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with 16 revolutions. In the ŷ-ẑ projection, the direction of the trajectory is
clockwise as viewed by an observer at the Earth. The polar plot, the plot on the
right, reveals the violation point of the trajectory, i.e., the red point. Transfers
into this injection point are labeled as Type B . . . . . . . . . . . . . . . . . . . 286

 6.38 (a) surface of two-maneuver transfer solutions into a Lissajous orbit at an injec-
tion with θ2 = 93.8◦, i.e., a Type A transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations. The
initial guess corresponds to a GTO departure location of λ = 0◦  . . . . . . . . . 288

 6.39 (a) surface of two-maneuver transfer solutions into a Lissajous orbit at an injec-
tion with θ2 = 93.8◦, i.e., a Type A transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations. The
initial guess corresponds to a GTO departure location of λ = 180◦  . . . . . . . . 288

26



 6.40 (a) surface of two-maneuver transfer solutions into a Lissajous orbit at an injec-
tion with θ2 = 93.8◦, i.e., a Type A transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations. The
initial guess corresponds to a GTO departure location of λ = 270◦  . . . . . . . . 289

 6.41 (a) surface of two-maneuver transfer solutions into a Lissajous orbit at an injection
with θ2 = 273.95◦, i.e., a Type B transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations.
The initial guess corresponds to a GTO departure location of λ = 0◦  . . . . . . 289

 6.42 (a) surface of two-maneuver transfer solutions into a Lissajous orbit at an injection
with θ2 = 273.95◦, i.e., a Type B transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations.
The initial guess corresponds to a GTO departure location of λ = 180◦  . . . . . 290

 6.43 (a) surface of two-maneuver transfer solutions into a Lissajous orbit at an injection
with θ2 = 273.95◦, i.e., a Type B transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations.
The initial guess corresponds to a GTO departure location of λ = 270◦  . . . . . 290

 6.44 Multiple-shooting schematic for optimization process consistent with transfers
into Lissajous orbits. The optimized transfer implements four maneuvers . . . . 292

 6.45 ∆V information for optimal Type A and Type B transfers to Sun-Earth L1 Lis-
sajous orbit with a departure epoch of June 2, 2022 12:00:00.000. Recall that Type
A and B transfers correspond to injection points of θ2 = 152.85◦ and θ2 = 333.35◦,
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

 6.46 Comparison of transfers from a GTO departure location of Ω = 220◦. The loca-
tion of the maneuvers are displayed via red points . . . . . . . . . . . . . . . . . 295

 6.47 Optimized Type A transfers to Sun-Earth Lissajous orbit with a departure epoch
of June 2, 2022 12:00:00.000. The desired Lissajous orbit is plotted in a dashed
black line and the SEZ cone is shaded in red. The motion of the trajectory post-
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ABSTRACT

Over the past twenty years, ridesharing opportunities for smallsats, i.e., secondary

payloads, has increased with the introduction of Evolved Expendable Launch Vehicle (EELV)

Secondary Payload Adapter (ESPA) rings. However, the orbits available for these secondary

payloads is limited to Low Earth Orbits (LEO) or Geostationary Orbits (GEO). By in-

corporating a propulsion system, propulsive ESPA rings offer the capability to transport a

secondary payload, or a collection of payloads, to regions beyond GEO. In this investiga-

tion, the ridesharing scenario includes a secondary payload in a dropped-off Geosynchronous

Transfer Orbit (GTO) and the region of interest is the vicinity near the Sun-Earth Lagrange

points. However, mission design for secondary payloads faces certain challenges. A signif-

icant mission constraint for a secondary payload is the drop-off orbit orientation, as it is

dependent on the primary mission. To address this mission constraint, strategies leveraging

dynamical structures within the Circular Restricted Three-Body Problem (CRTBP) are im-

plemented to construct efficient and flexible transfers from GTO to orbits near Sun-Earth

Lagrange points. First, single-maneuver ballistic transfers are constructed from a range

of GTO departure orientations. The ballistic transfer utilize trajectories within the stable

manifold structure associated with periodic and quasi-periodic orbits near the Sun-Earth

L1 and L2 points. Numerical differential corrections and continuation methods are lever-

aged to create families of ballistic transfers. A collection of direct ballistic transfers are

generated that correspond to a region of GTO departure locations. Additional communi-

cations constraints, based on the Solar Exclusion Zone and the Earth’s penumbra shadow

region, are included in the catalog of ballistic transfers. An integral-type path condition is

derived and included throughout the differential corrections process to maintain transfers

outside the required communications restrictions. The ballistic transfers computed in the

CRTBP are easily transitioned to the higher-fidelity ephemeris model and validated, i.e.,

their geometries persist in the ephemeris model. To construct transfers to specific orbits

near Sun-Earth L1 or L2, families of two-maneuver transfers are generated over a range of

GTO departure locations. The two-maneuver transfers consist of a maneuver at the GTO
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departure location and a Deep Space Maneuver (DSM) along the trajectory. Families of

two-maneuver transfers are created via a multiple-shooting differential corrections method

and a continuation process. The generated families of transfers aid in the rapid generation

of initial guesses for optimized transfer solutions over a range of GTO departure locations.

Optimized multiple-maneuver transfers into halo and Lissajous orbits near Sun-Earth L1 and

L2 are included in this analysis in both the CRTBP model and the higher-fidelity ephemeris

model. Furthermore, the two-maneuver transfer strategy employed in this analysis are easily

extended to other Three-Body systems.
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1. INTRODUCTION

Over the past 60 years, thousands of satellites have been successfully launched into Low Earth

Orbit (LEO) and beyond. The cost to launch a satellite to Low Earth Orbit (LEO) typically

ranges from $5,000/kg to $30,000/kg. Additionally, the cost for a launch to Geostationary

Orbit (GEO) is approximately $30,000/kg. For a small satellites, usually less than 500 kg,

the launch costs are often significantly higher than the cost to build the satellite bus [ 1 ]. Over

the last two decades, launching groups of small satellites simultaneously to LEO and GEO

have decreased overall mission costs. This ridesharing scenario accommodates multiple small

satellites into a single launch. Recent advances into novel propulsive systems coupled with

ridesharing vehicles allow multiple satellites to reach regions beyond GEO and necessitates

a strategic methodology to construct efficient transfers to specific regions of interest.

1.1 Motivation

Rideshare launches are now more frequent as they offer opportunities to expand mis-

sion capabilities. For example, the Lunar Crater and Observation and Sensing Satellite

(LCROSS) mission was launched as a secondary payload with the Lunar Reconnaissance

Orbiter (LRO) in 2009 to study the polar regions of the Moon [ 2 ]. This strategy decreased

mission cost for LCROSS and increased the science potential for the combined venture. In

the past ten years, an increasing number of CubeSats have launched as secondary payloads

into LEO and beyond. The two MarCO CubeSats were launched from the Insight lander

in 2018 en route to Mars. Additionally, thirteen CubeSats will be launched aboard the

Artemis-1 mission to destinations in heliocentric space and the low lunar vicinity [ 3 ]. These

CubeSats and smallsats, i.e., small satellites, are secondary payloads that benefit from the

excess capacity available from launches to LEO and GEO. However, these secondary pay-

loads face several challenges, such as significantly varying orbital geometries, shifting launch

dates and the impact of launch vehicle performance [ 4 ]. Shifting launch dates, in particular,

are dictated by constraints on the primary payload, i.e., the primary mission, and signifi-
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cantly influence the orbital geometry available for secondary payloads. Generally, a single

satellite is launched en route to an intermediate orbit before entering into its operational

orbit. In a ridesharing scenario, a secondary payload is dropped off at the intermediate orbit

used by the primary spacecraft. For example, a general mission scenario for a single satellite

en route to GEO consists of the following steps:

• Launch of satellite.

• The satellite is placed in an intermediate Geosynchronous Transfer Orbit (GTO) via

a propulsive maneuver performed by an upper stage of the launch vehicle.

• The satellite enters the operational orbit at GEO by performing an insertion maneuver

at GTO apogee.

In this scenario, any secondary payloads are dropped off at the GTO, i.e., the intermedi-

ate orbit. With roughly twenty-five yearly launches to GEO [ 5 ], see a ten-year history of

worldwide launches in Figure  1.1 , that ridesharing smallsats have adequate opportunities to

leverage. An increasing number of CubeSats have been launched from GTO as secondary

LEO

GEO

Figure 1.1. : Worldwide launches to LEO and GEO in the past 10 years. Data retrieved
from [  6 ], [  7 ]
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payloads into LEO, in fact, the launch cost for a CubeSat starts at $10,000/kg [  8 ]. Addition-

ally, interest in launching CubeSats with low-thrust engines from GTO to regions beyond

GEO has surged. Some low-thrust concepts from GTO include interplanetary transfers to

Mars [ 9 ]. Additionally, SMART-1 was launched in 2003 on a GTO with a low-thrust engine

and eventually impacted the lunar surface in 2006 [ 10 ]. Note that additional maneuvers by

the secondary payloads, e.g., smallsats and CubeSats, is provided by any on-board propulsion

system. However, due to the compact size of the secondary payloads, the on-board propulsive

capabilities are limited, especially if the desired destination is beyond GEO. Therefore, sec-

ondary payloads with chemical engines must have the propulsive capability to reach regions

beyond GEO. However, this may limit the mission lifetime as more spacecraft mass is di-

rected towards energy raising maneuvers. Recently, propulsive Evolved Expendable Launch

Vehicle (EELV) Secondary Payload Adapter (ESPA) rings have been proposed to increase

the range of available orbits for secondary payloads. A propulsive ESPA ring offers the ca-

pability to mitigate restrictive ∆V requirements imposed on the spacecraft as the system is

independent of the secondary payload bus. The LCROSS mission demonstrated the use of

these propulsive system enhancements[  4 ].

Some regions of interest beyond GEO are the collinear Lagrange points in the Sun-

Earth system. The Sun-Earth L1 Lagrange point region is an ideal location to explore

the solar environment while also offering favorable thermal conditions, eclipse avoidance,

and continuous communications. However, preliminary transfer design must incorporate

the avoidance of communications interference caused by the Sun [ 11 ]. The location of the

L2 Lagrange point offers convenient thermal conditions for any observatory mission but is

constrained by Earth eclipse conditions. The first orbiter placed in the vicinity of the Sun-

Earth L1 collinear Lagrange point was the successful International Sun-Earth Explorer-3

(ISEE-3), renamed the International Cometary Explorer (ICE) as the mission later evolved.

The objective involved observations of the solar environment; the spacecraft successfully

completed four revolutions in its Sun-Earth halo orbit before departing toward a comet via a

lunar gravity assist [ 12 ]. The ISEE-3 mission was a catalyst for future long-term missions to

Lagrange point orbits. Within the L1 region, the Advanced Composition Explorer (ACE),
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Solar Heliospheric Observatory (SOHO), and the International Physics Laboratory (WIND)

are additional examples of orbiters launched in the past twenty years [  11 ]. The addition

of smallsats near the Sun-Earth L1 Lagrange point increases our understanding of solar

environment. Alternatively, several European Space Agency (ESA) missions have leveraged

the favorable thermal and radiation conditions provided by the Sun-Earth L2 point. The

Planck and Gaia missions were placed in Lissajous orbits near L2 to study cosmic background

radiation and construct a skymap of the universe, respectively [ 13 ]. Additionally, the Sun-

Earth L2 point is the selected destination for the Nancy Grace Roman Space Telescope and

the James Webb Space Telescope.

Insights from Dynamical Systems Theory (DST) are frequently leveraged to inves-

tigate potential transfers to Sun-Earth Lagrange points. While transfers are frequently

constructed via numerical searches in a higher-fidelity model, fundamental understanding

of the dynamical regime gained through DST in a simplified model offers efficiency and

flexibility for the search effort. Periodic orbits and their invariant manifolds are frequently

implemented in a search for low cost transfers [  14 ]–[ 16 ]. Although periodic motion exists in

the Circular Restricted Three Body Model (CRTBP), periodicity is not maintained when the

orbit is transferred to a higher-fidelity model. In the CRTBP model, quasi-periodic behavior

is also available near the vicinity of specific reference periodic orbits and the geometry of the

final trajectory is significantly altered as a result of the orbit selection. Thus, quasi-periodic

motion near periodic orbits are viable design options to construct alternative initial guesses.

Manipulating hyperbolic invariant manifolds from periodic and quasi-periodic orbits expands

the search for transfers from established departure orbits [ 17 ]–[ 19 ]. These structures have

been investigated previously in the Earth-Moon system and serve to construct transfers from

locations near LEO [ 20 ]. Additionally, the existence of quasi-periodic motion is extendable

for motion near irregularly shaped bodies [ 21 ] as well as formation flying [ 22 ]. Leveraging

previous designs, as well as fundamental behaviors, enable trajectory options for secondary

payloads towards regions beyond GEO.
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1.2 Summary of Previous Contributions

Periodic orbits in the CRTBP are frequently manipulated to construct feasible trans-

fers in a complex multibody regime. Families of planar Lyapunov and out-of-plane halo orbits

have been computed and utilized for missions in the Sun-Earth and Earth-Moon systems

[ 23 ]–[ 25 ]. Grebow outlines numerical strategies for evaluating periodic orbits in the Earth-

Moon system and categorizes several periodic orbit families [ 26 ]. The numerical strategies

provided by Grebow are straightforwardly extended to the Sun-Earth system. Additionally,

existing dynamical structures in the CRTBP, such as hyperbolic invariant manifolds associ-

ated with periodic orbits, are regularly implemented in a guided search for feasible transfers

[ 14 ], [ 20 ], [ 27 ]. Incorporating periodic orbits and their associated hyperbolic manifold struc-

tures facilitates the construction of preliminary design transfer to orbits near the Sun-Earth

Lagrange points. The GENESIS orbiter was launched in 2001 en route to a halo orbit near

Sun-Earth L1 with a subsequent excursion towards L2 and leveraged hyperbolic manifolds

from halo orbits [ 15 ]. In 2004, the International Physics Laboratory (WIND) arrived near

L1 after a series of transfers through the Sun-Earth system that involved Distant Retro-

grade Orbits (DROs), close approaches near L1 and L2, and 38 targeted lunar flybys [ 28 ].

Additionally, several preliminary mission design strategies to Sun-Earth L1 and L2 incorpo-

rate periodic orbits including SOHO (L1) [ 11 ], WIND (L1) [ 11 ], the Wilkinson Microwave

Anisotropy Probe (L2), the Nancy Roman Space Telescope (expected L2) [ 14 ], and the James

Web Space Telescope [ 29 ] (expected L2).

Bounded quasi-periodic motion observed in the CRTBP provides mission designers

with added insight about the complex dynamical model. Analytical methods, such as the

Lindstedt-Poincaré method, for generating quasi-periodic orbits typically implement higher-

order expansions to express a quasi-periodic orbit near a Lagrange point as a function of

time. However, analytical methods usually require additional numerical effort to evaluate

an adequate representation of a quasi-periodic orbit. Furthermore, Akiyama et al. pro-

duced quasi-periodic orbits in the Sun-Earth system using a semi-analytical approach by

leveraging the center manifold associated with periodic orbits [  30 ]. Kolemen et al. devel-
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oped a methodology to construct quasi-periodic orbits from a set of Poincaré sections [ 31 ].

Numerical methods of generating quasi-periodic orbits in the Sun-Earth and Earth-Moon

systems have also been successfully implemented by previous authors [ 18 ], [ 21 ], [ 32 ], [ 33 ].

These methods represent periodic and quasi-periodic orbits as invariant tori in a numeri-

cal corrections process [ 32 ], [  34 ]. The numerical corrections process is easily extended to

the Bicircular Four-Body Problem and the Elliptical Restricted Three-Body Problem [ 17 ],

[ 35 ]. Using this numerical technique, Bosanac generated quasi-periodic orbits from reso-

nant orbits in the Sun-Earth and Earth-Moon systems [ 36 ]. Dynamical structures from

quasi-periodic orbits, such as hyperbolic invariant manifolds, exist and are frequently uti-

lized in early mission design. McCarthy leveraged dynamical structures from quasi-periodic

orbit to construct transfers to Sun-Earth L1 Lissajous orbits from circular low Earth orbits

[ 20 ]. Missions focused on the observation of the solar environment have effectively utilized

quasi-periodic orbits to establish long-term presence near the Sun-Earth L1 Lagrange point.

Howell et al. investigated Lissajous orbits near the Sun-Earth L1 region that avoid the Solar

Exclusion Zone (SEZ) [ 27 ]. An optimal trajectory to Sun-Earth L1 for the ACE spacecraft

with imposed SEZ restrictions is offered by Sharer et al. [ 37 ]. The operational orbit of the

SOHO spacecraft is essentially a quasi-periodic orbit around Sun-Earth L1 that maintains

a long-term presence in the L1 region to observe the heliosphere and the solar wind [ 11 ],

[ 38 ]. A recent addition to the L1 regime is the Deep Space Climate Observatory (DSCOVR),

launched in 2015. The mission objectives include real-time solar wind dynamics and space

weather forecasts while in a Lissajous orbit [  39 ], [ 40 ]. A future addition to Sun-Earth L1

includes the Interstellar Mapping and Acceleration Probe (IMAP) mission, expected launch

in 2025, which will be placed in a Lissajous orbit and will investigate the interaction of

energetic particles and the solar wind [ 41 ]. Near Sun-Earth L2 , the Gaia mission, launched

in 2013, is in a Lissajous orbit and performs maneuvers to avoid Earth eclipsing events

[ 13 ]. Quasi-periodic motion offers alternative design options for orbiters near the Sun-Earth

Lagrange points.

Access to regions beyond GEO is facilitated with propulsive ESPA rings for rideshar-

ing satellites in a GTO. Small satellites face limited access into space as the launch costs
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usually exceed the production costs. However, ESPA rings, designed and built by Moog

Space and Defense, offer the possibility to increase the number of satellites launched from

a single launch with minimal impact to the primary mission. The Department of Defense

(DoD) Space Test Program (STP-1) mission was the first mission to implement the ESPA

ring configuration on an Atlas V launch in 2007 [ 42 ]. Additionally, the LCROSS mission

and the ESPA Augmented Geostationary Laboratory Experiment (EAGLE) were the first

missions to fly on-board a propulsive ESPA ring. Recently, a number of concept designs for

propulsive EPSA rings, which integrate either chemical or electrical propulsion, have been

proposed to transport a smallsat or a group of smallsats into GEO or beyond [  43 ]. The Moog

developed Orbital Maneuvering Vehicle (OMV) is a propulsive ESPA ring capable of trans-

porting a series of smallsats into orbits beyond GEO. Some examples of the OMV include

the Small Launch Orbital Maneuvering Vehicle (SL-OMV), the Maneuverable ESPA Tug for

Extended Orbital Range (METEOR), ASTRO Plus, and the JUPITER concept [ 42 ]. Addi-

tionally, ESPAStar (Northrop Grumman) and Sherpa 2200 (Spaceflight Inc.) implement a

Moog ESPA ring to build a mechanical interface to accommodate multiple smallsats [  44 ], [ 45 ].

Table  1.1 summarizes the capabilities of these propulsive ESPA ring concepts. In this inves-

tigation, transfers for secondary payloads are constructed from a departure location along a

GTO. Pearson et al. proposed the use of a Moog OMV to facilitate transfers from GTO to

Sun-Earth Lagrange points and lunar orbits [ 5 ], [ 46 ]. Structures in the Sun-Earth system

were leveraged to construct a transfer for the Dark Ages Radio Explorer (DARE) spacecraft

which utilized a GTO rideshare option [ 47 ]. The DARE spacecraft will be launched as a

secondary payload en route to a low lunar orbit. Additionally, Penzo et al. utilized GTOs

to investigate impulsive transfers to Mars and Venus with lunar flybys using a Two-Body

approximation [ 48 ]. Kéchichian et al. proposed two strategies that implemented DST to

place a group of microsatellites in DROs and L1 halo orbits in the Sun-Earth system from

GTO [ 49 ]. Eismont et al. investigated transfers to Sun-Earth L1 halos from GTO at varying

launch epochs and orientations [ 50 ]. Di Salvo identified ’free’ transfers to large amplitude

quasi-periodic orbits near Sun-Earth L2 [ 51 ]. These ’free’ transfers required one maneu-

ver from GTO and leveraged the natural dynamics in the system to enter large amplitude

quasi-periodic orbits.
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Table 1.1. : Comparison of propulsive ESPA modules

Name Manufacturer ∆V [m/s] Payload Mass [kg]
METEOR Moog Inc. 500 <1,000
Astro Plus Moog Inc. <3,000 <500
JUPITER Moog Inc. <6,000 <5,000
ESPAStar Northrop Grumman >400 >1,920

Sherpa 2200 Spaceflight Inc. <2,200 <1,500

1.3 Current Work

Propulsive ESPA rings offer secondary payloads, i.e., smallsats or CubeSats, access to

regions beyond GEO. However, in a ridesharing scenario, secondary payloads are restricted

by the drop-off orbit orientation which is dictated by the primary mission. Therefore, there is

a need for mission designers to anticipate the transfer geometries available from any drop-off

orbit orientation. In this investigation, the focus is transfers from a GTO drop-off orbit into

an orbit near the Sun-Earth L1 and L2 vicinity. For secondary payloads, a highly efficient

transfer implements a single maneuver, that is, a maneuver is performed at a departure

location along the GTO and the satellite approaches and enters an orbit near the Sun-Earth

L1 and L2 Lagrange points. This type of transfer, termed a ballistic transfer, leverages the

natural motion observed in the Sun-Earth system in the simplified CRTBP model. Addition-

ally, multiple-maneuver transfers are also considered, especially when targeting operational

orbits with specific amplitudes for secondary payloads. To provide insight into transfers from

GTO in the Sun-Earth system, the following research objectives are addressed:

1. Understand ballistic transfers to Sun-Earth Lagrange point orbits.

The objective is to identify ballistic transfers from a range of near-Earth departure

locations to the Sun-Earth L1 and L2 regions. Identification of direct and indirect

pathways to orbits near Sun-Earth Lagrange points is obtained through this analy-

sis. Direct ballistic transfers are constructed from a range of near-Earth locations to

periodic and quasi-periodic motion near the Sun-Earth L1 and L2 points.
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2. Catalog direct prograde ballistic transfers from GTO to Sun-Earth Lagrange point

orbits.

Ballistic transfers leverage the natural dynamics in the system to enter bounded mo-

tion, either a periodic or quasi-periodic orbit, near a Lagrange point. The guide pro-

vides insight into direct ballistic transfers available from prograde GTOs for a range

of orientations near the Earth. The guide also presents an initial estimate of maneu-

ver ∆V requirements and final orbit geometries near Sun-Earth L1 and L2 Lagrange

points.

3. Investigate multiple-maneuver transfers to periodic and quasi-periodic orbits

Ballistic transfers are not available for all orbits in the Sun-Earth system, therefore, an

additional maneuver is appended to construct two-maneuver transfers over a range of

GTO departure locations near the Earth. To construct efficient transfers into a desired

orbit near the Sun-Earth Lagrange points, trajectories along the hyperbolic stable

manifold and a Deep Space Maneuver are included in the design scenario. Multiple-

maneuver transfers over a range of GTO orientations into select periodic and quasi-

periodic orbits are investigated through this methodology.

These objectives will yield an understanding of pathways available from a GTO of any

orientation near the Earth and offer insight on the exploration of the Sun-Earth system.

The results of the current investigation are organized as follows:

• Chapter 2: Dynamical Models

In this chapter, the dynamical models for the CRTBP and the ephemeris model, i.e.,

a higher-fidelity model, are introduced. Equations of motion associated with the dy-

namical models are derived and any assumptions implemented are stated. Additionally,

the method of transitioning a satellite state between an inertial reference frame and a

rotating frame consistent with the CRTBP is outlined.

• Chapter 3: Dynamical Structures

The existence of equilibrium solutions, periodic orbits, quasi-periodic orbits associ-
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ated with the CRTBP model are discussed in this chapter. The free-variable and

constraint numerical technique coupled with a multidimensional Newton’s method are

introduced. This numerical method is implemented in the construction of periodic and

quasi-periodic orbits and examples in the Sun-Earth system are provided. Additionally,

a linear stability analysis of the equilibrium points, periodic, and quasi-periodic orbits

is summarized and invariant hyperbolic manifolds associated with these dynamical

structure are identified.

• Chapter 4: Rideshare Mission Overview

This chapter begins with a description of the rideshare scenario for a secondary payload

on a drop-off orbit, i.e., a GTO, in the Sun-Earth system. A discussion regarding the

GTO orientation expressed in the J2000 inertial reference frame and the Sun-Earth

rotating frame is provided.

• Chapter 5: Ballistic Transfers to Collinear Lagrange Points

Ballistic transfers into periodic and quasi-periodic orbits near Sun-Earth L1 and L2

are constructed by leveraging hyperbolic invariant manifolds in this section. A col-

lection of direct ballistic transfers to quasi-periodic orbits are identified in a region

near the Earth. An integral-type path constraint is derived and applied to trans-

fers constrained by additional communications requirements. Additionally, the direct

ballistic transfers observed in the Sun-Earth CRTBP model are transitioned into the

higher-fidelity ephemeris model.

• Chapter 6: Multiple Maneuver Transfers in Sun-Earth System

In this chapter, transfers utilizing a Deep Space Maneuver, i.e., two-maneuver trans-

fers, that enter select quasi-periodic and periodic orbits near the Sun-Earth L1 and

L2 Lagrange points are generated. The transfers are designed with trajectories along

the stable manifold of quasi-periodic and periodic orbits and a bridging arc. In the

CRTBP, two-maneuver transfers exist as families of transfers from a range of GTO de-

parture locations near the Earth. Locally optimal transfers are constructed by carefully
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selecting a solution from the families of two-maneuver transfers. Finally, the transfers

are transitioned into the higher-fidelity ephemeris model.

• Chapter 7: Conclusion

Finally, in this chapter, a summary of the proposed methodology and results from the

applications is provided. Recommendations for future work are outlined as a response

to the conclusions of this investigation.
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2. DYNAMICAL MODELS

Dynamical models describe the motion of a spacecraft under the gravitational influence of

multiple celestial bodies. A dynamical model can be formulated as a basic Two-Body system

or a more complex N-Body system. An understanding of any simplifying assumptions in

the formulation of a model reveals important dynamical insights. For example, A Two-Body

model describes the motion of a spacecraft under the gravitational influence of a celestial

body, e.g., a spacecraft in a Low Earth Orbit. A basic Two-Body model assumes that both

bodies are point-masses and that the celestial body is significantly larger than the spacecraft.

The Two-Body model is usually the first dynamical model implemented in early design stages,

while more complex higher-fidelity models are incorporated in later stages and, eventually,

during post-launch operations. For a spacecraft in LEO, a higher-fidelity Two-Body model

based on a non-spherical Earth with added atmospheric drag and solar radiation pressure

effects is utilized during operations. Although mission designers implement complex models

to describe the motion of a spacecraft, it is often difficult to derive any insightful information

from these complex models. However, dynamical behavior observed in lower-fidelity models

may provide important insights about the motion of a spacecraft. Additionally, desirable

characteristics of a spacecraft trajectory, such as geometry, in the lower-fidelity model may

persist upon transitioning to a higher-fidelity model. In this investigation, insights obtained

from the Circular Restricted Three-Body Problem (CRTBP), i.e., a lower-fidelity model,

are leveraged to, eventually, generate cost efficient and flexible transfers in a higher-fidelity

ephemeris model.

2.1 N-Body Problem

The motion of a spacecraft under the gravitational influence of N bodies is described

by Newton’s Universal Law of Gravitation and Newton’s 2nd Law [ 52 ]. Newton’s Law of

Gravitation describes the force on a particle with point mass under the gravitational influence

of a group of bodies, also modeled as point masses. For example, in a Three-Body system,
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e.g., a system consisting of the Earth, Moon, and a spacecraft, all three bodies are modeled

as point masses, see Figure  2.1 . By combining the universal law of gravitation and Newton’s

2nd Law, a vector equation describing the motion of a spacecraft under the influence of N

bodies, Pj, is written as,

Mj
¨̄Rj = G̃

N∑
k=1
k 6=j

MkMjR̄jk

R3
jk

, (2.1)

where G̃ is the universal gravitational constant and M is the mass of a body, i.e., a celestial

body or the spacecraft. Note that, in Equation (  2.1 ), overbars represent column vectors

and ˙[ ] is a time derivative. The position vector of the spacecraft, Pj, is defined as R̄j with

respect to an inertial origin and R̄jk is the position vector from Pj to Pk. The motion of the

spacecraft, R̄j, in Equation ( 2.1 ) is defined in an inertial frame, however, a vector equation

relative to a body Pq is derived from Equation ( 2.1 ) as,

¨̄Rqj = −G̃(Mj +Mq)
R3
qj

R̄qj︸ ︷︷ ︸
Direct

+ G̃
N∑
k=1
k 6=j,q

Mk

(
R̄jk

R3
jk
− R̄qk

R3
qk

)
︸ ︷︷ ︸

Indirect

. (2.2)

Note that, in Equation ( 2.2 ), the direct term is the effect of the body Pq on the spacecraft

Pj and the indirect terms are due to the additional N − 2 bodies. Throughout this investi-

gation, Equation ( 2.2 ) is termed as the ephemeris equation of motion (EOM). The position

and velocity vectors for the celestial bodies included in the ephemeris EOM, i.e., R̄j and

V̄j], respectively, are retrieved from the SPICE ephemerides files provided by the NASA

Jet Propulsion Laboratory (JPL) Navigation and Ancillary Information Facility (NAIF) in

Pasadena, California [ 53 ]. The SPICE files contain approximate states for celestial bodies in

the solar system based on observational data. There is no closed-form analytical solution to

the ephemeris EOM in Equation ( 2.2 ), which poses challenges for mission designers. However,

a Two-Body system, i.e., Equation (  2.2 ) with the indirect terms omitted, has a closed-form

analytical solution. In most preliminary design phases, insights from a Two-Body approx-

imation are adequate to identify initial transfers or feasible orbits that are subsequently

transitioned into the higher-fidelity ephemeris model. By leveraging fundamental behaviors

observed in lower-fidelity models, such as the Two-Body model or the Three-Body model,
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P1

P2

Pj

R̄1

R̄2

R̄j

R̄12

X̂

Ŷ

Ẑ

Figure 2.1. : N bodies in an inertial reference frame. The basis vectors for the inertial
frame is the set {X̂ , Ŷ , Ẑ }

cost efficient transfers are constructed that are transitioned into a higher-fidelity ephemeris

model.

2.2 Circular Restricted Three-Body Problem

Insights from the Circular Restricted Three-Body Problem are leveraged to construct

flexible transfer itineraries that are straightforwardly transitioned to a higher-fidelity model.

A general Three-Body model, i.e., a model corresponding to Equation ( 2.1 ) with N = 3, has

no closed-form analytical solution. Note that, in this investigation, a Three-Body model,

i.e., the Three-Body problem (3BP), consists of a spacecraft and two additional bodies, e.g.,

the Sun-Earth-spacecraft system. Although no closed-form analytical solution exists for the

3BP, by carefully incorporating simplifying assumptions and by implementing techniques

from Dynamical Systems Theory (DST), significant insights are observed that aid in the

mission design process.
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2.2.1 Formulation

Preliminary transfer design in a simplified Three-Body model is facilitated by leverag-

ing the motion within the CRTBP [ 24 ]. The reformulation of the Two-Body problem (2BP),

i.e., Equation ( 2.1 ) with N = 2, in terms of relative motion about a primary body, presented

in Equation ( 2.2 ), afforded significant insightful information. The relative formulation of

the 2BP has a closed-form analytical solution, but the 3BP does not have a closed-form

analytical solution. However, implementing simplifying assumptions to the 3BP, reformu-

lating the equations of motion, and applying techniques from DST allows mission designers

to observe important dynamical behavior. The simplifying assumptions applied to the 3BP

are summarized as follows [ 24 ]:

1. The mass of the spacecraft, M3, is infinitesimally smaller than the two primary bodies,

M1 and M2, i.e., M3 << M1,M2.

2. The mass of the spacecraft, M3, does not influence the motion of the other two primary

bodies, P1 and P2. Additionally, the motion of the primaries, P1 and P2, is represented

by a Two-Body system, i.e., 2BP.

3. The motion of the two primaries, P1 and P2, is a circular orbit about the center of

mass of the Two-Body system.

Additionally, the motion of the spacecraft is observed in a rotating reference frame with the

origin at the barycenter of the Two-Body system created by the primaries, i.e., P1 and P2,

see Figure  2.2 . The basis for the rotating frame is the unit vectors
{
X̂, Ŷ , Ẑ

}
, where X̂ is

measured from the barycenter in the direction of P2, Ẑ is in the direction of the angular

momentum vector of the P1-P2 system, and Ŷ completes the dextral triad; the basis vectors

are plotted in Figure  2.2 . The basis vectors for the inertial frame, presented in Figure  2.2 , is{
X̂ ′, Ŷ ′, Ẑ ′

}
; note that ˆ[ · ] denotes a unit vector. In this analysis, an underscript denotes the

reference frame associated with the vector or matrix, e.g., R̄
i′

is the position of the spacecraft,

P3, in the inertial frame, i′, plotted in Figure  2.2 and defined with basis vectors
{
X̂ ′, Ŷ ′, Ẑ ′

}
.
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However, no underscript denotes a vector or matrix in the rotating frame associated with

the CRTBP model. The EOM associated with the CRTBP model are formulated from the

general 3BP by incorporating the set of simplifying assumptions and by observing the motion

in a rotating reference frame.

P2

P1

P3

R̄2

R̄1

R̄

R̄13

R̄23

X̂ ′

Ŷ ′

X̂

Ŷ

˙̄ϑ

Figure 2.2. : A schematic of the rotating frame, with basis vectors
{
X̂, Ŷ , Ẑ

}
, associ-

ated with the CRTBP model and an arbitrary inertial reference frame with basis vectors{
X̂ ′, Ŷ ′, Ẑ ′

}

In this investigation, the Equations of Motion for the CRTBP are derived via the

Euler-Lagrange Equation, i.e., an energy method. The Lagrangian, L, for the spacecraft in

the Three-Body system in Figure  2.2 , is stated as:

L = 1
2M3Vi′

2︸ ︷︷ ︸
Kinetic Energy

(s/c)

+ G̃M1M3

R
i′ 13

+ G̃M2M3

R
i′ 23︸ ︷︷ ︸

Gravitational Potential

. (2.3)

The objective is to derive the EOM for the spacecraft, therefore the kinetic energy terms

corresponding to the primary bodies, i.e., P1 and P2, in Equation ( 2.3 ), are ignored. Note

that the Lagrangian in Equation ( 2.3 ) is a function of the inertial position, R̄
i′

, and velocity,

V̄
i′

, of the spacecraft. However, the Equations of Motion for the CRTBP are defined in the
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rotating reference frame with basis vectors
{
X̂, Ŷ , Ẑ

}
. The relationship between the inertial

position, R̄
i′

, and rotating position, R̄, vectors of the spacecraft is defined as,


X

Y

Z

 =


cos(ϑ) sin(ϑ) 0

− sin(ϑ) cos(ϑ) 0

0 0 1




X ′

Y ′

Z ′

 , (2.4)

where the angle, ϑ, is

ϑ = ϑ̇T , (2.5)

and ϑ̇ is defined as the constant angular velocity of the rotating frame in Figure  2.2 with

dimensional time, T . Recall that the angular velocity is essentially the mean motion of the

Two-Body system, i.e., P1-P2. The Lagrangian in the rotating frame is now written as,

L = 1
2M3

(
V̄ + ˙̄ϑ× R̄

)T (
V̄ + ˙̄ϑ× R̄

)
+ G̃M1M3

R13
+ G̃M2M3

R23
, (2.6)

where the angular velocity vector, ˙̄ϑ, is defined as ˙̄ϑ = [0, 0, ϑ̇]T ; Recall that all vectors in

this investigation are column vectors. The position vectors from the primaries, P1 and P2,

to the spacecraft, P3, are defined as R̄13 and R̄23, respectively, where R̄13 = R̄ − R̄1 and

R̄23 = R̄ − R̄2, see Figure  2.2 . Note that in Equations ( 2.3 ) and ( 2.6 ), the magnitude of

the position vectors in the inertial frame and the rotating frame, R̄
i′

and R̄, respectively, are

equal. Additionally, the magnitudes of the position vectors are expanded as,

R =
√
R̄T R̄, (2.7)
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where T is the matrix transpose. The derivatives of the Lagrangian with respect to R̄, ˙̄R,

and T are computed as:

∂L
∂R̄

= M3

(
V̄ + ˙̄ϑ× R̄

)T [ ˙̄ϑ
]
x
−
G̃M1M3

(
R̄− R̄1

)T
R3

13
−
G̃M2M3

(
R̄− R̄2

)T
R3

23
, (2.8)

∂L
∂ ˙̄R

= M3

(
V̄ + ˙̄ϑ× R̄

)T
, (2.9)

d

dT

(
∂L
∂ ˙̄R

)
= M3

(
Ā+ ˙̄ϑ× V̄

)T
, (2.10)

where Ā is the acceleration of the spacecraft and the cross product of two vectors, i.e., ˙̄ϑ×R̄,

is written as,
˙̄ϑ× R̄ =

[
˙̄ϑ
]
x
R̄. (2.11)

Note that a skew-symmetric matrix, [ā]x, is defined as,

[ā]x =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (2.12)

where ā = [a1, a2, a3]T . Additionally, the derivative of the cross product with respect to a

vector is given by the properties:

∂

∂ ˙̄ϑ

(
˙̄ϑ× R̄

)
= −

[
R̄
]
x
, (2.13)

∂

∂R̄

(
˙̄ϑ× R̄

)
=
[

˙̄ϑ
]
x
. (2.14)

The EOM for the spacecraft are then derived in vector form via the Standard Form of

Lagrange’s Equation, i.e.,
d

dT

(
∂L

∂ ¯̇R

)
= ∂L

∂R̄
. (2.15)
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Note that there are no non-conservative forces acting on the system, therefore the Standard

Form of Lagrange’s Equation is applicable. The Equations of Motion for the CRTBP, in

vector form, are given as,

(
Ā+ ˙̄ϑ× V̄

)T
=
(
V̄ + ˙̄ϑ× R̄

)T [ ˙̄ϑ
]
x
−
G̃M1

(
R̄− R̄1

)T
R3

13
−
G̃M2

(
R̄− R̄2

)T
R3

23
. (2.16)

Note that the mass of the spacecraft, M3, is removed from both sides of Equation ( 2.16 )

and the acceleration vector for the spacecraft in the rotating frame is Ā = [Ẍ, Ÿ , Z̈]T . The

following property is derived from Equation ( 2.11 ),

−
(

˙̄ϑ× R̄
)T

= R̄T
[

˙̄ϑ
]
x
, (2.17)

such that, Equation ( 2.16 ) simplifies to:

Ā+ 2 ˙̄ϑ× V̄︸ ︷︷ ︸
Coriolis force

+ ˙̄ϑ×
(

˙̄ϑ× R̄
)

︸ ︷︷ ︸
Centrifugal force

= −
G̃M1

(
R̄− R̄1

)
R3

13
−
G̃M2

(
R̄− R̄2

)
R3

23
. (2.18)

In Equation ( 2.18 ), the terms corresponding to the fictitous Coriolis force and the centrifugal

force are identified; note that these forces are by-products of the rotating frame. The scalar

EOM are derived from the vector form presented in Equation (  2.18 ) such that,

Ẍ − 2ϑ̇Ẏ − ϑ̇2X = −G̃M1 (X −X1)
R3

13
− G̃M2 (X −X2)

R3
23

,

Ÿ + 2ϑ̇Ẋ − ϑ̇2Y = −G̃M1 (Y − Y1)
R3

13
− G̃M2 (Y − Y2)

R3
23

,

Z̈ = −G̃M1 (Z − Z1)
R3

13
− G̃M2 (Z − Z2)

R3
23

.

(2.19)

The Equations of Motion presented in Equation ( 2.19 ) are written in terms of dimensional

units, e.g., G̃ = 6.67384e−20 km3

kg-s2 . There is no closed-form analytical solution of the CRTBP

and any solution, i.e., trajectory state information, is obtained through numerical integra-

tion of the differential equations in Equation ( 2.19 ). However, to minimize round-off and

truncation errors associated with the numerical integration of the dimensional CRTBP equa-
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tions of motion, a nondimensional form of the Equations of Motion is derived. Generally,

nondimensionalizing a dynamical system by a set of characteristic values identifies intrinsic

properties of the general system. The characteristic length and mass associated with the

dimensional CRTBP EOM are defined as,

l∗ = R2 +R1, (2.20)

m∗ = M1 +M2, (2.21)

where, it is recalled that, R1 and R2 are measured from the system barycenter and a mass

parameter value is denoted as,

µ = M2

m∗
. (2.22)

A characteristic time is derived by observing the mean motion of the Two-Body system

consisting of the primaries, i.e., P1-P2. The mean motion for the Two-Body system, in terms

of the characteristic length, l∗, and characteristic mass, m∗, is given as,

N =
(
G̃m∗

l∗3

) 1
2

. (2.23)

Note that the mean motion, N , is equal to the angular velocity, ϑ̇, of the CRTBP rotating

frame. The characteristic time is defined such that the nondimensional mean motion, n =

N t∗, is unity and is stated as:

t∗ =
(
l∗

3

G̃m∗

) 1
2

, (2.24)

where the nondimensional position and velocity vectors, i.e., r̄ and v̄, respectively, and a

nondimensional time, t, are written as,

r̄ = R̄

l∗
, (2.25)

v̄ = V̄ t∗

l∗
, (2.26)

t = T

t∗
. (2.27)
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The derivation of the nondimensional equations are provided in Appendix  A . The nondi-

mensional Equations of Motion for the CRTBP are written as,

ẍ = 2ẏ + x− (1− µ) (x+ µ)
r3

13
− µ (x− 1 + µ)

r3
23

,

ÿ = −2ẋ+ y − y(1− µ)
r3

13
− yµ

r3
23
,

z̈ = −z(1− µ)
r3

13
− zµ

r3
23
,

(2.28)

where the distances from the primaries, P1 and P2, are defined as: r̄13 = [x + µ, y, z]T and

r̄23 = [x−1+µ, y, z]T . In this investigation, the CRTBP nondimensional EOM, presented in

Equation ( 2.28 ), are analyzed to identify important insights about the simplified Three-Body

system.

2.2.2 Pseudo-Potential in the CRTBP model

The Lagrangian associated with the CRTBP is leveraged to observe important dy-

namical insight. The Lagrangian for a dynamical system is not unique, that is, a Lagrangian,

L, can be multiplied by a constant, a, such the new Lagrangian La and L provide the same

Equations of Motion. This property is frequently implemented to cancel out cumbersome

fictitious forces associated with complex dynamical models, if possible. The dimensional

Lagrangian for the spacecraft in the CRTBP, in the rotating frame, is stated in Equation

( 2.6 ). The Lagrangian is more compactly denoted, with the characteristic values in Equations

( 2.20 ),( 2.21 ) and ( 2.24 ), as:

L = M3

(
l∗

t∗

)2 [1
2 (v̄ + ẑ × r̄)T (v̄ + ẑ × r̄) + (1− µ)

r13
+ µ

r23

]
. (2.29)

Recall that ˙̄ϑ can be written as: ˙̄ϑ = ϑ̇·[0, 0, 1]T = ϑ̇ẑ. Note that the units of the Lagrangian,

L, are kg·m2

s2 . A nondimensional Lagrangian is now defined:

L′ = 1
2 (v̄ + ẑ × r̄)T (v̄ + ẑ × r̄) + (1− µ)

r13
+ µ

r23
, (2.30)
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and is expanded to:

L′ = 1
2 v̄

T v̄︸ ︷︷ ︸
L′A

+ v̄T (ẑ × r̄)︸ ︷︷ ︸
L′B

+ 1
2 (ẑ × r̄)T (ẑ × r̄)︸ ︷︷ ︸

L′C

+ (1− µ)
r13

+ µ

r23︸ ︷︷ ︸
L′D

. (2.31)

In Equation ( 2.31 ), L′B and L′C are products of the rotating frame; recall that the Lagrangian

for a system is not unique. Note that the gravitational potential terms, L′D in Equation

( 2.31 ), are functions of the position of the spacecraft, i.e., r̄. However, L′C is also a function

of the spacecraft position and represents the centrifugal force present in the rotating frame.

L′C is termed as the centrifugal potential and contour plots of the gravitational potential

energy, L′D, and the centrifugal potential, L′C , are displayed in Figure  2.3 . Note that the

contours presented in Figure  2.3 are magnitudes of the centrifugal and gravitational potential

in the Earth-Moon system. In Figure  2.3 (a), the magnitude of the centrifugal potential is

zero at the origin of the rotating frame and increases quadratically, that is, the magnitude

is the squared distance of the spacecraft from the origin. The region inside the red box in

Figure  2.3 (b) corresponds to a local minimum of the gravitational potential; observing that

the minimum is located along the x̂-axis of the Earth-Moon rotating frame. The inverse-

square relationship, corresponding to the gravitational potential, of the spacecraft distance

with respect to the primary bodies is displayed in Figure  2.3 (b), where the potential energy is

significantly higher near the primaries. For the CRTBP, a pseudo-potential energy magnitude

is defined as the summation of potential energies, L′C and L′D, and simplified as:

U∗ = 1
2
(
x2 + y2

)
+ (1− µ)

r13
+ µ

r23
. (2.32)

The pseudo-potential magnitude for the Earth-Moon system is plotted as contours lines in

Figure  2.4 . Five regions are highlighted in the contour map, see Figure  2.4 , which represent

regions corresponding to local minima of the pseudo-potential magnitude. Three collinear

minima and two non-collinear minima are observed in Figure  2.4 . In Figure  2.4 , the mag-

nitudes of the centrifugal potential, the gravitational potential, and the pseudo-potential

are contained in the x̂-ŷ plane, i.e., the plane that also contains the motion of the primary
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bodies, P1 and P2. The Equations of Motion for the CRTBP, presented in Equation ( 2.28 ),

P
1

P
2

(a)

P
1

P
2

(b)

Figure 2.3. : (a) Centrifugal and (b) gravitational potential in the Earth-Moon CRTBP
model. The boxed region contains a local minimum for the gravitational potential, L′D

Figure 2.4. : Pseudo-potential associated with the Earth-Moon CRTBP model. Five local
minima are identified inside the region boxed in red
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are also written more compactly with the pseudo-potential, U∗, as:

ẍ− 2ẏ = ∂U∗

∂x
,

ÿ + 2ẋ = ∂U∗

∂y
,

z̈ = ∂U∗

∂z
.

(2.33)

A notable insight from Equation (  2.33 ) is that equilibrium points, defined as ẋ = ẏ = ż = ẍ =

ÿ = z̈ = 0, are identified as the local minima of the pseudo-potential, i.e., situations when the

partial derivative of the pseudo-potential is zero. The existence and numerical computation

of equilibrium points are discussed in more detail in Section  3.1 . Additionally, important

dynamical behavior extracted from observing the flow information near equilibrium points

in the rotating frame of the CRTBP model aid in the design of feasible transfer options

2.2.3 Integral of Motion

Integrals of motion are implicit solutions to dynamical systems which offer important

insights about the particle behavior. Solutions of a dynamical system are either explicit,

e.g., analytical integrations of the CRTBP coordinates {x, y, z, ẋ, ẏ, ż}, or implicit, such as

functions of the CRTBP coordinates. The desirable solution is an explicit solution, however,

there is no analytical solution to the CRTBP or the general 3BP. For comparison, the 2BP

has an analytical solution and three integrals of motion, i.e., implicit solutions which are

constant in time, which provide ten constants of motion. The integrals of motion for the

conservative system of the 2BP are: the mechanical energy, the linear momentum, and the

angular momentum. In the CRTBP, one integral of motion is derived by utilizing Jacobi’s

Integral, i.e.,

Theorem 2.2.1. Jacobi’s Integral [ 54 ] If all forces in a system are conservative, and if

the resulting Lagrangian is explicitly independent of time, then the following function

h
(
q̄, ˙̄q

)
= ∂L
∂ ˙̄q

˙̄q− L (2.34)
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is conservative.

The derivation in Theorem  2.2.1 utilizes the generalized coordinate vector, q̄, and the time

derivative of the generalized coordinate vector, ˙̄q. In this analysis, the generalized coodinate

vector is defined as: q̄ = [x, y, z]T , i.e., the position vector in the CRTBP rotating frame.

The derivative required for Jacobi’s Integral is denoted as,

∂L′

∂ ˙̄q
= ∂L′

∂ ˙̄v = v̄T + (ẑ × r̄)T , (2.35)

where the nondimensional form of the Lagrangian, L′, is utilized. Then, from Theorem  2.2.1 ,

Jacobi’s Integral is expanded to:

h = 1
2 v̄

T v̄ − 1
2
(
x2 + y2

)
− (1− µ)

r13
− µ

r23
. (2.36)

The Jacobi Integral is a time-independent energy-like quantity. A more common form of the

Jacobi Integral is written by substituting the definition of the pseudo-potential, U∗, from

Equation ( 2.32 ),

C = 2U∗ − v2, (2.37)

where C is termed as the Jacobi Constant and is defined as C = −2h. The Jacobi constant,

i.e., an integral of motion of the CRTBP, is a function of the position and velocity of the

spacecraft, P3. The existence of the Jacobi constant also decreases the dimensionality of the

phase-space of the system. The motion of the spacecraft particle, in the CRTBP, is contained

in a phase-space with dimension, n = 6. The Jacobi constant, an implicit solution to the

CRTBP, decreases the dimension by one. The reduction in dimensionality of the phase-space

is an important insight utilized for observing important dynamical behavior in the CRTBP

model.
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2.3 Coordinate Transformation

Coordinate transformations are important functions often implemented to observe

and compare insightful dynamical properties of a particle in different reference frames. For

example, important dynamical behavior, such as the existence of periodic orbits, is extracted

from a rotating frame in the CRTBP as opposed to an inertial frame. However, a comparison

of the spacecraft trajectory in the rotating frame of the CRTBP and an inertial frame reveals

important trajectory characteristics, such as geometry. In this investigation, coordinate

transformations between rotating and inertial reference frames are leveraged to investigate

specific dynamical and geometric properties of a spacecraft transfer.

2.3.1 Transformation between the CRTBP model and an arbitrary Inertial
Frame

A coordinate transformation between the rotating frame of the CRTBP model and an

arbitrary inertial frame is realized via a rotation matrix. Recall that the dimensional coordi-

nate system for the rotating frame, {X̂, Ŷ , Ẑ}, and an arbitrary inertial system, {X̂ ′, Ŷ ′, Ẑ ′},

are illustrated in Figure  2.2 . However, a nondimensional coordinate systems {x̂, ŷ, ẑ} and

{x̂′, ŷ′, ẑ′} corresponding to the rotating and inertial frame, respectively, are implemented

in this investigation, as illustrated in Figure  2.5 . A state for the spacecraft, X̄ , in the ro-

tating frame is defined as X̄ = [x, y, z, ẋ, ẏ, ż]T , and a state in an arbitrary inertial frame

is written with X̄
i′

= [x′, y′, z′, ẋ′, ẏ′, ż′]T . Note that ¯[ · ]
i′

represents a vector expressed in the

nondimensional arbitrary inertial frame and, in this investigation, a vector in the nondimen-

sional rotating frame is written with no underscript. The change of basis transformation for

a position vector expressed in an arbitrary inertial frame, r̄
i′
, to a CRTBP rotating frame is

expressed as, 
x

y

z

 =


Px
Py
Pz

+


cos(t) sin(t) 0

− sin(t) cos(t) 0

0 0 1




x′

y′

z′

 , (2.38)

58



B

P2

P1

P3

P̄

r̄

r̄
i′ps

x̂′

ŷ′

x̂

ŷ

ϑ

Figure 2.5. : Relationship between the nondimensional coordinate system of the rotating
frame ({x̂, ŷ, ẑ}) and an arbitrary inertial frame ({x̂′, ŷ′, ẑ′})

where P̄ = [Px,Py,Pz]T is the position of the CRTBP barycenter, B in Figure  2.5 , measured

from the inertial frame origin and expressed in the rotating frame. Equation ( 2.38 ) is a

general formula for a change of basis from an inertial frame to a rotating frame with a

stationary barycenter. A rotation matrix, rLi′ , is defined as,

rLi′ =


cos(t) sin(t) 0

− sin(t) cos(t) 0

0 0 1

 , (2.39)

where a position vector, written as a column vector, is rotated from an arbitrary inertial

frame to a rotating frame. In this investigation, a matrix is denoted in bold font, unless

otherwise stated. Note that the rotation matrix in Equation (  2.39 ) is the nondimensional

analog to the dimensional rotation matrix in Equation (  2.4 ). By substituting Equation (  2.27 )

and the definition of the angular velocity, i.e., ϑ̇ = N = 1
t∗

, into Equation ( 2.5 ), the angle ϑ

is defined as the nondimensional time, ϑ = t. Let the origin of the arbitrary inertial frame be
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one of the primary bodies, as illustrated in Figure  2.5 , such that Equation ( 2.38 ) is written

more compactly as:

r̄ = P̄ + rLi′ r̄ps
i′
, (2.40)

where r̄ps
i′

is the position in the inertial frame with respect to one of the primaries and P̄ is the

position of the CRTBP barycenter written with respect to the rotating frame. Conversely,

r̄ is transformed to the inertial frame via,

r̄ps
i′

= i′Lr
(
r̄ − P̄

)
. (2.41)

The nondimensional inertial velocity is the time derivative of the position vector, i.e., v̄ps
i′

,

and is computed from Equation (  2.41 ) as,

v̄ps
i′

= i′L̇r r̄ps + i′Lr v̄ps, (2.42)

where r̄ps and v̄ps are the position and velocity vectors of the satellite in the rotating frame

measured from one of the primaries and defined as: r̄ps = r̄− P̄ and v̄ps = v̄. The derivative

of the rotation matrix, i′L̇r, is denoted as,

i′L̇r =


− sin(t) − cos(t) 0

cos(t) − sin(t) 0

0 0 0

 . (2.43)

The full state relationship between the rotating and arbitrary inertial frame, X̄ps and X̄ps
i′

,

respectively, is given by:



x′ps

y′ps

z′ps

ẋ′ps

ẏ′ps

ż′ps


=



cos(t) − sin(t) 0 0 0 0

sin(t) cos(t) 0 0 0 0

0 0 1 0 0 0

− sin(t) − cos(t) 0 cos(t) − sin(t) 0

cos(t) − sin(t) 0 sin(t) cos(t) 0

0 0 0 0 0 1





xps

yps

zps

ẋps

ẏps

żps


. (2.44)
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The transformation matrix that relates the inertial and the rotating frame is defined as:

LLL =



cos(t) − sin(t) 0 0 0 0

sin(t) cos(t) 0 0 0 0

0 0 1 0 0 0

− sin(t) − cos(t) 0 cos(t) − sin(t) 0

cos(t) − sin(t) 0 sin(t) cos(t) 0

0 0 0 0 0 1


. (2.45)

A state in the rotating frame is rotated into an arbitrary inertial frame through the equation,

X̄ps
i′

= LLL X̄ps. (2.46)

and the inverse rotation is performed with,

X̄ps = LLL −1 X̄ps
i′
, (2.47)

A comparison of the dynamical behavior of a spacecraft in the rotating and inertial frame

reveals qualitative information about the geometry of the spacecraft trajectory.

2.3.2 Transformation between the CRTBP model and the J2000 Inertial Frame

The relationship between the rotating frame associated with the CRTBP model and

the J2000 inertial reference frame is evaluated with approximated ephemeris data. Ephemeris

data, which includes the state information, i.e., position and velocity vectors, for celestial

bodies in the solar system, is collected from the Jet Propulsion laboratory in Pasadena,

California [ 53 ]. In this investigation, the ephemeris information is retrieved from the DE430

ephemerides SPICE file. Many inertial and non-inertial frames are implemented in mission

design and navigation, and each has advantages based on the mission objectives. The J2000

Earth Mean Equatorial inertial reference frame (EME) is an inertial frame frequently used

in navigation and mission design. The basis unit vectors for the EME frame, {X̂
−
, Ŷ
−
, Ẑ
−
},
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form a dextral triad, where X̂
−

is in the direction of the vernal equinox, Ẑ
−

is normal to the

Earth mean equator, and Ŷ
−

= Ẑ
−
× X̂
−

. Note that the direction of the vernal equinox is also

the intersection of the equatorial and ecliptic planes; note that the ecliptic plane contains

the motion of the sun. The dimensional position and velocity vectors in the EME frame are

defined as,

R̄
i

=
[
X
−
, Y
−
, Z
−

]
, (2.48)

V̄
i

=
[
Ẋ
−
, Ẏ
−
, Ż
−

]
, (2.49)

and the nondimensional position and velocity vectors are written as,

r̄
i

=
[
x
−
, y
−
, z
−

]
, (2.50)

v̄
i

=
[
ẋ
−
, ẏ
−
, ż
−

]
. (2.51)

The relationship between the EME frame and the CRTBP rotation frame, implemented

as a series of steps in this analysis, is based on a methodology defined by Ocampo [ 55 ].

The methodology implements a transformation between the inertial and rotating frames

by including the instantaneous oscillating distance between the primary bodies, P1 and

P2. Recall that a fixed distance between the primary bodies, P1 and P2, is a simplifying

assumption of the CRTBP formulation. However, the actual distance, based on ephemeris

data, between the primary bodies is not fixed and is oscillatory in nature. In the EME frame,

the position and velocity of the spacecraft are often written with respect to one of the two

primary bodies in the Three-Body system. Throughout the transformation procedure, it is

necessary to define the position of the system barycenter measured from one of the primary

bodies, i.e., R̄pb; recalling that the position is dependent on the instantaneous distance

between the primaries. The position of the barycenter is denoted as,

P1 is the central body: R̄
i pB

= µR̄
i 12, (2.52)

P2 is the central body: R̄
i pB

= −(1− µ)R̄
i 12, (2.53)
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where R̄
i 12 is the dimensional position vector from P1 to P2 and µ is the mass parameter

associated with the CRTBP model. Additionally, the velocity of the barycenter with respect

to the primary bodies is evaluated by differentiating Equations ( 2.52 ) and ( 2.53 ) with respect

to the dimensional time, T . The velocity of the barycenter is computed as,

P1 is the central body: iV̄
i pB

= µ iV̄
i 12, (2.54)

P2 is the central body: iV̄
i pB

= −(1− µ) iV̄
i 12, (2.55)

where time derivative in the inertial frame is indicated by left superscripts, e.g., iV̄
i
. In this

investigation, the transformation between the rotating frame and the inertial EME frame

includes the instantaneous distance between the primary bodies.

2.3.2.1 Rotating Frame to Inertial EME Frame

The transformation process from the rotating frame into the inertial EME frame is

computed with the ephemeris information and includes the contribution of the instantaneous

distance between the primary bodies. In this investigation, the spacecraft position and

velocity is expressed in the inertial EME frame during a trajectory corrections process using

a higher-fidelity ephemeris model. A rotation matrix from the CRTBP rotating frame to the

EME frame is defined as:
iRRRr =

[
x̂
i
ŷ
i
ẑ
i

]
, (2.56)
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where the unit basis vectors of the rotating frame, expressed in the EME frame, are given

as,

x̂
i

=
R̄
i 12

‖R̄
i 12‖

, (2.57)

ẑ
i

=
H̄
i

‖H̄
i
‖
, (2.58)

ŷ
i

=
ẑ
i
× x̂

i
‖ẑ

i
× x̂

i
‖
, (2.59)

with the angular momentum vector, H̄
i
, denoted as,

H̄
i

= R̄
i 12 × V̄i 12. (2.60)

Recall that R̄
i 12 is the dimensional position vector from P1 and P2, as plotted in Figure

 2.2 , expressed in the inertial frame, and V̄
i 12 is the corresponding inertial velocity. The

position and velocity information of the primaries, P1 and P2, are collected from the planetary

ephemeris data file DE430 provided by JPL. The nondimensional position in the inertial

frame is given as:

r̄
i

= l̃∗

l∗
iRRRr r̄, (2.61)

where the instantaneous characteristic length is defined as: l̃∗ = ‖R̄
i 12‖. In this process, the

nondimensional position in the CRTBP, r̄, is first dimensionalized with the instantaneous

distance between the primaries, l̃∗, then nondimensionalized with a characteristic length,

l∗, corresponding to the EME inertial frame. The nondimensionalized position in the EME

frame offers the same advantages as the nondimensional position in the CRTBP rotating

frame. In this analysis, the characteristic length selected to nondimensionalize in the inertial

EME frame is the CRTBP characteristic length stated in Equation ( 2.20 ) and corresponds
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to a fixed distance, l∗, between the two primaries. In the CRTBP rotating frame, for this

coordinate transformation process, the time is nondimensionalized via:

t = T

t̃∗
, (2.62)

where t̃∗ is the instantaneous characteristic time corresponding to the instantaneous charac-

teristic length, l̃∗, and defined with Equation ( 2.24 ). Recall that T is the dimensional time.

In the inertial EME frame, the time is nondimensionalized with the following relationship,

t′ = T

t∗
, (2.63)

where t′ is the nondimensional time in the EME frame and the characteristic time, t∗, is

defined via Equation ( 2.24 ) with the fixed characteristic length, l∗. The nondimensional

velocity in the inertial EME frame is evaluated by differentiating Equation ( 2.61 ) by the

nondimensional time t′ such as,

idr̄
i

dt′
= l̃∗

l∗
iRRRr

rdr̄

dt

dt

dt′
+ l̃∗

l∗
d iRRRr

dt′
r̄ + dl̃∗

dt′
1
l∗

iRRRr r̄, (2.64)

where the time derivative in the inertial frame and the rotating frame are indicated by left

superscripts, e.g., id(·)
dt

. Note that the instantaneous characteristic length is a function of the

dimensional time, T , i.e, l̃∗(T ) = ‖R̄
i 12(T )‖, and may be written in the following form:

l̃∗(T ) =
√
R̄
i
T
12 R̄i 12, (2.65)

such that the time derivative, with respect to the nondimensional time, t′, is computed as,

dl̃∗

dt′
=
R̄
i
T
12 V̄i 12

‖R̄
i 12‖

dT

dt′
=
R̄
i
T
12 V̄i 12

l̃∗
t∗, (2.66)
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recalling that t∗ is the characteristic length for the CRTBP system defined in Equation

( 2.24 ). The derivative of the rotation matrix, iRRRr, is given by:

d iRRRr

dt′
= d iRRRr

dT

dT

dt′
=
[
Γ̄
i

]
x

iRRRr t∗, (2.67)

where Γ̄
i

is the instantaneous angular velocity vector of the P1-P2 system in the inertial frame.

Recall that [ · ]x is a skew symmetric matric defined via Equation ( 2.12 ). For a point mass,

the angular velocity vector is denoted as,

Γ̄
i

=
H̄
i

l̃∗2
, (2.68)

where the angular momentum vector is defined in Equation ( 2.60 ) such that,

d iRRRr

dt′
=
(
t∗

l̃∗2

) [
H̄
i

]
x

iRRRr. (2.69)

Then, Equation (  2.64 ) is, by substituting Equations ( 2.66 ) and ( 2.69 ), more compactly

written as:

idr̄
i

dt′
= t∗

l∗

(
l̃∗

t̃∗
iRRRr v̄ + 1

l̃∗

[
H̄
i

]
x

iRRRr r̄ + 1
l̃∗

(
R̄
i
T
12 V̄i 12

)
iRRRr r̄

)
, (2.70)

with the nondimensional position and velocity in the rotating frame denoted as, r̄ and v̄,

respectively. The transformation process from the rotating frame to the inertial EME frame

is outlined as follows:

• Let r̄ and v̄ be the nondimensional position and velocity vectors in the CRTBP rotating

frame measured from the system barycenter.

• Collect the dimensional vectors R̄
i 12 and V̄

i 12 from the DE430 ephemeris file.

• Calculate the rotation matrix, iRRRr, from Equations ( 2.56 )-( 2.59 ).

• Evaluate the nondimensional position, r̄
i
, in the inertial EME frame via Equation ( 2.61 ).
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• Compute the nondimensional velocity, iv̄
i
, with Equation ( 2.70 ).

• Translate the nondimensional inertial position from the barycenter to the desired cen-

tral primary body, i.e.,

r̄ps
i

= r̄
i

+
( 1
l∗

)
R̄
i pB

, (2.71)

where r̄ps
i

is the nondimensional position of the spacecraft measured from one of the

primaries via Equations ( 2.52 )-( 2.53 ).

• Translate the nondimensional velocity via the following expression,

iv̄ps
i

= iv̄
i

+
(
t∗

l∗

)
V̄
i pB

, (2.72)

where iv̄
i ps

is the nondimensional velocity of the spacecraft measured from one of the

primaries via Equations ( 2.54 )-( 2.55 ).

In this process, the nondimensional position and velocity vectors are evaluated with respect

to one of the primaries. The state formulated by these nondimensional position and velocity

vectors is input into an ephemeris propagator based on the relative ephemeris equation.

2.3.2.2 EME Frame to Rotating Frame

The transformation process from the inertial EME frame to the CRTBP rotating

frame is computed via the transformation process defined by Ocampo [ 55 ]. In this inves-

tigation, a state in the inertial EME frame is propagated in the higher-fidelity model, but

it is advantageous to observe the geometry of the trajectory in the CRTBP rotating frame.

The transformation process from the inertial EME frame to the rotating frame is outlined

as follows:

• Let r̄
i ps

and iv̄
i ps

be the nondimensional position and velocity vectors in the inertial

EME frame measured from the central primary body.
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• Collect the dimensional vectors R̄
i 12 and V̄

i 12 from the DE430 ephemeris file.

• Calculate the rotation matrix, rRRRi, from Equations ( 2.56 )-( 2.59 ). Recall the rotation

matrix property: rRRRi = iRRRrT .

• Translate the nondimensional inertial position from the current central primary body

to the system barycenter, i.e.,

r̄
i

= r̄
i ps
−
( 1
l∗

)
R̄
i pB

, (2.73)

where R̄
i pB

is the dimensional position of the barycenter measured from one of the

primaries via Equations ( 2.52 )-( 2.53 ). Recall that r̄
i

is the position of the spacecraft in

the inertial EME frame with respect to the CRTBP barycenter.

• Translate the nondimensional velocity via the following expression,

iv̄
i

= iv̄
i ps
−
(
t∗

l∗

)
V̄
i pB

, (2.74)

where iv̄
i pB

is the dimensional velocity of the barycenter measured from one of the

primaries via Equations ( 2.54 )-( 2.55 ).

• Evaluate the nondimensional position, r̄, in the CRTBP rotating frame via Equation

( 2.61 ), i.e.,

r̄ = l∗

l̃∗
rRRRi r̄

i
, (2.75)

• Compute the nondimensional velocity, v̄, by multiplying Equation ( 2.70 ) by the rota-

tion matrix rRRRi such that,

v̄ = t̃∗

l̃∗

(
l∗

t∗
rRRRi iv̄

i
− 1
l̃∗

[
H̄
r

]
x
r̄ − 1

l̃∗

(
R̄
i
T
12 V̄i 12

)
r̄

)
, (2.76)

where H̄
r

is the angular momentum expressed in the rotating frame, i.e., multiplying

Equation ( 2.60 ) by the rotation matrix rRRRi.
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In this investigation, the orientation of the spacecraft is expressed in the rotating frame con-

sistent with the CRTBP and the EME inertial frame. Additionally, a transitioning method

between these two coordinate frames is required when moving feasible transfers from the

CRTBP model into the higher-fidelity ephemeris model.

69



3. DYNAMICAL STRUCTURES

The study of predictable long-term behavior of complex dynamical models is essential in

the absence of a closed-form analytical solution. The motion in a general dynamical system

can be categorized into four types: equilibrium solutions, periodic solutions, quasi-periodic

solutions, and chaotic. Additionally, dynamical structures may exist that fall into one of these

categories. Recalling that the CRTBP has no closed-form analytical solution, an analysis

of long-term dynamical structures such as equilibrium points, periodic orbits, quasi-periodic

orbits and their associated hyperbolic invariant manifolds offers insight into the complex

motion in the model. Dynamical structures are also manipulated to construct efficient and

flexible transfers that are straightforwardly transitioned into a higher-fidelity model.

3.1 Equilibrium Solutions

Equilibrium solutions are one of the basic long-term dynamical structures identified

in a dynamical system. The search for equilibrium solutions is one of the first fundamental

processes necessary for learning important insights about the dynamical behavior in a gen-

eral system. The equilibrium solutions have a range of names such as: stationary points,

equilibrium points, and, in the CRTBP, Lagrange points or libration points. In this investi-

gation, equilibrium solutions associated with the CRTBP are termed Lagrange points. The

equations of motion for the CRTBP, written in Equation ( 2.28 ), are compactly expressed as

the vector function:
˙̄X = f̄

(
X̄
)
, (3.1)
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where f̄ defines a differentiable vector field and X̄ ∈ R6, or a six-dimensional state vector, is

defined as,

X̄ =



x

y

z

ẋ

ẏ

ż


. (3.2)

The vector form of the equations of motion are expanded such that,

f̄
(
X̄
)

=



ẋ

ẏ

ż

2ẏ + ∂U∗
∂x

−2ẋ+ ∂U∗
∂y

∂U∗
∂z


. (3.3)

A trajectory in the CRTBP is a solution to Equation ( 3.3 ), i.e., the state space form of the

equations of motion. With no analytical solution to the CRTBP, a trajectory is computed

via numerical integration from an initial state, X̄0, after a propagation time t. In this

investigation, and in the literature, the trajectory is also termed as the flow of the system.

The flow, φ̄, is a function of an initial state and propagation time, i.e., φ̄ = X̄ (X̄0, t). A

Lagrange point, i.e., an equilibrium solution, X̃ , is defined via:

f̄
(
X̃
)

= 0̄, (3.4)
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or expanded, via substitution of the CRTBP equations, to,



ẋ

ẏ

ż

2ẏ + ∂U∗
∂x

−2ẋ+ ∂U∗
∂y

∂U∗
∂z


=



0

0

0

0

0

0


. (3.5)

The partial derivatives of the pseudo-potential are computed from Equation ( 2.32 ) and any

Lagrange points are identified as solutions to the following system of equations:

0 = x− (1− µ) (x+ µ)
r3

13
− µ (x− 1 + µ)

r3
23

, (3.6)

0 = y − y(1− µ)
r3

13
− yµ

r3
23
, (3.7)

0 = −z(1− µ)
r3

13
− zµ

r3
23
, (3.8)

where, it is recalled that, r̄13 = [x + µ, y, z]T and r̄23 = [x − 1 + µ, y, z]T . From Equation

( 3.8 ), it is observed that all Lagrange points exist on the x̂− ŷ plane, i.e., the plane of motion

of the primary bodies. Note that there are three collinear Lagrange points, i.e., locations

on the x̂-axis, computed by solving for all solutions of Equation (  3.6 ), and two triangular

Lagrange points, computed by solving Equations ( 3.6 )-( 3.7 ). The collinear Lagrange points

are calculated by solving the following equations:

L1 : fL1(x) = x− (1− µ)
(x+ µ)2 + µ

(x− 1 + µ)2 = 0, (3.9)

L2 : fL2(x) = x− (1− µ)
(x+ µ)2 −

µ

(x− 1 + µ)2 = 0, (3.10)

L3 : fL3(x) = x+ (1− µ)
(x+ µ)2 + µ

(x− 1 + µ)2 = 0. (3.11)

The solutions to Equations ( 3.9 )-( 3.11 ) usually require a numerical technique. Newton’s

method is implemented to numerically solve for the location of the collinear Lagrange points.
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An algorithm consistent with Newton’s method is constructed such that an initial guess, xj,

is updated via,

xj+1 = xj −
fLk(xj)
DfLk(xj)

, (3.12)

where xj+1 is the updated guess, fLk is the function associated with the kth Lagrange point,

i.e., Equations ( 3.9 )-( 3.11 ), and DfLk is the derivative of fLk with respect to x such that,

DfLk = dfLk
dx

. Note that the value of fLk and its derivative, DfLk , is evaluated at the

initial guess, xj. In this application, the stop criteria for Newton’s method is defined as:

|fLk(xj+1)| < E, where | · | is absolute value and E is a user specified tolerance value. To

search for Lagrange points, the value of the error tolerance, E, is set to 1×10−11. If the value

of the function, fLk , at the updated guess, xj+1, is higher than the user specified tolerance,

then a new iteration is required and a new updated guess, xj+2, is evaluated via Equation

( 3.12 ) with xj+1 as the initial guess. Remember that Newton’s method is a numerical method

and the value of the tolerance dictates the accuracy of the solution. Szehebely [ 24 ] provides

initial guesses to start the iteration process for the collinear Lagrange points. The triangular

Lagrange points are the solutions of Equations (  3.6 )-( 3.7 ) and are denoted by L4 and L5.

The L4 and L5 points are defined as:

L4 : x = 1
2 − µ, y =

√
3

2 , (3.13)

L5 : x = 1
2 − µ, y = −

√
3

2 . (3.14)

Equilibrium solutions of the CRTBP model provide insightful flow information about the

dynamical system. A notable observation is the existence and location of the Lagrange points

in the x̂ -ŷ plane. Analysis into the dynamical behavior near the vicinity of the Lagrange

points facilitates the design process of desirable transfers into and away from the Lagrange

points.
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3.1.1 Stability of Lagrange Points

Stability analysis near equilibrium solutions, i.e., Lagrange points, provides informa-

tion regarding the local behavior. Recalling that the Lagrange points are stationary points

in the phase-space, i.e., R6 in the CRTBP, then important dynamical insights are derived

near the vicinity of these equilibrium solutions. In this investigation, stability of dynamical

structures is based on Lyapunov stability, which analyzes the isochronous correspondence of

two points, i.e., the distance of two points measured at a specified time t [ 24 ]. To understand

the local behavior near a point, X̄ ∗, a small variation is introduced such that,

X̄ = X̄ ∗ + ∆X̄ , (3.15)

where ∆X̄ is defined as a variation. Equation ( 3.15 ) is input into Equation ( 3.1 ) and ex-

panded, via a Taylor series expansion, as:

˙̄X = ˙̄X ∗ + ∆ ˙̄X = f̄(X̄ ∗) + Df̄

DX̄

∣∣∣∣
X̄ ∗

∆X̄ + H.O.T.s, (3.16)

where H.O.T.s represents the higher-order terms in the expansion. The linear approximation

of this expansion is expressed as,

∆ ˙̄X = Df̄

DX̄

∣∣∣∣
X̄ ∗

∆X̄ , (3.17)

with the derivative of the vector field, f̄, written as:

Df̄

DX̄
= A(t) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Uxx(t) Uxy(t) Uxz(t) 0 2 0

Uyx(t) Uyy(t) Uyz(t) −2 0 0

Uzx(t) Uzy(t) Uzz(t) 0 0 0


, (3.18)
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where Uij is the second derivative of the pseudo-potential function, U , such that: ∂2U
∂i∂j . For

the linear stability analysis near a Lagrange point, the A(t) matrix has constant entries, i.e.,

its entries are time-independent, and is written as A. A general solution to the system in

Equation ( 3.17 ), with a constant A matrix, is denoted as,

∆X̄ (t) = eAt∆X̄ (t0). (3.19)

Thus, from Szebehely, the Lyapunov stability of each Lagrange point is observed through the

eigenvalue decomposition of the matrix A. Let {EΛ1,
E Λ2, . . . ,

E Λ6} be the set of eigenvalues

corresponding to the real matrix A with complementary eigenvectors: {EΨ̄1,
E Ψ̄2, . . . ,

E Ψ̄6}.

Szebehely categorizes the stability properties of the linearized system in Equation ( 3.17 ) at

the Lagrange points through the eigenvalues associated with A as [  24 ],

• Asymptotically stable:

– All complex eigenvalues with negative real components

– All negative real eigenvalues

• Stable:

– All complex eigenvalues with imaginary components

• Unstable:

– All complex eigenvalues and some eigenvalues have positive real components

– All real eigenvalues and some eigenvalues are positive

Insightful flow information near the vicinity of the Lagrange points is revealed through linear

stability analysis.
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3.1.2 Invariant Subspaces near Lagrange Points

Invariant subspaces observed through a linear stability analysis near the Lagrange

points offer important flow information that is leveraged in the construction of transfers in

the CRTBP model. Equation ( 3.19 ) is the general solution to the linear variational equation,

i.e., Equation ( 3.17 ), such that the matrix eAt provides important flow information regarding

all possible solutions to the variational equation. Linear stability properties are derived

from an analysis of the associated eigenvalues and eigenvectors of the A matrix in Equation

( 3.19 ). Additionally, the existence and the dimension of invariant subspaces are indicated

via an investigation into the eigenstructure of the A matrix. Guckenheimer categorizes the

invariant subspaces as [ 56 ]:

• Stable subspace, ES = span{EΨ̄S
1 , . . . ,

E Ψ̄S
ns}

• Unstable subspace, EU = span{EΨ̄U
1 , . . . ,

E Ψ̄U
nu}

• Center subspace, EC = span{EΨ̄C
1 , . . . ,

E Ψ̄C
nc}

The dimensions of the stable, unstable, and center subspaces are denoted with: ns, nu, and

nc, respectively, and the sum of these invariant subspaces spans the entire phase-space of the

dynamical system, that is, ns +nu +nc = 6. Eigenvectors corresponding to eigenvalues with

negative real parts, {EΨ̄S
1 , . . . ,

E Ψ̄S
ns}, span the stable subspace and the unstable subspace

is spanned via a set of eigenvectors, {EΨ̄U
1 , . . . ,

E Ψ̄U
nu}, corresponding to eigenvalues with

positive real parts. These statements are summarized by the following theorem [ 56 ]:

Theorem 3.1.1. Stable Manifold Theorem Suppose that ˙̄X = f̄
(
X̄
)

has a hyperbolic

equilibrium solution X̃ . Then there exists local stable, W s
loc, and unstable manifolds, W u

loc, of

the same dimensions ns and nu, respectively. These local manifolds, W s
loc and W u

loc, corre-

spond to the invariant subspaces ES and EU of the linearized system, and are tangent to ES

and EU at X̄ ∗. W s
loc and W u

loc are also as smooth as the function f̄.
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If all eigenvalues associated with an equilibrium solution, i.e., from the eigenstructure of the

A matrix, have nonzero real parts, then the equilibrium solution is termed as hyperbolic.

The asymptotic behavior of solutions near the equilibrium point is derived from the linear-

ixation in Equation ( 3.19 ). A state along the local stable manifold, W s
loc, asymptotically

approaches the equilibrium point, X̃ , for t → ∞, whereas a state along the local unstable

manifold, W u
loc asymptotically approaches X̃ for t → −∞. Global analogs of the local sta-

ble and unstable manifolds exist and are generated by propagating a state within the local

manifolds, near the equilibrium point, in reverse time and forward time, respectively. The

center manifold associated with an equilibrium point is described by Guckenheimer via the

following theorem[ 56 ]:

Theorem 3.1.2. Center Manifold Theorem Let f̄ be a vector field in Rn vanishing at

an equilibrium point X̃ defined in Equation ( 3.4 ). Let A be defined with Equation ( 3.18 ) and

divide the spectrum of A into three parts, such that,

Re
[
EΛ
]


< 0 if EΛ ∈ σs

= 0 if EΛ ∈ σc

> 0 if EΛ ∈ σu

, (3.20)

where the eigenspaces of the sets σs, σc, and σu are Es, Ec, and Eu, respectively. Then, there

exists stable, unstable, and center invariant manifolds (W s
loc, W u

loc, and W c
loc) tangent to their

respective eigenspaces, Es, Eu, and Ec, at the equilibrium point X̃ . The local manifolds W s
loc,

W u
loc, and W c

loc are all invariant to the flow. The stable and unstable manifolds are unique,

but the center manifold need not be.

Further discussion into invariant manifold structures for dynamical systems is provided in

Guckenheimer [ 56 ]. Structured flow, such as periodic orbits and quasi-periodic orbits, exist

within the center manifold and, in this investigation, periodic and quasi-periodic orbits near

the Sun-Earth L1 and L2 points are generated via numerical methods.
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3.2 Numerical Methods

In the absence of an analytical solution to the CRTBP, solutions, i.e., trajectories,

are evaluated via numerical methods. Within the context of the CRTBP, a trajectory is

computed via numerical propagation from an initial six-dimensional state. Anticipation of

numerical errors, such as truncation and round-off errors associated with numerical prop-

agation techniques, offers opportunities to construct feasible solutions. Additionally, there

are challenges associated with constructing a feasible trajectory near a dynamically complex

region, such as near a primary body in the CRTBP model. An understanding of the global

dynamical behaviors and the implementation of numerical shooting techniques facilitates

the construction of periodic and quasi-periodic orbits in the CRTBP model as well as more

complex geometries.

3.2.1 State Transition Matrix

The construction of feasible transfers in a dynamical system with no analytical solu-

tion requires numerical corrections techniques. The numerical method to construct a con-

tinuous trajectory with user-specified characteristics, e.g., orbit geometry or time-of-flight,

is an iterative process. The iterative process is more commonly termed as a numerical

”shooting method”. In this investigation, single-shooting and multiple-shooting methods are

implemented to construct transfers with specified attributes. Note that in the simplest case

for a single-shooter, an initial state, X̄0, is propagated by a time, T0, to a final state, X̄f .

Additional constraints are placed at the boundaries of the transfer, i.e., the initial or final

state, or along the path of the transfer. However, this iterative process requires knowledge

about the evolution of the variations associated with a propagated state, i.e., the relationship

between the initial and final variation. Equation ( 3.17 ) describes the linear approximation
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of the variation near a fixed point, X̄ ∗, where the derivative of the vector field is given in

Equation ( 3.18 ). The equation is re-written below as,

∆ ˙̄X = A(t)∆X̄ , (3.21)

where, it is recalled that, ∆X̄ is the variation from a state, X̄ ∗. Note that Equation (  3.21 )

is written as a linear state equation and a solution is given, from Rugh [  57 ], as,

∆X̄ (tf ) = Φ(tf , t0)∆X̄ (t0), (3.22)

with Φ(tf , t0) termed as the State Transition Matrix (STM). The STM is a linear representa-

tion of the change of an initial variation, ∆X̄ (t0), and a final variation, ∆X̄ (tf ). Additionally,

the STM can be expanded as,

Φ(tf , t0) =



∂x(tf )
∂x(t0)

∂x(tf )
∂y(t0)

∂x(tf )
∂z(t0)

∂x(tf )
∂ẋ(t0)

∂x(tf )
∂ẏ(t0)

∂x(tf )
∂ż(t0)

∂y(tf )
∂x(t0)

∂y(tf )
∂y(t0)

∂y(tf )
∂z(t0)

∂y(tf )
∂ẋ(t0)

∂y(tf )
∂ẏ(t0)

∂y(tf )
∂ż(t0)

∂z(tf )
∂x(t0)

∂z(tf )
∂y(t0)

∂z(tf )
∂z(t0)

∂z(tf )
∂ẋ(t0)

∂z(tf )
∂ẏ(t0)

∂z(tf )
∂ż(t0)

∂ẋ(tf )
∂x(t0)

∂ẋ(tf )
∂y(t0)

∂ẋ(tf )
∂z(t0)

∂ẋ(tf )
∂ẋ(t0)

∂ẋ(tf )
∂ẏ(t0)

∂ẋ(tf )
∂ż(t0)

∂ẏ(tf )
∂x(t0)

∂ẏ(tf )
∂y(t0)

∂ẏ(tf )
∂z(t0)

∂ẏ(tf )
∂ẋ(t0)

∂ẏ(tf )
∂ẏ(t0)

∂ẏ(tf )
∂ż(t0)

∂ż(tf )
∂x(t0)

∂ż(tf )
∂y(t0)

∂ż(tf )
∂z(t0)

∂ż(tf )
∂ẋ(t0)

∂ż(tf )
∂ẏ(t0)

∂ż(tf )
∂ż(t0)


, (3.23)

or written more compactly as,

Φ(tf , t0) =

Φrr(tf , t0) Φrv(tf , t0)

Φvr(tf , t0) Φvv(tf , t0)

 , (3.24)

where the linearized variation of the final position, ∆r̄(tf ), with respect to the initial po-

sition and velocity variation is stated as Φrr and Φrv, respectively. The matrices Φvr and

ΦvV correspond to the variation of the final velocity with respect to the initial position

and velocity variation, respectively. Note that the components in Equation ( 3.24 ), i.e.,
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{Φrr,Φrv,Φvr,Φvv}, are 3× 3 matrices. Some properties associated with the STM are sum-

marized below [ 57 ]:

Φ(tf , t0) = Φ(tf , t1)Φ(t1, t0), (3.25)

Φ−1(tf , t0) = Φ(t0, tf ), (3.26)
dΦ(tf , t0)

dt
= A(t)Φ(tf , t0). (3.27)

A more complete discussion about the STM and its properties is provided by Rugh [ 57 ].

Equation (  3.27 ) is implemented in the computation of the STM along a propagated trajec-

tory. Note that Equation ( 3.27 ) is a matrix function, such that, each individual entry is

solved via numerical integration at different times along the propagated trajectory; a com-

mon practice is to group the integration of the state, via Equation ( 3.2 ), and the STM

together. Knowledge about the evolution of a state variation associated with a trajectory

arc facilitates the corrections process for a shooting method.

3.2.2 Single-Shooting Method

The construction of trajectories with desirable characteristics, e.g., geometry, is facili-

tated via numerical single-shooting methods. In this formulation, the trajectory construction

process is essentially a Boundary Value Problem (BVP). A simple-shooting method example

is illustrated in Figure  3.1 . The trajectory arc in Figure  3.1 is created by propagating an

initial state, X̄ (t0), by time T0, such that the final state is written as: X̄ (tf ), where the final

time, tf , is denoted as: tf = t0 + T0. In Figure  3.1 , a desired state, i.e., X̄d, is ”targeted”,

that is the single-shooter method is essentially a targeting problem. A set of independent

variables, termed as free-variables, explicitly describe the transfer characteristics. A set of

target conditions, termed as constraints, describe any desired transfer characteristics, e.g.,

initial or final state components. The free-variables are written as a column vector, X̄, such

that X̄ ∈ Rnt , where nt is the number of free-variables. The constraints are also expressed

as a column vector, F̄ , with F̄ ∈ Rnf , where nf is the number of constraint conditions, i.e.,
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Figure 3.1. : A single trajectory arc for a single-shooter example

the targeting conditions. The targeting problem is formulated such that the solution is a

free-variable vector, X̄, that solves the following function,

F̄ (X̄) = 0̄, (3.28)

where F̄ is a constraint vector function and the targeting conditions are satisfied when all

components of F̄ are zero. A single-shooter example is constructed, similar to Figure  3.1 ,

such that a maneuver is performed at the initial state, i.e., X̄0, and a final position is targeted,

r̄d. The free-variable vector is written as,

X̄ =

v̄0

T0

 , (3.29)

where it is recalled that v̄0 is the velocity of the initial state and T0 is the propagation time.

Note that, in this example, the initial position, r̄0, is fixed such that the dimension of the

free-variable vector is written as: nt = 4. The target is a desired final position, r̄d, with the

constraint vector function denoted as,

F̄ =
[
r̄0(tf )− r̄d

]
= 0̄. (3.30)

The dimension of the constraint vector is Equation (  3.30 ) is: nf = 3. In this simplified

example, the initial velocity, v̄0, and the propagation time, T0, are free, that is, they may
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change throughout the corrections process. A straightforward way to solve a single-shooting

problem is via a numerical multidimensional Newton method algorithm.

3.2.3 Multidimensional Newton Method

The multidimensional Newton’s method facilitates the numerical corrections process

associated with trajectories formulated as a single- or multiple-shooting problem. Newton’s

method is an iterative method often implemented to calculate the zeros of a function, that is,

compute the solutions to the following arbitrary function: f(t) = 0. An appropriate initial

guess, i.e., a guess close to the desired solution, is required to mitigate any convergence

challenges, however, identifying an appropriate guess necessitates prior knowledge about

the function. A one-dimensional Newton method is implemented to locate the collinear

Lagrange points in the CRTBP model with the update equation stated in Equation (  3.12 )

. A multidimensional analog to the one-dimensional Newton method is derived to solve the

single-shooting targeting problem. In a targeting problem, the objective is to find a solution,

i.e., a vector Xc, that satisfies Equation ( 3.28 ). Let X̄j be an initial guess and let the solution

vector, X̄c, be written as: X̄c = X̄j+1. A small perturbation, δX̄, is defined as, δX̄ = X̄j+1−X̄j,

that is, the initial guess is assumed to be close to the solution. Next, a Taylor expansion of

the constraint function is denoted as,

F̄ (X̄j + δX̄) ≈ F̄ (X̄j) + DF̄(X̄j)(δX̄) + H.O.T.s, (3.31)

where DF̄(X̄j) is defined as the Jacobian of the system of constraint equations. For simplicity,

higher order terms are ignored, i.e., the perturbation is assumed to be small. The Jacobian

in Equation (  3.31 ) is expanded such that,

DF̄ = DF̄

DX̄
=



DF1
DX1

DF1
DX2

. . . DF1
DXnt

DF2
DX1

DF2
DX2

. . . DF2
DXnt... ... . . . ...

DFnf
DX1

DFnf
DX2

. . .
DFnf
DXnt


, (3.32)
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with the constraint vector denoted as: F̄ = [F1, F2, . . . , Fnf ]T , and the free-variable vector

defined as: X̄ = [X1,X2, . . . ,Xnt ]T . Recalling that, the left side of Equation ( 3.31 ) is equal

to zero, F̄ (Xj + δX) = 0̄, Equation (  3.31 ) is rewritten such that,

−F̄ (X̄j) = DF̄(X̄j)(X̄j+1 − X̄j). (3.33)

This is a linear system of equation in the form of, B = AAAx, where B is a column vector with

dimension nf , i.e., the dimension of the constraint vector, x is a column vector of dimension

nt, that is, the same size as the free-variable vector, X̄, and AAA is an nf×nt matrix. The linear

system of equations described has three scenarios with the corresponding update equations

given as:

• Overconstrained (nf > nt): Least-Square Solution

X̄j+1 = X̄j −
(
DF̄(X̄j)TDF̄(X̄j)

)−1
DF̄(X̄j)T F̄ (X̄j). (3.34)

• Underconstrained (nf < nt): Minimum-Norm Solution

X̄j+1 = X̄j −DF̄(X̄j)T
(
DF̄(X̄j)DF̄(X̄j)T

)−1
DF̄(X̄j). (3.35)

• Constraints equal to number of free-variables (nf = nt): Unique Solution

X̄j+1 = X̄j −DF̄(X̄j)−1F̄ (X̄j). (3.36)

The update function utilized in Newton’s method is dependent on the scenario. Recall

that Newton’s method is an iterative method such that the objective is: F̄ (X̄j+1) = 0̄.

However, due to computational challenges, an error tolerance, E, is selected such that the

objective of the corrections process, i.e., the multidimensional Newton’s Method, is defined

as: ‖F̄ (X̄j+1)‖2 ≤ Ē, where ‖ · ‖2 is the Eucledian norm of the vector. The update equation

corresponding to a unique solution, i.e., Equation ( 3.36 ), is the multidimensional analog to

a one-dimensional Newton’s method. There exists an infinite number of solutions in the

83



underconstrained scenario, and, in this investigation, the minimum norm solution is selected

to identify transfers with similar geometries to an initial guess. Further discussion about the

scenario for a linear system is provided in [  58 ].

A multidimensional Newton’s method is implemented to correct a single-shooting

problem. Recall the example illustrated in Figure  3.1 and expressed by the free-variable and

constraint vectors in Equations (  3.29 ) and (  3.30 ), respectively. In the example, the dimension

corresponding to the free-variable vector and the constraint vector are denoted as: nt = 4

and nf = 3, respectively, such that, the single-shooting problem is underconstrained. The

update equation corresponding to an underconstrained scenario is presented in Equation

( 3.35 ). The Jacobian associated with the constraint vector in Equation ( 3.30 ) is denoted as,

DF̄ =
[
∂r̄(tf )
∂v̄0(t0)

∂r̄
∂t

∣∣∣∣
T0

]
, (3.37)

where, it is recalled from Equation ( 3.22 ), ∂r̄(tf )
∂v̄0(t0) is final position variation with respect to

the initial velocity variation, i.e., the matrix Φrv in Equation ( 3.24 ). Additionally, ∂r̄
∂t

is the

velocity of the propagated arc at the end of the segment, t = T0. Constructing the Jacobian

matrix requires knowledge of the dependencies of the problem, i.e., the constraint vector.

Similar to its one-dimensional analog, the multidimensional Newton method has a quadratic

convergence rate. In this investigation, this numerical technique is implemented to construct

dynamical structures in the CRTBP model, such as periodic and quasi-periodic orbits, as

well as trajectories with complex geometries.

3.2.4 Multiple-Shooting Method

In dynamically complex regions, a multiple-shooting strategy is implemented to iden-

tify solutions with desirable geometries. The multiple-shooting scheme simultaneously cor-

rects a series of single-shooting problems, recalling that, in a single-shooting scheme, a single

trajectory arc is propagated from a single state. In a multiple-shooting scheme, a single

trajectory is subdivided into a set of N nodes. Each node has a corresponding initial state,
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X̄ , and propagation time, T . A simple multiple-shooting example is illustrated in Figure  3.2 .

The objective, similar to the single-shooting scenario, is to target a specific position, i.e., r̄d,

Figure 3.2. : Simple multiple-shooting example. The series of arcs are simultaneously
corrected to produce a continuous trajectory

from a stationary position, r̄0. Note that in this example, the initial position, r̄0, is fixed,

and therefore excluded from the free-variable vector. The free-variable vector is stated as:

X̄ =



v̄0

X̄1

X̄2

X̄N
T0

T1

T2

TN



, (3.38)

where v̄0 is the velocity corresponding to the first node. The constraint vector for the

multiple-shooting example is denoted as,

F̄ =



X̄0(T0)− X̄1(0)

X̄1(T1)− X̄2(0)

X̄2(T2)− X̄N(0)

r̄N(TN)− r̄d


. (3.39)

In this example, the dimension of the free-variable and the constraint vectors are: nt = 25 and

nf = 21, respectively. This represents an underconstrained scenario and a minimum norm
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solution, consistent with implementing Equation (  3.35 ) with Newton’s method, is desired.

The Jacobian associated with the constraint vector is defined as,

DF̄ =



∂X̄0(T0)
∂v̄0(0) −I6,6 06,6 06,6

∂X̄0
∂t

∣∣∣∣
T0

06,1 06,1 06,1

06,3
∂X̄1(T1)
∂X̄1(0) −I6,6 06,6 06,1

∂X̄1
∂t

∣∣∣∣
T1

06,1 06,1

06,3 06,6
∂X̄2(T2)
∂X̄2(0) −I6,6 06,1 06,1

∂X̄2
∂t

∣∣∣∣
T2

06,1

03,3 03,6 03,6
∂r̄N (TN )
∂X̄N (0) 03,1 03,1 03,1

∂r̄N
∂t

∣∣∣∣
TN


, (3.40)

with dimension: nf ×nt. Recall that the minimum norm solution produces a trajectory with

shared characteristics as the initial guess, e.g., similar geometry. Multiple-shooting methods

are implemented in the construction of trajectories in complex dynamical regimes, e.g., near a

primary body, and a feasible trajectory is identified with a combination of Newton’s method.

3.2.5 Continuation Methods

Continuation methods are powerful techniques frequently leveraged to observe the be-

havior of solutions associated with a dynamical system. Continuation methods, also termed

embedding or homotopy methods [ 59 ], are often implemented to find solutions to a system

of equations in the form of Equation ( 3.4 ). Recall that solutions to Equation ( 3.4 ) require

a priori knowledge to generate a ”good” initial guess, however in the absence of any system

intuition, Equation ( 3.4 ) may be rewritten as,

˙̄X = f̄
(
X̄ , g

)
= 0̄, (3.41)

where g is a system parameter, i.e., also termed a natural parameter. Note that if g = 0, then

Equation  3.41 reduces to Equation  3.4 . Let X̄ c be a known solution of Equation  3.41 with

g = gc and X̄ ∗ be the desired solution with g = 0. The assumption is there exists a curve of

solutions to Equation  3.41 for a range of 0 ≤ g ≤ gc. A numerical corrections process, such as

Newton’s method, is implemented in conjunction with the continuation method to identify
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the desired solution. Further discussion regarding continuation and homotopy methods is

provided by Allgower and Georg [ 59 ]. A solution to Equation ( 3.1 ) is an equilibrium solution

to the dynamical system, however, families of periodic orbits, quasi-periodic orbits, and

transfers are computed via continuation methods. For a general case, the targeting problem,

stated in Equation ( 3.28 ), is rewritten as:

F̄ (x̄, g) = 0̄, (3.42)

where g is labeled as a natural parameter, e.g., time-of-Flight (TOF) or ∆V , and x̄ is a

free-variable vector. Note that the free-variable vector, X̄, in Equation (  3.28 ), is also written

as, X̄ = [̄x; g], where [; ] represents vertical vector concatenation. In this analysis, natural

parameter and pseudo-arclength continuation, utilizing Newton’s method, are implemented

to compute families of solutions with the form stated in Equation (  3.42 ).

3.2.5.1 Natural Parameter Continuation

Natural parameter continuation is a numerical technique that builds a set of solutions

associated with a TPBVP from an initial solution. In this investigation, a solution to a

TPBVP is a transfer, a periodic orbit, or a quasi-periodic orbit within the context of the

CRTBP model. Natural parameter continuation begins with an initial solution defined at

{x̄0, g0}, plotted in Figure  3.3 . A new solution is computed by shifting the natural parameter

by a small variation, or step size, ∆g, such that, g1 = ∆g + g0. Newton’s method is

implemented to solve Equation (  3.42 ) with an initial guess, {x̄0, g1}, plotted as an open blue

circle in Figure  3.3 , and the new solution is defined as: {x̄1, g1}. Implementing a small

step size ∆g aids in the convergence process, that is, if a solution exists. In Figure  3.3 ,

natural parameter continuation is leveraged to compute select points along the curve in

blue. Observe that natural parameter continuation in g fails to converge near a turning

point, i.e., the region in the red box in Figure  3.3 , for the step size selected. In the turning

point example illustrated in Figure  3.3 , the corrections process fails to converge for the
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Figure 3.3. : Natural Parameter continuation along g. The turning point region, defined
by a dashed red box, presents challenges for natural parameter continuation. Figure adapted
from [  60 ]

initial guess, defined as {x̄′0, g′1}; recalling that g′1 remains fixed throughout the corrections

process. Convergence near turning points is an inherent challenge associated with natural

parameter continuation. Some mitigation strategies include, but are not limited to, using

an attenuation factor in the corrections process or decreasing the step size of the natural

parameter, ∆g. Additional insight regarding the TPBVP or the dynamical system offers

opportunities to mitigate the associated challenges with natural parameter continuation.

3.2.5.2 Pseudo-Arclength Continuation

Pseudo-arclength continuation is a more sophisticated method that offers improved

convergence performance near turning points along a curve. Proposed by Keller in 1977 [ 61 ],

pseudo-arclength continuation utilizes the tangent space of a curve to closely approximate its

geometry. An example is illustrated in Figure  3.4 . The free-variable vector, x̄, and a natural

parameter, g, are parameterized via an arclength parameter, s, and defined such that: x̄(s)
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and g(s). Equation ( 3.42 ) is rewritten as: F̄ (x̄(s), g(s)) = 0̄ and the tangent space is defined

as the derivative with respect to the arclength parameter, s, such that,

∂F̄

∂x̄(s)
∂x̄(s)
∂s

+ ∂F̄

∂g(s)
∂g(s)
∂s

= 0̄, (3.43)

where the tangent space is defined via:
[
∂ x̄(s)
∂s

; ∂g(s)
∂s

]
; recalling that [; ] represent vertical vector

concatenation. Note that Equation ( 3.43 ) is also written in matrix form as,

[
∂F̄
∂ x̄(s)

∂F̄
∂g(s)

]  ∂ x̄(s)∂s

∂g(s)
∂s

 = 0̄, (3.44)

where, it is observed, that the tangent space of the curve is in the null space of the Jacobian of

the targeting problem. Recall that a general free-variable vector, X̄, is defined as: X̄ = [̄x; g],

and the Jacobian is denoted as: DF̄ = ∂F̄
∂X̄

from Equation (  3.28 ). The dimension of the

tangent space associated with an nf × nt Jacobian matrix is computed through the rank-

nullity theorem [ 58 ],

rank
(
DF̄

)
+ nullity

(
DF̄

)
= nt, (3.45)

where nt is the dimension of the free-variable vector, nt = dim
(
X̄
)
. An additional pseudo-

arclength condition is included in the constraint vector [ 60 ],

F̄pseudo = ∂x̄

∂s

∣∣∣∣T
s0

(x̄1 − x̄0) + ∂g

∂s

∣∣∣∣
s0

(g1 − g0)− (s1 − s0) = 0, (3.46)

where the derivatives ∂ x̄
∂s

and ∂g
∂s

correspond to the free-variable vector and the natural pa-

rameter, respectively, and are evaluated at the initial solution corresponding to s = s0. The

step size associated with the continuation scheme is denoted as: ∆s = s1− s0. An expanded

constraint vector is given as,

F̄c =

 F̄

F̄pseudo

 . (3.47)
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Pseudo-arclength continuation is best implemented with a nf×nt Jacobian where nf = nt−1,

that is, the Jacobian has a one-dimensional null space. In this scenario, an expanded Jacobian

is formulated such that,

DF̄c =

 DF̄
∂ x̄
∂s

∣∣∣∣T
s0

∂g
∂s

∣∣∣∣
s0

 (3.48)

where the last row is the derivative of the pseudo-arclength constraint in Equation (  3.46 ).

Note that this expanded Jacobian is a square matrix so that a unique solution exists and

Newton’s method is solved via Equation ( 3.36 ). One example, illustrated in Figure  3.4 ,

presents an initial solution, {x̄0, g0}, and its associated the tangent line, plotted as a dashed

red line. A surface normal to the tangent surface is parameterized via s, and a new solution,

corresponding to {x̄1, g1}, lies on the normal surface at a distance ∆s from the initial solu-

tion. One of the benefits of pseudo-arclength continuation is improved convergence through

Figure 3.4. : Pseudoarclength continuation schematic. Pseudo-arclength continuation has
improved convergence through turning points. Figure adapted from [ 60 ]

turning points as depicted via the initial solution, {x̄′0, g′0}, and the final solution, {x̄′1, g′1}, in

Figure  3.4 . Convergence challenges associated with the continuation scheme are mitigated

by changing the step size, ∆s, or by introducing an attenuation factor to the corrections

process, i.e., Newton’s method. Note that the step size is a parameter along the tangent

surface of the curve and, depending on the targeting problem, it is difficult to have insightful
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information on selecting an appropriate step size that aids convergence. In this investigation,

pseudo-arclength and natural parameter continuation are implemented in the construction

of periodic orbits, quasi-periodic orbits, and feasible transfers in the Sun-Earth system.

3.3 Periodic Orbits

Periodic orbits provide insightful information about predictable long-term behavior

in a dynamical system. There is no closed-form analytical solution to the CRTBP, therefore

trajectories are often numerically propagated. These trajectories are solutions to the equa-

tions of motion corresponding to the CRTBP, but they don’t offer insightful information

about the overall system. Periodic orbits are trajectories with repeatable flow such that:

φ̄(X̄0, Tp) = φ̄(X̄0, 0), where Tp is the corresponding period of the orbit. The existence of

periodic orbits in time-invariant systems and systems that are periodic in time is further

explored in Szebehely [ 24 ]. In this investigation, transfers are generated near the collinear

Lagrange points L1 and L2. Linear stability analysis of the collinear Lagrange points in the

CRTBP classifies them as center × center × saddle. Periodic motion, and quasi-periodic

motion, exists within the center subspace associated with a collinear Lagrange point. Re-

calling that there is no closed-form analytical solution to the CRTBP, numerical methods

are employed to compute periodic orbits. Happala provides a discussion about correcting for

periodicity via the Mirror Theorem with a single-shooter [ 62 ]. In this investigation, periodic

orbits are computed via a multiple-shooting method, see Figure  3.5 for an illustration. The

objective is to enforce periodicity at the boundaries and state continuity along the trajec-

tory. A multidimensional Newton’s method is implemented to correct for a solution with

the constraint vector written as,

F̄ =


X̄0(Ta)− X̄1(0)

X̄1(Ta)− X̄2(0)

F̄period

 , (3.49)
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where Ta is the propagation time for each trajectory segment such that: Ta = Tp
no

, and F̄period

is the periodicity constraint defined as,

F̄period =



x2(Ta)− x0(0)

y2(Ta)− y0(0)

z2(Ta)− z0(0)

ẋ2(Ta)− ẋ0(0)

ż2(Ta)− ż0(0)


. (3.50)

For this corrector setup, the trajectory is divided into no arc segments. The existence of

an integral of motion is an implicit constraint in the corrections process. Recall that the

existence of an integral of motion reduces the dimension of the phase-space of a system by one

and the phase-space in the CRTBP is six-dimensional, such that, at a fixed Jacobi Constant,

the phase-space observed is five-dimensional. To constrain for periodicity, the components

of the final state, X̄2(Ta), and the initial state, X̄0(0), must match and have the same Jacobi

Constant value. Therefore, at a fixed Jacobi constant value, only five components of the

final and initial states along the trajectory need to match. The free-variable vector is stated

as,

X̄ =



X̄0(0)

X̄1(0)

X̄2(0)

Ta


. (3.51)

The dimension of the constraint and free-variable vector are given as: nt = 19 and nf = 17,

respectively. In the example illustrated by Figure  3.5 , the orbit trajectory is subdivided

into three segments where each segment has the same propagation time, Ta. A general case

is derived for an orbit trajectory subdivided into n0 segments, each sharing a propagation

time of Ta, such that the dimensions of the constraint and free-variable vectors have defined

dimensions: nf = 6no−1 and nt = 6no+1, respectively. In a general periodic orbit corrections

process implementing a multiple-shooting method, the problem is underconstrained, that is,

nf < nt. Therefore, a corrected periodic orbit is a minimum-norm solution to the multiple-
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Figure 3.5. : Multiple-shooter setup to compute for periodicity in the CRTBP model

shooting problem described, leveraging Equation ( 3.35 ). The Jacobian associated with the

constraint and free-variable vector in Equations ( 3.49 ) and ( 3.51 ), respectively, is denoted

as,

DF̄ =


∂X̄0(Ta)
∂X̄0(0) −I6,6 06,6

∂X̄0
∂t

∣∣∣
Ta

06,6
∂X̄1(Ta)
∂X̄1(0) −I6,6

∂X̄1
∂t

∣∣∣
Ta

∂F̄period
∂X̄0(0) 05,6

∂F̄period
∂X̄2(0)

∂F̄period
∂t

∣∣∣
Ta

 , (3.52)
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where the partial derivative for the periodicity constraint vector are,

∂F̄period

∂X̄0(0)
=



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1


, (3.53)

∂F̄period

∂X̄2(0)
=



∂x2(Ta)
∂x2(0)

∂x2(Ta)
∂y2(0)

∂x2(Ta)
∂z2(0)

∂x2(Ta)
∂ẋ2(0)

∂x2(Ta)
∂ẏ2(0)

∂x2(Ta)
∂ż2(0)

∂y2(Ta)
∂x2(0)

∂y2(Ta)
∂y2(0)

∂y2(Ta)
∂z2(0)

∂y2(Ta)
∂ẋ2(0)

∂y2(Ta)
∂ẏ2(0)

∂y2(Ta)
∂ż2(0)

∂z2(Ta)
∂x2(0)

∂z2(Ta)
∂y2(0)

∂z2(Ta)
∂z2(0)

∂z2(Ta)
∂ẋ2(0)

∂z2(Ta)
∂ẏ2(0)

∂z2(Ta)
∂ż2(0)

∂ẋ2(Ta)
∂x2(0)

∂ẋ2(Ta)
∂ẋ2(0)

∂ẋ2(Ta)
∂z2(0)

∂ẋ2(Ta)
∂ẋ2(0)

∂ẋ2(Ta)
∂ẏ2(0)

∂ẋ2(Ta)
∂ż2(0)

∂ż2(Ta)
∂x2(0)

∂ż2(Ta)
∂y2(0)

∂ż2(Ta)
∂z2(0)

∂ż2(Ta)
∂ẋ2(0)

∂ż2(Ta)
∂ẏ2(0)

∂ż2(Ta)
∂ż2(0)


, (3.54)

∂F̄period

∂t

∣∣∣∣
Ta

=



ẋ2(Ta)

ẏ2(Ta)

ż2(Ta)

ẍ2(Ta)

z̈2(Ta)


, (3.55)

where, it is recognized that, the components of ∂F̄period
∂X̄2(0) are the components of the STM defined

in Equation ( 3.23 ). Szehebely presents methods to generate initial guesses for periodic

orbits near the collinear Lagrange points via linearization [ 24 ]. Additionally, periodic orbits

are constructed near the primary bodies by leveraging Two-Body approximations as initial

guesses [  63 ]. The corrections process generates periodic orbits in the CRTBP model and is

expanded to construct families of periodic orbits.

Periodic orbits in the CRTBP model exist as one-parameter orbit families. A numer-

ical corrections process is derived to compute periodic orbits in the CRTBP via a multiple-

shooting strategy. However, from Szehebely, one-parameter families of periodic orbits exist

in the CRTBP model [ 24 ]. Numerical continuation techniques are leveraged to construct fam-

ilies of periodic orbits in the CRTBP model. The multiple-shooting method for periodicity,
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illustrated in Figure  3.5 , does not uniquely identify a periodic orbit. For example, a corrected

periodic orbit from Figure  3.5 has associated corrected states, {X̄ c
0 (0), X̄ c

1 (0), X̄ c
2 (0)}, with a

defined period: Tp = 3Ta; however the following set of states, {X̄ c
0 (Ts), X̄ c

1 (Ts), X̄ c
2 (Ts)}, also

correspond to the same periodic orbit where Ts is defined as: Ts ∈ R. The alternative states,

i.e., {X̄ c
j (Ts)}, are the propagated corrected states of {X̄ c

j (0)} by a time Ts. Note that the

period of the orbit does not change, but the states in the corrections process are changed. A

phasing constraint is included during the periodic orbit continuation process to mitigate any

corrections challenges due to nonuniqueness. A simple phasing constraint is implemented by

fixing certain components of a state, X̄j(0), throughout the corrections process. For example,

the y-component of the initial state, X̄0(0), is set to zero and the x-component is fixed so

that the constraint vector in Equation ( 3.49 ) is expanded, such that,

F̄ =



X̄0(Ta)− X̄1(0)

X̄1(Ta)− X̄2(0)

F̄period

x0(0)− xd
y0(0)


, (3.56)

where xd is the desired value for the x-component of the initial state. Note that the free-

variable vector, stated in Equation ( 3.51 ), is appended with the variable xd. Now, the

Jacobian is written as,

DF̄ =



∂X̄0(Ta)
∂X̄0(0) −I6,6 06,6

∂X̄0
∂t

∣∣∣
Ta

0

06,6
∂X̄1(Ta)
∂X̄1(0) −I6,6

∂X̄1
∂t

∣∣∣
Ta

0
∂F̄period
∂X̄0(0) 05,6

∂F̄period
∂X̄2(0)

∂F̄period
∂t

∣∣∣
Ta

0

[1, 0, 0, 0, 0, 0] 01,6 01,6 0 −1

[0, 1, 0, 0, 0, 0] 01,6 01,6 0 0


. (3.57)

Observe that, in this formulation, the position of the first node, X̄0(0), is located along the x̂-

axis. Natural parameter continuation is implemented to generate a family of periodic orbits

by varying a component of the free-variable vector, e.g., xd, and by using Equation ( 3.51 ).
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Alternatively, pseudo-arclength continuation is applied by introducing the pseudo-arclength

constraint condition, stated in Equation ( 3.46 ), and rewritten as,

F̄pseudo = DX̃T
(
X̄− X̃

)
−∆s = 0, (3.58)

where X̃ is the free-variable vector corresponding the previously corrected periodic orbit and

DX̃ is the basis vector corresponding to the null space of the Jacobian in Equation ( 3.57 ).

Recalling that for a periodic orbit multiple-shooting scheme, with no segments, the rank of

the Jacobian in Equation ( 3.57 ) is 6no+1, and, via the Rank-Nullity Theorem, the nullity of

the Jacobian is unity. Therefore, the null space, i.e., the tangent space associated with the

formulated problem, is one-dimensional. Additionally, the partial of the pseudo-arclength

constraint is,
DF̄pseudo

DX̃
= DX̃T . (3.59)

The pseudo-arclength constraint in Equation ( 3.58 ) and its associated Jacobian, i.e., Equa-

tion (  3.59 ), are appended to the constraint vector in Equation ( 3.56 ) and the Jacobian

matrix in Equation ( 3.57 ), respectively. The inclusion of the phasing constraint into the

continuation process facilitates the generation of periodic orbit families.

The Poincaré orthogonality phasing condition is an alternative to fixing a state compo-

nent on a periodic orbit [ 64 ]. Let Ū0 be defined as a vector containing the states correspond-

ing to an initially corrected periodic orbit, generated via a multiple-shooting formulation

illustrated in Figure  3.5 , such that,

Ū0 =



X̄ 0
0 (0)

X̄ 0
1 (0)

X̄ 0
2 (0)
...

X̄ 0
no(0)


, (3.60)
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then the Poincaré orthogonality phasing condition is expressed as the constraint,

F̄phasing = (Ū1 − Ū0)T ˙̄U0, (3.61)

where Ū0 and Ū1 are the collection of states associated with an initially corrected and the

current periodic orbit, respectively, and ˙̄U0 is defined as,

˙̄U0 =



f̄
(
X̄ 0

0 (0)
)

f̄
(
X̄ 0

1 (0)
)

f̄
(
X̄ 0

2 (0)
)

...

f̄
(
X̄ 0
no(0)

)


, (3.62)

with f̄ defined as the vector field equation corresponding to the CRBTP model, see Equation

( 3.1 ). The orthogonality constraint is illustrated in Figure  3.6 for an initial periodic orbit

consisting of states, {X̄ 0
j }, and a current periodic orbit consisting of the collection of states,

{X̄ 1
j }. Note that in this investigation, a multiple-shooting formulation is implemented to cor-

Figure 3.6. : Poincaré orthogonality constraint. Initial periodic orbit is given, via a
multiple-shooting scheme, by {X̄ 0

j } and the current solution is described by the collection of
states, {X̄ 1

j }. Figure is adapted from [  64 ].

97



rect for periodic orbits and to construct the families of periodic orbits, but the orthogonality

constraint is easily modified for a single-shooting formulation. Returning to the example

in Figure  3.5 , a new constraint vector, F̄ , and Jacobian is formulated with the included

orthogonality constraint. The free constraint vector is denoted as,

F̄ =



X̄0(Ta)− X̄1(0)

X̄1(Ta)− X̄2(0)

F̄period

(Ū− Ū0)T ˙̄U0


, (3.63)

where the vector of the current states, Ū, defined as,

Ū =


X̄0(0)

X̄1(0)

X̄2(0)

 , (3.64)

and a previously corrected periodic orbit has associated states, Ū0 and ˙̄U0, stated as,

Ū0 =


X̄ 0

0 (0)

X̄ 0
1 (0)

X̄ 0
2 (0)

 , (3.65)

˙̄U0 =


f̄
(
X̄ 0

0 (0)
)

f̄
(
X̄ 0

1 (0)
)

f̄
(
X̄ 0

2 (0)
)

 . (3.66)

The corresponding Jacobian matrix is written as,

DF̄ =



∂X̄0(Ta)
∂X̄0(0) −I6,6 06,6

06,6
∂X̄1(Ta)
∂X̄1(0) −I6,6

∂F̄period
∂X̄0(0) 05,6

∂F̄period
∂X̄2(0)

∂X̄0
∂t

∣∣∣
Ta

∂X̄1
∂t

∣∣∣
Ta

∂F̄period
∂t

∣∣∣
Ta

˙̄UT0 0


. (3.67)
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The periodicity targeting problem formulated with a phasing constraint, i.e., expressed via

Equations ( 3.56 ) and (  3.63 ), are applicable for the example illustrated in Figure  3.5 . Fam-

ilies of periodic orbits are constructed via natural parameter or pseudo-arclength continua-

tion. For natural parameter continuation, the natural parameter selected is x0(0), i.e., the

x-component of the initial state in the free-variable vector stated in Equation ( 3.51 ). Ad-

ditionally, a pseudo-arclength continuation scheme is implemented by including Equations

( 3.58 ) and ( 3.59 ) into Equations ( 3.63 ) and ( 3.67 ), respectively. Families of periodic orbits

in the CRTBP model are constructed with these continuation strategies.

Families of periodic orbits are constructed in the Sun-Earth CRTBP model. In this

investigation, families of Lyapunov, vertical, and halo periodic orbits are generated near

the Sun-Earth collinear L1 and L2 Lagrange points. The planar Lyapunov orbit family is

constructed via a multiple-shooter strategy with an initial guess from the planar linearization

near the L1 and L2 points [ 24 ]. The planar Lyapunov orbit families near the L1 and L2

vicinity are plotted in Figure  3.7 (a)-(b). The periodic orbits in Figure  3.7 represent a subset

of the entire Lyapunov orbit family in the Sun-Earth system. The out-of-plane vertical orbits

near the L1 and L2 Lagrange points in the Sun-Earth system are plotted in Figures  3.8 (a)-

(b), respectively. The spatial halo family near L1 and L2, plotted in Figures  3.9 and  3.10 ,

respectively, emanate from the planar Lyapunov orbit family. Note that families of periodic

orbits in Figures  3.7 - 3.10 are plotted via a color range corresponding to the associated Jacobi

Constant value. Additional discussion regarding bifurcation from periodic orbits is provided

by Zimovan [ 65 ] and Campbell [ 66 ].
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(a)

(b)

Figure 3.7. : Sun-Earth (a) L1 Lyapunov orbit family and (b) L2 Lyapunov orbit family
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(a) (b)

Figure 3.8. : Sun-Earth (a) L1 vertical orbit family and (b) L2 vertical orbit family
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Figure 3.9. : Sun-Earth halo orbits near the L1 Lagrange point. This subset of the halo
orbit family contains both southern and northern members of the family

Figure 3.10. : Sun-Earth halo orbits near the L2 Lagrange point. This represents only one
subset of the entire halo orbit family
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3.3.1 Stability

Lyapunov stability analysis offers insightful understanding into the local flow behavior

near a periodic orbit. Periodic orbits are solutions to the vector field, i.e., the equations of

motion, corresponding to the CRTBP model and represent long-term repeatable behavior.

The geometries offered by families of periodic orbits, in the CRTBP, are often leveraged to

construct efficient transfers in a simplified Three-Body model, which are straightforwardly

corrected in a higher-fidelity model. Additionally, an analysis of the flow near the vicin-

ity of a periodic orbit exposes important dynamical behavior. Recall that the flow near

equilibrium points, i.e., Lagrange points, is analyzed through Lyapunov stability and the

linear approximation near a point, X̄ ∗, is provided in Equations ( 3.17 ) and ( 3.18 ). Note

that the matrix, A(t), has constant entries when observing equilibrium points, however,

A(t) is time-varying and periodic for periodic orbits. For periodic orbits, maps are con-

structed to investigate stability properties associated with the local flow behavior. Maps

are introduced into a dynamical system to convert a continuous time system into a dis-

crete time system and offer insightful observations of the global flow of a dynamical system.

Stroboscopic maps are implemented to observe the local flow behavior near periodic orbits.

Stroboscopic maps are constructed by collecting the states, X̄map, of a flow, φ̄(X̄0, t), at dis-

crete time intervals, nmapTmap, where nmap is the number of crossings to the map, defined as

nmap = {0, 1, 2, . . . ,∞}, and Tmap is the mapping time. Let the Poincaré map for a periodic

orbit be defined as P(X̄ ∗) = φ̄(X̄ ∗, Tp), where Tp is the orbital period and X̄ ∗ is termed a

fixed point, such that the linearized state variation of the flow, i.e., φ̄(X̄ ∗, Tp), associated

with this fixed point is written as,

∆X̄ (nmapTp) = Φ(nmapTp, 0)∆X̄ (0), (3.68)
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where Tp is the orbital period, Φ(nmapTp, 0) is the state transition matrix after time nmapTp,

and nmap is the number of crossings onto the stroboscopic map. Note that the state transition

matrix Φ(nmapTp, 0) is simplified to,

Φ(nmapTp, 0) = Φ(Tp, 0)nmap . (3.69)

The state transition matrix after one revolution, one full period, is termed the monodromy

matrix and defined as: Φ(Tp, 0). The monodromy is also the linearization of the Poincaré

map, P, at the fixed point of the periodic orbit. Floquet theory is implemented to determine

the stability characteristic near the vicinity of a periodic orbit by analyzing the eigenstructure

of its corresponding monodromy matrix. The eigenvalues, PΛj, of the monodromy matrix,

also termed the characteristic multipliers, expose the stability information near a fixed point.

For a periodic orbit, there is one characteristic multiplier associated with the periodicity of

the orbit and, thus, is equal to unity. The remaining characteristic multipliers determine

the linear stability near the fixed point [ 56 ]. A characteristic multiplier with a value less

than unity, |PΛj| < 1, represents asymptotic linear stability near a fixed point, whereas a

value greater than unity, |PΛj| > 1, signifies unstable behavior. Characteristic multipliers

with a magnitude equal to unity, |PΛj| = 1, indicate marginal stability in a linear sense.

An important property of the characteristic multipliers of a monodromy matrix in a time-

invariant system, e.g., the CRTBP model, is provided by Lyapunov’s Theorem:

Theorem 3.3.1. Lyapunov’s Theorem [  54 ] If PΛ is an eigenvalue of the monodromy

matrix, Φ(T, 0), in a time-invariant system, then PΛ−1 is also an eigenvalue.

Eigenvalues of the monodromy matrix, i.e., characteristic multipliers, appear in reciprocal

pairs. Additionally, the monodromy matrix contains real elements, so that any complex

eigenvalue, PΛ, also has an accompanying complex conjugate, PΛ†, where † is a complex

conjugate operator [  58 ]. In summary, periodic orbits in the CRTBP model have at least one

pair of characteristic multipliers equal to unity and two pairs of characteristic multipliers

which determine the stability characteristics of the fixed point associated with the orbit.

104



3.3.2 Invariant Subspaces Near Periodic Orbits

Linear stability analysis near periodic orbits reveal insightful dynamical behavior that

is leveraged to construct efficient transfers in the CRTBP model. Similar to the invariant

subspaces for Lagrange points, invariant subspaces associated with a periodic orbit are iden-

tified via the linearized Poincaré map, i.e., the monodromy matrix, near the fixed point

of the periodic orbit. Guckenheimer categorizes the hyperbolic invariant subspaces via the

following theorem [  56 ]:

Theorem 3.3.2. Stable Manifold Theorem for Fixed Points Let P be a diffeomor-

phism with a hyperbolic fixed point X̄ ∗. Then, there are local stable and unstable manifolds

WS
loc and WU

loc, tangent to the eigenspaces P S
X̄ ∗ and PU

X̄ ∗, respectively, of the linearized map

DPPP(X̄ ∗) and of corresponding dimensions.

The local eigenspaces are identified via eigenstructure of the linearized mapping DPPP(X̄ ∗),

i.e., the monodromy matrix, as:

• Stable eigenspace is associated with ‖Pλj‖ < 1 where j ∈ {1, . . . , ns}. The local

subspace is defined as ESX̄ ∗ = span{P Ψ̄S
1 , . . . ,

P Ψ̄S
ns} and has dimension ns.

• Unstable eigenspace is associated with ‖Pλj‖ > 1 where j ∈ {1, . . . , nu}. The local

subspace is defined as EUX̄ ∗ = span{P Ψ̄S
1 , . . . ,

P Ψ̄S
nu} and has dimension nu.

• Center eigenspace is associated with ‖Pλj‖ = 1 where j ∈ {1, . . . , nc}. The local

subspace is defined as ECX̄ ∗ = span{P Ψ̄S
1 , . . . ,

P Ψ̄S
nc} and has dimension nc.

The dimensions of the eigenspaces span the phase-space of the dynamical system, i.e.,

CRTBP model, such that: ns + nu + nc = 6. A state along the local stable manifold, WS
loc,

asymptocially approaches a fixed point, X̄ ∗, associated with a periodic orbit as t → ∞.
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Conversely, a propagated state along the local unstable manifold WU
loc approaches the fixed

point as t→ −∞. A state along the local stable manifold is approximated via,

X̄ S = X̄ ∗ ± η
P Ψ̄S

j

‖P Ψ̄S
j,r‖

, (3.70)

where P Ψ̄S
j is a vector in the direction of the local stable manifold, i.e., P Ψ̄S

j ∈ WS
loc. A

step-off parameter, η, is introduced to transition from a fixed point X̄ ∗ to a point in the

direction of the stable manifold, where the direction is dictated by the eigenvector P Ψ̄S
j . The

value of the step-off parameter η is important in the approximation of the local manifold

state. If η is large, then the state X̄ S may not be on the local stable manifold, likewise, if η is

too small then it may require more propagation time to approach the fixed point. Note that
P Ψ̄S

j is normalized by the magnitude of its positional components, ¯PΨS

j,r. An eigenvector
P Ψ̄ is also composed as: P Ψ̄ = [P Ψ̄r;P Ψ̄v], where P Ψ̄r is a three-dimensional vector that

contains the position components and P Ψ̄v contains the corresponding velocity components.

In Equation (  3.70 ), the sign value, ±, indicates that the state X̄ S is on one of the half-

manifolds that compose the entire manifold structure. The state along the local unstable

manifold is evaluated in a similar process. Global analogs of the local hyperbolic manifolds

are constructed via propagation of the local stable and unstable manifold states in reverse

and forward time, respectively. So far, states along the local manifolds are approximated at

a specified fixed point along a periodic orbit. However, the eigenvectors along the periodic

orbit, i.e., along different locations of the orbit, are transitioned via the STM, e.g., let P Ψ̄(0)

be an eigenvector computed at the fixed point, X̄ ∗(0), then,

P Ψ̄(t) = Φ(t, 0)P Ψ̄(0), (3.71)

where Φ(t, 0) is the state transition matrix from the fixed point X̄ ∗(0). Care should be taken

to normalize a transitioned eigenvector, i.e, P Ψ̄(t), before evaluating the local manifold

state via Equation ( 3.70 ). From Guckenhemier [  56 ], the dimensions of local stable and

unstable manifolds are always one degree higher than the dimension of their respective

subspaces, ESX̄ ∗ and EUX̄ ∗ , respectively. The center subspace associated with periodic orbits
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is more complex and, as opposed to the stable and unstable subspaces, can be nonunique.

Further discussion regarding the stable manifold is provided by Guckenheimer [ 56 ]. In this

investigation, the existence of quasi-periodic motion within the center subspace associated

with periodic orbits is leveraged to generate quasi-periodic orbits near the collinear L1 and L2

Lagrange points. Quasi-periodic motion offers opportunities to construct trajectories with

more complex geometries.

3.4 Quasi-Periodic Orbits

Quasi-periodic motion observed near the CRTBP Lagrange points offers complex

geometries that facilitate the construction of efficient transfers for a range of mission design

objectives. Several authors have generated quasi-periodic orbits within the context of the

CRTBP model. Pernika constructed feasible quasi-periodic orbits in the Sun-Earth system

for the ACE mission. McCarthy et al. generated quasi-periodic orbits in the Sun-Earth and

Earth-Moon system and constructed transfers between periodic orbits via an intermediate

quasi-periodic orbit [ 20 ]. Bosanac et al. cataloged families of quasi-periodic in the Sun-Earth

system to facilitate mission design parameters [ 67 ]. Olikara implemented a numerical method

to generate families of quasi-periodic orbits and to identify heteroclinic transfers between

Earth-Moon L1 and L2 Lagrange points [  17 ]. Recall that, Lagrange points, periodic orbits,

and quasi-periodic orbits are dynamical structures frequently observed in the CRTBP model;

these structures may also be described as invariant sets. In the context of this investigation,

an invariant set is a dynamical structure in which a trajectory may flow into but not out of

and may be described via a basic invariant object. A formal definition of an invariant set

and invariant objects is provided by Wiggins [ 68 ]. An example of a basic invariant object

is an p-dimensional Torus, T. Note that the dynamical structures previously discussed, i.e.,

the Lagrange points and periodic orbits are now defined as tori with dimensions denoted as,

• Lagrange points (Equilibrium Points) (p=0)

• Periodic orbits (p=1)
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• Quasi-periodic orbits (p ≥ 2)

A general schematic of the dynamical structures discussed as tori are plotted in Figure  3.11 .

The orbit along Lagrange points, periodic orbits, and quasi-periodic orbits densely cover the

Figure 3.11. : Dynamical structures described as p-dimensional invariant tori

surface of their respective invariant tori, however an infinite amount of time is needed for

tori with dimensions of p ≥ 2, i.e., quasi-periodic orbits. A formal definition of an invariant

torus, provided by Olikara [ 17 ], is denoted as,

T = cl{φ̄(X̄0, t)| t ∈ R}, (3.72)

which defines the torus as the closure of the flow, φ̄(X̄0, t), from an initial state, X̄0. For

the stationary Lagrange points, the flow is fixed to the initial state, X̄0, i.e., the equilibrium

point. The closure of the flow corresponding to periodic orbits is defined by a finite period,

Tp. In this investigation, quasi-periodic orbits are constructed from two-dimensional tori

in the CRTBP model. A general p-dimensional torus, T, has p corresponding fundamental

frequencies,
{
θ̇1, θ̇2, . . . , θ̇p−1, θ̇p

}
. In the case of a two-dimensional torus, the fundamental

frequencies, θ̇1 and θ̇2, are termed as the longitudinal and latitudinal frequencies, respectively,

and are plotted in Figure  3.11 . A numerical process that implements a multiple-shooting

scheme is leveraged to compute quasi-periodic from a two-dimensional torus. Addition-

ally, numerical continuation facilitates the construction of quasi-periodic families near the

collinear Lagrange points.
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3.4.1 Numerical Computation of Quasi-Periodic Orbits

Quasi-periodic orbits in the CRTBP are constructed via a numerical algorithm that

leverages a multiple-shooting scheme. In this analysis, the method for generating families

of quasi-periodic orbits originates with Gómez and Mondelo and includes enhancements by

Olikara and Scheeres [ 32 ], [ 33 ]. Recalling that a two-dimensional torus is characterized via

two fundamental frequencies, θ̇1 and θ̇2, plotted in Figure  3.11 ; define a state on the surface of

the torus, termed the torus state, as ū. The torus state is parameterized by the angles, θ1 and

θ2, such that ū (θ1, θ2). Note that ū is a six-dimensional state, i.e., the dimension of the phase-

space associated with the CRTBP. The angles, θj, are defined such that θj(t) = θ̇jt, where t is

the propagation time along the torus. A complete revolution is illustrated in Figure  3.12 (a)

where an initial state, ū (θ1(0), θ2(0)), is propagated with longitudinal time T1. Additionally,

two and fifteen revolutions are plotted in Figures  3.12 (b) and  3.12 (c), respectively. Observe

that if a state is collected after each successive revolution in Figure  3.12 (c), i.e., a black

point in the plot, a black curve along the surface of the torus is identified. The black curve

formed in Figure  3.12 (c) is termed as the invariant curve. From the invariant tori definition,

quasi-periodic motion is observed for tori with irrational frequency ratios, that is r = θ̇1
θ̇2

, and

periodic motion is observed for tori with rational frequency ratios. This behavior is observed

in Figure  3.12 (c), where a propagated state, ū (θ1(t), θ2(t)), does not return to the initial

state and will densely cover the surface of the torus as t→∞.

To numerically produce a quasi-periodic orbit, the foundation of this method is a

periodic orbit in the CRTBP represented in terms of a fixed point, X̄ ∗. A stroboscopic

map, generated with the longitudinal time T1, is leveraged to reduce the construction of

the two-dimensional torus, one that characterizes the quasi-periodic orbit, to a search for

an invariant curve. The periodic time for the stroboscopic map, i.e., T1, is associated with

the period of the longitudinal frequency, θ̇1, defined as θ̇1 = 2π

T1
and plotted in Figure  3.11 .

The invariant curve is revealed through the implementation of the stroboscopic mapping as

illustrated in Figure  3.12 . An initial state, defined as ū(θ1(0), θ2(0)), is propagated along the

torus and the returns to the stroboscopic map represent the invariant curve associated with
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(a) (b)

(c)

Figure 3.12. : (a) First revolution along the surface of two-dimensional torus. Initial state,
ū (θ1(0), θ2(0)), is propagated with time T1. (b) Two complete revolutions along the surface
of the two-dimensional torus. (c) 15 revolutions along the surface of the torus. Invariant
curve, black line, is described via a set of points collected every revolution.

a specific quasi-periodic orbit. Additionally, a state on the surface of the two-dimensional

torus, in the rotating frame of the CRTBP, is defined with X̄qpo = ū(θ1, θ2) + X̄ ∗, where,

it is recalled that, X̄ ∗ is a fixed point associated with a periodic orbit. The geometry of

the invariant curve associated with a specific torus is approximated via a set of nq torus

states ūj with j = [1, ..., nq] by using a truncated Fourier series. The number of torus states,

nq, used to approximate the invariant curve affects the accuracy of the numerical algorithm

for quasi-periodic orbits. The search for an invariant curve is mathematically described

by an invariance condition, such that a rotation matrix, R(−ρ), rotates the final state,

ū(θ1(T1), θ2(T1)), on the torus back to its initial state, i.e.,

R(−ρ)
[
ū
(
θ1(T1), θ2(T1)

)]
−
[
ū
(
θ1(0), θ2(0)

)]
= 0, (3.73)
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where 0 is a nq×6 zero matrix and
[
ū
]

represents the torus states that discretize the invariant

curve such that,

[
ū
(
θ1(t), θ2(t)

)]
= [ū]t =



ūT1
(
θ1(t), θ1

2(t)
)

ūT2
(
θ1(t), θ2

2(t)
)

...

ūTj
(
θ1(t), θj

2(t)
)


, (3.74)

where each torus state is written as a row vector and the latitudinal angle, θ2, along the

invariant curve is defined as θj
2(0) ∈ [0, 2π]. The matrix, [ū]t, representing the invariant curve

has dimensions: nq×6; recalling that the phase-space of the CRTBP is six-dimensional. For

the stroboscopic map, θ1(0) = θ1(T1), therefore, the first return to the map occurs at θ1(0)

and the state of the first return onto the stroboscopic map, i.e., the final state in Equation

( 3.73 ), is parametrized as ū(θ1(0), θ2(0) + ρ), where ρ represents a rotation angle along the

invariant curve. Note that the torus states, ūj, are six-dimensional vectors and the rotation

matrix, R(−ρ), is a nq × nq real matrix evaluated with elements of the Fourier series and

the rotation angle (−ρ)[ 33 ].

Quasi-periodic orbits are numerically constructed by implementing a multiple-shooting

strategy along with the invariance condition stated in Equation ( 3.73 ) [ 33 ]. In a multiple-

shooting strategy, a single trajectory is divided into a series of smaller arcs which, in a

numerical corrections process, facilitate the construction of a trajectory in a complex dy-

namical regime. Recalling that the stroboscopic map that identifies the invariant curve is

constructed at times, T1. In a multiple-shooting scheme, the propagated trajectory of a

torus state along the invariant curve, i.e., ūj(θ1(0), θj
2(0)), is subdivided into q segments,

each with an associated propagation time T1
q

. The quasi-periodic orbit, represented by a

two-dimensional torus, is now characterized by torus states, ūkj , where k = [1, ..., q]. A

schematic of the multiple-shooting algorithm is illustrated in Figure  3.13 with the invari-

ant curve indicated by a solid black curve. In Figure  3.13 , the torus is divided into three

sections, such that q = 3, and the invariant curve is discretized via the three torus states

{ū1
1, ū

1
2, ū

1
3}. Within the numerical corrections process, the invariant curve is termed as the

first torus curve. The second and third torus curves are constructed with the set of torus
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Figure 3.13. : Multiple-shooting schematic for two-dimensional torus

states {ū2
1, ū

2
2, ū

2
3} and {ū3

1, ū
3
2, ū

3
3}. The propagation time for each trajectory arc, i.e., indi-

cated by a solid blue line in Figure  3.13 , is T1
3 . The invariance condition, Equation (  3.73 ), is

evaluated at the initial states along the invariant curve, ū1
j (0, θj

2(0)), and the final propagated

states, ūqj (θ1(T1
q

), θj
2(0)) with full state continuity enforced at the intermediate torus curves.

Additionally, a torus state along the invariant curve, ū1
j , is expressed in the phase-space

consistent with the CRTBP via X̄ 1
j = ū1

j + X̄ ∗, where, it is recalled that, X̄ ∗ is a fixed point

associated with a periodic orbit. The invariant curve is approximated via a Discrete Fourier

Transform (DFT) expressed as,

CK = 1
nq

nq∑
j=1

ū(θj
2)e

−2πi

nq
K(j−1)

, (3.75)

where a general torus state ū(θj
2) along the invariant curve is associated with evenly dis-

tributed angles θj
2 defined as θj

2 = 2πj
nq

with j ∈ [0, . . . , nq − 1]. Let W be a variable such that
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W = e
−2πi

nq , where i =
√
−1, then Equation ( 3.75 ) is expanded into matrix form such that

the Fourier coefficient matrix, CCC, is denoted as,

CCC = 1
nq



WK(1)(0) WK(1)(1) WK(1)(2) . . . WK(1)(nq−1)

WK(2)(0) WK(2)(1) WK(2)(2) . . . WK(2)(nq−1)

... ... ... . . . ...

WK(nq)(0) WK(nq)(1) WK(nq)(2) . . . WK(nq)(nq−1)


[ū]t, (3.76)

with [ū]t defined from Equation (  3.74 ) and the vector K̄ defined as K̄ = [K(1), K(2), ..., K(nq)].

The vector K̄ is selected based on the number of points used to approximate the invariant

curve, i.e., nq, such that:

Odd number of points : K̄ =
[
−(nq − 1)

2 , . . . ,−1, 0, 1, . . . , (nq − 1)
2

]
(3.77)

Even number of points : K̄ =
[−nq

2 , . . . ,−1, 0, 1, . . . , nq2 − 1
]

(3.78)

Note that there are various choices for the K̄ vector. The Fourier coefficient matrix in

Equation ( 3.76 ) has dimensions nq × 6. Additionally, a matrix DDD is defined as,

DDD = 1
nq



WK(1)(0) WK(1)(1) WK(1)(2) . . . WK(1)(nq−1)

WK(2)(0) WK(2)(1) WK(2)(2) . . . WK(2)(nq−1)

... ... ... . . . ...

WK(nq)(0) WK(nq)(1) WK(nq)(2) . . . WK(nq)(nq−1)


, (3.79)

with the inverse denoted as,

DDD−1 =



W−K(1)(0) W−K(2)(0) W−K(3)(0) . . . W−K(nq)(0)

W−K(1)(1) W−K(2)(1) W−K(3)(1) . . . W−K(nq)(1)

... ... ... . . . ...

W−K(1)(nq−1) W−K(2)(nq−1) W−K(3)(nq−1) . . . W−K(nq)(nq−1)


. (3.80)
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Recognize the special property of the Fourier coefficient matrix [ 58 ],

DDD−1 = DDDH , (3.81)

where [ · ]H is the conjugate transpose of the DDD matrix. Equation ( 3.76 ) and the states along

the invariant curve, [ū]t, can be compactly written as,

CCC = DDD[ū]t (3.82)

[ū]t = DDD−1CCC (3.83)

The information from the Fourier coefficient matrix, CCC, is used to approximate an arbitrary

torus state along the invariant curve, ū(θ2), associated with an angle, θ2, with the following

expression:

ū(θ2) =
[
eiθ2K(1) eiθ2K(2) . . . eiθ2K(nq)

]
CCC, (3.84)

where the angle θ2 is defined in the interval [0, 2π]. Next, the rotation matrix, R, from

the invariance condition is derived via the DFT. Let ū(θ2 + ∆θ) be a torus state along the

invariant curve that is rotated by an angle ∆θ from an initial torus state ū(θ2) and written

as,

ū(θ2 + ∆θ) =
[
ei(θ2+∆θ)K(1) ei(θ2+∆θ)K(2) . . . ei(θ2+∆θ)K(nq)

]
C, (3.85)

with the Fourier coefficient matrix, CCC, and a K̄ vector defined via Equations ( 3.77 ) and

( 3.78 ). The torus state ū(θ2 + ∆θ) is also denoted in matrix form as,

ū(θ2 + ∆θ) =
[
eiθ2K(1) eiθ2K(2) . . . eiθ2K(nq)

]
Q(∆θ)CCC, (3.86)

where Q is a nq × nq matrix defined as,

Q(∆θ) =



ei∆θK(1) 0 . . . 0

0 ei∆θK(2) . . . 0
... ... . . . ...

0 0 . . . ei∆θK(nq)


. (3.87)
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Now, let CCC be the Fourier coefficient matrix corresponding to a set of torus states [ū]0
with an associated set of angles [0, 2π

nq
, ..., 2π(nq−1)

nq
]. Then, let the set of torus states [ū]T1

be a rotation of the initial torus states [ū]0 by some angle ρ, i.e., associated with angles

[ρ, 2π

nq
+ ρ, ..., 2π(nq−1)

nq
+ ρ], such that,

[ū]T1 =



ei(
2π(0)
nq

+ρ)K(1) ei(
2π(0)
nq

+ρ)K(2)
. . . ei(

2π(0)
nq

+ρ)K(nq)

ei(
2π(1)
nq

+ρ)K(1) ei(
2π(1)
nq

+ρ)K(2)
. . . ei(

2π(1)
nq

+ρ)K(nq)

ei(
2π(2)
nq

+ρ)K(1) ei(
2π(2)
nq

+ρ)K(2)
. . . ei(

2π(2)
nq

+ρ)K(nq)

... ... . . . ...

ei(
2π(nq−1)

nq
+ρ)K(1) ei(

2π(nq−1)
nq

+ρ)K(2)
. . . ei(

2π(nq−1)
nq

+ρ)K(nq)


CCC. (3.88)

Observe that Equation (  3.88 ) is more compactly written as,

[ū]T1 = DDD−1Q(ρ)CCC, (3.89)

then substitute the definition of the Fourier coefficient matrix from Equation ( 3.82 ), i.e.,

[ū]T1 = DDD−1Q(ρ)DDD[ū]0. (3.90)

Finally, the rotation matrix, R, is identified as,

R(ρ) = DDD−1Q(ρ)DDD. (3.91)

To summarize, the rotation matrix R(ρ) rotates a set of states, approximated via an evenly

distributed DFT, by an angle ρ. For the invariance condition stated in Equation ( 3.73 ), the

propagated states are rotated back through the rotation angle, ρ.
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The numerical algorithm implemented in the construction of quasi-periodic orbits

is consistent with a TPBVP with a multidimensional Newton’s method. The free-variable

vector for a general algorithm is denoted as,

X̄ =



X̄ 1
1

X̄ 1
2
...

X̄ 1
nq

X̄ 2
1

X̄ 2
2
...

X̄ 2
nq
...

X̄ q
1

X̄ q
2
...

X̄ q
nq

T1

ρ



(3.92)

where the invariance curve is approximated via the set of states {X̄ 1
1 , X̄ 1

2 , . . . , X̄ 1
nq} in the

phase-space of the CRTBP. To construct the invariance condition constraint as a column

vector, Equation ( 3.73 ) is rewritten via the following property,

vec (AAABBBCCC) =
(
CCCT ⊗AAA

)
vec (BBB) , (3.93)
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where ⊗ is the kronecker product and vec(·) is the vectorization function. Vectorization is a

linear transformation that converts a matrix into a column vector. For example, let AAA be a

matrix such that AAA =
[
a b
c d

]
, then the vectorization is stated as,

vec(AAA) =



a

c

b

d


. (3.94)

The transpose of the invariance condition, Equation (  3.73 ), is given as,

[
ū
]T
T1

RT (−ρ)−
[
ū
]T

0
= [0], (3.95)

where [T ] represents the matrix transpose. Then, the invariance condition is rewritten via

the vectorization property in Equation ( 3.93 ), i.e.,

F̄inv = (R(−ρ)⊗ I6,6) vec
([
ū
]T
T1

)
− vec

([
ū
]T

0

)
= 0̄, (3.96)

where I6,6 is a 6× 6 identity matrix. Recall that
[
ū
]

0
contains initial torus states along the

invariant curve and
[
ū
]
T1

contains the propagated torus states after time T1, i.e., a first return

to the stroboscopic map. In this analysis, families of quasi-periodic orbits with a fixed Jacobi

Constant are constructed via the numerical algorithm presented. The constraint function

associated with fixing the Jacobi Constant is stated as,

FQPO,C = Cdes −
1
nq

nq∑
j=1
C
(
X̄ 1

j

)
, (3.97)

where C is the function for the Jacobi Constant defined via Equation ( 2.37 ), X̄ 1
j is a state

along the invariant curve associated with the quasi-periodic orbit, and Cdes is the desired

Jacobi Constant value. The fixed Jacobi Constant constraint is enforcing an average C value

equal to the desired value Cdes for all states along the invariant curve. Additionally, families of

quasi-periodic orbits corresponding to a fixed mapping time, T1, and rotation angle, ρ, exist,
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but are not implemented in this analysis. Further discussion about families of quasi-periodic

orbits with a fixed mapping time and rotation angle is provided by McCarthy [ 20 ]. The

constraint vector implemented in the quasi-periodic orbit correction process with a desired

Cdes is written as,

F̄QPO =



X̄ 1
1

(
T1
q

)
− X̄ 2

1 (0)

X̄ 1
2

(
T1
q

)
− X̄ 2

2 (0)
...

X̄ 1
nq

(
T1
q

)
− X̄ 2

nq(0)
...

X̄ p−1
1

(
T1
q

)
− X̄ q

1 (0)

X̄ p−1
2

(
T1
q

)
− X̄ q

2 (0)
...

X̄ p−1
nq

(
T1
q

)
− X̄ q

nq(0)

(R(−ρ)⊗ I6,6) vec
([
ū
]T
T1

)
− vec

([
ū
]T

0

)
FQPO,C



. (3.98)

The vectorization of the torus states, from Equation ( 3.74 ), at the stroboscopic map are

defined as,

vec
([
ū
]T

0

)
=



X̄ 1
1 (0)− X̄ ∗

X̄ 1
2 (0)− X̄ ∗

...

X̄ 1
nq(0)− X̄ ∗


(3.99)

vec
([
ū
]T
T1

)
=



X̄ q
1 (T1

q
)− X̄ ∗

X̄ q
2 (T1

q
)− X̄ ∗
...

X̄ q
nq(

T1
q

)− X̄ ∗


, (3.100)
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where
[
ū
]

0
and

[
ū
]
T1

are 6nq × 1 column vectors; recalling that X̄ is a 6 × 1 state vector.

The Jacobian for the constraint vector is denoted as,

DF̄QPO =



Φ̄1 −I 0 . . . 0 ∂[X̄ ]1
∂T

0

0 Φ̄2 −I . . . 0 ∂[X̄ ]2
∂T

0
... . . . . . . . . . ... ... ...

0 0 . . . Φ̄p−1 −I ∂[X̄ ]q−1
∂T

0

−I 0 . . . 0 DxF̄QPO DT1F̄QPO DρF̄QPO

DxFQPO,C 01,6nq . . . 01,6nq 01,6nq 0 0


, (3.101)

where I and 0 are 6nq × 6nq identity and zero matrices, respectively. The matrix Φ̄j is a

collection of STMs that correspond to the states along an jth intermediate curve, plotted in

Figure  3.13 , i.e.,

Φ̄j =



X̄ j
1(T1

q
)

X̄ j
1(0) 06,6 . . . 06,6

06,6
X̄ j

2(T1
q

)
X̄ j

2(0) . . . 06,6
... ... . . . ...

06,6 06,6 . . .
X̄ j
nq (T1

q
)

X̄ j
nq (0)


, (3.102)

recalling the definition of the STM in Equation ( 3.22 ). The vector ∂[X̄ ]j
∂T1

is a collection of

acceleration states associated with,

∂[X̄ ]j
∂T

=



(
1
q

) ˙̄X j
1

∣∣∣T1
q(

1
q

) ˙̄X j
2

∣∣∣T1
q...(

1
q

) ˙̄X j
nq

∣∣∣T1
q


. (3.103)

where the acceleration, computed via the CRTBP equations of motion, is evaluated at time
T1
q

, i.e., the end of the propagation. Then, the partials of the invariance conditions with
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respect to the states along the qth torus curve, the propagation time T1, and the rotation

angle ρ, are denoted as,

DxF̄QPO = (R(−ρ)⊗ I6,6) Φ̄q, (3.104)

DT1F̄QPO = (R(−ρ)⊗ I6,6) ∂[X̄ ]q
∂t

∣∣∣T1
q

(
1
q

)
, (3.105)

DρF̄QPO = (DR(−ρ)⊗ I6,6) vec
([
ū
]T
T1

)
, (3.106)

where the derivative of the rotation matrix R is,

DR(−ρ) = DDD−1



−ik(1)e−iρK(1) 0 . . . 0

0 −ik(2)e−iρK(2) . . . 0
... ... . . . ...

0 0 . . . −ik(nq)e−iρK(nq)


DDD, (3.107)

with DDD defined in Equation (  3.79 ). The partial of the Jacobi Constant constraint, Equation

( 3.97 ), is given with the vector,

DxFQPO,C = −1
nq

[
∂C(X̄ 1

1 )
∂X̄ 1

1
. . .

∂C(X̄ 1
nq)

∂X̄ 1
nq

]
, (3.108)

with the following property,

∂C
(
X̄
)

∂X̄
= 2

[
∂U∗
∂x

∂U∗
∂y

∂U∗
∂z

ẋ ẏ ż

]
, (3.109)

where the partials of the pseudo-potential U∗ are from Equation ( 2.33 ).

The initial conditions for the numerical corrections process are retrieved from informa-

tion derived from the center manifold structure of the associated periodic orbit. The states

along the invariant curve, i.e., [ū]0, are initialized with the components of a six-dimensional

eigenvector in the center subspace of the reference periodic orbit. Recall that the monodromy

matrix of a reference periodic orbit contains two eigenvectors, P Ψ̄C
1 and P Ψ̄C

2 , that are asso-

ciated with the two eigenvalues equal to unity. Additionally, two additional eigenvectors in
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the center subspace, P Ψ̄C
3 and P Ψ̄C

4 , correspond to the eigenvalues with |PΛ| = 1, assuming

that they exist. The states in [ū]0, defined in Equation ( 3.74 ), are initialized as follows [ 17 ],

ū1
j = ε

[
Re

[
P Ψ̄C

3

]
cos

(
2π(j− 1)

nq

)
− Im

[
P Ψ̄C

3

]
sin

(
2π(j− 1)

nq

)]
, (3.110)

where ε is a step-off distance in the direction of the eigenvector, Re[ · ] is an operator that

isolates the real components of a vector, and Im[ · ] isolates the imaginary components of a

vector. In Equation ( 3.110 ), components of the eigenvector P Ψ̄C
3 are used, however, recall

that, in the CRTBP model, P Ψ̄C
4 is the complex conjugate of P Ψ̄C

3 . The rotation angle ρ is

initialized with the angle of the eigenvalue associated with the periodic orbit in the center

subspace, i.e.,

ρ = Re
[
−i log

[
PΛC

3

]]
. (3.111)

The longitudinal time T1 is initialize via the period of the reference periodic orbit. An

example of a Lissajous orbit near the Sun-Earth L1 vicinity is plotted in Figure  3.14 . In

Figure  3.14 , a trajectory along the Lissajous is plotted in black and the point along the

invariant curve are provided in red and the reference vertical orbit is in magenta. The

multiple-shooting strategy helps mitigate any numerical challenges associated with highly

complex dynamical regimes.

Families of quasi-periodic orbits are constructed by enforcing constraints on Jacobi

Constant, C, the rotation angle, ρ, or the mapping time associated with the stroboscopic

map, T1. In the CRTBP, quasi-periodic orbits exist as two-parameter families [ 17 ], however,

one-parameter families of quasi-periodic orbits are constructed by fixing a parameter. The

fixed parameter is one of the following choices: the Jacobi Constant C, the rotation angle

ρ, or the mapping time T1. The construction process to generate families of quasi-periodic

orbits is initialized with a quasi-periodic orbit corrected via a multidimensional Newton’s

method with the constraint conditions outlined in Equation ( 3.98 ). For a corrected quasi-

periodic orbit, the approximation of the invariant curve via the DFT is not unique, that is,

the states that approximate the geometry of the corrected invariant curve, i.e., [ū]10, is not

unique. In fact, the corrections process does not uniquely identify a corrected quasi-periodic
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(a) (b)

Figure 3.14. : (a) L1 Lissajous orbit with a Jacobi Constant C = 3.0008763979870 in
the Sun-Earth system. Points along the invariant curve are in red. The initial state of
a propagated trajectory along the Lissajous is in black. Note that this Lissajous orbit is
constructed from a vertical orbit, plotted in magenta. (b) ŷ − ẑ projection of the Lissajous
orbit.

orbit. For example, let a corrected invariant curve, approximated by states [˜̄u]10, correspond

to a torus T2, i.e., a two-dimensional torus. Then, a set of states rotated by an angle ∆θ2

along the invariant curve is defined as [ū]1′0 = R(∆θ2)[˜̄u]10. The rotated set of states along the

invariant curve, [ū]1′0 , also belong to the same torus T2. The example implies that the states

along the invariant curve are rotated along the latitudinal direction of the torus. A similar

process is implemented by propagating all the states in the invariant curve, i.e., [ū]10, by a

time T1′ , in a process that describes the rotation of the invariant curve along the longitudinal

direction. Note that the set of propagated states also correspond to the same torus T2. To

mitigate any issues encountered due to the nonuniqueness, a set of phasing constraints are

included in the corrections process during the quasi-periodic orbit family generation. The

phasing constraints implemented in this analysis are consistent with those in Olikara [ 33 ]

and are applicable for a general torus. Let [˜̄u]10 be a corrected invariant curve corresponding
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to a two-dimensional torus T̃2 and [ū]10 be the current approximation of the invariant curve

associated with torus T2. Then, the phasing constraints are denoted as [ 33 ],

Fθ1 =< [ū]10,
∂[˜̄u]10
∂θ1

>, (3.112)

Fθ2 =< [ū]10,
∂[˜̄u]10
∂θ2

>, (3.113)

where < · > is the dot product. To derive the partial derivatives of the corrected invariant

curve with respect to the longitudinal angle, i.e., θ1, let the corrected invariant curve be

written as: [˜̄u]10(θ1, θ2). Then, the time derivative is computed via the chain rule, i.e.,

D[˜̄u]10(θ1, θ2)
Dt

= ∂[˜̄u]10(θ1, θ2)
∂θ1

∂θ1

∂t
+ ∂[˜̄u]10(θ1, θ2)

∂θ2

∂θ2

∂t
, (3.114)

such that ∂θ1
∂t

and ∂θ2
∂t

are the longitudinal and latitudinal frequencies associated with the

torus, respectively. Recall that each vector in [˜̄u]10(θ1, θ2) is a torus state that is parameterized

via the angles θ1 and θ2, see Equation ( 3.74 ). Now the partial derivative with respect to the

longitudinal frequency is defined as,

∂[˜̄u]10(θ1, θ2)
∂θ1

= 1
θ̇1

(
D[˜̄u]10(θ1, θ2)

Dt
− ∂[˜̄u]10(θ1, θ2)

∂θ2
θ̇2

)
, (3.115)

where the fundamental frequencies for the corrected invariant curve are defined as,

θ̇1 = 2π

T̃1
, (3.116)

θ̇2 = ρ̃

T̃1
, (3.117)
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with ρ̃ and T̃1 as the rotation angle and mapping time corresponding to the corrected in-

variant curve. The time derivative of the invariant curve is evaluated via the equations of

motion associated with the CRTBP, Equation ( 3.3 ), i.e.,

D[˜̄u]10(θ1, θ2)
Dt

=



˙̄u1T
1

˙̄u1T
2
...

˙̄u1T
j


, (3.118)

where ˙̄u1
j is defined as ˙̄u1

j = f̄
(
X̄ 1

j

)
; recall the definition of a torus state: X̄ 1

j = ū1
j + X̄ ∗.

The time derivative of the torus states has a matrix dimension of nq × 6. Now, the partial

derivative with respect to the latitudinal frequency is derived from the DFT approximation of

the invariant curve. The corrected invariant curve is approximated via the DFT in Equation

( 3.83 ) such that, [˜̄u]10 = DDD−1C̃̃C̃C. Then,

∂[˜̄u]10(θ1, θ2)
∂θ2

= ∂DDD−1

∂θ2
C̃̃C̃C, (3.119)

with C̃̃C̃C as the Fourier coefficient matrix associated with the corrected invariant curve and

DDD−1 is defined with Equation ( 3.80 ). Equation ( 3.119 ) is expanded to,

∂[˜̄u]10(θ1, θ2)
∂θ2

= DDD−1



iK(1) 0 . . . 0

0 iK(2) . . . 0
... ... . . . ...

0 0 . . . iK(nq)


C̃̃C̃C, (3.120)
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where K(j) are components of the K̄ vector defined via Equation ( 3.77 ) or ( 3.78 ). The

phasing constraints in Equations ( 3.112 ) and ( 3.113 ) are rewritten with the vectorization

function and denoted as,

Fθ1 = vec
(
[ū]1T0

)T
vec

∂[˜̄u]10
∂θ1

T
 , (3.121)

Fθ2 = vec
(
[ū]1T0

)T
vec

∂[˜̄u]10
∂θ2

T
 , (3.122)

where, it is recalled, that [T ] is the vector transpose. The phasing constraints expressed

in Equations ( 3.121 ) and ( 3.122 ) are evaluated via a dot product and, therefore, are scalar

values. Phasing constraint are included in the corrections process to construct distinct

members of a quasi-periodic orbit family. Families of quasi-periodic orbits occur in two-

parameter families in the CRTBP model, but one-parameter families are constructed by

fixing the following variables: Jacobi Constant C, mapping time T1, rotation angle ρ. The

constraint vector implemented in the construction of a quasi-periodic orbit family with a

fixed Jacobi Constant is denoted as,

F̄QPO,phase =


F̄QPO

F̄phase θ1

F̄phase θ2

 , (3.123)
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Where F̄QPO is given via Equation ( 3.98 ). The Jacobian associated with the constraint vector

and the free-variable vector, stated in Equation ( 3.92 ), is written with,

DF̄QPO,phase =



Φ̄1 −I 0 . . . 0 ∂[X̄ ]1
∂T1

0

0 Φ̄2 −I . . . 0 ∂[X̄ ]2
∂T1

0
... . . . . . . . . . ... ... ...

0 0 . . . Φ̄p−1 −I ∂[X̄ ]p−1
∂T1

0

−I 0 . . . 0 DxF̄inv DT1F̄inv DρF̄inv

DxFQ,C 01,6nq . . . 01,6nq 01,6nq 0 0

DxFθ1 01,6nq . . . 01,6nq 01,6nq DT1Fθ1 DρFθ1

DxFθ2 01,6nq . . . 01,6nq 01,6nq DT1Fθ2 DρFθ2



, (3.124)

with the partials of the phasing constraints, i.e., Equations ( 3.121 ) and ( 3.122 ), expressed

with,

DxFθ1 = vec
∂[˜̄u]10
∂θ1

T
T , (3.125)

DT1Fθ1 = 0, (3.126)

DρFθ1 = 0, (3.127)

DxFθ2 = vec
∂[˜̄u]10
∂θ2

T
T , (3.128)

DT1Fθ2 = 0, (3.129)

DρFθ2 = 0. (3.130)

The dimension of the free-variable vector, written in Equation ( 3.92 ), is (6 q nq + 2), and the

dimension of the constraint vector in Equation ( 3.123 ) is (6 q nq +3). However, it is observed

that there is some dependencies between the rows, such that the rank of the DF̄QPO,phase

matrix in Equation ( 3.124 ) is 6qnq + 1. The Jacobian stated in Equation (  3.124 ) has a

one-dimensional nullspace. Pseudo-arclength continuation is implemented by appending the
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pseudo-arclength constraint into the constraint vector in Equation ( 3.123 ) and the Jacobian

in Equation (  3.124 ), i.e.,

F̄QPO,fam =

F̄QPO,phase

F̄pseudo

 , (3.131)

DF̄QPO,fam =

DF̄QPO,phase

DX̃T

 , (3.132)

(3.133)

where F̄pseudo is the pseudo-arclength constraint from Equation ( 3.58 ) and DX̃ is defined in

Equation (  3.59 ). In this analysis, families of quasi-periodic orbits with a fixed C value are

constructed in the Sun-Earth system of the CRTBP model near the L1 and L2 Lagrange

points. A family of quasi-halo orbits at a fixed Jacobi Constant is constructed from a

northern halo orbit near L1. The family of quasi-halo orbits is plotted in Figure  3.15 and

the ratio associated with the quasi-periodic family is presented in Figure  3.16 . A family of

Lissajous orbits that corresponds to a Jacobi Constant of C = 3.00087639 is plotted in Figure

 3.17 (a). The family of Lissajous orbits in Figure  3.17 (a) emanates from the vertical orbit,

identified in magenta, and meets a planar Lyapunov orbit at the desired Jacobi Constant

value.
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Figure 3.15. : Family of quasi-halo orbits near L1 at a Jacobi Constant C = 3.00060309. The originating halo orbit is in
magenta
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Figure 3.16. : Ratio and mapping time for quasi-halo family corresponding to C =
3.00060309. Colors along the line correspond to the quasi-halos in Figure  3.15 

(a) (b)

Figure 3.17. : (a) Select orbits in the Lissajous orbit family near L1 corresponding to a
Jacobi Constant, C = 3.00087639. (b) Lissajous orbit ratio and the mapping time T1. The
selected orbits in (a) are plotted with their respective colors. The originating orbit is a
vertical orbit in magenta
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Regions with large resonances may challenge the convergence of the multiple-shooting al-

gorithm, especially when generating families with a fixed C value, but anticipating these

regions mitigates the difficulties associated with this numerical algorithm.

3.4.2 Stability of Quasi-Periodic Orbits

Linear stability analysis is implemented to observe the local behavior of the flow in

the vicinity of a quasi-periodic orbit. The stability properties investigated near a fixed point

associated with a periodic orbit describe the local dynamical flow. Essentially, a stroboscopic

map is constructed with the period corresponding to the periodic orbit. The linearization of

the map reveals insightful local flow behavior near a fixed point associated with a periodic

orbit. Similarly, the stability properties for quasi-periodic orbits are observed via a linearized

stroboscopic map for the invariant curve [ 33 ]. For periodic orbits, the flow near a fixed point

is observed; however, for quasi-periodic orbits, the flow near the vicinity of an invariant curve

is now explored. Let a stroboscopic mapping with time T1, i.e., the longitudinal period, be

defined as

ū(θ2 + ρ) = F(ū(θ2)), (3.134)

where a torus state is now parameterized with the latitudinal angle, θ2, and ρ is the torus

rotation angle. Recall that, for a two-dimensional torus, a torus state is parameterized with

longitudinal and latitudinal angles, θ1(t) and θ2(t), respectively. However, as a consequence

of the stroboscopic map, θ1(0) = θ1(T1), that is, the map is constructed at every revolution

around the longitudinal direction of the torus, refer to the illustration in Figure  3.12 . There-

fore, a torus state on the map is parameterized via the latitudinal angle, θ2, and these states

are along an invariant curve associated with a two-dimensional torus. A linearized form of

the mapping represented in Equation ( 3.134 ) is written as,

δū(θ2 + ρ) = FFFx(ū(θ2))δū(θ2), (3.135)
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where the matrix FFFx(ū(θ2)) is a derivative with respect to the initial torus state and δū is

a small variation of the torus state. Note that the matrix FFFx(ū(θ2)) is a function of the

angle θ2, that is, corresponding to different points along the invariant curve; no stability

properties are derived from this matrix. However, from Jorba [ 34 ], if the torus is assumed

to be reducible, then a change of coordinates is introduced such that w̄ = C(θ2)ū, and a

linearized system is now written as,

δw̄(θ2 + ρ) = BBBδw̄(θ2), (3.136)

where the constant matrix BBB is defined as: BBB = C(θ2 + ρ)−1FFFx(ū(θ2))C(θ2). Now, the

stability properties of the invariant curve are observed through the eigenstructure of the

constant BBB matrix. Identifying an appropriate change of coordinate matrix, C, is not a

trivial task, but for the quasi-periodic numerical algorithm implemented in this analysis, the

eigenvalues of the constant BBB matrix are evaluated through the eigenvalues of [ 34 ],

GGG =
(
R
(
− ρ

)
⊗ I6,6

)
Φ̄, (3.137)

where I6,6 is a 6× 6 identity matrix, ⊗ is the kronecker product, and Φ̄ is a matrix, of size

6nq× 6nq, that includes the STMs from the states, X̄ 1
j , along the invariant curve, such that,

Φ̄̄Φ̄Φ =



X̄ 1
1 (T1)
X̄ 1

1 (0) 06,6 . . . 06,6

06,6
X̄ 1

2 (T1)
X̄ 1

2 (0) . . . 06,6
... ... . . . ...

06,6 06,6 . . .
X̄ 1
nq (T1)
X̄ 1
nq (0)


, (3.138)

with 06,6 as a 6×6 zero matrix. The details regarding reducibility of invariant tori is beyond

the scope of this analysis and further discussion is provided by Jorba [ 34 ], [ 69 ]. The GGG matrix

plays a similar role as the monodromy matrix for a periodic orbit and its eigenvalues and

eigenvectors reveal insightful stability information near the vicinity of the invariant curve

associated with a quasi-periodic orbit.
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The eigenvalues of the linearized map, GGG, provide the stability characteristic of the

local behavior in the vicinity of a quasi-periodic orbit. The eigenvalues of a quasi-periodic

orbit, corresponding to a reducible two-dimensional torus, have the following properties [ 34 ]:

• If Λ is an eigenvalue of GGG, then so is eijρΛ with j ∈ Z and i =
√
−1. Note that Z

represents all integers. All eigenvalues of the matrix GGG densely fill concentric circles

centered at the origin of the complex plane.

• If the system is autonomous, then there is one eigenvalue with modulus equal to unity,

that is, there is at least one concentric circle of eigenvalues with radii, ‖Λ‖, equal to

unity, i.e., the unit circle.

• If Λ and ψ̄ are an eigenvalue and eigenvector pair, then so is eijρΛ and e−ijρψ̄ with

j ∈ Z.

• For a stroboscopic map, i.e., a symplectic map used in the invariance condition, if

Λ ∈ C, then 1
Λ , Λ†, and 1

Λ† are also eigenvalues of the system [ 70 ]. Note that C represents

the set of complex numbers and [†] is a complex conjugate. As a consequence of this

symplectic property, a quasi-periodic orbit in an autonomous system has at least two

concentric circles with ‖Λ‖ = 1.

In this numerical algorithm, an invariant curve is approximated via a DFT with nq six-

dimensional states, i.e., the phase-space of the CRTBP model. Therefore, the matrix in

Equation ( 3.137 ) has 6nq eigenvalues that form concentric circles in the complex plane.

Similar to periodic orbits, the hyperbolicity of the invariant curve is observed through the

modulus of the eigenvalues, i.e., ‖Λj‖. The existence of a stable manifold subspace is defined

via eigenvalues with modulus less than unity, i.e., ‖Λ‖ < 1, and the existence of an unstable

manifold subspace is expressed via ‖Λ‖ > 1. The eigenvalues of each invariant subspace,

either stable or unstable, occur in concentric circles in the complex plane [ 17 ]. The flow char-

acterized by the stable and unstable subspaces provide opportunities to construct efficient

transfers that approach and depart desired quasi-periodic orbits.
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3.4.3 Invariant Subspaces Near Quasi-Periodic Orbits

Trajectories that exist within the stable and unstable subspaces associated with a

quasi-periodic orbit offer opportunities to construct low-cost transfers in the CRTBP model.

An infinite number of trajectories densely fill the surface of the hyperbolic, i.e., stable and

unstable, manifolds and, by nature, these trajectories asymptotically approach the quasi-

periodic orbit. The eigenvectors associated with the stable and unstable manifolds are locally

tangent to the invariant curve, however, the global representation of the hyperbolic mani-

folds are constructed via propagation from the local eigenvectors. Let {ΛS
j } be the collection

of eigenvalues with modulus less than unity, ‖ΛS
j ‖ < 1, i.e., the stable subspace, with cor-

responding eigenvectors defined as {Ψ̄S
j }. Additionally, {ΛU

j } is the collection of eigenvalues

with modulus greater than unity, ‖ΛS
j ‖ > 1, i.e., the unstable subspace, with correspond-

ing eigenvectors defined as {Ψ̄U
j }. The local representation of the stable manifold surface

associated with a quasi-periodic orbit leverages an eigenvector, Ψ̄S
1 , which corresponds to

an eigenvalue, ΛS
1 , with a zero imaginary element, such that, Im[ΛS

1 ] = 0. Recalling that

eigenvalues occur in concentric circles, an eigenvalue, ΛS
1 , with only real parts will have a

corresponding eigenvector, Ψ̄S
1 , with real components. The eigenvector, Ψ̄S

1 , is a vector of

size 6nq and is divided into a set of sub-eigenvectors {ψ̄S1,j} that correspond to torus states

ūj along the invariant curve, such that,

{Ψ̄S
1 } =



ψ̄S1,1

ψ̄S1,2
...

ψ̄S1,nq


. (3.139)

A state on the stable manifold, X̄ S
j , is approximated as,

X̄ S
j = X̄Q

j ± η
ψ̄S1,j

‖ψ̄S1,j,r‖
, (3.140)
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where η is a step-off magnitude, ψ̄S1,j is the associated six-dimensional stable eigenvector for

ūj which is also written as, ψ̄S1,j = [ψ̄S1,j,r; ψ̄S1,j,v] and X̄Q
j = ūj + X̄ ∗. Recall that X̄ ∗ is the

fixed point of an associated periodic orbit. The three-dimensional vectors ψ̄S1,j,r and ψ̄S1,j,v are

defined such that ψ̄S1,j,r corresponds to the elements associated with position and ψ̄S1,j,v isolate

the velocity elements. The value of η is implemented as a step-off distance in the direction of

the eigenvector direction. The global representation of the stable manifold is evaluated via

propagation of the states on the local stable manifolds, X̄ S
j , in reverse time, i.e., t→ −∞. So

far, only the stable manifold has been discussed, however, the same process is implemented

to compute the state, X̄ U
j , along the local unstable manifold. The global representation of

the unstable manifold is then evaluated by forward time propagation.

A state on the local stable (or unstable) manifold is computed via Equation ( 3.140 )

along the invariant curve. To represent the states on the local hyperbolic manifolds from the

full torus, i.e., all locations along the two-dimensional torus, the STM is implemented [ 33 ].

Let ψ̄S1,j be an eigenvector in the stable subspace corresponding to a state along the invariant

curve, X̄Q
j (0). Then the eigenvector to corresponding to a state along the torus, X̄Q

j (t), is

evaluated as,

ψ̄S1,j(t) =
∂X̄Q

j (t)
∂X̄Q

j (0)
ψ̄S1,j, (3.141)

where ∂X̄Qj (t)
∂X̄Qj (0)

is the STM after the propagation time t. The information from the hyperbolic

invariant manifolds associated with quasi-periodic orbits offers opportunities to construct

efficient transfers that approach and depart quasi-periodic orbits. Quasi-periodic orbits

provide more complex geometries for mission design objectives.
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4. RIDESHARE MISSION OVERVIEW

The ridesharing scenario in this investigation includes two satellites, a primary and secondary

payload, launched concurrently into a Geosynchronous Transfer Orbit. In this ridesharing

scenario, the objective of the primary mission is to situate a satellite, i.e., a primary payload,

into Geostationary Orbit. After launch, the primary payload is inserted into a GTO en route

to the desired GEO altitude, a transfer strategy frequently implemented to place satellites

in GEO; note that additional strategies to place a satellite in GEO are discussed in the

United Launch Alliance (ULA) Atlas V Guide[ 71 ]. The ridesharing mission in this analysis

is focused on the transfer options available for a secondary payload launched simultaneously

with the primary payload from an intermediate GTO. The ridesharing mission scenario is

illustrated in Figure  4.1 and is consistent with the following steps:

1. Launch of primary and secondary payloads.

2. Enter primary payload intermediate orbit.

• Geosynchronous Transfer Orbit.

3. Primary payload separation.

• Primary payload performs an insertion maneuver at GTO apoapsis and enters

into a Geostationary Orbit. Secondary payload remains in GTO.

4. Secondary payload performs Transfer Insertion Maneuver (TIM) at GTO periapsis en

route to destination in the Sun-Earth system.

The ridesharing strategy reduces the launch costs for secondary payloads; especially im-

portant for small satellites as launch costs may significantly exceed the production costs.

However, secondary payloads face many challenges, such as:

• No control over launch epoch.
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• No control over selected launch vehicle.

• No control over drop-off orbit.

• No abort option once the secondary payload is integrated into launch vehicle.

Preliminary design for secondary payloads must incorporate these constraints. In this anal-

ysis, transfers from an intermediate GTO are constructed considering a range of departure

epochs and orbit orientations. Note that the departure epoch and launch epoch are different;

Figure 4.1. : Ridesharing mission scenario for primary and secondary payloads plotted in
an inertial EME reference frame. The intermediate GTO orbit is in cyan and the primary
Geostationary Orbit is in red

the departure epoch is defined as a time after the primary payload has detached, i.e., step 4

in Figure  4.1 . Assuming no additional maneuvers are performed, i.e, the drop-off GTO re-

mains unaltered, after the primary payload has detached, the GTO orientation is dependent

on the primary mission launch constraints. With no a priori information regarding the pri-

mary mission launch epoch or the drop-off GTO orientation, strategies leveraging dynamical

structures in the CRTBP model are formulated to construct flexible and efficient transfers

to orbits near the Sun-Earth Lagrange points from a range of departure GTO orientations.
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4.1 Geosynchronous Transfer Orbit in the CRTBP Rotating Frame

A Geosynchronous Transfer Orbit is a Keplerian elliptical orbit, defined within the

context of the Two-Body problem, and is rotated into the CRTBP rotating frame. A GTO

has a defined apogee altitude equal to the geosynchronous orbit altitude, i.e., ha = 35, 786

km, while the perigee altitude, hp, is dependent on the performance and size of the launch

vehicle and may vary from 185-1200 km. A GTO is a closed orbit defined via a Two-Body

approximation, however, in the rotating frame consistent with the CRTBP model, the GTO

is not a closed orbit. Actually, in this analysis, a GTO in the CRTBP model is a propagated

arc from a rotated GTO state; note that the GTO state is rotated from an inertial frame. An

arbitrary inertial frame and rotating frame associated with the CRTBP model is illustrated

in Figure  2.5 . The dimensional GTO position and velocity vectors in the inertial frame, R̄
i′ ps

and V̄
i′ ps, respectively, is defined as,

R̄
i′ ps = CT (Ω, i′ i, ω)


a(1−e2)

(1+e cos(ν)) cos(ν)
a(1−e2)

(1+e cos(ν)) sin(ν)

0

 , (4.1)

V̄
i′ ps = CT (Ω, i′ i, ω)



√
G̃M2
rp(1+e)(− sin(ν))√
G̃M2
rp(1+e)(e + cos(ν))

0

 , (4.2)

where a is the semimajor axis, e is the orbit eccentricity, ν is the true anomaly, G̃ is the

gravitational constant, and M2 is the mass of the Earth. Note that Equations ( 4.1 ) and

( 4.2 ) are consistent with a Two-Body approximation and, in this investigation, the position

and velocity vectors, R̄
i′ ps and V̄

i′ ps, are measured with respect to the Earth, i.e., P2 in the
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Sun-Earth system [ 72 ]. The rotation matrix, C in Equations ( 4.1 )-( 4.2 ), is consistent with

a 3-1-3 body rotation matrix, i.e.,

C(Ω, i′ i, ω) =


cos(ω) sin(ω) 0

− sin(ω) cos(ω) 0

0 0 1




1 0 0

0 cos(i′ i) sin(i′ i)

0 − sin(i′ i) cos(i′ i)




cos(Ω) sin(Ω) 0

− sin(Ω) cos(Ω) 0

0 0 1

 (4.3)

where Ω, ω, and i′ i are Keplerian orbital elements corresponding to the Right Ascension of the

Ascending Node (RAAN), Argument of Periapsis, and inclination, respectively, in the inertial

frame illustrated in Figure  2.5 . The inertial position and velocity are nondimensionalized

via Equations ( 2.25 )-( 2.26 ) and rotated to the CRTBP rotating frame with Equation ( 2.46 );

note that the rotation is performed at the initial time t = 0. In this investigation, the

orientation of the GTO, i.e., the drop-off orbit in the rideshare scenario, is described via

the GTO departure state. The location of the GTO departure state in the inertial frame

and the CRTBP rotating frame is illustrated via a green point in Figure  4.2 . The size of

(a) (b)

Figure 4.2. : (a) GTO departure state in an arbitrary inertial frame (b) GTO departure
state in a shifted CRTBP rotating frame. In both illustrations, the shifted rotating frame
basis vector {x̂′′, ŷ′′, ẑ′′} coincide with the arbitrary inertial frame basis vectors {x̂′, ŷ′, ẑ′} at
time t = 0. Note that, for both frames, the origin is at one of the primaries, e.g., the Earth

the GTO is fixed, i.e., the perigee and apogee altitudes are constant, such that the GTO

departure position in the inertial frame, r̄
i′dep, is parameterized as: r̄

i′dep = r̄
i′ps(Ω, ω, i′ i), see
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Figure  4.2 (a). In a shifted rotating frame, the GTO departure position is parameterized via

the following variables: λ,δ, and ri and is illustrated in Figure  4.2 (b). Note that the shifted

rotating frame, defined by the basis vectors {x̂′′, ŷ′′, ẑ′′}, is centered at the Earth, whereas the

CRTBP rotating frame has an origin at the P1-P2 barycenter, see Figure  2.5 . In the CRTBP

rotating frame, the departure position is parameterized as: r̄dep = r̄ps(λ, δ, ri). Additionally,

in this analysis, the departure GTO state is consistent with the GTO perigee. Recall that

the position and velocity vectors in the arbitrary inertial frame, r̄
i′dep and v̄

i′dep, are written

with respect to the Earth, i.e., P2. Note that the inertial departure state, as illustrated in

Figure  4.2 (a), is a function of: Ω, ω, and i′ i; whereas the CRTBP departure state vector is a

function of the angles: λ, δ, ri. The λ and δ angles are consistent with right ascension and

declination angles, respectively, in the CRTBP rotating frame of the departure position. In

Figure  4.2 , the inclination values in the inertial and rotating frame are not equal, i.e., i′ i 6= ri.

Although the inertial basis vectors {x̂′, ŷ′, ẑ′} are equal to the shifted rotating frame basis

vectors {x̂′′, ŷ′′, ẑ′′}, the velocity vectors, used in computing the inclination value, are not

equal along both frames. A comparison of the inertial, i′ i, and rotating, ri, inclination values

is plotted in Figure  4.3 . The inclination difference presented in Figure  4.3 is consistent with

a GTO departure state with Ω = ω = 0◦. Note that the inclination difference is zero at
i′ i = 0◦, i.e., when the GTO velocity vector is in the x̂ -ŷ or the ecliptic. Additionally, the

inclination difference along a range of Ω values is within the range presented in Figure  4.3 .

In this investigation, the inclination values in both frames are utilized to identify prograde

and retrograde orbits and to construct GTO departure states for a range of inclinations;

note that the focus of the subsequent chapters is the construction of transfers from prograde

GTOs.

The orientation of a GTO is dependent on the primary launch window and the launch

vehicle performance metrics and is described via a GTO departure state. A GTO, i.e., a

Keplerian elliptical orbit in the Two-Body Problem, with periapsis altitude of 185 km is

plotted in the rotating reference frame consistent with the Sun-Earth CRTBP in Figure  4.4 .

In the rotating frame, the GTO is not a closed periodic orbit and its line of apsides shifts as

demonstrated in Figure  4.4 . A precession angle γ is defined to depict the shift in the GTO
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p
 = 185 km
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p
 = 500 km

h
p
 = 1000 km

h
p
 = 1500 km

h
p
 = 2000 km

Figure 4.3. : Difference between the inertial and rotating inclination at different GTO
departure state altitudes, hp. This example corresponds to an inertial departure state con-
sistent with Ω = ω = 0◦

Figure 4.4. : Geometry of a GTO in the rotating frame of the CRTBP. The GTO departure
state is in cyan and the subsequent perigee points are in red. Note that the motion of the
GTO is counter-clockwise, but the perigee location moves clockwise
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perigee (i.e., the shift in the line of apsides) after a number of revolutions in the rotating

frame consistent with the CRTBP model. The angle γ is evaluated as the angle measured

from the x̂ axis, in the rotating frame, and the GTO perigee direction, defined with respect

to the Earth. As an example, the precession angle for the GTO, plotted in Figure  4.4 ,

after one revolution is γ = 0.42◦ in the direction indicated. Note that the line of apsides

rotates clockwise and opposite to the motion of the prograde satellite. A GTO perigee is

defined such that v̄2s · r̄2s = 0 with the condition that v2
2s + r̄2s · ¨̄r2s ≥ 0, where v̄2s is the

velocity vector of the satellite in the rotating frame, r2s = r − [1 − µ, 0, 0]T is the position

vector with respect to the Earth, ˙̄r2s = v̄2s, and r̈2s = [ẍ, ÿ, z̈]T . The Keplerian GTO as

observed in Figure  4.4 possesses a perigee altitude of 185 km, the standard GTO altitude

as defined by the United Launch Alliance [ 71 ] and serves as the baseline geometry for this

investigation. The orientation in Figure  4.4 , defined as the midnight orientation, includes

the initial perigee on the x̂-axis opposite the Sun and Earth directions. If the initial drop-off

orientation is considered unfavorable for a transfer towards the Sun-Earth Lagrange points,

there is an option to wait an additional number of revolutions on the GTO. Waiting allows

for a periapsis shift to rotate the GTO into an orientation associated with more efficient

transfers to orbits near the Lagrange points. However, waiting may require weeks or months

to achieve a specific desired orientation as necessary for an efficient transfer. For the 185

km GTO, with a period of 10.4 hrs, a desired shift in γ of 45◦ requires a wait time of 47

days. This wait time creates additional operational constraints for the satellite, such as

additional maneuvers to maintain altitude and avoid possible conjunction events, therefore,

waiting along a GTO is not considered as an option in this investigation. However, launch

conditions or priorities for a primary payload may dictate a range of precession angles that

must be accommodated.
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4.2 GTO Departure State in the Inertial EME Frame and the CRTBP Rotating
Frame

The drop-off orbit orientation presents a significant design challenge for secondary

payloads. In this analysis, the GTO, i.e., the drop-off orbit, is the departure orbit for a

secondary payload in a ridesharing scenario and the arrival orbit is a desired periodic or

quasi-periodic orbit near the Sun-Earth Lagrange points. The size of the GTO is fixed,

that is, the apoapsis altitude is fixed at the GEO altitude of 35, 786 km, and the periapsis

altitude is 185 km. Note that the periapsis altitude for this analysis is a standard GTO

periapsis altitude defined by the United Launch Alliance [ 71 ], although, higher altitudes

can be assessed within the same framework. The orientation of the GTO is defined via

the Keplerian orbital elements: Ω, ω, and ii, defined in McClain [ 72 ] and the departure

location is the GTO periapsis. Recall that the Keplerian orbital elements are defined in

an inertial frame and ii is the inclination in the inertial EME frame, see Section  2.3.2 . In

a ridesharing scenario, the drop-off orbit orientation is dictated by the primary mission

constraints, therefore, in this analysis, it is assumed that there is no a priori information

about the orientation of the GTO, i.e., the drop-off orbit. In this investigation, a change

in GTO orientation is described as a change in the position of the GTO periapsis, i.e., the

departure location. The position of the GTO periapsis is described with Keplerian orbital

elements associated with the J2000 Earth Mean Equatorial, or EME, inertial reference frame,

but the target periodic and quasi-periodic orbits exist in the rotating frame of the Sun-Earth

CRTBP model. The GTO departure position in the EME frame, r̄
i dep, is parameterized via

the traditional Keplerian orbital elements, Ω, ω, and ii, see McClain [ 72 ] and Equation

( 4.1 ); note that ii is the inclination of the orbit in the EME frame. In the Sun-Earth

rotating frame, the GTO departure position, r̄dep, is parameterized via the angles, λ and

δ, as illustrated in Figure  4.5 (b), such that the departure position, at a fixed altitude, is

represented as r̄dep(λ, δ). Note that in Figure  4.5 (b), the basis vectors {x̂′′, ŷ′′, ẑ′′} represent

a shifted rotating frame with an origin at P2, i.e., the Earth. Additionally, the inclination

of the ecliptic plane is illustrated in Figure  4.5 (a), i.e., the yellow shaded region. Observe

that, in Figure  4.6 (b), the inclination of the ecliptic, i.e., the inclination of the Sun’s orbital
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plane with respect to the Earth’s equatorial plane consistent with the EME frame, has an

oscillatory component. In Figure  4.6 (a), the instantaneous distance between the Sun and the

Earth for a range of epochs is plotted; note that this information is retrieved from the DE430

ephemeris file provided by NASA JPL Navigation and Ancillary Information Facility. The

peak-to-peak amplitude of the oscillatory behavior of the ecliptic plane inclination is small,

approximately 0.004◦, for an epoch range of ten years. Contrary to the significant variation

of the instantaneous Sun-Earth distance with an approximate peak-to-peak amplitude of

5× 106 km, see Figure  4.6 (a).

(a) (b)

Figure 4.5. : (a) J2000 Earth Mean Equatorial inertial reference frame, denoted with
{X̂,Ŷ ,Ẑ}, and a shifted Sun-Earth rotating frame, with basis vectors {x̂′′,ŷ′′,ẑ′′} (b) GTO
periapsis departure position, expressed in the Sun-Earth rotating frame, parameterized by
angles: λ and δ

For a range of departure epochs, the GTO departure position, r̄dep, varies in the Sun-

Earth rotating frame as r̄
i dep remains constant in the EME frame. In this investigation, one

of the objectives is the construction of transfers at a fixed departure epoch from a range

of GTO orientations. The range of orientations is described via a changing Ω angle in the

EME frame with a fixed inclination, ii, and ω (refer to Table  4.1 ). The plots in Figures

 4.7 - 4.8 present the instantaneous change in the rotating frame inclination, ri, over a ten year
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instantaneous

CRTBP model

(a) (b)

Figure 4.6. : Ten year time history of (a) the instantaneous distance between the Earth and
the Sun and (b) the inclination of the ecliptic plane with respect to the Earth’s equatorial
plane. The constant Sun-Earth distance, implemented in the CRTBP model, is plotted as a
red line

period. The rotating inclination, ri, values plotted in Figure  4.7 possess a range: |ii− isun| <
ri < |ii + isun|, where isun is the inclination of the ecliptic in the EME frame, as illustrated in

Figure  4.5 (a). Recall that the instantaneous inclination of the ecliptic, isun, varies with epoch,

however, the variation is small such that, in this investigation, the inclination is defined as:

isun = 23.43◦. The range of ri observed in Figure  4.7 corresponds to a value of ω = 0◦. Now,

if the RAAN, Ω, is fixed to values of Ω = 0◦ and Ω = 90◦, the variation of the rotating

inclination is plotted in Figure  4.8 . The variation of ri due to ω is small, approximately

less than 0.01◦, for period between 2020-2030. Recalling that the GTO departure location

is parameterized via λ and δ in Figure  4.5 (b), the variation of these angles is depicted in

Figures  4.9 - 4.10 . The variation of δ for a fixed epoch of Jun 2, 2022 over a range of Ω

and ω is plotted in Figure  4.9 . In Figure  4.9 (a), the associated inclination, ii, is equal to

27◦, i.e., the standard inclination for a GTO as defined by ULA. Based on the contour plot

presented, the range for δ is observed to be −isun − ii < δ < isun + ii, i.e., is a function of

the inclination of the ecliptic plane and ii. A change of GTO inclination to ii = 5◦ reveals

a smaller range of δ, as plotted in Figure  4.9 (b). Note that for smaller GTO inclinations,
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Figure 4.7. : Variation in rotating frame inclination, ri, over a ten year period for a range
of RAAN angles, Ω. The dashed lines correspond to years: 2020, 2022, 2024, and 2026 and
show the shape of the surface

(a) (b)

Figure 4.8. : Rotating frame inclination, ri, variation for a range of ω values at fixed values
of (a) Ω = 0◦ and (b) Ω = 90◦. The variation of the inclination is small in both plots
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Figure 4.9. : Variation in δ angle over a range of Ω and ω corresponding to two different
inclinations: (a) ii = 27◦ and (b) ii = 5◦. Note that the overall range of δ is defined as
−isun − ii < δ < isun + ii

5
0

50

5
0

5
0

50

5
0

50
5
0

5
0

50

5
0

50

1
0
0

100

1
0
0

1
0
0

100

1
0
0100

100

1
0
0

1
0
0

100

1
5
0

150

1
5
0

1
5
0

1
5
0

150

1
5
0

150

150

1
5
0

1
5
0

150

2
0
0

200

2
0
0

2
0
0

2
0
0

200

2
0
0

2
0
0

200

2
0
0

200

2
5
0

250

2
5
0

2
5
0

250

2
5
0

250

2
5
0

2
5
0

250

2
5
0

3
0
0

300

3
0
0

3
0
0

300

300

3
0
0

300

3
0
03
0
0

300

300

3
5
0

350

3
5
0

3
5
0

3
5
0

3
5
0

350

3
5
0

350

3
5
0

3
5
0

350

02-Jun-2022 12:00:00

(a)

5
0

50

5
0

5
0

5
0

5
0

50

5
0

5
0

50

5
0

50

1
0
0

100

1
0
0

1
0
0

100

100

100

1
0
0

1
0
0

100

100

1
5
0

150

1
5
0

1
5
0

150

1
5
0

150

150

1
5
0

1
5
0

150

2
0
0

200

2
0
0

2
0
0

200

2
0
0

2
0
0

200

2
0
0

200

2
5
0

250

2
5
0

2
5
0

250250

2
5
0

2
5
0

250

250

3
0
0

300

3
0
0

3
0
0

300

300

3
0
0

3
0
0

3
0
0

300

3
5
0

3
5
0

350

3
5
0

3
5
0

350

3
5
0

350

3
5
0

3
5
0

09-Dec-2022 12:00:00

(b)

Figure 4.10. : Variation of λ over a range of Ω and ω corresponding to two different epochs:
(a) Jun 2, 2022 and (b) Dec 9, 2022. Observe that the range of λ is 0◦ ≤ λ ≤ 360◦. The
change in epoch shifts the contour lines corresponding to the λ values
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the contour lines of δ appear more elongated. The range of δ as a function of isun and ii is

consistent throughout a range of GTO inclinations. The contours in Figure  4.10 represent

the variation in the λ angles corresponding to two different epochs. The range of λ plotted

in Figure  4.10 is −180◦ ≤ λ ≤ 180◦ and observe that changing the epoch shifts the contour

lines of λ. The variation of λ and δ presented in Figures  4.9 - 4.10 conveys the changing GTO

departure location in the rotating frame; recalling that transfers into the desired CRTBP

Lagrange points are constructed in the Sun-Earth rotating frame. In this investigation,

optimal ∆V transfers are constructed over a range of orientations from a fixed departure

epoch. A summary of Keplerian orbital elements corresponding to the selected GTO in the

inertial EME frame and the range of rotating frame λ and δ values is provided in Table  4.1 .

An understanding of the variable GTO departure positions, i.e., the varying orientations,

facilitates the search and construction of efficient transfers to the vicinity of the Sun-Earth

Lagrange points.

Table 4.1. : Comparison of variables that parameterize the GTO periapsis position in the
J2000 EME inertial and Sun-Earth rotating frame

Inertial Frame Rotating Frame
ra = 35, 786 km ra = 35, 786 km
rp = 185 km rp = 185 km

ii = 27◦ |ii− isun| < ri < |ii + isun|
0◦ < Ω < 360◦ −isun − ii < δ < isun + ii

ω = 0◦ 0◦ < λ < 360◦
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5. BALLISTIC TRANSFERS TO COLLINEAR LAGRANGE

POINTS

Ballistic pathways into orbits near the Sun-Earth Lagrange points offer important dynamical

insights and are implemented in a preliminary trajectory design strategy from a Geosyn-

chronous Transfer Orbit. A ballistic transfer, in the context of this investigation, is defined

as a single maneuver transfer from a GTO departure state onto a trajectory that enters

into periodic or quasi-periodic motion near a Sun-Earth Lagrange point. The selected des-

tinations in this analysis are the Sun-Earth L1 and L2 points. Recall that, in the rideshare

scenario for the secondary payload discussed in Chapter  4 , launch conditions and the drop-off

GTO Keplerian orbital elements are not known a priori. The departure state for a smallsat

secondary payload is from a GTO periapsis location, but the position of the departure state

near the Earth vicinity is not known. One of the objectives of this analysis is the identi-

fication of regions near the Earth vicinity with access to ballistic transfers towards orbits

near Sun-Earth L1 or L2 from a GTO departure state. In this section, ballistic transfers are

constructed by leveraging information from the stable manifold structures associated with

periodic and quasi-periodic orbits near the Lagrange points. Additionally, a group of direct

ballistic transfers are generated for unconstrained, i.e., no enforced constraints along the

trajectory, and constrained transfers to Sun-Earth L1 and L2. Then, these ballistic transfers

are verified in the higher-fidelity ephemeris model. Knowledge of ballistic transfers informs

mission designers with favorable GTO departure locations near the Earth vicinity that aid

in the search effort for flexible and efficient transfer options for secondary payloads.

5.1 Ballistic Transfers into Periodic Orbits

Trajectories along the stable manifold structures associated with periodic orbits are

frequently leveraged to generate efficient ballistic transfers to orbits near the Sun-Earth

Lagrange points. These trajectories asymptotically approach a periodic orbit and are desir-

able for the delivery of single maneuver transfers from GTO. In this investigation, ballistic
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transfers from Lagrange point orbits that are accessible from near the Earth are identified

assuming a GTO departure altitude of 185 km. The objective of this analysis is the iden-

tification of regions near the Earth vicinity with access to ballistic transfers towards the

Sun-Earth L1 or L2 points. Recall that a ballistic transfer is defined as a single maneuver

transfer from a GTO departure state, i.e., a periapsis state, onto a trajectory along the stable

manifold associated with a periodic orbit. To identify ballistic transfers, trajectories on the

stable manifold of a periodic orbit are propagated in reverse time towards the Earth. Before

ballistic transfers to periodic orbit are constructed, a precursory survey of ∆V magnitudes

from departure locations along a GTO is completed by introducing a theoretical minimum

∆V parameter. The theoretical minimum ∆V , denoted as ∆Vtheo, is computed with,

∆Vtheo =
√

2U∗dep − Carr − Vdep, (5.1)

where the GTO departure state has a corresponding pseudo-potential, U∗dep, and velocity,

Vdep; recall that the pseudo-potential of the CRTBP is from Equation ( 2.32 ) and is a func-

tion of the position vector. The formulation in Equation ( 5.1 ) uses the energy, i.e., Jacobi

Constant value C, difference between the GTO departure state and an arrival orbit on the

desired periodic orbit. The pseudo-potential, U∗dep, and the velocity, Vdep, are defined at a

departure location along the GTO and the energy value for the arrival orbit is Carr. From

Equation ( 5.1 ), for a fixed Carr, ∆Vtheo varies as the departure location varies along the

GTO. The theoretical minimum ∆V is a metric that offers a lower bound on ∆V that is

dependent on the energy difference between the departure location and the arrival orbit. In

practice, this minimum value simply assumes tangential maneuvers at departure and arrival

locations, and essentially measures the cost to bridge the energy gap. A precursory survey of

∆Vtheo magnitudes corresponding to the planar L1 Lyapunov and out-of-plane L1 halo orbit

families in the Sun-Earth system at GTO periapsis and apoapsis is summarized in Table  5.1 .

Table  5.1 displays the lowest ∆Vtheo magnitudes at the periapsis departure locations with

the highest ∆Vtheo values for apoapsis departures. Therefore, in this investigation, access

to the ballistic transfers is only examined from GTO periapsis. However, there may also
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exist accessibility regions along the GTO away from the periapsis, but such options are not

explored in this analysis.

Table 5.1. : Theoretical minimum ∆V , ∆Vtheo, requirements from GTO periapsis and
apoapsis to periodic orbit families near Sun-Earth L1

C ∆Vperi (m/s) ∆Vapo (m/s)
Lyapunov 3.00089069 - 3.00023778 736.35 - 762.67 2671.32 - 2738.71
halo 3.00082452 - 3.00020840 736.41 - 763.85 2661.45 - 2741.72

The construction of ballistic transfers leverages information from the stable manifold

associated with periodic orbits in the CRTBP. A schematic for a general ballistic transfer

into a periodic orbit is illustrated in Figure  5.1 . In Figure  5.1 , a ballistic transfer is initialized

from an injection point on the periodic orbit. At the injection point, X̄inj, the spacecraft steps

in the direction of the local stable manifold, then the spacecraft is propagated in reverse time

to the departure point, X̄f , near the Earth vicinity. The departure point for the ballistic

transfer is an apsis at a fixed altitude because the departure point for the rideshare scenario

is a GTO periapsis from a desired altitude. The ballistic transfer is formulated as a Two

Figure 5.1. : Schematic for ballistic transfer into a periodic orbit. In this investigation, a
ballistic transfer is a trajectory on the stable manifold of a periodic orbit and constructed
via reverse propagation
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Point Boundary Value Problem and corrected via a free-variable and constraint numerical

method. The free-variable vector for the ballistic transfer illustrated in Figure  5.1 is,

X̄ =

Tα
TM

 , (5.2)

where the injection point, X̄inj, is evaluated after an initial state, X̄0, on the periodic orbit

is propagated by time Tα. The time TM is the propagation time on a trajectory along the

stable manifold associated with the periodic orbit. Recall that a periodic orbit is a dynamical

structure with repeatable flow, such that, from an initial point on the periodic orbit, X̄0,

an arbitrary state, X̄1, along the periodic orbit is computed by propagation from the initial

point. Although, a long propagation time, i.e., if Tα > Tp, may result in deviations from

the periodic orbit as numerical error is accumulated during the propagation process; note

that Tp is the period of the orbit. Additionally, a periodic orbit is also described by a one-

dimensional torus with a fundamental frequency θ̇1. In summary, a point on a periodic orbit is

parameterized by a single variable and, in this application, the variable is a propagation time

Tα. The dimension of the hyperbolic invariant manifolds is always one degree higher than

the dimension of their respective subspaces, recall Theorem  3.3.2 . For the ballistic transfers

into periodic orbits, it is assumed that the periodic orbit possesses a one-dimensional stable

subspace, therefore the stable manifold is a two-dimensional structure. In this application,

a state along a global analog of the local stable manifold is parameterized via two variables,

Tα and TM . The apsis and altitudes constraints for the ballistic transfer are described via

the following vector,

F̄ =

 (r̄f − r̄e)T v̄f
(r̄f − r̄e)T (r̄f − r̄e)− h2

f

 , (5.3)

where r̄e is the position of the Earth in the rotating frame, hf is the desired GTO altitude,

and the final propagated state, X̄f , in Figure  5.1 is written as X̄f = [r̄f ; v̄f ]; recall that [;]

represents vertical vector concatenation. The final propagated state, X̄f , is a function of the
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free variables in Equation ( 5.2 ), such that, X̄f (X̄M(Tα), TM). The state on the local stable

manifold, X̄M , is written, from Equation (  3.70 ), as:

X̄M = X̄inj(Tα)± η Φ(Tα, 0) P Ψ̄S√(
Φr(Tα, 0) P Ψ̄S

)T (
Φr(Tα, 0) P Ψ̄S

) , (5.4)

where P Ψ̄S is the eigenvector in the local stable manifold near the fixed point, X̄0, of the

periodic orbit and η is the step-off magnitude (nondimensional) from the injection point in

the direction of the eigenvector. The eigenvector is transitioned via the STM, Φ(Tα, 0), from

the fixed point, X̄0, to the injection point, X̄inj, via Equation (  3.71 ). Note that Φr represents

the positional variation with respect to the state, i.e.,

Φr =
[
Φrr Φrv,

]
, (5.5)

from Equation ( 3.24 ). The Jacobian consistent with the constraint vector in Equation (  5.3 )

is denoted as,

DF̄ =

(r̄f − r̄e)T dv̄f
dTα

+ v̄Tf
dr̄f
dTα

(r̄f − r̄e)T dv̄f
dTM

+ v̄Tf
dr̄f
dTM

2(r̄f − r̄e)T dr̄f
dTα

2(r̄f − r̄e)T dr̄f
dTM

 . (5.6)

The derivatives with respect to the propagation time Tα are expanded as,

∂v̄f
∂Tα

= ∂v̄f

∂X̄M
∂X̄M
∂Tα

, (5.7)

∂r̄f
∂Tα

= ∂r̄f

∂X̄M
∂X̄M
∂Tα

, (5.8)

where the partial derivative of the manifold state, X̄M from Equation (  5.4 ), with respect to

the time Tα is written as,

∂X̄M
∂Tα

= ˙̄Xinj(Tα)± η
(

A(X̄inj)Φ(Tα, 0) P Ψ̄S

m
− Φ(Tα, 0) P Ψ̄S

m2
∂m

∂Tα

)
, (5.9)
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where the variable m is defined as: m =
√(

Φr(Tα, 0) P Ψ̄S
)T (

Φr(Tα, 0) P Ψ̄S
)
. The value

of A(X̄inj) is the derivative of the vector field associated with the CRTBP and defined via

Equation ( 3.18 ). The partial derivative of the variable m is now derived as,

∂m

∂Tα
= 1

2m
(
P Ψ̄ST

(
ΦT (Tα, 0)

[
0
I

]
Φr(Tα, 0) + ΦT

r (Tα, 0)
[

0 I
]
Φ(Tα, 0)

)
P Ψ̄S

)
, (5.10)

with 0 and I as 3× 3 zero and identity matrices, respectively, and [T ] is a matrix transpose.

The partial derivatives of the final position and velocity, r̄f and v̄f , with respect to the

manifold state, X̄M , are,

∂r̄f

∂X̄M
= ∂r̄M(TM)

∂X̄M(0)
= Φr(TM , 0), (5.11)

∂v̄f

∂X̄M
= ∂v̄M(TM)

∂X̄M(0)
= Φv(TM , 0), (5.12)

where, it is recalled that, X̄f is the propagated state from the manifold state, X̄M , by time

TM . The partial derivatives with respect to the manifold time are denoted as,

∂r̄f
∂TM

= ˙̄rM(TM), (5.13)

∂v̄f
∂TM

= ˙̄vM(TM), (5.14)

where the velocity and acceleration vectors are computed at the end of the reverse time

propagation, i.e., t = TM . The 2 × 2 Jacobian matrix in Equation ( 5.6 ) corresponds to a

ballistic transfer into a specific periodic orbit. The constraint vector in Equation ( 5.3 ) and

free-variable vector in Equation ( 5.2 ) are of equal dimesion size, i.e., dim(X̄) = dim(F̄ ) = 2.

The formulated TPBVP is corrected via a multidimensional Netwon’s method with an update

equation that corresponds to a unique solution, Equation ( 3.36 ). Ballistic transfers into a

specific periodic orbit occur as isolated solutions. However, if the periodic orbit is allowed to

vary along its corresponding periodic orbit family, then a curve of solutions, that is, a family

of ballistic transfers are constructed. To construct families of ballistic transfers that flow

into members of a family of periodic orbits, a multiple-shooting approach is implemented.
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In Figure  5.2 , a ballistic transfer is illustrated with the trajectory of the periodic orbit, the

dashed black line, and the manifold trajectory, the blue line, subdivided into a series of

np + 1 and nM + 1 nodes, respectively. In this multiple-shooting formulation, the periodic

Figure 5.2. : Schematic for ballistic transfer into a periodic orbit constructed via reverse
propagation

orbit trajectory is corrected for periodicity and the manifold trajectory is corrected for full

state continuity. Recall that, the ballistic transfer is presented via reverse time propagation

and that the final state, X̄f , is defined as: X̄f = X̄M
nM

(Tm). The free-variable vector consistent

with the multiple-shooting formulation illustrated in Figure  5.2 is written as,

X̄ =



X̄ P
0

X̄ P
1
...

X̄ P
np

X̄M
0

X̄M
1
...

X̄M
nM

Ta

Tm

Tα



, (5.15)
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where {X̄ P
j } are state nodes corresponding to the periodic orbit and {X̄M

j } are state nodes

associated with the stable manifold trajectory. Each periodic orbit node, {X̄ P
j }, has an

associated propagation time, Ta, such that the period of the periodic orbit is defined as: Tp =

(np + 1)Ta. Each node along the stable manifold trajectory, {X̄M
j }, possesses a propagation

time Tm; recall that the ballistic transfer is constructed in reverse time such that Tm < 0.

The constraint vector for the multiple-shooting formulation is denoted as,

F̄ =



F̄periodic

F̄manifold

Fapsis

Falt


, (5.16)

where the constraint vectors associated with periodicity of the periodic orbit, continuity

along the stable manifold, apsis, and altitude are,

F̄periodic =



X̄ P
0 (Ta)− X̄ P

1 (0)
...

X̄ P
np−1(Ta)− X̄ P

np(0)

xPnp(Ta)− xP0 (0)

yPnp(Ta)− yP0 (0)

zPnp(Ta)− zP0 (0)

ẋPnp(Ta)− ẋP0 (0)

żPnp(Ta)− żP0 (0)

yP0



, (5.17)

F̄manifold =



X̄M(Tm, Tα, {X̄ P
j }, Ta)− X̄M

0 (0)

X̄M
0 (Tm)− X̄M

1 (0)
...

X̄M
nM−1(Tm)− X̄M

nM
(0)


, (5.18)

Fapsis = (r̄f − r̄e)T v̄f , (5.19)

Falt = (r̄f − r̄e)T (r̄f − r̄e)− h2
f . (5.20)
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In the formulation of a ballistic transfer into a specific periodic orbit, the dimension of the

constraint vector and the free-variable vector is equal. For the multiple-shooting formulation,

the dimension of the free-variable vector in Equation ( 5.15 ) is: dim(X̄) = 6(np +nM + 2) + 3

and the dimension of the constraint vector from Equation ( 5.16 ) is: dim(F̄ ) = 6(np +

nM + 2) + 2. The multiple-shooting ballistic formulation is underconstrained, that is, the

dimension of the free-variable vector is greater than the dimension of the constraint vector,

i.e., dim(X̄) > dim(F̄ ). The associated Jacobian is constructed as,

DF̄ =



DxpF̄periodic 0 DTaF̄periodic 0̄ 0̄

DxpF̄manifold DxMF̄manifold DTaF̄manifold DTmF̄manifold DTαF̄manifold

0̄ DxMFapsis 0̄ DTmFapsis 0̄

0̄ DxMFalt 0̄ DTmFalt 0̄


, (5.21)

where 0 and 0̄ are zero matrices and vectors of appropriate sizes. The partial derivatives

inside the Jacobian in Equation ( 5.21 ) are provided in Appendix  B . For this underconstrained

formulation, the Jacobian in Equation ( 5.21 ) has a one-dimensional null space, that is, all

the solutions, i.e., ballistic transfers, are contained in a one-dimensional curve of solutions. A

multidimensional Newton’s method is implemented to correct for a feasible ballistic transfer

into a family of periodic orbits; this formulation implements the update function in Equation

( 3.35 ). The solution space of the multiple-shooting ballistic formulation is not a consequence

of subdividing the stable manifold trajectory into a series of nodes, but rather a factor

of allowing the periodic orbit to vary along its respective orbit family. Multiple-shooting

mitigates potential numerical challenges encountered in dynamically complex regimes, but

does not change the solution space of the TPBVP. To construct the one-dimensional curve of

ballistic transfers, pseudo-arclength continuation is implemented by appending the pseudo-

arclength constraint in Equation (  3.46 ). In this investigation, the formulation illustrated in

Figure  5.2 is implemented to construct ballistic transfers into periodic orbits in the Sun-Earth

system.
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5.1.1 Ballistic Transfers to Lyapunov Orbits near Sun-Earth L1 and L2

Ballistic transfers to a subset of orbits in the planar Lyapunov orbit family near the

L1 and L2 points is examined in the Sun-Earth system. Recall that, in the rideshare scenario

for the secondary payload, the drop-off GTO orientation is not known a priori, although the

GTO size is fixed, i.e., the semimajor axis and eccentricity. The objective is the identification

of regions, i.e., departure locations near the Earth, such that a ballistic transfer from GTO

periapsis delivers a secondary payload to a Sun-Earth Lagrange point orbit. The location

of departure is a GTO periapsis near the Earth at a pre-determined altitude, 185 km. The

departure location, with a fixed altitude, is described by two angles, λ and δ, as illustrated

in Figure  4.5 (b). From this originating location, ballistic transfers to the planar Lyapunov

orbit families near L1 and L2 in the Sun-Earth system are explored. A ballistic transfer is a

solution to the TPBVP illustrated in Figure  5.2 and expressed via a free-variable vector and

constraint vector corresponding to Equations ( 5.15 ) and ( 5.16 ), respectively. The formulation

in Figure  5.2 serves to investigate families of ballistic transfers along a periodic orbit family.

Initial guesses for ballistic transfers are identified via Poincaré maps in the rotating

frame of the CRTBP model. Trajectories in the stable manifold associated with members

of the Lyapunov periodic orbit family are propagated in reverse time. An event finding

function is implemented to identify states that intersect the desired 185 km GTO altitude,

measured with respect to the Earth, i.e., P2 in the Sun-Earth system; note that this process

is applied in the CRTBP rotating frame. Additionally, the propagation is stopped when a

trajectory crashes into the Earth, defined by a radius of 6371 km. The manifold state for

the stable manifold trajectories is defined via Equation ( 5.4 ) with a nondimensional η, i.e.,

step-off nondimensional distance, value of 6.68× 10−7 (100 km dimensional). The captured

event states from the stable manifold trajectories corresponding to a family of planar L1

Lyapunov orbits are plotted in Figure  5.3 where the color indicates the approximate ∆V

necessary to enter a ballistic transfer from a 185 km periapsis altitude GTO. Note that for

ballistic transfers to planar Lyapunov orbits, the transfer is contained on the x̂ − ŷ plane,

i.e., δ = 0◦, see Figure  4.5 (b). Additionally, the plot in Figure  5.3 corresponds to ballistic
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Figure 5.3. : Initial Conditions for event states from Sun-Earth L1 Lyapunov orbits to an
Earth altitude of 185 km. Selected orbits, highlighted with circles, have varying geometries

transfers from prograde GTOs. Selected transfer options A, C, and D highlighted in Figure

 5.3 correspond to indirect ballistic transfers to L1, note the excursion towards L2 and the

Earth flyby. Transfer option B is a defined as a direct ballistic transfer to L1. The transfer

options A-D in Figure  5.3 are selected as initial guesses for the multiple-shooting scheme

illustrated in Figure  5.2 .

Ballistic transfers into members of the Sun-Earth L1 and L2 Lyapunov orbit families

are plotted in Figures  5.4 - 5.5 and  5.9 - 5.10 where, it is recalled that, δ = 0◦ for planar orbits.

The ballistic transfers plotted in Figure  5.4 correspond to prograde GTO departure states;

recall that the satellite departs from GTO periapsis. Observe that ballistic transfers into

members of a periodic orbit family lie on a one-dimensional curve of solutions, isolated curves

in Figure  5.4 are identified in terms of a family name and the targeted Lagrange point. For

example, the family APL1 in Figure  5.4 is defined as the A family for prograde (P) transfers

to Sun-Earth L1. Additionally, these families of transfers, as plotted in Figures  5.4 - 5.5 and

 5.9 - 5.10 , are termed as Near-Earth Access (NEA) curves that correspond to ballistic transfers

from a GTO with a periapsis altitude of 185 km. Each point on a NEA curve is a single

ballistic transfer from a GTO periapsis situated at a location defined by λ and δ, recall
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Figure  4.5 (b). A similar analysis is computed for retrograde GTO departure states with

a different set of NEA curves generated and plotted in Figure  5.5 . The ∆V magnitude

DPL1

BPL1

CPL1

APL1

EPL1

FPL1

GPL1

HPL1

Figure 5.4. : Near-Earth Access Curves corresponding to ballistic transfers to planar Sun-
Earth L1 Lyapunov orbits from prograde GTOs with a periapsis altitude of 185 km

CRL1

GRL1

FRL1

BRL1

ERL1

DRL1

ARL1

Figure 5.5. : Near-Earth Access Curves corresponding to ballistic transfers to planar Sun-
Earth L1 Lyapunov orbits from retrograde GTOs with a periapsis altitude of 185 km

in Figures  5.4 - 5.5 corresponds to the magnitude of the vector difference between the final
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state of the ballistic transfer, v̄f from Figure  5.2 , and the GTO departure state at the λ

angle. Note that in Figure  5.4 , there is a region near-Earth, −115◦ ≤ λ ≤ −85◦, where no

transfers from prograde GTOs are available to planar L1 Lyapunov orbits. The region with

no available ballistic transfers to periodic orbits is labeled as the Periodic Orbit Ballistic

Transfer Gap (POBTG). The POBTG range corresponding to transfers from retrograde

GTOs is −61◦ ≤ λ ≤ −42◦ and 101◦ ≤ λ ≤ 106◦. Additionally, in Figure  5.5 , the region near

λ = 120◦ corresponds to transfers that approach significantly close to the Earth, and present

numerical challenges during the continuation and corrections process. The geometries of the

ballistic transfer corresponding to the NEA curves in Figures  5.4 - 5.5 are plotted in Figures

 5.7 - 5.8 . The families APL1 and ARL1, from Figures  5.7 and  5.8 , respectively, correspond

to direct ballistic transfers into planar Lyapunov orbits near L1. The remaining ballistic

transfer families are defined as indirect transfers, note that an L2 excursion is included and

one or more Earth flybys. The NEA curves for both prograde and retrograde transfers and

the corresponding Lyapunov y-amplitude information is plotted in Figure  5.6 .

Figure 5.6. : Ballistic transfer NEA curves with corresponding Lyapunov orbit y-amplitude
for both prograde and retrograde GTO departure states. The prograde transfer are solid
lines and prograde transfer are open circles. Transfer geometries available from two selected
GTO departure locations, i.e., λ values, are displayed
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Figure 5.7. : Families of ballistic transfers from prograde GTOs to L1 Lyapunov orbits
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Figure 5.8. : Families of ballistic transfers from retrograde GTOs to L1 Lyapunov orbits
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The colormap in Figure  5.6 represents the Time-Of-Flight (TOF) for each ballistic transfer,

i.e., each point on the map. Note that ballistic transfers into Lyapunov orbits with lower y-

amplitudes are associated with lower TOF. In Figure  5.6 , transfers from prograde GTOs are

solid lines and transfers from retrograde GTOs are lines with open circle markers. Observe

that the TOF values range from 224 − 802 days, which is a consequence of including a

stable manifold trajectory in the ballistic transfer formulation. Stable and unstable manifold

structures associated with periodic orbits contain transfers that asymptotically approach

and depart, respectively, the orbit and a ballistic transfer is essentially a trajectory within

the stable manifold structure. Inherently, the ballistic transfer asymptotically approaches

an injection point along a periodic orbit, which, in addition to the longer orbital periods

associated with Sun-Earth periodic orbits, signifies that a ballistic transfer has longer TOF

values. Transfers from two distinct GTO departure locations, i.e., λ values, are displayed in

Figure  5.6 . By including ballistic transfers from prograde and retrograde GTOs, the NEA

curves in Figure  5.6 indicate that all GTO departure locations have at least one ballistic

transfer option to L1 Lyapunov orbits.

The NEA curves, representing families of ballistic transfers, into Sun-Earth L2 Lya-

punov orbits are collected in Figures  5.9 - 5.10 . The naming convention implemented for the

L2 transfers is similar to Figures  5.4 - 5.5 . Observe that, in Figures  5.9 - 5.10 , ballistic transfers

into periodic orbits at higher Jacobi Constant values require lower ∆V magnitudes. Ad-

ditionally, the range of the POBTG for transfers from prograde GTOs is −11◦ < λ < 35◦,

and for retrograde GTOs, the POBTG range is 82◦ < λ < 97◦. In Figure  5.10 , the de-

parture location of λ = −60◦ is associated with a gap between families BRL2 and CRL2;

this gap is associated with a ballistic curve that approaches near the center of the Earth,

i.e., a discontinuity in the CRTBP model. The pseudo-arclength continuation strategy im-

plemented to generate the NEA curves in Figures  5.9 - 5.10 encounters numerical challenges

due to the close proximity of the trajecttory near the Earth primary body. The geometry

of the ballistic transfers to L2 Lyapunov orbits corresponding to the NEA curves in Figures

 5.9 - 5.10 is catalogued in Figures  5.12 - 5.13 . The families APL2 AND ARL2 are associated

with direct ballistic transfers, i.e., the trajectory contains no excursions to L1 or Earth fly-
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CPL2 DPL2

APL2

EPL2

FPL2

GPL2

BPL2

Figure 5.9. : Near-Earth Access curves corresponding to planar ballistic transfers to L2
Lyapunov orbits from prograde GTOs

GRL2

ERL2

CRL2

FRL2

DRL2

BRL2

ARL2

Figure 5.10. : Near-Earth Access curves corresponding to planar ballistic transfers to L2
Lyapunov orbits from retrograde GTOs

bys. The TOF and y-amplitude information associated with the collected ballistic transfer

families in Figures  5.9 - 5.10 is plotted in Figure  5.11 . Ballistic transfers from prograde GTOs

are presented as solid lines and transfers from retrograde GTOs are displayed with open
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circle markers. By including transfers from both prograde and retrograde GTOs, a ballistic

transfer is available along the entire span of the departure locations, −180◦ ≤ λ ≤ 180◦;

recalling that the departure location is a GTO periapsis with altitude of 185 km. Two GTO

departure locations are highlighted in Figure  5.11 , λ = −180◦ and λ = 70◦. From Figure

 5.11 , direct and indirect ballistic transfers are available for the departure location associated

with λ = −180◦, note that the direct transfers are in magenta and black and the indirect

transfer is in blue. However, for a GTO departure location of λ = 70◦, only indirect ballistic

transfers to L2 Lyapunov orbits are available. For transfers into Sun-Earth L2 Lyapunov

orbits, implementing a stable manifold trajectory, at least one ballistic transfer option is

available for all departure locations.

Figure 5.11. : Ballistic transfer NEA curves with corresponding L2 Lyapunov orbit y-
amplitude for both prograde and retrograde GTO departure states. The prograde transfer
are solid lines and prograde transfer are open circles. Transfer geometries available from two
selected GTO departure locations, i.e., λ, values are displayed
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Figure 5.12. : Families of ballistic transfers from prograde GTOs to L2 Lyapunov orbits
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Figure 5.13. : Families of ballistic transfers from retrograde GTOs to L2 Lyapunov orbits
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Ballistic transfers to Sun-Earth L1 and L2 are constructed via a multiple-shooting

algorithm with pseudo-arclength continuation and catalogued as families of transfers. Fami-

lies of transfers, represented as NEA curves, are plotted in Figures  5.4 - 5.5 and  5.9 - 5.10 for a

range of GTO departure locations, λ, near the Earth. The families presented in this analysis

are only a subset of the available ballistic options to L1 and L2 Lyapunovs; if longer TOFs

are considered, then additional families of indirect ballistic transfers become available. In

summary, by including both prograde and retrograde GTO options, a ballistic transfer to L1

or L2 is available from any GTO departure location in the x̂-ŷ plane. The computed fam-

ilies of ballistic transfers offer preliminary design information for available transfers to the

Sun-Earth Lagrange points when a drop-off GTO periapsis is located along the Sun-Earth

ecliptic plane.

5.1.1.1 Altitude Variation for Transfers to Lyapunov Orbits

Ballistic transfers to planar Sun-Earth Lyapunov orbits from a range of GTO periapsis

altitudes are constructed via a multiple-shooting strategy. In Figures  5.4 - 5.5 and  5.9 - 5.10 ,

the families of ballistic transfers correspond to a GTO departure altitude of 185 km. Families

of ballistic transfers over a range of GTO departure altitudes are also constructed via the

same multiple-shooting algorithm and continuation strategy. In this investigation, transfers

are constructed for a smallsat, i.e., a secondary payload, dropped off into a GTO, refer to

Section  4 , with no a priori information regarding the GTO orientation. However, the size of

the drop-off GTO is dependent on the performance of the upper-stage of the launch vehicle,

see Step 2 in Figure  4.1 , such that the periapsis altitude is varied as, by definition, the GTO

apoapsis altitude is the standard GEO altitude. The plots displayed in Figures  5.14 - 5.15 

correspond to the NEA curves for ballistic transfers to L1 and L2 from GTOs with a variable

periapsis altitude. The color variation along each NEA curve in Figures  5.14 - 5.15 is the

∆V magnitude for the single-maneuver ballistic transfers. For increasing GTO periapsis

altitudes, hf , the NEA curves are shifted both vertically and horizontally. For example, in

Figure  5.14 , the curves corresponding to transfers near the GTO departure location range
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of 0 ≤ λ ≤ 20 are shifted upward with increasing hf . However, in the departure range of

λ ≤ −39, the curve is shifted downwards with an increasing hf altitude. The shift in the

Figure 5.14. : NEA curves for direct ballistic transfers to Sun-Earth L1 from prograde
GTOs with varying periapsis altitudes

Figure 5.15. : NEA curves for direct ballistic transfers to Sun-Earth L2 from prograde
GTOs with varying periapsis altitudes

NEA curve is also interpreted as a change in the Lyapunov orbit that is available from a
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specific GTO departure location. As a demonstration, assume the GTO departure location

is set to λ = 10◦ in Figure  5.14 . The L1 Lyapunov orbit that corresponds to the ballistic

transfer for an altitude of 185 km has a Jacobi Constant equal to C = 3.00081, however,

for a GTO with a higher altitude, i.e., hf = 2000 km, the corresponding Lyapunov has an

associated Jacobi Constant value of: C = 3.000815. Similar behavior is observed for the

NEA curves towards Sun-Earth L2 in Figure  5.15 . In Figures  5.14 - 5.15 , the effects of GTO

altitude variation for the NEA curves that correspond to direct ballistic transfers are plotted.

In this investigation, only direct ballistic transfers, i.e., trajectories with no Earth flybys,

are considered as they are associated with lower TOF values. Knowledge of the ∆V and

geometry differences due to a variation in the GTO departure altitude aids in the prediction

of single-maneuver direct transfers over a range of departure locations near the Earth.

5.1.2 Ballistic Transfers to Spatial Periodic Orbits near Sun-Earth L1 and L2

Ballistic transfers to orbits that are members of the spatial Sun-Earth L1 and L2 halo

orbit families are explored by leveraging the trajectories on the stable manifolds associated

with halo orbits. Ballistic transfers to spatial orbits are not restricted to the x̂-ŷ plane of

the rotating Sun-Earth system, i.e., the ecliptic plane. In Figure  5.16 , the angles λ and

δ represent the near-Earth departure locations for ballistic transfers from a GTO with a

185 km periapsis altitude. Recall that angles λ and δ are defined in Figure  4.5 (b) in the

Sun-Earth rotating frame. Figures  5.16 and  5.18 display the NEA curves to members of

the spatial halo orbit families near the L1 and L2 points. Note that Figures  5.16 and  5.18 

represent the NEA curves via a range of color, corresponding to the ∆V required, with the

retrograde ballistic transfers enclosed in a red box. For example, for the AL1-S family, a

family of ballistic transfers to the L1 southern halo orbits, the region enclosed by the red

box, i.e., the region defined via the ranges of 0◦ ≤ λ ≤ 26◦ and 34◦ ≤ δ ≤ 45◦ contains

the retrograde ballistic transfers. Alternatively, the NEA curves are plotted in Figures  5.17 

and  5.19 via a color range corresponding to the TOF, that is, the transfer time from the

GTO departure location to an injection point on the halo orbit. The naming convention for
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the spatial access curves are updated, where AL1-N is labeled the A group of transfers to

L1 northern (N) halo orbits. An important observation from Figures  5.16 and  5.18 is the

limited region, i.e., space covered by NEA curves, that corresponds to ballistic transfers. An

insightful comparison between the transfers to planar Lyapunov orbits and the transfers to

spatial halo orbits is the behavior of the NEA curves. Spatial ballistic transfers, Figures

 5.16 and  5.18 , form closed NEA curves whereas the curves corresponding to planar ballistic

transfers are not closed. Note that ballistic transfers to orbits with higher Jacobi Constant

CL1-S

AL1-N

BL1-S

BL1-N

DL1-S

EL1 EL1

CL1-N

DL1-N

AL1-S

DL1-N

DL1-S

Figure 5.16. : Near-Earth Access curves to Sun-Earth L1 halo orbits, the colors represent
the ∆V magnitude of the single maneuver. Retrograde transfers are enclosed by a red box

values, C, are available near the ecliptic, i.e., near δ = 0◦. Additionally, the ballistic transfers

to halo orbits with higher C values also require the lowest ∆V magnitudes, recalling that the

ballistic transfers involve a single maneuver. Direct ballistic transfers into the spatial halo

orbits are identified as the curves corresponding to AL1-N, AL1-S, AL2-N, and AL2-S in

Figures  5.16 and  5.18 . Additionally, from Figures  5.17 and  5.19 , the family of direct ballistic

transfers have the smallest associated TOF values. Observe that the closed NEA curves

plotted in Figures  5.16 and  5.18 are scattered throughout the near-Earth vicinity, i.e., if a

halo orbit is desired, the GTO departure location is limited to the closed curves. The NEA

curves plotted in Figures  5.16 - 5.18 only represent a subset of the ballistic curves available
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EL1

BL1-S

BL1-N

DL1-N

DL1-S

AL1-N

AL1-S

CL1-S

CL1-N

DL1-S

EL1

DL1-N

Figure 5.17. : Near-Earth Access curves to Sun-Earth L1 halo orbits, the colors represent
the TOF values for the transfer. Retrograde transfers are enclosed by a red box

EL2

AL2-N

DL2-S

DL2-N

BL2-S

CL2-N

BL2-N
AL2-S

CL2-S

Figure 5.18. : Near-Earth Access curves to Sun-Earth L2 halo orbits, the colors represent
the ∆V magnitude of the single maneuver. Retrograde transfers are enclosed by a red box

to spatial halo orbits in the Sun-Earth system and, by considering a longer TOF, additional

families of ballistic transfer can be constructed. The geometry of the transfers displayed in
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BL2-S

BL2-N

EL2

DL2-N

DL2-S

CL2-S

CL2-N

AL2-N

AL2-S

Figure 5.19. : Near-Earth Access curves to Sun-Earth L2 halo orbits, the colors represent
the TOF values for the transfer. Retrograde transfers are enclosed by a red box

the NEA curves in Figures  5.16 and  5.18 are plotted in Appendix  C . In this investigation,

direct transfers towards spatial orbits are desirable, but access from this altitude, the 185 km

GTO periapsis altitude, using ballistic transfers is limited to a specific region near the Earth,

see curves AL1-S, AL1-N, AL2-S, and AL2-N. While ballistic transfers to planar Lyapunov

orbits near Sun-Earth L1 and L2 are available for all possible GTO departure locations, the

NEA curves to spatial halo orbits are limited to specific regions.

5.1.2.1 Altitude Variation for Transfers to Spatial Halo Orbits

The Near-Earth Access curves corresponding to direct ballistic transfers into halo

orbits near the Sun-Earth Lagrange points are explored for a range of GTO departure alti-

tudes. Recall that the baseline GTO for this investigation possesses a periapsis altitude of

185 km; note that the departure location for the secondary payload is at the GTO periapsis.

The NEA curves for halo orbits near L1 and L2 are plotted in Figures  5.16 and  5.18 , however,

NEA curves for variable GTO departure altitudes are created via the same multiple-shooting
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algorithm and continuation scheme. In Figures  5.20 - 5.21 , the NEA curves for direct ballistic

transfers to the southern and northern halo orbit families are plotted for GTO departure

altitudes ranging from 185 km to 2000 km. The altitude variation analysis is focused on

direct ballistic transfers because direct transfers offer lower TOF values compared to the

indirect trajectories. For ballistic transfers into Sun-Earth L1 and L2 , an increase in the

Increasing h
f

Increasing h
f

AL1-N

AL1-S

AL1-N

AL1-S

Figure 5.20. : Direct ballistic transfers to spatial halo orbits near Sun-Earth L1 for a range
of GTO departure altitudes between 185 km and 2000 km

GTO periapsis altitude creates a NEA curve with a larger circumference, see family AL1-S

in Figure  5.20 for an example. Additionally, ballistic transfers from higher GTO departure

altitudes require larger ∆V magnitudes; recalling that ballistic transfers are single maneu-

ver transfers. The z-amplitude of the corresponding halo orbit for each ballistic transfer

is also represented via color in Figures  5.20 - 5.21 . As a demonstration of the effects of the

GTO departure altitude, let the GTO departure location be written with λ = 10◦. Observe

that, in Figure  5.20 , there are two scenarios which offer access to a ballistic transfer to a

northern L1 halo orbit: δ = −17◦ and δ = −41◦; note that these δ options are consistent

with a GTO periapsis altitude of 185 km. For the same GTO departure location along the

ecliptic, i.e., λ = 10◦, an increase in the GTO periapsis altitude moves the required δ values
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Increasing h
f

Increasing h
f

AL2-N

AL2-S

AL2-N

AL2-S

Figure 5.21. : Direct ballistic transfers to spatial halo orbits near Sun-Earth L2 for a range
of GTO departure altitudes between 185 km and 2000 km

in a direction away from an estimated center of the curve. For example, if a GTO periapsis

altitude of hf = 2000 km is considered, then the following δ values are required: δ = −12◦

and δ = −45◦. Observe that in this example, the required ∆V has increased as hf increases,

but the amplitude of the corresponding northern L1 halo has not changed. In Summary, for

direct ballistic transfers to Sun-Earth halo orbits, an increase in the GTO departure altitude

increases the ∆V magnitude and grows the NEA curves.

5.2 Ballistic Transfers into Quasi-Periodic Orbits

Ballistic transfers to quasi-halo orbits are constructed with trajectories within the

stable manifold structures associated with the quasi-periodic orbit. The closed NEA curves

plotted in Figures  5.16 and  5.18 represent the regions where a GTO departure state may

enter a ballistic transfer to a periodic halo orbit near Sun-Earth L1 or L2; recall that a single

point along the curve corresponds to one ballistic transfer. However, this region is limited,

i.e., contained along the curve, but bounded motion near the Lagrange points is not limited
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to periodic orbits, as quasi-periodic orbits also offer additional opportunities for ballistic

transfers. In this analysis, ballistic transfers are constructed into a family of quasi-halo

orbits, that is, quasi-periodic orbits generated from an originating periodic halo orbit near

Sun-Earth L1. Families of quasi-halo orbits with a fixed Jacobi constant, C, are generated via

the numerical technique described in Section  3.4 . A multiple shooting method is formulated,

and is illustrated in Figure  5.22 , to construct ballistic transfers into quasi-periodic orbits.

The ballistic transfer is constructed via reverse propagation with an injection point along

Figure 5.22. : Schematic for ballistic transfer into a quasi-periodic orbit constructed via
reverse propagation

the quasi-periodic orbit defined as X̄inj. The injection point X̄inj is generated by propagating

an initial state along the invariant curve, i.e., X̄0(θ2), by time Tθ1 . The state on the local

stable manifold, X̄M , is written, from Equation (  3.140 ), as:

X̄M = X̄inj(Tθ1 , θ2)± η Φ(Tθ1 , 0) ψ̄S(θ2)√(
Φr(Tθ1 , 0) ψ̄S(θ2)

)T
Φr(Tθ1 , 0) ψ̄S(θ2)

, (5.22)

where Φ(Tθ1 , 0) is the STM from the initial state along the invariant curve, X̄0(θ2), after

a propagation time Tθ1 . Recall that η represents a step-off distance in the direction of the
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stable manifold and ± dictates direction of stable half-manifold. The free-variable vector

consistent with the formulation in Figure  5.22 is denoted as,

X̄ =



X̄M
0

X̄M
1
...

X̄M
nM

Tθ1

θ2

Tm



, (5.23)

with a constraint vector defined as,

F̄ =


F̄manifold

Fapsis

Falt

 . (5.24)

The constraint functions corresponding to the state continuity along the ballistic transfer,

F̄manifold, GTO periapsis, Fapsis, and the GTO departure altitude, Falt, are described via,

F̄manifold =



X̄
(
Tm, X̄M(Tθ1 , θ2)

)
− X̄M

0 (0)

X̄M
0 (Tm)− X̄M

1 (0)
...

X̄M
nM−1(Tm)− X̄M

nM
(0)


, (5.25)

Fapsis = (r̄f − r̄e)T v̄f , (5.26)

Falt = (r̄f − r̄e)T (r̄f − r̄e)− h2
f , (5.27)

where r̄f and v̄f are the final position and velocity vectors at the end of reverse time prop-

agation and r̄e is the position of the Earth, i.e., [1 − µ, 0, 0]T in the rotating frame of the

CRTBP model. The GTO departure altitude, hf , is fixed to 185 km. A ballistic transfer

is constructed via the multiple-shooting formulation with Equations ( 5.23 ) and (  5.24 ) and
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corrected with a multidimensional Newton method algorithm. The Jacobian corresponding

to the constraint vector in Equation ( 5.24 ) is derived as,

DF̄ =


DxF̄manifold DTθ1

F̄manifold Dθ2F̄manifold DTmF̄manifold

DxFapsis 0 0 DTmFapsis

DxFalt 0 0 DTmFalt

 , (5.28)

where the partial derivatives of the stable manifold trajectory section, F̄manifold, in Equation

( 5.28 ) are defined as,

DxF̄manifold =



−I6,6 06,6 06,6 . . . 06,6

ΦM
0 −I6,6 06,6 . . . 06,6

06,6 ΦM
1 −I6,6 . . . 06,6

... ... . . . . . . ...

06,6 06,6 06,6 ΦM
nM
−I6,6


, (5.29)

DTθ1
F̄manifold =



Φ(Tm, 0)∂X̄M
∂Tθ1

0̄
...

0̄


, (5.30)

Dθ2F̄manifold =



∂X̄(Tm,X̄M (Tθ1 ,θ2))
∂θ2

0̄
...

0̄


, (5.31)

DTmF̄manifold =



∂X̄(Tm,X̄M (Tθ1 ,θ2))
∂Tm

˙̄XM
0 (Tm)

...
˙̄XM
nM−1(Tm)


. (5.32)

where the STM is defined as ΦM
j = ∂X̄Mj (Tm)

∂X̄Mj (0) . Note that Φ represents the STM derived

from propagation of the state along the invariant curve, X̄inv, to the injection point, X̄inj.
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The partial derivative of the stable manifold state, X̄M , with respect to the angle along the

invariant curve, i.e., ∂X̄(Tm,X̄M (Tθ1 ,θ2))
∂θ2

, is evaluated via a numerical finite difference method;

recall that the invariant curve is approximated via a discrete Fourier series. Note that, the

state, X̄
(
Tm, X̄M(Tθ1 , θ2)

)
, is a propagated state from the stable manifold state in Equation

( 5.22 ) and the partial derivative of X̄M with respect to the longitudinal time, Tθ1 , is defined

as,

∂X̄M(Tθ1 , θ2)
∂Tθ1

=

˙̄Xinj(Tθ1 , θ2)± η
(
A(X̄inj)Φ(Tθ1 , 0) ψ̄S(θ2)

mq

− Φ(Tθ1 , 0) ψ̄S(θ2)
m2
q

∂mq

∂Tθ1

)
, (5.33)

where the variable mq is defined as: mq =
√(

Φr(Tθ1 , 0) ψ̄S(θ2)
)T (

Φr(Tθ1 , 0) ψ̄S(θ2)
)
. The

partial of the variable mq is now derived as,

∂mq

∂Tθ1

=

1
2mq

(
ψ̄S

T (θ2)
(
ΦT (Tθ1 , 0)

[
0
I

]
Φr(Tθ1 , 0) + ΦT

r (Tθ1 , 0)
[

0 I
]
Φ(Tθ1 , 0)

)
ψ̄S(θ2)

)
, (5.34)

with 0 and I as 3× 3 zero and identity matrices, respectively, and [T ] is a matrix transpose.

The partial derivatives corresponding to the apsis and altitude constraints, i.e., Fapsis and

Falt, respectively, are given as,

DxFapsis =
[
0̄ . . . 0̄

(
(r̄f − r̄e)T [0 I] + v̄Tf [I 0]

)
∂X̄MnM (Tm)
∂X̄MnM (0)

]
, (5.35)

DxFalt =
[
0̄ . . . 0̄ 2 (r̄f − r̄e)T [I 0] ∂X̄

M
nM

(Tm)
∂X̄MnM (0)

]
, (5.36)

DTmFapsis =
(

(r̄f − r̄e)T [0 I] + v̄Tf [I 0]
)

˙̄XM
nM

(Tm), (5.37)

DTmFalt = 2 (r̄f − r̄e)T [I 0] ˙̄XM
nM

(Tm). (5.38)

where, it is recalled that, r̄f and v̄f are the final propagated position and velocity vectors,

respectively, from X̄M
nM

as illustrated in Figure  5.22 .
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The multiple-shooting formulation derived is consistent with a ballistic transfer into

any quasi-periodic orbit in the CRTBP that leverages manifold structures. In this analysis,

the scenario includes a ballistic transfer from a point near the Earth to a quasi-periodic

orbit that employs trajectories within the stable manifold. However, the same formulation

is implemented to construct ballistic transfers from a quasi-periodic orbit to near-Earth

locations via trajectories along the unstable manifold structures. In Figures  5.16 and  5.18 ,

the ballistic transfers into a subset of a family of periodic orbits are contained within a

curve of solutions, i.e., a one-dimensional curve. The dimensionality of the solution curve

is also observed by comparing the dimension of the free-variable and constraint vectors, i.e.

Equations (  5.15 ) and ( 5.16 ), respectively. For ballistic transfers into a single quasi-periodic

orbit, as formulated from Figure  5.22 , the dimensions of the free-variable and constraint

vectors, Equations ( 5.23 ) and ( 5.24 ), are: dim(X̄) = 6(nM+1)+3 and dim(F̄ ) = 6(nM+1)+2,

respectively. The Jacobian, DF̄, defined in Equation ( 5.28 ) has a null space of dimension:

null(DF̄) = 1, such that, all solutions lie on a one-dimensional curve. Note that, this

observation is only applicable for ballistic transfers into quasi-periodic orbits constructed

from a two-dimensional torus. Insight into the dimension of the formulated problem aides

in the search for ballistic transfer into quasi-periodic orbits.

5.2.1 Ballistic Transfers into Quasi-Halo Orbits near L1

Ballistic transfers into quasi-halo orbits near Sun-Earth L1 are constructed by leverag-

ing stable manifold structures associated with quasi-periodic orbits. In this analysis, families

of quasi-halo orbits near Sun-Earth L1 with a fixed Jacobi Constant, C, are constructed via

a numerical corrections method. Additionally, only direct ballistic transfers are considered,

such that, the NEA curves corresponding to AL1-N, AL1-S, AL2-N, and AL2-S plotted in

Figures  5.16 and  5.18 are investigated. The halo orbits corresponding to curves AL1-N,

AL1-S, AL2-N, and AL2-S plotted in Figures  5.16 and  5.18 possess a center subspace that is

consistent with quasi-periodic motion. For example, the range of Jacobi Constant in curve

AL1-S is evaluated as: 3.000603 ≤ C ≤ 3.000794. A family of quasi-halo orbits built from a
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halo orbit with C = 3.000794 is plotted in Figure  5.23 . Recall that ρ is the rotation angle

associated with a single quasi-periodic orbit, T1 is the longitudinal time, and the ratio, 2π

ρ
, is

a value that parameterizes a quasi-periodic orbit. For the quasi-halo family in Figure  5.23 ,

as the ratio increases, the size of the quasi-periodic orbit, i.e., the z-amplitude, increases.

Additionally, quasi-halo orbits with higher ratios possess trajectories near the x̂ − ŷ plane,

i.e., the ecliptic. The ballistic transfers into the family of Sun-Earth L1 quasi-halo orbits

L
1

L
1

L
1

L
1

Figure 5.23. : Family of quasi-halo orbits near Sun-Earth L1 with a fixed Jacobi Constant,
C = 3.000794

consistent with C = 3.000794 are plotted as a family of NEA curves in Figure  5.24 , with

the NEA curves corresponding to five families of quasi-halo orbits with different fixed Jacobi

Constants displayed in Figure  5.25 . In Figure  5.24 , the red point in the λ-δ plot corresponds

to a ballistic transfer to the reference halo orbit, note that the family of quasi-halo orbits

originate from this periodic orbit, and the NEA curves represented via a range of colors,

corresponding to the quasi-periodic orbit ratio, are ballistic transfers to quasi-halo orbits.

Recall, that a single point along each NEA curve is a ballistic transfer. The evolution of

the NEA curves that correspond to the family of quasi-periodic orbits plotted in Figure  5.23 

begins with the ballistic transfer to the reference halo orbit, i.e., the red point in Figure  5.24 .

Next, as the quasi-halo orbits grow along the family of orbits, the ratio, see Figure  5.23 ,
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Figure 5.24. : Near-Earth Access curves corresponding to quasi-halo family with C =
3.000794. The ballistic transfers for selected NEA curves are plotted in the right

Figure 5.25. : Near-Earth Access curves for five quasi-halo orbit families. Note that each
family is constructed with a fixed Jacobi Constant, C. Observe that as the quasi-periodic
ratio increases, the NEA curves move closer to the δ = 0◦ line
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and the size of the NEA curve increases. The direction of the evolution of the NEA curves

is toward the δ = 0◦ line, i.e., the ecliptic plane in the Sun-Earth system. This observation

reveals that, for this family of quasi-periodic orbits, quasi-halo orbits with higher ratios, but

with a fixed Jacobi Constant, have ballistic transfer options from a GTO departure location

near the ecliptic. Similar behavior is produced for different families of quasi-halo orbit con-

structed with fixed Jacobi Constants, see Figure  5.25 . The geometry of three selected NEA

curves are presented in Figure  5.24 . Observe that the injection points into the quasi-halo

orbits are marked in red and quasi-halo orbits with higher ratios contain larger z-amplitudes.

The NEA curves in Figure  5.25 are plotted in Figure  5.26 with the accompanying inclina-

tion, ri, information. The colormap in Figure  5.26 corresponds to the quasi-periodic ratios

and the black lines correspond to retrograde orbits. Recall that, in this investigation, direct

ballistic transfers are preferred, such that, any ballistic transfer with ri > 90◦ is considered

as a transfer from a retrograde GTO. Observe that the NEA curves corresponding to the

quasi-halo family with a Jacobi Constant of C = 3.000794 is associated with all prograde

ballistic transfers. Alternatively, in the quasi-halo family with C = 3.000603, some quasi-halo

orbits have ballistic transfers from both prograde and retrograde GTOs.

Families of quasi-halo orbits offer additional ballistic transfer opportunities for a wider

range of GTO departure locations. In this analysis, the families of quasi-halo orbits are

constructed within the range of Jacobi Constants consistent with direct ballistic transfers

to southern halo orbits in Figure  5.16 . The NEA curves observed in Figures  5.24 - 5.26 

correspond to families of quasi-halo orbits with fixed Jacobi Constants. However, families of

quasi-halo orbits with fixed rotating angle, ρ, and mapping time, T1, are feasible alternatives.

Additionally, the NEA curves in Figure  5.25 are consistent with southern quasi-halo orbit

families. Recall that in Figures  5.16 and  5.18 , the NEA curves for southern and northern

halo orbits are symmetric over the δ = 0◦ line, i.e., the ecliptic. The same behavior is

expected for the NEA curves corresponding to the families of southern and northern quasi-

halo orbits. Based on this observation, the use of quasi-periodic halo orbits increases the

number of opportunities available from regions near-Earth. Access curves for the spatial

183



(a) (b)

(c) (d)

(e)

Figure 5.26. : Near-Earth Access curves for five quasi-halo orbit families constructed with
fixed Jacobi Constants. Section in black represent transfers from retrograde GTOs
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periodic and quasi-periodic orbits offer mission designers greater insight for the transfers

available to secondary payloads from an out-of-plane GTO periapsis.

5.3 Guide of Ballistic Transfers from Geosynchronous Transfer Orbit

A ballistic transfer guide serves as a preliminary framework for direct transfers from a

GTO to Sun-Earth Lagrange point orbits. The construction of such a guide is directed from

the investigation of ballistic transfers to periodic orbits near L1 and L2. Recall that ballistic

transfers are defined, in this investigation, as transfers to Sun-Earth L1 or L2 requiring

a single maneuver performed at a GTO departure location, i.e., GTO periapsis, near the

Earth. Only a collection of direct transfers are incorporated into a guide of solutions due

to their lower TOF; recall that some ballistic transfers have geometries that include indirect

excursions or Earth flybys. Transfers to orbits near Sun-Earth L1 are also constrained

by communications requirements due to the solar environment while transfers to L2 are

constrained by the Earth eclipsing conditions. In this investigation, unconstrained as well

as constrained direct transfers are compiled in a ballistic guide to orbits near the Sun-Earth

L1 and L2 points.

5.3.1 Constructing Ballistic Transfers From a GTO

A guide for unconstrained direct transfers to Sun-Earth Lagrange points requires a

methodology to generate transfers from GTO to any quasi-periodic orbit. Ballistic transfers

to quasi-periodic orbits are desired due to the increased opportunities available from low

Earth altitudes. This methodology leverages trajectories within the stable manifold asso-

ciated with quasi-periodic orbits, e.g., quasi-halo orbits, to connect to departure locations

along a GTO with the use of a map. The following steps are consistent in developing feasible

reference trajectories:
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1. Generate a GTO trajectory in Sun-Earth CRTBP model. A candidate ’GTO initiating

state’ along the GTO is propagated in the Sun-Earth CRTBP and observed in the

rotating frame.

2. Identify a candidate halo orbit to generate a family of fixed Jacobi Constant, C, quasi-

halo orbits. Note that families generated with fixed rotation angle, ρ, or constant

mapping time, T1, are alternative options.

3. Identify a candidate quasi-halo orbit. For constrained transfers in the Sun-Earth sys-

tem, a candidate orbit avoids any communications contraints near L1 or Earth eclipse

conditions near L2.

4. Generate trajectories along the hyperbolic stable manifold associated with candidate

quasi-halo orbit. In this investigation, trajectories within the stable manifold surface

that approach near to the Earth are employed to identify direct transfers.

5. Create mappings with trajectories from the stable manifold structure and potential de-

parture locations along the GTO. Velocity magnitudes and directions are also available

on the map.

6. Construct a reference trajectory from the selected arcs on the map. Correct a feasible

reference trajectory to construct a viable transfer.

The focus of this investigation is the construction of ballistic transfers from a departure loca-

tion along a GTO; the transfer is assumed to include only one deterministic maneuver. The

design strategy involves departure into a ballistic transfer that leverages the natural dynam-

ics and injects into quasi-periodic motion near a Lagrange point. Links involving departure

locations along a generic GTO and stable manifold trajectories associated with quasi-periodic

arrival orbits are identified via a new type of mapping strategy. In a ridesharing scenario, the

secondary payload is restricted to the GTO orientation leveraged by the primary payload,

as illustrated in Figure  4.1 . Departure locations along planar GTOs are straightforwardly

investigated with a Poincaré map formulated in an x̂-ŷ, in the Sun-Earth rotating frame,

plane. However, GTOs with non-zero inclinations, i.e., i′ i in Figure  4.2 (a), are not defined
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in terms of a consistent orbital plane in the context of the CRTBP model. Therefore, a new

mapping approach is implemented to determine connections from locations along inclined

GTOs. For example, the new mapping strategy is utilized to locate intersections between a

GTO with inclination of i′ i = 20◦ and the stable manifold trajectories of a southern quasi-

halo orbit near the Sun-Earth L1 point with C = 3.000808. Note that the GTO inclinations,
i′ i, are defined in an arbitrary inertial frame in Figure  4.2 (a). The GTO departure position

and velocity is evaluated with Equations ( 4.1 )-( 4.2 ) and rotated to the Sun-Earth CRTBP

rotating frame via Equation ( 2.46 ). To identify potential departure locations that link with

the stable manifold trajectories, the propagated states along the GTO are noted and a local

region in their vicinity is defined. The scheme, illustrated in Figure  5.27 , demonstrates a set

of cylinders that are constructed surrounding the GTO; each cylinder is sized to deliver a

feasible connection between the GTO and a trajectory within the quasi-halo stable manifold.

A stable manifold intersection is described as a state X̄ ST = [r̄ST ; v̄ST ], where X̄ ST is the

propagated state from the manifold state X̄M defined in Equation ( 5.22 ) by a time TM ; recall

that [; ] represents vertical vector concatenation. The GTO departure locations are prop-

agated states from an initial GTO periapsis and written as: X̄GTO
j = [r̄GTO(tj); v̄GTO(tj)],

where tj is the propagation time from periapsis. The length of the jth cylinder along the GTO

trajectory, illustrated in Figure  5.27 , is evaluated as hj =
∣∣∣r̄GTO(tj+1)− r̄GTO(tj)

∣∣∣ with GTO

positions r̄GTO(tj) and r̄GTO(tj+1). The position of a kth stable manifold intersection location

along a jth cylinder is defined with p
j
k, the distance along a line from r̄GTO(tj) to r̄GTO(tj+1)

for the jth cylinder, and lk, measured perpendicularly from p
j
k. For example, values of p and

l for a stable manifold intersection point, r̄STk , with respect to the first cylinder (j = 0), are

evaluated as,

p0
k =

(
r̄GTO(t1)− r̄GTO(t0)

)
∣∣∣∣r̄GTO(t1)− r̄GTO(t0)

∣∣∣∣ · r̄
ST
k , (5.39)

lk =
√∣∣∣r̄STk − r̄GTO(t0)

∣∣∣2 − (p0
k)2. (5.40)

The maps in Figure  5.28 demonstrate a series of potential connections at departure locations

along the GTO. Values for distances PSTk = p
j
k + ∑j−1

m=0 hm and PGj = ∑j
m=0 hm represent
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a kth stable manifold intersection and a GTO departure location on the map, respectively.

Thus, the horizontal axis in Figure  5.28 identifies locations where PSTk and PGj overlap and is

denoted as P. The map is constructed with cylinders of radius l equal to 500 km and stable

manifold intersections lie on the surface of a cylinder, i.e., l = 500 km, or lie inside a cylinder,

l < 500 km. Additionally, a stable manifold intersection may only belong to one cylinder

and is constrained by p
j
k ≤ hj. The distance l is then denoted on the vertical axis in Figure

 5.28 . Potential near-connections from the stable manifold in Figure  5.28 (a) are depicted in

blue and the GTO departure locations are in white. When a departure location along the

GTO, a white point in Figure  5.28 (a), is selected, the ∆V information is added to the plot

in Figure  5.28 (b). Note that Figure  5.28 (b) is a zoomed view of the specified region boxed

Figure 5.27. : Crossings from various stable manifold trajectories are captured inside
cylinders defined with a length p0 and a constant radius l

in red and illustrated in Figure  5.28 (a). Additionally, in Figure  5.28 (b), the direction of the

line associated with a stable manifold trajectory point, X̄ ST
k , or a departure location, X̄GTO

j ,

is constructed with the velocity components, ẏ and ż, for the respective state. For example,

a departure location in white with state X̄GTO(t1) = [xGTO
1 , yGTO

1 , zGTO
1 , ẋGTO

1 , ẏGTO
1 , żGTO

1 ]T

is plotted at (PG1 , l = 0) and includes a dashed line defined with an angle ϕ = tan−1
(
żGTO

1
ẏGTO

1

)
measured from x̂. The blue locations, i.e., X̄ ST (pST ), indicate velocity direction with the
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(a) (b)

Figure 5.28. : (a) Map leveraged to identify near crossings into the cylinder created from
a GTO. (b) Potential crossings are highlighted in white

blue lines. A potential transfer opportunity is selected in Figure  5.28 (b), depicted via a

white circle, and an initial guess is constructed from the map information. The mapping

in Figure  5.28 (b) offers connections with the approximate ∆V information, indicated via a

range of colors, and offers the capability of selecting GTO departure locations, white points

on the x-axis of the plot, and the near-connections corresponding to the trajectories within

the stable manifold of the associated target quasi-periodic orbit.

A reference trajectory is constructed from the near-link highlighted on the map, i.e.,

the two white circles in Figure  5.28 (b). Note that a reference trajectory is constructed with

a GTO segment and a stable manifold trajectory segment. In Figure  5.28 (b), the GTO

segment is represented by a white point and a white dashed line and a stable manifold

trajectory segment is represented by a point and solid line with a color corresponding to the

approximate ∆V required. The GTO segment arc is created via propagation in forward time

from the GTO departure location, indicated by a white point in Figure  5.28 (b), and stable

manifold trajectory segment is constructed with reverse time propagation along the surface of

the stable manifold from the pre-specified quasi-halo orbit. A multiple-shooting strategy that
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incorporates a multidimensional Newton’s method for updates in a differential corrections

scheme is leveraged to construct feasible solutions [ 73 ] and is illustrated in Figure  5.29 . In

Figure 5.29. : Multiple-shooting scheme to construct ballistic transfers into orbits in the
Sun-Earth CRTBP model

this investigation, a reference trajectory is defined as the superposition of trajectory arcs

selected from the mapping in Figure  5.28 and a specified number of revolutions of a quasi-

periodic orbit. Reference trajectories are introduced with state discontinuities and input

as initial guesses for the differential corrections process to produce a continuous solution

with similar characteristics. The reference trajectory is constructed with three sections: a

GTO arc, a stable manifold trajectory arc, and a quasi-periodic arc. The GTO arc is a

propagated trajectory from the GTO perigee to a departure location. The perigee state is

fixed to constrain departures from a single GTO specified orientation. The stable manifold

trajectory arc, associated with a quasi-periodic orbit near the Sun-Earth L1 or L2 points,

is a trajectory selected from a crossing identified in Figure  5.28 (b) and propagated forward

in time, essentially replicating the arc originally constructed in reverse time. The quasi-

periodic arc is generated by stacking a number of revolutions along the quasi-periodic orbit.

The multiple-shooting strategy is implemented by decomposing each transfer segment along

the reference solution into a series of N nodes along the arc, X̄j = [xj, yj, zj, ẋj, ẏj, żj]T , with

j = [0, ..., N ] [ 74 ]. All nodes are defined in terms of a full state with a corresponding arc time

Tj. The final solution possesses full state continuity except for a velocity discontinuity at
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the GTO departure location. The free-variable vector consistent with the ballistic transfer

multiple-shooting scheme in Figure  5.29 is denoted as,

X̄ =



X̄1
...

X̄N
T0

T1
...

TN−1



. (5.41)

Note that the first node, i.e., X̄0, is omitted from the free-variable vector in Equation ( 5.41 )

because the ballistic transfer is constructed from a fixed GTO departure location described

via the first node X̄0. The multiple-shooting scheme is implemented within the context of

the CRTBP model. The constraint vector corresponding to a ballistic transfer from a GTO

departure location is,

F̄ =



r̄0(T0)− r̄1(0)

X̄1(T1)− X̄2(0)
...

X̄N−1(TN−1)− X̄N(0)


, (5.42)

where the position continuity is only enforced at the intersection between the propagated

position from the GTO departure state, r0(T0), and the second node on the ballistic transfer,

X̄1. A maneuver is implied by omitting a velocity continuity constraint at the intersection

between nodes X̄0 and X̄1. In this formulation, the impulsive maneuver performed can be
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prograde, in the direction of motion, or retrograde, in the opposite direction of motion. The

Jacobian associated with the constraint vector in Equation ( 5.42 ) is stated as,

DF̄ = 

[− I3,3,03,3] 03,6 · · · 03,6 03,6 v̄0(T0) 0̄3,1 · · · 0̄3,1 0̄3,1

Φ1 −I6,6 · · · 06,6 06,6 0̄6,1
˙̄X1 · · · 0̄6,1 0̄6,1

... ... . . . ... ... ... ... . . . ... ...

06,6 06,6 · · · −I6,6 06,6 0̄6,1 0̄6,1 · · · ˙̄XN−2 0̄6,1

06,6 06,6 · · · ΦN−1 −I6,6 0̄6,1 0̄6,1 · · · 0̄6,1
˙̄XN−1


, (5.43)

where the STM is defined as: Φj = ∂X̄j(Tj)
∂X̄j(0) and the acceleration vector, ˙̄Xj, is evaluated via

the equations of motion corresponding to the CRTBP at the end of the propagation arc, i.e.,
˙̄Xj(Tj). The feasible transfer constructed from the multiple-shooting algorithm is the initial

solution for a continuation scheme that reduces the total ∆V of a single maneuver ballistic

transfer. The continuation scheme is essentially a natural parameter continuation algorithm

with a maximum ∆V magnitude, ∆Vmax, defined as the natural parameter. An inequality

constraint is introduced to enforce a maximum ∆V magnitude for the single maneuver in

the ballistic transfer. A slack variale, β∆V , is included in the formulation of an inequality

constraint, i.e.,

F∆Vmax = ‖v̄0(T0)− v̄1(0)‖ −∆Vmax + β2
∆V , (5.44)

where ‖ · ‖ is the vector norm. The inequality constraint in Equation ( 5.44 ) is appended to

the constraint vector in Equation ( 5.42 ). The partial derivatives of the inequality constraint

are denoted as,

DF∆Vmax

DX̄1(0)
=

(
v̄0(T0)− v̄1(0)

)T
‖v̄0(T0)− v̄1(0)‖

[
03,3 −I3,3

]
, (5.45)

DF∆Vmax

DT0
=

(
v̄0(T0)− v̄1(0)

)T
‖v̄0(T0)− v̄1(0)‖

˙̄v0(T0), (5.46)

DF∆Vmax

Dβ∆V
= 2β∆V . (5.47)

192



Each solution from the continuaton scheme delivers a transfer with an associated ∆V below

the user input ∆Vmax magnitude. The continuation process continues with the previously

corrected transfer as an input and by decreasing the ∆Vmax magnitude. A final solution

is identified when the correction process, i.e., the multiple-shooting algorithm that corrects

for state continuity along the transfer nodes, fails to converge after 50 iterations. Note

that this continuation process is a pseudo-optimization process and that the final solution

is a single maneuver transfer with an associated ∆Vlow magnitude. Figure  5.30 illustrates

Figure 5.30. : Transfer solution with single maneuver magnitude of 740.0 m/s in the
CRTBP model

a transfer with a ∆Vlow magnitude of 740.0 m/s, which emerged from the initial transfer

identified in Figure  5.28 (b) and thirty revolutions along the quasi-halo orbit. The transfer in

Figure  5.30 departs from GTO periapsis with an inclination equal to i′ i = 20◦, recalling the

definition in Figure  4.2 (a), and enters a Lissajous orbit with a large z-amplitude. Note that

the initial guess leverages a southern quasi-halo orbit, but the continuation scheme lowered

the total ∆V for the single maneuver that initiates the ballistic transfer, and altered the

geometry of the target quasi-periodic orbit. In this continuation strategy, the geometry and

Jacobi Constant, C, associated with the quasi-periodic orbit are unconstrained, that is, a

specified transfer trajectory is not targeted. Although the mapping presented in Figure  5.28 
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is not as intuitive as a Poincaré map with a planar cross-section, it can be applied to expose

near-connections from any trajectory.

5.3.2 Unconstrained Transfers into Orbits near L1 and L2

A collection of unconstrained direct ballistic transfers is generated by employing the

previous mapping strategy and a natural parameter continuation scheme. The mapping

strategy identifies feasible initial guess information, see the maps in Figure  5.28 for an ex-

ample, for ballistic transfers to the Sun-Earth L1 and L2 points. The initial guess, i.e., the

stable manifold trajectory corresponding to a quasi-periodic orbit and a set of revolutions

around the quasi-periodic orbit, is corrected via a multiple-shooting numerical algorithm uti-

lizing Equations ( 5.41 )-( 5.43 ). Natural parameter continuation is implemented to construct a

pseudo-optimal ballistic transfer by introducing the inequality constraint in Equation ( 5.44 ).

Recall that natural parameter continuation on ∆Vmax identifies efficient transfers while con-

tinuation with other parameters, i.e., inertial frame inclination i′ i, explores transfers from a

range of GTO orientations, see Figure  4.2 (a). From Figures  4.5 and  4.2 , the Sun-Earth ro-

tating frame inclination, ri, and the inertial inclination, i′ i, are not equal to the inertial EME

frame inclination, ii; and, in this section, a collection of ballistic transfers is constructed from

a GTO with a range of the inertial inclinations, i′ i. A GTO departure state is constructed

via Equations ( 4.1 ) and ( 4.2 ) with a selected inclination (i′ i), RAAN (Ω), and argument of

periapsis (ω) angle; recall that the GTO has a fixed periapsis altitude of 185 km and an

apogee altitude of 35, 786 km, i.e., geosynchronous altitude. The GTO departure position

and velocity vectors are nondimensionalized and rotated to the Sun-Earth rotating frame

via Equation ( 2.46 ); note that the rotation from the arbitrary inertial frame in Figure  4.2 

is performed with t = 0. In Figure  5.4 , the locations near the Earth that are consistent

with direct ballistic transfers to Sun-Earth L1 Lyapunov orbits are restricted to a range of

−40◦ < λ < 110◦, i.e., the range along the APL1 access curve. Therefore, for ballistic trans-

fers to L1, the range explored in this investigation is −40◦ < λ < 110◦ along the Sun-Earth

ecliptic plane, i.e., δ = 0◦ in Figure  4.5 (b). Additionally, transfers from inclined GTOs with
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prograde motion are produced by continuation along the GTO inclination, i′ i. The polar

plots in Figure  5.31 summarize the ballistic transfer ∆V and the final quasi-periodic orbit

z-amplitudes via a range of colors from a fixed GTO periapsis altitude, 185 km. In Figure

(a) (b)

Figure 5.31. : (a) Maneuver magnitudes for direct unconstrained transfers to Sun-Earth
L1 around the Earth. (b) z−amplitudes for unconstrained transfers to L1

 5.31 , the angular direction corresponds to λ, from Figure  4.5 (b), and the radial direction is

the GTO inclination, i′ i, for a given transfer. The transfers presented in Figure  5.31 cor-

responds to ballistic transfer with optimized ∆V magnitude, i.e., ∆Vlow, that is, transfers

after the pseudo-optimization via natural parameter continuation with ∆Vmax. The shaded

region in Figure  5.31 corresponds to indirect transfers to L1 which are not explored in this

investigaton. Additionally, the transfer ∆V , in Figure  5.31 (a), is within the theoretical min-

imum values associated with periodic Lyapunov and halo orbits in Table  5.1 , although the

ballistic transfers in the polar plot approach quasi-periodic orbits. The region near-Earth

with a GTO periapsis altitude of 185 km between 10◦ < λ < 20◦ is associated with lower

ballistic ∆V magnitudes and with lower quasi-periodic z-amplitudes. The geometries of se-

lect ballistic transfers are plotted in Figures  5.32 and  5.33 . The view in Figures  5.32 and

 5.33 corresponds to an observer in the Earth towards the Sun-Earth L1 point. The ballistic
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Figure 5.32. : Unconstrained ballistic transfers into Sun-Earth L1 quasi-periodic orbits
from a GTO departure state with λ = 0◦ and δ = 0◦

Figure 5.33. : Unconstrained ballistic transfers into Sun-Earth L1 quasi-periodic orbits
from a GTO departure state with λ = 70◦ and δ = 0◦
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transfers correspond to a GTO departure location of λ = 0◦, in Figure  5.32 , and λ = 70◦,

in Figure  5.33 . The geometry plotted for a GTO departure location at λ = 0◦ is consistent

with very large Lissajous orbits while the ballistic transfer from λ = 70◦ resemble very large

quasi-halo orbits. Recall that the direct ballistic transfers require a single maneuver from

the GTO periapsis toward a quasi-periodic orbit near the Sun-Earth Lagrange points. The

unconstrained ballistic transfers summarized in Figure  5.31 require low ∆V magnitudes,

compared to the theoretical values in Table  5.1 , and offer access to very large Lissajous and

quasi-halo orbits near Sun-Earth L1

A continuation scheme in both ∆Vmax and inclination is leveraged to construct efficient

direct unconstrained ballistic transfers to Sun-Earth L2. For ballistic transfers towards L2,

the range of direct transfers is 150◦ < λ < 290◦, refer to Figure  5.9 . Figure  5.34 displays

the ∆V and z-amplitude information for the efficient ballistic transfers in a polar plot; note

that the shaded region corresponds to indirect transfers to L2. Observe the region associated

lower ∆V and lower z-amplitudes is 190◦ < λ < 200◦. Select ballistic transfer geometries of

Sun-Earth L2 from Figure  5.34 are plotted in Figures  5.35 and  5.36 . The ballistic transfers

(a) (b)

Figure 5.34. : (a) Maneuver magnitudes for direct unconstrained transfers to L2 around
the Earth. (b) z−amplitudes for unconstrained transfers to L2
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corresponding to λ = 180◦ and δ = 0◦, in Figure  5.35 , approach Lissajous orbits with

increasing z-amplitudes for increasing inclinations, i′ i. The transfers plotted in Figure  5.36 

enter large quasi-halo orbits. Observe that the transfers presented in Figures  5.35 and  5.36 

cross the x-axis in the Sun-Earth system. The continuation strategy leveraged to determine

the ballistic transfers in Figures  5.31 and  5.34 can be leveraged for GTOs with a periapsis

location above or below the ecliptic, i.e., δ 6= 0◦, and for a range of GTO departure altitudes.

Figure 5.35. : Unconstrained ballistic transfers into Sun-Earth L1 quasi-periodic orbits
from a GTO departure state with λ = 180◦ and δ = 0◦

Unconstrained direct ballistic transfers to Sun-Earth L1 for GTO departure states

above or below the ecliptic are constructed via a multiple-shooting strategy. Figures  5.31 

and  5.34 include maneuver information for unconstrained ballistic transfers from a GTO

depature state along the ecliptic, i.e., δ = 0◦, from a fixed GTO departure altitude of 185

km. However, ballistic transfers from regions above or below the ecliptic offer additional

insight into the geometry of available ballistic transfers to Sun-Earth L1. A GTO departure

state is constructed via Equations ( 4.1 ) and ( 4.2 ). In the preceding analysis, ω was fixed
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Figure 5.36. : Unconstrained ballistic transfers into Sun-Earth L1 quasi-periodic orbits
from a GTO departure state with λ = 240◦ and δ = 0◦

at: ω = 0◦ and Ω was essentially equal to Ω = λ. To construct ballistic transfers from any

departure location, the relationships between the inertial keplerian elements and the rotating

frame elements are summarized by leveraging the properties of a right spherical triangle, i.e.,

sin(i′ i) = sin(δ)
sin(ω) , (5.48)

tan(i′ i) = tan(δ)
sin(∆Ω) , (5.49)

tan(∆ω) = cos(i′ i) tan(ω), (5.50)

sin(ω) = sin(δ)
sin(i′ i) , (5.51)

cos(ω) = cos(∆Ω) cos(δ), (5.52)

tan(ω) = tan(δ)
sin(i′ i) cos(∆Ω) , (5.53)

where ∆Ω = λ−Ω. The angles corresponding to Ω, ω, i′ i, λ, and δ are illustrated in Figure

 5.37 . For a specified δ angle, a range of values corresponding to i′ i and ω are derived as,
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Figure 5.37. : Relationship between the inertial keplerian elements, {Ω, i′ i, ω}, and the
rotating frame elements, {λ, δ}. Recall that the basis vectors {x̂′′, ŷ′′, ẑ′′} correspond to a
shifted rotating frame with an origin at P2, i.e., the Earth

If δ > 0: δ ≤ ω, i′ i ≤ π− δ, (5.54)

If δ < 0: δ ≤ ω, i′ i ≤ −π− δ. (5.55)

The ranges for ω and i′ i described are also plotted in Figure  5.38 . In Figure  5.38 , prograde

GTO departure states correspond to a range of ∆Ω values of 0◦ ≤ ∆Ω ≤ 180◦ and the

retrograde departure states are in the range of 180◦ ≤ ∆Ω ≤ 360◦. For a GTO departure

state with δ = 0◦, an inclination, i.e., i′ i, is only defined at ∆Ω = 0◦, 180◦. Additionally,

observe that, for δ = 0◦, ω = ∆Ω. In this analysis, ballistic transfers from prograde GTOS

are constructed, such that, only one region in Figure  5.38 is implemented. GTO departure

states are constructed with a set of δ values, i.e., δ = {−50◦,−40◦, · · · , 0◦, · · · , 40◦, 50◦}.

The range of δ values was selected based on the assumption that a GTO in the inertial EME

frame has an inclination of ii = 27◦ and, from Figure  4.9 , the range of δ is approximately

−50◦ ≤ δ ≤ 50◦. The unconstrained direct ballistic transfers corresponding to δ = 10◦

are highlighted in Figure  5.39 . The surface in Figure  5.39 is plotted along the λ, ω, and

∆V values and the colors for the surface correspond to the inclination, i′ i. Observe that

the higher inclinations ballistic transfers in the curve appear near the boundaries of the ω
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(a) (b)

Figure 5.38. : (a) Argument of periapsis angle, ω, and (b) inertial inclination, i′ i, at a
range of ∆Ω angles. Note that ∆Ω = λ− Ω

angle range. The range of λ values corresponds to the range for direct ballistic transfer to

Sun-Earth L1, i.e., −40◦ ≤ λ ≤ 120◦, and the GTO departure states are constructed for a

range of ω equal to 10◦ ≤ ω ≤ 170◦. Selected transfers are highlighted via a black asterisk

and represent ballistic transfer from a location λ = 10◦ near the Earth. From Figure  5.39 ,

for increasing ω values, the geometry of the ballistic transfer transitions from a Lissajous to

a quasi-halo orbit; note that the plots of the geometry are in a ŷ-ẑ projection. The surface

plotted in Figure  5.40 represents the unconstrained direct ballistic transfers for a range of δ

values. For positive δ values, i.e., δ > 0, the ballistic transfer surfaces are contained within

a region of the ω values of 0◦ ≤ ω ≤ 180◦; and the ballistic transfers for negative δ values

correspond to a range of 180◦ ≤ ω ≤ 360◦. Recall that the range for the inertial inclination,

i.e., i′ i, is defined via the ranges in Equations ( 5.54 )-( 5.55 ) and are dependent on the δ values.

Additionally, curves of unconstrained ballistic transfer corresponding to a GTO departure

location of λ = 0◦ and δ = 0◦ are plotted in Figure  5.41 . For increasing δ values, i.e., |δ|, the

∆V magnitude required for the single maneuver ballistic transfers increases, see Figure  5.41 .
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The geometry of select ballistic transfer, depicted as black points, from the information in

Figure  5.41 are plotted in Figures  5.42 - 5.51 .

Figure 5.39. : Surface of unconstrained ballistic transfers to Sun-Earth L1 corresponding
to δ = 10◦

Figure 5.40. : Surface of unconstrained ballistic transfers to Sun-Earth L1 corresponding
to a range of δ values of −50◦ ≤ δ ≤ 50◦
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Figure 5.41. : Unconstrained direct ballistic transfers to Sun-Earth L1 corresponding to a
range of δ values of −50◦ ≤ δ ≤ 50◦ from a GTO departure state of λ = 0◦

Figure 5.42. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = 10◦ and λ = 0◦
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Figure 5.43. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = 20◦ and λ = 0◦

Figure 5.44. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = 30◦ and λ = 0◦
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Figure 5.45. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = 40◦ and λ = 0◦

Figure 5.46. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = 50◦ and λ = 0◦
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Figure 5.47. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = −10◦ and λ = 0◦

Figure 5.48. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = −20◦ and λ = 0◦
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Figure 5.49. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = −30◦ and λ = 0◦

Figure 5.50. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = −40◦ and λ = 0◦
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Figure 5.51. : Selected unconstrained direct ballistic transfers to Sun-Earth L1 correspond-
ing to δ = −50◦ and λ = 0◦

GTO departure states at near-Earth locations above or below the ecliptic, i.e., |δ| > 0◦,

are often associated with ballistic transfers into quasi-halo orbits. From Figures  5.42 - 5.51 ,

unconstrained direct ballistic transfers into Sun-Earth L1 southern quasi-halo orbits are ob-

served for δ > 0◦ and transfers into northern quasi-halos correspond to δ < 0. Observe

that this is consistent with the ballistic Near-Earth Access curve analysis for southern and

northern quasi-halo orbits in Section  5.2 . The collection of unconstrained ballistic transfers

over a range of inclinations provides initial ∆V magnitude estimates and a range of loca-

tions near-Earth for transfers from GTO periapsis to Sun-Earth L1 and L2 points. In this

investigation, only direct ballistic transfers are observed as potential options from a GTO

departure state, with the range of GTO departure locations parameterized via λ and δ an-

gles in the near Earth vicinity. Additionally, for the rideshare scenario including a secondary

payload satellite, it is assumed that there is no a priori information concerning the GTO

Keplerian elements, i.e., no information on the location of the GTO periapsis in the Sun-

Earth rotating frame. Although transfers from a GTO with a 185 km periapsis altitude are

included, continuation on the periapsis altitude can expose transfer opportunities for GTOs
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of variable orbit size. Only unconstrained ballistic transfers are constructed, but, depending

on the destination, additional constraints must be incorporated into the trajectory design

process.

5.3.3 Path Constraint for Sun-Earth L1 Transfers

A collection of constrained ballistic transfers to Sun-Earth L1 quasi-periodic orbits

is constructed with the ballistic transfer information from the unconstrainted results and a

mathematically defined path constraint. Communications constraints during an Earth-to-

L1 transfer and in a Sun-Earth L1 Lagrange point orbit require that the spacecraft avoid

crossing in front of the solar disk when viewed from the Earth [ 11 ]. In the rotating frame, a

Sun-Earth-Vehicle (SEV) angle α is defined as the angle between r̄23 and -x̂ as illustrated in

Figure  5.52 . The vector r̄23 is the satellite position with respect to the Earth and is defined

as: r̄23 = r̄− r̄e, where r̄ and r̄e are the positions of the satellite and the Earth, respectively,

measured from the Sun-Earth barycenter. The SEV angle is defined with:

α = cos−1
(
r̄23 · −x̂
‖r̄23‖

)
, (5.56)

where -x̂ = [ − 1, 0, 0]T and Ā · B̄ is the vector dot product in this formulation. The

Solar Exclusion Zone (SEZ) is a region, illustrated in Figure  5.52 via a red dashed line,

defined by a right circular cone with the vertex at the Earth and a constant SEV angle. A

communications constraint is enforced along the transfer and a mathematical definition for

the path constraint is necessary. A general scalar path constraint is formulated as a line

integral, i.e.,

Fpath =
N∑
j

∫ Tj

0
F 2
p

(
X̄j(t)

)
− |Fp

(
X̄j(t)

)
|Fp

(
X̄j(t)

)
dt = 0. (5.57)

In this formulation, | · | implies an absolute value, N is the number of nodes along the

trajectory, and Tj is the propagation time for a jth arc. Equation ( 5.57 ) is a summation of

line integrals evaluated for every trajectory arc, consistent with a multiple-shooting scheme,
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Figure 5.52. : Solar Exclusion Zone defined in the Sun-Earth rotating frame (red). The
angle αSEZ defines the size of this region

in the constructed ballistic transfer, see Figure  5.29 for the multiple-shooting schematic.

However, the scalar path constraint may be modified to only enforce the path condition, i.e.,

the SEZ cone constraint in this example, along a designated set of propagated trajectory arcs.

Additionally, Equation ( 5.57 ) is written for a multiple-shooting formulation of the trajectory,

but is easily adapted for a single-shooting problem. The integrand in Equation ( 5.57 ) is

evaluated for every state in the transfer, i.e., every state computed via the propagation

process, and is either a negative value (violates path condition) or equal to zero (complies

with path condition). This general path constraint equation is used to prevent crossing into

the SEZ for L1 transfers and to prevent any path with positions below the Earth’s surface.

The constraint functions that express these constraints are defined as,

SEZ Constraint: Fp,SEZ = sin
(
α
(
X̄j(t)

)
− αSEZ

)
, (5.58)

Altitude Constraint: Fp,alt = r̄23
(
X̄j(t)

)T
r̄23

(
X̄j(t)

)
− h2

e, (5.59)

with the surface altitude of the Earth defined as he = 6371 km. In Equations ( 5.58 )-( 5.59 ),

the SEV angle, α, and the position with respect to the Earth, r̄23, are functions of the

state, X̄j(t), that corresponds to the state node, X̄j, propagated by time t. The path integral

condition in Equation ( 5.57 ) is enforced for both the SEZ and altitude constraints. The
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constraint function that corresponds to the SEZ condition, i.e., Equation (  5.58 ), is expanded

to,

Fp,SEZ = sin (α(t)) cos (αSEZ)− cos (α(t)) sin (αSEZ) , (5.60)

where the sine and cosine values of the ballistic transfer SEV angle, α, are defined as,

cos (α(t)) = r̄T23(t)(−x̂)
‖r̄23(t)‖ , (5.61)

sin (α(t)) =
√

1− cos2 (α), (5.62)

where, it is recalled that, r̄23(t) = r̄(t) − r̄e, that is, the satellite position along the bal-

listic transfer measured with respect to the Earth. An unconstrained ballistic transfer is

constructed via a multiple-shooting strategy that implements a multidimensional Newton’s

method with the free-variable and constraint vectors provided by Equations ( 5.41 ) and (  5.42 ),

respectively. To construct a constrained ballistic transfer, the scalar SEZ and altitude path

constraints are appended to the constraint vector in Equation ( 5.42 ), that is,

F̄con =


F̄

Fpath,SEZ

Fpath,alt

 , (5.63)

where,

Fpath,SEZ =
N∑
j

∫ Tj

0
F 2

p,SEZ

(
X̄j(t)

)
− |Fp,SEZ

(
X̄j(t)

)
|Fp,SEZ

(
X̄j(t)

)
dt, (5.64)

Fpath,alt =
N∑
j

∫ Tj

0
F 2

p,alt

(
X̄j(t)

)
− |Fp,alt

(
X̄j(t)

)
|Fp,alt

(
X̄j(t)

)
dt, (5.65)

with Fp,SEZ and Fp,alt defined in Equations ( 5.58 )-( 5.59 ). In this formulation, the path

conditions corresponding to the SEZ and altitude are separated into two integrals, this

separation offers the opportunity to enforce the constraint along different regions of the

ballistic transfer. For example, the altitude constraint is only enforced during propagated
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arcs near the Earth. Additionally, the path constraint requires numerical integration and

the accuracy is dependent on the number of points along the transfer arc, which, near the

Earth, may require higher computational effort. The separation of the SEZ and altitude

path constraints mitigates increased computational time associated with propagation near

the primaries, i.e., the Earth, by carefully selecting the transfer arcs to enforce the constraint

conditions. The partial derivatives of the path constraint function in Equation ( 5.57 ) are

denoted as,

∂Fpath

∂X̄j
=
∫ Tj

0
2
(
Fp
(
X̄j(t)

)
−
∣∣∣Fp (X̄j(t)

) ∣∣∣) ∂Fp

∂X̄j(t)
∂X̄j(t)
∂X̄j(0)

dt, (5.66)

∂Fpath

∂Tj
= F 2

p

(
X̄j(Tj)

)
−
∣∣∣Fp (X̄j(Tj)

) ∣∣∣Fp (X̄j(Tj)
)
, (5.67)

where the STM is defined as: Φj(t, 0) = ∂X̄j(t)
∂X̄j(0) , i.e., the STM at the end of each propagated

arc. The partial derivatives associated with the SEZ constraint function, i.e., Fp,SEZ, with

respect to the current state, X̄ (t), are denoted as,

∂Fp,SEZ

∂X̄ (t)
= ∂ sin(α)

∂X̄ (t)
cos (αSEZ)− ∂ cos(α)

∂X̄ (t)
sin (αSEZ) , (5.68)

∂ cos(α)
∂X̄ (t)

=

 −x̂T

‖r̄23(t)‖ +

(
r̄T23(t)x̂

)
r̄T23(t)

‖r̄23(t)‖3

[I3,3 03,3

]
, (5.69)

∂ sin(α)
∂X̄ (t)

= − cos(α(t))
sin(α(t))

∂ cos(α(t))
∂X̄ (t)

, (5.70)

where, it is recalled that, all vectors are assumed to be column vectors. From Equation ( 5.70 ),

when the sine value of the SEV angle is equal to zero, there is a state along the propagated

transfer arc that lies on the x̂ axis of the Sun-Earth rotating frame and the partial derivative

is undefined. However, this situation is improbable during the propagation process unless it

is targeted or the initial node is on the x̂ axis. Additionally, Equations ( 5.68 )-( 5.70 ) form an

integrand that is input into Equation (  5.66 ), therefore, any undefined single integrand values
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may be omitted in the numerical integration process without significant loss of accuracy. The

partial derivative for the altitude constraint, Fp,alt, is,

∂Fp,alt

∂X̄ (t)
= 2r̄T23(t)

[
I3,3 03,3

]
. (5.71)

The integral for the general path constraint in Equation ( 5.57 ) is computed via a trapezoidal

rule integration scheme, i.e., the trapz function in MATLAB, and is applicable for any

path constraint for which the desired conditions are mathematically defined as Fp ≥ 0, as

defined in Equation (  5.58 ). Constrained ballistic transfers to the vicinity of Sun-Earth L1

are constructed by introducing the path constraint equation during the corrections process.

5.3.4 Constrained Transfers into Orbits near L1

A guide for constrained ballistic transfers is constructed by applying the path con-

straints from Equations ( 5.57 )-( 5.59 ) to the unconstrained transfers in Figure  5.31 . For

example, a ballistic transfer corresponding to a departure state with λ = 0◦ and δ = 0◦ in

Figure  5.31 (a) is defined as an initial guess. Then, the selected transfer, i.e., a series of nodes

and propagation times described via the free-variable vector in Equation ( 5.41 ), is input into

a corrections process with the constraint vector in Equation ( 5.63 ). Once a solution that

enforces the path constraint is identified, the ∆V required for the single maneuver ballistic

transfer is decreased via a natural parameter continuation algorithm by including Equation

( 5.44 ) in the corrections process. The SEZ cone angle, i.e., αSEZ, is varied along a range of

angles equal to: αSEZ = {1◦, 2◦, 3◦, 4◦, 5◦}; note that the ACE mission initially implemented

a SEZ region with a cone angle of 4.75◦ [ 11 ]. The constrained ballistic transfer for a range of

SEZ cone angles are plotted as surfaces in Figure  5.53 . Recall that the range of direct ballis-

tic transfers for L1 is defined in the range of −40◦ ≤ λ ≤ 120. For GTO departure state with

higher inclinations, i.e., i′ i, the required ∆V is lower compared to states with inclinations

less than 30◦. Additionally, at i′ i < 30◦, the required ∆V for the single maneuver ballistic

transfer is higher when considering a larger SEZ cone, described via αSEZ. Figures  5.54 -
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 5.58 present the geometry of selected constrained ballistic transfers from a GTO departure

location of λ = δ = 0◦. The quasi-periodic orbits depicted in Figures  5.54 -  5.58 are northern

quasi-halo orbits. Southern quasi-halo orbits are feasible options for a constrained ballistic

transfer to Sun-Earth L1, but, for this GTO departure location of λ = 0◦, transfers into

the northern quasi-halos required lower ∆V magnitudes. Additionally, for ballistic transfers

from a departure location of λ = 0◦, Figure  5.59 depicts the ∆V required along a range of

prograde inclinations, i′ i. The geometries of ballistic transfers with λ = δ = 0◦ and i′ i = 20◦

are plotted in Figure  5.59 . Observe the growth of the quasi-halo, described by the increas-

ing z-amplitude, as the SEZ cone angle, αSEZ, increases. The constrained ballistic transfers

presented in this analysis include a number of revolutions such that the transfer does not

violate the SEZ after injecting into the quasi-halo orbits, as seen in Figures  5.54 - 5.59 .

Figure 5.53. : Surfaces of constrained ballistic transfers into Sun-Earth L1 quasi-periodic
orbits that avoid crossing a variable SEZ cone size

The addition of the SEZ constraint increases the ∆V requirements at low inclinations as

additional ∆V is necessary to transfer into a more out-of-plane quasi-periodic orbit that re-
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Figure 5.54. : Constrained ballistic transfers from a GTO departure location of λ = δ = 0◦
with an SEZ cone of αSEZ = 1◦

Figure 5.55. : Constrained ballistic transfers from a GTO departure location of λ = δ = 0◦
with an SEZ cone of αSEZ = 2◦
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Figure 5.56. : Constrained ballistic transfers from a GTO departure location of λ = δ = 0◦
with an SEZ cone of αSEZ = 3◦

Figure 5.57. : Constrained ballistic transfers from a GTO departure location of λ = δ = 0◦
with an SEZ cone of αSEZ = 4◦
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Figure 5.58. : Constrained ballistic transfers from a GTO departure location of λ = δ = 0◦
with an SEZ cone of αSEZ = 5◦

Figure 5.59. : Constrained ballistic transfer into a Sun-Earth quasi-periodic orbit consid-
ering a range of SEZ cone sizes, i.e., αSEZ values. The ŷ -ẑ projection of ballistic transfers
with an inclination, i′ i, of 20◦ is plotted for all SEZ cone sizes
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mains outside the SEZ cone. The multiple-shooting strategy is easily adapted to investigate

the SEZ constraint for ballistic transfers with GTO departure locations, i.e., location of the

GTO periapsis, with δ 6= 0◦.

5.3.5 Path Constraint for Sun-Earth L2 Transfers

A guide for direct constrained ballistic transfers to Sun-Earth L2 is constructed from

the unconstrained transfers to L2 with mathematically defined Earth eclipsing conditions.

Transfers and operational orbits near Sun-Earth L2 generally avoid regions inside the Earth’s

shadow. The Earth’s shadow, due to the Sun’s light, is typically characterized by two

distinct regions, the umbra and penumbra. In the Sun-Earth rotating frame, the penumbral

and umbral shadow regions are labeled in Figure  5.60 . In this investigation, the penumbral

Figure 5.60. : Earth shadow cones in the rotating frame of the Sun-Earth CRTBP. The
fixed angle ζPU represents the penumbral area. The vertex of the penumbral shadow cone is
labeled PU

region, the larger region, is set as the constraining Earth eclipse region for the ballistic

transfers to Sun-Earth L2. The penumbral region is defined as a right circular cone, termed

the shadow cone, with a vertex at the point PU, refer to Figure  5.60 , and measured with a

fixed shadow cone angle, ζPU. The penumbra shadow angle is measured with respect to +x̂,
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i.e., the direction from the Sun to the Earth in the Sun-Earth rotating frame. The position

of the penumbral shadow cone vertex, r̄PU, is defined as:

r̄PU = r̄e − lcx̂, (5.72)

where lc is the distance between the shadow cone vertex, PU, and the Earth and r̄e is the

position of the Earth in the Sun-Earth rotating frame. In the CRTBP model, the distance

between the Earth and the Sun is fixed, i.e., lse = 1.496x108 km. The distance lc is dependent

on the mean equatorial radius of the Earth and Sun, DE and DS, respectively, and is written

lc = lseDE
DE+DS . The position of the shadow cone vertex, r̄PU , is dependent on the distance

between the Earth and the Sun and remains fixed in the CRTBP model. The fixed angle,

ζPU , corresponding to the penumbral shadow cone is defined as: ζPU = tan−1(DE
lc

). To

remain outside the penumbral shadow cone, an angle ζ must remain above the fixed ζPU

angle when the spacecraft is beyond the Earth and the Sun, that is when the x-component

of the satellite’s position vector, r̄ = [x, y, z]T , meets the following condition: x > 1 − µ.

The angle ζ is then termed the shadow angle and is defined as:

ζ = cos−1
(
r̄PU3 · x̂
‖r̄PU3‖

)
. (5.73)

Note that the position of the spacecraft with respect to the penumbral shadow cone vertex,

PU in Figure  5.60 , is written as: r̄PU3 = r̄ − r̄PU. The general path constraint condition

from Equation ( 5.57 ) is implemented to maintain the spacecraft outside the Earth penumbral

shadow cone. However, a new path function, Fp, that describes the Earth eclipsing condition

is required. The Earth eclipsing condition is written as:

Earth Eclipsing Condition: Fp,PU = H
(
r̄23

(
X̄j(t)

)
· x̂
)

sin
(
ζ
(
X̄j(t)

)
− ζPU

)
, (5.74)

where the shadow angle, ζ, and the position of the satellite with respect to the Earth, r̄23,

is a function of the satellite state, X̄j, at a time along the trajectory, t, and, recall that,

the penumbral shadow angle, ζPU, is a constant value. The heaviside function, H(r̄23 · x̂), in

Equation ( 5.74 ) describes the positional condition for the spacecraft previously defined as:
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x > 1− µ, where x is the x-component of the satellite position vector. Note that the Earth

eclipsing conditions in Equations ( 5.72 )-( 5.74 ) are defined in the Sun-Earth rotating frame.

To construct an eclipse constrained ballistic transfer to Sun-Earth L2, the scalar eclipse and

altitude path constraints are appended to the constraint vector in Equation ( 5.42 ), that is,

F̄con =


F̄

Fpath,PU

Fpath,alt

 , (5.75)

where,

Fpath,PU =
N∑
j

∫ Tj

0
F 2

p,PU

(
X̄j(t)

)
− |Fp,PU

(
X̄j(t)

)
|Fp,PU

(
X̄j(t)

)
dt, (5.76)

Fpath,alt =
N∑
j

∫ Tj

0
F 2

p,alt

(
X̄j(t)

)
− |Fp,alt

(
X̄j(t)

)
|Fp,alt

(
X̄j(t)

)
dt, (5.77)

with Fp,alt and Fp,PU defined in Equations ( 5.59 ) and ( 5.74 ). Equation ( 5.74 ) is expanded

to,

Fp,PU = H
(
r̄23

(
X̄j(t)

)
· x̂
)(

sin (ζ(t)) cos (ζPU)− cos (ζ(t)) sin (ζPU)
)
, (5.78)

where the sine and cosine values of the shadow angle, ζ, are defined as,

cos (ζ(t)) = r̄TPU3(t) (x̂)
‖r̄PU3(t)‖ , (5.79)

sin (ζ(t)) =
√

1− cos2 (ζ), (5.80)
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where [T ] is the matrix transpose. The partial derivatives associated with the eclipse con-

straint function, i.e., Fp,PU in Equation ( 5.78 ), with respect to the transfer state, X̄ (t), is

defined as,

∂Fp,PU

∂X̄ (t)
= H

(
r̄T23x̂

)(∂ sin(ζ)
∂X̄ (t)

cos (ζPU)− ∂ cos(ζ)
∂X̄ (t)

sin (ζPU)
)

+

∂H
(
r̄T23x̂

)
∂X̄ (t)

(
sin (ζ(t)) cos (ζPU)− cos (ζ(t)) sin (ζPU)

)
,

(5.81)

where the partial derivatives of the sine, cosine, and heaviside functions with respect to the

state, X̄ (t), are defined as,

∂ cos(ζ)
∂X̄ (t)

=

 x̂T

‖r̄PU3(t)‖ −

(
r̄TPU3(t)x̂

)
r̄TPU3(t)

‖r̄PU3(t)‖3

[I3,3 03,3

]
, (5.82)

∂ sin(ζ)
∂X̄ (t)

=
− cos

(
ζ(t)

)
sin

(
ζ(t)

) ∂ cos
(
ζ(t)

)
∂X̄ (t)

, (5.83)

∂H
(
r̄T23x̂

)
∂X̄ (t)

= fδ
(
r̄T23x̂

)
x̂T
[
I3,3 03,3

]
, (5.84)

where r̄23 is the distance of the satellite measured from the Earth, i.e., r̄23 = r̄ − r̄e and,

it is recalled that, all vectors are column vectors. Additionally, the dirac-delta function in

Equation ( 5.84 ) is defined as:

fδ(x) =


∞, if x = 0

0, x 6= 0
, (5.85)

In Equation ( 5.83 ), the value of the partial derivative is undefined when a transfer state, X̄ ,

lies on the x̂ axis of the Sun-Earth rotating frame, i.e., sin(ζ) = 0. However, Equations ( 5.81 )-

( 5.84 ) form the integrand that is input into Equation ( 5.66 ), and any undefined integrand

value is omitted in the numerical integration process without significant loss of accuracy.

Constrained ballistic transfers to Sun-Earth L2 are now constructed by including the scalar

path constraints for the Earth eclipse conditions.
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5.3.6 Constrained Transfers into Orbits near L2

A collection of constrained ballistic transfers to Sun-Earth L2 is constructed by im-

plementing the path constraint and eclipsing conditions from Equations (  5.57 ) and (  5.74 ).

Recall that ballistic transfers to L2 depart from a GTO periapsis altitude of 185 km and

require a single maneuver at GTO periapsis to shift onto the transfer arc and the Earth

eclipse condition is based on the size of the penumbral shadow cone. In this investigation,

the objective is to construct direct constrained ballistic transfers to Sun-Earth L2 which,

from Figure  5.34 , are contained in a range of 150◦ ≤ λ ≤ 290◦. The ballistic transfers from

Figure  5.34 are collected as the initial guesses into a corrections algorithm that implements

the penumbral eclipsing condition. Additionally, the ∆V required for the single maneuver

ballistic transfer is decreased in a pseudo-optimization process via natural parameter con-

tinuation with a maximum ∆V magnitude. The natural parameter process is performed by

including the inequality constraint in Equation ( 5.44 ) during the corrections process. A com-

parison between the unconstrained and the eclipse constrained transfers is plotted via two

distinct surfaces in Figure  5.61 . The surface in magenta, i.e., corresponding to constrained

transfers, in Figure  5.61 depicts the increasing ∆V requirements as the inclination, i′ i, of the

GTO departure state is decreased. At higher inclinations, i′ i > 20◦, the ∆V requirements

of the constrained transfers approach a constant value, that is, the same ∆V magnitude is

required at higher inclinations. Additionally, Figure  5.62 presents the ∆V requirements of

unconstrained and constrained ballistic transfers to L2 at a GTO departure location corre-

sponding to λ = δ = 0◦. The geometry of an unconstrained and constrained ballistic transfer

with i′ i = 20◦ is plotted in Figure  5.62 . The unconstrained ballistic transfer approaches a

large L2 Lissajous orbit that crosses into the penumbral cone, illustrated as a dark shaded

region in Figure  5.62 , while the constrained ballistic transfer remains outside the shadow

region in a large quasi-halo orbit. The constrained ballistic transfers presented in Figures

 5.61 - 5.62 includes more than 30 revolutions around the quasi-periodic orbit to verify that

a trajectory never crosses into the penumbral shadow region. The direct ballistic transfer

guides for L1 and L2 provide preliminary transfer information from a fixed GTO periapsis
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Figure 5.61. : Surfaces of unconstrained and constrained ballistic transfers into Sun-Earth
L2

Figure 5.62. : Constrained ballistic transfers to Sun-Earth L2 at a GTO departure location
of λ = 180◦. The geometry of an unconstrained and constrained ballistic transfer with
i′ i = 20◦ is presented

altitude. Ballistic transfers only require a single maneuver from GTO and leverage the natu-
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ral dynamics of the Sun-Earth system to enter a quasi-periodic orbit. These transfers do not

require any additional deterministic maneuvers, within the context of the CRTBP model,

and are straightforwardly transitioned to a higher fidelity model.

5.3.7 Trajectory Injection Points into Sun-Earth Orbits

Injection points along direct ballistic transfers toward Sun-Earth L1 and L2 quasi-

periodic orbits are summarized for the unconstrained and constrained scenarios. Identifying

a point of injection into a quasi-periodic orbit is advantageous for targeting desired transfers

and operational orbits. The injection points are key to ensure arrival occurs on expanding

revolutions away from constraints. However, identifying an injection point, i.e., an entry

point into a quasi-periodic orbit, presents challenges. One challenge is the absence of a vari-

able with the dynamical flow information about the quasi-periodic motion, or more simply,

a variable informing the injection location along a quasi-periodic orbit or on a transfer. In

this investigation, the injection point onto a quasi-periodic orbit is defined to be on the ŷ

plane, which is consistent with previous mission design strategies for Sun-Earth L1 orbiters

[ 37 ]. Additionally, this definition also establishes a targeting condition, on the ŷ plane, that

can be leveraged when an initial solution in the CRTBP model is transitioned to a higher-

fidelity model. The injection points for the unconstrained ballistic transfers into Sun-Earth

L1 and L2 quasi-periodic orbits, from Figures  5.31 and  5.34 , are plotted in Figures  5.63 - 5.64 .

Note that the injection points in Figures  5.63 - 5.64 are displayed in a xE vs z plot, where

Figure 5.63. : Injection points for unconstrained direct ballistic transfer to Sun-Earth L1
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Figure 5.64. : Injection points for unconstrained direct ballistic transfer to Sun-Earth L2

xE is the distance measured from the Earth in the Sun-Earth rotating frame. Each injection

point curve in Figures  5.63 - 5.64 represents a set of ballistic transfers from a single GTO

periapsis location near-Earth, from a longitude angle λ in Figure  4.5 (b), at a range of incli-

nation values, given via a range of colors. Note that the injection points for a GTO at low

inclinations occur near the x̂-ŷ plane, i.e., the Sun-Earth ecliptic. Additionally, the ballistic

transfers from a GTO with i′ i = 0◦ correspond to transfers into Lyapunov orbits, as observed

in Figures  5.4 and  5.9 . The injection points corresponding to direct ballistic transfers to the

Sun-Earth L1 and L2 vicinities are located between the Earth and the Lagrange points L1

and L2, respectively.

The injections points for constrained direct ballistic transfers to Sun-Earth L1 and

L2 quasi-periodic orbits are displayed in Figures  5.65 - 5.70 . Recall that constrained ballistic

transfers to L1 orbits must remain outside the Solar Exclusion Zone, as defined in Figure

 5.52 , while constrained transfers to L2 must avoid any Earth eclipsing conditions, i.e., the

penumbral shadow cone in Figure  5.60 . In Figures  5.65 - 5.69 , the Solar Exclusion Zone is

shaded red and all ballistic transfer injection points are outside this region. Each injection

point curve in Figures  5.65 - 5.69 is a set of ballistic transfers at a location λ over a range

of inclinations. Note that the injection points for the direct ballistic transfers are separated

into groups corresponding to southern and northern quasi-halo orbits for different range of

λ. Constrained ballistic transfers to the L1 vicinity in a range 20◦ < λ < 110◦ enter a

southern quasi-halo orbit while a range of −30◦ < λ < 10◦ corresponds to northern quasi-

halos. Ballistic transfers to the L2 vicinity, see Figure  5.70 , are separated into two groups of
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Figure 5.65. : Injection points for constrained direct ballistic transfer to Sun-Earth L1
with αSEZ = 1◦

Figure 5.66. : Injection points for constrained direct ballistic transfer to Sun-Earth L1
with αSEZ = 2◦

injection point curves. The L2 southern quasi-halo group over a range of 200◦ < λ < 290◦ and

the L2 northern quasi-halo group correspond to 150◦ < λ < 190◦. The L1 quasi-periodic orbit

for a constrained direct ballistic transfer can be a southern or northern quasi-halo orbit, that

is, a constrained transfer from a GTO periapsis at a near-Earth location λ with inclination
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Figure 5.67. : Injection points for constrained direct ballistic transfer to Sun-Earth L1
with αSEZ = 3◦

Figure 5.68. : Injection points for constrained direct ballistic transfer to Sun-Earth L1
with αSEZ = 4◦

i′ i can enter both types of quasi-halo orbits. In this investigation, the L1 quasi-halo orbits for

the constrained ballistic transfers, displayed in Figure  5.53 , correspond to the most efficient

ballistic transfer, i.e., the transfer with the lowest ∆V magnitude. Recall that all ballistic

transfers require a single maneuver from GTO periapsis, which, in this investigation, is at
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Figure 5.69. : Injection points for constrained direct ballistic transfer to Sun-Earth L1
with αSEZ = 5◦

Figure 5.70. : Injection points for constrained direct ballistic transfer to Sun-Earth L2
with penumbral Earth eclipsing condition

a 185 km altitude. Constrained ballistic transfers to the L2 vicinity may also enter either

a southern or northern quasi-halo orbit, but the most efficient transfer appears in Figures

 5.61 and  5.70 . The definition of the injection points in Figures  5.63 - 5.70 is not based on

any dynamical flow information along the transfer but rather on previous mission design

implementations. The geometry of the injection points from ballistic transfers to the L1 and
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L2 regions are insightful for targeting quasi-periodic orbits near these Sun-Earth Lagrange

points.

5.3.8 Altitude Study of Unconstrained Transfers to Orbits near L1 and L2

The construction of ballistic transfers from a range of GTO departure altitudes reveals

insightful ∆V information necessary for preliminary mission design. The ∆V and amplitude

information plotted in Figures  5.31 and  5.34 corresponds to a GTO departure altitude of 185

km, i.e., the baseline altitude; note that, in this investigation, the satellite departs the GTO

at periapsis. Recall that the GTO size is determined via the periapsis altitude as the apoapsis

altitude is the GEO altitude, i.e., 35, 786 km, and that, for a secondary payload, the GTO

size is dependent on the launch vehicle performance, see to the mission scenario in Figure  4.1 .

In the construction of ballistic transfers from a range of GTO departure altitudes, the ∆V

information reveals a possible range for the single maneuver ballistic transfers from different

departure locations, i.e., λ, along the near-Earth vicinity. The required ∆V magnitudes for

ballistic transfers towards Sun-Earth L1 from locations corresponding to λ = {−20◦, 0◦, 20◦}

are plotted in Figure  5.71 . The ballistic transfers in Figure  5.71 are all direct unconstrained

transfers from prograde GTOs, i.e., i′ i < 90◦. The analysis reveals an increase in the required

∆V for all constrained transfers as the GTO departure altitude is increased from 185 km to

2000 km. Additionally, with a constant GTO departure location, the ∆V variation is less

than 5 m/s as the inclination of the departure GTO is increased. The ∆V requirements for

unconstrained transfers to Sun-Earth L2 are plotted in Figure  5.72 . The ballistic transfers to

L2 correspond to GTO departure locations of λ = {160◦, 180◦,−160◦}; note that these are

unconstrained transfers, i.e., no eclipse constraints are included along the trajectory. The

∆V exposed in the departure altitude analysis for L2 transfers exhibits the same behavior as

the analysis revealed in Figure  5.71 . Although only unconstrained transfers are constructed

in this analysis, the ∆V patterns observed in Figures  5.71 - 5.72 is extended to different GTO

departure locations, i.e., λ values. Note that the observations revealed in this analysis is

only applicable for GTO departure locations along the ecliptic, i.e., the x̂ -ŷ . An additional
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GTO periapsis

 altitude [km]

Figure 5.71. : ∆V information for unconstrained ballistic transfers to Sun-Earth L1 from
a range of GTO departure locations

GTO periapsis

 altitude [km]

Figure 5.72. : ∆V information for unconstrained ballistic transfers to Sun-Earth L2 from
a range of GTO departure locations

analysis exploring ballistic transfers from a range of GTO departure altitudes with a location

such that δ 6= 0◦, refer to Figure  4.5 (b), will provide a global understanding of the necessary

∆V .
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5.3.9 Ballistic Transfers in the Ephemeris Model

Ballistic transfers constructed in the CRTBP model are directly transitioned into

a higher-fidelity ephemeris model. In the preceding sections, ballistic transfers to orbits

near the Sun-Earth L1 and L2 points are constructed in the rotating frame of the CRTBP

model. The CRTBP model serves as an adequate Three-Body appoximation of the Sun-

Earth-satellite system and the existing dynamical structures in the model are leveraged to

construct single maneuver ballistic transfers. Additionally, the ballistic transfers generated

in the CRTBP model serve as initial guesses to identify feasible trajectories in the higher-

fidelity ephemeris model. The ephemeris model implemented in this investigation includes

the Sun, Earth, and Moon as primary bodies; no atmospheric or solar radiation pressure

effects are included in representation of the flow. To propagate a satellite state in the

ephemeris model, the Equations of Motion relative to the Earth, i.e., Equation ( 2.2 ), are

implemented; note that the Sun and the Moon are the perturbing bodies. The approximate

states of the perturbing bodies are retrieved from the DE430 ephemeris file available from

the Jet Propulsion Laboratory. A ballistic transfer in the ephemeris model is generated

via a multiple-shooting scheme and solved with a multidimensional Newton’s algorithm.

The free-variable and constraint vectors consistent with the multiple-shooting strategy in

the ephemeris model is provided in Appendix  E . Whereas the CRTBP is a time-invariant

system, trajectories found in the ephemeris model are epoch-dependent. In this analysis,

the objective is to observe if the geometries of the ballistic transfers constructed in the

CRTBP are maintained in the higher-fidelity model. As a demonstration, a ballistic transfer

corresponding to a GTO departure location of λ = δ = 0◦ with an associated inclination

of i′ i = 27◦ is transitioned into the inertial EME frame with an epoch of April 1, 2022

12:00:00.000. Recall that the ballistic transfer is defined as a series of nodes, consistent with

a multiple-shooting algorithm, which are subsequently converted from the rotating frame into

the inertial EME frame via the steps outlined in Section  2.3.2.1 . The nodes are corrected

via a multidimensional Newton’s method with the constraint condition in Equation ( E.2 )

with an included single maneuver at the GTO departure state, i.e, X̄
i 0 in Figure  E.1 . Once
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a feasible transfer is corrected in the ephemeris model, a pseudo-optimization process that

lowers the ∆V is implemented by using natural parameter continuation with a maximum

∆V , i.e., ∆Vmax. The optimized transfer for this example is plotted in Figure  5.73 . The SEZ

Figure 5.73. : Ballistic transfer in the ephemeris model, in blue, and the initial CRTBP
model, in black. Note that the geometry is maintained in the higher fidelity ephemeris model

cone constraint, defined as αSEZ = 5◦, is applied throughout the trajectory. For the initial

epoch of April 1, 2022 12:00:00.000, the ballistic transfer in the ephemeris model, represented

in blue in Figure  5.73 , maintains a similar geometry as the initial CRTBP transfer, in black.

However, the required ∆V for the ephemeris transfer is ∆V = 1744 m/s compared to the

CRBTP ∆V of 1334 m/s. The ephemeris corrections process is applied along different epoch

throughout the year of 2022 and the ∆V information is plotted in Figure  5.74 . From Figure

 5.74 , the ballistic transfer associated with April 1st has the highest corresponding ∆V , while

the transfer with an epoch of October 1st has the lowest ∆V . Observe that the behavior of the

∆V is similar to a sine wave and the single maneuver magnitude associated with the CRTBP

ballistic transfer, the red line in Figure  5.74 , is an approximate average. Additionally, the

transfers constructed for this range of epochs in 2022 have similar geometric features as

the CRTBP transfer and remain outside the SEZ cone constraint. In this analysis, only

direct transfers are considered, i.e., no Earth flybys are included along the trajectory. The
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Ephemeris

CRTBP

Figure 5.74. : ∆V required for optimized transfers over a range of initial epochs in the
ephemeris model for a ballistic transfer to Sun-Earth L1 . The ballistic transfer corresponds
to a GTO departure state of λ = δ = 0◦ with an inclination of i′ i = 27◦

addition of Earth or Lunar flybys introduces additional numerical challenges and may alter

the geometry of the ballistic transfer.

5.4 Summary of Ballistic Transfers

In this chapter, ballistic transfers are constructed to orbits near the Sun-Earth L1

and L2 Lagrange points over a range of GTO departure locations. Ballistic transfers are

defined as single maneuver transfers and are considered the most maneuver efficient type of

transfers, that is, theoretically, the trajectories leverage the natural dynamics of the CRTBP

system. In the ridesharing scenario considered for this investigation, a secondary payload is

dropped off in a GTO with an unspecified orientation. Assuming that the secondary payload

departs the GTO at periapsis, as such, the location of the GTO periapsis, i.e., which also

corresponds to the GTO orientation, is labeled the GTO departure location. First, stable

manifolds associated with periodic and quasi-periodic orbits near the Sun-Earth Lagrange

points are leveraged in the construction of ballistic transfers over a range of GTO departure

locations. The collection of ballistic transfer to periodic and quasi-periodic orbits exposed
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the GTO departure regions that correspond to direct and indirect, i.e., the transfer includes

an outbound excursion or an Earth flyby, transfers. A guide of direct transfers is created

for constrained and unconstrained ballistic transfers to Sun-Earth L1 and L2 points. Finally,

the persistence of the ballistic transfer geometry observed in Sun-Earth L1 is confirmed in

the ephemeris model over a range of GTO departure epochs. In this analysis, the quasi-

periodic orbit associated with the ballistic transfer was unconstrained, that is, a specific

quasi-periodic orbit is not targeted in the differential corrections process. The objective is

to generate ballistic transfers from different GTO departure locations with an optimal ∆V .

The collection of ballistic transfers offered in this investigation provides approximate ∆V

magnitudes and quasi-periodic orbit sizes, i.e., amplitudes, that aids in identifying efficient

preliminary mission design trajectories for secondary payloads.

234



6. MULTIPLE MANEUVER TRANSFERS IN THE

SUN-EARTH SYSTEM

Transfers leveraging the trajectories along the surface of the stable manifold corresponding

to periodic and quasi-periodic orbits and incorporating a single deep space maneuver (DSM)

offer advantageous options over a range of GTO departure positions near the Earth. An ideal

transfer scenario from GTO includes a single maneuver en route to a destination orbit near

a Lagrange point. However, flow in a multi-body system is complex and multiple maneuvers

are often necessary to construct efficient pathways into specific orbits near a Lagrange point.

In this investigation, the specified orbits are periodic and quasi-periodic orbits near the

Sun-Earth collinear Lagrange points, i.e., L1 and L2. Trajectories within the hyperbolic

stable manifolds associated with the specified orbits are leveraged to generate transfers that

asymptotically approach a destination orbit. Additionally, a bridging trajectory arc connects

a GTO departure state to a stable manifold trajectory. Transfers are designed for the

secondary payload transfer scenario illustrated in Figure  4.1 ; recalling that there is no a

priori information for the GTO departure state. Optimized multiple maneuver transfers

from GTO to selected periodic and quasi-periodic orbits in the CRTBP model and ephemeris

model are generated through a multiple-shooting algorithm.

6.1 Formulation of Two-Maneuver Transfers

Transfers incorporating a single Deep Space Maneuver are constructed with trajecto-

ries within the stable manifolds corresponding to orbits near the Sun-Earth Lagrange points

and a connecting trajectory arc. The addition of a mid-course maneuver is either for tra-

jectory corrections, i.e., correct for any deviations due to propulsion efficiency, or to change

certain orbital elements of a transfer orbit. For example, the transfer for the DSCVR mission

included two mid-course correction maneuvers as well as an orbit insertion maneuver to enter

a Sun-Earth L1 Lissajous orbit. Additionally, a mid-course maneuver may also help decrease

the overall ∆V required for the transfer. In this investigation, the mid-course maneuver is a
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DSM used to connect a trajectory from a GTO departure state near the Earth to a trajec-

tory along the surface of a stable manifold structure that corresponds to a specified orbit,

thereby creating a two-maneuver transfer. The two-maneuver transfer consists of a Transfer

Injection Maneuver (TIM) and a DSM. Figure  6.1 illustrates a transfer into a periodic orbit

near the Sun-Earth L1 point with a stable manifold trajectory arc, plotted in cyan, and a

bridging arc, plotted in black. The transfer arcs in Figure  6.1 are propagated in reverse time,

Figure 6.1. : Transfer with single Deep Space Maneuver into a general periodic orbit.
Transfer arcs are propagated in reverse time

that is, the motion of the satellite is from an arrival location on the periodic orbit, i.e., an

injection point, to the departure position at the GTO periapsis near Earth. Note that the

injection point, X̄inj, into a periodic orbit can be parameterized by the time variable: Tα. For

transfers into quasi-periodic orbits, that is, orbits constructed from a two-dimensional torus,

the injection point, X̄inj, is parameterized by two components: Tθ1 and θ2, where Tθ1 is a

time along the orbit, analogous to the longitudinal time along the torus, and θ2 is a location

along the invariant curve, recall Figure  3.11 . Two options for the DSM, the vector ∆V̄ in

Figure  6.1 , are explored in this analysis: a tangent maneuver and a general maneuver, both

impulsive. Recalling that in Figure  6.1 , the satellite is propagated in reverse time, the DSM

is an impulsive maneuver implemented at the end of the bridging arc and the initiation of

the stable manifold arc. For a tangent burn DSM, the maneuver is assumed to be directed

along the velocity vector at the final state along the bridging arc and can, therefore, be

defined via the scalar magnitude, ∆Vtan. A transfer with a general impulsive DSM possesses

maneuver components defined as: ∆V̄gen = [∆Vx,∆Vy,∆Vz]T , and are also introduced at the

end of the bridging arc. Observe that a state along a manifold structure, either stable or
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unstable, associated with a periodic and quasi-periodic orbit can be parameterized by two

and three variables, respectively. Recall that a state in the CRTBP model is defined as a

six-dimensional vector. For periodic orbits, an injection point, X̄inj, is evaluated by propa-

gating an initial state, X̄0, on the orbit by time Tα. From the periodic orbit injection point, a

state on the stable manifold is constructed, via Equation ( 3.70 ), and the state is propagated

in reverse time, Tmani. In this process, the initial state on the orbit, X̄0, is fixed and it is

assumed that a state along the global representation of the stable manifold surface can be

approximated. Only two variables, Tα and Tmani, are required to locate a state on the stable

manifold structure associated with a periodic orbit and, additionally, two variables are also

necessary to parameterize states along the unstable manifold structure. For quasi-periodic

orbits, an injection point, X̄inj, is computed by propagating a state along the invariance

curve, X̄inv(θ2), by time Tθ1 . The invariant curve state, X̄inv(θ2), is parameterized by the an-

gle θ2 and is evaluated with the truncated Fourier series utilized in the invariance condition

corrections process, i.e., Equation ( 3.84 ). For states along the stable manifold structures as-

sociated with quasi-periodic orbits, the variables θ2, Tθ1 , and Tmani, describe the state along

the global representation of the manifold. In describing an end state for a transfer, i.e., X̄f ,

with a tangent burn into a periodic orbit, also plotted in Figure  6.1 , only four variables are

required: Tα, Tmani, ∆Vtan, Tarc. These variables are termed the fundamental variables for

a two-maneuver transfer . To address convergence issues near dynamically complex regions,

the transfer arcs, i.e., the stable manifold arc and the bridging arc, are subdivided into a

series of segments, i.e., reformulated into a multiple-shooting problem. However, the number

of fundamental variables does not change, that is, the end state along the transfer is always

described with the lowest number of fundamental variables. The fundamental variables for

two-maneuver transfers into periodic and quasi-periodic orbits are summarized in Table  6.1 .

In this investigation, two constraints are enforced at the end state, i.e., X̄f , of the transfer:

an altitude and an apsis constraint. Note that the end state along the transfer is essentially

the departure state at periapsis for a GTO with a fixed size, i.e., fixed periapsis and apoapsis

altitude. Therefore, the GTO departure position is parameterized by two angles: λ and δ,
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as illustrated in Figure  4.5 (b). In this investigation, the constraints for the DSM transfers

are written as:

Altitude Constraint : r̄f − r̄dep(λ, δ) = 0,

Apsis Constraint : (r̄f − r̄e) · v̄f = 0,
(6.1)

where r̄f and v̄f are the final end state position and velocity along the transfer, r̄e is the

position of the Earth with respect to the Sun-Earth barycenter in the CRTBP rotating frame,

and the desired GTO departure position, r̄dep, is defined as:

r̄dep(λ, δ) = r̄e + halt


cos(λ) cos(δ)

sin(λ) cos(δ)

sin(δ)

 , (6.2)

with halt as the nondimensional fixed GTO periapsis altitude corresponding to 185 km. Two

additional free-variables are introduced to the transfer problem, i.e., λ and δ, with the formu-

lation of the constraint conditions in Equation ( 6.1 ) as a four-dimensional column vector. For

example, transfers into a periodic orbit with a general maneuver, i.e., scenario B from Table

 6.1 , requires six fundamental variables: Tα, Tmani, ∆Vx, ∆Vy, ∆Vz, Tarc. In all transfer sce-

narios, only the end state apsis and altitude constraints are enforced, that is, the constraint

vector for the transfer problem is two-dimensional, assuming the constraints are written as

scalar value functions. However, with the constraint conditions from Equation ( 6.1 ), the

constraint is re-written as a four-dimensional vector and two additional free-variables, λ and

δ, are included in the transfer problem, i.e., the vector of fundamental variables. The re-

formulation of the constraint vector and introduction of the free-variables, λ and δ, permits

more control over the departure position. Additionally, the reformulation of the constraint

condition does not affect the solution space for the DSM transfer problem, summarized in

Table  6.1 . The dimension of the solution space applicable to the DSM transfer is evaluated

as the difference between the number of free-variables and the number of constraints. For

example, transfers to a periodic orbit with a tangential DSM appear along a two-dimensional

surface of solutions. Information regarding surface shape and terminal conditions, e.g., if the
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surface is closed, is not known a priori or not known as a closed form function. The scenar-

ios in Table  6.1 are applicable for transfers leveraging either stable and unstable manifold

structures and a bridging arc. Transfers in the solution space for the scenarios in Table  6.1 

offer advantageous options for mission design in the Sun-Earth system.

Table 6.1. : Fundamental variables and constraints for different DSM type transfers into
periodic and quasi-periodic orbits

Scenario Target Fundamental DSM Departure Dimension of
Variables Type Constraints Solution Space

A PO Tα, Tmani, Tarc
Tangent Altitude 2(∆Vtan) Apsis

B PO Tα, Tmani, Tarc
General Altitude 4(∆V̄gen) Apsis

C QPO Tθ1 , θ2, Tmani, Tarc
Tangent Altitude 3(∆Vtan) Apsis

D QPO Tθ1 , θ2, Tmani, Tarc
General Altitude 5(∆V̄gen) Apsis

6.2 Transfers into Periodic Orbits in the Sun-Earth System

Transfers to periodic orbits near the Sun-Earth Lagrange points are constructed by

connecting a trajectory from a GTO departure state to a trajectory along a stable manifold

structure with a single DSM. In Figure  6.1 , a two-maneuver transfer is constructed via

reverse time propagation with a single trajectory arc along a stable manifold, in cyan, and

a bridging arc, in black, to a GTO departure state, i.e., r̄dep. Note that in the formulation

in Figure  6.1 , there is an explicit maneuver, i.e., the DSM, and an implicit maneuver, the

TIM performed at the GTO departure location. Each trajectory arc is computed as a single

trajectory requiring a long propagation time. However, to mitigate convergence challenges

due to the complex dynamical regime, the transfer illustrated in Figure  6.1 is reformulated

as a multiple-shooting problem. The multiple-shooting formulation is illustrated in Figure

 6.2 . In Figure  6.2 , the injection point into the periodic orbit, X̄inj(Tα), is a state computed

by propagating an initial state on the periodic orbit, X̄0, by time Tα. The trajectory along
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Figure 6.2. : Two-maneuver transfer into a general periodic orbit formulated as a multiple-
shooting problem. Transfer arcs are propagated in reverse time. Note that a Transfer
Injection Maneuver is implied at the GTO departure location

the stable manifold is described via nM + 2 arcs in cyan, where each arc has a propagation

time of Tm. Similarly, the bridging trajectory is created with nA + 1 arcs, in black, and a

propagation time of TA. The multiple-shooting scheme in Figure  6.2 is formulated as TPBVP

and solved via multidimensional Newton method. The free-variable vector consistent with

the multiple-shooting formulation is,

X̄ =



X̄M
0

X̄M
1
...

X̄M
nM

X̄A
0

X̄A
1
...

X̄A
nA

Tα

Tm

TA

λ

δ



, (6.3)
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where Tα is the time along the periodic orbit, Tm is a time such that the total time on

the stable manifold is: Tmani = Tm(nM + 2), and TA is along the bridging arc defined as

Tarc = TA(nA + 1). Recall that the angles for λ and δ are defined in Figure  4.5 (b). The

constraint vector that encapsulates scenario B in Table  6.1 , i.e., a transfer including a general

DSM maneuver, is denoted as,

F̄ =



F̄mani

F̄bridge

F̄DSM

Fapsis

F̄alt


, (6.4)

where the constraint vectors associated with state continuity along the stable manifold tra-

jectory, F̄mani, state continuity along the bridging arc, F̄bridge, the DSM maneuver, F̄DSM,

GTO departure apsis and altitude are,

F̄mani =



X̄M(Tm, Tα)− X̄M
0 (0)

X̄M
0 (Tm)− X̄M

1 (0)
...

X̄M
nM−1(Tm)− X̄M

nM
(0)


, (6.5)

F̄bridge =


X̄A

0 (TA)− X̄A
1 (0)

...

X̄A
nA−1(TA)− X̄A

nA
(0)

 , (6.6)

F̄DSM =
[
r̄MnM (Tm)− r̄A0 (0)

]
, (6.7)

Fapsis = (r̄f − r̄e)T v̄f , (6.8)

F̄alt = r̄f − r̄dep(λ, δ), (6.9)

241



with the final position and velocity vectors, r̄f and v̄f , respectively, corresponding to the

final propagated state from X̄A
nA

, i.e., X̄A
nA

(TA). The formulated multiple-shooting scheme

has an associated Jacobian matrix defined as,

DF̄ =
[
DxmF̄ DxAF̄ DTαF̄ DTmF̄ DTAF̄ DλF̄ DδF̄

]
, (6.10)

where the expanded partial derivative information is provided in Appendix  D . The constraint

vector in Equation ( 6.4 ) is consistent with including an unconstrained DSM, that is, the

direction of the maneuver is unrestricted, i.e., Scenario B in Table  6.1 . The dimension of the

Jacobian matrix in Equation ( 6.10 ) is dim(DF̄) = 6(nM +nA + 1) + 7× 6(nM +nA + 2) + 5.

Note that the Jacobian has a four-dimensional null space, i.e., the solution space is four-

dimensional, which is consistent with the Scenario B in Table  6.1 . To formulate a scenario

for a transfer to a fixed periodic orbit with a tangential maneuver, Scenario A in Table  6.1 ,

a tangential constraint is appended to Equation ( 6.4 ). The tangential DSM condition is

written as,

F̄DSM,tan =
[
v̄MnM (Tm)− ∆V v̄A0

‖v̄A0 ‖
− v̄A0

]
, (6.11)

where v̄A0 is the velocity vector of the first node along the bridging arc, i.e., X̄A
0 (0). By

including the tangential constraint in Equation ( 6.11 ), the scalar DSM magnitude, i.e., ∆V ,

is also included in the free-variable vector, Equation ( 6.3 ). The partial derivatives for the

tangential condition are,

DxmF̄DSM,tan =
[
03,6 03,6 . . .

[
03,3 I3,3

]
ΦM
nM

]
, (6.12)

DxAF̄DSM,tan =
[[

03,3
−∆V
‖v̄A0 ‖

(
I3,3 − v̄A0 v̄

AT

0
v̄A

T
0 v̄A0

)
− I3,3

]
03,6 . . . 03,6

]
, (6.13)

D∆V F̄DSM,tan = − v̄A0
‖v̄A0 ‖

(6.14)

DTmF̄DSM,tan = ˙̄vMnM (Tm). (6.15)

where ΦM
nM

is the STM of the final propagated arc corresponding to the state X̄M
nM

with an

acceleration vector, ˙̄vMnM (Tm), at time Tm. With the addition of the tangential constraint

and the scalar ∆V magnitude, the dimension of the Jacobian DF̄ becomes dim(DF̄) =
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6(nM +nA + 1) + 10× 6(nM +nA + 2) + 6. The solutions space associated with the Jacobian

with the tangential ∆V constraint is two-dimensional and consistent with Scenario A in

Table  6.1 . The DSM is a maneuver performed along the transfer from a GTO to an injection

point along the periodic orbit, however an additional maneuver is required to traverse from

the GTO to the transfer trajectory. The initial maneuver at the GTO departure state

is the implied Transfer Injection Maneuver. Note that the multiple-shooting formulation

implemented to compute the single maneuver transfers targets a specific GTO departure

location and an apsis condition, and does not account for the magnitude of the required

TIM. In this investigation, surface of solutions are constructed to observe transfers from a

range of GTO departure locations near the Earth.

6.2.1 Transfers into L1 Halo Orbits

Transfers into a halo orbit near the Sun-Earth L1 Lagrange point are constructed with

stable manifold trajectories and a DSM that is tangent to the path. The SOHO mission [  11 ]

leveraged a periodic halo orbit near the Sun-Earth L1 point to avoid crossing into the Solar

Exclusion Zone. The selected halo orbit for the SOHO mission employed the following

orbit parameters: x-amplitude of 206, 448 km, y-amplitude of 66, 672 km, and z-amplitude

of 120, 000 km [  11 ]. Additionally, the SOHO orbit is classified as a southern halo orbit,

i.e., the motion of the satellite as viewed by an observer at the Earth is counterclockwise,

with a corresponding period of 180 days. Recall that the objective is the construction of

efficient transfers from a GTO with a fixed periapsis altitude of 185 km with no a priori

information about the GTO orientation. The secondary satellite departure state, X̄dep, is at

the GTO periapsis and, from Figure  4.5 (b), is parameterized by angles λ and δ. Transfers

with a tangential DSM, i.e., Scenario A in Table  6.1 , are identified as potential transfer

options into the southern halo orbit from different GTO departure positions near the Earth.

Although transfers described by both scenarios A and B are applicable for the periodic halo

orbit, transfer Scenario A is selected for the two-dimensional solution space. Recall that in

Scenario A from Table  6.1 , the end point location is also the departure position of the GTO,
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r̄dep in Figure  6.2 , at different near-Earth positions. Additionally, the departure position

is constrained to be on the x̂-ŷ plane of the Sun-Earth rotating frame, i.e., δ = 0◦. The

additional constraint decreases the solution space for transfers with tangent DSMs by one,

therefore, all transfer solutions into the periodic halo orbit with a departure state along the

x̂-ŷ plane near Earth appear on a one-dimensional curve of solutions.

A curve of solutions that represents transfers into a southern L1 halo orbit with a

tangential DSM is constructed via a multiple-shooting corrections algorithm. The transfer

scenario illustrated in Figure  6.2 is formulated as a multiple-shooting problem described via

the free-variable and constraint vectors in Equations ( 6.3 ) and ( 6.4 ). Recall that, in reformu-

lating the transfer problem into a multiple-shooting problem, the dimension of the solution

space does not change and the multiple-shooting formulation only aids in the corrections

process. An initial guess is generated by utilizing a Poincaré map, as plotted in Figure  6.3 .

The trajectories along the surface of the stable manifold that emanates from the southern

L1 halo orbit are propagated in reverse time to a surface of section defined as a plane, i.e.,

x = 1.48x108 km, and their crossings onto the map are plotted in blue in Figure  6.3 . The

Stable Manifold Crossings

Bridging Arc Crossings

Figure 6.3. : Poincaré map of stable manifold crossings from southern halo orbit (blue)
and bridging arc crossing (red) onto the cross-section. Two star points indicate the chosen
stable manifold arc and bridging arc to construct an initial guess

bridging arc trajectories, i.e., the red points in Figure  6.3 , are propagated forward in time

from a location near the Earth, i.e., the departure position corresponding to the GTO pe-

riapsis, towards the surface of section. The bridging arc trajectories are propagated from a

location near Earth that corresponds to λ = 0◦ and δ = 0◦. In the map in Figure  6.3 , only
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two dimensions are displayed, y and z, and there is no information about the velocity along

the trajectories. For this scenario, an initial guess is selected by identifying intersections

between the stable manifold crossings and the bridging arc crossings, i.e., the black stars in

Figure  6.3 . Recall that the solutions space for this scenario is two-dimensional and, therefore,

the transfers with a tangent maneuver are contained on a two-dimensional surface. However,

for simplicity, the focus of the analysis is constructing transfers originating from different

locations along the GTO near the Earth and initiated in the ecliptic plane, i.e., the x̂-ŷ plane

of the Sun-Earth rotating frame. An additional departure constraint is included in Scenario

A in Table  6.1 , δ = 0◦, i.e., it is appended to the constraint vector in Equation ( 6.4 ). The

tangent maneuver transfers are now all captured along a one-dimensional curve of solutions.

Figures  6.4 - 6.6 display curves of transfer solutions and their respective geometries for a range

of λ values, where a point along the curves corresponds to a transfer from a GTO departure

point. A selected range of transfers, i.e., corresponding to the box in red in Figure  6.4 (a),

(a) (b)

Figure 6.4. : (a) Curve of transfer solutions into a southern halo orbit with a tangent DSM.
(b) Selected transfers with the location of the DSM in red and the location of the injection
points into halo orbit in magenta

is plotted in Figure  6.4 (b) and the transfers presented in Figure  6.5 (b) correspond to the

transfers in Figure  6.5 (a). In Figure  6.4 (b), the injection points, in magenta, are located

below the y-axis, whereas the injection points in Figure  6.5 (b) are situated above the y-axis.
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(a) (b)

Figure 6.5. : (a) Curve of transfer solutions into southern halo orbit with a tangent DSM.
(b) Selected transfers into a southern halo orbit, i.e., transfer inside the red box, with the
location of DSM in red and the location of corresponding injection point in magenta

(a) (b)

Figure 6.6. : (a) y-z and x-z projections of the two-maneuver transfers from Figure  6.4 (b)
y-z and x-z projections of the two-maneuver transfers from Figure  6.5 

Additionally, the location of the DSM maneuver, red points, corresponding to Figure  6.5 (b)

are situated closer to the southern halo orbit compared to the transfers in Figure  6.4 (b).

Figure  6.6 presents different projections of the transfers in Figures  6.4 (b)- 6.5 (b). Positive

∆V magnitudes for the DSM, presented in Figures  6.4 - 6.5 , correspond to prograde burns,
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in the direction of motion, and negative ∆V values are retrograde burns, in the opposite

direction of motion. Observe that the TOF in Figures  6.4 - 6.5 is longer than 190 days. The

longer TOF values is due to the transfer asymptotically approaching the southern halo orbit

before injecting into the orbit, that is, the distance between the transfer and a point on halo

orbit slowly decreases, see the y-z projections in Figure  6.6 . This asymptotic behavior is a

direct consequence of implementing a trajectory along the stable manifold structure into the

transfer design; recall that the stable and unstable manifolds asymptotically approach and

depart periodic orbits. Additionally, in Figure  6.4 , the region of transfers with TOF> 250

days corresponds to transfers with an excursion toward L2 before approaching L1, i.e., in-

direct transfers. In this analysis, to construct multiple maneuver transfers from a range of

GTO departure states, both direct and indirect transfers are considered. The curves in Fig-

ures  6.4 - 6.5 indicate that the departure position from the GTO towards the specific southern

L1 halo orbit can be placed along any point around the Earth.

6.2.2 Transfers into L2 Halo Orbits

Transfers into a southern halo orbit near Sun-Earth L2 from a range of GTO departure

locations are generated in a curve of solutions. The Nancy Grace Roman Space Telescope,

previously the Wide Field Infrared Survey Telescope (WFIRST), is an observatory mission

developed by NASA Goddard Space Flight Center (GSFC) and intended for a launch in

2026. The telescope is equipped with instruments to study dark energy and explore distant

exoplanets [ 75 ]. The Sun-Earth L2 region provides adequate thermal requirements for the

science instrument, however, the orbit of the telescope must satisfy additional geometric re-

quirements. A communications requirement is based on the satellite-Sun-Earth angle (SSE),

% < 36◦, and violation of this constraint impedes ground station communications. Addi-

tionally, the orbit and transfer must remain outside the Earth eclipse region, determined

to be the penumbral shadow region illustrated in Figure  5.60 . An orbit along the south-

ern halo orbit family near Sun-Earth L2 is selected as a viable option for the Nancy Grace

Roman telescope. The orbit family is plotted in Figure  6.7 , with the communications cone
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requirement shaded in red, and the selected southern halo orbit in green. The selected orbit

has the following amplitudes: x-amplitude of 281, 891 km, y-amplitude of 721, 122 km, and

z-amplitude of 244, 395 km with a period of 180 days. In this investigation, transfers for a

secondary payload from a GTO periapsis are constructed for a range of departure locations,

i.e., the GTO departure state is situated along different locations near the Earth.

Figure 6.7. : Southern halo orbits near Sun-Earth L2. The viable halo orbits are in blue
with a communications cone of 36◦. The selected orbit for the Nancy Grace Roman telescope
is in green

Transfers with a single tangential DSM are constructed via a multiple-shooting strat-

egy illustrated in Figure  6.2 . The free-variable and constraint vectors corresponding to the

multiple-shooting problem are defined in Equations ( 6.3 ) and ( 6.4 ), with the tangential con-

straint described via Equation ( 6.11 ). Transfers to periodic orbit orbits with a tangential

DSM occur along a two-dimensional curve of solutions, even after the re-formulation as a

multiple-shooting problem. Table  6.1 summarizes the solution space available for single DSM

transfers into periodic and quasi-periodic orbits. For simplicity, transfers from a GTO de-

parture state along the ecliptic, i.e., the x̂ -ŷ plane, are computed by including a constraint,

δ = 0◦, to the constraint vector in Equation (  6.4 ). The single maneuver transfer are now
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generated along a one-dimensional curve of solutions. A Poincaré map is implemented to

find feasible initial conditions for the transfer for different GTO departure locations, repre-

sented via the angle λ illustrated in Figure  4.5 (b). Recall that the departure location for the

secondary payload is a GTO periapsis. The curve of solutions and the transfer geometries in

the CRTBP model are plotted in Figures  6.8 - 6.12 . Positive ∆V magnitudes for the DSM,

(a) (b)

Figure 6.8. : (a) Curve of transfer solutions into southern halo orbit with a tangent DSM.
(b) Transfers into a southern halo orbit with the location of DSM in red and the location of
injection points into halo orbit in magenta

presented in Figures  6.8 - 6.10 , correspond to prograde burns, i.e., in the direction of motion,

and negative ∆V values are retrograde burns, or opposite to the direction of motion. Observe

that the longer TOF values in Figures  6.8 - 6.10 is a direct consequence of implementing a

trajectory along the stable manifold structure into the transfer design; recall that the stable

and unstable manifolds asymptotically approach and depart periodic orbits. Additionally,

different projections of the two-maneuver transfer families are plotted in Figures  6.11 - 6.12 ;

note that the ŷ-ẑ projections are from the Sun-Earth L2 point towards the Earth. Note that

the location of the injection points varies for each transfer family in Figures  6.8 - 6.10 . For

example, in Figure  6.11 , the injection points, in magenta, in the ŷ-ẑ projection are located

near the bottom right, wheres the injection points corresponding to the family in Figure  6.9 

are situated near the top. Additionally, the injection points of the family in Figure  6.10 are
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(a) (b)

Figure 6.9. : (a) Curve of transfer solutions into southern halo orbit near L2 with a tangent
DSM. (b) Transfers into a southern halo orbit near L2 . The location of the DSM is in red
and the location of the injection points are in magenta

(a) (b)

Figure 6.10. : (a) Curve of transfer solutions into southern halo orbit with a tangent DSM.
(b) Geometry of select transfers into a southern halo orbit. The location of the DSM is in
red and the location of the injection points are in magenta

contained near the bottom left, in the ŷ-ẑ projection. In this analysis, to construct multiple

maneuver transfers from a range of GTO departure states, both direct and indirect transfers

are considered. The curves in Figures  6.8 - 6.10 suggest that any GTO departure position
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(a) (b)

Figure 6.11. : (a) y-z and x-z projections of the two-maneuver transfers from Figure  6.8 

(b) y-z and x-z projections of the two-maneuver transfers from Figure  6.9 

Figure 6.12. : y-z and x-z projections of the two-maneuver transfers from Figure  6.10 

situated along the ecliptic has at least one two-maneuver transfer option to the specified

southern L2 halo orbit.
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6.2.3 Optimized Transfers into Periodic Orbits

Optimal transfers into periodic orbits in the Sun-Earth system are constructed from

a range of GTO departure positions near the Earth by leveraging insights from families

of two-maneuver transfers. The families of two-maneuver transfers from Figures  6.4 - 6.12 

offer options over the entire range of GTO departure positions, i.e., −180◦ ≤ λ ≤ 180◦,

with δ = 0◦, i.e., on the Sun-Earth ecliptic. But these transfers are also initial guesses to

compute optimal transfers. Recall that, in this analysis, there is no a priori information

on the orientation of the drop-off GTO, i.e., the departure orbit for the secondary payload.

To address the expected variation in orbit orientation, multiple GTO departure positions

are considered as potential candidates and optimized transfers are generated from these

potential departure locations to Sun-Earth periodic orbits. In the inertial EME frame, the

GTO departure position and velocity vectors are constructed via Equations ( 4.1 ) and ( 4.2 )

for specific values of Ω, ii, and ω angles in the inertial EME frame. In this investigation,

the inclination and argument of periapsis angles, in the inertial EME frame, are set to
ii = 27◦ and ω = 0◦, respectively; note that these are also consistent with Table  4.1 . The

size of the GTO, i.e., the periapsis and apoapsis altitudes are set to 185 km and 35, 786

km. The RAAN angle, Ω, is a value from the set {0◦, 20◦, · · · , 340◦}, that is, the GTO

periapsis is situated along the mean Earth equatorial plane at different locations; recall that

the GTO departure state is at periapsis. The variation in Ω directly expresses the variation

in the GTO orientation, for this analysis. In the context of the CRTBP model, a transfer

from the Earth to a Sun-Earth Lagrange point is constructed in a rotating frame. The

GTO departure states, X̄
i dep, computed in the EME frame are rotated to the Sun-Earth

rotating frame via the steps outlined in Section  2.3.2.2 . In the Sun-Earth rotating frame,

the position of the GTO departure state, r̄dep, is parameterized via the angles λ, δ, and the

rotating inclination, ri. The two-maneuver transfer information exposed in Figures  6.4 - 6.12 

does not explictly display the maneuver at the GTO departure state. To reduce the total

∆V necessary for the transfer, the number of maneuvers is increased to four: the TIM, two

DSMs, and one Orbit Injection Maneuver (OIM). Recall that the two-maneuver transfers
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from Figures  6.4 - 6.12 each included a TIM and a single DSM, labeled DSM1, because the

transfer incorporated a stable manifold trajectory to approach the desired injection point

into the periodic orbit. Now, an additional DSM, termed DSM2, and a maneuver at the

injection point, denoted as OIM, are introduced to construct the optimal transfers in search

of a minimal ∆V solution. The location of the DSMs along the final transfer trajectory is

a free-variable in the optimization process. A direct optimization scheme is implemented

via MATLAB’s fmincon optimization function to compute a locally optimum transfer that

minimizes the following cost function:

J = min
{

∆VTIM +
b∑

j=1
∆V DSM

j + ∆VOIM

}
, (6.16)

Subject to:

Continuity Constraint: X̄m−1(Tm−1) = X̄m(0) where {m ∈ {2, ..., N}|m /∈ B̄},

Boundary Constraint: X̄0(0) = X̄dep , r̄N(TN) = r̄inj, r̄1(0) = r̄0(0),

Path Constraint:
N∑
j

∫ Tj

0
F 2

p

(
X̄j(t)

)
−
∣∣∣∣Fp

(
X̄j(t)

) ∣∣∣∣Fp
(
X̄j(t)

)
dt = 0,

Maneuver Conditions: r̄k−1(Tk−1) = r̄k(0) where {k ∈ B̄},

(6.17)

where the B̄ vector is defined as: B̄ ∈ {2, · · · , N} and the dimension of the number of DSMs

is equal to b = dim(B̄). The optimization scheme described in Equations ( 6.16 )-( 6.17 ) is

consistent with a multiple-shooting strategy illustrated in Figure  6.13 . In this investigation,

two DSMs are included such that dim(B̄) = b = 2. As an example, in Figure  6.13 , two DSM

are illustrated via red points, the TIM is represented by a purple point at the GTO departure

location, and the OIM is plotted as a cyan point at the injection point along the periodic

orbit. The initial state along the transfer trajectory, X̄0, is a GTO state and the position at

the end of the transfer, illustrated as a cyan point in Figure  6.13 , is a state on the periodic

orbit. Full state continuity, position and velocity, is enforced throughout the transfer except

for nodes that correspond to a maneuver, in which only position continuity is enforced. The
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Figure 6.13. : Schematic for constructing optimized transfers. Multiple-shooting formula-
tion with forward time propagation

steps consistent with constructing optimized transfers from different near-Earth locations,

i.e., Ω angles, are summarized as follows,

• Compute GTO departure state, X̄
i dep, in inertial EME frame from Equations ( 4.1 ) and

( 4.2 ) given Ω, ω, and ii values. The satellite departs the GTO at periapsis at a specfied

epoch.

• Rotate inertial departure state vector, X̄
i dep, into the Sun-Earth rotating frame depar-

ture state, X̄dep, via steps in Section  2.3.2.2 .

• Evaluate departure λdep and δdep values associated with the departure position in the

rotating frame, r̄dep. The λdep and δdep angles dictated the position of the departure

state.

• Select a two-maneuver transfer from the one-dimensional curve of solutions correspond-

ing to a periodic orbit near Sun-Earth L1 or L2. The selected two-maneuver transfer

has an associated λ value that is close to the departure values, i.e., λdep. Recall that

the two-maneuver transfer is generated via reverse time propagation.

• Construct optimization multiple-shooting problem by subdividing the selected two-

maneuver transfer and propagating in forward time. Include an additional maneuver

for a total of two Deep Space Maneuvers throughout the transfer. Additionally, include
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a TIM at the GTO departure location and an OIM at the injection location of the

periodic orbit.

• Implement direct optimization strategy, i.e., Equations (  6.16 ) and ( 6.17 ), via fmincon

function in MATLAB.

The optimization strategy is implemented for transfers to halo orbits in the Sun-Earth sys-

tem. Additionally, path constraints that correspond to eclipsing constraints are included

throughout the optimized transfer. In summary, optimized transfers from a range of GTO

departure locations are generated by leveraging insights from families of two-maneuver trans-

fers.

6.2.3.1 Transfers to L1 Halo Orbit

Optimized transfers to a southern L1 halo orbit, consistent with the SOHO spacecraft,

are constructed by leveraging families of two-maneuver transfers. Select two-maneuver trans-

fers are identified from Figures  6.4 - 6.5 to compute locally optimal transfers to the specified

southern L1 halo orbit. Observe that for periodic orbits, the injection point is parameterized

by Tα, refer to Figure  6.2 . For demonstration, in this investigation, optimized transfers are

constructed from a GTO departure position at an epoch of June 2, 2022 12:00:00.000 over

a range of Ω values of {0◦, 20◦, .., 340◦}, thereby demonstrating the construction of transfers

over a range GTO orientations. The geometries of the locally optimal transfers are provided

in Figure  6.14 .
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Figure 6.14. : Optimized transfers to Sun-Earth L1 halo orbits in the CRTBP model. The desired southern halo is in black
and the transfers are depicted via a range of colors. The departure epochs of the GTO correspond to a departure epoch of
June 2 12:00:00.000, 2022.
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For the specified epoch, optimized transfers from a range of 20◦ < Ω < 200◦ include an

excursion toward Sun-Earth L2, also termed as indirect transfers. The direct transfers are

contained outside the Ω value range of indirect transfers. The red points in Figure  6.14 

correspond to the location of the maneuvers performed along the transfer with the OIM

included at the intersection between the transfer trajectory and an injection point along

the periodic orbit, i.e., the point in magenta. For the indirect transfers, the first DSM,

i.e., DSM1, is performed below the x̂-axis during the L2 excursion while DSM2 is located

between L1 and the Earth. Additionally, the optimal injection location, i.e., the location of

the OIM plotted in magenta, along the southern halo orbit occurs near to the x̂-axis of the

CRTBP rotating frame. The GTO departure positions at the specified epoch, expressed in

the rotating frame, are plotted in Figure  6.15 and the total ∆V and transfer TOF are plotted

in Figure  6.16 . The GTO departure positions are situated along the Earth equatorial plane

Figure 6.15. : GTO departure location corresponding to optimal transfers to Sun-Earth
L1 halo orbits at epoch of June 2 12:00:00.000, 2022. Note that xE is with respect to the
Earth

in the inertial EME frame, however, in the Sun-Earth rotating frame, the departure positions

contain an out-of-plane component, i.e., δ 6= 0◦. This observation is a direct consequence of

the inclination difference between the ecliptic plane and the Earth equatorial plane, recall

that the x̂-ŷ plane in the Sun-Earth CRTBP model is essentially the ecliptic plane. In Figure
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Figure 6.16. : Total maneuver ∆V for optimal transfer to Sun-Earth L1 halo orbits at
epoch of June 2 12:00:00.000, 2022

 6.16 , transfers with the lowest ∆V correspond to a set of indirect transfers with an Ω range,

i.e., 40◦ ≤ Ω ≤ 60◦ and direct transfers at a range of 260◦ ≤ Ω ≤ 280◦. The ∆V values

for each individual maneuver in the optimal transfers into the southern L1 halo orbit are

summarized in Table  6.2 . In this scenario, there is no constraint on the OIM and no SEZ

constraint. During the optimization process, the magnitude of one of the included DSMs is

decreased to zero, that is, the extra maneuver is not necessary, see Table  6.2 . Additionally,

for the transfer corresponding to Ω = 340◦, the OIM is zero, which suggests that after the

second DSM is performed, the satellite enters a trajectory near the stable manifold structure

associated with the southern halo orbit. Note that, the optimal geometries in Figure  6.14 

and the ∆V plotted in Figure  6.16 are only applicable at the specified departure epoch of

June 2, 2022 12:00:00.000. However, transfers into the desired southern L1 halo orbit are

easily constructed for any GTO departure epoch and Ω by leveraging the information within

the curve of solutions provided in Figures  6.4 - 6.5 .
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Table 6.2. : Maneuver magnitudes for optimal transfers to Sun-Earth L1 southern halo in
m/s

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 747 184 2 58 991
20 777 145 0 88 1011
40 748 91 0 107 946
60 792 0 80 79 950
80 747 0 157 62 966
100 798 131 0 63 992
120 786 153 0 65 1005
140 753 196 0 78 1027
160 758 157 0 190 1105
180 765 260 0 183 1208
200 771 304 0 248 1323
220 783 126 0 152 1061
240 804 0 40 158 1001
260 798 0 142 1 941
280 793 0 136 26 955
300 751 101 102 5 959
320 769 0 61 238 1067
340 745 226 9 0 980

6.2.3.2 Transfers to L2 Halo Orbit

Optimized transfers with multiple maneuvers into a southern L2 halo orbit near the

Sun-Earth L2 vicinity are constructed by implementing two-maneuver transfers. In this

analysis, two-maneuver transfers to a southern L2 halo orbit, i.e., a possible destination for

the Nancy Grace Roman Space Telescope, are generated via a multiple-shooting scheme and

plotted in Figures  6.8 - 6.10 . Recall that for periodic orbits, the injection point is param-

eterized by Tα, refer to Figure  6.2 . For transfers into the southern L2 halo orbit, locally

optimal transfers are constructed from a GTO departure position at an epoch of December

2, 2022 12:00:00.000 for a range of Ω values of {0◦, 20◦, .., 340◦}. The position of the GTOs

are plotted in Figure  6.17 ; observe that the GTO departure location at this epoch differ

from the locations presented in Figure  6.15 which corresponds to a different epoch. For each

GTO departure location corresponding to an Ω value, a locally optimal transfer is gener-
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Figure 6.17. : GTO departure locations in the Sun-Earth rotating frame at epoch of Dec
2, 2022 12:00:00.000. Note that xE is with respect to the Earth

ated via the steps outlined in Section  6.2.3 . An eclipse constraint, based on the penumbral

shadow cone illustrated in Figure  5.60 , is included as a path constraint along the transfer

to L2. Equation (  5.74 ) is defined as Fp in the path constraint condition in Equation ( 6.17 ).

Additionally, a limit on the magnitude of the OIM is enforced such that: ∆VOIM ≤ 15 m/s

and is mathematically written as,

∆V 2
OIM − (∆V max

OIM )2 + β2
OIM, (6.18)

where ∆V max
OIM is the maximum OIM limit magnitude of 15 m/s and βOIM is a slack variable.

The geometries of the resulting transfers are plotted in Figure  6.18 with the ∆V information

presented in Figure  6.19 ; note that the penumbra eclipse region is shaded in black in Figure

 6.18 . In Figure  6.18 , the indirect transfers, i.e., the trajectories with an excursion to L1 or

an Earth flyby, correspond to a range of 20◦ ≤ Ω ≤ 180◦. Observe that the position of the

injection points into the southern L2 halo, the magenta points in Figure  6.18 , appear along

different locations of the desired orbit.
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Figure 6.18. : Optimized transfers to Sun-Earth L2 southern halo orbit at GTO departure epoch of Dec 2, 2022 12:00:00.000.
The desired halo orbit is in black and the transfer are depicted via a range of colors
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Figure 6.19. : Total ∆V required for locally optimal transfers to Sun-Earth L2 southern
halo at epoch of Dec 2, 2022 12:00:00.000

The injection location is significantly dependent on the maximum OIM magnitude desired;

note that the OIM magnitude is only constrained and not the direction of the maneuver.

In Figure  6.19 , transfers at GTO departure locations of Ω = 40◦, i.e., an indirect transfer,

and Ω = 260◦, a direct transfer, correspond to lower ∆V magnitudes. The transfers with

the longer TOF have a departure location of 180◦ ≤ Ω ≤ 200◦. Additionally, a summary of

the maneuvers along the set of optimal transfer to the L2 vicinity is provided in Table  6.3 .

In Table  6.3 , the magnitude of the OIM is below the maximum magnitude defined in the

corrections process and two transfer scenarios, with departure locations of Ω = 0◦, 20◦, have

OIM values of zero m/s. This suggests that the transfers from these two GTO departure

locations, with the selected base epoch, utilize a transfer within the stable manifold structure

associated with the southern L2 halo orbit. Observe that, from Table  6.3 , the average TIM

magnitude is approximately 740 m/s, similar to the ∆Vtheo magnitude corresponding to the

energy, i.e., Jacobi Constant, difference between a GTO departure state and the southern

halo orbit, see Table  5.1 . The optimal transfer information presented in Figures  6.18 - 6.19 is
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associated with a specified GTO departure epoch; however the curve of solutions constructed

via the two-maneuver transfers is easily extended for any range of departure epochs.

Table 6.3. : Maneuver magnitude information for optimal transfers to Sun-Earth L2 in m/s

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 753 98 411 0 1263
20 735 153 188 0 1076
40 742 88 1 1 831
60 736 0 95 15 846
80 736 93 157 15 1002
100 738 20 110 14 882
120 739 62 37 15 853
140 743 53 63 15 874
160 748 215 96 15 1075
180 828 245 55 15 1144
200 761 252 122 15 1150
220 677 138 319 15 1149
240 737 0 141 15 893
260 735 39 48 15 838
280 737 0 93 14 844
300 740 0 152 2 893
320 743 0 276 15 1034
340 748 64 316 15 1143

6.3 Transfers into Quasi-Periodic Orbits in the Sun-Earth System

Trajectories into quasi-periodic orbits in the vicinity of the Sun-Earth Lagrange points

are constructed by including a DSM along the transfer. In this example, transfers to quasi-

periodic Lissajous orbits near Sun-Earth L1 and L2 are constructed with trajectories along

the stable manifold structure associated with a Lissajous orbit and a bridging arc segment.

This example is identified as either scenario C, with a tangent maneuver transfer, or scenario

D, with a general maneuver transfer, from Table  6.1 . Mission requirements, such as maxi-

mum/minimum SEV, α, constraints, may restrict a set of applicable quasi-periodic orbits for

a secondary spacecraft. A multiple-shooting scheme is formulated and illustrated in Figure
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 6.20 , to generate two-maneuver transfers into an injection point along a quasi-periodic orbit.

The transfer in Figure  6.20 is propagated in reverse time such that a satellite travels on a

trajectory along the stable manifold structure from an injection point on a quasi-periodic

orbit. A single DSM is performed and the satellite in propagated in reverse time on a bridg-

ing arc segment towards a GTO departure position, r̄dep, near the Earth; note that there

is an implied maneuver at the GTO departure location. The GTO departure location is

parameterized via the angles λ and δ, see Figure  4.5 (b). In Figure  6.20 , the stable manifold

Figure 6.20. : Two-maneuver transfers to a general quasi-periodic orbit. Transfer arcs are
propagated in reverse time from an injection point, the red circle, towards a GTO departure
position, r̄dep

trajectory, in cyan, is divided into nM + 2 trajectory arcs, and the bridging arc, in black, is

divided into nA + 1 arcs. An injection point along a quasi-periodic orbit is parameterized

by Tθ1 and θ2, where Tθ1 is the propagation time from a point along the invariant curve and

θ2 is an angle along the invariant curve, such that: X̄inj(Tθ1 , θ2). Recall that an injection

point is computed by propagating a state along the invariant curve, i.e., X̄inv(θ2), by time

Tθ1 . The state along the invariant curve is defined as: X̄inv(θ2) = X̄ ∗ + ū(0, θ2), where X̄ ∗

is the fixed point of a periodic orbit associated with the quasi-periodic family and ū is a

six-dimensional torus state. In this investigation, quasi-periodic orbits are constructed from

two-dimensional tori and are initiated from a reference periodic orbit. The multiple-shooting
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scheme illustrated in Figure  6.20 is formulated as a TPBVP such that a free-variable vector

is written as,

X̄ =



X̄M
0

X̄M
1
...

X̄M
nM

X̄A
0

X̄A
1
...

X̄A
nA

Tθ1

θ2

Tm

TA

λ

δ



, (6.19)

where Tm is a time such that the total time on the stable manifold is: Tmani = Tm(nM + 2),

and TA is along the bridging arc defined as Tarc = TA(nA + 1). The constraint vector that

encapsulates scenario D in Table  6.1 , i.e., a transfer including a general DSM maneuver, is

denoted as,

F̄ =



F̄mani,qpo

F̄bridge

F̄DSM

Fapsis

F̄alt


, (6.20)

where the constraint vectors associated with state continuity along the bridging arc, F̄bridge,

the DSM maneuver, F̄DSM, GTO departure apsis and altitude are denoted in Equations
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( 6.5 )-( 6.9 ). The constraint vector associated with state continuity along the stable manifold

trajectory from an injection point along a quasi-periodic orbit, F̄mani,QPO, is written as,

F̄mani,qpo =



X̄
(
Tm, X̄M(Tθ1 , θ2)

)
− X̄M

0 (0)

X̄M
0 (Tm)− X̄M

1 (0)
...

X̄M
nM−1(Tm)− X̄M

nM
(0)


, (6.21)

where the final position and velocity vectors, r̄f and v̄f , respectively, are components of the

final propagated state of X̄A
nA

, i.e., X̄A
nA

(TA). The formulated multiple shooting scheme has

an associated Jacobian matrix defined as,

DF̄ =
[
DxmF̄ DxAF̄ DTθ1

F̄ Dθ2F̄ DTmF̄ DTAF̄ DλF̄ DδF̄

]
. (6.22)

Observe that the matrix components, DxmF̄, DxAF̄, DTmF̄ , DTAF̄ , DλF̄ , and DδF̄ of the

Jacobian in Equation (  6.22 ) are similar to the two-maneuver transfer scenario for periodic

orbits and are presented in Appendix  D . The partial derivatives of the constraint vector in

Equation ( 6.20 ) with respect to Tθ1 and θ2 are denoted as,

DTθ1
F̄ =



DTθ1
F̄mani,qpo

0̄

0̄

0̄

0̄


, (6.23)

Dθ2F̄ =



Dθ2F̄mani,qpo

0̄

0̄

0̄

0̄


, (6.24)
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where the partial derivative of the state continuity of the stable manifold trajectory is ex-

panded as,

DTθ1
F̄mani =



∂X̄M (Tm)
∂X̄M (0)

∂X̄M (0)
∂Tθ1

0̄
...

0̄


. (6.25)

The stable manifold state, X̄M , from an injection point along a quasi-periodic orbit is defined

via Equation ( 5.22 ) and the associated partials are presented in Equations ( 5.33 )-( 5.34 ).

Additionally, the value of Dθ2F̄mani,qpo is computed via finite difference numerical techniques.

The free-variable and constraint vectors expressed in Equations ( 6.19 ) and ( 6.20 ) correspond

to a general DSM, i.e., the maneuver direction is not constrained. The dimension of the

Jacobian matrix for the general DSM scenario, i.e., Equation ( 6.22 ), is dim(DF̄) = 6(nM +

nA+1)+7×6(nM +nA+2)+6, such that the dimension of the solution space is equal to the

nullity of the Jacobian, i.e., nullity(DF̄) = 5. Note that the derived dimension of the solution

space assumes that all columns and rows of the Jacobian matrix are linearly independent.

The general two-maneuver transfer scenario is consistent with transfer Scenario D in Table

 6.1 . To formulate a transfer scenario into a fixed quasi-periodic orbit with a tangential

maneuver, Scenario C in Table  6.1 , the tangential constraint in Equation ( 6.11 ) is appended

into the constraint vector in Equation ( 6.20 ). Additionally, the maneuver magnitude, ∆V , is

added to the free-variable vector in Equation (  6.19 ). The resulting Jacobian associated with

a tangential maneuver has a dimension equal to: dim(DF̄) = 6(nM+nA+1)+10×6(nM+nA+

2) + 7, with a three-dimensional solution space which is consistent with Scenario C in Table

 6.1 . Observe that there is no information regarding the Transfer Injection Maneuver, i.e.,

the transfer performed at the GTO departure location, in this multiple-shooting formulation.

The end state, X̄f , of the reversely propagated two-maneuver transfer is a specified altitude

and apsis condition which allows the magnitude of the TIM to vary. In this analysis, surfaces

of solutions are constructed to generated transfers into a specified quasi-periodic orbit in the

Sun-Earth system over a range of GTO departure locations near the Earth.
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6.3.1 Transfers into L1 Lissajous Orbits

A surface of solutions representing two-maneuver transfers into a specified Lissajous

orbit near Sun-Earth L1 is constructed via a multiple-shooting strategy. The transfer from a

GTO departure location near the Earth is composed of a bridging arc segment and a stable

manifold trajectory arc as illustrated in Figure  6.20 . The desired orbit is a Lissajous orbit,

i.e., a quasi-periodic orbit, near Sun-Earth L1. By implementing the numerical techniques

outlined in Section  3.4 , a family of Lissajous orbits, originating from a vertical orbit, is con-

structed with a fixed Jacobi Constant value of: C = 3.000876398. The family of Lissajous

orbits is plotted in Figure  6.21 , where the initial vertical orbit is in magenta and differ-

ent members of the Lissajous orbit family are in blue. Note that this family of Lissajous

orbits includes members that are ”taller”, i.e., have higher z-amplitude compared to the y-

amplitude, or ”shorter”, have a higher y-amplitude. To maintain the science and operational

requirements imposed on previous L1 orbiters, such as the ACE[ 11 ] spacecraft or the Deep

Space Climate Observatory (DSCVR)[ 40 ] spacecraft, a ”shorter” Lissajous orbit is selected

and displayed in black in Figure  6.21 . In this application, a quasi-periodic orbit with charac-

Figure 6.21. : Family of Lissajous orbits with a Jacobi Constant of C = 3.0008764. The
selected Lissajous orbit for this analysis is in black
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teristics similar to that designed for the ACE spacecraft is selected as the target destination.

The ACE spacecraft is in an L1 Lissajous orbit with approximate x-, y-, and z-amplitudes

of 81, 755 km, 264, 071 km, and 154, 406 km, respectively [ 11 ]. An orbit with similar am-

plitudes is selected, i.e., the orbit in black in Figure  6.21 , from a family of Lissajous orbits

constructed with a fixed Jacobi Constant value, C = 3.000876398, in the Sun-Earth system.

A communications constraint imposed on the ACE spacecraft requires the trajectory to re-

main outside the Solar Exclusion Zone, defined as αSEZ = 5◦ and illustrated in Figure  5.52 ,

for this investigation. Stationkeeping (STK) strategies have been developed and successfully

implemented to maintain the Lissajous trajectory outside the SEZ; however, the focus of this

application is the construction of a transfer into a Lissajous orbit at an ideal location, i.e.,

an injection point, that will maximize the time outside the SEZ before an STK maneuver is

necessary.

The search for an ideal injection point that maximizes the time outside the SEZ,

Tout, is formulated as the search for an angle, θ2, along the invariant curve. Recall that the

quasi-periodic orbits in this investigation are numerically constructed from two-dimensional

tori, refer to Section  3.4 for further discussion. An injection point along a quasi-periodic

orbit is parameterized by Tθ1 and θ2, where Tθ1 is the propagation time from a point along

the invariant curve and θ2 is an angle along the invariant curve, such that: X̄inj(Tθ1 , θ2).

The state corresponding to an injection point is computed by propagating a state along the

invariant curve, i.e., X̄inv(θ2), over time, Tθ1 . The state along the invariant curve is defined

as: X̄inv(θ2) = X̄ ∗ + ū(0, θ2), where X̄ ∗ is the fixed point of a periodic orbit associated with

the quasi-periodic family and ū is a six-dimensional torus state. In the search for an ideal

injection point, the propagation time is assumed to be zero, Tθ1 = 0, that is, the ideal

injection point lies along the invariant curve and is dependent on the angle θ2. The state

along the invariant curve, X̄inv(θ2), is propagated along the Lissajous orbit and the SEV

angle, α, is illustrated in Figure  5.52 and computed via Equation ( 5.56 ). The computation

of a trajectory arc along a quasi-periodic orbit is consistent with the following steps:
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1. Identify an initial angle, θ0
2, along the invariant curve. Create the state along the

invariant curve: X̄ 0
inv = X̄ ∗ + ū(0, θ0

2). Recall that X̄ ∗ is a fixed point associated with

a periodic orbit used in the quasi-periodic orbit corrections process.

2. Propagate the current state, X̄ 0
inv, with the mapping time, T1, associated with the

quasi-periodic orbit.

3. Identify the next state along the invariant curve. The next angle along the invariant

curve is: θ1
2 = θ0

2 + ρ, where ρ is the rotation angle corresponding to the quasi-periodic

orbit. Calculate the new state, X̄ 1
inv = X̄ ∗ + ū(0, θ1

2).

4. Propagate the new state, X̄ 1
inv, with the mapping time T1.

5. Connect the beginning of the trajectory from X̄ 1
inv to the end of the trajectory from

X̄ 0
inv.

6. Repeat steps 3-5 for any number of revolutions around the quasi-periodic orbit.

Note that this representation of the quasi-periodic trajectory utilizes the approximation of

the invariant curve from a truncated Fourier series. The time above the SEZ threshold, i.e.,

Tout, for 13 revolutions on the Lissajous trajectory corresponding to a range of θ2 values

is plotted in Figure  6.22 . Points A and B identified in Figure  6.22 correspond to the θ2

angles: 152.85◦ and 335.35◦, respectively. The trajectories that emerge from the identified

injection points contain the maximum time above the SEZ threshold, αSEZ = 5◦, before

crossing into the SEZ cone. In Figure  6.22 , several points in red, i.e., trajectories along the

Lissajous orbit, are defined by longer intervals, higher Tout values, outside the SEZ than

trajectories indicated by points A and B. However, the trajectories corresponding to the red

points initially violate the SEZ cone and are plotted in Figure  6.23 . The time history of

the SEV angle corresponding to the trajectories from four distinct injection locations along

the specified Lissajous orbits are presented in Figure  6.23 . Two viable injection points are

(2) and (4) from the plot in Figure  6.23 , note that the SEV angle of the first revolution lies

above the SEZ constraint line of αSEZ = 5◦. The two non-viable options are represented by

injection points (1) and (3) where the SEV angle of the initial revolution along the Lissajous
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152.85
°

335.35
°

Figure 6.22. : Total time outside the SEZ for different injection points along the invariant
curve corresponding to the desired Lissajous orbit. Points in red are not viable as they
enter the SEZ during the first revolution. The two highlighted injection locations offer the
maximum time outside the SEZ

4

4

3

211

2

3

Figure 6.23. : Time histories of the SEV angle for different injection locations along a
specified Lissajous orbit. Sections of the trajectories in red violate the SEZ, defined as
αSEZ = 5◦
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orbit crosses into the SEZ region. Several injection points have similar SEV time histories

to injection point (3) in Figure  6.23 , and while they provide longer times outside the SEZ,

these injections points are not viable for consideration due to a violation during the first

revolution. The characterization of the invariant curve is not unique, therefore the θ2 values

in Figure  6.22 are dependent on the characterization of the invariant curve via the truncated

Fourier series. The trajectories corresponding to points A and B, i.e., the injection location

with maximum time outside the SEZ, are plotted in Figures  6.24 - 6.25 . The x̂-ẑ and ŷ-ẑ

projections of the trajectory corresponding to the θ2 = 152.85◦ injection point are plotted

in Figure  6.24 . Observe the location of the trajectory for θ2 = 152.85◦ is near the ”top” of

the Lissajous orbit and the violation point, i.e., the point along the quasi-periodic orbit that

lies on the edge of the SEZ cone, is situated near the ”bottom”. Additionally, the SEZ cone

is a three-dimensional object, such that, information regarding when a violation occurs, i.e.,

a crossing into the SEZ region, and when the trajectory is outside the SEZ is unclear with

only the planar projections. For example, the ŷ-ẑ projection in Figure  6.24 shows that a

section of the trajectory crosses into the SEZ region, i.e., the red shaded region, however,

this is not accurate as the depth of the SEZ cone is not easily presented in this projection.

To accurately observe when a violation occurs, a polar plot is generated with the angular

dimension corresponding to an angle ξ defined as ξ = tan−1
(
z
y

)
, computed with the y- and

z-components of a state along a Lissajous trajectory, and the radial direction is the SEV

angle α, defined in Equation ( 5.56 ). The polar plot in Figure  6.24 depicts four successful

revolutions along the Lissajous trajectory from the injection point with θ2 = 152.85◦; note

that the SEZ constraint is the dashed red line. The x̂-ẑ and ŷ-ẑ projections of the trajectory

corresponding to the θ2 = 335.35◦ injection point are plotted in Figure  6.24 . The polar

plot in Figure  6.25 reveals the location of the injection point and the violation point along

a trajectory with six revolutions along a Lissajous orbit. From an observer at the Earth,

the direction of the trajectory with θ2 = 152.85◦ is counter-clockwise and the trajectory

from an injection point with θ2 = 335.35◦ is clockwise. In this analysis, transfers into the

injection point corresponding to θ2 = 152.85◦ are termed Type A transfer, the motion is

counter-clockwise, and transfers into the injection with θ2 = 335.35◦ are labeled as Type B

transfers, the motion is clockwise.
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Figure 6.24. : Trajectory along Lissajous orbit from an injection point defined with θ2 =
152.85◦ with six revolutions. In the ŷ-ẑ projection, the direction of the trajectory is counter-
clockwise as viewed by an observer at the Earth. The polar plot, the plot on the right,
reveals the violation point of the trajectory, i.e., the red point. Transfers into this injection
point are labeled as Type A

Figure 6.25. : Trajectory along Lissajous orbit from an injection point defined with θ2 =
335.35◦ with six revolutions. In the ŷ-ẑ projection, the direction of the trajectory is clockwise
as viewed by an observer at the Earth. The polar plot, the plot on the right, reveals the
violation point of the trajectory, i.e., the red point. Transfers into this injection point are
labeled as Type B

Poincaré maps are leveraged to determine an initial guess, i.e., a two-maneuver trans-

fer, constructed by leveraging the stable manifold structures associated with a Lissajous

orbit and a bridging arc segment. The construction of a transfer into a quasi-periodic orbit,

i.e., a Lissajous orbit, is essentially Scenarios C and D from Table  6.1 . In this analysis, a

transfer with a single general DSM originating from a GTO periapsis position near Earth

is consistent with Scenario D which, from Table  6.1 , has a five-dimensional solution space.
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The objective of this example is to enter into an ideal injection point along a Lissajous orbit,

that is, a fixed value of Tθ1 and θ2; recalling that a state along the Lissajous orbit is param-

eterized by Tθ1 and θ2. Therefore, the solution space consistent with this scenario is reduced

to a three-dimensional surface. Additionally, for simplicity, the focus is the identification

of transfers originating from different near-Earth positions along the ecliptic, i.e., the x̂-ŷ

plane of the Sun-Earth rotating frame. This condition is satisfied via the introduction of the

constraint δ = 0◦. The construction of a two-maneuver transfer is formulated as a multiple-

shooting problem and defined via the free-variable and constraint vectors in Equations ( 6.19 )

and ( 6.20 ). The constraints associated with GTO departure states from the ecliptic, i.e.,

δ = 0◦, and a fixed injection location, i.e., Tθ1 = T des
θ1 and θ2 = θdes

2 , are appended to the

constraint vector in Equation ( 6.20 ). The solution space, i.e., the nullity of the expanded

Jacobian is now two-dimensional; recall that the Jacobian corresponding to a general DSM

in Equation (  6.22 ) has nullity of nullity(DF̄) = 5 and is consistent with Scenario D in Table

 6.1 . Finally, the solution space for two-maneuver transfers with a general DSM that insert

into an ideal injection point along a Lissajous orbit from a GTO periapsis position along

the Sun-Earth ecliptic is two-dimensional. To generate an initial guess for the two-maneuver

transfer, the trajectories on the surface of the stable manifold corresponding to the Lissajous

orbit are propagated in reverse time towards a surface of section. The position vector of

the GTO departure position is a function of δ and λ as illustrated in Figure  4.5 (b), with a

fixed altitude, 185 km, with respect to the Earth. The GTO periapsis is situated along the

Sun-Earth x̂ line on the opposite side of the Sun and Earth; such a location corresponds to

δ = 0◦ and λ = 0◦. The initial guess for the velocity vector associated with the departure

positions, i.e., the bridging arc segment, is constructed by applying a maneuver ∆V in a

direction perpendicular to the radial direction of the GTO periapsis; note that the radial

direction is with respect to the Earth. The direction of the departure velocity vector varies

such that a set of bridging arc transfers is generated when the states are forward propa-

gated towards a surface of section. A surface of section, defined as y = 2.69x105 km in the

rotating frame, is selected to produce the initial conditions and generate a two-maneuver

transfer with a general DSM. The points in red in Figure  6.26 (a) are the second returns

to the surface of section from a set of bridging arcs, propagated in forward time from the
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GTO departure position, and the blue points correspond to the stable manifold trajectories,

propagated in reverse time from the Lissajous injection points. An initial guess is produced

with a pair of blue and red points that are close in position in the x̂-ẑ projection and is

plotted in Figure  6.26 (b). The solution space for a transfer into a Lissajous orbit with a

(a) (b)

Figure 6.26. : (a) Poincaré map for trajectories along the stable manifold (blue) and
connecting arcs (red). The selected initial guess is depicted by the black circle (b) Selected
initial guess

single maneuver is constructed via a numerical continuation scheme. In Figure  6.22 , the

values of θ2 = 335.35◦, 152.85◦ are identified as desired injection points with Tθ1 = 0 into the

selected Lissajous orbit. The initial guess in Figure  6.26 (b), from a fixed λ and δ, is divided

into a series of discontinuous arcs, consistent with a multiple-shooting scheme, and a feasible

solution is constructed via a multidimensional Newton’s algorithm. Recall that the trajec-

tories, consistent with scenarios in Table  6.1 , are propagated in reverse time and a single

general DSM is performed, as illustrated in Figure  6.20 . The objective is the construction

of the two-dimensional solution surface of transfers from the GTO departure positions along

the Sun-Earth ecliptic. The selected initial guesses in Figure  6.26 (b) do not correspond to

the ideal injection locations, i.e., θ2 = 335.35◦, 152.85◦. The first step is a transfer into one

of the two possible ideal injection locations. By reformulating the constraint conditions in

Scenario D in Table  6.1 with Equation (  6.1 ), the variables for the transfer are: Tθ1 , θ2, Tm,

TA, λ, δ, and ∆V̄gen, where ∆V̄gen = [∆Vx,∆Vy,∆Vz]T . There are nine free-variables and

two departure constraints corresponding to: apsis and altitude. Note that the departure
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conditions, via Equation ( 6.1 ), are defined as a four-dimensional vector and the addition

of nodes along the stable manifold arc or bridging arc, consistent with a multiple-shooting

technique, do not change the number of free-variables necessary. The goal is a search for a

transfer into a desired injection point, defined by θ2, therefore, four variables, Tθ1 , Tm, λ,

and δ, remain constant so the solution space representing the transfers is a one-dimensional

curve. A pseudo-arclength continuation strategy is leveraged to create a curve of transfers

with varying θ2 and TA values. A curve can also be generated by fixing any combination of

two free-variables from Tθ1 , Tm, and TA with the fixed λ and δ angles. A curve of transfers is

displayed in Figure  6.27 (a); recalling that Tmani and Tarc are the total times along the stable

manifold trajectory and the bridging arc as illustrated in Figure  6.20 . This curve is not

152.85
°

335.35
°

(a) (b)

Figure 6.27. : (a) Initial guess curve - search for θ2 (b) Solution curve for fixed θ2 = 335.35◦
and Tmani

a complete representation of the solution space and the only point of interest is a transfer

with corresponding θ2 = 335.35◦ or 152.85◦; one such instance is identified in Figure  6.27 (a).

The time outside the SEZ reported in Figure  6.22 corresponds to a trajectory with Tθ1 = 0,

therefore the transfer from  6.27 (a) is utilized as an initial point to generate a separate curve

with varying Tθ1 and Tm. To construct the curve in Figure  6.27 (b), λ, δ, and θ2 are fixed

along with one of the following variables: Tm or TA. Two points on the solution curve in

Figure  6.27 (b) possess the desired Tθ1 = 0. Finally, a surface of transfers is generated from
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the sample transfer with the desired θ2 and Tθ1 values, i.e., the values that correspond to

the desired injection point on the Lissajous orbit. The surface, or family of transfers, is

created through a pseudo-arclength continuation process by fixing θ2 and Tθ1 , and one of the

following variables: Tm, TA, and λ. Recall that the objective is an exploration of the solution

space for all possible GTO orientations and, in this application, only transfers such that the

departure is from a GTO periapsis located along the Sun-Earth ecliptic are considered, i.e.,

δ = 0◦. The enclosed transfer solution surface for a region around the Earth, such that

−40◦ ≤ λ ≤ 20◦ is depicted in Figure  6.28 (a). In the transfer scenarios presented in Table

 6.1 , there is no information about the maneuver implemented at the GTO periapsis; a Trans-

fer Injection Maneuver, i.e., TIM, is necessary to shift from the GTO departure position to

the transfers on the solution curve, e.g., Figure  6.28 (b). A summary of the steps to generate

the solution surface for this example follows:

1. Identify injection location, θ2, along the invariant curve of a quasi-periodic orbit.

2. Fix the departure location from Earth, i.e., fix λ and δ. Note that the departure

location is an apsis with respect to the Earth with a fixed altitude.

3. Generate transfer arcs from the fixed departure location towards a surface of section.

4. Generate stable manifold trajectories from the desired quasi-periodic orbit. These are

propagated in reverse time toward a surface of section.

5. Identify an initial guess from a Poincaré map constructed via the crossings onto the

surface of section.

6. Search for a solution with the desired θ2. A continuation strategy is implemented by

fixing any combination of two from the variables: Tθ1 , Tm, TA along with λ and δ.

7. Search for the solution with desired Tθ1 = 0, by fixing θ2, λ, δ and either Tm or TA.

8. Explore the solution space for a fixed Tθ1 , θ2, δ. The surface is created from a series of

curves created from a continuation strategy. The curve is created by fixing one of the

variables: Tm, TA, or λ.

277



These steps can be generalized to search the solution space for any single DSM transfer

to a specific quasi-periodic orbit. In summary, the continuation strategy implemented to

(a) (b)

Figure 6.28. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection of θ2 = 335.35◦, i.e., a Type B transfer, for an initial transfer at λ = 0◦. (b)
Transfer Injection Maneuver magnitudes for different GTO departure locations, λ, at varying
inclinations. The data in both plots is represented via a range of colors corresponding to the
DSM magnitude

create the surface of solutions relies on a pseudo-arclength continuation, such that a series

of one-dimensional curves are stacked together to approximate the two-dimensional surface.

A separate solution surface is constructed from the previous steps for a different initial

departure position near the Earth, for example, given λ = 90◦ and for δ = 0◦, see Figure

 6.29 (a), and λ = 180◦ and δ = 0◦ in Figure  6.30 (a). Recall that every point on this surface

corresponds to a two-maneuver transfer. In Figures  6.28 (b),  6.29 (b), and  6.30 (b), the range

of the TIM magnitude is 740 ≤ ∆VTIM ≤ 780 m/s, however, there is a larger variation

in the magnitude of the ∆VDSM. Additionally, the solution surfaces span the entire range

of inclinations, i′ i, such that a single DSM transfer is computed for any GTO departure

location, i.e., λ value. The surface information from Figures  6.28 - 6.30 fill the region of

−180◦ ≤ λ ≤ 180◦, therefore, it is possible to identify a feasible transfer into the selected
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injection points on the Sun-Earth L1 Lissajous trajectory from a range of GTO orientations.

(a) (b)

Figure 6.29. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at an
injection with θ2 = 335.35◦, i.e., a Type B transfer, for an initial transfer at λ = 90◦. (b)
Transfer Injection Maneuver magnitudes for different GTO departure locations, λ, at varying
inclinations. The data in both plots is represented via a range of colors corresponding to the
DSM magnitude

The surface of solutions associated with an injection point of θ2 = 152.85◦, i.e., Type

A transfers, for the desired Sun-Earth L1 Lissajous orbit is constructed for a range of GTO

departure locations. The surface of solutions that represent the two-maneuver transfers into

the θ2 = 152.85◦ injection point are plotted in Figure  6.31 ,  6.32 , and  6.33 . The objective is to

create surfaces of solutions that span the entire GTO departure range of −180◦ ≤ λ ≤ 180◦.

A subset of the complete surface is presented in Figure  6.31 (a); note that this is also

observed by inspecting the shape of the surface in Figure  6.31 (b) which plots the inclination

and ∆VTIM information. Recall that the continuation strategy implemented to create the

surface of solutions relies on a pseudo-arclength continuation, such that, essentially, a series

of one-dimensional curves are stacked together to approximate the two-dimensional surface.

In Figures  6.32 (b) and  6.33 (b), the surfaces are able to span a range of the GTO departure

locations. To construct flexible transfers from a range of GTO departure locations, recalling
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(a) (b)

Figure 6.30. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at an
injection with θ2 = 335.35◦, i.e., a Type B transfer, for an initial transfer at λ = 180◦. (b)
Transfer Injection Maneuver magnitudes for different GTO departure locations, λ, at varying
inclinations. The data in both plots is represented via a range of colors corresponding to the
DSM magnitude

(a) (b)

Figure 6.31. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection with θ2 = 152.85◦, i.e., a Type A transfer, for an initial transfer at λ = 90◦.
(b) Transfer Injection Maneuver magnitudes for different GTO departure locations, λ, at
varying inclinations
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(a) (b)

Figure 6.32. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection with θ2 = 152.85◦, i.e., a Type A transfer, for an initial transfer at λ = 90◦.
(b) Transfer Injection Maneuver magnitudes for different GTO departure locations, λ, at
varying inclinations

(a) (b)

Figure 6.33. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection with θ2 = 152.85◦, i.e., a Type A transfer, for an initial transfer at λ = 90◦.
(b) Transfer Injection Maneuver magnitudes for different GTO departure locations, λ, at
varying inclinations
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that the GTO departure is at periapsis, into specific injection locations along a specific Sun-

Earth L1 Lissajous orbit, a surface of solutions is generated via a multiple-shooting strategy.

The two-maneuver transfers contained within the two-dimensional surface of solutions are

generated along different GTO departure ranges, i.e., λ values, and serve as initial guesses

to construct locally optimal solutions.

6.3.2 Transfers into L2 Lissajous Orbits

Two-maneuver transfers to Lissajous orbits near the Sun-Earth L2 point are generated

for a range of GTO departure locations. In this analysis, two-maneuver transfers include a

DSM, performed along the trajectory, and a TIM, performed at the GTO departure loca-

tion, i.e., GTO periapsis. Additionally, transfers to a selected Lissajous orbit near L2 are

constructed via the multiple-shooting strategy illustrated in Figure  6.20 . As a demonstra-

tion, transfers into a L2 Lissajous orbit resembling the Gaia spacecraft are constructed from

a reference GTO with a periapsis altitude of 185 km. The Gaia mission is a survey-type

mission launched and operated by the European Space Agency [  13 ]. The primary mission of

Gaia is to observe and catalog precise mappings of the Milky Way galaxy with a secondary

mission to analyze and discovery distant exoplanets. The satellite was launched in December

2013, as a primary payload, en route to the Sun-Earth L2 vicinity; note that L2 provides the

adequate thermal, radiation, and observation requirements for Gaia to successfully meet its

scientific objectives. A Lissajous orbit near L2 is selected as the operational orbit of Gaia

considering the limitations of the phased array antenna and Gaia’s specific attitude strategy

[ 76 ]. To satisfy these geometric constraints, the operational Lissajous orbit has a maximum

Sun-satellite-Earth of 15◦ and approximate x-, y-, and z-amplitudes of 120, 00 km, 340, 000

km, and 180, 000 km, respectively [ 13 ]. Additionally, Gaia must avoid Earth eclipses to

prevent thermal shocks to the science instruments and had an initial operation lifetime of 5

years, that is, the trajectory of the satellite was eclipse free throughout the transfer to the

orbit and after injection into the Lissajous orbit. In this analysis, a Lissajous orbit similar

to the Gaia mission is constructed by first generating a family of Lissajous orbits with a
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fixed Jacobi Constant, i.e., C = 3.0008643. A Lissajous orbit with similar characteristics to

the Gaia mission is selected from the constructed quasi-periodic orbit family. Two-maneuver

transfers are constructed to a Lissajous orbit with similar characteristics to the Gaia mission.

In constructing two-maneuver transfers for a secondary payload departing from a

GTO to a desired Lissajous orbit near Sun-Earth L2, an injection point along the quasi-

periodic orbit is identified. A ideal injection location along the selected Lissajous orbit

maximizes the time outside the eclipse region, i.e., the penumbra shadow cone illustrated

in Figure  5.60 . Recall that, in this analysis, quasi-periodic orbits are constructed from

two-dimensional tori, such that any state along a quasi-periodic orbit is represented as:

X̄inj(Tθ1 , θ2). The state corresponding to an injection point is generated by propagating a

state along the invariant curve, X̄inv(θ2), by a time Tθ1 ; recalling that a state along the

invariant curve is defined as: X̄inv(θ2) = X̄ ∗ + ū(0, θ2). The vector X̄ ∗ is the fixed point of a

periodic orbit associated with the quasi-periodic orbit and the ū is the six-dimensional torus

state, see Figure  3.12 . In the search for an ideal injection point, the time Tθ1 is assumed to

be zero, such that an injection point is essentially a point along the invariant curve; recall

that this is approximated via the truncated Fourier Series in Equation ( 3.84 ). The steps for

generating a trajectory along the Lissajous orbit from an originating injection point, X̄inv(θ2),

are outlined in Section  6.3.1 . The shadow angle, corresponding to the penumbra condition,

for a trajectory along the Lissajous orbit is computed via Equation ( 5.73 ). The time outside

the penumbra, Tout, for a range of injection points from the selected Lissajous orbit after

16 revolutions is plotted in Figure  6.34 . Similar to the ACE-like Lissajous orbit in Figure

 6.23 , there are two possible injection points that maximize a time outside the penumbra

shadow region. The injection points identified in Figure  6.34 correspond to the latitudinal

angles of θ2 = 93.8◦, 273.95◦. Observe that there are injection points, i.e., values of θ2,

highlighted in red that correspond to longer times, however, these injection points initially

cross into the Earth’s penumbra region. In Figure  6.35 , the time history of the shadow

angle, ζ, for four selected injection points are plotted. The trajectories for (1),(2),(4) in

Figure  6.35 correspond to viable injection points; recall that (4) is one of the identified ideal

injection points. The trajectory for (3) is highlighted in red in Figure  6.35 and the time
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history of the shadow angle in Figure  6.35 presents an initial crossing into the penumbra

region immediately after injection. Several injection points have similar shadow angle time

histories to injection point (3) in Figure  6.35 , and while they present longer times outside

the Earth penumbra, these injection points are not viable for consideration due to an initial

violation during the first revolution. Recall that the characterization of the invariant curve

is not unique, therefore, the θ2 angle presented in Figures  6.34 - 6.35 are dependent on the

characteriation of the invariant curve via the truncated Fourier series. The trajectories

93.8
°

273.95
°

Figure 6.34. : Time outside the Earth penumbra for a series of injection points, parame-
terized via θ2, along the selected Lissajous orbit

corresponding to the ideal injection points identified, i.e., θ2 = 93.8◦, 273.95◦, are plotted

in Figures  6.36 - 6.37 . In Figures  6.36 - 6.37 , the x̂-ẑ and ŷ-ẑ projections corresponding to the

trajectories propagated from the ideal injection locations are plotted. In the ŷ-ẑ projection

corresponding to θ2 = 93.8◦, i.e., Figure  6.36 , the injection point states is situated near the

left right and the direction of the trajectory is directed towards the top right; note that this

is based on an Earth observer. Note that the penumbra eclipse condition is represented by

a black cone in the x̂-ẑ projection and a black circle in the ŷ-ẑ projection. The injection

point state for θ2 = 273.95◦ is located near the bottom right and the motion is towards the
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Figure 6.35. : Shadow angle, ζ, corresponding to the penumbral shadow region for selected
injection points along quasi-periodic orbit. Regions highlited in red correspond periods where
the trajectory crosses the penumbra region

top left corner. Recall that to accurately observe when a violation occurs for L1 Lissajous

orbits constrained by a SEZ cone, a polar plot is implemented. In the case for L2 Lissajous

orbits, the polar plot has an angular dimension defined by ξ, where ξ = tan−1 =
(
z
y

)
,

and the radial dimension is the shadow angle corresponding to the Earth penumbra, i.e., ζ

defined in Equation ( 5.73 ). In Figures  6.36 - 6.37 , the polar plot presents a zoomed-in view

of the violation into the penumbra region. In Figure  6.36 , the motion of the first couple

of revolutions along the trajectory is counter-clockwise, from an Earth observer, such that,

in this investigation, transfers into this injection point, i.e., θ2 = 93.8◦, are termed Type A

transfers. Transfers into the injection point of θ2 = 273.95◦ are labeled as Type B transfers

because, from Figure  6.37 , the motion of trajectory post-injection is clockwise as observed

from the Earth.

Poincaré maps are leveraged to determine an initial guess, i.e., a two-maneuver trans-

fer, constructed by leveraging the stable manifold structures associated with a Lissajous

orbit, a bridging arc segment, and a single DSM. Recall that the construction of a transfer

with a DSM into a Lissajous orbit is essentially Scenarios C and D from Table  6.1 . In this
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Figure 6.36. : Trajectory along Lissajous orbit from an injection point defined with θ2 =
93.8◦ with 16 revolutions. In the ŷ-ẑ projection, the direction of the trajectory is counter-
clockwise as viewed by an observer at the Earth. The polar plot, the plot on the right,
reveals the violation point of the trajectory, i.e., the red point. Transfers into this injection
point are labeled as Type A

Figure 6.37. : Trajectory along Lissajous orbit from an injection point defined with θ2 =
273.95◦ with 16 revolutions. In the ŷ-ẑ projection, the direction of the trajectory is clockwise
as viewed by an observer at the Earth. The polar plot, the plot on the right, reveals the
violation point of the trajectory, i.e., the red point. Transfers into this injection point are
labeled as Type B

analysis, a two-maneuver transfer with a single general DSM originating from a GTO pe-

riapsis position near the Earth is consistent with Scenario D which, from Table  6.1 , has a

five-dimensional solution space. In this demosntration, the secondary payload, i.e., a small-

sat, enters the Lissajous orbit at an ideal injection point, that is, a fixed value of Tθ1 and θ2;

recalling that a state along the Lissajous orbit is parameterized via Tθ1 and θ2. Therefore,

the solution space consistent with this scenario is reduced to a three-dimensional surface. For
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simplicity, the focus is to construct transfers originating from different GTO departure loca-

tions along the ecliptic, i.e., the x̂-ŷ plane of the Sun-Earth rotating frame. This condition is

satisfied via the introduction of the constraint δ = 0◦. The construction of a two-maneuver

transfer is formulated as a multiple-shooting problem and defined via the free-variable and

constraint vectors in Equations ( 6.19 ) and ( 6.20 ). The constraints associated with GTO

departure states from the ecliptic, i.e., δ = 0◦, and a fixed injection location, i.e., Tθ1 = T des
θ1

and θ2 = θdes
2 , are appended to the constraint vector in Equation ( 6.20 ). The solution space

is now two-dimensional, that is the solution space corresponding to a general DSM, i.e.,

Scenario D in Table  6.1 , is reduced by three, Finally, the solution space for two-maneuver

transfers that insert into an ideal injection point along a Lissajous orbit from a GTO pe-

riapsis position along the Sun-Earth ecliptic is two-dimensional. An initial guess for single

two-maneuver transfer is generated via a Poincaré mapping using a geometric surface of sec-

tion. After an initial guess is identified, the two-dimensional surface of solutions is created

by pseudo-arclength continuation, the steps consistent with this methodology are outlined in

Section  6.3.1 . The surfaces in Figures  6.38 - 6.40 correspond to the injection point θ2 = 93.8◦

and Figures  6.41 - 6.43 are associated with an injection point of θ2 = 273.95◦.

The two-dimensional curve of solutions presented in Figures  6.38 - 6.43 span the range of

GTO departure locations, i.e., λ. Observe that for both identified injection points, θ2 =

93.8◦, 273.95◦, the surfaces constructed cover the entire span of λ, that is, −180◦ ≤ λ ≤ 180◦;

recall that each point on the surface corresponds to a single two-maneuver transfer. In

Figures  6.38 - 6.43 , each point on the surface is plotted via a range of colors that represent

the magnitude of a general DSM, i.e., the direction of performed DSM is unrestricted as

opposed to a tangential maneuver. In Figures  6.38 (b)- 6.43 (b), the magnitude of the TIM,

the maneuver performed at the GTO departure location, is displayed for the associated

surface. For the computed two-dimensional surfaces, the magnitude of the TIM is in the

range of 740 m/s ≤ ∆VTIM ≤ 780 m/s. The surfaces generated and plotted in Figures  6.38 -

 6.43 only represent a subset of all the possible two-dimensional surfaces available. In this

investigation, the information from the two-dimensional surfaces serve to construct optimal

transfers into a selected Lissajous orbit.
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(a) (b)

Figure 6.38. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection with θ2 = 93.8◦, i.e., a Type A transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations. The initial
guess corresponds to a GTO departure location of λ = 0◦

(a) (b)

Figure 6.39. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection with θ2 = 93.8◦, i.e., a Type A transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations. The initial
guess corresponds to a GTO departure location of λ = 180◦
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(a) (b)

Figure 6.40. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection with θ2 = 93.8◦, i.e., a Type A transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations. The initial
guess corresponds to a GTO departure location of λ = 270◦

(a) (b)

Figure 6.41. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection with θ2 = 273.95◦, i.e., a Type B transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations. The initial
guess corresponds to a GTO departure location of λ = 0◦
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(a) (b)

Figure 6.42. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection with θ2 = 273.95◦, i.e., a Type B transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations. The initial
guess corresponds to a GTO departure location of λ = 180◦

(a) (b)

Figure 6.43. : (a) surface of two-maneuver transfer solutions into a Lissajous orbit at
an injection with θ2 = 273.95◦, i.e., a Type B transfer. (b) Transfer Injection Maneuver
magnitudes for different GTO departure locations, λ, at varying inclinations. The initial
guess corresponds to a GTO departure location of λ = 270◦
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6.3.3 Optimized transfers into Sun-Earth Quasi-Periodic Orbits

Optimized transfers into quasi-periodic orbits in the Sun-Earth system are constructed

from a range of GTO departure positions by leveraging insight from surface of solutions

corresponding to two-maneuver transfers. In particular, optimal transfers into a pre-selected

injection location, parameterized via θ2, along a Lissajous orbit are explored here. The

surfaces of solutions from Sections  6.3.1 - 6.3.2 reveal potential two-maneuver transfers from

a range of GTO departure positions, i.e., the complete set of values for λ, with δ = 0◦, i.e.,

on the Sun-Earth ecliptic. But these transfers are also initial guesses to compute optimal

transfers. For demonstration, in this investigation, optimized transfers are constructed from

GTO departure states corresponding to a range of Ω values, as noted in Table  4.1 for a specific

departure epoch. More specifically, the GTO departure state is computed via Equations

( 4.1 )-( 4.2 ) with the inertial Keplerian orbital elements in Table  4.1 at a specified epoch.

The states are then rotated from the inertial EME frame into the Sun-Earth rotating frame

through the process outlined in Section  2.3.2.2 . Recall that the optimization process is

performed in the Sun-Earth rotating frame, thus the GTO, as expressed in terms of the

rotating frame, possesses a range of ri, λ, and δ values, as plotted in Figures  4.7 - 4.10 .

To reduce the total ∆V necessary for the transfer, the number of maneuvers is increased

to four and include: a TIM, two DSMs, and one Orbit Injection Maneuver. Recall that

the two-maneuver transfers included a TIM and a single DSM, labeled DSM1, because the

transfer incorporated a stable manifold trajectory to asymptotically approach and enter the

Lissajous orbit at a desired injection point. Now, an additional DSM, termed DSM2, and

a maneuver at the Lissajous injection point, denoted as OIM, are introduced to construct

an optimal transfer in search of a minimal ∆V solution. The transfer is described via a

multiple-shooting scheme illustrated in Figure  6.44 , where the TIM is in cyan, the two

DSMs are in red along the transfer, and the OIM is a purple point with red edges. The

location of the DSMs along the final transfer trajectory is a free variable in the optimization

process with the location of the TIM and the OIM fixed at the GTO departure location

and Lissajous injection location, respectively. A direct optimization scheme is implemented
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Figure 6.44. : Multiple-shooting schematic for optimization process consistent with trans-
fers into Lissajous orbits. The optimized transfer implements four maneuvers

via MATLAB’s fmincon optimization function to compute a locally optimum transfer that

minimizes the following cost function:

J = min
{

∆VTIM +
b∑

j=1
∆V DSM

j + ∆VOIM

}
(6.26)

Subject to:

Continuity Constraint: X̄m−1(Tm−1) = X̄m(0) where {m ∈ {2, ..., N}|m /∈ B̄},

Boundary Constraint: r̄0(0) = r̄1(0) , r̄N(TN) = r̄inj(Tθ1 , θ2) , T0 = 0 , X̄0 = X̄GTO,

Path Constraint:
N∑
j

∫ Tj

0
F 2

p

(
X̄j(t)

)
−
∣∣∣∣Fp

(
X̄j(t)

) ∣∣∣∣Fp
(
X̄j(t)

)
dt = 0,

Maneuver Conditions: r̄k−1(Tk−1) = r̄k(0) where {k ∈ B̄},

(6.27)

where the B̄ vector is given as {B̄ = {2, · · · , N}} and contains location of applied maneuvers,

i.e., the nodes corresponding to the location of a maneuver. For example, if the vector B̄

is defined as: B̄ = {2, 3}, then the location of the performed maneuvers is at the beginning

of the second and third nodes, i.e., the states X̄2 and X̄3, respectively. Additionally, a

path constraint is included to implement any communications or eclipse constraints enforced
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throughout the transfer. The steps consistent with computing a locally optimal transfer from

a GTO departure state into a pre-selected injection location along a quasi-periodic orbit are:

• Compute GTO departure position and state in inertial EME frame from set of Keple-

rian orbit elements, {Ω, ω, ii, a, e, ν}. In this analysis, the Keplerian elements are listed

in Table  4.1 with a variable Ω angle.

• Select an Ω value and rotate the GTO departure state, X̄
i

GTO, from the inertial EME

frame into the Sun-Earth rotating frame, X̄GTO, at the specified epoch. Note that the

rotation process is described via the steps in Section  2.3.2.2 .

• Evaluate λdep and δdep values associated with GTO departure state, X̄GTO.

• Select a two-maneuver transfer from a surface of solution that contains the λdep value of

the rotated GTO departure state. Recall that the two-dimensional surface of solution

is constructed from the Sun-Earth ecliptic, i.e., δ = 0◦, but X̄GTO may have a nonzero

δ value.

• The selected two-maneuver transfer is an initial guess for the optimization process

described via Equations ( 6.26 )-( 6.27 ) and is solved using MATLAB’s fmincon function.

The optimization process described in this section is implemented to construct locally optimal

transfers into Sun-Earth L1 and L2 Lissajous orbits, but is easily extended to compute

optimized transfers for any quasi-periodic orbit generated from a two-dimensional torus.

6.3.3.1 Transfers to L1 Lissajous Orbit

Optimal transfers into Sun-Earth L1 Lissajous orbits are constructed by implementing

an optimization process in conjunction with a multiple-shooting strategy and leveraging

information from the two-maneuver analysis. Two-maneuver transfers into an ACE-like

Lissajous orbit, plotted in Figure  6.21 , occur along a two-dimensional surface considering
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a GTO departure location along the Sun-Earth ecliptic, i.e., δ = 0◦ from Figure  4.5 (b).

The departure states are computed over a range of Ω values, i.e., Ω ∈ {0◦, 20◦, · · · , 340◦}

with a departure epoch of June 2, 2022 12:00:00.000. Additionally, a SEZ communications

constraint is enforced along the transfer to L1 Lissajous orbits with the constraint written

such that: α(t) > αSEZ, where αSEZ = 5◦. Recall that the SEZ is illustrated in Figure

 5.52 with the SEV angle, α, defined with Equation ( 5.56 ). The steps consistent with the

construction of optimal transfers to the Sun-Earth L1 Lissajous orbit in the context of the

CRTBP are outlined in Section  6.3.3 . The required ∆V magnitudes corresponding to a range

of GTO departure locations into the injection location defined via θ2 = 152.85◦, i.e., Type

A transfers, from Figure  6.24 , are plotted in Figure  6.45 . Additionally, the ∆V information

for locally optimal transfers into an injection location of θ2 = 335.35◦, i.e., Type B transfers,

and recalling the trajectory in Figure  6.48 , are plotted in Figure  6.45 . The geometry of the

optimized solutions for both transfer types are plotted in Figures  6.47 - 6.48 . In Figure  6.45 ,

the ∆V point corresponds to a departure location, identified by an Ω value, and displayed

via a range of colors associated with the transfer TOF value. Note that the TOF value

is measured from the GTO departure location to the injection point along the Lissajous

orbit as the ideal location is selected such as to maximize the time outside the SEZ region.

From any GTO departure location, i.e., parameterized by Ω in this example, there are two

injection options available. For example, for a GTO departure location of Ω = 220◦, two

points in the red box in Figure  6.45 represent the two transfers available, recalling that

these are four-maneuver transfers. Observe that for Ω = 220◦, a Type A transfer requires

approximately 100 m/s less compared to the Type B transfer. The geometry comparison of

these two transfers are plotted in Figure  6.46 , where the red points are the locations of the

performed maneuvers.
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Type A

Type B

Figure 6.45. : ∆V information for optimal Type A and Type B transfers to Sun-Earth L1
Lissajous orbit with a departure epoch of June 2, 2022 12:00:00.000. Recall that Type A
and B transfers correspond to injection points of θ2 = 152.85◦ and θ2 = 333.35◦, respectively

Figure 6.46. : Comparison of transfers from a GTO departure location of Ω = 220◦. The
location of the maneuvers are displayed via red points
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Figure 6.47. : Optimized Type A transfers to Sun-Earth Lissajous orbit with a departure epoch of June 2, 2022 12:00:00.000.
The desired Lissajous orbit is plotted in a dashed black line and the SEZ cone is shaded in red. The motion of the trajectory
post-injection, in the ŷ-ẑ projection, is counter-clockwise based on an Earth observer
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Figure 6.48. : Optimized Type B transfers to Sun-Earth Lissajous orbit with a departure epoch of June 2, 2022 12:00:00.000.
The desired Lissajous orbit is plotted in a dashed black line and the SEZ cone is shaded in red. The motion of the trajectory
post-injection, in the ŷ-ẑ projection, is clockwise based on an Earth observer
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Both trajectories in Figure  6.46 travel below the ecliptic, i.e., x̂-ŷ plane, to enter their respec-

tive injection location along the desired Lissajous orbit. For Type A optimized transfers,

the trajectories approach the L1 Lissajous orbit in a counter-clockwise direction, see the

ŷ -ẑ projection in Figure  6.47 . Alternatively, the motion approaching the injection point

associated with Type B transfers is clockwise in Figure  6.48 . Note that the ŷ -ẑ projec-

tions in Figures  6.47 - 6.48 are based on an Earth observer. Observe that the location of the

maneuvers for the optimal transfers are the red points in Figures  6.47 - 6.48 ; recalling that

four maneuvers are included in the optimization process. Additionally, the GTO departure

locations that correspond to an excursion to L2 are observed in the range of 40◦ ≤ Ω ≤ 200◦

for both transfer types and are displayed in Figures  6.47 - 6.48 . For transfers into Sun-Earth

L1 Lissajous orbits, a SEZ cone constraint is included and the αSEZ = 5◦ cone is plotted in

Figures  6.47 - 6.48 . However, the projections of the transfers do not capture if the trajectories

cross into the SEZ region along the transfer. Therefore, a polar plot is constructed, similar

to the plots in Figures  6.24 - 6.25 , to observe any SEZ crossing conditions. In Figure  6.49 ,

the injection point is marked in magenta and the SEZ region, corresponding to αSEZ = 5◦,

is the red line. Observe that the transfers in both polar plots in Figure  6.49 , remain outside

the SEZ region throughout their respective trajectories.

L
1

Injection Point

(a)

L
1

Injection 

Point

(b)

Figure 6.49. : Plot with angular dimension equal to ξ and the radial direction is the SEV
angle for (a) injection point of θ2 = 152.85◦, Type A transfers, and (b) θ2 = 333.35◦, Type
B transfers
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Optimized transfer are constructed for a range of GTO departure locations for a

selected departure epoch of June 2, 2022 12:00:00.000. Initial guesses for the optimization

process are retrieved from the surface of solutions of two-maneuver transfers in Section  6.3.1 .

A summary of the maneuver magnitudes for the optimized transfers are provided in Tables

 6.4 - 6.5 . The magnitude of the TIM for each transfer is contained in the range 740 m/s

≤ ∆VTIM ≤ 850 m/s and observe that, for most optimal transfers computed, the magnitude

of DSM2 is larger than DSM1 and the OIM. In the optimization process, previous intuition is

implemented to select the location of DSM2, recall that DSM1 is retrieved from the surface of

solutions of the two-maneuver transfers, along the trajectory. Throughout the optimization

process, the location of DSM1 and DSM2 are unconstrained, but the initial guess must be

adequate. The optimized transfers in this section are computed for a desired epoch, however,

the two-maneuver surfaces of solution are applicable over a range of GTO departure locations

with any departure epoch.

Table 6.4. : Maneuver magnitudes (m/s) for optimal transfer to Sun-Earth L1 Lissajous
with an injection location of θ2 = 152.85◦, i.e., Type A transfers

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 763 76 558 20 1417
20 769 80 634 23 1506
40 755 0 148 32 935
60 748 13 171 111 1042
80 747 97 214 63 1122
100 749 0 507 90 1346
120 752 138 97 171 1157
140 791 79 166 150 1187
160 769 12 155 96 1032
180 791 38 242 39 1110
200 772 75 408 41 1296
220 757 12 345 36 1149
240 804 0 206 90 1100
260 762 7 107 193 1069
280 747 173 165 27 1112
300 750 0 229 136 1116
320 754 35 361 33 1183
340 764 11 467 17 1259
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Table 6.5. : Maneuver magnitudes (m/s) for optimal transfer to Sun-Earth L1 Lissajous
with an injection location of θ2 = 335.35◦, i.e., Type B transfers

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 764 65 480 98 1406
20 777 6 507 170 1460
40 776 125 271 5 1177
60 781 178 237 31 1226
80 748 91 355 5 1199
100 803 75 305 3 1186
120 753 412 123 3 1291
140 755 103 233 3 1094
160 760 29 261 4 1053
180 766 4 243 3 1016
200 773 60 210 4 1047
220 748 180 259 53 1239
240 754 8 245 183 1191
260 822 435 209 3 1469
280 748 3 249 171 1171
300 758 4 250 214 1226
320 842 209 370 54 1475
340 759 112 254 242 1368

6.3.3.2 Transfers to L2 Lissajous Orbit

Optimal transfers into a pre-selected Sun-Earth L2 Lissajous orbit is facilitated by the

two-maneuver surfaces of solution and an optimization process. Two-maneuver transfers into

an L2 Lissajous orbit, consistent with the Gaia mission[ 13 ], lie on a two-dimensional surface

of solutions considering the GTO departure location is along the Sun-Earth ecliptic. Recall

that two ideal injection points are identified, see Figures  6.36 and  6.37 , along the selected

Lissajous orbit. As a demonstration, optimized transfers from a range of GTO departure

location with a fixed departure epoch of December 2, 2022 12:00:00.000 are constructed

by leveraging the surface of solution information for two-maneuver transfers. The GTO

departure states are computed for a range of Ω values, such that Ω ∈ {0◦, 20◦, · · · , 340◦}.

Additionally, an eclipse condition, defined as the Earth penumbra region illustrated in Figure

 5.60 , is included throughout the transfer. For the eclipse condition, the path constraint

300



for the optimization process, i.e., Equation ( 6.27 ), is written such that Fp is defined via

Equation ( 5.78 ). The steps consistent with the construction of locally optimized transfers

to the Sun-Earth L2 Lissajous orbit, in the context of the CRTBP model, are outlined in

Section  6.3.3 . The required ∆V magnitudes for the range of GTO departure locations to

the ideal injection points, i.e., parameterized via θ2 = 93.8◦, 273.95◦, is plotted in Figure

 6.50 , where the range of colors represents the TOF values. Note that the TOF values is

associated with the transfer from the GTO departure to the Lissajous injection point. In

this investigation, for L2 Lissajous orbits, transfers to an injection point of θ2 = 93.8◦ are

termed as Type A transfer, due to the direction of motion in the ŷ-ẑ projection based

on an Earth observer, see Figure  6.36 . Additionally, Type B transfers correspond to the

injection point of θ2 = 273.95◦, recalling Figure  6.37 . For each departure location, there

are two options, i.e., two injection point locations that maximize a time outside the eclipse

constraint. For example, for a GTO departure state corresponding to Ω = 220◦, the total

∆V for a Type B transfer is lower than a Type A transfer, see the red box in Figure  6.50 . The

trajectories from this departure location are plotted, in configuration space, in Figure  6.51 

with the location of the maneuvers marked in red; recall that each transfer presented has a

total of four corresponding maneuvers. In Figure  6.51 , six revolutions along the Lissajous are

included to display the dynamical behavior of the initial revolutions after satellite injection.

More specifically, for a Type A transfer, the satellite injects into the L2 Lissajous orbit near

the bottom left when viewed in the ŷ -ẑ projection in Figure  6.51 , based on an Earth bserver.

Alternatively, for a Type B transfer, the satellite injects near the bottom right of the ŷ -ẑ

projection. Observe that the injection points locations, θ2 = 93.8◦, 273.95◦, are also plotted

in Figures  6.52 - 6.53 . Note that, while the revolutions around the L2 Lissajous are plotted

in Figure  6.51 , the number of revolutions along a quasi-periodic orbit has no influence in

the optimization process; recalling that the behavior of the revolutions along the Lissajous

orbit serve to identify ideal injection points. The transfer geometries for the range of GTO

departure location corresponding to the selected departure epoch are plotted in Figures  6.52 -

 6.53 . Transfers with an L1 excursion, seen in Figures  6.52 - 6.53 , are associated with GTO

departure range of 20◦ ≤ Ω ≤ 200◦. The trajectories do not cross into the Earth’s penumbral

shadow.
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Type A

Type B

Figure 6.50. : ∆V information for optimal Type A and Type B transfers to Sun-Earth L1
Lissajous orbit with a departure epoch of December 2, 2022 12:00:00.000. Recall that Type
A and B transfers correspond to injection points of θ2 = 93.8◦ and θ2 = 273.95◦, respectively

Figure 6.51. : Comparison of transfers from a GTO departure location of Ω = 220◦. The
location of the maneuvers are displayed via red point
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Figure 6.52. : Optimized Type A transfers to Sun-Earth Lissajous orbit with a departure epoch of December 2, 2022
12:00:00.000. The desired Lissajous orbit is plotted in a dashed black line and the Earth penumbra is in black. The motion of
the trajectory post-injection, in the ŷ-ẑ projection, is counter-clockwise based on an Earth observer
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Figure 6.53. : Optimized Type B transfers to Sun-Earth Lissajous orbit with a departure epoch of December 2, 2022
12:00:00.000. The desired Lissajous orbit is plotted in a dashed black line and the Earth penumbra is in black. The motion of
the trajectory post-injection, in the ŷ-ẑ projection, is clockwise based on an Earth observer
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A summary of the maneuver magnitudes for the optimized transfers are provided in

Tables  6.6 - 6.7 . The magnitude of the TIM for each transfer is contained in the range 735 m/s

≤ ∆VTIM ≤ 770 m/s and observe that, for most optimal transfers computed, the magnitude

of the OIM is less than 40 m/s. In the optimization process, previously gained intuition is

leveraged to select the location of DSM2, recall that DSM1 is retrieved from the surface of

solutions of the two-maneuver transfers, along the trajectory. In the construction of optimal

transfers, via the process described in Section  6.3.3 , the maneuver locations of DSM1 and

DSM2 are unconstrained. The optimized transfers in this section are computed for a desired

epoch, however, the two-maneuver surfaces of solution are applicable for any GTO departure

location with any departure epoch.

Table 6.6. : Maneuver magnitudes (m/s) for optimal transfer to Sun-Earth L2 Lissajous
with an injection location of θ2 = 93.8◦, i.e., Type A transfer

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 754 1 543 20 1319
20 742 130 215 12 1099
40 739 0 294 21 1054
60 735 194 162 15 1107
80 734 278 146 22 1180
100 738 262 145 23 1168
120 741 150 129 19 1038
140 743 154 128 5 1030
160 749 36 153 6 943
180 754 21 119 6 901
200 763 27 119 9 918
220 744 0 358 26 1128
240 737 0 282 16 1035
260 736 191 89 0 1017
280 734 266 143 32 1175
300 739 196 207 5 1146
320 743 135 311 5 1194
340 748 50 436 17 1251
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Table 6.7. : Maneuver magnitudes (m/s) for optimal transfer to Sun-Earth L2 Lissajous
with an injection location of θ2 = 273.95◦, i.e., Type B transfer

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 754 0 542 5 1300
20 748 65 84 10 907
40 739 38 107 17 901
60 737 131 123 6 997
80 735 161 200 18 1114
100 737 249 123 9 1118
120 740 29 209 32 1010
140 744 184 172 5 1104
160 750 104 221 5 1080
180 764 19 198 10 991
200 762 55 315 6 1138
220 743 45 303 5 1095
240 737 101 182 5 1026
260 736 151 131 5 1023
280 737 211 101 5 1053
300 739 81 282 5 1107
320 744 32 401 12 1188
340 748 2 466 6 1222

6.4 Optimized Transfers in the Ephemeris Model

Optimized transfers in the higher-fidelity ephemeris model to Sun-Earth Lagrange

points are computed via a local optimization scheme. In this investigation, the local opti-

mization scheme implemented is a built-in direct optimization process utilized within the

fmincon function in MATLAB. The optimized multiple maneuver transfers, i.e., transfers

that include four maneuvers, from Sections  6.2.3 and  6.3.3 are transitioned into the inertial

EME frame. In the context of a multiple-shooting problem, the nodes corresponding to

an optimized transfer in the CRTBP model, i.e., the states {X̄0, · · · , X̄N}, are rotated to

the inertial EME frame, {X̄
i 0, · · · , X̄i N}, via the steps summarized in Section  2.3.2.1 . The

state transition method outlined in Section  2.3.2.1 accounts for the oscillating distance be-

tween the Sun and the Earth retrieved from planetary ephemerides; note that the planetary

ephemerides are constructed from astronomical observations. However, there are alterna-
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tive transition methods from the rotating frame of the CRTBP to the inertial EME frame

that utilize a constant CRTBP primary distance, i.e., l∗, see Zimovan [ 65 ], Pavlak [ 77 ], and

Spreen [ 78 ] for further discussion. After a trajectory is transitioned into the inertial EME

frame, at a specified epoch, a feasible transfer in the ephemeris model is generated via a

corrections process, refer to Appendix  E for discussion about the corrections process in the

ephemeris model. Note that for multiple-maneuver transfers, the maneuvers included in

the corrections process are unconstrained, that is, the locations of the maneuvers are free.

Several authors have successfully transitioned and corrected trajectories from the CRTBP

model in the ephemeris model. In this investigation, additional path constraints are included

during the corrections process and a locally optimal trajectory is implemented to construct

transfers from GTO to the Sun-Earth Lagrange points.

The corrections process in the ephemeris model is formulated as an local optimization

problem. The construction of optimal transfers to periodic and quasi-periodic orbits near

Sun-Earth L1 and L2 leveraged the dynamical structure information in the CRTBP model,

i.e., the trajectories within the stable manifold structures. However, no periodic or quasi-

periodic motion exists in the ephemeris model. Although there is quasi-periodic like motion,

no closed bounded motion has been found to exist. To generate periodic-like motion in the

ephemeris model, a typical corrections process includes ”stacking” a series of revolutions

around a periodic orbit such that the corrected trajectory remains near the initial periodic

motion. However, bounded motion, i.e., periodic or quasi-periodic, in the CRTBP model

is not guaranteed to persist in the higher fidelity ephemeris model. One example is the

motion of specific Near Rectilinear Halo Orbit (NRHO), which are periodic in the Earth-

Moon system, but quickly deviate when transitioned and corrected in the (Sun-Earth-Moon)

ephemeris model [ 79 ]. The NRHO example also highlights the epoch dependence nature

of feasible ephemeris solutions. Additionally, epoch dependency may introduce numerical

challenges, although, in some cases, this is often mitigated by introducing an attenuation

factor during the corrections process. In this investigation, the objective is to construct

multiple-maneuver transfers into specific periodic and quasi-periodic orbits in the ephemeris

model. An optimization process is formulated to generate a feasible transfer in the ephemeris
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model with a similar geometry as the CRTBP transfer via a multiple-shooting strategy. The

cost function of the optimization process is denoted as,

Jpath = min
{ N∑

j

∫ τj+Tj

τj

(
r̄
i j(t)− r̄i j,d(t)

)T(
r̄
i j(t)− r̄i j,d(t)

)
dt
}
, (6.28)

where r̄
i j(t) is the position of the satellite in the inertial EME frame and r̄

i j,d(t) is the position

of the corrected CRTBP transfer rotated into the inertial EME frame; recall that τ is the

epoch attached to the node for each transfer arc. The cost function in Equation ( 6.28 )

is derived to minimize the isochronous distance between the satellite and a defined path,

i.e., the previously corrected transfer in the CRTBP model rotated into the EME frame.

Additionally, the cost function in Equation ( 6.28 ) is subject to:

Continuity Constraint: X̄
i m−1(τm−1 + Tm−1) = X̄

i m
(τm) where {m ∈ {2, ..., N}|m /∈ B̄},

Epoch Continuity: τj + Tj = τj+1 where j ∈ {0, ..., N − 1},

Boundary Constraint: X̄
i 0(0) = X̄

i
GTO , r̄

i 0(τ0) = r̄
i 1(τ1) , τ0 = τdes , T0 = 0,

Path Constraint:
N∑
j

∫ Tj

0
F 2

p

(
X̄
i j(t)

)
−
∣∣∣∣Fp

(
X̄
i j(t)

) ∣∣∣∣Fp

(
X̄
i j(t)

)
dt = 0,

Maneuver Conditions: r̄
i k−1(τk−1 + Tk−1) = r̄

i k
(τk) where {k ∈ B̄},

(6.29)

where B̄ is the vector the contains the maneuver locations and is defined as: B̄ ∈ {2, · · · , N}.

The optimization process presented in Equations ( 6.28 ) and (  6.29 ) are consistent with a

multiple-shooting scheme discussed in Appendix  E . The partial derivatives of the cost func-

tion, Jpath, with respect to the state, X̄
i j, and transfer time, Tj, are written as,

∂Jpath

∂X̄
i j

=
∫ τj+Tj

τj
2
(
r̄
i j(t)− r̄i j,d(t)

)T [
I3,3 03,3

]
Φj(τj + t, τj) dt, (6.30)

∂Jpath

∂Tj
=
(
r̄
i j(τj + Tj)− r̄i j,d(τj + Tj)

)T(
r̄
i j(τj + Tj)− r̄i j,d(τj + Tj)

)
, (6.31)
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with the partial derivative with respect to the initial state epoch, τj, denoted as,

∂Jpath

∂τj
=
(
r̄
i j(τj + Tj)− r̄i j,d(τj + Tj)

)T(
r̄
i j(τj + Tj)− r̄i j,d(τj + Tj)

)
−(

r̄
i j(τj)− r̄i j,d(τj)

)T(
r̄
i j(τj)− r̄i j,d(τj)

)
+

∫ τj+Tj

τj
2
(
r̄
i j(t)− r̄i j,d(t)

)T [
I3,3 03,3

] ∂X̄
i j(t)
∂τj

dt.

(6.32)

Observe that the constraint conditions provided in Equation ( 6.29 ) assume at least one

maneuver, at the first node, X̄
i 0. Additionally, the GTO departure state, i.e., X̄

i
GTO, is

computed via Equations ( 4.1 )-( 4.2 ). In this analysis, the corrections process to construct

locally optimal transfers in the ephemeris model is outlined as,

1. Let {X̄0, · · · , X̄N} be the nodes associated with an optimal multiple-maneuver transfer

to a desired orbit near the Sun-Earth L1 or L2 points and w revolutions around the

desired orbit. Only the transfer segment is optimized in the CRTBP model and the

nodes are in the Sun-Earth rotating frame. Note that the desired orbit is either a

periodic or quasi-periodic orbit.

2. Rotate the nodes from the rotating frame to the inertial EME frame via the steps

outlined in Section  2.3.2.1 . The nodes are written as: {X̄
i 0, · · · , X̄i N}.

3. Compute the desired path for the optimization process, i.e., r̄
i j,d(t). First, a collection

of position vectors, r̄j,d(t), is computed from the propagated arc associated with a node,

X̄j. Next, each vector is rotated into the inertial EME frame at a corresponding epoch.

4. Optimize the nodes, {X̄
i j}, via the fmincon function in MATLAB with the cost function

in Equation ( 6.28 ) subject to the conditions in Equation ( 6.29 ). During the optimiza-

tion process, include any path constraints associated with the SEZ cone or the Earth

eclipse. The optimization process computes a trajectory and a number of revolutions,

w, around a desired orbit with a geometry near the desired position vectors, r̄
i j,d(t).
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5. Given an optimized feasible solution in ephemeris. Use following cost function,

J∆V = min
{

∆VTIM +
b∑
j

∆Vj

}
, (6.33)

subject to the optimization conditions in Equation ( 6.29 ) to lower the total ∆V for

the transfer. Recall that the TIM is a maneuver at the GTO departure location and

include any path constraint throughout the transfer. The ∆V is lowered for the transfer

segment and do not include the revolutions around the desired orbit.

In summary, two cost functions are implemented in the construction of optimized transfers in

the ephemeris system. The cost function in Equation ( 6.28 ) attempts to compute a trajectory

with similar geometry as the optimized solution in the CRTBP model. Note that both the

transfer and w revolutions around the desired orbit are included in this initial process. Next,

the cost function in Equation ( 6.33 ) lowers the total ∆V of the transfer segment. The

construction of optimized solutions in the ephemeris model is facilitated by this process.

6.4.1 Optimized Ephemeris Transfers to L1 Halo Orbits

Optimized transfers from a range of GTO departure states to a Sun-Earth L1 halo are

constructed via a multiple-shooting scheme in the higher-fidelity ephemeris model. In this

investigation, optimal transfers into Sun-Earth L1 periodic orbits consistent with the SOHO

operational orbit are computed for a range of GTO departure states. The results of the opti-

mization in the CRTBP model are summarized in Section  6.2.3 . Note that only the transfer

segment is optimized and the injection point along the periodic orbit is unconstrained. In

the construction of optimized transfers to L1 halo orbits in the ephemeris model, the opti-

mized transfer from the CRTBP analysis and five revolutions along the periodic orbit form

an initial guess for the optimization strategy. Recall that the SEZ constraint was omitted

for this example. The steps consistent with the optimization scheme for this scenario are

outlined in Section  6.4 ; note that no additional maneuvers are included during the transfer

segment, that is, the transfer segment has a total of four maneuvers. Recall that the GTO
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departure states correspond to a range of Ω values with the remaining Keplerian orbital

parameters listed in Table  4.1 . The total ∆V results for the range of optimal transfers are

plotted in Figure  6.54 corresponding to a departure epoch of June 2, 2022 12:00:00.000. As

CRTBP

Ephem

Figure 6.54. : Optimized transfers to Sun-Earth L1 halo at epoch with June 2, 2022
12:00:00.000

a comparison, optimized results in the CRTBP and the ephemeris model are displayed in

Figure  6.54 with the color representing the TOF values along the transfer segment, i.e., from

the GTO departure location to the orbit injection point. The ∆V difference between the

two models varies along GTO departure locations, i.e., Ω values, and ranges from 10 m/s

≤ ∆V ≤ 125 m/s. Observe that for most transfer, the TOF difference is small, that is,

less than 5 days. In Figure  6.55 , the geometry of the transfers are plotted in the rotating

frame of the Sun-Earth system; note that the optimization process in ephemeris is in the

inertial EME frame, but the transfer result is transitioned into the rotating frame via the

steps outlined in Section  2.3.2.2 .
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Figure 6.55. : Optimized transfers in the rotating frame to a Sun-Earth L1 halo at epoch of June 2, 2022 12:00:00.000. The
desired southern halo is in black and the transfer are depicted via a range of colors. The ŷ-ẑ projection is based on an Earth
observer
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Figure 6.56. : Optimized transfers in the inertial EME frame to a Sun-Earth L1 halo at epoch of June 2, 2022 12:00:00.000.
The desired southern halo is in black and the transfer are depicted via a range of colors

313



Additionally, the transfers are plotted in the EME frame in Figure  6.56 . In the rotating

frame, the geometry of the optimal ephemeris transfers is similar to the solutions from

the CRTBP optimization, a result that should be expected with the optimization strategy

implemented. Recall, that in the CRTBP optimization, the injection location along the

periodic orbit remains close to the x̂ axis, however, one notable observation is the variation

in the injection points, i.e., the point marked in magenta in Figure  6.55 , for the optimized

ephemeris solutions. In the inertial EME frame, see Figure  6.56 , the location of the injection

points are contained to regions below the ŷ axis and below the Earth equator, i.e., the x̂-ŷ

plane. In Figure  6.56 , the transfers are represented via range of color corresponding to an Ω

value and the arrival ”periodic orbit” is in black, note that the arrival orbit has periodic-like

behavior for five revolutions. Due to the inclination of the ecliptic plane with respect to the

mean Earth equator, i.e., ii = 27◦ from Figure  4.5 , the transfers and subsequent ”periodic

orbit” are inclined in the ŷ-ẑ projection. Additionally, A zoomed view of the transfer near

the GTO departure locations, in the inertial EME frame, is presented in Figure  6.56 . A

summary of the maneuver magnitudes for the optimized ephemeris transfers is provided

in Appendix  F . In this example, optimized transfers to a Sun-Earth L1 halo orbit are

successfully transitioned into the higher-fidelity ephemeris model for a selected departure

epoch over a range of GTO orientations.

6.4.2 Optimized Ephemeris Transfers to L2 Halo Orbits

Optimal transfers from a range of GTO departure states to a Sun-Earth L2 halo

orbits consistent with the Nancy Roman Space Telescope are constructed by leveraging an

optimization strategy. Locally optimal transfers to Sun-Earth L2 halo orbits are computed

over a range of GTO departure states listed in Table  4.1 with the results in the CRTBP model

summarized in Section  6.2.3 . In the construction of optimized transfers to L2 halo orbits in

the ephemeris model, the optimized transfer from the CRTBP analysis and five revolutions

along the periodic orbit form an initial guess for the optimization strategy. Additionally,

the OIM, performed at the periodic orbit injection location, magnitude is constrained such
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that ∆V ≤ 15 m/s. Note that the optimized CRTBP transfers include four maneuvers and

no additional maneuvers are added when transitioned into the ephemeris model. Eclipsing

constraints, defined as the Earth’s penumbra region, are included in the optimization process

and written as a path constraint along the transfer segment; note that the geometry of the

selected L2 halo orbit is eclipse free. The steps consistent with the optimization scheme

for this scenario are outlined in Section  6.4 . The total ∆V results for the range of optimal

transfer are plotted in Figure  6.57 corresponding to a departure epoch of December 2, 2022

12:00:00.000. As a comparison, optimized results in the CRTBP and the ephemeris model

CRTBP

Ephem

Figure 6.57. : Optimized transfers to Sun-Earth L2 halo at epoch with Dec 2, 2022
12:00:00.000

are displayed in Figure  6.57 with the color representing the TOF values along the transfer

segment, i.e., from the GTO departure location to the orbit injection point.
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Figure 6.58. : Optimized transfers in the rotating frame to Sun-Earth L2 halo with departure epoch of Dec 2, 2022
12:00:00.000. The desired southern halo is in black and the transfers are depicted via a range of colors. The ŷ-ẑ projection is
with respect to an Earth observer.
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Figure 6.59. : Optimized transfers in the inertial EME frame to a Sun-Earth L2 halo with departure epoch of Dec 2, 2022
12:00:00.000. The desired southern halo is in black and the transfers are depicted via a range of colors

317



The ∆V difference between the two models varies along GTO departure locations, i.e., Ω

values, and ranges from 1.5 m/s ≤ ∆V ≤ 164 m/s with the TOF differences less than 1

day. In Figure  6.58 , the geometry of the transfers are plotted in the rotating frame of the

Sun-Earth system with the inertial EME frame represented in Figure  6.59 . Additionally, a

summary of the maneuver magnitudes is provided in Appendix  F . In the rotating frame,

i.e., Figure  6.58 , the geometry of the optimal ephemeris transfers in configuration space

is similar to the transfers from the CRTBP optimization, expected with the optimization

strategy implemented. Observe that the injection points, points marked in magenta in Figure

 6.58 , occur at different location along the ”periodic” halo orbit; note that the corrected halo

orbit segment in ephemeris is not periodic, but its geometry is near-periodic for the five

revolutions utilized in the optimization process. For each optimized transfer, the location of

the OIM, i.e., the location of the injection point, is contingent on the constraint: ∆VOIM ≤ 15

m/s. Each transfer in Figure  6.59 is represented via a range of color that corresponds to the

GTO departure Ω value and the halo orbit segment is in black. Observe that the location

of most injection points, in magenta, are situated in a region below the ŷ axis, except for

two transfers. Additionally, the optimized transfers and their corresponding orbit segments

are inclined as viewed in the ŷ-ẑ plane. In the construction of optimized transfers in the

ephemeris model, the optimized solutions in the CRTBP model serve as appropriate initial

guesses. The optimization strategy implemented aids in the search for a transfer in the

higher-fidelity ephemeris model that maintains similar geometry characteristics as the initial

guess.

6.4.3 Optimized Ephemeris Transfers to L1 Lissajous Orbits

Optimal transfers over a range of GTO departure states to ideal injection locations

along a Sun-Earth ACE-like L1 Lissajous orbit are constructed by leveraging the optimized

results from the CRTBP. Locally optimal transfers into Sun-Earth L1 Lissajous orbits are

computed for the range of GTO departure states listed in Table  4.1 . Recall that in Section

 6.3.1 , two ideal L1 Lissajous injection locations are identified such that the time outside a
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communications constraint, Tout, is maximized for a propagated trajectory originating from

an ideal injection location. Note that the communications constraint adopted for L1 transfers

is represented via a right circular cone illustrated in Figure  5.52 with an SEV angle of αSEZ =

5◦, see Equation ( 5.56 ). Additionally, optimized transfers for each ideal injection point are

separated into Type A, counter-clockwise motion when viewed from earth, and Type B, the

clockwise motion from an Earth observer. The locally optimized transfer results within the

context of the CRTBP model are summarized in Section  6.3.3.1 . In the construction of

optimized transfers to L1 Lissajous orbits in the ephemeris model, the optimized transfers

from the CRTBP analysis, termed the transfer segment, and seven revolutions along the

Lissajous orbit, labeled the Lissajous segment, form an initial guess for the optimization

strategy. The SEZ constraint, i.e., the communications constraint, is enforced as a path

constraint in Equation ( 6.29 ). The steps consistent with the optimization scheme for this

scenario are outlined in Section  6.4 . The total ∆V results for the range of optimal transfers

are plotted in Figure  6.60 corresponding to a departure epoch of June 2, 2022 12:00:00.000.

A comparison of the optimized Type A transfers is plotted in Figure  6.60 (a) with Type

B transfers displayed in Figure  6.60 (b), note that the color represents the TOF for the

transfer segment. Observe that the total ∆V difference, between the ephemeris and CRTBP

results, range for Type A transfers is 4.0 m/s ≤ ∆V ≤ 227 m/s and for Type B transfers

is 1.5 m/s ≤ ∆V ≤ 164 m/s. The optimized transfer geometries in the Sun-Earth rotating

frames for Type A and B transfers are plotted in Figures  6.61 and  6.63 with the SEZ cone

presented in red. Additionally, an inertial view of the locally optimal results are plotted in

Figures  6.62 and  6.64 . Observe that in Figures  6.61 - 6.64 , the transfer segments are displayed

via a range of color representing the GTO departure Ω value and the Lissajous segment is

in black. The injection points are marked in magenta and any additional maneuvers are

marked as red points. In the Sun-Earth rotating frame, i.e., Figures  6.61 and  6.63 , the

geometries of the ephemeris transfers are similar in configuration space, i.e., position space,

to the optimized transfers in the CRTBP model. Next, the motion of the Lissajous segment

for Type A transfers, i.e., corresponding to an ideal injection point of θ2 = 152.85◦, in

Figure  6.61 is counter-clockwise; note that the ŷ -ẑ view is directed from an Earth observer.

Additionally, the motion of the Type B transfer, i.e., θ2 = 335.35◦, is clockwise in the ŷ -ẑ
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Figure 6.60. : ∆V information for the optimized transfers into an L1 Lissajous orbit at
the desired injection points corresponding to (a) Type A and (b) Type B transfers from a
departure epoch of June 2, 2022 12:00:00.000. The difference between the results from the
CRTBP (magenta) and ephemeris (black) vary at each departure location, i.e., Ω

projection of Figure  6.63 . Finally, in the rotating frame, the location of the injections points,

in magenta, for the ephemeris transfers are contained within a small region, as opposed to

the fixed injection point asssociated with all optimized CRTBP transfers. Recall that in the

optimization process in ephemeris, the location of the injection point is unconstrained. In the

inertial EME frame, presented in Figures  6.62 and  6.64 , the injection points for the ephemeris

transfer are not contained within a certain region and are distributed along positions in

configuration space. Recall that the Lissajous segment, i.e., the optimized transfer segment

after the injection maneuver, OIM, is plotted in black. In the selection of injection points,

the objective is to enter a Lissajous orbit and maximize the time outside the SEZ cone, i.e.,

Tout. For the optimized transfers in the CRTBP, Tout is computed by using information from

the Lissajous orbit, see Figure  6.22 . The Tout values for Type A and B ephemeris transfers

are plotted in Figure  6.65 .
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Figure 6.61. : Optimized Type A transfers in the rotating frame to Sun-Earth L1 Lissajous orbit with a departure epoch of
June 2, 2022 12:00:00.000. The motion of the Lissajous segment in the ȳ-ẑ projection, as viewed from the Earth, is counter-
clockwise
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Figure 6.62. : Optimized Type A transfers in the inertial EME frame to Sun-Earth L1 Lissajous orbit with a departure
epoch of June 2, 2022 12:00:00.000. The Lissajous segment is in black and the transfers are depicted via a range of colors
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Figure 6.63. : Optimized Type B transfers in the rotating frame to Sun-Earth L1 Lissajous orbit with a departure epoch of
June 2, 2022 12:00:00.000. The motion of the Lissajous segment in the ȳ-ẑ projection, as viewed from the Earth, is clockwise
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Figure 6.64. : Optimized Type B transfers in the inertial EME frame to Sun-Earth L1 Lissajous orbit with a departure
epoch of June 2, 2022 12:00:00.000. The Lissajous segment is in black and the transfers are depicted via a range of colors
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For the locally optimal CRTBP transfer, the time outside the SEZ is 794 days, i.e., approx-

CRTBP

Crossing

into SEZ

(a)

Crossing into SEZ

CRTBP

(b)

Figure 6.65. : Time outside the SEZ region, Tout, for the optimized transfers into an L1
Lissajous orbit at the desired injection points corresponding to (a) Type A and (b) Type
B transfers from a departure epoch of June 2, 2022 12:00:00.000. The fixed value of the
CRTBP Tout value is presented in a red dashed line

imately over two years, displayed as a red dashed line in Figure  6.65 . In Figure  6.65 (a), cor-

responding to Type A transfers, most optimized ephemeris transfers have a Tout value within

10 days of the CRTBP Tout value. However, for the transfer corresponding to Ω = 200◦, the

Tout value is significantly longer because it contains an additional revolution above the SEZ

constraint, defined via an SEV angle of αSEZ = 5◦. Alternatively, for Type B transfers in

Figure  6.65 (b), there is more variation in the Tout values over the different GTO departure

locations. Observe that the maximum Tout variation is approximately 90 days, i.e., half the

period of one revolution along the Lissajous orbit, note that the time between each valley

in the SEV, α, plot for each transfer is approximately 90 days. In this investigation, opti-

mized transfers in the CRTBP model into selected locations along a Lissajous orbit in the

Sun-Earth L1 point are successfully transitioned into the ephemeris model. Note that the

optimized results implemented a path constraint in the ephemeris model to maintain the
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trajectories outside an enforced communications region, i.e., the SEZ region. Finally, the

optimization method implemented is easily extended to different departure epochs.

6.4.4 Optimized Ephemeris Transfers to L2 Lissajous Orbits

Optimized transfers over a range of GTO departure states to a Sun-Earth L2 Lissajous

orbit are constructed in the ephemeris model. Locally optimal transfers into a Sun-Earth

L2 Lissajous orbits, with a similar geometry to the Gaia mission[ 13 ], are computed for the

range of GTO departure states listed in Table  4.1 . Recall that in Section  6.3.2 , two ideal L2

Lissajous injection locations are identified such that the time outside the Earth’s penumbra,

Tout, is maximized. The Earth’s penumbra is illustrated in Figure  5.60 and the constraint is

formulated such that the satellite shadow angle, ζ defined via Equation (  5.73 ), is greater than

the penumbra angle, ζPU. Additionally, optimized transfers for each ideal injection points

are separated into Type A, the motion of trajectory is counter-clockwise when viewed from

an Earth observer, and Type B, i.e., clockwise motion. From Figure  6.34 , Type A transfers

correspond to an invariant curve angle of θ2 = 93.8◦ and Type B transfers are associated with

θ2 = 273.95◦, see Figures  6.36 - 6.37 for the corresponding trajectories. The locally optimized

transfer results within the context of the CRTBP model are summarized in Section  6.3.3.2 .

In the construction of optimized transfers to L2 Lissajous orbits in the ephemeris model, the

optimized transfers from the CRTBP analysis, i.e., the transfer segment, and 16 revolutions

along the L2 Lissajous orbit, labeled the Lissajous segment, form an initial guess for the

optimization strategy. The eclipsing constraint is enforced as a path constraint in Equation

( 6.29 ) with the steps consistent with the optimization scheme for this scenario outlined in

Section  6.4 . The total ∆V results for the range of optimal transfers are plotted in Figure

 6.66 corresponding to a departure epoch of December 2, 2022 12:00:00.000. A comparison

of optimized Type A transfers is plotted in Figure  6.66 (a) with Type B transfers displayed

in Figure  6.66 (b), note that the color represents the TOF for the transfer segment. Observe

that the ∆V difference range for Type A transfer is 1 m/s ≤ ∆V ≤ 141 m/s and for Type

B is 1 m/s ≤ ∆V ≤ 82 m/s. The optimized transfer geometries in the Sun-Earth rotating
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Figure 6.66. : ∆V information for the optimized transfers into an L2 Lissajous orbit at
the desired injection points corresponding to (a) Type A and (b) Type B transfers from a
departure epoch of December 2, 2022 12:00:00.000. The difference between the results from
the CRTBP (magenta) and ephemeris (black) vary for each departure location, i.e., Ω

frames for Type A and B transfers are plotted in Figures  6.67 and  6.69 with the SEZ cone

presented in red. Additionally, the inertial view for the locally optimal results are plotted

in Figures  6.68 and  6.70 . Observe that in Figures  6.67 and  6.69 , the transfer segments are

displayed via a range of color representing the GTO departure Ω value and the Lissajous

segment is in black. Additionally, the injection points are marked in magenta and the

additional maneuvers are marked as red points; recalling that two DSMs are included along

the transfer. In the Sun-Earth rotating frame, i.e., Figures  6.67 and  6.69 , the geometries

of the ephemeris transfers are similar in configuration space, i.e., position space, to the

optimized results in the CRTBP model. The motion of the Lissajous segment observed for

Type A transfers, in Figure  6.61 , is counter-clockwise and the motion for Type B transfers

is clockwise; note that the ŷ -ẑ view is directed from an Earth observer.
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Figure 6.67. : Optimized Type A transfers in the rotating frame to Sun-Earth L2 Lissajous orbit with a departure epoch
of December 2, 2022 12:00:00.000. The motion of the Lissajous segment in the ȳ-ẑ projection, as viewed from the Earth, is
counter-clockwise. Note that only two revolutions along the Lissajous orbits are plotted
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Figure 6.68. : Optimized Type A transfers in the inertial EME frame to Sun-Earth L2 Lissajous orbit with a departure
epoch of December 2, 2022 12:00:00.000. The Lissajous segment is in black and the transfers are depicted via a range of colors
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Figure 6.69. : Optimized Type B transfers in the rotating frame to Sun-Earth L2 Lissajous orbit with a departure epoch
of December 2, 2022 12:00:00.000. The motion of the Lissajous segment in the ȳ-ẑ projection, as viewed from the Earth, is
clockwise. Note that only two revolutions along the Lissajous orbits are plotted
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Figure 6.70. : Optimized Type B transfers in the inertial EME frame to Sun-Earth L2 Lissajous orbit with a departure
epoch of December 2, 2022 12:00:00.000. The Lissajous segment is in black and the transfers are depicted via a range of colors
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Observe that, in the rotating frame, the location of the injections points, in magenta, for the

ephemeris transfers are contained within a small region, as opposed to the fixed injection

point asssociated with all optimized CRTBP transfers. In Figures  6.67 and  6.69 , only two

revolutions around the Lissajous orbit are plotted, however 16 revolutions are included in

the ephemeris optimization process. In the inertial EME frame, presented in Figures  6.68 

and  6.70 , the injection points for the ephemeris transfer are not contained within a certain

region and are distributed in configuration space. Recall that the Lissajous segment, i.e., the

optimized trajectory segment after the injection maneuver, OIM, is plotted in black. In the

selection of injection points, the objective is to enter a L2 Lissajous orbit and maximize the

time before the satellite crosses into the penumbra shadow region, i.e., Tout. For the optimized

transfers in the CRTBP, Tout is computed by using information from the L2 Lissajous orbit,

see Figure  6.34 . The Tout values for Type A and B ephemeris transfers are plotted in Figure

 6.71 . For the locally optimal CRTBP transfer, the time outside the SEZ is 2715 days,

Crossing into

Penumbra

CRTBP

(a)

Crossing into

Penumbra

CRTBP

(b)

Figure 6.71. : Time outside the SEZ region, Tout, for (a) Type A and (b) Type B transfers
from a departure epoch of December 2, 2022 12:00:00.000. The fixed value of the CRTBP
Tout value is presented in a red dashed line

i.e., approximately over seven years, displayed as a red dashed line in Figure  6.71 . For

Type A and B transfer, the Tout values are approximately 90 days above the CRTBP time
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of 2715 days; recall that the period of one revolution along the Lissajous orbit is roughly

180 days and the time between each valley in the shadow angle, ζ, plot for each transfer

is approximately 90 days. In this investigation, optimized transfers in the CRTBP model

into selected locations along a Lissajous orbit in the Sun-Earth L2 point are successfully

transitioned into the ephemeris model. Note that the optimized results implemented a path

constraint in the ephemeris model to maintain the trajectories outside an enforced eclipsing

constraint. Finally, the optimization method implemented is easily extended with different

departure epochs.
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7. CONCLUDING REMARKS

The construction of efficient transfers in the Sun-Earth system for ridesharing spacecraft ne-

cessitates flexible strategies that leverage the dynamical structures available in the CRTBP

model. With the introduction of propulsive ESPA rings, transfers to regions beyond GEO

become available for dropped-off secondary payloads in a ridesharing configuration. The

propulsive ESPA ring is, essentially, an upper stage for secondary payloads and offers the

opportunity to deliver multiple spacecraft, i.e., smallsats, to regions near the Sun-Earth

Lagrange points. In this investigation, strategies are formulated to construct transfers for

secondary payloads in a drop-off GTO to orbits near Sun-Earth L1 and L2 points. To address

the absence of information regarding GTO orientation and departure epochs, the strategies

offered in this investigation produce a families of transfers from a range GTO departure

locations. The methodologies formulated in this analysis produce efficient transfer options

by implementing a dynamical systems approach rather than a large and possibly computa-

tionally expensive grid search. Additionally, the transfers produced are easily transitioned

into a higher-fidelity model to verify the persistence of any desired transfers properties, such

as geometry or TOF. The transfer results are summarized in the following Sections.

7.1 Summary of Ballistic Transfers in the Sun-Earth System

In this investigation, the ridesharing scenario includes a secondary payload, i.e., a

smallsat, delivered into a GTO with a periapsis altitude of 185 km. With no a priori in-

formation about the orientation of the drop-off GTO, i.e., Keplerian orbital elements, or

the departure epochs, transfer options for secondary payloads are constructed for a range of

GTO departure locations. Recall that the secondary payload departs the GTO at periapsis,

such that, a GTO departure location is essentially the position of the GTO periapsis in con-

figuration space. Ballistic transfers, i.e., single maneuver transfer, to orbits in the Sun-Earth

system are constructed by leveraging the invariant stable manifold structures corresponding

to periodic and quasi-periodic orbits. In the context of this investigation, ballistic transfers

334



represent the most theoretically efficient, not assuming maneuver errors, ”one burn” transfers

available to secondary payloads; note that efficiency does not correspond to low ∆V mag-

nitudes. Two families of periodic orbits are investigated, the planar-Lyapunov orbits and

out-of-plane halo orbits near Sun-Earth L1 and L2 . Transfers for the planar Lyapunov orbits

are available from most GTO departure locations near the Earth with the Periodic Orbit

Ballistic Transfer Gap classified as a region with no available ballistic transfers. Transfers

from both prograde and retrograde GTOs are constructed with this methodology. Families

of ballistic transfers into the spatial halo orbits near Sun-Earth L1 and L2 are contained

in closed one-dimensional curves. The GTO departure locations corresponding to spatial

halo orbits is more limited, however, the addition of ballistic transfers to quasi-halo orbits

increases the region of access. By considering quasi-periodic orbits, ballistic transfers are

available from a wider range of GTO departure locations. Note that both direct and indirect,

i.e., containing an outbound excursion or Earth flybys, ballistic transfers are constructed.

A guide for direct ballistic transfers from prograde GTOs to quasi-periodic orbits

near Sun-Earth L1 and L2 is constructed over a range of GTO orientations around the

Earth. This guide is a reference of direct ballistic transfers from a secondary payload for a

range of prograde GTO orientations to quasi-periodic orbits near the Sun-Earth Lagrange

points. Additional constraints, such as communications and Earth eclipsing constraints, are

enforced throughout the transfers. To incorporate additional constraints, such as the Solar

Exclusion Zone and Earth penumbra condition, a path constraint function is formulated and

implemented in a differential corrections process. The introduction of the SEZ and eclipsing

constraints increases the ∆V magnitude from GTOs with lower inclinations. Finally, the

persistence of specific properties of ballistic transfers, such as geometry, is observed when

transitioned to a higher-fidelity model. The information summarized in the collection of

direct ballistic transfers provide initial orbit sizes, i.e., orbit amplitudes, and approximate

∆V magnitudes over a range of GTO orientations.
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7.2 Multiple-Maneuver Transfers to Sun-Earth Lagrange Point Orbits

Multiple-maneuver transfers to predetermined orbits near Sun-Earth Lagrange points

are constructed by leveraging dynamical structures in the CRTBP model. In this analysis,

specific periodic and quasi-periodic orbits near Sun-Earth L1 and L2 are selected as potential

destinations for secondary payloads. To construct multiple-maneuver transfers to a pre-

selected orbit, families of two-maneuver transfers are generated by leveraging trajectories

within the stable manifold structures associated with the target orbit. Note that the two-

maneuver magnitudes include a Transfer Injection Maneuver and a Deep Space Maneuver.

For periodic orbits, families of two-maneuver transfers incorporating a tangent DSM are

contained in a one-dimensional curve. Additionally, two-maneuver transfers into an ideal

injection point along a Lissajous orbit occur along a two-dimensional surface. For both

periodic and quasi-periodic orbit destinations, direct and indirect transfers are considered.

The information retrieved from the families of two-maneuver transfers is implemented in

the construction of optimized transfers in the CRTBP model and the ephemeris model for

a fixed departure epoch. To address the absence of GTO orientation information, transfers

over a range of GTO departure locations near the Earth are constructed in both dynamical

models. Through this method, orientations corresponding to low total ∆V are identified.

The methodologies formulated in this investigation are easily extended to generate optimized

transfers to any periodic or quasi-periodic orbit near Sun-Earth L1 and L2 Lagrange points,

as well as, for different CRTBP models.

7.3 Recommendations for Future Work

The methodologies proposed in this analysis serve to construct efficient transfers to

periodic and quasi-periodic orbits near the collinear Lagrange points in the Sun-Earth sys-

tem. An extension of this analysis is provided by the following recommendations:
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1. Investigate Alternative Departure Locations along GTO - To construct ballistic

transfers and multiple-maneuver transfers in this analysis, the departure location along

the GTO is selected as the periapsis. However, an analysis from a range of GTO

locations away from periapsis exposes the viable range of approximate ∆V required

for ballistic transfers. This extended analysis would also reveal the variation in orbit

size, i.e., orbit amplitude, associated with ballistic transfers.

2. Transfer Applications with a Waiting Period along GTO - In this investigation,

waiting along a GTO is not considered, that is, once the primary payload is detached,

consistent with the ridesharing scenario, the secondary payload departs the GTO at the

next periapsis opportunity. Within the context of the rotating frame of the CRTBP,

waiting along a GTO allows the line of apsides to shift and, since the secondary payload

departs at the GTO periapsis, shifts the position of the GTO departure state. The

addition of a waiting period will provide approximate ∆V for ballistic transfers and

reveal alternative potential orbit options near Sun-Earth L1 and L2 points.

3. Altitude Variation Analysis for Indirect Transfers - A study on the variation

of the GTO departure altitude is conducted for ballistic transfers to Lyapunov and

spatial halo orbits to Sun-Earth Lagrange points with direct transfers. An extended

analysis including indirect transfer, i.e., transfers with outbound excursions or Earth

flybys, would reveal additional transfer options for a wider region of GTO departure

locations. Additionally, indirect ballistic transfers to quasi-periodic orbits provides

increasing opportunities for an extended range GTO orientations.

4. Ballistic Transfers for Smallsats with Low-Thrust Capabilities - In construct-

ing ballistic transfers, the size of the corresponding orbit is free, that is, the orbit

amplitudes are unconstrained. A future application of this research is to combine the

ballistic transfers with a smallsat with low-thrust capabilities. In this scenario, a sec-

ondary payload, i.e., a smallsat with a low-thrust engine, is transported to an orbit

near Sun-Earth L1 or L2 via a propulsive ESPA ring. Upon arrival, the low-thrust

engine is utilized to achieve any potential science orbit. In this strategy, the smallsat

337



benefits from the ”free transfer” provided by the propulsive ESPA ring and can lever-

age the natural dynamics near the Lagrange points and the low-thrust engine to enter

more complex orbit geometries.

5. Incorporate Lunar Flybys - In this investigation, ballistic transfers and multiple-

maneuver transfers are constructed over a range of GTO departure locations. The

strategies implemented in this analysis are in the context of the Sun-Earth CRTBP

model and do not include the influence of the Moon. For ballistic transfers, the addition

of Lunar flybys along the transfer trajectory would reveal new feasible ∆V magnitudes

and orbit geometries. By including a path constraint, such as an SEZ or eclipsing

constraint, the addition of a Lunar flyby may aid in decreasing the single maneuver

∆V . Alternatively, a Lunar flyby analysis for multiple-maneuver transfers from GTO

to a pre-selected orbit will also reveal important modifications to the total ∆V . To

investigate transfers with Lunar flybys, the Bi-circular Four Body Problem would be

the prefered dynamical model.

6. Application of Strategy in Alternative CRTBP Systems - The strategy for

constructing two-maneuver transfers is not limited to the Sun-Earth system, but may

be applied to any CRTBP model, e.g., the Earth-Moon or Sun-Mars systems. The

construction of the two-maneuver transfers leverages the stable manifold information

associated with periodic and quasi-periodic orbits. Additionally, the parameterization

of the global analog of the stable, and unstable, manifolds may be applied to other

transfer scenarios, such as transfers between L1 and L2 Lagrange points.

By incorporating fundamental dynamical behaviors, the proposed research offers opportuni-

ties to observe more complex pathways available for secondary payloads.
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A. DERIVATION OF NONDIMENSIONAL CRTBP

EQUATIONS OF MOTION

The non-dimensional equations of motion for the CRTBP are derived with respect to a non-

dimensional time, T . The non-dimensional position, velocity, and acceleration, r̄, v̄, and ā,

respectively are defined as,

r̄ = R̄

l∗

v̄ = V̄ t∗

l∗

ā = Āt∗
2

l∗

(A.1)

Recall that r̄ = [x, y, z]T , v̄ = [ẋ, ẏ, ż]T , and ā = [ẍ, ÿ, z̈]T . From Equation ( 2.19 ), the

equations of motion are re-arranged so that,

Ẍ = 2ϑ̇Ẏ + ϑ̇2X − G̃M1 (X −X1)
R3

13
− G̃M2 (X −X2)

R3
23

Ÿ = −2ϑ̇Ẋ + ϑ̇2Y − G̃M1 (Y − Y1)
R3

13
− G̃M2 (Y − Y2)

R3
23

Z̈ = −G̃M1 (Z − Z1)
R3

13
− G̃M2 (Z − Z2)

R3
23

(A.2)

The following variables are re-written with nondimensional parameters,

M1 = m∗(1− µ)

M2 = m∗µ

ϑ̇ =
(
G̃m∗

l∗3

) 1
2

(A.3)
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Next, the variables in Equations ( A.1 ) and ( A.3 ) are substituted into Equation ( A.2 ).

ẍl∗

t∗2 = 2
(
G̃m∗

l∗3

) 1
2 ẏl∗

t∗
+
(
G̃m∗

l∗3

)
xl∗ − G̃m∗(1− µ) (x− x1) l∗

r3
13l
∗3 − G̃m∗µ (x− x2) l∗

r3
23l
∗3

ÿl∗

t∗2 = −2
(
G̃m∗

l∗3

) 1
2 ẋl∗

t∗
+
(
G̃m∗

l∗3

)
yl∗ − G̃m∗(1− µ) (y − y1) l∗

r3
13l
∗3 − G̃m∗µ (y − y2) l∗

r3
23l
∗3

z̈l∗

t∗2 = −G̃m
∗(1− µ) (z − z1) l∗

r3
13l
∗3 − G̃m∗µ (z − z2) l∗

r3
23l
∗3

(A.4)

Then, Equation (  A.4 ) is simplified and the definition of the characteristic time, see Equation

( 2.24 ), is substituted so that,

ẍl∗

t∗2 = 2 ẏl
∗

t∗2 + xl∗

t∗2 −
(1− µ) (x− x1)

r3
13

(
l∗

t∗2

)
− µ (x− x2)

r3
23

(
l∗

t∗2

)
ÿl∗

t∗2 = −2 ẋl
∗

t∗2 + yl∗

t∗2 −
(1− µ) (y − y1)

r3
13

(
l∗

t∗2

)
− µ (y − y2)

r3
23

(
l∗

t∗2

)
z̈l∗

t∗2 = −(1− µ) (z − z1)
r3

13

(
l∗

t∗2

)
− µ (z − z2)

r3
23

(
l∗

t∗2

) (A.5)

Next, the position of the barycenter of the two-body system is derived. For a system of

particles, e.g., the P1-P2 system, the center of mass is calculated with the following equation,

R̄CM = 1
Mtot

N∑
j=1

MjR̄j (A.6)

Where Mtot is the total mass of the system, i.e., m∗ from Equation ( 2.21 ), and R̄CM is the

vector distance to the center of mass for the system. The center of mass for the P1-P2 system

is located along a line that connects P1 and P2, see Figure  A.1 . From Equation ( A.6 ), the

CM P2P1

R̄2R̄1

Figure A.1. : Center of mass of the P1-P2 system
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center of mass is derived as,

M1(R1 +R2) = R2(M1 +M2)

m∗(1− µ)(l∗) = R2(m∗)

(1− µ) = R2

l∗

(A.7)

The dimensional position vectors of the primaries from the barycenter, i.e., the center of mass

of the P1-P2 system are stated as: R̄1 = [−R1, 0, 0]T and R̄2 = [R2, 0, 0]T , respectively. Recall

that in the non-dimensional distances are defined by Equation ( A.1 ) so that, r̄1 = [−R1
l∗
, 0, 0]T

and r̄2 = [R2
l∗
, 0, 0]T . From the derivation in Equation (  A.7 ), the non-dimensional distance

to P2 is derived and the distance to P1 is written as: R1
l∗

= µ. The position of the primaries,

i.e, r̄1 = [x1, y1, z1]T and r̄2 = [x2, y2, z2]T are defined as,

r̄1 = [− µ, 0, 0]T

r̄2 = [1− µ, 0, 0]T
(A.8)

Finally, equations ( A.5 ) is simplified to,

ẍ = 2ẏ + x− (1− µ) (x+ µ)
r3

13
− µ (x− 1 + µ)

r3
23

ÿ = −2ẋ+ y − y(1− µ)
r3

13
− yµ

r3
23

z̈ = −z(1− µ)
r3

13
− zµ

r3
23

(A.9)
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B. PARTIAL DERIVATIVES FOR BALLISTIC TRANSFER

TPBVP

The construction of ballistic transfers into periodic orbits in the Sun-Earth system leverage

trajectories along the stable manifolds associated with the periodic orbits. The schematic for

the construction of ballistic transfers is provided in Figure  5.2 with the associated constraint

vector defined in Equation ( 5.16 ). The partial derivatives of the periodicity constraint is

given as,

DxpF̄periodic =



ΦP
0 −I6,6 06,6 . . . 06,6

06,6 ΦP
1 −I6,6 . . . 06,6

... ... . . . . . . ...

06,6 06,6 06,6 ΦP
np−1 −I6,6

∂F̄1
∂X̄P0 (0) 05,6 05,6 . . . ∂F̄1

∂X̄Pnp (0)

[0, 1, 0, 0, 0, 0] 01,6 01,6 . . . 01,6


, (B.1)

DTaF̄periodic =



˙̄X P
0 (Ta)

˙̄X P
0 (Ta)

...
˙̄X P
np−1(Ta)

ẋPnp(Ta)

ẏPnp(Ta)

żPnp(Ta)

ẍPnp(Ta)

z̈Pnp(Ta)



, (B.2)
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where the STM, ΦP
j , is defined as: ΦP

j = ∂X̄Pj (Ta)
∂X̄Pj (0) . Additionally, the function F̄1 corresponds

to the following section of Equation (  5.16 ),

F̄1 =



xPnp(Ta)− xP0 (0)

yPnp(Ta)− yP0 (0)

zPnp(Ta)− zP0 (0)

ẋPnp(Ta)− ẋP0 (0)

żPnp(Ta)− żP0 (0)


, (B.3)

where the associated partial derivatives are,

∂F̄1

∂X̄ P
0 (0)

=



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1


, (B.4)

∂F̄1

∂X̄ P
np(0)

=



∂xPnp (Ta)
∂xPnp (0)

∂xPnp (Ta)
∂yPnp (0)

∂xPnp (Ta)
∂zPnp (0)

∂xPnp (Ta)
∂ẋPnp (0)

∂xPnp (Ta)
∂ẏPnp (0)

∂xPnp (Ta)
∂żPnp (0)

∂yPnp (Ta)
∂xPnp (0)

∂yPnp (Ta)
∂yPnp (0)

∂yPnp (Ta)
∂zPnp (0)

∂yPnp (Ta)
∂ẋPnp (0)

∂yPnp (Ta)
∂ẏPnp (0)

∂yPnp (Ta)
∂żPnp (0)

∂zPnp (Ta)
∂xPnp (0)

∂zPnp (Ta)
∂yPnp (0)

∂zPnp (Ta)
∂zPnp (0)

∂zPnp (Ta)
∂ẋPnp (0)

∂zPnp (Ta)
∂ẏPnp (0)

∂zPnp (Ta)
∂żPnp (0)

∂ẋnpP (Ta)
∂xPnp (0)

∂ẋnpP (Ta)
∂yPnp (0)

∂ẋnpP (Ta)
∂zPnp (0)

∂ẋnpP (Ta)
∂ẋPnp (0)

∂ẋnpP (Ta)
∂ẏPnp (0)

∂ẋnpP (Ta)
∂żPnp (0)

∂żnpP (Ta)
∂xPnp (0)

∂żnpP (Ta)
∂yPnp (0)

∂żnpP (Ta)
∂zPnp (0)

∂żnpP (Ta)
∂ẋPnp (0)

∂żnpP (Ta)
∂ẏPnp (0)

∂żnpP (Ta)
∂żPnp (0)


, (B.5)

The partial derivative corresponding to the continuity constraint for the stable manifold

structure is,

DxMF̄manifold =



−I6,6 06,6 06,6 . . . 06,6

ΦM
0 −I6,6 06,6 . . . 06,6

06,6 ΦM
1 −I6,6 . . . 06,6

... ... . . . . . . ...

06,6 06,6 06,6 ΦM
nM−1 −I6,6


. (B.6)
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with the STM for the manifold transfer arc is defined as: ΦM
j = ∂X̄Mj (Tm)

∂X̄Mj (0) . Additionally, the

rest of the partial derivatives are,

DxpF̄manifold =



∂X̄M (Tm)
∂X̄M (0)

∂X̄M (0)
∂X̄P0 (0)

∂X̄M (Tm)
∂X̄M (0)

∂X̄M (0)
∂X̄P1 (0) . . . ∂X̄M (Tm)

∂X̄M (0)
∂X̄M (0)
∂X̄Pnp (0)

0 0 . . . 0

0 0 . . . 0
... ... ... ...

0 0 . . . 0


. (B.7)

DTαF̄manifold =



∂X̄M (Tm)
∂X̄M (0)

∂X̄M (0)
∂Tα

0

0
...

0


. (B.8)

DTmF̄manifold =



0
˙̄XM
0 (Tm)

˙̄XM
1 (Tm)

...
˙̄XM
nM−1(Tm)


. (B.9)

The partial derivative

DTmF̄apsis = ∂F̄apsis

∂X̄M
nM

(Tm)
˙̄XM
nM

(Tm), (B.10)

DxM F̄apsis =
[
01,6 01,6 · · · ∂F̄apsis

∂X̄MnM (Tm) ΦM
nM

]
, (B.11)

DTmF̄alt = ∂F̄alt

∂X̄M
nM

(Tm)
˙̄XM
nM

(Tm), (B.12)

DxM F̄alt =
[
01,6 01,6 · · · ∂F̄alt

∂X̄MnM (Tm) ΦM
nM

]
, (B.13)
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where,

∂F̄apsis

∂X̄M
nM

(Tm)
=
(

(r̄f − r̄e)T
[
03,3 I3,3

]
+ v̄Tf

[
I3,3 03,3

] )
, (B.14)

∂F̄alt

∂X̄M
nM

(Tm)
= 2 (r̄f − r̄e)T

[
I3,3 03,3

]
, (B.15)
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C. BALLISTIC TRANSFERS TO SUN-EARTH HALO ORBITS

Ballistic transfers into the spatial halo orbits in the Sun-Earth system are constructed for a

range of GTO departure locations. The access curves for for ballistic transfers into L1 and

L2 are plotted in Figures  5.16 and  5.18 . The geometry for the ballistic transfers into L1 halo

orbits in Figure  5.16 are plotted in Figures  C.1 - C.3 . Additionally, Figures  C.4 - C.6 display

the geometry of the ballistic transfers from Figure  5.18 . In Figures  C.1 - C.6 , the prograde

transfers, i.e., transfer from a prograde GTO, are plotted in blue and the retrograde transfers

are shaded in black. Note that some indirect transfer families include only prograde ballistic

transfers, an example is provided in Figures  C.1 (e)-(h) for L1 transfers.

(a) (b)

(c) (d)

Figure C.1. : Direct ballistic transfers to L1 halos. Retrograde ballistic transfers are shaded
in black
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.2. : Indirect ballistic transfers to L1 halo orbits. Retrograde ballistic transfers
are shaded in black
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(a) (b)

(c) (d)

(e) (f)

Figure C.3. : Indirect ballistic transfers to L1 halo orbits. Retrograde ballistic transfers
are shaded in black
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(a) (b)

(c) (d)

Figure C.4. : Direct ballistic transfers to L2 halo orbits. Retrograde ballistic transfers are
shaded in black
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.5. : Indirect ballistic transfers to L2 halo orbits. Retrograde ballistic transfers
are shaded in black
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(a) (b)

(c) (d)

(e) (f)

Figure C.6. : Indirect ballistic transfers to L2 halo orbits. Retrograde ballistic transfers
are shaded in black
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D. PARTIAL DERIVATIVES FOR MULTIPLE MANEUVER

TRANSFER TPBVP

A multiple shooting strategy is implemented to construct transfers with a deep space maneu-

ver from a range of GTO departure locations near the Earth. A multiple shooting scheme

for transfers into a fixed periodic orbit in the Sun-Earth system is illustrated in Figure  6.2 .

The free-variable and constraint vectors consistent with this formulation are provided in

Equations ( 6.3 ) and ( 6.4 ). A multidimensional newton’s method is employed to compute a

feasible transfer solution. The Jacobian corresponding to the constraint vector in Equation

( 6.4 ) is given in Equation (  6.4 ) and rewritten as,

DF̄ =
[
DxmF̄ DxAF̄ DTαF̄ DTmF̄ DTAF̄ DλF̄ DδF̄

]
(D.1)

where DxmF̄ represents the partials of the constraint vector, F̄ , with respect to the states

along the stable manifold trajectory, i.e., {X̄M
0 , · · · , X̄M

nM
}, and DxAF̄ corresponds to the

partials with respect to the states along the bridging arc trajectory, {X̄A
0 , · · · , X̄A

nA
}. Recall

that variables in bold represent matrices. The partial derivative associated with states the

stable manifold trajectory, DxmF̄, in Equation ( D.1 ) is expanded as,

DxmF̄ =



DxmF̄mani

0

DxmF̄DSM

0̄

0̄


, (D.2)
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where the corresponding matrix components are defined as,

DxmF̄mani =



−I6,6 06,6 06,6 . . . 06,6

ΦM
0 −I6,6 06,6 . . . 06,6

06,6 ΦM
1 −I6,6 . . . 06,6

... ... . . . . . . ...

06,6 06,6 06,6 ΦM
nM−1 −I6,6


. (D.3)

DxmF̄DSM =
[
03,6 03,6 . . .

[
I3,3 03,3

]
ΦM
nM

]
, (D.4)

The STM, ΦM
j , is evaluated from a state along the stable manifold trajectory, X̄M

j , after time

Tm, see illustration in Figure  6.2 . The dimensions of the partials in Equations ( D.3 )-( D.4 )

is computed as,

Dim(DxmF̄mani) = 6(nM + 1)× 6(nM + 1), (D.5)

Dim(DxmF̄DSM) = 3× 6(nM + 1). (D.6)

The partial derivative associated with states along the bridging arc trajectory, DxAF̄, in

Equation ( D.1 ) is denoted as,

DxAF̄ =



0

DxAF̄bridge

DxAF̄DSM

DxAF̄apsis

DxAF̄alt


, (D.7)

360



with the expanded matrix components of,

DxAF̄bridge =



ΦA
0 −I6,6 06,6 . . . 06,6

06,6 ΦA
1 −I6,6 . . . 06,6

... ... . . . . . . ...

06,6 06,6 06,6 ΦA
nA−1 −I6,6


. (D.8)

DxAF̄DSM =
[[

I3,3 03,3

]
03,6 . . . 03,6

]
, (D.9)

DxAFapsis =
[
06,6 · · ·

(
(r̄f − r̄e)T

[
03,3 I3,3

]
+ v̄Tf

[
I3,3 03,3

] )
ΦA
nA

]
, (D.10)

DxAF̄alt =
[
03,3 · · ·

[
I3,3 03,3

]
ΦA
nA

]
. (D.11)

The matrix ΦA
j is the associated STM for a state along the bridging arc trajectory, X̄A

j ,

after time TA. Additionally, r̄f and v̄f are the position and velocity components of the final

propagated state of the bridging arc trajectory, i.e., X̄A
nA

, and r̄e is the position of the Earth.

The dimensions of the partial derivatives in Equations ( D.8 )-( D.11 ) are given as:

Dim(DxAF̄bridge) = 6(nA)× 6(nA + 1), (D.12)

Dim(DxAF̄DSM) = 3× 6(nA + 1), (D.13)

Dim(DxAFapsis) = 1× 6(nA + 1), (D.14)

Dim(DxAF̄alt) = 3× 6(nA + 1). (D.15)

The partial derivatives associated with Tα, Tm, TA, λ, and δ in Equation ( D.1 ) are written

as,

DTαF̄ =



DTαF̄mani

0̄

0̄

0̄

0̄


, (D.16)
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DTmF̄ =



DTmF̄mani

0̄

DTmF̄DSM

0̄

0̄


, (D.17)

DTAF̄ =



0̄

DTAF̄bridge

0̄

DTAFapsis

DTAF̄alt


, (D.18)

DλF̄ =



0̄

0̄

0̄

0̄

DλF̄alt


, (D.19)

DδF̄ =



0̄

0̄

0̄

0̄

DδF̄alt


. (D.20)
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where the vector components of the partials are expanded as,

DTαF̄mani =



∂X̄M (Tm)
∂X̄M (0)

∂X̄M (0)
∂Tα

0̄
...

0̄


, (D.21)

DTmF̄mani =



0̄
˙̄XM
0 (Tm)

˙̄XM
1 (Tm)

...
˙̄XM
nM−1(Tm)


, (D.22)

DTmF̄DSM = v̄MnM (Tm), (D.23)

DTAF̄bridge =



˙̄XA
0 (TA)

˙̄XA
1 (TA)

...
˙̄XA
nA−1(TA)


, (D.24)

DTAFapsis =
(

(r̄f − r̄e)T
[
03,3 I3,3

]
+ v̄Tf

[
I3,3 03,3

] )
˙̄XA
nA
, (D.25)

DTAF̄alt =
[
I3,3 03,3

]
˙̄XA
nA
, (D.26)

DλF̄alt = −halt


− sin(λ) cos(δ)

cos(λ) cos(δ)

0

 , (D.27)

DδF̄alt = −halt


− cos(λ) sin(δ)

− sin(λ) sin(δ)

cos(δ)

 . (D.28)

363



The dimensions of the partial derivatives in Equations ( D.21 )-( D.28 ) are given as:

Dim(DTαF̄mani) = 6(nM + 1)× 1, (D.29)

Dim(DTmF̄mani) = 6(nM + 1)× 1, (D.30)

Dim(DTmF̄DSM) = 3× 1, (D.31)

Dim(DTAF̄bridge) = 6nA × 1, (D.32)

Dim(DTAFapsis) = 1× 1, (D.33)

Dim(DTAF̄alt) = 3× 1, (D.34)

Dim(DλF̄alt) = 3× 1, (D.35)

Dim(DδF̄alt) = 3× 1. (D.36)
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E. PARTIAL DERIVATIVES FOR EPHEMERIS TRANSFER

TPBVP

A multiple-shooting formulation for a feasible transfer in the ephemeris model is derived.

The general schematic for the model is illustrated in Figure  E.1 ; note that each state, i.e., X̄j,

is in the inertial EME frame. Each node in the multiple-shooting scheme has an associated

state and epoch time, τ . The free-variable vector consistent with the schematic in Figure

Figure E.1. : Multiple-shooting schematic for transfers in the ephemeris model. Note the
each transfer node is in the inertial EME frame

 E.1 is,

X̄ =



X̄0
i...

X̄N
i

T0
...

TN−1

τ0
...

τN−1

τN



. (E.1)
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The constraint vector corresponding to a continuous transfer in the ephemeris model is,

F̄ =



X̄
i 0(T0, τ0)− X̄

i 1(0, τ1)

X̄
i 1(T1, τ1)− X̄

i 2(0, τ2)
...

X̄
i N−1(TN−1, τN−1)− X̄

i N
(0, τN)

T0 − τ1 + τ0
...

TN−1 − τN + τN−1



, (E.2)

note that additional constraint conditions are included to enforce time continuity on the

node epochs. The formulation is corrected via a multidimensional Newton method with the

associated Jacobian defined as,

DF̄ =
[
F̄x F̄T F̄τ

]
, (E.3)
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With the components of the Jacobian denoted as,

F̄x =



−I6,6 06,6 · · · 06,6 06,6

Φ1 −I6,6 · · · 06,6 06,6
... ... . . . ... ...

06,6 06,6 · · · −I6,6 06,6

06,6 06,6 · · · ΦN−1 −I6,6

0 0 · · · 0 0
... ... ... ... ...

0 0 · · · 0 0



, (E.4)

F̄T =



˙̄X
i 0 0̄3,1 · · · 0̄3,1 0̄3,1

0̄6,1
˙̄X
i 1 · · · 0̄6,1 0̄6,1

... ... . . . ... ...

0̄6,1 0̄6,1 · · · ˙̄X
i N−2 0̄6,1

0̄6,1 0̄6,1 · · · 0̄6,1
˙̄X
i N−1

1 0 · · · 0 0

0 1 · · · 0 0
... ... ... ... ...

0 0 · · · 1 0

0 0 · · · 0 1



, (E.5)

F̄τ =



∂X̄
i

0

∂τ
0̄3,1 · · · 0̄3,1 0̄3,1

0̄6,1
∂X̄

i
1

∂τ
· · · 0̄6,1 0̄6,1

... ... . . . ... ...

0̄6,1 0̄6,1 · · ·
∂X̄

i
N−2

∂τ
0̄6,1

0̄6,1 0̄6,1 · · · 0̄6,1
∂X̄

i
N−1

∂τ

1 −1 · · · 0 0

0 1 · · · 0 0
... ... ... ... ...

0 0 · · · −1 0

0 0 · · · 1 −1



. (E.6)
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F. OPTIMIZED TRANSFER INFORMATION IN EPHEMERIS

MODEL

F.1 Transfers to L1 Halo Orbits

Table F.1. : Summary of maneuver magnitudes (m/s) for optimized ephemeris transfers
into a Sun-Earth L1 halo orbit. Each transfer has an originating epoch of June 2, 2022
12:00:00.000

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 744 204 23 101 991
20 747 153 0 79 1011
40 746 64 0 97 946
60 744 0 71 95 950
80 743 10 148 78 966
100 744 139 0 72 992
120 745 129 0 36 1005
140 749 0 148 159 1027
160 754 193 0 86 1105
180 761 328 0 134 1208
200 766 320 65 291 1323
220 743 128 0 159 1061
240 744 0 55 162 1001
260 743 0 132 51 941
280 744 0 144 54 955
300 746 55 137 19 959
320 749 0 42 241 1067
340 741 265 56 56 980
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F.2 Transfers to L2 Halo Orbits

Table F.2. : Summary of maneuver magnitudes (m/s) for optimized ephemeris transfers
into a Sun-Earth L2 halo orbit. Each transfer has an originating epoch of December 2, 2022
12:00:00.000

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 765 113 401 15 1263
20 741 141 225 15 1076
40 745 85 7 12 831
60 741 28 64 15 846
80 740 105 122 15 1002
100 741 27 103 15 882
120 744 60 31 15 853
140 748 66 49 15 874
160 766 183 192 15 1075
180 785 344 114 14 1144
200 767 170 120 15 1150
220 552 349 314 15 1149
240 679 197 138 15 893
260 741 60 54 15 838
280 730 121 123 15 844
300 761 57 150 14 893
320 752 203 234 9 1034
340 753 86 329 15 1143
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F.3 Transfers to L1 Lissajous Orbits

Table F.3. : Summary of maneuver magnitudes (m/s) for optimized ephemeris transfers
into a Sun-Earth L1 Lissajous orbit. Each transfer has an originating epoch of June 2, 2022
12:00:00.000 into an injection point consistent with θ2 = 152.85◦, i.e., Type A transfer

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 761 75 546 20 1417
20 767 94 628 25 1506
40 749 0 145 33 935
60 746 0 173 141 1042
80 744 78 225 71 1122
100 742 86 264 218 1346
120 748 177 28 367 1157
140 751 90 144 163 1187
160 754 22 161 122 1032
180 763 35 198 49 1110
200 775 59 218 18 1296
220 750 17 348 30 1149
240 745 0 172 139 1100
260 742 0 112 202 1069
280 743 201 177 24 1112
300 745 0 237 123 1116
320 750 0 366 31 1183
340 756 43 456 17 1259
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Table F.4. : Summary of maneuver magnitudes (m/s) for optimized ephemeris transfers
into a Sun-Earth L1 Lissajous orbit. Each transfer has an originating epoch of June 2, 2022
12:00:00.000 into an injection point consistent with θ2 = 335.35◦, i.e., Type B transfer

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 762 59 468 113 1406
20 768 0 614 71 1460
40 794 71 78 34 1177
60 747 249 222 54 1226
80 744 122 379 38 1199
100 745 90 319 21 1186
120 748 408 127 4 1291
140 750 115 214 12 1094
160 754 35 280 2 1053
180 761 17 246 6 1016
200 766 41 379 9 1047
220 744 142 325 39 1239
240 743 0 223 221 1191
260 743 442 215 28 1469
280 743 0 253 181 1171
300 746 0 248 231 1226
320 749 129 127 309 1475
340 758 86 237 263 1368
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F.4 Transfers to L2 Lissajous Orbits

Table F.5. : Summary of maneuver magnitudes (m/s) for optimized ephemeris transfers
into a Sun-Earth L2 Lissajous orbit. Each transfer has an originating epoch of December 2,
2022 12:00:00.000 into an injection point consistent with θ2 = 93.8◦, i.e., Type A transfer

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 760 17 544 7 1319
20 746 134 183 27 1099
40 744 0 297 23 1054
60 740 216 138 15 1107
80 739 276 143 10 1180
100 742 220 116 66 1168
120 745 93 116 85 1038
140 753 201 114 29 1030
160 756 32 165 13 943
180 762 30 118 19 901
200 767 35 98 17 918
220 739 23 309 0 1128
240 748 0 292 14 1035
260 745 200 90 0 1017
280 745 0 166 178 1175
300 747 85 185 126 1146
320 750 99 318 34 1194
340 758 46 440 15 1251
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Table F.6. : Summary of maneuver magnitudes (m/s) for optimized ephemeris transfers
into a Sun-Earth L2 Lissajous orbit. Each transfer has an originating epoch of December 2,
2022 12:00:00.000 into an injection point consistent with θ2 = 273.95◦, i.e., Type B transfer

Ω TIM DSM 1 DSM 2 OIM Total[deg]
0 759 0 550 7 1300
20 754 52 93 10 907
40 743 50 108 5 901
60 741 123 130 9 997
80 740 96 258 10 1114
100 742 234 109 7 1118
120 744 15 236 10 1010
140 748 188 170 4 1104
160 756 89 212 22 1080
180 769 14 216 11 991
200 767 17 186 86 1138
220 739 0 260 34 1095
240 748 51 208 41 1026
260 745 101 135 58 1023
280 745 215 98 16 1053
300 747 107 266 7 1107
320 750 46 403 11 1188
340 755 7 471 7 1222
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