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with servers or APIs.  70 ,  79 – 82 ,  84 ,  91 ,  92 ,  97 ,  98 ,  101 – 103 , see  client ,

 server &  API 

user account A representation of a user on server. Users may have multiple user

accounts on the same server and accounts across multiple servers.  79 –

 81 , see  user &  server 

versioned link OADA versioned link  86 ,  88 ,  90 ,  98 

WebSocket WebSocket  76 
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ABSTRACT

Precision agriculture equipment enables treating different areas of a field differently (i.e.,

site-specific management). The first part of this work presents an algorithm for inferring

the management zones of fields based on multiple years’ yield data. It seeks regions that

correspond to the same underlying yield distribution. Zones are assumed to be the same each

year, but their distributions are allowed to change year-to-year to account for variability.

Zones are estimated using stochastic expectation maximization and maximization of the

posterior marginals. The underlying assumption is that the yields corresponding to a given

zone will behave similarly, and are drawn from the same distribution. This requires only

the yield data automatically collected during harvest. This method requires no crop-specific

calibration.

The second part of this work presents the Open Ag Data Alliance (OADA) Application

Programming Interface (API) framework. It is a generic specification that can be used by

third parties’ APIs to reduce the complexity of interoperating with multiple entities. This

is especially useful in intercloud scenarios, for example, moving data between a farmer, a

processor, and a distributor. Several existing standards that were leveraged are identified, the

graph-based data representation is illustrated, and key API specifications and features are

highlighted. Some of the contributions of OADA include user-centric Representational State

Transfer (REST) so users can select API clients, resource meta-data stored externally to the

resource, live data graphs via change feeds, intercloud data push, and format indifference.

A reference implementation is presented and use cases are demonstrated.
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Part I

STATISTICAL ESTIMATION OF

CROP MANAGEMENT ZONES

FROM MULTI-YEAR YIELD DATA
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1. INTRODUCTION

The rise in precision agriculture has resulted in more and more machines having monitors

which automatically record yield data during harvest. Such monitors also allow for easily

breaking a field into smaller regions, referred to as “management zones”, and applying dif-

ferent inputs to each of these regions (e.g., applying more fertilizer to one region than to

others). Realizing these two things, it seems natural to try to use the output recorded at

harvest to determine a set of management zones to use when deciding how to apply inputs.

This work presents a probabilistic model relating observed yields to management zones,

and a corresponding algorithm for estimating the management zones based on the model.

The model is designed to allow for year-to-year variability within a management zone. Such

variability can come from sources like differences in weather (e.g., “wet” year or “dry” year),

differences in measurement calibration (e.g., using a different combine), or growing different

crops or crop varieties (which have different yield characteristics). The algorithm aims to

find the likely management zone assignments for a field based on the yields recorded from

multiple years’ harvests and the management zone model.

Experimental results are shown in which the algorithm was run on real yield data span-

ning multiple years and multiple fields. The data were recorded automatically by the com-

bines used for harvest. Simulated results are also shown in which the algorithm was run on

simulated yields for which the “true” management zones are known. The data were simulated

based on the real data collected. The simulated data were also run through a pre-existing

algorithm for comparison purposes.
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2. THE CROP YIELD DATA

2.1 Initial Data

The data used were yield data exported from a combine’s monitor. The data had been

collected automatically during the normal operation of the combine. The data comprised

grain flow, speed, grain moisture, date, and GPS location. The collected data came from

multiple fields, over multiple years. This paper will focus on the data of fields with multiple

years of corn harvest data, as well as one field with multiple years of both corn harvest data

and soybean harvest data. These fields used in the paper are shown in Fig.  2.1 and described

in Table  2.1 .

2.2 Data Pre-Processing

2.2.1 Unit Conversion

The collected data had wet grain flow versus time, but what was needed was dry yield

versus area. The dry yield versus area was computed from the collected data according to

( 2.1 )

y = f

(5280v) (43560w) ·
100−m

100−mdry

(2.1)

where

y = dry yield in bu/ac

f = grain flow in bu/h

v = speed in mi/h

w = combine header width in ft

m = grain moisture in %

mdry =


15.5%, for corn

13%, for soybeans
.
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Figure 2.1. These are the outlines of the fields corresponding to the data used
in this paper. For each of these fields, there were two or more years of corn
yield data. The data span two counties in Indiana and correspond to roughly
1400 acres of farmland.
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Table 2.1. This table lists the fields whose data were used in this work. Shown
are the number of years of corn harvest data available and the number of acres
covered by all the years’ data.

Field Years of Data Area (acres)
Rusty 100 3 94
Boots 72 3 61
Bank 53 4 53

Church 17 4 19
Coondog 45 4 43

Deedsville North 63 5 61
Deedsville South 24 5 23

Macy 25 3 27
Muck 17 5 17

Drycow 61 5 65
Eber 124 3 126

Shackleford East 50 5 49
Gott East 93 4 93
Gott West 24 4 23
Layton 192 3 197
Home 128 5 72
Horn 235 2 239

Lillian South Mucks 21 4 21
Mont North 100 2 86
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The above calculation was performed for every collected data point (where one point was

comprised of a wet flow measurement, a GPS position measurement, a speed measurement,

and a moisture measurement). This resulted in a yield map that was non-uniformly sampled

in space because the collected data were non-uniformly sampled in space. To remedy this,

the data were interpolated to a uniform spatial grid.

2.2.2 Interpolation

For a given field, the grid used was the same across all the years of data. Before the actual

interpolation could be performed for each year’s data, this grid has to be determined. To

simplify distance calculations, the GPS latitudes and longitudes were converted to  Universal

Transverse Mercator (UTM) coordinates [ 1 ]. Next, a bounding box was found for the set of

all data points for the given field. Then the South-West corner of that box was used as the

first grid point. Finally, the grid was expanded North and East, with the same spacing in

each direction, to cover the bounding box.

Once the target grid is determined, the interpolation is performed for each year of data

using a modified Shepard’s method [ 2 ], as illustrated in Fig.  2.2 . This interpolation method

uses a weighted average of the points within a neighborhood of the new grid location, as

shown in (  2.2 ) and ( 2.3 )

ys =
∑

i∈Ns,R
yiwi(s)∑

i∈Ns,R
wi(s) (2.2)

wi(s) =
(

R− ∥s− i∥
R ∥s− i∥

)2

(2.3)

where

ys = yield value for coordinate s

i = coordinate of uninterpolated data point

s = coordinate of interpolated data point

R = radius of interpolation neighborhood

Ns,R = set of uninterpolated coordinates within R of s.
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Figure 2.2. This is an illustration of the interpolation performed on the yield
data. It is a section of the real data. The circular points are locations of the
input non-uniform data (for a particular year), and the square points are the
locations of the output uniform data (for all years). The grid shows the borders
of the interpolation grid regions. For the interpolation location in the center of
the figure, the interpolation neighborhood radius is shown with a dotted line.
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In the case when there is no data inside the grid square (such as the squares in the upper left

of Fig.  2.2 ), that location is given a yield of not a number (NaN). NaN is a possible value

in computation, used to represent an undefined value [ 3 ]. When an arithmetic operation

is performed with a NaN, the result is a NaN (thus, the undefined grid locations remain

undefined in the algorithm output).

This interpolation is a form of Inverse Distance Weighting (IDW). IDW has been shown

to perform well for interpolating GPS referenced yield measurements [ 4 ]. The modified

version is used to prevent interpolation across field boundaries. The data were interpolated

using a grid size of 10m and a neighborhood radius, R, of 10m. The size 10m was picked

because it is on the order of the width of a combine header. After this interpolation is run on

each year of data for the field, the outputs for each grid location (i.e., each s) are combined

into vectors, which is why it was necessary to determine a grid based on all the years before

interpolating the years separately.
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3. CROP MODEL

This work employs a  hidden Markov random field (HMRF) . The model is comprised of two

parts [ 5 ], a model for the unobserved (i.e., “hidden”) management zones, and a conditional

model of the observed crop yields. These models all assume the data are on a uniform spatial

grid, and thus represent them with matrices and vectors.

It is worth noting that while there are certainly other data that can be used in the

determination of management zones, e.g., soil type and topography [ 6 ], they are not included

in this model. The model and algorithm were developed to leverage the readily available

yield data, and so that is what is used in determining management zones. While the model

does not incorporate such input data, it should be able to discern their effect on the output

yields given enough years of yield observations.

3.1 Management Zone Model

A “management zone” can be many things, depending on who is asked and the context.

A common agronomic interpretation of “management zones” is the regions of a field having

similar yield potential, or “yield zones”, sometimes also called “response zones” or yield

“productivity zones” (YPZ) [ 7 ]–[ 9 ]. This work, and the described model, take this “yield

zone” view of what a management zone is. This is not an assumption, but rather a definition

of management zones as regions of a field having similar productivity potential.

For the model, a management zone is viewed as a region of the field where the corre-

sponding yields have the same underlying distribution. The management zones are assumed

to be constant year-to-year, but the distributions of their corresponding yields are allowed

to change over time.

A management zone assignment for the field is denoted X, and the assignment for a

particular location, s, is denoted Xs. The value of Xs is represented as an integer between

0 and K − 1 (where K is the total number of management zones), or NaN if the location s

is deemed not in the field (i.e., any year was missing data for that grid location). Therefore,

X is represented as a matrix where each element is the management zone assignment for

28



0

1

20 0
0 0

2
2 2 2

22222
2 2 1 1

1 1 1 1 1N

M

21

0
1

0

2 2
222

21
1
1
1

1
1

1
1

1 1
1 1 1 1
1

1

1

1

0 0 0 0 0 0 0 0 0 0 0 0
0
0

0
0
0
0
0

1

2 2 2 1 1 1 0
2 2 2 2

2
2

21 1
1

1
1

0

0
0

0
0

0

1 1
11

1 2 000
02 2

2 2

2
1 1

1

Figure 3.1. This is an illustration of an example management zone assignment
image (denoted X). In this figure N (one spatial dimension) is 9, and M (the
other spatial dimension) is 13. Since the element values range from 0 to 2, the
corresponding K (number of management zones) is 3.

29



the corresponding grid location. Figure  3.1 illustrates the representation of the management

zones for the case of an M by N spatial grid.

The matrix of management zone assignments is modeled as a  Markov random field

(MRF) . An  MRF is a set of random variables (e.g., the set of elements of X) such that

the conditional probability of one element of the set given all the other elements of the set

depends only on the neighboring elements, i.e., it satisfies the Markov property (  3.1 ) [  5 ]

P (Xs | Xr, ∀r ̸= s) = P (Xs | Xr, ∀r ∈ ∂s) (3.1)

where

∂s = set of all coordinates neighboring coordinate s.

Since neighboring locations are more likely to be in the same management zone, a Potts

model is used for the management zone  MRF [ 10 ]–[ 12 ]. The specific  probability mass function

(pmf) used is shown in ( 3.2 )

X ∼ p(x) = 1
z

e−β
∑

s,r∈S
b|s−r|δ(xr ̸=xs) (3.2)

b|s−r| =


1

4(1+
√

2) , for |s− r| =
√

2

1
2(2+

√
2) , for |s− r| = 1

(3.3)

where

z = partition function

β = smoothness factor

δ = Kronecker delta function

b = neighbor weights

S = set of all coordinates on uniform spatial grid.
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This model uses the Hamming distance between management zone assignments, which han-

dles the fact that the values of the assignments have no numerical meaning (i.e., zone 1

is not “greater” or “lesser” than zone 2 in any particular way). The parameter β, when

positive, causes neighboring elements to tend to be similar, with larger values increasing

this likelihood of similarity. The value of β used was 10, but could be tweaked to produce

management zone more or less smooth edges if needed.

3.2 Yield Model

The yield model describes the distribution of yields within a given management zone.

The set of interpolated yields for the P years of data for the field is denoted Y . Y is a 3-

dimensional object with dimensions M ×N ×P , where the M and N dimensions correspond

to space and the P dimension corresponds to time. This means the yield observation for a

location, s, is a P -vector denoted Ys. Figure  3.2 illustrates the representation of the yield

data for a case with 3 years of data, with a yield vector for a particular location highlighted.

As shown in ( 3.4 ),

(Ys | Xs = k) ∼ N (µk, Rk) (3.4)

where

µk ∈ RP

Rk ∈ RP ×P ,

the yield vectors are assumed Gaussian, given their management zone assignment. The

mean and covariance of their distribution depend on the value of their management zone

assignment. The covariance matrices, Rk, are non-diagonal, allowing for correlations between

the yields of different years. It is worth noting these are conditional distributions on the

yield, they are not the unconditional distribution on the yield.

Estimating the means and variances for each year allows the model to handle year-to-

year variability in the crops, or even different crops being planted on different years. This
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year 1

year 2

year 3

M

P

N

Figure 3.2. This is an illustration of an example input yield array (denoted
Y ). In this figure N (one spatial dimension) is 5, M (the other spatial dimen-
sion) is 5, and P (the temporal dimension) is 3. The yield vector (denoted Ys)
for a particular location (e.g., s) is highlighted.
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removes the need for yield normalization that is typically done when dealing with multiple

years [ 7 ], [  8 ], which can result in loss of information [  8 ].

The yield vectors are assumed conditionally independent of one another, given their

respective management zone assignments. However, because the management zones are

modeled with an  MRF , the model does not make the yield vectors unconditionally indepen-

dent. This means the model still expects nearby yields to be similar (i.e., there is spatial

dependence of the yields). This form of conditional independence is a required property of

an  HMRF [ 5 ].

3.3 Temporal Variability of Model

For the purposes of this model, management zones are defined to be regions whose yields

all correspond to a particular probability distribution in a given year. It is important to note

that while the management zone assignments are fixed across all years, the management zone

behavior is allowed to vary year-to-year in the described model.

One might want to think of these yield zones in terms of good zones, bad zones, etc.

However, a given zone is not necessarily always good or always bad [ 13 ]. A given zone may

have good yields in a wet year, but have bad yields in a dry year (or vice versa). The idea is

that while the year-to-year behavior of these zones may not be fixed, the assignment of these

zones is modeled to be the same from year to year. That is, each year all of the field that is

a part of a given zones will have similar productivity in that year (be that good yields, bad

yields, etc.).

An illustration of these fixed assignments with varying yield behavior is shown in Fig.  3.3 .

This example covers three years’ yields. The first year was a wet year, and the histograms

for that year’s yield are shown in blue. In this year, the high ground and side slope both

had good mean yields, but the low ground did not because it became flooded. The second

year was an average year, and the histograms for that year’s yield are shown in green. In

this year, all the zones performed similarly average means because there was no flooding or

drought. The third year was a dry year, and the histograms for that year’s yield are shown
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in red. In this year the low ground had the best mean and the high ground had the worst

because the higher ground dried out more.

In reality, there is more than just topography that can determine the difference between

zones and there is more than just wet vs dry that causes year-to-year variability of yields,

but this simple example shows how the zone assignments are consistent even when the yields

vary each year.

The fact that the zones assignments are modeled to be constant year-to-year is intentional.

When a field is planted, much of what may influence the productivity of zones is unknown

(e.g., weather or pestilence). Despite this, the field management still needs to be decided,

ideally in such a way as to minimize risk from the unknown factors. Knowing which regions

of the field will have similar productivity will simplify these decisions. Also, while the model

does not predict yields, past behavior of a zone could be used in determining management.

Once one knows where a zone is, they could, for example, look at how that zone behaved in

previous dry years and plan accordingly if the coming year were expected to be a dry one.
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Figure 3.3. This diagram illustrates a simplified example of the model of
management zones which have fixed assignments year-to-year, yet still yield
differently each year. A simple example field is shown in Fig.  3.3a which has
three zones with a slope. The vertical lines are the high ground zone, the
waves are the side slope zone, and the checkerboard is the low ground zone.
These zones are fixed year-to-year. However, their yield distributions shown
in Fig.  3.3b are different each year due to weather.
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4. MANAGEMENT ZONE ESTIMATION ALGORITHM

The inputs to the algorithm are yield maps on a uniform spatial grid, and the number

of management zones to find. The general idea of the algorithm is to find the parameter

values for the model which maximize the probability of the observed yields. Once parameter

estimates are obtained, the model can be used to find the most likely management zone

assignments, given the observed yields.

The algorithm achieves this likelihood maximization in three stages. The first stage is

making a rough guess at the model parameters using fuzzy c-means [ 14 ]. The second stage is

iteratively improving the parameter estimates using a stochastic version of an expectation-

maximization algorithm [ 5 ], [ 15 ] to maximize the probability of the observed yields given

the estimated parameters. Lastly, once the model parameters are estimated, the most likely

management zones are computed according to the model and the parameter estimates. The

overall flow of the algorithm is shown in Fig.  4.1 , and the different parts are detailed in the

following subsections.

4.1 Stochastic Expectation-Maximization

 Stochastic expectation-maximization (SEM) is an iterative method for calculating the

most likely parameter estimates for a model with hidden variables, such as the manage-

ment zones variable X in the  HMRF described in this paper.  SEM differs from classical

 expectation-maximization (EM) in that it calculates sample means rather than true expec-

tations.  SEM is used instead of  EM because, for the model and input sizes used, explicit

calculations involving the  pmf of X are intractable.

There are three steps, described in the following sections. One iteration of the algorithm

involves running the three steps in order. Multiple iterations are run until the parameter

estimates have converged sufficiently. For this paper, “sufficient convergence” was assumed to

occur within 100 iterations of  SEM . The order and looping of these steps can be seen within

the  SEM block shown in Fig.  4.1 . The specific  EM step equations used in this algorithm

are derived from the fact that the joint model of X and Y is an exponential family [ 15 ],
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Figure 4.1. High level illustration of the steps of the algorithm. The figure
also indicates which of the steps utilize the input yield data. The following
sections give more detail on the steps.
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[ 16 ]. A proof that the model is an exponential family can be found in Appendix  A , and the

derivation of the  EM steps can be found in Appendix  B .

4.1.1 Sampling (S-Step)

A Gibbs sampler [ 15 ], [ 17 ] is used to generate sample management zone assignment

matrices, according to the conditional distribution of the management zone  MRF given the

current parameter estimates and the observed yields. This conditional distribution is stated

mathematically in (  4.1 ),

X(l) ∼ P (X(l)) = P (X = X(l) | Y, θ) for l = 1, . . . , L (4.1)

where

X(l)
s = value of Xs in lth sample of  MRF 

θ = [µ0, R0, . . . , µK−1, RK−1]

L = total number of generated  MRF samples.

The sampler is used to generate L separate samples, where each sample is an N by M

matrix. For this work, L = 10000 was used. These generated samples are needed for

computing sample means which will converge to the true expectations [ 15 ]. The detail of

the Gibbs sampler used can be found in Appendix  C .

4.1.2 Expectation of Conditional Statistics (E-Step)

Once samples of the  MRF are generated, those samples can be used to calculate the

sample means of the sufficient statistics for the K Gaussian distributions of the yields in the

K management zones. There are three statistics calculated for each of the K distributions,
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shown as functions of k in ( 4.2 ), ( 4.3 ), and ( 4.4 ) (i.e., a total of 3K statistics are calculated).

These statistics are needed for computing new parameter estimates.

N̄k = 1
L

L∑
l=1

∑
s∈S

δ(X(l)
s = k) (4.2)

b̄k = 1
L

L∑
l=1

∑
s∈S

Ysδ(X(l)
s = k) (4.3)

S̄k = 1
L

L∑
l=1

∑
s∈S

YsY
⊺

s δ(X(l)
s = k) (4.4)

for k = 0, . . . , K − 1

4.1.3 Maximum Likelihood Parameter Estimate Update (M-Step)

The statistics from the previous step are used to calculate  maximum likelihood (ML) 

parameter estimates. Since, as mentioned earlier, the model describes an exponential family

of distributions, the parameter update can be calculated by plugging the expected statistics

from the E-step into the  ML estimate equations of the distribution parameters in place of

the actual statistics. The update equations for the estimated means and covariance matrices

are ( 4.5 ) and ( 4.6 ), respectively.

µ̂k = 1
N̄k

b̄k (4.5)

R̂k = 1
N̄k

S̄k −
1

N̄2
k

b̄kb̄⊺k (4.6)

for k = 0, . . . , K − 1

4.2 Parameter Initialization

Expectation-maximization algorithms require an initial guess of the model parameters,

which are then iteratively improved upon. The algorithm uses fuzzy c-means [ 14 ] to generate

its initial model parameters. Fuzzy c-means was chosen because it has been used before to

find management zones [ 7 ].
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4.3 Management Zone Assignment

The result of  SEM iterations is an estimate of the parameters of the distribution of each

management zone. However, we want to know to which management zone each location

belongs. In order to estimate a likely set of management zone assignments, the  maximizer

of the posterior marginals (MPM) estimator is used. The  MPM estimator is described in

( 4.7 ), though in the algorithm it is evaluated stochastically rather than explicitly.

X̂s = arg max
xs

p (xs|Y ) (4.7)

To evaluate the  MPM estimator of X, the same Gibbs sampler is used as in the S-Step

of  SEM , that is another S-step is run with the final parameter estimates. However, instead

of using the generated samples for an E-Step, they are used to evaluate ( 4.8 ). This is done

because the explicit evaluation of ( 4.7 ) is intractable for the input sizes involved.

X̂s ≈ arg max
xs

1
L

L∑
l=1

δ(X(l)
s = xs) (4.8)

It is worth noting that the  MPM estimator of X, that is the set of  MPM estimators for

each Xs, is different from the  maximum a posteriori (MAP) estimate of X, though the two

are defined similarly. The  MPM estimator was chosen because it minimizes the number of

misclassified elements in X [ 17 ].
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5. MANAGEMENT ZONE ESTIMATION RESULTS

5.1 Real Yield Data

5.1.1 Corn Yield Results

The algorithm was run on the pre-processed corn yield data for each of the fields shown

in Fig.  2.1 . All of the fields were run once for each value of K from 2 to 10, and each field

had at least 2 years of corn harvest data (i.e., P ≥ 2). The resulting management zone

assignments for K = 4 are shown in Fig.  5.1 , and the standard deviations of the yields for

each field and each year of yield data for delineations with 3, 4, and 5 zones respectively are

shown in Tables  5.1 to  5.3 .

5.1.1.1 Resulting Management Zones

One of the first observations from the results is that the edges of fields tend to be assigned

to different management zones than the interiors of fields. This is a positive result because

these edges (or “end rows”) are known to yield differently and need different management

than the interior (due in part to different treatment). The model and algorithm successfully

determined this without being given prior knowledge of it.

More importantly, the algorithm does not always assign zones exclusively to the edges. In

Fig.  5.1o , the algorithm surrounded the triangular section in the upper left of the field with

the “end row” zone. The farmer of this field confirmed that this section is in fact farmed as

a separate field from the rest of it and there are end rows there. Conversely, in Fig.  5.1p the

algorithm assigned the top and bottom edges as “end row” but not the right and left edges.

There is actually more of this field on the right and left but those data had to be excluded

because they were missing for some years, while the top and bottom are the real edges of

the field.

A shortcoming of the approach that is made evident by these results is not being able to

assign a management zone to a location that has missing data for any of the years involved.

While some of these holes are actually part of the shape of the field, for example the hole

toward the bottom of the field in Fig.  5.1a is a house, other regions should have been included
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(a) Rusty 100 (b) Boots 72 (c) Bank 53 (d) Church 17 (e) Coondog 45

(f) Deedsville
North 63

(g) Deedsville
South 24

(h) Macy 25 (i) Muck 17 (j) Drycow 61

(k) Eber 124 (l) Shackleford
East 50

(m) Gott East 93 (n) Gott West 24 (o) Layton 192

(p) Home 128 (q) Horn 235 (r) Lillian South
Mucks 21

(s) Mont North
100

Figure 5.1. Pictured are the output segmentations resulting from running
the presented  SEM based algorithm on the real multi-year yield data of each
field. Each field was run with K = 4. The different colors correspond to
different management zone assignments, with white corresponding to no zone
assignment.
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and segmented. There is one such unassigned region toward the lower right corner of the

field in Fig.  5.1m . While that region had yield data in some of the years’ data, it did not

have data for all years and thus the algorithm could not segment it.

5.1.1.2 Variance Reduction

Shown in Tables  5.1 to  5.3 are the standard deviations of the yields for each field and

each year of yield data for delineations with 3, 4, and 5 zones respectively. The total column

is the standard deviation of all the recorded yields for that field in that year. The other

columns are the standard deviations of the yields grouped by the YPZ to which they were

assigned. The highlighted cell in each row is the end row zone for the given field, found by

visual inspection of the delineated zones. Zone standard deviations that are not below the

corresponding yearly standard deviation are indicated in bold.

Most of the zone standard deviations are below the corresponding total yield standard

deviation. Some of the rows have a zone with a higher standard deviation than the total

yield, but for the majority of fields this corresponds to the end rows. The zone standard

deviations indicated in bold are the one that are greater than their corresponding total

yield standard deviation. Out of the 105 trials shown in the tables, only 20 had zones with

standard deviations that were not below the total yield standard deviation and were also

not end row zones. This means that 81.0% of the time, only our end row zones did not show

a reduction in variance. The end rows are expected to be highly variable in terms of yield

productivity, owing to highly variable treatment, so this seems a reasonable result.

The end rows indicated in Tables  5.1 to  5.3 were identified visually, since the algorithm

does not explicitly differentiate them from other zones. For example, one delineation result

is shown in Fig.  5.2 . Look at this delineation it can be seen that the green management

zone corresponds to the end rows. From the legend, it can be seen that the green zone is

zone 1. Based on this, the corresponding column in Table  5.2 was highlighted for the rows

corresponding to the field Gott East 93.
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Figure 5.2. Management zone delineation for the field Gott East 93 for K = 4
with a legend showing the number label assigned to each zone.
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Table 5.1. Standard deviations of yields for each field in each year when
delineated for K = 3

Total Zone 0 Zone 1 Zone 2
Rusty 100: 2010 36.9 31.2 26.8 41.6
Rusty 100: 2013 41.7 25.1 26.7 53.9
Bank 53: 2008 34.5 46.3 18.9 16.8
Bank 53: 2010 44.5 57.8 22.4 17.8

Coondog 45: 2010 38.1 40.3 30.8 17.1
Coondog 45: 2011 35.1 48.7 11.8 12.6

Deedsville North 63: 2008 36.9 42.8 19.1 32.4
Deedsville North 63: 2010 45.8 47.0 17.4 20.5
Deedsville South 24: 2008 40.3 20.4 35.7 34.7
Deedsville South 24: 2010 40.1 24.3 47.9 32.2

Muck 17: 2008 40.5 45.1 13.1 19.2
Muck 17: 2010 48.1 56.9 22.9 40.9

Drycow 61: 2006 29.2 18.6 47.9 10.1
Drycow 61: 2007 35.7 24.7 48.5 18.7
Drycow 61: 2008 31.3 15.4 48.5 10.3
Drycow 61: 2009 41.4 31.8 40.7 17.6
Drycow 61: 2011 40.9 33.5 53.9 27.0
Eber 124: 2007 33.1 20.7 32.6 46.9
Eber 124: 2009 39.5 28.6 24.2 45.4

Shackleford East 50: 2007 37.0 18.7 49.2 11.6
Shackleford East 50: 2009 43.9 22.6 47.4 20.6
Shackleford East 50: 2010 40.2 26.2 48.7 29.1

Gott East 93: 2007 26.1 10.9 40.7 7.32
Gott East 93: 2009 30.8 19.1 40.3 22.9
Gott East 93: 2011 33.9 19.4 51.3 17.7
Gott West 24: 2007 33.0 42.1 15.5 15.5
Gott West 24: 2009 41.4 41.9 11.1 28.8
Gott West 24: 2011 32.2 41.8 17.8 12.7
Layton 192: 2007 30.5 14.3 39.6 18.0
Layton 192: 2008 30.2 15.8 37.7 18.9
Layton 192: 2009 30.8 18.7 36.1 21.6
Home 128: 2008 29.8 40.1 14.5 12.5
Home 128: 2009 49.3 56.7 24.5 23.1

Lillian South Mucks 21: 2012 74.3 54.6 27.2 52.9
Lillian South Mucks 21: 2013 52.2 62.1 22.7 28.5
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Table 5.2. Standard deviations of yields for each field in each year when
delineated for K = 4

Total Zone 0 Zone 1 Zone 2 Zone 3
Rusty 100: 2010 36.9 39.5 25.1 21.7 21.2
Rusty 100: 2013 41.7 42.9 18.0 22.7 29.8
Bank 53: 2008 34.5 45.9 38.4 16.8 19.1
Bank 53: 2010 44.5 57.8 42.3 17.8 22.6

Coondog 45: 2010 38.1 40.4 24.9 19.3 16.7
Coondog 45: 2011 35.1 48.6 13.2 11.2 12.4

Deedsville North 63: 2008 36.9 17.5 19.9 38.9 24.5
Deedsville North 63: 2010 45.8 19.2 17.0 53.7 40.3
Deedsville South 24: 2008 40.3 40.3 20.4 18.5 25.6
Deedsville South 24: 2010 40.1 40.9 23.2 42.2 54.8

Muck 17: 2008 40.5 58.1 13.3 9.76 24.0
Muck 17: 2010 48.1 52.8 22.7 31.0 37.0

Drycow 61: 2006 29.2 17.2 10.8 17.9 48.9
Drycow 61: 2007 35.7 23.4 18.10 18.4 46.8
Drycow 61: 2008 31.3 12.10 10.1 25.8 48.8
Drycow 61: 2009 41.4 25.2 18.1 41.5 40.2
Drycow 61: 2011 40.9 25.6 27.1 44.5 53.9
Eber 124: 2007 33.10 47.1 18.9 29.9 16.5
Eber 124: 2009 39.5 44.6 26.9 23.8 21.5

Shackleford East 50: 2007 37.0 49.1 11.0 18.1 13.5
Shackleford East 50: 2009 43.9 49.9 20.1 22.8 25.8
Shackleford East 50: 2010 40.2 48.1 18.6 25.8 32.7

Gott East 93: 2007 26.10 10.9 41.5 6.75 35.0
Gott East 93: 2009 30.8 20.1 39.2 22.10 20.0
Gott East 93: 2011 33.9 19.3 50.6 18.2 15.6
Gott West 24: 2007 33.0 41.7 8.27 13.9 15.5
Gott West 24: 2009 41.4 43.1 28.4 22.3 11.2
Gott West 24: 2011 32.2 40.7 10.8 12.7 18.1
Layton 192: 2007 30.5 17.7 20.9 43.6 10.3
Layton 192: 2008 30.2 18.8 18.9 38.9 14.8
Layton 192: 2009 30.8 25.3 18.0 35.9 17.0
Home 128: 2008 29.8 14.4 14.5 41.9 11.1
Home 128: 2009 49.3 24.3 31.3 57.5 19.2

Lillian South Mucks 21: 2012 74.3 60.3 45.3 35.4 25.9
Lillian South Mucks 21: 2013 52.2 66.9 26.9 25.2 26.1
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Table 5.3. Standard deviations of yields for each field in each year when
delineated for K = 5

Total Zone 0 Zone 1 Zone 2 Zone 3 Zone 4
Rusty 100: 2010 36.9 44.9 22.7 24.1 37.4 21.9
Rusty 100: 2013 41.7 51.8 23.8 18.0 49.5 21.6
Bank 53: 2008 34.5 45.6 21.5 18.1 51.5 16.7
Bank 53: 2010 44.5 49.9 26.3 22.4 50.2 17.5

Coondog 45: 2010 38.1 16.5 30.4 19.3 27.5 25.3
Coondog 45: 2011 35.1 12.4 32.9 10.9 13.6 37.9

Deedsville North 63: 2008 36.9 17.1 34.9 24.7 31.4 14.6
Deedsville North 63: 2010 45.8 16.1 54.9 40.8 36.6 18.7
Deedsville South 24: 2008 40.3 47.0 31.7 16.0 14.1 32.9
Deedsville South 24: 2010 40.1 43.6 32.1 18.2 28.3 54.2

Muck 17: 2008 40.5 14.8 24.2 21.4 56.1 13.5
Muck 17: 2010 48.1 23.8 37.5 22.8 45.2 22.9

Drycow 61: 2006 29.2 25.1 53.5 10.2 17.7 15.5
Drycow 61: 2007 35.7 28.5 53.1 17.1 19.6 20.1
Drycow 61: 2008 31.3 17.3 56.8 10.1 26.4 12.1
Drycow 61: 2009 41.4 32.9 39.5 18.5 40.8 24.9
Drycow 61: 2011 40.9 41.1 60.3 26.5 44.2 23.5
Eber 124: 2007 33.1 48.8 20.2 16.8 30.0 17.5
Eber 124: 2009 39.5 45.5 22.7 19.7 23.5 25.6

Shackleford East 50: 2007 37.0 48.4 13.5 11.0 18.1 56.1
Shackleford East 50: 2009 43.9 48.6 25.8 20.1 22.9 64.9
Shackleford East 50: 2010 40.2 46.1 31.4 18.8 25.9 75.9

Gott East 93: 2007 26.1 13.7 9.32 35.0 43.7 8.86
Gott East 93: 2009 30.8 25.6 13.4 32.0 40.0 20.5
Gott East 93: 2011 33.9 23.1 17.3 26.8 54.6 16.8
Gott West 24: 2007 33.0 34.2 14.1 52.1 15.1 8.56
Gott West 24: 2009 41.4 36.9 22.1 39.9 11.3 27.1
Gott West 24: 2011 32.2 23.7 12.7 51.2 18.2 9.91
Layton 192: 2007 30.5 17.8 20.1 44.1 10.3 15.1
Layton 192: 2008 30.2 18.7 19.3 40.6 14.0 21.0
Layton 192: 2009 30.8 24.4 17.5 36.1 15.2 29.0
Home 128: 2008 29.8 14.6 12.4 11.4 13.2 42.9
Home 128: 2009 49.3 23.6 21.8 12.8 31.4 57.1

Lillian South Mucks 21: 2012 74.3 62.1 36.1 35.2 33.7 51.7
Lillian South Mucks 21: 2013 52.2 36.2 9.26 27.1 41.6 54.2
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5.1.2 Corn and Soybean Yield Results

In order to investigate its performance on different crop yield data, the algorithm was

run on the pre-processed soybean yield data for the field Gott East 93, in addition to its corn

yield data. This field was chosen because it has 3 years of soybean yield data in addition

to its 4 years of corn yield data. Three runs of the algorithm were performed for each value

of K from 2 to 10, one using only the corn yields (P = 4), one using only the soybean

yields (P = 3), and one using both the corn and soybean yields (P = 7). The resulting

management zone assignments for K = 4 are shown in Fig.  5.3 .

(a) Corn Yields (b) Soybean Yields (c) Both Yields

Figure 5.3. Pictured are the management zone delineation for the field Gott
East 93 using only corn yields, only soybean yields, and both corn and soybean
yields, respectively. The pictured delineations are for K = 4.

The first observation is that the zones delineated for corn differ from those delineated

for soybeans. This seems reasonable since different crops have different yield characteristics.

In practice, it might be useful to run separate delineations for each crop to produce crop-

dependent management zones rather than delineating based on multiple crops at once, but

the algorithm runs just as well either way.

The previously mentioned shortcoming of the algorithm not being able to assign a man-

agement zone to a location that has any missing data, is made more evident by these results.

In the corn delineations in Fig.  5.3a there is a hole in the data near the lower right corner,

and in the soybean delineations in Fig.  5.3b some of the right edge of the field has no data.
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When both corn and soybean data were used, neither the hole nor the right edge of the field

could be assigned to a management zone, as seen in Fig.  5.3c .

5.2 Simulated Yield Data Based on Real Yield Maps

Since the real data have no ground truth for evaluating the output, simulations were

performed. The management zone assignments and distribution parameters from running

the algorithm on the real data were used to simulate new yield observations. This simulation

was done by drawing sample yields Y according to the conditional distribution defined by

( 3.4 ), using the Xs and θs from Section  5.1.1 . One such simulation was run for each field and

each value of K from 2 to 10. These simulations produced Y s for which the corresponding

Xs were known, something missing for the real data.

5.2.1 Simulated Performance of the Algorithm

Now that there was “ground truth”, the performance of the algorithm could be measured

using a distance of the output X̂ from the correct X. The Rand distance [ 18 ] was used as

an error metric for comparing the output management zone segmentations to the true seg-

mentation. A Rand distance of 0 corresponds to two segmentations with a total agreement,

while a Rand distance of 1 corresponds to the least agreement possible.

For brevity, the Rand distance between the true X and the estimate X̂ will be referred

to as the Rand error. Table  5.4 shows the Rand error of the presented  SEM based algorithm

when run on the simulated fields. It also shows the average Rand error by field (leftmost

column) and by K (bottom row). Additionally, the histogram of these Rand errors is shown

in Fig.  5.4 .

While the majority of the observed Rand errors were below 0.25, a few were quite large.

All of these large errors correspond to running at orders K ≥ 7 for fields less than 25 acres

in size. As the field size decreases and the order increases there are fewer observations for

estimating the parameters of each management zone, thus resulting in poorer estimates.

While performance, in this case, is indeed poor, having so many management zones in such

small fields is not likely to be reasonable from a precision agriculture perspective.
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Figure 5.4. This histogram shows the occurrences of the Rand errors of the
output of the presented  SEM based algorithm when run on simulated fields
based on real fields, as described in Section  5.2 .

51



5.2.2 Comparison to State-of-the-Art

The simulated fields were also run though another management zone delineation algo-

rithm,  Management Zone Analyst (MZA)  

1
 [ 19 ].  MZA is commonly used for delineating

management zones, particularly from multivariate data [ 7 ]. The  MZA algorithm was run

using Mahalanobis distance as the distance metric because the yields are not assumed to be

statistically independent, and with 10,000 as the maximum number of iterations to allow

more time for convergence than the default 300 iterations. Also, values of the fuzziness

exponent from 1.1 to 5 in increments of 0.1 were tried and the one producing the smallest

Rand error (see Section  5.2.1 ) was used (for each field at each K).

5.2.2.1 Multi-Field Simulation

Figure  5.5 shows the Rand error averaged over the 19 fields for both the presented  SEM 

based algorithm and  MZA , as a function of K. Two versions of  MZA are shown, one where

the  UTM x and y coordinates of each observation were included in the input, and one where

the  UTM coordinates were not utilized. This was done because both ways of running  MZA 

are used in literature [ 7 ], [  19 ].

In these simulations, the presented  SEM algorithm outperformed the  MZA algorithm for

every value of K tested. The gap in the two algorithms’ performances seems to decrease as

K increases, but Ks larger than those tested are probably not realistic for actual fields. For

the sorts of fields simulated, the proposed algorithm consistently outperformed the state-of-

the-art.

5.2.2.2 Multi-Crop Simulation

Another simulated comparison to  MZA was performed, as in Section  5.2.2.1 but using

the corn and soybean results from Section  5.1.2 . Since this time the data were only from

one of the fields, Gott East 93, 13 separate realizations of simulated Y s were generated for

each K, and each set of crop yields (corn yields only, soybean yields only, and both corn and
1

 ↑ The actual  MZA program was not used, but the algorithm was implemented as described in [  19 ], using
MATLAB.
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Figure 5.5. This figure shows the performances of the presented  SEM based
algorithm and the  MZA algorithm. For each value of K both algorithms were
run on the same simulated field, simulated as described in Section  5.2 . The

 MZA algorithm was run twice for each field, once with  UTM x and y included
in the observations, and once without utilizing the  UTM coordinates. The
error metric, referred to as Rand error, was computed as the Rand distance
between the true X used for simulation and the X̂ output by the algorithm.
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soybean yields). Figure  5.6 shows the Rand error averaged over the 13 realizations for the

presented algorithm and the two methods of running the  MZA algorithm.
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Figure 5.6. This figure shows the performances of the  SEM algorithm pre-
sented by this paper and the  MZA algorithm. For each value of K both
algorithms were run on the same simulated field, simulated as described in
Section  5.2 . The error metric, referred to as Rand error, was computed as the
Rand distance between the true X used for simulation and the X̂ output by
the algorithm.

As in the previous simulation, the presented algorithm outperformed the  MZA algorithm

for every K and every crop tested. An interesting observation is that all three methods tend

to perform with soybean yields than with corn yields.
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5.3 Purely Simulated Yield Data

However, it was desirable to analyze the impact of an increasing number of years of

available yield data. The maximum number of years of yield data in our real dataset is 5.

Moreover, the ground truth for management zone labels is unknown to us in a real physical

cornfield. Therefore, the question was addressed with a simulation-based experiment.

5.3.1 Simulating Yield Data for Arbitrary Years

In order to analyze the impact of an increasing number of years of data on our delin-

eations, we created synthetic management zone assignments for which we could simulate a

variable number of years of yield maps. Synthetic zone assignments were used because no

ground truth zones were available. The zone assignments used in the simulation are shown

in Fig.  5.7 .

(a) Synthetic field 1 (b) Synthetic field 2 (c) Synthetic field 3

Figure 5.7. Management zone assignments for fields in multiple year experiment.

Once we had zone assignments, we could then generate yearly yield maps from these

zones. By looking at the distributions of yields across all the fields and all the years in our

dataset, it was decided to use a mean of 180 bu/ac and a standard deviation of 30 bu/ac

as a representative distribution of corn yields. Total yield was assumed to be normally

distributed, and the total yield was divided into 3 equally likely classes. These classes were

also assumed to be normally distributed, and were spaced such that the means and variances

of the total yield were preserved. These distributions are illustrated in Fig.  5.8 . The 3 class
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distributions were given equal standard deviations of σtotal

1.8 = 16.6, this ratio of total variation

to in-zone variation seemed reasonable based on the results of our delineations on real data.

3030
180

yield (bu/ac)

Total
Dist 1
Dist 2
Dist 2

Figure 5.8. Illustration of dividing total yield distribution into 3 equally likely
zone distributions. The division is done such that the total mean and variance
are preserved.

Using the zone assignments of Fig.  5.7 and the yield distributions of Fig.  5.8 , yield maps

were randomly generated. To generate a yield map for a given set of zones, the three yield

distributions were randomly assigned to the three management zones. In this way, we do

not artificially prefer one zone by assigning it the higher productivity distribution every

year. Then, for each pixel in a zone assignment, a pseudo-random realization of a normally

distributed yield was drawn according to the distribution that had been assigned to that

zone. In order to create P yield maps, the above procedure was repeated P times. In this

way we had multiple yield maps corresponding to fixed zone assignments, but where each

zone’s behavior varied year-to-year.

5.3.2 Simulation Results

The performance of the proposed delineation method and  MZA on these simulated yield

maps is shown in Fig.  5.9 . The metric used is the Rand error (as described in the manuscript,
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i.e., the Rand distance between the output delineations and the simulated delineation from

Fig.  5.7 ), averaged over the three fields used.

The results of the simulation are that the errors in the delineations decrease as more

years’ yields are used. When only a single year’s data are used,  MZA performs better than

the proposed method. However, the proposed method rapidly converges to very low errors

as the number of years of data increases. The average Rand error decreases with P , as does

the variability of these errors. This result makes sense, as each year’s yield map is another

observation with which the algorithm can estimate the correct zone assignment for each

location. While both  MZA and our method perform better the more yield maps are used,

the proposed method makes much better use of multiple year’s yield maps than  MZA .
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(a) Error for both the proposed method and  MZA .

(b) Error for proposed method when P ≥ 2.

Figure 5.9. Shown are the Rand errors vs number of years of yield data from
the simulation experiment to determine the impact of an increasing number
of years’ data. The values are averaged over the three fields used, and the
error bars show the standard deviation of the errors. Errors were calculated
for both the proposed method’s delineations and delineations from  MZA . Both
methods are shown in Fig.  5.9a and, since the errors are so much smaller, a
zoomed version is shown for P ≥ 2 is shown in Fig.  5.9b .
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6. CONCLUSIONS

The proposed model and algorithm can successfully delineate management zones for a field

based on multiple years of yield data. They can also delineate based on yield data for

multiple crops, both together and separately, without needing any crop-specific calibration.

The output delineations are very different for different crops, but this is likely because

different crops need different management and not because of a shortcoming of the algorithm

or model.

Simulated results show the relative performance of the presented algorithm to the state-

of-the-art  MZA algorithm. In simulation, the presented algorithm outperforms the  MZA 

algorithm for all orders and all crop types tested. Additionally, simulations showed that

the proposed algorithm makes better use of multiple years’ data, with it rapidly converging

to very low errors as the number of years increases. The relative performances seemed to

be converging as the order, K, increased, however, since orders higher than those tested

are likely not realistic, the results still suggest the presented approach is better than the

state-of-the-art for delineating management zones based on multi-year yield data.
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7. FUTURE WORK

7.1 Investigate Soil Relations

Soils influence crops and are therefore a factor in determining management zones. Aside

from clustering based on the observed yields, another method of determining management

zones is to use soil maps.

7.1.1 Initial Soil Map Unit Comparison

In order to compare the current results and investigate incorporating soils in the model,

the SSURGO soil data for the farm fields used were acquired from [ 20 ]. As a first look at the

soil data, the SSURGO map units were used as management zones as in [ 21 ]. In particular,

soils for the field Gott East 93 were investigated. Since the field had 3 map units in it, the

algorithm results for K = 3 were used for comparison. The histograms of yields by map unit

and by management zone are shown in Figs.  7.1 to  7.4 .
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Figure 7.1. Yield histograms for 2007

The yearly distributions of the management zones are more distinct than those of the

SSURGO map units. This suggests that the presented method is better than managing by

map unit alone. This is likely because map units are defined at too coarse a scale to be
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Figure 7.2. Yield histograms for 2009
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Figure 7.3. Yield histograms for 2011
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Figure 7.4. Yield histograms for 2013
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helpful at the scale of a field. However, finer-scale soil data could be useful in delineating

management zones.

7.1.2 ERUs

Since the map units seem too coarse for delineating management zones, the next step

is to try finer resolution soil data. The  environmental response unit (ERU) data is a finer

resolution soil data set than SSURGO, which is partly based on [ 21 ]. The next step would

be to acquire  ERU data for the locations in the yield data set. The  ERU data could be

compared to the delineated management zones, similarly to the SSURGO map units.

In addition to looking at the distributions of yields within the  ERUs vs the management

zones, a next step would be to compare the reduction in variance of the two as in [ 21 ]. Though

the algorithm does not necessarily minimize the variance of the management zones, it is still

of interest as a performance metric. Since ideally management zones are homogeneous the

should have low variance, especially those besides the “end row” zones.

The  ERUs could potentially be used in the delineation of management zones, in addition

to the yearly yields. They might be useful in determining a suitable number of zones, K, for

a given field. Also, it would be of interest to try initializing the  SEM based on  ERUs rather

than fuzzy c-means.

7.2 Handling Partial Yield Observations

As mentioned, currently the model and algorithm require that each location delineated

has a yield observation for all the years of interest. That is, for every location, s, in Y all P

elements of the corresponding yield vector Ys must be observed.

However, many of the yield maps had substantial parts of the data missing. This can

happen when multiple machines are used to harvest a field but only some of these machines’

data are retained. It also happens that some years a field is split in half with one half used to

grow one crop and another half used for a different crop. When things such as these happen,

the yield map for that year must either be interpolated to fill in the missing sections, or that
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year’s data can be left out of the delineation entirely. The current algorithm cannot utilize

the partial yield map in its delineation.

It would be better if the delineation could be performed on some subset of the full

observed Y , call it Ỹ . For every location Ỹ would have observations for some, but not

necessarily all, of the P years. That is,

∅ ⊂ Ỹs ⊆ Ys ∀s ∈ S. (7.1)

This would require deriving new  EM update steps for the family of distributions P (Ỹ , X | θ)

and the implementation of a Gibbs sampler for sampling from the distribution P (X | Ỹ ).

Then the management zones could be estimated with the  MPM for the posterior given Ỹ ,

i.e.,

X̂s = arg max
xs

p
(
xs | Ỹ

)
∀s ∈ S. (7.2)

Such an extension would resolve the undelineated regions seen in some of the results.

More importantly, it would facilitate simultaneously delineating zones for multiple fields,

producing a single set of management zones for a whole farm rather than zones that are

unrelated from field to field.

7.3 Determining Adequate Convergence

Currently, running the algorithm is somewhat time-consuming. The number of  EM 

iterations being used is likely more than necessary. An initial analysis of the convergence

was conducted, and a comparatively large number of iterations was chosen to help ensure

convergence.

The metric used for the change in a given parameter from one iteration to the next was

D(Ak) ≜ ∥A
new
k − Aold

k ∥F

∥Aold
k ∥F

. (7.3)

64



This metric was chosen because it can be thought of as a percent change, under the Frobenius

norm. Then the max of this across the K zones, that is,

D(A) ≜ max
0≤k<K

D(Ak) (7.4)

was computed for R and µ. Plots of this change metric for both R and µ are shown in

Figs.  7.5a and  7.5b for 1000 and 10000 Gibbs samples per iteration respectively. Currently,

the parameter changes have only been recorded for the field Gott East 93 and only for

3 ≤ K ≤ 5. The first step in this future work would be to record these statics for more fields

and values of K.

Initially, with only 1000 Gibbs samples per iteration, some of the parameter changes

continued to fluctuate above 0.01. Therefore, the number of samples was increased to 10000.

With the increased number of Gibbs samples, the fluctuations stayed below 0.01 after 30

iterations even for K = 5. To be conservative, and because higher Ks would converge more

slowly, 100 iterations were used for all the delineation results.

Another potential convergence statistic to look at is the Rand error vs iteration when

running on simulated data. This would require rerunning the simulations since only the final

outputs were recorded for the initial simulations. Such a metric could not be used as a stop-

ping criterion, since the Rand error is not known except in simulation. However, analyzing

the behavior of it in simulation could provide insight into the orders of Gibbs samples and

 EM iterations needed, and thresholds on parameter convergence might be practical.

7.4 Accounting for Variable Rate Inputs

The current model does not account for varying inputs such as plant population or

fertilizer amount across a field within a year. It is assumed that any variation within a field

is due to either the natural variability of the crop or differences in the management zones.

If the farmer is already managing according to a set of “management zones”, the algorithm

cannot distinguish this from the management zones inherent in the field from unmanaged

inputs (e.g., from soil type and elevation). For the remainder of this section “managed zones”
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Figure 7.5. Recorded parameter changes for the field Gott East 93, computed
according to ( 7.3 ) and ( 7.4 )
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will refer to the zones by which the field was actually managed, in contrast to the underlying

management zones the delineation seeks to find.

Today, with precision agriculture, many fields today are planted non-uniformly. If a field

is already managed according to a set of zones with the zones being managed differently, this

is likely to create a sort of feedback loop between the management and the delineated zones.

The algorithm differentiates the zones based on them yielding differently, but managing

the zones differently is also likely to make them yield differently. Thus the management

of the field based on zones determined with yields managed by zones is likely to become a

self-fulfilling prophecy.

7.4.1 Delineate Based on Periodic Uniform Management

One solution which is good from a data collection perspective would be to periodically

(say every 5 years) manage a field uniformly. Then only the data of these uniformly managed

years’ yields would be used to delineate management zones via the proposed algorithm. This

would remove any effects from the management of the field (assuming the lingering effects

from the previous years’ management is negligible) to find the inherent management zones.

However, this method has the practical drawback of requiring uniform management for a

year rather than the preferred management practices of the farmer. Yields for the uniformly

managed years are likely to be less than if the zones had been well managed with variable

rates. There would be a trade-off between the loss of the uniform years’ yields and the

increased yields for other years based on better zone delineations.

7.4.2 Delineate Managed Zones Separately

What initially seems like a simple way to avoid the effects of the managed zones skewing

the resulting delineations is to simply delineate each zone separately rather than delineating

the whole field together. However, there are two major issues with this.

The first issue would be that the managed zones can change from year to year. This

means that even if you separate the data by a given years’ managed zones, the other years’

data are still potentially in multiple managed zones in previous years. The only way to really
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separate out the effects by delineating only one managed zone would be to use only the one

year’s data. This would remove much of the benefit of the proposed model and algorithm.

Another issue with delineating the managed zones separately is that once the zones are

delineated one would need a meaningful way to combine these disparate delineations. The

labels between the delineations would not be equivalent, that is, there is no reason to think

label 1 from one delineation is in any way similar to label 1 of another delineation.

7.4.3 Incorporate Management Effects into the Model

Another solution would be to try to incorporate the knowledge of the zones by which the

field was managed into the model and/or algorithm. A simple first step might be to model

the management effects as a scaling factor on what the unmanaged yield would have been.

Incorporating this into the model is more involved than it initially seems though. Since

the zones a field is managed by can change each year, the scaling factors would need to be

estimated separately for each year which has yield data.

7.5 Characterizing Yield Map Errors

One major question for the determination of management zones from yield data is how

good those data are. There is certainly error involved in the creation of the yield map.

Characterizing the various errors involved, both measurement errors and errors induced by

the nonlinear behavior of the combine [  22 ], is a next step. An understanding of these errors

could be used to improve the data pre-processing and the model in order to better delineate

management zones.
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Part II

THE OADA API FRAMEWORK
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8. INTRODUCTION

While the Internet has largely solved the problem of how to achieve scalable, widespread

exchange of human-consumable data such as web pages, the seamless exchange of machine-

usable data is still an area of ongoing development.

Many challenges remain in the  Application Programming Interface (API) design space,

especially with regards to finding and reusing  APIs , and embracing the temporal evolution

that is natural in products [  23 ]. Many industries, such as agriculture and manufacturing,

still struggle to achieve automated, cross-platform, and cross-organizational data exchange.

Unsupervised machines, unlike humans, require more than simple format standardization.

The machine must know how to reliably authorize, discover, identify, understand, ingest,

and synchronize data in order to successfully perform most of its required tasks.

Many, if not most, modern systems that exchange data use a  Representational State

Transfer (REST) [ 24 ]  API (Google, Twitter, Facebook, etc.). These  APIs are usually specific,

one-off designs. For example, the Google  API for information about  users is specific to Google

and different from the corresponding Facebook  API . In industries dominated by one or two

large players, their  APIs become de facto standard  APIs .

In industries such as agriculture, manufacturing, and shipping, it is difficult to achieve

 API -level standardization due to the technical complexity of the problem itself and the large

number of possible communication pathways between participants. In these industries, it

is the  user or data owner who must connect data platforms. The organizations behind

data platforms cannot be expected to sign prior agreements or dedicate developers to each

individual integration.

For example, in the context of agriculture, a farmer may want collected data (e.g., data

collected by an open-source planting app tracking progress throughout the season) to flow to

multiple other platforms that can utilize it. In the context of the food supply chain, a food

processing company may need to automatically receive safety certifications from upstream

vendors and route them to downstream customers. In the event of a food safety problem,

this could help regulators to crawl backward through the supply chain data systems to trace

the source of an outbreak.
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This configuration of a web of interconnected platforms (i.e., “clouds”) is known as an

intercloud [ 25 ]. While micro-service style architectures within a platform’s boundaries have

become quite popular as a means of dealing with complexity, the intercloud model extends

the concepts of micro-service architectures beyond platform boundaries. Figure  8.1 illustrates

a potential intercloud scenario involving multiple  APIs . The black text and icons are the

involved clouds, devices, etc., while blue text and arrows show the movement of data. The

following subsections detail the core concepts of  the Open Ag Data Alliance (OADA)  API 

Framework. Intercloud is an active area of research [ 23 ], [  26 ], [  27 ].
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Figure 8.1. Illustration of an intercloud scenario involving multiple  APIs 

This part of the manuscript presents work on a new framework for solving these problems

of automated, real-time, and historical data exchange between systems that is initiated by

data owners. It provides pathways to adoption-based  API standardization in emerging and

heterogeneous industries. The goal of this work is to facilitate a common  API framework,

enabling a sort of micro-services engine that supports ad-hoc architectures without pre-

defined boundaries.

The following sections present a review of related work, a detailed description of the

framework, a  Proof-of-Concept (PoC) implementation utilizing this framework, a discussion
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of some real-world use cases already employing the framework, and finally conclusions on

the utility of the framework.

8.1 Related Work for OADA

 Open Data Protocol (OData)  is a set of best practices for making and using RESTful

 APIs [ 28 ]. This work focuses on producing machine-readable descriptions of  APIs ’ data

models.  OData has been approved as a standard by  the International Organization for

Standardization (ISO) [ 29 ].

OpenAPI (formerly Swagger) works on defining a standard interface to RESTful  APIs 

[ 30 ]. Its work focuses on producing a description that allows both machines and humans to

discover and understand a RESTful  API , as opposed to producing strictly machine-readable

information.

GraphQL takes a  client developer-focused approach for creating web  APIs [ 31 ]. GraphQL

instead enables  API  clients to define the parts of the data structure relevant to them such

that the  API will only return or mutate data of interest to the  client , rather than the

traditional  REST model in which the  server defines the format of the data. This enables

painless evolution of the  API .

AsyncAPI works on defining a specification for documenting and describing message-

driven  APIs [ 32 ]. It is protocol-agnostic (can be applied to  Hypertext Transfer Protocol

(HTTP) ), and seeks to be as compatible as possible with the OpenAPI specification [ 30 ]

mentioned above.

8.2 Representational State Transfer (REST)

 REST [ 24 ] is hard to precisely define because it is an architectural style, rather than a

published standard or protocol like  SOAP ( formerly Simple Object Access Protocol ) [ 33 ].

The main requirements of  REST are client-server architecture, stateless, cacheability, layered

system, and uniform interface.

 REST defines resources as the elements which are communicated between server and

client. These resources can represent any information of interest (e.g., images, queries,
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collected data). Implementation details such as how the resources are actually stored and

what database is used are hidden from clients. Clients access resources on the server only

using  Uniform Resource Identifiers (URIs) . Each resource has its own unique  URI .

The communication between client and server should use a stateless protocol. Stateless-

ness here refers to the high-level protocol used between client and server, it is not saying that

the lower network layers (e.g., transport and media layers) involved in getting requests from

client to server and back are necessarily stateless. Here, stateless means that every request

received by the server is independent of every other request and can be interpreted without

any awareness of other requests sent. This enables handling requests in distributed and con-

current fashions, which allows for what is known as horizontal scaling [ 34 ]. Horizontal scaling

is increasing the capacity (i.e., number of clients which can be handled simultaneously) by

using an increasing number of separate nodes (i.e., server instances). The independent re-

quests can be handed off to different server nodes without requiring the nodes to be aware

of the other nodes or other requests.

Clients, as well as any intermediate parties (e.g., proxy servers), can cache server re-

sponses. Server responses need to indicate themselves as cacheable or non-cacheable, in

order to prevent clients from using stale responses. Cacheing can reduce the number of

client-server interactions needed, improving scalability.

Clients generally cannot tell if they are connected directly to the end server or an inter-

mediary. These intermediaries can be things like proxies, load balancers, or security layers

placed between clients and the server. These intermediaries do not affect communication

between client and server. Therefore such layers can be added without needing to update

server or client, enabling improved scalability with things like load balancing and shared

caches.

A  REST  API provides uniform representation of the exposed resources, which does not

correspond directly to how the server internally stores and represents the data. Two servers

implementing the same  REST  API would expose the same resource representations to clients,

but could store and internally represent those resources in entirely different ways. These

representations of resources are what clients use to manipulate the state of the resources,
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such as modifying or deleting the resource. This distinction decouples the server and the

client, allowing for their implementations to evolve independently.

8.3 Hypertext Transfer Protocol (HTTP)

 HTTP is a client-server communications protocol [ 35 ]. It is commonly used as the ap-

plication layer protocol for  APIs . While the two are often conflated,  HTTP is distinct from

 REST and neither one requires the other.  REST is a methodology for designing  APIs and

how they ought to function, whereas  HTTP is a specific communication protocol  APIs can

use.

8.3.1 Requests

 HTTP is a request-response protocol. The protocol is initiated by a client sending a

request to a server. A request consists of up to four parts. First, the request line is sent which

contains the method, the target, and the protocol version, terminated with a carriage return

and a linefeed (e.g., GET /resources/123 HTTP/1.1). Second, the zero or more header lines

may be sent each consisting of a field name, a colon, and a field value, terminated with a

carriage return and a linefeed (e.g., Content−Type: application/json). Then an empty line

must be sent, consisting of only a carriage return and linefeed, to indicate the end of the

header section. Finally, an optional request body may be sent.

8.3.2 Methods

 HTTP defines various methods as well as allowing for the use of new methods [ 36 ]. The

relevant standard  HTTP methods for this manuscript are GET, HEAD, PUT, POST, and

DELETE. GET is used to request the current state of the target from the server. HEAD

is like GET but tells the server to not send a response body. This is useful for retrieving

metadata in the response header without having to transfer all of the data. PUT is used

to update the state of the target on the server based on the request body. POST is used

to request the server process the request body according to the rules of the target. For
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example, a POST request to a /users might be used to request the server to create a new

user. DELETE is used to request the server to delete the state of the target.

8.3.3 Responses

For every request from a client, the server sends a corresponding response. A response

consists of: A response consists of up to four parts. First, the status line is sent which

contains the protocol version, the status code, and an optional reason phrase, terminated

with a carriage return and a linefeed (e.g., HTTP/1.1 200 OK). Second, the zero or more

header lines may be sent each consisting of a field name, a colon, and a field value, terminated

with a carriage return and a linefeed (e.g., Content−Type: application/json).Then an empty

line must be sent, consisting of only a carriage return and linefeed, to indicate the end of

the header section. Finally, an optional response body may be sent.

8.3.4 Status Codes

A status code is a three-digit integer code (e.g., 200) for the result of the server’s attempt

to process and fulfill the client’s corresponding request [ 36 ]. The first digit of a status code

defines its class. Clients may not understand all status codes, but they must understand all

classes and treat unknown codes as being equivalent to the X00 status for the corresponding

class (e.g., if 234 is unknown to the client, it shall treat it as 200). The 1XX (Informational)

status class means the request was received and understood. It is a provisional response

while processing on the request continues. The 2XX (Successful) status class means the

request was received and accepted. The 3XX (Redirection) status class means further client

action is needed in order to complete the request. The 4XX (Client Error) status class means

the request was invalid or not understood. The 5XX (Server Error) status class means the

server failed to process a request despite the request appearing to be valid.

75



9. OADA API CORE CONCEPTS

The  OADA  API was designed with the idea that there will be multiple clouds and  APIs .

This is why rather than being a specific  API ,  OADA is a framework for designing  APIs which

lend themselves to interoperability in an evolving intercloud environment.

9.1 RESTful Design

The first core concept in  OADA is adherence to  REST design principles, discussed pre-

viously in Section  8.2 . Any  OADA conformant  API is therefore a  REST ful  API . Many

 APIs today utilize the concept of  REST [ 37 ]. While  REST is not specific to  HTTP [ 24 ],

 OADA calls for using  Hypertext Transfer Protocol Secure (HTTPS) and  WebSockets in its

implementations.

With  REST in mind,  OADA represents the  API data as a set of resources that can be

found, read, modified, deleted, shared, connected linked, or watched for changes. A resource

is conceptually a collection of bytes, but  OADA gives  JavaScript Object Notation (JSON) 

formatted resources a higher level of functionality than other formats. In particular,  JSON 

resources are internally addressable, that is,  Uniform Resource Locators (URLs) can be

constructed to refer to internal parts of a  JSON resource, and a part of one  JSON resource

can link directly to another resource. This functionality can theoretically be implemented for

other formats, for example,  Extensible Markup Language (XML) , but  OADA only requires

 JSON support.

9.1.1 Resources

Resources are uniquely identified with a  URL comprised of a protocol such as https://,

a domain, such as example.com, and a canonical home rooted at the /resources path. For

example, the resource with identifier abc123 at domain example.com has a canonical  URL 

of https://example.com/resources/abc123.

For  JSON resources, the  URL can be extended beyond the canonical resource to include

paths within the  JSON itself. For example, the  URL https://example.com/resources/abc123
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/key1 refers to the key1 part of the abc123 resource. Additionally, if the value at the key1

key of the abc123 resource is itself a link to another resource, then the  URL extends to refer

further into parts of the linked resource.

In  OADA , the current state of a  resource can be retrieved with a GET request to its

 URL . A resource may change over time, but a GET request to the resource always returns

its current state as of the time the request is processed by the platform. HEAD requests and

conditional GET requests [ 38 ] are also supported in  OADA , to facilitate  client caching. If

the requested resource has changed from what is in the client’s cache, the server will respond

with the new version of the resource, otherwise, the server will send a response indicating

the cache is valid.

One of the main innovations of  OADA is the ability to have live data graphs, that is,

resources are not only available for reading via an  HTTP GET, but also as a log of all changes

to any arbitrary sub-tree of resources. For details on this protocol, please see Section  9.6 

below.

9.1.2 Resource Mutation Methods

In a  REST ful  API , the state represented in a  resource can be changed through particular

methods. In an  OADA  API , the specific methods for changing  resource state are: Create

(uses the  HTTP POST method), Upsert (uses the  HTTP PUT method), and Delete (uses

the  HTTP DELETE method), as described below.

9.1.2.1 Create

Performing the Create method on a  URL results in placing the body of the request at

a new randomly generated key within the addressed resource. This effectively appends a

random string to the end of the specified  URL and places the new data there. As a result,

the Create method is non-idempotent, that is, executing Create multiple times with the

same data will result in repeatedly adding the data at different random keys each time. This

prevents accidental collisions when multiple resources are created concurrently.
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Performing this method on the global resources endpoint (i.e., POST /resources) creates

a new  resource with a random resource identifier (i.e., it results in the  resource /resources

/<random new key> being created). Performing this request on any existing resource (e.g.,

POST /resources/abc123) results in the new data being placed at a random string key within

the resource. The newly-created canonical path is returned in the Content−Location  HTTP 

response header [ 36 ].

9.1.2.2 Upsert

In an  OADA Upsert operation, the body of the request is merged with the current state

of the addressed part of a resource to create the new state. Here, merge means recursively

adding the keys from the request body to the target resource, overwriting any existing keys.

If the resource did not exist at all prior to the upsert, it is created transparently with a state

equal to the request body.

The Upsert operation is idempotent, that is, executing the same Upsert operation mul-

tiple times results in the same final state. For example, if the resource did not exist before

the first Upsert, it was created and its state was made exactly equal to the request body. A

second identical request will tell the server to modify the now-existing resource by replacing

its contents with the identical contents of a repeated request body, resulting in the same

state as before this second request.

For  JSON resources, only the parts of the  JSON object that exist in the request body

are merged (unmentioned keys are not modified). In this way, an Upsert can be thought of

as an idempotent merge operation. The merge itself is a recursive merge, that is, if other

keys exist at any given level of a  JSON resource, only the keys at that level mentioned in

the request body will be overwritten or created. In this type of merge, it is impossible to

completely replace the contents of a  JSON object at any given level. One can only ensure

that the specified keys will exist, and they will point to objects which at least contain the

further specified keys, but may contain additional keys. For non-object values such as strings,

numbers, and booleans, this merge will completely replace the original value with the new
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value regardless of the type of the new value (e.g., a string would be completely replaced

with a new object).

9.1.2.3 Delete

Although Upsert can set the value corresponding to a given key, creating that key if it

does not yet exist, it cannot remove a key. Therefore,  OADA has a Delete method that

explicitly removes a state element. A Delete can be performed on a resource as a whole, in

which case it will be entirely removed from the current state. Additionally, a Delete can be

performed on a specific element of a resource, removing only the specified path within the

resource while leaving the rest of the resource unchanged.

Delete is also an idempotent operation, that is, multiple uses of Delete on the same  URL 

will result in the same final state of the resource (i.e., the specified key will be absent).

9.2 User-Centric REST APIs

Each  OADA  resource is owned by a  user account  . The corresponding  user can choose

to give other local accounts on the same cloud access to the  resource , and the  user can also

sync the resource to another cloud that supports the  OADA  API . For clarity, a  user is a

real person, not code interacting directly with an  API .

9.2.1 User-driven Connections

The  OADA framework aims to allow  users to use, share, and authorize their data as they

see fit rather than relying a priori interoperation agreements between cloud providers. A

 client written to use an  OADA conformant  API can be used with any  OADA -conformant

platform, even if the  client and platform do not have advanced knowledge of each other. To

that end, the  OADA framework supports Dynamic Client Registration [ 39 ]. For the purposes

of this section, a  client is any application which needs to ask for an authorized token to use

on behalf of a particular  user at an  OADA conformant cloud. The  user interacts with a

 client (e.g., a website), and that  client interacts with the  OADA  API .
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Dynamic Client Registration allows  clients to register themselves with platforms auto-

matically, obtaining a client identifier in response that can be used in future OAuth 2.0

requests for tokens. The platforms still have the ability to manage these  clients , such as

blacklisting  clients which misbehave in some way. However,  OADA encourages letting  users 

pick  clients as they see fit. Even after registering, a  client can only access data to which a

 user has granted it access, and a  user cannot grant a  client access to data to which that  user 

does not have access.

Dynamic Client Registration poses a hurdle to traditional OAuth 2.0 token distribution

in that it cannot use the common method of pre-shared client secrets. Therefore, during the

registration process, the  client provides a  JSON document describing itself which is digitally

signed by a trusted signature authority, and contains a public key for the  client . When the

 client performs an OAuth 2.0 request, it must create a client secret on-the-fly in the form of

a  JSON Web Token (JWT) that is signed with its corresponding private key as proof it is

whom it says it is.

9.2.2 Users and User Accounts

It is important to distinguish between  users and  user accounts because the mapping is

not necessarily one-to-one. For the purpose of this work, the term  user refers to an actual

person (or another real-world entity like a company with a representative). A  user may have

more than one account within a given  OADA conformant cloud.

A person or company may use multiple  OADA conformant clouds, and will have a distinct

 user account on each. From the perspective of an  OADA  API , two  user accounts are distinct

entities, even if they happen to belong to the same actual  user . The example of a single

 user with two  user accounts  corresponding to two different  OADA conformant clouds, is

illustrated in Fig.  9.1 .

9.2.3 Federated Identity / Universal Login

A  user can use an identity from one  OADA cloud to log into another. This results in the

second cloud transparently creating a new account and linking it to the original account.
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This facilitates  users sharing and migrating their data between clouds, or even utilizing

multiple  OADA conformant platforms concurrently in an intercloud scenario without the

need to manage many identities. A  user can choose any platform acting as an  OADA iden-

tity provider to handle his/her identity, using an  OADA -conformant version of the OpenID

Connect protocol [ 40 ].

9.2.4 Sharing and Permissions vs Sync

 User -driven data sharing can happen between  user accounts within an  OADA cloud, or

from a  user account on one cloud to a  user account on another cloud. While one might think

of both things simply as sharing, they are actually separate operations.

The relation between permissions and sync is illustrated in Fig.  9.1 . While a single

physical  user is involved, that  user has two  user accounts (one in each cloud). Permissions

within a cloud control what other  user accounts  within that cloud can access the  user ’s data,

whereas sync is used to move the  user ’s data between the clouds.
Tool #2: User Accounts/Permissions

User A’s
Account

Permissions

Other
Account

Other
Account

Permissions

User A’s
Account

Sync

User A

Implementation in OADA: Intra-cloud Read/Write/Admin, Users, Permissions Figure 9.1. Illustration of intra-cloud vs intercloud sharing

Permissions pertain to a  user accounts  within a given platform and which data each

account may access. For example, within platform 1  User A can grant read permissions

to  User B’s account for a set of data belonging to  User A. However, in platform 2 these

81



permissions from platform 1 would have no effect, even if both  User A and  User B also

have accounts at platform 2, because they were only applied on platform 1.  User A could

separately share his/her data within platform 2 to  User B’s account on platform 2 as well.

Sync is between two platforms and is distinct from permissions. As shown in Fig.  9.1 if

 User A has accounts on two  OADA platforms, the user could sync data from the account on

platform 1 to the account on platform 2. This is effectively sharing between the two accounts,

though the accounts belong to the same actual  user . Sharing between two different users on

two different platforms thus involves a combination of both permissions and sync.

9.3 Leverage Existing Standards

 OADA seeks to avoid reinventing the wheel where possible. This increases the probability

of being able to leverage existing tools. Strictly speaking, many of the standards utilized

in  OADA are not approved standards, but they are de facto standards with pre-existing

implementations and adoption. What is meant by this is that they have a published  Request

for Comments (RFC) and already have widespread adoption, but are not officially adopted

as a standard [ 41 ]. These are listed in Table  9.1 along with their corresponding defining

documents.

9.4 Resource Meta-Data

 OADA also has a special class of  resource ,  meta resources , which hold meta-data about

 resources . Every normal  resource has its own  meta resource (but a  meta resource does not

have an associated  meta resource ). Normal  resources contain a _meta key whose value is a

 link to that  resource ’s  meta resource .

This allows for storage of data about a  resource which do not necessarily belong within

the  resource . Having a separate  meta resource is especially important for storing formats

that do not allow adding arbitrary keys. For example, if a resource is an image format, the

 meta resource provides a place to store arbitrary data about it.
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Table 9.1. De Facto Standards Utilized in  OADA 

Name Document(s)

Hypertext Transfer Protocol (HTTP) 1.1  RFC 7230–7237 [ 35 ], [  36 ], [  38 ], [  42 ]–[ 46 ]

Hypertext Transfer Protocol Secure (HTTPS)  RFC 2818 [ 47 ]

OAuth 2.0  RFC 6749 [ 48 ]

Dynamic Client Registration  RFC 7591 [ 39 ]

JavaScript Object Notation (JSON)  RFC 8259 [ 49 ]

JSON Web Signature (JWS)  RFC 7515 [ 50 ]

JSON Web Token (JWT)  RFC 7519 [ 51 ]

JSON Web Key (JWK)  RFC 7517 [ 52 ]

OpenID Connect OpenID Connect Core 1.0 [  40 ]

Web discovery  RFC 8615 [ 53 ]

GeoJSON  RFC 7946 [ 54 ]
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Listing 9.1. Example  OADA resource state
{

"_id": " resources /123",
"_rev": 1,
"_type": " application /vnd.foo+json",
"_meta": {

"_id": " resources /123/ _meta",
"_rev": 1

},
"foo": {

"bar": {
"a": 1

}
}

}

 OADA stores information such as create/modify date, owner, and  user access for a given

 resource in its  meta resource  . Also, a  resource ’s  change feed (detailed in Section  9.6 ) is

accessible via a  link under the _changes key of the corresponding  meta resource .

9.5 Graph-Based Data Representation

 OADA resources can arbitrarily link to other resources, forming an overall traditional

 URL -driven  API structure. In other words, part of the state of one resource can be a

reference to another.

These links between resources create a graph. This graph of data can be traversed using

the  URLs of  API requests. The traversal via  URL is described in the subsections that follow.

9.5.1 Resource Fields as Children

 OADA not only treats explicit links between resources as a graph but also the keys and

sub-keys of resources can be accessed directly. For example, consider an  OADA -conformant

platform where GET /resources/123 returns the state shown in Listing  9.1 .
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Listing 9.2. State of key foo of resources/123

{
"bar": {

"a": 1
}

}

Listing 9.3. State of key bar of resources/123/foo

{
"a": 1

}

Listing 9.4. Example  JSON of an  OADA link
{

"_id": " resources /456",
"_rev": 1

}

The keys within this resource may be accessed directly as if they were their own resource.

For example, the key foo maybe be accessed directly with the request GET /resources/123/

foo. The state returned by that request in this case is shown in Listing  9.2 .

This traversal of keys is not limited to the first-level keys of a resource. The  URL of a

request can refer to an arbitrarily deep sub-key of a resource, and the traversal as above will

be carried out in a recursive fashion. For example, the request GET /resources/123/foo/

bar, would produce the state of the key bar of the state from Listing  9.2 . The result of this

request is shown in Listing  9.3 .

9.5.2 Links and Link Traversal

The links between resources are followed transparently (i.e., the  client does not need to

know about them), and traversed similarly to the traversal described in Section  9.5.1 . The

representation of a  link with  JSON in  OADA is shown in Listing  9.4 .
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Listing 9.5. Example of  OADA resource containing a link to another resource
{

"_id": " resources /foo",
"_rev": 2,
"_type": " application /vnd.foo+json",
"_meta": {

"_id": " resources /foo/_meta",
"_rev": 2

},
"bar": {

"_id": " resources /baz"
}

}

Listing 9.6. Example of an  OADA versioned link
{

"_id": " resources /111",
"_rev": 9001

}

The _id key is required and its presence is what makes a key of a resource into a  link .

The _rev key is optional,  OADA  links are traversed in the same manner regardless of the

presence of that _rev key.

Shown in Listing  9.5 is an example of a  link occurring within a resource. In the example,

the resource with id resources/foo has a key bar which is a  link to another resource with

id resources/baz. What this means in terms of  OADA  APIs is that the request GET~/

resources/foo/bar is equivalent to the request GET~/resources/baz since they resolve to the

same resource, and the two requests will return the same state.

9.5.3 Versioned and Unversioned Links

As mentioned in Section  9.5.2 ,  OADA  links have an optional _rev key. A  link with a

_rev key is a  versioned link , and a  link without one is an  unversioned link  . Examples of a

 versioned link and a  unversioned link are shown in Listing  9.6 and Listing  9.7 , respectively.
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Listing 9.7. Example of an  OADA unversioned link
{

"_id": " resources /111"
}

87



In a  versioned link , the _rev key tracks the _rev of the linked  resource . When the _rev

of the  versioned link  changes, it is considered a change to the  resource containing the  link 

(i.e., the parent). This in turn makes the _rev of that parent  resource update after the child

is changed. Figure  9.2 illustrates this upward propagation of _revs through the versioned

link resource graph. A path with three levels is shown, but the propagation holds for any

number of versioned links.

_rev updates can come at a cost of increased processing required per write, so they should

be used with care where necessary and not as a default for all links in a model. Please note

that _rev updates are eventually consistent in an  OADA conformant  API (a write to a leaf

node is not required to be immediately reflected in a parent node). It is expected that deeper

graphs will have higher rev update latency, although the batching of changes discussed in

Section  9.6.3 alleviates this under high write loads.

9.6 Live Data Graphs and Change Feeds

Resources in an  OADA  API have a history of the changes made to them. This history

allows a  client to keep track of the past changes and synchronize an external state to the

 server ’s current state by requesting and receiving only changes. Importantly, changes can

be conveniently tracked, pushed, and replicated for any arbitrary sub-graph using  versioned

links as described above. This provides the  OADA concept of a live data graph.

In an  OADA  API , the history of modifications to a resource is called a change feed. A

change feed is an ordered stream of change documents, which represent idempotent changes

of resources given in  JSON arrays. Applying a given change to a resource multiple times in

a row results in the same net state of the resource. This enables an at-least-once delivery

semantic for changes. The changes in a change feed are indexed by the  resource ’s revision

number.

9.6.1 Change Types

A change to a resource is represented by a  JSON document and is either a merge change

or a delete change. A merge change represents new or modified properties of the resource by
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Figure 9.2. Illustration of a change to a resource causing the upward propa-
gation of rev changes
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only containing the new key and value pairs (i.e., the contents of the change body are the

same as the contents of the body of the Upsert required to change the resource from its state

before the change to its state after). Note that deleted properties are not represented by a

merge change for the same reason that Upset and Delete are separate operations. Therefore,

 OADA represents a change of removing a value in  JSON by using null to represent the value

that was removed along with specifying a type of "delete" in order to explicitly differentiate

the two cases.

9.6.2 Change Trees

bookmar ks

devi ce

uni t 1

_rev:1

_rev:1

_rev:1

(a)

Change t o 
" uni t 1"

Change t o 
" devi ce"

Change t o 
" bookmar ks"

_rev:2

_rev:2

_rev:2

(b)

Change t o 
" uni t 1"

Change t o 
" devi ce"

Change t o 
" bookmar ks"

Change t o 
" uni t 1"

_rev:2 _rev:3

_rev:2

_rev:2

(c)

Figure 9.3. Example resource tree and change trees. (a) A resource tree
containing three resources and two versioned links. (b) The resulting change
tree after unit1 is modified once. (c) The resulting change tree after unit1 is
modified twice with the batched change feature enabled.

Any changes made to a resource will propagate to its parents connected with a versioned

link, as mentioned previously in Section  9.5.3 . This chain of propagation is described by a

change tree in which a node represents a single change to a specific resource in the graph

and an edge represents change propagation over a  versioned link . These change trees are the

language by which a live data graph can be streamed.
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A change tree is applied to a set of  resources by traversing it depth-first, visiting children

in order of increasing revision. Applying the changes in this order will transition a resource

from the state immediately before it to the state after.

For example, consider the case shown in Fig.  9.3a of making changes to the path /

bookmarks/devices/unit1, where bookmarks, devices, and unit1 are all resources and con-

nected with versioned links. In this scenario, a single change to the leaf resource unit1 creates

a change tree with three change nodes as shown in Fig.  9.3b .

9.6.3 Batched Changes

The number of new change nodes increases with the depth of the resource being modified

since versioned links propagate changes up the graph. Creating many new change nodes

can be costly since it requires both modifying the change graph and notifying any  clients 

watching the relevant live data graph section.

The batched changes feature reduces the number of new change nodes by allowing an

 OADA platform to merge multiple changes for a live data graph into a single change tree.

Notice that the most important (i.e., originating) change is always the leaf node, which

corresponds to an  API request. The other nodes are just to notify ancestors of the original

change. These non-leaf nodes can be merged to represent a single change of the ancestor

indicating that one or more changes have occurred to descendants.

Consider the previous example in which we make changes to a path /bookmarks/devices

/unit1. Without batched changes, two change requests to unit1 create two change trees with

a total of six change nodes. With batched changes enabled, the changes to bookmarks and

device are merged respectively, and a single tree with a total of only four nodes is created

as shown in Fig.  9.3c . This batching can be adjusted dynamically based on system load to

prioritize either latency or throughput.

9.7 Generic Intercloud Data Sync

A  user can set up a connection between two  OADA -conformant platforms such that all

(or a subset) of that  user ’s data from cloud 1 can be automatically (i.e., without further  user 
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action) pushed to cloud 2 over time. Any additions or changes to data after the connection

is established will be pushed without further  user intervention.

 Users (via  clients ) are able to set up such connections between any two  OADA  APIs 

for which they have accounts without coordination with the maintainers of the  APIs or the

source platform. With  OADA , cloud 1 need not even know cloud 2 exists (and vice versa)

before the  user sets up this connection.

There are two main parts of  OADA facilitating this data movement. The first is the

change feeds representing the live data graph, as discussed in Section  9.6 . The second is the

 OADA methods of communicating these changes through intercloud updates.
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Figure 9.4. Illustration of push and poll models of updates from  server to  client 

At a high level, there are two main ways for the updates to the live data graph to be

sent from the platform where they are happening to the platform (or user device) consuming
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them. These are referred to as “push” and “poll”.  OADA supports both of these models. In

fact,  OADA has three variations of “push” available.

9.7.1 Polling

Polling is simply having the  client periodically perform a GET on the endpoint of interest

to see if it has changed since the last time the  client retrieved it. Figure  9.4 shows the push

and poll models of updates from  server to  client . When changes are infrequent, polling can

result in unnecessarily long delays and/or excessive  HTTP requests and therefore should be

avoided in favor of push. However, polling is conceptually simpler to implement for a  client 

as a starting point.

9.7.2 Webhooks

Webhooks is a solution that works well for pushing updates between two  servers . It

requires that the  server can make  REST requests to the  client . Often this is not possible,

but it is possible when the  client is another server as opposed to a web browser or mobile

app. In an intercloud scenario, both  client and  server are often  servers . A  client can register

a webhook on any resource, and that webhook will be triggered on every change to the live

data graph rooted at that node (i.e., every rev update to the resource). The webhook is

configurable to make an  HTTP request to any  URL with statically-defined headers. In this

way, any external service that can receive arbitrary  HTTP requests can react to live event

triggers from the remote live data graphs of interest to it.

9.7.3 OADA Sync Webhooks

While it is useful to notify an arbitrary  HTTP  API of changes to a live data graph, it is

even more useful if the destination  API is standardized (such as an  OADA  API ). In other

words, the webhook can be smarter if it knows the destination has an  OADA -conformant

 API . The source platform can simply replay the same change at the destination resource

and one-way replication is automatically enabled.
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Since the  OADA Upsert is idempotent, a platform can receive synchronization streams

from multiple sources and trivially merge them creating a resource with data from all the

sources. This allows  clients to arbitrarily setup live data graph syncs where multiple streams

can coalesce into a single resource and then be filtered, split, or otherwise redistributed

elsewhere. For example, if a sequence of keys at cloud A are created as random identifiers,

and another sequence of keys at cloud B are created also as random identifiers, then replaying

the creating of the random keys from cloud A and cloud B at a resource in destination cloud

C will result in cloud C containing all the data found in the resources on both cloud A and

cloud B without collisions.

 OADA sync webhooks also perform recursive synchronization of live data graphs rooted

at any resource. This replicates a live data graph at a destination platform (i.e., changes

to the source automatically flow to the destination). To achieve this,  OADA maintains a

mapping on the source platform between the resource ids in the source live data graph to

the resource ids in the destination data graph.

9.7.4 WebSockets

WebSockets [ 55 ] is a widely used protocol which allows a persistent connection between

a  server and a  client , enabling a  server to push data to a connected  client . While not strictly

necessary for the sending updates from a  server to a  client , WebSockets are a good alternative

to requiring the  client to poll the  server for updates.

WebSockets are especially useful for the case where the  client is not an  OADA conformant

platform but is instead something like a browser, smart phone app, or micro-service as

they do not require the  client to expose a network-accessible  REST  API of its own. The

connection between  client and  server is maintained for either side to initiate asynchronous

communication, and it is simple for the  client to know when the connection has dropped.

The key method for a WebSockets-based live data graph is WATCH. Setting a WATCH

on a resource causes the change feed of the live data graph rooted at that resource to be

streamed over WebSockets. The WATCH can be started at the current rev, or a past rev
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can be specified from which to resume. The  OADA platform will start streaming changes

for that live data graph from the specified rev.

Micro-service architectures can utilize WATCH to react in real-time to things in particular

parts of an  OADA bookmarks tree.

9.8 Format Agnostic

While the discussion of  OADA thus far has all been in the context of using  JSON as the

primary data serialization format (due to its widespread use in  APIs [ 56 ]), any other formats

are also supported and are referred to as binary formats.

 OADA does not make any requirements on the semantic structure of data. It simply

requires that the Content−Type be defined for every resource. Content−Types are strongly

encouraged to specify a particular schema (e.g., application/vnd.oada.bookmarks.1+json)

rather than simply a serialization (e.g., application/json). These semantic schemata, when

combined in the graph, form a fully-defined  API definition for live data graphs. Through

the live data graphs themselves, live graph transformations can be maintained which can

convert from one schema to another.
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10. PROOF-OF-CONCEPT AND REFERENCE

IMPLEMENTATION

While  OADA itself is a framework, or  API specification, rather than a specific piece of

software, an  OADA  server implementing a base  OADA conformant  API has been developed

[ 57 ]. This implementation has been used as a  PoC , and as an open example of how to use

 OADA . It is also currently used in production environments and can easily add  OADA 

conformance to a platform.

10.1 Open-Source

All of the code written in relation to  OADA , both the  PoC  server and associated libraries,

is open source. The code is openly available on the  OADA GitHub [ 58 ] under permissive

licenses.

10.2 Portable

The reference implementation is written in JavaScript, so it can be run on many plat-

forms. The core micro-services are all written as Node.js [ 59 ] packages. This was chosen

because it is supported on many platforms and the high availability of libraries for Node.js

and JavaScript in general.

The reference implementation is written to not need a specific host OS or cloud provider

and therefore is run via Docker [  60 ]. Even though all of the core micro-services use Node.js,

other services can be written in whatever programming language the writers prefer. Micro-

services communicate over  HTTP (or Kafka if in the core), so any languages and runtimes

that support  HTTP can be used to implement micro-services.

10.3 Architecture

The architecture of the reference  OADA implementation is illustrated in Fig.  10.1 . It is

a micro-service based architecture, designed to allow for horizontal scaling and adding extra

micro-services for new features. Each box is a separately running micro-service, database,
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or  server . Only one of each micro-service is pictured for clarity, but multiple instances of a

given micro-service can be used to scale the platform horizontally.

80*

443

http

ws

O
u
ts
id
e

* Only /.well-known on port 80
Listening to Outside World

1 step from listening to outside

Internal, off-the-shelf

Out-of-flow from HTTP requests

Reacts only to internal events

REST over HTTP(s)

Figure 10.1. Architecture of the  OADA PoC implementation

10.3.1 Core Micro-services

10.3.1.1 HTTP Handler

The micro-service for interpreting and responding to incoming  HTTP requests is http−

handler. It checks the permissions and authorizations of incoming requests based on a token.

It then retrieves the resource from the database (ArangoDB) for reads, or talks to the write

handler over Kafka to execute writes.

10.3.1.2 Auth

The micro-service for authenticating  users using OAuth 2.0 [  48 ] is auth. Clients perform

the OAuth flow with the auth server and receive a token that can be used for  HTTP requests.
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It has its own collection in the ArangoDB database where it stores authentication information

for  clients and tokens.

10.3.1.3 Users

The micro-service for adding and initializing new  users is users. It handles things such

as creating /bookmarks and /shares resources for new  users .

10.3.1.4 Write Handler

The micro-service for modifying the  resources in the database for the Create, Upsert, and

Delete methods is write−handler. It is designed to work with multiple instances running

concurrently by partitioning the write requests such that all writes to a particular  resource 

are always sent to the same instance of write−handler.

10.3.1.5 Rev Graph Updater

The micro-service for propagating changes to _rev keys up  versioned links is rev−graph

−updater. It watches Kafka for any time a write to a  resource occurs. When this happens,

it queries ArangoDB for all parents of that  resource which have a  versioned link to it.

For each parent found, it sends an Upsert to write the new value of the  resource ’s _rev

to the  versioned link  of the parent  resource . This asynchronously implements the upward

propagation of changes described in Section  9.6 .

10.3.2 Kafka

The  OADA reference implementation uses Kafka [  61 ] as a message queue for the com-

munication between the core micro-services.
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10.3.3 ArangoDB

The underlying database for the  PoC implementation is ArangoDB [ 62 ]. It is where the

actual  JSON documents containing the state of the  API ’s  resources , the graph of resource

connections, and the changes graph are stored.

ArangoDB was chosen for the database for two main reasons:

1. It has support for  JSON storage and querying.

2. It has support for graph queries.

The reference implementation also stores other data in ArangoDB besides just  resources ,

but under different collections.

10.3.4 NGINX

Incoming  HTTP and  HTTPS traffic is routed through NGINX [ 63 ]. It is used as a

reverse-proxy, to delegate requests to the appropriate micro-service (http−handler, auth,

or well−known) and more importantly to load balance across multiple instances of a given

micro-service and handle TLS.
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11. OADA API APPLICATION RESULTS

There are already a few successful use cases of the  OADA framework and the reference

implementation mentioned in Chapter  10 . Some of these use cases are discussed in the

following subsections. As with the reference implementation, the apps in the following

sections are all available open-source on GitHub.

11.1 Field Work App

Figure 11.1. Screenshot of Field Work App, a web app designed to help
farmers keep track of the status of operations in their fields.
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The Field Work App [ 64 ] is a web-based application for farmers to track the progress of

field operations such as seed planting, tillage, chemical applications, and harvest. It serves

to aid in logistics planning as it presents both a geospatial view of progress on a map as well

as a numerical summary in terms of the acreage completed and remaining. A screenshot of

it is shown in Fig.  11.1 .

While  users may create field boundaries by drawing them within the Field Work App

itself, they may also import them into  OADA using a separate web-based import tool. An

operation is created by providing a text title for the operation (e.g., “Soybean planting

2020”) and setting a selection of fields to have a status of “planned”. As operations proceed,

 users then advance the status of each field from “started” to “done” in order to generate

summaries of progress. Operations can also be shared. For example, a harvest operation

might be shared with an agronomist in order to notify him/her when a particular set of fields

are ready to have post-harvest soil samples collected.

An integration was performed with a third-party data lake to provide a cloud-based data

management platform with a functioning  OADA -compliant  API . A service was developed to

perform a two-way sync of field boundary data between the data lake and the third-party’s

 OADA -compliant platform. The syncing service consisted of three separate micro-services —

one responsible for maintaining a clone of the relevant parts of the data lake in  OADA , one for

translating that dataset into the appropriate formats, and a third responsible for propagating

changes made in  OADA back to the data lake. The separation of the sync operation into

three services allowed for simpler isolation from circular updates while offering improved

debugging capabilities.

11.2 Trials Tracker App

The Trials Tracker [ 65 ] App is a web-based application for row crop farmers and similar

agriculturalists to manage planned or impromptu yield trials. Through a simple interface,

 users can take note of yield trials, view mean yield values and compare trials to the remainder

of the field or other trials. The Trials Tracker App recognizes the prominent role of geospatial

data in the agricultural data ecosystem. The app leverages stream-computed aggregations
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of the raw yield data from the live data graph that are geospatially-indexed in order to

match the  user ’s current zoom level and geospatial extent. As a result, all of the  user ’s yield

data are rendered on a seamless mapping interface that does not rely on the selection of a

particular field. This simplifies the  user experience. Apart from rendering visualizations,

these aggregates can be used to compute several statistics and present them to the  user .

Trials Tracker served as a pilot application for several  OADA technologies that would

benefit future  OADA -driven applications. One example is the indexing services used to trans-

form or re-index a given dataset such that it is more readily consumed by another application.

A re-indexing service was used to translate the raw harvest data into the geospatially-indexed

aggregates used by Trials Tracker. This was accomplished by subscribing to the live data

graph where the raw data arrived, then ensuring the necessary resources holding the yield

data aggregates existed. The re-indexing service was also responsible for computing running

sums and other statistics as each raw data point is added to each aggregate. This was done

in a stream-processing style for real-time data which was able to update the statistical totals

based only on the contents of the change feeds rather than requiring reprocessing the large

underlying datasets.

Trials Tracker also drove the development of additional front-end libraries and function-

alities. Motivated by the need to update the yield data renderings and trial statistics in

real-time within the app, an aid was developed to maintain subscriptions to push notifica-

tions for all of the proper  OADA resources. Additionally, a caching layer making full use of

 OADA live data graph features improved the performance of the app given its data-heavy

operations. Such functionalities were generalized into a  client -side library for interacting

with an  OADA -compliant  server [ 66 ].

11.3 Trellis Supply Chain Sovereign Data Automation

The  Trellis Framework [ 67 ] is a brand name for  OADA used in the food supply chain

industry. Using  OADA , the flow of relevant data (e.g., food safety audits) that are needed

between trading partners along a supply chain (e.g., from grower to packager to retailer)

is automated with selectable sharing rules and fine-grain privacy controls. This is achieved
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without requiring global coordination in the industry; the only coordination required is

between business partners who already coordinate to do business. As long as any two

players have  OADA -conformant platforms for their data, the syncing abilities of  OADA 

can be leveraged to create an ad-hoc, automated data pipeline that supports the privacy

requirements of its  users .

For example, a farmer with food safety audits stored in  Trellis  can pre-configure that

the food safety audits relating to cucumbers should go to three particular processors’  Trellis 

platforms. Those processors can configure their platforms to automatically sync their food

safety audits to any downstream distributors which receive product from them. The same

holds from distributor to retailer to consumer.

A unique feature of this automatic, real-time, peer-to-peer supply chain data exchange

model is that the existence of a standardized  API enables new privacy controls such as the

ability to Mask & Link [ 68 ]: replace sensitive data in a document with a hash of the original

data and a  Trellis  URL pointing to where to retrieve it if you have permission, acting as an

auditable, automated redaction engine.

While the work of this use case focused on food safety, the method applies to other supply

chain scenarios such as advance shipment notices or sustainability tracing. It is not specific

to the data being transferred nor their format.

11.4 ISOBlueApp

ISOBlueApp [  69 ] is a web-based application that shows current and historical telemetry

data collected by ISOBlue devices [ 70 ], [ 71 ] connected to agricultural vehicles in real-time.

A screenshot of it is shown in Fig.  11.2 .

The telemetry data are sent from ISOBlue devices to an  OADA -conformant platform

in real-time and indexed by the device name, date, and hour. For example, the loca-

tion data collected by unit1 on October 16th, 2020 at 10:20 AM UTC will be stored to

the path /bookmarks/isoblue/device-index/unit1/location/day-index/2020-10-16/

hour-index/10. ISOBlueApp allows a  user to monitor the updates on the  server using a

WATCH request and visualize the retrieved information in real-time.
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Figure 11.2. Screenshot of ISOBlueApp, an interactive tracking application
for agricultural telemetry devices. The application retrieves real-time informa-
tion from an  OADA -conformant platform.
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12. CONCLUSIONS

In this work a common  API framework for intercloud environments was detailed, and a

reference implementation of it was presented. Multiple cases of the framework already being

used were also discussed. The framework covered in this work successfully facilitates the

development and data flow for the discussed uses.

It is certainly the case that designing a specific  server and  API from the ground up for

a particular fixed graph would be more performant than using  OADA for that same graph.

However,  OADA allows for greater flexibility and code reuse than creating new  servers and

API for each use case (i.e., each graph). By using this suggested framework and its live

data graphs when developing  APIs , the resulting  APIs will be significantly more useful

for intercloud scenarios than using  REST alone. This is especially true for user-centered

scenarios, and scenarios with multiple  OADA -conformant platforms.
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13. FUTURE WORK

13.1 Using the Part  I Data with OADA

The flexibility of  OADA allows clients to decide how best to organize their data. The

optimum organization of data will depend on the specific use case. In the case of the presented

 stochastic expectation-maximization (SEM) based algorithm from Part  I , the client would

need to:

• get data by the crop type,

• get data by harvest year,

• and get data within a certian boundary (i.e., within a given field).

Based on these requirements of the application, one way to organize the data with  OADA 

would organize the yield data is to first index by year, then by crop type, and then by

geohash. A geohash is a public domain system for encoding geographic coordinates into

short strings [ 72 ].

The root resource,  /bookmarks , would link to a harvest resource as shown in Listing  13.1 .

The harvest resource,  /bookmarks/harvest , would contain a list of links to year resources as

shown in Listing  13.2 . This list is indexed by year so, for example, the key 2020 is a link to a

resource related to the 2020 harvest data. The 2020 harvest resource,  /bookmarks/harvest/

years/2020 , would contain a list of links to crop resources as shown in Listing  13.3 . This

list is indexed by crop so, for example, the key corn is a link to a resource related to the

Listing 13.1. Response to GET /bookmarks

{
"_id": " resources /123",
"_rev": 1,
" harvest ": {

"_id": " resources /456",
"_rev": 1

}
}
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Listing 13.2. Response to GET /bookmarks/harvest

{
"_id": " resources /456",
"_rev": 1,
"years": {

...,
"2020": {

"_id": " resources /2020",
"_rev": 1

},
"2021": {

"_id": " resources /2021",
"_rev": 1

}
}

}

Listing 13.3. Response to GET /bookmarks/harvest/years/2020

{
"_id": " resources /789",
"_rev": 1,
"crops": {

"corn": {
"_id": " resources /corn",
"_rev": 1

},
"soy": {

"_id": " resources /soy",
"_rev": 1

}
}

}
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Listing 13.4. Response to GET /bookmarks/harvest/years/2020/crops/corn

{
"_id": " resources /789",
"_rev": 1,
" geohashes ": {

...,
" abcdefg ": {

"_id": " resources /abc",
"_rev": 1

},
" hijklmn ": {

"_id": " resources /hij",
"_rev": 1

}
}

}

2020 corn harvest data.  /bookmarks/harvest/years/2020 The 2020 corn harvest resource,

 /bookmarks/harvest/years/2020/crops/corn  , would contain a list of links to geohash tiles

resources as shown in Listing  13.4 . This list is indexed by geohash so, for example, the

key abcdef is a link to a resource related to the 2020 corn harvest data within a given tile

of latitude and longitude. The best geohash tile size depends on the specific use case. A

geohash 7 characters long gives roughly 150m worst-case tile length, which is a good starting

point when working at field-scale. Finally, the resource for the example geohash abcdef for

corn in 2020,  /bookmarks/harvest/years/2020/crops/corn/geohashes/abcdef  , would contain

a list of yield data points as shown in Listing  13.5 .

Using this scheme, the algorithm code could be modified to dynamically fetch the needed

yield data via an  OADA  API . To delineate zones for a given field, the code would first

compute all the geohashes of the chosen length (7 in this example) which intersect the

field. Then for a given crop, and year, each geohash would be requested with earropGET

/bookmarks/harvest/years/y/crops/c/geohashes/abcdef. This would be repeated for each

year and crop of interest. After receiving the responses to those requests, the algorithm

would then have all the needed data to estimate the management zones.

108

/bookmarks/harvest/years/2020
/bookmarks/harvest/years/2020/crops/corn
/bookmarks/harvest/years/2020/crops/corn/geohashes/abcdef


Listing 13.5. Response to
GET /bookmarks/harvest/years/2020/crops/corn/geohashes/abcdef

{
"_id": " resources /789",
"_rev": 1,
"data": {

" sadasda ": {
"lat": 40.4293272,
"lon": -86.9123666,
"alt": 100,
"yield": 200,
"crop": "corn",
...

},
...

}
}
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A. PROOF THAT HMRF MODEL IS AN EXPONENTIAL

FAMILY

Theorem A.0.1. The joint model of X and Y forms an exponential family of distributions

parameterized by θ. That is, the joint distribution can be written in the following form from

the definition of an exponential family.

P (Y, X | θ) = b(Y, X) exp {⟨η(θ), T (Y, X)⟩} /α(θ) (A.1)

Proof. From Bayes’ theorem, the joint model can be broken down thusly.

P (Y, X | θ) = P (Y | X, θ)P (X) (A.2)

First, writing out the conditional  probability density function (pdf) of Y given X as the

product of the conditionally independent Gaussians and then grouping by management zone

yields the following,

P (Y | X, θ) =
∏
s∈S

P (Ys | Xs, θ)

=
∏
s∈S

(2π)− P
2 |RXs |

− 1
2 exp

{
−1

2(Ys − µXs)
⊺R−1

Xs
(Ys − µXs)

}

= (2π)− P |S|
2

K−1∏
k=0

∏
s∈S(k)

|Rk|−
1
2 exp

{
−1

2(Ys − µk)⊺R−1
k (Ys − µk)

}
(A.3)

where

S(k) ≜ {s : s ∈ S, Xs = k} .
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Focusing for now on the part inside ∏K−1
k=0 we change the product over s to a sum in the

exponent.

∏
s∈S(k)

|Rk|−
1
2 exp

{
−1

2(Ys − µk)⊺R−1
k (Ys − µk)

}
=

exp
 ∑

s∈S(k)
−1

2
(
(Ys − µk)⊺R−1

k (Ys − µk) + log |Rk|
) (A.4)

Then multiplying out the quadratic term in the sum yields,

(Ys − µk)⊺R−1
k (Ys − µk) = Y ⊺

s R−1
k Ys − 2Y ⊺

s R−1
k µk + µ⊺

kR−1
k µk

= ⟨YsY
⊺

s , R−1
k ⟩ − 2Y ⊺

s R−1
k µk + µ⊺

kR−1
k µk (A.5)

because Y ⊺
s R−1

k Ys is a scalar, and thus

Y ⊺
s R−1

k Ys = Tr
{
Y ⊺

s R−1
k Ys

}
= Tr

{
YsY

⊺
s R−1

k

}
= ⟨YsY

⊺
s , R−1

k ⟩

.

Plugging ( A.5 ) and ( A.4 ) into ( A.3 ) yields,

P (Y | X, θ) =

(2π)− P |S|
2

K−1∏
k=0

exp
{
−1

2
(
⟨Sk, R−1

k ⟩ − 2b⊺kR−1
k µk + Nkµ⊺

kR−1
k µk + Nk log |Rk|

)}
(A.6)
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where

Nk ≜ |S(k)| =
∑
s∈S

δ(Xs = k) (A.7)

bk ≜
∑

s∈S(k)
Ys =

∑
s∈S

Ysδ(Xs = k) (A.8)

Sk ≜
∑

s∈S(k)
YsY

⊺
s =

∑
s∈S

YsY
⊺

s δ(Xs = k). (A.9)

Finally, combining ( A.6 ) and ( A.2 ) one can obtain the form of ( A.1 ) with

b(Y, X) = P (X)

η(θ) =



−1
2

(
log |R0|+ µ⊺

0R−1
0 µ0

)
R−1

0 µ0

−1
2R−1

0
...

−1
2

(
log |RK−1|+ µ⊺

K−1R
−1
K−1µK−1

)
R−1

K−1µK−1

−1
2R−1

k



(A.10)

T (Y, X) =



N0

b0

S0
...

NK−1

bK−1

SK−1



(A.11)

α(θ) = (2π)
P |S|

2 . (A.12)

Therefore, the joint model of X and Y forms an exponential family of distributions

parameterized by θ.
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B. DERIVATION OF EM STEP EQUATIONS

As is proven in Appendix  A , the model used is an exponential family of θ, i.e., the parameters

being estimated. Therefore, as shown in [ 16 ], the  expectation-maximization (EM) updates

for  maximum likelihood (ML) parameter estimation equate to the following. For the E-step,

compute the expected value of the sufficient statistics. For the M-step, compute the  ML 

estimate of θ replacing the statics T (X, Y ) with their expected values.

B.1 E-Step

According to the form of an exponential family ( A.1 ), the sufficient statistics T (Y, X),

are shown in ( A.11 ). Therefore, their expected value is,

E[T (Y, X) | Y, θ] =
[
N̄0, b̄0, S̄0, · · · , N̄K−1, b̄K−1, S̄K−1

]⊺
(B.1)

where

N̄k ≜ E[Nk | Y, θ]=E

[∑
s∈S

δ(Xs = k) | Y, θ

]
(B.2)

b̄k ≜ E[bk | Y, θ] =E

[∑
s∈S

Ysδ(Xs = k) | Y, θ

]
(B.3)

S̄k ≜ E[Sk | Y, θ] =E

[∑
s∈S

YsY
⊺

s δ(Xs = k) | Y, θ

]
(B.4)

are the expected values of the individual statistics for each management zone k.

Thus, the E-step for the model is to evaluate ( B.2 ), ( B.3 ), and ( B.4 ) for k = 0, . . . , K−1

using the current estimate of θ.
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B.2 M-Step

From ( A.1 ) and because ( A.12 ) does not depend on θ, the  ML estimate of θ can be

expressed as,

θ̂ML = arg max
θ

log P (Y, X | θ)

= arg max
θ
⟨η(θ), T (Y, X)⟩ (B.5)

where η(θ) and T (Y, X) are given in ( A.10 ) and ( A.11 ) respectively.

Fist, taking the derivative of the function being maximized in ( B.5 ) w.r.t. µk yields

∂

∂µk

{
−1

2
(
log |Rk|+ µk

⊺R−1
k µk

)
Nk + b⊺kR−1

k µk

}
= −R−1

k µkNk + R−1
k bk (B.6)

for all k. Then, setting the above equal to 0, and solving for µk gives

µ̂ML
k = 1

Nk

bk (B.7)

for the  ML estimate of µk.

Next, taking the derivative of the function being maximized in (  B.5 ) w.r.t. Rk yields

∂

∂Rk

{
−1

2
(
log |Rk|+ µ⊺

kR−1
k µk

)
Nk + b⊺kR−1

k µk −
1
2 Tr

{
SkR−1

k

}}
=

− 1
2
(
2R−1

k −R−1
k ◦ I −R−1

k µkµ⊺
kR−1

k

)
Nk −R−1

k bKµ⊺
kR−1

k + 1
2
(
R−1

k SkR−1
k

)
(B.8)

for all k. Then, setting the above equal to 0, plugging in (  B.7 ) for µk, and solving for Rk

gives

R̂ML
k = 1

Nk

Sk −
1

N2
k

bkb⊺k (B.9)

for the  ML estimate of Rk.
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Thus, the M-step for the model is to evaluate

µ̂k = 1
N̄k

b̄k (B.10)

R̂k = 1
N̄k

S̄k −
1

N̄2
k

b̄kb̄⊺k (B.11)

for k = 0, . . . , K − 1.
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C. GIBBS SAMPLER

The Gibbs sampler allows generating realizations of the  Markov random field (MRF) X

that follow the  probability mass function (pmf) P (X|Y, θ) while only having to evaluate the

simpler  pmf P (Xs | X∂s, Ys, θ). The derivation of an expression for this conditional  pmf and

the specifics of the Gibbs sampling done here are described in the following sections.

C.1 Conditional pmf of Xs

A simple expression for the conditional marginal of Xs needs to be found. Starting with

Bayes’ rule, we get

P (Xs | Ys, θ) = P (Ys|X∂s, θ)−1P (Xs | X∂s)P (Ys | Xs, X∂s)

then from our  hidden Markov random field (HMRF) structure, we get

= P (Ys|X∂s, θ)−1P (Xs | X∂s)P (Ys | Xs)

and finally, from the Potts  pmf of ( 3.2 )

= P (Ys|X∂s, θ)−1z(β, X∂s)−1e−β
∑

r∈∂s
b|s−r|δ(Xr ̸=Xs)P (Ys | Xs). (C.1)

Since the first two terms in ( C.1 ) do not depend on Xs and this  pmf will only be used to

compute a  cumulative distribution function (CDF)  , these terms can be ignored. Thus,

P (X | Y, θ) ∝ e−β
∑

r∈∂s
b|s−r|δ(Xr ̸=Xs)P (Ys | Xs) (C.2)

can be used as the improper  pmf when implementing the Gibbs sampler, where P (Ys|Xs) is

a multivariate Gaussian  pdf as given by ( 3.4 ).
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C.2 Configuration Specifics

The specific Gibbs sampler used in this work actually consists of 10 parallel sampling

chains. The separate sampling chains were employed to decrease runtime. By using a GPU

all 10 can be run simultaneously in roughly the same time it would take to run 1. Each

chain is essentially its own simpler Gibbs sampler that is initialized with its own random

starting point. When all 10 chains are done, the samples are concatenated and returned.

The pseudocode for one such sampler is shown in Algorithm  1 .

Algorithm 1 Single Chain Gibbs sampler
Require: Y, θ, K

for all s ∈ S do
Draw X(0)

s ∼ U [0, K − 1]
end for
for l = 1, . . . , L do

X(l) ← X(l−1)

for all s ∈ S do
Compute CDF F (xs) = P (Xs ≤ xs | X(l)

∂s , Ys, θ)
Draw u ∼ U(0, 1)
Update X(l)

s ← F −1(u)
end for

end for
return X(1), . . . , X(L)

At the start of each chain, each element of X(0) is initialized with an  independent and

identically distributed (i.i.d.)  uniform random integer in the range [0, K − 1]. Then, in a

loop, each element of X is randomly updated using the inverse  CDF method to drawn from

its marginal distribution. After the loop is done, the current value of the X is taken as a

sample. This loop is repeated L times, where here L is the number of samples from the

given chain. Since there are 10 sampling chains and 10,000 samples are wanted, the L for

each chain is 1,000.
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