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ABSTRACT 

Despite advancements in therapies, such as surgery, irradiation (IR) and chemotherapy, outcome 

for patients suffering from glioblastoma (GBM) remains fatal; the median survival time is only 

about 15 months. Even with novel therapeutic targets, networks and signaling pathways being 

discovered, monotherapy with such agents targeting such pathways has been disappointing in 

clinical trials. Poor prognosis for GBM can be attributed to several factors, including failure of 

drugs to cross the blood-brain-barrier (BBB), tumor heterogeneity, invasiveness, and angiogenesis. 

Development of tumor resistance, particularly to temozolomide (TMZ) and IR, creates a 

substantial clinical challenge. 

 

The primary focus of the work described herein was to develop a modeling and simulation 

approach that could be applied to rationally develop novel combination therapies and dose 

regimens that mitigate resistance development. Specifically, TMZ was combined with small 

molecule inhibitors that are either currently in clinical trials or are approved drugs for other cancer 

types, and which target the disease at various resistance signaling pathways that are induced in 

response to TMZ monotherapy. To accomplish this objective, an integrated PKPD modeling 

approach was used. A PK model for each drug was first defined. PK models were subsequently 

linked to a PD model description of tumor growth dynamics in the presence of a single drug or 

combinations of drugs. A key outcome of these combined PKPD models was tumor static 

concentration (TSC) [1] curves of TMZ in combination with small molecule inhibitors that identify 

combination drug exposures predicted to arrest tumor growth. This approach was applied to TMZ 

in combination with abemaciclib (a dual CDK4/6 small molecule inhibitor) based on data from a 

published study [2] evaluating abemaciclib (ACB) efficacy in combination with TMZ in a U87 

GBM xenograft model. TSC was also constructed for TMZ in combination with RG7388 (MDM2 

inhibitor) based on the data from an in-vivo study that evaluated effects on tumor growth 

suppression of these small molecule inhibitors in combination with TMZ in GBM 10 patient 

derived xenografts. 

In GBM 43 mouse xenografts, emergence of resistance to TMZ treatment was identified. Thus, a 

resistance integrated PKPD model was developed to predict tumor growth kinetics after treatment 

with TMZ in GBM 43 tumors. Population PK models in immune deficient NOD.Cg-
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Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice for TMZ and small molecule inhibitors (GDC0068/RG7112) 

were developed based on a combination of data obtained from an in-vivo study and published 

sources. Subsequently, PK models were linked to tumor volume data obtained from GBM 43 

subcutaneous xenografts. Model parameters quantifying tumor volume dynamics were precisely 

estimated (coefficient of variation < 40%) compared to a base tumor growth inhibition model in 

GBM 43 that did not incorporate resistance development. Graphical diagnostics of the resistance 

incorporated PKPD tumor growth inhibition model demonstrated a superior fit compared to the 

base model, and accurately captured the emergence of resistance to the TMZ monotherapy 

treatment observed in the GBM 43 patient derived xenograft model. 
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 INTRODUCTION 

1.1 The Disease and the unmet need 

Glioblastoma (GBM) is the most aggressive primary malignant brain tumor, classified as most 

malignant tumors (Grade IV) by the World Health Organization (WHO) [3], with an average age-

adjusted incidence rate of 32 people per 1,000,000 [4]. Statistical reports published by the central 

brain tumor registry of United States between 2013 to 2017 reported that the GBM accounts for 

the 48.6% of the distribution of malignant primary brain and other CNS tumor by histology and 

57.7% of the distribution of primary brain and other CNS gliomas by histology [5]. 

Despite advancements in therapies, such as surgery, irradiation (IR) and chemotherapy, outcome 

for patients suffering from GBM remains fatal. The poor prognosis and significant challenge for 

GBM can be attributed to the infiltrative nature of the tumor, failure of drugs to cross the blood-

brain-barrier (BBB), tumor heterogeneity, invasive properties and angiogenesis, all of which 

contribute to tumor resistance development to standard of care (SOC) chemotherapy with TMZ [3, 

6]. Indeed, surgical resection of the tumor to the maximal physical extent, followed by radiation 

and  chemotherapy with TMZ is the current SOC for primary and recurrent GBM [7].  Despite 

novel therapeutic targets, networks and signaling pathways being discovered, monotherapy in 

general has failed in oncology clinical trials [8]. The combination of radiotherapy with adjunctive 

monotherapy with TMZ has increased the survival rate of patients with GBM, however the median 

survival time is only about 14.6 months [9].  

1.2 Current therapeutic options and their impact 

Surgery and radiation therapy in absence of TMZ shows median overall survival of 10 to 12 

months in patients suffering from GBM, plus concomitant administration of  standard of care 

therapy TMZ extends the overall survival by an additional three months only [10] . In 2017, the 

Food and Drug Administration approved the use of bevacizumab in addition to current line of 

therapy for newly diagnosed GBM, however therapeutic outcome still remains poor with median 

overall survival up to 18 months only [11] . The standard course of recurrent GBM therapy with 

TMZ consists of several 28-day cycles, each cycle that consists of administration of the maximum 

tolerated dose of 150 – 200 mg/m2 administered only on the first five days to limit dose-limiting 
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toxicity. Several alternate regimens have been investigated for their potential to improve efficacy 

and/or reduce toxic side effects. These consist of low dose daily administration with no dose breaks 

(metronomic therapy, 25 – 50 mg/m2), 7 days on/7 days off at 100 – 150 mg/m2/day, and 21 days 

on/7 days off at 75 – 100 mg/m2/day [12]. None of these alternate approaches has improved 

progression free survival and overall survival relative to the standard regimen [12]. No therapeutic 

benefits were detected from the dense TMZ dosing regimen of 75-100 mg/m2 days 1 to 21 every 

28 days for 12 cycle maximum compared to conventional TMZ dosing regimen of 150-200 mg/m2 

days 1 to 5 every 28 days for 12 cycle maximum indicating prolonged exposure to TMZ did not 

improve patient outcomes as measured by survival rate [13]. 

1.3 The standard of care drug: Temozolomide 

1.3.1 Temozolomide metabolism and DNA damage 

TMZ is a DNA alkylator and a second generation imidazotetrazine that readily crosses the 

BBB [6]. Median half-life in humans is 1.8 hours. TMZ is stable at acidic pH (<5) and labile at pH 

(>7) [14]. TMZ is a prodrug at physiologic pH of blood (ca. 7.4), undergoing spontaneous 

hydrolysis to reactive compound, 5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide (MTIC). 

MTIC further liberates AIC and the active form methyl diazonium ion. This electrophilic ion 

transfers the methyl group to the negatively charged DNA creating DNA adducts.  The cytotoxicity 

of TMZ is attributed to alkylation of DNA. Alkylation (methylation) occurs mainly at the N7 

positions of guanine, N3 adenine and O6 guanine residues that mediates the cytotoxicity [15] . 

The active metabolite, MTIC, has an even shorter half-life (ca. 30 minutes) than TMZ. With such 

a short half-life, effectively all of a TMZ dose and derived MTIC are eliminated before the next 

day when administered on a daily basis, which is the case for all of the above regimens. Where 

these regimens differ is with respect to the extent of DNA methylation from a given dose, which 

is expected to be dose dependent, and the number of successive days that methylation takes place. 

Describing the relationship between these differences and the timing of the tumor adaptive 

response is challenging, given genetic differences in tumors, and the numerous possible TMZ 

doses and dose durations. Development of tumor resistance, particularly to TMZ monotherapy, 

creates a substantial clinical challenge [16].  
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1.3.2 Mechanisms of Temozolomide resistance in GBM 

The cytotoxicity of TMZ is primarily mediated through O6 guanine residues. During DNA 

replication, alkylation of the O6 site mispairs with thymine instead of cytosine, opposite the methyl 

guanine, and therefore triggers G2-M cell cycle arrest leading to cell death [17]. However, the 

DNA repair mechanisms counteract the DNA damage caused by TMZ. The most important repair 

mechanisms impacting the cytotoxicity of TMZ are enzyme methyl guanine-DNA methyl 

transferase (MGMT), DNA mismatch repair (MMR) and DNA base excision repair (BER). During 

DNA alkylation, MGMT directly facilitates repair by removing the methyl adduct, restoring 

guanine [18]. Hence MGMT protects cancer cells from chemotherapeutic agents like TMZ. The 

loss of function of DNA mismatch repair caused due to the microsatellite DNA instability makes 

O6 site thymine mispairs go unrecognized  [18] and a cell continues to cycle and survive. 

Methylation at N7 and N3 sites are repaired by BER. DNA lesions generated by these sites are 

repaired by BER and become resistant to TMZ [18].  

1.4 Rationale for combination therapy 

Poor understanding of resistance development and tumor adaptive response timing to TMZ 

continues to lead to investigations of multiple chemotherapeutic agents that target the numerous 

pro-survival adaptations induced by TMZ. Thus far, their use as monotherapy in recurrent GBM 

has not been successful [19-23], but promise has been demonstrated upon combining these targeted 

agents with TMZ [24]. A combination therapy of two or more therapeutic agents has proven to be 

more effective than radiation and monotherapy, and currently several clinical trials aim to 

investigate combination drug regimens to exploit the underlying mechanism of oncogenesis and 

resistance development [6].  

Based on the current understanding of therapeutic targets and signaling networks in GBM, it is 

hypothesized that combination drug regimens will mitigate resistance development by targeting 

the disease via TMZ-induced signaling pathways with brain penetrant small molecule inhibitors 

(SMIs), and that this approach will prolong survival time in GBM. One such pathway activated by 

TMZ therapy is the Murine double minute 2 (MDM2) / tumor protein p53 /p73 signaling pathway, 

wherein the MDM2 pathway functions as the treatment response modulator of the DNA damage 

response by regulating p53/p73 activation and DNA repair. Published data indicate sustained 
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activation of the TMZ induced p53/p73 pathway by MDM2 inhibition [25-27]. Inactivation of the 

TMZ-induced MDM2/p53/p73 pathway by an MDM2 inhibitor significantly improves efficacy 

and survival of recurrent GBM [28]. However, tumors adapt to this therapy over time and growth 

once again progresses. Another pathway that functions as a treatment response modulator and 

activated by TMZ therapy is the pro-survival protein kinase B (AKT)/phosphoinositide 3-kinase 

(PI3K)/mTOR signaling pathway. AKT directly phosphorylates MDM2 at Ser166, which leads to 

increased E3 ubiquitin ligase activity and thus activates MDM2-dependent inhibition of p53 to 

increase cell survival [9, 29].  Existence of a growth promoting link between MDM2 and AKT 

networks provides rationale for combination therapy by dual targeting of MDM2 and AKT 

pathways activated by TMZ [4, 9, 28]. Also, targeting the CDK4/6 cyclin D1-Rb-p16/ink4a 

pathway using a potent CDK4 and CDK6 kinase inhibitor alone or in combination has potential 

for treating CNS tumors such as GBM [2]. This strategic targeting of TMZ induced response 

surface networks is depicted in Figure 1.1. Data show that SOC therapy (TMZ) combined with 

MDM2, AKT and CDK4/6 kinase inhibitors (RG7388, GDC0068, and ACB, respectively) inhibits 

GBM cell growth in-vivo and increases survival in a GBM xenograft model [30]. 

 

 

Figure 1.1: Strategic targeting of TMZ induced response surface networks. Induction of treatment response networks 

by TMZ or radiotherapy provide the rationale to potentiate DNA damage by strategic targeting of TMZ induced 

response networks using small molecule inhibitors and thus improving therapeutic efficacy 
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1.4.1 Targeting MDM2 signaling networks in GBM 

GBM is a heterogenous tumor with numerous genetic instabilities requiring strategic 

targeting to achieve anti-tumor activity. MDM2 is one of the emerging targets in cancer [31] that 

serves as the platform for cell growth and DNA repair [32]. Inhibiting MDM2 has been the major 

strategy for p53 pathway reactivation. This leads to cell death and reduction in the tumor growth 

rate. MDM2 inhibitors bind to MDM2 and block its interaction with the protein p53/p73. This 

leads to the activation of p53/p73-mediated apoptosis [33, 34]. Blockade of MDM2-mediated 

signaling by an MDM2 inhibitor is one of the strategies for treating wild type p53 GBM cells [35]. 

PD studies demonstrated that inhibition of cell growth following TMZ/nutlin3a correlated with the 

activation of the p53 pathway, downregulation of the DNA repair proteins MGMT, persistence of 

DNA damage and increased apoptosis [36]. Dr. Pollok’s lab conducted efficacy studies in an 

intracranial GBM xenograft model using GBM 10 cells derived from a recurrent wild type p53 

GBM that is highly TMZ resistant. Three 5-day cycles of TMZ/nutlin3a resulted in a significant 

increase in survival of mice compared to single-agent therapy and was well tolerated [37] These 

data provided strong rationale to investigate additional combination regimens of TMZ with MDM2 

inhibitor, with the end goal being to maximize therapeutic efficacy in GBM. Based on our 

extensive research, there is the strong rationale to explore targeting MDM2 in combination with a 

variety of signaling pathways in clinically relevant in vivo models of cancer [38-40]. 

1.4.2 Targeting AKT signaling networks in GBM 

Activation of the PI3Kinase/AKT/mTOR pathway following DNA damage is a hallmark pro-

survival mechanism for a variety of cancers, including GBM [41]. Some of the mechanisms that 

can lead to AKT activation are genetic alterations (loss of tumor suppressor PTEN) [42] and 

mutational PI3K activation [43]. Additionally, multiple growth factor receptors are coupled to the 

PI3Kinase/AKT/mTOR pathway and hyper activation of AKT occurs in ~70% of GBM tumors 

[44, 45]. AKT activation is related to resistance development with targeted and chemotherapeutic 

agents [46]. This makes AKT inhibitors a strategic target for GBM therapy. Dr. Pollok’s lab [36] 

and others [47, 48]  showed that TMZ and IR can increase AKT activity in wtp53 and mtp53 GBM 

cells. These data provide strong rationale to study additional combination regimens of TMZ and 

inhibitors of PI3K/AKT/mTOR. 
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1.5 Blood Brain Barrier, Blood Tumor Barrier and Rationale for SMIs selection  

The blood brain barrier (BBB) is comprised of endothelial cells with distinct tight junctions 

and efflux transporters, and plays a critical role in controlling the exchange of molecules between 

the vasculature, neuroparenchyma and cerebrospinal fluid spaces [49]. Paracellular and 

transcellular routes, composed of tight junctions of endothelial cells, prevents passage of drug 

molecules from entering the brain [49]. The primary barrier site is comprised of cerebral capillary 

endothelial cells by tight junction formation [49]. Disruption of the BBB results in brain metastases 

and formation of the Blood Tumor Barrier (BTB). BTB is heterogeneously permeable; however, 

like the BBB, it prevents uptake and absorption of drugs into the neuroparenchyma [50]. Barrier 

function for both BBB and BTB results from the combination of physical tight junctions, transport 

mechanism mediating solute efflux and metabolic barrier, all hindering the permeability and 

uptake of drug molecule to the target site (tumors) in brain.  

The SMIs investigated in this proposal have been studied as single agents in clinical trials. 

There is little known about the effects of drug combinations and the optimal dose combinations 

and sequencing of combinations, as well as the total doses of combinations needed to achieve 

optimal efficacy and safety in vivo. RG7112 is a 1st generation MDM2 inhibitor, RG7388 

(Idasanutlin) is a 2nd generation, nutlin-class, selective MDM2 antagonist [51], GDC0068 

(Ipatasertib) is a pan-AKT inhibitor with acceptable enzyme potency and a high degree of kinase 

selectivity [52], and ACB is a small molecule inhibitor of CDK4 and CDK6 notably showing 

greater selectivity for CDK4 compared with CDK6 [53]. These clinically relevant small molecule 

inhibitors (SMIs) have favorable physiochemical properties for BBB permeability [54], These 

agents, RG7388 (MDM2 inhibitor), GDC0068 (AKT inhibitor) and ACB, have been investigated 

as single agents in various types of cancer [53, 55, 56]. However, they have not been studied for 

optimal combinations and rational dosing regimens in association with TMZ for GBM treatment.   

1.6 Investigated GBM patient derived xenografts models 

The GBM human derived cell line GBM 10 is a recurrent GBM; it is wildtype with respect to 

p53, has a CDKN2A deletion, and possesses wildtype STAT3. The GBM human derived cell line 

GBM 43 is from a primary GBM; it is mutant with respect to p53, also has a CDKN2A deletion, 

and possesses wildtype STAT3 [57]. Unlike GBM 10 and GBM 43, U87 is a GBM, astrocytoma 
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cell line derived from human malignant gliomas. U87 cells are adherent epithelial cells. The 

karyotype is hypodiploid female with a modal chromosome number of 44 in 48% of cells and a 

5.9% rate of higher ploidy [58]. MDM2 small molecule inhibitor RG7388 leads to potent tumor 

inhibition in p53 wild type tumors, and produces no inhibitory effect on p53 silenced xenografts 

[59].  GBM43 has mutant p53 and TMZ can induce the p53 family member p73.  Both MDM2 

inhibitors, RG7112 and RG7388, can block MDM2 from binding to wildtype p53 [60]. However, 

only RG7112 will block MDM2 from binding to p73. Therefore, in some cellular contexts RG7112 

can promote p73-dependent apoptosis in cancer cells. In our study, RG7388 was used to treat mice 

bearing GBM 10 xenografts. RG7112 led to potent antitumor activity in mutant a p53 cell line [61] 

and was used to treat mice bearing GBM 43 xenografts.  

1.7 Tumor Growth Inhibition models 

Ordinary differential equations can be used to describe the net change in tumor volume and 

characterize the unperturbed tumor growth or tumor inhibition in the presence of treatment. 

Growth of the tumor in the absence of treatment can be described using various functions, such as 

linear, exponential, mixture of linear and exponential, Gompertz or logistic growth [62]. The linear 

model describes the zero-order growth rate, while the exponential model describes first order 

kinetic (cell-volume dependent) growth rate for the untreated tumor. Simeoni et. al used the 

mixture of both exponential and linear growth to describe the anti-tumor activity in-vivo.[63]. 

Logistic and Gompertz models become more biologically realistic when the tumor is allowed to 

grow for an unlimited time. The logistic growth model limits the growth of the tumor by carrying 

capacity reaching a plateau, while the Gompertz model assumes growth rates of the tumor decrease 

over time [64]. Having tried all these growth models, we selected the Simeoni growth model to 

capture the unperturbed tumor growth using the method of parsimony based on the Aikake 

Information Criterion (AIC) value [65]. AIC criteria penalize the log-likelihood by the number of 

model structure parameters so as to limit overfitting [66]. 
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 APPROACH 

We utilized a computational PKPD modeling approach to identify and optimize the target 

concentration/dose of SOC (TMZ) in combination with AKT (GDC0068) and/or MDM2 inhibitor 

(RG7388 or RG7112) to be aimed at clinically for targeting TMZ–induced resistance in GBM. 

The central hypothesis is that application of a PKPD modeling approach that incorporates 

targeting of the TMZ triggered resistance signaling pathways, i.e., AKT, MDM2, CDK4/6 

kinase, will identify strategic combinations of SMIs respective of these signaling pathways so 

as to improve our ability to develop combination regimes and thereby improve therapeutic 

outcome in GBM. 

2.1 Study rationale: 

Our rationale is that predictive PKPD modeling of tumor growth kinetics via tumor volume 

data in xenograft models will improve combination treatment therapy design, and readily support 

translation to human therapy. The objective of tumor growth inhibition modeling in combination 

therapy is evaluation and comparison of different dose combinations with respect to efficacy and 

identification of synergistic effects. Oncology clinical trials differ from other diseases because 

Phase 1 trials are never conducted and comparison for the new drug is never made to placebo. 

Instead, outcome for a new treatment is always compared to a SOC [67]. In GBM, the presence of 

complex intra-tumoral heterogeneity leads to resistance development to standard of care TMZ 

monotherapy. When developed as monotherapy agents, novel drug candidates are expected to 

inhibit tumor growth. Alternatively, these novel agents can be combined with already approved 

and older cytotoxic drugs, the latter which kill the dividing cells non-specifically [67]. Currently, 

many combination therapies are being evaluated in clinical trials that focus on exploiting the 

underlying mechanism of oncogenesis and also focus on developing better treatment regimens [6]. 

Treatments that combine two or more drugs are being tested in ongoing clinical trials for various 

GBM subtypes [6]. Based on understanding of therapeutic targets and signaling networks in GBM, 

an approach to alter these multiple pathways with specific small molecule inhibitors is critically 

important for developing rational drug combinations. Published data indicate sustained activation 

of the TMZ induced p53/p73 pathway by MDM2 inhibition [25-27]. In addition, existence of a 
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growth promoting link between MDM2 and AKT networks provides rationale for dual targeting 

of MDM2 and AKT pathways activated by SOC [4, 9, 28]. Due to tumor heterogeneity, some drug 

combinations produce synergistic effects and some combinations produce antagonistic effects [68, 

69]. This latter unresponsiveness to the targeted therapy may be due to the functional and 

phenotypic heterogeneity arising among the cancer cells that presents as a sub-population of 

resistant cells. Quantitative approaches based on mathematical modeling identify possible 

synergism or antagonism; thus, this approach is important in visualizing drug combinations in the 

dose-response matrix.  

2.2 Study Aims and Objectives 

In this study, we present mathematical cell growth/cell kill models involving single agent and 

two or more agents. We extend this basic model to a combination therapy in which two drugs will 

act synergistically, additively, or antagonistically. We then used TSC curves derived from 

mathematical models to demonstrate how combination of two drugs is more effective than either 

drug would have been individually. The objective of our study was to perform predictive PKPD 

modeling of tumor growth kinetics via tumor volume data in various GBM xenograft models (U87 

gliomas, GBM 10, and GBM 43) to demonstrate the potential for combination treatment therapy, 

and better describe the emergence of resistance to TMZ treatment in primary and recurrent GBM. 

The objective of tumor growth inhibition modeling in combination therapy is to evaluate and 

compare different dose combinations with respect to efficacy. To aid visualizing drug 

combinations in the dose-response matrix, Tumor Static Concentration (TSC) curves were 

constructed to demonstrate how combinations of two or more drugs could be more effective than 

either drug alone [70] . Towards this objective, the following specific aims were pursued. 

 

Aim 1: Develop population pharmacokinetic models for TMZ, and MDM2/AKT inhibitors, that 

target TMZ induced MDM2/p53/p73 and PI3K/AKT/mTOR signaling pathways in GBM 

 

Hypothesis: Population PK models describe the plasma concentration profile of TMZ and Small 

Molecule Inhibitors 
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Aim 2: Perform population pharmacokinetic-pharmacodynamic (PKPD) modeling of tumor 

growth kinetics in xenograft mouse models in various cell lines (U87, GBM 10, GBM 43) 

following administration of TMZ with MDM2, CDK4/6 kinase and AKT inhibitors in combination 

treatment 

 

Hypothesis: Population PKPD models describe the anti-tumor activity of TMZ monotherapy and 

TMZ plus SMIs combination therapy 

 

Aim 3: Perform simulations and derive Tumor Static Concentration curves that identify single 

concentration values or pairs of drug concentration combinations that would achieve tumor 

shrinkage 

 

Hypothesis: Developed TGI PKPD models can be applied to conduct simulations that would aid 

visualization and rationalizing drug combinations in a dose response matrix 
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 METHODS 

3.1 Preparation of reagents to support original studies 

TMZ and AKT inhibitor, GDC0068, were purchased from MedChem Express. The MDM2 

inhibitors, RG7112 and RG7388, were purchased from ShangHai Biochempartner Co.,Ltd and 

Chemitek, respectively.  

TMZ was dispersed in 100mM citric acid buffer (0.11 g Citric acid and 0.13 g of Sodium Citrate 

dihydrate dissolved in 10 mL of distilled water by sonication, adjusted to pH 3 using 1M HCl), 

prepared using Hydroxypropyl methylcellulose (0.5% w/v) and polysorbate 80 (0.5%). Small 

molecule inhibitors, RG7388 and GDC0068, were formulated in 0.5% methylcellulose (Sigma-

Aldrich) and 0.05% Tween 80 (Fisher Scientific) for in-vivo studies.  

3.2 Published Data Sources 

To facilitate development of a robust PKPD model, data from published studies derived from 

various doses, formulations, and routes of administration under either fasted or fed conditions were 

used along with the data from our original experimental studies. PK data from published sources 

for mice were included in the study and rats were excluded from the study. Published anti-tumor 

activity data in GBM cell lines for the investigated molecules were included in the study. Details 

of these published studies, including Tables 3.1 and 3.2, are described in the following two sub-

sections.  

3.2.1 Pharmacokinetic Data 

  The live phase and sample analysis from original studies of male NSG 

immunocompromised mice plasma pharmacokinetics for TMZ were conducted following 

administration of 5 mg/kg or 66 mg/kg as single oral (p.o.) doses. Additional TMZ doses:  20 

mg/kg p.o. [71, 72], 50 mg/kg p.o. [73], 66 mg/kg intraperitoneal (i.p.) [7, 74] and 10 mg/kg [75] 

intravenous (i.v.) used to support TMZ pharmacokinetic model development were obtained by 

digitization of data for mean plasma TMZ concentration time profile from the published literature 

[7, 71-75] using Enguage Digitizer (https://github.com/markummitchell/engauge-digitizer). 

Mouse plasma pharmacokinetic study parameter estimates of RG7112 (also an MDM2 inhibitor) 

https://github.com/markummitchell/engauge-digitizer
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were obtained from a published study [76].  Mean plasma ACB concentration time profile data 

following 30 mg/kg oral ACB were obtained by digitization from a published study [2]. Original 

mouse plasma pharmacokinetic studies for RG7388 and GDC0068 were conducted following 

administration of a single oral dose of 50 mg/kg and 25 mg/kg, respectively. Table 3.1 provides a 

summary of the above-mentioned published studies and their respective conditions. 

Table 3.1: Summary of Digitized Data Used to Support PK Model Development 

Drugs Study reference Route 
Dose 

(mg/kg) 
Formulation 

Sample 

Matrix 

Animal 

Used 

Temozolomide 

Ballesta, et al., 

CPT 

Pharmacometric

s Syst 

Pharmacol, 

2014. 3: p. e112. 

Oral 20 

Dissolved in 

0.9% NaCL 

containing 

25% DMSO 

Plasma 

NIH-

Swiss 

nude mice 

(nu/nu) 

J.M. Gallo, et 

al., Clinical 

Cancer 

Research, 2008. 

14(5): p. 1540-

1549. 

 

 

 

Oral 

 

 

 

20 

 

Dissolved in 

0.1 mol/L 

citrate buffer 

(pH 4.7) 

 

 

 

 

Plasma 

Male 

NIH-

swiss 

nude mice 

(nu/nu) 

Liu, H.-L., et al., 

PLoS One, 

2014. 9(12): p. 

e114311. 

Oral 50 
Pellet for 

Feeding 
Plasma 

Pathogen 

free male 

NU/NU 

mice 

Goldwirt, L., et 

al., Cancer 

chemotherapy 

and 

pharmacology, 

2014. 74(1): p. 

185-193. 

Intra-

peritoneal 
66 

Dissolved in 

0.9% NaCl 
Plasma 

Female 

CF1 

mdrla (-/-) 
mice 

Goldwirt, L., et 

al., Biomedical 

Chromatography

, 2013. 27(7): p. 

889-893. 

Intra-

peritoneal 
66 

Dissolved in 

0.9% NaCl 
Plasma 

Female 

Swiss 

mice 

Kumari, S., et 

al., Scientific 

reports, 2017. 

7(1): p. 6602. 

Intra-

venous 
10 

TMZ loaded 

lactoferrin 

Nanoparticles 

Plasma 

Healthy 

C57BL/6 

mice 
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Table 3.1: Continued 

RG7112 

(MDM2 

inhibitor) 

Vu, B., et al., 

ACS medicinal 

chemistry 

letters, 2013. 

4(5): p. 466-469. 

Oral 50 - Plasma 

Not 

specified 

in 

literature 

Abemaciclib 

(CDK4/6 kinase 

inhibitor) 

Raub, T.J., et al., 

Drug 

Metabolism and 

Disposition, 

2015. 43(9): p. 

1360-1371. 

Oral 30 

Suspension; 

TMZ in 1% 

(w/v) 

hydroxyethylc

ellulose, 

0.25% (v/v) 

polysorbate 

80, 0.05% 

(v/v) antifoam 

in purified 

water 

Plasma 

Female 

CD-1 

mice 

3.2.2 Pharmacodynamic Data 

  Tumor volume data from male NSG mice bearing GBM 10 subcutaneous xenografts 

treated with TMZ alone or in combination with one or two SMIs (RG7388, GDC0068) were from 

an original study, in which 66 mg/kg TMZ, 50 mg/kg RG7388 and 25 mg/kg GDC0068 was given 

orally (once daily 5 days/week (Monday through Friday) for three cycles, starting on day 49 after 

tumor implantation).  

Mice bearing GBM 43 subcutaneous xenografts were also from an original study, and 

included animals treated with TMZ alone or in combination with one or two SMIs (RG7112, 

GDC0068), in which 10 mg/kg TMZ, 100 mg/kg RG7112 and 100 mg/kg GDC0068 were given 

orally (3 days/week (Monday, Wednesday, Friday) for two/three cycles, starting on day 13 after 

tumor implantation). Several TMZ monotherapy studies were conducted in mice bearing GBM 43 

flank tumors to assess the TMZ dose response effects on tumor volume. TMZ was dosed orally 

(once daily 5 days/week for two/three cycles) at 0.3 mg/kg, 1 mg/kg, 5 mg/kg, 10 mg/kg, 33 mg/kg, 

and 66 mg/kg for three separately carried out original monotherapy studies in mice bearing the 

GBM 43 cell line. Also, an original study of mice bearing GBM 43 xenografts was conducted with 

several treatment groups: TMZ alone dosed at 33 mg/kg and 66 mg/kg alternatively (33 mg/kg for 

the first two weeks and 66 mg/kg for the last two weeks or vice-versa in a four weeks dosing 

regimen), TMZ alone dosed at 33 mg/kg and 66 mg/kg with a holiday week in-between (66 mg/kg 
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for the first two weeks, vehicle on the third week, and 33 mg/kg or 66 mg/kg for the last two weeks) 

in a five week dosing regimen, TMZ dosed at 66 mg/kg in combination with 50 mg/kg GDC0068 

(AKT inhibitor) and a holiday week in-between (66 mg/kg TMZ for the first two weeks, vehicle 

on the third week and 50 mg/kg GDC0068 or 33 mg/kg TMZ + 50 mg/kg GDC0068 for the last 

two weeks) in a five week dosing regimen. 

In addition, to support PD model development across different GBM cell lines, tumor 

volume data from mice receiving subcutaneous implants of U87 gliomas treated with TMZ alone 

or in combination with ACB were obtained by digitization from published sources [2, 28]. These 

were the data from a study reported by Wang, et.al. [28] on GBM combination therapy, in which 

5 mg/kg TMZ was given orally once daily 5 days/week for two cycles, or from a Raub, et. al. study 

[2], in which 3 mg/kg TMZ was administered IP twice (7 days starting on day 11 after tumor 

implantation), and 50 mg/kg ACB dosed orally once daily for 21 days. These additional studies 

are summarized in Table 3.2. 

Table 3.2: Summary of Digitized Data Used to Support PD Model Development 

Drugs 
Study 

reference 
Route 

Dose 

(mg/kg) 
Formulation 

U87 Tumor 

Implants 

Animal 

Used 

Abemaciclib 

(CDK4/6 kinase 

inhibitor) 

Raub, T.J., et 

al., Drug 

Metabolism 

and 

Disposition, 

2015. 43(9): p. 

1360-1371. 

Oral 50 

ACB in 1% 

hydroxy ethyl 

cellulose and 

0.1% antifoam 

in 25 mM 

phosphate 

buffer, pH 2 

Subcutaneo

us/Flank 

CD-1 

Nu/Nu 

female 

mice 

Temozolomide 

Wang, H., et 

al., Journal of 

neurosurgery, 

2017. 126(2): 

p. 446-459. 

Oral 5 

Dissolved in 

phosphate 

buffer saline 

(PBS) or cell 

culture media 

Subcutaneo

us/Flank 

Male 

NSG 

mice 

Temozolomide 

Raub, T.J., et 

al., Drug 

Metabolism 

and 

Disposition, 

2015. 43(9): p. 

1360-1371. 

Intra-

peritoneal 
3 

TMZ in 

distilled water 

containing 1% 

carboxymethyl 

cellulose and 

0.25% tween 

80 

Subcutaneo

us/Flank 

CD-1 

Nu/Nu 

female 

mice 
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3.3 Original In-vivo Experiments 

A breeding colony of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice was established at the 

Indiana University School of Medicine (IUSM) Laboratory Animal Research Center (LARC) and 

all experiments were conducted in accordance with the In-vivo Therapeutics Core at the Indiana 

University Simon Comprehensive Cancer Center (IUSCCC)/IUSM. IUSM-LARC holds an 

accreditation from American Association for the Accreditation of Laboratory Animal Care and all 

procedures were approved by the Institutional Animal Care and Use Committee (IACUC) under 

IACUC study #20139. 

3.3.1 Pharmacokinetic Studies 

Single dose pharmacokinetics of TMZ, RG7388 and GDC0068 were investigated in 

separate groups of immunocompromised male NSG mice. Three mice per time point for a total of 

8 time points were used for the assessment. Stable drug suspensions were formulated in citric acid 

buffer, pH 3. Blood samples (~10% of circulating blood volume) were collected as per IUCAC 

protocol by one terminal bleed (tail vein draw) for each mouse at 0hr, 30 min, 1hr, 1.5hr, 2hr, 4hr, 

6hr, 8hr (for TMZ and GDC0068) and 0hr, 1hr, 2hr, 3hr, 4hr, 6hr, 8hr, 24hr (for RG7388). The 

blood samples were collected in heparinized tubes, centrifuged at 3000 rpm for 10 mins and stored 

at -80°C until time of analysis. The plasma concentrations of the drug were determined using LC-

MS/MS in the Clinical Pharmacology Analytical Core. The lower limit of quantification (LOQ) 

was 1 ng/mL for all three drugs. 

3.3.2 Pharmacodynamic Studies 

Immunocompromised male NSG mice were obtained from IUSM-LARC. Animals were 

subjected to acclimation for seven days on TD06596 Irradiated Global 2018 feed (Uniprim, Harlan 

Laboratories). Uniprim food was in continuous use during this study. For flank studies, cells were 

injected subcutaneously into the right flank. The GBM 10 and GBM 43 PDX xenolines were a 

kind gift from Dr. Jann Sarkaria (Mayo Clinic, Rochester, MN). Confirmation of cell line identity 

was done by DNA fingerprint analysis (IDEXX BioResearch) and short-tandem repeat base-line 

analysis testing.  Both GBM 10 and GBM 43 cell lines were 100% human, and a nine-marker 

short-tandem repeat analysis is maintained. GBM 10 and GBM 43 xenolines were established from 
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PDX flank tumors and they were maintained in FBS 2.5% for four days on matrigel-coated plates 

(BD Biosciences) to remove murine-fibroblasts. Cells were then expanded in DMEM/F12 

(Dulbecco's Modified Eagle Medium; 4.5g/L D-glucose and L-Glutamine) with FBS 10% for less 

than two weeks prior to implantation. All cells were negative for mycoplasma. [37] 

For the GBM 10 and GBM 43 flank studies, mice were injected in the right flank with 5 x 

106 cells that were suspended in a 1:1 mixture of Matrigel/PBS (BD Biosciences, San Jose, CA). 

Once tumor volumes reached 150-200 mm3, mice were treated as per the study protocol. Tumor 

volumes and body weights were measured by caliper every 2-3 days. Tumor volume was 

determined by electronic caliper that was interfaced with StudyLog software (San Francisco, CA) 

and using formula (2 x )/2, where  is the shorter and  is the longer of the two dimensions). 

Finally, mice were euthanized, and tumor tissue and organs were harvested for further analysis.  

The endpoint of the flank studies was when the tumor reached 2000 mm3 for ethical reasons. 

These studies were all conducted by Dr. Pollok’s laboratory with technical support from the In 

Vivo Therapeutics Core in the Melvin and Bren Simon Comprehensive Cancer Center at the 

Indiana University School of Medicine. 

 

THEORETICAL 

3.4 Development of Integrated PKPD Models 

3.4.1 Pharmacokinetic Model 

Disposition of TMZ following p.o. or i.p. administration was described by a first order 

absorption one-compartment population PK model with non-linear bioavailability. A one-

compartment model also described TMZ pharmacokinetics by the i.v. bolus route. A one-

compartment pharmacokinetic model with first order absorption was also developed for the small 

molecule inhibitors (SMIs) i.e. ACB, RG7388 and GDC0068, based on data from a published 

study for ACB [2], and an original study conducted for RG7388 and GDC0068. PK data were 

simultaneously fitted to characterize the PK profile of TMZ after administration by either the oral, 

intraperitoneal, or intravenous route and small molecule inhibitors after administration by oral 

route. PK models were described using the following equations. 
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𝐶𝑇𝑀𝑍,𝑜𝑟𝑎𝑙 𝑜𝑟 𝑖.𝑝. =

𝐹𝐷𝐾𝑎

𝑉𝑑(𝐾𝑎−𝐾𝑒)
. (𝑒−𝐾𝑒.𝑡 − 𝑒−𝐾𝑎.𝑡) , compute 𝐶𝑙 =

𝐷.𝐹

𝐴𝑈𝐶
 

 

(1) 

 
𝐶𝑇𝑀𝑍,𝑖.𝑣.𝑏𝑜𝑙𝑢𝑠 =

𝐷

𝑉𝑑
. 𝑒−𝐾𝑒.𝑡 

 

(2) 

 

𝐶𝐴𝐶𝐵 𝑜𝑟 𝑅𝐺7388 𝑜𝑟 𝐺𝐷𝐶0068 =
𝐹𝐷𝐾𝑎

𝑉𝑑(𝐾𝑎−𝐾𝑒)
. (𝑒−𝐾𝑒.𝑡 − 𝑒−𝐾𝑎.𝑡) , compute 

𝐶𝑙

𝐹
=

𝐷

𝐴𝑈𝐶
 

 

(3) 

where Ka is the absorption rate constant, Ke the elimination rate constant, F the bioavailability, C 

the drug concentration, D the dose, V the volume of distribution, and Cl the clearance. The 

schematic illustration is presented in Figure 3.1.  

 

Figure 3.1: Schematic representation of pharmacokinetic model for TMZ and small molecule inhibitors (ACB, 

RG7388, GDC0068) 

 

For TMZ pharmacokinetics, based on data from the original studies and various published 

sources, saturable drug absorption was identified. The Ka parameter was categorized and 

separately estimated based on the administration route and formulation type (solution, suspension, 

and fed).  Bioavailability (F) estimates were stratified by dose level. 
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3.4.2 Pharmacodynamic Model 

Tumor Growth Inhibition (TGI) Model 

Base TGI model 

A pharmacodynamic tumor growth model was developed to best describe the time course 

of tumor growth and inhibition of growth in the presence of drug treatments. Growth rate of U87 

/GBM 10/GBM 43 xenograft tumors in vehicle treated (control) mice was described using the 

model developed by Simeoni, et al [63]. For mice bearing U87 glioma cells treated with TMZ 

and/or ACB, the model describing the inhibitory effect of ACB is driven by inhibition of cell 

proliferation [77] , while TMZ elicits a cytotoxic effect [18]. These mechanisms of drug action 

were incorporated into the TGI model. Modeling of each compound as cytostatic and cytotoxic 

were examined using both linear and E-max functions. Using parsimonious approach, final model 

selection was based on AIC. Based on preliminary in vitro experiments (results not shown), in 

vitro IC50 >> in vivo drug concentration, which reduces the Hill equation to Emax/EC50 that we 

define as term ‘b’ (linear function of drug action) in our models. Transit compartments were also 

incorporated into the model to account for the delay between drug administration to eventual cell 

death [1, 63]. Shown below are the differential equations that describe the system, with initial 

conditions V1 (0) = V0, V2 (0) = 0, V3 (0) = 0, V4 (0) = 0. 

 

 

𝑑𝑉1

𝑑𝑡
=

𝑘𝑔,𝑒𝑥𝑝 ∗ 𝑉1

(1 + (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

∗ (1 − 𝑏𝐴𝐶𝐵 ∗ 𝐶𝐴𝐶𝐵) − 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍 ∗ 𝑉1 
(4) 

 

 

 

 

𝑑𝑉2

𝑑𝑡
= 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍 ∗ 𝑉1 − 𝑘𝑘 ∗ 𝑉2 

 

(5) 

 
𝑑𝑉3

𝑑𝑡
= 𝑘𝑘 ∗ (𝑉2 − 𝑉3) (6) 

 

 

𝑑𝑉4

𝑑𝑡
= 𝑘𝑘 ∗ (𝑉3 − 𝑉4) 

(7) 

  (8) 



 

 

34 

TV = V1 + V2 +V3 +V4 

 

V1 is the main compartment of proliferating cancer cells, V2, V3 and V4 are damage (transit) 

compartments that cells exposed to TMZ go through before dying, kg,exp and kg,lin are the 

exponential and linear tumor growth rate constants, respectively. The parameter ψ is a constant 

value fixed to 20 to allow the system to pass through first order to zero order growth sharply [78], 

kk is the cell death rate, and bACB and bTMZ are the drug potency parameters for ACB and TMZ, 

respectively. Total tumor volume (TV) comprises both the proliferating cell compartment, V1, and 

the compartments V2 to V4 representing dying cells. 

The base TGI model was also developed for mice bearing GBM 10 xenografts treated with 

TMZ monotherapy or TMZ combination therapy with MDM2 inhibitor (RG7388) and/or AKT 

inhibitor (GDC0068). Modeling of each compound as cytostatic and cytotoxic was examined using 

both linear and E-max functions. Using a parsimonious approach, final model selection was based 

on AIC. Similarly, mice bearing GBM 43 subcutaneous xenografts treated with TMZ monotherapy 

and/or combination therapy with one or two SMIs (RG7112, GDC0068) were subjected to fit the 

base TGI model structure. However, treatment arms in GBM 43 xenolines were best described by 

a resistance integrated tumor growth inhibition model (discussed later) and the model fit was 

superior to the base TGI model structure. The schematic of the base TGI model structure is shown 

in Figure 3.2. 
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Figure 3.2: Schematic representation of a final base tumor growth inhibition (TGI) PKPD model for combination 

therapy various GBM xenografts. The model of drug action inhibiting cell growth (abemaciclib, ACB) and drug action 

responsible for cell killing (temozolomide (TMZ) and small molecule inhibitors (SMIs)). A: PD of mice bearing U87 

xenografts was linked with TMZ and ACB concentrations predicted from their corresponding PK models. B: PD of 

mice bearing GBM 10 / GBM 43 xenografts was linked TMZ and MDM2/AKT SMI concentrations predicted from 

their corresponding PK models. Pharmacodynamic parameters are defined in the text. 

Drug resistance integrated TGI model 

The base TGI model was expanded to incorporate resistance development due to standard 

of care therapy (TMZ monotherapy) in mice bearing GBM 43 xenografts that received 

monotherapy with TMZ or SMIs (RG7112, GDC0068) or, with these agents in dual or triple 

combination. A resistance development component to model structure was accomplished by 

introducing a resistance cell compartment, R, where the population of resistant tumor cells start to 

appear during TMZ treatment. When the treatment with anti-cancer drug is initiated, tumor cells 

that are sensitive to drug treatment stop proliferating and pass through the different progressive 

stages of damage and eventually die [1, 63], as in the base model. However, a fraction of cells that 

escape death are converted to cells that are resistant to initial therapy, and the conversion process 

is described using a first order rate constant [79]. The growth rate of the resistant cell population 

was described using the same structural model as the model describing the TMZ sensitive cell 
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population, except that it was substituted with distinct zero order (linear) and first order 

(exponential) growth rate constants representative of resistant cell growth only. Conversion of 

TMZ sensitive cells into TMZ resistant cells was integrated into the TGI model as a delayed 

process consistent with the delayed drug effect. In the TMZ resistance integrated TGI model, total 

tumor volume is the sum of sensitive (V1), resistant (R) and damaged cells (V2, V3), as shown in 

Equation (13). A schematic representation of the model structure is presented in Figure 3.3 and is 

described by the system of differential equations shown in Equations (9) – (13) below: 

 

 

𝑑𝑉1

𝑑𝑡
=

𝑘𝑔,𝑒𝑥𝑝 ∗ 𝑉1

(1 + (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

− 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍 ∗ 𝑉1 

(9) 

   

   

 

𝑑𝑉2

𝑑𝑡
= 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍 ∗ 𝑉1 − 𝑘𝑘 ∗ 𝑉2 

 

(10) 

 

𝑑𝑉3

𝑑𝑡
= 𝑘𝑘 ∗ (𝑉2 − 𝑉3) − 𝑘𝑆−𝑡𝑜−𝑅 ∗ 𝑉3  

 

(11) 

 𝑑𝑅

𝑑𝑡
=

𝑘𝑔𝑅,𝑒𝑥𝑝 ∗ 𝑅

(1 + (
𝑘𝑔𝑅,𝑒𝑥𝑝
𝑘𝑔𝑅,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

+ 𝑘𝑆−𝑡𝑜−𝑅 ∗ 𝑉3 − 𝑏𝑆𝑀𝐼𝑠 ∗ 𝐶𝑆𝑀𝐼𝑠 ∗ 𝑅 

 

(12) 

 TV = V1 + V2 +V3 +R (13) 

 

with initial conditions V1 (0) = V0, V2 (0) = 0, V3 (0) = 0, R (0) = 0, and where kgR,exp and kgR,lin 

are the rate constants for exponential growth and linear growth of the resistant cell population, 

respectively. The parameter kS-to-R is the first order transformation rate constant for sensitive cells 

to convert to resistant cells following initial treatment with TMZ, and bSMIs are the drug potency 

parameters for small molecule inhibitors (RG7122, GDC0068).  
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Figure 3.3: Schematic representation of the final resistance integrated tumor growth inhibition (TGI) PKPD model 

for combination therapy in mice bearing GBM 43 xenografts. Change in tumor volume was linked with PK models 

of temozolomide (TMZ) and small molecule inhibitors (SMIs). Tumor cells sensitive to TMZ treatment (V1) go 

through stages of progressive damage (V2-V3) before they die or convert into drug resistant cells (R) over time as 

function of TMZ treatment. Resistant cells are eliminated via the action of SMIs alone and a PD interaction of TMZ 

and SMIs. Pharmacodynamic parameters are defined in the text. 

 

Secondary model parameters, such as ratio for growth rates of resistant to sensitive cells 

(φ) and average time (τ) for sensitive cells to eradicate or convert into the resistant cell phenotype, 

can be computed from the acquired resistance TGI model [79]. These parameters were derived 

from the drug resistance integrated TGI model using equations (14) and (15). 

 

ᵠ =  
𝑘𝑔𝑅,𝑒𝑥𝑝 

𝑘𝑔,𝑒𝑥𝑝
=  

𝑘𝑔𝑅,𝑙𝑖𝑛

𝑘𝑔,𝑙𝑖𝑛
    (14),  τ =  

# 𝑜𝑓 𝑑𝑎𝑚𝑎𝑔𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠

𝑘𝑘 
    𝑖𝑓 𝑘𝑆−𝑡𝑜−𝑅 ≪ 𝑘𝑘  (15)  

 

3.5 Model implementation and validation 

Population pharmacokinetic analyses of drug concentrations and pharmacodynamic analysis 

of tumor volume growth were conducted with Phoenix NMLE version 8.1 (Pharsight Corporation, 

Certara, L.P., Princeton, NJ). PKPD parameters were estimated first using a population approach 

with Naïve Pooled estimation (single function fit to the combination of all individuals) followed 



 

 

38 

by nonlinear mixed effects (NLME) modeling with first order conditional estimation – extended 

least square analyses (FOCE). NLME-FOCE allowed for estimation of model parameters (fixed 

effects) and inter-subject and/or inter-occasion variability around model parameters (random 

effects). While NLME FOCE is widely accepted for estimating random effects for individuals, 

when determining the best fixed effects, the trade-off of this approach is its tendency to perform 

poorly if the data is not rich [80]. Poor estimation of random effects causes individual parameter 

estimates to shrink back towards the population mean, evidenced by a high amount of shrinkage 

in random effects [81]. The amount of shrinkage is dependent on the data quality, sample 

informativeness, and number of observation points [81]. High shrinkage could mislead the 

assessment of estimated inter-individual variability parameters. In building the population PKPD 

models, when the shrinkage observed for random effects was found to be higher than 40%, models 

were executed using the Naïve Pooled approach only. The population modeling approach [82] was 

of importance to develop robust PKPD models by enabling incorporation of data collected from 

original studies as well as several published sources [2, 7, 28, 71-76]. For both PK and PKPD 

models, a proportional residual error model was selected to describe residual error that may arise 

from model structure misspecification, inaccurate dosing and sampling times, and errors in 

concentration analyses.  

     During PD model structure optimization, PK parameters were frozen. However, following the 

identification of the best PD model structure, the PK parameters were unfrozen in the final PD 

model. Since there was no significant change in the PK parameters in the final PD model they 

were not reported. For nested models, model structure evaluation and selection were based on the 

likelihood ratio test with p value < 0.05 for statistical significance. For non-nested models, the AIC 

value was used, with the difference of more than 10 units considered favorable for the model with 

lower AIC [83].  Model selection and performance (goodness-of-fit) were also accomplished based 

on precision of parameter estimates, and diagnostic plots: conditional weighted residual (CWRES) 

vs time, CWRES vs population predicted concentrations or tumor volume measurements, observed 

concentrations or tumor volume measurements vs individual/population predicted concentrations 

or tumor volume measurements. Internal validation of the models was performed by graphical 

visual predictive checks that compared experimental data used to develop the model with the 5th, 

50th and 95th percentiles of model-derived simulated drug concentration or tumor volume datasets 

(N = 500).  
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3.6 Simulation Studies 

3.6.1 Tumor Static Concentration Curves 

Derivation of equations to estimate tumor static concentrations for a single agent 

The treatment goal is reduction of tumor volume. Therefore, the objective is to determine 

the plasma concentrations that result in tumor shrinkage. To accomplish this, it is first necessary 

to determine the drug concentration at which growing and dead cell compartments are in balance. 

Accordingly, plasma concentrations above this level will result in tumor shrinkage [67]. For TMZ 

monotherapy, this suggests that the right-hand side of equations (4)-through-(7) should be zero. 

However, because V2 through V4 compartments only act to delay cell death, only the main 

proliferating compartment (V1) needs to be considered. For TMZ monotherapy treatment, it 

should hold that, 

 

0 =
𝑘𝑔,𝑒𝑥𝑝 ∗ 𝑉1

(1 + (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

− 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍 ∗ 𝑉1 
 

 

which implies, 

0 =

(

 
 𝑘𝑔,𝑒𝑥𝑝

(1+(
𝑘𝑔,𝑒𝑥𝑝

𝑘𝑔,𝑙𝑖𝑛
∗𝑇𝑉)

𝜓

)

1
𝜓

− 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍

)

 
 
 *V1 

 

0 =

(

 
 
 𝑘𝑔,𝑒𝑥𝑝

(1 + (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

− 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍

)

 
 
 

 

 

(16) 

In order for shrinkage to occur, drug effect (bTMZ * CTMZ) needs to be larger than cell growth. 

When total tumor volume (TV) is below the exponential to linear growth switch threshold for the 

initial treatment cycle, the term in the denominator  (
𝑘𝑔,𝑒𝑥𝑝

𝑘𝑔,𝑙𝑖𝑛
∗ 𝑇𝑉)

𝜓

  is negligible compared with 1, 
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thus the tumor growth rate can be defined by 𝑘𝑔,𝑒𝑥𝑝 ∗ 𝑉1 (exponential growth). Subsequently, 

equation (16) can be solved for CTMZ, as shown in Equation (17). 

𝐶𝑇𝑀𝑍 = 𝑘𝑔,𝑒𝑥𝑝  (
1

𝑏𝑇𝑀𝑍
 ) 

 
(17) 

Equation (17) describes the tumor static concentration (TSC) value of TMZ monotherapy. At any 

given time, the TSC value holds for the tumor volume. Thus, plasma exposures above the TSC 

curve should be maintained to ensure tumor shrinkage over time.  

TSC values for SMIs monotherapy can be derived similarly.  For cytostatic ACB, when 

CACB = 0, the condition for stasis is described as 

 

0 =
𝑘𝑔,𝑒𝑥𝑝 ∗ 𝑉1

(1 + (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

∗ (1 − 𝑏𝐴𝐶𝐵 ∗ 𝐶𝐴𝐶𝐵) 
(18) 

 

 

 

Solving equation (18) for TSC value of ACB monotherapy  

𝐶𝐴𝐶𝐵 =
1

𝑏𝐴𝐶𝐵
 (19) 

 

For cytotoxic SMIs (RG7112/RG7338/GDC0068), when CSMIs = 0 condition for stasis is described 

as  

0 =

(

 
 
 𝑘𝑔,𝑒𝑥𝑝

(1+ (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

− 𝑏𝑆𝑀𝐼𝑠 ∗ 𝐶𝑆𝑀𝐼𝑠

)

 
 
 

 

 

(20) 

Solving equation (20) for CSMIs to obtain 
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𝐶𝑆𝑀𝐼𝑠 = 𝑘𝑔,𝑒𝑥𝑝  (
1

𝑏𝑆𝑀𝐼𝑠
 ) (21) 

Equation (21) describes the tumor static concentration (TSC) value of RG7112/RG7338/GDC0068 

monotherapy. 

 

Deriving tumor static concentration curves for multiple agents in combination 

Assuming similar conditions to that of single agent treatment for groups receiving multiple 

agents, the proliferating cell compartment (V1) can be factored out 

0 =
𝑘𝑔,𝑒𝑥𝑝 ∗ 𝑉1

(1 + (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

∗ (1 − 𝑏𝐴𝐶𝐵 ∗ 𝐶𝐴𝐶𝐵) − 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍 ∗ 𝑉1 

such that, 

0 =

(

 
 
 𝑘𝑔,𝑒𝑥𝑝

(1 + (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

∗ (1 − 𝑏𝐴𝐶𝐵 ∗ 𝐶𝐴𝐶𝐵) − 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍

)

 
 
 

 

 

(22) 

The denominator  (
𝑘𝑔,𝑒𝑥𝑝

𝑘𝑔,𝑙𝑖𝑛
∗ 𝑇𝑉)

𝜓

  in equation (22) is negligible compared with 1 during initial 

treatment cycles and the tumor growth rate is defined by exponential growth. Equation (22) 

describes the curvature (TSC curve) in the concentration plane when concentration pairs, CTMZ 

(cytotoxic effect) and CACB (cytostatic effect), are plotted against the X-axis (CTMZ) and Y-axis 

(CACB). Solving Equation (22) for CACB yields Equation (23). 

𝐶𝐴𝐶𝐵 =
1

𝑏𝐴𝐶𝐵
−
  𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍
𝑘𝑔,𝑒𝑥𝑝 ∗ 𝑏𝐴𝐶𝐵

 

 

(23) 

Equation (23) plots the curve of concentration pairs, CACB and CTMZ. Any pairs of concentration 

above the curve will produce shrinkage and any concentration pairs below this curve will result in 

tumor growth. The intercepts on the X and Y coordinate axes are the TSC values for a single agent, 

also expressed in the form of equation (17) for TMZ and equation (19) for ACB. To achieve tumor 
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shrinkage, dosing of the two agents should be such that concentration pairs, CTMZ and CACB, are 

above the TSC curve all the time.  

Equation (23) introduces the TSC curve for TMZ and ACB combination therapy in U87 

glioma cells. Similar TSC curves can be derived for TMZ in combination with RG7388 or 

GDC0068 in GBM 10 and TMZ in combination with RG7112 or GDC0068 in GBM 43 xenolines. 

Assuming similar derivation conditions, TSC curves can be computed for TMZ and SMI 

combinations (both cytotoxic drug action) in GBM 10/ GBM 43 cell lines. Specifically, the 

following equation is obtained for the TSC, 

0 =
𝑘𝑔,𝑒𝑥𝑝 ∗ 𝑉1

(1 + (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

− (𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍 + 𝑏𝑆𝑀𝐼𝑠 ∗ 𝐶𝑆𝑀𝑖𝑠) ∗ 𝑉1 

which can be simplified, 

0 =

(

 
 
 𝑘𝑔,𝑒𝑥𝑝

(1 + (
𝑘𝑔,𝑒𝑥𝑝
𝑘𝑔,𝑙𝑖𝑛

∗ 𝑇𝑉)
𝜓

)

1
𝜓

− 𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍 − 𝑏𝑆𝑀𝐼𝑠 ∗ 𝐶𝑆𝑀𝑖𝑠

)

 
 
 

 (24) 

 

During the initial treatment cycle, the denominator  (
𝑘𝑔,𝑒𝑥𝑝

𝑘𝑔,𝑙𝑖𝑛
∗ 𝑇𝑉)

𝜓

  is negligible compared with 

1 and the growth rate is exponential. Simplifying and solving for CSMIs in equation (24) we get, 

 

𝐶𝑆𝑀𝐼𝑠 =
 𝑘𝑔,𝑒𝑥𝑝
𝑏𝑆𝑀𝐼𝑠

−
  𝑏𝑇𝑀𝑍 ∗ 𝐶𝑇𝑀𝑍

𝑏𝑆𝑀𝐼𝑠
 

 

(25) 

Equation (25) introduces the TSC curve for GBM 10 and GBM 43 xenografts where the drug 

action of both CTMZ and CSMIs are cytotoxic. TSC values for individual agents can be expressed in 

the form of equation (21).  

 

Tumor static exposure for TMZ and SMIs 

Among the different combination treatment arms, i.e., TMZ combined with SMIs, the 

combination treatment arm that showed the highest efficacy in-vivo in each of the tested GBM cell 
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lines was considered for the simulation studies. Based on the system of differential equations (4-

through-13) describing tumor volume over time, conditions for tumor stasis in combination 

therapy were investigated (equations 16-through-25).  

In monotherapy, analyses resulted in an estimate of the tumor static concentration (TSC) 

value; whereas, for combinations of two compounds, analyses resulted in an estimate of TSC pair 

values producing a TSC curve [67, 70]. An expression of a TSC curve is based on the following 

reasoning. In Figure 3.2, the main compartment, V1, is the only compartment where cells 

proliferate. If V1 is eradicated entirely, the tumor will eventually be eradicated as well, i.e., if  

𝑑𝑉1

𝑑𝑡
< 0, the tumor will eventually be eradicated. The TSC curve, which separates tumor growth 

from tumor shrinkage, consists of concentration pairs (CTMZ, CSMIs) such that the left-hand side in 

the equation equals zero (equation (22) and equation (24)). In combination therapy, solving for 

concentration in equations (23) and (25) gives the TSC curves for the U87 cell line (combination 

of cytostatic and cytotoxic agent) and the GBM 10 / GBM 43 cell lines (combination of cytotoxic 

agents), respectively. Inserting the PD parameter estimates from the base TGI model for U87 and 

GBM 10 into equation (23) and equation (25), respectively, produced a TSC curve. Monte Carlo 

simulations were performed to construct the TSC curves relevant to the combination treatment arm 

that showed highest efficacy in each cell line (U87, GBM 10, GBM 43), for 500 hypothetical 

individuals (N=500) consistent with the coefficient of variation (%CV) reported for the potency 

(b) PD parameter terms. 

 

 

3.6.2 Translational potential 

Mouse xenograft flank tumors derived from human GBM tumors were used for translation 

to clinical doses of combination drug regimens to achieve effective human plasma target 

concentrations of TMZ. Simulation studies were also performed to translate the PKPD tumor 

models to a clinical environment. Parameters were assumed to be species independent [84]. For 

illustration, the PD model describing tumor growth in U87 GBM subcutaneous xenografts was 

linked to the reported human TMZ plasma pharmacokinetics in [85, 86] to predict the tumor 

volume at clinically relevant exposures based on a standard dose of 200 mg/m2 given once daily 
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for five days in a single 28 day treatment cycle. Initial size of the tumor for simulations was 

considered approximately to be 3 cm* 3 cm, which is based on the clinical observation [11]. 

3.7 Statistical Analysis 

Statistical analysis of the pharmacodynamic efficacy data were performed using 1-way ANOVA 

or 2-way ANOVA with repeated measures across the varying time points using Excel. The 

difference in the mean among the individual pairs was determined by Holm-Šídák post hoc test. 

Comparisons were performed and data were considered significant at p < 0.05.  
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 RESULTS 

Aim 1: Develop population pharmacokinetic models for TMZ, and MDM2/AKT inhibitors that 

target TMZ induced MDM2/p53/p73 and PI3K/AKT/mTOR signaling pathways in GBM 

4.1 Population pharmacokinetic modeling 

4.1.1 Pharmacokinetic modeling of temozolomide 

Dose-nonlinear bioavailability was observed for TMZ in mouse plasma over a dose range 

of 5-66 mg/kg. Among the several PK studies used to develop the TMZ PK model, incorporation 

of TMZ into food, and solution or suspension formulations were used. Thus, bioavailability (F) 

and absorption rate constant (ka) parameters were estimated separately by dose and formulation 

type. Model PK parameters for TMZ were estimated with reasonable precision (coefficient of 

variation < 40%). Results are summarized in Table 4.1.  

 

Table 4.1. Final parameter estimates for the population PK model: Temozolomide (TMZ). 

Parametera 

Temozolomide (TMZ) 

Estimate %CVb 
%IOV 

(%shrinkage) 

V (mL) 3.70 16.5 1.06 (43.9) 

CL (mL/hr) 3.94 13.9 16.53 (4.9) 

 

Kapo (hr-1) 

F
o
rm

u
la

ti
o
n
 

T
y
p
e 

Solution 27.81 13.8 - 

Suspension  0.33 25.6 34.48 (59.9) 

Incorporation into 

food  
1.86 37.6 - 

Kaip (hr-1) 7.59 15.4 - 

Fp.o.  

 

5 mg/kg  0.177 24.9 - 

20 mg/kg 0.107 9.4  

50 mg/kg  0.247 10.8 - 

66 mg/kg 0.074 23.4 - 

Fi.p. 

 

66 mg/kg 

mpkmg/ 

CF1 mdrla (+/+) mice 0.074 17.1 - 

CF1 mdrla (-/-) mice 0.036 18.9 - 

Proportional residual error (%CV) 0.24 (14.1) - 
CV, coefficient of variation; IOV, Inter-occasion variability.  

CF1 mdrla (-/-): p-glycoprotein knock-out mice 
aV, Volume of distribution; CL, Clearance; kapo, oral absorption rate constant; kaip, intraperitoneal absorption rate 

constant; Fp.o. Oral bioavailability; Fi.p. Intraperitoneal bioavailability. bThe CVs related to the PK model were 

computed based on Phoenix NLME variance covariance matrix (sandwich method). 
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In addition, rate and extent of TMZ absorption following intraperitoneal administration [7, 74] in 

mice with or without efflux transporter, ABCB1, were also estimated, as shown in Table 4.1. Post-

absorption disposition of TMZ was best described by a one-compartment PK model. The 

developed PK Model for TMZ reproduced the mean plasma concentration-time course data, as 

shown in Figure 4.1. 

 

Figure 4.1: Temozolomide (TMZ) pharmacokinetic profiles in mice. Exposure profiles of observed (colored dotted 

symbols) mean plasma concentrations for TMZ at various doses and routes (top). TMZ plasma concentration data 

include an original study at 66 mg/kg p.o. and several studies from published sources. The solid lines represent the 

plasma concentrations fitted by the PK model structure described in Figure 3.1. 

Model diagnostic plots: TMZ 

Visual predictive checks (VPCs) for TMZ also supported good model performance. VPCs 

across the range of 5-66 mg/kg TMZ dose for the data obtained from original study and published 

sources are shown in Figure 4.2. Model predicted vs. observed concentrations, the conditional 

weighted residuals vs. time and population predicted concentrations for TMZ are summarized in 

Figure 4.3. 
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Figure 4.2: Prediction corrected visual predictive checks (pcVPCs) of plasma concentration time courses for TMZ at 

various doses and routes. The solid blue line represents median (observed) values. Shaded areas are the 95% 

confidence intervals of the predicted 5th ,50th (pink) ,95th percentiles computed from the simulated datasets (N = 

500). The blue dots are the individual data from an original study (5mg/kg p.o., 66 mg/kg p.o.) and published sources 

(20 mg/kg p.o., 50 mg/kg p.o., 10 mg/kg i.v., 66 mg/kg i.p.). **Mean data at each time point for 10 mg/kg i.v.  were 

extracted from a published source. The shaded area is the 95% confidence interval of the predicted median percentile 

computed from the simulated datasets (N = 500). 
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Figure 4.3: Model diagnostic plots for TMZ monotherapy. Observed and model predicted temozolomide plasma 

concentrations in mice in relation to population predicted plasma concentrations (A), and in relation to individual 

predicted plasma concentrations (B). Conditional weighted residual observed in mice in relation to population 

predicted values (C), and in relation to time (D). 

4.1.2 Pharmacokinetic modeling of small molecules inhibitors 

  The pharmacokinetics of SMIs (RG7388, GDC0068, and ACB) were described by a one-

compartment model with dose-linear kinetics. For ACB, PK data were limited, as these were 

collected from one published study [2]. The PK parameter (CL/F) was calculated using the 

descriptive PK parameter estimates information available in that published study [2], and the 

derived CL/F value was frozen during model development for estimation of the other PK 

parameters (V/F and ka).  PK models for the three SMIs, ACB, RG7388 and GDC0068, 

reproduced the mean plasma concentration-time course data, as depicted in Figure 4.4. 
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Figure 4.4: Small molecule inhibitor (SMI) pharmacokinetic profiles in mice. Mean observed (blue dotted symbols) 

plasma concentration profiles for SMIs: abemaciclib (ACB) dosed at 30 mg/kg (top), GDC0068 at 25 mg/kg (bottom 

left), and RG7388 at 50 mg/kg (bottom right). Solid lines represent plasma concentration profiles fitted by the 

pharmacokinetic model structure illustrated in Figure 3.1. 

 

PK parameters for small molecule inhibitors (RG7388, GDC0068, and ACB) were estimated with 

reasonable precision (coefficient of variation < 40%), except the absorption rate constant (kapo) 

for ACB, which is attributed to scarcity of plasma concentration data for ACB. Parameter estimates 

for the pharmacokinetic model of RG7112 were taken from the literature [76]. Results are 

summarized in Table 4.2.  

  



 

 

50 

Table 4.2: Final parameter estimates for the population PK model: SMIs. 

Parametera 

Small Molecule Inhibitors (SMIs) 

Abemaciclib 

(ACB) 
RG7388 GDC0068 

Estimate %CVb Estimate %CVb 

% BSV 

(% 

shrinkage) 

Estimate %CVb 

% BSV 

(% 

shrinkage) 

V* (mL) 42.80 19.1 305.12 6.3 - 1094.1 17.1 - 

CL* 

(mL/hr) 

9.96 

(fixed) 
- 88.28 2.7 

- 
386.6 6.23 

- 

kapo (hr-1) 0.88 50.9 0.27 4.5 - 1.33 33.76 3.6 (42.4) 

Proportion

al residual 

error 

(%CV) 

0.3 (3.1) 0.24 (14.3) 0.28 (15.8) 

CV, coefficient of variation; BSV, Between-subject variability. 
aV*, apparent Volume of distribution (V/F); CL, apparent clearance, (CL/F); kapo, oral absorption rate constant; bThe 

CVs related to the PK model were computed based on Phoenix NLME variance covariance matrix (sandwich method). 

Model diagnostic plots: SMIs 

Visual predictive checks (VPCs) for each SMI also supported good model performance.  

VPCs are summarized in Figure 4.5. Model predicted vs. observed concentrations, and the 

conditional weighted residuals vs. time and population predicted concentrations of all SMIs are 

shown in Figure 4.6 (A-C), confirming that the PK model structure adequately described the data. 
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Figure 4.5: Prediction corrected visual predictive checks (pcVPCs) of model predicted drug plasma concentrations 

over time. Concentrations of abemaciclib (ACB) (top), RG7388 (bottom left) and GDC0068 (bottom right) following, 

respectively, a 30 mg/kg p.o., 50 mg/kg p.o. or 25 mg/kg p.o. dose. The solid blue line represents median (observed) 

values. The shaded areas are the 95% confidence intervals of the predicted 5th, 50th (pink), 95th percentiles computed 

from the simulated datasets (N = 500). The blue dots are the observed data from an original study (RG7388, GDC0068) 

and published sources (ACB). ACB was extracted from Raub, et al. (2002). **Mean data at each time point for 30 

mg/kg p.o. The shaded area is the 95% confidence intervals of the predicted median percentile computed from the 

simulated datasets (N = 500). 
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Figure 4.6: Model diagnostic plots of the TMZ and SMIs pharmacokinetic model. (A) Observed and model predicted 

abemaciclib (ACB) plasma concentrations in mouse in relation to population predicted plasma concentrations. Method 

of Estimation: Naïve pooled approach. (B) Observed and model predicted RG7388 plasma concentrations in mice in 

relation to population predicted plasma concentrations. Method of Estimation: Naïve pooled approach. (C) Observed 

and model predicted GDC0068 plasma concentrations in mice in relation to population predicted plasma 

concentrations (I), and in relation to individual predicted plasma concentrations (II). Conditional weighted residual 

observed in mice in relation to population predicted values (III), and in relation to time (IV). 

  



 

 

53 

Figure 4.6 continued 

 

 

 

Aim 2: Perform population pharmacokinetic-pharmacodynamic (PKPD) modeling of tumor 

growth kinetics in xenograft mouse models in various cell lines (U87, GBM 10, GBM 43) following 

administration of TMZ with MDM2, CDK4/6 kinase and AKT inhibitors in combination treatment 

4.2 Pharmacodynamic efficacy in various GBM tumor models 

TMZ, an alkylating agent previously shown to have activity against human GBM xenografts 

of diverse histological origin, demonstrated an excellent antitumor activity following oral 

administration to mice when given alone or in combination with other antitumor agents [2, 37, 87, 

88]. In this study, the efficacy of TMZ, when administered alone and/or in combination with 
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various small molecule inhibitors: CDK46 kinase inhibitor, MDM2 inhibitor, AKT inhibitor 

across multiple GBM cell models (U87, GBM 10 and GBM 43), was assessed. Small molecule 

inhibitors used in this experiment: RG7388, GDC0068, and ACB, either given alone or in 

combination with TMZ, have been studied extensively for potentiating effects in suppressing GBM 

tumor growth [89-91]. Original efficacy experiments were conducted in Dr. Karen Pollok’s 

laboratory (our collaborator), in the Department of Pharmacology, Indiana University School of 

medicine. 

4.2.1 Temozolomide and CDK4/6 kinase inhibitor (ACB) efficacy in U87 cells 

In PKPD modeling, time dependent data of pharmacological events are extremely important. 

Published data of relevant interest as such can provide additional leverage and aid the model 

development process. Thus, efficacy data for TMZ and ACB in U87 cells was digitized from the 

literature.  

The study by Wang et. al [37] assessed the efficacy of TMZ 5 mg/kg oral administration 

in U87 ectopic flank tumors. In ectopic cancer models, the cancer cells are transplanted to the site 

different from tumor origin site. The data of TMZ efficacy in U87 xenografts were incorporated 

into the PKPD model. In the published experiment, mice bearing U87 xenografts received TMZ 

for 5 days/week (Monday through Friday) for two weeks. This was consistent with the TMZ dosing 

regimen that is used clinically [10]. After the two-treatment cycles, TMZ monotherapy produced 

significant reduction of tumor volume compared to the vehicle. Tumor growth was inhibited for 

the duration of the TMZ administration cycle; however, tumor volume began to rebound after 

stopping the treatment. Body weights were unaffected indicating no treatment related toxicities. 

This data indicated that TMZ could inhibit U87 growth for around 4 weeks after the dosing stopped. 

The efficacy of TMZ 5 mg/kg in U87 glioma cells from Wang et al [37] is shown in Figure 4.7(A).  

The study by Raub et. al [2], mice bearing U87 subcutaneous xenografts were used to 

evaluate the effect of ACB antitumor activity when given alone or in combination with TMZ. In 

this experiment, ACB dosed at 50 mg/kg p.o. or TMZ dosed at 3 mg/kg i.p., suppressed tumor 

growth, both as monotherapy and in combination.  Simultaneous treatment with both compounds 

produced greater tumor growth inhibition than monotherapy. Treatments showed little effect on 

changes to body weight, indicating no treatment related toxicities. The published data were 
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incorporated in building the PKPD model. Efficacy data from Raub et al. [2] are summarized in 

Figure 4.7 (B).  

 

Figure 4.7: Effect of temozolomide (TMZ) and abemaciclib (ACB) on U87 xenograft tumor volume. (A) Tumor 

volume effects on U87 glioma cells after treatment with TMZ. * = p < 0.05 compared to vehicle (left graph). The 

horizontal line indicates the treatment period. (B) Tumor volume effects of ACB in combination with TMZ (right 

graph). ACB was administered orally daily for 21 days and TMZ was administered intraperitoneally one day per week 

for two weeks, or both drugs together.  

The horizontal line indicates the treatment period. IP, intraperitoneal; PO, Oral. 

4.2.2 Temozolomide and MDM2 (RG7388) /AKT (GDC0068) inhibitor combinations 

effects on GBM 10 xenograft tumor volume 

Efficacy of TMZ monotherapy and TMZ plus small molecule inhibitors (MDM2/AKT) 

combination therapy was evaluated in mice bearing subcutaneous GBM 10 xenografts. In this 

study, TMZ was dosed at 66 mg/kg alone or in combination with RG7388 and/or GDC0068 given 

at 50 mg/kg and 25 mg/kg, respectively. The study implemented a 5 consecutive days/week dosing 

regimen, followed by two days holiday, for a total dosing duration of three weeks which mimics 

the clinical scenario [13]. TMZ produced significant reduction in tumor volume as compared to 

vehicle for the duration of treatment (p < 0.05). After the end of the dosing cycle, tumor slowly 

started to grow back, indicating that tumors were not completely eradicated.  TMZ plus RG7388 

and TMZ plus GDC0068 also showed significant inhibition of tumor volume expansion compared 

with vehicle (p <0.05). TMZ dosed with both the small molecule inhibitors (TMZ plus RG7388 

plus GDC0068) showed statistically significantly higher efficacy compared to vehicle (p < 0.001), 

as well as TMZ combined with one of the SMIs (p< 0.05). Comparison of body weights to vehicle 
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control showed little effect of treatment, suggesting that the treatments were well tolerated. Tumor 

volume effects and body weight measurements are shown in Figure 4.8 (A-B).  

Figure 4.8 (C) summarizes the effects of the various treatments on survival. The treatment 

group that received the combination therapy treatment of TMZ plus both small molecule inhibitors, 

RG7388 and GDC0068, significantly increased survival by 58 days (p < 0.001) compared to 

vehicle treated animals. TMZ monotherapy increased survival by 39 days compared to vehicle (p 

< 0.05); whereas TMZ combined with either RG7388 or GDC0068 increased survival by 49 days 

and 35 days, respectively, compared to the vehicle group (p < 0.05). Also, TMZ combined 

simultaneously with both SMIs (TMZ plus GDC0068 plus RG7388) significantly increased 

survival of GBM 10 bearing mice by 23 days (p < 0.05) compared to TMZ plus RG7388/GDC0068 

combination. This suggests that combination of two small molecule inhibitors was better able to 

inhibit the tumor growth and keep the mice alive compared to TMZ plus one SMI.   

 

Figure 4.8: Effect of TMZ and small molecule inhibitors on GBM 10 xenograft growth, body weight and survival. 

(A) Effects of TMZ monotherapy and TMZ plus SMIs combination therapy on tumor volume (top left); (B) 

comparison of body weight; the horizontal line indicates the treatment period; (C) Kaplan Meier Survival Plots for 

the various treatment groups. Mean survival time is shown in parentheses in the figure legend. Mice were euthanized 

when tumor volume reached 2000 – 2500 mm3. This was considered as the pre-death endpoint. 
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4.2.3 Temozolomide and MDM2 /AKT inhibitors (RG7112/GDC0068) efficacy in GBM 43 

Original experiments were conducted to assess the efficacy of TMZ and MDM2/AKT 

small molecule inhibitors in GBM 43 cell line flank tumor xenograft bearing mice. In this study, 

the effect of TMZ monotherapy on tumor volume and survival was evaluated over a wider dose 

range (0.3 mg/kg to 66 mg/kg) compared to the studies conducted in GBM 10 bearing mice (3.2.2).  

For TMZ monotherapy, an initial study was conducted at the following doses: 0.3 mg/kg, 1 mg/kg, 

5 mg/kg, 10 mg/kg. In two subsequent studies, 10 mg/kg (one study only), 33 mg/kg, and 66 mg/kg 

doses were evaluated. Efficacy data for the TMZ dose below 10 mg/kg was comparable to vehicle 

and was not statistically different (p > 0.05). TMZ dosed at 33 mg/kg inhibited growth for the first 

treatment cycle, however, tumor started to grow back by the second week even with continued 

treatment. This was suggestive of the onset of resistance development to TMZ treatment in mice 

bearing GBM 43 glioma cells. A higher dose of TMZ (66 mg/kg), though, was able to keep the 

tumor growth suppressed up to one week after the end of dosing. Tumor volume effects of TMZ 

monotherapy at various doses across three different studies are shown in Figure 4.9. 
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Figure 4.9: TMZ dose response effects on GBM 43 tumor volume in NSG mice. Results are shown as average mean 

± standard error of mean for 4 animals per treatment group (A & C) and 15 animals per treatment group (B). The 

horizontal bar represents the treatment period, dose administered through Monday to Friday with weekend dose 

holidays. 

 

For TMZ plus small molecule inhibitors (SMI) combination therapy, GBM 43 cells were 

implanted under the right flank of NSG mice treated by oral gavage with combination of TMZ (10 

mg/kg), RG7112 (100 mg/kg) and GDC0068 (100 mg/kg). Figure 4.10 (A-B) demonstrates the 

statistically significant (p < 0.05) delay in tumor growth of two and three drug combinations of 

SMIs of MDM2 (RG7112) and AKT (GDC0068) variably combined with TMZ in GBM 43 flank 

tumors relative to TMZ alone. Figure 4.10 (C) demonstrates preservation of body weight for the 

various combinations, indicating that they were reasonably well tolerated. Safety of these 
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combinations is also supported by H&E staining of all major organs, which did not show signs of 

tissue toxicity.  

Another pilot study was conducted in mice with GBM 43 flank tumors, wherein animals 

were treated with 2 cycles of vehicle, TMZ alone or in combination with RG7112 and GDC0068. 

NSG mice with GBM 43 flank tumors were treated with vehicle, TMZ (10 mg/kg) alone or in 

combination with 100 mg/kg RG7112, and 100 mg/kg GDC0068. All compounds were delivered 

by oral gavage QOD for 2 cycles of treatment. As observed in the GBM 43 flank xenograft study 

summarized in the preceding paragraph, TMG+RG7112+GDC0068 produced a significant 

decrease in tumor growth compared to vehicle or TMZ monotherapy. Results from this study are 

summarized in Figure 4.10 (D).  

 

Figure 4.10: Tumor volume effects over time after treatment with TMZ monotherapy and TMZ plus small molecule 

inhibitors (SMIs) combination therapy on mice bearing GBM 43 subcutaneous xenografts. (A-B) Combination of 

TMZ/GDC0068/RG7112 decreases tumor cell growth significantly using an intermittent dosing regimen with minimal 

toxicity. Left Upper Panel, Day 30: *p < 0.001 vs Vehicle, Holm-Sidak post-hoc test. Right Upper Panel: $p<0.05, 
$$p<0.01, $$$p<0.001 vs TMZ Only, Holm-Sidak post-hoc test; ###p<0.001, TMZ+GDC vs TMZ+RG7112+GDC, t-

test.  Arrows represent the dosing duration. (C) Body weight measurements over time from the same study depicted 

in Figures A-B. (D) Tumor volume effects over time of TMZ monotherapy and TMZ+RG7112+GDC combination 
from a separate study. Combination significantly decreases the tumor growth compared with monotherapy p=0.005, 

TMZ vs TMZ+RG7112+GDC, t-test. Horizontal bars show the dosing duration. 
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Interestingly, among the three GBM PDX models, GBM 43 flank tumors were the only 

xenografts that evidenced tumor regrowth during TMZ treatment. It was inferred that this rebound 

in tumor growth while under treatment was due to the onset of resistance to TMZ. To validate this 

hypothesis and confirm the reproducible resistance development to TMZ monotherapy while under 

treatment, an efficacy study wherein TMZ was given at 33 mg/kg and 66 mg/kg doses was 

conducted. A sequential dosing profile for administering TMZ was designed. Administration of 

antitumor drugs in sequential fashion rather than simultaneously may increase efficacy and 

provides a promising solution in tumor treatment [92, 93]. TMZ was dosed alternatively at 33 

mg/kg and 66 mg/kg and a week dosing holiday was introduced in the third week of a five-week 

dosing regimen. Sequential dosing paradigms with optimized gaps between treatments have been 

tried in tumors of other histological origins [94]. Effect of TMZ+GDC combination in tumors 

already primed with TMZ treatment was also studied. We selected TMZ plus GDC combination 

based on our efficacy results in GBM 43 xenografts (Figure 4.10). Results of several sequential 

dosing regimens on tumor volume demonstrated reproducible resistance development to TMZ 

monotherapy in GBM 43 flank tumors. Results from these studies are summarized in Figure 4.11. 

 

Figure 4.11: Tumor volume effects over time after treatment with sequential schedules of TMZ and TMZ plus small 

molecule AKT inhibitor GDC0068 in mice bearing GBM 43 subcutaneous xenografts. Results are shown as average 

mean ± standard error of mean for 10 animals per treatment group. The horizontal bar represents the treatment period, 

doses administered Monday through Friday for four weeks (Groups 1-2), or with a holiday during the third week in a 

five-week dosing regimen (Groups 3-6). 
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4.3 Population pharmacodynamic modeling 

The time course of vehicle treated mice in U87, GBM 10 and GBM 43 subcutaneous xenografts 

was described using the Simeoni et. al. [63] unperturbed growth model (mixed exponential and 

linear growth). This model of tumor growth gave a superior fit compared to the Gompertz [95] and 

Jumbe et. al [67, 96] growth models that employ only exponential growth based on the AIC and 

goodness of fit plots (Observed vs. population predicted, CWRES vs population predicted/time). 

4.3.1 PKPD model for mice bearing U87 patient derived xenografts 

The previously discussed PK model for TMZ was linked to the tumor volume data from U87 

subcutaneous xenografts obtained by digitization of data from Wang et al [28], and Raub, et al [2]. 

For the latter study, the PK portion was based on 66 mg/kg i.p. plasma concentration data, while 

the PD treatment arm was from 3 mpk i.p. data. This extent of extrapolation for the dose-

bioavailability relationship was not reasonable, because of lack of evidence to identify gaps for 

effects at very low and very high TMZ doses, the PK parameter for bioavailability (Fi.p.) was 

predicted using the developed PKPD model for 3 mpk i.p. and was found to be 0.27 with 6% RSE. 

Tumor size dynamics were best described using a cytostatic drug action of ACB and cytotoxic 

drug action of TMZ. The fully integrated population PKPD model (base tumor growth inhibition 

model) as illustrated in Figure 3.2 successfully described tumor volume change for the vehicle arm, 

the TMZ treatment arm in relation to the Wang et al study [28], and a vehicle arm and various 

treatment arms (TMZ treatment arm, ACB treatment arm and TMZ/ACB combination treatment 

arm) in relation to the Raub, et al study [2]. The PK parameters value did not change and were 

same as presented in Table 4.1 and Table 4.2 for TMZ and SMIs, respectively. The model results 

are shown in Figure 4.12, and model PD parameter estimates summarized in Table 4.3.  The 

developed resistance integrated TGI model did not apply to the U87 efficacy data because the 

dosing was stopped early, prior to tumor regrowth.  
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Figure 4.12: PKPD model of U87 xenograft tumor volume growth in NSG mice. Reported mean volumes for tumors 

are shown as symbols, and predicted volumes are shown as corresponding lines. Dose schedules for the different 

treatments are shown as the solid color-coded bars labeled as ‘Dose time’ and are further specified in the text. The 

purple bars refer to Wang Haiyan et al., and the blue bars refer to Raub, et al, with dark blue referring to ACB and 

light blue to TMZ. In the legend, study A refers to reported mean volumes from Wang et.al., and study B refers to 

reported mean volumes from Raub et. al. 
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Table 4.3: Final parameter estimates for the population PD model for U87 xenografts, 

Parametera 

Model parameter estimates for efficacy 

data from Wang Haiyan et. al. [28] 

Model parameter 

estimates for efficacy data 

from from Raub et. al. [2] 

Estimate %CVb 
%BSV 

(%shrinkage) 
Estimate %CVb 

V0 (mm3) 106.64 4.1 - 76.99 10.1 

bTMZ (ml/pmol*hr) 1.1E-05 29.5 - 3.0E-05 6.6 

bACB (ml/pmol) - - - 0.00011 5.5 

kg0 (hr-1) 0.0045 6.3 4.3 (51.8) 0.0025 11.3 

kg1 (hr-1) 4.98 11.6 - 9.82 3.9 

kk (hr-1) 0.0055 18.0 - 0.018 7.6 

Ψ (psi) 20 (fixed) - - 20 (fixed) - 

Proportional residual 

error (%CV) 
0.32 (7.0) 

Time interval for 

cells to eradicate (τ) 

(hr) 

543.5 - - 165.17 - 

CV: Coefficient of Variation BSV: Between-Subject Variability. 
aV0; Initial tumor volume, bTMZ; TMZ potency, bACB; abemaciclib potency, kg0; exponential growth rate, kg1; linear 

growth rate, kk; transit rate, Ψ; fixed term 
bThe CVs related to the PK model were computed based on Phoenix NLME variance covariance matrix (sandwich 

method). 

Wang Haiyan, et al. [28], 5 mg/kg TMZ was given orally once daily 5 days/week for two cycles. Raub, et al. [2], 3 

mg/kg TMZ was administered intraperitoneally once a week for a total of two doses and 50 mg/kg ACB was 

administered orally once daily for 21 days. bThe CVs related to the PD model were computed based on Phoenix 

NLME variance covariance matrix (sandwich method). A Naïve pooled approach was used for parameter 

estimation. 

 

For the Raub, et al. study, the TMZ/ACB combination treatment arm showed enhanced 

efficacy compared to the TMZ monotherapy treatment arm. The time for tumor cell eradication 

following treatment was calculated to be approximately 22 days (543.5 hrs) for TMZ alone. In the 

case when TMZ was given in combination with ACB, the time for tumor eradication was 

approximately 7 days (165.17 hrs) (Table 4.3).  

Model diagnostic plots: Population PD model for U87 xenografts 

Visual predictive checks (VPCs) to validate the PKPD model of U87 efficacy are 

summarized in Figure 4.13. VPCs supported good model performance. VPCs for the Raub, et al 

study were not constructed because of scarcity of data, as only mean data were digitized. Model 

predicted concentrations for U87 gliomas relative to those observed, as well as conditional 
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weighted residuals, both confirming that the developed PKPD model adequately fits the data, are 

summarized in Figure 4.14.  

 

Figure 4.13: Prediction corrected visual predictive checks (pcVPCs) derived from the developed PKPD model of U87 

flank tumors in NSG mice from the Wang Haiyan, et al. study. Vehicle (A) and TMZ at 5mg/kg p.o. (B) tumor volume 

time courses. The solid blue line represents median of the observed values. The shaded areas are the 95% confidence 

intervals of the predicted 5th, 50th (pink), 95th percentiles computed from the simulated datasets (N = 500). The blue 

dots are the observed experimental data. 
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Figure 4.14: Graphical diagnostic plots from the developed PKPD model of predicted tumor volumes in NSG mice 

bearing U87 flank tumors. Observed tumor volume in relation to population predicted tumor volume (A), and in 

relation to individual predicted tumor volume (B). Model conditional weighted residuals observed in relation to 

population predicted values (C), and in relation to time (D). 

4.3.2 PKPD model for mice bearing GBM 10 patient derived xenografts 

For mice bearing GBM 10 subcutaneous xenografts, the efficacy data were best described 

by the integrated PKPD base model structure depicted in Figure 3.2. Incorporation of resistance 

into the TGI model was not applicable to the GBM 10 efficacy data because dosing was stopped 

before the tumor started to grow back. GBM 10 subcutaneous xenografts experienced slow tumor 

growth after the first treatment dose at day 49 following tumor implantation when tumor size 

reached approximately 150 mm3. Interestingly, monotherapy with TMZ demonstrated efficacy 

equivalent to combination treatment arms in GBM 10 subcutaneous xenografts as shown in Figure 

4.15. This is attributed to the high dose of TMZ (66 mg/kg) administered orally in GBM 10 tumor 
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bearing mice as opposed to mice bearing U87 gliomas (5 mg/kg p.o.) or GBM 43 xenografts (10 

mg/kg p.o.). However, the final PKPD model successfully captured all the treatment arms 

including vehicle (Figure 4.15). 

 

Figure 4.15: PKPD model of tumor volume in NSG mice bearing flank GBM 10 tumors. Observed mean tumor 

volumes are shown as symbols, and predicted volumes are shown as corresponding lines. Dose schedule is shown as 

the solid color-coded bars labeled as ‘dose time’ and consists for 5days/week dosing for consecutive 3 weeks. 

 

The PK parameters value did not change and were same as presented in Table 4.1 and 

Table 4.2 for TMZ and SMIs, respectively. Model PD parameters were estimated with reasonable 

precision (coefficient of variation < 40%) (Table 4.4). The exception was the drug potency 

parameter for GDC0068 (bGDC0068), which was estimated to be -1.39E-06 ml/pmol*hr and could 

not be precisely estimated. This is attributed to the high efficacy of TMZ alone treatment (Figure 

4.15); the negative sign indicates an antagonistic effect.  
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Table 4.4: Final parameter estimates for the population PKPD model for GBM 10 xenografts. 

Parametera Estimate %CVb 

V0 (mm3) 87.47 9.6 

bTMZ (ml/pmol*hr) 3.4E-07 13.9 

bRG7388(ml/pmol*hr) 1.24E-06 25.4 

bGDC0068(ml/pmol*hr) 
-1.39E-

06 
-141.1 

kg0 (hr-1) 0.0013 4.4 

kg1 (hr-1) 1.4 11.3 

kk (hr-1) 0.79 20 

Ψ (psi) 
20 

(fixed) 
- 

Proportional residual 

error (%CV) 
0.36 (5.8) 

BSV: Between-Subject Variability 
aV0; Initial tumor volume, bTMZ; TMZ potency, bRG7338; MDM2 potency, bGDC0068; AKT potency, 

kg0; exponential growth rate, kg1; linear growth rate, kk; transit rate, Ψ; fixed term 
bThe CVs related to the PD model were computed based on Phoenix NLME variance covariance 

matrix (sandwich method). A Naïve-pooled estimation approach was used. 

Model diagnostic plots: Population PKPD model for GBM 10 xenografts 

The TGI model adequately described the data as assessed by visual predictive checks stratified 

by various treatment arms, where TMZ was given alone or in combination with one or two SMIs 

(RG7388, GDC0068), as shown in Figure 4.16. Model predictions of GBM 10 tumor volume 

relative to those observed, as well as conditional weighted residuals are summarized in Figure 4.17. 

These diagnostic plots supported good model performance.  
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Figure 4.16: Prediction corrected visual predictive checks (pcVPCs) of GBM 10 xenograft tumor growth inhibition model. Tumor volume time course for vehicle 

(A), TMZ (B), TMZ+GDC0068 (C), TMZ+RG7388 (D), and TMZ + GDC0068+RG7388 (E). The solid blue line represents median observed values. The shaded 

areas are the 95% confidence intervals of the predicted 5th, 50th (pink), 95th percentiles computed from the simulated datasets (N = 500). The blue dots are the 

observed experimental data. 
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Figure 4.17: Graphical diagnostic plots of PKPD model developed for NSG mice bearing GBM 10 flank tumors. 

Observed and model predicted tumor volume data in relation to population predicted tumor volume (A), and in relation 

to individual predicted tumor volume (B). Model conditional weighted residuals in relation to population predicted 

values (C), and in relation to time (D). A Naïve-pooled estimation approach was used.  

4.3.3 PKPD model for mice bearing GBM 43 flank xenografts 

Exploration of the GBM 43 tumor volume data showed that response to treatment declined 

toward the end of the second cycle of treatment. Tumor suppression response following the third 

treatment cycle became negligible (Figure 4.10A-B). This non-responsiveness to the later cycle of 

drug treatment followed by emergence and continued re-growth of tumor is attributed to the 

development of resistance. In response to this observation, a resistance component to the base 

PKPD model (no resistant tumor component) was developed in response to monotherapy only. 

Because of this evidence of development of resistance in the GBM 43 model, a resistance 
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component was added to the previously defined model structure (Figure 3.2). This resistance 

integrated tumor growth inhibition model (Figure 3.3) was used to describe the GBM 43 tumor 

growth observations. For TMZ monotherapy across the multiple studies and doses ranging from 

0.3mg/kg to 66mg/kg, the resistance integrated TGI model was developed and compared with the 

TGI model without resistance i.e., base tumor growth inhibition model. Both models were 

evaluated for model performance using AIC. PKPD model fit improved significantly upon 

incorporation of resistance development (Table 4.5). The results are shown in Figure 4.18. 

 

Table 4.5: Model performance metrics comparison: base TGI model versus resistance integrated TGI model for 

TMZ monotherapy in GBM 43, 

TGI Model 

TMZ 

monotherapy 

GBM 43 subcutaneous xenografts 

Base TGI model 
Resistance integrated TGI 

Model 

No. of 

parameters 
8 11 

AIC Value 23136.6 23016.6 (p <0.001) 

Proportional 

residual error 
0.54 0.52 

 

In contrast to GBM 43 tumors, U87 and GBM 10 tumor growth models incorporating 

development of resistance did not improve model performance compared to the base model (Table 

4.6). In the case of U87 and GBM 10 tumors, lack of resistance development is ascribed to 

termination of the drug treatment cycle prior to resistance development (see dose legends, Figure 

4.12, and Figure 4.15).  

 

Table 4.6: Model performance metrics comparison: base and resistance integrated TGI model in U87 and GBM 10 

tumors 

TGI Model 

U87 gliomas 
GBM 10 subcutaneous 

xenografts 

Base TGI 

model 

Resistance 

integrated 

TGI Model 

Base TGI 

model 

Resistance 

integrated 

TGI Model 

No. of 

parameters 
15 21 11 14 

AIC Value 7586.8 7654.3 16970.6 16994.1 

Proportional 

residual error  
0.46 0.52 0.36 0.37 
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Figure 4.18: PKPD model of tumor volume growth in NSG mice bearing GBM 43 flank tumors and treated with 

TMZ monotherapy at various doses (0.3-66 mg/kg) across five different studies. Observed mean volumes are shown 

as symbols, and model predicted volumes are shown as corresponding lines. Dose schedules for the different 

treatments are shown as the horizontal line and are further specified in the text. Figure legends describe the dosing 

and sequence regimens. W (1-5) refers week one through five. 

 

TMZ exposure at 33 mg/kg showed an initial response to the treatment, but started to grow 

back, regrowth evident from the second treatment cycle. TMZ dose at 10 mg/kg and below did not 

show any significant effect compared to vehicle. TMZ exposure with 66 mg/kg dose was able to 

keep the tumor growth inhibited for the duration of the treatment, however, tumor growth resumed 

approximately one week after the dosing ended.  Interestingly, for sequential dosing administration 

of TMZ dosed at 33mg/kg for two weeks, followed by 66 mg/kg for two weeks, TMZ did not 

suppress tumor growth and it rebounded during the second week of the dosing cycle (Figure 4.18).  

For TMZ monotherapy efficacy data across multiple studies and various doses (0.3-66 

mg/kg), final model parameters for the PD portion of the resistance integrated TGI model in GBM 

43 are summarized in Table 4.7. The PK parameters value did not change in the final PKPD model 

and were same as presented in Table 4.1 and Table 4.2 for TMZ and SMIs, respectively. 
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Table 4.7: Final parameter estimates of the population PD resistance integrated TGI model for TMZ monotherapy in 

GBM 43 xenografts. 

Estimate 

PD system parametersa 

V0 

(mm3) 

Drug potency 

parameters 

(ml/pmol*hr) 
TMZ sensitive cells TMZ resistant cells 

 bTMZ 
kg,exp 

(hr-1) 

kg,lin 

(hr-1) 

kk 

(hr-1) 

kgR,exp 

(hr-1) 

kgR,lin 

(hr-1) 

kS-to-R 

(hr-1) 

Population 

value 
24.5 1.7 E-06 0.006 6.75 0.035 0.0025 2.18 0.012 

% CVb 6.5 8 2.6 8.2 20 28.8 17.6 59.4 

Proportional 

residual 

error (%CV) 

0.052 (4.9) 

aV0; Initial tumor volume, bTMZ; TMZ potency, kg,exp; exponential growth rate, kg,lin; linear growth rate, kk; transit 

rate, kgR,exp; exponential growth rate (resistant cells), kgR,lin; linear growth (resistant cells), kS-to-R; sensitive to 

resistant conversion rate Ψ; fixed term 
bThe CVs related to the PD portion of the model were computed based on Phoenix NLME variance covariance 

matrix (sandwich method). 

 

For TMZ-SMIs combination therapy efficacy data, final model parameters for the PD 

portion of the integrated TGI model are summarized in Table 4.8. The PK parameters value did 

not change in the final PKPD model and were same as presented in Table 4.1 and Table 4.2 for 

TMZ and SMIs, respectively. Pharmacodynamic system parameters (TMZ sensitive tumor and 

resistant tumor parameters) were common for all treatment arms, whereas drug potency parameters 

were estimated for each drug alone (TMZ, RG7112 and GDC0068) or in combination. Secondary 

parameters were calculated for growth rates as a ratio for resistant to sensitive cells (equation 14). 

Ratios for exponential and linear growth rates of resistant to sensitive cells were found to be 2.5 

and 1.2, respectively, indicating faster growth of resistant cells. Estimates for average time to 

tumor cell eradication or resistance emergence (equation 15) is shown in Table 4.8. SMIs 

administered as monotherapy in mice with GBM 43 subcutaneous xenografts demonstrated 

comparable growth to the vehicle (control mice). Administration of TMZ in combination with one 

or both SMIs (RG7112 + GDC0068) showed enhanced efficacy compared to TMZ monotherapy.  
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Table 4.8: Final parameter estimates of population PD model for GBM 43 xenografts from combination therapy 

regimens. 

Estimate 

PD system parametersa 

V0 

(mm3) 

Drug potency parameters 

(ml/pmol*hr) 
TMZ sensitive cells TMZ resistant cells 

 bTMZ bGDC0068 bRG7112 
kg,exp 

(hr-1) 

kg,lin 

(hr-1) 

kk 

(hr-1) 

kgR,exp 

(hr-1) 

kgR,lin 

(hr-1) 

kS-to-R 

(hr-1) 

Population 

value 
25.21 2.2E-05 1.6E-05 

1.3E-

09 
0.0059 5.76 0.0167 0.0154 6.97 0.0020 

%CVb 5.8 19.2 23.6 43.7 2.7 9.5 31.5 12.1 6.5 47.9 

Proportional 

residual error (%CV) 
0.34 (4.5) 

Average time for resistance cell emergence from 

sensitive cells (τ) 
179.6 hrs 

aV0; Initial tumor volume, bTMZ; TMZ potency, bRG7338; MDM2 potency, bGDC0068; AKT potency kg,exp; exponential 

growth rate, kg,lin; linear growth rate, kk; transit rate, kgR,exp; exponential growth rate (resistant cells), kgR,lin; linear 

growth (resistant cells), kS-to-R; sensitive to resistant conversion rate Ψ; fixed term. 
bThe CVs related to the PD portion of the model were computed based on Phoenix NLME variance covariance 

matrix (sandwich method). A naïve-pooled approach was used. 

Model diagnostic plots: Population PD model for GBM 43 xenografts. 

Model predicted vs. observed tumor volume data for TMZ monotherapy and TMZ-SMIs 

combination therapy in GBM 43 subcutaneous xenografts are depicted in Figure 4.19 (A-B). The 

resistance integrated TGI model for TMZ monotherapy and TMZ-SMIs combination therapy in 

GBM 43 accurately captured the tumor volume data as illustrated by VPCs stratified by treatment 

arm in Figure 4.20 and Figure 4.21, respectively.  

 

Figure 4.19: Model diagnostic plots of the developed PKPD model from NSG mice bearing flank GBM 43 tumors. 

Observed and model predicted tumor volume data for TMZ monotherapy (A), and for TMZ-SMIs combination therapy 

(B). 
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Figure 4.20: Prediction corrected visual predictive checks (pcVPCs) from simulations of the final PKPD model 

developed from NSG mice bearing GBM 43 flank tumors and treated with TMZ monotherapy. Tumor volume time 

course for various doses of TMZ monotherapy (A-G), and sequential dosing of various doses of TMZ (H-K). The 

solid blue line represents median observed values. The shaded areas are the 95% confidence intervals of the predicted 

50th (pink) ,95th percentiles computed from the simulated datasets (N = 500). Predicted 5th percentile could not be 

shown in log scale because of the predicted negative values. The blue dots are the observed individual data. 
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Figure 4.21: Prediction corrected visual predictive checks (pcVPCs) from simulations of the final PKPD model 

developed from NSG mice bearing GBM 43 flank tumors and treated with TMZ plus small molecule inhibitors. 

GDC0068 monotherapy (A), RG7112 monotherapy (B), TMZ+GDC0068 (C), TMZ+RG7112 (D), TMZ + 

GDC0068+ RG7112 (E). The solid blue line represents median observed values. The shaded areas are the 95% 

confidence intervals of the predicted 5th, 50th (pink), 95th percentiles computed from the simulated datasets (N = 500). 

The blue dots are the observed individual data. 

 

Aim 3: Perform simulations and derive Tumor Static Concentration curves that identify single 

concentration values or the pair of drug concentration combinations that would achieve tumor 

shrinkage 

4.4 Simulating tumor static concentration curves (TSCs) in combination therapy 

The system of differential equations (16-through-25) were applied to predict drug 

concentrations needed to achieve stasis of tumor growth for either single agent treatments or 

combination treatments. An expression of a TSC curve is based on the following reasoning: In the 

TGI model structure (Figure 3.2 and Figure 3.3), the main compartment, V1, is only the 

compartment in which cells proliferate. If V1 is eradicated entirely, the tumor will eventually be 
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eradicated as well, i.e., if dV1/dt <0, the tumor will eventually be eradicated. In monotherapy, this 

analysis results in an estimate of the tumor static concentration value  (TSC value); whereas, for 

combinations of two or more compounds, this analysis results in a TSC curve [70].  

4.4.1 TSC curve of ACB-TMZ combinations in U87 xenografts 

The developed TGI PKPD model was used to calculate plasma concentrations of TMZ and 

ACB that would inhibit tumor growth. These concentrations, termed tumor static concentrations 

(TSCs), are shown in Figure 4.22.  

 

Figure 4.22: Simulation of TMZ/ACB concentrations exerting influence on tumor volume. Tumor static concentration 

curve for TMZ and ACB combinations and predicted effects of various hypothetical dose regimens (A-D) on tumor 

growth (left). Predicted tumor volume effect on hypothetical dose regimens (A-D) (right). 

 

In monotherapy, predicted TSCs for TMZ and ACB are the x-axis and y-axis intercepts, 

respectively. Thus, a dose regimen of TMZ alone that provides an average concentration of 101 

nM, or a regimen of ACB alone that provides an average plasma concentration of 6900 nM, would 

be predicted to arrest tumor growth. (Figure 4.22). The red line connecting the two axes is referred 

to as the TSC curve. It represents average plasma concentrations of each of the two drugs that 

would also arrest tumor growth if the drugs were administered as a combination regimen. As an 

example, a combination regimen resulting in an average TMZ plasma concentration of 50 nM and 

an ACB concentration of 3500 nM (Point B on TSC line), would inhibit tumor growth, and the 

tumor would remain in stasis, as shown in graph 3.22 (right). In contrast, a combination regimen 
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resulting in average concentrations of the two agents below the TSC line, point A (35 nM TMZ 

and 3000 nM ACB), would be insufficient to arrest, let alone inhibit tumor growth. For 

combinations of average concentrations of each agent above the TSC line (points C and D), tumor 

shrinkage would be predicted, as illustrated in graph 3.22 (right). Relevant to the Raub et al. study 

[97], predicted average ACB concentration over the daily dose interval was 8093 nM, higher than 

its TSC and, thus, consistent with observed tumor shrinkage (Fig. 3.22). Predicted average TMZ 

concentration was 40.2 nM over the 24-hour dosing interval, smaller than its TSC of 101 nM. 

However, simulations (not shown) demonstrated that TMZ concentrations following each of the 

two doses were > TSC for approximately 4 hours, which apparently was of sufficient duration to 

kill cells and eventually result in tumor shrinkage.  

4.4.2 TSC Curve of RG7388-TMZ combinations in GBM 10 

The developed PKPD model of tumor volume growth in GBM 10 adequately described the 

efficacy data for TMZ-SMIs combination therapy (Figure 4.15). In GBM 10, TMZ plus two SMIs 

(RG7388 and GDC0068) combination treatment arm showed higher efficacy, however our 

equations to simulate TSC curves were limited to two drug combinations. Thus, we predicted the 

TSC curve for the TMZ-MDM2 inhibitor combination treatment arm for demonstrating its 

qualitative and quantitative application (Figure 4.23). 

 

Figure 4.23: Tumor static concentration curve for TMZ and MDM2 inhibitor (RG7388) combination from PKPD 

model predicted tumor volumes in GBM 10 flank tumor bearing NSG mice. The X-axis intercept shows that the TMZ 

alone can have the desired effect; whereas absence of a Y-axis intercept for RG7388 shows that it cannot tumor stasis 

or shrinkage on its own. 
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Dose regimen of TMZ alone that provides an average concentration of 1600 nM would bring 

the tumor to stasis. However, when treated with MDM2 inhibitor alone, the compound has no 

effect on reduction of tumor volume (Figure 4.23). This prediction agrees with the results obtained 

from experimental studies (Figure 4.10A). It is also consistent with the mechanism of action of 

MDM2 inhibitor, which triggers the TMZ-induced MDM2/p53 pathway. In fact, TMZ-induced 

p53/p73 pathway by an MDM2 protein-protein interaction inhibitor improves efficacy in 

xenografts of recurrent GBM [98]. TSC curves also provide qualitative information. In this regard, 

the shape of the line indicates if the effect of combination therapy between two or more agents is 

additive (straight line), synergistic (concave line) or antagonistic (convex line) [70]. Figure 4.23 

shows a slight curvature at higher MDM2 concentrations and lower TMZ concentrations, 

indicating that certain TMZ-RG7388 combination regimens can produce slightly synergistic 

effects on tumor growth inhibition.  The predicted average TMZ concentration from monotherapy 

(X-axis intercept, 1600 nM) was found to be higher than that predicted for U87 derived xenografts 

(Figure 4.22). However, it is to be noted that the vehicle growth profile is completely different for 

these two PDX tumors and the dose of TMZ was very high for GBM 10 xenografts relative to U87 

gliomas. 

4.5 Translation of a TGI model to predict human exposure 

The PKPD model developed to describe tumor growth in NSG mice implanted with U87 cells 

to generate flank tumors and their response to TMZ and ACB treatment was translated to a clinical 

environment. To accomplish this, the mouse TMZ PD model was linked to published human TMZ 

plasma PK parameters [85, 86]. Simulations were performed at clinically relevant exposures 

following a dose of 200 mg/m2 given once daily for five days in a single 28-day treatment cycle. 

Subsequently, these exposures were linked with PD parameters describing tumor volume derived 

from the U87 GBM subcutaneous xenograft model. Initial size of the tumor for simulations was 

3cm* 3cm, which is based on clinical observation [4].  This analysis predicted that the tumor would 

not be eradicated fully, as evidenced by its regrowth (Figure 4.24). Prediction from this 

translational simulation aligns with the study performed by Wong et. al. [99]. These investigators 

observed a better correlation between simulated xenograft human TGI linked with human PK at 

clinically effective doses as compared to TGI based on a maximum tolerated dose (MTD) approach. 

This approach to translate non-clinical TSC predictions to humans shows how the PD system 



 

 

79 

parameters from the mouse studies (kg, V0, kk) can be used to identify doses that achieve tumor 

shrinkage in humans. 

 

Figure 4.24: Predicted tumor volume time course in humans 
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 DISCUSSION 

Molecular characterization of patient derived GBM xenografts has identified several TMZ 

triggered DNA damage response signaling networks [100, 101]. Preliminary studies in Dr. 

Pollok’s laboratory (our collaborator) have established that TMZ in combination with an MDM2 

inhibitor and/or an AKT inhibitor is well tolerated and significantly delays tumor growth in PDX 

xenografts as compared to TMZ alone. We have extended these findings by developing a PKPD 

tumor growth inhibition modeling and simulation approach in control animals, and animals 

receiving TMZ alone or in combinations of TMZ with SMIs. These tumor growth inhibition PKPD 

models have demonstrated application in identifying combinations predicted to inhibit tumor 

growth. 

Currently, several clinical trials aim to use combination drug regimens to exploit the 

underlying mechanism of oncogenesis and resistance development [6]. Based on current 

understanding of therapeutic targets and signaling networks in GBM, we approached inhibiting 

TMZ-induced signaling pathways with brain penetrant small molecule inhibitors as a means to 

prolong survival time in GBM. Published data indicate sustained activation of the TMZ induced 

p53/p73 pathway by MDM2 inhibition [25-27]. In addition, existence of a growth promoting link 

between MDM2 and AKT networks provided good rationale for dual targeting of Mdm2 and AKT 

pathways activated by TMZ [4, 9, 28]. The specific contribution of the present work was 

development of models that predicted tumor growth in response to TMZ administered alone and 

in combination with targeted small molecule inhibitors (SMIs) of the pro-survival 

PI3K/AKT/mTOR DDR network, and the anti-apoptotic MDM2/p53/p73 response in patient 

derived xenograft GBM mouse flank tumors. The value of the developed PKPD models relating 

chemotherapeutic exposure to pharmacodynamic response, i.e., reduction in tumor size, is that 

they can be used to explore via simulations the vast arena of possible combinations predicted to 

be superior to TMZ monotherapy. In this way, they reduce experimentation to identify 

combination regimens with the highest possible efficacy.  

In this modeling analysis, an integrated PKPD tumor growth inhibition model was developed 

to describe the anti-tumor activity of various small molecule inhibitors: CDK4/6 kinase inhibitor, 

MDM2 inhibitor and AKT inhibitor when administered in combination with TMZ. Several growth 

model constructs were evaluated[102], such as the Gompertz model [103], the Jumbe model, and 
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the logistic regression model; however, the modified Simeoni tumor growth model, which 

incorporates both exponential and linear growth phases, best described the data. Efficacy data from 

TMZ-SMIs combinations or TMZ alone were successfully modeled across multiple cell lines of 

GBM: U87, GBM 10 and GBM 43. The resulting TGI PKPD models (a so-called base model that 

was applicable to absence of resistance development) and a resistance model (to describe 

development of resistance to TMZ in GBM 43 xenografts), integrated the pharmacokinetics of 

TMZ and SMIs to the TMZ elicited induction of DNA damage response, and subsequent change 

to the tumor cell proliferation cycle and subsequent SMI inhibition of tumor growth. Developing 

these PKPD models against data across multiple cell lines increases model robustness regarding 

its application via simulations to identify optimal combination regimens.  

 

Aim 1: Develop population pharmacokinetic models for TMZ, and MDM2/AKT inhibitors, that 

target TMZ induced MDM2/p53/p73 and PI3K/AKT/mTOR signaling pathways in GBM 

5.1 Pharmacokinetic Modeling 

The integrated PKPD model was developed in a sequential manner. Firstly, a one compartment 

PK model with first order rate absorption was used to describe the exposure of TMZ and SMIs 

used in combination. We included all the possible exposure data available; this included data from 

original studies and data from the literature. This gave a robust PK model for TMZ exposure. 

However, one of the disadvantages of digitizing mean data is that individual animals are expected 

to have the same exposure profile and there is no possible way to estimate the between subject 

variability. This could lead to inaccuracies regarding estimation of pharmacokinetic parameters. 

In addition, TMZ data obtained from three different routes were used: oral (including a formulation 

in which TMZ was incorporated into food, as well as solution and suspension formulations), 

intravenous and intraperitoneal. The model predicted a very high absorption rate for 20 mg/kg 

TMZ exposure data (Table 4.1). This was attributed to the presence of a high percentage of DMSO 

in this solution formulation. Also, a one compartment model with first order rate absorption was 

used to describe the pharmacokinetic profile of small molecule inhibitors. Secondly, plasma 

concentrations of TMZ and SMIs were related to the in-vivo efficacy data from mouse flank 

xenografts derived from GBMs obtained from patients. 
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We observed nonlinear pharmacokinetics over the dose range of 5-66 mg/kg for TMZ in mouse 

plasma. Non-linear kinetics may be attributed to various pharmacokinetic mechanisms; binding, 

metabolism and elimination [104]. In our study, we identified dose non-linear bioavailability of 

TMZ in mouse plasma. This is attributed to either or both the absorption rate constant and 

bioavailability decrease with increasing doses. A one compartment model with first order 

absorption generated a poor fit for TMZ pharmacokinetics data. One of the main reasons for this 

disagreement is the variability in the PK data that we obtained from the various literature sources 

to develop the TMZ PK model. Pharmacokinetic data for TMZ from multiple sources incorporated 

TMZ into various formulation: solution, suspension, and food. This variability in formulation type 

may have contributed to saturation of the dissolution process, resulting in less TMZ available for 

absorption even with the increasing dose. The modeling approach that we adopted in this scenario 

was to stratify absorption rate constants and bioavailability parameter estimates by dose and 

formulation type. Thus, bioavailability (F) and absorption rate constant (ka) parameters were 

estimated separately for each formulation type and dose.   

 

Aim 2: Perform population pharmacokinetic-pharmacodynamic (PKPD) modeling of tumor 

growth kinetics in xenograft mouse models in various cell lines (U87, GBM 10, GBM 43) following 

administration of TMZ with MDM2, CDK4/6 kinase and AKT inhibitors in combination treatment 

5.2 Pharmacodynamic Modeling 

 For U87 tumors, a TGI model with TMZ as cytotoxic agent and ACB as cytostatic compound 

was used to describe efficacy data in the final PD model. Similarly, TGI model with TMZ and 

RG7388 as cytotoxic agent was used to describe the efficacy data for GBM 10 xenografts. The PD 

modeling of each compound, whether it is cytostatic or cytotoxic, was evaluated using either a 

linear drug effect function or a nonlinear function. The linear drug action was ultimately selected 

and was based on the AIC criterion. Based on preliminary in vitro experiments (results not shown), 

in-vitro IC50s (double-digit to triple-digit µM) were much larger than in vivo drug concentrations 

(nM), which reduced the Hill equation to Emax/EC50 that we define as term ‘b’ (linear function of 

drug action) in our models.  The cell death rate (kk) was 3-fold faster for efficacy data from Raub 

et. al study as compared Wang et.al study (Table 4.3). This is due to the additive effects of TMZ 
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and ACB combination therapy. Other PD parameter estimates, such as tumor growth rates and 

TMZ potency were similar between these two studies in U87 xenografts.  

For the base PD model structure (Figure 3.2), it was assumed that there was no PK interaction. 

This assumption is based on the metabolism of TMZ that, once in circulation, prodrug TMZ 

spontaneously hydrolyzes to give active metabolite MTIC. MTIC further liberates methyl 

diazonium ion that alkylates the DNA. The half-life of TMZ is 1.8 hrs. and cleared rapidly from 

the circulation [14].   Since, ACB is considered cytostatic and TMZ cytotoxic [18], the PD model 

was structured such that TMZ describes drug action on the loss term (kill rate) of the proliferating 

cell compartment and ACB inhibits further tumor growth of the proliferating cell compartment. 

Independence of drug action was also assumed for the MDM2 and AKT SMIs relative to each 

other and TMZ. 

Tumor volumes were distributed to the main proliferating compartment only at the beginning 

of the treatment.  In effect this approach reasonably assumes that the tumor was already existent 

prior to treatment initiation. For GBM 43 xenografts, an additional resistance compartment was 

used to describe tumor growth and even regrowth during ongoing TMZ treatment. In the 

development of this resistance model, a series of models were executed (data not shown) to 

determine structure with respect to independence of drug action versus pharmacodynamic 

interaction when two drugs were given in combination. The model structure (Figure 3.3) that 

incorporated pharmacodynamic interaction showed superior model performance compared to 

independent drug action as based on the AIC value.  

The capability of tumor growth inhibition models to predict the effects of combination 

regimens is highly resource sparing and reduces the time to identify efficacious regimens. Some 

of these TGI models now predict tumor growth in response to drug pharmacokinetics [71, 105, 

106]. These kinetic descriptions of drug exposure connected to tumor growth facilitate simulations 

of the multitude of different dosing scenarios possible when combining chemotherapeutic agents 

that target multiple cancer survival mechanisms. In GBM, there have been a couple of studies from 

models incorporating unperturbed and perturbed tumor growth model structures that point to 

unique administration schedules of TMZ with a targeted agent to prolong survival relative to the 

simultaneous dosing paradigm [107, 108]. The presently developed model descriptions of GBM 

growth in mouse xenografts in response to combining TMZ with agents targeting TMZ-induced 
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responsive networks may also be utilized to predict alternative TMZ plus targeted agent dose 

schedules that would achieve reduction in tumor volume.  

In data specific to GBM 43 xenografts, we observed the emergence of resistance to TMZ 

treatment. We then investigated the acquired resistance to treatment with TMZ and TMZ-SMI 

combination in patient-derived xenografts for GBM 43. A model structure that incorporated 

development of resistance supported these observations. The proposed resistance integrated TGI 

model is the refinement to the base model to accurately capture the TMZ efficacy data in GBM 43 

xenografts. It describes the rebound of the tumor after initial treatment while the mice are still 

undergoing treatment. The model assumes that the drug treatment will affect the tumor cells in the 

proliferating compartment. In response to the treatment, sensitive cells undergo several stages of 

damage and are either killed or converted to the resistant cells. In our model we incorporate this 

conversion as a delayed process, which is consistent with the delayed drug effect [109]. The 

resistance integrated TGI model adds three more parameters to the model: kg,exp, kg,lin (exponential 

and linear growth of resistant cells) and the first order conversion rate, ks-to-r (k sensitive-to-

resistant) for sensitive cells that don’t die and convert to resistant cells. The time required for 

emergence of the resistant cells was calculated to be 180 hours. This is the time calculated between 

the starting of the treatment and when cells reach the resistance compartment. This time can be of 

value on defining dosing strategy targeting the onset of resistance. 

Both the base and resistance integrated TGI models were fitted to the TMZ monotherapy and 

TMZ in combination with ACB, MDM2 (RG7112/RG7388) and AKT (GDC0068) small molecule 

inhibitors. With respect to GBM 43 xenografts, based on the principle of parsimony, the resistance 

integrated tumor growth inhibition model showed a superior fit compared to the base model (based 

on AIC values, goodness of fit plots and lower residual errors of model parameter estimates). Drug 

potency specific parameters were estimated separately for TMZ and SMIs in combination with 

TMZ. Pharmacodynamic system parameters (growth parameters, sensitive cells parameter, 

resistance cells parameters) were estimated for TMZ monotherapy and TMZ-SMIs combination 

therapy. On addition of combination treatment arms to TMZ monotherapy, parameter estimates 

retained their value except for addition of potency parameters for RG7112 and GDC0068 (Table 

4.7 and Table 4.8). The assumption that there is a delay between treatment and pharmacodynamic 

effect is captured by transit rate (kk), also known as kill rate. Importantly, a GBM 43 resistance 

integrated TGI model structure based on the presence of innate resistance to TMZ did not result in 
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a superior model or improve the adaptive resistance alone model to TMZ treatment. Model runs 

were made that compared these various model structures of primary and/or acquired resistance 

Based on the principle of parsimony, the model with superior fit was selected. AIC values, residual 

errors and diagnostic plots indicated that the GBM 43 efficacy data was best described by an 

acquired resistance model. It is also important to note that all animals bearing GBM 43 xenografts 

initially responded to the TMZ treatment. Thus, although there may be an innate resistant 

component to these tumors, this initial response prevented estimation of this component. 

Accordingly, a population of cells with innate resistance were considered negligible at the start of 

treatment. [110]. 

 

Aim 3: Perform simulations and derive Tumor Static Concentration curves that identify single 

concentration values or the pair of drug concentration combinations that would achieve tumor 

shrinkage 

5.3 Simulation Studies 

The concept of tumor static concentration curves is not new [70, 111]. It is very similar to the 

concept of isobolograms [112, 113]. TSC comes from the exposure-growth model instead of dose-

effect model. In the present studies, TSC curve analyses were based on the Simeoni growth model 

[63]. In this tumor growth model, growth occurs exponentially and switches to linear (constant, 

zero-order) growth as the tumor grows large. The relationship between tumor growth and tumor 

static concentrations was investigated. Weak synergy for RG7388 and TMZ in GBM 10 can be 

seen in the TSC curve (Figure 4.23). One of the assumptions made on deriving the TSC curve for 

the presently developed exponential/linear growth mixed tumor inhibition model was that the 

tumor maintains its exponential growth rate. This approximation is necessary in order to have 

concentration pairs of TMZ and small molecule inhibitors above the TSC curve to achieve tumor 

volume shrinkage. In this study, we only discussed the TSC graph for the base TGI model i.e; TGI 

model for mice bearing U87 and GBM 10 xenografts. However, TSC graphs could not be 

constructed for the TMZ acquired resistance integrated TGI model in mice bearing GBM 43 

xenografts, as one of the main assumptions in deriving the TSC curve is that the net change in 

tumor volume over time in the cell proliferating compartment is zero, and this assumption does 

hold in the case of growth of resistant cells.  
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The tumor static concentration curves presented (Figure 4.22 (left), Figure 4.23) also provide 

insight regarding the efficacy of the compound and in-vivo sensitivity. We can leverage this graph 

to select the concentration pairs that require minimal exposure to achieve the tumor stasis. 

Similarly, concentration of a single agent required to produce stasis may be high and result in 

toxicity. In that scenario, we can utilize a TSC approach to optimize the combination regimen to 

lower the concentration of one drug and increase the concentration of other to achieve tumor 

shrinkage with minimal toxicity. The TSC cases in Figure 4.22 and Figure 4.23 represented 

scenarios involving two drug combinations. Using more sophisticated mathematical equations, the 

use of TSC concept can be explored further for three or more drug combinations to generate TSC 

surfaces.  

The approach of developing TSC curves for combination drug therapy is based on the work 

of Gabrielsson, et al [67]. It is important to note that while the results in Figure 4.21 are based on 

a population PK model for TMZ developed from several published studies, the TSC curve could 

have been built from a single PK study of each agent and then linked to a single tumor growth 

study of the two agents administered individually or in combination. The combination dose could 

be the simple sum of the respective doses used in the individual treatment arms (as in the Raub, et 

al study), but that is not a requirement.  Thus, this PKPD modeling approach is highly resource 

sparing. Its value lies in its ability to identify several dose scenarios for multiple drugs (two or 

more) given in combination to achieve tumor shrinkage, thereby enabling great flexibility in dose 

regimen selection for evaluation. This is an important finding in the context of identifying 

combination regimens that are both effective and well tolerated. The approach also provides 

qualitative information. The shape of the TSC curve identifies if a combination of agents achieves 

an additive (straight line), synergistic (concave line), or antagonistic (convex line) tumor volume 

effect. 

5.4 Limitations of this research 

There are several limitations and assumptions in this work. In designing rational drug 

combination treatments of TMZ with MDM2/AKT inhibitors for GBM, we are assuming that there 

is no PK-based drug interaction. In other words, we are considering that the pharmacokinetics of 

each drug does not influence the elimination of the other. However, there might be potential for a 

drug interaction in cases where PKPD model fit is poor in linking tumor volume response to 
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individual drug exposure profiles. Also, digitized data from the published source were limited to 

mean individual data, which means no estimation of inter-individual variability for digitized data 

and very few data points to base the PK Model. Secondly, linear drug action was assumed based 

on preliminary in vitro experiments (results not shown), in which in vitro IC50s (µM) >> in vivo 

drug concentrations (nM), which reduces the Hill equation to Emax/EC50 that we define as a constant 

‘b’ (linear function of drug action) in our models.  Another limitation is that in the resistance 

integrated TGI model, we assumed that the emergence of resistance is due to TMZ treatment. 

Specifically, the resistance integrated model is acquired resistance to TMZ treatment. For the 

specific set of available data, we were not able to justify the innate resistance mechanism. One of 

the assumptions in deriving the tumor static concentration is that the tumor growth rate is 

exponential. Deriving TSC assumes the condition that the tumor volume over time in cell 

proliferating compartment is zero to achieve tumor stasis. Because of this assumption that dV/dt 

= 0 for tumor to achieve the condition for stasis, resistance integrated TGI model for GBM 43 

could not be used to generate the TSC curve.  
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 CONCLUSION 

In summary, targeting specific pathways involved in the pro-survival response to TMZ 

exposure demonstrates statistically significantly reduced tumor growth relative to TMZ 

monotherapy when combining TMZ with targeted agent SMIs. Mathematical PKPD models 

describing the observed tumor growth according to simultaneous administration of TMZ with an 

MDM2 or AKT inhibitor or CDK4/6 kinase inhibitor have been developed. An integrated PKPD 

tumor growth inhibition model successfully described the growth inhibition activity of TMZ 

monotherapy and TMZ-small molecule inhibitors combination therapy in mouse flank xenograft 

tumors derived from three different types of GBMs (U87, GBM 10 and GBM 43). Plasma 

concentrations of TMZ and small molecule inhibitors were connected in a quantitative manner to 

model their inhibition of tumor growth. As a result, this modeling framework provides the 

quantitative characterization of tumor growth inhibition when TMZ was combined with select 

small molecule inhibitors.  

 In specific patient derived xenograft tumors (GBM 43), a model incorporating resistance 

development was used to characterize emergence of a sub-population of tumor cells resistant to 

TMZ treatment, which may not have been obvious by observing the data. The model evaluated the 

dynamic process of the onset of resistance to TMZ treatment. It predicted the growth of the tumor 

that is driven by the emergence of resistance and the PKPD TGI model framework evaluated why 

the tumors are growing aggressively or slowly. This enables exploration of hypotheses of tumor 

resistance development, and identification of novel dosing strategies to mitigate resistance 

development. Predictive PKPD modeling of tumor growth kinetics in xenograft models can be 

used to inform strategic combination treatment therapy design in combating primary and recurrent 

GBM, and readily supports translation of these therapies to the clinic. 

 Deriving tumor growth inhibition curves as an outcome of the integrated PKPD model 

provides prediction of exposures for multiple drug combinations required to inhibit tumor growth 

and, at a minimum, to maintain the tumor at stasis. Based on the exposure metrics, this approach 

provides an excellent graphical tool to determine the possibility of drug synergy and to optimize 

doses of targeted agents (AKT, MDM2, CDK4/6 kinase) in relation to TMZ dose. The next step 

is to validate model predictions in mice so that it can be used to translate and accurately identify 

efficacious dosing regimens in humans.  
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APPENDIX 

Phoenix NLME Model codes for pharmacokinetic model with TMZ 

test(){ 

deriv(A1 = - (Cl * C) + (Aapo * Kapo) + (Aaip * Kaip)) 

urinecpt(A0 = (Cl * C)) 

deriv(Aapo = - (Aapo * Kapo)) 

deriv(Aaip = - (Aaip * Kaip)) 

C = A1 / V 

dosepoint(A1, idosevar = A1Dose, infdosevar = A1InfDose, infratevar = A1InfRate) 

error(CEps = 0.1) 

observe(CObs =C *(1 + CEps)) 

dosepoint(Aapo, bioavail = (Fpo), idosevar = AapoDose, infdosevar = AapoInfDose, infratevar = 

AapoInfRate) 

dosepoint(Aaip, bioavail = (Fip), idosevar = AaipDose, infdosevar = AaipInfDose, infratevar = 

AaipInfRate) 

fcovariate(flag1()) 

fcovariate(flag2()) 

fcovariate(flag23()) 

fcovariate(flag3()) 

fcovariate(flag4()) 

fcovariate(flag5()) 

fcovariate(flag6()) 

fcovariate(dose()) 

Kapo = Kapo1*flag1 + Kapo2*flag23 + Kapo3*flag4 

Fpo = Fpo1*flag1 + Fpo2*flag2 + Fpo3*flag3 + Fpo4*flag4 

Fip = Fip1*flag5 + Fip2*flag6 

stparm(V = tvV * exp(nV)) 

stparm(Cl = tvCl * exp(nCl)) 

stparm(Kapo1 = tvKapo1 ) 

stparm(Kapo2 = tvKapo2 * exp(nKapo2) ) 
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stparm(Kapo3 = tvKapo3 ) 

stparm(Fpo1 = tvFpo1 ) 

stparm(Fpo2 = tvFpo2) 

stparm(Fpo3 = tvFpo3 ) 

stparm(Fpo4 = tvFpo4) 

stparm(Kaip = tvKaip ) 

stparm(Fip1 = tvFip1 ) 

stparm(Fip2 = tvFip2 ) 

fixef(tvV = c(, 3,)) 

fixef(tvCl = c(, 2.5, )) 

fixef(tvKapo1 = c(,15, )) 

fixef(tvKapo2 = c(,0.4, )) 

fixef(tvKapo3 = c(,1.5, )) 

fixef(tvFpo1  = c(, 0.2, )) 

fixef(tvFpo2 = c(, 0.2, )) 

fixef(tvFpo3 = c(,0.06, )) 

fixef(tvFpo4 = c(, 0.2, )) 

fixef(tvKaip = c(, 7, )) 

fixef(tvFip1 = c(, 0.08, )) 

fixef(tvFip2 = c(,0.04, )) 

ranef(block(nV, nCl) = c (0.1,0,0.1)) 

ranef(diag(nKapo2) = c(0.1)) 

} 

Phoenix NLME Model codes for pharmacokinetic model with ACB 

test(){ 

deriv(A1 = - (Cl_T  * C) + (Aapo * Kapo) + (Aaip * Kaip)) 

urinecpt(A0 = (Cl_T  * C)) 

deriv(Aapo = - (Aapo * Kapo)) 

deriv(Aaip = - (Aaip * Kaip)) 

deriv(A2 = - (CL_A * C1) + (Aa * Ka)) 

urinecpt(A3 = (CL_A * C1)) 
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deriv(Aa = - (Aa * Ka)) 

C = A1 / V 

C1 = A2 / V1 

error(CEpsT = 0.405934) 

observe(CObsT = C * (1 + CEpsT)) 

error(CEpsA = 0.398879) 

observe(CObsA = C1 * (1 + CEpsA)) 

dosepoint(A1, idosevar = A1Dose, infdosevar = A1InfDose, infratevar = A1InfRate) 

dosepoint(Aa, idosevar = AaDose, infdosevar = AaInfDose, infratevar = AaInfRate) 

dosepoint(Aapo, bioavail = (Fpo), idosevar = AapoDose, infdosevar = AapoInfDose, infratevar = 

AapoInfRate) 

dosepoint(Aaip, bioavail = (Fip), idosevar = AaipDose, infdosevar = AaipInfDose, infratevar = 

AaipInfRate) 

fcovariate(flag2()) 

fcovariate(flag23()) 

fcovariate(flag3()) 

fcovariate(flag4()) 

fcovariate(flag5()) 

fcovariate(flag6()) 

fcovariate(dose()) 

Kapo = Kapo5*flag23 + Kapo50*flag4 

Fpo =  Fpo5*flag2 + Fpo66*flag3 + Fpo50*flag4 

Fip = Fip1*flag5 + Fip2*flag6 

stparm(V = tvV * exp(nV)) 

stparm(V1 = tvV1) 

stparm(Cl_T  = tvCl_T  * exp(nCl_T)) 

stparm(CL_A = tvCL_A ) 

stparm(Ka = tvKa) 

stparm(Kapo5 = tvKapo5 ) 

stparm(Kapo50 = tvKapo50 ) 

stparm(Fpo5 = tvFpo5) 
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stparm(Fpo66 = tvFpo66) 

stparm(Fpo50 = tvFpo50) 

stparm(Kaip = tvKaip ) 

stparm(Fip1 = tvFip1 ) 

stparm(Fip2 = tvFip2 ) 

fixef(tvV = c(, 0.712368, )) 

fixef(tvV1 = c(, 45, )) 

fixef(tvCl_T  = c(, 0.719613, )) 

fixef(tvCL_A (freeze)= c(, 9.96, )) 

fixef(tvKa = c(, 0.7, )) 

fixef(tvKapo5 = c(,0.364427, )) 

fixef(tvKapo50 = c(,1.93786, )) 

fixef(tvFpo5 = c(, 0.0540672, )) 

fixef(tvFpo66= c(, 0.0109339, )) 

fixef(tvFpo50 = c(, 0.0431629, )) 

fixef(tvKaip= c(,33.7779, )) 

fixef(tvFip1= c(, 0.02, )) 

fixef(tvFip2 = c(,0.00561851, )) 

ranef(block(nV, nCl_T) = c(0.1,0,0.1)) 

} 

Phoenix NLME Model codes for pharmacokinetic model with RG7388 

test(){ 

deriv(A1 = - (Cl * C) + (Aa * Ka)) 

urinecpt(A0 = (Cl * C)) 

deriv(Aa = - (Aa * Ka)) 

C = A1 / V 

dosepoint(Aa, idosevar = AaDose, infdosevar = AaInfDose, infratevar = AaInfRate) 

error(CEps = 0.243038657582547) 

observe(CObs = C * (1 + CEps)) 

stparm(V = tvV * exp(nV)) 

stparm(Cl = tvCl) 
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stparm(Ka = tvKa ) 

fixef(tvV = c(, 316.829869950452, )) 

fixef(tvCl = c(, 88.2884030330089, )) 

fixef(tvKa = c(, 0.280104657919658, )) 

ranef(diag(nV) = c(0.1)) 

} 

Phoenix NLME Model codes for pharmacokinetic model with GDC0068 

test(){ 

deriv(A1 = - (Cl * C) + (Aa * Ka)) 

urinecpt(A0 = (Cl * C)) 

deriv(Aa = - (Aa * Ka)) 

C = A1 / V 

dosepoint(Aa, idosevar = AaDose, infdosevar = AaInfDose, infratevar = AaInfRate) 

error(CEps = 0.279509563915144) 

observe(CObs = C*(1 + CEps)) 

stparm(V = tvV ) 

stparm(Cl = tvCl ) 

stparm(Ka = tvKa * exp(nKa)) 

fixef(tvV = c(, 1040, )) 

fixef(tvCl = c(, 386.724550365329, )) 

fixef(tvKa = c(, 1.36657508072064, )) 

ranef(diag( nKa) = c(0.047167401)) 

} 

Phoenix NLME Model codes for pharmacodynamic model in mice bearing U87 xenografts 

test(){ 

deriv(A1 = - (Cl_T  * C) + (Aapo * Kapo) + (Aaip * Kaip)) 

urinecpt(A0 = (Cl_T  * C)) 

deriv(Aapo = - (Aapo * Kapo)) 

deriv(Aaip = - (Aaip * Kaip)) 

deriv(A2 = - (CL_A * C1) + (Aa * Ka)) 

urinecpt(A3 = (CL_A * C1)) 
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deriv(Aa = - (Aa * Ka)) 

C = A1 / Vt 

C1 = A2 / Va 

error(CEpsT = 0.265935) 

observe(CObsT = C*(1 + CEpsT)) 

error(CEpsA = 0.307445) 

observe(CObsA = C1*(1 + CEpsA)) 

dosepoint(A1, idosevar = A1Dose, infdosevar = A1InfDose, infratevar = A1InfRate) 

dosepoint(Aa, idosevar = AaDose, infdosevar = AaInfDose, infratevar = AaInfRate) 

dosepoint(Aapo, bioavail = (Fpo), idosevar = AapoDose, infdosevar = AapoInfDose, infratevar = 

AapoInfRate) 

dosepoint(Aaip, bioavail = (Fip), idosevar = AaipDose, infdosevar = AaipInfDose, infratevar = 

AaipInfRate) 

psi = 20 

TV= V1+V2+V3+V4 

Gwth = (1+ (kg0*TV/kg1)^psi)^(1/psi) 

deriv(V1 = (kg0*V1/Gwth)*(1-ba*C1) - bt*C*V1) 

deriv(V2 =   bt*C*V1 - kk*V2) 

deriv(V3 =   kk*(V2-V3)) 

deriv(V4 =   kk*(V3-V4)) 

sequence {V1 = V0} 

error(VEps = 0.328995) 

observe(Vobs = TV*(1 + VEps)) 

fcovariate(dose()) 

fcovariate(flag1()) 

fcovariate(flag2()) 

fcovariate(flag23()) 

fcovariate(flag3()) 

fcovariate(flag4()) 

fcovariate(flag5()) 

fcovariate(flag6()) 
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fcovariate(PD1()) 

fcovariate(U87A()) 

fcovariate(U87B()) 

Kapo = Kapo20*flag1 + Kapo5*flag23 + Kapo50*flag4 

Fpo =  Fpo20*flag1 + Fpo5*flag2 + Fpo66*flag3 + Fpo50*flag4 

Fip = Fip1*flag5 + Fip2*flag6  + Fip3*PD1 

V0 = V0a*U87A + V0b*U87B 

bt = bt5*U87A + bt3*U87B 

kg0 = kg0a*U87A + kg0b*U87B 

kg1 = kg1a*U87A + kg1b*U87B 

kk = kka*U87A + kkb*U87B 

stparm(Vt = tvVt * exp (nVt)) 

stparm(Va = tvVa ) 

stparm(Cl_T  = tvCl_T * exp (nCl_T)) 

stparm(CL_A = tvCL_A ) 

stparm(Ka = tvKa) 

stparm(Kapo20 = tvKapo20 ) 

stparm(Kapo5 = tvKapo5 ) 

stparm(Kapo50 = tvKapo50 ) 

stparm(Fpo20 = tvFpo20) 

stparm(Fpo5 = tvFpo5) 

stparm(Fpo66 = tvFpo66) 

stparm(Fpo50 = tvFpo50) 

stparm(Kaip = tvKaip ) 

stparm(Fip1 = tvFip1 ) 

stparm(Fip2 = tvFip2 ) 

stparm(Fip3 = tvFip3 ) 

stparm(V0a = tvV0a) 

stparm(V0b = tvV0b) 

stparm(bt5 = tvbt5 ) 

stparm(bt3 = tvbt3 ) 
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stparm(ba = tvba ) 

stparm(kg0a = tvkg0a * exp(nkg0a)) 

stparm(kg0b = tvkg0b ) 

stparm(kg1a = tvkg1a) 

stparm(kg1b = tvkg1b ) 

stparm(kka = tvkka) 

stparm(kkb = tvkkb) 

fixef(tvVt   = c(, 3.28644, )) 

fixef(tvVa  = c(, 43.0485, )) 

fixef(tvCl_T  = c(, 3.43845, )) 

fixef(tvCL_A (freeze)= c(, 9.96, )) 

fixef(tvKa = c(, 0.888626, )) 

fixef(tvKapo20 = c(,26.9957, )) 

fixef(tvKapo5 = c(,0.353898, )) 

fixef(tvKapo50 = c(,1.76784, )) 

fixef(tvFpo20 = c(, 0.107651, )) 

fixef(tvFpo5 = c(, 0.219065, )) 

fixef(tvFpo66 = c(,0.0562632, )) 

fixef(tvFpo50= c(, 0.217952, )) 

fixef(tvKaip= c(,7.72404, )) 

fixef(tvFip1= c(, 0.0638067, )) 

fixef(tvFip2 = c(,0.0307382, )) 

fixef(tvFip3  = c(,0.274869,)) 

fixef(tvV0a   = c(,106.637, )) 

fixef(tvV0b   = c(,76.9909, )) 

fixef(tvbt5 = c(,1.10722E-05, )) 

fixef(tvbt3 = c(,3.04402E-05, )) 

fixef(tvba = c(,0.000110648, )) 

fixef(tvkg0a = c(,0.00450194, )) 

fixef(tvkg0b = c(,0.00255944, )) 

fixef(tvkg1a = c(,4.98307, )) 
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fixef(tvkg1b = c(,9.82464, )) 

fixef(tvkka = c(, 0.0055191, )) 

fixef(tvkkb = c(, 0.0181689, )) 

ranef(block(nVt, nCl_T) = c(0.025456411,-0.019208448,0.068769879)) 

ranef(diag( nkg0a) = c(0.04394773)) 

} 

Phoenix NLME Model codes for pharmacodynamic model in mice bearing GBM 10 

xenografts 

test(){ 

deriv(A1 = - (Cl_T  * C) + (Aapo * Kapo) + (Aaip * Kaip)) 

urinecpt(A0 = (Cl_T  * C)) 

deriv(Aapo = - (Aapo * Kapo)) 

deriv(Aaip = - (Aaip * Kaip)) 

deriv(A2 = - (CL_G * C1) + (AaG * KaG)) 

urinecpt(A3 = (CL_G * C1)) 

deriv(AaG = - (AaG * KaG)) 

deriv(A4 = - (CL_R * C2) + (AaR * KaR)) 

urinecpt(A5 = (CL_R * C2)) 

deriv(AaR = - (AaR * KaR)) 

C = A1 / Vt 

C1 = A2 / Vg 

C2 = A4/ Vr 

error(CEpsT = 3.39973) 

observe(CObsT = C*(1 + CEpsT)) 

error(CEpsG = 0.307122) 

observe(CObsG = C1*(1 + CEpsG)) 

error(CEpsR = 0.259828) 

observe(CObsR = C2*(1 + CEpsR)) 

dosepoint(A1, idosevar = A1Dose, infdosevar = A1InfDose, infratevar = A1InfRate) 

dosepoint(AaG, idosevar = AaGDose, infdosevar = AaGInfDose, infratevar = AaGInfRate) 

dosepoint(AaR, idosevar = AaRDose, infdosevar = AaRInfDose, infratevar = AaRInfRate) 
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dosepoint(Aapo, bioavail = (Fpo), idosevar = AapoDose, infdosevar = AapoInfDose, infratevar = 

AapoInfRate) 

dosepoint(Aaip, bioavail = (Fip), idosevar = AaipDose, infdosevar = AaipInfDose, infratevar = 

AaipInfRate) 

psi = 20 

TV= V1+ V2 + V3 +V4 

Gwth = (1+ (kg0*TV/kg1)^psi)^(1/psi) 

deriv(V1 = (kg0*V1/Gwth) - V1*(bt*C+bg*C1+br*C2)) 

deriv(V2 =  V1*(bt*C+bg*C1+br*C2) - kk*V2) 

deriv(V3 = kk*(V2-V3)) 

deriv(V4 = kk*(V3-V4)) 

sequence {V1 = V0} 

error(VEps = 0.369656) 

observe(Vobs = TV*(1 + VEps)) 

fcovariate(dose()) 

fcovariate(flag1()) 

fcovariate(flag2()) 

fcovariate(flag23()) 

fcovariate(flag3()) 

fcovariate(flag4()) 

fcovariate(flag5()) 

fcovariate(flag6()) 

Kapo = Kapo20*flag1 + Kapo5n66*flag23 + Kapo50*flag4 

Fpo =  Fpo20* flag1 + Fpo5*flag2 + Fpo66*flag3 + Fpo50*flag4 

Fip = Fip1*flag5 + Fip2*flag6 

stparm(Vt = tvVt ) 

stparm(Vg = tvVg ) 

stparm(Vr = tvVr ) 

stparm(Cl_T  = tvCl_T ) 

stparm(CL_G = tvCL_G ) 

stparm(CL_R = tvCL_R ) 
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stparm(KaG = tvKaG ) 

stparm(KaR = tvKaR ) 

stparm(Kapo20 = tvKapo20) 

stparm(Kapo5n66 = tvKapo5n66 ) 

stparm(Kapo50 = tvKapo50 ) 

stparm(Fpo20 = tvFpo20) 

stparm(Fpo5 = tvFpo5) 

stparm(Fpo66 = tvFpo66) 

stparm(Fpo50 = tvFpo50) 

stparm(Kaip = tvKaip ) 

stparm(Fip1 = tvFip1 ) 

stparm(Fip2 = tvFip2 ) 

stparm(V0 = tvV0 * exp(nV0)) 

stparm(bt = tvbt ) 

stparm(bg = tvbg ) 

stparm(br = tvbr ) 

stparm(kg1 = tvkg1* exp(nkg1)) 

stparm(kg0 = tvkg0* exp(nkg0)) 

stparm(kk = tvkk * exp(nkk)) 

fixef(tvVt = c(, 3.7, )) 

fixef(tvVg= c(, 1060.44, )) 

fixef(tvVr= c(, 316.02, )) 

fixef(tvCl_T= c(, 3.94, )) 

fixef(tvCL_G= c(, 383.93, )) 

fixef(tvCL_R= c(, 88.28, )) 

fixef(tvKaG = c(, 1.32, )) 

fixef(tvKaR = c(, 0.28, )) 

fixef(tvKapo20 = c(,27.81,)) 

fixef(tvKapo5n66= c(,0.33, )) 

fixef(tvKapo50= c(,1.86, )) 

fixef(tvFpo20= c(, 0.107, )) 
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fixef(tvFpo5= c(, 0.177, )) 

fixef(tvFpo66 = c(,0.074, )) 

fixef(tvFpo50= c(, 0.247, )) 

fixef(tvKaip= c(,7.59, )) 

fixef(tvFip1= c(, 0.074, )) 

fixef(tvFip2 = c(,0.036, )) 

fixef(tvV0   = c(,87.4785, )) 

fixef(tvbt = c(,3.41596E-07, )) 

fixef(tvbg = c(,-1.39266E-06, )) 

fixef(tvbr = c(,1.24096E-06, )) 

fixef(tvkg1 = c(,1.40167, )) 

fixef(tvkg0 = c(,0.00133024, )) 

fixef(tvkk = c(, 0.799276, )) 

ranef(diag( nkg0, nkg1, nV0, nkk) = c( 0.1,0.1,0.1,0.1)) 

} 

Phoenix NLME Model codes for pharmacodynamic model in mice bearing GBM 43 

xenografts  

Base tumor growth inhibition model 

test(){ 

deriv(A1 = - (Cl_T  * C) + (Aapo * Kapo) + (Aaip * Kaip)) 

urinecpt(A0 = (Cl_T  * C)) 

deriv(Aapo = - (Aapo * Kapo)) 

deriv(Aaip = - (Aaip * Kaip)) 

deriv(A2 = - (CL_G * C1) + (AaG * KaG)) 

urinecpt(A3 = (CL_G * C1)) 

deriv(AaG = - (AaG * KaG)) 

deriv(A4 = - (CL_R * C1) + (AaR * KaR)) 

urinecpt(A5 = (CL_R * C1)) 

deriv(AaR = - (AaR * KaR)) 

C = A1 / Vt 

C1 = A2 / Vg 
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C2 = A4/ Vr 

error(CEpsT = 3.4030149758783) 

observe(CObsT = C*(1 + CEpsT)) 

error(CEpsG = 0.289781285242548) 

observe(CObsG = C1*(1 + CEpsG)) 

dosepoint(A1, idosevar = A1Dose, infdosevar = A1InfDose, infratevar = A1InfRate) 

dosepoint(AaG, idosevar = AaGDose, infdosevar = AaGInfDose, infratevar = AaGInfRate) 

dosepoint(Aapo, bioavail = (Fpo), idosevar = AapoDose, infdosevar = AapoInfDose, infratevar = 

AapoInfRate) 

dosepoint(Aaip, bioavail = (Fip), idosevar = AaipDose, infdosevar = AaipInfDose, infratevar = 

AaipInfRate) 

psi = 20 

TV= V1+V2+V3 

Gwth = (1+ (kg0*TV/kg1)^psi)^(1/psi) 

deriv(V1 = (kg0*V1/Gwth) - (bt*C )*V1) 

deriv(V2 =   (bt*C )*V1 - kk*V2) 

deriv(V3 = kk*V2-kk*V3) 

sequence {V1 = V0} 

error(VEps = 0.470416762648155) 

observe(Vobs = TV*(1 + VEps)) 

fcovariate(dose()) 

fcovariate(flag1()) 

fcovariate(flag2()) 

fcovariate(flag23()) 

fcovariate(flag3()) 

fcovariate(flag4()) 

fcovariate(flag5()) 

fcovariate(flag6()) 

Kapo = Kapo20*flag1 + Kapo5n66*flag23 + Kapo50*flag4 

Fpo =  Fpo20* flag1 + Fpo5*flag2 + Fpo66*flag3 + Fpo50*flag4 

Fip = Fip1*flag5 + Fip2*flag6 
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stparm(Vt = tvVt ) 

stparm(Vg = tvVg ) 

stparm(Vr = tvVr ) 

stparm(Cl_T  = tvCl_T ) 

stparm(CL_G = tvCL_G ) 

stparm(CL_R = tvCL_R ) 

stparm(KaG = tvKaG ) 

stparm(KaR = tvKaR ) 

stparm(Kapo20 = tvKapo20) 

stparm(Kapo5n66 = tvKapo5n66 ) 

stparm(Kapo50 = tvKapo50 ) 

stparm(Fpo20 = tvFpo20) 

stparm(Fpo5 = tvFpo5) 

stparm(Fpo66 = tvFpo66) 

stparm(Fpo50 = tvFpo50) 

stparm(Kaip = tvKaip ) 

stparm(Fip1 = tvFip1 ) 

stparm(Fip2 = tvFip2 ) 

stparm(V0 = tvV0 * exp(nV0)) 

stparm(bt = tvbt ) 

stparm(kg1 = tvkg1* exp(nkg1)) 

stparm(kg0 = tvkg0* exp(nkg0)) 

stparm(kk = tvkk * exp(nkk)) 

fixef(tvVt = c(, 3.70112, )) 

fixef(tvVg= c(, 1094.03, )) 

fixef(tvVr (freeze)  = c(, 17.53, )) 

fixef(tvCl_T= c(, 3.94462, )) 

fixef(tvCL_G= c(, 386.681, )) 

fixef(tvCL_R(freeze) = c(, 4.5, )) 

fixef(tvKaR (freeze)= c(, 0.9379, )) 

fixef(tvKaG = c(, 1.33688, )) 
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fixef(tvKapo20 = c(,27.8147,)) 

fixef(tvKapo5n66 = c(,0.33544, )) 

fixef(tvKapo50 = c(,1.85859, )) 

fixef(tvFpo20 = c(, 0.107511, )) 

fixef(tvFpo5 = c(, 0.17745, )) 

fixef(tvFpo66 = c(,0.0741511, )) 

fixef(tvFpo50 = c(, 0.247541, )) 

fixef(tvKaip = c(,7.58814, )) 

fixef(tvFip1 = c(, 0.0746719, )) 

fixef(tvFip2 = c(,0.0364618, )) 

fixef(tvV0  = c(,28.141410043245, )) 

fixef(tvbt = c(,1.25120725664293E-06, )) 

fixef(tvkg1 = c(,6.73586358205552, )) 

fixef(tvkg0 = c(,0.00619399739386244, )) 

fixef(tvkk = c(, 0.0284068780460615, )) 

ranef(diag( nV0, nkg1, nkg0, nkk ) = c( 0.1,0.1,0.1,0.1)) 

} 

Resistance integrated tumor growth inhibition model 

test(){ 

deriv(A1 = - (Cl_T  * C) + (Aapo * Kapo) + (Aaip * Kaip)) 

urinecpt(A0 = (Cl_T  * C)) 

deriv(Aapo = - (Aapo * Kapo)) 

deriv(Aaip = - (Aaip * Kaip)) 

deriv(A2 = - (CL_G * C1) + (AaG * KaG)) 

urinecpt(A3 = (CL_G * C1)) 

deriv(AaG = - (AaG * KaG)) 

deriv(A4 = - (CL_R * C2) + (AaR * KaR)) 

urinecpt(A5 = (CL_R * C2)) 

deriv(AaR = - (AaR * KaR)) 

C = A1 / Vt 

C1 = A2 / Vg 
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C2 = A4/ Vr 

error(CEpsT = 3.40333153280212) 

observe(CObsT = C*(1 + CEpsT)) 

error(CEpsG = 0.289804440411466) 

observe(CObsG = C1*(1 + CEpsG)) 

dosepoint(A1, idosevar = A1Dose, infdosevar = A1InfDose, infratevar = A1InfRate) 

dosepoint(AaG, idosevar = AaGDose, infdosevar = AaGInfDose, infratevar = AaGInfRate) 

dosepoint(Aapo, bioavail = (Fpo), idosevar = AapoDose, infdosevar = AapoInfDose, infratevar = 

AapoInfRate) 

dosepoint(Aaip, bioavail = (Fip), idosevar = AaipDose, infdosevar = AaipInfDose, infratevar = 

AaipInfRate) 

psi = 20 

TV= V1+V2+V3+R 

Gwth = (1+ ((kg0/kg1)*TV)^psi)^(1/psi) 

Gwthres = (1+ ((kgr0/kgr1)*TV)^psi)^(1/psi) 

deriv(V1 = (kg0*V1/Gwth) - bt*C*V1) 

deriv(V2 =   (bt*C*V1) - kk*V2) 

deriv(V3 = kk*V2-kk*V3-kstor*V3) 

deriv(R = (kgr0*R/Gwthres)+ kstor*V3) 

sequence {V1 = V0} 

error(VEps = 0.463461929262836) 

observe(Vobs = TV*(1 + VEps)) 

fcovariate(dose()) 

fcovariate(flag1()) 

fcovariate(flag2()) 

fcovariate(flag23()) 

fcovariate(flag3()) 

fcovariate(flag4()) 

fcovariate(flag5()) 

fcovariate(flag6()) 

Kapo = Kapo20*flag1 + Kapo5n66*flag23 + Kapo50*flag4 
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Fpo =  Fpo20* flag1 + Fpo5*flag2 + Fpo66*flag3 + Fpo50*flag4 

Fip = Fip1*flag5 + Fip2*flag6 

stparm(Vt = tvVt ) 

stparm(Vg = tvVg ) 

stparm(Vr = tvVr ) 

stparm(Cl_T  = tvCl_T ) 

stparm(CL_G = tvCL_G ) 

stparm(CL_R = tvCL_R ) 

stparm(KaG = tvKaG ) 

stparm(KaR = tvKaR ) 

stparm(Kapo20 = tvKapo20) 

stparm(Kapo5n66 = tvKapo5n66 ) 

stparm(Kapo50 = tvKapo50 ) 

stparm(Fpo20 = tvFpo20) 

stparm(Fpo5 = tvFpo5) 

stparm(Fpo66 = tvFpo66) 

stparm(Fpo50 = tvFpo50) 

stparm(Kaip = tvKaip ) 

stparm(Fip1 = tvFip1 ) 

stparm(Fip2 = tvFip2 ) 

stparm(V0 = tvV0 * exp(nV0)) 

stparm(bt = tvbt ) 

stparm(kg1 = tvkg1* exp(nkg1)) 

stparm(kg0 = tvkg0* exp(nkg0)) 

stparm(kk = tvkk * exp(nkk)) 

stparm(kstor = tvkstor * exp(nkstor)) 

stparm(kgr0 = tvkgr0 * exp(nkgr0)) 

stparm(kgr1 = tvkgr1 * exp(nkgr1)) 

fixef(tvVt  = c(, 3.70112, )) 

fixef(tvVg = c(, 1094.03, )) 

fixef(tvVr (freeze)  = c(, 17.53, )) 
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fixef(tvCl_T  = c(, 3.94462, )) 

fixef(tvCL_G = c(, 386.681, )) 

fixef(tvCL_R(freeze) = c(, 4.5, )) 

fixef(tvKaR (freeze)= c(, 0.9379, )) 

fixef(tvKaG = c(, 1.33688, )) 

fixef(tvKapo20  = c(,27.8147,)) 

fixef(tvKapo5n66 = c(,0.33544, )) 

fixef(tvKapo50  = c(,1.85859, )) 

fixef(tvFpo20  = c(, 0.107511, )) 

fixef(tvFpo5  = c(, 0.17745, )) 

fixef(tvFpo66 = c(,0.0741511, )) 

fixef(tvFpo50 = c(, 0.247541, )) 

fixef(tvKaip = c(,7.58814, )) 

fixef(tvFip1 = c(, 0.0746719, )) 

fixef(tvFip2  = c(,0.0364618, )) 

fixef(tvV0   = c(,35, )) 

fixef(tvbt = c(,1.53169942696361E-06, )) 

fixef(tvkg1  = c(,7.33442766137454, )) 

fixef(tvkgr1 = c(,2.71348405057203, )) 

fixef(tvkg0  = c(,0.0064036936583605, )) 

fixef(tvkgr0 = c(,0.00246299328089874, )) 

fixef(tvkk = c(, 0.0381723384346736, )) 

fixef(tvkstor = c(,0.00729794476879764, )) 

ranef(diag( nkg0, nkgr0, nkg1, nkgr1, nV0, nkk, nkstor ) = c( 0.1,0.1,0.1,0.1,0.1,0.1,0.1)) 

} 
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