frames per second). The resolution of camera images in this setup is calibrated as 124

pixel/mm and the field of view is about 5.2×3.9 mm. The main difficulty of laser AM process

monitoring is that the coaxial-image contrast often exceeds the dynamic range of cameras, i.e., the

melt pool is too bright and tends to saturate the sensor, while the surrounding is too dark to be

sensed. To alleviate this issue, a narrow bandpass filter with the center wavelength of 532 nm is

mounted in front of the camera to reduce the impact of melt-pool irradiations, especially those

from the plasma, and a 200 mW green laser with 532 nm wavelength is used to illuminate the melt-

pool surrounding.

Figure 5-10 The instrumentation setup of direct laser deposition monitoring

119

5.2.1.2 Experiment Design

To study the porosity monitoring of the laser AM process, a set of single-layer-single-track

direct laser deposition experiments were designed and conducted using sponge Titanium powders,

as summarized in Table 5-10. The wavelength of the fiber laser was 1066 nm and the diameter of

the laser spot was 660 µm. Coaxial melt-pool image data under various laser powers and laser scan

speeds were collected by the camera from these designed experiments. Given the frame rate limit

of the camera (395 fps), the laser scan speed was reduced to 1~4 mm/s (much lower than normal

operations [227]) to ensure sufficient space resolution (2.5~10 µm) between image frames to

capture small pores. All the deposition tracks were 15 mm long and the number of melt-pool image

samples collected in each experiment depends on the duration, i.e., the track length divided by the

scan speed.

Table 5-10 Experimental conditions in direct laser deposition

Test# Speed (mm/s) Power (W) Samples Quality Inspection Overall Volume Porosity

1 1 250 5694 Cross sections 14.9%

2 2 250 2842 Cross sections 10.7%

3 4 250 1422 Cross sections 8.2%

4 4 150 1407 Cross sections 5.9%

5 2 250 2853 X-ray CT 12.2%

The image data collected by cameras need to be paired with the interior quality attributes of

interest, such as the size and location of pores and volume porosity percentage. These attributes

could be inspected either destructively (cross-sectioning and microscopy) or nondestructively (X-

ray computed tomography). In the destructive approach, the AM specimen was cut along the laser

scan direction to obtain longitudinal cross-sections, and then an optical microscope was used to

observe the exposed pores on the cross-section. Since porosity is always scattered inside the

specimen, two or three cross-sections were inspected for each specimen. However, because precise

sectioning of the specimen is difficult and the number of cross-sections is limited, the destructive

approach may omit the pores between obtained cross-sections and only provide an approximated

distribution of porosity. In the nondestructive approach, the AM specimen was inspected using X-

ray computed tomography (CT) to detect interior porosities. The X-ray CT can construct an

accurate 3-D distribution of porosity, which makes it much more preferable than the destructive

120

approach. However, it is also much more expensive and time-consuming. In this study, four

experimental samples were inspected using the cross-sectioning method to evaluate the volume

porosity level, while one experimental sample was inspected using X-ray CT to get the accurate

porosity measurement for porosity occurrence prediction.

5.2.2 Methodologies

5.2.2.1 Porosity Measurement

Before applying any supervised learning technique to build the porosity monitoring model,

each coaxial melt-pool image collected by the high-speed camera needs to be paired with the

porosity attributes of interests. To extract porosity information from the raw microscope images

of cross-sections, a set of image processing tools has been developed in MATLAB. The procedure

of image processing is discussed below and illustrated in Figure 5-11:

(1) The consecutive cross-section images are stitched using a SURF (speeded-up-robust-

features)-based image registration method [229], given that a single microscope image

cannot cover the length of a whole cross-section. In the SURF algorithm, the points of

interest (the points differ in intensity to surrounding regions) on a microscope image are

localized in the blob response map. The interest points with similar descriptor vectors on

two consecutive images are detected as matching points and the location offset of the later

image with respect to the prior image can be computed accordingly by the difference of

coordinate of matching points. Then the two images can be automatically concatenated at

pixel-level accuracy to minimize the error in locating porosity.

(2) The deposition track may have an incline angle on the stitched image if the specimen was

not strictly horizontal when placed on the microscope stage. This inclination (if any) can

be corrected by measuring the angle of the flat top surface of the substrate and rotating the

image. The rotated image is then cropped from the beginning to the end and from the top

to the bottom of the deposition track to exclude areas of the substrate and sample holder,

which are not in the region of interest of the cross-section. After the rotating and cropping,

the horizontal pixel coordinate on the image could be used as a measure of longitudinal

distance from the start of a deposition track along the laser scan direction.

121

(3) The rotated and cropped image is binarized using the Otsu’s threshold and the dark regions

on the binary image are recognized as candidate porosities on the cross-section, except the

dark background outside the cross-section. It is found that there are two types of dark

regions observed on the cross-sections: 1) pores caused by entrapped gas during the process,

which have circular or near-circular shapes and are the targets to be detected; 2) cracking

and scratch marks introduced when sectioning the specimens, which usually have irregular

shapes and should be excluded. Therefore, filter conditions are applied, so that only the

candidate dark regions with an extent (ratio of pixels in the dark region to pixels in the total

bounding box) larger than 0.3 and eccentricity (eccentricity of the ellipse that has the same

second-moments as the region) less than 0.95 will be accepted as true gas porosity, while

the irregular dark cracks, scratches, and textures on the cross-section will be automatically

excluded, as illustrated in Figure 5-12.

Figure 5-11 Image processing procedure for porosity extraction from cross-section images

122

Figure 5-12 Illustration of the filtering to recognize true porosity

The X-ray CT data can be processed in a similar way, except that the concatenation of images

and filtering out of irregular areas will not be necessary because the X-ray CT directly provides

complete 3D data sets without cross-sectioning the sample. From the processed cross-section or

CT data, the porosity attributes to be measured at each longitudinal position includes the porosity

status (0: no pore, 1: pore), pore size (area or diameter), and volume porosity percentage. Each

melt-pool image from the coaxial camera will be labeled with the measured attributes at the

corresponding position, under the assumption that the image frame index can be linearly mapped

to the longitudinal distance along the track. The labeled image forms an input (coaxial melt-pool

image)-output (porosity attributes) data pair that can be used as a training sample for supervised

machine learning. The porosity inspection and input-output data pairing are illustrated in Figure

5-13.

5.2.2.1 Convolutional Neural Network

Directly correlating melt-pool measurement data, such as melt-pool size, to porosity results

in poor fidelity. Therefore, to map the melt-pool images to porosity occurring, the convolutional

neural network (CNN), which has proven to be powerful in learning intricate features from high-

dimensional data and is the core of deep learning, is adopted to learn spatial patterns from the input

data (melt-pool image) to predict the output (porosity attributes).

123

Figure 5-13 Illustration of quality inspection and data preparation

(Right top: the porosity information from a destructive cross-section; right bottom: the porosity

information from a nondestructive X-ray CT; Left: the coaxial melt-pool image and pairing of

input-output data)

To make this chapter more self-contained, the fundamentals of CNN are briefly discussed

below. The grayscale images from the coaxial camera are cropped to 224×224 pixels with the melt

pool in the center (see Figure 5-13), as input to the network. The input image is firstly processed

by a set of filters convoluted with the input, from which the receptive field in the l-th convolutional

layer and with the j-th filter can be represented as:

 ()1

, , ,

1

, | 1, ,
lK

l l

j k l j k l l j l

k

conv2 s b j J−

=

= + =x x w (5.10)

where 1l−
x is the input from the previous layer (the original input image if l=1, or the output of the

previous layer if l>1),
,l jw is the weight matrix of the j-th filter in the l-th layer, and

,l jb is the bias

124

for the j-th filter. The 1l−
x and

,l jw has the same depth lK , which depends on the number of

channels in the input image (3 for RGB images and 1 for grayscale images) if l=1 or the number

of filters in the previous layer (i.e., 1l lK J −=) if l>1. The conv2 denotes the 2-dimensonal

discrete convolution of 1l

k

−
x with filter

, ,l j kw at depth slice k using a stride of ls . Adding up the

convolutions in all the lK slices forms the receptive field for the j-th filter and stacking the

receptive fields of all filters forms the feature map l
x with a depth of lJ . The feature map reflects

the image’s response, i.e., level of activation, to the features defined by the filters.

To address the issue that the distribution of feature map activations changes during training

as the filter coefficients change, which is referred to as internal covariate shift, the activations in

each slice of feature maps are scaled via a batch normalization operation as [230]:

ˆ

ˆ

B

B

x
x

y x



 

 

−
=

+

= +

 (5.11)

where x is the activations before normalization, y is the normalized activations, B and B are the

mean and variance of x over a training mini-batch, ε is a parameter that helps to improve numerical

stability when B is very small, and the offset β and scale factor γ are learnable parameters that

allow for the possibility that activations with zero mean and unit variance are not optimal for the

following layer. By scaling the activations into uniform ranges, higher learning rates can be used

to accelerate the deep network training. And to introduce nonlinearity into the network, ReLU is

often used as the activation function. Compared to sigmoid functions, ReLU alleviates the

vanishing gradient issue for deep network training. In addition, a max-pooling layer is used after

each convolutional layer, which substitutes the activations in a sub-region of feature map (defined

by the pooling filter size) with the maximum value in that region. The pooling layer downsamples

the feature map (if stride>1) and introduces translation invariance by making the feature

activations less sensitive to their exact location. The feature map after pooling, which is a

compressed abstract representation of the original image, is used as input to the next convolutional

layer. The output of the last pooling layer will be rearranged as a feature vector and a set of fully-

connected layers are cascaded to learn a mapping from feature to porosity.

The CNN is trained through a backpropagation algorithm with stochastic gradient searching

125

called Adam [231]. Let the learnable parameters (e.g., convolutional filter coefficients, fully

connected layer weights) be w and the loss function to be minimized be L, then the learnable

parameters are updated using the following rules:

() ()()
() ()

() ()

1 1 2

1 1 1 1

2

2 1 2 1

1 1

1

1

t t

t t t t

t t w t B

t t w t B

w w m v e

m m L w

v v L w

  

 

 

−

− −

− −

= − − − +

= + − 

= + − 

 (5.12)

where ()1w t B
L w − is the gradient of loss function over a training mini-batch, tm and tv are the

first and second-moment variables and α, β1, β2, e are learning hyperparameters. In addition to the

updating of learnable parameters, the performance of a CNN also depends on the selection of

hyperparameters, including the number of layers, the size, stride, and number of filters in each

convolutional layer, size and stride of pooling, number of neurons in fully connected layers, and

the learning hyperparameters in training algorithm. Generally speaking, increasing the number of

layers enables higher-level abstraction of data, increasing the number of filters allows the learning

of more feature representations, and using larger strides yields faster data compression through the

network. In this work, a compact CNN architecture is designed, in which some hyperparameters

vital to the model performance are selected using cross-validation analysis, as will be shown in the

next section.

5.2.3 Results and Discussions

5.2.3.1 Design of Deep Learning Model Structure

The direct laser deposition of sponge Titanium powders creates porous specimens, for which

it is of interest to know what the volume porosity is and where the porosity occurs. The latter is

more challenging as it requires datasets with accurate 3-D porosity measurement to train the

predictive model, which means all the pores scattered inside a specimen need to be captured to

minimize the mislabeling of data. Since in Table 5-10, only Test#5 inspected by X-ray CT meets

this requirement, this dataset was used for the detection of porosity occurrence, while the other

four cross-sectioning datasets were used for the prediction of volume porosity.

A compact CNN architecture was designed, as shown in Table 5-11, in which most of the

structure hyperparameters are similar to those in the famous Alexnet [102], because its structure

126

has proved to be powerful in learning representations from images. However, as the Alexnet is

aimed to classify images into 1000 categories while the porosity monitoring model is only used

for binary classification of two categories (0: no pore, 1: pore), it should be possible to build the

monitoring model with fewer features. Hence, the number of filters and fully connected neurons

were reduced, which resulted in the CNN having significantly fewer learnable parameters (about

0.3 millions) than the Alexnet (about 61 millions) and thus it can be trained with much smaller

data sets. Besides, batch normalization and ReLU function were used between the convolution and

max pooling operations in each layer, and the hyperparameters in Eq (5.12) were adopted from the

recommendations in [231], i.e. α=0.001, β1=0.9, β2=0.999, e=10-8.

Table 5-11 Architecture of the convolutional neural network for direct laser deposition

Layer Filter Size Number of filters Stride Max Pooling

Image Input 224×224 grayscale images

Convolution 11 48 4 3×3, stride of 2

Convolution 5 64 2 3×3, stride of 2

Convolution 3 96 1 3×3, stride of 2

Convolution 3 96 1 3×3, stride of 2

Convolution 3 64 1 3×3, stride of 2

Fully Connected 64 output channels

Fully Connected 32 output channels

Fully Connected 2 output for classification

To train the CNN model, each melt-pool image corresponding to a longitudinal position along

the laser scan direction was paired with the class label obtained from porosity inspection. It is

intuitive that all the melt-pool images with a pore should be labeled as true (true = pore, false = no

pore). However, considering the dynamics of melt pool and the resolution limit of camera, only

the pores above a certain size could produce a noticeable impact on the melt pool and thus become

detectable through the camera. Hence, it might be necessary to set a threshold of pore size when

preparing the labeled training samples. For example, if using a threshold of 15 µm, the pores

smaller than 15 µm will be neglected (true: pores≥15 µm; false: no pore or pores<15 µm). This

pore size threshold, as a hyperparameter of the model, was selected using a 10-fold cross-

validation analysis. The 2842 data samples in Test#5 were randomly divided into 10 subsets of the

same size. Given a threshold to determine the class labels of data samples, one subset out of the

127

ten was selected for validation each time and the rest nine subsets were used for training. The

classification accuracy of the trained CNN model on the validation subset was recorded. This data

partition was repeated ten times until each subset had been used for validation once, and the

average classification accuracy of the 10 folds was used as the performance index of that threshold.

The results of the cross-validation are given in Table 5-12. It can be seen that using a threshold of

10µm gives the best results. This might be because the pores smaller than 10 µm could not produce

a detectable pattern on the melt pool images or because the CT resolution was 9.95 µm/pixel and

thus those pores smaller than 10 µm have only 1 pixel in the tomography data, which was not a

reliable measurement. Using a too large pore size threshold would also degrade the performance

because some image samples with porosity patterns were mislabeled as false. Therefore, 10 µm

was selected as the optimal pore size threshold.

Table 5-12 Cross-validation of the pore size threshold

Pore size threshold 0 µm 10 µm 20 µm 30 µm 40 µm

Mean classification accuracy 89.62% 91.06% 90.85% 89.48% 88.00%

The above analysis was based on the CNN structure of 5 convolutional layers, as in Table

5-11. The number of layers is also a vital hyperparameter that affects the network performance.

Could making the network deeper (more layers) improve the performance, or could the network

be further simplified by using fewer layers without degrading the performance? Another cross-

validation analysis for the number of convolutional layers was conducted. The number of layers

was reduced to 3 or 4 by removing the last one or two convolutional layers, or increased to 6 or 7

by cascading more convolutional layers with 3×3 filters after the 5th layer. The results of this

cross-validation are given in Table 5-13. It can be seen that using too few layers (like 3 layers)

didn’t give good performance, but using too many layers (like 7 layers) would also slightly degrade

the performance. Based on the cross-validation, the CNN with 5 convolutional layers and the pore

size threshold of 10 µm was the best model for predicting the porosity occurrence.

128

Table 5-13 Cross-validation of the number of layers

Number of convolutional layers 3 4 5 6 7

Mean classification accuracy 87.23% 90.22% 91.16% 90.39% 90.39%

5.2.3.2 Results of Porosity Detection

The above CNN structure design was carried out using a classical CNN without considering

uncertainty. This CNN would be used as a baseline model. In practice, an AM process does involve

substantial uncertainties [232], such as the fluctuating laser power absorption, varying material

properties in powders, and noise radiations from the environment that corrupt melt-pool images.

Therefore, after the optimal CNN structure was determined, the GM-PNN developed in Chapter 4

was combined with CNN to create a porosity model with uncertainty quantification capacity.

Assuming that the convolutional layers in the baseline CNN had been well-trained to extract

representative features of the melt pool, a GM-PNN module was used to replace the fully

connected layers (i.e., the last three rows in Table 5-11) without altering the convolutional layers.

The GM-PNN module took the 96 features from the last convolutional layer as input to predict the

porosity status. It had the same structure as the original fully connected module, while all the

connection weights in it are parameterized as Gaussian mixtures. The GM-PNN was retrained

using the features extracted by the baseline CNN and the porosity measurements in the dataset of

Test#5. All the training and adaptive refinement parameters of GM-PNN were the same as those

in Section 4.3.

The porosity status classification of the cascaded model of CNN and GM-PNN, denoted as

CNN+PNN, is presented in Figure 5-14, with misclassified samples indicated by ‘x’ markers. It

can be seen that the CNN+PNN model correctly classified most of the data samples to detect

porosity occurrence. The performance of the CNN+PNN model is compared with the baseline

CNN model in Table 5-14, Figure 5-15 and Figure 5-16. For porosity status classification, the

fusion of CNN with GM-PNN remarkably improved the classification accuracy from 91.2% to

93.6%. The number of misclassified samples was reduced from 31 to 18. More importantly, as

shown in Figure 5-16, the misclassified samples of CNN+PNN (all below 50 µm) were mainly

those with very small pores (less than 10 µm). Compared with the baseline CNN, the CNN+PNN

model had a much more reliable porosity detection for the pores above 10 µm, given that there

129

were 16 samples in the 10-50 µm range misclassified by the CNN model while only 4 were

misclassified by the CNN+PNN model. Therefore, it can be said that by better considering the

uncertainties in the melt-pool features, which originated from the noises in melt-pool images, the

GM-PNN significantly improved the CNN’s sensitivity to the pores with a sensible size (larger

than 10 µm). For the pores below 10 µm, since they could not make sufficient impact on the melt

pool and there are no sufficient detectable patterns in the melt-pool data, no matter what learning

technique is used, the classification accuracy could not be further improved.

Table 5-14 Comparison of porosity monitoring model performance

 Porosity

Classification

Accuracy

Local Volume Porosity Prediction

R2 RMSE NLL Interval

Width

CNN 91.2 % 0.907 1.25% N/A N/A

CNN+PNN 93.6 % 0.950 0.92% 1.30
95%: 3.55%

99%: 4.71%

Figure 5-14 Classification of porosity status using CNN+PNN

Top: pore size extracted from the tomography measurement data; Middle: measured porosity

status using the 10 µm threshold; Bottom: CNN+PNN classification results

130

 (a) CNN (b) CNN+PNN

Figure 5-15 Confusion matrices of porosity status prediction

 (a) CNN (b) CNN+PNN

Figure 5-16 Pie charts of misclassified samples for porosity status prediction

5.2.3.3 Results of Volume Porosity Prediction

Other than the detection of individual pores, for the AM deposition of materials, it is usually

also of interest to know the volume porosity (ratio of porosity volume to the deposition volume)

in the deposited parts, because the level of porosity is a key quality attribute that will influence the

parts’ performance such as mechanical strength. Test#1~4 in Table 5-10 inspected via cross-

sectioning method were used to study the prediction of volume porosity, based on the assumption

that though the pores are scattered inside a deposited track, the level of porosity may not be varying

significantly across the track, so that the volume porosity evaluated from a set of cross-sections

could represent the true porosity level in the track. Table 5-15 summarizes the volume porosity

measured from multiple cross-sections for the four tests, in which the overall volume porosity is

131

calculated as the average ± standard deviation of the cross-section volume porosities. It can be

seen that the variance of volume porosities among cross-sections is in an acceptable range

compared with the mean magnitude of porosity, and thus the above assumption is reasonable,

though not strict.

Table 5-15 The volume porosity measured from cross-sections

(Test#1 and #2 had only two cross-sections inspected)

Test# Volume porosity on cross-sections Overall volume porosity

#1 #2 #3

1 17.89% 11.99% N/A 14.9±4.2%

2 12.08% 9.27% N/A 10.7±2.0%

3 6.65% 9.86% 8.16% 8.2±1.6%

4 5.13% 4.51% 8.15% 5.9±1.9%

For the volume porosity model, instead of predicting the overall volume porosity in Table

5-15, which is averaged over the whole track, the melt-pool image at each longitudinal position is

used to predict the local volume porosity in the neighborhood of that position. The evaluation of

local volume porosity is illustrated in Figure 5-17, taking the 1st cross-section of Test#1 as an

example. The pore size at each longitudinal position is added up and divided by the depth of track

to obtain the volume porosity at that exact position, then a two-sided moving average filter sliding

longitudinally with selected window size is applied to compute the local volume porosity. The

volume porosities evaluated for different cross-sections of the same specimen are averaged and

then used to label the melt-pool images from that experiment. Obviously, the window size of the

moving average filter is an important hyperparameter in processing data for the monitoring model.

Using a too-small window will make the local volume porosity too sensitive to the occurrence of

individual pores while using a too-large window will fail to capture the local fluctuation of porosity

and a local melt-pool image may not be suitable to predict the porosity over a too large span. In

this study, by evaluating the performance of CNN models using another cross-validation analysis,

it was found that a 2 mm moving average window achieved the best performance. Also, it was

found that the number of convolutional filters could be reduced without degrading the performance,

probably because predicting the volume porosity was less dependent on the detailed local behavior

of the melt pool than detecting the occurrence of individual pores. Hence, the number of filters in

Table 5-11 was reduced to 12, 16, 24, 24, and 24 for the five layers respectively, which made the

132

CNN model much more compact.

Figure 5-17 The evaluation of local volume porosity from a longitudinal cross-section

Top: the cross-section image with extracted pore boundaries highlighted; Bottom: pore size

measured from the cross-section and local volume porosity evaluated using a 2 mm moving

average window

With the calculated volume porosity and updated CNN structure, the CNN and CNN+PNN

models were trained for the local volume porosity prediction task respectively. As shown in Table

5-14, the CNN+PNN model considerably outperformed the CNN model in this regression task

with a higher R2 and lower RMSE. Figure 5-18 shows the prediction for the experimental sample

of Test#2. As can be seen, the prediction of local volume porosity by CNN was quite noisy due to

the fluctuations in input images. In contrast, the prediction of CNN+PNN was much smoother

because the GM-PNN module could quantify noisy fluctuations as uncertainty and generate

confidence intervals (CI) from its predicted distributions to enclose them.

Finally, to validate the GM-PNN’s capacity of modeling arbitrary types of uncertainties, the

CNN+PNN model was used to predict the overall distribution of volume porosity for the same

experimental sample in Figure 5-18, and the result is shown in Figure 5-19. This PDF prediction

was generated by extracting the feature vectors belonging to this sample from the last

convolutional layer, fitting the distribution of features as a 6-component Gaussian mixture, and

133

then propagating the fitted input uncertainty through the GM-PNN module. It can be seen that the

predictive distribution of GM-PNN, as a Gaussian mixture, matched the true measurement

histogram, even though the true distribution didn’t belong to any specific distribution form. The

ability to use Gaussian mixture to construct generic non-Gaussian predictive distributions is one

of the advantages of the proposed GM-PNN over other models that could only provide Gaussian

predictive distributions, such as the deep Gaussian processes and BNNs under Gaussian posterior

assumptions.

Figure 5-18 Predictions for local volume porosity

Figure 5-19 Prediction of the overall distribution of local volume porosity by CNN+PNN

134

5.3 Summary

This chapter describes the applications of the probabilistic neural network in Chapter 4 on

two manufacturing process monitoring schemes. First, a robust tool wear monitoring scheme for

turning processes was developed using a minimally-intrusive and low-cost instrumentation setup.

A systematic feature normalization and selection procedure was proposed to eliminate the signal

features’ dependence on cutting conditions, cutting tools and workpiece materials and select the

features that have the best performance in predicting tool wear. In particular, the feature fusion in

the feature selection procedure was shown to be a methodical approach that was capable of finding

combinations of multiple frequency bands and multiple frequency-domain features with maximum

correlation to tool wear. The tool wear models were trained with two methods: one is the type-2

fuzzy network for interval uncertainty quantification and the other is the GM-PNN proposed in

Chapter 4 for probabilistic uncertainty quantification. Experimental results show that by modeling

the uncertainties probabilistically, the GM-PNN not only achieved higher accuracy of tool wear

prediction, but also provided less conservative but still reliable tool change requests to prevent

premature tool failure.

Second, a porosity monitoring scheme for laser AM processes was developed. A high-speed

digital camera was used for in-process melt-pool sensing and a series of image processing tools

were developed to precisely label each collected melt-pool image with measured porosity

attributes. A compact CNN structure was designed to directly learn melt-pool features to predict

porosity. For both the classification task of porosity detection and the regression task of local

volume porosity prediction, the classical CNN models were compared with the cascade models of

CNN and GM-PNN. Experimental results reveal that the CNN models alone had achieved

exemplary capacity in detecting micro-porosity below 50 µm while the monitoring works in the

literature are mostly addressing the pores above 100 µm. The fusion of CNN with GM-PNN made

the performance even better by not only improving the porosity prediction accuracy but also

offering essential uncertainty information. Especially, the non-Gaussian distribution of local

volume porosity could be accurately predicted with the GM-PNN module. Based on the results of

the two monitoring schemes, the GM-PNN proves to be effective in quantifying uncertainty and

facilitating reliable decision-making in the manufacturing environment. Therefore, it will be a

powerful solution to address practical problems subject to significant uncertainties.

135

6. CONCLUSIONS AND FUTURE WORK

In this study, a series of high-fidelity and computationally efficient uncertainty analysis

approaches were developed for data-driven neural network models and their applications on two

manufacturing process monitoring problems were presented:

1. A nonlinear uncertainty propagation scheme based on adaptive refinement of Gaussian

mixtures was proposed. The Gaussian mixture was used to characterize the general-form

probability distributions of uncertainties, which yielded higher fidelity than presumed

distribution forms, and was more compact than Monte Carlo sampling. Through active

assessment of nonlinearity and adaptive splitting of distorted Gaussian components, this

scheme could effectively propagate uncertainties in arbitrary forms through a neural

network. Its accuracy was comparable to the large-scale Monte Carlo sampling while its

computation time was much shorter. Therefore, it could be used as a versatile scheme to

address the uncertainty propagation in recurrent and deep neural networks.

2. An adaptive Gaussian mixture filter (AGMF) for Bayesian state estimation was derived.

By approximating the dynamics of a nonlinear system with a feedforward neural network

and applying the adaptive Gaussian mixture refinement, high-fidelity state prediction was

achieved. Subsequently, the refinement scheme was extended with a likelihood

divergence criterion to assess the nonlinearity in Bayesian measurement update so that

the PDF of unmeasurable states could be closely tracked over time. It was proved that

under mild conditions, the L1 norm error of state PDF estimation can be bounded to a

minimal level. Based on the testing on a series of challenging nonlinear filtering problems,

the AGMF proved to be an efficient solution for highly nonlinear state estimation

applications.

3. A probabilistic neural network with Gaussian-mixture-distributed parameters (GM-PNN)

was developed. In addition to the adaptive refinement by assessing nonlinearity, a new

criterion was introduced to ensure the fidelity of probabilistic linear transformation, so

that the predictive output distribution could be inferred accurately without sampling or

integration. The gradients of loss function with respect to the probabilistic parameters

were all derived explicitly, and thus the GM-PNN can be trained with any sampling-free

backpropagation method. The GM-PNN proved its robust learning capacity from noisy

136

data by achieving a state-of-the-art accuracy on a series of benchmark datasets.

4. Two comparative studies of manufacturing process monitoring were conducted. A tool

wear monitoring scheme for turning processes was built based on engineered signal

features, in which the GM-PNN was compared with a type-2 fuzzy network. Likewise, a

porosity monitoring system for laser AM processes was built by direct feature learning

from melt-pool data, in which the CNN models with and without embedded GM-PNN

module were compared. In both schemes, the GM-PNN not only remarkably improved

the prediction accuracy of process conditions but also offered more effective uncertainty

quantification needed by reliable process-level decision-making and intervention.

Based on the developed uncertainty analysis methods and their proven successes in practical

applications, some directions for future studies are suggested as below:

1. Closed-loop control system synthesis based on AGMF. The AGMF models the system

dynamics as a neural network and thus a data-model-based controller design method can

be applied without extra modeling effort. The AGMF also offers an accurate estimation

of unmeasurable states with quantified error bounds, which makes it possible to consider

the high-fidelity feedback state uncertainty in the controller design step, though how to

ensure the stability and robustness of such a closed-loop system needs further studies.

2. Parameter estimation using AGMF. Using Kalman filters, or its nonlinear variants, to train

data-driven models, like recurrent networks, has been widely studied. Though in this

study the AGMF is proposed as a nonlinear state estimator, it can be extended to the

parameter estimation problems in training neural networks. Its capacity of methodically

addressing the nonlinearity and uncertainty in the model will be invaluable in advancing

the performance of existing filter-based training methods.

3. Probabilistic deep and recurrent neural networks. Though the GM-PNN in this study is

mainly formulated as a multi-layer feedforward network, due to its good performance, it

is of interest to expand its inference and training method to more complicated models.

However, this will introduce computational bottlenecks to be addressed. For example,

though the convolutional layer in CNN is theoretically a linear operation, the uncertainty

propagation through it will involve SVD and matrix multiplications with up to several

thousand or million dimensions. Therefore, the appropriate simplification for uncertainty-

related computations in high-dimensional layers needs to be studied.

137

APPENDIX A. DERIVATION OF THE KL DIVERGENCE FOR

NONLINEARITY DETECTION

To derive the KL divergence evaluation in Eq. (2.9), substitute Eq. (2.8) into Eq. (2.6) and

then by using the rule change of variables, the integral variables in Eq. (2.6) can be changed from

the post-activation states  1 2, , ,
T

ks s s=s to pre-activation states  1 2, , ,
T

kz z z=z :

() ()()
()()
()()

()
() ()

() ()()

() () ()
()

() () ()()

1

1
| ,

ˆ|| | , log
| ,

| ,
| , log

| ,

| , log | , | , log

| , log | ,

KL T

T

T

d d
D p p d

d d

d
d

d

d
d d

d

d

−


−

−



−

 

− −



−

 
 =
 
 

 
 =
 
 

= +

−





 



f s μ Σz z
f s μ Σ s

s s s f μ AΣA

f z z μ Σ
z μ Σ z

z f z f μ AΣA

f z
z μ Σ z μ Σ z z μ Σ z

z

z μ Σ f z f μ AΣA z

N
N

N

N
N

N

N N N

N N

 (A.1)

The first term in Eq. (A.1) is the differential entropy of a Gaussian distribution, which has a

closed-form solution [216]:

 () () ()()1
| , log | , log 2

2 2

kk
d 



−
= − − z μ Σ z μ Σ z ΣN N (A.2)

Since the activation functions considered in this work are scaler mappings, the Jacobian

matrix is always diagonal:

()

()

1,2, ,

' if

0 if

i i

ji

j

s f z i k

f z i jds

z i j

= =

 =
= 



()
()

()

()

()

1

1

1

'

'

'

'

k

i

i

k

i

i

k

d
f z

d

f

f

f







=

=

=

 
 

= = 
 
 





f z

z

A A

 (A.3)

 Therefore the second term in Eq. (A.1) can be expressed using Eq. (A.3) as:

138

()
()

() ()

() ()()

() ()()

1

2

1

1

| , log

| , log '

| , log '

log '
i

k

i

i

k

i i i i i

i

k

ip z
i

d
d

d

f z d

z f z dz

E f z

 



−



−
=



−
=

=

=

=

 =  









f z
z μ Σ z

z

z μ Σ z

N

N

N

 (A.4)

which is the sum of expectations of the logarithm of activation function derivatives. The third term

in Eq. (A.1) can be expanded as:

() () ()()

()
()

() ()() () () ()()

()()

() () ()() () () ()()

11

2

2

1

| , log | ,

1
| , log

2

1
log 2 log

2

1
| ,

2

T T

T

k

k

T T

d

e d

d





−



−

 − − −

−

 −

−

 
 =
 
 

= − −

− − −







f z f μ AΣA f z f μ

z μ Σ f z f μ AΣA z

z μ Σ z

Σ A

Σ A

z μ Σ f z f μ AΣA f z f μ z

N N

N

N

 (A.5)

In Eq.(A.5), the first term is a constant that cancels the second term in the differential entropy

in Eq. (A.2). Using Eq. (A.3), the second term can be computed as ()()
1

log log '
k

i

i

f 
=

=A . Then

the integrand in the third item can be rewritten as:

() ()() () () ()()

() ()() () ()()
() ()

1

1 1 ' '

T T

k k
ij i i j j

i j i j

c f x f f x f

f f

 

 

−

= =

− −

− −
=

f z f μ AΣA f z f μ

 (A.6)

Given that

() () () () () ()

()
() ()

1 1

1
1 1 1

, 1, ,
' '

T

k k

T ij

i j
i j k

f z f f z f

c

f f

 

 

−
− − −

=

− = − −  

 
= =  

  

f z f μ

AΣA A Σ A

where cij is the element in the i-th row and j-th column in the inverse of covariance matrix Σ−1.

The third term in Eq.(A.5) can be evaluated as:

139

() () ()() () () ()()

() ()
() () ()() () ()()

() () () () ()() () ()()

1

1 1

,
1 1

,
' '

' ' i j

T T

k k
ij

i j i i j j i j

i j i j

k k
ij

i i j jp z z
i j i j

d

c
p z z f z f f z f dz dz

f f

c
E f z f f z f

f f

 
 

 
 

 −

−

 

− −
= =

= =

− −

 
 = − −
 
 

 
  = − −
  

 



  



z f z f μ AΣA f z f μ zp

 (A.7)

Substitute Eq. (A.7) into Eq. (A.5) and then substitute Eq. (A.2), (A.4) and (A.5) into Eq.

(A.1), the Eq. (2.9) can be obtained.

140

APPENDIX B. THE QUADROTOR DRONE DYNAMICS

A description of the dynamics of the quadrotor drone used in Section 2.3.3 is provided below,

which is adopted from [210]. As mentioned in Eq. (2.27), the drone system considered in this work

has 12 state variables and 4 inputs:

 

 1 2 3 4

T

T

x y z x y z p q r  

   

=

=

x

u

where the first 6 states are x, y, z locations of the drone in the inertial frame and their velocities, φ,

θ, ψ are the pitch, roll and yaw angles of the drone in inertial frame and p, q, r are the angular

velocities in the body frame. The four inputs in u are angular velocities of the four propellers. The

coordinate frames of the drone are illustrated in Figure B-1.

Figure B-1 The inertial and body frames of a quadrotor drone

With the coordinate transformation from the body frame to the inertial frame, the acceleration

of the drome, as derived in [210], can be calculated as:

0 cos sin cos sin sin 0 0

0 sin sin cos cos sin 0 0

1 cos cos 0 0

x

y

z

x A x
T

y g A y
m

z A z

    

    

 

+         
         

= − + − −
         
                  

 (B.1)

where the g is the gravitational acceleration, m is the mass of the drone, T is the total thrust force,

and Ax, Ay, Az are the drag force coefficients for velocities in the corresponding directions of the

141

inertial frame to consider the aerodynamical effect.

The angular acceleration of the drone in body frame can be written as:

()
()

()

yy zz xx xx

zz xx yy yy

zzxx yy zz

I I qr Ip I

q I I pr I I

r II I pq I













 −   
    

= − +    
     −     

 (B.2)

where Ixx, Iyy, Izz are the moments of inertia of the drone in the corresponding directions, and τφ, τθ,

τψ are the torques around pitch, roll and yaw angles.

The transformation of angular velocities from the body frame to the inertial frame is:

1 sin tan cos tan

0 cos sin

0 sin cos cos cos

p

q

r

    

  

    

     
     

= −     
         

 (B.3)

The thrust forces f of the four propellers and torques τ around propeller axes are determined

by their angular velocities ω:

 2 2 1, ,4i i i if k b i  = = = (B.4)

where k and b are the lift constant and drag constants, respectively.

The total thrust force T and the torques around pitch, roll and yaw angles (τφ, τθ, τψ) are:

()

()

4 4
2

1 1

2 2

2 4

2 2

1 3

4 4
2

1 1

i i

i i

i i

i i

T f k

lk

lk

b









  

  

  

= =

= =

= =

= − +

= − +

= =

 

 

 (B.5)

where l is the distance between the rotor and the center of mass of the drone.

Combining Eq. (B.1)-(B.5), the equation of motion of the drone can be written as:

142

()

()

()

()

4
2

1

4
2

1

4
2

1

2 2

2 4

sin sin cos cos sin

sin cos cos sin sin

cos cos,

sin cos

cos cos

cos sin

sin tan cos tan

1

1

i

i x

i
yi

i

i z

y z

x x

z x

y

x

y

z

k
A

x
m m

k
A

y
m m

k
A

g z
m m

q r

q r

p q r

I I
qr lk

I I

I I
pr

I I



    



    



 

 

 

 

   

 

=

=

=

+ −

− −

− −= =

+

−

+ +

−
+ − +

−
+






x f x u

()2 2

1 3

4
2

1

1

y

x y

i

iz z

lk

I I
pq b

I I

 


=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − +
 
 

− 
+ 

 


 (B.6)

The above equation of motion is used for the simulations in Section 2.3.3 to generate Monte

Carlo samples and training samples for the recurrent neural network. The drone parameters used

for simulation are the same as those in [210]:

Table B-1 Drone parameter values for simulation

Parameter Value Unit Parameter Value Unit

g 9.81 m/s2 Ixx 4.856×103 kg×m2

m 0.468 kg Iyy 4.856×103 kg×m2

l 0.225 m Izz 8.801×103 kg×m2

k 2.980×106 kg×m Ax 0.25 kg/s

b 1.140×107 kg×m2 Ay 0.25 kg/s

 Az 0.25 kg/s

143

APPENDIX C. PROOF OF LEMMA 1

This proof considers a pre-activation PDF with a single Gaussian density p(z)=N (z|μz,Σz).

The terms in Eq. (3.17) can be clustered into two groups that converge respectively:

() ()()

() () () ()

1 2 1 2

1 2

ˆ|| with

1
log log ' and

2 2

KL

p p

D p p D D D D

m
D E D E

= +  +

 = − = −   z z

s s

A z zF
 (C.1)

In D1, given that the Jacobian matrix of sigmoid function is diagonal, the expectation can be

written as () () () ()() () ()()
11

log ' log ' log '
i

m m

i ip p p zii
E E z E z  

==

    = =      z z
z , and thus:

()() () ()() 

() ()() ()()

1

1

1

log ' log '

log ' log '

i

i

m

i ip z
i

m

i ip z
i

D E z

E x

  

  

=

=

 = −  

 −





 (C.2)

 For logistic sigmoid function () ()1 1 iz

iz e −
= + , it can be shown that ()()log ' i id z dz =

() ()1 1 1i iz z
e e
− −

− +  and ()() ()()log ' log 'i i a i iz L z   −  − with La=1. Using the fact that

for zi ~N (μi, σi
2), ()

2= 2
i

i i ip z
E z   − and 2 22i i   , it can be obtained that:

() 

()

2

1

1 1

2

1

2

2 2 2 2 tr

i

m m

i i a ip z
i i

m

a i a zi

D L E z L

L L

   

  

= =

=

 − =

 =

 

 Σ

 (C.3)

For D2, using the Taylar’s expansion () () () ()2z z = + − +z μ A z μ r z with a second-order

remainder () ()() ()()
2 2

2 1 1 10.5 '' ''
T

m m mz z      = − −
 

r z , the F(z) can be rewritten as

() () () ()1 1 1 1 1

2 2 22
T T T T

z z z z z z

− − − − − −= − − + − +z z μ Σ z μ z μ Σ A r r A Σ A rF . Based on the expectation

of quadratic function (Results 8.5, page. 170 in [220]), the first term can be evaluated as:

 () () () () ()1 1

,
tr

z z

T

z z z z zp
E m− −

=
 − − = =
 z μ Σ

z μ Σ z μ Σ Σ
N

 (C.4)

which cancels the m/2 term in D2. Using the SVD in Eq. (2.11) and Σz
−1=VΛ−1VT, the second term

in F(z) is upper bounded by:

144

() ()1 1 1

2 2

1

2 1 1

2 22 2 22 2
1 min

1
, ,

1 1

m
T

z z i z i

i i

m

i z z

i i



 

− − −

=

− −

=

− = −

 −  −





z μ Σ A r z v z μ v A r

v z μ A r z μ A r

 (C.5)

where || ||2 denotes the 2-norm of a vector and for all the singular vectors ||vi||2=1. The expectation

of the product of two norm terms is an inner product that satisfies the Cauchy–Schwarz inequality

 
2 2 2E XY E X E Y        , and the expectation of each norm can be evaluated as:

 () () () ()
2 2

2 1
tr

i

m

z i i zp p zi
E E z 

=
   − = − =

   z
z μ Σ (C.6)

() () ()

()

()
()

() ()

2

2 41

2 2
1

2
24 2

1
1

''1

2 '

3 3 3 tr

i

m
i

i ip p z
i i

m
m

b i b i b zi
i

E E z

L L L

 


 

 

−

=

=
=

  
   = −         

  =



 

z
A r z

Σ

 (C.7)

where

2

max ''

2min 'bL



 

=  
 

 and factor 3 is the kurtosis of the Gaussian variable zi. For the

logistic function, ()max '' 0.1i   and () () ()()min ' 1i M M     − given that max(μi) <

Mµ. Substituting Eq. (C.6) and (C.7) into the Cauchy–Schwarz inequality of Eq. (C.5) gives:

() ()

()
3

1 1

2

min

3 trT b z

z zp

L
E



− − − 
 z

Σ
z μ Σ A r (C.8)

For the last term, using the same method as in Eq. (C.5) and (C.7), it can be obtained that:

() ()

()
2

1 2

21 1 2
2 2

min min

3 trb zT T

zp p

L
E E

 

−

− − −

 
       
 

z z

A r Σ
r A Σ A r (C.9)

Since the singular values satisfy λmax/λmin <Mλ , the trace has () min max mintr z m mM    Σ .

Using Eq. (C.4), (C.8) and (C.9), an upper bound of D2 is:

 () ()2 3 tr 3 trb z b zD mM L mM L  +Σ Σ (C.10)

with () ()()0.1 1bL M M  = − . Finally, substitute Eq. (C.10) and (C.3) into Eq. (C.1):

145

() ()() () ()ˆ|| tr tr with

2
3 and 2 3

KL z z

b a b

D p p b a

a mM L b L mM L 


 +

= = +

s s Σ Σ

 (C.11)

Therefore, for any positive thD, there exists a positive root

2

0
2 2

D
D

th b b

a a a


 
= + −  

 
 such that

if ()tr z DΣ , the KL divergence is lower than thD. For other sigmoid functions like the

hyperbolic tangent, the constants La and Lb can also be derived and the Lemma 1 still holds.

146

APPENDIX D. PROOF OF LEMMA 3

This proof considers a prior state PDF with a single Gaussian density p−(xk)=N (xk|μk
−,Σk

−).

Expanding the ()kxG and ()ˆ
kxG in Eq. (3.24), it can be obtained that:

()

()

()() ()()

() ()() () ()()

()() () () ()()

1 2 3

1

1

1

2

1

3

|
log 0.5 0.5

ˆ |

k k

k k

T

k k k k k k k

T

k k k k k

T

k k k k k k k k

p
G G G

p

G

G

G

− − −

− − −

− − − −

 
= − +  

 

= − −

= − −

= − − − −

y x

y x

H x μ R H x μ

g x g μ R g x g μ

y g μ R g x g μ H x μ

 (D.1)

Following Eq. (C.5), it can be easily shown that for a positive semi-definite quadratic form,

there is inequality
2 2

max 2
,T

i i = x Ax v x x , where v and λ are the singular vectors and

values of matrix A. In addition, since the Jacobian matrix of g is bounded ||Hk||2≤MH, based on the

mean value theorem of vector-valued functions [219], the function g satisfies the Lipschitz

condition () ()k k H k kM−  −g x g μ x μ . Therefore, assume that the largest singular value of the

noise covariance matrix Rk is λR, it can be shown that for the terms in Eq. (D.1):

 ()
2 22 2

1 2 22
R k k k R H k kG M − − −  −H x μ x μ (D.2)

 () ()
2 2

2

2 22
R k k R H k kG M − − −  −g x g μ x μ (D.3)

 ()() ()
2

3 2 2 22
R k k k R g r k kG M M  − −  −y g μ r x x μ (D.4)

Given that () ()
2

2
= trk k kE − − −

  
x μ Σ , the likelihood divergence is upper bounded by:

 ()
()

()
()1 2 3

| 1
log 2 tr

ˆ | 2

k k

k k k

k k

p
p d E G G G c

p


− −

−
  + +   

y x
x x Σ

y x
 (D.5)

where ()2

R H g rc M M M= + . Therefore, the likelihood divergence can be made lower than any

positive threshold thL provided that the trace tr(Σk
−) <σL= thL/c.

Next, substitute Eq. (3.3) into Eq. (3.11), the KL divergence between estimated posterior PDF

() ()ˆ ,k k kp =x μ ΣN and true PDF p(xk) is:

147

() ()()

()
()

()

() ()

() ()

ˆ ||

|ˆ |
ˆ log log

| ˆ |

KL k k

k k k kk k

k k

k k
k k k k

D p p

p p dp
p d

p p p d


−


−

− −

−

= +





x x

y x x xy x
x x

y x y x x x

 (D.6)

The absolute value of the first term can be decomposed as:

()
()

()

() ()

() ()

()

()

()
()

()
()

ˆ |
ˆ log

|

ˆ ˆ| |
log

|ˆ |

|
log tr

ˆ |

k k

k k

k k

k k k k k

k

k k
k k k k

k k

k k k

k k

p
p d

p

p p p
d

pp p d

p
d p d cd

p



−

−


− −

−


− −

−



 








y x
x x

y x

y x x y x
x

y xy x x x

y x
x x Σ

y x

 (D.7)

where
()

() () ()()

1 2
ˆ 2max |

| ,ˆ |

kk k

T

k k k k k kk k k k

p
d

p p d


−

 − −−

−

= =
+

Ry x

y g μ R H Σ Hy x x x N
 is derived by combining

the marginal likelihood of EKF (pp. 214, Ref [73]) and the fact that ()
1 2

ˆmax | 2k k kp 
−

=y x R

when () ()k k k k k

− −= + −y g μ H x μ . Using
()

()

2

2

|
log

ˆ |

k k

k k

k k

p
c

p

− −
y x

x μ
y x

 from Eq. (D.5), the fraction

term in Eq. (D.6) can be rewritten as:

() ()

() ()

() ()

() ()

()

()

()

()

() () ()

() () ()

2

ˆ ˆ 2

1

ˆ

| ˆ | |

ˆ |ˆ ˆ| |

|
exp

ˆ |

1 1
exp

2 2

1
ex

2

k k

k

k k k k k k k k k

k

k k
k k k k k k k k

k k

k kp p

k k

T

k k n k kp

n k

p p d p p p
d

pp p d p p d

p
E E c

p

E
c

c


− −


−

 −− −

− −

−

−

− −

=

   =  −     

   
= − − − −        

=
−




 

x x

x

y x x x y x x y x
x

y xy x x x y x x x

y x
x μ

y x

x μ I x μ

I Σ
() ()

1
1 1

p
2 2

T

k k k n k k
c

−

− −
  
− − − −     

μ μ Σ I μ μ

 (D.8)

where the expectation integral is derived using the formula for the product of two Gaussians

(Results 8.2, pp. 169 in [220]). Taking the natural logarithm of Eq. (D.8) gives:

148

 ()

()

()
() () ()

1

ˆ

| 1
log log 2 2

ˆ | 2k

T
k k

n k k k n k k kp

k k

p
E c c c

p

−− −
 

 − − + − − − 
 

x

y x
I Σ μ μ I Σ μ μ

y x
 (D.9)

In the EKF solution [73], ()()k k k k

− −− = −μ μ K y g μ with 1

k k yy

− −=K Σ H Σ . Hence, the second term

is in the order of ||Σk
−||2. Using Eq. (1) in [221], it has () 2log 2 2 trn k kc c r− − = +I Σ Σ , where r2 is

a second-order remainder. Also, () ()tr trk k

−Σ Σ given that T

k k yy

−= −Σ Σ KΣ K . If tr(Σk
−)≪1,

tr(Σk
−)2 and ||Σk

−||2 will be less than tr(Σk
−) by orders of magnitude. Therefore, the KL divergence

bounded by the sum of Eq. (D.7) and (D.9) will decay to zero with a linear rate of tr(Σk
−):

 () ()() () () ()ˆ || 1 tr . . trKL k k k kD p p c d H OT cM− − + + x x Σ Σ (D.10)

where H.O.T denotes the higher-order terms of tr(Σk
−)2 or ||Σk

−||2, and M is a finite constant d+1<

M<∞. Given that tr(Σk
−)<thL/c, the KL divergence will be less than M×thL. Q.E.D.

149

REFERENCES

[1] Dhar, V., 2013. Data science and prediction. Communications of the ACM, 56(12), pp.64-

73.

[2] Chen, J., Tao, Y., Wang, H. and Chen, T., 2015. Big data based fraud risk management at

Alibaba. The Journal of Finance and Data Science, 1(1), pp.1-10.

[3] Hiransha, M., Gopalakrishnan, E.A., Menon, V.K. and Soman, K.P., 2018. NSE stock

market prediction using deep-learning models. Procedia computer science, 132, pp.1351-

1362.

[4] Singh, S., Pandey, S.K., Pawar, U. and Janghel, R.R., 2018. Classification of ECG

arrhythmia using recurrent neural networks. Procedia computer science, 132, pp.1290-

1297.

[5] Razzak, M.I., Naz, S. and Zaib, A., 2018. Deep learning for medical image processing:

Overview, challenges and the future. In Classification in BioApps (pp. 323-350). Springer,

Cham.

[6] Hou, Z.S. and Wang, Z., 2013. From model-based control to data-driven control: Survey,

classification and perspective. Information Sciences, 235, pp.3-35.

[7] Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., Keane, J. and

Nenadic, G., 2019. Machine learning methods for wind turbine condition monitoring: A

review. Renewable energy, 133, pp.620-635.

[8] Diez-Olivan, A., Del Ser, J., Galar, D. and Sierra, B., 2019. Data fusion and machine

learning for industrial prognosis: Trends and perspectives towards Industry 4.0.

Information Fusion, 50, pp.92-111.

[9] Yin, S., Li, X., Gao, H. and Kaynak, O., 2014. Data-based techniques focused on modern

industry: An overview. IEEE Transactions on Industrial Electronics, 62(1), pp.657-667.

[10] Du, J. and Xu, Y., 2017. Hierarchical deep neural network for multivariate regression.

Pattern Recognition, 63, pp.149-157.

[11] Basu, J.K., Bhattacharyya, D. and Kim, T.H., 2010. Use of artificial neural network in

pattern recognition. International journal of software engineering and its applications, 4(2).

[12] Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural networks,

61, pp.85-117.

[13] Anghinoni, L., Zhao, L., Ji, D. and Pan, H., 2019. Time series trend detection and

forecasting using complex network topology analysis. Neural Networks, 117, pp.295-306.

[14] Kendall, A. and Gal, Y., 2017. What uncertainties do we need in Bayesian deep learning

for computer vision?. Advances in neural information processing systems, pp.5574-5584.

[15] Gal, Y., 2016. Uncertainty in deep learning. Doctoral dissertation, University of Cambridge.

150

[16] Blundell, C., Cornebise, J., Kavukcuoglu, K. and Wierstra, D., 2015, June. Weight

uncertainty in neural network. In International Conference on Machine Learning (pp. 1613-

1622). PMLR.

[17] Ngo, P.D. and Shin, Y.C., 2016. Modeling of unstructured uncertainties and robust

controlling of nonlinear dynamic systems based on type-2 fuzzy basis function networks.

Engineering Applications of Artificial Intelligence, 53, pp.74-85.

[18] Xu, L., Wang, J. and Chen, Q., 2012. Kalman filtering state of charge estimation for battery

management system based on a stochastic fuzzy neural network battery model. Energy

Conversion and Management, 53(1), pp.33-39.

[19] Buehler, E., 2017. Efficient Uncertainty Propagation for Stochastic Model Predictive

Control. Doctoral dissertation, UC Berkeley, Berkeley, USA.

[20] Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S.N., 2003. A review of

process fault detection and diagnosis: Part I: Quantitative model-based methods.

Computers & chemical engineering, 27(3), pp.293-311.

[21] Tidriri, K., Chatti, N., Verron, S. and Tiplica, T., 2016. Bridging data-driven and model-

based approaches for process fault diagnosis and health monitoring: A review of researches

and future challenges. Annual Reviews in Control, 42, pp.63-81.

[22] Buswell, R.A., 2001. Uncertainty in the first principle model based condition monitoring

of HVAC systems (Doctoral dissertation, Loughborough University).

[23] Rigatos, G. and Siano, P., 2016. Power transformers’ condition monitoring using neural

modeling and the local statistical approach to fault diagnosis. International Journal of

Electrical Power & Energy Systems, 80, pp.150-159.

[24] Singh, G.K. and Ahmed, S.A.K.S.A., 2004. Vibration signal analysis using wavelet

transform for isolation and identification of electrical faults in induction machine. Electric

Power Systems Research, 68(2), pp.119-136.

[25] Tian, Z., 2012. An artificial neural network method for remaining useful life prediction of

equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2),

pp.227-237.

[26] Nilsson, J. and Bertling, L., 2007. Maintenance management of wind power systems using

condition monitoring systems—life cycle cost analysis for two case studies. IEEE

Transactions on energy conversion, 22(1), pp.223-229.

[27] Huynh, K.T., Barros, A. and Bérenguer, C., 2012. Maintenance decision-making for

systems operating under indirect condition monitoring: value of online information and

impact of measurement uncertainty. IEEE Transactions on Reliability, 61(2), pp.410-425.

[28] Ettler, P. and Dedecius, K., 2014, September. Quantification of information uncertainty for

the purpose of condition monitoring. In 2014 11th International Conference on Informatics

151

in Control, Automation and Robotics (ICINCO) (Vol. 1, pp. 127-132). IEEE.

[29] Aizpurua, J.I., Stewart, B.G., McArthur, S.D.J., Lambert, B., Cross, J.G. and Catterson,

V.M., 2019. Improved power transformer condition monitoring under uncertainty through

soft computing and probabilistic health index. Applied Soft Computing, 85, p.105530.

[30] DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese,

A.M., Wilson-Heid, A., De, A. and Zhang, W., 2017. Additive manufacturing of metallic

components–process, structure and properties. Progress in Materials Science.

[31] Grasso, M. and Colosimo, B.M., 2017. Process defects and in situ monitoring methods in

metal powder bed fusion: a review. Measurement Science and Technology, 28(4),

p.044005.

[32] Shamsaei, N., Yadollahi, A., Bian, L. and Thompson, S.M., 2015. An overview of Direct

Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process

parameter optimization and control. Additive Manufacturing, 8, pp.12-35.

[33] PwC, 3D Printing and the New Shape of Industrial Manufacturing, Price Waterhouse

Coopers LLP, Delaware, 2014

[34] Energetics Incorporated, Measurement Science Roadmap for Metal-Based Additive

Manufacturing, National Institute of Standards and Technology, Maryland, US., 2013

[35] Tapia, G. and Elwany, A., 2014. A review on process monitoring and control in metal-

based additive manufacturing. Journal of Manufacturing Science and Engineering, 136(6),

p.060801.

[36] Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K. and Clare, A.T., 2016. Review of

in-situ process monitoring and in-situ metrology for metal additive manufacturing.

Materials & Design, 95, pp.431-445.

[37] O’Donnell, G., Young, P., Kelly, K. and Byrne, G., 2001. Towards the improvement of

tool condition monitoring systems in the manufacturing environment. Journal of Materials

Processing Technology, 119(1-3), pp.133-139.

[38] de Jesús Rubio, J., 2017. Stable Kalman filter and neural network for the chaotic systems

identification. Journal of the Franklin Institute, 354(16), pp.7444-7462.

[39] Chen, M., Ge, S.S. and How, B.V.E., 2010. Robust adaptive neural network control for a

class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Transactions

on Neural Networks, 21(5), pp.796-812.

[40] He, W., Chen, Y. and Yin, Z., 2015. Adaptive neural network control of an uncertain robot

with full-state constraints. IEEE transactions on cybernetics, 46(3), pp.620-629.

[41]

[42] Kabir, H.D., Khosravi, A., Hosen, M.A. and Nahavandi, S., 2018. Neural network-based

uncertainty quantification: A survey of methodologies and applications. IEEE access, 6,

pp.36218-36234.

152

[43] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M.,

Fieguth, P., Cao, X., Khosravi, A., Acharya, U.R. and Makarenkov, V., 2021. A review of

uncertainty quantification in deep learning: Techniques, applications and challenges.

Information Fusion.

[44] Chen, C., Carlson, D., Gan, Z., Li, C. and Carin, L., 2016, May. Bridging the gap between

stochastic gradient MCMC and stochastic optimization. In Artificial Intelligence and

Statistics (pp. 1051-1060). PMLR.

[45] Huber, M.F., 2011, July. Adaptive Gaussian mixture filter based on statistical linearization.

In 14th International Conference on Information Fusion (pp. 1-8). IEEE.

[46] Gast, J. and Roth, S., 2018. Lightweight probabilistic deep networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (pp. 3369-3378).

[47] Frey, B.J. and Hinton, G.E., 1999. Variational learning in nonlinear Gaussian belief

networks. Neural Computation, 11(1), pp.193-213.

[48] Wang, H., Shi, X. and Yeung, D.Y., 2016. Natural-parameter networks: A class of

probabilistic neural networks. Advances in Neural Information Processing Systems, 29,

pp.118-126.

[49] Abdelaziz, A.H., Watanabe, S., Hershey, J.R., Vincent, E. and Kolossa, D., 2015.

Uncertainty Propagation Through Deep Neural Networks. In Sixteenth Annual Conference

of the International Speech Communication Association. Dresden, Germany.

[50] Bui, T., Hernández-Lobato, D., Hernandez-Lobato, J., Li, Y. and Turner, R., 2016, June.

Deep Gaussian processes for regression using approximate expectation propagation. In

International conference on machine learning (pp. 1472-1481).

[51] Lee, J., Bahri, Y., Novak, R., Schoenholz, S.S., Pennington, J. and Sohl-Dickstein, J., 2017.

Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165.

[52] Julier, S.J. and Uhlmann, J.K., 2004. Unscented filtering and nonlinear estimation.

Proceedings of the IEEE, 92(3), pp.401-422.

[53] Dong, G., Zhang, X., Zhang, C. and Chen, Z., 2015. A method for state of energy

estimation of lithium-ion batteries based on neural network model. Energy, 90, pp.879-888.

[54] Vlassis, N. and Likas, A., 2002. A greedy EM algorithm for Gaussian mixture learning.

Neural processing letters, 15(1), pp.77-87.

[55] Psiaki, M.L., Schoenberg, J.R. and Miller, I.T., 2015. Gaussian sum reapproximation for

use in a nonlinear filter. Journal of Guidance, Control, and Dynamics, 38(2), pp.292-303.

[56]

[57] Terejanu, G., Singla, P., Singh, T. and Scott, P.D., 2008. Uncertainty propagation for

nonlinear dynamic systems using Gaussian mixture models. Journal of Guidance, Control,

and Dynamics, 31(6), pp.1623-1633.

[58] Terejanu, G., Singla, P., Singh, T. and Scott, P.D., 2011. Adaptive Gaussian sum filter for

153

nonlinear Bayesian estimation. IEEE Transactions on Automatic Control, 56(9), pp.2151-

2156.

[59] Faubel, F., McDonough, J. and Klakow, D., 2009. The split and merge unscented Gaussian

mixture filter. IEEE Signal Processing Letters, 16(9), pp.786-789.

[60] Horwood, J.T. and Poore, A.B., 2011. Adaptive Gaussian sum filters for space surveillance.

IEEE transactions on automatic control, 56(8), pp.1777-1790.

[61] DeMars, K.J., Bishop, R.H. and Jah, M.K., 2013. Entropy-based approach for uncertainty

propagation of nonlinear dynamical systems. Journal of Guidance, Control, and Dynamics,

36(4), pp.1047-1057.

[62] Tuggle, K. and Zanetti, R., 2018. Automated Splitting Gaussian Mixture Nonlinear

Measurement Update. Journal of Guidance, Control, and Dynamics, 41(3), pp.725-734.

[63] Auger, F., Hilairet, M., Guerrero, J.M., Monmasson, E., Orlowska-Kowalska, T. and

Katsura, S., 2013. Industrial applications of the Kalman filter: A review. IEEE Transactions

on Industrial Electronics, 60(12), pp.5458-5471.

[64] Chen, Z., 2003. Bayesian filtering: From Kalman filters to particle filters, and beyond.

Statistics, 182(1), pp.1-69.

[65] Kalman, R.E., 1960. A new approach to linear filtering and prediction problems.

[66] Wan, E.A. and Van Der Merwe, R., 2000, October. The unscented Kalman filter for

nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal

Processing, Communications, and Control Symposium (Cat. No. 00EX373) (pp. 153-158).

IEEE.

[67] Ito, K. and Xiong, K., 2000. Gaussian filters for nonlinear filtering problems. IEEE

transactions on automatic control, 45(5), pp.910-927.

[68] Arasaratnam, I. and Haykin, S., 2009. Cubature kalman filters. IEEE Transactions on

automatic control, 54(6), pp.1254-1269.

[69] Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and practical

implementation. Ocean dynamics, 53(4), pp.343-367.

[70] Gordon, N.J., Salmond, D.J. and Smith, A.F., 1993, April. Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F-radar and signal

processing (Vol. 140, No. 2, pp. 107-113). IET.

[71] Arulampalam, M.S., Maskell, S., Gordon, N. and Clapp, T., 2002. A tutorial on particle

filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on signal

processing, 50(2), pp.174-188.

[72] Beskos, A., Crisan, D., Jasra, A., Kamatani, K. and Zhou, Y., 2017. A stable particle filter

for a class of high-dimensional state-space models. Advances in Applied Probability, 49(1),

pp.24-48.

[73] Anderson, B.D. and Moore, J.B., 2012. Optimal filtering. Courier Corporation.

154

[74] Sorenson, H.W. and Alspach, D.L., 1971. Recursive Bayesian estimation using Gaussian

sums. Automatica, 7(4), pp.465-479.

[75] Arasaratnam, I., Haykin, S. and Elliott, R.J., 2007. Discrete-time nonlinear filtering

algorithms using Gauss–Hermite quadrature. Proceedings of the IEEE, 95(5), pp.953-977.

[76] Tam, W.I., Plataniotis, K.N. and Hatzinakos, D., 1999. An adaptive Gaussian sum

algorithm for radar tracking. Signal processing, 77(1), pp.85-104.

[77] Kotecha, J.H. and Djuric, P.M., 2003. Gaussian sum particle filtering. IEEE Transactions

on signal processing, 51(10), pp.2602-2612.

[78] Raihan, D. and Chakravorty, S., 2018. Particle Gaussian mixture filters-I. Automatica, 98,

pp.331-340.

[79] Stordal, A.S., Karlsen, H.A., Nævdal, G., Skaug, H.J. and Vallès, B., 2011. Bridging the

ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter.

Computational Geosciences, 15(2), pp.293-305.

[80] Psiaki, M.L., 2016. Gaussian mixture nonlinear filtering with resampling for mixand

narrowing. IEEE Transactions on Signal Processing, 64(21), pp.5499-5512.

[81] Leong, P.H., Arulampalam, S., Lamahewa, T.A. and Abhayapala, T.D., 2013. A Gaussian-

sum based cubature Kalman filter for bearings-only tracking. IEEE Transactions on

Aerospace and Electronic Systems, 49(2), pp.1161-1176.

[82] Khosravi, A., Nahavandi, S., Creighton, D. and Atiya, A.F., 2011. Comprehensive review

of neural network-based prediction intervals and new advances. IEEE Transactions on

neural networks, 22(9), pp.1341-1356.

[83] Juang, C.F., Huang, R.B. and Cheng, W.Y., 2010. An interval type-2 fuzzy-neural network

with support-vector regression for noisy regression problems. IEEE Transactions on fuzzy

systems, 18(4), pp.686-699.

[84] Sadeghi, J., De Angelis, M. and Patelli, E., 2019. Efficient training of interval Neural

Networks for imprecise training data. Neural Networks, 118, pp.338-351

[85] Khosravi, A., Nahavandi, S., Srinivasan, D. and Khosravi, R., 2014. Constructing optimal

prediction intervals by using neural networks and bootstrap method. IEEE transactions on

neural networks and learning systems, 26(8), pp.1810-1815.

[86] Cheng, L., Zang, H., Ding, T., Sun, R., Wang, M., Wei, Z. and Sun, G., 2018. Ensemble

recurrent neural network based probabilistic wind speed forecasting approach. Energies,

11(8), p.1958.

[87] Jospin, L.V., Buntine, W., Boussaid, F., Laga, H. and Bennamoun, M., 2020. Hands-on

Bayesian Neural Networks-a Tutorial for Deep Learning Users. arXiv preprint

arXiv:2007.06823.

[88] Neal, R.M., 1995. Bayesian Learning for Neural Networks. Doctoral dissertation,

155

University of Toronto.

[89] Deng, W., Zhang, X., Liang, F. and Lin, G., 2019. An adaptive empirical Bayesian method

for sparse deep learning. In Advances in neural information processing systems, (p.5563).

[90] Hernández-Lobato, J.M. and Adams, R., 2015, June. Probabilistic backpropagation for

scalable learning of bayesian neural networks. In International Conference on Machine

Learning (pp. 1861-1869).

[91] Graves, A., 2011. Practical variational inference for neural networks. In Advances in neural

information processing systems, (pp.2348-2356).

[92] Gal, Y. and Ghahramani, Z., 2016, June. Dropout as a Bayesian approximation:

Representing model uncertainty in deep learning. In international conference on machine

learning (pp. 1050-1059).

[93] Gal, Y., Hron, J. and Kendall, A., 2017. Concrete dropout. arXiv preprint

arXiv:1705.07832.

[94] Hernandez-Lobato, J., Li, Y., Rowland, M., Bui, T., Hernández-Lobato, D. and Turner, R.,

2016, June. Black-box alpha divergence minimization. In International Conference on

Machine Learning (pp. 1511-1520).

[95] Zhao, J., Liu, X., He, S. and Sun, S., 2020. Probabilistic inference of Bayesian neural

networks with generalized expectation propagation. Neurocomputing, 412, pp.392-398.

[96] Jylänki, P., Nummenmaa, A. and Vehtari, A., 2014. Expectation propagation for neural

networks with sparsity-promoting priors. The Journal of Machine Learning Research,

15(1), pp.1849-1901.

[97] Tran, D., Dusenberry, M., van der Wilk, M. and Hafner, D., 2019. Bayesian layers: A

module for neural network uncertainty. In Advances in Neural Information Processing

Systems (pp.14633-14645).

[98] Pawlowski, N., Brock, A., Lee, M.C., Rajchl, M. and Glocker, B., 2017. Implicit weight

uncertainty in neural networks. arXiv preprint arXiv:1711.01297.

[99] Bishop, C.M., 1994. Mixture density networks (p. 7). Technical Report NCRG/4288,

Aston University, Birmingham, UK.

[100] Zen, H. and Senior, A., 2014, May. Deep mixture density networks for acoustic modeling

in statistical parametric speech synthesis. In Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on (pp. 3844-3848). IEEE.

[101] Zhang, J., Yan, J., Infield, D., Liu, Y. and Lien, F.S., 2019. Short-term forecasting and

uncertainty analysis of wind turbine power based on long short-term memory network and

Gaussian mixture model. Applied energy, 241, pp.229-244.

[102] Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems (pp.

156

1097-1105).

[103] Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.

[104] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V. and Rabinovich, A., 2015. Going deeper with convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 1-9).

[105] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.

770-778).

[106] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K., 2016.

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.

arXiv preprint arXiv:1602.07360.

[107] Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A.A., 2017, February. Inception-v4,

inception-resnet and the impact of residual connections on learning. In AAAI (Vol. 4, p.

12).

[108] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M. and Berg, A.C., 2015. Imagenet large scale visual recognition

challenge. International Journal of Computer Vision, 115(3), pp.211-252.

[109] Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Hasan, M., Van Esesn, B.C., Awwal,

A.A.S. and Asari, V.K., 2018. The History Began from AlexNet: A Comprehensive Survey

on Deep Learning Approaches. arXiv preprint arXiv:1803.01164.

[110] MathWorks, 2018. Pretrained Convolutional Neural Networks, Matlab ver. 2018b, https:

//www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-

networks.html

[111] Teti, R., Jemielniak, K., O’Donnell, G., and Dornfeld, D., 2010. Advanced Monitoring of

Machining Operations, CIRP Annals-Manufacturing Technology, 59(2), pp. 717-739.

[112] Abellan-Nebot, J. V. and Subirón, F. R., 2010. A Review of Machining Monitoring

Systems Based on Artificial Intelligence Process Models. The International Journal of

Advanced Manufacturing Technology, 47(1-4), pp. 237-257.

[113] Sick, B., 2002. On-Line and Indirect Tool Wear Monitoring in Turning with Artificial

Neural Networks: A Review of More Than a Decade of Research. Mechanical Systems

and Signal Processing, 16(4), pp. 487-546.

[114] Grzesik, W., 2008. Influence of Tool Wear on Surface Roughness in Hard Turning Using

Differently Shaped Ceramic Tools. Wear, 265(3-4), pp. 327-335.

[115] Niaki, F.A. and Mears, L., 2017. A comprehensive study on the effects of tool wear on

surface roughness, dimensional integrity and residual stress in turning IN718 hard-to-

machine alloy. Journal of Manufacturing Processes, 30, pp.268-280.

157

[116] Liu, T.-I. and Jolley, B., 2015. Tool Condition Monitoring (TCM) Using Neural Networks.

The International Journal of Advanced Manufacturing Technology, 78(9-12), pp. 1999-

2007.

[117] Nouri, M., Fussell, B. K., Ziniti, B. L., and Linder, E., 2015. Real-Time Tool Wear

Monitoring in Milling Using a Cutting Condition Independent Method. International

Journal of Machine Tools and Manufacture, 89, pp. 1-13.

[118] Li, N., Chen, Y., Kong, D., and Tan, S., 2017. Force-Based Tool Condition Monitoring for

Turning Process Using V-Support Vector Regression. The International Journal of

Advanced Manufacturing Technology, 91(1-4), pp. 351-361.

[119] Scheffer, C. and Heyns, P., 2001. Wear Monitoring in Turning Operations Using Vibration

and Strain Measurements. Mechanical systems and signal processing, 15(6), pp. 1185-1202.

[120] Dimla, D. E., 2002. The Correlation of Vibration Signal Features to Cutting Tool Wear in

a Metal Turning Operation. The International Journal of Advanced Manufacturing

Technology, 19(10), pp. 705-713.

[121] Alonso, F. and Salgado, D., 2008. Analysis of the Structure of Vibration Signals for Tool

Wear Detection. Mechanical Systems and Signal Processing, 22(3), pp. 735-748.

[122] Prasad, B. S. and Babu, M. P., 2017. Correlation between Vibration Amplitude and Tool

Wear in Turning: Numerical and Experimental Analysis. Engineering Science and

Technology, an International Journal, 20(1), pp. 197-211.

[123] Li, X., 2002. A Brief Review: Acoustic Emission Method for Tool Wear Monitoring

During Turning. International Journal of Machine Tools and Manufacture, 42(2), pp. 157-

165.

[124] Ren, Q., Balazinski, M., Baron, L., Jemielniak, K., Botez, R., and Achiche, S., 2014. Type-

2 Fuzzy Tool Condition Monitoring System Based on Acoustic Emission in Micromilling.

Information Sciences, 255, pp. 121-134.

[125] Maia, L. H. A., Abrao, A. M., Vasconcelos, W. L., Sales, W. F., and Machado, A. R., 2015.

A New Approach for Detection of Wear Mechanisms and Determination of Tool Life in

Turning Using Acoustic Emission. Tribology International, 92, pp. 519-532.

[126] Axinte, D. and Gindy, N., 2004. Assessment of the Effectiveness of a Spindle Power Signal

for Tool Condition Monitoring in Machining Processes. International journal of production

research, 42(13), pp. 2679-2691.

[127] Drouillet, C., Karandikar, J., Nath, C., Journeaux, A.-C., El Mansori, M., and Kurfess, T.,

2016. Tool Life Predictions in Milling Using Spindle Power with the Neural Network

Technique. Journal of Manufacturing Processes, 22, pp. 161-168.

[128] Zhu, K., San Wong, Y., and Hong, G. S., 2009. Wavelet Analysis of Sensor Signals for

Tool Condition Monitoring: A Review and Some New Results. International Journal of

Machine Tools and Manufacture, 49(7), pp. 537-553.

158

[129] Niaki, F.A., Feng, L., Ulutan, D. and Mears, L., 2016. A Wavelet-based Data-driven

Modelling for Tool Wear Assessment of Difficult to Machine Materials. International

Journal of Mechatronics and Manufacturing Systems, 9(2), pp.97-121.

[130] Segreto, T., Simeone, A., and Teti, R., 2013. Multiple Sensor Monitoring in Nickel Alloy

Turning for Tool Wear Assessment Via Sensor Fusion. Procedia CIRP, 12, pp. 85-90.

[131] Wang, G., Zhang, Y., Liu, C., Xie, Q. and Xu, Y., 2019. A new tool wear monitoring

method based on multi-scale PCA. Journal of Intelligent Manufacturing, 30(1), pp.113-

122.

[132] Guyon, I. and Elisseeff, A., 2003. An Introduction to Variable and Feature Selection.

Journal of machine learning research, 3(Mar), pp. 1157-1182.

[133] Liao, T. W., 2010. Feature Extraction and Selection from Acoustic Emission Signals with

an Application in Grinding Wheel Condition Monitoring. Engineering Applications of

Artificial Intelligence, 23(1), pp. 74-84.

[134] Subrahmanya, N. and Shin, Y. C., 2008. Automated Sensor Selection and Fusion for

Monitoring and Diagnostics of Plunge Grinding. Journal of manufacturing science and

engineering, 130(3), pp. 031014.

[135] Wang, G. and Cui, Y., 2013. On Line Tool Wear Monitoring Based on Auto Associative

Neural Network. Journal of Intelligent Manufacturing, 24(6), pp. 1085-1094.

[136] D’Addona, D.M., Ullah, A.S. and Matarazzo, D., 2017. Tool-wear Prediction and Pattern-

recognition Using Artificial Neural Network and DNA-based Computing. Journal of

Intelligent Manufacturing, 28(6), pp. 1285-1301.

[137] Aliustaoglu, C., Ertunc, H.M. and Ocak, H., 2009. Tool wear condition monitoring using

a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal

Processing, 23(2), pp.539-546.

[138] Gajate, A., Haber, R., Del Toro, R., Vega, P., and Bustillo, A., 2012. Tool Wear Monitoring

Using Neuro-Fuzzy Techniques: A Comparative Study in a Turning Process. Journal of

Intelligent Manufacturing, 23(3), pp. 869-882.

[139] Rizal, M., Ghani, J.A., Nuawi, M.Z. and Haron, C.H.C., 2013. Online tool wear prediction

system in the turning process using an adaptive neuro-fuzzy inference system. Applied Soft

Computing, 13(4), pp.1960-1968.

[140] Shi, D. and Gindy, N. N., 2007. Tool Wear Predictive Model Based on Least Squares

Support Vector Machines. Mechanical Systems and Signal Processing, 21(4), pp. 1799-

1814.

[141] Mehrabi, M. G. and Kannatey-Asibu Jr, E., 2002. Hidden Markov Model-Based Tool Wear

Monitoring in Turning. Journal of Manufacturing Science and Engineering, 124(3), pp.

651-658.

159

[142] Yu, J., Liang, S., Tang, D., and Liu, H., 2017. A Weighted Hidden Markov Model

Approach for Continuous-State Tool Wear Monitoring and Tool Life Prediction. The

International Journal of Advanced Manufacturing Technology, 91(1-4), pp. 201-211.

[143] Wang, G., Qian, L., and Guo, Z., 2013. Continuous Tool Wear Prediction Based on

Gaussian Mixture Regression Model. The International Journal of Advanced

Manufacturing Technology, pp. 1-9.

[144] Wu, D., Jennings, C., Terpenny, J., Gao, R. X., and Kumara, S., 2017. A Comparative

Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction

Using Random Forests. Journal of Manufacturing Science and Engineering, 139(7), pp.

071018.

[145] Chen, Y., Jin, Y. and Jiri, G., 2018. Predicting tool wear with multi-sensor data using deep

belief networks. The International Journal of Advanced Manufacturing Technology, 99(5-

8), pp.1917-1926.

[146] Karandikar, J.M., Abbas, A.E. and Schmitz, T.L., 2014. Tool Life Prediction Using

Bayesian Updating. Part 1: Milling Tool Life Model Using a Discrete Grid Method.

Precision Engineering, 38(1), pp. 9-17.

[147] Karandikar, J.M., Abbas, A.E. and Schmitz, T.L., 2014. Tool Life Prediction Using

Bayesian Updating. Part 2: Turning Tool Life Using a Markov Chain Monte Carlo

Approach. Precision Engineering, 38(1), pp. 18-27.

[148] Akhavan Niaki, F., Ulutan, D. and Mears, L., 2016. Parameter inference under uncertainty

in end-milling γ′-strengthened difficult-to-machine alloy. Journal of Manufacturing

Science and Engineering, 138(6).

[149] Ren, Q., Balazinski, M., and Baron, L., 2009. Uncertainty Prediction for Tool Wear

Condition Using Type-2 Tsk Fuzzy Approach. Conference Proceedings - IEEE

International Conference on Systems, Man and Cybernetics, pp. 660-665.

[150] Niaki, F.A., Michel, M. and Mears, L., 2016. State of Health Monitoring in Machining:

Extended Kalman Filter for Tool Wear Assessment in Turning of IN718 Hard-to-machine

Alloy. Journal of Manufacturing Processes, 24, pp. 361-369.

[151] Wang, J., Wang, P. and Gao, R.X., 2015. Enhanced Particle Filter for Tool Wear Prediction.

Journal of Manufacturing Systems, 36, pp. 35-45.

[152] Zhang, J., Starly, B., Cai, Y., Cohen, P.H. and Lee, Y.S., 2017. Particle Learning in Online

Tool Wear Diagnosis and Prognosis. Journal of Manufacturing Processes, 28, pp. 457-463.

[153] Niaki, F.A., Ulutan, D. and Mears, L., 2015. Stochastic tool wear assessment in milling

difficult to machine alloys. International Journal of Mechatronics and Manufacturing

Systems, 8(3-4), pp.134-159.

[154] Akhavan Niaki, F. and Mears, L., 2018. A probabilistic-based study on fused direct and

160

indirect methods for tracking tool flank wear of Rene-108, nickel-based alloy. Proceedings

of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,

232(11), pp.2030-2043.

[155] Kong, D., Chen, Y., Li, N., Duan, C., Lu, L. and Chen, D., 2019. Relevance vector machine

for tool wear prediction. Mechanical Systems and Signal Processing, 127, pp.573-594.

[156] Gouarir, A., Martínez-Arellano, G., Terrazas, G., Benardos, P. and Ratchev, S., 2018. In-

process tool wear prediction system based on machine learning techniques and force

analysis. Procedia CIRP, 77, pp.501-504.

[157] Zheng, H. and Lin, J., 2019, June. A Deep Learning Approach for High Speed Machining

Tool Wear Monitoring. In 2019 3rd International Conference on Robotics and Automation

Sciences (ICRAS) (pp. 63-68). IEEE.

[158] Martínez-Arellano, G., Terrazas, G. and Ratchev, S., 2019. Tool wear classification using

time series imaging and deep learning. The International Journal of Advanced

Manufacturing Technology, 104(9-12), pp.3647-3662.

[159] Cao, X.C., Chen, B.Q., Yao, B. and He, W.P., 2019. Combining translation-invariant

wavelet frames and convolutional neural network for intelligent tool wear state

identification. Computers in Industry, 106, pp.71-84.

[160] Li XQ, Wong YS, Nee AYC. Tool wear and chatter detection using the coherence function

of two crossed accelerations. Int J Mach Tools Manuf 1997;37:425–35.

[161] Choi T, Shin YC. On-Line Chatter Detection Using Wavelet-Based Parameter Estimation.

J Manuf Sci Eng 2003;125:21.

[162] Yang F, Zhang B, Yu J. Chatter suppression with multiple time-varying parameters in

turning. J Mater Process Technol 2003;141:431–8.

[163] Nair U, Krishna BM, Namboothiri VNN, Nampoori VPN. Permutation entropy based real-

time chatter detection using audio signal in turning process. Int J Adv Manuf Technol

2010;46:61–8.

[164] Kwak JS. Application of wavelet transform technique to detect tool failure in turning

operations. Int J Adv Manuf Technol 2006;28:1078–83.

[165] Neslušan M, Mičieta B, Mičietová A, Čilliková M, Mrkvica I. Detection of tool breakage

during hard turning through acoustic emission at low removal rates. Meas J Int Meas

Confed 2015;70:1–13.

[166] Li, L. and Steen, W.M., 1990, August. In-process clad quality monitoring using optical

method. In Laser-Assisted Processing II (Vol. 1279, pp. 89-101). International Society for

Optics and Photonics.

[167] Voelkel, D.D. and Mazumder, J., 1990. Visualization of a laser melt pool. Applied Optics,

29(12), pp.1718-1720.

161

[168] Hu, D. and Kovacevic, R., 2003. Sensing, modeling and control for laser-based additive

manufacturing. International Journal of Machine Tools and Manufacture, 43(1), pp.51-60.

[169] Berumen, S., Bechmann, F., Lindner, S., Kruth, J.P. and Craeghs, T., 2010. Quality control

of laser-and powder bed-based Additive Manufacturing (AM) technologies. Physics

procedia, 5, pp.617-622.

[170] Lott, P., Schleifenbaum, H., Meiners, W., Wissenbach, K., Hinke, C. and Bültmann, J.,

2011. Design of an optical system for the in situ process monitoring of selective laser

melting (SLM). Physics Procedia, 12, pp.683-690.

[171] Krauss, H., Eschey, C. and Zaeh, M., 2012, August. Thermography for monitoring the

selective laser melting process. In Proceedings of the Solid Freeform Fabrication

Symposium (pp. 999-1014).

[172] Craeghs, T., Clijsters, S., Kruth, J.P., Bechmann, F. and Ebert, M.C., 2012. Detection of

process failures in layerwise laser melting with optical process monitoring. Physics

Procedia, 39, pp.753-759.

[173] Montazeri, M. and Rao, P., 2018. Sensor-Based Build Condition Monitoring in Laser

Powder Bed Fusion Additive Manufacturing Process Using a Spectral Graph Theoretic

Approach. Journal of Manufacturing Science and Engineering, 140(9), p.091002.

[174] Barua, S., Liou, F., Newkirk, J. and Sparks, T., 2014. Vision-based defect detection in laser

metal deposition process. Rapid Prototyping Journal, 20(1), pp.77-85.

[175] Clijsters, S., Craeghs, T., Buls, S., Kempen, K. and Kruth, J.P., 2014. In situ quality control

of the selective laser melting process using a high-speed, real-time melt pool monitoring

system. The International Journal of Advanced Manufacturing Technology, 75(5-8),

pp.1089-1101.

[176] Mireles, J., Terrazas, C., Gaytan, S.M., Roberson, D.A. and Wicker, R.B., 2015. Closed-

loop automatic feedback control in electron beam melting. The International Journal of

Advanced Manufacturing Technology, 78(5-8), pp.1193-1199.

[177] Zenzinger, G., Bamberg, J., Ladewig, A., Hess, T., Henkel, B. and Satzger, W., 2015,

March. Process monitoring of additive manufacturing by using optical tomography. In AIP

Conference Proceedings (Vol. 1650, No. 1, pp. 164-170). AIP.

[178] Toeppel, T., Schumann, P., Ebert, M.C., Bokkes, T., Funke, K., Werner, M., Zeulner, F.,

Bechmann, F. and Herzog, F., 2016. 3D analysis in laser beam melting based on real-time

process monitoring. In Mater Sci Technol Conf.

[179] List III, F.A., Dinwiddie, R.B., Carver, K. and Gockel, J.E., 2017. Melt-Pool Temperature

and Size Measurement During Direct Laser Sintering (No. ORNL/TM-2017/4). Oak Ridge

National Lab.(ORNL), Oak Ridge, TN (United States).

[180] Khanzadeh, M., Tian, W., Yadollahi, A., Doude, H.R., Tschopp, M.A. and Bian, L., 2018.

Dual process monitoring of metal-based additive manufacturing using tensor

162

decomposition of thermal image streams. Additive Manufacturing, 23, pp.443-456.

[181] Khanzadeh, M., Chowdhury, S., Tschopp, M.A., Doude, H.R., Marufuzzaman, M. and

Bian, L., 2018. In-situ monitoring of melt pool images for porosity prediction in directed

energy deposition processes. IISE Transactions, pp.1-19.

[182] Zhang, Y., Hong, G.S., Ye, D., Zhu, K. and Fuh, J.Y., 2018. Extraction and evaluation of

melt pool, plume and spatter information for powder-bed fusion AM process monitoring.

Materials & Design, 156, pp.458-469.

[183] Gao, X., Wang, L., You, D., Chen, Z. and Gao, P.P., 2019. Synchronized monitoring of

droplet transition and keyhole bottom in high power laser-MAG hybrid welding process.

IEEE Sensors Journal.

[184] Xiong, J. and Zhang, G., 2013. Online measurement of bead geometry in GMAW-based

additive manufacturing using passive vision. Measurement Science and Technology,

24(11), p.115103.

[185] Slotwinski, J.A., Garboczi, E.J. and Hebenstreit, K.M., 2014. Porosity measurements and

analysis for metal additive manufacturing process control. Journal of research of the

National Institute of Standards and Technology, 119, p.494.

[186] Rieder, H., Dillhöfer, A., Spies, M., Bamberg, J. and Hess, T., 2014, October. Online

monitoring of additive manufacturing processes using ultrasound. In 11th European

Conference on Non-Destructive Testing (ECNDT), Prague, Czech Republic, Oct (pp. 6-

10).

[187] Zhang, B., Ziegert, J., Farahi, F. and Davies, A., 2016. In situ surface topography of laser

powder bed fusion using fringe projection. Additive Manufacturing, 12, pp.100-107.

[188] DePond, P.J., Guss, G., Ly, S., Calta, N.P., Deane, D., Khairallah, S. and Matthews, M.J.,

2018. In situ measurements of layer roughness during laser powder bed fusion additive

manufacturing using low coherence scanning interferometry. Materials & Design, 154,

pp.347-359.

[189] Ancona, A., Spagnolo, V., Lugara, P.M. and Ferrara, M., 2001. Optical sensor for real-

time monitoring of CO 2 laser welding process. Applied Optics, 40(33), pp.6019-6025.

[190] Nicolosi, L., Tetzlaff, R., Abt, F., Blug, A., Carl, D. and Hofler, H., 2009, June. New CNN

based algorithms for the full penetration hole extraction in laser welding processes:

Experimental results. In 2009 International Joint Conference on Neural Networks (pp.

2256-2263). IEEE.

[191] Kim, C.H. and Ahn, D.C., 2012. Coaxial monitoring of keyhole during Yb: YAG laser

welding. Optics & Laser Technology, 44(6), pp.1874-1880.

[192] You, D., Gao, X. and Katayama, S., 2014. Multisensor fusion system for monitoring high-

power disk laser welding using support vector machine. IEEE Transactions on Industrial

163

Informatics, 10(2), pp.1285-1295.

[193] You, D., Gao, X. and Katayama, S., 2015. WPD-PCA-based laser welding process

monitoring and defects diagnosis by using FNN and SVM. IEEE Transactions on Industrial

Electronics, 62(1), pp.628-636.

[194] Luo, M. and Shin, Y.C., 2015. Vision-based weld pool boundary extraction and width

measurement during keyhole fiber laser welding. Optics and Lasers in Engineering, 64,

pp.59-70.

[195] Luo, M. and Shin, Y.C., 2015. Estimation of keyhole geometry and prediction of welding

defects during laser welding based on a vision system and a radial basis function neural

network. The International Journal of Advanced Manufacturing Technology, 81(1-4),

pp.263-276.

[196] Xu, J., Rong, Y., Huang, Y., Wang, P. and Wang, C., 2018. Keyhole-induced porosity

formation during laser welding. Journal of Materials Processing Technology, 252, pp.720-

727.

[197] Tang, L. and Landers, R.G., 2010. Melt Pool Temperature Control for Laser Metal

Deposition Processes—Part I: Online Temperature Control. Journal of manufacturing

science and engineering, 132(1), p.011010.

[198] Song, L., Bagavath-Singh, V., Dutta, B. and Mazumder, J., 2012. Control of melt pool

temperature and deposition height during direct metal deposition process. The International

Journal of Advanced Manufacturing Technology, 58(1-4), pp.247-256.

[199] Wang, Q., Li, J., Gouge, M., Nassar, A.R., Michaleris, P.P. and Reutzel, E.W., 2017.

Physics-based multivariable modeling and feedback linearization control of melt-pool

geometry and temperature in directed energy deposition. Journal of Manufacturing Science

and Engineering, 139(2), p.021013.

[200] Hofman, J.T., Pathiraj, B., Van Dijk, J., De Lange, D.F. and Meijer, J., 2012. A camera

based feedback control strategy for the laser cladding process. Journal of Materials

Processing Technology, 212(11), pp.2455-2462.

[201] Gockel, J., Beuth, J. and Taminger, K., 2014. Integrated control of solidification

microstructure and melt pool dimensions in electron beam wire feed additive

manufacturing of Ti-6Al-4V. Additive Manufacturing, 1, pp.119-126.

[202] Farshidianfar, M.H., Khajepour, A. and Gerlich, A., 2016. Real-time control of

microstructure in laser additive manufacturing. The International Journal of Advanced

Manufacturing Technology, 82(5-8), pp.1173-1186.

[203] Hornik, K., Stinchcombe, M. and White, H., 1989. Multilayer feedforward networks are

universal approximators. Neural networks, 2(5), pp.359-366.

164

[204] Bonamente M. (2017) Functions of Random Variables and Error Propagation. In: Statistics

and Analysis of Scientific Data. Graduate Texts in Physics. Springer, New York, NY

[205] Frederic, P. and Lad, F., 2008. Two moments of the logitnormal distribution.

Communications in Statistics—Simulation and Computation®, 37(7), pp.1263-1269.

[206] Hershey, J.R. and Olsen, P.A., 2007, April. Approximating the Kullback Leibler

divergence between Gaussian mixture models. In 2007 IEEE International Conference on

Acoustics, Speech and Signal Processing-ICASSP'07 (Vol. 4, pp. IV-317). IEEE.

[207] Golub, G.H. and Van Loan, C.F., 2012. Matrix computations (Vol. 3). JHU press.

[208] Runnalls, A.R., 2007. Kullback-Leibler approach to Gaussian mixture reduction. IEEE

Transactions on Aerospace and Electronic Systems, 43(3), pp.989-999.

[209] Muscolino, G., Ricciardi, G. and Vasta, M., 1997. Stationary and non-stationary

probability density function for non-linear oscillators. International Journal of Non-Linear

Mechanics, 32(6), pp.1051-1064.

[210] Berning, A.W., Girard, A., Kolmanovsky, I. and D'Souza, S.N., 2019. Rapid uncertainty

propagation and chance‐constrained path planning for small unmanned aerial vehicles.

Advanced Control for Applications: Engineering and Industrial Systems, p.e23.

[211] Luukkonen, T., 2011. Modelling and control of quadcopter. Independent research project

in applied mathematics, Espoo, 22.

[212] Tüfekci, P., 2014. Prediction of full load electrical power output of a base load operated

combined cycle power plant using machine learning methods. International Journal of

Electrical Power & Energy Systems, 60, pp.126-140.

[213] UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/datasets/Combined

+Cycle+Power+Plant, accessed on Apr, 2020.

[214] LeCun, Y., 1998. The MNIST database of handwritten digits. http://yann.lecun.

com/exdb/mnist/, Accessed on Aug, 2020.

[215] Simard, P.Y., Steinkraus, D. and Platt, J.C., 2003, August. Best practices for convolutional

neural networks applied to visual document analysis. In Icdar (Vol. 3, No. 2003).

[216] Ahmed, N.A. and Gokhale, D.V., 1989. Entropy expressions and their estimators for

multivariate distributions. IEEE Transactions on Information Theory, 35(3), pp.688-692.

[217] Qiao, Y. and Minematsu, N., 2010. A study on invariance of f-divergence and its

application to speech recognition. IEEE Transactions on Signal Processing, 58(7),

pp.3884-3890.

[218] Hershey, J.R. and Olsen, P.A., 2007, April. Approximating the Kullback Leibler

divergence between Gaussian mixture models. In 2007 IEEE International Conference on

Acoustics, Speech and Signal Processing-ICASSP'07 (Vol. 4, pp. IV-317). IEEE.

[219] Rudin, W., 1976. Principles of mathematical analysis, 3rd ed. New York: McGraw-hill.

[220] Barber, D., 2012. Bayesian reasoning and machine learning. Cambridge University Press.

165

[221] Reutenauer, C. and Schützenberger, M.P., 1987. A formula for the determinant of a sum

of matrices. letters in mathematical physics, 13(4), pp.299-302.

[222] Le Gland, F. and Mevel, L., 2000. Exponential forgetting and geometric ergodicity in

hidden Markov models. Mathematics of Control, Signals and Systems, 13(1), pp.63-93.

[223] Psiaki, M.L., 2013. The blind tricyclist problem and a comparative study of nonlinear

filters: A challenging benchmark for evaluating nonlinear estimation methods. IEEE

Control Systems Magazine, 33(3), pp.40-54.

[224] Bottou, L., 2010. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT'2010 (pp. 177-186). Physica-Verlag HD.

[225] Anderson, M., Patwa, R. and Shin, Y.C., 2006. Laser-assisted machining of Inconel 718

with an economic analysis. International Journal of Machine Tools and Manufacture,

46(14), pp.1879-1891.

[226] Dandekar, C.R., Shin, Y.C. and Barnes, J., 2010. Machinability improvement of titanium

alloy (Ti–6Al–4V) via LAM and hybrid machining. International Journal of Machine Tools

and Manufacture, 50(2), pp.174-182.

[227] Liu, S. and Shin, Y.C., 2019. Additive manufacturing of Ti6Al4V alloy: A review.

Materials & Design, 164, p.107552.

[228] Pellone, L., Inamke, G., Hong, K.M. and Shin, Y.C., 2019. Effects of Interface Gap and

Shielding Gas on the Quality of Alloy AA6061 Fiber Laser Lap Weldings. Journal of

Materials Processing Technology.

[229] Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L., 2008. Speeded-up robust features

(SURF). Computer vision and image understanding, 110(3), pp.346-359.

[230] Ioffe, S. and Szegedy, C., 2015. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

[231] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

[232] Wang, Z., Liu, P., Ji, Y., Mahadevan, S., Horstemeyer, M.F., Hu, Z., Chen, L. and Chen,

L.Q., 2019. Uncertainty quantification in metallic additive manufacturing through physics-

informed data-driven modeling. Jom, 71(8), pp.2625-2634

166

PUBLICATIONS

[1] Zhang, B., Katinas, C. and Shin, Y.C., 2018. “Robust tool wear monitoring using

systematic feature selection in turning processes with consideration of uncertainties”.

Journal of Manufacturing Science and Engineering, 140(8).

 https://doi.org/10.1115/1.4040267

[2] Zhang, B. and Shin, Y.C., 2018. “A multimodal intelligent monitoring system for turning

processes”. Journal of Manufacturing Processes, 35, pp.547-558.

 https://doi.org/10.1016/j.jmapro.2018.08.021

[3] Zhang, B., Liu, S. and Shin, Y.C., 2019. “In-Process monitoring of porosity during laser

additive manufacturing process”. Additive Manufacturing, 28, pp.497-505.

 https://doi.org/10.1016/j.addma.2019.05.030

[4] Zhang, B., Hong, K.M. and Shin, Y.C., 2020. “Deep-learning-based porosity monitoring

of laser welding process”. Manufacturing Letters, 23, pp. 62-66

 https://doi.org/10.1016/j.mfglet.2020.01.001

[5] Zhang, B., Katinas, C. and Shin, Y.C., 2020. “Robust wheel wear monitoring system for

cylindrical traverse grinding”. IEEE/ASME Transactions on Mechatronics, 25(5), pp.

2220-2229.

 https://doi.org/10.1109/TMECH.2020.3007047

[6] Zhang, B. and Shin, Y.C., 2021. “A data-driven approach of Takagi-Sugeno fuzzy control

of unknown nonlinear systems”. Applied Sciences, 11(1), pp. 62-76.

 https://doi.org/10.3390/app11010062

[7] Zhang, B. and Shin, Y.C., 2021. “An Adaptive Gaussian Mixture Method for Nonlinear

Uncertainty Propagation in Neural Networks”. Neurocomputing , 485(7), pp. 170-183

 https://doi.org/10.1016/j.neucom.2021.06.007

[8] Zhang, B. and Shin, Y.C., 2021. “An Adaptive Gaussian Mixture Filter for Nonlinear State

Estimation”. IEEE Transactions on Cybernetics (under review)

[9] Zhang, B. and Shin, Y.C., 2021. “Data-Driven Phase Recognition of Steels for Use in

Mechanical Property Prediction”. Manufacturing Letters (under review)

[10] Zhang, B. and Shin, Y.C., 2021. “A Probabilistic Neural Network for Uncertainty

Prediction with Applications to Manufacturing Process Monitoring”. Applied Soft

Computing (under review)

https://doi.org/10.1115/1.4040267
https://doi.org/10.1016/j.jmapro.2018.08.021
https://doi.org/10.1016/j.addma.2019.05.030
https://doi.org/10.1016/j.mfglet.2020.01.001
https://doi.org/10.1109/TMECH.2020.3007047
https://doi.org/10.3390/app11010062
https://doi.org/10.1016/j.neucom.2021.06.007

