A FRAMEWORK FOR DOMESTIC SUPPLY CHAIN
ANALYSIS OF CRITICAL MATERIALS IN THE UNITED
STATES: AN ECONOMIC INPUT-OUTPUT-BASED
APPROACH
by

Miriam Stevens

A Thesis
Submitted to the Faculty of Purdue University
In Partial Fulfillment of the Requirements for the degree of

Master of Science

NS

2=
o

J

@')&

Division of Environmental and Ecological Engineering

Y,
o ¥

West Lafayette, Indiana
August 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Shweta Singh, Chair
School of Agricultural and Biological Engineering

Division of Environmental and Ecological Engineering

Dr. Fu Zhao
School of Mechanical Engineering

Division of Environmental and Ecological Engineering

Dr. Gokce Esenduran

School of Management

Approved by:
Dr. John Sutherland



To Thomas,

whose poor timing impressively rivals mine.



ACKNOWLEDGMENTS

[ am tremendously grateful to have had the opportunity to work on this project. First and
foremost, I would like to thank Dr. Shweta Singh for her guidance, mentorship, and patience
throughout this project; I have appreciated learning from you as an advisor and professor,
and cannot thank you enough for supporting my pursuit of intellectually fulfilling research
within and outside of the SINCS group. I would like to thank Dr. Fu Zhao for sharing his
expertise on critical materials and for agreeing to be on my thesis committee. I would like to
thank Dr. Gokce Esenduran for her expertise on sustainable supply chain management and
for agreeing to be on my thesis committee. I thank the Integrated Sustainability Analysis
team at The University of Sydney for allowing me to use the Industrial Ecology Virtual
Laboratory (IELab) to generate the multiregional input-output models used in this work.
I thank Dr. Arne Geschke for his guidance in using and troubleshooting the US IELab. I
thank Dr. Gargeya Vunnava for teaching me how to more efficiently analyze MRIO data.
I would like to thank the Purdue Research Computing Staff for their help in overcoming
obstacles using the Brown cluster, especially Dr. Xiao Zhu. I would like to thank the faculty
and staff of the Environmental and Ecological Engineering Division and the Agricultural and
Biological Engineering Department for their academic and administrative support. I would
like to thank Dr. Sarang Supekar for taking an earnest interest in my research on critical
materials, development as a sustainability researcher, and helping me refine my master’s
research for application to additional materials. I would like to thank Dr. Susana Garcia
Gonzalez for her recommendations for and precautionary advice on network metrics for
input-output models. I would like to thank Maren Lundhaug for the open discussion of
her findings on cobalt and studying critical materials as a graduate student. I thank Dr.
Weslynne Ashton for her constant support of my pursuit of industrial ecology, regardless
of where I am. I would like to thank my former group mates Dr. Nehika Mathur and Dr.
Gargeya Vunnava for showing me through their example how to be a grad student, as well as
my current SINCS colleagues Apoorva and Will for their feedback and support. I also thank
Div and Thomas, and Kendrick, Utkarsh, and Dan who kept me from going feral over the

last two years; thank you for your friendship.



This thesis is based upon work supported by the Purdue University Ross Fellowship and
the National Science Foundation under CBET grant number 1805741. The NSF INTERN

program also supported extensions of this work underway.

Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the National Science

Foundation.



TABLE OF CONTENTS

LIST OF TABLES . . . . . . 8
LIST OF FIGURES . . . . . . . e 10
ABBREVIATIONS . . . . . . 11
ABSTRACT . . . 12
1 INTRODUCTION . . . . e 13
1.1 Motivation . . . . . . . . 13
1.2 Methodological Background . . . . . . . .. .. ... ... . ... 15
1.3 Research Objectives . . . . . . . . . . . .. 19
1.4 Outline . . . . . . 20
2 MRIO COBALT NETWORK DEVELOPMENT AND ANALYSIS . ... .. .. 22
2.1 Methods . . . . . . 23

2.1.1 Key Sector Determination and Cobalt Consumption Allocation . . . 23

2.1.2  Input-Output (I0) Table Disaggregation . . . . . .. ... ... ... 29
National IO Table Disaggregation . . . . . . . . . ... ... .. ... 29
Multiregional I0 (MRIO) Table Disaggregation . . . . . . .. .. .. 37

2.1.3 Disaggregated 10 Network Analysis . . . . . . . ... ... ... ... 43

2.2 Results. . . . . . 48

2.2.1 Sectors Identified for Disaggregation in IO Model . . . . . . . . . .. 48

2.2.2  Network Analysis Results . . . . . . ... ... ... ... ...... 49
Centrality . . . . . . . . . . 51
Community Detection . . . . . . .. ... ... ... ... ... ... 53
Linkages . . . . . . . . . o7

2.3 Discussion . . . . . ... 60
3 CONCLUSIONS AND FUTURE WORK . . . . .. .. .. ... . ... 66
3.1 Conclusions . . . . . . ... 66



3.1.1

REFERENCES

A NAICS TO BEA CODE MAPPING . . . ... .. .. . ...

B CORRELATION BETWEEN NETWORK METRICS . ... ... ........



2.1

2.2

2.3
24

2.5

2.6

2.7

2.8

2.9

LIST OF TABLES

Reporting code and corresponding weight ranges for Maximum Amount of the
EPCRA Section 313 'Chemical Onsite at Any Time during the Calendar Year’
(maximum amount of chemical - MAOC). . . . ... ... ... .. .......

Data and calculation of the nonferrous metal smelting and refining sector’s use
of cobalt relative to other sectors reporting to the Toxic Release Inventory. . . .

Datasets used to constrain the MRIO model in the US IELab. . . . . . . . . ..

Metrics tested for identifying significant sectors in the disaggregated cobalt net-
work and the Python package used to calculate the metric. . . . . . . . . .. ..

Key sectors from which cobalt value was disaggregated in the make and use tables.
The value of annual cobalt consumption in 2012 was distributed among the key
sectors based on each sector’s cobalt use relative to other sectors estimated from
TRI data. . . . . . .

Mapping of 6-digit BEA NAICS sectors to 4-digit NAICS sectors and cobalt value
allocated to each 4-digit key sector. . . . . . . . . .. ... L.

Comparison of key sectors in the national and MRIO networks with the five
highest metric rankings and the states associated with the highest scoring sectors.
Sectors are listed in descending order for each metric. Sectors highlighted by hub
and authority score are grouped because the same top sectors were identified
by both metrics. Sectors in parentheses were the next highest ranked sectors
for a metric, though the highest ranked sector held top ranking for nearly all
states. Italicized sectors highlighted by linkage are those that had highest regional
instead of total linkage. . . . . . . .. ... L

Communities from K-means clustering containing key cobalt sectors in the national-

level network and the percentage of all sectors they include. A selection of non-key
sectors in the same cluster and their relative ranking for eigenvector centrality
(EC), PageRank (PR), backward linkage (BL), and forward linkage (FL). The
number under each metric is the ranking out of 416 sectors. Italic font in linkages
indicates and an above average, i.e., high linkage. Italic font in list of non-key
sectors differentiates sectors without highest metrics, included for their relevance
or to illustrate the range of sectors in this cluster. . . . . . . . .. .. ... ...

Communities from Gephi Modularity clustering containing key cobalt sectors
in the national-level network and the percentage of all sectors they include. A
selection of non-key sectors in the same cluster with their relative ranking for
eigenvector centrality (EC), PageRank (PR), backward linkage (BL), and forward
linkage (FL). The number under each metric is the ranking out of 416 sectors.
Italic font in linkages indicates and an above average, i.e., high linkage. . . . . .

2.10 Classification of linkage results, National 1O key cobalt disaggregated sectors . .

28



2.11 Classification of linkage results, National IO key cobalt parent sectors . . . . . . 59

2.12 Major locations of secondary sectors of significance based on national IO network
community detection. . . . . . ... Lo 61

A.1 Mapping of reported NAICS codes in 2012 Cobalt EPA TRI to equivalent 2012

BEA modified NAICS codes. . . . . . . . . . .. .. ... 76
B.1 orig spearman rtho . . .. . ... .. .. ... 78
B.2 national-disag spearman_rtho . . . . . . .. .. ..o 78
B.3 mrio spearman_rtho . . . . . . .. .. ... 78
B.4 Spearman correlation p-value, original national IO . . . . . . . ... .. ... .. 79
B.5 Spearman correlation p-value, disaggregated national IO . . . . . . .. ... .. 79
B.6 Spearman correlation p-value, MRIO . . . . . ... .. ... ... ........ 79



1.1

2.1
2.2

2.3

24
2.5

2.6

2.7
2.8

LIST OF FIGURES

Economic input-output data structure. Ordinary IO assumes each industry pro-
duces one commodity. The Make and Use 10 system accounts for the fact that
many industries produce several types of commodities. . . . . .. ... .. ...

Flowchart of steps and data comprising the method. . . . . . . ... ... ...

Graphical representation of the default disaggregation method. w is the vector
of commodity outputs (row) or industry inputs (column) from the original use
table. w is the disaggregation weight calculated based on TRI and USGS data,
and total output. An analagous corresponding operation is applied for column
disaggregation. . . . . . . .. L

Graphical representation of the manual disaggregation method. w is the vector of
commodity outputs (row) or industry inputs (column) from original use table w
is the initial disaggregation weight calculated based on TRI and USGS data. w’a
secondary weight calculated based on the remaining cobalt value to be allocated

after the initial share is removed from select column elements and the FD section.

Allocation of cobalt value across regions in the MRIO tables. . . . . . . . .. ..

A typical elbow method plot of distortion (inertia) vs. cluster count used to
determine an appropriate number of clusters in a dataset, adapted from [54]. . .

Heatmap of spearman correlation coefficient for each network metric pair in the
national and MRIO networks. . . . . . . . . . . . ... ... ... ... ...,

The elbow method applied to the disaggregated IO networks. . . . . . .. ...

Comparison of economic and mass-based allocation of cobalt value across regions
in the MRIO tables. Using economic allocation, value was distributed among
states based on the state’s share of national output or use of the key sector from
which cobalt was being disaggregated. In mass-based allocation, average onsite
stock as reported in the EPA TRI would be used to determine the distribution of
key sector value across states. Note the difference in color scale ranges between
economic and mass-based allocation. . . . . . .. ... ..o

10

37
39



DRC
EPA
[ELab
10
LCA
MAOC
MRIO
TRI
US
USGS
WIO-MFA

ABBREVIATIONS

Democratic Republic of Congo
Environmental Protection Agency
Industrial Ecology Virtual Laboratory
Input-output

Life Cycle Assessment

Maximum Amount of Onsite Chemical
Multiregional Input-output

Toxic Release Inventory

United States

United States Geological Survey
Waste Input-output Material Flow Analysis

11



ABSTRACT

The increasing demand for mineral-based resources that face supply risks calls for man-
aging the supply chains for these resources at the regional level. Cobalt is a widely used
cathode material in lithium-ion batteries, which form the major portion of batteries used for
renewable energy storage — a necessary technology for electrifying mobility and overcoming
the challenge of intermittency, thus making renewable energy more reliable and energy gen-
eration more sustainable. This necessitates understanding cobalt’s supply risks and for the
United States, identifying sources of cobalt available for future use via recycling or mining.
These needs are addressed in this work using single and multiregional input-output (MRIO)
analysis in combination with graph theory. An MRIO-based approach is developed to obtain
the trade network of cobalt and offer a more expedient way to identify potential critical ma-
terial sources embodied in commodities made domestically. Commodities containing cobalt
were disaggregated from two input-output (I0) models and the trade structure of cobalt at
the national and state level was observed and compared. The significance of identified key
sectors is measured according to several criteria and differences in sectors highlighted in the
national versus subnational networks suggests that analysis at the two regional aggregation
levels provides alternative insights. Results from mining the IO networks for cobalt high-
light the geographical distribution of its use and industries to further investigate as potential

sources for secondary feedstock.
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1. INTRODUCTION

1.1 Motivation

The demand for metals and minerals to support the clean energy transition and other
emerging technologies is expected to increase at an unprecedented rate in the next several
decades and there is precautionary concern over the sustainability of these mineral-intensive
technologies. In particular, materials that are integral to current battery energy storage
systems for electrical grid and mobile applications, such as cobalt, graphite, and lithium,
may see increases in demand of over four hundred fifty percent by 2050 [1]. Increasing
society’s dependence on these resources is necessary for developing a new energy system
that substantially reduces the release of fossil fuel energy-derived greenhouse gas emissions,
which have contributed most to climate change [2], and for this reason is also beneficial.
However, the increased demand will also grow extractive industries [1] and has already raised
international concerns over securing access to geologically or technologically concentrated
resources as evidenced by recent actions of the United States and other federal governments
[3]-[5]. In an effort to support the sustainable expansion of critical materials use, this research
aims to develop a streamlined method for analyzing different industries’ dependence on these
materials throughout a national economy, focusing on cobalt use in the United States (US).

A critical material is defined by the US as a nonfuel mineral or mineral-based material
whose use is essential to the economic and or national security of the country and is sourced
from a supply chain that is vulnerable to disruption [6]. Other countries define the term
differently and each nation generally considers a different set of materials to be critical based
on its national priorities and access to natural resources [7]-[9]. In academic literature,
material criticality has been defined in terms of supply risk, companionality, environmental
implications, and vulnerability to supply restrictions [10]-[13]. Companionality, or byproduct
status, is an important factor because it influences the responsiveness of primary production
rates to demand changes, the extent of resulting environmental impact, and criticality [11].
The literature on US-defined critical materials illustrates the overwhelming dependence of
the US on imports to meet its current demand, as well as the country’s potential to further

develop its domestic extraction and processing capacity and in ways that expand secondary
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material markets [6]. In the US Draft Critical Materials list, the USGS outlines how the
list of thirty-five critical non-fuel minerals were identified and gives an overview of their
sourcing and applications [6]. Twelve out of the thirty-five are byproducts, meaning they
are not mined directly but instead recovered during the processing of a host material. While
the US imports the vast majority of these materials (net import reliance is >50 percent for
all but 5 materials), the country has the capacity to increase domestic mining or processes
of some of these materials, such as cobalt, lithium, manganese, and rare earth elements [14].
The USGS tracks sources of annual consumption at a national level, estimates of mineral
resources, and accessible reserves on an annual basis, but more subnational studies are needed
to proactively evaluate potential sources and strategies for sustaining a domestic supply of
critical materials through increased primary or secondary production.

Cobalt is considered a critical material by most standards because of its ubiquitous use
in lithium-ion batteries and the concerns over the stability of its supply chain. Its leading
use worldwide is in the cathode of batteries, but it is widely used in chemical applications
as a catalyst and pigment, in machining for abrasive cutting tools, and in the US, primarily
in alloys for aircraft engines [14]. Approximately 60 percent of cobalt is extracted from
one country, the Democratic Republic of Congo (DRC), and China holds approximately 58
percent of global refining capacity with China, Japan, and Korea collectively controlling 85
percent of global refining capacity [15]. While several other countries mine the material, the
next top global producers include Russia and Australia. The DRC is expected to remain
the supplier of the majority of the world’s cobalt for the next decade [14], [16]. In order to
avoid shortages of the material reminiscent of the 1978 cobalt crisis, during which mining
limitations caused the price of cobalt to increase from $18/kg ($8/1b) to $99/kg ($45/1b) over
seven months [17], should limitations on mining capacity occur due to geopolitical conflict or
export quotas from major suppliers of refined material, countries are planning to maximize
recovery of end-of-life materials containing cobalt. Secondary materials are not expected to
be able to fully cover demand in the short term, but could potentially offset the demand
of primary materials by 30 ktonnes through 2030 [15]. Offsetting demand with secondary
materials could help make shortages less sever in the face of supply chain disruptions and

therefore mitigate price spikes and unregulated artisanal mining that is more responsive to
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short-term market fluctuations. Cobalt is a prominent critical material whose rapid increase
in primary production is associated with negative social impacts and whose dominant use in
the US may change over the next several decades; these are among the reasons it was chosen
as the material of focus in this work.

The increase in demand for critical materials and transition to a primarily non-fuel,
mineral-based energy system presents an opportunity to develop new industries that are de-
signed to be sustainable from the start. One way to pursue this is to embed circular economy
principles into life cycle design of technologies requiring critical materials. As thoroughly
researched by The Ellen MacArthur Foundation, these principles include 1) design out waste
and pollution, 2) keep products and materials in use, and 3) regenerate natural systems [18].
Along with designing durable products, maximizing material efficiency by not letting critical
materials that have been extracted and processed become waste could help reduce global de-
pendence on primary resources over time and simplify supply chains. Leveraging secondary
materials to fulfill demand may have a greater potential to make the trade of cobalt more
circular than that of other critical materials because industries are also aggressively working
to reduce the amount of cobalt required in lithium-ion batteries [19], the leading global use
[14]. This research aims to support building a circular economy for critical materials by
contributing to the development of methods to efficiently and transparently create national
accounting systems for manufactured materials with a variety of applications. Such systems
could then be applied to scenario modeling to measure trade-offs of different strategies to
secure critical materials and to identifying potential secondary sources for either current or

emerging applications.

1.2 Methodological Background

Input-output (IO) analysis is a macroeconomic analysis method for investigating how
changes in the productivity of one or more industries in the economy will affect the produc-
tivity of all others. The underlying data on the exchanges of commodities between industries
in 1O tables can be in either monetary, physical, or mixed units. This research employs eco-

nomic IO tables as opposed to physical or mixed-unit 1O tables. 10 analysis involves using
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three main data structures: transactions tables, direct requirements tables, and total re-
quirements tables. A transactions table is a matrix that records the observed magnitude of
exchanges between industries, e.g., industry A purchases $  million dollars worth of com-
modities from industry B. In ordinary IO analysis, it is assumed that each industry makes one
commodity. In reality, industries can and often do make more than one commodity, so the
transactions table is split into two tables, one table that records the magnitude of commodi-
ties supplied by each industry (Supply or Make table, depending on the matrix structure)
and another table that records the magnitude of commodities used by each industry and
from which other industries they were supplied (Use table). The direct requirements table
records the per unit inputs each industry requires directly from other industries to produce
one unit of its main commodity; the exchanges in this table represent tier 1 supply chain
exchanges. The total requirements table records the per unit inputs each industry requires
directly and indirectly from other industries to produce one unit of its main commodity; the
exchanges in this table represent the exchanges at every level of an industry’s supply chain.
Figure 1.1 shows the general structure and mathematical representation of the transaction,
direct requirements, and total requirements tables in an ordinary 10 system and in a Make
and Use 10 system. Most national governments maintain economic IO accounts in a Make
and Use or Supply and Use system to track the structure of the economy over time, create
forecasts, and evaluate the effects of economic growth or contraction.

In IO analysis, the direct requirements matrix is commonly defined A = [a;] and each
element is the ratio of the purchases from sector ¢ by sector j to the total value of inputs to

sector j. A is defined as Zx !

, where Z is a matrix of interindustry sales where each entry
represents the value of sales between pairs of sectors and « is the vector of total output per
sector, which includes the sector’s interindustry sales and additional final demand for its
product [20]. The values of Z are estimated from government survey data. For perspective,
the detailed IO tables for the US contain approximately 400 sectors [21].

The objective of an IO problem is often to solve for the total sector output, z, required to
provide a certain mix of products, or to solve for the change in output due to a change demand

for one or more sectors. The linear system of equations, summarized by * = Ax + f, in

terms of A and f is as follows:
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r1 = a1y + ... + a1, + f1

Xp = Ap1T1 + oo + ATy + fr

Solving for x can be done by taking the inverse of (I — A) and then multiplying
by the vector of final demand. This IO system is often represented by the equation:
x=I—-A)'f=Lf L= (I— A)'is the Leontief inverse, a matrix whose coeffi-
cients show the minimum inputs needed for each sector to supply an additional unit towards
final demand. L is the interindustry coefficients section of an 10 table. Rewriting « in terms
of L and f shows that the total output of each sector is dependent on the final demand from

each sector, illustrating the interdependence of different sectors in the economy:

ry=Infi+..+lnfa
Xp = lnlfl + ...+ lnnfn

The model above assumes each industry makes only one commodity. When an industry
produces multiple commodities, the A matrix is derived using the supply and use system.
In the supply and use system, instead of the A matrix being derived from a single matrix
Z of absolute inputs and outputs, it is derived from two separate matrices recording the
production of commodities by each industry (supply table, or make table in the US IO
accounting system) and the use of commodities by industry matrix (use matrix).

Disaggregating sectors from an input-output network was notably formalized by Wolsky
in 1984 [22]. This work presents a solution to the problem of aggregation in national 10
models by proposing a general method for extracting one sector given various degrees of data
on the difference in interindustry structure. Part of this method has been widely appplied
since to yield more detailed disaggregated 10 models, which have been shown to be preferable
to aggregated models even with limited data [23]. Input-output analysis has been applied
to material flow analysis of critical materials to answer traditional questions of economy
level output in response to changing demand, and has been combined with graph theory
methods to investigate the economy as a complex network. Nakamura Nakajima, 2005
develop a waste IO-material flow analysis (WIO-MFA) model to determine the proportion of

a material that ends up in final demand sectors of an 10 model [24]. The model is an extension
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of the WIO model developed in an earlier paper [25]. The WIO-MFA model partitions an
input coefficient matrix into two matrices: one that contains the proportion of physical inputs
that enter products (A’) and another that contains the proportion of physical inputs that are
discarded from a sector as wastes (A”). The composition of products can be determined from
the (A’) matrix. This is applied in several papers [24], [26], [27] to identifying how materials
are distributed among different final demand sectors. A benefit of the method is that the
total weight of a material in products can be found, or the monetary value of that material
in products can be found, depending on the units used for the flow in the original input
coefficient matrix. The model can be crosschecked when external information is available on
product price or composition by weight. For example, Nakamura Nakajima, 2005 apply the
WIO-MFA model to estimate the amount of metals in final demand categories and products
[24]. Ome such product considered was a car, and it was confirmed that the weight of metal in
a car estimated using the WIO-MFA model was a good approximation for the known actual
weight. The WIO-MFA model was also used for identifying the structure of metal flows in
the US economy and for generating physical input-output tables (PIOTs) for metals that
do not have a separate sector in the national IO tables [27], [28]. These two papers derive
[O-material flow networks (IO-MFEN) from the 2007 US IO table and analyze the shared
edges among the sectors consuming metals to determine the degree to which certain metals
coexist in the economy. Scrap and wastes can also be estimated using the method, along
with the amount of a material contained in a final product. The input-output tables (I0Ts)
generated in these papers are referred to as Metal IOTs instead of PIOTs because the authors
acknowledge that errors from the necessary assumption of price homogeneity throughout the
economy likely results in IOT values that do not accurately correspond to metal flows by
weight. Instead, the tables show the relative weights of materials being exchanged. Part
of the reason the metals considered in these papers were chosen was because there were
existing, traditional MFA studies or other sufficient information, e.g. data in US minerals
year book, that could be used to crosscheck the method (in the case of aluminum), fill in
data for nodes that were added, e.g. aluminum scrap transactions, and to convert monetary
units to physical units. This is a challenge for building tables at the regional level or for less

widely studied critical materials, because few MFA studies will be available at the required

18



level of detail. An alternative method for disaggregating 1O tables for the study of metals
without an independent sector was presented in an IO analysis of cobalt mine capacity to
fulfill demand under different scenarios through 2050 [29]. In this paper a 20 region MRIO
model from EXIOBASE is hybridized to disaggregate cobalt from other non-ferrous metals.
Since cobalt flows were less than 2.6% of the nonferrous metal sector they were bundled
into, the authors just “hybridized” the table by adding data on physical cobalt requirements
to appropriate sectors. The hybridized table is then scaled up to estimate future demand
based on projected regional average GDP growth rates adjusted for different sectors, and
future supply is estimated using a linear program combined with a dynamic stock model
to determine optimal extraction patterns and resource depletion scenarios. A limitation
of this work is that the supply-use table (SUT) structure the authors encountered did not
perfectly match the known use of cobalt and some known cobalt-consuming industries did
not “consume” any metal from the sector in which cobalt was aggregated. If one is interested
in identifying unknown sectors related to the material, disaggregation rather than appending
a new sector to contain the minor flow would result in a trade network containing all possible
flows which would then require pruning or filtering. Additionally, applicability of the WIO-
MFA to other materials is limited due to the data required to construct the filtering matrix
being comparably difficult to obtain as the customary data required for a traditional, in-

depth material flow analysis.

1.3 Research Objectives

Several studies have focused on the global cobalt supply chain and at the U.S. national
level, but none look further into subnational material flows [27], [29], [30]. Current methods
relying on empirical data that is resource intensive to produce limit the reproducibility of
IO studies. Additionally, consistently maintained knowledge of regional material flows and
stocks are needed for circular economy design at the national level. To address these needs,

the research objectives of this study were to:
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1) Develop a streamlined method for regional input-output analysis of critical materials in
the US economy, and
2) Disaggregate cobalt value from a monetary, multiregional input-output (MRIO) table

and determine significant sectors and regions for cobalt use with network analysis.

1.4 Outline

This thesis is organized into to following sections. Chapter 2 includes the methodology
developed in this work to isolate metal flows in a national and subregional input-output
model. The national and multiregional IO models are discussed in section 2.1.2. The results
of the network analysis performed on the disaggregated 10 networks are provided in section
2.2. The conclusions of this study and proposals for future research based on this work are

presented in Chapter 3.
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each industry produces one commodity. The Make and Use IO system accounts
for the fact that many industries produce several types of commodities.

21



2. MRIO COBALT NETWORK DEVELOPMENT AND
ANALYSIS

The multiregional input-output tables used in this study were generated with the Industrial
Ecology Virtual Laboratory (IELab). The IELab is a cloud-based platform for rapid gener-
ation of MRIOs at customizable sectoral and regional aggregations [31], [32]; [ELab MRIO
models currently exist for several countries including Australia, China, Indonesia, Japan,
Sweden, Switzerland, Taiwan, and the United States as does a Global MRIO Lab, which
further builds on the virtual IO laboratory model and integrates Eora, EXIOBASE, and
WIOD data [33], [34]. Although the US IELab can generate 10 tables at the most detailed
level of sectoral classification, critical materials and their derived products, whose supply
chains are of interest to study using IO analysis, are still aggregated in the commodities
that represent all of a sector’s output in the IO models. Further disaggregating materials
or products from the MRIO tables is then desirable in order to be able to distinguish be-
tween the exchange of products classified in the same IO sector but that have different trade
structures than the one represented by the aggregated sector.

Disaggregating 1O accounts requires additional data on the use of the target material
or product in relation to the rest of the commodities contained in the aggregated sector.
The electric power generation sector has been a good candidate for many 10 disaggregation
studies because there is ample data on the share of electricity generation by source that can
be used to disaggregate the sector [35]-[37]. For tracking critical materials in IO tables,
annual USGS data on material consumption is an annually updated and publicly available
source of data that has been used for IO analysis of critical materials in the US [27]. However,
for many materials, their applications are classified by the USGS into broad sector categories
and therefore the data must be augmented with more detailed information on material use by
industry in order to be mapped to detailed 10 sectors for disaggregation. Empirical material
flow data has previously been used to augment USGS data in the few studies taking an
[0-based approach to critical material supply chain analysis in the US, but this material
flow data is proprietary and like the national IO accounts themselves, not regularly updated

due to the required resources for such effort.
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A publicly available alternative data source worth investigating for this purpose is the
EPA Toxic Release Inventory. The TRI includes substances that cause either cancer or other
chronic human health effects, significant adverse acute human health effects, or significant
adverse environmental effects [38]. There are seven hundred seventy individually listed chem-
icals and thirty-three chemical categories subject to reporting under the TRI [38] and many
but not all US defined critical materials, including cobalt, are subject to TRI reporting.
Facility reports on the use of regulated chemicals and compounds can be organized by the
detailed industry classification, which is also used in the IO accounts. This makes the TRI
a promising potential source of data on material use by sector and location that could be
taken advantage of for application to IO analysis.

In an effort to contribute to advanced planning for the recovery of secondary cobalt
materials, this research develops a method for identifying sectors and locations that are
significant for a material’s of interest supply chain in the US economy and applies it to the
domestic supply chain of cobalt. There is no published literature that investigates cobalt use
at the state- or subnational level, which is a necessary next step in evaluating how changes
in the demand for cobalt may affect other industries in the economy and the regions they are
located. Additionally, since the majority of cobalt is currently used in the US for non-battery
applications, and the demand for these applications is also only expected to increase [15],
investigating potential secondary sources of cobalt aside from just electric vehicle-derived
batteries will be beneficial as the US expands its secondary material markets to help secure
its supply of the material.

The purpose of this study was to elucidate the subnational trade structure of cobalt and

identify significant subnetworks of cobalt-processing sectors.

2.1 Methods

2.1.1 Key Sector Determination and Cobalt Consumption Allocation

The proposed methodology for tracking specific metal flows in economy follows a top
down approach of disaggregating certain economic sectors used in IO accounts into finer

scale sectors that handle the material of interest. The disaggregation is carried out on
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economic 1O tables but a combination of physical and economic data is used to determine
how much value to separate and attribute to cobalt trade. The major cobalt processing
sectors are identified for disaggregation from annually published and publicly available data,
which are then mapped to sectors represented in economic IO tables. Network analysis is
then used to investigate the structural significance of the identified major processing sectors
and to try and identify additional sectors of secondary significance to the national cobalt
supply chain. Figure 2.1 shows the overall workflow of the developed method. Each step of

the approach is described in detail in the subsequent sections.

distribution of
Range of onsite stock material among sectors
per sector, Ibs
(EPATRI)
Remove key

sectors reporting material not
exchanged as commodity

Choose key sectors for
disaggregation
(onsite Co>1%
of total stock)

Select sectors for manual
disaggregation

Annual Material
Consumption, $
(USGS)

Allocate annual
consumption to key

- —
Value Allocation
to Sectors and

Regions

Data Process

Figure 2.1. Flowchart of steps and data comprising the method.

Disaggregating cobalt value from sectors in Input-Output (IO) tables first required iden-
tifying which sectors exchange cobalt in the economy and how much of that sector’s total
value is associated with cobalt trade. Data on the total value of annual cobalt consumption
were needed, as was information on the distribution of that value across sectors. Cobalt
consumption data were compiled from the USGS Mineral Commodity Summaries 2013 (the

earliest year reporting 2012 data) [39] and from the EPA 2012 Toxic Release Inventory (TRI)
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[38]. The data used from the USGS included the monetary value of apparent consumption,
which is defined as an estimate of primary and secondary domestic production 4 imports —
exports + adjustments to government and industry stock changes [10]. Note that apparent
consumption does not include commodity quantities embodied in manufactured products,
either imported or exported [41], so the value considered in this analysis is only that of
cobalt that is in some way processed domestically and contained in a product upon impor-
tation. Despite this exclusion of embodied material, the cobalt accounted for by apparent
consumption should correspond well to the material that is subject reporting in the TRI,
and is the material being processed by the sectors we are interested in identifying — those
who might be a potential supply source for secondary cobalt, or who risk being impacted by
cobalt supply chain disruptions. The value of apparent consumption was sourced from USGS
data while the EPA TRI data was used to identify which sectors to disaggregate and how to
allocate total annual consumption between them. We were interested in exploring the TRI
data’s applicability to IO analysis because of its high level of sector and regional specificity,
in addition to it being publicly available and updated annually. The steps taken to process
consumption data from these sources is further described below.
Mapping NAICS codes reported in the TRI with BEA sector codes

The EPA TRI was used to identify which sectors to disaggregate in the national (single-
region) and multiregional make and use tables and the proportions of annual cobalt con-
sumption to allocate to each sector. First, the 6-digit NAICS codes used in the TRI were
mapped to the corresponding sector codes in the national economic accounts. It was also
necessary to reclassify the TRI sectors for use with the multiregional IELab tables, which
were generated at the 4-digit NAICS level. The BEA national economic accounts sectoral
classification system is a hybridized version of the NAICS system, hereafter referred to as
BEA NAICS; this classification scheme contains some true 6-digit NAICS codes, while other
6-digit codes are aggregated. For example, the 6-digit NAICS code 331410 represents Non-
ferrous Metal Smelting and Refining. This code also exists in the BEA tables, so it could be
matched exactly. However, 331491 represents Nonferrous Metal Rolling, Drawing, and Ex-
truding — and 331492 represents Secondary Smelting, Refining, and Alloying of Nonferrous
Metal. These two codes are aggregated under 331490 in the BEA accounts, so the data for
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facilities reporting under 331491 or 331492 were assigned to BEA sector 331490. From the
TRI dataset, 159 unique 6-digit NAICS codes were aggregated to 117 unique BEA NAICS
codes (the full mapping is available in appendix Table A.1).
Identification of key sectors for disaggregation

After sector reclassification, each sector’s percentage of total reported cobalt use was
estimated. The sum of onsite stock reported by each facility of a certain sector was used
as a proxy for that sector’s total cobalt use. Then the relative cobalt use per sector was
calculated as the ratio of onsite cobalt stock for each sector relative to the total onsite stock
across sectors. Each facility subject to TRI reporting reports a range of the maximum amount
of chemical (MAOC) onsite at any time during the reporting year. The two smallest and
largest ranges, in pounds, are [0 — 99]; [100 — 999]; [500,000,000 — 999,999,999]; >1 billion.
The reporting options for MAOC are provided in Table 2.1. Exact quantities of a substance
release to air, water, and land are included in the inventory, but because usage data can be
sensitive information, no additional data on processed quantities or stock is reported aside
from the MAOC. Given this data limitation, we used the midrange of the lower and upper
bound of the reported MAOC range as a proxy, comparable across sectors, for annual cobalt
use for each facility. This midrange is hereafter referred to as just '"MAOC’. The estimated
onsite cobalt per facility was aggregated for each sector and the sectors whose cumulative
MAQOC was greater than one percent of the total MAOC for all sectors were designated as
a key sector, k € K, for disaggregation.
Pruning set of key sectors to include only those that process cobalt in a traceable form in
the 10 tables

TRI Data on cobalt use in each of the key sectors was then further investigated to
determine whether the sector’s use of cobalt would be captured by the 10 data structure.
Cobalt uses were deemed either structural, auxiliary, dissipative, or a combination based
on the facility’s reported uses of cobalt or cobalt compounds (examples of use type include
formulation component, ancillary, byproduct, reactant, manufacturing impurity, etc.). The
supply chain of cobalt with structural uses, where cobalt is an intentional product component,
such as cobalt in alloys, may be tracked in the IO tables. Some auxiliary uses that result

in cobalt being sent to other sectors, such as spent catalysts disposed of as waste, may also
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Table 2.1.
Reporting code and corresponding weight ranges for Maximum Amount of the
EPCRA Section 313 ’Chemical Onsite at Any Time during the Calendar Year’
(maximum amount of chemical - MAOC).

Weight Range in Pounds

Range Code From To

01 0 99

02 100 999

03 1000 9,999

04 10,000 99,999

05 100,000 999,999

06 1,000,000 9,999,999
07 10,000,000 49,999,999
08 50,000,000 99,999,999
09 100,000,000 499,999,999
10 500,000,000 999,999,999
11 1 billion More than 1 billion

be tracked. Dissipative uses and cobalt that is reported as an unrecovered byproduct cannot
be tracked in the economic IO tables. Key sectors who report most of their cobalt in these
forms are excluded from further consideration. An exemplary excluded key sector was the
Electric Utilities sector; this sector primarily reports cobalt air emissions from coal fired
power plants. Since this cobalt would not be traceable in the IO tables, nor is included in
the USGS annual apparent consumption estimates, the sector was excluded from further
consideration.
Allocation of Cobalt Value to Key Sectors

The USGS monetary value of annual cobalt consumption was then allocated among the
subset of key sectors, J C K, that remained after filtering. For the remaining key sectors
j, where j € J, the ratio of cumulative sector MAOC to total MAOC was normalized such
that the use percentages for this subset sum to 100 percent. This normalization allows for
100 percent of annual cobalt value to be allocated and it is assumed the sectors with MAOC
less than one percent of total MAOC use negligible amounts of cobalt. The use percentage
for j is the ratio of estimated onsite cobalt for a sector and the sum of onsite cobalt for all

key sectors. Let the dollar value of cobalt allocated to a key sector j be C'A;. C'A; was then
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calculated using Eq 2.1 as the product of the sector’s normalized use percentage and the
value of annual cobalt consumption from the USGS, V. An example calculation of C'A; for

sector 331410 is shown below.

_ L MAOC;

A= =7
C4 > MAOC,

v (2.1)

Table 2.2.
Data and calculation of the nonferrous metal smelting and refining sector’s use
of cobalt relative to other sectors reporting to the Toxic Release Inventory.

Sector: 331410 - Nonferrous metal smelting and refining

Reported MAOC code! 3 4 5 6 Total
Average onsite stock per range (Ibs) | 5.5x10° 5.5x10% 5.5x10° 5.5x10°

Number of facilities reporting range 1 3 1 1 6
Estimated onsite stock - MAOC (Ibs) | 1(5.5x10%) | 3(5.5x10%) | 1(5.5x10°) | 1(5.5x10%) | 6.2x10°
Cumulative MAOC for sector (Ibs) 6.2x10°
Total MAOC for all sectors® (Ibs) 2.4x108
Percent of total MAOC 3%

Cumulative MAOC >1% of total® = 3> MAOC; = 9.3 x 107 Ibs
Value of cobalt consumption in 2012% = $275 million

Cobalt value allocated to sector 331410 (C'As31410) = % x $275 million = $18.41 million

The share of annual cobalt value allocated to each sector became the data used directly
for disaggregating the make and use tables. To maintain balance of the disaggregated cobalt
sections across the make and use tables, the same value of cobalt was disaggregated from a
key sector’s industry and commodity section in both tables, i.e., each disaggregated sector’s
total commodity output in the make table is equal to that in the use table, and likewise for

total industry output.

Lcorresponds to a range in Table 2.1

2calculations for all sectors available in supporting information
3equals the sum of the cumulative MAOC for each key sector excluding pruned sectors like Electric Utilities
4from USGS
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2.1.2 Input-Output (I0) Table Disaggregation

National IO Table Disaggregation

The inputs for the national-level disaggregated IO model were the detailed 2012 Bench-
mark make and use tables/After redefinitions, created by the US Bureau of Economic Anal-
ysis (BEA) [21], and the dataset of estimated cobalt consumption per sector generated from
the 2012 TRI and USGS data. The value of cobalt consumption allocated to a key sector,
CA;, was disaggregated from that sector’s industry and commodity outputs in the make and
use tables. The BEA make and use tables used in this work are organized into 405 sectors,
each corresponding to a 6-digit BEA NAICS code; the 6-digit BEA NAICS are the most
detailed level of sectoral classification represented in the national input-output accounts. For
the eleven key sectors identified from the EPA TRI (see Results section Table 2.5), CA;
was disaggregated from the superordinate/original /parent sector in both tables, resulting in
disaggregated make and use tables each containing 416 commodities and 416 industries.

Disaggregation of a key sector was carried out across the interindustry transactions,
value-added and final demand sections of the make tables so that the value-added and final
demand sections, which contribute to table balance, would also contain the disaggregated
subsectors and all 10 table sections needed to simulate different final demand scenarios
would be available in disaggregated form. Additional information on the contributions to
domestic cobalt use from interindustry transactions compared with the final demand and
value-added categories was unavailable for most sectors, so all sections of the use table were
assumed to contribute in equal proportion to the generation of value associated with cobalt-
containing products. If additional data on the relative contribution to total cobalt use from
interindustry, value-added, and final demand categories becomes available, it could be used
to perform a more accurate disaggregation of total industry or commodity output. The list
of key sectors disaggregated and their descriptions is given in Table 2.5, along with the value
of cobalt allocated to the sector and whether the sector was disaggregated using a default

or manual procedure.
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Default disaggregation

Disaggregating a row or column represents allocating a portion of the original sector’s
value to the segment of that sector associated with processing cobalt and the other portion to
the remaining segment of the sector that does not process cobalt. In this case, disaggregation
entails splitting a row or column into two new rows or columns. To do this, a portion of the
value at each intersection with another row or column must be allocated to the correspond-
ing new row or column associated with cobalt. The row or column containing the remaining,
unallocated value can be thought of as the parent industry or commodity in which the cobalt
value was originally aggregated. Most times there is insufficient information on the amount
or value of cobalt that passes from one industry to another relative to the total magnitude
of transaction between the industries to individually determine the value of cobalt to allo-
cate from each interindustry intersection. Therefore, a default method of disaggregation was
applied to those key sector rows and columns for which additional information on interindus-
try trade of cobalt within the sector was unavailable. In this default method, cobalt value
is disaggregated in equal proportion from each interindustry element in a column or row.
The default method was employed in the use table disaggregation for nine of the eleven key
sectors described in Table 2.5. In the make table, cobalt value was only disaggregated from
the table element representing the primary commodity of a given industry (diagonal table
elements), which was considered a special case of manual disaggregation.
Manual disaggregation

In manual disaggregation, cobalt value is allocated from the original sector to a new
disaggregated sector from only a selection of row or column intersections associated with
cobalt trade. In the make table, cobalt value is only disaggregated from the main commodity
of the key sector being disaggregated. In the use table, cobalt value is first disaggregated
from value-added or final demand elements, and then the remaining value is disaggregated
in equal proportion from the manually selected set of interindustry elements associated with
cobalt trade.
Interpretation of disaggregated rows and columns in the make and use tables

An interpretation based on the make and use tables, each respectively organized in a

commodity-by-industry and industry-by-commodity format, is offered as follows. Disaggre-
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gated rows in the use table represent the cobalt commodities or cobalt embodied in com-
modities of a particular industry. Each intersection with an industry column shows the value
of cobalt contained in commodities (in the row) that is purchased by the industry (in the col-
umn). The row containing the remaining value after disaggregation represents the industry’s
commodities that do not contain cobalt.

Disaggregated columns in the use table represent the segment of an industry dedicated to
manufacturing products containing cobalt. Each intersection with a commodity row shows
the value of an interindustry purchase made to support the production of commodities
containing cobalt by the sector.

Disaggregated rows in the make table represent the segment of a parent sector that makes
commodities containing cobalt. The commodities produced by each cobalt-processing sector
are assumed to only be aggregated in the main product of the parent sector, as opposed to
assuming some commodities are aggregated in any of the secondary products also accounted
for in the make table.

Disaggregated columns in the make table represent cobalt commodities and the cobalt
embodied in commodities produced by the key industries; again, cobalt commodities are
assumed to be produced by only the disaggregated cobalt industries.

Make table disaggregation

Each of the key sector rows and columns was replaced with either two new rows or two
columns, one representing the part of the parent sector associated with cobalt products and
the other representing the remaining portion of the superordinate sector’s value. Disaggre-
gation of the make table can be considered a special case of manual disaggregation because
cobalt products made by a sector are assumed to be aggregated in that sector’s primary
commodity. Therefore, cobalt value was only disaggregated from one table element along a
column or row such that cobalt value allocated to a key sector was only removed from the
intersection of the parent sector with its main commodity. This resulted in cobalt commodity
values only along the diagonal of the make table, in the section where disaggregated cobalt
industry rows intersect with disaggregated cobalt commodity columns.

Use table disaggregation
Default disaggregation
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The default disaggregation procedure will be described for only the use table columns,
but the same procedure was applied to the rows. First, a weight, w;, representing the share
of a total sector’s output associated with cobalt commodity production and used to separate
the original column into two, was calculated using Eq 2.2. The value in the numerator
comes from Table 2.5, which was calculated based on TRI and USGS data. The value in the

denominator is the total industry output of sector j from the BEA 10 accounts.

Cobalt value allocated to sectorj — CA;

2.2
Total output of sector j Gj (2.2)

The disaggregated cobalt sector contains the product of this weight and the vector of
inputs to sector j shown in Eq 2.3. The vector of inputs to sector j, defined as wu;, contains
the upstream supply chain and value-added transactions associated with the consumption

of the allocated value of cobalt.

’U)j ’U,j (23)

The remaining sector is the product of the vector of inputs to sector j and the remaining

share of the sector’s output for activities unrelated to processing cobalt given in Eq 2.4.

(1 — wy)u (2.4)

This procedure was then repeated for the same set of key sector rows. Nine of the eleven
key sectors were disaggregated using this default method. The remaining two key sectors
324110 - Petroleum refineries and 562000 - Waste management and remediation services
were disaggregated using a manual procedure because additional information on the specific
uses of cobalt within these sectors was apparent.

Manual disaggregation

Once default disaggregation had been done for both rows and columns, the remaining

sectors were disaggregated using a manual procedure. Again, the steps for disaggregating

columns will be described but the same procedure was applied to the rows.
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Manual disaggregation started with the same key sector weight, w;, but the weight was
not multiplied by each element in the column, i.e., cobalt value was not disaggregated blindly
from each element in the column. To avoid having to manually disaggregate either the value-
added or final demand sections, these sections were disaggregated in the same manner as in
the default method, by taking the product of w; and each element. The disaggregated value-
added elements are calculated using Eq 2.5, where u,,,; is the vector of value-added inputs
to sector j. The disaggregated final demand elements are calculated using Eq 2.6, where ugq,
is the vector of final demand values for commodity 7 and w; is the weight representing the
share of total commodity output for a given sector that is attributed to cobalt contained
in the commodity. The remaining value-added elements are calculated using Eq 2.7 and the

remaining final demand elements are calculated similarly.

Wj uvaj (25)
Wi Ugq; (26)
(1= w03ty (2.7)

To start manual disaggregation of the interindustry values, the key sector weights w; were
multiplied by only a select number of interindustry column elements known to be involved
in the trade of cobalt. For example, we assumed that all value associated with cobalt that is
embedded in the Petroleum Refining sector is from the use of cobalt catalysts for desulphur-
ization (Cobalt Institute, 2018). Therefore, the cobalt value disaggregated from this industry
(column) is removed only from the intersection with the Inorganic Chemical Manufacturing
commodity (row), which is assumed to be the form through which cobalt catalysts are sup-
plied. With regards to the Petroleum Refining commodity (row), the cobalt value embedded
in it is separated only from the row’s intersection with the Waste Management industry, as
any cobalt embedded in products leaving the Petroleum Refining industry (spent catalyst)

is assumed to be ‘used’ only by waste management through disposal.
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The Waste Management and Remediation Services (Waste Management) industry and
commodity are both disaggregated by removing cobalt value from only the intersections with
the other key sectors being disaggregated. This can be interpreted as Waste Management
receiving waste containing cobalt from only the key sectors and only the key sectors generate
waste containing cobalt. This assignment of the sectors generating waste containing cobalt
may not be entirely accurate, but it provides a more reasonable estimation of the sources
of cobalt waste than would the default disaggregation method. Applying the default disag-
gregation method to the Waste Management sector would have resulted in the inaccurate
interpretation that nearly every sector generates some waste containing cobalt.

The disaggregation of a column or row takes place in two phases. In column disaggrega-
tion, multiplying w; by a selection of interindustry table elements and the value-added section
yielded intermediate disaggregated columns for both cobalt value and remaining sector value.
Next, the leftover allocated value of cobalt was transferred from the sector of remaining value
to the disaggregated cobalt sector. This was done by calculating a new weight from the total
remaining value of cobalt to be disaggregated and the sum of the interindustry elements in
the remaining sector column designated for disaggregation. The product of this new weight
and the interindustry elements in the remaining sector designated for disaggregation yielded
the share of the remaining cobalt value to be subtracted from the remaining sector and added
to the disaggregated cobalt sector. Manual disaggregation can be mathematically represented
as follows in equations 2.8 - 2.11.

Intermediate values are allocated to the disaggregated cobalt column; the values allocated
to the disaggregated value-added section are calculated using Eq 2.5. The values allocated
to the intermediate, disaggregated interindustry section are calculated using Eq 2.8, where

u, is the vector of commodity inputs to sector j known to contain cobalt.

Wi U, (28)

VA= wjtty, (2.9)

=1
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M =" wiu, (2.10)
ceC

The cobalt value disaggregated from an industry column in the first phase of manual
disaggregation is M1+ VA. The remaining value of cobalt to be disaggregated in the second
phase is the original value of cobalt to be allocated to sector j minus the amount disaggregated
in the first phase: CA; - (MI1+VA).

In the second phase, a new weight is calculated based on the remaining value of cobalt
to be allocated and the value of commodities in C, the set of commodity inputs to sector
j known to contain cobalt, in the remaining parent sector. If M1 is the total intermediate,
disaggregated interindustry cobalt value than 1-M1 is the leftover interindustry value in the
parent sector from commodities that still correspond to cobalt in the sector being disaggre-
gated. The new weight used to allocate the remaining cobalt value from the parent sector to

the disaggregated sector is calculated as shown in Eq 2.11.

CA — M, —VA
w/: J
! 1— M,

(2.11)

The new weight, w’; is then multiplied by each element in remaining industry column at
the intersection with a commodity in C to yield the remaining value to add to the elements
in the disaggregated cobalt column. Let M2 be the total remaining cobalt value to transfer
from the interindustry elements in the parent industry column to the disaggregated industry
column. M2 can be calculated using Eq 2.12 and M1+ M2 equals the original cobalt value to
allocate to sector j less the value allocated to the value-added section. Figures 2.2 and 2.3

show a graphical example of default and manual disaggregation performed on the make and

use tables.

My =Y wi(l —wy)u. (2.12)
ceC
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Figure 2.2. Graphical representation of the default disaggregation method.
u is the vector of commodity outputs (row) or industry inputs (column) from
the original use table. w is the disaggregation weight calculated based on TRI
and USGS data, and total output. An analagous corresponding operation is
applied for column disaggregation.

Conversion of disaggregated make and use tables to total requirements

Tables

The disaggregated make and use tables were then converted to an industry by industry

total requirements matrix following BEA guidelines described below [42].

g = a column vector in which each entry shows the total amount of each commodity’s output.

g = a column vector in which each entry shows the total amount of each industry’s output.
U = interindustry portion of the use table; this is a commodity-by-industry matrix.

V = make matrix; this is an industry-by-commodity matrix.

A = Direct requirements matrix = V4§~ 'Ug§™!

L = industry-by-industry total requirements matrix = (I — A)~!
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Figure 2.3. Graphical representation of the manual disaggregation method.

u is the vector of commodity outputs (row) or industry inputs (column) from
original use table w is the initial disaggregation weight calculated based on
TRI and USGS data. w’ a secondary weight calculated based on the remaining
cobalt value to be allocated after the initial share is removed from select column
elements and the FD section.

Multiregional I0 (MRIO) Table Disaggregation

The same determination of key sectors used in the national table disaggregation was
also used to disaggregate the multiregional supply and use tables. However, the national
tables were organized by 6-digit BEA NAICS code while the MRIO tables were organized
by 4-digit NAICS code. The list of 6-digit key sector codes and their descriptions is given
in Table 2.5 in addition to the value of cobalt allocated to the sector and whether the
sector was disaggregated using the default or manual procedure. The key sectors identified
at the 6-digit NAICS level were mapped to the 4-digit level and the value assigned to each
sector was aggregated accordingly. In one case, the sector, 562000 — Waste management

and remediation services was further disaggregated into two separate 4-digit NAICS waste-
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related sectors in the MRIO tables. The mapping of 6-digit sectors used for the national level
table disaggregation to their encompassing 4-digit sectors for disaggregation of the MRIO is
shown in Table 2.6 in the Results section.

The inputs for disaggregating the multiregional 10 model were MRIO supply and use
tables (SUTs) for 2012, generated by the Industrial Ecology Virtual Laboratory (IELab) for
the US [43] and the dataset of estimated cobalt consumption per sector and region generated
from the TRI and USGS data. The US IELab was used to generate a 312 sector, 52 region
MRIO model using the national IO accounts and data sources such as state-level GDP
and commodity flow surveys to constrain the specified regional and sectoral disaggregation.
Flegg’s location quotient was used to create the initial regionalization and the data used to
further constrain the tables to the desired regional and sectoral classification are listed in

Table 2.3.

Table 2.3.
Datasets used to constrain the MRIO model in the US IELab.

USLab Constraints Issuing Agency

Commodity Flow Survey Bureau of Transportation Statistics
Export Import Data Census Bureau

State GDP Bureau of Economic Analysis

Personal Consumption Expenditures Bureau of Economic Analysis
Make and Use tables, detailed level ~— Bureau of Economic Analysis
Make and Use tables, summary level Bureau of Economic Analysis

In contrast to the national make and use tables, the MRIO supply and use tables were
generated with sector disaggregation at the 4-digit NAICS code level and regional disaggre-
gation at the US state-level (including Washington, DC and Puerto Rico). MRIO data on
the supply of commodities from different industries to each region formed the total supply
from which cobalt value was disaggregated, analogous to the disaggregation from the make
table at the national level. MRIO data on the use of commodities by different industries in
each region, value added, imports by regionalized sector, exports by region, and final de-
mand were aggregated to form the total demand from which cobalt value was disaggregated,

analogous to the disaggregation from the use table at the national level.
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A similar procedure as before was followed to split the key sectors into a subsector
processing cobalt and a remaining portion using a default or manual procudure. The 4-digit
sectors corresponding to the 6-digit sectors disaggregated with the manual procedure in
the national-level tables were also disaggregated with the manual procedure in the MRIO
tables. The main difference between disaggregating the single-region and multiregional 10
tables was that the cobalt value disaggregated from key sectors in the multiregional tables
was also allocated across regions. Cobalt value was allocated across regions based on the
sector’s percentage of national output coming from each region. Figure 2.4 shows how cobalt
value was allocated to key sectors and across regions in the MRIO tables based on a region’s

contribution to total sector output.

314 Sector: 3363 Sector: 3241
Basic Chemical Manufacturing Nonferrous Metal (excopt Aluminum) Production and Process Motor Vehicle Parts Manufacturing Alumina and Aluminum Production and Processing Potroleum and Coal Products Manufacturing

sovate
o

s138M $53M stam S17M $15M
Allocated to Sector Allocated to Sector Allocated to Sector Allocated to Sector Allocated to Sector

Sector: 3321 Sector: 3339 Sector: 3364
Forging and Stamping Other General Purpose Machinery Manufacturing. Aerospace Product and Parts Manufacturing Waste Treatment and Disposal Remediation and Other Waste Management Services

STSM $7M 0.3 M
Allocated to Sector Allocated to Sector Allocated to Sector

Figure 2.4. Allocation of cobalt value across regions in the MRIO tables.

Supply table disaggregation

As in the disaggregation of the national make table, disaggregation of the supply matrices
was considered a special case of manual disaggregation because cobalt products supplied by a
sector were disaggregated only from that sector’s primary commodity. The amount of cobalt
to disaggregate from a key sector in a region was calculated by multiplying two percentages,
or weights, by the monetary value of cobalt allocated to the entire sector from Table 2.6. The
first weight used is wj, a similar version of the weight used in the national level disaggregation,

Eq 2.2, and represents the share of a sector’s total output that can be allocated to cobalt
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flows. An approximation of total sector j” output is taken to be the value of commodity s
supplied by the sectors whose primary product is s. This is a reasonable approximation of
the total domestic supply of a commodity because the vast majority of any commodity is
supplied by the sector that produces it as its primary product. For regional disaggregation,
weight w;> was calculated using Eq 2.13. The value in the numerator comes from Table2.6,
which was calculated based on TRI data and USGS data. The value in the denominator is

the total primary output of commodity s calculated from the MRIO matrices.

_ Cobalt value allocated to sector j' (C Ay )

Wg =

2.13
Total primary output of s from j’ ( )

The second weight used, w;, represents the share of the total supply of a disaggregated
cobalt commodity provided by a particular region. This value could either be determined
using economic allocation based solely on MRIO data or with a mass-based allocation using
TRI data, which is linked to facility location. Using data from the MRIO to calculate the
regional weights allows for separate sets of regional weights to be calculated for supply and
use disaggregation as well as separate weights for industry inputs and use of commodities
in the use tables. A key sector’s allocated value was further distributed to states r using
Eq 2.14.

As the economic allocation approach was preferred for initial testing, or had industry
location data not been available, value can be distributed among regions based on a region’s
share of national supply for the key sectors under consideration. Let each region’s supply
table be S,.. A regional supply weight w,,, described in Eq 2.14, would be calculated for each
region in which a key sector operates to determine the portion of total cobalt value allocated

to j’ to disaggregate from the regional supply of s in S,.

_ Primary output of commodity s in region r

(2.14)

wT’S . .
Total primary supply of s fromj

Again, for allocation purposes, total supply was approximated as the value of commodity

s provided by its primary producing sector. Total primary supply of any s then equals the
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sum of corresponding diagonal entries in each S, with diagonal elements represented as S;.,,
shown in Eq 2.15.
52

Primary output of commodity s =S, (2.15)

r=1
The row and column in S,., corresponding to a key sector and its main commodity were
separated into two parts as was done in the national level disaggregation. The cobalt value
disaggregated from domestic supply was calculated using Eq 2.16. The remaining value of a
commodity supplied for domestic use by region r was calculated using Eq 2.17.
(2.16)

Wy WysS

Tss

(1 = wy)(1 = wrs) S, (2.17)

Use table disaggregation

After the supply tables were disaggregated, cobalt value was disaggregated from the use
tables whose sections include interindustry matrices, value-added, imports, exports, and fi-
nal demand. As in the disaggregation of the supply tables, two weights (a sector and region
weight) are used to separate use table elements for a key sector into a portion representing the
commodities consumed that contain cobalt and another portion of cobalt-free commodities.
The sector weight used is wy, representing the share of a total sector’s output attributable to
cobalt consumption and was calculated using Eq 2.18. Cj is the total industry or commodity
output for a key sector, depending on whether the weight is used for row or column disag-
gregation. Since the use tables are organized commodity by industry. for row disaggregation,

C; is calculated using Eq 2.19 and Eq 2.20 is used for column disaggregation.

ey
-

(2.18)

Ws
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Cs.com = total interindustry outputs + total exports + totalimports + total final demand

(2.19)

Cs ina = total interindustry inputs + total imports by ind. + (value — added) (2.20)

Imports are added instead of subtracted in the calculation of C; ..m because imports are
recorded in the MRIO as if they are separate commodities. We do not distinguish between
imported supply and domestic supply in this work, though the majority of cobalt is imported,
so the value of imported commodities from industry type j” was added to the value of that
sector’s domestic commodities to yield the total consumption of commodity s from which to
disaggregate cobalt value.

Conversion of disaggregated supply and use tables to total requirements table

The BEA method for converting make and use tables to total requirements tables is nearly
identical to the method for the supply and use framework. Once the multiregional supply
and use matrices were disaggregated an industry-by-industry total requirements matrix was
derived using the Eurostat Model D method [44], modified for multiregional SUTs. Coefficient
matrices were created using equations 2.21 and 2.21. The market share coefficient matrices,
D,, derived from the supply tables were calculated D, = V,§! where V, is the single supply
table for a region r and ¢, is the vector of total commodity output from that region. The
direct requirements coefficient matrices, By, derived from the use tables were calculated
By = Uyg, ! where U,, is the use table of commodities used by region r from region t
and g, is the vector of total industry outputs from r. The market share matrix and direct
requirements matrices for each region are then converted to the regions’ transformation

matrices A, through Eq 2.23.

D, =V,q." (2.21)
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By = Upgy " (2.22)

At?" - DTBtT (223)

A=[A,] (2.24)

Transformation matrix A was organized as in Eq 2.24 and converted to a compound total

requirements matrix using the Leontief model:

L=(—-A)" (2.25)

2.1.3 Disaggregated 10 Network Analysis

The disaggregated total requirements tables at the national and state-level were then
converted to a total requirements matrix, which formed the basis of the IO network, dis-
aggregated for cobalt. Several input-output and graph theory-based metrics that have been
deemed suitable for analysis of dense, weighted, and directed networks ([45]-[48]) were calcu-
lated using the national and multiregional IO networks to try to determine the significance of
the disaggregated sectors relative to each other and identify additional sectors of importance
to the domestic cobalt trade network. The total requirements matrix (Leontief inverse) was
used for network analysis to capture the direct and indirect connections between sectors at all
levels of the supply chain. In graph representation of the IO network, industries correspond
to nodes and economic transactions correspond to edges, i.e., the links between nodes. Unless
otherwise stated, edges represent direct or indirect economic connections between sectors.
A summary of the metrics used to identify significant sectors is show in Table B.5 and are
further described below.

Eigenvector Centrality (EC)
The eigenvector centrality of a node is the sum of the eigenvector centralities of all of

its connecting nodes divided by the largest eigenvalue of the adjacency matrix of the graph.
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Table 2.4.
Metrics tested for identifying significant sectors in the disaggregated cobalt
network and the Python package used to calculate the metric.

Network Analysis Metric Description Package
In/Out-Degree Number of incoming/outgoing connections to a node networkx
Indicates node significance based on the incoming or outgoing connections

Eigenvec ntrali . . . k
igenvector Centrality to either many nodes or to other highly important nodes networkx

PageRank Indifzates node significance based on the the incoming (upstream) connections networks
to either many sectors or to other highly important sectors

Authority Score fonks significance of nodes with many incoming links, calculated in tandem networks
with hub score

Hub Score R,:(mks signiﬁcance of nodes with many outgoing links, calculated in tandem networks
with authority score

. Proportional to the sum of shortest paths between a node and its direct and .

Closeness Centrality o . igraph

indirect connections
. Proportional to the number of shortest paths between two nodes that pass .

Betweenness Centrality . igraph
through the node of interest

Clustering using k-means Partitions. data into groups by minimizing the sum of squared error between sklearn
a data point and cluster centroid

Backward/ Forward Linkage Indicates magnitude of impac't on other upstream or downstream sectors that pandas
would occur due to a change in final demand for a sector

e Identify sectors that may distribute the effect of a change in final demand widely
Diffusion pandas

across many other sectors versus to a concentrated few

It is calculated recursively, whereby a relative score is assigned to each node and at each
iteration a node’s score then becomes influenced by the scores of the connecting nodes.
PageRank (PR)

PageRank is a modified measures the importance of a node based on the structure of its
incoming connections.

The PageRank of a node v is the sum of a) the normalized sum of the pageranks of
all other nodes that link to v, divided by the number of outgoing edges from those nodes,
multiplied by a damping factor and b) the probability of linking to any other node at random.

Pagerank is also calculated recursively; each node’s relative assigned score is modified at
each iteration based on the scores of the connecting nodes.

The pagerank of sector v depends on the pageranks of all other sectors that link to sector
v, divided by the number of outgoing edges (L) from each sector linked to v.

Hub and Authority Score (HS/AS)
As interdependent centrality measures, hub and authority scores are also calculated re-

cursively.
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Closeness Centrality (CC)
Closeness centrality measures the average shortest distance between a node and all other
nodes n that connect to it [49]. Closeness centrality for a node v is calculated using 2.26

where o(u, v) is the shortest distance (geodesic path) between nodes u and wv.

_ n—1
Zinzl J(uiv U)

In the weighted IO network, the edge weight or magnitude of exchange between two

cc(v) (2.26)

sectors is treated as the inverse of the distance between them, so the larger the exchange,
the closer the two nodes are to each other.
Betweenness Centrality (BC)

Betweenness centrality measures the extent to which a node lies on the shortest paths
between other nodes in the network. In weighted networks, edge weight is incorporated into
the length of the path [50]. In the context of IO networks, this measure has been interpreted
to highlight sectors that may act as bottlenecks in the supply chain [48], [51]. Sectors with
higher betweenness are more likely to cause disruptions to the flow of resources dependent
on passage through them. Betweenness centrality for a node v € V' is calculated as follows
in 2.27 where o(s,t) is the number of shortest or geodesic paths between pairs of nodes (s,t)

in the network and o(s,t|v) is the number of shortest paths that pass through v.

() = Z o(s,t|v)

2, (5. 1) (2.27)

Important to note is that the reciprocal of edge weight was used as the 'weight’ attribute
in calculating weighted betweenness of the 10 networks. For weighted networks, weight can
be used as a proxy for distance but in the betweenness algorithm, shortest paths with greater
distance that are intercepted by a note would yield a smaller centrality for the intercepting
node [52]. Since it is desirable for the weight associated with the shortest path to be propor-

tional to the centrality score, the reciprocal of edge weight (strength of economic connection

between sectors) was used as the attribute to calculate weighted betweenness centrality.
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Clustering for Community Detection

The K-means algorithm in the scikit learn Python library was used to divide the disag-
gregated 1O networks into clusters. The algorithm divides the data into k clusters, specified
by the user, by minimizing the sum of squared distances between the samples in a cluster
and the mean of the samples in the cluster, also called the centroid [53]. The total sum
of squared distances for the entire dataset is called the inertia or distortion score and this
quantity can be automatically returned after clustering.

The ‘elbow method’ was used for choosing the most appropriate number of clusters to
separate the IO network into. This graphical analysis technique involves plotting the inertia
vs. clusters to find the number of clusters at which diminishing returns on decreased inertia
begin. The number of clusters thought to best fit the model is and the point in the graph
where there are noticeable diminishing returns in the decrease in inertia with additional
cluster added, in other words, at the elbow of the chart. In Figure 2.5, the number of clusters
that would minimize inertia while requiring the least amount of computational power is three.
The following documentation further describes the elbow method [53], but the Yellowbrick
Python package was not used for calculation. Instead, inertia was plotted against a range of
cluster quantities.

Linkage (BL/FL)

Traditional input-output analysis measures of linkage were also used to try to pick out
significant sectors in the 10 network. Sectors with high backward or forward linkage (BL
or FL) have a stronger technical connection to either their upstream or downstream supply
chains [55]. The supply chain of a sector with an above average linkage will be more heavily
affected by impacts to sectors in its supply chain, especially by those that also have high
linkage. Whether a sector has a high or low linkage is determined by examining the average
linkage compared to others. Average or normalized backward [b(t)] and forward [f(¢)] linkage
is calculated as the total linkage (equations 2.28 and 2.29) in either direction divided by the

simple average of all sectors’ linkage values in that direction [20], [55].

BL(total)J = Zlij (228)

i=1
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Figure 2.5. A typical elbow method plot of distortion (inertia) vs. clus-
ter count used to determine an appropriate number of clusters in a dataset,
adapted from [54].

FL(total); = zn: L (2.29)
=1
Diffusion (DF)

A diffusion metric, proposed by (Alatriste-Contreras, 2012), is used to identify sectors
that may widely distribute the effect of an economic shock to its final demand among many
other sectors versus a concentrated few [16]. Diffusion is defined in equations 2.30 and 2.31
where s is the proportion of economic effect absorbed by sector i. Ranking sectors based
on their diffusion could aid in designing policies that maximize the effect of a stimulus

throughout the economy, or those that seek to limit the spread of a negative shock to final

demand [16]. A higher diffusion score d;, as calculated in Eq 2.31, indicates a sector 7 has
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good diffusion properties and the effects of a shock to its final demand will be distributed

more evenly throughout the 10 network.

Hi:

1

2 _

n
=1 j

n n

i/ Y L)? (2.30)

1 j=1

The above network metrics were used to elucidate the ways in which key sectors may
be important in the economy aside from having been identified as important to domestic
cobalt use based on how much cobalt they process relative to other sectors. A combination of
community detection and comparison of metric scores were used to identify additional sectors
of significance to the disaggregated 10 networks. The k-means clustering algorithm was used
to detect communities of sectors. The network metric scores of sectors in community with
previously identified key cobalt processing sectors were further explored for insights on the
relative importance of neighboring sectors, and locations in the MRIO model, based on the

criteria measured by each metric.

2.2 Results

2.2.1 Sectors Identified for Disaggregation in I0 Model

One hundred fifty-nine NAICS industries reported manufacturing or processing at least
25,000 pounds, or otherwise using at least 10,000 pounds of cobalt or cobalt compounds
in the 2012 Toxic Release inventory. These industries correspond to one hundred seventeen
BEA NAICS sectors; of these sectors, eleven were determined to be key sectors and had
cobalt value disaggregated from them in the national make and use tables. Table 2.5 shows
which sectors were disaggregated from the national 1O tables and Table 2.6 shows which

analagous sectors were disaggregated from the MRIO tables.
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Table 2.5.
Key sectors from which cobalt value was disaggregated in the make and use
tables. The value of annual cobalt consumption in 2012 was distributed among
the key sectors based on each sector’s cobalt use relative to other sectors
estimated from TRI data.

Key Sector Sector Description Co value allocated to Disaggregation

Code sector (in million USD) | Method
325180 Other basic inorganic chemical mfg. 30.30 | Default
325190 Other basic organic chemical mfg. 107.74 | Default
331313 Alumina refining and primary production 16.61 | Default
331410 Nonferrous metal smelting and refining 18.42 | Default
331490 Nonferrous metal rolling, drawing, extruding, alloying 34.72 | Default
333920 Material handling equipment mfg. 8.30 | Default
336370 Motor vehicle metal stamping 17.94 | Default
336412 Aircraft engine and engine parts mfg. 7.51 | Default
33211A All other forging, stamping, and sintering 11.17 | Default
324110 Petroleum refineries 14.94 | Manual
562000 Waste management and remediation services 7.34 | Manual

2.2.2 Network Analysis Results

Both the national and state-level IO networks of direct and indirect connections were
filtered to exclude intersectoral dependencies (network edges) equivalent to less than one
hundred dollars. This was necessary to process the state-level network due to computer
memory limitations encountered using both the networkx package in Python and igraph in
R (a node with memory of 96GB was used). Before filtering, the national 10 network had
416 nodes, 164,790 edges, and a density of 95 percent; the MRIO network had 16,744 nodes,
279,942,961 edges, and a density of 99.9 percent. After filtering edges representing economic
flows of less than 100 dollars, the national IO network had 416 nodes, 108,715 edges, and a
density of 63 percent; the MRIO network had 16,744 nodes, 2,183,716 edges, and a density
of 0.8 percent.

Spearman’s correlation coefficient was used to detect any monotonic relationships be-
tween network metrics that may not be linear in nature. The correlation between metrics in
the national and multiregional networks is illustrated by the heatmaps in Figure 2.6. More
than any other sector pairs, forward linkage and diffusion were strongly positively correlated

and shared an equal degree of correlation with other sectors. Based on the Spearman cor-
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Table 2.6.
Mapping of 6-digit BEA NAICS sectors to 4-digit NAICS sectors and cobalt
value allocated to each 4-digit key sector.

6-Digit 4-Digit Sector Description Co value allocated
Key Sector | Key Sector (in million USD)
324110 3241 Petroleum and Coal Products Manufacturing 14.94
325180 3251 Basic Chemical Manufacturing 138.04
325190
331313 3313 Alumina and Aluminum Production and Processing | 16.61
331410 3314 Nonferrous Metal Production and Processing 53.13
331490
333920 3339 Other General Purpose Machinery Manufacturing 8.30
336370 3363 Motor Vehicle Parts Manufacturing 17.94
336412 3364 Aerospace Product and Parts Manufacturing 7.51
562000 5622 Waste Treatment and Disposal 7.01
5629 Remediation and Other Waste Management Services | 0.34
33211A 3321 Forging and Stamping 11.17

relation coefficient, the strength of a measure appears to be influenced by one of two main
factors, upstream connections or downstream connections. Closeness centrality, eigenvector
centrality, backward linkage, and to a lesser extent authority score were all positively and
somewhat strongly correlated with in-degree and weighted in-degree. Forward linkage, dif-
fusion, and hub score were all positively and somewhat strongly correlated with out-degree
and weighted out-degree. Previous interpretations of hub scores representing important sup-
pliers in 1O networks and authority scores representing important buyers [16] are supported
by these results because it is expected for important suppliers to exhibit significance as it
relates to their outgoing connections and vice versa for significant buyers. In contrast to the
metrics positively correlated with strong outbound connections, PageRank showed a strong,
negative correlation with out-degree, weighted out-degree and forward linkage/diffusion; it
was the only metric to have a strong negative correlation with other metrics. This suggests
that those sectors with high PageRank would have a smaller than average effect on their
downstream sectors and an if there were shocks to the sector, a few downstream sectors
would absorb most of the impact. The negative correlation with hub score further supports
the interpretation that sectors highlighted by PageRank are not significant because they are

strong suppliers. See appendix Tables B.1 - B.6 for exact Spearman correlation coefficients
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and associated p-values. Key disaggregated sectors with the largest network metric scores

at both the national and multiregional level are presented in Table 2.7 and are discussed

further below.
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Figure 2.6. Heatmap of spearman correlation coefficient for each network
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metric pair in the national and MRIO networks.

Centrality

Centrality measures quantify a sector’s importance on a macro scale. The centrality-based
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measures applied to the IO networks included closeness centrality, betweenness centrality,

eigenvector centrality, PageRank, and hub and authority scores. In the network as a whole,

there is a strong, positive correlation between closeness centrality, and eigenvector centrality.

Betweenness centrality is zero for six of the disaggregated cobalt sectors in the national 1O
network and for all of the disaggregated cobalt sectors in the MRIO network. A betweenness

centrality of zero for these sectors means that they are not in the middle of any shortest
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paths. In a physical network this would indicate there are other routes cobalt could take in
order to be incorporated into a final product.

Closeness and betweenness centrality for disaggregated sectors was not estimated well
with the filtered network because so many of the smaller flows have been removed. An
estimate based on a more dense version of the network may provide a better indicator of
path-based centrality, provided the computational power to support processing a network
of this size is available. In terms of the petroleum refineries and waste management sectors
being the only two manually disaggregated sectors with betweenness centrality greater than
zero this could be because the other sectors share all the same shortest paths with their
superordinate sectors. Since the superordinate sectors have higher edge weight, the weighted
betweenness for them will be greater than for the disaggregated counterparts, therefore
giving the superordinate sectors a shorter, weighted shortest path, preventing the default
disaggregated sectors from intersecting any shortest paths.

There was a difference in which disaggregated key sectors had the highest centrality
scores in the national and multiregional IO networks. The key disaggregated sectors with
highest scores for each measure are shown in Table 2.7. In the national network, the Inor-
ganic chemical manufacturing sector had the highest eigenvector centrality (EC), PageRank
(PR), Hub (HS), and Authority scores (AS). In the multiregional network, the sector with
the highest centrality score varies between each metric, but Basic chemical manufacturing,
the sector in which Inorganic chemical manufacturing is aggregated, only has the highest
PageRank. In the national network, the following three sectors are ranked in the top five for
each centrality measure but the specific ranking withing the top five varies between mea-
sures: Waste management and remediation services, Nonferrous metal (except Al) smelting
and refining, and Material handling equipment maufacturing. In the multiregional network,
the Alumina and aluminum production and processing sector has by far the highest eigen-
vector centrality, with this sector in almost every state having among the highest EC scores
of all the disaggregated sectors. Motor vehicle parts manufacturing sectors in different states
have a higher rank in general in the multiregional network than in the national network. The
disaggregated sectors highlighted by the hub score and authority score in both the national

and multiregional network were the same, so HS and AS are included in the same group in
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Table 2.7. Hub score measures the importance of a note based on its connections to either
many or significant sectors, so sectors with high hub scores have been interpreted as good

"suppliers” in the IO network [10].

Community Detection

Figure 2.7 shows the results of the elbow method applied to the disaggregated cobalt
networks. The optimal number of clusters to group the data into is not as clear with the
IO data as it was in the example plot in Figure 2.5. However, in both the national and
multiregional networks, it appears that approximately six or fifteen is an appropriate number
of groups for K-means clustering. There are also decreasing returns on inertia reduction

around a cluster sizes of approximately twenty-three.
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Figure 2.7. The elbow method applied to the disaggregated 10 networks.

Table 2.8 provides information on the disaggregated sectors that were clustered together
using K-means in the national table. When the MRIO network was grouped into fifteen

clusters, over ninety-nine percent of all regionalized sectors were grouped in the same number
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of clusters. Therefore, using the K-means method for community detection, national table
clustering provided more insight into how the key sectors could be partitioned and which
non-key sectors are densely connected in the same community.

For comparison, the IO networks were also partitioned using the Gephi network analysis
software’s modularity algorithm. K-means is a common network clustering technique, but
there has been evidence that K-means sometimes mis-partitions data sets into different
clusters than those known to exist within the dataset [56]. K-means identifies related nodes
by minimizing SSE, while Gephi uses an optimization algorithm to minimize the modularity
of clusters (a measure of the density of connections within the cluster compared to the
density of connections between clusters). Partitioning the national IO network into fifteen
clusters using Gephi resulted in groupings containing key sectors shown in Table 2.9. The
MRIO network was then used to identify regionally-specific versions of these sectors that
stood out based their ranking for selected network measures. The locations of these sectors
and whether they also reported cobalt use in the 2012 TRI is described in Table 2.12. The
K-means algorithm was also used to partition the national-level, coefficient A matrix into
clusters. It was expected that the sectors in communities derived from the A matrix would
be more recognizably similar in function due to only direct connections being represented.
However, all disaggregated key cobalt sectors were grouped in the same cluster, with the
majority of other sectors, so no additional information was gleaned from using the A instead

of the L matrix for clustering with K-means.

Linkages

The significance of the IO sectors was also evaluated based on the sector’s linkage mea-
sure. Disaggregated sectors and their superordinate counterparts at the national level are
classified by linkage measures in tables 2.10 and 2.11. All but four disaggregated key sectors
in the national network had higher than average back linkage (BL) measures. Of the disaggre-
gated sectors, the following had the top five highest BL measures out of all sectors, disaggre-
gated or not, in order of decreasing magnitude: Inorganic Chemical Mfg. (325180), Material
Handling Equipment Mfg. (333920), Waste Mgmt. and Remediation Services (562000), and
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Nonferrous Metal Smelting and Refining (331410). The superordinate sector counterparts
from which cobalt value was disaggregated were not also among the highest ranked sectors
in the disaggregated network and in the original network, Inorganic Chemical Mfg. and Waste
Mgmt. and Remediation Services do not display higher than average BL. This suggests that
the disaggregation method has highlighted these four cobalt sectors as having a connection
to their upstream supply chains that is distinctly stronger than that of the sector in which
they were aggregated and that they are significant among the key sectors based on the BL
metric. No disaggregated sectors in either the national or MRIO network had a higher than
average forward linkage (FL). This may be, in part, be because many of the outgoing edges
from these sectors represented transactions less than one hundred dollars and were therefore
filtered from the network. Some key sectors may have had higher than average linkage mea-
sures if the full network was considered. However, small incoming edges were also filtered,
showing there were larger transactions between industries in the upstream supply chains of

the disagregated sectors compared to these sector’s downstream exchanges.

Table 2.10.
Classification of linkage results, National 10 key cobalt disaggregated sectors

Total [f(¢)] Forward Linkage
Low (<1) High (>1)

Low (<1) All other forging, stamping, sintering (33211A)
Motor Vehicle Metal Stamping (336370) —
Total [b(t)] Nonferrous Metal Processing (331490)
Backward Linkage Organic Chemical Mfg. (325190)

High (>1)
Inorganic Chemical Mfg. (325180)
Material Handling Equipment Mfg. (333920)
Waste Mgmt. and Remediation Services (562000) —
Nonferrous Metal Smelting and Refining (331410)
Petroleum Refineries (324110)
Aircraft Engine Mfg. (336412)
Primary Aluminum Production (331313)

As can be seen in Figure 2.6, there is a nearly one to one positive correlation between
forward linkage and diffusion, diffusion being an indicator of how well a sector can buffer

economic shocks [16]. Accordingly, in the national-level table the disagregated sectors are
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ranked in the same order using either of these two metrics and the rankings are nearly
identical in the MRIO network. However, all disaggregated sectors at the national level have
low forward linkages compared to backwards linkage and according to the criteria generally

used for defining high linkage values as being greater than one when normalized.

Table 2.11.
Classification of linkage results, National IO key cobalt parent sectors

Total [f(t)] Forward Linkage
Low (<1) High (>1)

Low (<1) Aircraft Engine Mfg. (336412) Inorganic Chemical Mfg. (325180)
Waste Mgmt. and Remediation Services (562000)
Total [b(t)]
Backward Linkage Petroleum Refineries (324110)
Motor Vehicle Metal Stamping (336370) Organic Chemical Mfg. (325190)
High (>1) Material Handling Equipment Mfg. (333920) Nonferrous Metal Processing (331490)
Nonferrous Metal Smelting and Refining (331410)
All other forging, stamping, sintering (33211A)
Primary Aluminum Production (331313)
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Diffusion

All the disaggregated cobalt sectors have a very low diffusion capacity, which can be
interpreted as impacts to these sectors would have a stronger relative effect on their down-
stream industries. Cobalt sectors with lowest diffusion would therefore pose a greater risk
to supply chain continuity if they were disrupted. If a sector is strongly linked to its entire
direct and indirect downstream supply chain, as measured by forward linkage, the effect of

an impact to that sector can be more evenly distributed across the supply chain.

2.3 Discussion

At the national level, the chemical manufacturing sectors and in particular inorganic
chemical manufacturing was a disaggregated cobalt sector that was consistently highlighted
as one of the most significant sectors across all metrics. Waste management also had a
consistently high ranking using all measures except forward linkage. The most cobalt value
was allocated to the organic chemical manufacturing sector, based on analysis of TRI data,
so the significance of inorganic chemical manufacturing and waste management was not due
to these sectors have a large portion of total cobalt value allocated to them from the start.
Nonferrous metal smelting and refining is also highlighted as significant in the national 10
network but to a less extent than chemical manufacturing and waste management. However,
in the MRIO, sectors that rely on nonferrous metal smelting and refining, i.e., sectors using
cobalt alloys, show higher significance than they did in the national network.

Regarding the approach chosen for allocation of cobalt value to states in the MRIO table,
cobalt value was allocated across regions based on the sector’s percentage of national output
coming from each region. This economic-based approach was chosen to allow for differen-
tiation between the regional allocation of cobalt supply and use. An alternative approach
to calculating the regional weights for disaggregation could be to use the facility location
data included in the TRI to determine where to allocate cobalt value. This could be consid-
ered a mass-based regional allocation approach because the disaggregation weight would be
calulated based on the share of total onsite stock in different regions. In this approach the

share of a key sector’s allocated value would be further allocated to states r using equations

60



I ‘HO ‘AN ‘OS ‘VO ‘XL / 3O ‘VA ‘O ‘DN ‘VI A Td / ud SODIAIOG TOIRIPOUIDY DU “JWSIN 93SBA\ 00089 G59S
XI ‘LD ‘S ‘VO ‘VM A 14 Ednooéoqv sunmjornuewr syred sUISUS puUR SULSUS JRIDITY Z1v9ee 79¢¢

3O ‘40 ‘Dd “dd ‘Td / dd ‘40 ‘XL ‘T4 ‘14 A 1d / Dd surmgoenuewt juowdmbe Arerixne pue syred jedare BYQO  €IFILE  FILE

A3 IO ‘HN ‘LA M0 N ad SuumjorjnueW Yeory  [1F9gE  F98¢

ds ‘NN ‘HN ‘LA ‘IIN / N ‘IIN ‘NN ‘LA ‘LN A 1d / ud Sunmjpoegnuewt yui Supull  016S3E  6SCE
IIN MV ‘TH ‘Dd ‘NN \ Md ‘AN XL ‘VD ‘14 N Md ‘DH -8y adeys pue A@:%&%m& ,Emuxwv 100ys ‘ogerd soryserd pejeururer| 0€192¢ 19z2¢

I °Vd ‘VD ‘VT ‘XL A T4 SoLPUYAT Wdo1dd  O0TT¥ge  1¥eE

VM ‘TH ‘LA ‘LIN ‘dS / d9d ‘AN ‘XL VD “1d N 14 ‘DA Surmjoenuew a[330q SOUS[J 09798 192€

<>> pZ,H F,H\O r.%vﬁ FMO Z ﬁ& wﬁﬁ:,ﬁvd@:ﬁﬁﬁd poSTO,HQ UOHEC.H o.:EﬁE:.w Hoﬂuo Oommmm mmmm

DA ‘IH ‘Al ‘LN ‘T4 / [N ‘ZV DN ‘SM “1d N 1d / dd Sunuioy [or wosn) - FIIZEe  16eE

NN ‘AN ‘AN TH ‘dS / IH XL VO “1d ‘dS N ud / Dd SuLMORINULW (D PUL dIlM ATIOUS PUE UOMJRIUNWWO))  (Z6SEE  6SEE

11 “TV ‘IIN ‘HO ‘Vd ‘NI A 14 Surmgoeynuew £0[[e0lIof pue S[[IW [9938 pue uox]  OIT1¢e  T1¢E

MV ‘Ad ‘DA ‘AM ‘TH / VA “Id ‘XL ‘VD A 1d / Dd Surfofe pue Surpnnxo ‘Suimerp ‘Suror wddoy  0gkIes  FICE

"0 ¥V ‘DS ‘NL ‘DN N dad SOINJONIYS [RIJULPISAIUOU WYY 0JTEET  GIET

(s)orryowr Suryuel 9soySy I, 0 Z10g Ul (s)ormyory $10909S PaYLFOISTRSIP FUIUTRIUOD SINSN[D UL 103098 O]  10109G

uo paseq soje)s jueuro  (HSIP-9) 10909g  Sunjuey] 9soySIy

$O100S 1SOUSIY [IIM SI01098 J[R(0I-UON

[euoneN  OIMIN

"U0119930p AJTUNUITOD JIOM)OU ()] [RUOIJRU UO Paseq 9dURIYIUSIS JO 103098 ATRPUOISS JO SUOI}RIO] I0[R]\
'CT°C Pl9&8L

61



2.32 - 2.34. Figure 2.8 shows how cobalt value was allocated based on the economic strength
of sectors in a region in comparison to how it would would be allocated using a regional

distribution determined from the TRI.

10

Syr = _ sifir (2.32)
i=1
Sy =>" Sy, (2.33)
r=1
Siry
/IU'/T = — (234)
J Sj/

4’ is a key sector to which cobalt value is allocated in the multiregional make/use tables.
n is the number of regions with facilities reporting under sector j”.

s; is the assumed average onsite stock for a reported MAOC range 1.

fir is the number of facilities in region r reporting range 7.

Sjr is the estimated total average MAOC for facilities reporting under j” in region 7.
wj~ is the weight or share of sector j” value to allocate to region 7.

CAj is the cobalt value allocated to j’ in 7.

Use of TRI data for 10 analysis

The TRI was used to estimate the relative magnitude of cobalt use among sectors, but it
could also be used to calculate the regional weights for disaggregation of the multiregional
IO tables instead of the ratio of regional output to national output. The average onsite
stock (MAOC) linked to facility location could be used to determine the key sectors for
disaggregation and the distribution of key sector value across regions. TRI data provides
exceptional data in terms of location and industry classification, but the uncertainty around
relative use quantities, which are understandably in place to protect sensitive production
information, also limits its usefulness for material flow accounting. Apart from including
more specific data on facility throughput, this uncertainty could be better addressed with

uncertainty analysis of TRI data.
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Considering the best potential applications of the TRI data to MRIO analysis, it perhaps
the most ideal data source available estimating the largest national processors of cobalt or
other regulated toxic substances. In using the TRI for traditional 1O analysis it could be
used primarily to determine the sectors and locations to focus simulated economic shocks.
The MRIO and national IO tables could then be used to simulate the potential impact to
the rest of the economy that would occur from shocks to the largest industries processing
cobalt in specific regions.

Future studies that analyze similarly sized MRIO networks would benefit from explo-
ration of other graph analysis packages designed for large networks and multiprocessing
techniques to compute graph algorithms in order to allow for the full IO network to be con-
sidered. Filtering the network affects its structure, which in turn likely alters the metrics

based on a filtered versus a complete network.
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Economic allocation
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Figure 2.8. Comparison of economic and mass-based allocation

of cobalt

value across regions in the MRIO tables. Using economic allocation, value was
distributed among states based on the state’s share of national output or use
of the key sector from which cobalt was being disaggregated. In mass-based
allocation, average onsite stock as reported in the EPA TRI would be used to
determine the distribution of key sector value across states. Note the difference

in color scale ranges between economic and mass-based allocation.
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3. CONCLUSIONS AND FUTURE WORK

3.1 Conclusions

The key sectors identified and sectors that are densely connected to them are those whose
impact from disruptions to imported Cobalt supply may result in the largest economy-wide
impacts. The locations highlighted by analysis of the network structure are places where it
may be prudent to put buffers in place to mitigate disruptions.

The future supply of cobalt for lithium-ion batteries is of greatest concern because this
will be the primary driver of this material’s increased demand. However, as growth in all
sectors where cobalt is used is also expected to continue and since these are many of the
sectors in the US currently reliant on cobalt supplies, securing these sectors again supply
risks is not something that should be overlooked.

A limitation of this study is that it does not capture the exchange of cobalt in imported
products, only products that required the processing of the material domestically. This
means effectively all electric vehicle batteries are not explicitly considered in the year of
investigation because they were not produced at a large scale domestically. A limitation of
this project’s current analysis but not the method is that it does not currently make visible
the battery manufacturing industry’s economic activity. This is because the analysis is based
on 2012 data when there was much less battery production, but still, there is not sufficient
large format lithium-ion battery manufacturing occurring in the US for this sector to be a
major processor of cobalt based on their reporting to other sectors in the TRI Inventory. For
example, as of 2019, notable electric vehicle manufacturers like TESLA, who are beginning
to produce their own batteries, were not processing enough to warrant reporting it to the
TRI. As electric vehicle and other large format Lithium ion battery makers increase domestic
production to expected levels, it will be capture and likely highlighted by the analysis of TRI
data proposed in this work.

The approach presented in this work were intended to enable a relatively quick screen
of the IO network to identify unknown sectors of significance to a material, but pursuing
additional data on interindustry transactions could be used to manually disaggregate more

key sectors or used to filter the resulting network of nonphysical flows similar to in the
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WIO-MFA method. Provided this level of detailed data is available, WIO-MFA would be
another feasible approach for constructing the network if analysis on a physical network is
preferred. Implementation of WIO-MFA or manually disaggregating more sectors with the
method used in this work would require more readily accessible data on at least the input
quantities, preferably physical, of the material of interest to processing industries.

Supply chain data is increasingly being sought for ESG reporting purposes. As many
companies look to make their supply chain operations more transparent and suppliers at
all levels are held to higher expectations, desired data on producer’s manufacturing and
operational conditions is being sought and in cases, required. Expanding readily available
supply chain data on physical inputs (but necessarily not product formulations or processes)
and production conditions at a more detailed level, would greatly benefit economy-wide and

individual companies’ supply chain management efforts.

3.1.1 Directions for Future Research

Improvements to the disaggregation methods used in this study would include conducting
a sensitivity analysis on the range of values used as proxy consumption data from the TRI
for each sector.

Identifying clusters of connected sectors in 1O networks would be another area for addi-
tional research. Kmeans was the primary clustering approach used in this study, but other
community detection algorithms may be better suited for IO networks [47]. This will require
additional consideration into best practices for navigating the computational intensity of
network analysis on large graphs.

An intended direct application of this work is to inform the development of physical
input-output tables (PIOTs) for cobalt-based products. The key sectors identified in this
study would be the most prioritized industries to include in process-model based PIOTs [57],
[58]. Planning future reuse and recycling supply chains for critical materials would be better
done based on physical flow analysis instead of monetary flow analysis, which is already

being pursued by research such as WIO-MFA and buiding PIOTS from process models. The
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latter being directly meant to address the long-standing concern that PIOTs derived from
MIOTs are unlikely to reflect the actual physical flows they approximate [59].

Disaggregated 10 networks for other critical materials are also being developed with this
approach. The focus of this study and its immediate extensions is critical materials for
energy storage, but applying the use of TRI data to estimate relative sector consumption
could potentially be applied to a diverse set of regulated chemicals and compounds.

Using the disaggregated, monetary MRIO network for traditional IO analysis is another
area of interest for future work. Modeling policy scenarios that incentivize regenerative use
of critical materials, simulate implementation of technology solutions, as well as modeling

possible disruptions to key sectors could also stem from this work.
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A. NAICS TO BEA CODE MAPPING

Table A.1.
2012 Cobalt EPA TRI to equivalent 2012 BEA modified
NAICS codes.

Mapping of reported NAICS codes in

TRI code BEA code TRI code BEA code TRI code BEA code
1 115210 115000 54 331210 331200 107 333514 333514
2 212112 212100 55 331221 331200 108 333515 333518
3 212221 2122A0 56 331222 331200 109 333516 333517
4 212234 212230 57 331312 331313 110 333611 333611
5 212299 2122A0 58 331314 331313 111 333613 333613
6 213113 21311A 59 331315 33131B 112 333618 333618
7 221112 221100 60 331411 331410 113 333911 33391A
8 221121 221100 61 331419 331410 114 333922 333920
9 221122 221100 62 331421 331420 115 333924 333920
10 311119 311119 63 331423 331420 116 333991 333991
11 311221 311221 64 331491 331490 117 333992 33399A
12 314110 314110 65 331492 331490 118 333993 333993
13 321219 321200 66 331511 331510 119 333995 333998
14 321911 321910 67 331512 331510 120 333996 333998
15 322110 322110 68 331513 331510 121 333999 33399A
16 322121 322120 69 331525 331520 122 334413 334413
17 322130 322130 70 331528 331520 123 334514 334514
18 324110 324110 71 332111 33211A 124 335221 335221
19 325110 325110 72 332112 33211A 125 335228 335228
20 325131 325130 73 332116 33211A 126 335311 335311
21 325188 325180 74 332117 33211A 127 335911 335911
22 325192 325190 75 332213 332200 128 336120 336120
23 325193 325190 76 332311 332310 129 336211 336211
24 325199 325190 7T 332321 332320 130 336212 336212
25 325211 325211 78 332323 332320 131 336311 336310
26 325212 3252A0 79 332420 332420 132 336312 336310
27 325311 325310 80 332510 332500 133 336330 3363A0
28 325312 325310 81 332618 332600 134 336360 336360
29 325314 325310 82 332710 332710 135 336370 336370
30 325320 325320 83 332721 332720 136 336399 336390
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Table A.1. continued

TRI code BEA code TRI code BEA code TRI code BEA code
31 325510 325510 84 332722 332720 137 336412 336412
32 325613 325610 85 332811 332800 138 336413 336413
33 325910 325910 86 332812 332800 139 336611 336611
34 325991 3259A0 87 332813 332800 140 336999 336999
35 325998 3259A0 88 332912 33291A 141 337127 337127
36 326121 326120 89 332919 33291A 142 337215 337215
37 326122 326120 90 332994 33299A 143 339112 339112
38 326140 326140 91 332996 332996 144 339113 339113
39 326199 326190 92 332998 332999 145 339114 339114
40 326211 326210 93 332999 332999 146 339920 339920
41 326299 326290 94 333111 333111 147 339991 339990
42 327112 327100 95 333112 333112 148 339995 339990
43 327113 327100 96 333120 333120 149 339999 339990
44 327211 327200 97 333131 333130 150 423520 423A00
45 327213 327200 98 333132 333130 151 423930 423A00
46 327215 327200 99 333210 333242 152 424690 424A00
47 327310 327310 100 333291 33329A 153 424710 424700
48 327390 327390 101 333294 33329A 154 532412 532400
49 327910 327910 102 333319 333318 155 541712 541700
50 327993 327993 103 333412 333413 156 562211 562000
51 327999 327999 104 333415 333415 157 562920 562000
52 331111 331110 105 333511 333511 158 811310 811300
53 331112 331110 106 333512 333511 159 928110 S00500
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B. CORRELATION BETWEEN NETWORK METRICS

Spearman correlation coefficient for each network metric pair

Table B.1.
orig spearman_ rho

in_deg out deg deg weight in deg weight out_ deg weight deg close between EC PR hub auth BL FL  diffusion
0 1.00

in_deg 1 -0.18 I8 0.78 -0.10 0.29 0.22 1.00 0.39 0.22 060 0.78 -0.10 -0.1T
out_ deg -0.18 1 0.86 -0.09 0.88 0.64 -0.19 0.71 -0.18 -0.89 0.71 0.21 -0.09 0.87 0.90
deg 0.18 0.86 1 0.21 0.77 0.64 0.18 0.84 0.18 -0.70 0.70 0.42 0.21 0.76 0.80
weight in deg 0.78 -0.09 021 1 0.08 0.50 0.78 0.18 0.78 0.24 042 0.84 1.00 0.08 0.05
weight out_deg -0.10 0.88 0.77 0.08 1 0.83 -0.10 0.63 -0.09 -0.92 0.87 0.39 0.08 1.00 0.99
weight deg 0.29 0.64 0.64 0.50 0.83 1 0.29 0.49 0.30 -0.61 0.96 0.73 0.51 0.83 0.81
close 1.00 -0.19 0.18 0.78 -0.10 0.29 1 0.21 1.00 0.39 0.21 060 0.78 -0.10 -0.11
between 0.22 0.71 0.84 0.18 0.63 0.49 021 1 0.22 -0.55 0.53 0.30 0.18 0.63 0.64
EC 1.00 -0.18 0.18 0.78 -0.09 0.30 1.00 0.22 1 0.38 0.22 0.60 0.78 -0.09 -0.10
PR 0.39 -0.89 -0.70 0.24 -0.92 -0.61 0.39 -0.55 038 1 -0.70 -0.14 0.24 -0.91 -0.94
hub 0.22 0.71 0.70 0.42 0.87 0.96 0.21  0.53 0.22 -0.70 1 0.73 0.42 0.87 0.86
auth 0.60 0.21 042 0.84 0.39 0.73 0.60 0.30 0.60 -0.14 0.73 1 0.84 039 0.38
BL 0.78 -0.09 0.21 1.00 0.08 0.51 0.78 0.18 0.78 024 042 084 1 0.08 0.05
FL -0.10 0.87 0.76 0.08 1.00 0.83 -0.10 0.63 -0.09 -0.91 0.87 0.39 0.08 1 0.99
diffusion -0.11 0.90 0.80 0.05 0.99 0.81 -0.11 0.64 -0.10 -0.94 0.86 0.38 0.05 0.99 1
Table B.2.

national-disag spearman_ rho

in_deg out deg deg weight in deg weight out deg weight deg close between EC PR hub auth BL FL  diffusion

in_ deg 1 -0.17 0.17 0.79 -0.10 0.32 1.00 0.21 1.00 038 024 062 079 -0.10 -0.11
out_ deg -0.17 1 0.87 -0.09 0.89 0.63 -0.18 0.73 -0.17 -0.89 0.70 0.18 -0.09 0.89 0.92
deg 0.17 0.87 1 0.19 0.79 0.64 0.17 0.86 0.18 -0.73 0.70 0.39 0.19 0.79 0.81
weight _in_deg 0.79 -0.09 0.19 1 0.06 0.52 0.79 0.18 0.79 0.24 043 084 1.00 0.07 0.03
weight_out deg -0.10 0.89 0.79 0.06 1 0.80 -0.10 0.67 -0.09 -0.92 0.84 0.35 0.06 1.00 0.99
weight _deg 0.32 0.63 0.64 0.52 0.80 1 0.32  0.50 0.32 -0.59 0.96 0.73 0.52 0.80 0.78
close 1.00 -0.18 0.17  0.79 -0.10 0.32 1 0.20 1.00 038 0.23 0.62 0.79 -0.10 -0.11
between 0.21 0.73 0.86 0.18 0.67 0.50 020 1 0.21 -0.58 0.54 0.29 0.18 0.67 0.68
EC 1.00 -0.17 0.18 0.79 -0.09 0.32 1.00 0.21 1 0.38 0.24 062 0.79 -0.09 -0.10
PR 0.38 -0.89 -0.73 0.24 -0.92 -0.59 0.38 -0.58 038 1 -0.68 -0.11 0.24 -0.92 -0.94
hub 0.24 0.70 0.70 0.43 0.84 0.96 0.23 0.54 0.24 -0.68 1 0.72 0.43 0.84 0.83
auth 0.62 0.18 0.39 0.84 0.35 0.73 0.62 0.29 0.62 -0.11 0.72 1 0.84 035 0.34
BL 0.79 -0.09 0.19 1.00 0.06 0.52 0.79 0.18 0.79 024 043 084 1 0.07 0.03
FL -0.10 0.89 0.79 0.07 1.00 0.80 -0.10 0.67 -0.09 -0.92 0.84 0.35 0.07 1 0.99
diffusion -0.11 0.92 0.81 0.03 0.99 0.78 -0.11 0.68 -0.10 -0.94 0.83 0.34 0.03 099 1
Table B.3.

mrio_spearman_ rho

Total mdustry output_Ti-dogree_Out-degroc_DogreeWeighted Ti-dogrec Weightod out-degrec _Weighted dogree Closencss Botweennoss Figencontrality PageRank Hub scorc Authority scoreBack inkage Forward Tikage Diffusion
Tortal mndustry output T 005 E U5 0T 0T EE 027 05 015 07 740 037 02T T T
In-degree 0.05 1 -0.25 0.00  -0.02 -0.02 -0.02 0.03 0.01 0.00 -0.02 0.02 -0.03 -0.04 0.04 0.04

-0.25 1 -0.01  0.00 0.00 0.00 -0.03 0.00 -0.02 0.01 -0.03 0.00 0.01 -0.03 -0.03

0.00 -0.01 1 0.65 0.65 0.65 0.44 0.42 0.29 -0.14 0.34 0.48 0.62 0.30 0.29

-0.02 0.00 065 1 1 1 0.23 0.18 0.46 0.44 -0.17 0.40 0.96 -0.22 -0.22

0.02 0.00 065 1 1 1 0.23 0.18 0.46 0.44 0.17 0.40 0.96 0.22 0.22

0.02 0.00 065 1 1 1 0.23 0.18 0.46 0.44 0.17 0.40 0.96 0.22 0.22

0.03 0.03 044 023 0.23 0.23 1 0.26 0.11 0.26 0.51 0.35 0.13 0.43 0.43

0.01 0.00 042 0.8 0.18 0.18 0.26 0.17 0.38 0.35 0.14 0.13 0.67 0.66

ige 0.00 0.02 0.29 0.46 0.46 0.46 0.11 017 0.30 0.11 0.15 0.46 0.03 0.03

PageRank -0.47 -0.02 0.01 -0.14 044 0.44 0.44 -0.26 -0.38 0.30 1 0.69 0.09 0.51 0.74 0.74

Hub score 0.40 0.02 -0.03 034 017 -0.17 -0.17 0.51 0.35 -0.11 -0.69 1 0.23 -0.21 0.73 0.73

Authority score -0.37 -0.03 0.00 048 040 0.40 0.40 0.35 -0.14 0.15 0.09 0.23 1 0.40 -0.18 -0.18

Back linkage -0.24 -0.04 0.01 062 0.96 0.96 0.96 0.13 0.13 0.46 0.51 -0.21 0.40 1 -0.27 028
Forward linkage 0.71 0.04 -0.03 030 -0.22 -0.22 -0.22 043 0.67 -0.03 -0.74 0.73 -0.18 -0.27 1 1
Diffusion 0.71 0.04 -0.03 029 022 -0.22 -0.22 043 0.66 -0.03 -0.74 0.73 -0.18 -0.28 1 1
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