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ABSTRACT 

Spontaneous transitions between the native and non-native protein conformations are 

normally rare events that hardly take place in typical unbiased molecular dynamics simulations. It 

was recently demonstrated that such transitions could be well described by a reaction coordinate, 

Q, that represents the collective fraction of the native contacts between the protein atoms. Here we 

attempt to use this reaction coordinate to enhance the conformational sampling. We perform 

umbrella sampling simulations with biasing potentials on 𝑄 for two model proteins, Trp-Cage and 

BBA, using the CHARMM force field. Hamiltonian replica exchange is implemented in these 

simulations to further facilitate the sampling. The simulations appear to have reached satisfactory 

convergence, resulting in unbiased, free energies as a function of 𝑄. In addition to the native 

structure, multiple folded conformations are identified in the reconstructed equilibrium ensemble. 

Some conformations without any native contacts nonetheless have rather compact geometries and 

are stabilized by hydrogen bonds not present in the native structure. Whereas the enhanced 

sampling along with 𝑄 reasonably reproduces the equilibrium conformational space, we also find 

that the folding of an α-helix in Trp-Cage is a slow degree of freedom orthogonal to 𝑄  and 

therefore cannot be accelerated by biasing the reaction coordinate. Overall, we conclude that 

whereas 𝑄 is an excellent parameter to analyze the simulations, it is not necessarily a perfect 

reaction coordinate for enhanced sampling, and better incorporation of other slow degrees of 

freedom may further improve this reaction coordinate. 

To analyze such behavior like slow degrees of freedom, we conducted another research 

study. Proteins may adopt multiple conformations, and they undergo various transitions from one 

conformation to another.  A well-defined reaction coordinate can describe these transitions. 

However, there is no efficient way to define the entire conformational space of a complex 

biological system by only one reaction coordinate. In the two-state system, a protein can adopt two 

different conformations, A and B. We implemented a stepwise transition model. The targeted 

protein starts from metastable A, and it will undergo a transition to another intermediate state, and 

from that intermediate state, the protein undergoes another transition to and so on. Therefore, by 

N transitions, we can get to the metastable state B. During each step transition, we apply a 

boundary potential over other degrees of freedom to keep them unchanged. With this strategy, 

along with a simple definition of the reaction coordinate, we have high accuracy in our 
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thermodynamics and protein dynamics measurements. As a case study, we implemented all-atom 

Umbrella Sampling simulations to characterize the conformational changes between outward-

facing open (OF) and outward-facing occluded (OC) states of transmembrane protein Mhp1. For 

each step transition, the reaction coordinate was defined by a simple dihedral angle or a bond 

length. We could obtain six transition steps with five intermediate states that connect the two OF 

and OC stable states. We measured each step transition free energy profile from WHAM equations. 

We performed two independent sampling simulations with different initial structures: the transition 

initiates from OF state indicated InitOF, and the transition initiates from the OC state indicated as 

InitOC transition. By comparing the obtained free energy profiles with the stepwise model, we 

implied the extent of convergence in our calculations. The energy difference between OF and OC 

states in our study is Δ𝐺 = −1.02 ± 1.1 and Δ𝐺 = −1.12 ± 1.14 kcal/mol for InitOF and InitOC 

transition, respectively. 
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 AN INTRODUCTION TO ALL-ATOM MOLECULAR 

DYNAMICS SIMULATION 

Most of the proteins need to undergo conformational changes to be functional [1, 2]. Thus, 

understanding protein's adopted conformations and the dynamics of the conformational changes 

between available states are essential in the studies of biomolecular systems. The variation of 

physicochemical properties such as temperature[3, 4], pressure, ligand binding[5], and divalent 

ion distribution[3] are a few reasons that cause proteins to undergo several conformational changes 

that are associated with their functionality. Most large biological molecules such as proteins can 

at least achieve two distinct metastable conformations, which is described as a two-state model. A 

spontaneous transition between the two conformational states is a rare random event, that happens 

very quickly; therefore, it is not likely to observe the conformational transitions directly in a real 

experiment.  

All-atom Molecular Dynamics (MD) simulation provides insight into individual atomic 

motions to predict the detail of the structural changes caused by the forward and reverse 

conformational transitions[6, 7]. Recently, MD simulations are widely used to answer the various 

questions about the thermodynamics and kinetic properties of a biological system, often more 

rapidly, compared to experiments on a real system. In theory, one single long MD simulation is 

necessarily enough to observe several spontaneous transitions that can switch back and forth 

between two possible conformational states. However, in practice, such a simple approach to 

construct the equilibrium ensemble needs an extremely long simulation time, which is 

unachievable for most systems of interest. Even with the most high-performance computer cluster 

resources available nowadays, the reasonable simulation time might be reachable only for small 

biomolecular system sizes with comparably fast transition rates. Still, the equilibrium ensemble is 

necessary to derive the thermodynamic properties of the system; therefore, it is required to be 

generated despite the time scale problem.  

Alternatives to a long MD simulation, various computational methods known as enhanced 

sampling techniques are suggested to alleviate the insufficient simulation time problem. These 

methods include Umbrella Sampling [2, 8], Metadynamics[9], Weighted Ensemble[10], Transition 

Path Sampling [11], Accelerated MD [12], String method [13, 14], Adaptively Biased MD [15], 

Milestoning [16], and Dynamic Importance Sampling [17]. To accelerate the dynamics of the 
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simulations at a reasonable time, all enhanced sampling methods implementing some form of bias 

potentials to measure the equilibrium ensemble. Many enhanced sampling techniques employ a 

Reaction Coordinate (RC) that distinguishes the two protein conformations, such that driving along 

the RC could enforce continuous conversions between the conformational states. The free energy 

profile quantifies the thermodynamics of the conformational transition and, in particular, gives the 

free energy difference between the two conformational states. The weighted histogram analysis 

method (WHAM) [18, 19] can be employed to calculate the equilibrium free energy from the 

trajectory of the enhanced sampling techniques such as umbrella sampling. 

1.1 Free Energy 

For any biological system, the equilibrium probability between states is the fundamental 

concept for the conformational changes. In a two-state system, a protein can adopt two alternative 

conformations A and B. At equilibrium, the probabilities for the two conformations are 𝑝𝐴 and 𝑝𝐵, 

with the fact that the sum of the probabilities between the two states is equal to one. 

Free energy, along with a reaction coordinate between the two alternative conformations 

A (reactant) and B (product), is a reversible work that is widely used in the studies of protein 

conformational changes. The free energy profile can be obtained by the contribution of the Entropy 

and enthalpy as 𝐺 =  𝑇𝑆 –  𝐻 , where T, S, and H are temperature, entropy, and enthalpy, 

respectively. Alternatively, to measure the free energy changes for complex systems, one can use 

numerical simulations by means of statistical mechanics or the Newtonian equation of motions. 

To that extend, the accurate measurement of the free energy changes between the two states (A 

and B) is to explore the conformational space of the relevant system to obtain the low-energy states 

between the reference and target system [18]. Therefore, the high precision of the free energy 

calculation relies on adequately sampling the configurational space. Molecular Dynamics [19] and 

Monte Carlo simulations [20] are promising tools in this respect. Fundamentally, in an unbiased 

simulation, the free energy is related to the probability density function 𝑝(𝑋) along with a reaction 

coordinate 𝑋 as  

𝑝(𝑋) =
∫𝑑𝑟  𝛿(𝑋′(𝑟) − 𝑋) 𝑒

−
𝑈(𝑟)
𝑘𝐵𝑇

∫𝑑𝑟 𝑒
−
𝑈(𝑟)
𝑘𝐵𝑇

  

𝐺(𝑋) = −𝑘𝐵𝑇 𝑙𝑛 𝑝(𝑋) 

Eq. 1-1 
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where 𝑘𝐵  is the Boltzmann constant. 𝑟  is a set of 3N configurational vectors. 𝑈(𝑟) 

represents the total energy as a function of 𝑟. 𝑋′(𝑟) is the fixed conformation, and all microstate 

with that conformation are equally likely. The free energy equation means that events with high 

probability get a low free energy value along with the reaction coordinate. In contrast, rare events 

(transition regions) are sampled in the simulation with a low population and cause 𝐺(𝑋) to accept 

a relatively high value. At the transition regions, a small number of sample points can be achieved 

during the simulation, which results in a significant statistical error.  

To reduce the calculated error, one can increase the simulation time, sometimes beyond 

what is practically possible. One can use enhanced sampling technics such as Umbrella Sampling 

(US) by employing a biased potential confining the system at the transition region. In US 

simulation, the entire conformational space between the two states A and B is divided into a limited 

sections, and each piece represents one umbrella window. An individual simulation can then be 

set up for each umbrella window to reduce the statistical error for the regions not being sampled 

adequately in an unbiased simulation. 

For the thermodynamics measurement of a system of interest, free energy is depicted as a 

function of a reaction coordinate. Therefore, in an US simulation, the primary concern is choosing 

an order parameter that clearly shows the progress of the reaction in the configurational space. The 

fraction of native contacts, Q, a widely used reaction coordinate, is constructed by the ratio of non-

native to native contacts. Besides, a native contact is formed by a pair of atoms in the native 

structure that belong to particular separated residues, with a cutoff distance criteria. Another 

reaction coordinate, close to Q, is the overlap function that shows the similarity to the native 

structure and is defined by the Heaviside step function [21]. Different groups propose other 

Continuous forms of the fraction of native contacts. The proposed 𝑄  could be:  A Gaussian 

function with the mean value equal to the native contact distance [22-24], a continuous form of a 

step function analogous to the Fermi-Dirac distribution function, has recently been used with 

different arbitrary parameters [2, 25-29]. Alternatively, a reaction coordinate can be defined by a 

function of other native state geometries like the fraction of native state dihedral angels [30-32], 

the fraction of native hydrogen bonds [2], the number of core water molecules [33, 34],  as well as 

holistic parameters such as radius of gyration [26] and root mean-squire deviation (RMSD). 
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1.2 Molecular Dynamics Simulation 

Time evolution of atoms within classical mechanics concepts using numerical simulation 

is the Molecular Dynamics (MD) simulation methodology. Any atoms in the simulation are 

assigned as one particle in the simulation. MD simulation, utilizing atoms positions x and moments 

p at time t, predicts a new position and momentum for particles at time 𝑡 + Δ𝑡. The time interval 

Δ𝑡 must be in the order of magnitude less than the displacement frequency with the highest period 

of oscillation in the system. Generally, this time interval is one to two femtoseconds (fs). When 

simulation generates the trajectory, a more extended time step causes losing precision in the 

integration process and chaotic behavior in the system [35]. 

The calculation of the trajectories in MD simulation is through numerical integration of the 

Newtonian equations of motion. For a system consist of N particles in 3D conformational space 

with the cartesian coordinates (x, y, z), the system's potential gradient 𝐹 =  −∇𝑈(𝑟)  is the force 

acting on each particle 𝑖 with the vector 𝐹𝑖  (𝑟1 , 𝑟2 , . . . , 𝑟𝑁 , 𝑡). Moreover, the acceleration at each 

step can be measured by 𝐹𝑖 = 𝑚𝑖 𝑎𝑖 . 𝑚𝑖  and 𝑎𝑖  are the mass and acceleration of particle 𝑖 , 

respectively. The initial coordinate of a protein system in the cartesian coordinates can be obtained 

using X-ray crystallography, NMR spectroscopy, and electron microscopy [35]. The initial 

velocity is randomly assigned to each atom by satisfying the Maxwell-Boltzmann distribution with 

an assigned temperature value. Now knowing the positions and velocity of each atom, the only 

remaining is to know the force acting on each atom to calculate the position at the next instant of 

time 𝑡0  + Δ𝑡.    

The potential energy U in a molecular system can be obtained from Quantum mechanics, 

which is highly accurate but too slow incredibly for a large-scale system. The Coulomb's law and 

Schrodinger equation are two essential calculations in the Quantum mechanics approach. 

Molecular mechanics with the Heuristic energy function are another alternative for the potential 

energy function, which are frequently used to simulate biomolecular systems such as proteins, 

membranes, and DNA. The classical interaction potentials, known as force fields, represent a 

simple way to calculate interatomic forces. However, in their functional form, they involve several 

parameters that must be adjusted to obtain accurate results. 
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1.3 CHARMM Force Field 

Molecular Dynamics (MD) simulation is a powerful tool that determines the coordinates 

and velocity of atoms in a regular time interval. At each time interval, the recorded coordinate for 

all the atoms generates the trajectory of the system of interest. Then the generated trajectory is 

used for analyzing the thermodynamics properties of the system. This method is doable first by 

attaining a vast knowledge of physical interatomic forces and the physical model of our system. 

Because by having the positions and velocity of each atom at the time 𝑡0, we need the force acting 

on each atom to predict the position at the next instant of time 𝑡0  + Δ𝑡 by employing the 

Newtonian equation of motion. This force is measurable by the gradient of the potential energy 

function, which can be obtained from the physical property of the targeted system. Our study for 

all of the simulations utilized the CHARMM force field as the potential energy function. The 

CHARMM force field consists of two terms as bonded and nonbonded. Bonded has six terms 

(bonds, torsion/dihedral angle, improper dihedral angle, Urey-Bradley, and CMAP). The 

intermolecular nonbonded term involves electrostatic and van der Waals (vdW) interactions.  

  

∑ 𝑘𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑘𝜙(1 + cos(𝑛 𝜙 − 𝛿))
2

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

+ ∑ 𝑘𝜔(𝜔 − 𝜔0)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑ 𝑘𝑢(𝑢 − 𝑢0)
2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

+ ∑ 𝑢𝐶𝑀𝐴𝑃(𝜙,𝜓)

𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

 

+∑
𝑞𝑖𝑞𝑗

4 𝜋 𝑟𝑖𝑗

𝑒𝑙𝑒𝑐

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑
+∑ 𝜖𝑖𝑗[(

𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

]
𝐿𝐽

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑
 

Eq. 1-2 

 

where 𝑏0, 𝜃0,  𝜔0 and 𝑢0  are the equilibrium of bond, angle, improper and Urey-Bradley,  

respectively. All k's (𝑘𝑏 , 𝑘𝜃 , 𝑘𝜙, 𝑒𝑡𝑐) are the various force constant. 𝛿 and 𝑛 are the dihedral phase 

and dihedral multiplicity, respectively. Besides, the CHARMM energy function includes an energy 

correction map, so-called CMAP, to improve the conformational properties of the 𝜑,𝜓 terms in 

the dihedral angle of the amino acids peptide chain. For the electrostatic term 𝑞𝑖 and 𝑞𝑗 are the 

partial atomic charge belong to atoms 𝑖  and 𝑗 . For the Lennard-Jones term, 휀𝑖𝑗 = √𝜖𝑖𝜖𝑗 , the 
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geometric mean is the depth of the potential well. 𝜎𝑖𝑗 =
𝜎𝑖+𝜎𝑗

2
, arithmetic mean is the distance 

where the potential is zero.  𝑅𝑚𝑖𝑛,𝑖𝑗is the radius where the potential reaches the minimum value. 

Extra information about the CHARMM force field can be found in references [36-38]. 

1.4 Umbrella Sampling 

Umbrella sampling, a widely used enhanced sampling method, is employed to overcome 

the energetic barrier in MD simulations. Torrie et al. were the first who developed this approach 

in 1977 [47]. In a general US algorithm, a series of independent simulations with a reaction 

coordinate as the selected collective variable (CV) was set and confined by a biased restrain to 

obtain a conformational transition. Each simulation refers to as one US window and is confined 

by a harmonic biased potential. Therefore, each window is specified to sample a narrow segment 

of the conformational space. Here, the entire region of the configurational space (reaction 

coordinate) is supposed to get covered by all the US windows, so there must be an overlap between 

every two neighboring windows. The biased harmonic potential is added to the Hamiltonian of the 

system: 

 

Eq. 1-3 𝑈𝑖(𝑥) =
𝑘

2
  (𝑥 − 𝑥𝑖

𝑟𝑒𝑓
)
2
 

 

In which 𝑖 is assigned to one window. 𝑘 is the spring constant and defines the strength of 

the harmonic potential. 𝑥𝑖
𝑟𝑒𝑓

 is the center of each harmonic biasing potential 𝑈𝑖(𝑥). Before starting 

the US simulations, a set of initial structures possessing the reaction coordinate approximately 

closed to each umbrella window reference value is essential to run the MD simulation. 

A molecular dynamics pulling simulation is applied to capture the initial conformation for 

each US simulation. For this purpose, one can run a biased MD simulation with the protein crystal 

structure as the initial conformation. In this MD simulation, equation 3 needs to get employed with 

𝑖 = 1 as the first window reference value, which should be approximately equal to the crystal 

structure's reaction coordinate value. After a specific timestep, 𝑖 𝑖𝑠  incremented by one to drive 

the system out of the crystal structure state. This procedure is continuing until simulation lasts 
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enough to cover all the configurational space. Finally, the system's conformation at the vicinity of 

each umbrella window is taken for the initial structures of the US simulations.  

When the US simulations converge the system to an equilibrium state, the Weighted Histogram 

Analysis Method (WHAM) can be employed to combine the independent windows' statistics. The 

WHAM equations are the most popular method and are expressed as follows: 

 

Eq. 1-4 

𝑝𝑢(𝑥) =
∑ ℎ𝑙(𝑥)
𝑀
𝑙=1

∑ 𝑛𝑗 exp [
𝐹𝑗 − 𝑈(𝑥)

𝑘𝐵𝑇
]𝑀

𝑗=1

 

  

𝐹𝑗 = −𝑘𝐵𝑇𝑙𝑛∑𝑝𝑢(𝑥)

𝑞

 exp[−
𝑈(𝑥)

𝑘𝐵𝑇
] 

 

The WHAM equation converts the biased probability is generated at each US simulation 

to an unbiased probability distribution. Therefore, 𝑝𝑢(𝑥) is the unbiased probability distribution 

along the reaction coordinate. 𝑀 is the total number of umbrella windows in the US simulation. 

ℎ(𝑥) is the count at the bin 𝑥 with 𝑙 shows the index of the umbrella windows. 𝑛𝑗  is the number of 

data points at the window 𝑗. 𝑝𝑢(𝑥) and 𝐹𝑘  are the recurrence equations and should be solved 

iteratively until achieving a self-consistent solution. Consequently, The free energy profile can be 

measured by 𝐺(𝑥) =  𝑘𝐵𝑇𝑙𝑛 𝑝𝑢(𝑥) . More details of the WHAM equation can be found in 

references  [48] 

1.5 Aims of Research 

1.5.1 Thermodynamics of Protein Folding Studied by Umbrella Sampling 

Best et al. [26] analyzed the trajectories of millisecond equilibrium MD simulations [25] 

of some small proteins and, utilizing a reaction coordinate of the collective fraction of native 

contacts, characterized the folding and unfolding of such small proteins. A good reaction 

coordinate can facilitate the enhanced sampling technique to provide the thermodynamics of the 

system of interest potentially more efficiently than an unbiased simulation. This study plans to 
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check this approach by applying US along the Q reaction coordinate. We are employing two small 

proteins, Trp-Cage [50] and BBA [51], as the cases study in our research.  

Our simulations serve as a case study for using the reaction coordinate based on the native 

contacts for sampling protein conformations. Through detailed analysis, we need to demonstrate 

the effectiveness and the problems with this approach. Although we specifically adopted US in 

this study, we note that many other enhanced sampling methods also require a pre-determined 

reaction coordinate and would have similar problems with the folding reaction coordinate 

examined here. 

1.5.2 Toward Convergence in Free Energy Calculation for Protein Conformational 

Changes 

This study aims to identify transition processes that change a system from an initial state 

A to another final state B along with the backward processes. Several possible dynamical pathways 

are suggested for proteins that could link the pair states A and B together.[52, 53] A pathway 

consists of a sequence of N discrete intermediate states that are in between the two metastable 

states of A and B. Hence, the transition of the forward and reverse pathways can be broken down 

into N+1 stepwise transition processes. Alternatively, an enhanced sampling method with 

harmonic potential on a reaction coordinate that is associated with each single-step pathway can 

also be applied to measure the free energy profile of each step process individually. The reaction 

coordinate can be defined here as any form of torsion angle, bond angle, and bond length. In this 

study, we implemented Umbrella Sampling (US) to characterize the conformational changes of 

each step process between the ligand-free outward-facing open (OF) and outward-facing occluded 

(OC) state of Mhp1. 
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1.6 Figures 

 

 

 

Figure 1-1 - The funnel-shaped energy landscape of proteins. Non-native structures with high 

energy compared to the folded state with low-energy at the bottom of the funnel. Alternative 

pathways drive a protein from the non-folded state to the folded state. Figure captured from 

Reference [41] 
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 THERMODYNAMICS OF PROTEIN FOLDING 

STUDIED BY UMBRELLA SAMPLING ALONG A REACTION 

COORDINATE OF NATIVE CONTACTS 

2.1 Introduction 

The function of a protein is determined by its three-dimensional structures [1, 2]. Many 

proteins adopt a specific folded conformation, referred to as the native structure, under 

physiological conditions. Thermodynamically, the native structure typically corresponds to a 

minimum in the free energy surface. Early theoretical analysis suggested that the native structure 

would obey the minimal frustration principle [3, 4], and recent simulation studies further revealed 

that the native structure also serves as a kinetic hub that connects multiple highly distinct non-

native conformations [5]. Indeed, the native structure is not necessarily the only conformation 

adopted by a protein, and there may exist an equilibrium between the native structure and the non-

native (such as disordered and extended) conformations. The thermodynamics and kinetics for the 

transitions between the native and the non-native protein structures, such as the folding rate [6], 

the transition state, [7], and the intermediates states [8], have been extensively studied for decades. 

Computational methods such as molecular dynamics (MD) simulations [9] are powerful 

tools to complement protein folding experiments.  

Among all the MD methods, the most straightforward approach is to directly simulate a 

protein in its natural environment and observe the spontaneous transitions between the native and 

the non-native conformations. If the simulation is long enough such that a statistically sufficient 

number of transitions occur, all thermodynamic and kinetic quantities of protein folding can be 

directly obtained from the simulation trajectory. Thanks to the breakthrough in specialized 

computer hardware and algorithm, all-atom simulations of millisecond time scale have been 

achieved [10, 11], which allowed direct observation of folding/unfolding transitions for a number 

of small proteins with relatively fast kinetics. Alternatively, a variety of enhanced sampling 

methods have been applied to simulate protein folding   [9, 12, 13]. Some of these methods, such 

as umbrella sampling (US) [14, 15] and metadynamics [16], employ non-Boltzmann sampling with 

biasing potentials to accelerate the transitions over the energy barriers. Similar acceleration can 

also be achieved, e.g., in weighted ensemble simulations [17, 18], by generating multiple replicas 

to enhance the sampling in regions with low equilibrium probabilities.  
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In all of the methods above, the unbiased equilibrium thermodynamics can be reconstructed 

from the simulation trajectories based on rigorous theories in statistical mechanics. In addition, 

serial or parallel tempering [19] can be employed in methods such as replica exchange MD (REMD) 

simulations [20, 21], in which multiple replicas are run in parallel and periodically attempt to 

exchange their temperatures or biasing potentials [22-25]. An exact protein conformation must be 

described in a multidimensional space. Indeed, the conformational space for proteins has been 

successfully described by Markov state models [26]. Alternatively, in many cases, it is also 

desirable to project the high-dimensional protein conformations onto a single reaction coordinate 

(or order parameter) to simplify the analysis. Once such a reaction coordinate is defined, its 

equilibrium probability distribution can be determined from the equilibrium ensemble of the 

protein conformations and will correspond to the free energy as a function of the reaction 

coordinate. With a “good” reaction coordinate for protein folding, the associated free energy would 

not only clearly distinguish the native and the non-native states, but also reflect the kinetic barrier 

for the transitions. 

Many common reaction coordinates for protein folding are based on the fraction of native 

contacts [27]. One contact is usually defined as a pair of residues that are spatially close (shorter 

than some cut-off distance) but not in sequence proximity, and all such contacts in the native 

structure constitute the set of native contacts. One can then examine how many of the native 

contacts are present or absent in any given conformation based on the inter-residue distances. As 

a simple criterion, a Heaviside step function [28] can be used to map a distance to a contact number, 

which can be either 0 or 1 as determined by the cut-off distance. Other criteria assign a non-integer 

contact number between 0 and 1 using a continuous function of the distance, such as Gaussian [29-

31] or Fermi-Dirac distribution functions [11, 14, 32-35]. The sum of the contact numbers in the 

given conformation, as a fraction of the maximum possible total number (as in the native structure), 

can then be defined as the reaction coordinate, with a value close to 1 and 0 representing the native 

and the non-native states, respectively. Alternative to the native contacts, reaction coordinates can 

also be defined based on dihedral angles [36-38], native hydrogen bonds [14], the number of core 

water molecules [39, 40], as well as holistic parameters such as radius of gyration [28] and root-

mean-square deviation (RMSD) [41]. 

Recently, Best et al. [42] analyzed the trajectories of millisecond-long unbiased MD 

simulations [11] of some small proteins and concluded that a reaction coordinate based on the 
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collective fraction of native contacts characterizes the folding/unfolding transitions remarkably 

well [42]. In principle, once a good reaction coordinate is identified, enhanced sampling along that 

coordinate could provide the conformational thermodynamics in a potentially more efficient way 

compared to the straightforward, unbiased simulations. Here we test this strategy by performing 

US along the reaction coordinate mentioned above, as similarly done in some earlier studies [14, 

43-45]. Our all-atom simulations are performed with explicit solvent, and we employ the 

Hamiltonian REMD technique [22] to facilitate the US [14, 46] in this study. We use two small 

proteins, Trp-Cage [47] and zinc finger motif (BBA)  [48], as the test cases here. Trp-Cage is a 

20-residue protein that can fold rapidly to a stable structure. BBA is a 28-residue protein with a 

native structure that consists of two β-sheets and one α-helix. Both proteins have been extensively 

studied in previous simulations  [11, 21, 47-50]. We determine the free energy profile and 

reconstruct the equilibrium ensemble for each protein from the simulations here. 

2.2 Methods 

In this study, we focus on the folding of two proteins, Trp-Cage [47] and BBA [48], which 

have also been extensively studied in previous simulations [5, 11, 21, 41, 47-50]. In particular, 

Lindorff-Larsen et al. [11] performed long unbiased simulations on the two proteins, and Best et 

al. [42] analyzed the simulation trajectories using a reaction coordinate representing the collective 

fraction of native contacts. Here we take the reaction coordinate above and perform US [14, 46] 

simulations with Hamiltonian Replica Exchange Molecular Dynamics (HREMD) [22] to 

reproduce the equilibrium ensemble for the proteins. The computational details are provided below. 

2.2.1 System Setup 

Both of our simulation systems are similar to the ones used in Lindorff-Larsen et al. [11]. 

The first protein is a Trp-Cage mutant, denoted as TC10b (PDB: 2JOF [51]), with the sequence 

DAYAQWLADGGPSSGRPPPS. In comparison to the wild type, residue 8 in the sequence is 

mutated from LYS to ALA [11]. The simulation system consists of the protein in a solution of 

1639 water molecules and 65 mM NaCl. The total number of atoms in the Trp-Cage simulation 

system is 5230. The second protein, BBA (PDB: 1FME [48]), with the sequence 

EQYTAKYKGRTFRNEKELRDFIEKFKGR, was solvated with 2978 water molecules and four 
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Chloride ions. The simulation system for BBA consists of a total of 9442 atoms. We adopted the 

standard protonation state at pH 7 for all residues of the two proteins. For both proteins, the first 

frame in the PDB file was taken as the native structure in this study. 

We adopted the CHARMM (Ver. c36, released in December 2013) protein force field [35, 

52, 53] and the TIP3P water model [54] in this study. The MD simulations were carried out using 

the NAMD2 program [55] with a time step of 2 fs and in the NPT ensemble with the periodic 

boundary conditions. A constant pressure of 1 atm was obtained by applying the Nose-Hoover 

Langevin piston method [56], and a Langevin thermostat with a damping coefficient of 1 ps-1 was 

used to maintain the constant temperature of the system. The SHAKE [57] and SETTLE [58] 

algorithms were used to maintain rigid bonds involving all hydrogen atoms.  We used a 12 Å cut-

off for non-bonded interactions, with a smooth switching function starting at 10 Å . Full 

electrostatics was calculated every 4 fs using the particle mesh Ewald (PME) method [59]. 

The two systems were first minimized and equilibrated for a total of 10 ns. In the 

equilibration phase, the temperatures of the Trp-Cage and the BBA systems were 290 K and 325 

K, respectively, although Trp-Cage was simulated at two additional temperatures as well, as will 

be described later. 

2.2.2 Reaction Coordinate 

We adopt the same reaction coordinate in Best et al. [42] based on the fraction of native 

contacts. The set of native contacts is defined from the native structure. Specifically, a pair of 

heavy atoms (𝑖, 𝑗) in residues 𝑅𝑖 and 𝑅𝑗 is counted as a native contact if   |𝑅𝑖 − 𝑅𝑗| > 3 and the 

interatomic distance 𝑟𝑖𝑗
0 in the native structure is smaller than 4.5Å. In our case, the number of 

native contacts identified from the crystal structure is 𝑁 =  156 and 𝑁 =  279 for Trp-Cage and 

BBA, respectively. Assuming that the atom pair (𝑖, 𝑗) is one of the native contacts, we use 𝑟𝑖𝑗(𝑋) 

to denote the distance between the two atoms in a given protein conformation 𝑋. The reaction 

coordinate 𝑄 for any conformation 𝑋 is then determined by the distances for the 𝑁 pairs of atoms 

in this conformation [42]: 

Eq. 2-1 𝑄(𝑋) =
1

𝑁
 ∑

1

1 + 𝑒𝑥𝑝 [𝛽 (𝑟𝑖𝑗(𝑋) − 𝜆 𝑟𝑖𝑗
0)]

𝑁

𝑖𝑗
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with 𝜆 = 1.8 and a smoothing parameter 𝛽 = 5.0𝐴
∘
−1. The summand in the equation above 

is effectively a pairwise contact strength that approaches 1 when the distance 𝑟𝑖𝑗  is small and 

approaches 0 when 𝑟𝑖𝑗 is large, thus quantifying the degree of contact between the two atoms. The 

reaction coordinate (𝑄) is the average overall pairwise contact strengths, thus representing the 

collective fraction of the native contacts present in a given conformation. A value of 𝑄 close to 1 

indicates that the protein is in the native state because all of the native contacts are intact. In 

contrast, 𝑄 = 0  corresponds to completely non-native structures with all the native contacts 

broken.  

2.2.3 Umbrella Sampling Simulations 

We employed a total of 32 umbrella windows. The biasing potential in window 𝑖 is in the 

harmonic form: 

 

Eq. 2-2 𝑈𝑖(𝑋) =
𝐾

2
 (𝑄(𝑋) − 𝑞𝑖)

2 

 

in which 𝑖 = 1,… ,32. The spring constant 𝐾 was taken to be 1400 kcal/mol for all the 

simulations in this study, and 𝑞𝑖 is the center of the harmonic biasing potential. The values of 𝑞𝑖 

(𝑖 = 1,… , 𝑛) cover the range from 0 to 1 with a uniform spacing of 1/31. 

To start the US simulations, we need a set of initial conformations with the reaction 

coordinate close to the 𝑞𝑖  in each window. One common method to generate a diverse set of 

conformations is to run an equilibrium simulation at high temperatures [14]. Here we instead 

adopted pulling simulations, similar to the steered molecular dynamics [60], for this purpose. 

Specifically, we performed a simulation to drive the system from the native state (𝑄~1) to the 

non-native state (𝑄~0), by sequentially applying the 32 umbrella potentials for 0.4 ns each. The 

simulation thus lasted for a total of 12.8 ns. From this simulation trajectory, frames with the 

reaction coordinate close to each 𝑞𝑛 were then selected as the initial coordinates for the respective 

umbrella window. 

In the US, the umbrella windows were sampled by the same number of individual 

simulations (each referred to as a replica), and HREMD [22] was implemented to allow two 

neighboring windows to swap their replicas. The exchange was attempted every 200 time steps 
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(i.e., 0.4 ps). Suppose that umbrella windows 𝑖 and 𝑗 are a pair of neighbors, and that at the time 

of an exchange attempt, the current reaction coordinates are 𝑄𝑖 and 𝑄𝑗, respectively. A swap would 

thus change the combined Hamiltonian by  ∆E = 𝐾[𝑄𝑖 − 𝑄𝑗][𝑞𝑖 − 𝑞𝑗], in which 𝑞𝑖, 𝑞𝑗, and K are 

from the harmonic biasing potential (Eq. 2-2). We accept the exchange with a probability of 

  𝑚𝑖𝑛[exp(−
∆E

𝑘𝐵𝑇
),1] according to the Metropolis Criterion [22]. If the exchange is accepted, the 

two umbrella windows will swap their replicas, thus effectively exchanging the system microstates 

(coordinates, velocities, etc.). 

We performed a total of four sets of US simulations, including the Trp-Cage system at 270 

K, 280 K, and 290 K, and the BBA system at 325 K. Each simulation of Trp-Cage was run for 

3.00 𝜇𝑠 per window or a total of 96.00 𝜇𝑠 for the 32 windows. The simulation of BBA was run for 

1.01 𝜇𝑠 per window or 32.32 𝜇𝑠 in total. The initial coordinates for the Trp-Cage simulation at 

290 K and the BBA simulation were taken from the pulling simulations described earlier. The last 

frames of the Trp-Cage simulation (290 K) were then used to initiate the US simulations at 280 K 

and 270K. 

2.2.4 Analysis 

The second half of the trajectories was used for the analysis of each simulation. Due to 

replica exchange, each umbrella window may be sampled by different replicas at different times 

of the simulation. We thus first reassembled the trajectories for each umbrella window. From these 

trajectories, we constructed the histograms of 𝑄 for each window, using a uniform bin width of 

∆𝑄 = 1.1 × 10−4 for the Trp-Cage simulations and ∆𝑄 = 2.0 × 10−4 for the BBA simulation. 

Then the weighted histogram analysis method (WHAM) [61, 62] was used to calculate the 

equilibrium free energy as a function of 𝑄. 

With the equilibrium probability distribution of 𝑄  and the trajectories from the US 

simulations, we can reconstruct the equilibrium ensemble and obtain the probability distribution 

for any given parameter 𝑅, such as RMSD or radius of gyration. Specifically, we first group all 

frames in the simulation trajectories according to their values of 𝑄. For each set of frames with the 

same 𝑄, we construct the histogram for 𝑅 as an estimate for the conditional probability 𝑃(𝑅|𝑄). 

In addition, 𝑃𝑄(𝑄), the marginal distribution for 𝑄, is directly obtained from WHAM or the free 
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energy 𝐺(𝑄) . The joint equilibrium probability for 𝑅  and 𝑄  is therefore given by 𝑃(𝑅, 𝑄) =

𝑃(𝑅|𝑄)𝑃𝑄(𝑄). 

2.3 Results 

As described in Methods, we performed US simulations with HREMD [22] on the Trp-

Cage [47] and BBA [48] systems, using a reaction coordinate [42] 𝑄 based on the native contacts. 

The Trp-Cage system was simulated at three different temperatures. 

2.3.1 Equilibrium Distributions Along With the Reaction Coordinate 

Figure 2-1a shows the free energy profiles as a function of the reaction coordinate 𝑄, 

obtained from the US simulation trajectories by WHAM [61, 62]. The statistical errors were 

estimated from the uncertainties of the mean forces at each window [62]. Overall, the free energy 

profiles here do not appear to describe a typical two-state system that has two major metastable 

states separated by a prominent energetic barrier. Instead, the profiles feature multiple minima and 

peaks with magnitudes not significantly larger than 𝑘𝐵𝑇, thus indicating a continuous spectrum of 

intermediate conformations at equilibrium. In general, the locations of the major free energy 

barriers in our profiles are qualitatively similar to those reported by Best et al. [42] for the long 

unbiased simulations [11], although the magnitudes are not in good agreement. We caution that 

the two studies are not expected to yield similar quantitative results due to the different force fields 

adopted. Figure 2-2a shows the cumulative distribution function (CDF) that integrates the 

equilibrium probability along 𝑄. For Trp-Cage at the three temperatures, the free energies, and the 

CDFs show that the equilibrium populations of the native (with large 𝑄) and the non-native (with 

small 𝑄) states are roughly comparable. For BBA at 325 K, in contrast, the vast majority of the 

equilibrium population is in the non-native state. 

Any MD sampling has to start with some initial coordinates of the system, and convergence 

is only achieved when the “memory” has been completely lost, and the results become independent 

of the initial state. In our case here, although we discarded the first half of the trajectories in our 

analysis, slow equilibration in degrees of freedom orthogonal to the reaction coordinate could still 

potentially give rise to convergence issues. For umbrella sampling, one way to detect such issues 

is to examine the consistency between the histograms from neighboring windows. As described in 
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Ref. [62], the two neighboring histograms should ideally predict a consensus probability 

distribution for the overlapping region. An insufficient sampling of the orthogonal degrees of 

freedom,or hysteresis often manifests itself as an inconsistency between the histograms [62]. 

Therefore, for every pair of adjacent umbrella windows, we compared their consensus probability 

distributions (under a common potential) reconstructed from the two histograms. For such 

comparison, we adopted the inconsistency coefficient 𝜃𝑖,𝑖+1  defined in Ref. [62] based on the 

Kolmogorov-Smirnov test. A 𝜃  value much larger than one would indicate an abnormal 

inconsistency between the two histograms. Figure 2-2b shows that all 𝜃  values from our 

simulations are below 1.05, and therefore no major inconsistency is detected. This analysis thus 

suggests that the calculated statistical errors here are reasonable estimates for the actual sampling 

errors. 

HREMD [22] was implemented in our simulations, with the exchange rates between 

neighboring windows in the range of 20% − 40%. In this scheme, the biasing potential on each 

replica undergoes a discrete random walk during the simulation [63]. The behavior of such random 

walk, quantified by parameters such as the transmission factors [63], could also potentially reveal 

regions with slow relaxation in the degrees of freedom orthogonal to the reaction coordinate [63]. 

The calculated transmission factors for our simulations did not exhibit significant variations [63] 

across different regions of 𝑄, and thus did not indicate any particularly problematic region for the 

sampling. Figure 2-3 shows the umbrella windows sampled by each replica during the simulations. 

The sampled ranges for the individual replicas are clearly very different. The majority of the 

replicas visited a substantial range of the umbrella windows, with few covering almost the entire 

𝑄-range while some only covering a narrow section. It is well known that due to the effect of 

replica sorting [63], the replicas in HREMD simulations tend to be trapped in local regions. 

The ultimate validation of an enhanced sampling method (such as US) would be a direct 

comparison to ideally long unbiased simulations. Although millisecond simulations [11] were not 

affordable here, we performed unbiased simulations from the native state of Trp-Cage at 280 K as 

an additional test. Specifically, we took a total of 32 frames in the US trajectories, with the reaction 

coordinate 𝑄 ranging from 0.94 to 0.98. From each frame, we initiated an unbiased simulation 

(without any restraint) for 344 ns. The histograms of each simulation from the second half (172 

ns) of the trajectory are shown in Figure 2-4 (dotted lines). Remarkably, the histograms from these 

individual simulations are still significantly different from each other after 344 ns, thus indicating 
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that the equilibration is not very fast even when the protein is near the local free energy minimum 

for the native conformation, presumably due to the effects of other degrees of freedom. Whereas 

the protein in most unbiased simulations stayed in the native conformation during the 344 ns, we 

also observed a single spontaneous partial unfolding transition in one simulation, with the protein 

converted to some intermediate conformations with 𝑄~0.4. Overall, despite the large variations 

among the individual histograms, their average is in reasonable agreement with the prediction from 

the US simulations (Figure 2-4). 

In principle, with the knowledge of the free energy and the diffusion coefficients along the 

reaction coordinate, one may further obtain the kinetics of the transition [64, 65]. Although we 

performed some additional US simulations to calculate the diffusion coefficients [66], the 

statistical uncertainties appeared to be very large. Furthermore, the thermodynamics here does not 

indicate a two-state transition, as mentioned earlier. Therefore, we did not further estimate the 

folding/unfolding rates for the transition as in other studies [64, 65]. 

2.3.2 Energetics of the Conformational Space 

The Gibbs free energy (𝐺) can be decomposed as the enthalpy (𝐻) and the entropy (𝑆): 

𝐺 = 𝐻 − 𝑇𝑆. Our US simulations could provide these thermodynamic quantities for different 

conformational states (described by 𝑄). As discussed earlier, the free energy as a function of 𝑄 

was calculated by WHAM [61, 62]. Furthermore, we calculated the enthalpy for each frame in the 

simulation trajectories as 𝐻 = 𝑈 + 𝑃𝑉 , in which 𝑈  is the potential energy for the underlying 

atomic interactions, 𝑉 is the volume of the simulation system, and 𝑃 is the pressure. Under the 

constant pressure of 1 atm, the variations in the 𝑃𝑉 term are much smaller than in the potential 

energy 𝑈. We took the average for all snapshots with the same 𝑄 as the enthalpy value at that 𝑄. 

The entropy was then determined from the difference between the free energy and the enthalpy. 

The enthalpy and entropy of each system are shown in Figure 2-1 b and c, along with the 

free energy. In general, the variations in the enthalpy here are larger than in the free energy. For 

BBA, as expected, the minimum enthalpy is at large 𝑄 representing the native state. For Trp-Cage, 

surprisingly, the enthalpy for the native state is actually not the global minimum. Instead, the 

enthalpy minimum for Trp-Cage is at 𝑄~0.5 , thus suggesting that some intermediate 

conformations, as will be described in more details later, actually have even more favorable 

potential energies than the native structure. 
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We also attempted to calculate the heat capacity for the conformations at different 𝑄, 

obtained from the equilibrium energy fluctuation. However, the statistical uncertainties in this 

calculation are too large to reveal any clear difference of the heat capacity across the range of 𝑄. 

2.3.3 Stability of the Native Contacts 

The Trp-Cage crystal structure consists of a short α-helix (residues 2-9) and a Polyproline-

II segment (residues 16-19) connected by a loop (residues 10-15) that contains a 310-helix. The 

indole ring of the tryptophan residue (W6) is located at the center of the protein and makes contact 

with all of the three segments. Our simulation trajectories reveal different degrees of stability for 

the three segments, as shown in Figure 2-5 for the average fraction of the native contacts between 

each pair of protein residues for conformations at different 𝑄. The contact maps for all three 

temperatures are quite similar, with the ones for 270 K and 290 K shown in the figure. Whereas 

the reaction coordinate 𝑄 is essentially an aggregate of the pairwise contacts, the maps indicate 

that the individual contact strengths do not simply increase linearly with 𝑄 from the non-native to 

the native states. Instead, the pairwise contacts are formed in different stages, thus implying 

different stabilities for the three segments.  

In particular, the α-helix appears to have the most stable secondary structure. At a relatively 

low 𝑄 (0.3 or 0.4), the signature contacts within the α-helix already become prominent. In contrast, 

contacts involving the Polyproline-II and the loop segments appear to be less stable. For example, 

the native contacts between W6 and those two segments only start to form at 𝑄 = 0.7. Finally, 

some native contacts are quite weak even in the highly native conformations. For instance, the 

average contact strength for the D9-R16 salt bridge is smaller than 0.3 among the conformations 

at 𝑄 = 0.9. 

Some insight on the relative stability can also be gained from the spontaneous transition 

away from the native structure observed in the unbiased simulation described earlier. In this 

transition, the α-helix remained essentially unchanged, whereas the loop and the Polyproline-II 

segment underwent large deviations from the initial native conformation. At the end of the partial 

transition, the protein is in a partly native conformation with an intact α-helix. This observation is 

consistent with our conclusion of a more stable α-helix and suggests that the unfolding of the α-

helix would be the last step in reaching the completely non-native conformation. 
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2.3.4 Radius of Gyration 

The free energies discussed above are directly related to the marginal probability 

distribution of 𝑄 at equilibrium, with all other degrees of freedom integrated out. It is thus possible 

that highly distinct conformations are mapped to the same value of 𝑄. In the meantime, other 

parameters can be introduced to represent the equilibrium ensemble from different angles. As 

described in Methods, we can project the equilibrium ensemble onto any parameters and obtain 

the joint probability distribution. The free energy as a function of those relevant parameters may 

then reveal conformational states that otherwise cannot be distinguished by 𝑄 alone. 

One relevant order parameter is the radius of gyration, 𝑅𝑔, which measures the geometric 

extendedness of the protein conformation [4, 28]. Figure 2-6 shows two-dimensional free energies 

as a function of 𝑄 and 𝑅𝑔, obtained from their joint probability distribution in the equilibrium 

ensemble. Qualitatively, the free energy maps for all simulations exhibit some common features. 

At large 𝑄, the protein is in the native state, and Rg is therefore narrowly distributed around the 

value for the crystal structure. As 𝑄 decreases, the sampled range of 𝑅𝑔 becomes increasingly 

larger, indicating the presence of more extended conformations. However, all major free energy 

minima, regardless of 𝑄, are located at small values of 𝑅𝑔, and therefore the vast majority of the 

equilibrium population has 𝑅𝑔 values similar to the crystal structure. Even for the non-native state 

near 𝑄 = 0 with all the native contacts completely lost, highly extended conformations (with large 

𝑅𝑔) only represent a very small fraction of the population. These observations indicate that the 

non-native states here, albeit completely different from the crystal structure, are still folded in 

fairly compact geometries. 

The two-dimensional free energy maps reveal a number of metastable conformations that 

are not clearly distinguishable in the one-dimensional profile. Some of the conformations are 

shown in Figure 2-6 for Trp-Cage at 270 K. At 𝑄~1, conformation A is the native state as defined 

by the crystal structure. Around 𝑄~0.5, conformations B-D are partly native conformations with 

the α-helix similar to the crystal structure, but the loop region highly different, especially for 

conformations C and D. In conformation B, the R16 guanidinium group simultaneously forms salt 

bridges with the carboxylate groups of both D1 and D9. In conformation C, the Polyproline-II 

segment contacts the α-helix, and the W6 indole ring forms an H-bond with the backbone carbonyl 

group of P12 or S13. Conformation D is similar to conformation C, except that the W6 indole ring 

H-bonds with the backbone carbonyl group of S14, G15, or R16, or with the sidechain of S13. At 
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low values of Q, conformations E-I correspond to completely non-native structures. Among them, 

conformation I is a fully extended structure with the maximum Rg (17 Å). The equilibrium 

population of this extended conformation, however, is small in comparison to other non-native 

conformations. Those conformations (E-H) have lost almost all of the native contacts but 

nonetheless are almost as compact (with Rg 7-9 Å) as the native structure (with 𝑅𝑔 6.9 Å). They 

are mainly stabilized by a different set of H-bonds that are not present in the native structure, as 

will be further discussed later. 

Overall, the 𝑄 − 𝑅𝑔 free energy maps (Figure 2-6) of Trp-Cage at the three temperatures 

are qualitatively similar. The average Rg in the entire equilibrium ensemble is 8.1 Å, 7.8 Å, and 

8.0 Å at 270 K, 280 K, and 290 K, respectively. However, the free energy minima corresponding 

to the distinct conformations discussed above are most prominent at 270 K, although those 

conformations can indeed be found (with somewhat lower probabilities) in the equilibrium 

ensembles at 280 K and 290 K as well. In addition, the relative free energy at small 𝑄 for 270 K 

is lower than that for the other two temperatures, thus indicating that the equilibrium population 

of the non-native conformations (such as the fully extended conformation) is higher at 270 K. For 

protein BBA, the two-dimensional free energy map indicates that the non-native state (with low 

𝑄) is more predominant than the other states (Figure 2-6), also consistent with its one-dimensional 

𝐺(𝑄)  profile (Figure 2-1a). Similar to the case of Trp-Cage, the majority of the non-native BBA 

conformations are relatively compact, with 𝑅𝑔 comparable to its native structure. 

2.3.5 Hydrogen Bonds 

H-bonds are believed to play important roles in the stability of protein conformations [39, 

67]. We identified all H-bonds in the simulation trajectories, using a criterion that the donor-

acceptor (which can be N or O atoms) distance be smaller than 4.0 Å and the donor-H-acceptor 

angle be larger than 1400. The identified H-bonds are classified as native hydrogen bond (NHB) 

or non-native hydrogen bond (N-NHB), depending on whether they are present in the native crystal 

structure or not. By using the criteria above, there are a total of 12 NHBs in the crystal structure. 

One NHB is actually a salt bridge between the guanidinium group of R16 and the carboxylate 

group of D9. Another NHB is between the sidechain indole ring of W6 and the backbone carbonyl 
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group of R16. The other 10 NHBs are between the backbone amide N-H and the carbonyl C=O 

groups in residues 1-15. 

Figure 2-7 shows two-dimensional free energy maps determined from the joint probability 

distribution of 𝑄 and the number of NHBs or N-NHBs in the equilibrium ensemble of Trp-Cage. 

As expected, the number of NHBs strongly correlates with 𝑄, the fraction of the native contacts. 

For the free energy basin corresponding to the native state, most conformations have at least 7 

NHBs. There are typically 4-6 NHBs in the intermediate conformations with 𝑄 between 0.3 and 

0.7, whereas the non-native conformations have no more than 3 NHBs. In contrast, the number of 

N-NHBs does not appear to depend on 𝑄. Even for the completely non-native conformations with 

𝑄~0, the number of N-NHBs is similar to that in the native conformations. As discussed earlier, 

most conformations at 𝑄 still have folded geometries that are almost as compact as the native 

structure. Results here thus suggest that these compact non-native conformations are stabilized by 

different sets of H-bonds that are not present in the native structure. 

2.3.6 Folding of the α-helix in Trp-Cage 

As described earlier, the α-helix at the N-terminal of Trp-Cage is largely intact in the partly 

native conformations, suggesting that the formation of this α-helix would be an important step in 

the folding transition. We calculated the RMSD values (denoted as RMSDhx) of the Cα atoms in 

the α-helix for all conformations in the simulation trajectories, using the native α-helix structure 

as the reference. Figure 2-8 displays the two-dimensional free energy maps as a function of 𝑄 and 

RMSDhx for the equilibrium ensemble. Interestingly, the free energies exhibit a more prominent 

two-state signature along with the RMSDhx parameter than along 𝑄. There are two major minima 

along RMSDhx: the minimum at RMSDhx~0 corresponds to the folded α-helix (such as 

conformations A-D in Figure 2-6), and the minimum around 3-5Å corresponds to the completely 

unfolded helix (such as conformations E-I in Figure 2-6). Some intermediate conformations (with 

RMSDhx around 2 Å) of a partially folded α-helix also exist, but only with minority populations. 

Overall, there is an energetic barrier along RMSDhx, as identified in an earlier REMD study [68]. 

The free energy maps also show that the transitions along RMSDhx would occur when 𝑄 is around 

0.3. 
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2.3.7 Folding/Unfolding Transition of the α-helix in Trp-Cage 

Due to the biasing potentials, US simulations cannot directly reveal spontaneous transitions. 

However, with HREMD [22], each replica may sample multiple umbrella windows and thus a 

wide range of the reaction coordinate. An examination of the individual replicas in the Trp-Cage 

simulations (Figure 2-3) shows that although they all sampled a number of umbrella windows 

during the 1.5 μs simulation time, few replicas covered the entire range of 𝑄 . Moreover, the 

replicas can be roughly divided into two groups based on the α-helix conformation. The group of 

replicas with an unfolded α-helix segment mainly sampled the low-𝑄 range, whereas the replicas 

with an intact and folded α-helix mainly sampled the high-𝑄 range. Although the replicas in the 

same group had frequent exchanges with each other during the simulations, exchanges between 

replicas from different groups only occurred near the boundary (𝑄 ∼  0.3) between the two ranges, 

almost without any replica moving far into the opposite range. Furthermore, complete transitions 

between the folded and unfolded α-helix were very rare, as we only observed two unfolding and 

two folding events among all simulation trajectories. Figure 2-9 shows the trajectories of two 

replicas in which a complete folding or unfolding of the α-helix occurred. Given that the helical 

conformation is maintained by the typical backbone H-bonds between residues 2–5 and residues 

6–9, we display in the figure the time evolutions of each canonical H-bond in the trajectories.  

In addition, the folding/unfolding of the α-helix was accompanied by large rotations of the 

backbone torsions, especially the ψ angles, and we therefore also show the time evolution of these 

dihedral angles in Figure 2-9. The four folding/unfolding events for the α-helix, including the two 

shown in Figure 2-9, share some common features. Overall, all transitions followed similar 

pathways in the Q-RMSDhx plane. Furthermore, from the unfolded to the folded conformation, the 

H-bonds (A2-W6, Y3-L7) in the N-terminal half of the α-helix were always formed earlier than 

those (A4-A8, Q5-D9) in the C-terminal half. In addition, other parts of the protein also underwent 

some conformational changes along with the folding of the α-helix. In particular, the Polyproline-

II segment tended to move away from the α-helix during the folding/unfolding transitions, thus 

resulting in intermediate protein conformations with more extended geometry and higher radius of 

gyration in comparison to the structures at the two ends. Similar intermediate states were also 

reported by Juraszek and Bolhuis for a Trp-Cage of a slightly different sequence [49]. Other than 

the commonalities above, the four folding/unfolding events differed in the order and timing of the 

individual changes in the H-bonds and the torsions. 
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2.4 Discussion 

 In this study, using a reaction coordinate representing the collective fraction of the native 

contacts, we carried out US [46] simulations in combination with HREMD [22] to sample the 

protein conformational space. Overall, the free energy calculation (Figure 2-1a) appears to have 

converged, and the consistency test (Figure 2-2b) suggests that the statistical errors in the free 

energy have been reasonably estimated. The equilibrium ensemble of protein conformations thus 

appears to be satisfactorily reconstructed from these simulations. 

 The reconstructed equilibrium ensembles reveal multiple folded conformations for the two 

proteins here, Trp-Cage and BBA. The reaction coordinate 𝑄 only quantifies the resemblance to 

the native structure but does not describe the compactness of the conformation. In fact, the non-

native state does not merely consist of disordered or extended conformations. Even at 𝑄~0, with 

all native contacts completely broken, the majority of the populations are still comprised of well-

defined conformations almost as compact as the native structure (Figure 2-6), and these folded 

conformations are stabilized by some H-bonds (Figure 2-7) not present in the native structure. For 

Trp-Cage, some alternatively folded conformations have even lower enthalpy than the native 

structure (Figure 2-1b). In the presence of such conformations [68], therefore, the conformational 

space would not be described by a simple two-state model with a folded conformation and an 

unfolded state of disordered conformations. 

For Trp-Cage, the α-helix at the N-terminal plays an important role in the folding of this 

protein. UV resonance Raman spectroscopy [69] detected in the unfolded ensemble the presence 

of compact intermediate conformations with the intact α-helix, and concluded that the Trp-Cage 

is not a two-state folder [69]. Infrared spectroscopy also indicated that the α-helix is fully formed 

in the folding transition state [70]. These conclusions were further supported by recent simulations 

[71]. Our simulations here showed that the α-helix is more stable than other parts of the protein 

(Figure 2-5) and is largely intact in the intermediate conformations at 𝑄~0.5. Furthermore, the 

spontaneous partial unfolding transition in one of our unbiased simulations showed that the α-helix 

remained intact when other parts of the protein deviated from the native conformation. Therefore, 

our simulations are fully consistent with the previous findings that the α-helix is formed at the 

early folding stage, although we caution that the Trp-Cage sequences in those experimental studies 

[69, 70] are slightly different from ours. Importantly, our reconstructed equilibrium ensemble 

revealed that the transition between the folded and unfolded α-helix is almost orthogonal to the 
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reaction coordinate 𝑄 (Figure 2-8). Consequently, the restraint on 𝑄 in the US simulations cannot 

enhance the sampling of the α-helix conformations, which would thus compromise the sampling 

efficiency and contribute to the statistical errors in the free energy. Furthermore, the one-

dimensional free energy as a function of 𝑄 does not reflect the energetic barrier between the folded 

and unfolded conformations of the α-helix (Figure 2-8). In fact, the folding of the α-helix resembles 

a two-state process more than the folding of the entire Trp-Cage does, as also noted in previous 

experiments [69]. 

  Trp-Cage at various temperatures has been studied in NMR experiments [68, 72]. Here 

we carried out simulations at three different temperatures (270 K, 280 K, and 290 K) for this 

protein. Whereas the reconstructed equilibrium ensembles at these temperatures are qualitatively 

similar to each other, it is notable that the non-native state turns out to have a higher equilibrium 

probability at the lowest temperature (270 K) than at the other temperatures (Figure 2-2a). This 

somewhat unexpected result may be attributed to several factors. First, given the relatively small 

magnitude of the free energies here, the statistical errors in our calculation are relatively large. 

Consequently, the differences in the calculated equilibrium probabilities at the three temperatures 

are not much larger than the estimated statistical uncertainty. More importantly, as discussed 

earlier, the equilibrium ensembles consist of multiple folded conformations. Some alternatively 

folded conformations are enthalpically even more favorable than the native structure (Figure 2-1b). 

Consequently, lowering the temperature is not guaranteed to shift the equilibrium toward the native 

structure and away from other folded conformations. In fact, at the lowest temperature (270 K) 

here, the completely non-native conformations (at  𝑄~0) have even lower relative enthalpies, 

which could be responsible for their higher equilibrium populations than at the other temperatures. 

Finally, some Trp-Cage mutant was found to exhibit cold denaturation at low temperatures [73, 

74], and this mechanism remains a possibility in our case as well. 

Despite some qualitative agreement, our results considerably deviate from previous 

simulations [11, 42]. Most notably, here some compact non-native Trp-Cage conformations have 

even lower enthalpies than the native structure does, which is clearly unexpected. For BBA, 

moreover, our free energy profile (Figure 2-1a) indicates that the non-native state is significantly 

more stable (by ~4  kcal/mol) than the native state, which is also different from previous 

simulations [11]. Such discrepancies are most likely due to the force field issues. First, our version 

of the CHARMM36 force field was retrieved before the most recent updates for improving the 
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sampling of disordered protein states. More importantly, oversampling of compact conformations 

have been identified as a common deficiency of some force fields [75-78], and the high populations 

of compact conformations in our equilibrium ensemble may well be due to such artifacts. In 

addition, the CHARMM force field is known to over-stabilize the interaction between the 

guanidinium and the carboxylate groups [79, 80], thus very likely responsible for the unexpectedly 

low enthalpy for the Trp-Cage conformations at 𝑄~0.5, some of which (Figure 2-6}, conformation 

B) are indeed stabilized by salt bridges between the ARG and ASP residues. Although the 

optimized CHARMM22* force field [79] appears to produce excellent results in folding 

simulations [11], the predicted enthalpy for Trp-Cage still has a large discrepancy [11] with 

experiments. In light of such problems, it should be worthwhile to use the many available NMR 

data [68, 72]  on small model proteins such as Trp-Cage to validate and calibrate the force fields 

[81]. 

As mentioned before, with a good reaction coordinate, many enhanced sampling methods, 

including the US simulations adopted in this study, can be applied to sample the protein 

conformations. Here we demonstrated that using 𝑄 as the reaction coordinate, US in combination 

with HREMD [22] could reasonably sample the protein conformational space and reconstruct the 

equilibrium ensemble. The efficiency of such methods relative to the unbiased simulations, 

however, clearly depends on the underlying kinetics. For the Trp-Cage with relatively fast 

transition rates here, given the aggregated simulation times one could alternatively obtain multiple 

spontaneous transitions in unbiased simulations. The advantage of the US approach is therefore 

not prominent here (other than a technical gain of much better parallel efficiency). However, the 

required sampling time for unbiased simulations may increase by many orders of magnitude for 

proteins with slow kinetics. Even for BBA, a fast-folding protein, because the system is not at the 

melting temperature [10, 11] here, in unbiased simulations the protein would predominantly stay 

in the non-native state and the spontaneous transitions will be significantly less frequent, thus 

requiring much longer simulation times. In contrast, with a good reaction coordinate, the 

computational cost for the US [14, 46] and other enhanced sampling methods would not be nearly 

as sensitive to the height and skewness of the underlying free energy, and they have been routinely 

used to calculate free energies with high barriers in many applications. Furthermore, unlike the 

temperature replica exchange simulations which typically require more replicas for systems of 
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higher atom count (such as in the explicit-solvent simulations), the enhanced sampling methods 

based on a reaction coordinate can be readily applied to systems of any size. 

On the other hand, the success of the US as well as many other methods critically depend 

on the quality of the adopted reaction coordinate. An ideal reaction coordinate should ensure that 

all orthogonal motions can be well equilibrated within the simulation time. A poor reaction 

coordinate could severely compromise the sampling efficiency as well as cause other problems. 

The fraction of the native contacts, 𝑄, appears to be a reasonable reaction coordinate, as we could 

generate the non-native states and reproduce the equilibrium distribution by applying restraints on 

𝑄  alone in the simulations. On the other hand, 𝑄  is probably not always a perfect reaction 

coordinate for enhanced sampling, as we also identified slow equilibration of an orthogonal degree 

of freedom, i.e., the folding/unfolding of the α-helix, for the protein Trp-Cage here. In such cases, 

Hamiltonian replica exchange could somewhat alleviate the problem of slow orthogonal 

relaxations and facilitate the sampling along an imperfect reaction coordinate [63]. We also note 

that the identified problems with 𝑄 may be partly due to the force field issues discussed earlier, as 

𝑄 was shown to be a very good reaction coordinate [42] to analyze folding simulations [11] using 

the CHARMM22* force field. Nonetheless, our finding in this study suggests that the reaction 

coordinate 𝑄  could be improved, e.g., by better incorporating the slow degrees of freedom 

representing the α-helix conformation for Trp-Cage, and that an improved reaction coordinate 

should further enhance the sampling efficiency.  
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2.5 Figures 

 

 

 

 

Figure 2-1. Energetics along with the reaction coordinate 𝑄 from the US simulations. a) The free 

energy profiles calculated from the WHAM [61, 62] equations. The statistical errors are with 

respect to the difference between the free energy value at the given position and the average 

value of the entire profile and were estimated from the uncertainties in the mean force at each 

umbrella window [62]. b) The profile of average enthalpy along with Q. c) The entropy 

multiplied by the temperature. 
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Figure 2-2. a) Cumulative distribution function obtained by integrating the equilibrium 

probability distribution along with Q. The error bars at each data point were estimated separately. 

For any given point 𝑄𝑖, the upper and lower bounds (taken as ±1 standard deviation) for the 

profile of the free energy differences relative to 𝑄𝑖 were obtained (similarly from the statistical 

errors in the mean force for each window) and used to calculate the upper and lower limits for 

the cumulative probability at 𝑄𝑖. b) Inconsistency coefficient 𝜃 for pairs of histograms in the 

adjacent umbrella windows [62]. 
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Figure 2-3. The umbrella windows that each replica sampled during the second half of the US 

simulations.  
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Figure 2-4. Data from the 32 unbiased simulations (344 ns each) at the native state of Trp-Cage 

at 280 K. For each unbiased simulation, the histogram from the second half (172 ns) of the 

trajectory is shown as a dotted line. The average of the 32 histograms is shown as the dashed 

line. The solid line shows the normalized equilibrium probabilities for the range of 𝑄 

representing the native conformation, which was calculated from the US simulations (cf. . 

Energetics along with the reaction coordinate 𝑄 from the US simulations. a) The free energy 

profiles calculated from the WHAM [61, 62] equations. The statistical errors are with respect to 

the difference between the free energy value at the given position and the average value of the 

entire profile and were estimated from the uncertainties in the mean force at each umbrella 

window [62]. b) The profile of average enthalpy along with Q. c) The entropy multiplied by the 

temperature.a). 
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Figure 2-5. The fraction of the native contacts (or the average contact strength) between each 

pair of residues in the Trp-Cage conformations with different 𝑄 values at 270 K (upper left) and 

290 K (lower right). For each 𝑄 value, conformations within 𝑄 ±  0.01 were taken to calculate 

the average contact strength between every residue pair in the protein.  
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Figure 2-6. Two-dimensional free energy (in unit of kcal/mol) maps as a function of the reaction 

coordinate (𝑄) and the radius of gyration (𝑅𝑔, in unit of Å) of the protein conformation, for Trp-

Cage at 270 K, 280 K, and 290 K and BBA at 325 K. The free energies were determined from 

the joint probability distribution of 𝑄 and 𝑅𝑔 in the equilibrium ensemble. Some representative 

conformations at various free energy minima are also shown in the figure.  
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Figure 2-7. Two-dimensional free energy (in unit of kcal/mol) maps as a function of 𝑄 and the 

number of NHBs (first row) or the number of N-NHBs (second row) for Trp-Cage at 270 K 

(left), 280 K (middle) and 290 K (right). The free energies were determined from the joint 

probability distribution of 𝑄 and the H-bond count in the equilibrium ensemble.  
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Figure 2-8. Two-dimensional free energy (in the unit of kcal/mol) maps as a function of 𝑄 and 

the Cα RMSD (in unit of Å) for the α-helix (residue 2-9) in Trp-Cage at 270 K (left), 280 K 

(middle) and 290 K (right). The free energies were determined from the joint probability 

distribution of 𝑄 and the RMSD in the equilibrium ensemble.  
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Figure 2-9. Time evolution in two of the replicas in which folding (A) or unfolding (B) of the α-

helix in Trp-Cage occurred. Panel I shows the trajectory projected onto the Q-RMSD hx plane, 

colored by the progression in time (with a total of 1.5 μs). The equilibrium free energy (as in 

Figure 2-8) is displayed in the background in grayscale. Panel II shows the trajectories for some 

NHBs (with 1 and 0 representing formed and not formed, respectively) and backbone ψ angles in 

the α-helix, after being smoothed by time-averaging in intervals of 3 ns. The part of the 

trajectories in which the transition occurs is indicated by the dashed rectangles and also shown in 

zoom-in plots. Panel III shows some snapshots before, during and after the transition in the 

trajectory. The red and blue arrows indicate the directions of the A8/D9 amino (N−H) groups and 

the A4/Q5 carbonyl (C − O) groups, respectively. 
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 TOWARD CONVERGENCE IN FREE ENERGY 

CALCULATIONS FOR PROTEIN CONFORMATIONAL CHANGES: A 

CASE STUDY ON THE THIN GATE OF MHP1 TRANSPORTER 

3.1 Introduction 

Proteins are among the most important players in living systems. Most proteins adopt 

specific conformations (structures) that are closely related to their biological functions. Moreover, 

many proteins may adopt multiple conformations that can be reversibly converted from one to 

another. Some proteins, such as membrane transporters, must properly change their conformations 

to perform the physiological functions. Biophysically, equilibrium probabilities, and transition 

rates are the fundamental thermodynamic and kinetic properties, respectively, for conformational 

changes. In the simplest two-state case, a protein has two alternative conformations A and B. At 

equilibrium, the probabilities for the two conformations are 𝑃𝐴 and 𝑃𝐵, with 𝑃𝐴 + 𝑃𝐵 = 1. These 

equilibrium probabilities are determined by the free energy difference between the two states: 

 

𝐺𝐵 − 𝐺𝐴 = −𝑘𝐵𝑇 ln(𝑃𝐵 𝑃𝐴⁄ ) Eq. 3-1 

 

where 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the temperature. The spontaneous transition 

rates between the two conformations, 𝑘𝐴→𝐵 and 𝑘𝐵→𝐴, are also related to the free energy difference 

or the equilibrium probabilities: 

 

𝑘𝐵→𝐴 𝑘𝐴→𝐵⁄ = 𝑃𝐴 𝑃𝐵⁄  Eq. 3-2 

 

In addition to the thermodynamic and kinetic quantities above, it is highly desirable to gain 

a detailed mechanistic understanding of how the spontaneous transitions between the 

conformations occur. Although experiments could measure the equilibrium probabilities and the 

transition rates for protein conformational changes, the spontaneous transitions are normally 

difficult to observe in detail since they are rare and transient events. 

Molecular dynamics (MD) simulations are potentially a powerful technique to study 

conformational transitions since they could reveal molecular processes in atomic resolution1. 

Ideally, sufficiently long MD simulations could sample all the relevant conformations of the 
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protein along with a large number of spontaneous transitions between different conformations. 

These extremely long MD trajectories can thus be used to generate the equilibrium ensemble of 

the protein conformations and direct obtain all the thermodynamic and kinetic quantities. 

Unfortunately, although such a straightforward approach is conceptually simple and robust, it 

typically requires prohibitively long simulation times. Even with the most powerful computational 

resource nowadays, the currently affordable simulation times are only sufficient for systematically 

characterizing small proteins with fast kinetics[1, 2]. For most proteins, in contrast, alternative 

techniques need to be designed to reproduce the relevant properties of the equilibrium ensemble 

as ideally in the long unbiased simulations. 

Many computational methods introduce various forms of bias in the simulations to 

circumvent the insufficient simulation times with aiming to calculate the thermodynamic and 

kinetic properties from the biased simulations of affordable sampling times. These methods, often 

collectively called enhanced sampling techniques, include umbrella sampling[3, 4], transition path 

sampling [5], metadynamics [6], accelerated MD [7], adaptive biasing force [8], milestoning [9], 

dynamic importance sampling [10], weighted ensemble [11], steered MD [12], string method [13-

17], among many others. Many enhanced sampling techniques employ a reaction coordinate (RC) 

that distinguishes the two protein conformations, such that driving along the RC could enforce 

continuous conversions between the conformational states.  

Importantly, a free energy profile as a function of the RC can be calculated, which 

determines the probability distribution along with the RC in the equilibrium ensemble. The free 

energy profile quantifies the thermodynamics of the conformational transition and, in particular, 

gives the free energy difference between the two conformational states. All the enhanced sampling 

techniques above are based on rigorous theories in statistical mechanics and work perfectly well 

for model systems. However, when applied to real protein conformational changes, the success 

became much more limited, partly due to the reliability of the sampling in highly complex systems. 

In some cases, the free energies for the same conformational transition could differ by tens of 

kcal/mol in different publications. Indeed, it is well recognized that achieving true convergence in 

such free energy calculations remains a major challenge. In this study, we propose a set of 

strategies to alleviate the difficulty in the sampling and to achieve consistent and convergent free 

energies for protein conformational changes in practical applications. 
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Our approach differs in the following three aspects from the common practice in 

calculating conformational free energy. First, we recognize that two different protein 

conformations normally differ in multiple degrees of freedom, which might not necessarily 

undergo transitions simultaneously during spontaneous conformational changes. Correspondingly, 

unlike many studies in which a single collective RC describes the entire conformational change, 

in our approach, the complete conformational change consists of a series of transition steps. Each 

step connects two metastable states, which can be the end states or intermediate states. Accordingly, 

each individual transition step involves the conversion of certain distinct degrees of freedom and 

is described by a distinct RC. Second, to gauge the convergence of calculated free energies, we 

carry out two independent sampling simulations with different initial structures as the transition 

initiates from state A and the transition initiates from state B, respectively. A comparison of the 

two obtained free energy profiles will then indicate the extent of convergence in such calculations. 

We believe that this protocol for examining the convergence is much more stringent than other 

common methods and is more likely to uncover hysteresis problems in the sampling. Third, we 

introduce flat-bottom restraints in dimensions perpendicular to the RC to prevent the protein from 

being trapped in undesired conformations. These restraints effectively confine the sampling in 

desired conformational space and significantly reduce the complexity and difficulty of the 

sampling. Together, our approaches make it practically more feasible to obtain consistent and 

reliable free energies for protein conformational changes. 

Protein MHP1 structure 

We apply the proposed approaches above to elucidate a conformational change in the 

bacterial hydantoin transporter Mhp1, which is a symporter that co-transports a Na+ ion and a 

substrate molecule[18-20] (i.e., a hydantoin or its analog). Structurally, Mhp1 is formed by twelve 

transmembrane helices (TMs). The first ten TMs are arranged in two repeating units (i.e., TMs1-

5 and TMs6-10) that are related by pseudosymmetry. Like all membrane transporters, Mhp1 has 

an outward-facing (OF) and an inward-facing (IF) conformation, with the interior of the protein 

exposed to the extra- and intracellular sides of the membrane, respectively. In addition, when the 

substrate is bound from the extracellular side, Mhp1 is found to adopt an outward occluded (OC) 

conformation. The conformational change between the OF and IF states is through a so-called 

“thick gate” that involves global rotations of TM bundles. In contrast, the transition between the 
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OF and OC states is through a “thin gate” that mainly involves local movement of residues around 

TM10. In this study, we only focus on the thin gate, or the transition between the OF and the OC 

conformations, in the ligand-free condition. 

Overall, the OF and OC structures share a similar scaffold, with a C RMSD of 1.25 Å for 

residues 11 to 470. However, as shown in Figure 3-1, the two structures have a significant 

difference in TM10 and its preceding loop, which together form the thin gate that opens or closes 

the outward-facing binding pocket for the substrate. The thin gate has a major difference in its 

position and secondary structure between the OF and OC conformations (Figure 3-1). In particular, 

the C-terminal half of the loop adopts a distorted helical conformation in the OF structure, in 

contrast to a partially extended form in the OC structure. Consequently, the C-C distance 

between residues Leu359 and Phe355 is 9.5 Å in the OC crystal structure but only 5.5 Å in the OF 

structure. Also, due to different backbone conformations of the loop, the sidechain of Val358 

points to almost opposite directions in the OF and OC states. 

Furthermore, the rotational position of TMH 10 relative to other helices is substantially 

different in the OF and OC structures, as can be clearly seen from the sidechain position of Leu363 

on TMH 10 (Figure 3-2). In the OF conformation, the Leu363 sidechain appears to interact closely 

with both Phe116 and Trp117 on TMH 3. However, in the OC state, this side chain is rotated away 

from Phe116 and only contacts Trp117 while being closer to TMH 6. In addition, the Leu366 side 

chain is on either side of the Leu113 side chain in the OF and OC structures (Figure 3-2). Therefore, 

Leu366 would need to cross Leu113 from one side to the other during the conformational change. 

Even without the bound ion and substrate, we found that both the OF and the OC 

conformations remain stable in our unbiased equilibrium MD simulations, thus qualifying them as 

well-defined metastable states. As described above, the two conformations differ in the number of 

degrees of freedom, and the interconversion between them is far from trivial. Here we take this 

conformational change as a case study to demonstrate our computational approach, attempting to 

obtain the relative equilibrium probabilities (free energies) for the OF and OC states and a plausible 

pathway for the conformational transitions. 
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3.2 Method 

3.2.1 Simulation Systems and Protocols 

We built two systems from the crystal structures for the OF (PDB: 2JLN[18]) and the OC 

(PDB: 4D1B[18, 19]) states, respectively, each consisting of residues 11 to 470 of Mhp1. All 

ligands, including the bound ions and substrate, were removed from the crystal structures. All 

histidine residues were neutral with protonation on the  nitrogen. In each system, the protein was 

embedded in a bilayer of 200 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) 

lipid molecules. We used VMD[21] to manually position the protein to match its hydrophobic 

surface to the hydrophobic interior of the lipid bilayer.  The system was then solvated by 15953 

water molecules. Four chloride ions were added to neutralize the simulation system. Each system 

consists of 79986 atoms in total. We note that the OF and OC systems have identical composition 

and atom counts, despite different conformations of the protein. 

Our MD simulations were run by NAMD2[22] (v 2.13) and NAMD3[23] (v alpha7), using 

the CHARMM (vc36) force field[24] for the protein[24-26] and lipids[27] and the TIP3P model[28] 

for water molecules. The simulations were run with a 2.0 fs time step and under periodic boundary 

conditions, with the unit cell of dimensions ∼ 96 Å × ∼ 96 Å × ∼ 120 Å . All bond lengths 

involving hydrogen atoms were constrained to their equilibrium values using the SHAKE[29] and 

SETTLE[30] algorithms. Nonbond interactions were calculated with a cutoff distance of 12 Å. A 

smooth switching function takes effect at 10 Å for the van der Waals interactions. Full 

electrostatics was estimated every 4 fs applying the particle mesh Ewald method[31]. All the 

simulations in this study were performed in an NPT ensemble. The Langevin dynamics method 

with a damping coefficient of 0.1 ps−1 was applied to maintain the temperature at 300 K. A constant 

pressure of 1 atm was maintained using the Nose-Hoover Langevin piston method[32]. 

For each system, we first fixed the protein and equilibrated the lipid, water, and ions for 2 

ns after a conjugate-gradient minimization of 2000 steps. We then relaxed the protein and 

performed an equilibrium simulation for 100 ns without any restraint or bias. 

3.2.2 Overall Scheme 

As mentioned in the introduction, we model a complex protein conformational change as 

a sequence of multiple transition steps. In our case here, between the OF and OC conformations 
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of Mhp1, we introduce five intermediate metastable states, labeled 𝑀1 -𝑀5Which defines six 

transition steps labeled 1-6, as shown in Figure 3-3. Specifically, the OF conformation would 

undergo steps 1-6 sequentially to achieve a complete transition to the OC conformation. Reversely, 

the OC state would undergo steps 6-1 through intermediate states 𝑀5-𝑀1  to reach OF. Each 

transition step involves the changes in a subset of degrees of freedom and is described by a distinct 

RC, as will be described in detail later. 

We carried out two independent groups of simulations to calculate the free energies for the 

conformational change. One simulation group, termed InitOF here, started with the OF crystal 

structure and never directly used the OC crystal structure. Similarly, the other simulation group, 

InitOC, started with the OC crystal structure without any direct involvement of the OF crystal 

structure. Theoretically, in the limit of infinite sampling times, the long-term behaviors of the 

simulations should not depend on their initial states, and in such limits, the two simulation groups 

should result in identical free energies. In practice, a comparison between these two independent 

groups of simulations offers valuable indication for the convergence of the sampling. 

3.2.3 Collective Variables and Reaction Coordinate 

As described above, each transition step involves a two-state transition between adjacent 

metastable conformations, which we denote as A and B here for the sake of convenience. To 

distinguish the two states, we first introduce some collective variables (CVs). Each CV is a 

function of the atomic coordinates (denoted as 𝑋) of the protein, i.e., 𝐶𝑉(𝑋). The CVs involved in 

this study are torsion-based, angle-based, or distance-based. A torsion-based CV is defined as the 

dihedral angle formed by four atoms. Examples of such CV in this study include the backbone  

and  torsions and the sidechain 𝜒1 (N-Cα-Cβ-Cγ) and 𝜒2 (Cα-Cβ-Cγ-Cδ2) torsions. An angle-based 

CV is an angle formed by three atoms. A distance-based CV is a distance between individual atoms 

or points or a linear combination of such distances. We note that all the CVs here are invariant to 

the rigid-body rotation or translation of the protein. For each CV, we take its two typical values 

𝑐𝑣𝐴 and 𝑐𝑣𝐵 when the protein is in conformations A and B, respectively, and define a reduced CV 

(denoted as 𝐶𝑉∗): 
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𝐶𝑉∗(𝑋) ≡
𝐶𝑉(𝑋) − 𝑐𝑣𝐴
𝑐𝑣𝐵 − 𝑐𝑣𝐴

 Eq. 3-3 

 

In the reduced form, the 𝐶𝑉∗ is dimensionless and has values around 0 and 1 for protein 

conformations A and B, respectively. If we adopt 𝑁 such CVs for the particular transition step, the 

RC for this two-state transition is simply defined as the average of the reduced CVs: 

 

𝑅𝐶(𝑋) =∑𝐶𝑉𝑘
∗(𝑋)

𝑁

𝑘=1

𝑁⁄  Eq. 3-4 

 

Similar to each reduced CV, the RC has values around 0 and 1 for the two metastable 

conformations as well. 

3.2.4 Restraining Potential on RC in the Umbrella Sampling 

To obtain a free energy profile as a function of the RC, we employ umbrella sampling[3, 

4] (US). We first specify a range [𝛼𝐴, 𝛼𝐵] to place the umbrella windows, with 𝛼𝐴 and 𝛼𝐵 near 0 

and 1, respectively. We evenly divide this range into 𝑀 − 1 sections, thus resulting in a total of 𝑀 

evenly-spaced points 𝛼𝑖
𝑟𝑒𝑓

 (𝑖=1,2,…,𝑀), with 𝛼1
𝑟𝑒𝑓
= 𝛼𝐴 and 𝛼𝑀

𝑟𝑒𝑓
= 𝛼𝐵. These reference points 

are used to define the harmonic restraints on the RC for individual umbrella windows: 

 

𝑈𝑖(𝑋) =
𝐾

2
  (𝑅𝐶(𝑋) − 𝛼𝑖

𝑟𝑒𝑓
)
2
  Eq. 3-5 

 

for 𝑖=1,2,…,𝑀,  where 𝐾 is the spring constant. 

Furthermore, we place two additional umbrella windows, labeled 0 and 𝑀 + 1, at the two 

ends, respectively, to better sample the two metastable states A and B. In these two windows, the 

RC is subject to a flat-bottom potential: 

 

𝑈(𝑋) = {
𝐾

2
  (|𝑅𝐶(𝑋) − 𝛼𝑐| − Δ)

2      |𝑅𝐶(𝑋) − 𝛼𝑐| >   Δ    

0                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. 3-6 
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The potential is 0 when the RC is in the range of [𝛼𝑐 − Δ, 𝛼𝑐 + Δ]. Here we set 𝛼𝑐 = 𝛼𝐴 −

Δ for window 0, and 𝛼𝑐 = 𝛼𝐵 + Δ for window 𝑀 + 1. These two windows thus allow a largely 

unbiased sampling of the two metastable states. Therefore, the single transition step considered 

here is covered by a total of 𝑀+ 2 umbrella windows, each sampled by an individual simulation 

(replica). The windows at the two ends with the flat-bottom potential could facilitate Hamiltonian 

replica exchange[33] across multiple transition steps, as will be described later. 

3.2.5 Boundary Restraints in the Umbrella Sampling 

In addition to the restraint on the RC, we also apply a number of restraints on some other 

degrees of freedom (i.e., CVs), which we call “boundary restraints” here, to facilitate proper 

sampling. A boundary restraint has the form of a flat-bottom harmonic potential. Therefore, it has 

no effect on the concerned CV when it is within the specified range (i.e., the flat portion of the 

potential), and only acts to pull the CV back when it exceeds the range. The boundary restraints 

thus mainly serve to prevent undesired transitions in the concerned CVs but will not affect the 

normal dynamics of the system. 

The first type of boundary restraint is on the CVs that define the RC. As described earlier, 

in general, the RC is the average over multiple reduced CVs. By definition, all these reduced CVs 

and the RC have values ~0 for one metastable state and values ~1 for the other. We thus expect 

the CVs to also change collectively with the RC and with each other for the transition between the 

two metastable states. To enforce this, we apply the following boundary potential on any pair of 

reduced CVs (denoted as 𝑘 and 𝑗 here) to prevent too much separation of their values: 

 

𝑈𝑏1(𝑋) = {
𝐾𝑏1
2
  [|𝐶𝑉𝑘

∗
(𝑋) − 𝐶𝑉𝑗

∗
(𝑋)| −   𝑌(𝑋)]

2
       |𝐶𝑉𝑘

∗
(𝑋) − 𝐶𝑉𝑗

∗
(𝑋)| >   𝑌(𝑋)    

0                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. 3-7 

 

Here the spring constant of the boundary potential 𝐾𝑏1 is taken to be 1000 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. The 

term 𝑌 specifies how far the two reduced CVs need to differ for the boundary potential to have an 

effect. In this study, we choose a 𝑌 that depends on the RC in the following form: 

 

𝑌(𝑋) =  𝜂1𝑒
−𝜆1𝑅𝐶(𝑋) + 𝜂2𝑒

𝜆2𝑅𝐶(𝑋) Eq. 3-8 
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with 𝜂1 = 2.367 ,  𝜂2 = 1.321 × 10
−4 , 𝜆1 = 𝜆2 = 9.794 . Figure 3-4 shows 𝑌  as a 

function of the RC. When the RC is around 0 or 1, 𝑌 is very large such that the boundary restraint 

𝑈𝑏1(𝑋) is always zero. When the RC is around 0.5, 𝑌 becomes much smaller, and the 𝑈𝑏1(𝑋) thus 

prevents large deviation between the two reduced CVs. Therefore, the boundary restraint here will 

not affect the equilibrium fluctuations of the CVs in the two metastable states but will enforce the 

CVs to change together during transitions. In the US [3, 4], for a given transition step, if the RC is 

defined by multiple CVs (i.e., 𝑁 > 1 in Eq. 2), we apply the boundary potential 𝑈𝑏1(𝑋) on every 

pair of these CVs. 

The second type of boundary restraints is applied to the CVs that are not directly involved 

in defining the RC. However, the deviation of these CVs from the normal ranges could sometimes 

pose problems in the sampling. These boundary restraints have the following form: 

 

𝑈b2(𝑋) = {
𝐾𝑏2
2
  [|𝐶𝑉(𝑋) − 𝑐𝑣0| − Δ2 ]

2         |𝐶𝑉(𝑋) − 𝑐𝑣0| >  Δ2 

0                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. 3-9 

 

Here 𝑐𝑣0  and Δ2 specify the midpoint and the width of the range where the CV is not 

affected by the boundary potential. 

The third type of boundary restraint has the following form: 

 

𝑈𝑏3(𝑋) = {
𝐾𝑏3
2
  [|𝐶𝑉(𝑋) − (𝜔 𝑅𝐶(𝑋) + 𝛽 )| − Δ3]

2         |𝐶𝑉(𝑋) − (𝜔 𝑅𝐶(𝑋) + 𝛽)| > Δ3

0                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. 3-10 

It is similar to 𝑈b2(𝑋), except that the constant 𝑐𝑣0 (see Eq. 7) is replaced by a linear 

function (defined by the slope 𝜔 and the intersection 𝛽) of the RC. This type of boundary restraint 

is applied when the CV has substantially different values at the two metastable states and is thus 

expected to change with the RC during a transition. 
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3.2.6 Details of Individual Transition Steps 

The conformational change and the US[3, 4] for each transition step are described below, with a 

summary given in Table 3-1.. 

1) Transition step 1 between the OF state and the intermediate state M1 involves the sidechain 

rotation of Trp117 (Figure 3-5A). Therefore, the RC for this step is defined by the two 

sidechain dihedral angles 𝜒1 and 𝜒2 of Trp117.  

2) Transition step 2 between the intermediate states M1 and M2 mainly involves changes 

around Leu359, as shown in Figure 3-5B. The Leu359 sidechain points to the exterior and 

interior of the protein in states M1 and M2, respectively. A number of degrees of freedom 

are changed during this transition. We take one torsion-based CV and one distance-based 

CV to define the RC (Table 3-1) for this step and apply boundary restraints 𝑈𝑏3 Table 3-5 

to ensure proper changes of other CVs.  

3) Transition step 3 between the intermediate states M2 and M3 mainly involves the 

conformational change of TMH10. In particular, the Leu366 sidechain on TMH10 crosses 

the sidechain of Leu113 on TMH3 from one side to the other in this transition. To describe 

such sidechain crossing, we first introduce an anchor point (denoted as AP here) that is 

approximately on the line connecting the positions of the L366:𝐶𝛾 atom in the M2 and M3 

states. Specifically, the AP is defined as the center of mass for a group of atoms shown 

inFigure 3-6. All these atoms are on the backbone of transmembrane helices with relatively 

small fluctuations in the simulations, thus ensuring that the AP can be taken as a rather 

constant point in the interior of the protein. We further define a CV as the difference 

between the distances from the AP to the 𝐶𝛾 atoms of Leu366 and Leu113, respectively: 

𝐶𝑉 = |𝑟(L366: Cγ) − 𝑟(AP)| − |𝑟(L113: Cγ) − 𝑟(AP)| Eq. 3-11 

where 𝑟() represents the coordinate of the given atom or point. This CV could very well 

distinguish the relative sidechain positions of Leu366 and Leu113 in the metastable states 

M2 and M3 and is therefore used to define the RC for this transition step. 

4) Transition step 4 between the intermediate states M3 and M4 involves the sidechain rotation 

of Trp117 (Figure 3-5D) again. This step is opposite to the transition step 1 described 

earlier and used the same RC as in that step. In the OFOC transition, this step returns the 

side chain of Trp117 to its native rotamer in the OF/OC conformation.  
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Transition step 5 between the intermediate states M4 and M5 involves the conformational 

change of the loop region (Figure 3-5E). In particular, the backbone of the loop adopts distinct 

conformations in M4 and M5. Therefore, we use three backbone 𝜓 torsion angles (Table 3-1) ) to 

define the RC.  

Transition step 6 between the intermediate state M5 and the OC state involves the side chain 

rotation of Phe355 (Figure 3-5F), with the RC defined by its 𝜒1 torsion angle.  

Whereas the many CVs (Table 1) above are implicated in the complete conformational 

change, each transition step only involves the changes of a small number of CVs while the others 

remain roughly constant. In the US [3. 4] simulation of a given transition step, therefore, we apply 

boundary restraints 𝑈𝑏2 to the CVs not involved in this step to prevent them from undergoing large 

spontaneous transitions. These boundary restraints Table 3-2 ensure that each CV has a single 

status in any metastable state and only makes the transition in the specified step. 

In addition, we apply boundary restraints 𝑈b2(𝑋) on several backbones  and  torsion 

angles (Table 3-3) in all the transition steps. These torsions have similar values in the OF and OC 

conformations, and their values typically do not deviate much in our unbiased equilibrium 

simulations. We thus assume that they would stay in the same range during conformational 

changes between OF and OC as well and apply the boundary restraints to eliminate the possibility 

of any large transitions in these torsions. 

Furthermore, in each individual transition step, some specific degrees of freedom are 

subject to boundary restraints 𝑈𝑏2  and 𝑈𝑏3  to prevent occasional abnormal behaviors. These 

restraints are given in Tab;e 3-4 and Table 3-5. 

3.2.7 Implementation of Umbrella Sampling 

To initialize US[3, 4] for an individual transition step between two metastable states, we 

first carry out a “pulling” simulation in which the umbrella potentials (Eq. 3) are sequentially 

applied to drive the RC from one end to the other. The same boundary restraints in the 

corresponding US[3, 4] are also applied in the pulling simulations here. Snapshots from these 

simulations are then used as the initial coordinates for the subsequent US[3, 4] simulations. As 

described earlier, we perform two groups of sampling simulations with identical potentials but 

different initial coordinates. In the InitOF group, all the pulling simulations are in the OFOC 

direction (Figure 3-3), and the initial coordinates of all the US[3, 4] in this group were thus 
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originally derived from the OF crystal structure. In contrast, the InitOC group has the pulling 

simulations in the OCOF direction, and all the initial coordinates for the US simulations 

originally from the OC crystal structure. 

To facilitate equilibration, we employ Hamiltonian replica exchange[33] in all the US[3, 

4] simulations. Although each transition step can be separately sampled, in this study, we chose to 

sample all the transition steps simultaneously in the final production run, which allows the last 

window of a transition step and the first window of the next transition step to exchange their 

replicas. The criterion for exchanging any neighboring replicas 𝑖 and 𝑗 is based on the change in 

the total restraint energy due to the exchange: ∆𝑈 = [𝑈𝑖(𝑋𝑗) + 𝑈𝑗(𝑋𝑖)] − [𝑈𝑖(𝑋𝑖) + 𝑈𝑗(𝑋𝑗)], with 

the swap probability given by min[exp(−∆𝑈 𝑘𝐵𝑇⁄ ) , 1] . This is the standard formulism for 

Hamiltonian replica exchange[33], regardless of whether the two windows are in the same or 

different transition step. In the latter case, however, the energy 𝑈 must include the boundary 

restraints in addition to the umbrella potential on the RC. In this scheme, a single replica could 

potentially sample windows across multiple transition steps, thus further facilitating the 

equilibration of the systems. The exchanges are attempted every 200 time steps (i.e., 0.4 ps). The 

six transition steps are sampled by a total of 144 umbrella windows Table 3-1. For both the InitOF 

and InitOC sets of simulations, the final production run has 150 ns per window, with the last 75 ns 

used for calculating the free energy profiles by the weighted histogram analysis method[34, 35] 

(WHAM). 

3.2.8 Calculation of Individual Transition Rates 

Based on the free energy profiles obtained from the US simulations, we can further 

calculate the transition rates using an approach we developed previously. In this study, we carried 

out such kinetics calculations for two of the transition steps, namely, steps 1 and 5, as described 

below. 

We consider each individual transition step between states A and B as an isolated two-state 

system, assuming that the system is not allowed to visit other metastable states. Based on the free 

energy profile 𝐺(𝛼) as a function of the reaction coordinate (RC) 𝛼, the equilibrium probabilities 

for states A and B are given by 
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𝑃𝐴 =
∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
𝛼∗

−∞

∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
∞

−∞

 

 

𝑃𝐵 =
∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
∞

𝛼∗

∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
∞

−∞

 

Eq. 3-12 

 

where 𝛼∗ is the location of free energy barrier in 𝐺(𝛼). 

For transition step 1, where A and B here respectively represent the metastable states OF 

and M1, we first define a small interval [𝛼1, 𝛼2], with [𝛼1 = 0.45, 𝛼2 = 0.55], at the free energy 

barrier. We then selected ten frames from the US trajectories where the RC is near the barrier. 

Next, starting from each frame, we performed a simulation of 13 ns, in which the RC is subject to 

a strong flat-bottom harmonic restraint with a spring constant of 3,750 kcal/mol. The restraint is 

zero when the RC is inside the interval [𝛼1, 𝛼2] but acts to pull the RC back when it crosses the 

boundaries. In addition, all the boundary restraints in the US simulations were also applied here. 

The velocities and coordinates of the atoms were saved with an interval of 1ns in these simulations, 

representing an unbiased equilibrium sampling of the microstates when the RC is within [𝛼1, 𝛼2]. 

We then took the last 12 frames from each simulation, thus obtaining a total of 120 microstates 

with the RC in the interval [𝛼1, 𝛼2]. Next, for each microstate, we created a conjugate microstate 

by replicating the coordinates and reverting the direction (i.e., multiplying each component by -1) 

of the velocities for all the atoms in the system. Now we thus have 120 pairs, each consisting of 

two microstates that are conjugate of each other. Starting from each of the 240 microstates, we 

carried out an unbiased simulation under the NVE condition, without any restraint. Importantly, 

the two simulations in each pair started with identical coordinates but opposite velocities for all 

the atoms. The simulations were run long enough such that the system commits to either state A 

or state B. 

From each pair of the forward/backward simulations, we calculate a 𝜆 value from their 

trajectories. Specifically, if the forward and backward simulations commit to the same state, 𝜆 is 

set to 0. Otherwise, when the two simulations respectively commit to the two states A and B, they 

form a transition path (or reactive trajectory) that represents a spontaneous transition between A 

and B. In this case, 𝜆 is set to 1 𝜏⁄ , where 𝜏 is the total duration that the transition path spends in 
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the interval [𝛼1, 𝛼2]. If the transition path visits the interval multiple times, 𝜏 should be the sum of 

all the individual durations. 

We denote 𝑘0  as the rate of spontaneous transitions from A to B in the equilibrium 

ensemble of the two-state system. Spontaneous transitions from B to A have the same rate 𝑘0. We 

previously proved that 𝑘0 can be determined as 

 

𝑘0 =
1

2
𝑃(𝛼1 ≤ 𝛼 ≤ 𝛼2) ∙ 〈𝜆(𝛼1, 𝛼2)〉𝛼1≤𝛼≤𝛼2  Eq. 3-13 

 

Here 〈𝜆(𝛼1, 𝛼2)〉𝛼1≤𝛼≤𝛼2  can be calculated by the average of 𝜆  values over the 120 

simulation pairs described earlier. Furthermore, the equilibrium probability for the RC interval 

[𝛼1, 𝛼2] can be determined from the free energy profile: 

 

𝑃(𝛼1 ≤ 𝛼 ≤ 𝛼2) =
∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
𝛼2
𝛼1

∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
∞

−∞

 Eq. 3-14 

 

With the obtained 𝑘0, the forward and backward transition rates can be further determined: 

 

𝑘𝐴→𝐵 =
𝑘0
𝑃𝐴
=
1

2

∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
𝛼2
𝛼1

∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
𝛼∗

−∞

〈𝜆(𝛼1, 𝛼2)〉𝛼1≤𝛼≤𝛼2  

𝑘𝐵→𝐴 =
𝑘0
𝑃𝐵
=
1

2

∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
𝛼2
𝛼1

∫ exp[−𝐺(𝛼) 𝑘𝐵𝑇⁄ ] 𝑑𝛼
∞

𝛼∗

〈𝜆(𝛼1, 𝛼2)〉𝛼1≤𝛼≤𝛼2  

Eq. 3-15 

 

For the transition step 5 between M4 and M5, we performed kinetics calculations using the 

same protocols above, with the following exceptions. First, the chosen interval is [𝛼1 = 0.54, 𝛼2 =

0.56]. Second, in the restrained simulation, the spring constant is 15,000 kcal/mol for the flat-

bottom potential on the RC.  
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3.2.9 Calculation of Overall Transition Rates 

In this study, we model the conformational change as a series of transition steps. From the 

kinetic rates of each transition step, we can further obtain the overall rate of the complete 

conformational change. Specifically, here we use 𝑆0 and 𝑆𝑀 to denote the two end states, and 𝑆1, 

𝑆2 , …, 𝑆𝑀−1  to represent the intermediate states in a sequential chain. For the transition step 

between states 𝑖 and 𝑖 + 1, the forward and backward transition rates are denoted as 𝑘𝑖→𝑖+1 and 

𝑘𝑖+1→𝑖, respectively, and can be obtained using the approach described in the previous section. We 

now aim to calculate the overall rate 𝑘0→𝑀. This rate can be defined in a stationary condition where 

𝑆0 is the source with a constant population of 𝑁 and 𝑆𝑀 is the drain with a population of 0, such 

that the constant flux from 𝑆0  to 𝑆𝑀  through all the intermediate states is 𝑁 ∙ 𝑘0→𝑀 . From the 

stationary (time-independent) solution of the master equations for this single-chain system, we 

have the expression for 𝑘0→𝑀: 

𝑘0→𝑀 = 𝐾 ∑ 𝑄𝑖
𝑀−1
𝑖=0⁄    Eq. 3-16 

 

 

Where 

 

𝐾 ≡∏𝑘𝑖→𝑖+1

𝑀−1

𝑖=0

  

𝑄𝑖 ≡ (∏𝑘𝑗+1→𝑗

𝑖−1

𝑗=0

)(∏ 𝑘𝑗→𝑗+1

𝑀−1

𝑗=𝑖+1

)  

Eq. 3-17 
 

These equations can be simplified as follows. At equilibrium, the probability for each state 

𝑆𝑖 is denoted as 𝑃𝑖. Since 𝑃𝑖+1 𝑃𝑖⁄ = 𝑘𝑖→𝑖+1 𝑘𝑖+1→𝑖⁄ , we have 

 

𝑃𝑖
𝑃0
=∏

𝑘𝑗→𝑗+1

𝑘𝑗+1→𝑗

𝑖−1

𝑗=0

  

 

Eq. 3-18 
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Therefore, 

 

𝑄𝑖
𝐾
=
∏ 𝑘𝑗+1→𝑗
𝑖−1
𝑗=0

∏ 𝑘𝑗→𝑗+1
𝑖
𝑗=0

=
1

𝑘𝑖→𝑖+1

𝑃0
𝑃𝑖

 Eq. 3-19 

 

We thus have 

 

1

𝑃0𝑘0→𝑀
= ∑

1

𝑃𝑖𝑘𝑖→𝑖+1

𝑀−1

𝑖=0

 Eq. 3-20 

 

If we take 1 𝑃0𝑘0→𝑀⁄  as the “resistance” for transitions between 𝑆0 to 𝑆𝑀 , the equation 

above indicates that this total resistance is simply the sum of the resistances from individual 

transition steps, analogous to resistors in a series electrical circuit. For a transition step between 𝑆𝑖 

and 𝑆𝑖+1, specifically, the inverse of its resistance is equal to 𝑃𝑖𝑘𝑖→𝑖+1, the number of spontaneous 

transitions in unit time from 𝑆𝑖 to 𝑆𝑖+1 in the equilibrium ensemble for this multi-state system. The 

𝑃𝑖𝑘𝑖→𝑖+1 term is also equal to the rate (𝑃𝑖+1𝑘𝑖+1→𝑖) of spontaneous transitions from 𝑆𝑖+1 to 𝑆𝑖 in 

the equilibrium ensemble. Therefore, transition steps with smaller 𝑃𝑖𝑘𝑖→𝑖+1 values will have larger 

contributions to the overall rate 𝑘0→𝑀. In particular, a “rate-limiting” step would have a 𝑃𝑖𝑘𝑖→𝑖+1 

value that is much smaller than the values from all the other steps. Assuming that the step between 

states 𝑆𝑙 and 𝑆𝑙+1 is such a rate-limiting step, we may ignore the resistances of the other steps and 

take only the 𝑃𝑙𝑘𝑙→𝑙+1 to approximately estimate the overall rates as: 

 

𝑘0→𝑀 ≈
𝑃𝑙
𝑃0
𝑘𝑙→𝑙+1 

𝑘𝑀→0 ≈
𝑃𝑙+1
𝑃𝑀

𝑘𝑙+1→𝑙  
Eq. 3-21 

3.3 Result 

As a case study to demonstrate our computational approaches, we aim to elucidate the 

conformational changes involving the thin gate of the Mhp1 membrane transporter between the 

OF and OC states. 
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We first examine the behaviors of the OF and OC conformations in 100-ns unbiased 

simulations starting from the corresponding crystal structures. Figure 3-7 shows that both 

conformations are quite stable during the simulation time, as the C atoms in the thin gate remain 

close to the starting crystal structure and far from the other structure. As described in the 

Introduction, there are major differences in the local structures, such as backbone torsions and 

sidechain positions, between the thin gates of OF and OC. Those local structures also remain stable 

in our unbiased simulations without undergoing any considerable spontaneous conformational 

transition. Therefore, we conclude that both OF and OC are genuine metastable states, and 

spontaneous transitions between the two would be rare in typical MD time scales. 

3.3.1 Monitoring and Alleviating Convergence Problems  

We attempted to reveal the thermodynamics of the conformational change by computing a 

free energy profile from US simulations between OF and OC. Our major concern in such 

calculations is the convergence since hysteresis is a common problem that plagues many enhanced 

samplings of protein conformations. To closely monitor hysteresis, we adopted a strategy of 

performing each US twice using two different sets of initial coordinates, respectively. Specifically, 

as described in Methods, we have two groups of simulations, InitOF and InitOC, each originally 

starting from the OF and OC crystal structures, respectively. A comparison of the free energy 

profiles calculated from the InitOF and InitOC groups thus quantifies the hysteresis in the 

sampling. Indeed, in some of our preliminary calculations, the free energy profiles from InitOF 

and InitOC differed by tens of kcal/mol, thus indicating significant convergence problems. In such 

cases, we would compare the trajectories in detail to identify those degrees of freedom that exhibit 

major differences in the InitOF and InitOC simulations and are thus potentially responsible for the 

observed hysteresis. Early identification of hysteresis problems allowed us to address them 

promptly. Through repeated trials and errors, we gained an increasingly better understanding of 

the important degrees of freedom involved in the conformational change here and reduced the 

hysteresis in the sampling to an acceptable level. Some important considerations and strategies in 

this process are described below. 

As mentioned earlier, the OF and OC conformations differ in many degrees of freedom. 

We found that if all these degrees of freedom change simultaneously in a single transition, the 

resulting free energy barrier would be very high. Therefore, we instead adopted a multi-step 
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scheme in which the complete conformational change consists of a series of transition steps, each 

only involving a small number of degrees of freedom. Specifically, our scheme introduces five 

metastable intermediate states M1-M5 between the OF and OC states, with six transition steps 

connecting all these states into a chain. Each transition step between two adjacent metastable states 

can be considered a separate two-state system with its own thermodynamics and kinetics. In 

particular, the free energy profile for each transition step is described by a distinct RC that only 

incorporates the degrees of freedom that undergo major changes in that step. 

For Mhp1 here, although the sidechain of Trp117 has a similar orientation (described by 

the 1 and 2 torsions) in both OF and OC, we found that the sidechain in such position would 

pose a steric hindrance for the movement of other residues in the region. In our scheme, therefore, 

when going from OF to OC, the Trp117 side chain undergoes a rotation to an alternative position 

in transition step 1 to clear the space for other residues to complete their changes in transition steps 

2 and 3. The Trp117 sidechain then rotates back to its original position in transition step 4. 

Consequently, in the intermediate states M2 and M3, the Trp117 sidechain is in a different position 

compared to that in the OF and OC. 

When running US simulations, the common problem is that some degrees of freedom 

would make random spontaneous transitions. Such degrees of freedom are not the RC and 

therefore not subject to the umbrella potentials, but they may nonetheless affect the distribution of 

the RC and thus the free energy profile. Ideally, the simulations should be long enough such that 

these orthogonal degrees of freedom are fully equilibrated, with all the values properly sampled. 

In practice, however, the affordable simulation times are often not sufficient when the orthogonal 

degrees of freedom make rare transitions with slow kinetics. Our strategy in such cases is to apply 

boundary restraints on the problematic degrees of freedom. Such restraints effectively impose a 

boundary for the values that the concerned degree of freedom may take, thus preventing it from 

undergoing undesired transitions while not affecting its normal dynamics within the allowed range. 

As detailed in Methods, we applied several types of boundary restraints for different situations. 

These boundary restraints significantly simplify the sampling by confining it within the desired 

conformational space and avoiding difficult regions. 

By properly choosing the transition steps along with the RC and the boundary restraints for 

each step, we managed to achieve acceptable convergence, as gauged by comparing the free energy 



 

 

80 

profiles from the InitOF and InitOC simulation groups. In the following, we describe the 

conformational sampling of the Mhp1 thin gate in more detail. 

3.3.2 Conformational Thermodynamics of Mhp1 Thin Gate 

We carried out US simulations with Hamiltonian replica exchange to calculate the free 

energy profiles for each transition step. In the final production run, all the transition steps were 

sampled altogether using a total of 144 umbrella windows. Furthermore, the Hamiltonian replica 

exchange was not only between windows in the same transition step but also between the last 

window of a transition step and the first window of the next step. Therefore, a replica may sample 

multiple transition steps during the US simulations, thereby further facilitating the equilibration of 

the umbrella windows. The exchange rates between neighboring windows are in the range of 20-

40% in our simulations. Furthermore, as shown in Figure 3-8, most of the replicas indeed visited 

a substantial range of windows, with some covering multiple transition steps. 

To analyze the US simulations, we first treat each transition step as a separate two-state 

system with metastable conformations A and B and calculate a separate free energy profile using 

the standard WHAM. From each profile, the free energies for metastable states A and B are 

calculated as  

 

𝐺𝐴 = −𝑘𝐵𝑇 ln∫ exp [−
𝐺(𝛼)

𝑘𝐵𝑇
] 𝑑𝛼

𝛼∗

−∞

  

  

  𝐺𝐵 = −𝑘𝐵𝑇 ln ∫ exp [−
𝐺(𝛼)

𝑘𝐵𝑇
] 𝑑𝛼

∞

𝛼∗
    

Eq. 3-22 

 

where 𝑘𝐵  is the Boltzmann constant. The free energy difference ∆𝐺 ≡ 𝐺𝐵 − 𝐺𝐴  thus 

predicts the ratio of the probabilities for the two states in the equilibrium ensemble. The ∆𝐺 values 

for each transition step are provided in Table 3-9. As mentioned earlier, a comparison of the free 

energies calculated from the InitOF and InitOC simulations offers an estimate for the hysteresis in 

the sampling and the convergence of the results. For the individual transition steps here, the 

maximum deviation of ∆𝐺 between InitOF and InitOC is ~2.1 kcal/mol (Table 3-9), which we 

consider an acceptable convergence. 
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By cumulating the stepwise ∆𝐺  values above, we obtain the free energies of all the 

metastable states relative to the first state, OF, as shown in Figure 3-9B. These free energies predict 

the probabilities of each state in the equilibrium ensemble. Based on this, we plot all the free energy 

profiles together (shown in Figure 3-9A) by vertically shifting them such that the free energy of 

each metastable state matches its corresponding value in Figure 3-9B. Thus, these combined 

profiles reveal the complete thermodynamics of the multistate system here, providing both the free 

energy levels for the conformations and the barriers between them. 

Because boundary restraints were applied in our US simulations as described earlier, their 

effect should be properly accounted for when constructing the free energy diagram in Figure 3-9, 

especially since a shared intermediate state may be subject to different boundary restraints when 

being sampled in different (neighboring) transition steps. To evaluate such effects, we performed 

equilibrium simulations of 100 ns for all the intermediate states (M1-M5) in addition to those for 

the OF and OC described earlier. From these equilibrium trajectories, we apply the free energy 

perturbation formulism ∆𝐺𝑏 = −𝑘𝐵𝑇 ln〈𝑒
−𝑈𝑏 𝑘𝐵𝑇⁄ 〉 to calculate the increase of free energy ∆𝐺𝑏 

when the boundary restraints 𝑈𝑏 are present. Because our boundary restraints were designed to 

have minimal effects on the metastable states, it turns out that the equilibrium simulations here 

would only rarely hit any boundary. Consequently, the calculated ∆𝐺𝑏 is ~0.1 kcal/mol or lower 

for all the metastable states here, which are negligibly small compared to other uncertainties. 

Therefore, we ignored the correction for the boundary restraints when presenting the free energies 

in Figure 3-9. 

The OF state has two H-bonds formed by local backbone atoms in residues 355-360 (Figure 

3-10.1). After the Trp117 sidechain is rotated in step 1, it makes an additional H-bond with the 

Gln42 side chain in state M1 (Figure 3-10.2). Next, the rearrangement of Leu359 at step2 makes 

three new local H-bonds in state M2 (Figure 3-10.3) while losing both the H-bonds in OF. 

Subsequently, the rearrangement of TM10 in step 3 makes two additional sidechain H-bonds with 

residues on TM1 and TM6 in state M3 (Figure 3-10.4). Then the rotation of the Trp117 sidechain 

back to its native rotamer in step 4 breaks its H-bond with Gln42 in state M4 (Figure 3-10.5). In 

step 5 to state M5, the loop region changes to an extended conformation, thus breaking most of the 

local backbone H-bonds. As the last step (i.e., step 6) does not change the H-bonds, and states M5 

and OC (Figure 3-10.6 and Figure 3-10.7) thus share similar H-bonds. 



 

 

82 

The intermediate state M3 has the lowest free energy (Figure 3-9B) among all the 

metastable states (including OF and OC) and is thus predicted to be the most populated 

conformation at equilibrium. In M3, the C-terminal half of the loop adopts a distorted helical 

conformation similar to the OF, whereas the contacts between TM10 and TM6 are similar to the 

OC. Interestingly, M3 also has the greatest number of H-bonds (Figure 3-10 and Table 3-6) in 

comparison to the other states, which might contribute to the favorable free energy for M3. 

3.3.3 Kinetics of Mhp1 Thin Gate 

In addition to thermodynamics, kinetic quantities are the other major characteristics of 

conformational changes. Based on the obtained free energies, we further attempt to calculate the 

kinetic rates for the transitions of the Mhp1 thin gate. In addition to the end states OF and OC, the 

state M3 here is also of major significance because it has the lowest free energy among all the 

metastable states. Therefore, we calculate the transition rates between these states, as described 

below. 

In our scheme, transitions from the OF to the M3 states need to take transition steps 1-3, 

hopping over states M1 and M2. The kinetic rates between OF and M3 can thus be determined by 

the individual transition rates of steps 1-3. In this way, the three transition steps can be lumped 

together to provide the effective rates between OF and M3, hiding the details such as the 

intermediates M1 and M2. Specifically, as elaborated in Methods, each transition step contributes 

a resistance to the total resistance between OF and M3, and the rate-limiting step would have a 

predominant resistance compared to other steps. In particular, the resistance of an individual 

transition step is inversely proportional to the rate of spontaneous transitions for this step in the 

equilibrium ensemble of the multistate system. Furthermore, a major determinant of such 

spontaneous transition rate is the equilibrium probability at the barrier top. In the multistate free 

energy profiles (Figure 3-9A), transition step 1 has the highest free energy barrier and thus the 

lowest equilibrium probability at the barrier, which suggests it would be the rate-limiting step for 

transitions between OF and M3. Under this assumption, by ignoring the resistance of the other 

steps, we only calculate the transition rates for step 1 and use them to estimate the kinetic rates for 

the OF-M3 transitions. Similarly, for the M3-OC transitions that consist of steps 4-6, we identify 

step 5 as the rate-limiting step and only calculate the transition rates for this step. 
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To calculate the rates in a single transition step, we prepare a number of systems at the free 

energy barrier top and release each system in two unbiased simulations with opposite initial 

velocities, as described in Methods. From the time evolution of these unbiased simulations along 

with the equilibrium probability of the barrier top in the two-state system, the forward and 

backward transition rates can be obtained. Specifically, if the two simulations starting from the 

same initial coordinates commit to different states, they form a transition path (reactive trajectory) 

between the two metastable states, and the durations these transition paths stay at the barrier top 

are used to calculate the kinetic factor. For transition step 1, more than 15% of the 120 simulation 

pairs evolve into transition paths, thus allowing an estimate of the transition kinetics. For transition 

step 5, without any boundary restraints in the 240 unbiased simulations at the barrier top, some 

backbone torsions in the loop region made spontaneous transitions to values different from those 

in M4 or M5. In such cases, the loop would settle into a metastable state with different secondary 

structures, thus failing to commit to either M4 or M5 during the simulation time of 1 ns. All such 

non-committing simulations were treated as not forming transition paths and contributing zero to 

the transition rate. Nonetheless, more than 10% of the 120 simulation pairs did form a transition 

path, thus indicating that spontaneous transitions between M4 and M5 would indeed occur with 

finite rates. Details of the kinetic calculation for the two individual transition steps here are 

summarized in Table 3-7. 

By taking the rates of transition step 1 and ignoring the resistance of other steps, we obtain 

(Eq. 2.19) the effective transition rates (with details provided in Table 3-8) between the OF and 

M3 states: 𝑘𝑂𝐹→𝑀3 ~ 1.7×102 S-1, and 𝑘𝑀3→𝑂𝐹 ~ 1.2 S-1. This simplifies the multistate system of 

OF, M1, M2, M3 into a two-state system of OF and M3 only. Similarly, using the obtained rates for 

step 5, we can reduce the multistate system of M3, M4, M5, OC into a two-state system of M3 and 

OC, with the effective transition rates of 𝑘𝑀3→𝑂𝐶 ~ 8×10-3 S-1 and 𝑘𝑂𝐶→𝑀3 ~ 1.8×10-1 S-1. We thus 

finally obtain both the thermodynamics and the kinetics concerning the three major states OF, M3, 

and OC, as summarized in Figure 3-11. 

By piecing together two opposite simulations starting from the same point at the barrier 

top, the transition paths represent spontaneous transitions between the two metastable states, thus 

providing valuable information about how such transitions would occur. 
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3.3.4  Free Energy Profiles at Each Step Transition 

For both the InitOF and InitOC sets of simulations, the free energy profiles are calculated 

by the weighted histogram analysis method (WHAM). We calculated the free energy at 

temperatures 300K at each transition step along the chosen reaction coordinate (RC). Each 

transition step involves a two-state transition between adjacent metastable conformations. The 

CVs are a function of the atomic coordinates of the protein. Moreover, the CVs in this study are 

defined either by torsion dihedral angle, a bond length, or consisting of a combination of such 

collective variables (CV). Between the two adjacent intermediate states, each value of the CV is 

reduced to have a value between ~0.0 and ~1.0.  Correspondingly, we measured the average of all 

the CVs as the selected reaction coordinate.  From the US simulations, the free energy profile 𝐺(𝛼) 

as a function of the reaction coordinate (RC) 𝛼 is calculated separately at each transition step. In a 

two-state system, the free energy difference is given by 𝐺𝐴 = −𝑘𝐵𝑇 ln∫ exp [−
𝐺(𝛼)

𝑘𝐵𝑇
] 𝑑𝛼

𝛼∗

−∞
   

for state A and 𝐺𝐵 = −𝑘𝐵𝑇 ln ∫ exp [−
𝐺(𝛼)

𝑘𝐵𝑇
] 𝑑𝛼

∞

𝛼∗
 for state B. where 𝛼∗  is the location of free 

energy barrier.  Table 3-9 shows the energy difference between the two metastable states as  Δ𝐺 =

𝐺𝐵 − 𝐺𝐴 

Figure 3-12 shows the free energy profiles at each step transition along with the selected 

RC separately. At each transition step, the statistical errors were measured by the uncertainties of 

the mean forces at each window with respect to the closest metastable state to the OF state (i.e., 

The window with RC = 0)  

3.4 Discussion 

The direct task in this study is to elucidate the conformational changes between the OF and 

the OC states of the Mhp1 membrane transporter. In comparison to the transitions between the 

outward- and inward-facing states, the conformational changes here are relatively localized and of 

much smaller scales. However, this seemingly simple conformational change still has a significant 

degree of complexity. In our proposed mechanism, there are several intermediate metastable states 

between the OF and OC conformations. It is particularly unexpected that the intermediate state M3 

has a lower calculated free energy than both the OF and the OC. Although M3 has some 

resemblance to the thin gate in some other Mhp1 structures (e.g., PDB ID: 2JLO[18]), one would 

expect the OF conformation described by the crystal structure (PDB ID: 2JLN[18]) to be the most 
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stable state for the substrate-free Mhp1. In addition to potential computational errors due to the 

force field[36-38] and the sampling, another contributing factor to the apparent discrepancy here 

is that our simulation systems do not have the bound Na+ ion as in the crystal structures, and ion 

binding[39-41] could likely shift the relative free energies of the OF, OC, and M3 conformations. 

More broadly, our case study on Mhp1 here serves to explore the simulation methodology 

for characterizing protein conformational changes in general. Despite the development of a large 

variety of enhanced sampling techniques in recent years, protein conformational changes remain 

a significant challenge for all-atom simulations. Inevitably, most enhanced sampling methods 

operate under certain assumptions, e.g., that the slow kinetics of the conformational transition can 

be captured by a collective coordinate and that all relevant orthogonal degrees of freedom can be 

properly equilibrated within the simulation time. When dealing with protein conformations, 

however, such assumptions are often not valid. Therefore, instead of developing or improving any 

particular enhanced sampling technique, we focus on a few practical strategies here to handle the 

enormous complexity of the conformational space, such that the sampling can still be feasible and 

reliable. 

A key component in our strategies is a stringent method for gauging the convergence of 

conformational sampling. We first briefly define the meaning of convergence here. In general, the 

statistical accuracy of the sampling would increase with simulation times. Theoretically, an 

infinitely long simulation should reproduce the equilibrium ensemble, and the results therein can 

be considered the “correct” answer as far as the sampling is concerned[42]. Importantly, an 

infinitely long sampling will be completely independent of the initial coordinates. Regardless of 

the starting configuration of the simulation, the statistics from any infinite sampling will always 

be identical and will reproduce the Boltzmann distribution that does not depend on the specific 

time evolution[43, 44]. In contrast, results from simulations of finite times may depend on their 

starting configuration (i.e., the history), a phenomenon called hysteresis. The sampling error for a 

set of finite simulations is the deviation of its result from the correct answer, and an unacceptably 

large sampling error means that the simulations have not converged. As the correct answer from 

the ideal (infinitely long) simulations is unknown in practice, so is the exact sampling error. 

Consequently, all methods for examining the convergence rely on certain criteria to estimate the 

sampling errors and detect convergence problems. Whereas no criterion guarantees to identify all 

convergence problems, some are more capable than others. 
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A common method for checking convergence is to monitor the time evolution of the 

concerned quantities: if their values are not stabilized over the simulation time, the simulation 

clearly has not converged yet. However, the reverse is often not true. If the system is trapped in a 

metastable state without visiting other more probable states, all the concerned quantities would 

still appear to be fully stabilized during the simulation despite their values being far from the 

correct answers in true equilibrium. Some improvements in this aspect can be made by comparing 

multiple simulations. In umbrella sampling, e.g., inconsistency between the histograms from 

neighboring windows could indicate convergence problems that are otherwise not manifest in the 

individual trajectories.[34] In this study, our adopted strategy for examining convergence is to 

compare simulations with different initial coordinates. As discussed before, if the simulation is 

sufficiently long, the starting configuration should be “forgotten” with a vanishing effect on the 

resulting statistics. Therefore, a large deviation in the results between simulations with different 

initial coordinates is a clear evidence of hysteresis, indicating that a satisfactory convergence has 

not been achieved yet. This approach often captures convergence problems missed by other 

methods. 

In our case study of Mhp1 here, the convergence is examined by comparing two 

independent groups of simulations originated from the two end conformations, i.e., the OF and the 

OC crystal structures, respectively. Sampling from the two end states has the following benefit for 

the free energy calculations. In general, when starting from conformation A and driving it toward 

conformation B (e.g., in our pulling simulations described in the Methods), the effect of hysteresis 

in an insufficient sampling tends to be an overestimation of the free energy difference ∆𝐺 ≡ 𝐺𝐵 −

𝐺𝐴 . Reversely, when driving from conformation B toward A, hysteresis tends to bias toward 

underestimating the ∆𝐺  above. Therefore, the values obtained from these two groups of 

simulations would likely enclose the correct ∆𝐺 . Furthermore, such comparison is especially 

important for evaluating the simulation designs in the early exploratory stage. If the free energies 

from the two simulation groups persistently exhibit large differences and do not appear to converge 

toward each other over the simulation time, the simulation design would need adjustment to 

address the problem. On the other hand, an obvious drawback of this approach is the doubled 

computational cost, as it runs two groups of simulations for the same free energy profile. In this 

aspect, if an acceptable convergence appears plausible, one may combine the two groups into one 

set of simulations in the final production run. 
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Our strategy of comparing simulations with different initial coordinates should be 

applicable for testing convergence in all enhanced sampling techniques. In this study, we adopt 

umbrella sampling due to its conceptual simplicity and its practical convenience for diagnosis. 

Here, if the free energies from the two simulation groups differ significantly, it is easy to narrow 

down (by checking the mean forces[34]) the major discrepancy to certain umbrella window(s). 

Then, by closely comparing the two trajectories in the same window, the degrees of freedom 

responsible for the discrepancy often manifest themselves and could thus be properly considered 

to improve the simulation design. Using this strategy, through repeated trials and errors, we came 

up with the simulation design presented here in which the hysteresis is no longer significant. In 

our final results, the maximum difference between the free energies from the InitOF and InitOC 

groups is ~2.1 kcal/mol, which is acceptable albeit not great. It appears that our InitOF and InitOC 

systems have subtle differences in other regions of the protein as well as in specific protein-

lipid/water interactions,[45] resulting in small but persistent deviations in the sampling that are 

difficult to eliminate without running the simulations much longer. 

We also performed kinetics calculations by releasing the system at the free energy barrier 

in pairs of unbiased simulations with opposite initial velocities. In addition to the transition rates, 

these calculations revealed the quality of the RC[46] that defines the free energy profile. The 

results show that although our chosen RCs are not perfect, a substantial fraction of the simulation 

pairs did form a transition path that represents a spontaneous transition between the two metastable 

states, thereby allowing a rigorous calculation of the rate constants.[46] In equilibrium simulations 

starting from either metastable state, such transitions would take many orders of magnitude longer 

to occur. In comparison, therefore, our approach is much more efficient for generating rare events 

and elucidating all the details in the spontaneous transitions.[46, 47] Furthermore, whereas the free 

energy profile depends on the chosen reaction coordinate, the transition rates are independent of 

such artificial choices.[46] These kinetics calculations thus provide the intrinsic properties of the 

equilibrium ensemble as well as the major experimental observables. 

In our strategies for achieving convergence, boundary restraints are powerful tools to 

simplify the conformational space and avoid certain complications in the sampling. Because the 

boundary restraints act to restrict some dimensions orthogonal to the RC, they may reduce the 

accessible microstates and thus increase the free energies in certain sections of the RC. In this 

study, all our applied boundaries are wide enough on the metastable states such that the free 
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energies or the equilibrium probabilities of the states are hardly affected, as explained in the 

Results. In contrast, some of the boundaries are narrow in the transition region (see Figure 3-4) 

and may increase the free energy barrier, which would in turn result in an underestimation of the 

transition rates. In this aspect, good boundary restraints should be such that in most of the unbiased 

spontaneous transitions, the system still stays inside the boundaries during barrier crossings, even 

without the restraints. In such cases, the boundary restraints will preserve the kinetics while 

facilitating the free energy sampling. Furthermore, in our kinetics calculations, all the unbiased 

simulations starting at the barrier top were not subject to any restraint. Therefore, the obtained 

transition paths indeed represent transitions that spontaneously occur in the equilibrium ensemble. 

Overall, when sampling highly complicated protein conformations, proper boundary restraints 

could prove instrumental or even indispensable for achieving convergence. 

Our work also highlights the need to extend beyond simple two-state models when 

exploring protein conformational space. The conformational change of Mhp1 in this study, albeit 

of relatively small scale, still involves the transitions in many degrees of freedom, both local ones 

such as torsion angles and global ones such as the position and orientation of protein domains. All 

these diverse degrees of freedom do not necessarily have to make transitions simultaneously during 

spontaneous conformational changes. Indeed, as suggested by our results, it would be more 

plausible for the Mhp1 thin gate to take multiple transition steps in a complete conformational 

change, each involving just a few degrees of freedom. The sampling of such multi-step transitions 

also requires distinct RCs for each step, rather than a single collective coordinate for the entire 

conformational change as in many other simulation studies. Surveys of proteins with multiple 

known conformations reveal that their structures also differ in many local and global degrees of 

freedom, thus suggesting that the multi-step scheme could be common for protein conformational 

changes in general. 

One concern for our approaches here is the involvement of many artificial choices. Indeed, 

our simulation design, including the transition steps, the RC for each step, and all the boundary 

potentials, is primarily based on our understanding of the mechanism. Whereas there are 

potentially many metastable states for Mhp1, we only focus on a few as the intermediates for the 

conformational change here. Similarly, by applying each boundary restraint, we have limited our 

consideration to the conformational space within the boundary only. In fact, spontaneous 

conformational changes in the equilibrium ensemble may take place through different routes 
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(pathways), and we merely characterized one plausible route in this work. Problems of this sort 

are often tackled in the field of quantum-mechanical calculations for chemical reactions, where 

multiple hypothetical mechanisms are proposed and tested to identify the most favored one with 

the lowest energetic barrier. Similarly, for protein conformational changes here, given that an 

exhaustive search for all the possible routes is clearly infeasible, it is justified to explore plausible 

routes based on intuitions, examine them through rigorous calculations, and possibly compare 

multiple alternatives. Thermodynamic consistency demands that all calculations, if correct, should 

give the same free energy differences between common metastable states, regardless of the routes 

or the chose RCs. In contrast, different routes may have different transition rates, and the most 

relevant routes are the ones taken the most frequently by the spontaneous conformational changes 

in the equilibrium ensemble. Further explorations, therefore, could likely update our knowledge 

about the mechanism of the given conformational change. 

In summary, simulating complex protein conformational changes is a challenging task. 

The strategies demonstrated in this study are designed to alleviate some of the difficulty arising 

from the enormous complexity and to facilitate the sampling of protein conformations. By 

properly designing the simulations and carefully examining their convergence, it should be 

possible to obtain reliable and reproducible thermodynamic and kinetic quantities, thereby 

elucidating the molecular mechanism for the reversible conformational change.  
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3.5 Figures and Tables 

 

Table 3-1. Information of US[3, 4] for each of the six transition steps. The column of 𝐶𝑉(𝑋) lists 

the CVs that define the RC for each transition step. The values of 𝑐𝑣𝐴 and 𝑐𝑣𝐵 are used to 

convert each CV to its reduced form (Eq. 3-3). The column of 𝐾 provides the spring constant for 

the umbrella potential on the RC (Eq. 3-4). The values of 𝛼𝐴 and 𝛼𝐵 determine the range of the 

umbrella windows, as explained in the text. The last column gives the parameter ∆ involved only 

in the potentials (Eq. 3-6) for the two end windows. The number of windows given in the table 

has included the two end windows, thus corresponding to 𝑀 + 2 in the text. 

𝐶𝑉∗(𝑋) ≡
𝐶𝑉(𝑋) − 𝑐𝑣𝐴
𝑐𝑣𝐵 − 𝑐𝑣𝐴

 

Step 𝐶𝑉(𝑋) 𝑐𝑣𝐴 state 𝑐𝑣𝐵 state 𝐾 
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙
 

Number of  

US 

windows 

𝛼𝐴 𝛼𝐵 Δ 

1 
Dihedral W117 sidechain 𝜒1 290.0° 

OF 
195.0° 

𝑀1 750 15 0.11 0.89 0.10 
Dihedral W117 sidechain 𝜒2 −60.0° 65.0° 

2 
Bond Q121:C - L359: Cγ 15.7 Å 

𝑀1 
9.5 Å 

𝑀2 2000 31 0.02 1.0 0.055 

Dihedral P352:C - L359:N - L359:C - L359:Cβ 295.0° 200.0° 

3 |𝑟(L366: Cγ) − 𝑟(AP)| − |𝑟(L113: Cγ) − 𝑟(AP)| 5.0 Å 𝑀2 −5.0 Å 𝑀3 4000 33 0.05 0.89 0.10 

4 
Dihedral W117 sidechain 𝜒1 195.0° 

𝑀3 
290.0° 

𝑀4 850 16 0.11 0.89 0.10 

Dihedral W117 sidechain 𝜒2 65.0° −60.0° 

5 

Dihedral V358 backbone 𝜓 20.0° 

𝑀4 

115.0° 

𝑀5 2000 32 0.02 0.96 0.055 Dihedral G357 backbone 𝜓 320.0° 180.0° 

Dihedral F355 backbone 𝜓 10.0° 135.0° 

6 Dihedral F355 sidechain 𝜒1 310.0° 𝑀5 175.0° OC 610 17 0.15 0.85 0.15 
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Table 3-2. Boundary restraints on the reduced CVs involved in defining any of the RCs Table 3-

1). All the restraints have Δ2= 0.4 and 𝐾𝑏2 = 1000 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. The parameter 𝑐𝑣0
∗ is given in the 

entries for the restraint on each CV in each transition step. Each reduced CV is defined using the 

corresponding values of 𝛼𝐴 and 𝛼𝐵 in Table 3-1. For the first CV (Dihedral W117 sidechain χ1) 

here, its reduced form 𝐶𝑉∗ is defined using the 𝛼𝐴 and 𝛼𝐵 in the transition step 1 (instead of step 

4) in Table 3-1. 

𝑈𝑏2(𝑋) = {
𝐾𝑏2
2
  [|𝐶𝑉∗(𝑋) − 𝑐𝑣0

∗| − Δ2 ]
2         |𝐶𝑉∗(𝑋) − 𝑐𝑣0

∗| >  Δ2 

0                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑪𝑽∗(𝑿) Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

Dihedral W117 sidechain 𝜒1 - 1.0 1.0 - 0.0 0.0 

Bond Q121:C - L359: Cγ 0.0 - 1.0 1.0 1.0 1.0 

Dihedral P352:C - L359:N - L359:C - L359:Cβ 0.0 - 1.0 1.0 1.0 1.0 

|𝑟(L366: Cγ) − 𝑟(AP)| − |𝑟(L113: Cγ) − 𝑟(AP)| 0.0 0.0 - 1.0 1.0 1.0 

Dihedral V358 backbone 𝜓 0.0 0.0 0.0 0.0 - 1.0 

Dihedral G357 backbone 𝜓 0.0 0.0 0.0 0.0 - 1.0 

Dihedral F355 backbone 𝜓 0.0 0.0 0.0 0.0 - 1.0 

Dihedral F355 sidechain 𝜒1 0.0 0.0 0.0 0.0 0.0 - 
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Table 3-3. Common boundary restraints on some backbone  and  torsion angles for all the 

transition steps 

𝑈𝑏2(𝑋) = {
𝐾𝑏2
2
  [|𝐶𝑉(𝑋) − 𝑐𝑣0| − Δ2 ]

2         |𝐶𝑉(𝑋) − 𝑐𝑣0| >  Δ2 

0                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐶𝑉(𝑋) 𝑐𝑣0 Δ2 𝐾𝑏2 (
𝑘𝑐𝑎𝑙

 mol rad2  
) 

Dihedral Q354 backbone 𝜑 −75.0° 60.0° 100  

Dihedral Q354 backbone 𝜓  0.0° 60.0° 100  

Dihedral F355 backbone 𝜑  −87.0°  80.0° 100 

Dihedral A356 backbone 𝜑  −82.0° 80.0° 100 

Dihedral A356 backbone 𝜓  −20.0° 60.0° 100 

Dihedral G357 backbone 𝜑  −75.0° 80.0° 100 

Dihedral V358 backbone 𝜑  −82.0° 80.0° 100 

Dihedral L359 backbone 𝜑  −80.0° 80.0° 100 

Dihedral L359 backbone 𝜓  −40.0° 80.0° 100 
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Table 3-4. Additional boundary restraints 𝑈𝑏2 for each individual transition step. 

  

𝑈𝑏2(𝑋) = {
𝐾𝑏2
2
  [|𝐶𝑉(𝑋) − 𝑐𝑣0| − Δ2 ]

2         |𝐶𝑉(𝑋) − 𝑐𝑣0| >  Δ2 

0                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

step 𝐶𝑉(𝑋) 𝑐𝑣0(𝑋) Δ2 𝐾𝑏2 

1 

C:G357 - C:V358 - C:L359 - C:Dihedral N360 −75.0° 75.0° 100.0(
𝑘𝑐𝑎𝑙

 mol rad2 
) 

Dihedral N360:N - L359:C - L359:C - L359:Cβ 145.0° 50.0° 100.0(
𝑘𝑐𝑎𝑙

 mol rad2 
) 

Bond V358:C - F362:N 6.5Å 1.5Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

2 

Angle P352:C - L359:C - L359:Cβ 70.0Å 50.0Å 100.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 𝑟𝑎𝑑2
 

Bond A369:C - L373:N 6.25Å 1.75Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

Bond L113:C - L366:𝐶𝛾 8.25Å 8.0Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

3 

Bond V358:C - F362:N 4.00Å 1.00Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

:NL373 - C:Bond A369 6.25Å 1.75Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

Bond S343:C - A367:C 15.0Å 8.0Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

C:L363 - C:Bond G347 12.0Å 5.7Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

4 

Dihedral N360:N - L359:C - L359:C - L359:Cβ 90.0° 45.0° 100.0(
𝑘𝑐𝑎𝑙

 mol rad2 
) 

βC:V358 - C:V358 -:C V358 -:N Dihedral L359 0.0° 50.0° 100.0(
𝑘𝑐𝑎𝑙

 mol rad2 
) 

Bond V358:C - F362:N 4.0Å 1.5Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

5 

C:G357 - C:V358 - C:L359 - C:Dihedral N360 185.0° 95.0° 100.0(
𝑘𝑐𝑎𝑙

 mol rad2 
) 

βC:L359 - C:L359 -:C L359 -:N N360Dihedral  90.0° 45.0° 100.0(
𝑘𝑐𝑎𝑙

 mol rad2 
) 

Bond Q121:𝐶𝛼 - L359:𝐶𝛾 10.5Å 2.5Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

6 

Bond V358:O - F362:N 2.0Å 3.5Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

Bond V358:𝐶𝛼 - T361:𝐶𝛼 3.0Å 4.5Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
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Table 3-5. Additional boundary restraints 𝑈𝑏3 (with the boundary changing linearly with the RC) 

for individual transition steps. 

  

𝑈𝑏3(𝑋) = {
𝐾𝑏3
2
  [|𝐶𝑉(𝑋) − (𝜔 𝑅𝐶(𝑋) + 𝛽 )| − Δ3]

2         |𝐶𝑉(𝑋) − (𝜔 𝑅𝐶(𝑋) + 𝛽)| > Δ3

0                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

step 𝐶𝑉(𝑋) 𝜔 β Δ3 𝐾𝑏3 

2 

Dihedral N360:C - L359:C - V358:C - G357:C −70.0° 105.0° 40.0° 50.0(
𝑘𝑐𝑎𝑙

 mol rad2 
) 

Dihedral N360:N - L359:C - L359:C - L359:Cβ 60.0° 75.0° 45.0° 50.0(
𝑘𝑐𝑎𝑙

 mol rad2 
) 

Bond L366:C - L370:Cα 0.36Å 6.75Å 1.10Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

Bond L365:C - A369:Cα −0.20Å 6.60Å 1.00Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

αCS368: - αCBond N364: 0.02Å 6.06Å 0.55Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

αCL365: -α CBond T361: 0.07Å 6.23Å 0.65Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

Bond A356:Cα - N360:Cα −2.03Å 7.87Å 1.00Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

αCL363: - αCBond L359: −0.02Å 6.10Å 0.60Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

αCT361: -α CBond G357: −0.63Å 9.04Å 1.20Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

Bond A356:C - N360:N −1.70Å 5.95Å 0.90Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

Bond V358:C - F362:N 2.25Å 4.11Å 1.30Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

5 

αCA356: - αCd L124:Bon 3.92Å 15.25Å 2.50Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
 

Bond L118:Cα - A356:Cα −3.58Å 17.17Å 2.00Å 25.0
𝑘𝑐𝑎𝑙

 𝑚𝑜𝑙 Å2
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Table 3-6. 1 and 0 represent the type of H-bonds present and absent in the related conformational 

state, respectively. The H-bonds form by carbonyl C=O and amide N-H either at the backbone or 

side chain of relevant residues. 

Donor-acceptor distance < 4.0 Å, Donor-acceptor angle > 140° 

Hydrogen Bond OF M1 M2 M3 M4 M5 OC 

(L359 backbone NH) → (F355 backbone O) 1 1 0 0 0 0 0 

(N360 Backbone NH) → (G357 Backbone O) 1 1 0 0 0 0 0 

(W117 Sidechain NH) ↔ (Q42 Sidechain O, NH) 0 1 1 1 0 0 0 

(V358 Backbone NH) → (F355 Backbone O) 0 0 1 1 1 0 0 

(L359 Backbone NH) → (A356 Backbone O) 0 0 1 1 1 0 0 

(F362 Backbone NH) → (V358 Backbone O) 0 0 1 1 1 1 1 

(Q51 Sidechain NH) ↔ (N360 Sidechain O, NH) 0 0 0 1 1 1 1 

(S422 Sidechain OH) ↔ (S368 Sidechain OH) 0 0 0 1 1 1 1 
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Table 3-7. Spontaneous transition rate 𝑘0 calculated by 120 unbiased simulations at steps 1 and 5 

for InitOF and InitOC, separately. At step1, the chosen interval is [𝛼1 = 0.45, 𝛼2 = 0.55] and at 

step 5 the chosen interval is [𝛼1 = 0.54, 𝛼2 = 0.56]. The transition rates' unit is  𝑠−1. 

Step1 

Trp117 
𝑵𝒔𝒊𝒎 𝑵𝑻𝑷 < 𝝀(𝜶𝟏, 𝜶𝟐) > 𝒔−𝟏 𝒑(𝜶𝟏 < 𝜶 < 𝜶𝟐) 𝒌𝟎  𝒌𝑶𝑭→𝑴𝟏  𝒌𝑴𝟏→𝑶𝑭  

InitOF 120 19 2.4 ∗ 1010 1.1 ∗ 10−8 131.93  159.8 756.9 

InitOC 120 21 3.7 ∗ 1010 0.9 ∗ 10−8 161.8  180.2 1583.6 

Step5 

Loop 
𝑵𝒔𝒊𝒎 𝑵𝑻𝑷 < 𝝀(𝜶𝟏, 𝜶𝟐) > 𝒔−𝟏 𝒑(𝜶𝟏 < 𝜶 < 𝜶𝟐) 𝒌𝟎  𝒌𝑴𝟒→𝑴𝟓  𝒌𝑴𝟓→𝑴𝟒  

InitOF 120 15 2.69 ∗ 109 3.06 ∗ 10−11 0.041 0.042 4.313 

InitOC 120 14 2.08 ∗ 109 1.98 ∗ 10−11 0.021 0.021 0.961 
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Table 3-8. Calculation of the overall transition rates between OF and M3 with OF-M1 being the 

rate-limiting step and between M3 and OC with M4-M5 being the rate-limiting step. The overall 

rates were obtained according to Eq. 3-21 in Method, with the kinetics of the rate-limiting steps 

taken from Table 3-7. The unit of the transition rates is 𝑠−1. 

OF-M3 𝑷𝑶𝑭 𝑷𝑴𝟏 𝑷𝑴𝟐 𝑷𝑴𝟑 
𝒌𝑶𝑭→𝑴𝟑 
Forward 

𝒌𝑴𝟑→𝑶𝑭 
Backward 

InitOF 0.0084 0.0018 0.0005 0.9893 159.8 1.3772 

InitOC 0.0061 0.0007 0.0067 0.9865 180.2 1.1237 

M3-OC 𝑷𝑴𝟑 𝑷𝑴𝟒 𝑷𝑴𝟓 𝑷𝑶𝑪 
𝒌𝑴𝟑→𝑶𝑪 
Forward 

𝒌𝑶𝑪→𝑴𝟑 
Backward 

InitOF 0.7731 0.1903 0.0018 0.0348 0.0103 0.2231 

InitOC 0.7434 0.2217 0.0048 0.0301 0.0063 0.1532 
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Table 3-9. Energy difference between two metastable states of each transition step. The energy 

difference between the state with RC=1 and RC = 0.  The energy unit for both Δ𝐺 and the 

estimated error is kcal/mol. 

 InitOF InitOC 

Step State 𝚫𝑮 Estimated Error 
𝚫𝑮 

 
Estimated Error 

1 
(W117) 

OF-𝑀1 0.93 0.15 1.30 0.08 

2 

 (L359) 
𝑀1-𝑀2 0.76 0.16 -1.35 0.19 

3 
(TMH10) 

𝑀2-𝑀3 -4.53 0.34 -2.98 0.43 

4 
(W117) 

𝑀3-𝑀4 0.84 0.15 0.72 0.09 

5 

(Loop) 
𝑀4-𝑀5 2.76 0.18 2.28 0.19 

6 

(F355) 
𝑀5-OC -1.78 0.12 -1.09 0.15 
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Figure 3-1. Top) The difference in backbone torsion angles for each residue between the crystal 

structures of OF and OC. bottom) The difference for each C atom between its positions in the 

OF and OC structures after alignment.  
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Figure 3-2. Protein structures around the thin gate in the OF (a) and OC (b) states. Relevant 

residues that highlight the difference between the two structures are shown and labeled.   
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Figure 3-3. Stepwise transition model. The model consists of six transitions (1-6) with five 

metastable states (M1-M5) between the OF and OC states at the two ends. Two groups of 

simulations, InitOF, and InitOC, starting from the OF and OC crystal structures, respectively, 

were performed in this study. 
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Figure 3-4. The dependence of the parameter 𝑌 (in Eq. 5) on the RC. If the difference between 

the two reduced CVs exceeds 𝑌, a harmonic potential will act to reduce the difference (see Eq. 

5).  
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Figure 3-5. Protein conformational change with the sequence of transition steps between the OF 

and OC states of Mhp1. From step1 (A) to step6 (F), the transition starts with the protein 

segment in red, and the transition ends in blue color. These sequences undergo the protein from 

OF to OC state. Reversely, for backward transition, the protein segment starts with blue and ends 

with red at each step transition. Therefore, the sequence from step6 (F) to step1 (A) causes the 

protein to go through OC to OF state.  
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Figure 3-6. The anchor point (AP) is used to define the RC for transition step 3 between 

conformations M2 and M3. The AP (blue spheres) is defined as the center of mass for the atoms 

shown in black spheres. The sidechains of L366 and L113 at the M2 and M3 states are shown in 

red and orange, respectively.  
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Figure 3-7. Root mean square deviation (RMSD) of C atoms of residues from 355 to 368. The 

two unbiased simulations' trajectories, first aligned by the entire C atoms of the protein crystal 

structure as the reference conformation.  Top) The OF crystal structure was used as the reference 

confirmation. Bottom) The reference coordinate is OC crystal structure. The two 100 ns unbiased 

simulations show no significant conformational changes.  
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Figure 3-8. Umbrella windows that each replica sampled during Hamiltonian replica exchange 

MD. The left figure shows the InitOF transition (OF→OC), while the right represents the InitOC 

transition (OF←OC).   
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Figure 3-9 A) Free energy profile of MHP1 between the outward-facing open and outward-

facing occluded state. B) The value of the 𝐺𝐴 and 𝐺𝐵 at different metastable state. At each step 

transition, we measured the statistical errors from the uncertainties of the mean forces at each 

window with respect to the first umbrella window at OF state.  
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Figure 3-10. H-bonds at seven conformational states, OF, M1-M5, and OC, are shown by black 

rings between Nitrogen atoms in blue, Hydrogen in white, and Oxygen in red color. All H-bonds 

are specified by donor-acceptor distance to be smaller than 4.0 Å, and the donor-acceptor angle 

to be larger than 140°. The name of the transmembrane helices is shown only on panel 5.M4, 

which can be found at the other metastable state with the same color.   
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Figure 3-11. The multistate system of OF, M1, M2, M3 are presented as a two-state system of OF 

and M3. Similarly, M3, M4, M5, OC are presented as a two-state system of M3 and OC. The 

kinetic rate for both forward and backward transitions between these three states is shown in blue 

for InitOF and red for InitOC transitions.  
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Figure 3-12. Free energy profile along the selected reaction coordinate at each transition step. 

The InitOF transition, which is from 𝑂𝐹 → 𝑂𝐶 state is shown in blue, and InitOC transition 

(𝑂𝐹 ← 𝑂𝐶) is shown in red. At each transition step, the statistical errors were measured by the 

uncertainties of the mean forces at each window with respect to the window with 𝑅𝐶 =  0. 
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 SUMMARY AND CONCLUSION 

The primary purpose of this thesis was to characterize the protein conformational changes 

between different stable states of proteins. The standard Molecular Dynamics simulation was 

implemented by US with HREMD to generate the trajectory between the conformational changes 

of protein states. The CHARMM force field [1] with the NAMD [2, 3] program was utilized in the 

MD simulations. We measured the free energy profile by using the WHAM equations [4].  

4.1 Protein Folding 

A well-defined reaction coordinate should precisely modify all the conformations of a 

molecular system. Many proteins may adopt multiple conformations that can be reversibly 

converted from one to another. Therefore, a “good” reaction coordinate allows us to obtain the 

dynamics along a chosen coordinate, but the projected dynamics will be affected with long-time 

memory for poor choices. Moreover, a well-defined reaction coordinate should distinguish all the 

possible intermediate states. It is essential since we would be able to measure several physical 

properties of our biological system. However, because we mainly deal with large-scale systems, it 

is impossible to cross the energetic barrier and sample all over the conformational space by an 

unbiased simulation. Even if we cross, the inadequate sampling at the top of the energetic regions 

may cause a high error. Therefore, enhanced sampling methods allow us to apply a biased potential 

to cross the energetic barriers and measure our system's physical properties. 

Spontaneous transitions between native and non-native protein conformations usually are 

rare events that hardly occur in typical unbiased molecular dynamics simulations. It was 

demonstrated that the thermodynamics of protein folding could be well described by reaction 

coordinate: 𝑄(𝑋) =
1

𝑁
∑

1

1+exp [−𝛽(𝑟𝑖𝑗−𝜆 𝑟𝑖𝑗
0)]

. This function represents the collective fraction of the 

native contacts between the protein atoms. The function's range is between two values, 0 and 1, 

and it can describe a two-state system. In 2013 Best et al. [5] based on microsecond unbiased 

simulations of small proteins, parameterized 𝛽, 𝜆, 𝑎𝑛𝑑 𝑟𝑖𝑗
0 . We used this function for the reaction 

coordinate of the umbrella sampling simulation to investigate whether this function can measure 

the conformational states similar to Best et al. [5]  except with an enhanced sampling approach. 

C++ programming code was generated to speed up the processing time, and because NAMD [2, 
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3] uses the TCL/TK environment, the SWIG (simplify wrapper and interface generator) package 

[6] was applied for TCL/TK to interface with C/C++.  

We implemented US [7] with HREMD [8], using 𝑄 as the reaction coordinate to model 

Trp-Cage [9] and BBA [10] protein folding. The CHARMM force field [1] was used in molecular 

dynamics simulations. Our results from simulations showed a satisfactory convergence along with 

𝑄 . Besides the native structure, multiple folded states can be observed in the reconstructed 

equilibrium ensemble (Figure 2-1). We tested protein Trp-cage simulation at three different 

temperatures (270 K, 280 K, and 290 K). 𝑇 = 290𝐾 was reported as the melting temperature, 

where both folded and unfolded states are equally populated at the equilibrium probability. We 

expected, along with the reaction coordinate in the US simulation by lowering the temperature, the 

population shifts from non-native state toward the native state and by increasing the temperature 

the populated states shifts from the native state to the non-native state.  The cumulative distribution 

function (CDF) for Trp-Cage at the three temperatures shows that the equilibrium populations of 

the native and the non-native states are barely comparable, and manipulating the temperature does 

not shift the equilibrium probability toward the native or non-native states (Figure 2-2). 

Our result indicated that even without native contacts, some protein structures are stabilized 

by hydrogen bonds not present in the native state. Overall, our result showed that although 𝑄 is a 

reasonably reliable parameter to analyze the simulations, it is not necessarily the best reaction 

coordinate for US simulation. In particular, the folding of the α-helix is a slow degree of freedom 

for Trp-Cage. The reaction coordinate may probably be improved by incorporating parameters that 

describe the α-helix conformation as well.  Even though 𝑄 function can adequately describe our 

system's physical properties, the reaction coordinate is not entirely efficient in distinguishing 

between different intermediate states of our targeted proteins. For example, there are function 

domains that return multiple conformations. Technically, the equilibrium ensemble shows that the 

α-helix transition is almost orthogonal to the reaction coordinate 𝑄. 

4.2 Toward Convergence in Free Energy Calculation by Stepwise Model 

As we mentioned in the previous section, our results indicated that the reaction coordinate 

𝑄 characterizes several orthogonal conformations. To overcome the orthogonality behavior or 

hysteresis of a reaction coordinate, we developed another research to measure the transition from 

state A to state B with a better choice of the reaction coordinate.  However, it is impossible to 
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define the entire transition of a large-scale biological system by only one reaction coordinate 

without having orthogonal conformations. Therefore, the hypothesis of the project was to 

implement a stepwise transition. In the way that we start from metastable A, then we have a 

transition to another intermediate state, 𝑚1, and from the intermediate state 𝑚1, we go to 𝑚2, and 

so on. Therefore, by N transitions, we can get to the metastable state B. 𝑚1, 𝑚2, and 𝑚𝑁−1  are 

the intermediate states between the two metastable states A and B.  With this strategy, along with 

a favorable reaction coordinate, we can avoid orthogonal conformations. Because all the degrees 

of freedom have a sequential transition separately. Thus, we expect to get higher accuracy in our 

thermodynamics measurements. 

The intermediate states can be obtained by measuring the structural differences of the two 

stable states A and B. For example, assume there are only two dihedral torsion angles, 𝜓1 and 𝜓2 

significantly different at both stable states A and B. At state A, we have 𝜓1
𝐴 and 𝜓2

𝐴, besides at 

state B, the torsion angles’ microstates are 𝜓1
𝐵 and 𝜓2

𝐵. As a result, these two torsion angles can 

be considered as the two degrees of freedom of the entire transition. We start from metastable state 

A with 𝜓1
𝐴 and 𝜓2

𝐴. The 𝜓1 transition involves the conformational change of the first torsion angle, 

resulting in reaching the intermediate state 𝑚 with 𝜓1
𝐵 and 𝜓2

𝐴. During the 𝜓1 transition, we apply 

a boundary potential over 𝜓2
𝐴  to keep this degree of freedom unchanged. Next, from the 

intermediate state 𝑚1, there is a transition to metastable state B with 𝜓1
𝐵 and 𝜓2

𝐵. However, this 

time, we apply boundary potential over 𝜓1
𝐵 to keep this degree of freedom unchanged during the 

𝜓2 transition. The schematic of the transition can be shown as 𝐴
𝜓1
↔  𝑀

𝜓2
↔  B.  As a case study, we 

used the transmembrane protein MHP1. The two stable states of this protein were selected as the 

Outward-Facing Open (OF) and Outward-Facing Occluded (OC) state with the crystal structure in 

the protein data bank (PDB) as 2JLN [11] and 4D1B [11, 12], respectively. For each step transition, 

the reaction coordinate was defined by a simple dihedral torsion angle, angle distance, and bond 

length.   

We could obtain six transition steps with five intermediate states as M1-M5 that connect 

the two OF and OC stable states Figure 3-3. The detail of individual steps transition in the US can 

be found in Table 3-1Each step transition consists of one or multiple collective variables (CV) that 

are a function of the atomic coordinate of the protein. These CVs are a subset of degrees of freedom 

that describe the RC of each step transition. We also applied several restraints on some other 

degrees of freedom which in this thesis are known as “boundary restraints” to facilitate proper 
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sampling. Therefore, the boundary restraints mainly serve in the US to prevent the protein undergo 

undesired spontaneous transitions. Additionally, the boundary restraints used here do not affect 

the normal dynamics of the system. Also, three types of boundary potentials were used in the US 

simulation, explained in detail from Eq 3-7 to Eq 3-10.  

We measured the free energy profile of each step transition by using umbrella sampling 

US along with the HREMD method at 𝑇 = 300𝐾 . We performed two independent sampling 

simulations with different initial structures: the transition initiates from OF state (𝑂𝐹 →  𝑂𝐶) 

indicated as the InitOF transition and the transition initiates from the OC state indicated as InitOC 

transition (𝑂𝐹 ←  𝑂𝐶). By comparing the two obtained free energy profiles with the stepwise 

model, we will then imply the extent of convergence in our calculations. By the defined reaction 

coordinates, we would be able to measure any physical properties of our targeted system, such as 

the gate’s kinetics of MHP1 outward-facing conformations.  

Figure 3-9 shows the free energy profiles as a function of the reaction coordinate for the 

overall transition between OF and OC states obtained from the US simulation trajectories. At each 

step transition, the free energy profile is calculated from the WHAM equations. Our results 

indicate that at intermediate states M3 and M4 compared to other states, the protein structures are 

stabilized by a more significant number of hydrogen bonds in protein MHP1. The energy 

difference between OF and OC states in our study is Δ𝐺 = −1.02 ± 1.10 kcal/mol and Δ𝐺 =

−1.12 ± 1.14  kcal/mol for forward ( 𝑂𝐹 →  𝑂𝐶 ) and backward ( 𝑂𝐹 ←  𝑂𝐶 ) transition, 

respectively.  In addition to thermodynamics, kinetic quantities were measured based on the 

conformational changes. Based on the obtained free energies, we calculated the kinetic rates for 

the transitions of the Mhp1 thin gate. In addition to the end states OF and OC, the state M3 has the 

lowest free energy among all the metastable states, so we calculate the transition rates between 

these three states.  we obtained  the effective transition rates between the OF and M3 states: 𝑘𝑂𝐹→𝑀3 

~ 1.7×102 S-1, and 𝑘𝑀3→𝑂𝐹 ~ 1.2 S-1. With the effective transition rates between M3 and OC states:  

of 𝑘𝑀3→𝑂𝐶  ~ 8×10-3 S-1 and 𝑘𝑂𝐶→𝑀3  ~ 1.8×10-1 S-1. The thermodynamics and the kinetics 

concerning the three major states OF, M3, and OC, are presented in Figure 3-11 3-11. 
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4.3 Future Research Direction 

Compared to other similar studies, in our approach, the entire conformational space is not 

described by only one reaction coordinate, and the complete conformational change involves some 

sequential transition steps. In which the individual transition step connects two metastable states.  

Additionally, each step transition requires certain distinct degrees of freedom described by a 

unique reaction coordinate. This sequence in our research is as follows and is also represented by 

Figure 3-3. 

 

𝑂𝐹 ↔ 𝑀1 ↔ 𝑀2 ↔ 𝑀3 ↔ 𝑀4 ↔ 𝑀5 ↔ 𝑂𝐶 

 

From OF to OC state, the sequence of the intermediate states (M1-M5) is one distinct 

selected pathway presented in our study. Any combination of intermediate states from M1 to M5 

has the potential to be a possible transition pathway.  Thus, a future research direction is to obtain 

the free energy profile of any possible transition pathways and kinetics rate measurements. If the 

energetic barrier is the lowest, then the related transition pathway would be the most favorable for 

the protein.  

Even though the suggested future research needs extensive MD simulations, because the 

related degrees of freedom with RCs are already obtained in our study, it would be straightforward 

research. Moreover, we introduced boundary restraints perpendicular to each RC to prevent the 

protein from being trapped in unfavorable conformations or scape from a desirable conformation. 

For sure, for any combinations, a new set of boundary restraints is required to be determined. 

The bacterial hydantoin transporter Mhp1 is a case study for our proposed methodology. 

Because of the high-resolution crystal structures available for all the stable states of protein Mhp1, 

this membrane transporter was selected as an excellent protein to study the alternating access 

model in atomic details. By now, between the two OF and OC states, no free energy difference 

experimentally has been reported in the literature. Therefore, another future research direction is 

to select a case study protein with available free energy differences from the experiment to test the 

introduced methodology more precisely.   
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