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ABSTRACT 

Artificial neural networks, including deep neural networks, play a central role in data-driven 

science due to their superior learning capacity and adaptability to different tasks and data structures. 

However, although quantitative uncertainty analysis is essential for training and deploying reliable 

data-driven models, the uncertainties in neural networks are often overlooked or underestimated 

in many studies, mainly due to the lack of a high-fidelity and computationally efficient uncertainty 

quantification approach. In this work, a novel uncertainty analysis scheme is developed. The 

Gaussian mixture model is used to characterize the probability distributions of uncertainties in 

arbitrary forms, which yields higher fidelity than the presumed distribution forms, like Gaussian, 

when the underlying uncertainty is multimodal, and is more compact and efficient than large-scale 

Monte Carlo sampling. The fidelity of the Gaussian mixture is refined through adaptive scheduling 

of the width of each Gaussian component based on the active assessment of the factors that could 

deteriorate the uncertainty representation quality, such as the nonlinearity of activation functions 

in the neural network.  

Following this idea, an adaptive Gaussian mixture scheme of nonlinear uncertainty 

propagation is proposed to effectively propagate the probability distributions of uncertainties 

through layers in deep neural networks or through time in recurrent neural networks. An adaptive 

Gaussian mixture filter (AGMF) is then designed based on this uncertainty propagation scheme. 

By approximating the dynamics of a highly nonlinear system with a feedforward neural network, 

the adaptive Gaussian mixture refinement is applied at both the state prediction and Bayesian 

update steps to closely track the distribution of unmeasurable states. As a result, this new AGMF 

exhibits state-of-the-art accuracy with a reasonable computational cost on highly nonlinear state 

estimation problems subject to high magnitudes of uncertainties. Next, a probabilistic neural 

network with Gaussian-mixture-distributed parameters (GM-PNN) is developed. The adaptive 

Gaussian mixture scheme is extended to refine intermediate layer states and ensure the fidelity of 

both linear and nonlinear transformations within the network so that the predictive distribution of 

output target can be inferred directly without sampling or approximation of integration. The 

derivatives of the loss function with respect to all the probabilistic parameters in this network are 

derived explicitly, and therefore, the GM-PNN can be easily trained with any backpropagation 

method to address practical data-driven problems subject to uncertainties. 
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The GM-PNN is applied to two data-driven condition monitoring schemes of manufacturing 

processes. For tool wear monitoring in the turning process, a systematic feature normalization and 

selection scheme is proposed for the engineering of optimal feature sets extracted from sensor 

signals. The predictive tool wear models are established using two methods, one is a type-2 fuzzy 

network for interval-type uncertainty quantification and the other is the GM-PNN for probabilistic 

uncertainty quantification. For porosity monitoring in laser additive manufacturing processes, 

convolutional neural network (CNN) is used to directly learn patterns from melt-pool patterns to 

predict porosity. The classical CNN models without consideration of uncertainty are compared 

with the CNN models in which GM-PNN is embedded as an uncertainty quantification module. 

For both monitoring schemes, experimental results show that the GM-PNN not only achieves 

higher prediction accuracies of process conditions than the classical models but also provides more 

effective uncertainty quantification to facilitate the process-level decision-making in the 

manufacturing environment. 

Based on the developed uncertainty analysis methods and their proven successes in practical 

applications, some directions for future studies are suggested. Closed-loop control systems may 

be synthesized by combining the AGMF with data-driven controller design. The AGMF can also 

be extended from a state estimator to the parameter estimation problems in data-driven models. In 

addition, the GM-PNN scheme may be expanded to directly build more complicated models like 

convolutional or recurrent neural networks. 
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1. INTRODUCTION 

1.1 Background 

In the last decade, data science has emerged as a prevalent paradigm in the modeling and 

analysis of real-world problems in almost every quantitative and scientific discipline [1], such as 

finance (e.g., fraud detection [2] and stock prediction [3]), healthcare (e.g., medical diagnosis with 

tomography images [4] and electrocardiography signals [5]) and engineering (e.g., control system 

design [6], condition monitoring [7] and maintenance [8] of industrial equipment), among others, 

for which the first-principle-based models are often not available or difficult to establish [9]. 

Among the numerous data-driven methods studied in the machine learning and deep learning 

community, artificial neural networks appear to be one of the most popular and versatile classes 

of models. A neural network uses a layered architecture and interconnected neurons with learnable 

parameters for information processing. Due to its flexible structure, it can be adapted to different 

tasks (e.g., regression [10] and classification [11]) and data modalities (e.g., recurrent neural 

networks for time-series data [12] and convolutional neural networks for image data [13]).  

Learning neural network models, as well as other types of machine learning models, always 

involves addressing uncertainties, including the epistemic uncertainty within the underlying 

process or system from which data are collected and aleatoric uncertainty introduced during data 

collection like measurement noise [14]. Therefore, uncertainty analysis is essential for any data-

driven modeling effort and the Bayesian machine learning methods that work with probabilistic 

models have attracted more research interests in recent years [15]. For instance, the probabilistic 

neural network, as illustrated in Figure 1-1, incorporates the probability distributions of network 

parameters to quantify uncertainties [16]. It could provide quantitative uncertainty information 

associated with its predictions by inferring the predictive probability distributions of output and 

thus exhibits higher reliability than its deterministic counterpart in many fields of applications. 

The uncertainty analysis in neural networks is valuable for a broad range of data-driven problems. 

For example, given the neural network’s capability of approximating any nonlinear function, it 

might be used for the data-driven system identification [17], state estimation [18], and control [19] 

of nonlinear dynamic systems under stochastic uncertainties.  

 



 

 

13 

 

Figure 1-1 An illustration of probabilistic neural networks [16] 

(left: a classical neural network with deterministic parameters; right: a probabilistic neural 

network whose weighting factors have probability distributions) 

 

The health condition monitoring of systems and processes is also a field where data-driven 

models are extensively used and uncertainty assessment is needed [20][21]. Instead of relying on 

profound field knowledge to develop first-principle-model-based monitoring schemes [22], the 

data-driven monitoring methods learn normal and abnormal condition patterns of a system from 

run-time sensor signal data to develop predictive models for fault detection [23], isolation [24], 

remaining life prediction [25] and maintenance management [26]. Since the data measurement will 

be inevitably impacted by noises and the target system may exhibit unpredictable variations during 

operation, uncertainty quantification is crucial for the data-based monitoring models [27]-[29], 

with which diagnostic decisions could be made more confidently.  

While data-driven condition monitoring has been studied for a variety of systems, this work 

will focus on the monitoring of manufacturing processes. A manufacturing plant is composed of a 

variety of machine units handling different material processing and assembling tasks, through 

which raw materials are transformed to functional products. To keep such a system running with 

high productivity and consistent product quality, the conditions of the process being operated on 

each machine unit should be closely monitored such that any abnormality can be detected and 

eliminated with timely intervention actions before causing any loss. The necessity of condition 

monitoring might be exemplified with additive manufacturing (AM) processes. In recent decades, 

laser additive manufacturing, which uses a laser beam to melt metallic powders and then deposits 

solidified materials layer-by-layer, has been widely used to fabricate high-performance metallic 

components. However, during the melting-solidification process, a variety of quality defects, such 

as porosity, cracking and delamination [30][31], may occur in the fabricated parts, which 



 

 

14 

deteriorates the parts’ performance (durability, strength, etc.) and hinders their uses in mission-

critical scenarios. Hence, a trial-and-error procedure to determine the optimal defect-free process 

parameters (e.g., laser power and beam scan speed) is required [32]. Even so, because of the 

variability of AM processes, defects may still occur unexpectedly, which necessitates expensive 

and time-consuming post-process measurement for quality inspection and assurance. In a survey 

in 2014, 47.2% of the 108 manufacturer respondents indicated that the uncertain quality of final 

products was a barrier to their adoption of AM [33]. Therefore, to ensure product reliability and 

quality consistency, an in-situ condition monitoring scheme is critically needed for the laser AM 

processes, as recognized in several recent strategic initiatives [34]-[36]. 

1.2 Motivation 

Condition monitoring is vital for the quality assurance and process-level automation of not 

only laser AM but also almost all the other manufacturing processes. Therefore, almost all the 

latest data-driven models have been applied to the predictive modeling of process conditions by 

different researchers. In a conventional machine learning fashion, features relevant to the process 

conditions are extracted via signal processing of measurable process data (e.g., power, vibration, 

acoustic, thermal) and then machine learning models are trained to predict the process conditions 

based on the selected features. In recent years, deep learning models have also been applied to 

directly learn patterns from raw measurement data. However, in spite of the numerous efforts that 

have been made, most manufacturing systems in the industry are still operated in an open-loop 

manner at the process level. Why the process condition monitoring systems have not been widely 

deployed can be attributed to multiple reasons, such as the lack of affordable data sensing devices 

and the insufficiency of predictive models to cover a wide range of operating conditions. Among 

them, one of the biggest obstacles is that the uncertainties associated with manufacturing processes 

have not been properly addressed. While the monitoring systems are aimed to make the processes 

more reliable, the fidelity of a monitoring scheme itself can be questionable, given the variability 

of manufacturing processes and noise in the industrial environment. For example, a change of 

material supplier and the batch of tools may cause noticeable variations of the signals from drilling 

processes under the same operating conditions. As a result, the performance of a tool-wear 

monitoring model trained for one drilling operation may degrade on its nominally identical 

counterpart, as described in a case study in [37].  
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The insufficient consideration of uncertainty is a key bottleneck for not only manufacturing 

process monitoring but also many other practical applications where neural networks are widely 

used, such as the design of data-driven state estimators and controllers [38][39][40]. The existing 

neural network applications with uncertainty-modeling effort are mainly based on interval-type 

uncertainty quantification [42], while only estimating prediction intervals can not provide useful 

probability distribution information within the lower and upper bounds. On the other hand, the 

probabilistic neural network, though has emerged as a popular topic within the machine learning 

community, has not been widely used in practice. This is mainly because training a probabilistic 

neural network is much more difficult than training a classical one. Especially, estimating the 

probability distribution of network parameters in an exact Bayesian scheme is intractable in most 

cases. Hence, some approximation methods must be utilized and a trade-off between uncertainty 

quantification fidelity and computational efficiency must be made [43]. In some works, to make 

the Bayesian inference tractable and efficient, the distributions of network parameters and states 

are assumed to be in certain forms, such as diagonal Gaussian distribution [16]. However, the true 

distributions of uncertainty in data can be intricate and multimodal, and those presumed forms may 

introduce a risk of oversimplifying or underestimating the uncertainty. In contrast, the approximate 

inference methods based on Monte Carlo sampling, though possess higher fidelity, may be 

computationally intensive and less scalable to complex models and large datasets [44]. Therefore, 

a new uncertainty analysis scheme that can characterize general-form probabilistic uncertainties 

in neural networks with both high fidelity and reasonable computational cost is highly desired. 

Moreover, if the probabilistic network could be then trained efficiently using the well-developed 

backpropagation methods without invoking large-scale Monte Carlo sampling, this scheme will 

be invaluable for a broad range of data-driven problems subject to uncertainties, including the 

predictive modeling of process conditions for manufacturing process monitoring.  

The objective of this study is to develop such an innovative uncertainty analysis scheme for 

neural networks and explore its application to practical problems. To achieve this, the nonlinearity 

effects in propagating probability distributions through neural networks should be addressed first, 

as it is fundamental to the following works. With this uncertainty propagation solution, a neuro-

Bayesian filter for state estimation of highly nonlinear systems can be derived and a probabilistic 

neural network training scheme can be designed. The new probabilistic network will be bench-

marked against the state-of-the-art methods and applied to the manufacturing process monitoring 
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applications. A brief roadmap of this study is provided in Figure 1-2. To more clearly recognize 

the limits in the current state of the art and set the direction of this study, the existing works in the 

literature relevant to each of the deliverables in this roadmap are reviewed below. 

 

 

Figure 1-2 A roadmap of this study 

(Dashed arrows denote potential works for the future) 

1.3 Literature Review 

1.3.1 Uncertainty Propagation in Neural Networks 

A fundamental challenge in training and deploying a neural network model with uncertainty 

is the uncertainty propagation through the network, especially through the nonlinear activation 

functions. Although the propagation of Gaussian uncertainty through linear layers still results in 

Gaussian distributions, the nonlinear transformation of a Gaussian variable will produce a non-

Gaussian distribution that needs to be approximated. This challenge is not only raised by the 

probabilistic network parameters, but also by the input uncertainty that needs to be propagated 

forward towards output and the uncertainties in initial conditions and feedback states in a context 

layer of a recurrent neural network that needs to be propagated to subsequent time steps. Hence, 

improving the fidelity and efficiency of uncertainty propagation is essential for the inference of 

predictive distributions in probabilistic neural networks and a variety of uncertainty propagation 

methods have been proposed in the literature. 

For Gaussian uncertainties, the most commonly used propagation paradigm is to estimate the 
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mean and covariance after nonlinear functions to reconstruct an output Gaussian distribution. This 

Gaussian-to-Gaussian mapping preserves the form of uncertainty representation and hence can be 

used for the recursive propagation through time in recurrent networks and layer-wise propagation 

in deep networks. The linearization method, including local linearization via the first-order Taylor 

expansion and stochastic linearization by minimizing the expectation of approximation error [45], 

might be the most intuitive method, though it may not yield accurate results when the magnitude 

of uncertainty is large. To attain higher fidelity, moment matching solutions have been developed 

for the specific activation functions in neural networks. Gast et al. [46] developed a variational 

inference scheme for deep neural networks using the closed-form moment solutions of rectified 

linear unit (ReLU) and leaky ReLU functions derived by Frey in [47]. Wang et al. [48] derived the 

analytical solutions of Gaussian distribution moment matching for commonly used activation 

functions and also discussed the solutions of other exponential-family distributions. Abdelaziz et 

al. [49] approximated the logistic function with two piecewise exponential functions for 

uncertainty propagation in deep neural networks. Bui et al. [50] used an approximate expectation 

propagation scheme to estimate the means and variances in Gaussian processes. Lee et al. [51] 

derived the covariance kernels in Gaussian processes for the ReLU and hyperbolic tangent 

functions and implemented the propagation using lookup tables.  

Different from the above function-approximation-based methods, there are also sampling-

based methods that propagate a set of samples through the nonlinear function as a black box and 

then evaluate uncertainty from output samples. The unscented transform (UT) in the unscented 

Kalman filter, which could approximate the output mean and covariance up to the second order 

accuracy using weighted sigma points [52], is one of the most significant approaches in this 

category and is often used as the baseline to evaluate other methods. Abdelaziz et al. [49] applied 

the UT to deep neural networks and achieved better uncertainty estimation accuracy than the 

exponential function approximation method. The Monte Carlo (MC) simulation that utilizes the 

random samples drawn from an input distribution to predict the statistic information of output is 

the most versatile approach, as it is applicable to almost any functions and distributions. Dong et 

al. [53] applied the MC-based particle filters to the state estimation of battery systems modeled 

with neural networks. Gal [15] used small MC sets (10~20 samples) to estimate the mean and 

variance after nonlinear layers in the variational inference through neural networks. However, if it 

is of interest to predict the output probability distribution instead of just estimating the moments, 
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then a massive amount of samples needs to be generated and it can be computationally intensive 

to propagate these samples and reconstruct a probability distribution from the output. 

On the contrary, the Gaussian mixture model, which has the capacity to approximate any non-

Gaussian distributions [54], could incorporate more information than a single Gaussian 

distribution and can be used as a more compact uncertainty representation than Monte Carlo 

samples [55]. To use the Gaussian mixture model in non-Gaussian uncertainty propagation, a high-

fidelity output mixture needs to be estimated from the input mixture. Though each Gaussian 

component can be easily propagated via any moment matching methods, determining the optimal 

number of components and weights is often a challenge. Terejanu et al. [57] showed that the weight 

of a Gaussian component can be assumed invariant through a nonlinear mapping only if its 

variance is infinitesimal. They then proposed two quadratic-programming methods for weight 

updating through nonlinear systems and applied them to the Gaussian sum filter design [58]. 

Faubel et al. [59] built an unscented Gaussian mixture filter that recursively splits each Gaussian 

filter into a number of mixtures to handle non-Gaussian noises and then merges the mixture filter 

based on estimated posterior density to regulate the number of mixtures. Horwood et al. [60] also 

developed a similar Gaussian splitting-merging scheme using the Gauss-Hermite quadrature. 

DeMars et al. [61] used the difference of rates of change of a Gaussian distribution’s entropy 

evaluated by linear and UT methods to measure the level of nonlinearity and split the distribution 

if the difference was larger than a threshold. Tuggle et al. [62] developed a combined criterion to 

split a Gaussian distribution along the eigendirection at which the directional derivative of 

Jacobian (a measure of nonlinearity level) and directional variance (a measure of uncertainty 

magnitude) are both large. 

It can be learned from the above review that 1) the moment matching methods for Gaussian-

to-Gaussian propagation could not predict the non-Gaussianity caused by nonlinearity; 2) the non-

Gaussian propagation methods using Monte Carlo and Gaussian mixtures, in spite of their higher 

fidelity of uncertainty representation, could be significantly slower than Gaussian propagation due 

to the sampling, optimization or recursive splitting routines adopted [57][59], which makes them 

not practical for deployment in neural networks; 3) the adaptive Gaussian splitting schemes based 

on the detection of nonlinearity, if combined with a suitable mixture reduction routine, could 

achieve a high fidelity with a reasonable computational cost; however, none of such schemes has 

ever been designed for neural networks. In particular, the existing splitting criteria designed for 
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general nonlinear functions may not yield the best performance for the activation functions in 

neural networks. Therefore, a new adaptive Gaussian mixture scheme for high-fidelity and 

efficient uncertainty propagation in neural networks needs to be developed. 

1.3.2 Nonlinear Bayesian State Estimation 

The estimation of unmeasurable state quantities in the dynamic system subject to stochastic 

uncertainty is of great importance in a broad range of applications, such as signal processing, 

positioning and navigation, and control system design [63]. Given a system model, the recursive 

inference of state information over time from noisy measurements based on Bayesian statistics is 

referred to as Bayesian filtering [64]. Since Bayesian filtering naturally involves the propagation 

of state uncertainty, it is a field where the uncertainty propagation scheme mentioned at the end of 

section 1.3.1 might be applicable, given that such a scheme can be developed. Therefore, the 

existing Bayesian filtering methods are reviewed below. 

For linear systems with Gaussian white noise, the renowned Kalman filter is proved to be the 

optimal Bayesian state estimator [65]. For nonlinear systems, the extended Kalman filter (EKF) 

that linearizes the system model and then applies the Kalman filter is a commonly used solution. 

However, the EKF may produce inaccurate or even divergent results for highly nonlinear systems 

as it only retains the first-order Tayler expansion [66]. Therefore, a variety of nonlinear versions 

of the Kalman filter have been developed over the past few decades. The unscented Kalman filter 

(UKF) utilizes the unscented transform to estimate the moments of nonlinearly transformed state 

variables at a second-order accuracy [66]. Similarly, the quadrature Kalman filter (QKF) employs 

the Gauss–Hermite quadrature [67], and the cubature Kalman filter (CKF) uses the cubature rules 

[68] to evaluate the moment integrals at a higher-order accuracy. Moreover, the ensemble Kalman 

filter (EnKF) draws random samples from a Gaussian state distribution and applies a Kalman filter 

to the ensemble of samples [69]. What these nonlinear filters have in common is that the 

distribution of state variables is assumed to be always Gaussian, while they utilize different integral 

evaluation techniques to estimate the mean and covariance. However, due to the nonlinearity in 

the system, the state distribution may exhibit non-Gaussianity like skewness and multimodality, 

even if the initial state uncertainty is Gaussian. Hence, only assessing the first two moments can 

not fully characterize the probability density function (PDF) of states and the state estimation result 

may be suboptimal [70]. 
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For nonlinear and non-Gaussian state estimation problems, the particle filter (PF) is one of 

the most popular methods [71]. Through sequential importance sampling, the PF can draw random 

particles from non-Gaussian distributions to represent the state PDF [8], and then the particles are 

propagated through the system dynamics and reweighted according to measurement likelihood to 

track the PDF’s evolution over time. However, though PF is applicable to almost any system and 

PDF [70], the number of particles needed to achieve a satisfactory result for a high-dimensional 

problem could be overwhelming, and consequently, the computational cost might be unaffordable 

[55][73]. 

Another non-Gaussian Bayesian estimation paradigm alternative to PF is the Gaussian sum 

filter (GSF) or Gaussian mixture filter (GMF). Compared with the particles in PF that act as Dirac 

delta functions with infinitesimal width, a Gaussian mixture component with non-zero covariance 

contains probability information in a nonnegligible sub-domain of the state space. Therefore, to 

approximate a PDF to the same degree of accuracy, a Gaussian mixture should need many fewer 

components than the particles needed by a PF, and thus may resolve the curse of dimensionality 

[55]. Then for GMF, it is of central importance to determine the Gaussian mixture parameters and 

ensure the PDF tracking quality. As proved in [73], a GMF approaches the optimal estimation if 

the covariance of each component is sufficiently small. Nevertheless, using too many narrow 

components to approximate a PDF will dramatically increase the computational cost and thus a 

compromise must be made. By reviewing the literature, the existing GMF schemes can be roughly 

classified into three groups: 

1) A fixed number of parallel Gaussian filters. In the conventional GMFs, with the state PDF 

represented as a Gaussian mixture, a bank of Gaussian filters (e.g., EKF [74] and QKF [75]) can 

be applied parallelly to each component without altering mixture size. In [74], Sorenson et al. used 

an Lk norm objective function to optimize the Gaussian mixture approximation. However, even if 

it is optimized to be amply fine for the initial uncertainty, the components are not guaranteed to 

retain narrow as they evolve over time, while numerically re-optimizing the entire Gaussian 

mixture in each time step can be too costly. Hence, Tam et al. [76] proposed a method to 

analytically update the Gaussian mixture likelihood based on in-process measurement, and 

Terejanu et al. [58] used a quadratic programming scheme to refine the approximation by only re-

optimizing the component weights. 

2) Re-approximation via resampling. One way to regulate the widths of covariance in GMF 
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is to resample a collection of narrow components from the calculated Gaussian mixture to re-

approximate the state PDF. Kotecha et al. [77] built a series of particle GMFs and a resampling 

step was used to prevent the number of PFs from increasing exponentially when combined with 

Gaussian sum noises. Raihan et al. [78] improved the particle GMF by combining all the particles 

from different PFs to refit a new Gaussian mixture from the entire particle pool, instead of running 

PFs parallelly. Stordal et al. [79] derived a GMF from EnKF, in which the ensemble covariance is 

scaled down by a bandwidth parameter before being assigned to samples so that the attained 

Gaussian mixture is fine enough to approximate non-Gaussian PDFs. Psiaki [80] created a 

resampling scheme to generate Gaussian mixture components with bounded covariance matrices 

[10], based on which a GMF called blob filter was developed.  

3) Adaptive splitting of components. The resampling methods will put a universal bound on 

the covariance so that all the components are uniformly fine. However, since the complexity of 

state PDF changes over time and varies across the state space, it should be more efficient to refine 

the Gaussian mixture adaptively, i.e., more and finer components are used when the PDF is 

complex, while fewer and coarser components can be used when the PDF is simple. The adaptive 

splitting method is designed to actively assess the impact of nonlinearity such that any distorted 

component that exhibits nonnegligible non-Gaussianity will be detected and split into narrower 

sub-components. Although many GMF works in this category have been mentioned in sub-section 

1.3.1 as the idea of adaptive Gaussian mixture refinement coincides, these works are briefed below 

again from a filter design perspective. Faubel et al. [59] built an unscented GMF that recursively 

splits UKF components until the sigma points are linearly spaced after the measurement function. 

Horwood et al. [60] proposed to compare the Gaussian moments from the current QKF and a finer 

one after splitting to decide whether the splitting is needed. Leong et al. [81] presented a cubature 

GMF that assesses the nonlinearity in measurement function by the deviation of cubature points 

from a linear fitting. DeMars et al. [61] established an uncertainty propagation scheme that 

assesses nonlinearity by the difference of Gaussian entropies estimated using a linear and a 

nonlinear method. Tuggle et al. [62] created a measurement update scheme that splits Gaussian 

components based on the Kullback–Leibler divergence between the PDFs from an EKF and a 

second-order EKF. 

It can be seen from the above review that a Gaussian mixture refinement scheme is essential 

to sustain the GMF fidelity, whereas extra computational resources will then be required. Also, 
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the refinement schemes involve additional hyperparameters, such as the number of components 

and the upper bound of covariance, whose optimal values are problem-dependent and have to be 

determined via trial-and-error. For GMFs, how well they can adapt to the varying complexity of 

state PDF with a practical computational cost and without tedious tunning will be the key metric 

of their performance. In light of this, the adaptive splitting method should be the most promising 

solution as it could adapt to the impact of nonlinearity and refine Gaussian mixtures only when 

necessary. Nevertheless, though state estimation is a two-step procedure in nature, most of the 

existing splitting schemes are solely designed for the measurement update step [59][60][81][62] 

with only a few for the state prediction step [61]. Also, many of the quantities used to measure 

nonlinearity, such as the deviation of sigma points [59] and the discrepancies between two 

Gaussian PDFs [60][62], are not explicitly related to the non-Gaussianity of distorted PDFs. 

Although the non-Gaussianity and its induced state estimation error will eventually vanish as these 

quantities decay to zero, how fast this convergence will be during the splitting process still lacks a 

quantitative analysis, and the error magnitude of state PDF estimation is not quantified in most 

studies. If the adaptive Gaussian mixture scheme for uncertainty propagation, as mentioned at the 

end of section 1.3.1, is developed, it should be helpful in resolving the above issues. Thereby, a 

new adaptive Gaussian mixture filter could be designed, which will be particularly suitable for 

addressing highly nonlinear state estimation problems subject to high magnitudes of non-Gaussian 

uncertainties. 

1.3.3 Probabilistic Neural Network for Uncertainty Prediction 

In recent years, owing to the fast advancing of computing platforms and training algorithms, 

neural networks, including deep neural networks, have achieved a remarkable leap of prediction 

accuracy and extensive successes in the data-driven modeling of real-world problems. However, 

the uncertainties in the neural network models are often overlooked or underestimated in many 

studies. Many of the existing neural networks with uncertainty quantification are designed based 

on interval-type uncertainties [42][82]. Prediction intervals of output targets can be constructed 

using a variety of methods, such as type-2 fuzzy sets [83], interval-type network parameters [84], 

and bootstrap of networks [85][86]. However, the prediction intervals may be incompetent in 

providing essential probability density information, especially if the distribution of output target 

is skewed or multimodal. In this sense, the probabilistic neural networks (PNN) that incorporate 
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probability distributions of network parameters to infer predictive distributions are more powerful 

in providing informative uncertainty quantification [16]. 

The Bayesian neural network (BNN), as a major class of PNN, provides a methodical way to 

address probabilistic uncertainties in neural networks. Because the exact Bayesian inference of 

posterior distributions over neural network parameters is not tractable, the BNNs typically use 

Markov Chain Monte Carlo (MCMC), variational inference (VI), or expectation propagation (EP) 

methods to estimate the posterior distributions, given a presumed prior distribution and training 

dataset [87]. The MCMC methods like Hamilton Monte Carlo [88] have been applied to Bayesian 

learning in neural networks since the 1990s. Lately, Deng et al. [89] proposed an adaptive MCMC 

scheme of stochastic gradients to learn sparse deep learning models. Nevertheless, the MCMC 

methods based on sampling from engineered distributions may have poor scalability to large 

datasets [90]. Alternatively, the VI methods create an approximation of the true posterior by 

maximizing the evidence lower bound (ELBO). Graves et al. [91] developed a VI scheme scalable 

to large datasets, in which diagonal Gaussian posterior is adopted and Monte Carlo integration is 

used to estimate the intractable loss functions. Blundell et al. [16] created a similar scheme based 

on Monte Carlo gradients called Bayes by backpropagation. Gal et al. [92] revealed that a neural 

network with Bernoulli weight dropout is equivalent to a BNN with approximate VI, and a concrete 

dropout strategy is proposed in [93]. The EP is also an approximate inference method and it’s 

different from VI as it minimizes the Kullback-Leibler divergence between the true and 

approximate posteriors via moment matching. Lobato et al. [90] designed an EP backpropagation 

scheme by combining the forward propagation of probabilities with backward propagation of 

gradients, which is considerably faster than Graves’ VI method [91] because there is no Monte 

Carlo approximation of gradients needed. They then developed an alpha divergence scheme that 

can be scaled between EP and VI to take advantage of both [94]. Recently, Zhao et al. [95] 

presented a generalized EP scheme that can learn multimodal posterior distributions of parameters 

as Gaussian mixtures.  

In spite of the recent development, there’re still several limitations on the existing BNNs: 1) 

Many of the training schemes require Monte Carlo sampling to evaluate expectation integrals 

[89][91], which incurs higher computational cost and poor scalability to large-scale datasets. 2) To 

make the inference with VI or EP tractable, the posterior distribution of parameters is mostly 

assumed to be in certain simple forms, such as diagonal Gaussian distribution [91], whereas the 
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true posterior can be complex and multimodal [95]. 3) The performance of Bayesian learning 

largely depends on the choice of prior and likelihood functions, which must be selected carefully 

before or during training [96], and some extra hyperparameters, such as the model precision 

parameter in Gaussian likelihood function, need to be tuned for each problem. 4) The predictive 

distribution in VI or EP requires the integration of model predictions over the learned posterior 

parameter space, typically through the ensemble of model prediction samples drawn from the 

posterior, which can be computationally inefficient [48].  

To address those problems, probabilistic networks that are not in fully Bayesian form have 

been studied. Wang et al. [48] proposed the natural parameter network (NPN), in which all the 

weights and neuron states are treated as exponential-family distributions. The forward inference 

of probabilities via moment matching and backpropagation of gradients for natural parameters 

were derived analytically such that the NPN model can be trained using any gradient-based 

method. To achieve faster inference, Gast et al. [46] proposed a lightweight probabilistic network 

that only approximates the distribution of activation states in hidden neurons but not the weights. 

Tran et al. [97] proposed a Bayesian layer as a new constitutive layer of deep neural networks so 

that the uncertainty can be dealt with only in this layer instead of the whole network. Training deep 

neural networks as Gaussian processes has also been studied, whereas the deep Gaussian processes 

can only predict the output as multivariate Gaussian distributions [50][51]. To model general-form 

uncertainty, Pawlowski et al. [98] proposed an implicit weight uncertainty scheme that uses an 

extra Hypernetwork to generate non-Gaussian distributions for the weights in the main network, 

which outperformed the Bayes by backpropagation method in [16]. The mixture density network 

[99] has also been employed to fit the output distributions of deep networks [100] and recurrent 

networks [101] as Gaussian mixtures, whereas the uncertainties in input and hidden neurons cannot 

be addressed in these mixture density networks.  

Although the studies above all provide invaluable inspirations to improve the probabilistic 

modeling in neural networks, each of them can mainly resolve only one aspect of the BNN’s 

insufficiencies (e.g., the computational efficiency or the modeling of general-form uncertainties). 

Moreover, in recent years, the neural networks for deep learning are becoming more complex. For 

example, Table 1-1 summarizes the state-of-the-art convolutional neural networks (CNN) [102]-

[107] in the ImageNet Large Scale Visual Recognition Challenge, a data competition to classify 

millions of images into 1000 categories [108]. As can be seen, while the classification accuracy 
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has been improved significantly over the years, the CNN architectures are also growing deeper 

and deeper, with tens of millions of learnable parameters to train and billions of numeric operations 

(multiplications and additions) to make one prediction [109]. Transforming a deep neural network 

with a complex structure into a BNN, or any other type of PNN, by assigning distributions to its 

parameters to do uncertainty modeling is still challenging with the existing approaches because 

the high fidelity and high efficiency could not be achieved in a unitive way.  

 

Table 1-1 Summary of benchmark CNNs for the ImageNet challenge 

Name Year Top-5 error Layers Parameters 

(Millions) 

Operations per prediction 

(Billions) [110] 

Alexnet [102] 2012 16.4% 8 61 0.72 

Vgg-19 [103] 2014 7.4% 19 144 19.6 

GoogleNet [104] 2014 6.7% 22 7 1.58 

Resnet-101 [105] 2015 3.6% 101 45 7.6 

Squeezenet [106] 2016 14.7% 18 1.23 0.39 

Inception-Resnet [107] 2016 3.1% 164 56 13.2 

 

Therefore, a new probabilistic neural network that can be trained and implemented in a 

manner similar to the classical networks without invoking any computationally intensive method 

for approximate uncertainty inference should be developed. Especially, if the adaptive Gaussian 

mixture scheme mentioned at the end of section 1.3.1 is realized, the new network will be able to 

accurately and efficiently quantify the arbitrary probability distributions of its inputs, parameters, 

intermediate-layer states, and output predictions, which is a capacity that has never be owned by 

the existing PNN schemes. 

1.3.4 Monitoring of Manufacturing Processes using Data-driven Approaches 

The condition monitoring of manufacturing processes is considered as the main application 

field in this study to implement the probabilistic neural networks because uncertainty analysis is 

critical for the monitoring systems. Since there are so many manufacturing processes that an 

exhaustive review of their condition monitoring schemes is impossible, only two representative 

applications, i.e., tool condition monitoring in machining processes and quality monitoring of 

laser-based additive manufacturing processes will be reviewed here. These two applications bear 

common characteristics with other monitoring tasks, and the conclusions drawn from the review 
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of these two applications will also hold for other processes and conditions. 

1.3.4.1 Tool condition monitoring of machining processes 

Tool condition monitoring in machining processes is one of the most widely investigated 

subjects in manufacturing process monitoring owing to the long history and widespread use of 

machining operations in the industry. A significant amount of research effort has been made in 

tool condition monitoring over the past several decades [111][112]. Among the various monitoring 

schemes investigated, tool wear monitoring has gained great interest [113] as tool wear is 

unavoidable during machining and might negatively impact product quality [114][115]. Thus, 

knowing the tool wear condition allows for scheduling timely tool changes prior to adverse 

situations. While tool wear can be measured directly by digital cameras, the direct measurements 

can only be conducted intermittently when the cutting tool is not engaged with the workpiece. 

Therefore, the indirect methods, which continuously sense in-process measurable signals and infer 

the tool wear status using data-driven artificial intelligence models, are more suitable for real-time 

monitoring [113].  

Measurable quantities during machining operation include cutting force [116]-[118], 

vibration [119]-[122], acoustic emission [123]-[125], and spindle power [126][127], all of which 

contain potentially useful information for indirect tool wear monitoring. From the raw measured 

data, signal features can be extracted in the time-domain [116][118][126][127], frequency-domain 

[119][120], and/or time-frequency (wavelet) domain [119][128][129]. To predict tool wear, many 

of these signal features can be combined to achieve a more reliable prediction in a scheme referred 

to as ‘sensor fusion’ [111][130]. However, not every signal feature correlates to tool wear, and 

instead, a subset of features that best predicts tool wear needs to be selected. Features can be 

selected by ranking the features based on some criterion independent of the model to eliminate the 

low-ranking features [116][118] or by using techniques like principal component analysis (PCA) 

[129][131]. These model-independent feature selections are computationally efficient and scalable 

to large candidate feature pools, though the performance of subsequent tool wear models may not 

be optimized. In contrast, features can also be selected by considering the tool wear model using 

a wrapper or embedded approach [132]. In a wrapper approach, the model is treated as a black box 

to search the optimal feature subset that minimizes the model prediction error [133].  In an 

embedded approach, a scaling factor is added for each candidate feature to indicate its relative 
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importance and the factors are optimized during model training [134]. For model-dependent 

methods, the size of the candidate feature pool should be relatively small; otherwise, a large 

quantity of training data is required and the model training will be slow due to the curse of 

dimensionality [140]. Hence, to find useful features a feature selection scheme that takes advantage 

of both model-dependent and model-independent feature selections is highly desirable but not 

found in the available literature. 

Taking selected signal features as inputs, a predictive model can be established and must be 

capable of estimating tool wear in real-time. To build the predictive model, data-driven machine 

learning techniques are used for training from experimental data so that an in-depth understanding 

of system physical behaviors is not a prerequisite [144]. Examples of machine learning techniques 

which have been successfully applied to tool wear monitoring include artificial neural networks 

[113][116][135][136], fuzzy systems [124][137], neuro-fuzzy systems [138][139], support vector 

machines [118][140], hidden Markov models [141][142], Gaussian mixture models [143], random 

forests [144] and belief network [145]. These models are mostly constructed as predictive feature-

wear mappings for the regression of progressive tool wear growth or classification of tool wear 

stage (e.g., sharp, workable, and dull). However, the robustness under uncertainty was not 

sufficiently considered in these studies although it is vital for the reliability of the monitoring 

systems.  

Considerable uncertainties have been observed in the machining process and reproducibility 

of wear data is difficult due to many factors, such as variations of material properties, application 

of cutting fluid, environmental noises, and tool wear measurement errors. Addressing uncertainty 

in tool wear monitoring with probabilistic models emerged in recent years. Karandikar et al. (2014) 

used Bayesian updating with discrete grid and Markov Chain Monte Carlo (MCMC) methods to 

predict the probability distribution of tool life by estimating the constants in the Taylor tool life 

equation considering parameter uncertainty [146][147]. Akhavan et al. [148] also presented an 

MCMC-based probabilistic approach to learn the parameters in a tool wear mechanics model with 

uncertainty term using Bayes’ rule. Tracking the progressive development of tool wear with 

uncertainty intervals has also been studied. Ren et al. [149] used the type-2 fuzzy system to predict 

tool wear with uncertainty bounds. By formulating state-space models to describe the tool wear 

dynamics and using measurable features such as the RMS of vibration signals as observation 

variables, the tool wear could be estimated using extended Kalman filter [150] and particle filter 
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[151][152]. Especially, the particle filter also enabled the use of Gaussian mixtures to approximate 

the non-Gaussian initial uncertainty of a process [153]. Akhavan et al. [154] combined the 

Bayesian-based parameter estimation with an extended Kalman filter to minimize the amount of 

data required for building the tool wear model for a difficult-to-machine material. Kong et al. [155] 

trained the support vector regression model as a probabilistic model to predict tool wear with 

confidence intervals. Though it has been proved that reporting the tool wear in an interval form 

gives more reliable results than crisp-value predictions [151], these proposed methods are still not 

able to consider the variance of cutting tools, workpiece materials, and cutting conditions. 

In addition, deep learning techniques have also been introduced to tool wear monitoring in 

recent two years. Signal “images” were constructed by stacking signal data from multiple sensors 

[156] or by decomposing signals into the time-frequency domain using wavelet transform [157]. 

Then convolutional neural networks were trained to predict tool wear directly from signal data 

without explicit feature extraction [156]-[159]. However, the applications of deep learning on tool 

wear monitoring are still preliminary studies and the performance achieved is not superior to those 

by conventional machine learning techniques, probably because based on the existing signal 

processing techniques, all the information embedded in a signal can be fully revealed and hence 

the explicit feature extraction will be sufficient for signal-based tool wear monitoring. Other than 

tool wear, the detections of chatter [160]-[163] and tool breakage [164][165] have also been 

studied for the monitoring of machining processes. Since these failures will result in distinct signal 

patterns upon occurrence, rather than the gradual signal changes due to tool wear, their detections 

should be relatively easier than tool wear monitoring, and thus will not be considered in this work. 

It can be concluded from the above review that the tool wear monitoring systems have only 

achieved limited success in the industry mainly due to: 1) the insufficient generalizability to the 

cutting tools, workpiece materials and cutting conditions different from those in the training data, 

2) the absence of systematic selection of optimal feature sets; 3) the insufficient consideration of 

uncertainties in the complicated machining environment. All these issues, in particular the last one, 

will be addressed in this study. 

1.3.4.2 Quality monitoring of additive manufacturing processes 

Given that additive manufacturing (AM) is widely used in fabricating metallic components, 

there have been numerous research efforts that address the monitoring of AM processes for quality 
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assurance [35][36]. Laser-based AM of metallic parts requires high laser power intensity at the 

laser-material interaction area, which prevents the use of traditional contact sensors. Therefore, 

non-contact sensors are mostly used to collect high-dimensional process data with spatial-temporal 

patterns. The melt-pool monitoring appears to be the most prevalent monitoring paradigm because 

of its suitability for online measurement. Sensing the thermographic and morphological 

information of melt pool by instrumenting laser AM systems with sensors might date back to the 

1990s [166][167] and has been consistently pursued [168]-[170]. The melt-pool radiation intensity, 

temperature, and geometry (e.g. area, length, or width) could be measured by a photodetector, an 

infrared (IR) thermal camera, or a high-speed vision camera, and then used to predict a variety of 

quality attributes, such as layer thickness [171], thermal deformation [172], build condition [173] 

and particularly porosity.  

For porosity monitoring, Krauss et al. [171] found that a bossing pattern in the irradiance 

signal is indicative of sublayer cavities (>100 µm). Barua et al. [174] used the deviation of melt-

pool temperature gradient from a reference defect-free cooling curve to predict defects like crack 

or porosity. Clijsters et al. [175] mapped the melt-pool area data to 3-D positions on the specimen 

and then used a thresholding method to locate pores larger than 100 µm. Mireles et al. [176] also 

used a thresholding method on the temperature obtained from IR images to detect pores (600~900 

μm). Zenzinger et al. [177] presented an optical tomography method to construct a 3-D mapping 

of possible structural defects by recording the hot and cold spots of melt-pool radiation. Toeppel 

et al. [178] demonstrated a commercial monitoring system called QM Meltpool 3D, which can 

detect pores larger than 1/10 mm using an IR camera and a photodetector. Another monitoring 

module called ThermaViz was demonstrated in [179] for melt-pool temperature and size 

measurement using a pyrometer and an IR sensor. Khanzadeh et al. processed the data from the 

ThermaViz system using unsupervised learning methods such as multilinear principal component 

analysis (MPCA) [180] and self-organizing map (SOM) [181] for automatic feature extraction. 

The former achieved a defect-detection accuracy of 90.97%, while the latter achieved a detection 

accuracy of 96.07% for pores ranging from 0.05 to 0.93 mm, but the SOM method was validated 

only on a single data set. As can be seen, the porosity monitoring schemes in the literature are 

mostly addressing large porosity defects above 100 μm.  

Other than melt-pool-based porosity monitoring, Zhang et al. [182] investigated the track 

width classification using melt-pool data and achieved an accuracy of 90.1% by a support vector 
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machine (SVM) with artificially defined features and 92.8% by a convolutional neural network 

(CNN) with automatically learned features. Gao et al. [183] presented a two-camera scheme for 

droplet transition and keyhole status monitoring using FFT-based image denoising and statistical 

feature extraction. Xiong et al. [184] used two cameras (top-view and side-view) focused behind 

the melt pool to measure track width and height. Slotwinski et al. [185] developed an ultrasonic 

sensor for off-line porosity measurement. Rieder et al. [186] developed an ultrasonic setup for on-

line measurement of track height. Zhang et al. [187] presented an in-situ surface topography 

measurement method using fringe projection. DePond et al. [188] presented an optical coherence 

tomography method for in-situ measurement of layer surface roughness. In general, the non-melt-

pool monitoring schemes are less suitable for in-process metrology due to the intervention of the 

process laser beam and melt-pool radiations.  

Furthermore, the in-process quality monitoring of laser welding has been investigated. The 

laser welding process is governed by similar melt-pool physics as laser AM processes and hence 

its monitoring methods will also be valuable for the laser AM. Ancona et al. [189] found that the 

mean and standard deviation of plasma’s electron temperature calculated from spectrometer data 

has a correlation to weld defects like lack of penetration and weld disruptions. Nicolosi et al. [190] 

described a camera-based full penetration extraction method using cellular neural network. Kim 

et al. [191] presented a keyhole area estimation method based on coaxial image sensing. You et al. 

found that with the fusion of photodiode and camera data, it was possible to classify sound and 

defective weldings [192]. By using the wavelet packet decomposition and principal component 

analysis for feature extraction, neural networks and support vector machines were then built to 

detect defects like blowouts and undercut, which achieved an accuracy of 81.34% [193]. Luo et 

al. [194] developed a coaxial camera setup for weld-pool boundary extraction and keyhole size 

measurement, and with the use of a radial basis function network, it was possible to predict the 

keyhole penetration depth and inclination angle. A correlation between porosity and keyhole size 

was also observed, which revealed that the coaxial images could be potentially used for porosity 

prediction [195]. Xu et al. [196] have also found that the large fluctuation of keyhole was 

responsible for the pore formation. However, an in-process porosity monitoring scheme for laser 

welding hasn’t been developed in the literature. 

Based on in-process data sensing, the closed-loop control of laser AM processes has also 

become an area of interest. Via building an empirical [197][198] or physics-based [199] model 
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between the melt-pool temperature and controllable process parameters, mainly the laser power, 

PID [189], internal-model-principle [197], model predictive control [198] and feedback 

linearization [199] controllers can be designed to maintain the melt-pool temperature at a constant 

level. Closed-loop control has also been used to regulate the melt-pool height [199] and width 

[200]. Besides, the microstructures in deposited materials can also be controlled indirectly, via 

regulation of melt-pool size [201] and cooling rate [202]. 

It can be learned from the above review that: 1) even in the latest monitoring works, the 

quality attributes that can be surveilled are still the deposition geometry like height and width, 

indirect attributes like melt-pool temperature and size, and large interior defects like cavities and 

porosities over 100 µm, but the detection of pores smaller than 100 µm is still not available; 2) the 

features used for monitoring are still mostly conventional melt-pool features like area, aspect ratio 

and temperature gradient; the automatic feature learning techniques, such as SOM and CNN, have 

only been adopted in recent years; 3) Because of the lack of reliable monitoring schemes to detect 

interior quality defects, the process control schemes are mostly indirect schemes designed to 

maintain a constant melt-pool size or temperature, instead of directly correct defects and assure 

satisfactory product quality.  

Therefore, a process monitoring scheme that could reliably detect interior defects like micro 

porosity needs to be developed, as such a scheme may enable direct process control for quality 

assurance. The deep learning models that can automatically learn suitable melt-pool patterns from 

data are the most promising solution to achieve this goal. However, the porosity may only produce 

a limited impact on the melt pool, and the accurate post-process measurement of porosity is 

difficult. Consequently, both the input (melt-pool images) and output (porosity measured from 

fabricated specimens) data to train the deep learning model may be corrupted by noises, and 

uncertainty analysis is essential for the monitoring scheme, which can be potentially solved by the 

probabilistic neural network discussed in section 1.3.3. 

1.4 Research Objectives 

This study aims to develop an innovative uncertainty analysis scheme for neural networks 

and explore its application on practical problems like manufacturing process monitoring. To 

achieve this goal, the study will be carried out with the following breakdown tasks: 

I. An adaptive Gaussian mixture scheme for nonlinear uncertainty propagation in neural 
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networks will be developed first as the foundation of all the following works. To achieve 

high-fidelity uncertainty propagation, a new nonlinearity assessment criterion customized 

for the commonly used activation functions and a set of high-precision splitting schemes 

to refine Gaussian distributions will be established. 

II. An adaptive Gaussian mixture filter for Bayesian state estimation will be designed. By 

modeling the nonlinear system dynamics with a neural network, the adaptive Gaussian 

mixture scheme will be extended to refine the estimated state distributions at both the 

prediction and measurement update stages of Bayesian filtering. A quantitative analysis of 

the state estimation error will also be provided. 

III. A probabilistic neural network with Gaussian mixture distributions of parameters will be 

developed. Based on adaptive layer-wise refinement of Gaussian mixtures, the analytical 

inference of predictive distributions will be derived and the gradients for backpropagation 

training will be formulated. This probabilistic network will be benchmarked against the 

state-of-the-art methods in the literature. 

IV. Application of the proposed probabilistic neural network will be made on the condition 

monitoring of manufacturing processes.  

a. A tool wear monitoring system for the turning process will be developed based on 

features extracted from sensor signals. The predictive tool wear model built with 

the new probabilistic network will be compared with the model trained using a 

classical network with interval-type uncertainty. 

b. A porosity monitoring system for the laser additive manufacturing process will be 

developed using deep learning to directly learn features from raw camera image 

data. The porosity prediction performances of convolutional neural networks with 

and without incorporating the probabilistic network module will be compared. 

In brief, the core of this study will be the adaptive Gaussian mixture scheme and the final 

outcome will be a unitive set of data-driven uncertainty analysis tools for uncertainty propagation, 

Bayesian filtering and probabilistic network modeling, with demonstrated successes on 

manufacturing applications. 

1.5 Dissertation Outline 

The research objectives listed above have been pursued progressively. This dissertation 



 

 

33 

demonstrates the accomplished research with the following six chapters: 

Chapter 1 Introduction: 

This chapter briefs the background and motivation of this study. The necessity of data-driven 

uncertainty analysis for neural networks and its importance on the condition monitoring of 

manufacturing processes are highlighted. A brief literature review of relevant topics, including 

nonlinear uncertainty propagation, nonlinear Bayesian filtering, probabilistic neural network 

modeling and manufacturing process monitoring, is provided to identify the challenges that have 

not been sufficiently addressed and position our research proposals with respect to the existing 

works. A breakdown of research objectives is also outlined.  

Chapter 2 Adaptive nonlinear uncertainty propagation in neural networks: 

In this chapter, a Gaussian-mixture-based uncertainty propagation scheme is developed. The 

propagation of uncertainty through a network’s nonlinear layers is usually a bottleneck because 

the existing techniques designed to transmit Gaussian distributions via moment estimation are not 

capable of predicting non-Gaussian distributions. Given that any input uncertainty can be 

characterized as a Gaussian mixture with a finite number of components, the developed scheme 

actively examines each mixture component and adaptively splits those whose representation 

fidelity of uncertainty might be deteriorated by the network’s nonlinear activation layer. A novel 

Kullback–Leibler nonlinearity detection criterion is derived to trigger splitting. Five nonlinear 

uncertainty propagation examples are presented, in all of which the developed scheme exhibits a 

high fidelity and efficiency in predicting the evolution of non-Gaussian distributions through 

recurrent and multi-layer neural networks. 

Chapter 3 Adaptive Gaussian mixture filter for nonlinear state estimation: 

In this chapter, an adaptive Gaussian mixture filter is developed. The state estimation of 

highly nonlinear dynamic systems is difficult because the probability distribution of their states 

can be highly non-Gaussian. To address this problem, the adaptive Gaussian mixture scheme in 

Chapter 2 is extended to the filter proposed in this chapter, so that the Gaussian mixture models 

can be refined based on the system’s local severity of nonlinearity to achieve a high-fidelity 

estimation of the state distribution. Nonlinearity assessment criteria are designed to trigger the 

splitting of Gaussian components at both the prediction and update stages of Bayesian filtering 
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and the error bound of estimated state distribution is established. The new filter is benchmarked 

against the existing methods on multiple challenging problems and it consistently offers among-

the-best accuracy with a rational computational cost, which proves that it can be used as a reliable 

state estimator for highly nonlinear systems subject to high magnitudes of uncertainties. 

Chapter 4 Probabilistic neural network for uncertainty prediction: 

In this chapter, a probabilistic neural network with Gaussian-mixture distributed parameters 

is developed. Modeling the uncertainty from data is an essential quest in the learning of neural 

network models but has not been well addressed. The probabilistic network proposed in this 

chapter provides an efficient and high-fidelity solution for learning multimodal uncertainties in 

neural networks. The adaptive Gaussian mixture scheme from Chapter 2 is adopted to refine the 

Gaussian mixture probability distributions and ensure the fidelity of uncertainty propagation in 

both linear and nonlinear transformations through the network. As its predictive distribution can 

be inferred analytically, this probabilistic network can be trained efficiently via backpropagation 

based on any gradient descent algorithm. The proposed network achieves a state-of-the-art 

performance when benchmarked on a series of public datasets. 

Chapter 5 Application on condition monitoring of manufacturing processes: 

This chapter describes the applications of the probabilistic neural network in Chapter 4 on 

two manufacturing process monitoring schemes. First, a tool wear monitoring scheme for turning 

processes is developed. A systematic feature normalization and selection procedure is proposed to 

eliminate the features’ dependence on cutting conditions, cutting tools and work materials and 

select the features that have the best performance in predicting tool wear. Two tool wear models 

are trained, one using a type-2 fuzzy network for interval uncertainty quantification and the other 

using the network proposed in Chapter 4 for probabilistic uncertainty quantification. Secondly, a 

porosity monitoring scheme for laser AM processes is developed. A High-speed digital camera is 

mounted coaxially to the process laser beam for in-process melt-pool sensing and convolutional 

neural network models are designed to directly learn melt-pool features to predict the porosity 

attributes. The classical CNN models without uncertainty quantification are compared with the 

CNN models in which the probabilistic network is incorporated as an uncertainty quantification 

module. Experimental results show that for both monitoring schemes, the probabilistic network 



 

 

35 

not only achieves higher prediction accuracies of process conditions than the classical models but 

also provides more effective uncertainty quantification to facilitate the process-level decision 

making and intervention in the manufacturing environment. 

Chapter 6 Conclusions and Future Work: 

This chapter summarizes all the works in the preceding chapters. Some directions for future 

studies based on the accomplished works are suggested. The adaptive Gaussian mixture filter can 

be combined with feedback controller design to regulate closed-loop systems. The filter may also 

be extended from state estimation to parameter estimation problems in data-driven models. In 

addition, the probabilistic neural network framework, though mainly formulated for multi-layer 

feedforward neural networks in this study, may be extended to more complicated models like 

convolutional or recurrent neural networks. 
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2. ADAPTIVE NONLINEAR UNCERTAINTY PROPAGATION IN 

NEURAL NETWORKS 

This chapter aims to develop an adaptive Gaussian mixture scheme for high-fidelity and 

computationally efficient uncertainty propagation in neural networks. A criterion for nonlinearity 

detection is designed by using the properties of activation functions to simplify the computation 

so that a Gaussian mixture can be propagated through a nonlinear activation function layer with 

the adaptive splitting operation triggered for each component only when the level of nonlinearity 

deteriorates fidelity. The developed scheme is validated on three examples of nonlinear dynamic 

systems and two data-driven examples, in all of which a high fidelity in forecasting non-Gaussian 

probability distributions is achieved with satisfactory computational efficiency. This adaptive 

Gaussian mixture scheme will be fundamental to the subsequent works. 

2.1 Problem Formulation and Preliminaries 

This chapter is to design an uncertainty propagation scheme so that the probability density 

function (PDF) of a neural network’s states passing through a nonlinear activation layer can be 

accurately predicted as a compact Gaussian mixture model. Then by using the neural network as 

a function approximator and the Gaussian mixture as a PDF approximator, the Gaussian mixture 

mapping can be applied repetitively to address a wide range of uncertainty propagation problems, 

such as the temporal uncertainty evolution in recurrent neural networks and layer-wise uncertainty 

propagation in a deep neural network. For simplicity and without loss of generality, the 

formulation in this chapter starts from the two-layer feedforward neural network, which could 

approximate any nonlinear functions given a sufficient number of hidden nodes [203]. A 

feedforward neural network with m input, n output, and k hidden nodes can be expressed as: 

 ( )2 1 1 2= + +y W f W x b b   (2.1) 

where mx  is the vector of input variables, ny  is the vector of output variables, 

1

k mW  and 
1

kb  are the weight and bias in the hidden layer, 
2

n kW  and 
2

nb  are 

the weight and bias in the output layer and f is the activation function. Assume that the input x is 

subject to uncertainty whose PDF can be represented by a Gaussian mixture: 
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where M is the number of components,  0,1iw 
x

 and ( )ip x  are the weight and density of the i-

th component, and i m
x
μ  and i m m

x
Σ are the mean and covariance of the i-th component, 

respectively. Given a sufficient number of components, a Gaussian mixture can be trained using 

the expectation-maximization algorithm to approximate any general non-Gaussian PDFs [54]. 

To propagate uncertainty through the network, a linear transformation will be first applied to 

map the input PDF p(x) to the PDF of pre-activation states p(z): 
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where kz is the vector of the network’s states before activation function. Similarly, the PDF 

of post-activation states p(s) can be mapped to the output PDF as 

 

( ) ( ) ( )

( ) ( )

1

2 2

2 2

1
2 2

| ,

| ,

N
i i i

i

i i

i iN
i i i

i i T
i

p w

w w

p w

=

=

= =

 == +


 = +
= 

=





s s s

y s

y s

y y y

y s

s f z s s μ Σ

y W s b

μ W μ b
y y μ Σ

Σ W Σ W

N

N

  (2.4) 

where ks is the vector of states after activation function and N is the number of components 

in the post-activation mixture. In both mappings, the linear transformation of Gaussian variables 

is utilized to propagate the mean and covariance of each Gaussian component, while the weight 

and number of components are invariant. Despite this, the nonlinear PDF mapping from pre-

activation states to post-activation states is typically the bottleneck: 

 ( ) ( ) ( ) ( ) ( )
1 1

| , | ,
M N

i i i i i i

i i

p w p w
=

= =

= ⎯⎯⎯→ = 
s f z

z z z s s s
z z μ Σ s s μ ΣN N   

In general, a pre-activation Gaussian PDF will become non-Gaussian after transformation by 

a nonlinear activation function. If the function is monotonic and differentiable, then the non-

Gaussian PDF of post-activation states can be expressed as [204]: 
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 ( ) ( )
d

p p
d

=
z

s z
s

  (2.5) 

where | | denotes the matrix determinant. For example, a Gaussian variable transformed with the 

logistic function will have a logit-norm distribution, which may be skewed or multimodal and 

doesn’t have analytical solutions of mean and covariance [205]. This type of transform is only 

suitable for propagating the uncertainty once because the PDF is not maintained in Gaussian form 

and thus it is not as tractable as a Gaussian mixture for moment extraction and repetitive 

propagations in the following layers. Therefore, the goal of our uncertainty propagation scheme is 

to find a Gaussian mixture parameter set  , ,i i iw
s s s
μ Σ  to approximate the post-activation PDF in 

Eq. (2.5).  In this work, the approximation quality is assessed by the Kullback–Leibler (KL) 

divergence, which is a commonly used measure of the difference between two PDFs [206]: 

 ( ) ( )
( )

( )
ˆ|| log

ˆ
KL

p
D p p p d

p



−
= 

s
s s

s
  (2.6) 

where ( )p s is the true post-activation PDF and ( )p̂ s  is its Gaussian mixture approximation. The 

KL divergence is always non-negative and converges to zero only if the approximating PDF equals 

the true one, i.e., ( ) ( )p̂ p=s s .  

Propagating each Gaussian component using local linearization or unscented transform (UT) 

while assuming the weights and number of components to be invariant could not attain accurate 

results except when all the covariances are infinitesimal [57]. Therefore, the idea in this work is to 

recursively split each Gaussian component in the pre-activation mixture until the covariances of 

all the components become small enough so that the activation function is nearly linear in their 

spans and their post-activation PDFs are nearly Gaussian. To facilitate this splitting scheme, the 

activation functions are assumed to be piecewise differentiable and monotonic, so that the true 

post-activation PDF can be derived using Eq. (2.5) to assess its proximity to a Gaussian PDF. 

Moreover, only the single fold activation functions are considered so that its Jacobian matrix is 

always diagonal and the determinant in Eq. (2.5) can be simplified as 
1

k

i ii
d d dz ds

=
=z s .  

Most of the activation functions in neural networks satisfy all these assumptions, though some 

functions such as softmax and radial basis function have to be excluded. Four activation functions 

that are most frequently used in neural networks and their derivatives (for computing the Jacobian 

matrix) are listed in Table 2-1, which include the logistic function, hyperbolic tangent function 



 

 

39 

(tanh), rectified linear unit (ReLU) and leaky ReLU. The graphs of the functions and their 

transformed PDFs from Gaussian distribution input are shown in Figure 2-1. As can been seen, 

the post-activation PDF can be highly non-Gaussian and hence a high-fidelity Gaussian mixture 

approximation method needs to be derived, as discussed in the next section. 

 

Table 2-1 Activation functions considered in this work 

 Logistic Tanh ReLU Leaky ReLU 
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Figure 2-1 Activation functions and their transforms of Gaussian distributions 

1st row: graphs of functions, 2nd row: transformed PDFs of a Gaussian input N (x|0,1), 3rd row: 

transformed PDFs of a Gaussian input N (x|1,1) 

2.2 Methodologies 

To establish the adaptive Gaussian mixture scheme for nonlinear uncertainty propagation in 

neural networks, a nonlinearity detection criterion is proposed first to examine whether a pre-

activation Gaussian mixture component will be significantly distorted by the nonlinear activation 

function. If yes, the detected component will be split into narrower sub-components until the level 

of nonlinearity will not deteriorate the Gaussian propagation fidelity. Finally, a Gaussian mixture 
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reduction method is applied to reduce the number of post-activation mixture components. The 

algorithm details are elaborated in the following subsections. 

2.2.1 A Kullback–Leibler Criterion for Nonlinearity Detection 

In a neural network, if the pre-activation PDF before a nonlinear activation layer is given as 

an M-component Gaussian mixture, the true post-activation PDF can be derived using Eq. (2.5) as

( ) ( )
1

M i i

i
p w p

=
= s

s s . By applying a certain propagation method to each Gaussian component, an 

approximating PDF can be obtained as ( ) ( )
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M i i

i
p w p

=
= s

s s . Substitute ( )p s  and ( )p̂ s  into Eq. 

(2.6), although the KL divergence doesn’t have an analytical solution [206], an upper bound can 

be found using the log sum inequality (
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An upper bound of the overall KL divergence between two mixture PDFs is the weighted 

sum of the divergence between each component pair. Therefore, a practical strategy to minimize 

the overall KL divergence is to minimize the divergences of each pair. If the covariance of the i-

th Gaussian component is so small that the activation function is almost linear within its span, then 

the true transformed density pi will be nearly Gaussian and its approximation ˆ ip  via linearization 

should be sufficient to achieve a small KL divergence. Hence, the KL divergence between the true 

transformed PDF and its approximation via linearization is a measure of how much a Gaussian 

PDF will be distorted by the nonlinearity of activation function and will be used as the criterion to 

examine whether a Gaussian distribution needs to be split. 

To formulate the KL-divergence-based nonlinearity criterion, a single Gaussian distribution 

is considered as the pre-activation PDF, such that: 
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where f −1 denotes the inverse of function and k is the dimension of vectors z and s. Substitute the 

( )p s and ( )p̂ s  in Eq. (2.8) into Eq. (2.6), the KL divergence for nonlinearity detection of a single 

Gaussian distribution, after the derivation detailed in Appendix A, can be expressed as: 
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where cij is the element in the i-th row and j-th column in the inverse of covariance matrix Σ−1 and 

Ep denotes the expectation with respect to the probability distribution p. In Eq. (2.9), the last two 

terms involve a set of 1-D and 2-D expectation integrals, which can be estimated by the unscented 

transform (UT) with an accuracy to the second-order Tayler expansion. The UT method might be 

less accurate when the covariance is large and the higher-order expansion terms are significant. 

However, the Eq. (2.9) is only used to determine whether a Gaussian PDF needs to be split, while 

it would not directly affect the uncertainty propagation accuracy. Moreover, the main computation 

cost of UT, i.e., the singular value decomposition, concurs with the Gaussian splitting scheme that 

will be discussed later. In many works regarding uncertainty propagation in neural networks, the 

pre-activation states are assumed to be uncorrelated, so that the covariance matrix is diagonal and 

the expectation integrals can be decoupled as a series of independent 1-D integrals [15][46][97]. 

However, such an assumption may not always hold. For example, even if a diagonal covariance 

Σx is assigned to the network input x, after transformation by the linear layer using Eq. (2.3), the 
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pre-activation covariance Σz is in general not diagonal. Therefore, non-diagonal covariance 

matrices are considered in this work.  

For a Gaussian distribution N (z|µ, Σ), a set of weighted sigma points (2k+1 points for a k-

dimensional distribution) matching the first two moments can be generated in UT as [52]: 
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where the scaling parameter λ is typically selected as λ+k=3 for a Gaussian distribution, P is the 

square root of the covariance matrix Σ= PPT and Pi denotes the i-th column of P. The sigma points 

match the input moments as 
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of covariance can be obtained using the singular value decomposition (SVD), which is equivalent 

to the eigen-decomposition for a symmetric and positive definite covariance matrix: 
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where v1, …, vk are the orthonormal singular vectors (eigenvectors) and λ1, …, λk are the singular 

values (eigenvalues). Given this decomposition, the inverse of covariance matrix can be computed 

as 
1 1 T− −=Σ VΛ V without invoking the matrix inverse routine.  

Using nonlinear transformation of the sigma points, the expectation integrals in Eq. (2.9) can 

be estimated in vector form as: 
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and in matrix form as 
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Then by summing up all the vector elements, the 1-D expectation term can be obtained as: 
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and by summing up all the matrix elements, the 2-D expectation term can be obtained as: 
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where  denotes element-wise matrix multiplication.  

The degenerate case: the above analysis is based on the assumption that the covariance 

matrix is non-singular so that it is invertible and has k independent eigenvectors. Nevertheless, 

singular covariance matrices could occur in neural networks. Assuming the covariance matrix Σ 

has a rank of r (r<k), then the PDF is only supported on a r-dimensional subspace. In such a 

degenerate case, the k/2 term in Eq. (2.9) should be replaced with r/2 since it comes from the 

differential entropy and the entropy also degenerates. The inverse of covariance matrix can be 

obtained using the truncated pseudoinverse approximation 
1

1

r T

i i ii
−

=
Σ v v , where vi are the 

singular vectors and λi are the non-zero singular values [207]. In this way, the KL divergence in 

Eq. (2.9) could be estimated for a degenerated distribution on the r-dimensional subspace. A 

primary cause of singular covariance in a neural network is because the number of inputs n is 

typically less than the number of hidden nodes k. Even if the input x has a non-singular covariance 

Σx, after the transformation in Eq. (2.3), the rank r of the pre-activation covariance Σz is at most n, 

i.e., r ≤ n < k. In such a scenario, the SVD can be performed on the low-dimensional covariance 

Σx instead of Σz for better computation efficiency.  

Now the KL-divergence criterion to assess the level of nonlinearity has been established. For 

a pre-activation Gaussian PDF, if its KL divergence in Eq. (2.9) is larger than a threshold, it will 

be split into narrower ones as described in the next subsection.  
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2.2.2 Gaussian Splitting Scheme 

To develop the Gaussian splitting scheme, the univariate Gaussian distribution is studied first 

and then the scheme is extended to multivariate cases. A standard univariate Gaussian distribution 

p(z) = N (z|0,1) could be approximated by a Gaussian mixture with P components as: 
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where iw , i  are the weights and means of mixture components and all the components share the 

same standard deviation  . These Gaussian mixture parameters can be found by minimizing the 

KL divergence between the standard Gaussian distribution and the approximating mixture as: 
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where α is a scaling factor of the penalty term to enforce that with more components P, a more 

aggressive splitting with smaller standard deviation should be adopted to reduce the magnitude of 

uncertainty carried by each component. By setting α = 0.001 and using odd numbers of P with a 

center component always located at the origin, the optimization in Eq. (2.17) was solved using the 

genetic algorithm. The optimization results for three, five and seven components are summarized 

in Table 2-2 and Figure 2-2.  

 

Table 2-2 The splitting schemes for the standard Gaussian distribution 

Number of components iw  i    KLD   

3 
0.6364 0 0.7687 

1.77×10-4 

0.1818 ±1.0579 0.7687 

5 

0.4444 0 0.5654 

2.34×10-4 0.2455 ±0.9332 0.5654 

0.0323 ±1.9776 0.5654 

7 

0.3048 0 0.4389 

3.56×10-4 
0.2410 ±0.7056 0.4389 

0.0948 ±1.4992 0.4389 

0.0118 ±2.4601 0.4389 
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Figure 2-2 The splitting schemes for the standard Gaussian distribution 

Solid bold: true distribution, dashed bold: Gaussian mixture approximation, dashed thin: 

components 

 

For a multivariate Gaussian distribution p(z) = N (z|µ, Σ), given that its covariance matrix has 

been decomposed into singular vectors as in Eq. (2.11), a univariate splitting scheme can be 

extended to split this multivariate distribution along a certain singular vector:  

  2

1p j j j rdiag     = + = =μ μ v Σ VΛV Λ   (2.18) 

where λi and vi are the singular values and singular vectors, r is the rank of Σ, and  j is the index 

of the principal axis selected for splitting. In this work, the singular vector corresponding to the 

largest singular value will be selected for splitting since this is the direction with the most 

significant magnitude of uncertainty.  

To show that the KL divergence of splitting a multivariate Gaussian distribution equals the 

KL divergence of the univariate splitting scheme adopted, first consider a standard k-dimensional 

Gaussian distribution with zero mean vector and identity covariance matrix p(x) = N (x|0, Ik). Since 

the k variables are uncorrelated, the multivariate PDF is the product of k univariate PDFs, which 

means a splitting on one dimension doesn’t affect the KL-divergence integrations on other 

dimensions. Then by a change of variable, the standard Gaussian distribution can be transformed 

to an arbitrary Gaussian distribution without altering the value of KL divergence integration. The 

invariance of KL divergence under linear coordinate transformations makes the quality of 

Gaussian distribution splitting consistent regardless of the mean and covariance. 
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2.2.3 Gaussian Mixture Propagation 

If the pre-activation distribution in a neural network is characterized as a Gaussian mixture, 

then the nonlinearity detection and Gaussian splitting methods discussed above can be applied to 

each mixture component. For a Gaussian component, its KL-divergence measure of nonlinearity 

in Eq. (2.9) is scaled by its weight w and then compared with a threshold thD. If the divergence is 

larger than the threshold, i.e., ( )ˆ ˆ||KL DwD p p th ,  a scheme in Table 2-2 will be used to split this 

component. This comparison is made by considering the weight so that those components with 

minor contributions to the overall PDF will be less likely to get involved in splitting. The new 

components from splitting with weights 
pww  will be added to the mixture to replace the original 

one. The split components share the same singular vectors and singular values inherited from the 

original component except that the singular value selected for splitting has been scaled down. 

Hence, the SVD doesn’t need to be repeated for any of the new split components.  

The above process will be repeated until the KL divergences of all the components are less 

than the threshold. Then all the components can be easily propagated through activation function 

using the unscented transform (UT) with minor computation cost since the SVDs have already 

been available for each component. For a pre-activation component ( ) ( )| ,i i i ip w=
z z z

z z μ ΣN , the 

optimal post-activation Gaussian approximation that matches the first two moments can be 

estimated using the UT as: 
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  (2.19) 

where z and s are the pre-activation and post-activation state vectors, i is the index of the i-th 

component, and Zj
i and Wj

i are the sigma points and weights. The algorithm of Gaussian mixture 

propagation through a nonlinear activation layer is summarized below in Algorithm I. 
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Algorithm I: adaptive uncertainty propagation in a nonlinear activation layer  

Input: the M-component pre-activation Gaussian mixture PDF ( ) ( )
1

| ,
M i i i

i
p w

=
= z z z

z z μ ΣN   

            and the nonlinearity threshold thD 

Nonlinearity Evaluation and Splitting 

(1) For a component i,  perform SVD its covariance matrix  

(2) Use UT to calculate Eq. (2.12) ~ (2.15) 

(3) Substitute Eq. (2.14) and (2.15) into Eq. (2.9) to get the KL divergence ( )ˆ||i i

KLD p p  

(4) If ( )ˆ||i i i

KL Dw D p p th
z

, split this component using Eq. (2.18) with a scheme from Table 

2-2. All the components from splitting have the same covariance.  

(5) Repeat (1)-(4) for all the M components 

(6) Repeat (2)-(5) for all the new components from splitting until there is no new splitting 

Gaussian Mixture Propagation 

(7) Use UT in Eq. (2.19) to estimate the post-activation PDF for each of the N components 

after splitting (N>M) 

Output: the post-activation PDF as an N-component mixture ( ) ( )
1

| ,
N i i i

i
p w

=
= s s s

s z μ ΣN  

2.2.4 Gaussian Mixture Reduction 

A problem that may arise from the splitting scheme in uncertainty propagation is that the 

number of components will keep increasing though the actual probability density function is not 

going to be infinitely complicated. Therefore, a Gaussian mixture reduction step is often used to 

merge the components to maintain computational efficiency. There have been various Gaussian 

mixture reduction methods in the literature, among which the Kullback-Leibler approach in [208] 

is found to better preserve the PDF shapes and hence is adopted in this chapter. 

A Gaussian mixture reduction algorithm successively selects a pair of components that are 

close together and similar in shape and merges them into one component. Assuming that the two 

components are parameterized by  , ,i i i ip w μ Σ  and  ~ , ,j j j jp w μ Σ , the moment-preserving 

merging of these two components  ~ , ,ij ij ij ijp w μ Σ is given as: 

 

( )( )

( )
2

ij i j

i i j j

ij

i j

T

i j i j i ji i j j

ij

i j i j

w w w

w w

w w

w ww w

w w w w

= +

+
=

+

− −+
= +

+ +

μ μ
μ

μ μ μ μΣ Σ
Σ

  (2.20) 
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where pij has the same weight, mean and covariance as the mixture of pi and pj. It may be intuitive 

to select the pair of components with the least KL divergence for merging so that the PDF 

misrepresentation can be minimized. Although this divergence does not have a closed-form 

solution, an easy-to-compute upper bound of it has been derived by Runnalls [208] as: 

 ( ),

1
log log log

2
i j i j ij i i j jB w w w w = + − −

 
Σ Σ Σ   (2.21) 

This upper bound is a conservative estimation of the PDF distortion caused by merging two 

components. In the proposed uncertainty propagation scheme, a component pi will be paired with 

each of the rest components and the one that yields the lowest bound Bi,j will be merged with pi, if 

the bound is also lower than a threshold thB. The threshold is imposed to prevent a large mis-

representation from being introduced by the reduction. Given the symmetricity (Bi,j = Bj,i), an N-

component mixture needs a total of N(N−1)/2 bound evaluations in one reduction procedure, and 

this procedure can be repeated until no upper bound evaluation drops below the threshold. 

2.2.5 Preliminary Tests on Activation Functions 

Before applying the established uncertainty propagation scheme onto neural networks, it was 

first tested on some of the nonlinear activation functions to examine its fidelity in approximating 

non-Gaussian post-activation PDFs. Figure 2-3 shows the transformation of a Gaussian 

distribution by the hyperbolic tangent function (tanh). The true distribution appears to be highly 

skewed due to the nonlinearity of tanh function and the Gaussian mixture obtained using the 

proposed method approximated this distribution accurately with a KL divergence of 0.0020. Figure 

2-4 (a) presents the transformation of a Gaussian distribution by ReLU function, which is the most 

commonly used activation function in deep neural networks. On the negative half axis of ReLU, a 

bias of 0.001 was added to the derivative to prevent the zero derivatives to make the logarithm 

terms in Eq. (2.9) become infinity. As can be seen, the proposed method successfully predicted 

the post-activation PDF, including both the Dirac delta distribution part lumped at 0 and the 

truncated Gaussian part on the positive half axis. The transformation of the same Gaussian 

distribution by a leaky ReLU function is also shown in Figure 2-4 (b), for which the proposed 

method attained a level of fidelity similar to the ReLU transformation. 
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Figure 2-3 Approximation of a univariate skewed distribution from a tanh function 

Input Gaussian: μ = 0.25, σ2 =1; Threshold: thD = 0.01, thB = 0.001; 7-component splitting  

Results: number of components: 29, KL divergence: 0.0020, computation time: 1.6ms 

 

  

(a) ReLU      (b) Leaky ReLU (c=0.1) 

Figure 2-4 Approximation of multimodal distributions from a ReLU and a Leaky ReLU function 

Input Gaussian: μ = 1, σ2 = 1; Threshold: thD = 0.001, thB = 0.001; 7-component splitting  

Results: (a) ReLU: number of components: 36, KL divergence: 0.0039, computation time: 1.7ms 

(b) Leaky ReLU: number of components: 27, KL divergence: 0.0048, computation time: 1.6ms 

 

Then in Figure 2-5, a 2-dimensional Gaussian distribution was propagated through the logistic 

function, and the proposed method successfully constructed a Gaussian mixture that approximates 

the distorted post-activation PDF with a KL divergence of 0.0037. In addition, the computation 

time was at millisecond level in all the tests. Therefore, both the fidelity and computational 

efficiency of the proposed Gaussian mixture scheme have been verified.  
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Figure 2-5 Approximation of a bivariate distorted distribution from a logistic function 

Input Gaussian: μ = [0.5, 0.5]T, σ2 = [2.72, 0.80; 0.80, 0.32];  

Threshold: thD = 0.001, thB = 0.001; 7-component splitting  

Results: number of components: 77, KL divergence: 0.0025, computation time: 4ms 

2.3 Application Examples 

Upon the success in preliminary tests, the proposed scheme was applied to a series of 

nonlinear uncertainty propagation problems to further prove its effectiveness for propagating 

uncertainties through time in recurrent networks and layers in multilayer networks 

2.3.1 Example I: A Noise-driven Nonlinear Damping Oscillator 

The first application example is a noise-driven nonlinear damping oscillator. The equation of 

motion of this damping system is given as: 

 ( ) ( )2 2x x x x x x gG t + + + + =   (2.22) 

where β = −0.5, α = 0.5, g2 = 0.75 were selected for simulation and a Gaussian white noise G(t) 

with a variance of 2 was added. To implement the proposed method, the dynamics of this system 

need to be approximated by a neural network. By using a sampling interval of 0.05 seconds and a 

simulation time of 10 seconds, 1000 data samples were collected from 5 simulations using Eq. 

(2.22). Then a recurrent neural network (a two-layer network with output feedback) with 5 hidden 

nodes was trained to approximate the system dynamics in the following form: 
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( )

 

2 1 1 1 1 2,
T

T

k k k

T

k k k

G

x x

− −
 = + + 

=

x W f W x b b

x

  (2.23) 

where xk, 
kx  and Gk are the oscillator position, velocity, and noise at time step k, respectively.  

Such an oscillator has a stationary PDF that can be expressed as [209]:  

 ( ) ( ) ( )
2

2 2 2 2

2

1
, exp

2
p x x C x x x x

g
 

  = − + + +    
  (2.24) 

where C is a normalization constant. The proposed uncertainty propagation method was applied 

to the trained recurrent network to predict this stationary PDF. The network structure parameters 

and uncertainty propagation parameters are summarized in Table 2-3. The initial uncertainty was 

given as a Gaussian distribution with the mean at the origin and a diagonal covariance with 

standard deviations of 0.1 for both the position and velocity.  

 

Table 2-3 Network and uncertainty propagation parameters in the application examples 

 Example I Example II Example III Example IV Example V 

Input size 

3  

(1 external+2 

feedback) 

4  

(all 

feedback) 

16  

(4 external+12 

feedback) 

4  

(all external) 

784  

(all external) 

Output size 2 4 12 1 10 

Number of 

hidden layers 

1 1 1 3 4 

Number of 

hidden nodes 

5 20 50 20 ea. layer 200 ea. layer 

Activation 

function   

Logistic Logistic Tanh Leaky ReLU ReLU 

Nonlinearity 

threshold thD 

10-4 10-4 10-3 10-4 10-2 

Splitting scheme 5 5 5 5 5 

Reduction 

threshold thB 

10-3 N/A 10-2 10-3 10-1 

 

After propagating uncertainty for 10 seconds, the PDF predicted by the proposed method and 

the theoretical stationary PDF in Eq. (2.24) are compared in Figure 2-6. It can be seen that the 

predicted Gaussian mixture correctly reconstructed the “volcano” shaped stationary PDF. In 

addition, a Monte Carlo (MC) simulation with 10 million samples was also performed and the PDF 
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at t =10 second was extracted from the output histogram. The result predicted using the proposed 

method, the MC result and the result in [57] using a quadratic programming approach were 

compared in Table 2-4. As can be seen, the proposed method achieved the lowest KL divergence 

and absolute error with respect to the true theoretical PDF, while its computation time was only 

4% of the MC simulation time. Compared with the result in [57], the proposed method used many 

fewer Gaussian mixture components (112 vs. 1000), while the absolute error was reduced 

significantly by 75%. Since the proposed method outperformed the MC simulation when assessed 

using the theoretical solution as the ground truth, it may be used as a reliable and efficient PDF 

prediction scheme for the nonlinear damping systems without theoretical solutions, given that their 

nonlinear damping dynamics can be approximated by neural networks. 

 

   

 

Figure 2-6 Comparison of theoretical, MC and predicted PDFs for Example I 
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Table 2-4 Comparison of the results for uncertainty propagation Example I 

 Number of 

components 

KL divergence 

to the true 

distribution 

Absolute error 

to the true 

distribution 

Computation 

time 

Proposed Method 112 0.0033 0.0477 2.1 sec 

Monte Carlo 10 million (107) 0.0057 0.0760 ~ 52 sec 

Method in [57] 1000 N/A 0.19 N/A 

 

2.3.2 Example II: Low-earth-orbit Uncertainty Tracking 

The second example is the uncertainty propagation in a low-earth-orbit tracking problem from 

[61]. The equations of motion for an object’s position and velocity in the orbit plane are: 

 ( ) ( ) ( ) ( )

( ) ( )

3
2 2 2

,

3
2 2 2

,

1

2

1

2

r r x

r r y

x

x y

y
t t x x y h v v

x

y
y x y h v v

  

  

−

−

 
  
  
  = = − + −  
  
  
− + − 
 

x x   (2.25) 

where μ is the gravitational constant of the earth, 
,r xv x y= +  and 

,r yv y x= −  are the object’s 

relative velocity with respect to the atmosphere, 2 2

, ,r r x r yv v v= + is the resultant velocity, ω is the 

angular velocity of the earth, β is the object’s ballistic coefficient (β = 1.4 in this example), ρ is the 

atmospheric density ( )0 0exp sh h h = − −    with  ρ0 = 3.614×10−13 kg/m3, h0 = 700 km and hs 

= 88.667 km, 
2 2

eh x y R= + − is the altitude of the orbit and Re is the radius of the earth. The 

initial state uncertainty was assumed to be Gaussian with the mean on a circular orbit with an 

altitude of 225 km starting from y = 0 and a diagonal covariance with standard deviations of 1.3 

km in x position, 0.5 km in y position, 2.5 m/s in x velocity, and 5 m/s in y velocity.  

A neural network with 20 hidden nodes was trained to approximate the orbit dynamics, i.e., 

the x to x mapping in Eq. (2.25), by collecting 3600 training samples from simulations of Eq. 

(2.25). Then the neural network was implemented in a recurrent form with output feedback, and a 

sampling time dt = 0.1 seconds was used to discretize the system using the Euler method: 

 
( )1 2 1 1 1 2

1 1

k k

k k k dt

− −

− −

= + +
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x W f W x b b

x x x
  (2.26) 
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The initial uncertainty was fed into the recurrent network for propagation using the proposed 

method. The network structure and uncertainty propagation parameters are summarized in Table 

2-3. Since there was no extra uncertainty (as the Gaussian white noise in Example I) added in each 

time step, the Gaussian mixture reduction was turned off. A Monte Carlo simulation of 105 samples 

was performed to estimate the ground truth distributions since there was no analytical solution for 

this problem. The PDF contours predicted by the proposed method after one period of nominal 

orbit (about 1.5 hours) are compared with MC samples in Figure 2-7 and the predicted position 

PDF is compared with the histogram of MC samples in Figure 2-8. As can be seen, the Gaussian 

mixture obtained using the proposed method correctly predicted the “banana” shaped PDF for both 

position and velocity. The KL divergence of the predicted PDF with respect to the PDF extracted 

from the MC histogram was 0.0114 for position and 0.0139 for velocity. The computation time of 

the proposed method to propagate uncertainty for one orbit period was about 40 seconds on a 

single thread CPU, while the MC simulation took about 2200 seconds on the same platform. The 

test was then extended to two orbit periods (about 3 hours), and the predicted PDF of position is 

compared with the MC histogram in Figure 2-9. The proposed method predicted the distribution 

of position correctly in this long-term forecasting with the KL divergence increased moderately to 

0.0596. Compared with the Gaussian mixture results achieved in [61], the proposed method used 

fewer components (25 vs. 150 at one period and 125 vs. 350 at two periods) without compromising 

fidelity, and thus it is expected to be more computationally efficient. 

 

Figure 2-7 Predicted PDF contours compared with Monte Carlo samples at one orbit period 

The orange contours are for probabilities of 68.3%, 95.4%, and 99.7%  
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Figure 2-8 Position PDF compared with the Monte Carlo histogram at one orbit period 

 

 

 

Figure 2-9 Position PDF compared with the Monte Carlo histogram at two orbit period 

2.3.3 Example III: Path Uncertainty Prediction for a Quadrotor Drone 

The third example is the path uncertainty propagation for a quadrotor drone. Estimating the 

trajectory uncertainty is important for path planning and collision avoidance of unmanned aerial 

vehicles [210]. The drone system considered in this work has 12 state variables and 4 inputs: 

 
 

 1 2 3 4

T

T

x y z x y z p q r  

   

=

=

x

u
  (2.27) 

where the first 6 states are x, y, z locations of the drone in the inertial frame and their velocities, φ, 

ψ, θ are the pitch (rotation around x axis), roll (around y axis) and yaw (around z axis) angles of 

the drone in inertial frame and p, q, r are the angular velocities in the body frame. The four inputs 

in u are angular velocities of the four propellers, which are used to control the total thrust force 
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and torques around pitch, roll and yaw angles. The equation of motion of this drone system is too 

complicated to be detailed in this section. A full description of the quadrotor drone dynamics can 

be found in Appendix B. 

In this example, 10000 training data samples were collected from the simulations using the 

equations of motion and drone parameters given in [211], and a neural network with output 

feedback and 50 hidden nodes was trained to approximate this dynamic system. At the initial state, 

the drone was assumed to take off from rest at the origin of the inertial frame. The pitch angle had 

a Gaussian distribution with the mean at 1° while the roll angle had the mean at −1°, and both of 

their standard deviations were 0.05°. All the other positions, angles and velocities were taken to 

be zero at time t = 0 seconds without uncertainty. The angular velocities of four propellers were 

all maintained at 650 rad/s by the controller. A zero-mean Gaussian disturbance with 32.5 rad/s 

standard deviation was added to each propeller velocity as input uncertainty. The proposed method 

was applied to the network to predict the uncertainty of the drone’s motion. The uncertainty 

propagation parameters are summarized in Table 2-3. In Figure 2-10, the predicted PDF contours 

of the drone’s position in the X-Y plane at t = 10 seconds are compared with a Monte Carlo 

simulation of 1 million samples. And the predicted X-Z position PDF is compared with the 

histogram of MC samples in Figure 2-11. It can be seen that the PDFs obtained by the proposed 

method correctly predicted the distribution of the drone’s location around its nominal path. The 

KL divergence of the predicted marginal PDF with respect to the PDF extracted from the MC 

histogram was 0.0319 for the X-Y position and 0.0957 for the X-Z position. Therefore, the 

proposed method can be possibly used for trajectory uncertainty prediction in path planning of 

quadrotor drones, especially in the scenarios when the environment is so complicated that the 

physics-based model is not sufficient to predict the drone’s behavior and a neural network model 

trained from sensor measurement data is preferably used for system identification. 
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Figure 2-10 Predicted X-Y position PDF contours compared with Monte Carlo samples 

The orange contours are for probabilities of 68.3%, 95.4% and 99.7%  

 

 

Figure 2-11 X-Z position PDF compared with the Monte Carlo histogram 

 

2.3.4 Example IV: Power Output Prediction of a Power Plant 

The fourth example is a data-driven example to predict the power generation in a combined 

cycle power plant. The power plant consists of 2 gas turbines and 1 steam turbine and is designed 

with a nominal generating capacity of 480 megawatts (MW). Four features measured by sensors 

are used as input variables, which include the ambient temperature, atmospheric pressure, relative 

humidity and vacuum. The full-load electrical power output is the target variable to predict, which 

ranges from 420.26 to 495.76 MW. The dataset contains 9568 data points of hourly averaged 

measurements of input features and power output, collected over 6 years (2006–2011). The 
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detailed analysis of the data can be found in [212] and the dataset can be downloaded from the 

UCI website [213]. In this example, to test the proposed method’s capacity of layer-wise 

uncertainty propagation in a deeper neural network, a feedforward neural network with three 

hidden layers and leaky ReLU activation function was designed to fit a regression model from the 

dataset. The trained model achieved a root mean square error of 5.2 MW, which was on the same 

level of performance as the machine learning models reported in [15] and [212].  

To implement the uncertainty propagation on this multilayer network model, the dataset was 

sorted by the output power magnitude. Then for each data instance, the uncertainty associated with 

input features was quantified as a Gaussian distribution with the mean at the instance feature values 

and the covariance calculated from 7 adjacent instances, including this instance, 3 instances below 

it and 3 above it. The quantified input uncertainty was propagated through the multilayer network 

and the output uncertainty was predicted as a Gaussian mixture. The 99% confidence intervals of 

the predicted Gaussian mixture are compared with the true output powers in Figure 2-12 for a 

random draw of 100 instances. As can be seen, the proposed method correctly predicted the 

intervals that enclosed true output powers by propagating the virtually reconstructed input 

uncertainty. Next, the proposed method was tested to propagate the probability distribution of the 

entire dataset instead of individual instances. A Gaussian mixture model with 6 components was 

fitted to characterize the joint PDF of four input features and this Gaussian mixture was fed into 

the trained neural network for propagation. The fitted marginal PDF of ambient temperature, which 

is the input feature most correlated to output power, is compared with the histogram of data in 

Figure 2-13 (a) to present the accuracy of the fitted input Gaussian mixture. The output power PDF 

predicted by propagating the input Gaussian mixture is compared with the histogram PDF 

estimated from the entire dataset in Figure 2-13 (b). It can be seen that the predicted power PDF 

matched all the modes and magnitudes of the probability in the histogram. Therefore, given that 

the input-output mapping has been learned by a neural network and the distribution of input 

features are represented as a Gaussian distribution or a Gaussian mixture, the proposed method 

could reliably predict the distribution of electrical power output generated by the power plant.  
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Figure 2-12 The uncertainty bounds predicted for output power 

 

   

(a)       (b) 

Figure 2-13 Comparison of the Gaussian mixture PDF and histogram PDF from data 

(a) PDFs for an input feature, the Gaussian mixture was fitted from data. (b) PDFs for the output 

power, the Gaussian mixture was predicted by the proposed method.  

The histogram PDFs were obtained by normalizing the histogram counts. 

2.3.5 Example V: MNIST Dataset Classification 

The last example is on the classification of the famous MNIST dataset for handwritten digits 

recognition [214]. To achieve robust results, the 60000 training data samples (28×28 pixel images) 

were augmented by four times using the elastic distortion method in [215] to increase the total size 

of training set to 3×105. A feedforward neural network with four hidden layers and 200 ReLU 

hidden nodes in each layer was designed. The class labels of original and distorted images were 

encoded as a one-hot regression target (10 channels, with -0.1 for all the incorrect classes and 0.9 
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for the correct class) [51], so that the network can be trained on the mean square error (MSE) loss 

without a softmax layer. The training via the stochastic gradient descent (SGD) algorithm achieved 

an error rate of 0.86% on the 10000 test samples, which implies that the network’s size and 

performance were both close to the multilayer perceptron models in [215]. 

To test uncertainty propagation on the multilayer neural network, a bimodal noise, which is 

characterized as a Gaussian mixture of two equally weighted members with ±5 mean vectors and 

diagonal covariance matrices with standard deviations of 10, was added to the pixels of images. 

The proposed method was implemented to propagate this input uncertainty using the parameters 

in Table 2-3. For comparison, two UT-based methods were also applied: one is UT for the entire 

neural network that only generates sigma points once at the input for each of the two noise 

components and the other is layer-wise UT that performs SVD and generates sigma point before 

each ReLU layer. The accuracies of the proposed method and the two UT methods are evaluated 

by comparing their predicted distributions with the ground truth estimated using a Monte Carlo 

simulation of 10000 samples for each image, as summarized in Table 2-5. All the evaluations were 

on the output channels of the correct classes (i.e., the ideal output should be 0.9 according to the 

one-hot encoding) and averaged over the 10000 test dataset images. As can be seen, the proposed 

method with adaptive splitting achieved a noticeable improvement over the layer-wise UT method 

that straightly propagates the two input noise components, though the computation cost also 

increased moderately. The Entire-NN UT method was the least accurate as the sigma points 

produced at the input will lose accuracy in matching the moments through subsequent layers, while 

its computation time was the longest owing to the costly SVD on the 784-dimensional input. Then 

in Figure 2-14, the predicted output PDFs for a test image (a handwritten digit 9) are compared, in 

which the proposed method outperformed the layer-wise UT in matching the MC histogram. 

Therefore, the proposed method proves to be effective in propagating uncertainty through the 

multilayer structures of neural networks, though the high dimensional SVD might still be a 

computational bottleneck for real-time implementation on very large networks.  
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Figure 2-14 Comparison of predicted output PDFs for a MNIST image 

The PDFs are marginalized on the one-hot channel for digit 9 

 

Table 2-5 Comparison of output uncertainty predictions on the MNIST test dataset 

 KL divergence Error of 

predicted mean 

Error of 

predicted 

variance 

Computation 

Time 

Proposed Method 0.093 1.03 % 1.56 % 0.23 sec/image 

Layer-wise UT 0.171 1.97 % 3.13 % 0.15 sec/image 

Entire-NN UT 1.136 5.38 % 5.79 % 0.38 sec/image 

2.4 Summary 

In this chapter, a nonlinear uncertainty propagation method based on adaptive Gaussian 

mixture splitting is developed for artificial neural networks. An innovative nonlinearity evaluation 

criterion based on the Kullback–Leibler divergence between the true transformation of a 

componential Gaussian distribution and its approximation via local linearization is derived to 

select the components for splitting. The splitting will only be applied to those Gaussian 

components which are carrying a high magnitude of uncertainty (large covariance), have more 

contribution to the mixture (large weights), and encounter more severe nonlinearity from the 

activation layer. A set of univariate Gaussian splitting schemes are established, which can be 

extended to decompose multivariate Gaussian distributions without degradation of accuracy. The 

nonlinearity examination, Gaussian splitting, and unscented-transform-based propagation of 

examined Gaussian components are all utilizing the same set of singular value decompositions of 

covariance matrices, and a Gaussian mixture reduction routine is adopted to further regulate the 
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number of components and minimize the computation cost.  

Three examples of nonlinear dynamic systems approximated by recurrent networks and two 

data-driven examples modeled by multilayer networks are presented to validate the effectiveness 

of the proposed method. By comparing the results with Monte Carlo simulations and other methods 

in the literature, the proposed scheme is proved to be capable of accurately propagating Gaussian 

mixture uncertainties through neural networks to predict output distributions. The computation 

times of the proposed method are considerably shorter than the Monte Carlo simulation times and 

the predicted Gaussian mixtures are more compact than those from the existing Gaussian mixture 

methods. Therefore, it could be used as a versatile scheme to address both uncertainty propagation 

through time in recurrent neural networks and layer-wise propagation in deep neural networks.  
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3. ADAPTIVE GAUSSIAN MIXTURE FILTER FOR NONLINEAR 

STATE ESTIMATION 

This chapter develops an adaptive Gaussian mixture filter (AGMF) with active nonlinearity 

assessment and Gaussian mixture refinement. For state prediction, a feedforward neural network 

is used to approximate the state equation and thus the complex dynamics of the system is converted 

to tractable sigmoid activation functions. Then the nonlinearity in state transition is assessed using 

the Kullback–Leibler criterion from Chapter 2 at the network’s hidden layer so that the Gaussian 

mixture can be refined before predicting the prior PDF. For Bayesian update, the measurement 

nonlinearity is assessed by the divergence between true and approximated likelihoods so that the 

prior can be refined before estimating the posterior. The convergence rates of designed 

nonlinearity measures and the bound of state PDF estimation errors are quantified. The proposed 

AGMF is compared with the widely used nonlinear Kalman filters, particle filters, and latest GMFs 

in the literature on multiple examples, which proves that the proposed filter can achieve state-of-

the-art accuracy with a reasonable computational cost on highly nonlinear state estimation 

problems subject to high magnitudes of uncertainties. 

3.1 Preliminaries and Problem Statement 

3.1.1 Recursive Bayesian State Estimation 

This study considers the state estimation of the following nonlinear dynamic systems in the 

discrete-time domain: 

 
( )

( )

1, ,k k k k

k k k

−=

= +

x f x u w

y g x v
  (3.1) 

where k=1, 2, … is the discrete-time index, xk is the n-dimensional state vector at time k, uk is the 

nu-dimensional vector of control input, yk is the ny-dimensional vector of measurable output, wk is 

the nw-dimensional process noise and vk is the nv-dimensional measurement noise. For simplicity 

of derivation, both wk and vk are assumed to be zero-mean Gaussian white noises, i.e., wk ~ N (0, 

Qk) and vk ~ N (0, Rk) with Qk and Rk be the covariance matrices. The vector-valued nonlinear 

functions f and g are the state transition function and measurement function respectively, both of 

which are assumed to be continuous and g is assumed to be differentiable.  



 

 

64 

In recursive Bayesian estimation, assume that the probability density function (PDF) of state 

variables based on the measurements up to time k−1 is known as p(xk−1|y1:k−1), then the inference 

of state PDF at time k consists of two steps. Firstly, a prior PDF is predicted using the state 

transition integral below to track the evolution of state under system dynamics: 

 ( ) ( ) ( )1: 1 1 1 1: 1 1| | |k k k k k k kp p p d


− − − − −
−

= x y x x x y x   (3.2) 

where p(xk|xk−1) is the conditional state transition PDF. If the process noise is an additive Gaussian 

noise, then p(xk|xk−1)=N (xk|f(xk−1,uk), Qk). However, because the function f is nonlinear, the state 

transition PDF is still non-Gaussian with respect to xk−1 and hence the above integral is intractable, 

even if p(xk−1|y1:k−1) is Gaussian. Secondly, upon the receiving of a measurement yk, the Bayes’ 

rule is used to update the prior PDF and calculate the posterior PDF p(xk|y1:k): 
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p p
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−
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x y

y x x y x
  (3.3) 

where p(yk|xk) is the conditional likelihood function. This posterior PDF at k can be sent to Eq. 

(3.2) to predict the prior PDF at the next time step k+1, and repeat recursively. However, even with 

a Gaussian prior PDF, the posterior PDF in Eq. (3.3) may not have a closed-form solution because 

the likelihood function p(yk|xk)=N (yk|g(xk), Rk) is non-Gaussian with respect to xk.  

As can be seen, the intractability of state prediction and Bayesian update is mainly caused by 

the nonlinearity in the functions f and g. If f and g are only weakly nonlinear so that they can be 

accurately approximated by their first-order Taylor expansions, then the state transition PDF and 

measurement likelihood can be written as Gaussian functions with respect to the state xk. Thereby, 

both the Eq. (3.2) and (3.3) will have analytical Gaussian-form solutions [73]. 

3.1.2 Gaussian Mixture Filter 

Since the EKF and other high-order Kalman filters (e.g., UKF, QKF) all estimate the state 

PDF in Gaussian form, their fidelity will depend on the severity of nonlinearity in the system [80]. 

In contrast, the Gaussian mixture filter (GMF) is designed with the capacity to characterize any 

non-Gaussian state PDFs. For simplicity of notation, we omit the conditioning on measurements 

and write the posterior state PDF in a GMF as: 
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where Nk is the number of components at time k,
,

i

x kw and ( ), ,| ,i i

k x k x kx μ ΣN  are the weight and 

Gaussian density of the i-th component, in which 
,

i n

x k μ and 
,

i n n

x k

Σ is the mean vector and 

covariance matrix respectively. When k=0, p(x0) represents the initial state uncertainty. Besides, 

the Gaussian mixture of prior PDF is denoted by the superscript ‘–’ as: 

 ( ) ( ) ( ) ( )1: 1 1 1
| | ,

k kN Ni i i i i

k k k k k k k k ki i
p p w p w

− −
− − − − − −

− = =
= = x x y x x μ ΣN   (3.5) 

Given a posterior mixture PDF at k−1 with Nk−1 components, substituting Eq. (3.5) into Eq. 

(3.2) will result in a prior PDF with unchanged mixture size and weights: 
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For a given prior mixture PDF with Nk
− components, substituting Eq. (3.6) into Eq. (3.3) will also 

result in a posterior mixture PDF with the same number of components: 
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where the updated posterior density in each component is defined as: 
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The integral on the denominator is a normalization factor called the marginal likelihood, which 

reflects the possibility that the measurement yk is generated by the state in pi−(xk). The posterior 

weights wi
k are renormalized according to marginal likelihoods so that the components closer to 

the actual measurement will become more dominant:  
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At any time step, the estimated state of a GMF in the sense of minimum mean square error 

(MMSE) can be easily extracted as the mean and covariance of the Gaussian mixture: 
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The filter performance in this work is thus mainly rated by the mean square error (MSE). Besides, 

as the GMF is designed to accurately track the state PDF, the Kullback–Leibler (KL) divergence 

and L1 norm are used to measure the distance between the true and estimated state PDFs: 

 ( ) ( )
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ˆ|| log

ˆ

k

KL k k
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D p p p d
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 ( ) ( )ˆ ˆ
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

−
− = − x x x   (3.12) 

While the KL divergence has been introduced in Eq. (2.6), it is refined here for the PDF of state 

vector xk. These two measures both belong to the f-divergence family and hence are invariant to 

invertible transformations [217]. The KL divergence is easy to calculate for exponential family 

distributions including the Gaussian distribution, and the L1 norm satisfies the triangle inequality 

that facilitates the error decomposition, which will be useful in the error analysis. 

For a given dynamic system whose model can not be altered, the way to minimize nonlinear 

distortion in a GMF is to keep the covariance of each component narrow so that the linearization 

of the system model at a Gaussian center can provide a close approximation within the range of 

that component. Therefore, how to determine whether a Gaussian component is narrow enough 

and how to narrow down the wide components without causing misrepresentation in state PDF 

will be the major challenges to be addressed in the next section. 

3.2 The Adaptive Gaussian Mixture Filter 

Considering that the nonlinear distortion that deteriorates filter fidelity could occur in both 

the state prediction and Bayesian update stages, the Gaussian mixtures in both prior and posterior 

PDFs should be refined so that their components can be assured of high fidelity when processed 

by Gaussian filters. The nonlinearity assessment and adaptive splitting scheme, which is adopted 

from Chapter 2, is applied to state prediction in Section 3.2.1. Then this scheme is extended to the 

Bayesian update in Section 3.2.2. A quantitative analysis of the filter performance is provided in 

Section 3.2.3. 
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3.2.1 State Prediction using Gaussian Mixture Uncertainty Propagation 

In a nonlinear system, while the measurement function based on sensor principles may fall 

into certain normally used forms (e.g., the L2 norm for distance measurement and arctan for angle 

measurement in radar tracking), the state equation defining system dynamics can be more diverse 

and complex, which makes the state transition integral intricate. If there is no process noise, the 

state transition PDF will be a Dirac delta function, i.e., p(xk|xk−1) =δ[xk−f(xk−1,uk)]. However, even 

in this case, the prior PDF may still not be analytically solvable, especially if the function f is not 

bijective. Hence, though it is known that the prior PDF will be non-Gaussian when f is nonlinear, 

most of the GMFs are still assessing the impact of nonlinearity without explicitly probing the non-

Gaussianity. To devise a better nonlinearity assessment scheme, this work considers converting 

the state transition function f into more tractable forms. If function f is differentiable and 

monotonic, then the prior PDF without process noise can be calculated as:  
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  (3.13) 

where | | denotes the determinant of a matrix, and a change of variables is used from the first to the 

second line. If f is a vector of univariate functions, its Jacobian matrix will be diagonal and the 

determinant will be easy to compute. One instance that satisfies all these conditions is the sigmoid 

function, which is widely used as the activation function in artificial neural networks.  

Inspired by the tractability of the sigmoid function, the filter in this work is devised to solve 

the state prediction problem by approximating the state transition function f with a feedforward 

neural network (FFNN). An FFNN with a single sigmoid-function hidden layer and sufficiently 

many hidden nodes can approximate any continuous function to any degree of accuracy [203]. 

Hence, the FFNN’s error in approximating the function f can be minimized by choosing a proper 

network size, so that it will have a trivial effect on the filter’s accuracy. Besides, the FFNN can be 

trained offline with data collected from experiments on the physical system or simulations of the 

system model, while it facilitates on-line state prediction. As shown in Eq. (3.13), the state 

transition integral in a sigmoid function layer is more tractable than that for the original system 
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model, which enables a more efficient assessment of nonlinearity.  

The state prediction is fundamentally an uncertainty propagation problem, i.e., propagating 

the uncertainty quantified by the posterior state PDF at k−1 through the system to predict the prior 

PDF at k. Therefore, the Gaussian mixture scheme for uncertainty propagation in neural networks 

developed in Chapter 2 is adopted. Define the augmented state vector as xa,k−1=[xk−1; uk; wk], then 

the single-hidden-layer FFNN to approximate the state equation can be formulated as: 

 ( )2 1 , 1 1 2k a k k −= + + +x W W x b b ε   (3.14) 

where ( )
1

u wm n n n + +
W and 

1

mb are the weight and bias in the hidden layer, m is the number 

of hidden nodes,
2

n mW and 
2

nb are the weight and bias in the output layer, ϕ is the 

sigmoid function (e.g. logistic or hyperbolic tangent function), and εk is the approximation error 

of the FFNN. The impact of error εk will be analyzed in Section 3.2.3. Given the posterior PDF at 

k−1, the normally distributed control input N (uk, Σu,k) (Σu,k=0 if the controller is deterministic) 

and the process noise wk, the joint PDF of the augmented state vector is: 
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The algorithm to propagate p(xa,k−1) through the FFNN has been elaborated in Section 2.2. 

But since the notations of variables are a little different between Chapter 2 and this chapter, some 

key steps in the propagation are briefly presented below for clarity. First, p(xa,k−1) is mapped to the 

PDF of the state before activation function by a linear transformation z =W1xa,k−1+b1:  
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  (3.16) 

where z is the m-dimensional vector of the FFNN’s pre-activation states. This linear mapping is 

equivalent to the state transition integral in Eq. (3.6) with a linear function f.  

Then for the Gaussian density in the i-th component of p(z), i.e., pi(z) = N (μz
i, Σz

i), its true 

post-activation density ( )ip s  and the density approximated by linearization ( )ˆ ip s  will be in the 

same form as Eq. (2.8), where s is the m-dimensional vector of the FFNN’s post-activation states. 

The difference is that this Chapter uses m to denote the number of hidden nodes and ϕ to denote 

the sigmoid function, while Chapter 2 uses k and f respectively. The nonlinearity in ϕ is assessed 

by the KL divergence between the true and approximated post-activation densities: 
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The Eq. (3.17) is a reorganization of Eq. (2.9) and the expectation integral can be evaluated 

using UT. For the m-dimensional Gaussian density pi(z), 2m+1 sigma points Zj
i and their weights 

Wj
i (j=1,…,2m+1) can be generated using Eq. (2.10) based on the SVD in Eq. (2.11). Then the 

expectation integral in Eq. (3.17) can be evaluated as: 
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If the KL divergence exceeds a threshold thD, it means the pre-activation density pi(z) will be 

noticeably distorted and its post-activation density can not be precisely approximated in Gaussian 

form. Hence, this component will be split into a set of narrower sub-components to alleviate the 

distortion. For a weighted component wz
ipi(z) with density pi(z)=N (μz

i, Σz
i), the splitting along its 

j-th singular vector can be obtained as a sub-mixture of P components: 
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where 
pw , 

p  ,   are the weights, means, and shared standard deviation of sub-components in a 

splitting scheme from Table 2-2. In this work, the splitting is performed along the singular vector 

on which the sigma points have the largest norm of deviation from a linear extrapolation: 
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If the pre-activation PDF is a Gaussian mixture, this nonlinearity assessment and splitting 

process will be repeated on each component until the KL divergences of all the components drop 

below the threshold. Then the refined mixture ( ) ( )
1

| ,
kN i i i

z z zi
p w

−

=
=z z μ ΣN , of which the number 

of components has increased from Nk−1 to Nk
−, can be propagated using UT as: 
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Next, the linear transformation xk =W2s+b2 is applied to this post-activation PDF, and the 

prior state PDF ( )kp−
x  can be predicted with the following Gaussian mixture parameters: 

 
2 2 2 2

i i i i i i T

k s k s k sw w− − −= = + =μ W μ b Σ W Σ W   (3.22) 

Lastly, a Gaussian mixture reduction step, such as the one described in Section 2.2.4, can be 

applied to merge components and prevent the splitting operation from increasing the mixture size 

exponentially over time, which is necessary to maintain the computational efficiency.  

3.2.2 Bayesian Measurement Update with Adaptive Refinement 

A Bayesian state estimator incorporates measurements from the actual system to correct the 

prior PDFs predicted based on the system model. Applying the uncertainty propagation method in 

Section 3.2.1 to the measurement equation can provide a refined prediction of measurement PDF 

p(yk), but may not explicitly improve the fidelity of the posterior state PDF. Therefore, a 

nonlinearity assessment and Gaussian mixture refinement scheme dedicated to the Bayesian 

update should be designed. As shown in Eq. (3.8), the shape of each posterior density is defined 

by the product of its corresponding prior density and the measurement likelihood. Therefore, given 

a Gaussian mixture prior PDF, the impact of nonlinearity is mainly associated with the likelihood 

function [76]. 

With the additive Gaussian measurement noise, the true likelihood function can be written as 

p(yk|xk)=N (yk|g(xk), Rk), which is non-Gaussian with respect to xk as the function g is nonlinear. 

If g is differentiable, the approximated likelihood by linearizing g at the i-th prior Gaussian density 

pi−(xk)=N (µk
i−, Σk

i−) can be written as a Gaussian function of xk: 
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where the matrix Hk
i should be invertible or have a pseudoinverse. This likelihood makes the 

Bayesian update analytically solvable (i.e., the EKF solution). How well this likelihood can 

approximate the true likelihood depends on the severity of nonlinearity of g within the span of 

pi−(xk). Hence, the following divergence between the true and approximated likelihoods is defined 

to assess the impact of nonlinearity in the Bayesian measurement update:  
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For a Gaussian mixture prior PDF, the above likelihood divergence can be estimated for each 

of its n-dimensional Gaussian density pi−(xk) using UT as: 
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where Xj
i and Wj

i are the sigma points and weights (j=1,…,2n+1) of the i-th component generated 

using Eq. (2.10) based on the SVD of Σk
i− as in Eq. (2.11). If the likelihood divergence of a prior 

component exceeds a threshold, this component will be split into narrower sub-components in the 

same way as Eq. (3.19), along the singular vector with the largest directional divergence:  

 ( ) ( ) ( ) ( )  ˆ ˆmax 1, ,i i i i

j j j n j n
j

X X X X j n+ +− + − G G G G   (3.26) 

By repeating the splitting process until the likelihood divergences of all the components drop 

below a threshold thL, the refined prior PDF is obtained ( ) ( )
1

| ,
kN i i i

k k k k ki
p w− − − −

=
=x x μ ΣN , in 

which the number of components has increased from Nk
− to Nk. The refined prior densities should 

have been amply narrow to yield near-Gaussian posterior densities. Given that the linearization of 

g and sigma points are both available, either EKF or UKF can be applied to each component. The 

UKF is adopted in this work as it is in general more accurate than EKF. The posterior PDF can be 

estimated using UKF with the following Gaussian mixture parameters: 
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where the weights are renormalized using Eq. (3.9), and the UKF gains Kk
i are obtained as [66]:  
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  (3.28) 

Lastly, the Gaussian mixture reduction method in Section 2.2.4 can be applied again to 

simplify the posterior PDF if the mixture size exceeds a limit Nmax, before proceeding to the next 

time step k+1. The complete AGMF algorithm, including both state prediction and Bayesian 

update, is summarized in Algorithm II. 

 

Algorithm II: adaptive Gaussian mixture filter (AGMF) 

Given the system model and the initial uncertainty ( ) ( )0

0 0 0 0 01
| ,

N i i i

i
p w

=
=x x μ ΣN , set k=1. 

(1) Training of the FFNN in Eq. (3.14) by backpropagation to approximate the function f; 

State Prediction for the Prior PDF 

(2) Linear transformation from p(xa,k−1) to p(z) using Eq. (3.16); 

(3) For each component in p(z), evaluate Eq. (3.17) using UT;  

(4) If ( ) ( )( )ˆ||i i

KL DD p p ths s , split the component i using Eq. (3.19); 

(5) Repeat steps (3) and (4) until all components drops below thD; 

(6) Linear transformation to predict the prior state PDF p−(xk) using Eq. (3.22); 

(7) Gaussian mixture reduction on p−(xk) if the mixture size Nk
− is larger than Nmax; 

Bayesian Measurement Update for the Posterior PDF 

(8) For each component in p−(xk), evaluate Eq. (3.24) using UT; 

(9) If 
( )

( ) ( )ˆlog | |i
k

k k k k Lp
E p p th−   x

y x y x , split the component i; 

(10) Repeat steps (8) and (9) until all components drops below thL; 

(11) Apply the UKF in Eq. (3.27) to obtain the posterior state PDF p(xk); 

(12) Gaussian mixture reduction on p(xk) if the mixture size Nk is larger than Nmax; 

(13)  k=k+1, go to step (2). 

3.2.3 The Analysis of the Adaptive Gaussian Mixture Filter 

In this section, the performance of the AGMF in estimating the state PDF is analyzed. First, 

it is shown that the splitting process at the sigmoid hidden layer of an FFNN could refine a 



 

 

73 

Gaussian density to the level of any threshold value thD. 

Lemma 1. Let the pre-activation Gaussian density N (z|μz, Σz) have a bounded mean vector, 

i.e., ||μz||∞ <Mµ<∞, and the singular values λi (i=1,…,m) of covariance matrix Σz satisfy λmax/λmin 

<Mλ<∞, then for any arbitrarily small positive value of thD, there exist σD>0 such that if the trace 

( )tr z DΣ , the KL divergence in Eq. (3.17) satisfies ( ) ( )( )ˆ||
KL D

D p p ths s .  

The proof of Lemma 1 is provided in Appendix C. Since each splitting on a singular value λj 

reduces tr(Σz) by ( )21 j − , repeating the splitting will eventually make tr(Σz) amply small such 

that the refined component can yield a KL divergence lower than thD. Next, the error of the prior 

PDF predicted based on this splitting method is analyzed. 

Lemma 2. Assume the L1 norm between the true and estimated posterior PDFs at k−1 is 

known ( ) ( )1 1 1
ˆ

k k kp p − − −− =x x  and the FFNN’s approximation error is a zero-mean Gaussian 

process εk~N (0, Σε), then the L1 norm error of the predicted prior PDF at k is bounded by: 
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  (3.29) 

where 
KLD and P are the KL divergence and number of components in the splitting scheme from 

Table 2-2, and Nk
− −Nk−1 is the increase of mixture size due to the splitting to meet thD.  

Proof: Given that the L1 norm is invariant under linear transformations, the error after Eq. 

(3.16) is still ( ) ( ) 1
ˆ

kp p  −− =z z . Then assume that the components ( )i i

zw p z  in the estimated 

pre-activation PDF ( )p̂ z  are split into sub-mixtures ( )
1

Pi i

z p pp
w w p

= z  in the refined PDF ( )p z . 

By using the triangle inequality of L1 norm and the Pinsker’s inequality that the L1 norm is bounded 

by the KL divergence ( )2 ||KLp p D p p−  , it can be shown that: 
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  (3.30) 
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Since each splitting adds P−1 new components and the component weight has wz
i<1, if the mixture 

size is increased by Nk
−−Nk−1, the total L1 norm error caused by splitting is bounded by: 

 ( ) ( ) 1ˆ 2 2
1

i k k
z KL KLi

N N
p p w D D

P

−

−−
−  

−
z z   (3.31) 

Then to propagation the Gaussian mixture through the sigmoid function: 

 
( ) ( ) ( )( ) ( )( )
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ˆ
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p p p p

p p p p

− =  −

  − +  −

s s z z

z z z z
  (3.32) 

where Φ is the exact PDF mapping through function ϕ, and ΦA is the approximated mapping via 

linearization. As the sigmoid function ϕ is continuous and monotonic, it is an invertible 

transformation to which the L1 norm is invariant [217], and thus the L1 norm between exact 

mapping solutions is: 

 

( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) 1
1

ˆ ˆ 2
1

k k
k KL

p p p p

N N
p p p p D
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
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−
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−

z z z z

z z z z
  (3.33) 

Then provided that all the refined components have been narrow enough to yield KL divergences 

lower than thD under the approximated mapping, it can be shown that: 
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  (3.34) 

Next, the linear transformation in Eq. (3.22) will not alter the L1 norm in Eq. (3.32). Lastly, 

due to the approximation error εk, when the state predicted by FFNN is xk ~ ( ),i i i

k k kw − − −

 μ ΣN , the 

state from the actual system should be xk+εk ~ ( ),i i i

k k kw 

− − − + μ Σ ΣN . Using the formula for the 

KL divergence between two Gaussians [218], the impact of error εk can be quantified as: 
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Combine Eq. (3.33)~(3.35), the L1 norm error in Lemma 2 can be established. Q.E.D. 

The L1 norm in Eq. (3.29) consists of the error from the previous time step, the error due to 
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splitting, the error of approximated propagation, and the error introduced by approximating the 

system with an FFNN. In practice, the error covariance Σε can be estimated by the MSE in FFNN 

training, which can be made desirably small given a sufficient number of hidden nodes. Then the 

magnitude of δε can be minimized. If the splitting scheme is also precise and the Gaussian mixture 

is refined to a small value of thD, the total L1 norm error in the prior PDF can be regulated to a 

minimal level. Next, the error of the posterior state PDF will be analyzed. 

Lemma 3. Assume that 1) the Gaussian prior PDF p−(xk)=N (μk
−, Σk

−) has a finite distance 

to the measurement ( )
2

k k gM−−   y g μ ; 2) the measurement function g is differentiable and 

the norm of its Jacobian matrix is bounded 
2k HM  H ; 3) Taylor’s expansion of g has a 

bounded second-order remainder: 

 ( ) ( ) ( ) ( )
2

2 2 2 2
  with   k k k k k k r k kM− − −= + − +  −g x g μ H x μ r x r x μ   (3.36) 

then for any arbitrarily small positive value of thL, there exist σL>0 such that if the trace tr(Σk
−)<σL, 

the likelihood divergence in Eq. (3.24) will be lower than thL, and the KL divergence between the 

exact and estimated posterior PDFs will be lower than M×thL for a finite factor M<∞. 

The proof of Lemma 3 is provided in Appendix D. A sufficient condition to satisfy Eq. (3.36) 

is that the function g is second-order differentiable and its Hessian matrices have bounded 2-norms. 

Next, the error analysis of posterior PDF is extended to the Gaussian mixture case.  

Lemma 4. Assume that 1) the L1 norm between the true and estimated prior PDFs at k is 

known as ( ) ( )ˆ
k k kp p − − −− =x x ; 2) given the L1 error of initial condition ( ) ( )0 0 0

ˆp p − =x x

and a sequence of measurements {y1, y2, …, yk}, there exists C<∞ and ρ<1 such that the exact 

solution of filtered state PDF satisfies: 

 ( )( )( )( ) ( )( )( )( )1 1 0 1 1 0 0
ˆ k

k k k kp p C − −   −   x x   (3.37) 

with Γk be the PDF mapping under Bayesian update with measurement yk, then the L1 norm error 

of the estimated posterior PDF at k is bounded by: 

 ( ) ( )ˆ 2 2
1

k k
k k k k KL L

N N
p p C D M th

P
  

−
− −

= −  + +  
− 

x x   (3.38) 
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where M is the finite factor as in Lemma 3 and Nk
 −Nk

− is the increase of mixture size from prior 

to posterior PDF due to the splitting to meet thL.  

Proof: First, the predicted prior PDF ( )ˆ
kp−

x  is refined by splitting to get ( )kp−
x . Same as 

Eq. (3.31), the L1 norm error after splitting is  
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  (3.39) 

Then to update the prior PDF and get the posterior PDF: 
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where Γ is the exact Bayesian update, and Γ A is the approximated update using the likelihood in 

Eq. (3.23). Same as Eq. (3.32), while the error is measured between the exact mapping of true PDF 

and the approximated mapping of estimated PDF, the exact mapping of estimated PDF is used as 

a medium for error decoupling. Applying Eq. (3.37) to the first decoupled term implies: 

 ( )( ) ( )( ) ( ) ( )k k k kp p C p p− − − − −  −x x x x   (3.41) 

And the KL divergence between ( )( ) ( )
1

ˆ ˆkN i i
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p w p−
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 =x x  

is bounded by the weighted sum of componential divergences [218]: 
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Substituting the weights and densities in Eq. (3.8) and (3.9) into each component implies: 
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  (3.43) 

As shown in Appendix D, both terms are bounded by linear functions of the covariance trace. If 

all the traces are less than σL, the componential divergence will be lower than M×thL for some 

finite factor M. Then, applying Pinsker’s inequality to Eq. (3.42) gives:  
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Combining Eq. (3.39), (3.41) and (3.44), the L1 norm error in Lemma 4 can be established. 

Q.E.D. 

Lemma 5. Assume 1
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Proof: For convenience, redefine the operator Γ as the mapping of L1 error through exact 

Bayesian update, and thus it satisfies ( )0 0

k kC     and ( )1 2 1 2C C    +  + . Combining 

the prior error in Eq. (3.29) and posterior error in Eq. (3.38) recursively gives: 
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  (3.45) 

where Nk
 −Nk−1 is the total increase of mixture size from time step k−1 to k.  Q.E.D. 

The Lemmas 1 and 3 proved that the refinement scheme could reach any small thresholds thD 

and thL as the trace of covariance matrix shrinks, with a square-root rate of convergence for the 

former and a linear rate for the latter. And then the Lemmas 2, 4 and 5 established the boundedness 

of the L1 error of estimated state PDF. Although under what conditions the exponential forgetting 

assumption in Eq. (3.37) holds is still an active area of research [78], many dynamic systems in 

practice do exhibit the “forgetting initial condition” behavior under Bayesian filtering [222]. Under 

this forgetting assumption, the bound of state PDF error mainly depends on the magnitude of Δ in 

Lemma 5, which could be minimized by choosing proper neural network size to approximate the 

state equation and appropriate thresholds to refine the Gaussian mixture PDFs. 

Remarks: 1) The thresholds thD and thL should not be selected lower than the KL divergence 
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of the adopted splitting scheme, otherwise, the gain of reducing nonlinear distortion error may not 

compensate the loss caused by splitting misrepresentation. 2) Since the new components from 

splitting inherit singular values and vectors from the original component, the SVD doesn’t need to 

be repeated. Therefore, the AGMF that combines the linearization in EKF and sigma points in 

UKF to process each component has a computational complexity O(EKF+UKF)×Nk−1< O(AGMF) 

<O(EKF+UKF)×Nk, given that the mixture size is increased from Nk−1 to Nk at step k. 3) The 

increased computational cost in AGMF is to handle the high nonlinearity and high magnitude of 

uncertainty in the system. If the system is only weakly nonlinear such that the divergences defined 

in Eq. (3.17) and (3.24) are inherently small without any splitting, then trivial improvement can be 

expected from the AGMF. Also, if the magnitude of state uncertainty is so small that the inverse 

Σk
−1 is overwhelming compared to a feasible FFNN error Σε, then the δε term will be nonnegligible 

and approximating the state equation with an FFNN may not help to improve filter fidelity. In 

these scenarios, the UKF or other non-mixture filters would be more efficient choices. 4) Though 

the AGMF is derived for Gaussian noises, it can be extended to non-Gaussian noises provided that 

the noise can be characterized as a Gaussian mixture. Then, the p(xa) in Eq. (3.15) will have Nk−1× 

Nw components by combining the state PDF with a Nw-component noise wk, and the measurement 

likelihood will also need to be assessed for each component in vk. Consequently, the Gaussian 

mixture reduction will be more critically needed to regulate the exponential growth of mixture size 

in addition to the increase due to splitting. 

3.3 Application Examples 

In this section, to evaluate the proposed AGMF, three numerical examples are presented, in 

which the AGMF is compared with the widely used nonlinear Kalman filters, particle filters and 

other latest filters in terms of state estimation accuracy and computational efficiency. 

3.3.1 Example I 

The first example focuses on testing the new Bayesian update scheme with Gaussian mixture 

refinement, given that the uncertainty propagation scheme for state prediction has been tested on 

various neural network examples in Chapter 2. Using a range function ( ) Tg =x x x , the 

measurement equation in this example is Ty v= +x x , where x=[x1, x2]
T is the state vector and v 
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~N (0, 0.02) is Gaussian white noise. As a replica of Example II in [62], the prior PDF of x was 

set to be p−(x)~N (μ, Σ) with μ=[−3, 0]T and Σ=diag[4, 4]. Then assume that a measurement y=1 

was received, the posterior PDFs estimated by different filters were compared.  

The true posterior PDF was evaluated numerically on a grid of points in the state plane and 

its mean value was used as the true state location. The AGMF was implemented with a maximum 

mixture size Nmax=200 and a splitting threshold thL=0.001. For comparison, an EKF, a UKF with 

UT parameters α=0.001, β=2, κ=0, a sequential importance resampling (SIR) particle filter (PF) 

with 2.5×104 particles, and a state-of-the-art GMF, i.e., the blob filter in [80], were also applied. 

For blob filter, 1000 Gaussian components were used and the lower bound of the information 

matrix was chosen to be Rmin=diag ([5, 5]) such that the resampled covariance would be bounded 

by Σ≤ Rmin
-TRmin

−1. The performances of these filters were compared in Table 3-1 in terms of the 

error of estimated mean state locations, the KL divergence between estimated and true posterior 

PDFs, and the mean computation time. As can be seen, the EKF and UKF failed to estimate the 

state accurately because of the nonlinear effect caused by the high magnitude of prior uncertainty. 

In contrast, the AGMF achieved the best accuracy while its computation time was similar to those 

of the PF and blob filter. Also, as shown in Figure 3-1, through the adaptive splitting of Gaussian 

prior PDF, the AGMF accurately predicted the volcano-shaped posterior PDF. Though the 

accuracies of PF and blob filter may be improved to the same level as the AGMF by increasing 

the number of samples, their computation times will then be considerably longer. Therefore, 

compared with these two filters, the AGMF can attain the best accuracy under the same level of 

computational cost, or has the best computational efficiency to attain the same level of accuracy. 
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Figure 3-1 Comparison of true and estimated posterior PDFs for Example I 

 

Table 3-1 Comparison of filter performance for Example I 

 Error of mean KL divergence  Computation time 

EKF 0.641 20.64 0.56ms 

UKF 0.458 1.708 0.53ms 

PF 8.4×10-3 0.017 55.5ms 

Blob filter 0.096 0.099 62.8ms 

AGMF 4.5×10-4 0.026 59.3ms 

3.3.2 Example II 

The second example considers a complete state estimation problem for a nonlinear dynamic 

system with the following model [78]: 
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  (3.46) 

where the noises are assumed to be wk~N(0,10) and vk ~N(0,1). The time-independent part of this 

state equation has two locally attractive equilibrium points at ±7 while the cosine term excites the 

jumping between these two modes, and thus the system may exhibit a bimodal state distribution. 

Also, the measurement function only contains the magnitude of xk but not the sign, which makes 

it difficult for a filter to discern the mode. For this problem, an FFNN with 5 hidden nodes was 

trained to approximate the state equation, and then the AGMF was implemented. An EKF, a UKF 

with the same parameters from [78], a PF based on SIR, and a blob filter were also simulated on 
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this system for 52 time steps with an initial state uncertainty p(x0)=N(0, 2). The parameters used 

by these filters are summarized in Table 3-2. 

 The filters are compared in terms of the root mean square error (RMSE) and computation 

time averaged over 100 Monte Carlo runs in Table 3-2 and Figure 3-2. It can be seen that the 

AGMF outperformed the EKF and UKF and achieved an RMSE similar to those of the PF and 

blob filter. Due to the low dimensionality of this problem, the PF could use fewer particles and 

hence had a better computational efficiency. In Figure 3-3, the state PDFs predicted by different 

filters at two representative cases are compared. The true PDF was estimated by the histogram 

extracted from a PF with 50000 particles, and the PDF of the 500-particle PF in Table 3-2 was 

obtained in the same way. As is shown, the EKF yielded too narrow Gaussians at local modes 

while the UKF produced too wide Gaussians to capture the global variance. The AGMF accurately 

predicted the bimodal PDFs with the best agreement with ground truth, while the PDFs of the PF 

and blob filter looked like ensembles of sparse impulses due to their limited sampling sizes. For 

the blob filter, though it had an RMSE similar to AGMF, using a narrow covariance upper bound 

for all components would lead to a coarse global approximation of state PDF if its number of 

components was not large enough while using a wider upper bound would increase the risk of 

local nonlinear distortion. In contrast, the AGMF was able to adjust the width of each Gaussian 

component adaptively and thus could achieve a better estimation of state PDF with fewer 

components.  

 

Table 3-2 Comparison of filter performance on Example II 

 RMSE Computation time Filter parameters 

EKF 20.87 0.021s  

UKF 7.47 0.019s α=1.3, β=1.5, κ=0.2 

PF 4.20 0.065s 500 particles 

Blob filter 4.73 0.275s 100 components, Rmin=100 

AGMF 4.28 0.211s  Nmax=25, thD=0.01, thL=0.01 

 



 

 

82 

 

Figure 3-2 Comparison of RMSE for state estimation in Example II 

 

     

 Figure 3-3 Comparison of estimated state PDFs in Example II 

 

3.3.3 Example III 

The third example explores a benchmark nonlinear filtering problem developed in [223], the 

“blind tricyclist” problem. Assume that a blind man is navigating a tricycle across an amusement 

park without knowing his own exact position. Two friends on two merry-go-rounds are shouting 

to him intermittently. The blind tricyclist measures the relative bearing angle between his forward 

direction and the direction to a friend by using his hearing to listen for shouts. He doesn’t know 

each friend’s rotation angle and rotation rate, though the center location and radius of each merry-

go-round are known. The navigation involves 7 state variables xk=[Xk, Yk, θk, φ1k, φ2k, ω1k, ω2k]
T, 

which consists of his X-Y position coordinates, his heading angle, and the angular positions and 
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velocities of the two friends on their respective merry-go-rounds. More details of this problem, 

including the state and measurement equations, initial uncertainty, and a nominal trajectory to test 

filters, can be found in [223]. The duration of the test trajectory is 141 seconds, the sampling 

interval is 0.5-seconds, and the measurement with respect to each friend occurs every 2 seconds. 

An FFNN with 20 hidden nodes was trained to approximate the state equation and then the AGMF 

was applied along with an EKF, a UKF, a PF and two blob filters, whose parameters are 

summarized in Table 3-3. The lower bounds of information matrix for blob filters were adopted 

from [80] as Rmin = diag[1/2.6; 1/2.6; 1/1.04; 1/0.3467; 1/0.4; 1/2000; 1/2000].  

The filters were tested for 100 Monte Carlo runs with randomly drawn start positions. The 

RMSEs of the estimated terminal positions (at t=141 s) are compared in Table 3-3, and the RMSEs 

along the trajectory are compared in Figure 3-4. In addition, in Figure 3-5, the trajectories 

estimated by different filters are plotted and compared with the true trajectory for one simulation 

case. Since a fairly large initial uncertainty was used, the impact of nonlinearity was significant 

for the filters. As a result, the RMSEs of the EKF and UKF were not satisfactory, though they had 

the shortest computation time. Even the PF had a sub-optimal performance on this problem, as 

also observed in [80]. The AGMF and two blob filters exhibited reasonable accuracies. As shown 

in Figure 3-5, though these three filters deviated at the beginning, they all converged to the true 

trajectory after some time while the other filters were still confused, which means these Gaussian-

mixture-based filters are more resistant to the impact of nonlinearity. The RMSE of the AGMF 

was almost the same as the blob filter with 7000 components, while its computation time was only 

8% of the latter. The blob filter with 700 components had a similar computation time as the AGMF, 

while its RMSE was moderately larger. Therefore, it can be concluded that among all the filters 

tested, the AGMF made the best compromise between filter accuracy and computational efficiency 

on this seven-dimensional highly nonlinear problem with a high magnitude of uncertainty.  
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Figure 3-4 Comparison of RMSE for state estimation in Example III 

 

Table 3-3 Comparison of filter performance on Example III 

 RMSE of position  Computation time Filter parameters 

EKF 4.66 0.069s  

UKF 10.14 0.140s α=0.001, β=2, κ=0 

PF 9.30 69.80s 10000 particles 

Blob filter-1 0.247 317.2s 7000 components 

Blob filter-2 0.630 24.29s 700 components 

AGMF 0.250 24.63s Nmax=200, thD=0.01, thL=0.01 

 

 

Figure 3-5 Comparison of estimated tricyclist trajectories 

3.4  Summary 

This chapter investigates the probabilistic state estimation in nonlinear dynamic systems. A 

novel adaptive Gaussian mixture filter is developed by using Gaussian mixture models to estimate 
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the non-Gaussian distribution of state variables. To attain a high-fidelity global approximation of 

state distributions, the Gaussian mixtures are refined adaptively by splitting components based on 

the local severity of nonlinearity. In the state prediction stage, it is proposed to approximate the 

complex dynamic state equation with a feedforward neural network so that the nonlinearity can be 

assessed more tractably at the sigmoid function layer. A likelihood divergence criterion is also 

proposed to assess the nonlinearity associated with measurements in the Bayesian update stage. 

The splitting process triggered by these designed criteria, as it shrinks the covariance of Gaussian 

components, can refine the Gaussian mixtures to any desired level with quantified rates of 

convergence. It has also been proved that under mild conditions, the L1 norm between the estimated 

state PDFs and exact Bayesian solutions is upper bounded and can be regulated to a minimal level.  

The proposed filter has been evaluated on multiple challenging nonlinear filtering problems. 

Compared to the widely used filters (e.g., EKF, UKF, particle filter) and state-of-the-art methods 

in the literature (e.g., blob filter), the AGMF designed in this work provides among-the-best state 

estimation accuracy with a reasonable computational cost. Especially, it can estimate any non-

Gaussian state distribution with a compact Gaussian mixture size and uncompromised fidelity, 

which makes it a promising solution for highly nonlinear state estimation applications. 
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4. PROBABILISTIC NEURAL NETWORK FOR UNCERTAINTY 

PREDICTION 

In this chapter, a Gaussian mixture probabilistic neural network (GM-PNN) with adaptive 

Gaussian mixture refinement is proposed. The network’s inputs, activation states, parameters and 

outputs are all treated probabilistically as Gaussian mixtures, which enables the characterization 

of arbitrary probability distributions. The Gaussian mixtures are refined before each nonlinear 

activation layer using the adaptive Gaussian mixture scheme from Chapter 2 to minimize their 

distortions. The refinement scheme is also extended to ensure the linear transformation fidelity 

with probabilistic weights. With this Gaussian mixture scheme, the predictive distributions that 

combine the input uncertainties, nonlinear effect of the network, and parameter uncertainties can 

be obtained directly and analytically without sampling or integration. The derivatives of all the 

probabilistic parameters are derived analytically so that the GM-PNN can be trained efficiently 

using any backpropagation method based on gradient descent. The GM-PNN achieved state-of-

the-art performance when benchmarked against other methods on a series of public datasets. 

Therefore, it is a promising solution to address real-world applications subject to uncertainties. 

4.1 The Gaussian Mixture Probabilistic Neural Network 

This work considers the probabilistic parameterization of the multi-layer feedforward neural 

networks. A feedforward neural network with L layers can be written as: 

 ( )( )1 1 1 1L L L Lf f− −= + + +y W W W x b b b   (4.1) 

where mx  is the m-dimensional vector of input features, 
ny  is the n-dimensional vector of 

output targets, 1l lk k

l
−

W  and lk

l b  are the weight and bias of the l-th layer with kl hidden 

neurons (l=1,…,L), and f is the nonlinear activation function. Also, for the l-th layer, define 

lk

l o  as the pre-activation states and lk

l a  as the post-activation states (note that the pre-

activation and post-activation states are denoted as z and s in Chapters 2 and 3): 

 
( )

1l l l l

l lf

−= +

=

o W a b

a o
  (4.2) 

with 0 =a x  and L =o y  at the input and output layers. For the GM-PNN studied in this work, the 
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probability density functions (PDF) of all its parameters are assumed as Gaussian mixtures, which 

enable the modeling of arbitrary multimodal non-Gaussian distributions: 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )( )

1
, | , | ,

lN i i i i i

l l l ll l l l li
p w

=
=

W

W W W b b
W b W Μ Σ b μ ΣN N   (4.3) 

where the weight and bias in the same layer share the same mixture size 
( )l

N
W

and component 

weights ( )
i

l
w

W
. For the bias vector lb , ( )

lki

l


b
μ  and ( )

l lk ki

l




b
Σ  denote its mean vector and 

covariance matrix in the i-th component, respectively, as for an ordinary multivariate Gaussian 

PDF. Then it is worth noting that for the weight matrix lW , ( )
1l lk ki

l
−


W

Μ  and ( )
1l lk ki

l
−


W

Σ are 

matrices with the same size as lW  with each element denoting the mean and variance of each 

weighting factor at the corresponding position. Though it is assumed that the weighting factors are 

uncorrelated, the multiplication operation in Eq. (4.2) will introduce correlation for the states in 

lo , even if the covariance matrices of 1l−a  and lb  are also diagonal. 

4.1.1 Linear Transformation in GM-PNN 

To infer the predictive distribution layer-wisely through the GM-PNN, assume that the PDF 

of activation states from the previous layer is ( ) ( ) ( ) ( )( )( )1

1 11 1 11
| ,

lN i i i

l ll l li
p w−

− −− − −=
=

a

a a a
a a μ ΣN , then 

the exact PDF of lo  at the current layer should be: 

 ( ) ( ) ( )

( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )1
1 1

1
, 1

| ,

   , ,

l l
i i T

N N
l l l l ll l

i j

l l l
j j j j

i j
l ll l l l

p w w
d d

− 
− −

−
=

+
=


 

a W
a a

a W

W W b b

o Wμ b WΣ W
o

Μ Σ μ Σ W b

N

N N
  (4.4) 

Although this transformation from 1l−a to lo is linear, the integration is in general intractable. This 

is mainly due to the multiplication of probabilistic state 1l−a with probabilistic weight lW , given 

that the product of two Gaussian random variables is non-Gaussian. Hence, rather than pursuing 

exact integration, the moment matching solution is used instead to approximate the integration for 

each pair of components [48] and maintain ( )lp o  in a tractable Gaussian mixture form: 
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( ) ( ) ( )
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  (4.5) 

where  denotes element-wise product, diag denotes the operation of converting a vector to a 

diagonal matrix and ( )1

i

l−a
s is the vector of diagonal elements of ( )1

i

l−a
Σ . The four terms in ( )

h

lo
Σ  

correspond to the covariance due to the coupling between ( )1

i

l−a
Σ  and ( )

j

lW
Σ , the covariance when 

only the weight lW  is probabilistic, the covariance when only the state 1l−a  is probabilistic, and 

the covariance of bias lb , respectively. 

This moment matching solution may have approximation errors. But, if ( )1

i

l−a
Σ is so narrow 

that ( )1

i

lp −a  degenerates into a Dirac delta function, then the integrals in Eq. (4.4) will converge 

to the solution in Eq. (4.5). A relaxed condition for a componential density in lo  to be Gaussian is 

the coupling term 
( ) ( )1l l−W a

Σ s  is zero for that component. The proof can be straightforward by 

considering the single Gaussian PDF case: given the weight matrix
, ,l l i jW =  W (i = 1, …, kl, j = 

1, …, kl−1), a state in ,1 ,, ,
l

T

l l l ko o =  o  has 1

, , , , 1,1

lk

l i l i l i j l jj
o b W a

−

−=
= + . The coupling term for 

,l io

equals zeros means ( ) ( )1

, , 1,1
var var 0

lk

l i j l jj
W a

−

−=
= . Since all the variances are non-negative, either 

( ), ,var l i jW or ( )1,var l ja −  must be 0, which implies one of 
, ,l i jW or 

1,l ja −
 for the same index j is 

deterministic such that their product is a deterministic weight (or state) times a probabilistic state 

(or weight). In such a case, 
,l io equals the sum of kl−1 Gaussian variables scaled by deterministic 

factors and will have a Gaussian distribution, as the scaling and summation of Gaussian variables 

is still Gaussian. Therefore, the smaller the coupling term is, the better the moment matching 
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Gaussians can approximate the exact solution. Based on the above discussion of the condition for 

a density in lo  to be Gaussian and following the covariance equation in last line in Eq. (4.5), a 

measure of the covariance coupling, denoted as CPCov , between ( )1

i

lp −a  and ( )j

lp W  is defined 

as:  

 
( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )( )

1 1

1

1 1 1

||

              

T
i j j i

CP l l l l

j i j i i i

l l l l l l

D p p− −

−

− − −

=

 + +

W a

W a W a a o

a W Σ s

Σ s Σ μ μ s

  (4.6) 

where ( )
i

lo
s is the vector of diagonal elements of ( ) ( ) ( )1

j i j T

l l l−W a W
Μ Σ Μ  and the superscript −1 denotes 

the element-wise reciprocal operation on a column vector. How to use this quantity to ensure the 

fidelity of predictive distribution inference will be discussed in the next subsection. 

4.1.2 Nonlinear Transformation in GM-PNN 

Given a pre-activation Gaussian mixture PDF ( )lp o , the nonlinear activation function f will 

distort each of its Gaussian components such that the components in the PDF ( )lp a of post-

activation state ( )l lf=a o  will no longer be Gaussian. If the activation function f is piecewise 

differentiable and monotonically increasing, like those listed in Table 2-1, then ( )lp a  have an 

analytical solution. However, as discussed in Section 2.2.1, this exact solution is no longer 

Gaussian and thus may not be tractable in the following layers. For this reason, the approximate 

solution by linearizing f at the center of each Gaussian component is often used, which will 

converge to the exact solution if the covariance ( )
i

lo
Σ  is infinitesimal [57].  

The adaptive Gaussian mixture scheme developed in Chapter 2 can be applied to assure the 

fidelity of PDF propagation in the nonlinear transformation of f. The quality of a linearization-

based density is assessed by its KL divergence with respect to its exact solution counterpart 

( ) ( )( )ˆ||i i

KL l lD p pa a , as derived in Appendix A. The evaluation of this KL divergence based on 

unscented transform and SVD of covariance matrices has been elaborated in Section 2.2.1. If the 

KL divergence of a component i exceeds a threshold, it means the linearization-based solution will 

yield a considerable error in propagating ( )i

lp o . Therefore, this component will be refined by 

splitting it into a set of sub-components with narrower covariance.  
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Before proceeding to the refinement, let’s revisit the linear transformation in Section 4.1.1. 

As has been mentioned, the moment matching solution in Eq. (4.5) will be close to the exact 

solution in Eq. (4.4) if the covariance coupling term is small. The coupling term can be minimized 

if lW is deterministic (i.e., non-probabilistic network, which is outside the scope of this work) or 

if the components in ( )1lp −a are narrow. Therefore, similar to the nonlinear transformation, the 

fidelity of linear transformation could also be improved by splitting components to narrow their 

covariance matrices. Besides, to save computational cost, it is preferred that the splittings for linear 

and nonlinear transformations can be performed together so that the SVD of covariance matrices 

required by splitting only needs to be performed once. For a pre-activation density ( )i

lp o , the total 

covariance coupling between its approximate post-activation density ( )ˆ i

lp a  and the next layer’s 

weight 
( ) ( )( )1

1 111

lN i j

l lli
w p+

+ ++=
W

W
W W~  can be assessed by the weighted sum of the componential 

couplings defined in Eq. (4.6):  

 ( ) ( )( ) ( ) ( ) ( )( )( )1

1 111
ˆ ˆ|| ||lNi i i j

CP l l CP l lli
Cov p p w D p p+

+ ++=
=

W

W
a W a W   (4.7) 

In addition to the KL divergence assessment using UT to ensure the nonlinear transformation 

fidelity at layer l, this coupling assessment by looking ahead at the next layer’s weight could trigger 

refinement to ensure the linear transformation fidelity at layer l+1. If the covariance ( )
i

lo
Σ  is refined 

such that ( ) ( )
i i i iT

l l
=

a o
Σ A Σ A is sufficiently narrow, then the magnitude of ( ) ( )1

j i

l l+W a
Σ s can be much 

lower than the 
( ) ( ) ( )( ) ( )1

j i i i

l l l l+
+

W a a o
Σ μ μ s  in Eq. (4.6), because the latter also depends on the mean 

magnitude of la  and 1l+W , and thus will not be infinitesimal. Thereby, the covariance coupling is 

negligible and the PDF of 1l+o  after the linear transformation at layer l+1 could be closely 

approximated as a Gaussian mixture using Eq. (4.5).  

The KL divergence and covariance coupling will be assessed for every component in ( )lp o . 

For a component 
( ) ( ) ( )( )| ,i i i

ll l l
w

o o o
o μ ΣN , if either of these two quantities exceeds their respective 

thresholds, it will be split into a sub-mixture of P components along its singular vector with the 

largest singular value. The splitting operation using a scheme selected from Table 2-2 is the same 

as Eq. (2.18) and Eq. (3.19). Assume that by repeating the splitting process until no component 
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triggers new splitting, the PDF of lo  is refined as ( ) ( ) ( ) ( )( )( )

1
| ,lN i i i

l ll l li
p w

=
=

o

o o o
o o μ ΣN  (note that 

the mixture size increases to ( )l
N

o
), then this refined Gaussian mixture PDF can be propagated 

through the activation function f using UT, as in Eq. (2.19). 

  

The obtained post-activation PDF ( )lp a  is then sent to Eq. (4.5) again to perform the linear 

transformation at layer l+1. The advantage of this unitive refinement process by extending the one 

in Section 2.2 is that by considering both the criteria of KL divergence and covariance coupling, 

it not only minimizes the nonlinear transformation distortion of ( )lp a  at layer l, but also ensures 

the linear transformation fidelity of ( )1lp +o at layer l+1. By performing the linear and nonlinear 

transformations layer by layer using this adaptive Gaussian mixture scheme until the last layer 

(l=L), the PDF of output ( ) ( )Lp p=y o can be predicted.  

To infer predictive distributions, the existing BNNs typically have to presume a Gaussian 

likelihood function with a problem-specific model precision hyperparameter and then integrate the 

likelihood over the posterior distribution of weights [90][93]. The integration is intractable in most 

cases and thus approximate inference methods like Monte Carlo sampling have to be used. In 

contrast, the predictive distribution of output in our GM-PNN can be inferred analytically by 

propagating Gaussian mixture probabilities forward layer by layer with all the uncertainties of 

input, states and parameters considered. The direct prediction of high-fidelity output distributions 

without sampling or evaluation of integration is the main advantage of the proposed GM-PNN 

over other probabilistic networks like BNNs. The predictive distribution inference algorithm of 

GM-PNN is summarized in Algorithm III. 

Lastly, since the refinement and linear transformation will increase the number of Gaussian 

components in ( )lp o  and ( )lp a exponentially over layers while the actual PDF is not going to be 

infinitely complex, the mixture size of ( )lp W  should be limited when defining the structure of 

GM-PNN (
( )l

N
W

= 2 or 3 should be adequate to model any multimodal distribution of parameters) 

and a Gaussian mixture reduction step, like the one in Section 2.2.4, can be used to merge 

components and reduce the computational complexity for very deep networks. 
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Algorithm III: inference of predictive distribution in GM-PNN  

Given the input with Gaussian mixture uncertainty ( ) ( )
1

,
N i i i

i
p w

=
=

x

x x x
x μ ΣN  (or 

( ) ( ),p =x x 0N for a crisp-value input) 

(1) Let ( ) ( )0p p=a x  and use Eq. (4.5) to predict ( )1p o , set l=1.  

(2) For each component in ( )lp o , evaluate the KL divergence KLD  and compare with the 

threshold KLth . 

(3) Evaluate the covariance coupling CPCov  and compare with the threshold CPth  

(4) If KL KLD th or CP CPCov th  split this component  

(5) Repeat steps (2)-(4) until there is no new splitting triggered. 

(6) Use UT to predict ( )lp a from the nonlinear transformation through f. 

(7) Use Eq. (4.5) to predict ( )1lp +o  from the linear transformation with 1l+W  and 1l+b . 

(8) Set l=l+1, repeat steps (2)-(7) until l=L−1. 

(9) Extract the predictive distribution of output ( ) ( )Lp p=y o . 

4.2 Backpropagation with Parameter Uncertainty 

Training a feedforward neural network as a deterministic model can be quite easy given the 

well-developed backpropagation techniques. In contrast, the training of probabilistic networks like 

BNN is difficult because the inference of posterior distributions of parameters is intractable and 

hence some approximate methods, like VI or EP, must be used. In this work, since the GM-PNN 

can infer predictive distributions analytically, it will be possible to build a backpropagation scheme 

in which its probabilistic parameters can be learned like in deterministic networks, instead of using 

a sampling-based approximation of gradients as in [16] and [91].  

The structure of a GM-PNN is defined by a hyperparameter set 
( )  

1, ,
, , , ,l l

l L
L m n k N

=
=

W
 

where L is the number of layers, m is the input dimension, n is the output dimension, kl is the 

number of hidden nodes and 
( )l

N
W

is the number of components for the distribution of  ,l lW b  in 

layer l. Given a dataset consisting of N samples  ,D = X Y  with  1 2, , , N=X x x x  and 

 1 2, , , N=Y y y y , the training of GM-PNN is to find a parameter set 

( ) ( ) ( ) ( ) ( ) 
( )1,

1, ,

, , , ,
l

i i i i i

i Nl l l l l

l L

w =

=

=
WW W W b b

Μ Σ μ Σ that minimizes a loss function. The loss function used in 

this work is negative log-likelihood (NLL): 



 

 

93 

 ( ) ( )
1

, , log | ,
N

i i

i

L p
=

 =− X Y y x   (4.8) 

where ( )| ,i ip y x  is the likelihood of measurement iy  under the predictive distribution of input 

ix  and parameter set  . The NLL loss indicates how well the model with parameter  describes 

the dataset D and is widely used in the maximum likelihood estimation (MLE) learning schemes.  

For GM-PNN, its likelihood for each data pair ( ),i ix y  could be readily computed from the 

predictive distribution generated in Section 4.1, and thus the NLL is an analytical expression of 

the parameter set  . If the derivatives of NLL with respect to each parameter in   are derived, 

then a gradient-descent method can be applied to train the GM-PNN. Following this idea, each 

epoch in the gradient-based training will consist of a feedforward step and a backpropagation step. 

In the feedforward stage, each input sample ix  is propagated forward through GM-PNN with the 

current parameter set  , with appropriate refinements performed and the distributions of states 

lo  and la  recorded at each intermediate layer. The likelihood ( )| ,i ip y x  is acquired by 

substituting iy into the predicted output distribution. Then in the backpropagation stage, the 

gradient ( ), ,L X Y  at the current parameter set   is evaluated backwardly from output to 

input based on the recorded intermediate-layer distributions, and the parameters in  are updated 

along the opposite gradient direction. Since the feedforward inference has been detailed in Section 

4.1 and the gradient-descent algorithms have been well developed in the literature [224], the 

remaining of this section will focus on deriving the gradients of the NLL loss function. 

First, the gradients of NLL for each sample ( )log | ,j
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where  is element-wise product,   is the Kronecker product, 
,i kh  is the index of components in  

( )lp o  that are generated by the i-th Gaussian component from ( )1lp −a  and k-th component from 

( )lp W . In addition, ( )1

i

l−a
s is the vector of diagonal elements of ( )1

i

l−a
Σ  and 

( )
,, i kj h
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d  is the vector of 

diagonal elements in 
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. Similarly, the gradients with respect to the bias lb  are: 
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The bias lb  has the same mixture size and component weights as lW , while the gradients about 

it are much easier to evaluate since the bias is only additive to the states. 
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Next, to move one layer back, the gradients of NLL with respect to the post-activation PDF 

at layer l−1 can be evaluated as:  
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Further, to move through the nonlinear activation function f:  
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where i
A is the Jacobian matrix of f at ( )

i

lo
μ . The above gradients are all derived based on matrix 

calculus. The Eq. (4.10) and (4.11) are used to update the parameters in layer l, while Eq. (4.12) 

and (4.13) are used to backpropagate to layer l−1. The gradients in Eq. (4.13) are then sent to Eq. 

(4.10) and (4.11) to update the parameters in layer l−1 repetitively until the input layer.  

Based on the explicitly given gradients, any gradient-descent algorithm can be used to train 

the GM-PNN. In this work, the stochastic gradient descent with momentum (SGDM) is adopted, 

as will be presented in the next section. Though the training scheme in this section is not Bayesian 

as it does not explicitly involve a prior distribution of  , it’s implicitly related to Bayesian 

networks because the negative log-likelihood term is also in the loss function of BNNs. While 

BNNs also have a KL-divergence term with respect to the prior distribution in their loss function, 

this term typically just acts like a regularization term to limit the model complexity and prevent 

overfitting [82]. For the GM-PNN, a regularization term could also be added in Eq. (4.8) to achieve 

the same effect as using a prior, while it does not necessarily make the training explicitly Bayesian.  
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4.3 Application Examples 

In this section, the GM-PNN is tested on a series of benchmark datasets and compared with 

other state-of-the-art methods in the literature to validate its efficiency in learning from noisy data 

by considering uncertainties. Four popularly used datasets of regression tasks from the UCI 

machine learning repository, on which many machine learning models are benchmarked, were 

selected to test the GM-PNN. The datasets include the Boston housing dataset (506 samples with 

13 features), concrete strength dataset (1030 samples with 9 features), energy efficiency dataset 

(768 samples with 8 features), and yacht hydrodynamics dataset (308 samples with 7 features). 

Three state-of-the-art machine learning models, all with an emphasis on uncertainty learning, were 

selected for comparison: the deep Gaussian process (Deep GP) in [50], the concrete dropout (C-

Dropout) model in [93], and the generalized expectation propagation (GEP) model in [95]. All the 

models compared were composed of a single hidden layer and 50 hidden nodes, which means the 

model complexity was roughly the same for all the learning methods evaluated. The GM-PNN 

training was carried out using stochastic gradient descent with momentum (SGDM) with a learning 

rate of 0.01 and a momentum of 0.9. The splitting thresholds for both DKL and DCP were selected 

as 0.01, and the number of components in the PDFs of Wl and bl was set to be 2 for all layers. 

The datasets were randomly split into a 90% training set and a 10% test set for each round of 

evaluation. The splitting and evaluation were repeated 20 times for each dataset, and the average 

RMSE and negative log-likelihood (NLL) on test sets were compared for the selected models, as 

shown in Table 4-1. The GM-PNN ranked 1st three times out of the four datasets for test RMSE 

and two times for test NLL. On those datasets where it is not the champion, its performance was 

also fairly close to the best one. Therefore, the overall performance of GM-PNN in this comparison 

was remarkably better than other models. 

 

Table 4-1 Average test RMSE and negative log-likelihood (NLL) for the selected models 

 Avg. Test RMSE Avg. Test NLL 

Deep GP C-

Dropout 

GEP GM-

PNN 

Deep GP C-

Dropout 

GEP GM-

PNN 

Boston 3.02±0.20 2.65±0.17 2.96±0.13 2.57±0.15 2.33±0.06 2.72±0.01 2.40±0.10 2.46±0.04 

Concrete 7.33±0.25 4.46±0.16 4.67±0.09 4.16±0.07 3.13±0.03 3.51±0.00 2.89±0.02 2.89±0.01 

Energy 0.84±0.03 0.46±0.02 1.13±0.05 0.69±0.01 1.32±0.03 2.30±0.00 1.89±0.01 1.04±0.01 

Yacht 1.58±0.37 0.57±0.05 1.08±0.06 0.47±0.05 1.39±0.14 1.75±0.00 1.08±0.06 1.14±0.09 
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4.4 Summary 

In this chapter, a probabilistic neural network is developed based on the adaptive Gaussian 

mixture scheme in Chapter 2. The network’s inputs, parameters, intermediate-layer neuron states, 

and outputs are all characterized with Gaussian mixture distributions. The Gaussian mixture states 

are refined adaptively before propagated through each layer, as triggered by two proposed criteria, 

to not only minimize the nonlinear distortion at the current layer but also ensure the fidelity of 

linear transformation at the next layer. Thereby, the predictive distributions of output can be 

inferred analytically without sampling or integration, to provide high-fidelity probabilistic 

uncertainty quantification. The gradients of the negative log-likelihood loss function with respect 

to all the Gaussian mixture parameters have also been derived analytically so that the proposed 

GM-PNN can be trained with any gradient-descent method. The GM-PNN in this work exhibits a 

state-of-the-art performance when benchmarked against other latest methods on a series of famous 

public datasets. Based on the success on benchmark datasets, next, the GM-PNN will be applied 

to address practical data-driven problems subject to uncertainties, as will be presented in the next 

chapter. 
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5. APPLICATION OF PROBABILISTIC NEURAL NETWORKS TO 

CONDITION MONITORING OF MANUFACTURING PROCESSES 

This chapter describes the applications of the probabilistic neural network in Chapter 4 on 

two manufacturing process monitoring schemes. First, a robust tool wear monitoring scheme for 

turning processes is developed. Signal features that can best predict tool wear are extracted from 

sensors on the machine tool and selected using a systematic scheme. Two tool wear models are 

trained, one using a type-2 fuzzy network for interval uncertainty quantification and the other using 

the network in Chapter 4 for probabilistic uncertainty quantification. Secondly, a porosity 

monitoring scheme for laser AM processes is developed. A high-speed camera is used for in-

process melt-pool sensing and CNN models are trained to directly learn melt-pool features for 

porosity prediction. The classical CNN models without uncertainty quantification are compared 

with the CNN models in which the probabilistic network is incorporated as an uncertainty 

quantification module. For both monitoring schemes, experimental results show that the 

probabilistic network not only achieves higher prediction accuracies of process conditions than the 

classical models but also provides more effective uncertainty quantification to facilitate the 

process-level decision-making in the manufacturing environment.  

5.1 Tool Wear Monitoring of Turning Processes with Consideration of Uncertainties 

The tool wear monitoring scheme is developed in this section. The sensor instrumentation 

setup, experiment design, signal processing and feature selection methods are detailed. The GM-

PNN developed in Chapter 4 is applied to tool wear prediction based on the selected features and 

compared with a classical type-2 fuzzy neural network. 

5.1.1 Instrumentation, Experiments Design and Feature Extraction 

5.1.1.1 Instrumentation Setup 

The tool wear testbed consists of a 20 HP Jones and Lampson CNC turret lathe with five 

sensors used for data collection during the turning operation. A diagram of the instrumentation 

setup is shown in Figure 5-1. A Hall-effect power meter is installed on the spindle motor drive. 



 

 

99 

Two PCB 307A quartz accelerometers are mounted on the tool holder in the Y-(cutting) and Z-

(feed) directions. Additionally, two AE sensors with different frequency ranges are attached to the 

tool holder. All sensors used in this experimental setup are summarized in Table 5-1. The 

accelerometer and power meter signals are sampled by a National Instrument DAQ board while 

the AE signals are sampled by a Physical Acoustics PCI-2 board. All the five sensors adopted are 

affordable and non-intrusive to the machining process. 

 

 

Figure 5-1 Instrumentation diagram of the test bed 

 

Table 5-1 Information of the sensors used 

Sensor 
Model 

Number 
Specifications Symbol 

Sampling 

rate (Hz) 
Purpose 

Power meter 

Load 

Controls 

UPC 

Response time: 0.5s Power 10k 

Measure the power 

input to the spindle 

motor 

Accelerometer PCB 307A 

Freq. Range: 1-5000Hz 

Ampl. Range: ±50g 

Sensitivity: 100mV/g 

AccY 10k 

Measure the tool 

vibration in cutting 

direction 

Accelerometer PCB 307A 

Freq. Range: 1-5000Hz 

Ampl. Range: ±50g 

Sensitivity: 100mV/g 

AccZ 10k 

Measure the tool 

vibration in feed 

direction 

AE sensor 

Physical 

Acoustics 

R15a 

Freq. Range: 50-

200kHz 
AEL 2M 

Measure the acoustic 

emission in low 

frequency range 

AE sensor 

Physical 

Acoustics 

WSa 

Freq. Range: 100-

900kHz 
AEH 2M 

Measure the acoustic 

emission in high 

frequency range 
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5.1.1.2 Experiment Design 

To examine the generalization capability of the tool wear monitoring scheme that would be 

developed, three types of workpiece materials were used for tool wear tests: hardened 4140 steel 

(HRC35), Inconel 718 and Ti-6Al-4V. The 4140 steel and Inconel 718 workpieces were round 

bars of 6 inches in length and 1.5 inches in diameter, while the Ti-6Al-4V workpieces were round 

bars of 6 inches in length and 2 inches in diameter. The 4140 steel and Ti-6Al-4V were machined 

with Kennametal K68 carbide inserts (SPGN 422), while Inconel 718 was machined with 

Greenleaf WG-300 ceramic inserts (SNGN 452). Coolant was not used during any of these tests. 

The materials and cutting conditions of tool wear tests are listed in Table 5-2. 

 

Table 5-2 Cutting conditions in tool wear tests 

(Flank: tests used for the flank wear model; Crater: tests used for the crater wear model) 

 Material Cutting Speed 

(m/min) 

Feedrate 

(mm/rev) 

Depth of 

Cut (mm) 

Usage Model 

Test #1 4140 Steel 90 0.20 0.25 Training Flank 

Test #2 4140 Steel 90 0.10 0.25 Training Flank 

Test #3 4140 Steel 90 0.20 0.15 Training Flank 

Test #4 4140 Steel 120 0.20 0.25 Training Flank 

Test #5 Inconel 718 120 0.075 0.25 Validation Flank 

Test #6 Inconel 718 120 0.075 0.15 Validation Flank 

Test #7 Inconel 718 100 0.075 0.25 Validation Flank 

Test #8 Inconel 718 120 0.10 0.25 Validation Flank 

Test #9 Ti-6Al-4V 100 0.075 0.75 Training Crater 

Test #10 Ti-6Al-4V 125 0.075 0.75 Training Crater 

Test #11 Ti-6Al-4V 100 0.10 0.75 Validation Crater 

 

Tool wear is measured after each tool pass. It is well documented that the machining of steel 

and Inconel is dominated by flank wear [225], while the machining of Ti-6Al-4V is dominated by 

crater wear [226]. The flank wear (VB) is measured by a Zeiss optical microscope while the crater 

depth (KT) is measured by a BRUKER 3D optical profiler. Each measurement is repeated five 

times, with the mean, minimum and maximum measurement values being used as the nominal tool 

wear and the uncertainty bounds, respectively. The inserts are replaced when flank wear reaches 

200 µm or when tool chipping is observed, whichever occurs first. 

In addition to the tool wear tests, since the sensor signals’ dependence on cutting conditions 

need to be studied to establish a feature normalization scheme and the parameters in this scheme 
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also need to be determined experimentally, a set of normalization tests were also performed, as 

summarized in Table 5-3. The cutting conditions in Test#1, Test#5 and Test#9 are selected as the 

nominal conditions for the three materials. By machining at these conditions with fresh tools, the 

value of any feature can be extracted. By varying the cutting conditions around the nominal 

conditions, the signal feature’s dependence on cutting conditions can be identified quantitatively, 

as will be discussed later. 

 

Table 5-3 Cutting conditions for normalization 

Material Cutting Speed (m/min) Feedrate (mm/rev) Depth of Cut (mm) 

4140 Steel 80, 90, 100 0.100, 0.150, 0.200, 0.250 0.15, 0.25, 0.35 

Inconel 718 80, 100, 120 0.050, 0.075, 0.100, 0.125 0.15, 0.25, 0.35 

Ti-6Al-4V 75, 100, 125 0.050, 0.075, 0.100, 0.125 0.25, 0.50, 0.75, 1.00 

5.1.1.3 Feature Extraction 

To represent the characteristic information embedded in the raw signal data in a compact and 

interpretable form, signal features are extracted from diverse signal processing schemes, including 

time-domain, frequency-domain and time-frequency-domain analyses. In this work, the power 

spectral density (PSD) is used for frequency-domain feature extraction. A four-level wavelet 

packet decomposition (WPD) with 6th order Symlets wavelet is utilized for time-frequency-

domain feature extraction. The wavelet coefficients at each decomposition node can be viewed as 

a signal in the corresponding frequency band, from which wavelet features can be extracted. The 

list of features that are potentially useful for tool wear monitoring can be obtained from prior 

knowledge and literature review [134]. Among the sensors used, the power meter outputs an 

averaged power signal with minimal bandwidth, and thus only time-domain features are extracted 

from its signal. Since the AE signals are sampled at one or two megahertz and any complicated 

signal processing schemes should be avoided in consideration of computational efficiency, only 

time-domain and basic frequency-domain features are extracted. The vibration signals measured 

by the accelerometers are sampled at the kilohertz range, and are more suitable for feature 

extraction with different signal processing schemes. The candidate features are listed below by 

physical sensor: 

Power meter: Time-domain features include the mean, RMS, standard deviation, skewness, 

kurtosis, peak-to-peak amplitude and crest factor. 
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Accelerometers: Time-domain features are the same as those of the power meter. Frequency-

domain features include PSD mean (mean power level of the spectrum), frequency centroid 

(weighted frequency center of the spectrum), normalized PSD moment of inertia (spectrum 

distribution around the center) and normalized PSD entropy (flatness of the spectrum). Wavelet 

features include the powers of wavelet coefficients at different decomposition nodes. 

AE sensors: Time-domain features are the same as those of the power meter. Frequency-

domain features calculated from periodograms include the frequency centroid, peak spectrum 

amplitude and peak frequency. 

5.1.2 Methodologies 

The collected sensor signal data need to be processed properly before predicting tool wear. 

Firstly, the analog signals are preprocessed to obtain digital signals. Next, interpretable features 

are extracted from the digital signals in the time-domain, or transformations in other domains, as 

described in Section 5.1.1.3. The extracted features are normalized to minimize their sensitivity to 

variant cutting conditions, at which point, an optimal subset of features highly correlated to tool 

wear is selected. Finally, a predictive tool wear model is trained with the selected features. The 

architecture and data flow of the proposed monitoring system is summarized in Figure 5-2.  

 

 

Figure 5-2 Overall architecture and data flow of the proposed tool wear monitoring system 

5.1.2.1 Feature Normalization  

Feature normalization is the key to making the monitoring system applicable to generalized 

conditions. The magnitudes of signal features vary due to one or more of the following factors: 1) 

the nature and units of different signals and features, 2) the changes of tools and workpiece 
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materials, 3) the changes of cutting conditions, and/or 4) the changes of process conditions such 

as tool wear. The idea of feature normalization is to properly scale the signal features into more 

uniform ranges to minimize the variations caused by the first three factors while preserving 

variations caused by the fourth factor. A normalization scheme is proposed as follows: 

Assume that the raw signal feature at cutting speed V , feedrate f  and depth of cut 
pa is sf  

and the feature value at a nominal cutting condition with fresh cutting tool is known as 0sf , then 

the normalized feature value Nsf  can be obtained as Eq (5.1). 
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  (5.1) 

where α, β, γ are the coefficients to be identified for each feature and 0V , 0f , 
,0pa  are the nominal 

cutting speed, feedrate and depth of cut at which 0sf  is extracted. The three ratio terms in the 

denominator are used to eliminate the influence of cutting conditions, while 0sf  accounts for the 

effects of raw feature magnitudes, machine and measurement setups, workpiece materials and 

cutting tools. It is expected that the normalized features of fresh tools are always close to 1, 

regardless of cutting conditions. Then, as tool wear increases, the normalized features deviate from 

1 and give indicative information of tool wear.  

For a given set of cutting tests using fresh tools at different cutting conditions, raw features 

can be extracted for each condition, and the coefficients (α, β, γ) can be determined from the 

following optimization in Eq (5.2). 

 ( )
2

 , ,

1
 , , 1N

n

sf
n

  

   −  

find

to minimize    (5.2) 

where n is the total number of feature samples obtained from all the cutting conditions. The initial 

searching ranges of α, β and γ are suggested as [−1,1], but can be broadened if necessary. After 

the coefficients α, β, γ are identified, they can be stored in a database. For a new workpiece material 

or cutting tool, only one cutting test with a fresh tool under the nominal cutting condition is 

required to calibrate 0sf . 
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5.1.2.2 Feature Selection 

Even in a sensor fusion scheme, feeding a redundant set of features into a machine learning 

model might not improve, or could even degrade the model’s performance. Instead, a compact 

feature set that best predicts tool wear should be selected. In addition, the signal preprocessing 

parameters (sampling rate and filter frequencies) do affect the features’ correlation to tool wear 

and thus need to be determined together with the feature selection. In this work, the features and 

their preprocessing parameters are selected systematically in the following steps: 

First, a preliminary feature selection is carried out to downselect candidate features. In this 

step, different signal preprocessing parameters are applied to the same feature and the optimal 

preprocessing parameters are selected as those maximizing the feature’s correlation with tool wear. 

Features showing low correlation, even with their best preprocessing parameters, will be 

eliminated from the candidate list. Since the commonly used Pearson correlation coefficient can 

only assess the linear correlation [132], in this work, a feature’s correlation with tool wear is 

instead measured by the coefficient of determination (R2) of the best single-feature regression 

model among linear, parabolic or exponential functions. The preliminary selection procedure is 

presented in Figure 5-3. Since the training of tedious neural network models is not involved, this 

procedure, though exhaustive, can be executed efficiently and is scalable to large candidate pools 

of features and signal preprocessing parameters. 

Next, a systematic frequency band analysis is performed. If a feature’s correlation to tool 

wear depends on frequency bands, the above procedure in Figure 5-3 only gives the single best 

passband for that feature. The effect of frequency bands can be more systematically analyzed with 

the following three manipulations:  

1) Merging frequency bands. If a feature has good correlations in several frequency bands, 

merging these separate bands into a larger one can give a more compact feature set and might 

enhance the feature’s performance. This can be addressed by comparing the regression using the 

feature in the merged band with the regressions using the features in the original bands. The F-

statistic and p-value from an analysis of variance (ANOVA) test can be used to assess regression 

models. The F-statistic indicates the statistical significance of the model while the p-value is the 

probability that the null hypothesis (the regression model is equal to a constant model) is true. If a 

larger F-statistic and a lower p-value are observed for the regression model with merged bands, it 

can be concluded that merging the frequency bands could be beneficial. 
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Figure 5-3 Flow chart of the coupled feature and preprocessing parameter selection 

 

2) Multi-band analysis. Features at different frequency bands might have information 

complementary to each other. Instead of merging the bands, another strategy is to use the same 

type of feature in multiple bands to predict tool wear. This can be addressed by assessing the multi-

band regression in Eq. (5.3): 
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If a multi-band regression from Eq. (5.3) (n>1) is better than the single-band regression (n=1), 

then it can be said that using the features in multiple bands is beneficial.  

3) Band feature fusion. Combining different types of features at the same frequency band may 

better describe the system behavior at that band, which can be assessed by a feature fusion analysis. 

Assume that three features are selected for the analysis, a permutation pool can be created via 

multiplication and/or division of the features with each other, as shown in Eq. (5.4): 

 
( )

   2

log Feature #i @ the band     1,2

, , ,

,3

    , , 1, 2,/ , , / 3 ,   i i i j i

i

j i j k i j kV x x x x x x x x x x x

x i

i j k i j kx

= =

=  
  (5.4) 

With three features, the size of the permutation pool is 19. Linear regressions by choosing 

items from the permutation pool are assessed as shown in Eq. (5.5): 
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A potential fusion of permutation terms is identified if R2 of the regression is higher than 

those of single-term regressions. ANOVA test is also applied to ensure each permutation term in 

the identified regression model is above a significance level (p<0.01). Since a compact feature set 

is desired, the n in Eq. (5.3) and Eq. (5.5), which controls the number of bands and features, should 

be small (n≤3). 

At last, the optimal feature set is selected. After the first two steps of feature selection, the 

tool wear model hasn’t been involved yet nor has its performance been optimized in terms of input 

variables. Assuming that N features have been selected after the first two steps, the optimal feature 

set is subsequently selected using a backward elimination method: 

(1) Exclude one feature from the N candidates, use the remaining N−1 features to train a tool 

wear prediction model and record the MSE (mean square error) as the performance index. 

(2) Repeat (1) for all the N features and remove the feature whose N−1 complementary set has 

the lowest MSE, because this feature yields the minimum performance reduction when 

excluded from the tool wear prediction model.  

(3) Set N=N−1 and repeat (1) ~ (2) until the minimum number of features left. 

The above procedure is applicable regardless of which machine learning model is adopted as 

the tool wear model. Since the initial number of features N is small, the procedure will not be 

unacceptably time-consuming although the data-driven model training is iteratively involved. 

5.1.2.3 Type-2 Fuzzy Basis Function Network 

There are always uncertainties in the machining process; therefore, even after the same length 

of machining time, the tool wear could be different in two wear tests with the same cutting 

condition. Even with the same amount of tool wear, it is impossible to replicate the same feature 

values. While the tool wear models in the literature are mostly trained to minimize the prediction 

errors, for more reliable decision-making regarding tool wear, it is also of interest to know the 

magnitude of uncertainty associated with the crisp tool wear prediction at any given moment.  For 

this reason, the GM-PNN developed in Chapter 4 will be applied to the predictive modeling of 

tool wear with uncertainties. To provide a performance baseline of uncertainty quantification, tool 
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wear models will also be constructed using the interval type-2 fuzzy basis function network 

(T2FBFN) proposed in [17], and the GM-PNN models will be benchmarked against the T2FBFN 

models. The T2FBFN is briefly introduced below. 

Type-2 fuzzy basis function network is a two-layer network constructed using a fuzzy 

inference system, with interval type-2 fuzzy sets at the output layer. A T2FBFN with n input 

variables and J fuzzy rules can be formulated to approximate a nonlinear function in an interval 

form, as shown in Eq (5.6):  
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where x1, x2, …, xn are the input variables, ( )jp x  is the fuzzy basis function in the j-th fuzzy rule, 

( )j

i ix  is the fuzzy membership function,  ,  l uy y  are the lower and upper bounds of the output, 

and  ,l uw w  are the lower- and upper-bound weighting factors in the sense of neural network, or 

the end points of interval type-2 fuzzy sets in the sense of fuzzy logic.  

To build a T2FBFN, a training set of N samples ( ) ( ) ( ) ( ) , , ,n l uk y k y k y kx with k=1,2, …, 

N, can be obtained from experiments, in which each vector ( )kx contains n processed signal 

features, and yn(k), yl(k), yu(k) are the nominal value, lower-bound and upper-bound of tool wear 

measurements, respectively. Fuzzy rules are added to the network sequentially by searching fuzzy 

membership function parameters using generic algorithm (GA) to minimize the prediction error 

with respect to nominal tool wear measurements. The weighting factors  ,l uw w are then 

determined from the constrained optimization problems in Eq. (5.7): 
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where the response matrix ( ) N Jk P  is defined as ( ) ( )( ), jk j p k=P x  with k=1,2, …, N and 

j= 1,2, …, J, and J is the number of fuzzy rules that have been added where ly  and uy  are the 

vectors of lower- and upper-bound of tool wear measurements. The least square problems can be 

solved using the active-set method [17]. In brief, the T2FBFN captures the uncertainties in both 

the input-output (feature-wear) mapping and tool wear measurements by finding the weighting 
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factors using Eq. (5.7). The trained T2FBFN gives tool wear prediction in a lower- and upper-

bound interval form enclosing the tool wear measurements, and the average of lower- and upper-

bounds can be used as the nominal tool wear prediction. 

Fluctuation in the model prediction is unavoidable, but monotonically increasing tool wear is 

expected in practice since the tool is never self-healing. To ensure monotonicity, the median value 

from the previous five tool wear predictions is compared to the present T2FBFN output, and the 

maximum is used as the corrected tool wear prediction. Once the corrected prediction reaches a 

certain value, it is latched so that the predictions afterward never drops below that value. After the 

correcting and latching mechanism, predictions of the T2FBFN can be assigned into discrete 

classes to indicate the quantized level of tool wear. The number of classes can be chosen based on 

the degree of uncertainties in the process and the visualization needs of users. The same post-

processing will also be applied to predictions of GM-PNN.  

5.1.3 Results and Discussions 

5.1.3.1 Results of Feature Extraction, Normalization and Selection 

After raw signal data were collected from the designed experiments and candidate features 

were extracted, the proposed feature selection procedure was applied. The features were selected 

by only analyzing the data of 4140 steel (Test#1~Test#4 in Table 5-2) and the effectiveness of 

selected feature set was validated for other materials.  

First, the preliminary feature selection was applied to search the best signal preprocessing 

parameters for each candidate feature and eliminate the features with low correlations. The ranges 

of signal preprocessing parameters are provided in Table 5-4. To better capture the trend of spindle 

power, the raw signal was smoothed with a moving average filter before calculating the mean 

power feature. Remaining features from the power signal reflect the power fluctuation at different 

orders, and thus low-pass filters were used to remove noise while preserving the variation below 

the cut-off frequencies. The vibration and AE signals were processed with band-pass filters to 

inspect the features’ correlation to tool wear at different frequency bands. For the vibration signals, 

the natural frequencies should be avoided as they are setup-dependent. In this work, the first natural 

frequency of the testbed was about 1000Hz, and thus only the bands below 1000Hz were 

considered. Since a node in the wavelet packet decomposition (WPD) inherently corresponds to a 
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frequency band, band-pass filters were not used for wavelet features.  

 

Table 5-4 Admissible signal preprocessing parameters of candidate features 

Sensor Features 

Admissible Preprocessing Parameters 

Down-sampling 

rate (Hz) 
Filter Type Filter Parameter 

Power Mean 
500, 200, 100, 

50, 25 

Moving 

average 

Window size (s): 0.1, 0.2, 0.5, 

1, 2, 5 

Power Others 
500, 200, 100, 

50, 25 
Low-pass 

Cut-off frequency (Hz): 5, 10, 

25, 50, 100, 200 

AccY & 

AccZ 

All except 

WPD features 

5000, 3333, 

2500 
Band-pass 

Passband (Hz): 0-100, 100-

200, …, 900-1000 

AEL All 500k, 333k Band-pass 
Passband (Hz): 50k-100k, 

100k-150k, 150k-200k 

AEH All 1000k, 500k Band-pass 
Passband (Hz): 100k-150k, 

150k-200k, …, 850k-900k 

 

The features were normalized before feature selection. Figure 5-4 compares the mean spindle 

power feature before and after normalization. The normalization scheme collapsed the feature 

values from different cutting conditions into a uniform range, so that the feature’s overall 

performance in different conditions could be evaluated through a single regression analysis. Figure 

5-5 shows the correlation of normalized y-direction vibration RMS in different passbands. The 

RMS had a high correlation around the 300-700Hz frequency range, while the impact of the 

sampling rate was negligible. The observation that the sampling rate minimally impacts a feature’s 

correlation to tool wear also holds for other features. Given this, it is preferred to use the lowest 

sampling rate compatible with the optimal filter parameters to minimize the burden of data 

transferring, processing, and storage during implementation. 
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Figure 5-4 Comparison of the mean power feature before and after normalization 

 

 

Figure 5-5 The correlation of y-direction vibration RMS against tool wear 

 

In Table 5-5, the features with R2 higher than 0.5 are listed. The power meter and the y-

directional accelerometer (AccY) both had features highly correlated to tool wear (R2>0.8). For 

vibration and AE signals, since the standard deviation (STD) was almost equal to RMS, and the 

peak-to-peak amplitude was more susceptible to noise, they could be eliminated if RMS had been 

considered. The z-directional accelerometer (AccZ) and the two AE sensors (AEL and AEH) only 

contributed features with moderate correlation (0.5<R2<0.7). For industrial implementation, it is 

preferred to minimize the number of sensors to reduce the cost. Therefore, these sensors were 

excluded from further analysis in this work and only the features from the power meter and y-

directional accelerometer (AccY) were selected. 
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Table 5-5 The features with R2 higher than 0.5 

Features R2 Features R2 

Power mean: 2s moving average 0.89 AccY wavelet coeff. power: node [3,2] 0.86 

AccY RMS/STD: 400-500Hz 0.88 AccZ RMS/STD: 500-600Hz 0.60 

AccY peak-to-peak: 400-500Hz 0.80 AccZ PSD mean: 500-600Hz 0.57 

AccY PSD mean: 600-700Hz 0.84 AccZ wavelet coeff. power: node [3,2] 0.60 

AccY frequency centroid: 900-1000Hz 0.51 AEL RMS/STD: 100k-150kHz 0.65 

AccY PSD moment of inertia: 900-1000Hz 0.50 AEH frequency centroid: 200k-250kHz 0.55 

 

The AccY features (RMS, PSD mean, frequency centroid and PSD moment of inertia) were 

used for frequency band analysis. By merging frequency bands, the RMS achieved the highest F-stat 

in a 300Hz band, at 400-700Hz, while the PSD mean achieved the highest F-stat in a 200Hz band, 

at 500-700Hz. The frequency centroid and PSD moment of inertia were more statistically 

significant in wider bands, but their significances were not comparable to those of the RMS and 

PSD mean, as shown in Figure 5-6. These observations further confirmed that the AccY features’ 

correlations to tool wear are band-dependent and it is necessary to perform the frequency band 

analysis. The RMS was used for multi-band analysis to see if combining the vibration amplitudes 

in several frequency bands could give better tool wear prediction. A similar multi-node analysis 

was applied to the wavelet coefficient power. As can be seen from Table 5-6, the regressions with 

three bands or nodes provided considerably better tool wear predictions, in terms of R2 and root 

mean square error (RMSE), than those with single band or single node (n=1). Therefore, the 

features in the n=3 rows would be used as candidates for the optimal feature set selection. 

 

Table 5-6 Multi-band analysis of y-direction vibration RMS and wavelet feature 

 Best Features R2 RMSE (µm) 

n=1 RMS 400-700Hz 0.89 16.29 

n=2 RMS 375-475Hz; RMS 500-700Hz 0.91 14.46 

n=3 RMS 25-125Hz; RMS 375-475Hz; RMS 500-700Hz 0.92 13.46 

n=1 WPD Node [3,2] 0.86 16.86 

n=2 WPD Node [2,1]; WPD Node [4,1] 0.89 15.85 

n=3 WPD Node [2,1]; WPD Node [4,1]; WPD Node [3,5] 0.90 15.08 

 

In addition, the three PSD features were used for the band feature fusion in Eq. (5.4) and (5.5) 

to see if the frequency centroid and moment of inertia could enhance the performance of PSD 

mean. The three PSD features created a total of 1159 combinations of regression for each 
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frequency band. Table 5-7 shows the results from PSD feature fusion. The first three rows show 

that a linear combination of the three PSD features in three frequency bands provided the highest 

correlation to tool wear with a p-value much less than 0.01. Since the R2 achieved with feature 

fusion was considerably higher than that of PSD mean alone, it could be said that the feature fusion 

improves the performance of the PSD mean feature. Therefore, the three PSD features at the 75-

775Hz band would be used as candidates for the optimal feature set selection. 

 

 

Figure 5-6 Statistical Significance of y-direction vibration features 

(Freq Ctrd: Frequency centroid, PSD MoI: PSD moment of inertia) 

 

Table 5-7 Results from frequency feature fusion (truncated to highest 5 entries) 

x1: PSD mean, x2: frequency centroid, x3: PSD moment of inertia 

Frequency Band Best Fit Model Form from 

Regression 

R2 p-Value 

75-775Hz a0+a1*x1+a2*x2+a3*x3 0.920 3.67E-46 

50-750Hz a0+a1*x1+a2*x2+a3*x3 0.919 8.22E-55 

0-800Hz a0+a1*x1+a2*x2+a3*x3 0.913 4.46E-48 

475-675Hz a0+a1*x2+a2*x1^2+a3*x1*x2 0.908 1.05E-33 

150-650Hz a0+a1*x2+a2*x3+a3*x1^2 0.907 4.64E-51 

 

Next, the backward feature elimination was applied to the 10 candidates (mean spindle power 

and 9 AccY features from the frequency band analysis) to determine the optimal feature set that 

could maximize the performance of tool wear prediction. The performance was evaluated by the 
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MSE between the tool wear measurement and the nominal prediction of T2FBFN. The T2FBFN 

model was trained using the 4140 steel test data and validated using the Inconel 718 test data. 

However, it was found that though the features extracted for Inconel 718 had similar levels of 

correlation, their slopes with respect to tool wear were slightly different from their 4140 steel 

counterparts, probably due to the variance of material properties. The difference of slopes can be 

compensated using Eq (5.8): 

 ( ),718 ,718 4140 7181 * / 1n nsf sf k k= − +   (5.8) 

where
,718nsf  is the normalized feature of Inconel 718, 4140k is the baseline slope of 4140 steel feature, 

and 718k is the slope of Inconel 718 feature. This compensation makes the features from two 

materials have a consistent trend and hence can be used in the same tool wear model.  

The result of feature elimination is given in Table 5-8. As can be seen, removing a few 

features reduced the RMSE, which indicated that a compact optimal feature set should be used for 

sensor fusion rather than using as many features as possible. The minimum RMSE was achieved 

with 6 features. However, from 7 to 4 features, the changes of RMSE were trivial. For simplicity, 

it was decided to use 4 features as the inputs of tool wear models. The 4 features were the power 

mean with 2-second moving average, the AccY RMS in 375-475Hz and 500-700Hz bands, and 

the frequency centroid in 75-775Hz band, which formed the optimal feature set. 

 

Table 5-8 Result of backward feature elimination 

Order of 

elimination 

Number of 

remaining features 

Feature eliminated RMSE after 

Elimination (µm) 

0 10 N/A 10.72 

1 9 PSD Moment of inertia 75-775Hz 9.67 

2 8 RMS 25-125Hz 8.35 

3 7 Wavelet Coefficient Power Node [4,1] 7.86 

4 6 PSD Mean 75-775Hz 7.70 

5 5 Wavelet Coefficient Power Node [3,5] 7.71 

6 4 Wavelet Coefficient Power Node [2,1] 7.81 

7 3 Frequency Centroid 75-775Hz 9.02 

8 2 RMS 375-475Hz 10.32 

9 1 Power Mean  13.10 

10 0 RMS 500-700Hz N/A 
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5.1.3.2 Tool Wear Prediction and Uncertainty Quantification 

With the above feature set, flank wear models were trained using the 4140 steel test data (815 

samples) and validated using the Inconel 718 test data (376 samples). The GM-PNN newly 

developed in Chapter 4 and the T2FBFN were applied respectively to build tool wear models, so 

that the probabilistic uncertainty quantification capacity of GM-PNN could be compared with the 

interval uncertainty quantification capacity of T2FBFN. Although in Section 5.1.3.1, the optimal 

feature set was selected using T2FBFN, it was assumed that this feature set was also the optimal 

set for GM-PNN. When training the T2FBFN model, hidden nodes were added to the network 

sequentially until the MSE of validation dataset starts to increase (overfitting), and the outcome 

model have 60 hidden nodes. The GM-PNN model was then also trained with the same structure 

as T2FBFN (a single hidden layer with 60 hidden nodes), so that their performances could be 

compared at the same level of model complexity. Besides, same as in Section 4.3, the GM-PNN 

training was carried out using SGDM algorithm with a learning rate of 0.01 and a momentum of 

0.9. The splitting thresholds for both DKL and DCP were selected as 0.01, and the number of 

components in the PDFs of Wl and bl was set to be 2 for all layers. Since the cutting tool is never 

self-healing, the latching mechanism described at the end of Section 5.1.2.3 was applied to the 

outputs of both T2FBFN and GM-PNN models so that once the predicted tool wear reached a 

certain level, it would never drop below that level afterward.  

The tool wear prediction performances of T2FBFN and GM-PNN models are summarized 

and compared in Table 5-9, and their predictions for the validation set (Inconel 718 tests) are 

compared in Figure 5-7. As can be seen, the T2FBFN model achieved a decent performance. Its 

nominal predictions tracked the tool wear measurements closely with a R2 of 0.97. Besides, the 

lower and upper bounds of T2FBFN predictions always enclosed the tool wear measurements, 

which means the prediction intervals were guaranteed to contain the true tool wear values. As will 

be shown later, this enables reliable decision-making about tool change. On the other hand, the 

performance of the GM-PNN model was even better, with a considerably higher R2, smaller RMSE 

and lower negative log-likelihood (NLL). Note that the likelihood of T2FBFN was estimated by 

assuming a uniform distribution within its prediction intervals. In addition, the 95% and 99% 

confidence intervals (CI) were also extracted for GM-PNN from its predicted PDFs. As shown in 

Figure 5-7, the CIs of GM-PNN were significantly narrower than the intervals of T2FBFN, while 
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the true tool wear values were still consistently enveloped. Therefore, the GM-PNN quantified the 

uncertainty in tool wear less conservatively without compromising reliability.  

 

Table 5-9 Comparison of tool wear monitoring model performance 

 Validation 

R2 

Validation 

RMSE 

Avg. NLL Avg. Interval 

Width 

Tool change 

Margin 

T2FBFN 0.974 6.69 µm 3.24 27.9 µm 6.2% 

GM-PNN 0.990 3.77 µm 2.66 
95%: 13.6µm 

99%: 18.0µm 

95%: 4.2% 

99%: 5.3% 

 

 

Figure 5-7 Tool wear prediction for the selected tool wear tests 

 

While both of GM-PNN and T2FBFN could provide uncertainty quantification around their 

nominal tool wear predictions, for industrial users, it is of more interest to know when to change 
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tools than knowing the exact values of tool wear. To address this concern, for either model, once 

the upper-bound prediction exceeded the tool life limit, which is 200 µm in this work, a tool-

change alert would be issued. The percentage by which the true tool wear was below the tool life 

limit when an alert issued was defined as the tool change margin, as Eq. (5.9): 

 
Tool life limit -  tool wear measurement when alert issued

margin 100%
Tool life limit

=    (5.9) 

The tool change margins of T2FBFN are shown in Figure 5-8. In average, the T2FBFN model 

issued the alert 12.4 µm ahead, which is 6.2% of the tool life limit. By considering uncertainty in 

the T2FBFN model, the actual tool wear was always lower than its upper-bound prediction and 

thus would never exceed the tool life limit when the alter was issued. For tool wear monitoring, 

false negative is more undesirable than false positive. The upper-bound-based false-positive alert 

with acceptable lead is conservative, but could reliably prevent any premature tool failure. The 

tool change margins of GM-PNN based on its upper bound of CIs are shown in Figure 5-9. As can 

be seen from Figure 5-9 and Table 5-9, the tool change margin of GM-PNN was also smaller than 

that of T2FBFN, which means the monitoring scheme based on GM-PNN would better take 

advantage of the usable life of a tool while still effectively preventing tool failure.  

 

 

Figure 5-8 Comparison of the T2FBFN prediction upper bounds and tool wear 

measurements when the tool change alert issued 

 

As for the machining of Ti-6Al-4V using a carbide tool, tool wear is dominated by crater 

wear rather than flank wear and hence the tool wear measurements and signal feature behaviors 

are different. Therefore, separate crater wear prediction models were trained with the same set of 
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features but using the Ti-6Al-4V test data (354 samples). For crater wear prediction, the GM-PNN 

model was also performing slightly better than the T2FBFN model. While both models had  R2 of 

0.97, the prediction intervals of GM-PNN (0.67 µm for 95% CIs and 0.73 for 99% CIs)  were 

narrower than the intervals of T2FBFN (0.79 µm). The improvement of GM-PNN models over 

T2FBFN models for both flank wear and crater wear is mainly because the T2FBFN uses a hard 

constraint to enforce its prediction intervals to enclose all the data. In contrast, GM-PNN addresses 

uncertainty from a probabilistic perspective to learn the model parameters that maximize the 

likelihood in describing the data, which is a soft constraint less prone to outliers. 

 

  

Figure 5-9 Comparison of the GM-PNN prediction upper bounds (99% CI) and tool wear 

measurements when the tool change alert issued 

5.2 Porosity Monitoring of Laser Additive Manufacturing Processes 

The porosity monitoring scheme is developed in this section. The melt-pool sensing setup,  

experiment design, porosity measurement and image processing methods are presented in detail. 

A compact CNN architecture is designed for porosity prediction. The CNNs with and without the 

uncertainty quantification module based on GM-PNN are compared. 
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5.2.1 Instrumentation and Experiments 

5.2.1.1 Instrumentation Setup 

The non-contact sensors that are most widely used for laser AM process monitoring include 

photodetector, infrared camera, and high-speed digital camera, because they are all sensitive to the 

process, and do not interfere with the AM processes. The high-speed digital camera is able to sense 

the 2-D melt-pool morphology and brightness and compared with other sensors, it offers the widest 

range of choices of specifications, optics (lenses and filters), interfaces, and software to configurate 

the monitoring scheme. Owing to its informativeness and flexibility, the high-speed digital camera 

is selected in this study for instrumentation of the laser AM system. 

A digital camera is mounted coaxially to the process laser beam on an OPTOMEC LENS750 

system (with 500W fiber laser), as shown in Figure 5-10. The camera used is a DMK 33UX174 

monochrome industrial camera with a USB 3.0 interface, which can record 640×480-pixel images 

at 395 fps (frames per second). The resolution of camera images in this setup is calibrated as 124 

pixel/mm and the field of view is about 5.2×3.9 mm. The main difficulty of laser AM process 

monitoring is that the coaxial-image contrast often exceeds the dynamic range of cameras, i.e., the 

melt pool is too bright and tends to saturate the sensor, while the surrounding is too dark to be 

sensed. To alleviate this issue, a narrow bandpass filter with the center wavelength of 532 nm is 

mounted in front of the camera to reduce the impact of melt-pool irradiations, especially those 

from the plasma, and a 200 mW green laser with 532 nm wavelength is used to illuminate the melt-

pool surrounding. 

 

Figure 5-10 The instrumentation setup of direct laser deposition monitoring 
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5.2.1.2 Experiment Design 

To study the porosity monitoring of the laser AM process, a set of single-layer-single-track 

direct laser deposition experiments were designed and conducted using sponge Titanium powders, 

as summarized in Table 5-10. The wavelength of the fiber laser was 1066 nm and the diameter of 

the laser spot was 660 µm. Coaxial melt-pool image data under various laser powers and laser scan 

speeds were collected by the camera from these designed experiments. Given the frame rate limit 

of the camera (395 fps), the laser scan speed was reduced to 1~4 mm/s (much lower than normal 

operations [227]) to ensure sufficient space resolution (2.5~10 µm) between image frames to 

capture small pores. All the deposition tracks were 15 mm long and the number of melt-pool image 

samples collected in each experiment depends on the duration, i.e., the track length divided by the 

scan speed. 

 

Table 5-10 Experimental conditions in direct laser deposition 

Test# Speed (mm/s) Power (W) Samples Quality Inspection Overall Volume Porosity 

1 1 250 5694 Cross sections 14.9% 

2 2 250 2842 Cross sections 10.7% 

3 4 250 1422 Cross sections 8.2% 

4 4 150 1407 Cross sections 5.9% 

5 2 250 2853 X-ray CT  12.2% 

 

The image data collected by cameras need to be paired with the interior quality attributes of 

interest, such as the size and location of pores and volume porosity percentage. These attributes 

could be inspected either destructively (cross-sectioning and microscopy) or nondestructively (X-

ray computed tomography). In the destructive approach, the AM specimen was cut along the laser 

scan direction to obtain longitudinal cross-sections, and then an optical microscope was used to 

observe the exposed pores on the cross-section. Since porosity is always scattered inside the 

specimen, two or three cross-sections were inspected for each specimen. However, because precise 

sectioning of the specimen is difficult and the number of cross-sections is limited, the destructive 

approach may omit the pores between obtained cross-sections and only provide an approximated 

distribution of porosity. In the nondestructive approach, the AM specimen was inspected using X-

ray computed tomography (CT) to detect interior porosities. The X-ray CT can construct an 

accurate 3-D distribution of porosity, which makes it much more preferable than the destructive 
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approach. However, it is also much more expensive and time-consuming. In this study, four 

experimental samples were inspected using the cross-sectioning method to evaluate the volume 

porosity level, while one experimental sample was inspected using X-ray CT to get the accurate 

porosity measurement for porosity occurrence prediction. 

5.2.2 Methodologies 

5.2.2.1 Porosity Measurement 

Before applying any supervised learning technique to build the porosity monitoring model, 

each coaxial melt-pool image collected by the high-speed camera needs to be paired with the 

porosity attributes of interests. To extract porosity information from the raw microscope images 

of cross-sections, a set of image processing tools has been developed in MATLAB. The procedure 

of image processing is discussed below and illustrated in Figure 5-11: 

(1) The consecutive cross-section images are stitched using a SURF (speeded-up-robust-

features)-based image registration method [229], given that a single microscope image 

cannot cover the length of a whole cross-section. In the SURF algorithm, the points of 

interest (the points differ in intensity to surrounding regions) on a microscope image are 

localized in the blob response map. The interest points with similar descriptor vectors on 

two consecutive images are detected as matching points and the location offset of the later 

image with respect to the prior image can be computed accordingly by the difference of 

coordinate of matching points. Then the two images can be automatically concatenated at 

pixel-level accuracy to minimize the error in locating porosity. 

(2) The deposition track may have an incline angle on the stitched image if the specimen was 

not strictly horizontal when placed on the microscope stage. This inclination (if any) can 

be corrected by measuring the angle of the flat top surface of the substrate and rotating the 

image. The rotated image is then cropped from the beginning to the end and from the top 

to the bottom of the deposition track to exclude areas of the substrate and sample holder, 

which are not in the region of interest of the cross-section. After the rotating and cropping, 

the horizontal pixel coordinate on the image could be used as a measure of longitudinal 

distance from the start of a deposition track along the laser scan direction. 
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(3) The rotated and cropped image is binarized using the Otsu’s threshold and the dark regions 

on the binary image are recognized as candidate porosities on the cross-section, except the 

dark background outside the cross-section. It is found that there are two types of dark 

regions observed on the cross-sections: 1) pores caused by entrapped gas during the process, 

which have circular or near-circular shapes and are the targets to be detected; 2) cracking 

and scratch marks introduced when sectioning the specimens, which usually have irregular 

shapes and should be excluded. Therefore, filter conditions are applied, so that only the 

candidate dark regions with an extent (ratio of pixels in the dark region to pixels in the total 

bounding box) larger than 0.3 and eccentricity (eccentricity of the ellipse that has the same 

second-moments as the region) less than 0.95 will be accepted as true gas porosity, while 

the irregular dark cracks, scratches, and textures on the cross-section will be automatically 

excluded, as illustrated in Figure 5-12. 

 

 

Figure 5-11 Image processing procedure for porosity extraction from cross-section images 
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Figure 5-12 Illustration of the filtering to recognize true porosity 

 

The X-ray CT data can be processed in a similar way, except that the concatenation of images 

and filtering out of irregular areas will not be necessary because the X-ray CT directly provides 

complete 3D data sets without cross-sectioning the sample. From the processed cross-section or 

CT data, the porosity attributes to be measured at each longitudinal position includes the porosity 

status (0: no pore, 1: pore), pore size (area or diameter), and volume porosity percentage. Each 

melt-pool image from the coaxial camera will be labeled with the measured attributes at the 

corresponding position, under the assumption that the image frame index can be linearly mapped 

to the longitudinal distance along the track. The labeled image forms an input (coaxial melt-pool 

image)-output (porosity attributes) data pair that can be used as a training sample for supervised 

machine learning. The porosity inspection and input-output data pairing are illustrated in Figure 

5-13. 

5.2.2.1 Convolutional Neural Network 

Directly correlating melt-pool measurement data, such as melt-pool size, to porosity results 

in poor fidelity. Therefore, to map the melt-pool images to porosity occurring, the convolutional 

neural network (CNN), which has proven to be powerful in learning intricate features from high-

dimensional data and is the core of deep learning, is adopted to learn spatial patterns from the input 

data (melt-pool image) to predict the output (porosity attributes).  
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Figure 5-13 Illustration of quality inspection and data preparation 

(Right top: the porosity information from a destructive cross-section; right bottom: the porosity 

information from a nondestructive X-ray CT; Left: the coaxial melt-pool image and pairing of 

input-output data) 

 

To make this chapter more self-contained, the fundamentals of CNN are briefly discussed 

below. The grayscale images from the coaxial camera are cropped to 224×224 pixels with the melt 

pool in the center (see Figure 5-13), as input to the network. The input image is firstly processed 

by a set of filters convoluted with the input, from which the receptive field in the l-th convolutional 

layer and with the j-th filter can be represented as: 

 ( )1

, , ,

1

, | 1, ,
lK

l l

j k l j k l l j l

k

conv2 s b j J−

=

= + =x x w   (5.10) 

where 1l−
x  is the input from the previous layer (the original input image if l=1, or the output of the 

previous layer if l>1), 
,l jw is the weight matrix of the j-th filter in the l-th layer, and 

,l jb is the bias 
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for the j-th filter. The 1l−
x  and 

,l jw  has the same depth lK , which depends on the number of 

channels in the input image (3 for RGB images and 1 for grayscale images) if l=1 or the number 

of filters in the previous layer (i.e., 1l lK J −= ) if l>1. The conv2  denotes the 2-dimensonal 

discrete convolution of 1l

k

−
x with filter 

, ,l j kw  at depth slice k using a stride of ls . Adding up the 

convolutions in all the lK  slices forms the receptive field for the j-th filter and stacking the 

receptive fields of all filters forms the feature map l
x  with a depth of lJ . The feature map reflects 

the image’s response, i.e., level of activation, to the features defined by the filters.  

To address the issue that the distribution of feature map activations changes during training 

as the filter coefficients change, which is referred to as internal covariate shift, the activations in 

each slice of feature maps are scaled via a batch normalization operation as [230]: 
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  (5.11) 

where x is the activations before normalization, y is the normalized activations, B  and B  are the 

mean and variance of x over a training mini-batch, ε is a parameter that helps to improve numerical 

stability when B  is very small, and the offset β and scale factor γ are learnable parameters that 

allow for the possibility that activations with zero mean and unit variance are not optimal for the 

following layer. By scaling the activations into uniform ranges, higher learning rates can be used 

to accelerate the deep network training. And to introduce nonlinearity into the network, ReLU is 

often used as the activation function. Compared to sigmoid functions, ReLU alleviates the 

vanishing gradient issue for deep network training. In addition, a max-pooling layer is used after 

each convolutional layer, which substitutes the activations in a sub-region of feature map (defined 

by the pooling filter size) with the maximum value in that region. The pooling layer downsamples 

the feature map (if stride>1) and introduces translation invariance by making the feature 

activations less sensitive to their exact location. The feature map after pooling, which is a 

compressed abstract representation of the original image, is used as input to the next convolutional 

layer. The output of the last pooling layer will be rearranged as a feature vector and a set of fully-

connected layers are cascaded to learn a mapping from feature to porosity. 

The CNN is trained through a backpropagation algorithm with stochastic gradient searching 
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called Adam [231]. Let the learnable parameters (e.g., convolutional filter coefficients, fully 

connected layer weights) be w and the loss function to be minimized be L, then the learnable 

parameters are updated using the following rules: 
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  (5.12) 

where ( )1w t B
L w − is the gradient of loss function over a training mini-batch, tm and tv  are the 

first and second-moment variables and α, β1, β2, e are learning hyperparameters. In addition to the 

updating of learnable parameters, the performance of a CNN also depends on the selection of 

hyperparameters, including the number of layers, the size, stride, and number of filters in each 

convolutional layer, size and stride of pooling, number of neurons in fully connected layers, and 

the learning hyperparameters in training algorithm. Generally speaking, increasing the number of 

layers enables higher-level abstraction of data, increasing the number of filters allows the learning 

of more feature representations, and using larger strides yields faster data compression through the 

network. In this work, a compact CNN architecture is designed, in which some hyperparameters 

vital to the model performance are selected using cross-validation analysis, as will be shown in the 

next section. 

5.2.3 Results and Discussions 

5.2.3.1 Design of Deep Learning Model Structure 

The direct laser deposition of sponge Titanium powders creates porous specimens, for which 

it is of interest to know what the volume porosity is and where the porosity occurs. The latter is 

more challenging as it requires datasets with accurate 3-D porosity measurement to train the 

predictive model, which means all the pores scattered inside a specimen need to be captured to 

minimize the mislabeling of data. Since in Table 5-10, only Test#5 inspected by X-ray CT meets 

this requirement, this dataset was used for the detection of porosity occurrence, while the other 

four cross-sectioning datasets were used for the prediction of volume porosity.  

A compact CNN architecture was designed, as shown in Table 5-11, in which most of the 

structure hyperparameters are similar to those in the famous Alexnet [102], because its structure 
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has proved to be powerful in learning representations from images. However, as the Alexnet is 

aimed to classify images into 1000 categories while the porosity monitoring model is only used 

for binary classification of two categories (0: no pore, 1: pore), it should be possible to build the 

monitoring model with fewer features. Hence, the number of filters and fully connected neurons 

were reduced, which resulted in the CNN having significantly fewer learnable parameters (about 

0.3 millions) than the Alexnet (about 61 millions) and thus it can be trained with much smaller 

data sets. Besides, batch normalization and ReLU function were used between the convolution and 

max pooling operations in each layer, and the hyperparameters in Eq (5.12) were adopted from the 

recommendations in [231], i.e. α=0.001, β1=0.9, β2=0.999, e=10-8. 

 

Table 5-11 Architecture of the convolutional neural network for direct laser deposition 

Layer Filter Size Number of filters Stride Max Pooling 

Image Input 224×224 grayscale images 

Convolution 11 48 4 3×3, stride of 2 

Convolution 5 64 2 3×3, stride of 2 

Convolution 3 96 1 3×3, stride of 2 

Convolution 3 96 1 3×3, stride of 2 

Convolution 3 64 1 3×3, stride of 2 

Fully Connected 64 output channels 

Fully Connected 32 output channels 

Fully Connected 2 output for classification 

 

To train the CNN model, each melt-pool image corresponding to a longitudinal position along 

the laser scan direction was paired with the class label obtained from porosity inspection. It is 

intuitive that all the melt-pool images with a pore should be labeled as true (true = pore, false = no 

pore). However, considering the dynamics of melt pool and the resolution limit of camera, only 

the pores above a certain size could produce a noticeable impact on the melt pool and thus become 

detectable through the camera. Hence, it might be necessary to set a threshold of pore size when 

preparing the labeled training samples. For example, if using a threshold of 15 µm, the pores 

smaller than 15 µm will be neglected (true: pores≥15 µm; false: no pore or pores<15 µm). This 

pore size threshold, as a hyperparameter of the model, was selected using a 10-fold cross-

validation analysis. The 2842 data samples in Test#5 were randomly divided into 10 subsets of the 

same size. Given a threshold to determine the class labels of data samples, one subset out of the 
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ten was selected for validation each time and the rest nine subsets were used for training. The 

classification accuracy of the trained CNN model on the validation subset was recorded. This data 

partition was repeated ten times until each subset had been used for validation once, and the 

average classification accuracy of the 10 folds was used as the performance index of that threshold. 

The results of the cross-validation are given in Table 5-12. It can be seen that using a threshold of 

10µm gives the best results. This might be because the pores smaller than 10 µm could not produce 

a detectable pattern on the melt pool images or because the CT resolution was 9.95 µm/pixel and 

thus those pores smaller than 10 µm have only 1 pixel in the tomography data, which was not a 

reliable measurement. Using a too large pore size threshold would also degrade the performance 

because some image samples with porosity patterns were mislabeled as false. Therefore, 10 µm 

was selected as the optimal pore size threshold. 

 

Table 5-12 Cross-validation of the pore size threshold 

Pore size threshold 0 µm 10 µm 20 µm 30 µm 40 µm 

Mean classification accuracy 89.62% 91.06% 90.85% 89.48% 88.00% 

 

The above analysis was based on the CNN structure of 5 convolutional layers, as in Table 

5-11. The number of layers is also a vital hyperparameter that affects the network performance. 

Could making the network deeper (more layers) improve the performance, or could the network 

be further simplified by using fewer layers without degrading the performance? Another cross-

validation analysis for the number of convolutional layers was conducted. The number of layers 

was reduced to 3 or 4 by removing the last one or two convolutional layers, or increased to 6 or 7 

by cascading more convolutional layers with 3×3 filters after the 5th layer.  The results of this 

cross-validation are given in Table 5-13. It can be seen that using too few layers (like 3 layers) 

didn’t give good performance, but using too many layers (like 7 layers) would also slightly degrade 

the performance. Based on the cross-validation, the CNN with 5 convolutional layers and the pore 

size threshold of 10 µm was the best model for predicting the porosity occurrence. 
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Table 5-13 Cross-validation of the number of layers 

Number of convolutional layers 3 4 5 6 7 

Mean classification accuracy 87.23% 90.22% 91.16% 90.39% 90.39% 

5.2.3.2 Results of Porosity Detection 

The above CNN structure design was carried out using a classical CNN without considering 

uncertainty. This CNN would be used as a baseline model. In practice, an AM process does involve 

substantial uncertainties [232], such as the fluctuating laser power absorption, varying material 

properties in powders, and noise radiations from the environment that corrupt melt-pool images. 

Therefore, after the optimal CNN structure was determined, the GM-PNN developed in Chapter 4 

was combined with CNN to create a porosity model with uncertainty quantification capacity. 

Assuming that the convolutional layers in the baseline CNN had been well-trained to extract 

representative features of the melt pool, a GM-PNN module was used to replace the fully 

connected layers (i.e., the last three rows in Table 5-11) without altering the convolutional layers. 

The GM-PNN module took the 96 features from the last convolutional layer as input to predict the 

porosity status. It had the same structure as the original fully connected module, while all the 

connection weights in it are parameterized as Gaussian mixtures. The GM-PNN was retrained 

using the features extracted by the baseline CNN and the porosity measurements in the dataset of 

Test#5. All the training and adaptive refinement parameters of GM-PNN were the same as those 

in Section 4.3.  

The porosity status classification of the cascaded model of CNN and GM-PNN, denoted as 

CNN+PNN, is presented in Figure 5-14, with misclassified samples indicated by ‘x’ markers. It 

can be seen that the CNN+PNN model correctly classified most of the data samples to detect 

porosity occurrence. The performance of the CNN+PNN model is compared with the baseline 

CNN model in Table 5-14, Figure 5-15 and Figure 5-16. For porosity status classification, the 

fusion of CNN with GM-PNN remarkably improved the classification accuracy from 91.2% to 

93.6%. The number of misclassified samples was reduced from 31 to 18. More importantly, as 

shown in Figure 5-16, the misclassified samples of CNN+PNN (all below 50 µm) were mainly 

those with very small pores (less than 10 µm). Compared with the baseline CNN, the CNN+PNN 

model had a much more reliable porosity detection for the pores above 10 µm, given that there 
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were 16 samples in the 10-50 µm range misclassified by the CNN model while only 4 were 

misclassified by the CNN+PNN model. Therefore, it can be said that by better considering the 

uncertainties in the melt-pool features, which originated from the noises in melt-pool images, the 

GM-PNN significantly improved the CNN’s sensitivity to the pores with a sensible size (larger 

than 10 µm). For the pores below 10 µm, since they could not make sufficient impact on the melt 

pool and there are no sufficient detectable patterns in the melt-pool data, no matter what learning 

technique is used, the classification accuracy could not be further improved. 

 

Table 5-14 Comparison of porosity monitoring model performance 

 Porosity 

Classification 

Accuracy 

Local Volume Porosity Prediction  

R2 RMSE NLL Interval 

Width 

CNN 91.2 % 0.907 1.25% N/A N/A 

CNN+PNN 93.6 % 0.950 0.92% 1.30 
95%: 3.55% 

99%: 4.71% 

 

 

Figure 5-14 Classification of porosity status using CNN+PNN 

Top: pore size extracted from the tomography measurement data; Middle: measured porosity 

status using the 10 µm threshold; Bottom: CNN+PNN classification results 
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  (a)   CNN                                                             (b)  CNN+PNN 

Figure 5-15 Confusion matrices of porosity status prediction 

 

  

  (a)   CNN                                                             (b)  CNN+PNN 

Figure 5-16 Pie charts of misclassified samples for porosity status prediction 

5.2.3.3 Results of Volume Porosity Prediction 

Other than the detection of individual pores, for the AM deposition of materials, it is usually 

also of interest to know the volume porosity (ratio of porosity volume to the deposition volume) 

in the deposited parts, because the level of porosity is a key quality attribute that will influence the 

parts’ performance such as mechanical strength. Test#1~4 in Table 5-10 inspected via cross-

sectioning method were used to study the prediction of volume porosity, based on the assumption 

that though the pores are scattered inside a deposited track, the level of porosity may not be varying 

significantly across the track, so that the volume porosity evaluated from a set of cross-sections 

could represent the true porosity level in the track. Table 5-15 summarizes the volume porosity 

measured from multiple cross-sections for the four tests, in which the overall volume porosity is 
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calculated as the average ± standard deviation of the cross-section volume porosities. It can be 

seen that the variance of volume porosities among cross-sections is in an acceptable range 

compared with the mean magnitude of porosity, and thus the above assumption is reasonable, 

though not strict. 

 

Table 5-15 The volume porosity measured from cross-sections 

(Test#1 and #2 had only two cross-sections inspected) 

Test# Volume porosity on cross-sections Overall volume porosity 

#1 #2 #3 

1 17.89% 11.99% N/A 14.9±4.2% 

2 12.08% 9.27% N/A 10.7±2.0% 

3 6.65% 9.86% 8.16% 8.2±1.6% 

4 5.13% 4.51% 8.15% 5.9±1.9% 

 

For the volume porosity model, instead of predicting the overall volume porosity in Table 

5-15, which is averaged over the whole track, the melt-pool image at each longitudinal position is 

used to predict the local volume porosity in the neighborhood of that position. The evaluation of 

local volume porosity is illustrated in Figure 5-17, taking the 1st cross-section of Test#1 as an 

example. The pore size at each longitudinal position is added up and divided by the depth of track 

to obtain the volume porosity at that exact position, then a two-sided moving average filter sliding 

longitudinally with selected window size is applied to compute the local volume porosity. The 

volume porosities evaluated for different cross-sections of the same specimen are averaged and 

then used to label the melt-pool images from that experiment. Obviously, the window size of the 

moving average filter is an important hyperparameter in processing data for the monitoring model. 

Using a too-small window will make the local volume porosity too sensitive to the occurrence of 

individual pores while using a too-large window will fail to capture the local fluctuation of porosity 

and a local melt-pool image may not be suitable to predict the porosity over a too large span. In 

this study, by evaluating the performance of CNN models using another cross-validation analysis, 

it was found that a 2 mm moving average window achieved the best performance. Also, it was 

found that the number of convolutional filters could be reduced without degrading the performance, 

probably because predicting the volume porosity was less dependent on the detailed local behavior 

of the melt pool than detecting the occurrence of individual pores. Hence, the number of filters in 

Table 5-11 was reduced to 12, 16, 24, 24, and 24 for the five layers respectively, which made the 
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CNN model much more compact. 

 

 

Figure 5-17 The evaluation of local volume porosity from a longitudinal cross-section 

Top: the cross-section image with extracted pore boundaries highlighted; Bottom: pore size 

measured from the cross-section and local volume porosity evaluated using a 2 mm moving 

average window 

 

With the calculated volume porosity and updated CNN structure, the CNN and CNN+PNN 

models were trained for the local volume porosity prediction task respectively. As shown in Table 

5-14, the CNN+PNN model considerably outperformed the CNN model in this regression task 

with a higher R2 and lower RMSE. Figure 5-18 shows the prediction for the experimental sample 

of Test#2. As can be seen, the prediction of local volume porosity by CNN was quite noisy due to 

the fluctuations in input images. In contrast, the prediction of CNN+PNN was much smoother 

because the GM-PNN module could quantify noisy fluctuations as uncertainty and generate 

confidence intervals (CI) from its predicted distributions to enclose them.  

Finally, to validate the GM-PNN’s capacity of modeling arbitrary types of uncertainties, the 

CNN+PNN model was used to predict the overall distribution of volume porosity for the same 

experimental sample in Figure 5-18, and the result is shown in Figure 5-19. This PDF prediction 

was generated by extracting the feature vectors belonging to this sample from the last 

convolutional layer, fitting the distribution of features as a 6-component Gaussian mixture, and 
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then propagating the fitted input uncertainty through the GM-PNN module. It can be seen that the 

predictive distribution of GM-PNN, as a Gaussian mixture, matched the true measurement 

histogram, even though the true distribution didn’t belong to any specific distribution form. The 

ability to use Gaussian mixture to construct generic non-Gaussian predictive distributions is one 

of the advantages of the proposed GM-PNN over other models that could only provide Gaussian 

predictive distributions, such as the deep Gaussian processes and BNNs under Gaussian posterior 

assumptions. 

 

 

Figure 5-18 Predictions for local volume porosity 

 

  

Figure 5-19 Prediction of the overall distribution of local volume porosity by CNN+PNN 

 



 

 

134 

5.3 Summary 

This chapter describes the applications of the probabilistic neural network in Chapter 4 on 

two manufacturing process monitoring schemes. First, a robust tool wear monitoring scheme for 

turning processes was developed using a minimally-intrusive and low-cost instrumentation setup. 

A systematic feature normalization and selection procedure was proposed to eliminate the signal 

features’ dependence on cutting conditions, cutting tools and workpiece materials and select the 

features that have the best performance in predicting tool wear. In particular, the feature fusion in 

the feature selection procedure was shown to be a methodical approach that was capable of finding 

combinations of multiple frequency bands and multiple frequency-domain features with maximum 

correlation to tool wear. The tool wear models were trained with two methods: one is the type-2 

fuzzy network for interval uncertainty quantification and the other is the GM-PNN proposed in 

Chapter 4 for probabilistic uncertainty quantification. Experimental results show that by modeling 

the uncertainties probabilistically, the GM-PNN not only achieved higher accuracy of tool wear 

prediction, but also provided less conservative but still reliable tool change requests to prevent 

premature tool failure. 

Second, a porosity monitoring scheme for laser AM processes was developed. A high-speed 

digital camera was used for in-process melt-pool sensing and a series of image processing tools 

were developed to precisely label each collected melt-pool image with measured porosity 

attributes. A compact CNN structure was designed to directly learn melt-pool features to predict 

porosity. For both the classification task of porosity detection and the regression task of local 

volume porosity prediction, the classical CNN models were compared with the cascade models of 

CNN and GM-PNN. Experimental results reveal that the CNN models alone had achieved 

exemplary capacity in detecting micro-porosity below 50 µm while the monitoring works in the 

literature are mostly addressing the pores above 100 µm. The fusion of CNN with GM-PNN made 

the performance even better by not only improving the porosity prediction accuracy but also 

offering essential uncertainty information. Especially, the non-Gaussian distribution of local 

volume porosity could be accurately predicted with the GM-PNN module. Based on the results of 

the two monitoring schemes, the GM-PNN proves to be effective in quantifying uncertainty and 

facilitating reliable decision-making in the manufacturing environment. Therefore, it will be a 

powerful solution to address practical problems subject to significant uncertainties.  
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6. CONCLUSIONS AND FUTURE WORK 

In this study, a series of high-fidelity and computationally efficient uncertainty analysis 

approaches were developed for data-driven neural network models and their applications on two 

manufacturing process monitoring problems were presented: 

1. A nonlinear uncertainty propagation scheme based on adaptive refinement of Gaussian 

mixtures was proposed. The Gaussian mixture was used to characterize the general-form 

probability distributions of uncertainties, which yielded higher fidelity than presumed 

distribution forms, and was more compact than Monte Carlo sampling. Through active 

assessment of nonlinearity and adaptive splitting of distorted Gaussian components, this 

scheme could effectively propagate uncertainties in arbitrary forms through a neural 

network. Its accuracy was comparable to the large-scale Monte Carlo sampling while its 

computation time was much shorter. Therefore, it could be used as a versatile scheme to 

address the uncertainty propagation in recurrent and deep neural networks. 

2. An adaptive Gaussian mixture filter (AGMF) for Bayesian state estimation was derived. 

By approximating the dynamics of a nonlinear system with a feedforward neural network 

and applying the adaptive Gaussian mixture refinement, high-fidelity state prediction was 

achieved. Subsequently, the refinement scheme was extended with a likelihood 

divergence criterion to assess the nonlinearity in Bayesian measurement update so that 

the PDF of unmeasurable states could be closely tracked over time. It was proved that 

under mild conditions, the L1 norm error of state PDF estimation can be bounded to a 

minimal level. Based on the testing on a series of challenging nonlinear filtering problems, 

the AGMF proved to be an efficient solution for highly nonlinear state estimation 

applications. 

3. A probabilistic neural network with Gaussian-mixture-distributed parameters (GM-PNN) 

was developed. In addition to the adaptive refinement by assessing nonlinearity, a new 

criterion was introduced to ensure the fidelity of probabilistic linear transformation, so 

that the predictive output distribution could be inferred accurately without sampling or 

integration. The gradients of loss function with respect to the probabilistic parameters 

were all derived explicitly, and thus the GM-PNN can be trained with any sampling-free 

backpropagation method. The GM-PNN proved its robust learning capacity from noisy 
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data by achieving a state-of-the-art accuracy on a series of benchmark datasets.  

4. Two comparative studies of manufacturing process monitoring were conducted. A tool 

wear monitoring scheme for turning processes was built based on engineered signal 

features, in which the GM-PNN was compared with a type-2 fuzzy network. Likewise, a 

porosity monitoring system for laser AM processes was built by direct feature learning 

from melt-pool data, in which the CNN models with and without embedded GM-PNN 

module were compared. In both schemes, the GM-PNN not only remarkably improved 

the prediction accuracy of process conditions but also offered more effective uncertainty 

quantification needed by reliable process-level decision-making and intervention. 

Based on the developed uncertainty analysis methods and their proven successes in practical 

applications, some directions for future studies are suggested as below: 

1. Closed-loop control system synthesis based on AGMF. The AGMF models the system 

dynamics as a neural network and thus a data-model-based controller design method can 

be applied without extra modeling effort. The AGMF also offers an accurate estimation 

of unmeasurable states with quantified error bounds, which makes it possible to consider 

the high-fidelity feedback state uncertainty in the controller design step, though how to 

ensure the stability and robustness of such a closed-loop system needs further studies.  

2. Parameter estimation using AGMF. Using Kalman filters, or its nonlinear variants, to train 

data-driven models, like recurrent networks, has been widely studied. Though in this 

study the AGMF is proposed as a nonlinear state estimator, it can be extended to the 

parameter estimation problems in training neural networks. Its capacity of methodically 

addressing the nonlinearity and uncertainty in the model will be invaluable in advancing 

the performance of existing filter-based training methods. 

3. Probabilistic deep and recurrent neural networks. Though the GM-PNN in this study is 

mainly formulated as a multi-layer feedforward network, due to its good performance, it 

is of interest to expand its inference and training method to more complicated models. 

However, this will introduce computational bottlenecks to be addressed. For example, 

though the convolutional layer in CNN is theoretically a linear operation, the uncertainty 

propagation through it will involve SVD and matrix multiplications with up to several 

thousand or million dimensions. Therefore, the appropriate simplification for uncertainty-

related computations in high-dimensional layers needs to be studied. 
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APPENDIX A. DERIVATION OF THE KL DIVERGENCE FOR 

NONLINEARITY DETECTION 

To derive the KL divergence evaluation in Eq. (2.9), substitute Eq. (2.8) into Eq. (2.6) and 

then by using the rule change of variables, the integral variables in Eq. (2.6) can be changed from 

the post-activation states  1 2, , ,
T

ks s s=s  to pre-activation states  1 2, , ,
T

kz z z=z :  
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The first term in Eq. (A.1) is the differential entropy of a Gaussian distribution, which has a 

closed-form solution [216]: 
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Since the activation functions considered in this work are scaler mappings, the Jacobian 

matrix is always diagonal: 
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 Therefore the second term in Eq. (A.1) can be expressed using Eq. (A.3) as: 



 

 

138 

 

( )
( )

( ) ( )

( ) ( )( )

( ) ( )( )

1

2

1

1

| , log

| , log '

| , log '

log '
i

k

i

i

k

i i i i i

i

k

ip z
i

d
d

d

f z d

z f z dz

E f z

 



−



−
=



−
=

=

=

=

 =  









f z
z μ Σ z

z

z μ Σ z

N

N

N

  (A.4) 

which is the sum of expectations of the logarithm of activation function derivatives. The third term 

in Eq. (A.1) can be expanded as: 
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In Eq.(A.5), the first term is a constant that cancels the second term in the differential entropy 

in Eq. (A.2). Using Eq. (A.3), the second term can be computed as ( )( )
1

log log '
k

i

i

f 
=

=A . Then 

the integrand in the third item can be rewritten as: 
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Given that 
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where cij is the element in the i-th row and j-th column in the inverse of covariance matrix Σ−1. 

The third term in Eq.(A.5) can be evaluated as: 



 

 

139 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

1

1 1

,
1 1

,
' '

' ' i j

T T

k k
ij

i j i i j j i j

i j i j

k k
ij

i i j jp z z
i j i j

d

c
p z z f z f f z f dz dz

f f

c
E f z f f z f

f f

 
 

 
 

 −

−

 

− −
= =

= =

− −

 
 = − −
 
 

 
  = − −
  

 



  



z f z f μ AΣA f z f μ zp

  (A.7) 

Substitute Eq. (A.7) into Eq. (A.5) and then substitute Eq. (A.2), (A.4) and (A.5) into Eq. 

(A.1), the Eq. (2.9) can be obtained.  
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APPENDIX B. THE QUADROTOR DRONE DYNAMICS 

A description of the dynamics of the quadrotor drone used in Section 2.3.3 is provided below, 

which is adopted from [210]. As mentioned in Eq. (2.27), the drone system considered in this work 

has 12 state variables and 4 inputs: 

 

 1 2 3 4

T

T

x y z x y z p q r  

   

=

=

x

u
 

where the first 6 states are x, y, z locations of the drone in the inertial frame and their velocities, φ, 

θ, ψ are the pitch, roll and yaw angles of the drone in inertial frame and p, q, r are the angular 

velocities in the body frame. The four inputs in u are angular velocities of the four propellers. The 

coordinate frames of the drone are illustrated in Figure B-1. 

 

 

Figure B-1 The inertial and body frames of a quadrotor drone 

 

With the coordinate transformation from the body frame to the inertial frame, the acceleration 

of the drome, as derived in [210], can be calculated as: 
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  (B.1) 

where the g is the gravitational acceleration, m is the mass of the drone, T is the total thrust force, 

and Ax, Ay, Az are the drag force coefficients for velocities in the corresponding directions of the 
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inertial frame to consider the aerodynamical effect. 

The angular acceleration of the drone in body frame can be written as: 
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  (B.2) 

where Ixx, Iyy, Izz are the moments of inertia of the drone in the corresponding directions, and τφ, τθ, 

τψ are the torques around pitch, roll and yaw angles. 

The transformation of angular velocities from the body frame to the inertial frame is: 
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  (B.3) 

The thrust forces f of the four propellers and torques τ around propeller axes are determined 

by their angular velocities ω: 

 2 2 1, ,4i i i if k b i  = = =   (B.4) 

where k and b are the lift constant and drag constants, respectively.  

The total thrust force T and the torques around pitch, roll and yaw angles (τφ, τθ, τψ) are: 
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where l is the distance between the rotor and the center of mass of the drone. 

Combining Eq. (B.1)-(B.5), the equation of motion of the drone can be written as: 
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  (B.6) 

The above equation of motion is used for the simulations in Section 2.3.3 to generate Monte 

Carlo samples and training samples for the recurrent neural network. The drone parameters used 

for simulation are the same as those in [210]: 

 

Table B-1 Drone parameter values for simulation 

Parameter Value Unit Parameter Value Unit 

g 9.81 m/s2 Ixx 4.856×103 kg×m2 

m 0.468 kg Iyy 4.856×103 kg×m2 

l 0.225 m Izz 8.801×103 kg×m2 

k 2.980×106 kg×m Ax 0.25 kg/s 

b 1.140×107 kg×m2 Ay 0.25 kg/s 

   Az 0.25 kg/s 
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APPENDIX C. PROOF OF LEMMA 1 

This proof considers a pre-activation PDF with a single Gaussian density p(z)=N (z|μz,Σz). 

The terms in Eq. (3.17) can be clustered into two groups that converge respectively: 
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In D1, given that the Jacobian matrix of sigmoid function is diagonal, the expectation can be 

written as ( ) ( ) ( ) ( )( ) ( ) ( )( )
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 For logistic sigmoid function ( ) ( )1 1 iz

iz e −
= + , it can be shown that ( )( )log ' i id z dz =  
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e e
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For D2, using the Taylar’s expansion ( ) ( ) ( ) ( )2z z = + − +z μ A z μ r z  with a second-order 

remainder ( ) ( )( ) ( )( )
2 2

2 1 1 10.5 '' ''
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m m mz z      = − −
 
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of quadratic function (Results 8.5, page. 170 in [220]), the first term can be evaluated as:  
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which cancels the m/2 term in D2. Using the SVD in Eq. (2.11) and Σz
−1=VΛ−1VT, the second term 

in F(z) is upper bounded by:  
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where || ||2 denotes the 2-norm of a vector and for all the singular vectors ||vi||2=1. The expectation 

of the product of two norm terms is an inner product that satisfies the Cauchy–Schwarz inequality 

 
2 2 2E XY E X E Y        , and the expectation of each norm can be evaluated as: 
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where 
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2min 'bL
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 and factor 3 is the kurtosis of the Gaussian variable zi. For the 

logistic function, ( )max '' 0.1i    and ( ) ( ) ( )( )min ' 1i M M     − given that max(μi) < 

Mµ. Substituting Eq. (C.6) and (C.7) into the Cauchy–Schwarz inequality of Eq. (C.5) gives:  
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For the last term, using the same method as in Eq. (C.5) and (C.7), it can be obtained that: 
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Since the singular values satisfy λmax/λmin <Mλ , the trace has ( ) min max mintr z m mM    Σ . 

Using Eq. (C.4), (C.8) and (C.9), an upper bound of D2 is: 

 ( ) ( )2 3 tr 3 trb z b zD mM L mM L  +Σ Σ   (C.10) 

with ( ) ( )( )0.1 1bL M M  = − . Finally, substitute Eq. (C.10) and (C.3) into Eq. (C.1): 
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Therefore, for any positive thD, there exists a positive root 
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0
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D
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 such that 

if ( )tr z DΣ , the KL divergence is lower than thD. For other sigmoid functions like the 

hyperbolic tangent, the constants La and Lb can also be derived and the Lemma 1 still holds.  
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APPENDIX D. PROOF OF LEMMA 3 

This proof considers a prior state PDF with a single Gaussian density p−(xk)=N (xk|μk
−,Σk

−). 

Expanding the ( )kxG  and ( )ˆ
kxG  in Eq. (3.24), it can be obtained that:  
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Following Eq. (C.5), it can be easily shown that for a positive semi-definite quadratic form, 

there is inequality 
2 2

max 2
,T

i i = x Ax v x x , where v and λ are the singular vectors and 

values of matrix A. In addition, since the Jacobian matrix of g is bounded ||Hk||2≤MH, based on the 

mean value theorem of vector-valued functions [219], the function g satisfies the Lipschitz 

condition ( ) ( )k k H k kM−  −g x g μ x μ . Therefore, assume that the largest singular value of the 

noise covariance matrix Rk is λR, it can be shown that for the terms in Eq. (D.1):  
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x μ Σ , the likelihood divergence is upper bounded by:  
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where ( )2

R H g rc M M M= + . Therefore, the likelihood divergence can be made lower than any 

positive threshold thL provided that the trace tr(Σk
−) <σL= thL/c. 

Next, substitute Eq. (3.3) into Eq. (3.11), the KL divergence between estimated posterior PDF 

( ) ( )ˆ ,k k kp =x μ ΣN  and true PDF p(xk) is:  
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The absolute value of the first term can be decomposed as: 
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where 
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the marginal likelihood of EKF (pp. 214, Ref [73]) and the fact that ( )
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 from Eq. (D.5), the fraction 

term in Eq. (D.6) can be rewritten as:  
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where the expectation integral is derived using the formula for the product of two Gaussians 

(Results 8.2, pp. 169 in [220]). Taking the natural logarithm of Eq. (D.8) gives: 



 

 

148 

 ( )

( )

( )
( ) ( ) ( )

1

ˆ

| 1
log log 2 2

ˆ | 2k

T
k k

n k k k n k k kp

k k

p
E c c c

p

−− −
 

 − − + − − − 
 

x

y x
I Σ μ μ I Σ μ μ

y x
  (D.9) 

In the EKF solution [73], ( )( )k k k k

− −− = −μ μ K y g μ  with 1

k k yy

− −=K Σ H Σ . Hence, the second term 

is in the order of ||Σk
−||2. Using Eq. (1) in [221], it has ( ) 2log 2 2 trn k kc c r− − = +I Σ Σ , where r2 is 

a second-order remainder. Also, ( ) ( )tr trk k

−Σ Σ  given that T

k k yy

−= −Σ Σ KΣ K . If tr(Σk
−)≪1, 

tr(Σk
−)2 and ||Σk

−||2 will be less than tr(Σk
−) by orders of magnitude. Therefore, the KL divergence 

bounded by the sum of Eq. (D.7) and (D.9) will decay to zero with a linear rate of tr(Σk
−): 

 ( ) ( )( ) ( ) ( ) ( )ˆ || 1 tr . . trKL k k k kD p p c d H OT cM− − + + x x Σ Σ   (D.10) 

where H.O.T denotes the higher-order terms of tr(Σk
−)2 or ||Σk

−||2, and M is a finite constant d+1< 

M<∞. Given that tr(Σk
−)<thL/c, the KL divergence will be less than M×thL. Q.E.D. 
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