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ABSTRACT

This article is devoted to extend the recently developed rough path theory for Volterra

equations from [  1 ] to the case of more rough noise and/or more singular Volterra kernels.

It was already observed in [  1 ] that the Volterra rough path introduced there did not satisfy

any geometric relation, similar to that observed in classical rough path theory. Thus, an

extension of the theory to more irregular driving signals requires a deeper understanding of

the specific algebraic structure arising in the Volterra rough path. Inspired by the elements of

”non-geometric rough paths” developed in [  2 ] and [  3 ] tree rooted index is a simple description

of the Volterra rough path and the controlled Volterra process, and with this description the

existence and uniqueness of the solution to rough volterra equations driven by more irregular

signals are held.
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1. INTRODUCTION

1.1 Introduction to rough paths

Rough paths analysis is a theory introduced by Terry Lyons in the pioneering paper [ 4 ]

which aims to solve differential equations driven by functions with finite p−variation with

p > 1, or by α−Hölder continuous functions of order α ∈ (0, 1). Considering a (rough)

differential equations of the form

dYt = f(Yt)dXt, Y0 = ζ ∈ W. (1.1)

Here, X : [0, T ] → V is the driving or input signal, while Y : [0, T ] → W is the output signal.

As usual V and W are Banach spaces, and f : W → L(V,W ). When dimV = d < ∞, one

may think of f as a collection of vector fields (f1, · · · , fd) on W . It is okay to think V = Rd

and W = Rn but there is really no difference in the argument. Such equations are familiar

from the theory of ODEs, and more specifically, control theory, where X is typically assumed

to be absolutely continuous so that dXt = Ẋtdt. The case of SDEs, stochastic differential

equations, with dX interpreted as Itô or Stratonovich differential of Brownian motion, is also

well know. Both cases will be seen as special examples of RDEs, rough differential equations.

For convenience, one may discuss ( 1.1 ) on the unit time interval. Indeed, equation ( 1.1 ) is

invariant under time-reparametrization so that any (finite) time horizon may be rescaled to

[0, 1]. Alternatively, global solutions on a larger time horizon are constructed successively,

i.e. by concatenating Y |[0,1] (started at Y0) with Y |[1,2] (started at Y1) and so on. As a

matter of fact, one shall construct solutions by a variation of the classical Picard iteration

on intervals [0, T ], where T ∈ (0, 1] will be chosen sufficiently small to guarantee invariance

of suitable balls and the contraction property.

In order to solve equation ( 1.1 ), the first thing is to make sense of the expression

∫ t

0
f(Ys)dXs, (1.2)
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where Y is itself the as yet unknown solution. Actually, since the function Y solves (  1.1 ), one

would expect the small-scale fluctuations of Y to look exactly like the small-scale fluctuation

of X in the sense. The simplest way for Y to look like X is when Y = G(X) for some

sufficiently regular functionG. Despite what one might guess, it turns out that this particular

class of functions Y is already sufficiently rich so that knowing how to define integrals of

the form
∫ t

0 G(Xs)dXs for (non-gradient) functions G allows to give a meaning to equations

of the type ( 1.1 ), which is the approach originally developed on [  4 ]. The value of such an

integral does not depend on the parametrisation of X, which dovetails nicely with the fact

that the α-Hölder of a function is also independent of its parametrisation.

To give a meaning of (  1.2 ), it is necessary to define the space of rough path, more precisely

the space of Hölder continuous rough path.

1.1.1 Rough path

A rough path on an interval [0, T ] with values in a Banach space V then consists of

a continuous function X : [0, T ] → V , as well as a continuous second order process X :

[0, T ]2 → V ⊗V , subject to certain algebraic and analytic conditions. For any (s, u, t) ∈ ∆3,

X satisfy

Xts − Xus − Xtu = Xus ⊗Xtu, chen’s relation. (1.3)

And X is self similar, that is

X(λt)(λs) ∼ λ2αXts. (1.4)

The following definition is about a α-Hölder continuous function.

Definition 1.1.1. For α ∈ (0, 1), define the space of α−Hölder rough paths (over V ), in

symbols Cα([0, T ], V ) such that

‖X‖α := sup
s 6=t∈[0,T ]

|Xts|
|t− s|α

< ∞. (1.5)
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With Definition  1.1.1 in mind, it is ready to discuss rough path lift of a α−Hölder

continuous function. For a α−Hölder continuous function X : [0, T ] → V , define the iterated

integral as

Xts :=
∫ t

s
Xrs ⊗ dXr. (1.6)

Regarding the definition ( 1.6 ), the behaviour of iterated integrals X : [0, T ]2 → V ⊗ V

suggests to impose the algebraic relation (  1.3 ) and the analytic relation (  1.4 ). Note that

t 7→ (Xt0,Xt0) determines the entire second order process X. In this sense, the pair (X,X)

is indeed a path, and not some two-parameter object, although it is often more convenient

to consider it as one. This discussion motivates the following definition of our basic spaces

of rough paths

Definition 1.1.2. For α ∈ (0, 1), define the space of α-Hölder rough path (over V ), in

symbols Cα([0, T ], V ), as those pairs (X,X) =: X such that

‖X‖α := sup
s 6=t∈[0,T ]

|Xts|
|t− s|α

< ∞, ‖X‖2α := sup
s 6=t∈[0,T ]

|Xts|
|t− s|2α

< ∞, (1.7)

and such that the algebraic constraint ( 1.3 ) is satisfied.

Notice that for an arbitrary path X ∈ Cα with values in some Banach space V it is far

from obvious that this path can indeed be lifted to a rough path (X,X) ∈ Cα. Anyway,

assuming that we are provided with the data X = (X,X), then we know how to give

meaning to the integral of components of X against other components of X (
∫ t

0 XsdXs): this

is precisely what X encodes. Thanks to the Definition  1.1.1 of α-Hölder continuous, the

integral
∫ t

0 YsdXs may be defined as a Riemann-Stieljes sums.

1.1.2 Young integral and Sewing lemma

Considering the Young integral
∫ t

s YrdXr (as in [  5 ]). Define the integral
∫ t

s YrdXr as a

limit of Riemann-Stieltjes sums, that is

∫ 1

0
YtdXt = lim

|P|→0

∑
[s,t]∈P

YsXts, (1.8)
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where P denotes a partition of [0, 1] (interpreted as a finite collection of essentially disjoint

intervals such that ∪P = [0, 1]) and |P| denotes the length of the largest element of P . The

sum (  1.8 ) converges if X ∈ Cα and Y ∈ Cβ, provided α + β > 1. And as a consequence of

Young’s inequality in [ 5 ], one has bound

∣∣∣∣∫ t

s
YrdXr − YsXts

∣∣∣∣ ≤ C‖Y ‖β‖X‖α|t− s|α+β. (1.9)

According to the definition ( 1.6 ) of the iterated integral. The definition of Yong integral ( 1.8 )

can be extended to define 1−form integral
∫ 1

0 YtdXt. The main insight of the theory of rough

paths is that this seemingly unsurmountable barrier of α + β > 1 (which reduces to α > 1
2

in the case α = β) can be broken by adding additional structure to the problem. Indeed,

for a rough path X, we postulate the values Xts of the integral of X against itself as given

in (  1.6 ). It is then intuitively clear that one should be able to define
∫
Y dX in a consistent

way, consider Yt = F (Xt) for some sufficiently smooth F : V → L(V,W ). Similarly to (  1.8 ),

one have ∫ 1

0
F (Xs)dXt = lim

|P|→0

∑
[s,t]∈P

F (Xs)Xts +DF (Xs)Xts, (1.10)

In the following, it is necessary to discuss when does the limit on the right hand side of ( 1.10 )

exist. Following [ 6 ], Introducing the space Cα,β
2 ([0, T ],W ) of functions Ξ from the simplex

0 ≤ s ≤ t ≤ T into W such that Ξtt = 0 and such that

‖Ξ‖α,β := ‖Ξ‖α + ‖δΞ‖β < ∞. (1.11)

where ‖Ξ‖α = sups<t
|Ξ|

|t−s|α as usual, and also

δΞtus = Ξts − Ξus − Ξtu, ‖δΞ‖β = sup
s<u<t

|δΞtus|
|t− s|β

. (1.12)

Provided that β > 1, it turns out that such functions are almost of the form Ξts = Ft − Fs,

for some α-Hölder continuous functions F (they would be if and only if δΞ = 0). Indeed, it

is possible to construct in a canonical way a function Ξ̂ with δΞ̂ = 0 and such that Ξ̂ts ≈ Ξts

for |t− s| � 1. It is now the time to introduce Sewing lemma.
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Lemma 1.1.3. (Sewing lemma) Let α and β be such that 0 < α ≤ 1 < β. Then there

exists a (unique) continuous map I : Cα,β
2 ([0, T ],W ) → Cα([0, T ],W ) such that (IΞ)0 = 0

and

|(IΞ)ts − Ξts| ≤ C |t− s|β , (1.13)

where C only depends on β and ‖δΞ‖β. (The α-Hölder norm of IΞ also depends on ‖Ξ‖α

and hence on ‖Ξ‖α,β.)

Applying the Sewing lemma  1.1.3 to the construction of ( 1.10 ), one can get

Theorem 1.1.4. (Lyons). Let X = (X,X) ∈ Cα([0, T ], V ) for some T > 0 and α > 1
3 , and

let F : V → L(V,W ) be a C2
b function. Then, the rough integral defined in ( 1.10 ) exists and

one has the bound

∣∣∣∣∫ t

0
F (Xr)dXr − F (Xs)Xts −DF (Xs)Xts

∣∣∣∣
. ‖F‖C2

b

(
‖X‖3

α + ‖X‖α‖X‖2α

)
|t− s|3α, (1.14)

where the proportionality constant depends only on α. Furthermore, the indefinite rough

integral is α-Hölder continuous on [0, T ] and we have the following quantitative estimate,

∥∥∥∥∫ ·

0
F (X)dX

∥∥∥∥
α

≤ C‖F‖C2
b

[(
‖X‖α +

√
‖X‖2α

)
∨
(

‖X‖α +
√

‖X‖2α

)1/α
]
, (1.15)

where the constant C only depends on T and α and can be chosen uniformly in T ≤ 1.

Another important notion that is useful in our Paper [ 7 ] is controlled path Y , relative

to some reference path X. For the sake of the following definition, assuming that Y takes

values in some Banach space, say W̄ . When it comes to the definition of a rough integral we

typically take W̄ = L(V,W ); although other choices can be useful.

Definition 1.1.5. Given a path X ∈ Cα([0, T ], V ), we say that Y ∈ Cα([0, T ], W̄ ) is con-

trolled by X if there exists Y ′ ∈ Cα([0, T ],L(V, W̄ )) so that the remainder term RY given

implicitly through the relation

Yts = Y ′
sXts +RY

ts, (1.16)

13



satisfies ‖RY ‖2α < ∞. This defines the space of controlled rough paths,

(Y, Y ′) ∈ D2α
X ([0, T ], W̄ ).

Although Y ′ is not, in general, uniquely determined from Y (Gubinelli derivative of Y ).

With these notions at hand, it is now straight-forward to prove the following result, which

is a slight reformulation of [ 6 , Prop1]:

Theorem 1.1.6. (Gubinelli). Let T > 0, let X = (X,X) ∈ Lα([0, T ], V ) for some α > 1
3 ,

and let (Y, Y ′) ∈ D2α
X ([0, T ],L(V,W )). Then there exists a constant C depending only on T

and α (and C can be chosen uniformly over T ∈ (0, 1]) such that

a) The integral defined in ( 1.10 ) exists and, for every pair s, t, one has the bound

∣∣∣∣∫ t

s
YrdXr − YsXts − Y ′

sXts

∣∣∣∣ ≤ C
(
‖X‖α‖RY ‖2α + ‖X‖2α‖Y ′‖α

)
|t− s|3α. (1.17)

b)The map from D2α
X ([0, T ],L(V,W )) to D2α

X ([0, T ],W ) given by

(Y, Y ′) 7→ (
∫ ·

0
YtdXt, Y ), (1.18)

is a continuous linear linear map between Banach spaces and one has the bound

‖
∫ ·

0
YtdXt, Y ‖X,2α ≤ ‖Y ‖α + ‖Y ′‖L∞‖X‖2α + C

(
‖X‖α‖RY ‖2α + ‖X‖2α‖Y ′‖α

)
. (1.19)

And for the integral of composition with regular functions. Let W and W̃ be two Banach

spaces and let ϕ : W → W̃ be a function in C2
b . Let furthermore (Y, Y ′) ∈ D2α

X ([0, T ],W )

for some X ∈ Cα. Then one can define a (candidate) controlled rough path (ϕ(Y ), ϕ(Y )′) ∈

D2α
X ([0, T ], W̃ ) by

ϕ(Y )t = ϕ(Yt), ϕ(Y )′
t = Dϕ(Yt)Y ′

t . (1.20)

It is straightforward to check that the corresponding remainder term does indeed satisfy the

required bound. It is also straightforward to check that, as a consequence of the chain
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rule, this definition is consistent in the sense that (ϕ ◦ ψ)(Y, Y ′) = ϕ(ψ(Y, Y ′)). And

‖ϕ(Y ), ϕ(Y )′‖X,2α satisfies

Lemma 1.1.7. Let ϕ ∈ C2
b , (Y, Y ′) ∈ D2α

X ([0, T ],W ) for some X ∈ Cα with |Y ′
0 | +

‖Y, Y ′‖X,2α ≤ M ∈ [0,∞). Let (ϕ(Y ), ϕ(Y )′) ∈ D2α
X ([0, T ], W̃ ) be given by ( 1.20 ). Then,

there exists a constant C depending only on T > 0 and α > 1
3 such that one has the bound

‖ϕ(Y ), ϕ(Y )′‖X,2α ≤ Cα,TM‖ϕ‖C2
b

(1 + ‖X‖α)2 (|Y ′
0 | + ‖Y, Y ′‖X,2α) .

At last, C can be chosen uniformly over T ∈ (0, 1].

1.1.3 Solutions to rough differential equations

The aim of this section is to show that if f is regular enough and (X,X) ∈ Cβ with β > 1
3 .

Consider a differential equations driven by the rough path X = (X,X) of the type

dY = f(Y )dX.

Such an equation will yield solutions in D2α
X and will be interpreted in the corresponding

integral formulation, where the integral of f(Y ) against X is defined using ( 1.10 ). More

precisely, one has the following local existence and uniqueness result, which is from [  8 , Prop

8.3]

Theorem 1.1.8. Given ζ ∈ W , f ∈ C3(W,L(V,W )) and X = (X,X) ∈ Cβ(R+, V ) with

β ∈ (1
3 ,

1
2), there exists a unique element (Y, Y ′) ∈ D2β

X ([0, 1],W ) such that

Yt = ζ +
∫ t

0
f(Ys)dXs, t < τ, (1.21)

for some τ > 0. Here, the integral is interpreted in the sense of Theorem  1.1.6 and f(Y ) ∈

D2β
X is built from Y by Lemma  1.1.7 . Furthermore, one has Y ′ = f(Y ) and, if f ∈ C3

b ,

solutions are global in time.
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1.2 Introduction to Malliavin Calculus

Malliavin calculus is one of the main tools of modern stochastic analysis. In a nutshell,

this is theory providing a way of differentiating random variables defined on a Gaussian

probability space (typically Wiener space) with respect to the underlying noise. This allows

to develop an analysis on Wiener space, and infinite-dimensional generalisation of the usual

analytical concepts we are familiar with on Rn. In this introduction, we will recall some

basic notions in Malliavin Calculus (mostly taken from [ 9 ]).

1.2.1 The Wiener Chaos Decomposition

The general setting for Malliavin calculus is a Gaussian probability space, i.e. a proba-

bility space (Ω,F ,P) along with a closed subspace H of L2(Ω,F ,P) consisting of centered

Gaussian random variables. It is often convenient to assume that H is isometric to an-

other Hilbert space H, typically an L2-space over a parameter set T . Recalling that a

real-valued random variable X, defined on a probability space (Ω,F ,P) is called Gaussian

if its characteristic function ϕX = e q
2 t2 for some q ≥ 0. And a family (Xi)i∈I of real-valued

random variables is called Gaussian family or jointly Gaussian, if for any n ∈ N and any

choice i1, · · · , in of distinct indices in I, the vector (Xi1 , · · · , Xin) is a Gaussian vector. The

definition of isonormal Gaussian processes is as follows.

Definition 1.2.1. We say that a stochastic process W = {W (h), h ∈ H} defined in a

complete probability space (Ω,F , P ) is an isonormal Gaussian process (or a Gaussian process

on H) if W is a centered Gaussian family of random variables such that E[W (h)W (g)] =

〈h , g 〉H for all h, g ∈ H.

Remark 1.2.2. For any real, separable Hilbert space H we have that:

(1) there exists an H-isonormal Gaussian process W .

(2) The map h 7→ W (h) is an isometry, in particular, it is linear.

(3) W is a Gaussian family.
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The range of the isonormal process W is the subspace H that was mentioned above. In

order to get Wiener chaos decomposition, it is worthy studing the structure of the range of

W .

For n ∈ N0, the nth Hermite polynomial Hn is defined by H0 = 1 and

Hn(x) = (−1)n

n! e
x2
2
dn

dxn
(e− x2

2 ), (2.1)

for n ≥ 1. It is easy to check that the Hermite polynomials have following basic properties:

(1) H ′
n(x) = Hn−1(x); (2) (n+ 1)Hn+1(x) = xHn(x) −Hn−1(x); (3) Hn(−x) = (−1)nHn(x).

Inserting Gaussian random variables into Hermite polynomial, we get the following Lemma.

Lemma 1.2.3. Let X,Y be standard Gaussian random variables which are disjointly Gaus-

sian. Then for n,m ≥ 0, we have

E(Hn(X)Hm(Y )) =

 0, if n 6= m

1
n!(E(XY ))n, if n = m

With Lemma  1.2.3 at hand, Wiener chaos is defined by

Definition 1.2.4. For each n ≥ 0, we write Hn to denote the closed linear subspace of

L2(Ω,F ,P) generated by the random variables of the type Hn(W (h)), h ∈ H, ‖h‖ = 1.

These space Hn is called the nth Wiener chaos of W .

Note that H0 = 1, the 0-th Wiener chaos H0 is the set of all constant functions, whereas

H1 = {W (h) : h ∈ H}, since H1(x) = x and W is linear. The next result shows that ⊕∞
n=0Hn

coincides with L2(Ω,F ,P): this result is known as the Wiener-Itô chaotic decomposition of

L2(Ω, ,P).

Theorem 1.2.5. The space L2(Ω,G, P ) can be decomposed into the infinite orthogonal sum

of the subspaces Hn:

L2(Ω,G, P ) = ⊕∞
n=0Hn.
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1.2.2 The derivative operator

Let S denote the set of all random variables of the form

f(W (h1), · · · ,W (hn)), (2.2)

where n ≥ 1, f : Rn → R is a C∞-function such that f and its partial derivative have at

most polynomial growth, and hi ∈ H, i = 1, . . . , n. A random variable belonging to S is said

to be smooth. The definition of Malliavin derivative is given by

Definition 1.2.6. The derivative of a smooth random variable F of the form ( 2.2 ), is the

H-valued random variable given by

DF =
n∑

i=1
∂if(W (h1), · · · ,W (hn))hi. (2.3)

Thanks to the Definition  1.2.6 , Malliavin derivative D satisfies the following properties.

Remark 1.2.7. 1. For h ∈ H and for F as in ( 2.2 ), observe that, almost surely,

〈DF, h〉H = lim
ε→0

1
ε
[f(W (h1) + ε〈h1, h〉H+, · · · ,W (hn) + ε〈hn, h〉H) − F ].

This shows that DF may be seen as a directional derivative.

2. The operator D is closable from LP (Ω) to LP (Ω;H).

Also, for a smooth random variable F , the iteration of the operator D, say DkF , is a

random variable with value in H⊗k. Then for a fix p ≥ 1 and k ≥ 0, let Dk,p denote the

closure of S with respect to the norm ‖ · ‖k,p

‖F‖k,p =
E(|F |p) +

k∑
j=1

E(‖DjF‖p
H⊗j)

 1
p

. (2.4)

Note that this family of spaces verifies properties: (i) Dk+1,p ⊂ Dk,p if k ≥ 0 and p > q. (ii)

D0,p = Lp(Ω).
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1.2.3 The divergence operator

This section is devoted to recall the divergence operator, defined as the adjoint of the

derivative operator. Thanks to the property of the derivative operator D in Remark  1.2.7 ,

divergence operator is defined by

Definition 1.2.8. We denote by δ the adjoint of the operator D. That is, δ is an unbounded

operator on L2(Ω;H) with values in L2(Ω) such that:

(i) The domain of δ, denoted by Domδ, is the set of H-valued square integrable random

variables u ∈ L2(Ω;H) such that

|E(〈DF, u〉H)| ≤ c‖F‖2. (2.5)

for all F ∈ D1,2, where c is some constant depending on u.

(ii) If u belongs to Domδ, then δ(u) is the element of L2(Ω) characterized by

E(Fδ(u)) = E(〈DF, u〉H), (2.6)

for any F ∈ D1,2.

The operator δ is called the divergence operator and is closed as the adjoint of an un-

bounded and densely defined operator. Divergence operator enjoys following property.

Proposition 1.2.9. The space D1,2(H) is included in the domain of δ. If u, v ∈ D1,2(H),

then

E(δ(u)δ(v))) = E(〈u, v〉H) + E(Tr(Du ◦Dv)) (2.7)

As a consequence of relation ( 2.7 ), we obtain the estimate

E(δ(u)2) ≤ E(‖u‖2
H) + E(‖Du‖2

H⊗H) = ‖u‖2
1,2. (2.8)

This implies that the space D1,2(H) is included in the domain of δ. In fact, if u ∈ D1,2(H),

there exists a sequence un ∈ Sn converges to u in L2(Ω) and Dun converges to Du in
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L2(Ω;H ⊗ H). Therefore, δ(un) converges in L2(Ω) and its limit is δ(u). Moreover, (  2.7 )

holds for any u, v ∈ D1,2(H). With Section  1.2.3 at hand, it is now the time to review the

definition of Skorohod and Stratonovich integral, and its relation.

1.2.4 The Skorohod integral and Stratonovich integral

Consider the separable Hilbert space H = L2(T,B, µ), where µ is a σ-finite atomless

measure on a measurable space (T,B). In this case the elements of Domδ ⊂ L2(T × Ω)

are square integrable processes, and the divergence δ(u) is called the Skorohod stochastic

integral of the process u. Say:

δ(u) =
∫

T
ut dWt. (2.9)

The space D1,2(L2(T )), denoted by L1,2, coincides with the class of processes u ∈ L2(T ×

Ω) such that u(t) ∈ D1,2 for almost all t, and there exists a measurable version of the

two-parameter process Dsut verifying E[
∫

T

∫
T (Dsut)µ(ds)µ(dt)] < ∞. If u and v are two

processes in the space L1,2, then Equation ( 2.7 ) can be written as

E(δ(u)δ(v)) = E(utvt)µ(dt) + E(DsutDtvs)µ(ds)µ(dt). (2.10)

Owing to Definition  1.2.3 of divergence operator in hand, one may find that Skorohod integral

is an extension of the Itô stochastic integral.

Proposition 1.2.10. Let W = {Wt, t ∈ [0, 1]} be a one dimensional Brownian motion and

consider an adapted process u such that
∫ 1

0 u
2
tdt < ∞ a. s. Then δ(u) coincides with the Itô

stochastic integral
∫ 1

0 utdWt.

Next, to introduce the definition of Stratonovich integral. Let π be an arbitrary partition

of the interval [0, 1] of the form π = {0 = t0 < t1 < · · · < tn = 1} and a family of random

variables Sπ by

Sπ =
∫ 1

0
utW

π

t dt, (2.11)

20



where

W π

t =
n−1∑
i=0

W (ti+1) −W (ti)
ti+1 − ti

1(ti,ti+1](t). (2.12)

Definition 1.2.11. We say that a measurable process u = {ut, 0 ≤ t ≤ 1} such that∫ 1
0 |ut|dt < ∞ a.s. is Stratonovich integral if the family Sπ converges in probability as

|π| → 0, and in this case the limit will be denoted by
∫ 1

0 ut ◦ dWt.

In addition, assume that u ∈ D1,2(H) and the derivative Dsut exists and satisfies almost

surely ∫ T

0

∫ T

0
|Dsut||t− s|2H−2ds dt < ∞, and E

[
‖Du‖2

H⊗l

]
< ∞.

Then the Stratonovich integral
∫ T

0 ut ◦dWt exists, and Skorohod and Stratonovich stochastic

integrals have following relation:

∫ T

0
ut ◦ dWt =

∫ T

0
ut dWt + aH

∫ T

0

∫ T

0
Ds ut|t− s|2H−2ds dt. (2.13)

Furthermore, recalling that Meyer’s inequality for the Skorohod integral: given p > 1 and an

integer k ≥ 1, there is a constant ck,p such that the k-th iterated Skorohod integral satisfies

‖(δk(u)‖p ≤ ck,p‖u‖Dk,p(H⊗k) for all u ∈ Dk,p(H⊗k). (2.14)

1.2.5 Multiple Wiener-Itô integrals

Thanks to Section  1.2.1 and  1.2.3 , the elements of the nth Wiener chaos Hn can be

expressed as multiple stochastic integrals with respect to W .

Definition 1.2.12. Let m ≥ 1 and f ∈ H⊗m. The mth multiple integral of f is defined by

Im(f) = δm(f).

It is easy to check that mth multiple integral Im satisfies the following properties:

(i) Im is linear,

(ii) Im(f) = Im(f̃), where f̃ denotes the symmetrization of f .
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(iii)

E(Im(f)Iq(g)) =

 0, if m 6= q

m!〈f̃ , g̃〉L2(T m), if m = q

Recalling the definition of the Hermite polynomials {Hm : m ≥ 0} given in (  2.1 ) and the

definition of δ in ( 2.9 ), one may get

Theorem 1.2.13. Let f be such that ‖f‖H = 1. Then for any integer m ≥ 1, we have

Hm(W (f)) = Im(f⊗m).

As a consequence, the liner operator Im provides an isometry from Hp onto the mth Wiener

chaos Hm of W .

The next statement provides a useful reformulation of the Wiener-Itô decomposition:

Theorem 1.2.14. Every F ∈ L2(Ω,F , P ) (recall that F denotes the σ-field generated by

W ) can be expanded as:

F =
∞∑

m=0
Im(fm).

Here f0 = E(F ), and I0 is the identity mapping on the constants. Furthermore, we can

assume that the functions fn ∈ L2(T n) are symmetric and, in this case, uniquely determined

by F .

This section is closed by a fundamental hypercontractivity property for multiple integrals,

which shows that inside a fixed chaos, all the Lm(Ω)-norm are equivalent.

Theorem 1.2.15. For every q > 0 and every p ≥ 1, there exists a constant 0 < k(q, p) < ∞

such that

E[|Y |q]1/q ≤ k(q, p)E[Y 2]1/2,

for every random variable Y with the form of a pth multiple integral.
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1.3 Summary of Volterra equations driven by rough signals

This section is a summary of the paper [  1 ], which is devoted to give a meaning of the

theory of rough paths in a Volterra setting with singular kernels. The main idea in order to

achieve this goal is to extend the concept of a path t 7→ zt to a two variable object (t, τ) 7→ zτ
t

for (t, τ) ∈ ∆2, where ∆2 is a simplex of two variables. This extension of the notion of path

is motivated from the generic form of a Volterra integral

zτ
t =

∫ t

0
k(τ, r)dxr, (3.1)

for some (possibly singular) kernel k and a Hölder continuous function x. And then giving a

proper definition of the convolution product ∗, and arguing that the solution to a V -valued

Volterra equation

yt = ξ +
∫ t

0
k(t, r)σ(yr)dxr, ξ ∈ V. (3.2)

That is, there are two goals in this paper:

(1) The path-wise construction of the Volterra paths in (  3.1 ) as well as the algebraic and

analytical properties of the associated Volterra-signature (as generalized from the concept

of signatures in the theory of rough paths),

(2) Construction of solutions to ( 3.2 ).

In order to achieve these two goals, introducing the definition of Volterra rough paths is the

first step.

1.3.1 Volterra Rough Paths

To define the Volterra rough paths, There are some notations that are used in this

introduction (also in paper [ 1 ]) .

Notation 1.3.1. Let C > 0 be a constant, the relation a ≤ Cb is defined by

a . b
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.

Another notation is about simplex ∆T
n .

Notation 1.3.2. Let T > 0 be a time horizon, and n ≥ 2. Then the simplex ∆T
n is defined

by

∆T
n

{
(s1, . . . , sn) ∈ [0, T ]n; 0 ≤ s1 < · · · < sn ≤ T

}
.

When this causes no ambiguity, ∆n represents ∆T
n .

Furthermore, operator δ is well known in the theory rough paths, and given by

Notation 1.3.3. Let g be a path from ∆2 to Rm, and consider (s, u, t) ∈ ∆3. Then the

quantity δugts is defined by

δugts = gts − gtu − gus. (3.3)

With these notations at hand, it is ready to construct the Volterra signature over a

smooth path. In this way the Volterra type integrals will be trivially defined and their

algebraic and analytic properties can be checked. This constructions will rely on specific

assumptions about the power type singularity of the kernel k appearing in (  3.2 ). The main

hypothesis are summarized as follows.

H Let k be a kernel k : ∆2 → R. Assume that there exists γ ∈ (0, 1) such that for all

(s, r, q, τ) ∈ ∆4 ([0, T ]) and η, β ∈ [0, 1] we have

|k (τ, r) | . |τ − r|−γ (3.4)

|k (τ, r) − k (q, r) | . |q − r|−γ−η|τ − q|η (3.5)

|k (τ, r) − k (τ, s) | . |τ − r|−γ−η|r − s|η (3.6)

|k (τ, r) − k (q, r) − k (τ, s) + k (q, s) | . |q − r|−γ−β|r − s|β (3.7)

|k (τ, r) − k (q, r) − k (τ, s) + k (q, s) | . |q − r|−γ−η|τ − q|η. (3.8)

In the sequel a kernel fulfilling condition (H) will be called Volterra kernel of order −γ.

Thanks to these assumptions, it is now to state the definition of iterated Volterra integral.
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Definition 1.3.4. Consider a path x ∈ C1 ([0, T ] ;E) and a Volterra kernel k : ∆2 → R

satisfying (H). The iterated Volterra integral of order n is a mapping zn : ∆3 → E⊗n given

by

(s, t, τ) 7→ zn,τ
ts =

∫
t>rn>···>r1>s

k(τ, rn)
n−1⊗
j=1

k (rj+1, rj) dxrj . (3.9)

.

For (s, u, t, τ) ∈ ∆4, it is not hard to check that zn,τ
ts as given in ( 3.9 ) satisfies

|zn,τ
ts | ≤ (‖x‖1Γ(1 − γ))n

Γ (n (1 − γ)) (τ − s)−γ (t− s)(n−1)(1−γ)+1 ,

Here Γ is the Gamma function.

Note that the Volterra signature does not have a multiplicative property (Xtu ⊗ Xus = Xts)

similar to the classical signature. So it is necessary to introduce an integral product behaving

like a convolution extending the classical tensor product. It is not hard to check that this

convolution product is well defined for a large class of Volterra paths, and provide an analogue

of the extension theorem from the theory of rough paths (which guarantees in particular the

existence of a Volterra signature). For all 0 ≤ i ≤ n, defining the convolution product ∗ as

zn−i,τ
tu ∗ zi,·

us (3.10)

:=
∫

t>rn>···>ri+1>u

i+1⊗
j=n

k (rj+1, rj) dyrj ⊗
∫

u>ri>···>r1>s
k (ri+1, ri)

1⊗
j=i−1

k (rj+1, rj) dxrj ,

then zn,τ
ts as given in ( 3.9 ) satisfies

zn,τ
ts =

n∑
i=0

zn−i,τ
tu ∗ zi,·

us, (3.11)

Here the convention z0 ≡ 1 and zn ∗ 1 = 1 ∗ zn = zn.

It is the time to construct the Voterra rough paths. This means to generalize the processes

of the form

zτ
ts =

∫ t

s
k(τ, r)dxr, (3.12)
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where x is an α-Hölder path and k a possibly singular kernel of order −γ. Consider the

Volterra spaces as follows.

Definition 1.3.5. Let E be a Banach space, and consider (α, γ) ∈ (0, 1)2 with α − γ > 0.

Define the space of Volterra paths of index (α, γ), denoted by V(α,γ)(∆2;Rd), as the set of

functions z : ∆2 → E, given by (t, τ) 7→ zτ
t , with the condition zτ

0 = z0 ∈ E for all τ ∈ (0, T ],

and satisfying

‖z‖(α,γ) = ‖z‖(α,γ),1 + ‖z‖(α,γ),1,2 < ∞. (3.13)

In ( 3.13 ), the 1-norm and (1,2)-norm are respectively defined as follows:

‖z‖(α,γ),1 := sup
(s,t,τ)∈∆3

|zτ
ts|E

[|τ − t|−γ|t− s|α] ∧ |τ − s|α−γ
, (3.14)

‖z‖(α,γ),1,2 := sup
(s,t,τ ′,τ)∈∆4

η∈[0,1],ζ∈[0,α−γ)

|zττ ′
ts |E

|τ − τ ′|η|τ ′ − t|−η+ζ ([|τ ′ − t|−γ−ζ |t− s|α] ∧ |τ ′ − s|α−γ−ζ) ,

(3.15)

with the convention zτ
ts = zτ

t − zτ
s and zττ ′

s = zτ
s − zτ ′

s . In addition, under the mapping

z 7→ |z0| + ‖z‖(α,γ),

the space V(α,γ)(∆2;E) is a Banach space.

The second goal is to construct a solution to rough Volterra equations like (  3.2 ). Similar

to classical rough path, Volterra version of the Sewing Lemma is necessary. The Volterra

spaces V(α,γ) plays a similar role in Volterra Sewing Lemma as Cα(V ) in classical Sewing

Lemma.

Definition 1.3.6. Let α ∈ (0, 1), γ ∈ (0, 1) with α − γ > 0, κ ∈ (0,∞) and β ∈ (1,∞).

Denote by V(α,γ)(β,κ) (∆3 [0;T ] ;E), the space of all functions Ξ : ∆3 ([0, T ]) → E such that

‖Ξ‖V(α,γ)(β,κ) = ‖Ξ‖(α,γ) + ‖δΞ‖(β,κ) < ∞, (3.16)
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where δ is the operator defined by ( 3.3 ) In (  3.16 ), we also use the following convention: the

norm ‖Ξ‖(α,γ) is given by ( 3.16 ), while we have

‖δΞ‖(α,γ) = ‖δΞ‖(α,γ),1 + ‖δΞ‖(α,γ),1,2,

where the quantities ‖δΞ‖(β,γ),1 and ‖δΞ‖(β,γ),1,2 are slight modifications of (  1.3.5 ) respectively

defined by

‖δΞ‖(β,κ),1 := sup
(s,m,t,τ)∈∆4

|δmΞ
τ
ts|

|τ − t|−κ|t− s|β ∧ |τ − s|β−κ
(3.17)

‖δΞ‖(β,κ),1,2 := sup
(s,m,t,τ ′,τ)∈∆5

η∈[0,1]

|δmΞ
τ,τ ′

ts |
|τ − τ ′|η|τ ′ − t|−η (|τ ′ − t|−κ|t− s|β ∧ |τ ′ − s|β−κ) . (3.18)

In the sequel the space V(α,γ)(β,κ) will be our space of abstract Volterra integrands.

It is now ready to state Sewing Lemma adapted to Volterra integrands.

Lemma 1.3.7. (Volterra sewing lemma) Consider four exponents β ∈ (1,∞), κ ∈ (0, 1),

α ∈ (0, 1) and γ ∈ (0, 1) such that β − κ ≥ α− γ > 0. Let V(α,γ)(β,κ) and V(α,γ) be the spaces

defined in Definition  1.3.6 and  1.3.5 respectively. Then there exists a linear continuous map

I : V(α,γ)(β,κ) (∆3;E) → V (α,γ) (∆3;E) such that the following holds true

(i) The quantity I(Ξτ )ts := lim|P|→0
∑

[u,v]∈P Ξ
τ
vu exists for all (s, t, τ) ∈ ∆3, where P is a

generic partition of [s, t] and |P| denotes the mesh size of the partition.

(ii) For all (s, t, τ) ∈ ∆3 we have that

|I (Ξτ )ts − Ξτ
ts| .‖δΞ‖(β,κ),1

(
|τ − t|−κ|t− s|β ∧ |τ − s|β−κ

)
, (3.19)

while for (s, t, τ ′, τ) ∈ ∆4 we get

|I(Ξττ ′)ts − Ξττ ′

ts |

. ‖δΞ‖(β,κ),1,2
[
|τ − τ ′|η|τ ′ − t|−η

(
|τ ′ − t|−κ|t− s|β ∧ |τ ′ − s|β−κ

)]
. (3.20)
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1.3.2 Convolution product in rough case: α− γ > 1
3

This section is devoted to define the first level and second level convolution product, which

is equivalent to Chen’s relation in Volterra context involves convolution type integrals. The

first level convolution product is defined as follows:

Theorem 1.3.8. Consider two Volterra paths z ∈ V(α,γ) and y ∈ V(α′,γ′) as given in Def-

inition  2.2.4 , where we recall that α, γ, α′, γ′ ∈ (0, 1), and define ρ ≡ α − γ > 0 and

ρ′ ≡ α′ − γ′ > 0. Then the convolution product is a bilinear operation on V(α,γ) given by

zτ
tu ∗ y·

us =
∫

t>r>u
dzτ

r ⊗ yr
us := lim

|P|→0

∑
[u′,v′]∈P

zτ
v′u′ ⊗ yu′

us. (3.21)

The integral is understood as a Volterra-Young integral for all (s, u, t, τ) ∈ ∆4. Moreover,

the following inequality holds true,

|zτ
tu ∗ y·

us| . ‖z‖(α,γ),1‖y‖(α′,γ′),1,2
[
(τ − t)−γ (t− s)2ρ+γ ∧ (τ − s)2ρ

]
. (3.22)

In addition to Theorem  1.3.8 , the rough Volterra formalism relies on a stack of iterated

integrals verifying convolutional type algebraic identities. The other main assumption about

this stack of integrals which should be seen as the equivalent of Chen’s relation in our Volterra

context is stated as:

Hypothesis 1.3.9. Let z ∈ V (α,γ) be a Volterra path as given in Definition  1.3.5 . For n such

that (n+ 1)ρ+ γ > 1, assume that there exists a family {zj,τ ; j ≤ n} such that zj,τ
ts ∈ (Rm)⊗j,

z1 = z and verifying

δuzj,τ
ts =

j−1∑
i=1

zj−i,τ
tu ∗ zi,·

us =
∫ t

s
dzj−i,τ

tr ⊗ zi,r
us, (3.23)

where the right hand side of ( 3.23 ) is defined in Theorem  1.3.8 . In addition, for j = 1, . . . , n,

zj ∈ V (jρ+γ,γ).

In order to introduce the second level convolution product, the kind of topology for

functions of the form u1,2 is necessary.
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Definition 1.3.10. Let W(α,γ)
2 denote the space of functions u : ∆3 → L((Rd)⊗2,Rd) with a

fixed initial condition up,q
0 = u0, endowed with the norm

∥∥∥u1,2
∥∥∥

(α,γ)
:=
∥∥∥u1,2

∥∥∥
(α,γ),1

+
∥∥∥u1,2

∥∥∥
(α,γ),1,2

. (3.24)

The right hand side of ( 3.24 ) is defined as follows, recalling the convention ρ = α− γ:

∥∥∥u1,2
∥∥∥

(α,γ),1
:= sup

(s,t,τ)∈∆3

|uτ,τ
ts |[

|τ − t|−γ |t− s|α
]

∧ |τ − s|ρ
, (3.25)

and ∥∥∥u1,2
∥∥∥

(α,γ),1,2
:=
∥∥∥u1,2

∥∥∥
(α,γ),1,2,>

+
∥∥∥u1,2

∥∥∥
(α,γ),1,2,<

, (3.26)

where the norms ‖u1,2‖(α,γ),1,2,> and ‖u1,2‖(α,γ),1,2,< are respectively defined by

∥∥∥u1,2
∥∥∥

(α,γ),1,2,>
= sup

(s,t,r1,r2,r′)∈∆5
η∈[0,1],ζ∈[0,α−γ)

|ur′,r2
ts − ur′,r1

ts |
hη,ζ(s, t, r1, r2, r′) , (3.27)

∥∥∥u1,2
∥∥∥

(α,γ),1,2,<
= sup

(s,t,r′,r1,r2)∈∆5
η∈[0,1],ζ∈[0,α−γ)

|ur2,r′

ts − ur1,r′

ts |
hη,ζ(s, t, r1, r2, r′) , (3.28)

where the function h is defined by

hη,ζ (s, t, r1, r2, r
′) = |r2 − r1|η |min(r1, r2, r

′) − t|−η+ζ

×
([

|min(r1, r2, r
′) − t|−γ−ζ |t− s|α

]
∧ |min(r1, r2, r

′) − s|α−γ−ζ
)
. (3.29)

With the above definition at hand, it is now ready to recall the construction of second

order convolution products in the rough case α− γ > 1
3 .

Theorem 1.3.11. Let z ∈ V (α,γ) be as given in Definition  1.3.5 with α, γ ∈ (0, 1) satisfying

ρ = α − γ > 1
3 . We assume that z fulfills Hypothesis  1.3.9 with n = 2. Consider a function
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y : ∆3 → L((Rd)⊗2,Rd) with ‖y1,2‖(α,γ),1,2 < ∞ and y1,2
0 = y0, for a fixed initial condition

y0 ∈ L((Rd)⊗2,Rd). For all fixed (s, t, τ) ∈ ∆3 we have that

z2,τ
ts ∗ y1,2

s := lim
|P|→0

∑
[u,v]∈P

z2,τ
vu y

u,u
s + (δuz2,τ

vs ) ∗ y1,2
s (3.30)

is a well defined Volterra-Young integral. It follows that ∗ is a well defined bi-linear operation

between the three parameters Volterra function z2 and a 3-parameter path y. Moreover, the

following inequality holds

∣∣∣z2,τ
ts ∗ y1,2

s − z2,τ
ts y

s,s
s

∣∣∣ . ‖y1,2‖(α,γ),1,2
(
‖z2‖(2ρ+γ,γ),1 + ‖z1‖(α,γ),1,2‖z1‖(α,γ),1

)
×
([

|τ − t|−γ |t− s|2ρ+γ
]

∧ |τ − s|2ρ
)
. (3.31)

Similar to classical rough paths, controlled Volterra paths is crucial for a proper definition

of rough Volterra equations.

Definition 1.3.12. Let z ∈ V (α,γ) (E) for some ρ = α − γ > 0. Assume that there exists

two functions y : ∆2 → V and y′ : ∆3 → L (E, V ) , such that yτ
0 = y0 ∈ E for any τ ∈ [0, T ]

and y′,p,q
0 = y′

0 ∈ E for any (q, p) ∈ ∆2, and satisfying the relation

yτ
ts = zτ

ts ∗ y′,τ,·
s +Rτ

ts, (3.32)

where R ∈ V (2α,2γ)
2 (V ) and y′ ∈ W (α,γ)

2 . (Recall that the spaces V(2α,2γ)
2 and W(α,γ)

2 are

respectively introduced in Definition  1.3.5 and Definition  1.3.10 ). Whenever (y, y′) satisfies

relation (  3.32 ) we say that (y, y′) is a Volterra path controlled by z (or controlled Volterra

path in general) and we write (y, y′) ∈ D(α,γ)
z (∆2;V ). We equip this space with a semi-norm

‖ · ‖z,(α,γ) given by

‖y, y′‖z,(α,γ) = ‖y′,·1,·2‖(α,γ) + ‖R‖(2α,2γ). (3.33)

Under the mapping (y, y′) 7→ |y0| + |y′
0| + ‖y, y′‖z,(α,γ) the space D(α,γ)

z (∆2;V ) is a Banach

space. The remainder term R in (  3.32 ) with respect to a Volterra path (y, y′) ∈ D(α,γ)
z will

typically be denoted by Ry.
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This leads to a rough integral given as a functional of the Volterra signature and the

Volterra controlled paths, combined through the convolution product.

Theorem 1.3.13. Let x ∈ Cα and k be a Volterra kernel satisfying (H) with a parameter γ

such that ρ = α − γ > 1
3 . Thanks to Theorem  2.2.20 , define zτ

t =
∫ t

0 k (τ, r) dxr and assume

there exists a second order Volterra rough path z ∈ Vα,γ (∆2;E) built from z according to

Definition  1.3.5 . Additionally, suppose both components of z are uniformly bounded. Namely,

we assume there exists an M > 0 such that

‖z‖(α,γ) := ‖z1‖(α,γ) + ‖z2‖(2ρ+γ,γ) ≤ M, (3.34)

where the two norm quantities corresponds to the norms given in Definition  1.3.5 and Defini-

tion  1.3.10 . We now consider a controlled Volterra path (y, y′) ∈ D
(α,γ)
z1 (∆2; L(E, V )). Then

the following holds true:

(i) The following limit exists for all (s, t, τ) ∈ ∆3,

wτ
ts =

∫ t

s
k(τ, r)yr

rdxr := lim
|P|→0

∑
[u,v]∈P

z1,τ
vu ∗ y·

u + z2,τ
vu ∗ y′,·1,·2

u . (3.35)

(ii) Let w be defined by ( 3.35 ). There exists a constant C = CM,α,γ such that for all (s, t) ∈ ∆2

we have

∣∣∣wτ
ts − z1,τ

ts ∗ y·
s − z2,τ

ts ∗ y′,·1,·2
s

∣∣∣
≤ C‖y, y′‖z,(α,γ)‖z‖(α,γ)

[
|τ − t|−γ|t− s|3ρ+γ ∧ |τ − s|3ρ

]
. (3.36)

(iii) For all (s, t, p, q) ∈ ∆4 and β ∈ (0, 1) we have

∣∣∣wqp
ts − z1,qp

ts ∗ y·
s − z2,qp

ts ∗ y′,·1,·2
s

∣∣∣
≤ C‖y, y′‖z,(α,γ)‖z‖(α,γ)|p− q|β

[
|q − t|−γ−β|t− s|3ρ+γ ∧ |q − s|3ρ−β

]
. (3.37)
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(iv) The couple (w,w′) is a controlled Volterra path in Dz1(∆2, V ), where we recall that w

is defined by ( 3.35 ) and w′,τ,p
t = yp

t .

The rough integral is then used in the construction of solutions to Volterra equations

driven by Hölder noises with singular kernels.

Theorem 1.3.14. Let z ∈ V(α,γ) (E) with α − γ > 1
3 . Assume that z satisfies the same

hypothesis as in Theorem  1.3.13 and suppose f ∈ C4
b (V ; L (E, V )). Then there exists a

unique Volterra solution in D
(α,γ)
z1 (V ) to the equation

yτ
t = y0 +

∫ t

0
k (τ, r) f (yr

r) dxr, (t, τ) ∈ ∆(2) ([0, T ]) , y0 ∈ E, (3.38)

where the integral is understood as a rough Volterra integral given in Theorem  1.3.13 .

1.4 Summary of results in Chapter 1 and Chapter 2

1.4.1 The result of Chapter 1: Volterra equations driven by rough signals 2:
higher order expansions

In this section, we will summarize the result in our first paper [ 7 ]: we extend rough path

theory for Volterra equations from [ 1 ] in the rough case α − γ > 1
3 to the case α − γ > 1

4 .

It was already observed in [  1 ] that the Volterra rough path introduced there did not satisfy

any geometric relation, similar to that observed in classical rough path theory. Thus, an

extension of the theory to more irregular driving signals requires a deeper understanding of

the specific algebraic structure arising in the Volterra rough path. Inspired by the elements

of ”non-geometric rough paths” developed in [ 2 ] and [ 3 ] we provide a simple description of

the Volterra rough path and the controlled Volterra process in terms of rooted trees, and

with this description we are able to solve rough volterra equations in driven by more irregular

signals.

Similar to the construction of the first and second level convolution product in [  1 ], the

third level Volterra convolution product is defined by
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Theorem 1.4.1. Let z ∈ V(α,γ) with α, γ ∈ (0, 1) satisfying ρ = α − γ > 1
4 , as given in

Definition  2.2.4 . We assume that z fulfills Hypothesis  2.2.16 with n=3. Consider a function

y : ∆4 → L((Rm)⊗3,Rm) as given in Notation  2.3.3 such that ‖y1,2,3‖(α,γ),1,2,3 < ∞ and

y1,2,3
0 = y0, where ‖y1,2,3‖(α,γ),1,2,3 is defined by ( 3.17 ). Then with Notation  2.2.14 in mind,

we have for all fixed (s, t, τ) ∈ ∆3 that

z3,τ
ts ∗ y1,2,3

s = lim
|P|→0

∑
[u,v]∈P

z3,τ
vu y

u,u,u
s +

(
δuz3,τ

vs

)
∗ y1,2,3

s , (4.1)

z ,τ
ts ∗ y1,2,3

s = lim
|P|→0

∑
[u,v]∈P

z ,τ
vu yu,u,u

s +
(
δuz ,τ

vs

)
∗ y1,2,3

s . (4.2)

is a well defined Volterra-Young integral. It follows that ∗ is a well defined bi-linear oper-

ation between the three parameters Volterra function z3 and a 4-parameter path y. Moreover,

we have that

∣∣∣z3,τ
ts ∗ y1,2,3

s − z3,τ
ts y

s,s,s
s

∣∣∣ . ‖y1,2,3‖(α,γ),1,2,3
(
‖z3‖(3ρ+γ,γ),1 + ‖z1‖(α,γ),1,2‖z2‖(α,γ),1

+ ‖z2‖(α,γ),1,2‖z1‖(α,γ),1
) ([

|τ − t|−γ |t− s|3ρ+γ
]

∧ |τ − s|3ρ
)
, (4.3)

∣∣∣∣z ,τ
ts ∗ y1,2,3

s − z ,τ
ts ys,s,s

s

∣∣∣∣ . ∥∥∥y1,2,3
∥∥∥

(α,γ),1,2,3

(
‖z ‖(3ρ+γ,γ),1 + ‖z ‖(α,γ),1,2‖z ‖(α,γ),1

+ ‖z ‖2
(α,γ),1,2‖z ‖(α,γ),1

) ([
|τ − t|−γ |t− s|3ρ+γ

]
∧ |τ − s|3ρ

)
. (4.4)

And then an integration of controlled processes
∫ t

s k(τ, r)dxry
r
r enjoys following results:

Theorem 1.4.2. Let x ∈ Cα and k be a Volterra kernel satisfying Hypothesis  2.2.1 with a

parameter γ such that ρ = α−γ > 1
4 . Define zτ

t =
∫ t

0 k (τ, r) dxr and assume there exists a tree

indexed rough path z = {zσ,τ ;σ ∈ T3} above zτ satisfying Hypothesis  2.4.3 . Additionally,

suppose all components of z are uniformly bounded. Namely, we assume there exists an

M > 0 such that

‖z‖(α,γ) := ‖z ‖(α,γ) + ‖z ‖(2ρ+γ,γ) + ‖z ‖(3ρ+γ,γ) + ‖z ‖(3ρ+γ,γ) ≤ M. (4.5)
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We now consider a controlled Volterra path y ∈ D(α,γ)
z (L(Rm)), as introduced in Defini-

tion  2.4.7 . Then the following holds true:

(a) The following limit exists for all (s, t, τ) ∈ ∆3,

wτ
ts =

∫ t

s
k(τ, r)dxry

r
r := lim

|P|→0

∑
[u,v]∈P

(
z ,τ

vu ∗ y·
u + z ,τ

vu ∗ y ,·,·
u + z ,τ

vu ∗ y ,·,·,·
u + z ,τ

vu ∗ y ,·,·,·
u

)
(4.6)

(b) Let w be defined by ( 4.13 ). There exists a constant C = CM,α,γ such that for all (s, t) ∈ ∆2

we have
∣∣∣∣∣∣wτ

ts −

z ,τ
ts ∗ y·

s + z ,τ
ts ∗ y ,·,·

s + z ,τ
ts ∗ y ,·,·,·

s + z ,τ
ts ∗ y ,·,·,·

s

∣∣∣∣∣∣
≤ C

∥∥∥∥(y, y , y , y )∥∥∥∥
z,(α,γ)

‖z‖(α,γ)

([
|τ − t|−γ |t− s|4ρ+γ

]
∧ |τ − s|4ρ

)
. (4.7)

(c) For all (s, t, p, q) ∈ ∆4, η ∈ [0, 1] and ζ ∈ [0, 4ρ) we have

∣∣∣∣∣∣wqp
ts −

z ,qp
ts ∗ y·

s + z ,qp
ts ∗ y ,·,·

s + z ,qp
ts ∗ y ,·,·,·

s + z ,qp
ts ∗ y ,·,·,·

s

∣∣∣∣∣∣
≤ C

∥∥∥∥(y, y , y , y )∥∥∥∥
z,(α,γ)

‖z‖(α,γ) |p− q|η |q − t|−η+ζ
([

|q − t|−γ−ζ |t− s|4ρ+γ
]

∧ |q − s|4ρ−ζ
)
.

(4.8)

(d) The triple w = (w,w ,w , 0) is a controlled Volterra path in D(α,γ)
z (∆2,Rm), where we

recall that w is defined by ( 4.13 ), and where w , w are respectively given by

w ,τ,p
t = yp

t , and w ,τ,q,p
t = y ,q,p

t .

With Theorem  2.4.10 at hand, the composition of a Volterra controlled processes with a

smooth function is still a controlled process.

Proposition 1.4.3. Let f ∈ C4
b (Rm) and assume (y, y , y , 0) ∈ D̂(α,γ)

z as given in Re-

mark  2.4.12 . Also recall our Notation  2.2.14 for matrix products. Then the composition
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f(y) can be seen as a controlled path f(y) = (φ, φ , φ , φ ), where φ = f(y) and where in the

decomposition ( 4.9 ) we have

φ ,q,p
t = y ,p

t f ′ (yq
t ) , (4.9)

and where the second derivative φ and φ are respectively defined by

φ ,r,q,p
t = y ,q,p

t f ′ (yr
t ) , and φ ,r,q,p

t = 1
2(y ,q

t ) ⊗ (y ,p
t )f ′′ (yr

t ) . (4.10)

Moreover, there exists a constant C = CM,α,γ,‖f‖
C4

b

> 0 such that

‖(φ, φ , φ , φ )‖z;(α,γ) ≤ C(1 + ‖z‖(α,γ))3 ×
[ (

|y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ)

)
∨
(

|y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ)

)3 ]
. (4.11)

Finally, the existence and uniqueness of Volterra type equations in the rough case ρ =

α− γ > 1
4 is proved.

Theorem 1.4.4. Let z ∈ V (α,γ) with α−γ > 1
4 . Assume that z satisfies the same hypotheses

as in Theorem  2.4.10 , and suppose f ∈ C5
b (Rm; L(Rm)). Recall that the space of controlled

processes D(α,γ)
z (Rm) is introduced in Definition  2.4.7 . Then there exists a unique solution

in D(α,γ)
z (Rm) to the Volterra equation

yτ
t = y0 +

∫ t

0
k (τ, r) dxrf (yr

r) , (t, τ) ∈ ∆2 ([0, T ]) , y0 ∈ Rm, (4.12)

where the integral is understood as a rough Volterra integral according to Theorem  2.4.10 .

1.4.2 The result of Chapter 2: Volterra rough path driven by fractional brow-
nian motion

In this section, we are going to construct the Volterra rough path driven by a fractional

Brownian motion with Hurst parameter H > 1/2 and H = 1
2 so that it satisfies Defintion

 3.2.8 . It should be noticed that this regime leads to nontrivial rough paths development in

the Volterra case, due to the singularity of the kernel k in ( 1.1 ). In order to show that the
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Volterra rough paths {z1, z2} satisfies the algebraic and analytic properties that are stated in

Definition  3.2.8 , the first step is to extend the classical Garsia-Rodemich-Rumsey inequality

to suit our Volterra paths.

Definition 1.4.5. Let z : ∆3 → Rd be a continuous Volterra increment. Then for some

parameters p ≥ 1 and α, γ ∈ (0, 1), ζ ∈ [0, α − γ), η ∈ [ζ, 1] we define

U τ
(α,γ),p,1 (z; η, ζ) :=

(∫
(v,w)∈∆τ

2

|zτ
wv|2p

|τ − w|−2p(η−ζ)|ψ1
α,γ+ζ(τ, w, v)|2p|w − v|2

dvdw

) 1
2p

(4.13)

U τ
(α,γ,η,ζ),p,1,2 (z) :=

∫
(v,w,r′,r)∈∆τ

4

|zrr′
wv |2p

|ψ1,2
α,γ,η,ζ(r, r′, w, v)|2p|w − v|2|r − r′|2

dvdwdr′dr

 1
2p

,

(4.14)

where recall that the functions ψ1, ψ1,2 are respectively defined in ( 2.1 ) and ( 2.2 ).

With the Definition  1.4.5 , the Volterra GRR inequality is stated as follows:

Proposition 1.4.6. Let z : ∆3 → Rd. For (α, γ) ∈ (0, 1)2 with α − γ > 0, ζ ∈ [0, α − γ),

and η ∈ [ζ, 1], we assume that δz ∈ V (α,γ,η,ζ) where V(α,γ,η,ζ) is introduced in Definition  3.2.9 .

Suppose κ ∈ (0, α). Then for any p > 1
α−κ

∨ 1
ζ
, the following two bounds holds:

‖z‖(κ,γ),1 . UT
(κ,γ),1,p(z) + ‖δz‖(κ,γ),1, (4.15)

‖z‖(κ,γ,η,ζ),1,2 . UT
(κ,γ,η,ζ),1,2,p(z) + ‖δz‖(κ,γ,η+ 1

p
,ζ+ 1

p
),1,2 T

2+α−κ− 1
p . (4.16)

It is now ready to construct the first level and second level of the Volterra rough path

driven by a fBm as introduced in Notation  3.4.1 .

Definition 1.4.7. Consider a fractional Brownian motion B : [0, T ] → Rm as given in

Notation  3.4.1 and a function h of the form hτ
ts(r) = (τ − r)−γ

1[s,t](r) with γ < 2H − 1.

Then for (s, t, τ) ∈ ∆3 we define the increment z1,τ,i
ts =

∫ t
s (τ − r)−γ dBi

r as a Wiener integral

of the form

z1,τ,i
ts := Bi(hτ

ts). (4.17)
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The second level of the Volterra rough path can be constructed in a similar to the first

level of the Volterra rough path in Definition  1.4.7 .

Definition 1.4.8. We consider a fractional Brownian motion B : [0, T ] → Rm as given in

Notation  3.4.1 , as well as the first level of the Volterra rough path z1,τ defined by ( 4.13 ). As

in Definition  3.4.2 , we assume that γ < 2H − 1. Then for (s, r, t, τ) ∈ ∆4, we set

uτ,i
ts (r) = (τ − r)−γz1,r,i

rs 1[s,t](r). (4.18)

With this notation in hand, the increment z2,τ
ts is given as follows: if i 6= j we define z2,τ,i,j

ts

as

z2,τ,i,j
ts = Bj(uτ,i

ts ), (4.19)

where (conditionally on Bi) the random variable Bj(uτ,i
ts ) has to be interpreted as a Wiener

integral. In the case i = j, we set

z2,τ,i,i
ts =

∫ t

s
uτ,i

ts (r)dBi
r, (4.20)

where the right hand side of ( 4.35 ) is defined as a Stratonovich integral like ( 4.11 ).

Once we get the Volterra rough path family {z1,τ , z2,τ }, it is now the time to verify that

{z1,τ , z2,τ } satisfies Definition  3.2.8 .

Proposition 1.4.9. The increment z1,τ introduced in Definition  3.4.2 is almost surely in

the Volterra space V(α,γ,η,ζ)(∆3;Rm) for any α ∈ (γ,H), ζ ∈ [0, α − γ) and η ∈ [ζ, 1], where

V(α,γ,η,ζ)(∆3;Rm) is introduced in Definition  2.2.4 . In addition, for all p ≥ 1 and α < H− 3
2p

we have that

(i)

E
[
‖z1‖2p

(α,γ,η,ζ)

]
< ∞, (4.21)

(ii)

δmz1,τ,i
ts = 0, for all (s,m, t, τ) ∈ ∆4 a.s. (4.22)

For z2,τ , the analytic and algebraic properties is not hart to be checked.
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Proposition 1.4.10. Consider the second level z2,τ of the Volterra rough path, as defined

in ( 4.34 )-( 4.35 ). Recall that δz2,τ is a path defined on ∆4, and we refer to Definition  3.2.9 

for the definition of V(α,γ,η,ζ)(∆4;Rm). We assume that H > 1/2, γ < 2H − 1, α ∈ (γ,H),

ζ ∈ [0, 2(α− γ)) and η ∈ [ζ, 1]. Then almost surely we have

(i)

δmz2,τ,i,j
ts = z1,τ,j

tm ∗ z1,·,i
ms , for all (s,m, t, τ) ∈ ∆4 a.s. (4.23)

(ii)

δz2,τ ∈ V (2α−γ,γ,η,ζ)(∆4;Rm). (4.24)

(iii) Moreover, for all p ≥ 1 we have

E
[
‖δz2,τ ‖2p

(2α−γ,γ,η,ζ)

]
< ∞, (4.25)

where the norm above is understood as in ( 2.14 ).
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2. CHAPTER1

2.1 Introduction

2.1.1 Background and description of the results

Volterra equations of the second kind are typically given on the form

yt = y0 +
∫ t

0
k1(t, s)b(ys)ds+

∫ t

0
k2(t, s)σ(ys)dxs, y0 ∈ Rd (1.1)

where b and σ are sufficiently smooth functions, x : [0, T ] → Rd is a α-Hölder continuous

path with α ∈ (0, 1), and k1 and k2 are two possibly singular kernels, behaving like |t− s|−γ

for some γ ∈ [0, 1) whenever s → t. Such equations frequently appear in mathematical

models for natural or social phenomena which exhibits some form of memory of its own

past as it evolves in time (see e.g. [ 10 ] and the references therein). Most recently, Volterra

equations of this form have become very popular in the modelling of stochastic volatility for

financial asset prices. In this case the kernels k1(t, s) and k2(t, s) are typically assumed to

be very singular when s → t, and the path x is assumed to be a sample path of a Gaussian

process (see e.g. [  11 ]–[ 13 ]).

Whenever the driving noise x is sampled from a Brownian motion (or some other con-

tinuous semi-martingale), one may use traditional probabilistic techniques from stochastic

analysis (see e.g. [  14 ], [  15 ]) in order to make sense of equations like ( 1.1 ). However, for

more general driving noise x with rougher regularity than a Brownian motion, very little is

known about solutions to Volterra equations. Inspired by the theory of rough paths [  8 ], it

is desirable to solve equation ( 1.1 ) in a purely pathwise sense relying only on the analytic

behaviour of the sample paths of x. This would allow to remove the probabilistic restric-

tions imposed by classical stochastic analysis. However, due to the non-local nature of the

equations induced by the kernels k1 and k2, the theory of rough paths can not directly be

applied in order to solve singular Volterra equations of the form of ( 1.1 ). Indeed, the funda-

mental algebraic relations satisfied by a a classical rough path do not hold when the signal
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is influenced by a possibly singular kernel. Let us mention at this point a few contributions

in the rough paths realm trying to overcome this obstacle:

(i) The articles [ 16 ], [  17 ] handle some cases of rough Volterra equations thanks to an elabo-

ration of traditional rough paths elements. However, the analysis was only valid for kernels

with no singularities.

(ii) The paper [ 18 ] focuses on Volterra equations from a para-controlled calculus perspective.

This elegant method is unfortunately restricted to first order rough paths type expansions,

with inherent limits on both the irregularity of the driving process x and the singularity of

the kernel k.

(iii) The contribution [ 13 ] investigates Volterra equations through the lens of regularity

structures. Although only the strategy of the construction is outlined therein, we believe

that a mere application of regularity structures techniques would only yield local existence

and uniqueness results. It should also be mentioned that renormalization techniques are

invoked in [ 13 ].

As the reader might see, the rough paths analysis of Volterra equations is thus far from being

complete.

With those preliminary notions in mind, in the recent article [ 1 ] we initiated a rough

path inspired study of singular Volterra equations, in a reduced form of ( 1.1 ) given by

ut = u0 +
∫ t

0
k(t, r)f(ur)dxr, (1.2)

where f is a sufficiently regular function, x is a Hölder continuous path, and k is a singular

kernel. To this end, we define

∆n := ∆n ([a, b]) = {(x1, . . . , xn) ∈ [a, b]n | a ≤ x1 < · · · < xn ≤ b}. (1.3)

Next we introduce a class of two parameter paths z : ∆2 → Rd, needed to capture the

possible singularity and regularity imposed by the kernels k1 and k2 and the driving noise x
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in (  1.1 ). These paths will then constitute the fundamental building blocks of the framework.

The canonical example of such path is given by

zτ
t :=

∫ t

0
k(τ, s)dxs, where t ≤ τ ∈ [0, T ]. (1.4)

For the moment, we may assume that x is a sufficiently regular path x : [0, T ] → Rd, and

k(t, s) is an integrable (but possibly singular) kernel when s → t, so that the above integral

makes pathwise sense. We observe in particular that t 7→ zt
t is just a standard Volterra

integral (commonly referred to as a Volterra process in stochastic analysis). Heuristically

one may think that the regularity arising from the mapping τ 7→ zτ
t is induced by the

behaviour of the kernel k while the regularity of the mapping t 7→ zτ
t is inherited by the

regularity of x. By construction of a Volterra sewing lemma, we observed that this was

indeed the case, even when x is only α-Hölder continuous for some α ∈ (0, 1). In general,

we thus define a class of two variables paths in terms of the regularity in its upper and

lower variable. This lead us in [ 1 ] to introduce two modifications of the classical Hölder

semi-norms. The corresponding processes were then called Volterra paths.

Motivated by processes of the form ( 1.4 ), we constructed Volterra signatures as a collec-

tion of iterated integrals with respect to two-parameters Volterra paths. We also introduced a

convolution product ∗, playing the role as the tensor product ⊗ in the classical rough path sig-

nature. The signature is then given as a family three-variable functions {(s, t, τ) 7→ zn,τ
ts }n∈N,

where, in the case of smooth x, each term is given by

zn,τ
ts =

∫
∆n([s,t])

k(τ, rn) . . . k(r2, r1)dxr1 ⊗ · · · ⊗ dxrn , (1.5)

where we recall that ∆n([s, t]) is defined by (  1.3 ). The algebraic structure associated with

such iterated integrals resembles that of the tensor algebra of rough path theory, but where

the tensor product is replaced by the convolution product. Together with Volterra signatures,

we defined a class of controlled Volterra paths. Combining those two notions, it allowed to

give a pathwise construction of solutions to Volterra equations of the form (  1.1 ). Similarly

to the theory of rough paths, the number of iterated integrals needed in order to give a

41



pathwise definition of a rough Volterra integral is strongly dependent on the regularity of

the path x ∈ cα([0, T ];Rd) and the singularity of the kernel k. Under the assumption that

|k(t, s)| behaves like |t − s|−γ when s → t, the investigation in [  1 ] was limited to the case

when α− γ > 1
3 , and thus only considers the first two components of the Volterra signature.

Our article [  1 ] therefore left two important open questions, related to both the algebraic

and probabilistic perspectives on rough paths theory:

(i) Algebraic aspects: Are there suitable algebraic relations describing the Volterra signature

which are adaptable to prove existence and uniqueness of (  1.1 ) in the case when α− γ < 1
3?

(ii) Probabilistic aspects: For what type of stochastic processes {xt; t ∈ [0, T ]} and singular

kernels k does there exist a collection of iterated integrals of the form of (  1.5 ) almost surely

satisfying the required algebraic and analytic relations?

The current article has to be seen as a step towards the answer of the algebraic problem

mentioned above. Namely we investigate the case when α−γ < 1
3 , and leave the probabilistic

problem for a future work.

The rough Volterra picture gets significantly more involved when introducing a rougher

signal x or a more singular kernel k. Indeed, the main challenge lies in the fact that the

Volterra signature does not satisfy any geometric type property, in contrast with the classical

rough paths situation. That is, classical integration by parts does not hold for Volterra

iterated integrals, and therefore we do not have a relation of the form

z2,τ
ts + (z2,τ

ts )T = z1,τ
ts ∗ z1,·

ts ,

where (·)T denotes the transpose. Thus in order to consider α − γ lower than 1
3 , one needs

to resort to different techniques than what is standard in the theory of rough paths.

Inspired by Martin Hairer’s theory of regularity structures, we will in this article show

that the Volterra signature is given with a Hopf algebraic type structure. Hence with the

help of a description by rooted trees for the Volterra rough path, we are able to describe

the necessary algebraic relations desired for the Volterra rough stochastic calculus. We will

limit the scope of the current article to the case when α − γ > 1
4 , and show that in order
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to prove existence and uniqueness of (  1.1 ) in a ”Volterra rough path” sense, one needs to

introduce two more iterated integrals, as well as two more controlled Volterra derivatives

than what is needed in the case α − γ > 1
3 . We believe that the techniques developed here

are an important stepping stone towards the goal of providing a rough paths framework for

Volterra equations of the form of ( 1.1 ) in the general regime α− γ > 0.

2.1.2 Organization of the paper

In section  2.2 we provide the necessary assumptions and preliminary results from [  1 ]. In

particular, we give the definition of Volterra paths, recall the Volterra sewing lemma and

the convolution product between Volterra paths. Those results will play a central role for

our subsequent analysis. Section  2.3 is devoted to the extension of the sewing lemma from

the previous section to the case of two singularities, and we will apply this to create a third

order convolution product between Volterra rough paths. In Section  2.4 we motivate the

use of rooted trees to describe the Volterra rough path, and give a definition of controlled

Volterra processes analogously. With this definition we prove both the convergence of a

rough Volterra integral with respect to controlled Volterra paths, and that compositions of

(sufficiently) smooth functions with a controlled Volterra path are again controlled Volterra

paths. We conclude Section  2.4 with a proof of existence and uniqueness of Volterra equations

driven by rough signals in the rougher regime.

2.1.3 Frequently used notation

We reserve the letter E to denote a Banach space, and we let the norm on E be denoted

by | · |E. In subsequent sections, E will typically be given as Rd or L(Rm,Rd) (The space

of linear operators from Rm to Rd). We will write a . b, whenever there exists a constant

C > 0 (not depending on any parameters of significance) such that a ≤ Cb. The space

of continuous functions f : X → Y is denoted by c(X,Y ). Whenever the codomain is not

important, we use the shorter notation c(X). To denote that there exists a constant C which

depends on a parameter p, we write a .p b. For a one parameter path f : [0, T ] → E, we
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write fts := ft − fs, with a slight abuse of notation, we will later also use this notation for

two variable functions of the form f : [0, T ]2 → Rd, where fts means evaluation in the point

(s, t) ∈ [0, T ]2. We believe that it will always be clear from context what is meant. For

α ∈ (0, 1), we denote by cα([0, T ];E) the standard space of α-Hölder continuous functions

from [0, T ] into E, equipped with the norm ‖f‖cα := |f0|E + ‖f‖α, where ‖f‖α denotes the

classical Hölder seminorm given by

‖f‖α := sup
(s,t)∈∆2

|fts|
|t− s|γ

. (1.6)

Whenever the domain and codomain is otherwise clear from the context, we will use the

short hand notation cα. We recall here that the n-simplex was already defined in (  1.3 ).

Throughout the article, we will frequently use the following simple bounds: for (s, u, t) ∈ ∆3

and γ > 0, then

|t− u|γ . |t− s|γ and |t− s|−γ . |t− u|−γ.

2.2 Assumptions and fundamentals of Volterra Rough Paths

We will start by presenting the necessary assumptions on the Volterra kernel k, as well as

the driving noise x in (  1.2 ). A full description (together with proofs) for the results recalled

in this section can be found in [ 1 ].

Let us begin to present a working hypothesis for the type of kernels k, seen in (  1.2 ), that

we will consider in this article.
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Hypothesis 2.2.1. Let k be a kernel k : ∆2 → R, we assume that there exists γ ∈ (0, 1)

such that for all (s, r, q, τ) ∈ ∆4 ([0, T ]) and η, β ∈ [0, 1] we have

|k (τ, r)| . |τ − r|−γ

|k (τ, r) − k (q, r)| . |q − r|−γ−η |τ − q|η

|k (τ, r) − k (τ, s)| . |τ − r|−γ−η |r − s|η

|k (τ, r) − k (q, r) − k (τ, s) + k (q, s)| . |q − r|−γ−β |r − s|β

|k (τ, r) − k (q, r) − k (τ, s) + k (q, s)| . |q − r|−γ−η |τ − q|η .

In the sequel a kernel fulfilling condition the Hypothesis  2.2.1 will be called Volterra kernel

of order γ.

Remark 2.2.2. We limit our investigations in this article to the case of real valued Volterra

kernels k for conciseness. The Volterra sewing lemma, and most results relating to Volterra

rough paths are however easily extended to general Volterra kernels k : ∆2 → L(E) for some

Banach space E, by appropriate change of the bounds in  2.2.1 , see e.g. [ 19 ], [  20 ] where the

Volterra sewing lemma from [ 1 ] is readily applied in an infinite dimensional setting.

As mentioned in the introduction, one of the key ingredients in [  1 ] is to consider processes

(t, τ) 7→ zτ
t indexed by ∆2 (where we recall that the simplex ∆n was defined in (  1.3 )).

We begin this section with a recollection of the Hölder space containing such processes

and introduce the Volterra sewing Lemma  2.2.11 , we will then move on to introduce the

convolution product and discuss its relation with the Volterra signature.

2.2.1 The space of Volterra paths

We begin this section by recalling the topology used to measure the regularity of processes

like ( 1.4 ), and give a simple motivation for the introduction of this type of space. Before

defining the proper spaces quantifying this type of regularity, let us introduce a notation:
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Notation 2.2.3. Let (α, γ) ∈ (0, 1)2 be such that α > γ. For (s, t, τ) ∈ ∆3, we set

ψ1
α,γ(τ, t, s) =

[
|τ − t|−γ|t− s|α

]
∧ |t− s|α−γ. (2.1)

Considering two additional parameters ζ ∈ [0, α − γ) and η ∈ [ζ, 1], we also set

ψ1,2
α,γ,η,ζ(τ, τ ′, t, s) = |τ − τ ′|η|τ ′ − t|−(η−ζ)

([
|τ ′ − t|−γ−ζ |t− s|α

]
∧ |t− s|α−γ−ζ

)
(2.2)

We are now ready to introduce some functional spaces called V(α,γ,η,ζ), which are also

used in the definition of V(α,γ) in [  1 ]. Those spaces are natural function sets when dealing

with Volterra type regularities.

Definition 2.2.4. Let E be a Banach space, and consider (α, γ) ∈ (0, 1)2 with α − γ > 0,

and ζ ∈ [0, α − γ), η ∈ [ζ, 1]. We define the space of Volterra paths of index (α, γ, η, ζ),

denoted by V(α,γ,η,ζ)(∆2;E), as the set of functions z : ∆2 → E, given by (t, τ) 7→ zτ
t , with

the condition zτ
0 = z0 ∈ E for all τ ∈ (0, T ], and satisfying

‖z‖(α,γ,η,ζ) = ‖z‖(α,γ),1 + ‖z‖(α,γ,η,ζ),1,2 < ∞. (2.3)

Recalling Notation  2.2.3 , the 1-norms and (1,2)-norms in ( 2.3 ) are respectively defined as

follows:

‖z‖(α,γ),1 = sup
(s,t,τ)∈∆3

|zτ
ts|

ψ1
α,γ(τ, t, s) , (2.4)

‖z‖(α,γ,η,ζ),1,2 = sup
(s,t,τ ′,τ)∈∆4

|zττ ′
ts |

ψ1,2
α,γ,η,ζ(τ, τ ′, t, s)

, (2.5)

with the convention zτ
ts = zτ

t − zτ
s and zττ ′

s = zτ
s − zτ ′

s . Notice that under the mapping

z 7→ |z0| + ‖z‖(α,γ,η,ζ),

the space V(α,γ,η,ζ)(∆2;E) is a Banach space.
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Whenever the domain and codomain is otherwise clear from the context, we will simply

write V(α,γ,η,ζ) := V(α,γ,η,ζ)(∆n;E). Throughout the article, we will typically let the Banach

space E be given by Rd or L(Rd).

Remark 2.2.5. As will be proved in Theorem  2.2.12 below, the typical example of path in

V(α,γ,η,ζ) is given by zτ
t defined as in (  1.4 ), with suitable assumption on k and x. Note also that

cα([0, 1];Rd) ⊂ V(α,γ,η,ζ)(∆2([0, 1]);Rd) for any γ ∈ [0, 1). Indeed, for a path x ∈ cα, define

zτ
t = xt. Using that |t−s|α ≤ |τ−s|α, it is readily checked that |zτ

ts| . |τ−t|−γ|t−s|α∧|τ−s|α.

Furthermore, zττ ′
ts = 0, and thus ‖z‖(α,γ,η,ζ) < ∞ for any γ ∈ (0, 1).

Remark 2.2.6. We will also consider functions u : ∆3 → Rd, which, with a slight abuse

of notation, will be denoted by the mapping (s, t, τ) 7→ uτ
ts. We then define the space

V(α,γ,η,ζ)(∆3;Rd) analogously as in Definition  2.2.4 , but where the increments of the path

(t, τ) 7→ zτ
t in the lower variable, appearing in (  2.4 ) and (  2.5 ), is simply replaced by the

evaluation uτ
ts and uτ

ts − uτ ′
ts respectively.

Remark 2.2.7. Similarly as for the classical Hölder spaces, we have the following elementary

embedding: for β < α ∈ (0, 1), with β − γ > 0, we have V(α,γ,η,ζ) ↪→ V(β,γ,η,ζ). Indeed,

suppose y ∈ V (α,γ,η,ζ), it is readily checked that

|yτ
ts| . |τ − t|−γ|t− s|α| ∧ |τ − s|α−γ ≤ Tα−β(|τ − t|−γ|t− s|β ∧ |τ − s|β−γ),

and thus ‖y‖(β,γ),1 ≤ Tα−β‖y‖(α,γ),1. Similarly, one can also show that ‖y‖(β,γ,η,ζ),1,2 ≤

Tα−β‖y‖(α,γ,η,ζ),1,2, and thus ‖y‖(β,γ,η,ζ) ≤ Tα−β‖y‖(α,γ,η,ζ).

The following lemma gives useful embedding results for V(α,γ) related to variations in the

singularity parameter γ.

Lemma 2.2.8. Let α, γ, η, ζ ∈ (0, 1) with α > γ, ζ ∈ [0, α − γ), η ∈ [ζ, 1], and recall that

ρ = α− γ. Then for the spaces V(α,γ) given in Definition  2.2.4 , the following inclusion holds

true:

V(3ρ+γ,γ,η,ζ) ⊂ V (3ρ+2γ,2γ,η,ζ) ⊂ V (3ρ+3γ,3γ,η,ζ). (2.6)

Proof. We will prove the second relation: V(3ρ+2γ,2γ,η,ζ) ⊂ V(3ρ+3γ,3γ,η,ζ), the first relation

being proved in a similar way. Moreover, in order to prove that V(3ρ+2γ,2γ,η,ζ) ⊂ V (3ρ+3γ,3γ,η,ζ),
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we will show that ‖z‖(3ρ+3γ,3γ,η,ζ) ≤ ‖z‖(3ρ+2γ,2γ,η,ζ), for the (α, γ, η, ζ)−norms introduced in

Definition  2.2.4 . Also recall that the (α, γ, η, ζ)−norms are defined by (  2.4 ) and (  2.5 ). For

sake of conciseness we will just prove that

‖z‖(3ρ+3γ,3γ),1 ≤ ‖z‖(3ρ+2γ,2γ),1, (2.7)

and leave the similar bound for the (1, 2)−norm to the reader.

In order to prove ( 2.7 ), we refer again to ( 2.4 ). From this definition, it is readily checked

that ( 2.7 ) can be reduced to prove the following relation:

|τ − t|−3γ|t− s|3ρ+3γ ∧ |τ − s|3ρ . |τ − t|−2γ|t− s|3ρ+2γ ∧ |τ − s|3ρ. (2.8)

The proof of (  2.8 ) will be split in 2 cases, according to the respective values of |τ − t| and

|t− s|. In the sequel C1 designates a strictly positive constant.

Case 1: |τ − t| ≤ C1|t− s| . Let us write

|τ − s|3ρ = |τ − s|3ρ+2γ|τ − s|−2γ.

Then if |τ − t| ≤ C1|t − s|, one has |τ − s|3ρ+2γ = |τ − t + t − s|3ρ+2γ . |t − s|3ρ+2γ. Hence

we get

|τ − s|3ρ . |t− s|3ρ+2γ|τ − s|−2γ . |t− s|3ρ+2γ|τ − t|−2γ. (2.9)

Relation ( 2.8 ) is then immediately seem from ( 2.9 ).

Case 2: |τ − t| > C1|t− s| . In this case write

|t− s|3ρ+2γ|τ − t|−2γ = |t− s|3ρ+3γ|τ − t|−3γ

(
|τ − t|
|t− s|

)γ

.

Then resort to the fact that |τ − t| ≥ C1|t − s| in order to get |τ − t|γ|t − s|−γ ≥ Cγ
1 . This

yields

|t− s|3ρ+2γ|t− s|−2γ & |t− s|3ρ+3γ|τ − t|−3γ,
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from which ( 2.8 ) is readily checked.

Combining Case 1 and Case 2, we have thus finished the proof of ( 2.8 ). As mentioned

above, this implies that ( 2.7 ) is true and achieves our claim ( 2.6 ).

2.2.2 Volterra Sewing lemma

We begin with a recollection of the space of abstract Volterra integrands, to which the

Volterra sewing Lemma  2.2.11 will apply. The typical path in this space exhibits different

types of regularities/singularities in its arguments, similarly to Definition  2.2.4 . As a neces-

sary ingredient in the subsequent definition we introduce a particular notation, which will

frequently be used throughout the article.

Notation 2.2.9. Recall that the simplex ∆n is defined by ( 1.3 ). For a path g : ∆2 → Rd

and (s, u, t) ∈ ∆3, we set

δugts = gts − gtu − gus (2.10)

We will consider δ as an operator from C(∆2) to C(∆3), where C(∆n) denotes the spaces of

continuous functions on ∆n.

Definition 2.2.10. Let α ∈ (0, 1), γ ∈ (0, 1) with α−γ > 0, and ζ ∈ [0, α−γ), η ∈ [ζ, 1]. We

also consider two coefficients κ ∈ (0,∞) and β ∈ (1,∞). Denote by V(α,γ,η,ζ)(β,κ,η,ζ)
(
∆3;Rd

)
,

the space of all functions Ξ : ∆3 → Rd such that

‖Ξ‖(α,γ,η,ζ)(β,κ,η,ζ) = ‖Ξ‖(α,γ,η,ζ) + ‖δΞ‖(β,κ,η,ζ) < ∞, (2.11)

where δ is introduced in ( 2.10 ) and the norm ‖Ξ‖(α,γ,η,ζ) is given by ( 2.3 ) (see also Remark

 2.2.6 ). Similar to Definition  2.2.4 , the quantity ‖δΞ‖(β,κ,η,ζ) is defined by

‖δΞ‖(β,κ,η,ζ) = ‖δΞ‖(β,κ),1 + ‖δΞ‖(β,κ,η,ζ),1,2, (2.12)

and the 1-norms and (1,2)-norms in ( 2.12 ) are respectively defined as follows:
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‖δΞ‖(β,κ),1 := sup
(s,m,t,τ)∈∆4

|δmΞ
τ
ts|

ψ1
β,κ(τ, t, s) , (2.13)

‖δΞ‖(β,κ,η,ζ),1,2 := sup
(s,m,t,τ ′,τ)∈∆5

|δmΞ
ττ ′
ts |

ψ1,2
β,κ,η,ζ(τ, τ ′, t, s)

, (2.14)

where ψ1 and ψ1,2 are given in Notation  2.2.3 . In the sequel the space V(α,γ,η,ζ)(β,κ,η,ζ) will be

our space of abstract Volterra integrands.

With these two Volterra spaces in hand, we are ready to recall the Volterra sewing Lemma

which can be found, together with a full proof, in [ 1 , Lemma 21].

Lemma 2.2.11. Consider six exponents β ∈ (1,∞), κ ∈ (0, 1), α ∈ (0, 1), γ ∈ (0, 1),

η ∈ [0, 1] and ζ ∈ [0, 1] such that β − κ ≥ α − γ > 0, 0 ≤ ζ < α − γ, and ζ ≤ η ≤ 1.

Let V(α,γ,η,ζ)(β,κ,η,ζ) and V(α,γ,η,ζ) be the spaces given in Definition  2.2.10 and Definition

 2.2.4 respectively. Then there exists a linear continuous map I : V(α,γ,η,ζ)(β,κ,η,ζ)
(
∆3;Rd

)
→

V(α,γ,η,ζ)
(
∆2;Rd

)
such that the following holds true.

(i) The quantity I(Ξτ )ts := lim|P|→0
∑

[u,v]∈P Ξ
τ
vu exists for all (s, t, τ) ∈ ∆3, where P is a

generic partition of [s, t] and |P| denotes the mesh size of the partition. Furthermore, we

define I(Ξτ )t := I(Ξτ )t0, and we have that I(Ξτ )ts = I(Ξτ )t − I(Ξτ )s.

(ii) Recalling the Notation  2.2.3 of ψ1 and ψ1,2, for all (s, t, τ) ∈ ∆3 we have

|I (Ξτ )ts − Ξτ
ts| .‖δΞ‖(β,κ),1 ψ

1
β,κ(τ, t, s), (2.15)

while for (s, t, τ ′, τ) ∈ ∆4 we get

∣∣∣I(Ξττ ′)ts − Ξττ ′

ts

∣∣∣ . ‖δΞ‖(β,κ,η,ζ),1,2 ψ
1,2
β,κ,η,ζ(τ, τ ′, t, s). (2.16)

Lemma  2.2.11 is applied in [  1 ] in order to get the construction of the path (t, τ) 7→

zτ
t introduced in (  1.4 ). We recall this result here, since z is at the heart of our future

considerations.
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Theorem 2.2.12. Let x ∈ Cαand k be a Volterra kernel of order −γ satisfying Hypothesis

 2.2.1 , such that ρ = α − γ > 0. We define an element Ξτ
ts = k(τ, s)xts. Then the following

holds true:

(i) There exists some coefficients β > 1, κ > 0, 0 ≤ η ≤ 1 and 0 ≤ ζ ≤ 1 with β−κ = α−γ,

0 ≤ ζ < α − γ and ζ ≤ η ≤ 1such that Ξ ∈ V(α,γ,η,ζ)(β,κ,η,ζ), where V(α,γ,η,ζ)(β,κ,η,ζ) is given

in Definition  2.2.10 . It follows that the element I (Ξτ ) obtained in Lemma  2.2.11 is well

defined as an element of V(α,γ,η,ζ) and we set zτ
ts ≡ I (Ξτ )ts =

∫ t
s k(τ, r)dxr.

(ii) According to the Notation  2.2.3 of ψ1 and ψ1,2, for (s, t, τ) ∈ ∆3 z satisfies the bound

|zτ
ts − k(τ, s)xts| . ψ1

α,γ(τ, t, s),

and in particular it holds that ‖z‖(α,γ),1 < ∞.

(iii) For any η ∈ [0, 1] and any (s, t, q, p) ∈ ∆4 we have

|zpq
ts | . ψ1,2

α,γ,η,ζ(p, q, t, s),

where zpq
ts = zp

t − zq
t − zp

s + zq
s . In particular it holds that ‖z‖(α,γ,η,ζ),1,2 < ∞.

Remark 2.2.13. Thanks to Theorem  2.2.12 , we know that a typical example of a Volterra

path in V(α,γ,η,ζ) is given by the integral
∫ t

s k(τ, r)dxr, as mentioned in Remark  2.2.5 .

2.2.3 Convolution product in the rough case α− γ > 1
3

A second crucial ingredient in the Volterra formalism put forward in [  1 ] is the notion of

convolution product. In this section we show how this mechanism is introduced for first and

second order convolutions, where we recall that second order convolutions were enough to

handle the case ρ = α− γ > 1
3 in [ 1 ].

Let us first introduce a piece of notation which will prevail throughout the paper.
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Notation 2.2.14. In the sequel we will often consider products of the form ysz
τ
ts, where y

and zτ are increments lying respectively in c([0, T ]) and c(∆2). For algebraic reasons due to

our rough Volterra formalism, we will write this product as

[(zτ
ts)

ᵀ yᵀs ]ᵀ (2.17)

For obvious notational reason, we will simply abbreviate ( 2.17 ) into

zτ
ts ys

In the same way, products of 3 (or more) elements of the form f ′(ys)ysz
τ
ts will be denoted as

zτ
tsysf

′(ys) without further notice.

We now recall how the convolution with respect to zτ is obtained, borrowing the following

proposition from [ 1 , Theorem 25].

Proposition 2.2.15. We consider two Volterra paths z ∈ V (α,γ,η,ζ)(Rd) and y ∈ V (α,γ,η,ζ)(L(Rd))

as given in Definition  2.2.4 , where we recall that α, γ, η, ζ ∈ (0, 1) with ρ = α − γ > 0,

0 ≤ ζ < ρ, and ζ ≤ η ≤ 1. Then the convolution product of the two Volterra paths y and z

is a bilinear operation on V(α,γ,η,ζ)(Rd) given by

zτ
tu ∗ y·

us =
∫

t>r>u
dzτ

r y
r
us := lim

|P|→0

∑
[u′,v′]∈P

zτ
v′u′yu′

us. (2.18)

The integral in ( 2.18 ) is understood as a Volterra-Young integral for all (s, u, t, τ) ∈ ∆4.

Moreover, the following two inequalities holds for any (s, u, t, τ, τ ′) ∈ ∆5:

|zτ
tu ∗ y·

us| . ‖z‖(α,γ),1‖y‖(α,γ,η,ζ),1,2 ψ
1
(2ρ+γ),γ(τ, t, s), (2.19)∣∣∣zτ ′τ

tu ∗ y·
us

∣∣∣ . ‖z‖(α,γ,η,ζ),1,2‖y‖(α,γ,η,ζ),1,2 ψ
1,2
(2ρ+γ),γ,η,ζ(τ, τ ′, t, s), (2.20)

where ψ1 and ψ1,2 are given in Notation  2.2.3 .

In addition to Proposition  2.2.15 , the rough Volterra formalism relies on a stack of iterated

integrals verifying convolutional type algebraic identities. Thanks to Proposition  2.2.15 we
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can now state the main assumption about this stack of integrals, which should be seen as

the equivalent of Chen’s relation in our Volterra context.

Hypothesis 2.2.16. Let z ∈ V(α,γ,η,ζ) be a Volterra path as given in Definition  2.2.4 . For

n such that (n + 1)ρ + γ > 1, we assume that there exists a family {zj,τ ; j ≤ n} such that

zj,τ
ts ∈ (Rm)⊗j, z1 = z and verifying

δuzj,τ
ts =

j−1∑
i=1

zj−i,τ
tu ∗ zi,·

us =
∫ t

s
dzj−i,τ

tr ⊗ zi,r
us, (2.21)

where the right hand side of ( 2.21 ) is defined in Proposition  2.2.15 . In addition, we suppose

that for j = 1, . . . , n we have zj ∈ V (jρ+γ,γ,η,ζ).

The last notation we need to recall from [  1 ] is the concept of second order convolution

product. To this aim, we first introduce some basic notation about increments.

Notation 2.2.17. We will denote by u1,2 a function u : ∆3 → L((Rd)⊗2,Rd) with two upper

indices, namely,

∆3 3 (s, τ1, τ2) 7→ uτ2,τ1
s ∈ Rd.

The notation u1,2 highlights the order of integration in future computations.

We now specify the kind of topology we will consider for functions of the form u1,2.

Definition 2.2.18. Let W(α,γ,η,ζ)
2 denote the space of functions u : ∆3 → L((Rd)⊗2,Rd) with

a fixed initial condition up,q
0 = u0, endowed with the norm

∥∥∥u1,2
∥∥∥

(α,γ,η,ζ)
:=
∥∥∥u1,2

∥∥∥
(α,γ),1

+
∥∥∥u1,2

∥∥∥
(α,γ,η,ζ),1,2

. (2.22)

The right hand side of ( 2.22 ) is defined as follows, recalling the convention ρ = α − γ and

the definition ( 2.1 ) of ψ1:

∥∥∥u1,2
∥∥∥

(α,γ),1
:= sup

(s,t,τ)∈∆3

|uτ,τ
ts |

ψ1
α,γ(τ, t, s) , (2.23)

and ∥∥∥u1,2
∥∥∥

(α,γ,η,ζ),1,2
:=
∥∥∥u1,2

∥∥∥
(α,γ,η,ζ),1,2,>

+
∥∥∥u1,2

∥∥∥
(α,γ,η,ζ),1,2,<

, (2.24)
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where the norms ‖u1,2‖(α,γ,η,ζ),1,2,> and ‖u1,2‖(α,γ,η,ζ),1,2,< are respectively defined by

∥∥∥u1,2
∥∥∥

(α,γ,η,ζ),1,2,>
= sup

(s,t,r1,r2,r′)∈∆5

|ur′,r2
ts − ur′,r1

ts |
hη,ζ(s, t, r1, r2, r′) , (2.25)

∥∥∥u1,2
∥∥∥

(α,γ,η,ζ),1,2,<
= sup

(s,t,r′,r1,r2)∈∆5

|ur2,r′

ts − ur1,r′

ts |
hη,ζ(s, t, r1, r2, r′) , (2.26)

where the function h is defined by

hη,ζ (s, t, r1, r2, r
′) = |r2 − r1|η |min(r1, r2, r

′) − t|−η+ζ

×
([

|min(r1, r2, r
′) − t|−γ−ζ |t− s|α

]
∧ |min(r1, r2, r

′) − s|α−γ−ζ
)
. (2.27)

Remark 2.2.19. In the sequel we will need to estimate differences of functions u·,· : ∆3 →

L((Rm)⊗2,Rm) of the form |uτ,q
t − uτ,p

t |. Those differences can be handled thanks to Defini-

tion  2.2.18 as follows:

|uτ,q
t − uτ,p

t | ≤ |uτ,q
0 − uτ,p

0 | + |uτ,q
t0 − uτ,p

t0 |

≤ ‖u‖(α,γ),1,2 |q − p|η |p− t|−η+ζ
([

|p− t|−γ−ζ |t|α
]

∧ |p|ρ−ζ
)
. (2.28)

Since ζ ∈ [0, ρ) and η ∈ [ζ, 1], then we can set η = ζ, that is

|uτ,q
t − uτ,p

t | . ‖u‖(α,γ),1,2 |q − p|ζ . ‖u‖(α,γ),1,2.

we also have, for any τ ∈ [0, T ],

|uτ,τ
t − uτ,τ

0 | ≤ ‖u‖(α,γ),1
[
|τ − t|−γ |t|α ∧ |τ |ρ

]
. ‖u‖(α,γ),1. (2.29)

With the above definition at hand, we are now ready to recall the construction of second

order convolution products in the rough case α− γ > 1
3 .
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Theorem 2.2.20. Let z ∈ V(α,γ,η,ζ) be as given in Definition  2.2.4 with α, γ, η, ζ ∈ (0, 1)

satisfying ρ = α − γ > 1
3 , ζ ∈ [0, ρ) and η ∈ [ζ, 1]. We assume that z fulfills Hypothesis

 2.2.16 with n = 2. Consider a function y : ∆3 → L((Rd)⊗2,Rd) with ‖y1,2‖(α,γ,η,ζ),1,2 < ∞

and y1,2
0 = y0, for a fixed initial condition y0 ∈ L((Rd)⊗2,Rd). For all fixed (s, t, τ) ∈ ∆3 we

have that

z2,τ
ts ∗ y1,2

s := lim
|P|→0

∑
[u,v]∈P

z2,τ
vu y

u,u
s + (δuz2,τ

vs ) ∗ y1,2
s (2.30)

is a well defined Volterra-Young integral. It follows that ∗ is a well defined bi-linear operation

between the three parameters Volterra function z2 and a 3-parameter path y. Moreover, the

following inequality holds

∣∣∣z2,τ
ts ∗ y1,2

s − z2,τ
ts y

s,s
s

∣∣∣ .‖y1,2‖(α,γ,η,ζ),1,2

×
(
‖z2‖(2ρ+γ,γ),1 + ‖z1‖(α,γ,η,ζ),1,2‖z1‖(α,γ),1

)
ψ1

(2ρ+γ),γ(τ, t, s), (2.31)

where ψ1 is given in ( 2.1 )

Remark 2.2.21. By Hypothesis  2.2.16 , the term (δuz2,τ
vs ) ∗ y1,2

s in the right hand side of (  2.30 )

can be rewritten as

z1,τ
vu ∗ z1,·

us ∗ y1,2
s ,

where the convolution with z1,τ is defined through (  2.18 ) and the inside integral concerns the

second variable in y1,2. As an example, if k, x are smooth functions and z1,τ
vs =

∫ v
s k(τ, r)dxr,

then this convolution is understood in the following way

z1,τ
vu ∗ z1,·

us ∗ y1,2
s =

∫ v

u
k(τ, r1)dxr1 ⊗

∫ u

s
k(r1, r2)dxr2y

r1,r2
s .

Remark 2.2.22. Recalling that ρ = α−γ, notice that Proposition  2.2.15 and Theorem  2.2.20 

tell us how to define the n’th order convolution products under the condition ρ > 1
3 . We

will follow a similar strategy to define third order convolution products and construct our

solution to equation ( 1.2 ) with ρ > 1
4 in the subsequent section.
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2.3 Volterra rough paths for α− γ > 1
4

This section is devoted to the generalization of the concepts introduced in Section  2.2 to

accommodate the case of Volterra rough paths with regularity ρ = α − γ > 1
4 . One of the

main issues encountered in this direction is to define third order convolution structures. To

this end, we will state a version of our Volterra sewing Lemma  2.2.11 extended to the case

of two types of Volterra singularities.

2.3.1 Volterra sewing lemma with two singularities

With the aim of extending the Volterra sewing Lemma  2.2.11 with one singularity to an

increment exhibiting two singularities, we first introduce a new space of abstract integrands.

Definition 2.3.1. Let α, γ, η, ζ ∈ (0, 1) with ρ = α − γ > 1
3 , 0 ≤ ζ < ρ and ζ ≤ η ≤

1. We also consider three coefficients (β, κ, θ), with (κ + θ) ∈ (0, 1), β ∈ (1,∞), and

β − κ− θ ≥ α− γ > 0. Denote by V(α,γ,η,ζ)(β,κ,θ,η,ζ)(∆4;Rd), the space of all functions of the

form ∆4 3 (v, s, t, τ) 7→ (Ξτ
v )ts ∈ Rd such that the following norm is finite:

‖Ξ‖V(α,γ,η,ζ)(β,κ,θ,η,ζ) = ‖Ξ‖(α,γ,η,ζ) + ‖δΞ‖(β,κ,θ,η,ζ) . (3.1)

In equation ( 3.1 ), the operator δ is introduced in ( 2.10 ), the quantity ‖Ξ‖(α,γ,η,ζ) is given by

( 2.3 ) and the term ‖δΞ‖(β,κ,θ,η,ζ) takes the double singularity into account. Namely we have

‖δΞ‖(β,κ,θ,η,ζ) = ‖δΞ‖(β,κ,θ),1 + ‖δΞ‖(β,κ,θ,η,ζ),1,2 ,

where

‖δΞ‖(β,κ,θ),1 := sup
(v,s,m,t,τ)∈∆5

|δm(Ξτ
v )ts|

φ1
β,κ,θ(τ, t, s, v) , (3.2)

56



and the term ‖δΞ‖(β,κ,θ,η,ζ),1,2 is defined by

‖δΞ‖(β,κ,θ,η,ζ),1,2 := sup
(v,s,m,t,τ ′,τ)∈∆6

∣∣∣δm(Ξττ ′
v )ts

∣∣∣
φ1,2

β,κ,θ,η,ζ(τ, τ ′, t, s, v)
, (3.3)

where the function ψ1
β,κ,θ(τ, t, s, v) and ψ1,2

β,κ,θ,η,ζ(τ, τ ′, t, s, v) are respectively given by

φ1
β,κ,θ(τ, t, s, v) =

[
|τ − t|−κ |t− s|β |s− v|−θ

]
∧ |τ − v|β−κ−θ (3.4)

φ1,2
β,κ,θ,η,ζ(τ, τ ′, t, s, v) = |τ − τ ′|η |τ ′ − t|−η+ζ

([
|τ ′ − t|−κ−ζ |t− s|β |s− v|−θ

]
∧ |τ ′ − v|β−κ−θ−ζ

)
.

(3.5)

Notice that we will use V(α,γ,η,ζ)(β,κ,θ,η,ζ) as a space of abstract Volterra integrands with a

double singularity.

With this new space V(α,γ,η,ζ)(β,κ,θ,η,ζ) at hand, we are ready to state the Volterra sewing

Lemma with two singularities alluded to above.

Lemma 2.3.2. Consider seven exponents (α, γ, η, ζ), and (β, κ, θ, η, ζ), with β ∈ (1,∞),

(κ+θ) ∈ (0, 1), α ∈ (0, 1) and γ ∈ (0, 1) such that β−κ−θ ≥ α−γ > 0, ζ ∈ [0, α−γ) and η ∈

[ζ, 1]. Let V(α,γ,η,ζ)(β,κ,θ,η,ζ) and V(α,γ,η,ζ) be the spaces given in Definition  2.3.1 and Definition

 2.2.4 respectively. Then there exists a linear continuous map I : V(α,γ,η,ζ)(β,κ,θ,η,ζ)
(
∆4;Rd

)
→

V(α,γ,η,ζ)
(
∆3;Rd

)
such that the following holds true.

(i) The quantity I(Ξτ
v )ts := lim|P|→0

∑
[u,w]∈P(Ξτ

v )wu exists for all (v, s, t, τ) ∈ ∆4, where P

is a generic partition of [s, t] and |P| denotes the mesh size of the partition. Furthermore,

we define I(Ξτ
v )t := I(Ξτ

v )t0, and have I(Ξτ
v )ts = I(Ξτ

v )t0 − I(Ξτ
v )s0.

(ii) For all (v, s, t, τ) ∈ ∆4 we have

|I (Ξτ
v )ts − (Ξτ

v )ts| .‖δΞ‖(β,κ,θ),1 φ
1
β,κ,θ(τ, t, s, v), (3.6)
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while for (v, s, t, τ ′, τ) ∈ ∆5 we get

∣∣∣I(Ξττ ′

v )ts − (Ξττ ′

v )ts

∣∣∣ . ‖δΞ‖(β,κ,θ),1,2 φ
1,2
β,κ,θ,η,ζ(τ, τ ′, t, s, v), (3.7)

where φ1 and φ1,2 are the functions given by ( 3.4 ) and ( 3.5 ).

Proof. This is an extension of [ 1 , Lemma 21]. Let us consider the n-th order dyadic partition

Pn of [s, t] where each set [u,w] ∈ Pn has length 2−n|t−s|. We define the n-th order Riemann

sum of Ξτ
v , denoted In(Ξτ

v )ts, as follows

In(Ξτ
v )ts =

∑
[u,w]∈Pn

(Ξτ
v )wu .

Our aim is to show that the sequence {In(Ξτ
v );n ≥ 1} converges to an element I(Ξτ

v ) which

fulfills relation (  3.6 ). To this aim we begin to consider the difference In+1(Ξτ
v ) − In(Ξτ

v ). A

series of elementary computations reveals that

In+1(Ξτ
v )ts − In(Ξτ

v )ts = −
∑

[u,w]∈Pn

δm(Ξτ
v )wu, (3.8)

where m = w+u
2 and where we recall that δ is given by relation (  2.10 ). Plugging relation

( 3.2 ) into ( 3.8 ), it is easy to check that

∑
[u,w]∈Pn

|δm(Ξτ
v )wu| . ‖δΞ‖(β,κ,θ),1

∑
[u,w]∈Pn

|τ − w|−κ|u− v|−θ|w − u|β. (3.9)

We will upper bound the right hand side above. Invoking the fact that β > 1 and |w− u| =

2−n|t− s|, for u,w ∈ Pn we write

∑
[u,w]∈Pn

|τ−w|−κ|u−v|−θ|w−u|β ≤ 2−n(β−1)|t−s|β−1 ∑
[u,w]∈Pn

|τ−w|−κ|u−v|−θ|w−u|. (3.10)

With the definition of Riemann sums in mind, the term

∑
[u,w]∈Pn

|τ − w|−κ|u− v|−θ|w − u|
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in the right hand side of (  3.10 ) can be dominated by the following finite integral (recall that

κ+ θ < 1): ∫ t

s
|τ − x|−κ|x− v|−θdx.

In addition, some elementary calculations show that the above integral can be upper bounded

as follows,

∫ t

s
|τ − x|−κ|x− v|−θdx . |τ − t|−κ|s− v|−θ|t− s| ∧ |t− v|1−κ−θ. (3.11)

Plugging the inequality ( 3.11 ) into ( 3.10 ), we thus get

∑
[u,w]∈Pn

|τ − w|−κ|u− v|−θ|w − u|β

. 2−n(β−1)
([

|τ − t|−κ |s− v|−θ |t− s|β
]

∧ |τ − v|β−κ−θ
)
.

Then taking ( 3.9 ) into account, relation ( 3.8 ) can be recast as

|In+1(Ξτ
v )ts − In(Ξτ

v )ts|

. 2−n(β−1)‖δΞ‖(β,κ,θ),1
([

|τ − t|−κ |s− v|−θ |t− s|β
]

∧ |τ − v|β−κ−θ
)
. (3.12)

Since β > 1, then ( 3.12 ) implies that the sequence {In(Ξτ
v );n ≥ 1} is Cauchy. It thus

converges to a quantity I(Ξτ
v )ts which satisfies (  3.6 ). The rest of this proof is the same as

[ 8 , Lemma 4.2], which means that the element I(Ξτ
v ) has finite ‖ · ‖(β,κ,θ),1 norm. The proof

of relation (  3.7 ) is very similar to (  3.6 ), and left to the reader for sake of conciseness. We

just define an increment Ξτ,τ ′
v instead of Ξτ

v and then proceed as in (  3.8 )-( 3.12 ). The proof

is now complete.

2.3.2 Third order convolution products in the rough case α− γ > 1
4

In this section we establish a proper definition of third order convolution products. Let

us first introduce the class of integrands we shall consider for those products.
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Notation 2.3.3. Similarly to Notation  2.2.17 , we denote by u1,2,3 a function u : ∆4 →

L((Rd)⊗3,Rd) given by

(s, τ1, τ2, τ3) 7→ uτ3,τ2,τ1
s .

To motivate the upcoming analysis and in order to get a better intuition of what is

meant by third order convolution products, let us first give a definition of the third order

convolution product for smooth functions, and prove a useful relation for the construction

of this convolution.

Definition 2.3.4. Let x be a continuously differentiable function and consider a Volterra

kernel k which fulfills Hypothesis  2.2.1 with γ < 1. Let also f : ∆4 → L((Rm)⊗3,Rm) be a

smooth function given in Notation  2.3.3 . Then recalling our Notation  2.2.14 for τ ≥ t >

s ≥ v the convolution z3,τ
ts ∗ f 1,2,3

v is defined by

z3,τ
ts ∗f 1,2,3

v =
∫

t>r1>s
k(τ, r1)dxr1 ⊗

∫
r1>r2>s

k(r1, r2)dxr2 ⊗
∫

r2>r3>s
k(r2, r3)dxr3f

r1,r2,r3
v . (3.13)

Lemma 2.3.5. Under the same conditions as in Definition  2.3.4 , let z3,τ
ts ∗ f 1,2,3

s be the

increment given by ( 3.13 ). Consider (s, t) ∈ ∆2 and a generic partition P of [s, t]. Then we

have

z3,τ
ts ∗ f 1,2,3

s = lim
|P|→0

∑
[u,v]∈P

z3,τ
vu ∗ f 1,2,3

s +
(
δuz3,τ

vs

)
∗ f 1,2,3

s . (3.14)

Proof. Starting from expression ( 3.13 ), it is readily seen that

z3,τ
ts ∗ f 1,2,3

s =
∑

[u,v]∈P

∫
v>r1>u

k(τ, r1)dxr1 ⊗
∫

r1>r2>s
k(r1, r2)dxr2 ⊗

∫
r2>r3>s

k(r2, r3)dxr3f
r1,r2,r3
s .

Then for each [u, v] ∈ P , divide the region {v > r1 > u} ∩ {r1 > r2 > r3 > s} into

{v > r1 > r2 > r3 > u} ∪ {v > r1 > r2 > u > r3 > s} ∪ {v > r1 > u > r2 > r3 > s}.

This yields a decomposition of z3,τ
ts ∗ f 1,2,3

s of the form

z2,τ
ts ∗ f 1,2,3

s =
∑

[u,v]∈P
Aτ

vu +Bτ
vu + Cτ

vu,
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where Aτ
vu , Bτ

vu , and Cτ
vu are respectively given by

Aτ
vu =

∫
v>r1>u

k(τ, r1)dxr1 ⊗
∫

r1>r2>u
k(r1, r2)dxr2 ⊗

∫
r2>r3>u

k(r2, r3)dxr3f
r1,r2,r3
s

Bτ
vu =

∫
v>r1>u

k(τ, r1)dxr1 ⊗
∫

r1>r2>u
k(r1, r2)dxr2 ⊗

∫
u>r3>s

k(r2, r3)dxr3f
r1,r2,r3
s

Cτ
vu =

∫
v>r1>u

k(τ, r1)dxr1 ⊗
∫

u>r2>s
k(r1, r2)dxr2 ⊗

∫
r2>r3>s

k(r2, r3)dxr3f
r1,r2,r3
s .

We recognize the term Aτ
vu as the expression z3,τ

vu ∗ f 1,2,3
s given by Definition  3.13 . Moreover,

we can check that Bτ
vu = z2,τ

vu ∗ z1,·
us ∗ f 1,2,3

s , and Cτ
vu = z1,τ

vu ∗ z2,·
us ∗ f 1,2,3

s . Then since z3,τ

satisfies (  2.21 ), we have Bτ
vu+Cτ

vu = (δuz3,τ
vs )∗f 1,2,3

s . This finishes the proof of our claim (  3.14 ).

In order to generalize the notion of convolution product beyond the scope of Defini-

tion  2.3.4 to accommodate rough signals x, let us introduce the kind of norm we shall con-

sider for processes with 3 upper variables of the form u1,2,3, and in that connection introduce

another Volterra-Hölder space equipped with this new norm.

Definition 2.3.6. Let W(α,γ,η,ζ)
3 denote the space of functions u : ∆4 → L((Rd)⊗3,Rd) as

given in Notation  2.3.3 with uτ1,τ2,τ3
0 = u0 ∈ L((Rd)⊗3,Rd) and such that ‖u1,2,3‖(α,γ,η,ζ) < ∞,

where the norm ‖u1,2,3‖(α,γ,η,ζ) is defined by

∥∥∥u1,2,3
∥∥∥

(α,γ,η,ζ)
:=
∥∥∥u1,2,3

∥∥∥
(α,γ),1

+
∥∥∥u1,2,3

∥∥∥
(α,γ,η,ζ),1,2,3

. (3.15)

More specifically, recalling the definition ( 2.1 ) for ψ1,the ‖ · ‖(α,γ),1 and ‖ · ‖(α,γ,η,ζ),1,2,3 norms

in ( 3.15 ) are respectively defined by

∥∥∥u1,2,3
∥∥∥

(α,γ),1
:= sup

(s,t,τ)∈∆3

|uτ,τ,τ
ts |

ψ1
α,γ(τ, t, s) , (3.16)

and

∥∥∥u1,2,3
∥∥∥

(α,γ,η,ζ),1,2,3
:=
∥∥∥u1,2,3

∥∥∥
(α,γ,η,ζ),1,2

+
∥∥∥u1,2,3

∥∥∥
(α,γ,η,ζ),1,3

+
∥∥∥u1,2,3

∥∥∥
(α,γ,η,ζ),2,3

. (3.17)
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In the right hand side of ( 3.17 ), similarly to ( 2.25 )-( 2.26 ), we have set ‖u1,2,3‖(α,γ,η,ζ),1,2 as

the sum ‖u1,2,3‖(α,γ,η,ζ),1,2,> + ‖u1,2,3‖(α,γ,η,ζ),1,2,<, with

∥∥∥u1,2,3
∥∥∥

(α,γ,η,ζ),1,2,>
= sup

(s,t,r,r1,r2,r′)∈∆6

|ur′,r2,r
ts − ur′,r1,r

ts |
hη,ζ(s, t, r1, r2, r, r′) , (3.18)

∥∥∥u1,2,3
∥∥∥

(α,γ,η,ζ),1,2,<
= sup

(s,t,r,r′,r1,r2)∈∆6

|ur2,r′,r
ts − ur1,r′,r

ts |
hη,ζ(s, t, r1, r2, r, r′) . (3.19)

Here we define h as follows:

hη,ζ (s, t, r1, r2, r, r
′) = |r2 − r1|η |min(r1, r2, r, r

′) − t|−η+ζ

×
([

|min(r1, r2, r, r
′) − t|−γ−ζ |t− s|α

]
∧ |min(r1, r2, r, r

′) − s|α−γ−ζ
)
. (3.20)

Moreover, the norms ‖u1,2,3‖(α,γ,η,ζ),2,3 and ‖u1,2,3‖(α,γ,η,ζ),1,3 in ( 3.17 ) are defined similarly to

relations ( 3.18 )-( 3.19 ).

Remark 2.3.7. Notice that Definition  2.3.6 has been introduced so that the increments yu,u,u−

yr,r,r can be controlled by ( 3.17 ). Indeed, we have for any η ∈ [0, 1] and ζ ∈ [0, ρ)

|yu,u,u
ts − yr,r,r

ts | = |yu,u,u
ts − yu,r,r

ts + yu,r,r
ts − yr,r,r

ts | ≤ |yu,u,u
ts − yu,r,r

ts | + |yu,r,r
ts − yr,r,r

ts |

≤
(
‖y‖(α,γ,η,ζ),2,3 + ‖y‖(α,γ,η,ζ),1,2

)
|u− r|η |r − t|−η+ζ

([
|r − t|−γ−ζ |t− s|α

]
∧ |r − s|ρ−ζ

)
. ‖y‖(α,γ,η,ζ),1,2,3 |u− r|η |r − t|−η+ζ

([
|r − t|−γ−ζ |t− s|α

]
∧ |r − s|ρ−ζ

)
≤ ‖y‖(α,γ,η,ζ),1,2,3 |u− r|η |r − t|−η+ζ |r − s|ρ−ζ . (3.21)

Hence similarly to ( 2.29 ), we let η = ζ and we obtain

|yu,u,u
ts − yr,r,r

ts | . ‖y‖(α,γ,η,ζ),1,2,3. (3.22)

Thanks to Hypothesis  2.2.16 and Definition  2.3.6 , we can now state a general convolution

product for functions defined on ∆4. As mentioned above, it has to be seen as a generalization

of Definition  2.3.4 to a rough context.
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Theorem 2.3.8. Let z ∈ V(α,γ,η,ζ) with α, γ, η, ζ ∈ (0, 1) satisfying ρ = α − γ > 1
4 , ζ ∈

[0, α − γ) and η ∈ [ζ, 1] as given in Definition  2.2.4 . We assume that z fulfills Hypothesis

 2.2.16 with n=3. Consider a function y : ∆4 → L((Rm)⊗3,Rm) as given in Notation  2.3.3 

such that ‖y1,2,3‖(α,γ,η,ζ),1,2,3 < ∞ and y1,2,3
0 = y0, where ‖y1,2,3‖(α,γ,η,ζ),1,2,3 is defined by

( 3.17 ). Then with Notation  2.2.14 in mind, we have for all fixed (s, t, τ) ∈ ∆3 that

z3,τ
ts ∗ y1,2,3

s = lim
|P|→0

∑
[u,v]∈P

z3,τ
vu y

u,u,u
s +

(
δuz3,τ

vs

)
∗ y1,2,3

s . (3.23)

is a well defined Volterra-Young integral. It follows that ∗ is a well defined bi-linear operation

between the three parameters Volterra function z3 and a 4-parameter path y. Moreover, we

have that

∣∣∣z3,τ
ts ∗ y1,2,3

s − z3,τ
ts y

s,s,s
s

∣∣∣ . ‖y1,2,3‖(α,γ,η,ζ),1,2,3
(
‖z3‖(3ρ+γ,γ),1 + ‖z1‖(α,γ,η,ζ),1,2‖z2‖(α,γ),1

+ ‖z2‖(α,γ,η,ζ),1,2‖z1‖(α,γ),1
)
ψ1

(3ρ+γ),γ(τ, t, s), (3.24)

where ψ1 is given in ( 2.1 ).

Remark 2.3.9. Similarly to Remark  2.2.21 , the term (δuz3,τ
vs ) ∗ y1,2,3

s is defined thanks to the

fact that (according to relation ( 2.21 ))

δuz3,τ
vs ∗ y1,2,3

s = z2,τ
vu ∗ z1,·

us ∗ y1,2,3 + z1,τ
vu ∗ z2,·

us ∗ y1,2,3, (3.25)

and the convolutions with respect to z1,τ , z2,τ in (  3.25 ) are respectively defined by Theo-

rem  2.2.15 and Theorem  2.2.20 .

Proof of Theorem  2.3.8 . We first prove (  3.23 ). To this aim, for a generic partition P of [s, t]

let us denote by IP the approximation of the right hand side of ( 3.23 ). Specifically we set

IP := ∑
[u,v]∈P(Ξτ

s )vu, where

(Ξτ
s )vu = z3,τ

vu y
u,u,u
s +

(
δuz3,τ

vs

)
∗ y1,2,3

s . (3.26)
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We now compute δr(Ξτ
s )vu in order to check that the extended Volterra sewing Lemma  2.3.2 

can be applied in our context. Recall that

δr (Ξτ
s )vu = (Ξτ

s )vu − (Ξτ
s )vr − (Ξτ

s )ru , for all τ > v > r > u > s.

Moreover, we know from Hypothesis  2.2.16 that

δrz3,τ
vu = z2,τ

vr ∗ z1,·
ru + z1,τ

vr ∗ z2,·
ru.

Therefore, a few elementary computations reveal that

δr

(
z3,τ

vu y
u,u,u
s

)
= −z3,τ

vr (yr,r,r
s − yu,u,u

s ) +
(
z2,τ

vr ∗ z1,·
ru + z1,τ

vr ∗ z2,·
ru

)
yu,u,u

s (3.27)

δr

((
δuz3,τ

vs

)
∗ y1,2,3

s

)
= −

(
z2,τ

vr ∗ z1,·
ru + z1,τ

vr ∗ z2,·
ru

)
∗ y1,2,3

s , (3.28)

Combining ( 3.27 ) and ( 3.28 ), we thus get

δr (Ξτ
s )vu = −

(
Q1

vru +Q2
vru +Q3

vru

)
, (3.29)

where the quantities Q1
vru, Q2

vru, Q3
vru are defined by

Q1
vru = z3,τ

vr (yr,r,r
s − yu,u,u

s )

Q2
vru = z2,τ

vr ∗ z1,·
ru ∗

(
y1,2,3

s − yu,u,u
s

)
Q3

vru = z1,τ
vr ∗ z2,·

ru ∗
(
y1,2,3

s − yu,u,u
s

)

We will bound each of the above terms separately.

Applying (  3.21 ) with ζ = 0, and invoking the definition of ‖z3‖(3ρ+γ,γ),1 in (  2.4 ), and

using that r ∈ [u, v] we have for any η ∈ [0, 1]

∣∣∣Q1
vru

∣∣∣ . ∥∥∥y1,2,3
∥∥∥

(α,γ,η,0),1,2,3

∥∥∥z3
∥∥∥

(3ρ+γ,γ),1
|u− s|−η|τ − v|−γ|v − u|3ρ+γ+η, (3.30)
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We then choose η such that 3ρ+ γ + η > 1 and at the same time η+ γ < 1, which is always

possible since ρ > 0, to obtain the desired regularity. For the term Q2
vru, we invoke the

bound in ( 2.31 ), and observe that

∣∣∣Q2
vru

∣∣∣ ≤
∣∣∣z2,τ

vr

∣∣∣ ∣∣∣z1,r
ru ∗ (yr,r,3

s − yu,u,u
s )

∣∣∣
+ ‖ŷ‖(α,γ,η,ζ),1,2

(
‖z1‖2

(α,γ,η,ζ) + ‖z2‖(2ρ+γ,γ,η,ζ)
)

|τ − v|−γ|v − u|3ρ+γ ∧ |τ − u|3ρ (3.31)

where ŷl,w
ru = z1,·

ru ∗ (yl,w,3
s − yu,u,u

s ), and we will need to find a bound for ‖ŷ‖(α,γ,η,ζ),1,2. Note

that convolution only happens in the first term of yl,w,3
s − yu,u,u

s . By (  2.20 ) it follows that

‖ŷ‖(α,γ,η,ζ),1,2 . ‖z‖(α,γ),1‖y1,2,3‖(α,γ,η,ζ),2,3|v − u|η|u− s|−η.

Furthermore, from ( 2.19 ) it is readily checked that

∣∣∣z1,r
ru ∗ (yr,2,3

s − yu,u,u
s )

∣∣∣ . ‖z1‖(α,γ),1‖yr,2,3 − yu,u,u
s ‖(α,γ,η,ζ),1,2|r − u|ρ

We continue to investigate the first terms in ( 3.31 ). From the above regularity estimate it

follows that

∣∣∣z2,τ
vr

∣∣∣ ∣∣∣z1,·
ru ∗

(
y1,2,3

s − yu,u,u
s

)∣∣∣ . ∥∥∥z2
∥∥∥

(2ρ+γ,γ,η,ζ)

∥∥∥z1
∥∥∥

(α,γ,η,ζ)
‖y‖(α,γ) |τ−v|−γ|v−u|3ρ+γ+η|u−s|−η.

Combining our estimates for the different terms on the right hand side of ( 3.31 ), we have

that

∣∣∣Q2
vru

∣∣∣ . ∥∥∥y1,2,3
∥∥∥

(α,γ,η,ζ),1,2,3

∥∥∥z2
∥∥∥

(2ρ+γ,γ,η,ζ)

∥∥∥z1
∥∥∥

(α,γ,η,ζ)
|τ − v|−γ|v − u|3ρ+γ+η|u− s|−η, (3.32)

By similar computations as for the bound for Q2, we obtain a bound for Q3 given by

∣∣∣Q3
vru

∣∣∣ . ∥∥∥y1,2,3
∥∥∥

(α,γ,η,ζ),1,2,3

∥∥∥z1
∥∥∥

(α,γ,η,ζ)

∥∥∥z2
∥∥∥

(2ρ+γ,γ,η,ζ)
|τ − v|−γ|v − u|3ρ+γ+η|u− s|−η. (3.33)
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Plugging ( 3.30 )-( 3.33 ) into ( 3.29 ), we have thus obtained

|δr (Ξτ
s )vu| . Cy,z|τ − v|−γ|u− s|−η|v − u|3ρ+γ+η, (3.34)

where the constant Cy,z used above is given explicitly as

cy,z =
∥∥∥y1,2,3

∥∥∥
(α,γ,η,ζ),1,2,3

(
‖z3‖(3ρ+γ,γ,η,ζ) + 2

∥∥∥z2
∥∥∥

(2ρ+γ,γ,η,ζ)

∥∥∥z1
∥∥∥

(α,γ,η,ζ)

)
.

Starting from ( 3.34 ), one can now check that

‖δΞ‖(3ρ+γ+η,γ,η),1 < ∞, (3.35)

where the norm in the left hand side of (  3.35 ) is defined by ( 3.2 ). In the same way, we let

the patient reader check that ‖Ξ‖(3ρ+γ+η,γ,η),1,2 < ∞, where the ‖ · ‖(3ρ+γ+η,γ,η),1,2 norm is

introduced in ( 3.3 ). Since we have chosen η such that 3ρ + γ + η > 1 and γ + η < 1, we

can apply Lemma  2.3.2 to the increment Ξ and recall the Notation  2.2.3 of ψ1, ψ1,2, which

directly yields our claims ( 3.6 ) and ( 3.7 ).

Remark 2.3.10. The general convolution z3,τ ∗y1,2,3
s is given in ( 3.23 ), for a path y defined on

∆4. If we wish to consider the convolution restricted to a path y1,2
s defined on ∆3, a natural

way to proceed is to define

z3,τ
ts ∗ y1,2

s := z3,τ
ts ∗ ŷ1,2,3, with ŷr1,r2,r3 = yr2,r3 .

This means that the path ŷ has no dependence in r1. Therefore resorting to the notations

( 2.23 )-( 2.24 ), and ( 3.16 )-( 3.17 ), it is not difficult to check that

∥∥∥ŷ1,2,3
∥∥∥

(α,γ,η,ζ),1,2,>
=
∥∥∥y1,2

∥∥∥
(α,γ,η,ζ)1,2,<

,
∥∥∥ŷ1,2,3

∥∥∥
(α,γ,η,ζ),1,2,<

= 0,∥∥∥ŷ1,2,3
∥∥∥

(α,γ,η,ζ),1,3,>
=
∥∥∥y1,2

∥∥∥
(α,γ,η,ζ)1,2,>

,
∥∥∥ŷ1,2,3

∥∥∥
(α,γ,η,ζ),1,3,<

= 0,∥∥∥ŷ1,2,3
∥∥∥

(α,γ,η,ζ),2,3,>
=
∥∥∥y1,2

∥∥∥
(α,γ,η,ζ)1,2,>

,
∥∥∥ŷ1,2,3

∥∥∥
(α,γ,η,ζ),2,3,<

=
∥∥∥y1,2

∥∥∥
(α,γ,η,ζ)1,2,<

.
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Hence we have ‖ŷ1,2,3‖(α,γ,η,ζ),1,2,3 . ‖y1,2‖(α,γ,η,ζ),1,2, where ‖ŷ1,2,3‖(α,γ,η,ζ),1,2,3 is given in

( 3.17 ) and the norm ‖y1,2‖(α,γ,η,ζ),1,2 is introduced in (  2.24 ). This will be invoked for our

rough path constructions in the upcoming section.

Remark 2.3.11. In our applications to rough Volterra equations we will consider the case

ρ = α − γ ∈ (1
4 ,

1
3). Therefore it is sufficient to show that the convolution product ∗ can be

performed on the third level of a Volterra rough path.

2.4 Stochastic calculus for Volterra rough paths

In this section we carry out some of the main steps leading to a proper differential calculus

in a Volterra context. That is, we show how to integrate a Volterra controlled process in

Section  2.4.1 , and we solve Volterra type equations in Section  2.4.2 .

2.4.1 Volterra controlled processes and rough Volterra integration

We begin with a proper definition of rough Volterra integration in rough case α− γ > 1
4 .

As usual in rough integration theory, one needs to specify a proper class of processes which

can be integrated with respect to the driving noise. As we will see, a non-geometric rough

path type theory based on tree type expansions are needed, in order to construct a well

defined rough Volterra integral. We therefore begin with some motivation for tree type

expansions for iterated integrals.

Tree expansions setting

In Hypothesis  2.2.16 , we have introduced the notion of a convolutional rough path z above

z. While z satisfies the Chen type relation ( 2.21 ), it cannot be considered as a geometric

rough path (see e.g. [ 8 ]). The reader might check for instance that for a path z1,τ given by

the mapping (t, τ) 7→
∫ t

0 k(τ, r)dxr, the component z2,τ will not satisfy the component-wise

relation (
z2,τ

ts

)ii
= 1

2
(
(z1,τ

ts )i
)2
, i = 1, · · · , d.
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Hence in order to define a rough path type calculus of order 2 related to zτ , we have to

invoke techniques related to non geometric settings. The standard language in this kind of

context is related to the Hopf algebra of trees. We give a brief account on those notions in

the current section, referring to [ 3 ] for further details.

Let T3 be the set of rooted trees with at most 3 vertices, whose vertices are decorated

by labels from the alphabet {1, . . . , d}. A full description of the undecorated version of T3

is given by

T3 =
{
, , ,

}
. (4.1)

In the sequel we will use the operation [ · ] on trees. Namely for σ1, . . . , σm ∈ T3 and

a ∈ {1, . . . , d}. we define σ = [σ1 · · ·σk]a as the tree for which σ1, . . . , σk are attached to a

new root with label a. For instance in the unlabeled case we have

[ 1 ] = [ ] = [ ] = [ ] = .

It is thus readily checked that any tree in T3 can be constructed iteratively from smaller

trees thanks to the operation [ · ]. Let us also mention that we always assume that the order

of the branches in each tree does not matter, in the sense that [σ1 · · ·σm]i = [σπ1 · · ·σπm ]i for

all permutations π of {1, . . . ,m}.

The set T3 can be turned into a Hopf algebra when equipped with a suitable coproduct

and antipode. This elegant structure is applied and discussed in detail in [ 3 ], but is not

necessary in our context. However, we shall use some of the notation contained in [  3 ] for our

future computations.

Notation 2.4.1. For any tree σ ∈ T3, the quantity |σ| denotes the numbers of vertices in

σ. We call the set F2 a forest consisting of elements with 2 vertices or less. Namely, F2 is

defined by

F2 = { , , } .

Remark 2.4.2. Note that the operation [ · ] sends the set {1} ∪ F2 into T3.
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Tree indexed rough path and controlled processes.

We have already introduced the family {zj,τ , j = 1, 2, 3} in Hypothesis  2.2.16 . These

objects will be identified with tree indexed objects below. On top of this family, our compu-

tations will also hinge on an additional function called z ,τ . Similarly to ( 3.13 ), whenever x

is a continuously differentiable function and k satisfies Hypothesis  2.2.1 , the increment z ,τ

is defined by

z ,τ
ts =

∫ t

s
k(τ, r)

(∫ r

s
k(r, l)dxl

)
⊗
(∫ r

s
k(r, w)dxw

)
⊗ dxr . (4.2)

However, for a generic rough signal x we need some more abstract assumptions which are

summarized below.

Hypothesis 2.4.3. Let z ∈ V(α,γ,η,ζ) be a Volterra path as given in Definition  2.2.4 . Recall

that α, γ, η, ζ satisfies 4ρ+ γ > 1 where ρ = α − γ, ζ ∈ [0, ρ) and η ∈ [ζ, 1]. We assume the

existence of a family z = {zσ,τ , σ ∈ T3} such that zσ,τ
ts ∈ (Rm)⊗|σ|. This family is defined by

z ,τ = z1,τ , z ,τ = z2,τ , z ,τ = z3,τ ,

where z1,τ , z2,τ , z3,τ are introduced in Hypothesis  2.2.16 . Moreover the increment z ,τ satisfies

the algebraic relation

δuz ,τ
ts = 2z ,τ

tu ∗ z ,·
us + z ,τ

tu ∗ (z ,·
us)

⊗2 , (4.3)

where the right hand side of ( 4.3 ) is defined in Proposition  2.2.15 . Analytically, we require

each zσ,τ to be an element of V(|σ|ρ+γ,γ), and we define

|||z|||(α,γ,η,ζ) :=
∑

σ∈T 3

‖zσ‖(|σ|ρ+γ,γ,η,ζ). (4.4)

Remark 2.4.4. Note that |||·||| does not define a seminorm of any sort, but is rather meant as

a convenient way to collect the seminorm terms concerning zσ for σ ∈ T 3.

Together with the elements in Hypothesis  2.4.3 , we will also make use of the family

{zδ; δ ∈ F2} in the sequel. To this aim, let us now introduce the element z .
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Notation 2.4.5. As stated in Hypothesis  2.4.3 , we have set z ,τ = z1,τ . In addition, we also

define z ,τ as

z ,τ
ts =

∫ t

s
k(τ, r)dxr

∫ t

s
k(τ, l)dxl = (z ,τ

ts )⊗2 . (4.5)

Therefore we can recast ( 4.3 ) as

δuz ,τ
ts = 2z ,τ

tu ∗ z ,·
us + z ,τ

tu ∗ z ,τ
ts . (4.6)

Assuming Hypothesis  2.4.3 holds, similarly to Theorem  2.3.8 , we now give a convolution

result for z ,τ .

Theorem 2.4.6. Let z ∈ V(α,γ,η,ζ) with α, γ, η, ζ ∈ (0, 1) satisfying ρ = α − γ > 1
4 , ζ ∈

[0, α− γ) and η ∈ [ζ, 1]. We assume that the Volterra rough path z over z fulfills Hypothesis

 2.4.3 . Consider a function y : ∆4 → L((Rm)⊗3,Rm) as given in Notation  2.3.3 such that

‖y1,2,3‖(α,γ,η,ζ),1,2,3 < ∞ and y1,2,3
0 = y0, where ‖y1,2,3‖(α,γ,η,ζ),1,2,3 is defined by ( 3.17 ). Then

with Notation  2.2.14 in mind, we have for all fixed (s, t, τ) ∈ ∆3 that

z ,τ
ts ∗ y1,2,3

s = lim
|P|→0

∑
[u,v]∈P

z ,τ
vu yu,u,u

s +
(
δuz ,τ

vs

)
∗ y1,2,3

s . (4.7)

is a well defined Volterra-Young integral. It follows that ∗ is a well defined bi-linear operation

between the three parameters Volterra function z3 and a 4-parameter path y. Moreover, we

have that

∣∣∣∣z ,τ
ts ∗ y1,2,3

s − z ,τ
ts ys,s,s

s

∣∣∣∣ . ∥∥∥y1,2,3
∥∥∥

(α,γ,η,ζ),1,2,3
|||z|||3(α,γ) ψ

1
(3ρ+γ),γ(τ, t, s), (4.8)

where ψ1 is defined by ( 2.1 ).

Proof. The proof goes along the same lines as the proof of Theorem  2.3.8 , and is omitted

for sake of conciseness.

We are now ready to introduce the natural class of processes one can integrate with

respect to z, called Volterra controlled processes.
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Definition 2.4.7. Let z ∈ V (α,γ,η,ζ) for some ρ = α − γ > 0, ζ ∈ [0, ρ), η ∈ [ζ, 1], and

consider a Volterra path y : ∆2 → Rd. We assume that there exists a family {yσ;σ ∈ F2},

with F2 as in Notation  2.4.1 , such that the following holds true.

(i) yσ is a function from ∆|σ|+2 to L((Rd)⊗|σ|,Rd), and yσ has |σ| + 1 upper arguments. The

initial conditions are respectively given by

y ,p,q
0 = y0, y ,p,q,r

0 = y0, y ,p,q,r
0 = y0 , for all (r, q, p) ∈ ∆3.

(ii) The family {yσ;σ ∈ F2} is related to the increments of yτ in the following way: for

(s, t, τ) ∈ ∆3 we have

yτ
ts = z ,τ

ts ∗ y ,τ,·
s + z ,τ

ts ∗ y ,τ,·,·
s + z ,τ

ts ∗ y ,τ,·,·
s +Ry,τ

ts , (4.9)

and

y ,τ,p
ts = z ,τ

ts ∗ (y ,τ,p,·
s + 2y ,τ,p,·

s ) +R ,τ,p
ts , (4.10)

where y , y , ∈ V (α,γ,η,ζ), R ∈ W (2ρ+2γ,2γ,η,ζ)
2 (L(Rd)) and Ry ∈ V (3ρ+3γ,3γ,η,ζ)(Rd) (recall

that V(α,γ,η,ζ) and W(2ρ+2γ,2γ,η,ζ)
2 are introduced in Definition  2.2.4 and Definition  2.2.18 

respectively).

Whenever y ≡ (y, y , y , y ) satisfies relation ( 4.9 )-( 4.10 ), we say that y is a Volterra path

controlled by z (or simply controlled Volterra path) and we write y ∈ D(α,γ,η,ζ)
z (∆2;Rm). We

equip this space with a semi-norm ‖ · ‖z,(α,γ,η,ζ) given by

‖y‖z,(α,γ,η,ζ) =
∥∥∥∥(y, y , y , y )∥∥∥∥

z,(α,γ,η,ζ)

= ‖y ‖(α,γ,η,ζ) + ‖y ‖(α,γ,η,ζ) + ‖Ry‖(3ρ+3γ,3γ,η,ζ) + ‖R ‖(2ρ+2γ,2γ,η,ζ) .(4.11)

where the norms in ( 4.11 ) are respectively defined by ( 2.3 ) and ( 2.22 ). Equipped with the

norm

y =
(
y, y , y , y

)
7→ |y0| + |y0| + |y0| + |y0 | +

∥∥∥∥(y, y , y , y )∥∥∥∥
z,(α,γ,η,ζ)

,
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the space D(α,γ,η,ζ)
z is a Banach space.

Remark 2.4.8. It is easily seen from (  4.9 ) and ( 4.10 ) that if y ∈ D(α,γ,η,ζ)
z , then y, y ∈

V(α,γ,η,ζ). Indeed, we observe directly from (  4.10 ) that

‖y ‖(α,γ,η,ζ) . ‖z ‖(α,γ,η,ζ)(|y0| + |y ,
0 | + ‖y ‖(α,γ,η,ζ) + ‖y , ‖(α,γ,η,ζ)) + ‖R ‖(2ρ+2γ,2γ,η,ζ),

where the quantities on the right hand side are finite by assumption. Furthermore, by

relation ( 4.9 ) we then have that

‖y‖(α,γ,η,ζ) ≤ ‖z‖(α,γ,η,ζ)

(
|y0| + |y0| + |y ,

0 | + ‖y ‖(α,γ,η,ζ) + ‖y ‖(α,γ,η,ζ) + ‖y , ‖(α,γ,η,ζ) + ‖Ry‖(3ρ+3γ,3γ,η,ζ)

)
.

(4.12)

Remark 2.4.9. According to Definition  2.4.7 , the function y is defined on ∆3 and has two up-

per variables, while y and y are defined on ∆4 and have three upper arguments. Therefore

in (  4.11 ) the norm ‖y ‖(α,γ,η,ζ) has to be understood as a norm in W(α,γ,η,ζ)
2 , while the norms

‖y ‖(α,γ,η,ζ) and ‖y ‖(α,γ,η,ζ) have to be considered as norms in W(α,γ,η,ζ)
3 . The readers is re-

ferred to Definition  2.2.18 and  2.3.6 for the definition of W(α,γ,η,ζ)
2 and W(α,γ,η,ζ)

3 respectively.

We stick to the notation ‖ · ‖(α,γ,η,ζ) for the norm on those different spaces, for notational

ease.

Integration of controlled processes

Our next step is to show that we may construct a Volterra rough integral in the rough

case α − γ > 1
4 , and then prove that the Volterra rough integral of a controlled path with

respect to a driving Hölder noise x ∈ Cα is again a controlled Volterra path.

Theorem 2.4.10. For α, ζ, η ∈ (0, 1), let x ∈ Cα([0, T ];Rd) and k be a Volterra kernel

satisfying Hypothesis  2.2.1 with a parameter γ such that ρ = α − γ > 1
4 , 0 ≤ ζ < ρ, and

ζ ≤ η ≤ 1. Define zτ
t =

∫ t
0 k (τ, r) dxr and assume there exists a tree indexed rough path

z = {zσ,τ ;σ ∈ T3} above z satisfying Hypothesis  2.4.3 . Let M > 0 be a constant such

that |||z|||(α,γ,η,ζ) ≤ M . We now consider a controlled Volterra path y ∈ D(α,γ,η,ζ)
z (L(Rd)), as

introduced in Definition  2.4.7 . Then the following holds true:
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(i) Define Ξτ
vu := z ,τ

vu ∗ y·
u + z ,τ

vu ∗ y ,·,·
u + z ,τ

vu ∗ y ,·,·,·
u + z ,τ

vu ∗ y ,·,·,·
u . The following limit exists

for all (s, t, τ) ∈ ∆3,

wτ
ts =

∫ t

s
k(τ, r)dxry

r
r := lim

|P|→0

∑
[u,v]∈P

Ξτ
vu. (4.13)

(ii) Let w be defined by ( 4.13 ). Recalling the Notation  2.2.3 of ψ1 and ψ1,2, there exists a

positive constant C = CM,α,γ such that for all (s, t, τ) ∈ ∆3 we have

|wτ
ts − Ξτ

ts| ≤ C

∥∥∥∥(y, y , y , y )∥∥∥∥
z,(α,γ,η,ζ)

|||z|||(α,γ,η,ζ) ψ
1
(4ρ+γ),γ(τ, t, s). (4.14)

(iii) There exists a positive constant C = CM,α,γ such that for all (s, t, p, q) ∈ ∆4, we have

|wqp
ts − Ξqp

vu| ≤ C
∥∥∥∥(y, y , y , y )∥∥∥∥

z,(α,γ,η,ζ)
|||z|||(α,γ,η,ζ) ψ

1,2
(4ρ+γ),γ,η,ζ(p, q, t, s) (4.15)

(iv) The triple w = (w,w ,w , 0) is a controlled Volterra path in D(α,γ,η,ζ)
z (∆2,Rm), where

we recall that w is defined by ( 4.13 ), and where w , w are respectively given by

w ,τ,p
t = yp

t , and w ,τ,q,p
t = y ,q,p

t .

Remark 2.4.11. From Theorem  2.4.10 , we also can find a bound for ‖Rw‖(3α,3γ,η,ζ) and

‖Rw ‖(2α,2γ,η,ζ).

Specifically, according to Theorem  2.4.10  (ii) we have

‖Rw‖(3α,3γ,η,ζ) .
∥∥∥∥(y, y , y , y )∥∥∥∥

z,(α,γ,η,ζ)
|||z|||(α,γ,η,ζ) (4.16)

Moreover, thanks to Theorem  2.4.10  (iv) we have w ,τ,p
t = yp

t . Recalling (  4.9 ) together with

( 4.16 ), we obtain

∥∥∥Rw
∥∥∥

(2α,2γ,η,ζ)
.
∥∥∥∥(y, y , y , y )∥∥∥∥

z,(α,γ,η,ζ)
|||z|||(α,γ,η,ζ) (4.17)
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Proof of Theorem  2.4.10 . Let Ξ be given as in  (i) . Thanks to Proposition  2.2.15 , Theorem

 2.2.20 , Theorem  2.3.8 , and Theorem  2.4.6 , Ξ is well-defined. Our global strategy is to show

that the Volterra sewing lemma can be applied to Ξ. In order to do so, let us compute

δmΞ
τ
vu for (u,m, v, τ) ∈ ∆4. Owing to (  2.21 ), as well as some elementary properties of the

operator δ, we get

δm (Ξτ
vu) := Aτ

vmu +Bτ
vmu. (4.18)

where the quantities Aτ
vmu and Bτ

vmu are given by

Aτ
vmu = −

(
z ,τ

vm ∗ y·
mu + z ,τ

vm ∗ y ,·,·
mu + z ,τ

vm ∗ y ,·,·,·
mu + z ,τ

vm ∗ y ,·,·,·
mu

)
(4.19)

and

Bτ
vmu = δmz ,τ

vu ∗ y ,·,·
u + δmz ,τ

vu ∗ y ,·,·,·
u + δmz ,τ

vu ∗ y ,·,·,·
u . (4.20)

Due to the assumption that (y, y , y , y ) ∈ D(α,γ,η,ζ)
z , we have that for any (s, t, τ) ∈ ∆3

y·
ts = z ,·

ts ∗ y ,·,·
s + z ,·

ts ∗ y ,·,·,·
s + z ,·

ts ∗ y ,·,·,·
s +Ry,·

ts ,

and

y ,·,·
ts = z ,·

ts ∗
(
y ,·,·,·

s + 2y ,·,·,·
s

)
+R ,·,·

ts .

Plugging the above two relations into ( 4.19 ), we obtain

Aτ
vmu = − z ,τ

vm ∗ z ,·
mu ∗ y ,·,·

u − z ,τ
vm ∗ z ,·

mu ∗ y ,·,·,·
u − z ,τ

vm ∗ z ,·
mu ∗ y ,·,·,·

u − z ,τ
vm ∗Ry,·

mu

− z ,τ
vm ∗ z ,·

mu ∗ y ,·,·,·
u − 2z ,τ

vm ∗ z ,·
mu ∗ y ,·,·,·

u − z ,τ
vm ∗R ,·,·

mu (4.21)

− z ,τ
vm ∗ y ,·,·,·

mu − z ,τ
vm ∗ y ,·,·,·

mu .
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Thanks to Hypothesis  2.2.16 and Hypothesis  2.4.3 , plugging in the algebraic relations from

( 2.21 ) and ( 4.3 ) into ( 4.20 ), we have

Bτ
vum =z ,τ

vm ∗ z ,·
mu ∗ y ,·,·

u + z ,τ
vm ∗ z ,·

mu ∗ y ,·,·,·
u + z ,τ

vm ∗ z ,·
mu ∗ y ,·,·,·

u

+ 2z ,τ
vm ∗ z ,·

mu ∗ y ,·,·,·
u + z ,τ

vm ∗ (z ,·
mu)⊗2 ∗ y ,·,·,·

u . (4.22)

We now insert (  4.21 ) and (  4.22 ) into (  4.18 ). Let us also recall that z ,·
mu = (z ,·

mu)⊗2 according

to ( 4.5 ). Then some elementary algebraic manipulations and cancellations show that

δm (Ξτ
vu) = −z ,τ

vm ∗ y ,·,·,·
mu − z ,τ

vm ∗ y ,·,·,·
mu − z ,τ

vm ∗R ,·,·
mu − z ,τ

vm ∗Ry,·
mu. (4.23)

We now bound successively the 4 terms in the right hand side of (  4.23 ). First we apply a

small variant of ( 3.24 ) and ( 4.8 ), which takes into account the fact that increments of the

form ymu and ymu are considered. We also bound the terms involving y ,u,u,u
mu , y ,u,u,u

mu properly

in ( 3.24 ) and ( 4.8 ). Resorting to (  4.11 ) and the definition ( 2.1 ) of ψ1, we get

∣∣∣∣∣z ,τ
vm ∗ y ,·,·,·

mu + z ,τ
vm ∗ y ,·,·,·

mu

∣∣∣∣∣
.
(

‖y ‖(α,γ,η,ζ),1,2,3 + ‖y ‖(α,γ,η,ζ),1,2,3

)
|||z|||(α,γ,η,ζ) |u−m|ρ |τ −m|−γ |v −m|3ρ+γ . (4.24)

where we recall that |||z|||(α,γ,η,ζ) was defined in (  4.4 ). Next invoking the fact that Ry ∈

V(3ρ+3γ,3γ,η,ζ) and Proposition  2.2.15 , together with ψ1 as given in ( 2.1 ), we obtain

|z ,τ
vm ∗Ry,·

mu| ≤ ‖Ry‖(3ρ+3γ,3γ,η,ζ)‖z ‖(α,γ,η,ζ)||τ − v|−γ|u−m|4ρ+γ. (4.25)

Eventually, resorting to Theorem  2.2.20 and owing to the fact that R ∈ W(2ρ+2γ,2γ,η,ζ)
2 , we

can check that

∣∣∣∣z ,τ
vm ∗R ,·,·

mu

∣∣∣∣ ≤ ‖R ‖(2ρ+2γ,2γ,η,ζ),1,2|||z|||2(α,γ,η,ζ) |τ − v|−γ |v − u|4ρ+γ . (4.26)
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Plugging ( 4.24 ), ( 4.25 ) and ( 4.26 ) into ( 4.23 ), we have thus obtained

|δmΞ
τ
vu| .

∥∥∥∥(y, y , y , y )∥∥∥∥
z,(α,γ,η,ζ)

|||z|||2(α,γ,η,ζ)|τ − v|−γ|v − u|4ρ+γ. (4.27)

Recall that by assumption, ρ > 1
4 , and therefore β ≡ 4ρ + γ > 1. We have thus obtained

that ‖δΞ‖(β,γ),1 < ∞. Following along the same lines above, it is readily checked that also

‖δΞ‖(β,γ,η,ζ),1,2 < ∞. Therefore we apply directly the Volterra sewing Lemma  2.2.11 in order

to achieve the claims in ( 4.13 ), ( 4.14 ) and ( 4.15 ).

We now proceed to prove the last claim,  (iv) . To this aim, observe that the bound in (  4.14 )

together with the fact that z , z ∈ V(3ρ+3γ,3γ,η,ζ)(Rd), implies the existence of a function

R ∈ V (3ρ+3γ,3γ,η,ζ)(Rm) such that

wτ
ts = z ,τ

ts ∗ y·
s + z ,τ

ts ∗ y ,·,·
s +Rτ

ts. (4.28)

From (  4.28 ) it is readily seen that wτ can be decomposed as a controlled Volterra path in

D(α,γ,η,ζ)
z (∆2,Rm) with w ,τ,p

t = yp
t , w ,τ,q,p

t = y ,q,p
t , w ,τ,q,p

t = 0. This finishes our proof.

Remark 2.4.12. From Theorem  2.4.10 (d), we know that the process w defined by ( 4.13 )

satisfies

w ,τ,p
t = yp

t = w ,p
t .

Therefore w depends on two variables instead of 3 variables in the general definition (  4.9 ).

In the same way, we have

w ,τ,q,p
t = y ,q,p

t = w ,q,p
t ,

that is, w depends on three variables (vs 4 variables in the general definition (  4.9 )). There-

fore we can refine Theorem  2.4.10 and state that the Volterra rough integration sends
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(y, y , y , y ) ∈ D(α,γ,η,ζ)
z (Rd) to a controlled process (w,w ,w , 0) ∈ D̂(α,γ,η,ζ)

z (Rd), where

the space D̂(α,γ,η,ζ)
z (Rd) is defined by

D̂(α,γ,η,ζ)
z (Rd) :=

{(
w,w ,w , 0

)
∈ D(α,γ,η,ζ)

z (∆2;Rd)
∣∣∣w ,τ,p

s = w ,p
s ,

w ,τ,q,p
s = w ,q,p

s , and w ,τ,q,p
s = 0

}
.

(4.29)

The composition of a Volterra controlled processes with a smooth function

With Remark  2.4.12 in mind, we will now prove that one can compose processes in

D̂(α,γ,η,ζ)
z and still get a controlled process.

Proposition 2.4.13. Let f ∈ C4
b (Rd;Rm) and assume (y, y , y , 0) ∈ D̂(α,γ,η,ζ)

z (Rd) as given in

Remark  2.4.12 . Also recall our Notation  2.2.14 for matrix products. Then the composition

f(y) can be seen as a controlled path (φ, φ , φ , φ ), where φ = f(y) and where in the

decomposition ( 4.9 ) we have

φ ,q,p
t =y ,p

t f ′ (yq
t ) , (4.30)

φ ,r,q,p
t = y ,q,p

t f ′ (yr
t ) , and φ ,r,q,p

t = 1
2(y ,q

t ) ⊗ (y ,p
t )f ′′ (yr

t ) . (4.31)

Moreover, there exists a constant C = Cα,γ,‖f‖
C4

b

> 0 such that

‖(φ, φ , φ , φ )‖z;(α,γ,η,ζ) ≤ C(1 + |||z|||(α,γ,η,ζ))
3
[ (

|y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ)

)
∨
(

|y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ)

)3 ]
.(4.32)

Proof. We separate this proof into two parts: in the first step we will find the appro-

priate expression for φ , φ and φ ( namely ( 4.30 ) and ( 4.31 )), as well as proving that

(φ, φ , φ , φ ) ∈ D(α,γ,η,ζ)
z . In the second step, we will prove relation (  4.32 ). Without loss

of generality, we do the below analysis component-wise for f(y) = (f1(y), . . . , fm(y)), where
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each fi : Rd → R for i = 1, . . . ,m. With a slight abuse of notation, we drop the subscript

notation, and still just write f(y) representing each component.

Step 1: Expression for φ , φ and φ . An elementary application of Taylor’s formula enables

us to decompose the increment f(yτ )ts into

f(yτ )ts = yτ
tsf

′(yτ
s ) + 1

2(yτ
ts)⊗2f ′′(yτ

s ) + rτ
ts, (4.33)

where rτ
ts = 1

6(yτ
ts)⊗3 ∫ 1

0 f
(3)(cτ

ts(θ))dθ, where cτ
ts(θ) = θyτ

s + (1 − θ)yτ
t . It is readily checked

from ( 4.33 ) that r ∈ V (3α,3γ,η,ζ). Indeed, it follows directly that

‖r‖(3α,3γ),1 . ‖y‖3
(α,γ),1‖f‖C3

b
.

Furthermore, for (s, t, τ, τ ′) ∈ ∆4, we have

|rτ ′τ
ts | ≤ 3|yτ ′τ

ts ||(yτ ′

ts)⊗2 + (yτ
ts)⊗2|‖f‖C3

b

+ ‖y‖3
(α,γ),1‖f‖C4

b
(|yτ ′τ

s | + |yτ ′τ
t |)(|τ − t|−γ|t− s|α ∧ |τ − s|ρ)3.

It is simply checked that the following inequality hold:

|yτ ′τ
s | . |y0| + ‖y‖(α,γ,η,ζ),1,2|τ ′ − τ |η[|τ − s|η−ζ |sα| ∧ |s|ρ−ζ ],

and thus it follows that

‖r‖(3α,3γ,η,ζ),1,2 . (‖y‖(α,γ,η,ζ),1,2‖y‖2
(α,γ),1 + ‖y‖3

(α,γ),1(|y0| + ‖y‖(α,γ,η,ζ),1,2))‖f‖C3
b
.

Combining the above estimates, we get

‖r‖(3α,3γ,η,ζ) . (|y0| + ‖y‖(α,γ,η,ζ))3‖f‖C4
b
. (4.34)
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Now observe that (y, y , y , 0) ∈ D̂(α,γ,η,ζ)
z where D̂(α,γ,η,ζ)

z is the subset of the space

D(α,γ,η,ζ)
z as defined in Remark  2.4.12 . In particular, y, y , y satisfy relation (  4.9 ). Then

taking squares in the relation ( 4.9 ), we end up with

(yτ
ts)⊗2 = (z ,τ

ts ∗ y ,τ,·
s )⊗2 + r̃τ

ts, (4.35)

where the reminder term r̃τ
ts is defined by

r̃τ
ts = (z ,τ

ts ∗ y ,τ,·,·
s )⊗2 + (Ry,τ

ts )⊗2 + (z ,τ
ts ∗ y ,τ,·,·

s ) ⊗ (z ,τ
ts ∗ y ,τ,·

s ) + (z ,τ
ts ∗ y ,τ,·

s ) ⊗ (z ,τ
ts ∗ y ,τ,·,·

s )

+ (z ,τ
ts ∗ y ,τ,·

s ) ⊗Ry,τ
ts +Ry,τ

ts ⊗ (z ,τ
ts ∗ y ,τ,·

s ) + (z ,τ
ts ∗ y ,τ,·,·

s ) ⊗Ry,τ
ts +Ry,τ

ts ⊗ (z ,τ
ts ∗ y ,τ,·,·

s ).

(4.36)

Plugging ( 4.35 ) into ( 4.33 ), we get

f(yτ )ts =yτ
tsf

′(yτ
s ) + 1

2(z ,τ
ts ∗ y ,·

s )⊗2f ′′(yτ
s ) + 1

2 r̃
τ
tsf

′′(yτ
s ) + rτ

ts,

We now invoke ( 4.9 ) in order to further decompose yτ
ts above. We end up with

f(yτ )ts =z ,τ
ts ∗ y ,·

s f
′(yτ

s ) + z ,τ
ts ∗ y ,·,·

s f ′(yτ
s ) + 1

2(z ,τ
ts ∗ y ,·

s )⊗2f ′′(yτ
s ) +Rφ,τ

ts , (4.37)

where the reminder Rφ is defined by

Rφ,τ
ts = Ry,τ

ts f
′(yτ

s ) + 1
2 r̃

τ
tsf

′′(yτ
s ) + rτ

ts. (4.38)

Thanks to (  4.37 ) and the definition of the relations in (  4.30 )-( 4.31 ), the proof of (φ, φ , φ , φ ) ∈

D(α,γ,η,ζ)
z are now reduced to proving the following two claims:

• Claim 1: The remainder term Rφ,τ
ts in ( 4.38 ) is of order 3. Specifically, due to (  4.33 )

and the fact that (y, y , y , 0) ∈ D̂(α,γ), relation (  4.38 ) this is reduced to the following

claim:

r̃ ∈ V (3ρ+3γ,3γ,η,ζ). (4.39)
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• Claim 2: φ fulfills relation ( 4.10 ), which can be written as

φ ,·,· − z ,· ∗ (φ ,·,·,· + 2φ ,·,·,·) ∈ W (2ρ+2γ,2γ,η,ζ)
2 , (4.40)

where we recall that φ , φ , φ are defined by ( 4.30 )-( 4.31 ).

In the following, we will prove those two Claims separately.

Proof of Claim 1. According to relation ( 4.36 ), there are eight terms to evaluate in r̃. For

conciseness, we can consider one of these terms, say the increment Iτ
ts defined by Iτ

ts = (z ,τ
ts ∗

y ,τ,·,·
s )⊗(z ,τ

ts ∗y ,τ,·
s ), and the remaining terms will follow directly from similar considerations.

To this aim, a first observation is that since (y, y , y , 0) ∈ D̂(α,γ,η,ζ)
z as given in (  4.29 ), then

both y and y don’t dependent on τ and we have Iτ
ts = (z ,τ

ts ∗ y ,·,·
s ) ⊗ (z ,τ

ts ∗ y ,·
s ). Moreover,

due to the fact that I is part of the reminder r̃, we have to evaluate ‖I‖(3ρ+2γ,2γ,η,ζ). Owing

to Definition  2.2.4 , this is equivalent to evaluate

‖I‖(3ρ+2γ,2γ,η,ζ) = ‖I‖(3ρ+2γ,2γ),1 + ‖I‖(3ρ+2γ,2γ,η,ζ),1,2. (4.41)

In order to upper bound the right hand side of (  4.41 ), it suffices to estimate |Iτ
ts| and |Iqp

ts |.

Some elementary computations reveal that

|Iτ
ts| =

∣∣∣∣(z ,τ
ts ∗ y ,·,·

s

)
⊗ (z ,τ

ts ∗ y ,·
s )
∣∣∣∣ . ∣∣∣∣z ,τ

ts ∗ y ,·,·
s

∣∣∣∣ |z ,τ
ts ∗ y ,·

s | , (4.42)

and

|Iqp
ts | = |Iq

ts − Ip
ts| =

∣∣∣∣(z ,q
ts ∗ y ,·,·

s

)
⊗ (z ,q

ts ∗ y ,·
s ) −

(
z ,p

ts ∗ y ,·,·
s

)
⊗ (z ,p

ts ∗ y ,·
s )
∣∣∣∣

. |z ,qp
ts ∗ y ,·

s |
∣∣∣∣z ,q

ts ∗ y ,·,·
s

∣∣∣∣+ ∣∣∣∣z ,qp
ts ∗ y ,·,·

s

∣∣∣∣ |z ,q
ts ∗ y ,·

s | . (4.43)

To bound the right hand side of (  4.42 ), thanks to a slight variation of Proposition  2.2.15 and

Theorem  2.2.20 , we have

|Iτ
ts| . (|y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ))2|||z|||2(α,γ,η,ζ) ψ

1
(3ρ+2γ),2γ(τ, t, s).
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Similarly, we can bound |Iqp
ts | is the following way:

|Iqp
ts | . (|y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ))2|||z|||2(α,γ,η,ζ) ψ

1,2
(3ρ+2γ),2γ,η,ζ(p, q, t, s) (4.44)

It follows by definition of the quantities ‖I‖(3ρ+2γ,2γ),1 and ‖I‖(3ρ+2γ,2γ,η,ζ),1,2 as given in

Definition  2.2.4 , that

‖I‖(3ρ+2γ,2γ),1 ∨ ‖I‖(3ρ+2γ,2γ,η,ζ),1,2 . (|y0| + |y0| + ‖(y, y , y , 0)‖(α,γ,η,ζ))2|||z|||2z,(α,γ,η,ζ) (4.45)

which implies I ∈ V(3ρ+3γ,3γ,η,ζ) according to Lemma  2.2.8 . Similarly, we let the patient

reader check that

(z ,τ
ts ∗y ,τ,·

s )⊗(z ,τ
ts ∗y ,τ,·,·

s ) ∈ V (3ρ+2γ,2γ,η,ζ), (z ,τ
ts ∗y ,·,·

s )⊗2 ∈ V (4ρ+2γ,2γ,η,ζ), (Ry
ts)⊗2 ∈ V (6ρ+6γ,6γ,η,ζ),

(4.46)

as well as

(z ,τ
ts ∗ y ,·

s ) ⊗Ry
ts ∈ V (4ρ+4γ,4γ,η,ζ), (z ,τ

ts ∗ y ,·,·
s ) ⊗Ry

ts ∈ V (5ρ+4γ,4γ,η,ζ). (4.47)

In fact the appropriate norm for each of these terms is easily seen to be bounded by the

product (|||z|||(α,γ,η,ζ) + |||z|||2(α,γ,η,ζ))(|y0| + |y0| + ‖(y, y , y , 0)‖(α,γ,η,ζ))2. Combining (  4.45 ),

( 4.46 ) and ( 4.47 ), we have thus obtained that r̃ ∈ V (3ρ+3γ,3γ,η,ζ), and it follows that

‖r̃‖(3ρ+3γ,γ,η,ζ) . (|||z|||(α,γ,η,ζ) + |||z|||2(α,γ,η,ζ))(|y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ))2 (4.48)

Proof of Claim 2. Before proving relation (  4.40 ), we will give some algebraic insight on the

terms of φσ for σ ∈ F2. Indeed, resorting to (  4.37 ), we can safely set

φ ,q,p
t = y ,p

t f ′ (yq
t ) , (4.49)
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as stated in ( 4.30 ). According to (  4.37 ), we also let

φ ,r,q,p
t = y ,q,p

t f ′ (yr
t ) , φ ,r,q,p

t = 1
2(y ,q

t ) ⊗ (y ,p
t )f ′′ (yr

t ) . (4.50)

With relation ( 4.9 ) in mind, we can rewrite ( 4.37 ) as

f(yτ
t ) − f(yτ

s ) = z ,τ
ts ∗ φ ,τ,·

s + z ,τ
ts ∗ φ ,τ,·,·

s + (z ,τ
ts )⊗2 ∗ φ ,τ,·,·

s +Rφ,τ
ts (4.51)

Let us briefly give a few details regarding the expressions on the right hand side of ( 4.51 ).

Specifically, we will explain how to compute z ,τ
ts ∗φ ,τ,·

s = z ,τ
ts ∗y ,·

s f
′(yτ

s ). Referring to Notation

 2.2.14 , the expression z ,τ
ts ∗ y ,·

s f
′(yτ

s ) can be rewritten as [(z ,τ
ts )ᵀ ∗ (y ,·

s f
′(yτ

s ))ᵀ]ᵀ = f ′(yτ
s )y ,·

s ∗

z ,τ
ts , where we have used also that y ,·

s f
′(yτ

s ) can be rewritten as [(y ,·
s )ᵀ(f ′(yτ

s ))ᵀ]ᵀ = f ′(yτ
s )y ,·

s .

In addition, notice that f ′(ys) ∈ Rd, ys ∈ L(Rd,Rd) and z ,τ
ts ∈ Rd. Therefore the quantity

z ,τ
ts ∗ y ,·

s f
′(yτ

s ) has to be interpreted as an inner product, and we let the patient reader

perform the same kind of manipulation for the term z ,τ
ts ∗ y f ′(yτ

s ). In the end we get that

both the left hand side and the right hand side of ( 4.51 ) are real-valued.

Now we are ready to prove ( 4.40 ). To this aim we set

Jτ,·
ts := φ ,τ,·

ts − z ,τ
ts ∗ (φ ,τ,·,·

s + 2φ ,τ,·,·
s ). (4.52)

Our claim (  4.40 ) amounts to show that J ∈ W(2ρ+2γ,γ,η,ζ)
2 , with W(2ρ+2γ,2γ,η,ζ)

2 given in Defi-

nition  2.2.18 . Thanks to (  4.49 ) and ( 4.50 ), we first write

Jτ,·
ts = y ,·

t (f ′(yτ
t ) − f ′(yτ

s )) + y ,·
tsf

′(yτ
s ) − z ,τ

ts ∗ y ,·,·
s f ′(yτ

s ) − z ,τ
ts ∗ y ,·

s ⊗ y ,·
s f

′′ (yτ
s ) . (4.53)

We now invoke (  4.10 ), recalling that y = 0 since we have assumed that y ∈ D̂(α,γ,η,ζ)
z .

Plugging this information in ( 4.53 ), we end up with

Jτ,τ
ts = y ,τ

t (f ′(yτ
t ) − f ′(yτ

s )) +R ,τ
ts f

′(yτ
s ) − z ,τ

ts ∗ y ,·
s ⊗ y ,τ

s f ′′(yτ
s ). (4.54)
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Let us apply a Taylor expansion to the first term of right hand side of ( 4.54 ). Specifically

we write

f ′(yτ
t ) − f ′(yτ

s ) − yτ
tsf

′′(yτ
s ) = F

(2),τ
ts ,

where the term F
(2),τ
ts = (F (2),τ,1

ts , . . . , F
(2),τ,d
ts ) is defined as a reminder in a Taylor expansion.

Namely consider multi-indices β = (β1, . . . , βd) with βi ∈ {0, 1, 2}. We set |β| = ∑d
j=1 βj and

|β|! = Πd
j=1βj!. Then for i = 1, . . . , d, F (2),τ,i

ts is given by

F
(2),τ,i
ts = 2

∑
|β|=2

(yτ
ts)⊗|β|

β!

∫ 1

0
(1 − r)∂β (∂if(yτ

s + ryτ
st)) dr. (4.55)

With expression ( 4.55 ) in hand and recalling ( 4.54 ), we thus get

Jτ,τ
ts = y ,τ

t (f ′(yτ
t ) − f ′(yτ

s ) − yτ
tsf

′′(yτ
s )) + y ,τ

t yτ
tsf

′′(yτ
s ) − z ,τ

ts ∗ y ,·
s ⊗ y ,τ

s f ′′(yτ
s ) +R ,τ

ts f
′(yτ

s )

= y ,τ
t F

(2),τ
ts +R ,τ

ts f
′(yτ

s ) + y ,τ
t yτ

tsf
′′(yτ

s ) − z ,τ
ts ∗ y ,·

s ⊗ y ,τ
s f ′′(yτ

s ), (4.56)

Furthermore, we plug in identity ( 4.9 ) in the above expansion in order to expand the term

y ,τ
t yτ

tsf
′′(yτ

s ) in ( 4.56 ). This yields

Jτ,τ
ts = y ,τ

t F
(2),τ
ts +R ,τ

ts f
′(yτ

s ) + y ,τ
t z ,τ

ts ∗ y ,·,·
s f ′′(yτ

s ) + y ,τ
t Rτ

tsf
′′(yτ

s )

+ y ,τ
t z ,τ

ts ∗ y ,·
s f

′′(yτ
s ) − z ,τ

ts ∗ y ,·
s ⊗ y ,τ

s f ′′(yτ
s ). (4.57)

Next we resort to the forthcoming identity (  4.70 ) in order to handle the term z ,τ
ts ∗ y ,·

s ⊗ y ,τ
s

f ′′(yτ
s ) above. One obtains that the last two terms in (  4.57 ) combine into one term y ,τ

ts z ,τ
ts ∗

y ,·
s f

′′(yτ
s ). We end up with

Jτ,τ
ts =y ,τ

t F
(2),τ
ts +R ,τ

ts f
′(yτ

s ) + y ,τ
t z ,τ

ts ∗ y ,·,·
s f ′′(yτ

s )

+ y ,τ
t Rτ

tsf
′′(yτ

s ) + y ,τ
ts z ,τ

ts ∗ y ,·
s f

′′(yτ
s ). (4.58)

In the same way, we let the patient reader check that we can rewrite Jq,q
ts − Jp,p

ts as

Jq,q
ts − Jp,p

ts = Jqp
1 + Jqp

2 + Jqp
3 + Jqp

4 + Jqp
5 , (4.59)
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where the terms Jqp
1 , Jqp

2 , Jqp
3 , Jqp

4 , and Jqp
5 are defined respectively by

Jqp
1 = y ,qp

t F
(2),q
ts + y ,p

t

(
F

(2),q
ts − F

(2),p
ts

)
Jqp

2 =
(
y ,p

t z ,qp
ts ∗ y ,·,·

s + y ,qp
t z ,q

ts ∗ y ,·,·
)
f ′′(yq

s) +
(
y ,p

t z ,p
ts ∗ y ,·,·

s

)
(f ′′(yq

s) − f ′′(yp
s))

Jqp
3 = (y ,p

t Rqp
ts + y ,qp

t Rq
ts) f ′′(yq

s) + y ,p
t Rp

ts (f ′′(yq
s) − f ′′(yp

s)) , (4.60)

Jqp
4 = (y ,qp

ts z ,q
ts ∗ y ,·

s + y ,p
ts z ,qp

ts ∗ y ,·
s ) f ′′(yq

s) + y ,p
ts z ,p

ts ∗ y ,·
s (f ′′(yq

s) − f ′′(yp
s))

Jqp
5 = R ,qp

ts f ′(yq
s) +R ,p

ts (f ′(yq
s) − f ′(yp

s)) .

With ( 4.58 )-( 4.60 ) at hand, and recalling Definition  2.2.18 for the spaces W , it is readily

checked, using the information of the regularities in the different terms of Ji for i = 1, . . . , 5

that J ∈ W (2ρ+2γ,2γ,η,ζ)
2 . We omit further details, as the arguments follows directly along the

same lines as in previous computations in the proof of claim 1.

Summarizing our analysis so far, we have now proved both Claim 1 and Claim 2 above.

Therefore we obtain that (φ, φ , φ , φ ) is an element of D(α,γ,η,ζ)
z .

Step 2: Proof of relation ( 4.32 ). According to the definition (  4.11 ) for the norm in D(α,γ)
z ,

we have

‖(φ, φ , φ , φ )‖z;(α,γ,η,ζ) = ‖φ ‖(α,γ,η,ζ) + ‖φ ‖(α,γ,η,ζ) + ‖Rφ‖(3ρ+3γ,3γ,η,ζ) + ‖Rφ ‖(2ρ+2γ,2γ,η,ζ).

(4.61)

In the following, we will bound four terms in the right hand side of ( 4.61 ) separately.

We begin to handle the term ‖φ ‖(α,γ,η,ζ) in (  4.61 ). We recall that φ is given by ( 4.31 ),

and its (α, γ)-norm is introduced in Definition  2.3.6 . According to this definition, it is thus

enough to bound ‖φ ‖(α,γ),1 and ‖φ ‖(α,γ,η,ζ),1,2,3. Towards this aim, we write

∣∣∣∣φ ,τ,τ,τ
ts

∣∣∣∣ =
∣∣∣∣y ,τ,τ

t f ′(yτ
t ) − y ,τ,τ

s f ′(yτ
s )
∣∣∣∣ =

∣∣∣∣y ,τ,τ
t (f ′(yτ

t ) − f ′(yτ
s )) + y ,τ,τ

ts f ′(yτ
s )
∣∣∣∣

.‖f‖C2
b
(|y0| + ‖y‖(α,γ),1 + ‖y ‖(α,γ,η,ζ),1,2)ψ1

α,γ(τ, t, s), (4.62)
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where psi1 as given in ( 2.1 ). This yields

‖φ ‖(α,γ),1 . ‖f‖C2
b
(|y0| + ‖y‖(α,γ),1 + ‖y ‖(α,γ,η,ζ),1,2). (4.63)

We now wish to handle the norm ‖φ ‖(α,γ,η,ζ),1,2,3 in (  3.15 ). Otherwise stated, we wish to

bound the terms in the right hand side of (  3.17 ) for φ . For the term ‖φ ‖(α,γ,η,ζ),1,2,>, we

thus write

∣∣∣∣φ ,p′,p2,p
ts − φ ,p′,p1,p

ts

∣∣∣∣ =
∣∣∣∣y ,p2,p

t f ′(yp′

t ) − y ,p2,p
s f ′(yp′

s ) − y ,p1,p
t f ′(yp′

t ) + y ,p1,p
s f ′(yp′

s )
∣∣∣∣

≤
∣∣∣∣(y ,p2,p

ts − y ,p1,p
ts

)
f ′(yp′

t )
∣∣∣∣+ ∣∣∣∣(y ,p2,p

s − y ,p1,p
s

) (
f ′(yp′

t ) − f ′(yp′

s )
)∣∣∣∣ .

In addition, owing to Remark  2.4.9 and (  3.20 ) and since y ∈ D̂(α,γ,η,ζ)
z , we have y ∈ W (α,γ,η,ζ)

2 .

Due to the fact that y is also an element of V(α,γ,η,ζ) according to Remark  2.4.8 , we get

∣∣∣∣φ ,p′,p2,p
ts − φ ,p′,p1,p

ts

∣∣∣∣ . ‖f‖C2
b
(|y0| + ‖y‖(α,γ),1 + ‖y ‖(α,γ,η,ζ),1,2)ψ1,2

α,γ,η,ζ(p2, p1, t, s), (4.64)

where ψ1,2 as given in ( 2.2 ). We thus have

‖φ ‖(α,γ,η,ζ),1,2 . ‖f‖C2
b
(|y0| + ‖y‖(α,γ),1 + ‖y ‖(α,γ,η,ζ),1,2). (4.65)

Moreover, it is easily seen that ‖φ ‖(α,γ,η,ζ),1,3 and ‖φ ‖(α,γ,η,ζ),2,3 are bounded exactly in the

same way as ( 4.65 ). Hence we get the following bound for ‖φ ‖(α,γ,η,ζ),1,2,3:

‖φ ‖(α,γ,η,ζ),1,2,3 . ‖f‖C2
b
(|y0| + ‖y‖(α,γ),1 + ‖y ‖(α,γ,η,ζ),1,2). (4.66)

Eventually, plugging (  4.63 ) and (  4.66 ) into (  3.15 ), we obtain the desired bound for ‖φ ‖(α,γ,η,ζ):

‖φ ‖(α,γ,η,ζ) . ‖f‖C2
b
(|y0| + ‖y‖(α,γ),1 + ‖y ‖(α,γ,η,ζ),1,2). (4.67)

We let the reader check that the term ‖φ ‖(α,γ,η,ζ) in (  4.61 ) can be treated in a similar way.

Indeed, φ has to be considered as a process in W3, exactly like φ . Therefore owing to the
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definition ( 4.31 ) of φ and to the definition ( 3.17 ) of the (1, 2, 3)-norm in W3, we get the

following bound along the same lines as ( 4.62 )-( 4.67 ):

‖φ ‖(α,γ,η,ζ) . ‖f‖C2
b
(|y0| + ‖y‖(α,γ),1 + ‖y ‖(α,γ,η,ζ),1,2). (4.68)

We are now ready to bound the fourth term ‖Rφ ‖(2ρ+2γ,2γ,η,ζ) in the right hand side of ( 4.61 ).

To this aim, recall that according to ( 4.10 ) we have

R ,τ,p
ts = y ,τ,p

ts − z ,τ
ts ∗

(
y ,τ,p,·

s + 2y ,τ,p,·
s

)
.

Comparing this expression to ( 4.52 ), we get Rφ = J . Now recall that J has been analyzed

through a decomposition in ( 4.58 )-( 4.60 ). Note that all the terms appearing in the decom-

position are directly bounded due to the fact that (y, y , y , 0) ∈ D̂(α,γ)
z . It is therefore readily

checked that

‖Rφ ‖(2ρ+2γ,2γ,η,ζ) ≤ C(1 + |||z|||(α,γ,η,ζ))
3
[ (

|y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ)

)
∨
(

|y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ)

)3 ]
.

Eventually, we handle the term ‖Rφ‖(3ρ+3γ,3γ,η,ζ) in (  4.61 ). Recall that Rφ is given by (  4.38 ),

and that we have already bounded the term r and r̃ in (  4.34 ) and (  4.48 ) respectively. Fur-

thermore, it follows directly that ‖Ry‖(3ρ+3γ,3γ,η,ζ) ≤ ‖(y, y , y , 0)‖z,(α,γ.η,ζ). Combining the

above considerations, we see that

‖Rφ‖(3ρ+3γ,3γ,η,ζ) . (1 + |||z|||(α,γ,η,ζ))
3
[ (

|y0| + |y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ)

)
∨
(

|y0| + |y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ)

)3 ]
.
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Gathering the bounds found above, it is now evident that

‖(φ, φ , φ , φ )‖z;(α,γ,η,ζ) .
(
1 + |||z|||(α,γ,η,ζ)

)3
[ (

|y0| + |y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ)

)

∨
(

|y0| + |y0| + |y0| + ‖(y, y , y , 0)‖z,(α,γ,η,ζ)

)3
]
,

where the hidden constant depends on ‖f‖C4
b
, α, and γ. The above relation is exactly (  4.32 ),

which concludes our proof.

Remark 2.4.14. In Proposition  2.4.13 we have obtained useful bounds on the composition map

from D̂(α,γ,η,ζ)
z (∆2([0, T ]);Rd) to D(α,γ,η,ζ)

z (∆2([0, T ]);Rm). Let us now choose a parameter

β such that β < α and we still have β − γ > 1
4 . We will in the next section onsider the

composition map from D̂(β,γ,η,ζ)
z (∆2([0, T ]);Rd) to D(β,γ,η,ζ)

z (∆2([0, T ]);Rm). Due to Remark

 2.2.7 , it is readily checked that there exists a constant C = CM,α,β,γ,η,ζ,‖f‖
C5

b

such that,

‖(φ, φ , φ , φ )‖z;(β,γ,η,ζ) ≤ C
(
1 + ‖z‖(α,γ,η,ζ)

)3
([

|y0| + |y0| + ‖(y, y , y , 0)‖z,(β,γ,η,ζ)

])
∨
([

|y0| + |y0| + ‖(y, y , y , 0)‖z,(β,γ,η,ζ)

]3
)
Tα−β. (4.69)

We close this section by presenting a technical result which leads to some useful cancel-

lations in the rough path expansion ( 4.57 ).

Lemma 2.4.15. Let f ∈ C4
b (Rd) and assume (y, y , y , 0) ∈ D̂(α,γ,η,ζ)

z (Rd) as given in Re-

mark  2.4.12 . Also recall our Notation  2.2.14 for matrix products. Then for any (s, t, τ) ∈ ∆3,

we have

y ,τ
s z ,τ

ts ∗ y ,·
s f

′′(yτ
s ) = z ,τ

ts ∗ y ,·
s ⊗ y ,τ

s f ′′(yτ
s ) (4.70)

Proof. Let L (respectively M) be the left hand side (respectively right hand side) of (  4.70 ) .

Recalling the dimension considerations after equation (  4.51 ), notice that both L and M are

elements of Rd×d. For a ∈ Rd, we consider the matrix products aL and aM in the sense of
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Notation  2.2.14 . In particular, our Notation  2.2.14 implies that aL has to be interpreted as

f ′′(yτ
s )y ,·

s ∗ z ,τ
ts y

,τ
s a. Expressing this in coordinates we get

aL =
m∑

i,j=1
f ′′(yτ

s )ij
m∑

i1=1
y ,·,ii1

s z ,τ,i1
ts

m∑
j1=1

y ,τ,jj1
s aj1

=
m∑

i,j,i1,j1=1
f ′′(yτ

s )ijy ,·,ii1
s z ,τ,i1

ts y ,τ,jj1
s aj1 . (4.71)

Similarly, the product aM can be expressed as

aM = f ′′(yτ
s )ijy ,τ

s ⊗ y ,τ
s ∗ z ,·

ts · a =
m∑

i,j,i1,j1=1
f ′′(yτ

s )ijy ,·,ii1
s y ,τ,jj1

s z ,τ,i1
ts aj1 . (4.72)

Comparing (  4.71 ) and (  4.72 ), it is clear that aL = aM for any a ∈ Rd. Thus L = M , which

finishes the proof.

2.4.2 Rough Volterra Equations

In this section we gather all the element of stochastic calculus put forward in Sections

 2.3.2 - 2.4.1 , in order to achieve one of main goals in this paper. Namely we will solve Volterra

type equations in a very rough setting.

We start by introducing a new piece of notation.

Notation 2.4.16. Let us define a new space D(β,γ,η,ζ)
z;y0

(
∆T

2

([
0, T̄

])
;Rd

)
, where y0 is of the

form (y0, y0, y0, y0 ). For 0 ≤ a < b ≤ T we define a simplex type set ∆T
2 ([a, b]) as follows,

∆T
2 ([a, b]) =

{
(s, τ) ∈ [a, b] × [0, T ]

∣∣∣ a ≤ s ≤ τ ≤ T
}
. (4.73)

Note that the first component of (s, τ) ∈ ∆T
2 ([a, b]) is restricted to [a, b] while the second

component is allowed to vary in the whole interval [0, T ]. Without loss of generality, we

assume that ‖z‖(α,γ) ≤ M ∈ R+. As in Remark  2.4.14 , we choose a parameter β < α but

still satisfying β − γ > 1/4. Let us also consider a time horizon T̄ ≤ T (this T̄ will be
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made small enough to perform a contraction argument later on). We will work on a space

D(β,γ)
z,y0 (∆T

2 ([0, T̄ ]);Rm) defined by

D(β,γ,η,ζ)
z,y0 (∆T

2 ([0, T̄ ]);Rm) =
{(

y, y , y , y
)

∈ D(β,γ,η,ζ)
z

(
∆T

2

([
0, T̄

])
;Rm

) ∣∣∣∣
y0 = {yτ

0 , y
,τ

0 , y ,τ,τ
0 , y ,τ,τ

0 } = {y0, y0, y0, y0 }
}
. (4.74)

Notice that the norm on D(β,γ,η,ζ)
z,y0 is still defined by ( 4.11 ). The only difference between

D(β,γ,η,ζ)
z,y0 and D(β,γ,η,ζ)

z in Definition  2.4.7 is that D(β,γ,η,ζ)
z,y0 has an affine space structure, in

contrast with the Banach space nature of D(β,γ,η,ζ)
z .

We are now ready to solve Volterra type equations in the rough case α− γ > 1
4 .

Theorem 2.4.17. Consider a path x ∈ cα([0, T ];Rd), and let k : ∆2 → R be a Volterra

kernel of order γ, with α − γ > 1
4 . Define z ∈ V(α,γ,η,ζ)(∆2;Rd) by zτ

t =
∫ t

0 k(τ, r)dxr and

assume there exists a tree indexed Volterra rough path z = {zσ,τ ;σ ∈ T3} above z satisfying

Hypothesis  2.4.3 . Additionally, suppose f ∈ C5
b (Rm; L(Rd;Rm)). Then there exists a unique

solution in D(α,γ,η,ζ)
z (Rm) to the Volterra equation

yτ
t = y0 +

∫ t

0
k (τ, r) dxrf (yr

r) , (t, τ) ∈ ∆2 ([0, T ]) , y0 ∈ Rm, (4.75)

where the integral is understood as a rough Volterra integral according to Theorem  2.4.10 .

Proof. We will proceed in a classical way by (i) Establishing a fixed point argument on

a small interval. (ii) Patching the solutions obtained on the small intervals. Since this

procedure is standard, we will skip some details.

We wish to solve ( 4.75 ) in a class of controlled processes. This means that the right hand

side of (  4.75 ) has to be understood according to Theorem  2.4.10 . In particular referring to

Theorem  2.4.10  (iv) , the controlled process y will be of the form y = {y, y , y , 0}. In the re-

mainder of the proof, we will consider a controlled path y ∈ D(β,γ,η,ζ)
z;y0

(
∆T

2

([
0, T̄

])
;Rm

)
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as given in (  4.74 ), that is a controlled processes y starting from an initial value y0 =

(y0, f(y0), f(y0)f ′(y0), 0). As in Remark  2.4.14 , we consider a parameter β such that

β < α, and β − γ >
1
4 . (4.76)

In addition, we introduce a mapping

MT̄ : D(β,γ,η,ζ)
z,y0

(
∆T

2

([
0, T̄

])
;Rm

)
→ D(β,γ,η,ζ)

z,y0

(
∆T

2

([
0, T̄

])
;Rm

)
, (4.77)

such that for all
(
y, y , y , 0

)
∈ D(β,γ,η,ζ)

z,y0 (Rm), we have

MT̄

(
y, y , y , 0

)τ

t

=
{(
y0 +

∫ t

0
k (τ, r) dxrf (yr

r) , f(yτ
t ), f (yτ

t )) f ′(yτ
t ), 0

) ∣∣∣∣ (t, τ) ∈ ∆T
2

([
0, T̄

])}
. (4.78)

We are now ready to implement the first piece (i) of the general strategy described above.

Step 1: Invariant ball on a small interval. In this step, our goal is to show that there exists

a ball of radius 1 in D(β,γ)
z,y0 (∆T

2 ([0, T̄ ]);Rm) which is left invariant by MT̄ provided that T̄

is small enough. To this aim, we introduce some additional notation. Namely for y as in

( 4.78 ) we define a controlled process w in the following way:

(s, t, τ) 7→ wτ
ts =

(
wτ

ts, w
,τ

ts , w
,τ

ts , 0
)

= MT̄

(
y, y , y , 0

)τ

ts
, (4.79)

where we recall that MT̄ is defined by (  4.78 ). Next consider the unit ball BT̄ within the

space D(β,γ,η,ζ)
z,y0 (∆T

2 ([0, T̄ ]);Rm), defined by

BT̄ =
{(
y, y , y , 0

)
∈ D(β,γ,η,ζ)

z,y0

(
∆T

2

([
0, T̄

])
;Rm

) ∣∣∣∣ ‖(y, y , y , 0)‖z,(β,γ,η,ζ) ≤ 1
}
. (4.80)

In order to bound the process defined by ( 4.79 ), notice that MT̄ is given as the Volterra

type integral of φ = f(y). Hence according to (  4.69 ) there exists a constant C such that

‖(φ, φ , φ , φ )‖z,(β,γ,η,ζ) .
(
1 + ‖z‖(α,γ,η,ζ)

)3 (
1 +Q3

)
T̄α−β, (4.81)
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where we have set

Q = |f(y0)| + |f(y0)f ′(y0)| + ‖(y, y , y , 0)‖z,(β,γ,η,ζ). (4.82)

In addition, our process w is defined in ( 4.79 ) as

wτ
ts =

∫ t

s
k(τ, r)dxrφ

r
r.

Thus an easy extension of (  4.14 )-( 4.17 ) to a process φ ∈ D(β,γ,η,ζ)
z with β satisfying (  4.76 )

yields

‖w‖z,(β,γ,η,ζ) ≤ C‖(φ, φ , φ , φ )‖z,(β,γ,η,ζ)‖z‖(α,γ,η,ζ) ≤ C
(
1 + ‖z‖(α,γ,η,ζ)

)4 (
1 +Q3

)
T̄α−β,

(4.83)

for a universal constant which can change from line to line. Furthermore, since we have

assumed that ‖z‖(α,γ,η,ζ) ≤ M , one can recast ( 4.83 ) as

‖w‖z,(β,γ,η,ζ) ≤ C
(
1 +M4

) (
1 +Q3

)
T̄α−β. (4.84)

Considering T̄ ≤ (C (1 +M4) (1 +Q3))
1

α−β and back to our definition ( 4.79 ), it is now easily

seen that BT̄ in (  4.80 ) is left invariant by the map MT̄ . This completes the proof of step 1.

Next, we handle the second piece (ii) of the general strategy described above.

Step 2: MT̄ is contractive. The aim of this step is to prove that MT̄ is a contraction

mapping on D(α,γ,η,ζ)
z,y0 (∆T

2 ([0, T̄ ]);Rm). That is, we will show that there exists a small T̂ ≤ T̄

and a constant 0 < q < 1 such that for two paths y = (y, y , y , 0) and ỹ = (ỹ, ỹ , ỹ , 0) in

D(β,γ)
z,y0 (∆T

2 ([0, T̂ ]);Rm) we have

∥∥∥∥MT̄

(
y − ỹ, y − ỹ , y − ỹ , 0

)∥∥∥∥
z,(β,γ,η,ζ)

≤ q
∥∥∥∥(y − ỹ, y − ỹ , y − ỹ , 0

)∥∥∥∥
z,(β,γ,η,ζ)

. (4.85)
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To this aim, we set F = f(y) − f(ỹ), and consider the controlled path F = (F, F , F , F ) ∈

D(β,γ,η,ζ)
z (∆T

2 ([0, T̂ ]);Rm) defined through Proposition  2.4.13 . According to expression (  4.78 ),

we have

MT̂

(
y − ỹ, y − ỹ , y − ỹ , 0

)τ

ts

=
{(∫ t

s
k (τ, r) dxrF

r
r , F

τ
st, F

,τ,τ
ts , 0

) ∣∣∣∣ (s, t, τ) ∈ ∆T
3

(
[0, T̂ ]

)}
. (4.86)

Hence in order to prove (  4.85 ), it is sufficient to bound the right hand side of (  4.86 ). Now

similarly to Step 1, thanks to Remark  2.4.11 and upper bounds ( 4.14 )-( 4.15 ), we obtain

∥∥∥∥MT̂

(
y − ỹ, y − ỹ , y − ỹ , 0

)∥∥∥∥
z,(β,γ,η,ζ)

≤ C‖z‖(α,γ,η,ζ)

∥∥∥∥(F, F , F , F
)∥∥∥∥

z,(β,γ,η,ζ)
T̂α−β.

(4.87)

In the following, we will bound ‖(F, F , F , F )‖z,(β,γ,η,ζ), that is, we need to find a bound

for ‖(F, F , F , F )‖z,(β,γ,η,ζ) with respect to ‖(y − ỹ, y − ỹ , y − ỹ , 0)‖z,(β,γ,η,ζ). Recalling

that F = f(y) − f(ỹ) and the definition ( 4.30 )-( 4.31 ), we can rewrite F as

F =
(
f(y) − f(ỹ), f(y)f ′(y) − f(ỹ)f ′(ỹ), f(y)f ′(y)f ′(y) − f(ỹ)f ′(ỹ)f ′(ỹ),

1
2f(y)f(y)f ′′(y) − 1

2f(ỹ)f(ỹ)f ′′(ỹ)
)
. (4.88)

The strategy to bound ‖F‖z,(β,γ,η,ζ) = ‖(F, F , F , F )‖z,(β,γ,η,ζ) as given in (  4.88 ) is very

similar to the classical rough path case as explained in [  8 ]. Due to the fact that both y and

ỹ sit in the ball BT defined by (  4.80 ), we let the patient reader to check that there exists a

constant C̃ = C̃M,α,γ,‖f‖
C5

b

such that

∥∥∥∥(F, F , F , F
)∥∥∥∥

z,(β,γ,η,ζ)
≤ C̃

∥∥∥∥(y − ỹ, y − ỹ , y − ỹ , 0
)∥∥∥∥

z,(β,γ,η,ζ)
. (4.89)

Reparting ( 4.89 ) into ( 4.87 ), we thus get the existence of a constant C such that

∥∥∥∥MT̂

(
y − ỹ, y − ỹ , y − ỹ , 0

)∥∥∥∥
z,(β,γ,η,ζ)

≤ CM
∥∥∥∥(y − ỹ, y − ỹ , y − ỹ , 0

)∥∥∥∥
z,(β,γ,η,ζ)

T̂α−β.

(4.90)

92



By choosing T̂ small enough such that q ≡ CMT̂α−β < 1, we can recast ( 4.90 ) as

∥∥∥∥MT̂

(
y − ỹ, y − ỹ , y − ỹ , 0

)∥∥∥∥
z,(β,γ,η,ζ)

≤ q

∥∥∥∥(y − ỹ, y − ỹ , y − ỹ , 0
)∥∥∥∥

z,(β,γ,η,ζ)
.

It follows that MT̄ is contractive on D(β,γ,η,ζ)
z (∆T

2 ([0, T̄ ]);Rm), which completes the proof of

Step 2.

Combining Step 1 and Step 2, we have proved that if a small enough T̂ is chosen then MT̂

admits a unique fixed point y = (y, y , y , 0) in the ball BT̂ defined by (  4.80 ). This fixed point

is the unique solution to ( 4.75 ) in BT̂ . In addition, owing to (  4.82 ) plus the fact that f, f ′

are uniformly bounded, it is easily proved that the choice of T̂ can again be done uniformly

in the starting point y0. Hence the solution on [0, T ] is constructed iteratively on intervals

[kT̂ , (k + 1)T̂ ]. The proof of Theorem  2.4.17 is now finished.

93



3. CHAPTER2

3.1 Introduction

In [ 1 ] we proposed a new methodology based on the theory of rough paths to treat

Banach-valued Volterra equations of the form

yt = y0 +
∫ t

0
k(t, s)f(ys)dx, (1.1)

where k, defined on [0, T ]2 is possibly with a singularity on the diagonal of the form |t− s|−γ

for some γ ≥ 0, and the driving signal x is only assumed to be Hölder continuous (and with

Hölder regularity possibly lower than 1
2). The Volterra rough path framework is developed

around a splitting of the arguments in a Volterra process, in the sense that one lifts the

classical form of Volterra process zt :=
∫ t

0 k(t, s)dxs defined on [0, T ], to a two parameter

object defined on the simplex ∆2[0, T ] := {(s, t) ∈ [0, T ]2|s ≤ t} given formally by

zτ
t :=

∫ t

0
k(τ, s)dxs, t ≤ τ.

Clearly, when the two parameter object is restricted to the diagonal in [0, T ]2, we have

zt
t = zt, obtaining the classical type of Volterra process. The advantage of viewing the

Volterra process as this two parameter object is that one can easily distinguish between the

regularity contributed by the driving signal versus the possible singularity obtained from the

kernel k, thus making pathwise regularity analysis easier, and sewing based arguments more

straightforward.

In a similar spirit as for classical rough paths, the idea is to lift the Volterra signal

(t, τ) 7→ zτ
t to a signature type object, satisfying certain algebraic relations, which is called

the Volterra signature. In contrast to classical rough path theory, the Volterra signature

does not satisfy Chen’s relation with the tensor product, but a convolution type product

is required in order to obtain an equivalent algebraic relation. The Volterra signature, in

combination with certain ”controlled Volterra paths” is then used to construct solutions to

( 1.1 ) in a purely pathwise manner.
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Although [  1 ] provides the basic framework for Volterra rough paths as mentioned above,

several important questions relating to this theory was left open. On the analytic side, [ 1 ]

only deals with the case when α − γ ≥ 1/3 (where we recall that α is the regularity of

the signal, while γ is the possible order of singularity from the kernel k). The problem of

extending this regime was dealt with in the article [ 7 ], where the algebraic framework was

described for α − γ ≥ 1/4. In a very recent article [ 21 ], Bruned and Kastetsiadis extends

this even further to all α − γ > 0 by invoking algebraic theories similar to that used for

non-geometric rough paths [ 2 ] and regularity structures [ 22 ].

Another important step for completeness of the framework for Volterra rough paths,

is to provide a complete probabilistic picture of how to lift a Volterra stochastic process

into a Volterra rough path, analogues to the rough path lift for stochastic processes. As

the framework for Volterra rough paths relies on spaces for Hölder volterra paths with two

parameters (one corresponding to regularity and one to singularity), a direct application of

the classical Kolmogorov continuity theorem will not provide sufficient answers, and so new

arguments needs to be developed, specifically suited for the type of Hölder spaces used. This

is what we will deal with in this article.

We begin with a recollection of the basic framework of Volterra rough paths, including

a construction of the so called convolution product, and describe the exact type of Hölder

spaces we will work with. We then extend the classical Garsia-Rodemich-Rumsey inequality

to suit our Volterra paths. To this end, ....

3.2 Preliminary results

In [ 1 ] and [ 7 ], our Volterra rough formalism was based on certain spaces of functions

having specific regularity/singularity features. Before defining the proper spaces quantifying

this type of regularity, let us introduce some notation:

Notation 3.2.1. Let T > 0 be a time horizon, and n ≥ 2. Then the simplex ∆T
n is defined

by

∆T
n

{
(s1, . . . , sn) ∈ [0, T ]n; 0 ≤ s1 < · · · < sn ≤ T

}
.
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When this causes no ambiguity, we will abbreviate ∆T
n as ∆n. For (s, t) ∈ ∆2, we designate

by P a generic partition of [s, t]. Two successive points in this partition are written as

[u, v] ∈ P.

The functions quantifying our regularities are also labeled in the following notation.

Notation 3.2.2. Let (α, γ) ∈ (0, 1)2 be such that α > γ. For (s, t, τ) ∈ ∆3, we set

ψ1
α,γ(τ, t, s) =

[
|τ − t|−γ|t− s|α

]
∧ |t− s|α−γ. (2.1)

Considering two additional parameters ζ ∈ [0, α − γ) and η ∈ [ζ, 1], we also set

ψ1,2
α,γ,η,ζ(τ, τ ′, t, s) = |τ − τ ′|η|τ ′ − t|−(η−ζ)

([
|τ ′ − t|−γ−ζ |t− s|α

]
∧ |t− s|α−γ−ζ

)
(2.2)

We are now ready to introduce some functional spaces called V(α,γ,η,ζ), which are also

used in the definition of V(α,γ) in [  1 ], [ 7 ]. Those spaces are natural function sets when dealing

with Volterra type regularities.

Definition 3.2.3. Let m ≥ 1, (α, γ) ∈ (0, 1)2 with α− γ > 0, and ζ ∈ [0, α − γ), η ∈ [ζ, 1].

Throughout the article we consider functions z : ∆3 → Rm of the form (s, t, τ) 7→ zτ
ts, such

that zτ
0 = z0 for all τ ∈ (0, T ]. We define the space of Volterra paths of index (α, γ, η, ζ),

denoted by V(α,γ,η,ζ)(∆3;Rm), as the set of such functions satisfying

‖z‖(α,γ,η,ζ) = ‖z‖(α,γ),1 + ‖z‖(α,γ,η,ζ),1,2 < ∞. (2.3)

Recalling Notation  3.2.1 and  3.2.2 , the 1-norms and (1,2)-norms in ( 2.3 ) are respectively

defined as follows:

‖z‖(α,γ),1 = sup
(s,t,τ)∈∆3

|zτ
ts|

ψ1
α,γ(τ, t, s) , (2.4)

‖z‖(α,γ,η,ζ),1,2 = sup
(s,t,τ ′,τ)∈∆4

|zττ ′
ts |

ψ1,2
α,γ,η,ζ(τ, τ ′, t, s)

, (2.5)
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with the convention zτ
ts = zτ

t − zτ
s and zττ ′

s = zτ
s − zτ ′

s . Notice that under the mapping

z 7→ |z0| + ‖z‖(α,γ,η,ζ),

the space V(α,γ,η,ζ) is a Banach space.

Remark 3.2.4. This remark has to be changed according to our new version of [ 7 ]. The

spaces V(α,γ) defined in [ 1 ], [  7 ] are based on a different norm than (  2.3 ). Namely the norm

in V(α,γ) introduced therein could be spelled out as

‖z‖(α,γ) = ‖z‖(α,γ),1 + sup
ζ∈[0,α−γ), η∈[ζ,1]

‖z‖(α,γ,η,ζ),1,2, (2.6)

where the norms in the right hand side above are still defined by (  2.4 )-( 2.5 ). However, the

sup in ζ, η in (  2.6 ) is delicate to handle for the stochastic processes we shall consider in

this paper. We thus let the patient reader check the following assertion: all the theoretical

considerations in [ 1 ], [ 7 ] are still correct if we replace V(α,γ) by a space W of the form

W(∆3;Rm) =
M⋂
i=1

V(αi,γi,ηi,ζi)(∆3;Rm), with M < ∞, (2.7)

for some specific values of (αi, γi, ηi, ζi). The norm on W is given by

‖z‖W =
M∑
i

‖z‖(αi,γi,ηi,ζi). (2.8)

More specifically, in [  1 ] we consider M = 2 and we use (α1, γ1, η1, ζ1) = (α, γ, η, ζ) in Lemma

22, and (α1, γ1, η1, ζ1) = (α, γ, η, 0) in Theorem 32. In the current paper, in for example

Proposition  3.4.9 , we consider M = 3, let (α1, γ1, η1, ζ1) = (α, γ, 0, 0), (α2, γ2, η2, ζ2) =

(α, γ, η, ζ) and (α3, γ3, η3, ζ3) = (α, γ, η+ 1
p
, ζ+ 1

p
) for some fixed p determined in Proposition

 3.4.9 and  3.4.13 .
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Remark 3.2.5. As mentioned in [  7 , Remark 2.6], the spaces V(α,γ,η,ζ) enjoy embedding prop-

erties of the form V(α,γ,η,ζ) ⊂ V(β,γ,η,ζ) for 0 < α < β < 1. In addition, the norms defined by

( 2.3 )-( 2.5 ) verify the following relation on [0, T ]:

‖y‖(β,γ),1 ≤ Tα−β‖y‖(α,γ),1, ‖y‖(β,γ,η,ζ),1,2 ≤ Tα−β‖y‖(α,γ,η,ζ),1,2, ‖y‖(β,γ,η,ζ) ≤ Tα−β‖y‖(α,γ,η,ζ).

Convolution products also played a crucial role for the considerations in [  7 ]. Let us recall

a proposition establishing the existence of such convolution products in a general setting.

Proposition 3.2.6. We consider two Volterra paths z ∈ V (α,γ,η,ζ)(Rd) and y ∈ V (α,γ,η,ζ)(L(Rd))

as given in Definition  3.2.3 , where we recall that α, γ ∈ (0, 1). Define ρ = α−γ, and assume

that ρ > 0, ζ ∈ [0, ρ) and η ∈ [ζ, 1]. Then the convolution product of the two Volterra paths

y and z is a bilinear operation on V(α,γ,η,ζ)(Rd) given by

zτ
tu ∗ y·

us =
∫

t>r>u
dzτ

r y
r
us := lim

|P|→0

∑
[u′,v′]∈P

zτ
v′u′yu′

us, (2.9)

where P is a generic partition of [u, t] for which we recall Notation  3.2.1 . The integral

in ( 2.9 ) is understood as a Volterra-Young integral for all (s, u, t, τ) ∈ ∆4. Moreover, the

following two inequalities hold for any η ∈ [0, 1], ζ ∈ [0, 2ρ) and any tuple (s, u, t, τ, τ ′) lying

in ∆5:

|zτ
tu ∗ y·

us| . ‖z‖(α,γ),1‖y‖(α,γ,η,ζ),1,2 ψ
1
2α−γ,γ(τ, t, s), (2.10)∣∣∣zτ ′τ

tu ∗ y·
us

∣∣∣ . ‖z‖(α,γ,η,ζ),1,2‖y‖(α,γ,η,ζ),1,2 ψ
1,2
2α−γ,γ,η,ζ(τ, τ ′, t, s). (2.11)

Let us also recall the definition of an operator δ acting on increments, which is useful for

rough paths constructions.

Notation 3.2.7. Let g be a path from ∆2 to Rm, and consider (s, u, t) ∈ ∆3. Then the

quantity δugts is defined by

δugts = gts − gtu − gus. (2.12)
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With Definition  3.2.3 and Proposition  3.2.6 in hand, we are now ready to state the main

assumption we have used in [  7 ]. Namely our Volterra rough paths analysis relies on the

ability to define a stack {zj,τ ; j ≤ n} of Volterra iterated integrals according to the following

definition.

Definition 3.2.8. A Volterra rough path above z is a family {zj,τ ; j ≤ n}, where n satisfies

n = bρ−1c for ρ = α− γ > 0. This family is assumed to enjoy the following properties:

(i) z1 = z and zj,τ
ts ∈ (Rm)⊗j.

(ii) For all j ≤ n and (s, t, τ) ∈ ∆3 we have

δuzj,τ
ts =

j−1∑
i=1

zj−i,τ
tu ∗ zi,·

us =
∫ t

s
dzj−i,τ

tr zi,r
us, (2.13)

where the right hand side of ( 2.13 ) is given by Proposition  3.2.6 .

(iii) For all j = 1, . . . , n, we have zj ∈ V (jρ+γ,γ,η,ζ).

As the reader might have seen, our Definition  3.2.8 is a natural extension of the more

classical definition of rough path [  23 ], adapted to our context with singularities at t = τ

and prominent role of convolution products.In the decomposition ( 2.13 ), we would like to

quantify the regularity of some paths depending on a variable (s, u, t, τ) ∈ ∆4. We label a

small variation of Definition  3.2.3 in this sense (see also in [ 7 , Definition 2.9]).

Definition 3.2.9. As in Definition  2.2.4 , consider m ≥ 1, (α, γ) ∈ (0, 1)2 with α − γ > 0,

and ζ ∈ [0, α − γ), η ∈ [ζ, 1]. Let z : ∆4 → Rm be of the form (s, u, t, τ) 7→ zτ
tus. The

definition of V(α,γ,η,ζ)(∆3;Rm) can be extended in order to define a space V(α,γ,η,ζ)(∆4;Rm),

by using the same definition as ( 2.3 ). That is we have z ∈ V (α,γ,η,ζ)(∆4;Rm) if

‖z‖(α,γ,η,ζ) = ‖z‖(α,γ),1 + ‖z‖(α,γ,η,ζ),1,2 < ∞. (2.14)
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The quantities ‖z‖(α,γ),1 and ‖z‖(α,γ,η,ζ),1,2 in ( 2.14 ) are slight modifications of ( 2.4 ) and

( 2.5 ), respectively defined by

‖z‖(α,γ),1 = sup
(s,u,t,τ)∈∆4

|zτ
tus|

ψ1
α,γ(τ, t, s) , (2.15)

and

‖z‖(α,γ,η,ζ),1,2 = sup
(s,u,t,τ ′,τ)∈∆5

|zττ ′
tus|

ψ1,2
α,γ,η,ζ(τ, τ ′, t, s)

. (2.16)

3.3 An extension of Garsia-Rodemich-Rumsey’s inequality

This section is devoted to extend Garsia-Rodemich-Rumsey’s celebrated result [  24 ] to

the Volterra space V(α,γ,η,ζ) introduced in Definition  3.2.3 . To this aim, let us introduce an

integral norm which will quantify the regularity of our processes.

Definition 3.3.1. Let z : ∆3 → Rd be a continuous Volterra increment. Then for some

parameters p ≥ 1 and α, γ ∈ (0, 1), ζ ∈ [0, α − γ), η ∈ [ζ, 1] we define

U τ
(α,γ),p,1 (z; η, ζ) :=

(∫
(v,w)∈∆τ

2

|zτ
wv|2p

|τ − w|−2p(η−ζ)|ψ1
α,γ+ζ(τ, w, v)|2p|w − v|2

dvdw

) 1
2p

(3.1)

U τ
(α,γ,η,ζ),p,1,2 (z) :=

∫
(v,w,r′,r)∈∆τ

4

|zrr′
wv |2p

|ψ1,2
α,γ,η,ζ(r, r′, w, v)|2p|w − v|2|r − r′|2

dvdwdr′dr

 1
2p

,

(3.2)

where recall that the functions ψ1, ψ1,2 are respectively defined in ( 2.1 ) and ( 2.2 ).

Remark 3.3.2. Notice that if we set

Dτ (w, v) = |zτ
wv|2p

|τ − w|−2p(η−ζ)|ψ1
α,γ(τ, w, v)|2p|w − v|2

,

then we trivially have Dτ (w, v) ≥ 0. Plugging this information in relation (  3.1 ), we get that

τ 7→ U τ
α,γ,p,1(z; η, ζ) is a non-decreasing function. Thus for τ ≤ T we have U τ

(α,γ),p,1(z; η, ζ) ≤

UT
(α,γ),p,1(z; η, ζ).
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Remark 3.3.3. The quantity U τ
(α,γ),p,1 (z; η, ζ) evaluated at η = ζ = 0, will be denoted by

U τ
(α,γ),p,1 (z) for notational sake.

We now state and prove our extension of Garsia-Rodemich-Rumsey’s inequality, that is

a theorem relating the functional U and the regularity of processes in V(α,γ).

Lemma 3.3.4. Let z : ∆3 → Rd be a continuous increment. Then for any κ ∈ (0, 1),

γ ∈ [0, κ), ζ ∈ [0, κ− γ) and η ∈ [ζ, 1] there exists a universal constant C > 0 such that for

all (s, t, τ) ∈ ∆3

|zτ
ts| ≤ C|τ − t|−(η−ζ)ψ1

κ,γ+ζ(τ, t, s)
(
U τ

(κ,γ),p,1(z; η, ζ) + ‖δz‖[s,t]
(κ,γ,η,ζ),1

)
, (3.3)

where the quantity ‖δz‖[s,t]
(κ,γ,η,ζ),1 is defined as

‖δz‖[s,t]
(κ,γ,η,ζ),1 = sup

s≤u<v≤t

|δuzτ
vs|

|τ − v|−(η−ζ)ψ1
κ,γ+ζ(τ, v, s) . (3.4)

In particular, for η = ζ = 0, we have

|zτ
ts| . ψ1

κ,γ(τ, t, s)
(
U τ

(κ,γ),p,1(z) + ‖δz‖(α,γ),1
)
, (3.5)

where ‖δz‖(α,γ),1 is given by ( 2.15 ).

Proof. Consider a tuple (s, t, τ) ∈ ∆3, with t − s < T
2 . Let us first construct a sequence

of points (sk)k≥0, such that sk ∈ [0, T ] and converging to s by induction. Namely we set

s0 = t, we suppose that s0, s1, . . . , sk have been constructed, and let Dk = (s, sk+s
2 ). We also

introduce a function I as follows:

I(v) :=
∫ v

s

|zτ
vu|2p

|τ − v|−2p(η−ζ)|ψ1
κ,γ+ζ(τ, v, u)|2p|v − u|2

du. (3.6)
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According to the value of I, we define two subsets of the interval Dk:

Ak :=
{
v ∈ Dk

∣∣∣∣ I(v) >
4(U τ

(κ,γ),p,1 (z; η, ζ))2p

|sk − s|

}
, (3.7)

Bk :=
{
v ∈ Dk

∣∣∣∣ |zτ
skv|2p

|τ − sk|−2p(η−ζ)|ψ1
κ,γ+ζ(τ, sk, v)|2p|sk − v|2

>
4I(sk)
|sk − s|

}
, (3.8)

where we recall again that ψ1
κ,γ+ζ(τ, v, u) is given by (  2.1 ). We claim that Ak ∪ Bk ⊂ Dk,

where the inclusion is strict. Toward this aim, observe that the set of (u, v) such that

s < u < v <
sk + s

2

is included in [0, T )2. Hence due to the definition (  3.1 ) of U τ
(κ,γ),p,1(z; η, ζ) we get

(
U τ

(κ,γ),p,1 (z; η, ζ)
)2p

≥
∫

Ak

dv I(v). (3.9)

Therefore thanks to relation ( 3.7 ) defining Ak, we get

(
U τ

(κ,γ),p,1(z; η, ζ)
)2p

>
4
(
U τ

(κ,γ),p,1(z; η, ζ)
)2p

|sk − s|
µ(Ak), (3.10)

where µ(Ak) denotes the Lebesgue measure of set Ak. It is thus readily checked from (  3.10 )

that

µ(Ak) < |sk − s|
4 = µ(Dk)

2 . (3.11)

Let us argue similarly for the set Bk. Namely note that since the set Bk defined by (  3.8 ) is

a subset of (s, sk), we have

I(sk) ≥
∫

Bk

|zτ
skv|2p

|τ − sk|−2p(η−ζ)|ψ1
κ,γ+ζ(τ, sk, v)|2p|sk − v|2

dv. (3.12)

Thus plugging the definition ( 3.8 ) of Bk in the right hand side of ( 3.12 ), we get

I(sk) > 4µ(Bk)
|sk − s|

I(sk),
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from which we obtain again that

µ(Bk) < |sk − s|
4 = µ(Dk)

2 (3.13)

Combining ( 3.11 ) and ( 3.13 ), we have thus obtained

µ(Ak) < µ(Dk)
2 , and µ(Bk) < µ(Dk)

2 ,

Thus we get

µ(Ak) + µ(Bk) < µ(Dk), (3.14)

from which we easily deduce that Ak ∪Bk is a strict subset of Dk. Then we can choose sk+1

arbitrarily in Dk \ (Ak ∪Bk). Summarizing our considerations so far, for all n we have been

able to construct a family {s0, . . . , sn} such that for all 0 ≤ k ≤ n, we have 0 ≤ sk − s ≤ t−s
2k

and the following 2 conditions are met:

|zτ
sksk+1

|2p

|τ − sk|−2p(η−ζ)|ψ1
κ,γ+ζ(τ, sk, sk+1)|2p|sk − sk+1|2

≤ 4I(sk)
|sk − s|

, (3.15)

I(sk+1) ≤
4
(
U τ

(κ,γ),p,1(z; η, ζ)
)2p

|sk − s|
.

With ( 3.15 ) in hand, let us decompose zτ
ts into

zτ
ts = zτ

sn+1s +
n∑

k=0

(
zτ

sksk+1
+ δsk+1zτ

sks

)
. (3.16)

Let us now bound the term zτ
sksk+1

in (  3.16 ). To this aim, notice that since sk+1 6∈ Bk, we

have
|zτ

sksk+1
|2p

|τ − sk|−2p(η−ζ)|ψ1
κ,γ(τ, sk, sk+1)|2p|sk − sk+1|2

≤ 4 I(sk)
|sk − s|

. (3.17)

Moreover, we also have sk /∈ Ak−1. Hence we obtain

I(sk) <
4
(
U τ

(κ,γ),p,1(z; η, ζ)
)2p

|sk−1 − s|
. (3.18)
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Gathering ( 3.17 ) and ( 3.18 ), we thus get

|zτ
sksk+1

|2p

|τ − sk|−2p(η−ζ)|ψ1
κ,γ+ζ(τ, sk, sk+1)|2p|sk − sk+1|2

<
16
(
U τ

(κ,γ),p,1(z; η, ζ)
)2p

|sk − s||sk−1 − s|
.

(
U τ

(κ,γ),p,1(z; η, ζ)
)2p

|sk − s|2
, (3.19)

where we have used the fact that |sk − s| ≤ |sk−1 − s| for the second inequality. In addition,

thanks to |sk − sk+1| ≤ |sk − s|, it is easily seen that we can recast ( 3.19 ) as

|zτ
sksk+1

| . U τ
(κ,γ),p,1(z; η, ζ)ψ1

κ,γ+ζ(τ, sk, s)|τ − sk|−(η−ζ). (3.20)

Next recall that η is assumed to be larger than ζ, and are we also supposing that 0 ≤ ζ <

κ− γ. Thus owing to the fact that |τ − sk| ≥ |τ − t|, |sk − s| . 2−k(t− s), and recalling the

expression ( 2.1 ) for ψ1, we end up with

∣∣∣zτ
sksk+1

∣∣∣ . U τ
(κ,γ),p,1(z; η, ζ)

2k(κ−γ−ζ) ψ1
κ,γ+ζ(τ, t, s)|τ − t|−(η−ζ)

Summing this inequality over k (and using that κ− γ − ζ > 0), we get the following bound

for the right hand side of ( 3.16 ):

∣∣∣∣∣
n∑

k=0
zτ

sksk+1

∣∣∣∣∣ . U τ
(κ,γ),p,1(z; η, ζ)ψ1

κ,γ+ζ(τ, t, s)|τ − t|−(η−ζ). (3.21)

Now we turn to bound the second term δsk+1zτ
sks in the right hand side of (  3.16 ). It is clear

that

|δsk+1zτ
sks| . ‖δz‖[s,t]

(κ,γ,η,ζ),1 |τ − t|−(η−ζ)ψ1
κ,γ+ζ(τ, sk, s),

recalling that ‖δz‖[s,t]
(κ,γ,η,ζ),1 as given in ( 3.4 ). Hence similarly to (  3.21 ), we obtain

|
n∑

k=0
δsk+1zτ

sks| . ‖δz‖[s,t]
(κ,γ,η,ζ),1 |τ − t|−(η−ζ)ψ1

κ,γ+ζ(τ, t, s). (3.22)
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Plugging ( 3.21 ) and (  3.22 ) into (  3.16 ), and letting n → ∞, we get relation ( 3.3 ) thanks to

the continuity of z. This completes the proof.

In preparation for the next proposition, we recall here the classical Sobolev embedding

inequality. The particular form of the inequality stated here is as a consequence of the

classical Garsia-Rodemich-Rumsey inequality [  25 ], and can be found stated in the below

form in [ 26 , pp. 2].

Proposition 3.3.5. Let h : [a, b] → Rd be continuous. Then for any p > 1
α

the following

inequality holds

|hts| .α,p |t− s|α
(∫ b

a

∫ u

a

|huv|p

|u− v|2+pα
dvdu

) 1
p

, (3.23)

where we have set hts = ht − hs for (s, t) ∈ ∆2.

We follow up with a technical lemma, combining Proposition  3.3.5 with Lemma  3.3.4 .

Lemma 3.3.6. Let z : ∆3 → Rd be continuous. Consider some parameters γ, α ∈ (0, 1)

with γ < α, ζ ∈ [0, α − γ) and η ∈ [ζ, 1] as in Lemma  3.3.4 . Recall that ψ1,2 is defined

by ( 2.2 ) and the quantities U are introduced in Definition  3.2 . Then for any p > 1
α−γ

, the

following inequality holds for any (s, t, τ ′, r′, τ) ∈ ∆T
5 ,

 |zττ ′
ts |

ψ1,2
α,γ,η,ζ(τ, τ ′, t, s)

2p

. UT
(α,γ,η,ζ),p,1,2(z)

+
∫ τ

τ ′

∫ r

τ ′
sup

0≤s<u<v≤r′

|δuzrr′
vs |2p

ψ1,2
α,γ,η,ζ(r, r′, v, s)2p|r − r′|2

dr′ dr. (3.24)

Proof. First, since z is continuous, we apply Proposition  3.3.5 to the increment zτ
ts −zτ ′

ts, and

we get ∣∣∣zττ ′
ts

∣∣∣
|τ ′ − τ |η

.

∫ τ

τ ′

∫ r

τ ′

∣∣∣zrr′
ts

∣∣∣2p

|r − r′|2+2pη
dr′dr


1/2p

. (3.25)

Moreover, comparing ( 2.1 ) and ( 2.2 ) it is easily seen that

ψ1,2
α,γ,η,ζ(τ, τ ′, t, s) = |τ − τ ′|η |τ ′ − t|−(η−ζ)

ψ1
α,γ+ζ(τ ′, t, s). (3.26)
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Plugging ( 3.26 ) in ( 3.25 ), we end up with

 |zττ ′
ts |

ψ1,2
α,γ,η,ζ(τ, τ ′, t, s)

2p

. I(τ, τ ′, t, s), (3.27)

where we have set

I(τ, τ ′, t, s) =
∫ τ

τ ′

∫ r

τ ′

∣∣∣zrr′
ts

∣∣∣2p

|τ ′ − t|−2p(η−ζ)
∣∣∣ψ1

α,γ+ζ(τ ′, t, s)
∣∣∣2p

|r − r′|2+2pη
dr′ dr.

Invoking the fact that t ≤ τ ′ ≤ r′ ≤ τ and η − ζ ≥ 0 we have |τ ′ − t|η−ζ ≤ |r′ − t|η−ζ . Hence

it immediately follows that

I(τ, τ ′, t, s) .
∫ τ

τ ′

∫ r

τ ′

|zrr′
ts |2p

|r′ − t|−2p(η−ζ)
∣∣∣ψ1

α,γ+ζ(r′, t, s)
∣∣∣2p

|r − r′|2+2pη
dr′ dr. (3.28)

We now fix r and apply inequality ( 3.3 ) to the Volterra path (r′, t, s) 7→ zrr′
ts . We get

∣∣∣zrr′

ts

∣∣∣ . |r′ − t|−(η−ζ)
ψ1

α,γ+ζ (r′, t, s)
(
U r′

(α,γ),p,1(zr,·; η, ζ) + ‖δzr,·‖[s,t]
(α,γ,η,ζ),1‖

)
. (3.29)

We now plug ( 3.29 ) into (  3.28 ), recall the definition ( 3.1 ) of U r′ , resort to (  3.26 ) again and

use the expression of ( 3.4 ) for ‖δzr,·‖[s,t]
(α,γ,η,ζ),1. We end up with

I(τ, τ ′, t, s) . I1(τ, τ ′) + I2(τ, τ ′, t, s), (3.30)

where I1 and I2 are respectively given by

I1(τ, τ ′) =
∫ τ

τ ′

∫ r

τ ′

∫ r′

0

∫ v

0

|zrr′
vu |2p∣∣∣ψ1,2

α,γ,η,ζ(r, r′, v, u)
∣∣∣2p

|v − u|2|r − r′|2
du dv dr′ dr,

I2(τ, τ ′, t, s) =
∫ τ

τ ′

∫ r

τ ′
sup

0≤s<u<v≤t

|δuzrr′
vs |2p∣∣∣ψ1

α,γ+ζ(r′, v, s)
∣∣∣2p

|r′ − v|−2p(η−ζ)|r − r′|2+2pη
dr′ dr.
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Going back to ( 3.2 ), it is now readily checked that

I1(τ, τ ′) ≤
(
U τ

(α,γ,η,ζ),p,1,2 (z)
)2p

≤
(
UT

(α,γ,η,ζ),p,1,2 (z)
)2p

. (3.31)

Furthermore, another application of ( 3.26 ) reveals that

I2(τ, τ ′, t, s) =
∫ τ

τ ′

∫ r

τ ′
sup

0≤s<u<v≤t

|δuzrr′
vs |2p

ψ1,2
α,γ,η,ζ(r, r′, v, u)2p|r − r′|2

dr′ dr. (3.32)

Plugging ( 3.31 )-( 3.32 ) into (  3.30 ) and then back to in (  3.27 ), this achieves the proof of our

claim ( 3.24 ).

Now we will combine Lemma  3.3.4 and  3.3.6 to obtain a modified Garsia-Rodemich-

Rumsey inequality tailored to Volterra rough paths.

Proposition 3.3.7. Let z : ∆3 → Rd. For (α, γ) ∈ (0, 1)2 with α − γ > 0, ζ ∈ [0, α − γ),

and η ∈ [ζ, 1], we assume that δz ∈ V (α,γ,η,ζ) where V(α,γ,η,ζ) is introduced in Definition  3.2.9 .

Suppose κ ∈ (0, α). Then for any p > 1
α−κ

∨ 1
ζ
, the following two bounds holds:

‖z‖(κ,γ),1 . UT
(κ,γ),1,p(z) + ‖δz‖(κ,γ),1, (3.33)

‖z‖(κ,γ,η,ζ),1,2 . UT
(κ,γ,η,ζ),1,2,p(z) + ‖δz‖(κ,γ,η+ 1

p
,ζ+ 1

p
),1,2 T

2+α−κ− 1
p . (3.34)

Proof. We begin by proving ( 3.33 ). It follows directly from (  3.5 ) that for any 0 < κ < α

|zτ
ts| . ψ1

κ,γ(τ, t, s)
(
U τ

(κ,γ),p,1(z) + ‖δz‖(α,γ),1
)
,

Using that τ 7→ U τ is increasing (see Remark  3.3.2 ) and taking supremum over τ on the right

hand side above, it is easily seen that (  3.33 ) holds. We now move on to prove (  3.34 ). To
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this aim, we shall spell out the right hand side of ( 3.24 ) in a slightly different way. Namely

note that for δz ∈ V (α,γ,η,ζ) and η < η′, we have

∫ τ

τ ′

∫ r

τ ′
sup

0≤s<u<v≤t

|δuzrr′
vs |2p

ψ1,2
κ,γ,η,ζ(r, r′, v, s)2p|r − r′|2

dr′ dr

. ‖δz‖2p

(α,γ,η+ 1
p

,ζ+ 1
p

),1,2

∫ τ

τ ′

∫ r

τ ′
sup

0≤s<u<v≤t

ψ1,2
α,γ,η+ 1

p
,ζ+ 1

p

(r, r′, v, s)2p

ψ1,2
κ,γ,η,ζ(r, r′, v, s)2p|r − r′|2

dr′ dr, (3.35)

where we have used the Definition  2.5 of the (1, 2)-norm. Furthermore, since p > 1
α−κ

and

s, v ∈ [0, T ] it is readily checked that

ψ1,2
α,γ,η+ 1

p
,ζ+ 1

p

(r, r′, v, s)2p

ψ1,2
κ,γ,η,ζ(r, r′, v, s)2p|r − r′|2

. |v − s|2p(α−κ)−2 ≤ T 2p(α−κ)−2. (3.36)

Hence the right hand side of ( 3.24 ) can be upper bounded by

CT,p,α,κ‖δz‖2p

(α,γ,η+ 1
p

,ζ+ 1
p

),1,2.

Plugging this information into ( 3.24 ), the proof of ( 3.34 ) is now easily achieved.

3.4 Volterra rough path driven by fractional Brownian motion

In this section, we are going to construct the Volterra rough path driven by a fractional

Brownian motion with Hurst parameter H > 1/2. In this paper we will focus on the case

H > 1/2 (see also the Brownian case H = 1
2 in the next section). It should be noticed that

this regime leads to nontrivial rough paths development in the Volterra case, due to the

singularity of the kernel k in (  1.1 ). Let us first recall some basic facts about the stochastic

calculus of variations with respect to fractional Brownian motion.
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3.4.1 Malliavin calculus preliminaries

This section is devoted to review some elementary information of Malliavin calculus

(mostly borrowed from [  9 ]) that we will use in Section  3.4.2 and Section  3.4.3 . We first

introduce the notation for our main process of interest.

Notation 3.4.1. In the sequel we denote by B = {(B1
t , . . . , B

m
t ), t ∈ [0, T ]} a standard

m-dimensional fractional Brownian motion with Hurst parameter H ∈ (1
2 , 1). Recall that B

is a centered Gaussian process with independent coordinates. For each component Bi, the

covariance function R is defined by

R(s, t) = 1
2
(
|t|2H + |s|2H − |t− s|2H

)
. (4.1)

We now say a few words about Cameron-Martin type spaces related to each component

Bi in Notation  3.4.1 . Namely let H be the Hilbert space defined as the closure of the set of

step functions on the interval [0, T ] with respect to the scalar product

〈1[0,t],1[0,s]〉H = 1
2
(
t2H + s2H − |t− s|2H

)
.

Under our assumption H > 1/2, it is easy to see that the covariance of fBm (  4.1 ) can be

written as

R(s, t) = aH

∫ t

0

∫ s

0
|u− v|2H−2dudv,

where the constant aH is defined by aH = H(2H − 1). This implies that

〈f, g〉H = aH

∫ T

0

∫ T

0
fugv|u− v|2H−2dudv, (4.2)

for any pair of step functions f and g on [0, T ]. Therefore H can also be seen as the

completion of step functions with respect to the inner product (  4.2 ). We now introduce a
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family of additional spaces |H|⊗l which will be useful for our computations. Namely for l ≥ 1

we define |H|⊗l as the linear space of measurable functions f on [0, T ]l ⊂ Rl such that

‖f‖2
|H|⊗l := al

H

∫
[0,T ]2l

|fu||fv||u1 − v1|2H−2 · · · |ul − vl|2H−2dudv < ∞, (4.3)

where we write u = (u1, · · · , ul), v = (v1, . . . , vl) ∈ [0, T ]l. Notice that |H|⊗l is a subset

of H⊗l. The main interest of the spaces |H| is due to the fact that while H⊗l contains

distributions, the space |H|⊗l is a space of functions.

For each component Bi, the mapping 1[0,t] 7→ Bi
t can be extended to a linear isometry

between H and the Gaussian space spanned by Bi. We denote this isometry by h 7→ Bi(h).

In this way, {Bi(h), h ∈ H} is an isonormal Gaussian process indexed by the Hilbert space

H. Namely, we have

E
[
Bi(f)Bi(g)

]
= 〈f, g〉H. (4.4)

It is also worth mentioning that the Wiener integral can be approximated by Riemann type

sums. Namely for h ∈ H the following limit holds true in L2(Ω):

Bi(h) = lim
|P|→0

∑
[r,v]∈P

Bi
vr h(r), (4.5)

where the Riemann sum is written similarly to ( 2.9 ) and we recall that Bi
vr = Bi

v −Bi
r.

Let S be the set of smooth and cylindrical random variables of the form

F = f(Bs1 , . . . , BsN
),

where N ≥ 1 and f ∈ C∞
b (Rm×N). For each j = 1, . . . ,m and t ∈ [0, T ], the partial Malliavin

derivative of F with respect to the component Bj is defined for F ∈ S as the H-valued

random variable

Dj
tF =

N∑
i

∂f

∂xj
i
(Bs1 , . . . , BsN

)1[0,si](t), t ∈ [0, T ], (4.6)
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where xj
i stands for the j− th component of x. We can iterate this procedure to define higher

order derivatives Dj1,...,jlF , which take values in H⊗l. For any p ≥ 1 and integer k ≥ 1, we

define the Sobolev space Dk,p as the closure of S with respect to the norm

‖F‖p
k,p = E[|F |p] + E

 k∑
i=1

 m∑
j1,...,jl

‖Dji,...,jlF‖2
H⊗l

p/2
 . (4.7)

If V is Hilbert space, Dk,p(V ) denotes the corresponding Sobolev space of V -valued random

variables.

For any j = 1, . . . ,m, we denote by δ�,j the adjoint of the derivative operator Dj. For a

process {ut; t ∈ [0, T ]}, we say u ∈ Dom δ�,j if there is a δ�,j(u) ∈ L2(Rm) such that for any

F ∈ Dk,p the following duality relation holds

E
[
〈u,DjF 〉H

]
= E

[
δ�,j(u)F

]
. (4.8)

The random variable δ�,j(u) is also called the Skorohod integral of u with respect to the fBm

Bj, and we use the notation δ�,j(u) =
∫ T

0 utδ
�Bj

t. It is well known that D1,2(H) ⊂ Dom (δ�,j)

for all j = 1, . . . ,m.

We now introduce a pathwise type integral defined on the Wiener space, called Stratonovich

integral. Namely let u = {ut, t ∈ [0, T ]} be a continuous stochastic process, and let P be a

generic partition of [s, t]. Following [  9 , Section 3.1], we define

Bi,P
t =

∑
[r,v]∈P

Bi
vr

v − r
1[r,v](t), and Si,P

ts =
∫ t

s
ur B

i,P
r dr. (4.9)

Then the Stratonovich integral of u with respect to Bi is defined as

∫ t

s
ur dB

i
r = lim

|P|→0
Si,P

ts , (4.10)

111



where the limit is understood in probability. On the other hand, assume that u is Cκ-Hölder

with κ+H > 1. Moreover we suppose that u ∈ D1,2(H) and the derivative Dj
sut exists and

satisfies almost surely

∫ T

0

∫ T

0
|Dj

sut||t− s|2H−2ds dt < ∞, and E
[
‖Dju‖2

|H|⊗l

]
< ∞.

Then the Stratonovich integral
∫ T

0 utdB
j
t exists, and we have the following relation between

Skorohod and Stratonovich stochastic integrals:

∫ T

0
utdB

j
t =

∫ T

0
utδ

�Bj
t + aH

∫ T

0

∫ T

0
Dj

s ut|t− s|2H−2ds dt. (4.11)

We close this section by spelling out Meyer’s inequality for the Skorohod integral: given

p > 1 and an integer k ≥ 1, there is a constant ck,p such that the k-th iterated Skorohod

integral satisfies

‖(δ�)k(u)‖p ≤ ck,p‖u‖Dk,p(H⊗k) for all, u ∈ Dk,p(H⊗k). (4.12)

3.4.2 First level of the Volterra rough path

In this section, we will construct the first level of the Volterra rough path driven by a

fBm as introduced in Notation  3.4.1 . We start by defining our main object of study.

Definition 3.4.2. Consider a fractional Brownian motion B : [0, T ] → Rm as given in

Notation  3.4.1 and a function h of the form hτ
ts(r) = (τ − r)−γ

1[s,t](r) with γ < 2H − 1.

Then for (s, t, τ) ∈ ∆3 we define the increment z1,τ,i
ts =

∫ t
s (τ − r)−γ dBi

r as a Wiener integral

of the form

z1,τ,i
ts := Bi(hτ

ts). (4.13)

Remark 3.4.3. Note that for the particular type of integrand h considered in Definition  3.4.2 ,

the process Bi(hτ
ts) is additive in its lower variables, in the sense that

Bi(hτ
ts) = Bi(hτ

t0) −Bi(hτ
s0). (4.14)
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Thus defining z1,τ
t := z1,τ

t0 we have that z1 is defined on the simplex ∆2.

With Definition  3.4.2 in hand, we now estimate the second moment of z1,τ,i
ts and z1,ττ ′,i

ts .

Lemma 3.4.4. Consider the Volterra rough path z1 as given in ( 4.13 ). Then for (s, t, τ) ∈

∆3, we have

E[(z1,τ,i
ts )2] .

∣∣∣ψ1
(H,γ) (τ, t, s)

∣∣∣2 . (4.15)

While for (s, t, τ ′, τ) ∈ ∆4, ζ ∈ [0, H − γ), and η ∈ [ζ, 1], we get

E[(z1,ττ ′,i
ts )2] .

∣∣∣ψ1,2
(H,γ,η,ζ) (τ, , τ ′, t, s)

∣∣∣2 , (4.16)

where ψ1 and ψ1,2 are given in Notation  3.2.2 .

Proof. We first prove relation ( 4.15 ). According to (  4.13 ) and ( 4.4 ), we can compute

E[(z1,τ,i
ts )2] as

E[(z1,τ,i
ts )2] = E

[
Bi(hτ

ts)Bi(hτ
ts)
]

= 〈hτ
ts, h

τ
ts〉H (4.17)

Owing to relation ( 4.2 ) for the inner product in H, we thus obtain

E[(z1,τ,i
ts )2] = H(2H − 1)

∫∫
[s,t]×[s,t]

(τ − r)−γ(τ − l)−γ |r − l|2H−2 drdl. (4.18)

Notice that the function (τ − r)−γ(τ − l)−γ |r − l|2H−2 is symmetric. Hence we can recast

( 4.18 ) as

E[(z1,τ,i
ts )2] = 2H(2H − 1)

∫ t

s
(τ − r)−γdr

∫ t

r
(τ − l)−γ(l − r)2H−2dl. (4.19)

In the right hand side of ( 4.19 ), we first estimate the integral

∫ t

r
(τ − l)−γ(l − r)2H−2dl := J. (4.20)
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Since l ∈ (r, t) in ( 4.20 ), we proceed to a change of variable l = r + θ(t− r). We obtain

J = (t− r)2H−1
∫ 1

0
(τ − r − θ(t− r))−γ θ2H−2dθ ≤ (t− r)2H−1(τ − r)−γ

∫ 1

0
(1 − θ)−γθ2H−2dθ.

(4.21)

Recall that we have assumed that γ < 2H−1 < 1. Moreover H > 1/2 and thus 2H−2 > −1.

Hence the right hand side of (  4.21 ) can be expressed in terms of Beta functions in the

following way: ∫ 1

0
(1 − θ)−γθ2H−2dθ = Beta(1 − γ, 2H − 1) < ∞.

Therefore the integral J as given in ( 4.20 ) can be bounded by

J =
∫ t

r
(τ − l)−γ(l − r)2H−2dl . (t− r)2H−1(τ − r)−γ. (4.22)

Plugging ( 4.22 ) into ( 4.18 ), we thus get

E[(z1,τ,i
ts )2] .

∫ t

s
(τ − r)−2γ(t− r)2H−1dr. (4.23)

We now bound the right hand side of ( 4.23 ) in two different ways. First since (τ−r) > (t−r),

we have

E[(z1,τ,i
ts )2] .

∫ t

s
(t− r)2H−2γ−1dr . (t− s)2H−2γ, (4.24)

where we have resorted to the fact that γ < 2H − 1 < H for the second inequality. Next we

also use the fact that (τ − r) > (τ − t) in the right hand side of (  4.23 ), which allows to write

E[(z1,τ,i
ts )2] . (τ − t)−2γ

∫ t

s
(t− r)2H−1dr . (τ − t)−2γ(t− s)2H . (4.25)

Combining (  4.24 ) and (  4.25 ), we end up with the following estimate for the second moment

of z1,τ,i
ts :

E[(z1,τ,i
ts )2] .

[
(τ − t)−2γ(t− s)2H

]
∧ (t− s)2H−2γ =

(
ψ1

(H,γ)(τ, t, s)
)2
, (4.26)
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where we have appealed to the definition ( 2.1 ) of ψ1 for the second identity. Relation (  4.26 )

is the desired result ( 4.15 ).

Next, we will prove the inequality ( 4.16 ). To this aim, we first note that owing to ( 4.13 ),

we have the following expression for z1,ττ ′,i
ts ,

z1,ττ ′,i
ts = z1,τ,i

ts − z1,τ ′,i
ts = Bi(hτ

ts − hτ ′

ts). (4.27)

Similarly to ( 4.19 ), we can thus rewrite E[(z1,ττ ′,i
ts )2] as

E[(z1,ττ ′,i
ts )2] = 〈hτ

ts − hτ ′

ts, h
τ
ts − hτ ′

ts〉H

= 2H(2H − 1)
∫ t

s

[
(τ ′ − r)−γ − (τ − r)−γ

]
dr
∫ t

r

[
(τ ′ − l)−γ − (τ − l)−γ

]
(l − r)2H−2dl.

(4.28)

We now recall an elementary inequality on increments of negative power functions. Namely

for τ > τ ′ > r and η ∈ [0, 1] we have

(τ − r)−γ − (τ ′ − r)−γ . (τ − τ ′)η(τ ′ − r)−η−γ.

Plugging this upper bound into the right hand side of ( 4.28 ), we obtain

E[(z1,ττ ′,i
ts )2] . |τ − τ ′|2η

∫ t

s
(τ ′ − r)−η−γ

∫ t

r
(τ ′ − l)−η−γ(l − r)2H−2dl. (4.29)

The expression (  4.29 ) is now very similar to (  4.19 ). Therefore with the same steps as for

( 4.20 )-( 4.25 ), for some ζ ∈ [0, H − γ) and η ∈ [ζ, 1], we get

E[(z1,ττ ′,i
ts )2] . |τ − τ ′|2η|τ ′ − t|−2(η−ζ)

([
(τ − t)−2γ−2ζ(t− s)2H

]
∧ (t− s)2H−2γ−2ζ

)
. (4.30)

According to the definition ( 2.2 ) of ψ1,2, ( 4.30 ) is equivalent to

E[(z1,ττ ′,i
ts )2] .

∣∣∣ψ1,2
(H,γ,η,ζ)(τ, τ

′, t, s)
∣∣∣2 .
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This finishes the proof of ( 4.16 ).

Remark 3.4.5. One can easily extend the computation of Lemma  4.15 in order to get more

general bounds for covariance functions. Namely for any (s, u, v, τ) ∈ ∆4, and recalling the

expression ( 2.1 ) for ψ1 we have

E[z1,τ,i
us z1,τ,i

vs ] .
∣∣∣ψ1

(H,γ)(τ, v, s)
∣∣∣2 . (4.31)

Similarly for any (s, u, v, τ ′, τ) ∈ ∆5 and recalling our definition ( 2.2 ) for ψ1,2, we obtain

E[z1,ττ ′,i
us z1,ττ ′,i

vs ] .
∣∣∣ψ1,2

(H,γ,η,ζ)(τ, τ
′, v, s)

∣∣∣2 , (4.32)

where 0 ≤ ζ < H − γ and ζ ≤ η ≤ 1.

3.4.3 Second level of the Volterra rough path

In this section we turn our attention to the construction of a nontrivial Volterra rough

path above a fBm. More specifically our aim is to construct a family {z1,τ , z2,τ } verifying

Definition  3.2.8 . Let us start with the definition of z2,τ .

Definition 3.4.6. We consider a fractional Brownian motion B : [0, T ] → Rm as given in

Notation  3.4.1 , as well as the first level of the Volterra rough path z1,τ defined by ( 4.13 ). As

in Definition  3.4.2 , we assume that γ < 2H − 1. Then for (s, r, t, τ) ∈ ∆4, we set

uτ,i
ts (r) = (τ − r)−γz1,r,i

rs 1[s,t](r). (4.33)

With this notation in hand, the increment z2,τ
ts is given as follows: if i 6= j we define z2,τ,i,j

ts

as

z2,τ,i,j
ts = Bj(uτ,i

ts ), (4.34)
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where (conditionally on Bi) the random variable Bj(uτ,i
ts ) has to be interpreted as a Wiener

integral. In the case i = j, we set

z2,τ,i,i
ts =

∫ t

s
uτ,i

ts (r)dBi
r, (4.35)

where the right hand side of ( 4.35 ) is defined as a Stratonovich integral like ( 4.11 ).

Remark 3.4.7. Having the Definition  3.4.2 of z1,τ in mind when considering the process uτ,i

in ( 4.33 ), we get that z2,τ in ( 4.34 )-( 4.35 ) is formally interpreted as

z2,τ,i,j
ts =

∫ t

s
(τ − r)−γ

∫ r

s
(r − l)−γ dBi

ldB
j
r. (4.36)

Below we will show that z2,τ can indeed be considered as the double iterated integral in

( 4.36 ).

Similarly to what we did for z1, we will now estimate the second moment of z2,τ .

Proposition 3.4.8. Consider the second level z2,τ of the Volterra rough path, as defined in

( 4.34 )-( 4.35 ). Recall that H, γ satisfy H > 1/2 and γ < 2H − 1. Then for (s, t, τ) ∈ ∆3 and

any i, j = 1, . . . , d, we have

E
[(

z2,τ,i,j
ts

)2
]
.
∣∣∣ψ1

(2H−γ,γ)(τ, t, s)
∣∣∣2 . (4.37)

As far as the (1, 2)-type increments are considered, for (s, t, τ ′, τ) ∈ ∆4, ζ ∈ [0, 2(H − γ)),

and η ∈ [ζ, 1], we get

E
[(

z2,ττ ′,i,j
ts

)2
]
.
∣∣∣ψ1,2

(2H−γ,γ,η,ζ)(τ, τ
′, t, s)

∣∣∣2 , (4.38)

where ψ1 and ψ1,2 are given in Notation  3.2.2 .

Proof. We will prove relation (  4.37 ) in the following, (  4.38 ) can be treated in a similar way

and is left to the reader, for sake of conciseness. According to Remark  3.4.7 , we consider

z2,τ,i,j
ts and z2,τ,i,i

ts as different integrals. Therefore we will split the proof of (  4.37 ) into two

parts: i 6= j and i = j.
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Step 1: Relation ( 4.37 ) for i 6= j. In this step, we will show that (  4.37 ) holds for z2,τ,i,j
ts as

given in (  4.34 ). According to Definition  3.4.6 , we consider the integral (  4.34 ) as a conditional

Wiener integral. Namely due to the independence of Bi and Bj we can write

E
[(

z2,τ,i,j
ts

)2
]

= E
{
E
[(

z2,τ,i,j
ts

)2
∣∣∣∣Bi

]}
= E

{
E
[(
Bj(uτ,i

ts )
)2
∣∣∣∣Bi

]}
, (4.39)

where we recall that uτ,i
ts is defined by ( 4.33 ). Furthermore, relation (  4.39 ) for Wiener integral

reads

E
[(
Bj(uτ,i

ts )
)2
∣∣∣∣Bi

]
= ‖uτ,i

ts ‖2
H, (4.40)

and thus

E
[(

z2,τ,i,j
ts

)2
]

= E
[
‖uτ,i

ts ‖2
H

]
. (4.41)

In order to bound the right hand side of ( 4.41 ), we resort to the expression (  4.2 ) for the

inner product in H. This yields

E
[
‖uτ,i

ts ‖2
H

]
= E[〈uτ,i

ts , u
τ,i
ts 〉H] = H(2H − 1)E

[ ∫ t

s

∫ t

s

(
(τ − r1)−γ

∫ r1

s
(r1 − l1)−γdBi

l1

)
×
(

(τ − r2)−γ
∫ r2

s
(r2 − l2)−γdBi

l2

)
|r1 − r2|2H−2dr1dr2

]
.

Thanks to an easy application of Fubini’s theorem, and invoking the symmetry of the inte-

grand like in ( 4.19 ) we get

E
[
‖uτ,i

ts ‖2
H

]
= 2H(2H − 1)

∫ t

s

∫ r1

s
(τ − r1)−γ(τ − r2)−γ|r1 − r2|2H−2

× E
[∫ r1

s
(r1 − l1)−γdBi

l1

∫ r2

s
(r2 − l2)−γdBi

l2

]
dr2dr1. (4.42)

Moreover, owing to ( 4.31 ), and recalling the definition ( 2.1 ) of ψ1, we have

E
[∫ r1

s
(r1 − l1)−γdBi

l1

∫ r2

s
(r2 − l2)−γdBi

l2

]
= E

[
z1,r1,i

r1s z1,r2,i
r2s

]
. |r1 − s|2H−2γ. (4.43)
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Plugging ( 4.43 ) into ( 4.42 ), we thus get

E
[
‖uτ,i

ts ‖2
H

]
.
∫ t

s

∫ r1

s
(τ − r1)−γ(τ − r2)−γ|r1 − r2|2H−2|r1 − s|2H−2γdr1dr2. (4.44)

Similarly to what we did for (  4.18 )-( 4.25 ) in the proof of Lemma  3.4.4 , we evaluate the right

hand side of ( 4.44 ) thanks to elementary integral bounds and the use of Beta functions. We

let the patient reader check that we get

E
[
‖uτ,i

ts ‖2
H

]
.
[
|τ − t|−2γ|t− s|4H−2γ

]
∧ |t− s|4H−4γ. (4.45)

Plugging ( 4.45 ) into ( 4.40 ), we thus obtain

E
[(

z2,τ,i,j
ts

)2
]
.
[
|τ − t|−2γ|t− s|4H−2γ

]
∧ |t− s|4H−4γ =

∣∣∣ψ1
(2H−γ,γ)(τ, t, s)

∣∣∣2 , (4.46)

where we have invoked the definition ( 2.1 ) of ψ1. This is the desired result (  4.37 ).

Step 2: Relation ( 4.37 ) for i = j. In this step, we will show that relation (  4.37 ) holds for

z2,τ,i,i
ts defined by (  4.35 ). According to Definition  3.4.6 , we consider (  4.35 ) as a Stratonovich

integral like ( 4.11 ). We thus recast (  4.35 ) as

z2,τ,i,i
ts =

∫ t

s
uτ,i

ts (r)dBi
r =

∫ t

s
uτ,i

ts (r)δBi
r +H(2H−1)

∫ t

s

∫ t

s
Di

l

(
uτ,i

ts (r)
)

|r− l|2H−2dr dl, (4.47)

where uτ,i
ts (r) as given in (  4.33 ). Taking square and expectation on both sides of (  4.47 ), we

obtain

E
[(∫ t

s
uτ,i

ts (r)dBi
r

)2]
. J1 + J2, (4.48)

where the terms J1 and J2 are respectively defined by

J1 = E
[(∫ t

s
uτ,i

ts (r)δBi
r

)2]
, (4.49)

J2 = (H(2H − 1))2 E
[(∫ t

s

∫ t

s
Di

l

(
uτ,i

ts (r)
)

|r − l|2H−2dr dl
)2]

. (4.50)

In the following, we will estimate J1 and J2 separately.
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In order to upper bound J1, we recall that the integral
∫ t

s u
τ,i
ts (r)δ�Bi

r in the right hand

side of (  4.49 ) is interpreted as a Skorohod integral of the form δ�(uτ,i
ts ). Resorting to (  4.12 ),

we thus have

J1 = ‖δ�
(
uτ,i

ts

)
‖2

2 . ‖uτ,i
ts ‖2

D1,2(H⊗2). (4.51)

Let us now handle the right hand side of ( 4.51 ). Owing to (  4.7 ), we get

J1 . E
[
‖uτ,i

ts ‖2
H

]
+ E

[
‖Di

(
uτ,i

ts

)
‖2

H⊗2

]
. (4.52)

Notice that the first term of the right hand side of ( 4.52 ) is what we upper bounded in Step

1. Thanks to (  4.45 ), we obtain

E
[
‖uτ,i

ts ‖2
H

]
.
[
|τ − t|−2γ|t− s|4H−2γ

]
∧ |t− s|4H−4γ. (4.53)

In order to estimate the second term in the right hand side of (  4.52 ), let us first compute the

partial Malliavin derivative Di
l(u

τ,i
ts (r)) of uτ,i

ts (r) with respect to Bi. Specifically, we gather

( 4.13 ) and ( 4.33 ) in order to get

uτ,i
ts (r) = (τ − r)−γBi(hr

rs)1[s,t](r), with hr
rs(l) = (r − l)−γ

1[s,r](l).

Thanks to ( 4.6 ), we thus get

Di
l

(
uτ,i

ts (r)
)

= (τ − r)−γhr
rs(l)1[s,t](r) = (τ − r)−γ(r − l)−γ

1[s,r](l)1[s,t](r). (4.54)

Plugging ( 4.54 ) into the second term of the right hand side of (  4.52 ), and having the defini-

tion ( 4.3 ) of H⊗2-norms in mind, we obtain

‖Diuτ,i
ts ‖2

H⊗2 = (H(2H − 1))2
∫ t

s

∫ t

s

∫ r1

s

∫ r2

s
(τ − r1)−γ(τ − r2)−γ

× (r1 − l1)−γ(r2 − l2)−γ|l1 − l2|2H−2|r1 − r2|2H−2dl1dl2dr1dr2. (4.55)
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The right hand side of (  4.55 ) can be estimated by elementary calculus similarly to ( 4.18 )-( 4.26 ).

We let the patient reader check that

E
[
‖Diuτ,i

ts ‖2
H⊗2

]
.
[
|τ − t|−2γ|t− s|4H−2γ

]
∧ |t− s|4H−4γ. (4.56)

Eventually plugging ( 4.56 ) and ( 4.53 ) into ( 4.52 ), we end up with

J1 .
[
|τ − t|−2γ|t− s|4H−2γ

]
∧ |t− s|4H−4γ. (4.57)

Next we upper bound J2 as given in (  4.50 ). Recalling that we have computed Di
l(u

τ,i
ts (r)) in

( 4.54 ) and plugging this identity into ( 4.50 ), we obtain

J2 = (H(2H − 1))2
(∫ t

s

∫ r

s
(τ − r)−γ(r − l)−γ|r − l|2H−2dr dl

)2
.

Along the same lines as for the computations from (  4.19 ) to (  4.25 ), and recalling the fact

that γ < 2H − 1 < 1, we get the following upper bound for J2,

J2 .
[
|τ − t|−2γ|t− s|4H−2γ

]
∧ |t− s|4H−4γ. (4.58)

Eventually plugging (  4.58 ) and (  4.57 ) into (  4.48 ) and recalling again the definition ( 2.1 ) of

ψ1, we get

E
[(∫ t

s
urdB

i
r

)2]
.
[
|τ − t|−2γ|t− s|4H−2γ

]
∧ |t− s|4H−4γ =

∣∣∣ψ1
(2H−γ,γ)(τ,t,s)

∣∣∣2 .
This completes the proof of Step 2.

Eventually, combining Step 1 and Step 2, relation ( 4.37 ) holds for the increment z2,τ
ts as

given in ( 4.34 )-( 4.35 ). This concludes the proof of (  4.37 ).
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3.4.4 Properties of Volterra rough path family {z1,τ , z2,τ }

We have constructed a Volterra rough path family {z1,τ , z2,τ } and we have also upper

bounded their moment in Section  3.4.2 and Section  3.4.3 . In this section, we will verify that

{z1,τ , z2,τ } satisfies Definition  3.2.8 . We start by checking the analytic part of Definition

 3.2.8 for z1,τ .

Proposition 3.4.9. The increment z1,τ introduced in Definition  3.4.2 is almost surely in

the Volterra space V(α,γ,η,ζ)(∆3;Rm) for any α ∈ (γ,H), ζ ∈ [0, α − γ) and η ∈ [ζ, 1], where

V(α,γ,η,ζ)(∆3;Rm) is introduced in Definition  3.2.3 . In addition, for all p ≥ 1 and α < H− 3
2p

we have that

E
[
‖z1‖2p

(α,γ,η,ζ)

]
< ∞. (4.59)

Proof. In this proof, we will turn to Proposition  3.3.7 in order to prove (  4.59 ). Accord-

ing to the definition (  2.3 ) of Volterra norms, it suffices to show that E[‖z1‖2p
(α,γ),1] and

E[‖z1‖2p
(α,γ,η,ζ),1,2] are finite. We will separate the study of those two moments.

Step 1: Estimate for the 2p moment of 1-norm. Let us first upper bound E[‖z1‖2p
(α,γ),1].

Towards this aim, consider a fixed Volterra exponent γ < α < H and a parameter p > 1 to

be determined later on. Relation (  3.33 ) is then equivalent to

‖z1‖2p
(α,γ),1 .

(
UT

(α,γ),1,p(z1)
)2p

+ ‖δz1‖2p
(α,γ),1. (4.60)

Let us handle the term ‖δz1‖2p
(α,γ),1 in the right hand side of ( 4.60 ). Gathering the definitions

in ( 4.13 ) and ( 2.12 ), for (s,m, t) ∈ ∆3 we have

δmz1,τ,i
ts = Bi(hτ

ts) −Bi(hτ
tm) −Bi(hτ

ms). (4.61)

Moreover recalling that hτ
ts(r) = (τ−r)−γ

1[s,t](r), it is readily checked that hτ
ts−hτ

tm−hτ
ms = 0.

We thus get δz1,τ,i = 0 and ( 4.60 ) is reduced to

‖z1‖2p
(α,γ),1 .

(
UT

(α,γ),1,p(z1)
)2p

. (4.62)
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Taking expectations on both sides of (  4.62 ) and recalling the definition (  3.1 ) of UT
(α,γ),1,p, we

obtain

E
[
‖z1‖2p

(α,γ),1

]
. E

[∫
(v,w)∈∆τ

2

|z1,τ
wv |2p

|ψ1
α,γ(τ, w, v)|2p|w − v|2

dv dw

]
. (4.63)

Invoking Fubini’s theorem and the fact that z1,τ
wv is a Gaussian random variable, we thus get

E
[
‖z1‖2p

(α,γ),1

]
.
∫

(v,w)∈∆τ
2

E [|z1,τ
wv |2]p

|ψ1
α,γ(τ, w, v)|2p|w − v|2

dvdw. (4.64)

We can now apply ( 4.15 ), and hence relation ( 4.64 ) reads

E
[
‖z1‖2p

(α,γ),1

]
.
∫

(v,w)∈∆τ
2

|ψ1
H,γ(τ, w, v)|2p

|ψ1
α,γ(τ, w, v)|2p|w − v|2

dvdw. (4.65)

Recalling the definition ( 2.1 ) of ψ1, we obtain

E
[
‖z1‖2p

(α,γ),1

]
.
∫

(v,w)∈∆τ
2

[
|τ − w|−2pγ|w − v|2pH

]
∧ |w − v|2p(H−γ)

([|τ − w|−2pγ|w − v|2pα] ∧ |w − v|2p(α−γ)) |w − v|2
dvdw. (4.66)

In order to upper bound the right hand side of ( 4.66 ), we split set ∆τ
2 into two subsets

E1 =
{
(v, w) ∈ ∆τ

2

∣∣∣ |τ − w| ≤ |w − v|
}
, and E2 =

{
(v, w) ∈ ∆τ

2

∣∣∣ |τ − w| > |w − v|
}
.

Then relation ( 4.66 ) is equivalent to

E
[
‖z1‖2p

(α,γ),1

]
. I1 + I2, (4.67)

where I1 and I2 are respectively given by

I1 =
∫

E1

[
|τ − w|−2pγ|w − v|2pH

]
∧ |w − v|2p(H−γ)

[|τ − w|−2pγ|w − v|2pα+2] ∧ |w − v|2p(α−γ)+2dvdw, (4.68)

I2 =
∫

E2

[
|τ − w|−2pγ|w − v|2pH

]
∧ |w − v|2p(H−γ)

[|τ − w|−2pγ|w − v|2pα+2] ∧ |w − v|2p(α−γ)+2dvdw. (4.69)

In the following, we will estimate I1 and I2 separately.
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In order to upper bound I1, we first note that for any (v, w) ∈ E1, we have |τ−w| ≤ |w−v|.

Thus

|w − v|2p(H−γ) = |w − v|2pH |w − v|−2pγ ≤ |τ − w|−2pγ|w − v|2pH , (4.70)

and we trivially get

[
|τ − w|−2pγ|w − v|2pH

]
∧ |w − v|2p(H−γ) = |w − v|2p(H−γ). (4.71)

In the same way, on E1 we can write

[
|τ − w|−2pγ|w − v|2pH+2

]
∧ |w − v|2p(H−γ)+2 = |w − v|2p(H−γ)+2. (4.72)

Plugging ( 4.71 ) and ( 4.72 ) into ( 4.68 ), we get

I1 =
∫

E1

|w − v|2p(H−γ)

|w − v|2p(α−γ)+2 =
∫

E1
|w − v|2p(H−α)−2dvdw. (4.73)

Similarly, reverting the inequality in ( 4.70 ) we get that

I2 =
∫

E2

|τ − w|−2pγ|w − v|2pH

|τ − w|−2pγ|w − v|2pα+2dvdw =
∫

E2
|w − v|2p(H−α)−2dvdw. (4.74)

Now gathering ( 4.73 ) and ( 4.74 ) into ( 4.67 ), we end up with

E
[
‖z1‖2p

(α,γ),1

]
.
∫

(v,w)∈∆τ
2

|w − v|2p(H−α)−2dvdw. (4.75)

The right hand side above is easily checked to be finite as long as α < H − 1
2p

.

Step 2: Estimate for the 2p moment of (1, 2)-norm. Next, we will show that E[‖z1‖(α,γ,η,ζ),1,2]

is finite. Similarly to the proof for the 1-norm in Step 1, considering again p ≥ 1. Then

resorting to ( 3.34 ), we get

E
[
‖z1‖2p

(α,γ,η,ζ),1,2

]
. E

[(
UT

(α,γ,η,ζ),1,2,p(z1)
)2p
]
.
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As in Step 1, recalling the definition (  3.2 ) of UT
(α,γ,η,ζ),1,2,p(z), invoking Fubini’s theorem and

thanks to the fact that z1,ττ ′ is a Gaussian random variable, we obtain

E
[
‖z1‖2p

(α,γ,η,ζ),1,2

]
.
∫

(v,w,r′,r)∈∆τ
4

Ep
[
|z1,rr′

wv |2
]

|ψ1,2
α,γ,η,ζ(r, r′, w, v)|2p|w − v|2|r − r′|2

dvdwdr′dr. (4.76)

In addition, owing to ( 4.16 ), relation ( 4.76 ) yields

E
[
‖z1‖2p

(α,γ,η,ζ),1,2

]
.
∫

(v,w,r′,r)∈∆τ
4

|ψ1,2
H,γ,η+ 1

p
,ζ+ 1

p

(r, r′, w, v)|2p

|ψ1,2
α,γ,η,ζ(r, r′, w, v)|2p|w − v|2|r − r′|2

dvdwdr′dr. (4.77)

We now recall the definition ( 2.2 ) of ψ1,2 and plug this identity into ( 4.77 ). We get

E
[
‖z1‖2p

(α,γ,η,ζ),1,2

]
.
∫

(v,w,r′,r)∈∆τ
4

g(H,α,γ,η,ζ,p)(r, r′, w, v) dvdwdr′dr, (4.78)

where g(H,α,γ,η,ζ,p)(r, r′, w, v) is given by

g(H,α,γ,η,ζ,p)(r, r′, w, v) = (4.79)

|r − r′|2p(η+ 1
p

)|r′ − w|−2p(η−ζ)
([

|r′ − w|−2p(γ+ζ+ 1
p

)|w − v|2pH
]

∧ |w − v|2p(H−γ−ζ− 1
p

)
)

|r − r′|2pη|r′ − w|−2p(η−ζ) ([|r′ − w|−2p(γ+ζ)|w − v|2pα] ∧ |w − v|2p(α−γ−ζ)) |w − v|2|r − r′|2
.

Thanks to cancellations, we can simplify the right hand side of ( 4.79 ) as

g(H,α,γ,η,ζ,p)(r, r′, w, v) =

[
|r′ − w|−2p(γ+ζ)−2|w − v|2pH

]
∧ |w − v|2p(H−γ−ζ)−2

([|r′ − w|−2p(γ+ζ)|w − v|2pα] ∧ |w − v|2p(α−γ−ζ)) |w − v|2
. (4.80)

Plugging ( 4.80 ) into ( 4.78 ), we thus get

E
[
‖z1‖2p

(α,γ,η,ζ),1,2

]
.
∫

(v,w,r′,r)∈∆τ
4

[
|r′ − w|−2p(γ+ζ)−2|w − v|2pH

]
∧ |w − v|2p(H−γ−ζ)−2

([|r′ − w|−2p(γ+ζ)|w − v|2pα] ∧ |w − v|2p(α−γ−ζ)) |w − v|2
dvdwdr′dr. (4.81)
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Notice that the right hand side of (  4.81 ) is now very similar to the right hand side of (  4.66 ).

Therefore with the same steps as for ( 4.66 )-( 4.75 ), we obtain that

E
[
‖z1‖2p

(α,γ,η,ζ),1,2

]
.
∫

(v,w,r′,r)∈∆τ
4

|w − v|2p(H−α)−4dvdwdr′dr < ∞. (4.82)

The right hand side of ( 4.82 ) is finite as long as p > 3
2(H−α)−1, or equivalently α < H− 3

2p
.

Step 3: ( 4.59 ) holds for any p ≥ 1. Invoking ( 4.60 ) we immediately have

E
[
‖z1‖2p

(α,γ,η,ζ)

]
. E

[
‖z1‖2p

(α,γ),1

]
+ E

[
‖z1‖2p

(α,γ,η,ζ),1,2

]
. (4.83)

Furthermore, combining ( 4.75 ) and (  4.82 ) in the right hand side of (  4.83 ). We end up with

E
[
‖z1‖2p

(α,γ,η,ζ)

]
< ∞, for any p ≥ 1. (4.84)

This is the desired result ( 4.59 ). And it is easy to check that (  4.84 ) yields

‖z1‖(α,γ,η,ζ) < ∞ a.s.. (4.85)

This means that z1 is almost surely in the Volterra space V(α,γ,η,ζ)(∆3;Rm).

With Proposition  3.4.9 in hand, we finish the study of z1 by proving the algebraic relation

( 2.13 ) for z1,τ in more detail.

Proposition 3.4.10. The increment z1,τ,i
ts as given in ( 4.13 ) satisfies relation ( 2.13 ), that is

δmz1,τ,i
ts = 0, for all (s,m, t, τ) ∈ ∆4 a.s. (4.86)

Proof. For fixed (s,m, t, τ) ∈ ∆4, we have obtained in (  4.61 ) that δmz1,τ,i
ts = 0 almost surely.

We will now prove that

(t, τ) ∈ ∆2 7→ z1,τ
t ∈ Rm is a continuous function. (4.87)
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By a standard argument, which consists in taking limits on rational points, this will achieve

our claim ( 4.86 ).

The proof of (  4.87 ) relies on Lemma  3.4.4 . Indeed, according to (  4.15 ) for (s, t, τ) in ∆3,

we have

E
[(

z1,τ
ts

)2
]
. |t− s|2(H−γ) . (4.88)

In the same way thanks to (  4.16 ) applied with ζ = η = H−γ− ε with a small ε > 0, we get

E
[(

z1,ττ ′

ts

)2
]
. |τ − τ ′|H−γ−ε |t− s|ε . (4.89)

Gathering ( 4.88 ) and ( 4.89 ), we end up with the following inequality, valid for (s, t, τ ′, τ) ∈

∆4:

‖z1,ττ ′

ts ‖L2(Ω) . |τ − τ ′|H−γ−ε + |t− s|H−γ . (4.90)

Moreover z1,ττ ′

ts is a Gaussian random variable. Hence the upper bound (  4.90 ) can be extended

to arbitrary norms in Lp(Ω). Therefore a standard application of Kolmogorov’s criterion

yields the continuity property ( 4.88 ) for z1,τ . This finishes our proof.

We now turn to the analysis z2,τ . We start this study by verifying the algebraic relation

( 2.13 ) for z2,τ .

Proposition 3.4.11. The increment z2,τ
ts as given in ( 4.34 )-( 4.35 ) satisfies relation ( 2.13 ),

that is

δmz2,τ,i,j
ts = z1,τ,j

tm ∗ z1,·,i
ms , for all (s,m, t, τ) ∈ ∆4 a.s. (4.91)

Proof. In order to show (  4.91 ), we first prove that ( 4.91 ) holds for fixed (s,m, t) ∈ ∆τ
3.

According to Definition  3.4.6 , we will separate the proof into two cases i 6= j and i = j.

Step 1: ( 4.91 ) holds for fixed (s,m, t) ∈ ∆τ
3 when i 6= j. In this step, let us handle the case

i 6= j. For any (s,m, t) ∈ ∆τ
3, gathering ( 4.34 ) and ( 2.12 ), we have

δmz2,τ,i,j
ts = Bj

(
uτ,i

ts

)
−Bj

(
uτ,i

tm

)
−Bj

(
uτ,i

ms

)
, (4.92)
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where we recall that the process u is defined by ( 4.33 ). In order to calculate the right hand

side of (  4.92 ), it is thus sufficient to compute δmu
τ,i
ts = uτ,i

ts −uτ,i
tm −uτ,i

ms. To this aim, according

to the definition ( 4.33 ) of uτ,i , we obtain

δmu
τ,i
ts (r) = uτ,i

ts (r) − uτ,i
tm(r) − uτ,i

ms(r)

= (τ − r)−γ z1,r,i
rs 1[s,t](r) − (τ − r)−γ z1,r,i

rm 1[m,t](r) − (τ − r)−γ z1,r,i
rs 1[s,m](r).

Resorting to the definition ( 4.13 ) of z1,r,i
rs , we thus get

δmu
τ,i
ts (r) = (τ − r)−γ

(
Bi(hr

rs)1[s,t](r) −Bi(hr
rm)1[m,t](r) −Bi(hr

rs)1[s,m](r)
)
, (4.93)

where the expression for h is given in Definition  3.4.2 . The right hand side of (  4.93 ) can be

simplified by elementary calculus, we thus let the patient reader check that we have

δmu
τ,i
ts (r) = (τ − r)−γ Bi (hr

ms)1[m,t](r). (4.94)

Furthermore, according to the definition of h in Definition  3.4.2 , we have that (τ − r)−γ
1[m,t](r) =

hτ
tm(r). Hence (  4.94 ) can be recast as

δmu
τ,i
ts (r) = hτ

tm(r)Bi (hr
ms) . (4.95)

Plugging ( 4.95 ) into ( 4.92 ), we thus have

δmz2,τ,i,j
ts = Bj

(
hτ

tmB
i (hr

ms)
)
. (4.96)

Resorting to the definition ( 4.5 ) of Bj(h), the right hand side of ( 4.96 ) can be written as

δmz2,τ,i,j
ts = lim

|P|→0

∑
[r,v]

Bj
vr h

τ
tm(r)Bi(hr

ms), (4.97)

where we recall that P is a generic partition of [m, t] whose mesh |P| is converging to 0,

and where the limit holds in L2(Ω). We now consider a subsequence of partitions in order
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to get an almost sure convergence in (  4.97 ). According to the definition (  2.9 ) of convolution

product we end up with

δmz2,τ,i,j
ts = z1,τ,j

tm ∗ z1,·,i
ms ,

where we have used the definition ( 4.13 ) of z1,τ .

Step 2: ( 4.91 ) holds for fixed (s,m, t) ∈ ∆τ
3 when i = j. In this step, we will deal with

the case i = j for the the second level of the Volterra rough path. For any (s,m, t) ∈ ∆τ
3,

according to the definition ( 4.35 ) of z2,τ,i,i
ts , we obtain

δmz2,τ,i,i
ts = δm

(∫ t

s
uτ,i

ts (r)dBi
r

)
, (4.98)

where the integral above is understood in the Stratonovich sense. According to (  4.10 ), we

have ∫ t

s
uτ,i

ts (r)dBi
r = lim

|P|→0
Si,P

ts , where Si,P
ts =

∫ t

s
ui

ts(r)Bi,P
r dr.

Now for a fixed P , elementary algebraic manipulations show that

δmS
i,P
ts = z1,τ,i,P

tm ∗ z1,·,i
ms , (4.99)

where z1,τ,j,P
tm is defined by ( 4.10 ). Taking limits on both sides of (  4.99 ) as P → 0, we get

δmz2,τ,i,i
ts = Bi

(
hτ

tmB
i(hr

ms)
)

= z1,τ,i
tm ∗ z1,·,i

ms ,

which proves ( 4.91 ) for i = j.

Step 3: ( 4.91 ) holds for all (s,m, t) ∈ ∆τ
3. The proof of this fact, based on Kolmogorov’s crite-

rion for continuity of stochastic processes, is very similar to the considerations in Proposition

 3.4.10 . For sake of conciseness, it is omitted here. The proof of (  4.91 ) is now complete.

With Proposition  3.4.11 in hand, we are now ready to check the regularity of δz2,τ .

Proposition 3.4.12. Consider the second level z2,τ of the Volterra rough path, as defined

in ( 4.34 )-( 4.35 ). Recall that δz2,τ is a path defined on ∆4, and we refer to Definition  3.2.9 
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for the definition of V(α,γ,η,ζ)(∆4;Rm). We assume that H > 1/2, γ < 2H − 1, α ∈ (γ,H),

ζ ∈ [0, 2(α− γ)) and η ∈ [ζ, 1]. Then almost surely we have

δz2,τ ∈ V (2α−γ,γ,η,ζ)(∆4;Rm). (4.100)

Moreover, for all p ≥ 1 we have

E
[
‖δz2,τ ‖2p

(2α−γ,γ,η,ζ)

]
< ∞, (4.101)

where the norm above is understood as in ( 2.14 ).

Proof. In this proof, we will show that (  4.101 ) holds for any p ≥ 1, and it is easy to check

that ( 4.100 ) is a direct result of (  4.101 ). Toward this aim, according to the definition (  2.14 ),

it is necessary to prove that E[‖δz2,τ ‖2p
(2α−γ,γ),1] and E[‖δz2,τ ‖2p

(2α−γ,γ),1,2] are finite. Thanks

to ( 4.91 ), for any (s, u, t, τ) ∈ ∆4 we have

δuz2,τ
ts = z1,τ

tu ∗ z1,·
us. (4.102)

Hence resorting to ( 2.10 ), we get

∣∣∣δuz2,τ
ts

∣∣∣ =
∣∣∣z1,τ

tu ∗ z1,·
us

∣∣∣ . ‖z1‖(α,γ),1‖z1‖(α,γ,η,ζ),1,2 ψ
1
2α−γ,γ(τ, t, s). (4.103)

Dividing by ψ1
2α−γ,γ(τ, t, s) on both sides of ( 4.103 ), and then taking supremum over (s, u, t, τ) ∈

∆4, we obtain

‖δz2‖(2α−γ,γ),1 ≤ ‖z1‖(α,γ),1‖z1‖(α,γ,η,ζ),1,2 , (4.104)

where we have used the definition ( 2.15 ) of 1−norm for the Volterra space V(2α−γ,γ,η,ζ)(∆4;Rm).

Similarly, resorting to ( 2.11 ) and ( 2.16 ), for any (s, u, t, τ ′, τ) ∈ ∆5, ζ ∈ [0, 2α − 2γ) and

η ∈ [ζ, 1], we let the patient reader check that we have

‖δz2‖(2α−γ,γ,η,ζ),1,2 ≤ ‖z1‖(α,γ,η,ζ),1,2‖z1‖(α,γ,η,ζ),1,2. (4.105)
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Combining ( 4.104 ) and ( 4.105 ), and recalling the definition ( 2.14 ) again, we thus obtain

‖δz2‖(2α−γ,γ,η,ζ) = ‖δz2‖(2α−γ,γ),1 + ‖δz2‖(2α−γ,γ,η,ζ),1,2 . ‖z1‖2
(α,γ,η,ζ). (4.106)

Taking 2p moments on both sides of ( 4.106 ), we thus get

E
[
‖δz2‖2p

(2α−γ,γ,η,ζ)

]
. E

[
‖z1‖4p

(α,γ,η,ζ)

]
. (4.107)

According to ( 4.59 ), the right hand side of ( 4.107 ) is finite. This means that we have

E
[
‖δz2‖2p

(2α−γ,γ,η,ζ)

]
< ∞, for any p ≥ 1. (4.108)

This is the desired result.

Finally, let us close this section by giving the proof of the regularity result for z2,τ .

Proposition 3.4.13. Under the same assumption as for Proposition  3.4.12 , the second level

of the Volterra rough path z2,τ introduced in ( 4.34 )-( 4.35 ) is almost surely an element of

V(2α−γ,γ,η,ζ)(∆3;Rm) for any α ∈ (γ,H), ζ ∈ [0, 2(α − γ)) and η ∈ [ζ, 1]. Furthermore, for

all p ≥ 1 we have that

E
[
‖z2‖2p

(2α−γ,γ,η,ζ)

]
< ∞. (4.109)

Proof. Our strategy to prove this Proposition is the same as for the proof of Proposition

 3.4.9 , that is we will appeal to the Volterra GRR Lemma  3.3.7 to show that E[‖z2‖2p
(2α−γ,γ),1]

and E[‖z2‖2p
(2α−γ,γ,η,ζ),1,2] are both finite. Let us first show that E[‖z2‖2p

(2α−γ,γ),1] is finite.

Consider a fixed Volterra exponent α ∈ (γ,H) and a parameter p ≥ 1 to be determined

later, relation ( 3.33 ) reads

‖z2‖2p
(2α−γ,γ),1 .

(
UT

(2α−γ,γ),1,p(z2)
)2p

+ ‖δz2‖2p
(2α−γ,γ),1. (4.110)

Taking expectation on both sides of ( 4.110 ), we obtain

E
[
‖z2‖2p

(2α−γ,γ),1

]
. E

[(
UT

(2α−γ,γ),1,p(z2)
)2p
]

+ E
[
‖δz2‖2p

(2α−γ,γ),1

]
. (4.111)
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Recalling (  4.101 ), the second term of the right hand side of (  4.111 ) is finite. In order to

upper bound the left hand side of (  4.111 ), it is thus sufficient to estimate the first term

E[(UT
(2α−γ,γ),1,p(z2))2p]. Toward this aim, we set

A = E
[(
UT

(2α−γ,γ),1,p(z2)
)2p
]
.

Recalling the definition ( 3.2 ) of UT
(2α−γ,γ),1,p, we have

A = E
[∫

(v,w)∈∆τ
2

|z2,τ
wv |2p

|ψ1
2α−γ,γ(τ, w, v)|2p|w − v|2

dv dw

]
. (4.112)

Observe that z2,τ
wv is an element of the second chaos of the fBm B, on which all Lp norms are

equivalent. Hence invoking Fubini’s theorem, we get

A .
∫

(v,w)∈∆τ
2

Ep [|z2,τ
wv |2]

|ψ1
2α−γ,γ(τ, w, v)|2p|w − v|2

dv dw. (4.113)

We now apply ( 4.37 ) to the right hand side of ( 4.113 ), we obtain

A .
∫

(v,w)∈∆τ
2

|ψ1
2H−γ,γ(τ, w, v)|2p

|ψ1
2α−γ,γ(τ, w, v)|2p|w − v|2

dvdw. (4.114)

Notice that relation ( 4.114 ) is almost the same as ( 4.65 ). Hence we can carry out the same

procedure going from ( 4.65 ) to ( 4.75 ) in the proof of Proposition  3.4.9 . We end up with

A .
∫

(v,w)∈∆τ
2

|w − v|4p(H−α)−2 dvdw. (4.115)

Eventually plugging ( 4.115 ) into ( 4.111 ), we get

E
[
‖z2‖2p

(2α−γ,γ),1

]
.
∫

(v,w)∈∆τ
2

|w − v|4p(H−α)−2 dvdw + E
[
‖δz2‖2p

(2α−γ,γ),1

]
. (4.116)
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Recalling ( 4.101 ) again, the right hand side above is easily checked to be finite as long as

p > 1
4(H − α)−1. Considering such a p (which is allowed since z2,τ

wv admits moments of all

orders), we thus obtain

E
[
‖z2‖2p

(2α−γ,γ),1

]
< ∞. (4.117)

Next we will show that E[‖z2‖2p
(2α−γ,γ,η,ζ),1,2] is finite. Similarly to the steps going from ( 4.110 )

to ( 4.116 ), we resort to ( 3.34 ) in order to get

E
[
‖z2‖2p

(2α−γ,γ,η,ζ),1,2

]
.
∫

(v,w,r′,r)∈∆τ
4

|w − v|4p(H−α)−4 dvdwdr′dr

+ E
[
‖δz2,τ ‖2p

(2α−γ,γ,η+ 1
p

,ζ+ 1
p

),1,2

]
. (4.118)

Owing to (  4.101 ), the right hand side of (  4.118 ) is finite as long as p > 3
4(H−α) . Eventually

combining (  4.117 ) and (  4.118 ), and recalling our definition (  2.3 ) of (α, γ, η, ζ)-norm, we

trivially get that

E
[
‖z2‖2p

(2α−γ,γ,η,ζ)

]
< ∞. (4.119)

This completes the proof.

3.5 Volterra rough path driven by Brownian motion

3.5.1 Analysis on wiener space

The Malliavin calculus preliminaries for a Brownian motion are similar to what we wrote

in Section  3.4.1 for a fBm. Keeping most of our previous notation, let us just highlight the

main differences between the two situations.

(i) Our notation for the Brownian driving process is W = (W 1, . . . ,Wm). The covariance

function for each independent component is

R(s, t) = s ∧ t.
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(ii) The space H is L2([0, T ]), with inner product

〈f, g〉H =
∫ T

0
fugudu.

(iii) Malliavin derivatives, Sobolev spaces and Skorohod integrals are defined similarly to

( 4.6 )-( 4.7 )-( 4.8 ). However, for an adapted process u in D1,2(H), the Skorohod integral δ�,j(u)

coincides with Itô’s integral.

(iv) The Stratonovich integral can be defined as in (  4.10 ). If Du enjoys suitable continuity

properties and is an adapted process, the conection formula ( 4.11 ) reads

∫ T

0
utdB

j
t =

∫ T

0
utδ

�Bj
t +

∫ T

0
Dj

tutdt.

Notice that in a rough path setting the stochastic integrals with respect to W are naturally

understood in the Stratonovich sense.

3.5.2 Definition of the Volterra rough path

In this section we will deal with the case of a driving noise given by a m-dimensional

Brownian motion W . This case is rougher than in Section  3.4 , although arguably already

addressed in the classical reference. Nevertheless, it should be noticed that a rough path

point of view on equation (  1.1 ) driven by a Brownian motion is still useful, due to convenient

continuity properties with respect to the Volterra signature.

Definition 3.5.1. Consider a Brownian motion W : [0, T ] → Rm and a function h of the

form hτ
ts(r) = (τ − r)−γ

1[s,t](r) with γ < 1
2 . Then for (s, t, τ) ∈ ∆3 we define the increment

z1,τ,i
ts =

∫ t
s (τ − r)−γ dW i

r as a Wiener integral of the form

z1,τ,i
ts := W i(hτ

ts). (5.1)

With Definition  3.5.1 in hand, let us find a bound for second moment of z1.
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Lemma 3.5.2. Consider the Volterra rough path z1 as given in ( 4.13 ). Then for (s, t, τ) ∈

∆3, we have

E[(z1,τ,i
ts )2] .

∣∣∣ψ1
( 1

2 ,γ) (τ, t, s)
∣∣∣2 . (5.2)

While for (s, t, τ ′, τ) ∈ ∆4, ζ ∈ [0, 1
2 − γ), and η ∈ [ζ, 1], we get

E[(z1,ττ ′,i
ts )2] .

∣∣∣∣ψ1,2
( 1

2 ,γ,η,ζ) (τ, , τ ′, t, s)
∣∣∣∣2 , (5.3)

where ψ1 and ψ1,2 are given in Notation  3.2.2 .

Proof. In this proof, we will show that (  5.2 ) is held for any (s, t, τ) ∈ ∆3. ( 5.3 ) can be proved

in a similar way. Toward to this aim, according to (  3.5.1 ), we have

E[(z1,τ,i
ts )2] = E[(

∫ t

s
(τ − r)−γ dW i

r)2]. (5.4)

Recalling that B is a Brownian motion, resorting to isometry, ( 5.4 ) reads

E[(z1,τ,i
ts )2] =

∫ t

s
(τ − r)−2γ dr. (5.5)

Thanks to some elementary calculus, we obtain

E[(z1,τ,i
ts )2] .

[
|τ − t|−2γ|t− s|

]
∧ |t− s|1−2γ =

∣∣∣ψ1
1
2 ,γ(τ, t, s)

∣∣∣2 . (5.6)

Notice that we have used the definition (  2.1 ) of ψ1
1
2 ,γ

(τ, t, s). This is the desired result

( 5.2 ).

Next we turn our attention to construct the second level Volterra rough path over a

Brownian motion.
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Definition 3.5.3. We consider a Brownian motion B : [0, T ] → Rm, and the first level of

the Volterra rough path z1,τ defined by ( 5.1 ). As in Definition  3.5.1 , we assume that γ < 1
2 .

Then for (s, r, t, τ) ∈ ∆4, we set

uτ,i
ts (r) = (τ − r)−γz1,r,i

rs 1[s,t](r). (5.7)

With this notation in hand, we define the increment z2,τ
ts as a Itô-integral of the form

z2,τ,i,j
ts = Bj(uτ,i

ts ), for any i, j ∈ {1, 2, · · · ,m}2. (5.8)

Similarly to what we did for z1, we will now estimate the second moment of z2.

Proposition 3.5.4. Consider the second level z2,τ of the Volterra rough path, as defined in

( 5.8 ). Recall that γ satisfy γ < 1
2 . Then for (s, t, τ) ∈ ∆3, we have

E
[(

z2,τ
ts

)2
]
.
∣∣∣ψ1

(1−γ,γ)(τ, t, s)
∣∣∣2 . (5.9)

As far as the (1, 2)-type increments are considered, for (s, t, τ ′, τ) ∈ ∆4, ζ ∈ [0, 2(1
2 − γ)),

and η ∈ [ζ, 1], we get

E
[(

z2,ττ ′

ts

)2
]
.
∣∣∣ψ1,2

(1−γ,γ,η,ζ)(τ, τ
′, t, s)

∣∣∣2 , (5.10)

where ψ1 and ψ1,2 are given in Notation  3.2.2 .

Proof. This proof is very similar to the proof of ( 3.5.2 ). We will prove (  5.9 ), and let the

patient read show that ( 5.10 ) holds for (s, t, τ ′, τ) ∈ ∆4.According to ( 5.8 ) , we have

E
[(

z2,τ
ts

)2
]

= E
[(
W j(uτ,i

ts )
)2
]
. (5.11)

Thanks to isometry for Brownian motion, we obtain

E
[(

z2,τ
ts

)2
]

=
∫ t

s
E
[(
uτ,i

ts

)2
]
dr. (5.12)
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Recalling the definition ( 5.7 ) of u, we get

E
[(
uτ,i

ts

)2
]

= E
[
(τ − r)−2γ

(
z1,r,i

rs

)2
1[s,t](r)

]
= (τ − r)−2γE

[(
z1,r,i

rs

)2
]
1[s,t](r). (5.13)

Similarly to proof of Proposition  3.5.2 , we let patient reader check that we have

E
[(

z1,r,i
rs

)2
]
. (r − s)1−2γ. (5.14)

Plugging ( 5.14 ) into ( 5.13 ), we find a bound for E
[(
uτ,i

ts

)2
]

as follows

E
[(
uτ,i

ts

)2
]
. (τ − r)−2γ(r − s)1−2γ

1[s,t](r). (5.15)

Eventually plugging ( 5.15 ) into ( 5.12 ), we thus get

E
[(

z2,τ
ts

)2
]
.
∫ t

s
(τ − r)−2γ(r − s)1−2γdr. (5.16)

In order to get a bound for right hand side of ( 5.16 ), the process is very similar to ( 4.23 )-( 4.25 )

as for Proposition  3.4.4 . We finally obtain

E
[(

z2,τ
ts

)2
]
.
[
|τ − t|−2γ|t− s|2−2γ

]
∧ |t− s|2−4γ =

∣∣∣ψ1
(1−γ,γ)(τ, t, s)

∣∣∣2 . (5.17)

We have appealed the definition (  2.1 ) of ψ1 at the second identity of above equation. We

completes the proof.

We have constructed a Volterra rough path family {z1,τ , z2,τ } over a Brownian motion

and we have also upper bounded their moment. We will close this paper with verifying that

{z1,τ , z2,τ } satisfies Definition  3.2.8 . Let us first state that z1,τ satisfies all properties that

mentioned in Definition  3.2.8 .

Proposition 3.5.5. Consider the increment z1,τ introduced in Definition  3.5.1 . Then for

any α ∈ (γ, 1
2), ζ ∈ [0, α − γ) and η ∈ [ζ, 1], we have
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(i) z1,τ is almost surely in the Volterra space V(α,γ,η,ζ)(∆3;Rm) where V(α,γ,η,ζ)(∆3;Rm) is

introduced in Definition  3.2.3 .

(ii) For all p ≥ 1 we have that

E
[
‖z1‖2p

(α,γ,η,ζ)

]
< ∞. (5.18)

(iii)

δmz1,τ,i
ts = 0, for all (s,m, t, τ) ∈ ∆4 a.s. (5.19)

The proof is very similar to the proof as for Proposition  3.4.9 - 3.4.10 , we let the patient

reader check them. Similarly, we have following Proposition for z2.

Proposition 3.5.6. Consider the second level z2,τ of the Volterra rough path as defined in

( 5.8 ). Then the following properties hold for any γ < 1
2 , α ∈ (γ, 1

2), ζ ∈ [0, 2(α − γ)) and

η ∈ [ζ, 1].

(i) Recalling the definition ( 2.12 ) of δ, then δmz2,τ
ts satisfies relation ( 2.13 ), that is

δmz2,τ,i,j
ts = z1,τ,j

tm ∗ z1,·,i
ms , for all (s,m, t, τ) ∈ ∆4 a.s.. (5.20)

With ( 5.20 ) in hand, we get

δz2,τ ∈ V (2α−γ,γ,η,ζ)(∆4;Rm) a.s.. (5.21)

In addition, for all p ≥ 1 we have that

E
[
‖δz2,τ ‖2p

(2α−γ,γ,η,ζ)

]
< ∞. (5.22)

(ii) z2,τ is almost surely an element of V(2α−γ,γ,η,ζ). Furthermore, for all p ≥ 1 we have that

E
[
‖z2‖2p

(2α−γ,γ,η,ζ)

]
< ∞. (5.23)
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