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ABSTRACT

Face redaction is needed by law enforcement and mass media outlets to guarantee privacy. In

this thesis, a performance analysis of several face redaction/obscuration methods, such as blurring

and pixelation is presented. The analysis is based on various threat models and obscuration attack-

ers to achieve a comprehensive evaluation. We show that the traditional blurring and pixelation

methods cannot guarantee privacy. To provide a more secured privacy protection, we propose two

novel obscuration methods that are based on the generative adversarial networks. The proposed

methods not only remove the identifiable information, but also preserve the non-identifiable facial

information (as known as the utility information), such as expression, age, skin tone and gender.

We also propose methods for change detection in satellite imagery. In this thesis, we consider

two types of building changes: 2D appearance change and 3D height change. We first present a

model with an attention mechanism to detect the building appearance changes that are caused by

natural disasters. Furthermore, to detect the changes of building height, we present a height estima-

tion model that is based on building shadows and solar angles without relying on height annotation.

Both change detection methods require good building segmentation performance, which might be

hard to achieve for the low-quality images, such as off-nadir images. To solve this issue, we use

uncertainty modeling and satellite imagery metadata to achieve accurate building segmentation for

the noisy images that are taken from large off-nadir angles.
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1. INTRODUCTION

1.1 Utility-Preserving Face Redaction

Face redaction or obscuration techniques are often used by law enforcement and mass media

outlets to provide a privacy protection. As shown in Figure  1.1 , law enforcement agencies use these

identity obscuration techniques to avoid exposing the identities of bystanders or officers. Similarly,

Google StreetView also relies on these techniques to protect the privacy of the identities presented

in the scene. Figure  1.2 shows several face obscuration methods, including pixelation, blurring,

and blacking out. Blacking out the entire face region is rarely used in real-world applications,

because its visual effect is unpleasant, especially if there are many faces in the scene that need to

be obscured.

Figure 1.1. Common scenarios that need for face obscuration techniques. Left:
the video footage from police body-worn camera; right: Google StreetView.

Figure 1.2. Examples of face obscuration techniques. From left to right: original,
pixelation, blurring, and blacking out.
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Although these obscured identities are hard for us to recognize, advanced face recognition

system might still be able to identity them. Due to recent advances in the field of machine learning,

especially deep learning, obscuration methods such as blurring and pixelation are not guaranteed

to conceal identity. Recent work [ 1 ]–[ 3 ] shows that advanced machine learning approaches are

still able to recognize the identity after the common obscuration methods, such as blurring and

pixelation. Figure  1.3 shows the results obtained from such machine learning-based attacker. We

show that the attacker can still identify the correct identities after applying the aforementioned

obscuration methods. The obscured face is shown on the left side of each example, while the

eight query faces are listed on the right side of each example. The bar next to each query face

indicates the feature distance of the query face to the obscured face as computed by the attacker.

By comparing the feature distances, the obscured face still has the closest distance to the correct

identity as highlighted by the green distance bar. Hence, a better face obscuration method that can

guarantee identity obscuration is needed. In this thesis, we present a utility-preserving generative

model, UP-GAN, that is able to provide an effective face obscuration, while preserving facial

utility. By utility-preserving we mean preserving facial features that do not reveal identity, such as

age, gender, skin tone, pose, and expression. The proposed method is not only able to remove the

identifiable information, but also keep the utility information intact.

Figure 1.3. Machine learning-based attacker can still recognize the correct
identities from the obscured images. The image on the left shows the result ob-
scured by Gaussian blurring. The image on the right shows the result obscured by
pixelation. In both cases, the machine learning-based attacker correctly identifies
the obscured identities.
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Figure 1.4. Proposed face attack scenarios. To provide a comprehensive analy-
sis, we present three attack scenarios: identification attack, verification attack, and
reconstruction attack.

Although in Figure  1.3 , we show that machine learning-based attacker is able to identify the

obscured identity, a more systematical analysis is still needed to examine these obscuration meth-

ods with advanced machine learning and deep learning-based attackers. In order to examine the

effectiveness of the proposed method as well as other common obscuration methods, we provide a

systematically measurement that is based on recent deep learning models to assess the face obscu-

ration performance of a given technique. In this thesis, we measure the obscuration performance

of eight obscuration techniques including common blurring and pixelation methods and machine

learning based methods. We do so by attacking the obscured faces in three scenarios: obscured

face identification, verification, and reconstruction as shown in Figure  1.4 . Face identification at-

tack can be implemented as a standard identity classification task, which has been analyzed by the

previous work [ 1 ]–[ 3 ]. By mapping faces to known identities in different threat models, we can

analyze the vulnerability of each obscuration method using advanced deep learning identification

methods. However, the requirement of known identities weakens this type of analysis, since query
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faces usually come from unknown identities. To overcome this, we propose the verification attack

scenario. Specifically, we want to measure the similarity of an unknown obscured face to clear

target faces, as shown in Figure  1.3 . Since it allows recognizing unseen identities, this scenario is

more realistic. Lastly, a reconstruction scenario is proposed to visualize how well we can recover

the true identity using the remaining information from the obscured images. Threat modeling is

also considered in each attack scenario to provide a vulnerability analysis for each studied obscu-

ration technique. Based on our evaluation, we show that the proposed UP-GAN achieves a more

robust obscuration of identity than the compared methods.

Figure 1.5. StyleGAN model structure (left) and generated faces (right). As
proposed in [ 4 ], StyleGAN is able to produce photo-realistic face images with high
resolution (up to 1024× 1024).

With the fast development of generative adversarial networks (GANs), recent methods, such as

ProGAN [ 5 ] and StyleGAN [  4 ], can generate photo-realistic synthetic face images. As shown in

Figure  1.5 , StyleGAN [  4 ] is able to produce photo-realistic face images with high image resolution

(up to 1024× 1024). These high-resolution photo-realistic synthetic faces provide us a new way to

18



further improve the image quality generated by the previously proposed UP-GAN. In this thesis,

we propose a face reenactment model using these high-fidelity synthetic faces to achieve a utility-

preserving face obscuration. Given a synthetic face with the target utility information obtained

from the original face image (e.g., age, gender, and skin tone), the proposed face reenactment

model can animate the synthetic face with the target facial expression and head pose for face

obscuration. By doing so, we can decouple the process of generating synthetic identity and editing

the facial expression/head pose. And then, we can enforce the model only focusing on producing

photo-realistic face editing (i.e., face reenactment) given the synthetic face image. Based on our

experiment analysis, we show that the proposed method achieves photo-realistic face reenactment

compared to the previous methods.

1.2 Change Detection For Satellite Imagery

Natural disasters cause severe damage to our society. To save lives and reduce damage, we

need an accurate situational information and a fast, effective response. Widely available, high

resolution satellite images enable emergency responders to estimate locations, causes, and severity

of damage. Quickly and accurately analyzing the extensive amount of satellite imagery available,

though, requires an automatic approach. In this thesis, we propose a change detection model

– a multi-class deep learning model with an attention mechanism – to assess damage levels of

buildings given a pair of satellite images depicting a scene before and after a disaster, as shown in

Figure  1.6 . We evaluate the proposed method on xView2 dataset, a large-scale building damage

assessment dataset. xView2 dataset defines four levels of building change:

• No Damage: Undisturbed and no sign of water, structural damage, shingle damage, or burn

marks.

• Minor Damage: Building partially burnt, water surrounding the structure, volcanic flow

nearby, roof elements missing, or visible cracks.

• Major Damage: Partial wall or roof collapse, encroaching volcanic flow, or the structure is

surrounded by water or mud.
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• Destroyed: Structure is scorched, completely collapsed, partially or completely covered with

water or mud, or no longer present.

Examples of the buildings with different damage levels can be found in Figure  1.7 . The proposed

method needs to compare the difference between the two input images in order to accurately seg-

ment the building region and assign the correct damage level. Based on our experiment analysis,

we show that the proposed approach achieves accurate damage scale classification and building

segmentation results, simultaneously.

Figure 1.6. An example of building damage assessment task given a pair of
satellite images taken from a scene before and after a disaster. Left: before
disaster. Right: after disaster.

However, only considering the changes of building appearance sometime is not enough to cap-

ture all information required for a change detection application. In many real-world applications,

detecting the change of building height is also important. Therefore, in this thesis, we also pro-

pose a height estimation model to detect the changes of building height. Obtaining the ground

truth building height requires the access of LiDAR sensor to obtain the digital surface model of

a given scene as shown in Figure  1.8 , which is not available in many situations. To solve this

issue, the proposed method is designed to estimate building height based on building shadows and

satellite imagery metadata, such as solar elevation and azimuth angles without relying on height
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Figure 1.7. Examples of different damage levels defined in [ 6 ].

Figure 1.8. Digital surface model (right) obtained from Urban Semantic 3D dataset [ 7 ].

annotations. More specifically, our method contains three steps: 1) supervised building instance

detection; 2) semi-supervised shadow instance detection; 3) unsupervised building height esti-

mation. Due to the widely available labels for building detection, we use a supervised instance

segmentation method to obtain building instances. The shadow instance detection task aims to find

shadow instances paired with building instances. Given a satellite image and its detected building
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instance mask, the model outputs the shadow instances associated with the corresponding building

instances. Because of the lack of building shadow annotation, we train the method in a semi-

supervised manner that requires fewer training labels. Given the building and shadow association,

we can estimate the building height with satellite metadata, such as solar azimuth and elevation

angles, and ground sample distance. Building height estimation is done by maximizing the overlap

between the theoretical shadow region given a query height and the detected shadow instance re-

gion. We qualitatively and quantitatively show that the proposed method achieves accurate building

height estimation.

Figure 1.9. Satellite images with low off-nadir angle (left) and high off-nadir
angle (right). The image with high off-nadir angle is noisy and blurry, which is
challenging for the existing methods to provide an accurate segmentation.

Both proposed methods for detecting 2D appearance change and 3D height change require ac-

curate building segmentation. Most existing segmentation methods focus on the case where the

images are taken from directly overhead (i.e., low off-nadir/viewing angle). These methods often

fail to provide accurate results on satellite images with larger off-nadir angles due to the higher

noise level and lower spatial resolution. As shown in Figure  1.9 , compared to the image with low

off-nadir angle, the image with high off-nadir angle is noisier and blurrier. In this thesis, we pro-

pose a method that is able to provide accurate building segmentation for satellite imagery captured
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from a large range of off-nadir angles. Based on Bayesian deep learning, we explicitly design our

method to learn the data noise via aleatoric and epistemic uncertainty modeling. Satellite image

metadata (e.g., off-nadir angle and ground sample distance) is also used in our model to further

improve the result. We show that with uncertainty modeling and metadata injection, our method

achieves better performance compared to the baseline method, especially for the noisy images

taken from large off-nadir angles.

1.3 Contributions Of This Thesis

In this thesis, we developed new methods for face redaction and satellite imagery change de-

tection. The main contributions of the thesis are listed as follows:

• Utility-Preserving Face Redaction

1. A performance analysis of face obscuration approaches is proposed.

2. The analysis is based on three attack scenarios: obscured face identification, verifica-

tion, and reconstruction.

3. We analyze these attacks based on two widely used deep learning models, VGG19 [ 8 ]

and ResNet50 [ 9 ] in different threat model conditions.

4. We show that the traditional obscuration methods, such as blurring and pixelation can

not guarantee privacy protection.

5. To provide a more secured privacy protection, we propose two novel obscuration meth-

ods that are based on the generative adversarial networks.

6. With qualitative and quantitative analysis, we show that the proposed methods can not

only remove the identifiable information, but also preserve the non-identifiable facial

information, such as facial expression, age, skin tone and gender.

• Change Detection For Satellite Imagery

1. We develop a multi-class deep learning model with attention technique that accurately

classifies damage levels of buildings based on 2D appearance changes in satellite im-

agery.
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2. We demonstrate that the proposed model achieves better results for building damage

scale classification than other methods while simultaneously achieving accurate build-

ing segmentation results.

3. To detect the changes from 3D building height, we propose a building height estimation

model.

4. The proposed method can estimate building height based on building shadows and solar

angles without relying on height annotations.

5. We qualitatively and quantitatively show that the proposed method achieves accurate

building height estimation.

6. To provide a more reliable building segmentation method as required in the previously

proposed change detection methods, we present a model that can provide accurate

building segmentation even for the low quality satellite images captured from large

off-nadir angles.

7. Both uncertainty modeling and satellite imagery metadata are used in the proposed

method to achieve a good building segmentation performance, especially for the noisy

images taken from large off-nadir angles.
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2. UTILITY-PRESERVING FACE REDACTION

2.1 A Utility-Preserving GAN for Face Obscuration

2.1.1 Overview

Major developments in the machine learning field have uncovered severe flaws in current face

obscuration approaches. As shown by [ 2 ], machine learning methods are able to defeat Gaussian

blurring or pixelation based obscuration methods. These obscuration techniques have been widely

used by Internet news outlets, social media platforms, and government agencies. An extreme re-

sort to prevent information leaking is to simply blacking out the entire facial region by setting all

pixels in the facial area to a fixed value. However, this approach is rarely used because its visual

effect is unpleasant, especially if there are many faces to be redacted. Besides the identifiable in-

formation, facial images also contain information that does not reveal identity, such as age, gender,

and skin tone. Often, we want to preserve these features in many applications involving visual

understanding and data mining [ 10 ].

Figure 2.1. Obscuration effect of the proposed method. First row: original faces;
second row: obscured faces.

New obscuration methods are needed to remove identifiable facial information, while pre-

serving the features that do not convey identity. The proposed method, utility-preserving GAN

(UP-GAN), aims to provide an effective obscuration by generating faces that only depend on the

non-identifiable facial features. In this thesis, we define utility as the facial properties such as age,

gender, skin tone, pose, and expression. We choose these properties because in practice, when
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dealing with a large number of identities, knowing these properties from the obscured images can-

not reveal identity. One can also choose other properties to retain for different applications. As

shown in Figure  2.1 , UP-GAN is able to obscure the original faces by replacing them with synthetic

faces that have the same utility.

2.1.2 Related Work

Standard approaches, such as pixelation and Gaussian blurring, achieve good obscuration per-

formance in terms of human perception. However, McPherson et al. [ 2 ] proposed a deep learning

method with a simple structure that is able to defeat these obscuration techniques. To provide bet-

ter obscuration performance, a variety of approaches have been proposed to balance the need to

remove identifiable information while preserving utility information.

k-same Methods. This family of approaches first groups faces into clusters based on non-

identifiable information such as expression, and then generates a surrogate face for each cluster.

These methods can guarantee that any face recognition system cannot do better than 1/k in recog-

nizing who a particular image corresponds to [ 11 ], where k is the minimum number of faces among

all clusters. This property is also known as k-anonymity [ 12 ]. In [ 13 ] and [  11 ], they simply com-

pute the average face for each cluster. Therefore, their obscured faces are blurry and cannot handle

various facial poses. In [ 10 ], the use of an active appearance model [ 14 ] to generate more realistic

surrogate faces is presented. A generative neural network, k-same-net, that directly generates faces

based on the cluster attributes is described in [ 15 ]. These two methods are able to produce more

realistic obscured faces with the property of k-anonymity, but cannot handle different poses.

GAN Methods. Generative adversarial network (GAN) [ 16 ] methods can provide more realis-

tic faces. Their discriminator is designed to guide the generator by distinguishing real faces from

generated faces. In [ 17 ], a model that produces obscured faces directly from original faces based

on conditional-GAN [  18 ] is proposed. They use a contrastive loss to enforce the obscured face to

be different than the input face. However, since they need to directly input the original faces, the

obscuration performance is not guaranteed. [ 19 ] present a two-stage model that is able to generate

an obscured face without the original identifiable facial information, which prevents the leakage of

identifiable information directly from faces. GANs have also been used for face manipulation in
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videos. These techniques aim to create believable face swaps without tampering traces, by altering

age [ 20 ] or skin color [ 21 ]. To prevent scenarios where these videos are used to create political

distress or fake terrorism events, [ 22 ] design a deep learning model that is able to detect the altered

frames using both the spatial and temporal information.

Our proposed method tries to leverage the advantages of both types of methods. To achieve

k-anonymity, it is designed to generate faces that depend only on the utility information without

directly accessing original faces. Since it is also a GAN-based method, with the discriminator

guidance, it is able to produce more realistic faces than the k-same methods.

Figure 2.2. Inference block diagram of the UP-GAN model.

2.1.3 Proposed Method

Recall that, in this implementation, we choose age, gender, skin tone, pose, and expression as

the utility to be preserved. To better formulate our problem, we further divide the utility into two

parts: attributes and landmarks. Attributes define the static part of the utility information that does

not change with facial movement. Landmarks define a set of points of interest that describe the

facial pose and expression. Figure  2.2 shows the inference workflow of the proposed method. In
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order to obtain obscured faces, we first use an auxiliary system to detect the utility information:

attribute vector va and landmark vector vl from the original face Ireal. Since, in this thesis, we are

not focusing on this auxiliary system, we use the UTKFace dataset [ 23 ] which provides the needed

attributes (age, gender, and skin tone) and landmarks (7 points) to train and test our model. The

fake face Ifake is then generated by the UP-GAN model using the attribute and landmark vectors.

Given that the generated face has the same pose and expression, we can swap it with the original

face to perform de-identification using face swapping algorithms [  24 ]–[ 26 ]. Figure  2.1 shows the

swapping results using [ 24 ].

Figure  2.3 shows the generator architecture of the UP-GAN model, which is based on the

architecture proposed by [ 27 ]. Similar to the previous work, UP-GAN jointly learns the fake face

and its binary mask. However, we modify the structure of the fully-connected layers to input the

attribute and landmark vectors. As suggested by [ 15 ], we also add a max pooling layer with stride

1 for dimension reduction before generating the output image and mask. More specifically, we

first use two fully-connected layers to encode the input vectors and then apply de-convolution,

followed by another convolution layer to upsample the feature maps. The de-convolution layer

contains an upsampling layer with stride 2 and a convolution layer with a kernel size of 5. For the

following convolution layer after the de-convolution layer, we choose the kernel size to be 3. Note

that the final output size of the generated face is 128× 128× 3 and the size of the binary mask is

128× 128× 2.
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Figure 2.3. Generator architecture of the UP-GAN model. Yellow vectors in-
dicate the activation of fully-connected layers. Blue blocks indicate the activation
from de-convolution layers (upsampling + convolution). Yellow blocks show the
activation from following convolution layers after the de-convolution layer. The red
block shows the output from the max pooling layer.
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The loss functions for the generator G and discriminator D are defined as:

LG = Eva,vl
[logD(G(va, vl)))] + λ1L2 + λ2LM + λ3LP ,

LD = EIreal
[logD(Ireal)] + Eva,vl

[log (1−D(G(va, vl)))],

where

L2 = ‖Ireal − Ifake‖2
2,

LM = − 1
N

N∑
i=1

yi log (pi) + (1− yi) log (1− pi).

LP =
∑
l∈Ω
‖φl(Ifake)− φl(Ireal)‖2

2,

L2 is the reconstruction loss for learning the image content. LM is the binary cross entropy loss for

learning the facial mask where pi is the predicted probability of the i-th pixel in the binary mask, yi

is the ground truth label, and N is the total number of pixels. LP is the perceptual loss for learning

the facial details, where Ω is a collection of convolution layers from the perceptual network and

φl is the activation from the l-th layer. The perceptual loss was originally proposed by [  28 ] for

learning high level features extracted from a network pretrained on the ImageNet dataset [ 29 ]. In

this thesis, the perceptual network is pretrained on a face identification dataset to enforce that the

generated face contains similar facial features to the original face. More specifically, we choose

the pretrained VGG-19 network [ 8 ] and finetune it with the FaceScrub dataset [ 30 ]. Lastly, λ1,

λ2, and λ3 are the scalar weights for their corresponding losses. Note that in our implementation,

we have chosen λ1 = 5, λ2 = 1, and λ3 = 1 to ensure that the terms in LG are within the same

numerical order of magnitude.
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2.1.4 Experiment

In this section, we will evaluate different loss functions and analyze the obscuration perfor-

mance of the generated faces compared to Gaussian blurring, pixelation, k-same method and k-

same-net method.

Datasets. The UTKFace dataset [ 23 ] contains 23,708 images with annotations of 68-point

facial landmarks and attributes of age, gender, and skin tone. The range of age provided by the

dataset is from 0 to 110, the possible values for gender are 0 (male) and 1 (female) and the possible

values for race are 0 (white), 1 (black), 2 (Asian), 3 (Indian) and 4 (Hispanic, Latino, Middle

Eastern, etc.). To obscure the identifiable information present in the facial landmarks, we reduce

the input landmark points from 68 points to 7 points. These include the centers of the eyes, the

center of the nose, and four points around the mouth. Therefore, the dimensionality of the attribute

vector is 3 and of the landmark vector is 14. From the perspective of k-anonymity, reducing

landmark points is similar to increasing k. When we increase k, the size of each cluster also

increases, since they are grouped based on attribute and landmark vectors. Therefore, the upper

bound of identification rate (1/k) decreases, meaning that the obscuration performance improves.

To verify the obscuration performance, we use the FaceScrub dataset for face identification.

Note that this dataset contains 106,806 images from 530 identities. As this dataset does not provide

attributes and landmarks, we use fixed attribute values and detect facial landmarks using the Dlib

toolkit [  31 ]. We can produce fake faces using the fixed attributes and detected landmarks. We then

use a face identification model (VGG-19) to determine if we are able to identify these generated

faces.

Data Augmentation. To prevent UP-GAN from simply memorizing the original face and repli-

cating the output face using the input vectors, we use data augmentation on the original image Ireal

to increase its variation. First, we use elastic distortion [ 32 ] to add variety to the facial landmarks.

As shown in Figure  2.4 , the wave-like structure distorts the landmark points (e.g. the shape of the

mouth). We also add random rotations, ranging from °-30 to °30, to increase the variation of facial

poses.

Results and Discussion. In Figure  2.5 , we compare the results using different loss functions to

show the effectiveness of training with the perceptual network and binary mask. We can also see
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Figure 2.4. Example of the augmented face with elastic distortion and random
rotation (left) and its binary mask (right).

that, compared to the original face, the generated face with adversarial loss and L2 reconstruction

loss can preserve the facial utility. However, the facial details such as the outlines are partially

missing. By adding the mask loss, we can enhance the facial boundary, like the cheek and chin. If

we add the perceptual loss, the generated face visually looks more realistic with fewer ripple-like

artifacts.

Figure 2.5. Generated faces with different loss functions.
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Figure  2.6 shows the generated faces from the proposed method with various landmark infor-

mation. Given the target landmark vector detected from the original image, UP-GAN is able to

correctly generate the fake face with the target landmark. By doing so, we show that the pro-

posed method can accurately retain the face expression and head pose given only 7-point facial

landmarks. Furthermore, we also did another experiment of different landmarks given a fixed util-

ity value. As shown in Figure  2.7 , our model is able produce fake faces with different pose and

expression given different facial landmarks.

Figure 2.6. UP-GAN results with different landmark information.

Figure 2.7. UP-GAN results of facial landmark interpolation.
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Figure  2.8 shows the generated faces with various attribute information (i.e., age, gender, and

skin tone). Given the target attribute vector obtained from the original image, UP-GAN is able to

correctly generate the fake face with the target attribute information. We also provide the inter-

polation comparison of the generated faces given different utility values as shown in Figure  2.9 .

The first row shows the interpolation of age: 0, 26 and 52. Note that the mask on the right side

of each generated face shows that our model is able to change the facial outline without changing

the expression (the position of mouth, eyes, and nose) given a different age value. This intuitively

makes sense, since facial landmarks are not completely independent of age. For example, an infant

usually has a wider facial outline than an adult. The second and third rows show the interpolation

of gender and skin tone. In these two cases, the facial outline does not change much, because

gender and skin tone are more independent from the facial outline than age.

Figure 2.8. UP-GAN results with different attribute information.

We also evaluate the obscuration performance to see how well UP-GAN can conceal the origi-

nal faces. Note that we will provide a more comprehensive obscuration analysis in Section  2.2 with

more compared methods and attacking scenarios. We consider two threat models: I) the attacker

(identifier) has no information about the obscuration methods and II) the attacker knows the ob-

scuration methods. In threat model I, we train the identifier on the pristine images and test it on the

obscured faces. In threat model II, we train and test the identifier on both clear and obscured im-
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Figure 2.9. UP-GAN results of utility interpolation. Top row: age interpolation;
middle row: gender interpolation; bottom row: skin tone interpolation.

ages. To provide a fair comparison with the other obscuration methods, we use the generated faces

Ifake as the obscured images, but we do not swap them into the original images. This is because

the unobscured area (non-facial region) may contain identifiable information. Figure  2.10 shows

the visual quality of the obscured images with different methods including Gaussian blurring, pix-

elation, k-same method [  11 ], k-same-net method [  15 ], and UP-GAN. For the k-same method, we

first use k-nearest neighbors to find k references and use their average as the output fake face. We

modify the input layers of the k-same-net method to input the same attribute and landmark vectors

as UP-GAN. The obscured face from k-same method is blurry (e.g., the areas of eyes), although

the skin tone is preserved. The result from k-same-net method contains more facial structures, but

compared to UP-GAN, the facial boundary is not clear. To further quantify the visual performance,

we compute the Fréchet inception distances (FID) [ 33 ] of the obscured faces. With the assumption

that the real and obscured faces are two sets of realizations coming from two distributions, FID

measures the distance of these two distributions. Therefore, we can use FID to estimate how real-
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istic the obscured faces are. As shown in Table  2.1 , UP-GAN achieves the minimum FID value,

which confirms that the obscured face has the best visual quality.

Table 2.1. Face identification accuracy and FID of the obscured faces for dif-
ferent obscuration methods. Note that the method “None” means no obscuration
and k = 10 for the k-same method.

Method Threat Model T1 Threat Model T3 FID

None 0.955 0.955 -
Gaussian-5 0.914 0.979 212.36

Gaussian-15 0.360 0.983 386.31
Gaussian-25 0.046 0.923 358.86
Pixelation-5 0.010 0.897 154.26

Pixelation-15 0.003 0.694 576.28
Pixelation-25 0.003 0.191 486.41
k-same 0.003 0.028 91.41

k-same-net 0.003 0.238 252.90
UP-GAN 0.004 0.245 68.78

Figure 2.10. Examples of obscured faces. Top row: original image, k-same (k =
10) and Gaussian blurring (kernel sizes: 5, 15 and 25). Bottom row: k-same-net,
UP-GAN and pixelation (pixel sizes: 5, 15 and 25).

Table  2.1 also compares the obscuration performance of UP-GAN against other methods. For

the threat model I, Gaussian blurring with kernel size 5 and 15 fail to provide an effective obscu-

ration, while all other methods achieve good performance. For the threat model II, the obscuration

performance degrades for all methods, while pixelation with pixel size 25, k-same, k-same-net,

and UP-GAN still achieve relatively good results. Since the k values for k-same-net and UP-GAN
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methods depend on the input vectors, their identification accuracies are similar. However, as shown

in Figure  2.10 , for pixelation-25 there are only 5× 5 blocks representing the facial region. As with

k-same and k-same-net, the visual quality of pixelation-25 is worse than UP-GAN.

Figure  2.11 shows four obscuration results using the proposed UP-GAN with face swap-

ping [ 24 ]. The image on the left of each example is the final obscuration result, while the two

small images on the right is the outputs from UP-GAN (i.e., generated face and its corresponding

mask). By swapping the generated face to the original image, we can obscure the original face

while preserving the landmark information (i.e., facial expression and head pose) and attribute

information (i.e., age, gender, and skin tone).
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Figure 2.11. UP-GAN results of face obscuration. By swapping the generated
face to the original image, we can obscure the original face while preserving the
facial utility information.
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2.2 Robustness Analysis of Face Obscuration

2.2.1 Overview

From TV news to Google StreetView, object obscuration has been used in many applications to

provide privacy protection. Law enforcement agencies use obscuration techniques to avoid expos-

ing the identities of bystanders or officers. To remove identifiable information, Gaussian blurring

or pixelation methods are commonly used. Median filtering is also used due to its simple imple-

mentation and its non-linearity, which translates into higher information distortion when compared

to linear filters such as the Gaussian filter. These simple obscuration techniques are able to suc-

cessfully prevent humans from recognizing the obscured objects. Previous work [ 1 ]–[ 3 ] shows that

machine learning approaches can still identify these objects using the subtle information left in the

obscured images. More robust and effective techniques have been described including k-same

methods [ 10 ], [  11 ], [  13 ], [  15 ], [  34 ] which are able to provide a secured obscuration while preserv-

ing non-identifiable information. Reversible obscuration [ 35 ]–[ 37 ] is another type of method to

prevent the leakage of privacy information from unauthorized viewers when sharing an image on

social media. These methods are designed to achieve privacy-preserving image sharing by encrypt-

ing the images published online. Only the viewer with the correct decoding key is able to access

the image. In this section, we focus on the robustness analysis of several obscuration techniques

for face redaction. We study these obscuration methods to answer the following question: “Is there

any remaining identifiable information from the obscured faces to enable re-identification?”.

Although several of these approaches are widely used by news outlets, social media platforms,

and government agencies, their performance has not been objectively measured. The lack of a

formal study of these obscuration techniques makes it hard to evaluate the quality of redaction

systems. As shown by McPherson et al. [  2 ], a simple deep learning model can identify individuals

from their highly pixelated and blurred faces. This indicates that human perception is no longer

the gold standard to examine the effectiveness of obscuration methods. To provide a better way to

examine a given obscuration method, we need to consider it in a controlled environment that can

determine how well identifiable information can be extracted from the obscured face. We design

three scenarios: obscured face identification, verification, and reconstruction. Figure  2.12 shows

the results from the reconstruction attack for the eight studied obscuration methods. To analyze
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the vulnerability of these methods, we examine multiple threat models based on an attacker’s

knowledge of the obscuration method used. Our simplest threat model assumes that the attacker

has no information of these obscuration methods. In the most challenging scenario, we consider

that the attacker knows the exact type of the obscuration method and its hyperparameters. These

previously unexplored threat models are necessary to offer a complete vulnerability analysis under

realistic situations.

Figure 2.12. Reconstruction of obscured images using Pix2Pix [ 38 ] as described
in Section  2.2.3 . Although the obscured images are hard to recognize, deep learning
models can still recover the person’s identity. For Gaussian, median, and P3, we can
clearly recognize the person from their recovered images.

2.2.2 Related Work

Face Obscuration Methods. Gaussian blurring and pixelation are frequently used in many

applications. However, these techniques are not reliable. As we will show in Section  2.2.5 , Gaus-

sian blurring even with a large kernel size is still not able to defend against the some of our attacks.

An extreme example of blurring to prevent information leaking is to simply black out the entire

facial region by setting all pixels in the facial area to a fixed value. This approach is rarely used

because its visual effect is unpleasant, especially if there are many faces in the scene that need to

be redacted.

To address some of these issues, k-same methods [ 10 ], [  11 ], [  13 ], [  15 ], [  34 ] have been proposed

to balance the removal of identifiable information while preserving non-identifiable facial features.

These methods attempt to group faces into clusters based on personal attributes such as age, gender,

or facial expression. Then, a template face for each cluster is generated. These methods can fulfill

the requirement of k-anonymity [  39 ]. They are able to guarantee that any face recognition system
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cannot do better than 1/k in recognizing to whom a particular image corresponds, where k is the

minimum number of faces among all clusters [ 11 ]. In Newton et al. [ 13 ] and Gross et al. [ 11 ],

they simply compute the average face for each cluster. Therefore, the obscured faces are blurry

and cannot handle various facial poses. Du et al. [  10 ] use the active appearance model [ 14 ] to

learn the shape and appearance of faces. Then, they generate a template face for each cluster

to produce obscured faces with better visual quality. A generative neural network, k-same-net,

that directly generates faces based on the cluster attributes is described in [  15 ]. To produce more

realistic faces, generative adversarial network (GAN) [ 16 ] have been used, since its discriminator

is designed to guide the generator by distinguishing real faces from generated faces. Hao et al.

[ 34 ] propose a method based on conditional GAN [ 18 ] that can generate a synthetic face given the

facial landmarks and cluster attributes without the original image.

Face completion is alternative approach to achieve face obscuration. It first blocks the facial

region and then completes the blocked region with a synthetic face without accessing the original

facial information. Sun et al. [ 19 ] propose a GAN-based method by generating a fake face to

complete the blocked region. The generator is able to predict the face appearance based on the

body pose and surrounding environment.

Besides the methods above that permanently remove the identifiable information, reversible

obscuration methods [ 35 ]–[ 37 ] are also needed for the purposes of privacy-preserving image shar-

ing. These reversible obscuration methods split the image information into two parts: 1) the public

part which contains most volume, but not meaningful content and 2) a secret part that stores the

image decoding key. Therefore, when publishing an image to social media, the public and secret

parts can be stored separately to avoid the leakage of images to unauthorized viewers. Ra et al.

[ 35 ] propose a method, P3, which is based on the JPEG encoding framework. They separate the

DCT coefficients in the JPEG encoding process based on a predefined threshold value to generate

the public and secret images. Yuan et al. [  37 ] propose a scrambling method that further reduces

the data storage in the secret part. Instead of thresholding, they randomly flip the sign of DCT

coefficients and store the result as the public image. For the secret part, they only need to store the

random seed to recover the original image.

Privacy Analysis of Obscuration Methods. Although Gaussian blurring and pixelation are

widely used, these methods might still leak sensitive information. Dufaux and Ebrahimi, and Sah
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et al. [ 1 ], [ 3 ] provide an analysis of the obscuration performance of simple identifiers and show the

ineffectiveness of current obscuration methods. By using a simple deep learning model, McPher-

son et al. [ 2 ] also show that obscured images still contain enough information to perform accurate

identification. They uncover the identity obscured with blurring, pixelation, and P3 methods. For

the 16 × 16 pixelation method, they achieve a top-5 identification accuracy of 98.75% for the

AT&T dataset [ 40 ] and 72.23% for the FaceScrub dataset [ 30 ]. Oh et al. [ 41 ] also propose a

semi-supervised model that is able to identify the face under large variations in pose. Their model

is based on a conditional random field (CRF), which not only infers the individual faces (unary

part) but also deduces the identities based on other visible faces (pairwise part). Therefore, when

the unary part is weak due to the obscuration, the identifiable information from other visible faces

is able to help improve the deduction of the obscured face through the connections from the CRF.

To extend the previous literature [ 1 ]–[ 3 ], [ 41 ], we first consider the face identification scenario.

By mapping faces to known identities in different threat models, we analyze the vulnerability

of each obscuration method using advanced deep learning identification methods. However, the

requirement of known identities weakens this type of analysis, since query faces usually come from

unknown identities. To overcome this, we provide a threat analysis under a more realistic setup:

the face verification scenario. Specifically, we want to measure the similarity of an unknown

redacted face to clear target faces. Since it allows recognizing unseen identities, this scenario is

more realistic. Lastly, a reconstruction scenario is proposed to visualize how well we can recover

the true identity using the remaining information from the obscured images.

2.2.3 Proposed Method

To evaluate the performance of the obscuration methods, we first introduce three threat models

based on the amount of knowledge about the obscuration method that is available to the attackers.

Then we describe the three attacks: obscured face identification, verification, and reconstruction.

Threat Modeling. In our model, the attacker aims to identify the redacted faces based on the

information still present in the obscured images. We design three threat models, which vary on

how much information about the used obscuration approach is available to the attacker.
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• Threat model T1 assumes the attacker has no information of any obscuration method, which

means that the attacker is only able to learn the facial features used for identification from

clear faces. During the testing phase, it extracts the facial features from the obscured faces

directly.

• Threat model T2 assumes the attacker is aware of some obscuration methods, but not the

same method used in the testing phase. i.e., the attacker is trained on both clear and ob-

scured images and tested with the obscured images of the obscuration methods not used

in the training set. This model assumes the attacker does not know the exact obscuration

method being used, which is the same as T1. However, it provides more information to the

attacker, since different obscuration methods may share similarities in terms of identifying

facial features.

• Threat model T3 assumes the attacker knows the exact type of the obscuration method and its

hyperparameters, like the kernel size of Gaussian blurring. Compared to T1 and T2, T3 is the

strongest attack, since it provides the attacker with the most information of the obscuration

method to identify identities.

Obscured Face Identification Attack. For the obscured face identification attack, we assume

a fixed number of identities. We treat this identification problem as a classification problem where

the number of classes is equal to the number of identities. In this section, we evaluate the perfor-

mance of different obscuration methods based on different backbone deep learning models, such

as VGG19 or ResNet50 in order to have a more generalizable conclusion.

Obscured Face Verification Attack. The obscured face verification attack is defined as: given

an obscured face and a clear face, decide if the two faces come from the same person or not.

Previous work [ 1 ]–[ 3 ], [ 41 ] only considers the identification scenario, which assumes all identities

are in the dataset. However, in many cases, we cannot assume the obscured identity is in any

dataset. For example, the attackers may want to find out if the obscured face from a TV news is a

person they know. Therefore, face verification attack is more stringent.

In order to solve this verification problem, we project the image into a low-dimension latent

vector, where faces from the same person are closer together than faces from different people.

Therefore, by comparing the distance of the latent vectors, we can determine if the two faces
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are from the same person or not. To improve the accuracy, we use the Additive Angular Margin

loss (also known as ArcFace) [ 42 ] to obtain highly discriminative features for face recognition.

ArcFace simultaneously reduces intra-class difference and enlarge inter-class difference of the

embedding vectors. We choose ArcFace because it yields the best facial recognition performance

among the traditional softmax loss [  43 ], contrastive loss [ 44 ], triplet loss [ 45 ], and other angular

space losses, like SphereFace [ 46 ] and CosFace [ 47 ]. Specifically, ArcFace is designed to enforce a

margin between the distance of the sample to its class center and the distances of the sample to the

other centers from different classes in angular space. Given an input image (either clear image or

obscured image), we first embed it as a low-dimension vector x ∈ Rd using a deep learning model.

Define an auxiliary projection weight W ∈ Rd×n, where n is the number of unique identities in

the dataset. We further normalize the embedding vector and projection weight as x̂ = x
‖x‖ and

Ŵ = W
‖W‖ , respectively. The normalized embedding vector then is projected onto Rn as follows

ŴT x̂ = ‖Ŵ‖‖x̂‖ cosθ = cosθ,

where θ ∈ Rn is a vector of angular distance from x̂ to Ŵ. The normalized embedding vector is

then re-scaled by multiplying a scalar s to make it distributed on a hypersphere with a radius of

s. The ArcFace loss function of a single sample is then calculated using softmax cross entropy as

follows

L = − log es cos(θt+m)

es cos(θt+m) +∑n
j=1,j 6=t e

s cos(θj) ,

where m is the additive angular margin penalty between x and W, θt is the angle of the target

class of the input image. Note that the computation of the ArcFace loss is only used to aid the

training process. For inference, we compute the embedding vectors from the clear face xc and

obscured face xo using the same deep learning model. We then compare the angular distance after

normalization to a predefined threshold value to determine the verification result. The threshold

value can be obtained based on the value that maximizes the verification accuracy on the validation

set.

Obscured Face Reconstruction Attack. As we will show in Section  2.2.5 , highly obscured

images still contain identifiable information. To examine the amount of remaining information
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in obscured images, we design a reconstruction attack to visualize how well we can recover the

original image. We apply a conditional generative adversarial network, Pix2Pix [ 38 ], to perform

this image reconstruction attack. Given the obscured images, the generator is trained to reconstruct

the clear image guided by the discriminator and the L2 distance loss. To quantify the reconstruction

performance, we compute the mean square error (MSE) over pixel-wise differences. We also

compute the identification accuracy based on a face recognition model which is pretrained with

clear images. This test provides us a way to quantify and visualize the amount of identifiable

information leaked from the obscuration methods.

2.2.4 Evaluated Methods

In this thesis, we propose to analyze eight obscuration methods. These methods include three

traditional methods (Gaussian blurring, median blurring, and pixelation), three k-same based meth-

ods (k-same, k-same-net, and UP-GAN) and two privacy-preserving image sharing methods (P3

and scrambling). Examples of obscured faces using these methods are shown in Figure  2.12 . We

use Gaussian-5 representing the experiment of Gaussian blurring with kernel size of 5.

Traditional obscuration methods. We evaluate the three obscuration methods including

Gaussian blurring, median blurring and pixelation methods for four different kernel (pixel) sizes

of 5, 15, 25, and 35. We use the OpenCV function cv2.getGaussianKernel to compute the kernel

of Gaussian blurring. Note that the Gaussian standard deviation is defined as

σ = 0.3 ∗
((

w − 1
2 − 1

)
+ 0.8

)
,

where w is the kernel size. The pixelation method is implemented by image downsampling and

upsampling using nearest-neighbor interpolation.

k-same based obscuration methods. k-same based methods aim to obscure identifiable in-

formation while preserving the non-identifiable information (also known as utility information).

Algorithm  1 shows the workflow of the k-same based methods, which is based on [ 11 ]. In this the-

sis, we choose k = 10. We evaluate three k-same based methods: the original k-same method [ 11 ],

k-same-net [ 15 ], and UP-GAN [ 34 ]. We model the obscuration process as follows.
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Suppose we have a clear face dataset Mc and an obscuration function f mapping the clear

image Ic to the obscured image Io by Io = f(Ic). We use this mapping function building an

obscured face datasetMo based onMc. Based on [ 11 ], we also need to assume the datasetMc

has no two images coming from the same identity to make Algorithm  1 k-anonymous. The k-same

based methods require the function f mapping k nearest neighbors from the clear images to a

single obscured image. For example, considering the original k-same method, the obscured face

is obtained by averaging the k nearest neighbors in the image space. Therefore, the x1,...,k from

Algorithm  1 in this case are the clear images.

k-same-net is a deep learning model that generates faces given the cluster attributes. UP-GAN

has similar architecture to k-same-net with the same input cluster attributes. However, it improves

the generated image quality using its discriminator and the perceptual loss. For both k-same-net

and UP-GAN, the x1,...,k from Algorithm  1 are the cluster attributes. Therefore, the input attribute

to the models is the average of the k nearest neighbors in the attribute space.

As proposed by [ 34 ], we choose UTKFace dataset [ 23 ], which contains the required utility

values (age, gender, and skin tone) and facial landmarks to train k-same-net and UP-GAN. The

utility values are defined as facial features that do not reveal identity, such as age, gender, skin

tone, pose, and expression [ 34 ]. For the purpose of obscuration evaluation, we test these two

methods on the FaceScrub dataset [ 30 ] and LFW dataset [ 48 ], with a fixed utility values (26 years

old, male, and white) and 7-point facial landmarks obtained by Dlib toolkit [ 31 ] 

1
 . These points

include the centers of the eyes, the center of the nose, and four points around the mouth. Note that

since the two datasets contain different faces from the same identity, the k-anonymity property in

this case may not hold.

Privacy-preserving image sharing methods. Privacy-preserving image sharing methods are

designed to encrypt the content of the original image when publishing to social media. To recover

the original images, the encrypted images need a key to decrypt the content. We evaluate two

methods: P3 [  35 ] and scrambling [  37 ]. Both of them are based on the manipulation of DCT

coefficients in the JPEG framework. After obtaining the DCT coefficients from 8×8 image patches,

P3 separates the AC coefficients given a predefined threshold value. It then stores the coefficients

that are smaller than the threshold value as the public image. The secret image contains the DC

1
 ↑ Since we fix the utility values, in this case, x1,...,k are the facial landmark vectors.
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Algorithm 1: Workflow of the k-same based methods.
Input: Clear face datasetMc, privacy constant k with |Mc| ≥ k
Output: Obscured face datasetMo

Mo ← ∅;
for i ∈Mc do

if |Mc| < k then
k = |Mc|;

end
Select the k nearest neighbors x1, . . . , xk ∈Mc;

xo ←
∑k

m=1 xm

k
;

Add k copies of xo toMo;
Remove x1, . . . , xk fromMc;

end

coefficients and the AC coefficients that are higher than the threshold value. In this thesis, we

choose the threshold value as 10. For the scrambling method, it first evenly and randomly flips

the DCT coefficients and stores the result as the public image. For the secret part, it only stores

the random seed. Therefore, it can restore the image by undoing the flipping process based on

the random seed. In this thesis, we scramble both DC and AC DCT coefficients for all YUV

components, which is the high-level scrambling as proposed by [ 37 ].

2.2.5 Experiment

Datasets. We use the FaceScrub dataset [ 30 ] and LFW dataset [ 48 ] in this thesis. The Face-

Scrub dataset [ 30 ] is a benchmark for face identification which contains 106,863 images from 530

identities. The LFW dataset [  48 ] is a benchmark for face verification which contains 13,233 im-

ages from 5,749 identities. We use the LFW dataset for the verification attack and the FaceScrub

dataset for the identification and reconstruction attacks. We choose the FaceScrub dataset for the

reconstruction attack, since it contains more images for each identity with various poses. For the

identification attack, we split the images from each identity into training, validation, and testing

sets with the ratio of 6 : 2 : 2. For the verification and reconstruction attacks, we split the identities

into three groups for the purpose of training, validation, and testing with the same ratio. We do so

49



to verify if the verification and reconstruction models are able to recover unknown identity instead

of just memorizing faces.

Obscured Face Identification Attack. This attack is designed to quantify the obscuration

performance in the face identification scenario. To have a more generalizable conclusion, we run

the experiments based on two widely used backbone models, VGG19 and ResNet50. The input

images are resized to 128 × 128 and the output is the softmax score for classification. We use the

stochastic gradient descent (SGD) optimizer with weight decay of 0.0001. The initial learning rate

is 0.001 and starts to decay linearly with the ratio of 0.02 after 50 epochs.

Based on the three threat models, we design the experiments as follows. In the first experiment

for T1, the identifier is trained with the set of clear images and tested with obscured images. In

the second experiment for T2, the identifier is trained on both clear and obscured images and

tested with the obscured images of the obscuration method not used in the training set. Although

including both clear and obscured images during training downgrades the testing accuracy of the

clear images, it achieves better testing accuracy of obscured images than training without the clear

images. Therefore the attackers are trained with clear and obscured images jointly The intuition

of threat model T2 is to verify if we can enforce the attacker to learn more robust features from

this complex dataset. This can be seen as data augmentation. Specifically for the three traditional

methods, we use the obscured images from two methods during training and use the other one for

testing. For the k-same based methods and privacy-preserving image sharing methods, we train

on all three traditional methods. Jointly training on clear and obscured images provides a better

accuracy compared to learning from the obscured images themselves. In the third experiment

for T3, each identifier is trained on both clear and obscured images and tested with the obscured

images using the same obscuration method. We train and test the attackers for different obscuration

methods separately, since different obscuration methods have different features. For example,

pixelation has sharp block artifacts, while Gaussian blurring is more smoothing.

Obscured Face Identification Attack Result. Table  2.2 shows the identification accuracy

from different obscuration methods and threat models. The lower the identification accuracy, the

better the performance of the obscuration method. The results of the clear images under T2 and T3

are obtained by training on all three traditional methods and testing on the clear images.
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Table 2.2. Top-1 accuracy of the identification attack. The method Clear means
the identification of the clear image. The lower the accuracy, the better the obscura-
tion method.

Method Setting Threat Model T1 Threat Model T2 Threat Model T3
VGG19 ResNet50 VGG19 ResNet50 VGG19 ResNet50

Clear - 0.838 0.890 0.886 0.884 0.886 0.884

Gaussian

5 0.787 0.853 0.829 0.909 0.891 0.867
15 0.106 0.219 0.548 0.773 0.863 0.847
25 0.010 0.030 0.236 0.573 0.830 0.819
35 0.007 0.009 0.152 0.430 0.811 0.798

Median

5 0.786 0.855 0.883 0.907 0.913 0.907
15 0.185 0.229 0.735 0.823 0.889 0.885
25 0.025 0.035 0.357 0.489 0.856 0.842
35 0.011 0.014 0.213 0.270 0.805 0.798

Pixelation

5 0.055 0.208 0.408 0.606 0.877 0.884
15 0.004 0.003 0.008 0.008 0.651 0.643
25 0.003 0.002 0.005 0.004 0.461 0.408
35 0.004 0.002 0.004 0.005 0.373 0.323

k-same [ 11 ] 10 0.012 0.012 0.013 0.012 0.050 0.063
k-same-net [ 15 ] - 0.091 0.081 0.091 0.088 0.095 0.092
UP-GAN [ 34 ] - 0.091 0.082 0.090 0.088 0.093 0.088

P3 [ 35 ] 10 0.001 0.002 0.002 0.002 0.678 0.579
Scrambling [ 37 ] - 0.002 0.002 0.004 0.003 0.784 0.750
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We first compare the same method and same backbone model with different threat models.

As the attackers get more information (i.e., from T1 to T3), the identification accuracy increases.

This means that the identifiable information left in the obscured images can still be learned by

the attackers given proper training data. For example, the accuracy of Gaussian-35 with VGG19

increases from 0.007 to 0.811 for T1 and T3, respectively. Therefore, Gaussian blurring completely

fails to provide privacy for T3, although visually speaking a human is not able to identify someone

from the obscured images. A similar conclusion can be drawn for median blurring. Although

pixelation with a large pixel size can achieve a relatively good performance, comparing the results

from T1 to T3, the attacking accuracy still improves a lot. e.g., for pixelation-35 with VGG19,

the accuracy increases from 0.004 to 0.373, for T1 and T3, respectively. The three k-same based

methods achieve a good obscuration performance even for T3. For the privacy-preserving image

sharing methods, although they achieve the best performance under T1 and T2, they still fail to

provide a good obscuration under T3. Surprisingly, even for the scrambling method which involves

a random flipping process, the attackers can still extract useful features for accurate identification.

Note that these conclusions do not change for different backbone models.

Considering T1 itself, besides Gaussian-5 and median-5, all methods achieve an effective ob-

scuration on both VGG19 and ResNet50 models. This means that the attackers fail to extract

identifiable information from the obscured images if they solely learn from the clear image. For

the three traditional methods, the obscuration performance gets better (i.e., identification accuracy

gets lower) as the kernel size increases. The original k-same method achieves the best obscuration

performance among the three k-same based methods. For k-same-net and UP-GAN, since they

allow the input of utility information to generate obscured faces, their obscuration performance is

a little bit worse than the original k-same method. Both of the privacy-preserving image sharing

methods achieve the performance of randomly guessing, which means the attackers cannot extract

any identifiable information from the obscured images.

For T2, by introducing more informative training set, all traditional methods have worse perfor-

mance, besides pixelation-25 and pixelation-35, which are relatively close to the results obtained

from T1. The obscuration performance of Gaussian and median blurring drops significantly (i.e.,

the identification accuracy greatly increases). Because the two methods share similar blurring ef-

fects, the attackers can learn more robust features from the augmented training set. The augmented
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training set contains both obscured and clear images as previously mentioned. For the k-same

based methods and privacy-preserving image sharing methods, compared to T1, the augmented

training set still does not provide useful knowledge for the attackers.

For T3, both attackers achieve the strongest attack for all cases. Even for pixelation-35, which

only contains 9 distinct pixel values, both attackers can still achieve a identification accuracy over

0.5, which is much bigger than the accuracy of randomly guessing (0.002). The three k-same

based methods achieve the best obscuration performance by a great margin when compared to

other methods. Surprisingly, the two privacy-preserving image sharing methods have a much

worse performance compared to their performance in T1 and T2. Even successfully concealing

the identifiable information in terms of human perception, both methods fail to provide effective

obscuration.

Therefore, based on the results from the identification attack, the k-same based methods (k-

same, k-same-net, and UP-GAN) achieve the best obscuration performance.

Obscured Face Verification Attack. The input images are resized to 128 × 128. According

to [ 42 ], we choose the dimension of the embedding vector as 512 and margin m as 0.5. However,

if we use the re-scale factor s = 64 as suggested by the original paper, we are not able to obtain

a stable result. Therefore, after several experiments, we empirically choose the re-scale factor as

s = 11 for VGG19 and s = 8 for ResNet50, which provides the best performance according to the

validation set. The batch size is chosen as 128. We choose the SGD optimizer with a weight decay

of 5e−4. The learning rate starts at 0.1 and is divided by 10 at the epochs of 6, 11, and 16. For

the training of P3 and scrambling, we reduce the starting learning rate to 0.05 due to convergence

issues. We implement the experiments based on the three threat models. Since the face verification

problem is just a binary classification problem, we choose the area under the curve (AUC) of the

receiver operating characteristic (ROC) curve to examine the performance.

During testing we need to obtain pairs of faces with the same identity and pairs of faces with

different identities. Due to the large number of combinations of valid pairs from the testing set, in

our implementation, we only compute all valid pairs within each mini-batch (128 images which

are coming from 64 identities). Furthermore, we run testing 10 times with different combinations

of image pairs. The average AUC is been reported in Table  2.3 . The standard deviation for the tests
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ranges from [0.004, 0.093]. Therefore, we can directly use the average AUC to compare different

experiments because of the small variation.

Obscured Face Verification Attack Result. Table  2.3 shows the verification AUC from dif-

ferent obscuration methods, threat models and backbone models. The lower the AUC, the better

the performance of the obscuration method. We first compare the same method and same back-

bone model to different threat models. As the attackers get more information (from T1 to T3),

the verification AUC increases. Take Gaussian-35 with ResNet50 as an instance. The AUC in-

creases from 0.629 to 0.962 for T1 and T3, respectively. Note that the AUC for randomly guessing

is 0.5. This means that although Gaussian-35 can successfully defend from the attack under T1,

after introducing the obscured data in the training set, the attackers can still extract enough identi-

fiable information to achieve a high accuracy verification. For the k-same based methods, similar

to the identification attack, they achieve a robust obscuration performance even for T3. For the

privacy-preserving image sharing methods, both of them succeed in T1 and T2, but fail to obscure

the identities under T3. Note that for different backbone models, although there is a small perfor-

mance difference, choosing different models does not affect the conclusions reached above.

Consider different methods with the same threat model and backbone model. For the tradi-

tional methods, a similar conclusion to the identification attack can be drawn. As the kernel (pixel)

size increases, the AUC decreases for all cases, especially for pixelation-35 with VGG19 which

achieves the best performance among the traditional methods. The k-same based methods achieve

good results for all threat models and both attackers, which agrees with the conclusion from the

identification attack. Although the privacy-preserving image sharing methods can conceal identi-

ties well under T1 and T2, for the stronger T3, both of them fail to provide effective obscuration.

Therefore, based on the results from the verification attack, the k-same based methods (k-same,

k-same-net, and UP-GAN) achieve the best obscuration performance.

Obscured Face Reconstruction Attack. Previously, we show that most of the obscuration

methods fail to remove all identifiable information. In this reconstruction attack, we use the re-

maining information from these obscured images to recover the clear image. If the remaining

information has a strong correlation with the information from the clear image, we can reconstruct

the original face with a high accuracy. We choose Pix2Pix [ 38 ] which is a GAN model designed

for image-to-image translation as our reconstruction model.
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Table 2.3. AUC of ROC for the verification attack. The lower the AUC, the better
the obscuration method.

Method Setting Threat Model T1 Threat Model T2 Threat Model T3
VGG19 ResNet50 VGG19 ResNet50 VGG19 ResNet50

Clear - 0.983 0.981 0.983 0.981 0.983 0.981

Gaussian

5 0.971 0.993 0.933 0.966 0.900 0.967
15 0.756 0.878 0.909 0.950 0.901 0.952
25 0.572 0.742 0.865 0.942 0.879 0.948
35 0.512 0.629 0.852 0.918 0.893 0.962

Median

5 0.959 0.963 0.954 0.960 0.922 0.954
15 0.675 0.835 0.918 0.945 0.913 0.948
25 0.570 0.668 0.853 0.884 0.908 0.931
35 0.539 0.592 0.832 0.837 0.877 0.933

Pixelation

5 0.806 0.865 0.909 0.921 0.955 0.954
15 0.543 0.542 0.794 0.709 0.856 0.926
25 0.510 0.539 0.681 0.709 0.793 0.890
35 0.505 0.530 0.530 0.598 0.630 0.792

k-same [ 11 ] 10 0.573 0.580 0.573 0.588 0.695 0.768
k-same-net [ 15 ] - 0.505 0.493 0.503 0.504 0.497 0.492
UP-GAN [ 34 ] - 0.500 0.499 0.506 0.490 0.494 0.497

P3 [ 35 ] 10 0.503 0.502 0.496 0.500 0.524 0.899
Scrambling [ 37 ] - 0.544 0.549 0.595 0.568 0.951 0.928
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Assume that the obscured images and clear images come from two distinct distributions. The

reconstruction model aims to find a mapping function from the obscured image distribution to the

clear image distribution. To quantify the reconstruction performance, we choose mean square error

(MSE) as the metric to calculate pixel-wise distance between the clear image and the reconstructed

image. The value range of the clear image and reconstructed image is [0, 1]. To evaluate similarity

of the identifiable information from the reconstructed image and the clear image, we use the identi-

fication accuracy obtained from the ResNet50 model which is pretrained on the clear images. This

is the same setting as T1, since the attacker is trained with clear images and tested with obscured

images.

Obscured Face Reconstruction Attack Result. Figure  2.12 shows the reconstruction results

from the eight obscuration methods. Visually, the three k-same based methods can successfully

prevent reconstruction compared with other methods. Although the privacy-preserving image shar-

ing methods can prevent identification in terms of human perception, the reconstruction model can

still recover the images fairly accurately, especially for P3. For the three traditional methods,

pixelation-25 achieves a better obscuration performance compared to Gaussian-25 and median-25.

Table  2.4 shows the results of the face reconstruction attack. Note that setting Clear means

we input clear images to Pix2Pix model to achieve an identity mapping. The exact MSE for the

clear image is 0.000144 and the exact MSE for Gaussian-5 is 0.000289. For the three traditional

methods, with the kernel size increases, the reconstruction MSE increases and the identification

accuracy decreases. Compared to the identification attack of T1, this reconstruction process can

help the attackers achieve a stronger attack, since the accuracy from the reconstructed images is

higher than the obscured images for most cases. The k-same based methods achieve both high

MSE and low identification accuracy. Compared to the three k-same methods, the two privacy-

preserving image sharing methods are vulnerable to the reconstruction attack, because of their low

MSE.

Therefore, as with the conclusion in the identification and verification attack, these two meth-

ods also fail to conceal identity on this reconstruction attack and the k-same based methods (k-

same, k-same-net, and UP-GAN) achieve the best obscuration performance.
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Table 2.4. MSE and identification accuracy of the reconstruction attack. The
arrows next to MSE and Accuracy indicate that the higher the MSE and the lower
the identification accuracy are, the better the obscuration method is.

Method Setting MSE↑ Accuracy↓
Clear - 0.000 0.849

Gaussian

5 0.000 0.824
15 0.001 0.707
25 0.002 0.519
35 0.002 0.367

Median

5 0.001 0.774
15 0.003 0.356
25 0.004 0.152
35 0.007 0.102

Pixelation

5 0.004 0.439
15 0.014 0.043
25 0.022 0.013
35 0.031 0.006

k-same [ 11 ] 10 0.029 0.005
k-same-net [ 15 ] - 0.064 0.018
UP-GAN [ 34 ] - 0.059 0.003

P3 [ 35 ] 10 0.013 0.339
Scrambling [ 37 ] - 0.018 0.042
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2.3 Utility-Preserving Face Obscuration via Face Reenactment

2.3.1 Overview

Previously, we introduced a deep learning-based model, UP-GAN, that is able to generate syn-

thetic faces that preserve the utility information while also removing identifiable information from

the original faces. By swapping the generated face back on the original image, we can produce an

effective obscuration that not only removes personal identifiable information, but also retains the

information that does not reveal identity, such as expression, age, gender and skin tone. As shown

in Figure  2.13 , the proposed method is required to generate a synthetic identity appearance and

transfer the appearance to the target pose at the same time. In order to generate a synthetic identity

with consistent appearance given the same appearance information but different pose information,

the model needs to decouple the appearance and pose information when generating the synthetic

image. Based on our experiment, the proposed method may fail to produce a consistent identity for

certain poses and expressions, like rotating head or opening mouth. Therefore, we need to improve

our model by explicitly decoupling the synthetic appearance generation process and the facial pose

transformation process.

With the fast development of generative adversarial networks (GANs), recent methods, such

as ProGAN [ 5 ] and StyleGAN [ 4 ], can generate photo-realistic synthetic face images. These high-

fidelity synthetic faces can be used for our face obscuration task. Figure  2.14 shows the block

diagram of the approach we propose to solve the previously mentioned issue. First, a face dataset

that contains the high quality synthetic faces is generated. With the high-fidelity face generator,

such as ProGAN [ 5 ] and StyleGAN [  4 ], the variety of synthetic faces with different age, gender,

and skin tone can be generated. Since these synthetic faces are not from real person, we will

use these faces as the surrogate appearance information for redaction, instead of generating the

synthetic appearance within our model. Given an input face to be redacted, we find its closet

matched face in the synthetic dataset as the surrogate appearance. The matching process is done

by simply finding the best match of the utility information from the synthetic faces to the input

face. The proposed face reenactment model needs to transfer the synthetic face given to the target

facial pose and expression given by the original input face. Our reenactment model is required

to transfer pose and expression in one-shot (i.e., transfer the pose and expression based on only
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one input image). By doing so, the synthetic appearance generation process and the facial pose

transformation process are decoupled. Therefore, we are able to produce a consistent synthetic

identity from different target poses and expressions.

Figure 2.13. The Block Diagram of the proposed UP-GAN.

Figure  2.15 shows the reenacted faces produced by the proposed method. Given an input

face image of a source identity, the proposed one-shot face reenactment model, FaR-GAN, is

able to transform the expression from the input image to any target expression. The reenacted

faces have the same expression captured by the target landmarks, while also retaining the same

identity, background, and even clothes as the input image. Therefore, the proposed one-shot face

reenactment model requires no assumption about the source identity, facial expression, head pose,

and image background.

2.3.2 Related Work

Face Reenactment by 3D Modeling. Modeling faces in 3D helps in accurately capturing their

geometry and movement, which in turn improves the photorealism of any reenacted faces. Thies

et al. [ 49 ] propose a real-time face reenactment approach based on the 3D morphable face model

(3DMM) [  50 ] of the source and target faces. The transfer is done by fitting a 3DMM to both

faces and then applying the expression components of one face onto the other [ 51 ]. To achieve
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Figure 2.14. The Block Diagram of Use Face Reenactment Method for Utility-
Preserving Face Obscuration.

Figure 2.15. One-shot face reenactment results from the proposed model. The
proposed method takes a face image from a source identity (visualized on the left
column) and a target landmark mask (visualized on the top row), and then outputs
the face of the source identity but with the target expression.
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face synthesis based on imperfect 3D model information, they further improve their method by

introducing a learnable feature map (i.e., neural texture) alongside the UV map from the coarse

3D model as input to the rendering system [ 52 ]. During 2D rendering, they also design a learnable

neural rendering system that is based on U-Net [ 53 ] to output the 2D reenacted image. The entire

rendering pipeline is end-to-end trainable.

Face Reenactment by GANs. Generative adversarial networks have been successfully used

in this area due to their ability to generate photo-realistic images. They are able to achieve high

quality and high resolution unconditional face generation [ 4 ], [ 5 ], [ 54 ]. ReenactGAN, proposed by

Wu et al. [  55 ], first maps the face that contains the target expression into an intermediate boundary

latent space that contains the information of facial expressions but no identity-related information.

Then the boundary information is used for an identity-specific decoder network to produce the

reenacted face of the specific identity. Therefore, their model cannot be used for the reenactment

of unknown identities.

To solve this issue, few-shot or even one-shot face reenactment methods have also been devel-

oped in the recent work [ 56 ]–[ 58 ]. Wiles et al. [ 56 ] propose a model, namely X2Face, that is able

to use facial landmarks or audio to drive the input source image to a target expression. Instead

of directly learning the transformation of expressions, their model first learns the frontalization of

the source identity. “Frontalization” is the process of synthesizing frontal facing views of faces

appearing in single unconstrained photos [ 59 ]. Then it produces an intermediate interpolation map

given the target expression to be used for transferring the frontalized face. Zakharov et al. [  57 ]

present a few-shot learning approach that achieves the face reenactment given a few, or even one,

source images. Unlike the X2Face model, their method is able to directly transfer the expression

without the intermediate boundary latent space [ 55 ] or interpolation map [ 56 ]. Zhang et al. [ 58 ]

propose a one-shot face reenactment model that only requires one source image for training and

inferencing. They use an auto-encoder-based structure to learn the latent representation of faces,

and then inject these features using the SPADE module [ 60 ] for the face reenactment task. The

SPADE module in our proposed method is inspired by their work. However, instead of using the

multi-scale landmark masks used by [ 58 ], we use learnable features from convolution layers as the

input to the SPADE module.
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2.3.3 Proposed Method

Model Architecture. Figure  2.16 shows the generator architecture of the proposed FaR-GAN

model. The model consists of two parts: embedder and transformer. The embedder model aims to

learn the feature representation of facial expressions given a set of facial landmarks. In this thesis,

we adopt a similar color encoding method proposed in [ 57 ] to represent the facial landmarks. More

specifically, we use distinct colors for eyes, eyebrows, nose, mouth outlier, mouth inlier, and face

contour. We also tried to use a binary mask to represent the landmark information (i.e., set 1 for the

facial region and set 0 for the background), but it did not give us a better result. We will show the

comparison of results with different landmark representations in Section  2.3.4 . The transformer

model aims to use the landmark features from the embedder model to reenact the input source

identity with the target landmarks. The transformer architecture is based on the U-Net model [ 53 ].

The U-Net model is a fully convolutional network for image segmentation. Besides its encoder-

decoder structure for local information extraction, it also utilizes skip connections (the gray arrows

in Figure  2.16 ) to retain global information.

A similar generator architecture can be found in [ 57 ] but with several differences. First, instead

of using the embedder to encode appearance information of the source identity, we use it to extract

the target landmark information. The embedder model is a fully convolutional network that contin-

uously downsamples the feature resolution with maxpooling or average-pooling layers. Therefore,

the spatial information of the input image will be lost due to the downsampling process. To encode

the appearance information of the source identity, the output features are required to represent a

large amount of information including the identifiable information, hair style, body parts (neck

and shoulders), and even background. Therefore, it is challenging for the embedder model to learn

precise appearance information with the loss of the spatial information. In our approach, we use

the embedder model to encode the facial landmarks, which contains much less information than

the aforementioned appearance features. Moreover, instead of outputting a single 1D embedding

vector [  57 ], we use the embedder features from all resolutions obtained after the downsampling

process. With this, we can assure the embedder features contain the required spatial information

for expression transformation.
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Figure 2.16. The generator architecture of the proposed FaR-GAN model.
Given target facial landmarks and a arbitrary source identity, the proposed model
learns to transfer facial expression for the source identity. The embedder model
learns the feature representation of the facial expression defined by the landmarks.
The transformer model uses the features from the embedder to generate a new face
of the source identity but has the same facial expression as the target landmarks.
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Figure 2.17. Architecture of the SPADE module. This figure is based on [  60 ].
SPADE module maps the input landmark mask to the modulation parameters γ and
β through a set of convolution layers. Then the element-wise multiplication and
addition are used for γ and β, respectively to the batch-normalized input feature.
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The adaptive instance normalization (AdaIN) module has been successfully used for face gen-

eration in previous work [ 4 ], [  54 ], [  57 ]. In [ 57 ], they use AdaIN modules to inject the appearance

information into the generator model to produce the reenacted face by assigning a new bias and

scale of the convolution features based on the embedder features. However, since we need to in-

ject landmark information, which comes from a sparse landmark mask, we cannot simply adopt

the AdaIN module in our method. This is because, the instance normalization (e.g., AdaIN) tends

to wash away semantic information when applied to uniform or flat segmentation masks [ 60 ],

such as our input landmark masks. Instead, we propose using the spatially-adaptive normalization

(SPADE) [ 60 ] module to inject the landmark information. As the name indicates, the SPADE mod-

ule is a feature normalization approach that uses the learnable spatial information from the input

features. Similar to batch normalization [ 61 ], the input convolution features are first normalized in

a channel-wise manner, and then modulated with a learned scale and bias, as shown in Figure  2.17 .

The output of the SPADE module can be formulated, as shown in Equation  2.1 .

γc,x,y(m)hn,c,x,y − µc
σc

+ βc,x,y(m) (2.1)

where m is the input landmark mask or intermediate convolution features from the embedder,

hn,c,x,y is the input convolution feature from mini-batch n ∈ N , channel c ∈ C, dimension x ∈ W ,

and dimension y ∈ H , γc,x,y is the new scale, and βc,x,y is the new bias. The mean µc and standard

deviation σc of the activation in channel c are defined in Equation  2.2 and  2.3 .

µc = 1
NHW

∑
n,x,y

hn,c,x,y (2.2)

σc =
√√√√ 1
NHW

∑
n,x,y

(h2
n,c,x,y − µ2

c) (2.3)

This SPADE module has been successfully used for the face reenactment task in [ 58 ]. As

shown in Figure  2.16 , in our method, the input to the SPADE block is the convolution features

from the embedder network. In [ 58 ], they use a group of multi-scale landmark masks as the input

to the SPADE blocks, instead of the deep features from our proposed method. However, in our

experiment, if we use these multi-scale masks instead of deep features as input to the SPADE
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Figure 2.18. The artifacts of using multi-scale masks as input to the SPADE
module. The landmark contours are still visible in the output images of the trans-
former model.

blocks, the output reenacted faces will contain the artifacts from the input landmark contours, as

shown in Figure  2.18 . Similar to [ 62 ], we use the features from the embedder network to inject the

landmark information into the transformer model.

There are many aspects in human portraits that can be regarded as stochastic, such as the exact

placement of hairs, stubble, freckles, or skin pores [ 4 ]. Inspired by StyleGAN [ 4 ], we introduce

stochastic variation into our transformer model by injecting noise. The noise injection is executed

for each resolution of the decoder part of the transformer model. More specifically, we first sample

an independent and identically distributed standard Gaussian noise map z of size H ×W , where

H and W are the spatial resolution of the input feature. Then a noise block with the number of

channels C is obtained by scaling the noise map z with a set of learnable scaling factors for each

channel. We inject the noise block by adding it element-wise with the input features.

We adopt the design of [ 18 ], [  38 ] for our discriminator. More specifically, the input to our

discriminator is the reenacted face concatenated with the target landmark mask, or the ground

truth face image with its corresponding landmark mask. Therefore, the discriminator aims to

guide the generator to produce a realistic face and also faces with the correct target landmarks. In

Section  2.3.4 , we will provide an ablation study to show the importance of the discriminator.

Loss Function. The proposed model including both embedder and transformer is trained end-

to-end. Assume we have a set of videos that contain the moving face/head of multiple identities.

We denote xi(t) as the i-th video and t-th frame. Assume xi(t1) and xi(t2) are two random frames
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from a video. Therefore, the two frames xi(t1) and xi(t2) contain the same identity but with

different facial expressions and head poses. We formulate our generator function G as follows:

x̂i(t2) = G(xi(t1),mi(t2)) (2.4)

where m is the landmark mask. The generator loss function is defined in Equation  2.5 .

LG = Ladv + LL1 + Lp + Lid (2.5)

where

Ladv = Exi,mi
[(D(x̂i(t2),mi(t2))− 1)2]

LL1 = ‖x̂i(t2)− xi(t2)‖

Lp =
∑
l∈Φ
‖φl(x̂i(t2))− φl(xi(t2))‖

Lid =
∑
l∈Ψ
‖ψl(x̂i(t2))− ψl(xi(t2))‖.

Ladv is the generator adversarial loss, which is based on LSGAN [ 63 ]. We compared the results

from the vanilla-GAN [ 16 ], LSGAN [ 63 ], and WGAN-GP [ 64 ] and chose LSGAN based on the

visual quality of reenacted images. LL1 is the pixel-wise L1 loss to minimize the pixel difference

of the generated image and the ground truth image. Lp is the perceptual loss for minimizing the

semantic difference, which was originally proposed by [ 28 ]. Φ is a collection of convolution layers

from the perceptual network and φl is the activation from the l-th layer. In this thesis, the perceptual

network is a VGG-19 model [ 8 ] pretrained on the ImageNet dataset [ 29 ]. To enforce the reenacted

face to have the same identifiable information as the input source identity, we add an identity loss

Lid, which is similar to the perceptual loss, but with a VGGFace model [  43 ] pretrained for face

verification.

The discriminator loss function is based on the LSGAN loss function, which is defined as

follows:
LD =Exi,mi

[(D(x̂i(t2),mi(t2)))2]+

Exi,mi
[(D(xi(t2),mi(t2))− 1)2]

(2.6)
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Implementation Details. As shown in Figure  2.16 , the convolution layers in the embedder

model are a set of residual convolution layers [ 9 ]. This is adopted from [  57 ], which also adds

the spectral normalization [ 65 ] layers to stabilize the training process. The transformer network

consists of input/output convolution layers, downsampling convolution layers, upsampling convo-

lution layers, and SPADE convolution blocks. The input/output convolution layers only contain

convolution layers; so the feature resolutions do not change. The downsampling convolution layers

consist of an average-pooling layer, convolution layer, and spectral normalization layer. The up-

sampling convolution layers consist of a de-convolution layer followed by a spectral normalization

layer to upsample the feature resolution by a factor of 2. The SPADE convolution block contains

the noise injection layer followed by the SPADE module. For the discriminator, we use the same

structure proposed by [ 38 ], with the two downsampling convolution layers.

Previously, the self-attention mechanism has been successfully used for GANs that generate

high quality synthetic images [ 66 ]. To ensure that the generator learns from a long-range of in-

formation within the entire input image, we adopt the self-attention module in both the generator

and discriminator. More specifically, for the generator, we place the self-attention module after the

upsampling convolution layers of the feature resolutions of 32× 32 and 64× 64, which is similar

to the implementation in [ 57 ]. For the discriminator, we place the self-attention module after the

second downsampling convolution layer.

During training, in order to balance the magnitude of each term in the loss function, we choose

the weights for LL1, Lp, and Lid as 20, 2, and 0.2, respectively. These weights could be different

when using different datasets or different perceptual networks. We use the Adam optimizer [ 67 ]

for both the generator and discriminator with the initial learning rate as 5e−5. The learning rate

decays linearly and decreases to 0 after 100 epochs.

2.3.4 Experiment

Dataset. We use the VoxCeleb1 dataset [ 68 ] for training and testing our method. It contains

24,997 videos from 1251 different identities. The dataset provides cropped face images extracted

at 1 frame per second and we resize these images to 256 × 256. Dlib package [ 31 ] is used for

68



extracting 68-point facial landmarks. We split the identities into training and testing sets with the

ratio of 8 : 2 in order to assure that our model is generalizable to new identities.

Experimental Results. We compare the proposed method against two methods, the X2Face

model [ 56 ] and the few-shot talking face generation model (Few-Shot) [  57 ]. X2Face contains

two parts: an embedder network and a driver network. Instead of directly mapping the input

source image to the reenacted image, their embedder learns to frontalize the input source image

and the driver network produces a interpolation map given the target expression to transform the

frontalized image. To compare with the X2Face model, we use their model with pretrained weights

provided by the authors and evaluate on the VoxCeleb1 dataset. The Few-Shot model also contains

two parts: an embedder network and a generator network. As described in Section  2.3.3 , their

embedder learns to encode the appearance information of the source image, while the generator

learns to generate the reenacted image given the appearance information and target landmark mask.

For the Few-Shot model, since the authors only provide the testing results, we directly use these

results for comparison. Both the X2Face and Few-Shot method require two stages of training. The

first stage uses two frames from the same video, while the second stage requires the frames from

two different videos. By doing so, they can ease the training process at the beginning by using the

frames that contain the same identity and similar background information. Then for the second

stage, they use the frames from two different videos to ensure that the reenacted face contains

the same identifiable information as the input source identity. As mentioned in Section  2.3.3 , the

proposed method requires only the first stage training.

In this section, we provide both qualitative and quantitative results comparison. For the quan-

titative analysis, we use the following metrics to evaluate the reenacted images in terms of image

quality and the performance of the preservation of source identity:

• Structured Similarity Index (SSIM) [ 69 ]: we use SSIM to measure the image quality of the

reenacted images. SSIM measures low-level similarity between the ground truth images and

reenacted images [ 57 ], such as color and shape. The higher the SSIM is, the better the quality

of the generated images are.

• Fréchet-Inception Distance (FID) [ 33 ]: we use FID to measure the image quality of the

generated images. It measures perceptual realism based on an InceptionV3 network that was
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pretrained on ImageNet dataset for image classification (the weights are fixed during the FID

evaluation). Given a set of synthetic images (i.e., reenacted images) and a set of real images

(i.e., video frames), FID computes their statistical difference based on the InceptionV3 fea-

tures. Therefore, it measures both high frequency and low frequency components. FID has

been used for image quality evaluation in many work [ 4 ], [ 5 ]. In this thesis, the FID score

is computed using the default setting  

2
 (using the final average pooling features from the

InceptionV3 network). The lower the FID is, the better the quality of the generated images

are.

• Identity Cosine Similarity (CSIM): a good face reenactment model needs to preserve the

source identity when generating the reenacted images. In this thesis, we use CSIM to mea-

sure the identity similarity between the reenacted images to the source images. CSIM first

encodes the reenacted and source images using a face recognition network and then com-

putes the cosine distance of the encoding vectors to measure the similarity of the identities

between the source image and reenacted image. Following the work [ 57 ], we use Arc-

Face [ 42 ] for the the face recognition network. The higher the CSIM is, the more similar the

identities from the source and reenacted images.

Table 2.5. Quantitative comparison of the proposed method with the compete methods.

Method SSIM↑ FID↓ CSIM↑

X2Face [ 56 ] 0.68 45.8 0.16
Few-Shot [ 57 ] 0.67 43.0 0.15

FaR-GAN (proposed) 0.68 27.1 0.48

Table  2.5 shows the results of the proposed and compared methods. The SSIM, FID, and CSIM

scores of the compared methods are obtained from the original paper [ 57 ]. We first consider the

evaluation of image quality using SSIM and FID. Although the SSIM results are similar for all three

methods, the proposed method outperforms the compared methods in terms of FID. Figure  2.19 

shows the qualitative comparison from the testing set. The results from X2Face contains wrinkle

2
 ↑ The implementation is in https://github.com/mseitzer/pytorch-fid
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Figure 2.19. Face reenactment results from the compared and proposed methods.

artifacts, because it uses the interpolation mask to transfer the source image, instead of directly

learning the mapping function from the source image to the reenacted image. Although the X2Face

result in the first row shows its effectiveness when the change of head pose is relatively small, the

results in the second and third rows show that the wrinkle artifacts get more visible when the

background becomes complex and the change of head pose is larger. Both Few-Shot method and

the proposed method obtain the results with a good visual quality, including transferring accurate

target expression and also preserving the background information. Due to the proposed method of

injecting the noise into the transformer network, the reenacted faces contain more high frequency

information than the Few-Shot model, especially for the woman’s hair from the third testing case.

Because the FID computes the statistical difference from a collection of synthetic images and real

images, it measures both high frequency and low frequency components. Therefore, the proposed

method achieves much lower FID than the two compared methods. We use the identity cosine

similarity (CSIM) to measure the model performance of source identity preservation. As shown in
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Table  2.5 , the proposed method achieves the maximum CSIM score with a large margin compared

to the two competed methods. This shows that the proposed method can more effectively preserve

the source identity when generating the reenacted images.

2.3.5 Ablation Study

Figure 2.20. Ablation study of the use of discriminator.

Figure  2.20 shows our results with and without the discriminator. The result with discriminator

contains more details, like hair, teeth, and background, compared to the result without discrimi-

nator. Therefore, the discriminator does guide the generator (both embedder and transformer) in

producing better synthetic images.

To show the effectiveness of the choice of embedder landmark representation: the contour-

based mask or binary mask, we evaluate the image quality of generated images based on the afore-

mentioned SSIM and FID metrics, as shown in Table  2.6 An example of the landmark binary mask

is shown in Figure  2.21 . Although the SSIM scores are similar, the FID score of the binary mask is

much higher than the contour-based representation. Due to the use of different colors for different
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Table 2.6. SSIM and FID results of the proposed method with different land-
mark representations.

Method SSIM↑ FID↓

FaR-GAN (Mask) 0.67 52.1
FaR-GAN (Contour) 0.68 27.1

Figure 2.21. An alternative landmark representation using a binary mask.

parts of the facial components, the contour-based mask provides additional information for the

embedder to treat different parts of face separately. Thus, it can achieve a better understanding of

facial pose and expression.

Table 2.7. SSIM and FID results of the proposed method with different model components.

Method SSIM↑ FID↓

FaR-GAN (w/o attention and w/o noise) 0.67 63.9
FaR-GAN (w/ attention and w/o noise) 0.66 35.3
FaR-GAN (w/ attention and w/ noise) 0.68 27.1

Table  2.7 shows the ablation study of different model components regarding to the image qual-

ity of the generated images, including self-attention module and noise injection module. Although
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Figure 2.22. Ablation study of different model component settings.

the SSIM scores show the similar performance of the three experiments, the FID scores indicate

the improvement when using these components. Adding the self-attention module reduces the FID

from 63.9 to 35.3 and with the noise injection module, the FID drops to 27.1. Therefore, the two

components indeed help improve the model performance. We also show the visual comparison

of these experiments in Figure  2.22 . The results without self-attention and noise injection contain

blob-like artifacts that are also mentioned in [ 54 ]. In general, both of the results with and without

noise injection achieve a good visual quality. However, the results without noise injection have

some artifacts, as seen in the ear region in the first example and right shoulder region in the second

example. As shown in Figure  2.23 , noise injection can improve the reenacted image quality by

adding high frequency details in the hair region. Therefore, the model with both self-attention and

noise injection modules achieves the best image quality.
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Figure 2.23. Noise injection improves the image quality by adding high fre-
quency details. The difference image has been rescaled for better visualization.
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3. CHANGE DETECTION FOR SATELLITE IMAGERY

3.1 An Attention-Based System for Damage Assessment Using Satellite Imagery

3.1.1 Overview

Natural disasters wreak havoc on nations. They kill approximately 90,000 people every year

and affect 160 million people around the globe [ 70 ]. Furthermore, areas afflicted by weather

and climate disasters sustain significant physical, social, and economic devastation. Short-term

effects of disasters evolve into long-term ramifications that linger for years [ 70 ], [ 71 ]. Considering

economic consequences alone reveals staggering figures. For example, the 2010 Haiti earthquake

inflicted approximately $7.8 billion - $8.5 billion in damages to infrastructure [ 72 ]. In 2019, the

United States endured fourteen distinct natural disasters whose overall damages each exceeded

$1 billion [ 73 ]. Environmental climate analyses also indicate that the frequency and brutality

of natural disasters will increase in the future due to climate change and rising greenhouse gas

emissions [ 71 ], [ 74 ]. The impact of disasters is immediate and far-reaching.

With the increase in severity and regularity of disasters, preparation for disaster recovery and

emergency resource planning is needed now more than ever. Emergency responders require rapid

and reliable situational details to save disaster victims while ensuring their own safety during res-

cue efforts. Moreover, accurate damage estimates assist responders in determining evacuation

plans and in preventing secondary disasters caused by collapses of damaged buildings. In the long

run, damage assessment estimates also empower planning efforts for building and infrastructure

repairs.

Very high resolution (VHR) satellite imagery is increasingly available due to an ever-expanding

fleet of commercial satellites, such as DigitalGlobe’s WorldView satellites [ 75 ]. VHR imagery

enables detailed assessment of disaster damage at the building level. With recent improvements in

machine learning methods, especially deep learning approaches, rapid analysis of large amounts of

VHR satellite imagery is feasible, facilitating damage estimation and disaster relief efforts. In this

section, we propose a deep learning model, Siam-U-Net-Attn, to quickly and accurately estimate

the damage of a disaster. Our approach analyzes two satellite images of the same scene, acquired

before and after the disaster. It then produces a mask showing buildings with labels that indicate

different damage scale levels, as depicted in Figure  3.1 .
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Figure 3.1. Damage scale classification components. From left to right and top to
bottom: pre-disaster input image, post-disaster input image, ground truth mask, and
damage scale classification output mask. The green areas illustrate buildings with
no damage, and the pink areas reveal destroyed buildings.
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3.1.2 Related Work

The proposed method achieves building damage scale classification by localizing the building

area and determining the level of individual building damage. Due to limited amounts of labeled

data, most research addressing damage scale classification instead simplifies this multi-class task

to a two-class change detection operation, which assigns a binary label, damage or no-damage, to

each building. Existing research approaches that focus on change detection fall into several broad

categories [ 76 ].

Algebra-based change detection techniques perform mathematical operations on image pixels

to obtain a difference image. Such approaches, including image differencing [ 77 ] and change

vector analysis [ 78 ], involve a threshold selection process to determine which components changed

in a scene. Algebra-based change detection methods are relatively simple to implement, but they

do not provide contextual information about the detected changes.

Transform-based change detection approaches transform event images. Image transforms, in-

cluding a standard Principal Component Analysis (PCA) approach [ 79 ], strive to determine per-

tinent information for the change detection task. While transforming the images enables analysis

of change in a different dimensionality, it also presents challenges in labeling regions of change in

the event images themselves.

Classification-based change detection methods usually rely on larger amounts of labeled data.

They easily extend to the multi-class damage scale classification task considered in this thesis.

Gueguen et al. [ 80 ] propose a damage detection method that uses a tree-of-shapes representa-

tion [ 81 ] to capture contextual/spatial features. Other types of contextual features are used in [  82 ],

including normalized difference and soil adjusted vegetation indexes. Deep neural networks are

also been used for contextual feature extraction. Xu et al. [  83 ] and Fujita et al. [  84 ] describe

several models for this objective, including a single-stream model and a double-stream model (i.e.,

Siamese network). Their models evaluate two input images of a scene, before and after a disas-

ter. They then produce a single binary classification label, indicating whether the image contains

damage or no-damage. Similarly, Nex et al. [ 85 ] propose a binary classification model based

on DenseNet [ 86 ], modified to use dilated convolution [  87 ] to achieve a larger receptive field.

Mou et al. [ 88 ] and Lyu et al. [ 89 ] introduce Recurrent Neural Networks (RNNs) to jointly
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learn spectral-spatial-temporal features for change detection. Connors et al. [ 90 ] design a semi-

supervised method that uses a Variational Autoencoder (VAE) [  91 ] to infer change detection labels

without ground truth for every training instance. An unsupervised method proposed by Liu et al.

[ 92 ] uses active learning [ 93 ] to construct training samples and a graph convolutional network [ 94 ]

for change detection. However, none of these approaches produce pixel-wise classification masks.

Some approaches strive to construct building damage classification masks in an unsupervised

manner. Sublime et al. [ 95 ] use an autoencoder model to learn the trivial differences (e.g., illumi-

nation changes) between pre-disaster and post-disaster images. Then the non-trivial changes (e.g.,

changes caused by the disaster) can be detected from the high reconstruction error. Doshi et al.

[ 96 ] first train a building semantic segmentation model (supervised) for the pre-disaster and post-

disaster images. Then they compare the difference between the corresponding building masks for

damage assessment (unsupervised). Similarly, Jong et al. [ 97 ] utilize U-Net [ 53 ] for the building

segmentation task. During change detection inferencing, they collect two sets of features from the

trained U-Net (i.e., , activations of different layers in the U-Net), given two query images. Then,

the difference of the two sets of features forms the change detection map. Therefore, they do not

need the ground truth of building changes. Another approach is a deep convolutional coupling net-

work proposed by Liu et al. [ 98 ] that uses both optical and radar images for unsupervised change

detection. They use an ad-hoc weight initialization for the network based on noise models of the

optical and radar images to assist the model in learning the proper features during training.

Supervised classification methods constitute the final category of solutions for the change de-

tection task. Demir et al. [ 99 ] propose a method that only requires the annotation of one image

in a time series. They train a supervised classification model using a dataset constructed by an ac-

tive learning approach [ 93 ]. Rudner et al. [ 100 ] use more information by fusing multi-resolution,

multi-sensor, and multi-temporal information for flooded building segmentation. Chu et al. [ 101 ]

apply deep belief networks (DBNs) [ 102 ] to produce a change detection map. Two DBNs are used

for extracting features from the image regions that contain changes and do not contain changes, re-

spectively. They compare the feature distances obtained from the two DBNs for each image patch

to construct the change detection map. Papadomanolaki et al. [  103 ] combine the U-Net model

with a Long Short-Term Memory (LSTM) [ 104 ] model in order to use temporal information from

multiple frames of satellite imagery. Compared to approaches that use only two input frames, their
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model achieves better performance. Daudt et al. [ 105 ] propose using an encoder-decoder-based

architecture to produce the change detection map. The decoder upsamples features extracted from

the encoder to generate a mask indicating damage levels throughout the region under analysis.

They also improve on this performance in [  106 ] by combining the semantic segmentation task

with the change detection task to achieve multi-task learning. They use two U-Net models in total;

one for each task. The semantic segmentation U-Net utilizes one image (captured either before or

after the change event) to produce the segmentation mask of objects of interest. The change de-

tection U-Net utilizes two images (i.e., , one taken before the change event and one taken after the

change event) as well as the features extracted from the semantic segmentation model to produce

the change detection mask. By fusing the features together, they achieve better performance in the

change detection task. Weber et al. [  107 ] propose a Siamese-based method inspired by Mask R-

CNN [ 108 ]. They first use a shared ResNet model [ 9 ] to extract the features from the pre-disaster

and post-disaster images. Then, they feed the concatenated features to the semantic segmentation

head from Mask R-CNN to obtain the damage scale classification mask.

Inspired by [  105 ], [ 106 ], [ 109 ], [ 110 ], we propose a model that combines the U-Net model with

the Siamese model for multi-task learning. Different from the previous work [ 105 ], [ 109 ], [  110 ],

we use a U-Net model to learn the semantic segmentation of buildings while using the Siamese

model to learn the damage scale classification. In doing so, we achieve multi-task learning of

segmentation and change detection simultaneously. The use of the Siamese model allows us to

reduce both the number of learned parameters and the size of the model in comparison to [ 106 ].

More specifically, we use a shared encoder for the segmentation and change detection tasks instead

of two separate encoders as proposed in [ 106 ]. Additionally, we introduce a self-attention module

that improves performance by incorporating long-range information from the entire image.

3.1.3 Proposed Method

We propose a Siam-U-Net-Attn model for damage classification and building segmentation, as

shown in Figure  3.2 . It is inspired by [ 53 ], [ 105 ]. One element of this architecture is a U-Net model

that analyzes a single input image and produces a segmentation mask showing building locations

in the input image. The U-Net model is a fully convolutional network that was proposed by [ 53 ] for
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Figure 3.2. Architecture of proposed method: Siam-U-Net-Attn-diff. IA and
IB are the pre-disaster and post-disaster input images. IMA and IMB are the cor-
responding output building segmentation masks. IMD is the output damage scale
classification mask. The green regions highlight the U-Net model. The blue region
shows the decoder of the Siamese network.
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image segmentation. Besides its encoder-decoder structure for local information extraction, it also

utilizes skip connections to retain global information. A single U-Net model analyzes input frames

IA and IB, which depict the same scene pre-disaster and post-disaster, respectively. Since the U-

Net focuses on the building segmentation objective, it is agnostic to the disaster. In other words,

we can use the same model for both pre-disaster and post-disaster images to produce binary masks

IMA and IMB, corresponding to their respective input frames. The two green regions in Figure  3.2 

indicate the shared U-Net model for IA and IB.

The features extracted from the encoder regions of the U-Net model also assist in the damage

scale classification task. The two-stream features produced by the U-Net encoder and a new, sepa-

rate decoder constitute the Siamese network, shown as the blue region in Figure  3.2 . In the Siamese

network, we compare features from the two input frames to detect the damage levels of buildings.

Differencing and channel-wise concatenation are two methods to compare the two-stream features.

By comparing features from the two frames, the Siamese model evaluates the differences between

the features in order to assess the damage levels. Figure  3.2 shows the architecture of the Siam-U-

Net-Attn in difference mode (i.e., Siam-U-Net-Attn-diff). The Siam-U-Net-Attn in concatenation

mode (i.e., Siam-U-Net-Attn-conc) can be obtained by replacing the difference operations with

channel-wise concatenation operations. In Section  3.1.5 , we will compare the performance of the

proposed model in difference and concatenation modes.

Analyzing a building by itself is not sufficient for accurate damage level classification. It is also

necessary for the network to consider the area surrounding buildings in its assessment. For exam-

ple, natural disasters such as floods may not damage a building’s roof, but water surrounding the

building may indicate interior damage. Since convolution is a local operation that can only access

local neighborhoods, we use a self-attention module [ 66 ], [ 111 ] to capture long-range information.

Figure  3.3 illustrates the mechanism of the self-attention module introduced in [ 66 ]. Assume the

input feature map is x ∈ RD×N , where N is the flattened size of feature map along the height and

width dimensions (i.e., N = H ×W ) and D is the number of channels of the input features. To

compute the attention map, we first transform the input features into two feature spaces by:

f(x) = Wf x, g(x) = Wgx.
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The attention map is calculated as

a(x) = Softmax(f(x)Tg(x)).

The Softmax function is computed along the second dimension to normalize each row of the atten-

tion map. We then apply the attention map to the input features as:

o(x) = h(x)a(x)T ,

where h(x) = Whx.

Figure 3.3. Architecture of the self-attention module. This modified figure is based on [ 66 ].

Wf ∈ RD×D, Wg ∈ RD×D, and Wh ∈ RD×D are trainable parameters that are implemented

as the convolution operation with a kernel size of 1 × 1. Based on [ 66 ], we choose D = D/8 to
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reduce memory usage. The final output of the self-attention module is a weighted summation of

the original input with the attention feature:

y(x) = γo(x) + x,

where γ ∈ R is also a learnable parameter. Therefore, each value of the self-attention output

contains information of every input feature provided by the attention map. As shown in Figure  3.2 ,

the model invokes a self-attention module after merging the features from the two input frames. It

is important to note that the attention map from the self-attention module requires a lot of memory

for large-resolution features, so we place the module in a low resolution layer of size 32 × 32 to

reduce the memory usage.

3.1.4 Dataset

In this thesis, we use the xView2 dataset [  6 ] for both training and testing. This dataset is de-

signed for the task of building damage assessment and covers a wide variety of disaster events,

including tsunamis, earthquakes, and volcanic eruptions. The training and validation data con-

tains 2,799 pairs of pre-disaster/post-disaster, multi-band images with resolution 1024× 1024 pix-

els. For testing, we use the xView2 challenge testing set that contains 933 pairs of images. The

dataset contains ground truth building masks and classification labels indicating damage levels of

the buildings. Buildings are labeled as no-damage, minor-damage, major-damage, or destroyed.

[ 6 ] describes the scoring method used to assign damage levels to buildings to create the ground

truth masks.

To reduce the memory usage during training and testing, we use image patches of size 256×256

as the inputs to our system. We crop every satellite image into 16 non-overlapping patches, each

sized 256 × 256. More specifically, we first separate the full-resolution images into training and

validation sets and then crop the full-resolution images into patches. This procedure ensures that

the training and validation sets do not contain patches from the same full-resolution image. During

training, we also use data augmentation methods (i.e., horizontal/vertical flipping, random color

jittering, and random cropping) to reduce overfitting. Random color jittering and cropping are ap-

plied independently to pre-disaster and post-disaster images to simulate poor image normalization
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and registration. In our experiments, random cropping is implemented by upsampling the input

image to 286× 286 pixels and then randomly cropping it to a size of 256× 256.

3.1.5 Experiment

As shown in Figure  3.2 , our model consists of five convolution blocks for the encoder and

decoder components. Inspired by the work in [ 112 ], we use SENet [ 113 ] with a ResNeXt50 [ 114 ]

backbone. We utilize cardinality of 32 and internal dimension of 4 for the ResNeXt50 model. Note

that the SE-ResNeXt-50 model is pretrained with ImageNet [ 115 ] for image classification. Each

upsampling block consists of upsampling with bilinear interpolation, convolution, batch normal-

ization, and ReLU layers. The final output damage scale classification mask has five channels, one

for each of the four damage levels plus one background label.

Two-stage training is implemented to facilitate better learning. In the first stage, the U-Net

component (used for building segmentation) is trained on only pre-disaster images. We do so be-

cause the damaged buildings that appear in post-disaster images may adversely affect the model’s

performance on the building segmentation task. In the second stage, the entire model (i.e., U-Net

and Siamese components) is finetuned to learn both building segmentation and damage scale clas-

sification with pre- and post-disaster images. As shown in Section  3.1.6 , two-stage training yields

better results on these two tasks overall.

Table 3.1. Class balancing weights. Weights of the binary cross entropy loss and
multi-label cross entropy loss for the imbalanced building segmentation and damage
scale classification tasks.

Weights Label
0 1 2 3 4

ws stage 1 1 1 - - -
ws stage 2 1 10 - - -

wd 1 10 30 30 30

85



For the loss functions, we use weighted binary cross-entropy loss and multi-label cross-entropy

loss for the building segmentation loss Ls and damage scale classification loss Ld, respectively,

which are defined as:

Ls = −(ws,1ys log ps + ws,0(1− ys) log (1− ps))

Ld = −
5∑
c=1

wd,cyd(c) log pd(c)

ys and ps are the ground truth label and the detected building segmentation probability, respec-

tively, while yd(c) and pd(c) are the ground truth label and the detected classification probability

for damage scale c. ws and wd are weights applied to each class to address the class imbalances

present in our dataset. Table  3.1 shows the empirical weights we use. For Stage 1, the binary cross-

entropy loss with equal weights is used to train the U-Net. For Stage 2, we address the imbalanced

classes issue by assigning higher weights to the building classes since most areas in our images do

not contain any buildings. We also consider the frequency of damaged and undamaged buildings in

xView2. Undamaged buildings are more common than damaged buildings in this dataset. There-

fore, we select larger weights for the damaged building classes (c = 2, 3, 4) compared to the non-

damaged buildings (c = 1) in the damage scale classification loss Ld. As shown in Section  3.1.6 ,

we can achieve a better damage classification performance with the weighted loss functions. The

final loss function for Stage 1 is only the building segmentation loss for the pre-disaster images,

and the final loss function for Stage 2 is the summation of the building segmentation loss and the

damage scale classification loss.

The Adam optimizer [ 67 ] is used for training. We train our model for 50 epochs in Stage 1

with an initial learning rate of 0.001. The learning rate linearly decays to 0.0005 in the final epoch.

In Stage 2, we train our model for another 100 epochs with an initial learning rate of 0.0001. This

time, the learning rate linearly decays to 0 in the final epoch.

Since the models operate on image patches, the model results must be stitched together to create

a full-resolution mask corresponding to the original image dimensions. We use a moving-window

approach to infer full-resolution images from patches with overlapping regions. This inferencing

method is only performed on images in the testing dataset, solely for the purpose of producing

better and more coherent visual results. The goal of using overlapping regions is to reduce abrupt
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edges at the boundaries of adjacent patches. The stride for the moving-window is 64 pixels in both

the vertical and horizontal directions. The model analyzes these patches and produces correspond-

ing segmentation maps. Next, we use a voting strategy for each pixel contained in the overlapping

regions to determine the final segmentation mask. More specifically, we sum the probabilities of

each class to calculate five overall probabilities that a specific pixel belongs to each of the dam-

age level classes. Then, we label the pixel under consideration as the class with the maximum

probability.

Table 3.2. Quantitative performance comparison. The damage scale classifica-
tion performance (harmonic means of F1 scores for all damage scales), the building
segmentation F1 scores, and overall F1 score for the proposed and compared meth-
ods.

Method Damage F1 Segmentation F1 Overall F1

FC-EF [ 105 ] 0.451 0.732 0.535
FC-Siam-diff [ 105 ] 0.447 0.722 0.530
FC-Siam-conc [ 105 ] 0.487 0.752 0.567

Siam-Mask-RCNN [ 107 ] 0.697 0.835 0.738
Siam-U-Net-Attn-diff 0.714 0.823 0.747
Siam-U-Net-Attn-conc 0.707 0.817 0.740

To validate our method, we compare our results with those of two previous works [ 105 ], [ 107 ].

Daudt et al. [ 105 ] proposed three models: fully convolutional early fusion (FC-EF), fully convo-

lutional Siamese-difference (FC-Siam-diff), and fully convolutional Siamese-concatenation (FC-

Siam-conc). The FC-EF model is essentially the U-Net model we described in Section  3.1.3 . Its

input is IA and IB after concatenation along their channels. The FC-Siam-diff and FC-Siam-conc

models utilize the Siamese model without the U-Net decoder used in the proposed method. These

methods are designed for the change detection task and thus operate in a binary classification fash-

ion. To compare these models with our proposed method, we change their output layers from

binary classification layers to multi-class classification layers. Because the authors of these meth-

ods do not provide details about training parameters in their papers (i.e., optimizer and learning

rate), we train their models with the same specifications utilized for our method. Weber et al. [ 107 ]

proposed a Siamese-based model based on Mask R-CNN [  108 ]. They feed pre-disaster and post-
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disaster images through a ResNet-50 backbone [ 9 ] with shared weights. Then they concatenate the

ResNet-50 features for building damage scale classification.

Table  3.2 shows a quantified comparison of damage scale classification and building segmen-

tation results from the xView2 challenge testing set [  6 ]. To evaluate performance, we use the

same evaluation metrics proposed by the challenge. The evaluation metric F1s for the building

segmentation task is defined as:

F1s = 2TPs
2TPs + FPs + FNs

where the TPs, FPs, and FNs are the number of true-positive, false-positive, and false-negative

pixels of segmentation results for the entire testing set. Since the compared methods only produce

multi-class damage scale classification masks, we binarize their outputs to create segmentation

masks for comparison purposes. The evaluation metric F1d for the damage scale classification task

is defined as the harmonic mean of the F1 scores for the four damage scales:

F1d = 4∑
c∈{1,2,3,4}(F1c + ε)−1 ,

where ε = 10−6 to avoid zero division and F1c is the F1 score for the class c, which is defined as:

F1c = 2TPc
2TPc + FPc + FNc

.

The TPc, FPc, and FNc are the number of true-positive, false-positive, and false-negative pixels

of the class c for the testing set. Note that this testing set does not include background pixels; it

only includes pixels from the foreground as determined by the building segmentation ground truth.

As used in the xView2 challenge, we define the final overall F1 as the weighted combination of

30% segmentation F1 and 70% damage F1.

Our proposed models achieve better overall performance than all compared methods, as can

be seen in the third column of Table  3.2 . The Siam-U-Net-Attn-diff model achieves the best

performance overall and produces slightly better results than the model in concatenation mode.

Additionally, our two proposed approaches outperform the compared methods for the damage
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scale classification task. With the help of the self-attention module, the proposed methods produce

better damage scale classification results using long-range information. On the other hand, the

Siam-Mask-RCNN model achieves slightly better segmentation results than our proposed method.

However, its overall performance is still worse than our proposed method because the overall

F1 score weighs the damage scale classification performance more than the segmentation per-

formance. Also, our proposed methods do achieve better performance than the three methods

from [ 105 ] for the building segmentation task. Thus, both of the proposed models achieve better

overall scores than all compared methods.

Figure  3.4 shows the damage scale classification results from the proposed models of the

xView2 testing set. The first row shows a case with a single destroyed building and many build-

ings with no-damage. Both of the proposed methods, especially the Siam-U-Net-Attn-diff model,

achieve accurate damage scale classification and segmentation for most of buildings, including the

small objects. The second row depicts a more difficult case with high building density. In this

example, there are a few destroyed buildings and plenty of buildings with no-damage. Despite the

difficulty of this example, the two proposed methods also provide very good building classification

and segmentation results. Based on the results of these two cases, we show from a visual analy-

sis perspective that the proposed methods correctly localize building pixels and assign the correct

damage labels to them. Thus, our proposed methods adeptly compare the degree of difference

between pre-disaster and post-disaster images.

The third row depicts an even more challenging example with both shadow and cloud cover-

age. Although shadows engulf the buildings in the middle of the post-disaster image, the models

still correctly classify the buildings as no-damage. Therefore, the proposed models are able to

successfully distinguish between changes due to inflicted damage and changes due to illumination.

Another challenge is present in this example in the form of cloud coverage. Although the clouds

block some of the buildings in the bottom and top-right regions of the post-disaster image, our

results show that both of the models still classify the occluded buildings as no-damage. Ground

truth labels are not available for these buildings, so we assume that they are no-damage buildings,

consistent with the buildings in the rest of the image. Based on this assumption, both methods still

correctly assign the no-damage label to the buildings.
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Figure 3.4. Damage scale classification results. From left to right: pre-disaster
image patch, post-disaster image patch, ground truth mask, output of Siam-U-Net-
Attn-diff model, and output of Siam-U-Net-Attn-conc model. Each row depicts a
different scene from the xView2 challenge testing set.

90



Figure 3.5. F1 scores based on damage scale level. These results indicate F1
scores for each damage scale level.
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The last row showcases an example containing no-damage, minor-damage, and major-damage

buildings. The yellowish region in the post-disaster image is a flooded region. Based on the damage

scale definitions from [ 6 ], buildings entirely surrounded by the flood region should be classified as

major-damage buildings, while buildings partially surrounded by the water or close to the water

should be classified as minor-damage. Based on our results, the proposed methods classify most of

the buildings correctly. However, there are still some misclassifications involving minor-damage

and major-damage buildings. In order to correctly classify these buildings, the model not only

needs to measure the damage of buildings themselves but also quantify the distance between the

damage indicators (e.g., flooding region, mud, or volcano flow) and the buildings. In general,

the proposed models still struggle with differentiating between minor-damage and major-damage

buildings.

For further analysis, we plot the damage F1 for each damage scale level in Figure  3.5 . Over-

all, the proposed methods perform better than the compared methods for all damage scale levels.

Most of the methods achieve the best performance on buildings with no-damage and achieve the

worst performance on buildings with minor-damage. As mentioned earlier, minor-damage build-

ings present the greatest challenge to a classification model because these cases do not usually

exhibit visible damage on the buildings themselves. Damage assessment experts from [ 6 ] consider

buildings as minor-damage when they are partially surrounded by indicators such as flooding re-

gions, volcano flow, or burned trees. Similarly, buildings should be classified as major-damage

buildings when such elements completely surround them. Thus, these two similar damage scale

levels present a more significant challenge to damage scale classification models.

Table 3.3. Ablation study of self-attention module.

Method Damage F1 Segmentation F1 Overall F1

Siam-U-Net-diff 0.675 0.822 0.719
Siam-U-Net-Attn-diff 0.714 0.823 0.747

Siam-U-Net-conc 0.701 0.820 0.737
Siam-U-Net-Attn-conc 0.707 0.817 0.740
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An ablation study of the self-attention module was conducted to demonstrate its effectiveness.

The results of the study are shown in Table  3.3 . The network incorporates the self-attention module

in the Siamese part of the network, so attention does not significantly affect the building segmenta-

tion results. Table  3.3 reveals that the model with the self-attention module outperforms the model

without attention on the damage scale classification task. A more significant increase in perfor-

mance is observed for the Siam-U-Net-Attn-diff model. Therefore, these results indicate that using

attention to more explicitly leverage information from the entire image improves the damage scale

classification performance without downgrading the building segmentation results. The utility of

the self-attention module can also be visualized. We portray an attention map in Figure  3.6 to

demonstrate the effectiveness of the self-attention module. For a given query location (i.e., , the

red point in the post-disaster image patch), we obtain the corresponding attention map. Pixel values

in the attention map indicate the importance of that pixel to the query point. The brighter a pixel

is, the more important it is for classifying the query point. In the area shown in the example, the

brownish-yellowish area in the post-disaster image patch indicates the flooding region. According

to the attention map, the self-attention model highlights this flooding area, which aids the model

in classifying the buildings’ damage levels.

Figure 3.6. Attention map visualization. From left to right: pre-disaster image
patch, post-disaster image patch with query point (i.e., , the red point), and attention
map associated with the given query point. Brighter regions in the attention map
signify greater importance of those pixels to the classification of the query point.
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3.1.6 Ablation Study

Ablation Study on Two-Stage Training. Table  3.4 shows the results of single-stage training

and two-stage training. Recall that in two-stage training, we first train the U-Net part of the model

for building segmentation and then include the Siamese model with the weighted loss function

for building damage scale classification. For single-stage training, we train the entire model (U-

Net and Siamese parts) together with the same weighted loss function. As shown in Table  3.4 ,

two-stage training yields better overall performance for both Siam-U-Net-diff and Siam-U-Net-

conc model. Although it does not have a significant effect on the damage scale classification task,

it greatly improves the building segmentation performance. This is because the U-Net model is

first trained on the segmentation task and then finetuned with the damage scale classification task,

which reduces the training complexity compared to when learning both tasks at the same time.

Table 3.4. Ablation study on two-stage training. Two-stage training can improve
the building segmentation performance.

Model Setting Damage F1 Segmentation F1 Overall F1

Siam-U-Net-diff
Single-Stage 0.711 0.796 0.736
Two-Stage 0.714 0.823 0.747

Siam-U-Net-conc
Single-Stage 0.710 0.803 0.738
Two-Stage 0.707 0.817 0.740

Ablation Study on Weighted Loss Function. We use the weighted loss function to address

the class imbalance issue by considering the frequency of damaged and undamaged buildings

in the xView2 dataset. Undamaged buildings are more common than damaged buildings in this

dataset. Therefore, we select larger weights for the damaged building classes compared to those

for the non-damaged buildings in the damage scale classification loss. As shown in Table  3.5 ,

with the weighted loss function, both Siam-U-Net-diff and Siam-U-Net-conc achieve better over-

all performance than the experiments without weighted loss function. Due to the uneven weights

of the building segmentation loss, the model focuses more on the building area, which causes

larger building masks and a lower segmentation F1 score, as shown in Figure  3.7 . However, de-

spite the downgrade of performance on the segmentation task, using the weighted loss function
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causes a significant improvement in the damage scale classification task, leading to better overall

performance.

Table 3.5. Ablation study on weighted loss function. The weighted loss sig-
nificantly improves the performance in the damage scale classification task. Thus,
despite the slight downgrade in building segmentation performance, the overall F1
score also improves greatly.

Model Setting Damage F1 Segmentation F1 Overall F1

Siam-U-Net-diff
No Weight 0.601 0.862 0.680
Weighted 0.714 0.823 0.747

Siam-U-Net-conc
No Weight 0.608 0.864 0.685
Weighted 0.707 0.817 0.740

Figure 3.7. Building segmentation result with and without weighted loss Func-
tion. From left to right: pre-disaster image, building segmentation ground truth,
segmentation output of Siam-U-Net-Attn-conc model with weighted loss, and seg-
mentation output of Siam-U-Net-Attn-conc model without weighted loss.

3.2 Building Height Estimation via Satellite Metadata and Shadow Instance Detection

3.2.1 Overview

The previous proposed method considers the building appearance changes in images. However,

only considering the changes of building appearance sometime is not enough to capture all infor-

mation required for a change detection application. In many real-world applications, detecting the
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change of building height is also important. Therefore, in this thesis, we also propose a building

height estimation model to detect the building height changes. Understanding the 3D geometry

of buildings via satellite imagery plays an important role in applications including urban growth

analysis, building footprint detection for off-nadir imagery, and change detection. Traditional ap-

proaches estimate building 3D models (e.g., above ground height) by relying on LiDAR sensors or

a digital surface model (DSM), which might not be available in many scenarios. Building height

can also be estimated via multi-view stereo, but obtaining a stereo image set is also a challenging

task in many situations.

To address this issue, we focus on single-view building height estimation using RGB satellite

imagery. Without using other information, reconstructing height information from a single image

is an ill-posed problem, since the 3D information is lost when projecting onto 2D image. The

previous work [ 7 ], [ 116 ]–[ 118 ] investigates this problem by learning from large-scale datasets with

height annotation from LiDAR and/or DSMs. This data provides prior knowledge for the model to

learn a proper mapping function between 2D satellite imagery and 3D building models. However,

these data-driven based methods might not be generalizable to new data, since this prior knowledge

learned from the data is likely to change for different datasets, such as images taken from different

places or at different times. Another group of methods aim to use more reliable clues instead of

learning solely from the data. Prior approaches [ 119 ]–[ 125 ] as well as our proposed method learn

to estimate building height using building shadows and satellite image metadata. By detecting a

building and its corresponding shadow area, given the solar direction information from satellite

image metadata, we can estimate the above ground height for each building. The benefit of this

type of method is that as long as the building and shadow detection are accurate, we can achieve a

relatively accurate height estimation. These methods are more generalizable than the data-driven

based methods and they work well with new data.

In this section, we present a method for building height 

1
 estimation using building shadows and

satellite metadata 

2
 . Figure  3.8 shows the block diagram of the proposed estimation method. Since

the shadow labels are hard to obtain in publicly available datasets, we design a multi-stage instance

detection method to detect building and shadow instances with less required shadow annotation

1
 ↑ We will use the term building height to mean building above ground height in the rest of this section.

2
 ↑ We will use the term satellite metadata to mean satellite image metadata in the rest of this section.
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than the previous work [ 126 ]. Then we use the detected instances with satellite metadata, including

ground sample distance, solar angles, and satellite angles, to estimate building height. Building

height estimation is done by maximizing the overlap between the projected shadow region given a

query height and the detected shadow region.

Figure 3.8. The block diagram of the proposed building height estimation
method. Building and shadow instances are detected using a multi-stage instance
detection model. Then, the height of each building is estimated using the detected
instance masks and satellite metadata.

3.2.2 Related Work

In this section, we briefly review the previous approaches for single-view building height es-

timation. We group the previous work into two main categories: direct learning-based approach

and shadow detection-based approach.

Height Estimation via Direct Learning [ 7 ], [ 116 ]–[ 118 ]. The direct learning-based approach

tries to directly predict depth (i.e., building height), supervised by the ground truth depth anno-

tation (e.g., LiDAR sensor). Although directly predicting building height from a single image is

an ill-posed problem, Mou et al. [ 116 ] model this problem as a posterior distribution estimation

p(y|x), where x is the observed RGB image and y is the predicted DSM (i.e., building height, in

our case). To resolve this ill-posed problem, one can learn this posterior distribution as a determin-
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istic mapping function f : x→ y through the regression loss and directly using the data. In doing

so, Mou et al. first show the possibility of estimating building height from a monocular remote

sensing image. Semantic segmentation and depth estimation have a strong correlation, since both

tasks require understanding the boundary of an object and the spatial relationship between objects.

Srivastava et al. [  117 ] propose a multi-task model that aims to learn both tasks jointly. Their model

uses a shared CNN model for feature extraction that splits into two output layers to learn the seman-

tic segmentation task and the DSM regression task. They show that this multi-task strategy yields

better results than learning the tasks separately. Adversarial learning [ 127 ] is another potentially

useful tool to solve this ill-posed problem by introducing a stochastic process to the model to learn

the posterior function we mentioned earlier. Ghamisi et al. [ 118 ] introduce conditional generative

adversarial networks (cGANs) [ 128 ] to this task. More specifically, they use a generator similar to

a U-Net [ 53 ] to learn the posterior function p(y|x), where x is the observed RGB image and y is

the predicted DSM. They use the discriminator to differentiate the predicted DSM and real DSM

obtained using a LiDAR sensor, which helps in learning the high-frequency details. They also use

L1 reconstruction loss to learn the low-frequency correctness. Christie et al. [ 7 ] also propose a

U-Net like model for building height estimation. Their model jointly predicts image-level building

orientation (caused by large satellite looking angle), height estimation, and flow vector magnitude.

The flow vector can be obtained from building orientation and vector magnitude. It aims to map

the pixels from the original image to their ground level (i.e., mapping off-nadir image to on-nadir

image). Similar to the multi-task method we mentioned earlier [ 117 ], the learning of the flow vec-

tor has a strong correlation to height estimation. Due to the large looking angle for some satellite

images (i.e., off-nadir imagery), the flow vector magnitude for tall buildings is greater than short

buildings. Therefore, by learning these tasks jointly, they can achieve an accurate building height

estimation.

Height Estimation via Shadow Detection [ 119 ]–[ 125 ]. A shadow is cast when an object

blocks light from an illumination source. The physics of the illumination source position and

the length of the shadow cast can inform us of the physical characteristics of the object, such

as its height. The first step of this process is detecting shadows in overhead imagery. There

has been existing work in using spectral features to identify shadows in multispectral data. A

simple approach is using histogram thresholding to distinguish darker regions from brighter ones;

98



some of the techniques used are simple linear thresholding and bi-modal histogram splitting [ 129 ].

However, this approach can lead to dark objects being misidentified as shadows. Researchers

subsequently developed a spectral ratio between hue and intensity to leverage color information

to detect shadows [ 130 ]. More recently, contour and level set-based approaches [  131 ], [ 132 ] have

been used to segment shadow regions and have shown to be adaptable to topological changes.

Once the shadows are identified, the second step is using the knowledge of the position of the

sun to estimate building height. Irvin and McKeown used shadows along with the solar elevation

angle to estimate the height of buildings [ 133 ]. A model can be constructed to show the projected

shadow cast by the building if it had a certain height given the position of the sun. Kadhim and

Mourshed [ 124 ] show that comparing this projected shadow with the detected shadow will allow

for a good estimation of the building height.

3.2.3 Proposed Method

We propose a method for building height estimation using building and shadow instance detec-

tion with satellite metadata. As shown in Figure  3.8 , the proposed approach contains two steps: 1)

multi-stage building and shadow instance detection and 2) building height estimation. Although

previous work also relied on shadow information for building height estimation, they mainly used

either supervised detection methods [  119 ], [ 122 ] or unsupervised detection methods [  120 ], [ 123 ],

[ 124 ]. Supervised methods can provide accurate detection accuracy, but require a heavy workload

for annotations, like building and shadow instance labels. Unsupervised methods remove the re-

quirement of annotation, but are sensitive to data noise, like changing of illumination, different

satellite sensors, or urban growth. To solve this issue, we use a multi-stage approach for building

and shadow instance detection, which uses both supervised and semi-supervised training schemes.

By doing so, this requires less annotated samples than a fully supervised approach, while also

being less sensitive to data noise compared to unsupervised methods.

Building and Shadow Instance Detection. As shown in Figure  3.9 , our multi-stage instance

detection contains two detection stages for building instance detection and shadow instance detec-

tion. These two stages rely on different training schemes, based on the availability of annotation

for different tasks. We use Mask R-CNN [ 134 ] as the instance detection models in both stages.
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In the first stage, we use a fully supervised method for building instance detection, since there

are many large-scale publicly available datasets for building footprint and instance detection [ 6 ],

[ 135 ]–[ 137 ]. We can use the building annotations from these datasets to train a Mask R-CNN for

the building instance detection task.

Figure 3.9. The block diagram of the multi-stage instance detection. Due to the
sufficient annotation of building footprint detection in publicly available datasets,
in the first stage, we use fully supervised training for building instance detection.
To reduce the required shadow labels, in the second stage, we use semi-supervised
training for shadow instance detection. The shadow detection model is conditional
on the previously detected buildings, as it detects the shadows corresponding to the
input building regions.

Shadow annotations are much harder to find from publicly available datasets. Although, there

are unsupervised approaches [  120 ], [ 123 ], [  124 ] for shadow detection, they mainly focus on satel-

lite spectral analysis and the detected shadow region is not robust and accurate. We also need to

find the shadow instance for each building instance, which is not specifically obtained by these ap-

proaches. Wang et al. [ 126 ] introduce a task known as Instance Shadow Detection, which detects

objects and their corresponding shadow instances. Although this instance shadow detection task is

useful in our scenario, their method is a fully supervised approach that requires the labels of object

instance, shadow instance, and their association relationship. These supervised methods require a
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time-consuming annotation process, which is not suitable for our scenario. Our approach needs to

detect a large number of small objects (i.e., building instances and their shadow instances), which

would require even more time to annotate and would be more susceptible to annotation errors.

To address this, we extend the Mask R-CNN model to a conditional shadow detection model, as

shown in the yellow block of Figure  3.9 . Given a satellite image and its corresponding building de-

tection mask obtained from the first stage, our shadow detection model aims to detect the shadow

instances for the input building area. This forces the shadow detection model to only focus on

the shadows around the input building regions, instead of detecting all shadow areas within the

image. For this conditional shadow detection model, we concatenate the RGB satellite image with

the binary building mask along the channel dimension as the input to Mask R-CNN.

Figure 3.10. Consistency-based semi-supervised object detection (CSD)
loss [ 138 ]. Given an unlabeled image, both original and its horizontally-flipped
images are fed to a shared CNN encoder for feature extraction. Then the detected
bounding boxes from the region proposal network (RPN) from the original image
are used for both original and flipped features for feature cropping (i.e., ROI Align-
ment). The cropped features are then fed to a shared classifier for object classifi-
cation. The CSD loss is computed to minimize the output difference between the
original and flipped results. For the bounding box detection task, we simply replace
Classifier with the bounding box regression module.
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Shadow Instance Detection with Semi-Supervised Learning. We use semi-supervised learn-

ing (SSL) so that shadow detection succeeds even with a small number of shadow annotations.

More specifically, we use the consistency-based semi-supervised object detection (CSD) loss as

proposed by Jeong et al. [  138 ] during training. As shown in Figure  3.10 , CSD loss minimizes

the output difference between original and flipped images without annotation. Given an RGB im-

age I and its horizontally flipped version I ′, we pass both images into the same CNN encoder

Φ to extract features Φ(I) and Φ(I ′). Then the feature encoding of the original image Φ(I) is

used with a region proposal network (RPN) [ 139 ] to extract bounding boxes for feature cropping.

As described by Jeong et al. [ 138 ] , we horizontally flip these bounding boxes before cropping

from the flipped image. The feature cropping is done by ROI Alignment [ 134 ] , which can be

formulated as r(Φ(I), h) and r(Φ(I ′), h′) for the original and flipped images, respectively. Note

that h is the bounding boxes from RPN and h′ is obtained by horizontally flipping h. Then these

cropped features are input to the classification layers for object classification, which can be for-

mulated as g(r(Φ(I), h)) and g(r(Φ(I ′), h′)) for the original and flipped images, respectively. In

our case, we use binary classification to classify the object as either shadow or background. Sim-

ilarly, for the bounding box detection task, we input the cropped features into the bounding box

regression module to obtain detected bounding boxes, which can be formulated as f(r(Φ(I), h))

and f(r(Φ(I ′), h′)) for the original and flipped images, respectively.

As mentioned earlier, the CSD minimizes the output difference between the original and flipped

images. According to Jeong et al. [ 138 ] , we define the CSD loss for the classification task as:

Lcls = JS(g(r(Φ(I), h)), g(r(Φ(I ′), h′))), (3.1)
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where JS(·, ·) is the Jensen–Shannon divergence measuring the similarity between two probability

distributions. In our case, the distribution is the output probability maps. For the bounding box

regression task, we define the CSD loss as:

Lbox = 1
4(‖f(r(Φ(I), h))δx − (−f(r(Φ(I ′), h′))δx)‖2+

‖f(r(Φ(I), h))δy − f(r(Φ(I ′), h′))δy‖2+

‖f(r(Φ(I), h))δw − f(r(Φ(I ′), h′))δw‖2+

‖f(r(Φ(I), h))δh − f(r(Φ(I ′), h′))δh‖2),

(3.2)

where f(·, ·)δ· is the bounding box offset output with respect to anchor boxes [ 139 ]. Note that

we flip the sign of f(r(Φ(I ′), h′)δx in Equation  3.2 to consider the flipping process we mentioned

previously. During training, for each mini-batch, we sample the labeled and unlabeled data with

equal probability. Then we use the original supervised loss functions [ 134 ] for the labeled data and

use the CSD loss functions (Lcls and Lbox) for both labeled and unlabeled data.

Building Height Estimation. Before estimating building height, we need to pair the detected

building and shadow instances. Although the conditional shadow instance detection method is

able to detect shadows corresponding to the input building mask, it can detect multiple shadow

instances for a single building instance or detect a shadow instance that belongs to multiple building

instances. To properly pair the shadow and building instances, we use the solar azimuth angle as the

direction to find the best shadow instance for each building and to find the best building instance for

each shadow instance. First, we compute the distances between a building instance and all detected

shadow instances  

3
 . Then, we move the building instance along the solar azimuth direction for a

pre-defined maximum building-shadow distance (we choose 20 pixels in our experiment) to find

the shadow instances it intersects with. The best shadow instance is the intersected shadow instance

with minimum building-shadow distance. We can use the same procedure as described above to

find the best building instance for each shadow instance. Then we combine the best building to

shadow pairs and the best shadow to building pairs to match each building instance with a set of

shadow instances.
3

 ↑ We use the geometry distance function implemented in  https://shapely.readthedocs.io/en/stable/manual.html#object.
distance .
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Figure 3.11. The approach used for estimating building height given detected
building instance (white) and corresponding shadow instance (green). By enu-
merating different heights, we can compute the projected shadow area (gray) and
the best building height can be obtained by maximizing IoU between the detected
shadow area (green) and the projected shadow area (gray).
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With the paired building and shadow instances, we can estimate the height for each building

instance. Similar building height estimation approaches exist in the literature [  120 ], [ 124 ]. Fig-

ure  3.11 shows the building height estimation method. Given the detected building region (white),

we can estimate the projected shadow region (gray) given different height values. This projection

process requires satellite metadata information, including ground sample distance, solar elevation,

and solar azimuth. The estimated building height can be obtained by maximizing the intersection

over union (IoU) between the projected shadow region (gray) and detected shadow region (green),

as shown in the plots from Figure  3.11 .

It is computationally intensive if we choose to enumerate all height values within a range of

interest. To speed up this process, we assume the intersection over union (IoU) distribution (i.e.,

IoU vs. height) to be concave within the range of interest. Then we can use a one-dimensional

search method for convex/concave functions to find this global maximum with less query time 

4
 . In

this thesis, we use Brent’s method [ 140 ] implemented in SciPy [ 141 ] to find the global maximum

in a bounded range of interest.

The approach discussed above assumes the satellite looking angle (i.e., off-nadir angle) is 0,

which usually is incorrect. To obtain a more accurate height estimation, we refine the previous

estimated height using the satellite looking angle, based on the method shown by Liasis et al.

[ 123 ]. Figure  3.12 illustrates the height refinement. Given the previously estimated building height

h, we can compute the average visible shadow length sl1 by

sl1 = h

tan(a) , (3.3)

where a is the solar elevation angle. Similarly, the average hidden shadow length sl2 can be

obtained by

sl2 = h

tan(b) , (3.4)

where b is the satellite elevation angle. Then we can find the real shadow length by sl = sl1 + sl2

and the refined building height hrefine can be obtained by

hrefine = tan(a) · sl. (3.5)

4
 ↑ Query time is the number of times we compute IoU given a certain query height value.
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Figure 3.12. Illustration of building height refinement. This method takes the
satellite elevation angle into account to refine the estimated building height obtained
previously. ∠a and ∠b are the solar and satellite elevation angles. sl1 is visible
shadow length (blue section), while sl2 is hidden shadow length (yellow section)
blocked by the building.
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Note that this refinement process is only valid when ∠a < ∠b < 90◦ or ∠a > ∠b > 90◦. For the

invalid cases, we directly use the estimated height without refinement.

3.2.4 Dataset

Figure 3.13. Two examples from our shadow instance detection dataset. From
left to right: RGB satellite image, building instance mask, and corresponding
shadow instance mask.

We use the large-scale satellite dataset xView2 [ 6 ] to train our method for the building instance

detection task. This dataset is designed for the task of building damage assessment and covers

a wide variety of disaster events. It has 5,598 images with a resolution of 1024 × 1024. This

dataset also contains the required satellite metadata and the annotations of building instance de-

tection. For the shadow instance detection task, we manually labeled the shadow instances given

the building instances for 150 images from the xView2 dataset. As shown by the examples in
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Figure  3.13 , the shadow annotations are labeled based on the building annotations, since for the

shadow detection task we described in Section  3.2.3 , our model aims to detect the shadows con-

ditionally on the building instances. Different colors shown in the building and shadow masks

indicate different object instances. As shown in Table  3.6 , our shadow detection dataset contains

1,854 shadow instances for training and 620 shadow instances for testing. Although the size of

our shadow detection dataset is much smaller than the building instance detection dataset, the use

of the conditional shadow detection model and semi-supervised learning can ensure our model

still achieves a good performance as shown in Section  3.2.5 . To reduce the memory use during

training and testing, instead of inputting the original full resolution images to our model, we crop

the images into 256 × 256 patches. During training, we crop the image patches with an overlap-

ping ratio of 50%. During testing, we use a moving-window based inferencing approach with the

same overlapping ratio of 50% to obtain the result for the full-resolution images. By using this

moving-window based approach, we can reduce the abrupt changes near the edges of each image

patch. For the overlapped area, we merge the detected instances using the unary_union function

from Shapely 

5
 .

Table 3.6. Statistics of our shadow instance detection dataset.
Dataset Split # of Image # of Building Instance # of Shadow Instance

Training 100 1854 1854
Testing 50 620 620

3.2.5 Experiment

Figure  3.14 shows the results of building instance detection and conditional shadow instance

detection. Compared to the ground truth in the second and third columns, we show that both

models achieve accurate instance detection. To show the improvement of our multi-stage instance

detection method and semi-supervised learning, we compare our result with the Instance Shadow

Detection model [  126 ] we mentioned in Section  3.2.3 . Wang et al. [ 126 ] propose a Light-guided

Instance Shadow-object Association (LISA) model, which is an extension of Mask R-CNN [ 134 ].

5
 ↑  https://shapely.readthedocs.io 
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Figure 3.14. Multi-stage instance detection. From left to right: RGB satellite im-
age, ground truth building instance, ground truth shadow instance, detected building
instance, and detected shadow instance.

Given an RGB image, their model can detect object and shadow instances and their associations.

Based on their official implementation  

6
 , we train their model on our shadow instance detection

dataset mentioned in Section  3.2.4 .

Tables  3.7 and  3.8 show the quantitative comparison between our method and LISA [ 126 ] using

the COCO evaluation metrics  

7
 . All of the results are evaluated using the testing set we described

in Section  3.2.4 . More specifically, we use average precision (AP) with different IoU threshold

value τ to determine if the object is matched with the ground truth or not. For example, AP50 is

the AP with τ = 0.5 and AP is the mean of APs with τ ∈ {0.5, 0.55, 0.60, ..., 0.95}.

As shown in Table  3.7a and Table  3.7b , the proposed method achieves better building instance

detection results for both bounding box detection and mask segmentation tasks. This is because

our method is trained with a much larger building instance detection dataset (i.e., entire xView2

dataset). However, LISA is only able to use the smaller shadow instance detection dataset as

proposed in Section  3.2.4 since it requires not only building annotation to train but also shadow

annotation and building-shadow association. Therefore, due to the multi-stage design, our building

6
 ↑  https://github.com/stevewongv/InstanceShadowDetection 

7
 ↑  https://github.com/cocodataset/cocoapi 
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instance detection model can be easily trained on large-scale building footprint detection dataset

to achieve better performance on the testing set.

Table  3.8a and Table  3.8b show the quantitative comparison of LISA with the proposed con-

ditional shadow instance detection with CSD loss (SSL Ours) and without CSD loss (SL Ours).

Compared to LISA, our conditional shadow instance detection model achieves better results for all

APs with different τ , and this holds even for our model without SSL training. Although for the

shadow detection task, both LISA and our conditional shadow instance detection model use the

same training set as mentioned in Section  3.2.4 , with the input building mask obtained from the

building instance detection stage, the detection model can obtain the region of interest informa-

tion (i.e., building region) directly from the input, which reduces the task complexity compared to

detecting shadow instances from only the RGB image. Therefore, our models achieve better per-

formance than the compared method. Moreover, with the help of CSD loss, we can further improve

the result for both bounding box detection and mask segmentation tasks by including the unlabeled

data. This shows that for our small shadow instance detection dataset, the semi-supervised learning

method leverages the unlabeled data to enable our model to generalize better to new scenes.

Table 3.7. Testing average precision (AP) result of building instance detection.
(a) Testing average precision (AP) result of build-
ing bounding box detection.

Experiment AP (%) AP50 (%) AP75 (%)

LISA [ 126 ] 39.093 65.222 41.598
Ours 40.149 67.961 42.180

(b) Testing average precision (AP) result of build-
ing mask detection.

Experiment AP (%) AP50 (%) AP75 (%)

LISA [ 126 ] 35.660 64.193 35.335
Ours 37.589 67.427 36.257

Table 3.8. Testing average precision (AP) result of shadow instance detection.
(a) Testing average precision (AP) result of shadow
bounding box detection.

Experiment AP (%) AP50 (%) AP75 (%)

LISA [ 126 ] 5.746 17.627 2.105
SL Ours 18.846 51.455 8.536

SSL Ours 24.698 63.912 11.572

(b) Testing average precision (AP) result of
shadow mask detection.

Experiment AP (%) AP50 (%) AP75 (%)

LISA [ 126 ] 1.337 5.437 0.347
SL Ours 6.161 27.069 0.310

SSL Ours 7.901 33.858 1.308
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Figure 3.15. Building height estimation. From left to right: RGB satellite image,
building-shadow instance detection result, height estimation with texture rendering,
and height estimation with pseudo-color rendering (color legend is below the fig-
ures).

Figure  3.15 shows the results of building height estimation using the detected building and

shadow instances and satellite metadata. From the height estimation result (third and fourth

columns), we show that our method achieves good height estimation based on visual analysis.

For example, the building in the center of the example on the first row is much higher than the

buildings around it. Based on the pseudo-color result, the height estimation for the building on

the center is about 10m, while the result buildings are around 5m. Similar results can be seen in

the example in the second row. Please see Figure  3.16 for more height estimation results from our

dataset.

To better evaluate our height estimation results, we test our model on a 3D reconstruction

dataset known as the Urban Semantic 3D dataset [ 7 ]. Since building instance and shadow in-

stance annotations are not available in the dataset, we cannot finetune our model on this dataset.
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Figure 3.16. Building height estimation result from xView2 dataset. From left
to right: RGB satellite image, height estimation with texture rendering, and height
estimation with pseudo-color rendering (color legend is below the figures).
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Therefore, we directly test our model on this data to evaluate our method 

8
 . The results shown in

Figure  3.17 indicate that our model still achieves good performance on this new dataset even with-

out training. Compared to the ground truth obtained from LiDAR sensor, our model can obtain

a good height estimation. This is especially true for larger buildings, as their shadow regions are

relatively larger than those of other buildings, making them easier to detect with the shadow detec-

tion model. Since we did not finetune the model on this new dataset, there are still several missed

building instances and shadow instances. As we assign a single height value for an entire building

area, we are not able to obtain detailed height information within each building area, such as the

height difference between pixels from a building roof. Table  3.9 shows the quantitative results of

the proposed method with and without the height refinement process discussed in Section  3.2.3 .

We use mean absolute error (MAE) and root mean square error (RMSE) to evaluate our method.

Figure  3.18 shows the ground truth building height statistics of the data we used in our experi-

ments. Compared to the range of ground truth height, the proposed method achieves relatively low

height estimation error. From the third column of Table  3.9 , we can also see that with the height

refinement process, we can further reduce the estimation error for the building regions. However,

this refinement process will exaggerate the error for the false positive buildings, which causes the

increase of all-region MAE and RMSE (the second column of Table  3.9 ). Overall, based on these

results, we show that our method achieves a really promising height estimation performance even

without finetuning. Please see Figure  3.19 for more height estimation results from Urban Semantic

3D dataset.

Table 3.9. Quantitative evaluation (in meter) of height estimation on a subset
of Urban Semantic 3D dataset [  7 ] (Atlanta region). MAE and RMSE are com-
puted for all regions; MAE of Buildings and RMSE of Buildings are computed for
all building regions determined by ground truth.

Method MAE MAE of Buildings RMSE RMSE of Buildings
Before Refinement 1.28 8.12 5.09 13.66
After Refinement 1.35 8.02 5.27 13.51

8
 ↑ Due to the large number of buildings in the dataset, we only test our model on a subset of the Urban Semantic 3D

dataset to reduce evaluation time.
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Figure 3.17. Building height estimation result for Urban Semantic 3D Dataset.
From left to right: RGB satellite image, building height ground truth from LiDAR
sensor, and building height estimation result (color legend is below the figures).

Figure 3.18. Ground truth building height histogram/distribution of the data
we used in our experiment.
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Figure 3.19. Building height estimation result for Urban Semantic 3D Dataset.
From left to right: RGB satellite image, building height ground truth from LiDAR
sensor, and building height estimation result (color legend is below the figures).
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3.3 Improving Building Segmentation Using Uncertainty Modeling and Metadata Injection

3.3.1 Overview

Both previously proposed methods for 2D appearance change and 3D height change require ac-

curate building segmentation. However, this might be hard to achieve for the low-quality images,

such as off-nadir images. In general, object segmentation for satellite imagery has been studied

extensively because of the availability of large-scale datasets [ 6 ], [  135 ], [  136 ], [  142 ], [  143 ] and

computational resources. Although many existing methods achieve accurate segmentation results,

using them in real-world applications is still challenging. Unlike many segmentation tasks for

natural images, such as the COCO dataset [ 144 ] and Cityscapes dataset [  145 ], real-world object

segmentation for satellite imagery often faces challenges in identifying small, visually heteroge-

neous objects (e.g. cars and buildings) with varying orientation and density in images [ 135 ]. For

example, it is even hard for humans to detect the small buildings inside the forest area from the

images in Figure  3.20 , because of the low lighting condition and the similar colors of the buildings

compared to their surrounded trees. Furthermore, due the changes of satellite viewing angle, the

appearance of target objects can vary dramatically, including changes in lighting intensity, object

resolution, and image noise level. As the input images in Figure  3.20 show, from small viewing

angle (first row) to large viewing angle (second row), the overall image intensity and image qual-

ity changes significantly. Therefore, to be able to successfully use the segmentation models in

real-world applications, addressing the aforementioned challenges is necessary.

Many existing satellite imagery segmentation methods directly adopt approaches that were

originally designed for the natural image object segmentation task without considering the pre-

viously mentioned challenges. Since most of the publicly available datasets for satellite image

segmentation consist of images taken nearly directly overhead (i.e., at-nadir images) [ 6 ], [  136 ],

[ 142 ], [ 143 ], these existing methods are able to produce accurate results. However, as mentioned

earlier, the accurate results do not guarantee that these methods can be successfully used in real-

world applications. To address this issue, in this thesis, we consider the more challenging SpaceNet

4, a multi-view overhead imagery dataset [ 135 ] for building segmentation, which focuses on noisy

data due to large off-nadir angles. As shown in Figure  3.21 , satellite off-nadir angle (i.e., view-

ing angle) is the angle between the nadir point directly below the satellite and the center of the
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imaged scene [ 135 ]. Considering images with large off-nadir angles enables us to move one step

closer to real-world applications. For example, many satellite images collected during disaster

responses or other urgent situations often involve large off-nadir angles. The first set of satellite

images taken from Puerto Rico after Hurricane Maria was obtained with the off-nadir angle as

51.9◦ [ 75 ]. A large off-nadir angle can cause a significant deterioration in image quality. As shown

in Figure  3.20 , compared to the image with the smaller off-nadir angle, the image with the larger

off-nadir angle is blurrier and noisier. Furthermore, a large off-nadir angle can also cause a change

in object appearance. For example, in the same figure, with the smaller off-nadir angle, only build-

ing roofs are visible, but with the larger off-nadir angle, both building roofs and their facades are

visible, which will cause the change of building area in the satellite images. In the SpaceNet 4

dataset, images of the same scene are taken at different off-nadir angles. All building annotations

are labeled based on the images with the smallest magnitude of off-nadir angle (−7.8◦) and the rest

of the images with different off-nadir angles use the same labels as ground truth during training.

Therefore, the change of building appearance due to the change of off-nadir angle has an adverse

effect when training the model due to the inaccurate ground truth annotations. These challenges

are similar to the challenges in domain adaptation, where reliable data is available for training in

one scenario, but the model needs to be adapted to new data collected under different scenarios

(e.g., different lighting conditions, image noise conditions, or annotation accuracy conditions).

In order to solve these challenges provided by the SpaceNet 4 dataset and real-world applica-

tions, we present a building segmentation method with uncertainty modeling and satellite image

metadata injection. Our method is able to provide accurate segmentation results when training with

noisy images and inaccurate ground truth annotations. More specifically, based on Bayesian deep

learning, the proposed method is designed to capture both model and data uncertainty to ignore

the image regions with a higher uncertainty level. For example, as shown in Figure  3.20 (we will

provide more detailed information in Section  3.3.3 ), our uncertainty maps highlight the areas with

larger image noise (e.g., building boundaries due to the image blur and inaccurate annotation).

As the off-nadir angle increases (i.e., from the first row to the second row), the uncertainty level

increases, indicating a higher data noise from both image and annotation. Furthermore, satellite

image metadata is also considered in our method, as it usually contains useful information to im-

prove model performance. In this thesis, we use ground sample distance (GSD) and off-nadir angle
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Input Image Ground Truth Aleatoric UncertaintyOutput Mask Epistemic Uncertainty

Figure 3.20. Building segmentation results of the proposed method with corre-
sponding uncertainty maps. The first row shows the case with off-nadir angle as
−7.8◦. The second row shows the result of the same scene but with off-nadir angle
as 54◦. With a larger off-nadir angle, the input image becomes noisy and blurry.
Since aleatoric uncertainty captures the noise inherent in the observations, higher
values can be found in the aleatoric uncertainty map from the second case. Class-
ambiguous pixels are highlighted in the epistemic uncertainty maps, which often
yield incorrect classification results.

Earth

Off-Nadir Angle

Nadir Point

Optical Axis

Figure 3.21. Illustration of satellite off-nadir angle.
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as input metadata. GSD describes the spatial resolution of the image and a larger GSD usually in-

dicates blurrier and noisier images. As mentioned earlier, different off-nadir angles can also cause

the change in image quality. In this thesis, we propose two metadata injection methods to show the

effectiveness of using metadata in building segmentation.

3.3.2 Related Work

In this section, we will review the previous work for satellite image building segmentation as

well as the methods using uncertainty modeling and metadata injection in satellite imagery.

Building segmentation for satellite imagery. In this thesis, we consider the building seg-

mentation task as a binary semantic segmentation task 

9
 . Many recent approaches (including our

proposed method) are designed based on the U-Net structure [ 53 ], because of its good performance

in many computer vision tasks [ 146 ]–[ 150 ]. Here we briefly review several U-Net-based methods

of building segmentation for satellite imagery. A large receptive field is important for the segmen-

tation model to detect buildings with different sizes. Therefore, many methods improve the original

U-Net by using different techniques to enlarge the receptive field to achieve better performance.

Zhang et al. [ 151 ] extend the U-Net model with dense connections [ 86 ] and dilated convolutional

layers [ 87 ], [  150 ] to reach a large receptive field for capturing the information of large objects.

Liu et al. [ 152 ] incorporate a feature pyramid scene parsing (PSP) network [ 153 ] with U-Net to

further increasing the receptive field. They use the PSP module to replace the bottleneck layer from

U-Net to allow the use of multi-scale features for extracting building footprints of different sizes.

Jing et al. [ 154 ] design a spatial pyramid dilated network for building segmentation by combining

the aforementioned PSP network with dilated convolution. In this thesis, as discussed previously,

instead of focusing on improving the performance on the at-nadir images, our method aims to deal

with the problem of adapting for real-world applications: building segmentation for images with

large off-nadir angles, as these images tend to be noisier and blurrier than at-nadir images.

Uncertainty modeling for satellite imagery analysis. Using Bayesian deep learning to model

uncertainty has already been seen in satellite imagery analysis. Kampffmeyer et al. [  155 ] first

introduced Monte Carlo dropout [ 156 ] to capture model uncertainty for small object segmenta-

9
 ↑ Some previous work also considered this task as an instance segmentation task. In this thesis, we will focus on the

semantic segmentation task.
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tion. Although dropout is rarely used in convolutional neural networks (CNNs) due to the empir-

ically deteriorated performance, they show that adding dropout layers in their fully convolutional

encoder-decoder model with Monte Carlo integration during inference can achieve better perfor-

mance. Our proposed method also uses Monte Carlo dropout; please check Section  3.3.3 for more

information. Inspired by this, Bischke et al. [ 157 ] proposed to use the model uncertainty to address

the class imbalance issue in the satellite image segmentation task. The predicted uncertainty for

each class is used as the weight in the cross-entropy loss to account for model uncertainty caused

by class imbalance. In this thesis, we propose to use not only the model uncertainty (i.e., epis-

temic uncertainty) as presented in the previous work, but also the data uncertainty (i.e., aleatoric

uncertainty) to enable our segmentation model to learn from noisy data.

Injecting metadata for satellite imagery analysis. Satellite image metadata can be used in

many satellite imagery analysis tasks, as it usually contains useful information to improve model

performance. Pritt et al. [ 158 ] use a variety of satellite metadata including GSD, off-nadir angle,

longitude, and latitude for the image classification task in satellite imagery. They use an ensem-

ble of CNN models for image feature extraction. Then the CNN features are concatenated with

the normalized metadata and fed into fully-connected layers for classification. In Section  3.3.3 ,

we will provide a similar concatenation-based metadata injection method with an improvement of

metadata feature extraction using multi-layer perceptrons. Christie et al. [ 159 ] proposed a similar

model to fuse the CNN features with normalized metadata for multi-temporal satellite image se-

quence. Different from the previous work, instead of feeding the fused features to fully-connected

layers, these features are fed into a long short-term memory (LSTM) model to accumulate temporal

information from different frames to obtain the final classification result. In this thesis, besides the

aforementioned concatenation-based method, we will also present an Affine Combination Module-

based metadata injection to inject metadata for multiple feature resolutions.

3.3.3 Proposed Method

In this section, we will introduce our building segmentation method with uncertainty modeling

and satellite image metadata injection. As shown in Figure  3.22 , the proposed method is based on

U-Net [  53 ] with multiple outputs. As described later, modeling uncertainty enables our method
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to ignore the noisy pixels that are caused by 1) blurry or noisy images; and 2) inaccurate data

annotation. Injecting satellite image metadata such as ground sample distance (GSD) and off-nadir

angle provides the model with more information to improve its performance. We will provide two

metadata injection approaches in this section.

MLPMetadata

Decoder

Input Image

Output Mask

Aleatoric Uncertainty

Concatenation & 
Linear Projection

~ )(%)

ResNet34

: Downsampling Block : Upsampling Block : Upsampling Block  
with Dropout

Figure 3.22. The block diagram of the proposed method with uncertainty mod-
eling and concatenation-based metadata injection. q(W ) is the dropout varia-
tional distribution.

Modeling Uncertainty via Bayesian Deep Learning. Unlike standard deep learning methods,

Bayesian deep learning (Bayesian DL) provides a model with the ability to ignore certain data

points based on uncertainty. In Bayesian DL, there are two types of uncertainty one can model:

• Epistemic Uncertainty describes the uncertainty that is caused by the model ignoring some

training data. For example, a segmentation model might miss some building areas with

certain colors/textures. Usually, this type of uncertainty can be reduced as more training

data is made available.

• Aleatoric Uncertainty describes the uncertainty that is inherited from data (e.g., image/sensor

noise). Aleatoric uncertainty can be further categorized as homoscedastic uncertainty, which

is the uncertainty based on the entire dataset, and heteroscedastic uncertainty, which is the
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uncertainty for each input data point (i.e., each pixel in our case). In this thesis, we will

consider heteroscedastic aleatoric uncertainty to accurately model the data noise for different

input images.

In the following section, we will review the methods for modeling epistemic uncertainty [ 160 ] and

aleatoric uncertainty [ 161 ], followed by our proposed approach to combine both uncertainties in

one model.

Epistemic Uncertainty. In Bayesian DL, to capture the uncertainty from the model (i.e., epis-

temic uncertainty), we place a distribution over the model parameters. For example, the prior distri-

bution of the model weights for a fully-connected layer, p(W), can be modeled as: W ∼ N (0, I).

This is different from the standard deep learning model, which uses deterministic parameters. In

Bayesian DL, for each forward pass, including both training and testing, the model parameters will

be different due to parameter sampling. Formally speaking, we formulate our building segmenta-

tion model as:

p(y|x,W) = p(y|fW(x)) = S(fW(x)), (3.6)

where x ∈ RH×W×C is the input image, y ∈ RH×W is the output class label (in our case, it is

a binary label indicating foreground or background), fW : RH×W×C → RH×W is our Bayesian

DL model with sampled parameters W ∼ p(W|X,Y), and S : R → R is the sigmoid function

applied to each input element.

Estimating the model posterior p(W|X,Y) over the entire training set (X,Y) is intractable [ 156 ],

[ 160 ]. To evaluate this posterior distribution, following the work [ 156 ], [  160 ]–[ 162 ], we use

dropout variational inference. This inference is performed by placing a dropout layer before every

convolutional layer (or fully-connected layer). Since dropout can be formulated as a Bernoulli trial

by randomly setting the model parameters to zero, [ 156 ], [  160 ] show that this dropout distribution

over model parameters, q(W), can be used to estimate our model posterior. This is done by min-

imizing their Kullback-Leibler (KL) divergence via the following loss function during training:

Lepi(x,y) = Lcls(y, S(fW(x))) + λ‖W‖2
2, (3.7)
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where (x,y) is a pair of training image and its corresponding ground truth label mask, Lcls(·, ·) is a

classification loss (e.g., binary cross entropy loss in our case), fW(·) is our model with parameters

sampled from the dropout distribution q(W), and λ is a non-trainable hyper-parameter as described

in [ 156 ]. The second term of Equation  3.7 can be implemented using weight decay [  163 ], which

was originally designed for model regularization. During inference, we can estimate the final

prediction distribution p(y∗|x∗) given a testing image x∗ via Monte Carlo integration as proposed

in [ 156 ], [ 160 ]:

p(y∗|x∗) =
∫
p(y∗|x∗,W)q(W)dW ≈ S( 1

T

T∑
t=1

fWt(x∗)), (3.8)

where Wt ∼ q(W) is the model parameters from each Monte Carlo sample and T is the total num-

ber of samples. Equation  3.8 is referred as Monte Carlo dropout as proposed in [ 156 ]. Epistemic

uncertainty can be visualized by calculating the variance of the Monte Carlo samples:

1
T

T∑
t=1

(
fWt(x)� fWt(x)

)
− E[fW(x)]� E[fW(x)], (3.9)

where� is the Hadamard product for element-wise multiplication and E[fW(x)] ≈ 1
T

∑T
t=1 f

Wt(x).

As shown in Figure  3.22 , we model the epistemic uncertainty by placing the dropout layers

before just the first three decoder layers, instead of all convolutional layers. Since we use a ResNet-

34 model [  9 ] pretrained on ImageNet [ 115 ] as the CNN encoder, we model this feature extraction

process as a deterministic process. Therefore, no dropout layers are used in the CNN encoder.

In this thesis, we only model the first three decoder layers as stochastic processes by placing the

dropout layers before each convolutional layer in each upsampling block. We do not add dropout

layers to the last two decoder layers. This is to reduce the output noise due to the limited number

of Monte Carlo samples during inference as shown in Equation  3.8 .

Aleatoric Uncertainty. Aleatoric uncertainty captures the noise from training data. As de-

scribed previously, in this thesis, we consider heteroscedastic aleatoric uncertainty, which captures

the noise from each pixel from an input image. We use two additional convolutional layers placed

on top of the last decoder layer to obtain the classification logit fW(x) ∈ RH×W and aleatoric

uncertainty σW(x) ∈ RH×W , as shown in Figure  3.22 . We use the predicted aleatoric uncer-
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tainty during training to ignore the pixels with larger uncertainty and address the pixels with less

uncertainty. To achieve this, as proposed in [  161 ], we corrupt the predicted logits fW(x) with

Gaussian random noise, where the standard deviation is the predicted aleatoric uncertainty. More

specifically, we modify Equation  3.6 by placing a Gaussian distribution over the predicted logits:

p(yi,j|x,W) = S(f̂W(x)i,j),

where f̂W(x)i,j ∼ N (fW(x)i,j, (σW(x)i,j)2).
(3.10)

Note that i and j are the pixel coordinates of the output logit and aleatoric uncertainty. We denote

p(yi,j|x,W) with pi,j for simplicity. From Equation  3.10 , we can see that with larger aleatoric

uncertainty, the Gaussian corrupted logit f̂W(x) tends to be noisier, which enforces the model to

ignore this “random” prediction. With smaller aleatoric uncertainty, the Gaussian corrupted logit

f̂W(x) tends to be closer to the original predicted logit fW(x), which makes the model to focus

on this prediction. Since we use Gaussian corruption, we can facilitate our implementation using

the Gaussian reparameterization trick:

f̂W(x)i,j = fW(x)i,j + σW(x)i,jε, ε ∼ N (0, 1). (3.11)

During training, to capture both uncertainties, we can replace the classification loss Lcls in Equa-

tion  3.7 with a binary cross entropy loss with Gaussian corrupted output:

Lale(x,y) = − 1
HW

H∑
i=1

W∑
j=1

yi,j log pi,j + (1− yi,j) log (1− pi,j), (3.12)

where yi,j is ground truth label at pixel coordinates (i, j) and pi,j = S(f̂W(x)i,j) as shown in Equa-

tion  3.10 . Therefore, we can obtain the final loss function for learning both epistemic uncertainty

and aleatoric uncertainty as:

Lboth(x,y) = Lale(x,y) + λ‖W‖2
2. (3.13)

We do not need aleatoric uncertainty during inference, as it is used for ignoring noisy pixels during

training.
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Metadata Injection. Satellite image metadata contains useful information to support many

computer vision tasks, such as using solar and satellite azimuth and elevation angles for shadow

detection and building height estimation [ 122 ], [ 123 ], [ 125 ], [ 164 ], [  165 ]. In this thesis, we con-

sider two types of metadata to improve building segmentation result: (1) ground sample distance

(GSD); and (2) off-nadir angle. GSD describes the spatial resolution of the image and a larger GSD

indicates blurrier and noisier images due to lower image resolution. Off-nadir angle describes the

viewing angle of the satellite camera and a larger off-nadir angle can also cause lower image res-

olution. In the following sections, we will provide two metadata injection approaches to improve

the baseline U-Net model.

Metadata Injection via Feature Concatenation. As shown in Figure  3.22 , we first pass

the metadata vector to multi-layer perceptrons (MLP) to obtain the output vector (h ∈ RD) for

feature extraction and dimension expansion. Then we combine the metadata feature vector with the

image features (v ∈ RH×W×D) obtained from the last CNN encoder layer. To combine metadata

and image features, we repeat the metadata feature vector to match the shape of image features:

h ∈ RH×W×D. Then we concatenate the features along the channel dimension as hv ∈ RH×W×2D.

The final features can be obtained by linearly projecting the channel dimension back to the input

channel dimension: o = F(hv) ∈ RH×W×D, where F : R2D → RD is applied for each input

element and it can be implemented by a convolutional layer with kernel size of 1. We refer to this

concatenation-based approach as MetaCat.

Metadata Injection via Affine Combination Module. As described above, the previous

concatenation-based metadata injection method combines the metadata and image features by

channel-wise concatenation following a linear projection layer. By doing so, we augment the

image features using the metadata features for every location in the H and W dimensions evenly.

However, intuitively, not all image features need to be modified. For example, since we focus

on building segmentation, a large forest area should not be considered and modified. To effec-

tively locate the desired regions that need to be modified, we use the Affine Combination Module

(ACM) [  166 ] for metadata injection as shown in Figure  3.23 . As the name indicates, ACM is based

on affine transforms and can be formulated as follows:

v = h�W (v) + b(v), (3.14)
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where v is the image features obtained from the CNN encoder, h is either the repeated metadata

features h as previously described or the features from the previous decoder layer, and W (·) and

b(·) are convolutional layers as proposed in [ 166 ]. From Equation  3.14 , we can consider the W (v)

term as the metadata-relevant information, since it can directly interact with the metadata features

(or the previous decoder features). The b(v) term can be considered as a metadata-irrelevant in-

formation that is not modified by the metadata features (or the previous decoder features). As

the results that we will provide in Section  3.3.4 indicate, with ACM, we can explicitly decouple

the metadata-relevant and metadata-irrelevant information without implicit learning by the model.

Following the design from [ 166 ], we use multiple ACMs in different feature resolutions in our

decoder without changing other parts of the model, as shown in Figure  3.23 . We refer to this

ACM-based approach as MetaACM.

MLPMetadata
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Aleatoric Uncertainty
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Figure 3.23. The block diagram of the proposed method with uncertainty mod-
eling and ACM-based metadata injection.

3.3.4 Experiment

In this section, we will describe the dataset we used and the model implementation details, and

provide experimental results with analysis.
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Dataset and Experiment Setting. In this thesis, we use the SpaceNet 4 dataset [  135 ], which

is designed for building segmentation with a larger range of off-nadir angles. It contains 4-channel

RGB-NIR (Near-Infrared) images with resolutions of 900×900. There are 1, 064 distinct locations

in the dataset, with 27 images captured at each location at different off-nadir angles ranging from

−32.5◦ to 54◦, which totals to 28, 728 images. We partition the dataset into training, validation,

and testing sets with the ratio of 6 : 2 : 2. Note that when splitting the dataset, we ensure that all

images of the same location are assigned to the same partition. This can avoid different partitions

sharing images from the same location.

Off-Nadir: -7.8° Off-Nadir: 44.2° Off-Nadir: 54°

Figure 3.24. Illustration of the building segmentation annotation issue in the
original dataset. The light white area is the annotated ground truth area. The first
row shows the annotation from the original dataset and the second row shows the
annotation we manually labeled.

As mentioned in [ 135 ], the building annotations from SpaceNet 4 dataset are obtained from the

images with the smallest magnitude of off-nadir angle (−7.8◦), and the same annotations are used
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for other images with different off-nadir angles. As shown in the first row of Figure  3.24 , due to the

change of viewing angle, the appearance, especially for the tall buildings, changes significantly.

For example, with the smaller off-nadir angle, only the building roof is visible, but with larger off-

nadir angles, both building roof and facade are visible, which can cause inaccurate annotations.

Although the proposed method is designed to deal with the noisy images and annotations, in order

to have an accurate testing evaluation, we manually label the testing images with off-nadir angles

greater than 40◦, as shown in the second row of Figure  3.24 .

To ensure fair comparison between the proposed method and the baseline U-Net, all of our

experiments used the same setting, which we will now describe. The downsampling blocks (yel-

low blocks) in Figure  3.22 and Figure  3.23 are the residual blocks from a ResNet-34 model [ 9 ]

pretrained on ImageNet [ 115 ]. The upsampling blocks (dark green blocks) consist of bilinear up-

sampling → convolution → batch normalization → ReLU. The upsampling blocks with dropout

(light green blocks) consist of bilinear upsampling → dropout → convolution → batch normal-

ization → ReLU. Following [ 161 ], the dropout rate is set as 0.2. The MLP for metadata feature

extraction consists of three blocks, where each block is a fully-connected layer following by a

leaky ReLU layer with the slope of 0.2. During training, to allow for a larger batch size as re-

quired by batch normalization, we resize the input image to 256 with batch size as 64. ADAM

optimizer [  67 ] with learning rate 0.0001 (linear decay) is used and all experiments are trained for

1 million iterations. As mentioned in Section  3.3.3 , modeling epistemic uncertainty requires using

weight decay during training. To achieve a fair comparison, we use weight decay with the factor

of 0.0001 for all experiments. For the Monte Carlo integration during inference, following [ 161 ],

we set the number of samples as 50 (we will provide the analysis of this parameter in the following

section).

Experimental Result and Analysis. We start with evaluating the use of uncertainty modeling

and metadata injection (we consider the concatenation-based metadata injection first). Figure  3.25 

shows the F1 scores with different off-nadir angles in the testing set. Compared with the baseline

U-Net, with uncertainty modeling, there is a slight improvement across most of the off-nadir an-

gles. Adding the metadata injection layer can further improve the performance, especially for the

cases with larger off-nadir angles (> 40◦) and negative off-nadir angles. As mentioned in [ 135 ],

due to the data collection process, the images with large negative off-nadir angles have very differ-
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ent lighting conditions and shadows. Since most of the images are collected from positive off-nadir

angles, the baseline method will suffer from unbalanced data during training. With metadata in-

jection and uncertainty modeling, the proposed method is able to deal with the changes of lighting

and shadows.
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Figure 3.25. Testing F1 scores with different off-nadir angles. The average F1
scores of all off-nadir angles are shown in the legend.

Figure  3.26 shows three testing examples captured from the largest off-nadir angles to visualize

the improvement of the proposed method compared to the baseline U-Net. Based on the ground

truth, we can see that the proposed method is able to detect more accurate building area even

under this high noise-level condition. For instance, in the first example, the baseline U-Net fails to

differentiate the parking lot area and the building area in the top-left of the input image (highlighted

by the red circle). The proposed method is able to segment the area correctly. From the epistemic

uncertainty map, the proposed method raises higher uncertainty indicating the predictions from

those class-ambiguous pixels are not reliable. Similar examples can be found in the highlighted

areas in the second and third images. From the aleatoric uncertainty, we can also see that the input

data has higher data noise around the forest region compared to the building region. This is due to

the larger appearance variance of forests compared to buildings. Therefore, our model will focus

more on the building region during training to avoid the adverse effect of the frequent appearance
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changes from the forest region. Unlike aleatoric uncertainty, epistemic uncertainty focuses more

around the buildings or other man-made structures (e.g., roads). It highlights the area when the

predictions are not reliable, such as the boundary of buildings due to the image blur and noise.

Figure  3.20 shows the prediction difference of two images with same scene but different off-nadir

angles. We can see that overall, aleatoric uncertainty has a significant increase from small to large

off-nadir angles due to higher noise in the input image. Although there is less of an increase with

epistemic uncertainty, the area where it highlights does get larger. Figure  3.27 shows the result

with more off-nadir angles of the same scene for comparison.

Input Image Ground Truth OursU-Net Epistemic UncertaintyAleatoric Uncertainty

Figure 3.26. Result comparison of the baseline U-Net and the proposed method
with uncertainty modeling and metadata injection. The input images are taken
with the off-nadir angle as 54◦. The red circles highlight the improvement of the
proposed method compared to the baseline U-Net.
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Figure 3.27. Results of the proposed method for the images taken from dif-
ferent off-nadir angles. The results are obtained from the model with uncertainty
modeling and concatenation-based metadata injection.
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We also provide the ablation study of uncertainty modeling to show that modeling both uncer-

tainties does not necessarily yield the best result. Due to the close performance of the compared

experiments, we group the F1 scores with different ranges of off-nadir angle in Table  3.10 to better

visualize differences. As defined in [ 135 ], we group the images into three categories based on the

off-nadir angles θ as following:

• Nadir: 0◦ ≤ |θ| ≤ 25◦;

• Off-Nadir: 25◦ < |θ| < 40◦;

• Very Off-Nadir: 40◦ ≤ |θ| < 90◦.

As shown in Table  3.10 , the best performance from each category are not from the experiment

with both uncertainties. Therefore, the effectiveness of uncertainty modeling could be different

depending on the dataset and task. Furthermore, as shown in the highlighted cells, for the Very Off-

Nadir category, all experiments with uncertainty modeling achieve much better performance than

the method without uncertainty modeling. This confirms that using uncertainty modeling improves

the model performance when larger data noise appears.

Table 3.10. F1 scores for the ablation study of uncertainty modeling. All of the
listed experiments are based on U-Net with concatenation-based metadata injection.
None means no uncertainty modeling.

Experiment Nadir Off-Nadir Very Off-Nadir Overall

None 0.7820 0.7450 0.6335 0.7219
Aleatoric 0.7822 0.7448 0.6499 0.7275
Epistemic 0.7824 0.7424 0.6380 0.7229

Both 0.7822 0.7429 0.6415 0.7249

Figure  3.28 shows the effectiveness of different number of samples in Monte Carlo integration

obtained from our validation set. The Regular Dropout experiment uses dropout as a regularization

method meaning that dropout is only used during training. The No Dropout experiment does not

use dropout for both training and testing. From the overall F1 score plot (left) and the F1 score plot

for the Very Off-Nadir category (right), we can see that the performance stops improving when the

number of samples is over 40, which shows our choice of 50 samples is reasonable. Furthermore,
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we also show that with Monte Carlo dropout, a better result can be achieved compared to regular

dropout and no dropout experiments. Among the three experiments, regular dropout has the worst

performance. This shows the same observation as mentioned in [ 156 ], since empirically adding

dropout layer in CNN tends to have a deteriorated performance.

Figure 3.28. Ablation study of Monte Carlo dropout. F1 scores for different
numbers of Monte Carlo samples are shown for all images from the validation set
(left) and for the images in Very Off-Nadir category (right).

Table 3.11. F1 scores for ACM-based and concatenation-based metadata injec-
tion. All of the listed experiments are based on U-Net with uncertainty modeling of
both aleatoric and epistemic uncertainties. None means no metadata injection.

Experiment Nadir Off-Nadir Very Off-Nadir Overall

None 0.7752 0.7359 0.6347 0.7180
MetaCat 0.7822 0.7429 0.6415 0.7249

MetaACM 0.7758 0.7382 0.6419 0.7197

We compare the ACM-based (MetaACM) and concatenation-based (MetaCat) metadata injec-

tion methods in Table  3.11 . Overall, MetaCat achieves better performance than MetaACM. Com-

pared with the method without metadata injection, MetaCat has significant improvement for all

three off-nadir angle categories. Although MetaACM does not have a major improvement for the

lower off-nadir angle images, it achieves the best performance under the Very Off-Nadir category.

Figure  3.29 shows the ACM feature maps obtained from the last decoder layer. Follow-

ing [ 166 ], the visualization of these feature maps is obtained by computing the average along

133



the channel dimension. The results from the fourth column show the h � W (v) map based on

Equation  3.14 . As we discussed in Section  3.3.3 , this feature map should highlight the metadata-

relevant information, since it directly interacts with the metadata features (or the previous decoder

features). The first row in Figure  3.29 shows the case with small off-nadir angle. Its h�W (v) map

mainly addresses the entire building area, according to the inpainted result from the last column.

However, when dealing with a large off-nadir angle, the h �W (v) map highlights the lower side

of building area, as shown in the second row of Figure  3.29 . With larger off-nadir angle, building

facade becomes visible which increases the building area compared to the case with small off-

nadir angle. ACM highlights the building facades (lower side of the building area) to improve the

prediction on those regions. This confirms our observation in Table  3.11 that MetaACM is able to

significantly improve the performance of the Very Off-Nadir category.
SN4_buildings_train_AOI_6_Atlanta_nadir53_catid_1030010003193D00_PS-RGBNIR_748451_3742239_acm_bias

Input Image Output Mask Inpainted !(#)%(#) %(#)⨀ℎ !(#)

Figure 3.29. Illustration of ACM feature maps obtained from the last decoder
layer. The inpainted results are obtained by thresholding the normalized ACM prod-
uct map (green region) with threshold value as 0.5. The first row shows the case with
off-nadir angle as −7.8◦. The second row shows the result of the same scene but
with off-nadir angle as 54◦.

Figure  3.30 shows the ACM h �W (v) map from different decoder layers. We can see that

the feature maps from different decoder layers address different part of the image. The design of

our MetaACM enables the model to locate different areas for different feature resolutions. This

is important for metadata injection, since if we only modify the image features using metadata

features in the lowest resolution (e.g., MetaCat), these modifications will affect a large area in

the final full-resolution result. For example, in our case, the bottleneck layer has the resolution
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of 8 × 8 and the final result has the resolution of 256 × 256. If we only consider the effect of

upsampling operators (without considering the change of receptive field caused by convolution),

any modifications of the features from the bottleneck layer will affect at least 32 × 32 area in the

final result. These modifications are not accurate enough for the buildings that are much smaller

than 32 × 32 pixels. Therefore, injecting metadata features for the image features with different

resolutions is important for the refinement of small buildings.

Input Image Decoder Layer 1 Decoder Layer 3 Decoder Layer 4 Decoder Layer 5Decoder Layer 2

Figure 3.30. Resized ACM W (v) � h map for different decoder layers. The
resolution of ACM map from decoder layer 1 is 8× 8 and increases with the factor
of 2 after each decoder layer.

To show the effectiveness of the proposed ACM-based metadata injection method, we also

evaluate it on a different backbone model, U2-Net [ 167 ]. The proposed uncertainty modeling and

metadata injection methods can be extended to other backbone models. As shown in Figure  3.31 ,

we can apply the proposed methods for U2-Net [ 167 ], which is a modified version of the original

U-Net. It is able to utilize a two-level nested U-structure to enlarge the receptive field in each

encoder/decoder block. Moreover, deep supervision [  114 ] (i.e., output multiple masks for different

decoder blocks) is used to enforce the integration of multi-level deep features to further improve the

performance. Please check the original paper [  167 ] for the detailed design of U2-Net. Similar to

the U-Net backbone, we use the epistemic uncertainty modeling (i.e., Monte Carlo dropout layers)

in the first three decoder blocks in U2-Net. Then we split the final layer into two branches to learn

the aleatoric uncertainty map. Figure  3.31 shows the model with concatenation-based metadata
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injection. The ACM-based metadata injection method can be obtained in a manner similar to the

block diagram shown in Figure  3.23 .

Decoder

Input Image

Output Masks

Aleatoric Uncertainty

ResNet34

: Downsampling RSU Block : Upsampling RSU Block : Upsampling RSU Block
with Dropout

⊕

MLPMetadata

Concatenation & 
Linear Projection

Figure 3.31. The block diagram of the proposed U2-Net [ 167 ] with uncertainty
modeling and concatenation-based metadata injection.

Table  3.12 shows the results of U2-Net with uncertainty modeling and the different metadata

injection approaches. Using the proposed uncertainty modeling and metadata injection methods

can improve the original U2-Net model, especially for the cases with large off-nadir angles (except

the Very Off-Nadir case from the concatenation-based metadata injection experiment). The exper-

iment with both uncertainty modeling and the ACM-based metadata injection method achieves the

best performance. It achieves the best performance for all off-nadir angle cases, which confirms the

benefit of using the multi-level features in metadata injection. Therefore, from the aforementioned

experiments, we show that the proposed uncertainty modeling and metadata injection methods can

improve the performance of both U-Net and U2-Net.
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Table 3.12. F1 scores of U2-Net with uncertainty modeling and metadata injec-
tion. None means no metadata injection and no uncertainty modeling. The experi-
ments with Uncertainty use both aleatoric and epistemic uncertainties.

Experiment Nadir Off-Nadir Very Off-Nadir Overall

None 0.8019 0.7447 0.6185 0.7259
Uncertainty 0.8081 0.7588 0.6305 0.7356

Uncertainty + MetaCat 0.8080 0.7580 0.6137 0.7304
Uncertainty + MetaACM 0.8163 0.7700 0.6348 0.7426
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4. SUMMARY AND FUTURE WORK

4.1 Utility Preserving Face Redaction

We develop a deep learning-based model,UP-GAN, that is able to generate synthetic faces that

preserve utility information while also removing identifiable information from the original faces.

By utility-preserving we mean preserving facial features that do not reveal identity. By swapping

the generated face back on the original image, we can produce an effective obscuration that not

only removes personal identifiable information, but also retains the information that does not reveal

identity, such as expression, age, gender and skin tone. Moreover, we also provide a comprehen-

sive robustness analysis of face obscuration techniques. We analyze eight obscuration methods:

Gaussian blurring, median blurring, pixelation, k-same, k-same-net, UP-GAN (Ours), P3, and

scrambling. We examine the robustness of these methods under different attacking scenarios in-

cluding identification, verification, and reconstruction with two widely used deep learning models,

VGG19 and ResNet50. Threat modeling is also considered to evaluate the obscuration methods

under different strength of attacks. Methods such as Gaussian blurring, median blurring, P3, and

scrambling fail to provide an effective obscuration under the designed attackers, although they suc-

cessfully defeat human perception. We also show that the k-same based methods, especially the

proposed UP-GAN model can provide a secured privacy protection. To improve the generated face

quality obtained from UP-GAN, we design a system to use face reenactment method for generating

photo-realistic synthetic faces with target facial expression and head pose. More specifically, we

propose a one-shot face reenactment model, FaR-GAN, that is able to transform a face image to the

target expression given one image from any identity. We evaluate our method using the VoxCeleb1

dataset and show that the proposed model is able to generate face images with better visual quality

than the compared methods.

Although the results from FaR-GAN achieve a high visual quality, in some cases, when the

identity that provides the target landmarks has a large appearance difference from the source iden-

tity, such as different genders or face sizes, there is still a visible identity gap between the input

source identity and the reenacted face. In future work, we can improve our model to bridge this

identity gap, such as using an additional finetuning step to explicitly direct the model to reduce

the identity changes, as proposed from [ 56 ], [ 57 ]. Furthermore, in the current model setting, we

138



do not consider the pupil movement in our landmark representation. As proposed by [ 58 ], we can

add the gaze information in the landmark mask to make the reenacted face contain more realistic

facial movement. Although the proposed method achieves a good performance in terms of FID,

compared with the unconditional face generation methods (ProGAN [ 5 ], StyleGAN [ 4 ], Style-

GAN2 [ 54 ]), our generated images are still qualitatively poorer. To further improve our method,

we can adopt the progressive training approach from the aforementioned methods. We first train a

small portion of the model to produce a good quality image in a small resolution, and then gradu-

ally add the rest of the model to produce higher resolution images. By doing so, we can stabilize

the training process to produce images with better visual quality with higher resolution.

4.2 Change Detection For Satellite Imagery

We develop a Siam-U-Net-Attn model with attention technique that accurately classifies dam-

age levels of buildings in satellite imagery. The proposed technique compares a pair of images

captured before and after disasters to produce segmentation masks that indicate damage scale

classifications and building locations. We use the self-attention module to enhance damage scale

classification by considering information from the entire image. Results show that the proposed

model accomplishes both damage classification and building segmentation more accurately than

other approaches. Furthermore, to detect the changes of building height, we present a method for

building height estimation using building and shadow instance detection and satellite image meta-

data. We propose a multi-stage instance detection method to achieve accurate instance detection

with limited data annotation. We show that the multi-stage instance detection method achieves

better performance than the compared approach. Given the previous instance detection results,

we propose a method to estimate building height with satellite image metadata, including ground

sample distance, solar angles, and satellite angles. We show that the proposed height estimation

method achieves good performance on the proposed dataset as well as a new dataset even without

finetuning. In order to provide an accurate building segmentation as required in the previously

proposed methods, we present a method that can provide accurate building segmentation despite

the data noise that is caused by large off-nadir angles. We use uncertainty modeling and satellite

imagery metadata to achieve accurate building segmentation for the noisy images that are taken
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from large off-nadir angles. By conducting the experimental analysis and ablation study, we show

that the proposed method is able to achieve a clear improvement compared to the baseline method,

especially for the noisy images taken from large off-nadir angles.

Although we show that the proposed Siam-U-Net-Attn model can provide accurate damage

scale classification based on the feature difference between the two images taken before and after a

disaster, dealing with temporal image sequence that contains more than two images is not a trivial

task that can be extended from our current approach. Such multi-temporal change detection task

requires the model accumulating the difference through multiple frames taken from different times,

which needs more complex temporal-aware model, such as long short-term memory (LSTM) [ 104 ]

or transformer [ 168 ]. Therefore, more work is required to extend the proposed method for the

multi-temporal change detection task. Furthermore, instance segmentation is a potential method

to improve the damage scale classification accuracy. Since the current model can only produce

the semantic segmentation mask of buildings, it is not able to differentiate each building instance,

especially when buildings are close to each other. Therefore, like the method mentioned in Sec-

tion  3.2.3 , instance segmentation method is able to assign a consistent label for each building.

However, based on our experiments, simply applying the the instance segmentation-based meth-

ods, such as Mask R-CNN [ 108 ] to our damage scale classification task cannot achieve better

performance than the proposed Siam-U-Net-Attn model. Because of the large amount of small

buildings in the xView2 dataset, many inaccurate proposals (including both false positive and false

negative cases) are generated from the region proposal network (RPN) in the Mask R-CNN model,

which causes such poor performance. As a future work, the non-RPN based instance detection

methods (e.g., DETR [ 169 ]) can be potentially useful to improve the damage scale classification

performance. Lastly, in this thesis, we analyze the use of uncertainty modeling and metadata injec-

tion to improve the task of building segmentation. Since using uncertainty modeling and metadata

injection can enable the model being less sensitive to the noise from input data, they are able to

improve other vision tasks (e.g., object detection and object classification) as well. Therefore,

as a future work, additional experimental analysis is needed to evaluate the improvement of the

proposed method for other vision tasks.
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4.3 Contributions Of This Thesis

The main contributions of the thesis are listed as follows:

• Utility-Preserving Face Redaction

1. A performance analysis of face obscuration approaches is proposed.

2. The analysis is based on three attack scenarios: obscured face identification, verifica-

tion, and reconstruction.

3. We analyze these attacks based on two widely used deep learning models, VGG19 [ 8 ]

and ResNet50 [ 9 ] in different threat model conditions.

4. We show that the traditional obscuration methods, such as blurring and pixelation can

not guarantee privacy protection.

5. To provide a more secured privacy protection, we propose two novel obscuration meth-

ods that are based on the generative adversarial networks.

6. With qualitative and quantitative analysis, we show that the proposed methods can not

only remove the identifiable information, but also preserve the non-identifiable facial

information, such as facial expression, age, skin tone and gender.

• Change Detection For Satellite Imagery

1. We develop a multi-class deep learning model with attention technique that accurately

classifies damage levels of buildings based on 2D appearance changes in satellite im-

agery.

2. We demonstrate that the proposed model achieves better results for building damage

scale classification than other methods while simultaneously achieving accurate build-

ing segmentation results.

3. To detect the changes from 3D building height, we propose a building height estimation

model.

4. The proposed method can estimate building height based on building shadows and solar

angles without relying on height annotations.
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5. We qualitatively and quantitatively show that the proposed method achieves accurate

building height estimation.

6. To provide a more reliable building segmentation method as required in the previously

proposed change detection methods, we present a model that can provide accurate

building segmentation even for the low quality satellite images captured from a large

range of off-nadir angles.

7. Both uncertainty modeling and satellite imagery metadata are used in the proposed

method to achieve a good building segmentation performance, especially for the noisy

images taken from large off-nadir angles.

4.4 Publications Resulting From This Thesis

Conference Papers

• Hanxiang Hao, David Güera, Amy R. Reibman, Edward J. Delp, “A Utility-Preserving

GAN for Face Obscuration”, Proceedings of the International Conference on Machine Learn-

ing, Synthetic Realities: Deep Learning for Detecting AudioVisual Fakes Workshop, June

2019, Long Beach, CA.

• Hanxiang Hao, David Güera, János Horváth, Amy R. Reibman, Edward J. Delp, “Robust-

ness Analysis of Face Obscuration”, Proceedings of the International Conference on Auto-

matic Face and Gesture Recognition, November 2020, Virtual Conference.

• Hanxiang Hao, Sriram Baireddy, Amy R. Reibman, Edward J. Delp, “FaR-GAN for One-

Shot Face Reenactment”, Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, AI for Content Creation Workshop, May 2020, Virtual Conference.

• Hanxiang Hao, Sriram Baireddy, Emily Bartusiak, Latisha Konz, Kevin LaTourette, Michael

Gribbons, Moses W. Chan, Mary L. Comer, and Edward J. Delp, “An Attention-Based Sys-

tem for Damage Assessment Using Satellite Imagery”, Proceedings of International Geo-

science and Remote Sensing Symposium, July 2021, Virtual Conference.
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via Satellite Metadata and Shadow Instance Detection”, Proceedings of SPIE 11729, Auto-

matic Target Recognition XXXI, April 2021, Virtual Conference.
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Ziyue Xiang, Sri K. Yarlagadda, Ruiting Shao, János Horváth, Justin Yang, Fengqing M.

Zhu, Edward J. Delp, “Handbook of Digital Face Manipulation and Detection - From Deep-

Fakes to Morphing Attacks”, Advances in Computer Vision and Pattern Recognition, Springer,

2022 (To Be Published)

Conference Papers

• Daniel M. Montserrat, Hanxiang Hao, Sri K. Yarlagadda, Sriram Baireddy, Ruiting Shao,

János Horváth, Justin Yang, Emily R. Bartusiak, David Güera, Fengqing M. Zhu, and Ed-
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