
FORENSICS AND FORMALIZED PROTOCOL
CUSTOMIZATION FOR ENHANCING NETWORKING

SECURITY
by

Fei Wang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Xiangyu Zhang, Chair

Department of Computer Science

Dr. Dongyan Xu

Department of Computer Science

Dr. Ninghui Li

Department of Computer Science

Dr. Bharat Bhargava

Department of Computer Science

Approved by:

Dr. Kihong Park

2

To my loving and beloved family members.

3

ACKNOWLEDGMENTS

First, my greatest thanks goes to my advisor Professor Xiangyu Zhang for his support

of my PhD study and research. His patience, understanding, guidance, immense knowledge

and research passion drive me here. He is a self-motivated researcher with great personal

charisma, enlightening and inspiring his students. Learning from him has significantly im-

proved my academic skills in multiple perspectives.

I would like to give my special thanks to Professor Dongyan Xu, my co-advisor. He has

been consistently offering a critical eye on my research justification. I greatly appreciate his

generous help and suggestions in my PhD career.

My sincere thanks goes to Professor Ninghui Li and Professor Bharat Bhargava, who also

serve as my thesis committee, for their insightful comments and suggestions to improve my

research and dissertation.

I dedicate this dissertation to my loving and beloved family members. Without their

unconditional support and love, I could not get through the hard times in my life, especially

for the COVID-19 pandemic. My appreciation and love to my parents, Hanping Wang and

Ruidi Zhuang, my parents-in-law, Xingjiang Xiao and Liqin Yang, my wife and the love of

my life, Wenfei Xiao, and my newborn baby, Yichen Wang are always beyond my words.

Last, it is indeed my fortune to work with great colleagues such as Yonghwi Kwon,

Kexin Pei, Jianliang Wu, Weihang Wang, Shiqing Ma, Wen-chuan Lee, Yuhong Nan, Wei

You, Yapeng Ye, Zhuo Zhang, Yousra Aafer, Hongjun Choi, I Luk Kim, Chung Hwan Kim

and Rohit Bhatia, and my roommates Chengyuan Lin and Xilun Wu. They all helped me a

lot in my past seven years in West Lafayette.

4

TABLE OF CONTENTS

LIST OF TABLES . 8

LIST OF FIGURES . 9

ABSTRACT . 11

1 INTRODUCTION . 12

1.1 Dissertation Statement . 13

1.2 Contributions . 13

1.3 Dissertation Organization . 14

1.4 Dissertation Overview . 15

1.4.1 Fine-grained Forensic Analysis in Enterprise Environment 15

Causality-aware Behavior Inference 15

Library-aware Provenance Tracing 16

1.4.2 Generating Secure Protocol Implementations 16

2 NETCROP: FINE-GRAINED PROGRAM ACTIVITY INFERENCE ASSISTED

BY CASUAL DEPENDENCY ANALYSIS BETWEEN NETWORK FLOWS . . 18

2.1 Introduction . 18

2.2 Approach Overview . 21

2.3 System Design . 24

2.3.1 Application Training . 24

2.3.2 Automaton Extraction Phase . 28

2.3.3 Traffic Attribution . 34

2.4 Evaluation . 35

2.4.1 Experiment Setup . 35

2.4.2 Case Study . 38

2.4.3 Performance Overhead . 40

2.4.4 Results . 41

2.4.5 Traffic Attribution in Enterprise Network 46

5

2.5 Limitation and Discussion . 47

2.6 Related Work . 48

3 LPROV: PRACTICAL LIBRARY-AWARE PROVENANCE TRACING 51

3.1 Introduction . 51

3.2 Motivating Example . 55

3.3 System Overview . 58

3.4 Design and Implementation . 60

3.4.1 Library Call Tracing . 60

Design . 60

Design Choices . 62

Data Integrity . 64

3.4.2 Lprov Kernel Module . 65

3.4.3 Lprov Daemon Process and Log Analysis 67

3.5 Evaluation . 70

3.5.1 Performance Overhead . 70

3.5.2 Case Study . 73

Ebury Variant Attack . 73

Library Vulnerability Exploitation 74

Library Loading Analysis . 76

3.6 Discussion . 77

3.7 Related Work . 79

4 PROFACTORY: IMPROVING IOT SECURITY VIA FORMALIZED PROTO-

COL CUSTOMIZATION . 83

4.1 Introduction . 83

4.2 Motivation . 87

4.3 Approach Overview . 89

4.4 Protocol Modeling . 91

4.4.1 DSL Syntax . 91

4.4.2 DSL Semantics . 97

6

4.4.3 A Real-world Example . 99

4.5 Code Generation . 101

4.6 Automated Verification . 107

4.7 Evaluation . 114

4.7.1 System Performance . 115

4.7.2 Vulnerability Averting . 119

4.8 Discussion . 124

4.9 Related Work . 125

5 CONCLUSION . 127

REFERENCES . 129

VITA . 143

7

LIST OF TABLES

2.1 Misclassification between programs . 44

2.2 Activity inference result . 45

2.3 Recall and False-positive Rate (FPR) on enterprise dataset. 47

3.1 Lprov has much lower runtime overhead than ltrace 64

3.2 Comparison of storage overhead between Lprov and ProTracer in a two-week
performance experiment . 71

3.3 Comparison of storage overhead between Lprov and BEEP in a two-week per-
formance experiment . 72

4.1 LoC comparison between original BlueZ implementations and codes generated
by ProFactory . 115

4.2 Implementation entropy of customized protocols 117

4.3 Runtime internals of ProFactory in verification 118

4.4 Averting IoT vulnerabilities . 120

8

LIST OF FIGURES

2.1 The architecture of NetCrop . 23

2.2 NetCrop working examples for QQ and uTorrent 23

2.3 Samples of original and annotated flows. 28

2.4 An example for automata extraction algorithm 32

2.5 Duration of flows in Tencent QQ . 39

2.6 Duration of flows in Skype . 40

2.7 Performance overhead of NetCrop . 41

2.8 Comparison of F1 score with existing classification techniques 42

2.9 Comparison of overall F1 score under different training sizes 43

3.1 Causal graphs generated in provenance tracking for Ebury exfiltration attack.
BEEP can not distinguish the attacker address but Lprov gives a clear attack
context. 58

3.2 The architecture of Lprov: dashed lines denote control flow and solid lines
denote data flow. 59

3.3 Log analysis example. 69

3.4 Comparison of runtime overhead of BEEP, ProTracer and Lprov. 73

3.5 Provenance graphs generated by BEEP and Lprov for the student credential
stealing attack. 75

3.6 Provenance graphs generated by BEEP and Lprov for library vulnerability ex-
ploitation. 76

3.7 Provenance graphs generated by BEEP and Lprov for DARPA library loading
case. 77

4.1 L2CAP configuration buffer overflow in BlueZ implementation 87

4.2 Message loss in L2CAP information exchange 87

4.3 The overall workflow of ProFactory (black arrow denotes data flow and red
arrow denotes control flow) . 89

4.4 ProFactory DSL Syntax (n denotes an unsigned integer constant and operator
· denotes field concatenation) . 92

4.5 ProFactory DSL Semantics . 96

4.6 A running example of modeling a subset of Bluetooth L2CAP specifications . . 100

4.7 The platform-dependent interfaces of L2CAP 104

9

4.8 Code Generation Algorithm . 105

4.9 Concurrency correctness for updating a channel 108

4.10 Memory safety for iterating a parameter list . 109

4.11 Comparison of time costs in paired file transfer 116

4.12 Extended comparison of time costs . 116

4.13 Comparison of time costs in Zigbee data transfer 119

4.14 Code and patch of CVE-2017-1000250 . 121

4.15 PAN state machine of CVE-2017-0783 . 121

4.16 Unauthenticated device interaction in IoT clouds 123

10

ABSTRACT

Comprehensive networking security is a goal to achieve for enterprise networks. In foren-

sics, the traffic analysis, causality dependence in intricate program network flows is needed

in flow-based attribution techniques. The provenance, the connection between stealthy ad-

vanced persistent threats (APTs) and the execution of loadable modules is stripped because

loading a module does not guarantee an execution. The reports of common vulnerabilities

and exposures (CVE) demonstrate that lots of vulnerabilities have been introduced in pro-

tocol engineering process, especially for the emerging Internet-of-Things (IoT) applications.

A code generation framework targeting secure protocol implementations can substantially

enhance security.

A novel automaton-based technique, NetCrop, to infer fine-grained program behavior

by analyzing network traffic is proposed in this thesis. Based on network flow causality, it

constructs automata that describe both the network behavior and the end-host behavior of a

whole program to attribute individual packets to their belonging programs and fingerprint the

high-level program behavior. A novel provenance-oriented library tracing system, Lprov,

which enforces library tracing on top of existing syscall logging based provenance tracking

approaches is investigated. With the dynamic library call stack, the provenance of implicit

library function execution is revealed and correlated to system events, facilitating the locating

and defense of malicious libraries. The thesis presents ProFactory, in which a protocol

is modeled, checked and securely generated, averting common vulnerabilities residing in

protocol implementations.

11

1. INTRODUCTION

Comprehensive networking security is one of the most critical application issues for en-

terprise environment. There is an increasing demand on more advanced forensic analysis

techniques because of the evolving complexity of cyberattacks, such as APT attacks. At-

tackers can intrude giant companies or governments, and spread the malice by leveraging

software vulnerabilities or well-crafted social engineering tricks. The attack can be stealthy,

where malware may lurk in the network for several months or even years until it is trig-

gered. Also, the attack can be launched from an insider who can bypass all the security

gatekeepers configured to prevent intrusion from outsiders. Therefore, to detect or intercept

those attacks at their entry points is particularly challenging. Even if a malicious action

is immediately detected, it is still challenging to understand the root cause or the ramifi-

cations. Hence, in addition to the significant contribution manifested in attack detection,

forensic analysis becomes an irreplaceable pillar in enterprise environment. The analysis can

be done on the network gateway (traffic analysis) and the end host (system provenance).

Existing traffic analysis techniques have accuracy concerns because their working largely

relies on flow-based traffic recognition, which overlooks internal program semantics that are

well reflected in causally correlated network flows. Mainstream provenance tracking tools

always treat loadable modules as regular data-based system objects (e.g., files and sockets),

which misses the execution provenance in loadable modules because module loading does

not guarantee code execution.

Security in fundamental network connection is attracting more and more research atten-

tion as the emerging IoT applications propose and implement lots of new protocols every

year. Recent CVE reports show that such fast-paced shipment of specifications and im-

plementations have produced massive vulnerabilities, of which the majority are related to

incorrect message parsing. Fixing those vulnerabilities is usually impossible after product

shipment and they are concrete threats to individual users and enterprise networks. This

motivates a code generation framework which formalizes protocol specifications/models and

produces secure protocol implementations.

12

In my research, I work on solving system security problems [1]–[4]. I will present my

work on fine-grained system forensics [5] and formalized protocol customization [6] to help

enhance networking security.

1.1 Dissertation Statement

This dissertation addresses important issues in research of system forensics and protocol

customization to comprehensively enhance networking security for enterprise environment.

First, it proposes NetCrop, a new traffic analysis tool leveraging causal dependency be-

tween flows to improve the accuracy in inferring fine-grained program behaviors. Second,

it proposes Lprov, a library-aware provenance system that combines library tracing and

audit-based provenance tracking to identify malicious library execution. Last, it proposes

ProFactory, a code generation framework which produces secure protocol implementa-

tions by DSL-based protocol customization and automated verification.

The thesis of this dissertation is as follows: comprehensive enhancement of network-

ing security can be achieved by fine-grained system forensics, i.e., causality-aware behavior

inference and library-aware provenance tracing, and formalized protocol customization.

1.2 Contributions

The contributions of this dissertation are as follows:

• We propose a novel causality-aware network-level program and program activity fin-

gerprinting system NetCrop, without requiring any modification on end-user systems

during production run. It runs an instruction-level program analysis tool to automati-

cally infer program communication patterns which represent causality and dependency

between network flows. It leverages a practical automaton extraction algorithm to con-

struct a tree-like network automaton for each program from network traces. Further,

we develop a trace partitioning and alignment method that maps program activities to

automaton states. and a highly efficient graph-matching algorithm to parse network

traffic with the automata on-the-fly, attributing network flows to program owners and

disclosing corresponding end-host actions. The experiments show that NetCrop is

13

highly effective in popular network programs, outperforming existing traffic analysis

tools.

• We propose an efficient provenance tracking system Lprov, combining library trac-

ing in user space and syscall tracing in kernel space. Whenever a provenance-related

syscall is made from a thread, its full library-level execution path is also unveiled.

Equipped with the library provenance, causality is revealed not only between explicit

value-based input and output system entities but also inside the implicit fine-grained

execution-based shared libraries. It runs on a lightweight and efficient system-wide

library tracing infrastructure. The evaluation demonstrates that it can precisely iden-

tify the provenance in malicious libraries which are missed by the state-of-the-art, and

the performance overhead is competitive.

• We propose ProFactory, a novel system that realizes efficient and secure protocol

customization. In ProFactory, developers formally and unambiguously model pro-

tocols in a DSL instead of natural languages. Symbolic model checking is performed

to verify the model correctness. Then, the model is fed to the code generation engine

to produce kernel-oriented protocol implementation which provides guarantees of be-

ing free from memory safety vulnerabilities in message parsing and from concurrency

control vulnerabilities in message multiplexing. Such guarantees are provided by the

automatically generated sanity checking code, such as bound checks and input valida-

tion checks, and by applying automated verification tools to the generated code. The

experiments demonstrate that ProFactory can help to avert the majority of existing

protocol vulnerabilities.

1.3 Dissertation Organization

This dissertation is organized as follows: Chapter 2 discusses the design, implementa-

tion and evaluation of NetCrop, which is a new causality-aware behavior inference system.

Chapter 3 presents Lprov, which is a lightweight and effective library-aware provenance

14

tracking system. In Chapter 4 , we will discuss ProFactory, a formalized protocol cus-

tomization framework aiming to generate secure protocol implementations.

1.4 Dissertation Overview

1.4.1 Fine-grained Forensic Analysis in Enterprise Environment

In enterprise environment, forensic analysis can be executed on either the front line, the

traffic analysis, or the back line, the end-host system provenance. Traffic analysis is less

intrusive and it applies classifiers or clusters to infer and log suspicious behaviors for further

investigation. End-host system provenance deploys intrusive logging tools, collecting system-

wide execution context to perform backtracking on particular system events or objects.

Existing traffic analysis and system provenance tools usually suffer from the low accuracy,

and my techniques try to resolve this issue.

Causality-aware Behavior Inference

Substantial research efforts have been taken on traffic classification in the past decade.

The majority of them rely on learning-based methods seeking recognizable patterns in packet

sequences of individual flows, and apply classification or clustering techniques. However,

the flow-based protocol disclosure alone would not be sufficient in handling many upcoming

challenges in complex contemporary enterprise network environments. For example, accurate

session discovery requires the analysis of programs’ flow causality and semantics, rather

than protocol identification. Hence, to improve situation awareness in traffic analysis, I

propose NetCrop which infers fine-grained program activities by analyzing network flow

dependency. It answers (1) what program generates the packets and (2) what activities those

packets represent in the program. It utilizes dynamic analysis to infer causality between

network flows, extracts annotated (by program activity/semantic) automaton model from

programs’ execution traces, partitions network traces to establish the mapping between

automaton states and network flows, and attributes traffic to annotated automaton states

to disclose program behaviors. The experimental results show that NetCrop is highly

15

effective with over 90% precision and recall in both traffic attribution and activity inference,

outperforming existing techniques.

Library-aware Provenance Tracing

Most of existing provenance techniques are operating on system event auditing that dis-

closes dependence relationships by scrutinizing syscall traces. Unfortunately, such auditing-

based provenance is not able to track the causality of the shared libraries. Different from

other data-only system entities like files and sockets, dynamic libraries are linked at runtime

and may get executed, which poses new challenges in provenance tracking. For example,

library provenance cannot be tracked by syscalls and mapping; whether a library function is

called and how it is called within an execution context is invisible at syscall level; linking a

library does not promise their execution at runtime. To address such challenges, I develop

Lprov which combines library tracing and provenance tracking. Upon the beginning of a

program execution, Lprov is loaded into process memory by a customized loader. It records

the entrance and exit of library calls by manipulating symbol tables and maintains library

call stacks for each thread. To be integrated with the audit logging techniques, Lprov also

deploys a kernel module to collect syscall events. During production runs, when a syscall

is made, its deriving path from the library perspective is disclosed by the library call trace

on causality correlations. The experimental results show that it can successfully identify

malicious libraries that are missed by the state-of-the-art with reasonable overhead.

1.4.2 Generating Secure Protocol Implementations

Existing research in protocol security reveals that the majority of disclosed protocol

vulnerabilities are caused by incorrectly implemented message parsing and network state

machine. Instead of testing and fixing those bugs after development, which is extremely ex-

pensive (especially for the emerging IoT devices), we would like to avert them upfront. For

this purpose, I propose ProFactory which formally and unambiguously models a protocol,

checks model correctness, and generates secure protocol implementation. In ProFactory, a

protocol is modeled/customized in a protocol-oriented DSL to eliminate specification confu-

16

sion. The model is then formally verified and used to emit secure protocol implementations.

The evaluation shows that it can help to avert 82 known vulnerabilities.

17

2. NETCROP: FINE-GRAINED PROGRAM ACTIVITY

INFERENCE ASSISTED BY CASUAL DEPENDENCY

ANALYSIS BETWEEN NETWORK FLOWS

The increasing complexity of today’s Internet is continuously motivating the development of

more intelligent network analysis techniques to reveal semantic information from such highly

complex network traffic. We introduce NetCrop, a novel automaton-based technique to

fingerprint end-host program activities by observing network traffic only. Automata are con-

structed through a program-analysis-assisted training phase in which both of network traffic

and program activities are profiled and correlated. Each automaton depicts an enriched

context associating a program’s network communication patterns and activity characteris-

tics, improving the network-level causality awareness which is missed in most of existing

flow-based traffic analysis tools. During production runs, automata are deployed on network

gateways, attributing traffic to individual programs and activities. In particular, program

activities are automatically fingerprinted as part of the automata parsing. The evaluation

on a set of common and popular networking programs including instant messaging, P2P

sharing and email service shows that NetCrop is highly effective. It can attribute traffic

with over 90% precision and recall. It can also fingerprint program activities with over 95%

precision and recall. The experimental results on a large scale real-world enterprise data set

show that NetCrop has more than 79% recall with less than 0.03% false positives.

2.1 Introduction

Attributing network traffic to programs and their activities is a critical task. It is an

enabling technique for network intelligence that matters the most in many research areas

such as overlay network, software defined network and next generation Internet. For many

years, the demands of improving quality of network data collection have continued to in-

crease, mainly due to the ever increasing complexity of modern network applications and

their communication. In particular, such complex and sophisticated network environment

motivates the development of a fine-grained network packet attribution technique that has

18

a wide range of applications in an industry setting. For Internet Service Providers (ISPs),

traffic origin awareness greatly facilitates various network management tasks, such as Quality

of Service (QoS) management, dynamically adjusting network routing strategies and main-

taining network hierarchies [7]–[9]. Furthermore, it is also important for enterprise network

administration as it allows better network status understanding, host behavior profiling,

customized security monitoring and accurate network intervention. For instance, the classi-

fication technique deployed inside Cisco’s NetFlow system serves as a fundamental tool for

capacity planning, behavior monitoring and anomaly detection [8], [9].

There have been substantial research efforts on traffic classification in the past decade.

The majority of them hinge on learning-based methods [10] that look for statistical patterns

in packet sequences, and apply classification or clustering techniques to attribute traffic.

Deep Packet Inspection (DPI) is an alternative approach which tries to search for specific

keywords and strings in packet payloads [11], [12]. Such keywords and strings are utilized as

unique signatures in distinguishing corresponding applications. These techniques can achieve

high accuracy in recognizing commonly used application-layer protocols including HTTP,

HTTPS, SMTP, POP3, FTP, SSH and even P2P [7], [12]–[14]. For some protocols that adopt

port masquerade and payload encryption/encoding/obfuscation, they exploit intriguing flow

features to reveal protocol usage [15]. However, flow-based protocol disclosure alone would

not be sufficient in handling many upcoming challenges in complex contemporary enterprise

network environments. For example, accurate session discovery requires the analysis of

programs’ flow causality and semantics, rather than isolated protocol identification. While

a straightforward method is to deploy a comprehensive host logging system to record all the

host events, such logging systems are often too expensive and impractical for production runs

when considering their performance issues. For example, Linux Audit Logging incurs high

runtime overhead and produces large sizes of logs [16]. Although Event Tracing of Windows

(ETW) offers an efficient tracing infrastructure, it must be coupled with a sufficiently large

buffer and a high-performance log consumer daemon to prevent event missing [17], which

often exceeds the processing capacity of an end-host. Hence, to improve situation awareness

without using intrusive approaches (e.g., host instrumentation), a new approach aiming to

disclose traffic causality should be applied to perform fine-grained traffic attribution.

19

System Goals and Motivation Fine-grained traffic attribution is expected to answer

Q1: what program generates the packets and Q2: what activities those packets represent in

the program. Knowing the exact programs but not only the isolated protocols running is

quite meaningful, especially for security concerns. Since some programs can have newly dis-

closed vulnerabilities, administrators should assist patching them timely. More importantly,

it would also serve as a pillar component of anomaly detection, where examining all the

connections equally would cause a large number of false alarms. Nevertheless, by precluding

traffic generated by known/benign programs, it can assist narrowing down the detection

scope to those highly suspicious ones, substantially improving the performance.

Inferring precise program activities from network traffic is beneficial for privacy aware-

ness because it pre-informs program users of how many behavior details could be leaked

in the sense of networking profiles. In particular, if such behaviors are related to sensitive

information exchange like file transfer, they could also be leveraged for forensic inference

when security incidents such as insider information leakage happen. Also, it allows the ad-

ministrator of an enterprise network to understand if any suspicious program operations are

being performed by an employee/guest such as disallowed file transfer on instant messaging

applications, which enlightens the enforcement of fine-grained (per-activity per-program)

enterprise network policies.

Note that there exist research efforts in addressing the issue of fine-grained program

activity inference. However, due to the lack of traffic causality inference, they either work

in a small set of programs [18] or suffer from unsatisfactory accuracy [19].

Our Solution To this end, we propose NetCrop that can attribute the traffic of a host

to the belonging programs and fingerprint the specific program activities by monitoring

network traffic only, where Q1 and Q2 are answered separately. Specifically, in addition

to recognizing statistical patterns inside packet streams like what has been done in most

previous works, NetCrop pays more attention to orders and causal relations among network

flows and constructs network traffic models by correlating network traffic and end-host actions

(during the training phase).

Our contributions are summarized in the following:

20

• We propose NetCrop, a novel network-level program and program activity finger-

printing system without requiring any modification on end-user systems during pro-

duction run.

• We develop an instruction-level program analysis tool to automatically infer program

communication patterns which represent causality and dependency between network

flows.

• We develop a practical automaton extraction algorithm, constructing a tree-like net-

work automaton for each program from network traces. Further, we develop a trace

partitioning and alignment method that maps program activities to automaton states.

• We develop a highly efficient graph-matching algorithm to parse network traffic with

the automata on-the-fly, attributing network flows to program owners and disclosing

corresponding end-host actions.

• We evaluate NetCrop on 14 popular Windows applications including instant mes-

saging, P2P sharing and e-mail service programs. The experimental results show that

NetCrop is highly effective with over 90% precision and recall in both traffic attribu-

tion and activity inference. The experiment on a large scale real-world industry data

set shows that NetCrop has over 79% recall with less than 0.03% false positives.

2.2 Approach Overview

Figure 2.1 presents the architecture of NetCrop. It consists of three phases: Application

Training, Automata Extraction, and Traffic Attribution.

Application Training Phase (Offline) Given a subject program, NetCrop first exe-

cutes the program with an analysis facility and a tracing tool. As such, we obtain multiple

samples of syscall traces and network traces which include information of TCP/UDP types,

local/remote host ports, remote IP addresses, remote domain names, packet lengths, packet

payload bytes and inter-packet delays. Meanwhile, program’s distinctive communication

patterns are worked out by inter-flow causal dependency analysis.

21

Automata Extraction Phase (Offline) In this phase, NetCrop constructs automata

from programs’ network traces by leveraging syscall traces and communication patterns.

Automaton inference in traces is usually formulated as recognizing regular grammars from

strings in languages which is, unfortunately, a well-studied NP-complete problem [20]. Most

efficient probabilistic algorithms, e.g., homing sequence and diversity-based inference [21]–

[23], require the full set of input symbols and the access to the oracle of counterexamples.

However, in our case, such requirement cannot be satisfied due to the non-enumerable net-

work parameters such as domain names and the lack of counter-traces for reference. Besides,

there have been many studies in specification inference from network traces [24]–[36]. Unfor-

tunately, they mainly concentrate on message format inference, individual stateful protocols

or simplex IoT applications hence they are not suitable for whole program models which are

considered more intricate. In this paper, enlightened by [37], NetCrop extracts approxi-

mate yet practical tree-structured automata by repeatedly finding common sequences among

traces rather than computing precise automata for programs. More details on the automata

construction can be found in Section 2.3.1 and Section 2.3.2 .

Once we obtain the automata, we identify the program activities associated with network

flows by partitioning and aligning syscall traces. Then, we annotate the corresponding

automaton states with high-level program activities. Note that while many efforts have been

taken in identifying behaviors inside program execution or function call traces, which can be

applied in anomaly and malware detection [38], [39], our goal is different as we map host-end

program execution to a network automaton model which is more fine-grained. Specifically,

during production run, when network traffic is parsed by the model, the corresponding

program activity is also disclosed. The details are dissected in Section 2.3.2 .

Traffic Attribution Phase (Online) During production run, the annotated automata of

all the programs under monitoring are deployed on the network (e.g., on a gateway). Note

that NetCrop does not require any additional instrumentation/modification/installation

of applications on end hosts in this phase. NetCrop uses a highly efficient graph-matching

algorithm to attribute packets to their owners. During the attribution, conflicts in state

transitions during the packet attribution might happen due to the complexity of modern

22

network communication. NetCrop resolves the conflicts by defining additional transition

restrictions and matching rules. Details can be found in Section 2.3.3 .

Trace and Log
Generation

Program
Binaries

Functionality
Annotated
Automata
Extraction

Network
Traces

Anotated
Automata

Traffic Attribution

Collected
Traffic

System Call
Log

Result:
Attributed
Program
Behaviors

Attribution Phase
Automata

Extraction Phase

Application
Training Phase

Figure 2.1. The architecture of NetCrop

UDP://192.168.2.3:58421

UDP://103.7.30.141:8000

Payload Prefix: 0x02355f01b4

SA

SB

SC

F1

ABTF1

BCTF2

...

Network Flows Automaton

Video Talk

UDP://192.168.2.3:58763

UDP://50.165.122.134:62235

F2

UDP://192.168.2.3:64326

UDP://50.165.122.188:39731

SA

SB

SC

F1

ABTF1

BCTF2

...

Network Flows Automaton

CBTF1

File

Downloading

TCP://192.168.2.3:58114

TCP://50.165.122.188:39731

F2

(a) (b)

Figure 2.2. NetCrop working examples for QQ and uTorrent

Illustrative Examples Figure 2.2 (a) illustrates a communication segment captured on the

local gateway. In particular, F2 is a UDP flow between a local host and a remote IP. In this

example, we want to answer Q1 and Q2 from F2. When analyzed independently, as most

existing flow-based classification approaches do, it is recognized as a P2P flow. However,

such information is rather misleading and insufficient for our purpose as indeed the flow is

generated by Tencent QQ which is not a typical P2P program. In contrast, NetCrop is

capable to disclose a program which generated the flow as well as its particular activity via

automata-based network analysis. Specifically, in the right side of Figure 2.2 (a), SA, SB

and SC are three states in the automaton of Tencent QQ, extracted by NetCrop through

offline training and program analysis. Between the states, TAB and TBC are the acceptable

driven condition sets for the corresponding transitions. The model specifies that if a UDP

23

flow F1 (with a specific remote IP and binary payload prefix in its first packet) occurs before

F2, F1 and F2 can trigger the transitions SA → SB and SB → SC respectively. It is also

the only transition path for the automata of all the currently running programs. Hence, we

know the traffic must belong to Tencent QQ. Moreover, the annotation on SC tells us that

the local user is engaged in a video talk.

Figure 2.2 (b) shows the network communication in uTorrent, a P2P program, and part

of its network automaton. The isolated TCP flow F2 is identified as a P2P connection.

We observe a UDP flow F1 happen before F2 and SA → SB → SC in the automaton of

uTorrent is the only possible transition path at that moment, then we attribute the two

flows to uTorrent and infer from the label on SC that it is downloading a file. Note that

the automata in this work are different from those of individual networking protocols such

as FTP and HTTP. They are global automata that describe whole program activities which

often consist of traffic in multiple connections and protocols.

2.3 System Design

In this section, we discuss the design of NetCrop in details. In the program training

phase (Section 2.3.1), NetCrop bootstraps each target program, logs the network and

syscall traces generated during execution, and recognizes communication patterns. In the

automaton extraction phase (Section 2.3.2), the network traces are parsed to extract the

fields of interest and denote them with symbols. Then, an automaton which intuitively

describes the communication model of the whole program is derived from the symbols and

their transitions, and then the automaton is annotated with program activities by syscall

traces. In the traffic attribution phase (Section 2.3.3), the annotated automaton is used for

on-the-fly network traffic parsing.

2.3.1 Application Training

Trace and Log Collection In offline, a subject application is launched on a machine

set up beforehand, and the network and syscall (with arguments) traces produced during

execution are collected. Then, we specify a set of predefined behaviors (triggered by user-

24

side input) which we want to fingerprint later such as instant messaging, video talk, and

file transfer. To this end, we selectively trigger program behaviors through automated test-

ing scripts [40], [41] or/and manual interactions. Due to load balancing (Content Delivery

Network) or other non-deterministic factors, each time a program executes, it may interact

with different remote servers. To tolerate such non-determinism, the program is tested for

multiple times with various configurations (e.g., different user accounts and locations). We

leverage a tool [41] that can record and replay user-inputs (e.g., keystrokes and mouse clicks)

to automate the process.

Network Traces Preprocessing We use a network flow as a basic unit in our automata

because we are focusing internal states of the whole-program execution but not a single

protocol/flow. First, all the packets generated during the training (of a program) are ab-

stracted to flows. In particular, a network flow comprises of one or more packets between a

pair of hosts (e.g., local and remote hosts) on a pair of ports. As DNS traffic often includes

important semantics related to program behaviors, a DNS request and its response are also

considered a network flow. Specifically, all the DNS resolution requests and responses are

recorded and the pairs of the domain name and the remote IP are extracted from them.

Then, we order the flows by the timestamps of the first packets of the flows. Figure 2.3 (a)

shows traces from Skype, Outlook and uTorrent, where a TCP or UDP flow is denoted as a

tuple {local port, remote IP, remote port, domain name (if applicable)}.

Next, we discuss how we annotate the fields of network flows based on the program execu-

tion context. The annotations below are directed by the communication patterns discovered

in a prior automated dynamic inter-flow causal dependence analysis. They are highly scal-

able since we are only required to rerun the automated program analysis facility to enrich the

pattern (annotation) set when new programs are added. The inter-flow dependence analysis

is conducted in flows’ four meta-fields, local port, remote IP, remote port and domain name.

For each field in a flow, we perform backward reaching-definition analysis [42] just before the

flow (socket) is actually created, figuring out the data-dependence roots. Following that, we

also apply forward taint analysis [43] and constant propagation [44] on those computed roots.

As such, the full set of inter-flow dependence and corresponding communication patterns can

be revealed:

25

• Protocol Type There are three types of protocols: TCP, UDP, and DNS. TCP flows are

annotated by T while UDP flows are annotated by U. Among UDP flows, DNS related flows

are denoted by D. For DNS flows, we consider four different categories of DNS flows and

append additional annotation to the flows: A (AAAA), SRV, MX and TXT. Other DNS types

are precluded since they are rarely used in practice. Interested readers may refer to related

RFC documents [45], [46].

• Domain Name Depending on how the program chooses and makes use of the domains,

we label domain names in DNS flows into four categories: CONST, ANY, SIMILAR and DEPEND.

CONST means the program uses the same domain in different runs. Such domain names are

often hard coded in program binaries. Some programs connect to the domain names plumbed

through user input (e.g., FTP, SSH, and email client software) which may change from run

to run. We hence use ANY for such cases. SIMILAR describes the domain names derived from

user’s input with shared postfix. For example, Outlook 2013 allows a user to manage his/her

email account by typing in the account name. Then, Outlook will test the connection to

the domain and also subdomains prepended with strings such as “imap”, “pop3”, “pop” and

“mail”, and the domain name leading to a successful connection will be used afterward. The

Outlook example in Figure 2.3 -Outlook(a) shows the flows for configuring Gmail account,

in which imap.gmail.com is used after the 5 DNS requests. Therefore, the 5 DNS flows are

grouped into a flow annotated with SIMILAR and the five prefixes (we use “VOID” if the

prefix is an empty string). DEPEND describes the domains resolved from SRV or MX DNS flows.

The MX and SRV records are used to describe the host name of mail server and other services

(e.g., web service) under a requested domain name.

• Local Port In practice, local ports in most programs are dynamically determined at

runtime. This is because programs need to support the adoption of network address and

port translation (NAPT) techniques by routers and gateways. Also, by dynamically assigning

local ports, program can operate correctly even if a particular local port is already occupied

by another program. Hence, we abstract a local port to one of the following two types: ANY

and UPNP. Mostly, a local port is randomly allocated by operating systems inside syscalls, and

hence we use ANY to denote this type. For P2P applications, a port is propagated through

a UPnP packet for peer discovery. In particular, a program reserves a unique port number

26

for both data sending and receiving, and the peers communicating through this port. For

instance, Skype reserves a port 8820 for peer communication in Figure 2.3 -Skype (a). We

use UPNP to denote such type of port usage rather than a concrete port number. Note that

when UPnP is prohibited, NetCrop adds additional states which represent configuration

flows into the automata. More details are in Section 2.4.1 .

• Remote IP We use five different types to annotate a remote IP in TCP and UDP flows:

D-CON, D-DYN, ANY, DEPEND and CONST. For the first two types (D-CON and D-DYN), a remote

IP is resolved from the prior DNS request regarding domain names. If the domain names

are immutable (i.e., CONST type), we annotate the remote IP with D-CON. Otherwise,

the domain names is determined by the user or the remote server (i.e., ANY, SIMILAR and

DEPEND for the domain name field), and we annotate the remote IP with D-DYN. We use the

ANY annotation in flows whose local port is UPNP or the IP is directly from user input (e.g.

FTP and SSH client). DEPEND is used when the remote IP is assigned from (or propagated

from the same root with) a previous flow whose remote IP is ANY. For instance, the initiated

control connection is followed by data transmission connections at the same IP in FTP.

CONST is used to annotate all the other flows, either propagated from binary constants or

extracted from incoming payload (excluding UPnP).

• Remote Port A remote port is annotated with either CONST, ANY or DEPEND. The ports

less than 1024 or defined by binary constant are CONST, and all the others are ANY. Further,

if a subset of ANY ports are defined by the same dependence root, the following ports are

DEPEND on the first one.

Summarizing Repeated Flows After field annotations, we further identify the flows

that repeatedly occur and summarize them to make the annotated flow set more compact.

We observe some applications issue the same set of network requests (in different protocols)

multiple times to increase the chance of acquiring successful connections. One such example is

uTorrent (also shown in Figure 2.3 -uTorrent(a)). It attempts to first set up UDP connections

to peers. It then tries to connect to the same remote IP and port under TCP. In such cases,

we will see a flow “copies” the remote settings of the previous flow and we annotate this

type of flow with the COPY annotation and the previous flow with COPIED (we differentiate

this with the IP dependency in FTP). If several flows share the exactly same annotation in

27

every field, only one flow is retained, with the MULTIPLE annotation. Figure 2.3 illustrates

the original flows and annotated flows for three applications: Outlook, Skype, and uTorrent.

Constant and Dependency The fields annotated by CONST or D-CON are also assigned

the concrete constant strings. The order numbers of flows being depended are attached on

the flows owning fields dependent on them (e.g. DEPEND and D-DYN). Note that from our

experience in above field annotation strategy, no flows are dependent on more than one flow

and no conflict of dependency relationship exists.

2.3.2 Automaton Extraction Phase

We derive the network automaton from the enriched network flows after the network

trace preprocessing (Section 2.3.1). The information retained within a single flow (intra-flow

features) and the transitions between flows (inter-flow ordering and causalities) are both

leveraged to construct the automaton. We run a program multiple times to increase the

coverage of traces related to network behaviors, which may also lead to uncommon network

flows. Unfortunately, if the uncommon and common flows are treated equally, the chances

of successful matching will be reduced. Hence, we identify the common flow sequences and

make them the core of the automaton. Resolving this problem is similar to finding a solution

for MLCS (multiple longest common sequence) problem, which is NP-complete. Thus, we

apply the NBMAS approximate algorithm proposed in [47] for cost-effective computation.

[1] DNS A gmail.com

[2] DNS A imap.gmail.com

[3] DNS A pop3.gmail.com

[4] DNS A pop.gmail.com

[5] DNS A mail.gmail.com

[6] TCP 45263 74.125.202.109 993 imap.gmail.com

 [1] D A SIMILAR

 void imap pop3 pop mail

 [2] T ANY D-DYN 1 CONST 993

[1] DNS A conn.skype.com

[2] TCP 60200 91.190.218.69 80

 conn.skype.com

[3] DNS A pipe.skype.com

[4] TCP 60201 104.43.167.132 443

 pipe.skype.com

[5] DNS A a.config.skype.com

[6] TCP 60202 23.101.116.26 443

 a.config.skype.com

[7] TCP 60203 91.190.218.69 80

 conn.skype.com

[8] UDP 8820 157.56.52.19 40022

[9] UDP 8820 111.221.74.19 40022

[10] UDP 8820 157.55.235.147 40022

[11] UDP 8820 111.221.77.160 40030

[1] D A CONST conn.skype.com

[2] T ANY D-CON conn.skype.com

 CONST 80 MULTIPLE

[3] D A CONST pipe.skype.com

[4] T ANY D-CON pipe.skype.com

 CONST 443

[5] D A CONST a.config.skype.com

[6] T ANY D-CON a.config.skype.com

 CONST 443

[7] U UPNP ANY ANY MULTIPLE

[1] UDP 64187 74.89.25.8 50321

[2] TCP 59325 74.89.25.8 50321

[3] UDP 64187 202.141.255.6 64932

[4] TCP 59311 202.141.255.6 64932

[5] UDP 64187 182.168.138.48 54312

[6] TCP 59249 182.168.138.48 54312

 [1] U UPNP ANY ANY COPIED

 MULTIPLE

 [2] TCP ANY ANY ANY COPY 1

 MULTIPLE

Outlook (a) Outlook (b)

uTorrent (a) uTorrent (b) Skype (a) Skype (b)

Figure 2.3. Samples of original and annotated flows.

Like a regular automaton, the network automaton we construct consists of states, symbols

and transition functions, where a state by our definition is used for separating symbols and

28

describing program behavior. Different from regular automata, there is no accept state in our

design since the application could terminate at any time. A symbol is a network flow and a

state receiving one expected flow will proceed to the next state directed by the corresponding

transition function. Below we elaborate the algorithm for constructing network automaton:

Automata Extraction Algorithm The outline of the algorithm is described in Algo-

rithm 1 and it can be summarized in three steps:

Step 1. Initialize an automaton and add a start state q1 into the set of states Q. The set of

input symbols U and transition functions F are both set to φ.

Step 2. Compute the longest common sequence from multiple network traces collected from

a program, where a formatted flow symbol could be treated as a character. For the longest

common string SC = sc1sc2 ...sck
, we add k states qc1qc2 ...qck

into Q, add k input symbols

sc1sc2 ...sck
into U and add k transition functions fc1 : (q1, sc1) → qc1 , fc2 : (qc1 , sc2) →

qc2 , ..., fck
: (qck−1 , sck

) → qck
into F . Delete the elements in SC from all the traces. Repeat

this step until there are no common flows among the remaining traces.

Step 3. For each flow sr left in traces, we add a state qr into Q, an input symbol sr into U

and a transition function fr : (q1, sr)→ qr into F .

We take additional steps for several kinds of flows. During the automaton extraction,

the flows depending on other flows are precluded and we introduce a branch for each of them

on the corresponding states after the above steps are accomplished. For a MULTIPLE flow,

we introduce a loop on its origin state, including the flows that depend on it. Figure 2.4

illustrates this algorithm. For simplicity, we use letters to denote different flows and only

consider two traces. In the example, each longest common sequence (in circle) is appended

to the start state as a chain and the remaining flows (uncommon ones) are appended to the

start state directly, and each leads to a single state (in diamond). Since flow C is marked

by MULTIPLE, a loop on Q3 is added. Then, the DEPEND flow (M) is added and linked to the

flow C on which its meta-fields depend. A new state Q9 (in hexagon) is added as well.

Each chain reflects the partial order of the underlying network interactions of the fin-

gerprinted program. Besides, we still need to establish the order of individual chains. For

the example, there are three common sequences, {ACG}, {B} and {D}, and they are all

connected to the start state. According to the automaton, the start state should accept the

29

Algorithm 1: Automata Extraction
Input: m network flow sequences Si = si1si2 ...si`i

, `i = Length(Si), 1 ≤ i ≤ m
Output: An automaton A = {Q, U, q1, F}, where Q is the set of states, U is the set

of input symbols, q1 is the initial state and F : Q× U → Q is the set of
transition functions

1 A = {q1}, scnt← 1, U ← φ, F ← φ //scnt is the amount of states
2 Function Update(q,s)
3 scnt← scnt + 1
4 Q← Q ∪ {qscnt}
5 U ← U ∪ {s}
6 F ← F ∪ {fscnt : (q, s)→ qscnt}
7 end
8 while ⋂m

i=1 Si 6= φ do
9 Sc ←MLCS(S1S2...Sm)

10 for k from 1 to `Sc do
11 for t from 1 to m do Delete sck

from St

12 if k == 1 then Update(q1, sck
)

13 else Update(qscnt, sck
)

14 end
15 end
16 for k from 1 to m do
17 for each s in Sk do Update(q1, s)
18 end
19 return A

symbols B and D, which is not true since A precedes D and {A, C} precede B in the traces.

In other words, Q1 should not lead to Q5 or Q6 in one step. To correct the automaton, we

introduce a pre-set and a post-set for each state to enforce such prerequisite transitions. A

state can only be reached after all the states in its pre-set are reached and a state can no

longer be visited after any state in its post-set is reached. The algorithm for pre-set and

post-set computation is shown in Algorithm 2 and it has two steps which are summarized

below:

Step 1. For each state qt on the LCS that is not the start state, we assume that the flow

leads to qt is s. We traverse backward along each chain and examine every flow s′ other than

s. If s′ precedes s in all collected traces that contain both s and s′, we include state q that

accepts s′ into the pre-set of qt.

30

Algorithm 2: Pre-set and Post-set Computation
Input: Any state qt 6= q1 in the state set Q, the set of LCS chains C and the m

network traces S used in Algorithm 1

Output: The Pre-set Preqt and Post-set Postqt of qt

1 Assume the flow triggering the transition to qt is s Preqt ← φ,Postqt ← φ
2 for each Ci = si1si2 ...si`i

in C do
3 for j from `i to 1 do
4 if The partial order < sj, s >∈ ∀Sk, where sj ∈ Sk and s ∈ Sk, 1 ≤ k ≤ m

then
5 Assume sj triggers the transition to q Preqt ← Preqt ∪ {q}
6 break
7 end
8 end
9 for j from 1 to `i do

10 if The partial order < s, sj >∈ ∀Sk, where sj ∈ Sk and s ∈ Sk, 1 ≤ k ≤ m
then

11 Assume sj triggers the transition to q Postqt ← Postqt ∪ {q}
12 break
13 end
14 end
15 end
16 return Preqt , Postqt

Step 2. From each state qt on the LCS, we traverse forward along each chain and examine

every flow s′. If s precedes s′ in all collected traces that contain both s and s′, we include

state q that accepts s′ into the post-set of qt.

Note that by constructing pre-set and post-set, and enforcing the associated rules, the

order between states can be precisely determined. In addition, it reduces the chance of tran-

sition conflicts (i.e., one flow is observed from multiple programs) when multiple programs

of interest run concurrently. To notice, pre-set or post-set only contain states in common

sequence chains to prevent automata from getting stuck in endlessly waiting in the presence

of rare flows.

Program Activity Annotation Once NetCrop obtains the automata, syscall traces are

leveraged to denote relations between network interactions and program activities. During

the annotation, we mainly focus on three kinds of syscalls: network-related, I/O-related and

message-related. First, network-related syscalls (e.g., send) are utilized to align program

31

1. A

2. C

3. M

4. G

5. B

6. D

7. F

1. A

2. D

3. C

4. M

5. B

6. G

7. H

Q2

Q3

Q4

Q5 Q6

Trace 1

Trace 2

A

C

G

B D F H

A

C

M

C
G

B D F H

LCS nodes

Non-LCS nodes

Start nodes

COPY-flow nodes
Q9

Q1

Q7 Q8

COPIED MULTIPLE

COPIED*2 (precluded)

COPIED MULTIPLE

COPIED*3 (precluded)

Common Sequence

Network Flow Traces Generated AutomataMultiple Longest Common Sequence

Unique Sequence

Figure 2.4. An example for automata extraction algorithm

execution with network flows. Secondly, I/O-related syscalls (e.g., WriteFile) are leveraged

to record program operations on files (or devices) that we are interested in. Lastly, message-

related syscalls (e.g., GetMessage) are for capturing user interactions such as mouse clicks

and keystrokes. To annotate activities on the automata, basic information about program

components such as actions of UI components and cache/storage paths must be available be-

forehand. Note that usually such information can be obtained from software documentations

and configuration files. However, a syscall trace may contain thousands of I/O operations

and message processing records while many of them are not particularly useful for our anal-

ysis. Hence, we first prune the two kinds of syscalls via keyword based filtering where the

keywords are the specific program components we are interested in. Then, by aligning the

network trace with the pruned syscall trace, network flows are partitioned into different

segments by those selected I/O and message related syscalls. Note that those segments facil-

itate narrowing down the scope of network flows related to each program component and we

obtain mappings between network flows and user inputs that generated the network flows.

In particular, in each segment, we first search for the newly generated flow sf leading to an

automaton state qf and sf is the only flow that can reach qf . Then, the state qf is directly

annotated with the corresponding activity. However, a segment may not always contain

such a distinguishable sf , but it can reuse established flows or emit the same flows shared

32

with other segments. Therefore, we leverage additional flow characteristics to assist activity

differentiating: packet signature and interaction handshake.

• Packet Signature Some programs (e.g., IM software) often maintain a network connection

to the server for a long time which may remain during the entire program’s lifetime. In prac-

tice, such connection might be reused to achieve different activities such as message sending,

file transferring and video talking. In such case, sf does not exist in the corresponding seg-

ments. Fortunately, we observe that in order to inform the server of user actions, a unique

operation code for each action is often embedded at the beginning of a synchronizing packet

(the first packet in the segment) for the server in most cases. Such unique constants are

automatically recognized by data-flow analysis in Section 2.3.1 and the activity is annotated

with a positive packet signature feature on the state, where positive means the prefix only

appears in the packet sent to the server. Note that such signature discovery is not limited

in the long-running connection, but can also be applied in any emitted flows in the segment.

• Interaction Handshake Programs may encrypt the traffic to enhance communication se-

curity, voiding our efforts in signature analysis. Besides, a signature may not always exist in

a communication segment. For such programs, NetCrop attempts to record the amount of

interaction handshakes. Specifically, similar to the three handshakes in TCP, communication

in any connection is also an operating protocol and each user activity must be realized by

several interaction roundtrips. The amount of such roundtrips is learned from the success-

fully executed sending and receiving syscall pairs at the same connection in the segment.

Then, if a unique amount of rountrips could be profiled in a segment, the activity is anno-

tated with a positive interaction handshake feature on the state, where positive means the

roundtrip is launched at the client side.

For program activities that are still indistinguishable, NetCrop leverages existing learning-

based techniques [12], [19], [48] to perform a selective training in those communication seg-

ments, producing an intra-program classifier to conduct the activity identification.

33

2.3.3 Traffic Attribution

Once the annotated automata are generated, they are leveraged to identify programs

and their activities from network traffic during production run. We formulate this process

as a problem of matching path through graph traversing. In particular, the start states

of all program automata are initially put into a set D. When a new flow f is recognized,

NetCrop searches D for state ds which has a transition edge e matching f . If ds exists,

e is removed to prevent re-matching. Then, we look into a state dt following e. If dt /∈ D,

then D ← D ∪ {dt}. Otherwise, all edges starting from dt removed a priori are added back.

A state is removed from D only when all the edges starting from it are pruned. During flow

matching, the edges with fields dependent on other flows have the highest matching priority,

CONST has the second highest, and ANY has the lowest.

Checking Pre-set and Post-set We define a validation factor v for each state, which is

set to 0 initially. We also assign validation status for each state. All states are labeled as

invalid at the beginning except the states with an empty pre-set, which are labeled as valid.

When a state ds is examined, we check if it is in the pre-set or post-set of another state dt.

If ds is in the pre-set of dt, v of dt is increased by 1. If v equals to the size of pre-set, the

status of dt is changed to valid and dt can be transited to. If ds is in the post-set of dt, dt is

set to invalid and it cannot be used further.

Resetting the Matching Process We define a reset signal for each program. The signal is

sent when a constant IP connection or a constant domain resolution is detected. If the signal

is caught, the automaton of the corresponding application will be reset to the initialization

status. For example, conn.skype.com, which is the first domain contacted by Skype, is

determined as the reset signal for Skype. This resetting mechanism greatly reduces the

overhead of matching process.

Transition Conflict For automata that can compose an asynchronous automaton, there are

existing solutions [49], [50] that can address the transition conflict problem. However, they

are not applicable in our scenario since no concurrency restrictions exist between individual

programs which are required in the asynchronous automaton model [49]. Fortunately, we

were able to substantially reduce the possibility of runtime transition conflicts by leveraging

34

the precomputed pre-set and post-set as they enforce strict transition conditions for programs.

Moreover, as we compressed a set of flows that share common annotations into a single

MULTIPLE flow, conflicts only happen between different programs. When a conflict happens,

NetCrop computes the subtraction set of states’ post-sets. If it is empty, then the conflict

is considered non-resolvable and NetCrop exploits existing recognition methods [12], [19],

[48] to train an inter-program classifier. Otherwise, NetCrop temporarily proceeds on all

the automata and when any state s in the subtraction set is reached, all the automata except

the one containing s just trace back.

Activity Inference If a state is annotated with an activity, we record it when the state

is matched. Note that this may require an online query sent to the intra-program or inter-

program classifier. While all the field annotations discussed in Section 2.3.1 can be obtained

from the first packet of the connection, NetCrop only selectively checks complete flows on

activity-annotated states to be more efficient, skipping other packets on unannotated states

during the attribution process.

2.4 Evaluation

2.4.1 Experiment Setup

Platform and Data Collection Windows was selected as our experimental platform

but NetCrop is also portable to any other operating systems. We tested 14 programs,

QQ (Tencent QQ), Skype, Slack, uTorrent, PPS, Popcorn (Popcorn Time), BitTorrent, Fox-

mail, Outlook (Outlook 2013), Clawsmail, Thunderbird (Mozilla Thunderbird), iTunes, FZ

(FileZilla) and Putty. We deployed 8 different machines with Windows 10 64-bit installed,

operated by 8 people located in different places above IPv4 configuration. The network is

under full-cone NAT support, which is the most common configuration in enterprise net-

works. The data collection procedure has two stages. First, for collecting training data,

users execute our testing scripts with network tracing, syscall tracing and analysis tools to

run all the programs. Second, for collecting attribution testing data, users are required to

concurrently run all the programs as their daily usage for two weeks, with network tracing

and syscall tracing tools only. Note that in the second stage, the collected syscall traces are

35

only exploited to fetch the ground truth of flow attribution but they do not act as any input

to automata in the attribution phase. We collected 100 traces for each target program to

train annotated automata and used about 986k network flows (in different traces and 862k

from target programs) for attribution testing.

Implementations We used Intel Pin [51] and MS Detour [52] to deploy program analysis

facility, log the system calls and obtain the ground truth for network traffic attribution by

mapping real flows to network-related syscalls via function arguments. For network-related

syscalls, we mainly record DNS and socket functions such as DNSQuery, getaddrinfo, send

and recv. Among I/O system calls, we are interested in file management functions and

UI management functions including CreateFile, ReadFile, WriteFile and CreateWindow.

We intercept messages sent to programs from the arguments in two messaging system calls

GetMessage and PeekMessage. To copy and dissect network connections, we utilize win-

dump [53] and Python’s dpkt package [54].

Load Balancing and CDN In collection of network traces, we observed some distinctive

patterns of load balancing and Content Delivery Network (CDN), reflected in the random

allocation in a group of IP addresses and domains. For example, we observed “2-trouter-

cus-a.drip.trouter.io” and “35-trouter-cus-a.drip.trouter.io” are used in Skype for different

users or machines. Because our dynamic data-flow analysis can not cover all those constant

strings, hence, when attributed, only the invariant letter string parts are matched, skipping

all the digits which may vary across runs. We also observed a group of constant IP addresses

from “103.7.30.139” to “103.7.30.169” for different users in Tencent QQ. Similarly, we only

match the first 26 bits of the 32-bit IPv4 address as the first 26 bits do not vary across runs.

Note that we automatically identify such invariants by tracing instruction addresses in the

aforementioned data-flow analysis (Section 2.3.1) across multiple runs because any instance

of those connections must go through the same call site of socket or DNS function in the

execution path.

DNS Caching DNS resolution results could be cached in the client side. Therefore, to cover

all the DNS resolutions from programs in monitoring/training, we flushed the DNS cache

(one time only) before collecting traces for automata construction. Interestingly, however,

from the results in our experiment, nearly all the domain resolutions had to go through the

36

network instead of the cache, even if we executed them in short intervals. This phenomenon

is due to (1) programs (like many web apps) generally set the TTL of their servers’ domains

to less than 100 seconds and (2) Windows DNS cache only stores the first record in the

resolution results. As those servers usually have multiple aliases, the first record of the

response is always a CNAME record without any IP address. In short, the DNS cache does

not pose challenges in practice.

UPnP Configuration Universal Plug and Play (UPnP) is a collection of protocols that

allows network devices to discover and establish services between other devices. UPnP was

enabled in our experiment as it is enabled by default in common network environments. With

UPnP, the local port reservation on gateways is attempted by three steps in P2P programs.

First, they always try to discover UPnP service on the multi-cast address 239.255.255.250

at port 1900 and request the port mapping on the gateway at port 80 by HTTP. This step

provides the port-program pair information in an XML packet. Second, if the first step fails,

then the program will launch an NAT port mapping request on the gateway at port 5351 or

require the port binding and mapping through Session Traversal Utilities for NAT (STUN)

service on an external server, where a local reserved port, say p is contained in the request

packet. Last, if both steps fail, it will exploit public super-nodes (intermediate-nodes) using

local port p to assist the establishment of peer connections. Note that the communication

of last two steps has no intelligible information, hence the port owners cannot be directly

recognized. More importantly, NetCrop also handles the networks with UPnP disabled via

additional UPnP-oblivious states. In particular, we read the p in the port mapping request

and regard it as a UPNP port which is attributed through automaton state transition.

Advertisement Embedding diverse advertisements is a main income source for free soft-

ware. Large amounts of programs may share common advertisement domains such as

“ad.doubleclick.net” and “ad.doubleclick.de”, which may cause transition conflicts in our

attribution. Considering that the advertisement loading behavior is a typical parasitic web

behavior and it is unrelated to the important actions of programs, we use a public advertise-

ment provider list [55] to prune AD-related traffic.

VPN For security reasons, third-party VPNs are generally disabled in enterprise networks

via protocol filtering. Hence, NetCrop does not take VPN settings into consideration.

37

We argue that analyzing VPN or other tunneling traffic is an orthogonal research effort to

NetCrop.

2.4.2 Case Study

QQ, Skype and Slack The three applications are widely used for instant messaging.

The enterprise might be interested in identifying their specific activities (e.g., file transmis-

sion) instead of just knowing their existence. They all maintain a long-running connection

to perform as a command channel, fulfilling their functionalities. While QQ realizes dif-

ferent user actions by inserting unique command codes at the packet head in plaintext:

0x2355f00cd, 0x2355f01bd, 0x2355f0346, and 0x2355f01b4 for sending messages, send-

ing files, receiving files, and video talking. In contrast, Skype and Slack encrypt all the

traffic [56], [57] and hence we have to train intra-program classifiers to infer some of their

end-host activities. Figure 2.5 shows an example of the long-running connection in QQ and

Skype. We can observe the connection to the QQ server (103.7.30.141) lasts much longer

than others. Note that the y-axis is the timeline in the unit of second, and the server “gate-

way.messenger.live.com” of Skype has a much longer duration in Figure 2.6 (note that the

domain prefix “BN1MSGR1011310” is omitted in the figure) than the others.

In addition to the command channel, they also deploy a P2P-like component which is

responsible for file transfer and real-time video service, where Skype, QQ and Slack register

the local port through UPnP, port mapping and STUN respectively.

Outlook, Clawsmail, Foxmail and Thunderbird Identifying the existence of a partic-

ular third-party email client program currently in use is useful for system managers as some

third-party programs may have software vulnerabilities. However, due to the similar func-

tionalities among third-party email clients, such task is challenging. In this case study, we

show how NetCrop can pinpoint an e-mail client by using network traces. While different

third-party e-mail clients have similar functionalities, we observe that implementations of

some functionalities often differ from each other, allowing NetCrop to identify an exact

email client currently in use. For example, when users add an e-mail account, if they do

not know the exact server name, they usually give program a rough domain name (e.g.,

38

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Connection

T
im

e

103.7.30.141:8000
zyx.qq.com:8000
dldir1.qq.com:80
cgi.qqweb.qq.com:80
p.qlogo.cn:80
profile.qshop.qq.com:8414
pub.idqqimg.com:80
3gimg.qq.com:80
dir.minigame.qq.com:80
if.mingxing.qq.com:80
qring−tms.qq.com:8000
httpring.qq.com:443
2052.flash2−http.qq.com:80
rs1.qq.com:8000
qqmail.tencent.com:12000
cgi.find.qq.com:80
htdata3.qq.com:80
htdata4.qq.com:80
rc.qzone.qq.com:80
client.show.qq.com:80

Figure 2.5. Duration of flows in Tencent QQ

user@gmail.com) and let the program identify the correct one (e.g., imap.gmail.com). The

most convenient and reasonable way to search for the correct mail server is to launch the

MX query for the postfix domain of the e-mail account. However, it turns out that programs

prefer to rely on their own strategies since not all the e-mail servers actually register their MX

records. As shown in Figure 2.3 , Outlook attempts the five domains to discover the proper

mail servers. If all the five trials fail, it will attempt a sixth (the last) domain prepended

with “autodiscover”. Clawsmail uses three SRV queries with strings “_pop3s._tcp.”, “_sub-

mission._tcp.” and “_pop3._tcp.” as prefixes to obtain the email server host names whereas

Foxmail connects to its own query server “addrapi.exmail.qq.com” to retrieve e-mail servers.

In contrast, Thunderbird firstly tests a query on the “autoconfig” prefix, and then fetches

the answer from its “mx.thunderbird.net” server if the query fails.

uTorrent and PPS uTorrent is a well-known program built on BT (bittorrent) protocol

which is dominating the P2P implementation today and it resembles another two programs

39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

Connection

T
im

e

conn.skype.com:80
pipe.skype.com:443
a.config.skype.com:443
b.config.skype.com:443
m.hotmail.com:443
rst.r.skype.net:12350
ui.skype.com:80
prod.tpc.skype.com:443
go.trouter.io:443
api.mcr.skype.com:443
prod.registrar.skype.com:443
apps.skype.com:443
secure.skypeassets.com:443
static.skypeassets.com:443
dr.skype.net:443
gateway.messenger.live.com:443
157.56.52.19:40022
111.221.74.19:40022
157.55.235.147:40022
213.199.179.162:40031

Figure 2.6. Duration of flows in Skype

Popcorn and BitTorrent. As explained in Section 2.3.1 , when a P2P program built on

BT protocol downloads a file from a peer, it will back up the downloading connection by

duplicating a TCP flow copying remote peer IP and port from the UDP flow created before,

as illustrated in Figure 2.3 . PPS is a web-based P2P client for a video site iQiYi. It uses P2P

techniques similar to bittorrent to accelerate the content delivery speed for video watching.

When fetching movie segments from peers, the program exhibits the same flows shared with

other segments but the amount of interaction handshakes can help distinguish its behaviors.

2.4.3 Performance Overhead

The overhead incurred by NetCrop is measured from two perspectives, resource (CPU

and memory) consumption and network throughput. We deploy a gateway server (8 cores

and 32GB memory) which also performs other local services such as Web and SSH, and 8

end-host machines actively running client-side applications including the 14 target programs

40

(all the end-host execution is automated by testing scripts and follows a pre-recorded one-

day workload). In particular, the evaluation consists of three separated days, d1, d2 and

d3, where the gateway’s on-the-fly attribution is turned off in d1, kept running in d2 and

only turned on (without conducting any attribution task) in d3. Note that the purpose of

the evaluation in d3 is to demonstrate NetCrop’s scalability during production runs (i.e.,

whether program accumulation would significantly increase attribution costs). We compute

the median of per-second overhead for each hour and the results are collected in Figure 2.7 .

As illustrated, the overhead of NetCrop is actually negligible, as memory overhead is below

4.5%, and CPU/throughput overhead does not exceed 3.0%. In addition, compared with d3,

d2 does not degrade the performance when the attribution is enforced, which indicates that

NetCrop should be highly scalable in the perspective of the number of target programs.

Here, to reflect the throughput loss caused by NetCrop, throughput overhead of d2 (the

same for d3) is calculated as out1/in1
out2/in2

− 1, where out1 and in1 are outgoing and incoming

throughput of the gateway in d1, and out2 and in2 are that in d2.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

O
ve

rh
ea

d

Time (hour)

CPU overhead d2 CPU overhead d3 memory overhead d2 memory overhead d3 throughput overhead d2 throughput overhead d3

Figure 2.7. Performance overhead of NetCrop

2.4.4 Results

We compare our system with three existing learning-based classification techniques:

A [12], B [48] and C [19] for traffic attribution. In particular, we leverage those tech-

41

niques to train our intra-program and inter-program classifiers, implement training mod-

els in WEKA [58] and perform a 10-fold cross validation to attenuate overfitting prob-

lem. For the technique involving the combination result of multiple classifiers, we just

select the one with the best performance. The F1 scores are shown in Figure 2.8 , where

F1 = 2 ∗ Precision ∗ Recall/(Precision + Recall), Recall = TP/(TP + FN), P recision =

TP/(TP + FP). Note that NetCrop has a much better performance in most of the 14

programs. As stated above, automaton model expresses the flow causal dependency but

learning-based techniques are well-tailored for flow-based recognition. NetCrop achieves

high F1 scores (above 85%) in all programs except the four email clients. We inspect the

cases and it turns out that except the account adding behaviors, other common functionali-

ties such as e-mail sending/receiving are mostly similar between them. So, when attributing

such flows, the conflicts force NetCrop to apply the inter-program classifier. Note that,

however, NetCrop can still pinpoint an email client in use via other functionalities with

distinctive implementations.

0

0.2

0.4

0.6

0.8

1

1.2

F1
 s

co
re

NetCrop+A NetCrop+B NetCrop+C A B C

Figure 2.8. Comparison of F1 score with existing classification techniques

For further comparison, we evaluate the performance of NetCrop and existing classifi-

cation techniques under different training sizes. Figure 2.9 collects the results, where the F1

score is the overall result from the 14 programs and all the techniques are evaluated under

the training size of 20, 40, 60, 80 and 100 traces respectively. For each training size, we still

perform the evaluation in a 10-fold cross validation. As the results indicate, the training set

42

of 100 or fewer traces for each program may be too small to achieve a satisfactory accuracy

for learning-based classification techniques. This shows a significant advantage of NetCrop,

which is that a small amount of training traces can still bring a relatively high accuracy.

Moreover, in the classification stage (without behavior inference), NetCrop can quickly

attribute a flow by examining the first packet of the flow while ML techniques need to wait

for the whole flow statistics, which makes NetCrop outperform others in the attribution

efficiency.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NetCrop+A NetCrop+B NetCrop+C A B C

O
ve

ra
ll

F1
 S

co
re

20 40 60 80 100

Figure 2.9. Comparison of overall F1 score under different training sizes

Web browsers Web browsers are not considered in our evaluation targets but they serve as

unknown or “other” programs. All the unmatched web flows are supposed to be generated

by unknown programs and may need further inspection. Note that modern browsers are

highly complex and can be seen as OSes running various languages and web-applications.

Behavior analysis inside browsers is partitioned on different websites but not separated apps.

Profiling websites in web is not in the scope of current NetCrop, while one can implement

NetCrop in browsers to do the profiling. Also, one can leverage website fingerprinting as

well as web-based covert channel or malware analysis techniques [59]–[61], as complementary

tools to examine the unmatched web flows.

For further analysis on traffic attribution of NetCrop, we compute the misclassifi-

cation rate between programs. The misclassification rate (A is attributed to B) here is

43

Table 2.1. Misclassification between programs
QQ Skype Slack uTorrent PPS BitTorrent Popcorn Foxmail Outlook Clawsmail Thunderbird iTunes FZ Putty Other

QQ N/A 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Skype 0% N/A 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Slack 0% 0% N/A 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

uTorrent 0% 0% 0% N/A 0% 2.78% 3.41% 0% 0% 0% 0% 0% 0% 0% 2.81%
PPS 0% 0% 0% 0% N/A 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

BitTorrent 0% 0% 0% 3.27% 0% N/A 2.47% 0% 0% 0% 0% 0% 0% 0% 2.20%
Popcorn 0% 0% 0% 3.79% 0% 4.54% N/A 0% 0% 0% 0% 0% 0% 0% 2.67%
Foxmail 0% 0% 0% 0% 0% 0% 0% N/A 8.8% 9.1% 10.7% 0% 0% 0% 0%
Outlook 0% 0% 0% 0% 0% 0% 0% 10.9% N/A 8.3% 9.8% 0% 0% 0% 0%

Clawsmail 0% 0% 0% 0% 0% 0% 0% 11.2% 10.1% N/A 9.5% 0% 0% 0% 0%
Thunderbird 0% 0% 0% 0% 0% 0% 0% 8.1% 8.4% 9.9% N/A 0% 0% 0% 0%

iTunes 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% N/A 0% 0% 0%
FZ 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% N/A 0% 0%

Putty 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% N/A 0%
Other 0% 0.90% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% N/A

M isclassA,B = F NA∩F PB

F NA+T PA
. We regard all the applications that are not in the 14 target pro-

grams as Other. The results are summarized in Table 2.1 . We can observe that there is

misclassification between P2P applications. It is mainly resulted from the transition con-

flicts of common resource trackers like “tracker.bittorrent.com” in their automata. Also,

some packets of those P2P applications are identified as Other. This is due to (1) trackers

in the P2P architecture can be dynamically updated and they were not completely observed

during our automata extraction process and (2) programs often talk with bundle servers

on port 80 or 443 to obtain the resource profile and those servers can be input from users’

seed files. The misclassification between email clients is expected because they exhibit ex-

tremely similar network behaviors in regular e-mail sending and receiving hence difficult

to completely differentiate them. Note that in practice, users also use other functionalities

in the email clients, allowing us to differentiate them. Hence, this does not mean failure

of NetCrop. Skype has embedded components that exchange data with websites such as

“www.facebook.com” and “connect.facebook.net”, which overlaps the normal web browsing,

causing the misclassification from Other.

Effectiveness of Activity Inference Table 2.2 shows the result of activity inference

inside the 14 programs. The overall results are promising and most of the activities we focus

on are captured accurately. The account adding operations in email clients are all through

programs’ automatic server settings. If a user manually sets his email servers without the

automatic server setting, it turns out all the programs do not generate any network packets

for the action, hence is invisible in network traces. The same as that in traffic attribution, the

44

Table 2.2. Activity inference result
Program Activity #Total TP FP FN Program Activity #Total TP FP FN

QQ

Open Chat Window 269 269 0 0 uTorrent Download File 224 224 0 0
Send Message 1103 1103 0 0 Share File 129 129 0 0

Send File 33 33 0 0 PPS Watch Video 187 187 0 0
Receive File 19 19 0 0 Share video 42 42 0 0

Voice/Video Call 34 34 0 0 BitTorrent Download File 193 193 0 0

Skype

Send Message 105 105 53 0 Share File 97 97 0 0
Send File 17 17 0 0 Popcorn Watch Video 271 271 0 0

Receive File 11 9 0 2 Share video 85 85 0 0
Voice/Video Call 71 67 0 4 FZ Download File 59 55 9 4

Open Chat Window 29 22 6 7 Upload File 51 50 0 1
Add Credit 8 8 0 0 Putty Download File 53 53 31 0

Foxmail
Add Account 24 24 0 0 Upload File 76 70 0 6
Send Email 82 67 19 15

Outlook
Add Account 28 28 0 0

Retrieve Email 139 102 34 37 Send Email 151 117 39 34

Clawsmail
Add Account 17 17 0 0 Retrieve Email 282 240 44 40
Send Email 53 41 8 12

Slack

Send Message 197 197 39 0
Retrieve Email 113 87 28 26 Send File 21 21 0 0

Thunderbird
Add Account 15 15 0 0 Receive File 14 14 0 0
Send Email 35 25 3 8 Voice/Video Call 18 18 0 0

Retrieve Email 49 34 7 10 Open Chat Window 31 29 8 2
iTunes Download App 47 47 0 0 iTunes Listen to Music 68 68 0 0

high FP and FN in email sending and receiving activities are due to the forced inter-program

classifier of NetCrop in conflicting automata matching. However, we observe that the

majority of them can still be correctly attributed and it indicates that the implementations of

those email-client programs can still emit statistically different flows even in email exchange.

The false positive cases in the message sending inference for Skype and Slack were expected

because the long-running flow with the command server is also responsible for other usage

such as status update, where the attribution is trapped into the intra-program classifier, and

the same situation also happens to “Open Chat Window”. NetCrop fails to recognize 4

voice/video calls. We manually inspect these cases and it turns out that three calls failed to

get through, so there is no interaction between the two people. The other call is too short

and no words were spoken during the call. We notice that there are several false negative

instances for file transferring activities in Skype, FZ and Putty. We found that they are due

to the transferring of small-size files which are misclassified by the intra-program classifier.

Similarly, the false positive cases for file downloading identification in FZ and Putty are due

to the execution of commands with heavy feedback.

45

2.4.5 Traffic Attribution in Enterprise Network

The prior evaluation result suggests NetCrop is able to attribute network traffic to

applications and their behaviors with high accuracy. We also test NetCrop on traffic data

collected within a real enterprise to evaluate its effectiveness for the real-world settings.

Dataset We were granted with access to the logs collected by host agent installed on tens

of thousands machines within the enterprise.

1
 The host agent monitors the operations of

processes running on the deployed machine, including file access and network communica-

tions, and transmits the logs to a central database for host provenance. For scalability, the

events of the same type (e.g., connection to a domain by one process) are aggregated and

only the first and last event timestamp are kept. Besides, the logs are periodically cleaned to

save storage space. Due to the limited quota assigned to us, we query and download 6-week

logs related to 3 applications of sufficient installation number (QQ, Skype, and iTunes) to

compute recall of application fingerprinting

2
 and 12-hour logs of all applications to compute

false-positive rate (FPR). We only fingerprint applications but not specific behaviors because

the host agents do not collect any behavior information and hence we do not have the ground

truth. Note that fingerprinting applications alone is very meaningful for enterprises.

Changes on traffic attribution We adjust the traffic attribution method for this dataset.

First, as the exact timestamp for network connection is missing, we match the network flows

and the automaton without ordering. Second, to handle missing network logs, we consider a

machine running the tested application if its network flows match at least half of the states

along one path of the automaton.

Results Table 2.3 shows the result for recall and FPR. For recall result, we count the

number of machines installing the application and machines detected by NetCrop. Even

given the complexity of the enterprise environment (different versions of the application are

running concurrently, and the hosts are distributed globally) and the issue of missing data,

NetCrop is still able to catch most instances (79.4% at least for iTunes). The FPR is

negligible for application fingerprinting. We count the number of machines not running the
1

 ↑ The enterprise deploys agents on end-hosts and proxies at network perimeters. We use the logs from host
agents as ground-truth. NetCrop does not require the host logs when deployed by enterprise.
2

 ↑ Outlook is not considered for testing as the enterprise did not disclose their internal configurations.

46

Table 2.3. Recall and False-positive Rate (FPR) on enterprise dataset.
Program Recall (Matched/Total) FPR (Matched/Total)

QQ 95.0% (19/20) 0.04% (3/8334)
Skype 82.1% (288/351) 0.22% (18/8289)
iTunes 79.4% (923/1163) 0.04% (3/8100)

applications in the 12-hour dataset and the machines alarmed by NetCrop and calculate

FPR. FPR for QQ and iTunes are only 0.04%, while FPR for Skype is 0.22%. We inspect

the logs and found that 17 machines (out of 18) are captured as they all run a program

SkypeC2CAutoUpdateSvc.exe which yields similar network flows as Skype. In fact, as it

updates Skype automatically, we believe there is a high chance that the 17 hosts run Skype.

The results show that NetCrop is highly effective in handling real-world network traffic.

2.5 Limitation and Discussion

Activity Selection Currently, NetCrop mainly focuses on commonly used function-

alities such as instant messaging, file transferring and video talking. However, the design

of NetCrop is general and not limited to these activities. It can also infer other activities

as long as they (1) involve explicit user-side input (e.g. keyboard/mouse events and file op-

erations), (2) generate distinctive network segments (program behaviors does not generate

network packets are not considered). Some behaviors such as pushing notification to clients

are dominated by the server and they can be completed without explicit user-side actions.

To support those behaviors, NetCrop is required to record and analyze additional syscalls

which can reflect the user-side reactions (e.g., text changes in GUI components).

Attribution for Similar Programs As shown in our technical design, traffic attribution

and activity inference between similar programs hinge on the implementation diversity in-

side program components. However, it is not a panacea and such diversity may not exist

in some similar program sets. For instance, the performance of NetCrop in distinguish-

ing email sending and receiving behaviors from various clients is unsatisfactory. However,

while NetCrop could not resolve this merely from the perspective of automaton annotation

47

and flow-based classification, integrating NetCrop with lightweight host-end tracing may

mitigate the problem.

Training Coverage In training phase, understanding program components involves some

manual efforts while program testing on common use cases may not cover all the execution

paths. Due to the limited coverage, some communication patterns may not be derived during

the training. However, it can be alleviated by combining more sophisticated program analysis

and testing techniques [62]–[64].

Automaton Model The automata derived by NetCrop are irregular. Therefore, the large

body of well-studied automata processing techniques, such as transition conflict handling,

may not be directly applicable. If one can obtain regular automata for programs, existing

automata processing techniques can be applied. However, from our analysis and observations

on modern network communication, program models (like those in NetCrop) are hardly

regular due to the complexity of program semantics.

Dynamic Flows It is possible that a program can dynamically change connection param-

eters (e.g. remote IP and remote port) at runtime (e.g., the parameters may be dynamically

set by previous flows which may also be encrypted). Note that this is different from CDN,

where servers are still a set of constant addresses. In such case, NetCrop might have

difficulties in fingerprinting programs and activities. However, due to the complexity and

runtime cost of such functionalities, they are rarely observed in practice. Indeed, our evalu-

ation result shows that NetCrop can work on most categories of programs.

2.6 Related Work

The issue of traffic classification has been attracting researchers’ continuous attentions. In

the beginning, such task is fulfilled through simple port examination. In TCP/UDP headers,

port numbers can be mapped to their application-layer protocols defined in IANA [12], but

the port recognition method is not helpful when traffic is tunneled in popular protocols

or dominated by P2P applications. Considering the flexible usage of network ports today,

this port-based technique is facing increasing limitations [7], [13], [65], [66]. To understand

what protocol packets are really talking about, following proposed tools try to scan packet

48

payloads and inspect interesting signatures [11]. However, despite the high accuracy such

DPI-based tools can achieve, they could be thwarted by possible challenges. For example,

the searching process may incur high runtime overhead and encrypted packets may cause

unexpected errors. To overcome the problems in port-based and DPI-based techniques,

statistical machine learning based approaches have been proposed. Most of the proposed

mechanisms implement classification utilizing flow statistics like communication duration,

inter-packet delay, packet size and partial transmission ratio [10], [12], [66]–[68].

Many supervised machine learning tools have been applied in traffic classification. NBC

(Naive Bayes classifier), nearest neighbors, decision trees and SVM (support vector ma-

chines) [7], [69], [70] are proved to be useful. In [7], about 250 flow-based statistical features

are collected for the classification in NBC. Utilizing correlation-based filter in dimension

reduction and kernel density estimation in distribution computation, the approach performs

well in distinguishing applications of web, email, file exchanging, database and multime-

dia. Semi-supervised machine learning techniques such as expectation maximization and

K-means [12], [71] are also explored. Three cluster algorithms, K-means, Gaussian mixture

model and spectral clustering are used in [12]. With the characteristics collected from the

sizes of first several packets in each flow, the method achieves promising results in identify-

ing most well-known application-layer protocols. In [72], combination of diverse classifiers

are applied to achieve a high classification accuracy, even for private application protocols

such as Skype. Besides the flow-based statistics, some end-host behaviors are involved in

multi-level classification models [13], [73]. In [13], a novel three-level clustering is equipped.

Adding host-end connection counting, the advanced model can achieve above 90% accuracy

and report unknown protocols. Although those machine learning algorithms and models

could achieve highly accurate detection rates in certain network circumstances, they have

limitations [10], [67], [74]. Most of them handle flows separately and hence, they are not

suitable for traffic attribution and behavior inference in the granularity of whole program,

which requires the information of flow causal dependency.

Network traffic analysis is also used for mitigating threats from adversaries. For example,

Borders et al. [59] proposed a system called Webtap to detect anomalous outbound traffic

going through HTTP tunnel (e.g., potential data exfiltration attempts). The goal of our

49

approach is different in that it aims to accurately fingerprint programs and their behaviors.

Our approach could also complement these existing works in network provenance.

50

3. LPROV: PRACTICAL LIBRARY-AWARE PROVENANCE

TRACING

With the continuing evolution of sophisticated APT attacks, provenance tracking is becom-

ing an important technique for efficient attack investigation in enterprise networks. Most

of existing provenance techniques are operating on system event auditing that discloses de-

pendence relationships by scrutinizing syscall traces. Unfortunately, such auditing-based

provenance is not able to track the causality of another important dimension in provenance,

the shared libraries. Different from other data-only system entities like files and sockets,

dynamic libraries are linked at runtime and may get executed, which poses new challenges

in provenance tracking. For example, library provenance cannot be tracked by syscalls and

mapping; whether a library function is called and how it is called within an execution con-

text is invisible at syscall level; linking a library does not promise their execution at runtime.

Addressing these challenges is critical to tracking sophisticated attacks leveraging libraries.

To facilitate fine-grained investigation inside the execution of library binaries, we develop

Lprov, a novel provenance tracking system which combines library tracing and syscall trac-

ing. Upon a syscall, Lprov identifies the library calls together with the stack which induces

it so that the library execution provenance can be accurately revealed. Our evaluation shows

that Lprov can precisely identify attack provenance involving libraries, including malicious

library attack and library vulnerability exploitation, while syscall-based provenance tools

fail to identify. It only incurs 7.0% (in geometric mean) runtime overhead and consumes 3

times less storage space of a state-of-the-art provenance tool.

3.1 Introduction

APT (advanced persistent threat) attacks are eternal enemies to cybersecurity commu-

nities and contemporary enterprise networks are suffering the most among all the network

environments. Incented by tremendous economic interests in commercial espionage, attack-

ers are taking persistent efforts in penetrating enterprise networks from diverse vectors, which

motivates the increasing demands in cyber attack investigation. Detecting or intercepting an

51

APT attack at its entry point is particularly challenging due to their advanced and stealthy

attack techniques. For example, backdoor implantation scheme allows attackers to inject

malicious code into a benign program in order to disguise the malicious behaviors as nor-

mal benign behaviors. Rather than downloading and executing obvious malicious programs,

they leverage existing benign applications and services to conduct malicious behaviors such

as downloading or opening attachments from well social-engineered emails, and clicking URL

links in luring advertisements [75]. Hence, in recent years, in addition to the significant con-

tribution manifested in attack detection, provenance tracking becomes an irreplaceable pillar

in APT analysis and defense. Given a target system entity or object (e.g., compromised file,

socket, or process), provenance tracking systems analyze it from multiple aspects, and figure

out the entity’s root (or origin) as well as deriving path [3], [75]–[77]. The root contains all

the external entities (e.g., an IP address) affecting the status or value of the target entity;

while the deriving path is an organized causal graph illustrating how the entity is eventually

influenced from the root. Such tracking information can facilitate locating the attack and

prevent repeated infection.

Existing provenance tracking techniques can be divided into three categories: non-unit

provenance, tainting-based provenance, and unit-based provenance. Most provenance tools

leverage event logging to trace system events (e.g., syscalls) and associate them for further

offline attack tracking and investigation [78]–[85]. While there are various system events such

as network communication, memory operations and syscalls, most provenance tools focus on

logging and analyzing syscall events as syscall logging (e.g., audit logging) is widely used

(included in most Linux distributions by default) and practical (low overhead).

Non-unit provenance techniques Non-unit provenance tools have a conservative as-

sumption: a process is causally related to all the system entities (e.g., files and sockets) it

has accessed so far. In such conservative causality correlating models, any output object

(e.g., files and sockets) of a process has causal relations to all the preceding input objects,

resulting in many bogus causality relations and confusing the following attack investigation.

We call such problem the dependence explosion problem [75], [78], [86], [87] and the problem

becomes particularly severe in complex long-running programs such as firefox and Apache.

For instance, consider a case where a user opens firefox and browses 10 websites. Then, the

52

user carelessly downloads a malware binary on one of the website, namely xxx.com. Later,

the malware is detected and an investigator wants to identify which website downloads the

malware. When non-unit provenance techniques are used, they report all of the 10 websites

as roots while only the website xxx.com is the true root cause and other 9 websites are not.

Tainting-based provenance Tainting-based provenance techniques [77], [88]–[96] assign

tags to multiple tainting sources (e.g., receiving sockets and input files) and propagate them

by monitoring executed instructions. When those tags reach sinks (e.g., sending sockets

and output files), they detect information flow between sources and sinks, revealing the

roots of the sink entities (e.g., IP addresses). However, since these techniques work on the

instruction level, most of them cause significant runtime overhead and they are rarely used

in production runs. Note that while the latest instruction-level tracking system may perform

replay-based provenance analysis in low overhead (3.22%), its resource pruning and selective

tainting in replay require pre-recorded instruction-level execution logs [77], hence it is not

applicable in our context. Moreover, taint analysis suffers from over/under-approximation as

it has difficulty handling implicit information flow through control dependencies (e.g., data

compression and table lookup). Besides, taint set operations in instructions are error-prone

since pointers, arrays, syscalls, third-party libraries and language-specific features should be

carefully processed.

Unit provenance techniques. Unit-based provenance such as BEEP [75], [97] and Pro-

tracer [76] is the state-of-the-art in provenance tracking. They are based on an observation

from a study [75]: in diverse open-source software including both of client-side and server-

side, most programs are designed in input-triggered loops which dominate the event handling.

Hence, unit-based provenance tracking techniques profile such loops from program binaries

and partition programs’ execution into units. Those units are semantically autonomous and

they are usually responsible for independent input events. By partitioning a long-running

execution into multiple small execution units, they significantly mitigate the dependence ex-

plosion problem. An output object is considered causally correlated to an input object only

if they belong to the same unit. However, a single unit may not cover the whole execution

subroutine for one input event, such as the asynchronous unit cooperation in message queue

processing. Hence, memory dependency between units is also tracked to detect inter-unit

53

dependencies. With such design, the unit-based provenance tracking techniques can accu-

rately identify the root (the xxx.com website in the previous example) pruning out other

bogus dependencies.

Unfortunately, while the unit-based provenance techniques mitigate the dependence ex-

plosion problem, they fail to consider another important aspect of provenance, the shared

libraries. An integrated executable binary consists of a main module and several depending

shared libraries. For example, the binary of vim links 14 shared libraries and firefox has more

than 20. In most of provenance tracking systems, the main module and those libraries are

usually handled as one process/program entity but they are not analyzed separately. Since

the library loading phase is in the program initialization but outside any event handling

loop, the output of any unit has no dependence on any input library in unit-based track-

ing techniques. As a result, the unit-based techniques are not able to track provenance in

libraries. Note that although Protracer [76] correlates all the loaded libraries in generating

the causal graph, it is still coarse-grained since they are the same input for all the units,

which is considered no causality in the logic of dependence analysis. Unlike other input

sources such as files and sockets which are value-based hence can be tracked by monitoring

I/O syscalls, the provenance inside libraries is execution-based and the correlation cannot

be simply tracked by causality deduction in I/O syscalls. Specifically, mapping or linking a

library does not promise any execution instance, and whether a specific library is executed

or how it is executed within a unit cannot be answered in the syscall granularity. Note that

there have been proposed user-space tracing tools to perform provenance tracking [98]–[100],

but they are too coarse-grained and the tracing requires repeated manual efforts in event/-

causality definition or program instrumentation because stealthy attacks could act as normal

behaviors (See Section 3.2).

Our solution To this end, we develop a user-space library tracing technique and merge it

into existing syscall-based provenance tracking systems in order to improve the visibility of

library execution in provenance tracking. We propose a novel provenance tracking system

Lprov which performs on the granularity of library functions other than those on syscalls.

It aims at addressing the obstinate wart, the absence of user-space library provenance, in

syscall-based auditing systems.

54

It works as follows. Upon the beginning of a program execution, Lprov is loaded into

process memory by a customized loader. It records the entrance and exit of library calls

by manipulating symbol tables and maintains library call stacks for each thread. To be

integrated with the audit logging techniques, Lprov also deploys a kernel module to collect

syscall events. Only when trapped into a syscall, a process’s library call stack is retrieved

for output. To ensure the efficient processing in kernel, a daemon process in user space is

designed to take over log delivery and optimization (e.g., reduction of redundant or duplicate

logs). During production runs, when a syscall is made, its deriving path from the library

perspective is disclosed by the library call stack on causality correlations.

Our contributions are summarized as follows.

• We propose an efficient provenance tracking system Lprov, combining library tracing

in user space and syscall tracing in Kernel space. Whenever a provenance-related syscall

is made from a thread, its full library-level execution path is also unveiled. Equipped with

the library provenance, causality is revealed not only between explicit value-based input

and output system entities but also inside the implicit fine-grained execution-based shared

libraries.

• We devise a lightweight and efficient system-wide library tracing infrastructure. The

tracing provides a friendly running environment for heavy-threaded programs and all the

thread properties (e.g., concurrency) are well preserved.

•We evaluate our prototype and the results are promising. Lprov can precisely identify

the provenance in malicious library, and it incurs only 7.0% runtime overhead (in geometric

mean) and consumes 3 times less storage space (29.7% of the space for provenance data by

BEEP [75]).

3.2 Motivating Example

The Linux Ebury attack in ssh service [101] motivates the importance of library aware

provenance tracking. This attack leverages a stealthy backdoor to implant subsequent ma-

licious binaries such as ssh clients or servers. The first version of Ebury attempts to replace

ssh-related binaries such as sshd, ssh and scp by carefully crafted malicious binaries. How-

55

ever, the crafted programs are too obvious and attack ramification could be easily exposed to

existing provenance tracking systems. Hence, Ebury evolves into exploiting well-camouflaged

shared libraries rather than directly intruding the program bodies. In this paper, we repro-

duce a version of the library-base Ebury attack to show the effectiveness of Lprov.

Library-based Ebury To make the attack stealthy, library-based Ebury carefully chooses

a particular library, libkeyutils.so, which is one of the libraries for Kerberos authentica-

tion. Specifically, Kerberos authentication is a widely used identity authentication pro-

tocol between ssh clients and servers and most Linux versions support it by default. In

Linux, it is implemented by 4 libraries, libkcrypto.so, libkrb.so, libkrbsupport.so and libgss-

api_krb.so. Among these libraries, the key management library libkeyutils.so is only called

by krb_get_notification_message in libkrb.so which is, in fact, never called in the cur-

rent Kerberos implementation. In other words, libkeyutils.so is a “dangling” library in ssh

programs. Moreover, we observe that in most Linux versions, no other programs are using

libkeyutils.so except the ssh service. Hence, the attacker chooses libkeyutils.so as it would

only affect the ssh program without attracting attentions from users and security adminis-

trators.

Attack Scenario This is an exfiltration attack that aims at stealing users’ private keys. An

administrator is maintaining several servers and he generates public/private key pairs (one

pair for one server or one pair for multiple servers) for remote login, which is protected by

the ssh public key authentication. Considering the flexibility of server configuration, such as

location changing, service switching and load balancing, those servers are managed by some

dynamic domain name service (e.g., No-IP) where IP addresses are not fixed. Through an

unverified package update, the libkeyutils.so library in administrator’s laptop is replaced by a

malicious one containing a backdoor in the library’s constructor, transferring hosts’ private

keys to a remote attacker-controlled site y.y.y.y. Note that it is possible to make the

program load the malicious library without physically replacing the library file. Specifically,

the library can be placed into directories with higher search priority in the loading phase,

without changing the original library file. After a few months, the administrator logs into a

server and notices that the system has been compromised. He then realizes that his private

key was leaked since the attacker successfully got through the login authentication.

56

Provenance Analysis The causal graphs tracking from the private key file id_rsa.1

generated by BEEP [75] and Lprov are in Fig. 3.1 . Note that the graph contains about

thirty different remote server nodes and many file object nodes but we only analyze a small

part of it (related to the provenance analysis). Since the ssh client is not a long-running

program with an input handling loop, the unit partition of BEEP cannot take any effect

here but all the objects are dependent on the whole process. Hence the network connection

established for exfiltration in the library’s constructor is causally correlated to ssh in the same

way as other remote servers. When a user accesses any remote server through the ssh client,

the corresponding public/private key is always read for identity authentication. Therefore,

without extra evidence, it is impossible to differentiate the attacker’s site y.y.y.y from other

server addresses (e.g., x.x.x.x, z.z.z.z, and so on). Accomplishing the file transmission,

the library’s constructor outputs connection error messages and calls exit to terminate.

Therefore, the ssh client would not connect to any server after the communication with

y.y.y.y, preventing the attack being readily caught in the light of a suspicious ssh process

associated with two different remote servers. From the administrator’s perspective, the

program termination is just regarded as a normal connection failure and no anomalies could

be perceived. Moreover, the attack is conditionally triggered with a certain probability,

hence most ssh connections launched from the client are benign ones. If the administrator is

fortunate enough to obtain the whole and correct server-side logs such as login and DHCP,

the suspicious connection to y.y.y.y could be identified. However, it is challenging to

understand the root cause and internal profound details of the malicious library file.

In contrast to BEEP, Lprov’s causal graph shows the execution-based provenance for

the attack. In this clear context of execution paths, we can figure out that the private key was

exfiltrated to the remote server y.y.y.y through the constructor function of libkeyutils.so

in trivial efforts. Note that to simplify and clean the illustration, Figure 3.1 omits the

provenance of the library file, but this will be detailed in Section 3.5.2 .

57

bash

.../.ssh/id_rsa.1

y.y.y.y:22

ssh ssh

x.x.x.x:22

BEEP

bash

ssh

bash

z.z.z.z:22

…………

bash

libc:
execve()

.../.ssh/id_rsa.1

ssh

libkeyutils:
constructor

libkeyutils:
constructor

libc:
read()

libc:
read()

libc:
write()

sys_execve

sys_write

sys_read

sys_read LPROV

y.y.y.y:22

libkeyutils:
constructor

bash

libc:
execve()

ssh

libc:
read()

libc:
read()

libc:
write()

sys_execve

sys_write

sys_read

sys_read

x.x.x.x:22

bash

libc:
execve()

ssh

libc:
read()

libc:
read()

libc:
write()

sys_execve

sys_write

sys_read

sys_read

z.z.z.z:22

…………

libkeyutils:
constructor

libc:
connect()

sys_connect

libc:
connect()

sys_connect

libc:
connect()

sys_connect

Figure 3.1. Causal graphs generated in provenance tracking for Ebury ex-
filtration attack. BEEP can not distinguish the attacker address but Lprov
gives a clear attack context.

3.3 System Overview

Lprov leverages the same program unit instrumentation scheme from BEEP and Pro-

Tracer [75], [76], assuaging the concerns of dependence explosion. Fig. 3.2 illustrates the

architecture of Lprov. Specifically, the customized loader mandatorily preloads the tracing

library lprov.so into processes’ memory at the program bootstrap and monitors the initial-

ization procedure of libraries upon loading. The library lprov.so takes charge of tracing and

storing library call events into a memory chunk shared with kernel. The kernel module and

the user-space daemon are largely inherited from ProTracer [76] and we augment them to

accommodate library-level events, but our contribution mainly lies in improving the library

awareness of auditing-based provenance tracking by efficient library tracing. Our kernel

module is responsible for (1) recording syscalls and (2) copying associated library call stacks

into a circular buffer shared with the daemon process. The daemon pulls log entities from

the shared buffer and outputs them to the log file for further provenance analysis. Note that

to minimize the attack surface (i.e., to prevent hijacking from compromised libraries), exter-

nal library codes are statically linked to the customized loader, lprov.so and the user-space

daemon.

A shared library could be loaded through process initialization (by system loader) or

calling dlopen on demand. In either way, when a library is loaded, lprov.so alters the offsets

of exported function symbols in the library ELF header and redirects them to injected

58

BEEP instrumented
target program

lprov.so

customized loader

user space

daemon process

log file

kernel module

syscall

kernel space

lprove log
entities

libcall event
data

libcall stack
collected by kernel

syscall event data
+

libcall stack

shared memorycircular buffer

Figure 3.2. The architecture of Lprov: dashed lines denote control flow and
solid lines denote data flow.

wrappers (i.e., entrance wrappers). In the entrance wrapper routine, the return address of a

library call is then instrumented with another wrapper (i.e., exit wrapper) to catch function

exit. During program execution, the two wrappers record the enter and exit sequences of

library calls to the shared buffer which is read by kernel later. Note that such a library

tracing procedure hinges on dynamic symbol resolution and its limitations will be discussed

in Section 3.6 . Details of library call tracing are discussed in Section 3.4.1 . Compared

with syscalls involving low-level kernel object operations, user-space library functions are

called much more frequently. For instance, more than 18.2 million library functions are

executed when a user opens firefox, visits the homepage of New York Times, and clicks the

headline. Meanwhile, only about 753 thousand syscalls are invoked. However, many of those

library function calls are less significant (e.g. tolower, toupper) for provenance analysis.

Hence, instead of recording all the call sites of library functions, Lprov focuses on a small

fraction of important library calls (e.g., read, write, constructor) and builds a concise,

59

yet comprehensive (regarding provenance tracking) library call graph. Only if a library call

terminates at a syscall, its full call stack is considered for output. Other cases which do not

interact with kernel are pruned . The design of kernel module is elaborated in Section 3.4.2 .

The daemon fetches log data from the circular buffer as a consumer. A log entity is

a syscall event annotated by a library call stack. Among candidate entities, the daemon

only outputs the ones which are not duplicating any already-output log record. This part is

dissected in Section 3.4.3 .

Assumption In this paper, like other existing provenance systems built on audit logging,

we trust the kernel and the user-space processing daemon. Apart from that, Lprov also

assumes the integrity of the library tracing component in user space. The limitation of such

assumptions will be discussed in Section 3.4.1 and Section 3.6 .

3.4 Design and Implementation

3.4.1 Library Call Tracing

In this section, we discuss the detailed design of Lprov and compare it with ltrace (the

most widely used library call tracing tool in Linux).

Design

The tracing functionality of Lprov is encapsulated as a library lprov.so loaded into

the runtime memory of the tracee. It realizes logging library calls with three cooperative

components: dynamic symbol redirector, entrance/exit wrapper and customized loader.

Dynamic Symbol Redirector This component serves as the pillar of lprov.so. It is

composed of an overrider of dlopen and a constructor function (of lprov.so).

When importing a module, the loader typically runs in a lazy binding mode, where the

resolution of external function symbols is not executed until the program reaches their first

reference. The system resolver relies on the symbol table of library’s exported functions to

parse entrance addresses of external functions.

Hence, the overrider manipulates specific fields of the table to direct the resolution results

to our injected wrapper routines (introduced in the next two paragraphs). Specifically, the

60

overrider first calls the original dlopen and obtains the library handle. Then, it locates

the addresses of dynamic function symbols (i.e., DYNSYM section which contains the list

of exported functions). Finally, the attributes of st_value and st_info inside Elf_Sym

structure are modified for each symbol. The st_value attribute of a dynamic function

symbol implies the offset of the function’s entrance to the library handle. We change the

values of st_value in order to interpose the functions.

However, if a library function is compiled as IFUNC whose implementation is bound during

runtime, changing the value of st_value will cause the program to crash when the function

is called since st_value of an indirect function indicates the address of the runtime resolver

instead of the function entrance. Since these functions are specified as IFUNC and the types

are stored in st_info, we also alter this value to make the system resolver handle indirect

functions as non-indirect ones. In addition, the original address of an indirect function could

be pre-fetched by dlsym. Hence, the constructor function of lprov.so interposes dlopen on all

the libraries (including dependent libraries) in the program’s ELF header, while the libraries

loaded by dlopen during runtime are automatically instrumented by the overrider.

Entrance/Exit Wrapper The manipulated symbol table dispatches library calls to the

corresponding function entrance wrappers. A library function’s entrance routine (1) stores

functions’ original return addresses (stored at (%esp)) and stores programs’ states, (2) logs

library call entrance events, (3) redirects return addresses to exit wrappers, and (4) restores

programs’ states and resumes library function execution.

An exit wrapper (1) fetches functions’ original address and storing programs’ states and

(2) pops out the last library call entrance events and resumes library function returns.

Customized Loader To guarantee that the library call tracing functionality is deployed

before the target program executes any library function, the library lprov.so must be loaded

before all others. In Linux, generally, this could be done by enabling the LD_PRELOAD en-

vironment variable. However, many anti-debugging and self-protecting techniques probe

LD_PRELOAD and then refuse to execute when the variable is used. Moreover, according to

Linux security policy, LD_PRELOAD referring to any untrusted path is ignored in loading phase

when binaries’ setuid or setgid bit is set. To this end, rather than using the LD_PRELOAD,

we modify the loader to enforce the pre-loading of lprov.so anyway through do_preload.

61

Apart from all the exported functions, a library’s constructor plays a critical role in the

library loading mechanism. It is called by the loader upon the library importing procedure,

before the library handle is actually returned. Therefore, we customize the loader further

to monitor the execution of libraries’ constructors. Specifically, in the loader’s initializer

_dl_init, at the execution points where call_init is called and returns, the constructor

entrance event is pushed and popped as regular library calls.

Design Choices

In this section, we elaborate our design choices comparing with the design choices of

ltrace, and highlight advantages of Lprov. In particular, ltrace leverages breakpoints and

debugging mode in order to interpose library calls, which results in high overhead and missing

library call events. In contrast, Lprov uses an dynamic instrumentation approach which

outperforms ltrace in various aspects. In the following, we elaborate the advantages from

five different perspectives.

Interposing Nested Library Calls To interpose library calls, ltrace leverages ptrace

which imposes high overhead. In addition, ltrace inserts software breakpoints (INT 3) at the

PLT (Procedure Linkage Table) trampoline entries of library functions. Note that software

breakpoints incur significant overhead as the entire process is stopped when a breakpoint is

reached. More importantly, the resolutions of external function symbols in different libraries

(modules) are independent and they all hold their local PLTs. The breakpoint insertion of

ltrace is confined within the PLT trampoline entries of the program (the main module) but

all the libraries’ PLT segments are not instrumented. Hence, if library calls are nested, ltrace

is unable to trace the inner ones.
Unlike ltrace, Lprov focuses on the symbol resolution phase inside the loader. Hence, it

can trace nested library calls with significantly lower overhead compared with ltrace.
Interposing Non-PLT Library Calls Functions in a library can be called through indirect

calls using function pointers. Such calls do not go through PLT trampolines hence ltrace is

not able to interpose such library calls

1
 .

1
 ↑ https://linux.die.net/man/1/ltrace, the latest document claims that ltrace can handle the dlopen case but

the latest software version 0.7.3 still does not have this feature.

62

Since Lprov operates through dynamic symbol tables, all library calls by function point-

ers derived during symbol resolution can be traced in Lprov.
Constructor Function While constructor function initializes variables and states, it can

also execute any code upon library loading. Hence, without the awareness of constructor

function, distinguishing library calls inside it from the ones outside is particularly challenging.

Unfortunately, ltrace is not capable of tracing the constructor functions as it focuses on PLT

trampolines.
The customized loader of Lprov makes sure that Lprov traces all the constructor func-

tions as well as library function calls within the constructor functions.
Thread Support ltrace leverages software breakpoints (i.e., INT 3) to interpose library

calls. Unfortunately, when a program halts on INT 3, it enters a SIGTRAP status where

all the threads are suspended. In addition, to be informed of function returns, ltrace inserts

breakpoints at the return addresses, which would trap the execution of other threads into

unexpected breakpoint handling routine when text segments are shared in a thread group.

As a result, ltrace hurts thread concurrency, eventually incurring additional overhead in

multi-threaded applications.
As Lprov does not rely on software breakpoints, it does not have any of the aforemen-

tioned issues. It offers a thread-friendly tracing environment, where thread concurrency

properties are preserved well.
Runtime Overhead Compared to Lprov, the breakpoint scheme of ltrace incurs much

higher overhead due to context switch and the limited thread support. Table 3.1 shows

the runtime overhead of the two tracing tools in the same workloads of four server-side

programs (httpd, simplehttpd, proftpd, sshd), eight client-side programs (firefox, filezilla,

lynx, links, w3m, wget, ssh, pine) and three editors/readers (vim, emacs, xpdf). The Apache

Benchmark [102] tool is used to measure the two web service programs, Apache httpd and

simplehttpd, and ftpbench [103] is used to measure proftpd. For firefox, we use the standard

browser benchmarking tool SunSpider [104], and we use corresponding program scripts for

all the other programs. In the columns of ltrace, N/A in httpd and firefox indicates that

programs do not terminate in a reasonable time limit (e.g., meaning that it incurs more

than 1000% overhead) or just crash. This is because ltrace incurs particularly high overhead

in multi-threaded programs. Note that to measure the performance of ltrace, we develop a

63

Table 3.1. Lprov has much lower runtime overhead than ltrace
Program ltrace Lprov #Gap# of calls overhead # of calls overhead

httpd N/A N/A 8764.7K 53% N/A
simplehttpd 946.4K 563% 965.5K 28% 19.1K

proftpd 1407.8K 622% 1494.3K 36% 86.5K
sshd 4987.0K 769% 5019.8K 44% 32.8K
ssh 3668.6K 813% 3741.6K 30% 73.0K

firefox N/A N/A 394461.6K 126% N/A
filezilla 7311.5K 988% 7383.2K 47% 71.7K

lynx 912.6K 672% 933.0K 34% 20.4K
links 659.7K 565% 697.8K 29% 38.1K
w3m 757.2K 622% 785.3K 41% 28.1K
wget 448.8K 390% 453.3K 30% 4.5K
pine 1092.8K 522% 1103.6K 34% 10.8K
vim 8276.0K 734% 8336.9K 37% 60.9K

emacs 3053.2K 658% 3104.4K 31% 51.2K
xpdf 781.5K 742% 803.0K 40% 21.5K

simple library hooking module that leverages the same techniques used in Lprov without

any additional provenance related components. Specifically, it only records entrances and

exits of library calls.
The primary results show that Lprov outperforms ltrace. The overhead incurred by ltrace

is 10-20 times more than that of Lprov. Moreover, Lprov can trace more library calls

as ltrace is not capable of tracing nested and Non-PLT library calls. Observe there exists

a gap between the amounts of recorded library calls.

Data Integrity

As malicious libraries and recorded library call stacks reside in the same memory space,

the tracing data might be compromised during runtime. To mitigate the issues, we can lever-

age complementary address space (re)randomization techniques [105]–[107] such as ASLR

(Address Space Layout Randomization). Specifically, randomization techniques make sure

that the library of Lprov is loaded into a random address. Moreover, we can leverage these

techniques to randomize addresses of our data structures. Also, hardware features can be

leveraged to ensure data integrity [108] as well.

64

3.4.2 Lprov Kernel Module

Kernel Event Tracing A syscall interrupt (INT 80) traps program execution into kernel

mode and the kernel module steps in at this moment. Linux offers several convenient and

stable tracing facilities in kernel, LSM [109] (Linux security module), Tracepoints [110] and

KProbes [111], [112] to register customized kernel event handlers. Specifically, LSM is often

applied to implement MAC (mandatory access control) around kernel objects such as inode.

It operates at a finer granularity than syscalls, which can incur additional overhead when a

syscall accesses an object more than once, and miss customized syscall events introduced by

unit partition in BEEP and Protracer [75], [76]. Tracepoint is a lightweight kernel tracing

infrastructure which is adopted by many high-performance tracing tools such as Linux perf

and audit logging. Unlike LSM, tracepoint allows tracing kernel work flows at different gran-

ularities (either object or function) through pre-defined tracing events. It statically embeds

global event-tracing placeholders into kernel source code and users can then register effective

probe functions on those tracepoint instances. Complementary to tracepoint, kprobe is a dy-

namic tracing infrastructure for kernel debugging. Among the three techniques, kprobe has

the finest kernel tracing granularity since it provides the interface which can insert callbacks

at any kernel-space instruction address, however, as a result of its purely dynamic design

operating on software breakpoints, it has higher overhead than tracepoint. To this end, we

select tracepoint as the underlying event handling mechanism to provide the workaround for

syscall tracing inside the kernel module.

Tracing Target For provenance purpose, only the syscalls related to explicit causality

deduction are considered in kernel tracing. The set of tracing targets is the same as Pro-

tracer [76], including syscalls on basic file read/write operations, file redirection syscalls,

IPC syscalls, process management syscalls and customized syscalls to mark the unit in/outs.

In particular, Lprov enlarges the set by another category of syscalls, memory permission

manipulating syscalls. Change of memory access right is a critical clue for provenance infer-

ence, especially in user-space library tracing. For example, a function in library A alters the

permission of pages allocated to library B and modifies the image of B dynamically. BEEP

and Protracer are oblivious on such dependence because the inter-unit memory read event

65

defined in them is an explicit value-based read that cannot model an implicit execution-based

read. Hence, Lprov additionally collects syscall events of mprotect

2
 and mmap. When li-

brary A invokes mprotect to set the PROT_WRITE or PROT_EXEC flag to a memory chunk

mapped to library B, then the corresponding memory section of B has runtime dependence

on A. In addition, syscall mmap can be utilized to obtain a memory chunk with specific per-

missions and this is the default way library binaries are loaded into process memory by the

program loader. Library tracing is accomplished by lprov.so, and hence it is unnecessary to

additionally handle the general library mapping here. Specially, if files (including libraries)

are non-anonymously mapped, they will be considered either input or output object of the

process according to the permissions and opening modes of file descriptors. For all the other

anonymously (i.e. MAP_ANONYMOUS) mapped executable pages, we regard them as a part of

the main module and then the main module is considered dynamically dependent on the

mmap invoker.

Event Collecting For a syscall instance, in addition to the standard syscall event which

is recorded by existing systems built on audit logging, Lprov also correlates the thread’s

library execution path to this event. The kernel module retrieves library call stacks from

the buffer shared with user-space applications, packs syscall events with the stacks into log

entries and delegates the log outputting task to the user-space daemon through the circular

buffer. By doing so, kernel does not need to wait for the previous events to be completely

processed. The size of the buffer can be also configured so that kernel would not wait when

the buffer is full. It can be also configured to drop events when the buffer is full. To accelerate

the library call processing inside kernel, the buffer maintaining programs’ library call stack

is a per-thread buffer indexed by thread id so that kernel can access the memory efficiently.

To prevent expensive dynamic memory management from weighing in, we choose to pre-map

the per-thread buffer with a fixed size when the kernel module is loaded.
2

 ↑ The more efficient syscall pkey_mprotect is not included here since it is not supported until Linux-4.9
kernel and it also requires specific hardware assistance.

66

3.4.3 Lprov Daemon Process and Log Analysis

Daemon Process The daemon keeps reading log events from kernel through the

producer-consumer buffer. Since there are only one producer (producer does not overwrite

data) and one consumer, the circular buffer is implemented in lock-free mode. Plumbed

from Protracer [76], the daemon marshals a thread array to perform log processing and logs

from one process should be tackled by only one thread to maintain processes’ consistent and

complete execution context. The on-the-fly log processing phase aims at reducing duplicate

events on the same system object within one unit. For example, downloading of a large file

inside browsers is fulfilled by thousands of socket-reading and file-writing operations, but

only one of them needs to be recorded for provenance purpose. In addition, the processing

also connects redirected files (dup function group) to prevent causality loss. Note that we

do not apply the log reduction scheme playing with taint propagation in Protracer [76] since

the taint cannot clarify the implicit execution path from the source to target hence not

applicable to our purpose. Moreover, if we combine Lprov with the tainting technique, a

taint must be spawned for each library call stack per syscall event, which does not take any

advantage over the direct logging. Eventually, the filtered log entities are delegated to the

log outputting thread to generate the log file on disk.

Log Analysis Lprov provenance tracking is expected to answer how a system object is

affected and how it affects the system in the perspective of syscall and library events. Hence,

we provide both of backward and forward tracking, disclosing the deriving path and the

aftermath of objects in a directed provenance graph. The log analysis algorithm is similar

to that in BEEP [75] and Protracer [76] but Lprov augments the provenance graph by

handling additional events on memory permission manipulation and capturing library-level

execution causalities.

Algorithm 3 describes the process of backward tracking in Lprov. It takes as input

the reverse-ordered log and a designated system object, and then generates a causal graph

by correlating system entities in Lprov events. In Algorithm 3 , a tuple of pid, uid and

uinst defines a unique runtime process unit (line 2). Lprov has seven types of event, where

SYS_R/SYS_W is the system read/write event such as socket or file read/write, SYS_PROC

67

Algorithm 3: Lprov Log Analysis Algorithm
Input : Logrev - Lprov log in reverse event order

: objt - designated tracking object
Output: Graph - Lprov provenance graph
Def. : Object - set of objects causally related to objt

: event = {pide, uide, uinste, typee, obje, parae, lstacke} - a Lprov event in Logrev
: pid - process id
: uid, uinst - unit id and unit instance
: typee ∈ {SYS_R/SYS_W, SYS_PROC, MEM_R/MEM_W, MEM_PERM, MEM_MAP} - event

type
: obje - system object in an event
: parae - event parameter
: lstacke - libcall stack including the syscall
: Memory[pid] - set of memory use instances in pid
: rel[u] - whether unit u is causally related to objt
: edge = (obja, objb, lstack) - a directed causality edge from obja to objb

interconnected by lstack
Init. : Object← {objt}

: Graph← Φ
: Memory[pid]← Φ
: rel[u]← False

1 foreach event ∈ Logrev do
2 unit← (pide, uide, uinste)
3 if typee ∈ {SYS_W, SYS_PROC, MEM_PERM} ∧ obje ∈ Object then
4 Graph← Graph ∪ {edge(pid, obje, lstacke)}
5 Object← Object ∪ {pide}
6 rel[unit]← True
7 end
8 if typee == SYS_R ∧ rel[unit] == True then
9 Graph← Graph ∪ {edge(obje, pid, lstacke)}

10 Object← Object ∪ {obje}
11 end
12 if typee == MEM_R ∧ rel[unit] == True then
13 Memory[pid]←Memory[pid] ∪ {parae}
14 end
15 if typee == MEM_W ∧ parae ∈Memory[pid] then
16 Memory[pid]←Memory[pid]− {parae}
17 rel[unit]← True
18 end
19 if typee == MEM_MAP then
20 if parae ∈ {RDONLY, RDWR} ∧ rel[unit] == True then
21 Graph← Graph ∪ {edge(obje, pid, lstacke)}
22 Object← Object ∪ {obje}
23 end
24 if parae ∈ {WRONLY, RDWR} ∧ obje ∈ Object then
25 Graph← Graph ∪ {edge(pid, obje, lstacke)}
26 Object← Object ∪ {pide}
27 rel[unit]← True
28 end
29 end
30 end

68

(1) 2462, 0, 0, SYS_R, 15 (g.g.g.g:43), NULL, (sys_read, libc: read)

(2) 2462, 0, 0, MEM_MAP, 13 (/tmp/xjKHVFG2A), O_RDWR, (sys_mmap, libc: mmap)

(3) 2462, 0, 0, MEM_W, NULL, 0x401570, NULL

(4) 15834, 0, 0, SYS_R, 7 (/etc/hosts), NULL, (sys_read, libc: read)

(5) 2462, 0, 1, MEM_R, NULL, 0x401570, NULL

(6) 2462, 0, 1, SYS_PROC, 4972, NULL, (sys_fork, libc:fork)

(7) 15834, 0, 0, SYS_R, 9 (h.h.h.h:80), NULL, (sys_read, libc: read)

(8) 2462, 0, 2, SYS_R, 17 (k.k.k.k:43), NULL, (sys_read, libc: read)

(9) 4972, 0, 0, SYS_R, 4 (~/trojan), (sys_write, libc:write)

(1) 2462, 0, 0, SYS_R, 15 (g.g.g.g:43), NULL, (sys_read, libc: read)

(2) 2462, 0, 0, MEM_MAP, 13 (/tmp/xjKHVFG2A), O_RDWR, (sys_mmap, libc: mmap)

(3) 2462, 0, 0, MEM_W, NULL, 0x401570, NULL

(4) 15834, 0, 0, SYS_R, 7 (/etc/hosts), NULL, (sys_read, libc: read)

(5) 2462, 0, 1, MEM_R, NULL, 0x401570, NULL

(6) 2462, 0, 1, SYS_PROC, 4972, NULL, (sys_fork, libc:fork)

(7) 15834, 0, 0, SYS_R, 9 (h.h.h.h:80), NULL, (sys_read, libc: read)

(8) 2462, 0, 2, SYS_R, 17 (k.k.k.k:43), NULL, (sys_read, libc: read)

(9) 4972, 0, 0, SYS_R, 4 (~/trojan), (sys_write, libc:write)

libc:
read()

libc:
write()

g.g.g.g:43

~/trojan

/tmp/xjKHVFG2A

2462

4972

libc:
mmap()

libc:
fork()

sys_write

sys_readsys_mmap

sys_fork

LPROV log Provenance Graph

Figure 3.3. Log analysis example.

is the process creation event, MEM_R/MEM_W is the memory read/write event used to infer

unit dependence, MEM_PERM is the memory permission event that makes executable memory

pages writable (mprotect and anonymous mmap) and MEM_MAP is the non-anonymous memory

mapping event. In a Lprov event, obje is file descriptor for SYS_R/SYS_W and MEM_MAP, pid

for SYS_PROC, memory section of a module/library for MEM_PERM and invalid for other event

types; parae is the memory address for MEM_R/MEM_W, file and memory permission (RDONLY,

WRONLY or RDWR) for MEM_MAP, and invalid for other event types; lstack is the library call stack

for each causality edge and it is invalid for MEM_R/MEM_W events. Specifically, the algorithm

can be inducted into three causality rules: a process unit has causality to the tracking object

if (1) an event within the unit writes/creates any system entity that has causality to the

tracking object (line 3-7, line 24-28) or (2) the unit writes a memory chunk which is read by

another unit that has causality to the tracking object (line 12-18); while a system entity has

causality to the tracking object if (3) the entity is read by an event within a unit that has

causality to the target object (line 8-11, line 20-23). Fig. 3.3 is a log analysis example, where

log entries are in Lprov log format event = {pide, uide, uinste, typee, obje, parae, lstacke}, and

the target object trojan is casually correlated to the unit (pid = 2462, uid = 0, uinst = 0).

The forward tracking algorithm is just the reverse version of Algorithm 3 , and hence it is

omitted in discussion.

69

3.5 Evaluation

We set up four machines (machine A, B, C, and D) with similar hardware configuration

(16GB RAM and Intel i7 CPU) in our evaluation experiments. In order to compare the

overall performance, those machines are all deployed Lprov and BEEP.

We select 11 programs from Table 3.1 for measurement as some of them share the same

functionalities. Not all of them are instrumented by BEEP as programs like ssh do not have

an event handling loop and they are not designed to run for a long time.

We assign one machine (i.e., machine A) as the server (running both server-side and

client-side programs) and the other three (e.g., machine B, C, and D) as pure client machines

(running client-side programs only). We refer the anonymous users of these machines with

the same alphabet letters (User A, B, C, and D).

User A configures, manages and maintains the server service. The server operates a tiny

web server for a group project, an FTP server for file sharing and an SSH server for remote

accessing. The other three users (Users B, C, and D) are required to actively communicate

with the designated server and use the selected programs during the experiment. Besides

the necessary communication with the server, the three users also have their own behavior

profiles. User B mainly uses the machine to watch TV or movies online, visit social network

sites, browse news and chat with friends. User C undertakes most of his project coding

work on the assigned machine. He usually downloads and reads programming manuals or

documents. User D is preparing some coming interviews. She mainly accesses her email

account for personal communication, watches presentation videos and visits Q&A websites

to collect interview-related materials.

3.5.1 Performance Overhead

Storage Overhead The performance experiment lasted two weeks and the results are

shown in Table 3.3 . From the results, we can observe that in spite of logging the library

call stack, the storage consumption of Lprov is only 29.7% of BEEP. Since Lprov applies

a on-the-fly reduction phase, the generated log has much less redundancy compared to the

original audit event log. Note that because Lprov logs additional library-level events and

70

Table 3.2. Comparison of storage overhead between Lprov and ProTracer
in a two-week performance experiment

User ProTracer Lprov ProTracer/Lprov
#item(M) size(GB) #item(M) size(GB) item size

A 17 11 59 45 28.8% 24.4%
B 28 16 62 41 45.2% 39.0%
C 14 7 42 26 33.3% 26.9%
D 12 6 33 20 36.4% 30.0%

Avg. 18 10 49 33 36.7% 30.3%

Prog. ProTracer Lprov ProTracer/Lprov
#item(M) size(GB) #item(M) size(GB) item size

httpd 5.3 3.0 13.9 8.3 38.1% 36.1%
proftpd 3.8 2.2 8.3 5.4 45.8% 40.7%

sshd 4.3 2.5 15.4 10.8 27.9% 23.1%
ssh 1.4 0.9 4.1 2.8 34.1% 32.1%

firefox 27.1 15.1 68.0 49.6 39.9% 30.4%
filezilla 1.8 1.0 2.7 1.6 66.7% 62.5%
w3m 0.5 0.3 1.2 0.9 41.7% 33.3%
wget 0.4 0.2 0.8 0.5 50.0% 40.0%
pine 0.3 0.2 1.0 0.8 30.0% 25.0%
vim 3.4 1.9 15.2 11.0 22.4% 17.3%
xpdf 2.0 1.1 6.0 3.9 33.3% 28.2%

the tainting scheme in Protracer [76] is not applicable in our context, it appears to be

unavoidable that Lprov has greater storage overhead than Protracer. We apply the object

tainting technique proposed in ProTracer to BEEP’s logs, performing the comparison of

storage overhead between Lprov and ProTracer. As Table 3.2 demonstrates, the storage

consumption of ProTracer is 30.3% of Lprov. We argue that this is a tradeoff between cost

and benefits.

Runtime Overhead As shown in Figure 3.4 , while Lprov logs more user-space library

information, its runtime performance is still competitive and acceptable. Specifically, the

geometric mean and arithmetic mean of the programs’ overhead in Lprov are 7.0% and

8.6%, compared to 8.4% and 9.8% in BEEP, 4.5% and 5.3% in ProTracer. We notice that

the programs’ performance in Figure 3.4 achieves significant improvement from Table 3.1 .

This is because the daemon process decouples the onerous log outputting task from the li-

brary tracing component. Note that in runtime overhead benchmarking, instead of imposing

71

Table 3.3. Comparison of storage overhead between Lprov and BEEP in a
two-week performance experiment

User BEEP Lprov Lprov/BEEP
#item(M) size(GB) #item(M) size(GB) item size

A 139 116 59 45 42.4% 38.8%
B 185 146 62 41 33.5% 28.1%
C 119 91 42 26 35.3% 28.6%
D 109 90 33 20 30.3% 22.2%

Avg. 138 111 49 33 35.5% 29.7%

Prog. BEEP Lprov Lprov/BEEP
#item(M) size(GB) #item(M) size(GB) item size

httpd 40.9 32.3 13.9 8.3 33.9% 25.7%
proftpd 29.2 23.6 8.3 5.4 28.4% 22.9%

sshd 33.0 26.8 15.4 10.8 46.7 % 40.3%
ssh 10.5 8.1 4.1 2.8 39.0% 34.6%

firefox 207.7 168.9 68.0 49.6 32.7% 29.4%
filezilla 13.7 10.6 2.7 1.6 19.7% 15.1%
w3m 3.9 3.1 1.2 0.9 30.8% 29.0%
wget 2.6 2.0 0.8 0.5 30.8% 25.0%
pine 1.9 1.6 1.0 0.8 52.6% 50.0%
vim 26.4 21.0 15.2 11.0 57.6% 52.4%
xpdf 15.0 11.4 6.0 3.9 40.0% 34.2%

intensive and bursting tasks, we apply day-long program workloads from general use cases

which we profiled from the four deployed machines/users. Such measurement reflects real-

world scenarios where APT attacks happen (i.e., institute/organization/enterprise environ-

ment). It also reasonably amortizes the expensive GUI constructing/destroying computation

at program opening/closing. There is an outlier. Lprov incurs high overhead (28.9%) on

firefox. This is caused by the fact that firefox makes massive library calls (around 3 million

per page loading in average). We believe that the problem could be attenuated by reducing

the library logging scope as discussed in Section 3.6 .

72

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

LPROV BEEP ProTracer

28.9%

LPROV BEEP ProTracer

arithmetic mean
geometric mean

8.6% 9.8% 5.3%
7.0% 8.4% 4.5%

Figure 3.4. Comparison of runtime overhead of BEEP, ProTracer and Lprov.

3.5.2 Case Study

Ebury Variant Attack

We use another variant of Linux Ebury attack [101] to show the effectiveness of Lprov

in provenance tracking. The attack leverages a malicious library to alter memory images

of benign programs. The attacker steals a student’s campus credential and leverages the

credential to spread the malice. Note that universities usually assign each student one

credential for all the campus resources and it would lead to serious privacy issues if the

credential was stolen. Given a compromised credential on an end-host, Lprov can then

assist identifying the attack source and preventing future attempts.

Attack Scenario Bob is a college student and he usually uses ssh service to reach lab

computers on campus. He installed Lprov and BEEP on his laptop and enabled them in

his daily application usage. One day, he was notified by the campus network administrator

that his account was sending spam and phishing emails. After necessary investigation, Bob

proved to be innocent but his account was temporarily deactivated and he was required to

use the two-factor authentication in the future. Later, he wants to know how the attack

happened as he did not ever tell anyone else his credential information, type in his credential

on others’ machines or open any phishing links.

Note that as ssh client stores all the public keys of known hosts to verify their identities,

the program should have displayed a warning message (e.g., the public key mismatch) if the

73

attack happened on the connection to a known server. Unfortunately, Bob confirmed that he

deleted the the known_hosts file as many websites suggest to do so (assuming that the server

changed its key pair) [113]. Moreover, the latest variants of Linux Ebury can instrument the

authentication part to suppress the mismatch warning [101].

Attack Investigation Bob did not store his student credential in any file. Hence, instead

of concentrating on sensitive files (as we did in Section 3.2), he focused on analyzing logs

from all the processes he recently used. Eventually, he obtained Fig. 3.5 (the graph is

simplified) when dissecting an ssh process and the graph of Lprov contains the complete

attack chain. As demonstrated in Fig. 3.5 (the red dash line is auxiliary for presentation), the

PLT image permission of ssh process was manipulated by the constructor of libkeyutils.so.1

and then the process connected to a remote address b.b.b.b:22 which is a machine outside

of the campus. Based on this result, we can infer that the constructor altered the process’s

PLT entries (probably the function path of connect) and redirected the connection to the

attacker’s server. Further, we apply backward tracking on the object of the library file.

It reveals that the malicious library is downloaded by firefox from a.a.a.a:43. Then, it

was implanted into a target directory through unverified package installation. Note that

this attack cannot be uncovered in BEEP due to its lack of user-space library semantics.

Specifically, in BEEP, even if backward tracking is performed on all the loaded libraries, the

root cause of the attack would remain unexposed unless a.a.a.a is pre-known as malicious.

Library Vulnerability Exploitation

We use an infiltration attack reproduced from CVE-2015-7547 [114]–[116] to show the

effectiveness of Lprov in the context of remote vulnerability exploitation. There is a buffer-

overflow vulnerability in libresolv.so that can be triggered by maliciously crafted DNS re-

sponses. Specifically, when a client calls getaddrinfo with AF_UNSPEC to resolve a domain

name, a pair of IPv4 and IPv6 requests would be sent by send_dg and send_vc in libresolv.so.

If the response is larger than the pre-allocated 2048 bytes buffer, the two functions allocate

additional heap buffers and the mismanagement of the buffers leads to the exploitation.

Further details can be found on [117].

74

make

cp
sys_mprotect:

main PLT

~/.ssh/known_hosts

.../libkeyutils.so.1

sys_execve.../firefox

a.a.a.a:43

sys_write sys_read

bash

libc:
write()

libc:
read()

libkeyutils:
constructor

libc:
syscall()libc:

write()

.../package.tar.gz

sys_write

libc:
read()

sys_read

tar

libc:
write()

.../makefile

sys_write

libc:
read()

sys_read

libc:
execve()

sys_execve

libc:
execve()

libc:
write()

libc:
read()

sys_read

sys_write

libc:
write()

/lib/.../libkeyutils.so.1

sys_write

libc:
mmap()

sys_mmap

ssh

bash

libc:
execve()

sys_execve

b.b.b.b:22

libc:
read()

sys_read

libc:
write()

sys_write

libc:
read()

sys_read
libc:

connect()

sys_connect

libc:
connect()

sys_connect

ssh b.b.b.b:22

bash

~/.ssh/known_hostsBEEP

LPROV

Figure 3.5. Provenance graphs generated by BEEP and Lprov for the stu-
dent credential stealing attack.

Attack Scenario The attacker acts as a local DNS proxy and responds all the DNS

requests from the victim client which conducts DNS resolution on getaddrinfo. When

receiving requests from the victim client, the attacker sends crafted responses to implant a

malicious payload [115], [116]. The payload launches a shell executing wget to download a

file secret.txt that replaces the current secret file under the victim’s home directory and

then exits. Several days later, the file was found compromised.

Attack Investigation In Fig. 3.6 , BEEP fails to obtain the origin of the attack rooting

from the compromised library, while Lprov successfully captures the execution path of the

exploitation when tracking from secret.txt (name4_r, nsearch and sndmmsg are shorts for

_nss_dns_gethostbyname4_r, __libc_res_nsearch and __sendmmsg). The bash process

is spawned inside client when executing __libc_res_nsearch. Further, by checking the

library-level provenance on the exit event of client, we conclude that the attack is caused

by a vulnerability exploitation because __libc_res_nsearch does not return when client

terminates. Note that Lprov effectively identifies the attack provenance even though the

library call stack does not include send_dg and send_vc which are static functions (Related

discussions can be found in Section 3.6).

75

d.d.d.d:80

c.c.c.c:53

libnss_dns:
name4_r()

libc:
sndmmsg()

libc:
writev()

libresolv:
nsearch()

libc:
system()

bash

wget

client

libc:
connect()

libc:
getaddrinfo()

libc:
recvfrom()

libc:
read()

libc:
execve()

secret.txt

libc:
write()

libc:
write()

libc:
read()

libc:
connect()

sys_connect

sys_recvfrom

sys_sendmmsg

sys_read

sys_writev

sys_execve

sys_execve

sys_write

sys_connect
sys_read sys_write

client

c.c.c.c:53

d.d.d.d:80bash

wget

secret.txt

BEEP LPROV

Figure 3.6. Provenance graphs generated by BEEP and Lprov for library
vulnerability exploitation.

Library Loading Analysis

DARPA Transparent Computing program [118] investigates library loading processes

in an effort to thwart advanced attacks that leverage malicious libraries. To demonstrate

the effectiveness of Lprov, we test a sample library program provided by the red team of

DARPA TC program. This case focuses on understanding internal details of library loading.

Scenario (1) Process libloader A is launched by bash. (2) libloader A spawns a thread B

that prints out some text. (3) libloader A maps /dev/shm/testlib into memory and reads

testlib.so into the mapped memory. (4) libloader A dynamically loads /dev/shm/testlib by

dlopen and the library’s constructor spawns another thread C that prints out some testing

text. (5) libloader A calls 8 library functions f1-f8 by dlsym and each function prints out

some text. (6) libloader A prints out some text and exits.

Provenance Analysis Fig. 3.7 presents the provenance graphs tracking from the standard

output device /dev/stdout and the two threads (B and C), where testlib, libptd and

ptd_create are shorts for /dev/shm/testlib, pthread_create and libpthread. Lprov

accurately correlates testlib.so and /dev/shm/testlib, reveals the creation of thread C during

/dev/shm/testload loading and clearly distinguishes output behaviors from the 8 different

library functions, while BEEP misses all of those details due to the mishandling on memory

mapping and the oblivion on library events. Note that the graph has two libloader A nodes

76

BEEP

LPROV

libc:
execve()

bash

libloader
A

libptd:
ptd_create()

libloader
B

testlib.so

libc:
read()

libc:
mmap()

libdl:
dlopen()

testlib:
constructor

libptd:
ptd_create()

libloader
C

/dev/stdout

testlib:
f1()

testlib:
f2()

testlib:
f3()

testlib:
f4()

testlib:
f5()

testlib:
f8()

testlib:
f7()

testlib:
f6()

libc:
puts()

libc:
puts()

libc:
puts()

libc:
puts()

libc:
puts()

libc:
puts()

libc:
puts()

libc:
puts()

testlib

libloader
A

libc:
execve()

libc:
puts()

libc:
puts()

sys_execve

sys_execve

sys_clone

sys_read sys_mmap sys_mmap

sys_clone

sys_writesys_write

sys_write sys_writesys_write

libloader
B

libloader
A

libloader
C

bash

libloader
A

testlib.so testlib

/dev/stdout

Figure 3.7. Provenance graphs generated by BEEP and Lprov for DARPA
library loading case.

spawned by bash because thread B has no causality to the two files /dev/shm/testlib and

testlib.so and this would be clarified when tracking from thread B (Fig. 3.7 is a combination

of the provenance graphs on the three tracking objects).

3.6 Discussion

Library Attestation Binary attestation is a widely used technique to ensure program

integrity. For instance, operating-system-level virtualization techniques such as applica-

tion container and enclave on trusted hardware can leverage software attestation to provide

trusted computing platforms. While it can be used to detect and prevent possible compro-

mise on libraries, local attestation can be thwarted by replacing the attestation measurement

and remote attestation can be compromised if the attestation interface is undermined in ad-

77

vance. Moreover, Lprov can provide detailed contextual information of attacks (e.g., how

the system is compromised and which files/processes are affected) while library attestation

would simply detect and thwart attacks. To this end, we argue that monitoring internal

library behaviors is a crucial primitive to enhance the security of libraries.

Tracing Protection Like other approaches, Lprov assumes the kernel and user-space

tracing facilities are benign and uncompromised. Note that it is a general assumption shared

among various tracing systems. This assumption can be relaxed if the implementation of

Lprov submerges into hypervisor level [119]. However, the hypervisor tracing has limited

portability and it suffers from the high overhead. Guarding user-space tracing tools is a

knotty problem as they can be subverted by other user-space programs. However, the initial

tampering with the tracing infrastructure can be accurately recorded and users can revoke

the trust on the logs from that time point. The same strategy is also applicable in tracee’s

runtime, where the library tracing is trusted as long as the memory image of lprov.so or the

customized loader is not altered via mprotect. Note that if malicious libraries residing in

the tracee can locate and overwrite the shared memory containing tracee’s library events

(e.g., via memory disclosure vulnerabilities), the initial tampering would not be captured

since no syscalls are triggered. Nevertheless, we argue that hardening memory operations is

an orthogonal research effort to Lprov.

Tracing Coverage Lprov traces library calls through the standard symbol resolution in

dynsym table. Hence, Lprov might be less effective if malicious libraries opt for customized

loading, static linking, or dynamic binary generation. For instance, executable binaries can

be encoded into a library, then decoded and mapped at runtime. The following function

execution (through hardcoded offsets) inside the mapped memory images is invisible to

Lprov. Also, exported functions inside the same library can have execution dependence and

it can be handled in either static linking or dynamic symbol resolution. For example, string-

related functions like strcpy and strlen are frequently used inside other glibc functions,

such as getenv and setenv. However, instead of inserting PLT trampolines at the library’s

ELF header to resolve them during runtime, glibc opts to statically link those functions as

local ones with the hidden_def attribute. Unfortunately, the current implementation of

Lprov is not able to identify such nested library calls (e.g., strcpy in getenv) as the inner

78

ones are not resolved through the symbol resolver. However, note that we can still capture

the outer functions (e.g., getenv) which are sufficient in practice. We argue that even with

these limitations, it is still effective in the perspective of provenance investigation.

System Overhead As shown in evaluation, Lprov still has non-trivial overhead on firefox

and it is actually due to the program’s extremely heavy execution dependence on library

functions. To mitigate this, Lprov can opt to whitelist several libraries and only trace re-

cently changed ones, for example, libraries updated in the past four weeks. However, memory

images of libraries cannot be trusted due to the manipulation of memory access permission

from mprotect. Lprov hence needs extra communication channel between kernel and user

space to dynamically deploy tracing on libraries whose memory image is contaminated during

runtime.

3.7 Related Work

Non-unit audit logging In recent years, significant efforts have been taken on the

system-level audit logging [78], [79], [81]–[83], [86], [87], [120]–[123]. They track system ob-

jects to infer mutual dependence for provenance investigation. Equipped with the generated

system logs, root causes of attacks are revealed by backward analysis [79], [80], [124] and

the aftermath of attacks is identified by forward tracking [78], [86], [87], [96], [121], [123].

Nevertheless, most of them regard the whole lifecycle of a process as a single system entity,

which incurs dependence explosion problem. To assuage such concerns, researchers search

for other system resources to complement syscall events. File offset is additionally leveraged

in [84] to handle file-related syscalls to provide fine-grained tracing. However, it is only

a specific optimization on file objects but not generic for other entities. In [125], memory

operations between pages is utilized to establish low-level object dependence. But due to its

lack of program semantics, the system is not sufficiently effective.

Unit-based audit logging Unit-based event tracing is the state-of-art in system-level

logging and it follows the line of work that has been done in audit logging. Improved

from those coarse-grained techniques, unit-based schemes provide fine-grained provenance

inference by program partitioning. In BEEP [75], relying on the observation that long-

79

running programs usually respond user inputs by event handling loops, programs are trained

by dynamic program analysis to extract those loops. Then the loops are instrumented by

customized syscall events at both of enter and exit. Based on this technique, the execution of

programs is partitioned into multiple loop instances and each instance is named a program

unit. Therefore, dependence between input and output objects is efficiently disambiguated

by confining causality correlation within the same unit. ProTracer [76] improves BEEP by

applying dynamic object tainting to unit processing and decoupling high-overhead audit

logging from event tracing. It performs between system tainting and audit logging to lower

runtime and storage overhead. Each accessed object is assigned a unique taint and the

taints are propagated upon object read. An event is considered for logging only if it is

an output event. Furthermore, in the offline processing, the units sharing the same taint

set are collapsed to make the generated graph concise. In MPI [3], the unit is refined to

data structure instances but it requires efforts in developer annotation. Note that Lprov

leverages existing unit-based provenance techniques.

Hybrid approaches In [126], to infer the causality relationship between syscalls, de-

pendence analysis on low-level instructions is entailed. Such technique requires instruction

instrumentation and incurs non-trivial runtime overhead. Since it works on deep and fine-

grained program analysis, it involves much low-level memory dependence such as dynamic

memory management which has no importance in causality inference. Barham et al. pro-

posed the system Magpie [100] which monitors user-space events, kernel events, middleware

and system resource usage for each application input by system-level instrumentation. It is

a tool chain designed for system workload extraction under real-world conditions in operat-

ing systems. Although the system achieves high performance with relatively low overhead,

it needs an application-specific schema to parse and correlate those system events, which

restricts the system scalability. In [127], authors devised a logging and analysis system tar-

geting intrusion detection, allowing users to specify the operating granularities, however, it

requires users to provide the causality definition beforehand. Therefore, although the sys-

tem offers implementation flexibility, it involves lots of human efforts and limits the system

practicability. In RAIN [77], dynamic information flow tracking is applied in a replay-based

provenance system to infer fine-grained causality. It leverages syscall events to minimize the

80

analysis scope and performs refinable attack investigation by selective tainting, and it only

incurs 3.22% overhead. Nevertheless, the tainting optimization in replay still requires pre-

recorded instruction-level execution logs, and hence it is not applicable in Lprov’s scenario.

Information flow and object tainting The inference of information flow between sys-

tem objects is adopted by lots of existing forensic systems to enhance malware detection and

analysis [128]–[130]. Yin et al. proposed the memory-level tracking system Panorama [130]

to disclose the information flow between malware and sensitive data. The system can ac-

curately capture malicious data access and processing launched by malware. But due to

its high runtime overhead in low-level dependence analysis, it requires special support in

hardware-level tracking. In [129], researchers invented a event tracing system VPath that

can work either in OS kernel or virtual machine manager. It monitors thread behaviors and

network activities to deduce system-wide causalities. Vpath can reveal precise information

flow at low overhead, however, it needs carefully pre-defined patterns for system activities.

Dynamic taint analysis in system entities is a widely used technique to perform provenance

tracking. It can capture sensitive information leakage and system input causality through

fine-grained data propagation [91], [96], [128]–[136]. This area has been well studied in

multiple perspectives including file, socket and low-level kernel objects on various operating

systems [131], [135], [137]. In spite of the high accuracy in provenance analysis, dynamic

tainting system has limited usability due to its high overhead caused by heavy instrumenta-

tion. Besides, tainting can only tell whether there exists causality between two end objects

but cannot offer a clear deriving path from the source to the sink.

Log protection Protecting log integrity is important. Jacobsson et al. proposed a

lightweight logging-based malware detection system which operates in a real-time clien-

t/server audit mode [138]. The end-host under auditing delivers fresh runtime log data

(encrypted and signed) to a remote server for further verification of system infection. How-

ever, it relies on the network communication and the connection between client and server

becomes the weakest link. In [139], the authors proposed XRec, a primitive system offer-

ing integrity of execution trace on instruction level by branch trace messages. It can verify

whether a specific code segment has ever been executed. However, it incurs 200%-400% per-

formance overhead as it works in a system debug mode. In [140], researchers devised LPM

81

(Linux provenance module), the first generic framework to build secure provenance-aware

systems. It leverages LSM to create a trusted provenance-aware execution platform, collect-

ing whole-system provenance with low overhead. Sundararaman et al. presented a secure

disk system, SVSDS, that performs transparent versioning of data in the disk-level [140].

By enforcing specific data constraints, the system can protect executables and system log

files. The latest secure logging systems are implemented on the trusted hardware execution

of Intel SGX. In [141], the syslog is ported onto the boundary of trusted enclaves and appli-

cation logs are generated through enclave ocalls. To secure the log storage, all the log data

are encrypted on the disk using the SGX secrecy sealing/unsealing functionality. Note that

they are complementary to Lprov.

82

4. PROFACTORY: IMPROVING IOT SECURITY VIA

FORMALIZED PROTOCOL CUSTOMIZATION

As IoT applications gain widespread adoption, it becomes important to design and imple-

ment IoT protocols with security. Existing research in protocol security reveals that the

majority of disclosed protocol vulnerabilities are caused by incorrectly implemented message

parsing and network state machines. Instead of testing and fixing those bugs after develop-

ment, which is extremely expensive, we would like to avert them upfront. For this purpose,

we propose ProFactory which formally and unambiguously models a protocol, checks

model correctness, and generates secure protocol implementation. Meanwhile, it can also

realize protocol diversity through automated randomization. We leverage ProFactory to

generate a group of IoT protocols in the Bluetooth and Zigbee families and the evaluation

demonstrates that 82 known vulnerabilities are averted. and high implementation entropy

is achieved.

4.1 Introduction

As a pillar for smart living, the scale of IoT (Internet of Things) has recently experienced

unprecedented growth in both the number of devices and their complexity. According to

reports from Statista [142] and Forbes [143], about 26.6 billion IoT devices were installed and

connected worldwide in 2019 and they project to exceed 42 billion devices in 2022, lifting the

global IoT market to more than 1.2 trillion dollars. Such a growth prospect and tremendous

investment are continuously motivating efforts to develop innovative IoT wireless techniques,

such as Bluetooth which has effective connectivity, low hardware cost and well-maintained

development community [144], [145]. In particular, Bluetooth has enabled bridging interfaces

between applications and wireless peripherals including keyboards/mice, headsets/speakers,

smart watches, fitness trackers, medical recorders, smart home appliances, and hands-free

systems [144], [145]. It was reported that 4.2 billion Bluetooth devices were shipped in 2019,

notching a 8.8% compound annual growth rate (CAGR) over 5 years [146]. Zigbee is another

83

popular IoT protocol which also witnesses a 8.0% CAGR in market growth, and its market

value is expected to reach 4.3 billion by 2023 [147].

However, accompanied with the ubiquitous adoption, security has inevitably become a

critical issue in IoT protocols. According to the latest Bluetooth market update [146], there

were 14 member groups working on 80 active protocol projects during 2019. Actually, most of

these protocol projects were built from scratch [146], [148]–[150] and this repeated procedure

is considered onerous, tedious, and error-prone [151]–[156], leading to lots of vulnerabilities

in protocol implementations. As reported by previous research of protocol security [157],

[158], the majority of disclosed protocol vulnerabilities are due to incorrectly-implemented

message parsing, where parsing errors can result from the lack of sanity checks (especially

for the sizes of message fields) and parsing ambiguities (caused by diverting understand-

ing of specification across developers). Bluetooth implementations are such examples, as

reflected by the newly reported Bluetooth-related CVEs (Common Vulnerabilities and Ex-

posures) [148]. In addition, protocol implementation vulnerabilities are also present in state

machine components [159]–[161]. Although protocol-specific fuzzing techniques [155], [162],

[163] are helpful in exposing those implementation bugs, difficulties in stateful fuzzing, en-

coding protocol specifications, and achieving complete coverage make exposing all defects

infeasible in practice. Therefore, rather than imposing a time-consuming postmortem bug

finding procedure in protocol engineering, we propose to address the problem at the very

beginning of the development life-cycle. Specifically, protocol developers ought to be re-

lieved from the error-prone low-level implementation efforts. Instead, they should focus on

the design of essential pieces of protocol specifications (e.g., message format and finite state

machine) and the corresponding protocol implementations will be automatically generated

in a manner that ensures security.

To achieve this goal, protocol rewriting is a plausible option, where protocol specifications

are extracted from existing implementations, customized, and re-implemented/reinforced by

developers to produce new (hardened) protocols and/or implementations. However, previ-

ous protocol reverse-engineering work observes that due to the flexibility of protocol design,

recovering comprehensive and accurate specifications from protocol implementations is ex-

tremely challenging, especially for state machines [154]. Even if design details were known a

84

priori, there are no reliable existing methods to faithfully project specifications to low-level

implementations, as in complex protocols, various components are tightly entangled and

interwoven. Hence, without well-documented, well-structured, and well-annotated source

code, rewriting-based protocol customization is error-prone. For example, recent research

in TLS (Transport Layer Security) discloses that protocol customization on existing imple-

mentations can produce a composite state machine which enables communication peers to

accept unexpected messages [164].

The recent research shows that formalizing protocol specifications is a promising approach

to addressing this issue [157], [165]–[169]. In particular, message formats are customized in

a DSL (Domain Specific Language) and secure protocol implementations are emitted ac-

cordingly. For example, EverParse [165] devises a DSL describing tag-length-value message

formats to produce zero-copy parsers and corresponding serializers. In contrast with existing

data serialization/deserialization tools (e.g., Protobuf [170] and Thrift [171]), parsers gener-

ated by EverParse are formally verified and their security is guaranteed. In [157], a similar

DSL is proposed for generating additional sanity checks to harden USB (Universal Serial

Bus) message parsers. Nevertheless, we observe that existing protocol formalization efforts

mostly focus on message formats but many fall short in modeling some dynamic functionali-

ties such as multiplexing and state transitions. Consequently, these DSLs require substantial

extension to fit low-level and kernel-oriented IoT protocols.

Our Solution To this end, we select to develop a new unified DSL whose syntax can specify

both protocol message formats and dynamic behaviors. We propose ProFactory to auto-

matically generate secure low-level protocol implementations for Linux kernels from protocol

specifications written in the DSL. It aims at facilitating protocol development, and elimi-

nating message-parsing vulnerabilities and fundamental state-transition errors in protocol

implementations. Currently, ProFactory targets code generation for IoT protocols in the

Linux kernel including those in the Bluetooth and Zigbee families. It can be easily adapted

for other protocols or production kernels as long as the platform-dependent interfaces and

settings are available.

Specifically, ProFactory works as follows. First, a protocol is modeled/customized

in our DSL. Then, symbolic model checking is performed to verify the model correctness

85

(e.g., network state transitions are not vulnerable). After passing the model checking, the

customized protocol model is fed to the code generation engine to produce kernel-oriented

protocol implementation which provides guarantees of being free from memory safety vul-

nerabilities (i.e., buffer overflow, invalid pointer dereference, memory leakage, use after free

and double free) in message parsing and from concurrency control vulnerabilities (i.e., race

and deadlock) in message multiplexing. Such guarantees are provided by the automatically

generated sanity checking code, such as bound checks and input validation checks, and by

applying automated verification tools to the generated code. Only if the protocol passes

the model and implementation verification, should the implementation be integrated into

the production kernel on both of the communication peers. Finally, the peers communicate

through the customized protocol. We highlight our contributions in the following.

• We propose ProFactory, a novel system that realizes efficient and secure protocol

customization. In ProFactory, developers formally and unambiguously model protocols

in a DSL instead of natural languages and the models lead to the production of vulnerability-

free implementations.

• We develop a type-based DSL that is closely coupled with protocol semantics. In

our DSL, various protocol specifications such as message format, finite state machine and

connection multiplexing can be well expressed by a number of abstract types.

• We develop a code generation engine, emitting kernel code without message-parsing

errors according to the DSL-defined protocol model, where concurrency correctness and

memory access safety of generated C codes are formally verified using VCC [172], [173]

and Frama-C [174]. Also, the engine allows the randomization of message formats to offer

convenient connectivity isolation and prevent attack propagation.

• We develop a symbolic model checker to capture potential bugs residing in protocol

state transitions. Those bugs are abstracted as protocol property violations.

• We build a prototype of ProFactory and generate 8 protocols in Bluetooth and

Zigbee. The evaluation demonstrates that ProFactory can offer high implementation

diversity and help to avert 82 known vulnerabilities with low overhead in generated imple-

mentations. Also, the generated implementations have low overhead.

86

3514 int l2cap_parse_conf_rsp(..., void *data, u16 *result) {
 (..., void *data, size_t size, u16 *result) {
3517 struct l2cap_conf_req *req = data;
3518 void *ptr = req->data;
 void *endptr = data + size;
 ...
3527 while(len >= L2CAP_CONF_OPT_SIZE) {
3528 len -= l2cap_get_conf_opt(...);
3529 switch(type) {
3530 case L2CAP_CONF_MTU:
 …
3537 l2cap_add_conf_opt(&ptr, ...);
 l2cap_add_conf_opt(&ptr, ..., endptr - ptr);

4137 static inline int l2cap_config_rsp(...) {
 ...
4161 switch (result) {
 ...
4166 case L2CAP_CONF_PENDING:
 ...
4171 char buf[64];
4172 len = l2cap_parse_conf_rsp(..., buf, &result);
 len = l2cap_parse_conf_rsp(..., buf, sizeof(buf), &result);

2969 static void l2cap_add_conf_opt(void **ptr, ...) {
 (void **ptr, ..., size_t size) {
2970 struct l2cap_conf_opt *opt = *ptr;
2971 if (size < L2CAP_CONF_OPT_SIZE + len) return;
2972 opt->type = type;
2973 opt->len = len;
2974 switch (len) {
2975 case 1:
2976 *((u8 *) opt->val) = val;
2977 break;
 ...}
2999 *ptr += L2CAP_CONF_OPT_SIZE + len;

/net/bluetooth/l2cap_core.c

Figure 4.1. L2CAP configuration buffer overflow in BlueZ implementation

info_start info_sent info_done

send info_req_A recv info_rsp_A

recv info_req_B
AND

send info_rsp_B

recv info_req_B
AND

send info_rsp_B

A

B

info_req_A

info_req_B

info_start info_sent info_done

send info_req_B recv info_rsp_B

recv info_req_A
AND

send info_rsp_A

recv info_req_A
AND

send info_rsp_A

Figure 4.2. Message loss in L2CAP information exchange

4.2 Motivation

The increasing number of security issues in IoT protocol implementation motivates secure

protocol customization. Generally, those issues can be divided into two categories, message-

parsing vulnerabilities and state-transition errors. Next, we use two examples (one for each

category) to illustrate how ProFactory can help avert them.

Motivating Example One. This vulnerability (CVE-2017-1000251) [175] resides in the

L2CAP implementation of Linux BlueZ (kernel 4.13.1 and older) and it was disclosed in the

Blueborne report [148], allowing a malicious Bluetooth user to launch a denial-of-service or

remote-execution attack. In L2CAP, before data transmission, the two peers are required to

87

negotiate a group of connection options (or parameters) and the negotiation is accomplished

by exchanging two kinds of messages, configuration request and configuration response. If a

configuration request from a peer cannot be accepted, the peer has to send a second request

based on the response contents (e.g., copying the configurations indicated in the response to

the second request).

Figure 4.1 elaborates the buggy code and its official patch (in blue) [176], where response

events and response parsing are handled by l2cap_config_rsp and l2cap_parse_conf_rsp

At line 4171, a local 64-byte buffer buf is allocated to hold the second request (as the pre-

vious request was pending, i.e., not accepted) and a loop (lines 3527-3537) is used to ex-

tract information from the response and emit the request body, where the parser invokes

l2cap_add_conf_opt to append a request option to buf. Before patching, since neither

the response size nor the buffer boundary is checked, an attacker can craft a long response

such that the buffer is overflowed when the large number of configuration options in the

response are copied. From the perspective of protocol specification, the reason for such a

buffer-overflow vulnerability is that the protocol is actually under-specified. In particular,

the developer allocates 64 bytes (a magic number of bytes) for the request, indicating that

there must exist an upper bound for the response size which is not explicitly respected by

the emission loop, causing the vulnerability. Fortunately, such specification confusions can

be eliminated by ProFactory in the protocol modeling stage.

In our DSL, the option group is modeled as a parameter list (see modeling details in

Section 4.4), for which the maximum size must be specified. Hence, we have the upper-

bound check for the option group size. In addition, instead of manipulating bare buffers,

ProFactory performs all the message-related operations on the well protected socket buffer

data structure sk_buff. This data structure allows convenient field appending or truncating

through skb_pull and skb_put/skb_push, and the kernel intrinsically performs all the

needed boundary checks. Furthermore, the structure always maintains the current data

length and hence the size of each message segment (e.g., the option group) can be strictly

validated when unpacked. Overall, ProFactory rejects any unspecified/invalid messages

and offers secure message parsing/construction.

88

DSL syntax
in Haskell

protocol
implementation

in C

protocol
design

hardcoded platform-
dependent interfaces

message formatsmessage formats

state
machines

state
machines

concurrency
verification (VCC)

symbolic model
checking (Z3)

memory access
safety (Frama-C)

DSL-based code
generation

protocol modeling

in Haskell

fail

pass

kernel deployment
pass

fail

automated verification

Figure 4.3. The overall workflow of ProFactory (black arrow denotes data
flow and red arrow denotes control flow)

Motivating Example Two. This example is to demonstrate a typical transition error in

an asynchronous state machine. In L2CAP, at the beginning of a connection, each peer can

request information from the remote side in order to set up a connection with the supported

functionalities. The textual specification of L2CAP simply mentions “L2CAP implemen-

tations shall respond to a valid information request with an information response” [177]

without much detail. Figure 4.2 presents two buggy asynchronous state machines for two

communicating devices A and B, respectively. In the state machines, the solid edges denote

state transitions and the dashed edges denote messages (to the other party). The problem

lies in that a device may undesirably drop requests when it is at the info_start state. The

buggy state machine requires the device to first send a request before it can properly receive

requests from the other party. Initially, assume both devices are in the info_start state

and they both send out a request in the same time. However, the two sends form a race. It

is hence possible that when the request from a remote peer arrives, the local device is not in

the next state that can receive the message. This causes undesirable loss of messages. The

user may encounter difficulties in establishing a Bluetooth connection due to the bug. This

error is averted by performing the race-free property checking in ProFactory (Section 4.6).

The fix is to allow devices to receive messages in info_start.

4.3 Approach Overview

Figure 4.3 presents the overall workflow of ProFactory. ProFactory executes in

three main phases: Protocol Modeling, Code Generation and Automated Verification.

89

Protocol Modeling Phase. When creating a customized protocol, developers first need

to model the protocol in ProFactory’s DSL as the system input. The DSL, in a sense,

is de-facto a translator of protocol specifications. In this DSL, all the protocol elements are

abstracted as hierarchical data types and each of those types would instruct ProFactory to

emit a unique set of concrete data structures and code blocks in the following code generation

phase. Therefore, modeling a protocol in ProFactory corresponds to assembling definition

instances of those types. To enrich the language to support various protocols, the design

of the DSL syntax is closely coupled with protocol semantics including message format,

FSM (finite state machine) and other protocol-specific features. The DSL is embedded in

Haskell, which offers an easy-to-use development environment that allows manipulating its

own syntax and facilitates implementing a DSL. We will discuss the complete DSL design in

Section 4.4 .

Code Generation Phase. In this phase, ProFactory automatically produces C code

for a production kernel, according to the input protocol model. The generated code con-

sists of type-based code blocks (i.e., protocol message data structure definitions and message

parsing/construction procedures) and kernel shims which can assist seamless code insertion

or replacement in a production kernel. In particular, the type-based code blocks perform

both message recognition and state transition, while kernel shims prepare standard socket

interfaces and the accesses to the underlying platform or lower-layer protocols, requiring the

hardcoded platform-dependent interfaces. As demonstrated in the first motivating example,

the lack of sanity checks is an important contributor to protocol vulnerabilities, ProFac-

tory hence enforces validity verification on corresponding message fields when emitting code

for message parsing/building. Besides, ProFactory also offers an option for developers to

randomize message formats in the generated implementation. As emphasized in [149], [178],

universal connectivity of IoT devices has raised severe privacy issues. Hence, the randomiza-

tion can assist generating protocol dialects which can offer connectivity isolation and prevent

arbitrary attack propagation. The details of code generation are elaborated in Section 4.5 .

Automated Verification Phase. Protocol security issues include not only vulnerabilities

incurred by field mishandling in message parsing and problematic concurrent accesses to

shared information, but also correctness problems in the underlying FSM. Therefore, Pro-

90

Factory verifies the generated implementation through VCC [172], [173] (free from race

and deadlock) and Frama-C [174] (free from buffer overflow, invalid pointer dereference,

memory leakage, use after free and double free). In Frama-C verification, limited manual

intervention may be required to assist constructing proofs. In addition, ProFactory also

performs model checking for the protocol state machine. We encode the protocol model and

perform property checking using the Z3 SMT solver [179]. We devise a set of general prop-

erties (i.e., transition, security and customization properties) that should be respected by

a protocol state machine and validate them against protocols written in our DSL. Protocol

models failing to pass any of the verifications should be remodeled by developers. There have

been research efforts in protocol model checking [160], [180]–[184], but the majority of them

target proving cryptographical correctness for AKA (authentication and key agreement)

protocols or components of specific protocols (e.g., TCP/IP), while the model checking in

ProFactory focuses on generic functional correctness (e.g., correct state transitions). Our

work is therefore orthogonal and complements existing work. This phase will be explained

in Section 4.6 .

4.4 Protocol Modeling

In protocol specifications, message format and FSM are the two building blocks. Hence,

our DSL focuses on describing these two perspectives. To facilitate precise discussion, we

simplify and summarize the synatx of DSL in Figure 4.4 and semantics in Figure 4.5 . As

illustrated in Figure 4.4 , a protocol can be represented by a set of abstract data types related

to message format, socket, and state machine. These abstract types are further instantiated

to concrete types when describing individual protocols. Low level implementation is auto-

matically generated from the DSL specification. In the following, we first explain the syntax

and then the semantics of the DSL, which are followed by an example.

4.4.1 DSL Syntax

Message Format. Most network messages have hierarchical structure, meaning that a

network message m is often the raw data field of a message at a lower layer. It often has

91

DSL syntax
in Haskell

protocol
implementation

in C

protocol
design

hardcoded platform-
dependent interfaces

message formatsmessage formats

state
machines

state
machines

concurrency
verification (VCC)

symbolic model
checking (Z3)

memory access
safety (Frama-C)

DSL-based code
generation

protocol modeling

in Haskell

fail

pass

kernel deployment
pass

fail

automated verification

Figure 3: The overall workflow of PROFACTORY (black arrow denotes data flow and red arrow denotes control flow)

intervention may be required to assist constructing proofs. In
addition, PROFACTORY also performs model checking for
the protocol state machine. We encode the protocol model
and perform property checking using the Z3 SMT solver [41].
We devise a set of general properties (i.e., transition, secu-
rity and customization properties) that should be respected
by a protocol state machine and validate them against pro-
tocols written in our DSL. Protocol models failing to pass
any of the verifications should be remodeled by developers.
There have been research efforts in protocol model check-
ing [23, 26, 27, 37, 43, 52], but the majority of them target
proving cryptographical correctness for AKA (authentica-
tion and key agreement) protocols or components of specific
protocols (e.g., TCP/IP), while the model checking in PRO-
FACTORY focuses on generic functional correctness (e.g.,
correct state transitions). Our work is therefore orthogonal
and complements existing work. This phase will be explained
in Section 6.

4 Protocol Modeling

In protocol specifications, message format and FSM are the
two building blocks. Hence, our DSL focuses on describing
these two perspectives. To facilitate precise discussion, we
simplify and summarize the synatx of DSL in Figure 4 and se-
mantics in Figure 5. As illustrated in Figure 4, a protocol can
be represented by a set of abstract data types related to mes-
sage format, socket, and state machine. These abstract types
are further instantiated to concrete types when describing in-
dividual protocols. Low level implementation is automatically
generated from the DSL specification. In the following, we
first explain the syntax and then the semantics of the DSL,
which are followed by an example.

4.1 DSL Syntax
Message Format. Most network messages have hierarchical
structure, meaning that a network message m is often the raw
data field of a message at a lower layer. It often has its own
structure too, encapsulating some message(s) at a higher layer.
Note that even the messages of a same protocol are organized
in multiple layers. For example, L2CAP command messages
are encapsulated in generic L2CAP messages.With such lay-
ered structure, the corresponding network message parsing
code largely follows a fixed pattern, namely, the parser for a
message m of a particular layer unfolds the structure at that

MESSAGE FORMAT RELATED ABSTRACT TYPES

Fix f ::= (nsize, nlow, nhigh)
Var v ::= (nlow, nhigh)
Hdr h ::= f+ · flen
Para p ::= (nkey, fkey · fval)
Plist ` ::= (nsize, P (p))
Msg m ::= v |p | f+ |` | h ·msub | h · (ftype = ntype ? : msub)

+

SOCKET RELATED ABSTRACT TYPES

Chan ch ::= (n∗key)

Conn cn ::= (n∗key)

STATE MACHINE RELATED ABSTRACT TYPES

State s ::= ntimeout
Recv r ::= (min, (e,s f rom, sto, (mout |ε), {S})+)
Send d ::= nact · (mout ,(e, s f rom, sto, {S})+)
STATEMENT

S ::= S1;S2 | x := e
| if (e) {St} else {S f }
| for (x from e to e) {S} | iter (`,{S}) | ...

EXPRESSION

e ::= n | string | bool | x | 	 e | e⊕ e | ...

Figure 4: PROFACTORY DSL Syntax (n denotes an unsigned
integer constant and operator · denotes field concatenation)

level, checks some field that determines the (inner) message
type of the raw data field, and further invokes the correspond-
ing parser(s) of the inner message(s). This regularity allows
us to abstract network messages and message parsing to a set
of general abstract types that have hierarchical relations. An
example of abstracting L2CAP messages using our DSL can
be found later in the section.

We introduce 6 abstract types to describe (hierarchical)
message formats, two basic field types Fix and Var denoting
a fixed-sized field and a variable-sized field, respectively, and
four other types: Header Hdr, Parameter Para, Parameter List
Plist, and Message Format Msg that are built on the two basic
types. Besides, we provide two socket related abstract types
Conn and Chan to model network connections. We explicitly
model connection types to allow easy code generation for the
interface with the kernel.
Fixed-sized Field (Fix) A fixed-sized field consists of three
integer attributes, describing its size (nsize) and range (nlow and
nhigh). The size is measured in bytes. The range attributes (can
be nil) specify the lower and upper bounds of the field. This
could be further extended to support other value constraints.
The attributes allow safe code generation (with bound checks
and validity checks).
Variable-sized Field (Var) A variable-sized field represents a
byte sequence, with its size range specified by nlow and nhigh,

4

Figure 4.4. ProFactory DSL Syntax (n denotes an unsigned integer con-
stant and operator · denotes field concatenation)

its own structure too, encapsulating some message(s) at a higher layer. Note that even the

messages of a same protocol are organized in multiple layers. For example, L2CAP com-

mand messages are encapsulated in generic L2CAP messages. With such layered structure,

the corresponding network message parsing code largely follows a fixed pattern, namely, the

parser for a message m of a particular layer unfolds the structure at that level, checks some

field that determines the (inner) message type of the raw data field, and further invokes the

corresponding parser(s) of the inner message(s). This regularity allows us to abstract net-

work messages and message parsing to a set of general abstract types that have hierarchical

relations. An example of abstracting L2CAP messages using our DSL can be found later in

the section.

We introduce 6 abstract types to describe (hierarchical) message formats, two basic field

types F ix and V ar denoting a fixed-sized field and a variable-sized field, respectively, and

four other types: Header Hdr, Parameter Para, Parameter List Plist, and Message Format

92

Msg that are built on the two basic types. Besides, we provide two socket related abstract

types Conn and Chan to model network connections. We explicitly model connection types

to allow easy code generation for the interface with the kernel.

Fixed-sized Field (F ix) A fixed-sized field consists of three integer attributes, describing its

size (nsize) and range (nlow and nhigh). The size is measured in bytes. The range attributes

(can be nil) specify the lower and upper bounds of the field. This could be further extended

to support other value constraints. The attributes allow safe code generation (with bound

checks and validity checks).

Variable-sized Field (V ar) A variable-sized field represents a byte sequence, with its size

range specified by nlow and nhigh, which enable mandatory bound checks in code generation.

Header (Hdr) A message header is a sequence of fields followed by a length field, which is

a dedicated fixed-sized field describing the length of the following message content. Note

that we are defining an abstract type, which is further instantiated to concrete types for

a specific protocol. In general, the fields in a header describe the meta information of a

message and instruct the parser to correctly extract and process sub-messages. For example,

a message header ftype · fid · flen consists of three fields describing the type of the message

(that determines how the message body is interpreted), the connection ID and the length

of the body. Note that the operator · denotes field concatenation. The length field is for

automatic generation of validity check.

Parameter (Para) A parameter (in message) consists of two fields, a key field fkey and a

value field fval. A parameter abstract type consists of a constant nkey that uniquely identifies

the parameter kind and the specifications of the two fields. Parameters denote configurations

that can be negotiated across the peers of a connection. Intuitively, if the value of the key

field (at runtime) matches the constant nkey, the parameter is of the corresponding type.

For instance, (2, (4, 2, 2) · (4, 0, 1024)) is an MTU (Maximum Transmission Unit) parameter

type, with a static value nkey = 2 denoting the type, the first key field 4 bytes long with a

fixed value of 2, and the second value field 4 bytes long with a value in [0,1024]. At runtime,

a concatenation of two fields (in a message) is considered an MTU parameter when the first

field has the value of 2.

93

Parameter List (Plist) A parameter list denotes a variable set of parameters (whose fkey

sizes must be the same) with nsize specifying the maximum number of parameters in it.

Message (Msg) A message could be a variable-sized field, parameter, sequence of fixed-sized

fields, parameter list, header followed by a sub-message, or header followed by multiple pos-

sible sub-messages. The last two alternatives describe the hierarchical structure of network

messages. Specifically, in the last alternative, field ftype is a field in the header h. When

it has the value of ntype, the sub-message is of the msub type. Note that a concrete mes-

sage type may have multiple sub-message branches. ProFactory automatically generates

parsing code based on the specified hierarchy. An example can be found later in the section.

Socket Related Types. In a production kernel, a protocol has a socket-like interface

that serves the applications. The interface includes a number of socket peripheral data

types such as protocol connection Conn and protocol channel Chan. A protocol may have

multiple channels sharing an end-to-end connection (for multiplexing). The abstract type

of a connection/channel consists of a list of static values nkey that uniquely identify the

parameters for the connection/channel. The key values are a subset of the key values in

parameter type definitions. Sample parameters include device type for a connection and

MTU for a channel in L2CAP. Different from other abstract types, ProFactory only

allows one instantiation for Conn and Chan, meaning that all the connections and channels

in a protocol have to be homogeneous.

State Machine. Protocol execution is largely driven by state machines. In particular, be-

sides message parsing, the other focus of protocol implementation is to properly update state

machines. Upon receiving a message, protocol implementation parses the message, updates

some state variable(s), composes and sends a response message if needed. In some cases, it

performs side-effect operations such as logging critical events and collecting statistics. Al-

though most protocols follow the same execution model, their low level implementations have

substantial diversity. For example, they may or may not have explicit state variable(s); some

protocols update state variables before sending response whereas some others the opposite.

Our DSL leverages the inherent regularity of the execution model to produce uniform im-

plementation, enabling security and easy verification. Our DSL allows developers to specify

protocol state machines, through three abstract types State, Recv and Send.

94

Protocol State (State) A state type is defined by a constant denoting the timeout of the

state, which specifies the maximum time a state must be retained before a connection is ter-

minated if no legitimate connection activity is observed, in case of idle/crashed applications

and lost connections. To specify a concrete protocol, the developer often needs to define

multiple states. ProFactory pre-defines a number of them including the start state sinit,

and the end state st.

State Transition (Recv, Send) Recv specifies the state transition and the associated opera-

tions that are triggered by a received message and Send specifies transitions and operations

triggered by a message-sending request. In Recv, min is the received message, followed by a

group of transition options. Each option is guarded by an expression e. If the expression is

evaluated to true, a (compound) statement S is executed, the state is updated from sfrom to

sto. Meanwhile, a response message mout may be sent. S typically includes invocation of the

receive function of the sub-message of min, creating a channel/connection, setting/getting

a parameter value, constructing mout, and collecting statistics. The syntax of Send is simi-

lar with mout the message to send, but it specifies an action type nact to express one of the

only three socket operations, i.e., connection establishment, message delivery and connection

shutdown, that perform active message sending. Note that socket errors (e.g., a message was

not successfully received/sent) get automatically handled by the state timeout (see “Timer

and Counter” in Section 4.5).

Statement and Expression. The syntax of statements and expressions in our DSL

largely follow the C language. Statements and expressions are mostly used in type defini-

tions. Different from a program in mainstream programming languages that often has a

main() function that specifies the main logic of a program. Protocol code is event-driven,

for instance, by connection, send, and receive events. As such, in ProFactory the main

logic of a protocol is directly derived from the type definitions, in the form of a list of event

handlers and functions called by these handlers. Statements and expressions are merely part

of the type definitions such as e and S in Recv and Send. ProFactory supports assign-

ment, if− else, for loop, constants, variables, common unary or binary operations. In

addition, it provides a number of statements convenient for network protocols. For instance,

iter executes statement S on each element in a parameter list `.

95

Data Structures and Auxiliary Functions
σ : store that maps key(s) to a value; F : functions defined; P : symbolic constraints; Chcur : the current channel;
sinit : the initial connection state
newId(): acquire a new connection or channel id; newMsgHandler(): acquire a message handler (like a file handler)

Semantic Rules

1. f :=Fix (ns, nl , nh) F+=

{
def f .parse(M,V) {σ[M][f] =V [0,ns];},
def f .compose(V,x) {V [0, f .len−1] = σ[x];}

}
P+=

{
f .len = ns, f .val ≤ nh,
f .val ≥ nl

}
2. v:=Var (nl , nh) F+=

{
def v.parse(M,V,xl) {σ[M][v] =V [0,σ[xl]−1];},
def v.compose(V,xl ,xv) {V [0,σ[xl]−1] = σ[xv];}

}
P+= {v.len≤ nu, v.len≥ nl}

3. h:=Hdr f1 · flen
F+=

def h.parse(M,V) {

f1.parse(M,V);
flen.parse(M,V [f1.len,]);}

def h.compose(V,x1,xlen) {
V [0, f1.len−1] = σ[x1];
V [f1.len, f1.len+ flen.len−1] = σ[xlen];}

P+= {h.len = f1.len+ flen.len}

4. p:=Para (nkey, fkey · fval)
F+=

def p.parse(M,V) {

fkey.parse(M,V);
assert(σ[M][fkey]≡ nkey);
fval .parse(M,V [fkey.len,]);},

def setPara(xc,xk,xv) {
switch(xk) {

case nkey : σ[σ[xc]][nkey] = σ[xv];
...}
}

P+= {nkey = fkey.val, p.len = fkey.len+ fval .len}

5. l := Plist(ns,P ({
p1 := (nk1, fk1 · fv1),
p2 := (nk2, fk2 · fv2)})

F+=

def l.parse(M,V) {
while(i < ns && j < strlen(V)) {
switch(V [j, j+ fk1.len−1]) {
case nk1 : p1.parse(M,V [j,]); j+= p1.len
...

},

P+= {l.len = p1.len+ p2.len, fk1.len = fk2.len}

6. m := Msg(h := ft · flen)·
(ft = nt1 ? : mt1 |
ft = nt2 ? : mt2)

F+=

def m.parse(M,V) {
h.parse(M,V);
if(σ[M][ft]≡ nt1)

mt1.parse(M,V [h.len,]);
if(σ[M][ft]≡ nt2);

mt2.parse(M,V [h.len,]);},

def m.compose(V,xt ,Vsub,xl) {
if(σ[xt]≡ nt1) {

h.compose(V,nt1,xl);
V [h.len,h.len+ xl −1] =Vsub;
}
...

P+= {nt1 = ft .val∨nt2 = ft .val, ft .val = nt1→ (m.len = h.len+mt1.len∧ flen.val = mt1.len),

ft .val = nt2→ (m.len = h.len+mt2.len∧ flen.val = mt2.len)}

7. ch:=Chan (n1, n2) F+=

def createChan(xc,xaddr,x1,x2) {
id = newId(); σ[id][addr] = σ[xaddr]; σ[id][n1] = σ[x1]; σ[id][n2] = σ[x2];
σ[id][state] = sinit; σ[σ[xc]][channels]+ = {id}; ret id;}

def f indChanByPara(xc,xk,xv) {
foreach (id ∈ σ[σ[xc]][channels])
if (σ[id][σ[xk]]≡ σ[xv]) ret id;}

8. cn:=Conn (n1, n2) F+=

def createConn(x1,x2) {

id = newId(); σ[id][channels] = {}; σ[id][n1] = σ[x1]; σ[id][n2] = σ[x2];
ret id;}

9. r := Recv (min, (e1,s f rom,
sto, mout , {S}),(e2, ...))

F+=

def r.receive(V) {
M = newMsgHandler();
min.parse(M,V);
if (e1) { S; assert(σ[Chcur][state]≡ s f rom); σ[Chcur][state] = sto;

mout .compose(V, ...); send(V);}
if (e2) ... }

P+= {(e1∧ state = s f rom)→ state = sto, e2...}

Figure 5: PROFACTORY DSL Semantics

7

Figure 4.5. ProFactory DSL Semantics

96

4.4.2 DSL Semantics

Figure 4.5 presents the semantics of a subset of DSL specifications, with the data struc-

tures and auxiliary functions used, followed by the rules. Different from a regular pro-

gramming language, in which each statement has concrete semantics, our DSL is mainly

for type definitions. As such, we define semantic rules for concrete type definitions. In the

semantic rules section of Figure 4.5 , the first column shows concrete type definitions and

the corresponding semantic rules in the second column show a list of functions and sym-

bolic constraints derived from the definition. The functions define a list of operations for

a concrete type. Some of the functions are event handlers that constitute the interface of

protocol. The symbolic constraints are used for symbolic modeling checking that validates

the correctness of protocol specifications.

Specifically, for a type definition, ProFactory updates F, which denotes the list of

functions defined, and P, which denotes the list of symbolic constraints derived. Inside a

function, the semantics is described using C-like statements, many of which update a store

σ that is similar to a store in classic programming language semantics. Intuitively, one can

consider it as a hash-map that projects a key or a number of keys to some value. Here, key

can be a name, a value, or a variable.

Rule 1 specifies that for a definition of fixed-sized field, two functions are introduced,

with f.parse(M, V) parses the field and f.compose(V, x) composes the field (as part of whole

message composition). In the parser function, parameter M is a handler for the message

(kind of id for the message). One can intuitively consider each incoming message (to parse)

has its unique handler; V is a buffer passed in from the kernel, containing the message (or

part of a message). The function copies ns (i.e., the size of the field) bytes from V to the

store. Note that the concrete field value is indexed by the handler M and the symbolic field

name f . This is because f is a field type instead of a concrete field. In the composition

function, variable x denotes the value used to compose the field and V is the buffer storing

the message to compose. V will be passed on to the kernel to send a message after composing

the whole message. In addition to the functions, three symbolic constraints are added to

P dictating the (symbolic) length of the field equals to ns, and the (symbolic) value of the

97

field must be in between nl and nu. These constraints will be used for model checking. The

semantics for a variable-sized field definition is similar.

In Rule 3 for a header consisting of two fields f1 and flen (for the length of the message

body), the parser function parses the two fields in order by invoking their parser functions.

This implies that the two field types need to be defined. The expression V [f1.len,] means

that a sub-buffer starting at offset f1.len of V . The composition functions copies the two

variables x1 and xlen to the result buffer. The symbolic constraint dictates that the length

of header be the sum of the lengths of the two fields.

In Rule 4 for a parameter, the parser function parses the two fields and asserts that the

value of the key field must equal to the specified key value nkey. A global function, i.e., a

function not specific to a definition, setPara(xc, xk, xv) is also introduced to set a parameter,

with xc denoting the connection/channel, xk the key, and xv the value. It sets the parameter

denoted by the value of xk to the value of xv. It will be invoked when connections/channels

are created/configured.

In Rule 5 for a parameter list, the parser function traverses through the buffer V and

parses individual parameters until it reaches the end of V or the number of parameters

reaches the upper bound ns. The last symbolic constraint requires the parameters (in the

list) have the same key field size. Note that strlen(V) means the dynamic length of buffer

V which is not null-terminated.

In Rule 6 for a message with two possible sub-message formats, the parser function

first parses the header. It then checks the value of the type field ft in the header and

invokes the parser of the corresponding sub-message (“?:” is similar to “switch-case”). The

composition function is symmetrically defined, with xt the type of the sub-message, Vsub

a buffer containing the sub-message composed before-hand, and xl the length of the sub-

message. The symbolic constraints ensure that (1) the value of the type field must be nt1

or nt2; (2) if it is nt1/nt2, the message length is the sum of the header and the sub-message

mt1/mt2 and the value of the length field flen in the header must match the length of mt1/mt2.

In Rule 7 for a channel definition, two global functions are introduced. The first one

is to create a new channel, with xc denoting the connection to which the channel belongs,

xaddr the address of the channel, and x1, x2 the values for the channel parameters n1 and

98

n2. Inside the function, a new local channel id is created to uniquely represent the new

channel. The state of the channel is set to sinit and the list of channels for the connection

is updated. Some protocols explicitly specify channel id in their messages so that they can

be properly attributed. However, there are protocols that implicitly encode channel id in

some parameter(s). For example, L2CAP may encode channel id in PSM (Protocol Service

Multiplexer). As such, we provide a findChanByPara() function to help look up a channel

in connection xc, using the parameter key xk and value xv. It returns the reference to the

found channel or NULL. In Rule 8, the creation function of connection is similarly defined.

The list of channels is initialized to empty.

Rule 9 specifies the semantics for the definition of a Recv state transition, which leads to

the definition of a receive() function. If the message min is a top level message, the function

is invoked by another protocol at the lower layer. Otherwise, it is invoked by the receive

functions of higher level messages. Inside the function, a handler is first allocated to denote

the message. One can intuitively consider it as an id. Message min is then parsed. If the

expression e1 is satisfied, statement S is executed; the state is updated from sfrom to sto; a

response message is composed and sent. Similarly, if the expression e2 is satisfied, a different

transition is performed. The symbolic constraint specifies the possible state transitions. The

semantics for Send is similarly defined and elided.

4.4.3 A Real-world Example

In the Bluetooth protocol stack, L2CAP is one of the most critical protocols, responsible

for protocol multiplexing and data delivery between applications and the protocol stack.

It sits on top of the HCI (Host Controller Interface) layer (i.e., a link layer) and serves a

large number of upper layers such as RFCOMM (Radio Frequency Communication), HIDP

(Human Interface Device Profile), and BNEP (Bluetooth Network Encapsulation Protocol).

Figure 4.6 (a) shows a few simplified code snippets from a Linux Bluetooth 5.0 implemen-

tation. They are to handle L2CAP command messages.

Function l2cap_sig_channel is invoked by a callback from the lower HCI layer to

process a L2CAP command. Depending on the command type (line 5335) in the command

99

T20

cmdHdr
dstChanID

confReqHdr optPlist

connection request

configuration request

mtuType = Fix (1size , 10low , 10high)
mtuVal = Fix (2size , 16low , 1024high)
mtuPara = Para (10key , mtuType · mtuVal)
optPlist = Plist (8size , {mtuPara, …})
srcChanID = Fix (2size , 1low , 65535high)
confReqHdr = Hdr srcChanID · ...
l2Psm = Fix (1size , 1low , 23high)
l2PsmType = Fix (1size , 2low , 2high)
l2PsmPara = Para (2key , l2PsmType · l2Psm)
dstChanID = Fix (2size , 1low , 65535high)
dstChanIDType = Fix (1size , 1low , 1high)
dstChanIDPara = Para (1key , dstChanIDType · dstChanID)
cmdType = Fix (1size , 1low , 22high)
cmdHdr = Hdr cmdType · ...
l2Chan = Chan (…, 1key, 2key, 10key, …)
l2Conn = Conn (…)

T01
T02
T03
T04
T05
T06
T07
T08
T09
T10
T11
T12
T13
T14
T15
T16

msgConfReq = Msg confReqHdr · optPlist
msgConfRsp = Msg ... · optPlist
msgConnReq = Msg l2Psm · dstChanID
msgConnRsp = Msg ...
msgL2Cmd = Msg cmdHdr · (cmdHdr->cmdType = 2?: msgConnReq | cmdHdr-
>cmdType = 4?: msgConfReq | ...)
BT_CONFIG = State 2000timeout

BT_CONNECTED = State 2000timeout

recvConnReq = Recv (msgConnReq,
(e, nil, BT_CONFIG, msgConnRsp, {S}), ...)
e: findChanByPara(l2Conn, 2key, msgConnReq->l2Psm)
&& !findChanByPara(l2Conn, 1key, msgConnReq->dstChanID)
S: createChan(l2Conn, …, msgConnReq->dstChanID, msgConnReq->l2Psm);...

T17
T18
T19
T20
T21

T22
T23
T24

T25

T26

recvConfReq = Recv (msgConfReq,
(e, BT_CONFIG, BT_CONNECTED, msgConfRsp, {S}), ...)
e: findChanByPara(l2Conn, 1key, msgConfReq->msgConfReqHdr->srcChanID)
S: iter(msgConfReq->optPlist, {
 setPara(l2Chan, 10key, msgConfReq->optPlist->mtuPara);
 append(msgConfRsp->optPlist, 10key, l2Chan->mtuPara);...

T27

T28
T29
T30
T31

BT_START BT_CONFIG BT_CONNECTED

static inline void l2cap_sig_channel(...,
struct sk_buff *skb) {
 ...; u8 *data = skb->data; ...
 struct l2cap_cmd_hdr cmd;
 int err; ...
 err = l2cap_bredr_sig_cmd(...,
&cmd, ..., data); ...

5696

5700
5702
5703
5726

static inline int l2cap_bredr_sig_cmd(..., struct
l2cap_cmd_hdr *cmd, ..., u8 *data) {
 int err = 0;
 switch (cmd->code) { ...
 case L2CAP_CONN_REQ:
 err = l2cap_connect_req(..., cmd, ..., data);
 break; ...
 case L2CAP_CONF_REQ:
 err = l2cap_config_req(..., cmd, ..., data);
 break; ...

5329

5333
5335
5340
5341
5342
5349
5350
5351

static struct l2cap_chan *l2cap_connect(..., struct
l2cap_cmd_hdr *cmd, u8 *data, ...) {
 struct l2cap_conn_req *req = (struct
l2cap_conn_req *) data;
 struct l2cap_conn_rsp rsp;
 struct l2cap_chan *chan = NULL, *pchan;
 int result, ...;
 u16 ..., scid = __le16_to_cpu(req->scid);
 __le16 psm = req->psm; ...
 pchan = l2cap_global_chan_by_psm(..., psm,
...); ...
 if (__l2cap_get_chan_by_dcid(..., scid)) ...
 chan = pchan->ops->new_connection(pchan); ...
 __l2cap_chan_add(..., chan);
 l2cap_state_change(chan, BT_CONFIG); ...
 l2cap_send_cmd(..., sizeof(rsp), &rsp); ...

3762

3766

3767
3768
3769
3771
3772
3777

3798
3801
3820
3841
3870

static inline int l2cap_config_req(..., struct
l2cap_cmd_hdr *cmd, ..., u8 *data) {
 struct l2cap_conf_req *req = (struct
l2cap_conf_req *) data;
 u16 dcid, ...; u8 rsp[64]; struct l2cap_chan *chan;
 int len, ...; ...
 dcid = __le16_to_cpu(req->dcid); ...
 chan = l2cap_get_chan_by_scid(..., dcid); ...
 if (chan->state != BT_CONFIG && ...) ...
 len = l2cap_parse_conf_req(..., rsp, sizeof(rsp)); ...
 l2cap_send_cmd(..., L2CAP_CONF_RSP, ..., rsp); ...
 l2cap_chan_ready(chan)

4028

4032

4033
4036
4041
4046
4052
4080
4087
4106

static int l2cap_connect_req(..., struct
l2cap_cmd_hdr *cmd, ..., u8 *data) {...
 l2cap_connect(..., cmd, data, ..., ...); ...

3897

3912

static void l2cap_chan_ready(struct
l2cap_chan *chan) {
 if (chan->state == BT_CONNECTED) return; ...
 chan->state = BT_CONNECTED; ...

1245

1251
1261

static int l2cap_parse_conf_req(..., void *data, size_t
data_size) {
 struct l2cap_conf_rsp *rsp = data;
 void *ptr = rsp->data, ...;
 int len = chan->conf_len, type, ...; ...
 while (len >= L2CAP_CONF_OPT_SIZE) {
 len -= l2cap_get_conf_opt(..., &type, ...); ...
 switch (type) {
 case L2CAP_CONF_MTU: ...
 break; ...
 l2cap_add_conf_opt(&ptr, L2CAP_CONF_MTU, ...); ...

3298

3300
3301
3304
3316
3317
3322
3323
3325
3418

T21

T14

T21
T24

T21
T27

T19

T05

T07

T25

T25

T26

T22, 24

T23, 27

T17

T18
T05

T28

T27

T27

T18

T04

T01T30

T31

(a). Code snippets from l2cap_core.c for BT5.0 in Linux kernel 4.10

(b). Domain specific definitions (T), L2CAP message formats and part of L2CAP state machines

T29

(i)

(ii)

T13

l2Psm

Figure 4.6. A running example of modeling a subset of Bluetooth L2CAP specifications

header (line 5702), it invokes function l2cap_connect_req to process a connection request

or l2cap_config_req to process a configuration request. Inside l2cap_connect, lines

3777-3820 leverage the PSM (protocol service multiplexer, like port for TCP) field to look

up a parent channel listening to this kind of service request. If there is such a channel and

no existing channel is using the requested source channel ID (lines 3771 and 3798), it spawns

and initializes a new L2CAP channel (the channel is initialized to the initial BT_START

state, which is not explicitly shown in the snippets). It then sets the channel to BT_CONFIG

state, and uses l2cap_send_cmd which is a wrapper API of the lower HCI layer to send a

response message (lines 3841-3870). Inside l2cap_parse_conf_req, the loop in lines 3316-

3325 traverses a list of configuration options. For example, it sets the MTU of the channel

if an mtu option is included (line 3323). Inside l2cap_config_req, a configuration request

cannot be accepted/parsed unless the channel is at BT_CONFIG state (line 4052). After

parsing, it sends a response message and sets the channel to the ready state BT_CONNECTED

(if the configuration is successful, lines 1251-1261).

Using our DSL, we can rewrite the complex implementation (hundreds of LOC) to 31

LOC in DSL as shown in Figure 4.6 (b). We use yellow, blue and green in (a) and (b) to

mark artifacts related to L2CAP commands, connection requests, and configuration requests,

100

respectively. We also use circled annotations in (a) to associate concrete variables and

operations to abstract types in (b). For example, u8 ∗ data at line 5700 is abstracted to line

T21, meaning that it is a L2CAP command message whose header directs the parsing to

different commands. The corresponding message formats and state machine are shown in

Figure 4.6 (b.i, b.ii) for easy understanding.

4.5 Code Generation

ProFactory automatically generates C code from the DSL specification. The semantic

rules in Figure 4.5 specify the functions we need to generate and the semantics of these

functions. However, those functions are still abstract. In this subsection, we discuss how the

concrete C code is generated. Specifically, each type definition in a protocol specification

leads to a C data structure. For example, a header type definition h := Hdr ftype · flen leads

to a C data structure definition “typedef struct {... ftype ...; flen ...;} h;”. Functions like those

described in the semantic rule of the type definition are generated. For the above header

example, the two functions in Rule 3 in Figure 4.5 are generated. Hash-map operations

through the store, e.g., σ[M][ftype], are compiled to the corresponding data structure field

accesses.

Sanity Checks An important advantage of ProFactory is that it ensures parser security

by inserting bound checks and input validity checks. Note that the length of each field,

header, message is clearly specified in our DSL. If necessary, value ranges are also specified.

Runtime checks like those in the symbolic constraints set P (derived while compiling the

protocol specification) are automatically inserted.

Multiplexing ProFactory supports multiplexing which entails concurrent connections. To

avoid races, ProFactory automatically adds mutexes to guard accesses to data structures

involved in multiplexing, such as the channel list field in a connection data structure, the

current connection/channel variable, and connection/channel parameter data structures.

Packet Fragmentation Developers are oblivious to the implementation details of packet frag-

mentation. They only need to specify how the MTU value is negotiated as part of the protocol

specification. To support fragmentation, ProFactory automatically inserts an additional

101

fragmentation header (including fragment ID, offset and continuation flag) into the header

of each message and the fragmentation logic is injected in message send/receive functions.

Timer and Counter ProFactory does not customize timer or counter constructs. Instead,

it leverages the generic kernel socket timer sk_sndtimeo (40s is a reasonable timeout value)

for message sending, and the delayed callback registration schedule_delayed_work() (value

is set by the timeout attribute of State) for message receiving, where the timeouts trigger the

close of sockets. They are transparent to developers, and they are automatically generated

for Recv and Send.

Cryptographic Operations Modeling cipher suites is out of the scope of our DSL, while cryp-

tographic constructs are packed into prepared interfaces. Specifically, ProFactory offers

two expressions setSec(int) and getSec() (omitted in Figure 4.4 for brevity) for security level

setting and fetching. setSec(int) sets the security level to a predefined integer value, which

indicates whether the protocol performs encryption/decryption. The lower-layer protocol

checks the setting, establishes the corresponding lower-layer connection and delivers mes-

sages. The lower-layer of the other communication peer updates this security level after the

lower-layer connection is established, but this is oblivious to the upper-layer. If the other

peer wants to know what security level the communication operates on, it should explicitly

check it by using getSec(). Developers are oblivious to the implementation details of those

interfaces but only regard them as cryptographic delegating pipes of the lower-layer. For

instance, L2CAP encloses a security level sec_level in the channel data structure, and the

lower-layer (HCI) accesses this value for encryption jurisdiction when performing message

delivery. NWK maintains nwkSecurityLevel in NIB (Network Information Base), and the

lower-layer (MAC) accesses this value to apply corresponding security strategies.

Interfacing with Application, Kernel and Other Protocols While our DSL is platform-independent,

allowing to specify the main logic of network protocols, the generated code has to be plat-

form dependent, interfacing with four parties: user space applications, the underlying kernel,

lower layer protocol and upper layer protocol(s). ProFactory currently supports Linux.

The generated implementation for a protocol is packaged as a Linux kernel module. In the

following, we explain the four interfaces. Then we present an example of L2CAP.

102

All network protocols in Linux interface with user applications through a fixed socket

interface, which includes socket data structure and a number of API functions such as bind(),

listen(), accept(), connect(), send() and recv(). To setup the interface (with the user space),

the kernel module initialization needs to register the protocol by providing the protocol name

such as “L2CAP” and the socket data structure of the protocol (containing a reference to a

channel data structure). It also registers a list of functions that implement the aforemen-

tioned APIs, e.g., l2cap_sock_sendmsg() is registered for send() and sendmsg(). According

to the action type nact, connect(), send()/sendmsg() and shutdown() are connected to the

message sending functions emitted through Send instances. This is transparent to develop-

ers. Also, the user space send() and recv() functions are merely sending and receiving raw

data such that the underlying protocol is complete transparent to them.

The generated code interfaces with the upper layer protocols through a provided callback

function. Theoretically, such functions can be registered. However, the current Linux proto-

col stack implementation hardcodes them. For example, the callback function provided by

the Bluetooth family to L2CAP for raw data delivery has a fixed name l2cap_data_recv(),

which is invoked inside the body of mdata.recv() that receives an L2CAP data message. Note

that invoking the actual callback is transparent to developers but they only need to write a

deliver expression (omitted in Figure 4.4 for brevity) to fulfill this. The interface with the

lower layer protocol is similar. Upon receiving a data message in the lower layer (addressing

our protocol), a fixed function is invoked that further invokes the various parser functions

generated from DSL. Developers are also oblivious to the connection between the callback

and the generated parser functions. The generated code also makes use of kernel functions

such as socket allocation sk_alloc() when creating new channels, to which the developers

are oblivious.

Figure 4.7 illustrates the platform-dependent interfaces of L2CAP, with the user space on

the left, the lower layer protocol (HCI) on the right, the box with green header in the center

generated from the DSL and the boxes with headers of other colors the interfaces. Specifi-

cally, module initialization (the orange box in the middle of the second column) registers the

protocol structure (the top orange box in the third column) and L2CAP socket operations

that are invoked by user space (the bottom orange box). The registered socket operations

103

lower layer callback

l2cap_recv_acldata
upper layer callback

l2cap_data_recv

DSL-generated function

message parsing

state transition

common socket operation

sock_queue_rcv_skb

sk_alloc

skb_queue_purge

...

common BT family operation

bt_sock_recvmsg

bt_accept_enqueue

bt_accept_dequeue

...

socket library calls

socket

connect

listen

accept

send

...

common kernel implementation

kernel data structure

kernel memory operation

...

protocol registration
BT family registration

socket operation registration

user space
L2CAP layer HCI layer

l2cap socket family operation

.family = PF_BLUETOOTH

.owner = THIS_MODULE

.create = l2cap_sock_create

module initialization

l2cap_init_sockets

l2cap socket operation

.family = PF_BLUETOOTH

.owner = THIS_MODULE

.connect = l2cap_sock_connect

.listen = l2cap_sock_listen

.accept = l2cap_sock_accept

.sendmsg = l2cap_sock_sendmsg

...

protocol structure

.name = “L2CAP”

.owner = THIS_MODULE

.obj_size = sizeof (struct l2cap_info)

lower layer interface

hci_send_acl

hci_security_check

hci_connect_acl

hci_get_route

...

Figure 4.7. The platform-dependent interfaces of L2CAP

need to invoke the functions generated from DSL (in the center) to fulfill message parsing

and state transition. Inside those functions, common operations of Bluetooth family, kernel

socket, kernel data structure, and kernel memory are invoked (through the interfaces in the

red boxes). In particular, L2CAP needs to invoke these interfaces to accomplish data deliv-

ery and connection establishment. The lower layer protocol HCI (Host Controller Interface)

invokes a callback l2cap_recv_acldata to inform L2CAP upon receiving a message. L2CAP

invokes a callback l2cap_data_recv after unwrapping the raw data.

Code Generation Algorithm The algorithm of code generation is simplified and sum-

marized in Figure 4.8 . First, data structures are emitted to compose a header file (lines

1-8). Note that the emission of some fields (e.g., timer, state, linked list, mutex and lock) in

channel and connection structure is transparent to developers, and ProFactory leverages

those fields to fulfill state transitions and multiplexing. Then, f indChanByPara function

is generated for each of the parameters defined in the channel structure (lines 9-11), and

createChan and createConn are also emitted (lines 12-13), where concurrency control oper-

ations are included. For each message containing a header, a parser is generated to extract

(skb_pull) the header (lines 16-17), perform sanity checking (line 18) and invoke an inner

parser (line 19), composing a hierarchical parsing tree. Similarly, a hierarchical message

constructor (line 23-24) is generated to set header fields (e.g., length field). In contrast, a

receiving transition defines the parser of a base message (leaf parsing node) without a header.

104

Code Generation Algorithm The algorithm of code gen-
eration is simplified and summarized in Algorithm 1. First,
data structures are emitted to compose a header file (lines
1-8). Note that the emission of some fields (e.g., timer, state,
linked list, mutex and lock) in channel and connection struc-
ture is transparent to developers, and PROFACTORY leverages
those fields to fulfill state transitions and multiplexing. Then,
f indChanByPara function is generated for each of the pa-
rameters defined in the channel structure (lines 9-11), and
createChan and createConn are also emitted (lines 12-13),
where concurrency control operations are included. For each
message containing a header, a parser is generated to extract
(skb_pull) the header (lines 16-17), perform sanity checking
(line 18) and invoke an inner parser (line 19), composing a
hierarchical parsing tree. Similarly, a hierarchical message
constructor (line 23-24) is generated to set header fields (e.g.,
length field). In contrast, a receiving transition defines the
parser of a base message (leaf parsing node) without a header.
Similarly, it extracts all the fields (lines 28-29) and performs
sanity checking (line 30). In addition, it allocates memory
(line 32), prepares (skb_put) local references (lines 33-34),
conducts the concrete state transition (lines 37-38), and per-
forms packet delivery (line 39) for the outgoing message (if
applicable). In particular, the optional header argument [h]
in line 19 only applies to the parser of base message, which
is reflected in line 27. This design aims to handle message
formats where the innermost content parsing involves the in-
formation of the adjacent header. Finally, a sending transition
defines a message serializer which is almost the same as the
construction of the outgoing message in a receiving transition,
but the only difference is that it is allowed to carry a user-
space data chunk passed through a socket sending function
(line 46, 56). Note that the recursive code generation of ex-
pressions/statements, and the channel/connection unlocking
operations at the end of parsing are omitted for brevity.

6 Automated Verification

An important goal of PROFACTORY is to achieve correctness
and security by construction. The goal is validated by auto-
mated verification, which includes the following three aspects:
verifying concurrency control correctness using VCC [1, 51],
memory safety using Frama-C [16], and state-machine cor-
rectness using Z3 [41]. Note that bugs in any of these aspects
could lead to security exploits. We use different tools for the
three aspects as they have different focuses. For example,
VCC was designed to prove concurrency correctness and has
limited support for type/pointer casting, whereas Frama-C
was designed to prove memory safety and can hardly reason
about concurrent program behaviors. Z3 is a general reason-
ing engine, and hence very suitable for reasoning high-level
state machine behaviors. The inputs to the first two are C-like
functions that can be automatically emitted by PROFACTORY.
However, as in most verification systems, the proof process

Algorithm 1: Code Generation Algorithm
Def. :H,P,M,R,D - sets of defined headers, defined parameters,

defined messages, defined receiving transitions and defined
sending transitions

:structGen - generate data structures
: localGen - generate local pointers
:extractGen - refer pointers to socket buffer data
:checkGen - generate sanity check block
:allocGen - generate socket buffer allocation block
:baseMsg - get message base of a layered message
:timerGen - generate timer updating block
:sendGen - generate message delivery block
:codeGen - generate type-specific block

1 foreach h ∈ H do
2 structGen(h) . packed data structure
3 end
4 foreach p ∈ P do
5 structGen(p) . packed data structure
6 end
7 structGen(ch)
8 structGen(cn) . end of header file generation
9 foreach p ∈ ch do

10 codeGen(p) . generate f indChanByPara
11 end
12 codeGen(ch) . generate createChan
13 codeGen(cn) . generate createConn
14 foreach m = h(f = n1? : m1)... ∈M do
15 codeGen(m) = define parse_m(ch,cn,skb_in){
16 localGen(h)
17 extractGen(h)
18 checkGen(h) . failure is directed to drop
19 if(f == n1) return parse_m1(ch,cn, [h],skb_in);
20 ...
21 else goto drop;
22 drop: k f ree_skb(skb_in); return error;}
23 + define compose_m(ch,cn,skb_out){
24 compose_m1(ch,cn,skb_out); ...} . details omitted
25 end
26 foreach r ∈ R do
27 codeGen(r) = define

parse_baseMsg(min)(ch,cn,hprev,skb_in){
28 localGen(baseMsg(min))
29 extractGen(baseMsg(min))
30 checkGen(baseMsg(min)) . failure is directed to drop
31 if(codeGen(e1)∧ ch � state == s f1){
32 allocGen(mout) . failure is directed to drop
33 localGen(mout)
34 extractGen(mout)
35 codeGen(S)
36 compose_mout(ch,cn,skb_out);
37 (ch � state)← st1
38 timerGen(st1)
39 sendGen(mout)}
40 ...
41 else goto drop;
42 return success;
43 drop: k f ree_skb(skb_in); k f ree_skb(skb_out); return error;}
44 end
45 foreach d ∈ D do
46 codeGen(d) = define send_mout(ch,cn,data, len){
47 allocGen(mout) . failure is directed to drop
48 localGen(mout)
49 extractGen(mout)
50 if(codeGen(e1)∧ ch � state == s f1){
51 codeGen(S)
52 (ch � state)← st1
53 timerGen(st1)}
54 ...
55 else goto drop;
56 if(data∧ len)memcpy(skb_put(skb_out, len),data, len);
57 compose_mout(ch,cn,skb_out);
58 sendGen(mout); return success;
59 drop: k f ree_skb(skb_out); return error;}
60 end

10
Figure 4.8. Code Generation Algorithm

105

Similarly, it extracts all the fields (lines 28-29) and performs sanity checking (line 30). In

addition, it allocates memory (line 32), prepares (skb_put) local references (lines 33-34),

conducts the concrete state transition (lines 37-38), and performs packet delivery (line 39)

for the outgoing message (if applicable). In particular, the optional header argument [h] in

line 19 only applies to the parser of base message, which is reflected in line 27. This design

aims to handle message formats where the innermost content parsing involves the informa-

tion of the adjacent header. Finally, a sending transition defines a message serializer which

is almost the same as the construction of the outgoing message in a receiving transition, but

the only difference is that it is allowed to carry a user-space data chunk passed through a

socket sending function (line 46, 56). Note that the recursive code generation of expression-

s/statements, and the channel/connection unlocking operations at the end of parsing are

omitted for brevity.

Protocol Randomization. As the DSL specification only specifies the logic of a proto-

col, ProFactory can easily randomize the generated implementation, supporting different

concrete message formats. For instance, the order of fields can be shuffled and random

paddings can be added in between fields. As such, ProFactory can create lots of dialects

(of the same protocol). Note that a same randomized implementation will be deployed on

the peers of a connection and hence will not cause any incompatibility issues. Currently,

ProFactory supports shuffling fields in headers and padding them with random bytes.

Implementation Entropy Randomization improves protocol security, especially in the confi-

dentiality aspect. We quantify such improvement by studying the implementation entropy.

For a peer (in a connection), we define a complete protocol execution path as

p = s0, m0, s1, m1, ..., st−1, mt−1, st

where s0 is the initial state, mi = −→mi|mi = ←−mi means an outgoing or incoming message,

si, 1 ≤ i < t denotes an intermediate state, and st is the end state. Correspondingly, the

complete execution path of the other peer must be

p′ = s′
0,¬m0, s′

1,¬m1, ..., s′
t−1,¬mt−1, s′

t

106

where ¬mi, 0 ≤ i < t denotes the mi message in the opposite direction. Further assume

all the exchanged messages along the path(s) have n unique headers Hdr1, ..., Hdrn and

the number of fields in Hdri is hi. Since ProFactory can arbitrarily reorder all fields in a

header and add k-padding bytes (per header) at arbitrary locations, according to permutation

theory, we have the following entropy of p: E(p) = log2 [∏n
i=1 hi! ×

∏n
i=1(hi + 1)k]. When

n = 2, k = 8, and ∀1 ≤ i ≤ n, hi = 3, E(p) is as large as 37.17. Note that here we

consider the entropy of a full communication path because we assume the attacker needs

to reverse engineer a path in order to exploit some valid functionality of the protocol. Also

note that our computation assumes the fields are independent, which may not be satisfied

in practice. If there is dependence between fields, the actual entropy would be smaller. To

further improve security, it is also possible to randomize state machines by duplicating and

splitting states, or adding redundant states. We leave it to our future work. Note that the

improvement by randomization is orthogonal to that by encryption.

4.6 Automated Verification

An important goal of ProFactory is to achieve correctness and security by construc-

tion. The goal is validated by automated verification, which includes the following three

aspects: verifying concurrency control correctness using VCC [172], [173], memory safety

using Frama-C [174], and state-machine correctness using Z3 [179]. Note that bugs in any

of these aspects could lead to security exploits. We use different tools for the three aspects

as they have different focuses. For example, VCC was designed to prove concurrency cor-

rectness and has limited support for type/pointer casting, whereas Frama-C was designed

to prove memory safety and can hardly reason about concurrent program behaviors. Z3 is

a general reasoning engine, and hence very suitable for reasoning high-level state machine

behaviors. The inputs to the first two are C-like functions that can be automatically emitted

by ProFactory. However, as in most verification systems, the proof process may require

developers’ manual intervention, e.g., providing a small number of additional pre-conditions

and/or loop invariants. The input to Z3 is a set of symbolic constraints derived by inter-

preting the DSL specification (i.e., P in Figure 4.5).

107

static int parse_config(int cid, int mtu, ...,
struct conn* pconn) {
 struct chan* pchan = NULL;
 mutex_lock(conn->list_lock);
 pchan = pconn->chan_list;
 while(pchan){
 if(pchan->cid == cid) break;
 pchan = pchan->next;
 }
 mutex_unlock(pconn->list_lock);
 if(!pchan) return CHAN_NOT_EXIST;
 mutex_lock(pchan->lock);
 pchan->mtu = mtu;
 mutex_unlock(pchan->lock);
 return SUCCESS;
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

(a)

static int parse_config(int cid, int mtu, ... _(ghost \claim c))
 _(always c, (&ChanDataListContainer)->\closed)// channel
list must not be claimed
 _(requires cid > 0)
{
 CHAN_DATA* pchan = NULL;
 _(assume \thread_local(pchan))// thread-local assumption
 Acquire(&ChanDataListLock _(ghost c));// claim list lock
 _(unwrapping &ConnData.ChanDataList)// enable access
 _(writes pchan)
 {
 pchan = ConnData.ChanDataList;
 while(pchan) {
 if(pchan->cid == cid) break;
 pchan = pchan->next;
 }
} ...
 Release(&ChanDataListLock _(ghost c));// release list lock
 _(ghost \claim d = \make_claim({&ChanDataContainer},
(&ChanDataContainer)->\closed);)
 Acquire(&ChanDataLock _(ghost d));// claim channel lock
 _(unwrapping &ChanData)// enable access
 _(writes \span(pchan))
 {
 pchan->mtu = mtu;
 }
 Release(&ChanDataLock _(ghost d));// release channel lock
...}

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

(b)

L1

L2

R1

R2

L1

L2

R1

R2

Figure 4.9. Concurrency correctness for updating a channel

Concurrency Control Correctness. In generated code, concurrency control takes place

in connection multiplexing operations, where multiple channels share common information.

The verification aims to ensure accesses to such common information do not cause races

or deadlocks. During code generation, ProFactory also emits code that is amenable

for VCC. Particularly, it makes the code self-contained by providing mock data structures

and API functions, and replaces mutex operations with VCC-specific lock acquisition and

release. With the annotations of the shared data structures, VCC automatically determines

concurrency correctness. Figure 4.9 illustrates an example of this procedure. The code

snippet in (a) presents a function generated by ProFactory that updates the mtu field

of a channel indexed by a channel id cid. Observe that a lock is acquired at line 4 before

108

#define H_CONF_SIZE 8
#define P_OPT_SIZE 4
#define PL_MAX_CONF_SIZE 8
struct sk_buff {
 int len;
 char* data;
 ...
};
struct conf {
 int conf_type;
 unsigned int len;
}__attribute__((packed));
struct opt {
 unsigned int optVal;
}__attribute__((packed));
struct chan {
 int mtu;
 int fcs;
 ...
};
/*@ requires ArgReq: \valid(pchan) &&
\valid(skb_in);
 @ requires SkbReq: skb_in->len >= 0 && \
valid(skb_in->data + (0..skb_in->len));
 @ requires SeparationReq: \
separated((char*)pchan + (0..sizeof(struct chan)),
(char*)skb_in + (0..sizeof(struct sk_buff)), skb_in-
>data + (0..skb_in->len));*/
static int parse_config(struct chan* pchan, struct
sk_buff* skb_in) {
 int iter_cnt = 0;
 struct conf* conf_hdr = 0;
 struct opt* opt_para = 0;

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

 /*@ loop invariant \valid(skb_in);
 @ loop invariant \valid(pchan);
 @ loop invariant skb_in->len >= 0;
 @ loop invariant \valid(skb_in->data + (0..skb_in-
>len));
 @ loop invariant iter_cnt <= PL_MAX_CONF_SIZE;
 @ loop invariant \separated((char*)pchan +
(0..sizeof(struct chan)), (char*)skb_in +
(0..sizeof(struct sk_buff)), skb_req->data + (0..skb_in-
>len));
 @ loop variant skb_in->len;*/
 while(skb_in->len > H_CONF_SIZE && iter_cnt <
PL_MAX_CONF_SIZE) {
 conf_hdr = (void*)skb_in->data;
 skb_in->data += H_CONF_SIZE;
 skb_in->len -= H_CONF_SIZE;
 if(conf_hdr->len > skb_in->len || conf_hdr-
>len != P_OPT_SIZE) goto drop;
 opt_para = (void*)skb_in->data
 if(con_hdr->conf_type == 1) {
 chan->mtu = opt_para->optVal;}
 else if(con_hdr->conf_type == 2) {
 chan->fcs = opt_para->optVal;}
 ...
 skb_in->len -= P_OPT_SIZE;
 skb_req->data += P_OPT_SIZE;
 iter_cnt++;
 }
 return 1;
drop:
 ...
 return 0;
}

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Figure 4.10. Memory safety for iterating a parameter list

accessing the list of channels and then released at line 10. The channel is further locked at

line 12 and then released at line 14 after updating the mtu field. The snippet in (b) shows the

corresponding version for VCC verification with those in green being VCC-specific keywords

declaring shared objects and auxiliary objects. The tags show the correspondences of the

mutex operations in (a) and (b). VCC then proves that the code in (b) is race-free and

deadlock-free. Details of VCC are not the focus of our work and hence elided. Interested

readers are referred to [173].

109

Memory Safety. Frama-C verification requires per-function code annotations written in

its own ACSL specification language [174]. Most such annotations (e.g., pointer validation,

memory span validation, memory span separation, loop variant and loop invariant) can be

generated by ProFactory, but due to the difficulty in automatically producing the com-

plete set of annotations, developers may need to manually insert additional (very limited)

preconditions and/or loop invariants to assist the verification process. All the kernel data

structures (e.g., sk_buff) and their operations are manually pre-simplified (one-time effort)

as they are not supported. The verification excludes memory access vulnerabilities, i.e.,

buffer overflow, invalid pointer dereference, memory leakage, use after free and double free.

In particular, being free from buffer overflow and invalid pointer dereference are deductively

verified, where intermediate targets such as being free of infinite loop, integer overflow/un-

derflow and dividing by zero are also guaranteed, while Frama-C guarantees being free of

memory leakage, use after free and double free by tracking memory allocation/deallocation

operations. Figure 4.10 showcases a generated function with Frama-C annotations. The

function iterates a parameter list stored in skb_in, where the lines highlighted in green

are the annotations. It was successfully verified by Frama-C. Specifically, the annotations

consists of two parts, function annotations (lines 21-28) and loop annotations (Line 34-44).

The former denotes the function preconditions (which need to be verified at each callsite

of the function). For instance, the execution of l2cap_conf_parse requires valid pointers

(lines 21 and 22), valid socket buffer size (lines 23 and 24) and separated argument spans

(lines 25-28), meaning they do not overlap. In contrast, loop annotations assist proving

loop termination and iterative memory access safety. It usually includes a loop variant that

changes across iterations and hence is related to loop termination (e.g., line 44, length of

remaining data in the socket buffer), and a list of loop invariants that specify predicates

that must hold across iterations and substantially facilitate the proof procedure (e.g., lines

34-43). Internally, the invariants are auxiliary lemmas which help the proof and must also

be deductively verified from function annotations. More details about Frama-C verification

can be found in [174].

State Machine Verification by Symbolic Model Checking. To verify state machine

correctness, we translate the DSL specification to symbolic constraints and check if the

110

model satisfies a number of general properties. ProFactory rewrites DSL specification

to the SMT-LIB [185] representation of Z3, a well-known theorem prover. Z3 supports

reasoning of constraints in a large number of theories such as integer, string, array, and

bit-vector theories. Specifically, symbolic variables are introduced to describe attributes of

abstract data types, such as value of a field f , denoted as f.val in P of Rule 1 in Figure 4.5 ,

and variables such as channel state. Operations in P such as additions and multiplications

are translated to Z3 operations in the corresponding theories. Logical operations, such

as conjunctions, disjunctions, and implications (e.g., those in P of Rule 6 in Figure 4.5

describing the different possible state transitions guarded by different conditions) are directly

supported by Z3. General statements such as assignments (whose semantics are standard

and elided from Figure 4.5) are also translated to symbolic constraints. The translation of

these statements is standard [186] and elided. Loops are unrolled with the unroll bound of

10, which is practically sufficient for the protocols we model. Note that while at runtime

there are multiple channels, we do not have to model these instances during symbolic model

checking as we are interested in state transition properties. Variables that can be defined by

the user-space, kernel, and remote requests are largely free variables. That is, they are only

constrained by range specifications if there are any. We say a property is satisfied (SAT) if

Z3 can find a value assignment to all these free variables that can satisfy the property. We

validate a number of general properties of state machine behaviors.

State Reachability The first property asserts that a destination state s1 is reachable from

the initial state s0, denoted as reachable(s0, s1). Let the symbolic encoding of the pro-

tocol be M , which includes the symbolic constraint encodings of all the protocol specifi-

cations and statements, and the state variable be state. We use reachableInOne(s0, s1)

to denote that s1 can be reached from s0 by one step transition. It is hence defined as

M ∧ state = s0 → state1 = s1. Note that we have to rename state to state1 to de-

note the new state. Intuitively, it is SAT if Z3 can find a valuation to free variables

(e.g., a message) that induces the state to change from s0 to s1 in one step. Constraint

reachableInTwo(s0, s1) is defined as reachableInOne(s0, sk)∧reachableInOne(sk, s1). Note

that the M encodings in reachableInOne(s0, sk) and reachableInOne(sk, s1) need to be re-

111

named as well since they need to be resolved independently (representing different messages).

Therefore, reachable(s0, s1) is defined as follows.

reachableInOne(s0, s1) ∨ reachableInTwo(s0, s1) ∨ ...

Currently, our reasoning is bounded at 15 steps, that is, the maximum transition path has

15 steps.

Transition Coverage This property dictates that any transition defined in the protocol is

feasible, meaning that it can be triggered by some message sequence(s). Assume the condition

guarding a transition from s1 to s2 is e, we assert reachable(s0, s1)∧ e. Intuitively, we assert

that s1 is reachable from the initial state and e is satisfiable.

Absence of Transition Conflict This property states that if a message can trigger two or

more transitions, there are not two of them satisfiable simultaneously. Assume s can lead to

s1, s2, ..., sk, guarded by e1, e2, ..., ek, respectively. For any i, j ∈ [1, k] and i 6= j, we assert

reachable(s0, s)∧ ei ∧ ej. Any SAT result indicates the protocol is buggy. If all are UNSAT,

the property holds.

Race-free Message Sends This is the property illustrated in Section 4.2 . When two peers

are both in some state that is expected to send out a message, the protocol may be trapped

into an asynchronous sending race that may lead to message loss. Suppose we have a state

sa
1 for device A and a state sb

1 for device B and they have transitions to states sa
2 and sb

2

respectively, which are both triggered by a message send event, with A sending ma and B

sending mb. As both devices are in a sending race, A may stay at sa
1 or reach sa

2 when

mb arrives. Correspondingly, B may stay at sb
1 or reach sb

2 when ma arrives. Therefore,

message loss may happen when (1) sa
1 or sa

2 does not accept mb, or (2) sb
1 or sb

2 does not

accept ma, since the message ma or mb can be dropped. Validating this property requires

coupling the reasonings of both sides of a connection. In the following, we define a constraint

coReachInOne(sa
1, sb

1, sa
2, sb

2) that states that by exchanging a message, device A can reach

sa
2 (from sa

1) and device B can reach sb
2 (from sb

1).

(Ma ∧ sa
1 → sa

2) ∧ (Mb ∧ sb
1 → sb

2) ∧ (←−ma = −→mb ∨←−mb = −→ma)

112

The first two clauses assert there are messages that induce the state transitions and the last

asserts that the incoming message at A must be the outgoing message at B or vice-versa.

Note that the messages (e.g.,←−ma and −→ma) are essentially a subset of symbolic variables in the

model Ma. They are instantiated when Z3 resolves Ma. We can define coReach(sa
1, sb

1, sa
2, sb

2)

to dictate that starting from sa
1 and sb

1, the two devices can reach sa
2 and sb

2, respectively,

after exchanging a sequence of messages, in a way similar to defining reachable() from

reachableInOne(). For all state pairs sa
1 and sb

1 that can both send messages, guarded by

conditions ea and eb. We assert coReach(sa
0, sb

0, sa
1, sb

1)∧ ea ∧ eb. If none is SAT, the property

holds. Otherwise, it is vulnerable.

Deadlock-free Message Receives The property states that at any time when two peers are

both expecting an incoming message at some state, the protocol may get stuck in a receiving

deadlock. Therefore, given a pair of states sa
1 and sb

1 at the two peers, respectively, we assert

the following.

coReach(sa
0, sb

0, sa
1, sb

1)→ ((Ma ∧ sa
1 → sa

2 ∧ −→ma 6= nil) ∨

(Mb ∧ sb
1 → sb

2 ∧ −→mb 6= nil))

The antecedent is the reachability of the two states. The consequent is to say either one

can move forward with a message send, meaning that the peer does not have to wait for an

incoming message. Any pair that yields UNSAT indicates a deadlock problem.

Consistent Security Level In Linux each protocol maintains a security level variable that

varies during the lifetime of a connection, depending on the states of authentication and

encryption. ProFactory supports the mechanism although we do not model it in the DSL

syntax/semantics for brevity. Given a state s, we use sec(s) to denote the security level at

the state. The security consistency property dictates that if a state can be reached through

different message sequences, it must have the same security level. We assert the following.

reachable(s0, s)→ sec(s) ∧ reachable(s′
0, s′)→ sec(s′)

∧ sec(s) 6= sec(s′)

113

Here, s′
0 and s′ denote a renamed version of s0 and s, respectively, indicating that they

are considered different symbolic variables internally although they have the same meaning.

This is to allow Z3 to resolve them independently. Any SAT result suggests an inconsistency

problem. In Section 4.7 , we would exhibit a violation of the property.

For the above discussion, one can observe that the model checking is performed in two

modes: isolated and coupled. In the former, we only consider one side of the connection and

assume messages from the other side can be anything, even corrupted intentionally by the

adversary. In the latter, we reason both sides together and trust the connection to deliver

messages properly such that messages on the two sides can be coupled (e.g., in the race-free

and deadlock-free properties).

4.7 Evaluation

We implement a prototype of ProFactory on Haskell. We use it to customize 8 IoT

protocols, including various Bluetooth (v5.0) protocols for Linux 4.10 kernel and Zigbee

(v1.0) NWK layer for ZBOSS simulator [187]. Note that ProFactory can also be ported

to other protocol stacks or systems if corresponding platform-dependent interfaces are pro-

vided. Currently, ProFactory does not fully support code generation for the Android

kernel. Hence, for the evaluation purposes, we generate core communication components

of Bluetooth protocols and manually adapt and integrate them into Android to obtain a

customized Bluedroid (or Fluoride) [188].

According to original Bluetooth specifications, we write SDP (Service Discovery Proto-

col), PAN (Personal Area Network), BNEP, HIDP, RFCOMM and L2CAP in our DSL, and

generate codes for Linux. Note that BlueZ operates SDP and PAN in the user space but we

generate kernel versions for them. Those implementations all pass the verification and they

work properly when communicating with real devices (or simulator in the case of Zigbee). We

customize RFCOMM and L2CAP, only focusing on the functionality of connection-oriented

data delivery, and separating L2CAP classic and L2CAP BLE (Bluetooth Low Energy).

Table 4.1 shows the lines of code in DSL, in the original implementation, and in the gener-

114

Table 4.1. LoC comparison between original BlueZ implementations and
codes generated by ProFactory

Protocol Lines of Codes
Model Definition Original Generated

SDP 971 5500 3478
PAN 183 1023 635

BNEP 590 1447 1162
HIDP 578 1966 1580

RFCOMM 738 4547 2465
L2CAP-CLA 1148 10328 3419
L2CAP-BLE 1247 3868
Zigbee-NWK 782 2373 1471

ated implementation for each protocol. Compared to the original implementation, the DSL

specifications are much more succinct. Even the generated code is of smaller size.

4.7.1 System Performance

With the generated protocol implementation, we deploy two Raspberry Pi 3 devices,

two desktop computers and two Android phones (Google Pixel 2) to measure the perfor-

mance efficiency for paired communication. Specifically, Raspberry Pi 3 devices and desktop

computers load our customized L2CAP and RFCOMM, while we manually replace communi-

cation functions with our generated codes (adapted for Android) for L2CAP and RFCOMM

in Bluedroid. We perform file transfer (object exchange, using RFCOMM and L2CAP) of

a 20MB file for both of the original Bluetooth implementations (BlueZ and Bluedroid), our

customized ones and randomized (8-byte padding) versions. The experiment is repeated 10

times and we collect the geometric mean of time costs in Figure 4.11 . As illustrated, the

customized implementation is about 4% less efficient. The efficiency loss in customization is

mainly caused by the sanity checks enforced on fields, and the lack of data structure layout

optimization in type-based code generation. Meanwhile, the memory footprints of the origi-

nal bluetooth module are 536KB, 536KB and 439KB for desktop, Raspberry Pi and Phone,

while the ones of the customized module are 533KB, 533KB and 438KB. The difference is

negligible, and the customized module consumes slightly less because we trimmed unused

115

components in customization. Figure 4.12 shows that the randomization incurs an addi-

tional 2% overhead which is due to transmitting extra bytes and assigning random values to

padded bytes for each message.

75
80
85
90
95

100
105

ti
m

e
co

st
 (

s) original customized

Figure 4.11. Comparison of time costs in paired file transfer

75
80
85
90
95

100
105

ti
m

e
co

st
 (

s) original customized randomized

Figure 4.12. Extended comparison of time costs

We compute the implementation entropies (the minimum entropy among all the state

transition paths from start to terminal) of the 8 customized protocols in Table 4.2 . As the

results demonstrate, the format randomization in ProFactory can achieve high implemen-

tation entropy (near 60-bit entropy for L2CAP-BLE). The reason for the low entropy of PAN

and HIDP is that their messages only have one header which contains two fields. In addition,

we also use Netzob [189] to perform message format inference for the randomized protocols.

Specifically, we generate 20 randomized versions of each protocol and produces about 200

messages for each version. Then we mix the messages belonging to the same protocol to

compose the evaluation dataset. As illustrated in Table 4.2 , the format clustering precision

of Netzob for randomized implementations is low (less than 10% for most cases) and the

116

Table 4.2. Implementation entropy of customized protocols

Protocol padding Netzob clustering precision
0-byte 4-byte 8-byte 0-byte 4-byte 8-byte

SDP 2.58 10.58 18.58 14.9% 9.6% 7.2%
PAN 1.00 7.34 13.68 45.2% 17.1% 8.8%

BNEP 9.75 24.09 38.44 10.3% 7.5% 4.8%
HIDP 1.00 7.34 13.68 43.3% 15.6% 8.0%

RFCOMM 12.68 29.7 46.71 5.4% 4.9% 4.3%
L2CAP-CLA 15.75 33.85 51.94 6.2% 5.0% 3.1%
L2CAP-BLE 21.68 39.52 57.35 4.4% 3.9% 2.6%
Zigbee-NWK 18.47 31.76 45.04 5.1% 4.5% 3.9%

precision decreases with higher entropies. According to the results, an entropy of 10 may be

a reasonable threshold as it lowers the clustering precision to less than 10%.

We also collect the measurements of verification runtime, as Table 4.3 shows. In symbolic

model checking, we set the timeout of Z3 to 20 seconds and we do not observe any timeout.

For Frama-C, we set the timeout to 5s and all the function proofs are accomplished in 3s.

Except the time cost, we also collect the number of concurrency control instances for VCC

verification, the numbers of annotated functions, loops, and the total emitted annotations

for Frama-C annotation, and the number of verified paths (either Reachable or coReach) for

symbolic model checking. As demonstrated, the cost of verification for protocol implemen-

tations in practice are affordable and acceptable, where Frama-C verification of any protocol

is finished within 80 seconds and symbolic model checking of any protocol is finished within

375 seconds.

Zigbee Evaluation It is challenging to obtain devices with a programmable Zigbee stack.

Therefore, we select the Zigbee simulator ZBOSS to conduct our evaluation. Note that

this is a reasonable option because mainstream manufacturers are using ZBOSS to test

Zigbee implementations before product shipment. In Zigbee NWK, we model the complete

NLDE (Network Layer Data Entity) which is responsible for data delivery, consisting of

request (for data sending), confirm (for confirming receipt) and indication (for updating

link quality). In particular, we customize NLDE by removing the alias fields which are

rarely used. For NLME (Network Layer Management Entity), we only model the message

117

Table 4.3. Runtime internals of ProFactory in verification

Protocol VCC verification Frama-C verification symbolic model checking
#concur. cost (s) #func. #loop #anno. cost (s) #path cost (s)

SDP 0 0.00 12 2 171 33.17 26 85.82
PAN 1 1.71 8 2 115 19.20 49 179.55

BNEP 3 6.93 18 2 234 48.53 63 302.13
HIDP 2 3.08 16 3 242 39.08 25 64.20

RFCOMM 3 5.46 14 0 163 34.21 85 243.86
L2CAP-CLA 5 9.82 32 4 528 75.32 107 373.04
L2CAP-BLE 3 7.14 26 2 427 61.45 62 205.32
Zigbee-NWK 2 4.26 22 0 192 53.85 95 326.50

formats and generate the primary parsers, but all the payload processing is delegated to

the original implementation in ZBOSS. NLME is hardware-specific, highly coupled with

lots of hardware physical features and routing operations. Without introducing additional

specifications to describe those semantics, ProFactory is not able to correctly express

the whole procedure. Message formats of Zigbee are flatter than that of Bluetooth and a

header tailing with a variable-sized field is sufficient to depict all the messages. Because

Zigbee establishes a connectionless ad-hoc network, it does not have multiplexing, while all

the shared connection information is stored in the NIB data structure for concurrent access.

Also, since it does not maintain connections, timer operations are excluded (router nodes

require timers to repeatedly send out broadcast messages, but our evaluation only focuses on

message delivery of end nodes). ZBOSS is not a kernel-oriented implementation and hence

the generation of standard socket interfaces are excluded. ZBOSS maintains a buffer pool,

where a message buffer is allocated by ZB_BUFF_FROM_REF and released by zb_free_buf.

Correspondingly, kernel socket buffer operations are shifted to the two functions in code

generation for Zigbee. Between layers, data are delegated through a ring buffer (kernel

simply passes the socket buffer). Ring buffer operations are wrapped by ZBOSS, and we

can directly generate codes to invoke them. Note that different from kernel, the lower/upper

layer in ZBOSS is not responsible to release the buffer, hence invoking zb_free_buf is

always generated after writing to the ring buffer.

118

0

50

100

150

200

250

5 10 15 20

ti
m

e
co

st
 (

s)

number of nodes

original customized

Figure 4.13. Comparison of time costs in Zigbee data transfer

In evaluation, we create 5, 10, 15 and 20 nodes to measure the communication time costs.

One node communicates with each of the other nodes to transfer 1MB application data. In

addition to those nodes, we also create a forwarding node serving as a router to prevent noises

caused by pairwise communication. Results are collected in Figure 4.13 . As demonstrated,

no significant overhead could be observed. Meanwhile, the memory footprints of the original

ZBOSS are 16.9KB, 17.8KB, 19.5KB and 22.4KB, while the ones of the customized version

are 16.9KB, 17.7KB, 19.7KB and 22.4KB. The difference is also negligible.

4.7.2 Vulnerability Averting

Table 4.4 lists 81 (excluding the one in Section 4.2) recently-released CVEs that could

have been averted if protocols had been defined and generated in ProFactory. Specifi-

cally, we searched for target CVEs by keyword “Bluetooth” (from 2017) and “Zigbee”, and

collected the ones related to field boundary checking and security downgrading. These rep-

resent the CVEs that we can find from public sources for the protocols we consider. We

do no intend to claim the list is complete as there may be vulnerabilities that we are not

aware of. When PoCs are available, we checked if they can attack our generated code. Oth-

erwise, we manually checked the CVE codes/patches and compared with our generated code

to ensure the triggering conditions are precluded. The avertable vulnerabilities are caused

by either the lack of boundary checks in message parsing or the possible transition paths

leading to security downgrading (i.e., inconsistent security levels). Further, we also find a

representative vulnerability example that ProFactory cannot avert, cracking the protocol

119

session key. Since current version of ProFactory cannot model cryptographical interac-

tions, any vulnerability residing in the key negotiation procedure of a protocol cannot be

averted. The symbolic model checking does not disclose state-machine bugs in most of the

protocols rewritten in our DSL. This is expected because these are widely-used protocols

which are considered well specified and maintained. However, we do find a known state-

machine vulnerability in PAN that could have been averted. Next, we showcase two of the

81 vulnerabilities (one for secure message parsing and one for state machine verification)

in details. In addition, an avertable state-machine vulnerability in mainstream IoT clouds

discovered in [161], [190] will also be illustrated.

Table 4.4. Averting IoT vulnerabilities
CVE No. Protocol Type Avertable CVE No. Protocol Type Avertable

CVE-2020-0022 Bluetooth missing boundary check 3 CVE-2019-9474 Bluetooth missing boundary check 3

CVE-2019-9473 Bluetooth missing boundary check 3 CVE-2019-9462 Bluetooth missing boundary check 3

CVE-2019-9435 Bluetooth missing boundary check 3 CVE-2019-9434 Bluetooth missing boundary check 3

CVE-2019-9426 Bluetooth missing boundary check 3 CVE-2019-9425 Bluetooth missing boundary check 3

CVE-2019-9422 Bluetooth missing boundary check 3 CVE-2019-9419 Bluetooth missing boundary check 3

CVE-2019-9417 Bluetooth missing boundary check 3 CVE-2019-9413 Bluetooth missing boundary check 3

CVE-2019-9404 Bluetooth missing boundary check 3 CVE-2019-9402 Bluetooth missing boundary check 3

CVE-2019-9401 Bluetooth missing boundary check 3 CVE-2019-9398 Bluetooth missing boundary check 3

CVE-2019-9397 Bluetooth missing boundary check 3 CVE-2019-9396 Bluetooth missing boundary check 3

CVE-2019-9395 Bluetooth missing boundary check 3 CVE-2019-9394 Bluetooth missing boundary check 3

CVE-2019-9393 Bluetooth missing boundary check 3 CVE-2019-9390 Bluetooth missing boundary check 3

CVE-2019-9389 Bluetooth missing boundary check 3 CVE-2019-9388 Bluetooth missing boundary check 3

CVE-2019-9387 Bluetooth missing boundary check 3 CVE-2019-9368 Bluetooth missing boundary check 3

CVE-2019-9367 Bluetooth missing boundary check 3 CVE-2019-9363 Bluetooth missing boundary check 3

CVE-2019-9355 Bluetooth missing boundary check 3 CVE-2019-9353 Bluetooth missing boundary check 3

CVE-2019-9343 Bluetooth missing boundary check 3 CVE-2019-9342 Bluetooth missing boundary check 3

CVE-2019-9341 Bluetooth missing boundary check 3 CVE-2019-9333 Bluetooth missing boundary check 3

CVE-2019-9332 Bluetooth missing boundary check 3 CVE-2019-9331 Bluetooth missing boundary check 3

CVE-2019-9330 Bluetooth missing boundary check 3 CVE-2019-9328 Bluetooth missing boundary check 3

CVE-2019-9327 Bluetooth missing boundary check 3 CVE-2019-9326 Bluetooth missing boundary check 3

CVE-2019-9312 Bluetooth missing boundary check 3 CVE-2019-9289 Bluetooth missing boundary check 3

CVE-2019-9287 Bluetooth missing boundary check 3 CVE-2019-9286 Bluetooth missing boundary check 3

CVE-2019-9285 Bluetooth missing boundary check 3 CVE-2019-9284 Bluetooth missing boundary check 3

CVE-2019-9265 Bluetooth missing boundary check 3 CVE-2019-9260 Bluetooth missing boundary check 3

CVE-2019-9250 Bluetooth missing boundary check 3 CVE-2019-9249 Bluetooth missing boundary check 3

CVE-2019-9241 Bluetooth missing boundary check 3 CVE-2019-9237 Bluetooth missing boundary check 3

CVE-2019-2009 Bluetooth missing boundary check 3 CVE-2019-1996 Bluetooth missing boundary check 3

CVE-2018-9588 Bluetooth missing boundary check 3 CVE-2018-9583 Bluetooth missing boundary check 3

CVE-2018-9566 Bluetooth missing boundary check 3 CVE-2018-9560 Bluetooth missing boundary check 3

CVE-2018-9555 Bluetooth missing boundary check 3 CVE-2018-9544 Bluetooth missing boundary check 3

CVE-2018-9541 Bluetooth missing boundary check 3 CVE-2018-9540 Bluetooth missing boundary check 3

CVE-2018-9510 Bluetooth missing boundary check 3 CVE-2018-9509 Bluetooth missing boundary check 3

CVE-2018-9508 Bluetooth missing boundary check 3 CVE-2018-9507 Bluetooth missing boundary check 3

CVE-2018-9506 Bluetooth missing boundary check 3 CVE-2018-9505 Bluetooth missing boundary check 3

CVE-2018-9504 Bluetooth missing boundary check 3 CVE-2018-9502 Bluetooth missing boundary check 3

CVE-2018-9363 Bluetooth missing boundary check 3 CVE-2018-9358 Bluetooth missing boundary check 3

CVE-2017-0785 Bluetooth missing boundary check 3 CVE-2017-13283 Bluetooth missing boundary check 3

CVE-2017-1000250 Bluetooth missing boundary check 3 CVE-2020-0379 Bluetooth downgrading security level 3

CVE-2020-9770 Bluetooth downgrading security level 3 CVE-2019-2225 Bluetooth downgrading security level 3

CVE-2017-0783 Bluetooth downgrading security level 3 CVE-2015-8732 Zigbee missing boundary check 3

CVE-2015-6244 Zigbee missing boundary check 3 CVE-2020-15802 Bluetooth cracking session key 7

120

722 sdp_buf_t *pCache = sdp_get_cached_rsp(cstate); ...
726 if (pCache) {
 if (pCache && cstate->cStateValue.maxBytesSent < pCache->data_size) // patch
727 short sent = MIN(max_rsp_size, pCache->data_size - cstate->cStateValue.maxBytesSent);
728 pResponse = pCache->data;
729 memcpy(buf->data, pResponse + cstate->cStateValue.maxBytesSent, sent);

/sdpd-request.c

Figure 4.14. Code and patch of CVE-2017-1000250

PAN_start

PAN_pend

PAN_ready

❶

❷
❺ ❻

❸

❹

Recv pan_req (((pan_req->uuid == GN || pan_req->uuid == NAP) && conn->uuid == PANU &&
conn->sec == AUTHENTICATED, PAN_start, PAN_ready, pan_rsp, {pan_rsp->result = SUCCESS; ...}))

❶

Recv pan_req ((pan_req->uuid == PANU, PAN_start, PAN_ready, pan_rsp, {pan_rsp->result = SUCCESS; ...}))❷

Send pan_net_msg ((nil, PAN_ready, PAN_ready, {...}))❸

Recv pan_net_msg ((nil, PAN_ready, PAN_ready, nil, {...}))❹

Send pan_req ((conn->sec == AUTHENTICATED, PAN_start, PAN_pend,
{pan_req->uuid = conn->uuid; ...}))

❺

Recv pan_rsp ((pan_rsp->result == SUCCESS, PAN_pend, PAN_ready, nil, {...}))❻

Figure 4.15. PAN state machine of CVE-2017-0783

CVE-2017-1000250. This vulnerability [148] can cause information leak. It resides in

the SDP implementation of Linux BlueZ (version 5.46 or earlier). When BlueZ responds to

an SDP request, the response message size may exceed the MTU of L2CAP and is dropped

by L2CAP. Hence SDP must realize its own fragmentation mechanism. Specifically, a sender

peer marks a field to notify a receiver peer that the current packet has continuous fragments.

Accordingly, the receiver peer responds with an offset denoting the bytes that have been

received so far. Then, the sender peer continues sending the next fragment from the exact

offset. Figure 4.14 illustrates the buggy code and its original patch [191]. As demonstrated,

before patching, the value of offset maxBytesSent is not checked and sent can be overflowed.

Therefore, out-of-bound bytes can be copied to buf � data and sent to the remote peer.

Note that automatically fixing the bug on the existing implementation (i.e., generating the

illustrated patch) is extremely difficult without developers’ intervention as it is very hard

for an automatic analysis to infer the needed data-flow relations. In contrast, since we

automatically generate secure packet fragmentation/assembly code all together and perform

code verification with Frama-C, the vulnerability is avoided in the first place.

121

CVE-2017-0783. This vulnerability [192] allows a man-in-the-middle attack and it re-

sides in Android/Windows’s PAN implementation. PAN offers the service of network proxy

via Bluetooth devices. In the protocol, a device can serve as any of the three roles, GN

(Group Ad-hoc Network), NAP (Network Access Point) and PANU (PAN User). Among

them, PANU acts as a network client user and GN/NAP represents a proxy/router/bridge.

When a PANU device connects to a PANU/GN/NAP device, neither peer checks the se-

curity level. In contrast, when a GN/NAP device connects to a PANU device, the PANU

device must perform the security check because an unauthorized GN/NAP device can redi-

rect connections to malicious targets. In the vulnerable Bluedroid implementation [193], a

PANU device is allowed to act as a GN/NAP device after it connects to a PANU device,

bypassing the security check and performing reverse tethering. Figure 4.15 illustrates the

problematic state machine, where a PAN device can send/receive wrapped network messages

at PAN_ready state. The security issue lies in that a device has two transition paths (Ê and

Ë) from PAN_start to PAN_ready but they have inconsistent security levels (Ê requires

AUTHENTICATED but Ë does not). The bug is detected when we model check the consistent

security level property. Note that we integrate the uuid which is exchanged in ATT (At-

tribute Protocol) into PAN and omit the failure processing branches for PAN messages to

simplify our modeling and demonstration. The official patch [193] roughly prohibits any con-

nection to/from remote GN/NAP devices when an Android device performs as PANU, while

splitting the PAN_ready state to deal with Ê and Ë separately may be a better solution.

Device Interaction in IoT Clouds. Unauthenticated interaction is a common vulnera-

bility in mainstream IoT clouds [161], [190], which can enable various attacks such as device

hijacking and denial of service. Such vulnerabilities have a similar nature, which can be

modeled as buggy state transition and exposed by our model checking (if the protocol is

specified in our DSL). In Figure 4.16 , we model the (buggy) IoT cloud protocol. Specifically,

a device is bound with a user after IoT cloud processes a binding request from the user-side

mobile application (Ê). When bound, the device is able to log in/out IoT could (Ì and Í),

receive commands (Î) and update status (Ï). To unbind a device, a request could be sent

from either the user-side mobile application (Ë and Ñ) or the device (Ð). The security issue

lies in that all the device interactions are not AUTHENTICATED, and an attacker can craft

122

device_bounddevice_free
❶

❷

❸
❹

Recv app_bind_req ((conn->sec == AUTHENTICATED, device_free, device_bound, app_bind_rsp,
{app_bind_rsp->result = SUCCESS; conn->deviceID = app_bind_req->deviceID; ...}))

Recv app_free_req ((conn->sec == AUTHENTICATED && app_free_req->deviceID == conn->deviceID,
device_bound, device_free, app_free_rsp, {app_free_rsp->result = SUCCESS; conn->deviceID = nil; ...}))

device_ready

❺

❻ ❼
❽

Recv device_free_req ((device_free_req->deviceID == conn->deviceID, device_ready, device_free,
device_free_rsp, {device_free_rsp->result = SUCCESS; conn->deviceID = nil; ...}))

Recv app_free_req ((conn->sec == AUTHENTICATED && app_free_req->deviceID == conn->deviceID,
device_ready, device_free, app_free_rsp, {app_free_rsp->result = SUCCESS; conn->deviceID = nil; ...}))

❶

❷

❼

❽

Recv device_login_req ((device_login_req->deviceID == conn->deviceID, device_bound, device_ready,
device_login_rsp, {device_login_rsp->result = SUCCESS; ...}))

Recv device_logout_req ((device_logout_req->deviceID == conn->deviceID, device_ready,
device_bound, device_logout_rsp, {device_logout_rsp->result = SUCCESS; ...}))

Send iot_command ((nil, device_ready, device_ready, {iot_command->deviceID = conn->deviceID; ...}))

Recv device_update ((device_update->deviceID == conn->deviceID,
device_ready, device_ready, nil, {...}))

❸

❹

❺

❻

Figure 4.16. Unauthenticated device interaction in IoT clouds

a phantom device with pre-fetched device ID to logout, unbind and hijack the real device.

Note that this is a global state machine associated with multiple parties, where the IoT

cloud still maintains device states when the other parties are offline, and state transitions

are triggered by messages transmitted through on-demand connections. Therefore, different

from a single-connection protocol, the security level of a state cannot be inherited from the

prior one. For example, device_free can transit to itself via ÊÌÐ. If the transitions take

place in a single connection, since the authentication of Ê is asserted, the following ÌÐ must

also be AUTHENTICATED. However, this is not true for the global state machine in Figure 4.16

because ÊÌÐ (can) happen in independent connections, among which security levels cannot

be transmitted. Hence, when verifying the consistent security level property for such models,

we determine the security level of a state only by the assertions on its immediate transition

(Ð for device_free in this example). Accordingly, we could figure out two buggy states,

device_free and device_bound, as their immediate transitions have different assertions

of security levels. Note that device_ready cannot be identified as a buggy state even if we

know all the unauthenticated transitions to it are insecure. This could be the limitation of

our verification as we only focus on the inconsistency between security levels.

123

4.8 Discussion

Flow Control. ProFactory currently does not support modeling flow control algo-

rithms. Specifying flow-control is challenging due to the lack of regular design of the various

flow-control algorithms. However in the context of IoT, due to resource constraints, exist-

ing protocols rarely have complex flow control. In fact, early BlueZ implementations did

not have it at all. Regularity may be abstracted out of popular light-weight flow control

algorithms and modeled in our DSL. We will leave it to our future work.

Specification Flaws. The working of ProFactory largely relies on the robustness of

the specification (or DSL). If any part of the specification was further found flawed (e.g.,

a protocol model specified by ProFactory cannot be securely handled in the generated

implementation), the claimed security guarantees should be degraded.

Security Properties. Cryptographic constructs are not covered in current specification set,

but all the cipher operations are delegated to a pre-established lower layer. This leads to the

lack of security guarantees for cryptographic properties (e.g., authentication and secrecy) in

ProFactory. The future work of integrating existing cryptographic modeling/verification

tools into ProFactory can bridge the gap.

Firmware Deployment. We foresee two modes of deployment in IoT firmware. The first

one is in-production customization, in which the manufacturers make use of ProFactory

to generate secure and correct implementation and customize their networking dialects be-

fore shipping the products. The second is post-deployment customization. Through the

update interface of a firmware, hardened and customized networking code can be uploaded

to deployed products.

Platform Dependence. As discussed in Section 4.5 , the code generation is heavily de-

pendent on the underlying platforms because they can have diverse underlying protocol

implementation primitives. This degrades the portability of ProFactory. Nevertheless,

if we target code generation for a particular kernel, this seems to be an inevitable issue.

Adding virtualization layers may potentially mitigate the problem.

Semantic Preservation. Currently, semantic-preservation correctness of ProFactory

code translation has not been comprehensively verified. This will be part of our future

124

work for compiler verification. However, the post-modeling verification still offers security

guarantees.

4.9 Related Work

Protocol Modeling Lots of tools towards secure parser generation have been proposed in

recent years [157], [165]–[169]. In EverParse [165] researchers devise a compiler transforming

tag-length-value message formats to low-level F∗ code that calls a library of parser combina-

tors which are formally verified in F∗. In this way, the security of parsers is guaranteed and it

proves to be effective in averting existing TLS vulnerabilities. In [157] a USB-specific message

DSL is proposed to emit a hardening suite, which is then be integrated into a production

kernel to avert USB parsing vulnerabilities. PADS [167], Spicy [166], Hammer [168] and

Nail [169] are all message formalization tools that produce robust parsers from customized

message specifications, covering common text or binary protocols across different languages.

In particular, PADS is more data-oriented, which offers auxiliary tools to convert data in

XML and XQuery formats to formalized specifications. However, as aforementioned, those

tools largely focus on messages, and some of them are not able to describe non-context-

free formats, we hence develop ProFactory to realize comprehensive customization for

low-level protocols.

Protocol Verification Verifying implementation correctness is a persistent research effort

in protocol security area [160], [164], [180]–[184], [194]–[197]. In ProVerif [197] security

protocols are represented by Horn clauses to prove (strong) secrecy, authentication and

process equivalence. It is applied in [196] to verify the security of symbolic TLS1.3 models.

Tamarin [195] specifies protocol actions taken by agents in different roles, using an expressive

DSL based on multiset rewriting rules, to automatically construct proofs for security proto-

cols. It is applied in [180], [181] to perform formal analysis of 5G AKA protocols. AGVI [194]

applies iterative deepening to perform cost-constraint searching in order to generate a near-

optimal security protocol, with the lowest cost, satisfying all the security requirements that

are encoded in a DSL. In [164] authors resolves the TLS composite state machine issue (un-

expectedly accepting invalid handshakes due to state machine fusion) by writing a secure

125

TLS implementation that is verified by Frama-C. In [160] researchers leverage adversarial

testing technique to disclose an authentication vulnerability in 4G LTE. Those techniques

are targeting security protocols that are considered orthogonal and complementary to Pro-

Factory. In [182]–[184] various components of TCP implementation are verified through

different symbolic modeling techniques, however, ProFactory aims to resolve protocol

security issues at the beginning, generating secure protocol implementations.

Protocol Reverse Engineering and Fuzzing Reverse-engineering protocol specifications

from network traces and/or program execution has been well studied in the past decade [2],

[151]–[154], [189], [198]–[205]. In Discoverer [199] and ScriptGen [201], protocol commu-

nication pattern is heuristically learned to infer message formats. Hence, in [189], [200],

researchers improve the learning by performing message clustering based on protocol con-

text and semantic information. In [151]–[153], [202], researchers extract message formats

in a different direction, leveraging dynamic tainting to monitor how a message is processed

on the receiver side. In Prospex [154], apart from message formats, an approximate but

meaningful state machine can also be extracted based on an augmented prefix tree accep-

tor. These efforts are complimentary to ProFactory as the reverse engineered protocol

specification can be formalized with our DSL. Protocol fuzzing [155], [162], [163], [206] mu-

tates network messages and network states to disclose vulnerabilities in protocols. They

often require protocol specifications to operate. Our DSL provides a way to formulate such

specifications.

126

5. CONCLUSION

Comprehensive networking security is a critical issue in contemporary application scenarios

for enterprise environment. Due to the developing complexity of application technologies

and the increasing diversity of peripheral devices, it becomes more and more challenging to

achieve a satisfactory accuracy in detecting, investigating, and preventing cyberattacks. In

network traffic forensics, evolving applications emit intricate networking flows, which calls for

new analysis techniques to improve traffic attribution accuracy. In end-host system prove-

nance, recently disclosed APT attacks are more persistent, stealthy and sophisticated, which

motivates effective and efficient methods to perform fine-grained attack investigation. In

IoT applications, the majority of vulnerabilities are caused by protocol engineering glitches,

which desires code generation tools to obtain secure protocol implementations. In this dis-

sertation, I propose new techniques and tools to assist fine-grained forensic analysis and

generating secure protocol implementations.

In particular, we develop NetCrop, a novel automaton-based technique to infer fine-

grained program behavior by analyzing network traffic only. It constructs automata that

describe both the network behavior and the end-host behavior of a whole program to at-

tribute individual packets to their belonging programs and fingerprint the high-level program

behavior. Our evaluation results show that NetCrop is highly effective, attributing packets

and fingerprinting program behavior with over 90% and 95% precision and recall respectively.

Also, we found that existing provenance tools cannot catch library attacks because library

loading does not promise execution. Hence, we propose Lprov, a novel provenance-oriented

library tracing system which enforces library tracing on top of existing syscall logging based

provenance tracking approaches. It is lightweight and efficient, offering much better support

for heavy-threaded programs than existing tools such as ltrace. With the dynamic library

call stack, the provenance of implicit library function execution is revealed and correlated to

system events. The fine-grained provenance on library functions facilitates the locating and

defense of malicious libraries (e.g. Linux Ebury). In experiments, our system prototype can

precisely identify the provenance inside malicious libraries with highly competitive overhead.

127

Last, we propose ProFactory, in which a protocol could be modeled, checked and

securely generated, averting common vulnerabilities residing in protocol implementations.

Meanwhile, it can also realize implementation diversity. We leverage ProFactory to gen-

erate Bluetooth and Zigbee protocols and the evaluation shows that ProFactory can help

to avert 82 known CVEs.

128

REFERENCES

[1] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang, D. Xu, S. Jha,
G. F. Ciocarlie, A. Gehani, and V. Yegneswaran, “MCI : Modeling-based causality inference
in audit logging for attack investigation,” in Proc. of NDSS ’18, 2018.

[2] Y. Ye, Z. Zhang, F. Wang, X. Zhang, and D. Xu, “Netplier: Probabilistic network
protocol reverse engineering from message traces,” in NDSS’21, The Internet Society, 2021.

[3] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI: Multiple perspective
attack investigation with semantic aware execution partitioning,” in USENIX Security’17,
2017.

[4] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si, X. Zhang, and
D. Xu, “HERCULE: attack story reconstruction via community discovery on correlated log
graph,” in Proc. of ACSAC ’16, 2016.

[5] F. Wang, Y. Kwon, S. Ma, X. Zhang, and D. Xu, “Lprov: Practical library-aware prove-
nance tracing,” in Proc. of ACSAC ’18, 2018.

[6] F. Wang, J. Wu, Y. Nan, Y. Aafer, X. Zhang, D. Xu, and M. Payer, “Profactory:
Improving iot security via formalized protocol customization,” in Proc. of USENIX Security
’22, 2022.

[7] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian analysis tech-
niques,” in Proc. SIGMETRICS’05, 2005.

[8] Cisco guide, https://goo.gl/Dk6JQz , 2019.

[9] Cisco netflow case study, https://goo.gl/8c9H5j , 2019.

[10] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification
using machine learning,” Communications Surveys Tutorials, IEEE, vol. 10, no. 4, pp. 56–76,
2008.

[11] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker, “Unexpected means
of protocol inference,” in Proc. IMC’06, 2006.

[12] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identification,” in Proc.
CoNEXT’06, 2006.

[13] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: Multilevel traffic classifica-
tion in the dark,” in Proc. SIGCOMM’05, 2005.

129

https://goo.gl/Dk6JQz
https://goo.gl/8c9H5j

[14] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: Mining for unwanted P2P
traffic,” in Proc. DIMVA’13, 2013.

[15] D. Herrmann, C. Banse, and H. Federrath, “Behavior-based tracking: Exploiting char-
acteristic patterns in dns traffic,” Nov. 2013.

[16] Linux audit, https://goo.gl/Gyekms , 2019.

[17] Event tracing for windows, https://goo.gl/AYG25V , 2019.

[18] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing android encrypted
network traffic to identify user actions,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 1, pp. 114–125, 2016.

[19] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang, D. Xu, and J.
Qian, “Eavesdropping on fine-grained user activities within smartphone apps over encrypted
network traffic,” in Proc. WOOT’16, 2016.

[20] E. M. Gold, “Complexity of automaton identification from given data,” Inform. Control,
vol. 37, pp. 302–320, 1978.

[21] R. L. Rivest and R. E. Schapire, “Diversity-based inference of finite automata,” in
Foundations of Computer Science, 1987., 28th Annual Symposium on, 1987.

[22] R. L. Rivest and R. E. Schapire, “Inference of finite automata using homing sequences,”
in Proc. STOC’89, 1989.

[23] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee, “Learning
and extracting finite state automata with second-order recurrent neural networks,” Neural
Comput., vol. 4, no. 3, 1992.

[24] J. Antunes, N. Neves, and P. Verissimo, “Reverse engineering of protocols from network
traces,” in Proc. WCRE’11, 2011.

[25] G. Bossert, F. Guihéry, and G. Hiet, “Towards automated protocol reverse engineering
using semantic information,” in Proc. CCS’14, 2014.

[26] C. Leita, M. Dacier, and F. Massicotte, “Automatic handling of protocol dependencies
and reaction to 0-day attacks with scriptgen based honeypots,” in Proc. RAID, 2006.

[27] T. Krueger, H. Gascon, N. Krämer, and K. Rieck, “Learning stateful models for network
honeypots,” in Proc. AISec’12, 2012.

130

https://goo.gl/Gyekms
https://goo.gl/AYG25V

[28] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol reverse engineering
from network traces,” in Proc. USENIX Security’07, 2007.

[29] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format reverse engineering
through context-aware monitored execution,” in Proc. NDSS’08, 2008.

[30] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent adaptive replay
of application dialog,” in Proc. NDSS’06, 2006.

[31] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex: Protocol speci-
fication extraction,” in Proc. IEEE S&P’09, 2009.

[32] H. Zhang, D. (Yao, and N. Ramakrishnan, “Detection of stealthy malware activities
with traffic causality and scalable triggering relation discovery,” in Proc. ASIACCS’14, 2014.

[33] Y. Kwon, F. Peng, D. Kim, K. Kim, X. Zhang, D. Xu, V. Yegneswaran, and J. Qian,
“P2c: Understanding output data files via on-the-fly transformation from producer to con-
sumer executions,” in Proc. NDSS’15, 2015.

[34] S. Jero, H. Lee, and C. Nita-Rotaru, “Leveraging state information for automated attack
discovery in transport protocol implementations,” in Proc. DSN’15, 2015.

[35] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “Homonit: Monitoring
smart home apps from encrypted traffic,” in Proc. CCS’18, 2018.

[36] R. Shi and Y. Wang, “Cheap and available state machine replication,” in Proc. of
USENIX ATC ’16, 2016.

[37] F. C. Freiling and S. Schinzel, “Detecting hidden storage side channel vulnerabilities in
networked applications,” in Proc. SEC’11, 2011.

[38] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of self: Probabilistic reason-
ing of program behaviors for anomaly detection with context sensitivity,” in Proc. DSN’16,
2016.

[39] X. Shu, D. Yao, and N. Ramakrishnan, “Unearthing stealthy program attacks buried in
extremely long execution paths,” in Proc. CCS’15, 2015.

[40] Autoit, https://www.autoitscript.com/site/ , 2019.

[41] Ghostmouse - ghost mouse recorder, http://www.ghost-mouse.com/ , 2019.

[42] Reach-def analysis, https://en.wikipedia.org/wiki/Reaching_definition , 2019.

131

https://www.autoitscript.com/site/
http://www.ghost-mouse.com/
https://en.wikipedia.org/wiki/Reaching_definition

[43] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid to ask),”
in Proc. S&P’10, 2010.

[44] Constant propagation, https://en.wikipedia.org/wiki/Constant_folding , 2019.

[45] Rfc 2782, https://www.ietf.org/rfc/rfc2782.txt , 2019.

[46] Rfc 1035, https://www.ietf.org/rfc/rfc1035.txt , 2019.

[47] K.-s. Huang, C.-b. Yang, and K.-t. Tseng, Fast algorithms for finding the common
subsequence of multiple sequences, 2014.

[48] Tie: Traffic identification engine, http://tie.comics.unina.it/ , 2019.

[49] W. Zielonka, “Notes on finite asynchronous automata,” ITA, vol. 21, no. 2, 1987.

[50] N. Klarlund, M. Mukund, and M. A. Sohoni, “Determinizing asynchronous automata,”
in Proc. ICALP’94, 1994.

[51] Intel pin, https://goo.gl/GBchfb , 2019.

[52] G. Hunt and D. Brubacher, “Detours: Binary interception of win32 functions,” in Pro-
ceedings of the 3rd Conference on USENIX Windows NT Symposium - Volume 3, 1999.

[53] Windump, https://www.winpcap.org/windump/ , 2019.

[54] Dpkt 1.8.7: Python package index, https://pypi.python.org/pypi/dpkt , 2019.

[55] Ad blocking, https://pgl.yoyo.org/as/ , 2019.

[56] S. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer internet telephony
protocol,” in Proc. IEEE INFOCOM’06, 2006.

[57] Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers: Measurement
study of google+, ichat, and skype,” in Proc. IMC’12, 2012.

[58] Weka 3: Data mining in java, http://www.cs.waikato.ac.nz/ml/weka/ , 2019.

[59] K. Borders and A. Prakash, “Web tap: Detecting covert web traffic,” in Proc. CCS’04,
2004.

[60] M. Liberatore and B. N. Levine, “Inferring the source of encrypted http connections,”
in Proc. CCS’06, 2006.

132

https://en.wikipedia.org/wiki/Constant_folding
https://www.ietf.org/rfc/rfc2782.txt
https://www.ietf.org/rfc/rfc1035.txt
http://tie.comics.unina.it/
https://goo.gl/GBchfb
https://www.winpcap.org/windump/
https://pypi.python.org/pypi/dpkt
https://pgl.yoyo.org/as/
http://www.cs.waikato.ac.nz/ml/weka/

[61] R. Perdisci, D. Ariu, and G. Giacinto, “Scalable fine-grained behavioral clustering of
http-based malware,” Computer Networks, vol. 57, no. 2, pp. 487–500, 2013.

[62] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs,” in Proc. OSDI’08, 2018.

[63] G. Li, I. Ghosh, and S. P. Rajan, “Klover: A symbolic execution and automatic test
generation tool for c++ programs,” in Proc. CAV’11, 2011.

[64] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated random testing,” in
Proc. PLDI’05, 2005.

[65] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service mapping for qos:
A statistical signature-based approach to ip traffic classification,” in Proc. IMC’04, 2004.

[66] C. V. Wright, F. Monrose, and G. M. Masson, “On inferring application protocol be-
haviors in encrypted network traffic,” J. Mach. Learn. Res., vol. 7, 2006.

[67] G. Xie, M. Iliofotou, R. Keralapura, M. Faloutsos, and A. Nucci, “Subflow: Towards
practical flow-level traffic classification,” in Proc. IEEE INFOCOM’12, 2012.

[68] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using machine
learning techniques,” in Proc. PAM’04, 2004.

[69] M. Pietrzyk, J.-L. Costeux, G. Urvoy-Keller, and T. En-Najjary, “Challenging statistical
classification for operational usage: The adsl case,” in Proc. IMC’09, 2009.

[70] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee, “Internet traffic
classification demystified: Myths, caveats, and the best practices,” in Proc. CoNEXT’08,
2008.

[71] J. Erman, A. Mahanti, M. F. Arlitt, I. Cohen, and C. L. Williamson, “Semi-supervised
network traffic classification,” in Proc. SIGMETRICS’07, 2007.

[72] W. D. Donato, A. Pescape, and A. Dainotti, “Traffic identification engine: An open
platform for traffic classification,” IEEE Network, vol. 28, no. 2, pp. 56–64, 2014.

[73] K. Xu, Z. Zhang, and S. Bhattacharyya, “Profiling internet backbone traffic: Behavior
models and applications,” in Proc. SIGCOMM’05, 2005.

[74] A. Dainotti, A. Pescape, and K. Claffy, “Issues and future directions in traffic classifi-
cation,” Netwrk. Mag. of Global Internet., vol. 26, no. 1, 2012.

133

[75] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance via binary-based
execution partition,” in NDSS’13, 2013.

[76] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance tracing by
alternating between logging and tainting,” in NDSS’16, 2016.

[77] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and W. Lee, “Rain:
Refinable attack investigation with on-demand inter-process information flow tracking,” in
CCS’17, 2017.

[78] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, “The taser intrusion recovery system,”
in SOSP’05, 2005.

[79] X. Jiang, A. Walters, D. Xu, E. H. Spafford, F. P. Buchholz, and Y.-M. Wang, “Provenance-
aware tracing of worm break-in and contaminations: A process coloring approach,” in ICDCS’06,
2006.

[80] S. T. King and P. M. Chen, “Backtracking intrusions,” in SOSP’03, 2003.

[81] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate, low cost and
instrumentation-free security audit logging for windows,” in ACSAC’15, 2015.

[82] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer, “Provenance-aware
storage systems,” in USENIX ATC’06, 2006.

[83] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi: Collecting high-fidelity
whole-system provenance,” in ACSAC’12, 2012.

[84] S. Sitaraman and S. Venkatesan, “Forensic analysis of file system intrusions using im-
proved backtracking,” in IWIA’05, 2005.

[85] Y. Ji, S. Lee, and W. Lee, “Recprov: Towards provenance-aware user space record and
replay,” in IPAW’16, 2016.

[86] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Intrusion recovery using selective
re-execution,” in OSDI’10, 2010.

[87] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching intrusion alerts
through multi-host causality,” in NDSS’05, 2005.

[88] E. Bosman, A. Slowinska, and H. Bos, “Minemu: The world’s fastest taint tracker,” in
RAID’11, 2011.

134

[89] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis framework,”
in ISSTA’07, 2007.

[90] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “DTA++: dynamic taint
analysis with targeted control-flow propagation,” in NDSS’11, 2011.

[91] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “Libdft: Practical dynamic
data flow tracking for commodity systems,” in VEE’12, 2012.

[92] S. McCamant and M. D. Ernst, “Quantitative information flow as network flow capac-
ity,” in PLDI’08, 2008.

[93] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “Lift: A low-overhead practical
information flow tracking system for detecting security attacks,” in MICRO’06, 2006.

[94] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena, “Bitblaze: A new approach to computer security via binary
analysis,” in ICISS’08, 2008.

[95] M. Zhang, X. Zhang, X. Zhang, and S. Prabhakar, “Tracing lineage beyond relational
operators,” in VLDB’07, 2007.

[96] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic detection, analysis,
and signaturegeneration of exploits on commodity software,” in NDSS’05, 2005.

[97] K. H. Lee, X. Zhang, and D. Xu, “Loggc: Garbage collecting audit log,” in CCS’13,
2013.

[98] C. Yang, G. Yang, A. Gehani, V. Yegneswaran, D. Tariq, and G. Gu, “Using provenance
patterns to vet sensitive behaviors in android apps,” in Security and Privacy in Communi-
cation Networks’15, B. Thuraisingham, X. Wang, and V. Yegneswaran, Eds., 2015.

[99] D. Tariq, M. Ali, and A. Gehani, “Towards automated collection of application-level
data provenance,” in TaPP’12, 2012.

[100] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie for request extraction
and workload modelling,” in OSDI’04, 2004.

[101] Linux ebury, https://goo.gl/T677bv , 2018.

[102] Apache benchmark, https://httpd.apache.org/docs/2.2/programs/ab.html , 2018.

[103] Ftpbench, https://github.com/selectel/ftpbench , 2018.

135

https://goo.gl/T677bv
https://httpd.apache.org/docs/2.2/programs/ab.html
https://github.com/selectel/ftpbench

[104] Sunspider, https://webkit.org/perf/sunspider/sunspider.html , 2018.

[105] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely rerandomization
for mitigating memory disclosures,” in CCS’15, 2015.

[106] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan, P. Colp, M.
Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, “Shuffler: Fast and deployable continuous
code re-randomization,” in OSDI’16, 2016.

[107] W. Hawkins, A. Nguyen-Tuong, J. D. Hiser, M. Co, and J. W. Davidson, “Mixr: Flexible
runtime rerandomization for binaries,” in Proceedings of the 2017 Workshop on Moving Target
Defense, 2017.

[108] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos, “No need to hide:
Protecting safe regions on commodity hardware,” in EuroSys ’17, 2017.

[109] Linux security module, https://goo.gl/gW2ykd , 2018.

[110] Tracepoints, https://goo.gl/TB6cas , 2018.

[111] Kprobes, https://goo.gl/SH2s4r , 2018.

[112] An introduction to kprobes, https://lwn.net/Articles/132196/ , 2018.

[113] Updating host keys, https://goo.gl/ztY8QT , 2018.

[114] Cve-2015-7547, https://goo.gl/MTpo3V , 2018.

[115] Cve-2015-7547 google security blog, https://goo.gl/rHw1C5 , 2018.

[116] Cve-2015-7547 exploit-db, https://www.exploit-db.com/exploits/39454/ , 2018.

[117] Cve-2015-7547 patch, https://goo.gl/6ZhooX , 2018.

[118] Darpa transparent computing, https://goo.gl/EA77zv , 2018.

[119] Z. Deng, D. Xu, X. Zhang, and X. Jiang, “Introlib: Efficient and transparent library call
introspection for malware forensics,” in DFRWS’12, 2012.

[120] U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-Reddy, and M. I. Seltzer,
“Issues in automatic provenance collection,” in IPAW’06, 2006.

[121] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum, “Understanding
data lifetime via whole system simulation,” in SSYM’04, 2004.

136

https://webkit.org/perf/sunspider/sunspider.html
https://goo.gl/gW2ykd
https://goo.gl/TB6cas
https://goo.gl/SH2s4r
https://lwn.net/Articles/132196/
https://goo.gl/ztY8QT
https://goo.gl/MTpo3V
https://goo.gl/rHw1C5
https://www.exploit-db.com/exploits/39454/
https://goo.gl/6ZhooX
https://goo.gl/EA77zv

[122] A. Gehani and D. Tariq, “Spade: Support for provenance auditing in distributed envi-
ronments,” in Middleware’12, 2012.

[123] N. Zhu and T.-C. Chiueh, “Design, implementation, and evaluation of repairable file
service,” in DSN’13, 2013.

[124] P. Ammann, S. Jajodia, and P. Liu, “Recovery from malicious transactions,” IEEE
Trans. on Knowl. and Data Eng., vol. 14, no. 5, 2002.

[125] S. Krishnan, K. Z. Snow, and F. Monrose, “Trail of bytes: Efficient support for forensic
analysis,” in CCS’10, 2010.

[126] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Behavior based software theft detection,” in
CCS’09, 2009.

[127] M. Fredrikson, M. Christodorescu, J. T. Giffin, and S. Jha, “A declarative framework
for intrusion analysis,” in Cyber Situational Awareness - Issues and Research, 2010, pp. 179–
200.

[128] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko, D. Maclean, D. Margo,
M. Seltzer, and R. Smogor, “Layering in provenance systems,” in USENIX ATC’09, 2009.

[129] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and R. N. Chang, “Vpath:
Precise discovery of request processing paths from black-box observations of thread and
network activities,” in USENIX ATC’09, 2009.

[130] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: Capturing system-
wide information flow for malware detection and analysis,” in CCS’07, 2007.

[131] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler, D. Maz-
ières, F. Kaashoek, and R. Morris, “Labels and event processes in the asbestos operating
system,” in SOSP’05, 2005.

[132] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. D. McDaniel, and A. Sheth,
“Taintdroid: An information-flow tracking system for realtime privacy monitoring on smart-
phones,” in OSDI’10, 2010.

[133] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D. Keromytis,
“A general approach for efficiently accelerating software-based dynamic data flow tracking
on commodity hardware,” in NDSS’12, 2012.

[134] K. Xu, H. Xiong, C. Wu, D. Stefan, and D. Yao, “Data-provenance verification for secure
hosts,” IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 2, 2012.

137

[135] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making information flow
explicit in histar,” in OSDI’06, 2006.

[136] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Detection of stealthy malware activities
with traffic causality and scalable triggering relation discovery,” in ASIA CCS’14, 2014.

[137] Y. Kwon, D. Kim, W. N. Sumner, K. Kim, B. Saltaformaggio, X. Zhang, and D. Xu,
“Ldx: Causality inference by lightweight dual execution,” in ASPLOS ’16, 2016.

[138] M. Jakobsson and A. Juels, “Server-side detection of malware infection,” in NSPW’09,
2009.

[139] A. Vasudevan, N. Qu, and A. Perrig, “Xtrec: Secure real-time execution trace recording
on commodity platforms,” in HICSS’11, 2011.

[140] A. Bates, D. (Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-system provenance
for the linux kernel,” in USENIX Security’15), 2015.

[141] V. Karande, E. Bauman, Z. Lin, and L. Khan, “Sgx-log: Securing system logs with sgx,”
in ASIA CCS’17, 2017.

[142] Statista IoT, https://goo.gl/mqt3T7 , 2018.

[143] Forbes Roundup of IoT Market, https://goo.gl/UPpmkn , 2018.

[144] W. Albazrqaoe, J. Huang, and G. Xing, “Practical bluetooth traffic sniffing: Systems
and privacy implications,” in Proc. of MobiSys’16, 2016.

[145] A. A. Levy, J. Hong, L. Riliskis, P. Levis, and K. Winstein, “Beetle: Flexible communi-
cation for bluetooth low energy,” in Proc. of MobiSys’16, 2016.

[146] Bluetooth Market Report, https://bit.ly/3fRXkAv , 2020.

[147] Zigbee Market, https://bit.ly/3kdNmvr , 2019.

[148] B. Seri and G. Vishnepolsky, BlueBorne, https://armis.com/blueborne/ , 2017.

[149] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “Badbluetooth: Breaking android security
mechanisms via malicious bluetooth peripherals,” in Proc. of NDSS’19, 2019.

[150] SIG Bluetooth Specifications, https://bit.ly/2Vw9Y1Q , 2019.

[151] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic extraction of protocol
message format using dynamic binary analysis,” in Proc. of CCS’07, 2007.

138

https://goo.gl/mqt3T7
https://goo.gl/UPpmkn
https://bit.ly/3fRXkAv
https://bit.ly/3kdNmvr
https://armis.com/blueborne/
https://bit.ly/2Vw9Y1Q

[152] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format reverse engineering
through context-aware monitored execution,” in Proc. of NDSS’08, 2008.

[153] G. Wondracek, P. M. Comparetti, C. Krügel, and E. Kirda, “Automatic network protocol
analysis,” in Proc. of NDSS’08, 2008.

[154] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex: Protocol speci-
fication extraction,” in Proc. of IEEE S&P’09, 2009.

[155] O. Udrea and C. Lumezanu, “Rule-based static analysis of network protocol implemen-
tations,” in Proc. of USENIX Security’06, 2006.

[156] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song, “Towards automatic
discovery of deviations in binary implementations with applications to error detection and
fingerprint generation,” in Proc. of USENIX Security’07, 2007.

[157] P. C. Johnson, S. Bratus, and S. W. Smith, “Protecting against malicious bits on the
wire: Automatically generating a usb protocol parser for a production kernel,” in Proc. of
ACSAC’17, 2017.

[158] J. A. Crain and S. Bratus, “Bolt-on security extensions for industrial control system
protocols: A case study of dnp3 sav5,” IEEE Security Privacy, vol. 13, no. 3, pp. 74–79,
2015.

[159] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce reuse in wpa2,”
in Proc. of CCS’17, 2017.

[160] S. R. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “Lteinspector: A systematic
approach for adversarial testing of 4g LTE,” in Proc. of NDSS’18, 2018.

[161] J. Chen, C. Zuo, W. Diao, S. Dong, Q. Zhao, M. Sun, Z. Lin, Y. Zhang, and K. Zhang,
“Your iots are (not) mine: On the remote binding between iot devices and users,” in Proc.
of DSN’19.

[162] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and G. Vigna, “Snooze:
Toward a stateful network protocol fuzzer,” in Proc. of ISC’06, 2006.

[163] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang, and
K. Zhang, “Iotfuzzer: Discovering memory corruptions in iot through app-based fuzzing,” in
Proc. of NDSS’18, 2018.

[164] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti,
P. Strub, and J. K. Zinzindohoue, “A messy state of the union: Taming the composite state
machines of tls,” in Proc. of IEEE S&P’15, 2015.

139

[165] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Chajed, N. Kobeissi,
and J. Protzenko, “Everparse: Verified secure zero-copy parsers for authenticated message
formats,” in USENIX Security’19, 2019.

[166] R. Sommer, J. Amann, and S. Hall, “Spicy: A unified deep packet inspection framework
for safely dissecting all your data,” in ACSAC’16, 2016.

[167] K. Fisher and D. Walker, “The pads project: An overview,” in ICDT’11, 2011.

[168] Hammer, https://bit.ly/3s3bMfI , 2019.

[169] J. Bangert and N. Zeldovich, “Nail: A practical tool for parsing and generating data
formats,” in OSDI’14, 2014.

[170] Protobuf, https://github.com/protocolbuffers , 2021.

[171] A. Agarwal, M. Slee, and M. Kwiatkowski, “Thrift: Scalable cross-language services
implementation,” Tech. Rep., 2007.

[172] M. Moskal, W. Schulte, E. Cohen, and S. Tobies, “A practical verification methodology
for concurrent programs,” Tech. Rep. MSR-TR-2009-2019, 2009. [Online]. Available: https:
//bit.ly/2ksmj5G .

[173] VCC: A Verifier for Concurrent C, https://bit.ly/2m4fCHt , 2008.

[174] Frama-C, https://frama-c.com , 2021.

[175] CVE-2017-1000251, https://bit.ly/2xymD8a , 2017.

[176] CVE-2017-1000251 Patch, https://bit.ly/2WKLkqw , 2017.

[177] Bluetooth Core Specification, https://bit.ly/2YwR4VD , 2020.

[178] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting privacy of BLE device users,” in
Proc. of USENIX Security’16, 2016.

[179] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and Algorithms for
the Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds., 2008.

[180] C. Cremers and M. Dehnel-Wild, “Component-based formal analysis of 5g-aka: Channel
assumptions and session confusion,” in Proc. of NDSS’19, 2019.

[181] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler, “A formal
analysis of 5g authentication,” in Proc. of CCS’18, 2018.

140

https://bit.ly/3s3bMfI
https://github.com/protocolbuffers
https://bit.ly/2ksmj5G
https://bit.ly/2ksmj5G
https://bit.ly/2m4fCHt
https://frama-c.com
https://bit.ly/2xymD8a
https://bit.ly/2WKLkqw
https://bit.ly/2YwR4VD

[182] M. Musuvathi and D. R. Engler, “Model checking large network protocol implementa-
tions,” in Proc. of NSDI’04, 2004.

[183] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough, “En-
gineering with logic: Hol specification and symbolic-evaluation testing for tcp implementa-
tions,” in Proc. of POPL’06, 2006.

[184] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough, “Rigorous
specification and conformance testing techniques for network protocols, as applied to tcp,
udp, and sockets,” in Proc. of SIGCOMM’05, 2005.

[185] SMT-LIB, http://smtlib.cs.uiowa.edu/ , 2021.

[186] N. Bjørner, L. de Moura, L. Nachmanson, and C. Wintersteiger, Programming Z3, https:
//stanford.io/2GS004D , 2017.

[187] Zigbee, https://bit.ly/3lGtrp1 , 2011.

[188] Bluedroid, https://bit.ly/2JUPydq , 2015.

[189] G. Bossert, F. Guihéry, and G. Hiet, “Towards automated protocol reverse engineering
using semantic information,” in Proc. AsiaCCS’14, 2014.

[190] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang, “Discovering
and understanding the security hazards in the interactions between iot devices, mobile apps,
and clouds on smart home platforms,” in USENIX Security’19, 2019.

[191] CVE-2017-1000250 Patch, https://bit.ly/2FR7WzN , 2017.

[192] CVE-2017-0783, https://bit.ly/2UmQ3Rn , 2017.

[193] CVE-2017-0783 Patch, https://bit.ly/2YH8Shr , 2017.

[194] D. Song, A. Perrig, and D. Phan, “Agvi — automatic generation, verification, and
implementation of security protocols,” in CAV’01, G. Berry, H. Comon, and A. Finkel, Eds.,
2001.

[195] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover for the symbolic
analysis of security protocols,” in CAV’13, 2013.

[196] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and reference implemen-
tations for the TLS 1.3 standard candidate,” in IEEE S&P’17, 2017.

141

http://smtlib.cs.uiowa.edu/
https://stanford.io/2GS004D
https://stanford.io/2GS004D
https://bit.ly/3lGtrp1
https://bit.ly/2JUPydq
https://bit.ly/2FR7WzN
https://bit.ly/2UmQ3Rn
https://bit.ly/2YH8Shr

[197] B. Blanchet, “Modeling and verifying security protocols with the applied pi calculus
and ProVerif,” Foundations and Trends in Privacy and Security, vol. 1, no. 1–2, pp. 1–135,
Oct. 2016.

[198] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “Reformat: Automatic reverse
engineering of encrypted messages,” in Proc. of ESORICS’09, 2009.

[199] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol reverse engineering
from network traces,” in Proc. of USENIX Security’07, 2007.

[200] T. Krueger, N. Krämer, and K. Rieck, “Asap: Automatic semantics-aware analysis of
network payloads,” in Proc. of PSDML’10, 2010.

[201] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: An automated script generation tool
for honeyd,” in Proc. of ACSAC’05.

[202] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni: Automatic reverse
engineering of input formats,” in Proc. of CCS’08, 2008.

[203] J. Newsome, D. Brumley, J. Franklin, and D. Song, “Replayer: Automatic protocol
replay by binary analysis,” in Proc. of CCS’06, 2006.

[204] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent adaptive replay
of application dialog,” in Proc. of NDSS’06, 2006.

[205] T. Krueger, H. Gascon, N. Krämer, and K. Rieck, “Learning stateful models for network
honeypots,” in Proc. of AISec’12, 2012.

[206] J. Somorovsky, “Systematic fuzzing and testing of tls libraries,” in Proc. of CCS’16,
2016.

142

VITA

Fei Wang attended Purdue University for his Ph.D. study under the guidance of his

advisor Professor Xiangyu Zhang and co-advisor Professor Dongyan Xu from Fall 2014 to

Fall 2021. Before that, he earned his Bachelor of Engineering in Network Engineering from

Sichuan University in Chengdu, Sichuan, China, and his Master of Science in Information

Security from University of Science and Technology of China in Hefei, Anhui, China. His

research interests lie in computer security especially system and software security, protocol

security, IoT security and software engineering. His work has been published in ISOC NDSS,

USENIX Security and ACSAC. In the Fall of 2021, he will join Facebook to serve as a research

scientist.

143

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Dissertation Statement
	Contributions
	Dissertation Organization
	Dissertation Overview
	Fine-grained Forensic Analysis in Enterprise Environment
	Causality-aware Behavior Inference
	Library-aware Provenance Tracing

	Generating Secure Protocol Implementations

	NETCROP: FINE-GRAINED PROGRAM ACTIVITY INFERENCE ASSISTED BY CASUAL DEPENDENCY ANALYSIS BETWEEN NETWORK FLOWS
	Introduction
	Approach Overview
	System Design
	Application Training
	Automaton Extraction Phase
	Traffic Attribution

	Evaluation
	Experiment Setup
	Case Study
	Performance Overhead
	Results
	Traffic Attribution in Enterprise Network

	Limitation and Discussion
	Related Work

	LPROV: PRACTICAL LIBRARY-AWARE PROVENANCE TRACING
	Introduction
	Motivating Example
	System Overview
	Design and Implementation
	Library Call Tracing
	Design
	Design Choices
	Data Integrity

	Lprov Kernel Module
	Lprov Daemon Process and Log Analysis

	Evaluation
	Performance Overhead
	Case Study
	Ebury Variant Attack
	Library Vulnerability Exploitation
	Library Loading Analysis

	Discussion
	Related Work

	PROFACTORY: IMPROVING IOT SECURITY VIA FORMALIZED PROTOCOL CUSTOMIZATION
	Introduction
	Motivation
	Approach Overview
	Protocol Modeling
	DSL Syntax
	DSL Semantics
	A Real-world Example

	Code Generation
	Automated Verification
	Evaluation
	System Performance
	Vulnerability Averting

	Discussion
	Related Work

	CONCLUSION
	REFERENCES
	VITA

