
STATISTICAL ESTIMATION OF CROP MANAGEMENT
ZONES FROM MULTI-YEAR YIELD DATA AND THE OADA

API FRAMEWORK
by

Alex Layton

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. James Krogmeier, Chair

School of Electrical and Computer Engineering

Dr. Dennis Buckmaster

Department of Agricultural and Biological Engineering

Dr. Mark Bell

School of Electrical and Computer Engineering

Dr. David Love

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

ACKNOWLEDGMENTS

The author would like to thank Ault Farms for supplying the yield data used in the

development and evaluation of the described algorithm.

This work was partially supported by the Foundation for Food and Agricultural Research

(FFAR) under award number 534662.

This work was partially supported by and AWS Cloud Credits for Research.

3

TABLE OF CONTENTS

 LIST OF TABLES . 11

 LIST OF FIGURES . 12

 LIST OF SYMBOLS . 15

 ABBREVIATIONS . 16

 GLOSSARY . 18

 ABSTRACT . 19

 I STATISTICAL ESTIMATION OF CROP MANAGEMENT
ZONES FROM MULTI-YEAR YIELD DATA 20

 1 INTRODUCTION . 21

 2 THE CROP YIELD DATA . 22

 2.1 Initial Data . 22

 2.2 Data Pre-Processing . 22

 2.2.1 Unit Conversion . 22

 2.2.2 Interpolation . 25

 3 CROP MODEL . 28

 3.1 Management Zone Model . 28

 3.2 Yield Model . 31

 3.3 Temporal Variability of Model . 33

4

 4 MANAGEMENT ZONE ESTIMATION ALGORITHM 36

 4.1 Stochastic Expectation-Maximization . 36

 4.1.1 Sampling (S-Step) . 38

 4.1.2 Expectation of Conditional Statistics (E-Step) 38

 4.1.3 Maximum Likelihood Parameter Estimate Update (M-Step) 39

 4.2 Parameter Initialization . 39

 4.3 Management Zone Assignment . 40

 5 MANAGEMENT ZONE ESTIMATION RESULTS 41

 5.1 Real Yield Data . 41

 5.1.1 Corn Yield Results . 41

 5.1.1.1 Resulting Management Zones 41

 5.1.1.2 Variance Reduction . 43

 5.1.2 Corn and Soybean Yield Results . 48

 5.2 Simulated Yield Data Based on Real Yield Maps 49

 5.2.1 Simulated Performance of the Algorithm 49

 5.2.2 Comparison to State-of-the-Art . 52

 5.2.2.1 Multi-Field Simulation . 52

 5.2.2.2 Multi-Crop Simulation . 52

 5.3 Purely Simulated Yield Data . 55

 5.3.1 Simulating Yield Data for Arbitrary Years 55

5

 5.3.2 Simulation Results . 56

 6 CONCLUSIONS . 59

 7 FUTURE WORK . 60

 7.1 Investigate Soil Relations . 60

 7.1.1 Initial Soil Map Unit Comparison . 60

 7.1.2 ERUs . 63

 7.2 Handling Partial Yield Observations . 63

 7.3 Determining Adequate Convergence . 64

 7.4 Accounting for Variable Rate Inputs . 65

 7.4.1 Delineate Based on Periodic Uniform Management 67

 7.4.2 Delineate Managed Zones Separately 67

 7.4.3 Incorporate Management Effects into the Model 68

 7.5 Characterizing Yield Map Errors . 68

 II THE OADA API FRAMEWORK 69

 8 INTRODUCTION . 70

 8.1 Related Work for OADA . 72

 8.2 Representational State Transfer (REST) . 72

 8.3 Hypertext Transfer Protocol (HTTP) . 74

 8.3.1 Requests . 74

6

 8.3.2 Methods . 74

 8.3.3 Responses . 75

 8.3.4 Status Codes . 75

 9 OADA API CORE CONCEPTS . 76

 9.1 RESTful Design . 76

 9.1.1 Resources . 76

 9.1.2 Resource Mutation Methods . 77

 9.1.2.1 Create . 77

 9.1.2.2 Upsert . 78

 9.1.2.3 Delete . 79

 9.2 User-Centric REST APIs . 79

 9.2.1 User-driven Connections . 79

 9.2.2 Users and User Accounts . 80

 9.2.3 Federated Identity / Universal Login 80

 9.2.4 Sharing and Permissions vs Sync . 81

 9.3 Leverage Existing Standards . 82

 9.4 Resource Meta-Data . 82

 9.5 Graph-Based Data Representation . 84

 9.5.1 Resource Fields as Children . 84

 9.5.2 Links and Link Traversal . 85

7

 9.5.3 Versioned and Unversioned Links . 86

 9.6 Live Data Graphs and Change Feeds . 88

 9.6.1 Change Types . 88

 9.6.2 Change Trees . 90

 9.6.3 Batched Changes . 91

 9.7 Generic Intercloud Data Sync . 91

 9.7.1 Polling . 93

 9.7.2 Webhooks . 93

 9.7.3 OADA Sync Webhooks . 93

 9.7.4 WebSockets . 94

 9.8 Format Agnostic . 95

 10 PROOF-OF-CONCEPT AND REFERENCE IMPLEMENTATION 96

 10.1 Open-Source . 96

 10.2 Portable . 96

 10.3 Architecture . 96

 10.3.1 Core Micro-services . 97

 10.3.1.1 HTTP Handler . 97

 10.3.1.2 Auth . 97

 10.3.1.3 Users . 98

 10.3.1.4 Write Handler . 98

8

 10.3.1.5 Rev Graph Updater . 98

 10.3.2 Kafka . 98

 10.3.3 ArangoDB . 99

 10.3.4 NGINX . 99

 11 OADA API APPLICATION RESULTS . 100

 11.1 Field Work App . 100

 11.2 Trials Tracker App . 101

 11.3 Trellis Supply Chain Sovereign Data Automation 102

 11.4 ISOBlueApp . 103

 12 CONCLUSIONS . 105

 13 FUTURE WORK . 106

 13.1 Using the Part I Data with OADA . 106

 REFERENCES . 110

 A PROOF THAT HMRF MODEL IS AN EXPONENTIAL FAMILY 118

 B DERIVATION OF EM STEP EQUATIONS . 121

 B.1 E-Step . 121

 B.2 M-Step . 122

 C GIBBS SAMPLER . 124

 C.1 Conditional pmf of Xs . 124

 C.2 Configuration Specifics . 125

9

 VITA . 126

 PUBLICATIONS . 127

10

LIST OF TABLES

 2.1 This table lists the fields whose data were used in this work. Shown are the
number of years of corn harvest data available and the number of acres covered
by all the years’ data. . 24

 5.1 Standard deviations of yields for each field in each year when delineated for K = 3 45

 5.2 Standard deviations of yields for each field in each year when delineated for K = 4 46

 5.3 Standard deviations of yields for each field in each year when delineated for K = 5 47

 5.4 This table shows the simulation Rand errors of the output of the presented
 stochastic expectation-maximization (SEM) based algorithm when run on simu-
lated fields based on real fields, as described in Section 5.2 . Also, the leftmost
column show the Rand error averaged by field and the bottom row shows the
Rand error averaged by order, K. . 50

 9.1 De Facto Standards Utilized in OADA . 83

11

LIST OF FIGURES

 2.1 These are the outlines of the fields corresponding to the data used in this
paper. For each of these fields, there were two or more years of corn yield
data. The data span two counties in Indiana and correspond to roughly 1400
acres of farmland. . 23

 2.2 This is an illustration of the interpolation performed on the yield data. It is
a section of the real data. The circular points are locations of the input non-
uniform data (for a particular year), and the square points are the locations
of the output uniform data (for all years). The grid shows the borders of the
interpolation grid regions. For the interpolation location in the center of the
figure, the interpolation neighborhood radius is shown with a dotted line. . . 26

 3.1 This is an illustration of an example management zone assignment image
(denoted X). In this figure N (one spatial dimension) is 9, and M (the other
spatial dimension) is 13. Since the element values range from 0 to 2, the
corresponding K (number of management zones) is 3. 29

 3.2 This is an illustration of an example input yield array (denoted Y). In this
figure N (one spatial dimension) is 5, M (the other spatial dimension) is 5,
and P (the temporal dimension) is 3. The yield vector (denoted Ys) for a
particular location (e.g., s) is highlighted. . 32

 3.3 This diagram illustrates a simplified example of the model of management
zones which have fixed assignments year-to-year, yet still yield differently each
year. A simple example field is shown in Fig. 3.3a which has three zones with
a slope. The vertical lines are the high ground zone, the waves are the side
slope zone, and the checkerboard is the low ground zone. These zones are
fixed year-to-year. However, their yield distributions shown in Fig. 3.3b are
different each year due to weather. . 35

 4.1 High level illustration of the steps of the algorithm. The figure also indicates
which of the steps utilize the input yield data. The following sections give
more detail on the steps. 37

 5.1 Pictured are the output segmentations resulting from running the presented
 SEM based algorithm on the real multi-year yield data of each field. Each field
was run with K = 4. The different colors correspond to different management
zone assignments, with white corresponding to no zone assignment. 42

 5.2 Management zone delineation for the field Gott East 93 for K = 4 with a
legend showing the number label assigned to each zone. 44

 5.3 Pictured are the management zone delineation for the field Gott East 93
using only corn yields, only soybean yields, and both corn and soybean yields,
respectively. The pictured delineations are for K = 4. 48

12

 5.4 This histogram shows the occurrences of the Rand errors of the output of the
presented SEM based algorithm when run on simulated fields based on real
fields, as described in Section 5.2 . 51

 5.5 This figure shows the performances of the presented SEM based algorithm
and the Management Zone Analyst (MZA) algorithm. For each value of K
both algorithms were run on the same simulated field, simulated as described
in Section 5.2 . The MZA algorithm was run twice for each field, once with

 Universal Transverse Mercator (UTM) x and y included in the observations,
and once without utilizing the UTM coordinates. The error metric, referred
to as Rand error, was computed as the Rand distance between the true X
used for simulation and the X̂ output by the algorithm. 53

 5.6 This figure shows the performances of the SEM algorithm presented by this
paper and the MZA algorithm. For each value of K both algorithms were
run on the same simulated field, simulated as described in Section 5.2 . The
error metric, referred to as Rand error, was computed as the Rand distance
between the true X used for simulation and the X̂ output by the algorithm. 54

 5.7 Management zone assignments for fields in multiple year experiment. 55

 5.8 Illustration of dividing total yield distribution into 3 equally likely zone dis-
tributions. The division is done such that the total mean and variance are
preserved. . 56

 5.9 Shown are the Rand errors vs number of years of yield data from the simulation
experiment to determine the impact of an increasing number of years’ data.
The values are averaged over the three fields used, and the error bars show the
standard deviation of the errors. Errors were calculated for both the proposed
method’s delineations and delineations from MZA . Both methods are shown
in Fig. 5.9a and, since the errors are so much smaller, a zoomed version is
shown for P ≥ 2 is shown in Fig. 5.9b . . 58

 7.1 Yield histograms for 2007 . 60

 7.2 Yield histograms for 2009 . 61

 7.3 Yield histograms for 2011 . 61

 7.4 Yield histograms for 2013 . 62

 7.5 Recorded parameter changes for the field Gott East 93, computed according
to (7.3) and (7.4) . 66

 8.1 Illustration of an intercloud scenario involving multiple APIs 71

 9.1 Illustration of intra-cloud vs intercloud sharing 81

 9.2 Illustration of a change to a resource causing the upward propagation of rev
changes . 89

13

 9.3 Example resource tree and change trees. (a) A resource tree containing three
resources and two versioned links. (b) The resulting change tree after unit1
is modified once. (c) The resulting change tree after unit1 is modified twice
with the batched change feature enabled. 90

 9.4 Illustration of push and poll models of updates from server to client 92

 10.1 Architecture of the OADA PoC implementation 97

 11.1 Screenshot of Field Work App, a web app designed to help farmers keep track
of the status of operations in their fields. 100

 11.2 Screenshot of ISOBlueApp, an interactive tracking application for agricultural
telemetry devices. The application retrieves real-time information from an

 OADA -conformant platform. . 104

14

LIST OF SYMBOLS

N Multivariate Gaussian distribution

U(a, b) Continuous uniform distribution on interval (a, b)

U [a, b] Discrete uniform distribution on interval [a, b]

E[·] Expectation operator

X M ×N random field of management zone labels

Y M ×N × P random field of yield observations

Ys P -vector of yield observations for coordinate s

θ Set of estimated model parameters

S Set of all field coordinates

∂s Set of all field coordinates neighboring coordinate s

δ(·) Kronecker delta function

∅ The empty set

∥ · ∥F Frobenius norm

15

ABBREVIATIONS

API Application Programming Interface 13 , 70 – 74 , 76 , 77 , 79 , 80 , 84 , 86 ,

 88 , 91 – 96 , 99 , 101 , 103 , 105 , 108

CDF cumulative distribution function 124 , 125

EM expectation-maximization 36 , 38 , 64 – 66 , 121

ERU environmental response unit 63

HMRF hidden Markov random field 28 , 33 , 36 , 124

HTTP Hypertext Transfer Protocol 72 , 74 , 76 – 78 , 93 , 96 , 97 , 99

HTTPS Hypertext Transfer Protocol Secure 76 , 99

i.i.d. independent and identically distributed 125

ISO the International Organization for Standardization 72

JSON JavaScript Object Notation 76 , 78 , 80 , 85 , 88 , 90 , 95 , 99

JWT JSON Web Token 80

MAP maximum a posteriori 40

ML maximum likelihood 39 , 121 , 122

MPM maximizer of the posterior marginals 40 , 64

MRF Markov random field 30 , 33 , 38 , 124

MZA Management Zone Analyst 13 , 52 – 54 , 56 – 59

OADA the Open Ag Data Alliance 11 , 14 , 71 , 76 – 88 , 90 – 98 , 100 – 106 , 108

OData Open Data Protocol 72

pdf probability density function 118 , 124

pmf probability mass function 30 , 36 , 124

PoC Proof-of-Concept 71 , 96 , 99

REST Representational State Transfer 70 , 72 – 74 , 76 , 77 , 93 , 94 , 105

RFC Request for Comments 82 , 83

SEM stochastic expectation-maximization 11 – 13 , 36 , 40 , 42 , 49 – 54 , 63 , 106

URI Uniform Resource Identifier 73

URL Uniform Resource Locator 76 , 77 , 79 , 84 , 85 , 93 , 103

16

UTM Universal Transverse Mercator 13 , 25 , 52 , 53

XML Extensible Markup Language 76

17

GLOSSARY

change feed OADA change feed 84

client A piece of software which interacts with a server using an API. 14 , 72 ,

 77 , 79 , 80 , 85 , 88 , 91 – 94 , 98 , 102 , see server & API

link OADA link 82 , 84 – 86 , 88

meta resource OADA resource meta document 82 , 84

resource OADA resource 77 – 79 , 82 , 84 , 88 , 91 , 98 , 99

server A platform which hosts an API and serves API requests from clients.

 14 , 72 , 88 , 92 – 94 , 96 , 97 , 102 , 103 , 105 , see client & API

SOAP formerly Simple Object Access Protocol 72

Trellis The Trellis Framework 102 , 103

unversioned link OADA unversioned link 86

user A person who interacts with a client. Users do not interact directly

with servers or APIs. 70 , 79 – 82 , 84 , 91 , 92 , 97 , 98 , 101 – 103 , see client ,

 server & API

user account A representation of a user on server. Users may have multiple user

accounts on the same server and accounts across multiple servers. 79 –

 81 , see user & server

versioned link OADA versioned link 86 , 88 , 90 , 98

WebSocket WebSocket 76

18

ABSTRACT

Precision agriculture equipment enables treating different areas of a field differently (i.e.,

site-specific management). The first part of this work presents an algorithm for inferring

the management zones of fields based on multiple years’ yield data. It seeks regions that

correspond to the same underlying yield distribution. Zones are assumed to be the same each

year, but their distributions are allowed to change year-to-year to account for variability.

Zones are estimated using stochastic expectation maximization and maximization of the

posterior marginals. The underlying assumption is that the yields corresponding to a given

zone will behave similarly, and are drawn from the same distribution. This requires only

the yield data automatically collected during harvest. This method requires no crop-specific

calibration.

The second part of this work presents the Open Ag Data Alliance (OADA) Application

Programming Interface (API) framework. It is a generic specification that can be used by

third parties’ APIs to reduce the complexity of interoperating with multiple entities. This

is especially useful in intercloud scenarios, for example, moving data between a farmer, a

processor, and a distributor. Several existing standards that were leveraged are identified, the

graph-based data representation is illustrated, and key API specifications and features are

highlighted. Some of the contributions of OADA include user-centric Representational State

Transfer (REST) so users can select API clients, resource meta-data stored externally to the

resource, live data graphs via change feeds, intercloud data push, and format indifference.

A reference implementation is presented and use cases are demonstrated.

19

Part I

STATISTICAL ESTIMATION OF

CROP MANAGEMENT ZONES

FROM MULTI-YEAR YIELD DATA

20

1. INTRODUCTION

The rise in precision agriculture has resulted in more and more machines having monitors

which automatically record yield data during harvest. Such monitors also allow for easily

breaking a field into smaller regions, referred to as “management zones”, and applying dif-

ferent inputs to each of these regions (e.g., applying more fertilizer to one region than to

others). Realizing these two things, it seems natural to try to use the output recorded at

harvest to determine a set of management zones to use when deciding how to apply inputs.

This work presents a probabilistic model relating observed yields to management zones,

and a corresponding algorithm for estimating the management zones based on the model.

The model is designed to allow for year-to-year variability within a management zone. Such

variability can come from sources like differences in weather (e.g., “wet” year or “dry” year),

differences in measurement calibration (e.g., using a different combine), or growing different

crops or crop varieties (which have different yield characteristics). The algorithm aims to

find the likely management zone assignments for a field based on the yields recorded from

multiple years’ harvests and the management zone model.

Experimental results are shown in which the algorithm was run on real yield data span-

ning multiple years and multiple fields. The data were recorded automatically by the com-

bines used for harvest. Simulated results are also shown in which the algorithm was run on

simulated yields for which the “true” management zones are known. The data were simulated

based on the real data collected. The simulated data were also run through a pre-existing

algorithm for comparison purposes.

21

2. THE CROP YIELD DATA

2.1 Initial Data

The data used were yield data exported from a combine’s monitor. The data had been

collected automatically during the normal operation of the combine. The data comprised

grain flow, speed, grain moisture, date, and GPS location. The collected data came from

multiple fields, over multiple years. This paper will focus on the data of fields with multiple

years of corn harvest data, as well as one field with multiple years of both corn harvest data

and soybean harvest data. These fields used in the paper are shown in Fig. 2.1 and described

in Table 2.1 .

2.2 Data Pre-Processing

2.2.1 Unit Conversion

The collected data had wet grain flow versus time, but what was needed was dry yield

versus area. The dry yield versus area was computed from the collected data according to

(2.1)

y = f

(5280v) (43560w) ·
100−m

100−mdry

(2.1)

where

y = dry yield in bu/ac

f = grain flow in bu/h

v = speed in mi/h

w = combine header width in ft

m = grain moisture in %

mdry =


15.5%, for corn

13%, for soybeans
.

22

Figure 2.1. These are the outlines of the fields corresponding to the data used
in this paper. For each of these fields, there were two or more years of corn
yield data. The data span two counties in Indiana and correspond to roughly
1400 acres of farmland.

23

Table 2.1. This table lists the fields whose data were used in this work. Shown
are the number of years of corn harvest data available and the number of acres
covered by all the years’ data.

Field Years of Data Area (acres)
Rusty 100 3 94
Boots 72 3 61
Bank 53 4 53

Church 17 4 19
Coondog 45 4 43

Deedsville North 63 5 61
Deedsville South 24 5 23

Macy 25 3 27
Muck 17 5 17

Drycow 61 5 65
Eber 124 3 126

Shackleford East 50 5 49
Gott East 93 4 93
Gott West 24 4 23
Layton 192 3 197
Home 128 5 72
Horn 235 2 239

Lillian South Mucks 21 4 21
Mont North 100 2 86

24

The above calculation was performed for every collected data point (where one point was

comprised of a wet flow measurement, a GPS position measurement, a speed measurement,

and a moisture measurement). This resulted in a yield map that was non-uniformly sampled

in space because the collected data were non-uniformly sampled in space. To remedy this,

the data were interpolated to a uniform spatial grid.

2.2.2 Interpolation

For a given field, the grid used was the same across all the years of data. Before the actual

interpolation could be performed for each year’s data, this grid has to be determined. To

simplify distance calculations, the GPS latitudes and longitudes were converted to Universal

Transverse Mercator (UTM) coordinates [1]. Next, a bounding box was found for the set of

all data points for the given field. Then the South-West corner of that box was used as the

first grid point. Finally, the grid was expanded North and East, with the same spacing in

each direction, to cover the bounding box.

Once the target grid is determined, the interpolation is performed for each year of data

using a modified Shepard’s method [2], as illustrated in Fig. 2.2 . This interpolation method

uses a weighted average of the points within a neighborhood of the new grid location, as

shown in (2.2) and (2.3)

ys =
∑

i∈Ns,R
yiwi(s)∑

i∈Ns,R
wi(s) (2.2)

wi(s) =
(

R− ∥s− i∥
R ∥s− i∥

)2

(2.3)

where

ys = yield value for coordinate s

i = coordinate of uninterpolated data point

s = coordinate of interpolated data point

R = radius of interpolation neighborhood

Ns,R = set of uninterpolated coordinates within R of s.

25

Figure 2.2. This is an illustration of the interpolation performed on the yield
data. It is a section of the real data. The circular points are locations of the
input non-uniform data (for a particular year), and the square points are the
locations of the output uniform data (for all years). The grid shows the borders
of the interpolation grid regions. For the interpolation location in the center of
the figure, the interpolation neighborhood radius is shown with a dotted line.

26

In the case when there is no data inside the grid square (such as the squares in the upper left

of Fig. 2.2), that location is given a yield of not a number (NaN). NaN is a possible value

in computation, used to represent an undefined value [3]. When an arithmetic operation

is performed with a NaN, the result is a NaN (thus, the undefined grid locations remain

undefined in the algorithm output).

This interpolation is a form of Inverse Distance Weighting (IDW). IDW has been shown

to perform well for interpolating GPS referenced yield measurements [4]. The modified

version is used to prevent interpolation across field boundaries. The data were interpolated

using a grid size of 10m and a neighborhood radius, R, of 10m. The size 10m was picked

because it is on the order of the width of a combine header. After this interpolation is run on

each year of data for the field, the outputs for each grid location (i.e., each s) are combined

into vectors, which is why it was necessary to determine a grid based on all the years before

interpolating the years separately.

27

3. CROP MODEL

This work employs a hidden Markov random field (HMRF) . The model is comprised of two

parts [5], a model for the unobserved (i.e., “hidden”) management zones, and a conditional

model of the observed crop yields. These models all assume the data are on a uniform spatial

grid, and thus represent them with matrices and vectors.

It is worth noting that while there are certainly other data that can be used in the

determination of management zones, e.g., soil type and topography [6], they are not included

in this model. The model and algorithm were developed to leverage the readily available

yield data, and so that is what is used in determining management zones. While the model

does not incorporate such input data, it should be able to discern their effect on the output

yields given enough years of yield observations.

3.1 Management Zone Model

A “management zone” can be many things, depending on who is asked and the context.

A common agronomic interpretation of “management zones” is the regions of a field having

similar yield potential, or “yield zones”, sometimes also called “response zones” or yield

“productivity zones” (YPZ) [7]–[9]. This work, and the described model, take this “yield

zone” view of what a management zone is. This is not an assumption, but rather a definition

of management zones as regions of a field having similar productivity potential.

For the model, a management zone is viewed as a region of the field where the corre-

sponding yields have the same underlying distribution. The management zones are assumed

to be constant year-to-year, but the distributions of their corresponding yields are allowed

to change over time.

A management zone assignment for the field is denoted X, and the assignment for a

particular location, s, is denoted Xs. The value of Xs is represented as an integer between

0 and K − 1 (where K is the total number of management zones), or NaN if the location s

is deemed not in the field (i.e., any year was missing data for that grid location). Therefore,

X is represented as a matrix where each element is the management zone assignment for

28

0

1

20 0
0 0

2
2 2 2

22222
2 2 1 1

1 1 1 1 1N

M

21

0
1

0

2 2
222

21
1
1
1

1
1

1
1

1 1
1 1 1 1
1

1

1

1

0 0 0 0 0 0 0 0 0 0 0 0
0
0

0
0
0
0
0

1

2 2 2 1 1 1 0
2 2 2 2

2
2

21 1
1

1
1

0

0
0

0
0

0

1 1
11

1 2 000
02 2

2 2

2
1 1

1

Figure 3.1. This is an illustration of an example management zone assignment
image (denoted X). In this figure N (one spatial dimension) is 9, and M (the
other spatial dimension) is 13. Since the element values range from 0 to 2, the
corresponding K (number of management zones) is 3.

29

the corresponding grid location. Figure 3.1 illustrates the representation of the management

zones for the case of an M by N spatial grid.

The matrix of management zone assignments is modeled as a Markov random field

(MRF) . An MRF is a set of random variables (e.g., the set of elements of X) such that

the conditional probability of one element of the set given all the other elements of the set

depends only on the neighboring elements, i.e., it satisfies the Markov property (3.1) [5]

P (Xs | Xr, ∀r ̸= s) = P (Xs | Xr, ∀r ∈ ∂s) (3.1)

where

∂s = set of all coordinates neighboring coordinate s.

Since neighboring locations are more likely to be in the same management zone, a Potts

model is used for the management zone MRF [10]–[12]. The specific probability mass function

(pmf) used is shown in (3.2)

X ∼ p(x) = 1
z

e−β
∑

s,r∈S
b|s−r|δ(xr ̸=xs) (3.2)

b|s−r| =


1

4(1+
√

2) , for |s− r| =
√

2

1
2(2+

√
2) , for |s− r| = 1

(3.3)

where

z = partition function

β = smoothness factor

δ = Kronecker delta function

b = neighbor weights

S = set of all coordinates on uniform spatial grid.

30

This model uses the Hamming distance between management zone assignments, which han-

dles the fact that the values of the assignments have no numerical meaning (i.e., zone 1

is not “greater” or “lesser” than zone 2 in any particular way). The parameter β, when

positive, causes neighboring elements to tend to be similar, with larger values increasing

this likelihood of similarity. The value of β used was 10, but could be tweaked to produce

management zone more or less smooth edges if needed.

3.2 Yield Model

The yield model describes the distribution of yields within a given management zone.

The set of interpolated yields for the P years of data for the field is denoted Y . Y is a 3-

dimensional object with dimensions M ×N ×P , where the M and N dimensions correspond

to space and the P dimension corresponds to time. This means the yield observation for a

location, s, is a P -vector denoted Ys. Figure 3.2 illustrates the representation of the yield

data for a case with 3 years of data, with a yield vector for a particular location highlighted.

As shown in (3.4),

(Ys | Xs = k) ∼ N (µk, Rk) (3.4)

where

µk ∈ RP

Rk ∈ RP ×P ,

the yield vectors are assumed Gaussian, given their management zone assignment. The

mean and covariance of their distribution depend on the value of their management zone

assignment. The covariance matrices, Rk, are non-diagonal, allowing for correlations between

the yields of different years. It is worth noting these are conditional distributions on the

yield, they are not the unconditional distribution on the yield.

Estimating the means and variances for each year allows the model to handle year-to-

year variability in the crops, or even different crops being planted on different years. This

31

year 1

year 2

year 3

M

P

N

Figure 3.2. This is an illustration of an example input yield array (denoted
Y). In this figure N (one spatial dimension) is 5, M (the other spatial dimen-
sion) is 5, and P (the temporal dimension) is 3. The yield vector (denoted Ys)
for a particular location (e.g., s) is highlighted.

32

removes the need for yield normalization that is typically done when dealing with multiple

years [7], [8], which can result in loss of information [8].

The yield vectors are assumed conditionally independent of one another, given their

respective management zone assignments. However, because the management zones are

modeled with an MRF , the model does not make the yield vectors unconditionally indepen-

dent. This means the model still expects nearby yields to be similar (i.e., there is spatial

dependence of the yields). This form of conditional independence is a required property of

an HMRF [5].

3.3 Temporal Variability of Model

For the purposes of this model, management zones are defined to be regions whose yields

all correspond to a particular probability distribution in a given year. It is important to note

that while the management zone assignments are fixed across all years, the management zone

behavior is allowed to vary year-to-year in the described model.

One might want to think of these yield zones in terms of good zones, bad zones, etc.

However, a given zone is not necessarily always good or always bad [13]. A given zone may

have good yields in a wet year, but have bad yields in a dry year (or vice versa). The idea is

that while the year-to-year behavior of these zones may not be fixed, the assignment of these

zones is modeled to be the same from year to year. That is, each year all of the field that is

a part of a given zones will have similar productivity in that year (be that good yields, bad

yields, etc.).

An illustration of these fixed assignments with varying yield behavior is shown in Fig. 3.3 .

This example covers three years’ yields. The first year was a wet year, and the histograms

for that year’s yield are shown in blue. In this year, the high ground and side slope both

had good mean yields, but the low ground did not because it became flooded. The second

year was an average year, and the histograms for that year’s yield are shown in green. In

this year, all the zones performed similarly average means because there was no flooding or

drought. The third year was a dry year, and the histograms for that year’s yield are shown

33

in red. In this year the low ground had the best mean and the high ground had the worst

because the higher ground dried out more.

In reality, there is more than just topography that can determine the difference between

zones and there is more than just wet vs dry that causes year-to-year variability of yields,

but this simple example shows how the zone assignments are consistent even when the yields

vary each year.

The fact that the zones assignments are modeled to be constant year-to-year is intentional.

When a field is planted, much of what may influence the productivity of zones is unknown

(e.g., weather or pestilence). Despite this, the field management still needs to be decided,

ideally in such a way as to minimize risk from the unknown factors. Knowing which regions

of the field will have similar productivity will simplify these decisions. Also, while the model

does not predict yields, past behavior of a zone could be used in determining management.

Once one knows where a zone is, they could, for example, look at how that zone behaved in

previous dry years and plan accordingly if the coming year were expected to be a dry one.

34

(a) Zone Assignments

(b) Zone Distributions

µdry µavg µwet
y

Zo
ne

1
(e

.g
.,

hi
gh

gr
ou

nd
)

µdry µavg µwet
y

Zo
ne

2
(e

.g
.,

sid
e

slo
pe

)

µwet µavg µdry
y

Zo
ne

3
(e

.g
.,

lo
w

gr
ou

nd
)

Figure 3.3. This diagram illustrates a simplified example of the model of
management zones which have fixed assignments year-to-year, yet still yield
differently each year. A simple example field is shown in Fig. 3.3a which has
three zones with a slope. The vertical lines are the high ground zone, the
waves are the side slope zone, and the checkerboard is the low ground zone.
These zones are fixed year-to-year. However, their yield distributions shown
in Fig. 3.3b are different each year due to weather.

35

4. MANAGEMENT ZONE ESTIMATION ALGORITHM

The inputs to the algorithm are yield maps on a uniform spatial grid, and the number

of management zones to find. The general idea of the algorithm is to find the parameter

values for the model which maximize the probability of the observed yields. Once parameter

estimates are obtained, the model can be used to find the most likely management zone

assignments, given the observed yields.

The algorithm achieves this likelihood maximization in three stages. The first stage is

making a rough guess at the model parameters using fuzzy c-means [14]. The second stage is

iteratively improving the parameter estimates using a stochastic version of an expectation-

maximization algorithm [5], [15] to maximize the probability of the observed yields given

the estimated parameters. Lastly, once the model parameters are estimated, the most likely

management zones are computed according to the model and the parameter estimates. The

overall flow of the algorithm is shown in Fig. 4.1 , and the different parts are detailed in the

following subsections.

4.1 Stochastic Expectation-Maximization

 Stochastic expectation-maximization (SEM) is an iterative method for calculating the

most likely parameter estimates for a model with hidden variables, such as the manage-

ment zones variable X in the HMRF described in this paper. SEM differs from classical

 expectation-maximization (EM) in that it calculates sample means rather than true expec-

tations. SEM is used instead of EM because, for the model and input sizes used, explicit

calculations involving the pmf of X are intractable.

There are three steps, described in the following sections. One iteration of the algorithm

involves running the three steps in order. Multiple iterations are run until the parameter

estimates have converged sufficiently. For this paper, “sufficient convergence” was assumed to

occur within 100 iterations of SEM . The order and looping of these steps can be seen within

the SEM block shown in Fig. 4.1 . The specific EM step equations used in this algorithm

are derived from the fact that the joint model of X and Y is an exponential family [15],

36

Figure 4.1. High level illustration of the steps of the algorithm. The figure
also indicates which of the steps utilize the input yield data. The following
sections give more detail on the steps.

37

[16]. A proof that the model is an exponential family can be found in Appendix A , and the

derivation of the EM steps can be found in Appendix B .

4.1.1 Sampling (S-Step)

A Gibbs sampler [15], [17] is used to generate sample management zone assignment

matrices, according to the conditional distribution of the management zone MRF given the

current parameter estimates and the observed yields. This conditional distribution is stated

mathematically in (4.1),

X(l) ∼ P (X(l)) = P (X = X(l) | Y, θ) for l = 1, . . . , L (4.1)

where

X(l)
s = value of Xs in lth sample of MRF

θ = [µ0, R0, . . . , µK−1, RK−1]

L = total number of generated MRF samples.

The sampler is used to generate L separate samples, where each sample is an N by M

matrix. For this work, L = 10000 was used. These generated samples are needed for

computing sample means which will converge to the true expectations [15]. The detail of

the Gibbs sampler used can be found in Appendix C .

4.1.2 Expectation of Conditional Statistics (E-Step)

Once samples of the MRF are generated, those samples can be used to calculate the

sample means of the sufficient statistics for the K Gaussian distributions of the yields in the

K management zones. There are three statistics calculated for each of the K distributions,

38

shown as functions of k in (4.2), (4.3), and (4.4) (i.e., a total of 3K statistics are calculated).

These statistics are needed for computing new parameter estimates.

N̄k = 1
L

L∑
l=1

∑
s∈S

δ(X(l)
s = k) (4.2)

b̄k = 1
L

L∑
l=1

∑
s∈S

Ysδ(X(l)
s = k) (4.3)

S̄k = 1
L

L∑
l=1

∑
s∈S

YsY
⊺

s δ(X(l)
s = k) (4.4)

for k = 0, . . . , K − 1

4.1.3 Maximum Likelihood Parameter Estimate Update (M-Step)

The statistics from the previous step are used to calculate maximum likelihood (ML)

parameter estimates. Since, as mentioned earlier, the model describes an exponential family

of distributions, the parameter update can be calculated by plugging the expected statistics

from the E-step into the ML estimate equations of the distribution parameters in place of

the actual statistics. The update equations for the estimated means and covariance matrices

are (4.5) and (4.6), respectively.

µ̂k = 1
N̄k

b̄k (4.5)

R̂k = 1
N̄k

S̄k −
1

N̄2
k

b̄kb̄⊺k (4.6)

for k = 0, . . . , K − 1

4.2 Parameter Initialization

Expectation-maximization algorithms require an initial guess of the model parameters,

which are then iteratively improved upon. The algorithm uses fuzzy c-means [14] to generate

its initial model parameters. Fuzzy c-means was chosen because it has been used before to

find management zones [7].

39

4.3 Management Zone Assignment

The result of SEM iterations is an estimate of the parameters of the distribution of each

management zone. However, we want to know to which management zone each location

belongs. In order to estimate a likely set of management zone assignments, the maximizer

of the posterior marginals (MPM) estimator is used. The MPM estimator is described in

(4.7), though in the algorithm it is evaluated stochastically rather than explicitly.

X̂s = arg max
xs

p (xs|Y) (4.7)

To evaluate the MPM estimator of X, the same Gibbs sampler is used as in the S-Step

of SEM , that is another S-step is run with the final parameter estimates. However, instead

of using the generated samples for an E-Step, they are used to evaluate (4.8). This is done

because the explicit evaluation of (4.7) is intractable for the input sizes involved.

X̂s ≈ arg max
xs

1
L

L∑
l=1

δ(X(l)
s = xs) (4.8)

It is worth noting that the MPM estimator of X, that is the set of MPM estimators for

each Xs, is different from the maximum a posteriori (MAP) estimate of X, though the two

are defined similarly. The MPM estimator was chosen because it minimizes the number of

misclassified elements in X [17].

40

5. MANAGEMENT ZONE ESTIMATION RESULTS

5.1 Real Yield Data

5.1.1 Corn Yield Results

The algorithm was run on the pre-processed corn yield data for each of the fields shown

in Fig. 2.1 . All of the fields were run once for each value of K from 2 to 10, and each field

had at least 2 years of corn harvest data (i.e., P ≥ 2). The resulting management zone

assignments for K = 4 are shown in Fig. 5.1 , and the standard deviations of the yields for

each field and each year of yield data for delineations with 3, 4, and 5 zones respectively are

shown in Tables 5.1 to 5.3 .

5.1.1.1 Resulting Management Zones

One of the first observations from the results is that the edges of fields tend to be assigned

to different management zones than the interiors of fields. This is a positive result because

these edges (or “end rows”) are known to yield differently and need different management

than the interior (due in part to different treatment). The model and algorithm successfully

determined this without being given prior knowledge of it.

More importantly, the algorithm does not always assign zones exclusively to the edges. In

Fig. 5.1o , the algorithm surrounded the triangular section in the upper left of the field with

the “end row” zone. The farmer of this field confirmed that this section is in fact farmed as

a separate field from the rest of it and there are end rows there. Conversely, in Fig. 5.1p the

algorithm assigned the top and bottom edges as “end row” but not the right and left edges.

There is actually more of this field on the right and left but those data had to be excluded

because they were missing for some years, while the top and bottom are the real edges of

the field.

A shortcoming of the approach that is made evident by these results is not being able to

assign a management zone to a location that has missing data for any of the years involved.

While some of these holes are actually part of the shape of the field, for example the hole

toward the bottom of the field in Fig. 5.1a is a house, other regions should have been included

41

(a) Rusty 100 (b) Boots 72 (c) Bank 53 (d) Church 17 (e) Coondog 45

(f) Deedsville
North 63

(g) Deedsville
South 24

(h) Macy 25 (i) Muck 17 (j) Drycow 61

(k) Eber 124 (l) Shackleford
East 50

(m) Gott East 93 (n) Gott West 24 (o) Layton 192

(p) Home 128 (q) Horn 235 (r) Lillian South
Mucks 21

(s) Mont North
100

Figure 5.1. Pictured are the output segmentations resulting from running
the presented SEM based algorithm on the real multi-year yield data of each
field. Each field was run with K = 4. The different colors correspond to
different management zone assignments, with white corresponding to no zone
assignment.

42

and segmented. There is one such unassigned region toward the lower right corner of the

field in Fig. 5.1m . While that region had yield data in some of the years’ data, it did not

have data for all years and thus the algorithm could not segment it.

5.1.1.2 Variance Reduction

Shown in Tables 5.1 to 5.3 are the standard deviations of the yields for each field and

each year of yield data for delineations with 3, 4, and 5 zones respectively. The total column

is the standard deviation of all the recorded yields for that field in that year. The other

columns are the standard deviations of the yields grouped by the YPZ to which they were

assigned. The highlighted cell in each row is the end row zone for the given field, found by

visual inspection of the delineated zones. Zone standard deviations that are not below the

corresponding yearly standard deviation are indicated in bold.

Most of the zone standard deviations are below the corresponding total yield standard

deviation. Some of the rows have a zone with a higher standard deviation than the total

yield, but for the majority of fields this corresponds to the end rows. The zone standard

deviations indicated in bold are the one that are greater than their corresponding total

yield standard deviation. Out of the 105 trials shown in the tables, only 20 had zones with

standard deviations that were not below the total yield standard deviation and were also

not end row zones. This means that 81.0% of the time, only our end row zones did not show

a reduction in variance. The end rows are expected to be highly variable in terms of yield

productivity, owing to highly variable treatment, so this seems a reasonable result.

The end rows indicated in Tables 5.1 to 5.3 were identified visually, since the algorithm

does not explicitly differentiate them from other zones. For example, one delineation result

is shown in Fig. 5.2 . Look at this delineation it can be seen that the green management

zone corresponds to the end rows. From the legend, it can be seen that the green zone is

zone 1. Based on this, the corresponding column in Table 5.2 was highlighted for the rows

corresponding to the field Gott East 93.

43

Figure 5.2. Management zone delineation for the field Gott East 93 for K = 4
with a legend showing the number label assigned to each zone.

44

Table 5.1. Standard deviations of yields for each field in each year when
delineated for K = 3

Total Zone 0 Zone 1 Zone 2
Rusty 100: 2010 36.9 31.2 26.8 41.6
Rusty 100: 2013 41.7 25.1 26.7 53.9
Bank 53: 2008 34.5 46.3 18.9 16.8
Bank 53: 2010 44.5 57.8 22.4 17.8

Coondog 45: 2010 38.1 40.3 30.8 17.1
Coondog 45: 2011 35.1 48.7 11.8 12.6

Deedsville North 63: 2008 36.9 42.8 19.1 32.4
Deedsville North 63: 2010 45.8 47.0 17.4 20.5
Deedsville South 24: 2008 40.3 20.4 35.7 34.7
Deedsville South 24: 2010 40.1 24.3 47.9 32.2

Muck 17: 2008 40.5 45.1 13.1 19.2
Muck 17: 2010 48.1 56.9 22.9 40.9

Drycow 61: 2006 29.2 18.6 47.9 10.1
Drycow 61: 2007 35.7 24.7 48.5 18.7
Drycow 61: 2008 31.3 15.4 48.5 10.3
Drycow 61: 2009 41.4 31.8 40.7 17.6
Drycow 61: 2011 40.9 33.5 53.9 27.0
Eber 124: 2007 33.1 20.7 32.6 46.9
Eber 124: 2009 39.5 28.6 24.2 45.4

Shackleford East 50: 2007 37.0 18.7 49.2 11.6
Shackleford East 50: 2009 43.9 22.6 47.4 20.6
Shackleford East 50: 2010 40.2 26.2 48.7 29.1

Gott East 93: 2007 26.1 10.9 40.7 7.32
Gott East 93: 2009 30.8 19.1 40.3 22.9
Gott East 93: 2011 33.9 19.4 51.3 17.7
Gott West 24: 2007 33.0 42.1 15.5 15.5
Gott West 24: 2009 41.4 41.9 11.1 28.8
Gott West 24: 2011 32.2 41.8 17.8 12.7
Layton 192: 2007 30.5 14.3 39.6 18.0
Layton 192: 2008 30.2 15.8 37.7 18.9
Layton 192: 2009 30.8 18.7 36.1 21.6
Home 128: 2008 29.8 40.1 14.5 12.5
Home 128: 2009 49.3 56.7 24.5 23.1

Lillian South Mucks 21: 2012 74.3 54.6 27.2 52.9
Lillian South Mucks 21: 2013 52.2 62.1 22.7 28.5

45

Table 5.2. Standard deviations of yields for each field in each year when
delineated for K = 4

Total Zone 0 Zone 1 Zone 2 Zone 3
Rusty 100: 2010 36.9 39.5 25.1 21.7 21.2
Rusty 100: 2013 41.7 42.9 18.0 22.7 29.8
Bank 53: 2008 34.5 45.9 38.4 16.8 19.1
Bank 53: 2010 44.5 57.8 42.3 17.8 22.6

Coondog 45: 2010 38.1 40.4 24.9 19.3 16.7
Coondog 45: 2011 35.1 48.6 13.2 11.2 12.4

Deedsville North 63: 2008 36.9 17.5 19.9 38.9 24.5
Deedsville North 63: 2010 45.8 19.2 17.0 53.7 40.3
Deedsville South 24: 2008 40.3 40.3 20.4 18.5 25.6
Deedsville South 24: 2010 40.1 40.9 23.2 42.2 54.8

Muck 17: 2008 40.5 58.1 13.3 9.76 24.0
Muck 17: 2010 48.1 52.8 22.7 31.0 37.0

Drycow 61: 2006 29.2 17.2 10.8 17.9 48.9
Drycow 61: 2007 35.7 23.4 18.10 18.4 46.8
Drycow 61: 2008 31.3 12.10 10.1 25.8 48.8
Drycow 61: 2009 41.4 25.2 18.1 41.5 40.2
Drycow 61: 2011 40.9 25.6 27.1 44.5 53.9
Eber 124: 2007 33.10 47.1 18.9 29.9 16.5
Eber 124: 2009 39.5 44.6 26.9 23.8 21.5

Shackleford East 50: 2007 37.0 49.1 11.0 18.1 13.5
Shackleford East 50: 2009 43.9 49.9 20.1 22.8 25.8
Shackleford East 50: 2010 40.2 48.1 18.6 25.8 32.7

Gott East 93: 2007 26.10 10.9 41.5 6.75 35.0
Gott East 93: 2009 30.8 20.1 39.2 22.10 20.0
Gott East 93: 2011 33.9 19.3 50.6 18.2 15.6
Gott West 24: 2007 33.0 41.7 8.27 13.9 15.5
Gott West 24: 2009 41.4 43.1 28.4 22.3 11.2
Gott West 24: 2011 32.2 40.7 10.8 12.7 18.1
Layton 192: 2007 30.5 17.7 20.9 43.6 10.3
Layton 192: 2008 30.2 18.8 18.9 38.9 14.8
Layton 192: 2009 30.8 25.3 18.0 35.9 17.0
Home 128: 2008 29.8 14.4 14.5 41.9 11.1
Home 128: 2009 49.3 24.3 31.3 57.5 19.2

Lillian South Mucks 21: 2012 74.3 60.3 45.3 35.4 25.9
Lillian South Mucks 21: 2013 52.2 66.9 26.9 25.2 26.1

46

Table 5.3. Standard deviations of yields for each field in each year when
delineated for K = 5

Total Zone 0 Zone 1 Zone 2 Zone 3 Zone 4
Rusty 100: 2010 36.9 44.9 22.7 24.1 37.4 21.9
Rusty 100: 2013 41.7 51.8 23.8 18.0 49.5 21.6
Bank 53: 2008 34.5 45.6 21.5 18.1 51.5 16.7
Bank 53: 2010 44.5 49.9 26.3 22.4 50.2 17.5

Coondog 45: 2010 38.1 16.5 30.4 19.3 27.5 25.3
Coondog 45: 2011 35.1 12.4 32.9 10.9 13.6 37.9

Deedsville North 63: 2008 36.9 17.1 34.9 24.7 31.4 14.6
Deedsville North 63: 2010 45.8 16.1 54.9 40.8 36.6 18.7
Deedsville South 24: 2008 40.3 47.0 31.7 16.0 14.1 32.9
Deedsville South 24: 2010 40.1 43.6 32.1 18.2 28.3 54.2

Muck 17: 2008 40.5 14.8 24.2 21.4 56.1 13.5
Muck 17: 2010 48.1 23.8 37.5 22.8 45.2 22.9

Drycow 61: 2006 29.2 25.1 53.5 10.2 17.7 15.5
Drycow 61: 2007 35.7 28.5 53.1 17.1 19.6 20.1
Drycow 61: 2008 31.3 17.3 56.8 10.1 26.4 12.1
Drycow 61: 2009 41.4 32.9 39.5 18.5 40.8 24.9
Drycow 61: 2011 40.9 41.1 60.3 26.5 44.2 23.5
Eber 124: 2007 33.1 48.8 20.2 16.8 30.0 17.5
Eber 124: 2009 39.5 45.5 22.7 19.7 23.5 25.6

Shackleford East 50: 2007 37.0 48.4 13.5 11.0 18.1 56.1
Shackleford East 50: 2009 43.9 48.6 25.8 20.1 22.9 64.9
Shackleford East 50: 2010 40.2 46.1 31.4 18.8 25.9 75.9

Gott East 93: 2007 26.1 13.7 9.32 35.0 43.7 8.86
Gott East 93: 2009 30.8 25.6 13.4 32.0 40.0 20.5
Gott East 93: 2011 33.9 23.1 17.3 26.8 54.6 16.8
Gott West 24: 2007 33.0 34.2 14.1 52.1 15.1 8.56
Gott West 24: 2009 41.4 36.9 22.1 39.9 11.3 27.1
Gott West 24: 2011 32.2 23.7 12.7 51.2 18.2 9.91
Layton 192: 2007 30.5 17.8 20.1 44.1 10.3 15.1
Layton 192: 2008 30.2 18.7 19.3 40.6 14.0 21.0
Layton 192: 2009 30.8 24.4 17.5 36.1 15.2 29.0
Home 128: 2008 29.8 14.6 12.4 11.4 13.2 42.9
Home 128: 2009 49.3 23.6 21.8 12.8 31.4 57.1

Lillian South Mucks 21: 2012 74.3 62.1 36.1 35.2 33.7 51.7
Lillian South Mucks 21: 2013 52.2 36.2 9.26 27.1 41.6 54.2

47

5.1.2 Corn and Soybean Yield Results

In order to investigate its performance on different crop yield data, the algorithm was

run on the pre-processed soybean yield data for the field Gott East 93, in addition to its corn

yield data. This field was chosen because it has 3 years of soybean yield data in addition

to its 4 years of corn yield data. Three runs of the algorithm were performed for each value

of K from 2 to 10, one using only the corn yields (P = 4), one using only the soybean

yields (P = 3), and one using both the corn and soybean yields (P = 7). The resulting

management zone assignments for K = 4 are shown in Fig. 5.3 .

(a) Corn Yields (b) Soybean Yields (c) Both Yields

Figure 5.3. Pictured are the management zone delineation for the field Gott
East 93 using only corn yields, only soybean yields, and both corn and soybean
yields, respectively. The pictured delineations are for K = 4.

The first observation is that the zones delineated for corn differ from those delineated

for soybeans. This seems reasonable since different crops have different yield characteristics.

In practice, it might be useful to run separate delineations for each crop to produce crop-

dependent management zones rather than delineating based on multiple crops at once, but

the algorithm runs just as well either way.

The previously mentioned shortcoming of the algorithm not being able to assign a man-

agement zone to a location that has any missing data, is made more evident by these results.

In the corn delineations in Fig. 5.3a there is a hole in the data near the lower right corner,

and in the soybean delineations in Fig. 5.3b some of the right edge of the field has no data.

48

When both corn and soybean data were used, neither the hole nor the right edge of the field

could be assigned to a management zone, as seen in Fig. 5.3c .

5.2 Simulated Yield Data Based on Real Yield Maps

Since the real data have no ground truth for evaluating the output, simulations were

performed. The management zone assignments and distribution parameters from running

the algorithm on the real data were used to simulate new yield observations. This simulation

was done by drawing sample yields Y according to the conditional distribution defined by

(3.4), using the Xs and θs from Section 5.1.1 . One such simulation was run for each field and

each value of K from 2 to 10. These simulations produced Y s for which the corresponding

Xs were known, something missing for the real data.

5.2.1 Simulated Performance of the Algorithm

Now that there was “ground truth”, the performance of the algorithm could be measured

using a distance of the output X̂ from the correct X. The Rand distance [18] was used as

an error metric for comparing the output management zone segmentations to the true seg-

mentation. A Rand distance of 0 corresponds to two segmentations with a total agreement,

while a Rand distance of 1 corresponds to the least agreement possible.

For brevity, the Rand distance between the true X and the estimate X̂ will be referred

to as the Rand error. Table 5.4 shows the Rand error of the presented SEM based algorithm

when run on the simulated fields. It also shows the average Rand error by field (leftmost

column) and by K (bottom row). Additionally, the histogram of these Rand errors is shown

in Fig. 5.4 .

While the majority of the observed Rand errors were below 0.25, a few were quite large.

All of these large errors correspond to running at orders K ≥ 7 for fields less than 25 acres

in size. As the field size decreases and the order increases there are fewer observations for

estimating the parameters of each management zone, thus resulting in poorer estimates.

While performance, in this case, is indeed poor, having so many management zones in such

small fields is not likely to be reasonable from a precision agriculture perspective.

49

T
ab

le
5.

4.
T

hi
s

ta
bl

e
sh

ow
s

th
e

sim
ul

at
io

n
R

an
d

er
ro

rs
of

th
e

ou
tp

ut
of

th
e

pr
es

en
te

d
 SE

M

ba

se
d

al
go

rit
hm

w
he

n
ru

n
on

sim
ul

at
ed

fie
ld

s
ba

se
d

on
re

al
fie

ld
s,

as
de

sc
rib

ed
in

Se
ct

io
n

 5.
2 .

A
lso

,t
he

le
ftm

os
t

co
lu

m
n

sh
ow

th
e

R
an

d
er

ro
r

av
er

ag
ed

by
fie

ld
an

d
th

e
bo

tt
om

ro
w

sh
ow

s
th

e
R

an
d

er
ro

r
av

er
ag

ed
by

or
de

r,
K

.
K

=
2

K
=

3
K

=
4

K
=

5
K

=
6

K
=

7
K

=
8

K
=

9
K

=
10

Av
er

ag
e

Ru
st

y
10

0
0.

05
14

0.
03

64
0.

02
78

0.
18

38
0.

03
30

0.
04

03
0.

02
71

0.
16

00
0.

02
81

0.
06

53
Bo

ot
s

72
0.

02
94

0.
02

03
0.

01
96

0.
02

03
0.

01
27

0.
07

58
0.

03
05

0.
02

30
0.

02
07

0.
02

80
Ba

nk
53

0.
01

56
0.

01
42

0.
02

15
0.

02
32

0.
01

51
0.

03
95

0.
04

41
0.

04
33

0.
01

45
0.

02
57

C
hu

rc
h

17
0.

04
68

0.
02

97
0.

02
54

0.
02

04
0.

03
17

0.
03

67
0.

02
53

0.
02

55
0.

04
65

0.
03

20
C

oo
nd

og
45

0.
01

47
0.

06
43

0.
02

47
0.

02
82

0.
04

45
0.

03
35

0.
03

85
0.

02
08

0.
05

37
0.

03
59

D
ee

ds
vi

lle
N

or
th

63
0.

01
68

0.
03

94
0.

02
47

0.
02

13
0.

02
76

0.
01

83
0.

02
44

0.
03

92
0.

08
63

0.
03

31
D

ee
ds

vi
lle

So
ut

h
24

0.
02

05
0.

02
16

0.
06

69
0.

07
52

0.
12

18
0.

05
24

0.
17

67
0.

10
91

0.
03

71
0.

07
57

M
ac

y
25

0.
04

68
0.

07
18

0.
11

04
0.

04
16

0.
06

69
0.

03
15

0.
07

19
0.

03
53

0.
02

06
0.

05
52

M
uc

k
17

0.
02

47
0.

01
32

0.
01

68
0.

02
60

0.
02

20
0.

46
44

0.
02

99
0.

78
13

0.
34

03
0.

19
10

D
ry

co
w

61
0.

01
28

0.
01

14
0.

02
28

0.
08

00
0.

01
51

0.
02

09
0.

03
76

0.
08

15
0.

08
39

0.
04

07
Eb

er
12

4
0.

01
28

0.
05

34
0.

02
48

0.
13

29
0.

05
90

0.
07

67
0.

04
08

0.
03

36
0.

05
31

0.
05

41
Sh

ac
kl

ef
or

d
Ea

st
50

0.
01

20
0.

01
51

0.
01

59
0.

01
51

0.
03

17
0.

03
94

0.
02

52
0.

04
29

0.
05

29
0.

02
78

G
ot

t
Ea

st
93

0.
01

68
0.

06
60

0.
21

67
0.

03
61

0.
05

83
0.

07
66

0.
03

37
0.

02
74

0.
02

71
0.

06
21

G
ot

t
W

es
t

24
0.

02
30

0.
04

97
0.

09
95

0.
02

91
0.

02
14

0.
07

34
0.

03
70

0.
70

44
0.

03
75

0.
11

94
La

yt
on

19
2

0.
03

64
0.

02
39

0.
01

62
0.

01
98

0.
01

98
0.

01
84

0.
01

86
0.

05
98

0.
01

49
0.

02
53

H
om

e
12

8
0.

01
70

0.
01

55
0.

02
26

0.
01

77
0.

02
24

0.
02

35
0.

01
73

0.
02

76
0.

01
56

0.
01

99
H

or
n

23
5

0.
04

15
0.

01
96

0.
02

39
0.

02
07

0.
01

99
0.

02
31

0.
01

76
0.

02
29

0.
02

13
0.

02
34

Li
lli

an
So

ut
h

M
uc

ks
21

0.
01

57
0.

03
05

0.
10

78
0.

11
80

0.
01

92
0.

05
09

0.
06

41
0.

05
98

0.
04

42
0.

05
67

M
on

t
N

or
th

10
0

0.
01

36
0.

01
86

0.
08

02
0.

12
60

0.
04

30
0.

07
24

0.
03

64
0.

03
82

0.
19

51
0.

06
93

Av
er

ag
e

0.
02

46
0.

03
23

0.
05

10
0.

05
45

0.
03

61
0.

06
67

0.
04

19
0.

12
29

0.
06

28
0.

05
48

50

Rand error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

60

80

100

120

140

Figure 5.4. This histogram shows the occurrences of the Rand errors of the
output of the presented SEM based algorithm when run on simulated fields
based on real fields, as described in Section 5.2 .

51

5.2.2 Comparison to State-of-the-Art

The simulated fields were also run though another management zone delineation algo-

rithm, Management Zone Analyst (MZA)

1
 [19]. MZA is commonly used for delineating

management zones, particularly from multivariate data [7]. The MZA algorithm was run

using Mahalanobis distance as the distance metric because the yields are not assumed to be

statistically independent, and with 10,000 as the maximum number of iterations to allow

more time for convergence than the default 300 iterations. Also, values of the fuzziness

exponent from 1.1 to 5 in increments of 0.1 were tried and the one producing the smallest

Rand error (see Section 5.2.1) was used (for each field at each K).

5.2.2.1 Multi-Field Simulation

Figure 5.5 shows the Rand error averaged over the 19 fields for both the presented SEM

based algorithm and MZA , as a function of K. Two versions of MZA are shown, one where

the UTM x and y coordinates of each observation were included in the input, and one where

the UTM coordinates were not utilized. This was done because both ways of running MZA

are used in literature [7], [19].

In these simulations, the presented SEM algorithm outperformed the MZA algorithm for

every value of K tested. The gap in the two algorithms’ performances seems to decrease as

K increases, but Ks larger than those tested are probably not realistic for actual fields. For

the sorts of fields simulated, the proposed algorithm consistently outperformed the state-of-

the-art.

5.2.2.2 Multi-Crop Simulation

Another simulated comparison to MZA was performed, as in Section 5.2.2.1 but using

the corn and soybean results from Section 5.1.2 . Since this time the data were only from

one of the fields, Gott East 93, 13 separate realizations of simulated Y s were generated for

each K, and each set of crop yields (corn yields only, soybean yields only, and both corn and
1

 ↑ The actual MZA program was not used, but the algorithm was implemented as described in [19], using
MATLAB.

52

K

2 3 4 5 6 7 8 9 10

R
a

n
d

 E
rr

o
r

(a
v
e

ra
g

e
d

 o
v
e

r
1

9
 r

u
n

s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

SEM

MZA

MZA (no XY)

Figure 5.5. This figure shows the performances of the presented SEM based
algorithm and the MZA algorithm. For each value of K both algorithms were
run on the same simulated field, simulated as described in Section 5.2 . The

 MZA algorithm was run twice for each field, once with UTM x and y included
in the observations, and once without utilizing the UTM coordinates. The
error metric, referred to as Rand error, was computed as the Rand distance
between the true X used for simulation and the X̂ output by the algorithm.

53

soybean yields). Figure 5.6 shows the Rand error averaged over the 13 realizations for the

presented algorithm and the two methods of running the MZA algorithm.

K

2 3 4 5 6 7 8 9 10

R
a

n
d

 E
rr

o
r

(a
v
e

ra
g

e
d

 o
v
e

r
1

3
 r

u
n

s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Corn

Beans

Both

SEM

MZA

MZA (no XY)

Figure 5.6. This figure shows the performances of the SEM algorithm pre-
sented by this paper and the MZA algorithm. For each value of K both
algorithms were run on the same simulated field, simulated as described in
Section 5.2 . The error metric, referred to as Rand error, was computed as the
Rand distance between the true X used for simulation and the X̂ output by
the algorithm.

As in the previous simulation, the presented algorithm outperformed the MZA algorithm

for every K and every crop tested. An interesting observation is that all three methods tend

to perform with soybean yields than with corn yields.

54

5.3 Purely Simulated Yield Data

However, it was desirable to analyze the impact of an increasing number of years of

available yield data. The maximum number of years of yield data in our real dataset is 5.

Moreover, the ground truth for management zone labels is unknown to us in a real physical

cornfield. Therefore, the question was addressed with a simulation-based experiment.

5.3.1 Simulating Yield Data for Arbitrary Years

In order to analyze the impact of an increasing number of years of data on our delin-

eations, we created synthetic management zone assignments for which we could simulate a

variable number of years of yield maps. Synthetic zone assignments were used because no

ground truth zones were available. The zone assignments used in the simulation are shown

in Fig. 5.7 .

(a) Synthetic field 1 (b) Synthetic field 2 (c) Synthetic field 3

Figure 5.7. Management zone assignments for fields in multiple year experiment.

Once we had zone assignments, we could then generate yearly yield maps from these

zones. By looking at the distributions of yields across all the fields and all the years in our

dataset, it was decided to use a mean of 180 bu/ac and a standard deviation of 30 bu/ac

as a representative distribution of corn yields. Total yield was assumed to be normally

distributed, and the total yield was divided into 3 equally likely classes. These classes were

also assumed to be normally distributed, and were spaced such that the means and variances

of the total yield were preserved. These distributions are illustrated in Fig. 5.8 . The 3 class

55

distributions were given equal standard deviations of σtotal

1.8 = 16.6, this ratio of total variation

to in-zone variation seemed reasonable based on the results of our delineations on real data.

3030
180

yield (bu/ac)

Total
Dist 1
Dist 2
Dist 2

Figure 5.8. Illustration of dividing total yield distribution into 3 equally likely
zone distributions. The division is done such that the total mean and variance
are preserved.

Using the zone assignments of Fig. 5.7 and the yield distributions of Fig. 5.8 , yield maps

were randomly generated. To generate a yield map for a given set of zones, the three yield

distributions were randomly assigned to the three management zones. In this way, we do

not artificially prefer one zone by assigning it the higher productivity distribution every

year. Then, for each pixel in a zone assignment, a pseudo-random realization of a normally

distributed yield was drawn according to the distribution that had been assigned to that

zone. In order to create P yield maps, the above procedure was repeated P times. In this

way we had multiple yield maps corresponding to fixed zone assignments, but where each

zone’s behavior varied year-to-year.

5.3.2 Simulation Results

The performance of the proposed delineation method and MZA on these simulated yield

maps is shown in Fig. 5.9 . The metric used is the Rand error (as described in the manuscript,

56

i.e., the Rand distance between the output delineations and the simulated delineation from

Fig. 5.7), averaged over the three fields used.

The results of the simulation are that the errors in the delineations decrease as more

years’ yields are used. When only a single year’s data are used, MZA performs better than

the proposed method. However, the proposed method rapidly converges to very low errors

as the number of years of data increases. The average Rand error decreases with P , as does

the variability of these errors. This result makes sense, as each year’s yield map is another

observation with which the algorithm can estimate the correct zone assignment for each

location. While both MZA and our method perform better the more yield maps are used,

the proposed method makes much better use of multiple year’s yield maps than MZA .

57

(a) Error for both the proposed method and MZA .

(b) Error for proposed method when P ≥ 2.

Figure 5.9. Shown are the Rand errors vs number of years of yield data from
the simulation experiment to determine the impact of an increasing number
of years’ data. The values are averaged over the three fields used, and the
error bars show the standard deviation of the errors. Errors were calculated
for both the proposed method’s delineations and delineations from MZA . Both
methods are shown in Fig. 5.9a and, since the errors are so much smaller, a
zoomed version is shown for P ≥ 2 is shown in Fig. 5.9b .

58

6. CONCLUSIONS

The proposed model and algorithm can successfully delineate management zones for a field

based on multiple years of yield data. They can also delineate based on yield data for

multiple crops, both together and separately, without needing any crop-specific calibration.

The output delineations are very different for different crops, but this is likely because

different crops need different management and not because of a shortcoming of the algorithm

or model.

Simulated results show the relative performance of the presented algorithm to the state-

of-the-art MZA algorithm. In simulation, the presented algorithm outperforms the MZA

algorithm for all orders and all crop types tested. Additionally, simulations showed that

the proposed algorithm makes better use of multiple years’ data, with it rapidly converging

to very low errors as the number of years increases. The relative performances seemed to

be converging as the order, K, increased, however, since orders higher than those tested

are likely not realistic, the results still suggest the presented approach is better than the

state-of-the-art for delineating management zones based on multi-year yield data.

59

7. FUTURE WORK

7.1 Investigate Soil Relations

Soils influence crops and are therefore a factor in determining management zones. Aside

from clustering based on the observed yields, another method of determining management

zones is to use soil maps.

7.1.1 Initial Soil Map Unit Comparison

In order to compare the current results and investigate incorporating soils in the model,

the SSURGO soil data for the farm fields used were acquired from [20]. As a first look at the

soil data, the SSURGO map units were used as management zones as in [21]. In particular,

soils for the field Gott East 93 were investigated. Since the field had 3 map units in it, the

algorithm results for K = 3 were used for comparison. The histograms of yields by map unit

and by management zone are shown in Figs. 7.1 to 7.4 .

Yield (bu/ac)

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Bb (µ = 174.7 σ = 26.9)

CrA (µ = 167.9 σ = 26.7)

WkB (µ = 159.3 σ = 33.4)

(a) SSURGO map units

Yield (bu/ac)

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

µ = 180.5, σ = 11.5

µ = 142.4, σ = 39.8

µ = 177.9, σ = 9.9

(b) Delineated zones (K = 3)

Figure 7.1. Yield histograms for 2007

The yearly distributions of the management zones are more distinct than those of the

SSURGO map units. This suggests that the presented method is better than managing by

map unit alone. This is likely because map units are defined at too coarse a scale to be

60

Yield (bu/ac)

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

Bb (µ = 175.4 σ = 34.1)

CrA (µ = 158.7 σ = 27.7)

WkB (µ = 106.0 σ = 25.4)

(a) SSURGO map units

Yield (bu/ac)

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

µ = 177.5, σ = 25.7

µ = 144.9, σ = 40.4

µ = 163.8, σ = 19.6

(b) Delineated zones (K = 3)

Figure 7.2. Yield histograms for 2009

Yield (bu/ac)

0 50 100 150 200 250 300 350
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Bb (µ = 199.3 σ = 31.6)

CrA (µ = 191.9 σ = 34.3)

WkB (µ = 151.6 σ = 70.7)

(a) SSURGO map units

Yield (bu/ac)

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

µ = 204.9, σ = 21.8

µ = 166.1, σ = 48.5

µ = 202.4, σ = 17.7

(b) Delineated zones (K = 3)

Figure 7.3. Yield histograms for 2011

61

Yield (bu/ac)

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

Bb (µ = 202.4 σ = 51.7)

CrA (µ = 218.1 σ = 32.9)

WkB (µ = 221.7 σ = 55.2)

(a) SSURGO map units

Yield (bu/ac)

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

0.03

µ = 235.7, σ = 20.7

µ = 188.6, σ = 62.4

µ = 213.6, σ = 19.9

(b) Delineated zones (K = 3)

Figure 7.4. Yield histograms for 2013

62

helpful at the scale of a field. However, finer-scale soil data could be useful in delineating

management zones.

7.1.2 ERUs

Since the map units seem too coarse for delineating management zones, the next step

is to try finer resolution soil data. The environmental response unit (ERU) data is a finer

resolution soil data set than SSURGO, which is partly based on [21]. The next step would

be to acquire ERU data for the locations in the yield data set. The ERU data could be

compared to the delineated management zones, similarly to the SSURGO map units.

In addition to looking at the distributions of yields within the ERUs vs the management

zones, a next step would be to compare the reduction in variance of the two as in [21]. Though

the algorithm does not necessarily minimize the variance of the management zones, it is still

of interest as a performance metric. Since ideally management zones are homogeneous the

should have low variance, especially those besides the “end row” zones.

The ERUs could potentially be used in the delineation of management zones, in addition

to the yearly yields. They might be useful in determining a suitable number of zones, K, for

a given field. Also, it would be of interest to try initializing the SEM based on ERUs rather

than fuzzy c-means.

7.2 Handling Partial Yield Observations

As mentioned, currently the model and algorithm require that each location delineated

has a yield observation for all the years of interest. That is, for every location, s, in Y all P

elements of the corresponding yield vector Ys must be observed.

However, many of the yield maps had substantial parts of the data missing. This can

happen when multiple machines are used to harvest a field but only some of these machines’

data are retained. It also happens that some years a field is split in half with one half used to

grow one crop and another half used for a different crop. When things such as these happen,

the yield map for that year must either be interpolated to fill in the missing sections, or that

63

year’s data can be left out of the delineation entirely. The current algorithm cannot utilize

the partial yield map in its delineation.

It would be better if the delineation could be performed on some subset of the full

observed Y , call it Ỹ . For every location Ỹ would have observations for some, but not

necessarily all, of the P years. That is,

∅ ⊂ Ỹs ⊆ Ys ∀s ∈ S. (7.1)

This would require deriving new EM update steps for the family of distributions P (Ỹ , X | θ)

and the implementation of a Gibbs sampler for sampling from the distribution P (X | Ỹ).

Then the management zones could be estimated with the MPM for the posterior given Ỹ ,

i.e.,

X̂s = arg max
xs

p
(
xs | Ỹ

)
∀s ∈ S. (7.2)

Such an extension would resolve the undelineated regions seen in some of the results.

More importantly, it would facilitate simultaneously delineating zones for multiple fields,

producing a single set of management zones for a whole farm rather than zones that are

unrelated from field to field.

7.3 Determining Adequate Convergence

Currently, running the algorithm is somewhat time-consuming. The number of EM

iterations being used is likely more than necessary. An initial analysis of the convergence

was conducted, and a comparatively large number of iterations was chosen to help ensure

convergence.

The metric used for the change in a given parameter from one iteration to the next was

D(Ak) ≜ ∥A
new
k − Aold

k ∥F

∥Aold
k ∥F

. (7.3)

64

This metric was chosen because it can be thought of as a percent change, under the Frobenius

norm. Then the max of this across the K zones, that is,

D(A) ≜ max
0≤k<K

D(Ak) (7.4)

was computed for R and µ. Plots of this change metric for both R and µ are shown in

Figs. 7.5a and 7.5b for 1000 and 10000 Gibbs samples per iteration respectively. Currently,

the parameter changes have only been recorded for the field Gott East 93 and only for

3 ≤ K ≤ 5. The first step in this future work would be to record these statics for more fields

and values of K.

Initially, with only 1000 Gibbs samples per iteration, some of the parameter changes

continued to fluctuate above 0.01. Therefore, the number of samples was increased to 10000.

With the increased number of Gibbs samples, the fluctuations stayed below 0.01 after 30

iterations even for K = 5. To be conservative, and because higher Ks would converge more

slowly, 100 iterations were used for all the delineation results.

Another potential convergence statistic to look at is the Rand error vs iteration when

running on simulated data. This would require rerunning the simulations since only the final

outputs were recorded for the initial simulations. Such a metric could not be used as a stop-

ping criterion, since the Rand error is not known except in simulation. However, analyzing

the behavior of it in simulation could provide insight into the orders of Gibbs samples and

 EM iterations needed, and thresholds on parameter convergence might be practical.

7.4 Accounting for Variable Rate Inputs

The current model does not account for varying inputs such as plant population or

fertilizer amount across a field within a year. It is assumed that any variation within a field

is due to either the natural variability of the crop or differences in the management zones.

If the farmer is already managing according to a set of “management zones”, the algorithm

cannot distinguish this from the management zones inherent in the field from unmanaged

inputs (e.g., from soil type and elevation). For the remainder of this section “managed zones”

65

EM iteration

0 10 20 30 40 50 60 70 80 90 100

P
a

ra
m

e
te

r
c
h

a
n

g
e

10
-4

10
-3

10
-2

10
-1

10
0

10
1

K = 3

K = 4

K = 5

R

µ

(a) 1000 Gibbs samples per EM iteration

EM iteration

0 10 20 30 40 50 60 70 80 90 100

P
a

ra
m

e
te

r
c
h

a
n

g
e

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

K = 3

K = 4

K = 5

R

µ

(b) 10000 Gibbs samples per EM iteration

Figure 7.5. Recorded parameter changes for the field Gott East 93, computed
according to (7.3) and (7.4)

66

will refer to the zones by which the field was actually managed, in contrast to the underlying

management zones the delineation seeks to find.

Today, with precision agriculture, many fields today are planted non-uniformly. If a field

is already managed according to a set of zones with the zones being managed differently, this

is likely to create a sort of feedback loop between the management and the delineated zones.

The algorithm differentiates the zones based on them yielding differently, but managing

the zones differently is also likely to make them yield differently. Thus the management

of the field based on zones determined with yields managed by zones is likely to become a

self-fulfilling prophecy.

7.4.1 Delineate Based on Periodic Uniform Management

One solution which is good from a data collection perspective would be to periodically

(say every 5 years) manage a field uniformly. Then only the data of these uniformly managed

years’ yields would be used to delineate management zones via the proposed algorithm. This

would remove any effects from the management of the field (assuming the lingering effects

from the previous years’ management is negligible) to find the inherent management zones.

However, this method has the practical drawback of requiring uniform management for a

year rather than the preferred management practices of the farmer. Yields for the uniformly

managed years are likely to be less than if the zones had been well managed with variable

rates. There would be a trade-off between the loss of the uniform years’ yields and the

increased yields for other years based on better zone delineations.

7.4.2 Delineate Managed Zones Separately

What initially seems like a simple way to avoid the effects of the managed zones skewing

the resulting delineations is to simply delineate each zone separately rather than delineating

the whole field together. However, there are two major issues with this.

The first issue would be that the managed zones can change from year to year. This

means that even if you separate the data by a given years’ managed zones, the other years’

data are still potentially in multiple managed zones in previous years. The only way to really

67

separate out the effects by delineating only one managed zone would be to use only the one

year’s data. This would remove much of the benefit of the proposed model and algorithm.

Another issue with delineating the managed zones separately is that once the zones are

delineated one would need a meaningful way to combine these disparate delineations. The

labels between the delineations would not be equivalent, that is, there is no reason to think

label 1 from one delineation is in any way similar to label 1 of another delineation.

7.4.3 Incorporate Management Effects into the Model

Another solution would be to try to incorporate the knowledge of the zones by which the

field was managed into the model and/or algorithm. A simple first step might be to model

the management effects as a scaling factor on what the unmanaged yield would have been.

Incorporating this into the model is more involved than it initially seems though. Since

the zones a field is managed by can change each year, the scaling factors would need to be

estimated separately for each year which has yield data.

7.5 Characterizing Yield Map Errors

One major question for the determination of management zones from yield data is how

good those data are. There is certainly error involved in the creation of the yield map.

Characterizing the various errors involved, both measurement errors and errors induced by

the nonlinear behavior of the combine [22], is a next step. An understanding of these errors

could be used to improve the data pre-processing and the model in order to better delineate

management zones.

68

Part II

THE OADA API FRAMEWORK

69

8. INTRODUCTION

While the Internet has largely solved the problem of how to achieve scalable, widespread

exchange of human-consumable data such as web pages, the seamless exchange of machine-

usable data is still an area of ongoing development.

Many challenges remain in the Application Programming Interface (API) design space,

especially with regards to finding and reusing APIs , and embracing the temporal evolution

that is natural in products [23]. Many industries, such as agriculture and manufacturing,

still struggle to achieve automated, cross-platform, and cross-organizational data exchange.

Unsupervised machines, unlike humans, require more than simple format standardization.

The machine must know how to reliably authorize, discover, identify, understand, ingest,

and synchronize data in order to successfully perform most of its required tasks.

Many, if not most, modern systems that exchange data use a Representational State

Transfer (REST) [24] API (Google, Twitter, Facebook, etc.). These APIs are usually specific,

one-off designs. For example, the Google API for information about users is specific to Google

and different from the corresponding Facebook API . In industries dominated by one or two

large players, their APIs become de facto standard APIs .

In industries such as agriculture, manufacturing, and shipping, it is difficult to achieve

 API -level standardization due to the technical complexity of the problem itself and the large

number of possible communication pathways between participants. In these industries, it

is the user or data owner who must connect data platforms. The organizations behind

data platforms cannot be expected to sign prior agreements or dedicate developers to each

individual integration.

For example, in the context of agriculture, a farmer may want collected data (e.g., data

collected by an open-source planting app tracking progress throughout the season) to flow to

multiple other platforms that can utilize it. In the context of the food supply chain, a food

processing company may need to automatically receive safety certifications from upstream

vendors and route them to downstream customers. In the event of a food safety problem,

this could help regulators to crawl backward through the supply chain data systems to trace

the source of an outbreak.

70

This configuration of a web of interconnected platforms (i.e., “clouds”) is known as an

intercloud [25]. While micro-service style architectures within a platform’s boundaries have

become quite popular as a means of dealing with complexity, the intercloud model extends

the concepts of micro-service architectures beyond platform boundaries. Figure 8.1 illustrates

a potential intercloud scenario involving multiple APIs . The black text and icons are the

involved clouds, devices, etc., while blue text and arrows show the movement of data. The

following subsections detail the core concepts of the Open Ag Data Alliance (OADA) API

Framework. Intercloud is an active area of research [23], [26], [27].



fields, yield,
machine info

fields

fields

yield

Co-op
cloudOEM

cloud

yield

yield

Farmer's Cloud of
Choice

Benchmarking
Service

Recommendations
Service

MachineHealth.com

Logistics Management
Service

University
Data

Field Sensors

fields

Connection-based Architecture for Automated Data

Blockchain

Harvester

Farmer’s
Tablet

Driver’s TabletFarmer’s
PC

sensor
data

machine
info

logistics
info

Soil Measurements

soil
data

performance
data

logistics
info

public yield
data

Fertilizer
Spreader

planting data

fields

fields
fields

Figure 8.1. Illustration of an intercloud scenario involving multiple APIs

This part of the manuscript presents work on a new framework for solving these problems

of automated, real-time, and historical data exchange between systems that is initiated by

data owners. It provides pathways to adoption-based API standardization in emerging and

heterogeneous industries. The goal of this work is to facilitate a common API framework,

enabling a sort of micro-services engine that supports ad-hoc architectures without pre-

defined boundaries.

The following sections present a review of related work, a detailed description of the

framework, a Proof-of-Concept (PoC) implementation utilizing this framework, a discussion

71

of some real-world use cases already employing the framework, and finally conclusions on

the utility of the framework.

8.1 Related Work for OADA

 Open Data Protocol (OData) is a set of best practices for making and using RESTful

 APIs [28]. This work focuses on producing machine-readable descriptions of APIs ’ data

models. OData has been approved as a standard by the International Organization for

Standardization (ISO) [29].

OpenAPI (formerly Swagger) works on defining a standard interface to RESTful APIs

[30]. Its work focuses on producing a description that allows both machines and humans to

discover and understand a RESTful API , as opposed to producing strictly machine-readable

information.

GraphQL takes a client developer-focused approach for creating web APIs [31]. GraphQL

instead enables API clients to define the parts of the data structure relevant to them such

that the API will only return or mutate data of interest to the client , rather than the

traditional REST model in which the server defines the format of the data. This enables

painless evolution of the API .

AsyncAPI works on defining a specification for documenting and describing message-

driven APIs [32]. It is protocol-agnostic (can be applied to Hypertext Transfer Protocol

(HTTP)), and seeks to be as compatible as possible with the OpenAPI specification [30]

mentioned above.

8.2 Representational State Transfer (REST)

 REST [24] is hard to precisely define because it is an architectural style, rather than a

published standard or protocol like SOAP (formerly Simple Object Access Protocol) [33].

The main requirements of REST are client-server architecture, stateless, cacheability, layered

system, and uniform interface.

 REST defines resources as the elements which are communicated between server and

client. These resources can represent any information of interest (e.g., images, queries,

72

collected data). Implementation details such as how the resources are actually stored and

what database is used are hidden from clients. Clients access resources on the server only

using Uniform Resource Identifiers (URIs) . Each resource has its own unique URI .

The communication between client and server should use a stateless protocol. Stateless-

ness here refers to the high-level protocol used between client and server, it is not saying that

the lower network layers (e.g., transport and media layers) involved in getting requests from

client to server and back are necessarily stateless. Here, stateless means that every request

received by the server is independent of every other request and can be interpreted without

any awareness of other requests sent. This enables handling requests in distributed and con-

current fashions, which allows for what is known as horizontal scaling [34]. Horizontal scaling

is increasing the capacity (i.e., number of clients which can be handled simultaneously) by

using an increasing number of separate nodes (i.e., server instances). The independent re-

quests can be handed off to different server nodes without requiring the nodes to be aware

of the other nodes or other requests.

Clients, as well as any intermediate parties (e.g., proxy servers), can cache server re-

sponses. Server responses need to indicate themselves as cacheable or non-cacheable, in

order to prevent clients from using stale responses. Cacheing can reduce the number of

client-server interactions needed, improving scalability.

Clients generally cannot tell if they are connected directly to the end server or an inter-

mediary. These intermediaries can be things like proxies, load balancers, or security layers

placed between clients and the server. These intermediaries do not affect communication

between client and server. Therefore such layers can be added without needing to update

server or client, enabling improved scalability with things like load balancing and shared

caches.

A REST API provides uniform representation of the exposed resources, which does not

correspond directly to how the server internally stores and represents the data. Two servers

implementing the same REST API would expose the same resource representations to clients,

but could store and internally represent those resources in entirely different ways. These

representations of resources are what clients use to manipulate the state of the resources,

73

such as modifying or deleting the resource. This distinction decouples the server and the

client, allowing for their implementations to evolve independently.

8.3 Hypertext Transfer Protocol (HTTP)

 HTTP is a client-server communications protocol [35]. It is commonly used as the ap-

plication layer protocol for APIs . While the two are often conflated, HTTP is distinct from

 REST and neither one requires the other. REST is a methodology for designing APIs and

how they ought to function, whereas HTTP is a specific communication protocol APIs can

use.

8.3.1 Requests

 HTTP is a request-response protocol. The protocol is initiated by a client sending a

request to a server. A request consists of up to four parts. First, the request line is sent which

contains the method, the target, and the protocol version, terminated with a carriage return

and a linefeed (e.g., GET /resources/123 HTTP/1.1). Second, the zero or more header lines

may be sent each consisting of a field name, a colon, and a field value, terminated with a

carriage return and a linefeed (e.g., Content−Type: application/json). Then an empty line

must be sent, consisting of only a carriage return and linefeed, to indicate the end of the

header section. Finally, an optional request body may be sent.

8.3.2 Methods

 HTTP defines various methods as well as allowing for the use of new methods [36]. The

relevant standard HTTP methods for this manuscript are GET, HEAD, PUT, POST, and

DELETE. GET is used to request the current state of the target from the server. HEAD

is like GET but tells the server to not send a response body. This is useful for retrieving

metadata in the response header without having to transfer all of the data. PUT is used

to update the state of the target on the server based on the request body. POST is used

to request the server process the request body according to the rules of the target. For

74

example, a POST request to a /users might be used to request the server to create a new

user. DELETE is used to request the server to delete the state of the target.

8.3.3 Responses

For every request from a client, the server sends a corresponding response. A response

consists of: A response consists of up to four parts. First, the status line is sent which

contains the protocol version, the status code, and an optional reason phrase, terminated

with a carriage return and a linefeed (e.g., HTTP/1.1 200 OK). Second, the zero or more

header lines may be sent each consisting of a field name, a colon, and a field value, terminated

with a carriage return and a linefeed (e.g., Content−Type: application/json).Then an empty

line must be sent, consisting of only a carriage return and linefeed, to indicate the end of

the header section. Finally, an optional response body may be sent.

8.3.4 Status Codes

A status code is a three-digit integer code (e.g., 200) for the result of the server’s attempt

to process and fulfill the client’s corresponding request [36]. The first digit of a status code

defines its class. Clients may not understand all status codes, but they must understand all

classes and treat unknown codes as being equivalent to the X00 status for the corresponding

class (e.g., if 234 is unknown to the client, it shall treat it as 200). The 1XX (Informational)

status class means the request was received and understood. It is a provisional response

while processing on the request continues. The 2XX (Successful) status class means the

request was received and accepted. The 3XX (Redirection) status class means further client

action is needed in order to complete the request. The 4XX (Client Error) status class means

the request was invalid or not understood. The 5XX (Server Error) status class means the

server failed to process a request despite the request appearing to be valid.

75

9. OADA API CORE CONCEPTS

The OADA API was designed with the idea that there will be multiple clouds and APIs .

This is why rather than being a specific API , OADA is a framework for designing APIs which

lend themselves to interoperability in an evolving intercloud environment.

9.1 RESTful Design

The first core concept in OADA is adherence to REST design principles, discussed pre-

viously in Section 8.2 . Any OADA conformant API is therefore a REST ful API . Many

 APIs today utilize the concept of REST [37]. While REST is not specific to HTTP [24],

 OADA calls for using Hypertext Transfer Protocol Secure (HTTPS) and WebSockets in its

implementations.

With REST in mind, OADA represents the API data as a set of resources that can be

found, read, modified, deleted, shared, connected linked, or watched for changes. A resource

is conceptually a collection of bytes, but OADA gives JavaScript Object Notation (JSON)

formatted resources a higher level of functionality than other formats. In particular, JSON

resources are internally addressable, that is, Uniform Resource Locators (URLs) can be

constructed to refer to internal parts of a JSON resource, and a part of one JSON resource

can link directly to another resource. This functionality can theoretically be implemented for

other formats, for example, Extensible Markup Language (XML) , but OADA only requires

 JSON support.

9.1.1 Resources

Resources are uniquely identified with a URL comprised of a protocol such as https://,

a domain, such as example.com, and a canonical home rooted at the /resources path. For

example, the resource with identifier abc123 at domain example.com has a canonical URL

of https://example.com/resources/abc123.

For JSON resources, the URL can be extended beyond the canonical resource to include

paths within the JSON itself. For example, the URL https://example.com/resources/abc123

76

/key1 refers to the key1 part of the abc123 resource. Additionally, if the value at the key1

key of the abc123 resource is itself a link to another resource, then the URL extends to refer

further into parts of the linked resource.

In OADA , the current state of a resource can be retrieved with a GET request to its

 URL . A resource may change over time, but a GET request to the resource always returns

its current state as of the time the request is processed by the platform. HEAD requests and

conditional GET requests [38] are also supported in OADA , to facilitate client caching. If

the requested resource has changed from what is in the client’s cache, the server will respond

with the new version of the resource, otherwise, the server will send a response indicating

the cache is valid.

One of the main innovations of OADA is the ability to have live data graphs, that is,

resources are not only available for reading via an HTTP GET, but also as a log of all changes

to any arbitrary sub-tree of resources. For details on this protocol, please see Section 9.6

below.

9.1.2 Resource Mutation Methods

In a REST ful API , the state represented in a resource can be changed through particular

methods. In an OADA API , the specific methods for changing resource state are: Create

(uses the HTTP POST method), Upsert (uses the HTTP PUT method), and Delete (uses

the HTTP DELETE method), as described below.

9.1.2.1 Create

Performing the Create method on a URL results in placing the body of the request at

a new randomly generated key within the addressed resource. This effectively appends a

random string to the end of the specified URL and places the new data there. As a result,

the Create method is non-idempotent, that is, executing Create multiple times with the

same data will result in repeatedly adding the data at different random keys each time. This

prevents accidental collisions when multiple resources are created concurrently.

77

Performing this method on the global resources endpoint (i.e., POST /resources) creates

a new resource with a random resource identifier (i.e., it results in the resource /resources

/<random new key> being created). Performing this request on any existing resource (e.g.,

POST /resources/abc123) results in the new data being placed at a random string key within

the resource. The newly-created canonical path is returned in the Content−Location HTTP

response header [36].

9.1.2.2 Upsert

In an OADA Upsert operation, the body of the request is merged with the current state

of the addressed part of a resource to create the new state. Here, merge means recursively

adding the keys from the request body to the target resource, overwriting any existing keys.

If the resource did not exist at all prior to the upsert, it is created transparently with a state

equal to the request body.

The Upsert operation is idempotent, that is, executing the same Upsert operation mul-

tiple times results in the same final state. For example, if the resource did not exist before

the first Upsert, it was created and its state was made exactly equal to the request body. A

second identical request will tell the server to modify the now-existing resource by replacing

its contents with the identical contents of a repeated request body, resulting in the same

state as before this second request.

For JSON resources, only the parts of the JSON object that exist in the request body

are merged (unmentioned keys are not modified). In this way, an Upsert can be thought of

as an idempotent merge operation. The merge itself is a recursive merge, that is, if other

keys exist at any given level of a JSON resource, only the keys at that level mentioned in

the request body will be overwritten or created. In this type of merge, it is impossible to

completely replace the contents of a JSON object at any given level. One can only ensure

that the specified keys will exist, and they will point to objects which at least contain the

further specified keys, but may contain additional keys. For non-object values such as strings,

numbers, and booleans, this merge will completely replace the original value with the new

78

value regardless of the type of the new value (e.g., a string would be completely replaced

with a new object).

9.1.2.3 Delete

Although Upsert can set the value corresponding to a given key, creating that key if it

does not yet exist, it cannot remove a key. Therefore, OADA has a Delete method that

explicitly removes a state element. A Delete can be performed on a resource as a whole, in

which case it will be entirely removed from the current state. Additionally, a Delete can be

performed on a specific element of a resource, removing only the specified path within the

resource while leaving the rest of the resource unchanged.

Delete is also an idempotent operation, that is, multiple uses of Delete on the same URL

will result in the same final state of the resource (i.e., the specified key will be absent).

9.2 User-Centric REST APIs

Each OADA resource is owned by a user account . The corresponding user can choose

to give other local accounts on the same cloud access to the resource , and the user can also

sync the resource to another cloud that supports the OADA API . For clarity, a user is a

real person, not code interacting directly with an API .

9.2.1 User-driven Connections

The OADA framework aims to allow users to use, share, and authorize their data as they

see fit rather than relying a priori interoperation agreements between cloud providers. A

 client written to use an OADA conformant API can be used with any OADA -conformant

platform, even if the client and platform do not have advanced knowledge of each other. To

that end, the OADA framework supports Dynamic Client Registration [39]. For the purposes

of this section, a client is any application which needs to ask for an authorized token to use

on behalf of a particular user at an OADA conformant cloud. The user interacts with a

 client (e.g., a website), and that client interacts with the OADA API .

79

Dynamic Client Registration allows clients to register themselves with platforms auto-

matically, obtaining a client identifier in response that can be used in future OAuth 2.0

requests for tokens. The platforms still have the ability to manage these clients , such as

blacklisting clients which misbehave in some way. However, OADA encourages letting users

pick clients as they see fit. Even after registering, a client can only access data to which a

 user has granted it access, and a user cannot grant a client access to data to which that user

does not have access.

Dynamic Client Registration poses a hurdle to traditional OAuth 2.0 token distribution

in that it cannot use the common method of pre-shared client secrets. Therefore, during the

registration process, the client provides a JSON document describing itself which is digitally

signed by a trusted signature authority, and contains a public key for the client . When the

 client performs an OAuth 2.0 request, it must create a client secret on-the-fly in the form of

a JSON Web Token (JWT) that is signed with its corresponding private key as proof it is

whom it says it is.

9.2.2 Users and User Accounts

It is important to distinguish between users and user accounts because the mapping is

not necessarily one-to-one. For the purpose of this work, the term user refers to an actual

person (or another real-world entity like a company with a representative). A user may have

more than one account within a given OADA conformant cloud.

A person or company may use multiple OADA conformant clouds, and will have a distinct

 user account on each. From the perspective of an OADA API , two user accounts are distinct

entities, even if they happen to belong to the same actual user . The example of a single

 user with two user accounts corresponding to two different OADA conformant clouds, is

illustrated in Fig. 9.1 .

9.2.3 Federated Identity / Universal Login

A user can use an identity from one OADA cloud to log into another. This results in the

second cloud transparently creating a new account and linking it to the original account.

80

This facilitates users sharing and migrating their data between clouds, or even utilizing

multiple OADA conformant platforms concurrently in an intercloud scenario without the

need to manage many identities. A user can choose any platform acting as an OADA iden-

tity provider to handle his/her identity, using an OADA -conformant version of the OpenID

Connect protocol [40].

9.2.4 Sharing and Permissions vs Sync

 User -driven data sharing can happen between user accounts within an OADA cloud, or

from a user account on one cloud to a user account on another cloud. While one might think

of both things simply as sharing, they are actually separate operations.

The relation between permissions and sync is illustrated in Fig. 9.1 . While a single

physical user is involved, that user has two user accounts (one in each cloud). Permissions

within a cloud control what other user accounts within that cloud can access the user ’s data,

whereas sync is used to move the user ’s data between the clouds.
Tool #2: User Accounts/Permissions

User A’s
Account

Permissions

Other
Account

Other
Account

Permissions

User A’s
Account

Sync

User A

Implementation in OADA: Intra-cloud Read/Write/Admin, Users, Permissions Figure 9.1. Illustration of intra-cloud vs intercloud sharing

Permissions pertain to a user accounts within a given platform and which data each

account may access. For example, within platform 1 User A can grant read permissions

to User B’s account for a set of data belonging to User A. However, in platform 2 these

81

permissions from platform 1 would have no effect, even if both User A and User B also

have accounts at platform 2, because they were only applied on platform 1. User A could

separately share his/her data within platform 2 to User B’s account on platform 2 as well.

Sync is between two platforms and is distinct from permissions. As shown in Fig. 9.1 if

 User A has accounts on two OADA platforms, the user could sync data from the account on

platform 1 to the account on platform 2. This is effectively sharing between the two accounts,

though the accounts belong to the same actual user . Sharing between two different users on

two different platforms thus involves a combination of both permissions and sync.

9.3 Leverage Existing Standards

 OADA seeks to avoid reinventing the wheel where possible. This increases the probability

of being able to leverage existing tools. Strictly speaking, many of the standards utilized

in OADA are not approved standards, but they are de facto standards with pre-existing

implementations and adoption. What is meant by this is that they have a published Request

for Comments (RFC) and already have widespread adoption, but are not officially adopted

as a standard [41]. These are listed in Table 9.1 along with their corresponding defining

documents.

9.4 Resource Meta-Data

 OADA also has a special class of resource , meta resources , which hold meta-data about

 resources . Every normal resource has its own meta resource (but a meta resource does not

have an associated meta resource). Normal resources contain a _meta key whose value is a

 link to that resource ’s meta resource .

This allows for storage of data about a resource which do not necessarily belong within

the resource . Having a separate meta resource is especially important for storing formats

that do not allow adding arbitrary keys. For example, if a resource is an image format, the

 meta resource provides a place to store arbitrary data about it.

82

Table 9.1. De Facto Standards Utilized in OADA

Name Document(s)

Hypertext Transfer Protocol (HTTP) 1.1 RFC 7230–7237 [35], [36], [38], [42]–[46]

Hypertext Transfer Protocol Secure (HTTPS) RFC 2818 [47]

OAuth 2.0 RFC 6749 [48]

Dynamic Client Registration RFC 7591 [39]

JavaScript Object Notation (JSON) RFC 8259 [49]

JSON Web Signature (JWS) RFC 7515 [50]

JSON Web Token (JWT) RFC 7519 [51]

JSON Web Key (JWK) RFC 7517 [52]

OpenID Connect OpenID Connect Core 1.0 [40]

Web discovery RFC 8615 [53]

GeoJSON RFC 7946 [54]

83

Listing 9.1. Example OADA resource state
{

"_id": " resources /123",
"_rev": 1,
"_type": " application /vnd.foo+json",
"_meta": {

"_id": " resources /123/ _meta",
"_rev": 1

},
"foo": {

"bar": {
"a": 1

}
}

}

 OADA stores information such as create/modify date, owner, and user access for a given

 resource in its meta resource . Also, a resource ’s change feed (detailed in Section 9.6) is

accessible via a link under the _changes key of the corresponding meta resource .

9.5 Graph-Based Data Representation

 OADA resources can arbitrarily link to other resources, forming an overall traditional

 URL -driven API structure. In other words, part of the state of one resource can be a

reference to another.

These links between resources create a graph. This graph of data can be traversed using

the URLs of API requests. The traversal via URL is described in the subsections that follow.

9.5.1 Resource Fields as Children

 OADA not only treats explicit links between resources as a graph but also the keys and

sub-keys of resources can be accessed directly. For example, consider an OADA -conformant

platform where GET /resources/123 returns the state shown in Listing 9.1 .

84

Listing 9.2. State of key foo of resources/123

{
"bar": {

"a": 1
}

}

Listing 9.3. State of key bar of resources/123/foo

{
"a": 1

}

Listing 9.4. Example JSON of an OADA link
{

"_id": " resources /456",
"_rev": 1

}

The keys within this resource may be accessed directly as if they were their own resource.

For example, the key foo maybe be accessed directly with the request GET /resources/123/

foo. The state returned by that request in this case is shown in Listing 9.2 .

This traversal of keys is not limited to the first-level keys of a resource. The URL of a

request can refer to an arbitrarily deep sub-key of a resource, and the traversal as above will

be carried out in a recursive fashion. For example, the request GET /resources/123/foo/

bar, would produce the state of the key bar of the state from Listing 9.2 . The result of this

request is shown in Listing 9.3 .

9.5.2 Links and Link Traversal

The links between resources are followed transparently (i.e., the client does not need to

know about them), and traversed similarly to the traversal described in Section 9.5.1 . The

representation of a link with JSON in OADA is shown in Listing 9.4 .

85

Listing 9.5. Example of OADA resource containing a link to another resource
{

"_id": " resources /foo",
"_rev": 2,
"_type": " application /vnd.foo+json",
"_meta": {

"_id": " resources /foo/_meta",
"_rev": 2

},
"bar": {

"_id": " resources /baz"
}

}

Listing 9.6. Example of an OADA versioned link
{

"_id": " resources /111",
"_rev": 9001

}

The _id key is required and its presence is what makes a key of a resource into a link .

The _rev key is optional, OADA links are traversed in the same manner regardless of the

presence of that _rev key.

Shown in Listing 9.5 is an example of a link occurring within a resource. In the example,

the resource with id resources/foo has a key bar which is a link to another resource with

id resources/baz. What this means in terms of OADA APIs is that the request GET~/

resources/foo/bar is equivalent to the request GET~/resources/baz since they resolve to the

same resource, and the two requests will return the same state.

9.5.3 Versioned and Unversioned Links

As mentioned in Section 9.5.2 , OADA links have an optional _rev key. A link with a

_rev key is a versioned link , and a link without one is an unversioned link . Examples of a

 versioned link and a unversioned link are shown in Listing 9.6 and Listing 9.7 , respectively.

86

Listing 9.7. Example of an OADA unversioned link
{

"_id": " resources /111"
}

87

In a versioned link , the _rev key tracks the _rev of the linked resource . When the _rev

of the versioned link changes, it is considered a change to the resource containing the link

(i.e., the parent). This in turn makes the _rev of that parent resource update after the child

is changed. Figure 9.2 illustrates this upward propagation of _revs through the versioned

link resource graph. A path with three levels is shown, but the propagation holds for any

number of versioned links.

_rev updates can come at a cost of increased processing required per write, so they should

be used with care where necessary and not as a default for all links in a model. Please note

that _rev updates are eventually consistent in an OADA conformant API (a write to a leaf

node is not required to be immediately reflected in a parent node). It is expected that deeper

graphs will have higher rev update latency, although the batching of changes discussed in

Section 9.6.3 alleviates this under high write loads.

9.6 Live Data Graphs and Change Feeds

Resources in an OADA API have a history of the changes made to them. This history

allows a client to keep track of the past changes and synchronize an external state to the

 server ’s current state by requesting and receiving only changes. Importantly, changes can

be conveniently tracked, pushed, and replicated for any arbitrary sub-graph using versioned

links as described above. This provides the OADA concept of a live data graph.

In an OADA API , the history of modifications to a resource is called a change feed. A

change feed is an ordered stream of change documents, which represent idempotent changes

of resources given in JSON arrays. Applying a given change to a resource multiple times in

a row results in the same net state of the resource. This enables an at-least-once delivery

semantic for changes. The changes in a change feed are indexed by the resource ’s revision

number.

9.6.1 Change Types

A change to a resource is represented by a JSON document and is either a merge change

or a delete change. A merge change represents new or modified properties of the resource by

88

_rev:42
foo:{

_rev:36
…

}

_rev:36
bar:{

_rev:7
}

_rev:7

…

Resource 1

Resource 2

Resource 3

_rev:8

…

_rev:37
bar:{

_rev:8
}

_rev:43
foo:{

_rev:37
…

}

0

1

2

3 4 time

versioned
link

versioned
link

PUT /resources/3

Figure 9.2. Illustration of a change to a resource causing the upward propa-
gation of rev changes

89

only containing the new key and value pairs (i.e., the contents of the change body are the

same as the contents of the body of the Upsert required to change the resource from its state

before the change to its state after). Note that deleted properties are not represented by a

merge change for the same reason that Upset and Delete are separate operations. Therefore,

 OADA represents a change of removing a value in JSON by using null to represent the value

that was removed along with specifying a type of "delete" in order to explicitly differentiate

the two cases.

9.6.2 Change Trees

bookmar ks

devi ce

uni t 1

_rev:1

_rev:1

_rev:1

(a)

Change t o
" uni t 1"

Change t o
" devi ce"

Change t o
" bookmar ks"

_rev:2

_rev:2

_rev:2

(b)

Change t o
" uni t 1"

Change t o
" devi ce"

Change t o
" bookmar ks"

Change t o
" uni t 1"

_rev:2 _rev:3

_rev:2

_rev:2

(c)

Figure 9.3. Example resource tree and change trees. (a) A resource tree
containing three resources and two versioned links. (b) The resulting change
tree after unit1 is modified once. (c) The resulting change tree after unit1 is
modified twice with the batched change feature enabled.

Any changes made to a resource will propagate to its parents connected with a versioned

link, as mentioned previously in Section 9.5.3 . This chain of propagation is described by a

change tree in which a node represents a single change to a specific resource in the graph

and an edge represents change propagation over a versioned link . These change trees are the

language by which a live data graph can be streamed.

90

A change tree is applied to a set of resources by traversing it depth-first, visiting children

in order of increasing revision. Applying the changes in this order will transition a resource

from the state immediately before it to the state after.

For example, consider the case shown in Fig. 9.3a of making changes to the path /

bookmarks/devices/unit1, where bookmarks, devices, and unit1 are all resources and con-

nected with versioned links. In this scenario, a single change to the leaf resource unit1 creates

a change tree with three change nodes as shown in Fig. 9.3b .

9.6.3 Batched Changes

The number of new change nodes increases with the depth of the resource being modified

since versioned links propagate changes up the graph. Creating many new change nodes

can be costly since it requires both modifying the change graph and notifying any clients

watching the relevant live data graph section.

The batched changes feature reduces the number of new change nodes by allowing an

 OADA platform to merge multiple changes for a live data graph into a single change tree.

Notice that the most important (i.e., originating) change is always the leaf node, which

corresponds to an API request. The other nodes are just to notify ancestors of the original

change. These non-leaf nodes can be merged to represent a single change of the ancestor

indicating that one or more changes have occurred to descendants.

Consider the previous example in which we make changes to a path /bookmarks/devices

/unit1. Without batched changes, two change requests to unit1 create two change trees with

a total of six change nodes. With batched changes enabled, the changes to bookmarks and

device are merged respectively, and a single tree with a total of only four nodes is created

as shown in Fig. 9.3c . This batching can be adjusted dynamically based on system load to

prioritize either latency or throughput.

9.7 Generic Intercloud Data Sync

A user can set up a connection between two OADA -conformant platforms such that all

(or a subset) of that user ’s data from cloud 1 can be automatically (i.e., without further user

91

action) pushed to cloud 2 over time. Any additions or changes to data after the connection

is established will be pushed without further user intervention.

 Users (via clients) are able to set up such connections between any two OADA APIs

for which they have accounts without coordination with the maintainers of the APIs or the

source platform. With OADA , cloud 1 need not even know cloud 2 exists (and vice versa)

before the user sets up this connection.

There are two main parts of OADA facilitating this data movement. The first is the

change feeds representing the live data graph, as discussed in Section 9.6 . The second is the

 OADA methods of communicating these changes through intercloud updates.

WATCH	/resources/123	GET	/resources/123	

3me	

Client	 Server	

3me	

Client	 Server	

update	 update	

co
nn

ec
3o

n	
id
le
	

GET	/resources/123	

po
lli
ng
	in
te
rv
al
	

delay	

Figure 9.4. Illustration of push and poll models of updates from server to client

At a high level, there are two main ways for the updates to the live data graph to be

sent from the platform where they are happening to the platform (or user device) consuming

92

them. These are referred to as “push” and “poll”. OADA supports both of these models. In

fact, OADA has three variations of “push” available.

9.7.1 Polling

Polling is simply having the client periodically perform a GET on the endpoint of interest

to see if it has changed since the last time the client retrieved it. Figure 9.4 shows the push

and poll models of updates from server to client . When changes are infrequent, polling can

result in unnecessarily long delays and/or excessive HTTP requests and therefore should be

avoided in favor of push. However, polling is conceptually simpler to implement for a client

as a starting point.

9.7.2 Webhooks

Webhooks is a solution that works well for pushing updates between two servers . It

requires that the server can make REST requests to the client . Often this is not possible,

but it is possible when the client is another server as opposed to a web browser or mobile

app. In an intercloud scenario, both client and server are often servers . A client can register

a webhook on any resource, and that webhook will be triggered on every change to the live

data graph rooted at that node (i.e., every rev update to the resource). The webhook is

configurable to make an HTTP request to any URL with statically-defined headers. In this

way, any external service that can receive arbitrary HTTP requests can react to live event

triggers from the remote live data graphs of interest to it.

9.7.3 OADA Sync Webhooks

While it is useful to notify an arbitrary HTTP API of changes to a live data graph, it is

even more useful if the destination API is standardized (such as an OADA API). In other

words, the webhook can be smarter if it knows the destination has an OADA -conformant

 API . The source platform can simply replay the same change at the destination resource

and one-way replication is automatically enabled.

93

Since the OADA Upsert is idempotent, a platform can receive synchronization streams

from multiple sources and trivially merge them creating a resource with data from all the

sources. This allows clients to arbitrarily setup live data graph syncs where multiple streams

can coalesce into a single resource and then be filtered, split, or otherwise redistributed

elsewhere. For example, if a sequence of keys at cloud A are created as random identifiers,

and another sequence of keys at cloud B are created also as random identifiers, then replaying

the creating of the random keys from cloud A and cloud B at a resource in destination cloud

C will result in cloud C containing all the data found in the resources on both cloud A and

cloud B without collisions.

 OADA sync webhooks also perform recursive synchronization of live data graphs rooted

at any resource. This replicates a live data graph at a destination platform (i.e., changes

to the source automatically flow to the destination). To achieve this, OADA maintains a

mapping on the source platform between the resource ids in the source live data graph to

the resource ids in the destination data graph.

9.7.4 WebSockets

WebSockets [55] is a widely used protocol which allows a persistent connection between

a server and a client , enabling a server to push data to a connected client . While not strictly

necessary for the sending updates from a server to a client , WebSockets are a good alternative

to requiring the client to poll the server for updates.

WebSockets are especially useful for the case where the client is not an OADA conformant

platform but is instead something like a browser, smart phone app, or micro-service as

they do not require the client to expose a network-accessible REST API of its own. The

connection between client and server is maintained for either side to initiate asynchronous

communication, and it is simple for the client to know when the connection has dropped.

The key method for a WebSockets-based live data graph is WATCH. Setting a WATCH

on a resource causes the change feed of the live data graph rooted at that resource to be

streamed over WebSockets. The WATCH can be started at the current rev, or a past rev

94

can be specified from which to resume. The OADA platform will start streaming changes

for that live data graph from the specified rev.

Micro-service architectures can utilize WATCH to react in real-time to things in particular

parts of an OADA bookmarks tree.

9.8 Format Agnostic

While the discussion of OADA thus far has all been in the context of using JSON as the

primary data serialization format (due to its widespread use in APIs [56]), any other formats

are also supported and are referred to as binary formats.

 OADA does not make any requirements on the semantic structure of data. It simply

requires that the Content−Type be defined for every resource. Content−Types are strongly

encouraged to specify a particular schema (e.g., application/vnd.oada.bookmarks.1+json)

rather than simply a serialization (e.g., application/json). These semantic schemata, when

combined in the graph, form a fully-defined API definition for live data graphs. Through

the live data graphs themselves, live graph transformations can be maintained which can

convert from one schema to another.

95

10. PROOF-OF-CONCEPT AND REFERENCE

IMPLEMENTATION

While OADA itself is a framework, or API specification, rather than a specific piece of

software, an OADA server implementing a base OADA conformant API has been developed

[57]. This implementation has been used as a PoC , and as an open example of how to use

 OADA . It is also currently used in production environments and can easily add OADA

conformance to a platform.

10.1 Open-Source

All of the code written in relation to OADA , both the PoC server and associated libraries,

is open source. The code is openly available on the OADA GitHub [58] under permissive

licenses.

10.2 Portable

The reference implementation is written in JavaScript, so it can be run on many plat-

forms. The core micro-services are all written as Node.js [59] packages. This was chosen

because it is supported on many platforms and the high availability of libraries for Node.js

and JavaScript in general.

The reference implementation is written to not need a specific host OS or cloud provider

and therefore is run via Docker [60]. Even though all of the core micro-services use Node.js,

other services can be written in whatever programming language the writers prefer. Micro-

services communicate over HTTP (or Kafka if in the core), so any languages and runtimes

that support HTTP can be used to implement micro-services.

10.3 Architecture

The architecture of the reference OADA implementation is illustrated in Fig. 10.1 . It is

a micro-service based architecture, designed to allow for horizontal scaling and adding extra

micro-services for new features. Each box is a separately running micro-service, database,

96

or server . Only one of each micro-service is pictured for clarity, but multiple instances of a

given micro-service can be used to scale the platform horizontally.

80*

443

http

ws

O
u
ts
id
e

* Only /.well-known on port 80
Listening to Outside World

1 step from listening to outside

Internal, off-the-shelf

Out-of-flow from HTTP requests

Reacts only to internal events

REST over HTTP(s)

Figure 10.1. Architecture of the OADA PoC implementation

10.3.1 Core Micro-services

10.3.1.1 HTTP Handler

The micro-service for interpreting and responding to incoming HTTP requests is http−

handler. It checks the permissions and authorizations of incoming requests based on a token.

It then retrieves the resource from the database (ArangoDB) for reads, or talks to the write

handler over Kafka to execute writes.

10.3.1.2 Auth

The micro-service for authenticating users using OAuth 2.0 [48] is auth. Clients perform

the OAuth flow with the auth server and receive a token that can be used for HTTP requests.

97

It has its own collection in the ArangoDB database where it stores authentication information

for clients and tokens.

10.3.1.3 Users

The micro-service for adding and initializing new users is users. It handles things such

as creating /bookmarks and /shares resources for new users .

10.3.1.4 Write Handler

The micro-service for modifying the resources in the database for the Create, Upsert, and

Delete methods is write−handler. It is designed to work with multiple instances running

concurrently by partitioning the write requests such that all writes to a particular resource

are always sent to the same instance of write−handler.

10.3.1.5 Rev Graph Updater

The micro-service for propagating changes to _rev keys up versioned links is rev−graph

−updater. It watches Kafka for any time a write to a resource occurs. When this happens,

it queries ArangoDB for all parents of that resource which have a versioned link to it.

For each parent found, it sends an Upsert to write the new value of the resource ’s _rev

to the versioned link of the parent resource . This asynchronously implements the upward

propagation of changes described in Section 9.6 .

10.3.2 Kafka

The OADA reference implementation uses Kafka [61] as a message queue for the com-

munication between the core micro-services.

98

10.3.3 ArangoDB

The underlying database for the PoC implementation is ArangoDB [62]. It is where the

actual JSON documents containing the state of the API ’s resources , the graph of resource

connections, and the changes graph are stored.

ArangoDB was chosen for the database for two main reasons:

1. It has support for JSON storage and querying.

2. It has support for graph queries.

The reference implementation also stores other data in ArangoDB besides just resources ,

but under different collections.

10.3.4 NGINX

Incoming HTTP and HTTPS traffic is routed through NGINX [63]. It is used as a

reverse-proxy, to delegate requests to the appropriate micro-service (http−handler, auth,

or well−known) and more importantly to load balance across multiple instances of a given

micro-service and handle TLS.

99

11. OADA API APPLICATION RESULTS

There are already a few successful use cases of the OADA framework and the reference

implementation mentioned in Chapter 10 . Some of these use cases are discussed in the

following subsections. As with the reference implementation, the apps in the following

sections are all available open-source on GitHub.

11.1 Field Work App

Figure 11.1. Screenshot of Field Work App, a web app designed to help
farmers keep track of the status of operations in their fields.

100

The Field Work App [64] is a web-based application for farmers to track the progress of

field operations such as seed planting, tillage, chemical applications, and harvest. It serves

to aid in logistics planning as it presents both a geospatial view of progress on a map as well

as a numerical summary in terms of the acreage completed and remaining. A screenshot of

it is shown in Fig. 11.1 .

While users may create field boundaries by drawing them within the Field Work App

itself, they may also import them into OADA using a separate web-based import tool. An

operation is created by providing a text title for the operation (e.g., “Soybean planting

2020”) and setting a selection of fields to have a status of “planned”. As operations proceed,

 users then advance the status of each field from “started” to “done” in order to generate

summaries of progress. Operations can also be shared. For example, a harvest operation

might be shared with an agronomist in order to notify him/her when a particular set of fields

are ready to have post-harvest soil samples collected.

An integration was performed with a third-party data lake to provide a cloud-based data

management platform with a functioning OADA -compliant API . A service was developed to

perform a two-way sync of field boundary data between the data lake and the third-party’s

 OADA -compliant platform. The syncing service consisted of three separate micro-services —

one responsible for maintaining a clone of the relevant parts of the data lake in OADA , one for

translating that dataset into the appropriate formats, and a third responsible for propagating

changes made in OADA back to the data lake. The separation of the sync operation into

three services allowed for simpler isolation from circular updates while offering improved

debugging capabilities.

11.2 Trials Tracker App

The Trials Tracker [65] App is a web-based application for row crop farmers and similar

agriculturalists to manage planned or impromptu yield trials. Through a simple interface,

 users can take note of yield trials, view mean yield values and compare trials to the remainder

of the field or other trials. The Trials Tracker App recognizes the prominent role of geospatial

data in the agricultural data ecosystem. The app leverages stream-computed aggregations

101

of the raw yield data from the live data graph that are geospatially-indexed in order to

match the user ’s current zoom level and geospatial extent. As a result, all of the user ’s yield

data are rendered on a seamless mapping interface that does not rely on the selection of a

particular field. This simplifies the user experience. Apart from rendering visualizations,

these aggregates can be used to compute several statistics and present them to the user .

Trials Tracker served as a pilot application for several OADA technologies that would

benefit future OADA -driven applications. One example is the indexing services used to trans-

form or re-index a given dataset such that it is more readily consumed by another application.

A re-indexing service was used to translate the raw harvest data into the geospatially-indexed

aggregates used by Trials Tracker. This was accomplished by subscribing to the live data

graph where the raw data arrived, then ensuring the necessary resources holding the yield

data aggregates existed. The re-indexing service was also responsible for computing running

sums and other statistics as each raw data point is added to each aggregate. This was done

in a stream-processing style for real-time data which was able to update the statistical totals

based only on the contents of the change feeds rather than requiring reprocessing the large

underlying datasets.

Trials Tracker also drove the development of additional front-end libraries and function-

alities. Motivated by the need to update the yield data renderings and trial statistics in

real-time within the app, an aid was developed to maintain subscriptions to push notifica-

tions for all of the proper OADA resources. Additionally, a caching layer making full use of

 OADA live data graph features improved the performance of the app given its data-heavy

operations. Such functionalities were generalized into a client -side library for interacting

with an OADA -compliant server [66].

11.3 Trellis Supply Chain Sovereign Data Automation

The Trellis Framework [67] is a brand name for OADA used in the food supply chain

industry. Using OADA , the flow of relevant data (e.g., food safety audits) that are needed

between trading partners along a supply chain (e.g., from grower to packager to retailer)

is automated with selectable sharing rules and fine-grain privacy controls. This is achieved

102

without requiring global coordination in the industry; the only coordination required is

between business partners who already coordinate to do business. As long as any two

players have OADA -conformant platforms for their data, the syncing abilities of OADA

can be leveraged to create an ad-hoc, automated data pipeline that supports the privacy

requirements of its users .

For example, a farmer with food safety audits stored in Trellis can pre-configure that

the food safety audits relating to cucumbers should go to three particular processors’ Trellis

platforms. Those processors can configure their platforms to automatically sync their food

safety audits to any downstream distributors which receive product from them. The same

holds from distributor to retailer to consumer.

A unique feature of this automatic, real-time, peer-to-peer supply chain data exchange

model is that the existence of a standardized API enables new privacy controls such as the

ability to Mask & Link [68]: replace sensitive data in a document with a hash of the original

data and a Trellis URL pointing to where to retrieve it if you have permission, acting as an

auditable, automated redaction engine.

While the work of this use case focused on food safety, the method applies to other supply

chain scenarios such as advance shipment notices or sustainability tracing. It is not specific

to the data being transferred nor their format.

11.4 ISOBlueApp

ISOBlueApp [69] is a web-based application that shows current and historical telemetry

data collected by ISOBlue devices [70], [71] connected to agricultural vehicles in real-time.

A screenshot of it is shown in Fig. 11.2 .

The telemetry data are sent from ISOBlue devices to an OADA -conformant platform

in real-time and indexed by the device name, date, and hour. For example, the loca-

tion data collected by unit1 on October 16th, 2020 at 10:20 AM UTC will be stored to

the path /bookmarks/isoblue/device-index/unit1/location/day-index/2020-10-16/

hour-index/10. ISOBlueApp allows a user to monitor the updates on the server using a

WATCH request and visualize the retrieved information in real-time.

103

Figure 11.2. Screenshot of ISOBlueApp, an interactive tracking application
for agricultural telemetry devices. The application retrieves real-time informa-
tion from an OADA -conformant platform.

104

12. CONCLUSIONS

In this work a common API framework for intercloud environments was detailed, and a

reference implementation of it was presented. Multiple cases of the framework already being

used were also discussed. The framework covered in this work successfully facilitates the

development and data flow for the discussed uses.

It is certainly the case that designing a specific server and API from the ground up for

a particular fixed graph would be more performant than using OADA for that same graph.

However, OADA allows for greater flexibility and code reuse than creating new servers and

API for each use case (i.e., each graph). By using this suggested framework and its live

data graphs when developing APIs , the resulting APIs will be significantly more useful

for intercloud scenarios than using REST alone. This is especially true for user-centered

scenarios, and scenarios with multiple OADA -conformant platforms.

105

13. FUTURE WORK

13.1 Using the Part I Data with OADA

The flexibility of OADA allows clients to decide how best to organize their data. The

optimum organization of data will depend on the specific use case. In the case of the presented

 stochastic expectation-maximization (SEM) based algorithm from Part I , the client would

need to:

• get data by the crop type,

• get data by harvest year,

• and get data within a certian boundary (i.e., within a given field).

Based on these requirements of the application, one way to organize the data with OADA

would organize the yield data is to first index by year, then by crop type, and then by

geohash. A geohash is a public domain system for encoding geographic coordinates into

short strings [72].

The root resource, /bookmarks , would link to a harvest resource as shown in Listing 13.1 .

The harvest resource, /bookmarks/harvest , would contain a list of links to year resources as

shown in Listing 13.2 . This list is indexed by year so, for example, the key 2020 is a link to a

resource related to the 2020 harvest data. The 2020 harvest resource, /bookmarks/harvest/

years/2020 , would contain a list of links to crop resources as shown in Listing 13.3 . This

list is indexed by crop so, for example, the key corn is a link to a resource related to the

Listing 13.1. Response to GET /bookmarks

{
"_id": " resources /123",
"_rev": 1,
" harvest ": {

"_id": " resources /456",
"_rev": 1

}
}

106

/bookmarks
/bookmarks/harvest
/bookmarks/harvest/years/2020
/bookmarks/harvest/years/2020

Listing 13.2. Response to GET /bookmarks/harvest

{
"_id": " resources /456",
"_rev": 1,
"years": {

...,
"2020": {

"_id": " resources /2020",
"_rev": 1

},
"2021": {

"_id": " resources /2021",
"_rev": 1

}
}

}

Listing 13.3. Response to GET /bookmarks/harvest/years/2020

{
"_id": " resources /789",
"_rev": 1,
"crops": {

"corn": {
"_id": " resources /corn",
"_rev": 1

},
"soy": {

"_id": " resources /soy",
"_rev": 1

}
}

}

107

Listing 13.4. Response to GET /bookmarks/harvest/years/2020/crops/corn

{
"_id": " resources /789",
"_rev": 1,
" geohashes ": {

...,
" abcdefg ": {

"_id": " resources /abc",
"_rev": 1

},
" hijklmn ": {

"_id": " resources /hij",
"_rev": 1

}
}

}

2020 corn harvest data. /bookmarks/harvest/years/2020 The 2020 corn harvest resource,

 /bookmarks/harvest/years/2020/crops/corn , would contain a list of links to geohash tiles

resources as shown in Listing 13.4 . This list is indexed by geohash so, for example, the

key abcdef is a link to a resource related to the 2020 corn harvest data within a given tile

of latitude and longitude. The best geohash tile size depends on the specific use case. A

geohash 7 characters long gives roughly 150m worst-case tile length, which is a good starting

point when working at field-scale. Finally, the resource for the example geohash abcdef for

corn in 2020, /bookmarks/harvest/years/2020/crops/corn/geohashes/abcdef , would contain

a list of yield data points as shown in Listing 13.5 .

Using this scheme, the algorithm code could be modified to dynamically fetch the needed

yield data via an OADA API . To delineate zones for a given field, the code would first

compute all the geohashes of the chosen length (7 in this example) which intersect the

field. Then for a given crop, and year, each geohash would be requested with earropGET

/bookmarks/harvest/years/y/crops/c/geohashes/abcdef. This would be repeated for each

year and crop of interest. After receiving the responses to those requests, the algorithm

would then have all the needed data to estimate the management zones.

108

/bookmarks/harvest/years/2020
/bookmarks/harvest/years/2020/crops/corn
/bookmarks/harvest/years/2020/crops/corn/geohashes/abcdef

Listing 13.5. Response to
GET /bookmarks/harvest/years/2020/crops/corn/geohashes/abcdef

{
"_id": " resources /789",
"_rev": 1,
"data": {

" sadasda ": {
"lat": 40.4293272,
"lon": -86.9123666,
"alt": 100,
"yield": 200,
"crop": "corn",
...

},
...

}
}

109

REFERENCES

[1] C. Gorse, D. Johnston, and M. Pritchard, “Universal transverse mercator,” in A Dictio-
nary of Construction, Surveying and Civil Engineering, Oxford University Press, 2012,
isbn: 9780199534463.

[2] D. Shepard, “A two-dimensional interpolation function for irregularly-spaced data,”
in Proceedings of the 1968 23rd ACM National Conference, ser. ACM ’68, New York,
NY, USA: ACM, 1968, pp. 517–524. doi: 10.1145/800186.810616 . [Online]. Available:

 http://doi.acm.org/10.1145/800186.810616 .

[3] “IEEE standard for floating-point arithmetic - redline,” IEEE Std 754-2008 (Revision
of IEEE Std 754-1985) - Redline, pp. 1–82, Aug. 2008. doi: 10.1109/IEEESTD.2008.
5976968 . [Online]. Available: http://dx.doi.org/10.1109/IEEESTD.2008.5976968 .

[4] E. G. Souza, C. L. Bazzi, R. Khosla, M. A. Uribe-Opazo, and R. M. Reich, “Inter-
polation type and data computation of crop yield maps is important for precision crop
production,” Journal of Plant Nutrition, vol. 39, no. 4, pp. 531–538, 2016. doi: 10.1080/
01904167.2015.1124893 . eprint: http://dx.doi.org/10.1080/01904167.2015.1124893 .
[Online]. Available: http://dx.doi.org/10.1080/01904167.2015.1124893 .

[5] R. J. Elliott, Hidden Markov models: estimation and control. New York: Springer, 2008,
isbn: 978-0-387-94364-0. doi: 10.1007/978-0-387-84854-9 . [Online]. Available: http:
//dx.doi.org/10.1007/978-0-387-84854-9 .

[6] A. A. Farooque, Q. U. Zaman, A. W. Schumann, A. Madani, and D. C. Percival, “Delin-
eating management zones for site specific fertilization in wild blueberry fields,” Applied
Engineering in Agriculture, vol. 28, no. 1, pp. 57–70, 2012. doi: 10.13031/2013.41286 .
[Online]. Available: http://elibrary.asabe.org/abstract.asp?aid=37255%5C&t=5 .

[7] N. R. Kitchen, K. A. Sudduth, D. B. Myers, S. T. Drummond, and S. Y. Hong, “Delineat-
ing productivity zones on claypan soil fields using apparent soil electrical conductivity,”
Computers and Electronics in Agriculture, vol. 46, no. 1 - 3, pp. 285–308, 2005, Applica-
tions of Apparent Soil Electrical Conductivity in Precision Agriculture, issn: 0168-1699.
doi: 10.1016/j.compag.2004.11.012 . [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0168169904001346 .

[8] K. Diker, D. F. Heermann, and G. W. Buchleiter, “Analysis of multi year yield data
for delineating yield response zones,” in 2003 ASAE Annual Meeting, ser. 031086, 2003.
doi: 10.13031/2013.13974 . [Online]. Available: http://elibrary.asabe.org/abstract.asp?
aid=13974%5C&t=5 .

110

https://doi.org/10.1145/800186.810616
http://doi.acm.org/10.1145/800186.810616
https://doi.org/10.1109/IEEESTD.2008.5976968
https://doi.org/10.1109/IEEESTD.2008.5976968
http://dx.doi.org/10.1109/IEEESTD.2008.5976968
https://doi.org/10.1080/01904167.2015.1124893
https://doi.org/10.1080/01904167.2015.1124893
http://dx.doi.org/10.1080/01904167.2015.1124893
http://dx.doi.org/10.1080/01904167.2015.1124893
https://doi.org/10.1007/978-0-387-84854-9
http://dx.doi.org/10.1007/978-0-387-84854-9
http://dx.doi.org/10.1007/978-0-387-84854-9
https://doi.org/10.13031/2013.41286
http://elibrary.asabe.org/abstract.asp?aid=37255%5C&t=5
https://doi.org/10.1016/j.compag.2004.11.012
http://www.sciencedirect.com/science/article/pii/S0168169904001346
http://www.sciencedirect.com/science/article/pii/S0168169904001346
https://doi.org/10.13031/2013.13974
http://elibrary.asabe.org/abstract.asp?aid=13974%5C&t=5
http://elibrary.asabe.org/abstract.asp?aid=13974%5C&t=5

[9] N. R. Kitchen, K. A. Sudduth, B. Myers, S. T. Drummond, and S. Y. Hong, “Site-
specific productivity zones delineated using bulk soil electrical conductivity,” in 2003
ASAE Annual Meeting, ser. 032340, 2003. doi: 10.13031/2013.15322 . [Online]. Available:

 http://elibrary.asabe.org/abstract.asp?aid=15322%5C&t=5 .

[10] S. Song, B. Si, J. M. Herrmann, and X. Feng, “Local autoencoding for parameter estima-
tion in a hidden Potts-Markov random field,” IEEE Transactions on Image Processing,
vol. 25, no. 5, pp. 2324–2336, May 2016, issn: 1057-7149. doi: 10 .1109/TIP.2016 .
2545299 . [Online]. Available: http://dx.doi.org/10.1109/TIP.2016.2545299 .

[11] Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hid-
den Markov random field model and the expectation-maximization algorithm,” Medical
Imaging, IEEE Transactions on, vol. 20, no. 1, pp. 45–57, Jan. 2001, issn: 0278-0062.
doi: 10.1109/42.906424 . [Online]. Available: http://dx.doi.org/10.1109/42.906424 .

[12] A. Banerjee and P. Maji, “Rough sets and stomped normal distribution for simultaneous
segmentation and bias field correction in brain MR images,” Image Processing, IEEE
Transactions on, vol. 24, no. 12, pp. 5764–5776, Dec. 2015, issn: 1057-7149. doi: 10.
1109/TIP.2015.2488900 . [Online]. Available: http://dx.doi.org/10.1109/TIP.2015.
2488900 .

[13] F. Guastaferro, A. Castrignanò, D. De Benedetto, D. Sollitto, A. Troccoli, and B. Ca-
farelli, “A comparison of different algorithms for the delineation of management zones,”
Precision Agriculture, vol. 11, no. 6, pp. 600–620, Dec. 2010, issn: 1573-1618. doi:

 10.1007/s11119-010-9183-4 . [Online]. Available: https://doi.org/10.1007/s11119-010-
9183-4 .

[14] S. Miyamoto, Algorithms for fuzzy clustering methods in c-means clustering with appli-
cations. Berlin: Berlin: Springer, 2008, Includes bibliographical references (pages 235-
243) and index., isbn: 978-3-540-78736-5. doi: 10.1007/978-3-540-78737-2 . [Online].
Available: http://dx.doi.org/10.1007/978-3-540-78737-2 .

[15] M. A. Tanner, Tools for Statistical Inference Methods for the Exploration of Posterior
Distributions and Likelihood Functions. New York, NY: New York, NY: Springer New
York, 1996, isbn: 978-1-4612-8471-0. doi: 10.1007/978-1-4612-4024-2 . [Online]. Avail-
able: http://dx.doi.org/10.1007/978-1-4612-4024-2 .

[16] C. A. Bouman, Model-Based Image Processing. [Online]. Available: http://eng.purdue.
edu/~bouman/publications/pdf/MBIP-book.pdf .

[17] M. L. Comer and E. J. Delp, “The EM/MPM algorithm for segmentation of textured im-
ages: Analysis and further experimental results,” IEEE Transactions on Image Process-
ing, vol. 9, no. 10, pp. 1731–1744, Oct. 2000, issn: 1057-7149. doi: 10.1109/83.869185 .
[Online]. Available: http://dx.doi.org/10.1109/83.869185 .

111

https://doi.org/10.13031/2013.15322
http://elibrary.asabe.org/abstract.asp?aid=15322%5C&t=5
https://doi.org/10.1109/TIP.2016.2545299
https://doi.org/10.1109/TIP.2016.2545299
http://dx.doi.org/10.1109/TIP.2016.2545299
https://doi.org/10.1109/42.906424
http://dx.doi.org/10.1109/42.906424
https://doi.org/10.1109/TIP.2015.2488900
https://doi.org/10.1109/TIP.2015.2488900
http://dx.doi.org/10.1109/TIP.2015.2488900
http://dx.doi.org/10.1109/TIP.2015.2488900
https://doi.org/10.1007/s11119-010-9183-4
https://doi.org/10.1007/s11119-010-9183-4
https://doi.org/10.1007/s11119-010-9183-4
https://doi.org/10.1007/978-3-540-78737-2
http://dx.doi.org/10.1007/978-3-540-78737-2
https://doi.org/10.1007/978-1-4612-4024-2
http://dx.doi.org/10.1007/978-1-4612-4024-2
http://eng.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
http://eng.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://doi.org/10.1109/83.869185
http://dx.doi.org/10.1109/83.869185

[18] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal of
the American Statistical Association, vol. 66, no. 336, pp. 846–850, 1971. doi: 10.1080/
01621459 .1971 .10482356 . eprint: http ://www.tandfonline .com/doi/pdf /10 .1080/
01621459.1971.10482356 . [Online]. Available: http://www.tandfonline.com/doi/abs/
10.1080/01621459.1971.10482356 .

[19] J. J. Fridgen, N. R. Kitchen, K. A. Sudduth, S. T. Drummond, W. J. Wiebold, and C. W.
Fraisse, “Management zone analyst (MZA): Software for subfield management zone
delineation,” Agronomy Journal, vol. 96, no. 1, pp. 100–108, Jan. 2004. doi: 10113/8380 .
[Online]. Available: http://handle.nal.usda.gov/10113/8380 .

[20] Soil Survey Staff, Soil Survey Geographic (SSURGO) database. Natural Resources Con-
servation Service, United States Department of Agriculture.

[21] C. W. Bobryk, D. B. Myers, N. R. Kitchen, et al., “Validating a digital soil map with
corn yield data for precision agriculture decision support,” Agronomy Journal, vol. 108,
no. 3, pp. 957–965, 2016. doi: 10 . 2134 / agronj2015 . 0381 . [Online]. Available: http :
//dx.doi.org/10.2134/agronj2015.0381 .

[22] E. M. Hawkins, “Organizing historical agricultural data and identifying data integrity
zones to assess agricultural data quality,” Ph.D. dissertation, Purdue University, 2016.
[Online]. Available: http://docs.lib.purdue.edu/dissertations/AAI10172347/ .

[23] K. M. Sim, “Intelligent resource management in intercloud, fog, and edge: Tutorial and
new directions,” IEEE Transactions on Services Computing, pp. 1–1, 2020, issn: 1939-
1374. doi: 10.1109/TSC.2020.2975168 . [Online]. Available: http://dx.doi.org/10.1109/
TSC.2020.2975168 .

[24] R. T. Fielding, “REST: architectural styles and the design of network-based software
architectures,” Doctoral dissertation, University of California, Irvine, 2000. [Online].
Available: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm .

[25] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, “Blueprint for
the intercloud - protocols and formats for cloud computing interoperability,” in 2009
Fourth International Conference on Internet and Web Applications and Services, May
2009, pp. 328–336. doi: 10.1109/ICIW.2009.55 . [Online]. Available: http://dx.doi.org/
10.1109/ICIW.2009.55 .

[26] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya, “Elastic load balancing for dynamic
virtual machine reconfiguration based on vertical and horizontal scaling,” IEEE Trans-
actions on Services Computing, vol. 12, no. 2, pp. 319–334, Mar. 2019, issn: 1939-1374.
doi: 10.1109/TSC.2016.2634024 . [Online]. Available: http://dx.doi.org/10.1109/TSC.
2016.2634024 .

112

https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
https://doi.org/10113/8380
http://handle.nal.usda.gov/10113/8380
https://doi.org/10.2134/agronj2015.0381
http://dx.doi.org/10.2134/agronj2015.0381
http://dx.doi.org/10.2134/agronj2015.0381
http://docs.lib.purdue.edu/dissertations/AAI10172347/
https://doi.org/10.1109/TSC.2020.2975168
http://dx.doi.org/10.1109/TSC.2020.2975168
http://dx.doi.org/10.1109/TSC.2020.2975168
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://doi.org/10.1109/ICIW.2009.55
http://dx.doi.org/10.1109/ICIW.2009.55
http://dx.doi.org/10.1109/ICIW.2009.55
https://doi.org/10.1109/TSC.2016.2634024
http://dx.doi.org/10.1109/TSC.2016.2634024
http://dx.doi.org/10.1109/TSC.2016.2634024

[27] V. D. Justafort, R. Beaubrun, and S. Pierre, “A hybrid approach for optimizing car-
bon footprint in intercloud environment,” IEEE Transactions on Services Computing,
vol. 12, no. 2, pp. 186–198, Mar. 2019, issn: 1939-1374. doi: 10.1109/TSC.2016.2638900 .
[Online]. Available: http://dx.doi.org/10.1109/TSC.2016.2638900 .

[28] D. Chappell, “Introducing OData data access for the web, the cloud, mobile devices,
and more,” Chappell & Associates, Tech. Rep., May 2011.

[29] ISO 20802-1:2016, “Information technology — Open data protocol (OData) v4.0 — Part
1: Core,” International Organization for Standardization, Geneva, CH, Standard, Dec.
2016.

[30] OpenAPI, “OpenAPI specification,” SmartBear Sofrware, Specification, version 3.0.3,
Feb. 2020. [Online]. Available: https://swagger.io/specification/ .

[31] GraphQL, “GraphQL specification,” Facebook Inc., Specification, Jun. 2018. [Online].
Available: https://spec.graphql.org/June2018 .

[32] AsyncAPI, “AsyncAPI specification,” Specification, version 2.0.0, 2020. [Online]. Avail-
able: https://www.asyncapi.com/docs/specifications/2.0.0 .

[33] M. Gudgin, M. Hadley, N. Mendelsohn, et al., “SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition),” World Wide Web Consortium, W3C Recommendation,
Apr. 2007. [Online]. Available: https://www.w3.org/TR/soap12/ .

[34] H. El-Rewini and M. Abd-El-Barr, Advanced Computer Architecture and Parallel Pro-
cessing, ser. Wiley Series on Parallel and Distributed Computing. Wiley, 2005, isbn:
9780471478393. [Online]. Available: https://books.google.com/books?id=7JB-u6D5Q7k
C .

[35] R. Fielding (Ed.) and J. Reschke (Ed.), Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing, RFC 7230 (Proposed Standard), RFC, Updated by RFC 8615,
Fremont, CA, USA: RFC Editor, Jun. 2014. doi: 10.17487/RFC7230 . [Online]. Avail-
able: https://www.rfc-editor.org/rfc/rfc7230.txt .

[36] R. Fielding (Ed.) and J. Reschke (Ed.), Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content, RFC 7231 (Proposed Standard), RFC, Fremont, CA, USA: RFC
Editor, Jun. 2014. doi: 10 .17487/RFC7231 . [Online]. Available: https ://www.rfc -
editor.org/rfc/rfc7231.txt .

113

https://doi.org/10.1109/TSC.2016.2638900
http://dx.doi.org/10.1109/TSC.2016.2638900
https://swagger.io/specification/
https://spec.graphql.org/June2018
https://www.asyncapi.com/docs/specifications/2.0.0
https://www.w3.org/TR/soap12/
https://books.google.com/books?id=7JB-u6D5Q7kC
https://books.google.com/books?id=7JB-u6D5Q7kC
https://doi.org/10.17487/RFC7230
https://www.rfc-editor.org/rfc/rfc7230.txt
https://doi.org/10.17487/RFC7231
https://www.rfc-editor.org/rfc/rfc7231.txt
https://www.rfc-editor.org/rfc/rfc7231.txt

[37] S. M. Sohan, F. Maurer, C. Anslow, and M. P. Robillard, “A study of the effectiveness
of usage examples in REST API documentation,” in 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Oct. 2017, pp. 53–61. doi: 10.
1109/VLHCC.2017.8103450 . [Online]. Available: http://dx.doi.org/10.1109/VLHCC.
2017.8103450 .

[38] R. Fielding (Ed.) and J. Reschke (Ed.), Hypertext Transfer Protocol (HTTP/1.1): Con-
ditional Requests, RFC 7232 (Proposed Standard), RFC, Fremont, CA, USA: RFC
Editor, Jun. 2014. doi: 10 .17487/RFC7232 . [Online]. Available: https ://www.rfc -
editor.org/rfc/rfc7232.txt .

[39] J. Richer (Ed.), M. Jones, J. Bradley, M. Machulak, and P. Hunt, OAuth 2.0 Dynamic
Client Registration Protocol, RFC 7591 (Proposed Standard), RFC, Fremont, CA, USA:
RFC Editor, Jul. 2015. doi: 10.17487/RFC7591 . [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7591.txt .

[40] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore, OpenID Connect
Core 1.0, Nov. 2014. [Online]. Available: https://openid.net/specs/openid-connect-core-
1%5C_0.html .

[41] C. Huitema, J. Postel, and S. Crocker, Not All RFCs are Standards, RFC 1796 (Infor-
mational), RFC, Fremont, CA, USA: RFC Editor, Apr. 1995. doi: 10.17487/RFC1796 .
[Online]. Available: https://www.rfc-editor.org/rfc/rfc1796.txt .

[42] R. Fielding (Ed.), Y. Lafon (Ed.), and J. Reschke (Ed.), Hypertext Transfer Protocol
(HTTP/1.1): Range Requests, RFC 7233 (Proposed Standard), RFC, Fremont, CA,
USA: RFC Editor, Jun. 2014. doi: 10 . 17487 / RFC7233 . [Online]. Available: https :
//www.rfc-editor.org/rfc/rfc7233.txt .

[43] R. Fielding (Ed.), M. Nottingham (Ed.), and J. Reschke (Ed.), Hypertext Transfer Pro-
tocol (HTTP/1.1): Caching, RFC 7234 (Proposed Standard), RFC, Fremont, CA, USA:
RFC Editor, Jun. 2014. doi: 10.17487/RFC7234 . [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7234.txt .

[44] R. Fielding (Ed.) and J. Reschke (Ed.), Hypertext Transfer Protocol (HTTP/1.1): Au-
thentication, RFC 7235 (Proposed Standard), RFC, Fremont, CA, USA: RFC Editor,
Jun. 2014. doi: 10.17487/RFC7235 . [Online]. Available: https://www.rfc-editor.org/
rfc/rfc7235.txt .

[45] J. Reschke, Initial Hypertext Transfer Protocol (HTTP) Authentication Scheme Registra-
tions, RFC 7236 (Informational), RFC, Fremont, CA, USA: RFC Editor, Jun. 2014. doi:

 10.17487/RFC7236 . [Online]. Available: https://www.rfc-editor.org/rfc/rfc7236.txt .

114

https://doi.org/10.1109/VLHCC.2017.8103450
https://doi.org/10.1109/VLHCC.2017.8103450
http://dx.doi.org/10.1109/VLHCC.2017.8103450
http://dx.doi.org/10.1109/VLHCC.2017.8103450
https://doi.org/10.17487/RFC7232
https://www.rfc-editor.org/rfc/rfc7232.txt
https://www.rfc-editor.org/rfc/rfc7232.txt
https://doi.org/10.17487/RFC7591
https://www.rfc-editor.org/rfc/rfc7591.txt
https://www.rfc-editor.org/rfc/rfc7591.txt
https://openid.net/specs/openid-connect-core-1%5C_0.html
https://openid.net/specs/openid-connect-core-1%5C_0.html
https://doi.org/10.17487/RFC1796
https://www.rfc-editor.org/rfc/rfc1796.txt
https://doi.org/10.17487/RFC7233
https://www.rfc-editor.org/rfc/rfc7233.txt
https://www.rfc-editor.org/rfc/rfc7233.txt
https://doi.org/10.17487/RFC7234
https://www.rfc-editor.org/rfc/rfc7234.txt
https://www.rfc-editor.org/rfc/rfc7234.txt
https://doi.org/10.17487/RFC7235
https://www.rfc-editor.org/rfc/rfc7235.txt
https://www.rfc-editor.org/rfc/rfc7235.txt
https://doi.org/10.17487/RFC7236
https://www.rfc-editor.org/rfc/rfc7236.txt

[46] J. Reschke, Initial Hypertext Transfer Protocol (HTTP) Method Registrations, RFC 7237
(Informational), RFC, Fremont, CA, USA: RFC Editor, Jun. 2014. doi: 10 . 17487/
RFC7237 . [Online]. Available: https://www.rfc-editor.org/rfc/rfc7237.txt .

[47] E. Rescorla, HTTP Over TLS, RFC 2818 (Informational), RFC, Updated by RFCs 5785,
7230, Fremont, CA, USA: RFC Editor, May 2000. doi: 10.17487/RFC2818 . [Online].
Available: https://www.rfc-editor.org/rfc/rfc2818.txt .

[48] D. Hardt (Ed.), The OAuth 2.0 Authorization Framework, RFC 6749 (Proposed Stan-
dard), RFC, Updated by RFC 8252, Fremont, CA, USA: RFC Editor, Oct. 2012. doi:

 10.17487/RFC6749 . [Online]. Available: https://www.rfc-editor.org/rfc/rfc6749.txt .

[49] T. Bray (Ed.), The JavaScript Object Notation (JSON) Data Interchange Format, RFC
8259 (Internet Standard), RFC, Fremont, CA, USA: RFC Editor, Dec. 2017. doi: 10.
17487/RFC8259 . [Online]. Available: https://www.rfc-editor.org/rfc/rfc8259.txt .

[50] M. Jones, J. Bradley, and N. Sakimura, JSON Web Signature (JWS), RFC 7515 (Pro-
posed Standard), RFC, Fremont, CA, USA: RFC Editor, May 2015. doi: 10.17487/
RFC7515 . [Online]. Available: https://www.rfc-editor.org/rfc/rfc7515.txt .

[51] M. Jones, J. Bradley, and N. Sakimura, JSON Web Token (JWT), RFC 7519 (Proposed
Standard), RFC, Updated by RFCs 7797, 8725, Fremont, CA, USA: RFC Editor, May
2015. doi: 10.17487/RFC7519 . [Online]. Available: https://www.rfc-editor.org/rfc/
rfc7519.txt .

[52] M. Jones, JSON Web Key (JWK), RFC 7517 (Proposed Standard), RFC, Fremont,
CA, USA: RFC Editor, May 2015. doi: 10.17487/RFC7517 . [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc7517.txt .

[53] M. Nottingham, Well-Known Uniform Resource Identifiers (URIs), RFC 8615 (Pro-
posed Standard), RFC, Fremont, CA, USA: RFC Editor, May 2019. doi: 10.17487/
RFC8615 . [Online]. Available: https://www.rfc-editor.org/rfc/rfc8615.txt .

[54] H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, and T. Schaub, The GeoJSON
Format, RFC 7946 (Proposed Standard), RFC, Fremont, CA, USA: RFC Editor, Aug.
2016. doi: 10.17487/RFC7946 . [Online]. Available: https://www.rfc-editor.org/rfc/
rfc7946.txt .

[55] I. Fette and A. Melnikov, The WebSocket Protocol, RFC 6455 (Proposed Standard),
RFC, Updated by RFCs 7936, 8307, 8441, Fremont, CA, USA: RFC Editor, Dec. 2011.
doi: 10.17487/RFC6455 . [Online]. Available: https://www.rfc-editor.org/rfc/rfc6455.
txt .

115

https://doi.org/10.17487/RFC7237
https://doi.org/10.17487/RFC7237
https://www.rfc-editor.org/rfc/rfc7237.txt
https://doi.org/10.17487/RFC2818
https://www.rfc-editor.org/rfc/rfc2818.txt
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/rfc/rfc6749.txt
https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/rfc/rfc8259.txt
https://doi.org/10.17487/RFC7515
https://doi.org/10.17487/RFC7515
https://www.rfc-editor.org/rfc/rfc7515.txt
https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/rfc/rfc7519.txt
https://www.rfc-editor.org/rfc/rfc7519.txt
https://doi.org/10.17487/RFC7517
https://www.rfc-editor.org/rfc/rfc7517.txt
https://www.rfc-editor.org/rfc/rfc7517.txt
https://doi.org/10.17487/RFC8615
https://doi.org/10.17487/RFC8615
https://www.rfc-editor.org/rfc/rfc8615.txt
https://doi.org/10.17487/RFC7946
https://www.rfc-editor.org/rfc/rfc7946.txt
https://www.rfc-editor.org/rfc/rfc7946.txt
https://doi.org/10.17487/RFC6455
https://www.rfc-editor.org/rfc/rfc6455.txt
https://www.rfc-editor.org/rfc/rfc6455.txt

[56] A. Neumann, N. Laranjeiro, and J. Bernardino, “An analysis of public REST web service
APIs,” IEEE Transactions on Services Computing, pp. 1–1, 2018, issn: 1939-1374. doi:

 10.1109/TSC.2018.2847344 . [Online]. Available: https://dx.doi.org/10.1109/TSC.2018.
2847344 .

[57] OADA, OADA API reference implementation. [Online]. Available: https://github.com/
OADA/server .

[58] OADA, Open Ag Data Alliance. [Online]. Available: https://github.com/OADA .

[59] Joyent, Inc., Node.js®. [Online]. Available: https://nodejs.org .

[60] Docker, Inc., Docker. [Online]. Available: https://www.docker.com .

[61] Apache Software Foundation, Apache Kafka. [Online]. Available: https://kafka.apache.
org .

[62] ArangoDB, Inc., ArangoDB. [Online]. Available: https://www.arangodb.com .

[63] I. Sysoev and NGINX, Inc., NGINX. [Online]. Available: https://www.nginx.org .

[64] OpenATK, FieldWorkApp. [Online]. Available: https://github.com/OpenATK/Field
WorkApp .

[65] OpenATK, TrialsTracker. [Online]. Available: https://github.com/OpenATK/TrialsTr
acker .

[66] OADA, OADA cache. [Online]. Available: https://github.com/OADA/oada-cache .

[67] A. W. Layton, S. Noel, Y. Wang, et al., “The Trellis framework for automatic food
safety data transfer,” in 2018 ASABE Annual International Meeting, American Society
of Agricultural and Biological Engineers, 2018, p. 1. doi: 10.13031/aim.201801248 .
[Online]. Available: https://dx.doi.org/10.13031/aim.201801248 .

[68] Trellis Framework, Trellis mask & link. [Online]. Available: https://github.com/trellisf
w/trellisfw-masklink .

[69] OpenATK, ISOBlueApp. [Online]. Available: https://github.com/OpenATK/ISOBlue
App .

[70] A. W. Layton, A. D. Balmos, S. Sabpisal, A. Ault, J. V. Krogmeier, and D. Buckmas-
ter, “ISOBlue: An open source project to bring agricultural machinery data into the
cloud,” in 2014 ASABE Annual International Meeting, Jul. 2014. doi: 10.13031/aim.
20141929380 . [Online]. Available: http://dx.doi.org/10.13031/aim.20141929380 .

116

https://doi.org/10.1109/TSC.2018.2847344
https://dx.doi.org/10.1109/TSC.2018.2847344
https://dx.doi.org/10.1109/TSC.2018.2847344
https://github.com/OADA/server
https://github.com/OADA/server
https://github.com/OADA
https://nodejs.org
https://www.docker.com
https://kafka.apache.org
https://kafka.apache.org
https://www.arangodb.com
https://www.nginx.org
https://github.com/OpenATK/FieldWorkApp
https://github.com/OpenATK/FieldWorkApp
https://github.com/OpenATK/TrialsTracker
https://github.com/OpenATK/TrialsTracker
https://github.com/OADA/oada-cache
https://doi.org/10.13031/aim.201801248
https://dx.doi.org/10.13031/aim.201801248
https://github.com/trellisfw/trellisfw-masklink
https://github.com/trellisfw/trellisfw-masklink
https://github.com/OpenATK/ISOBlueApp
https://github.com/OpenATK/ISOBlueApp
https://doi.org/10.13031/aim.20141929380
https://doi.org/10.13031/aim.20141929380
http://dx.doi.org/10.13031/aim.20141929380

[71] Y. Wang, H. Liu, J. Krogmeier, A. Reibman, and D. Buckmaster, “ISOBlue HD: An
open-source platform for collecting context-rich agricultural machinery datasets,” en,
Sensors, vol. 20, no. 20, p. 5768, Oct. 2020, issn: 1424-8220. doi: 10.3390/s20205768 .
[Online]. Available: https://dx.doi.org/10.3390/s20205768 .

[72] G. Niemeyer, Geohash, 2008. [Online]. Available: http://geohash.org .

117

https://doi.org/10.3390/s20205768
https://dx.doi.org/10.3390/s20205768
http://geohash.org

A. PROOF THAT HMRF MODEL IS AN EXPONENTIAL

FAMILY

Theorem A.0.1. The joint model of X and Y forms an exponential family of distributions

parameterized by θ. That is, the joint distribution can be written in the following form from

the definition of an exponential family.

P (Y, X | θ) = b(Y, X) exp {⟨η(θ), T (Y, X)⟩} /α(θ) (A.1)

Proof. From Bayes’ theorem, the joint model can be broken down thusly.

P (Y, X | θ) = P (Y | X, θ)P (X) (A.2)

First, writing out the conditional probability density function (pdf) of Y given X as the

product of the conditionally independent Gaussians and then grouping by management zone

yields the following,

P (Y | X, θ) =
∏
s∈S

P (Ys | Xs, θ)

=
∏
s∈S

(2π)− P
2 |RXs |

− 1
2 exp

{
−1

2(Ys − µXs)
⊺R−1

Xs
(Ys − µXs)

}

= (2π)− P |S|
2

K−1∏
k=0

∏
s∈S(k)

|Rk|−
1
2 exp

{
−1

2(Ys − µk)⊺R−1
k (Ys − µk)

}
(A.3)

where

S(k) ≜ {s : s ∈ S, Xs = k} .

118

Focusing for now on the part inside ∏K−1
k=0 we change the product over s to a sum in the

exponent.

∏
s∈S(k)

|Rk|−
1
2 exp

{
−1

2(Ys − µk)⊺R−1
k (Ys − µk)

}
=

exp
 ∑

s∈S(k)
−1

2
(
(Ys − µk)⊺R−1

k (Ys − µk) + log |Rk|
) (A.4)

Then multiplying out the quadratic term in the sum yields,

(Ys − µk)⊺R−1
k (Ys − µk) = Y ⊺

s R−1
k Ys − 2Y ⊺

s R−1
k µk + µ⊺

kR−1
k µk

= ⟨YsY
⊺

s , R−1
k ⟩ − 2Y ⊺

s R−1
k µk + µ⊺

kR−1
k µk (A.5)

because Y ⊺
s R−1

k Ys is a scalar, and thus

Y ⊺
s R−1

k Ys = Tr
{
Y ⊺

s R−1
k Ys

}
= Tr

{
YsY

⊺
s R−1

k

}
= ⟨YsY

⊺
s , R−1

k ⟩

.

Plugging (A.5) and (A.4) into (A.3) yields,

P (Y | X, θ) =

(2π)− P |S|
2

K−1∏
k=0

exp
{
−1

2
(
⟨Sk, R−1

k ⟩ − 2b⊺kR−1
k µk + Nkµ⊺

kR−1
k µk + Nk log |Rk|

)}
(A.6)

119

where

Nk ≜ |S(k)| =
∑
s∈S

δ(Xs = k) (A.7)

bk ≜
∑

s∈S(k)
Ys =

∑
s∈S

Ysδ(Xs = k) (A.8)

Sk ≜
∑

s∈S(k)
YsY

⊺
s =

∑
s∈S

YsY
⊺

s δ(Xs = k). (A.9)

Finally, combining (A.6) and (A.2) one can obtain the form of (A.1) with

b(Y, X) = P (X)

η(θ) =



−1
2

(
log |R0|+ µ⊺

0R−1
0 µ0

)
R−1

0 µ0

−1
2R−1

0
...

−1
2

(
log |RK−1|+ µ⊺

K−1R
−1
K−1µK−1

)
R−1

K−1µK−1

−1
2R−1

k



(A.10)

T (Y, X) =



N0

b0

S0
...

NK−1

bK−1

SK−1



(A.11)

α(θ) = (2π)
P |S|

2 . (A.12)

Therefore, the joint model of X and Y forms an exponential family of distributions

parameterized by θ.

120

B. DERIVATION OF EM STEP EQUATIONS

As is proven in Appendix A , the model used is an exponential family of θ, i.e., the parameters

being estimated. Therefore, as shown in [16], the expectation-maximization (EM) updates

for maximum likelihood (ML) parameter estimation equate to the following. For the E-step,

compute the expected value of the sufficient statistics. For the M-step, compute the ML

estimate of θ replacing the statics T (X, Y) with their expected values.

B.1 E-Step

According to the form of an exponential family (A.1), the sufficient statistics T (Y, X),

are shown in (A.11). Therefore, their expected value is,

E[T (Y, X) | Y, θ] =
[
N̄0, b̄0, S̄0, · · · , N̄K−1, b̄K−1, S̄K−1

]⊺
(B.1)

where

N̄k ≜ E[Nk | Y, θ]=E

[∑
s∈S

δ(Xs = k) | Y, θ

]
(B.2)

b̄k ≜ E[bk | Y, θ] =E

[∑
s∈S

Ysδ(Xs = k) | Y, θ

]
(B.3)

S̄k ≜ E[Sk | Y, θ] =E

[∑
s∈S

YsY
⊺

s δ(Xs = k) | Y, θ

]
(B.4)

are the expected values of the individual statistics for each management zone k.

Thus, the E-step for the model is to evaluate (B.2), (B.3), and (B.4) for k = 0, . . . , K−1

using the current estimate of θ.

121

B.2 M-Step

From (A.1) and because (A.12) does not depend on θ, the ML estimate of θ can be

expressed as,

θ̂ML = arg max
θ

log P (Y, X | θ)

= arg max
θ
⟨η(θ), T (Y, X)⟩ (B.5)

where η(θ) and T (Y, X) are given in (A.10) and (A.11) respectively.

Fist, taking the derivative of the function being maximized in (B.5) w.r.t. µk yields

∂

∂µk

{
−1

2
(
log |Rk|+ µk

⊺R−1
k µk

)
Nk + b⊺kR−1

k µk

}
= −R−1

k µkNk + R−1
k bk (B.6)

for all k. Then, setting the above equal to 0, and solving for µk gives

µ̂ML
k = 1

Nk

bk (B.7)

for the ML estimate of µk.

Next, taking the derivative of the function being maximized in (B.5) w.r.t. Rk yields

∂

∂Rk

{
−1

2
(
log |Rk|+ µ⊺

kR−1
k µk

)
Nk + b⊺kR−1

k µk −
1
2 Tr

{
SkR−1

k

}}
=

− 1
2
(
2R−1

k −R−1
k ◦ I −R−1

k µkµ⊺
kR−1

k

)
Nk −R−1

k bKµ⊺
kR−1

k + 1
2
(
R−1

k SkR−1
k

)
(B.8)

for all k. Then, setting the above equal to 0, plugging in (B.7) for µk, and solving for Rk

gives

R̂ML
k = 1

Nk

Sk −
1

N2
k

bkb⊺k (B.9)

for the ML estimate of Rk.

122

Thus, the M-step for the model is to evaluate

µ̂k = 1
N̄k

b̄k (B.10)

R̂k = 1
N̄k

S̄k −
1

N̄2
k

b̄kb̄⊺k (B.11)

for k = 0, . . . , K − 1.

123

C. GIBBS SAMPLER

The Gibbs sampler allows generating realizations of the Markov random field (MRF) X

that follow the probability mass function (pmf) P (X|Y, θ) while only having to evaluate the

simpler pmf P (Xs | X∂s, Ys, θ). The derivation of an expression for this conditional pmf and

the specifics of the Gibbs sampling done here are described in the following sections.

C.1 Conditional pmf of Xs

A simple expression for the conditional marginal of Xs needs to be found. Starting with

Bayes’ rule, we get

P (Xs | Ys, θ) = P (Ys|X∂s, θ)−1P (Xs | X∂s)P (Ys | Xs, X∂s)

then from our hidden Markov random field (HMRF) structure, we get

= P (Ys|X∂s, θ)−1P (Xs | X∂s)P (Ys | Xs)

and finally, from the Potts pmf of (3.2)

= P (Ys|X∂s, θ)−1z(β, X∂s)−1e−β
∑

r∈∂s
b|s−r|δ(Xr ̸=Xs)P (Ys | Xs). (C.1)

Since the first two terms in (C.1) do not depend on Xs and this pmf will only be used to

compute a cumulative distribution function (CDF) , these terms can be ignored. Thus,

P (X | Y, θ) ∝ e−β
∑

r∈∂s
b|s−r|δ(Xr ̸=Xs)P (Ys | Xs) (C.2)

can be used as the improper pmf when implementing the Gibbs sampler, where P (Ys|Xs) is

a multivariate Gaussian pdf as given by (3.4).

124

C.2 Configuration Specifics

The specific Gibbs sampler used in this work actually consists of 10 parallel sampling

chains. The separate sampling chains were employed to decrease runtime. By using a GPU

all 10 can be run simultaneously in roughly the same time it would take to run 1. Each

chain is essentially its own simpler Gibbs sampler that is initialized with its own random

starting point. When all 10 chains are done, the samples are concatenated and returned.

The pseudocode for one such sampler is shown in Algorithm 1 .

Algorithm 1 Single Chain Gibbs sampler
Require: Y, θ, K

for all s ∈ S do
Draw X(0)

s ∼ U [0, K − 1]
end for
for l = 1, . . . , L do

X(l) ← X(l−1)

for all s ∈ S do
Compute CDF F (xs) = P (Xs ≤ xs | X(l)

∂s , Ys, θ)
Draw u ∼ U(0, 1)
Update X(l)

s ← F −1(u)
end for

end for
return X(1), . . . , X(L)

At the start of each chain, each element of X(0) is initialized with an independent and

identically distributed (i.i.d.) uniform random integer in the range [0, K − 1]. Then, in a

loop, each element of X is randomly updated using the inverse CDF method to drawn from

its marginal distribution. After the loop is done, the current value of the X is taken as a

sample. This loop is repeated L times, where here L is the number of samples from the

given chain. Since there are 10 sampling chains and 10,000 samples are wanted, the L for

each chain is 1,000.

125

VITA

Alex Layton was born in Indianapolis, Indiana on July 4th 1989. Alex works as a software

engineer as a partner of a small company. Alex received a B.S. in computer engineering

from Purdue University, West Lafayette, Indiana in May 2012. Alex was a member of a

finalist team in the 2014 DARPA spectrum challenge. Alex received the Bilsland Dissertation

Fellowship in 2018. Research interests include statistical modeling, machine learning, and

RESTful web services.

126

PUBLICATIONS

• A. Layton, T. Arakawa, S. Noel, et al., “The OADA API: An ag-inspired intercloud

REST-like API framework for increasing data freedom and interoperability,” IEEE

Transactions on Services Computing, (manuscript submitted).

• A. Layton, J. V. Krogmeier, A. Alut, and D. R. Buckmaster, “From yield history to

management zone identification with hidden Markov random fields,” Precision Agri-

culture, vol. 21, pp. 762–781, Aug. 2020. doi: 10.1007/s11119-019-0694-2.

• A. W. Layton, S. Noel, Y. Wang, et al., “The Trellis framework for automatic food

safety data transfer,” in 2018 ASABE Annual International Meeting, American Society

of Agricultural and Biological Engineers, 2018, p. 1.

• A. W. Layton, Y. Zhang, J. V. Krogmeier, and D. R. Buckmaster, “Determining

harvesting efficiency via multiple combine GPS logs,” in 2017 ASABE Annual Inter-

national Meeting, American Society of Agricultural and Biological Engineers, 2017, p.

1.

• Y. Wang, A. D. Balmos, A. W. Layton, et al., “An open-source infrastructure for

real-time automatic agricultural machine data processing,” in 2017 ASABE Annual

International Meeting, American Society of Agricultural and Biological Engineers,

2017, p. 1.

• J. Grossman, A. Layton, J. Krogmeier, and D. M. Bullock, “Traffic signal detector error

identification using Kolmogorov-Smirnov test,” in Transportation Research Board 95th

Annual Meeting, 2016.

• Y. Wang, A. D. Balmos, A. W. Layton, et al., “CANdroid: Freeing ISOBUS data

and enabling machine data analytics,” in 2016 ASABE Annual International Meeting,

American Society of Agricultural and Biological Engineers, 2016, p. 1.

• A. W. Layton, Y. Wang, J. V. Krogmeier, and D. Buckmaster, “Robust estimation

of field management zones using multi-year yield data and a hidden Markov random

127

field,” in 2016 ASABE Annual International Meeting, American Society of Agricultural

and Biological Engineers, 2016, p. 1. 117

• A. D. Balmos, A. W. Layton, A. Ault, J. V. Krogmeier, and D. R. Buckmaster, “To-

ward understanding the errors in online air-ride suspension based weight estimation,”

in 2014 Montreal, Quebec Canada July 13–July 16, 2014, American Society of Agri-

cultural and Biological Engineers, 2014, p. 1.

• J. Y. Kim, A. C. Marcum, A. D. Balmos, et al., “Implementation and analysis of en-

ergy detection-based sensing using USRP/SBX platform,” in Military Communications

Conference (MILCOM), 2014 IEEE, IEEE, 2014, pp. 1504–1509.

• A. C. Marcum, A. D. Balmos, S. G. Larew, et al., “Low SINR synchronization for

the DARPA spectrum challenge scenario,” in Military Communications Conference

(MILCOM), 2014 IEEE, IEEE, 2014, pp. 1447–1453.

• A. W. Layton, A. D. Balmos, S. Sabpisal, A. Ault, J. V. Krogmeier, and D. Buckmas-

ter, “ISOBlue: An open source project to bring agricultural machinery data into the

cloud,” in 2014 ASABE and CSBE/SCGAB Annual International Meeting, 2014.

• A. D. Balmos, A. W. Layton, A. Ault, J. V. Krogmeier, and D. R. Buckmaster,

“Investigation of bluetooth communications for low-power embedded sensor networks

in agriculture,” in 2013 Kansas City, Missouri, July 21-July 24, 2013, American Society

of Agricultural and Biological Engineers, 2013, p. 1.

• J. Welte, A. Ault, C. Bowman, et al., “Autogenic mobile computing technologies in

agriculture: Applications and sensor networking for smart phones and tablets,” in 2013

EFITA Conference, 2013.

• A. W. Layton, A. D. Balmos, D. L. Hancock, A. C. Ault, J. V. Krogmeier, and D.

R. Buckmaster, “Wireless load weight monitoring via a mobile device based on air

suspension pressure,” in 2012 ASABE Annual International Meeting, 2012.

128

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABBREVIATIONS
	GLOSSARY
	ABSTRACT
	I STATISTICAL ESTIMATION OF CROP MANAGEMENT ZONES FROM MULTI-YEAR YIELD DATA
	INTRODUCTION
	THE CROP YIELD DATA
	Initial Data
	Data Pre-Processing
	Unit Conversion
	Interpolation

	CROP MODEL
	Management Zone Model
	Yield Model
	Temporal Variability of Model

	MANAGEMENT ZONE ESTIMATION ALGORITHM
	Stochastic Expectation-Maximization
	Sampling (S-Step)
	Expectation of Conditional Statistics (E-Step)
	Maximum Likelihood Parameter Estimate Update (M-Step)

	Parameter Initialization
	Management Zone Assignment

	MANAGEMENT ZONE ESTIMATION RESULTS
	Real Yield Data
	Corn Yield Results
	Resulting Management Zones
	Variance Reduction

	Corn and Soybean Yield Results

	Simulated Yield Data Based on Real Yield Maps
	Simulated Performance of the Algorithm
	Comparison to State-of-the-Art
	Multi-Field Simulation
	Multi-Crop Simulation

	Purely Simulated Yield Data
	Simulating Yield Data for Arbitrary Years
	Simulation Results

	CONCLUSIONS
	FUTURE WORK
	Investigate Soil Relations
	Initial Soil Map Unit Comparison
	ERUs

	Handling Partial Yield Observations
	Determining Adequate Convergence
	Accounting for Variable Rate Inputs
	Delineate Based on Periodic Uniform Management
	Delineate Managed Zones Separately
	Incorporate Management Effects into the Model

	Characterizing Yield Map Errors

	II THE OADA API FRAMEWORK
	INTRODUCTION
	Related Work for OADA
	Representational State Transfer (REST)
	Hypertext Transfer Protocol (HTTP)
	Requests
	Methods
	Responses
	Status Codes

	OADA API CORE CONCEPTS
	RESTful Design
	Resources
	Resource Mutation Methods
	Create
	Upsert
	Delete

	User-Centric REST APIs
	User-driven Connections
	Users and User Accounts
	Federated Identity / Universal Login
	Sharing and Permissions vs Sync

	Leverage Existing Standards
	Resource Meta-Data
	Graph-Based Data Representation
	Resource Fields as Children
	Links and Link Traversal
	Versioned and Unversioned Links

	Live Data Graphs and Change Feeds
	Change Types
	Change Trees
	Batched Changes

	Generic Intercloud Data Sync
	Polling
	Webhooks
	OADA Sync Webhooks
	WebSockets

	Format Agnostic

	PROOF-OF-CONCEPT AND REFERENCE IMPLEMENTATION
	Open-Source
	Portable
	Architecture
	Core Micro-services
	HTTP Handler
	Auth
	Users
	Write Handler
	Rev Graph Updater

	Kafka
	ArangoDB
	NGINX

	OADA API APPLICATION RESULTS
	Field Work App
	Trials Tracker App
	Trellis Supply Chain Sovereign Data Automation
	ISOBlueApp

	CONCLUSIONS
	FUTURE WORK
	Using the Part I Data with OADA

	REFERENCES
	APPENDICES
	PROOF THAT HMRF MODEL IS AN EXPONENTIAL FAMILY
	DERIVATION OF EM STEP EQUATIONS
	E-Step
	M-Step

	GIBBS SAMPLER
	Conditional pmf of Xs
	Configuration Specifics

	VITA
	PUBLICATIONS

