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ABSTRACT

Across a range of sectors, including transportation and healthcare, the use of automation

to assist humans with increasingly complex tasks is also demanding that such systems are

more interactive with human users. Given the role of cognitive factors in human decision-

making during their interactions with automation, models enabling human cognitive state

estimation and prediction could be used by autonomous systems to appropriately adapt their

behavior. However, accomplishing this requires mathematical models of human cognitive

state evolution that are suitable for algorithm design. In this thesis, a computational model

of coupled human trust and self-confidence dynamics is proposed. The dynamics are modeled

as a partially observable Markov decision process that leverages behavioral and self-report

data as observations for estimation of the cognitive states. The use of an asymmetrical

structure in the emission probability functions enables labeling and interpretation of the

coupled cognitive states. The model is trained and validated using data collected from 340

participants. Analysis of the transition probabilities shows that the model captures nuanced

effects, in terms of participants’ decisions to rely on an autonomous system, that result as a

function of the combination of their trust in the automation and self-confidence. Implications

for the design of human-aware autonomous systems are discussed, particularly in the context

of human trust and self-confidence calibration.
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1. INTRODUCTION

The complexity of human interactions with autonomous systems is increasing, as evidenced

in applications including intelligent transportation systems [1 ], autonomous vehicles [2 ], mil-

itary operations [3 ], [4 ], and medical imaging systems [5 ]. In turn, this necessitates a greater

understanding of these interactions and how they affect outcomes in terms of metrics such

as performance [6 ]–[9 ]. It is well established that knowledge of a human’s cognitive factors,

or states, during their interactions with robots or other autonomous systems is vital to the

design of effective human-automation interaction (HAI) [10 ], [11 ]. Indeed, cognitive factors

such as a human’s trust or self-confidence play a substantial role in their willingness, and

decision, to rely on an autonomous system [12 ]–[18 ]. Therefore, designing autonomous sys-

tems that are responsive to the human’s cognitive state could lead to improvements in task

performance or human learning [18 ]. Specifically, models enabling cognitive state estima-

tion and prediction could be used by autonomous systems to appropriately trigger system

responses through methods such as transparency adaptation, automation behavior adapta-

tion, and flexible autonomy [11 ]. However, accomplishing this requires mathematical models

of human cognitive state evolution that are suitable for algorithm design.

Several conceptual frameworks have been proposed to model HAI and specifically the role

of various cognitive factors in human behavior and decision-making [14 ], [16 ], [17 ], [19 ]–[22 ].

A majority of these frameworks are centered around human trust in automation [16 ], [17 ],

[21 ], [22 ] which is well established as a fundamental psychological factor that can be defined

in an HAI context as the belief that the automation will help the human achieve their goals

in an uncertain situation [14 ]. Moreover, in HAI scenarios that involve a learning context,

humans are also affected by their self-confidence [13 ] which enhances motivation to improve

task performance when learning [23 ]. Importantly, researchers agree that human reliance on

automation is coupled to both human trust and self-confidence [13 ], [24 ]–[28 ].

An overview of computational models of human trust or self-confidence are summarized

in Table 1.1 and shows that a limited number of models exist that incorporate both states

[13 ], [15 ], [40 ]. Many of these models are based upon the ‘confidence vs trust’ hypothesis,

originally developed in [13 ], that assumes a human’s reliance on a given system is dependent

13



Table 1.1. Summary of computational models of trust and self-confidence.
*denotes models that use the ‘confidence vs trust’ hypothesis

Category

Papers Trust Self-Confidence T-SC Coupling Probabilistic Deterministic

Lee and Moray, 1992 [24 ] X X
Lee and Moray, 1994* [13 ] X X X
Gao and Lee, 2006* [15 ] X X X
Maanen et al., 2011 [29 ] X X
Mikulski et al., 2012 [30 ] X X
Saeidi et al., 2015* [31 ] X X X
Juvina et al., 2015 [32 ] X X
Xu and Dudek, 2015 [33 ] X X
Floyd et al., 2015 [34 ] X X
DeVisser et al., 2018 [6 ] X X
Chen et al., 2018 [35 ] X X
Sadrfaridpour et al., 2018* [36 ] X X X
Wagner et al., 2018 [37 ] X X
Tao et al., 2020 [38 ] X X
Azevedo-Sa and Yang, 2021 [39 ] X X
This thesis X X X X

on a difference between the human’s trust in the autonomous system and confidence in their

ability to execute the task manually. For example, this hypothesis states that a person

whose self-confidence exceeds their trust in the automation will choose to perform the task

manually, and vice versa. However, some researchers have published results that contradict

this hypothesis [41 ], [42 ]. For example, in [42 ], the authors show that in a signal detection

task, despite their trust in the system being lower than their self-confidence, participants still

relied on the system instead of completing the task manually. Furthermore, the authors of

[41 ] suggest that operators who have both high trust and high self-confidence tend to prefer

a higher level of automation. Therefore, further investigation of the coupling between trust

and self-confidence is needed to characterize how different combinations of these cognitive

states affect human reliance decisions and subsequent performance. To the knowledge of the

author, existing models do not mathematically characterize this coupling.

The primary contribution of this thesis is a probabilistic discrete-state model of human

trust and self-confidence dynamics as they relate to a human’s repeated interactions with

an autonomous system. An important feature of the model is its interpretability, which is

achieved by first defining a model structure grounded in cognitive psychology and human

factors literature, and then parameterizing it using human subject data collected in the

context of a game-based task. The model considers coupling between the states themselves,

14



as well as coupling between the human’s reliance on the autonomous assistance and the

cognitive states. Furthermore, the model leverages both behavioral and self-report data

for model parameter estimation, collected from 340 human subjects. It is shown that the

model’s predictions are consistent with the findings of [41 ], [42 ] in that the ’confidence vs.

trust’ hypothesis does not account for all scenarios of trust and self-confidence interactions.

Instead, the coupled effect of human trust and self-confidence on reliance is captured by the

state transition probabilities of the trained model and underscores the need for computational

models that can be used for algorithm design for improved HAI.

The thesis is organized as follows. In Chapter 2 , the formulation of the trust and self-

confidence modeling framework is presented. The human subject study, including experi-

mental design and implementation, is outlined in Chapter 3 . The modeling, training, and

validation process is discussed in Chapter 4 . The trained model is analyzed in Chapter 5 ,

followed by a discussion of the implications of the results on the design of human-responsive

automation. Finally, conclusions and future research directions are discussed in Chapter 6 .
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2. MODEL DEFINITION

A partially observable Markov decision process (POMDP) is an extension of a Markov deci-

sion process (MDP) and is defined as a 7-tuple, (S, A, O, T , E , R, γ) where S is a finite set

of states, A is a finite set of actions, and O is a finite set of observations [43 ]. The transition

probability function T governs the transition from the current state s to the next state s′,

given the action a. The emission probability function E governs the likelihood of observing

o, given that the process is in state s. Finally, the reward function R and discount factor γ

can be used to synthesize an optimal control policy but will not be used in the scope of this

work. A POMDP accounts for observability through hidden states; this is particularly useful

in the modeling of human cognitive dynamics which cannot always be directly measured or

observed. This structure is leveraged here to establish a gray-box modeling framework for

estimation and prediction of human trust and self-confidence that can be parameterized us-

ing human subject data. This promotes interpretability of the model. The model definition

is supported by existing literature establishing key relationships between the cognitive states

of interest, available observations, and relevant actions as discussed next.

First, the set of states S is defined as tuples containing the Trust state sT and the Self-

Confidence state sSC , in which each state is attributed either a low (↓) or high (↑) value.

This discrete state definition has been employed in prior POMDP models of human cognitive

states and was shown to be sufficient for real-time trust calibration [44 ]. Given the literature

discussed in Chapter 1 citing the coupling between human trust and self-confidence, the

states are assumed to be coupled according to the following transition probability functions:

T (s′
T |sT , sSC) and T (s′

SC |sT , sSC). Next, the set of actions A is defined as those variables

that affect the state evolution. For HAI contexts, this includes the automation input (to

their interaction with the human) as well as the human’s experience with the automation.

The latter is characterized here as the system performance which reflects the combined per-

formance of the human-automation team at the previous time index. Therefore, A consists

of tuples containing the Automation Input aA and the Performance aP .

Finally, the set of observations O is defined as the observable characteristics of the hu-

man’s decision. As discussed earlier, it is well established in literature that human reliance
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on automation is affected by both the human’s trust in the automation as well as their

self-confidence [19 ]. Therefore, the emission probability function for reliance is defined as

E(oR|sT , sSC). However, while a POMDP can be trained with fewer observations than states,

doing so makes interpretation of the states difficult. Instead, self-reported self-confidence

is used as a second observation for estimating the human’s self-confidence state; this is de-

scribed by the following emission probability function: E(osrSC |sSC). The use of self-reported

self-confidence here is supported by its use in work concerning the application of intelligent

tutoring system (ITS) automation to train a self-confidence model [38 ]. This creates asymme-

try in the emission probability function that aids interpretability of the model, as discussed

in Chapter 4 .

The proposed POMDP model definition is summarized in Table 2.1 and depicted in Fig.

2.1 .

Table 2.1. Definition of the human trust—self-confidence (T-SC) POMDP
model. Human trust and self-confidence are modeled as hidden states. The
hidden states are affected by actions corresponding to the user’s performance
and the input provided by the automation. The observable characteristics of
the user’s chosen reliance and self-reported self-confidence are modeled as the
observations of the POMDP.

States
s ∈ S S =

[
Trust sT

Self-Confidence sSC

] sT ∈ T

T =
{

Low Trust T↓
High Trust T↑

}
sSC ∈ SC

SC =
{

Low Self-Confidence SC↓
High Self-Confidence SC↑

}

Actions
a ∈ A A =

[
Performance aP

Automation Input aA

] aP ∈ P

P =
{

Performance Deterioration P −

Performance Improvement P +

}
aA ∈ A
A =

{
Context Specific

}
Observations
o ∈ O O =

[
Reliance oR

Self-Reported Self-Confidence osrSC

] oR ∈ R

R =
{

No Reliance RNR

Reliance RR

}
osrSC ∈ srSC

srSC =
{

Low Self-Confidence srSC↓
High Self-Confidence srSC↑

}

17



Figure 2.1. A representation of the proposed POMDP model of trust and
self-confidence. The transition probabilities of trust and self-confidence are
dependent on both of the previous states of trust and self-confidence. The
reliance observation is dependent on both the trust state and self-confidence
state. The self-reported self-confidence observation is dependent on only the
self-confidence state.

Using the transition and emission probabilities, the probability distribution over the

states, otherwise known as the belief state b(s), can be calculated using Equation 2.1 , in

which P (·) denotes probability.

b′(s′) = P (s′|o, a, b(s)) =
P (o|s′, a) ∑

s∈S
P (s′|s, a)b(s)∑

s′∈S
P (o|s′, a) ∑

s∈S
P (s′|s, a)b(s)

(2.1)
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3. HUMAN SUBJECT STUDY

In Section 3.1 , the design and intent of the human subject study for model training data

collection is described. The implementation of the study is discussed in Section 3.2 and

analysis of behavioral and self-report data collected from the experiment is presented in

Section 3.3 .

3.1 Experiment Design

Human subject data is collected in the context of a simple game-based task to param-

eterize the human trust—self-confidence (T-SC) model. The experimental platform is an

online obstacle avoidance game in which participants must perform the task of maneuvering

an avatar (depicted as a penguin) across the screen in the shortest amount of time while

avoiding collisions with obstacles. However, participants are informed that an autonomous

assistant is also available to help them play the game. The autonomous assistant scales the

user’s mouse input by a parameter θ. The extent of the scaling is subdivided into three sets

of factors: ΘL ∈ {0.7, 0.8, 0.9}, ΘM ∈ {1.0, 1.1, 1.2} and ΘH ∈ {1.3, 1.4, 1.5}, where θ ∈ Θj

for j ∈ {L, M, H}. In particular, when θ < 1 the user will experience an attenuation of their

mouse input, and when θ > 1 their input will be amplified. In order to obtain training data

that is agnostic to the dynamics of a specific autonomous assistance algorithm, the value

of θ experienced by each participant is assigned to them according to the between-subjects

experiment design described below. The goal of the experiment is to obtain a set of training

data that captures the effect of a range of values of the autonomous assistant’s input on

participants’ behavior. Whether a particular value of θ helps or hinders the participant is a

function of their skill level.

In the game, the penguin avatar moves at a constant speed, and its position is controlled

by the participant’s mouse movement. The penguin’s x and y position are governed by the

following dynamical equations:

xt+1 = xt + ∆tV cos(θkut) + φ

yt+1 = yt + ∆tV sin(θkut)
(3.1)
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where [xt, yt]T ∈ R2 are the penguin’s position at time t, ut ∈ R is the participant’s (mouse)

input, and θk ∈ R is the scaling factor provided by the autonomous assistant in the kth trial

for k = 1, . . . , 10. The game update discrete time interval is ∆t, V is the constant speed,

and φ is an added “wind” effect which increases in the upward vertical direction. Table 3.1 

provides the specific parameter values used in the experiment.

Table 3.1. Game parameters

Parameter x0 V ∆t θ0 φ

Value [0, 200] 75 pixel/sec 0.02 sec 1
bottom {0.75}
middle {1.25}
top {1.75}

A between-subjects study is designed to elicit changes in each participant’s trust in

the autonomous assistant and confidence in their ability to play the game (i.e their self-

confidence) over the course of 10 game trials. Fig. 3.3 shows the sequence of events for

each trial in the experiment. Participants are asked to decide whether to rely or not rely

on the autonomous assistant prior to every trial, as shown in Fig. 3.2a . Regardless of their

reliance choice, prior to the first trial, each participant is randomly assigned to one of the

three Θ sets. Then, for their first 5 trials, a single θ1 value is randomly selected within the

given Θ set. In this way, each participant experiences a constant input from the autonomous

assistant for 5 repeated trials. Note that the participant is not informed of the specific θ

value that is being applied to their input; they only know that the autonomous assistance is

available and that they can turn it on or off. Moreover, for any game trial that they choose

not to rely on the autonomous assistant, θk = 1. After each trial, participants are provided

a definition of trust and self-confidence before being prompted to rate their trust (in the

autonomous assistant) and self-confidence on a numerical scale of 0-100. This is shown in

Fig. 3.2b .

At the 6th trial, a step change in the Θ set is introduced. The purpose of this step

change is to further perturb the participant’s trust and self-confidence. Note that to avoid

too large of a step change for some participants relative to others, no participant for whom

θ1 ∈ ΘL ∨ ΘH experiences θ2 ∈ ΘL ∨ ΘH . The choice of introducing the step change after 5
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trials was based on data collected through pilot experiments. For the remaining five trials,

a single θ2 value is then randomly selected within the new Θ set. Equation 3.2 describes the

step change in the θ value given the progression of k trials, with the caveat that θk = 1 for

any trial k during which the participant chooses not to rely on the autonomous assistant.

θk =


θ1, k ≤ 5

θ2, 5 < k ≤ 10
(3.2)

Figure 3.1. A screenshot of the web-deployed experiment platform in which
the participant must guide a penguin across the game screen to its home while
avoiding obstacles placed in its path.

3.2 Implementation

A total of 367 individuals participated in, and completed, the study. These participants

were recruited from the Amazon Mechanical Turk platform [45 ] and completed the study

online. To ensure the collection of quality data, the following criteria were applied to par-

ticipant selection: participants must reside in the United States, have completed more than

500 Human Intelligence Tasks (HITs), and have a minimum HIT approval rate of 95%. Each

participant provided their consent electronically and was compensated US$1.34 for their par-

ticipation. The Institutional Review Board at Purdue University approved the study. Due to
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(a) Reliance Selection Page (b) Survey Page

Figure 3.2. Example screenshots of the questions participants answer after
each trial of the web-deployed experiment platform. (a) The reliance selection
page in which participants are asked to select to either disable or enable the
automation assistance. (b) The survey questions in which participants are
asked to rate their trust and self-confidence on a numerical scale from 0-100.

the online nature of the experiment, and given lack of participant supervision, it is assumed

that some participants were not adequately engaged in the study. This was reflected in their

unusually low game completion time and high rate of collisions. To remove any outlying par-

ticipants, the data from participants with at least three trials in which their game times were

below the 25 percentile and with four or more collisions were filtered. These conditions were

chosen because they indicated that the participant dragged the penguin across the screen

without attempting to avoid the obstacles. As a result, 27 participants were removed from

the data set. The resulting data set consists of 340 participants from the United States (145

females, 190 males, five preferred not to disclose or did not identify within either gender),

ranging in age from 18-77 (mean 39.0 and standard deviation 11.9, two participants did not

disclose age).

3.3 Behavioral and Self-Reported Data

Prior to training the model, the self-reported data is analyzed to identify behavioral

trends. First, each participant’s trust and self-confidence is identified as high or low by
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Figure 3.3. The sequence of events in the experiment. The participant
completes a practice trial prior to completing ten trials of the game.

comparing the participant’s self-reported value to the 50th percentile from all data. In

Fig. 3.4 the mean value of the number of collisions across all data points pertaining to

each self-reported state combination is used to plot the average collisions. The number of

instances in which participants chose to rely is counted and divided by the total number

of data-points in each self-reported state combination to find and plot the reliance rates.

There exist clear distinctions between each cognitive state and the number of collisions and

chosen reliance level of each participant associated with their reporting of each state. From

Fig. 3.4 , it can be seen that state combinations, such as T↓SC↓ and T↑SC↓, correspond

to poorer performance. The established relationship between trust and reliance captured in

previously published trust models is further underscored in Fig. 3.4 . When trust is high,

the reliance rate is high, and vice versa. However, the addition of self-confidence affects the

user’s likelihood to rely on the autonomous assistant. When trust is low, the users with low

self-confidence are 12% more likely to rely on the autonomous assistant than those with high

self-confidence. It should also be noted that when T↑SC↑, it would have been expected that

users would not rely on the assistant as often. Instead, participants who reported being in

the T↑SC↑ state demonstrated a high reliance rate and low number of collisions. Finally,

the data show an almost inverse relationship between the T↑SC↑ and T↓SC↓ states. These

findings will be used to aid in model state sorting, as discussed in the next section.

23



Figure 3.4. Average collisions (left y-axis) and reliance rate (right y-axis)
corresponding to the four combinations of trust and self-confidence, T↓SC↓,
T↓SC↑, T↑SC↓, and T↑SC↑, as self-reported by participants. The error
bars of the average collisions represent the standard error of the mean across
participants.
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4. MODEL TRAINING AND VALIDATION

The adaptation of the model to the specific HAI context considered in this thesis is first

discussed in Section 4.1 . This is followed by a description of the methods used for model

training (Section 4.2 ) and model validation (Section 4.3 ).

4.1 Model Definition

Recall the T-SC cognitive state model defined in Table 2.1 . In the context of the exper-

imental platform used for data collection, there are two relevant performance metrics: the

number of collisions between the penguin and the obstacles, and the time taken to navigate

the penguin to its home in the game environment. Therefore, the performance action is

further divided into tuples containing the number of Collisions aC and Game Time aG, as

shown in Equation 4.1 . Additionally, the automation input aA is the assistance value θ, dis-

cretized into the sets ΘL, ΘM and ΘH as described in Chapter 3 and referenced in Equation

4.2 .

aC ∈ C = {Collision Decrease C−, Collision No Change C0, Collision Increase C+}

aG ∈ G = {Game Time Decrease G−, Game Time Increase G+}
(4.1)

aA ∈ A = {ΘL, ΘM , ΘH} (4.2)

The transition probabilities for trust TT : S × T × A → [0, 1] and self-confidence TSC :

S × SC × A → [0, 1] are each represented by 4 × 2 × 18 matrices that map the probability of

transitioning from combinations of states S of trust sT ∈ T and self-confidence sSC ∈ SC to

the next states of trust and self-confidence, respectively, given an action a ∈ A. The state

combination transition probabilities are the product of the individual transition probabilities

of trust and self-confidence, as given by

T (s′|s, a) = T (s′
T |sT , sSC , a)T (s′

SC |sT , sSC , a) . (4.3)
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The emission probability function for reliance ER : S × R → [0, 1] is represented by a

4 × 2 matrix that maps the probability of reliance on automation oR ∈ R given the current

trust and self-confidence belief states. The emission probability function for self-reported

self-confidence EsrSC : SC × srSC → [0, 1] is represented by a 2 × 2 matrix that maps the

probability of low or high self-reported self-confidence osrSC ∈ srSC given the current self-

confidence state. The overall emission probabilities are the product of the individual reliance

and self-reported self-confidence emission probabilities, given by

E(o|s) = E(oR|sT , sSC)E(osrSC |sSC) . (4.4)

Finally, the initial state probabilities for trust πT : 1 × T → [0, 1] and self-confidence πSC :

1 × SC → [0, 1] are both represented by 1 × 2 matrices that represent the probability of

the initial trust state sT and self-confidence state sSC respectively. As shown in Fig. 2.1 ,

the reliance observation is dependent on both the current trust and self-confidence states.

However, the self-reported self-confidence observation is only dependent on the current self-

confidence state. In total, there are 153 effective parameters from the 18 combinations of

actions, 4 combinations of states, and 4 observations.

4.2 Model Parameter Estimation

It is assumed that trust and self-confidence behavior for the general population can

be represented by a common model. Therefore, the aggregated data of all participants is

utilized in estimating the model parameters, resulting in 340 sequences of data. Previously,

an extended version of the Baum-Welch algorithm was used to estimate the parameters of a

discrete observation-space cognitive model [44 ]. However, literature suggests that the genetic

algorithm is not as sensitive to the initialization of parameters and not as susceptible to local

optima as compared to the Baum-Welch algorithm [46 ]. Therefore, the genetic algorithm

in MATLAB’s Optimization Toolbox [47 ] is implemented to optimize the parameters of

the model to maximize the likelihood of the sequences given the model parameters. The

forward algorithm is utilized to calculate the likelihood of the sequences [48 ] in which the

algorithm computes, recursively over time, the joint probability of a state sk given time k
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and the series of observations o1:k and actions a1:k over time, i.e. P (sk, o1:k, a1:k). The sum

of P (sN , o1:N , a1:N) is calculated to determine the likelihood of the sequence across all states

at the end of the sequence at time N . This gives the probability of the action observation

sequence, P (o1:N , a1:N).

Prior to training the model, the order of the action combinations and observation com-

binations are established. However, this is not the case for the state combinations. The

state combination order of the resulting transition, emission, and initial probability matrices

is sorted into the order T↓SC↓, T↓SC↑, T↑SC↓, and T↑SC↑ after training the model by

using established behavioral trends. Identifying the state combination of each row is possi-

ble due to the asymmetrical nature of the emission probability functions. The self-reported

self-confidence emission probabilities are used to determine the self-confidence state order.

The reliance emission probabilities are used to sort the trust state order by applying the

well-known correlation between trust and reliance [24 ], [49 ]–[51 ]. After identifying the cor-

responding state combination of each row in the emission probability matrix, all rows and

columns associated to states in the initial, transition, and emission probability matrices are

re-ordered to match the prescribed state combination order.

4.3 Validation

To test the predictive capability of the model and check for over-fitting, two validations

methods are used. A ten-fold cross validation is applied to the data in which the data is

divided randomly into ten equal sets, or folds. The model is trained with 9 selected folds and

validated using the 10th fold. This is done ten times, in total, with each fold being used once

for validation and the remaining 9 for training. The entire process is then repeated for ten

iterations to increase the robustness of the validation log-likelihood values to variations in

the training and testing data sets. One-way ANOVA tests between the ten iterations show

that there is no statistical difference in the validation log-likelihoods (α = 0.05, p = 0.9341).

This indicates that the trained model has converged and is not over-fitting the data.

Next, receiver operating characteristic (ROC) curves are utilized to illustrate the perfor-

mance of the model in predicting the cognitive states and chosen reliance of each participant.
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The cognitive state ROC curves (Fig. 4.1b ) are generated by comparing the self-reported

cognitive states to the predicted belief state, as calculated by Equation 2.1 , for all 340 par-

ticipants’ data. The belief state probability of high trust or self-confidence is first compared

to a threshold probability, in which the predicted state is classified as high if the belief state

probability is greater than the classification threshold probability. Then, the predicted state

is compared to the self-reported state. As seen in Fig. 4.1a , this results in a true positive

(TP), false positive (FP), true negative (TN), or false negative (FN), depending on if the

predicted state is high or low and if the predicted state matches the self-report data. For

classification thresholds of 0-100% in increments of 1%, this process is repeated for all data

to find the true positive rate (TPR) and false positive rate (FPR) for each threshold prob-

ability. The TPRs and FPRs of each threshold are plotted, resulting in the ROC curve.

The reliance ROC curve (Fig. 4.1d ) is generated using a similar method, but instead, the

maximum belief state probability is used to determine the corresponding emission probabil-

ity. The emission probability is compared to a classification threshold probability to predict

the participant’s choice of reliance. TPRs and FPRs are found by comparing the predicted

reliance to the participant’s actual chosen reliance, as shown in Fig. 4.1c . The model can

predict both cognitive state levels and reliance choice better than a random guess as shown

in Figures 4.1b and 4.1d . This is further supported by the area under the curve (AUC),

an aggregate performance measure across all thresholds. A higher AUC corresponds to a

better model classification performance. The trained model achieves a trust AUC of 0.69,

self-confidence AUC of 0.62, and reliance AUC of 0.72.
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(a) Cognitive state confusion matrix (b) ROC curve for trust and self-confidence states

(c) Reliance confusion matrix (d) ROC curve for reliance

Figure 4.1. Receiver Operating Characteristic (ROC) curves for cognitive
state and reliance prediction. The given model classification performance is
determined by the area under the curve (AUC), which is denoted in the legends
of plots (b) and (d). As noted, the model achieves a trust AUC of 0.69, self-
confidence AUC of 0.62, and reliance AUC of 0.72.
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5. RESULTS AND DISCUSSION

In Section 5.1 , the identified emission and transition probabilities are presented and inter-

preted in the context of the specific HAI scenario under consideration. This is followed by a

discussion of the implications of the model for improving HAI (Section 5.2 ) and a review of

limitations (Section 5.3 ).

5.1 Results and Analysis

The results are presented and analyzed following the model structure, including the

initial state probabilities (Section 5.1.1 ), emission probabilities (Section 5.1.2 ), and transition

probabilities (Section 5.1.3 ).

5.1.1 Initial State Probabilities

A complete table of the initial state probabilities can be found in Appendix A.1 . From

Table A.1 , it is inferred that participants tend to initially have high trust in the autonomous

assistant (81.22%) and low self-confidence (60.70%). The initial high trust is consistent with

existing literature that states that humans tend to have positivity bias towards automation,

in which they trust automation prior to having any experience with it [52 ].

5.1.2 Emission Probabilities

Next the identified emission probabilities, visually depicted in Figs. 5.1a and 5.1b , are

analyzed. Fig. 5.1b shows the probability of self-reported self-confidence given the the self-

confidence state. The probabilities of the self-reported self-confidence being the same as

the self-confidence states are 94.48% and 91.02% for low and high self-confidence respec-

tively, suggesting that the state is capturing what the human perceives as their level of

self-confidence. Next, Fig. 5.1a shows the probability of reliance given the trust and self-

confidence states. The first observation to be made is that when self-confidence is high, the

resulting probabilities behave similarly to the established trust and reliance relationship in

which low and high trust lead to low and high reliance, respectively. For example, when
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(a) Emission probabilities of reliance in
which no reliance and reliance are denoted
by NR and R, respectively.

(b) Emission probabilities of self-reported
self-confidence in which high and low self-
reported self-confidence are denoted by
srSC↑ and srSC↓, respectively.

Figure 5.1. The emission probability function for reliance E(oR|sT , sSC) and
self-reported self-confidence E(osrSC |sSC). The probabilities are shown next to
the arrows.
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participants are in a state of low trust and high self confidence (T↓SC↑), they are highly

likely (89.54%) to not rely on the automation, and when they are in the T↑SC↑ state, they

are highly likely (89.17%) to rely. Interestingly, this relationship is not exhibited when self-

confidence is low. Instead, when participants are in the T↓SC↓ state, the likelihood that

they will disable (48.62%) or enable (51.35%) the automation assistance is nearly equally

distributed. The same is true when they are in the T↑SC↓ state. This underscores the

complex relationship between human trust and self-confidence in the context of HAI, which

is further analyzed in the next subsection.

5.1.3 Transition Probabilities

Given that the POMDP consists of 3 discrete-valued actions that result in 18 distinct

combinations of actions, there are a total of 18 different transition probability functions that

describe the state transitions. The transition probability functions are divided to separate the

probabilities of trust state transitions and probabilities of self-confidence state transitions.

A complete review of all transition probabilities can be found in Appendix A.2 . For clarity

of exposition, a subset of these probabilities are analyzed here. Specifically, the actions

associated with participants’ performance—changes in the number of collisions and game

time—are grouped into cases of performance improvement or deterioration, and the effect of

the third action, the autonomous assistance, is analyzed within these groupings.

Overall Performance Improvement

The overall performance improvement case scenario is that in which the number of col-

lisions decreases C− and game time decreases G−. When aA ∈ ΘL, as shown in Figs. 5.2a 

and 5.2d , and for all state combinations, self-confidence is likely to remain the same at the

next trial (>80%). Moreover, when the participant is in the T↓SC↓ state, they are very

likely to transition to a state of high trust (99.81%), suggesting that they associate perfor-

mance improvement to the automation rather than themselves. This is not the case for most

participants in the T↑SC↓ state, though. Participants’ cognitive state responses when they

are in the T↑SC↓ state are similar for all aA as shown in Figs. 5.2a -5.2f . They are likely to
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(a) Trust transitions for ΘL (b) Trust transitions for ΘM (c) Trust transitions for ΘH

(d) Self-confidence transitions
for ΘL

(e) Self-confidence transitions
for ΘM

(f) Self-confidence transitions
for ΘH

Figure 5.2. The transition probability function for trust TT (s′
T |sT , sSC , a) and

self-confidence TSC(s′
SC |sT , sSC , a). The performance actions are the overall

improvement case scenario in which the number of collisions decreases C− and
game time decreases G−. The probabilities of transition are shown next to
the appropriate arrows. (a) The trust transition probabilities for aA ∈ ΘL.
(b) The trust transition probabilities for aA ∈ ΘM . (c) The trust transition
probabilities for aA ∈ ΘH . (d) The self-confidence transition probabilities for
aA ∈ ΘL. (e) The self-confidence transition probabilities for aA ∈ ΘM . (f) The
self-confidence transition probabilities for aA ∈ ΘH .
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transition to a state of low trust (73.08%, 77.59%, 99.35%) while they are likely to remain

in a state of low self-confidence (82.19%, 66.08%, 99.92%), suggesting that the decrease in

trust may be a result of the user attributing the performance improvement more towards

themselves than the automation. Upon closer analysis, when aA ∈ ΘL ∨ ΘM , participants

had a 26.92% and 22.41% chance, respectively, of remaining in a state of high trust, and a

17.81% and 33.92% chance, respectively, of transitioning to a state of high self-confidence.

Therefore the different values of aA may result in different attributions of performance be-

tween the user and automation which then affect the participants’ cognitive state responses.

When aA ∈ ΘH , as shown in Figs. 5.2c and 5.2f , and when the participant is in the T↓SC↓

state, the probability of them transitioning to a state of high trust (55.29%) or remaining

in a state of low trust (44.71%) are approximately equally distributed. On the other hand,

they are more likely to remain in a state of low self-confidence (75%) than to transition to

a state of high self-confidence. These participants may associate the cause of performance

improvement slightly more with the automation than themselves.

Interestingly, for all aA, when participants are in a state of high self-confidence and

experience an overall improvement in performance, they are very likely to remain in a state

of high self-confidence as well as maintain the same level of trust in the autonomous assistant

at the next trial. In other words a participant’s self-confidence affects their interpretation of

their performance metrics, which in turn affects their trust in the automation.

Partial Performance Improvement

For performance improvement, another case of interest is that in which the number of

collisions does not change but the participants’ game time decreases. This represents a case

of partial improvement. When aA ∈ ΘL, as shown in Table A.2 (see Appendix A.2 ), and

when the participant is in the T↓SC↓ state, their likelihood of transitioning to a state of low

trust (45.72%) or high trust (54.28%) is nearly equally distributed. However, they are likely

to remain in a state of low self-confidence (79.49%). This is similar to when participants

are in the T↑SC↓ state and aA ∈ ΘM , as shown in Table A.3 . When aA ∈ ΘH , as shown

in Table A.4 , and the participant is in the T↓SC↓ state, they are highly likely (99.86%) to
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remain in a state of low self-confidence. However, their likelihood of transitioning to a state

of high trust is only 29.52%. When aA ∈ ΘL ∨ ΘH and participants are in the T↓SC↓ state,

trust increasing suggests that they are attributing a slight improvement in performance to

the automation rather than themselves. However, when aA ∈ ΘM , the fact that participants

in a state of high trust are equally likely to remain in their current state or transition to a

state of low trust while their low self-confidence is likely to be maintained (84.12%) suggests

that they are unsure of to whom they should attribute the improvement in performance.

In comparing these results to the overall improvement case, participants in a state of

low self-confidence are still unlikely to gain confidence and transition to SC↑, but they

are now not as likely to attribute any improvement to the automation. This underscores

the consequences, from the perspective of HAI, of a human being in a state of low self-

confidence. In other words, participants in a state of low self-confidence may have more

difficulty in calibrating their trust in the automation than those with high self-confidence.

In turn this suggests that correct calibration of self-confidence is just as important as trust

calibration, as discussed more in Section 5.2 .

Overall Performance Deterioration

Next, cases in which participants’ performance deteriorates between game trials is ana-

lyzed. For all aA, when performance deteriorates and participants are in the T↓SC↓ state,

their trust is highly likely to increase (99.78%, 99.87%, 98.40%) at the next trial. However,

they are likely to remain in a state of low self-confidence (99.92%, 99.84%, 99.98%). This sug-

gests that these participants associate performance deterioration to themselves rather than

the automation. On the other hand, the autonomous assistance input does have a greater

effect on participants in states of high trust (either T↑SC↓ or T↑SC↑). When aA ∈ ΘM ∨ΘH

(Figs. 5.3b and 5.3c ), participants in a state of high trust are very likely (>90%) to transition

to a state of low trust, regardless of their state of self-confidence. This suggests that they

strongly attribute the decrease in performance to the autonomous assistant. This is not true

when aA ∈ ΘL, in which participants who are in a state of T↑SC↓ are likely to remain in a

state of high trust at the next trial. These results highlight that while self-confidence affects
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(a) Trust transitions for ΘL (b) Trust transitions for ΘM (c) Trust transitions for ΘH

(d) Self-confidence transitions
for ΘL

(e) Self-confidence transitions
for ΘM

(f) Self-confidence transitions
for ΘH

Figure 5.3. The transition probability function for trust TT (s′
T |sT , sSC , a) and

self-confidence TSC(s′
SC |sT , sSC , a). The performance actions are the overall

deterioration case scenario in which the number of collisions increases C+ and
game time increases G+. The probabilities of transition are shown next to
the appropriate arrows. (a) The trust transition probabilities for aA ∈ ΘL.
(b) The trust transition probabilities for aA ∈ ΘM . (c) The trust transition
probabilities for aA ∈ ΘH . (d) The self-confidence transition probabilities for
aA ∈ ΘL. (e) The self-confidence transition probabilities for aA ∈ ΘM . (f) The
self-confidence transition probabilities for aA ∈ ΘH .
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participants’ attribution of changes in performance, so does the user’s experience with the

autonomous assistant.

Partial Performance Deterioration

Next, the case in which number of collisions does not change but the participants’ game

time increases is considered. For aA ∈ ΘL ∨ ΘM ∨ ΘH , shown in Tables A.2 , A.3 , and

A.4 , respectively, and when participants are in the T↓SC↓ state, it is likely for their trust to

increase (99.98%, 99.70%, 99.90%) at the next trial and likely for them to remain in a state of

low self-confidence (95.12%, 99.76%, 100%). These results are consistent with those observed

for the overall performance deterioration case. When aA ∈ ΘH , however, and participants

are in the T↑SC↓ state, their likelihood of transitioning to a state of low trust (57.68%) or

high trust (42.32%) is more equally distributed than in the overall performance deterioration

case. Therefore, the extent of the change in performance also affects participants’ trust and

self-confidence dynamics.

5.2 Implications on the Design of Human-Aware Autonomous Systems

As discussed in the previous section, depending on their performance and the input from

the autonomous assistant, participants may attribute their successes and failures to either

the automation or themselves. These observations are a demonstration of attribution the-

ory, a theory concerned with the processes behind the attempts of humans to explain the

cause of behaviors and events [53 ], [54 ]. Understanding the different attributions is impor-

tant because reliance is not only affected by participants’ beliefs about the automation’s

performance or reliability, but also by cognitive factors affecting this performance [14 ], in

this case, participants’ trust in the automation and self-confidence. Importantly, for the

purpose of improving performance and safety outcomes for different HAI contexts, the pro-

posed probabilistic model can be used to design cognitive state-based feedback policies that

help human’s correctly attribute changes in performance to themselves or the automation,

and in turn better calibrate their trust in the automation and their self-confidence. Cali-

bration of human trust in HAI is critical to preventing the pitfalls associated with humans
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under-trusting, or over-trusting autonomous systems. However, to date, less emphasis has

been placed on calibration of self-confidence in HAI, despite the fact that a human who is

incorrectly over-confident in their skills may under-trust the automation they are interacting

with, and vice versa. The model analysis presented here shows that both states must be

calibrated correctly for improving HAI. With knowledge of how the human’s cognitive dy-

namics evolve, autonomous systems can be designed to facilitate this, for example, through

the use of automation transparency.

5.3 Limitations

It is worthwhile to acknowledge some of the limitations of the proposed model for captur-

ing human trust and self-confidence dynamics. It is assumed that the cognitive state dynam-

ics evolve based on the change in the participant’s performance rather than their absolute

performance. In other words, in training the model, the behavior of a skilled participant

who experienced slight improvement was not distinguished from that of a poor-performing

participant who likewise had a slight performance improvement. In future work, this lim-

itation can be mitigated by considering absolute performance in addition to the change in

performance. Furthermore, as is the case with any model trained using human data, the

conclusions drawn in this paper are specific to the HAI scenario under consideration. How-

ever, given the generalized definition of the POMDP states, observations, and actions, future

work should investigate how well the transition and emission probability functions translate

to other HAI scenarios and the extent to which new human data is needed for doing so.

Finally, while a POMDP modeling framework was chosen here for several benefits it offers

in capturing the probabilistic nature of human cognitive dynamics, a limitation of POMDPs

is their scalability. Modest increases in the numbers of actions, states, or observations can

lead to parameter explosion, thereby increasing the amount of data needed for parameter

estimation. Therefore, the proposed framework may not scale well to more complex HAI

scenarios in which additional actions may need to be defined, for example, to capture the

nature of the automation’s input. Similarly, further discretizing the trust or self-confidence

states beyond two discrete values will also lead to increased model complexity. Therefore,
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characterizing classes of HAI scenarios in which this model structure works well, or doesn’t,

is another direction of future work.
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6. CONCLUSIONS

6.1 Research Contributions

The contribution of this thesis is a probabilistic model of coupled human trust and self-

confidence dynamics as they evolve during a human’s interaction with automation. The

dynamics are modeled as a partially observable Markov decision process that leverages be-

havioral and self-report data as observations for estimation of the cognitive states. Trust and

self-confidence are modeled as separate discrete states whose transition probability functions

are coupled. By doing so, the model is able to capture nuanced effects of various combinations

of the states on the participant’s reliance on the autonomous system. Moreover, the use of

an asymmetrical structure in the emission probability functions that specifically captures the

coupling of human reliance on automation to both trust and self-confidence enables labeling

and interpretation of the coupled cognitive states. An experiment was designed and imple-

mented to collect human behavioral and self-report data during their repeated interactions

with an autonomous assistant in an obstacle avoidance game scenario. Using data collected

from 340 human participants, the cognitive model was trained and validated. Analysis of

the state transition probabilities suggests that participants’ attribution of changes in per-

formance to either themselves or the autonomous assistant vary depending on their states

of trust and self-confidence. This underscores the importance of the proposed model for

the design of human-aware automation, particularly in the context of human trust and self-

confidence calibration in HAI. Future work includes validation of the model for other HAI

scenarios, as well as model-based control algorithm design aimed at, for example, optimally

allocating control authority to the human and autonomous system based on calibration of

the human’s cognitive states.

6.2 Future Work

There are several potential areas for future work to improve upon the model framework for

increasing levels of application complexity. Examples of potential research directions include

(1) introducing cognitive state-based feedback policies to properly allocate control authority,
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(2) customizing the model framework to account for individuality, and (3) extending the

proposed model framework to additional and increasingly complex contexts.

The model framework presented can be utilized to implement a model-based control

algorithm design aimed at, for example, optimally allocating control authority to the human

and autonomous system based, in part, on the human’s cognitive states. This would enable

the the automation to guide user behavior towards the best sequence of actions that maximize

a specified performance objective or metric.

Work presented in this thesis assumes a single, general model for the population and

does not account for individual demographic factors shown to influence dispositional trust,

such as age, gender, and culture [16 ]. Future work may incorporate these individualistic

factors within the model, or serve to identify behavioral clusters and customize group-specific

models.

Finally, the model presented was developed and validated in the context of an online

game-based task. Future work may aim to evaluate the robustness of the proposed model

framework, specifically in evaluating whether the fundamental relationships between the

actions, states, and observations are generalizable across contexts. Work may be done to

extend the framework to more complex contexts, such as flight or driving simulators and

real-world settings. Additionally, more sophisticated forms of automation assistance can be

considered.
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A. TRAINED MODEL RESULTS

Here I present the POMDP model of human trust–self-confidence behavior discussed in

Chapter 4 .

A.1 Initial State Probabilities

The initial state probabilities for trust πT : 1 × T → [0, 1] and self-confidence πSC :

1 × SC → [0, 1] are both represented by 1 × 2 matrices that represent the probability of the

initial trust state sT and self-confidence state sSC respectively. The initial state probabilities

are provided in Table A.1 .

Table A.1. Initial trust state sT and self-confidence state sSC probabilities

Trust Self-Confidence

T↓ T↑ SC↓ SC↑
0.1878 0.8122 0.6070 0.3930

A.2 Transition Probabilities

The transition probabilities for trust TT : S × T × A → [0, 1] and self-confidence TSC :

S × SC × A → [0, 1] are each represented by 4 × 2 × 18 matrices that map the probability of

transitioning from combinations of states S of trust sT ∈ T and self-confidence sSC ∈ SC to

the next states of trust and self-confidence, respectively, given an action a ∈ A. The state

combination transition probabilities are the product of the individual transition probabilities

of trust and self-confidence, as given by

T (s′|s, a) = T (s′
T |sT , sSC , a)T (s′

SC |sT , sSC , a) . (A.1)

The transition probabilities are provided in Tables A.2 - A.4 . The transition probabil-

ity tables are separated by the action aA. Each table is divided such that the transition

probabilities can be identified based upon the change in performance metrics.
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Table A.2. Transition probabilities for aA ∈ ΘL and performance metric combinations

Collision Decrease, Time Decrease Collision Decrease, Time Increase

Trust Self-Confidence Trust Self-Confidence

T↓’ T↑’ SC↓’ SC↑’ T↓’ T↑’ SC↓’ SC↑’

T↓SC↓ 0.0019 0.9981 0.9992 0.0008 T↓SC↓ 0.9959 0.0041 0.8142 0.1858
T↓SC↑ 0.9990 0.0010 0.0037 0.9963 T↓SC↑ 0.8518 0.1482 0.0003 0.9997
T↑SC↓ 0.7308 0.2692 0.8219 0.1781 T↑SC↓ 0.0011 0.9989 0.9696 0.0304
T↑SC↑ 0.0403 0.9597 0.0298 0.9702 T↑SC↑ 0.0001 0.9999 0.0158 0.9842
Collision No Change, Time Decrease Collision No Change, Time Increase

Trust Self-Confidence Trust Self-Confidence

T↓’ T↑’ SC↓’ SC↑’ T↓’ T↑’ SC↓’ SC↑’

T↓SC↓ 0.4572 0.5428 0.7949 0.2051 T↓SC↓ 0.0002 0.9998 0.9512 0.0488
T↓SC↑ 0.9738 0.0262 0.0030 0.9970 T↓SC↑ 0.9534 0.0466 0.0635 0.9365
T↑SC↓ 0.9997 0.0003 0.9612 0.0388 T↑SC↓ 0.0296 0.9704 0.9999 0.0001
T↑SC↑ 0.0013 0.9987 0.0074 0.9926 T↑SC↑ 0.0074 0.9926 0.0266 0.9734

Collision Increase, Time Decrease Collision Increase, Time Increase

Trust Self-Confidence Trust Self-Confidence

T↓’ T↑’ SC↓’ SC↑’ T↓’ T↑’ SC↓’ SC↑’

T↓SC↓ 0.9990 0.0010 0.9552 0.0448 T↓SC↓ 0.0022 0.9978 0.9992 0.0008
T↓SC↑ 0.9982 0.0018 0.1574 0.8426 T↓SC↑ 0.9965 0.0035 0.0054 0.9946
T↑SC↓ 0.0844 0.9156 0.9960 0.0040 T↑SC↓ 0.0004 0.9996 0.9988 0.0012
T↑SC↑ 0.4409 0.5591 0.1010 0.8990 T↑SC↑ 0.6822 0.3178 0.0133 0.9867

A.3 Emission Probabilities

The emission probability function for reliance ER : S × R → [0, 1] is represented by a

4 × 2 matrix that maps the probability of reliance on automation oR ∈ R given the current

trust and self-confidence belief states. The emission probability function for self-reported

self-confidence EsrSC : SC × srSC → [0, 1] is represented by a 2 × 2 matrix that maps
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Table A.3. Transition probabilities for aA ∈ ΘM and performance metric combinations

Collision Decrease, Time Decrease Collision Decrease, Time Increase

Trust Self-Confidence Trust Self-Confidence

T↓’ T↑’ SC↓’ SC↑’ T↓’ T↑’ SC↓’ SC↑’

T↓SC↓ 0.9838 0.0162 0.9963 0.0037 T↓SC↓ 0.9940 0.0060 0.9919 0.0081
T↓SC↑ 0.9973 0.0027 0.0021 0.9979 T↓SC↑ 0.9232 0.0768 0.0019 0.9981
T↑SC↓ 0.7759 0.2241 0.6608 0.3392 T↑SC↓ 0.1517 0.8483 0.7768 0.2232
T↑SC↑ 0.0621 0.9379 0.0034 0.9966 T↑SC↑ 0.0753 0.9247 0.0293 0.9707
Collision No Change, Time Decrease Collision No Change, Time Increase

Trust Self-Confidence Trust Self-Confidence

T↓’ T↑’ SC↓’ SC↑’ T↓’ T↑’ SC↓’ SC↑’

T↓SC↓ 0.9788 0.0212 0.9720 0.0280 T↓SC↓ 0.0030 0.9970 0.9976 0.0024
T↓SC↑ 0.9922 0.0078 0.0015 0.9985 T↓SC↑ 0.9983 0.0017 0.0033 0.9967
T↑SC↓ 0.5040 0.4960 0.8412 0.1588 T↑SC↓ 0.0018 0.9982 0.9599 0.0401
T↑SC↑ 0.0323 0.9677 0.0230 0.9770 T↑SC↑ 0.0000 1.0000 0.0462 0.9538

Collision Increase, Time Decrease Collision Increase, Time Increase

Trust Self-Confidence Trust Self-Confidence

T↓’ T↑’ SC↓’ SC↑’ T↓’ T↑’ SC↓’ SC↑’

T↓SC↓ 0.9989 0.0011 0.9998 0.0002 T↓SC↓ 0.0013 0.9987 0.9984 0.0016
T↓SC↑ 0.9740 0.0260 0.1244 0.8756 T↓SC↑ 0.9933 0.0067 0.1167 0.8833
T↑SC↓ 0.7311 0.2689 0.9735 0.0265 T↑SC↓ 0.9959 0.0041 0.9084 0.0916
T↑SC↑ 0.0531 0.9469 0.1092 0.8908 T↑SC↑ 0.0601 0.9399 0.1858 0.8142

the probability of low or high self-reported self-confidence osrSC ∈ srSC given the current

self-confidence state. The overall emission probabilities are the product of the reliance and

self-reported self-confidence emission probabilities, given by

E(o|s) = E(oR|sT , sSC)E(osrSC |sSC) . (A.2)

The emission probabilities are provided in Table A.5 .
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Table A.4. Transition probabilities for aA ∈ ΘH and performance metric combinations

Collision Decrease, Time Decrease Collision Decrease, Time Increase

Trust Self-Confidence Trust Self-Confidence

T↓’ T↑’ SC↓’ SC↑’ T↓’ T↑’ SC↓’ SC↑’

T↓SC↓ 0.4471 0.5529 0.7465 0.2535 T↓SC↓ 0.4109 0.5891 0.6672 0.3328
T↓SC↑ 1.0000 0.0000 0.0014 0.9986 T↓SC↑ 0.9199 0.0801 0.0011 0.9989
T↑SC↓ 0.9935 0.0065 0.9992 0.0008 T↑SC↓ 0.0005 0.9995 1.0000 0.0000
T↑SC↑ 0.0027 0.9973 0.0487 0.9513 T↑SC↑ 0.0382 0.9618 0.0048 0.9952
Collision No Change, Time Decrease Collision No Change, Time Increase

Trust Self-Confidence Trust Self-Confidence

T↓’ T↑’ SC↓’ SC↑’ T↓’ T↑’ SC↓’ SC↑’

T↓SC↓ 0.7048 0.2952 0.9986 0.0014 T↓SC↓ 0.0010 0.9990 1.0000 0.0000
T↓SC↑ 0.9958 0.0042 0.0013 0.9987 T↓SC↑ 0.9453 0.0547 0.0061 0.9939
T↑SC↓ 0.0071 0.9929 0.8432 0.1568 T↑SC↓ 0.5768 0.4232 0.8019 0.1981
T↑SC↑ 0.0003 0.9997 0.0012 0.9988 T↑SC↑ 0.0127 0.9873 0.0021 0.9979

Collision Increase, Time Decrease Collision Increase, Time Increase

Trust Self-Confidence Trust Self-Confidence

T↓’ T↑’ SC↓’ SC↑’ T↓’ T↑’ SC↓’ SC↑’

T↓SC↓ 0.0020 0.9980 0.9677 0.0323 T↓SC↓ 0.0160 0.9840 0.9998 0.0002
T↓SC↑ 0.9923 0.0077 0.1525 0.8475 T↓SC↑ 0.9853 0.0147 0.0015 0.9985
T↑SC↓ 0.8208 0.1792 0.9524 0.0476 T↑SC↓ 0.9973 0.0027 0.9979 0.0021
T↑SC↑ 0.0683 0.9317 0.0828 0.9172 T↑SC↑ 0.0350 0.9650 0.0456 0.9544

Table A.5. Emission probabilities of the reliance observation oR and self-
reported self-confidence observation osrSC . NR and R denote no reliance and
reliance respectively, while high and low self-reported self-confidence is denoted
by srSC↑ and srSC↓ respectively.

Reliance Self-Reported Self-Confidence

NR R srSC↓ srSC↑
T↓SC↓ 0.4862 0.5138 SC↓ 0.9448 0.0552
T↓SC↑ 0.8954 0.1046 SC↑ 0.0898 0.9102
T↑SC↓ 0.4983 0.5017
T↑SC↑ 0.1083 0.8917
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