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ABSTRACT

Cryptography allows us to do magical things ranging from private communication over a

public channel to securely evaluating functions among distrusting parties. For the real-world

implementation of these tasks, efficiency is usually one of the most desirable objectives. In

this work, we advance our understanding of efficient cryptographic constructions on several

fronts.

• Non-malleable codes are a natural generalization of error-correcting codes. It provides

a weaker yet meaningful security guarantee when the adversary may tamper with the

codeword such that error-correcting is impossible. Intuitively, it guarantees that the

tampered codeword either encodes the original message or an unrelated one. This line

of research aims to construct non-malleable codes with a high rate against sophisticated

tampering families. In this work, we present two results. The first one is an explicit rate-

1 construction against all tampering functions with a small locality. Second, we present

a rate-1/3 construction for three-split-state tampering and two-lookahead tampering.

• In multiparty computation, fair computation asks for the most robust security, namely,

guaranteed output delivery. That is, either all parties receive the output of the protocol,

or no party does. By relying on oblivious transfer, we know how to construct MPC

protocols with optimal fairness. For a long time, however, we do not know if one can

base optimal fair protocol on weaker assumptions such as one-way functions. Typically,

symmetric-key primitives (e.g., one-way functions) are much faster than public-key prim-

itives (e.g., oblivious transfer). Hence, understanding whether one-way functions enable

optimal fair protocols has a significant impact on the efficiency of such protocols. This

work shows that it is impossible to construct optimal fair protocols with only black-box

uses one-way functions. We also rule out constructions based on public-key encryptions

and f -hybrids, where f is any incomplete function.

• Collective coin-tossing considers a coin-tossing protocol among n parties. A Byzantine

adversary may adaptively corrupt parties to bias the output of the protocol. The security

ε is defined as how much the adversary can change the expected output of the protocol.

In this work, we consider the setting where an adversary corrupts at most one party.
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Given a target security ε, we wish to understand the minimum number of parties n

required to achieve ε-security. In this work, we prove a tight bound on the optimal

security. In particular, we show that the insecurity of the well-known threshold protocol

is at most two times the optimal achievable security.
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1. INTRODUCTION

Cryptography enables mutually distrusting parties to accomplish diverse tasks without di-

vulging secretive information. For applications of these cryptographic primitives in real-world

scenarios, efficiency is one of the most desired features. For different tasks, one usually mea-

sures efficiency through various means.

For encryption/encoding schemes, the most crucial efficiency measure is the rate of the

scheme. That is, we would like to minimize the ratio between the length of the message

and the length of the ciphertext/codeword. This measure is evident as higher rates bring

lower communication and storage costs. As another example, in the interactive setting, one

would like to encode the protocol between parties into a new protocol such that even if an

adversary may maliciously tamper a certain fraction of the interaction, parties could still

realize the original protocol correctly. In this fascinating research field, namely interactive

coding [ Sch96 ], minimizing the rate between the communication cost of the original protocol

and that of the encoded protocol is one of the most significant objectives [ KR13 ,  Hae14 ,

 GH15 ,  BEGH16 ].

Another critical principle is the computational hardness assumptions required to realize

cryptographic tasks. In cryptography research, we typically aim to build our primitives

using minimal computational hardness assumptions. Intuitively, the weaker assumptions

a construction assumes, the more reliable it shall be. Besides security concerns, founding

cryptographic primitives on weaker assumptions often translate into higher efficiency as

well. For example, (the stronger) public-key assumptions are typically more computational

costly in practice than (the weaker) symmetric assumptions. Hence, to encrypt a long

message using public-key encryption, it is preferable to first establish a (short) secret key

using PKE and then encrypt the long message using this secret key under a private-key

encryption scheme. In another example, to generate multiple instances of oblivious transfer

correlation, 

1
 it is also preferable to first generate a few instances of oblivious transfer and

then extend it through symmetric-key primitives. Such protocols are called OT extension

protocols [  Bea96 ,  IKNP03 ,  GMMM18 ].
1

 ↑ In an oblivious transfer correlation, Alice holds randomness (c0, c1), and Bob holds randomness (b, cb).
Such correlations are fundamental to secure function evaluation protocols.
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Finally, in interactive protocols, round complexity is another notable measure of effi-

ciency. This is motivated as network latency is usually several magnitudes higher than the

local computation costs. Hence, the round complexity usually dictates the time cost of

a cryptographic protocol, and a lot of research effort is devoted to finding round-optimal

protocols. For example, in the field of multi-party computation, a gigantic body of litera-

ture [ BMR90 ,  KOS03 ,  KO04 ,  Pas04 ,  PW10 ,  Goy11 ,  GMPP16 ,  ACJ17 ,  BHP17 ,  COSV17b ,

 COSV17a ,  BL18 ,  GS18 ,  CCG+20 ] studies the lower and upper bounds on the round com-

plexity.

In this work, we continue the research on finding efficient constructions of various cryp-

tographic primitives. In particular, we study the following primitives.

Non-malleable Codes. Non-malleable code [ DPW10 ] is a primitive in tamper-resilient

cryptography. Intuitively, it is a coding scheme with the security guarantee that a tampering

function cannot tamper the encoding of a message m into the encoding of a related message

m′. In this work, we show how to construct non-malleable code against various tampering

families with (near) optimal rates.

Fair Multiparty Computation. Fair multiparty computation facilitates multiple parties

to evaluate functions over their respective inputs securely. It mandates the strongest security

guarantee such that the honest parties shall always receive the output even when malicious

parties prematurely abort. For the representative task of fair coin-tossing, we study the

minimal computational assumptions required for achieving optimal fairness.

Collective Coin-tossing. A collective coin-tossing protocol [ BL85 ] enables multiple par-

ties to upgrade their private randomness into public randomness. A (computationally un-

bounded) Byzantine adversary may adaptively corrupt some parties and fix their messages

arbitrarily. The insecurity is the maximum deviation an adversary can cause in the expected

output of the protocol. Given a target insecurity ε, our work studies the minimum number

of parties/rounds required to ensure ε-security.
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1.1 Our Results

1.1.1 Non-malleable Codes

Consider a signature scheme with a signing function Sign. The traditional security guar-

antees that an adversary cannot forge the valid signature of a message m under the secret key

sk even if she may query the signing function Sign(sk, ·) with any message m′ 6= m. However,

a real-world adversary might not adhere to only using the signing function Sign(sk, ·) as a

black box. For example, it might tamper with the physical memory that stores the secret key

sk. Consequently, the memory might store a different secret key sk′ and the adversary now

gains access to the functionality Sign(sk′, ·). The traditional security of signature schemes

provides no guarantee under such attacks. However, observe that if the adversary could only

change the original secret key sk to some fixed secret key sk′, then this attack is ineffective

as querying Sign(sk′, ·) provides no information of sk.

Non-malleable code [ DPW10 ] is a primitive that provides an algorithmic solution against

such tampering attacks. Intuitively, encoding the secret key using a non-malleable encoding

ensures that the tampered codeword either encodes the original secret key sk or an unrelated

one sk′. Thus, the security of the signature scheme is restored even in the presence of

tampering attacks.

Formally, we consider a coding scheme with a (possibly probabilistic) encoding function

Enc : {0, 1}` → {0, 1}n and a (deterministic) decoding function Dec : {0, 1}n → {0, 1}`∪{⊥}.

A tampering family F is an arbitrary collection of functions f : {0, 1}n → {0, 1}n. For

any message m ∈ {0, 1}` and any tampering function f , consider the following tampering

experiment.

Tampermf :=


c← Enc(m), c̃ = f(c), m̃ = Dec(c̃)

Output m̃

 .
To ensure that Tampermf is either the orignal message m or an unrelated message m′, we

require the existence of a simulator Sim(f). This simulator Sim(f) only takes the tampering

function f as input and outputs a distribution over {0, 1}` ∪ {⊥, same∗}. Intuitively, Sim(f)

outputs m′ ∈ {0, 1}` ∪ {⊥} if the tampering function f replaces the encoding of m to be

the encoding of m′. On the other hand, Sim(f) outputs same∗ if the tampering function f

13



does not change the encode message. Formally, it guarantees that the following statistical

distance 

2
 is small.

SD
(
Tampermf , Copy(Sim(f),m)

)
,

where Copy(x, y) outputs y if x = same∗ and output x otherwise.

We say a coding scheme (Enc,Dec) is (F , ε)-non-malleable if for all message m ∈ {0, 1}`

and tampering function f ∈ F ,

SD
(
Tampermf , Copy(Sim(f),m)

)
6 ε.

Observe that it is impossible to achieve non-malleability for the tampering family F con-

sisting of all tampering functions. To see this, consider the tampering function f(c) := Enc(Dec(c) + 1).

That is, this tampering function decodes to obtain the original message m, increases the mes-

sage by 1, and finally re-encodes the new message m+ 1. Clearly, the tampering experiment

with message m and tampering function f always outputs m + 1 (which is impossible to

simulate). Therefore, non-malleability is only achievable for restricted tampering families.

Naturally, the quality of non-malleable codes can be measured through (1) the rate of the

coding scheme (i.e., `/n) and (2) the sophistication of the tampering family. In this work,

we consider the following three natural tampering families.

Local Tampering. A tampering function is δ-local if every output bit depends on (at most)

δ input bits. The δ-local tampering family is the collection of all δ-local tampering functions.

We obtain the following results regarding non-malleable codes for local tampering.

Informal Result 1. For any positive constant ξ < 1, there is an explicit rate-1 non-malleable

code against ξ log2 n-local tampering functions.

Since for any δ = ω(1), the δ-local tampering family is a superset of the NC0 tampering, 

3
 

we also get the following corollary.

Informal Result 2. There is an explicit rate-1 non-malleable code against NC0 tampering.
2

 ↑ The statistical distance between two distributions A and B over the same (enumerable) sample space Ω
is defined as 1

2
∑
ω∈Ω |Pr[A = ω]− Pr[B = ω]|.

3
 ↑ NC0 is the class of functions that can be computed by constant-depth circuits with bounded fan-in.
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Three-Split-state Tampering. In the k-split-state tampering model, the codeword is

divided into k states. The adversary tampers each state independently (and arbitrarily). In

this work, we consider the case of k = 3.

Informal Result 3. There is an explicit rate-1/3 non-malleable code against the three-split-

state tampering family.

As Cheraghchi and Guruswami [ CG14a ] show that the optimal achievable rate for k-split-

state tampering family is 1 − 1/k, our construction is a two-approximation of the optimal

construction.

Two-Lookahead Tampering. In the k-lookahead tampering model, the codeword is also

divided into k states. However, the adversary tampers each state in a streaming fashion.

That is, the adversary sees one block at a time, and the tampering on each block can

only depend on previous blocks. We first extend the negative result of [  CG14a ] for split-

state tampering to lookahead tampering. Next, for the case of k = 2, we give an explicit

construction achieving the rate of 1/3.

Informal Result 4. The optimal achievable rate for the k-lookahead tampering is 1− 1/k.

Informal Result 5. There is an explicit rate-1/3 non-malleable code against the two-

lookahead tampering family.

1.1.2 Optimal-fair Coin-tossing

Fair multi-party computation mandates that honest parties shall always receive the out-

put even if malicious parties abort the protocol prematurely. Unfortunately, this strong

security guarantee is impossible to achieve with negligible simulation error. In an elegant

work, Cleve [ Cle86 ] shows that for the simplest task of coin-tossing, any r-message protocol 

4
 

between two parties is inevitably Ω(1/r)-unfair. That is, regardless of the computational

hardness assumption that one assumes, there always exists an efficient attacker who may

prematurely abort to deviate the expected output of the other party by Ω(1/r). On the
4

 ↑ In an r-message protocol between two parties, Alice and Bob exchange (at most) r messages in any
complete execution of the protocol.
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other hand, the seminal work of Moran, Naor, and Segev [ MNS09 ] prove a matching upper

bound by presenting an explicit r-message protocol that achieves O (1/r)-unfairness. The

MNS protocol relies on the assumption that oblivious transfer exists. Therefore, r-message

coin-tossing protocol achieving O (1/r)-unfairness is called optimal-fair.

Given the MNS protocol, it is natural to ask if we could construct an optimal-fair coin-

tossing protocol from weaker assumptions. For example, is it possible to build an optimal-fair

coin-tossing protocol from one-way functions? In light of the current progress in complexity

theory, an unconditional answer to this question is unlikely. To address this issue, among

several possible approaches, a prominent technique is to study it via the lens of black-box

separations, as introduced by Impagliazzo and Rudich [ IR89 ]. 

5
 

Our first result is a black-box separation between optimal-fair coin-tossing and one-way

functions.

Informal Result 6. Any r-message two-party coin-tossing protocol that uses one-way func-

tions in a fully black-box manner is Ω(1/
√
r)-unfair.

This black-box separation from one-way functions indicates that the two-party coin-

tossing protocol of Blum [ Blu82 ] and Cleve [ Cle86 ], which uses one-way functions in a black-

box manner and builds on the protocols of [ ABC+85 ,  BD84 ], achieves the best possible

security for any r-message protocol. Their protocol is Ω(1/
√
r)-unfair, and any r-message

protocol cannot have asymptotically better security by only using one-way functions in a

black-box manner, thus resolving this fundamental question after over three decades.

Next, we extend our first result to any coin-tossing protocol that uses public-key encryp-

tion in a black-box manner in the information-theoretic f -hybrid model. Let f : X×Y → RZ

be a two-party secure symmetric function evaluation functionality, possibly with randomized

output. The function takes private inputs x and y from the parties and samples an output

z ∈ Z according to the probability distribution pf (z|x, y). The information-theoretic f -

hybrid is an information-theoretic model where parties have additional access to the (unfair)
5

 ↑ Intuitively, a construction from one-way functions is black-box if it only relies on the input/output behavior
of the one-way function and the security reduction only utilizes the adversary in a black-box manner as well.
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f -functionality. 

6
 As an aside, we highlight that the fair f -hybrid (where the adversary can-

not block output delivery to the honest parties), for any f where both parties influence the

output, straightforwardly yields perfectly or statistically secure fair coin-tossing protocol. 

7
 

Observe that if f is the (symmetrized) oblivious transfer functionality,  

8
 then the Moran,

Naor, and Segev protocol [ MNS09 ] is an optimal fair coin-tossing protocol in the (unfair) f -

hybrid. More generally, if f is a functionality such that there is an oblivious transfer protocol

in the f -hybrid, one can emulate the Moran, Naor, and Segev optimal coin-tossing protocol;

consequently, optimal coin-tossing exists in the f -hybrid. Kilian [  Kil00 ] characterized all

functions f such that there exists a secure oblivious transfer protocol in the f -hybrid, referred

to as complete functions.

Our work explores whether a function f that is not complete may enhance the security of

fair coin-tossing protocols. In particular, we show that incomplete functionalities are useless

for fair coin-tossing.

Informal Result 7. Let f be any incomplete functionality. Any r-message two-party coin-

tossing protocol in the f -hybrid model that uses public-key encryption in a black-box manner

is Ω(1/
√
r)-unfair.

1.1.3 Collective Coin-tossing

Collective coin-tossing in the full information model is a fundamental primitive introduced

by Ben-Or and Linial [ BL85 ]. In this model, parties have unbounded computation power

and access to a broadcast channel. A coin-tossing protocol among n parties aims to upgrade

each parties’ local randomness into public randomness that they shall agree on. An adaptive

Byzantine adversary, however, may corrupt some processors during the course of the protocol
6

 ↑ The functionality delivers the output to the adversary first. If the adversary wants, it can abort the
protocol and block the output delivery to the honest parties. Otherwise, if the adversary wants, it can
permit the delivery of the output to the honest parties and continue with the protocol execution.
7

 ↑ Suppose f = XOR. In a fair f -hybrid, the adversary cannot block the output delivery to the honest
parties. So, parties input random bits to the f -functionality and agree on the output. This protocol has
0-insecurity.
8

 ↑ In the symmetrized oblivious transfer functionality, the sender has input (x0, x1) ∈ {0, 1}2, and the receiver
has input (b, r) ∈ {0, 1}2. The symmetric oblivious transfer functionality returns xb ⊕ r to both parties. If
the receiver picks r ← {0, 1}, then this functionality hides the receiver’s choice bit b from the sender.
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and set their messages arbitrarily. The insecurity of the protocol is the maximum amount

of deviation an adversary could cause to the expected output.

In this work, we study a simple setting called the single-turn protocol. That is, every

party only speaks once during the evolution of the protocol. Moreover, we assume that the

Byzantine adversary shall only corrupt (at most) one party. The asymptotic insecurity in

this setting is well-understood. If there are n parties, the protocol is Ω(1/
√
n)-insecure. The

constant factor on the insecurity is, however, not well-understood. In this work, we give a

tight analysis proving that the insecurity of the elegant threshold protocol 

9
 is at most two

times the optimal insecurity in this setting.

Informal Result 8. For a single-turn n-party collective coin-tossing protocol, the threshold

protocol is a two-factor approximation of the optimal protocol against a Byzantine adversary

who may corrupt (at most) one party.

1.2 Organization

In  CHAPTER 2 , we survey the relevant literature on non-malleable codes and coin-

tossing. In  CHAPTER 3 and  CHAPTER 4 , we present our results on explicit constructions

of non-malleable codes with high rate. These results are published as [  GMW19 ,  GMW18 ]. In

 CHAPTER 5 , we present our studies on the minimal complexity of optimal-fair coin-tossing

protocols. These results are published as [ MW20 ,  MW21 ]. In  CHAPTER 6 , we present our

results on collective coin-tossing protocols. This result is published as [ KMW21 ].

9
 ↑ A threshold protocol among n parties with threshold t is as follows. Every party broadcasts a uniformly

random bit. The final output of the protocol is 1 if the total number of 1-messages exceeds the threshold t.
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2. PRIOR WORKS

In this section, we survey relevant literature on non-malleable codes and coin-tossing.

2.1 Non-malleable codes

Non-malleable code is an elegant notion introduced by Dziembowski, Pietrzak, and

Wichs [ DPW10 ]. Let us first recall the definition of non-malleable codes and relative notions.

Definition 2.1.1 (Coding Scheme). A pair of (possibly randomized) functions Enc : {0, 1}` →

{0, 1}n and Dec : {0, 1}n → {0, 1}` ∪ {⊥} is a coding scheme with block length n and mes-

sage length ` if it satisfies perfect (resp., statistical) correctness. That is, for all mes-

sage m ∈ {0, 1}`, over the randomness of Enc and Dec, Pr[Dec(Enc(m)) = m] = 1 (resp.,

Pr[Dec(Enc(m)) = m] = 1− negl(`)). The rate of this encoding scheme is defined as `/n.

Definition 2.1.2 (Tampering family). Let Fn denote the set of all functions f : {0, 1}n →

{0, 1}n. A tampering family F is any subset of Fn.

Definition 2.1.3 ((n, `,F , ε)-Non-malleable Codes [ DPW10 ]). A coding scheme (Enc,Dec)

with block length n and message length ` is said to be non-malleable against a tampering

family F with (simulation) error ε, if for all functions f ∈ F , there exists a simulator

Sim(f), which outputs a distribution over {0, 1}` ∪ {⊥, same∗}, such that for all messages

m ∈ {0, 1}`,

SD
(
Tampermf , Copy (Sim(f),m)

)
6 ε,

where tampering experiment Tampermf stands for

Tampermf :=


c← Enc(m), c̃ = f(c), m̃ = Dec(c̃)

Output: m̃.


and

Copy(x, y) =


y, if x = same∗;

x, otherwise.
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Impossible to achieve non-malleability for all tampering functions. Note that it is

impossible to construct non-malleable codes for all tampering functions, i.e., F = Fn. To

see this, consider the function f(c) := Enc(Dec(c) + 1). That is, f decodes the codeword,

increases the message by 1, and re-encodes the message again. Observe that Tampermf always

outputs m + 1. Consequently, Sim(f) cannot simulate Tampermf . Therefore, non-malleable

code is usually defined with respect to a tampering family that is restricted in some way.

As we shall see, the tampering families that have been considered in the literature can be

roughly partitioned into two categories: split-state tampering family and computationally-

bounded tampering family. We shall present a summary of these results in  Section 2.1.3 and

 Section 2.1.4 respectively.

Efficient Simulation. We note that the definition non-malleable code only asks for the

existence of a simulator Sim(f). In particular, it does not require this simulator to be

computationally efficient. However, as observed by [  CG14a ], if a simulator Sim(f) exists,

then the following simulator Sim∗(f) (  Figure 2.1  ) is always an efficient simulator (given that

Enc,Dec, f are all efficiently computatable). We refer to this simulator as the canonical

simulator. One could prove the following bound on the simulation error of the canonical

simulator.

1. m′ ← {0, 1}`.

2. m̃← Dec(f(Enc(m′))).

3. If m̃ = m′, output same∗.

4. Otherwise, output m̃.

Figure 2.1. The Canonical Simulator Sim∗(f).

Theorem 2.1.1 (Canonical Simulator). Let (Enc,Dec) be an (n, `,F , ε)-non-malleable code.

Let Sim(f) be the corresponding simulator. That is, for all f ∈ F and m ∈ {0, 1}`, we have

SD
(
Tampermf , Copy (Sim(f),m)

)
6 ε.
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Then the simulation error of the canonical simulator Sim∗(f) satisfies

SD
(
Tampermf , Copy (Sim∗(f),m)

)
6 2−`+1 + 2ε.

Proof. One may prove this through a simple hybrid argument. Consider the following hybrid

H(f).

H(f):

1. m′ ← {0, 1}`.

2. m̃← Copy (Sim(f),m′).

3. If m̃ = m′, output same∗.

4. Otherwise, output m̃.

The simulation error of the original simulator Sim(f) guarantees that

SD (Sim∗(f) , H(f)) 6 ε.

On the other hand, the only possibility that the output of H(f) is different from the sample

it draws from Sim(f) is when Sim(f) outputs m′. This happens with probability 2−` (since

m′ is uniformly at random) and thus

SD (H(f) , Sim(f)) 6 2−`.

This completes the proof as

SD
(
Tampermf , Copy(Sim∗(f),m)

)
6SD

(
Tampermf , Copy(Sim(f),m)

)
+ SD (Sim(f) , Sim∗(f))

=
(
ε+ 2−`

)
+
(
ε+ 2−`

)
.
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2.1.1 On the Existence of (High-rate) Non-malleable Codes

We have discussed that achieving non-malleability against all possible tampering func-

tions is impossible. Moreover, for any coding scheme (Enc,Dec), there always exists some

tampering function (e.g., f(c) := Enc(Dec(c) + 1)) such that (Enc,Dec) is not non-malleable

against f . However, if we fix any small tampering family F , there does exist some coding

scheme (Enc,Dec), which is non-malleable against F .

Observe that there are 2n2n different tampering functions, i.e., |Fn| = 2n2n . In their

original work, Dziembowski et al. [ DPW10 ] proved that for any tampering family F such

that |F| 6 22n−3` , non-malleable code against F exists. In particular, they consider a random

function Dec : {0, 1}n → {0, 1}` as the decoding function and let Enc(m) returns a random

preimage of m under Dec. They showed that the coding scheme drawn according to this

distribution is non-malleable against F with overwhelming probability.

Later, Cheraghchi and Guruswami [ CG14a ] proved that for any tampering family F such

that |F| 6 22an for some constant a ∈ (0, 1), non-malleable code for F with rate (1−a) exists.

In comparison to [ DPW10 ], they considered a random coding scheme with high distance. In

particular, this implies that most codewords are invalid and will be decoded to ⊥. They also

showed that the rate 1 − a is the optimal achievable rate for any tampering family of size

22an .

The probabilistic constructions of [ DPW10 ] and [ CG14a ] are inefficient. In another work,

Faust et al. [ FMVW14 ] (and further improved by Jafargholi and Wichs [ JW15 ]) showed

that for any tampering family F of size 2poly(n), efficient non-malleable code exists for F .

In particular, let H1 and H2 be two hash function families with appropriate independence

guarantees. They considered a random encoding function Ench1,h2 (where h1 ← H1 and

h2 ← H2) as

Ench1,h2(m) =
(
r, h1(r)⊕m, h2(r, h1(r)⊕m)

)
,

where r is the private randomness of the encoding function Enc. They prove that Ench1,h2 is

non-malleable with overwhelming probability. Their construction can be efficiently instan-

tiated in the common randomness string (CRS) model, where the CRS determines the hash

function h1 and h2.
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2.1.2 Useful Tools for Explicit Construction of Non-malleable Codes

Non-malleable Extractor

Non-malleable extractors [ DW09 ] extends the notions of traditional randomness extrac-

tors with non-malleability property. Informally, it guarantees that if the source gets tam-

pered by some tampering function, the extractor output on the original source is uniform

even conditioned on the extractor output on the tampered source. More formally, we define

the seedless randomness extractors below.

Definition 2.1.4 ((Seedless) Non-malleable Extractor [  CG14b ]). Let F be a tampering fam-

ily and W be a class of sources. A function nmExt: {0, 1}n → {0, 1}` is said to be an ε-non-

malleable extractor if the following holds. For any tampering function f ∈ F , there exists

a simulator Sim(f), which outputs a distribution over {0, 1}` ∪ {same∗}, such that for any

source W ∈ W,

(
nmExt(W ), nmExt

(
f(W )

))
≈ε

(
U`,Copy(Sim(f), U`)

)
.

As observed by [ CG14b ], non-malleable extractor directly gives construction of non-

malleable codes as one may treat nmExt as the decoding function Dec and nmExt−1 as the

encoding function Enc. In particular, they proved the following theorem.

Theorem 2.1.2 ([ CG14b ]). Let nmExt : {0, 1}n → {0, 1}` be an ε-seedless non-malleable

extractor for uniform source on {0, 1}n and tampering family F . Suppose nmExt−1 is effi-

ciently computable. Then the coding scheme (nmExt−1, nmExt) is an efficient non-malleable

code against tampering family F with (simulation) error 2` · ε.

This surprising connection brings the exciting progress on randomness extractors to the

field of non-malleable codes. In fact, many influential works in non-malleable codes come

from this unique perspective [ CZ14 ,  CGL16 ,  Li17 ,  CL17 ,  Li19 ].
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Non-malleable Reduction

Let us define NM` as the set of constant functions, identity function, and the bot func-

tion 

1
 over {0, 1}`. Suppose (Enc,Dec) is an (n, `,F , ε)-non-malleable codes. Intuitively, this

implies that the effect on the message by applying any tampering f ∈ F on the codeword can

be simulated by a convex combination of “tampering function” from NM` on the message.

The notion of non-malleable reduction generalizes the above intuition to the setting where

the “tampering function” on the message could come from an arbitrary family G. Formally,

we define it as follows.

Definition 2.1.5 (Non-malleable Reduction [ ADKO15 ]). Let F be a tampering family on

{0, 1}n. Let G be a tampering family on {0, 1}`. We say coding scheme (Enc,Dec) reduces F

to G with simulation error ε, denoted as

F 6Enc,Dec
ε G,

if the following holds. For every tampering function f ∈ F , there exists a simulator Sim(f),

which outputs a distribution over G, such that for x ∈ {0, 1}n,

SD (Dec(f(Enc(x)) , Sim(f)(x)) 6 ε.

Remark 2.1.1 (Non-malleable code as non-malleable reduction). The following two state-

ments are equivalent (refer to  Figure 2.2 ):

• (Enc,Dec) is an (F , ε)-non-malleable code.

• F 6Enc,Dec
ε NM`.

Non-malleable reduction is a particularly useful notion as it gives a modular way of

constructing non-malleable codes (refer to the composition theorem below). Now, suppose we

have that F 6Enc,Dec
ε G. To construct a non-malleable code for tampering family F , it suffices

to construct a non-malleable code for tampering family G. On the other hand, suppose we
1

 ↑ That is, the function f that always output ⊥ for all input x ∈ {0, 1}`.
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m

c

Enc

c̃
f ∈ F

m̃

Dec

Simulatable by NM`
m

c

Enc

c̃
f ∈ F

m̃

Dec

Simulatable by G

Figure 2.2. A side by side comparison between non-malleable code and non-
malleable reduction. The blue route is simulatable by the red route using a
distribution over some class of functions.

m

c

Enc2

d

Enc1

c̃
Simulatable by G

d̃
f ∈ F

Dec1

m̃

Dec2

Simulatable by H

Figure 2.3. A pictorial summary of the composition of non-malleable reduc-
tions (  Theorem 2.1.3 ).

have a non-malleable code for G, it suffices to construct a coding scheme (Enc,Dec) that

reduces F to G. As it turns out, this powerful notion gives rise to many breakthrough

results in explicit constructions of non-malleable codes [  ADL14 ,  ADKO15 ,  BDKM16 ,  CL17 ,

 BDG+18 ].

Theorem 2.1.3 (Composition of non-malleable reduction [  ADKO15 ], refer to  Figure 2.3 ).

If we have

F 6Enc1,Dec1
ε1 G and G 6Enc2,Dec2

ε2 H,
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then

F 6Enc,Dec
ε1+ε2 H,

where Enc(m) := Enc1(Enc2(m)) and Dec(c) := Dec2(Dec1(c)).

2.1.3 Split-state Tampering

In k-split-state tampering, the codeword c is split into k states, i.e., c = (c1, . . . , ck).

The adversary is allowed to pick a tuple of k (arbitrary) functions (f1, . . . , fk) such that the

tampered codeword shall be

c̃ =
(
f1(c1), . . . , fk(ck)

)
.

This tampering family is motivated by that one could store the codeword in different loca-

tions. Such physical separation forces the adversary to tamper with each state independently.

Note that the two-split-state tampering family is the strongest tampering family among k-

split-state tampering families. Furthermore, the tampering functions in split-state tampering

are not required to be efficient. Observe that the size of the k-split-state tampering family

is > 22(1/k)·n . Hence, the result of [ CG14a ] implies that the optimal achievable rate for

k-split-state tampering is 1− 1/k.

In the information-theoretic setting, the first construction of split-state non-malleable

code is given by Dziembowski, Kazana, and Obremski [ DKO13 ]. They constructed a non-

malleable encoding for one-bit messages in the two-split-state setting. In more detail, they

view each state as a vector in Ft for a suitable finite field F. Whether the message is 0 or 1

is encoded by whether the left state and the right state are orthogonal to each other or not.

In subsequent work, Aggarwal, Dodis, and Lovett [  ADL14 ] gave a construction of multi-

bit non-malleable code in the two-split-state setting. Their work draws a beautiful connection

from additive combinatorics. In particular, suppose U and U ′ are independent uniform

distributions over Ft. For any functions f and g, the joint distribution

〈U,U ′〉 , 〈f(U), g(U ′)〉

26



is close to a convex combination of affine distributions {(V , aV + b) | a, b ∈ F} where V is

uniformly distributed over F. In other words, this result in additive combinatorics implies

that the inner product encoding is a non-malleable reduction from the two-split-state tamper-

ing to affine tampering over F ( Definition 2.1.5 ). Finally, they completed their construction

by giving a construction of non-malleable code for the affine tampering family.

In another research direction initiated by Cheraghchi and Guruswami [ CG14b ], sev-

eral works have been constructing (non-malleable) multi-source extractors. 

2
 Such extractor

guarantees that if every source is tampered with independently, the extractor output of

the original sources is uniform even given the extractor output of the tampered sources

( Definition 2.1.4 ). As discussed earlier, such a non-malleable extractor directly implies non-

malleable code given that the preimage could be efficiently sampled. In a breakthrough

result, Chattopadhyay and Zuckerman [ CZ14 ] constructed a non-malleable extractor for ten

independent sources. Moreover, the corresponding non-malleable code their construction

implies has an (inexplicit) constant rate. For the case of the two-source non-malleable ex-

tractor, there has been a sequence of influential works [  CGL16 ,  Li17 ,  Li19 ]. The current

state-of-the-art construction [  Li19 ] gives a two-source extractor where the length of the ex-

tractor output ` = Ω
(
n·log log logn

log logn

)
. That is, the corresponding two-split-state non-malleable

code has a rate of Ω
(

log log logn
log logn

)
. In another recent work, [ CL20 ] considers the scenario where

the way codeword split into each state is not fixed a priori but picked by the adversary as a

part of the tampering function.

In a seminal work, Kanukurthi, Obbattu, and Sekar [ KOS17 ] constructed a compiler

that takes any two-split-state non-malleable with an inverse polynomial rate and compiles

it into a four-split-state non-malleable with a rate of 1/3. This is the first work that gives a

split-state non-malleable code with an explicit constant rate. Afterward, in independent and

concurrent works, Kanukurthi et al. [ KOS18 ] and Gupta et al. [ GMW18 ] further compress

the number of states from 4 to 3. Hence, they gave a three-split-state non-malleable code with
2

 ↑ It is well-known that extracting even one bit for a single source is impossible. In particular, for any
extractor Ext: {0, 1}n → {0, 1}, there exists a source W over {0, 1}n with entropy > n−1 such that Ext(W )
is totally biased. Therefore, for a single source, one typically requires a short seed U ← {0, 1}d and guarantees
that Ext(W,U) is uniform for all sources W with sufficiently high entropy. Namely, this is a seeded extractor.
On the other hand, if we have two independent sources W1 and W2, then extracting pure randomness without
a seed is possible. Namely, constructing a (seedless) multi-source extractor is possible.
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a rate of 1/3. Very recently, Aggarwal and Obremski [ AO20 ] construct the first constant-rate

non-malleable code in the two-split-state setting, which culminates this long line of work.

Recently, Rasmussen and Sahai [ RS20 ] showed an interesting connection between two-

split-state non-malleable code and expander graphs. Specifically, given a graph G = (V,E),

one may encode the one-bit message in whether a pair of vertices (u, v) is an edge or a

non-edge. That is, the message is 1 if (u, v) ∈ E and 0 if (u, v) /∈ E. They proved that

this graph-based encoding (where the left state stores the vertex u and the right state stores

the vertex v) is non-malleable against two-split-state tampering if the graph G satisfies

appropriate expander properties. It is a fascinating open problem to extend their result to

multi-bit messages.

Finally, if one restricts to split-state tampering functions that are efficiently computable,

Aggarwal et al. [ AAG+16 ] gave a rate-1 construction of two-split-state non-malleable codes

based on any one-way functions. In their setting, the simulator and the tampering experiment

is only required to be computationally indistinguishable.

2.1.4 Computationally-bounded Tampering Families

Another natural way of restricting the tampering family is to only consider tampering

families with low computational complexity. This is also motivated as real-world tampering

attacks usually can be modeled as some rather simple functions.

Bit Tampering. In the bit tampering model, the tampering function tampers each bit

independently. Equivalently, one may think of it as a split-state tampering function where

every bit is a single state. For this tampering family, [ CG14b ] gave a rate-1 construction.

In another two works, Agrawal et al. [ AGM+15a ,  AGM+15b ] consider the bit tampering

where the tampering function may additionally permute the bits after tampering each bit

independently. They gave a rate-1 construction for this stronger tampering family as well.

Local Tampering. Ball et al. [ BDKM16 ] considered the tampering functions where the

tampering on each bit may only depend on a small number δ of bits. This bound δ is

called the locality of tampering functions. They gave a construction for locality δ = o
(

n
logn

)
.

Interestingly, their construction relies on a non-malleable reduction from local tampering

28



function to two-split-state tampering (  Definition 2.1.5 ). In subsequent work, Gupta, Maji,

and Wang [ GMW19 ] built a compiler that compiles a non-malleable code for local tampering

with an inverse polynomial rate into a rate-1 construction. Their compiler, however, works

only for locality δ = O (log n). As a corollary, they gave the first rate-1 non-malleable code

for NC0 tampering.

Small-depth Circuits. Another natural tampering family is circuits with bounded depth

and unbounded fan-in (e.g., AC0). Chattopadhyay and Li [ CL17 ] gave the first construction

for AC0 tampering. However, their codeword has a super-polynomial length and, hence, is in-

efficient. En route to their final result, they also constructed an (efficient) non-malleable code

for affine (over the field F2) tampering function. In subsequent work, Ball et al. [ BDG+18 ]

gave an efficient non-malleable code for AC0 tampering. They gave their construction through

a sequence of non-malleable reductions from depth-d circuits tampering to depth-(d−1) cir-

cuits tampering.

Small-depth Decision Tree. In another recent work, Ball, Guo, and Wichs [  BGW19 ] con-

sider all the tampering functions that can be computed by a decision tree of depth O
(
n1/4

)
.

Following the paradigm of [ BDKM16 ,  BDG+18 ], they gave a non-malleable reduction from

a decision tree to split-state tampering.

Low degree polynomials. Finally, the recent work by Ball et al. [ BCL+20 ] considered all

tampering functions that can be expressed as a small-degree polynomial over an appropriate

finite field F and gave a construction for this tampering family. However, their construction

only works for an exponentially large field. In particular, the size of the field |F| has to be

large than the total number of messages 2`. Therefore, constructing non-malleable code for

polynomial tampering over a small field F (e.g., F2) remains open.

Construction that relies on computational assumptions. If one is willing to assume

computational assumptions, Ball et al. [ BDK+19 ] (which is built upon [ BDKM18 ]) showed

how to construct non-malleable codes for any bounded polynomial-time tampering family.

Their result relies on both worst-case hardness assumptions and average-case hardness as-

sumptions. Additionally, their scheme only guarantees inverse polynomial (computational)

indistinguishability. Recently, Ball et al. [  BDKM20 ] presented some barriers in constructing
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non-malleable code based on hardness assumption. They showed that for certain tampering

classes, constructing non-malleable code based on hardness assumption when the security

proof only uses the tampering function in a black-box manner is impossible.

Spaces bounded. There also have been works that consider the tampering function with

a limited amount of space. The works of [ FHMV17 ,  CCHM19 ] constructed non-malleable

codes for such tampering functions by relying on problems (e.g., proof-of-space) that are

hard for space-bounded adversaries.

2.1.5 Variants of Non-malleable codes

In the literature, some variants of non-malleable codes have been introduced and studied.

We discuss some variants below.

Continuous non-malleable codes. Continuous non-malleable codes, introduced by Faust

et al. [ FMNV14 ], consider the setting where the adversaries may continuously tamper the

codeword. Furthermore, every new tampering function the adversary picks may depend on

the decoding of the previously tampered codeword. A number of works [ JW15 ,  CGL16 ,

 AKO17 ,  OPVV18 ,  ADN+19 ,  DK19 ] have studied and constructed continuous non-malleable

codes in the split-state model that achieve diverse security guarantees.

Local non-malleable codes. A coding scheme is said to be locally decodable if one may

decode every bit of the message by only querying a small number of bits from the codeword.

Similarly, a locally updatable code ensures that to update a codeword of some message m to

be a codeword of another related message m′, one only needs to update a small number of

bits from the codeword. Recently, a sequence of works [ DLSZ15 ,  CKR16 ,  DKS17 ,  DKS18 ]

study non-malleable codes that are additionally locally decodable and updatable.

Interactive non-malleable codes. Inspired by interactive coding [ Sch96 ] as a generaliza-

tion of error-correcting codes for interactive protocols, interactive non-malleable codes [ FGJ+19 ]

aims to extend non-malleable coding to interactive protocols as well. Similarly, it ensures

that the tampered interaction either encodes the correct protocol or encodes an unrelated

execution of the protocol.
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2.1.6 Applications of Non-malleable codes

Since the introduction of non-malleable code, it has found applications in various scenar-

ios. We list some prominent applications below.

Non-malleable Commitments. Non-malleable commitment scheme [ DDN91 ] is a com-

mitment protocol, which guarantees that a man-in-the-middle (MIM) attacker cannot maul

the commitments it receives from Alice to commit to a related secret to Bob. In such

communication protocols, a natural restriction arises for synchronous adversaries. 

3
 That

is, the tampering on each message in the protocol could not depend on future messages.

Such tampering family is called blockwise tampering [ CGM+16 ] (and also lookahead tam-

pering [  ADKO15 ]). Non-malleable codes for this tampering family turn out very useful for

constructing non-malleable commitment schemes [ GPR16 ,  CGM+16 ].

Non-malleable Secret-Sharing. Non-malleable secret-sharing, introduced by [ GK18a ],

is a useful primitive in secure multi-party computation. Similar to non-malleable codes, it

requires that when the secret shares are tampered with, the recovered secret is unrelated to

the original secret. Currently, most constructions [  GK18a ,  GK18b ,  BS19 ] of non-malleable

secret-sharing are based on non-malleable codes in the split-state model.

Privacy Amplification. Suppose two parties have a shared secret that is only guaranteed

to have high entropy but not uniformly random. Privacy amplification asks for whether they

agree on a new secret that is guaranteed to be uniformly random through communication

over a (fully tamperable) public channel. In the seminal work, Dodis and Wichs [ DW09 ]

introduced (seeded) non-malleable extractor for constructing privacy amplification protocols.

In the work of [ CKOS19 ], Chattopadhyay et al. shows that non-malleable codes could also

be leveraged to construct privacy amplification protocols.
3

 ↑ Synchronous MIM attacker must send the first message to Bob before it receives the second message from
Alice and so on.
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2.2 Coin-tossing Protocols

2.2.1 Fair Coin-tossing

In secure multi-party computation, guaranteed output delivery is a desired yet very

challenging objective. Intuitively, we would like the guarantee that either no party receives

the output of the protocol, or all parties receive the output of the protocol. In more detail,

secure multi-party computation with guaranteed output delivery is usually defined in the

following real-world v.s. ideal-world paradigm. In the ideal world, a trusted party takes the

inputs from all parties and honestly computes and delivers the output to all parties. 

4
 For

any adversarial behavior in the real world, there must exist a simulator that simulates the

same adversarial behavior in the ideal world.

Take the coin-tossing functionality as an example. Here, parties wish to toss an unbiased

coin together. Since this functionality takes no input, the trusted party shall simply toss an

unbiased coin and send the outcome to all parties in the ideal world. Therefore, our real-

world protocol has to guarantee that honest parties shall always agree on an output whose

expectation is 1/2. Such coin-tossing is called fair coin-tossing protocol. The unfairness of a

fair coin-tossing is the amount of change (in the statistical distance) an adversary can cause

to the distribution of the output of honest parties.

In a seminal result, Cleve [ Cle86 ] proved that fair coin-tossing with negligible unfairness is

impossible. In particular, Cleve showed that any r-message 

5
 two-party coin-tossing protocol

is at least Ω(1/r)-unfair (regardless of the computational assumptions one assumes). This

implies that any r-message multi-party coin-tossing protocol, where honest parties are not in

the majority, is at least Ω(1/r)-unfair. Hence, an r-message protocol with O (1/r)-unfairness

is called optimal-fair.

Before we move ahead, we stress that the negative results of fair coin-tossing imply

negative results for other functionalities. For instance, consider the two-party (deterministic)

XOR functionality. This functionality takes one input bit from Alice and Bob each and
4

 ↑ If we do not ask for guaranteed output delivery, in the ideal world, the adversary receives the output from
the trusted party first. She may then decide to block the output delivery to the other honest parties.
5

 ↑ In an r-message protocol, the total number of messages sent by all parties for any full execution of the
protocol is (at most) r.
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computes the XOR of the input bits. Suppose we have a protocol that fairly realizes the

XOR functionality. Then one can realize the coin-tossing functionality fairly by using this

protocol as a subroutine and instructing both Alice and Bob to sample a uniform bit as

their respective inputs. Therefore, intuitively, Cleve’s negative result implies that any r-

message XOR protocol must be “O (1/r)-insecure”. 

6
 Interestingly, not all hope is lost in

fair computation. There are interesting functionalities that can be realized with perfect

fairness [  GHKL08 ,  ALR13 ,  Ash14 ,  Mak14 ,  ABMO15 ].

In the two-party setting, Moran, Naor, and Segev [  MNS09 ] presented an elegant protocol

that is optimal-fair. Their protocol relies on the existence of oblivious transfer. Intuitively,

the MNS protocol has a critical round i∗, where the output of the protocol goes from uni-

formly random to completely fixed. The only effective attack by the adversary is to abort

at precisely the round i∗ , for which he could only succeed with probability 1/r.

Building the MNS protocol, Beimel, Omri, and Orlov [ BOO10 ] presented an optimal-fair

multi-party coin-tossing protocol. Their protocol assumes that at least 1/3 fraction of the

parties are honest. In particular, their protocol does not give an optimal-fair three-party

coin-tossing protocol where two parties may be malicious.

Haitner and Tsfadia [  HT14 ] partially solved the three-party setting. They gave a three-

party r-message coin-tossing protocol that is log3 r
r

-unfair. Using similar ideas as in [  BOO10 ],

Alon and Omri [ AO16 ] compiled the protocol of Haitner and Tsfadia [ HT14 ] into a multi-

party coin-tossing protocol. The protocol of Alon and Omri [ AO16 ] assumes that at least 1/4

fraction of the parties are honest and achieve log3 r
r

-unfairness. Recently, Buchbinder et al. [ BHLT17  ]

presented a new three-party protocol that achieves
√

log r
r

-unfairness. They also gave a n-party

coin-tossing protocol where n−1 parties might be malicious for any n 6 log log r. In general,

for any number of parties n > 4, there is still a significant gap between the lower bound on

the optimal fairness [ Cle86 ] and the fairness of the state-of-the-art construction [  BHLT17  ].

Recently, Beimel et al. [ BHMO18 ] investigated the case where the number of parties

n = poly(r). They proved that for this range of parameters, any n-party r-message coin-

tossing protocol is Ω(1/
√
r)-unfair.

6
 ↑ To be more precise, the statistical distance between the real world and ideal world must be O (1/r).
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In the two-party setting, although we know that oblivious transfer enables optimal fair-

ness. It has been a long open problem whether the existence of one-way functions is

sufficient for optimal fairness. First, we know that one-way functions imply commitment

schemes [ Nao91 ,  NOVY98 ,  HR07 ]. And by using commitment schemes to ensure honest be-

havior, the majority protocol [  Blu82 ,  BD84 ,  ABC+85 ,  Cle86 ] achieves O (1/
√
r)-unfairness. 

7
 

Cleve and Impaliazzo [ CI93 ] prove that if one only considers fail-stop adversaries, 

8
 then any

coin-tossing protocol in the information-theoretic setting is Ω(1/
√
r)-unfair.

In two works [ DLMM11 ,  DMM14 ], Dachman-Soled et al. showed that optimal-fair coin-

tossing is black-box separated from one-way functions under certain restrictions. Recently,

Maji and Wang [ MW20 ] resolved this problem in the full generality. They proved that

optimal-fair coin-tossing is black-box separated from one-way functions without any restric-

tions. In a follow-up work, they [ MW21 ] proved that optimal-fair coin-tossing is also black-

box separated from public-key encryption and idealized functionalities that do not imply

OT.

In another recent work, Haitner, Makriyannis, and Omri [ HMO18 ] proved that the

existence of an r-message protocol with O (1/r)-unfairness implies (infinitely often) key-

agreement protocol. However, their results only work for constant r.

2.2.2 Collective coin-tossing in the full information model

The full information model is introduced by Ben-Or and Linial [ BL89 ]. In this model,

n computationally unbounded parties engage in a communication protocol over a single

broadcast channel. In every round, some parties shall broadcast their messages. We assume

the adversaries are rushing. That is, suppose the ith party is corrupted, and she is going to

send her message this round. She will wait for the other parties to send their messages first,

before she decides on and sends her message.

We usually consider Byzantine adversaries. That is, once a party is corrupted, the ad-

versary takes full control over that party and may send arbitrary messages on her behalf.
7

 ↑ Intuitively, in the majority protocol, parties sample r random bits, and the final output is the majority of
the r random bits sampled.
8

 ↑ Fail-stop adversary is semi-honest except that it might prematurely abort.

34



However, we will also mention some results in other models. We say an adversary is static if

the parties that she corrupts are chosen before the protocol starts. In contrast, an adaptive

adversary might decide to corrupt some parties during the execution of the protocol. The

choices of the parties to corrupt could potentially depend on the partial transcript so far.

In what follows, we survey the results of coin-tossing protocols 

9
 in the full information

model against various type of adversaries. Since parties are computationally unbounded,

without loss of generality, we may assume parties are stateless. That is, the distribution of

the next message a party sends is completely determined by the partial transcript. Moreover,

we may assume every message in the protocol is uniformly at random of a certain length.

Finally, we may assume that the final output ∈ {0, 1} of the protocol is a deterministic

function of the full transcript of the protocol. The insecurity of a coin-tossing protocol is

defined as the maximum changes (in the statistical distance) an adversary could cause to

the distribution of the output of the protocol.

One-round Static Corruption. In a one-round protocol, every party sends one message.

Suppose the ith party’s message is uniformly drawn from an alphabet Σi and the final output

of the protocol is determined by the function f : Σ1 × · · · × Σn → {0, 1}.

In the setting where Σ1 = Σ2 = · · · = Σn = {0, 1}, this problem is closely related to

the notion of influence in boolean function analysis. In particular, for a boolean function

f : {0, 1}n → {0, 1}, the influence of the ith coordinate is defined as

Infi[f ] := Pr
x←{0,1}n

[
f(x) 6= f(x⊕i)

]
,

where x⊕i 6= x is the unique string that agrees with x at every coordinate except for i.

Naturally, one extends this definition to any collection of indices S ⊆ {1, 2, . . . , n}. Observe

that for a rushing adversary who statically corrupts all the parties from S, the insecurity of
9

 ↑ For the ease of presentation, we assume the expectation of the output is always 1/2. That is, it is an
unbiased coin-tossing.
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the protocol is exactly the influence of S, i.e., InfS[f ]. In a seminal result, Kahn, Kalai, and

Linial [  KKL88 ] proved that for any boolean function f , it holds that

max
i

(Infi[f ]) = Ω
(

log n
n

)
.

Therefore, a static adversary could always corrupt one party and deviate the expected output

by Ω
(

logn
n

)
. By iterative applications of the KKL theorem, one could prove that there exists

a set S of size O
(

n
logn

)
such that InfS[f ] = 1−o(1). That is, a static adversary could always

corrupt O
(

n
logn

)
parties and make the expected output to be either o(1) or 1− o(1).

On the other hand, finding explicit boolean function f (which, in turn, gives explicit

collective coin-tossing protocol) that matches the lower bound on the influences turns out

to be hard. If one wants to find a boolean function f such that the influence of every

single coordinate is at most O
(

logn
n

)
, it is well-known that the tribe function  

10
 achieves this

bound. However, to find a function f such that a large coalition could not nearly fix the

output of f is extremely challenging. Such functions are sometimes refered to as resilient

functions. Ajtai and Linial [  AL93 ] gave a probabilistic construction of a function f such that

any coalition of Ω
(

n
log2 n

)
cannot fix the output of f . Only recently, we have found explicit

constructions [ CZ16 ,  Mek17 ] that achieves this Ω
(

n
log2 n

)
probabilistic bound.

If one considers arbitrary alphabets Σ1,Σ2, . . . ,Σn, things become much more compli-

cated. First, Bourgain et al. [ BKK+92 ] proved that it still hold that there exists one co-

ordinate with influence Ω
(

logn
n

)
. That is, one could still corrupt one party to deviated the

expected output by Ω
(

logn
n

)
. However, one could not iteratively apply this general theorem

to prove that corrupting O
(

n
logn

)
parties could almost fix the output of the protocol to be

either 0 or 1. 

11
 It is conjectured by Friedgut [ Fri04  ] that there always exists a bit b ∈ {0, 1}

such that corrupting O
(

n
logn

)
parties could almost fix the output of the protocol to be b. In

recent work, Filmus et al. [ FHH+19 ] made partial progress by proving that Friedgut’s con-
10

 ↑ A tribe function over x1, x2, . . . , xn is defined as (x1∧· · ·∧xw)∨(xw+1∧· · ·∧x2w)∨· · ·∨(xn−w+1∧· · ·∧xw),
where w ≈ logn− log logn.
11

 ↑ In fact,  Figure 6.1 and  Figure 6.2 present two counterexamples. For  Figure 6.1 , to significantly increase
the probability of the protocol outputing 1 requires corrupting Ω(n) parties. Analogously, for  Figure 6.2 , to
significantly increase the probability of the protocol outputing 0 requires corrupting Ω(n) parties.
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jecture holds for arbitrary product measures over boolean hypercube {0, 1}n. 

12
 The general

case of the Friedgut’s conjecture remains open.

Multiple-round Static Corruption. If one considers multiple rounds protocol, this prob-

lem is closely related to the leader election problem. In a leader election protocol, the

objective is to select a leader among n parties such that honest parties shall be elected with

high probability. Observe that collective coin-tossing reduces to leader election as one may

first perform a leader election protocol and then ask the elected leader to output an unbiased

bit on behalf of everyone. If the elected leader is honest, the final output will be unbiased.

However, if the elected leader is malicious, all securities are lost.

Observe that one cannot hope to find a leader election protocol that is resilient to n/2

dishonest parties. To see this, partition all the parties equally into two partitions. One

may think of the leader election protocol as a two-party game where a partition of parties

wins if the elected leader comes from this partition. Clearly, there is a winning strategy

for one partition and, hence, by corrupting all the parties in this partition, the adversary is

guaranteed to be elected as the leader.

In elegant work, Saks [ Sak89 ] proposed the simple “baton passing” protocol. In a baton

passing protocol, one party starts with a baton. In every round, the party that currently

holds the baton shall pass the baton to a random new party that has not held the baton yet.

The final party who holds the baton is the elected leader. By the tight analysis of [  AL93 ],

we know that baton passing protocol is resilient to Θ
(

n
logn

)
dishonest parties.

After Saks’ work, a sequence of highly influence works [ AN90 ,  BN93 ,  RZ98 ,  Fei99 ,  RSZ99 ]

have been trying to improve the resilience of leader election protocols to the maximal achiev-

able (1/2 − ε)n parties, where ε > 0 is an arbitrary constant. In particular, Feige [ Fei99 ]

proposed this elegant “lightest bin” protocol, which proceeds as follows. For a round among

n parties, imagine there are some m = n/polylog (n) bins. Parties are instructed to se-

lected a random bin. After all parties send the bin they select, those parties that come from

the bin with the smallest number of parties (i.e., the lightest bin) will proceed to the next

round. Parties coming from the remaining bins are eliminated. Feige [ Fei99 ] proved that the
12

 ↑ Arbitrary product measure over {0, 1}n could always be (approximately) simulated by a uniformly mea-
sure over Σn for an appropriate finite alphabet Σ. But the converse is not true.
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lightest bin protocol is resilient to (1/2− ε)n corruptions. Moreover, the round complexity

of the lightest bin protocol is log∗ n, 

13
 which is optimal as proven by Russell, Saks, and

Zuckerman [ RSZ99 ].

One-round Strong Adaptive Corruption. Strong adaptive adversary [ GKP15 ] is an

adaptive adversary who gets to see the messages parties are about to send first and then

may decide to corrupt some parties and change their messages. The problem of a one-round

protocol against strong adaptive adversaries is closely related to the problem of isoperimetric

inequalities.

For a one-round protocol where f : Σ1 × · · · × Σn → {0, 1} determines the output. Let

S := f−1(1) and S := f−1(0). Consider the vertex boundary ∂S of S. That is,

∂S :=
{
y ∈ S

∣∣∣ ∃x ∈ S s.t. HD(x, y) = 1
}

 

14
 .

Clearly, if the messages parties are about to send come from ∂S, then a strong adaptive ad-

versary could corrupt one party to alter the output of the protocol from 0 to 1. Analogously,

if the messages parties are about to send come from ∂S, then the adversary may alter the

output from 1 to 0. Therefore, the insecurity of the protocol is determined by the size of the

boundaries ∂S ⋃ ∂S. In other words, to find the optimal protocol, one needs to find the set

S (with density 1/2) that has the smallest boundary. If the alphabets Σi = {0, 1} for all i,

then Harper’s theorem [ Har66 ] states that Hamming ball is exactly the set that minimizes

its vertex boundary. However, for general alphabets, the characterization of the set with

minimal boundary is unknown [  Har99 ].

Finally, if one considers how many corruption are needed to nearly fix the output of the

protocol, then by Azuma’s inequality [ Azu67 ], O (
√
n) corruptions suffice. This result holds

for arbitrary alphabets.

Adaptive Corruption. In the adaptive corruption setting, Ben-Or and Linial [  BL85 ]

conjectured that, for any collective coin-tossing protocol, an adversary could corrupt Θ̃(
√
n)

13
 ↑ log∗ n is defined to be the smallest k such that log(k)(n) < 1. Here, log(1)(n) := logn and

log(k)(n) := log
(

log(k−1)(n)
)

for k > 1.
14

 ↑ HD(x, y) denotes the Hamming distance between x and y.
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processors and nearly fix the output of the protocol. A multiple-round protocol is said to be

single-turn if every party speaks only once. Lichtenstein, Linial, and Saks [ LLS89 ] proved

that for a single-turn protocol where every party only sends a bit, majority protocol is the

optimal protocol. Since one can fix
√
n log2 n bits to nearly fix the output of the majority

protocol, Ben-Or and Linial’s conjecture is confirmed for this setting. Goldwasser, Kalai,

and Park [ GKP15 ] considered a one-round protocol where every party might send a long

message. Additionally, they only consider protocols that are symmetric. That is, permuting

the order of the messages does not change the output of the protocol. They proved that Ben-

Or and Linial’s conjecture is correct in this setting. Kalai, Komargodski, and Raz [ KKR18 ]

proved that for any single-turn protocol, corrupting Θ̃(
√
n) parties suffice to fix the output

of the protocol, thus proving Ben-Or and Linial’s conjecture for any single-turn protocol.

Very recently, Haitner and Karidi-Heller [ HKH20 ] finally fully resolved this conjecture in the

positive. That is, for any n-party coin-tossing protocol in the full information model, an

adaptive adversary could corrupt Θ̃(
√
n) parties and nearly fix the output of the protocol.

Other types of attacks. In the literature, other types of attacks have also been considered.

For single-turn protocols, consider an adaptive adversary who may restart one party after

seeing the message it is about to send. Cleve and Impagliazzo [ CI93 ] proved that such

adversary could deviate the expected output of the protocol by Ω(1/
√
n). Khorasgani, Maji,

and Mukherjee [ KMM19 ] used a geometric approach to give a tight upper and lower bound

on the optimal achievable insecurity in this setting. Their approach is naturally constructive

and produces the optimal protocol. However, it is not clear if one can efficiently implement

their protocols. Recently, Khorasgani et al. [ KMMW21 ] presented an efficient protocol that

approximates the optimal protocol by [  KMM19 ].

For single-turn protocols, Aspnes [  Asp97 ,  Asp98 ] considered the setting where an adaptive

adversary may replace a party’s message by a default one after seeing the message it is about

to send. He also used a similar geometric approach to prove that an adversary could corrupt

Θ̃(
√
n) parties to nearly fix the output of the protocol.

39



3. EXPLICIT RATE-1 NON-MALLEABLE CODE FOR LOCAL

TAMPERING

Dziembowski, Pietrzak, and Wichs [ DPW10 ] introduced the notion of non-malleable codes

as an extension of the standard objective of error-correction. Non-malleable codes provide

message-integrity assurances even when error-detection, let alone error-correction, is impos-

sible. Suppose a sender encodes a message m ∈ {0, 1}` and transmits the codeword over a

channel. If the channel adds an error that has a small Hamming weight, then the sender

can encode the message using an error-correcting code and the receiver can error-correct

and retrieve the original message. Algebraic Manipulation Detection codes [  CDF+08 ] help

the receiver detect if the transmitted codeword is tampered using algebraic operations. For

more sophisticated classes of tampering function F , demanding manipulation detection or

error-correction might be far-fetched. For example, suppose the channel replaces the origi-

nal codeword with a fixed valid codeword. In this case, error-correction or error-detection is

impossible. Non-malleable codes provide a meaningful message integrity assurance against

sophisticated tampering families.

Let us fix an encoding and a decoding scheme (Enc,Dec), and a tampering function family

F . Non-malleable codes ensure that for any message m ∈ {0, 1}` and tampering function

f ∈ F , the tampered message Dec(f(Enc(m))) is either identical to the original message m

or a simulator Sim(f) can simulate this distribution (that is, it is independent of the original

message). Even such a weak message integrity assurance turns out to be cryptographically

useful, for example, in storing secret-keys for cryptographic primitives [ DPW10 ,  KOS18 ]

and non-malleable messaging [ GK18a ,  GK18b ]. Naturally, we measure the quality of non-

malleable codes using the following two parameters.

1. Rate. The ratio of the length of the message to the length of its encoding.

2. Sophistication of the tampering family. The complexity of the tampering attacks

captured by the tampering functions in this family.

Constructing explicit non-malleable codes with high rate against sophisticated tampering

function families is the guiding principle for the research in non-malleable codes. However,
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both these objectives, even independently, have been significantly non-trivial to achieve.

Only recently, using elegant probabilistic arguments, [ FMVW14 ,  CG14a ] constructed rate-1

non-malleable codes in the CRS model for tampering families of bounded size. 

1
 

In this chapter, for any positive constant ξ < 1, we present the first rate-1 explicit non-

malleable codes against any tampering function that has ξ lg n output locality, i.e., at most

ξ lg n input-bits influence any output bit of the tampering function. Note that there is no

bound on the input locality, i.e., the number of output positions one input bit can influence

during tampering. Here lg represents the logarithm with base 2, and n represents the length

of the codeword. Notably, our construction is in the information-theoretic plain model. We

emphasize that our construction does not rely on any computational hardness assumption

or a CRS.

3.1 Our Contribution

Our work focuses on constructing non-malleable codes, in the information-theoretic plain

model, against tampering functions that are δ-local, i.e., at most δ input bits influence any

output bit. We emphasize that δ can be a function of n, the size of the codeword. Our work,

for any positive constant ξ < 1, constructs explicit rate-1 NMC against δ-local tampering

functions, where δ = ξ lg n, which is a tampering family of size 2n1+o(1) . In our case, the

locality δ = ω(1) and, hence, the set of all δ-local tampering functions subsumes the family

of NC0 tampering functions.

We present a general black-box compiler that takes three ingredients as input and con-

structs a non-malleable code for local functions. At an intuitive level, we prove the following

result.

Informal Theorem 3.1.1. For any positive constant ξ < 1, there exists an explicit and

efficient rate-1 NMC against ξ lg n-local tampering functions using the following primitives

in a black-box manner (refer to  Figure 3.2 ).
1

 ↑ Tampering functions can access the CRS; however, they cannot tamper the CRS.
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1. Rate-1 linear error-correcting code 

2
 with (near) linear distance and dual-distance (see

 Definition 3.4.2 ),

2. Rate-1/ηo(1) NMC against leaky input and output local tampering for message length η

(referred to as the base NMC) (see  Definition 3.4.1 ), and

3. A pseudorandom generator for finite state machines with super-polynomial stretch (see

 Definition 3.4.4 ).

The compiler (refer to  Figure 3.1 for an outline) encodes the message m using the error-

correcting code. Then, it samples a few entries of the codeword (at a suitable rate) and adds

errors at half of them. The compiler tabulates all the sampled entries (both the erroneous

and unaltered ones) along with their respective locations. The erroneous codeword forms the

primary payload of the message m. The list of tabulated entries is appropriately encoded

using a combination of the base NMC and the PRG and is juxtaposed (at the end) for

consistency checks during decoding. If the rate of subsampling is sufficiently low, then the

overall construction is rate-1. The security argument proceeds by demonstrating that if the

subsampling rate is sufficiently high, then any local function cannot change the payload

without being inconsistent with the tabulated entries themselves.  Section 3.2 provides an

intuitive overview of our compiler’s construction.

Finally, we instantiate the respective primitives using (1) Reed-Solomon Codes over char-

acteristic 2 fields, (2) An appropriate encoding introduced by Ball et al. [  BDKM16 ], and (3)

Nisan’s PRG [ Nis90 ]. As a consequence, we construct explicit efficient rate-1 NMC against

ξ lg n-local tampering functions, for any positive constant ξ < 1, with negligible simulation

error (refer  Theorem 3.5.2 ).

Remark. We note that the resulting decoding function for our construction is randomized.

However, the randomization stems solely from the randomized decoding function of the base

NMC construction of [  BDKM16 ]. Given an appropriate NMC against leaky input and out-

put local tampering with deterministic decoding, our construction will have deterministic
2

 ↑ Error-correcting codes can be converted into error-correcting secret sharing schemes using standard share-
packing techniques [ Sha79 ,  BM84 ,  FY92 ].
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decoding.

Remark. If the base NMC is only rate-1/poly(n), then our compiler with suitably modi-

fied parameters, as indicated in  Appendix A.3 , constructs an explicit rate-1 NMC against

o(log n)-local tampering functions.

3.2 Technical Overview

As a starting point, it is instructive to understand the construction of Agrawal et al. [ AGM+15b ]

for a rate-1 NMC against tampering functions with input and output locality 1. The con-

ceptual hurdles in generalizing this approach to δ-local functions, we believe, motivates the

components used in our construction.

Construction of Agrawal et al. [ AGM+15b ]. The construction of Agrawal et al. [  AGM+15b ]

encodes the message m with an error correcting secret sharing (ECSS) scheme to obtain a.

Then, it samples a small number of bits from a indexed by E, which are represented by aE,

and replaces aE with a (uniformly random) error e. This creates an erroneous codeword c.

Observe that half of the bits of e match the original entries in aE and the remaining do not.

Next, an NMC of rate-1/poly(λ) encodes the consistency checks (E, e) as cerr, and the final

encoding is (c, cerr). The decoding algorithm error-corrects c to obtain a (and hence, m) and

checks the consistency between a, c, cerr. For an appropriately chosen size of the set E, the

encoding (c, cerr) is non-malleable and has rate-1.

We represent the tampered codeword and error, respectively, by c̃ and c̃err. The security

argument proceeds, roughly, as follows.

(1) The tampering on cerr is independent of the message m. This argument crucially

relies on the output-locality of the tampering function. The independence 

3
 of the ECSS is

sufficiently high to permit the simulation of the tampering on cerr independent of the message

m.

(2) The non-malleability of the encoding cerr ensures that c̃err encodes either (a) the

original (E, e), or (b) an entirely unrelated (E∗, e∗). The case of the tampering function

creating an invalid encoding is not particularly insightful.
3

 ↑ An ECSS of independence t has the property that any t shares are uniformly and independently random.
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(3.a.) Consider the case where the tampering function preserves error; namely, the same∗

case. In this case, they argue that the only way to get a valid tampered codeword is by

keeping c̃ identical to c and that the probability of encoding being valid independent of the

original message m. For this argument, they perform a case analysis based on the number

of bits that the tampering function does not directly copy from the codeword (a.k.a., the

not-copied-bits). The tampering function, by definition, directly copies the remaining bits

from the codeword into the tampered codeword.

If the number of not-copied-bits in the tampering function is small, then the simulation

proceeds as follows. Since the tampering function has a small number of not-copied-bits,

most bits in c̃ are identical to their corresponding bits in c. These copied bits define a

unique codeword (using the high distance property of ECSS 

4
 ). Decoding succeeds if every

not-copied-bit of c̃ matches the corresponding bit in c. Moreover, decoding fails if any

not-copied bit of c̃ does not match the corresponding input bit in c. Since, the number

of the not-copied-bits is small and they have output locality 1, we can simulate this check

independent of the original message m by leveraging the (sufficiently large) independence of

the ECSS.

On the other hand, if the number of not-copied-bits is large, then they argue that the

tampered codeword is invalid (w.h.p.). The following intuition underlies their argument.

Due to the input-locality 1 of the tampering functions, the error cerr can influence only a few

bits in c̃. Consequently, there still remains a large number of bits in c̃ that are not-copied-

bits and are not influenced by cerr. Therefore, the subset of these bits that is sampled in

E is also large (over the random choice of E). Among these indices, leveraging the high

independence of the ECSS and input locality 1 of the tampering function, there is a large

subset where each indexed bit in the tampered codeword independently disagrees with the

tabulated (E, e) with probability (at least) 

5
 1/2. So, with high probability, the tampered

codeword fails the consistence check.

(3.b.) Consider the case where the tampering function replaces the error with an unre-

lated (E∗, e∗). In this case, they argue that the only way to get valid tampered codeword is
4

 ↑ An ECSS with distance d ensures that, for two different secrets, at least d secret shares are different.
5

 ↑ If the tampering function flips the input bit then the probability of disagreement is 1; otherwise, the
probability of disagreement is 1/2.
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by replacing c by an unrelated c∗ that is consistent with (E∗, e∗). For this argument, they

perform a case analysis based on the number of output-bits of the tampering function that

are non-constant (a.k.a., the non-constant-bits). If the number of non-constant-bits is small,

then the tampered message is simulatable independent of the message due to the high inde-

pendence of the ECSS and output locality 1 of tampering function. On the other hand, if the

number of non-constant-bits is large, then the decoding fails with high probability. In this

case, each bit in c̃ that is influenced by a bit in c risks creating an independent inconsistency

with (E∗, e∗) with probability 1/2. Hence, if there is a large number of these bits where each

of them is inconsistent with (E∗, e∗) independently with probability 1/2, then the overall

codeword will be invalid with high probability. Similar to case 3.a., this argument relies on

leveraging the high independence of the ECSS, input locality 1 of the tampering function,

and the fact that E is randomly chosen.

To summarize, two key properties are crucial to our arguments.

(A) Being non-committal to the errors. We rely on randomness of errors to argue inconsis-

tency with tabulated errors in cerr.

(B) Independence of failure. Our objective is to identify output bits that cause decoding

failure independently.

Consequently, we have the following objective.

“Find a large subset of bits in c̃ that independently fail the consistency check” while,

simultaneously, “remaining noncommittal to (most of) the error (E, e)”

In the sequel, we elaborate the unique challenges to achieve this objective against δ-local

functions, with δ > 1, and no a priori bound on the input-locality.

Intuition underlying Our Construction. For a tampering function with output

locality δ (referred to as a δ-local function), intuitively, every bit in the tampered codeword

is influenced by some bits in c and some bits in cerr. The 2-local tampering functions suffice

to capture these two influences and we use these to illustrate some primary challenges and

key components of our construction.

Using the output locality of the tampering function, we can argue that tampering on cerr

would be independent of the message m. Next, we use non-malleablity of encoding cerr to
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simulate whether c̃err encodes (a) the original errrors, (2) an unrelated (E∗, e∗), or (3) ⊥. Let

us consider the case when the tampering function preserves the original errors. In this case,

we perform a case analysis on the number of not-copied-bits. So the first (somewhat minor)

hurdle is how to define not-copied-bits for δ-local functions. Since a bit in c̃ can be influenced

by δ bits, it is a not-copied-bit if it is not a copy for (at least) 1 out of the 2δ possible inputs.

Hence, in the final argument, this bit shall fail the consistency check with probability 1/2δ.

Thus, as δ increases, we need to find exponentially more bits that independently fail to be

consistent.

The second hurdle is that, unlike Agrawal et al. [  AGM+15b ], our tampering functions are

not input-local. So, for instance, one bit in the (c, cerr) can influence every bit of the tampered

codeword. Therefore, even though there might be many not-copied-bits, their probability of

being inconsistent is possibly correlated. To resolve this challenge, Viola [ Vio11 ] proposed a

technique to fix the values of the highly influential input bits (sampled from an appropriate

distribution) of the tampering function. This technique, intuitively, transforms an output

local tampering function into a convex combination of tampering function that are both

input and output local. We use this technique to fix the highly influential bits in c to be

uniform random bits (relying on output locality of tampering function and independence of

ECSS). However, as we discuss below, many challenges remain related to the bits in cerr that

are highly influential for c̃.

Consider the following representative 2-local tampering function. Each bit is c̃ is influ-

enced by corresponding bit in c and a bit in cerr while ensuring that all bits in cerr have an

identical number of output neighbors.

(1) If the threshold to identify “highly influential” input bits is set too low, then the

procedure mentioned above might fix the entire cerr, because the size of cerr is very small.

Consequently, the error (E, e) gets fixed. Thereafter, it is unclear how to proceed and catch

any non-trivial tampering of c. So, the threshold to identify “highly influential” cannot be

too low. Therefore, in this case, it is possible that no bit in cerr is fixed and cerr cumulatively

influences a lot of bits in c̃.

(2) Ideally, we would like that the bits we pick from c̃ to argue failure do not depend on

cerr. However, in this case, all the bits in c̃ depend on cerr.

46



(3) Furthermore, there is another subtle issue. Conditioning on the fact that the tampered

c̃err encodes the same error or a fixed (E∗, e∗) distorts the distribution of cerr, which, in turn,

influences the distribution of the tampered c̃. To summarize, the distributions c̃ and (E, e)

are correlated when conditioned on whether the c̃err encodes the same cerr or a fixed cerr.

Message m

Valid Codeword a
Random errors
e at random

indices E

cL cR

(sL, αL) (sR, αR)Main codeword c

Replace
aE with e

Hide cL inside
αL using Nisan’s

PRG [  Nis90 ]
with seed sL

Hide cR inside
αR using Nisan’s

PRG [  Nis90 ]
with seed sR

Encode (E, e) using
NMC against leaky local

tampering [ BDKM16 ]

ECSS scheme

Rate-0 NMC
against local tam-
pering [ BDKM16 ]

Figure 3.1. Block diagram of the compiler to construct NMC against local tampering.

To resolve these concerns simultaneously, the high level idea is to hide the informative

bits about (E, e), i.e., cerr, in a polynomially larger string, say α (refer to  Figure 3.1 for a

block diagram of our compiler). We use a PRG with a super-polynomial stretch to determine

the positions with informative bits inside α and store the PRG seed s along with α as the

new payload. So our final codeword is (c, s, α). 

6
 We argue that for any tampering function,

the number of bits from cerr that are highly influential for c̃ is small. To simulate these bits,

we perform a small leakage on cerr. Since our base NMC from [  BDKM18 ] is resilient to small

leakage, we stay non-committal to (E, e) even conditioned on this leakage. Note that the

rest of the bits in cerr have a bounded input locality onto c̃ and hence, cerr influences only a

small subset of bits in c̃.
6

 ↑ Similar to [ BDG+18 ], hash function families with sufficiently high independence also suffice in this context.
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Now, if we had a large number of not-copied-bits in c̃, we have a large number of not-

copied-bits in c̃ that are not influenced by cerr. But these bits might share input neighbors in

c and have correlated probability of failing consistency checks. Recall that we have already

fixed the highly influential bits in c. Finally, we can use the bounded input and output

locality to identify independent bits in c̃ (using the greedy neighbor-of-neighbor argument

of Viola [ Vio11 ]).

This section presents only the intuitive rationale underlying the cryptographic primitives

needed for our construction. There are further subtleties involved in the security arguments.

 Section 3.6.1 presents the full proof of our compiler using a hybrid argument.

Remark: Limit of our approach. We present a simple rationale for why our construction

works for δ-local functions, where δ = ξ lg n and ξ < 1 is a positive constant. Note that in

steps 3.a. and 3.b., the probability of inconsistency with the tabulated error was at least

1/2 in a 1-local tampering function. However, the probability of inconsistency in a δ-local

tampering function can be as low as 2−δ. The probability of u independent consistency

checks to simultaneously pass is (1− 2−δ)u. We need u = ω
(
2δ log n

)
for this quantity to be

negligible. On the other hand, we have u 6 n. Consequently, we must have 2δ � n/ log n,

or, in particular, δ � lg n.

3.3 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. For x = (x1, x2, . . . , xn) and S ⊆ [n], we use xS
to denote (xs1 , xs2 , . . . , xsk), where S = {s1, s2, . . . , sk} and s1 < s2 < · · · < sk. For brevity,

we write x−i for x[n]\{i}. We use US to represent the uniform distribution over the set S. If

D is a distribution, we write x← D to denote that x is sampled according to distribution D.

The support of a distribution D, represented by Supp(D), is the set {x : Pr [D = x] > 0}.

For any binary strings x, y ∈ {0, 1}n, we use HD(x, y) to denote their Hamming distance

defined by HD(x, y) := |{i : xi 6= yi and 1 6 i 6 n}|.
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3.3.1 Local Functions

Let f : {0, 1}n → {0, 1}n be a deterministic function. We write f as (f1, f2, . . . , fn) such

that f(x) = (f1(x), f2(x), . . . , fn(x)), where each fi : {0, 1}n → {0, 1} and 1 6 i 6 n. We

say that the i-th bit (of the input) has influence on the j-th bit (of the output) if there exists

an x∗−i such that

fj(x∗1, . . . , x∗i−1, 0, x∗i+1, . . . , x
∗
n) 6= fj(x∗1, . . . , x∗i−1, 1, x∗i+1, . . . , x

∗
n)

For every output position 1 6 j 6 n, we define the input neighbors Inpf (j) to be {i|1 6

i 6 n, i has influence on j}. Similarly, for an input position 1 6 i 6 n, we define its output

neighbors Outf (i) to be {j|1 6 j 6 n, i has influence on j}. We extend this notion naturally

to a set of indices. We write Inpf (S) = ∪s∈S Inpf (s) and Outf (S) = ∪s∈S Outf (s).

A function f has input locality δ, if, for all 1 6 i 6 n, we have |Outf (i)| 6 δ. Similarly,

a function f has output locality δ, if for all 1 6 j 6 n, we have |Inpf (j)| 6 δ.

Definition 3.3.1 (Local Functions). A function f : {0, 1}n −→ {0, 1}n is called a δ-local

function if it has output locality δ.

We use Localδ to represent the set of all such functions because n shall be implicit from

our context.

Recall that NC0 is the set of all functions f such that for all i, fi can be computed by a

circuit of fan-in 2 and constant depth. Trivially, NC0 ⊆ LocalO(1).

We follow the convention in the literature and define the restriction of boolean functions

as follows.

Definition 3.3.2 (Restriction). Let g : {0, 1}n → {0, 1} be a boolean function and (I, Ī) be

a partition of [n]. Let x ∈ {0, 1}I . Then, we write gI|x : {0, 1}n → {0, 1} for function g

with input of indices in I being restricted to x. For function f : {0, 1}n → {0, 1}n such that

f = (f1, f2, . . . , fn) we write fI|x to denote ((f1)I|x, (f2)I|x, . . . , (fn)I|x). We say that i ∈ Ī

has influence on j if there exists a x∗−i such that x∗I = x and

(fI|x)j(x∗1, . . . , x∗i−1, 0, x∗i+1, . . . , x
∗
n) 6= (fI|x)j(x∗1, . . . , x∗i−1, 1, x∗i+1, . . . , x

∗
n)
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Note that for all j ∈ [n], InpfI|x(j) = {i|1 6 i 6 n, i has influence on j} ⊆ Ī.

3.3.2 Hypergeometric Distribution

Consider a universe of size N with K success samples. An (N,K, n)-hypergeometric

distribution is the probability distribution of number of success samples picked when n

random samples are picked from the universe without replacement. Specifically, we define

the distribution as follows.

Definition 3.3.3. A distribution D over the sample space [n] is an (N,K, n)-hypergeometric

distribution if, for any k ∈ [n], we have

Pr[D = k] =
(
K

k

)(
N −K
n− k

)(
N

n

)−1

Using standard coupling arguments, it is known that the hypergeometric distribution is

more concentrated than the corresponding Bernoulli distribution. Consequently, we have

the following tail bound.

Lemma 3.3.1. ([ Hoe63 ,  Chv79 ]) Let X be a random variable sampled from a (N,K, n)-

hypergeometric distribution. Then for any ε ∈ (0, K
N

),

Pr [X 6 (K/N − ε) · n] 6 exp
(
−2ε2n

)

The following corollary suffices for our proof.

Corollary 3.3.1. Let A ⊆ [n] be an arbitrary subset of size a. Let B ⊆ [n] be a random

subset of size b. Then

Pr [|A ∩B| 6 ab/2n] 6 exp
(
−a2b/2n2

)

Note that |A ∩B| is an (n, a, b)-hypergeometric distribution. The corollary follows from

the previous lemma with ε = a/2n.
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3.4 Building Blocks

In this section we describe the building blocks of our compiler.

3.4.1 Non-malleable Codes against Leaky Input and Output Local Tampering

Our construction relies on an encoding scheme that satisfies non-malleability against

leaky input and output local tampering that we define below.

Definition 3.4.1. Let (Enc,Dec) be a coding scheme such that Enc : {0, 1}k → {0, 1}nL ×

{0, 1}nR and Dec : {0, 1}nL × {0, 1}nR → {0, 1}k. We call (Enc,Dec) a (λ, µ, `i, `o)-non-

malleable code against leaky input and output local tampering with simulation error ε if it

satisfies the following conditions.

Let LL ⊆ [nL] and LR ⊆ [nR] be arbitrary subsets of size at most λnL and λnR, respec-

tively. Consider any function F with domain {0, 1}|L
L|×{0, 1}|L

R| that outputs a tampering

function g : {0, 1}nL × {0, 1}nR → {0, 1}nL × {0, 1}nR such that for any x ∈ {0, 1}|L
L|,

y ∈ {0, 1}|L
R|, and g = F (x, y)

1. The output locality of the tampering function g is at most `o, and

2. All but (at most) µnL input-bits of the first nL input-bits of g have input locality (at

most) `i.

Then, there exists a distribution Sim(LL,LR, F ) over
(
{0, 1}k ∪ {⊥, same∗}

)
× {0, 1}|L

L| ×

{0, 1}|L
R| such that for any message m ∈ {0, 1}k,

TampermLL,LR,F ≈ε Copy(Sim(LL,LR, F ), m), where

TampermLL,LR,F :=



(cL, cR)← Enc(m), x := cLLL , y := cRLR

g := F (x, y)

(c̃L, c̃R) = g(cL, cR), m̃ = Dec(c̃L, c̃R)

Output (m̃, x, y)


Intuitively, leaky input and output local tampering allows the adversary to first pick

a subset of indices and peek into the codeword at those places, then use this leakage as
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an advice to select a output-local, (almost) input-local tampering function. Then, non-

malleability against leaky input and output local tampering guarantees that the tampered

message and the leakage are simulatable independent of the original message only given the

position of leaked indices and the map F from leakage to the tampering function. Ball et al.

[ BDKM16 ] construct this non-malleable code as an intermediate step toward their final rate-

0 non-malleable codes against local tampering. As a corollary of their results, we have the

following lemma, which suffices for our construction.

Lemma 3.4.1 ([ BDKM16 ]). There exist constants λ, µ such that, for any `i, `o = O(log k),

there exists an explicit and efficient (λ, µ, `i, `o)-non-malleable code against leaky input and

output local tampering with simulation error ε = negl(λ)(k) and rate 1/ko(1), where k is the

length of the message.

Remark 3.4.1. Note that [ BDKM16 ] reduces the problem of constructing non-malleable

codes against leaky input and output local tampering to the problem of constructing non-

malleable codes against 2-split-state tampering family. The rate of their final construction will

be the product of the rate of the reduction, which is inverse of the locality (i.e., 1/max(`i, `o))

and the rate of the given 2-split-state non-malleable code. Instantiated with the state-of-the-

art 2-split-state construction by Li [ Li17 ,  Li18 ], which has rate Ω(log log log k/ log log k), the

final rate of [ BDKM16 ]’s construction can be as high as 1/polylog (k), which is 1/ko(1) and

satisfies this lemma.

3.4.2 Error-Correcting Secret-Sharing Schemes

Definition 3.4.2. An encoding scheme (Enc,Dec) with block length n and message length `

is said to be an (n, `, d, t)-error-correcting secret sharing scheme (ECSS scheme) if it satisfies

the following conditions.

1. Distance d. For any two codewords c, c′, HD(c, c′) > d.

2. Independence t. For any message m ∈ {0, 1}` and a subset S ⊆ [n] such that |S| 6 t,

the distribution of Enc(m)S is identical to the uniform distribution U{0,1}|S|.
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3. Error Correction d/2. There exists an error-correcting function ECorr such that for

any c ∈ {0, 1}n, ECorr(c) outputs a codeword c∗ such that HD(c, c∗) 6 d/2. If no such

codeword exists, then it outputs ⊥.

Lemma 3.4.2. For every ζ ∈ (0, 1), there exists an explicit (n, `, d, t)-ECSS scheme with

n = (1 + o(1))` and d, t > n1−ζ.

For completeness, we provide such a construction in  Appendix A.1  .

3.4.3 Pseudorandom Generator for Finite State Machines

Definition 3.4.3 (Finite State Machine). A finite state machine (FSM) Q with space w

over the alphabet Σ satisfies the following properties.

1. There exists a state-transition function q : {0, 1}w × Σ→ {0, 1}w that takes as input the

current state s ∈ {0, 1}w and an alphabet x ∈ Σ, and outputs the new state q(s, x).

2. There exists a subset S ⊆ {0, 1}w such that if the final state s ∈ S then the FSM accepts

the input and outputs 1. Otherwise, it outputs 0.

Definition 3.4.4. A function G : {0, 1}p → Σu is a pseudorandom generator for FSMs with

space w and alphabet Σ with error ε if for any distinguisher FSM Q with space w and alphabet

Σ we have ∣∣∣∣Pr [Q (UΣu) = 1]− Pr
[
Q
(
G(U{0,1}p)

)
) = 1

]∣∣∣∣ 6 ε

Lemma 3.4.3 ([ Nis90 ]). There exists a constant κ > 0 such that for all integers d > 0 and

u 6 κd, there is an explicit pseudorandom generator G : Σ3u → Σ2u for FSMs with alphabet

Σ = {0, 1}d and space κd with error 2−κd.

3.5 Our Compiler

In this section, we will present our compiler. That is, for all constants ξ < 1, given

a rate-1 ECSS scheme, a rate 1/ηo(1) non-malleable code against leaky input and output

local tampering (for η length messages) and a PRG secure against finite state machines with

appropriate parameters, we construct a rate-1 non-malleable coding scheme against all δ-local
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Building blocks:
• (ECSS.Enc,ECSS.Dec) is an (n, `, d, t) ECSS scheme.
• (NMEnc0,NMDec0) is a (λ, µ, `i, `o)-non-malleable code against leaky input and output local tam-

pering.
• G : ({0, 1}log2 n)3Λ logn −→ ({0, 1}log2 n)nΛ is a PRG that fools all FSMs with space κ log2 n. We set

Λ below.

NMEnc1(msg):

1. Sample a random E ⊆ [n] of size n1−ε1 , where
ε1 is a small constant.

2. For all i ∈ E, sample ei ← U{0,1}.
3. Sample a← ECSS.Enc(msg)

4. Define c as ci =
{
ai, i /∈ E
ei, i ∈ E

5. Let (cL, cR)← NMEnc0(E, e)
6. Pick seeds sL, sR $←{0, 1}3Λ·log3 n.
7. Let EmbedL,EmbedR be as below.

• αL = EmbedL(sL, cL)
• αR = EmbedR(sR, cR)

8. Output (c, sL, αL, sR, αR)

NMDec1(c̃, s̃L, α̃L, s̃R, α̃R):

1. Let RecoverL,RecoverR be as below.

• c̃L = RecoverL(s̃L, α̃L)

• c̃R = RecoverR(s̃R, α̃R)

2. If NMDec0(c̃L, c̃R) = ⊥, output ⊥
3. (Else) (Ẽ, ẽ) = NMDec0(c̃L, c̃R)
4. If ECSS.ECorr(c̃) = ⊥, output ⊥
5. (Else) ã = ECSS.ECorr(c̃)

6. Define c′ as c′i =
{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

7. if c′ 6= c̃, output ⊥
8. (Else) m̃sg = ECSS.Dec(ã)
9. Output m̃sg

Let lengths of cL and cR be nβ1 and nβ2 , respectively. First, pick 

a
 a constant γ s.t. max(β1, β2) < γ < 1.

Next, let τ > 0 be a constant s.t. Λ = γ + 2τ < 1.

EmbedL,RecoverL: Let ρL : {0, 1}log2 n −→ {0, 1} be any function with bias 

b
 2n−(Λ−β1). First, compute

G(sL) = (y1, y2, . . . , ynΛ) s.t. each yi ∈ {0, 1}log2 n and AdvL = (ρL(y1), ρL(y2), . . . , ρL(ynΛ)). Then,
αL = EmbedL(sL, cL) is defined as:

αLi :=
{
cLj If AdvLi is the jth 1 in AdvL

0 Otherwise.

To recover during decoding, compute G(s̃L) = (ỹ1, ỹ2, . . . , ỹnΛ) and
Ãdv

L
= (ρL(ỹ1), . . . , ρL(ỹnΛ)). Then, if Ãdv

L
does not contain > nβ1 many 1’s, quit decoding by outputing

⊥. Otherwise, c̃L = RecoverL(s̃L, α̃L) is defined as:

c̃Lj := α̃Li where Ãdv
L

i is the jth 1 in Ãdv
L

EmbedR,RecoverR: Let ρR : {0, 1}log2 n −→ {0, 1} be any function with bias 2n−(Λ−β2). Now
EmbedR,RecoverR are defined analogously to above using ρR.

a
 ↑ This is possible because (E, e) has length η = n1−ε1(logn+ 1) and (NMEnc0,NMDec0) is a 1/ηo(1) rate

coding scheme.
b

 ↑ Bias of a function is the probability that output is 1 for a uniformly sampled input.

Figure 3.2. Our Rate-1 Non-malleable Codes against δ-Local Functions
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tampering family Localδ for δ = ξ · lg n. Here n is the length of the codeword. We begin

by giving some notation, specifying the building blocks used followed by our contruction

overview.

Notation: Throughout our construction and proof, we use the notation that after the

tampering is done, any variable of original codeword, for example, a, will have a tilde on it,

i.e., ã. For example, c is the original main codeword and c̃ would be the tampered version

of the main codeword. Thus, when we talk about bits from c, it refers to the input-bits of

the tampering function and on the other hand, bits from c̃ are output-bits of the tampering

function.

Building blocks used. We use the following three building blocks. Let δ = ξ · lg n for

ξ < 1 be the locality of the tampering function.

1. An (n, `, d, t)-ECSS scheme with d, t > n1−ζ and n = (1 + o(1))` for an appropriate

constant ζ to be fixed later. This is provided by  Lemma 3.4.2  .

2. For any constant λ, µ and η = nΘ(1), a (λ, µ, `i, `o)-NMC against leaky input and output

local tampering for messages in {0, 1}η, rate 1/ηo(1), `o = δ = O(log η), `i = 4δ/µ =

O(log η), simulation error negligible in η. This is provided by  Lemma 3.4.1 . We denote

the corresponding simulator by Sim0.

3. A PRG G : ({0, 1}log2 n)3Λ logn −→ ({0, 1}log2 n)nΛ that is secure against all FSMs with

alphabet Σ = {0, 1}log2 n and space κ log2 n with error 2−κ log2 n for an appropriate con-

stant Λ to be fixed later. Here, κ is a constant provided by  Lemma 3.4.3 for u = Λ log n

and d = log2 n.

Construction Overview. Our construction starts with encoding the message m ∈ {0, 1}`

using ECSS scheme a ← ECSS.Enc(m) such that a ∈ {0, 1}n. Next, we sample a random

subset E ⊆ [n] of size n1−ε1 for a small constant ε1 specified later. Next, for each index

i ∈ E, we sample a random bit ei. These will be our planted errors. Then, all bits at E in

codeword a are replaced by these random bits ei to produce c. We refer to this an erroneous

codeword c as the main codeword. We note that a bit at index in E has probability 1/2 of

being an error.
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Next, for the second part of our codeword, we record the error indices E as well as planted

errors e = (e1, e2, . . . , e|E|) using (poor-rate) non-malleable codes against leaky input and

output local tampering. We sample (cL, cR)← NMEnc0(E, e). Finally, we hide the codeword

(cL, cR) inside a larger code (αL, αR) at pseudorandom locations as follows: We will sample

two seeds sL, sR of appropriate length (See  Figure 3.2  ). And invoke our pseudorandom

generator G on sL (resp., sR) and use appropriate bias function ρL (resp., ρR) to generate

advice string AdvL (resp., AdvR). At a high level, positions having a 1 in the advice string

will store an actual bit of the code, and positions with 0 will store a redundant 0. Intuitively,

this step ensures that when bits from αL or αR are used for tampering, most of these bits

would be redundant 0’s. Our final codeword is (c, sL, αL, sR, αR).

Conversely, to decode, we use seeds s̃L, s̃R to determine the indices of c̃L, c̃R in α̃L, α̃R.

Then, we decode (c̃L, c̃R) to get the error index set Ẽ and error bits ẽ. Next, we compare c̃

with planted errors (Ẽ, ẽ) to check (1) whether all the bits from c̃ with index in Ẽ and ẽ are

equal; (2) we error correct c̃ to obtain correct codeword ã and check whether all the errors

in c̃ were recorded in Ẽ. If both conditions are satisfied, we will consider the codeword valid

and output the decoding of ã as the decoded message.

Setting the parameters. Next, we will set the various constants used in our construction

(as well as proof of non-malleability).

• λ, µ: We pick constants λ, µ arbitrarily.

• Λ, γ, τ : Let |cL| = nβ1 and |cR| = nβ2 . Since η = |(E, e)| = n1−ε1(log n) and rate of

NMEnc0 is 1/ηo(1), we have that max(β1, β2) < 1. We pick positive constants γ, τ such

that max(β1, β2) < γ < 1 and γ + 2τ < 1. Set Λ = γ + 2τ .

• ε1, ε2: The number of erroneous indices |E| = n1−ε1 . In our security hybrids, we have

another small constant ε2 and we require ε1 + 2ε2 < 1 − ξ, where ξ is defined by the

tampering family. Hence, given ξ, we pick two positive constants satisfying the condition.

• ζ: In our construction, we use an (n, `, d, t)-ECSS scheme with d, t > n1−ζ . In our

security proof, we require ζ < min(ε1, ε2, τ, 1 − Λ) and hence, ζ can be picked as a

sufficiently small positive constant satisfying the constraint.
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Theorem 3.5.1. Let {0, 1}` be the message space and δ = ξ · lg n, for some constant ξ < 1.

There exists an explicit and efficient rate-1 NMC against Localδ with simulation error that

is negligible in n and uses the following primitives in a black-box manner.

1. For appropriate ζ > 0, an (n, `, d, t)-ECSS scheme with d, t > n1−ζ and n = (1 + o(1))`.

2. For some constant λ, µ and η = nΘ(1), a (λ, µ, `i, `o)-NMC against leaky input and out-

put local tampering for messages in {0, 1}η, rate 1/ηo(1), `o = O(log η), `i = O(log η),

simulation error negligible in η.

3. For some constant Λ > 0, a PRG G : ({0, 1}log2 n)3Λ logn −→ ({0, 1}log2 n)nΛ that is secure

against FSM with alphabet size log2 n and space Θ(log2 n) with error that is negligible in

n.

The above theorem when instantiated with  Lemma 3.4.2 ,  Lemma 3.4.1 and  Lemma 3.4.3 

gives following theorem.

Theorem 3.5.2. For all constants ξ < 1, there exists an explicit rate-1 non-malleable code

against Localξ·lgn with negligible in n simulation error, where n is the length of the codeword.

In particular, this implies an explicit rate-1 non-malleable code against NC0 tampering.

3.5.1 Proof of  Theorem 3.5.1 

Here, we will prove that the our construction has rate-1 and perfect correctness. We

provide proof of non-malleability in the next section.

Rate of our construction. Our codeword is (c, sL, αL, sR, αR). Note that our main code-

word c has length n = ` + o(`). Next, |sL| = |sR| = 3Λ log3 n. And, —αL| = |αR| = nΛ.

Since, Λ = γ+2τ < 1 (see parameter setting above), the overall codeword has length `+o(`).

Correctness. We first argue that our scheme has statistical correctness, and then show how

the scheme in  Figure 3.2 can be tweaked slightly to give perfect correctness. It is easy to see

that the correctness of our scheme in  Figure 3.2 is broken only when AdvL does not have

enough number of 1’s to store all of cL in αL or similarly, when AdvR does not have enough

number of 1’s to store all of cR in αR. If this happens, the decoding algorithm would output

⊥. Note that whether this event happens or not depends on the choice of seeds sL and sR
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only. We prove the following lemma that states that probability of this event happening is

negligible.

Lemma 3.5.1. With probability at least 1− 2−Ω(log2 n) over the random choice of sL and sR,

αL and αR will contain all the bits from cL and cR.

Proof. We will prove the lemma for (sL, αL) and same argument holds for (sR, αR). We first

show that the lemma holds when G is a random function. Next, we argue that if lemma

does not hold for a PRG G, then there exists a distinguisher FSM Q with space κ log2 n that

breaks PRG security with non-negligible probability in n.

Firstly, when G(sL) outputs uniform random string, the expected number of 1’s in AdvL is

nΛ·2n−(Λ−β1) = 2nβ1 . Next, using Chernoff bound, with probability at least 1−exp(−Θ(nβ1)),

there are at least nβ1 many 1’s in AdvL and hence, αL will contain all the bits from cL.

Now suppose that the lemma does not hold when we use PRG G that fools FSMs with

space κ log2 n. Consider the following FSM Q that takes (y1, y2, . . . , ynΛ) as input and a

state in Q stores ctr, which denotes number of indices i for which ρL(yi) output 1. The final

output of Q is 1 when ctr > nβ1 . Clearly, by our argument above, on a true uniform string,

Q will output 1 with probability at least 1− exp(−Θ(nβ1)). If this lemma is incorrect for a

PRG G, Q will output 1 with probability at most 1− 2−Ω(log2 n) and hence Q will break the

underlying PRG with success probability greater than 2−Ω(log2 n). Finally, note that Q only

needs Λ log n < κ log2 n space to record A. This completes the proof.

Getting perfect correctness. We can tweak our scheme slightly to give perfect correctness

as follows: If sL or sR is bad, i.e., (αL, αR) will not contain all bits in (cL, cR), then we ignore

AdvL,AdvR and store the codeword in default location. More precisely, we store cL in first

|cL| locations in αL and similarly for cR. It is easy to see that this gives perfect correctness.

In the proof of non-malleability, our simulator can simply give up when this case happens.

(Since sL, sR are uniform seeds independent of the message, it is easy to check for this case.)

This would increase the simulation error by the probability of this event occurring. But,

above  Lemma 3.5.1  proves that this happens with negligible probability. Hence, this only

increases the simulation error by negl(λ)(n).
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3.6 Proof of Non-malleability of Our Compiler

Non-malleability. Recall that to prove non-malleability of the resulting scheme against

δ-local tampering family Localδ, we need to show that for any f ∈ Localδ, there exists a

simulator Sim1(f) such that, for all message m ∈ {0, 1}`, we have the following



(c, sL, αL, sR, αR)← NMEnc1(m)

(c̃, s̃L, α̃L, s̃R, α̃R) = f(c, sL, αL, sR, αR)

m̃ = NMDec1(c̃, s̃L, α̃L, s̃R, α̃R)

Output m̃


= Tampermf ≈ε Copy(Sim1(f),m)

Our simulator is formally defined in  Figure 3.3 . In the simulator and the hybrids, ne =

|(sL, αL, sR, αR)|. A detailed proof using a sequence of indistinguishable hybrids is presented

in the next section. We shall use the following lemma in our hybrid argument. We present

the proof of  Lemma 3.6.1 in  Appendix A.2  .

Lemma 3.6.1. For any δ-local tampering function, with probability at least 1 − 2−Ω(log2 n)

over the random choice of sL and sR, the following conditions hold.

(1) At most µnβ1 bits from cL will have input locality higher than 4δ/µ onto α̃R;

(2) Number of bits in cL and cR that have greater than n1−γ−τ input locality onto c̃ are

bounded by 4δnβ1−τ and 4δnβ2−τ , respectively.

And as a consequence, we have

(3) Number of bits in c̃ that are influenced by low input locality bits from cL and cR are

bounded by nβ1 · n1−γ−τ = o(n1−τ ) and nβ2 · n1−γ−τ = o(n1−τ ), respectively.

3.6.1 Detailed hybrid argument

In this section, we are going to use a series of statistically close hybrids to prove that

Tampermsg
f and Copy

(
Sim1(f),msg

)
are indistinguishable. Throughout this subsection, we

use the following color/highlight notation. In a current hybrid, the text in red denotes the

changes from the previous hybrid. The text in shaded part represents the steps that will
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1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}
2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}
3. Let X = P ∪Q. Sample aX ← U{0,1}|X|

4. Sample a random E1 ⊆ X s.t. |E1| ← (n, |X|, n1−ε1)-hypergeometric distribution.
5. For all i ∈ E1, sample ei ← U{0,1}.
6. For all i ∈ E1, replace ai with ei, we get cX .
7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n.
8. Given sL (resp., sR), indices of cL (resp., cR) in αL (resp., αR) are determined.

Let BadL={Indices of cL with more than n1−γ−τ output neighbors in c̃},
LeakL={Indices of cL with output neighbors in either s̃L or s̃R},
BadR={Indices in cR with more than n1−γ−τ output neighbors in c̃}, and
LeakR={Indices in cR with output neighbors in either s̃L or s̃R}

9. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.
10. Let f0 be the following mapping from leakage at (LL,LR) to tampering function g for NMEnc0: First,

use (sL, sR), leakage at (LeakL,LeakR) and cQ to compute s̃L and s̃R. These determine indices of c̃L
and c̃R in α̃L and α̃R. Then, define g to be the tampering function from indices of (cL, cR) to indices
of (c̃L, c̃R).

11. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy  Definition 3.4.1 ), output ⊥
12. (Else) (ans, x, y) = Sim0(LL,LR, f0).
13. Let SL, SR denote indices of sL, sR. Define function h as a restriction of f1:

h := (f1)(X,SL,SR,LL,LR)|(cX ,sL,sR,x,y) (See  Definition 3.3.2 )

14. V := {i|i ∈ [n], Inph(i) 6= ∅}
15. W := {i|i ∈ [n], Inph(i)\[n] 6= ∅}
16. Z := {i ∈ [n]|∃z ∈ {0, 1}n+ne , z(X,SL,SR,LL,LR) = (cX , sL, sR, x, y), hi(z) 6= zi}
17. Sample a← ECSS.Enc(0`)|(ECSS.Enc(0`))X = aX
18. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, let E = E1 ∪ E2
19. For all i ∈ E2, sample ei ← U{0,1}

20. Define c as ci =
{
ai, i /∈ E
ei, i ∈ E

21. (Ẽ, ẽ) = Copy(Sim0(LL,LR, f0), (E, e))
22. (cL, cR)← NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y

23. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
24. c̃ = f1(c, sL, αL, sR, αR)
25. If ans =

• ⊥: Output ⊥
• same∗: If |Z\(W ∪X)| > n1−ε2 , output ⊥

(Else) If c̃Z = cZ , output same∗; (Else) Output ⊥.
• (E∗, e∗): If |V \W | > n1−ε2 , output ⊥

(Else) If ECSS.ECorr(c̃)⊥, output ⊥;
(Else) ã = ECSS.ECorr(c̃)

Define c′ as c′i =
{
ãi, i /∈ Ẽ
ẽi, i ∈ Ẽ

If c′ 6= c̃, output ⊥; (Else) Output m̃ = ECSS.Dec(ã)

Figure 3.3. Simulator Sim1(f)
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be replaced by red part of the next hybrid. We call c (resp., c̃) the main codeword and

(sL, αL, sR, αR) (resp., (s̃L, α̃L, s̃R, α̃R)) the error codeword.

H1(f,m) : Our first hybrid is the real world Tampermf , we simply open up the definition of

NMEnc1 and NMDec1 and write tampering function f as (f1, f2). Both functions are given as

input the entire codeword and f1 is doing the tampering on the main codeword, i.e., outputs

c̃, while f2 is doing the tampering on the error codeword, i.e., outputs (s̃L, α̃L, s̃R, α̃R). This

way of writing f would be useful in later hybrids.

H1(f,m):

1. Sample a random E ⊆ [n] of size n1−ε1

2. For all i ∈ E, sample ei ← U{0,1}

3. Sample a← ECSS.Enc(m)

4. Define c as ci =

ai, i /∈ E

ei, i ∈ E
5. Let (cL, cR)← NMEnc0(E, e)

6. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

7. αL = EmbedL(sL, cL) and αR = EmbedR(sR, cR)

8. c̃ = f1(c, sL, αL, sR, αR)

9. (s̃L, α̃L, s̃R, α̃R) = f2(c, sL, αL, sR, αR)

10. c̃L = RecoverL(s̃L, α̃L) and c̃R = RecoverR(s̃R, α̃R)

11. If NMDec0(c̃L, c̃R) = ⊥, output ⊥; (Else) (Ẽ, ẽ) = NMDec0(c̃L, c̃R)

12. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

13. Define c′ as c′i =

ãi, i /∈ Ẽ

ẽi, i ∈ Ẽ
14. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)

15. Output m̃

H2(f,m) : In the next hybrid H2, we change the way we sample ECSS codeword of m. We

define two subsets of indices P and Q. Intuitively, P is the popular input bits of the main

codeword, i.e., bits in c that influence more than nε2 bits of c̃. And Q is the set of bits in

main codeword c that influence the error codeword (s̃L, α̃L, s̃R, α̃R). Now, let X = P ∪Q. We

first sample a uniform string aX of length |X| and then sample a← ECSS.Enc(m) condition
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on that ECSS.Enc(m)X = aX . We argue that this does not change the distribution of a and

hence it is identical to the previous hybrid.

To argue this we use the independence property of our ECSS scheme. In particular, since

t > n1−ζ , the distribution of aX is indeed uniform as long as |X| = o(n1−ζ). Now, |P | can

be bound as follows: The total number of input neighbors of c̃ is δn and at most δn1−ε2

many bits in c can influence more than nε2 bits from c̃. Hence |P | = o(n1−ζ) as long as we

pick ζ < ε2 . Next, the length of the error codeword is |sL| + |αL| + |sR| + |αR| = O(nΛ)

and hence, by output locality δ, the size of Q is at most δ · O
(
nΛ
)

= o
(
n1−ζ

)
as long as

ζ < 1− Λ .

H2(f,m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}

2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}

3. Let X = P ∪Q. Sample aX ← U{0,1}|X|

4. Sample a← ECSS.Enc(m)|(ECSS.Enc(m))X = aX

5. Sample a random E ⊆ [n] of size n1−ε1

6. For all i ∈ E, sample ei ← U{0,1}

7. Define c as ci =

ai, i /∈ E

ei, i ∈ E

8. Let (cL, cR)← NMEnc0(E, e)

9. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

10. αL = EmbedL(sL, cL) and αR = EmbedR(sR, cR)

11. c̃ = f1(c, sL, αL, sR, αR)

12. (s̃L, α̃L, s̃R, α̃R) = f2(c, sL, αL, sR, αR)

13. c̃L = RecoverL(s̃L, α̃L) and c̃R = RecoverR(s̃R, α̃R)

14. If NMDec0(c̃L, c̃R) = ⊥, output ⊥; (Else) (Ẽ, ẽ) = NMDec0(c̃L, c̃R)

15. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

16. Define c′ as c′i =

ãi, i /∈ Ẽ

ẽi, i ∈ Ẽ
17. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)

18. Output m̃
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H3(f,m) : In the next hybrid H3, we rewrite the way how (Ẽ, ẽ) is generated from (E, e)

given seeds sL and sR. Here, we would generate (Ẽ, ẽ) as output of a tampering experiment

on (E, e) with an appropriate tampering function from the leaky input and output local

tampering family. Note that (E, e) is first encoded to (cL, cR) and then is hidden among

(αL, αR) using seeds sL, sR. We note that if we are given the seed sL and sR, the places

where cL are cR are stored among αL and αR is known. Similarly, if we know s̃L and s̃R, the

places where c̃L and c̃R are stored among α̃L and α̃R are also known. Therefore, we define

LeakL and LeakR as the input neighbors of both s̃L and s̃R from cL and cR respectively.

Now let f0 be the mapping that given the leakage LeakL and LeakR, first computes 

7
 s̃L and

s̃R, and then outputs the tampering function g. Now that we know indices of (cL, cR) and

(c̃L, c̃R), function g maps (cL, cR) to (c̃L, c̃R). 

8
 We note that leaking bits at BadL and BadR

from cL and cR would be used in later hybrids. So the total leakage from cL and cR are

LL = LeakL ∪BadL and LR = LeakR ∪BadR.

Now we need to argue that the tampering f0 and leakage LL,LR forms a valid tampering

experiment onto our base NMC against leaky input and output local tampering. It is easy to

see that if it is valid, then the two hybrids are identical. When they are not valid we output

⊥ in this hybrid and we need to argue that probability of output ⊥ due this is negligible.

Firstly, f0 might not satisfy  Definition 3.4.1  if one of the following happens: (i) Not all

the bits from cL, cR are contained in αL and αR, respectively and thus, f0 cannot produce

function g; (ii) g has output locality higher than `o = δ; (iii) under g, more than µnβ1 many

bits from cL have input locality higher than `i = 4δ/µ to c̃R. Note that our tampering

function f is δ-local and therefore, the output function g will also be δ-local, thus (ii) will

never happen. And the probability of (i) or (iii) happening is negligibe as guaranteed by

 Lemma 3.5.1 and (1) from  Lemma 3.6.1  , respectively.

We bound the size of the leakage |LL| = |LeakL ∪BadL | by o(nβ1). First, we observe

that our seeds sL and sR are of length O
(
log3 n

)
and hence |LeakL| is at most O

(
δ log3 n

)
=

o
(
nβ1

)
. And the size of BadL is o

(
nβ1

)
is guaranteed by (2) of  Lemma 3.6.1 . The argument

7
 ↑ Note that at this point, the original seed sL and sR and their input neighbors cQ from main codeword c

is already fixed.
8

 ↑ If c̃L or c̃R are not contained in α̃L or α̃R, f0 will simply set g to be a ⊥ function.
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for LR is analogous to LL. This proves that this hybrid and the previous one are 2−Ω(log2 n)-

close.

Note that we still need the error codeword (sL, αL, sR, αR) to do the tampering f1 onto

c̃. Hence, we sample cL and cR under the condition that the tampering experiment outputs

(Ẽ, ẽ, x, y) and construct the error codeword as defined by our compiler.

H3(f,m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}

2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}

3. Let X = P ∪Q. Sample aX ← U{0,1}|X|

4. Sample a← ECSS.Enc(m)|(ECSS.Enc(m))X = aX

5. Sample a random E ⊆ [n] of size n1−ε1

6. For all i ∈ E, sample ei ← U{0,1}

7. Define c as ci =

ai, i /∈ E

ei, i ∈ E

8. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

9. Given sL (resp., sR), indices of cL (resp., cR) in αL (resp., αR) are determined.

Let BadL={Indices of cL with more than n1−γ−τ output neighbors in c̃},

LeakL={Indices of cL with output neighbors in either s̃L or s̃R},

BadR={Indices in cR with more than n1−γ−τ output neighbors in c̃}, and

LeakR={Indices in cR with output neighbors in either s̃L or s̃R}

10. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.

11. Let f0 be the following mapping from leakage at (LL,LR) to tampering function g for NMEnc0:

First, use (sL, sR), leakage at (LeakL,LeakR) and cQ to compute s̃L and s̃R. These determine

indices of c̃L and c̃R in α̃L and α̃R. Then, define g to be the tampering function from indices of

(cL, cR) to indices of (c̃L, c̃R).

12. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy  Definition 3.4.1 ), output ⊥

13. (Else) (Ẽ, ẽ, x, y) = Tamper(E,e)
LL,LR,f0

14. If (Ẽ, ẽ) = ⊥, output ⊥

15. (cL, cR)← NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y

16. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)

17. c̃ = f1(c, sL, αL, sR, αR)

18. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)
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19. Define c′ as c′i =

ãi, i /∈ Ẽ

ẽi, i ∈ Ẽ
20. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)

21. Output m̃

H4(f,m) : In the next hybrid H4, we simply replace the tampering experiment onto our base

non-malleable codes with its corresponding simulator Sim0 and incur a negligible error by

 Lemma 3.4.1 .

H4(f,m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}

2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}

3. Let X = P ∪Q. Sample aX ← U{0,1}|X|

4. Sample a← ECSS.Enc(m)|(ECSS.Enc(m))X = aX

5. Sample a random E ⊆ [n] of size n1−ε1

6. For all i ∈ E, sample ei ← U{0,1}

7. Define c as ci =

ai, i /∈ E

ei, i ∈ E

8. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

9. Given sL, define: BadL,LeakL as in H3(f,m)

Given sR, define: BadR,LeakR as in H3(f,m)

10. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.

11. Define mapping f0 and its output g as in H3(f,m)

12. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy  Definition 3.4.1 ), output ⊥

13. (Else) (ans, x, y) = Sim0(LL,LR, f0)

14. If ans = ⊥, output ⊥; (Else) (Ẽ, ẽ) = Copy(ans, (E, e))

15. (cL, cR)← NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y

16. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)

17. c̃ = f1(c, sL, αL, sR, αR)

18. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

19. Define c′ as c′i =

ãi, i /∈ Ẽ

ẽi, i ∈ Ẽ

65



20. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)

21. Output m̃

H5(f,m) : In this hybrid, we break the error indices E into two parts: E1 = E ∩ X and

E2 = E\E1. Next, we note that cQ is needed to define the tampering on the error codeword.

Hence, we sample E1 and the error bits from E1 early before defining tampering on error

codeword. However, rest of errors, i.e., E2 is not used before we invoke simulator Sim0. Based

on these observations, we re-arrange parts of the hybrids and this hybrid is identical to the

previous one. Note that the size of E1 and E2 are distributed according to (n, |X| , n1−ε1)-

hypergemetric distribution and (n, n−|X| , n1−ε1)-hyper geometric distribution, respectively.

By  Corollary 3.3.1 , it is easy to see that with probability 1− exp(−Θ(n1−ε1)), the size of E2

is at least n1−ε1/2.

H5(f,m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}

2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}

3. Let X = P ∪Q. Sample aX ← U{0,1}|X|

4. Sample a random E1 ⊆ X s.t. |E1| ← (n, |X|, n1−ε1)-hypergeometric distribution

5. For all i ∈ E1, sample ei ← U{0,1}

6. For all i ∈ E1, replace ai with ei, we get cX
7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL,LeakL as in H3(f,m)

Given sR, define: BadR,LeakR as in H3(f,m)

9. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.

10. Define mapping f0 and its output g as in H3(f,m)

11. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy  Definition 3.4.1 ), output ⊥

12. (Else) (ans, x, y) = Sim0(LL,LR, f0).

13. If ans = ⊥, output ⊥

14. Sample a← ECSS.Enc(m)|(ECSS.Enc(m))X = aX

15. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, Let E = E1 ∪ E2

16. For all i ∈ E2, sample ei ← U{0,1}

17. Define c as ci =

ai, i /∈ E

ei, i ∈ E
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18. (Ẽ, ẽ) = Copy(ans, (E, e))

19. (cL, cR)← NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y

20. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)

21. c̃ = f1(c, sL, αL, sR, αR)

22. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

23. Define c′ as c′i =

ãi, i /∈ Ẽ

ẽi, i ∈ Ẽ
24. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)

25. Output m̃

H6(f,m) : In this hybrid, we only introduce some new notation to be used in later hybrids

and hence, this hybrid is identical to the previous one.

We focus on the tampering of the main codeword using function f1. Note that so far in

the previous hybrid, we have already fixed certain bits in the input main codeword c (that

is, cX), picked PRG seeds sL, sR and also leaked certain parts of cL, cR, i.e., LL,LR. 

9
 Using

this information, we define a restriction h of function f1 that fixes all the above bits in the

input.

We next define three subsets of [n] corresponding to h, namely, V , W and Z as follows.

V is the subset of bits i such that c̃i is not fixed given the fixing of bits done so far. And W

is the subset of bits that are influenced by some bits in the error codeword (that have not

been leaked and fixed so far). And Z is the subset of bits i, such that the output of hi is not

always the i-th input bit (In the definition of Z, recall that ne = |(sL, αL, sR, αR)|).

Intuitively, Z is the set of bits that are not-copied-bits under the tampering function h,

V is the set of non-constant-bits and W is the set of bits that are influenced by the error

codeword. As we explained in technical overview  Section 3.2  , if ans = same∗ and the size of

Z\W is large or if ans = (E∗, e∗) and the size of V \W is large, then the tampered codeword

will be invalid with probability 1− negl(λ)(n). This intuition is formally proved in the next

hybrid.
9

 ↑ Note that those places in αL, αR that are not used to store cL and cR are also fixed (to be 0 by the
compiler).
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H6(f,m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}

2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}

3. Let X = P ∪Q. Sample aX ← U{0,1}|X|

4. Sample a random E1 ⊆ X s.t. |E1| ← (n, |X|, n1−ε1)-hypergeometric distribution.

5. For all i ∈ E1, sample ei ← U{0,1}

6. For all i ∈ E1, replace ai with ei, we get cX
7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL,LeakL as in H3(f,m)

Given sR, define: BadR,LeakR as in H3(f,m)

9. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.

10. Define mapping f0 and its output g as in H3(f,m)

11. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy  Definition 3.4.1 ), output ⊥

12. (Else) (ans, x, y) = Sim0(LL,LR, f0).

13. Let SL, SR denote indices of sL, sR. Define function h as a restriction of f1 ( Definition 3.3.2  ):

h := (f1)(X,SL,SR,LL,LR)|(cX ,sL,sR,x,y)

14. V := {i ∈ [n]| Inph(i) 6= ∅}.

15. W := {i ∈ [n]| Inph(i)\[n] 6= ∅}.

16. Z := {i ∈ [n]|∃z ∈ {0, 1}n+ne , z(X,SL,SR,LL,LR) = (cX , sL, sR, x, y), hi(z) 6= zi}.

17. If ans = ⊥, output ⊥

18. Sample a← ECSS.Enc(m)|(ECSS.Enc(m))X = cX

19. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, let E = E1 ∪ E2

20. For all i ∈ E2, sample ei ← U{0,1}

21. Define c as ci =

ai, i /∈ E

ei, i ∈ E

22. (Ẽ, ẽ) = Copy(Sim0(LL,LR, f0), (E, e))

23. (cL, cR)← NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y

24. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)

25. c̃ = f1(c, sL, αL, sR, αR)

26. If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

27. Define c′ as c′i =

ãi, i /∈ Ẽ

ẽi, i ∈ Ẽ

28. If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)

29. Output m̃
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H7(f,m) :

In the next hybrid H7, we add a sanity check right after we define V,W,Z. (a) When

ans = ⊥, we will output ⊥ immediately. This is the same as the previous hybrid. (b)

When ans = same∗, we check the size of Z\(W ∪X). If it is larger than n1−ε2 , we directly

output ⊥ without any further computation. On the other hand, if it is less than n1−ε2 , we

only compare c and c̃ at locations Z. If they are the same, we output same∗, otherwise,

we output ⊥. (c) When ans = (E∗, e∗), we check the size of V \W . If |V \W | > n1−ε2 , we

directly output ⊥ without further computation. Below, we prove that the previous hybrid

H6(f,m) and Copy(H7(f,m),m) are statistically close. We break the proof into two parts:

ans = same∗ case and ans = (E∗, e∗) case.

Case ans = same∗: Let us first look at that the case when |Z\(W ∪X)| < n1−ε2 . Note

that by the definition of Z, all the bits of c̃ in [n]\Z are identical to those in c. Recall

c is obtained by planting |E| = n1−ε1 errors into a valid ECSS codeword a. We have

HD(c̃, a) 6 HD(c̃, c) + HD(c, a) = |Z| + |E| 6 (|Z\(W ∪X)|+ |W |+ |X|) + |E|. Using

|W | = o(n1−τ ) from (3) of  Lemma 3.6.1 , |X| = o(n1−ζ) from hybrid 2, and |E| = n1−ε1 ,

we get HD(c̃, a) 6 n1−ε2 + o(n1−τ ) + o(n1−ζ) + n1−ε1 = o(n1−ζ) by setting ζ < ε2 , ζ < τ

and ζ < ε1 . Hence, using the fact that the distance of the ECSS scheme, d > n1−ζ , we

get ECSS.ECorr(c̃) = a. Consequently, if we error-correct c̃ and plant in the original errors

(E, e), we get c. Hence, experiment would output ⊥ iff c̃ 6= c. This happens only when

c̃Z 6= cZ .

Now consider the case when |Z\(W ∪ X)| > n1−ε2 . We begin by computing a lower

bound on number of error indices in Z\(W ∪ X), i.e., size of set A = (Z\(W ∪ X)) ∩ E2.

First, note that E2 is a random subset of [n]\X of size at least n1−ε1/2 with probability

1 − exp(−Ω(n1−ε1)) by  Corollary 3.3.1  . Next, we observe that sets Z,W,X are defined

independent of E2 and hence, by  Corollary 3.3.1 , |A| > 1
4 · n

1−ε1−ε2 with probability at least

1− exp(−Ω(n1−ε1−2ε2)).
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Next, we pick a subset A′ ⊆ A such that bits in A′ have disjoint input neighbors. That is,

∀i, j ∈ A′, Inph(i)∩ Inph(j) = ∅. We use following two properties to ensure that we can pick

A′ of sufficiently large size. First, for every bit i ∈ A, Inph(i) ⊆ [n] (because A ∩W = ∅).

Second, all the bits in [n] with more than nε2 output neighbors in [n] belong to subset P and

have already been fixed. This implies that for any bit i ∈ A, all bits in Inph(i) have at most

nε2 output neighbours in [n]. Therefore, it is guaranteed that we can pick a set A′ ⊆ A s.t.

|A′| > |A|
δnε2 = n1−ε1−2ε2

4δ . (This can be done greedily by picking an arbitrary index i ∈ A and

discarding all the bits in A that are influenced by Inph(i). Since h has at output locality

δ and each bit in Inph(i) influences at most nε2-many bits in A, we discard at most δnε2

indices from A for picking one index in A′. Now, we recurse on the remaining indices in A.)

For the rest of the proof, we consider such a set A′ of size exactly n1−ε1−2ε2
4δ . We note that

for all indices i ∈ A′ following conditions are satisfied (1) ci is a planted error ei (A′ ⊆ E2); (2)

hi does not always output ei (A′ ⊆ Z); (3) the input neighbors of i are all in [n] (A′∩W = ∅).

For the tampered main codeword to be consistent with recorded errors, we need that for all

i ∈ A′, The i-th bit after tampering, i.e. c̃i needs to be equal to ei. We show that this

happens with probability at most (1−1/2δ)n
1−ε1−2ε2

8δ , which is negligible for δ = ξ · lg n when

ε1 + 2ε2 < 1− ξ . Hence, it suffices to output ⊥ always.

We first argue that all of A′ input neighbors are independent uniform bits. We use the

fact that A′ is of size n1−ε1−2ε2
4δ and its (at most δ · n1−ε1−2ε2

4δ -many) input neighbors are all

from our ECSS codeword with planted errors. Since we have only fixed X of size o(t) from c

so far and our ECSS has independence t > n1−ζ and n1−ε1−2ε2 = o(t), all the input neighbors

of A′ are indeed independent uniform bits. Given the uniformly random input, we examine

the bits from A′ one by one. For any i ∈ A′, there are following two possibilities

• If ci (i.e., ei) is the input neighbor of c̃i, then since hi does not always output ci, there

exists a setting of the other (at most) δ−1 neighbors, such that c̃i is either fixed 0, fixed

1, or flipped ei. Because of uniformity of value at input neighbors, this setting happens

with probability at least 1
2δ−1 and when it happens, with probability at least 1/2, c̃i 6= ei.

Hence, c̃i = ei with probability at most 1 − 1
2δ . We remove i from A′ and recurse on

remaining bits.
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• If ci (i.e., ei) is not the input neighbor of c̃i, then since all of the input neighbors are

independent of uniform bit ei, the probability c̃i = ei is at most 1/2. However, we need

to address a small subtlety here. Since ei is not the input neighbor of itself, it can be

in the input neighbor of another bit in A′. To keep failure probabilities independent, if

such a bit j exists (s.t. ei is an input neighbor of c̃j), we only include i in our witness set

of failed indices but we remove both indices i and j before recursing to remaining bits

in A′.

Now, we have shown that either a bit has probability at most 1− 1
2δ to be consistent or

two bits have probability at most 1/2 to be consistent at the same time. And all of those

events are independent, hence, the probability that all the bits are consistent with errors

(E, e) is at most (1− 1
2δ )
|A′|/2.

Case ans = (E∗, e∗): For the case when ans = (E∗, e∗), this hybrid is only different from

previous one when |V \W | > n1−ε2 . We show that if this happens, the output of previous

hybrid is not ⊥ with only negligible probability.

We first pick a B ⊆ (V \W ) such that ∀i, j ∈ B, Inph(i) ∩ Inph(j) = ∅. Similar to above,

all the input neighbors of V \W are contained in [n] and have output locality at most nε2

in [n]. Hence, it is guaranteed that we could pick B such that |B| = n1−2ε2
δ

. (Similar to

same∗ case, this can be done greedily by picking an arbitrary index from V \W into B and

removing all the bits its input neighbors have influence on. We only discard at most δnε2

bits for picking one bit.)

Note that B ⊆ V implies that for all i ∈ B, Inph(i) 6= ∅ and since all the bits in B has

disjoint input neighbors, we have |Inph(B)| > |B|. Now, consider a subset B′ ⊆ B such that

each bit in B′ has an input neighbour in errors E2. That is,

B′ =
{
i
∣∣∣∣i ∈ B, Inph(i) ∩ E2 6= ∅

}

Again E2 is a random subset of size at least n1−ε1/2 with probability 1− exp(−Ω(n1−ε1))

and is independent ofB. Thus, by  Corollary 3.3.1  , with probability at least 1−exp(−Ω(n1−ε1−4ε2)),

|Inph(B) ∩ E2| > 1
4δn

1−ε1−2ε2 . Hence, |B′| > n1−ε1−2ε2
4δ2 (Because of δ-locality).
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For the rest of proof, we consider such a set B′ of size exactly n1−ε1−2ε2
4δ2 . Next, we argue

that input neighbors of B′ (at most δ·n1−ε1−2ε2/(4δ2) in number) are independently uniformly

distributed. This is because they are all from our ECSS codeword with planted errors. Since

we have only fixed X of size o(t) from c so far and our ECSS has independence t = n1−ζ

with ζ < ε1 + 2ε2 , all the input neighbors of B′ are indeed independent uniform bits. So,

bits in B′ satisfy the following conditions: its input neighbors (1) are disjoint; (2) contain

at least one bit from E2; (3) are contained in [n]; (4) are independently uniform bits.

Next, we define M = Outh(Inph(B′)). This is the set of all indices that is being influenced

by the input neighbor of B′. Obviously B′ ⊆ M . And the size of M is bounded by nε2 · δ ·

n1−ε1−2ε2/(4δ2) = n1−ε1−ε2/(4δ). We first observe that fix any c∗[n]\M , there is at most one c∗M
that is consistent with c∗[n]\M and the fixed errors E∗, e∗. This is because if there exist two

c(1), c(2) s.t. c(1)
[n]\M = c

(2)
[n]\M , their distance is bounded by n1−ε1−ε2/(4δ) which is smaller than

the distance d > n1−ζ as long as ζ < ε1 + ε2 . Therefore, those two codewords will be error-

corrected to the same correct codeword and after being reconstructed from errors (E∗, e∗),

they will be the same. Therefore, for every fixing c∗[n]\M , there is at most one codeword c∗

(equivalently, one c∗M), which is consistent with (E∗, e∗). Since B′ ⊆M , there is at most one

choice for c∗B′ as well.

Finally, we prove that the probability that c∗B′ takes the fixed value needed to be con-

sistent is negligible. Now,for any i ∈ B′, we know some bit Ej is the input neighbors of i.

Therefore, at least one out of at most 2δ−1 possible settings of all the other input neighbprs

Inph(i)\[j], flipping the value of ej will flip the output of hi. Note that by definition of M ,

Ej cannot be the input neighbors of any bits in [n]\M , hence ej is independent of c∗[n]\M .

And thus, whenever this setting happens, with probability 1/2, the output at i will not be

consistent with (E∗, e∗). Therefore, since the input neighbors of i are uniformly distributed,

the probability that c̃i is not consistent with fixed errors (E∗, e∗) is at least 1
2δ . Since all the

input neighbors of B′ are all independent uniform bits, the probability that all the bits from

B′ are consistent is at most (1 − 1
2δ )

n1−ε1−2ε2/(4δ2), which is negligible when δ = ξ · lg n with

ε1 + 2ε2 < 1− ξ .
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H7(f,m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}

2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}

3. Let X = P ∪Q. Sample aX ← U{0,1}|X|

4. Sample a random E1 ⊆ X s.t. |E1| ← (n, |X|, n1−ε1)-hypergeometric distribution

5. For all i ∈ E1, sample ei ← U{0,1}

6. For all i ∈ E1, replace ai with ei, we get cX
7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL,LeakL as in H3(f,m)

Given sR, define: BadR,LeakR as in H3(f,m)

9. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.

10. Define mapping f0 and its output g as in H3(f,m)

11. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy  Definition 3.4.1 ), output ⊥

12. (Else) (ans, x, y) = Sim0(LL,LR, f0).

13. Let SL, SR denote indices of sL, sR. Then, h := (f1)(X,SL,SR,LL,LR)|(cX ,sL,sR,x,y)

14. V := {i|i ∈ [n], Inph(i) 6= ∅}

15. W := {i|i ∈ [n], Inph(i)\[n] 6= ∅}

16. Z := {i ∈ [n]|∃z ∈ {0, 1}n+ne , z(X,SL,SR,LL,LR) = (cX , sL, sR, x, y), hi(z) 6= zi}

17. If ans = ⊥, output ⊥

If ans = same∗ and |Z\(W ∪X)| > n1−ε2 , output ⊥

If ans = (E∗, e∗) and |V \W | > n1−ε2 , output ⊥

18. Sample a← ECSS.Enc(m) |(ECSS.Enc(m))X = cX

19. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, let E = E1 ∪ E2

20. For all i ∈ E2, sample ei ← U{0,1}

21. Define c as ci =

ai, i /∈ E

ei, i ∈ E

22. (Ẽ, ẽ) = Copy(Sim0(LL,LR, f0), (E, e))

23. (cL, cR)← NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y

24. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)

25. c̃ = f1(c, sL, αL, sR, αR)

26. If ans =

• same∗: If c̃Z = cZ , output same∗

(Else) Output ⊥.
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• (E∗, e∗): If ECSS.ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS.ECorr(c̃)

Define c′ as c′i =

ãi, i /∈ Ẽ

ẽi, i ∈ Ẽ
If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)

Output m̃

H8(f,m) : In the final hybrid, we simply switch message m with 0`. For completeness, we

provide this hybrid in supplementary material.

Note that the only bits from ECSS.Enc(m) that affect the output of the hybrid is (1) the

neighbors of Z and also cZ when ans = same∗ and |Z\(W ∪X)| < n1−ε2 ; (2) the neighbors

of V , when ans /∈ {same∗,⊥} and |V \W | < n1−ε2 . 

10
 For (1), as shown in hybrid 7, the

size of Z is o(t) when |Z\(W ∪X)| < n1−ε2 and hence the neighbor of |Z| is of size at most

δ · |Z| = o(t). For (2), |V | 6 |V \W |+ |W |. Both are o(t) as require in hybrid 7 and therefore

so is |V | and the size of the neighbors of V . Hence the number of bits in c that influence

the hybrid output is at most o(t). Any o(t) bits from ECSS.Enc(m) condition on cX is

uniformly distributed. Hence, we can switch the encoding of m with encoding of 0`. And

this final hybrid is identical to our simulator in  Figure 3.3 .

H8(f):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| > nε2}

2. Let Q = {i|i ∈ [n],Outf (i)\[n] 6= ∅}

3. Let X = P ∪Q. Sample aX ← U{0,1}|X|

4. Sample a random E1 ⊆ X s.t. |E1| ← (n, |X|, n1−ε1)-hypergeometric distribution

5. For all i ∈ E1, sample ei ← U{0,1}

6. For all i ∈ E1, replace ai with ei, we get cX
7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL,LeakL as in H3(f,m)

Given sR, define: BadR,LeakR as in H3(f,m)

9. Let LL = BadL ∪LeakL and LR = BadR ∪LeakR.

10
 ↑ Note that, by the definition of V , all the output bits from [n]\V are fixed to some values with no input

neighbors. Hence, it suffices to have the neighbor of V to finish the hybrid completely.
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10. Define mapping f0 and its output g as in H3(f,m)

11. If (|LL| > λnβ1) or (|LR| > λnβ2) or (f0 does not satisfy  Definition 3.4.1 ), output ⊥

12. (Else) (ans, x, y) = Sim0(LL,LR, f0).

13. Let SL, SR denote indices of sL, sR. Then, h := (f1)(X,SL,SR,LL,LR)|(cX ,sL,sR,x,y)

14. V := {i|i ∈ [n], Inph(i) 6= ∅}

15. W := {i|i ∈ [n], Inph(i)\[n] 6= ∅}

16. Z := {i ∈ [n]|∃z ∈ {0, 1}n+ne , z(X,SL,SR,LL,LR) = (cX , sL, sR, x, y), hi(z) 6= zi}

17. If ans = ⊥, output ⊥

If ans = same∗ and |Z\(W ∪X)| > n1−ε2 , output ⊥

If ans = (E∗, e∗) and |V \W | > n1−ε2 , output ⊥

18. Sample a← ECSS.Enc(0`)|(ECSS.Enc(0`))X = cX

19. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, let E = E1 ∪ E2

20. For all i ∈ E2, sample ei ← U{0,1}

21. Define c as ci =

ai, i /∈ E

ei, i ∈ E

22. (Ẽ, ẽ) = Copy(Sim0(LL,LR, f0), (E, e))

23. (cL, cR)← NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = (Ẽ, ẽ) and cLLL = x, cRLR = y

24. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)

25. c̃ = f1(c, sL, αL, sR, αR)

26. If ans =

• same∗: If c̃Z = cZ , output same∗

(Else) Output ⊥.

• (E∗, e∗): If ECSS.ECorr(c̃) = ⊥, output ⊥;

(Else) ã = ECSS.ECorr(c̃)

Define c′ as c′i =

ãi, i /∈ Ẽ

ẽi, i ∈ Ẽ
If c′ 6= c̃, output ⊥; (Else) m̃ = ECSS.Dec(ã)

Output m̃
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4. EXPLICIT RATE-1/3 NON-MALLEABLE CODE FOR

TWO-LOOKAHEAD AND THREE-SPLIT-STATE

TAMPERING

Lookahead Tampering & Non-malleable Messaging. Consider the motivating appli-

cation of non-malleable message transmission, where the high-speed network switches routing

the communication between parties shall forward their data packets at several gigabits per

second. An adversary, who is monitoring the communication at a network switch, cannot

block or slow the information stream, which would outrightly signal her intrusion. So, the

adversary is naturally left to innocuously substituting data packets based on all the informa-

tion that she has seen so far, namely, the lookahead tampering model [ ADKO15 ,  CGM+16 ].

This restricts the tampering power of the adversary as she cannot tamper the encoding

arbitrarily.

Split-State Tampering. A widely studied setting is k-split-state tampering [ DKO13 ,

 ADL14 ,  CZ14 ,  ADKO15 ,  Li17 ,  KOS17 ]. Here, message is encoded into k states and the

adversary can only tamper each of the states independently (and arbitrarily). More formally,

the message m ∈ {0, 1}` is encoded as c = (c1, c2, . . . , ck) ∈ {0, 1}n1×{0, 1}n2×· · ·×{0, 1}nk .

A tampering function is a k-tuple of functions f = (f1, f2, . . . , fk) s.t. the function fi :

{0, 1}ni → {0, 1}ni is an arbitrary function. Note that the tampering function only sees

single states locally, and decoding requires aggregating information across all states.

Our Objective. Motivated by applications like non-malleable message transmission over

high-speed networks, our work studies the limits of the efficiency of constructing non-

malleable codes in the k-split-state model where a lookahead adversary tampers each state

independently, i.e., the k-lookahead model. We know that constructing non-malleable codes

against single state, i.e., k = 1, lookahead adversary is impossible [ CGM+16 ]. So, we consider

the next best setting of 2-split-state lookahead tampering, where the message is encoded into

2 states and transmitted using 2 independent paths. Each of these states is tampered inde-

pendently using lookahead tampering. Since split-state lookahead tampering is a sub-class

of split-state tampering, a conservative approach is to use generic non-malleable codes in

the k-split-state, which protect against arbitrary split-state tamperings. Prior to our work,
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the most efficient non-malleable codes achieved rate R = log log `/ log ` for k = 2 [ Li18 ], and

rate R = 1/3 for k = 4 [ KOS17 ]. In a concurrent and independent work, [ KOS18 ] achieves

rate R = 1/3 for k = 3.

As illustrated above, there are natural cryptographic applications where lookahead at-

tacks appropriately model the adversarial threat. We ask the following question: Can we

leverage the structure of the lookahead tampering to construct a constant rate non-malleable

code that requires establishing least number of, i.e., only 2, independent communication

routes between the sender and the receiver?

Our Results. We first prove an upper-bound that the rate of any non-malleable code in the

2-split-state lookahead model is at most 1/2. Next, we construct a non-malleable code for

the 2-lookahead model with rate R = 1/3, which is 2/3-close to the above mentioned optimal

upper-bound. En route, we also independently construct a 3-split-state non-malleable code

that achieves rate R = 1/3. The starting point of all our non-malleable code constructions

is the recent construction of [ KOS17 ] in the 4-split-state model.

Finally, we interpret our results in the context of the original motivating example of non-

malleable message transmission. It is necessary to establish at least two independent routes

of communication to facilitate non-malleable message transmission between two parties. We

show that the cumulative size of the encoding of the message sent by the sender must be at

least twice the message length when the sender transmits the shares of the encoded message

over two independent routes. For this setting, we provide a construction where the encoding

of the message is (roughly) three-times the size of the message (1.5x the optimal solution).

4.1 Our Contribution

Let Sn represent the set of all functions from {0, 1}n to {0, 1}n. We call any sub-

set F ⊆ Sn a tampering family on {0, 1}n. We denote k-split-state tampering families

on {0, 1}n1+n2+···+nk by F1 × F2 × · · · × Fk, where F1,F2, . . . ,Fk are tampering families

on {0, 1}n1 , {0, 1}n2 , . . . , {0, 1}nk . Here, the codeword is distributed over k states of size

n1, n2, . . . , nk.
(Split-State) Lookahead Tampering. Motivated by the example in the introduction,

instead of considering an arbitrary tampering function for each state, we consider tam-
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pering functions that encounter the information as a stream. Let LAn1,n2,...,nB
be the set

of all functions f : {0, 1}n1+n2+···+nB → {0, 1}n1+n2+···+nB such that there exists functions

f (1), f (2), . . . , f (B) with the following properties.

1. For each 1 6 i 6 B, we have f (i) : {0, 1}n1+n2+···+ni → {0, 1}ni , and

2. The function f(x1, x2, . . . , xB) is the concatenation of f (i)(x1, x2, . . . , xi), i.e., f(x1, x2, . . . ,

xB) = f (1)(x1)||f (2)(x1, x2)|| · · · ||f (B)(x1, x2, . . . , xB)

Intuitively, the codeword arrives as B blocks of information, and the i-th block is tampered

based on all the blocks so far {1, 2, . . . , i}. In the k-split-state lookahead tampering, denoted

by k-lookahead, the tampering function for each state is a lookahead function. The k-

lookahead tampering family was introduced in [ ADKO15 ] for the purpose of constructing

non-malleable codes in the 2-split-state model. A similar notion called block-wise tampering

function was introduced by [ CGM+16 ]. Our first result is the hardness result. We give a

more precise statement of this result in  Theorem 4.3.2 .

Theorem 4.1.1. For k-lookahead tampering family, the best achievable rate is 1− 1/k.

In fact, we prove the above upper bound for the weakest tampering family in this class

where each block in lookahead tampering is a single bit, i.e., LAn1,n2,...,nB
s.t. B = n and

ni = 1. For brevity, we represent this function by LA1⊗n . Surprisingly, analogous to the

result of Cheraghchi and Guruswami [ CG14a ] for the k-split-state model, we prove that even

against significantly more restricted k-lookahead tampering LA1⊗n1 ×· · ·×LA1⊗nk , the rate

of any non-malleable code is at most 1− 1/k (see  Subsection 4.3.1 ).

We use  Figure 4.1 to summarize our positive results in k-lookahead and k-split-state

model and position our results relative to relevant prior works. Intuitively, lower the k, the

more powerful is the tampering family, and the harder it is to construct the non-malleable

codes. The state-of-the-art in non-malleable code construction against k-lookahead coincides

with the general k-split-state model. In particular, no constant-rate non-malleable codes are

known even against the restricted 2-lookahead model. We resolve this open question in the

positive (with 2/3 the optimal rate).

Theorem 4.1.2 (Rate-1/3 NMC against 2-Lookahead). There exists a computationally effi-

cient non-malleable code, with negligible simulation error, against the 2-lookahead tampering
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LAn1,n2×LAn3,n4, where n1 = (2+o(1))`, n2 = o(`), n3 = o(`), n4 = `, where ` is the length

of the message.

We start from the construction of 4-split-state non-malleable codes by Kanukruthi et al. [ KOS17 ]

and leverage a unique characteristic of the (rate-0) 2-split-state code of Aggarwal, Dodis,

and Lovett [ ADL14 ], namely augmented non-malleability that was identified by [ AAG+16 ].

By manipulating the way we store information in the construction of  Theorem 4.1.2 , we

also obtain the first constant-rate non-malleable codes in 3-split-state. 

1
 

Theorem 4.1.3 (Rate-1/3 NMC in 3-Split-State). There exists a computationally efficient

non-malleable code, with negligible simulation error, in the 3-split-state model Sn1×Sn2×Sn3,

where n1 = `, n2 = (2 + o(1))`, n3 = o(`), where ` is the length of the message.

9/10

1/2
1/3

1

2 3 4 10

Rate

k
[ CZ14 ]

[ KOS17 ]Our work

[ KOS18 ]
[ DKO13 ,  ADL14 ,  ADKO15 ,  Li17 ]

Upper bound of  Theorem 4.3.1 

Infeasible

Figure 4.1. A comparison of the efficiency of our 2-lookahead non-malleable
code with the efficiency of generic k-split-state non-malleable codes in the
information-theoretic setting. The diamond represents a k-lookahead result,
and the circles represent k-split-state results. Black color represents our re-
sults, and gray color represents other known results (includes both prior and
concurrent works).

Lastly, [ ADKO15 ] motivated constant-rate construction achieving non-malleability against

2-lookahead tampering along with another particular family of functions (namely, forgetful

functions) as an intermediate step to constructing constant-rate non-malleable codes in the

2-split-state model. We achieve partial progress towards this goal, and  Theorem 4.5.1 sum-

marizes this result.
1

 ↑ Concurrent and independent work of [ KOS18 ] obtained similar result.
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4.2 Preliminaries

For any natural number n, the symbol [n] denotes the set {1, 2, . . . , n}. For a probability

distribution A over a finite sample space Ω, A(x) denotes the probability of sampling x ∈ Ω

according to the distribution A and x ← A denotes that x is sampled from Ω according to

A. For any n ∈ N, Un denotes the uniform distribution over {0, 1}n. Similarly, for a set S,

US denotes the uniform distribution over S.

Let f : {0, 1}p × {0, 1}q −→ {0, 1}p × {0, 1}q. For any x ∈ {0, 1}p, y ∈ {0, 1}q, let

(x̃, ỹ) = f(x, y). Then, we define fx(y) = ỹ and fy(x) = x̃. Note that fx : {0, 1}q → {0, 1}q

and fy : {0, 1}p → {0, 1}p.

4.2.1 Augmented Non-malleable codes

Our constructions rely on leveraging a unique characteristic of the non-malleable code in

2-split-state (Sn1 ×Sn2 s.t. n1 +n2 = n) provided by Aggarwal, Dodis, and Lovett [  ADL14 ],

namely augmented non-malleability, which was identified by [ AAG+16 ]. We formally define

this notion next. Below, we denote the two states of the codeword as (L,R) ∈ {0, 1}n1 ×

{0, 1}n2 .

Definition 4.2.1 ((n1, n2, `, ε)-Augmented Non-malleable Codes against 2-split-state tam-

pering family). A coding scheme (Enc,Dec) with message length ` is said to be an augmented

non-malleable coding scheme against tampering family Sn1 × Sn2 with n1 + n2 = n and

error ε if for all functions (f, g) ∈ Sn1 × Sn2, there exists a distribution SimPlusf,g over

{0, 1}n1 × ({0, 1}` ∪ {⊥} ∪ {same∗}) such that for all msg ∈ {0, 1}`,

TamperPlusmsg
f,g ≈ε Copy (SimPlusf,g,msg)

where TamperPlusmsg
f,g stands for the following augmented tampering distribution

TamperPlusmsg
f,g :=


(L,R)← Enc(m), L̃ = f(L), R̃ = g(R)

Output
(
L,Dec(L̃, R̃)

)
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Note that above we abuse notation for Copy (SimPlusf,g,msg). Formally, it is defined

as follows: Copy (SimPlusf,g,msg) = (L,msg) when SimPlusf,g = (L, same∗) and SimPlusf,g
otherwise.

It was shown in [ AAG+16 ] that the construction of Aggarwal et al. [ ADL14 ] satisfies this

stronger definition of augmented non-malleability with rate 1/poly(`) and negligible error ε.

More formally, the following holds.

Imported Theorem 4.2.1 ([ AAG+16 ]). For any message length `, there is a coding scheme

(Enc+,Dec+) of block length n = p(`) (where p is a polynomial) that satisfies augmented non-

malleability against 2-split-state tampering functions with error that is negligible in `.

4.2.2 Building Blocks

Next, we describe average min-entropy seeded extractors with small seed and one-time

message authentication codes that we use in our construction.

Definition 4.2.2 (Average conditional min-entropy). The average conditional min-entropy

of a distribution A conditioned on distribution L is defined to be

H̃∞(A|L) = − log
(
E`←L

[
2−H∞(A|L=`)

])

Following lemma holds for average conditional min-entropy in the presence of leakage.

Lemma 4.2.1 ([ DORS08 ]). Let L be an arbitrary κ-bit leakage on A, then H̃∞(A|L) >

H∞(A)− κ.

Definition 4.2.3 (Seeded Average Min-entropy Extractor). We say Ext : {0, 1}n×{0, 1}d −→

{0, 1}` is a (k, ε)-average min-entropy strong extractor if for every joint distribution (A,L)

such that H̃∞(A|L) > k, we have that (Ext(A,Ud), Ud, L) ≈ε (U`, Ud, L).

It is proved in [ Vad12  ] that any extractor is also a average min-entropy extractor with

only a loss of constant factor on error. Also, [ GUV07 ] gave strong extractors with small seed

length that extract arbitrarily close to k uniform bits. We summarize these in the following

lemma.
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Combining these results with the following known construction for extractors, we have

that there exists average min-entropy extractor that require seed length O (log n+ log(1/ε))

and extracts uniform random strings of length arbitrarily close to the conditional min-entropy

of the source.

Lemma 4.2.2 ([ GUV07 ,  Vad12 ]). For all constants α > 0 and all integers n > k, there exists

an efficient (k, ε)-average min-entropy strong extractor Ext : {0, 1}n×{0, 1}d −→ {0, 1}` with

seed length d = O (log n+ log(1/ε)) and ` = (1− α)k −O (log(n) + log(1/ε)).

Next, we define one-time message authentication codes.

Definition 4.2.4 (Message authentication code). A µ-secure one-time message authentica-

tion code (MAC) is a family of pairs of function

{
Tagk : {0, 1}α −→ {0, 1}β, Verifyk : {0, 1}α × {0, 1}β −→ {0, 1}

}
k∈K

such that

(1) For all m, k, Verifyk(m,Tagk(m)) = 1.

(2) For all m 6= m′ and t, t′, Prk←UK [ Tagk(m) = t | Tagk(m′) = t′] 6 µ.

Message authentication code can be constructed from µ-almost pairwise hash func-

tion family with the key length 2 log(1/µ). For completeness, we give a construction in

 Appendix B.1 .

4.3 Non-malleable Codes against k-Lookahead

In this section, we study the k-lookahead tampering family. We first prove an upper-

bound on the maximum rate that can be achieved for any non-malleable code against k-

lookahead tampering family. For this,  Theorem 4.3.2 states that the maximum rate that can

be achieved is roughly 1− 1/k. Surprisingly, this matches the upper bound on the rate non-

malleable codes against much stronger tampering family of k-split-state by [  CG14a ]. Our

upper bound as well as the impossibility result by [ CGM+16 ] rules the information theoretic

construction against single state lookahead tampering. On the constructive side, for 2-
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lookahead model, the technically most challenging setting among k-lookahead tampering

families, we construct a non-malleable code that achieves rate 1/3.

Notation. Recall that LAn1,n2,...,nB ⊆ ({0, 1}n){0,1}n , where n = ∑
i∈[B] ni, denotes the

family of lookahead tampering functions f = (f (1), f (2), . . . , f (B)) for f (i) : {0, 1}
∑

j∈[i] nj →

{0, 1}ni such that

c̃ := f(c) = f (1)(c1)||f (2)(c1, c2)|| . . . ||f (i)(c1, . . . , ci)|| . . . ||f (B)(c1, . . . , cB)

for c = c1||c2|| . . . ||cB and for all i ∈ [B], ci ∈ {0, 1}ni . That is, if c consists of B parts such

that ith part has length ni, then ith tampered part depends on first i parts of c. We also

use LAm⊗B to denote the family of lookahead tampering functions LAm,m, . . . ,m︸ ︷︷ ︸
B-times

, i.e., the

codeword has B parts of length m each.

4.3.1 Impossibility Results for the Split-State Lookahead Model

In this section, we first prove an upper-bound on the rate of any non-malleable encoding

against 2-lookahead tampering function, where each bit is treated as a block, i.e., LA1⊗n/2×

LA1⊗n/2 . In our proof, we use ideas similar to [ CG14a ] and the following imported lemma is

used in their proof of theorem 5.3 (see [ CG13 ]). 

2
 

Imported Lemma 4.3.1. For any constant 0 < δ < α and any encoding scheme (Enc,Dec)

with block length n and rate 1− α+ δ, the following holds. Let the codeword c be written as

(c1, c2) ∈ {0, 1}αn×{0, 1}(1−α)n. Let η = δ
4α . Then, there exists a set Xη ⊆ {0, 1}αn and two

messages msg0,msg1 such that

Pr [c1 ∈ Xη|Dec(c) = msg0] > η

Pr [c1 ∈ Xη|Dec(c) = msg1] 6 η/2

2
 ↑ Specifically, in their proof of Theorem 5.3, they picked two messages s0, s1 along with Xη that satisfy the

property we require for m0, m1 in the imported lemma. Also, we stress that their proof not only showed s0
and s1 exist, but there are multiple choices for the pair. This gives us the freedom when we pick our m0 and
m1. We make use of this in our proof.
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Theorem 4.3.1. Let (Enc,Dec) be any encoding scheme that is non-malleable against the

family of tampering functions LA1⊗n/2×LA1⊗n/2 and achieves rate 1/2 + δ, for any constant

δ > 0 and simulation error ε. Then, ε > δ/8.

Proof. Note that any codeword c in support of Enc consists of two states c1 and c2, each of

length n/2. We use ci,j for i ∈ {1, 2} and j ∈ {1, . . . , n/2} to denote the jth bit in state i. Any

tampering function f = (f1, f2) generates a tampered codeword c̃ = (c̃1, c̃2) = (f1(c1), f2(c2)).

Below, we will construct a tampering function f ∗ such that any simulated distribution Simf∗

will be ε far from tampering distribution Tamperf∗ .

Next, we fix a message m̂sg and its codeword ĉ(0) = (ĉ(0)
1 , ĉ

(0)
2 ) ∈ Enc(m̂sg) such that the

following holds. Let ĉ(1) ∈ {0, 1}n be such that for all j ∈ {1, . . . , n/2 − 1}, ĉ(0)
1,j = ĉ

(1)
1,j ,

ĉ
(0)
1,n/2 6= ĉ

(1)
1,n/2 and ĉ

(0)
2 = ĉ

(1)
2 . Moreover, we require that Dec(ĉ(1)) 6= m̂sg. That is, the two

codewords are identical except the last bit of first block and the second codeword does not

encode the same message 

3
 m̂sg. Above condition is still satisfied if Dec(ĉ(1)) = ⊥.

Since the rate of the given scheme (Enc,Dec) is 1−1/2+δ (with a constant δ), by  Imported

Lemma 4.3.1 , we have that there exist special messages msg0,msg1 and set Xη with the above

guarantees where c1 corresponds to the first state. In fact,  Imported Lemma 4.3.1  gives many

such pair of messages and we will pick such that m̂sg,msg0,msg1 are all unique.

Now, our tampering function f ∗ = (f ∗1, f ∗2) is as follows: f ∗ tampers a codeword c =

(c1, c2) to c̃ = (c̃1, c̃2) such that for all j ∈ {1, . . . , n/2 − 1}, c̃1,j = ĉ
(0)
1,j , c̃1,n/2 = ĉ

(0)
1,n/2 if

c1 ∈ Xη, else ĉ(1)
1,n/2 and c̃2 = ĉ

(0)
2 . That is, if c1 ∈ Xη, the resulting codeword is ĉ(0), else

it is ĉ(1). Note that the above tampering attack can be done using a split-state lookahead

tampering function.

Finally, it is evident that for message msg0, the tampering experiment results in m̂sg

with probability at least η. On the other hand, for message msg1, the tampering experiment

results in m̂sg with probability at most η/2. Hence, probability assigned by Tampermsg0
f∗ and

Tampermsg1
f∗ to message m̂sg differs by at least η/2. Since m̂sg is different from msg0,msg1, it

holds that ε, the simulation error of non-malleable code, is at least η/4 by triangle inequality.

3
 ↑ We note that such codewords would exist otherwise we can show that the last bit of the first state is

redundant for decoding. This way we can obtain a smaller encoding. Then, w.l.o.g., we can apply our
argument on this new encoding.
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The above result can be extended to k-lookahead tampering as follows:

Theorem 4.3.2. Let (Enc,Dec) be any encoding scheme that is non-malleable against the

family of tampering functions LA1⊗n1 . . .× . . .LA1⊗nk and achieves rate 1− 1/k+ δ, for any

constant δ > 0 and simulation error ε. Then, ε > kδ/16.

Proof Outline. The proof follows by doing a similar analysis as above for the largest state.

Without loss of generality, let the first state be the largest state, i.e., n1 > ni for all i ∈

{2, . . . , k}. By averaging argument it holds that n1 > n/k, where n is the block length.

Now, the theorem follows along the same lines as the proof of 2-lookahead tampering above

when we consider the code for the first state as c1 and rest of the code as c2. We note that

the above proof does not require c1 and c2 to have the same size.

4.3.2 Rate-1/3 Non-malleable Code in 2-Lookahead Model

In this section, we present our construction for non-malleable codes against 2-lookahead

tampering functions. Our construction relies on the following tools. Let (Tag,Verify) (resp.,

(Tag′,Verify′)) be a µ (resp., µ′) secure message authentication code with message length `

(resp., n), tag length β (resp., β′) and key length γ (resp., γ′). Let Ext : {0, 1}n×{0, 1}d →

{0, 1}` be a (k, ε1) average min-entropy strong extractor. We define k later during parameter

setting. Finally, let (Enc+,Dec+) be (n+
1 , n

+
2 , `

+, ε+)-augmented 2-split-state non-malleable

code (see  Definition 4.2.1 ), where `+ = γ + γ′ + β + β′ + d. We denote the codewords of

this scheme as (L,R) and given a tampering function, we denote the output of the simulator

SimPlus as (L,Ans).

Construction Overview. We define our encoding and decoding functions formally in

 Figure 4.2 . In our encoding procedure, we first sample a uniform source w of n bits and

a uniform seed s of d bits. Next, we extract a randomness r from (w, s) using the strong

extractor Ext. We hide the message msg using r as the one-time pad to obtain a ciphertext

c. Next, we sample random keys k1, k2 and authenticate the ciphertext c using Tagk1 and the

source w using Tag′k2 to obtain tags t1 and t2, respectively. Now, we think of (k1, k2, t1, t2, s)

as the digest and protect it using an augmented 2-state non-malleable encoding Enc+ to
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obtain (L,R). Finally, our codeword is
(
(c1, c2), (c3, c4)

)
where c1 = w, c2 = R, c3 = L and

c4 = c.

We also note that n1 := |c1| = |w| = n, n2 := |c2| = |R| = n+
2 , n3 := |c3| = |L| = n+

1 and

n4 := |c4| = |c| = `. From  Figure 4.2 , it is evident that our construction satisfies perfect

correctness.

Enc(m):

1. Sample w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. Compute r = Ext(w, s), c = m⊕ r

3. Compute the tags t1 = Tagk1(c), t2 =

Tag′k2
(w)

4. Compute the 2-state non-malleable encoding

(L,R)← Enc+(k1, k2, t1, t2, s)

5. Output the states
(

(w,R), (L, c)
)

Dec
(

(c1, c2), (c3, c4)
)

:

1. Let the tampered states be

w̃ := c1, R̃ := c2, L̃ := c3, c̃ := c4

2. Decrypt (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

4. (Else) If Verify
k̃1

(c̃, t̃1) = 0 or Verify′
k̃2

(w̃, t̃2) =

0, output ⊥

5. (Else) Output c̃⊕ Ext(w̃, s̃)

Figure 4.2. Non-malleable coding scheme against LAn1,n2 × LAn3,n4 , where
n1 = |w|, n2 = |R|, n3 = |L|, and n4 = |c|.

Proof of Non-malleability against 2-lookahead tampering. Given a tampering func-

tion (f, g) ∈ LAn1,n2 × LAn3,n4 , where f = (f (1), f (2)) and g = (g(1), g(2)), we formally

describe our simulator in  Figure 4.3 .

Our simulator describes a leakage function L(w) that captures the leakage required on

the source w in order to simulate the tampering experiment. This leakage has five parts

(L,Ans, flag1, flag2,mask). The values L and Ans are the outputs of simulator SimPlus

on tampering function (g(1), f (2)
w ), where f (2)

w represents the tampering function on R given

w. Next, for the case when Ans = same∗, flag1 denotes the bit w̃ = w. When Ans =

(k̃1, k̃2, t̃1, t̃2, s̃), flag2 captures the bit Verify′
k̃2

(w̃, t̃2), i.e., whether the new key k̃2 and tag

t̃2 are valid authentication on new source w̃. In this case, the value mask is the extracted

output of tampered source w̃ using tampered seed s̃.

We give the formal proof on indistinguishability between simulated and tampering dis-

tributions in  Subsection 4.3.3 using a series of statistically close hybrids.
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1. w ← Un
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n+

1 × {0, 1}β+β′+γ+γ′+d+1 × {0, 1} ×
{0, 1} × {0, 1}` as the following function:
(a) (L,Ans)← SimPlus

g(1),f (2)
w
, w̃ = f (1)(w)

(b) If Ans =
• Case ⊥: flag1 = 0, flag2 = 0, mask = 0`
• Case same∗: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`
• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0

(c) L(w) := (L,Ans, flag1, flag2,mask)

3. r ← U`, c = 0` ⊕ r, c̃ = g
(2)
L (c)

4. If Ans =
• Case ⊥: Output ⊥
• Case same∗: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
• Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

Figure 4.3. The simulator Simf,g for the non-malleable code against 2-
lookahead tampering family.

Rate analysis. We will use λ as our security parameter. By  Corollary B.1.1 , we will let

k1, k2 be of length 2λ, i.e. γ = γ′ = 2λ and t1, t2 will have length λ, i.e. β = β′ = λ and both

(Tag,Verify) and (Tag′,Verify′) will have error 2−λ.

Since we will need to extract ` bits as a one-time pad to mask the message, by  Lemma 4.2.2  ,

we will set min-entropy k to be (1 + α′)` for some constant α′ and let Ext be a ((1 +

α′)`, 2−λ)-strong average min-entropy extractor that extract `-bit randomness with seed

length O (log n+ λ). By our analysis in  Subsection 4.3.3 , it suffices to have n − (` + n+
1 +

`+ + 3) = n− `− p(log n+λ) > (1 +α′)`. Hence, we will set n = (2 +α)` for some constant

α > α′.

Now the message length for our augmented 2-state non-malleable code will be 2λ+ 2λ+

λ+ λ+O (log n+ λ) = O (log n+ λ). Now by  Theorem 4.2.1  , we will let ζ be the constant

such that p(nζ) = o(n) and set λ = O
(
nζ
)
. Hence, the length of (L,R) will be o(n).
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Therefore, the total length of our coding scheme will be ` + (2 + α)` + o(n) and the rate is
1

3+α with error O
(
2−nζ

)
. This completes the proof for  Theorem 4.1.2 .

4.3.3 Proof of Non-Malleability against 2-lookahead (  Theorem 4.1.2 )

In this section, we prove that our code scheme  Figure 4.2 is secure against the tampering

family LAn1,n2 × LAn3,n4 . In order to prove the non-malleability, we need to show that for

all tampering functions (f, g) ∈ LAn1,n2×LAn3,n4 , where f = (f (1), f (2)) and g = (g(1), g(2)),

our simulator as defined in  Figure 4.3 satisfies that, for all m, we have



(
(w,R), (L, c)

)
← Enc(m)

w̃ = f (1)(w), R̃ = f (2)(w,R)

L̃ = g(1)(L), c̃ = g(2)(L, c)

Output: m̃ = Dec
(
(w̃, R̃), (L̃, c̃)

)


= Tampermf,g ≈ Copy

(
Simf,g , m

)

The following sequence of hybrids will lead us from tampering experiment to the simula-

tor. Throughout this section, we use the following color/highlight notation. In a current hy-

brid, the text in red denotes the changes from the previous hybrid. The text in shaded part

represents the steps that will be replaced by red part of the next hybrid.

The initial hybrid represents the tampering experiment Tampermf,g and the last hybrid

represents Copy(Simf,g,m).

H0(f, g,m):

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. (L,R)← Enc+(k1, k2, t1, t2, s)

4. w̃ = f (1)(w), R̃ = f (2)(w,R) , L̃ = g(1)(L), c̃ = g(2)(L, c)

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

7. Else If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

8. Else Output c̃⊕ Ext(w̃, s̃)

Next, we rewrite R̃ = f (2)(w,R) and c̃ = g(2)(L, c) as R̃ = f (2)
w (R) and c̃ = g

(2)
L (c). Now,

rearrange the steps leads us to the next hybrid.
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H1(f, g,m):

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. w̃ = f (1)(w)

4. (L,R)← Enc+(k1, k2, t1, t2, s)

5. L̃ = g(1)(L), R̃ = f
(2)
w (R)

6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

7. c̃ = g
(2)
L (c)

8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

9. Else If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

10. Else Output c̃⊕ Ext(w̃, s̃)

Note that shaded steps in the previous hybrid formulate a 2-state tampering experiment

onto (L,R). Therefore, we could use the augmented simulator to replace the tampering

experiment of augmented two-state non-malleable codes.

H2(f, g,m):

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. w̃ = f (1)(w)

4. (L,Ans)← SimPlus
g(1),f

(2)
w

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Copy
(

Ans, (k1, k2, t1, t2, s)
)
.

6. c̃ = g
(2)
L (c)

7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

8. Else If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

9. Else Output c̃⊕ Ext(w̃, s̃)

Now in hybrid H3(f, g,m), instead of doing Copy(), we do a case analysis on Ans. We

note that the hybrids H2(f, g,m) and H3(f, g,m) are identical.
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H3(f, g,m):

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. w̃ = f (1)(w)

4. (L,Ans)← SimPlus
g(1),f

(2)
w

5. c̃ = g
(2)
L (c)

6. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(

Verifyk1(c̃, t1)=0 or Verify′k2
(w̃, t2) = 0

)
, output ⊥

Else output c̃⊕ Ext(w̃, s)

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

Next, in hybrid H3(f, g,m) we change the case when Ans = same∗. Note that Ans =

same∗ says that the both the authentication keys k1, k2 as well as the tags are unchanged.

Hence, with probability at least (1 − µ − µ′), both authentications would verify only if w

and c are unchanged. Hence, in H4(f, g,m), we check if the ciphertext c and source w are

the same.

Given that (Tag,Verify) and (Tag′,Verify′) are µ and µ′-secure message authentication

codes, H3(f, g,m) ≈µ+µ′ H4(f, g,m).

H4(f, g,m):

Copy

(

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. w̃ = f (1)(w)

4. (L,Ans)← SimPlus
g(1),f

(2)
w

5. c̃ = g
(2)
L (c)

6. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1) = 0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

,m

)
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We note that the variables k1, k2, t1, t2 are no longer used in the hybrid. Hence, we remove

the sampling of these in the next hybrid. It is clear that the two hybrids H4(f, g,m) and

H5(f, g,m) are identical.

H5(f, g,m):

Copy

(

1. w ← Un, s← Ud, r = Ext(w, s), c = m⊕ r

2. (L,Ans)← SimPlus
g(1),f

(2)
w

3. w̃ = f (1)(w), c̃ = g
(2)
L (c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

,m

)

Now, we wish to use the property of average min-entropy extractor to remove the de-

pendence between c and w. Before we do the trick, we shall first rearrange the steps in

H5(f, g,m) to get H6(f, g,m). We process all the leakage we need at the first part of our

hybrid and use only the leakage of w in the remaining. Intuitively, when Ans = same∗, flag1

records whether w̃ = w and when Ans = (k̃1, k̃2, t̃1, t̃2, s̃), flag2 records whether w̃ can pass

the MAC verification under new key and tag and mask is the new one-time pad we need for

decoding the tampered message. We note that the hybrids H5(f, g,m) and H6(f, g,m) are

identical.

91



H6(f, g,m):

Copy

(

1. w ← Un

2. (L,Ans)← SimPlus
g(1),f

(2)
w
, w̃ = f (1)(w)

3. If Ans =

• Case same∗: If (w̃ = w), flag1 = 1; Else flag1 = 0

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1;

Else flag2 = 0.

Let mask = Ext(w̃, s̃)

4. s← Ud, r = Ext(w, s), c = m⊕ r, c̃ = g
(2)
L (c)

5. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

In the next hybrid, we formalize (L,Ans, flag1, flag2,mask) as the leakage on source w.

Note that the hybrids H6(f, g,m) and H7(f, g,m) are identical.
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H7(f, g,m):

Copy

(

1. w ← Un

2. Leakage function L(w) : {0, 1}n −→ {0, 1}n+
1 × {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} ×

{0, 1}` be the following function:

(a) (L,Ans)← SimPlus
g(1),f

(2)
w
, w̃ = f (1)(w)

(b) If Ans =

• Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

• Case same∗: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)

If
(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0

(c) L(w) := (L,Ans,flag1,flag2,mask)

3. s← Ud, r = Ext(w, s) , c = m⊕ r, c̃ = g
(2)
L (c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

In the next hybrid, we replace the extracted output r with a uniform random ` bit string.

We argue that the hybrids H7(f, g,m) and H8(f, g,m) are ε1 close for appropriate length n

of source w.

Since L(w) outputs a `+ n+
1 + `+ + 3 bits of leakage, by  Lemma 4.2.1 , H∞(W |L(W )) >

n− (`+ n+
1 `

+ + 3). Here, W denotes the random variable corresponding to w. We will pick

n such that n− (`+n+
1 + `+ + 3) > ` for the min-entropy extraction to give a uniform string

(see  Lemma 4.2.2 ).
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H8(f, g,m):

Copy

(

1. w ← Un

2. Leakage function L(w) : {0, 1}n −→ {0, 1}n+
1 × {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} ×

{0, 1}` be the following function:

(a) (L,Ans)← SimPlus
g(1),f

(2)
w
, w̃ = f (1)(w)

(b) If Ans =

• Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

• Case same∗: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)

If
(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0

(c) L(w) := (L,Ans,flag1,flag2,mask)

3. r ← U`, c = m⊕ r , c̃ = g
(2)
L (c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

Finally, notice that the distribution of c is independent of m and we can use the message

0`. This gives us our simulator. Clearly H8(f, g,m) = H9(f, g,m). Notice that H9(f, g,m) =

Copy
(

Simf,g,m
)

.
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H9(f, g,m):

Copy

(

1. w ← Un

2. Leakage function L(w) : {0, 1}n −→ {0, 1}n+
1 × {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} ×

{0, 1}` be the following function:

(a) (L,Ans)← SimPlus
g(1),f

(2)
w
, w̃ = f (1)(w)

(b) If Ans =

• Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

• Case same∗: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)

If
(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0

(c) L(w) := (L,Ans,flag1,flag2,mask)

3. r ← U`, c = 0` ⊕ r, c̃ = g
(2)
L (c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

4.4 Construction for 3-Split-State Non-malleable Code

By re-organizing the information between states, we also obtain a rate-1/3 3-split-state

non-malleable codes. Our coding scheme is defined in  Figure 4.4 . Specifically, instead of

storing w with R and L with c, we merge w and L into one state and store c, (w,L)

and R independently. The proof of non-malleability is similar to the proof for 2-lookahead

tampering family. We defer the proof to  Appendix B.2  . By similar analysis as in 2-lookahead

case, it is easy to see our non-malleable codes in 3-split-state scheme also has rate-1/3.

4.5 Forgetful tampering in the 2-lookahead Model

In this section we restrict ourselves to the 2-lookhead model. Let us define an addi-

tional family of tampering functions. Consider a tampering function f : {0, 1}n1+n2+n3+n4 →
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Enc(m):

1. Sample w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. Compute r = Ext(w, s), c = m⊕ r

3. Compute the tags t1 = Tagk1(c) and t2 =
Tag′k2

(w)

4. Compute the 2-state non-malleable encoding:
(L,R)← Enc+(k1, k2, t1, t2, s)

5. Output the three states
(
c, (w,L), R

)

Dec(c1, c2, c3):

1. Let the tampered states be
c̃ := c1, (w̃, L̃) := c2, R̃ := c3

2. Decrypt (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

4. (Else) If Verify
k̃1

(c̃, t̃1) = 0 or Verify′
k̃2

(w̃, t̃2) =
0, then output ⊥

5. (Else) Output c̃⊕ Ext(w̃, s̃)

Figure 4.4. Non-malleable coding scheme against 3-split-state tampering.

{0, 1}n1+n2+n3+n4 . The function f is 1-forgetful, if there exists a function g : {0, 1}n2+n3+n4 →

{0, 1}n1+n2+n3+n4 such that f(x1, x2, x3, x4) = g(x2, x3, x4) for all x1 ∈ {0, 1}n1 , x2 ∈ {0, 1}n2 ,

x3 ∈ {0, 1}n3 , and x4 ∈ {0, 1}n4 . Intuitively, the tampering function f forgets its first n1-bits

of the codeword and do the entire tampering using only x2, x3, x4. The set of all func-

tions that are 1-forgetful are represented by FORn1,n2,n3,n4−{1}. Analogously, we define

FORn1,n2,n3,n4−{i}, for each i ∈ {2, 3, 4}.

Aggarwal et al. [ ADKO15 ] proved that we can construct constant-rate non-malleable

code in the 2-split-state from a constant-rate non-malleable code that protects against the

following tampering family  

4
 

(
LAn1,n2 × LAn3,n4

) 4⋃
i=1
FORn1,n2,n3,n4−{i}

We make partial progress towards the goal of constructing non-malleable codes secure against

above tampering family (and hence, constant rate codes against 2-split-state family), and

prove the following theorem.

Theorem 4.5.1. For all constants α, there exists a constant ζ and a computationally

efficient non-malleable coding scheme against
(
LAn1,n2 × LAn3,n4

)
∪ FORn1,n2,n3,n4−{1} ∪

FORn1,n2,n3,n4−{3} with rate 1
4+α and error 2−nζ .

4
 ↑ Specifically, Theorem 30 in [ ADKO15 ] states that there exists a constant-rate non-malleable reduction from

2-split-state tampering family to the following tampering function family consisting of union of split-state
lookahead and forgetful tampering functions.
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We now give a construction  Figure 4.5 of constant-rate non-malleable code against(
LAn1,n2 × LAn3,n4

)
∪ FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3}.

Enc(m):

1. Sample w1 ← Un, w2 ← Un′ , s ← Ud, k1 ←

Uγ , k2 ← Uγ′ , Let w := (w1, w2)

2. Compute r = Ext(w, s), c = m⊕ r

3. Compute the tags t1 = Tagk1(c), t2 =

Tag′k2
(w)

4. Compute the 2-state non-malleable encoding

(L,R)← Enc+(k1, k2, t1, t2, s)

5. Output the four states w1, R, (w2, L), c

Dec
(
c1, c2, c3, c4

)
:

1. Let the tampered states be w̃1 := c1, R̃ :=

c2, (w̃2, L̃) := c3, c̃ := c4, Let w̃ := (w̃1, w̃2)

2. Decrypt (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

4. Else If Verify
k̃1

(c̃, t̃1) = 0 or Verify′
k̃2

(w̃, t̃2) =

0, output ⊥

5. Else Output c̃⊕ Ext(w̃, s̃)

Figure 4.5. Non-malleable coding scheme against
(
LAn1,n2 × LAn3,n4

)
∪

FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3}

The proof is similar to the proof of non-malleability against 2-lookahead tampering family.

Hence, we defer it to  Appendix B.3 .
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5. THE MINIMAL COMPLEXITY FOR OPTIMAL-FAIR

COIN-TOSSING

Secure multi-party computation [ Yao82  ,  GMW87 ] allows mutually distrusting parties to

compute securely over their private data. However, guaranteeing output delivery to honest

parties when the adversarial parties may abort during the protocol execution has been a

challenging objective. A long line of highly influential works has undertaken the task of

defining security with guaranteed output delivery (i.e., fair computation) and fairly com-

puting functionalities [  GHKL08 ,  BOO10 ,  GK10 ,  BLOO11 ,  AP13 ,  ALR13 ,  HT14 ,  Ash14 ,

 Mak14 ,  ABMO15 ,  AO16 ,  BHLT17  ]. This chapter considers the case when honest parties

are not in the majority. In particular, as is standard in this research, the sequel relies on

the representative task of two-party secure coin-tossing, an elegant functionality providing

uncluttered access to the primary bottlenecks of achieving security in any specific adversarial

model.

In the information-theoretic plain model, one of the parties can fix the coin-tossing pro-

tocol’s output (using attacks in two-player zero-sum games, or games against nature [ Pap83 ]).

If the parties additionally have access to the commitment functionality (a.k.a., the information-

theoretic commitment-hybrid), an adversary is forced to follow the protocol honestly (oth-

erwise, the adversary risks being identified), or abort the protocol execution prematurely.

Against such adversaries, referred to as fail-stop adversaries [ CI93 ], there are coin-tossing

protocols [ Blu82 ,  BD84 ,  ABC+85 ,  Cle86 ] where a fail-stop adversary can change the honest

party’s output distribution by at most O (1/
√
r) , where r is the round-complexity of the pro-

tocol. That is, these protocols are O (1/
√
r)-insecure. In a ground-breaking result, Moran,

Naor, and Segev [ MNS09 ] constructed the first secure coin-tossing protocol in the oblivious

transfer-hybrid [ Rab81 ,  Rab05 ,  EGL82 ] that is O (1/r)-insecure. No further security im-

provements are possible because Cleve [ Cle86 ] proved that O (1/r)-insecurity is unavoidable;

hence, the protocol by Moran, Naor, and Segev is optimal.

Incidentally, all fair computation protocols (not just coin-tossing, see, for example, [ GHKL08 ,

 BOO10 ,  GK10 ,  BLOO11 ,  AP13 ,  ALR13 ,  HT14 ,  Ash14 ,  Mak14 ,  ABMO15 ,  AO16 ,  BHLT17  ])

rely on the oblivious transfer functionality to achieve O (1/r)-insecurity. A fundamental
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Secure Construction Adversarial Attack

Pessiland

In General:
constant-unfair [ HO11 ]

Fail-stop Adversary: Fail-stop Adversary:
1/
√
r-unfair [ CI93 ]

Minicrypt One-way Functions:
1/
√
r-unfair [ Blu82 ,  BD84 ,

 ABC+85 ,  Cle86 ]

1/
√
r-unfair [This Chapter]

Cryptomania

Public-key Encryption: 1/
√
r-unfair [This Chapter]

PKE + f -hybrid, f 6→ OT: 1/
√
r-unfair [This Chapter]

Oblivious Transfer:
1/r-unfair [ MNS09 ] 1/r-unfair [ Cle86 ]

Figure 5.1. The first column summarizes of the most secure fair coin-tossing
protocols in Impagliazzo’s worlds [ Imp95 ]. Corresponding to each of these
worlds, the second column has the best attacks on these fair coin-tossing pro-
tocols. The red cells are the results we shall present in this chapter.

principle in theoretical cryptography is to securely realize cryptographic primitives based on

the minimal computational hardness assumptions. Consequently, the following question is

natural.

Is oblivious transfer necessary for optimal fair computation?

Summary of our results. This chapter studies the insecurity of fair coin-tossing protocols

in Minicrypt and (various levels of) Cryptomania [  Imp95 ]. Our contributions are three-fold.

1. First, we prove that any coin-tossing protocol that uses one-way functions in a (fully)

black-box manner must be Ω(1/
√
r)-insecure.

2. Second, using simillar techniques from [ MMP14 ], we generalize the first result to prove

that any coin-tossing protocol using public-key encryption in a (fully) black-box manner

must also be Ω(1/
√
r)-insecure.

3. Finally, we prove a dichotomy for two-party secure (possibly, randomized output) func-

tion evaluation functionalities. For any secure function evaluation functionality f , either

(A) optimal fair coin-tossing exists in the information-theoretic f -hybrid, or (B) any
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coin-tossing protocol in the f -hybrid, even using public-key encryption algorithms in a

black-box manner, is Ω(1/
√
r)-insecure.

Our hardness of computation results hold even for a game-theoretic definition of fairness

as well (which extends to the stronger simulation-based security definition). As shown in

 Figure 5.1 , our results further reinforce the widely-held perception that oblivious transfer is

necessary for optimal fair coin-tossing.

5.1 Preliminaries

We use uppercase letters for random variables, (corresponding) lowercase letters for their

values, and calligraphic letters for sets. For a joint distribution (A,B), A and B represent

the marginal distributions, and A×B represents the product distribution where one samples

from the marginal distributions A and B independently.

For a sequence (X1, X2, . . .), we use X6i to denote the joint distribution (X1, X2, . . . , Xi).

Similarly, for any (x1, x2, . . . ) ∈ Ω1×Ω2×· · ·, we define x6i := (x1, x2, . . . , xi) ∈ Ω1×Ω2×· · ·×

Ωi. Let (M1,M2, . . . ,Mr) be a joint distribution over sample space Ω1×Ω2×· · ·×Ωr, such that

for any i ∈ {1, 2, . . . , n}, Mi is a random variable over Ωi. A (real-valued) random variable

Xi is said to be M6i measurable if there exists a deterministic function f : Ω1×· · ·×Ωi → R

such that Xi = f(M1, . . . ,Mi). A random variable τ : Ω1 × · · · ×Ωr → {1, 2, . . . , r} is called

a stopping time, if the random variable 1τ6i is M6i measurable, where 1 is the indicator

function. For a more formal treatment of probability spaces, σ-algebras, filtrations, and

martingales, refer to, for example, [  Sch17 ].

The following inequality shall be helpful for our proof.

Theorem 5.1.1 (Jensen’s inequality). If f is a multivariate convex function, then E
[
f
(
~X
)]

>

f
(
E
[
~X
])

, for all probability distributions ~X over the domain of f .

In particular, f(x, y, z) = (x − y − z)2 is a tri-variate convex function where Jensen’s

inequality applys.
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5.2 A Key Inequality

In this section, we prove an inequality (due to [ KMW20 ]), which turns out to be surpris-

ingly useful later.

Lemma 5.2.1 (Key Technical Lemma). For n ∈ N∗, define

Γn := 1√
n+ 3

.

For all x, a, b ∈ [0, 1], we have

max
(
|x− a|+ |x− b| , Γn · x(1− x)

)
> Γn+1 ·

(
x(1− x) + (x− a)2 + (x− b)2

)
.

This technical lemma is a direct consequence of the inequality below with u = |x− a|+

|x− b|, v = x(1− x), and an = 1/Γn.

Claim 5.2.1. Let {an}n∈N∗ be a sequence of real numbers such that a1 > 2 and an+1 >

an + 1/(4an), for all n ∈ N. For all u ∈ [0, 2] and v ∈ [0, 1/4], we have

max
(
u ,

v

an

)
>
u2 + v

an+1
.

Proof. We prove this by case analysis.

• Suppose u 6 v
an

.

v

an
= max

{
u,

v

an

}
>
u2 + v

an+1

⇐= v

an
>

u2 + v

an + 1/4an
(∵ an+1 > an + 1/(4an))

⇐⇒ v

4a2
n

> u2

⇐= v

4a2
n

>
v2

a2
n

(∵ u 6 v
an

)

⇐⇒ 1
4 > v.
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• Suppose u > v
an

. Substitute u = (v/an + ε), where ε > 0. We need to prove

u = max
{
u,

v

an

}
>
u2 + v

an+1

⇐= u >
u2 + v

an + 1/4an
(∵ an+1 > an + 1/(4an))

⇐⇒ v

an
+ ε >

(
v
an

+ ε
)2

+ v

an + 1/4an

⇐⇒ εan + v

4a2
n

+ ε

4an
>
v2

a2
n

+ 2εv
an

+ ε2

⇐= εan + ε

4an
>

2εv
an

+ ε2 =
(
v

an
+ u

)
ε (∵ v 6 1/4)

⇐⇒ an + 1
4an

>
v

an
+ u

⇐= an > u.

5.3 Our Approach: Potential function and Inductive Proof

In this section, we present an overview of our technical approach. The proofs of our

separation results on one-way functions, public-key encryptions, and f -hybrid all follow this

technical approach.

Let us first introduce some notations. Consider an r-message coin-tossing protocol be-

tween Alice and Bob. We stress that Alice and Bob have oracle access to some function. For

example, in the random oracle mode, parties have access to a random oracle; in the f -hybrid,

parties have access to a trusted party realizing the functionality f . We shall let Xi represent

the expected output conditioned on the first i messages. Let DA
i be the expectation of Alice’s

ith defense coin conditioned on the first i messages. Similarly, let DB
i be the expectation of

Bob’s ith defense coin conditioned on the first i messages.

Given any coin-tossing protocol π and a stopping time τ , we define the following score

function that captures the susceptibility of this protocol with respect to this particular

stopping time.
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Definition 5.3.1 (Score function). Let π be any r-message coin tossing protocol. Let P ∈

{A,B} be the party who sends the last message of the protocol. For any stopping time τ ,

define

Score(π, τ) := E
[
1(τ 6=r)∨(P 6=A) ·

∣∣∣Xτ −DA
τ

∣∣∣+ 1(τ 6=r)∨(P6=B) ·
∣∣∣Xτ −DB

τ

∣∣∣].
We clarify that the binary operator ∨ in the expression above represents the boolean OR

operation.

To provide additional perspectives to this definition, we make the following remarks.

1. Suppose Alice is about to send (m∗i , h∗i ) as the ith message. In the information-theoretic

plain model, prior works [ CI93 ,  KMM19 ] consider the gap between the expected output

before and after this message. Intuitively, since Alice is sending this message, she could

utilize this gap to attack Bob, because Bob’s defense cannot keep abreast of this new

information. However, when parties have oracle access to some functionalities, both

parties are potentially vulnerable to this gap. This is due to the fact that the new message

could reveal information about both parties’ private state (for instance, it might reveal

Bob’s commitments sent in previous messages using the random oracle as an idealized

one-way function). Then, Alice’s defense cannot keep abreast of this new information

either and thus Alice is potentially vulnerable.

2. Due to the reasons above, for every message, we consider the potential deviations that

both parties can cause by aborting appropriately. Suppose we are at a partial transcript

where Alice just sent the last message (m∗i , h∗i ). Suppose this partial transcript belongs

to the stopping time, i.e., τ = i. Naturally, Alice can abort without sending this message

to Bob when she finds out her ith message is (m∗i , h∗i ). This attack causes a deviation

of
∣∣∣Xτ −DB

τ

∣∣∣. On the other hand, Bob can also attack by aborting when he receives

Alice’s message (m∗i , h∗i ). This attack ensures a deviation of
∣∣∣Xτ −DA

τ+1

∣∣∣. Note that for

the (i+ 1)th message, Alice is not supposed to speak, her (i+ 1)th defense is exactly her

ith defense. Hence this deviation can be also written as
∣∣∣Xτ −DA

τ

∣∣∣.
3. The above argument has a boundary case, which is the last message of the protocol.

Suppose Alice sends the last message. Then, Bob, who receives this message, cannot
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abort anymore because the protocol has ended. Therefore, if our stopping time τ = n,

the score function must exclude
∣∣∣Xτ −DA

τ

∣∣∣. This explains why we have the indicator

function 1 in our score function.

4. Lastly, we illustrate how one can translate this score function into a fail-stop attack

strategy. Suppose we find a stopping time τ ∗ that witnesses a large score Score(π, τ ∗).

For Alice, we will partition the stopping time into two partitions depending on whether

Xτ > DB
τ or not. Similarly, for Bob, we partition the stopping time into two partitions

depending on whether Xτ > DA
τ . These four attack strategies correspond to Alice or

Bob deviating towards 0 or 1. And the summation of the deviations caused by these four

attacks are exactly Score(π, τ ∗). Hence, there must exist a fail-stop attack strategy for

one of the parties that changes the honest party’s output distribution by > 1
4 ·Score(π, τ ∗).

Given the definition of our score function, we are interested in finding the stopping time

that witnesses the largest score. This motivates the following definition.

Definition 5.3.2. For any coin-tossing protocol π, define

Opt(π) := max
τ

Score(π, τ).

Intuitively, Opt(π) represents the susceptibility of the protocol π. And by our discussion

above, protocol π is at least 1
4 · Opt(π)-unfair.

5.3.1 Inductive Proof Strategy

Let π be any r-message protocol such that the expect output is X0. We shall inductively

prove that

Opt(π) > Γr ·X0(1−X0)

based on the message complexity r. Our proof makes uses of the following potential function.

Definition 5.3.3 (Our Potential Function). For any x, a, b ∈ [0, 1], define

Φ(x, a, b) := x(1− x) + (x− a)2 + (x− b)2.
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Every possile

first messages
m1 m

`· · ·

(r − 1, x1)-sub-

protocol

(r − 1, x`)-sub-

protocol

Attack I

Attack II

Figure 5.2. Intuition for the inductive proof.

In particular, observe that

Φ(x, a, b) = x+ (x− a− b)2 − 2ab.

The following remarks provide perspective to our potential function.

• The term x(1 − x) is the susceptibility due to the expected output of the protocol.

Intuitively, if the expected output is 0 or 1 then the protocol should be perfectly secure.

• The term (x− a)2 is the penalty term that penalizes Alice if her defense is too far away

from the expected output of the protocol.

• Analogously, the term (x− b)2 is the penalty term for Bob.

Now, let us see how one inductively prove that

Opt(π) > Γr ·X0(1−X0).

For every possible first message of this protocol, we consider two types of attacks (refer to

 Figure 5.2 ). First, parties can attack by immediately abort upon this first message. Second,

parties can defer their attack to the remaining sub-protocol, which has only r− 1 messages.

Suppose when the first message is mi, the remaining sub-protocol has expected output xi.

105



Additionally, the expectation of Alice and Bob defense is ai and bi. The effectiveness of the

first attack is precisely (according to our score function)

|xi − ai|+ |xi − bi| ,

where |xi − ai| is the change of Alice’s output if Bob aborts, and analogously, |xi − bi| is the

change of Bob’s output if Alice aborts. On the other hand, by the inductive hypothesis, we

know the effectiveness of the second attack is at least

Γr−1 · xi(1− xi).

Now,  Lemma 5.2.1 shows that the maximum of these two quantities is lower bounded by

Γr · Φ(xi, ai, bi).

So, over all possible first messages,

Opt(π) > E
i

[Γr · Φ(xi, ai, bi)] .

Now, observe that if Jensen’s inequality holds, i.e.,

E
i

[Φ(xi, ai, bi)] > Φ
(

E
i

[xi] ,E
i

[ai] ,E
i

[bi]
)
, (5.1)

then the proof is complete since we have

E
i

[Γr · Φ(xi, ai, bi)]

> Γr · Φ
(

E
i

[xi] ,E
i

[ai] ,E
i

[bi]
)

= Γr · Φ(X0, D
A
0 , D

B
0 )

> Γr ·X0(1−X0)
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Unfortunately, Φ(x, a, b) is not a convex function. However, as we observe in  Definition 5.3.3 ,

Φ(x, a, b) could be rewritten as

Φ(x, a, b) = x+ (x− a− b)2 − 2ab.

Note that x and (x − a − b)2 are convex functions, and, hence, Jensen’s inequality holds.

The only problematic term is ab. To resolve this, all we need is the following guarantee.

Conditioned on the partial transcript,

Alice private view and Bob private view are (close to) independent.

Then we shall have E
i

[aibi] ≈ E
i

[ai] E
i

[bi], 

1
 and, hence,  Equation 5.1 shall (approximately)

hold and the proof is done.

Therefore, all that is left to do is to ensure that Alice and Bob private views are (close

to) independent in the respective model.

• For black-box separation from one-way functions, we consider the information-theoretic

random oracle model. The existing techniques [ BM09 ,  MMP14 ] is sufficient to show that

by asking polynomially many additional queries, one could ensure this guarantee. This

result and the additional subtleties are presented in  Section 5.4 .

• For f -hybrid model, the characterization of Kilian [ Kil00 ] shows that either f is sufficient

to imply oblivious transfer protocol, or Alice and Bob private views are always (perfectly)

independent conditioned on an arbitrary number of realizations of f . This result and

the additional subtleties are presented in  Section 5.5 .

• For black-box separation from public-key encryptions, prior work [  MMP14 ] also shows

that one could ask polynomially many additional queries to ensure this guarantee. This

result and the additional subtleties are presented in  Section 5.6 .
1

 ↑ In particular, if Alice private view and Bob private view are perfectly independent, we shall have E
i

[aibi] =
E
i

[ai] E
i

[bi].
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5.4 Separation from One-way function

5.4.1 Two-party interactive protocols in the random oracle model

Alice and Bob speak in alternate rounds. We denote the ith message by Mi. For every

message Mi, we denote Alice’s private view immediately after sending/receiving message

Mi as V A
i , which consists of Alice’s random tape RA, her private queries, and the first i

messages exchanged. We use V A
0 to represent Alice’s private view before the protocol begins.

Similarly, we define Bob’s private view V B
i and use RB to denote his private random tape.

Query Operator Q. For any view V , we use Q(V ) to denote the set of all queries

contained in the view V .

5.4.2 Heavy Querier and the Augmented Protocol

For two-party protocols in the random oracle model, [ IR89 ,  BM09 ] introduced a standard

algorithm, namely, the heavy querier. We shall use the following imported theorem.

Imported Theorem 5.4.1 (Guarantees of Heavy Querier [ BM09 ,  MMP14 ]). Let π be any

two-party protocol between Alice and Bob in the random oracle model, in which both parties

ask at most n queries. For all threshold ε ∈ (0, 1), there exists a public algorithm, called the

heavy querier, who has access to the transcript between Alice and Bob. After receiving each

message Mi, the heavy querier performs a sequence of queries and obtains its corresponding

answers from the random oracle. Let Hi denote the sequence of query-answer pairs asked by

the heavy querier after receiving message Mi. Let Ti be the union of the ith message Mi and

the ith heavy querier message Hi. The heavy querier guarantees that the following conditions

are simultaneously satisfied.

• ε-Lightness. For any i, any t6i ∈ Supp(T6i), and query q /∈ Q (h6i),

Pr
[
q ∈ Q

(
V A
i

∣∣∣T6i = t6i
)]

6 ε, and Pr
[
q ∈ Q

(
V B
i

∣∣∣T6i = t6i
)]

6 ε.
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• nε-Dependence. Fix any i,

E
t6i←T6i

[
SD

((
V A
i , V

B
i

∣∣∣T6i = t6i
)
,
(
V A
i

∣∣∣T6i = t6i
)
×
(
V B
i

∣∣∣T6i = t6i
))]

6 nε.

Intuitively, it states that on average, the statistical distance between (1) the joint distri-

bution of Alice’s and Bob’s private view, and (2) the product of the marginal distributions

of Alice’s private views and Bob’s private views is small.

• O (n/ε)-Efficiency. The expected number of queries asked by the heavy querier is

bounded by O (n/ε). Consequently, it has O (n/ε2) query complexity with probability

(at least) (1− ε) by an averaging argument.

We refer to the protocol with the heavy querier’s messages attached as the augmented

protocol. We call Ti the augmented message.

5.4.3 Coin-Tossing Protocol in the Random Oracle Model

We will prove our main result by induction on the message complexity of the protocol.

Therefore, after any partial transcript t6i, we will treat the remainder of the orginal protocol

starting from the (i+1)th message, as a protocol of its own. Hence, it is helpful to define the

coin-tossing protocol where, before the beginning of the protocol, Alice’s and Bob’s private

views are already correlated with the random oracle. However, note that, in the augmented

protocol, after each augmented message ti, the heavy querier has just ended. Thus, these

correlations will satisfy  Imported Theorem 5.4.1  . Therefore, we need to define a general

class of coin-tossing protocols in the random oracle model over which we shall perform our

induction.

Definition 5.4.1 ((ε, ~α, r, n,X0)-Coin-Tossing). An interactive protocol π between Alice and

Bob with random oracle O : {0, 1}λ → {0, 1}λ is called an (ε, ~α, r, n,X0)-coin-tossing protocol

if it satisfies the following.

• Setup. There is an arbitrary set S ⊆ {0, 1}λ, which is publicly known, such that for

all queries s ∈ S, the query answers O(s) are also publicly known. Let ΩA, ΩB, and
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ΩO be the universes of Alice’s random tape, Bob’s random tape, and the random oracle,

respectively. There are also publicly known sets A ⊆ ΩA × ΩO and B ⊆ ΩB × ΩO.

The random variables RA, RB, and O are sampled uniformly conditioned on that (1)

(RA, O) ∈ A, (2) (RB, O) ∈ B, and (3) O is consistent with the publicly known answers

at S. Alice’s private view before the beginning of the protocol is a deterministic function

of RA and O, which might contain private queries. Likewise, Bob’s private view is a

deterministic function of RB and O. 

2
 

• Agreement. At the end of the protocol, both parties always agree on the output ∈ {0, 1}.

Without loss of generality, we assume the output is concatenated to the last message in

the protocol. 

3
 

• Defense preparation. At message Mi, if Alice is supposed to speak, in addition to

preparing the next-message Mi, she will also prepare a defense coin for herself as well. If

Bob decides to abort the next message, she shall not make any additional queries to the

random oracle, and simply output the defense she has just prepared. [  DLMM11 ,  DMM14 ]

introduced this constraint as the “instant construction.” They showed that, without loss

of generality, one can assume this property for all the defense preparations except for

the first defense (see  Remark 5.4.2 ). We shall refer to this defense both as Alice’s ith

defense and also as her (i + 1)th defense. Consequently, Alice’s defense for every i is

well-defined. Bob’s defense is defined similarly. We assume the party who receives the

first message has already prepared her defense for the first message before the protocol

begins.

• ε-Lightness at Start. For any query q /∈ S, the probability that Alice has asked query

q before the protocol begins is upper bounded by ε ∈ [0, 1]. Similarly, the probability that

Bob has asked query q is at most ε.
2

 ↑ Basically, S is the set of all the queries that the heavy querier has published. A is the set of all possible
pairs of Alice’s private randomness rA and random oracle o that are consistent with Alice’s messages before
this protocol begins. Similarly, B is the set of all consistent pairs of Bob’s private randomness rB and random
oracle o.
3

 ↑ This generalization shall not make the protocol any more vulnerable. Any attack in this protocol shall also
exist in the original protocol with the same amount of deviation. This only helps simplify the presentation
of our proof.
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• ~α-Dependence. For all i ∈ {0, 1, . . . , r}, Alice’s and Bob’s private views are αi-

dependent on average immediate after the message Ti. That is, the following condition

is satisfied for every i.

αi := E
t6i←T6i

[
SD

((
V A
i , V

B
i

∣∣∣T6i = t6i
)
,
(
V A
i

∣∣∣T6i = t6i
)
×
(
V B
i

∣∣∣T6i = t6i
))]

• r-Message complexity. The number of messages of this protocol is r = poly(λ). We

emphasize that the length of the message could be arbitrarily long.

• n-Query complexity. For all possible complete executions of the protocol, the number

of queries that Alice asks (including the queries asked before the protocol begins) is at

most n = poly(λ). This also includes the queries that are asked for the preparation of

the defense coins. Likewise, Bob asks at most n queries as well.

• X0-Expected Output. The expectation of the output is X0 ∈ (0, 1).

Remark 5.4.1. Let us justify the necessity of ~α-dependence in the definition. We note that

when heavy querier stops, Alice’s and Bob’s view are not necessarily close to the product

of their respective marginal distributions. 

4
 However, to prove any meaningful bound on the

susceptibility of this protocol, we have to treat ~α as an additional error term. Therefore, we

introduce this parameter in our definition. However, the introduction of this error shall not

be a concern globally, because the heavy querier guarantees that over all possible executions

this dependence is at most nε (on average), which we shall ensure to be sufficiently small.

Remark 5.4.2. We note that, after every heavy querier message, the remaining sub-protocol

always satisfies the definition above. However, the original coin-tossing protocol might not

meet these constraints. For example, consider a one-message protocol where Alice queries

O(0λ), and sends the parity of this string to Bob as the output. On the other hand, Bob

also queries O(0λ) and uses the parity of this string as his defense. This protocol is perfectly

secure in the sense that no party can deviate the output of the protocol at all. However,
4

 ↑ For instance, suppose Alice samples a uniform string u1 ← {0, 1}λ and sends O(u1) to Bob. Next, Bob
samples a uniform string u2 ← {0, 1}λ and sends O(u2) to Alice. Assume the first message and the second
message are the same, i.e., O(u1) = O(u2). Then, there are no heavy queries, but Alice’s and Bob’s private
views are largely correlated.
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the query 0λ is 1-heavy in Bob’s private view even before the protocol begins. Prior works

[ DLMM11 ,  DMM14 ] rule out such protocols by banning Bob from making any queries when

he prepares his first defense. In this work, we consider protocols such that no queries are

more than ε-heavy when Bob prepares his first defense. We call this the ε-lightness at start

assumption. The set of protocols that prior works consider is identical to the set of protocols

that satisfies 0-lightness at start assumption.

To justify our ε-lightness at start assumption, we observe that one can always run a heavy

querier with a threshold ε before the beginning of the protocol as a pre-processing step. Note

that this step fixes only a small part (of size O (n/ε)) of the random oracle, and, hence, the

random oracle continues to be an “idealized” one-way function. If this protocol is a black-box

construction of a coin-tossing protocol with any one-way function, the choice of the one-

way function should not change its expected output. Therefore, by running a heavy querier

before the beginning of the protocol, it should not alter the expected output of the protocol.

After this compilation step, all queries are ε-light in Bob’s view before the protocol begins.

Consequently, our inductive proof technique is applicable.

Remark 5.4.3. Let us use the an example to further illustrate how we number Alice’s and

Bob’s defense coins. Suppose Alice sends the first message in the protocol. Bob shall prepare

his first defense coin even before the protocol begins. Alice, during her preparation of the first

message, shall also prepare a defense coin as her first defense.

The second message in the protocol is sent by Bob. Since Alice is not speaking during

this message preparation, her second defense coin remains identical to her first defense coin.

Bob, on the other hand, shall update a new defense coin as his second defense during his

preparation of the second message.

For the third message, Alice shall prepare a new third defense coin and Bob’s third defense

coin is identical to his second defense coin. This process continues for r messages during the

protocol execution.

Notation. Let Xi represent the expected output conditioned on the first i augmented

messages, i.e., the random variable T6i. Let DA
i be the expectation of Alice’s ith defense coin

conditioned on the first i augmented messages. Similarly, let DB
i be the expectation of Bob’s
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ith defense coin conditioned on the first i augmented messages. (Refer to  Definition 5.4.1 for

the definition of ith defense. Recall that, for both Alice and Bob, the ith defense is defined

for all i ∈ {1, 2, . . . , r}.) Note that random variables Xi, D
A
i , and DB

i are all T6i-measurable.

5.4.4 Main Technical Result in the Random Oracle Model

Theorem 5.4.1. For any (ε, ~α, r, n,X0)-coin-tossing protocol π, the following holds.

Opt(π) > Γr ·X0 (1−X0)−
(
nr · ε+ α0 + 2

r∑
i=1

αi

)
.

Furthermore, one needs to make an additional O (n/ε) queries to the random oracle (in

expectation) to identify a stopping time τ witnessing this lower bound.

We defer the proof to  Section 5.4.5 . In light of the remarks above, this theorem implies

the following corollary.

Corollary 5.4.2. Let π be a coin-tossing protocol in the random oracle model that satisfies

the ε-lightness at start assumption (see  Remark 5.4.2 ). Suppose π is an r-message protocol,

and Alice and Bob ask at most n queries. The expected output of π is X0. Then, either Alice

or Bob has a fail-stop attack strategy that deviates the honest party’s output distribution by

Ω
(
X0 (1−X0)√

r

)
.

This attack strategy performs O
(

n2r2

X0(1−X0)

)
additional queries to the random oracle in expec-

tation.

This corollary is obtained by substituting ε = X0(1−X0)
nr2 in  Theorem 5.4.1 .  Imported

Theorem 5.4.1 guarantees that, for all i, the average dependencies after the ith message are

bounded by nε. Hence, the error term is o
(
X0(1−X0)√

r

)
.

The efficiency of the heavy querier is guaranteed by  Imported Theorem 5.4.1 . One can

transform the average-case efficiency to worst-case efficiency by forcing the heavy querier

to stop when it asks more than n2r3

(X0(1−X0))2 queries. By Markov’s inequality, this happens
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with probability at most O
(
X0(1−X0)

r

)
= o

(
X0(1−X0)√

r

)
, and thus the quality of this attack is

essentially identical to the averge-case attack.

5.4.5 The Proof

In this section, we prove  Theorem 5.4.1 using induction on the message complexity r.

Our proof relies on the following useful lemma. It is implicit in [ BM09 ] that if (1) Alice’s

and Bob’s private view before the protocol begins are α0-dependent, (2) all the queries are

ε-light for Bob, and (3) Alice asks at most n queries to prepare her first message, then after

the first message, Alice’s and Bob’s private view are (α0 + nε)-dependent.

Lemma 5.4.1 (Technical Lemma [ BM09 ]). We have

SD
((
V A

1 , V
B

0

)
,
(
V A

1 × V B
0

))
6 α0 + nε.

Base case of the Induction: Message Complexity r = 1.

Let π be an (ε, ~α, r, n,X0)-coin-tossing protocol with r = 1. In this protocol, Alice sends

the only message M1. We shall pick the stopping time τ to be 1. Note that this is the last

message of the protocol and hence Bob who receives it cannot abort any more. Therefore,

our score function is the following

Score(π, τ) = E
[∣∣∣X1 −DB

1

∣∣∣].
Let DB

0 = E
[
DB

1

]
, which is the expectation of Bob’s first defense before the protocol begins.

Recall that in the augmented protocol T1 = (M1, H1), and X1 and DB
1 are T1 measurable.

We have

E
[∣∣∣X1 −DB

1

∣∣∣] = E
m1←M1

[
E

h1←(H1|M1=m1)

[∣∣∣X1 −DB
1

∣∣∣]]
(i)
> E

m1←M1

[∣∣∣∣E[X1|M1 = m1]− E
[
DB

1 |M1 = m1
]∣∣∣∣]

(ii)
> E

m1←M1

[∣∣∣∣E[X1|M1 = m1]−DB
0

∣∣∣∣− ∣∣∣∣DB
0 − E

[
DB

1 |M1 = m1
]∣∣∣∣]
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(iii)
> E

m1←M1

[∣∣∣∣E[X1|M1 = m1]−DB
0

∣∣∣∣]− α0 − nε

(iv)
> X0 ·

(
1−DB

0

)
+ (1−X0) ·DB

0 − α0 − nε

> X0 (1−X0) +
(
X0 −DB

0

)2
− α0 − nε

> X0 (1−X0)− α0 − nε.

In the above inequality, (i) and (ii) are because of triangle inequality. Since we assume the

output is concatenated to the last message of the protocol, E[X1|M1 = m1] ∈ {0, 1}. And

by the definition of X0, the probability of the output being 1 is X0. Hence we have (iv).

To see (iii), note that

E
[
DB

1

∣∣∣M1 = m1
]

=
∑
vA
1 ,v

B
0

Pr
[
V A

1 = vA
1 , V

B
0 = vB

0

∣∣∣M1 = m1
]

E
[
DB

1

∣∣∣V B
0 = vB

0

]

6
∑

Q(vA
1 )∩Q(vB

0 )=∅
Pr
[
V A

1 = vA
1

∣∣∣M1 = m1
]
· Pr

[
V B

0 = vB
0

]
E
[
DB

1

∣∣∣V B
0 = vB

0

]

+
∑

Q(vA
1 )∩Q(vB

0 )6=∅
Pr
[
V A

1 = vA
1 , V

B
0 = vB

0

∣∣∣M1 = m1
]

E
[
DB

1

∣∣∣V B
0 = vB

0

]

Hence,

∣∣∣E[DB
1

∣∣∣M1 = m1
]
−DB

0

∣∣∣ 6 Pr
(vA

1 ,v
B
0 )←(V A

1 ,V
B
0 )|M1=m1

[
Q
(
vA

1

)
∩Q

(
vB

0

)
6= ∅

]
.

Therefore,

E
m1←M1

[∣∣∣∣E[DB
1

∣∣∣M1 = m1
]
−DB

0

∣∣∣∣]

6 E
m1←M1

[
Pr

(vA
1 ,v

B
0 )←(V A

1 ,V
B
0 )|M1=m1

[
Q
(
vA

1

)
∩Q

(
vB

0

)
6= ∅

]]

6 Pr
(vA

1 ,v
B
0 )←(V A

1 ,V
B
0 )

[
Q
(
vA

1

)
∩Q

(
vB

0

)
6= ∅

]
6 α0 + nε.

This completes the proof for the base case.

Inductive Step.
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Suppose the theorem is true for r = r0 − 1, we are going to prove it for r = r0. Let π

be an arbitrary (ε, ~α, r0, n,X0)-coin-tossing protocol. Assume the first augmented message

is (M1, H1) = (m∗1, h∗1), and conditioned on that, X1 = x∗1, DA
1 = dA,∗

1 , and DB
1 = dB,∗

1 .

Moreover, the remaining sub-protocol π∗ is an (ε, ~α∗, r0 − 1, n, x∗1)-coin-tossing protocol. By

our induction hypothesis,

Opt (π∗) > Γr0−1 · x∗1 (1− x∗1)−
(
n(r0 − 1)ε+ α∗0 +

r0−1∑
i=1

α∗i

)
.

(For simplicity, we shall use Err (~α, n, r) to represent α0 + ∑r
i=1 αi + nrε in the rest of the

proof.) That is, there exists a stopping time τ ∗ for sub-protocol π∗, whose score is lower

bounded by the quantity above. On the other hand, we may choose not to continue by

picking this message (M1, H1) = (m∗1, h∗1) as our stopping time. This would yield a score of

∣∣∣x∗1 − dA,∗
1

∣∣∣+ ∣∣∣x∗1 − dB,∗
1

∣∣∣ .
Hence, the optimal stopping time would decide on whether to abort now or defer the attack

to sub-protocol π∗ by comparing which one of those two quantities is larger. This would

yield a score of

max
(
Opt (π∗) ,

∣∣∣x∗1 − dA,∗
1

∣∣∣+ ∣∣∣x∗1 − dB,∗
1

∣∣∣)
> max

(
Γr0−1 · x∗1 (1− x∗1) ,

∣∣∣x∗1 − dA,∗
1

∣∣∣+ ∣∣∣x∗1 − dB,∗
1

∣∣∣)− Err (~α∗, n, r0 − 1)
(i)
> Γr0 · Φ

(
x∗1, d

A,∗
1 , dB,∗

1

)
− Err (~α∗, n, r0 − 1) ,

where inequality (i) is because of  Lemma 5.2.1 . Now that we have a lower bound on how

much score we can yield at every first augmented message, we are interested in how much

they sum up to.

Without loss of generality, assume there are totally ` possible first augmented messages,

namely t(1)
1 , t

(2)
1 , . . . , t

(`)
1 . The probability of the first message being t(i)1 is p(i) and conditioned
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that, X1 = x
(i)
1 , DA

1 = d
A,(i)
1 , and DB

1 = d
B,(i)
1 . Moreover, the remaining r0 − 1 protocol has

dependence vector ~α(i). Therefore, we are interested in,

∑̀
i=1

p(i)
(
Γr0 · Φ

(
x

(i)
1 , d

A,(i)
1 , d

B,(i)
1

)
− Err

(
~α(i), n, r0 − 1

))

Recall that our potential function Φ satisfies

Φ(x, a, b) = x+ (x− a− b)2 − 2ab.

Therefore, we can rewrite the above quantity as

∑̀
i=1

p(i)
(

Γr0
(
x

(i)
1 +

(
x

(i)
1 − d

A,(i)
1 − dB,(i)

1

)2
− 2 · dA,(i)

1 · dB,(i)
1

)
− Err

(
~α(i), n, r0 − 1

))

We observe the following case analysis for the three expressions in the potential function

above.

1. For the x term, we observe that the expectation of x(i)
1 isX0, i.e., we have∑`

i=1 p
(i) · x(i)

1 = X0.

2. For the (x−y−z)2 term, we note that it is a convex tri-variate function. Hence, Jensen’s

inequality is applicable.

3. For the y · z term, we have the following claim.

Claim 5.4.1 (Global Invariant).

∣∣∣∣∣∑̀
i=1

p(i) · dA,(i)
1 · dB,(i)

1 − E
[
DA

1

]
E
[
DB

1

]∣∣∣∣∣ 6 (α0 + nε) + α1.

Proof. To see this, consider the expectation of the product of Alice and Bob defense when

we sample from
(
V A

1 , V
B

0

)
. This expectation is α0 + nε close to E

[
DA

1

]
E
[
DB

1

]
because

joint distribution
(
V A

1 , V
B

0

)
is α0 + nε close to the product of its marginal distribution by

 Lemma 5.4.1 .

On the other hand, this expectation is identical to the average (over all possible mes-

sages) of the expectation of the product of Alice and Bob defense when we sample from
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(
V A

1 , V
B

0

∣∣∣T1 = t
(i)
1

)
. Conditioned on first message being t(i)1 , this expectation is α(i)

0 -close to

d
A,(i)
1 · dB,(i)

1 because
(
V A

1 , V
B

0

∣∣∣T1 = t
(i)
1

)
has α(i)

0 -dependence by definition.

Finally, we note that, by definition, ∑`
i=1 p

(i)α
(i)
0 = α1. Note that the indices between α

and α(i) are shifted by 1. This is because of that the dependence after the first message of

the original protocol is the average of the dependence before each sub-protocol begins.

This proves that ∑`
i=1 p

(i) · dA,(i)
1 d

B,(i)
1 and E

[
DA

1

]
E
[
DB

1

]
are (α0 + nε) + α1 close.

Given these observations, we can push the expectation inside each term, and they imply

that our score is lower bounded by

Γr0
(
X0 +

(
X0 − E

[
DA

1

]
− E

[
DB

1

])2
− 2 · E

[
DA

1

]
· E
[
DB

1

]
− (α0 + α1 + nε)

)

−
∑̀
i=1

p(i) · Err
(
~α(i), n, r0 − 1

)

We note that by definition (again note that the indices of α and α(i) are shifted by 1),

(α0 + α1 + nε) +
∑̀
i=1

p(i) · Err
(
~α(i), n, r0 − 1

)
= Err (~α, n, r0) .

Therefore, our score is at least

Γr0
(
X0 +

(
X0 − E

[
DA

1

]
− E

[
DB

1

])2
− 2 · E

[
DA

1

]
· E
[
DB

1

])
− Err (~α, n, r0) .

This is lower-bounded by

Γr0 · Φ
(
X0,E

[
DA

1

]
,E
[
DB

1

])
− Err (~α, n, r0)

> Γr0 ·X0 (1−X0)− Err (~α, n, r0)

= Γr0 ·X0 (1−X0)−
(
nr0ε+ α0 + 2

r0∑
i=1

αi

)
.

This completes the proof of the inductive step and, hence, the proof of  Theorem 5.4.1 .
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5.5 Separation from Idealized f-hybrid

Let f : X × Y → Z be an arbitrary (possibly randomized) function. As standard in the

literature, we shall restrict to f such that the input domain X and Y and the range Z are

of constant size. A two-party protocol in the f -hybrid model is defined as follows.

Definition 5.5.1 (f -hybrid Model [ Can00 ,  Lin17 ]). A protocol between Alice and Bob in

the f -hybrid model is identical to a protocol in the plain model except that both parties have

access to a trusted party realizing f . At any point during the execution, the protocol specifies

which party is supposed to speak.

• Alice/Bob message. If Alice is supposed to speak, she shall prepare her next message

as a deterministic function of her private randomness and the partial transcript. If Bob

is supposed to speak, his message is prepared in a similar manner.

• Trusted party message. At some point during the execution, the protocol might specify

that the trusted party shall speak next. In this case, the protocol shall also specify a natural

number `, which indicates how many instances of f should the trusted party compute. Al-

ice (resp., Bob) will prepare her inputs ~x = (x1, . . . , x`) (resp., ~y = (y1, . . . , y`)) and send

it privately to the trusted party. The trusted party shall compute (f(x1, y1), . . . , f(x`, y`))

and send it as the next message.

Next, we define fair coin-tossing protocols in the f -hybrid model.

Definition 5.5.2 (Fair Coin-tossing in the f -hybrid Model). An (X0, r)-fair coin-tossing in

the f -hybrid model is a two-party protocol between Alice and Bob in the f -hybrid model such

that it satisfies the following.

• X0-Expected Output. At the end of the protocol, parties always agree on the output

∈ {0, 1} of the protocol. The expectation of the output of an honest execution is X0 ∈

(0, 1).

• r-Message Complexity. The total number of messages of the protocol is (at most) r.

This includes both the Alice/Bob message and the trusted party message.
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• Defense Preparation. Anytime a party speaks, she shall also prepare a defense coin

based on her private randomness and the partial transcript. Her latest defense coin shall

be her output when the other party decides to abort. To ensure that parties always have

a defense to output, they shall prepare a defense before the protocol begins.

• Insecurity. The insecurity is defined as the maximum change a fail-stop adversary can

cause to the expectation of the other party’s output.

For any (randomized) functionality f , Kilian [  Kil00 ] proved that if f does not satisfy the

following cross product rule, f is complete for information-theoretic semi-honest adversaries.

That is, for any functionality g, there is a protocol in the f -hybrid model that realizes g,

which is secure against information-theoretic semi-honest adversaries. In particular, this

implies that there is a protocol in the f -hybrid model that realizes oblivious transfer.

Definition 5.5.3 (Cross Product Rule). A (randomized) functionality f : X × Y → Z is

said to satisfy the cross product rule if for all x0, x1 ∈ X , y0, y1 ∈ Y, and z ∈ Z such that

Pr[f(x0, y0) = z] > 0 and Pr[f(x1, y0) = z] > 0,

we have

Pr[f(x0, y0) = z] · Pr[f(x1, y1) = z] = Pr[f(x1, y0) = z] · Pr[f(x0, y1) = z].

We recall the MNS protocol by Moran, Naor, and Segev [ MNS09 ]. The MNS protocol

makes black-box uses of the oblivious transfer as a subroutine to construct optimal-fair coin-

tossing protocols. In particular, their protocol enjoys the property that any fail-stop attack

during the oblivious transfer subroutine is an entirely ineffective attack. Therefore, the MNS

protocol, combined with the results of Kilian [ Kil00 ], gives us the following theorem.

Theorem 5.5.1 ([ Kil00 ,  MNS09 ]). Let f be a (randomized) functionality that is complete.

For any X0 ∈ (0, 1) and r ∈ N∗, there is an (X0, r)-fair coin-tossing protocol in the f -hybrid

model that is (at most) O (1/r)-insecure against fail-stop attackers.
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Remark 5.5.1 (On the necessity of the unfairness of f). We emphasize that it is necessary

that in the f -hybrid model, f is realized unfairly. That is, the adversary receives the output

of f before the honest party does. If f is realized fairly, i.e., both parties receive the output

simultaneously, it is possible to construct perfectly-secure fair coin-tossing. For instance, let

f be the XOR function. Consider the protocol where Alice samples x← {0, 1}, Bob samples

y ← {0, 1}, and the trusted party broadcast f(x, y), which is the final output of the protocol.

Trivially, one can verify that this protocol is perfectly-secure.

Intuitively, the results of Kilian [ Kil00 ] and Moran, Naor, and Segev [  MNS09 ] showed

that when f is a functionality that does not satisfy the cross product rule, a secure protocol

realizing f can be used to construct optimal-fair coin-tossing.

In this section, we complement the above results by showing that when f is a functionality

that does satisfy the cross product rule, a fair coin-tossing protocol in the f -hybrid model is

(qualitatively) as insecure as a fair coin-tossing protocol in the information-theoretic model.

In other words, f is completely useless for fair coin-tossing. Our results are summarized as

the following theorem.

Theorem 5.5.2 (Main Theorem for f -hybrid). Let f be a randomized functionality that

is not complete. Any (X0, r)-fair coin-tossing protocol in the f -hybrid model is (at least)

Ω
(
X0(1−X0)√

r

)
-insecure.

5.5.1 Properties of Functionalities

To prove  Theorem 5.5.2 , we start with some observations on functionality that satisfies

the cross product rule.

Let f be a functionality that satisfies the cross product rule. We start by observing some

properties of f . Firstly, let us recall the following definition.

Definition 5.5.4 (Function Isomorphism [ MPR09 ]). Let f : X ×Y → Z and g : X ×Y → Z ′

be any two (randomized) functionalities. We say f 6 g if there exist deterministic mappings

MA : X ×Z ′ → Z and MB : Y ×Z ′ → Z such that, for all x ∈ X , y ∈ Y, and randomness s,

MA (x, g(x, y; s)) = MB (y, g(x, y; s))
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and

SD (f(x, y),MA (x, g(x, y))) = 0.

We say f and g are isomorphic (i.e., f ' g) if f 6 g and g 6 f .

Intuitively, f and g are isomorphic if securely computing f can be realized by one ideal call

to g without any further communication and vise versa. As an example, the (deterministic)

XOR functionality
[

0 1

1 0

]
is isomorphic to

[
0 1

2 3

]
.

Given two isomorphic functionalities f and g, it is easy to see that there is a natural

bijection between protocols in the f -hybrid model and g-hybrid model.

Lemma 5.5.1. Let f and g be two functionalities such that f ' g. For every fair coin-

tossing protocol π in the f -hybrid model, there is a fair coin-tossing protocol π′ in the g-hybrid

model such that

• π and π′ have the same message complexity r and expected output X0.

• For every fail-stop attack strategy for π, there exists a fail-stop attack strategy for π′ such

that the insecurities they cause are identical and vice versa.

Sketch. Given any protocol π in the f -hybrid model between A and B, consider the protocol

π′ in the g-hybrid model between A′ and B′. In π′, A′ simply simulates A and does what

A does. Except when the trusted party sends the output of g, A′ uses the mapping MA to

recover the output of f and feeds it to A. B′ behaves similarly. Easily, one can verify that

these two protocols have the same message complexity and expected output. Additionally,

for every fail-stop adversary A∗ for π, there is a fail-stop adversary (A∗)′ for π′ that simulates

A∗ in the same manner, which deviates the output of Bob by the same amount.

We are now ready to state our next lemma.

Lemma 5.5.2 (Maximally Renaming the Outputs of f). Let f : X ×Y → Z be a (random-

ized) functionality that is not complete. There exists a functionality f ′ : X × Y → Z ′ such

that f ' f ′ and f ′ satisfies the following strict cross product rule. That is, for all x0, x1 ∈ X ,

y0, y1 ∈ Y, and z′ ∈ Z ′, we have

Pr[f ′(x0, y0) = z′] · Pr[f ′(x1, y1) = z′] = Pr[f ′(x1, y0) = z′] · Pr[f ′(x0, y1) = z′].
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Following the example above, the XOR functionality
[

0 1

1 0

]
satisfies the cross product

rule, i.e., XOR is not complete, but it does not satisfy the strict cross product rule since

Pr[XOR(0, 0) = 1] · Pr[XOR(1, 1) = 1] 6= Pr[XOR(1, 0) = 1] · Pr[XOR(0, 1) = 1].

On the other hand, functionality
[

0 1

2 3

]
is isomorphic to XOR and does satisfy the strict cross

product rule.

Proof of  Lemma 5.5.2 . We shall rename the output of f as follows. For all z ∈ Z, define

Sz := {(x, y) : x ∈ X , y ∈ Y , Pr[f(x, y) = z] > 0}.

By the cross product rule, we know that there does not exist x0, x1 ∈ X and y0, y1 ∈ Y such

that

(x0, y0), (x0, y1), (x1, y0) ∈ Sz but (x1, y1) /∈ Sz.

Therefore, we can always partition Sz as a collection of combinatorical rectangles. That is,

there exists subsets X1, . . . ,X` ⊆ X and Y1, . . . ,Y` ⊆ Y such that

Sz =
⋃̀
i=1
Xi × Yi,

and

∀1 6 i < j 6 ` Xi ∩ Xj = ∅ and Yi ∩ Yj = ∅.

Now define randomized functionality f ′ : X × Y → Z ′ as follows. Given input x and y with

randomness s, let z = f(x, y; s). Let i be the index such that (x, y) ∈ Xi × Yi. Define

f ′(x, y; s) := z(i).

Here, z(i) is an (arbitrarily picked) distinct output.

It is trivial to verify that, given f ′(x, y), Alice and Bob can recover the same sample,

which is identically distributed as f(x, y). On the other hand, given private input x (resp.,

y) and a sample of f(x, y), Alice (resp., Bob) can recover a sample of f ′(x, y). Additionally,
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they shall always recover the same sample, which is identically distributed as f ′(x, y). This

proves that f and f ′ are isomorphic.

Next, we verify that f ′ satisfies the strict cross product rule. Given any x0, x1 ∈ X ,

y0, y1 ∈ Y , and z(i) ∈ Z ′, if either x0 /∈ Xi or x1 /∈ Xi, it is trivially true. Similarly, if either

y0 /∈ Yi or y1 /∈ Yi, it is also trivial. Otherwise, when both x0, x1 ∈ Xi and y0, y1 ∈ Yi, strict

cross product rule follows from cross product rule.

This completes the proof.

By  Lemma 5.5.1 , the insecurity of a fair coin-tossing protocol in the f -hybrid model is

identical to a fair coin-tossing protocol in the f ′-hybrid model when f ' f ′. Therefore, in

the rest of this section, without loss of generality, we shall always assume f is maximally

renamed according to  Lemma 5.5.2  such that it satisfies the strict cross product rule.

5.5.2 Notations and the Technical Theorem

Let π be an (X0, r)-fair coin-tossing protocol in the f -hybrid model. We shall use RA

and RB to denote the private randomness of Alice and Bob. We use random variable Mi

to denote the ith message of the protocol, which could be either an Alice/Bob message or a

trusted party message. Let Xi be the expected output of the protocol conditioned on the

first i messages of the protocol. In particular, this definition is consistent with the definition

of X0.

For an arbitrary i, we consider both Alice aborts and Bob aborts the ith message. Suppose

the ith message is Alice’s message. Alice abort means that she aborts without sending this

message to Bob. Conversely, Bob abort means he aborts in his next message immediately

after receiving this message. On the other hand, if this is a trusted party message, then

both a fail-stop Alice and a fail-stop Bob can abort this message. This prevents the other

party from receiving the message. We refer to the defense output of Alice when Bob aborts

the ith message as Alice’s ith defense. Similarly, we define the ith defense of Bob. Let DA
i

(resp., DB
i ) be the expectation of Alice’s (resp., Bob’s) ith defense conditioned on the first i

messages.
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Now, we are ready to state our main theorem, which shows that the most devastating fail-

stop attack is guaranteed to achieve a high score. In light of the remarks above,  Theorem 5.5.3 

directly implies  Theorem 5.5.2 .

Theorem 5.5.3. For any (X0, r)-fair coin-tossing protocol π in the f -hybrid model, we have

Opt(π) > Γr ·X0 (1−X0) .

5.5.3 The Proof

In this section, we shall prove  Theorem 5.5.3 by using mathematical induction on the

message complexity r. Let us first state some useful lemmas.

Firstly, we note that in the f -hybrid model, where f is a (randomized) functionality

that satisfies the strict cross product rule, Alice view and Bob view are always independent

conditioned on the partial transcript.

Lemma 5.5.3 (Independence of Alice and Bob view). For any i and partial transcript

m6i, conditioned on this partial transcript, the joint distribution of Alice and Bob private

randomness is identical to the product of the marginal distribution. That is,

SD
( (

RA, RB
)∣∣∣M6i = m6i ,

(
RA
∣∣∣M6i = m6i

)
×
(
RB
∣∣∣M6i = m6i

))
= 0.

In particular, this lemma implies the following claim.

Claim 5.5.1 (Global Invariant). Let π be an arbitrary fair coin-tossing protocol in the f -

hybrid model. Suppose there are ` possible first messages, namely, m(1)
1 ,m

(2)
1 , . . . ,m

(`)
1 , each

happens with probability p(1), p(2), . . . , p(`). Suppose conditioned on the first message being

M1 = m
(i)
1 , the expected defense of Alice and Bob are dA,(i)

1 and d
B,(i)
1 respectively. Then we

have ∑̀
i=1

p(i) · dA,(i)
1 d

B,(i)
1 = DA

0 ·DB
0 .

Proof. Consider the probability that both Alice’s first defense and Bob’s first defense are 1.

On the one hand, since Alice view and Bob view are independent, this equals to the product

of the probability that Alice’s first defense is 1 and the probability that Bob’s first defense is
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1, i.e., DA
0 ·DB

0 . On the other hand, conditioned on the first message being M1 = m
(i)
1 , Alice

view and Bob view are still independent. Hence, by the same reasoning, the probability that

both Alice’s first defense and Bob’s first defense are 1 is dA,(i)
1 d

B,(i)
1 . Therefore,

∑̀
i=1

p(i) · dA,(i)
1 d

B,(i)
1 = DA

0 ·DB
0 .

Base case: r = 1.

We are now ready to prove  Theorem 5.5.3 . Let us start with the base case. In the base

case, the protocol consists of only one message. Recall that the last message of the protocol

is a boundary case of our score function. It might not be the case that both parties can

attack this message. Hence, we prove it in different cases.

Case 1: Alice message. Suppose this message is an Alice message. In this case, we shall only

consider the attack by Alice. By definition, with probability X0, Alice will send a message,

conditioned on which the output shall be 1. And with probability 1−X0, Alice will send a

message, conditioned on which the output shall be 0. On the other hand, the expectation of

Bob’s defense will remain the same as DB
0 . Therefore, the maximum of the score shall be

X0 ·
∣∣∣1−DB

0

∣∣∣+ (1−X0) ·
∣∣∣0−DB

0

∣∣∣ ,
which is

> X0 (1−X0) .

In particular, this is

> Γ1 ·X0 (1−X0) .

Case 2: Bob message. This case is entirely analogous to case 1.

Case 3: Trusted party message. In this case, we shall consider the effectiveness of the attacks

by both parties. Suppose there are ` possible first message by the trusted party, namely,

m
(1)
1 ,m

(2)
1 , . . . ,m

(`)
1 , each happens with probability p(1), p(2), . . . , p(`). Conditioned on first

message being M1 = m
(i)
1 , the output of the protocol is x(i)

1 . We must have x(i)
1 ∈ {0, 1} since
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the protocol has ended and parties shall agree on the output. Furthermore, let the expected

defense of Alice and Bob be dA,(i)
1 and d

B,(i)
1 . Therefore, the maximum of the score will be

∑̀
i=1

p(i) ·
(∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+ ∣∣∣x(i)
1 − d

B,(i)
1

∣∣∣) .
We have

∑̀
i=1

p(i) ·
(∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+ ∣∣∣x(i)
1 − d

B,(i)
1

∣∣∣)

>
∑̀
i=1

p(i) ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 − d

B,(i)
1

)2
)

(Since x(i)
1 ∈ {0, 1})

=
∑̀
i=1

p(i) ·
(
x

(i)
1 +

(
x

(i)
1 − d

A,(i)
1 − dB,(i)

1

)2
− 2dA,(i)

1 d
B,(i)
1

)
(Identity Transformation)

>X0 +
(
X0 −DA −DB

)2
−
∑̀
i=1

p(i) · 2dA,(i)
1 d

B,(i)
1

(Jensen’s inequality on convex function F (x, y, z) := (x− y − z)2)

=X0 +
(
X0 −DA −DB

)2
− 2DA

0 ·DB
0 ( Claim 5.5.1 )

=X0 (1−X0) +
(
X0 −DA

0

)2
+
(
X0 −DB

0

)2
(Identity Transformation)

>X0 (1−X0)

>Γ1 ·X0 (1−X0)

This completes the proof of the base case.

Inductive Step. Suppose the statement is true for message complexity r. Let π be an

arbitrary protocol with message complexity r+1. Suppose there are ` possible first messages,

namely, m(1)
1 ,m

(2)
1 , . . . ,m

(`)
1 , each happens with probability p(1), p(2), . . . , p(`). Conditioned on

first message being M1 = m
(i)
1 , the output of the protocol is x(i)

1 and the expected defense of

Alice and Bob are dA,(i)
1 and d

B,(i)
1 respectively. Note that conditioned on the first message

being M1 = m
(i)
1 , the remaining protocol π(i) becomes a protocol with expected output x(i)

1

and message complexity r. By our inductive hypothesis, we have

Opt
(
π(i)

)
> Γr · x(i)

1

(
1− x(i)

1

)
.
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On the other hand, we could also pick the first message m(i)
1 as our stopping time, which

yields a score of ∣∣∣x(i)
1 − d

A,(i)
1

∣∣∣+ ∣∣∣x(i)
1 − d

B,(i)
1

∣∣∣ .
Therefore, the stopping time that witnesses the largest score yields (at least) a score of

max
(
Γr · x(i)

1

(
1− x(i)

1

)
,
∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+ ∣∣∣x(i)
1 − d

B,(i)
1

∣∣∣)
>Γr+1 ·

(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 − d

B,(i)
1

)2
)

( Lemma 5.2.1 )

Therefore, Opt(π) is lower bounded by

∑̀
i=1

p(i) · Γr+1 ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 − d

B,(i)
1

)2
)

=Γr+1 ·
∑̀
i=1

p(i) ·
(
x

(i)
1 +

(
x

(i)
1 − d

A,(i)
1 − dB,(i)

1

)2
− 2dA,(i)

1 d
B,(i)
1

)
(Identity Transformation)

>Γr+1 ·
(
X0 +

(
X0 −DA −DB

)2
−
∑̀
i=1

p(i) · 2dA,(i)
1 d

B,(i)
1

)

(Jensen’s inequality on convex function F (x, y, z) := (x− y − z)2)

=Γr+1 ·
(
X0 +

(
X0 −DA −DB

)2
− 2DA

0 ·DB
0

)
( Claim 5.5.1 )

=Γr+1 ·
(
X0 (1−X0) +

(
X0 −DA

0

)2
+
(
X0 −DB

0

)2
)

(Identity Transformation)

>Γr+1 ·X0 (1−X0)

This completes the proof of the inductive step.

5.6 Separation from Public-key encryption

In this section, we prove that public-key encryption used in a black-boxed manner shall

not enable optimal fair coin-tossing. Our objective is to prove the existence of an oracle,

with respect to which public-key encryption exists, but optimal fair coin-tossing does not.
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5.6.1 Public-key Encrytion Oracles

Let n be the security parameter. We follow the work of [ MMP14 ] and define the following

set of functions.

• Gen : {0, 1}n → {0, 1}3n. This function is a random injective function.

• Enc : {0, 1}3n× {0, 1}n → {0, 1}3n. This function is uniformly randomly sampled among

all functions that are injective with respect to the second input. That is, when the first

input is fixed, this function is injective.

• Dec : {0, 1}n × {0, 1}3n → {0, 1}n ∪ {⊥}. This function is the uniquely determined by

functions Gen and Enc as follows. Dec takes as inputs a sksk ∈ {0, 1}n and a ciphertext

c ∈ {0, 1}3n. If there exists a message m ∈ {0, 1}n such that Enc(Gen(sk),m) = c, define

Dec(sk, c) := m. Otherwise, define Dec(sk, c) := ⊥. Note that such message m, if exists,

must be unique, because Enc is injective with respect to the second input.

• Test1 : {0, 1}3n → {0, 1}. This function is uniquely determined by function Gen. It takes

as an input a pkpk ∈ {0, 1}3n. If there exists a sksk ∈ {0, 1}n such that Gen(sk) = pk,

define Test1(pk) := 1. Otherwise, define Test1(pk) := 0.

• Test2 : {0, 1}3n×{0, 1}3n → {0, 1}. This function is uniquely determined by function Enc.

It takes as inputs a pkpk ∈ {0, 1}3n and a ciphertext c ∈ {0, 1}3n. If there exists a message

m such that Enc(pk,m) = c, define Test2(pk, c) := 1. Otherwise, define Test2(pk, c) := 0.

We shall refer to this collection of oracles the PKE oracle. Trivially, the PKE ora-

cle enables public-key encryption. We shall prove that it does not enable optimally-fair

coin-tossing. We remark that it is necessary to include the test functions Test1 and Test2.

Otherwise, it can be used to construct oblivious transfer protocols against semi-honest adver-

saries [ GKM+00 ,  LOZ12 ], which can be further used to construct optimally-fair coin-tossing

protocols [  MNS09 ].

5.6.2 Our Results

We shall prove the following theorem.
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Theorem 5.6.1 (Main theorem for PKE Oracle). There exists a universal polynomial

p(·, ·, ·, ·) such that the following holds. Let π be any fair coin-tossing protocol in the PKE

oracle model, where Alice and Bob make at most m queries. Let X0 be the expected out-

put, and r be the message complexity of π. There exists an (information-theoretic) fail-stop

attacker that deviates the expected output of the other party by (at least)

Ω
(
X0 (1−X0)√

r

)
.

This attacker shall ask at most p
(
n,m, r, 1

X0(1−X0)

)
additional queries.

It is instructive to understand why  Theorem 5.5.2 does not imply  Theorem 5.6.1 . One

may be tempted to model the public-key encryption primitive as an idealized secure function

evaluation functionality to prove this implication. The idealized functionality for public-key

encryption delivers sender’s message to the receiver, while hiding it from the eavesdropper.

So, the “idealized public-key encryption” functionality is a three-party functionality where

the sender’s input is delivered to the receiver; the eavesdropper has no input or output. This

idealized effect is easily achieved given secure point-to-point communication channels, which

we assume in our work. The non-triviality here is that our result is with respect to an oracle

that implements the public-key encryption functionality. An oracle for public-key encryption

is not necessarily used just for secure message passing.

Remark 5.6.1. As usual in the literature [ DLMM11 ,  DMM14 ,  MW20 ], we shall only con-

sider instant protocols. That is, once a party aborts, the other party shall not make any

additional queries to defend, but directly output her current defense coin. We refer the

reader to [ DLMM11 ] for justification and more details on this assumption.

In fact, our proof technique is sufficient to prove the following stronger theorem.

Theorem 5.6.2. There exists a universal polynomial p(·, ·, ·, ·) such that the following holds.

Let f be any (randomized) functionality that is not complete. Let π be any fair coin-tossing

protocol in the f -hybrid model where parties have access to the PKE oracle model. Assume

Alice and Bob make at most m queries. Let X0 be the expected output, and r be the message
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complexity of π. There exists an (information-theoretic) fail-stop attacker that deviates the

expected output of the other party by (at least)

Ω
(
X0 (1−X0)√

r

)
.

This attacker shall ask at most p
(
n,m, r, 1

X0(1−X0)

)
additional queries.

Our proof strategy is similar to that of [ MMP14 ]. It consists of the following two steps.

1. Given a protocol in the PKE oracle model, we shall first convert it into a protocol where

parties do not invoke the decryption queries. By  Imported Theorem 5.6.1 proven in

[ MMP14 ], we can convert it in a way such that the insecurity of these two protocols in

the presence of a semi-honest adversary is (almost) identical. In particular, this ensures

that the insecurity of fair coin-tossing protocol in the presence of a fail-stop adversary is

(almost) identical.

2. Next, we shall extend the results of [ MW20 ], where they proved a fair coin-tossing

protocol in the random oracle model is highly insecure, to the setting of PKE oracles

without decryption oracle. Intuitively, The proof of [ MW20 ] only relied on the fact that in

the random oracle model, there exists a public algorithm [  BM09 ] that asks polynomially

many queries and decorrelate the private view of Alice and Bob. Mahmoody, Maji, and

Prabhakaran [ MMP14 ] proved that (summarized as  Imported Theorem 5.6.2 ) the PKE

oracles without the decryption oracle satisfies the similar property. Hence, the proof of

[ MW20 ] extends naturally to this setting.

Together, these two steps prove  Theorem 5.6.1  . The first step is summarized in  Section 5.6.3  .

The second step is summarized in  Section 5.6.4 .

5.6.3 Reduction from PKE Oracle to Image Testable Random Oracle

A (keyed version of) image-testable random oracles is a collection of pairs of oracles

(Rkey, T key) parameterized by a key, such that for every key, the following holds.

• Rkey : {0, 1}n → {0, 1}3n is a randomly sampled injective function.
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• T key : {0, 1}3n → {0, 1} is uniquely determined by function Rkey as follows. Define

T key(β) := 1 if there exists an α ∈ {0, 1}n such that Rkey(α) = β. Otherwise, define

T key(β) = 0.

Observe that the PKE oracle without the decryption oracle Dec is exactly a (keyed version

of) image-testable random oracles with the keys drawn from {⊥} ∪ {0, 1}3n. If the key is

⊥, it refers to the pair of oracles (Gen,Test1). If the key ∈ {0, 1}3n, it refers to the pair of

oracles (Enc(key, ·),Test2(key, ·)). We shall refer to the PKE oracle without the decryption

oracle Dec as ITRO.

We shall use the following imported theorem, which is implicitly proven in [ MMP14 ].

Imported Theorem 5.6.1 ([ MMP14 ]). There exists a universal polynomial p(·, ·) such that

the following holds. Let π be a fair coin-tossing protocol in the PKE oracle model. Let X0

and r be the expected output and message complexity. Suppose Alice and Bob ask (at most)

m queries. For any ε > 0, there exists a fair coin-tossing protocol π′ in the ITRO model

such that the following holds.

• Let X ′0 and r′ be the expected output and message complexity of π′. Then, r′ = r and

|X ′0 −X0| < ε.

• Parties asks at most p(m, 1/ε) queries in protocol π′.

• For any semi-honest adversary A′ for protocol π′, there exists a semi-honest adversary

A for protocol π, such that the view of A is ε-close to the view of A′. And vice versa.

In particular, this implies that if π′ is α-insecure. π is (at least) (α− ε)-insecure.

The intuition behind this theorem is the following. To avoid the uses of decryption

oracle, parties are going to help each other decrypt. In more detail, suppose Alice generates a

ciphertext using Bob’s public key. Whenever the probability that Bob invokes the decryption

oracle on this ciphertext is non-negligibly high, Alice will directly reveal the message to Bob.

Hence, Bob does not need to use the decryption oracle. This shall not harm the security as

a semi-honest Bob can recover the message by asking polynomially many additional queries.

We refer the readers to [ MMP14 ] for more details.
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Looking forward, we shall prove that any fair coin-tossing protocol in the ITRO model is

Ω
(
X′0(1−X′0)√

r

)
-insecure. By setting ε to be 1/poly for some sufficiently large polynomial, we

shall guarantee that

ε = o
(
X0 (1−X0)√

r

)
.

This guarantees that the insecurity of the protocol in the PKE oracle model is (qualitatively)

identical to the insecure of the protocol in the ITRO model.

5.6.4 Extending the proof of [  MW20 ] to Image Testable Random Oracle

We first recall the following theorem from [  MMP14 ].

Imported Theorem 5.6.2 (Common Information Learner [ MMP14 ]). There exists a uni-

versal polynomial p(·, ·) such that the following holds. Let π be any two-party protocol in the

ITRO model, in which both parties make at most m queries. For all threshold ε ∈ (0, 1),

there exists a public algorithm, called the common information learner, who has access to

the transcript between Alice and Bob. After receiving each message, the common informa-

tion learner performs a sequence of queries and obtain its corresponding answers from the

ITRO. Let Mi denote the ith message of the protocol. Let Hi denote the sequence of query-

answer pairs asked by the common information learner after receiving the message Mi. Let

Ti be the union of the ith message Mi and the ith common information learner message Hi.

Let V A
i (resp., V B

i ) denote Alice’s (resp., Bob’s) private view immediately after message Ti,

which includes her private randomness, private queries, and the public partial transcript. ,

The common information learner guarantees that the following conditions are simultaneously

satisfied.

• Cross-product Property. Fix any round i,

E
t6i←T6i

[
SD

((
V A
i , V

B
i

∣∣∣T6i = t6i
)
,
(
V A
i

∣∣∣T6i = t6i
)
×
(
V B
i

∣∣∣T6i = t6i
))]

6 ε.

Intuitively, it states that on average, the statistical distance between (1) the joint distri-

bution of Alice’s and Bob’s private view, and (2) the product of the marginal distributions

of Alice’s private views and Bob’s private views is small.
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• Efficient Property. The expected number of queries asked by the common information

learner is bounded by p(m, 1/ε).

This theorem, combined with proof of [ MW20 ] gives the following theorem.

Theorem 5.6.3. There exists a universal polynomial p(·, ·, ·, ·) such that the following holds.

Let π be a protocol in the ITRO model, where Alice and Bob make at most m queries. Let X0

and r be the expected output and message complexity. Then, there exists an (information-

theoretic) fail-stop adversary that deviates the expected output of the other party by

Ω
(
X0 (1−X0)√

r

)
.

This attacker asks at most p
(
n,m, r, 1

X0(1−X0)

)
additional queries.

Below, we briefly discuss why  Imported Theorem 5.6.2 is sufficient to prove this theorem.

The full proof is analogous to [ MW20 ] and the proof of the results in the f -hybrid model.

Hence we omit it here.

On a high level, the proof goes as follows. We prove  Theorem 5.6.3 by induction. Con-

ditioned on the first message, the remaining protocol becomes an (r − 1)-message protocol,

and one can apply the inductive hypothesis. For every possible first message i, we consider

whether to abort immediately or defer the attack to the remaining sub-protocol. By invok-

ing  Lemma 5.2.1  , we obtain a potential function, which characterizes the insecurity of the

protocol with first message being i. This potential function will be of the form

Φ(xi, ai, bi) = xi(1− xi) + (xi − ai)2 + (xi − bi)2,

where xi, ai, and bi stands for the expected output, expected Alice defense, and expected

Bob defense, respectively. To complete the proof, [ MW20 ] showed that it suffices to prove

the following Jensen’s inequality.

E
i

[Φ(xi, ai, bi)] > Φ
(

E
i

[xi] ,E
i

[ai] ,E
i

[bi]
)
.

134



To prove this, one can rewrite Φ(x, a, b) as

Φ(x, a, b) = x+ (x− a− b)2 − 2ab.

We note that x and (x− a− b)2 are convex functions, and hence Jensen’s inequality holds.

As for the term ab, we shall have

E
i

[aibi] ≈ E
i

[ai] · E
i

[bi]

as long as, conditioned on every possible first message i, Alice’s private view is (almost)

independent to Bob’s private view. This is exactly what  Imported Theorem 5.6.2 guarantees

except for a small error depending on ε, which we shall set to be sufficiently small. Therefore,

the proof shall follow.
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6. OPTIMALLY-SECURE COIN-TOSSING AGAINST A

BYZANTINE ADVERSARY

In a seminal work, Ben-Or and Linial [  BL85 ,  BL89 ] introduced the full information model

to study collective coin-tossing protocols. One relies on collective coin-tossing protocols

to upgrade local private randomness of each of the n processors into shared randomness

that all processors agree. In this model, all the processors have unbounded computa-

tional power and communicate with each other over one broadcast channel. This model

for the design and analysis of coin-tossing protocols turns out to be highly influential

with close connections with diverse topics in mathematics and computer science, for ex-

ample, extremal graph theory [ Kru63 ,  Kat68 ,  Har66 ], extracting randomness from imperfect

sources [ SV84 ,  CGH+85 ,  Vaz85 ,  Fri92  ], cryptography [ CI93 ,  DLMM11 ,  DMM14 ,  HOZ16 ,

 KMM19 ,  KMW20 ,  MW20 ], game theory [ BI64 ,  Col71 ], circuit representation [ Win71 ,  OS08 ,

 OS11 ], distributed protocols [ Asp97 ,  Asp98 ,  BJB98 ], and poisoning and evasion attacks on

learning algorithms [ DMM18 ,  MDM19 ,  MM19 ,  EMM20 ].

A bias-X n-processor coin-tossing protocol is an interactive protocol where every complete

transcript is publicly associated with output 0 or 1, and the expected output for an honest

execution of the protocol is X ∈ [0, 1]. Given a bias-X n-processor coin-tossing protocol π

and model for adversarial corruption and attack, let ε+(π) ∈ [0, 1] represent the maximum

increase in the expected output that an adversarial strategy can cause. Similarly, let ε−(π) ∈

[0, 1] represent the maximum decrease in the expected output caused by an adversarial

strategy. One defines the insecurity of a protocol π as ε(π) := max{ε+(π), ε−(π)}. For a

fixed X ∈ [0, 1], the optimal bias-X n-processor protocol minimizes ε(π) among all bias-X

n-processor coin-tossing protocols.

For practical applications, given the tolerance for insecurity, one needs precise guarantees

on the insecurity of coin-tossing protocols to estimate the necessary number of processors to

keep the insecurity acceptably low. If the insecurity estimates for the potential coin-tossing

protocols involve large latent constants or poly-logarithmic factors, then such a decision needs

to be overly pessimistic in calculating the necessary number of processors. Consequently, it

is essential to characterize coin-tossing protocols that are optimal or within a small constant
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factor of the optimal protocol for every pair (n,X). We emphasize that this outrightly rules

out asymptotic bounds involving n. This work contributes to this endeavor.

We study n-processor coin-tossing protocols where every processor broadcasts a message

exactly once (i.e., single-turn), and there are n rounds, i.e., every round a unique processor

broadcasts her message. The distribution of the messages sent by processors prescribed to

speak in one round may depend on the messages sent in the previous rounds. For example,

in one-round protocols, the distribution over the message space of the coin-tossing protocol

is a product space. On the other hand, in single-turn n-round protocols, only one processor

speaks in a round, and her message distribution possibly depends on all previously broadcast

messages. Furthermore, which processor speaks in which round may depend on the messages

sent in the previous rounds. We consider adaptive Byzantine adversaries who can corrupt

k = 1 processor, i.e., based on the evolution of the protocol, our adversary can corrupt one

processor and fix her message arbitrarily. As is standard in cryptography, our adversary

is always rushing, i.e., it can arbitrarily schedule all those processors who are supposed to

speak in a round.

Variants this model have been studied, and we highlight, in the sequel, some of the most

prominent works and their technical highlights.

Lichtenstein, Linial, and Saks [ LLS89 ]. Lichtenstein et al. [ LLS89 ] consider the

restriction where the i-th processor broadcasts an independent and uniformly random bit xi,

where 1 6 i 6 n, and the adversary can corrupt up to k processors, where 1 6 k 6 n. The

coin-tossing protocol is a function f : {0, 1}n → {0, 1}. In this case, the underlying message

space is {0, 1}n, which is a product space involving a small-size alphabet, and the probability

distribution induced by the transcript is the uniform distribution over the message space.

Note that, for n-processor coin-tossing protocols, the bias of such a protocol can only be an

integral multiple of 2−n. Therefore, this is a discrete optimization problem.

Given n, k, and X, they begin with the objective of minimizing only the quantity ε+(π)

over bias-X n-processor coin-tossing protocols π. Their recursive characterization of the

protocol that minimizes ε+, incidentally, turns out to be identical to the optimal solution

for the vertex isoperimetric inequality over the Boolean hypercube [ Kru63 ,  Kat68 ,  Har66 ].

137



Therefore, a threshold protocol  

1
 π is the optimal protocol and minimizes ε+. The comple-

mentary protocol, which swaps the outputs 0 and 1 of π, is also a threshold protocol and,

consequently, minimizes ε−. So, threshold protocols simultaneously minimize ε+ and ε− and

achieve optimal security.

Significantly altering the output distribution. For symmetric functions (i.e., per-

muting the inputs of the function f does not change its output), Goldwasser, Kalai, and

Park [ GKP15 ] prove that k = O (
√
n · polylog (n)) corruptions suffice to completely fix the

output of any coin-tossing protocol even if the protocol relies on arbitrary-length messages.

After that, Kalai, Komargodski, and Raz [ KKR18 ] remove the restriction of symmetric

functions. Recently, in independent work, Haitner and Karidi-Heller [  HK20 ] extend this

result to multi-turn coin-tossing protocols. These papers use global analysis techniques for

martingales that are inherently non-constructive; consequently, they prove the optimality

of threshold protocols up to O (polylog (n)) factors when the adversary corrupts at most

k = O (
√
n · polylog (n)) processors.

Challenge for arbitrary-length messages. Our objective is to provide tight insecu-

rity estimates for the optimal coin-tossing protocols that use arbitrary-length messages. Let

us understand why the technical approach of [ LLS89 ] fails; and an entirely new approach is

needed. In the full information model, without the loss of generality, one can assume that

all interactive protocols are stateless, and processors use a fresh block of private randomness

to generate the next message at any point during the evolution of the coin-tossing proto-

col [ Jer85 ,  JVV86 ,  BGP00 ]. Furthermore, the security of the internal state of processors

is not a concern, so, without loss of generality, every processor broadcasts its appropriate

block of randomness whenever it speaks. 

2
 A Byzantine adversary can corrupt a processor

and arbitrarily set its randomness. So, for an appropriately large alphabet Σ, which depends

on the randomness complexity of generating each message, our message space is Σn, a prod-

uct space involving a large alphabet set. Over such product spaces, the isolated objective
1

 ↑ More generally, protocols that output 1 for all strings smaller in the simplicial order than a threshold
string are the optimal protocols.
2

 ↑ Let π be the original coin-tossing protocol. In the compiled π′, suppose parties reveal the block of
randomness that they use to prepare their next-message in the protocol π′. The new protocol π′, first,
emulates the next-message function of π to generate the entire transcript, and, then, uses π to determine
the output.
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of minimizing ε+ does not entail the simultaneous minimization ε−. Given any n ∈ N and

X ∈ [0, 1], there exist protocols with (ε+, ε−) = (1−X
n
, X) and (ε+, ε−) = (1−X, X

n
), when

the adversary can corrupt k = 1 processor (refer to  Figure 6.1  and  Figure 6.2  for the proto-

cols). More generally, for product spaces over large alphabets, one does not expect such a

vertex isoperimetric inequality [ FHH+19 ,  Har99 ].

X0

0 X1

0 X2

0 . . .

Xn−1

0 Xn

Figure 6.1. An example n-processor coin-tossing protocol that is easy to
deviate toward 0, but hard to deviate toward 1. In this protocol, Xk = X0 +k ·
1−X0
n

. Adversary can corrupt the first processor and achieve ε+ = X1 −X0 =
1−X0
n

by setting its message to be 1 or achieve ε− = X0 − 0 = X0 by setting
the its message to be 0.

Finally, global analysis techniques of [ GKP15 ,  KKR18 ,  HK20 ] analyze the case of a large

number of corruptions k. The optimally secure protocol for k = 1 is not apriori related to

the optimal protocols robust to a large number of corruptions. Furthermore, the inductive

proof technique of Aspnes [ Asp97 ,  Asp98 ] is agnostic of the expected output of the coin-

tossing protocol. Consequently, reconstructing the optimal protocol from the lower-bound

on insecurity is not apparent.

We follow the geometric technique of Khorasgani, Maji, and Mukherjee [ KMM19 ], which

is inherently constructive, to obtain tight estimates of the optimally secure protocols.

Connection to Isoperimetric Inequalities

The connection to isoperimetric inequalities [ Kru63 ,  Kat68 ,  Har66 ,  Har99 ] (via the ex-

pansion of fixed density subset of product spaces) establishes the relevance to topics in
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X0

1X1

1X2

1...

Xn−1

1Xn

Figure 6.2. An example n-processor coin-tossing protocol that is easy to
deviate toward 1, but hard to deviate toward 0. In this protocol, Xk = k · X0

n
.

Adversary can corrupt the first processor and achieve ε+ = 1−X0 by setting
the its message to be 1 or achieve ε− = X1 −X0 = X0

n
by setting its message

to be 0.

theoretical computer science like expander graphs, complexity theory, and error-correcting

codes.

Encoding Security of Coin-tossing Protocols. Every coin-tossing protocol is equiv-

alent to a unique subset S of an n-dimension product space Σn, where the size of the alphabet

set σ := |Σ| depends on the randomness complexity of the coin-tossing protocol. The ele-

ments of this product space represent the complete transcript of the coin-tossing protocol.

The i-th coordinate of an element corresponds to the message sent by processor i, and

the subset S contains all elements of the product space on which the coin-tossing protocol

outputs 1. One considers the uniform distribution over Σn to sample the elements. This

subsection considers a stronger Byzantine adversary who can edit one processor’s message

after seeing the message of all processors.

The discussion in this subsection extends to arbitrary corruption threshold k. However,

for the simplicity of the presentation, we consider the specific case of k = 1. Let ∂S+
k be

the set of elements in S (the complement of S) that are at a Hamming distance k = 1 from

the set S. Consequently, the strong Byzantine adversary can change an element from the

set ∂S+
k ⊆ S into some element of S by editing (at most) k coordinates. Note that if the
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stronger Byzantine adversary can see all the messages and then performs the edits, then it

can increase the expected output by exactly ε+ =
∣∣∣∂S+

k

∣∣∣ /σn.

Analogously, one defines the set ∂S−k ⊆ S that contains all elements at a Hamming

distance k = 1 from the set S. So, a stronger Byzantine adversary can reduce the expected

output by ε− =
∣∣∣∂S−k ∣∣∣ /σn.

Extremal Graph Theory Perspective. The (width-k) vertex perimeter of the set S,

represented by ∂N,kS, is the set of all elements in S that are at a Hamming distance of at

most k from some element in S. Observe that the perimeter ∂V,kS is identical to the set

∂S+
k . Similarly, the vertex perimeter of the set S (which is ∂V,kS) is identical to the set ∂S−k .

The objective of extremal graph theory is to characterize the optimal set S of a density-X

that minimizes its vertex perimeter. This optimal set S, in turn, characterizes the bias-X

coin-tossing protocol with the minimum ε+. In  Figure 6.1 and  Figure 6.2 , we saw that

minimizing ε+ does not automatically entail the simultaneous minimization of ε− for general

Σ. 

3
 In fact, that example highlighted that the protocol minimizing ε+ resulted in a protocol

where the stronger Byzantine adversary can force the outcome 0 with certainty. Therefore,

there is a disconnect between the cryptographic objective of simultaneously minimizing ε =

max{ε+, ε−} with the standard objective in extremal graph theory for large alphabet set Σ.

Cryptography-inspired Extremal Graph Theory. Instead of minimizing the vertex

perimeter of a density-S set S, one should consider the alternative objective of minimizing

the symmetric perimeter of S defined under various norms.

∂sym
V,k,`(S) :=

(
|∂V,kS|` +

∣∣∣∂V,kS∣∣∣`)1/`
.

The ` = ∞ case corresponds to our cryptographic objective; however, this norm is difficult

to analyze. Consequently, we study the norm ` = 1 as a proxy, which is a 2-approximation

of the norm ` = ∞. Our results provide evidence that such symmetric perimeters may be

more well-behaved in general.

Recall that, in our setting, the element in Σn is exposed one coordinate at a time and

our Byzantine adversaries cannot go back to edit previously exposed coordinates. So, our
3

 ↑ For Σ = {0, 1}, this entailment holds; otherwise, it is not known to hold in general.
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Byzantine adversaries have lesser power than the stronger Byzantine adversaries considered

in this section. Consequently, the minimum achievable insecurity for bias-X n-processor

coin-tossing protocols in our setting lower-bounds the proxy norm above. For instance, when

` = 1, our results imply that the density of the symmetric perimeter is 1/
√
n for any dense

set S, irrespective of the size of the alphabet set.

Remark. We identify a density-X set with its corresponding bias-X coin-tossing protocol.

Using the independent bounded differences inequality for the Hamming distance function

(using Azuma’s inequality [ Azu67 ]) on a constant-density subset S implies that k = O (
√
n)

edits suffice to achieve any constant ε+ and ε−, for any σ. 

4
 However, for small k (for example,

k = 1), obtaining meaningful guarantees on both ε+ and ε− is not possible for large σ. On

the other hand, interestingly, we shall show that max{ε+, ε−} > 1/
√
n for any σ. This result

lends support to the hypothesis that the symmetric perimeter is more well-behaved.

6.1 Our Contributions

Any n-processor coin-tossing protocol π is equivalent to a depth-n tree, where each node

v corresponds to a partial transcript. For every leaf of this tree, one associates the output

of the coin-tossing protocol ∈ {0, 1}. For a partial transcript v, the color of v, represented

by xv, represents the expected output of the coin-tossing protocol conditioned on the partial

transcript being v. For example, the leaves have color ∈ {0, 1}, and the color of the root of

a bias-X coin-tossing protocol is X. The probability pv represents the probability that the

partial transcript v is generated during the protocol evolution of π.

A Byzantine adversary, in this interpretation of a coin-tossing protocol, that corrupts at

most k = 1 processor is equivalent to a prefix-free set of edges. That is, for any two edges

(u, v) and (u′, v′) such that u is the parent of v and u′ is the parent of v′, the root to leaf path

through u does not pass through u′. Any such collection of edges corresponds to a unique

Byzantine adversarial strategy. For example, if an edge (u, v) lies in this set and u is the

parent of v, then this edges indicates that the Byzantine adversary decides to interfere when

the protocol generates the partial transcript u, and this adversary sends the next message
4

 ↑ Even computationally efficient attacks are known to achieve this bound [ MM19 ,  EMM20 ].
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that generates the partial transcript v. Note that the partial transcript u uniquely identifies

the processor that the adversary needs to corrupt.

Let τ be one such attack strategy. Suppose τ is a collection of ` edges, namely, {(ui, vi)}`i=1.

Assume ui is the parent of vi, for i = 1, . . . , `. Then, we define the score of the attack strategy

τ on protocol π as

Score (π, τ) :=
∑̀
i=1

pui · |xui − xvi | .

The term Score (π, τ) represents the vulnerability of protocol π under attack strategy τ .

Furthermore, we define

Score (π) := sup
τ

Score (π, τ) .

Intuitively, Score (π) represents the insecurity of the protocol under the most devastating

attack, a.k.a., our potential function.

We emphasize that our score is not identical to the deviation in output distribution that

a Byzantine adversary causes. It is a 2-approximation of that quantity. Define the insecurity

as the maximum change that a Byzantine adversary can cause to the output distribution.

Then, it is evident that the insecurity of π is at least Score(π)/2.

For an arbitrary n ∈ N∗ and t ∈ {0, 1, . . . , n + 1}, let πn,t denote the n-processor t-

threshold threshold protocol. In this threshold protocol, every processor broadcasts an inde-

pendent and uniformly random bit. The output of this threshold protocol is 1 if and only

if the total number of ones in the complete transcript is > t. An n-processor t-threshold

protocol has color 2−n ·
(∑n

i=t

(
n
i

))
.

We prove the following theorem about the threshold protocol.

Theorem 6.1.1. For any bias X n-processor protocol π, where X = 2−n ·
(∑n

i=t

(
n
i

))
, where

0 6 t 6 n+ 1, then

Score(πn,t) 6 Score(π).

That is, the threshold protocol is the protocol that minimizes the score. Equivalently,

the insecurity of the threshold protocol is a 2-approximation of the optimal insecurity in our

corruption model (refer to  Corollary 6.5.2 ).
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Furthermore, we also prove the following result. Suppose X is not a root-color that

admits a threshold protocol, and X0 is inverse-polynomially far from both 0 and 1. Suppose

X is intermediate to the bias of the threshold protocols πn−1,t and πn−1,t−1. Let π be a

protocol where the first processor decides to run the threshold protocol πn−1,t or πn−1,t−1

with suitable probability so that the resulting protocol is a bias-X protocol. Then, the

insecurity of this protocol π is a 4-approximation of the protocols with minimum insecurity

against Byzantine adversaries (refer to  Corollary 6.5.3 ).

6.2 Technical Overview

The techniques closest to our approach are those introduced by Aspnes [ Asp97 ,  Asp98 ]

and Khorasgani et al. [  KMM19 ,  KMW20 ,  MW20 ].

Aspnes’ technique [ Asp97 ,  Asp98 ] tracks the locus of all possible (ε+, ε−) corresponding

to any n-processor k-corruption threshold protocol. However, the information regarding

the root-color is lost and, consequently, the technique does not yield the optimal protocol

construction. Next, one lower-bounds this space using easy-to-interpret (hyperbolic) curves

and obtains bounds on the insecurity of any n-processor protocol with k corruption threshold

(against adversaries who erase the messages of processors).

The technique of Khorsgani et al. [  KMM19 ,  KMW20 ,  MW20 ] use a potential function

as a proxy to study the actual problem at hand. They maintain the locus of all n-processor

bias-X protocols that minimize the potential function. Next, they inductively build the next

curve of (n + 1)-processors bias-X protocols that minimize the potential function. Their

approach outrightly yields optimal constructions that minimize the potential function, and

easily handle the case of processors sending arbitrary-length messages.

High-level summary of our approach. We use the potential function as introduced

in  Section 6.1 , which is a 2-approximation of the optimal insecurity against Byzantine ad-

versaries, for any n-processor bias-X protocol. Let Cn(X) represent the minimum realizable

potential for bias-X n-processor coin-tossing protocols.

Next, we prove that if an n-processor threshold protocol has potential δ and bias-X, then

the point (δ,X) lies on the optimal curve Cn(X). Therefore, the potential of these threshold

protocols are 2-approximation of the optimal bias-X protocol against Byzantine adversaries.
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After that, inductively, we prove that the linear interpolation of the set of points (δ,X)

realized by n-processor threshold protocols with potential δ and root-color X, where 0 6 t 6

n+1, is a lower-bound to the actual curve Cn(X). Finally, we argue that a linear interpolation

of appropriate threshold functions yields a protocol with potential that is 4-approximation

of the optimal protocol against Byzantine adversaries.

The curves and the inductive transformation. Consider the case of n = 1 and

arbitrary bias-X. If X = 0 or X = 1, then we have C1(X) = 0. If X ∈ (0, 1/2], then

we include that edge that sets the output to 1. This observation creates a potential of

C1(X) = 1 −X. Similarly, we have C1(X) = X, for all X ∈ [1/2, 1). Our characterization

of the curve C1(X) is complete (refer to  Figure 6.4 ).

Next, consider the case of n = 2 and bias-X. This case is sufficient to understand how

to inductively build the locus of the curve Cn+1(X) inductive from Cn(X). Consider any

arbitrary 2-processor bias-X coin-tossing protocol. Suppose the first processor sends message

1, 2, . . . , `. Let xi, for 1 6 i 6 `, be the expected output conditioned on the first message

being i. At the root of this protocol, we have two options. Corrupt processor one and send

the message that achieves the highest potential. Or, defer the intervention to a later point

in time.

Corrupting the root of this protocol causes the potential to become

`max
i=1
|X − xi| .

Deferring the intervention to a later point in time results in the potential becoming at least

∑̀
i=1

pi · C1(xi),

where pi is the probability that processor 1 outputs i. The actual potential of π is the

maximum of these two quantities. Our objective is to characterize the choice of x1, . . . , x`

such that the potential is minimized (refer to  Figure 6.3 ).
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6.3 Preliminaries

We use N∗ for the set of positive integers. For any two curves C1, C2 defined on [0, 1], we

write C1 � C2 (C1 is below C2) to denote that C1(x) 6 C2(x) for each x ∈ [0, 1]. A curve

C defined on [0, 1], is called concave if for all 0 6 x < y 6 1, and any α ∈ [0, 1], we have

C(αx+ (1− α)y) > αC(x) + (1− α)C(y). Statistical distance between two distributions A

and B defined over discrete sample space Ω is defined as SD (A,B) := 1
2
∑
x∈Ω |A(x)−B(x)| .

A function f : N→ R is called negligible if for any polynomial p(n), f(n) = o(1/p(n)).

6.3.1 Coin-tossing Protocols

In this chapter, we consider coin-tossing protocols among n processors in the full infor-

mation model. That is, all processors communicate through one single broadcast channel.

In particular, we consider an n-round protocol. At round i, the ith processor will broadcast a

(random) message based on the first i− 1 broadcast messages. After every processor broad-

casts her messages, the final output ∈ {0, 1} is a deterministic function of all the broadcast

messages. We do not limit to protocols with unbiased output (i.e., the probability of the

output being 1 is 1/2).

Definition 6.3.1 ((n,X0)-Coin-tossing protocols). For any n ∈ N∗ and X0 ∈ [0, 1], an

(n,X0)-coin-tossing protocol is an n-round coin-tossing protocol among n processors, where

the expectation of the output is X0.

We often refer to the expected output X0 as the color of the protocol. The insecurity

of a coin-tossing protocol is the maximum change (in terms of statistical distance) that the

adversary can cause to the distribution of the output of the protocol.

In this work, threshold protocols will be very useful examples, which are defined as

follows.

Definition 6.3.2 ((n, t)-Threshold protocol). In an (n, t)-threshold protocol, denoted by πn,t,

each processor broadcasts an (independently) uniform bit. The output is 1 if the total number

of 1-message > t. 

5
 In particular, when n is odd and t = n+1

2 , this is the majority protocol.
5

 ↑ Here, t ∈ {0, 1, . . . , n+ 1}.
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6.3.2 Adversarial Setting

In this work, we consider Byzantine adaptive adversaries. Such an adversary will eaves-

drop on the execution of the protocol. After every round, it will decide whether to corrupt

the processor, who is going to speak next. Once a processor is corrupted, the adversary takes

full control and fixes the message that she is going to send. We will focus on such adversaries

that corrupt (at most) one processor.

6.4 A Geometric Perspective

In this section, we shall study the insecurity of coin-tossing protocols through a geometric

perspective.

Protocol tree. For every coin-tossing processor protocol, we will think of it as a tree.

Every edge represents a message, and the root denotes the beginning of the protocol. There-

fore, every node u on this tree represents a partial transcript of the protocol. And we can

associate it with a color xu and a probability pu, where xu is the expected output conditioned

on partial transcript u, and pu is the probability that partial transcript u happens. For an

(n,X0)-coin-tossing protocol, by our definition, its protocol tree shall have depth n, and the

color at the root shall be X0.

Attack. A Byzantine adaptive adversary that corrupts at most one processor can be

viewed equivalently as a collection of edges {(ui, vi)}, where ui is the parent of vi. This implies

that when partial transcript ui happens, the attacker intervenes and fixes the next message

to be vi. Since this attacker corrupts at most one processor during the entire collection of

the protocol, this collection of edges must be prefix-free. That is, no parent node of an edge

is on the path from the root to other edges.

Given a protocol tree π, let an attack strategy τ be the collection of edges {(ui, vi)},

where ui is the parent of vi. We define the following score function.

Definition 6.4.1. Score(π, τ) := ∑
(ui,vi)∈τ pui · |xui − xvi | .
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That is, Score(π, τ) is the average of the absolute change in color the attacker τ causes.

Intuitively, it represents the vulnerability of protocol π in the presence of the attack τ .

Furthermore, for any protocol π, let us define

Score(π) := sup
τ

Score(π, τ).

Intuitively, Score(π) represents the score of the most devastating attacks on protocol π.

Finally, we define

Cn (X0) := inf
π

Score(π),

where the infimum is taken over all (n,X0)-coin-tossing protocols π. Intuitively, Cn (X0)

represents the score of the optimal protocol against the most devastating attack among all

protocols with n processors and color X0.

Remark 6.4.1. We remark that for a protocol π, the deviation (to the distribution of the

output) an attack τ causes is not exactly Score(π, τ). However, one can always bi-partition

the set τ as τ0 and τ1. τ0 will consist of all edges (ui, vi) that decrease the expected output,

i.e., xui > xvi, while τ1 will consist of all edges (ui, vi) that increase the expected output, i.e.,

xui < xvi. Consequently, the summation of the deviations caused by attack τ0 and τ1 shall be

Score(π, τ). Therefore, there must exist an attack that deviates the protocol by Score(π, τ)/2.

In light of this, for any (n,X0)-coin-tossing protocol, there must exist an attack that deviates

the protocol by Cn(X0)/2. Hence, any (n,X0)-coin-tossing protocol is (at least) Cn(X0)/2

insecure.

6.4.1 Geometric Transformation of Cn

In this section, we shall see how we can (inductively) construct Cn from a geometric

perspective.

Let us start with the simplest case n = 1. If X0 = 0 or 1, the output is independent of

the message and is always fixed. Hence, the score is always 0. If X0 ∈ (0, 1/2], the attack

with the highest score is to fix the message such that the output is fixed to be 1. Hence,
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the score is 1−X0. Similarly, when X0 ∈ (1/2, 1), the score is X0. Consequently, C1 is the

following curve.

C1(x) =



0 x ∈ {0, 1}

1− x x ∈ (0, 1/2]

x x ∈ (1/2, 1)

Next, suppose we have curve Cn, we shall construct the next curve Cn+1. Let us use  Figure 6.3 

as an intuitive example to understand how to construct Cn+1(x) from Cn.

x

y

Cn(x)

xx1 x2 x3

(x, y1)

(x, y2)

Figure 6.3. An intuitive example of the geometric transformation

Let π be an (n + 1, x)-coin-tossing protocol. Suppose there are three possible messages

that the first processor might send, namely m1, m2, and m3. Conditioned on the first message

being m1, m2, and m3, the expected output is x1, x2, and x3, respectively. The probability of

the first message being m1, m2, and m3, are p1, p2, and p3, respectively. Note that after the

first processor sends message mi, the remaining protocol πi becomes a (n, xi)-coin-tossing

protocol.

An adaptive adversary that corrupts at most one processor has four choices for the first

processor. Either it can carry out the attack now by fixing the first processor’s message to

be mi, for i ∈ {1, 2, 3}, or it can defer the attack to subprotocols π1, π2, and π3. If it fixes

the first processor’s message to be mi, this will increase the score by |xi − x| . On the other
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hand, if it defers the attack to each subprotocol, by the definition of curve Cn, it can ensure

a score of (at least) Cn(xi) in subprotocol πi. Overall, it ensures a score of (at least)

p1 · Cn(x1) + p2 · Cn(x2) + p3 · Cn(x3).

Note that it must hold that x = p1x1 + p2x2 + p3x3. Therefore, p1 · Cn(x1) + p2 · Cn(x2) +

p3 · Cn(x3) must lie between y1 and y2 in  Figure 6.3 .

The most devastating attack will do the attack based on which strategy results in the

highest score, which is

max (|x− x1| , |x− x2| , |x− x3| , p1 · Cn(x1) + p2 · Cn(x2) + p3 · Cn(x3)) .

The optimal protocol shall, however, pick x1, . . . , x` and p1, . . . , p` accordingly to minimize

the above quantity. Therefore, by our definition,

Cn+1(x) := inf
x1,...,x`∈[0,1]
p1,...,p`∈[0,1]
p1+···+p`=1

p1x1+···+p`x`=x

max
(
|x− x1| , . . . , |x− x`| ,

∑̀
i=1

pi · Cn(xi)
)
.

For convenience, let us define geometric transformation T , which takes any curve C on [0, 1]

as input, and outputs a curve T (C) defined as

T (C)(x) := inf
x1,...,x`∈[0,1]
p1,...,p`∈[0,1]
p1+···+p`=1

p1x1+···+p`x`=x

max
(
|x− x1| , . . . , |x− x`| ,

∑̀
i=1

pi · C(xi)
)
.

Hence, by our definition, Cn+1 is exactly T (Cn).

6.5 Tight Bounds on Cn and the Implications

In this section, we shall first prove a tight lower bound on the curve Cn.

We define our lower bound curve Ln through threshold protocols. Recall that an (n, t)-

threshold protocol πn,t is a protocol where each processor broadcast an (independent) uniform
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bit. The final output is 1 if the number of 1-message is > t. Trivially, the color of (n, t)-

threshold protocol πn,t is

Color
(
πn,t

)
= 2−n ·

(
n∑
i=t

(
n

i

))
.

We argue that the score of πn,t is

Score
(
πn,t

)
= 2−n ·

(
n− 1
t− 1

)
.

To see this, note that, without of loss of generality, we can assume that anytime the adversary

fixes a message, it fixes that message to be 1. 

6
 Moreover, which message that the adversary

fixes does not matter; effectively, the output will be 1 if and only if the rest n− 1 messages

contain > t−1 1-message. Therefore, by fixing one message to be 1, it changes the expected

output of the protocol to be 2−(n−1) ·
(∑n−1

i=t−1

(
n−1
i

))
. Easily, one can verify that 2−(n−1) ·(∑n−1

i=t−1

(
n−1
i

))
− 2−n ·

(∑n
i=t

(
n
i

))
= 2−n ·

(
n−1
t−1

)
.

For a n-processor threshold protocol, threshold t ∈ {n+1, n, . . . , 0}. 

7
 We define the lower

bound curve Ln as follows.

Definition 6.5.1. For every n ∈ N∗, let Ln be the curve that linearly connects points

Pn,t :=
(
Color

(
πn,t

)
, Score

(
πn,t

))
=
(

2−n ·
(

n∑
i=t

(
n

i

))
, 2−n ·

(
n− 1
t− 1

))

for t = n + 1, n, . . . , 0. That is, Ln linearly interpolates all the points defined by the color

and score of (n, t)-threshold protocols.

As an example, L1 is shown in  Figure 6.4 .

In particular, we have the following theorem regarding the curve Ln and the curve Cn.

Theorem 6.5.1. For all n ∈ N∗, Ln � Cn.

Remark 6.5.1. Note that, by the definition of Cn, we have

Cn
(
Color

(
πn,t

))
:= inf

π
Score(π) 6 Score

(
πn,t

)
.

6
 ↑ For any node u, let its two children node be v0 and v1. Since every message is a uniform bit for threshold

protocol, it must hold that |xu − xv0 | = |xu − xv1 |. Therefore, whether the attack picks edge (u, v0) or (u, v1)
does not change the score.
7

 ↑ When t = n+ 1, the color is 0, and when t = 0, the color is 1.
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x

y

L1

C1

(
1
2 ,

1
2

)

P1,2

P1,1

P1,0

Figure 6.4. The (black) dashed curve is L1 and the (blue) solid curve is C1.
Note that P1,t corresponds to the point defined by (1, t)-threshold protocol.

On the other hand, by  Theorem 6.5.1 ,

Cn
(
Color

(
πn,t

))
> Ln

(
Color

(
πn,t

))
= Score

(
πn,t

)
.

Therefore, Cn (Color (πn,t)) = Score (πn,t). That is, points Pn,t is on the curve Cn as well.

This also implies that threshold protocol is the protocol that minimizes the score function.

We defer the proof of  Theorem 6.5.1 to  Section 6.5.1 . Let us first discuss the implications

of this theorem. We have the following corollaries.

Corollary 6.5.2 (Threshold protocols). For any n ∈ N∗ and X0 ∈ [0, 1] such that X0 =

2−n ·
(∑n

i=t

(
n
i

))
for some t ∈ {0, 1, . . . , n + 1}. The insecurity of (n, t)-threshold protocol is

at most two times the insecurity of the least insecure (n,X0)-coin-tossing protocols.

This corollary is immediate from  Theorem 6.5.1 . This is because the insecurity of thresh-

old protocol πn,t is exactly Score (πn,t); for any other (n,Color (πn,t))-coin-tossing protocol,

in light of  Remark 6.4.1 , we know its insecurity is at least

Cn
(
Color

(
πn,t

))
/2 > Ln

(
Color

(
πn,t

))
/2 = Score

(
πn,t

)
/2.

Therefore, the insecurity of the threshold protocol is at most two times the insecurity of the

optimal protocol.
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Corollary 6.5.3 (Non-threshold protocols). For an arbitrary color X0 ∈ (0, 1) that does

not correspond to any threshold protocol, we can consider a linear combination of threshold

protocols. Specifically, suppose Color (πn,t) < X0 < Color (πn,t−1), consider an (n + 1, X0)-

coin-tossing protocol as follows. The first processor sends a bit. If this bit is 0, the rest n

processors execute the (n, t)-threshold protocol; if this bit is 1, the rest n processors execute

the (n, t− 1)-threshold protocol. The probability of this bit being 0 is defined to be

Color (πn,t−1)−X0

Color (πn,t−1)− Color (πn,t) .

For X0 that is not negligibly close to 0 or 1, the insecurity of this protocol is at most 4+ o(1)

times the insecurity of the least insecure (n+ 1, X0)-protocol.

Without loss of generality, assume X0 < 1/2. Therefore, t > n/2. One can easily see

that the insecurity of this protocol is bounded by

max
(

Color
(
πn,t−1

)
− Color

(
πn,t

)
,

Score (πn,t−1) + Score (πn,t)
2

)
,

which is bounded by 2−n·
(
n
t−1

)
. On the other hand,  Theorem 6.5.1 says that every (n+1, X0)-

coin-tossing protocol is at least Ln+1(X0)/2-insecure, which is at least 2−(n+2)
(
n+1
t

)
. WhenX0

is non-negligibly bounded away from 0 and 1, by Chernoff’s bound, we must have |t− n/2| 6
√
n log n. Consequently,

(
n
t−1

)
and

(
n+1
t

)
are (1 + o(1)) approximation to each other. Hence,

the insecurity of this protocol is (at most) (4+o(1))-approximate of the optimal (n+ 1, X0)-

protocol.

6.5.1 Proof of  Theorem 6.5.1 

To prove this theorem, it suffices to prove the following claims.

Claim 6.5.1. If A 4 B, then T (A) 4 T (B).

Claim 6.5.2. Ln+1 = T (Ln).

Proof of  Theorem 6.5.1 using  Claim 6.5.1 and  Claim 6.5.2 . We prove this theorem induc-

tively. The base case n = 1 is trivial (See  Figure 6.4 ).

153



Suppose the statement is correct for n, i.e., Ln � Cn. Then we have

Ln � Cn
 Claim 6.5.1 ==========⇒ T (Ln) � T (Cn)  Claim 6.5.2 ==========⇒ Ln+1 � Cn+1

This completes the proof.

Next we prove  Claim 6.5.1 and  Claim 6.5.2 .

Proof of  Claim 6.5.1 . Since A 4 B, for all x, x1, . . . , x`, and p1, . . . , p`, we have

max
(
|x− x1| , . . . , |x− x`| ,

∑̀
i=1

pi · A(xi)
)
6

max
(
|x− x1| , . . . , |x− x`| ,

∑̀
i=1

pi ·B(xi)
)
.

Therefore, by definition, for all x, T (A)(x) 6 T (B)(x), or equivalently T (A) 4 T (B).

Before we prove  Claim 6.5.2 , the following claim will be useful.

Claim 6.5.3. Let U be an arbitray concave curve. Suppose 0 6 x0 < x < x2 6 1 satisfies

that

x− x0 = x1 − x = U(x0) + U(x1)
2 ,

Then T (U)(x) = U(x0)+U(x1)
2 . That is, x0 and x1 witness the transformation T of U at x.

Proof of  Claim 6.5.3 . To see this, let us use  Figure 6.5 for intuition. In  Figure 6.5 , U(x) is

a concave curve and the choice of x0 and x1 satisfies that x − x0 = x1 − x = U(x0)+U(x1)
2 .

Recall that

T (U)(x) := inf
x′1,...,x

′
`∈[0,1]

p1,...,p`∈[0,1]
p1+···+p`=1

p1x′1+···+p`x′`=x

max
(
|x− x′1| , . . . , |x− x′`| ,

∑̀
i=1

pi ·D(x′i)
)
.

By definition, clearly, T (U)(x) 6 U(x0)+U(x1)
2 . To prove the other direction, we need to show

that, for any choices of x′1, x′2, . . . , x′` and p1, p2, . . . , p`, we have

U(x0) + U(x1)
2 6 max

(
|x− x′1| , . . . , |x− x′`| ,

∑̀
i=1

pi · U(x′i)
)
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x

y

U(x)

xx0 x1

A

B

(x, T (U)(x))

x′1 x′2 x′3

Figure 6.5. The geometric transformation of curve U(x). Intuitively, if x′1,
x′2, and x′3 are ∈ (x0, x1), the shaded region is always above line segment AB
by the concaveness of U .

Firstly, if there exists an x′i such that |x− x′i| > |x1 − x|, then the statement trivially holds.

Next, if for all i, |x− x′i| 6 |x1 − x|, then by the concaveness of curve U ,

1
2 · (U(x1) + U(x2)) 6

∑̀
i=1

pi · U(x′i).

This completes the proof.

Now, we prove  Claim 6.5.2 .

Proof of  Claim 6.5.2 . Recall that Ln is the curve that linearly connects points Pn,n+1, Pn,n, . . . , Pn,1, Pn,0,

where

Pn,t :=
(

2−n ·
(

n∑
i=t

(
n

i

))
, 2−n ·

(
n− 1
t− 1

))
.

Let us first observe some properties of Ln.

Claim 6.5.4. Ln is a concave curve and the slope of any line segment of Ln is ∈ [− 1, 1].

Proof of  Claim 6.5.4 . Easily, we can verify that the slope of line segment Pn,tPn,t−1 is

2−n ·
(
n−1
t−1

)
− 2−n ·

(
n−1
t−2

)
2−n ·

(∑n
i=t

(
n
i

))
− 2−n ·

(∑n
i=t−1

(
n
i

)) = 2t− 2− n
n

.

Since the slope of Pn,tPn,t−1 decreases as t decreases, this proves that Ln is concave. Moreover,

for any t ∈ {n+ 1, . . . , 1}, the slope of Pn,tPn,t−1 is ∈ [− 1, 1].
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Pn,t+1

Pn,t

Pn,t−1

Pn+1,t+1

Pn+1,t

Color
(
πn,t+1

)
Color

(
πn,t
)

Color
(
πn,t−1

)Color
(
πn+1,t+1

)
Color

(
πn+1,t

)

slope 2t−n
n

slope 2t−n−1
n+1

slope 2t−2−n
n

Figure 6.6. The relation between (black solid) Ln and (blue dashed) Ln+1.
The geometric transformation of Ln is exactly Ln+1.

Claim 6.5.5. Pn+1,t is the middle point of Pn,t and Pn,t−1.

Proof of  Claim 6.5.5 . One just need to verify that

2−(n+1)
(
n+1∑
i=t

(
n+ 1
i

))
= 1

2 ·
2−n

(
n∑
i=t

(
n

i

))
+ 2−n

 n∑
i=t−1

(
n

i

) ,
and

2−(n+1) ·
(

n

t− 1

)
= 1

2 ·
[
2−n ·

(
n− 1
t− 1

)
+ 2−n ·

(
n− 1
t− 2

)]
.

Now, let us prove Ln+1 = T (Ln) with all the claims that we have proven. It suffices to

verify Ln+1(x) = T (Ln)(x) for all x ∈ (0, 1). In light of  Claim 6.5.4 and  Claim 6.5.5 , we

know the relation between Ln and Ln+1 looks like  Figure 6.6 .

We first verify it at x = Color (πn+1,t). In this case, we can set x0 = Color (πn,t) and

x1 = Color (πn,t−1). One can verify that

Color
(
πn+1,t

)
− x0 = x1 − Color

(
πn+1,t

)
= Score

(
πn+1,t

)
,

and
Ln(x0) + Ln(x1)

2 = Score (πn,t) + Score (πn,t−1)
2 = Score

(
πn+1,t

)
.
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Hence, by  Claim 6.5.3 ,

T (Ln)
(
Color

(
πn+1,t

))
= Score

(
πn+1,t

)
= Ln+1

(
Color

(
πn+1,t

))
.

Next, we verify Ln+1 = T (Ln) for some x such that Color (πn+1,t+1) < x < Color (πn+1,t).

By  Claim 6.5.3 , it suffices to set x0 = x− Ln+1(x) and x1 = x+ Ln+1(x) and verify that

Ln(x0) + Ln(x1)
2 = Ln+1(x).

Note that

x0 ∈
[
Color

(
πn,t+1

)
,Color

(
πn,t

)]
and x1 ∈

[
Color

(
πn,t

)
,Color

(
πn,t−1

)]
.

One can verify that this is indeed correct.
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7. CONCLUSIONS

In this work, we have furthered our understanding of the optimal constructions in non-

malleable codes, optimal-fair coin-tossing, and collective coin-tossing. Many questions, how-

ever, still remain open. In this section, we list a few open problems.

7.1 Non-malleable Codes

There are still many simple tampering families where high-rate constructions are un-

known. One example is the affine tampering family over F2. That is, every output bit is the

parity of some input bits. Interestingly, only rate-0 construction [ CL17 ] are currently known

for this seemingly simple tampering family.

Open Problem 1. Can we find an explicit rate-1 non-malleable code for affine tampering

over F2?

Although we have found constant-rate two-split-state non-malleable code [ AO20 ] recently,

the rate of their construction is still quite low. It remains an intriguing open problem whether

we can amplify the rate of their construction through the technique developed in this work.

Open Problem 2. Can we find an explicit two-split-state non-malleable code with an (ex-

plicit) high rate?

7.2 Optimal-fair Coin-tossing

Although we showed that ideal invocations of (incomplete) functionalities are useless for

fair coin-tossing, we have not proven a black-box separation result for it. That is, we did not

present a collection of oracles such that (1) f can be securely realized using these oracles and

(2) optimal-fair coin-tossing does not exist relative to them. Such a problem is extremely

challenging and still remains one of the most crucial open problems.

Open Problem 3. Could we prove that optimal-fair coin-tossing and ideal (incomplete)

functionalities are black-box separated?
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7.3 Collective Coin-tossing

The recent work by Haitner and Karidi-Heller [ HKH20 ] finally settled the conjecture by

Ben-Or and Linial [  BL85 ] in the positive. That is, for any collective coin-tossing protocol

among n parties, an adaptive adversary can corrupt O (
√
n · polylog (n)) parties to nearly fix

the output of the protocol. However, suppose we want to ensure that the expected output

protocol to be either 6 ε or > (1− ε) for a constant ε. How many processors does one need

to corrupt? Haitner and Karidi-Heller’s attack needs to corrupt O (
√
n · polylog (n)) parties,

while it is conjectured that O (
√
n) suffices. Therefore, it remains open whether one could

find a more fine-grained attack (compared to [ HKH20 ]).

Open Problem 4. For any constant ε, could we find an attack that only corrupts O (
√
n)

parties to ensure that the expected output is either 6 ε or > (1− ε)?
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A. APPENDIX FOR  CHAPTER 3 

A.1 Instantiation of Error-Correcting Secret-Sharing Schemes

In this section, we will use Shamir’s secret-sharing scheme [ Sha79 ], with a standard

share-packing technique [  BM84 ,  FY92 ], to give a construction for  Lemma 3.4.2  . The error-

correcting secret-sharing scheme can be formally defined as follows.

Let F to be a field of characteristic 2 such that log |F| = ϕ. We view message m as

a concatenation of binary representations of elements from F, i.e., m = (α1, α2, . . . , α`),

where α1, . . . , α` ∈ F. For any ζ > 0, pick n such that n − ` = n1−ζ/2. Let β1, β2, . . . , β`

and γ1, γ2, . . . , γn be arbitrary elements from field F. Pick a polynomial p(x) ∈ F(x) of

degree ` + (n − `)/2 such that p(βi) = αi for i ∈ [`]. The encoding of m is defined

as Enc(m) := (p(γ1), p(γ2), . . . , p(γn)). By standard argument, this is a (n′, `′, d, t) error-

correcting secret-sharing scheme with n′ = nϕ and `′ = `ϕ. And when ϕ = Θ(log n), we

have d, t = Θ̃(n1−ζ/2) > (n′)1−ζ . This construction satisfies  Lemma 3.4.2 .

A.2 Proof of  Lemma 3.6.1 

Proof. We provide the proof for (1) and cL case of (2). Proofs for cR case of (2) are analogous

to the cL case. And (3) is straightforward from (2). We first show that if G(sL) and G(sR)

are truly uniformly random strings, then the lemma is correct. Then, we show that if this

lemma is incorrect with pseudorandom bits, there is a FSM Q that breaks the underlying

PRG G.

(1) Firstly, since the output locality is bounded by δ, the number of input neighbors of

α̃R is bounded by δ · |α̃R| = δnΛ. So the number of bits from αL who have input locality

higher than 4δ/µ onto α̃R is at most µnΛ/4. So, the expected number of those high input

locality bits that are from cL is at most (µnΛ/4) · 2n−(Λ−β1) = µnβ1/2 (using bias of ρL). By

Chernoff bound, with probability at least 1− exp(−Θ(µnβ1)), at most µnβ1 many bits from

cL will have input locality higher than 4δ/µ onto α̃R.

(2) Secondly, because of output locality bound δ, the number of input neighbors of c̃ is

bounded by δn and the number of bits from αL with input locality higher than n1−γ−τ is

at most δnγ+τ . Therefore, the expected number of those high input locality bits that are

192



from cL is at most δnγ+τ ·2n−(Λ−β1) = 2δnβ1−τ . By Chernoff bound, with probability at least

1 − exp(−Θ(δnβ1−τ )) 

1
 , at most 4δnβ1−τ bits from cL will have input locality higher than

n1−γ−τ onto c̃.

Now we show that these are correct even when we use PRG G that fools FSMs with

space κ log2 n. Suppose some tampering function f succeeds with probability more than

2−Ω(log2 n) in violating condition (1) or (2l). Then we will use f to construct FSM Q that

breaks pseudorandomness of G. First, we note that the function f structurally determines

the positions in αL that have higher than 4δ/µ input locality onto α̃R and that have higher

than n1−γ−τ input locality onto c̃. Now, we hardcode these locations with high input locality,

say I and J , in FSM Q. It takes y1, y2, . . . , ynΛ as input. Now a state in Q stores (`, A,B)

where ` denotes the number of symbols read so far, A denotes the number of indices i so far

such that ρL(yi) = 1 and i ∈ I. (Note that A denotes the number of indices in cL that have

high input locality onto α̃R.) Similarly, B denotes the number of indices j so far such that

ρL(yj) = 1 and j ∈ J . (Note that B denotes the number of indices in cL that have high

input locality onto c̃.) The final output of Q will be 1 when A 6 µnβ1 and B 6 4δnβ1−τ .

Clearly, by our argument above, on a true uniform string, Q will output 1 with probability

1− exp(−Ω(nβ1−τ )). If this lemma is incorrect, on a pseudorandom string, Q will output 1

with probability less than 1 − 2−Ω(log2 n) and hence Q will break the underlying PRG with

success probability higher than 2−Ω(log2 n). Finally, note that Q only needs O(log n) space to

record (j, A,B). This completes the proof.

A.3 Construction with modified parameters

In this section, we show that we can slightly tweak our compiler to get the following

theorem.

Theorem A.3.1. Let {0, 1}` be the message space and δ = o(log n). There exists an explicit

and efficient rate-1 NMC against Localδ with simulation error that is negligible in n and uses

the following primitives in a black-box manner.

1. For appropriate ζ > 0, an (n, `, d, t)-ECSS scheme with d, t > n1−ζ and n = (1+o(1))`.
1

 ↑ Since we have the freedom to pick τ small enough, we can make sure τ < β1.
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2. For some constant λ, µ and η = nΘ(1), a (λ, µ, `i, `o)-NMC against leaky input and output

local tampering for messages in {0, 1}η, rate 1/poly(η), `o = O(log η), `i = O(log η),

simulation error negligible in η.

3. For some constant Λ > 0, a PRG G : ({0, 1}log2 n)3Λ logn −→ ({0, 1}log2 n)nΛ that is secure

against FSM with alphabet size log2 n and space Θ(log2 n) with error that is negligible

in n.

Comparison with  Theorem 3.5.1 . This theorem only requires the base NMC to have

1/poly(η) rate, instead of 1/ηo(1) as in  Theorem 3.5.1 . It gives this relaxation at the cost of

achieving a slightly worse locality guarantee. Note that this compiler requires significantly

lower rate for the base NMC. However, it yields an NMC against o(log n)-local tampering

functions, which already yields an NMC against NC0 tampering functions.

Construction and parameter setting. The construction for this theorem is the same

as  Theorem 3.5.1  (cf.  Figure 3.2  ). The only difference is that because the rate of our base

NMC is very poor, we no longer enjoy the freedom to pick as many as n1−ε1 error bits for

any ε1 > 0. Otherwise, it is possible that NMEnc0(E, e) will be of length Θ(n) or even ω(n)

and the construction is not rate-1. So depending on the exact rate of the base NMC, we will

pick 1− ε1 small enough such that the length of cL, cR  

2
 is of nβ1 , nβ2 with β1, β2 < 1. At this

point, we can set λ, µ and Λ, γ, τ and ζ the same way as paramater settings in  Theorem 3.5.1 .

As for ε2, we will pick it such that 1− ε1 − 2ε2 > 0.

Proof Sketch. The proof of this theorem use exactly the same hybrid argument as the proof

of  Theorem 3.5.1 . The only difference is to note that when δ = o(log n), (1− 1/2δ)
n1−ε1−2ε2

4δ2

is negligible as long as 1− ε1− 2ε2 > 0. Since the proof is simply a repetition of  Section 3.6  ,

we omit it for the ease of presentation.

2
 ↑ Recall (cL, cR) = NMEnc0(E, e).
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B. APPENDIX FOR  CHAPTER 4 

B.1 Message Authentication Code: Choice of Parameters

Lemma B.1.1. Suppose {hk : {0, 1}α −→ {0, 1}β} is a µ-almost pairwise independent hash

family. Then the following family of pair of functions is a µ-secure message authentication

code. 
Tagk(x) = hk(x)

Verifyk(x, y) = 1 if and only if y = hk(x)


k∈K

Proof. Obviously, for all m, k, Verify(m,hk(m)) = 1. Also, for all m 6= m′ and t, t′,

Pr
k←UK

[
Tagk(m′) = t′

∣∣∣Tagk(m) = t
]

= Prk←UK [ Tagk(m′) = t′ ∧ Tagk(m) = t]
Prk←UK [ Tagk(m) = t] 6

µ · 2−β
2−β = µ

Lemma B.1.2. Suppose α = ` · β and write m as (m1,m2, . . . ,m`) where mi ∈ {0, 1}β. Let

K = {0, 1}β×{0, 1}β and write k as (k1, k2). Define hk1,k2(m) = k1+m1k2+m2k
2
2+· · ·+m`k

`
2,

which is seen as a polynomial in GF[2β]. Then {hk} is a α
β·2β -almost pairwise independent

hash family.

Proof. For all m, t,

Pr
k←U2β

[hk(m) = t] = Pr
k2←Uβ

[
Pr

k1←Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2 = t

]]
= Pr

k2←Uβ

[
2−β

]
= 2−β

For all m 6= m′ and t, t′,

Pr
k←U2β

[hk(m) = t ∧ hk(m′) = t′]

= Pr
k1←Uβ ,k2←Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2 = t∧ k1 +m′1k2 +m′2k

2
2 + · · ·+m′`k

`
2 = t′

]

= Pr
k2←Uβ

[ ∑̀
i=1

(mi −m′i)ki2 = t− t′
]
· Pr
k1←Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2 = t

]

6
`

2β · 2
−β
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where the last inequality is because a degree ` polynomial in a field can have at most ` many

zeros. Since ` = α/β, this completes the proof.

Corollary B.1.1. For all message length α and Tag length β, there exists a α
2β -secure mes-

sage authentication code scheme with key length 2β.

B.2 Proof of 3-Split-State Non-malleability ( Theorem 4.1.3 )

Here we will prove that the encoding scheme shown in  Figure 4.4 is secure against 3-

split-state tampering. More formally, we will show that there exists a simulator Simf,g,h such

that


(
c, (w,L),R

)
← Enc(m)

c̃ = f(c), (w̃, L̃) = g(w,L), R̃ = h(R)

Output: m̃ =Dec
(
c̃, (w̃, L̃), R̃

)


= Tampermf,g,h ≈ Copy

(
Simf,g,h,m

)

Our first hybrid is exactly the same as Tampermf,g,h. We just open up the definition of Enc

and Dec.

H0(f, g, h,m):

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. (L,R)← Enc+(k1, k2, t1, t2, s)

4. c̃ = f(c), (w̃, L̃) = g(w,L) , R̃ = h(R)

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

7. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

8. Else output c̃⊕ Ext(w̃, s̃)

In the next hybrid, we re-write (w̃, L̃) = g(w,L) as w̃ = gL(w) and L̃ = gw(L). The

hybrids H0(f, g, h,m) and H1(f, g, h,m) are identical.
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H1(f, g, h,m):

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. c̃ = f(c)

4. (L,R)← Enc+(k1, k2, t1, t2, s)

5. L̃ = gw(L), R̃ = h(R)

6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

7. w̃ = gL(w)

8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

9. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

10. Else output c̃⊕ Ext(w̃, s̃)

Notice that step 4,5,6 in H1(f, g, h,m) is exactly TamperPlus(k1,k2,t1,t2,s)
gw,h

, replace this

with simulator SimPlusgw,h gives us H2(f, g, h,m). We note that hybrids H1(f, g, h,m) and

H2(f, g, h,m) are ε+-close. If not, we can use the tampering function (gw, h) and message

(k1, k2, t1, t2, s) to break the ε+ augmented non-malleability of (Enc+,Dec+).

H2(f, g, h,m):

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. c̃ = f(c)

4. (L,Ans)← SimPlusgw,h

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Copy
(

Ans, (k1, k2, t1, t2, s)
)

6. w̃ = gL(w)

7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

8. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

9. Else output c̃⊕ Ext(w̃, s̃)

Now, we open up the different cases of Ans. This hybrid is identical to the previous one.
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H3(f, g, h,m):

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. c̃ = f(c)

4. (L,Ans)← SimPlusgw,h

5. w̃ = gL(w)

6. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(

Verifyk1(c̃, t1)=0 or Verify′k2
(w̃, t2) = 0

)
, output ⊥

Else output c̃⊕ Ext(w̃, s)

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) =0
)

, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

Now we use the properties of message authentication codes.

H4(f, g, h,m):

Copy

(

1. w ← Un, s← Ud, k1 ← Uγ , k2 ← Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. c̃ = f(c)

4. (L,Ans)← SimPlusgw,h

5. w̃ = gL(w)

6. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and w̃ = w

)
= 1, output same∗

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

,m

)

Clean up and remove the redundant steps.
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H5(f, g, h,m):

Copy

(

1. w ← Un, s← Ud, r = Ext(w, s), c = m⊕ r

2. (L,Ans)← SimPlusgw,h

3. c̃ = f(c), w̃ = gL(w)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and w̃ = w

)
= 1, output same∗

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

,m

)

Now, compute the leakage about w we need in the first part of the hybrid.

H6(f, g, h,m):

Copy

(

1. w ← Un

2. (L,Ans)← SimPlusgw,h, w̃ = gL(w)

3. If Ans =

• Case same∗: flag1 = 1 iff (w̃ = w)

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′
k̃2

(w̃, t̃2) = 1.

Set mask = Ext(w̃, s̃).

4. s← Ud, r = Ext(w, s), c = m⊕ r, c̃ = f(c)

5. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same∗

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

output ⊥

Else output c̃⊕mask

,m

)

Formally define the information as a leakage function of w.
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H7(f, g, h,m):

Copy

(

1. w ← Un

2. For the tampering function (g, h) we define the following leakage function L(w) :

{0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

(a) (L,Ans)← SimPlusgw,h, w̃ = gL(w)

(b) If Ans =

• Case same∗: flag1 = 1 iff (w̃ = w)

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′
k̃2

(w̃, t̃2) = 1

Set mask = Ext(w̃, s̃)

(c) L(w) := (Ans,flag1,flag2,mask)

3. s← Ud, r = Ext(w, s) , c = m⊕ r, c̃ = f(c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same∗

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

Using the property of average min-entropy extractor to replace the extraction step with

uniform random bits.
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H8(f, g, h,m):

Copy

(

1. w ← Un

2. For the tampering function (g, h) we define the following leakage function L(w) :

{0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

(a) (L,Ans)← SimPlusgw,h, w̃ = gL(w)

(b) If Ans =

• Case same∗: flag1 = 1 iff (w̃ = w)

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′
k̃2

(w̃, t̃2) = 1

Set mask = Ext(w̃, s̃)

(c) L(w) := (Ans,flag1,flag2,mask)

3. r ← U`, c = m⊕ r , c̃ = f(c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same∗

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

Finally, fixing the message to 0` would not affect the distribution of the output of our

hybrid. This last hybrid is our simulator.
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H9(f, g, h,m):

Copy

(

1. w ← Un

2. For the tampering function (g, h) we define the following leakage function L(w) :

{0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

(a) (L,Ans)← SimPlusgw,h, w̃ = gL(w)

(b) If Ans =

• Case same∗: flag1 = 1 iff (w̃ = w)

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′
k̃2

(w̃, t̃2) = 1

Set mask = Ext(w̃, s̃)

(c) L(w) := (Ans,flag1,flag2,mask)

3. r ← U`, c = 0` ⊕ r, c̃ = f(c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same∗; else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

B.3 Proof of Non-malleability against Forgetful Functions ( Theorem 4.5.1 )

In this section, we shall prove  Theorem 4.5.1 .

Now we divide the proof of non-malleability into two parts. In  Appendix B.3.1 , we show

our coding scheme is non-malleable against tampering from FORn1,n2,n3,n4−{1}∪FORn1,n2,n3,n4−{3}.

In  Appendix B.3.2 , we show non-malleability against LAn1,n2×LAn3,n4 . Together they prove

the non-malleability of our coding scheme.

B.3.1 Non-malleability against FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3}

In this section, for codeword c = (c1, c2, . . . , ck), we write c−i to denote (c1, . . . , ci−1, ci+1, . . . , ck).

Intuitively, our scheme is secure when the tampering function forget about the first or third

state because forgetting any one of those two states essentially means forgetting about the
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message. Specifically, if we use cm to denote the random variable Enc(m), we are going to

show that for all m 6= m′,

cm−i ≈ε1 cm
′

−i i = 1 or 3 (B.1)

Recall ε1 is the error of our extractor Ext. This would immediately imply non-malleability

because for all f ∈ FORn1,n2,n3,n4−{i}, we could write (see  Section 4.5 for definition of

forgetful family)

Dec(f(Enc(m))) = Dec(g(cm−i)) ≈ε1 Dec(g(cm′−i)) = Dec(f(Enc(m′)))

We shall prove  Equation B.1 for i = 1 next. Fix keys k1, k2, if given leakage t2 and w2, we

still have H̃∞(w|t2, w2) > k, by the property of our strong average min-entropy extractor,

we have

k1, k2, t2, w2, s,Ext(w, s) ≈ε1 k1, k2, t2, w2, s, U`

Therefore, we have (recall we use r to denote Ext(w, s))

k1, k2, t2, w2, s, r ⊕m ≈ε1 k1, k2, t2, w2, s, r ⊕m′

which leads to (since t1 is a deterministic function of k1 and c = r ⊕m)

(k1, k2, t1, t2, s), w2, r ⊕m ≈ε1 (k1, k2, t1, t2, s), w2, r ⊕m′

which implies

R, (w2, L), r ⊕m ≈ε1 R, (w2, L), r ⊕m′

which is equivalent to

cm−1 ≈ε1 cm
′

−1

Using similar arguments, as long as H̃∞(w|t2, w1) > k, we have

cm−3 ≈ cm
′

−3
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Note that this also requires w2 to have length `+ o(`).

B.3.2 Non-malleability against LAn1,n2 × LAn3,n4

In order to prove non-malleability, we need to show that for all tampering (f, g) ∈

LAn1,n2 × LAn3,n4 , where f = (f (1), f (2)) and g = (g(1), g(2)), there exists a simulator Simf,g

such that for all m,



(
(w1, R, (w2, L), c)

)
← Enc(m)

w̃1 = f (1)(w1), R̃ = f (2)(w1, R)

(w̃2, L̃) = g(1)(w2, L), c̃ = g(2)(w2, L, c)

Output: m̃ = Dec
(
w̃1, R̃, (w̃2, L̃), c̃

)


= Tampermf,g ≈ Copy

(
Simf,g , m

)

The following hybrids will lead us from tampering experiment to the simulator.

H0(f, g,m):

1. w1 ← Un, w2 ← Un′ s← Ud, k1 ← Uγ , k2 ← Uγ′ . Let w := (w1, w2)

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. (L,R)← Enc+(k1, k2, t1, t2, s)

4. w̃1 = f (1)(w1), R̃ = f (2)(w1, R), (w̃2, L̃) = g(1)(w2, L),

c̃ = g(2)(w2, L, c) . Let w̃ = (w̃1, w̃2)

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

7. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

8. Else output c̃⊕ Ext(w̃, s̃)

Decompose the shaded equation into individual tampering equations.
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H1(f, g,m):

1. w1 ← Un, w2 ← Un′ , s← Ud, k1 ← Uγ , k2 ← Uγ′ . Let w := (w1, w2)

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. w̃1 = f (1)(w1)

4. (L,R)← Enc+(k1, k2, t1, t2, s)

5. L̃ = g
(1)
w2 (L), R̃ = f

(2)
w1 (R)

6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

7. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

9. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

10. Else output c̃⊕ Ext(w̃, s̃)

Use SimPlus to replace the tampering experiment of augmented 2-state non-malleable

code.

H2(f, g,m):

1. w1 ← Un, w2 ← Un′ , s← Ud, k1 ← Uγ , k2 ← Uγ′ . Let w := (w1, w2)

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. w̃1 = f (1)(w1)

4. (L,Ans)← SimPlus
g

(1)
w2 ,f

(2)
w1

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Copy
(

Ans, (k1, k2, t1, t2, s)
)

6. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

8. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

9. Else output c̃⊕ Ext(w̃, s̃)

Rearrange steps.
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H3(f, g,m):

1. w1 ← Un, w2 ← Un′ , s← Ud, k1 ← Uγ , k2 ← Uγ′ Let w := (w1, w2)

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. w̃1 = f (1)(w1)

4. (L,Ans)← SimPlus
g

(1)
w2 ,f

(2)
w1

5. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

6. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(

Verifyk1(c̃, t1)=0 or Verify′k2
(w̃, t2) = 0

)
, output ⊥

Else output c̃⊕ Ext(w̃, s)

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) =, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

Use the property of message authentication codes.

H4(f, g,m):

Copy

(

1. w1 ← Un, w2 ← Un′ , s← Ud, k1 ← Uγ , k2 ← Uγ′ Let w := (w1, w2)

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2
(w)

3. w̃1 = f (1)(w1)

4. (L,Ans)← SimPlus
g

(1)
w2 ,f

(2)
w1

5. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

6. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

,m

)

Remove the redundant steps.
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H5(f, g,m):

Copy

(

1. w1 ← Un, w2 ← Un′ , s← Ud, r = Ext(w, s), c = m⊕ r Let w := (w1, w2)

2. (L,Ans)← SimPlus
g

(1)
w2 ,f

(2)
w1

3. w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ := (w̃1, w̃2), c̃ = g

(2)
w2,L

(c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)

, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

,m

)

Process the leakage on w in the first part of our hybrid and only use the leakage in the

remainder of our hybrid.

H6(f, g,m):

Copy

(

1. w1 ← Un, w2 ← Un′ . Let w := (w1, w2)

2. (L,Ans)← SimPlus
g

(1)
w2 ,f

(2)
w1
, w̃1 = f (1)(w1), w̃2 = g

(1)
L (w2) Let w̃ := (w̃1, w̃2)

3. If Ans =

• Case same∗: If (w̃ = w), flag1 = 1; Else flag1 = 0

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(w̃, t̃2)
)

= 1,flag2 = 1, Else flag2 = 0

Let mask = Ext(w̃, s̃)

4. s← Ud, r = Ext(w, s), c = m⊕ r, c̃ = g
(2)
w2,L

(c)

5. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

Formally define the leakage function.
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H7(f, g,m):

Copy

(

1. w1 ← Un, w2 ← Un′ Let w := (w1, w2)

2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n′ × {0, 1}n+
1 × {0, 1}β+β′+γ+γ′+d+1 ×

{0, 1} × {0, 1} × {0, 1}` as the following function:

(a) (L,Ans)← SimPlus
g

(1)
w2 ,f

(2)
w1
, w̃1 = f (1)(w1), w̃2 = g

(1)
L (w2) Let w̃ := (w̃1, w̃2)

(b) If Ans =

• Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

• Case same∗: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0

Let mask = Ext(w̃, s̃)

(c) L(w) := (w2, L,Ans,flag1,flag2,mask)

3. s← Ud, r = Ext(w, s) , c = m⊕ r, c̃ = g
(2)
w2,L

(c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

Use the property of min-entropy extractor to replace extraction step with true uniform

bits.
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H8(f, g,m):

Copy

(

1. w1 ← Un, w2 ← Un′ Let w := (w1, w2)

2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n′ × {0, 1}n+
1 × {0, 1}β+β′+γ+γ′+d+1 ×

{0, 1} × {0, 1} × {0, 1}` as the following function:

(a) (L,Ans)← SimPlus
g

(1)
w2 ,f

(2)
w1
, w̃1 = f (1)(w1), w̃2 = g

(1)
L (w2) Let w̃ := (w̃1, w̃2)

(b) If Ans =

• Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

• Case same∗: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, Else flag2 = 0

Let mask = Ext(w̃, s̃)

(c) L(w) := (w2, L,Ans,flag1,flag2,mask)

3. r ← U`, c = m⊕ r , c̃ = g
(2)
w2,L

(c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

Now, we are finally ready to replace m with 0`. And this give us the hybrid.
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H9(f, g,m):

Copy

(

1. w1 ← Un, w2 ← Un′ Let w := (w1, w2)

2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n′ × {0, 1}n+
1 × {0, 1}β+β′+γ+γ′+d+1 ×

{0, 1} × {0, 1} × {0, 1}` as the following function:

(a) (L,Ans)← SimPlus
g

(1)
w2 ,f

(2)
w1
, w̃1 = f (1)(w1), w̃2 = g

(1)
L (w2) Let w̃ := (w̃1, w̃2)

(b) If Ans =

• Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

• Case same∗: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

• Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, Else flag2 = 0

Let mask = Ext(w̃, s̃)

(c) L(w) := (w2, L,Ans,flag1,flag2,mask)

3. r ← U`, c = 0` ⊕ r, c̃ = g
(2)
w2,L

(c)

4. If Ans =

• Case ⊥: Output ⊥

• Case same∗: If
(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

• Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)

, output ⊥

Else output c̃⊕mask

,m

)

Notice that in our hybrid argument, we have some additional leakage w2 of w, which is

of length ` + o(`) by our analysis in  Appendix B.3.1 . Therefore, the total leakage of w is

2`+ o(`) and that makes w of length 3`+ o(`) in our construction.
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