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5.1 Human drivers perceive scenes, assess risks, make a plan, and take actions
while driving. Risk assessment, identifying hazards and risk factors that have
the potential to cause harm, is indispensable for driving safety. In this chapter,
we cast the identification of potential hazards as a cause-effect problem. A
new task called risk object identification is introduced. We propose a novel
computational framework that learns to reason how humans react (effect) to
these objects (cause). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 An conceptual diagram of the proposed two-stage risk object identification
framework. We first predict driver response in a given situation. To identify
object(s) influencing driver behavior, we intervene the input observation by
removing a traffic participant at a time (i.e., simulating a situation with
the traffic participant), and predict the corresponding driver response. For
instance, removing the crossing pedestrian changes driver response (effect)
from Stop to Go. The effects of removing other traffic participants remain
the same. We conclude that the crossing pedestrian is the risk object (cause).  67

5.3 Driver-centric Risk Object Identification (ROI) dataset. To study risk object
identification, a dataset with a diverse of reactive scenarios is essential. We
build the driver-centric ROI dataset on top of the Honda Research Institute
Driving Dataset (HDD). In particular, we introduce two layers, i.e., Driver
Intention and Driver Response in the proposed dataset. Further detail
of the two layers can be found in Sec  5.3 . To obtain Intention labels, we
form n-frame clips, and the corresponding Intention label of each clip is the
last frame’s label defined in the Goal-oriented layer. A similar procedure is
applied to construct the Response layer (as shown on the right-hand side of
the figure). Notice that both Stop and Deviate annotated in HDD are merged
into Stop in our dataset.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 An overview of the proposed intention-aware driving model for driver response
prediction (right). The proposed architecture is motivated by the model of
situation awareness [  5 ] (left). Given a video clip, 3D convolutions (I3D),
object detection, semantic segmentation, and depth estimation are applied to
obtain states of traffic participants in a traffic environment at the Perception
stage (Sec  5.4.1 ). At the Comprehension stage, an Ego-Thing Graph and
an Ego-Stuff Graph are constructed to model spatial-temporal interactions
between a driver and traffic participants (Sec  5.4.2 ). In this chapter, we
categorize traffic participants into two types, i.e., Thing and Stuff. The details
are discussed in Sec  5.4.2 . The final stage, Projection (Sec  5.4.3 ), forecast
future interactions between driver and traffic participants for driver response
prediction. Frame-wise interactions obtained from Ego-Thing Graph and Ego-
Stuff Graph are fused and fed into an encoder LSTM to form interaction
representation. Intention representation obtained from the I3D head and
interaction representation are sent a decoder TRN (the architecture is shown
in  Figure 5.5 ) to predict driver response. . . . . . . . . . . . . . . . . . . . . 75
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5.5 Decoder Temporal Recurrent Network (TRN) [  139 ]. The inputs to this mod-
ule are intention and interaction representations. Note that intention repre-
sentation is used to initialize the hidden state of the first decoder LSTM cell.
The future gate and spatiotemporal accumulator (STA) aggregate features
from historical, current, and predicted future information to predict driver
response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 We simulate a situation using partial convolutional layers [  187 ]. Note that
a partial convolutional layer is initially introduced for image inpainting. We
utilize partial convolutions to simulate a scenario without the presence of
an object. The left-hand side of the figure depicts when an intervention is
disabled. To simulate a situation without an object (e.g., the car in the green
box), we set the pixels of the binary mask within the car’s box to 0. In
addition, the Ego-Thing Graph is constructed without considering the car in
the green box as a node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Visualization of Learned Ego-Thing Graph and Ego-Stuff Graph on egocen-
tric images. The first and second rows show examples from an Ego-Thing
Graph and an Ego-Stuff Graph, respectively. Comparing (a) and (b), which
have similar traffic configurations, our model attends to objects at different
locations based on distinct intentions. In (c) and (d), pedestrians intending
to cross the street have a significant influence on ego behavior when turning
left or turning right. Fig. (e) illustrates a left turn case when the heat map
shows high attention around the traffic light, which is green. In (f)-(h), lane
markings show strong influences on the ego’s lane-related behaviors. . . . . . 85
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5.9 An overview of the preliminary framework. The right and left figures show
the inference process with and without intervention, respectively. Both em-
ploy the same driving model to output the predicted driver response. The
inputs to the driving model include a sequence of RGB frames, a sequence of
binary masks and object tracklets. Partial convolution and average pooling
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ABSTRACT

From prehistoric man who needs to be aware of the surrounding situations and hunt

for food, to modern industry where machines and robots are programmed to explore the

environment and accomplish assignments, situation awareness has always been an essential

topic to everyone.

Advanced Driver-Assistance Systems (ADAS) is one of the modern technologies seeking

effective solutions for driving safety. It also utilizes situation awareness model to interpret

the driver’s state in the environment and provide safe driving advice, with the potential to

significantly reduce the traffic accident fatalities.

To enable situation awareness, an intelligent driving system needs to fulfill the following:

(1) perceives the traffic elements in the environment, (2) comprehends the spatial-temporal

interactions between a driver and other objects, and (3) projects the states of traffic elements

to forecast future actions.

However, each level of situation awareness encounters its unique challenges in driving

scenarios, for example, how to perceive vehicles in low-illuminated conditions? How to rep-

resent the complicated interactive relations in complicated driving situations? And how to

anticipate the temporal dynamics of traffic elements and identify the where the potential risk

comes from? To answer these questions, we explore situation awareness model for Advanced

Driver-Assistance Systems at 3 levels: Perception, Comprehension and Projection. We dis-

cuss how to realize situation awareness based on three different computer vision tasks. We

demonstrate that our proposed system is able to forecast the driver’s operational intentions

and identify risk objects to avoid hazards.
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1. INTRODUCTION

More than 1.3 million people die in road accidents worldwide every year, or approximately

3,700 people per day [1 ]. Car accident deaths globally are the leading cause of death,

excluding illness. A massive number of car accident fatalities are due to driver errors, such as

lack of awareness [2 ]. To reduce the fatality rate through increased driving safety, Advanced

Driver-Assistance Systems (ADAS) are in urgent need.

ADAS are groups of technological features that receive information from the environ-

ment, assess the situation, and provide assistance to drivers via the human-machine inter-

face. Features such as Forward Collision Warning, Road Obstacle Detection, Traffic Signal

Recognition, etc., capture drivers’ attention or improve reaction time to potentially reduce

road fatalities [3 ].

Situation Awareness

Level 1: Perception
Chapter 2

Perceives the  traffic 
elements in the 

environment.

Level 2: Comprehension
Chapter 3

Models spatial-temporal 
interactions between a 

driver and objects.

Level 3: Projection
Chapter 4

Forecasts the future 
actions of the elements 

in the environment.

Decision Action

Environment Feedback

Scope of the dissertation

Advanced Driver-Assistance Systems (ADAS)

Figure1.1. Situation awareness (SA) model for Advanced Driver-Assistance
Systems (ADAS).
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Since traffic scenes are extremely complicated, including a variety of elements (e.g., pedes-

trians, vehicles, and traffic signals), ongoing interactive relations (e.g., overtaking), and tem-

poral evolution of elements (e.g., preparing to stop to avoid collision), ADAS need to process

a torrent of information to disentangle the vehicle’s state in the environment, make decisions

based on that state, and operate the vehicle. “Knowing what is going on around us,” also

known as situation awareness (SA) [4 ], is the first step to enabling an intelligent driving

assistance system. As long as the state of the vehicle in the environment is certain, the sys-

tem can further determine what to do with the situation and perform actions accordingly.

Therefore, SA serves as the main precursor to decision making and action [5 ], as shown in

Figure 1.1 .

The SA model is also widely applied in other domains, such as aircraft piloting, air traffic

control [6 ], health care [7 ], etc. According to [5 ], SA is comprised of three different levels,

defined as “the perception of the elements in the environment within a volume time and space,

the comprehension of their meaning, and the projection of their status in the near future.”

In the language of ADAS applications, SA specifically means a system with the ability to

perceive traffic elements on the road, understand the spatial-temporal interactions between

a driver and objects, and forecast the future actions of the elements in the environment.

Although this three-level SA framework is general to most industrial domains, there are

still unique challenges at each level for driving applications. We discuss these unique aspects

in the following sections.

1.1 Level 1: Perception

Perception of traffic elements in the environment is a fundamental step of SA for ADAS.

A basic perception of important information is a cornerstone of success in comprehension

and projection. To perceive traffic elements, one can utilize object detection or semantic

segmentation to recognize the existence of traffic objects (i.e., vehicles, pedestrians, traffic

lanes, and traffic signs). State-of-the-art object detection methods such as Faster R-CNN [8 ]

and YOLO [9 ] degrade under adverse weather (i.e., rain, snow, and fog) and low-illuminated
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photon-limited conditions (i.e., driving in the countryside with only moonlight). The latter

– driving in a low light condition – is an especially common scenario in our daily lives,.

To address this problem, we present a photon-limited object detection framework in

Chapter 3 . We add two components to state-of-the-art object detectors: 1) a space-time

non-local module that leverages the spatial-temporal information across an image sequence

in the feature space, and 2) knowledge distillation in the form of student-teacher learning

to improve the robustness of the detector’s feature extractor against noise. Experiments are

conducted on both object detection (PASCAL VOC 2007 [10 ]) and driving dataset (Berkeley

DeepDrive 100K [11 ]) to demonstrate the improved performance of the proposed method in

comparison with state-of-the-art baselines.

1.2 Level 2: Comprehension

SA is more than just perceiving information; it also includes how to interpret and un-

derstand information relevant to the goal. This phenomenon is defined in the literature as

Level 2 SA – Comprehension. For an intelligent automated driving system, the goal is to

guarantee human drivers’ safety. A promising strategy to achieve this is to first understand

how humans drive and interact with road users to avoid accidents in complicated driving sit-

uations. To be more specific, we need to develop a computational model which can capture

the complicated spatial-temporal interactions between the ego vehicle and road users.

In Chapter 4  , we propose a 3D-aware egocentric spatial-temporal interaction framework

for automated driving applications. It is comprised of both Level 1 and Level 2 SA. Ob-

jects are first perceived by object detection and semantic segmentation [12 ] methods. Then

Graph Convolution Networks (GCN) [13 ] are devised to model these interactions to facili-

tate the comprehension. By visualizing the learned affinity matrices, which encode object

interactions, we showcase that the proposed framework can comprehend these interactions

effectively.
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1.3 Level 3: Projection

Projection is the highest level of SA. In terms of ADAS, it is interpreted as forecasting the

future actions of the traffic elements. This ability will enable timely decision-making in the

later stage. Given a driving scenario where a driver plans to pass through the intersection

while a pedestrian is crossing the crosswalk, a Level 3 SA ADAS should be able to anticipate

the future dynamics of the pedestrian and the vehicle. Moreover, a more intelligent driving

system is expected to give driving advice (e.g., warn drivers of the collision risk) according

to future projections.

Thus, one of the applications of the Level 3 SA ADAS is Driver-centric Risk Object

Identification [14 ]; that is, to identify traffic elements that may cause hazards to the driver.

In the previous example, the crossing pedestrian is a potential risk object to the vehicle if

the driver does not stop.  In Chapter 5  , we formulate this task as a cause-effect problem

and present two different novel two-stage risk object identification frameworks ([14 ], [15 ]),

taking inspiration from models of situation awareness and causal inference.

1.4 Scope and Publications

In this dissertation, we study three levels of situation awareness for applications in Ad-

vanced Driver-Assistance Systems – (1) Perception; (2) Comprehension; and (3) Projection.

Different levels of SA are represented as different computer vision tasks – (1) Photon-limited

object detection; (2) Tactical driver behavior recognition; and (3) Driver-centric risk object

identification.
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2. BACKGROUND

Since this dissertation focuses on the computer vision part of Advanced Driver-Assistance

Systems, in this chapter, we introduce the background of computer vision research for driver-

less and self-driving vehicles.

2.1 Driving Models

The ultimate goal of ADAS is to realize fully autonomous navigation. Therefore, ADAS is

an intermediate step to achieving Autonomous Driving (AD). To this end, various solutions

have been proposed, and existing approaches can be categorized into two groups: modular

pipelines and monolithic end-to-end learning methods[17 ].

Modular pipelines break down the entire driving system into functional modules from

low-level perception, high-level scene understanding to path planning, and vehicle control.

In 1995, Dickmanns [18 ] introduced a modular pipeline which can continuously estimate the

state of the vehicle and output the control command. Following this approach, researchers

put efforts into different related modules [19 ]–[21 ], which can be eventually applied to the

self-driving system. Since the input, output, and function of each module are clear, this kind

of method has two obvious advantages. First, it is easy to integrate prior knowledge into

the system design. For example, we can apply distance constraints to the vehicle control

module to avoid collisions. Second, it is easy to detect and fix the failure module of the whole

system, as the intermediate results passing from module to module are straightforward to

interpret. However, it also has drawbacks in that the intermediate representations designed

by humans are not always optimal for the driving task. Similarly, since every module is

designed and trained individually and independently, the optimization for each module might

not be optimal for the final goal, after being integrated to the whole system. Taking the

object detection task as an example, if we train the detector separately, it is highly possible

that it would pay more attention to less relevant objects, such as birds, windows, etc., rather

than traffic elements.

Another line of self-driving approaches falls into end-to-end learning-based methods,

where the entire system can no longer be easily divided into components with explicit func-
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tions and the meaning of the intermediate information is more abstract to interpret. In 1989,

ALVINN [22 ] was first proposed to achieve a mapping from images to navigation signals via

a shallow neural network. More recently, [23 ] and [24 ] demonstrated that driving policy can

be learned via an end-to-end supervised-learning manner from human demonstration ([11 ],

[25 ], [26 ]). A notorious problem of the end-to-end driving model is lack of interpretability,

as deep neural networks work as a “black box.” To address the issue, Kim et al.([27 ], [28 ])

and Wang et al.([29 ]), propose attention-based mechanisms to provide better explanations

for driving decisions. The driving models we discuss in Chapter 4  and Chapter 5  mainly be-

long to this end-to-end learning-based category, but they also utilize processed results from

some low-level perception modules, such as object detection, semantic segmentation, depth

estimation and tracking.

2.2 Computer Vision Tasks for Driving

To make reliable driving decisions, both aforementioned approaches first need to receive

information from the environment via a group of sensors including camera, wheel odome-

try, and range sensors (e.g., RADAR and LiDAR). Among various signals, the visual data

captured by the camera has the richest information, requiring computer vision techniques to

process this information and utilize it either explicitly or implicitly.

Computer vision research in the autonomous driving field includes a wide spectrum of

topics [17 ], including object detection, tracking, semantic segmentation, reconstruction, mo-

tion estimation, and scene understanding. Object detection ([8 ], [20 ], [30 ], [31 ]), tracking

([32 ]–[34 ]), and semantic segmentation ([12 ], [35 ]–[37 ]) are low-level perception tasks to rec-

ognize the traffic elements in the environment. Reconstruction maps 2D images into 3D

geometry ([38 ]–[40 ]) and further provides the spatial configurations of the traffic scene. Mo-

tion estimation ([41 ]–[43 ]) determines spatial-temporal dynamics of the ego vehicle. Based

on all of this processed information, scene understanding ([44 ]–[47 ]) aims to obtain a rich

but compact representation of the scene.

All of these computer vision tasks are generally related to this dissertation. In partic-

ular, we focus on object detection and scene understanding in Chapter 3 and Chapter 4 ,
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respectively. Additionally, in Chapter 4  and Chapter 5  , semantic segmentation and tracking

are used to provide perception cues as the input to the driving model. Inspired by the basic

3D reconstruction techniques, we compute the 3D distance and use the distance constraint

as prior knowledge to interaction modeling in Chapter 4 and Chapter 5 .
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3. PERCEPTION IN PHOTON-LIMITED CONDITIONS

3.1 Introduction

Figure3.1. Examples of driving in photon-limited conditions.

Robust perception is crucial and is the first level of SA. According to [48 ], 76% of SA errors

in pilot are originated from failures of missing important information in the perception stage.

Similarly, miss detection of traffic elements, e.g., oncoming vehicles and crossing pedestrians,

can mislead ADAS to ignore the potential risks and cause danger. Thus, it is important to

develop a reliable object detection system to perceive traffic elements.

State-of-the-art object detection methods such as Faster R-CNN [8 ] and YOLO [9 ] are

widely used in driving applications to provide information of traffic objects, but their operat-

ing regimes have been limited to well-illuminated scenes with a sufficient amount of photons.

As the number of photons decreases so that the signal-to-noise ratio becomes lower, the

performance of these detectors will also degrade. For common situations – driving at night

in suburban Figure 3.1 , or even in the countryside with only moon light, developing a more

robust object detection algorithm presents a pressing need. The goal of this chapter is to fill

the gap by demonstrating object detection in real driving scenarios where existing methods

fail to work.

Photon-limited imaging refers to image acquisition under a condition where the number

of measured photons is very low. The fundamental limit is attributed to the Poisson process

of the photon arrivals. This randomness is present even if the sensor is perfect – no read noise,

no dark current, and has a uniform pixel response. Because the randomness is the nature

of the problem, a photon-limited object detection algorithm must be able to extract the
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Figure3.2. We present a new object detection method for photon-limited
conditions. While traditional detectors fail because the signal is too weak, our
method addresses the problem by proposing two improvements: (1) Space-time
non-local module, and (2) Student-teacher learning.

weak signal from the noise. Existing low-light enhancement algorithms have demonstrated

promising results of improving the contrast of low-light images. In this chapter, we are

interested in pushing the limit further by considering images that do not only have a low

contrast but are also contaminated with shot noise.

The contributions of this chapter are summarized in Figure 3.2  . While conventional

methods such as Faster R-CNN fail to detect objects under photon-limited conditions, we

propose two improvements to overcome the difficulty:

• Leverage spatial-temporal redundancy. We assume that the input data is a burst

of photon-limited frames. Although motion exists across the burst of frames,

the total signal-to-noise ratio (SNR) of a burst is higher than a single frame.

By borrowing ideas from the non-local neural network [49 ], we build a space-
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time non-local feature aggregation module to assemble neighboring space-time

features.

• Regularize features via student-teacher knowledge distillation. The construction

of the non-local features is based on feature matching. The success of feature

matching depends on the SNR of the features. To maximize the SNR of the

features, we employ a knowledge distillation technique where the feature extrac-

tion module of a student network is trained to mimic the features produced by

a pre-trained teacher.

By incorporating the two improvements into Faster R-CNN, we offer improved detection

performance. We conduct extensive experiments on both synthetic and real data. For the

synthetic experiment, we utilize a standard object detection benchmark (PASCAL VOC

2007 [10 ]) and a driving dataset (Berkeley DeepDrive 100K [11 ]). Our experimental results

show that the new algorithm outperforms the baselines by more than 6% in mean accuracy

precision (mAP). Specifically, for object classes related to driving scenes, our method sur-

passes the baseline by 10.2%, demonstrating the capability of perceiving traffic objects in

the photon-limited condition. Given a desired mAP level, our system requires up to 50%

fewer photons. When combined with the latest single-photon image sensors [50 ], we achieve

object detection at 1 photon per pixels (PPP) or lower on real images.

3.2 Background

The taxonomy of the object detection methods is outlined in Figure 3.3  , where we com-

pare different detection tasks/methods against the photon-level (measured in lux) and the

sensor gain (measured in ISO).

3.2.1 Baseline / Vanilla Methods

The mainstream object detection methods that are trained using large scale data set such

as ILSVRC [69 ] and COCO [70 ] typically operate at the right most column of Figure 3.3 

where the number of photons is sufficient. Depending on the input data format, the methods

can be categorized into two group:
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Figure3.3. While baseline/vanilla methods [8 ], [9 ], [12 ], [51 ]–[64 ] are designed
to handle well-illuminated scenes, this chapter focuses on the photon-limited
regime where signals are very weak. Existing “low-light” methods [65 ]–[68 ]
typically do not operate in such an extreme condition where the signal is weak
even after tone-map and/or adjusting the sensor’s ISO.

• Single-image detection methods that detect objects from a single image. Some

of these methods focus on speed and real time processing capability [9 ], [51 ]–[53 ],

whereas other methods based on region proposal focus on detection performance

[8 ], [12 ], [54 ], [55 ]. On top of these methods, various work are proposed by

leveraging multi-scale information [71 ], making network fully convolutional [55 ],

utilizing multi-task training [12 ], tackling foreground-background imbalance [52 ],

and improving bounding box prediction quality [72 ], [73 ].

• Video detection methods that detect objects from multiple frames of a video.

The premise of these methods is that the temporal information and the spatial-

temporal redundancy provides valuable information for the detection. The ag-

gregation of the temporal cues are typically done at two levels: (i) feature level

aggregation [56 ]–[61 ], and (ii) box level aggregation [61 ]–[64 ].

Despite the abundance of baseline methods, the networks and training are not designed

for photon-limited conditions. As a result, directly applying these methods to our problem

is ineffective (performance is limited even if one augment training data) and inefficient (pre-
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processing could be computationally expensive but does not necessarily lead to unparalleled

performance), as demonstrated in [66 ], [74 ] and in our experiment.

3.2.2 Low-Light Detection Methods

Conventional low-light image processing methods can handle darker images than the

baselines as shown in Figure 3.3  (c) and (d). The easier case, as shown in Figure 3.3  (d),

happens when the lighting condition is not properly adjusted. However, information is

mostly intact after tone-mapping and contrast enhancement. Image enhancement for this

class of problem has been extensively studied [75 ]–[89 ]. For object detection, Loh et al. [65 ]

and Yang et al. [66 ] created large-scale real low light detection data sets. The state-of-

the-art detection systems in this scenario adopt Multi-Scale Retinex with Color Restoration

(MSRCR) algorithm [75 ] for pre-processing and fine tune detectors on pre-processed data

[66 ]. As will be shown in the experiment section, this strategy fails to work on photon-limited

images; the strong photon shot noise will void the illumination smoothness assumption held

by the Retinex model.

The harder case of the two, as shown in Figure 3.3  (c), happens when the photon level

is further reduced. In this operating regime, one needs to switch to a high sensor gain

(higher ISO) so that the details can be observed. As far as object detection algorithms

are concerned, to the best of our knowledge, no large scale detection dataset is available to

date. Instead, Sasagawa et al. [67 ] treat detection in this scenario as a domain adaptation

problem and use knowledge distillation to train a detector with normal lighting detection

data and SID reconstruction data set [68 ]. In our study, we simulate the physical process of

photon-limited image formation and demonstrate that our simulation enables our model to

work on real photon-limited images.

3.2.3 Photon-Limited Imaging Methods

When the light level is extremely low or the exposure time is extremely short, each pixel

only receives a handful of photons. Images captured under this condition are dominated
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by photon shot noise as shown in Figure 3.3  (a)-(b), which are the cases of interest in this

chapter.

For object detection at this photon level, the pioneer study by Chen et al. [90 ] shows the

feasibility of performing classification under such condition on MNIST [91 ] data set. Various

new types of image sensors have been developed over the past few years, including the single-

photon avalanche diodes (SPAD) [92 ]–[99 ] and the quanta image sensors (QIS) [100 ]–[105 ].

A lot work has also been done in the signal processing side of both these sensors [106 ]–

[116 ]. Specific to high-level computer vision tasks, Gyongy et al. demonstrated tracking and

reconstruction of rigid planar object at this light level [117 ]. Gnanasambandam et al.[74 ]

and Chi et al. [118 ] achieved image reconstruction and classification by combining student-

teacher training scheme. The proposed idea is inspired by the student-teacher scheme.

To further improve the performance, we introduce a spatial-temporal non-local module to

leverage the information from neighbor frames. Our method generalizes the conventional

detection methods by providing a more robust detection under photon-limited conditions.

3.3 Our Method

Given a sequence of photon-limited frames, our goal is to localize objects and identify

their classes in all frames. Our proposed system is trained on data obtained from Sec 3.3.1 

and consists of key components: the non-local module (Sec 3.3.2 ) and the student-teaching

learning scheme (Sec 3.3.3 ).

3.3.1 Image Formation Model

Under a photon limited condition, the signal generated by the image sensor, x, is modeled

through a Poisson process [74 ], [90 ], [118 ]:

x = Poisson(α · CFA(yRGB) + ηdc) + ηr, (3.1)

where CFA stands for the color filter array. yRGB is the clean RGB image in the range [0, 1].

α determines the average number of photons arriving at the sensor and therefore it depends
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on the exposure time and the average photon flux of the scene. ηdc is the dark current, and

ηr ∼ N (0, σrI) is the readout noise with standard deviation σr.

The final output x is truncated at 3 standard deviation from mean pixel values and

re-normalized to the range [0, 1]. All frames are assumed to be statistically independent, as

the Poisson process and the noise are independent [119 ]. In our experiments, we used values

listed in Table 3.1  , following [74 ], [90 ], [120 ]. The dark current parameter is set to 0 as it is

insignificant compared to other noise sources on modern sensors when the exposure time is

short.

Table3.1. Data synthesis parameters used in our experiments.
α ηdc σr

0.25 — 5 0 0.25 or 2

3.3.2 Space-Time Non-Local Module

student-teacher
feature extraction

+
noise rejection

frame t frame t+1frame t-1frame t-2 ……

feature map t feature map t+1feature map t-1feature map t-2

similar features t similar features t+1similar features t-1similar features t-2

+ aggregated
non-local feature

Top k neighbors / frame

average 

actual 
input

tone 
mapped

non-local search

Figure3.4. Our proposed non-local module and student-teacher training
scheme. The teacher network is first pre-trained on photon-abundant data and
it enforces the student to extract noise-rejected features of each input frame.
By applying the non-local search in the feature space, similar spatial-temporal
features are aggregated to update the key frame features.
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The biggest challenge of detecting objects under photon-limited conditions is the presence

of intense shot noise. Our solution to extract signals from the noise is to utilize the spatial-

temporal redundancy across a burst of frames. Our hypothesis is that if we are able to find

similar patches in the space-time volume, we can take a non-local average to boost the signal.

To achieve this goal, we design a non-local module as depicted in Figure 3.4 .

Given an image sequence, each frame is fed into a feature extractor (the student-teacher

module, which will be discussed in Sec 3.3.3 ) to obtain the feature maps. For each feature

vector at location (i, j, t), we conduct a non-local search for similar features by computing

the inner-products of this feature and all the candidate features in the adjacent frames. This

operation produces a set of scalars representing the similarities between the current feature

and the features in the space-time neighborhood. Then for every time t, we select the top-k

candidates with the highest inner product values. As shown in the experiments, we find

that k = 2 is an appropriate number for most of the experiments. After picking the top-k

features, we take the average to generate the aggregated non-local feature.

Our proposed space-time non-local module differs from the traditional non-local neural

networks [49 ] in the following two aspects:

• Before computing the similarity, [49 ] uses convolutional layers to first project

features onto another feature space. This additional feature space is designed to

represent high-level semantic meanings of the scene, such as interactions. For

photon-limited imaging where the SNR is low, such semantic-level features are

generally more corrupted and hence they are less reliable than low-level features.

In addition, feature projection could cause confusion to our spatial-temporal

feature matching step because the noise is heavy.

• [49 ] aggregates all space-time information via a softmax weighted average. We

only average partially the space-time information from the top-k features because

irrelevant features in the time-space can distract our model. In the experiments,

we demonstrate that the top-2 features per frame are sufficient for our purpose.
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3.3.3 Knowledge Distillation

Perceptual 
Loss+ +

Photon-limited
Noisy Image

Photon-abundant 
Clean Image

Feature Extractor - Teacher

Feature Extractor - Student

…

…

Figure3.5. Knowledge distillation via student-teacher learning. The teacher
network is pre-trained on clean images. We train the student network by
minimizing the perceptual loss which measures the pixel-wise difference of the
features.

The performance of the non-local feature matching depends heavily on the SNR of the

features. If the features are contaminated by noise, finding correct feature correspondence

would be difficult. Inspired by [74 ], [118 ], we address this issue by introducing a knowledge

distillation step known as the student-teacher learning scheme to regularize the features. The

idea is to train the student feature extractor by minimizing its L2 distance with a teacher

pre-trained on clean data so that the features extracted by the student are denoised.

Figure 3.5  depicts the idea of the proposed student-teaching learning scheme. In this

figure, we have a teacher network and a student network. The teacher network is pre-trained

using well-illuminated images. The student network has the same architecture but it is used

to extract features from the photon-limited data (i.e., noisy). In the training stage, the

parameters of the teacher network are fixed and those of the student network are trainable.
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Because the teacher network is trained to handle clean images, it generates noise-free features

when it is fed with clean images. We want features produced by the student network to be

similar to those of the teacher. To this end, we introduce regularization to the student

network by defining a perceptual loss:

Lp =
N∑

i=1
‖φ̂i(xclean) − φi(xnoisy)‖2, (3.2)

where φ̂i(xclean) and φi(xnoisy) are the i-th layer’s feature of the teacher and student network,

respectively. The perceptual loss is the Euclidean distance measuring the difference between

the student’s and the teacher’s features. Minimizing the perceptual loss forces them to

be close in the feature space. This further enforces the network to denoise the image and

generate good representations before non-local feature matching.

The overall training loss of our detector consists of the perceptual loss Lp, the standard

cross-entropy loss, and the regression loss [8 ].

3.3.4 Rationale of Our Design

Motion-free
Two realizations of noise

0.25 photons per pixel

Image space
+ Nonlocal search

Feature space
+ Nonlocal search

Student-teacher
+ Feature space

+ Nonlocal search

18.19% 52.98% 69.02%

10 matching patches （Blue: correct Yellow: incorrect）Input

Figure3.6. Comparison of different non-local patch matching methods. We
synthesize two i.i.d. copies of a photon-limited image. For each competing
configuration, we visualize 10 matching patch examples. The blue and yellow
arrows indicate correct and incorrect matching, respectively. As the image
pair is motion-free, the correct matches should be indicated by horizontal
arrows. The combination of non-local search and student-teacher learning
demonstrates the best performance.
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To illustrate the benefit of the proposed non-local module and the student-teacher learn-

ing scheme, we conduct an experiment in this section.

In Figure 3.6 , we synthesize two independent and identically distributed (i.i.d.) copies of

a photon-limited image at a photon level of 0.25 photons per pixel (ppp). We use this pair of

images to check how the feature matching step performs. Three methods are compared: 1)

non-local search in the image space (i.e., the original non-local search), 2) non-local search

in the feature space, and 3) student-teacher + non-local search in the feature space. In the

image space, for each h × w patch, we compute its normalized cross-correlation (NCC) with

all h×w patches in the other image and choose the one with the highest NCC as its matching

patch. In the feature space, we use features trained with or without student-teacher training

and find correspondence for every feature vector. The correspondence is visualized by the

center of the receptive field of feature vectors.

The benefit of the proposed method can be seen in two aspects: accuracy and speed. As

illustrated in Figure 3.6  , the non-local search in the feature space has a much higher success

rate of finding correct correspondence than the same method applied to the image space.

The student-teacher training further increases the performance by enhancing the robustness

of the feature extractor against noise. We performed the experiment for 100 images and we

observed that the trend was consistent.

For the speed, non-local search in image space is computationally more expensive than

in the feature space. Given an H × W image with desired patch size h × w, the feature

matching process takes approximately (HW )2hw floating-point operations (FLOP) in the

image space and (HW
S

)2
C FLOP’s in the feature space, where C is feature vector dimension

and S is spatial resolution compression ratio by the feature extractor. Reducing the patch

size reduces the computation cost, but the matching quality deteriorates significantly. In our

implementation, we use 64 × 64 for the image space search and it takes ∼ 256 times more

computation than in the feature space.
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3.4 Experiment

3.4.1 Experimental Settings

Dataset. We use the procedure outlined in Sec 3.3.1 to synthesize training data of the

photon-limited images from the Pascal VOC 2007 dataset [10 ]. To synthesize motion across

the frames, we introduce a random translation of image patches. The total movement varies

from 7 to 35 pixels across 8 frames similar to [118 ]. For testing, we created two synthetic

testing datasets. One is based on standard object detection dataset – PASCAL VOC 2007

[10 ] and another is from a driving scene dataset – Berkeley DeepDrive (BDD) 100K [11 ].

We have also collected a dataset of real images for testing. The read noise of our model is

assumed to be 0.25e−, based on the sensor reported in [50 ]. The average photon level we

tested ranges from 0.1 to 5.0 photons per pixel (ppp). With an f/1.4 camera, 1.1µm pixel

pitch, and 30ms integration, this range of photons roughly translates to 0.02 lux to 5 lux

(typical night vision scenarios). For real data, we use the GJ01611 16MP photon counting

Quanta Image Sensor developed by GigaJot Technology [50 ].

Implementation Details. Our method is implemented in Pytorch based on [121 ]. The

framework takes a T -frame image sequence as input, and T is set to be 1, 3, 5 and 8 in

the following experiments. Following [8 ], we adopt ResNet-101[122 ] pretrained on ImageNet

[123 ] as the backbone. We apply the perceputual loss to the features obtained from block_1,

block_2 and block_3 of ResNet-101 and the non-local module is processed on the features

from block_3. We utilize RoIAlign [12 ] to extract the features from object proposals and

block_4 is further applied to the extracted proposal features before the final classifier. The

model is trained for 20 epochs and we use Adam [124 ] optimizer with default parameters,

learning rate 0.001, and weight decay 0.1 every 5 epochs.

Competing Methods. We compare our method with four baselines. (a) A generic im-

age object detector: Faster R-CNN [8 ], fine tuned using the photon-limited data we synthe-

sized; (b) A video object detector: Relation Distillation Network (RDN)[62 ], also fine tuned

using photon-limited data; (c) A low-light detection framework: color restoration algorithm

(MSRCR) [75 ] plus a detection RetinaNet [52 ], which is one of the winning solutions of 2019
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Figure3.7. Experiments on synthetic data. (a) Compare different object
detection methods: Faster R-CNN[8 ], RED[125 ] + Faster R-CNN[8 ], RDN[62 ],
and MSRCR[75 ] + RetinaNet[52 ]. (b) Compare methods that use image de-
noising as a pre-processing step.

UG2+ low-light face detection challenge; (d) A two-stage pre-denoised detection framework:

RED-Net [125 ] plus Faster R-CNN [8 ].

3.4.2 Main Results

Our first experiment is conducted on synthetic data of PASCAL VOC 2007 [10 ] test set.

We use 8-frame inputs with the number of features for non-local aggregation set to 2 per

frame in the following experiments.

Comparison with the baselines. Figure 3.7a shows the detection rate, measured in

mean average precision (mAP), as a function of the photon level, measured in photons per

pixel (ppp). The proposed method consistently outperforms the competing methods across

the tested photon levels from 0.25 ppp to 5.0 ppp. The difference between our method and

the second-best method is as large as 6% in terms of mAP when the photon level is 2.0 ppp.

Comparison with image denoisers. When handling noisy images, a natural solution

is to first run a denoiser and feed the denoised images into a standard object detector.

Figure 3.7b  depicts the comparisons with such baseline methods. The denoiser we use is

the RED-Net [125 ] previously used in other photon-limited imaging papers such as [118 ]
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Table3.2. Comparison of different network designs. Relative mAP
increase are reported with respect to Faster R-CNN baseline. The unit is %.
ST: student-teacher learning; NL: non-local module; ST+NL:student-teacher
learning + non-local module.

Photon Level
(ppp) 0.25 0.5 1.0 2.0 5.0

ST 9.12 6.20 4.52 5.44 2.57
NL 16.06 14.56 9.89 10.13 5.14

ST+NL 20.07 15.90 11.61 11.26 5.95

and [74 ]. As the figure indicates, the proposed method outperforms the baselines by a big

margin. In addition, adding a denoiser to the proposed method offers almost no additional

benefit. Therefore, the proposed method has effectively executed the denoising task without

requiring another network for denoising.

Different network designs. Table 3.2 demonstrates the importance of the space-time

non-local module and the student-teacher learning module. In this table, we present the

relative performance gain compared with Faster R-CNN baseline [8 ]. The addition of the

non-local module and the student-teacher training shows improvement upon the baseline.

We observe that the performance gain shrinks when the photon level increases, as detection

becomes easier. The combination of both designs shows the best performance across all

photon levels, especially in extremely low light, where the relative gain is 20.07%.

Required Photon Levels for Detection. In Figure 3.8 , we discuss how many photons

are needed for each pixel in order to achieve the target detection performance. The x-axis

represents the detection accuracy we want to achieve and the y-axis is the minimal numbers

of photons per pixel needed in the images. We compare four settings by switching the inputs

from synthetic CIS to QIS images and changing the baseline method to our method. When

the target mAP is 50%, QIS data only needs half photons of CIS data to reach the same

accuracy by just using Faster R-CNN. By introducing our method, we can further decrease

the required photon level by half on average.

Choice of Frame Numbers and K. Non-local module is applied to multi-frame input

and searches for K similar features in each frame. Thus, we study the best and practical
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Figure3.8. Photon level requirement vs. detection performance.

Table3.3. A study of frame numbers and searched similar feature numbers.
T is the number of frames input to our model and K is the number of searched
features per frame for feature aggregation. We test our model under different
photon levels from 0.25 to 5.0. For each column, the best mAP is shown in
bold.

mAP
(%)

ppp = 0.25 ppp = 0.5 ppp = 1.0 ppp = 2.0 ppp = 5.0
T = 3 T = 8 T = 3 T = 8 T = 3 T = 8 T = 3 T = 8 T = 3 T = 8

K = 1 32.3 33.3 41.5 42.8 49.6 51.9 58.4 59.0 65.1 66.0
K = 2 32.7 33.2 41.6 43.0 50.0 51.9 58.7 59.3 65.6 66.0
K = 3 32.4 33.2 41.5 42.8 49.9 52.1 58.6 59.2 65.4 65.9
K = 4 32.5 33.0 41.5 43.0 50.0 52.1 58.6 59.1 65.4 65.9

settings for our designed network. In Table 3.3  , we find that using 8 frames is always

better than 3 frames no matter which photon levels. It is easy to interpret this result

because more frames provide more information and the proposed non-local module is able

to associate similar patches across multiple frames. However, more input frames require

more computations and processing time. When we set the frame number larger than 8, it

will exceed the GPU memory. Thus we use 8-frame sequences as input for practical usage.

Moreover, we discover that K=2 is the best choice for the number of searched similar features

per frame. Too many selected features could be a distractor for the denoising purpose.
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Table3.4. Detection results of real data. Each class column shows the
number of correct detections versus ground truth. The last column is the
overall mAP.

person car sheep mAP (%)

Faster R-CNN 54/105 58/60 60/60 66.9

Ours 73/105 60/60 60/60 87.9

Real data. We collected 225 real images in low light and annotate objects from 3 cate-

gories: person, sheep, and car. We train our model using the synthetic data and verify the

results using the real data. The results of these 225 testing images are shown in Table 3.4  .

On average, our proposed method achieves an mAP of 87.9% while the baseline method

achieves 66.9%.

False alarms

Correct Correct

Fail to detect

CorrectCorrect

False alarmsFalse alarms
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Synthetic Data Real Data

1.0 ppp 1.0 ppp 0.52 ppp 0.19 ppp

Figure3.9. Detection results on synthetic and real data. The top row
is the Faster R-CNN baseline. The bottom row is our method. The photon
level is shown in the top-left corner. Correct/Incorrect results are in green/red,
respectively. The real data is captured by Gigajot Technology 16 MP Photon
Counting Quanta Image Sensor (GJ01611).
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Figure 3.9 shows a qualitative comparison of traffic object examples between our method

and the baseline Faster R-CNN. The result shows that the baseline suffers from either false

alarms or missed detection. In contrast, the proposed method is able to detect the static

toy car and moving person on the real data when the photon level is 0.52 ppp and 0.19 ppp,

respectively. In Figure 3.10  , we show more qualitative examples of comparisons. All of the

four scenarios are dynamic scenes. The first two are synthetic data and the photon levels

are set to 2.0 ppp and 1.0 ppp. The last two scenes are real data captured at photon levels

of 0.28 ppp and 0.19 ppp. We observe that the presence of heavy shot noise results in false

alarms detected in the background, such as the sheep and the bird in scene 2. Also, the

baseline method fails to detect the moving person for most of the time in scene 3.

Table3.5. Detection results of 6 traffic objects. Each class column shows
the average precision (AP in %) of each class. We compare our method with
a baseline method (Faster R-CNN [8 ]) at five different photon levels.

Photon Level

(ppp)
Method bike bus car

motor-

bike
person train

0.25
Faster R-CNN 34.1 38.3 45.5 41.3 38.2 40.5

Ours 37.5 45.1 54.4 48.0 48.4 45.1

0.5
Faster R-CNN 44.6 49.6 56.6 49.8 51.2 51.7

Ours 54.8 56.9 62.6 56.1 57.7 58.4

1.0
Faster R-CNN 58.1 59.5 66.0 57.8 58.2 60.3

Ours 62.8 65.7 69.5 65.5 64.9 64.7

2.0
Faster R-CNN 66.3 68.2 70.9 65.6 64.1 63.3

Ours 74.1 72.5 75.5 70.3 69.5 68.2

5.0
Faster R-CNN 74.4 72.6 75.8 71.6 72.6 72.4

Ours 78.5 76.4 78.5 72.3 74.2 74.3

Perception of Traffic Elements. Among the 20 classes of objects from PASCAL VOC

2007 [10 ], there are 6 classes highly related to traffic scenes – bike, bus, car,motorbike,

person and train. In Table 3.5  , we compare our method with Faster R-CNN [8 ] by showing
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Figure3.10. More detection results on synthetic and real data.
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Figure3.11. Examples of qualitative results on BDD 100K [11 ] The
top row is the Faster R-CNN baseline. The bottom row is our
method. Correct/Incorrect results are in green/red, respectively.
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Figure3.12. Experiments on BDD 100K [11 ]. The x-axis represents the
photon level and y-axis is the average precision (AP) of each class.

detection results of these traffic objects at five different photon levels. Under the same con-

dition, our method is always better than the baseline for all traffic classes. The performance

difference can be as large as 10.2% when the photon level is less than 1.0. To obtain a deeper

understanding of perception in driving scenes, we also test our algorithm on a dataset called

Berkeley DeepDrive (BDD) 100K [11 ], which provides diverse driving videos with rich an-
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notations. We focus on two main object categories, i.e., bus and car, which dominates the

dataset. Results are shown in Figure 3.12 . We discover that there is always a significant

performance gap between our method and Faster R-CNN [8 ]. The difference of car category

between our method and the competing method is as large as 5 % in terms of AP when the

photon level is 2.0 ppp. We also present some qualitative results in Figure 3.11  and observe

that the baseline method tends to produce more false alarms. In the first example (the most

left one), the baseline method misses the crossing pedestrian which is a fatal mistake and

may cause serious serious accidents.

Lux0.02
0.20 2.41 6.03

CIS + Baseline

CIS + Ours

QIS + Baseline

QIS + Ours

R: 0%   P: 0%
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R: 66%   P: 100%
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5.0
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Figure3.13. Comparison of different sensors and different methods
on real data. The visualized figures are tone mapped and the baseline method
is Faster R-CNN. We choose 5 different lux levels ranging from 0.02 to 5.0,
equivalent to Avg. ppp ranging from 0.20 to 6.03. In the right-top corner
of images, the recall (R) and precision (P) are computed, enclosed in frames
with different colors. Red/Yellow/Green indicates totally failed/partially cor-
rect/totally correct, respectively. In the first row, we zoom into the left-front
side of the yellow car and show details in the right-bottom box. We can see
that in the extremely low light condition, the images suffer from the high-noise
problem.
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3.4.3 Performance comparison with CIS and QIS

We evaluate the proposed method with a conventional CMOS image sensor (CIS) from

Google Pixel 3XL and a GJ01611 Quanta Image Sensor (QIS) from Gigajot Technology

[103 ] under different illumination levels. By combining the proposed algorithm with the QIS

device, we demonstrate the performance of the proposed detection method under extremely

photon-limited conditions (0.02 lux and only 0.20 ppp).

To ensure a fair comparison, we note that the CIS has a pixel pitch of 1.4µm and read

noise of 2.14e−, while the QIS has 1.1µm pixels and read noise of 0.22e−. In the experiments,

the f-number of the lens is adjusted to balance the difference of pixel sizes (f/1.8 for CIS and

f/1.4 for QIS) in the two sensors and 30msec exposure time is used for both sensors.

The comparison results are shown in Figure 3.13  . The images were taken under illumi-

nation levels from 0.02 lux to 5.0 lux. Under strong illumination conditions such as 5.0 lux,

all the compared methods show high detection accuracy without any false alarms. However,

as the illumination level decreases, the proposed algorithm shows significant advantages over

the baseline methods. This performance improvement is further enhanced with the QIS

compared to the CIS because of its ultra-low read noise. For example, under 0.02 lux and

an average photon level of 0.20 ppp, only the combination of the proposed algorithm and

the QIS device can successfully detect the yellow car in the scene.

3.5 Discussion

We proposed a photon-limited object detection framework. Our solution integrates a

new non-local feature aggregation method and a knowledge distillation technique with the

state-of-the-art detector networks. The two new modules offer better feature representa-

tions for photon-limited images. In comparison with the baselines, the proposed detector

demonstrated superior performance in synthetic and real experiments.

Particularly, for driving scenarios, our proposed method also showcases the capability of

detecting and perceiving traffic objects in the photon-limited condition, e.g. driving in the

suburban at night. It is a fundamental step to enable Perception (Level 1 SA) and provides

important cues for the safe driving as the goal of ADAS.
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Also, when applied to the latest photon counting devices, we demonstrated object de-

tection at a photon level of 1 photon per pixel or lower, significantly surpassing the existing

CMOS image sensors and algorithms. It is envisioned that the new detection framework will

enable a variety of applications, such as security, defense, life science, and consumer, as well

as the emerging medical applications.
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4. COMPREHENSION OF SPATIAL-TEMPORAL

INTERACTIONS

4.1 Introduction

(a) Goal-oriented prediction: Left turn and Cause prediction: crossing vehicle.

(b) Learned affinity matrix (c) BEV visualization of the learned affinity matrix.

Figure4.1. In a complicated traffic situation at intersections, the ego-vehicle
intends to take a left turn while yielding to a upcoming vehicle. Our model
learns a graph structure in (b) using edge connections to represent the interac-
tions among road users and the ego-vehicle. The top-view scene representation
in (c) is derived from (a) and (b) by overlaying learned relations on a scene
layout for better illustration.

The comprehension of SA is about how to combine, interpret, store and retain information

[5 ] given tons of perceived data. This includes processing multiple pieces of information and

determining their relevance to the goal. As we know, the goal of ADAS is to increase drivers’

safety in the complicated traffic environment. Then understanding how human drives and
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interacts with road users is an essential part of Level 2 SA for an intelligent automated

driving system. The first step to achieve this is to develop a computational model which

can capture the complicated spatial-temporal interactions between the ego-vehicle and road

users.

Over the past decade there has been a significant advance in modeling spatial-temporal in-

teractions [126 ]–[132 ]. However, most of the existing work still cannot effectively model com-

plex interactions since many of them are leveraging “hand-crafted interaction models” [130 ].

Data-driven approaches are better options as they can learn subtle and complex interac-

tions [130 ], [132 ]–[134 ]. However, existing approaches are still insufficient for three reasons.

First, the input used by several existing methods [130 ], [133 ], [134 ] is the human’s

2D-location on bird’s-eye-view (BEV) images. However, it is more desirable to use ego-

perspective sensing devices, e.g, cameras, as humans use two eyes to sense. This calls for

a specific design for egocentric interaction models. Second, using 2D pixel coordinates to

model the 3D interactions (such as [132 ]) is insufficient because of perspective projection.

BEV images can resolve this problem since the depth and spatial positions are both em-

bedded in the BEV images. Third, the existing approaches only consider human-human or

human-robot interactions, ignoring the environment factors, such as lane markings, cross-

walks, and traffic lights. However, modeling these objects is nontrivial because they have

irregular shapes.

In this chapter, we propose a 3D-aware egocentric spatial-temporal interaction framework

for automated driving applications. Our method is the first method based on egocentric

images and can address the aforementioned problems. The specific approach we take is to

design two graph convolutional networks (GCN) [13 ] to model the egocentric interactions.

We define two graphs, Ego-Thing Graph and Ego-Stuff Graph to encode how the ego-vehicle

interacts with the Thing objects (e.g., cars and pedestrians) and the Stuff objects (e.g., lane

markings and traffic lights). The Ego-Thing Graph is an improvement of Wu et al. [135 ].

We introduce two new concepts. We add an Ego node (i.e., the ego-vehicle) for egocentric

interaction modeling, and we incorporate the objects’ 3D locations (recovered from image-

based depth estimation). The Ego-Stuff Graph is designed similarly. However, in order
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to extract features from irregular Stuff objects, we introduce a new method known as the

MaskAlign operation.

We validate the proposed framework on tactical driver behavior recognition using Honda

Research Institute Driving Dataset (HDD) [136 ]. The HDD is the largest dataset in the

field. It provides 104-hour egocentric videos with frame-level annotations of tactical driver

behavior. We validate our method based on two types of settings: 1) the ego-vehicle has

interactions with Stuff objects (e.g., lane change, lane branch, and merge) and 2) the ego-

vehicle has interactions with Thing objects (e.g., stop for crossing pedestrian and deviate

for parked car). Our approach offers substantial performance boost (in terms of mAP, See

Experiment section for definitions) over baselines on the two settings by 3.9% and 6.0%,

respectively.

4.2 Background

4.2.1 Tactical Driver Behavior Recognition

Significant efforts have been made in tactical driver behavior recognition [24 ], [29 ], [126 ]–

[128 ], [136 ]–[139 ]. Hidden Markov networks (HMM) were leveraged to recognize driver be-

haviors [126 ]–[128 ], [137 ], [138 ]. A single node in HMM encodes the states from the ego-

vehicle, roads and traffic participants [126 ] into a state vector. In the proposed framework,

we explicitly model the above three states using different nodes, each of which encodes its

own representation according to the semantic context. Recently, convolutional and recurrent

neural network based algorithms [24 ], [136 ], [139 ] are proposed. They implicitly encode the

states of the ego-vehicle and road users using 2D convolution, and the state transition is via

recurrent units. Our method explicitly models the states using graph convolutional networks

(GCN) and uses temporal convolution networks for the state transition.

Wang et al., [29 ] designed an object-level attention layer to capture the impacts of ob-

jects on driving policies. Instead of simply weighting and concatenating objects’ features,

our framework preserves more complicated forms of interactions benefiting from GCN. Ad-

ditionally, interactions between the ego-vehicle and road infrastructure are included in our

system.
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4.2.2 Graph Neural Networks for Driving Scenes

Recently, graph neural networks (GNN) [13 ], [140 ] has made significant progress in situ-

ation recognition [141 ], action recognition [142 ], [143 ], group activity recognition [135 ], and

scene graph generation [144 ]. However, considerably less attention has been paid to driving

scene applications

Herzig et al. [145 ] proposed a Spatio-Temporal Action Graph (STAG) network to detect

driving collision. While STAG is similar to the proposed Ego-Thing Graph, our model

explicitly exploits 3D locations of objects and the ego-vehicle into the design of nodes and

edges. The 3D cue is essential in understanding scenes from egocentric perspective. This

design is motivated by [135 ]. Note that 2D locations are used in [135 ] while we use 3D

locations extracted from [146 ]. Moreover, we consider interactions between the ego-vehicle

and road infrastructure that enable the proposed framework to be applied for diverse driving

scene applications, e.g., learning driving model from images [147 ]. The details of our graph

design can be found in Sec 4.3.1 .

4.3 Our Method

An overview of the proposed framework is depicted in Figure 4.2 . Given video frames,

we apply instance segmentation and semantic segmentation in [12 ] to obtain Thing objects

and Stuff objects, respectively. Object features are extracted from intermediate I3D [148 ]

features via RoIAlign [12 ] and MaskAlign (Sec 4.3.2 ). Afterwards, we construct Ego-Thing

Graphs and Ego-Stuff Graphs in a timely manner and apply graph convolutional networks

(GCN) [13 ] for message passing. The updated Ego features from two graphs are fused and

processed via a temporal fusion module. Additionally, the temporally fused Ego features

are concatenated with the I3D head feature, which serves as a global video embedding, to

form the egocentric representation. At last, this egocentric feature is passed through a fully

connected layer to obtain the final classification.
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Figure4.2. An overview of our framework. Given a video segment, our model
applies 3D convolutions to extract visual features followed by two branches:
RoIAlign is employed to extract object features from object bounding boxes
and MaskAlign is designed to extract features of irregular shape objects from
semantic masks. Then, frame-wise Ego-Thing Graph and Ego-Stuff Graph
are constructed to propagate interactive information among objects via graph
convolution networks. The outputs of the two graphs are fused and fed into
a temporal fusion module to form interactive representation. Finally, global
video representation from I3D head and interactive features are aggregated as
an input to tactical driver behavior recognizer.

4.3.1 Ego-Thing Graph

The Ego-Thing Graph is designed to model interactions among ego-vehicle and movable

traffic participants, such as 〈car, ego-vehicle〉, 〈car, person〉 and so on.

Node feature extraction. In our design, Thing objects are car, person, bicycle, mo-

torcycle, bus, train, and truck. Given bounding boxes generated from Mask R-CNN [12 ], we

keep the top-K detections on each frame from all the classes above and set K to 20. Then

RoIAlign [12 ] and a max pooling layer are applied to obtain 1 × D dimensional appearance

features as Thing node features in a Ego-Thing Graph. The Ego node feature is obtained by

the same procedure from a frame-size bounding box.

Graph definition. We denote the sequence of frame-wise Ego-Thing Graphs as GET =

{GET
t |t = 1, · · · , T}, where T is the number of frames, and GET

t ∈ R(K+1)×(K+1) is the

Ego-Thing affinity matrix at frame t representing the pair-wise interactions among Thing
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objects and ego. Specifically, GET
t (i, j) denotes the influence of object j on object i. Nodes

in graph correspond to a set of objects {(xt
i , pt

i)|i = 1, · · · , K + 1}, where xt
i ∈ RD is i-th

object’s appearance feature, and pt
i ∈ R3 is the 3D location of the object in world frame.

Note that index K + 1 corresponds to Ego object and i = 1, · · · , K correspond to Thing

objects.

Interaction modeling. Ego-Thing interactions are defined as second-order interactions,

where not only the original state but also the changing state of the Thing object caused by

other objects will altogether influence the Ego state. To sufficiently model these interactions,

we consider both appearance features and distance constraints inspired by [135 ]. We compute

the edge value GET
t (i, j) as:

GET
t (i, j) =

fs(pt
i , pt

j)exp(fa(xt
i , xt

j))∑K+1
j=1 fs(pt

i , pt
j)exp(fa(xt

i , xt
j))

(4.1)

where fa(xt
i , xt

j) indicates the appearance relation between two objects, and we set up a

distance constraint via a spatial relation fs(pt
i , pt

j). Softmax function is used to normalize

the influence on object i from other objects.

The appearance relation is calculated as below:

fa(xt
i , xt

j) =
φ(xt

i)Tφ(xt
j)√

D
(4.2)

where φ(xt
i) = wxt

i and φ(xt
j) = wxt

j . Both w ∈ RD×D and w ∈ RD×D are learnable

parameters which map appearance features to a subspace and enable learning the correlation

of two objects.
√

D is a normalization factor.

The necessity of defining spatial relation arises from that the interactions of two distant

objects are usually scarce. To calculate this relation, we first unproject objects from 2D

image plane to the 3D space in the world frame [146 ]:

[
x y z 1

]T

= δu,v · P−1
[
u v 1

]T

(4.3)
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where
[
u v 1

]T

and
[
x y z 1

]T

are homogeneous representations in 2D and 3D coor-

dinate systems, P is the camera intrinsic matrix, and δu,v is the relative depth at (u, v)

obtained by depth estimation [146 ]. In the 2D plane, we choose the centers of bounding

boxes to locate Thing objects. The location of the ego-vehicle is fixed at the middle-bottom

pixel of the frame. Then the spatial relation function fs is formulated as:

fs(pt
i , pt

j) = I(d(pt
i , pt

j) ≤ µ) (4.4)

where I(·) is the indicator function, d(pt
i , pt

j) computes the Euclidean distance between object

i and object j in the 3D space, and µ is the distance threshold which regulates the spatial

relation value to be zero if the distance is beyond this upper bound. In our implementation,

the value of µ is set to be 3.0.

4.3.2 Ego-Stuff Graph

The Ego-Stuff Graph GES is constructed in a similar manner as the Ego-Thing Graph

GET in Equation 4.1 except for the following aspects:

Node feature extraction. We include the following classes as Stuff objects: Crosswalk,

Lane Markings, Lane Separator, Road, Service Lane, Traffic Island, Traffic Light and Traffic

Sign. The criterion we use to distinguish Stuff objects from Thing objects is based on

whether the change of states can be caused by other objects. For example, cars stop and

yield to person, but a traffic light turns red to green by itself. Another distinction lies in that

the contour of most Stuff objects cannot be well depicted as rectangular bounding boxes.

Thus, it is difficult either to detect it by algorithms like Faster R-CNN [8 ], YOLO [9 ] or

to extract features by RoIAlign [12 ] without enclosing irrelevant information. For this, we

propose a feature extraction approach named MaskAlign to extract features for a binary

mask Mt
i , which is the i-th Stuff object at time t. Mt

i is downsampled to Mt
i (W × H) with
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the same spatial dimension as the intermediate I3D feature map X (T × W × H × D). We

compute the Stuff object feature by MaskAlign as following:

xt
i =

∑W
w=1

∑H
h=1 Xt

(w,h) · Mt
i (w,h)∑W

w=1
∑H

h=1 Mt
i (w,h)

(4.5)

where Xt
(w,h) ∈ R1×D is the D-dimension feature at pixel (w, h) for time t, and Mt

i (w,h) is a

binary scalar indicating whether object i exists at pixel (w, h).

Interaction Modeling. In Ego-Stuff Graph, we ignore interactions among Stuff objects

since they are insusceptible to other objects. Hence, we set fs to zeros for every pair of Stuff

objects and only pay attention to the influence that Stuff objects act on ego-vehicle. We call

it as the first-order interaction. To better model the spatial relations, instead of unprojecting

bounding box centers, we map every pixel inside the downsampled binary mask Mt
i to 3D

space and calculate the Euclidean distance between every pixel with the ego-vehicle. The

distance is the minimum distance of the all. The distance threshold in Ego-Stuff Graph is

designed as 0.8.

4.3.3 Reasoning on Graphs

To perform reasoning on graphs, we introduce graph convolutional networks (GCN) pro-

posed in [13 ]. GCN takes a graph as input, passes information through the learned edges,

and refreshes nodes’ features as output. Specifically, graph convolution can be expressed as:

Zl+1 = GZlWl + Zl (4.6)

where G is the affinity matrix from graphs. Taking the Ego-Thing Graph as an example,

Zl ∈ R(K+1)×D is the appearance feature matrix of nodes in the l-th layer. Wl ∈ RD×D is

the learnable weight matrix. We also build a residual connection by adding Zl. In the end

of each layer, we adopt Layer Normalization [149 ] and ReLU before Zl+1 is fed to the next

layer. As second-order interaction is not considered in Ego-Stuff Graph but in Ego-Thing

Graph, we use one layer GCN in Ego-Stuff Graph and two layers in Ego-Thing Graph.
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4.3.4 Temporal Modeling

Figure4.3. Architecture of our temporal modeling module.

GCN interactive features in each frame are processed independently without considering

temporal context information. Therefore, we append a temporal fusion module to the late

stage in our framework as illustrated in Figure 4.3 . Unlike prior works [135 ], [142 ], [143 ],

which fuse features of every node in different graphs, we only focus on Ego node. Ego features

are aggregated by a element-wise summation from two types of graphs. Then these time-

specific Ego features are fed into a temporal fusion module, which applies element-wise max

pooling to obtain a 1 × D feature vector, namely GCN egocentric feature. We also propose

another two designs for temporal fusion: (a) Inspired by Temporal Relation Network [150 ],

which utilizes multi-layer perceptrons (MLP) as temporal modeling, we follow the similar

approach in order to capture the temporal ordering of patterns. (b) The temporal fusion
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can also be replaced by element-wise average pooling. In Sec 4.4.5 , we conduct different

experiments to investigate all three temporal modeling approaches.

4.4 Experiment

4.4.1 Dataset

We evaluate the proposed framework on the HDD dataset [136 ], the largest dataset that

provides 104-hour egocentric videos with frame-level annotations of tactical driver behavior.

It has a diverse set of scenarios where complicated interactions happen between the ego-

vehicle and road users. The data was collected within San Francisco Bay Area including

urban, suburban and highways. We follow the same Train/Test data split as [136 ].

The videos are labeled by a 4-layer representation to describe tactical driver behaviors.

Among these 4 layers, Goal-oriented action layer (e.g., left turn and right lane lane change)

and Cause layer (e.g., stop for crossing vehicle) consist of the actions with interactions. We

leverage those labels and analyze the effectiveness of the proposed interaction modeling

framework in Sec 4.4.3 .

4.4.2 Implementation Details

We implemented our framework in TensorFlow. All experiments are performed on a

server with 4 NVIDIA TITAN-XP. The input to the framework is a 20-frame clip with

a resolution of 224 × 224 at 3 fps, approximately 6.67s. We adopt Inception-v3 [151 ] pre-

trained on ImageNet [123 ] as the backbone, following [148 ] to inflate 2D convolution into a 3D

ConvNet, and fine-tune it on the Kinetics action recognition dataset [152 ]. The intermediate

feature map used in RoIAlign and MaskAlign is extracted from the Mixed_3c layer, where

D = 512 is the number of feature channels. The global I3D feature is generated from a

1 × 1 × 1 convolution on Mixed_5c layer feature, which reduces the output channel number

from 1024 to 512. The downsampled binary mask Mt
i is 28 × 28. The model is trained in a

two-stage training scheme with batch size set to 32: (1) we fine-tune the Kinetics pre-trained

model on the HDD dataset for 50K iterations without using GCN. We refer to this model

the baseline for our experiment. (2) We load the weights trained in Stage 1, and further
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train the network together with GCN for 20K iterations. We use Adam [124 ] optimizer with

default parameters. We set learning rate as 0.001 and 0.0002 for the first and second stage

for training, respectively.

4.4.3 Analysis on Interactions

To understand the benefits of modeling interactions, we perform analysis on the following

two aspects.

Goal-oriented Action Layer. Table 4.2 presents Goal-oriented action recognition

results. We use the per-frame mean average precision (mAP) as evaluation metric in all

experiments. We pay attention to the 5 ‘lane-related’ classes in frames: Left Lane Change,

Right Lane Change, Left Lane Branch, Right Lane Branch and Merge. Our model obtains

49.9% mAP over these 5 classes, which surpasses the I3D baseline 46.0% mAP by a gain

of 3.9%. This improvement showcases the effectiveness of modeling interactions between

ego-vehicle and traffic lanes, which also can be validated by visualization in Sec 4.4.6 .

Cause Layer. 6 classes from Cause layer are designed to explain the reason for stop

and deviate actions, such as Deviate for Parked Vehicle, which is an example of Ego-Thing

interaction. We extend our framework to multi-head classifiers to simultaneously predict

Goal-oriented actions and Causes. Note that we train a multi-head I3D as the baseline

for this experiment. Our design achieves a steady increase in recognizing Goal-oriented

actions by improving the baseline of 48.5% to 50.2%. Meanwhile, the result of Cause layer

in Table 4.1 shows a significant gain of 6.0% in overall mAP. We further demonstrate the

strength of the proposed interaction modeling by using a Deviate for Parked Vehicle scenario

in Figure 4.5 in Sec 4.4.6 .

4.4.4 Comparison with the State of the Art

We compare our approach with the state-of-the-art in Table 4.2  . We categorize the

existing methods tested on HDD into online and offline. The online approaches aim to

detect driver actions as soon as a frame arrives. Future context is not considered. The offline

approaches take future frames into consideration. Since future information is processed, the
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Table4.1. Results of driver behavior recognition in Cause layer on HDD. The unit is %.
Individual actions

Method Stop for
Congestion

Stop for
Sign

Stop for
Red Light

Stop for
Crossing
Vehicle

Deviate for
Parked
Vehicle

Stop for
Crossing
Pedestrian

Overall
mAP

I3D [148 ] 64.8 71.7 63.6 21.5 15.8 26.2 43.9
Ours 74.1 72.4 76.3 26.9 20.4 29.0 49.9

Table4.2. Results of Goal-oriented driver behavior recognition on HDD. The unit is %.
Individual actions

Method Online/Offline
intersection
passing L turn R turn

L lane
change

R lane
change

L lane
branch

R lane
branch

crosswalk
passing

railroad
passing merge u-turn

Overall
mAP

CNN [136 ]

Online

53.4 47.3 39.4 23.8 17.9 25.2 2.9 4.8 1.6 4.3 7.2 20.7
CNN-LSTM [136 ] 65.7 57.7 54.4 27.8 26.1 25.7 1.7 16.0 2.5 4.8 13.6 26.9
ED [139 ] 63.1 54.2 55.1 28.3 35.9 27.6 8.5 7.1 0.3 4.2 14.6 27.2
TRN [139 ] 63.5 57.0 57.3 28.4 37.8 31.8 10.5 11.0 0.5 3.5 25.4 29.7
DEPSEG-LSTM [153 ] 70.9 63.4 63.6 48.0 40.9 39.7 4.4 16.1 0.5 6.3 16.7 33.7
C3D [154 ] 72.8 64.8 71.7 53.4 44.7 52.2 3.1 14.6 2.9 10.6 15.8 37.0

C3D [154 ]
Offline

82.4 77.4 80.7 67.9 56.9 59.7 5.2 17.4 3.9 20.1 29.5 45.5
I3D [148 ] 85.6 79.1 78.9 74.0 62.4 59.0 14.3 29.8 0.1 20.1 41.4 49.5
Ours 85.5 77.9 79.1 76.0 62.0 64.0 19.8 29.6 1.0 27.7 39.0 51.1

offline approaches exhibit an overwhelming advantage over the online approaches. Among

the offline methods, our model significantly outperforms the C3D [154 ] and I3D [148 ] by

5.6% and 1.6% in terms of mAP, respectively.

4.4.5 Ablation Studies

To provide a comprehensive understanding of the contributions from each module, we

decompose our model into three components and conduct ablation studies using the Goal-

oriented action recognition shown in Table 4.3 .

Comparison of Different Graphs. The first section of Table 4.3 analyzes the influence

of each graph to the tactical driver behavior recognition. The baseline is the I3D. When Ego-

Stuff Graph or Ego-Thing Graph is included, the results are boosted from 49.5% to 50.6%

and 50.7%, respectively. If both graphs are trained jointly with the baseline model, we

achieve the best performance 51.1% on the Goal-oriented action recognition.
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Table4.3. Ablation Studies
Method Overall mAP

Different
Graphs

I3D [148 ] 49.5
Ego-Stuff Graph 50.6
Ego-Thing Graph 50.8
Ego-Thing Graph + Ego-Stuff Graph 51.1

Spatial
Modeling

Appearance Relation 50.9
Appearance + Spatial Relation 51.1

Temporal
Modeling

Average 50.0
MLP 50.9
Max 51.1

(a) Left Turn (b) Right Turn (c) Crosswalk Passing (d) Intersection Passing

(e) Left Turn (f) Left Lane Change (g) Left Lane Branch (h) Merge

Figure4.4. Attention visualization from egocentric view. The first and second
row show examples from Ego-Thing Graph and Ego-Stuff Graph, respectively.
In (a)-(c), pedestrians intending to cross the street have significant influence
on Ego behavior when turning left, turning right and passing the crosswalk.
The ego-vehicle passes an intersection in (d) while paying attention to the
moving car and bicycle in front of it. The figure (e) illustrates a left turn case
when the heat map shows a high attention around the traffic light, which is
green. In (f)-(h), lane markings show strong influences to ego’s lane-related
behaviors.

Importance of Spatial Relation. To investigate the effectiveness of spatial relation

function in Equation 4.4  , we conduct two experimental settings: using only the appearance

relations, and embedding 3D spatial relation as an additional constraint. Without using the
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proposed 3D spatial relation, the performance decreases by 0.2%, indicating the advantage

of encoding spatial context.

Variations of Temporal Modeling. We analyze the impact of temporal modeling

approaches. The best mAP – 51.1% is obtained by element-wise max pooling. If we use

element-wise averaging for the features from each time step, the model has a mAP of 50.0%.

Our conjecture is that, for a 20-frame video clip, the key change takes place within a short

duration. For example, in a Left Lane Change behavior, the most noticeable moment is when

the ego-vehicle intersects the traffic lanes within a few frames. Temporal modeling using

averaging features potentially degrades the distinguishable features, which will unavoidably

result in information loss. A multi-layer perceptron (MLP), which takes temporal ordering

patterns into account, exceeds averaging pooling by 0.9% but is 0.2% lower than the best

performance. Our hypothesis is that significant change of interactive relations plays an more

important role in recognizing tactical driver behavior than the ordering in time.

4.4.6 Visualization

Apart from quantitative evaluation, we demonstrate interpretability of our method by

the following two visualization strategies.

Attention Visualization from Egocentric View. Given the learned affinity matrices

in Ego-Thing Graph and Ego-Stuff Graph, we highlight those objects with strong connection

to the Ego node in Figure 4.4  . The visualization results provide a strong proof that the

proposed model captures the underlying interactions, which is essential for tactical driving

behavior understanding. Note that in the example shown in Figure 4.4 (e), the model

captures the relation between the ego-vehicle (turning left) and the traffic light (green light).

Attention Visualization from BEV. In addition to the interactions with ego, we can

represent the complicated traffic scene in a graph structure as well. Figure 4.5  (b) shows the

visualized Ego-Thing Graph from the multi-head model for a scenario where the ego-vehicle

deviates for a parked truck. Each circle in the graph corresponds to a Thing object in the

frame and the ego-vehicle is represented by a star. The edge linking two nodes represents
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(a) Goal-oriented prediction: Background and Cause prediction: Parked Vehicle

(b) Learned affinity matrix (c) BEV visualization of the learned affinity matrix.

Figure4.5. Attention visualization from top-view.

the interactive relation among them. We manually draw a BEV map Figure 4.5  (c) to better

represent the interactions based on spatial context.

4.5 Discussion

In this chapter, we propose a framework to realize Level 2 SA for ADAS which compre-

hends the spatial-temporal interactions between driver and road users. The proposed frame-

work utilizes graph convolution networks to combine, interpret, store and retain information

from the complicated driving scenes. It demonstrates favorable quantitative performance on

the HDD dataset. Qualitatively, we show the model can captures interactions between the

ego-vehicle and Stuff objects, and the ego-vehicle and Thing objects. The ability of com-

prehension provides the premise of embedding the projection to ADAS in order to forecast

future states and avoid hazards.
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5. PROJECTION AND RISK OBJECT IDENTIFICATION

5.1 Introduction

Projection, as the highest level of SA, is the ability to forecast the future states and

dynamics of traffic elements in the environment. It includes anticipating where the driver

and other vehicles intend to go, predicting if pedestrians prepare to cross the road, inferring

the probability of crushing if obstacles appear and etc.

Among these future events, one of the most important information is the potential risk

(i.e., collision) in the near future. If an intelligent driving system can assist drivers to identify

the upcoming potential risks, it will significantly reduce traffic accident fatalities caused by

driver errors. This task of identifying risks has been studied extensively in the risk assessment

literature [155 ]. In the context of intelligent vehicles, the risk is generally defined based on

collision prediction. While this definition is widely applied, road collision is only one source

of potential hazards in driving [155 ]. We believe a more generic definition is needed.

We propose a novel driver-centric definition of risk, i.e., risky objects influence driver

behavior. Figure 5.1  depicts the idea of the proposed definition. While driving toward an

intersection, we react to the crossing pedestrian (i.e., slow down). After passing the intersec-

tion, we react to the construction cone (i.e., deviate to a clear path). From these examples,

we observe that we constantly attend to those traffic participants potentially influencing

driver behavior, because we humans are equipped with risk perception. In other words, a

dangerous situation would occur if we do not react to them immediately. The proposed

definition captures the observation. We believe the definition gives a new perspective to the

definition of risk assessment.

A natural question arises: Who changes drivers’ behavior? We propose a new task called

risk object identification, which aims to identify the object(s) influencing drivers’ behavior.

The proposed task can be approached via three existing tasks: (1) salient object identification

learned from human gaze behavior [156 ]; (2) object importance estimation or risky region

localization learned from human annotations [157 ], [158 ]; and (3) salient regions/objects

identification learned from end-to-end driving models with self-attention mechanisms [27 ],

[29 ].
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Ego Vehicle

n Yields to the crossing pedestrian
n Deviates due to the construction zone

n Construction cone blocking lane
n Causes the ego vehicle to deviate

n Pedestrian crossing the intersection
n Causes the ego vehicle to stop

t = t1

t = t2

Figure5.1. Human drivers perceive scenes, assess risks, make a plan, and take
actions while driving. Risk assessment, identifying hazards and risk factors
that have the potential to cause harm, is indispensable for driving safety.
In this chapter, we cast the identification of potential hazards as a cause-
effect problem. A new task called risk object identification is introduced. We
propose a novel computational framework that learns to reason how humans
react (effect) to these objects (cause).

First, learning to predict pixel-level driver attention by imitating human gaze behavior

has been explored by [156 ], [159 ], [160 ]. This area of research is motivated by psychologi-

cal studies suggesting that there is a connection between driving, attention, and gaze [161 ].

Alletto et al., [156 ] collect a large-scale dataset including drivers’ gaze fixations acquired dur-

ing actual driving. While the direction of this study is promising, human gaze behavior is

intrinsically noisy, and fixations may not directly associate with objects influencing drivers’

behavior. Second, risky region localization [158 ] or object importance estimation [157 ] for-

mulate the task as a two-class object detection problem. Human annotators are asked to
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Driver Response
Ego Vehicle

Ego Vehicle Ego Vehicle

Ego Vehicle Ego Vehicle

Stage 1

Stage 2

Risk Object

Causal Reasoning for Risk Object Identification

① ②

④③

Figure5.2. An conceptual diagram of the proposed two-stage risk object iden-
tification framework. We first predict driver response in a given situation. To
identify object(s) influencing driver behavior, we intervene the input observa-
tion by removing a traffic participant at a time (i.e., simulating a situation with
the traffic participant), and predict the corresponding driver response. For in-
stance, removing the crossing pedestrian changes driver response (effect) from
Stop to Go. The effects of removing other traffic participants remain the same.
We conclude that the crossing pedestrian is the risk object (cause).

label risky regions or important objects. While favorable results are obtained, the supervised

learning-based formulation requires a significant amount of human-labeled annotations, and

the performance in unseen situations cannot be guaranteed. Third, the task can be formu-

lated as selecting regions/objects with high activations in visual attention heat maps learned

from end-to-end driving models [27 ], [29 ]. Specifically, pixel- and object-level attention maps

are obtained via optimizing task-driven objective functions and self-attention mechanisms.

However, highly activated objects/regions do not necessarily associate with models’ deci-
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sions. The issue outlines the confusion between causation and correlation. In [162 ], the

authors also identify “causal misidentification” as an under-explored problem in training

end-to-end driving models.

To address the aforementioned issues, we propose a novel two-stage risk object identi-

fication framework based on the proposed definition of risk. Specifically, we formulate the

risk object identification as a cause-effect problem [163 ]. The core concept is depicted in

Figure 5.2 .

In the first stage, we integrate the concept of projection and develop a Level 3 SA [5 ]

driving model to anticipate driver response in a given situation. We simplify the response of

drivers to be Stop and Go. The proposed model encapsulates the goal (i.e., driver intention),

perception (i.e., elements of the environment), comprehension (i.e., interactions between

driver and Thing objects and interactions between driver and Stuff objects in 3D), and

projection (i.e., intention-aware interaction forecasting) for driver response prediction. Thing

and Stuff objects are defined in Sec 5.4.1 .

In the second stage, given a Stop response (i.e., driver behavior is influenced by certain

objects), we intervene input video by removing a tracklet at a time and inpainting the

removed area in each frame to simulate a scenario without the presence of the tracklet. The

same driving model is applied to predict the effect of the removal. The process iterates

through all tracklets and records the corresponding effects. Note that we assume that the

cause of driver response change is either vehicles or pedestrians. The tracklet that causes

a maximum response change is the risk object. Our preliminary exploration of risk object

identification [15 ] also follows the cause-effect concept but uses a simpler driving model. The

details are included in Sec 5.7 .

Our work differs from existing methods [27 ], [29 ], [156 ]–[158 ] in the following three as-

pects:

1. A novel driver-centric notion of risk, whereby risky objects are defined as those

that influence driver behavior, is proposed;

2. An unsupervised framework is introduced as an initial step toward generalization;
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3. A causal inference-based framework is proposed to address the issue of “causal

misidentification” in end-to-end driving models for risk object identification.

In this chapter, substantial extensions are made to our early results (driving model pre-

viously mentioned in Chapter 4  . Specifically, we pay more attention to the projection (Level

3 SA) by adding two ideas to the existing driving model [16 ]: (1) an encoder-decoder ar-

chitecture based on Temporal Recurrent Network (TRN) that uses both historical evidence

and predicted future information to better predict current action, and (2) an intention-aware

design as cues to aid better prediction of the driver response. Also, we systematically bench-

mark three different tasks, i.e., driver response prediction, driver intention prediction, and

risk object identification on the proposed driver-centric ROI dataset. We conduct thorough

ablative studies to justify the architectural designs.

5.2 Background

5.2.1 Risk Assessment

Living agents can assess risk for decision-making. Earlier attempts have been made

to study this problem from different angles, and can be categorized into four categories.

First, the works [164 ], [165 ] design a set of rules based on the current state of vehicles and

contextual states for detecting dangerous situations. These rule-based approaches ignore

uncertainties of dynamic driving environments, leading to instabilities in their decisions.

Second, risky situations can be determined by the similarity of a pattern between a pair

of traffic participants with accident patterns obtained from accident databases [166 ], [167 ].

However, real-world accident data are hard to obtain. It is also challenging to realistically

simulate accident with a simulator. Moreover, it is insufficient to consider pairwise relations

in complicated driving scenarios, where multiple traffic participants interact with each other.

Third, a popular risk assessment methodology is to predict all possible colliding future

trajectories [168 ]–[170 ]. Please refer to [155 ] for a detailed survey of motion prediction and

risk assessment in the context of intelligent vehicles. While predicting all possible colliding

future trajectories is well-received by this research field, the approach involves a large number

of computations since it requires pairwise comparisons. Fourth, Lefèvre et al. [171 ] define
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the risk of a situation by detecting conflicts between driver intention and expectation via a

probabilistic framework. While this paradigm is very close to our proposed definition of risk,

the underlying mechanism for risk object identification is different. Specifically, in [171 ], a

risk object is identified by computing the probability of intention-expectation mismatch for

each vehicle based on vehicle states. If the probability exceeds a threshold, the corresponding

vehicle is considered to be a “hazard”. In contrast, we discover the risk object based on causal

inference, reasoning the effect of an object removal (i.e., intervention).

5.2.2 Vision-based End-to-end Driving Models

The history of vision-based end-to-end driving models can be traced back to 1989 when

ALVINN [22 ], the framework that learns a mapping from images to navigation signals via a

shallow neural network, is introduced. Recently, Bojarski et al. [23 ] demonstrate a similar

idea by extending it to modern convolutional neural networks for extracting better visual

representations from images. In [24 ], visual representations are learned with an auxiliary

semantic segmentation task to better represent driving scenes. While significant progress

has been demonstrated, neural network-based frameworks lack interpretability, crucial for

safety-critical applications. To address the issue, Kim et al. [27 ], [28 ] and Wang et al., [29 ]

propose pixel-and object-level attention mechanisms, respectively. Particularly, Wang et

al., [29 ] propose an object-level attention scoring mechanism as a means to model how

certain traffic participants impact actions of driving models.

Interactions modeling between traffic participants is commonly studied in trajectory

prediction literature [130 ], [172 ]–[174 ]. However, interaction modeling for learning driv-

ing policies is under-explored. To address this problem, our method explicitly models the

interactions using Graph Convolutional Networks (GCNs). Instead of simply weighting and

concatenating objects’ visual representations as interaction modeling [29 ], we model interac-

tion as message passing that incorporates relative distances between traffic participants and

ego-vehicle. Moreover, interactions between the ego-vehicle and road infrastructure (e.g.,

traffic light) are considered in the proposed framework. We show that the two interaction

modelings are essential for driver response prediction. Additionally, the proposed driving
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model exploits the inductive biases motivated by situation awareness [5 ]. We empirically

demonstrate the effectiveness of these inductive biases for both driver response prediction

and risk object identification.

While the aforementioned driving models have shown remarkable advances in following

roads and avoiding obstacles, they cannot be guaranteed to achieve a goal (e.g., left turn).

Codevilla et al. [25 ], [175 ] incorporate navigational commands as an extra input for learning

driving policies. Instead of inputting a navigational command, the proposed driving model

infers drivers’ intention from egocentric videos for driver response prediction.

5.2.3 Causality in Computer Vision

Computer vision research has proliferated over the past decades due to the advance

of deep learning algorithms. However, current deep learning models suffer from spurious

correlation problems [176 ] because of ignoring causality in data. Humans perceive causality

of the physical world. To address the issue, recent studies[177 ]–[181 ] explicitly consider the

concept of causality into deep learning architectural designs.

Particularly, the authors of [179 ], [180 ] propose a novel training objective as a practical

approximation for imaginative intervention (i.e., do operator proposed in [163 ]) to eliminate

noncausal relations and unobserved confounders for image captioning and visual Q&A. In

this chapter, we also leverage causal intervention but in a different way. Specifically, instead

of using an imaginative causal intervention, we explicitly conduct do operator via image

inpainting.

To our best knowledge, we are among the first to utilize causal inference for driving scene

applications. Kim et al. [27 ] propose a causality test to verify the effectiveness of inferred

attention maps obtained from the proposed driving model. We also employ causal inference

similar to the causality test. However, the purpose of causal inference in this chapter is to

identify risk objects. Moreover, we design a simple but effective data augmentation strategy

using causal intervention. This leads to a more robust driving model.

Haan et al. [162 ] propose to incorporate functional causal models [163 ] into imitation

learning to address the issue of “causal misidentification”. In [182 ], they overcome the causal
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Figure5.3. Driver-centric Risk Object Identification (ROI) dataset. To study
risk object identification, a dataset with a diverse of reactive scenarios is es-
sential. We build the driver-centric ROI dataset on top of the Honda Research
Institute Driving Dataset (HDD). In particular, we introduce two layers, i.e.,
Driver Intention and Driver Response in the proposed dataset. Further
detail of the two layers can be found in Sec 5.3 . To obtain Intention labels,
we form n-frame clips, and the corresponding Intention label of each clip is
the last frame’s label defined in the Goal-oriented layer. A similar procedure
is applied to construct the Response layer (as shown on the right-hand side of
the figure). Notice that both Stop and Deviate annotated in HDD are merged
into Stop in our dataset.

misidentification issue by adding noises to inputs. Our work is complementary to [162 ], [182 ].

Specifically, the focus of [162 ], [182 ] is to improve the robustness of driving models, whereas

the proposed framework leverages driving models to determine the response of drivers in

a counterfactual situation for risk object identification. We believe the two lines of work

should be studied jointly and will leave for future work.

5.3 Dataset

To study driver-centric risk object identification, a dataset with diverse reactive scenarios

(i.e., drivers react to potential hazards while navigating to their goals) is indispensable. For

instance, when human drivers intend to turn left at an unprotected intersection, they react

(e.g., slowing down or stopping) to certain traffic participants to avoid dangerous situations.
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We curate a driver-centric Risk Object Identification (ROI) dataset from the Honda Research

Institute Driving Dataset (HDD) [136 ].

5.3.1 Dataset Annotation

The driver-centric ROI dataset utilizes a two-layer representation — Intention and

Response. Figure 5.3 illustrates how we construct the proposed driver-centric ROI dataset

from the HDD dataset.

The Goal-oriented layer defined in the HDD dataset denotes tactical driver behavior

such as right turn, left turn, or lane change. As shown in Figure 5.3  , each frame is labeled

with either a goal-oriented or background action. To obtain the Intention of a n-frame clip

(the parameter n is 20 in our implementation), we use the last frame’s label of the Goal-

oriented layer as the Intention label. While performing a tactical behavior, drivers might

have to stop or deviate due to traffic participants or obstacles. We extend the Stimulus-

driven actions, i.e., Stop and Deviate, defined in the HDD dataset as the Response label.

Note that both Stop and Deviate are merged into Stop as depicted in Figure 5.3 . The

rest of the frames are labeled as Go. The HDD dataset also annotates a Cause layer to

explain the reason for Stop and Deviate actions. We create our Test2 set by selecting frames

from the four Cause scenarios, i.e., Congestion, Crossing Pedestrian, Crossing Vehicle and

Parked Vehicle. Moreover, in the Test2 set, we provide bounding boxes of risk objects (i.e.,

object[s] influencing driver’s behavior) for risk object identification benchmarks. We focus

on scenarios in which drivers react to vehicles or pedestrians.

5.3.2 Dataset Statistics

The driver-centric ROI dataset has 184 890 frames for training driver response and inten-

tion predictors. Two test sets are constructed for driver response prediction and risk object

identification, respectively. The Test1 split has 63 314 frames for both driver response and

intention benchmarks. The Test2 has 630 frames (i.e., 630 different risk objects) covering

four different reactive scenarios, i.e., Congestion, Crossing Pedestrian, Crossing Vehicle, and
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Table5.1. Statistics (annotated frames) of the proposed driver-centric ROI dataset.

Split

Intention Response

BG IP LT RT LLC RLC LLB RLB CP RP MG UT STP G

Train 737 949 48 933 21 819 19 824 4 815 4 386 1 833 717 2 364 588 1 182 2 001 184 890 661 521

Test1 236 622 17 772 7 017 6 195 1 098 1 212 435 324 432 123 327 432 63 314 208 675

Cause

Test2

Congestion 98 / / / 1 / / / / / / / 99 /
Crossing Pedestrian 62 15 5 / / / / / 2 / / / 84 /
Crossing Vehicle 263 2 7 35 / / / 4 / / / / 311 /
Parked Vehicle 120 3 / / 9 4 / / / / / / 136 /

All 543 20 12 35 10 4 / 4 2 / / / 630 /

Intention: (BG) background, (IP) intersection passing, (LT) left turn, (RT) right turn,(LLC) left lane change, (RLC) right lane change, (LLB) left lane branch,
(RLB) right lane branch,(CP) crosswalk passing, (RP) railroad passing, (MG) merge, (UT) u-turn.
Response: (STP) stop, (G) go.

Parked Vehicle for risk object identification benchmarks. Detailed statistics are shown in

Table 5.1 .

5.4 Level 3 SA Driving Model

Given a reactive scenario with T RGB images I := {I1, I2, · · · , IT }, the goal is to identify

the object influencing driver response in the last frame. The task is called risk object

identification. We formulate the task as a cause-effect problem [163 ]. Specifically, a two-

stage framework is proposed to identify the cause (i.e., the object) of an effect (i.e., driver

response) via the proposed Intention-aware Driving Model and Causal Reasoning for Risk

Object Identification.

An overview of the proposed intention-aware driving model is depicted in Figure 5.4 . To

predict the response of a driver, a driving model should capture complicated spatio-temporal

interactions between a driver and traffic participants. We propose a novel driving model

motivated by the model of situation awareness (SA) [5 ]. Specifically, the proposed model

encapsulates the four essential components defined in SA for driver response prediction:

goal/objective (i.e., driver intention), perception (i.e, elements of a traffic environment),

comprehension (i.e., interactions between driver and Thing objects, and interactions between

driver and Stuff objects in 3D), and projection (i.e., intention-aware interaction forecasting).

The detail of each component is discussed in the following.
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Figure5.4. An overview of the proposed intention-aware driving model for
driver response prediction (right). The proposed architecture is motivated by
the model of situation awareness [5 ] (left). Given a video clip, 3D convolu-
tions (I3D), object detection, semantic segmentation, and depth estimation
are applied to obtain states of traffic participants in a traffic environment at
the Perception stage (Sec 5.4.1 ). At the Comprehension stage, an Ego-Thing
Graph and an Ego-Stuff Graph are constructed to model spatial-temporal in-
teractions between a driver and traffic participants (Sec 5.4.2 ). In this chap-
ter, we categorize traffic participants into two types, i.e., Thing and Stuff.
The details are discussed in Sec 5.4.2 . The final stage, Projection (Sec 5.4.3 ),
forecast future interactions between driver and traffic participants for driver
response prediction. Frame-wise interactions obtained from Ego-Thing Graph
and Ego-Stuff Graph are fused and fed into an encoder LSTM to form interac-
tion representation. Intention representation obtained from the I3D head and
interaction representation are sent a decoder TRN (the architecture is shown
in Figure 5.5 ) to predict driver response.

5.4.1 Perception

Perception plays an essential role in the SA model [5 ]. This component perceives the

status, attributes, and dynamics of relevant traffic participants of a traffic environment.

Similar to Chapter 4 , given T RGB images, we apply object detection and semantic seg-

mentation [12 ] to obtain Thing and Stuff objects, respectively. We use the same criterion to

distinguish Stuff objects from Thing objects: whether states of an object can be influenced

by other objects. If yes, we categorize the object as a Thing object. For instance, cars

stop or yield to pedestrians, but a traffic light turns red or green by itself. In addition to

detection and segmentation, we perform object tracking using Deep SORT [183 ] and depth

estimation [146 ].
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Figure5.5. Decoder Temporal Recurrent Network (TRN) [139 ]. The inputs
to this module are intention and interaction representations. Note that inten-
tion representation is used to initialize the hidden state of the first decoder
LSTM cell. The future gate and spatiotemporal accumulator (STA) aggregate
features from historical, current, and predicted future information to predict
driver response.

5.4.2 Comprehension

We interpret Comprehension as the spatio-temporal interactions between the driver and

Thing objects, and interactions between the driver and Stuff objects in the 3D world. We

follow the same procedures in Chapter 4  to realize the modeling of Comprehension. Specif-

ically, we construct two graphs, i.e., Ego-Thing Graphs and Ego-Stuff Graphs. They are

modeled with Graph Convolutional Networks (GCNs) [13 ]. The details can be found in

Chapter 4 

5.4.3 Projection

The role of Projection is to forecast future actions of elements in the environment. The

updated appearance feature Zl+1, discussed in Chapter 4  , is processed independently at every

frame without considering temporal changes. An encoder-decoder architecture is proposed

to capture temporal interactions for forecasting future interactions.

Encoder-decoder Architecture. We implement the proposed encoder-decoder archi-

tecture based on the Temporal Recurrent Network (TRN) [139 ], which makes use of both
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accumulated historical evidence and predicted future information to better predict current

action. Following [139 ], we use long short-term memory (LSTM) [184 ] as the backbone for

both encoder and decoder.

We aggregate updated Ego features from Ego-Stuff Graphs and Ego-Thing Graphs by

an element-wise summation. Time-specific updated Ego features are fed into the encoder

LSTM to obtain a 1 × D feature vector called interaction representation. Note that prior

works [135 ], [142 ], [143 ] fuse all nodes’ features in a graph, and the fused features are sent to

the encoder LSTM. In contrast, we only send updated Ego features in Zl+1 to the encoder-

decoder architecture, because updated Ego features are expected to capture interactions

among traffic participants that are key to robust driver response prediction. Unlike typical

decoder architectures implemented as other LSTMs, TRN includes an LSTM decoder, a

future gate, and a spatiotemporal accumulator (STA). We extend TRN for the predicting

driver response, and the corresponding architecture is depicted in Figure 5.5  . The LSTM

decoder learns a feature representation of the evolving interactions. The future gate receives

a vector of hidden states from the decoder LSTM and embeds features via the element-wise

summation as the future context. The STA concatenates historical, current, and predicted

future spatiotemporal features, and estimates driver response occurring in the very next

frame.

Intention-aware Design. Driver intention is indispensable for planning the next action

[25 ], estimating the importance of road users[185 ], and assessing risk [186 ]. Similarly, in our

task, driver response (i.e., Go and Stop) is determined not only by interactions among traffic

participants but also driver intention (e.g., Left Turn or Right Turn). For instance, a vehicle

turning right at an intersection will not stop for pedestrians walking on the left sidewalk.

Hence, we treat features extracted from the I3D head as the intention representation. The

representation is used to initialize the hidden state of the first decoder LSTM cell. Note that

the design differs from [139 ], which initializes the hidden state h0 with zeros. To acquire a

good intention representation, the representation is trained to predict driver intention in a

supervised learning manner.
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Figure5.6. We simulate a situation using partial convolutional layers [187 ].
Note that a partial convolutional layer is initially introduced for image in-
painting. We utilize partial convolutions to simulate a scenario without the
presence of an object. The left-hand side of the figure depicts when an inter-
vention is disabled. To simulate a situation without an object (e.g., the car in
the green box), we set the pixels of the binary mask within the car’s box to 0.
In addition, the Ego-Thing Graph is constructed without considering the car
in the green box as a node.

5.5 Causal Reasoning

The previous section introduces the proposed intention-aware driving model. In this

section, we discuss how we utilize intervention, a powerful tool for causal inference, as a

means for data augmentation to improve the performance of the driving model (Sec 5.5.1 )

and apply causal inference to identify the risk object (Sec 5.5.2 ).

5.5.1 Driving Model Training with Data Augmentation via Intervention

The performance of driving models depends on the amount of training data under differ-

ent traffic configurations [24 ]. Due to limited real-world human driver demonstrations, we

propose a novel data augmentation strategy via intervention [163 ]. Specifically, we generate

a new data point based on a simple yet effective notion, i.e., removing non-causal objects

does not influence driver behavior. For instance, in a Go scenario, a driver enters an inter-

section while pedestrians walk on the sidewalk in an opposite direction. It is reasonable to
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Algorithm 1 : Driving Model Training
T : Number of frames
N : Number of Thing objects in a given tracklet list
Ar: Ground truth driver response (either Go or Stop)
Input: A sequence of RGB frames I := {I1, I2, · · · , IT }
Output: Predicted driver response ar and intention ai. Notice that ar consists of confi-
dence scores of Go or Stop. ar := {rgo, rstop}.

1: O := DetectionAndTracking(I)
:= {O1, O2, · · · , ON} // List of Thing object tracklets

2: S := SemanticSegmentation(I)
:= {S1, S2, · · · , ST } // List of Stuff objects

3: // Data Augmentation via Intervention (Sec 5.5.1 )
4: if Ar is Go and N > 1 then
5: // Randomly remove a tracklet

k := RandomSelect(N)
6: else
7: k is empty
8: end if
9: // Mask out Thing object k on each mask frame

M := MaskGenerator(I, Ok)
10: // Remove a Thing object k from the tracklet list

O = O − {Ok}
11: ar, ai := DrivingModelTraining(I, M, O, S) //Discussed in Sec 5.5.1 

12: return ar, ai

assume that driver behavior is the same if a pedestrian is not present. Note that, in this

work, we only use labeled driver response and intention as the supervision signals. Therefore,

the proposed augmentation strategy is only applicable to Go scenarios.

In Stop scenarios, we need to know causal objects’ locations to remove non-causal objects.

However, exhaustive risk object labeling is costly, and that is not the focus of this chapter.

Moreover, even if causal objects are given, we cannot remove causal objects and as-

sume the corresponding driver response to be Go, because traffic situations are inherently

complicated, so the corresponding driver response is unclear. For instance, a driver is in

a congestion situation (i.e., driver stops for the frontal vehicle), and the traffic light of the

driver’s lane is red. In this situation, the frontal vehicle is labeled as the risk object (cause).
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Algorithm 2 : Causal Inference for Risk Object Identification
T : Number of frames
N : Number of objects
Input: A sequence of RGB frames I := {I1, I2, · · · , IT } where the ego car stops
Output: Risk object ID

1: O := DetectionAndTracking(I)
:= {O1, O2, · · · , ON}// List of Thing object tracklets

2: S := SemanticSegmentation(I)
:= {S1, S2, · · · , ST } // List of Stuff objects

3: for Ok ∈ O do
4: // Mask out Thing object k on each frame

M := MaskGenerator(I, Ok)
5: // Remove the Thing object k from the tracklet list

O = O − {Ok}
6: // Predict driver response and intention

without the object k, where ar := {rgo
k , rstop

k }
ar, ai := DrivingModel(I, M, O, S)

7: end for
8: return arg max

k
(rgo

k )

However, driver response remains the same if the frontal vehicle were not present because of

the red light. Generating Stop scenarios is non-trivial, and we leave it for future works.

To train the intention-aware driving mode with the proposed data augmentation strat-

egy, the model should be able to “intervene,” i.e., remove a non-causal object from images.

We realize the strategy by replacing standard convolutional layers in I3D with partial con-

volutional layers [187 ], [188 ]. Note that a partial convolutional layer is initially introduced

for image inpainting. We utilize partial convolutions to simulate a scenario without the

presence of an object. A 3D partial convolutional layer takes two inputs, i.e., a sequence of

RGB frames and a one-channel binary mask for each frame. The pixel values of a mask are

1 by default. While training the driving model with data augmentation, we set the pixels

within the selected object to be 0. In addition, the node of the selected object in a graph is

disconnected from the rest of the objects.
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The proposed training process is outlined in 1 . Given training samples in a Go scenario,

we randomly select an object k to intervene, i.e., simulating a situation without the presence

of the object. Specifically, given a tracklet ok, a one-channel binary mask Mt at time t is

defined as

Mt(i, j) =


0, if (i, j) in region ot

k

1, otherwise
, (5.1)

where ot
k is the bounding box of the k-th object at time t, and (i, j) is a pixel coordinate

within the box. Note that k-th object is discarded from the tracklet list while training the

driving model.

5.5.2 Causal Inference for Risk Object Identification

Given a “Stop” scenario, we aim to identify the corresponding risk object. We deploy the

same intervention process discussed in Sec 5.5.1 to identify the risk object. Specifically, the

masks of a tracklet and the corresponding video frames are processed by the same driving

model. The model outputs the confidence score of Go and Stop without the presence of

the tracklet. After iterating through all tracklets, we select the object with the highest Go

confidence score to be the risk object. This is because the object causes the most driver

behavior change. 2 describes the overall causal inference process.

5.6 Experiment

5.6.1 Implementation Details

We implement our framework in TensorFlow. All experiments are performed on a server

with 4 NVIDIA TITAN-XP cards. The input to the framework is a 20-frame clip with a

resolution of 224×224 at 3 fps, approximately 6.67s. The framework outputs the predictions

of driver intention and response of the very next frame. We adopt Inception-v3 [151 ] pre-

trained on ImageNet [123 ] as the backbone, following [148 ] to inflate 2D convolution into a 3D

ConvNet, and fine-tune it on the Kinetics action recognition dataset [152 ]. The intermediate

feature used in RoIAlign and MaskAlign is the Mixed_3c layer, where the number of feature
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channels is 512. The intention feature is generated from a 1 × 1 × 1 convolution on the

Mixed_5c layer’s feature, and the channel number of the feature is 512. The downsampled

binary mask Mt
i is 28 × 28. The decoder length is set to be 3. The model is trained in a

two-stage training scheme with a batch size of 32. First, we finetune the Kinetics pre-trained

model on the driver-centric ROI dataset for 50 000 iterations without using GCN. Second,

we load the weights trained in the first stage and finetune the network with GCN for another

20 000 iterations. Note that we employ the augmentation strategy mentioned in Sec 5.5.1 

in the second stage. We use the Adam optimizer [124 ] with the default parameters. The

learning rate is set to be 0.001 and 0.0002 for the first and second stage, respectively.

5.6.2 Driving Model Performance

Evaluation Setup

The performance of the driving model is evaluated as a discrete feasible action prediction,

in accordance with [24 ], [26 ], [29 ]. The two discrete actions, Go and Stop are evaluated. We

follow the train/test split defined in [136 ], where 846 411 and 271 989 samples are used for

training and testing, respectively. Four evaluation metrics are utilized. First, we report

perplexity as in [24 ], [26 ], [29 ]. Perplexity calculates the negative log-likelihood of predicted

probability of Response given ground truth (lower is better). Second, the macro-averaged

accuracy is reported. Note that, in a multi-class classification setup, the micro-averaged

accuracy is preferable if the label distribution is imbalanced. In our task, the Go to Stop

ratio is approximately 4:1. Therefore, we also report the micro-averaged accuracy as the

third metric. Response prediction can be treated as an online action detection task [139 ],

[189 ]. We use per-frame mean average precision (mAP) as the fourth evaluation metric.

Evaluation

Table 5.2 summarizes the results of the driving models. We compare the following base-

lines. To compare different models, we keep their backbone network (i.e., Inception-v3) the

same.
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Table5.2. Results of driver response prediction compared with baselines.
Perplexity (lower is better), macro- and micro-average accuracies, and overall
mAP are used as metrics for driver response prediction. The unit is % for all
metrics except perplexity. The best and second best performances are shown
in bold and underlined, respectively. We also report the performance of driver
intention prediction using the overall mAP as the metric.

Model

Response Intention

Perplexity Macro
Accuracy

Micro
Accuracy

Overall
mAP

Overall
mAP

1. CNN + LSTM 1.00 64.37 77.95 71.07 /
2. CNN + LSTM + Multi-head 0.93 68.27 79.04 70.12 36.41
3. Pixel-level Attention[27 ] 0.89 76.15 80.21 78.57 /
4. Object-level Attention [29 ] 0.84 78.81 83.19 79.02 /

5. GCN (ours) 0.83 77.57 82.64 80.33 /
6. GCN + Multi-head (ours) 0.72 76.30 85.68 84.46 36.31
7. GCN + TRN Head (ours) 0.69 79.32 86.17 83.44 36.80
8. GCN + TRN Head + Data Augmentation (ours) 0.37 87.63 92.56 95.44 36.75

• CNN+LSTM. We extract visual features from the Mixed_5c layer of I3D and

sequentially input the features at each time step to a two-layer LSTM [139 ] for

temporal modeling.

• Pixel-level attention. The pixel-level attention module is proposed by [27 ] to

improve model’s intepretability and the performance of driving models.

• Object-level attention. In [29 ], the authors propose an object-centric attention

mechanism to augment end-to-end policy learning. Both pixel- and object-level

attention modules are incorporated into CNN+LSTM.

The following summarizes our proposals.

• GCN. The key difference between GCN and three baselines is the input feature

to the LSTM module. Specifically, the feature is processed via Graph Convolu-

tion Networks and contains interaction among traffic participants and driver.

• Multi-head. We add an additional head for driver intention prediction to

CNN+LSTM and GCN. A standard cross-entropy loss is used for driver in-
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Table5.3. Ablative study of our design choices.
Model Perplexity

Intention
Modeling

Without intention modeling 0.83
Multi-head 0.72
TRN Head 0.69

Different
Graphs

Ego-Stuff Graph 0.74
Ego-Thing Graph 0.80
Ego-Thing Graph + Ego-Stuff Graph 0.69

Spatial
Modeling

Appearance Relation 0.73
Appearance + Spatial Relation 0.69

Data
Augmentation

Without Augmentation 0.69
With Augmentation 0.37

tention prediction. Note that both the interaction and intention features share

the same features from the Mixed_5c layer of I3D.

• TRN Head. To forecast future interactions, we incorporate TRN [139 ]. We

initialize TRN with intention representation (as shown in Figure 5.5 ) .

• Intervention. The concept of intervention is utilized to augment training data

to improve the performance of driver response prediction discussed in Sec 5.5.1 .

We show that GCN outperforms baselines, demonstrating the importance of interaction

modeling. By incorporating Multi-head, i.e., intention modeling, both extensions reduce

the perplexity by 0.07 and 0.11, respectively. With TRN Head, we observe that perplexity

is reduced by 0.03. Finally, we demonstrate that Intervention significantly improves the

performance of the driver response prediction (0.32 decrease in perplexity).

While promising improvements are observed for driver response prediction, the trend

does not hold for driver intention prediction, as shown in Table 5.2  . This is because the

intention representations used in the four models (Models 1, 6, 7, and 8 listed in Table 5.2 )

are features obtained from the Mixed_5c layer of I3D, which has negligible gradients in back

propagation. A better architectural design for intention prediction is needed, and we leave

it for future work.
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Ablation Study

(a) Left Turn (b) Right Turn (c) Left Turn (d) Right Turn

(e) Left Turn (f) Left Lane Change (g) Right Lane Change (h) Left Lane Branch

Figure5.7. Visualization of Learned Ego-Thing Graph and Ego-Stuff Graph
on egocentric images. The first and second rows show examples from an Ego-
Thing Graph and an Ego-Stuff Graph, respectively. Comparing (a) and (b),
which have similar traffic configurations, our model attends to objects at differ-
ent locations based on distinct intentions. In (c) and (d), pedestrians intending
to cross the street have a significant influence on ego behavior when turning
left or turning right. Fig. (e) illustrates a left turn case when the heat map
shows high attention around the traffic light, which is green. In (f)-(h), lane
markings show strong influences on the ego’s lane-related behaviors.

We conduct ablation studies to understand the contributions of the proposed architecture

designs. The studies are summarized in Table 5.3 .

Analysis of Intention Modeling. The first section of Table 5.3  analyzes the influence

of intention modeling. The baseline does not consider intention. When intention represen-

tation is incorporated into Multi-head and TRN Head, the results are improved by 0.11

and 0.14, respectively.

Variations of Different Graphs. When both Ego-Stuff and Ego-Thing Graphs are

considered, the model achieves the best perplexity performance. The results indicate the

importance of the proposed interaction modeling of drivers, traffic participants, and road

infrastructure.

Importance of Spatial Relation. We study the importance of the spatial relation

function (Equation 4.4 ) to the Response prediction. We conduct two experiments, i.e., 1)
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using only the appearance relations, and 2) appending 3D spatial relation as an additional

constraint. Without using the proposed 3D spatial relation, the perplexity increases by 0.04,

indicating the need for a spatial constraint.

Data Augmentation via Intervention. We study the impact of data augmentation by

comparing the performance of two models trained with and without the data augmentation

strategy. The last section in Table 5.3  showcases the advantage of using augmented data,

cutting the perplexity by nearly half. The data augmentation strategy adds variations to

the training set that improve the robustness of the proposed driving model.

Visualization

We visualize learned affinity matrices in Ego-Thing Graph and Ego-Stuff Graph to de-

termine if our approach can highlight those objects influencing driver behavior. The visu-

alization results as shown in Figure 5.7  provide a strong evidence that the proposed model

captures the underlying interactions between traffic participants and driver.

Figure 5.7a and Figure 5.7b showcase similar traffic configurations where the driver ap-

proaches a four-way intersection with the presence of other vehicles. Given different inten-

tions, i.e., Left Turn in Figure 5.7a  and Right Turn in Figure 5.7b  , our model attends to

objects that impact the ego-vehicle navigation. A similar phenomenon is observed in Fig-

ure 5.7c  and Figure 5.7d  . Different attention map characteristics are observed. While similar

driving model architectures are leveraged, three major differences, i.e., different supervision

signals, training strategy, and intention-aware design, are introduced in the proposed archi-

tectures. Particularly, the additional supervision signal—the driver response, encourages the

model attending to object(s) that influence driver behavior.

The bottom row of Figure 5.7  represents attention maps obtained from the Ego-Stuff

Graph. In Figure 5.7e  , the model captures the relation between driver intention (turning

left) and traffic light (green light). Note that we observe that the Ego-Stuff Graph modeling

captures lane-related driver intention, i.e., Lane Change, Lane Branch and Merge, as shown

in Figure 5.7f , Figure 5.7g , and Figure 5.7h .
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Table5.4. Comparison with baselines. The methods with * are re-
implemented by us to ensure the same backbone is used for fair comparisons.
mAcc stands for mean accuracy, and the unit is %. The best and second best
performances are shown in bold and underlined, respectively.

Model

mAcc

Crossing
Vehicle

Crossing
Pedestrian

Parked
Vehicle Congestion

Random Selection 15.1 7.1 6.4 5.5
Driver’s Attention Prediction * [159 ] 16.8 8.9 10.0 21.3

Object-level Attention * [29 ] 22.6 9.5 22.6 40.7
Pixel-level Attention * [27 ] 28.0 8.1 15.6 35.7

GCN (ours) 27.5 13.6 26.0 51.3
GCN + TRN Head (ours) 29.0 13.2 27.3 52.2

GCN + TRN Head + Data Augmentation (ours) 32.5 12.9 28.4 57.5

5.6.3 Risk Object Identification

Evaluation Setup

We evaluate risk object identification in the four reactive scenarios: Congestion; Crossing

Pedestrian; Crossing Vehicle; and Parked Vehicle. We use accuracy (number of correct

predictions over the number of samples) as the metric. A correct prediction is one that has

an Intersection over Union (IoU) score between a selected box and a ground truth box that

is larger than a predefined threshold. Similar to [70 ], [190 ], accuracies at IoU thresholds of

0.5 and 0.75 are reported. In addition, mean accuracy (mACC) is calculated by using IoU

thresholds ranging from 0.5 to 0.95 (in increments of 0.05).

Evaluation

We compare the performance of Risk Object Identification with the following baselines.

The results are shown in Table 5.4 .

Random Selection. Random selection randomly picks an object as the risk object

from all the detections for a given frame randomly. Note that the method does not process
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any visual information except object detection. The method is used to contextualize the

challenge of this task.

Driver Attention Prediction uses a pre-trained model [159 ] trained on the BDD-A

dataset to predict the driver’s gaze attention maps at each frame. We compute an average

attention weight of every detected object region based on a predicted attention map. The

risk object is the object with the highest attention weight, indicating the driver’s gaze at-

tends to this region. The model is trained with human gaze signals that are unavailable

in the proposed dataset. The performance of this method is slightly better than Random

Selection as reported in the second row of Table 5.4 . We observe that predicted atten-

tion maps tend to focus at a vanishing point. Note that this issue has been raised in [160 ],

highlighting the problem as one of the challenges of imitating human gaze behavior.

Object-level Attention Selector. The object-level attention driving model [29 ] is

reformulated for risk object identification. The risk object is the object with the highest

object-attention score.

Pixel-level Attention. Kim et al. [27 ] propose a causality test to search for regions

that influence the network’s output behavior. Note that region proposals are formed based

on sampling predicted pixel-level attention maps. To identify a risk object, we replace the

region proposal strategy used in [27 ] with object detection, and utilize the inferred pixel-

level attention map to filter out detections with low attention values. In the experiments, we

set the threshold at 0.002. The modification ensures a fair comparison as region proposals

obtained from [27 ] are not guaranteed to be an object entity. Note that the code of region

proposal generation detailed in [27 ] is not publicly available.

We report favorable risk object identification performance over existing baselines [27 ], [29 ]

in Table 5.4  . The results indicate the effectiveness of the proposed intention-aware driving

model and causal inference for the task. In the next section, we perform ablation studies to

examine the contributions of each part of our model. Notice that our evaluation protocol

differs from [15 ]. In [15 ], we train four different driving models and test four scenarios

independently, whereas a single intention-aware driving model is trained in this chapter.
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Table5.5. Ablation study of the proposed risk object identification frame-
work. The unit is %. The best and second best performances are shown in
bold and underlined, respectively.

Driving Model Data
Augmentation

Causal
Inference

Crossing Vehicle Crossing Pedestrian Parked Vehicle Congestion

Acc0.5 Acc0.75 mAcc Acc0.5 Acc0.75 mAcc Acc0.5 Acc0.75 mAcc Acc0.5 Acc0.75 mAcc

CNN + LSTM 7 3 29.9 29.9 26.3 15.5 14.3 12.4 33.1 28.7 25.4 39.4 35.4 32.9

GCN (ours) 7 3 31.8 31.5 27.5 16.7 15.5 13.6 32.4 29.4 26.0 56.6 56.6 51.3
GCN + Multi-head (ours) 7 3 31.8 31.8 28.0 17.9 17.9 14.6 32.4 29.4 26.3 61.6 57.6 53.8
GCN + TRN Head (ours) 7 3 33.1 33.1 29.0 16.7 16.7 13.2 33.8 30.2 27.3 60.6 56.6 52.2
GCN + TRN Head (ours) 3 7 28.3 28.0 25.0 13.1 11.9 9.6 22.1 21.3 18.7 65.7 61.6 57.4
GCN + TRN Head (ours) 3 3 37.0 37.0 32.5 15.5 15.5 12.9 35.3 31.6 28.4 66.7 62.6 57.5

Ablation Study

Three variations are studied to analyze their impacts on the performance of risk object

identification: (1) architecture of the driving model, (2) intention modeling and (3) training

strategy. The results are summarized in Table 5.5 .

Architecture. The completed framework (GCN + TRN Head, reported in the last row

of Table 5.5  ) boosts the mACCs of GCN by 6.2%, 0.5%, 3.0% and 24.6% in four different

scenarios, respectively. The architecture ranks first in three senarios (Crossing Vehicle,

Parked Vehicle, and Congestion). We found interaction modeling is crucial, as it improves

performance over a pure CNN+LSTM model.

Intention Modeling. Both multi-head and TRN head based intention modelings im-

prove overall performance. While the two modelings have similar risk object identification

results, we choose TRN Head because it achieves better performance of the driver response

prediction task.

Training with Data Augmentation. We observe significant improvement in all sce-

narios with the proposed data augmentation strategy except Crossing Pedestrian. The re-

sults indicate the effectiveness of the proposed training strategy. For Crossing Pedestrian,

our conjecture is that vehicles are likely to be chosen because of the natural imbalanced

distribution in the training data. Note that the ratio of detected vehicles to pedestrians is

approximately 17:1. Our model learns how to identify risk objects under traffic configura-

tions (especially different vehicle configurations) so that the model performs favorably for

scenarios that involve interacting with vehicles. In contrast, scenarios that involve interact-
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Ego Vehicle

(a) Crossing Vehicle

Ego Vehicle

(b) Crossing Pedestrian

Ego Vehicle

(c) Parked Vehicle
Ego Vehicle

(d) Congestion

Ego Vehicle

(e) Crossing Vehicle
Ego Vehicle

(f) Crossing Pedestrian
Ego Vehicle

(g) Parked Vehicle
Ego Vehicle

(h) Congestion

Ground Truth Causation Results Correlation Results

Figure5.8. Risk object identification results obtained by Causation and
Correlation. Note that Causation is the causal inference based approach
proposed in the paper. Instead of using causal inference, Correlation deter-
mines the risk object by selecting the object with the highest attention weight
to Ego in the Ego-Thing Graph. The top row shows an egocentric view where
green boxes indicate our Causation results, blue boxes are Correlation re-
sults, and ground truth boxes are in red. A bird’s-eye-view representation is
presented in the bottom row, providing information including scene layout and
intentions of traffic participants.

ing with pedestrians are less emphasized. To solve this problem, a possible solution is to

perform a category-aware intervention so that a balanced distribution can be obtained.

In summary, with the proposed components, i.e., TRN Head, intention modeling, and

training with data augmentation, we demonstrate state-of-the-art risk object identification

performance. Note that this observation is also found in driver response prediction, discussed

in Sec 5.6.2 .
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Correlation vs. Causation

We study the importance of causal modeling for this task. Instead of using causal infer-

ence (called Causation) to identify the risk object, the risk object is the object with the

highest attention weight between Ego in Ego-Thing Graph. We call this method Corre-

lation. In Table 5.5  , the second to the last row shows the results of Correlation. Our

Causation approach significantly outperforms Correlation in all reactive scenarios. We

empirically demonstrate the need of casual modeling for this task.

In Figure 5.8 , ground truth risk objects are enclosed in red bounding boxes, our Cau-

sation results are shown in green, and the Correlation predictions are shown in blue

boxes. In addition, we provide a bird’s-eye-view (BEV) pictorial illustration of scenes in the

second row. Note that BEVs depict scene layouts, driver intention, and traffic participants’

intentions, with identified risk objects in green boxes. In Figure 5.8  (b), three crossing pedes-

trians with different intentions are depicted. Our Causation approach correctly identifies

the left-hand side pedestrian as the risk object while the driver intends to turn left. While

Correlation predicts the same result, our method is more explainable because the decision

is made by considering driver intention. Figure 5.8 (d), (f),(g) and (h) showcase examples

where Correlation fails but the proposed framework identifies risk objects successfully.

5.7 Compare with Our Preliminary Work

As mentioned previously, we also conducted an preliminary exploration of risk object

identification in [15 ]. The preliminary work [15 ] also formulates the task as a cause-effect

problem and utilizes idea of causal inference. In terms of method, the only distinction is the

driving model architecture. In this section, we provide the details of our preliminary driving

model, implementation details and experimental results.
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Figure5.9. An overview of the preliminary framework. The right and left
figures show the inference process with and without intervention, respectively.
Both employ the same driving model to output the predicted driver response.
The inputs to the driving model include a sequence of RGB frames, a sequence
of binary masks and object tracklets. Partial convolution and average pooling
are employed to obtain the ego features while object features are extracted by
RoIAlign. Each feature is modeled temporally and then propagates informa-
tion to form a visual representation of the scene for final prediction. On the
right, the input is intervened at an object level by masking out the selected
object on the convolution mask and also removing it from the tracklets. For
example, we remove the car in the green box and the driving model returns a
high confidence score of ‘go’.

5.7.1 Preliminary Driving Model

An overview of the preliminary driving model architecture is visualized in Figure 5.9  .

Given video frames, we utilize Partial Convolution Networks [187 ], [188 ] and average pooling

to represent pixel-level features of the ego vehicle.

To obtain object-level representation, we apply Mask R-CNN [12 ] and Deep SORT [183 ]

to detect and track every object throughout time. RoIAlign [12 ] is employed to extract object

representations. At time t, the ego vehicle features and object features are updated via long

short-term memory (LSTM) module [184 ]. This temporal modeling process captures the

dynamics of ego vehicle and objects.
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Motivated by [29 ] and [16 ], both pixel-level and object-level features are essential for

driving scene tasks. Hence, we aggregate the two sources of features via message passing,

g = he ⊕ 1
N

(
N∑

i=1
hi) (5.2)

where g is defined as the aggregated features, he represents the ego’s features obtained after

temporal modeling and ho = {hi, h2, · · · , hN} are the N object features. ⊕ indicates a

concatenation operation. To manipulate the representation at an object level, we set the

pixel value of the binary mask to be 0 at the location of the selected object. The mask

influences the features extracted from partial convolution and disconnects the message of

the selected object from the rest. In the end, this representation g is passed through fully

connected layers to obtain the final classification of the driver response (i.e., ‘go’ or ‘stop’).

The main differences between this preliminary driving model and the aforementioned

completed Level 3 SA driving model are Comprehension and Projection:

• Comprehension. The completed Level 3 SA driving model uses Graph Convo-

lution Networks to represent and learn the spatial-temporal interactions among

objects. Whereas, this preliminary driving model uses a simple averaging oper-

ation to aggregate information of other objects. There is no specific design to

model the spatial-temporal relations.

• Projection. More attention is paid to the projection module in the completed

Level 3 SA driving model. It applies two ideas: (1) an encoder-decoder architec-

ture based on Temporal Recur-rent Network (TRN) that uses both historical ev-

idence and predicted future information to better predict current action, and (2)

an intention-aware design as cues to aid better prediction of the driver response.

However, in the preliminary work, object states is processed and projected to the

future by a simple LSTM temporal modeling.
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Table5.6. Ablation studies. Results of risk object identification in four sce-
narios on the HDD. The unit is %. The best and second performances are
shown in bold and underlined, respectively.

Driving
Model Mask Training with

Intervention

Crossing Vehicle Crossing Pedestrian Parked Vehicle Congestion

Acc0.5 Acc0.75 mAcc Acc0.5 Acc0.75 mAcc Acc0.5 Acc0.75 mAcc Acc0.5 Acc0.75 mAcc

Vanilla CNN RGB 7 36.0 35.7 31.4 20.2 16.7 14.9 36.8 32.4 29.7 87.9 83.9 76.8

Partial CNN

RGB 7 38.6 37.6 33.5 22.6 19.0 16.2 36.0 32.4 29.0 81.8 81.8 73.7
RGB 3 41.2 40.5 36.2 19.0 16.7 13.5 39.0 36.8 32.4 94.9 91.0 82.6

Convolution 7 38.6 37.6 33.6 22.6 17.9 16.2 36.8 33.1 29.5 88.9 84.8 78.0
Convolution 3 44.4 43.1 38.5 25.0 22.6 19.3 34.6 33.1 28.8 88.0 84.8 77.3

Partial CNN
+ Object

Convolution 7 39.9 38.9 34.4 27.4 22.6 18.9 31.6 27.9 24.7 91.9 87.9 79.7
Convolution 3 49.2 48.6 43.0 35.7 32.1 27.0 47.1 44.9 39.8 92.9 88.9 81.0

5.7.2 Implementation Details

We implemented this framework in PyTorch, and performed all experiments on a system

with Nvidia Quadro RTX 6000 graphics cards. The input to the framework is a sequence

of frames with a resolution of 299 × 299 at 3 fps, and T is set to 3 in all the experiments,

approximately 1s. The corresponding input mask maintains the same size as the input image.

The convolutional backbone is a InceptionResnet-V2 [191 ], pre-trained on ImageNet [123 ]

and modified with partial convolution operation [187 ], [188 ]. A Detectron model [192 ] trained

on MSCOCO [70 ] is used to generate bounding boxes for objects. RoIAlign extracts object

features with size 20 × 8 × 8 from the Conv2d_7b layer, which is then padded into a 1-D

vector of size 1280.

We follow the same way as [139 ] to initialize the hidden states with channel number set

to 512 and also use dropout [193 ] of 0.5 at hidden state connections in the LSTM module.

The aggregated feature g concatenated from ego features and object features is a 1-D vector

with 1024 channels. Similar to [27 ], the output sizes of 3 fully-connected layers before the

final binary classifier are 100, 50 and 10, respectively.

The network is trained end-to-end for 10 epochs with batch size set to 16. We use

Adam [124 ] optimizer with default parameters, learning rate 0.0005, and weight decay 0.0005.
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5.7.3 Ablation Studies

We conduct ablation studies in Table 5.6  to provide a comprehensive understanding of

the contributions for each component.

Architecture of the Driving Model. Our proposed driving model uses features from

CNN features and object features. For CNN features, we test two backbone features, i.e.,

vanilla convolution and partial convolution.

Intervention Mask. Different from vanilla CNN, the input to partial CNN includes an

extra mask, offering two options to intervene an image. We either input a RGB image with

selected region masked out or feed in a binary mask with selected region set to 0 and the

rest to 1. We denote the two ways of intervention as “RGB mask” and “Convolution mask”

in Table 5.6 .

Training with Intervention. To discover how the framework performs, especially

when using the model trained with more traffic configuration variations, we explore two

experimental settings — training with and without intervention. Notice that for Partial

CNN model, we always use convolution mask to remove selected objects when training with

intervention. In Partial CNN + Object model, we additionally remove the selected object

features during message passing.

By analyzing the results, our completed framework (last row in Table 5.6  ) boosts the

mACC by 11.6%, 13.5%, 11% and 7.3%, respectively, compared with the lowest accuracies.

It ranks first in three senarios (Crossing Vehicle, Crossing Pedestrian and Parked Vehicle)

and second in Congestion case.

Training with intervention always leads to an increase in accuracy when the driving

model is modeled with object-level information. However, it does not necessarily help the

performance when the driving model is downgraded to Partial CNN only.

In terms of intervened mask type, an interesting phenomenon is observed that in Crossing

Vehicle and Crossing Pedestrian scenarios, intervening with convolution mask achieves higher

accuracy than RGB mask in general. However, in the other two scenarios, this trend is no

more noticeable. Our conjecture is that, when the ego vehicle deviates for parked vehicle or

stops for congestion, the target risk object is salient pixel-wise, taking up the majority area
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of the frame. Under such circumstance, inputting a masked RGB frame could be enough for

changing the driving model output significantly. Thus, the increased performance resulting

from hallucination effect of convolution mask is relatively unremarkable .

5.7.4 Quantitative Evaluation

Table5.7. Comparison with other risk object identification methods. The
methods with * are re-implemented by us. The unit is %. The best and
second performances are shown in bold and underlined, respectively.

Method

mAcc

Crossing
Vehicle

Crossing
Pedestrian

Parked
Vehicle Congestion

Random Selection 15.1 7.1 6.4 5.5
Driver’s Attention Prediction * [159 ] 16.8 8.9 10.0 21.3
Object-level Attention Selector * [29 ] 36.5 21.2 20.1 8.9

Pixel-level Attention + Causality Test * [27 ] 41.9 21.5 34.6 62.7
Ours 43.0 27.0 39.8 81.0

Since by the time we finished this work there was no existing work which could be directly

applied to the risk object identification task, we re-implemented three approaches mentioned

in Sec 5.6.3 and followed their spirits to select important/risk objects in the driving scenario.

The comparison with our method is shown in Table 5.7 . Note that the results of the last row

are not directly comparable to the results in Table 5.4  because we train four different driving

models and test four scenarios independently, whereas a single intention-aware driving model

is trained in Table 5.4  . As shown in the table, our preliminary result still achieves the best

performance among the five methods which demonstrates the effeteness of our design.

5.7.5 Qualitative Evaluation

In addition to select only one risk object, our framework can also be used to assess the risk

of every object in the scene. We visualize the results in Figure 5.10  and the ego vehicles in the

samples are supposed to take a “stop” action. All detected objects are encased in bounding

boxes with different colors, and their risk scores are in a bar chart with corresponding color.

96



(a) Crossing Vehicle

(b) Crossing Pedestrian

(c) Parked Vehicle

(d) Congestion

Figure5.10. Sample scenes from the HDD dataset with object risk score
visualized. On the left, all detected objects are shown in bounding boxes with
different colors. The risk score of each object is depicted in a bar chart on
the right. The color of each bar is one-to-one matched to the bounding box.
We use a black horizontal line to indicate the predicted ‘go’ score of the ego
vehicle without applying any intervention.
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Remove by inpainting Remove by partial convolutions

Figure5.11. An example of computed risk scores by using inpainting images
compared with our method.

The risk score of an object is equivalent to the predicted confidence score of ‘go’ action after

removing it. A higher score of “go” action means a higher possibility that it is the object

that stops the ego vehicle. We use a black horizontal line to indicate the predicted confidence

score of ‘go’ action when the input is not intervened. If the score is less than 0.5, then the

sample is classified as “stop”. As we see in the figures, our framework generates a reasonable

risk assessment result.

In Figure 5.10  (b), when multiple risk objects (a group of people) exist, our framework as-

signs high risk scores to every potential risk object. It seems correct at first glance. However,

re-thinking the results leads to some questions since removing any of the four pedestrians

will not make the ego car move. Our conjecture is that the partial convolutional operation

not only hallucinates the removed the area but also the surrounding regions are affected

due to the growing receptive field as networks go deeper. As pedestrians are adjacent in
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this example, removing one single person by partial convolutions may dilute the surrounding

ones and return high risk scores. To verify, we manually inpainting the image by removing

every person iteratively and feed the inpainting image to the same driving model without

applying partial convolutions. Results are shown in Figure 5.11  with lower risk scores, indi-

cating the correctness of the driving model. And it may also prove our guess about partial

convolutional operations. On the other hand, we see the potential of identifying a group of

adjacent risk objects via our framework.

5.7.6 Failure Cases

(a) (b)

Figure5.12. Examples of failure cases. Our prediction is in green and ground
truth is in red.

While our model shows the possibility to identify the intention of the ego vehicle based

on the past motion (Figure 5.8  (b)), there are situations that our driving model is confused

and chooses an incorrect risk object when the changes of historical motion are not obvious.

In Figure 5.12  (a), the ego vehicle plans to take a right turn and stops for the vehicle in the

red box. However, our framework selects the white pickup truck over the black vehicle as the

risk object. The reason could be the intention of the ego vehicle is ambiguous and historical

cues are not informative. Additionally, in Figure 5.12 (b), our driving model is not able to

distinguish which vehicle will move first at a 4-way stop intersection and where it is going,

resulting in a wrong selection. Hence, we believe explicitly modeling the ego’s intention, as

well as other participants’, in the driving model will render better inference results. Inspired
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by this observation, this is also the initial motivation that we embed intention-aware design

into our completed Level 3 SA driving model.

5.8 Discussion

In this chapter, we explore the projection part of SA for the driving model. One of the

realizations of projection is to identify the risk in the near future. Thus, we propose a novel

driver-centric definition of risk, i.e., risky objects influence driver behavior. A new task

called risk object identification is introduced and is formulated as a cause-effect problem.

We present a novel two-stage risk object identification framework inspired by the model of

Level 3 situation awareness and causal inference. Especially for projection, we utilize an

encoder-decoder Temporal Recur-rent Network (TRN) to aggregate information from both

accumulated past and predicted future. Besides, an intention-aware design is introduced to

make driver response predictions based on the driver intention.

We also create a driver-centric Risk Object Identification (ROI) dataset to evaluate the

proposed system. Extensive quantitative and qualitative evaluations are conducted. Favor-

able performance compared with strong baselines is demonstrated. Future work can leverage

road topology explicitly to improve driver intention prediction. Additionally, a single shot

risk object identification framework would be interesting to explore for practical applications.
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6. CONCLUSION

6.1 Summary

We studied three levels of situation awareness for advanced driver-assistance systems

based on different computer vision tasks. For Level 1 – Perception, we focused on a specific

and common scenario – driving in photon-limited conditions where traffic elements are diffi-

cult to perceive. To tackle this problem, we integrated a new non-local feature aggregation

method and a knowledge distillation technique with the state-of-the-art detector networks

to produce better feature representations for photon-limited images. For Level 2 – Compre-

hension, we studied how to understand the spatial-temporal relations between a driver and

objects. We proposed a 3D-aware egocentric spatial-temporal model by using Graph Convo-

lution Networks and demonstrated the effectiveness of our design via a task called tactical

driver behavior recognition. To achieve the highest level of situation awareness, Projection,

we presented a completed Level 3 SA driving model which is an integration of perception,

comprehension, and projection. Combined with causal inference, we are able to forecast the

driver’s operation intentions and anticipate potential risks to aid driving safety.

6.2 Future Work

There are also many interesting problems which can be done in the future work:

First, in Chapter 5  , before non-local feature aggregation, we need the feature extractor

to obtain features individually for each frame. Although the overall design already reduces

computations compared with non-local search in the image space, it is still relatively memory-

and time-consuming if we want to apply it to real-time applications. It is a promising

direction to study how to compress the detection network size, or how to speed up the

feature extraction and aggregation, so we can realize the photon-limited detection in real-

time.

Second, in Chapter 4 and Chapter 5  , we make the assumption that the state of Thing

object can be influenced by other Thing objects and Ego but do not consider the influence

from Stuff objects. We are interested in how to merge two graphs into one, and how to
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represent a more comprehensive and precise representation of interactions among all the

traffic elements.

Third, for projection in Chapter 5 , future work can leverage road topology explicitly

to improve driver intention prediction. Additionally, a single shot risk object identification

framework would be interesting to explore for practical applications.

The evaluations of Chapter 5  does not apply the photon-limited object detection at the

perception level. It is due to the dataset limitations. HDD [136 ] dataset is captured during

the daytime and BDD 100K [11 ] does not provide the annotations of risk objects. Currently,

there is no existing dataset that fulfills our evaluation needs of risk object identification in

photon-limited conditions. We will leave it as future work, and we believe that it will be very

feasible to combine photon-limited object detection into the completed Level 3 SA driving

model.
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