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ABSTRACT

High speed boundary layers are an important aspect of vehicle design. It is crucial to

know whether the boundary layer is laminar, turbulent, or transitional. The heat transfer

rate increases dramatically from laminar to turbulent flow, so it must be considered when

designing a high speed vehicle. This thesis studied a flared cone geometry with forced direct

numerical simulation. This geometry has experimental data collected from a Mach 6 quiet

tunnel and previous computational data. A two stage computational procedure is carried

out in order to efficiently model the boundary layer. The first stage involved finding a full

cone solution and creating an inlet profile. This inlet profile is imposed on the inlet of a

10-degree sector of the flared cone. This is done to achieve the desired resolution while

maintaining reasonable computational costs for the DNS. With this setup, the second stage

continues with a high-order basic state computation using the inlet profile. After the higher

order basic state is computed, random forcing is applied using traveling plane waves to

promote transition and the results are analyzed. Linear stability and frequency analysis is

conducted and the unstable frequencies match with expected results. Transition is achieved

using the forcing and qualitatively matches previous experimental and computational data

for the flared cone. Just as in the experiment and previous computations, regions of primary

and secondary streaks are found and have similar heat transfer magnitudes. However, the

location of these streaks is different and is likely due to the setup of the computation.
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1. INTRODUCTION

High speed flows are an area of interest as people are trying to understand the underlying

mechanisms to create vehicles that move faster through the atmosphere. One key factor in

this is the boundary layer and understanding how it affects heat transfer rate in this regime.

The boundary layer is the thin layer of viscous-dominated flow near the surface where the

freestream flow interacts with the surface. It can be laminar, turbulent, or transitional. The

laminar boundary layer has a lower heat transfer rate and a turbulent boundary layer has

a higher heat transfer rate. For high speed vehicles, it is important to be able to predict

when laminar to turbulent transition occurs as the heat transfer rate increases dramatically.

However, the transition process is highly nonlinear and depends on a multitude of factors.

This makes it very important to be able to replicate the atmospheric perturbations in wind

tunnels or computational fluid dynamics. If not, it is difficult to observe the relevant physics

in this regime and make correct predictions for vehicle design. Quiet tunnels are created

to produce very low freestream noise levels. The Boeing/AFOSR Mach 6 Quiet tunnel at

Purdue University is designed in a way to maintain laminar sidewall boundary layers and ap-

proach atmospheric noise levels. According to measurements taken by Steen, the freestream

pressure fluctuations are lower than 0.02% of the mean whereas noisy flow in the same tunnel

is between 1.5 and 4.5% [  1 ]. At quiet levels, the underlying transition mechanisms and fea-

tures are observable. One example is the second mode instability, which is the main cause of

transition for high speed flow. To capture the second mode instability and nonlinear effects

in CFD, one must use carry out direct numerical simulations of the Navier-Stokes equations.

This form of CFD is the most resource intensive as it directly computes all relevant scales

of the flow. It is usually carried out on supercomputers, which involve thousands of inter-

connected nodes, each with dozens of compute cores. One way to get an estimation of the

stability of the flow, without using DNS, is to use Linear Stability Theory. LST can predict

the frequency that will be amplified and be the most likely cause of transition. However, as

its name suggests, it cannot predict the nonlinear regime which includes the period where

the instabilities breakdown to turbulence. This thesis will investigate a flared cone geometry

that has been investigated experimentally in the BAM6QT by Chynoweth [ 2 ] and numeri-
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cally through DNS computations carried out by Hader [ 3 ]. A more natural forcing technique

is used to promote transition. It involves using traveling plane waves to more accurately

model freestream perturbations. Additionally, the magnitude of the forcing can be aligned

with wind tunnel data. Multiple forcing profiles related to the BAM6QT will be applied to

obtain transition and validate this method of forcing.

This chapter presents information regarding the history and process of Laminar Turbulent

Transition, the theory and mechanics behind Linear Stability Theory, previous studies carried

out on the flared cone, and the scope of research conducted for this thesis. At the end, all

of the chapters in this thesis are briefly explained.

1.1 Laminar-Turbulent Transition

The process of transitioning from laminar to turbulent flow consists of three main scenar-

ios, natural transition, bypass transition, or separated-flow transition [  4 ]. Natural transition

is the scenario of interest because it follows a process where small disturbances enter the

boundary layer through receptivity, and develop into 3D structures which can breakdown

into fully turbulent flow. More specifically, the beginning of transition starts with the gen-

eration of Tollmien-Schlichting waves, which appear as 2D waves. These waves can then

develop secondary instabilities and continue into the nonlinear regime and form complex

vortices. If the instabilities continue to grow, these vortices will continue to breakdown and

proceed to turbulence [  5 ]. The other two cases, bypass and separated-flow transition, can

bypass parts of this natural process and go directly to vortex breakdown and turbulence for-

mation. Bypass transition occurs when there is strong forcing, such as rough walls or very

noisy freestream. These strong forces can cause spots of turbulence to form directly in the

boundary layer. The analysis of the production, growth, and convection of these turbulent

spots are essential to bypass transition analysis [  6 ]. Separated-flow transition happens when

a boundary layer separates from the surface and reattaches as turbulent. The region where

the laminar flow separates and reattaches as turbulent forms a “bubble” which can cause

loss in efficiency [  6 ]. Interestingly, if the flow is low noise, then part of the natural transition

process can possibly be detected in the bubble [ 7 ]. For the flared cone, natural transition is
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the scenario that is occurring as experiments are conducted in a quiet tunnel, the surface is

smooth, and the flow does not separate.

The high speed laminar-turbulent transition process on the flared cone follows the natural

transition path. Although the BAM6QT freestream is quiet relative to conventional tunnels,

a noise field does exist, and processed through receptivity. This noise forms the initial

disturbance amplitude in the boundary layer. The instabilities in this low noise system can

grow by first mode, second mode, crossflow instability, or Görtler vortices [  8 ]. Each of these

involve the eigenmode growth of unstable normal modes until nonlinear breakdown. The first

mode instability involves the generation and growth of the Tollmien-Schlichting waves, as

described above. The crossflow instability involves a 3-D velocity profile of a boundary layer

caused by the imbalance between centripetal acceleration and pressure gradient on a swept

surface. At the wall and far from the wall, there is no crossflow velocity, so an inflection

point exists and is the source of the crossflow instability [ 9 ]. The Görtler instability occurs

on concave surfaces and results in counter-rotating streamwise vortices. These vortices form

from the centrifugal force as the flow travels along the curved surface [ 10 ]. Finally, the

second mode instability is a type of acoustic wave trapped in the boundary layer. This

boundary layer acts as a waveguide with the acoustic waves being contained by the wall and

the sonic line [ 8 ], [  11 ]. This type of acoustic wave occurs when “there is an embedded region

of supersonic flow relative to the phase speed”[  12 ]. Additionally, at freestream conditions

higher than Mach 4, the second mode is predicted to be the most unstable mode [ 12 ].

Experiments conducted by Potter and Whitfield[  13 ], were able to observe the signs of second-

mode transition on a cone. Long regions of what they termed “rope waves” were observed

before transition occurred [ 13 ].

During the process of laminar-turbulent transition, many nonlinear interactions occur

which are hard to describe. One vector where these interactions occur is through the forma-

tion and breakdown of hairpin vortices. Experiments by Klebanoff et al. investigated three

dimensional boundary layer instabilities and the effect hairpin vortices have on the transi-

tion process [  14 ]. He found there were spanwise periodic patterns appearing in the boundary

layer. Computations conducted by Bake et al. used DNS to match with experimental results

and found Λ vortices forming at various spanwise locations and hairpin vortices evolving from
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them. These hairpins then have many nonlinear interactions with the freestream and even-

tually breakdown [ 15 ]. This type of breakdown is considered a Klebanoff (K-type) secondary

instability.

1.2 Linear Stability Theory

Now that the general transition process has been described, it is important to consider the

likelihood of transition for a given geometry and flow condition. Identifying and predicting

this starts with determining the unstable modes for a given flow. For second-mode waves,

and estimation can be given by the equation

f = ve

2δ
, (1.1)

where ve is the edge velocity, δ is the boundary layer height, and f is the unstable second-

mode frequency. For example, if the edge velocity was 646 m/s and the boundary layer

was around 1 mm, then the frequency for the second mode waves are around 320 kHz. As

described in the previous section, the second-mode wave is an acoustic wave trapped within

the boundary layer. With the boundary layer acting as a waveguide, the acoustic wave must

fit within it. For more thorough analysis, Linear stability theory, LST, is used. It can do this

by adding small, arbitrary disturbances to the velocity and pressure to the Navier-Stokes

equations and linearizing by assuming products of the disturbances are negligible [ 12 ], [  16 ].

The governing equations can be written in a separable form and have normal mode solutions

as seen the equation,

Ψ = Ψ′(y)ei(αx+βz−wt), (1.2)

where Ψ′ is the velocity, pressure, or temperature eigenfunction, α and β are wavenumber

components, and w is the frequency. The type of wave can give insight into the stability

of the flow. If α, β, and w have a non-zero imaginary part, then the wave will change

in amplitude, otherwise if they are all real, then it will be neutrally stable. In order to

solve these equations, the boundary conditions must be chosen. For a boundary layer, one

condition is that the disturbances approach zero far from the wall, and the other one is the
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no-slip condition [  12 ]. With this, the equations can be solved. A common way to represent

the amplification of these disturbances is to use the eN method. It compares the amplitude

of the disturbance of an initial point to the amplitude of points at locations downstream of

the initial point. This allows the tracking of growth and decay as it moves along the surface.

For low speed flow over wings, plates, and other geometries, an N-factor of 8 to 11 seem to

be the value where transition occurs most often [ 17 ], [ 18 ].

1.3 Studies on High-Speed Boundary Layer Transition

The flared cone was used in experiments at the BAM6QT at Purdue University. The

BAM6QT is a Ludwieg tube and its nozzle is designed to produce exceptionally quiet flow.

A Ludwieg tube works by having a pressure tank at one side and a vacuum tank at the

other. Once a certain pressure differential is achieved, a burst disc breaks and the tunnel

run starts. The total test duration is 5 s or less and has quasi-steady flow intervals of 0.2 s

as expansion waves reflect up and down the tube. With this short duration, an isothermal

surface boundary condition can be used in computations. Following his experiments in this

wind tunnel, Chynoweth successfully observed transition on the flared cone and recorded

a set of primary and secondary streaks using temperature sensitive paint. Temperature

sensitive paint is used to obtain approximate heat transfer rates and can be considered

time-averaged. His results from Run 1611 can be seen in Figure  1.1 . From this, he is able

to generate streamwise and spanwise plots of heat transfer available in Figure  1.2 and  1.3 .

Chynoweth conducted multiple experiments at different Reynolds number and found that

the unstable mode increases frequency as Reynolds increases. At the conditions for Run

1611, the second-mode frequency is around 340 kHz.

Along with experimental results, DNS was conducted by Hader using various forcing

methods. These included a controlled disturbance input and a natural disturbance input

which are both input at a slot on the surface, the inlet boundary, or a combination of the

two [ 3 ]. The controlled forcing and random forcing cases will be referred to in this thesis

as Case HC and Case HR, respectively. To control the flow and cause it to transition, the

most unstable frequency, around 300 kHz, is input for as the input for Case HC. Using
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Figure 1.1. Experimental transition on the flared cone with heat transfer
contours. Used with permission of the author [  2 ].

Figure 1.2. Streamwise
heat transfer profile aver-
aged across various meth-
ods [ 2 ].

Figure 1.3. Spanwise
heat transfer extracted at
the primary and secondary
streak locations [ 2 ].

the controlled forcing method, Case HC successfully captures the two regions of streaks at

nearly the same location as the experiment. Case HR used random pressure fluctuations at

the inlet of the domain to simulate acoustic noise. Using this more natural method, Hader

was able to see transition in a similar manner, although slightly different. The results of

these two methods can be seen in Figure  1.4 . Additionally, the structures of the streaks were
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investigated by creating iso-surfaces of Q-criteria in Case HC seen in Figure  1.5 . Hader found

evidence for Klebanoff type breakdown with Λ vortices which evolve into hairpin vortices as

nonlinear effects start to occur.

Figure 1.4. (a) Time-averaged Stanton number. Left is controlled forcing
(Case HC), right is random forcing (Case HR). (b) Closer view of Stanton
number. Top is controlled forcing, bottom is random forcing. Used with
permission of the author [ 3 ].
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Figure 1.5. Iso-surfaces detailing the structure of the flow during transition
of the controlled forcing case (Case HC). Used with permission by author [ 3 ].

1.4 Scope of Research

This thesis aims to reproduce the transition process observed experimentally by Chynoweth

[ 2 ] and computationally by Hader [  3 ], [  19 ] by introducing random disturbances into the flow.

The disturbances are introduced into the freestream as a body force using randomly char-

acterized traveling plane waves. These waves model freestream noise that exists in a wind

tunnel or the atmosphere more naturally compared to Hader’s work. Additionally, wind

tunnel noise profiles are applied to the forcing amplitude to more closely align with wind

tunnel conditions. This will allow a more natural and accurate transition process compared

to uniform forcing. Using this, the DNS will try to obtain results of heat transfer rate

that matches the pattern of primary and secondary streaks. Success with this method will

validate this type of random forcing along with the usage of wind tunnel noise profiles.

Chapter 2 covers the freestream conditions in detail and what tools and processes were

chosen to compute the flared cone. It discusses the procedure and explains the mesh gener-

ation along with Kestrel and Wabash, the CFD solvers that are used. Kestrel is an unstruc-

tured finite volume code created by the DoD and is optimized for various air vehicles. It

20



has many options which are explained in this chapter. Wabash is a very capable structured

solver which can introduce the random forcing into the freestream. This, and other capa-

bilities in Wabash, are discussed here. In order to help validate the CFD results, a linear

stability theory code, LASTRAC, is used and is also explained in Chapter 2. Finally the

machines where these codes are executed are described along with some details of carrying

out computations on large clusters.

Chapter 3 discusses the results of Kestrel, Wabash, and LASTRAC. It covers the com-

parison of Kestrel and low-order Wabash calculations and the results of a high resolution

Kestrel run that creates the inflow condition for DNS. The DNS involves multiple cases of

different random forcing, these results are each briefly discussed and then compared in detail

with each other and with Hader’s and Chynoweth’s results.

Finally, Chapter 4 discusses the conclusions gathered from these results, what could have

been done better, and suggests ideas to expand upon this research.
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2. METHODOLOGY

This chapter describes the geometry, flow conditions, mesh, and the tools used to compute

and analyze the flared cone. There are three different solvers used, each with its own purpose.

Kestrel is a lower order accuracy, unstructured-grid CFD solver that can generate solutions

quickly. Wabash is the high-order solver which is used to carry out the large computations.

It can also be switched to a lower order mode and is compared to Kestrel. LASTRAC is

the LST tool used to analyze the basic state of the flow and predict which frequencies are

unstable. There is a section describing noise profiles from the BAM6QT and how they are

implemented in Wabash. Finally, the machines these computations are carried out on are

described along with a few details about computing on large clusters.

2.1 Geometry and Flow Conditions

The flared cone geometry is given by Chynoweth [ 2 ]. There are detailed drawings which

describe the shape and geometry of the cone. The surface of the cone is created from a 3

meter radius circle and with a nosetip of 0.0001 m. This simple geometry allows the use

of algebraic expressions for grid generation. The radius for the surface of the cone can be

described with the equation,

r =
√

9 + (x + 0.08)2 − 3.001, (2.1)

where x is the axial distance and r is the radius. This curve can be seen in Figure  2.1 , with

a curve revolved around the x-axis in Figure  2.2 . The flow conditions used in this thesis are

based on BAM6QT Run 1611 by Chynoweth and are detailed in Table  2.1 . The model has a

length of 0.51 m and the computational domain was extended to 0.6 m to allow extra space

for the boundary layer to transition. The design of the BAM6QT allows a total run time of

5 s, so an isothermal wall condition is used. Furthermore, the gas is considered a perfect gas

as the freestream temperatures are low. With these low temperatures, the viscosity model

may become an issue so it is necessary to investigate multiple options. The Sutherland’s
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Figure 2.1. Flared Cone
Surface Equation Figure 2.2. Flared Cone Geometry

Table 2.1. Freestream Conditions
Parameter Value

Mach 6
Freestream Velocity 864 m/s
Freestream Pressure 684 Pa

Freestream Temperature 51.46 K
Unit Reynolds Number 12E6/m

Isothermal Surface Temp 300 K

formula has an error of <2% for temperatures in the range of 170-1900 K [  4 ], [ 20 ], and it is

defined for air by the equation,

µ = µ0

(
T

T0

) 3
2
(

T0 + 110.4
T + 110.4

)
. (2.2)

Reference temperature and viscosity are given by T0 and µ0, respectively, and the tempera-

ture of interest is given by T . This flow is outside the range for the Sutherland’s equation,

at 51 K. A lower temperature model, the Keyes model, is investigated to be a potential

replacement. It is defined with the equation,

µ =
(

a0
√

T

1 + a1τ/10atτ

)
· 1 × 10−6, (2.3)
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where a1, at, and a0 are constants and τ is equal to T −1. Additionally, it is valid for

temperatures in the range of 90-1845K [ 21 ]. The freestream temperature of 50 K lies below

even this extended range. The two models are compared in Figure  2.3 ,  2.4 and it details

differences of around a 10% at 50 K. Within the intended ranges, the percent difference

is below 2%. With both being slightly outside of their intended range at the freestream

temperature, determining which one is better would require more thorough study. In the

end, Sutherland’s equation is chosen.

Figure 2.3. Viscosity
model comparison.

Figure 2.4. Viscosity
model % difference w.r.t.
Sutherland’s equation.

2.2 Computational Procedure

There is a large difference in scale between the nosetip and the length of the cone. This

can cause some issues with going directly to a high-order Wabash calculation on the whole

cone. As the distance from the nosetip decreases, the azimuthal cell edge length decreases

significantly. For Wabash, only global timestepping is used, so the maximum stable time

step is based on the smallest cell. With a small enough cell length, the computation could

potentially take months to compute. In order to overcome this obstacle, local time stepping in

Kestrel is used to generate an initial lower-order basic state solution of the full 3D geometry.

With this, a profile normal to the surface can be extracted and used as an input to the

high-order Wabash calculation. The extract is applied to and held constant at the entire
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inlet plane of the high-order Wabash calculation. A comparison between the Kestrel and

Wabash on a common grid will provide confidence in this process and in this thesis the DNS

will refer to the high-order Wabash calculation.

With the nosetip removed, the DNS can model the rest of the cone with much higher

resolution. Even with this method, only a few degrees of the cone in the circumferential

direction can be used. This is because the cost of DNS is much higher than a low-order basic

state calculation; a DNS with the whole 360o cone would consist of tens of billions of cells

and require far too many resources. In order to calculate the high-order basic state from the

inlet condition, a two stage process is carried out in Wabash to increase the stability of the

calculation. The computation starts off lower order and is switched to higher order to finish

the basic state. Once the basic state solution for DNS is developed, noise can be introduced

to model the atmospheric perturbations or specific wind tunnel profiles. The noise will be

adjusted until it reaches a sufficient strength and transition is achieved. Finally, LASTRAC

is carried out on both the Kestrel and the Wabash basic states. It requires a 2D slice of each

and can be easily extracted and computed from the basic state solutions.

2.3 Mesh

In this thesis, the indices i, j, and k correspond to the axial, wall normal, and azimuthal

mesh directions, respectively. The comparison of Kestrel and Wabash involve a common

mesh where the nosetip is numerically sharp. After this is completed, a modeled nosetip

mesh is created and used in Kestrel to create a low-order basic state solution to extract the

inlet condition. Both the modeled nosetip mesh and the numerically sharp nosetip mesh are

similar and created with the following process. A 2D axisymmetric mesh is generated using

Equation  2.1 , and each nosetip type is added to the front. From this, the grid is revolved

and refined in Pointwise. Part of this refinement for the modeled nosetip mesh is adding

an O-grid on the nosetip to bypass a singularity that would result from rotating a 2D grid.

These meshes can be seen in Figure  2.5 along with magnified nosetips in Figure  2.6 and

Figure  2.7 . A sponge layer is added at the rear of the cone to dissipate any reflections and

numerical noise at the boundary and the overall mesh dimensions are available in Table  2.2 .
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Figure 2.5. Kestrel Grid Overview

Table 2.2. Grid details for the code comparison and low-order basic state
solution. Only Kestrel is used for the low-order basic state solution.

Parameter Low-Order Basic State Code Comparison
Nosetip Type Modelled Numerically Sharp
Total Cells 260E6 65E6

Nosetip Cells(unstructured) 9E6 N/A
Body Cells(structured) 251E6 65E6

Initial Wall Spacing 5 × 10−6 10 × 10−6

Axial Resolution (i) 844 600
Wall Normal Resolution (j) 600 600
Azimuthal Resolution (k) 500 181

Degrees/Cell 0.72o 2o

As mentioned in Section  2.2 , the nosetip for the DNS (Wabash) will have to be cut off

to maintain a reasonable time step. The resolution is guided by the approach that Hader

[ 19 ] used for his work on this geometry. The azimuthal resolution is important as there are

streaks found by Chynoweth and Hader [ 2 ], [  19 ]. In order to create the cone, Equation  2.1 is

rearranged to determine how much of the cone would need to be cut off for a certain azimuthal

resolution and angle. With the azimuthal angle and resolution, the radius is known and the

x cut off value can be found. This is done by determining a partial circumference using the
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Figure 2.6. Kestrel Nosetip Grid

Figure 2.7. Sharp Nosetip Grid

minimum edge length and the azimuthal resolution. Then, the partial circumference and

azimuthal angle can find the radius and x value. This process can be seen in the equations

∆e = 1 × 10−5m, Ωk = 10o = π/18,

kmax = 400 cells,

C = kmax ∗ ∆e,

r = C/Ωk,

xcut =
√

(r + 3.001)2 − 9 − 0.08,

(2.4)
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where ∆e is the minimum edge length, C is the partial circumference, kmax is the max

resolution in the k direction, and Ωk is the azimuthal angle being resolved measured in

radians. The target azimuthal resolution is around 0.035 degrees/cell and the minimum

edge length to obtain a reasonable time step is around 1 × 10−5. In this case, the values for

azimuthal resolution and angle are 400 cells and 10o, respectively, and results in the DNS

grid starting at 0.3m from the nosetip. With so much of the cone cut off, it is extended and

resolved until 0.6m; 0.09m longer than experiment. This allows more time for the unstable

modes to grow and develop if it does not transition before the end of the model. The grid is

generated algebraically and the details are available in Table  2.3 . A sponge layer that grows

with a stretching ratio of 1.2 is used at the rear of the cone to damp out any numerical noise

originating at the boundary. The resulting computational domain can be seen in Figure  2.8 .

Additionally, extra space above the shock was included in the grid to allow generation of

noise in the freestream.

Table 2.3. Wabash Grid Details
Parameter Value
Total cells 1282E6

Angle modeled 10o

Cut off location 0.30 m
Initial wall spacing 1 × 10−5

Axial Resolution (i) 4025
Wall normal resolution (j) 801
Azimuthal resolution (k) 400

Degrees/Cell 0.025o

Boundary layer cells 100
Time step 1.3 × 10−8 s

Sampling frequency 77 MHz
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Figure 2.8. Wabash Computational Domain.

2.4 Kestrel

Kestrel is a CFD solver which is optimized to generate efficient and accurate solutions

for various air vehicles. It is developed by the DoD CREATETM team and is used to improve

“DoD acquisition program timeline, cost, and performance”[  22 ]. It regularly receives updates

improving its capabilities. Some recent or planned developments involve implementing an

unstructured adaptive mesh refinement technique, thermochemical capabilities, and better

user interface and workflow. More details about the development and usage can be found

in [  23 ]–[ 25 ]. The main component used in this thesis, KCFD, is an unstructured, finite

volume solver that can use second-order accurate space and time. It has the ability to use

Euler, laminar, or turbulent flow with the Spalart-Allmaras and Menter turbulence models

or the Menter one-equation transition model. KCFD can do global and local time stepping

depending if time-accurate solutions are desired. Additionally, there are a multitude of

available boundary conditions that are useful for many different types of CFD cases. For

this thesis, the options chosen for this case are summarized in Table  2.4 . The boundary
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Table 2.4. Kestrel Configuration
Equation set Navier-Stokes

Turbulence model None
Spatial accuracy Second-order

Temporal accuracy First-order
Time stepping Local

conditions consisted of a no-slip condition with an isothermal wall at 300 K. The inlet is a

farfield condition and the sponge layer allows the outlet to also be a farfield. The boundary

conditions can be seen in Figure  2.9 . The flow is calculated as laminar using local time

stepping with an initial Courant-Friedrichs-Lewy (CFL) number of 100. As the solution

progresses, the CFL increases up to a value of 1000. The spatial accuracy is the highest

available at second-order accuracy. The temporal accuracy is chosen as first-order to more

quickly progress to a steady state solution. The inviscid flux scheme is HLLE++ and the

viscous flux is LDD+.

Figure 2.9. Kestrel Boundary Conditions: red is wall, blue is farfield.

2.5 Wabash

2.5.1 Capabilities

Wabash, formerly known as HOPS (Higher Order Plasma Solver), is a high-ordered,

structured, and overset code being developed by J. Poggie [  26 ]–[ 29 ]. It contains various nu-

merical schemes for spatial and temporal discretization. This allows one to improve stability
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Table 2.5. Wabash Configurations
Low-Order High-Order

Spatial Scheme explicit second-order differencing implicit sixth-order differencing
Temporal Scheme implicit first-order explicit fourth-order Runge-Kutta

Time Step Adaptive, based on smallest cell CFL Fixed at 1.1 × 10−5

Upwinding Roe scheme Compact scheme & Roe scheme near shocks
Shock Detector Off On

High-Order Filtering Off On, template begins with eigth-order

of a solution by starting with a low-order scheme and switching to a high-order scheme.

This process is carried out for the DNS basic state. The lower-order computation uses

2nd-order differencing and first-order implicit time stepping to best prepare the solution for

more unstable high-order schemes. Once the lower-order calculation is completed, the spa-

tial discretization is switched to implicit sixth-order compact differencing and the temporal

discretization is switched to explicit fourth-order Runge-Kutta time stepping. A summary

of the options used in this thesis are available in Table  2.5 . When the higher-order basic

state is completed, random forcing can be injected into the freestream to promote transition.

There are various forcing options and they are described in Section  2.5.2 . The boundary

conditions consist of an inlet profile, an extrapolation outlet, and periodic side walls. Addi-

tionally, strong filtering is applied in the sponge layer to damp disturbances originating at

the boundary.

2.5.2 Freestream Forcing

As mentioned in previously, Wabash has the capability to impose freestream forcing to

promote transition. The implementation is similar to that employed by Tufts et al. [  30 ] and

Cerminara et al. [  31 ] and involves traveling plane waves composed of randomly generated

characteristics. The forcing is created to be fully resolved and continuous across boundaries

of domain decomposition. Plane waves are described by the following equations:

Ψ(x, t) = A cos [Φ(x, t)],

Φ(x, t) = k · x − ωt + φ,
(2.5)
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where Ψ(x, t) is the vector wave function and A is the amplitude vector. Furthermore,

Φ(x, t) is the scalar phase function with wavenumber vector, angular frequency, and phase

shift of k, ω, and φ, respectively. Additionally, the wavenumber vector can be split into

wavenumber, k, and unit normal vector, n, using k = kn. In order to accurately create

acoustic waves in a moving fluid, the Doppler shift must be accounted for. The following

equation adjusts the wavenumber relative to the velocity, V, and the speed of sound, a, of

the medium.

k = w/|a + V · n| (2.6)

Furthermore, the unit vector, n, can be defined using spherical coordinates as seen in the

equations below

n1 = cos θ1,

n2 = sin θ1 cos θ2,

n3 = sin θ1 sin θ2,

(2.7)

where θ1 and θ2 are the polar angle and azimuthal angle, respectively. With this, the acoustic

wave can be generated by randomly assigning values to θ1, θ2, and φ for each frequency. The

actual forcing is implemented as a body force with the equations:

f = A
∑

i
ai

[
ωix · n

|a + V n1|
− ωit + φi

]
n, (2.8)

where f is the body force, A is the amplitude, ai is an amplitude constant, ω is the angular

frequency, n is the direction of the wave, a is the speed of sound, V is the local flow speed,

and φ is the angular phase [  32 ]. For this thesis, i = 201 and represents evenly spaced modes

between the frequencies of 11 kHz and 770 kHz. There is an option to introduce a heat

source in a similar manner, but it is not considered in the current work. Additionally, the

location is specified by creating a 2D quadrilateral that is revolved around the cone. For

example, the beginning and ending x and the height are specified along with an optional

slant angle. With the location and type of forcing specified, noise can be implemented and
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the effect can be observed. Andrews and Poggie [  33 ] have found nonlinear growth resulting

from the use of this formulation implemented in Wabash.

Wabash can also specify relative magnitudes for each frequency instead of a uniform

distribution. This means the forcing profile can be matched with wind tunnel disturbance

spectra. In this case, the BAM6QT has available data collected by Gray [ 34 ] for both noisy

and quiet flow and are used to create a forcing profile in Wabash. This process of converting

the data to a usable form is detailed by Shuck [ 35 ] and the resulting equations of best fit are

available in Figure  2.10 . These equations can then be used in Wabash to generate profiles

replicating noise in the BAM6QT. Additionally, Duan et al. conducted a detailed study to

characterize the freestream noise in wind tunnels and relate DNS of the wind tunnels to

experiment [  36 ]. Duan et al. used DNS to support the experiment and found disturbances

quantities that are difficult to obtain otherwise. His work is the first step in a series to

compute observed transition in certain wind tunnels using disturbance models.

Figure 2.10. BAM6QT Noise Profiles
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2.5.3 Other considerations

Wabash has the capability to be overset which has the potential to solve the nosetip

issue. Multiple overset blocks, each decreasing in azimuthal resolution until a numerically

sharp nosetip is achieved, can be used to model much more of the cone than a single block

can. This involves reducing the azimuthal resolution in stages by a factor of two until it

reaches around 20 cells across. This results in a mesh that consists of 6 blocks and can be

seen in Figure  2.11 . In theory, this is a better option than calculating the nosetip region as

a separate solution and imposing it on a DNS solution, however the interpolation accuracy

between the grids is currently only second-order. Each time they pass through an overlap, the

disturbances will be damped. With this number of blocks, the disturbances will be extremely

dampened by the time they reach the final block. With Kestrel being second-order as well,

the consideration moves to the computational cost and complexity. The simplest and most

cost efficient method is to start with Kestrel and impose an inflow for Wabash. Although

the noise cannot grow along the whole length of the cone, the cone has been extended and

stronger forcing can be introduced to compensate for that.

Figure 2.11. Overset DNS Domain

2.6 LASTRAC

The Langley Stability and Transition Analysis Code, LASTRAC, is a code developed at

the NASA Langley Research Center. It was created to “provide an easy-to-use engineer-
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ing tool for routine use and to incorporate state-of-the-art computational and theoretical

findings for integrated transition predictions” [ 37 ]. This is accomplished by using LST or

PSE to determine the N-factors of various disturbance frequencies. It can be used for 2D,

axisymmetric, infinite swept wing boundary layers, and general 3D boundary layers [  38 ]. To

use this code, the type of flow being analyzed is specified. In this case, it is a 2D axisym-

metric boundary later. Additionally, the type of solution desired is specified and chosen to

solve the local eigenvalues. LASTRAC then marches through stations corresponding the the

grid points in the i direction and tests frequencies ranging from 10 kHz to 1000 kHz at each

station. From this, the N-factors are calculated and unstable frequencies can be identified.

2.7 Computational Resources

The majority of the computations carried out for this thesis were completed on two ma-

chines, Engineer Research and Development Center’s Onyx and Navy DoD Supercomputing

Resource Center’s Narwhal. Onyx is a Cray CX 40/50 with 4,810 standard compute nodes,

each with a dual socket motherboard with two 2.8-GHz Intel Xeon Broadwell 22-core pro-

cessors and 128 GB of DDR4 memory. Onyx has robust data storage consisting of a work

directory of around 13 PB and a home directory of 900 TB. Furthermore, these storage

systems are managed by the Lustre file system. This allows them to use parallel I/O which

can scale to hunderds of GB per second [ 39 ]. This is key for DNS, as the files tend to be very

large and there are many write operations taking place when collecting statistics. Narwhal

is a HPE Cray EX system recently deployed by the NavyDSRC. It consists of 2176 standard

compute nodes, each with two AMD Epyc ROME 7H12 64-core processors and 256 GB

of DDR4 memory. Narwhal has similarly sized home and work directories which are also

managed by the Lustre file system.

In order to fully utilize resources on a supercomputer, the domain must be split into man-

ageable subdomains. For the compact difference approach employed in this work, Garmann

found that an ideal subdomain is around 100x100x100 cells in the i, j, and k directions[ 40 ].

To obtain that size of subdomain, the i, j, and k grid dimensions are split into 40, 8, and 4

pieces from a total of 4000, 801, and 400 points, respectively. The number of subdomains in
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Table 2.6. MPI and OMP Configurations for 1280 ranks
Onyx (2x 22 core) Narwhal (2x 64 core)

MPI Processes OMP Threads Total Cores MPI Processes OMP Threads Total Cores
4 11 14,080 (320 nodes) 128 1 1,280 (10 nodes)
2 22 28,160 (640 nodes) 64 2 2,560 (20 nodes)
1 44 56,320 (1280 nodes) 16 8 10,240 (80 nodes)
44 1 N/A 8 16 20,480 (160 nodes)
22 2 N/A 2 64 81,920 (640 nodes)
11 4 N/A 1 128 163,840 (1280 nodes)

this configuration is equal to 1280 and is equal to the number of MPI ranks employed in the

calculation. The computer cores are distributed between MPI and OpenMP processes in a

specific way to take advantage of node interconnects and shared memory. For example, Onyx

has 44 cores per node and if 4 MPI processes per node are chosen, then up to 11 OpenMP

threads can be employed to accelerate the solution. The product of the number of OMP

threads and MPI ranks must equal the number of cores per node. This results in a setup on

Onyx for 1280 cores allocated across 4 MPI ranks per node with 11 OMP threads distributed

across a total of 320 nodes. Additionally, testing revealed that distributions consistent with

the nonuniform memory access (NUMA) structure of a node provide better results so it is

important to select the number of subdomains that will take advantage of this. Relating this

back to Onyx and its 2x 22 core nodes, it is best if the OMP threads and MPI processes are

4x11, 2x22, 1x44, etc, however, not all combinations work with a certain number of ranks.

Examples for 1280 ranks on Onyx and Narwhal are listed in Table  2.6 . One can see the

number of ranks is better aligned towards Narwhal as the available options for Onyx are

only three. This could be changed if the grid points and grid partitioning are both adjusted

to align with the 44 cores per node on Onyx. The computations in this thesis are carried

out with 4 MPI processes and 11 OMP threads on Onyx and with 8 MPI processes and 16

OMP threads on Narwhal.
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3. RESULTS

This chapter describes the results generated with the codes Kestrel, Wabash, and LAS-

TRAC. It covers the heat transfer on the surface and a different streak formation occurring

in low order solutions. It also discusses how the inlet condition is chosen for Wabash. Once

the basic state is calculated, LASTRAC is used to conduct an LST study on the Kestrel and

Wabash basic state. Several forcing schemes are used in DNS to investigate the effects and

are defined along with the experiment and Hader’s DNS cases in Table  3.1 . The uniform

forcing corresponds to Case U and involves a uniform distribution of forcing amplitude across

frequencies. Quiet forcing corresponds to Case Q, and represent the spectrum of freestream

fluctuations in the BAM6QT under quiet-flow operation, as shown in Figure  2.10 . Noisy

forcing corresponds to Case N, and represents the corresponding noisy-flow BAM6QT spec-

trum, as shown in Figure  2.10 . With these forcing schemes, the heat transfer results and the

spectra of locations in the boundary layer are analyzed. Finally, the results are compared

to each other and with the experimental and computational results found by Chynoweth [ 2 ]

and Hader [ 3 ], [ 19 ].

Table 3.1. DNS and experiment identification for plots.
Chynoweth Run 1611 Experiment

Uniform forcing Case U
BAM6QT quiet flow Case Q
BAM6QT noisy flow Case N

Hader controlled forcing Case HC
Hader random forcing Case HR

3.1 Low-order Calculations

Kestrel’s main use in this project is to efficiently calculate an accurate laminar-flow

result for the entire flared cone geometry. With an accurate laminar-flow solution, the inlet

condition for direct numerical simulation with Wabash can be extracted. To check these

results, Wabash and Kestrel were compared with each other on a common grid with similar

order of accuracy settings. In order to do this, the nosetip must be removed and a numerically
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sharp nosetip is added. The mesh is described in a previous section and can be seen in Figure

 2.5 and  2.7 .

3.1.1 Numerically Sharp Nosetip Solution with Wabash and Kestrel

The numerically sharp laminar-flow solutions were computed in both Kestrel and Wabash.

The skin friction coefficient magnitude can be seen in Figures  3.1 and  3.2 . At first glance,

the solutions look almost identical. However, adjusting the contours in Figure  3.3 and  3.4 

illustrates the relatively small differences more clearly. In the figures, streaks can be seen at

90o degree intervals. Data along cirumferential lines on the cone surface were extracted to

more clearly identify the magnitude and can be seen in Figure  3.5 and  3.6 . These streaks

are not large in magnitude, but could have a significant impact on the transition process.

Computations were carried out to determine if the streaks were a numerical artifact related

to grid smoothness and quality. Among other things, the subdomain locations were adjusted,

overlapping for the periodic boundary conditions were adjusted, and half or quarter grids

were used. In each case, the results were the same and showed periodic streaks. In the

end, the hypothesis is that there are streaks inherent to the geometry and are stationary

instabilities resulting from the curvature of the cone. Similar phenomena were observed in

computations of HIFiRE-5b detailed by Porter et al. [  41 ]. Although unexpected, the fact

that both Kestrel and Wabash, employing different numerical methods, predict these steaks

and give confidence in the results. Further similarities between Wabash and Kestrel results

can be seen in a streamwise extract available in Figure  3.7 .
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Figure 3.1. Kestrel:
Numerically sharp solution
displaying skin friction co-
efficient magnitude.

Figure 3.2. Wabash:
Numerically sharp solution
displaying skin friction co-
efficient magnitude.

Figure 3.3. Kestrel:
Numerically sharp solution
with adjusted contours
of skin friction coefficient
magnitude.

Figure 3.4. Wabash:
Numerically sharp solution
with adjusted contours
of skin friction coefficient
magnitude.
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Figure 3.5. Circumferen-
tial skin friction coefficient
magnitude at x = 0.4m.

Figure 3.6. Adjusted cir-
cumferential skin friction
coefficient magnitude at x
= 0.4m.

Figure 3.7. Streamwise skin friction coefficient magnitude taken down the
center of a streak.
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3.1.2 Modeled Nosetip Solution and Inflow Extraction

With Kestrel producing similar results to Wabash, a higher resolution mesh was created

for the modeled nosetip to be the initial stage for DNS. Solution convergence is ensured

by investigating the skin friction coefficient magnitude as the iterations continued. Figure

 3.8 presents skin friction coefficient magnitude plotted for various iterations. It is focused

on the location of extraction and all iterations fall within 1%. The skin friction coefficient

contour is available in Figure  3.9 and  3.10 . Additionally, comparisons between this and the

numerically sharp tip are shown in Figure  3.11 . Again, there are large streaks separated 90o

apart. With higher resolution, smaller streaks are also visible and is similar to what Porter

observed found as he increased grid resolution. With the basic state computed in Kestrel,

Figure 3.8. Skin friction coefficient magnitude by iteration count.

a profile can now be extracted to apply to the inlet of the DNS. The location is determined

by the grid generation process of the DNS. The extraction is very carefully done as to match

the start of the DNS grid perfectly. The location of the extraction can be seen in Figure

 3.12 . This data is treated as axisymmetric and interpolated on to the entire inlet plane of

the DNS. The boundary condition for the DNS inlet is set so that these values do not change

during the duration of the DNS.
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Figure 3.9. Kestrel: Mod-
eled nosetip with skin fric-
tion coefficient magnitude
contours.

Figure 3.10. Kestrel:
Modeled nosetip with ad-
justed skin friction coeffi-
cient magnitude contours.

Figure 3.11. Skin friction coefficient magnitude comparison with Kestrel
with no tip, Kestrel with a tip, and Wabash with no tip.
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Figure 3.12. Location of DNS inflow extract.
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3.2 DNS Basic State

The basic state of the DNS is computed with no forcing and a long run time. The rear of

the cone can be seen in Figure  3.13 . It is expected that the flow would be laminar the entire

length, however, a small packet of rope waves can be seen. A close up of the density profile

and density gradient magnitude can be seen in Figures  3.14 and  3.15 . The cause of this may

have to do with imperfections involving the inflow condition, the filter settings, numerical

error such as truncation error and roundoff error, or from numerical noise introduced from

the compact differencing scheme. However, it is reassuring that the flow develops the second

mode instability on its own and that the addition of noise (forcing) leads to early transition.

Additionally, the frequency for the second mode waves can be estimated using Equation  1.1 .

The boundary layer thickness is 1 mm and the edge velocity is 599 m/s. This results in

an estimated frequency around 300 kHz. Along with surface and volume analysis, spectral

analysis is conducted on all cases using wall pressure data. The statistics for these frequencies

are collected at 0.375 m, 0.49 m, 0.55 m, and 0.58 m and are used to map the evolution

of the unstable modes as they travel down the cone. The results for the basic state are in

Figure  3.17 with Figure  3.16 as a reference to the locations. It is noted that the first location

had an issue and can not be shown. However, each location after that shows a strong 300

kHz frequency with its harmonics gaining amplitude as they travel down the cone.

Figure 3.13. Basic state
of the flared cone.

Figure 3.14. Density near
the aft-body of the cone.
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Figure 3.15. Density gradient magnitude detailing rope waves.

Figure 3.16. The four red
lines correspond to the four
locations where data is col-
lected on the surface

Figure 3.17. Energy for
frequencies found at vari-
ous x locations on the sur-
face of the cone
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3.3 LASTRAC

Although there are signs of second-mode transition in the DNS basic state, it is important

to confirm the unstable modes with a separate tool before more resources are spent on DNS

with random forcing. A 2D slice is extracted from each basic state and used as inputs for

LASTRAC. It then calculates the N-factors for selected frequencies at each station along the

cone. The results calculated using the basic states obtained with Kestrel and Wabash can

be seen in Figures  3.18 and  3.19 . The most unstable modes are around 300 kHz, as seen

in both figures. This result is close to the experimental findings for second mode instability

and aligns with the estimation calculated above. The maximum N-factor for each mesh is

different as the Wabash mesh does not have the same distance for the instabilities to grow.

The black dotted line represents an N-factor of 12 and is drawn to compare the two cases.

If the flow were to transition from the same frequency at an N-factor of 12, the Kestrel

mesh would transition at a distance of around 0.35 m. In the DNS mesh, the transition is

delayed to around 0.5 m for the same N-factor and frequency. Additionally, the N-factor

vs frequency plot is available in Figure  3.20 , and shows that the maximum amplitude is

decreased compared to the Kestrel mesh. Again, this is from the shorter distance available

for the disturbance to grow.
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Figure 3.18. N-factors
for frequencies along the
Kestrel basic state. Black
dotted line corresponds to
N-factor equal to 12.

Figure 3.19. N-factors
for frequencies along the
Wabash basic state. Black
dotted line corresponds to
N-factor equal to 12.

Figure 3.20. N-factor distribution for both Wabash and Kestrel basic state.
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3.4 Random Forcing Outside of the Boundary Layer

There are a few ways to introduce the forcing and the initial thought is to introduce it

outside of the boundary layer to allow it to naturally pass through the shock and enter the

boundary layer as it does in wind tunnels or flight tests. The region of forcing is detailed

as the box in Figure  3.21 . This region is rotated around the x axis to form a ring shape

around the body. Various forcing strengths were used to find the value required to initiate

Figure 3.21. Location of forcing outside of boundary layer

transition. This involves using values of A in Equation  2.8 as 1 × 10−1, 1, 1.5, 3, 6, and 12.

Unfortunately, this method was unsuccessful and resulted in no progress towards transition.

The strongest forcing of 12 can be seen in Figure  3.22 . There is a small packet of rope

waves, but significant growth was not observed. Additionally, it is interesting to note that

at a value of 12, the forcing is very large and can be seen disrupting the shock layer. In the

end, further research is needed for the receptivity of disturbances into the boundary layer.
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Figure 3.22. Very strong forcing visible with no significant effect on the boundary layer

3.5 Random Forcing within the Boundary Layer

With no success with the previous forcing scheme, the forcing is now placed in the

boundary layer. It covers the entire domain that is behind x=0.39 m and can be seen in

Figure  3.23 . A range of amplitudes was again used to try to find transition. In this case,

the strengths consist of 1 × 10−2, 1 × 10−1, and 1. This time, there is an effect and more

notable transition occurred at a strength of 1 × 10−2. The density profile can be seen in

 3.24 and rope waves are clearly visible. However, the location of the start of transition is

not at the distance from the nosetip that was observed experimentally. This means more

space or more forcing is needed for the rope waves to develop and breakdown. The forcing

at a strength of 1 × 10−1 also provides promising results, but the location again does not

match experiment. The strength of 1 provided full transition, however, it is still not in the

measured location. Unfortunately, using a strength larger than 1 causes the solution to stop

because the forcing creates negative temperatures and pressures. Therefore, the uniform

noise profile, quiet profile, and noisy profile, described in Section  2.5.2 , are each used with a

forcing strength of 1 for Case U, Case Q, and Case N, respectively.
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Figure 3.23. Forcing region with boundary layer included

Figure 3.24. Start of transition with a strength of 1 × 10−2
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3.5.1 Case U

The uniform random forcing profile is able to cause the flow to transition and breakdown

using a strength of 1. Figure  3.25 provides an overview of the region of interest showing

instantaneous density and skin friction magnitude. In Figure  3.26 , 2D axisymmetric waves

can be seen and are similar to those observed near the end of the unforced solution. Figure

 3.27 , continues downstream and highlights secondary instabilities that form cross hatches as

the 2D waves break down. Finally, Figure  3.28 shows a region of streamwise streaks forming

before break down occurs in Figure  3.29 . The time averaged heat transfer is available in

Figure  3.30 and the primary and secondary streak formation that Chynoweth and Hader

found can clearly be seen. To better visualize what is going on, Q-criterion is used to create

iso-surfaces colored by streamwise vorticity. Figure  3.31a shows the axisymmetric waves

and highlights a rise in heating to their deformation. Figure  3.31b details the secondary

instabilities that create crossed vortices which contribute to high skin friction seen more

clearly in Figure  3.32 . Down stream of these features, streamwise vortices begin to form

and create streaks on the surface. Eventually, these vortices gather energy through complex

interactions and break down to form the secondary streak location as seen in Figure  3.31c .

Additionally, spectral analysis is carried out using wall pressure data and Figure  3.33 shows

the location of the analysis locations relative to the flow structure. The resulting frequency

results are available in Figure  3.34 . The first location at 0.375 m is still within the forcing

region and reflects the uniform forcing profile. At the location within prevalent rope waves,

the energy for 300 kHz and its harmonics grow while the other frequencies are damped. As

these rope waves start to break down, the energy spreads out. Finally, once the flow breaks

down to turbulence, there is a smooth broadband energy distribution with no particularly

strong frequencies.
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Figure 3.25. Case U: Transition to turbulence at a forcing strength of 1.
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Figure 3.26. Case U: Ax-
isymmetric waves with fluc-
tuating magnitude.

Figure 3.27. Case U: 2D
waves break down and form
cross hatches on the sur-
face.

Figure 3.28. Case U:
Vortices form which leave
streaks on the surface.

Figure 3.29. Case U: Vor-
tices break down into tur-
bulence.

Figure 3.30. Case U: Time-averaged heat transfer on the surface of the cone.
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(a) Uniform heating until 2D waves start to
deform.

(b) Waves break down and cause intense
heating.

(c) Streamwise vortices form and increase in
energy as they travel downstream.

Figure 3.31. Case U: Time-averaged heat transfer on the surface with Q-
criterion iso-surface colored by x vorticity. Density contour on the side.
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(a) Crossed vortices form as 2D waves
break down.

(b) Crossed vortices contribute to high skin
friction cross hatches.

Figure 3.32. Case U: Detailing the effect of the crossed vortices.

Figure 3.33. Case U: The
red lines correspond to the
locations where data is col-
lected on the surface.

Figure 3.34. Case U: En-
ergy for frequencies found
at various x surface loca-
tions.
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3.5.2 Case Q

With successful results from uniform forcing, the profile of the quiet flow in the BAM6QT

was applied next. In Figure  3.35 , transition can be seen beginning on the cone, although it

is later compared to the uniform forcing. The same mechanisms are occurring on with this

setup and results in a time-averaged heat transfer contour seen in Figure  3.36 . Additionally,

the flow structure is shown with Q-criterion and vorticity in Figures  3.37b and  3.37a . The

heating increases when the 2D waves break down and the flow evolves into streamwise

vortices. These then cause the secondary set of streaks on the cone when they gain enough

energy. In this case, secondary streaks do not have much space to develop because transition

started later. In addition to these results, spectral analysis was carried out in the same way

as before. Figures  3.38 and  3.39 show the location of the data relative to the flow structure

and the energetic frequencies, respectively. The quiet forcing profile does not contain as

many higher frequency signals compared to Case U, which is why the energetic frequencies

drop so sharply at 100 kHz for the location of 0.375 m. However, the primary unstable

mode at 300 kHz can already be seen to grow. As the disturbance moves downstream, the

primary mode continues to grow in amplitude along with the harmonics also. Near the end

of the cone, the flow is breaking down to turbulence and energy is being dispersed along the

frequency band. It is noted that it does not fully break down. A more realistic comparison of

the cases would involve calibrating forcing strength to the quiet flow forcing profile instead of

the uniform forcing as it is done here. If the transition location for quiet flow can be shifted

to the observed location by adjusting the forcing strength, then the other cases would have

more realistic results if ran at that strength.
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Figure 3.35. Case Q: Transition at a strength of 1.

Figure 3.36. Case Q: Time-averaged heat transfer on the surface of the cone.
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(a) Heating increases when 2D waves
deform and breakdown.

(b) Streamwise vortices form after 2D wave
breakdown.

Figure 3.37. Case Q: Time-averaged heat transfer on the surface with Q-
criterion iso-surface colored by x vorticity. Density contour on the side.

Figure 3.38. Case Q: The
red lines correspond to the
locations where data is col-
lected on the surface.

Figure 3.39. Case Q: En-
ergy for frequencies found
at various x surface loca-
tions.
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3.5.3 Case N

The last forcing scheme used is the noisy flow profile from the BAM6QT. In contrast

to the quiet flow profile, it has a larger frequency range. This forcing scheme also achieved

transition and can be seen in Figure  3.40 . It has similar patterns as the previous cases,

but it transitions more fully compared to Case Q. The heat transfer in Figure  3.41 has

similar behavior compared to the uniform forcing, but transition begins further downstream.

The flow structure can be seen in Figure  3.42 and follow the same pattern as before. The

frequency analysis also showed similarities to the uniform case and can be seen in Figures

 3.43 and  3.44 . The first location is in the forcing region and reflect the random forcing

profile. Similar to Case U and Q, the unstable modes and harmonics are amplified and

then smooth out once the transitioning boundary layer evolves into turbulent flow. In this

case, the boundary layer is breaking down to turbulence at the end, but it does not fully

breakdown. The unstable mode and its harmonics can still be identified by their energy

peaks.
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Figure 3.40. Case N: Transition at a strength of 1

Figure 3.41. Case N: Time-averaged heat transfer on the surface of the cone.
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Figure 3.42. Case N: Q-criterion iso-surfaces with density contour on the side
and time-averaged heat transfer on the bottom. This shows similar breakdown
as Case U.

Figure 3.43. Case N: The
red lines correspond to the
locations where data is col-
lected on the surface.

Figure 3.44. Case N: En-
ergy for frequencies found
at various x surface loca-
tions.
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3.5.4 Comparisons

With all of the cases completed, they are now compared with experimental heat transfer

results from Chynoweth and computational results by Hader. Contours of heat transfer for

each case can be seen in Figure  3.45 . The computational results are axially extrapolated

using periodicity to half of the cone circumference to better compare with the experiment.

This is done because the DNS results only comprise of a 10o sector around the circumference.

The basic state has an increase in heat transfer near the end of the cone where the rope waves

are forming. This increase in heat transfer precedes the primary streak formation in Case U,

Q, and N. With the slight disturbances introduced from the inlet and numerical scheme, the

basic state cone could fully transition if given more space. It might be possible to remove

these disturbances by adjusting the filter settings. After this slight increase in heat transfer,

the primary streaks occur soon after and can be found in Case U, Case Q, and Case N.

Following the primary streaks, there is a period of decreased heating and can be seen in

all cases. After the decreased heating, the flow begins to breakdown and heating increases

again. This process can be seen in Case U and Case N, while Case Q transitions too late to

fully see it. In all cases, the location of transition differs from experiment, but, qualitatively,

Case U looks most similar to the experiment. Case U shows the entire transition process,

including breakdown to turbulence at the end of the cone just as the experiment does.

However, the differences, recorded streamwise down a hot streak, are clearly seen in

Figure  3.46 . The cases are converted to Stanton number as Case HC and HR are at slightly

different conditions. A summary of the conditions can be found in Table  3.2 . An adjusted

plot is provided in Figure  3.47 to better visualize the similarities if transition occurred in

the same location. In all cases, there is the characteristic rise, fall, and rise again of heat

transfer that correspond to the primary streaks, the region between, and the secondary

streaks. Interestingly, both Case U and Case N have an increase in streamwise heating

before the strong peak. This behavior is also seen in Case HC and in Case HR. Additionally,

the spanwise distribution of heat transfer across the middle of the primary set of streaks is

available in Figure  3.48 . The DNS data is replicated using periodicity for comparison to the

experimental data. The location of the primary streaks differed for each case so each one
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has different x locations for the spanwise data. With this, Case Q seems to be more similar

quantitatively. Not only is the magnitude along a streak is more similar to the experiment,

but also the spanwise wavenumber matches more closely with the experimental streaks. A

better wavenumber comparison of Case Q and experiment can be seen in Figure  3.49 . On

the other hand, Case U and Case N both have a higher spanwise wavenumer compared to

the experiment. This and the higher magnitude peak heating could be the result of higher

frequency disturbances introduced by the forcing schemes. Case Q, only has forcing under 75

kHz and this results in a smoother increase to the peak and a closer alignment to spanwise

heating. A summary of these comparisons are available in Table  3.3 with ∆t,2 being the

distance between start of transition and the start of the secondary streaks.

Investigating the Q-criterion iso-surfaces is difficult for cases using random forcing as

they do not cleanly amplify the unstable mode. In Case HC, Hader was able to find Λ

vortices that develop into hairpins as the flow transitions. This behavior is evidence for

K-type transition. He found these structures by using the controlled forcing at around 300

kHz and can be seen in Figure  1.5 . Results from Case U can be seen in Figure  3.50 and

they show hairpins and other interesting features. However, it is much more disorganized

compared to Hader’s results, as would be expected given the nature of the forcing. The

larger range of disturbances could interact with the unstable mode and hide, prevent, or

skip the Λ vortices.

The first and last location of frequency analysis are compared to show the difference

between the beginning of the instability versus the breakdown for Case U, Q, and N. The

first location is within the forcing region so it can show the difference between the initial input

and the resulting effect. Figures  3.51 and  3.52 show the first location and last location for

each case. The overall differences in forcing show that Case U and N are similar while Case

Q has a much smaller frequency range. However, Case U does have some higher frequency

disturbances than compared to Case N. The result of this difference is that case N does

not transition fully while case U does. It is possible the energy in the higher frequencies

contributed to Case U transitioning slightly earlier than Case N. Case Q has even lower

energy with the lower range of forcing and as a result it transitions much later Case U and

Case N. However, it still has significant amplitudes of the unstable mode and its harmonics.
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As previously mentioned, an area of improvement is to match transition with experiment

using the quiet forcing profile rather than attempting with uniform forcing. This could

calibrate the random forcing profiles to the wind tunnel and help obtain results that more

closely align with wind tunnel experiments.

(a) Unforced Case

(b) Case U
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(c) Case Q

(d) Case N
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(e) Experiment [ 2 ]

Figure 3.45. Comparisons between heat transfer contours.

66



Table 3.2. Stagnation conditions for the experiment and DNS cases.
Experiment Case U, Q, N Case HC, HR

Re, 1/m 12.1E6 12.1E6 10.8E6
T0, K 422 422 420
P0, psi 156.7 156.7 140

Figure 3.46. Stanton
number streamwise along a
primary streak. Experi-
ment provided by [  2 ]. Case
HC and HR provided by [  3 ].

Figure 3.47. Locations of
transition adjusted to com-
pare with experiment.
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Figure 3.48. Spanwise data taken at the primary streak location. Experiment
provided by [ 2 ]. Case HC and HR provided by [  3 ].

Figure 3.49. Case Q extended further to examine how well it matches with experiment.
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Figure 3.50. Case U: Close up of Q-criterion iso-surface colored by density
with time-averaged heat transfer contour on the surface. The box in the heat
transfer contour above indicates the viewing region.
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Table 3.3. Summary of comparisons between the cases and experiment [  2 ], [ 3 ].
Case Start of transition Peak Heating (Ch · 103) Azimuthal Wavenumber ∆t,2

Experiment 34 cm 1.8 78 9.0 cm
Case U 46 cm 3.1 144 11 cm
Case Q 52 cm 2.3 81 8.0 cm
Case N 50 cm 3.4 126 8.0 cm

Case HC 27.5 cm 10 80 12 cm
Case HR 33 cm 5.1 80 10 cm

Figure 3.51. Spectra of
cases at the beginning of
the cone in the forcing re-
gion.

Figure 3.52. Spectra of
cases at the end of the cone
where the flow is breaking
down.
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4. CONCLUSION

Transition on a flared cone is achieved by conducting forced DNS using randomly gen-

erated traveling plane waves. The process starts with a lower order fully modeled solution

and extracting a profile to use for the inlet of the DNS. During this stage, strong streamwise

streaks are found at 90o locations around the cone. This is investigated by running multi-

ple cases with two different solvers. In the end, these streaks are attributed to stationary

instabilities caused by the geometry itself. Once the lower order calculation is done and the

profile is extracted, a DNS basic state can be found on a cut off cone. Doing this allows a

more cost efficient method to obtain DNS results on a sharp cone and avoids issues stemming

from the nosetip. Once the basic state is calculated, LASTRAC, an LST solver, is used to

verify the instabilities. LASTRAC successfully finds the unstable modes and is consistent

with previous research done on the cone. LASTRAC identifies suspected issues on the DNS

mesh for the growth of the unstable modes. The cut off cone for the DNS has significantly

lower magnitude amplification and later amplification on the cone. Strong forcing is applied

to compensate for this and the cone is extended 0.09 m to catch any transition that may

occur too late. With this in mind, uniform forcing is applied with varying magnitudes to

find and obtain transition. The strength is increased in an attempt to move transition to the

correct location, however, the strength needed for this to occur led to numerical difficulties

with the high-order code. The strongest force that could be applied is used for multiple

random forcing schemes. These consist of uniform noise, the BAM6QT quiet flow profile,

and the BAM6QT noisy flow profile. Each case achieves transition and qualitatively follows

the behavior of the experimental results found by Chynoweth and the DNS results found

by Hader. The transition location and the spanwise wavenumber generally did not match

experiment. The discrepancies are likely due to the large amount of the cone that is cut off.

Ideally, the cone cut off would be before any unstable modes start to amplify. According

to LASTRAC results in Figure  3.18 , this would be before 0.1m whereas the actual cut off

is at 0.3m. The incorrect spanwise wavenumber could result from the interaction of higher

frequency disturbances because the quiet flow profile, which has disturbances lower than 100

kHz, match with the experiment. The other two forcing profiles have disturbances that go
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as high as 700 kHz and result in higher spanwise wavenumbers. The Q-criterion is used

to create visualizations of the flow structure. Hader was able to find Λ vortices and track

their evolution to hairpins using controlled forcing at the frequency of the unstable mode.

With the random forcing used in this thesis, the flow is much more chaotic and interactions

between the disturbances can hide or prevent the formation of the Λ vortices. However,

interesting flow structures can be seen along with hairpin vortices.

Overall, the DNS results are qualitatively accurate compared to Chynoweth’s experimen-

tal results and Hader’s computational results and using traveling plane waves as forcing was

shown to work. The mechanisms for transition and breakdown are similar, but they occur

at an a different location or with a different spanwise wavenumber. This discrepancy could

be attributed to a few things, but most likely it is the result of cutting the cone at 0.3 m. It

is recommended that further study capture more of the cone, preferably as close to 0.1 m as

possible. This can be accomplished by implementing better overset capability or by using

other methods to speed up the time step to allow the use of cell edge lengths smaller than

1 × 10−5. In addition to this, it is recommended to calibrate the DNS using the quiet case.

This can be done by adjusting the strength for the quiet case until transition occurs in the

correct location. Once this is done, the other noise profiles should be tested at this strength.

The results from Case Q provides evidence that this method of random forcing works and

that implementing disturbance profiles from wind tunnel data may assist when trying to

reproduce experiments. It is recommended to further research the using of forcing profiles

related to wind tunnel noise.
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