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ABSTRACT 

Particle adhesion plays a significant role in a wide range of industries and applications including 

pharmaceuticals, semiconductors, explosive detection systems, and the processing of bulk solid 

materials.  For neutrally charged materials, particle adhesion arises primarily due to the dominate 

attractive van der Waals (vdW) force; the study of vdW forces is of particular interest because they 

are always present in a system.  The strength of the vdW force between a pair of interacting 

materials is quantified by the Hamaker constant, 𝐴𝐴 .  Several theoretical and experimental 

techniques have been developed to quantify the Hamaker constant of a material including Lifshitz 

theory, the surface force apparatus, centrifuge technique, contact angle goniometer, and atomic 

force microscope (AFM).  The AFM is of particular interest because it can be used to accurately 

measure electrostatic attraction, liquid bridging, and vdW interactions across a broad range of solid 

materials at the nanometer length scale.  The development of a new AFM-based method for 

determining the Hamaker constant of solid materials is the focus of this work. 

 Several AFM-based methods have been proposed to estimate the Hamaker constant of a 

solid material, each using different parts of the AFM deflection curve which is generated from an 

AFM force experiment.  In particular, for the approach-to-contact region of the deflection curve, 

previous work established a connection between the Hamaker constant and the deflection of the 

cantilever at first contact with the surface, 𝑑𝑑𝑐𝑐 .  While 𝑑𝑑𝑐𝑐  is well-defined experimentally, the 

estimation of 𝐴𝐴  from the (average) value of 𝑑𝑑𝑐𝑐 , although consistent with known results, was 

nonetheless found to introduce a significant degree of uncertainty in the reported value.  Inherent 

material surface roughness has since been shown to be the primary reason for this large uncertainty. 

Thus, the overall goal of this work is to develop an updated approach-to-contact method to directly 

account for material surface roughness, thereby providing accurate estimates of the Hamaker 

constant with a significant reduction in uncertainty for a broad range of solid materials. 

 First, a novel vdW force model is derived describing the interaction between an AFM 

cantilever, treated as an effective sphere, and a surface of arbitrary roughness.  The underlying 

material surface geometry and surface roughness is modeled directly using a surface height 

function, such that the vdW force is computed using the new expression over the full domain of 

the surface.  Then, 𝑑𝑑𝑐𝑐 is determined for any point along the surface from the limit of stability of 

the cantilever, or critical point, as it approaches the surface.  Because of surface roughness, 
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different values of 𝑑𝑑𝑐𝑐 will be obtained as the tip accesses separate surface positions.  As such, a 

characteristic distribution of 𝑑𝑑𝑐𝑐 -values, or a 𝑑𝑑𝑐𝑐 -distribution, is observed for a given surface, 

providing a signature of the underlying surface roughness.  A study is completed to understand the 

effects of surface geometry on the resulting 𝑑𝑑𝑐𝑐-distributions for several model surfaces, or surface 

height functions. 

 The aforementioned vdW force model is derived from the limit of quasi-static behavior of 

the cantilever, in which the cantilever is assumed to always be in mechanical equilibrium up until 

the critical point and at which the tip then immediately “jumps” into contact with the surface.  In 

practice, however, the cantilever approaches the surface at a finite approach speed, such that 

mechanical equilibrium cannot truly be maintained (due to inertial effects).  Therefore, a model 

describing the dynamic behavior of the cantilever tip is presented.  An effective Hamaker constant 

is obtained for a particular surface and cantilever approach speed by minimizing the relative 

entropy, which is a quantitative metric used to determine the “closeness” of two probability 

distribution functions, between the 𝑑𝑑𝑐𝑐-distributions generated from the dynamic model and quasi-

static limit.  The effective 𝐴𝐴 approaches the “true” 𝐴𝐴 at sufficiently slow cantilever approach 

speeds, and this trend is validated computationally for various model surfaces.  Therefore, the 

behavior of the cantilever is well-described by the quasi-static model and so 𝑑𝑑𝑐𝑐-values obtained 

experimentally can be properly compared with those predicted using the previously-developed 

quasi-static model. 

 Finally, a robust method to extract an accurate value of 𝐴𝐴 from an experimentally obtained 

𝑑𝑑𝑐𝑐 -distribution for a particular substrate is developed.  By inputting a range of 𝐴𝐴-values, the 

Hamaker constant of a given substrate, with a given surface roughness, is estimated by minimizing 

the relative entropy between the experimental (or true) and model-predicted (the surface with its 

given roughness) 𝑑𝑑𝑐𝑐 -distributions.  The self-Hamaker constant, 𝐴𝐴11 , of three experimental 

substrates – amorphous silica, stainless steel, and sapphire – is determined over a range of 

experimental surfaces with varying topographies.  This provides a true test of the method since 

surface roughness is taken directly into account, and so the self-Hamaker constant, with a small 

degree of inevitable experimental error, should be constant across each surface for a particular 

substrate.  The 𝐴𝐴11 values were found to be in excellent agreement between surfaces comprised of 

the same substrate, and the average 𝐴𝐴11 value across all plates for a particular substrate agreed 

very well with those found in the literature derived from the rigorous theoretical Lifshitz theory.  
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 INTRODUCTION 

1.1 Particle Adhesion and Intermolecular Forces 

Understanding and potentially controlling particle adhesion is important to a variety of industries 

and applications.  For example, particle adhesion often dictates the final properties of 

pharmaceutical products such as tablets, and uncontrolled particle adhesion can lead to picking 

and sticking of dye/tablet surfaces leading to a loss of product.1–5  In addition, controlling the 

degree of particle adhesion to surfaces is critical in the semiconductor industry where surface 

contamination poses a significant threat to semiconductor production.6–8  Finally, particle adhesion 

plays a role in explosive detection systems, colloidal stability, and the development of biomimetic 

polymers.9–15 

Particle adhesion also plays a significant role in the processing of bulk solid materials.16  

For example, ratholing and bridging inside a hopper can occur due to uncontrolled particle 

adhesion leading to poor flow conditions.17  Furthermore, the design of pneumatic and mechanical 

conveyors to transport solid materials is influenced by the degree of particle adhesion of the 

material.18  Finally, understanding the adhesion of particles to other particles and to surfaces is 

crucial for process operations involving size reduction, classification, particle formation and 

isolation, and product formulation which include granulation, milling, spray drying, roller 

compaction, and tableting.5,19–24 

 Broadly speaking, particle adhesion occurs due to the presence of intermolecular forces 

between polar or nonpolar molecules and include capillary and electrostatic forces, 

permanent/induced dipole forces, and van der Waals (vdW) forces.25–29  For neutrally charged 

materials, particle adhesion arises primarily due to the dominant attractive vdW force.30  Capillary 

forces dominate in water-rich environments where liquid bridging occurs at the contact site 
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between two surfaces, and electrostatic forces occur as a result of charged particle surfaces.31,32  

Dipole interactions exist between polar molecules as a result of unequal sharing of electrons within 

the electron cloud between molecules.33  vdW forces are of particular interest because they are 

always present in a system9,34 compared to the other types of intermolecular forces which are 

present under certain conditions.  The strength of the vdW force between a pair of interacting 

materials (or like materials) is quantified by the Hamaker constant, 𝐴𝐴.25,35  As such, this work is 

concerned with the development of a reliable method to quantify the Hamaker constant (and, in 

turn, the strength of the vdW force) across a range of solid materials. 

1.2 The Hamaker Constant: Quantifying the Strength of the vdW Force 

The vdW force between interacting atoms and molecules consists of a combination of three forces: 

Debye, Keesom, and London dispersion.25  Debye forces are present between permanent and 

induced dipoles while Keesom forces exist between two permanent dipoles.  London dispersion 

forces result from instantaneous dipoles that form due to fluctuations between electrons within 

adjacent electron clouds between atoms or molecules.25  London quantified this dispersion effect 

between two spherically symmetrical atoms or molecules and found the interaction energy to be 

of leading order36 

𝑈𝑈 = −
𝐶𝐶
𝑅𝑅6

 (1.1) 

where 𝑅𝑅 is the separation distance between the interacting bodies and the constant, 𝐶𝐶, is related to 

the polarizability of the electron clouds of each molecule or atom.  Hamaker then expanded upon 

the work of London by calculating the vdW interaction between two interacting bodies through a 

pairwise additive approach (i.e. calculating the interaction force between each pair of atoms 
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between bodies and summing over the total volume).35,37  The total energy (or potential) of 

interaction between two particles is therefore 

𝑈𝑈 = − �𝑑𝑑𝑣𝑣1 �𝑑𝑑𝑣𝑣2
𝑉𝑉2

𝜌𝜌1𝜌𝜌2𝜆𝜆12
𝑅𝑅6

𝑉𝑉1

 (1.2) 

where 𝑑𝑑𝑣𝑣1, 𝑑𝑑𝑣𝑣2, 𝑉𝑉1, 𝑉𝑉2 are the volume elements and volumes of each particle, 𝜌𝜌1 and 𝜌𝜌2 are the 

density of each particle, 𝜆𝜆12  is the London vdW constant between the particles (particle “1” 

interacting with particle “2”), and 𝑅𝑅 is the separation distance between particles.  The Hamaker 

constant describing the interaction of two bodies (or particles), 1 and 2, is therefore defined to be35  

𝐴𝐴12 = 𝜌𝜌1𝜌𝜌2𝜆𝜆12 (1.3) 

In general, the Hamaker constant describes the interaction between materials 𝐴𝐴 and 𝑗𝑗 through a 

medium 𝑘𝑘, or 𝐴𝐴𝑚𝑚𝑖𝑖𝑖𝑖.  In the limit of a vacuum, there is no effect of the medium on the vdW force.  

In the case where the medium is air and the separation distance between the bodies is very small, 

e.g., less than 10 nm, the effect of the air is negligible.  In either of these cases, 𝐴𝐴𝑚𝑚𝑖𝑖𝑖𝑖 is instead 

denoted as 𝐴𝐴𝑚𝑚𝑖𝑖, or henceforth simply as 𝐴𝐴.  If the two interacting materials are the same, the self-

Hamaker constant is written as 𝐴𝐴𝑚𝑚𝑚𝑚 or 𝐴𝐴𝑖𝑖𝑖𝑖 and, to a good approximation38 

𝐴𝐴 = 𝐴𝐴𝑚𝑚𝑖𝑖 ≈ �𝐴𝐴𝑚𝑚𝑚𝑚𝐴𝐴𝑖𝑖𝑖𝑖 (1.4) 

Typical values of the Hamaker constant range from 4-500 zJ in a vacuum.  For example, the self-

Hamaker constant of diamond is approximately 300 zJ, 150 zJ for sapphire, 65 zJ for silica, 40 zJ 

for Teflon, and 200-500 zJ for metals.25 

From eq 1.2, the vdW force between two bodies can be determined for a given set of 

material properties and geometries.  For example, the vdW force between two infinitely flat plates 

separated by distance 𝑧𝑧 is given as25 
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𝐹𝐹𝑢𝑢𝑣𝑣𝑣𝑣 =
𝐴𝐴

6𝜋𝜋𝑧𝑧3
 (1.5) 

where the force is the negative derivative of the potential, 𝑈𝑈 , with respect to the separation 

distance, 𝑧𝑧 .  Other common geometries for which vdW force expressions have been derived 

include two flat plates, two spheres, and two parallel cylinders or rods.25  If the value of the 

Hamaker constant is known for a material or system, the vdW force can then be computed using 

the appropriate analog of eq 1.5 to describe the geometry of the system. 

 Several methods have been developed to study the particle adhesion of a system and 

quantify the Hamaker constant of a material.  Lifshitz determined the Hamaker constant of 

materials using a continuum mechanics approach by rigorously deriving the vdW interaction 

potential from electro-optical properties of the interacting materials.39–45  While this method 

provides an accurate quantification of the Hamaker constant, proper implementation requires 

dielectric response information for a material to be obtained over the entire electromagnetic 

spectrum, which is difficult to obtain experimentally.  Therefore, this type of data has been 

acquired for only a small fraction of materials.  As a result, more practical experimental methods 

have been developed to determine the Hamaker constant including the surface force apparatus, 

centrifuge technique, contact angle goniometer, and atomic force microscope (AFM).46,47  The 

surface force apparatus is a direct force measurement technique that can be used to measure a 

range of surface forces but is limited to materials with perfectly smooth surfaces.48  The centrifuge 

technique correlates the force of adhesion to the inertial force required to remove particles of 

varying sizes from a plate as a function of rotational speed.  This method is applicable, however, 

to determining the force of adhesion of bulk powders only, as opposed to single particles.49  The 

Hamaker constant may also be estimated from the surface energy of a material using a contact 

angle goniometer, but requires information regarding the intermolecular spacing in the bulk 
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material.38,50  The AFM is of particular interest because it can be used to accurately measure 

electrostatic attraction, liquid bridging, and vdW interactions across a broad range of solid 

materials at the nanometer length scale.51–58  The development of a new AFM-based method for 

determining the Hamaker constant of solid materials is the focus of this thesis. 

1.3 The Principle of Atomic Force Microscopy  

An AFM, through the use of a flexible cantilever, is capable of producing high resolution 

topographical images of surfaces, as well as determining the attractive force between the cantilever 

tip and a surface.  Figure 1.1 is a schematic of an AFM showing key components.  A sample is 

mounted to a piezoelectric column which expands or contracts in response to an applied voltage.  

The sample is therefore able to approach or retract from a cantilever which is fixed in place.  As 

the sample approaches the cantilever tip, the cantilever begins to deflect due to the attractive vdW 

force between the sample and tip.  This change in deflection is measured by a photodetector from 

a laser which shines on the tip and is reflected by a mirror to the photodetector.  By calibrating the 

deflection sensitivity (which is given in units of nm/V) against a nondeformable material such as 

sapphire, the total deflection of the cantilever can be determined.  During an AFM force 

experiment, the deflection of the cantilever is measured as the sample is brought towards and then 

away from the cantilever at a specific speed. 
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Figure 1.1 Schematic of an atomic force microscope.  The deflection of a flexible cantilever is 
measured as the relative separation distance between a sample mounted to a piezoelectric column 
and cantilever tip varies. 

 
By measuring the resulting deflection as a function of the relative separation of the tip and 

surface as the cantilever approaches the surface, a deflection curve is generated (Figure 1.2) from 

which an estimate of the Hamaker constant can be determined.  At point A, the cantilever tip and 

surface are sufficiently far from each other such that the vdW force is weak, and so no deflection 

of the cantilever is observed.  As the surface approaches the cantilever, the attractive tip-surface 

force causes the cantilever to deflection towards the surface.  Beyond a critical tip-surface 

separation distance, or limit of stability (point B), the magnitude of the vdW force exceeds the 

restoring force of the cantilever.  As a result, the tip spontaneously jumps into contact with the 

surface (point C).  Finally, the surface retracts from the cantilever, eventually reaching a point 

where the restoring force exceeds the vdW force (point D), and the cantilever “pulls off” from the 

surface.  Utilizing the “pull-off” portion of the force curve to infer the force of adhesion is a 

relatively simple and popular method to describe the adhesion of a system across a variety of 

applications.59–66 



 
 

21 

 
 

Figure 1.2 AFM deflection curve generated from a force experiment.  Initially (point A), the AFM 
cantilever and surface are sufficiently far from each other such that no deflection of the cantilever 
is observed.  As the cantilever is brought close to the surface, the cantilever begins to deflect, 
eventually reaching a critical point, or limit of stability (point B).  At the next instant beyond the 
critical point, the cantilever jumps into contact with the surface (point C).  Finally, the cantilever 
jumps out of contact (point D) when the restoring force of the cantilever overcomes the attractive 
tip-surface force. 

 
Several AFM-based methods have been proposed to estimate the Hamaker constant of a 

solid material, each using different parts of the AFM deflection curve.  For example, the Hamaker 

constant can be related to the experimentally measured maximum attractive force required to 

separate the cantilever tip from the surface after the tip has been placed in direct contact with the 

surface (commonly referred to as the “pull-off” portion of the deflection curve).  However, this 

“pull-off” method is sensitive to materials with rough surfaces67–71 and difficult to implement on 

deformable surfaces.72–74 

The behavior of the cantilever in the approach-to-contact portion of the deflection curve has 

been analyzed,75–80 leading to various approaches towards quantifying the Hamaker constant.  In 

this part of the deflection curve, the behavior of the tip is assumed to be quasi-static; the tip is 

taken to be in mechanical equilibrium at each instant during its approach.  In this model or 

description of the deflection of the tip, the attractive tip surface vdW force is assumed to always 
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be balanced by the restoring (Hookean spring) force of the cantilever.  Even for this model, 

mechanical equilibrium cannot be satisfied for all tip-surface separations.  Beyond a critical tip-

surface separation distance, or limit of stability, the magnitude of the vdW force always exceeds 

the restoring force of the cantilever.  As a result, the tip immediately jumps into contact with the 

surface in the quasi-static limit, and the magnitude of this jump (the difference in cantilever 

deflection between points B and C or Δℎ in Figure 1.2), can be related to the Hamaker constant.77  

However, it was later found80 that since the surface approaches the cantilever tip with a non-zero 

approach speed during an AFM experiment, the quasi-static model fails to capture the inertial 

behavior of the cantilever tip.  In addition, because an experimental deflection curve is composed 

of a set of discrete data, the precise location of the limit of stability is dependent on the sampling 

resolution of the experiment.  Therefore, the limit of stability is extremely difficult to obtain 

consistently, if at all, from an AFM deflection curve. 

1.4 The Approach-to-Contact AFM Method 

Fronczak et al.80 revisited the quasi-static assumption and developed a new approach-to-contact 

method that relates 𝐴𝐴 to a new parameter, the deflection of the tip at first contact with the surface, 

𝑑𝑑𝑐𝑐.  The deflection at first contact can be found more reliably from AFM experiments, though it is 

weakly dependent on the approach speed.  When the approach speed is sufficiently slow that 

inertial effects become unimportant, 𝑑𝑑𝑐𝑐 reaches a limiting value that can be obtained using the 

quasi-static model.  Thus, upon treating the cantilever tip as a sphere with an effective radius of 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, one finds for a sufficiently low approach speed that for a sphere and infinitely flat plate80 

𝐴𝐴 =
8
9
𝑘𝑘𝑐𝑐(𝑑𝑑𝑐𝑐)3

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒
 (1.6) 
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where 𝐴𝐴 is the Hamaker constant describing the interaction between the surface and the tip and 𝑘𝑘𝑐𝑐 

is the spring constant of the cantilever.  (Since eq 1.6 is based on the assumption of pair-wise 

additive interactions between elements in the sphere and in the smooth substrate, 𝐴𝐴  is, by 

construction, only relevant to other force models that likewise invoke the pair-wise additive 

assumption.)  Substituting eq 1.4 into eq 1.6 gives the following 

𝐴𝐴𝑚𝑚𝑚𝑚 =
8
9
𝑘𝑘𝑐𝑐2(𝑑𝑑𝑐𝑐)6

𝐴𝐴𝑖𝑖𝑖𝑖𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒2  (1.7) 

and estimates of 𝐴𝐴𝑚𝑚𝑚𝑚 were obtained for several materials that were in good agreement with the 

predictions of the Lifshitz approximation.79,80  Fronczak et al.80 also discussed how to determine 

the effective radius of the cantilever tip through the use of a “calibration” surface with a known 

(or reliable) Hamaker constant, thereby avoiding the previous need to visually fit the shape of the 

cantilever tip prior to running an AFM experiment. 

The proper implementation of eq 1.7 strictly requires that the chosen surfaces be ideally 

smooth, i.e., no surface roughness.  For such surfaces, only a single value of 𝑑𝑑𝑐𝑐 should in principle 

be obtained from AFM measurements, regardless of the location along the surface for which the 

cantilever tip and surface are brought together.  But some degree of surface roughness is 

experimentally unavoidable.  Even for nominally smooth amorphous silica and a silicon nitride 

AFM tip, Fronczak et al.80 reported a distribution of 𝑑𝑑𝑐𝑐-values, shown in Figure 1.3, with an 

average value of 4.98 nm and range between  ~4-6 nm. 
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Figure 1.3 Experimentally-obtained distribution of deflection at contact for amorphous silica 
shown in Figure 6 of Ref 80. 

 
As noted before, this average value, when substituted into eq 1.7 (along with the 

corresponding cantilever properties), yields a self-Hamaker constant of amorphous silica that is in 

excellent agreement with the Lifshitz approximation.  Yet, the measured range of 𝑑𝑑𝑐𝑐 -values 

spanned about 2 nm where some contacts yielded a magnitude of 𝑑𝑑𝑐𝑐 as large as ~5.8 nm or as 

small as ~4.2 nm.  Furthermore, since eq 1.7 corresponds to an 𝐴𝐴𝑚𝑚𝑚𝑚 that is proportional to the sixth 

power of 𝑑𝑑𝑐𝑐, even the small relative errors in the reported 𝑑𝑑𝑐𝑐-values are greatly propagated in the 

calculation of the self-Hamaker constants. 

Inherent surface roughness is the primary reason for the emergence of the broad 

distribution of deflections at first contact, even for a “relatively” smooth surface like amorphous 
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silica.  Because of surface roughness, different values of 𝑑𝑑𝑐𝑐 should be obtained as the tip accesses 

spatially separate surface positions (i.e., probes the “global” roughness), and as the tip attempts to 

access the same surface position but cannot do so exactly (i.e., probes the “local” roughness) due 

to the inevitable horizontal drift of the cantilever.81–84  The magnitude of the vdW force at each 

location probed by the cantilever tip directly influences 𝑑𝑑𝑐𝑐  and therefore, for a rough surface, 

varies over each measurement. 

For completeness, other effects may give rise to a distribution of 𝑑𝑑𝑐𝑐-values, although their 

associated magnitudes appear to be much smaller than the range of 𝑑𝑑𝑐𝑐 -values observed 

experimentally for amorphous silica.  For example, the root mean square deflection of the thermal 

noise of an AFM cantilever with a spring constant of 0.1 N/m is on the order of 0.1nm at 22°C.85  

The possible deformation of the amorphous silica surface likewise seems to be negligible as the 

deformation of the surface (assumed to be an infinite flat plate) due to a silicon nitride sphere is 

on the order of an angstrom.86,87 

Given that the resulting 𝑑𝑑𝑐𝑐 -distribution should be directly influenced by the inherent 

surface roughness, key improvements to the approach-to-contact AFM method developed by 

Fronczak et al.79,80 will be obtained by explicitly accounting for the topography of the given surface.  

If the effects of surface roughness can be included in an appropriate extension of eq 1.7, the 

Hamaker constant will therefore be related to a 𝑑𝑑𝑐𝑐-distribution, instead of just a single value of 𝑑𝑑𝑐𝑐.  

Hence, this updated approach-to-contact method should, in principle, yield the same value of A for 

all surfaces comprised of the same material, though not necessarily with the same degrees of 

roughness (nor with the same resulting 𝑑𝑑𝑐𝑐 -distributions).  As an additional benefit, any pre-

treatment or smoothing of the surface prior to the start of an AFM measurement may no longer be 

required, thereby extending the range of solid surfaces that could be analyzed with the approach-
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to-contact method.  Moreover, the incorporation of surface roughness into the method, via the 

direct connection of 𝐴𝐴 to a given surface’s characteristic 𝑑𝑑𝑐𝑐 -distribution, should lead to more 

accurate estimates of the Hamaker constant with a significant reduction in their uncertainties. 

1.5 Project Motivation and Summary 

The overall goal of this work was to develop an updated approach-to-contact AFM method to 

directly account for material surface roughness and to obtain accurate estimates of the self-

Hamaker constant for a range of solid materials from a distribution of deflections at contact.  First, 

a novel vdW force model was derived describing the interaction of an AFM cantilever tip 

interacting with an arbitrary surface.  Since the topography of the surface is incorporated in the 

method, such that the resulting vdW force varies locally along the surface, a distribution of 

deflections at contact was obtained for a series of model surfaces.  The analysis of the resulting 

𝑑𝑑𝑐𝑐-distribution revealed that local surface curvature has a large impact on the measured cantilever 

deflections. 

A dynamic model of the AFM cantilever approaching a surface of arbitrary roughness was 

then developed including an analysis of the approach speed, 𝑣𝑣𝑐𝑐, on the shape and magnitude of the 

resulting model-predicted 𝑑𝑑𝑐𝑐 -distribution.  An effective Hamaker constant was obtained for a 

particular surface and 𝑣𝑣𝑐𝑐 , by minimizing the relative entropy between the 𝑑𝑑𝑐𝑐 -distributions 

generated from the dynamic model and quasi-static limit (i.e. when 𝑣𝑣𝑐𝑐 →  0).  (The relative entropy 

is a quantitative metric used to determine the “closeness” of two probability distribution functions.)  

The effective 𝐴𝐴 approached the “true” 𝐴𝐴 at sufficiently slow cantilever approach speeds, and this 

trend was validated computationally for various model surfaces.  Therefore, the behavior of the 

cantilever was well-described by the quasi-static model and so 𝑑𝑑𝑐𝑐-values obtained experimentally 
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could be properly compared with those predicted using the previously-developed quasi-static 

model. 

 A robust method to extract an accurate value of 𝐴𝐴 from an experimentally obtained 𝑑𝑑𝑐𝑐-

distribution for a particular substrate was then developed.  By inputting a range of 𝐴𝐴-values, the 

Hamaker constant of a given substrate, with a given surface roughness, was estimated by 

minimizing the relative entropy between the experimental (or true) and model-predicted (the 

surface with its given roughness) 𝑑𝑑𝑐𝑐-distributions.  A self-consistency check of the method was 

first performed computationally to ensure that the outputted Hamaker constant was similar to that 

of the chosen input value for various surface geometries and for various slow-enough AFM 

cantilever approach speeds.  Due to the difficulty in performing AFM imaging and force 

experiments on the exact same region on the surface, another method was developed utilizing the 

spatial Fourier transform of the surface in order to generate representative images of the surface 

with the same overall surface characteristics. 

Finally, the updated approach-to-contact method was validated by determining the self-

Hamaker constant of several solid materials (e.g. amorphous silica, stainless steel, and sapphire) 

experimentally from an AFM surface scan of the given substrate and using a series of cantilevers 

with defined radius.  The topographies of the materials were systematically polished to varying 

degrees of roughness to ensure a variety of resulting experimental 𝑑𝑑𝑐𝑐-distributions with different 

magnitudes and shapes.  The 𝐴𝐴11 values were found to be in excellent agreement between plates 

of the same material and the average 𝐴𝐴11 value across all plates for a particular substrate agreed 

well with those found in the literature derived from Lifshitz theory. 

The subsequent chapters that comprise this work are as follows.  Chapter 2 presents a 

general description of the vdW force between the cantilever tip and surface that fully captures the 
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effects of surface topography; the cantilever is modeled as an effective sphere and the sphere is 

considered to interact with any arbitrary surface (as opposed to a semi-infinite flat plate).  Thus, 

the analogue of eq 1.7 is derived, thereby providing the needed connection between the Hamaker 

constant and the resulting distribution of 𝑑𝑑𝑐𝑐-values.  The deflection at contact is obtained along 

any point on the arbitrary surface based on calculation of the critical point (or limit of stability) of 

the sphere above the surface and the contact point that the sphere makes with the surface.  The 

quasi-static model is utilized to determine the critical point conditions and a method is discussed 

to determine the contact point between the sphere and surface. 

Chapter 3 investigates the impact of surface topography on “contact locus” curves (for 

surfaces that vary solely in the 𝑥𝑥-direction) and “contact mesh” plots (for surfaces that vary in both 

the 𝑥𝑥- and 𝑦𝑦-directions) as the sphere samples each portion of the surface.  Furthermore, with the 

𝑑𝑑𝑐𝑐-distribution yielding an apparent signature of the underlying surface roughness, for various 

model surfaces with a given value of 𝐴𝐴, the impact of the surface topography on the obtained 𝑑𝑑𝑐𝑐-

distribution is considered. 

Chapter 4 details a model describing the dynamic behavior of the cantilever tip as it 

approaches and interacts with an arbitrary surface.  From a quantitative comparison of the 𝑑𝑑𝑐𝑐-

distributions generated with both the quasi-static and dynamic models, a specific threshold 

cantilever approach speed is determined, in which the difference between these two distributions 

becomes unimportant.  This difference is quantified by the relative entropy between the quasi-

static and dynamic distributions.  By selecting approach speeds below this threshold value, 

subsequent experimentally-obtained 𝑑𝑑𝑐𝑐-distributions can therefore be confidently compared to the 

corresponding quasi-static 𝑑𝑑𝑐𝑐-distribution.  Hence, the proposed method for estimating 𝐴𝐴 requires 

only the determination of the quasi-static 𝑑𝑑𝑐𝑐-distribution for a particular surface, thereby avoiding 
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the additional computational expense of generating the dynamic 𝑑𝑑𝑐𝑐-distributions.  A method is 

then presented whereby the resulting 𝑑𝑑𝑐𝑐-distribution of a given substrate can be directly mapped 

onto a single value of 𝐴𝐴 with, in general, high certainty.  A computational test of this method is 

discussed, showing that the determined values of 𝐴𝐴 for various model surfaces match the inputted 

values of 𝐴𝐴 within relatively small uncertainties.  Moreover, it is demonstrated that nearly identical 

values of 𝐴𝐴 are still extracted from the method when the substrates are comprised of the same 

material (i.e., the same inputted 𝐴𝐴 ) but nonetheless have very different underlying surface 

roughness features. 

Chapter 5 discusses a method for generating representative or reconstructed AFM surface 

height maps by expanding on a previously developed discrete Fourier transform (DFT) 

method.88,89  The motivation for such a method arises due to the fact that deflection and imaging 

experiments cannot necessarily be conducted along the same exact portion of a surface.  This DFT 

method ensures that the root-mean-squared (RMS) roughness of each representative surface height 

map remains constant and matches that of the original surface scan, while also generating surfaces 

with nearly identical distributions of the various peak heights.  Chapter 5 also provides a 

comprehensive discussion of the mathematics of DFT applied to one-dimensional and two-

dimensional surface height functions. 

Chapter 6 considers a full experimental validation of the method, where the self-Hamaker 

constant of various materials is determined and compared (favorably) to literature-established 

values.  By systemically varying the roughness across a range of sample surfaces for a particular 

material and implementing the approach-to-contact method, a single self-Hamaker constant is 

extracted for each sample and averaged to obtain a final Hamaker constant value for a particular 

material.  While the shape of the individual 𝑑𝑑𝑐𝑐-distributions varies slightly between each of the 
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sample surfaces for a material, the difference between the individual Hamaker constants 

corresponding to each sample surface is minimal. 

Finally, Chapter 7 discusses, in addition to concluding remarks, future work that considers 

extending the modified approach-to-contact model to (1) fluid environments, (2) deformable 

materials, and (3) roughness on the AFM cantilever (i.e., roughness on the sphere).  The 

introduction of roughness on the sphere and extending the analysis to fluid environments as well 

as to deformable materials would provide a robust extension to the AFM based method developed 

herein to determine the self-Hamaker constant of a whole range of materials for a wide variety of 

applications. 
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 DETERMINATION OF CANTILEVER DEFLECTIONS FOR A 
SURFACE WITH ARBITRARY ROUGHNESS: QUASI-STATIC 

MODEL 

2.1 Introduction 

The development of the modified approach-to-contact method begins with the derivation of a new 

expression describing the vdW force between an AFM cantilever tip, treated as an effective sphere, 

and a surface of arbitrary roughness.  The underlying material surface geometry and surface 

roughness can be modeled directly using a surface height function, ℎ, and the vdW force can be 

computed using the new expression over the full domain of the surface.  Corresponding critical 

point conditions are then derived under the quasi-static assumption in order to determine the 

deflection of the cantilever at contact with the surface, 𝑑𝑑𝑐𝑐.  In addition, a method is discussed to 

determine the point of first contact between the sphere and any point on an arbitrary surface.  

2.2 The vdW Force Between a Spherical AFM Tip and an Arbitrary Surface 

Previous descriptions of the behavior of an AFM tip in the approach-to-contact regime are based 

on the quasi-static model, in which the cantilever tip is assumed to always be in mechanical 

equilibrium at sufficiently large separation distances from the surface.75–77  With only the spring 

or restoring force, 𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠, and the attractive tip-surface force, 𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒, acting on the cantilever tip (both 

in the vertical direction only as no twisting of the cantilever is assumed in the other directions), 

the quasi-static assumption requires that 

𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 + 𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 = 0 (2.1) 

The tip-surface force is a function of the separation distance between the cantilever tip and the 

surface while the spring force depends on the cantilever deflection, 𝑑𝑑.  The cantilever is typically 
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assumed to deform elastically, and so the restoring force is described using Hooke’s law, 𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠  =

 −𝑘𝑘𝑐𝑐𝑑𝑑, where a negative deflection results in an upward (away from the surface) spring force. 

The functional form of 𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 depends on the specific geometries of the two interacting 

bodies.  Fronczak et al.79 found that the vdW force interaction between a flat plate and a truncated 

pyramid with a spherical cap (a typically chosen description of the shape of the cantilever tip) is 

well modeled by a sphere with an appropriately chosen effective radius interacting with the same 

flat plate. 

All surfaces exhibit some degree of roughness, however, which should be accounted for 

when attempting to model the force interaction between the tip and surface (regardless of how the 

tip geometry is being described).  Thus, while always treating the cantilever tip as a sphere of 

radius 𝑅𝑅, a general vdW force expression describing the interaction between a sphere and a surface 

of arbitrary roughness is derived below. 

The system of interest is shown in Figure 2.1, in which a sphere, or the AFM cantilever tip, 

interacts with an arbitrary surface described by a height function ℎ(𝑥𝑥,𝑦𝑦).  The surface is taken to 

be semi-infinite, extending to infinity in both the positive and negative 𝑥𝑥- and 𝑦𝑦-directions, and 

extending to negative infinity in the 𝑧𝑧-direction.  The topography of the surface is fully captured 

by the given surface height function.  To simulate the cantilever, the top of the sphere is attached 

to a horizontal platform with a Hookean spring. 
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Figure 2.1 Schematic of an AFM cantilever tip modeled as a sphere attached to a horizontal 
platform by a Hookean spring, in which the sphere also interacts with an arbitrary surface described 
by the surface height function ℎ(𝑥𝑥,𝑦𝑦).  𝑧𝑧𝑠𝑠  and 𝑧𝑧𝑝𝑝  are the vertical locations of the sphere and 
platform, respectively, from 𝑧𝑧 =  0, 𝑅𝑅 is the radius of the sphere, 𝑟𝑟𝑠𝑠 is a vector from the origin to 
the center of the sphere, 𝑟𝑟𝑒𝑒 is a vector describing the location of a differential volume element 
within the substrate from the origin, and 𝑟𝑟  is a vector from the center of the sphere to the 
differential volume element.  𝑑𝑑 is the deflection of the spring. 

 
The platform is located at a vertical distance 𝑧𝑧𝑝𝑝 away from an arbitrarily chosen 𝑧𝑧 =  0 

plane, and the center of the sphere is located at the vector 𝑟𝑟𝑠𝑠, the 𝑧𝑧-component of which, or 𝑧𝑧𝑠𝑠, 

denotes the vertical position of the sphere center.  The 𝑥𝑥- and 𝑦𝑦-components of this vector are 

denoted as 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑠𝑠, respectively.  The deflection, 𝑑𝑑, of the spring is determined by 𝑧𝑧𝑠𝑠 + 𝑅𝑅 − 𝑑𝑑 =

𝑧𝑧𝑃𝑃 , such that 𝑑𝑑 <  0 indicates that the sphere resides below the platform (i.e., the cantilever 

deflects downward toward the surface).  A differential volume element residing within the 

substrate is located at 𝑟𝑟𝑒𝑒.  The vector 𝑟𝑟 pointing from the center of the sphere to this differential 

element is given by 𝑟𝑟 = 𝑟𝑟𝑒𝑒 − 𝑟𝑟𝑠𝑠.  The 𝑧𝑧-components of the spring and surface forces are positive 

when in the upward direction, and negative in the downward direction. 
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The derivation of the vdW force expression begins by determining the vdW interaction 

potential energy, 𝑢𝑢(𝑟𝑟), between a sphere of radius 𝑅𝑅 and a differential volume element located a 

distance 𝑧𝑧 from the surface of the sphere, in which 𝑟𝑟 = 𝑧𝑧 + 𝑅𝑅 is the distance between the element 

and the center of the sphere as shown in Figure 2.2. (Due to the symmetry inherent to the sphere, 

the relative three-dimensional orientation of the volume element with respect to the sphere is 

irrelevant, and the final result will depend only on 𝑟𝑟 = 𝑧𝑧 + 𝑅𝑅.) 

 

 
 

Figure 2.2 A sphere of radius 𝑅𝑅 (shaded circle) interacting with a differential volume element 
(open square) separated by a distance 𝑧𝑧 > 0 from the surface of the sphere, in which 𝑧𝑧 + 𝑅𝑅 is the 
distance between the element and the center of the sphere.  The distance from this element to 
another differential volume element residing within the sphere is denoted by 𝑡𝑡 .  The vertical 
distance from the center of the sphere is denoted by 𝑥𝑥, for which −𝑅𝑅 ≤ 𝑥𝑥 ≤ 𝑅𝑅.  Hence, the vertical 
distance between the two elements is 𝑧𝑧 + 𝑥𝑥 + 𝑅𝑅 > 0.  The radial distance between the midpoint of 
the sphere and an element within the sphere is denoted by 𝑣𝑣, in which 0 ≤ 𝑣𝑣 ≤ (𝑅𝑅2 − 𝑥𝑥2)1/2. 

 
Now, any two elements with differential volumes 𝑑𝑑𝑉𝑉1  and 𝑑𝑑𝑉𝑉2  that are separated by a 

distance 𝑡𝑡 will give rise to a vdW potential energy of interaction equal to −(𝜌𝜌1𝜌𝜌2𝐶𝐶𝑑𝑑𝑉𝑉1𝑑𝑑𝑉𝑉2)/𝑡𝑡6, 

where we have assumed the usual (non-retarded) inverse sixth-power law for the vdW interaction 
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between two bodies90,91, 𝜌𝜌1 and 𝜌𝜌2 are the number densities of the elements, respectively, and 𝑐𝑐 is 

the vdW interaction parameter between materials 1 and 2.  If 𝑑𝑑𝑉𝑉2 represents a volume element 

within the sphere, and assuming pairwise additivity90,91, the vdW interaction potential energy (per 

volume element 𝑑𝑑𝑉𝑉1) and the entire sphere, denoted by 𝑢𝑢(𝑧𝑧), is given by  

𝑢𝑢(𝑧𝑧) = −2𝜋𝜋𝜌𝜌1𝜌𝜌2𝑐𝑐 � �
1
𝑡𝑡6
𝑣𝑣𝑑𝑑𝑣𝑣𝑑𝑑𝑥𝑥

�𝑅𝑅2−𝑥𝑥2�1/2

0

𝑅𝑅

−𝑅𝑅
 (2.2) 

where 𝑑𝑑𝑉𝑉2 has been replaced by the circular ring 2𝜋𝜋𝑣𝑣𝑑𝑑𝑣𝑣𝑑𝑑𝑥𝑥 at the given 𝑡𝑡 and the variables 𝑣𝑣 and 

𝑥𝑥 are defined in Figure 2.1.  Noting that 𝑡𝑡2 = 𝑣𝑣2 + (𝑧𝑧 + 𝑥𝑥 + 𝑅𝑅)2, eq 2.2 is rewritten as  

𝑢𝑢(𝑧𝑧) = −
2𝐴𝐴
𝜋𝜋
� �

1
[𝑣𝑣2 + (𝑧𝑧 + 𝑥𝑥 + 𝑅𝑅)2]3 𝑣𝑣𝑑𝑑𝑣𝑣𝑑𝑑𝑥𝑥

�𝑅𝑅2−𝑥𝑥2�1/2

0

𝑅𝑅

−𝑅𝑅
 (2.3) 

in which 𝐴𝐴 ≡ 𝜋𝜋2𝜌𝜌1𝜌𝜌2𝑐𝑐.  Performing the two integrations, and again noting that 𝑟𝑟 = 𝑧𝑧 + 𝑅𝑅, yields 

𝑢𝑢(𝑟𝑟) =
𝐴𝐴

2𝜋𝜋
�

2𝑅𝑅
(𝑟𝑟 − 𝑅𝑅)2(𝑟𝑟 + 𝑅𝑅)2 +

1
3(𝑟𝑟 + 𝑅𝑅)3 −

1
3(𝑟𝑟 − 𝑅𝑅)3� (2.4) 

In general, the force between two bodies separated by a center-to-center distance 𝑟𝑟 is given 

by  𝑓𝑓(𝑟𝑟) = −∇𝑢𝑢(𝑟𝑟) , where ∇  is the gradient operator.  Since the torsional movement of the 

cantilever is typically assumed to be negligible compared to its vertical deflection as the tip 

approaches the surface, only the 𝑧𝑧-component of the vdW force on the sphere due to the 𝑑𝑑𝑉𝑉1 

substrate element is determined.  The force on the sphere in the 𝑧𝑧-direction per volume element 

𝑑𝑑𝑉𝑉1 is therefore evaluated via (where, in this case, ∇ represents the partial derivatives with respect 

to the coordinates of the center of the sphere) 

𝑓𝑓𝑧𝑧 = −
𝜕𝜕
𝜕𝜕𝑧𝑧𝑠𝑠

𝑢𝑢(𝑟𝑟) = −
𝜕𝜕𝑢𝑢
𝜕𝜕𝑟𝑟

∙
𝜕𝜕𝑟𝑟
𝜕𝜕𝑧𝑧𝑠𝑠

 (2.5) 
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where 𝑧𝑧𝑠𝑠  is the vertical height of the center of the sphere.  Referring to Figure 2.1, in which 

(𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑧𝑧𝑒𝑒)  is the location of the substrate element and (𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠, 𝑧𝑧𝑠𝑠)  is the location of the sphere 

center, the distance 𝑟𝑟 from the center of the sphere to the element is given by 

𝑟𝑟 = [(𝑥𝑥𝑒𝑒 − 𝑥𝑥𝑠𝑠)2 + (𝑦𝑦𝑒𝑒 − 𝑦𝑦𝑠𝑠)2 + (𝑧𝑧𝑒𝑒 − 𝑧𝑧𝑠𝑠)2]1/2 (2.6) 

 With eqs 2.4 and 2.6, eq 2.5 indicates that  

𝑓𝑓𝑧𝑧 =
8𝐴𝐴𝑅𝑅3

𝜋𝜋
(𝑧𝑧𝑒𝑒 − 𝑧𝑧𝑠𝑠)

(𝑟𝑟2 − 𝑅𝑅2)4 (2.7) 

which is always negative (i.e., an attractive force) as long as the vertical height of the element is 

always below that of the sphere center (i.e., 𝑧𝑧𝑒𝑒 < 𝑧𝑧𝑠𝑠 ).  This force diverges when the element 

touches the sphere at any point along its surface, for which 𝑟𝑟 = 𝑅𝑅.  To obtain the total force acting 

on the sphere in the 𝑧𝑧-direction due to the entire surface, eq 2.7 is first integrated over the height 

of a vertical and semi-infinite differential strip (located at 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒) that extends from the top of the 

surface, located at ℎ(𝑥𝑥𝑒𝑒 , 𝑦𝑦𝑒𝑒), down to −∞.  Since 𝑥𝑥𝑒𝑒 and 𝑦𝑦𝑒𝑒 are constant for this strip, the result is 

𝐹𝐹𝑠𝑠𝑐𝑐𝑠𝑠𝑚𝑚𝑝𝑝 = � 𝑓𝑓𝑧𝑧𝑑𝑑𝑧𝑧𝑒𝑒

ℎ(𝑥𝑥𝑒𝑒,𝑦𝑦𝑒𝑒)

−∞

= −
4
3
𝐴𝐴𝑅𝑅3

𝜋𝜋
1

[(𝑥𝑥𝑒𝑒 − 𝑥𝑥𝑠𝑠)2 + (𝑦𝑦𝑒𝑒 − 𝑦𝑦𝑠𝑠)2 + (ℎ(𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒) − 𝑧𝑧𝑠𝑠)2 − 𝑅𝑅2]3 (2.8) 

Then, eq 2.8 is integrated in the 𝑥𝑥- and 𝑦𝑦-directions, or over all the differential vertical strips 

comprising the surface.  The final result, after introducing the following nondimensional variables 

𝑥𝑥𝑒𝑒∗ = 𝑥𝑥𝑒𝑒/𝑅𝑅,𝑦𝑦𝑒𝑒∗ = 𝑦𝑦𝑒𝑒/𝑅𝑅, 𝑥𝑥𝑠𝑠∗ = 𝑥𝑥𝑠𝑠/𝑅𝑅,𝑦𝑦𝑠𝑠∗ = 𝑦𝑦𝑠𝑠/𝑅𝑅,ℎ∗ = ℎ/𝑅𝑅, 𝑧𝑧𝑠𝑠∗ = 𝑧𝑧𝑠𝑠/𝑅𝑅, is  

𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 = −
4
3
𝐴𝐴
𝜋𝜋𝑅𝑅

� �
𝑑𝑑𝑥𝑥𝑒𝑒∗𝑑𝑑𝑦𝑦𝑒𝑒∗

[(𝑥𝑥𝑒𝑒∗ − 𝑥𝑥𝑠𝑠∗)2 + (𝑦𝑦𝑒𝑒∗ − 𝑦𝑦𝑠𝑠∗)2 + (ℎ∗(𝑥𝑥𝑒𝑒∗,𝑦𝑦𝑒𝑒∗) − 𝑧𝑧𝑠𝑠∗)2 − 1]3

∞

−∞

∞

−∞

 (2.9) 

Eq 2.9 allows for the underlying material surface geometry, or surface roughness, to be 

modeled directly using an appropriate (and essentially arbitrary) surface height function, ℎ.  If ℎ 

is known, eq 2.9 provides a rigorous expression for the tip-surface vdW force interaction (for the 
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assumptions of pairwise additivity and the inverse sixth power dependence on separation distances 

for the potential energies of interaction).  The function ℎ can, in principle, be obtained from an 

AFM operating in tapping mode (or any other AFM mode which tracks the topography of the 

surface), thereby producing a high-resolution topographical image of some portion of the surface.   

If the surface height function only depends on a single variable, say 𝑥𝑥𝑒𝑒∗, or ℎ∗(𝑥𝑥𝑒𝑒∗), then the 

integration over 𝑦𝑦𝑒𝑒∗ can be done analytically.  To do so, first note that92  

�
𝑑𝑑𝑦𝑦

(𝑎𝑎𝑦𝑦2 + 𝑐𝑐)𝑐𝑐 =
(2𝑛𝑛 − 3)‼
(2𝑛𝑛 − 2)‼

∞

−∞

𝜋𝜋𝑎𝑎𝑐𝑐−1

(𝑎𝑎𝑐𝑐)𝑐𝑐−1/2 (2.10) 

For 𝑛𝑛 = 3, the double factorials are evaluated as follows 

(2𝑛𝑛 − 3)‼
(2𝑛𝑛 − 2)‼

=
3‼
4‼

=
3 × 1
4 × 2

=
3
8

 (2.11) 

Comparing eq 2.10 to eq 2.9, and letting 𝑐𝑐 = (𝑥𝑥𝑒𝑒∗ − 𝑥𝑥𝑠𝑠∗)2 + (ℎ∗(𝑥𝑥𝑒𝑒∗) − 𝑧𝑧𝑠𝑠∗)2 − 1 and 𝑎𝑎 = 1, one 

finds that 

𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 = −
1
2
𝐴𝐴
𝑅𝑅
�

𝑑𝑑𝑥𝑥𝑒𝑒∗

[(𝑥𝑥𝑒𝑒∗ − 𝑥𝑥𝑠𝑠∗)2 + (ℎ∗(𝑥𝑥𝑒𝑒∗) − 𝑧𝑧𝑠𝑠∗)2 − 1]5/2

∞

−∞

 (2.12) 

Most of the previously developed approach-to-contact methods explicitly ignored the roughness 

inherent to any surface, and simply treated the surface as being an infinitely flat plate. 76–80,93  For 

a semi-infinite flat plate, the surface height function is a constant at all locations.  Setting ℎ∗ = 0 

for convenience, eq 2.12 can be further integrated analytically if the surface height function is a 

constant, which corresponds to the substrate being a semi-infinite flat plate.  In this case, note 

that92 

�
𝑑𝑑𝑥𝑥

(𝑥𝑥2 + 𝑐𝑐)𝑐𝑐+3/2 =
(−2)𝑐𝑐

(2𝑛𝑛 + 1)‼

∞

0

𝜕𝜕𝑐𝑐

𝜕𝜕𝑐𝑐𝑐𝑐 �
1
𝑐𝑐�

 (2.13) 
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Letting ℎ∗(𝑥𝑥𝑒𝑒∗) = 0  for convenience, then with 𝑐𝑐 = (𝑧𝑧𝑠𝑠∗)2 − 1  and  𝑛𝑛 = 1 , and given that the 

integrand of eq 2.12 is an even function of 𝑥𝑥𝑒𝑒∗ (along with the bounds of the integral in eq 2.12 

being from −∞ to ∞), eq 2.13 indicates that eq 2.12 becomes  

𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒,𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑒𝑒 = −
2
3
𝐴𝐴
𝑅𝑅

1
[(𝑧𝑧𝑠𝑠∗)2 − 1]2 (2.14) 

matching a previously obtained expression for a flat plate (which was derived in a different 

manner).2  Note that the sphere comes into direct contact with the flat plate when 𝑧𝑧𝑠𝑠∗ = 1 (or 𝑧𝑧𝑠𝑠 =

𝑅𝑅).  Hence, 𝑧𝑧𝑠𝑠∗ can be replaced with 1 + 𝐷𝐷∗ (where 𝐷𝐷∗ = 𝐷𝐷/𝑅𝑅) in eq 2.14.  For 𝐷𝐷∗ ≪ 1, i.e., 𝐷𝐷 ≪

𝑅𝑅, eq 2.14 reduces to eq 2.15 below.  Eq 2.14 is valid for all values of 𝑧𝑧𝑠𝑠∗, or sphere-surface 

separation distances. 

Previous attempts have been made to quantify the magnitude of the vdW force between 

two materials of varying geometries and incorporating material surface roughness directly into 

corresponding models.  For example, the vdW attractive force between a sphere of radius 𝑅𝑅 and a 

semi-infinite flat plate as originally derived by Hamaker35 is given by 

𝐹𝐹𝑢𝑢𝑣𝑣𝑣𝑣 = −
𝐴𝐴𝑅𝑅
6𝐷𝐷2 (2.15) 

where 𝐷𝐷 is the separation distance between the bottom of the sphere and the surface.  Eq 2.15 is 

only valid in the limit of 𝐷𝐷 << 𝑅𝑅.  To account for material surface roughness, some approaches 

have maintained the simple form of eq 2.15, introducing extensions of the flat plate result.  For 

example, classical Rumpf theory models surface roughness as small hemispherical asperities, with 

radii much smaller than that of the interacting spherical particle, extending from an infinitely flat 

plate.94  Rabinovich et al.95 extended the work done by Rumpf by relating the height of the 

spherical asperities to the root-mean-square (RMS) roughness of the surface.  Suresh et al.65,96 

developed a similar model by approximating surface roughness as hemispherical asperities.  Fuller 
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and Tabor97 modeled surface roughness as asperities with a distribution of heights following a 

Gaussian distribution.  Finally, an adhesion simulator was developed34,88,98 which considered the 

roughness of both the interacting particle and surface, but calculates the vdW force in an 

approximate manner.  The particle and surface are both discretized into a series of cylinders, and 

only those pairs of cylinders that are vertically aligned are assumed to interact.  The resulting vdW 

force is calculated approximately using the force equation for two flat surfaces.25  An updated but 

still approximate scheme for including interactions between off-axial cylinders was developed99, 

but has yet to be fully implemented in the simulator. 

2.3 Critical Point Conditions for the Quasi-Static Assumption 

Given that the tip-surface force diverges when the sphere comes into contact with the surface while 

the restoring force of the cantilever remains finite, a critical point, or limit of stability, is ultimately 

reached within the quasi-static assumption.  For locations of the sphere closer to the surface than 

this critical point, �𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒� > �𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠�, and so the sphere can no longer be maintained in mechanical 

equilibrium. 

Figure 2.3 is a graphical analysis illustrating the critical point phenomenon which is 

essentially a saddle-node bifurcation problem.100  Eq 2.1 can be rewritten as 𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 = −𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 where 

𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 is linear with respect to 𝑧𝑧𝑠𝑠, or 𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 = −𝑘𝑘𝑐𝑐𝑑𝑑 = −𝑘𝑘𝑐𝑐�𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑝𝑝 + 𝑅𝑅�.  The blue and red curves, 

which are plotted separately, show the general shape of 𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒  and 𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 , respectively.  𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 

diverges to -∞ as 𝑧𝑧𝑠𝑠 → 𝑅𝑅 and goes to 0 as 𝑧𝑧𝑠𝑠 → ∞ (the curve is always negative).  −𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 is always 

linear, with an intercept related to 𝑧𝑧𝑝𝑝.  In Figure 2.3(a), as the cantilever approaches the surface, 

there are two equilibrium points, one stable point (green) and one unstable point (black).  Small 

perturbations around the stable equilibrium point (i.e., at large distances from the critical point) 
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result in the cantilever returning to its equilibrium position.  If the cantilever were to reach the 

unstable critical point due to a large perturbation, the surface force would dominate, and the 

cantilever would jump into contact with the surface (this is very unlikely to physically occur).  

−𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 maintains the same slope since 𝑘𝑘𝑐𝑐  is fixed.  As the cantilever continues to approach the 

surface, the critical point, or saddle-node fixed point is ultimately reached as shown in Figure 

2.3(b).  This is where the two solutions merge or become a double root.  Graphically, −𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 is 

tangent to 𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 at the saddle-node fixed point. 

 

  
 

Figure 2.3 A graphical analysis illustrating the critical point phenomenon which occurs as the 
AFM cantilever approaches the surface of a material.  This is a saddle-node bifurcation problem; 
(a) there are two equilibrium points, one stable point (green) at sufficiently far distances from the 
surface (i.e., large 𝑧𝑧𝑠𝑠) and one unstable point (blue) close to the surface (i.e., small 𝑧𝑧𝑠𝑠), (b) one 
equilibrium point, or a saddle-node fixed point at the critical point distance from the surface, and 
(c) no equilibrium points where the surface force dominates and the cantilever jumps into contact 
with the surface.  The point at which the sphere touches the surface (𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) occurs at 𝑧𝑧𝑠𝑠 = 𝑅𝑅. 

 
Beyond this point, no equilibrium points exist, as shown in Figure 2.3(c), and the cantilever jumps 

into contact with the surface as the surface force dominates.  (The critical point is an unstable 

point79 and so when this point is reached, the cantilever will also jump to the surface.) 

From Figure 2.3(b), the critical point is located at the point where −𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 is tangent to 𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒; 

therefore, the following two conditions are valid79 
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𝐹𝐹𝑠𝑠𝑢𝑢𝑟𝑟𝑓𝑓 + 𝐹𝐹𝑠𝑠𝐴𝐴𝑟𝑟 = 0 

𝜕𝜕𝐹𝐹𝑠𝑠𝑢𝑢𝑟𝑟𝑓𝑓
𝜕𝜕𝑧𝑧𝑠𝑠

+
𝜕𝜕𝐹𝐹𝑠𝑠𝐴𝐴𝑟𝑟
𝜕𝜕𝑧𝑧𝑠𝑠

= 0 
(2.16) 

Utilizing eq 2.9, and again noting that 𝑑𝑑 = 𝑧𝑧𝑠𝑠 + 𝑅𝑅 − 𝑧𝑧𝑃𝑃, the critical point for a sphere interacting 

with an arbitrary surface is obtained from101 
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where 𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗ = 𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐 𝑅𝑅⁄  and 𝑧𝑧𝑝𝑝,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐

∗ = 𝑧𝑧𝑝𝑝,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐 𝑅𝑅⁄   are the dimensionless 𝑧𝑧-positions of the sphere 

and platform, respectively, at the critical point. 

Only 𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗  appears in eq 2.18, which is a consequence of the linear cantilever restoring 

force.  Thus, for a given surface height function and value of 𝐴𝐴 (as well as 𝑘𝑘𝑐𝑐 and 𝑅𝑅), eq 2.18 is 

first solved for 𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗ .  This value of 𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐

∗  is then substituted into eq 2.17 to determine 𝑧𝑧𝑝𝑝,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗ .  

With 𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗  and 𝑧𝑧𝑝𝑝,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐

∗  now known, the dimensionless deflection at first contact, 𝑑𝑑𝑐𝑐∗ = 𝑑𝑑𝑐𝑐 𝑅𝑅⁄ , can 

then be obtained.  Since the critical point is also an unstable equilibrium location79, upon reaching 

𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗  the sphere then immediately jumps into contact with the surface while the location of the 

platform remains fixed at 𝑧𝑧𝑝𝑝,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗ .  Denoting the 𝑧𝑧-position of the center of the sphere when it first 

comes into contact with the surface as 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the quasi-static deflection of the sphere at first 

contact is therefore given by101 

𝑑𝑑𝑐𝑐
∗ = 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡

∗ − 𝑧𝑧𝐴𝐴,𝑐𝑐𝑟𝑟𝐴𝐴𝑡𝑡
∗ + 1   (2.19) 

 
where 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ = 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑅𝑅⁄ . 



 
 

42 

For surfaces height functions of the form ℎ =  ℎ(𝑥𝑥𝑒𝑒)  (surfaces that are still two-

dimensional because the shape in the 𝑥𝑥-direction is repeated without change in the 𝑦𝑦-direction), 

the simplifications of eqs 2.9, 2.17, and 2.18 for can be obtained by integrating each relation over 

the 𝑦𝑦-domain, and are as follows101 (the simplification of eq 2.9 is eq 2.12) 

−
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= 1   (2.21) 

Similar to a previous method79, the above general critical point conditions also connect 𝐴𝐴 

to the experimentally obtainable parameter 𝑑𝑑𝑐𝑐.  Hence, eqs 2.17, 2.18, and 2.19 provide a means 

to infer the value of the Hamaker constant from known values of 𝑑𝑑𝑐𝑐.  Because the deflection at 

first contact depends in general upon the horizontal location of the sphere as it approaches the 

surface the critical point conditions do not yield a single value of 𝑑𝑑𝑐𝑐 .  For each 𝑥𝑥𝑠𝑠  and 𝑦𝑦𝑠𝑠 , a 

different value of 𝑑𝑑𝑐𝑐 may be obtained, and consequently a distribution of deflections at first contact 

or a 𝑑𝑑𝑐𝑐-distribution will develop for a given surface shape (and value of 𝐴𝐴).  Since the surface 

height function is independent of 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑠𝑠 for a flat plate, there is only one relevant value of 𝑑𝑑𝑐𝑐 

for this surface.  Thus, the 𝑑𝑑𝑐𝑐-distribution for a flat plate is a delta function.  For other surface 

shapes, the resulting 𝑑𝑑𝑐𝑐-distribution will reflect the varying strengths of the vdW attractive force 

for different locations along the surface.  Consequently, for a given Hamaker constant, the obtained 

𝑑𝑑𝑐𝑐-distribution provides a “signature” of the effect of surface height variations, or roughness, on 

the resulting tip-surface vdW interactions.  The approach-to-contact method presented 

previously79,80, which “maps” a single (average) value of 𝑑𝑑𝑐𝑐 to a corresponding value of 𝐴𝐴 should 
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therefore be modified to instead “map” an experimentally obtained 𝑑𝑑𝑐𝑐 -distribution to a 

corresponding (and presumably unique) value of  𝐴𝐴 .  A discussion of the effects of surface 

topography on the resulting 𝑑𝑑𝑐𝑐-distribution across a range of model surfaces is given in Chapter 3. 

2.4 Determining the Point of First Contact between the Sphere and an Arbitrary Surface 

The determination of 𝑑𝑑𝑐𝑐 from eq 2.19 requires knowledge of 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, which is not obtained 

from the critical point conditions.  Instead, a separate analysis must be performed to determine the 

vertical location of the sphere when it first comes into contact with the surface.  For a sphere 

approaching a flat, nondeformable plate, the value of 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is always equal to 𝑅𝑅, as the sphere 

always touches the surface at the same point located at the very bottom of the sphere.  However, 

for a rough surface the very bottom of the sphere is not necessarily the point of first contact 

between the sphere and surface.  Moreover, the point of first contact along the sphere surface will 

vary with the horizontal location of the sphere.  This section considers the determination of 

𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for surface height functions of two forms, ℎ =  ℎ(𝑥𝑥𝑒𝑒) and ℎ =  ℎ(𝑥𝑥𝑒𝑒, 𝑦𝑦𝑒𝑒). 

Figure 2.4(a) shows a sphere in direct contact with a flat plate.  If 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 denotes the 𝑥𝑥-

position of that point along the sphere surface that is in contact with the surface, then for a flat 

plate, 𝑥𝑥𝑠𝑠 = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (i.e., the point of contact is directly below the center of the sphere)101.  In 

addition, since for a flat plate 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  corresponds to the lowest vertical height on the sphere 

surface, then 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  𝑅𝑅  (in which the plate is located at 𝑧𝑧 = 0).  Consequently, eq 2.19 

indicates that 𝑑𝑑𝑐𝑐∗ = 2 − 𝑧𝑧𝑝𝑝,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗ . 
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Figure 2.4 Schematic of an AFM cantilever tip (modeled as a sphere on a spring) making contact 
with (a) a flat plate and (b) a surface described by a sine wave with amplitude 𝛼𝛼 and wavelength 
2𝜋𝜋/𝑘𝑘 (in which 𝑘𝑘 is the wavenumber).  𝑅𝑅 is the radius of the sphere, 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the vertical 
location of the sphere at contact, 𝑑𝑑𝑐𝑐 is the deflection of the sphere at first contact, 𝑟𝑟𝑐𝑐  is a vector 
from the origin to the point of contact of the sphere with the surface, 𝑛𝑛�⃗   is a unit normal vector 
from the surface at the point of contact, and 𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is a vector from the origin to the center of 
the sphere when in contact with the surface.  𝑥𝑥𝑠𝑠 and 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are the 𝑥𝑥-locations of the center of 
the sphere and the point of contact, respectively, both relative to the origin. 

 
In Figure 2.4(b), the sphere (whose center is at the horizontal location 𝑥𝑥𝑠𝑠) is now in contact 

with a sine wave which is non-flat and nondeformable.  In this case, 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ≠  𝑥𝑥𝑠𝑠  and 

𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ≠  𝑅𝑅, with 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 no longer representing that point on the surface of the sphere with 

the lowest vertical height.  Now, 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and ultimately 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be obtained through the use 

of the vectors defined in Figure 2.4 (b).  The unit normal 𝑛𝑛�⃗  pointing outward from the surface is 

given by102 

𝑛𝑛�⃗ =
−ℎ′𝚤𝚤̂ + 𝑘𝑘�

(1 + (ℎ′)2)1/2   (2.22) 

where ℎ’ is the first derivative of the surface height function with respect to 𝑥𝑥, and 𝚤𝚤̂ and 𝑘𝑘� are the 

unit vectors in the 𝑥𝑥- and 𝑧𝑧-directions, respectively.  When the sphere touches the surface, the line 

between the sphere’s center and point of contact is normal to the surface or perpendicular to the 

local surface tangent.  Consequently, this point of contact and the center of the sphere are collinear 
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with 𝑛𝑛�⃗ .  If 𝑟𝑟𝑐𝑐 is the vector from the origin to the contact point of the sphere with the surface and 

𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the vector from the origin to the center of the sphere (when in contact), then 

𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑟𝑟𝑐𝑐 + 𝑅𝑅𝑛𝑛�⃗ .  Now, 𝑟𝑟𝑐𝑐 = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝚤𝚤̂ + 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘� = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝚤𝚤̂ + ℎ 𝑘𝑘� , where 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =

 ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) is the vertical location of the point along the sphere that contacts the surface, and is 

simply the height of the surface at 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Therefore,  

𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −
𝑅𝑅ℎ′

(1 + (ℎ′)2)1/2� 𝚤𝚤̂ + �ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) +
𝑅𝑅

(1 + (ℎ′)2)1/2� 𝑘𝑘�   (2.23) 

in which  ℎ’  is also evaluated at 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 .  Since 𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is also given by 𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥𝑠𝑠 𝚤𝚤̂ +

𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘�, eq 2.23 implies that  

𝑥𝑥𝑠𝑠 = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −
𝑅𝑅ℎ′

(1 + (ℎ′)2)1/2   (2.24) 

𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) +
𝑅𝑅

(1 + (ℎ′)2)1/2   (2.25) 

Eqs 2.24 and 2.25 can be used to determine 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  for a given 𝑥𝑥𝑠𝑠 , through the 

intermediate determination of 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (first from eq 2.24).  But for surfaces in which the sphere 

can no longer touch all points of the surface height function, eqs 2.24 and 2.25 give rise to multiple 

solutions for 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Nonetheless, only one of these roots is physical (where the sphere only 

touches and does not penetrate the surface; for the remaining unphysical roots, a section of the 

sphere penetrates some portion of the surface).  To avoid searching through all of these roots to 

find the single physical solution, an alternative procedure, called the “minimum distance method” 

(MDM) was developed. 

Since the surface height functions currently being considered only vary in the 𝑥𝑥-direction, 

the bottom of the sphere (or in this case the lower half of the vertically oriented great circle) is first 

evenly discretized along the 𝑥𝑥-direction by 𝑛𝑛 points over the domain of 𝑥𝑥𝑠𝑠  ±  𝑅𝑅, as shown in 
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Figure 2.5.  Next, the vertical distance between a given point on the bottom of the sphere, located 

at a height 𝑧𝑧𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑠𝑠𝑒𝑒, and the corresponding point on the surface, ℎ(𝑥𝑥), each at the same horizontal 

location 𝑥𝑥, is computed.  As the sphere moves downward toward the surface, each of these vertical 

distances will decrease at the same rate.  Hence, the 𝑥𝑥-location that yields the smallest value of 

these vertical distances will be the corresponding point of contact when the sphere first touches 

the surface (for the fixed value of 𝑥𝑥𝑠𝑠).  For any chosen value of 𝑧𝑧𝑠𝑠 , 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  can therefore be 

identified by finding the minimum value of 𝑧𝑧𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑠𝑠𝑒𝑒(𝑥𝑥) − ℎ(𝑥𝑥), or 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⟺ 𝑚𝑚𝐴𝐴𝑛𝑛�𝑧𝑧𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑠𝑠𝑒𝑒(𝑥𝑥) −

ℎ(𝑥𝑥)�, where ⟺ implies “corresponds to” and 𝑧𝑧𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑠𝑠𝑒𝑒 = 𝑧𝑧𝑠𝑠 − (𝑅𝑅2 − (𝑥𝑥 − 𝑥𝑥𝑠𝑠)2)1/2 describes the 

bottom half of a circle of radius 𝑅𝑅 whose center is located at 𝑥𝑥𝑠𝑠 and 𝑧𝑧𝑠𝑠.  With 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 now known, 

𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is then determined from eq 2.25.  (Note that the MDM immediately identifies the only 

physical solution of eq 2.25.) 

To ensure that 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  was obtained with sufficient precision, the degree of 

discretization, 𝑛𝑛, of the bottom of the sphere was varied.  For most surfaces of interest, 𝑛𝑛 ≈ 1000 

yielded precise enough results.  For more complicated surfaces, with features with short 

wavelengths, an initial value of 𝑛𝑛 ≈ 1000  was chosen to obtain a reasonable first guess for 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Then, a finer discretization was carried out around this initial estimate to determine 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with even higher precision.  With the MDM in place, for a given location along the surface, 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be found, followed by 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 using eq 2.25. 
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Figure 2.5 Schematic illustration of the minimum distance method, in which the vertical distances 
(represented by the blue solid lines) between points along the bottom of the sphere and the surface 
are first determined.  The location with the smallest vertical distance, represented by the bold red 
line, corresponds to the 𝑥𝑥-position along the bottom of the sphere that will be the point of first 
contact of the sphere and the surface.  The center of the sphere is at a horizontal distance 𝑥𝑥𝑠𝑠 from 
the origin and R is the radius of the sphere.  The blue dashed lines represent those portions of the 
surface and the sphere that may come into contact. 

 
The MDM can also be generalized to any AFM cantilever tip shape and to surface height 

functions that depend upon both the 𝑥𝑥- and 𝑦𝑦-directions.  For the coordinate system defined in 

Figure 2.6, 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑠𝑠 denote the horizontal location of the center of the sphere, while 𝑧𝑧𝑠𝑠 denotes 

its vertical location (relative to a reference plane at 𝑧𝑧 =  0).  When the sphere is in contact with 

the surface, ℎ(𝑥𝑥,𝑦𝑦), as shown in Figure 2.6, the common point between the sphere and surface is 

located at 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐).  For a flat plate, in which ℎ = 0, 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥𝑠𝑠, 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦𝑠𝑠, and 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0, corresponding to the point of contact being at the 
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lowest vertical height on the sphere surface.  Thus, 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅.  But in general, for any other 

shaped surface, 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 𝑦𝑦𝑠𝑠, as well as 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 𝑅𝑅. 

 

 
 

Figure 2.6 Schematic of an AFM cantilever tip modeled as a sphere attached to a horizontal 
platform via a Hookean spring, in which the sphere is in direct contact with a surface described by 
the surface height function ℎ(𝑥𝑥,𝑦𝑦).  𝑅𝑅 is the radius of the sphere, 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the vertical location 
of the sphere center at contact, 𝑟𝑟𝑐𝑐  is a vector from the origin to the point of contact of the sphere 
with the surface, 𝑛𝑛�⃗   is a unit normal vector from the surface at the point of contact, and 𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
is a vector from the origin to the center of the sphere when in contact with the surface.  𝑥𝑥𝑠𝑠 and 
𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are, for example, the 𝑥𝑥-locations of the center of the sphere and the point of contact, 
respectively, both relative to the origin. 

 
The values of 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and ultimately 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be obtained using the vectors, 

𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟𝑐𝑐 and 𝑛𝑛�⃗ , shown in Figure 2.6.  The unit normal 𝑛𝑛�⃗  pointing outward from the surface in 

the positive 𝑧𝑧-direction is given by102 

𝑛𝑛�⃗ =
−ℎ𝑥𝑥′ 𝚤𝚤̂−ℎ𝑦𝑦′ 𝚥𝚥̂ + 𝑘𝑘�

�1 + (ℎ𝑥𝑥′ )2 + �ℎ𝑦𝑦′ �
2�

1/2   

 

(2.26) 
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where ℎ𝑥𝑥′  and ℎ𝑦𝑦′  are the first partial derivatives of the surface height function with respect to 𝑥𝑥 

and 𝑦𝑦, respectively, and 𝚤𝚤̂, 𝚥𝚥̂, and 𝑘𝑘� are the unit normal vectors in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions.  The 

vector from the origin to the center of the sphere (when in contact with the surface) is 𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, in 

which 𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑟𝑟𝑐𝑐 + 𝑅𝑅𝑛𝑛�⃗  and where 𝑟𝑟𝑐𝑐 is the vector from the origin to the point of contact that 

the sphere makes with the surface.  Since 𝑟𝑟𝑐𝑐 = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴̂+ 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�̂�𝑗 + 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘� and 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), then 

𝑟𝑟𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −
𝑅𝑅ℎ𝑥𝑥′

�1 + (ℎ𝑥𝑥′ )2 + �ℎ𝑦𝑦′ �
2�

1/2� 𝚤𝚤̂ + �𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −
𝑅𝑅ℎ𝑦𝑦′

�1 + (ℎ𝑥𝑥′ )2 + �ℎ𝑦𝑦′ �
2�

1/2� 𝚥𝚥̂

+ �ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) +
𝑅𝑅

�1 + (ℎ𝑥𝑥′ )2 + �ℎ𝑦𝑦′ �
2�

1/2�𝑘𝑘� 

  (2.27) 

Eq 2.27 thus implies that 

𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) +
𝑅𝑅

�1 + (ℎ𝑥𝑥′ )2 + �ℎ𝑦𝑦′ �
2�

1/2 ((2.28) 

with ℎ𝑥𝑥′  and ℎ𝑦𝑦′  evaluated at 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 .  Before eq 2.28 can be used to determine 

𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for a given 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑠𝑠, 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 must first be determined using the minimum 

distance method, now extended to a surface described by ℎ(𝑥𝑥, 𝑦𝑦).  As shown in Figure 2.7, and 

similarly to the case in which ℎ(𝑥𝑥), the bottom of the sphere is discretized into 𝑛𝑛 × 𝑛𝑛  total points 

over the domain of 𝑥𝑥𝑠𝑠  ±  𝑅𝑅 and 𝑦𝑦𝑠𝑠  ±  𝑅𝑅.  The vertical distance between a given point on the 

bottom of the sphere, at height 𝑧𝑧𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑠𝑠𝑒𝑒 , and the corresponding point on the surface, ℎ(𝑥𝑥,𝑦𝑦), 

directly below is determined.   
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Figure 2.7 Illustration of the two-dimensional minimum distance method.  The solid blue vertical 
lines represent the vertical distances between points along the bottom hemisphere and the 
corresponding points on the surface height function, ℎ(𝑥𝑥,𝑦𝑦).  The shortest distance, represented 
by the solid red vertical line, corresponds to the (𝑥𝑥,𝑦𝑦)-position that is the point of first contact 
between the sphere and surface.  The center of the sphere is located at a horizontal distance (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠) 
from the origin and 𝑅𝑅 is the radius of the sphere. 

 
The 𝑥𝑥, 𝑦𝑦-location yielding the smallest value of each vertical distance identifies the point of first 

contact between the sphere and the surface, or 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Thus, for a particular choice 

of 𝑥𝑥𝑠𝑠  and 𝑦𝑦𝑠𝑠 , 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  are determined by finding the minimum value of 

𝑧𝑧𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑠𝑠𝑒𝑒(𝑥𝑥, 𝑦𝑦) − ℎ(𝑥𝑥, 𝑦𝑦) , where 𝑧𝑧𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑠𝑠𝑒𝑒 = 𝑧𝑧𝑠𝑠 − (𝑅𝑅2 − (𝑥𝑥 − 𝑥𝑥𝑠𝑠)2−(𝑦𝑦 − 𝑦𝑦𝑠𝑠)2)1/2  describes the 

bottom half of a circle of radius 𝑅𝑅 whose center is located at (𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠) and 𝑧𝑧𝑠𝑠.  Within the MDM, 

the chosen vertical location of the sphere center, 𝑧𝑧𝑠𝑠, is arbitrary, as long as the sphere is above all 
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relevant surface features.  Finally, with 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  now known, 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is then 

determined from eq 2.28. 

2.5 Summary 

This chapter presented the development of a novel vdW force expression describing the interaction 

between an AFM cantilever tip, treated as an effective sphere, and surface of arbitrary roughness. 

For a surface height function, ℎ, the deflection of the cantilever at first contact with the surface 

was determined from the critical point derived under the quasi-static limit as well as the point of 

first contact between the sphere and surface.   With this method is place, Chapter 3 provides a 

discussion of the effects of surface geometry on plots of 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 as a function of 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑠𝑠, which 

are henceforth called “contact locus” and “contact mesh” plots for several surface height functions.  
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 ANALYSIS OF QUASI-STATIC 𝒅𝒅𝒄𝒄-DISTRIBUTIONS FOR VARIOUS 
MODEL SURFACES  

3.1  Introduction 

Inherent surface roughness is the primary reason for the emergence of a distribution of deflections 

at first contact, even for a surface like amorphous silica, which can be made “relatively” smooth.  

Because of surface roughness, different values of 𝑑𝑑𝑐𝑐 will be obtained as the tip accesses spatially 

separate surface positions (i.e., probes the “global” roughness), and as the tip attempts to access 

the same surface position but cannot do so exactly (i.e., probes the “local” roughness) due to the 

inevitable horizontal drift of the cantilever.81–84  Both of these effects were presumably observed 

in the AFM force measurements reported by Fronczak et al.79,80  Consequently, a characteristic 

distribution of 𝑑𝑑𝑐𝑐-values (or a 𝑑𝑑𝑐𝑐-distribution) should be observed for a given surface (and chosen 

cantilever properties), providing a signature of the underlying surface roughness.  Even two 

substrates with the same values of 𝐴𝐴 should nonetheless yield two different 𝑑𝑑𝑐𝑐-distributions if their 

individual surface roughness is also different.  This chapter is concerned with studying the effects 

of surface geometry on the resulting 𝑑𝑑𝑐𝑐-distributions, in the quasi-static limit, for several surface 

height functions of the form ℎ(𝑥𝑥) and ℎ(𝑥𝑥, 𝑦𝑦). 

3.2 Analysis of the Effect of Surface Topography on the Resulting dc-Distributions for 
Surface Height Functions of the Form 𝒉𝒉(𝒙𝒙) 

As a preliminary test of the modified approach-to-contact method, this section considers surfaces 

which vary only in the 𝑥𝑥-direction, or surface height functions of the form ℎ(𝑥𝑥).  For a given 

surface height function, the locus of the sphere’s center when it is contact with the surface, or a 

plot of 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  as a function of 𝑥𝑥𝑠𝑠 , is determined from the MDM (see 43).  Three examples 
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(surfaces A, B, and C) of this “contact locus” are provided in Figure 3.1 for the surface height 

function given, in general as 

ℎ = 𝛼𝛼sin (𝑘𝑘𝑥𝑥) (3.1) 

where 𝛼𝛼 is the amplitude and 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆 is the wavenumber (and 𝜆𝜆 is the wavelength).  𝛼𝛼/𝑅𝑅 =  0, 

1, and 3 for surfaces A, B, and C, respectively, and in all cases, 𝑘𝑘𝑅𝑅 = 1. 

 

 
 

Figure 3.1 Plots of the contact locus for three surfaces described, in general, by eq 3.1.  For each 
surface, 𝑘𝑘𝑅𝑅 = 1, or 𝜆𝜆/𝑅𝑅 = 2𝜋𝜋 (with 𝑘𝑘 = 2𝜋𝜋 ∕ 𝜆𝜆), while 𝛼𝛼/𝑅𝑅 =  0, 1, and 3 for surfaces A, B, and 
C, respectively.  The blue line represents the surface and the red dashed line represents the contact 
locus, i.e., the curve that corresponds to the center of the sphere when it is in contact with the 
surface.  For a given location of the center of the sphere (red dot), the corresponding point on the 
surface that makes contact with a point on the sphere are both highlighted by the same blue dot.  
The center of the sphere and this contact point are connected by a black line. 

 
The contact locus for a smooth, flat plate (surface A where 𝛼𝛼 = 0) is provided for reference, 

for which 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥𝑠𝑠  and 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅  all along the surface.  For surface B (𝛼𝛼/𝑅𝑅 = 1 ), 

𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 varies with 𝑥𝑥𝑠𝑠 and 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ≠  𝑥𝑥𝑠𝑠 except at 𝑥𝑥𝑠𝑠 = 𝜋𝜋/2 or 3𝜋𝜋/2 (i.e., at the top of the hill 

or at the bottom of the valley).  The radius of curvature of B at the bottom of the valley (𝑥𝑥𝑠𝑠 =

3𝜋𝜋/2) is equal to that of the sphere.  Consequently, the sphere is able to make contact with all 



 
 

54 

portions of the surface, and the contact locus curve is differentiable everywhere.  For surface C 

(𝛼𝛼/𝑅𝑅 = 3), its radius of curvature is now less than that of the sphere at 𝑥𝑥𝑠𝑠 = 3𝜋𝜋/2, and so the 

sphere is unable to reach the bottom of the valley.  As a result, the contact locus forms a corner at 

this point, where the slopes on either side are finite but different (i.e., discontinuous).  

 

 
 

Figure 3.2 Plots of the contact locus for two surfaces described, in general, by eq 3.2.  α/𝑅𝑅 = 1 
and 𝛽𝛽/𝑅𝑅 = 5 for surface D and E, while 𝛾𝛾/𝑅𝑅 = 0 and 1 for surface D and E, respectively.  In all 
cases, 𝑘𝑘𝑅𝑅 = 2, 𝑐𝑐𝑅𝑅 = 0.5, and 𝑚𝑚𝑅𝑅 = 10.  The blue line represents the surface and the red dashed 
line represents the contact locus.  For a given location of the center of the sphere (red dot), the 
corresponding point on the surface that makes contact with a point on the sphere are both 
highlighted by the same blue dot.  The red and blue dots are connected by a black line. 

 
Figure 3.2 shows the contact loci of two additional surfaces (E and D), both of which are 

described by a summation of sines and cosines given, in general, as 

ℎ/𝑅𝑅 = αcos(𝑘𝑘𝑥𝑥/𝑅𝑅) + 𝛽𝛽sin(𝑐𝑐𝑥𝑥/𝑅𝑅)  + 𝛾𝛾sin(𝑚𝑚𝑥𝑥/𝑅𝑅) (3.2) 

where α, 𝛽𝛽, and 𝛾𝛾 are the amplitudes of terms 1, 2, and 3, respectively, and 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆 is the 

wavenumber.  𝛼𝛼/𝑅𝑅 = 1 and 𝛽𝛽/𝑅𝑅 = 5 for surface D and E, while 𝛾𝛾/𝑅𝑅 = 0 and 1 for surface D and 

E, respectively.  In all cases, 𝑘𝑘𝑅𝑅 = 2, 𝑐𝑐𝑅𝑅 = 0.5, and 𝑚𝑚𝑅𝑅 = 10. 
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Surface E includes an additional sine term, which adds smaller scale roughness to surface 

D.  Since this additional roughness operates on a relatively small wavelength, the two contact loci 

are quite similar in appearance.  But as will be discussed further below, the presence of this small-

scale roughness serves to vary the amount of substrate material that is close to the sphere.  

Consequently, the force interactions between surface D and the sphere, and that between surface 

E and the sphere, may be quite different.  Hence, the 𝑑𝑑𝑐𝑐-distributions for these two surfaces may 

likewise be very different. 

For the surfaces in Figures  3.1 and 3.2, with the contact loci now known, the corresponding 

𝑑𝑑𝑐𝑐-distributions were then obtained (in the quasi-static limit).  The following parameters, similar 

to those used by Fronczak et al.79, were chosen: 𝐴𝐴 =  101 zJ, 𝑅𝑅 =  100 nm, and 𝑘𝑘𝑐𝑐  =  0.1 N/m.  

For each surface, 1000 equally spaced 𝑥𝑥𝑠𝑠-values over one complete period of the surface height 

function were selected (i.e., 𝑥𝑥𝑠𝑠 was chosen, for example for Figure 3.1, to reside between 0 and 

2𝜋𝜋𝑅𝑅 , including 0 only).  Then, for each 𝑥𝑥𝑠𝑠 , 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and the deflection at first contact were 

obtained using eqs 2.17 – 2.19.  The resulting 𝑑𝑑𝑐𝑐-distributions are provided in Figures 3.3 and 3.4 

for the surfaces in Figures 3.1 and 3.2. 

 
Figure 3.3 The corresponding 𝑑𝑑𝑐𝑐-distributions for surfaces B and C in Figure 3.1.  Here, 𝐴𝐴 =
101 zJ,  𝑅𝑅 =  100 nm, and 𝑘𝑘𝑐𝑐  =  0.1 N/m, which yields |𝑑𝑑𝑐𝑐∗| = |𝑑𝑑𝑐𝑐/𝑅𝑅| = 0.0479 for the flat 
plate (surface A) and is indicated by the vertical red line. 
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Figure 3.4 The corresponding 𝑑𝑑𝑐𝑐-distributions for surfaces D and E in Figure 3.2.  Here, 𝐴𝐴 =
101 zJ, 𝑅𝑅 =  100 nm, and 𝑘𝑘𝑐𝑐  =  0.1 N/m. 

 
The underlying geometry of the surface is seen to have an impact on the resulting shape of 

the 𝑑𝑑𝑐𝑐-distribution.  As the sphere approaches different locations along the surface, the magnitude 

of the vdW force will vary (for a given surface-sphere separation distance), as the sphere interacts 

with varying amounts of substrate material.  Hence, the sphere will reach a critical point at different 

heights along the surface.  Given the additional differences in the contact loci, variations in the 

deflections at first contact are likewise observed.  

Surface C has the same wavelength as surface B but with an amplitude that is three times 

larger.  The shapes of the corresponding 𝑑𝑑𝑐𝑐-distributions of B and C are therefore similar, albeit 

with key differences.  The 𝑑𝑑𝑐𝑐-distribution of C is much broader, ranging from |𝑑𝑑𝑐𝑐∗| = 0.0379 to 

0.0814.  The first peak shifts to a smaller deflection because of the higher negative curvature 

around the peak of the surface (more substrate material is moved away from the sphere as 

compared to B).  Comparably, the valleys have a larger positive curvature, leading to larger 

deflections.  Here, more substrate material is located near the approaching sphere, in which both 

sides of the valley are now able to strongly attract the sphere.  Although 𝑑𝑑𝑐𝑐 increases as the sphere 

approaches the valley (with the second peak of the 𝑑𝑑𝑐𝑐-distribution of C shifting to higher values), 



 
 

57 

the maximum deflection is, however, not much greater than that of the 𝑑𝑑𝑐𝑐-distribution of B.  The 

sphere cannot touch the bottom of the valley of C, and thus the surface geometry limits the allowed 

deflection in this region. 

 Interestingly, the 𝑑𝑑𝑐𝑐-distribution for surface D is not very different from that for surface C, 

despite the very different underlying surface height functions.  Although these two distributions 

are not identical, their overall ranges are comparable.  This similarity in the two distributions may 

appear because, generally speaking, both surfaces give rise to similar geometric effects (e.g., sharp 

peaks and valleys that the sphere cannot touch).  On the other hand, surface E yields a very different 

𝑑𝑑𝑐𝑐-distribution.  Even though the contact loci of surfaces D and E are very similar, the small-scale 

roughness appearing within E gives rise to very different vdW attractive forces between the sphere 

and the surface.  Hence, only a single peak at small deflections (|𝑑𝑑𝑐𝑐∗| ≈ 0.022) appears in the 𝑑𝑑𝑐𝑐-

distribution of E, with a very broad tail.  Because of this small-scale roughness, the amount of 

substrate material with which the sphere interacts at close separations rapidly varies as the sphere 

moves along the surface. The vdW force between the sphere and E can therefore be either much 

greater than or less than what arises for D.  As a result, the maximum deflection of the 𝑑𝑑𝑐𝑐 -

distribution for E now occurs at |𝑑𝑑𝑐𝑐∗| ≈ 0.118, a much larger value than what is obtained for D, 

and even B and C. 

Interestingly, the rather simple surfaces B and C give rise to a bimodal 𝑑𝑑𝑐𝑐-distribution, 

with a tail of large deflections.  For the 𝑑𝑑𝑐𝑐-distribution corresponding to surface B in Figure 3.1, 

the magnitude of 𝑑𝑑𝑐𝑐∗  ranges from 0.0426 to 0.0702; the first peak is around |𝑑𝑑𝑐𝑐∗| = 0.04 , 

corresponding to the sphere approaching the surface for locations centered around the top of the 

sine wave (𝑥𝑥𝑠𝑠/𝑅𝑅~𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑅𝑅~𝜋𝜋/2).  As shown in Figure 3.5(a), when the sphere is near this peak, 

the surface is curved away from the bottom of the sphere.  Compared to a flat plate at the same 
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relative separation (which yields |𝑑𝑑𝑐𝑐∗| = 0.0479), the vdW force interaction is weaker since less 

substrate material is close to the sphere.  Consequently, the deflection at first contact is smaller.   

As the sphere moves away from the peak, |𝑑𝑑𝑐𝑐∗| increases.  For example, at 𝑥𝑥𝑠𝑠/𝑅𝑅 = 3.85, 

which corresponds to 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑅𝑅 = 𝜋𝜋, |𝑑𝑑𝑐𝑐∗| = 0.0539.  This contact location corresponds to the 

point where the surface has zero curvature as shown in Figure 3.5(b), and thus is analogous to the 

sphere approaching a tilted flat plate.  As discussed in the next section, the tilting of an initially 

horizontal plate results in a net increase in the amount of material near the sphere as it approaches 

the plate.  Hence, the vdW force, and ultimately |𝑑𝑑𝑐𝑐∗|, increases relative to the horizontal plate.   

Finally, |𝑑𝑑𝑐𝑐∗|  reaches its largest value of 0.0702 at  𝑥𝑥𝑠𝑠/𝑅𝑅 = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑅𝑅 =  3𝜋𝜋/2 , the 

location of the local minimum or valley of the surface.  Here, as illustrated in Figure 3.5(c), the 

surface is curved towards the sphere.  More of the surface is closer to the sphere, as compared to 

the corresponding flat plate, and thus |𝑑𝑑𝑐𝑐∗| is larger. 

As a side note, surface geometry affects the shape of the resulting 𝑑𝑑𝑐𝑐-distribution in two 

other related ways.  Similar to what is done in an AFM experiment, the horizontal position of the 

sphere center, or cantilever tip, is sampled uniformly in the 𝑥𝑥-direction, where again 1000 equally 

spaced 𝑥𝑥𝑠𝑠-values were chosen over one complete period of the surface height function.  But as, in 

general, 𝑥𝑥𝑠𝑠 ≠ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  , uniform sampling in 𝑥𝑥𝑠𝑠  does not correspond to uniform sampling in 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Concurrently, uniform sampling in the 𝑥𝑥-direction does not result in uniform sampling 

along the arc length, 𝑠𝑠, of the surface, in which ∆𝑠𝑠 ≈ ∆𝑥𝑥(1 + (ℎ′)2)1/2. Hence, regions along the 

surface with non-zero slope are “under-represented” in the 𝑑𝑑𝑐𝑐-distribution, for which ∆𝑠𝑠 > ∆𝑥𝑥, 

compared to those points around the maximum and minimum of the surface, for which ∆𝑠𝑠 ≈ ∆𝑥𝑥.  

These two effects also contribute to the resulting bimodal shape of the 𝑑𝑑𝑐𝑐-distribution. 
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Figure 3.5 Illustration of the dependence of 𝑑𝑑𝑐𝑐 on the curvature of the surface for various contact 
points of the sphere with surface B in Figure 3.1. a) The sphere approaches the peak of the surface 
(𝑥𝑥𝑠𝑠/𝑅𝑅 = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑅𝑅 = 𝜋𝜋/2). The red areas correspond to the substrate material that is no longer 
interacting with the sphere, as compared to the appropriate flat plate.  b) The sphere is in contact 
with the surface at the point in which its curvature is zero (𝑥𝑥𝑠𝑠/𝑅𝑅 = 3.85; 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑅𝑅 = 𝜋𝜋).  This 
situation is analogous to the sphere approaching a tilted flat plate.  c) The sphere approaches the 
valley of the surface (𝑥𝑥𝑠𝑠/𝑅𝑅 = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑅𝑅 = 3𝜋𝜋/2).  The green areas correspond to the additional 
substrate material that is closer to the sphere, as compared to the appropriate flat plate.  The purple 
dashed lines correspond to the appropriate flat plate at each contact point.  The red dashed line is 
the contact locus and the blue solid line is the surface. 

 
The effect of decreasing the amplitude of B was also investigated.  As shown in Figure 3.6, 

as the amplitude goes to zero, for a fixed wavelength, the 𝑑𝑑𝑐𝑐-distribution becomes a delta function 

centered about |𝑑𝑑𝑐𝑐∗| = 0.0479 (since in this limit the surface is becoming a flat plate). 
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Figure 3.6 Contact loci and corresponding 𝑑𝑑𝑐𝑐-distributions for three surfaces described by the 
surface height function ℎ = 𝛼𝛼 sin(𝑘𝑘𝑥𝑥). For each surface, 𝑘𝑘𝑅𝑅 = 1, or 𝜆𝜆/𝑅𝑅 = 2𝜋𝜋 (with 𝑘𝑘 = 2𝜋𝜋 ∕ 𝜆𝜆), 
while 𝛼𝛼/𝑅𝑅 =  1, 0.25, and 0.1.  In each of the bottom plots, the red vertical line corresponds to 
the 𝑑𝑑𝑐𝑐-distribution of a flat plate, which is a delta function centered about |𝑑𝑑𝑐𝑐∗| = 0.0479. 

 
A similar analysis can be performed for a surface described by a series of hemispheres with 

the same radius 𝑅𝑅𝐻𝐻∗ = 𝑅𝑅𝐻𝐻/𝑅𝑅 separated by the distance 𝐿𝐿∗ = 𝐿𝐿/𝑅𝑅 (shown in Figure 3.7 for 𝑅𝑅𝐻𝐻∗ = 1 

and 𝐿𝐿∗ = 1).  A version of this type of surface has been used previously as a model of surface 

roughness.95  The contact locus for this surface, also provided in Figure 3.7, shows that the sphere 
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can make contact along every point along each hemisphere except for a range of 𝑥𝑥/𝑅𝑅-values from, 

for example, 2.7 to 3, where a corner forms.  At these corners of the contact locus, the sphere 

straddles two adjacent hemispheres and cannot touch the bottom of the surface at 𝑧𝑧 = 0. 

 

 
 

Figure 3.7 The contact locus (red dashed line) for a surface (solid blue line) described by a series 
of hemispheres with radius 𝑅𝑅𝐻𝐻∗ = 𝑅𝑅𝐻𝐻/𝑅𝑅 = 1, each separated by a distance 𝐿𝐿∗ = 𝐿𝐿/𝑅𝑅 = 1 from any 
other.  For a given location of the center of the sphere (red circle), the corresponding point on the 
surface that makes contact with a point on the sphere (both of which are highlighted by the same 
blue circle) is also indicated.  Both of these points are connected by a black line. 

 
Contact locus plots for hemispheres of radius 𝑅𝑅𝐻𝐻∗ = 1 and 𝐿𝐿∗ = 0, 1, and 2 are shown in 

Figure 3.8(a), Figure 3.8(b), and Figure 3.8(c), respectively.  In Figure 3.8(a) and Figure 3.8(b), 

cusps appear at the point where the sphere straddles two adjacent hemispheres (𝐿𝐿∗ = 0 and 1, 

respectively).  In Figure 3.8(c), when 𝐿𝐿∗ = 2, the sphere can touch the flat portions of the surface 

in between any two adjacent hemispheres.  Nevertheless, new cusp points arise when the sphere 

simultaneously touches the flat surface and the side of a hemisphere (e.g., at 𝑥𝑥𝑠𝑠/𝑅𝑅 ≈ 4.73). 
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Figure 3.8 Contact locus plots of three surfaces comprised of several hemispherical asperities of 
radius 𝑅𝑅𝐻𝐻∗ .  The red dashed lines are the contact loci and the blue lines are the surfaces.  The 
asperities are separated by distances 𝐿𝐿∗ = 0, 1, and 2.   

 
The corresponding 𝑑𝑑𝑐𝑐 -distributions for the surfaces shown in Figure 3.8 are shown in 

Figure 3.9.  Each 𝑑𝑑𝑐𝑐-distribution has a large peak (|𝑑𝑑𝑐𝑐∗| ≈ 0.042) followed by a tail.  The contact 

locus varies the least along the surface for 𝐿𝐿∗ = 0.  Since the distribution of vdW forces for this 

surface also varies the least, its 𝑑𝑑𝑐𝑐-distribution exhibits the largest peak with the smallest tail.  

Figure 3.8(c) shows that for a large enough gap between adjacent hemispheres (when 𝐿𝐿∗ = 2), the 

range of the 𝑑𝑑𝑐𝑐-distribution is the greatest as more of the total surface is sampled, as the sphere 

can now make contact with the very bottom of the surface.  For those contact points between any 

two hemispheres, this surface essentially appears to the sphere to be a flat plate, and so |𝑑𝑑𝑐𝑐∗| ≈

0.0479 at these locations.  The maximum 𝑑𝑑𝑐𝑐 -value (|𝑑𝑑𝑐𝑐∗| ≈ 0.0628) occurs where the sphere 
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touches both the bottom of the surface and the side of a hemisphere.  Figure 3.9(a) and Figure 

3.9(b) are similar in appearance as the sphere cannot touch the bottom of either one of these 

surfaces, but when 𝐿𝐿∗ = 1, more of each hemisphere can be sampled and so the peak in Figure 

3.9(b) is smaller. 

 

 
 

Figure 3.9 Corresponding 𝑑𝑑𝑐𝑐-distributions for the surfaces described, in general, in Figure 3.8.  For 
each distribution, 𝑅𝑅𝐻𝐻∗ = 𝑅𝑅𝐻𝐻/𝑅𝑅 = 1 while 𝐴𝐴 =  101 zJ, 𝑅𝑅 =  100 nm, and 𝑘𝑘𝑐𝑐  = 0.1 N/m, while 
a) 𝐿𝐿∗ = 𝐿𝐿/𝑅𝑅 = 0, b) 𝐿𝐿∗ = 1, and c) 𝐿𝐿∗ = 2. 

 
A similar analysis can be made for a surface described by a series of “scoops” (or inverted 

hemispherical asperity) instead of hemispheres.  Contact locus plots are shown in Figure 3.10 for 

surfaces with (a) 𝑅𝑅𝐻𝐻∗ = 𝑅𝑅𝐻𝐻/𝑅𝑅 = 1, 𝐿𝐿∗ = 0, (b) 𝑅𝑅𝐻𝐻∗ = 1, 𝐿𝐿∗ = 1, and (c) 𝑅𝑅𝐻𝐻∗ = 2, 𝐿𝐿∗ = 2.  Because 

the sphere can come into contact a t certain points along these surfaces for which the corresponding 

surface height functions are not differentiable (e.g., at 𝑥𝑥/𝑅𝑅 = 2 and 4 in Figure 3.10(a) and 𝑥𝑥/𝑅𝑅 =

4 and 6 in Figure 3.10(b)), the surfaces must therefore be “rounded off” (i.e., made differentiable) 

at these points to ensure that the minimum distance method for finding the sphere-surface contact 
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points is still applicable.  This “rounding off” was done by fitting cubic Hermite splines (of very 

limited ranges) around these points, thereby generating a fully differentiable surface height 

function.4 

 

 
 

Figure 3.10 Contact locus plots of three surfaces comprised of several “scoops” of radius 𝑅𝑅𝐻𝐻∗ .  The 
red dashed lines are the contact loci and the blue lines are the surfaces.  The scoops are separated 
by distances 𝐿𝐿∗ = 0, 1, and 2, and 𝑅𝑅𝐻𝐻∗ = 1, 1, and 2. 

 
The corresponding 𝑑𝑑𝑐𝑐-distributions for the surfaces in Figure 3.10 are shown in Figure 3.11.  

Figure 3.11(a) shows a large initial peak around |𝑑𝑑𝑐𝑐∗| ≈ 0.01 and a long tail. The maximum value 

of |𝑑𝑑𝑐𝑐∗| ≈ 0.13 which corresponds to where the sphere can fit perfectly into the scoop, occurring 

at 𝑥𝑥𝑠𝑠/𝑅𝑅 = 1, 3, 5, etc.  The large initial peak results from the sphere touching the top/sides of the 
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scoop around 𝑥𝑥/𝑅𝑅 = 0, 2, 4, ,etc., which occurs for almost all values of 𝑥𝑥𝑠𝑠/𝑅𝑅.  At these points, the 

sphere interacts with only a small portion of the surface and so |𝑑𝑑𝑐𝑐∗| is relatively small. 

Figure 3.11(b) shows a bimodal 𝑑𝑑𝑐𝑐 -distribution, which results from the sphere either 

touching the side of the scoop/flat plate interface at 𝑥𝑥/𝑅𝑅 = 1,3, 4, 6, etc., or along the flat plate 

portions of the surface where |𝑑𝑑𝑐𝑐∗| varies slightly (this section of the surface contributes to the 

smaller peak where |𝑑𝑑𝑐𝑐∗| ≈ 0.0479, the corresponding value for a flat plate).  Figure 3.11(c) shows 

a trimodal 𝑑𝑑𝑐𝑐-distribution; the flat plate portion of the surface contributes to the middle peak at 

|𝑑𝑑𝑐𝑐∗| ≈ 0.0479.  The additional peak in the distribution arises from the ability of the sphere to 

interact with more of the surface around the bottom of the scoop where |𝑑𝑑𝑐𝑐∗| is roughly the same.   

 

 
 

Figure 3.11 Corresponding 𝑑𝑑𝑐𝑐-distributions for the surfaces shown in Figure 3.10. 

 
An additional analysis demonstrates the effect of increasing the size of the sphere relative 

to the size of the asperities in the surface shown in Figure 3.8(a), where 𝐿𝐿∗ = 0.  Figure 3.12(a)-



 
 

66 

(c) contain the contact loci for 𝑅𝑅𝐻𝐻∗ = 1, 0.5, and 0.2 (or equivalently when the sphere radius is 

either the same size, twice as large, or five times as large as the radius of a hemisphere).  As the 

radius of the sphere increases, the contact locus varies less along the surface and appears to 

approach the contact locus of the flat plate shown in Figure 3.1(a). 

 

  
 

Figure 3.12 Contact locus plots of three surfaces comprised of several hemispherical asperities of 
radius 𝑅𝑅𝐻𝐻∗ = 1, 0.5, and 0.2.  The red dashed lines are the contact loci and the blue lines are the 
surfaces.  The asperities are separated by a distance 𝐿𝐿∗ = 0. 

 
The corresponding 𝑑𝑑𝑐𝑐-distributions of these surfaces are shown in Figure 3.13.  Each 𝑑𝑑𝑐𝑐-

distribution exhibits a large peak followed by a long tail.  The larger values of |𝑑𝑑𝑐𝑐∗| result when the 

sphere straddles two adjacent hemispherical peaks since the sphere is able to contact more of the 

underlying surface.  While the contact locus appears to approach that of a flat plate in Figure 

3.12(c), the same cannot be said of the resulting 𝑑𝑑𝑐𝑐-distribution.  For 𝑅𝑅𝐻𝐻∗ = 0.2, the corresponding 

flat plate would yield |𝑑𝑑𝑐𝑐∗| = 0.0825 (with the top of the plate coinciding with the top of the 
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hemispheres), which is greater than the maximum value of |𝑑𝑑𝑐𝑐∗| obtained in the resulting 𝑑𝑑𝑐𝑐 -

distribution.  This is due to the fact that the large sphere always interacts with less material 

compared to the flat plate, leading to smaller values of |𝑑𝑑𝑐𝑐∗|, despite the close similarity of the two 

contact loci. (Note for the surfaces in Figure 3.12, the “missing material” between the 

hemispherical asperities, which of course is not included in the force profiles for these surfaces, is 

nonetheless included in the force profile for the corresponding flat plate.) 

 

 
 

Figure 3.13 Corresponding 𝑑𝑑𝑐𝑐-distributions for the surfaces described in Figure 3.12. 

 
 A key result from analyzing the corresponding 𝑑𝑑𝑐𝑐-distributions for the various surface 

height function is that, in general, surface roughness can cause a significant variation in the vdW 

force and, in turn, the deflection at contact.   The 𝑑𝑑𝑐𝑐-distribution appears to be a good signature of 

the roughness of a surface and is sensitive to even small-scale roughness on a surface.  Hence, 

capturing the effect of surface roughness on the magnitude of the vdW force through incorporation 
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of surface topography directly into the approach-to-contact method should lead to a more accurate 

determination of the Hamaker constant of a material. 

3.3 Vertical Force on a Sphere Approaching a Tilted Semi-Infinite Flat Plate 

This section is concerned with an in-depth analysis of quantifying the vertical force on a sphere 

approaching a tilted semi-infinite flat plate.  When the sphere is in contact with the sine wave at 

the point in which its curvature is zero (𝑥𝑥𝑠𝑠/𝑅𝑅 = 3.85; 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑅𝑅 = 𝜋𝜋), the surface behaves 

locally like a tilted flat plate.  Here, an extension of eq 2.14 is derived in which a semi-infinite flat 

plate is tilted by an angle 𝜃𝜃 from the horizontal.  Force profiles are then compared for a range of 

angles as well as between the tilted flat plate with 𝜃𝜃 = 45° and the analogous case of the sine wave 

in Figure 3.1(b) at 𝑥𝑥𝑠𝑠/𝑅𝑅 = 3.85 (black dashed curve). 

Consider a sphere of radius 𝑅𝑅 approaching a horizontal flat plate (with its top surface 

located at 𝑧𝑧 = 0).  As shown in Figure 3.14(a), the sphere center is at a vertical height 𝑧𝑧𝑠𝑠 and the 

sphere touches the plate when its center is at the vertical height 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (which in this case 

corresponds to 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅).  Let Δ𝑧𝑧 = 𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  represent the difference of these two 

heights, which for the case of the horizontal flat plate corresponds to the minimum separation 

distance (in the direction of the unit normal to the surface) between the surface of the plate and 

any point along the surface of the sphere.  Hence, for the horizontal plate, the minimum separation 

distance between the surface and the center of the sphere is 𝑟𝑟𝑚𝑚𝑚𝑚𝑐𝑐 = Δ𝑧𝑧 + 𝑅𝑅 = 𝑧𝑧𝑠𝑠  (see Figure 

3.14(a)).  Using 𝑧𝑧𝑠𝑠 = Δ𝑧𝑧 + 𝑅𝑅 (again for the horizontal plate), eq 2.14 can be rewritten as 

𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒,𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑒𝑒 = −
2
3
𝐴𝐴
𝑅𝑅

1
[(1 + Δ𝑧𝑧∗)2 − 1]2 (3.3) 

where Δ𝑧𝑧∗ = Δ𝑧𝑧/𝑅𝑅. 
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Figure 3.14 Schematic of a sphere with radius 𝑅𝑅 approaching a semi-infinite flat plate.  𝑟𝑟𝑚𝑚𝑚𝑚𝑐𝑐 is the 
minimum separation distance between the center of the sphere and the (upper) surface of the plate.  
Vertical locations, or the corresponding 𝑧𝑧-coordinates, are relative to a chosen 𝑧𝑧 = 0 plane.  𝑧𝑧𝑠𝑠 is 
the vertical location of the center of the sphere, 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the vertical location of the center of 
the sphere when the sphere is in contact with the surface, and 𝛥𝛥𝑧𝑧 = 𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  In (a), the plate 
is horizontal, in which the (upper) surface coincides with the 𝑧𝑧 = 0 plane.  Here, 𝛥𝛥𝑧𝑧 also yields 
the minimum separation distance between the surface of the plate and any point along the surface 
of the sphere, i.e.,  𝑟𝑟𝑚𝑚𝑚𝑚𝑐𝑐 = Δ𝑧𝑧 + 𝑅𝑅.  In (b), the plate is tilted by an angle 𝜃𝜃 from the horizontal.  
Here, the minimum separation distance between the surface of the plate and any point along the 
surface of the sphere is 𝑤𝑤 = 𝑟𝑟𝑚𝑚𝑚𝑚𝑐𝑐 − 𝑅𝑅, in which 𝑤𝑤 = 𝛥𝛥𝑧𝑧 cos𝜃𝜃.  𝑘𝑘�⃗  is the unit vector in the upward 
vertical direction and 𝑛𝑛�⃗  is the unit normal vector to the tilted surface. 

 
Now, consider a plate that is tilted by some angle 𝜃𝜃 from the horizontal, as shown in Figure 

3.14(b).  Here, 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 𝑅𝑅 and the minimum separation distance between the tilted surface and 

the center of the sphere is not equal to Δ𝑧𝑧 + 𝑅𝑅 (where again Δ𝑧𝑧 = 𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐).  Instead, 𝑟𝑟𝑚𝑚𝑚𝑚𝑐𝑐 =

𝑤𝑤 + 𝑅𝑅, where the distance 𝑤𝑤 is defined in Figure 3.14(b) as the distance between the bottom of 

the sphere and surface, normal to the surface.  However, if Δ𝑧𝑧 in eq 3.3 is replaced by 𝑤𝑤, the force 

on the sphere due to the tilted plate is obtained in the direction of the (tilted) unit normal.  The 

force in this direction is not, however, what is of final interest.  To obtain the force in the 𝑧𝑧-

direction, the force in the direction of the unit normal needs to be projected onto the vertical 

direction.  From Figure 3.14(b), 𝑛𝑛�⃗ ∙ 𝑘𝑘�⃗ = cos𝜃𝜃 and 𝑤𝑤 = Δ𝑧𝑧 cos 𝜃𝜃 (where 𝑘𝑘�⃗  is the unit vector in the 
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upward vertical direction and 𝑛𝑛�⃗  is the unit normal vector to the tilted surface).  Therefore, the force 

on the sphere in the 𝑧𝑧-direction due to a tilted flat plate is given by 

𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒,𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑒𝑒𝑣𝑣 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑒𝑒 = −
2
3
𝐴𝐴
𝑅𝑅

cos 𝜃𝜃
[(1 + Δ𝑧𝑧∗ cos 𝜃𝜃)2 − 1]2 (3.4) 

 The tilting of the plate gives rise to two competing effects on the resulting vertical force.  

The cos 𝜃𝜃 in the numerator (which arises because of the projection of the normal force in the 

vertical direction) serves to reduce the vertical force as the plate is tilted.  On the other hand, for a 

given relative vertical separation distance to contact, or Δ𝑧𝑧, the tilting of the plate serves to bring 

the sphere closer to the plate (i.e., 𝑤𝑤 = Δ𝑧𝑧 cos 𝜃𝜃 decreases as the tilt angle increases for a given 

Δ𝑧𝑧).  This latter effect should, however, be more dominant, as the denominator in eq 3.4 goes as 

(cos 𝜃𝜃)2 (to leading order).  As a result, eq 3.4 suggests that the magnitude of the vertical force 

will increase (for a given Δ𝑧𝑧) as 𝜃𝜃 increase to 90o.  (Note that 𝜃𝜃 cannot equal 90o in the analysis. 

In obtaining eq 3.4, the sphere is assumed to touch the surface at some point, which does not occur 

when the surface is completely vertical.)  This predicted trend is what is observed in Figure 3.15, 

which plots the vertical force on the sphere versus Δ𝑧𝑧 for several choices of 𝜃𝜃 .  Figure 3.15 

indicates that the tilting of the flat plate results in a net increase in the amount of material near the 

sphere as it approaches the plate.  Hence, the vdW force, and ultimately the magnitude of the 

deflection at first contact, |𝑑𝑑𝑐𝑐∗|, increases relative to that of a flat, horizontal plate. 

Figure 3.15 also includes the force profile for a surface described by eq 3.1 with 𝛼𝛼/𝑅𝑅 = 1 

and 𝑘𝑘𝑅𝑅 = 1  (see Figure 3.1(b)) at 𝑥𝑥𝑠𝑠/𝑅𝑅 = 3.85 , corresponding to  𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑅𝑅 = 𝜋𝜋  (for this 

analysis 𝐴𝐴 = 101zJ and 𝑅𝑅 = 0.1nm).  At this contact location, the curvature of the surface is zero 

with a slope = 1.  Interestingly, the force profile as the sphere comes into contact with this location 

is nearly identical to that of a tilted flat plate with 𝜃𝜃 = 45o (i.e., slope = 1).  Hence, at this location, 
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the sine wave behaves like a tilted flat plate.  This result indicates that the vdW force is dominated 

by the interactions between those portions of the two bodies that are only very close to one another.   

 

 
Figure 3.15 Force profiles corresponding to the interaction of a sphere with a flat plate (blue curve) 
and tilted plates with 𝜃𝜃 = 6o (magenta curve), 45o (red curve), and 63o (green curve), and the sine 
wave in Figure 3.1(b) at 𝑥𝑥𝑠𝑠/𝑅𝑅 = 3.85 (black dashed curve).  For this analysis, 𝐴𝐴 = 101zJ and 𝑅𝑅 =
 0.1nm. 

3.4 Comparison of Force Trajectories Between the New vdW Force Model and the 
Rabinovich et al. Surface Roughness Model 

The Rabinovich et al.95 model is an extension of the classical Rumpf model, which is used to 

predict the force of adhesion between a particle of radius 𝑅𝑅 and a surface with nanoscale surface 

roughness.  The model, for which a schematic is provided in Figure 3.16, considers two roughness 

scales, where 𝜆𝜆1 and 𝜆𝜆2 are the wavelengths of the two roughness scales, and 𝑟𝑟1 and 𝑟𝑟2 are the radii 

of the asperities from which the roughness on the surface is composed.  An assumption of the 
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model is that the sphere may only make contact with the surface at the top of an asperity (for more 

details, see ref 95). 

 

 
 

Figure 3.16 Schematic of the Rabinovich et al. roughness model.  𝑅𝑅 is the radius of the sphere, 𝜆𝜆1 
and 𝜆𝜆2 are the wavelengths of the two roughness scales, and 𝑟𝑟1 and 𝑟𝑟2 are the radii of the asperities 
from which the roughness on the surface is composed.  The model requires that the sphere makes 
contact with the surface at the top of the asperity.  This figure is adapted from Laitinen et al.95 

 
The surface model shown in Figure 3.7 forms the basis of some previous attempts to quantify, 

albeit implicitly, the effect of surface roughness on the magnitude of the vdW force.  (Figure 3.16 

can be made similar to Figure 3.7 for 𝑟𝑟2 = 0 and 𝜆𝜆2 = 0.)  Therefore, the (explicit, or newly 

derived vdW force expression) analysis of this same model surface to test the effectiveness of these 

(implicit) approaches in accounting for surface roughness can be utilized.  (Other approaches have 
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also been developed to describe, with varying degrees of precision, the underlying geometry or 

roughness of a given surface.34,88,94,95,97,98) 

Rabinovich et al.95 obtained an expression for the vdW force between a sphere of radius 𝑅𝑅 

and the surface in Figure 3.7, although the effect of the surface geometry was only included in an 

average sense.  In other words, the resulting force expression only depended upon the relative 

separation of the very bottom of the sphere and the underlying flat plate (and not on the actual 

location of the sphere center along the surface), with the impact of the hemispheres only included 

in a correction term.  For this surface, and making use of our notation and coordinate system, their 

vdW force expression is given by 

𝐹𝐹𝑅𝑅𝑐𝑐𝑅𝑅 = −
2
3

𝐴𝐴
𝑅𝑅((𝑧𝑧𝑠𝑠∗)2 − 1)2 �

1

1 + � 58 (𝑟𝑟𝑚𝑚𝑠𝑠∗)
(2𝑅𝑅𝐻𝐻∗ + 𝐿𝐿∗)2�

+
(𝑧𝑧𝑠𝑠∗ − 1)2

(1 + 1.82(𝑟𝑟𝑚𝑚𝑠𝑠∗))2�
   (3.5) 

where 𝑟𝑟𝑚𝑚𝑠𝑠∗ = 𝑟𝑟𝑚𝑚𝑠𝑠/𝑅𝑅 is the root-mean-squared (rms) height of the semi-hemispherical caps.  The 

form of eq 3.5 is simply the vdW force between a sphere and flat plate modified with a correction 

term that is based on the rms roughness of the surface.  In ref 95, the sphere-plate force expression 

in eq 1.6 was instead used.  Here, for a proper comparison to our previous results, the force 

expression is modified to include the rigorous sphere-plate relation in eq 2.14, along with 

considering half-cylinders (i.e., two-dimensional surfaces) instead of the hemispheres (i.e., fully 

three-dimensional surfaces) considered in ref 95. 

Since the Rabinovich et al. approach implicitly accounts for surface roughness, the vdW 

force is not dependent upon the sphere location, or 𝑥𝑥𝑠𝑠, and as such will only yield a single value 

of 𝑑𝑑𝑐𝑐  for a given 𝐴𝐴 (i.e., this model cannot predict a 𝑑𝑑𝑐𝑐-distribution).  (This deflection at first 

contact must be based on the additional unphysical assumption that the sphere touches the 

underlying flat plate, regardless of the positions of the hemispheres.)  Nonetheless, the resulting 
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vdW force profile may still be satisfactory in an average sense.  To test the adequacy of the 

Rabinovich et al. model in this regard, the single force profile obtained using eq 3.5 is compared 

to the average force profile obtained by solving eq 2.14 for several values of 𝑥𝑥𝑠𝑠.  The resulting 

force profiles for the surfaces in Figure 3.7 are shown in Figure 3.17 for which (a) 𝑅𝑅𝐻𝐻∗ = 2, 

(b) 𝑅𝑅𝐻𝐻∗ = 1, and (c) 𝑅𝑅𝐻𝐻∗ = 0.2, and 𝐿𝐿∗ = 0 in all cases.  To appropriately compare the force profiles 

along different portions of the surface, the forces are plotted versus the relative separation distance, 

𝑧𝑧𝑠𝑠∗ − 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∗ , where 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ = 1 for eq 3.5 regardless of the (horizontal) location of the sphere.  

The maximum and minimum force profiles obtained with eq 2.14 for a given surface are also 

included. 

 

 
Figure 3.17 A comparison of the force profiles obtained by solving the modified Rabinovich et al. 
model (magenta lines) and eq 2.14.  The blue and black lines are the maximum and minimum force 
profiles, respectively, along the surface and the red dashed line is the average force trajectory over 
one period of the surface (all from eq 2.14).  The surfaces are described by Figure 3.7, and (a) 
𝑅𝑅𝐻𝐻∗ = 2, (b) 𝑅𝑅𝐻𝐻∗ = 1, and (c) 𝑅𝑅𝐻𝐻∗ =0.2 while 𝐿𝐿∗ = 0 in all cases. 

 
An assumption of the Rabinovich et al. model is that the radius of the approaching sphere is much 

greater than the scale of the surface roughness (i.e. 𝑅𝑅 ≫ 𝑅𝑅𝐻𝐻).  Hence, in Figure 3.17(c), for which 

𝑅𝑅 = 5𝑅𝑅𝐻𝐻, the Rabinovich et al. force profile is reasonably close to the average force profile from 

eq 2.14 across one period of the surface.  The Rabinovich et al. force profile slightly 

underestimates the true average force, while also residing in between the maximum and minima 
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force profiles (although the true average force profile is quite close to the minimum force profile).  

The agreement between the Rabinovich et al. model and eq 2.14 improves as 𝑅𝑅𝐻𝐻∗ → 0. But, as may 

be expected, the Rabinovich et al. model yields worse predictions when the sphere radius becomes 

comparable to the radius of a hemisphere.  As seen in Figure 3.17(a) and Figure 3.17(b), the 

Rabinovich et al. force profile now resides outside of the bounds set by the maximum and 

minimum force profiles from eq 2.14, and as a result is not in good agreement with the actual 

average force profile. 

This discrepancy between the average force profile and eq 3.5 persists even as 𝑅𝑅𝐻𝐻∗  << 1, or 

as the relative length scale of the roughness becomes negligible.  Even as the approaching sphere 

becomes much larger than the size of an asperity, the force between the sphere and this surface 

does not become identical to that between the sphere and a flat plate.  The “missing material” 

between the hemispherical asperities, which is not included in eq 2.14, is nonetheless included in 

the flat plate force relation appearing in eq 3.5.  Overall, Figure 3.17 indicates that surface 

roughness must be properly accounted for if an accurate value of 𝐴𝐴 is to be determined from either 

the obtained force profiles or distribution of 𝑑𝑑𝑐𝑐-values. 

3.5 Analysis of the Effect of Surface Topography on the Resulting dc-Distributions for 
Surface Height Functions of the Form 𝒉𝒉(𝒙𝒙,𝒚𝒚) 

For surface height functions that vary in both the 𝑥𝑥- and 𝑦𝑦-directions, the MDM can be applied to 

generate a “contact mesh”, or a plot of the position of the center of the sphere when in contact with 

the surface as a function of 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑠𝑠.  In this case, a 50 by 50 grid comprising a complete period 

of the surface height function was selected, for a total of 2500 contact points. 

Two “egg-crate” surfaces, F and G, shown in Figure 3.18, were generated using the surface 

height function of103 
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ℎ(𝑥𝑥,𝑦𝑦) = 𝛼𝛼[cos(𝑘𝑘𝑥𝑥) + cos(𝑘𝑘𝑦𝑦)] (3.6) 

where 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆  is the wavenumber (and 𝜆𝜆  is the wavelength).  For surface F, 𝛼𝛼/𝑅𝑅 = 0.5 

and 𝑘𝑘𝑅𝑅 = 1 (or 𝜆𝜆/𝑅𝑅 = 2𝜋𝜋).  Thus, for a given horizontal location of the sphere, or each (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠) 

pair, 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠  𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠  𝑦𝑦𝑠𝑠, except at the top of each hill and at the bottom of each 

valley (where 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑦𝑦𝑠𝑠).  Furthermore, the sphere is able to contact all 

parts of this surface (and, in particular, the sphere can touch the bottom of a valley).  The “contact 

surface” obtained from the minimum distance method, or 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for each (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠) pair, is also 

provided in Figure 3.18, which for F is differentiable at all points.  For surface G, 𝛼𝛼/𝑅𝑅 =

1.5 and 𝑘𝑘𝑅𝑅 = 1.  In this case, the sphere can no longer contact sections of the surface centered 

around the bottom of a valley.  Consequently, the contact surface for G is no longer differentiable 

at those points directly above the bottom of a valley.  The third surface, H, shown in Figure 3.19, 

was generated from103 

ℎ(𝑥𝑥,𝑦𝑦) = 𝛼𝛼[cos(𝑘𝑘𝑥𝑥) + cos(𝑘𝑘𝑦𝑦)] + 𝛽𝛽[cos(𝑐𝑐𝑥𝑥) + cos(𝑐𝑐𝑦𝑦)] (3.7) 

where 𝛼𝛼/𝑅𝑅 = 0.5 , 𝑘𝑘𝑅𝑅 = 1   (as for surface F), 𝛽𝛽/𝑅𝑅 = 0.0625 , and 𝑐𝑐𝑅𝑅 = 10 .  This surface 

superimposes a smaller-scale surface roughness onto surface F.  As a result, the sphere can contact 

only a small fraction of the surface (mainly around the peaks of the many small hills), which gives 

rise to many points of non-differentiability in the corresponding contact surface.  The quasi-static 

𝑑𝑑𝑐𝑐-distributions for each surface are provided in Figure 3.20 (surfaces F and G) and Figure 3.21 

(surface H), again for 𝐴𝐴 = 100 zJ, 𝑅𝑅 = 1000 nm, and 𝑘𝑘𝑐𝑐 = 0.1 N/m.103 
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Figure 3.18 Plots of the two surfaces (gray mesh) described by the surface height function in eq 
3.6, along with portions of their corresponding contact surfaces (red mesh). For each surface, 𝑘𝑘𝑅𝑅 =
1 or 𝜆𝜆/𝑅𝑅 = 2𝜋𝜋, while 𝛼𝛼/𝑅𝑅 = 0.5 and 1.5 for surfaces F and G, respectively.  Because the sphere 
cannot touch the bottom of the valleys in surface G, discontinuities in its contact mesh arise at 
these locations.103 

 
 

 
 

Figure 3.19 Plot of the surface (gray mesh) described by the surface height function in eq 3.7, 
along with the corresponding contact surface (red mesh).   For surface H, 𝛼𝛼/𝑅𝑅 = 0.5, 𝑘𝑘𝑅𝑅 = 1, 
𝛽𝛽/𝑅𝑅 = 0.0625, and 𝑐𝑐𝑅𝑅 = 10, which introduces a superimposed small-scale surface roughness 
onto surface A.103 
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Figure 3.20 The quasi-static 𝑑𝑑𝑐𝑐-distributions for surfaces F and G in Figure 3.18.  Here, 𝐴𝐴 = 100 
zJ, 𝑅𝑅 = 1000 nm, and 𝑘𝑘𝑐𝑐= 0.1 N/m.103 

 
The quasi-static 𝑑𝑑𝑐𝑐-distribution for surface F is centered around 𝑑𝑑𝑐𝑐~10.5 nm, with a range 

of 8.8 – 12.6 nm and an average value of 10.6 nm; it is somewhat symmetrical, though skewed 

slightly towards larger values of 𝑑𝑑𝑐𝑐.  The larger values of 𝑑𝑑𝑐𝑐 correspond in general to those surface 

locations where the vdW attractive force is greater, or when the sphere at close separation distances 

interacts with more nearby material on the substrate.  Hence, the largest values of 𝑑𝑑𝑐𝑐 are obtained 

when the sphere approaches surface F near any of the valleys, since here the surface curves 

upwards toward the sphere.  On the other hand, the smallest values of 𝑑𝑑𝑐𝑐 are obtained when the 

sphere approaches surface A around any of the peaks, since here the surface curves away from the 

sphere.  Besides these variations in the vdW force along the surface, surface geometry also affects 

the shape of the 𝑑𝑑𝑐𝑐-distribution.  As discussed in ref 101, the uniform sampling of the horizontal 

location of the sphere, or of 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑠𝑠, may nonetheless generate a nonuniform sampling of points 

along the surface. 

Although the topography on surface G has the same wavelength as surface F, it has an 

amplitude that is three times larger.  As a result, the shape of the quasi-static 𝑑𝑑𝑐𝑐-distribution for G 
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is very different from F.  The 𝑑𝑑𝑐𝑐-distribution for G, with an average value of 11.6 nm, is now much 

broader (7 –16 nm).  The higher negative curvature around the peaks of this surface results in less 

substrate material available to interact with the sphere (yielding smaller 𝑑𝑑𝑐𝑐-values), while the 

larger positive curvature around the valleys results in more material available to interact with the 

sphere (yielding larger 𝑑𝑑𝑐𝑐-values).  Furthermore, since there are portions of surface G that cannot 

be directly contacted by the sphere, the resulting deflections around these locations cannot be as 

large as would be expected from the corresponding magnitudes of the vdW forces, thereby giving 

rise to a “less smooth” distribution. 

 

 
 

Figure 3.21 The quasi-static 𝑑𝑑𝑐𝑐-distribution for surface H in Figure 3.19.  Here, 𝐴𝐴 = 100 zJ, 𝑅𝑅 = 
1000 nm, and 𝑘𝑘𝑐𝑐= 0.1 N/m.103 

 
The quasi-static 𝑑𝑑𝑐𝑐-distribution for surface H is shifted to smaller deflections, as compared 

to F, having an average of 9.25 nm, though the range is still relatively broad (7-15.8 nm).  

Nonetheless, most deflections are found between 7.5 and 10 nm, which abruptly ends at the 

smallest deflections but has a rather long tail for the higher deflections.  Because of the small-scale 
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roughness present in H, the amount of substrate material available for the sphere to interact with 

decreases across the entire surface, and so the deflections are shifted in general to lower values.  

Nevertheless, the maximum deflection for this surface occurs at 15.8 nm, which is not much 

different from surface F.  While the sphere is mainly only interacting with the peaks of the small-

scale roughness (𝛽𝛽 𝑅𝑅⁄  = 0.0625), the underlying larger-scale roughness of the surface (𝛼𝛼/𝑅𝑅 = 0.5) 

tends in some areas to move more material upwards to the sphere.  Hence, for some sphere 

locations, the vdW force is still relatively large. 

3.6 Summary 

This chapter provided an analysis of the effects of surface geometry on the resulting 𝑑𝑑𝑐𝑐 -

distributions, in the quasi-static limit, for several surface height functions of the form ℎ(𝑥𝑥) and 

ℎ(𝑥𝑥,𝑦𝑦).  Contact loci and contact mesh plots were obtained illustrating the position of the sphere 

when in contact with the surface.  The presence of small-scale roughness serves to vary the amount 

of substrate material that is close to sphere and therefore influences the magnitude of the vdW 

force and ultimately 𝑑𝑑𝑐𝑐 .  This chapter sets the stage for later chapters as model-predicted 𝑑𝑑𝑐𝑐-

distributions will be obtained for real AFM surface scans and subsequently compared with those 

obtained experimentally.  The sensitivity of the 𝑑𝑑𝑐𝑐-distributions to the various scales of roughness 

described by the surface height functions is an important result since accurate model-predicted 𝑑𝑑𝑐𝑐-

distributions are essential to obtaining Hamaker constants with a reduction in uncertainty.  The 

next chapter is concerned with the validation of the quasi-static model for a range of cantilever 

approach speeds and introduces the concept of relative entropy which is a quantitative metric for 

comparing the “closeness” of two 𝑑𝑑𝑐𝑐-distributions.  
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 DYNAMIC ANALYSIS OF CANTILEVER TIP BEHAVIOR AND 
VALIDATION OF THE QUASI-STATIC MODEL 

4.1 Introduction 

The 𝑑𝑑𝑐𝑐 -distributions previously obtained in Chapter 3 follow from the limit of quasi-static 

behavior of the cantilever, in which the cantilever is assumed to always be in mechanical 

equilibrium up until the critical point (at which in the quasi-static limit the tip then immediately 

“jumps” into contact with the surface).  In practice, however, the cantilever approaches the surface 

at a finite approach speed, such that mechanical equilibrium cannot truly be maintained (due to 

inertial effects).  Consequently, a model describing the dynamic behavior of the cantilever tip as 

it approaches and interacts with an arbitrary surface is presented.  From a quantitative comparison 

of the 𝑑𝑑𝑐𝑐 -distributions generated with both the quasi-static and dynamic models, a specific 

threshold cantilever approach speed is determined, in which the difference between these two 

distributions becomes unimportant.  By selecting approach speeds below this threshold value, 

subsequent experimentally-obtained 𝑑𝑑𝑐𝑐-distributions can therefore be confidently compared to the 

corresponding quasi-static 𝑑𝑑𝑐𝑐-distribution.  Hence, the proposed method for estimating 𝐴𝐴 requires 

only the determination of the quasi-static 𝑑𝑑𝑐𝑐-distribution for a particular surface, thereby avoiding 

the additional computational expense of generating the dynamic 𝑑𝑑𝑐𝑐-distributions. 

4.2 Dynamic Behavior of the AFM Cantilever Tip Modeled as an Effective Sphere 

The quasi-static description of the behavior of the AFM cantilever cannot be strictly valid.  Since 

the substrate moves at a finite speed toward the cantilever during an AFM force experiment,79,80 

or equivalently the platform moves at a finite speed toward the (stationary) surface, the inertial 

behavior of the tip may become important.  If so, the effect of the inertia of the tip is expected to 
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be greatest at those separation distances around the critical point, where the tip moves very rapidly 

just before it first contacts the surface. 

To study the importance of these inertial effects, and their possible impact on the obtained 

values of 𝑑𝑑𝑐𝑐, the dynamic behavior of the cantilever tip (again described as an effective sphere) 

can be modeled as follows79,80 

𝑚𝑚
𝑑𝑑2𝑧𝑧𝑠𝑠
𝑑𝑑𝑡𝑡2

= 𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 + 𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 (4.1) 

where 𝑡𝑡  is time and 𝑚𝑚 = 𝑘𝑘𝑐𝑐/4𝜋𝜋2𝜈𝜈02  is the effective mass of the sphere, in which 𝜈𝜈0  is the 

resonance frequency of the cantilever.  𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒  is again given by eq 2.9, while 𝐹𝐹𝑠𝑠𝑝𝑝𝑠𝑠 = −𝑘𝑘𝑐𝑐𝑑𝑑 =

−𝑘𝑘𝑐𝑐�𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑝𝑝 + 𝑅𝑅�  (see Figure 4.1).  The cantilever, or platform, approaches the (stationary) 

surface with a constant speed, 𝑣𝑣𝑐𝑐 (chosen to be a positive quantity).  Thus, 𝑧𝑧𝑝𝑝 varies with time as 

𝑧𝑧𝑝𝑝 = 𝑧𝑧𝑝𝑝,0 − 𝑣𝑣𝑐𝑐𝑡𝑡 , where 𝑧𝑧𝑝𝑝,0  is the initial position of the platform above the surface.  Upon 

nondimensionalizing the spatial quantities by 𝑅𝑅, eq 4.1 can be written as103 

𝑑𝑑2𝑧𝑧𝑠𝑠∗

𝑑𝑑𝑡𝑡∗2
= −

4
3𝜋𝜋

𝑏𝑏∗ � �
𝑑𝑑𝑥𝑥∗𝑑𝑑𝑦𝑦∗

�(𝑥𝑥∗ − 𝑥𝑥𝑠𝑠∗)2 + (𝑦𝑦∗ − 𝑦𝑦𝑠𝑠∗)2 + �ℎ∗ − 𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗ �2 − 1�

3

∞

−∞

∞

−∞

− 𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠𝑚𝑚𝑐𝑐
∗

− 𝑎𝑎∗𝑡𝑡∗ + 𝑧𝑧𝐴𝐴,0
∗ − 1 

(4.2) 

where 𝑡𝑡∗ = 2𝜋𝜋𝜈𝜈0𝑡𝑡, 𝑎𝑎∗ = 1
2𝜋𝜋𝑅𝑅

𝑢𝑢𝑐𝑐
𝜈𝜈0

 (which is related to the ratio of the two characteristic timescales 

1/𝜈𝜈0 and 𝑅𝑅/𝑣𝑣𝑐𝑐), and 𝑏𝑏∗ = 𝐴𝐴
𝑖𝑖𝑐𝑐𝑅𝑅2

 (which is related to the ratio of two characteristic energies).   
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Figure 4.1 Schematic of an AFM cantilever tip modeled as a sphere attached to a horizontal 
platform by a Hookean spring, in which the sphere also interacts with an arbitrary surface described 
by the surface height function ℎ(𝑥𝑥,𝑦𝑦) .  𝑘𝑘𝑐𝑐  is the spring constant of the cantilever, 𝑣𝑣𝑐𝑐  is the 
cantilever (platform) speed,  𝑧𝑧𝑠𝑠  and 𝑧𝑧𝑝𝑝  are the vertical locations of the sphere and platform, 
respectively, from 𝑧𝑧 =  0, 𝑅𝑅 is the radius of the sphere, and 𝑑𝑑 is the deflection of the spring. 

 
Eq 4.2 is an ordinary differential equation requiring two initial conditions to solve, one for 

the initial position of the sphere and one for its initial speed.  The cantilever is assumed to begin 

sufficiently far from the surface that the tip is both in mechanical equilibrium and initially traveling 

with the same downward speed as the platform at 𝑡𝑡 = 0.  For the chosen initial platform location 

𝑧𝑧𝑝𝑝,0, and for the chosen horizontal location of the sphere (𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑠𝑠), the quasi-static relation in eq 

2.16 is solved to determine 𝑧𝑧𝑠𝑠,0, the initial vertical location of the sphere.  Furthermore, with the 

vertical component of the sphere’s speed given by 𝑣𝑣𝑠𝑠 = 𝑑𝑑𝑧𝑧𝑠𝑠/𝑑𝑑𝑡𝑡, the sphere is chosen to be moving 

with 𝑣𝑣𝑠𝑠 = −𝑣𝑣𝑐𝑐 at 𝑡𝑡 =  0.  For a given set of physical parameters (or the approach speed, spring 



 
 

84 

constant, resonance frequency, and horizontal sphere location), eq 4.2 is integrated forward in time 

until the sphere initially contacts the surface, or when 𝑧𝑧𝑠𝑠 = 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Due to inertial effects (i.e. 

the term on the left-hand side of eq 4.2), no critical point arises within the dynamic model.  The 

deflection of the cantilever tip at first contact is, however, still well-defined and determined by 

𝑑𝑑𝑐𝑐 = 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑧𝑧𝑝𝑝,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑅𝑅, where 𝑧𝑧𝑝𝑝,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the corresponding location of the platform 

when 𝑧𝑧𝑠𝑠 = 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

4.3 Verifying the Quasi-Static Assumption for Model Surfaces 

As a reference case, eq 4.2 was initially solved for an infinitely flat plate, or ℎ∗ = 0. The resulting 

ratio of 𝑑𝑑𝑐𝑐 to its value in the quasi-state limit, 𝑑𝑑𝑐𝑐,𝑞𝑞𝑠𝑠, for the flat plate is shown in Figure 4.2 for 

different cantilever approach speeds with 𝑅𝑅 = 1000 nm, 𝑘𝑘𝑐𝑐 = 0.1 N/m, and 𝐴𝐴 = 100 zJ (which 

yields 𝑑𝑑𝑐𝑐,𝑞𝑞𝑠𝑠 = 10.35 nm).  As expected, this ratio approaches unity as 𝑣𝑣𝑐𝑐 decreases.  But 𝑑𝑑𝑐𝑐 for a 

given 𝑣𝑣𝑐𝑐 is always smaller than what it is in the quasi-static limit, while 𝑑𝑑𝑐𝑐 also decreases with an 

increase in 𝑣𝑣𝑐𝑐.  These two trends arise because of the following reasons.  First, the speed of the tip, 

however large it may become just before the tip contacts the surface, remains finite (in contrast to 

the tip immediately jumping to the surface upon reaching the critical point in the quasi-static 

model).  Second, the platform is in constant motion (in contrast to the fixed location of the platform 

once the critical point is reached in the quasi-static model).  Hence, 𝑑𝑑𝑐𝑐 for the dynamic model is 

less than 𝑑𝑑𝑐𝑐,𝑞𝑞𝑠𝑠.  Furthermore, the relative speed between the tip and platform just before contact 

decreases with an increase in 𝑣𝑣𝑐𝑐, which results in a decrease in 𝑑𝑑𝑐𝑐 as the cantilever approach speed 

increases.  Nevertheless, even at the relatively fast approach speed of 1000 nm/s, 𝑑𝑑𝑐𝑐 is still within 

0.5% of its quasi-static value. 
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Figure 4.2 The ratio of the deflection at first contact, 𝑑𝑑𝑐𝑐, to the deflection at first contact in the 
quasi-static limit, 𝑑𝑑𝑐𝑐,𝑞𝑞𝑠𝑠, or  𝑑𝑑𝑐𝑐/𝑑𝑑𝑐𝑐,𝑞𝑞𝑠𝑠, versus the cantilever approach speed for a surface that is an 
infinite flat plate. Here, 𝑅𝑅 = 1000 nm, 𝑘𝑘𝑐𝑐 = 0.1 N/m, and 𝐴𝐴 = 100 zJ. 

 
Figure 4.2 reaffirms the previous conclusion obtained for the flat plate (though using the 

rigorous force expression for ℎ = 0, or eq 2.14) that at sufficiently slow approach speeds (which 

includes the “standard” AFM default approach speed of 200 nm/s) the predictions of the quasi-

static model will be negligibly different from the results of the dynamic model (i.e. these 

differences are much smaller than the experimental noise encountered in typical AFM 

experiments).  Thus, for the tip approaching a flat plate, the computationally less intensive quasi-

static model, which requires only the simultaneous solution of eq 2.16, can be used instead of the 

dynamic model, in which eq 4.2 is integrated in time until the sphere first contacts the surface. 

While inertial effects are unimportant when the tip approaches a flat plate at standard 

speeds, a similar conclusion may not hold, however, for more complicated surfaces, and for which 

there is a distribution of 𝑑𝑑𝑐𝑐-values.  Hence, in order to test the validity of the quasi-static model 
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for the case of the tip approaching a substrate with non-zero surface roughness, quasi-static and 

dynamic 𝑑𝑑𝑐𝑐-distributions for the three model surfaces F, G and H shown in Figure 3.18 and Figure 

3.19 are compared. 

 

 

Figure 4.3 Comparison of the quasi-static (light blue) and dynamic (red) model-predicted 𝑑𝑑𝑐𝑐-
distributions for surface F (shown in Figure 3.18) at the cantilever approach speeds of (a) 1000 
nm/s and (b) 200 nm/s. 

 
For surface F, the resulting 𝑑𝑑𝑐𝑐-distributions for the two approach speeds of 200 nm/s and 

1000 nm/s are provided in Figure 4.3, which also compares them to the corresponding quasi-static 

distribution.  At 𝑣𝑣𝑐𝑐  = 200 nm/s, the dynamic distribution is nearly identical to the quasi-static 

distribution, a result consistent with what was seen for the flat plate in which the behavior of the 

cantilever is essentially quasi-static at this approach speed.  As 𝑣𝑣𝑐𝑐 increases to 1000 nm/s, the 

dynamic 𝑑𝑑𝑐𝑐-distribution shifts to the left (i.e. relative to the quasi-static distribution there is an 

increase in the frequencies of smaller 𝑑𝑑𝑐𝑐-values along with a decrease in the frequencies of the 

larger 𝑑𝑑𝑐𝑐-values), though not significantly.  Similar to the flat plate, inertial effects cause the 

dynamic deflections at contact to always be smaller than the quasi-static result at any location 

along the surface, with the dynamic values of 𝑑𝑑𝑐𝑐 again decreasing with an increase in the approach 
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speed.  Yet also like the flat plate, inertial effects only have a small impact on the resulting 

deflections (at least for the approach speeds considered).  Compared to Figure 4.3, Figure 4.4 and 

Figure 4.5, corresponding to surface G and H, respectively, show similar trends where the two 

distributions are nearly identical at 𝑣𝑣𝑐𝑐 = 200 nm/s and the dynamic 𝑑𝑑𝑐𝑐-distributions shift more to 

the left as 𝑣𝑣𝑐𝑐 increases. 

 

 
 

Figure 4.4 Comparison of the quasi-static (blue) and dynamic (red) model-predicted 𝑑𝑑𝑐𝑐 -
distributions for surface G (shown in Figure 3.18) for the cantilever approach speeds of (a) 1000 
nm/s and (b) 200 nm/s. 
 

 
 

Figure 4.5 Comparison of the quasi-static (blue) and dynamic (red) model-predicted 𝑑𝑑𝑐𝑐 -
distributions for surface H (shown in Figure 3.19) for the cantilever approach speeds of (a) 1000 
nm/s and (b) 200 nm/s. 
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In order to quantitatively determine the “closeness” of the dynamic and quasi-static 

distributions, their relative entropy or value of the Kullback-Leibler (KL) divergence104–106 was 

computed, which for two discrete probability density distributions is defined as follows 

𝐷𝐷𝐾𝐾𝐾𝐾(𝐴𝐴‖𝑞𝑞) = �𝐴𝐴(𝑥𝑥𝑚𝑚) ⋅ 𝑙𝑙𝑛𝑛 �
𝐴𝐴(𝑥𝑥𝑚𝑚)
𝑞𝑞(𝑥𝑥𝑚𝑚)

�

𝑁𝑁

𝑚𝑚=1

 (4.3) 

where 𝐴𝐴(𝑥𝑥𝑚𝑚) is the probability density of the chosen “true” distribution, 𝑞𝑞(𝑥𝑥𝑚𝑚) is the probability 

density of the “approximating” distribution, and 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 represent the various histogram bins 

assigned to the “true” distribution (and for which 𝐴𝐴(𝑥𝑥𝑚𝑚) ≠ 0).  The relative entropy is finite and 

non-zero only when for the same 𝑥𝑥𝑚𝑚 both 𝐴𝐴(𝑥𝑥𝑚𝑚) ≠ 0 and 𝑞𝑞(𝑥𝑥𝑚𝑚) ≠ 0.  (The contribution for a given 

𝑥𝑥𝑚𝑚  is considered to be zero when 𝐴𝐴(𝑥𝑥𝑚𝑚) = 0.)  The relative entropy equals zero when the two 

distributions are identical, while a non-zero value provides a measure of how much “information 

is lost” between these two distributions.107 

For further analyzing the trends seen in Figure 4.4 and Figure 4.5, the quasi-static 𝑑𝑑𝑐𝑐-

distribution was chosen as the “true” distribution, while the “approximating” distribution was 

chosen to be the dynamic 𝑑𝑑𝑐𝑐-distribution.  The resulting relative entropy versus 𝑣𝑣𝑐𝑐 is shown in 

Figure 4.6 for each surface (F, G and H), which also includes for comparison 1 − 𝑑𝑑𝑐𝑐/𝑑𝑑𝑐𝑐,𝑞𝑞𝑠𝑠 versus 

𝑣𝑣𝑐𝑐 for the flat plate. 

As expected for each surface, the dynamic distribution becomes identical to the 

corresponding quasi-static distribution in the limit of very low approach speeds (i.e., the relative 

entropy goes to zero as 𝑣𝑣𝑐𝑐  goes to zero).  The relative entropy for all surfaces is also seen to 

increase as the approach speed increases, indicating that the dynamic distribution is becoming “less 

like” the quasi-static distribution, or inertial effects are becoming more important, as 𝑣𝑣𝑐𝑐 increases.  

Although the dependence of the relative entropy on 𝑣𝑣𝑐𝑐 for each surface is quite different, Figure 
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4.5 nevertheless validates the use of the relative entropy as an appropriate measure of the difference 

between the dynamic and quasi-static distributions.  (Since the various histograms are not 

continuous and are generated using finite bin widths, the resulting plots of the relative entropy will 

not necessarily be “smooth”.) 

 

 
 

Figure 4.6 Relative entropy versus cantilever approach speed for surfaces F, G, and H (left y-axis).  
For comparison, 1 − 𝑑𝑑𝑐𝑐/𝑑𝑑𝑐𝑐,𝑞𝑞𝑠𝑠 versus 𝑣𝑣𝑐𝑐 from Figure 4.2 for the flat plate is included (right y-axis). 

 
The relative entropy can also be used to provide a more quantitatively meaningful analysis 

of the importance of inertial effects, which Figure 4.6 arguably only yields in a relative sense.  In 

particular, the relative entropy is utilized to assign an effective Hamaker constant, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒, to a given 

dynamic distribution in the following way.  First, the dynamic distribution obtained for a specific 
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surface (and 𝑘𝑘𝑐𝑐 and 𝑅𝑅) from eq 4.2 at a given approach speed and Hamaker constant 𝐴𝐴 is now 

considered to be the “true” distribution (in which 𝐴𝐴 is likewise now considered to be the “true” 

value of the Hamaker constant).  Next, and for the same surface (and 𝑘𝑘𝑐𝑐 and 𝑅𝑅), various quasi-

static distributions are generated for a range of different inputted values of the Hamaker constant, 

or 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 .  These quasi-static distributions are therefore considered to be the “approximating” 

distributions.  The relative entropies of these quasi-static distributions with respect to the given 

dynamic distribution are then determined.  Figure 4.7 shows plots of the relative entropy versus 

𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 at 𝑣𝑣𝑐𝑐 = 1000 nm/s (a) and 200 nm/s (b) for surface F, in which the dynamic distribution 

was generated with 𝐴𝐴 = 100 zJ (and with 𝑘𝑘𝑐𝑐 and 𝑅𝑅 the same as for Figure 4.4).  In general, as seen 

in Figure 4.7, the relative entropy exhibits a reasonably sharp minimum at a particular value of 

𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐, which is then chosen to be the value of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 for the dynamic distribution.  Because of 

inertial effects, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 will not necessarily be equal to 𝐴𝐴, although both should be nearly identical at 

slow enough approach speeds.  This expected trend is observed in Figure 4.7, where 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 is equal 

to 98.6 zJ at 1000 nm/s and 99.7 zJ at 200 nm/s. 

 

 
Figure 4.7 Relative entropy versus 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 for the cantilever approach speeds of (a) 1000 nm/s and 
(b) 200 nm/s for surface A (and for which 𝐴𝐴 = 100 zJ).  The effective Hamaker constant, which is 
defined to be that value of 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 at which the relative entropy is a minimum, is 98.6 zJ and 99.7  
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The corresponding plots for surfaces G and H are shown in Figure 4.8 and Figure 4.9, 

respectively, in which the dynamic distributions were again both generated with 𝐴𝐴 = 100 zJ.  The 

relative entropy again exhibits a reasonably sharp minimum at a particular value of 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐, which 

is chosen to be the value of the effective Hamaker constant, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒.  For surface H, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 is 98.6 zJ 

at 1000 nm/s and approximately 99.9 zJ at 200 nm/s.  For surface H, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 is 98.8 zJ at 1000 nm/s 

and approximately 99.9 zJ at 200 nm/s.  As a side note, due to the discrete nature of the histograms, 

the relative entropy becomes “noisy” at small ranges of  𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐, as shown in Figure 4.8(a) and 

Figure 4.9(a).  However, the minima in the relative entropy are clear over a large range of values 

of 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 (e.g.  80-120 zJ) but become less well-defined as the range decreases.  Nonetheless, the 

global minimum is chosen to yield 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 which still yields the expected trends. 

 

 
 

Figure 4.8 Relative entropy versus 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 for cantilever approach speeds of (a) 1000 nm/s and (b) 
200 nm/s for surface G.  The effective Hamaker constant, corresponding to that value of 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 at 
which the relative entropy is a minimum, is 98.6 zJ and 99.9 zJ for 1000 nm/s and 200 nm/s, 
respectively. 
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Figure 4.9 Relative entropy versus 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 for cantilever approach speeds of (a) 1000 nm/s and (b) 
200 nm/s for surface H.  The effective Hamaker constant is 98.8 zJ and 99.9 zJ for 1000 nm/s and 
200 nm/s, respectively. 

 
Figure 4.10 shows the ratio of the effective Hamaker constant to the “true” Hamaker 

constant (𝐴𝐴 = 100 zJ) as a function of the cantilever approach speed for the surfaces F, G and H.  

For each surface, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒/𝐴𝐴 approaches unity as 𝑣𝑣𝑐𝑐 → 0, which is consistent with the results shown 

in Figure 4.6.  For comparison, the same ratio for the flat plate is also included in Figure 4.10.  

Because inertial effects yield smaller values of 𝑑𝑑𝑐𝑐 compared to the quasi-static limit at any point 

along a given surface, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 < 𝐴𝐴 for 𝑣𝑣𝑐𝑐 > 0 for all surfaces.  Furthermore, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 decreases with an 

increase in 𝑣𝑣𝑐𝑐, which is consistent with Figures 4.3-4.5 where a dynamic distribution shifts more 

to the left as the approach speed increases.  (For fixed cantilever properties and surface geometry, 

a decrease in the Hamaker constant yields, according to eq 2.9, a weaker surface-tip force which 

results in a smaller deflection at first contact.  Hence, a dynamic value of 𝑑𝑑𝑐𝑐 that is less than the 

corresponding quasi-static limit should be interpreted as arising from a weaker van der Waals force, 

or 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 < 𝐴𝐴.) 
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Figure 4.10 Ratio of the effective Hamaker constant, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒, to the “true” value, 𝐴𝐴, as a function of 
the cantilever approach speed for the three model surfaces F, G, and H, and the flat plate. 

   
Figure 4.10 also implies that for sufficiently slow approach speeds, for which  𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒/𝐴𝐴 is 

close enough to one, the quasi-static model will provide an accurate description of the behavior of 

the AFM cantilever tip. Hence, there is no need to invoke the more computationally intensive 

dynamic model.  In particular, if a deviation of 0.5% or less is considered to be insignificant, then 

for all surfaces the corresponding quasi-static 𝑑𝑑𝑐𝑐-distribution should be (nearly) identical to the 

dynamic distributions for approach speeds of 200 nm/s or slower.  In other words, at these approach 

speeds, inertial effects in an AFM experiment should be essentially unobservable (at least 

compared to the magnitudes of the other uncertainties that typically arise).  An interesting 

implication arises when comparing Figure 4.6 and Figure 4.10.  In contrast to Figure 4.6, which 

shows a different trend for each surface, the behavior of the data in Figure 4.10 appears to be more 
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“universal”.  While the curves are not collapsing on top of each other, the data seems to behave 

more similarly than in Figure 4.6.  Given the uniqueness of the 𝑑𝑑𝑐𝑐-distributions arising from each 

surface, it is interesting that this type of universal behavior is observed. 

4.4 Summary 

A model describing the dynamic behavior of an AFM cantilever tip was introduced and solved for 

a range of cantilever approach speeds.  For sufficiently slow approach speeds (i.e. 200 nm/s or 

slower), the resulting 𝑑𝑑𝑐𝑐-distributions for several model surfaces were essentially identical to those 

obtained in the quasi-static limit.  From this result, a computational consistency check was 

performed by which an effective Hamaker constant was determined from a range of inputted 

Hamaker constant values by minimizing the relative entropy between a quasi-static and dynamic 

𝑑𝑑𝑐𝑐-distribution.  For sufficiently slow cantilever approach speeds, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒/𝐴𝐴 approaches unity such 

that the quasi-static model provides an accurate description of the behavior of the AFM cantilever 

tip. 

This chapter sets the stage for the full experimental validation of the updated approach-to-

contact method in which a single self-Hamaker constant for a given material will be determined 

across a range of surface topographies.  Similarly to the computational consistency check, the 

relative entropy will be minimized between model-predicted (e.g. derived from the quasi-static 

model for a given surface function) and experimental 𝑑𝑑𝑐𝑐 -distributions for a range of inputted 

Hamaker constants to yield an effective Hamaker constant (i.e. 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒,12).   The self-Hamaker 

constant is then determined using eq 1.4 for a given cantilever tip material (i.e. 𝐴𝐴22), and with a 

significant reduction in error compared to the original approach-to-contact method developed by 

Fronczak, et al.79,80  Chapter 5, however, first provides a discrete Fourier transform method to 
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generate statistically similar surfaces from an AFM surface height scan since it is not feasible to 

obtain force measurements and image the same exact location on a particular surface.  By 

generating a large number of representative surfaces, aggregate model-predicted 𝑑𝑑𝑐𝑐-distributions 

can then be obtained and compared to those obtained experimentally using the AFM.  Therefore, 

the relative entropy can then be minimized between the model-predicted and experimental 

distributions to determine an effective Hamaker constant. 
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 RECONSTRUCTING AFM SURFACE HEIGHT MAPS USING THE 
DISCRETE FOURIER TRANSFORM 

5.1 Introduction 

Chapter 3 provided a comprehensive computational study illustrating the effect of surface 

curvature on the resulting deflections at first contact of the cantilever.  For these model surfaces 

presented in Chapter 3, both the characteristics of the surface (i.e. surface height map) and precise 

location of contact that the sphere makes with the surface are known.  Unfortunately, when 

generating a 𝑑𝑑𝑐𝑐 -distribution experimentally, obtaining AFM deflection curves along the same 

exact portion of the surface that was imaged in a separate AFM scan is not feasible.  Moreover, 

the modified approach-to-contact method requires a comparison between the model-predicted and 

experimental 𝑑𝑑𝑐𝑐 -distributions for a particular surface to obtain an effective Hamaker constant 

which minimizes the relative entropy between the two distributions.  As such, a method is required 

to generate representative surface height maps, with the same overall roughness (e.g. the RMS 

roughness and distribution of peak heights), from the original AFM surface scans to ensure that a 

proper comparison can be made between statistically similar portions of the surface.  Jaiswal et 

al.89,108,109 developed a method utilizing a discrete Fourier transform (DFT) algorithm to generate 

new representative surface image with similar roughness profiles as the original surface.  This 

chapter is concerned with detailing the mathematics of DFT, providing an analysis of the amplitude 

spectra of model surface functions, and outlining an extension of the method developed by Jaiswal 

et al. by which representative surfaces are generated from an existing AFM surface height map 

while maintaining similar roughness statistics. 
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5.2 Mathematics of Discrete Fourier Transforms: One-Dimensional DFT 

For a discrete surface described by the surface height function, 𝑓𝑓(𝑥𝑥), with values known only at 

the equally spaced distance ∆𝑥𝑥 in the 𝑥𝑥-direction, the integer 𝑛𝑛 = 0, … ,𝑁𝑁 − 1 is defined such that 

𝑥𝑥 = 𝑛𝑛∆𝑥𝑥 where 𝑁𝑁 = 𝐿𝐿𝑥𝑥/∆𝑥𝑥 and 𝐿𝐿𝑥𝑥 is the total length of the surface image.  When computing a 

DFT, 𝑁𝑁 is chosen to be even and of a power of 2 (i.e. 64, 128, 256, etc.)  The DFT is given by110 

𝐹𝐹𝑖𝑖 = �𝑓𝑓𝑐𝑐𝑒𝑒−2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁
𝑁𝑁−1

𝑐𝑐=0

 (5.1) 

where 𝑓𝑓𝑐𝑐 is the function value at a particular value of 𝑛𝑛, 𝑢𝑢 = 0, … ,𝑁𝑁 − 1, and 𝐴𝐴 = √−1.  For a 

given 𝑢𝑢, the corresponding wavelength of the function value 𝜆𝜆𝑖𝑖 = 𝑁𝑁∆𝑥𝑥/𝑢𝑢 or wavenumber, 𝑘𝑘𝑖𝑖 =

2𝜋𝜋/𝜆𝜆𝑖𝑖 = 2𝜋𝜋𝑢𝑢/𝑁𝑁∆.  In general, and for real function values (e.g. 𝑓𝑓𝑐𝑐) , 𝐹𝐹𝑖𝑖 is complex such that 𝐹𝐹𝑖𝑖 =

𝑅𝑅𝑖𝑖 + 𝐴𝐴𝐼𝐼𝑖𝑖 or, in polar form, |𝐹𝐹𝑖𝑖| = �𝑅𝑅𝑖𝑖2 + 𝐼𝐼𝑖𝑖2�
1/2

 where the phase angle 𝜙𝜙𝑖𝑖 = tan−1 𝐼𝐼𝑢𝑢
𝑅𝑅𝑢𝑢

.  Thus, 

𝐹𝐹𝑖𝑖 = |𝐹𝐹𝑖𝑖|𝑒𝑒𝑚𝑚𝜙𝜙𝑢𝑢 and its complex conjugate is equal to 𝐹𝐹𝑖𝑖∗ = |𝐹𝐹𝑖𝑖|𝑒𝑒−𝑚𝑚𝜙𝜙𝑢𝑢.  In general,  

𝐹𝐹𝑖𝑖+𝑁𝑁 = �𝑓𝑓𝑐𝑐𝑒𝑒−2𝜋𝜋𝑚𝑚(𝑖𝑖+𝑁𝑁)𝑐𝑐/𝑁𝑁
𝑁𝑁−1

𝑐𝑐=0

= �𝑓𝑓𝑐𝑐𝑒𝑒−2𝜋𝜋𝑚𝑚𝑐𝑐𝑒𝑒−2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁 = �𝑓𝑓𝑐𝑐𝑒𝑒−2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁 =
𝑁𝑁−1

𝑐𝑐=0

𝑁𝑁−1

𝑐𝑐=0

𝐹𝐹𝑖𝑖 (5.2) 

since 𝑛𝑛 is an integer such that  𝑒𝑒−2𝜋𝜋𝑚𝑚𝑐𝑐 = 1.  Also, 

𝐹𝐹𝑁𝑁−𝑖𝑖 = �𝑓𝑓𝑐𝑐𝑒𝑒−2𝜋𝜋𝑚𝑚(𝑁𝑁−𝑖𝑖)𝑐𝑐/𝑁𝑁
𝑁𝑁−1

𝑐𝑐=0

= �𝑓𝑓𝑐𝑐𝑒𝑒−2𝜋𝜋𝑚𝑚𝑐𝑐𝑒𝑒2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁 = �𝑓𝑓𝑐𝑐𝑒𝑒2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁
𝑁𝑁−1

𝑐𝑐=0

𝑁𝑁−1

𝑐𝑐=0

 (5.3) 

So, if 𝑓𝑓𝑐𝑐 is real, 𝐹𝐹𝑁𝑁−𝑖𝑖 = 𝐹𝐹𝑖𝑖∗ = 𝐹𝐹−𝑖𝑖 and 𝐹𝐹𝑁𝑁−𝑖𝑖∗ = 𝐹𝐹𝑖𝑖.  In general, 

𝐹𝐹0 = �𝑓𝑓𝑐𝑐

𝑁𝑁−1

𝑐𝑐=0

 (5.4) 

which is real if 𝑓𝑓𝑐𝑐 is real.  If N is even, then 𝐹𝐹𝑁𝑁−𝑖𝑖/2 = 𝐹𝐹𝑁𝑁/2 = 𝐹𝐹𝑁𝑁/2
∗and so 𝐹𝐹𝑁𝑁/2 is also real and is 

given as 
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𝐹𝐹𝑁𝑁/2 = �𝑓𝑓𝑐𝑐𝑒𝑒−𝜋𝜋𝑚𝑚𝑐𝑐
𝑁𝑁−1

𝑐𝑐=0

= �𝑓𝑓𝑐𝑐(cos𝑛𝑛𝜋𝜋 − 𝐴𝐴 sin𝑛𝑛𝜋𝜋) = �(−1)𝑐𝑐𝑓𝑓𝑐𝑐

𝑁𝑁−1

𝑐𝑐=0

𝑁𝑁−1

𝑐𝑐=0

 (5.5) 

Now, again for real 𝑓𝑓𝑐𝑐, |𝐹𝐹𝑖𝑖|2 = 𝐹𝐹𝑖𝑖𝐹𝐹𝑖𝑖∗ = 𝐹𝐹𝑁𝑁−𝑖𝑖∗𝐹𝐹𝑁𝑁−𝑖𝑖 = |𝐹𝐹𝑁𝑁−𝑖𝑖|2 which is symmetric about 𝑁𝑁/2. 

In general, the inverse transform is given by110 

𝑓𝑓𝑐𝑐 =
1
𝑁𝑁
�𝐹𝐹𝑖𝑖𝑒𝑒2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁
𝑁𝑁−1

𝑖𝑖=0

 (5.6) 

Substitution of 𝐹𝐹𝑖𝑖 in its polar form into eq 5.6 gives 

𝑓𝑓𝑐𝑐 =
1
𝑁𝑁
�|𝐹𝐹𝑖𝑖|𝑒𝑒𝑚𝑚𝜙𝜙𝑢𝑢𝑒𝑒2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁
𝑁𝑁−1

𝑖𝑖=0

         (5.7) 

The following pairs of terms can be written when eq 5.7 is expanded (this expansion does not 

apply to the 𝐹𝐹0 and 𝐹𝐹𝑁𝑁/2 terms) 

𝑓𝑓𝑐𝑐 =
1
𝑁𝑁
�|𝐹𝐹𝑖𝑖|𝑒𝑒𝑚𝑚𝜙𝜙𝑢𝑢𝑒𝑒2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁 + |𝐹𝐹𝑁𝑁−𝑖𝑖|𝑒𝑒𝑚𝑚𝜙𝜙𝑁𝑁−𝑢𝑢𝑒𝑒2𝜋𝜋𝑚𝑚(𝑁𝑁−𝑖𝑖)𝑐𝑐/𝑁𝑁� + ⋯         (5.8) 

which can then be simplified to 

𝑓𝑓𝑐𝑐 =
1
𝑁𝑁
�|𝐹𝐹𝑖𝑖|𝑒𝑒𝑚𝑚𝜙𝜙𝑢𝑢𝑒𝑒2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁 + |𝐹𝐹𝑖𝑖|𝑒𝑒−𝑚𝑚𝜙𝜙𝑢𝑢𝑒𝑒−2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁� + ⋯ (5.9) 

or  

𝑓𝑓𝑐𝑐 =
2
𝑁𝑁

|𝐹𝐹𝑖𝑖| cos �2𝜋𝜋
𝑢𝑢𝑛𝑛
𝑁𝑁

+ 𝜙𝜙𝑖𝑖� + ⋯ (5.10) 

where the amplitude of a particular wavelength component is 2
𝑁𝑁

|𝐹𝐹𝑖𝑖|.  Eq 5.7 can then be written as  

𝑓𝑓𝑐𝑐 =
𝐹𝐹0
𝑁𝑁

+ (−1)𝑐𝑐
𝐹𝐹𝑁𝑁/2

𝑁𝑁
+ � 2

|𝐹𝐹𝑖𝑖|
𝑁𝑁

cos �2𝜋𝜋
𝑢𝑢𝑛𝑛
𝑁𝑁

+ 𝜙𝜙𝑖𝑖�
𝑁𝑁/2−1

𝑖𝑖=1

 (5.11) 

or  
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𝑓𝑓𝑐𝑐 =
𝐹𝐹0
𝑁𝑁

+ (−1)𝑐𝑐
𝐹𝐹𝑁𝑁/2

𝑁𝑁
+ � 2

|𝐹𝐹𝑖𝑖|
𝑁𝑁

cos �2𝜋𝜋𝑢𝑢
(𝑥𝑥𝑐𝑐 − 𝑥𝑥0)
𝑁𝑁Δ𝑥𝑥

+ 𝜙𝜙𝑖𝑖�
𝑁𝑁/2−1

𝑖𝑖=1

 (5.12) 

where 𝑥𝑥𝑐𝑐 − 𝑥𝑥0 = 𝑛𝑛Δ𝑥𝑥 or 𝑛𝑛 = 𝑥𝑥𝑛𝑛−𝑥𝑥0
Δ𝑥𝑥

.   

Eq 5.1 can be used to determine the Fourier coefficients from a series of discrete spatial data 

and converted back to the space domain using eq 5.12.  Eq 5.12 decomposes the surface function 

into a series of cosine terms with amplitude 2 |𝐹𝐹𝑢𝑢|
𝑁𝑁

, wavelengths 𝜆𝜆𝑖𝑖 = 𝑁𝑁∆𝑥𝑥/𝑢𝑢, and phase angles 𝜙𝜙𝑖𝑖.  

The amplitude spectrum of a discrete surface height function provides information regarding the 

magnitude of each contributing wavenumber across the entire Fourier space providing a unique 

“signature” of the transformed function.  For a one-dimensional surface height function, the 

amplitude spectrum is a plot of the amplitude, |𝐹𝐹𝑖𝑖| = �𝑅𝑅𝑖𝑖2 + 𝐼𝐼𝑖𝑖2�
1/2

for each wavelength 

component from 𝑢𝑢 = 0 …𝑁𝑁 − 1.  Because an amplitude spectrum is symmetric about 𝑢𝑢 = 𝑁𝑁/2, 

most amplitude spectra are plotted as 2|𝐹𝐹𝑢𝑢|
𝑁𝑁

 versus 𝑢𝑢 = 0 …𝑁𝑁/2. 

For a surface comprised of a series of cosine (or sine) terms, the individual phase angles 

associated with each term may be independently shifted from 0 to 2π (or 0 to 360 degrees) while 

maintaining the same exact amplitude spectrum.  The shifting of one or more values of 𝜙𝜙𝑖𝑖 results 

in simultaneous constructive and destructive interference of the surface function causing features 

of the surface to vary between the new and original surface.  For a wavelength component 𝐹𝐹𝑖𝑖, the 

corresponding shifted component is equal to 𝐹𝐹′𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑒𝑒−𝑚𝑚𝜙𝜙′𝑢𝑢 , where 𝜙𝜙′𝑖𝑖  is the phase shift in 

radians.  In order to properly maintain identical amplitude spectra between surface functions, when 

shifting the phase angle of a particular wavelength component, (e.g. 𝑢𝑢 = 1) the corresponding 

complex conjugate of the wavelength component must be adjusted accordingly (e.g. 𝑢𝑢 = 255 for 
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𝑁𝑁 = 256).  Figure 5.1 shows the proper mapping for shifting the phase angles across a one-

dimensional surface height function. 

 

 
 

Figure 5.1 Schematic representation of shifting the wavelength components of the DFT of a one-
dimensional surface height function by phase angle 𝜙𝜙′𝑖𝑖.   

 
Section 5.4 provides examples of amplitude spectra and the analysis of shifting the phase angles 

on a range of one-dimensional surface height functions. 

5.3 Mathematics of Discrete Fourier Transforms: Two-Dimensional DFT 

The two-dimensional extension to the discrete Fourier transform is as follows.  For a discrete 

surface height map, ℎ(𝑥𝑥, 𝑦𝑦), with values known only at the equally-spaced distances ∆𝑥𝑥 and ∆𝑦𝑦 in 

the 𝑥𝑥 - and 𝑦𝑦 -directions, respectively, the integers 𝑛𝑛 = 0, … ,𝑁𝑁 − 1  and 𝑚𝑚 = 0, … ,𝑀𝑀 − 1  are 

defined such that 𝑥𝑥 = 𝑛𝑛∆𝑥𝑥 and 𝑦𝑦 = 𝑚𝑚∆𝑦𝑦, where 𝑁𝑁 = 𝐿𝐿𝑥𝑥/∆𝑥𝑥 and 𝑀𝑀 = 𝐿𝐿𝑦𝑦/∆𝑦𝑦, and 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦 are 

the total lengths in each direction of the chosen image.  𝑁𝑁 and 𝑀𝑀 are chosen to be even and of a 

power of 2 (i.e. 64, 128, 256, etc.)  The DFT is given by111 

𝐹𝐹𝑖𝑖𝑢𝑢 = � � 𝑓𝑓𝑐𝑐𝑚𝑚𝑒𝑒
−2𝜋𝜋𝑚𝑚�𝑖𝑖𝑐𝑐𝑁𝑁 +𝑢𝑢𝑚𝑚𝑀𝑀 �

𝑀𝑀−1

𝑚𝑚=0

𝑁𝑁−1

𝑐𝑐=0

 (5.13) 

where 𝑢𝑢 = 0, … ,𝑁𝑁 − 1  and 𝑣𝑣 = 0, … ,𝑀𝑀 − 1 .  For a given 𝑢𝑢  and 𝑣𝑣 , the wavevector of the 

corresponding sinusoidal components is 𝑘𝑘�⃗ = (𝑘𝑘𝑖𝑖,𝑘𝑘𝑢𝑢) , in which 𝑘𝑘𝑖𝑖 = 2𝜋𝜋𝑢𝑢/𝑁𝑁∆𝑥𝑥  and 𝑘𝑘𝑢𝑢 =
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2𝜋𝜋𝑣𝑣/𝑀𝑀∆𝑦𝑦 , and the wavelength is 𝜆𝜆 = 2𝜋𝜋/𝑘𝑘 , where 𝑘𝑘 = (𝑘𝑘𝑖𝑖2 + 𝑘𝑘𝑢𝑢2)1/2 .  In general, 𝐹𝐹𝑖𝑖𝑢𝑢 =

𝐹𝐹𝑖𝑖+𝑁𝑁,𝑢𝑢+𝑀𝑀 and 𝐹𝐹00 = ∑ ∑ 𝑓𝑓𝑐𝑐𝑚𝑚𝑀𝑀−1
𝑚𝑚=0

𝑁𝑁−1
𝑐𝑐=0 .  For an even 𝑁𝑁 and 𝑀𝑀, 

𝐹𝐹𝑁𝑁
2
𝑀𝑀
2

= � � 𝑓𝑓𝑐𝑐𝑚𝑚𝑒𝑒−𝜋𝜋𝑚𝑚𝑐𝑐𝑒𝑒−𝜋𝜋𝑚𝑚𝑚𝑚
𝑀𝑀−1

𝑚𝑚=0

𝑁𝑁−1

𝑐𝑐=0

= � � (−1)𝑐𝑐+𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚

𝑀𝑀−1

𝑚𝑚=0

𝑁𝑁−1

𝑐𝑐=0

 (5.14) 

Also, if 𝑓𝑓𝑐𝑐𝑚𝑚 is real, 

𝐹𝐹𝑁𝑁−𝑖𝑖,𝑀𝑀−𝑢𝑢 = � � 𝑓𝑓𝑐𝑐𝑚𝑚𝑒𝑒−2𝜋𝜋𝑚𝑚(𝑁𝑁−𝑖𝑖)𝑐𝑐/𝑁𝑁𝑒𝑒−2𝜋𝜋𝑚𝑚(𝑀𝑀−𝑢𝑢)𝑚𝑚/𝑀𝑀
𝑀𝑀−1

𝑚𝑚=0

𝑁𝑁−1

𝑐𝑐=0

= � � 𝑓𝑓𝑐𝑐𝑚𝑚𝑒𝑒−2𝜋𝜋𝑚𝑚𝑐𝑐𝑒𝑒−2𝜋𝜋𝑚𝑚𝑚𝑚𝑒𝑒2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁𝑒𝑒2𝜋𝜋𝑚𝑚𝑖𝑖𝑚𝑚/𝑀𝑀
𝑀𝑀−1

𝑚𝑚=0

= 𝐹𝐹𝑖𝑖𝑢𝑢∗ = 𝐹𝐹−𝑖𝑖,−𝑢𝑢

𝑁𝑁−1

𝑐𝑐=0

 

(5.15) 

and so 𝐹𝐹𝑁𝑁−𝑖𝑖,𝑀𝑀−𝑢𝑢
∗ = 𝐹𝐹𝑖𝑖𝑢𝑢 = 𝐹𝐹−𝑖𝑖−𝑢𝑢∗ .  Now, again for real 𝑓𝑓𝑐𝑐𝑚𝑚 , |𝐹𝐹𝑖𝑖𝑢𝑢|2 = 𝐹𝐹𝑖𝑖𝑢𝑢𝐹𝐹𝑖𝑖𝑢𝑢∗ =

𝐹𝐹𝑁𝑁−𝑖𝑖,𝑀𝑀−𝑢𝑢
∗𝐹𝐹𝑁𝑁−𝑖𝑖,𝑀𝑀−𝑢𝑢 = �𝐹𝐹𝑁𝑁−𝑖𝑖,𝑀𝑀−𝑢𝑢�

2
so |𝐹𝐹𝑖𝑖𝑢𝑢| = �𝐹𝐹𝑁𝑁−𝑖𝑖,𝑀𝑀−𝑢𝑢�.  Finally,  

𝐹𝐹𝑁𝑁−𝑖𝑖,𝑢𝑢 = � � 𝑓𝑓𝑐𝑐𝑚𝑚𝑒𝑒2𝜋𝜋𝑚𝑚𝑖𝑖𝑐𝑐/𝑁𝑁𝑒𝑒−2𝜋𝜋𝑚𝑚𝑢𝑢𝑚𝑚/𝑀𝑀
𝑀𝑀−1

𝑚𝑚=0

= 𝐹𝐹−𝑖𝑖,𝑢𝑢 = 𝐹𝐹𝑖𝑖,−𝑢𝑢
∗

𝑁𝑁−1

𝑐𝑐=0

 (5.16) 

and 𝐹𝐹 𝑖𝑖,𝑀𝑀−𝑢𝑢 = 𝐹𝐹𝑖𝑖,−𝑢𝑢 = 𝐹𝐹−𝑖𝑖,𝑢𝑢
∗so 𝐹𝐹𝑁𝑁−𝑖𝑖,𝑢𝑢

∗ = 𝐹𝐹 𝑖𝑖,𝑀𝑀−𝑢𝑢.  Similarly to the one-dimensional case, 𝐹𝐹𝑖𝑖𝑢𝑢 =

𝑅𝑅𝑖𝑖𝑢𝑢 + 𝐴𝐴𝐼𝐼𝑖𝑖𝑢𝑢  or, in polar form, |𝐹𝐹𝑖𝑖𝑢𝑢| = �𝑅𝑅𝑖𝑖𝑢𝑢2 + 𝐼𝐼𝑖𝑖𝑢𝑢2�
1/2

 where the phase angle 𝜙𝜙𝑖𝑖𝑢𝑢 = tan−1 𝐼𝐼𝑢𝑢𝑢𝑢
𝑅𝑅𝑢𝑢𝑢𝑢

 

and 𝐹𝐹𝑖𝑖𝑢𝑢 = |𝐹𝐹𝑖𝑖𝑢𝑢|𝑒𝑒𝑚𝑚𝜙𝜙𝑢𝑢𝑢𝑢 and 𝐹𝐹𝑖𝑖𝑢𝑢∗ = |𝐹𝐹𝑖𝑖𝑢𝑢|𝑒𝑒−𝑚𝑚𝜙𝜙𝑢𝑢𝑢𝑢.  Finally, the inverse transform is given by111 

𝑓𝑓𝑐𝑐𝑚𝑚 =
1
𝑁𝑁𝑀𝑀

� � 𝐹𝐹𝑖𝑖𝑢𝑢𝑒𝑒
2𝜋𝜋𝑚𝑚(𝑖𝑖𝑐𝑐𝑁𝑁 +𝑢𝑢𝑚𝑚𝑀𝑀 )

𝑀𝑀−1

𝑖𝑖=0

𝑁𝑁−1

𝑖𝑖=0

         (5.17) 

Similarly to eq 5.1, eq 5.13 can be used to determine the Fourier coefficients from a series 

of two-dimensional discrete spatial data and converted back to the space domain using eq 5.17.  

The surface function is broken down into a series of cosine terms with amplitude 2 |𝐹𝐹𝑖𝑖𝑢𝑢| 𝑁𝑁⁄ , 

wavelengths 𝜆𝜆 = 2𝜋𝜋/𝑘𝑘, with 𝑘𝑘 = (𝑘𝑘𝑖𝑖2 + 𝑘𝑘𝑢𝑢2)1/2, and phase angles 𝜙𝜙𝑖𝑖𝑢𝑢.  For a two-dimensional 

surface height function, the amplitude spectrum is a plot of the amplitude, |𝐹𝐹𝑖𝑖𝑢𝑢| =
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�𝑅𝑅𝑖𝑖𝑢𝑢2 + 𝐼𝐼𝑖𝑖𝑢𝑢2�
1/2

for each wavelength component from 𝑢𝑢 = 0 …𝑁𝑁 − 1  and 𝑣𝑣 = 0 …𝑀𝑀 − 1 .  

Because an amplitude spectrum is symmetric about 𝑢𝑢 = 𝑁𝑁/2, 𝑣𝑣 = 𝑀𝑀/2 most amplitude spectra 

are plotted as 2|𝐹𝐹𝑖𝑖𝑢𝑢|/𝑁𝑁 versus 𝑢𝑢 = 0 …𝑁𝑁/2  and 𝑣𝑣 = 0 …𝑀𝑀/2. 

Similarly to the one-dimensional case, the individual phase angles comprising the surface 

may be independently shifted from 0 to 2π (or 0 to 360 degrees) while maintaining the same exact 

amplitude spectrum.  For a wavelength component 𝐹𝐹𝑖𝑖𝑢𝑢, the corresponding shifted component is 

equal to 𝐹𝐹′𝑖𝑖𝑢𝑢 = 𝐹𝐹𝑖𝑖𝑢𝑢𝑒𝑒−𝑚𝑚𝜙𝜙′𝑢𝑢𝑢𝑢, where 𝜙𝜙′𝑖𝑖𝑢𝑢 is the phase shift in radians.  Again, in order to properly 

maintain identical amplitude spectra between surface functions, the corresponding complex 

conjugate of the wavelength component must be adjusted accordingly.  Figure 5.2 shows the 

proper mapping for shifting the phase angles across a one-dimensional surface height function. 

 
 

Figure 5.2 Schematic representation of shifting the wavelength components of the DFT of a two-
dimensional surface height function by phase angle 𝜙𝜙′𝑖𝑖𝑢𝑢. (Adapted from J. Fessler, 2D DFT.) 
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The DFT of the two-dimensional surface height data is comprised of an 𝑁𝑁 by 𝑀𝑀 data matrix 

where the first row and column contain the wavelength components 𝑢𝑢 = 0 …𝑁𝑁 − 1, 𝑣𝑣 = 0 …𝑁𝑁 −

1, respectively.  Similarly to the one-dimensional case, 𝑢𝑢 = 𝑣𝑣 = 𝑁𝑁/2 = 𝑀𝑀/2 at the midpoint of 

the row/column and the remaining data (i.e. 𝑢𝑢 = 𝑣𝑣 = 𝑁𝑁/2 …𝑁𝑁 − 1) is the corresponding complex 

conjugate.  Quadrant I of the matrix comprises the (𝑢𝑢, 𝑣𝑣) wavelength components that range from 

(𝑢𝑢, 𝑣𝑣) = (1,1) to (𝑁𝑁/2 − 1,𝑀𝑀/2 − 1), and quadrant IV contains the complex conjugate values.  

Quadrant II comprises the (𝑢𝑢, 𝑣𝑣) wavelength components that range from (𝑢𝑢, 𝑣𝑣) = (𝑁𝑁/2 + 1,1) 

to (𝑁𝑁 − 1,𝑀𝑀/2 − 1), and quadrant III contains the complex conjugate values which range from 

(𝑢𝑢, 𝑣𝑣) = (1,𝑀𝑀/2 + 1) to (𝑁𝑁/2 − 1,𝑀𝑀 − 1).  Proper shifting of the phase angle comprising one 

or more wavelength components again requires multiplying by 𝑒𝑒−𝑚𝑚𝜙𝜙′𝑢𝑢𝑢𝑢  and updating the 

corresponding complex conjugate values in the matrix.  Section 5.5 provides examples of 

amplitude spectra and the analysis of shifting the phase angles on a range of two-dimensional 

surface height functions. 

5.4 Analysis of the Amplitude Spectra of One-Dimensional Surface Height Functions 

The amplitude spectrum of a discrete surface height function provides information regarding the 

magnitude of each contributing wavenumber across the entire Fourier space providing a unique 

“signature” of the transformed function.  For a one-dimensional surface height function, the 

amplitude spectrum is a plot of the amplitude, |𝐹𝐹𝑖𝑖| = �𝑅𝑅𝑖𝑖2 + 𝐼𝐼𝑖𝑖2�
1/2

for each wavelength 

component from 𝑢𝑢 = 0 …𝑁𝑁 − 1.  Because an amplitude spectrum is symmetric about 𝑢𝑢 = 𝑁𝑁/2, 

most amplitude spectra are plotted as 2 |𝐹𝐹𝑖𝑖|/𝑁𝑁  versus 𝑢𝑢 = 0 …𝑁𝑁/2 .  Figure 5.3 shows the 

amplitude spectrum for the surface function ℎ(𝑥𝑥) = cos(𝑥𝑥), with 𝑁𝑁 = 256, evaluated over the 

domain 0 to 2π. 
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Figure 5.3 Amplitude spectrum of ℎ(𝑥𝑥) = cos(𝑥𝑥) with 𝑁𝑁 = 256, evaluated over the domain 0 to 
2π. 

 
Because the function is comprised of a single cosine with an amplitude of 1, the amplitude 

spectrum shows one peak at 𝑢𝑢 = 1.  Figure 5.4 shows the amplitude spectrum of the function 

ℎ(𝑥𝑥) = cos(𝑥𝑥) + 2 which is a cosine shifted up by 2. 
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Figure 5.4 Amplitude spectrum of ℎ(𝑥𝑥) = cos(𝑥𝑥) + 2 with 𝑁𝑁 = 256, evaluated over the domain 
0 to 2π. 

 
The amplitude shows a peak of 2 at 𝑢𝑢 = 0 corresponding to the shifting of the function by 2, in 

addition to the peak at 𝑢𝑢 = 1.  Figure 5.5 shows the amplitude spectrum of the function ℎ(𝑥𝑥) =

cos(𝑥𝑥) + 2cos (5𝑥𝑥).   

 
Figure 5.5 Amplitude spectrum of ℎ(𝑥𝑥) = cos(𝑥𝑥) + 2cos (5𝑥𝑥) with 𝑁𝑁 = 256, evaluated over the 
domain 0 to 2π. 
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Here, the amplitude spectrum shows a peak of 1 at 𝑢𝑢 = 1 and a peak of 2 at 𝑢𝑢 = 5 corresponding 

to the additional cosine term. 

 A phase angle plot offers further information regarding the individual values of 𝜙𝜙𝑖𝑖 

comprising the surface height function.  As noted previously, 𝜙𝜙𝑖𝑖 = tan−1 𝐼𝐼𝑢𝑢
𝑅𝑅𝑢𝑢

.  Figure 5.6 shows 

the amplitude spectrum and corresponding phase angle plot for ℎ(𝑥𝑥) = sin(x) .  While the 

amplitude spectrum is identical to Figure 5.3, the phase angle plot shows a peak at 90° at 𝑢𝑢 = 1 

since sin(x) = cos(x + π/2) and 𝜙𝜙𝑖𝑖 = π/2 radians (90 degrees). 

 
Figure 5.6 Amplitude spectrum and corresponding phase angle plot for ℎ(𝑥𝑥) = sin(x).  The 
amplitude spectrum is identical to ℎ(𝑥𝑥) = cos(x) and the phase angle plot shows a peak of 90° at 
𝑢𝑢 = 1 since sin(x) = cos(x + π/2). 

 
For example, the real (the cosine component) and imaginary (the sine component) contributions 

to the Fourier coefficients of the DFT of the surface height function ℎ(𝑥𝑥) = 5 cos(x) +

2 cos(3𝑥𝑥) + 4 sin(10𝑥𝑥) are 𝐹𝐹1, 𝐹𝐹3, and 𝐹𝐹10 and equal (2.5, 0), (1, 0) and (0, -2), respectively with 

𝑁𝑁 = 256.  The corresponding complex conjugate values of 𝐹𝐹255, 𝐹𝐹253, and 𝐹𝐹246 are (2.5, 0), (1, 0) 

and (0, +2), respectively.  Shifting the phase angle comprising the three terms in the function 

requires multiplying 𝐹𝐹1, 𝐹𝐹3, and 𝐹𝐹10 by 𝑒𝑒−𝑚𝑚𝜙𝜙′𝑢𝑢  where 𝜙𝜙′𝑖𝑖 is the phase shift (in radians) for 𝑢𝑢 =

1, 3, 10.  The corresponding complex conjugate values must also be updated as well to ensure 
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conservation of the amplitude spectrum.  Figure 5.7 shows a comparison plot of the surface height 

function ℎ(𝑥𝑥) = 5 cos(x) + 2 cos(3𝑥𝑥) + 4 sin(10𝑥𝑥) before (blue) and after (red) a random phase 

shift.  The amplitude spectrum (b) is also provided which is identical between both surfaces. 

 

 
Figure 5.7 (a) Plot of the function ℎ(𝑥𝑥) = 5 cos(x) + 2 cos(3𝑥𝑥) + 4 sin(10𝑥𝑥) (blue) and function 
after undergoing a phase shift (red). (b) Amplitude spectrum of both functions. 

 
For a discrete vector of data points comprising a surface height function, the RMS roughness 

of the surface is simply the standard deviation of the data.  The RMS roughness is of particular 

interest because it provides a quantitative metric to characterize the roughness scale of a surface.  

While shifting the phase angles comprising a surface height function causes simultaneous 

constructive and destructive interference of the surface, the RMS roughness is conserved.  

Therefore, it is possible to generate an infinite number of surfaces with the same RMS roughness 

albeit with different surface topographies.  Therefore, the resulting model-predicted 𝑑𝑑𝑐𝑐 -

distributions, whose shape and range of individual 𝑑𝑑𝑐𝑐-values are a function of the topography of 

the surface, will vary between surfaces.  This important result sets the stage for the surface 

reconstruction method which is discussed later in this chapter. 
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5.5 Analysis of the Amplitude Spectra of Two-Dimensional Surface Height Functions 

For a two-dimensional surface height function, the amplitude spectrum is a plot of the amplitude, 

|𝐹𝐹𝑖𝑖𝑢𝑢| = �𝑅𝑅𝑖𝑖𝑢𝑢2 + 𝐼𝐼𝑖𝑖𝑢𝑢2�
1/2

for each wavelength component from 𝑢𝑢 = 0 …𝑁𝑁 − 1 , 𝑣𝑣 = ⋯𝑀𝑀 − 1 . 

Similarly to the one-dimensional amplitude spectrum, the two-dimensional spectrum is plotted as 

2|𝐹𝐹𝑖𝑖𝑢𝑢|/𝑁𝑁𝑀𝑀 as a function of 𝑢𝑢 = 0 …𝑁𝑁/2 and 𝑣𝑣 = 0 …𝑁𝑁/2, along with intermediate points (𝑢𝑢, 𝑣𝑣) 

altogether comprising an amplitude spectrum matrix (rather than a one-dimensional vector).  

Figure 5.8 shows the amplitude spectrum for the surface function ℎ(𝑥𝑥,𝑦𝑦) = cos(𝑥𝑥), with 𝑁𝑁 =

𝑀𝑀 = 256, evaluated over the domain 0 to 2π.   

 

 
 

Figure 5.8 (a) A mesh plot of the surface height function ℎ(𝑥𝑥, 𝑦𝑦) = cos(𝑥𝑥) and (b) corresponding 
amplitude spectrum. 

 
The amplitude spectrum shows a single peak at 𝑢𝑢 = 1 because ℎ(𝑥𝑥, 𝑦𝑦) is only a function of 𝑥𝑥.  

Figure 5.9 shows the amplitude spectrum for the surface height function ℎ(𝑥𝑥,𝑦𝑦) = cos(𝑥𝑥 + 𝑦𝑦).   
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Figure 5.9 (a) A mesh plot of the surface height function ℎ(𝑥𝑥, 𝑦𝑦) = cos(𝑥𝑥 + 𝑦𝑦)  and (b) 
corresponding amplitude spectrum. 

 
Now, a single peak exists at (𝑢𝑢, 𝑣𝑣) = 1 since the surface height function is a function of both 𝑥𝑥 

and 𝑦𝑦 .  Figure 5.10 shows the amplitude spectrum for the surface height function ℎ(𝑥𝑥,𝑦𝑦) =

cos(𝑥𝑥) + sin(𝑥𝑥). 

 

 
 

Figure 5.10 (a) A mesh plot of the surface height function ℎ(𝑥𝑥, 𝑦𝑦) = cos(𝑥𝑥) + sin(𝑥𝑥) and (b) 
corresponding amplitude spectrum. 

 
This surface is the egg-crate surface shown in Chapter 3.  The amplitude spectrum shows two 

peaks, one at 𝑢𝑢 = 1 and one at 𝑣𝑣 = 1.  Finally, Figure 5.11 shows the amplitude spectrum for the 
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surface height function ℎ(𝑥𝑥,𝑦𝑦) = cos(𝑥𝑥) + cos(𝑦𝑦) + 3 cos(5𝑥𝑥) + 2 cos(4𝑦𝑦) + 2cos(10𝑥𝑥 +

10𝑦𝑦). 

 

 

Figure 5.11 A mesh plot of the surface height function ℎ(𝑥𝑥, 𝑦𝑦) = cos(𝑥𝑥) + cos(𝑦𝑦) + 3 cos(5𝑥𝑥) +
2 cos(4𝑦𝑦) + 2cos(10𝑥𝑥 + 10𝑦𝑦) and (b) corresponding amplitude spectrum. 

 
In this case, the amplitude spectrum shows peaks of 1 and 3 at 𝑢𝑢 = 1 and 5, 1 and 2 at 𝑣𝑣 = 1 and 

4, and 2 at (𝑢𝑢, 𝑣𝑣) = 10.  Figure 5.12 shows a comparison mesh plot of the surface height function 

ℎ(𝑥𝑥,𝑦𝑦) = cos(𝑥𝑥) + cos(𝑦𝑦) + 3 cos(5𝑥𝑥) + 2 cos(4𝑦𝑦) + 2cos(10𝑥𝑥 + 10𝑦𝑦) which has undergone 

a phase shift along all nonzero wavelength components.  The amplitude spectrum is identical to 

Figure 5.11(b), along with the RMS roughness. 
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Figure 5.12 Mesh plot of the surface height function ℎ(𝑥𝑥, 𝑦𝑦) = cos(𝑥𝑥) + cos(𝑦𝑦) + 3 cos(5𝑥𝑥) +
2 cos(4𝑦𝑦) + 2cos(10𝑥𝑥 + 10𝑦𝑦) showing the original (gray) and shifted (color) surfaces. 

5.6 Generating Representative AFM Surface Height Functions from an AFM Image Scan 

5.6.1 Surfaces Comprised of a Small Range in Peak Heights 

The modified approach-to-contact method necessitates a comparison between the model-predicted 

and experimental 𝑑𝑑𝑐𝑐-distributions for a particular surface to obtain an effective Hamaker constant.  

As such, a method is required to generate representative surface height maps, with the same overall 

roughness, from the original AFM surface scans to ensure that a proper comparison can be made 

between statistically similar portions of the surface since force and imaging experiments cannot 

be conducted along the same exact portion of a surface.  Jaiswal et al.89,108,109 developed a method 

utilizing a discrete Fourier transform (DFT) algorithm to generate new representative surface 

image with similar roughness profiles as the original surface.  This DFT method ensures that the 

root-mean-squared (RMS) roughness of each representative surface height map remains constant 

and matches that of the original surface scan, while also generating surfaces with nearly identical 
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distributions of the various peak heights.  This section is concerned with detailing the DFT method 

in the context of generating representative surface height images from an AFM surface scan which 

are needed as inputs to the modified approach-to-contact method to obtain model-predicted 𝑑𝑑𝑐𝑐-

distributions. 

As a summary, for a discrete surface height map, ℎ(𝑥𝑥,𝑦𝑦), with values known only at the 

equally-spaced distances ∆𝑥𝑥  and ∆𝑦𝑦  in the 𝑥𝑥 - and 𝑦𝑦-directions, respectively, the integers 𝑛𝑛 =

0, … ,𝑁𝑁 − 1  and 𝑚𝑚 = 0, … ,𝑀𝑀 − 1  are defined such that 𝑥𝑥 = 𝑛𝑛∆𝑥𝑥  and 𝑦𝑦 = 𝑚𝑚∆𝑦𝑦 , where 𝑁𝑁 =

𝐿𝐿𝑥𝑥/∆𝑥𝑥 and 𝑀𝑀 = 𝐿𝐿𝑦𝑦/∆𝑦𝑦, and 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦 are the total lengths in each direction of the chosen image.  

The DFT of the real function ℎ(𝑛𝑛,𝑚𝑚) yields the complex-valued function, 𝐻𝐻(𝑢𝑢, 𝑣𝑣), which is now 

based on the integers 𝑢𝑢 = 0, … ,𝑁𝑁 − 1 and 𝑣𝑣 = 0, … ,𝑀𝑀 − 1.  For a given 𝑢𝑢 and 𝑣𝑣, the wavevector 

of the corresponding sinusoidal components is 𝑘𝑘�⃗ = (𝑘𝑘𝑖𝑖,𝑘𝑘𝑢𝑢), in which 𝑘𝑘𝑖𝑖 = 2𝜋𝜋𝑢𝑢/𝑁𝑁∆𝑥𝑥 and 𝑘𝑘𝑢𝑢 =

2𝜋𝜋𝑣𝑣/𝑀𝑀∆𝑦𝑦, and the wavelength is 𝜆𝜆 = 2𝜋𝜋/𝑘𝑘, where 𝑘𝑘 = (𝑘𝑘𝑖𝑖2 + 𝑘𝑘𝑢𝑢2)1/2. 

As an example, a 10 µm by 10 µm surface height map of an amorphous silica surface was 

obtained via contact mode AFM using a Multimode 8 with a Bruker RTESPA-300 probe (nominal 

values of 𝑘𝑘𝑐𝑐 = 40 N/m and resonance frequency 𝑓𝑓0 = 300 kHz).  A representative resulting scan is 

shown in Figure 5.13(a). 
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Figure 5.13 (a) A 10 by 10 micron experimentally obtained AFM scan of an amorphous silica 
surface, which has an RMS of 10.0 nm. (b) A reconstructed image of the surface shown in (a) 
obtained with the discrete Fourier transform method. The RMS of this surface is also 10.0 nm and 
also has other statistically similar characteristics as the original AFM surface scan. 

 
The resulting amplitude spectrum of the original AFM image scan, or |𝐻𝐻(𝑢𝑢, 𝑣𝑣)|/𝑁𝑁𝑀𝑀, is provided 

in Figure 5.14, for which 𝑁𝑁 = 𝑀𝑀 = 512 and ∆𝑥𝑥 = ∆𝑦𝑦 = 19.5 nm.  The surface is comprised 

mainly of long wavelength spatial contributions (𝑢𝑢, 𝑣𝑣 < 20 or 𝜆𝜆 >  353 nm), with very small 

contributions from the shorter wavelengths.  Because the mean height of the surface was set to 

zero, the constant term (𝑢𝑢, 𝑣𝑣 =  0) in the amplitude spectrum is also equal to zero. 
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Figure 5.14 Amplitude spectrum of the AFM surface scan shown in Figure 5.13(a). 

 
Next, various representative surface height maps with the same amplitude spectrum were 

generated by randomly varying only the phase angles associated with a particular wavelength 

component taking note of the required connections between the various corresponding conjugate 

pairs as illustrated in Figure 5.2.  The adhesion force between the chosen sphere radii and the 

surface of interest is, however, driven mainly by the underlying long wavelength contributions, 

while the short wavelength features on the surface serve as “random noise”, minimally influencing 

the adhesion force.  This result is evidenced in Figure 3.2 and Figure 3.4 which show two surfaces 

with similar contact loci but with different 𝑑𝑑𝑐𝑐-distributions due to the presence of small-scale (high 

frequency, short wavelength) surface roughness on the surface shown in Figure 3.2(b).  Therefore, 

in order to generate representative surface height maps that maintain the same overall force profiles 

(i.e. nearly identical distributions of deflections at first contact), the phase angles of the long 

wavelength features were left unchanged while only the phase angles of the short wavelength 
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features (𝑢𝑢, 𝑣𝑣 ≥  20), including their conjugate pairs, were randomly varied (which still does not 

alter the resulting amplitude spectrum).  After varying these phase angles, an inverse transform 

was then carried out to produce a new surface image with identical RMS roughness and very 

similar surface height distributions.  The surface height distributions, or distribution of all the 

individual height values comprising the surface, corresponding to the two surfaces shown in Figure 

5.13 (the original AFM image scan and one of the representative images generated via the DFT 

method) are shown in Figure 5.15.  These plots were obtained by converting the matrix of height 

values comprising each surface into a probability distribution plot of heights.  These distributions 

show only positive deviations because each surface was shifted upward so that the largest negative 

deviation was set to 0 nm. 

 

 
 

Figure 5.15 Surface height distributions for (a) the original AFM surface image shown in Figure 
5.13(a) and (b) the representative surface shown in Figure 5.13(b) generated from the DFT method.  
By setting the minimum height value of each surface to 0 nm, the height distributions show the 
frequency of only positive deviations across a range of height values. 

 
The DFT method was further utilized for an experimentally obtained AFM scan of a stainless steel 

surface shown in Figure 5.16(a).  The reconstructed surface is given in Figure 5.16(b) and the RMS 
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roughness of both surfaces is 12.8 nm.  The reconstructed surface shows a slight difference in the 

short wavelength / high frequency features (the small scale roughness) while maintaining the same 

distinguishing long wavelength features. 

 

 
Figure 5.16 (a) A 10 by 10 micron experimentally obtained AFM scan of stainless steel surface, 
which has an RMS of 12.8 nm. (b) A reconstructed image of the surface shown in (a) obtained 
with the discrete Fourier transform method. The RMS of this surface is also 12.8 nm and also has 
other statistically similar characteristics as the original AFM surface scan. 

5.6.2 Surfaces Comprised of Large Outlier Peaks 

The aforementioned surface reconstruction method is applicable to generally “smooth” surfaces, 

or surfaces that do not exhibit any large peaks much greater than the average peak height.  In 

Figure 5.15, the average height (after shifting the surface upwards such that all deviations in height 

are positive) is 38 nm with a standard deviation of 10 nm.  All positive deviations in the height 

greater than the mean (e.g. height values greater than 38 nm) fall within the 99% confidence 

interval or approximately three standard deviations from the mean.  However, it was found that 

when applying the DFT method in Section 5.6.1 to a surface containing peaks with heights 

extending beyond three standard deviations from the mean, these peaks would be removed from 

the reconstructed surface despite preserving the RMS roughness.  For example, Figure 5.17(a) 
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shows a surface with several large peaks extending beyond several standard deviations of the mean 

height (in this case, the mean surface height is set to 0 nm and the standard deviation of the height 

is 1.7 nm).  Figure 5.17(b) shows the reconstructed surface using the DFT method described in 

Section 5.6.1.  The characteristic roughness profile of the surface is significantly altered as many 

of the large peaks above roughly three standard deviations from the mean, or approximately 5.6 

nm, do not remain on the reconstructed surface or are reduced in height (the overall small-scale 

roughness appears to increase in size while the size of the large peaks decrease).  Therefore, a 

modification to the surface reconstruction method was developed to preserve the large peaks 

present on the surface while generating statistically-similar surfaces, and more importantly, those 

with similar roughness profiles. 

 The modified surface reconstruction method first identifies large, outlier peaks on the 

surface and removes them from the surface, leaving the background surface.  The height and width 

of each outlier peak are subsequently determined, and a distribution of widths and peaks is 

generated as well as a representative outlier peak of height and width based on the average of the 

distribution.  A discrete Fourier transform is then performed on the remaining surface to obtain a 

new background surface.  Finally, the representative outlier peak is scaled by a random peak height 

and width from the distribution and placed randomly on the surface.  This process continues until 

all peak heights and widths are selected from the distribution.  Figure 5.17 shows a 10 by 10 micron 

experimentally obtained AFM scan of an amorphous silica surface containing numerous large 

peaks extending from the surface. 
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Figure 5.17 A 10 by 10 micron experimentally obtained AFM scan of an amorphous silica surface 
containing numerous large peaks extending from the surface. 

 
First, the standard deviation (or RMS roughness) of the surface is calculated.  Then, a cut-

off height is computed such that all peaks greater than the cut-off height, or outliers, are removed 

from the surface (the height of the surface at the former location of the outlier peak is set to the 

cut-off height).  The cut-off value is determined by 𝑧𝑧𝑝𝑝𝜎𝜎, where 𝑧𝑧𝑝𝑝 is the quantile of the standard 

normal distribution and 𝜎𝜎 is the standard deviation of the data.112  For the 99.9 percentile, 𝑧𝑧𝑝𝑝 = 

3.29 and with a standard deviation of 1.7 nm for Figure 5.17(a) the cut-off is 5.6 nm.  These peaks 

are shown in Figure 5.18(a).  The remaining background surface is comprised of a series of 

plateaus at locations corresponding to the outlier peaks and so an interpolation scheme is utilized 

to fill in the gaps in the surface.  Because the height and width of the outlier peaks may vary 

significantly, the height of each peak is normalized by its maximum and the width of each peak 

via the standard deviation of the peak in the 𝑥𝑥- and 𝑦𝑦-location.  The normalized height of a given 

peak, 𝑛𝑛, is given by 

𝑓𝑓𝑐𝑐(𝑥𝑥) =
𝑓𝑓(𝑥𝑥)
𝑓𝑓𝑚𝑚𝑐𝑐𝑥𝑥

   (5.18) 

where 𝑓𝑓𝑚𝑚𝑐𝑐𝑥𝑥 is the maximum value of the peak. 
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Figure 5.18 (a)Peaks larger than the “cut-off” height on the silica surface.  (b)Resulting 
background noise generated by performing a DFT on the remaining surface. 

 
Then, a DFT is performed on the background surface, with the gaps in the surface filled, 

and the phase angles comprising the surface are randomly scrambled to generate a new background 

surface.  With the new background surface generated, a random peak and width is selected from 

the distribution of heights and peaks of the outlier peaks and the average outlier peak is scaled and 

placed randomly on the surface.  This process is repeated until all heights and widths have been 

selected from the original distributions.  Figure 5.19 shows the reconstructed surface with very 

similar statistics as the original surface; these statistics are summarized in Table 5.1.  The skewness 

is a measure of the asymmetry of the surface height data around the mean (the skewness of a 

symmetric distribution is zero) and the kurtosis is related to the number and magnitude of the 

outliers in the surface height data.112  The statistics between the original and reconstructed surface 

are very similar which illustrates the robustness of the modified surface reconstruction method. 
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Table 5.1 RMS roughness, skewness, and kurtosis between the original and reconstructed surface 

 RMS Roughness (nm) Skewness Kurtosis 
Original Surface 1.7 2.2 14.5 

Reconstructed Surface 1.7 2.0 16.4 
  

 

 

 
 

Figure 5.19 A reconstructed surface with statistically similar characteristics as the original AFM 
surface scan shown in Figure 5.17. 

5.7 Reconstructing a Surface Height Function from the Contact Locus 

So far, it has been assumed that an AFM surface scan is considered the actual, underlying surface.  

However, as seen in Chapter 3, the development of a contact locus curve from a surface height 

function surface calls into question the results of imaging a surface through AFM.  Because the tip 

of an imaging probe has a finite radius (usually on the order of tens of nanometers), and depending 

on the scale of the surface roughness, some features that exist on the actual, underlying surface 

may not appear in the image scan.  Therefore, a surface scan obtained experimentally through 

AFM is actually the contact locus of the “true” surface, and not the surface itself.  This observation 
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is evidenced in the contact locus of surface E in Figure 3.2 where the sphere is unable to reach the 

bottom of the small oscillations and so the contact locus looks almost identical to the contact locus 

of surface D which does not contain the small scale roughness.  While this same phenomenon 

exists experimentally, though not to the same extent seen computationally from the model surfaces, 

and since it has been shown that small-scale roughness largely impacts the vdW force and the 

distribution of deflections at contact for a surface, it is of interest to attempt to reconstruct the 

actual, underlying surface for an AFM surface scan.   Inputting the true surface into the approach-

to-contact model should give rise to a more accurate model-predicted 𝑑𝑑𝑐𝑐-distribution.  However, 

it turns out that for a fine tip probe radius (e.g. 10 nm) the distinction between the contact locus 

and actual, underlying surface is insignificant.  Nonetheless, this section seeks to extract the actual, 

underlying surface from the contact locus and quantitatively determine if any meaningful 

information is lost between the contact locus and actual surface. 

As seen in Figure 2.4(b), when the sphere touches the surface, the line between the sphere’s 

center and point of contact is normal to the surface or perpendicular to the local surface tangent.  

From the unit normal, 𝑛𝑛�⃗ , the point corresponding to the location of the center of the sphere when 

in contact with the surface can be determined.  This process is repeated for each sphere location 

along the surface, thus generating a contact locus.  Reconstruction of the surface from the contact 

locus can be done through the opposite procedure.  First, for a given point along the contact locus, 

the angle of the unit normal vector with respect to the horizontal must be determined between the 

point on the contact locus and point of contact that the sphere makes with the surface.  The angle 

can be estimated by taking the negative inverse of the slope between the point of interest on the 

contact locus and an adjacent point.  Then, the following relationship, with reference to Figure 

2.4(b), can be used to determine the contact point that the sphere makes with the surface 
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|𝑛𝑛�⃗ | = 1 = �(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑥𝑥𝑠𝑠)2 + �𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)�
2 

 
𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑚𝑚(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑥𝑥𝑠𝑠) 

(5.19) 

 
Here, 𝑚𝑚 is related to the slope of the normal vector, 𝑥𝑥𝑠𝑠 and 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the location of the center 

of the sphere at the contact point, and 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and ℎ(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) together determine the location of 

the contact point on the surface.  As there are two solutions to eq 5.19, care must be taken to select 

the physical one.  The process is then repeated for each point along the contact locus to reconstruct 

the entire surface.  Figure 5.20(a) shows a reconstructed surface from a contact locus for the surface 

height function ℎ(𝑥𝑥/𝑅𝑅) = 0.5 sin(x R⁄ ). 

 

 
 

Figure 5.20 The reconstruction of the surface height function (a) ℎ(𝑥𝑥/𝑅𝑅) = 0.5 sin(x R⁄ ) and (b) 
ℎ(𝑥𝑥/𝑅𝑅) = 3 sin(x R⁄ ).  The dashed magenta line is the reconstructed surface, the red circles are 
points constituting the contact locus, and the blue line is the original surface. 

 
The red circles are the locations of the center of the sphere when the sphere makes contact with 

the surface, for each 𝑥𝑥𝑠𝑠.  The magenta circles comprise the reconstructed surface and the blue line 

is the original surface.  Also, the dashed green lines are the normal vectors determined from the 



 
 

123 

procedure outlined above, and the black lines are the original normal vectors obtained by solving 

for the contact locus from the original surface. 

The surface reconstruction procedure works well for surfaces that do not lead to corner 

points in the contact locus, such as the one shown in Figure 5.20(a).  At a corner point the sphere 

cannot touch the bottom of the surface such as at 𝑥𝑥𝑠𝑠 = 3𝜋𝜋 2⁄  in Figure 3.1(c) for surface C.  

Because the contact locus is not differentiable at a corner point, the reconstruction method cannot 

uniquely obtain the true surface around the corner.  This consequence is illustrated in Figure 

5.20(b), for the surface height function ℎ(𝑥𝑥/𝑅𝑅) = 3 sin(x R⁄ ).  The method is able to reconstruct 

the actual, underlying surface for all points along the contact locus except at 𝑥𝑥𝑠𝑠 = 3𝜋𝜋 2⁄  where the 

corner point exists.  Since the slope between two adjacent points along the contact locus is required 

to determine the normal vector, the slope cannot be determined accurately at the corner point where 

it quickly changes (as opposed to all other locations on the contact locus where the slope is roughly 

constant between adjacent points). 

In practice, when performing AFM imaging experiments, the size of the cantilever tip 

should be made as small as possible in order to mitigate the effect of under sampling portions of 

the surface.  However, since the cantilever tip radius is of a finite size, portions of the actual, 

underlying surface that are sharper than the radius of the tip can never be sampled.   For the surfaces 

analyzed in this and the next chapter (e.g. silica, stainless steel, and sapphire), the RMS roughness 

is on the same order of magnitude as the size of the surface scan.  Therefore, the surface heights 

appear to vary over several tens of nanometers, and over length scales much greater than the tip 

radius.  Hence, the contact locus that is generated will be negligibly different from the actual, 

underlying surface.  Figure 5.21 illustrates the magnitude of the surface roughness of the surface 

shown in Figure 5.16 relative to a cantilever tip of radius 1000 nm.  While some minor change in 
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the deflection at contact may result at very specific locations on the surface, the overall shape of 

the 𝑑𝑑𝑐𝑐-distribution will remain essentially the same.   

 

 

Figure 5.21 The scale of the roughness of the surface shown in Figure 5.16 relative to a sphere of 
R = 1000 nm. 

5.8 Summary  

This chapter offered a comprehensive mathematical description of the discrete Fourier transform, 

including the analysis of amplitude spectra and the effect of varying the phase angle of individual 

wavelength components on the resulting one-dimensional and two-dimensional surface height 

functions.  Since it is not feasible to image a portion of a substrate using AFM and also obtain 

force curves along the same exact portion of the surface, DFT can be utilized to transform an 

experimentally obtained AFM surface height map into the Fourier domain, randomize the phase 

angles corresponding to each wavelength component, and then generate a representative scan with 

a similar roughness profile as the original.  The DFT method presented herein ensures that the 
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root-mean-squared (RMS) roughness of each representative surface height map remains constant 

and matches that of the original surface scan, while also generating surfaces with nearly identical 

distributions of the various peak heights.  Finally, for the surfaces analyzed in this and the next 

chapter (e.g. silica, stainless steel, and sapphire), the RMS roughness is on the same order of 

magnitude as the size of the surface scan.  Therefore, the surface heights appear to vary over 

several tens of nanometers, and over length scales much greater than the tip radius.  Hence, the 

contact locus that is generated will be negligibly different from the actual, underlying surface.  

This chapter now sets the stage for the full experimental validation of the approach-to-contact 

method for which the self Hamaker constant of several materials will be determined with a 

significant reduction in uncertainty compared to the original approach-to-contact method 

developed by Fronczak et al.79 
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  EXPERIMENTAL VALIDATION OF THE APPROACH-TO-
CONTACT METHOD 

6.1 Introduction 

Previous chapters have laid the foundation for the development of a modified approach-to-contact 

method in which the self-Hamaker constant of a substrate can be accurately determined, with a 

significant reduction in uncertainty, by explicitly accounting for the topography of the given 

surface.  Chapter 4 introduced the concept of relative entropy which provided a quantitative metric 

to compare two discrete probability distribution functions.  The dynamic 𝑑𝑑𝑐𝑐 -distribution was 

chosen as the reference distribution and various quasi-static distributions were generated for a 

range of inputted Hamaker constant values, and the relative entropy was minimized to obtain a 

single 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 value.  Moreover, it was found, computationally, that at sufficiently slow cantilever 

approach speeds (e.g. < 200 nm/s), 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 ≅ 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 such that the quasi-static model provided an 

accurate description of the behavior of the AFM cantilever tip.  Hence, there is no need to invoke 

the more computationally intensive dynamic model.  A discrete Fourier transform method was 

then proposed in Chapter 5 by which surface height maps of similar roughness profiles were 

generated from an AFM surface scan.  It was found that by varying the individual phase angles 

contributing to each wavelength component of a surface height map, representative surfaces could 

be obtained with identical RMS roughness. 

This chapter considers a robust experimental validation of the approach-to-contact method 

for which the self-Hamaker constant of three experimental substrates - amorphous silica, stainless 

steel, and sapphire - is determined over a range of experimental surfaces with varying 

topographies.  This provides a true test of the approach-to-contact method since surface roughness 

is taken directly into account, and so the self-Hamaker constant should be constant, with a small 
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degree of uncertainty due to inevitable experimental error, across each surface of varying 

topography for a particular experimental substrate.  The chosen substrates and experimental 

surfaces span a range of 𝐴𝐴11  values (65-350 zJ) and RMS roughness (1-25 nm) to ensure a 

thorough validation.  By inputting a range of 𝐴𝐴12-values, the Hamaker constant is estimated by 

minimizing the relative entropy between the experimental (i.e. the “true” distribution) and model-

predicted 𝑑𝑑𝑐𝑐-distributions, the latter generated from the quasi-static model for a set of cantilever 

properties.  The chosen cantilevers also span a range of nominal radii; two polystyrene colloidal 

probes of 990 nm and 1800 nm and a silicon nitride probe of effective radius 176 nm.  While each 

colloidal probe/experimental surface pair should lead to a unique experimental 𝑑𝑑𝑐𝑐-distribution, 

they should, in theory, yield a similar 𝐴𝐴11 across surfaces comprised of the same substrate material. 

 This chapter is organized as follows.  First, experimental and theoretical methods are 

discussed including a procedure in which four amorphous silica and stainless steel plates are 

polished to a “mirror-like” smoothness and then systematically made rougher to produce surfaces 

that span a range of RMS roughness.  AFM force experiments are then completed across each of 

the plates to generate experimental 𝑑𝑑𝑐𝑐-distributions unique to the topography of each plate using 

a silicon nitride cantilever and polystyrene colloidal probes of radius 990 and 1800 nm.  AFM 

surface scans are then obtained and used as input surface height functions to generate 

corresponding model predicted 𝑑𝑑𝑐𝑐-distributions, solving the quasi-static model.  As previously 

discussed, since it is not feasible to conduct force and imaging experiments on the same exact 

portion of a surface, the DFT method introduced in Chapter 5 is used to produce representative 

surfaces with similar roughness profiles as the original surface scan.  The effective Hamaker 

constant of each plate and ultimately each substrate is then calculated by minimizing the relative 

entropy between the experimental and model-predicted 𝑑𝑑𝑐𝑐-distributions for a particular substrate 
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and plate.  Finally, the self-Hamaker constant is determined along with the associated error using 

error propagation.  The 𝐴𝐴11 values were found to be in excellent agreement between plates of the 

same substrate and the average 𝐴𝐴11 value across all plates for a particular substrate agreed well 

those found in the literature derived from Lifshitz theory. 

6.2 Experimental and Theoretical Methods 

6.2.1 Determining the Self-Hamaker Constant for an Experimental Substrate 

The general procedure for determining the self-Hamaker constant of an experimental substrate is 

as follows.  Figure 6.1 provides a graphical flowchart describing the method.  First, an 

experimental 𝑑𝑑𝑐𝑐-distribution is obtained by running AFM force experiments on the experimental 

substrate (e.g. amorphous silica) at 125 different locations for a given cantilever probe (e.g. Bruker 

MSCT-E silicon nitride cantilever) and a cantilever approach speed of 200 nm/s (the rationale for 

choosing this approach speed is discussed in Chapter 4).  Ten AFM surface scans are then obtained 

by imaging the experimental substrate at different locations using a fine tip cantilever (e.g. Bruker 

RTESPA-300 cantilever).  As discussed in Chapter 5, it is not feasible to conduct force and 

imaging experiments at the same exact location on the experimental substrate and so the DFT 

method was developed to generate representative surfaces from the original surface scans.  In this 

case, ten representative surfaces were generated for each surface scan, for a total of 100 surface 

height maps.  These surface height maps, along with the experimentally-determined spring 

constant of the cantilever (and nominal radius), are used to generate model-predicted 𝑑𝑑𝑐𝑐 -

distributions for a range of input Hamaker constant values.  The relative entropy is then minimized 

between each model-predicted and experimental 𝑑𝑑𝑐𝑐-distribution to obtain a set of 100 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒-values.  

An average value of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 is then determined, along with the corresponding error computed using 
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error propagation (more details on error analysis are given in Section 6.4.1).  Finally, from the 

average value of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒, the self-Hamaker constant of the experimental substrate can be determined 

using eq 6.5. 

 

 

Figure 6.1 Graphical flowchart describing the method for determining the self-Hamaker constant 
of an experimental material. 

6.2.2 Systematic Polishing of Experimental Substrates 

Four amorphous silica and stainless steel plates were polished using a Buehler (Lake Bluff, IL) 

MiniMet 1000 Grinder Polisher.  Each plate was first polished using a 0.25 μm (mean particle 

diameter) Buehler MetaDi diamond suspension to ensure a consistent, mirrorlike finish across each 

plate.  The plates were then systematically made rougher using a range of MetaDi diamond 

suspensions and pastes with a mean particle diameter between 0.25 and 30 μm to generate a unique 

roughness profile across each plate.  The surface of each plate was then washed with acetone and 

blown dry using compressed air.  Table 6.1 shows the mean particle diameter, in micrometers, of 
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the diamond suspension/paste used to polish a particular plate.  The experimental RMS roughness 

of each plate was later determined when generating representative surfaces using the DFT method.   

 

Table 6.1 The mean particle diameter (μm) of the diamond suspension/paste used to polish each 
plate across the amorphous silica and stainless steel substrates. 
 

 Diamond Suspension/Paste Mean Particle Diameter (μm) 
Plate Amorphous Silica Stainless Steel 

1 1 0.25 
2 3 1 
3 9 6 
4 12 30 

6.2.3 Experimental AFM Measurements 

A Multimode 8 (Bruker Corporation, Technology Forest, TX) with a Bruker RTESPA-300 probe 

(nominal values of 𝑘𝑘𝑐𝑐 = 40 N/m and resonance frequency 𝑓𝑓𝑐𝑐 = 300 kHz) was employed in contact 

mode in air to obtain a set of ten different 10 µm by 10 µm surface height maps of each of the 

amorphous silica and stainless steel plates, as well as a single sapphire surface (this surface was 

not polished).  Deflection curves (with each complete curve comprised of 64000 data points) were 

generated with a Bruker MSCT-E silicon nitride probe (nominal values of 𝑅𝑅 = 10 nm, 𝑘𝑘𝑐𝑐 = 0.1 

N/m, and 𝑓𝑓𝑐𝑐  = 38 kHz) and two polystyrene colloidal probes (NanoAndMore USA Corp, 

Watsonville, CA) with nominal values of 𝑅𝑅 = 990 ± 99 nm and 1800 ± 180 nm, 𝑘𝑘𝑐𝑐 = 0.1 N/m, and 

𝑓𝑓𝑐𝑐 = 38 kHz, interacting with each of the plates and sapphire surface in contact mode with an 

approach speed of 200 nm/s.  The spring constants of the probes were measured experimentally 

via the thermal tuning method and are provided, with error bars, in Table 6.2. 
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Table 6.2 Experimental spring constants (reported in N/m) of the three AFM cantilevers 
 

 990 nm Probe 1800 nm Probe MSCT-E Cantilever 
Amorphous Silica 0.1698 ± 0.0002 0.1790 ± 0.0007 0.1931 ± 0.0006 

Stainless Steel 0.1687 ± 0.0004 0.1724 ± 0.0016 0.1934 ± 0.0004 
Sapphire 0.1702 ± 0.0006 0.1804 ± 0.0007 0.1940 ± 0.0003 

 

 

The deflection at first contact, 𝑑𝑑𝑐𝑐, was extracted from each deflection curve following the 

procedure outlined in ref 79.  A total of 125 force measurements were taken at randomly selected 

and independent locations along the surfaces for each colloidal probe and the MSCT-E cantilever, 

which were then used to generate the corresponding experimental 𝑑𝑑𝑐𝑐 -distributions.  All 

measurements were taken under dry conditions by passing nitrogen into a humidity-controlled 

chamber with a relative humidity < 10%.  Electrostatic charge was minimized with a Staticmaster 

Ionizer (Amstat Industries, Inc., Mundelein, IL). 

6.3 DFT Representative Images from the AFM Surface Height Scans 

As discussed in Chapter 5, it is not feasible to image a portion of a substrate using AFM and also 

obtain force curves along the same exact portion of the surface.  The aforementioned chapter 

outlined a method for generating representative images from a surface height scan.  From the ten 

independent 10 µm by 10 µm experimental AFM surface scans obtained for each plate across the 

substrates, ten representative images were generated for a total of 100 images per plate.  Figure 

6.2 and Figure 6.3 show representative experimental AFM surface scans across each plate for the 

amorphous silica and stainless steel substrates. 
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Figure 6.2 Representative 10 by 10 𝜇𝜇𝑚𝑚  experimentally obtained AFM surface scans of an 
amorphous silica surface, which have an average RMS roughness of (a) 25.9 𝜇𝜇𝑚𝑚, (b) 16.7 𝜇𝜇𝑚𝑚, (c) 
11.5 𝜇𝜇𝑚𝑚, (d) 4.6 𝜇𝜇𝑚𝑚. 
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Figure 6.3 Representative 10 by 10 𝜇𝜇𝑚𝑚 experimentally obtained AFM surface scans of a stainless 
steel surface which have an average RMS roughness of (a) 18.2 𝜇𝜇𝑚𝑚, (b) 7.2 𝜇𝜇𝑚𝑚, (c) 5.0 𝜇𝜇𝑚𝑚, (d) 
1.1 𝜇𝜇𝑚𝑚. 

 
The RMS roughness of each of the ten AFM surface scans for each plate across the 

amorphous silica and stainless steel substrates was calculated and the average value is given in 

Table 6.3.  The average RMS roughness of the sapphire substrate is 0.4 ± 0.1 nm.  Figure 6.4 and 

Figure 6.5 show corresponding representative DFT reconstructed surface height maps for the AFM 

surface scans shown in Figure 6.2 and Figure 6.3.  The DFT reconstructed surfaces were generated 

by varying the phase angles of the short wavelength features present on the surface, which for a 

10 by 10 𝜇𝜇𝑚𝑚  surface scan comprised of 512 by 512 points, corresponds to long wavelength 

components greater than approximately 350 nm (see Chapter 5 for a more detailed explanation of 
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the DFT method).  Figure 6.6 shows a (a) representative experimental AFM surface scan of the 

sapphire surface along with (b) a DFT reconstructed surface. 

 
Table 6.3 Average RMS roughness across ten AFM surface scans for the amorphous silica and 
stainless steel surfaces. 
 

 Average RMS Roughness (nm) 
Surface Amorphous Silica Stainless Steel 

1 25.9 ± 17.6 18.2 ± 6.7 
2 16.7 ± 3.4 7.2 ± 1.4 
3 11.5 ± 3.8 5.0 ± 2.5 
4 4.6 ± 1.5 1.1 ± 0.6 

 
 
 
 
 

 
 

Figure 6.4 Representative 10 by 10 𝜇𝜇𝑚𝑚 reconstructed surfaces obtained using the DFT method 
corresponding to the amorphous silica AFM surface height scans shown in Figure 6.2.  The RMS 
roughness of each reconstructed surface is identical to the original surface scan. 



 
 

135 

 
Figure 6.5 Representative 10 by 10 𝜇𝜇𝑚𝑚 reconstructed surfaces obtained using the DFT method 
corresponding to the stainless steel AFM surface height scans shown in Figure 6.3.  The RMS 
roughness of each reconstructed surface is identical to the original surface scan. 
 

 
Figure 6.6 (a) A representative 10 by 10 𝜇𝜇𝑚𝑚 experimentally obtained AFM scan of a sapphire 
surface which has an overall average RMS of 0.4 nm across all 10 surface scans. (b) A 
reconstructed image of the surface shown in (a) obtained with the discrete Fourier transform 
method. 
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All of the amorphous silica and stainless steel AFM image scans exhibit a similar surface 

feature which appear as long grooves in the surface that result from polishing.  These grooves 

remain fairly intact after generating the representative images because the DFT method preserves 

the longer wavelength features on the surface while scrambling the smaller wavelength/higher 

frequency background noise.  The sapphire surface exhibits numerous “large” peaks and valleys 

extending from the mean plane of the surface which are more uniformly distributed.  As such, the 

reconstructed surface looks very similar to the original surface scan because the average amplitude 

of the background noise (e.g. the high frequency/low wavelength components) is very small in 

comparison to the scale of the larger peaks on the surface. 

6.4 Results and Discussion 

6.4.1 Calculating the Effective Hamaker Constant for an Experimental Substrate 

For each DFT reconstructed image, and for a chosen probe radius, quasi-static model predicted 

𝑑𝑑𝑐𝑐-distributions were obtained for a range of 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 values.  Due to the uncertainty in the actual 

radius of a colloidal probe, quasi-static predicted distributions were generated for radii of 891, 990 

and 1089 nm, or for radii of 1620, 1800 and 1980 nm.  For a given colloidal probe, and for each 

corresponding radius, 100 separate values of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 were then determined, and then averaged.  The 

three results (lower, nominal and upper bound) were subsequently averaged to yield a final value 

of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 for a given (nominal) probe radius.  The minimum value of the relative entropy between 

the experimental and quasi-static distributions was identified, yielding an estimate of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 for the 

given reconstructed image.   

In some cases, such as shown in Figure 6.7, a plot of the relative entropy versus 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 

yields a clear minimum value therefore leading to a single value of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒.  However, instances arise 
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in which a clear minimum is not apparent, as shown in Figure 6.8, such that choosing a singular 

value of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 is difficult.  Therefore, a cutoff value of 0.02 greater than the global minimum value 

for the relative entropy was selected such that all 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 values corresponding to these relative 

entropy values at or below the cutoff were selected as possible values of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒.  The 0.02 cutoff 

value was chosen based on a separation computation of the relative sum of squares error (SSE) 

between the experimental and quasi-static distributions.  It was found that a 0.02 change in the 

relative entropy is analogous to approximately a 5% change in the relative SSE between 

distributions which is a comparatively small difference.  Regardless of the chosen value of the 

cutoff, the minimum and maximum 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 values are considered when determining the overall 

value of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 to provide a reasonable estimate of the error.  From this subset of 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 values, the 

minimum, maximum, and average value were selected, and the corresponding uncertainties 

computed as follows.  For example, in Figure 6.7(a), 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐 = 66.5 zJ and 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 = 67.5 zJ and in 

Figure 6.8(a), 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐 = 70.1 zJ and 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 = 71.9 zJ. 

 

 
Figure 6.7 Representative plots of the relative entropy versus inputted Hamaker constant, 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐, 
for the (a) 990 nm and (b) 1800 nm colloidal probes.  In both cases, a clear minimum value of the 
relative entropy exists for a specific 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐. 
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Figure 6.8 Representative plots of the relative entropy versus inputted Hamaker constant, 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐, 
for the (a) 990 nm and (b) 1800 nm colloidal probes.  In this case, a clear minimum value of the 
relative entropy is not obvious leading to the establishment of a cutoff value of 0.02. 

 
For each of the four plates of different RMS roughness for the amorphous silica and 

stainless steel substrates, ten AFM image scans were taken and for each scan, ten reconstructed 

surfaces were generated via the DFT method presented in Chapter 5, for a total of 100 

reconstructed surfaces per plate.  For each reconstructed surface, a range of possible 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 values 

was determined based on the 0.02 cutoff value for the relative entropy; this range was given by an 

𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐 and an 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 for a particular reconstructed surface.  For example, in Figure 6.7(a) 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐 =

66.5 zJ and 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 = 67.5 zJ.  Thus, for a given AFM image scan, there were 100 different values 

of 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐  and 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥  that were determined.  Then the average of these values, or 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐𝑢𝑢𝑎𝑎  and 

𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥,𝑐𝑐𝑢𝑢𝑎𝑎 were determined by 

𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐𝑢𝑢𝑎𝑎 =
1
𝑁𝑁
�𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐,𝑚𝑚

𝑁𝑁

𝑚𝑚=1

 

𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥,𝑐𝑐𝑢𝑢𝑎𝑎 =
1
𝑁𝑁
�𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥,𝑚𝑚

𝑁𝑁

𝑚𝑚=1

 

(6.1) 
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where 𝑁𝑁 = 100 and 𝐴𝐴 is a reconstructed surface.  The average uncertainties for a given 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐,𝑚𝑚 and 

𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥,𝑚𝑚 were then computed by 

∆𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐 = �
1

𝑁𝑁 − 1
��𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐,𝑚𝑚 − 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐𝑢𝑢𝑎𝑎�

2
𝑁𝑁

𝑚𝑚=1

 

∆𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 = �
1

𝑁𝑁 − 1
��𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥,𝑚𝑚 − 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥,𝑐𝑐𝑢𝑢𝑎𝑎�

2
𝑁𝑁

𝑚𝑚=1

 

 

(6.2) 

Finally, the uncertainties in the above average values were calculated by 

∆𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐𝑢𝑢𝑎𝑎 =
∆𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐

√𝑁𝑁
 

∆𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥,𝑐𝑐𝑢𝑢𝑎𝑎 =
∆𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥

√𝑁𝑁
 

(6.3) 

Thus, for a given image scan, 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐 = 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐𝑢𝑢𝑎𝑎 ± 𝛼𝛼∆𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐𝑢𝑢𝑎𝑎  and 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 = 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥,𝑐𝑐𝑢𝑢𝑎𝑎 ±

𝛼𝛼∆𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥,𝑐𝑐𝑢𝑢𝑎𝑎, where α is the Gaussian distribution quantile value corresponding to a confidence 

interval (e.g. 90% or 95%).  The average of the two limits was then determined, along with the 

proper propagation of error, to get the estimated value of 𝐴𝐴 with error for a particular image scan.  

This procedure was then repeated for each image scan, and each value of 𝐴𝐴 was then averaged to 

obtain a final estimate of 𝐴𝐴 with the final error for a particular plate.  An example calculation of 

determining 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒, with the proper propagation of error, is as follows for plate 1 using the 990 nm 

colloidal probe on the amorphous silica surface.  For the lower, nominal, and upper values of the 

colloidal probe radius (891, 990, 1089 nm), 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐 and 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 = 66.5 ± 0.2, 71.7 ± 0.3, 67.2 ± 0.3, 

71.6 ± 0.3, and 67.5 ± 0.3, 71.4 ± 0.3 zJ, respectively.  The average values of 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐 and 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 are 

69.1, 69.4, and 69.5 zJ, respectively.  The overall average, or 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 is therefore 69.3 zJ.  The overall 
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error in 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 is computed from the individual errors from the six 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐 and 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 values, or, in 

general, by  

𝜎𝜎𝐴𝐴𝑒𝑒𝑓𝑓𝑓𝑓
2 = �

1
𝑁𝑁2

𝑁𝑁

𝑚𝑚=1

𝜎𝜎𝐴𝐴2 

 

(6.4) 

In this case, 𝑁𝑁  = 6 and 𝜎𝜎𝐴𝐴2  corresponds to the individual error for a particular 𝐴𝐴𝑚𝑚𝑚𝑚𝑐𝑐  or 𝐴𝐴𝑚𝑚𝑐𝑐𝑥𝑥 .  

Therefore, the error in 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 is 0.1 zJ or 0.2 zJ for the 90% confidence interval (𝛼𝛼 = 1.64), and so 

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 = 69.3 ± 0.2 zJ for plate 1 using the 990 nm colloidal probe on the amorphous silica surface.  

The remaining 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 were similarly calculated and the error propagated in the average values using 

eq 6.4. 

6.4.2 Quantifying the Effective Radius of Curvature of the MSCT-E Cantilever Tip 

The model developed in this work considers a perfectly spherical tip while the actual shape of the 

MSCT-E cantilever is not necessarily spherical.  Hence, an effective radius of the cantilever must 

be determined.  Following refs 79 and 80, an effective radius, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, of the MSCT-E cantilever was 

determined by minimizing the relative entropy between the experimental 𝑑𝑑𝑐𝑐 -distribution and 

aggregate model-predicted distribution from each of the experimental substrates generated using 

the MSCT-E cantilever.  𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 is not required to correspond to the actual radius of curvature of the 

AFM tip, but approximates the average vdW force between the tip, regardless of shape, and 

surface.101   

Following the aforementioned procedure for determining the effective Hamaker constant, 

a similar process was done to determine 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 .  For each AFM surface scan across the three 

substrates, quasi-static model predicted 𝑑𝑑𝑐𝑐 -distributions were obtained for a range of 

𝑅𝑅𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 values.  In this case, since 𝑅𝑅 is an output parameter, a value of 𝐴𝐴 was required to generate 
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the model-predicted distributions.  As such, 𝐴𝐴 was selected to be 108 zJ, 251 zJ, and 165 zJ for 

amorphous silica, stainless steel, and sapphire, respectively.  These values were calculated using 

eq 1.4 and for literature established values of 𝐴𝐴11 for the three surfaces and 𝐴𝐴22 for the silicon 

nitride probe (since the self-Hamaker constant for stainless steel is reported as range of values 

from 200-500 zJ, 350 zJ was used).  Model-predicted 𝑑𝑑𝑐𝑐-distributions were then generated for each 

plate across the three substrates and range of 𝑅𝑅𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 values using the same set of 100 surfaces as 

described above.  The upper and lower bounds of 𝑅𝑅𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 were determined, along with the average 

value, below the relative entropy cut-off threshold of 0.02 (the relative entropy was minimized 

between the experimental and model-predicted 𝑑𝑑𝑐𝑐-distributions across each plate and substrate).  

Values of 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 across each substrate are summarized in Table 6.4. 

 
Table 6.4 The minimum, maximum and average values of the effective radius, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, across the 
three experimental substrates. 
 

 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑐𝑐 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑐𝑐𝑥𝑥 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑐𝑐𝑢𝑢𝑎𝑎 
Amorphous Silica 176.8 ± 1.4 179.6 ± 1.6 174.5 ± 2.1 

Stainless Steel 176.6 ± 1.2 180.4 ± 1.3 176.6 ± 1.8 
Sapphire 175.6 ± 0.2 176.6 ± 0.2 175.6 ± 0.3 

 
 
Table 6.4 shows that the effective radius values are very similar across each of the substrates which 

validates this calibration procedure.  Upon the final averaging of each 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑐𝑐𝑢𝑢𝑎𝑎 across the three 

substrates, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 = 176.3 ± 1.5 (90% confidence interval).  Similarly to the colloidal probes, the 

effective Hamaker constant using the MSCT-E probe was determined using a radius of 174.8, 

176.3, and 177.8 nm across the three substrates. 
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6.4.3 Determining the Self-Hamaker Constant of Amorphous Silica, Stainless Steel, and 
Sapphire 

Tables 6.5 and 6.6 show average values of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 along with corresponding error for each cantilever 

across the four amorphous silica and stainless steel plates.  Despite the varying degrees of 

roughness between the plates, the average values of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒  show excellent agreement which 

suggests that the new vdW force model, and in turn, the modified approach-to-contact method 

properly accounts for surface topography in that roughness effects are captured by the model-

predicted distribution of deflections at contact.  Furthermore, these results support the conclusion 

reached in Chapter 4 that the quasi-static model sufficiently describes the behavior of the AFM 

cantilever at reasonably slow (e.g. 200 nm/s) approach speeds.    

 
Table 6.5 Average values of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 for each cantilever tip across the four amorphous silica surfaces 
of varying roughness profiles (90% confidence interval reported) 
 

 990 nm Probe 1800 nm Probe MSCT-E Cantilever 
Plate 1 69.3 ± 0.2 69.9 ± 0.2 107.4 ± 0.5 
Plate 2 69.3 ± 0.2 70.0 ± 0.2 113.6 ± 0.4 
Plate 3 67.9 ± 0.2 69.8 ± 0.2 117.4 ± 0.1 
Plate 4 69.1 ± 0.2 69.0 ± 0.2 114.2 ± 0.3 

Average 68.9 ± 0.3 69.7 ± 0.4 112.8 ± 0.3 

 
Table 6.6 Average values of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 for each cantilever tip across the four stainless steel surfaces of 
varying roughness profiles (90% confidence interval reported) 

 990 nm Probe 1800 nm Probe MSCT-E Cantilever 
Plate 1 163.1 ± 0.4 162.7 ± 0.2 244.9 ± 0.4 
Plate 2 162.0 ± 0.4 162.8 ± 0.2 243.8 ± 0.4 
Plate 3 162.1 ± 0.3 162.3 ± 0.3 247.2 ± 0.4 
Plate 4 162.6 ± 0.3 162.6 ± 0.3 247.1 ± 0.2 

Average 162.5 ± 0.6 162.6 ± 0.4 245.8 ± 0.3 
 

In addition to the results shown in Table 6.5 and Table 6.6, the average values of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 for 

each cantilever for the sapphire substrate are 105.5 ± 0.6 zJ, 110.9 ± 0.2 zJ, and 163.1 ± 0.4 zJ 
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(90% confidence interval) for the 990 and 1800 nm colloidal probes and the MSCT-E cantilever, 

respectively.  (The values of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 are larger for the MSCT-E cantilever since 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 describes the 

interaction between two materials and the MSCT-E cantilever is comprised of silicon nitride while 

the colloidal probes are polystyrene.  Hence, 𝐴𝐴22 is a different value and therefore 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒.)  

Figure 6.9 shows a representative comparison between the experimental and aggregated 

quasi-static model predicted 𝑑𝑑𝑐𝑐-distributions, the latter obtained using the above values of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 

for the (a) 990 and (b) 1800 nm colloidal probes for the amorphous silica substrate. (A given quasi-

static distribution is the average of the separate distributions each obtained from the 100 different 

reconstructed images.)  The agreement between these two distributions is very good.  Overall, the 

average deflection and range of deflections between the model-predicted and experimental data is 

very similar (in addition to the shape of the distributions).  Figure 6.10 shows similar results for 

the stainless steel substrate and Figure 6.11 shows a representative comparison between model-

predicted and experimental distributions for the two substrates and MSCT-E cantilever. 

 

 
 

Figure 6.9 Comparison of AFM experimentally obtained (red) and aggregate model predicted 
(blue) 𝑑𝑑𝑐𝑐-distributions for an amorphous silica substrate using a (a) 990 nm and (b) 1800 nm 
colloidal probe.  The model predicted distributions are generated using experimentally determined 
spring constants for each probe and the average 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 minimizing the relative entropy across a 
range of 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 values.
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Figure 6.10 Comparison of AFM experimentally obtained (red) and aggregate model predicted 
(blue) 𝑑𝑑𝑐𝑐-distributions for a stainless steel substrate using a (a) 990 nm and (b) 1800 nm colloidal 
probe.  The model predicted distributions are generated using experimentally determined spring 
constants for each probe and the average 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 minimizing the relative entropy across a range of 
𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 values. 

 

 
Figure 6.11 Comparison of AFM experimentally obtained (red) and aggregate model predicted 
(blue) 𝑑𝑑𝑐𝑐-distributions using the MSCT-E cantilever for the (a) amorphous silica and (b) stainless 
steel substrates. The model predicted distributions are generated using the experimentally 
determined spring constant for the cantilever and average value of the effective radius.
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Using the obtained average value of 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒, or 𝐴𝐴12, the self-Hamaker constant, 𝐴𝐴11, of each 

substrate was calculated from38 

𝐴𝐴11 ≈ (𝐴𝐴12)2/𝐴𝐴22 (6.5) 

where 𝐴𝐴22 for the polystyrene colloidal probes was found to be 71 zJ45 or 79 zJ41 and 180 zJ for 

the silicon nitride probe40.  These literature values were derived using Lifshitz theory and are not 

provided with error bars (e.g. 𝜎𝜎𝐴𝐴22 = 0).  Table 6.7 gives the average value of 𝐴𝐴11 across each 

cantilever tip and substrate along with error computed using error propagation based on eq 6.5.  

 
Table 6.7 Average values of 𝐴𝐴11 for each cantilever across the three experimental substrates (90% 
confidence interval reported) 
 

 990 nm Probe 1800 nm Probe MSCT-E 
 𝐴𝐴12 = 79 zJ 𝐴𝐴12 = 71 zJ 𝐴𝐴12 = 79 zJ 𝐴𝐴12 = 71 zJ 𝐴𝐴12 = 180 zJ 

Silica 60.1 ± 0.6 66.8 ± 0.7 61.4 ± 0.7 68.3 ± 0.8 70.7 ± 0.4 
Stainless Steel 334.0 ± 2.5 371.7 ± 2.8 334.7 ± 1.8 372.5 ± 2.0 335.4 ± 0.9 

Sapphire 140.9 ± 1.5 156.8 ± 1.7 155.5 ± 0.7 173.1 ± 0.7 147.8 ± 0.7 
 
 
Upon further averaging of each of the five 𝐴𝐴11values for each substrate as well as determining the 

error in each value using error propagation, a final estimate of 𝐴𝐴11 for the silica, stainless steel, 

and sapphire substrates was 65.5 ± 0.3 zJ, 349.7  ± 1.0 zJ, and 154.8 ± 0.5 zJ which all agree very 

well with the literature established values of 6540 and 66 zJ43 for silica, 200-500 zJ for stainless 

steel25, and 15025 or 15240 for sapphire. 

The uncertainty in the obtained estimate of 𝐴𝐴11  has also been significantly reduced 

compared to a previous approach-to-contact method79,80 because of the use of the complete 𝑑𝑑𝑐𝑐-

distribution and the specific surface geometry of the substrate.  In this prior method, the surface 

was modeled using the flat plate surface geometry, which as noted before yields a single value of 

𝑑𝑑𝑐𝑐 for any approach speed (i.e., the 𝑑𝑑𝑐𝑐-distribution resembles a delta function).  Along with eq 1.5, 
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this approach results in the self-Hamaker constant 𝐴𝐴11 being proportional to the sixth power of 𝑑𝑑𝑐𝑐, 

or 𝐴𝐴11 ∝ 𝑑𝑑𝑐𝑐6.  But as AFM experiments invariably yield a distribution of 𝑑𝑑𝑐𝑐-values (because of the 

inherent roughness of the surface), an estimate of 𝐴𝐴11 was obtained by the use of the average value 

of 𝑑𝑑𝑐𝑐 .  The resulting uncertainty in 𝐴𝐴11 was then generated using propagation of error, which 

indicates that the relative error in the estimate of 𝐴𝐴11  is 6 times that of 𝑑𝑑𝑐𝑐 , or 𝛿𝛿𝐴𝐴11/𝐴𝐴11 =

6 𝛿𝛿𝑑𝑑𝑐𝑐/𝑑𝑑𝑐𝑐 (where 𝛿𝛿𝐴𝐴11 and 𝛿𝛿𝑑𝑑𝑐𝑐 are the assigned uncertainties to the corresponding parameters).   

Hence, even moderate uncertainties in 𝑑𝑑𝑐𝑐 give rise to somewhat large uncertainties in 𝐴𝐴11.  For 

example, the average experimental value of 𝑑𝑑𝑐𝑐  from Figure 6.9(a) is 8.0 nm with a standard 

deviation of 0.58 nm.  If one standard deviation is used as an estimate of the uncertainty, then this 

modest relative error in 𝑑𝑑𝑐𝑐 of 7.25% leads to the sizeable relative error of 43.5% in 𝐴𝐴11.  (The final 

uncertainties will of course be even larger if more than one standard deviation is used.) 

The new method, with its utilization of the full 𝑑𝑑𝑐𝑐-distribution, lessens the impact of error 

propagation when at least determining 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒.   In particular, the relatively sharp minimum found 

with the relative entropy directly results in a rather small uncertainty in 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒. For example, one of 

the main sources of uncertainty in the analysis is the 10% error in the reported radius of the 

polystyrene probe. Yet, this error ultimately yields uncertainties that are much less than the error 

reported from the sphere radius. (The other main source of error results from the two different 

reported values of 𝐴𝐴22.)  The use of the model predicted quasi-static distributions should also give 

rise to additional errors, as a result of having to generate various representative surface height maps 

(instead of being able to directly image the surface where the 𝑑𝑑𝑐𝑐-distributions are experimentally 

obtained). But these errors, including other unavoidable experimental errors, should be relatively 

small, at least compared to the two main sources of uncertainty mentioned above. 
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6.5 Summary 

This chapter provided a comprehensive experimental validation of the modified approach-to-

contact method in which the self-Hamaker constant of three experimental substrates was 

determined to be in excellent agreement with prior predictions and with an associated uncertainty 

that was significantly reduced compared to the previous approach-to-contact method developed 

by Fronczak et al.79,80  The consistency in 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 between plates for a particular substrate is a key 

result because it shows that surface roughness has been properly considered in the development of 

the modified approach-to-contact method.  Furthermore, the chosen substrates spanned a range of 

self-Hamaker constant values which further justifies the applicability of the method for a range of 

solid materials without the need to modify their surfaces before performing force or imaging 

experiments.  This work shows promise in providing a reliable means of determining the self-

Hamaker constant across a broad range of solid materials and applications. 
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 CONCLUSIONS AND FUTURE WORK 

Particle adhesion occurs due to the presence of intermolecular forces between molecules; vdW 

forces are of particular interest because they are always present in a system.  The strength of the 

vdW force between a pair of interacting materials is quantified by the Hamaker constant, and this 

work was concerned with the development of an AFM-based method for determining 𝐴𝐴 across a 

variety of solid materials.  The Hamaker constant can be estimated from several portions of the 

AFM deflection curve, including the pull-off and approach-to-contact regions.  In the approach-

to-contact region, which is the focus of this work, the behavior of the AFM cantilever tip is 

assumed to be quasi-static such that the cantilever is taken to be in mechanical equilibrium at each 

instant during its approach to the surface.  Beyond a critical tip-surface separation distance, 

however, mechanical equilibrium cannot be maintained, and the tip immediately jumps into 

contact with the surface; the magnitude of this jump can therefore be related to the Hamaker 

constant. 

 Fronczak et al.79,80 developed an approach-to-contact method relating 𝐴𝐴 to the deflection 

of the tip at first contact with the surface, 𝑑𝑑𝑐𝑐 .  While 𝑑𝑑𝑐𝑐  is well defined experimentally, it is 

dependent on the approach speed.  For a sufficiently slow approach speed (e.g. 200 nm/s or less) 

and treating the cantilever as a sphere with effective radius 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, the self-Hamaker constant may 

be found using eq 1.7.  While preliminary estimates of 𝐴𝐴12  for several solid materials (e.g. 

amorphous silica) were found to be in good agreement with predictions of the Lifshitz 

approximation, even for the nominally smooth surfaces studied, a distribution of 𝑑𝑑𝑐𝑐-values was 

reported.  However, the error in the experimentally-determined average value of 𝑑𝑑𝑐𝑐 was greatly 

propagated in the calculation of the self-Hamaker constants.  As such, inherent surface roughness 
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is the primary reason for the emergence of the broad distribution of deflections at contact, or 𝑑𝑑𝑐𝑐-

distribution.  As shown in Chapter 6, the range in 𝑑𝑑𝑐𝑐-values comprising a 𝑑𝑑𝑐𝑐-distribution can be 

quite broad.  Therefore, obtaining only a single, average value of 𝑑𝑑𝑐𝑐 from a single set of AFM 

force experiments is not sufficient as the entire distribution of values must be considered.  

Therefore, given that the resulting 𝑑𝑑𝑐𝑐-distribution should be directly influenced by the inherent 

surface roughness, key improvements to the approach-to-contact AFM method developed by 

Fronczak et al.79,80 were obtained by explicitly accounting for the topography of the given surface.  

Moreover, the incorporation of surface roughness into the method, via the direct connection of 𝐴𝐴 

to a given surface’s characteristic 𝑑𝑑𝑐𝑐-distribution, lead to more accurate estimates of the Hamaker 

constant with a significant reduction in their uncertainties. 

 The development of the modified approach-to-contact method first began with the 

derivation of a new expression describing the vdW force between an AFM cantilever tip and 

surface of arbitrary roughness.  Corresponding critical point conditions were then derived under 

the quasi-static assumption to determine 𝑑𝑑𝑐𝑐  along any point on a surface.  Because of surface 

roughness, different values of 𝑑𝑑𝑐𝑐  are obtained as the tip accesses spatially separate surface 

positions and as the tip attempts to access the same surface position but cannot do so exactly due 

to the inevitable horizontal drift of the cantilever.  Consequently, a characteristic 𝑑𝑑𝑐𝑐-distribution 

was observed for a given surface and chosen cantilever properties, providing a signature of the 

underlying surface roughness.  A thorough study was completed to understand the effects of 

surface geometry on the resulting 𝑑𝑑𝑐𝑐-distributions, in the quasi-static limit, for numerous surface 

height functions.  Contact loci (one-dimensional) and contact mesh plots (two-dimensional) were 

obtained illustrating the position of the sphere when in contact with the surface.  The presence of 
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small-scale roughness serves to vary the amount of substrate material that is close to sphere and 

therefore influences the magnitude of the vdW force and ultimately 𝑑𝑑𝑐𝑐. 

 A model describing the dynamic behavior of the cantilever as it approaches and interacts 

with an arbitrary surface was then developed.  When the cantilever interacts with a perfectly flat 

plate, the resulting ratio of 𝑑𝑑𝑐𝑐 to its value in the quasi-state limit, 𝑑𝑑𝑐𝑐,𝑞𝑞𝑠𝑠, approaches unity as the 

cantilever approach speed decreases.  This trend was due to the following reasons.  First, the speed 

of the tip, however large it may become just before the tip contacts the surface, remains finite (in 

contrast to the tip immediately jumping to the surface upon reaching the critical point in the quasi-

static model).  Second, the platform is in constant motion (in contrast to the fixed location of the 

platform once the critical point is reached in the quasi-static model).  Hence, 𝑑𝑑𝑐𝑐 for the dynamic 

model was less than 𝑑𝑑𝑐𝑐,𝑞𝑞𝑠𝑠. 

A similar conclusion held for more complicated surfaces for which a comparison was made 

between 𝑑𝑑𝑐𝑐-distributions obtained using the dynamic model versus the quasi-static limit.  The 

relative entropy was computed between the two distributions to provide a quantitatively 

meaningful analysis on the importance of inertial effects.  For a range of different inputted values 

of the Hamaker constant, or 𝐴𝐴𝑚𝑚𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 , an effective Hamaker constant, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 , was determined by 

minimizing the relative entropy between the dynamic and quasi-static 𝑑𝑑𝑐𝑐 -distributions.  For 

sufficiently slow approach speeds, for which  𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒/𝐴𝐴 is close enough to one, the quasi-static 

model provided an accurate description of the behavior of the AFM cantilever tip.  Hence, there is 

no need to invoke the more computationally intensive dynamic model.  In other words, at these 

approach speeds, inertial effects in an AFM experiment should be essentially unobservable. 

A method utilizing the discrete Fourier transform was then developed to generate 

representative surfaces from an existing AFM surface height map while maintaining similar 
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roughness statistics.  The need for this DFT method arose from the limitation that AFM force 

measurements and imaging could not be completed along the same exact portion of a substrate 

since the modified approach-to-contact method requires a comparison between model-predicted 

and experimental 𝑑𝑑𝑐𝑐 -distributions.  Two variations of the surface reconstruction method were 

derived; one in which the range in surface variations was small (e.g. for relatively smooth surfaces) 

and one for surfaces containing many large peaks extending greatly beyond the average variations 

in the surface.  It was found that in both cases, the resulting statistics describing the surface such 

as RMS roughness, skewness, and kurtosis, agreed very well between the original and 

reconstructed surfaces.  Finally, a study revealed that while the surface map obtained through AFM 

imaging was actually the contact mesh of the underlying surface, for a fine tip probe radius (e.g. 

10 nm), the distinction between the contact mesh and actual surface was insignificant for the 

experimental substrates considered in this work. 

  Finally, a robust experimental validation of the modified approach-to-contact method was 

completed for which the self-Hamaker constant of amorphous silica, stainless steel, and sapphire 

was determined.  It was found that the self-Hamaker constant values were consistent between 

sample plates of varying surface topography (and RMS roughness) across each material.  This 

consistency is a key result because it shows that surface roughness has been properly considered 

in the development of the modified approach-to-contact method.  Furthermore, the average self-

Hamaker constant values across the three materials were in excellent agreement with Lifshitz 

determined values.  Overall, the novel approach-to-contact method developed herein provides a 

reliable means of determining the self-Hamaker constant across a broad range of solid materials. 

 There are several aspects of the modified approach-to-contact method developed in this 

work that could be further considered.  First, while the method is valid for determining the 
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Hamaker constant of materials in air, it would be worthwhile to consider an extension to fluid 

environments.  There are several systems of interest in which vdW interactions occur across an 

intervening liquid medium, and for which accurate knowledge of these corresponding Hamaker 

constants is important (e.g. aggregation of colloidal particles in aqueous dispersion113–115, 

structural investigations of living cells116–118, and physical properties of pharmaceutical products 

in solution119,120).  The extension of the method to such systems would be worthwhile, where the 

cantilever tip moving toward the substrate would now also experience hydrodynamic forces from 

the intervening medium.  Hydrodynamic effects may remain consequential over a broad range of 

cantilever approach speeds, such that the quasi-static model only becomes a valid description of 

the cantilever behavior at very low (and impractical) approach speeds. 

These non-equilibrium viscous interactions do not affect the quasi-static behavior of the 

cantilever tip but would have to be included in the dynamic analysis of the tip motion.  For the 

fluid environments considered here, the Reynolds number would most likely be low such that 

motion of the cantilever could be described by the Stokes flow regime.121,122  Equations describing 

Stokes flow (e.g. a momentum balance) would need to be derived from the Navier-Stokes 

equations and included as additional terms in the dynamic model.121,122  Experiments would need 

to be carried out in an AFM fluid cell, and a potential starting point would be to determine the 

effect of cantilever approach speed for a colloidal probe (since the radius is well defined) 

interacting with a smooth surface like amorphous silica.  Figure 7.1 shows an example setup of an 

AFM augmented with a fluid cell which allows for force and imaging experiments to be conducted 

while the experimental substrate and cantilever probe are submerged in a liquid. 



 
 

153 

 

Figure 7.1 Schematic of an AFM augmented with a fluid cell which allows for force and imaging 
experiments to be conducted in a fluid environment. 

 
 Beyond applications to fluid environments, it would also be worthwhile to consider 

extending the method to analyzing deformable materials in, for example, biological and defense 

applications.  For example, in biology, atomic force microscopy can be utilized to characterize 

biomechanical properties in cells as well as assess cell adhesion.11  In the defense industry, there 

is a growing importance towards understanding how to accurately detect trace explosives that may 

appear on surfaces.9  While some work has been done by Fronczak et al.123 towards determining 

the Hamaker constant of trace explosives that include TNT and RDX, it would be of interest to 

experiment on these surfaces while taking surface roughness into consideration.  Due to the 

deformable nature of cells and trace explosive residue, a reasonable attempt at quantifying the 

Hamaker constant from the modified approach-to-contact model could be made.  However, a study 

will need to be made examining the impact of surface mechanics on contact deformation in order 
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to proceed because the deflection at first contact for deformable materials may be difficult to 

obtained accurately through experiments. 

The impact of surface deformation could be directly incorporated into the approach-to-

contact method through a contact mechanics model including the classic Hertz model describing 

the contact between two spheres or a sphere and a half space, as well as the JKR model which 

expands on the Hertz model and considers the adhesive contact between two surfaces.87  A 

challenge in utilizing the approach-to-contact model for deformable surfaces lies in determining 

the deflection at contact experimentally.  Figure 7.2 shows a representative force curve of an AFM 

cantilever approaching and contacting a deformable material.  Unlike the solid materials discussed 

in this work, for which the maximum deflection of the cantilever is well defined, 𝑑𝑑𝑐𝑐 may be more 

difficult to extract from experimental force curve data.  The inclusion of contact models may be 

able to help predict the degree of deformation of the surface, leading to a more accurate 

determination of 𝑑𝑑𝑐𝑐.  Regardless, experiments should be run at slow approach speeds to ensure 

minimal deformation of the surface. 
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Figure 7.2 A representative force curve showing the deflection of the cantilever interacting with a 
deformable material. 

 
Another future consideration includes the incorporation of surface roughness on the AFM 

cantilever, modeled in this work as a smooth sphere.  Similarly to the surface height functions, 

roughness on the sphere would be modeled with a separate “height function”, thereby requiring 

modification of the vdW force model developed in Chapter 2.  The introduction of roughness on 

the sphere would further vary the vdW force as the sphere makes contact with different portions 

of the surface, as compared to the smooth sphere analysis.  Figure 7.3 illustrates an example of a 

sphere, augmented with surface roughness, interacting with a (a) smooth and (b) rough plate.  

Depending on the relative size of the roughness on the surface of the sphere versus the surface, the 

magnitude of the vdW force, and in turn the deflection at contact, will either increase if the contact 

area increases, or decrease if the contact area decreases.  For the surface height functions described 

in Chapter 3, the shape and magnitude of the resulting 𝑑𝑑𝑐𝑐-distributions will be influenced by the 

roughness scale on the sphere.  Again, if the roughness scales are similar, higher deflections may 

be observed if the sphere and surface align in such a way that the contact area is larger (smaller 

deflections may also result if the area of contact deceases between the sphere and surface). 
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Figure 7.3 Illustration of a sphere, augmented with surface roughness, interacting with a (a) 
perfectly flat plate and (b) a plate with roughness. 

 
The introduction of roughness on the sphere and extending the analysis to fluid environments as 

well as to deformable materials would provide a robust AFM based method to determine the self-

Hamaker constant of a whole range of materials for a wide variety of applications. 
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APPENDIX: SELECTED MATLAB CODES 

A1.1 Minimum Distance Method/QS/Dynamic Model MATLAB Code 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This code utilizes the minimum distance method to determine the        % 
% point of first contact between the cantilever (sphere) and surface     % 
% for each point in an (xs,ys) matrix.  Upon determining the contact     % 
% points, the code then calculates zs,crit, zp,crit, and dc,qs.  Then,   % 
% a force matrix is generated, and the dynamic model is solved for the   % 
% corresponding (xs,ys) points.                                          % 
%                                                                        % 
% In this example, the surface height function h(x,y) is defined as      % 
% h(x,y) = cos(x) + cos(y).  The radius of the sphere is 1 micron and    %  
% the cantilever velocity is 200 nm/s.                                   % 
%                                                                        % 
% This code can also be run to analyze surface height functions of       % 
% the form h(x) (where y is constant along the entire surface).          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear; clc 
warning('off','all'); 
  
sphere_radius = 1; % Sphere radius, in microns 
vc = 200E-9; % cantilever velocity, in nm/s 
xs = linspace(0,2*pi(),30)/sphere_radius; % xs vector 
ys = linspace(0,2*pi(),30)/sphere_radius; % ys vector 
  
zpo = 10; % initial position of platform above surface 
freq = 1; % wavelength component of surface height function 
amplitude = 0.5; % amplitude component of surface height function 
  
for rpq = 1:length(xs) 
for pqr = 1:length(ys) 
    % define vectors to evaluate surface height function over 
    x_eval_sphere = linspace(xs(rpq)-1,xs(rpq)+1,2000); 
    y_eval_sphere = linspace(ys(pqr)-1,ys(pqr)+1,2000); 
    % grid of points to evaluate surface height function over 
    [x_mesh,y_mesh] = meshgrid(x_eval_sphere,y_eval_sphere); 
    % surface height function 
    z_mesh = amplitude*cos(freq*x_mesh) + amplitude*cos(freq*y_mesh); 
    % evaluate half-sphere at mesh points defined above 
    z_sphere = zpo - sqrt(1-(x_mesh-xs(rpq)).^2-(y_mesh-ys(pqr)).^2); 
    % remove imaginary values from z_sphere 
    real_zsphere = real(z_sphere); 
    % Calculate difference between surface and sphere and get min value 
    % and location 
    g_matrix = real_zsphere-z_mesh;     
    [M_x,I_x] = min(min(g_matrix,[],1)); 
    [M_y,I_y] = min(min(g_matrix,[],2)); 
    % 1st point of contact on the surface - x 
    x_contact(pqr,rpq) = x_eval_sphere(I_x);  
    % 1st point of contact on the surface - y 
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    y_contact(pqr,rpq) = y_eval_sphere(I_y); 
    % Define smaller x,y range and generate updated x,y contact points 
    range_set = 1; 
    lower_bound_x = x_eval_sphere(I_x-range_set); 
    upper_bound_x = x_eval_sphere(I_x+range_set); 
    lower_bound_y = y_eval_sphere(I_y-range_set); 
    upper_bound_y = y_eval_sphere(I_y+range_set); 
     
    x_eval_sphere_updated = linspace(lower_bound_x,upper_bound_x,1000); 
    y_eval_sphere_updated = linspace(lower_bound_y,upper_bound_y,1000); 
    [x_mesh_updated,y_mesh_updated] =     
meshgrid(x_eval_sphere_updated,y_eval_sphere_updated); 
     
    z_mesh_updated = amplitude*cos(freq*x_mesh_updated) + 
amplitude*cos(freq*y_mesh_updated); 
    
    z_sphere_updated = zpo - sqrt(1-(x_mesh_updated-xs(rpq)).^2-
(y_mesh_updated-ys(pqr)).^2); 
     
    g_matrix_updated = real(z_sphere_updated)-z_mesh_updated; 
    [M_x_updated,I_x_updated] = min(min(g_matrix_updated,[],1)); 
    [M_y_updated,I_y_updated] = min(min(g_matrix_updated,[],2)); 
    % Determine the x,y final contact points 
    x_contact_updated(pqr,rpq) = x_eval_sphere_updated(I_x_updated);  
    y_contact_updated(pqr,rpq) = y_eval_sphere_updated(I_y_updated);  
     
    % Get zs,contact 
    syms x y 
    h = amplitude*cos(freq*x) + amplitude*cos(freq*y); 
    % differentiate h with respect to x and y 
    h_prime_x = diff(h,x); 
    h_prime_y = diff(h,y); 
    h_subs_1 = subs(h,x,x_contact_updated(pqr,rpq)); 
    h_subs_2 = subs(h_subs_1,y,y_contact_updated(pqr,rpq)); 
    h = double(h_subs_2); 
    % Calculate zs,contact 
    zs_contact_syms = h + 
1./(1+(subs(h_prime_x,x,x_contact_updated(pqr,rpq))).^2+... 
        (subs(h_prime_y,y,y_contact_updated(pqr,rpq))).^2).^0.5; 
    zs_contact(pqr,rpq) = double(zs_contact_syms); 
end 
end 
  
% Get zs,crit 
R  = sphere_radius*1E-6; % Sphere radius in m 
A  = 1.0E-19; % Hamaker constant in J 
kc = 0.1; % Cantilever spring constant in N/m 
res_freq = 38e3; % Resonant frequency in kHz 
m  = kc /(res_freq*2*pi())^2;  % cantilever mass in kg 
b = 1; % integral bounds 
  
syms zs_crit 
syms x y 
  
% for each xs, ys, determine zs,crit 
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for j = 1:length(xs) 
for i = 1:length(ys) 
    eqn3 = @(zs_crit) simp2D(@(x,y) (8/pi())*(A/kc/R^2).*(zs_crit-... 
        (amplitude*cos(freq*x) + amplitude*cos(freq*y)).*((x-xs(j)).^2+... 
        (y-ys(i)).^2+((amplitude*cos(freq*x) + amplitude*cos(freq*y)))-... 
        zs_crit).^2-1).^(-4), xs(j)-b, xs(j)+b, ys(i)-b, ys(i)+... 
        b,1000,1000) - 1; 
    options = optimoptions('fsolve', 'OptimalityTolerance', 1E-20, 'Display', 
'off'); 
    eqn_int(j,i) = fsolve(@(zs_crit) eqn3(zs_crit), zs_contact(j,i)+.1, 
options); 
    zs_crit_vect(j,i) = eqn_int(j,i); 
    disp(i) 
end 
end 
  
% for each xs, ys, determine zp,crit 
syms zp_crit 
for j = 1:length(xs) 
for i = 1:length(ys) 
    eqn4 = @(zp_crit) simp2D(@(x,y) -(4/3/pi()).*(A/kc/R^2).*((x-
xs(j)).^2+... 
        (y-ys(i)).^2+((amplitude*cos(freq*x) +amplitude*cos(freq*y))... 
        -zs_crit_vect(j,i)).^2-1).^(-3),xs(j)-b, xs(j)+b, ys(i)-b, ys(i)... 
        +b,1000,1000) - zs_crit_vect(j,i) + zp_crit - 1; 
    options = optimoptions('fsolve', 'OptimalityTolerance', 1E-20, 'Display', 
'off'); 
    eqn_int2(j,i) = fsolve(@(zp_crit) eqn4(zp_crit), zs_crit_vect(j,i)+2, 
options); 
    zp_crit_vect(j,i) = eqn_int2(j,i); 
    disp(i) 
end 
end 
% In the quasi-static limit, zp,contact = zp,crit 
zp_contact_vect = zp_crit_vect; 
% Determine dc,qs 
dc_quasi_static_mat = -(zp_contact_vect - zs_contact - 1); 
  
% Generate force matrix needed to solve the dynamic model 
zMax = zpo; % Starting point above the surface of the sphere 
  
% Generate values for gInt which is the "integrating function" that will 
% be interpolated when solving the ODE 
zStepSize = 0.001; % Step size of the integrating function 
for jj = 1:length(xs) 
    for ii = 1:length(ys) 
        zMin(jj,ii) = zs_contact(jj,ii); % Point at which the sphere touches 
the surface 
        zStepCount(jj,ii) = round((zMax-zMin(jj,ii))/zStepSize,0); 
    end 
end 
% Find max size of matrix 
max_size = max(max(zStepCount)); 
Force_Matrix = zeros(max_size,2*length(xs)*length(ys)); 
count = 1; 
% Numerical Integration of "full expression" with pre-factors 
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for jj = 1:length(xs) 
    for ii = 1:length(ys) 
        for nn=1:(zStepCount(ii,jj)) 
            zVal = zMin(ii,jj) + nn*zStepSize; 
            f = @(q,p) (-4/3/pi())*(A/kc/R^2)*((q-xs(jj)).^2+(p-
ys(ii)).^2+... 
                ((amplitude*cos(freq*q) + amplitude*cos(freq*p))-zVal).^2-
1).^(-3); 
            a = quad2d(f, xs(jj)-1, xs(jj)+1, ys(ii)-1, ys(ii)+1,'RelTol', 
1E-8, 'AbsTol', 1E-8) ; 
            Force_Matrix(nn,count) = zVal; % Step 
            Force_Matrix(nn,count+1)= a; % Value @step 
        end 
        count = count + 2; 
    end 
end 
  
count = 1; 
% Solve the dynamic model at each xs,ys 
for mm = 1:length(xs) 
    for n = 1:length(ys) 
        b = 1; 
        astar = vc*sqrt(m)/(R*sqrt(kc)); %SCALED %For use in the ODE 
        bstar = A/(kc*R^2)/pi(); %SCALED %For use in the ODE 
        % Simulation stops here (overall) 
        Tfinal = ((zpo-zs_contact(n,mm)-1)*R/vc)*2*pi()*res_freq;  
  
        % Intital mechanical equilibirum, Solve force balance for F_NET = 0 
        syms zs_scaled_stat 
        eqn5 = @(zs_scaled_stat) simp2D(@(x,y) -(4/3/pi()).*(A/kc/R^2).*... 
            ((x-xs(mm)).^2+(y-ys(n)).^2+((amplitude.*cos(freq.*x) +... 
            amplitude.*cos(freq.*y))-zs_scaled_stat).^2-1).^(-3),xs(mm)-b,... 
            xs(mm)+b, ys(n)-b, ys(n)+b,1000,1000) - zs_scaled_stat + zpo - 1; 
        options = optimoptions('fsolve', 'OptimalityTolerance', 1E-10, 
'Display', 'iter','Display', 'off'); 
        eqn_int3 = fsolve(@(zs_scaled_stat) eqn5(zs_scaled_stat), zpo, 
options); 
        zs_scaled_stat = eqn_int3; 
        Initial_Position = zs_scaled_stat; 
        Initial_Velocity = -astar; 
        Initial_Timestart = 0; 
        Initial_Timeend = Tfinal; 
        tolerance = 1E-20; 
        t = []; % Initialize empty vector t 
        y = []; % Same for y 
        Timestart = Initial_Timestart; 
        Timeend   = Tfinal; 
        % RUN ODE 
        % ODE Settings - Vary with time/position 
        tSpan= [Timestart,Timeend]; % Time interval with time step 
        InitialConditions    =   zeros(2,1); 
        InitialConditions(1) =   Initial_Position; % Position or zs 
        InitialConditions(2) =   Initial_Velocity; % Velocity or slope 
         
        options = odeset('RelTol', tolerance, 'AbsTol',[tolerance 
tolerance]); 
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        % Note: a is time (t) and b is position/velocity (y) 
        g1 = nonzeros(Force_Matrix(:,count)); 
        g1 = [zs_contact(n,mm);g1]; 
        count = count + 1; 
        g2 = nonzeros(Force_Matrix(:,count)); 
        g2 = 1./g2; 
        g2 = [0;g2]; 
        g = [g1,g2]; 
        % Solve using ode23t 
        [a,b] = ode23t(@(a,b) 
odefunction(a,b,zpo,astar,g),tSpan,InitialConditions,options); 
        t = [t,a']; % Add latest run to overall t vector 
        y = [y,b']; % Add latest run to overlal y vector 
        % Scenario One: Just "Jump to Final Contact" 
        % Correct for contact @ final point 
        t_jump = a; 
        y_jump = b; 
        % add last time point to t for instanenous jump 
        last_tp = t(end); 
        t_jump(end+1) = t(end); 
        y_jump(end+1,1) = zs_contact(n,mm); 
        zp_end = zpo -(vc/R*sqrt(m/kc))*t_jump(end); 
        dc_instant_jump = (y_jump(end,1)-zp_end+1)*R*1E9; 
        y_jump(end,2) = dc_instant_jump; 
        % Scenario Two: Cantilever travels at last velocity until  
        % making contact with surface 
        t_velocity = t; 
        y_velocity = y; 
        velocity = y_velocity(2,end); 
        dist_1 = y_velocity(1,end); 
        dist_2 = zs_contact(n,mm); 
        delta_d = abs(dist_2-dist_1); 
        timeframe = delta_d/(-1*y_velocity(2,end)); 
        y_velocity(1,end+1) = zs_contact(n,mm); 
        y_velocity(2,end) = y_velocity(2,end-1); 
        zp_end2 = zpo -(vc/R*sqrt(m/kc))*t_velocity(end) - 
(vc/R*sqrt(m/kc))*timeframe; 
        dc_velocity = (y_velocity(1,end)-zp_end2+1)*R*1E9; 
        dc_SIM_FINAL = (dc_instant_jump+dc_velocity)/2; 
        dc_SIM_FINAL_vector(n,mm) = dc_SIM_FINAL; 
        count = count + 1; 
        zpstar = zpo-(vc/R*sqrt(m/kc))*t; 
        dc = (b(:,1)-zpstar'+1)*R; 
        dc(end+1) = dc_SIM_FINAL/1E9; 
        t_reg = sqrt(m/kc)*t_jump; 
        clear zs_scaled_stat a b g 
    end 
end 
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A1.2 odefunction MATLAB Code 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This code accompanies the MDM/QS/dynamic model code.  This function    % 
% utilizes an interpolating scheme to solve the ODE at the points        % 
% defined in the force matrix, g.  The function decomposes the ODE into  % 
% a series of first order ODES.                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function dydt = odefunction(a,b,zpo,astar,g) 
dydt = zeros(2,1); 
gInt = interp1(g(:,1),g(:,2),b(1),'pchip'); 
dydt(1)= b(2); 
dydt(2) = (1./gInt)-b(1)-astar*a+zpo-1; 
end 
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A1.3 Surface Reconstruction MATLAB Code 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This code generates representative surface scans via a discrete        % 
% Fourier transform algorithm. An n by n surface is first loaded and     % 
% normalized by the mean.  Then the DFT is taken and the frequency       % 
% components are randomized based on the chosen cut-off value.  The new  % 
% surface is then generated by performing an inverse DFT and the         % 
% corresponding amplitude spectrum is outputted, along with a mesh       % 
% plot of the two surfaces.                                              % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear all; close all; clc; 
  
data = load('Raw_data.txt'); % load raw data from AFM surface scan 
scan_size = 10; % select scan size, in microns 
points = 512; % select number of points comprising the data matrix 
matrix_size = sqrt(length(data)); % finds the size of the square image 
% creates a matrix of zeros as large as image size 
data_matrix = zeros([matrix_size, matrix_size]);  
  
k = 1; % indexes position in column file 
  
for i = 1:1:matrix_size % x direction 
    for j = 1:1:matrix_size % y direction 
        data_matrix(i,j) = data(k); % assigns  
        k = k + 1; 
    end 
end 
% normalize by the mean 
data_matrix = data_matrix + abs(min(min(data_matrix))); 
data_matrix = data_matrix/1000; 
  
cutoff = 20; % select a cut-off value for the wavelength components 
N = length(data_matrix); % window length/data length 
Y1_o = fft2(data_matrix)/(N*N); % take fft 
N1 = ceil(N/2);      
  
nc = Y1_o(2:points, 2:points); 
zf_new = zeros(points-1,points-1); 
  
% Generate conjugate pairs 
lower = tril(nc); 
for xx = 1:points-1 
    for yy = 1:points-1 
        if xx == yy 
            continue 
        else 
            rand_phi = rand(1,1)*2*pi(); 
            phase_shift = rand_phi; 
            shift = -phase_shift/(2*pi())*N; 
            w = 2*pi()/N*(yy); 
            w = 1; 
            if xx || yy > cutoff 
                shift = 0; 
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            end 
            zf_new(yy,xx) = nc(yy,xx) * exp(-1i*shift*w); 
        end 
    end 
end 
zf_new = tril(zf_new); 
for xx = 1:(points/2)-1 
    for yy = 1:(points/2)-1 
        if xx == yy 
            rand_phi = rand(1,1)*2*pi(); 
            phase_shift = rand_phi; 
            shift = -phase_shift/(2*pi())*N; 
            w = 2*pi()/N*(yy); 
            w = 1; 
            if xx > cutoff 
                shift = 0; 
            end 
            zf_new(yy,xx) = nc(yy,xx) * exp(-1i*shift*w); 
        end 
    end 
end 
zf_new(points/2,points/2) = nc(points/2,points/2); 
space = 2; 
for xx = (points/2)+1:points-1 
    for yy = (points/2)+1:points-1 
        if xx == yy 
            zf_new(xx,yy) = conj(zf_new(xx-space,yy-space)); 
            space = space + 2; 
        end 
    end 
end 
  
for xx = 1:points-1 
    for yy = 1:points-1 
        if xx == yy 
            continue 
        else 
            zf_new_hold(xx,yy) = conj(zf_new(points-xx,points-yy)); 
        end 
    end 
end 
  
for xx = 1:points-1 
    for yy = 1:points-1 
        if xx == yy 
            continue 
        else    
            zf_new(xx,yy) = zf_new(xx,yy) + zf_new_hold(xx,yy); 
        end 
    end 
end 
  
temp = Y1_o; 
for ii = 2:points 
    for jj = 2:points 
        temp(ii,jj) = 0; 
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    end 
end 
for yy = 2:points 
    for xx = 2:points 
        temp(yy,xx) = zf_new(yy-1,xx-1); 
    end 
end 
zf_new = temp; 
% generate random for the first row and columns leaving (1,1) unchanged 
for yy = 2:points/2 
    rand_phi = rand(1,1)*2*pi(); 
    phase_shift = rand_phi; 
    shift = -phase_shift/(2*pi())*N; 
    w = 2*pi()/N*(yy); 
    w = 1; 
    if yy > cutoff 
        shift = 0; 
    end 
    temp_first_row(1,yy) = Y1_o(1,yy) * exp(-1i*shift*w); 
end 
temp_imag_first_row = -imag(flip(temp_first_row(2:end))); 
temp_real_first_row = real(flip(temp_first_row(2:end))); 
temp_complex_first_row = complex(temp_real_first_row,temp_imag_first_row); 
first_row = [temp_first_row Y1_o(1,(points/2)+1) temp_complex_first_row]; 
  
for zz = 2:points/2 
    rand_phi = rand(1,1)*2*pi(); 
    phase_shift = rand_phi; 
    shift = -phase_shift/(2*pi())*N; 
    w = 2*pi()/N*(yy); 
    w = 1; 
    if zz > cutoff 
        shift = 0; 
    end 
    temp_first_column(zz,1) = Y1_o(zz,1) * exp(-1i*shift*w); 
end 
temp_imag_first_column = -imag(flip(temp_first_column(2:end))); 
temp_real_first_column = real(flip(temp_first_column(2:end))); 
temp_complex_first_column = complex(temp_real_first_column,... 
    temp_imag_first_column); 
first_column = [temp_first_column; Y1_o((points/2)+1,1);... 
    temp_complex_first_column]; 
  
first_element = Y1_o(1,1); 
first_mid_row_element = Y1_o(1,(points/2)+1); 
first_mid_column_element = Y1_o((points/2)+1,1); 
  
zf_new(1,:) = first_row; 
zf_new(:,1) = first_column; 
zf_new(1,1) = first_element; 
% final surface 
Y1 = real(ifft2(zf_new))*(N*N); 
% check the RMS of the original and new surfaces 
RMS_original = std(data_matrix,0,'all'); 
RMS_new = std(Y1,0,'all'); 
NN = linspace(1,points,points); 
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amplitudes_original = abs(Y1_o); 
amplitudes_new = abs(zf_new); 
difference = amplitudes_original-amplitudes_new; 
% generate the amplitude spectrum 
figure(1) 
stem3(NN(1:points/2)-1,NN(1:points/2)-1,2*... 
    amplitudes_original(1:points/2,1:points/2)) 
xlabel('u') 
ylabel('v') 
zlabel('Amplitude') 
set(gcf,'color','w'); 
title('Amplitude Spectrum') 
% generate a mesh plot showing both surfaces 
figure(2) 
mesh(x_mesh,y_mesh,data_matrix, 'EdgeColor','#CDCAC9') 
xlabel('x (\mum)') 
ylabel('y (\mum)') 
zlabel('z (nm)') 
set(gcf,'color','w'); 
hold on 
mesh(x_mesh,y_mesh,Y1) 
xlabel('x (\mum)') 
ylabel('y (\mum)') 
zlabel('z (nm)') 
set(gcf,'color','w'); 
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