
MULTIPHYSICS AND LARGE-SCALE MODELING AND
SIMULATION METHODS FOR ADVANCED INTEGRATED

CIRCUIT DESIGN
by

Shuzhan Sun

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Dan Jiao, Chair

School of Electrical and Computer Engineering

Dr. Alexander V. Kildishev

School of Electrical and Computer Engineering

Dr. Peter Bermel

School of Electrical and Computer Engineering

Dr. Zhihong Chen

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

To my family and loved ones.

3

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my advisor Professor Dan Jiao to have a

chance to do this work with her in Purdue University. She introduced me into the area

of computational electromagnetics and imparts her knowledge to me step by step. Doing

research sometimes feels like searching in the ocean and it is easy to get lost. Professor Jiao

is like a lighthouse and a dose of encouragement, giving me the clear direction of my research

and helping me get out of the mist. She is always there whenever I meet any difficulty or

get stuck. Without her help, this work can never be complete. I feel lucky that Professor

Jiao is my PhD advisor.

Also, I would like to thank to my other committee members: Professor Alexander V.

Kildishev, Professor Peter Bermel, and Professor Zhihong Chen for their precious time and

insightful help to my research work.

Thanks to my labmates who have worked with me in On-Chip Electromagnetic group:

Dr. Jin Yan, Dr. Kaiyuan Zeng, Dr. Miaomiao Ma, Dr. Li Xue, Michael R. Hayashi, Yifan

Wang, Chang Yang, Daniel Wei, and Vinicius Cabral Do Nascimento for their professional

discussion and friendly support.

Last but not least, I would like to thank my parents, my family, and all my friends for

their love and support during these years.

4

TABLE OF CONTENTS

 LIST OF TABLES . 10

 LIST OF FIGURES . 11

 ABSTRACT . 15

 1 INTRODUCTION . 17

 1.1 Background and Motivation . 17

 1.2 Contributions of This Work . 20

 1.3 Dissertation Outline . 21

 2 MULTIPHYSICS MODELING AND SIMULATION OF 3-D CU-GRAPHENE

HYBRID NANO-INTERCONNECTS . 24

 2.1 Introduction . 24

 2.2 Simplified Drude Model Based Simulation Method 25

 2.2.1 Analytical Derivation of Drude Model from the Boltzmann Transport

Equation . 26

 2.2.2 Accounting for Drude Model in Time Domain Analysis 29

 2.2.3 Drude Model in Conjunction with the FDTD Algorithm for Simulating

On-Chip Cu-Graphene Hybrid Interconnects 30

 2.3 Proposed Multiphysics Modeling of Cu-G Hybrid Nano-Interconnects 31

 2.4 Multiphysics Co-Simulation in Time Domain and Stability Analysis 34

 2.4.1 Unconditionally Stable Time-Marching Scheme of the Maxwell Sub-

system . 35

5

 2.4.2 Unconditionally Stable Time-Marching Scheme of the Boltzmann Sub-

system . 37

 Unconditionally Stable Boltzmann Solver 38

 Proof on the Unconditional Stability of the Boltzmann Solver and the

Choice of Time Step . 40

 2.4.3 Unconditionally Stable Time-Marching Scheme of the Coupled System 41

 2.5 Numerical Results from Proposed Solver . 44

 2.5.1 Validation of the Maxwell Solver . 44

 2.5.2 Validation of the Boltzmann Solver 46

 2.5.3 Enhanced Electrical Conduction in Cu-G Nanowires Predicted by the

Coupled Solver for Multiphysics Simulation 48

 2.5.4 Increased Crosstalk Effect and Decreased Propagation Delay in Graphene-

Encapsulated Cu Nano-Interconnects Predicted by the Proposed Mul-

tiphysics Solver . 50

 2.6 Comparisons between Proposed Multiphysics Solver and Drude Model Based

Simulation . 53

 2.6.1 Validation of Both Simulations at DC 54

 2.6.2 Simulating Graphene-Encapsulated Cu Nano-Interconnects and Two

Determining Factors: Feature Size & Signal Frequency 55

 Determining Factor 1 - Feature Size 56

 Determining Factor 2 - Signal Frequency 58

 2.7 Conclusion . 61

6

 3 A NON-OVERLAPPING DOMAIN DECOMPOSITION PARALLEL ITERATION

SCHEME OF NONUNIFORM FINITE DIFFERENCE METHOD FOR LARGE-

SCALE ON-CHIP SIMULATION . 62

 3.1 Introduction . 62

 3.2 Theory of the Parallel Solver . 65

 3.2.1 Review of Patch-Based Single-Grid FDTD Formulation 65

 3.2.2 Disassemble Contributions of Subdomains 67

 3.2.3 Parallel Iteration Scheme in Frequency Domain 71

 3.2.4 Parallel Iteration Scheme in Time Domain 73

 3.3 Numerical Results in Frequency Domain . 76

 3.3.1 Accuracy and Convergence . 76

 3.3.2 Speed up Relative to Direct Solver 77

 3.4 Numerical Results in Time Domain . 78

 3.4.1 Accuracy . 78

 3.4.2 Scaling Performance . 80

 3.5 Conclusion . 82

 4 SPLIT-FIELD DOMAIN DECOMPOSITION PARALLEL ALGORITHM WITH

FAST CONVERGENCE FOR ELECTROMAGNETIC ANALYSIS 84

 4.1 Introduction . 84

 4.2 Preliminaries . 86

 4.3 Proposed Split-Field DD Method . 87

7

 4.3.1 Two-Domain Problems . 87

 4.3.2 P -Domain Problems . 89

 4.3.3 Matrix Partition . 92

 4.3.4 Convergence Analysis of the Proposed DD Method 92

 4.3.5 Comparison with Non-split-field DD Algorithms 94

 4.4 Split-Field DD Parallel Algorithm . 95

 4.5 Numerical Results . 97

 4.5.1 Test-chip Interconnect . 97

 4.5.2 ASAP7 On-chip Interconnect . 99

 4.5.3 A Representative Package Structure 101

 4.5.4 2-D Partition of the DD Solver . 102

 4.5.5 Large-scale IBM Plasma Package Structure 104

 4.5.6 Run-time Complexity, Memory Complexity, and Parallel Efficiency . 105

 5 STABILITY CONTROL OF UNSYMMETRICAL NUMERICAL METHODS IN

TIME DOMAIN . 110

 5.1 Introduction . 110

 5.2 Stability Analysis Theory . 112

 5.2.1 Conventional Stability Criterion by Solving All Eigenvalues of the En-

tire System Matrix . 112

 5.2.2 Proposed Stability Criterion by Reducing to Single Element 113

 5.3 Control the Stability of MFTD Method . 115

8

 5.3.1 Review of Matrix-Free Time-Domain Method 115

 5.3.2 Control the Stability of 2-D MFTD Method 117

 5.3.3 New 3-D MFTD Method with Controlled Stability 119

 5.4 Numerical Results of 2-D CS-MFTD Method 120

 5.4.1 Controlled Stability of 2-D Triangular Meshes of Arbitrary Shape . . 120

 5.4.2 Wave Propagation in a 2-D Ring Mesh 121

 5.4.3 Wave Propagation in a 2-D Cavity Discretized Into a Highly Unstruc-

tured Mesh . 124

 5.5 Numerical Results of 3-D CS-MFTD Method 126

 5.5.1 3-D Single Tetrahedron of Arbitrary Shape 126

 5.5.2 A 3-D Box Discretized into Tetrahedral Mesh 127

 5.5.3 A 3-D Sphere Discretized into Tetrahedral Mesh 129

 5.5.4 A 3-D Stripline Discretized into Tetrahedral Mesh 130

 6 CONCLUSIONS AND FUTURE WORK . 132

 6.1 Conclusions . 132

 6.2 Future Work . 133

 REFERENCES . 135

 VITA . 142

9

LIST OF TABLES

 2.1 Propagation Delay vs. Length L . 52

 2.2 Propagation Delay Predicted by the First-Principles Based Simulation and the
Drude Model Based One . 56

 3.1 One-on-One Mapping between Time Domain and Frequency Domain 74

 3.2 Structure information and run time of logic gates inv, nand2, and xor 77

 3.3 Structure information and run time of example Intel 4004 processor 79

10

LIST OF FIGURES

 2.1 (a) Structure of a single layer graphene with length L and width W . (b)
Linear dispersion of graphene. Dirac cones are located at the six corners of
the hexagonal Brillouin zone. Therefore, the valley degeneracy gv = 2. 33

 2.2 Illustration of the co-simulation flow. 34

 2.3 Flowchart of the proposed multiphysics simulation algorithm, where the elec-
tromagnetic fields E & H and dynamic charge distribution f are updated
at every time step. 41

 2.4 Geometry of a test-chip interconnect. (a) 3-D view of three metal layers,
where the current source is supplied from bottom metal layer to the center
wire at port 1. (b) Front view of the test-chip interconnect. 45

 2.5 Simulated S-parameters of a test-chip interconnect in comparison with mea-
surements. (a) Magnitude of S11 and S21. (b) Phase of S11 and S21. 45

 2.6 Structure of a single layer graphene ribbon with length L and width W . The
electric field Ey is applied along y direction. 46

 2.7 Surface current density in a graphene layer under a constant electric field Ey.
(a) Extremely small grid and large electric field: dx = 0.018 µm, dy = 0.5
µm, and Ey = 2 × 104 V/m. The dt = 2 × 10−11 s. (b) Larger grid and
smaller electric field: dx = 5.4 µm, dy = 5 µm, and Ey = 2 × 103 V/m. The
dt = 1 × 10−12 s. (c) Error as a function of time step. 47

 2.8 (a) Geometry and discretization of a Cu-G nanowire whose far-end is shorted
to the ground PEC. The graphene layers, in gray color, are coated on top,
left, and right surfaces. (b) Front view of the near-end. (1) is bare Cu without
graphene coating, (2) has a single graphene layer coated on the top surface,
(3) corresponds to the structure in (a). 49

 2.9 Simulated conductance G of the three interconnect structures in Fig. 2.8 . . 50

 2.10 Geometry and discretization of two parallel Cu-G nano-interconnects. The
cross section of each nano-interconnect is 10 nm × 10 nm, much smaller than
that in Fig. 2.8 . Port voltages on port 1 and port 2 are detected for analyzing
the crosstalk S21. 51

 2.11 Crosstalk S21 of the Cu-G nano-interconnects in Fig. 2.10 . (a) Magnitude of
S21. (b) Phase of S21. 52

 2.12 Near end and far end port voltages of a single nano-interconnect. (a) Sin-
gle Graphene-encapsulated Cu nano-interconnect in Fig. 2.10 . (b) Bare Cu
counterparts of (a) without graphene coating. 53

 2.13 Surface current density in a graphene layer subject to a constant electric field
Ey. 55

11

 2.14 Geometry and discretization of a Cu-G nano-interconnect. The cross section
of the nano-interconnect is 10 nm × 10 nm. Port voltages at the near and far
end are sampled for analysis. 56

 2.15 Near- and far-end port voltages of a Cu-G nano-interconnect. The red color is
from the first-principles based multi-physics simulation, the blue color is from
the Drude model based simulation, and the black color is from the simulation
of Bare Cu counterparts without graphene coating. All solid lines represent
far-end voltages while dashed and dotted lines represent near-end voltages.
(a) Simulation of the Cu-G nano-interconnect in Fig. 2.14 . (b) Simulation of
a 10 times larger version of the Cu-G interconnect in Fig. 2.14 57

 2.16 Time-domain voltage drop (labeled to the right) along the single Graphene-
encapsulated Cu nano-interconnect in Fig. 2.14 . The Gaussian derivative
source current is plotted in solid line and labeled to the left. (a) Comparison
between different models. (b) Comparison between different choice of time
step in the proposed first-principles modeling. 58

 2.17 Time-domain voltage drop (labeled to the right) along the single Graphene-
encapsulated Cu nano-interconnect in Fig. 2.10 . The Gaussian derivative
source current is plotted in solid line and labeled to the left. 60

 3.1 Space domain partition of two subdomains Ω1 and Ω2. Two subdomains can
overlap as in (a) or connect with each other only at their interfaces as in (b). 64

 3.2 Amplitude and phase of S21 of the test chip interconnect. 76

 3.3 Convergence in terms of relaRes_b of the test chip interconnect at 1 GHz. . 77

 3.4 Layout structure of logic gate examples. (a) ”inv”, an inverter (NOT gate).
(b) ”nand2”, a NAND gate. (c) ”xor”, a XOR gate. 78

 3.5 Logic gate examples in Fig. 3.4 . (a) speed up relative to direct solver. (b)
convergence in terms of relaRes_b. 79

 3.6 Time domain source current and voltage in logic gate example (a) ”inv” and
(b) ”nand2”. 80

 3.7 Layout structure of Intel 4004 processor. 81

 3.8 Time domain source current and port voltage in Intel 4004 processor. (a) A
coarse mesh is used. (b) A finer mesh is used. 82

 3.9 Scaling performance of the TD parallel solver. 82

 4.1 Geometry of a test-chip interconnect. (a) 3-D view of three metal layers,
where the current source is supplied from bottom metal layer to the center
wire at port 1. (b) Front view of the test-chip interconnect. 97

 4.2 Simulated S-parameters of the test-chip interconnect. (a) Magnitude of S11
and S21. (b) Phase of S11 and S21. 98

12

 4.3 Relative residual of the test-chip interconnect. 98

 4.4 Geometry of ASAP7 on-chip interconnect. (a) 3-D view. (b) Top view. . . . 100

 4.5 Simulated Z-parameters of the ASAP7 on-chip interconnect. (a) Real part of
Z11 and Z21. (b) Imaginary part of Z11 and Z21. 101

 4.6 A representative package structure and its simulated impedance parameter
Z21. (a) Top view. (b) Real part of Z21. (c) Imaginary part of Z21. 102

 4.7 Eigenvalue spectrum of the representative package structure. 103

 4.8 Voltage responses of the representative package structure when solved by DD
solver with 2-D partition. 103

 4.9 IBM plasma package example. (a) Top view of the package structure. (b)
Voltage simulated in time domain. 104

 4.10 Relative residual of plasma package example. 106

 4.11 Run-time complexity of the proposed DD solver running in parallel. (a) LU
factorization. (b) LU solution. . 106

 4.12 Memory complexity of the proposed DD solver running in parallel. 107

 4.13 Speed up of DD solver in parallel over DD solver in sequence. (a) N/core is
1.8 million. (b) N/core is 2.9 million. . 108

 5.1 H points and directions. 116

 5.2 Single triangle. (a) Node positions of this triangle. (b) MR of system matrix
A vs. different x-y locations of node 1. 121

 5.3 2-D ring. (a) Triangular mesh of a 2-D ring. (b) Eigenvalues of entire system
matrix A in CS-MFTD. (c) Eigenvalues of entire system matrix A in original
MFTD. 122

 5.4 MR of each patch element of the 2-D ring. (a) CS-MFTD. (b) Original MFTD. 122

 5.5 Accuracy of the proposed CS-MFTD in 2-D ring example. (a) Simulated two
electric fields in comparison with analytical results. (b) Entire E field solution
error as a function of time. 123

 5.6 2-D cavity. (a) Highly unstructured triangular mesh of the 2-D cavity. (b)
Eigenvalues of entire system matrix A in CS-MFTD. (c) Eigenvalues of entire
system matrix A in original MFTD. 124

 5.7 MR of each patch element of the 2-D cavity. (a) CS-MFTD. (b) Original
MFTD. 124

 5.8 Accuracy of the proposed CS-MFTD in 2-D cavity example. (a) Simulated
two electric fields in comparison with analytical results. (b) Entire E field
solution error as a function of time. 125

13

 5.9 Single tetrahedron. (a) Node positions of this tetrahedron. (b) MR of the
entire system matrix A vs. different x-y locations of node 1. 126

 5.10 MR of the local system matrix in each dissembled patch. (a) Patch 1 (node
1-2-3). (b) Patch 2 (node 1-2-4). (c) Patch 3 (node 1-3-4). (d) Patch 4 (node
2-3-4). 127

 5.11 3-D parallel plate. (a) Tetrahedron mesh of a 3-D parallel plate. (b) Eigenval-
ues of entire system matrix A. (c) Simulated two electric fields in comparison
with analytical results. (d) Entire E field solution error as a function of time. 128

 5.12 3-D sphere. (a) Tetrahedron mesh of a 3-D sphere. (b) Eigenvalues of en-
tire system matrix A. (c) Simulated two electric fields in comparison with
analytical results. (d) Entire E field solution error as a function of time. . . 129

 5.13 3-D stripline. (a) Tetrahedron mesh of a 3-D stripline. (b) Eigenvalues of
entire system matrix A. (c) Simulated two electric fields in comparison with
analytical results. (d) Entire E field solution error as a function of time. . . 131

14

ABSTRACT

The design of advanced integrated circuits (ICs) and systems calls for multiphysics and

large-scale modeling and simulation methods. On the one hand, novel devices and materials

are emerging in next-generation IC technology, which requires multiphysics modeling and

simulation. On the other hand, the ever-increasing complexity of ICs requires more efficient

numerical solvers.

In this work, we propose a multiphysics modeling and simulation algorithm to co-simulate

Maxwell’s equations, dispersion relation of materials, and Boltzmann equation to charac-

terize emerging new devices in IC technology such as Cu-Graphene (Cu-G) hybrid nano-

interconnects. We also develop an unconditionally stable time marching scheme to remove

the dependence of time step on space step for an efficient simulation of the multiscaled and

multiphysics system. Extensive numerical experiments and comparisons with measurements

have validated the accuracy and efficiency of the proposed algorithm. Compared to simplified

steady-state-models based analysis, a significant difference is observed when the frequency is

high or/and the dimension of the Cu-G structure is small, which necessitates our proposed

multiphysics modeling and simulation for the design of advanced Cu-G interconnects.

To address the large-scale simulation challenge, we develop a new split-field domain-

decomposition algorithm amenable for parallelization for solving Maxwell’s equations, which

minimizes the communication between subdomains, while having a fast convergence of the

global solution. Meanwhile, the algorithm is unconditionally stable in time domain. In this

algorithm, unlike prevailing domain decomposition methods that treat the interface unknown

as a whole and let it be shared across subdomains, we partition the interface unknown into

multiple components, and solve each of them from one subdomain. In this way, we trans-

form the original coupled system to fully decoupled subsystems to solve. Only one addition

(communication) of the interface unknown needs to be performed after the computation in

each subdomain is finished at each time step. More importantly, the algorithm has a fast

convergence and permits the use of a large time step irrespective of space step. Numeri-

cal experiments on large-scale on-chip and package layout analysis have demonstrated the

capability of the new domain decomposition algorithm.

15

To tackle the challenge of efficient simulation of irregular structures, in the last part of the

thesis, we develop a method for the stability analysis of unsymmetrical numerical systems

in time domain. An unsymmetrical system is traditionally avoided in numerical formulation

since a traditional explicit simulation is absolutely unstable, and how to control the stability

is unknown. However, an unsymmetrical system is frequently encountered in modeling and

simulating of unstructured meshes and nonreciprocal electromagnetic and circuit devices. In

our method, we reduce stability analysis of a large system into the analysis of dissembled

single element, therefore provides a feasible way to control the stability of large-scale systems

regardless of whether the system is symmetrical or unsymmetrical. We then apply the

proposed method to prove and control the stability of an unsymmetrical matrix-free method

that solves Maxwell’s equations in general unstructured meshes while not requiring a matrix

solution.

16

1. INTRODUCTION

1.1 Background and Motivation

The design of advanced integrated circuits (ICs) and systems calls for multiphysics and

large-scale modeling and simulation methods. On the one hand, novel devices and materials

are emerging in next-generation IC technology, which requires multiphysics modeling and

simulation. On the other hand, the ever-increasing complexity of ICs requires more efficient

numerical solvers.

As ICs have progressed to nanometer technology nodes and higher levels of integration,

existing Cu-based interconnect solution has become increasingly difficult in sustaining the

continued evolution of IC technology. Due to side wall and grain boundary scatterings, the

resistivity of Cu at small dimensions increases rapidly [1], which leads to, for aggressively

scaled Cu interconnects, an increased resistor–capacitor (RC) delay, a lower current-driving

capacity, more heat generations, a reduced interconnect bandwidth, a larger crosstalk noise,

and other negative effects [2]. As a result, the overall performance and reliability of an IC

can degrade significantly.

Among emerging alternatives to replace existing Cu-based interconnect technology, graphene

has attracted a lot of attentions in the design of advanced ICs. Due to graphene’s 2-D

nature, µm-long mean free path, high physical strength, and large electrical and thermal

conductivity, graphene has a potential to push the next-generation ICs to an era of ultra-

scaled dimension, lower signal delay, faster data transferring speed, reduced energy con-

sumption and heat generation, and better reliability [3]. Over the last decade, utilizing

these advantages of graphene, researchers have proposed many graphene-based on-chip de-

signs, including pure-graphene based interconnects and nanoscale functional devices, and

Cu-graphene hybrid structures like graphene encapsulated Cu interconnects. However, the

electrical performance of general on-chip Cu-graphene hybrid interconnects remains unclear

at high operating frequencies (∼ 100 GHz or higher) and in the sub-10 nm regime. On the

one hand, the fabrication and measurement capability is limited. In most laboratories, only

single Cu-graphene hybrid structure can be measured at either DC or an optical frequency.

Thus, existing experimental capabilities are not sufficient to measure the performance of

17

complicated on-chip Cu-graphene hybrid systems at desired frequencies. On the other hand,

most of existing simulation methods, which separately model the graphene layers [4]–[6] and

the hybrid Cu-graphene structure [7]–[10], may have accuracy problems in high frequency

and sub-nm simulations.

The limited accuracy of existing simplified-model based simulation methods is mainly due

to three factors. First, most of simplified graphene models are inaccurate at high frequencies.

For example, the model in [4] gives the conductivity of graphene layer by counting the number

of conduction channels. However, it only considers a graphene length shorter than the mean

free path (MFP) and it fails to model the frequency dependence. Another widely used model

of graphene is Kubo formula [5], which has considered both the intraband and interband

transition. The intraband transition of Kubo formula corresponds to the Drude model [11]–

[14] in this work and will be discussed in detail in Chapter 2. Second, the Ohm’s law itself

can be inaccurate because the skin depth becomes comparable to the MFP of graphene at

high frequencies [11]. When the skin depth becomes comparable to the MFP of graphene, the

carriers can no longer be considered to move under the influence of a constant field between

collisions, and the current at any point is also influenced by the electric fields at other points.

This renders the assumption of Ohm’s law invalid and necessitates a more generic approach

using the Boltzmann equation. Thus, any conductivity model extracted with Ohm’s law is

not accurate. Third, existing decoupled electrical conductivity models of graphene assume

graphene’s steady state responses to an external stimulus. This assumption can be valid for

many low frequency applications, but it is unlikely to hold true in high-frequency settings.

The main reason to the failure at high frequencies is the low back scattering frequency

(BSF) of graphene (∼ 100 GHz) [15], [16]. When the signal frequency in Cu-G interconnects

becomes high enough to reach the relatively low BSF of graphene, graphene layers may

not have enough scatterings to re-equilibrate themselves. As a result, it may not give the

physical steady state response predicted by the steady-state conductivity models. Since the

decoupled steady-state models can miss graphene’s dynamic responses at high frequencies,

a first-principles based dynamic modeling and simulation in time domain is needed.

Apart from the modeling challenges arising from new materials and new structures,

another bottleneck for the design of large-scale ICs is the limited simulation capacity. To

18

date, the fastest partial-differential-equation (PDE) based solvers scale as O(N) in both

memory complexity and computational complexity. This performance is generally regarded

as the limit that one can achieve in computational electromagnetics (CEM). However, since

the number of unknowns N is huge in IC analysis even for a circuitry of a modest size,

the current performance of CEM techniques is still insufficient when tackling a realistic IC

design problem that can involve billions of unknowns. To further increase the simulation

capacity, a parallel domain decomposition (DD) method can be deployed utilizing distributed

computational resources.

A parallel domain decomposition method (DDM) [17] is popular in solving large-scale

problems. In open literature, a DDM-based parallel algorithm has been developed for not

only conventional Yee’s finite-difference time-domain (FDTD) method, but also many uncon-

ditionally stable FDTD methods such as alternating direction implicit FDTD (ADI-FDTD)

method, locally 1-D FDTD method [18], Laguerre-FDTD method [19], and Crank–Nicol-

son FDTD method. The same is observed in the finite element method (FEM) in both

frequency and time domain. Among existing DDM-based methods, the parallelization is

achieved mainly in two approaches. The first approach is a direct solver using Schur com-

plement. The major computational cost of this approach is the dense system of interface

unknowns. The second approach is an iterative solver that applies transmission conditions

on the interfaces to exchange solutions between domains. However, the convergence of this

approach is problem dependent.

One common feature in existing DD methods is that the interface field is treated as

a whole, and shared in common by adjacent domains. The transmission condition can

be formulated using tangential E, tangential H, or their weighted sum on the interface.

The interface fields can be viewed as the sources of each domain. Given an interface field,

the unknowns inside the domains are solved, which is essentially how the overall work is

partitioned into each domain to solve.

Another direction to increase the simulation capacity is to avoid the solution of large

matrices in simulation algorithms. For example, the matrix-free method developed in [20]

has a naturally diagonal mass matrix, hence the need for numerically finding the matrix

solution is completely eliminated. Then, much larger problems can be solved on the same

19

computer platform. However, because of the unsymmetrical system matrix, new theory is

needed to guide and control the stability of the matrix-free method. Prevailing numerical

methods formulate a symmetrical system to solve, due to the nice mathematical property

of a symmetrical matrix and the theory on symmetrical systems is rich and abundant. An

unsymmetrical numerical method has a potential to significantly enlarge our solution space

for solving numerical problems. However, it is rarely studied. The theoretical understanding

of the unsymmetrical systems and the new analysis method being pursued in this work are

important to the development of generic unsymmetrical numerical methods.

1.2 Contributions of This Work

In this work, we propose a multiphysics modeling and simulation algorithm to co-simulate

Maxwell’s equations, dispersion relation of materials, and Boltzmann equation to charac-

terize emerging new devices in IC technology such as Cu-Graphene (Cu-G) hybrid nano-

interconnects. We also develop an unconditionally stable time marching scheme to remove

the dependence of time step on space step for an efficient simulation of the multiscaled and

multiphysics system. Extensive numerical experiments and comparisons with measurements

have validated the accuracy and efficiency of the proposed algorithm. Compared to simplified

steady-state-models based analysis, a significant difference is observed when the frequency is

high or/and the dimension of the Cu-G structure is small, which necessitates our proposed

multiphysics modeling and simulation for the design of advanced Cu-G interconnects.

To address the large-scale simulation challenge, we develop a new split-field domain-

decomposition algorithm amenable for parallelization for solving Maxwell’s equations, which

minimizes the communication between subdomains, while having a fast convergence of the

global solution. Meanwhile, the algorithm is unconditionally stable in time domain. In this

algorithm, unlike prevailing domain decomposition methods that treat the interface field

as a whole and let it be shared across subdomains as a transmission condition, we split

the interface field into multiple components, and solve each of them from one subdomain.

In this way, we transform the original coupled system to fully decoupled subsystems to

solve, and with the coupling between subdomains captured via an iteration process that is

20

guaranteed to converge. Only one addition (communication) of the interface unknown needs

to be performed after the computation in each subdomain is finished at each time step.

Numerical experiments on large-scale on-chip and package layout analysis have demonstrated

the capability of the new domain decomposition algorithm.

To tackle the challenge of efficient simulation of irregular structures, in the last part of the

thesis, we develop a method for the stability analysis of unsymmetrical numerical systems

in time domain. An unsymmetrical system is traditionally avoided in numerical formulation

since a traditional explicit simulation is absolutely unstable, and how to control the stability

is unknown. However, an unsymmetrical system becomes more and more important in

modeling and simulating of unstructured meshes and nonreciprocal electromagnetic and

circuit devices. In our method, we reduce the stability analysis of a large system into the

analysis of dissembled elements, therefore providing a feasible way to control the stability

of large-scale systems regardless of whether the system is symmetrical or unsymmetrical.

We then apply the proposed method to prove and control the stability of an unsymmetrical

matrix-free method that solves Maxwell’s equations in general unstructured meshes while

not requiring a matrix solution.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows.

In Chap. 2, we develop a multiphysics-based model and an efficient simulation algo-

rithm to co-simulate directly in time domain Maxwell’s equations, equations characterizing

graphene materials, and Boltzmann equation from direct current (DC) to high frequen-

cies. To enable the simulation of nano-interconnects within a feasible run time, the entire

numerical system is further made unconditionally stable in time marching. We show the

multiphysics modeling and simulation algorithm for analyzing Cu-G interconnects, prove

the time-domain stability of the coupled simulation, validate the proposed work against

measured data, and also apply it to predict the crosstalk and propagation delay of Cu-G

interconnects.

21

We also study the difference between the first-principles based method of and commonly

used simplified models such as the Drude-model based approach for analyzing general on-

chip Cu-graphene hybrid systems, from both theoretical and numerical perspectives. To do

so, we first develop a Drude model based simulation algorithm, including the derivation of

the Drude model from the Boltzmann transport equation, the numerical representation of

the Drude model, and an efficient algorithm for simulating the Drude model in conjunction

with the FDTD to analyze a Cu-graphene interconnect. We then compare it with the first-

principles based multiphysics model and the resulting simulation algorithm both theoretically

and numerically through extensive numerical experiments performed on the Cu-G nano-

interconnects. We find that the first-principles based analysis is necessary to capture the

physical process happening in a Cu-G interconnect at microwave frequencies and in the

sub-nm regime.

In Chap. 3, we propose a new non-overlapping parallel DDM for finite difference method

(FDM), which partitions both the system matrix and the interface field according to contri-

butions from each subdomain. The proposed DDM is theoretically proved to preserve the

coupling among subdomains with fast convergence. Parallel iteration scheme based on the

partitioning is developed for nun-uniform FDM in both frequency and time domain. In time

domain, the parallel iteration scheme is unconditionally stable, allowing for a large time

step irrespective of space step. Extensive numerical examples are tested to demonstrate the

capability of the proposed parallel DD solver.

In Chap. 4, we further develop the split-field DD parallel solver in time domain. We

also develop a new algorithm to solve the relative residual in parallel, which makes it easier

to control the overall accuracy of the solution during the iteration. We analyze the con-

vergence of the parallel solver by deriving its overall amplification matrix in the iteration,

then theoretically and numerically check its spectral radius and eigenvalue spectrum. Both

on-chip and package examples are simulated, which are bench-marked with not only a direct

solver but also a state-of-the-art iterative solver. We also numerically show the run time

complexity, memory complexity, and parallel efficiency of the new DD solver.

In Chap. 5, we develop a theory on the stability analysis of unsymmetrical numerical

systems in time domain. We show its application to prove and control the stability of a

22

matrix-free method that solves Maxwell’s equations in general unstructured meshes while

not requiring a matrix solution.

In Chap. 6, we summarize the work that has been done and present the future work.

23

2. MULTIPHYSICS MODELING AND SIMULATION OF 3-D

CU-GRAPHENE HYBRID NANO-INTERCONNECTS

2.1 Introduction

As integrated circuits (ICs) have progressed to nm technology nodes and higher levels

of integration, existing Cu-based interconnect solution has become increasingly difficult in

sustaining the continued evolution of IC technology. Due to side wall and grain boundary

scatterings, the resistivity of Cu at small dimensions increases rapidly [1], which leads to,

for aggressively scaled Cu interconnects, an increased resistor–capacitor (RC) delay, a lower

current-driving capacity, more heat generations, a reduced interconnect bandwidth, a larger

crosstalk noise, and other negative effects [2]. As a result, the overall performance and

reliability of an IC can degrade significantly.

Cu-Graphene (Cu-G) hybrid nano-interconnect solutions, such as graphene encapsulated

Cu interconnects, are promising alternatives to Cu-based interconnects. The hybrid can

benefit from the combined properties of both materials, and hence can be superior to either

of them in terms of electrical and thermal performance. Compared with Cu-based intercon-

nects, Cu-G interconnects exhibit an enhanced electrical conductivity and current driving

capacity [3], [21], a faster data transferring speed [3], a larger thermal conductivity [22], and

the resistance to electromigration therefore a better long-term reliability [23]. However, as

far as the modeling of Cu-G interconnect is concerned, most of existing methods separately

model the graphene layers [4], [6] and the hybrid interconnect structure [7]–[10]. Such a de-

coupled approach may cause accuracy problems in high frequency simulations for two main

reasons. First, as shown in [11], most of these graphene models are no longer sufficient at

high frequencies since skin depth becomes comparable to the mean free path. Second, these

decoupled electrical conductivity models of graphene [4], [6] assume graphene’s steady state

responses to external stimulus. This assumption can be valid for many low frequency mea-

surements and single-frequency stimuli, but is unlikely to hold in emerging high-frequency

IC scenarios. The main reason to the failure at high frequencies is the low back scattering

frequency (BSF) of graphene (∼ 100 GHz) [15], [16]. When the signal frequency in Cu-G

interconnects becomes high enough to reach the relatively low BSF of graphene, graphene

24

layers may not have enough scatterings to re-equilibrate themselves, thus may not give the

physical steady state response as predicted by steady state conductivity models. Since the

decoupled steady state models can miss graphene’s dynamic electronic responses in high fre-

quency simulations, a full-wave dynamic modeling and simulation in time domain is needed.

To successfully develop Cu-G new interconnect solutions for high frequency IC technol-

ogy, it is necessary to understand the entire physical process that takes place in a Cu-G

interconnect. Under a voltage or current source excitation, the electric and magnetic fields

are generated in the physical layout of a graphene interconnect. These fields drive the

movement of charge carriers in the graphene material. The resultant change in conduction

current, in turn, modifies the electric and magnetic field distributions. At high frequencies

(e.g. 50 GHz), the graphene layer may never reach a steady state, resulting in a nonlinear

conduction current response. To the best of our knowledge, none of existing models have

sufficiently captured the dynamic physics present in the Cu-G interconnects. Hence, they

may lose their predictive power when applied to the design of new Cu-G interconnects.

In this work, we develop a multiphysics-based model and an efficient simulation algo-

rithm to co-simulate directly in time domain Maxwell’s equations, equations characterizing

graphene materials, and Boltzmann equation from direct current (DC) to high frequen-

cies. To enable the simulation of nano-interconnects within a feasible run time, the entire

numerical system is further made unconditionally stable in time marching. We show the

multiphysics modeling and simulation algorithm for analyzing Cu-G interconnects, prove

the time-domain stability of the coupled simulation, validate the proposed work against

measured data, and also apply it to predict the crosstalk and propagation delay of Cu-G

interconnects which has not been reported in open literature. A version of this chapter was

previously published in [24], [25].

2.2 Simplified Drude Model Based Simulation Method

Graphene has been extensively simulated via various models in last decade. Among these

models, Drude model [11]–[14], within the framework of Boltzmann transport theories, is a

widely used model and has shown good accuracy in a linear regime. In this section, we

25

derive Drude model from the Boltzmann Transport Equation. We then present a numerical

algorithm to apply the Drude model to simulate Cu-graphene hybrid interconnects in time

domain.

2.2.1 Analytical Derivation of Drude Model from the Boltzmann Transport
Equation

The distribution function of charge carriers in graphene, denoted by f(r, k, t) in phase

space (real r-space and momentum k-space), is governed by the following Boltzmann trans-

port equation:

v · ∇rf + q

h̄
E · ∇kf + ∂f

∂t
= −f − f0

τ
, (2.1)

where v = dr/dt is the velocity vector, k = p/h̄ is the wave vector of Bloch wave in momen-

tum space, q is the amount of charge in each carrier, E is the electric field intensity, and h̄

is the Planck constant. The scattering term on the right hand side of (2.1) is approximated

by the relaxation time approximation [26], where τ is the relaxation time, and f0 is the

Fermi-Dirac distribution at the equilibrium state as the following

f0 =
[
1 + exp

(
ξ − ξF

kBT

)]−1

, (2.2)

in which ξ is the carrier’s energy, ξF is the Fermi energy (also called Fermi level or chemical

potential), kB is the Boltzmann constant, and T is the temperature.

Given f(r, k, t), the conduction current density jg in graphene can be evaluated from an

integration over k-space as:

jg = gsgvq

(2π)d

∫
k

fvdk, (2.3)

where gs and gv are spin, and valley degeneracy respectively, and d denotes the problem

dimension which is 2 and 3 in a 2-, and 3-D analysis respectively. In order to calculate jg

from (2.1) and (2.3), the velocity vector v needs to be expressed as a function of k. Semi-

classically, by treating the Bloch waves as wave packets, the classical velocity v is defined

as the group velocity dω/dk of such wave packets [26]. The frequency ω is associated with

26

a wave function of energy ξ by quantum theory, ω = ξ/h̄, and hence v = ∇kξ/h̄. After

substituting the following linear dispersion relation of graphene [27],

ξ = vFh̄k, (2.4)

where vF = 106 m/s is the Fermi velocity and k =
√

k2
x + k2

y, we can express the velocity

vector v as the following function of k

v(k) = ∇kξ/h̄ = vFk̂. (2.5)

To obtain the analytical Drude model of graphene from Boltzmann transport equation

(2.1), three assumptions are made as follows:

1. The spatial variance of f is small, thus v · ∇rf ∼ 0;

2. The external fields are small, leading to a small change of the Fermi sea. Thus, f ∼ f0

in k-space and q
h̄
E · ∇kf ∼ q

h̄
E · ∇kf0;

3. The nonlinear effect is negligible, thus, ∂f
∂t

can be analyzed in frequency domain using

jωf̃ .

Denoting f̃ and Ẽ as the frequency domain counterparts of f(t) and E(t), the aforementioned

three assumptions lead to a simplified Boltzmann transport equation in frequency domain

as follows
q

h̄
Ẽ · ∇kf0 + jωf̃ = − f̃ − f0

τ
, (2.6)

from which we can get an analytical expression of charge carrier distribution

f̃ = 1
1 + jωτ

(f0 − τq

h̄
Ẽ · ∇kf0). (2.7)

Substituting the analytical f̃ in (2.7) and velocity v in (2.5) into (2.3), we obtain an analytical

expression of conduction current density j̃g in graphene

j̃g = Ẽ
1 + jωτ

· τq

h̄

gsgvq

(2π)d
vF

∫
k
(−∇kf0)k̂dk = σdcẼ

1 + jωτ
, (2.8)

27

with

σdcI = τq

h̄

gsgvq

(2π)d
vF

∫
k
(−∇kf0)k̂dk. (2.9)

Here, we have used the symmetry of the linear dispersion and the spherical Fermi sphere

to simplify the integration. First, the integration of f0v is 0 because f0 is an even function

in k-space while v is an odd function. Second, the tensor
∫

k(−∇kf0)k̂dk is isotropic due

to the symmetry, thus can be written as a scaled identity matrix. As a result of the three

assumptions and the use of special symmetry, graphene follows the Ohm’s Law as shown in

(2.8).

The analytical Drude model derived in the above yields the conductivity of graphene in

frequency domain

σ̃g(ω) = σdc

1 + jωτ
, (2.10)

where ω is angular frequency, τ is the relaxation time as that in Boltzmann equation (2.1),

and σdc is the DC conductivity of graphene. From open literature, it can be seen that σdc can

be obtained in many ways, such as represented as (2.9) by utilizing the dispersion relation,

represented by other parameters like the carrier density [14], and directly measured at low

frequencies [13]. For the comparison concerned in this work between a first-principles based

simulation and the Drude model based simulation, in order to use the same assumptions and

parameters, σdc in Drude model is extracted from the numerical Boltzmann solver developed

in this work.

Drude model (2.10) agrees with the intraband transition part of Kubo formula [5], which

is a more accurate conductivity model of graphene accounting for both the intraband and

interband transition. The intraband transition, as described by the above Boltzmann trans-

port equation (2.1) and Drude model (2.10), is the transition of electron states near the

Fermi surface in k-space. The interband transition, corresponding to the electrons poping

up from an inner band to an upper conduction band, can be obtained by employing the

kramers-kronig relation or Fermi’s golden rule [28]. For ICs, the intraband transition is the

dominant effect because both thermal excitation energy (T = 300 K, kBT ∼ 25 meV) and

photon energy (ω = 10 GHz, h̄ω ∼ 6.6 × 10−6 eV) are much smaller than the Fermi energy

of graphene (typically 0.21 eV). The electrons at an inner band can hardly find enough exci-

28

tation energy to pop up to an upper band, thus, the interband transition is suppressed. In

this work, focusing on simulating on-chip Cu-graphene interconnects, we only consider the

intraband transition using either the Boltzmann equation or the Drude model.

2.2.2 Accounting for Drude Model in Time Domain Analysis

Based on the Drude model,

j̃g(ω) = σ̃g(ω)Ẽ(ω) = σdc

1 + jωτ
Ẽ(ω). (2.11)

By multiplying 1 + jωτ to both sides and replacing the jω with ∂/∂t, the equation for jg(t)

in time domain can be found as

jg(t) + τ
∂jg(t)

∂t
= σdcE(t). (2.12)

Using a backward difference to discretize the time derivative, we obtain

{jg}n+1 + τ
{jg}n+1 − {jg}n

∆t
= σdc{e}n, (2.13)

from which we have the following time-domain update equation for the current density in

graphene

{jg}n+1 =
(

σdc{e}n + τ

∆t
{jg}n

)
/
(

τ

∆t
+ 1

)
, (2.14)

which is then used in conjunction with the FDTD to simulate Cu-graphene interconnects.

29

2.2.3 Drude Model in Conjunction with the FDTD Algorithm for Simulating
On-Chip Cu-Graphene Hybrid Interconnects

The electrical performance of a Cu-G interconnect is governed by the following Maxwell’s

equations from DC to high frequencies:

∇ × E = −µ
∂H
∂t

, (2.15a)

∇ × H = ε
∂E
∂t

+ σE + ji, (2.15b)

where E is electric field intensity, H is magnetic field intensity, ji is input (supply) current

density, µ, ε, and σ are permeability, permittivity, and conductivity respectively.

In this work, we apply an implicit unconditionally stable time domain scheme developed

in [20] to an FDTD-based discretization of Maxwell’s equations. In this method, we discretize

Maxwell’s equations (2.17) as:

Se{e}n+1 = − Dµ
{h}n+ 1

2 − {h}n− 1
2

∆t
, (2.16a)

Sh{h}n+ 1
2 =Dε

{e}n+1 − {e}n

∆t
+ Dσ{e}n+1+

{jg}n+1 + {ji}n+1,

(2.16b)

where {e}n represents the vector of electric fields at the n-th time instant, {h}n+ 1
2 represents

the vector of magnetic fields at the n + 1
2 time instant, and {jg}n+1 represents the vector of

conduction current densities in graphene layers, which is obtained from (2.14). In (2.16),

{ji} denotes a vector of input current densities, Dµ, and Dε, and Dσ are diagonal matrices

of permeability, permittivity, and conductivity (for the non-graphene region) respectively.

The matrix-vector products Se{e} and Sh{h} represent discretized ∇ × E and ∇ × H. The

Se and Sh can be readily constructed using a single-grid patch based FDTD formulation

developed in [29].

The Drude model based simulation algorithm is realized by substituting the current

density {jg}n+1 in (2.14) into the right hand side of Maxwell solver (2.16). The procedure,

written in a pseudo-code, is shown in Algorithm 1 .

30

Algorithm 1 Drude Model + FDTD
1: Set excitation and boundary conditions

2: Initialize electromagnetic fields {e}1 & {h} 1
2

3: for time step n := 1 to nmax do

4: Update {jg}n+1 with {jg}n & {e}n

5: Update

{e}n+1

{h}n+ 1
2

 with

 {e}n

{h}n− 1
2

 & {jg}n+1

6: end for

2.3 Proposed Multiphysics Modeling of Cu-G Hybrid Nano-Interconnects

As shown in previous section, a Drude model based simulation relies on a few simplifica-

tions, which can miss the dynamic nonlinear physics at high frequencies, including both the

nonlinear buildup of the conduction current in graphene and the nonlinear coupling between

the electric field and electrons inside graphene layers. Therefore, an accurate model requires

a direct observation of the charge carriers in graphene, thereby requires a direct solution of

the charge carrier distribution function f(r, k, t) through Boltzmann transport equation. In

this section, we present a first-principles based multiphysics modeling and simulation algo-

rithm, co-simulating directly in time domain Maxwell’s equations, equations characterizing

graphene materials, and Boltzmann equation from DC to high frequencies.

The electromagnetic performance of a Cu-G interconnect is governed by Maxwell’s equa-

tions from DC to high frequencies:

∇ × E = −µ
∂H
∂t

, (2.17a)

∇ × H = ε
∂E
∂t

+ σE + ji, (2.17b)

where E is electric field intensity, H is magnetic field intensity, ji is input (supply) current

density, µ, ε, and σ are permeability, permittivity, and conductivity respectively.

When considering the existence of graphene layers, especially their conduction current

density jg = σE in changing the entire electromagnetic response, conventional simplified

steady-state σ models [4], [6] can miss the dynamic nonlinear physics at high frequencies, in-

31

cluding both the nonlinear buildup of the conduction current in graphene and the nonlinear

coupling between the external field and electron behavior inside graphene layers. Therefore,

an accurate model requires a direct observation of the charge carriers in graphene, which

is described by the distribution function f(r, k, t) in phase space (real r-space and momen-

tum k-space). Based on first principles, f(r, k, t) is governed by the following Boltzmann

equation:

v · ∇rf + q

h̄
E · ∇kf + ∂f

∂t
= −f − f0

τ
, (2.18)

where v = dr/dt is the velocity vector, k = p/h̄ is the wave vector of Bloch wave in

momentum space, q is the amount of charge in each carrier, and h̄ is the Planck constant.

The magnetic effects in Boltzmann equation are not considered here as they are much smaller

than electric effects in IC interconnects. The scattering term on the right hand side of

Boltzmann equation is approximated by the relaxation time approximation [26], where τ is

the relaxation time, and f0 is the Fermi-Dirac distribution at the equilibrium state

f0 =
[
1 + exp

(
ξ − ξF

kBT

)]−1

, (2.19)

in which ξ is the carrier’s energy, ξF is the Fermi energy (also called Fermi level or chemical

potential), kB is the Boltzmann constant, and T is the temperature.

Given f(r, k, t), the conduction current density jg in graphene can be evaluated from an

integration over k-space as:

jg = gsgvq

(2π)d

∫
k

fvdk, (2.20)

where gs and gv are spin and valley degeneracy, respectively, and d denotes the problem

dimension which is 2 and 3 in a 2- and 3-D analysis respectively. In order to calculate jg

from (2.18) and (2.20), the velocity vector v needs to be expressed as a function of k. Semi-

classically, by treating the Bloch waves as wave packets, the classical velocity v is defined

as the group velocity dω/dk of such wave packets [26]. The frequency ω is associated with

a wave function of energy ξ by quantum theory, ω = ξ/h̄, and hence

v = ∇kξ/h̄. (2.21)

32

After substituting the following linear dispersion relation of graphene [27], which is illustrated

in Fig. 2.1 (b),

ξ = vFh̄k, (2.22)

where vF = 106 m/s is the Fermi velocity and k =
√

k2
x + k2

y, we can express the velocity

vector v as the following function of k

v(k) = ∇kξ/h̄ = vFk̂, (2.23)

with k = kxx̂ + kyŷ, and k̂ = k/|k| being the unit vector along the direction of k.

(a) (b)

Figure 2.1. (a) Structure of a single layer graphene with length L and width
W . (b) Linear dispersion of graphene. Dirac cones are located at the six
corners of the hexagonal Brillouin zone. Therefore, the valley degeneracy
gv = 2.

The proposed system of equations, which governs the electromagnetic performance of

Cu-G interconnects, consists of three sets of first-principle equations, namely Maxwell’s

equations (2.17), Boltzmann equation (2.18), and the dispersion relation of graphene (2.22).

Because the carrier distribution function f is a function of r, k, and t, the computational

domain for this model has seven dimensions in 3-D analyses and five dimensions in 2-D

33

Maxwell’s equations

E (r, t), H (r, t)

Boltzmann equation

𝑓(r, k, t)

𝐄(𝐫, t) 𝒋𝒈 𝐫, 𝑡 =
𝑔𝑠𝑔𝑣𝑞

2𝜋 𝑑
න
𝐤

𝑓𝐯 𝐤 𝑑𝐤

Figure 2.2. Illustration of the co-simulation flow.

analyses. A flow of the co-simulation of these equations in time domain is illustrated in

Fig. 2.2 . Given an external source and initial conditions, Maxwell’s equations (2.17) are

solved to obtain electric field E(r, t), using which Boltzmann equation (2.18) can be solved

to obtain charge carrier distribution f(r, k, t). From integrating f(r, k, t) over k-space as

shown in (2.20), the conduction current density jg(r, t) in graphene layers is calculated at

each space point. At next time instant, graphene’s conduction current density term σE in

Maxwell’s equations (2.17) is replaced by latest jg(r, t), while the conduction current density

in other conducting materials is still updated using σE. Now, with all the current updated,

Maxwell’s equations (2.17) are ready to be solved again. The whole process continues until a

desired time is reached or until the physical phenomenon happening in a Cu-G interconnect

has reached its steady state.

2.4 Multiphysics Co-Simulation in Time Domain and Stability Analysis

There are two major challenges in the multiphysics simulation of Cu-G interconnects.

The first challenge is that Boltzmann equation (2.18) is a seven-dimensional equation in a 3-

D analysis, which is computationally expensive. To reduce the computational cost, we utilize

the fact that graphene is a 2-D material, hence we can solve a 2-D version of Boltzmann

34

equation (2.18) in conjunction with the 3-D Maxwell’s equations. However, even using a 2-D

Boltzmann equation, there are five dimensions involved, making the simulation of Boltzmann

subsystem much slower than that of the Maxwell subsystem. The second challenge arises

from the small size of nano-interconnects, which results in a large number of time steps to

finish one simulation using most explicit solvers. To address this problem, we develop an

unconditionally stable co-simulation algorithm to remove the dependence of time step on

space step.

2.4.1 Unconditionally Stable Time-Marching Scheme of the Maxwell Subsystem

In this work, we apply an implicit unconditionally stable time domain scheme devel-

oped in [20] to an Finite Difference Time Domain (FDTD)-based discretization of Maxwell’s

equations. This scheme is theoretically proved to be unconditionally stable for general prob-

lem settings having arbitrary structures and inhomogeneous materials. In this method, we

discretize Maxwell’s equations (2.17) as:

Se{e}n+1 = − Dµ
{h}n+ 1

2 − {h}n− 1
2

∆t
, (2.24a)

Sh{h}n+ 1
2 =Dε

{e}n+1 − {e}n

∆t
+ Dσ{e}n+1

+ {jg}n + {ji}n+1,

(2.24b)

where {e}n represents the vector of electric field intensities at the n-th time instant, {h}n+ 1
2

represents the vector of magnetic field intensities at the n + 1
2 time instant, {jg} represents

the vector of conduction current densities in graphene layers, {ji} represents input current

densities, Dµ, Dε, and Dσ are diagonal matrices of permeability, permittivity, and conduc-

tivity respectively. The matrix-vector products Se{e} and Sh{h} represent discretized ∇×E

and ∇×H. The Se and Sh can be readily constructed using a single-grid patch based FDTD

formulation developed in [29].

35

If we eliminate the {h} in (2.24), we will end up with the following backward-difference

based discretization of the second order vector wave equation for E if {jg} is not considered

{e}n+1 − 2{e}n + {e}n−1 + ∆tD−1
ε Dσ({e}n+1 − {e}n)

+∆t2D−1
ε ShD−1

µ Se{e}n+1 = −∆t2D−1
ε

(
∂{j}
∂t

)n+1

.
(2.25)

Discarding the source term since it has nothing to do with the stability, and performing a

z-transform of the above time marching equation, we can find

|z| = 1√
1 + ∆t2λ

, (2.26)

where λ is the eigenvalue of D−1
ε ShD−1

µ Se. Since in an FDTD method, Sh = ST
e is satisfied

in a uniform grid [29], the eigenvalues of D−1
ε ShD−1

µ Se are always nonnegative. Substituting

λ ≥ 0 into (2.26), it can be readily found that z’s modulus is always bounded by 1 regardless

of ∆t. Hence, the time marching of (2.25) is ensured to be unconditionally stable. Although

it appears that we have to solve a matrix in the time marching, using the scheme developed

in [20], this matrix’s inverse can be explicitly found, thus avoiding a matrix solution.

The updating from one time step to the next in (2.24) can also be rewritten as

MA{x}n+1 = MB{x}n + {bj}n+1, (2.27)

where

{x}n =

 {e}n

{h}n− 1
2

 and {bj}n+1 =

−{jg}n − {ji}n+1

0

 ,

and

MA =

Dε

∆t
+ Dσ −Sh

Se
Dµ

∆t

 and MB =

Dε

∆t
0

0 Dµ

∆t

 .

36

2.4.2 Unconditionally Stable Time-Marching Scheme of the Boltzmann Subsys-
tem

The high dimensionality of the phase space makes solving the Boltzmann equation (2.18)

a challenging task. One of the biggest obstacles for a deterministic Boltzmann solver is the

requirement of huge memory. To resolve the memory issue, the last few decades have seen

many efforts along two major directions for solving the Boltzmann equation. One direc-

tion is the Monte Carlo approach, where the Boltzmann equation is solved by simulating a

stochastic process [30]–[32]. Another direction is to expand the distribution function f with

basis functions in k-space, and then truncate the expansion to the first few terms according

to the accuracy. The commonly used expansions are spherical harmonics expansion [33] and

Fourier harmonics expansion in quantized k-space [34]. Both of the two directions can reduce

the required memory by a few orders. But the disadvantages are 1) the simplification of the

original Boltzmann equation, and 2) the requirement of a self-iterative solver to determine

a few key parameters like the expansion coefficient. These existing Boltzmann solvers can

hardly provide the dynamic time-domain nonlinear transition we want to capture from the

original Boltzmann equation (2.18). Therefore, in this work, we develop a direct determin-

istic Boltzmann solver for the Cu-G system. The advancement of Dynamic Random-Access

Memory (DRAM) technology and today’s computers has greatly alleviated the limitation

from huge memory requirement. On the other hand, the 2-D nature of graphene reduces the

dimension of phase space from six to four. These two factors make a direct deterministic

Boltzmann solver feasible for the Cu-G hybrid nano-interconnects.

However, the direct Boltzmann solver still needs to be carefully developed to resolve

two challenges. First, the extremely small space step could require an extremely small time

step due to the stability requirement. For example, in one Cu-G hybrid nano-interconnect

to be shown later, a conditionally stable Boltzmann solver can require millions of time

steps to finish one run. Because of the expensive computational cost for the Boltzmann

subsystem, the need for simulating many time steps can significantly degrade the efficiency

of the simulation. Second, the coupling with the Maxwell subsystem should not ruin the

37

stability, or should even maintain the global unconditional stability of the entire system. Both

of the challenges are solved with the following unconditionally stable Boltzmann solver.

Unconditionally Stable Boltzmann Solver

Substituting (2.23) into (2.18), the 2-D Boltzmann equation for graphene in the 4-D

phase space (x − y − kx − ky) becomes

vF

k
(kx

∂f

∂x
+ ky

∂f

∂y
) + q

h̄
(Ex

∂f

∂kx

+ Ey
∂f

∂ky

) + ∂f

∂t
= −f − f0

τ
. (2.28)

In terms of the discretization of the derivatives, the independence among r, k, and t allows

us to consider each first order derivative independently. First of all, ∇r is discretized with a

central difference to maintain the same accuracy ∼ O(∆r2) as that in FDTD. Second, ∇k

is also discretized with a central difference to align with the ∇r. Mathematically, the role

of r and k in Boltzmann equation (2.28) can be exchanged without changing the equation

much. Thus, aligning the numerical treatment of r and k can simplify the system matrices

and thereby the solution of the Boltzmann subsystem. Having ∇r and ∇k discretized with

the central difference in phase space, the remaining ∂/∂t could be discretized in time with a

backward difference to guarantee the unconditional stability. As a result, we obtain

(Sr + Sn
k){f}n+1 + {f}n+1 − {f}n

∆t
= {f0} − {f}n+1

τ
, (2.29)

where {f}n is the vector of carrier distribution function at the n-th time instant, Sr{f}

and Sn
k{f} represent discretized v · ∇rf and q

h̄
E · ∇kf , respectively. Here, the superscript

n of Sn
k denotes the time instant of E used to obtain Sn

k . The grid used for discretizing the

Maxwell’s equations is also used for solving the Boltzmann subsystem, and the f is assigned

at the H’s points. The electric field E used in the Boltzmann equation is center-averaged by

neighboring E fields in the grid. The matrix-based expression here follows a similar logic as

38

that in the Maxwell subsystem. All local f(i, j, ik, jk) in the 4-D phase space are reorganized

and labeled with a global index

mik,jk
i,j = jkNxNyNkx + ikNxNy + jNx + i, (2.30)

in which Nx, Ny, and Nkx are the number of nodes along the x-, y-, and kx-directions, respec-

tively. The local index (i, j, ik, jk) means the position in phase space is at (x = i∆x + x0, y =

j∆y +y0, kx = ik∆kx +kx0, ky = jk∆ky +ky0), where (∆x, ∆y, ∆kx, ∆ky) and (x0, y0, kx0, ky0)

denote the cell size, and starting point along each dimension. Thus, each local f(i, j, ik, jk)

becomes the mik,jk
i,j -th element f

m
ik,jk
i,j

in vector {f}.

The entries of two matrices Sr and Sn
k , using a central difference in a uniform grid, can

be analytically extracted as the following. Take Sr{f} ∼ v · ∇rf as an example. Since in

v · ∇rf , we use nearby f values to generate a value f̃ at a local position (i, j, ik, jk), the

central-difference formula written in local indices is

f̃(i, j, ik, jk) = vx(ik, jk)f(i + 1, j, ik, jk) − f(i − 1, j, ik, jk)
2∆x

+vy(ik, jk)f(i, j + 1, ik, jk) − f(i, j − 1, ik, jk)
2∆y

.

This formula, if written in global indices (2.30), becomes

f̃
m

ik,jk
i,j

=vxm
ik,jk
0,0

f
m

ik,jk
i+1,j

− f
m

ik,jk
i−1,j

2∆x

+ vym
ik,jk
0,0

f
m

ik,jk
i,j+1

− f
m

ik,jk
i,j−1

2∆y
,

(2.31)

which is simply a row of the matrix-based expression {f̃} = Sr{f} ∼ v · ∇rf . Since v is

independent of r for graphene here, the (i, j) indices for v are denoted as (0, 0). The elements

of matrix Sr hence can be directly extracted from (2.31) as

Sr
m

ik,jk
i,j ,m

ik,jk
i+1,j

= vxm
ik,jk
0,0

/(2∆x) = −Sr
m

ik,jk
i,j ,m

ik,jk
i−1,j

,

Sr
m

ik,jk
i,j ,m

ik,jk
i,j+1

= vym
ik,jk
0,0

/(2∆y) = −Sr
m

ik,jk
i,j ,m

ik,jk
i,j−1

.
(2.32)

39

For the other matrix Sn
k{f} ∼ q

h̄
E · ∇kf , we can find its elements similarly by exchanging E

to v and k to r.

The proposed time-marching formula for the Boltzmann subsystem (2.29) is

Bn{f}n+1 = {f}n + {f̃0}, (2.33)

where the constant term {f̃0} = {f0}∆t/τ and the system matrix

Bn = (1 + ∆t/τ)I + ∆t(Sr + Sn
k). (2.34)

Proof on the Unconditional Stability of the Boltzmann Solver and the Choice of
Time Step

To analyze the stability, the eigenvalues of matrix Bn, thereby the eigenvalues of Sr and

Sn
k , should be studied. Here, we first prove that both Sr and Sn

k , with a central difference

in a uniform grid, are skew-symmetric. Still take Sr{f} ∼ v · ∇rf as an example. From

the matrix elements in (2.32), the rotated counterpart of matrix element Sr
m

ik,jk
i,j ,m

ik,jk
i+1,j

is

Sr
m

ik,jk
i+1,j,m

ik,jk
i,j

, whose value (by shifting i to i + 1 in the right hand side of (2.32)) is the

opposite of Sr
m

ik,jk
i,j ,m

ik,jk
i+1,j

. The same procedure can be applied to j. Thus, the skew-symmetry

of Sr is proved. The key factors to the skew-symmetry are 1) the velocity v is independent of

r-space and 2) the r-space is discretized uniformly along each direction. These two together

guarantee the matrix elements in (2.32) to be the same regardless of the choice of (i, j). For

the other matrix Sn
k{f} ∼ q

h̄
E · ∇kf , we can exchange E to v and k to r, and end up with

a similar proof.

As a result of skew-symmetry, the eigenvalues of Sr +Sn
k are purely imaginary [35]. From

the expression of matrix Bn in (2.34), we can see clearly that its eigenvalues are

λ(Bn) = 1 + ∆t/τ + ∆tλ(Sr + Sn
k).

Since λ(Sr + Sn
k) are purely imaginary, we have

|λ(Bn)| =
√

(1 + ∆t/τ)2 + ∆t2|λ(Sr + Sn
k)|2 ≥ 1. (2.35)

40

Hence, the amplification factor of Boltzmann subsystem Bn{f}n+1 = {f}n is bounded by 1,

regardless of the choice of time step. As a result, we prove the proposed time marching of

Boltzmann subsystem is unconditionally stable.

The unconditional stability allows for a choice of any large time step without affecting

stability. Hence, in real simulations, the time step can be solely chosen according to the

accuracy requirement. The relaxation time approximation in Boltzmann equation (2.18)

assumes an exponential decay with a relaxation time τ . Therefore, the physical process

gives the Boltzmann subsystem a characteristic time constant τ . According to the sampling

theorem, an accurate time step to capture the time constant τ in Boltzmann subsystem

would be

∆t ≤ τ/10. (2.36)

2.4.3 Unconditionally Stable Time-Marching Scheme of the Coupled System

Maxwell

Subsystem

𝐄𝒏(𝐫) & 𝐇𝒏(𝐫)

Boltzmann

Subsystem

𝑓𝒏(𝐫, 𝐤)

Conduction current in graphene

𝒋𝑔
𝒏 𝐫 =

𝑔𝑠𝑔𝑣𝑞

2𝜋 𝑑
න
𝐤

𝑓𝒏(𝐫, 𝐤)𝐯 𝐤 𝑑𝐤

Desired n

reached?

𝐄𝒏(𝐫)

𝒋𝑔
𝒏 𝐫

Next time step

𝑛 = 𝑛 + 1

Yes

No

Input

Output

𝑛 = 1

Figure 2.3. Flowchart of the proposed multiphysics simulation algorithm,
where the electromagnetic fields E & H and dynamic charge distribution f
are updated at every time step.

41

As for the coupling between the Maxwell subsystem and the Boltzmann subsystem as

seen in Fig. 2.3 , the Boltzmann subsystem directly uses the electric field intensity E from

the Maxwell subsystem, whereas the Maxwell subsystem uses, indirectly from the Boltzmann

subsystem, the conduction current density {jg}n in graphene layers. The {jg}n is evaluated

from {f}n through the integration of (2.20), which is numerically evaluated from a trape-

zoidal integration rule to maintain the second-order accuracy in the truncated k-space. For

a surface conduction current density, the x-component of (2.20) can be written as

jngx_2D = gsgvq

(2π)2

∫
kx

∫
ky

fnvxdkxdky, (2.37)

a 2-D trapezoidal integration of which yields

jngx_2D(i, j) = gsgvq

(2π)2
∆kx∆ky

4

Nkx −1∑
ik=0

Nky −1∑
jk=0

α(ik, jk)fn(i, j, ik, jk)vx(ik, jk),

(2.38)

where the coefficient α(ik, jk) = 4 inside the kx-ky grid, α(ik, jk) = 2 on the four outermost

boundaries of the grid, and α(ik, jk) = 1 at four corners of the grid. The y-component of

jng_2D can be obtained by changing the vx in (2.38) to vy. After replacing the local index of

fn(i, j, ik, jk) with global index (2.30), the numerical trapezoidal integration (2.38) could be

expressed by a matrix-vector product of {jg}n
2D = Sj_2D{f}n. The {jg}n

2D here is a surface

current density, which agrees with the fact that graphene is a 2-D material whose current

flow is a sheet current flow. However, Maxwell’s equations require a volume current density

{jg}n. Here, we can treat a graphene layer as a thin sheet [9] and obtain an equivalent

volume current density {jg}n = {jg}n
2D/dz [36], where dz is the grid size perpendicular to the

graphene sheet. Thus, by using Sj = Sj_2D/dz, we obtain

{jg}n = Sj{f}n. (2.39)

42

The coupled systems of equations, including the Maxwell subsystem (2.27), the Boltz-

mann subsystem (2.33), and the coupling mechanism through conduction current density

(2.39), constitute a nonlinear system of equations, as shown in the following

MA 0

0 Bn

{x}n+1

{f}n+1

 =

MB Mj

0 I

{x}n

{f}n

+

{x0}n+1

{f̃0}

 , (2.40)

where

Mj =

−Sj

0

 and {x0}n+1 =

−{ji}n+1

0

 .

Given an initial condition {x}0 and {f}0, and the excitation {x0}, we can update the system

in time based on (2.40), and finally obtain the full-wave response of General 3-D Cu-G hybrid

nano-interconnects.

Next, we prove that the proposed time marching of the co-simulation system shown in

(2.40) is unconditionally stable. Since the constant terms and excitation are irrelevant to

stability, they are ignored in the following stability analysis. For the coupled nonlinear

system of equations (2.40), at every time step, we have

{x}n+1

{f}n+1

 =

M−1
A MB M−1

A Mj

0 (Bn)−1

{x}n

{f}n

 = Gn

{x}n

{f}n

 . (2.41)

As can be seen, the amplification matrix Gn is a block upper triangular matrix, whose

eigenvalues {λ(Gn)} consist of the eigenvalues of the two diagonal block matrices M−1
A MB,

and (Bn)−1, namely

{λ(Gn)} = {λ(M−1
A MB)} ⊕ {λ((Bn)−1)}.

In other words, the overall stability of the coupled nonlinear system (2.40) is decoupled and

determined by the stability of each subsystem (2.27) and (2.33). Because both |λ(M−1
A MB)|

and |λ((Bn)−1)| are bounded by 1, all the |λ(Gn)|, thereby ρ(Gn) are bounded by 1, hence

we prove the co-simulation algorithm (2.40) is unconditionally stable for an arbitrary choice

of time step. Notice that, in this co-simulation scheme (2.40), neither of the two physical

coupling flows determines the overall time marching stability. The first coupling flow from

43

the Maxwell part, manifested by the electric field E in Boltzmann subsystem, enters system

matrix Sn
k but cannot change its skew-symmetry, thus cannot determine the stability of the

Boltzmann subsystem. The second coupling flow from the Boltzmann part, the conduction

current density of graphene, becomes the off-diagonal block in (2.40), thus cannot determine

the eigenvalues thereby the stability of the Maxwell subsystem.

The unconditional stability of the entire system allows both Maxwell and Boltzmann

subsystems to use the same arbitrary time step, despite their different characteristic time

constants. Hence, the time step can be chosen solely based on accuracy. For the Boltz-

mann subsystem, the sampling theorem sets an upper limit of the accurate time step. The

characteristic time constant of Maxwell subsystem is usually determined by the main signal

frequency νsig, which requires a ∆t ≤ 1/(10νsig). Taking into account Boltzmann’s time step

requirement (2.36), an accurate time step for the entire coupled system would be

∆t ≤ min{τ/10, 1/(10νsig)}. (2.42)

Since both Maxwell and Boltzmann subsystems use backward difference in time, the overall

accuracy in time for each subsystem as well as for the whole coupled system is O(∆t), while

the accuracy in space is of second-order.

2.5 Numerical Results from Proposed Solver

In this section, we first validate the accuracy of the proposed multiphysics solvers by com-

paring our numerical results with measurements. After validating both Maxwell and Boltz-

mann solvers, we proceed to simulate realistic graphene-encapsulated Cu nano-interconnects

[3] and analyze their DC conductivity, crosstalk effect, and propagation delay.

2.5.1 Validation of the Maxwell Solver

We first validate the accuracy of the proposed work by simulating a realistic test-chip

interconnect structure, which is fabricated using a silicon processing technology [37]. This

100 µm-long test-chip interconnect comprises 3 metal layers and 5 inhomogeneous dielectric

44

𝒋𝒊

Port 2

Port 1

(a)

𝜀𝑟

4.1

4.1

8.0

8.0

4.1

0.308

thickness
(μm)

1.448

0.120

0.615

0.285

0.120

0.296

100 μm

10 μm

50 μm 50 μm 90 μm

𝒋𝒊

(b)

Figure 2.4. Geometry of a test-chip interconnect. (a) 3-D view of three metal
layers, where the current source is supplied from bottom metal layer to the
center wire at port 1. (b) Front view of the test-chip interconnect.

(a)

(b)

Figure 2.5. Simulated S-parameters of a test-chip interconnect in comparison
with measurements. (a) Magnitude of S11 and S21. (b) Phase of S11 and S21.

stacks, whose cross-sectional view is illustrated in Fig. 2.4 . Fig. 2.4 also shows all geomet-

rical dimensions and the relative permittivity εr of each layer. A current source of a time

derivative Gaussian pulse ji = −(t − t0)exp[− (t−t0
τs

)2] A/m2 (t0 = 4τs, τs = 2 × 10−11 s)

is placed right in the middle at the near-end of the center interconnect. The 100 µm-long

interconnect is sandwiched between two 20 µm-long air layers in the front and at the back.

The smallest mesh size used in the simulation is 0.04 µm, and the time step for time march-

ing is 4 × 10−13 s owing to the proposed unconditionally stable method. After performing

a Fast Fourier Transform (FFT) on the current source and the simulated time-domain port

45

voltages, we directly obtain the Z-parameters of the structure, which are then converted to

S-parameters with a 50 Ω reference impedance. The S-parameters of this test-chip intercon-

nect are measured in the frequency range 45 MHz-40 GHz using an HP8510 system, where

the undesirable signals from cables and probes are further removed following the short-open-

load-thru (SOLT) technique, meanwhile the remaining noises generated by the bondpads,

vias, and access lines are de-embedded using a YZ-matrix technique [37]. The simulated

S-parameters and measured ones, as shown in Fig. 2.5 , agree very well with each other.

2.5.2 Validation of the Boltzmann Solver

𝐸𝑦
ො𝑦

Figure 2.6. Structure of a single layer graphene ribbon with length L and
width W . The electric field Ey is applied along y direction.

When numerically solving Boltzmann equation (2.18) for nm-scale structures such as a

graphene ribbon in Fig. 2.6 , we choose the backward difference method (2.29) because of its

unconditional stability as proved in Section 2.4 . The other common difference methods for

discretizing a first-order time derivative equation (2.18) are either unstable (e.g. central dif-

ference method) or conditionally stable (e.g. forward difference method and Crank-Nicholson

method). Fig. 2.7 (a) shows that the backward difference method (2.29) allows for the use

of a large time step irrespective of the extremely small space step. In this example, initial f

is Fermi-Dirac distribution (2.19), Fermi energy ξF = 0.21 eV, relaxation time τ = 4 × 10−11

s, the electric field Ey = 2 × 104 V/m, dx = 0.018 µm, and dy = 0.5 µm. All three meth-

46

(a) (b)

(c)

Figure 2.7. Surface current density in a graphene layer under a constant
electric field Ey. (a) Extremely small grid and large electric field: dx = 0.018
µm, dy = 0.5 µm, and Ey = 2 × 104 V/m. The dt = 2 × 10−11 s. (b) Larger
grid and smaller electric field: dx = 5.4 µm, dy = 5 µm, and Ey = 2 × 103

V/m. The dt = 1 × 10−12 s. (c) Error as a function of time step.

ods use the same dt = 2 × 10−11 s. After performing the time marching for a long time,

only backward difference method remains stable. When approaching the steady state, the

backward difference method also exhibits a much smaller un-physical oscillation caused by

numerical error.

As for the accuracy, we find all three methods, backward-, forward-, and Crank-Nichoison

methods, give similar results as long as the time step dt is accurately chosen based on the

sampling theorem. Taking Boltzmann equation (2.18) as an example, the characteristic time

47

length is the relaxation time τ , thus a time step dt = τ/20 would be an accurate choice.

Within the interval of such a time step, the time dependence of physical quantities does

not go beyond linear, therefore backward-, forward-, and central-differences should produce

the same result in terms of approximating the time derivative. To further investigate the

convergence rate, a new example is specifically designed and illustrated in Fig. 2.7 (b). To

make all three methods stable when using the same time step dt = τ/20, we adopt a large

grid dx = 5.4 µm and dy = 5 µm, and a smaller electric field Ey = 2 × 103 V/m. The

other parameters remain the same as in Fig. 2.7 (a). The current density solved from the

backward difference method, as shown in Fig. 2.7 (b), agrees very well with those from other

methods, including the Drude model. In Fig. 2.7 (c), we plot the error as a function of time

step, where the error is assessed by ‖{j} − {jref}‖/‖{jref}‖, in which the Crank-Nicholson

method with dt = 1 × 10−15 s is employed as the reference solution {jref}, and norm-2 is

used. The {j} is from either the backward or the forward difference, which includes j at all of

the simulated time instants. As can be seen, the backward difference can produce accurate

results, and its convergence rate is of first order as theoretically expected.

Another feasible validation is the surface DC conductivity σdc_2d of a graphene sheet.

Although the model developed in this work aims at the high-frequency and non-linear re-

sponses of graphene, the solver can also accurately reproduce the measured σdc_2d. One

measurement, using well-known four-point measurements by injecting an excitation current

through graphene ribbon and measuring the voltage drop, reports a σdc_2d = 0.015 S [15]

for a graphene sheet of Fermi energy ξF = 0.21 eV, mean free path l = 600 nm therefore

relaxation time τ = l/vF = 6 × 10−13 s. After substituting these parameters into the simula-

tions as in Fig. 2.7 , and dividing the steady-state surface current density jy by the constant

electric field Ey, the proposed Boltzmann solver gives a simulated σdc_2d = 0.0147 S, which

agrees very well with the measurements since the relative error is only 2.0%.

2.5.3 Enhanced Electrical Conduction in Cu-G Nanowires Predicted by the
Coupled Solver for Multiphysics Simulation

With both the Maxwell solver and the Boltzmann solver validated, next, we employ the

proposed coupled Maxwell-Boltzmann solver to simulate a Cu nanowire encapsulated by a

48

(a) (b)

(3)

(2)

(1)
𝑥

𝑧

𝑥 (μm)

y (μm)

𝑧
(μ
m
)

𝑗𝑖

Figure 2.8. (a) Geometry and discretization of a Cu-G nanowire whose far-
end is shorted to the ground PEC. The graphene layers, in gray color, are
coated on top, left, and right surfaces. (b) Front view of the near-end. (1) is
bare Cu without graphene coating, (2) has a single graphene layer coated on
the top surface, (3) corresponds to the structure in (a).

single graphene layer on the top, left and right sides as illustrated in Fig. 2.8 . The size of

the Cu stripline, W = 180 nm, H = 60 nm, and L = 10 µm, is similar to that of a measured

Cu-G nanowire [3], whose conductance is measured with standard four-point techniques. We

use a uniform regular grid to discretize the Cu into 10 × 8 × 20 grid cells. Graphene layers

have a relaxation time τ = 2 × 10−11 s and a Fermi energy ξF = 0.21 eV, based on which

we truncate the effective k-space into a energy range from 0 to 2ξF. Then, we discretize the

truncated 2-D k-space with 10×20 grid cells. The Maxwell computation domain is a box with

perfect electric conductor (PEC) boundaries at the top and the bottom, and perfect magnetic

conductor (PMC) boundaries at the other four sides. To see the full-wave response of such

Cu-G nanowires, we inject into the structure a current source whose waveform is a Gaussian

derivative in time, ji = −1016(t − t0)exp[− (t−t0
τs

)2] A/m2, where t0 = 4τs and τs = 2 × 10−9s,

indicating a maximal signal frequency of approximately 0.5 GHz. For the aforementioned

real space grid, conventional FDTD requires a small ∆t therefore about 108 time steps to

49

Figure 2.9. Simulated conductance G of the three interconnect structures in Fig. 2.8

finish the simulation in the width of a full pulse. However, in our unconditionally stable

algorithm (2.40), only 200 time steps are simulated, where time step is solely determined by

the accuracy requirement.

We perform a Fourier transform of the time domain data and calculate the admittance

Y (ω) = Iinput(ω)/Vdrop(ω), whose real part, the conductance G, is plotted in Fig. 2.9 . The

numerical and analytical conductance G of the bare Cu case, plotted in solid lines in Fig.

 2.9 , shows a fairly good correlation with an error of 5.07%. Compared with the numerical

G in bare Cu structure, a single graphene layer’s coating on the top surface enhances the

conductance G by 13.4%, whereas the coating on three sides enhances G by 26.4%. For the

structure in Fig. 2.8 (a), measurement [3] reports a 22% enhancement on G, which is very

close to the simulated 26.4% here.

2.5.4 Increased Crosstalk Effect and Decreased Propagation Delay in Graphene-
Encapsulated Cu Nano-Interconnects Predicted by the Proposed Multi-
physics Solver

Next, to study the effect of coating graphene layers on the crosstalk, especially for cutting-

edge 10 nm technology node, we analyze two parallel Cu-G nano-interconnect wires, whose

geometry and discretization are illustrated in Fig. 2.10 . We adopt similar settings as the

50

𝑗𝑖

Port 2

Port 1

Figure 2.10. Geometry and discretization of two parallel Cu-G nano-
interconnects. The cross section of each nano-interconnect is 10 nm × 10
nm, much smaller than that in Fig. 2.8 . Port voltages on port 1 and port 2
are detected for analyzing the crosstalk S21.

one in Fig. 2.8 . Each Cu interconnect, whose W = 10 nm, H = 10 nm, and L = 10 µm,

is discretized into a uniform 10 × 8 × 20 grid. In this example, we inject a current source

at port 1 and port 2 in turn, whose waveform is ji = −(t − t0)exp[− (t−t0
τs

)2] A/m2, where

t0 = 4τs and τs = 2 × 10−11s. The pulse has a maximal signal frequency of approximately

50 GHz. Due to the small spatial feature, conventional conditionally stable methods require

about 107 time steps to finish the simulation of Maxwell subsystem, and 109 time steps to

simulate the Boltzmann subsystem in the window of a full pulse [38]. However, using the

proposed unconditionally stable algorithm, only 200 time steps are required, where time step

is solely determined by accuracy. Furthermore, the same time step is used for simulating both

Maxwell and Boltzmann subsystems. We then do an FFT on the simulated time-domain

responses, from which we extract the crosstalk |S21| between the two ports. As can be seen

from Fig. 2.11 , the graphene coating clearly increases the crosstalk effect as compared to

Cu-based counterparts.

51

(a)

(b)

Figure 2.11. Crosstalk S21 of the Cu-G nano-interconnects in Fig. 2.10 . (a)
Magnitude of S21. (b) Phase of S21.

Table 2.1. Propagation Delay vs. Length L
Bare Cu Cu-Graphene

L = 20 µm 9.0011 ps 2.2760 ps
L = 10 µm 2.2513 ps 0.5864 ps
L = 5 µm 0.5629 ps 0.1495 ps

For analyzing the propagation delay in the Cu-G nano-interconnects, we use the same

structure as in Fig. 2.10 . This time, we inject a current source of

ji(t) =

1.09 × 1010 A/m2 7.5 ps < t < 57.5 ps

0 otherwise
.

The resulting port voltages, given in Fig. 2.12 , have a ramp waveform of 50 ps transient time

and 0.12 V maximum voltage, which is compatible with current Complementary Metal–Ox-

ide–Semiconductor (CMOS) technology. The 50% propagation delay between the near-end

and far-end of a single nanowire, and their dependence on the length L of nanowires, are listed

in Table 2.1 . For the 10 nm × 10 nm-thick graphene-encapsulated Cu nano-interconnects,

from length L = 5 µm to L = 20 µm, the propagation delay is only 26% of the bare Cu

52

(a)

50% Propagation Delay

(b)

Figure 2.12. Near end and far end port voltages of a single nano-interconnect.
(a) Single Graphene-encapsulated Cu nano-interconnect in Fig. 2.10 . (b) Bare
Cu counterparts of (a) without graphene coating.

counterparts. The result shows that Cu-G nano-interconnects have a faster data-transferring

speed than that of bare Cu interconnects.

2.6 Comparisons between Proposed Multiphysics Solver and Drude Model Based
Simulation

The key difference between the first-principles based simulation and the Drude-model

based one is their way to deal with the conduction current in graphene. The first-principles

model utilizes the dynamic time-domain response by directly solving Boltzmann equation

(2.1), while the Drude model simplifies the Boltzmann transport theories to a steady-state

conductivity model. The three major assumptions made in the Drude model may no longer be

valid in simulating realistic ultra-scaled Cu-G hybrid nano-interconnects in a high-frequency

setting, as revealed by the numerical examples shown in this Section. Through extensive

numerical experiments, we find that the spatial size and the signal frequency can determine

the difference between the two simulations. First, a spatial size smaller than 100 nm can

significantly increase the spatial variance of σdc extracted from a direct Boltzmann solver,

thus can decrease the reliability of ignoring the spatial variation term v · ∇rf in Boltzmann

equation. Second, a high signal frequency, which is comparable to the back-scattering fre-

53

quency of graphene, can lead to a non-linear response, thus making the linear response based

Drude model less accurate. The effect of simplifying f in k-space is hard to distinguish in

the comparison made here, because part of the effect is already included in σdc, and σdc in

Drude model is provided from our direct Boltzmann solver.

In this section, we simulate a suite of examples to make a comparison between the

first-principles model based simulation and the Drude model based one in analyzing Cu-

G hybrid nano-interconnects. Numerical results indicate that two factors, spatial size and

signal frequency, can determine the difference between the two simulations.

2.6.1 Validation of Both Simulations at DC

We re-simulate the example in Fig. 2.6 that is a graphene ribbon subject to a constant

electric field. In this case, the time domain current density, from equilibrium state to steady

state, has an analytical expression using the Drude model, as derived as follows. From the

inverse Fourier transform, the time-domain counterpart of Drude model σ̃g(ω) = σdc/(1+jωτ)

can be found as

σg(t) = 1
2π

∫ +∞

−∞

σdc

1 + jωτ
ejωtdω = σdc

τ
e−t/τ . (2.43)

Given a constant electric field E, the time domain current density in graphene layer is

jg(t) = σg(t) ∗ E(t) =
∫ +∞

−∞
σg(t − t)E(t)dt

=
∫ t

0

σdc

τ
e−(t−t)/τ E(t)dt = σdcE(1 − e−t/τ),

(2.44)

where ∗ denotes convolution. The above can be used as a benchmark to validate both the

numerical Drude model based simulator and the first-principles based simulator developed

in this work.

In this example, initial f is Fermi-Dirac distribution (2.19), Fermi energy ξF = 0.21 eV,

relaxation time τ = 4×10−11 s, the electric field Ey = 2×103 V/m, dx = 5.4 µm, and dy = 5

µm. Both simulators use the same dt = 1 × 10−12 s. After performing the time marching,

it is found that the current densities obtained from both simulators, as shown in Fig. 2.13 ,

agree very well with each other, and also with the analytical data.

54

Figure 2.13. Surface current density in a graphene layer subject to a constant
electric field Ey.

2.6.2 Simulating Graphene-Encapsulated Cu Nano-Interconnects and Two De-
termining Factors: Feature Size & Signal Frequency

A Cu-Graphene nano-interconnect encapsulated by a single graphene layer on the top,

left and right sides [3] is simulated, whose geometry and discretization are illustrated in Fig.

 2.14 . The Cu interconnect, with W = 10 nm, H = 10 nm, and L = 10 µm, is discretized

into a uniform 10 × 8 × 20 grid. Graphene layers have a relaxation time τ = 2 × 10−11 s

and a Fermi energy ξF = 0.21 eV, based on which we truncate the effective k-space into an

energy range from 0 to 2ξF. Then, we discretize the truncated 2-D k-space with 10 × 20 grid

cells. The extracted surface conductivity of graphene is σdc_2d = 0.2286 S. The Maxwell

computation domain is a box with PEC boundaries at the top and the bottom, and PMC

boundaries at the other four sides. For the aforementioned real space grid, due to the small

spatial feature, conventional conditionally stable methods require about 107 time steps to

finish the simulation of the Maxwell subsystem, and 109 time steps to simulate the Boltzmann

subsystem in the window of a full pulse [38]. However, using the proposed unconditionally

stable algorithm, only 200 time steps are required, where time step is solely determined by

55

𝑗𝑖

FarEnd

NearEnd

Figure 2.14. Geometry and discretization of a Cu-G nano-interconnect. The
cross section of the nano-interconnect is 10 nm × 10 nm. Port voltages at the
near and far end are sampled for analysis.

accuracy as given by (2.42). Furthermore, the same time step is used for simulating both

Maxwell and Boltzmann subsystems.

Determining Factor 1 - Feature Size

Table 2.2. Propagation Delay Predicted by the First-Principles Based Simu-
lation and the Drude Model Based One
Feature Size Bare Cu Cu-G, Drude Cu-G, Proposed
10 nm ×10 nm ×10 µm 2.2513 ps 1.5830 ps 0.5864 ps
100 nm×100 nm×100 µm 2.2513 ps 2.1201 ps 1.8476 ps

We first analyze the propagation delay in the Cu-G nano-interconnect by injecting a

current source of

ji(t) =

1.09 × 1010 A/m2 7.5 ps < t < 57.5 ps

0 otherwise
.

56

Bare Cu

Cu-G_Drude

Cu-G_First-Principles

Near End

Far End

(a)

Bare Cu

Cu-G_Drude

Cu-G_First-Principles

Near End

Far End

(b)

Figure 2.15. Near- and far-end port voltages of a Cu-G nano-interconnect.
The red color is from the first-principles based multi-physics simulation, the
blue color is from the Drude model based simulation, and the black color is
from the simulation of Bare Cu counterparts without graphene coating. All
solid lines represent far-end voltages while dashed and dotted lines represent
near-end voltages. (a) Simulation of the Cu-G nano-interconnect in Fig. 2.14 .
(b) Simulation of a 10 times larger version of the Cu-G interconnect in Fig.
 2.14 .

The resulting port voltages, given in Fig. 2.15 , has a rising time of 50 ps. To show the

effect of spatial size, a small example of 10 nm×10 nm×10 µm and a larger example of

100 nm×100 nm×100 µm are simulated. The small example has a structure shown in Fig.

 2.14 . Its port voltages are plotted in Fig. 2.15 (a). For the larger example in Fig. 2.15

(b), only the spatial size is enlarged by 10 times and all the other settings are the same as

in the small example. The simulated propagation delays from two simulations are listed in

Table 2.2 . For the small example, the Drude model gives a propagation delay three times

larger than the first-principles based multiphysics simulation. For the larger example, the

difference between two simulations becomes much smaller. More experiments show that

100 nm is a good separation criterion, above which two simulations give almost the same

results, whereas below 100 nm two simulations can be very different. Direct observations on

the extracted σdc of the graphene plane show a large spatial variation when the spatial size

is smaller than 100 nm. However, when the spatial size is larger than 100 nm, the extracted

σdc is identical everywhere in the graphene plane. As analyzed above, a major difference

57

between two simulations is the Drude model’s ignoring the spatial variation term v · ∇rf in

Boltzmann equation (2.18).

Determining Factor 2 - Signal Frequency

(a) (b)

Figure 2.16. Time-domain voltage drop (labeled to the right) along the
single Graphene-encapsulated Cu nano-interconnect in Fig. 2.14 . The Gaus-
sian derivative source current is plotted in solid line and labeled to the left.
(a) Comparison between different models. (b) Comparison between different
choice of time step in the proposed first-principles modeling.

To show the effect of a high signal frequency, a Gaussian derivative source current density

is injected from the near end of the structure in Fig. 2.14 . The Gaussian derivative pulse has

a relatively narrow frequency band, which helps the analysis of the difference between the

two simulations. For the injected source current, it has a waveform of ji = −(t − t0)exp[−

(t−t0
τs

)2] × 1016 A/m2, where t0 = 4τs and τs = 2 × 10−11s, the maximal signal frequency of

which is approximately 50 GHz. Here, the relaxation time of graphene is still τ = 2×10−11s,

yielding a back scattering frequency of 50 GHz and a surface DC conductivity σdc_2d = 0.2286

S. The source current and the voltage drop along the single graphene-encapsulated Cu nano-

interconnect are plotted in Fig. 2.16a .

As can be seen from the waveform of voltage drops in Fig. 2.16a , Drude model based

simulation predicts a Gaussian derivative voltage drop that is the same as the waveform of

58

the source current, therefore indicates a pure resistor-like performance. However, the first-

principles model shows an oscillating voltage drop, therefore predicts a full-wave effect for

the graphene-encapsulated Cu nano-interconnect. As for the low frequency comparison, one

example at DC is already shown in Fig. 2.7 , where the Drude model agrees very well with

the first-principles solver.

The reason to the difference caused by a high signal frequency is much more complicated

than that caused by the spatial factor. First, Drude model assumes a linear coupling between

the Maxwell and Boltzmann subsystems by using Ohm’s Law (2.11). However, this is unlikely

to be the case. For example, the nonlinear operation (2.20), an integration of f over k-

space to obtain the current, can directly cause the non-linear coupling between the Maxwell

and Boltzmann subsystems. Second, Drdue model assumes a linear response in Boltzmann

equation by replacing ∂/∂t with jω. The Boltzmann equation has its own characteristic

frequency ωBE determined by the relaxation time τ , which tells how f attenuates to its

steady state. When the signal frequency ωsig, namely the characteristic frequency of Maxwell

subsystem and the electric field, is comparable to the ωBE, the electric field changes so fast

that the f can hardly attenuate to its steady state. As a result, the response of f , governed by

Boltzmann equation (2.18), is not linear. At a high signal frequency, both of the two reasons

given in the above can be important, making the Drude model less accurate. However, at

a low frequency, the two factors are less important as the electric field changes very slowly.

Thus, the Boltzmann equation is subject to an almost constant electric field, giving a linear

response and linear coupling. That’s why we see a good match between two simulations at

a low frequency. The same analysis can be applied to many other steady-state models of

graphene.

We also simulated this example using the time step permitted by a conditionally stable

scheme, and investigated whether our unconditionally stable method is able to produce the

same accurate result while using an orders-of-magnitude larger time step. As can be seen

from Fig. 2.16b , they do agree well with each other. In this figure, the conventional method

uses a time step of 8 × 10−7 ns, while the proposed one uses 8 × 10−4 ns.

It has been shown that the relaxation time of graphene predicted by theory can vary in

a wide range between 0.1 ps and 100 ps. However, as a modeling and simulation method,

59

Figure 2.17. Time-domain voltage drop (labeled to the right) along the single
Graphene-encapsulated Cu nano-interconnect in Fig. 2.10 . The Gaussian
derivative source current is plotted in solid line and labeled to the left.

the proposed work has no restriction on the choice of material parameters. To demonstrate

this point, we also simulated the same example using τ = 1 ps, which is the relaxation time

observed in many experiments. In Fig. 2.17 , we show voltage drops predicted by the proposed

multiphysics solver and the Drude model based simulation in graphene-encapsulated Cu

nano-interconnects. The structure and parameter settings are the same as those in Fig.

 2.10 . The injected source current has a waveform of ji = −(t− t0)exp[−(t−t0
τs

)2]×1016 A/m2,

where t0 = 4τs and τs = 20 ps, the maximal signal frequency of which is approximately 50

GHz. As can be seen from Fig. 2.17 , when the relaxation time of graphene τ = 20 ps, the

two are very different, and the proposed solver captures physics that cannot be captured

in Drude model based simulation. When τ = 1 ps, there still exists a noticeable difference

between a simplified model based analysis and the proposed multiphysics analysis, although

the difference is smaller.

60

2.7 Conclusion

In this work, we propose a multiphysics model for general 3-D Cu-G hybrid nano-

interconnects via co-simulating in time domain Maxwell’s equations, Boltzmann equation

under relaxation time approximation, and the linear dispersion of graphene. We also de-

velop an unconditionally stable simulation algorithm for the proposed multiphysics model,

allowing for the use of an arbitrarily large time step irrespective of the extremely small space

step for simulating nano-interconnects. Numerical experiments and their comparisons with

measurements validate the accuracy and efficiency of the proposed multiphysics modeling al-

gorithm. From the simulated full-wave response in time domain, many essential parameters

of Cu-G nano-interconnects, including electrical conductivity, crosstalk effect, and propaga-

tion delay, can be easily evaluated.

To compare with proposed multiphysics simulation algorithm, another algorithm using a

simplified Drude model together with the FDTD is also developed. The differences between

two algorithms are theoretically analyzed by examining the assumptions and simplifications

made in the Drude model. Moreover, we also study the differences via numerical experiments

performed on the graphene-encapsulated Cu nano-interconnects. From our analysis, an on-

chip Cu-graphene hybrid system, featuring a high operating frequency and a sub - 10 nm

dimension, requires a more accurate first-principles based modeling and simulation algorithm

so that the dynamic coupling between graphene and electromagnetic fields can be accurately

captured. In the future, more physics effects, such as the intraband transition in graphene

and the surface scattering at the Cu-graphene interface, can be included to further enrich

the multiphysics model and enhance the prediction power.

61

3. A NON-OVERLAPPING DOMAIN DECOMPOSITION

PARALLEL ITERATION SCHEME OF NONUNIFORM

FINITE DIFFERENCE METHOD FOR LARGE-SCALE

ON-CHIP SIMULATION

3.1 Introduction

High-frequency integrated circuit (IC) design imposes many modeling challenges to elec-

tromagnetic analysis, including conductor loss, large numbers of dielectric stacks, strong

non-uniformity, the presence of substrate, large numbers of conductors, large aspect ratio,

broadband, and 3-D complexity. Almost every challenge increases the number of unknowns,

and hence the problem size one needs to solve when tackling an IC problem. To date, the

fastest partial-differential-equation (PDE) based solvers scale as O(N) in both memory com-

plexity and computational complexity. This performance is generally regarded as the limit

that one can achieve in computational electromagnetics (CEM). However, since the number

of unknowns N is big in IC analysis even for a circuitry of a modest size, the current per-

formance of CEM techniques is still insufficient when tackling a realistic IC design problem

that can involve billions of unknowns.

To further increase the simulation capacity, a parallel domain decomposition method

(DDM) can be deployed utilizing distributed computational resources. The idea of DDM,

since it was first proposed to solve PDEs by Schwarz in 1869, has evolved into an important

computational approach in numerical simulation [17]. Essentially, the DDM is a divide-

and-conquer algorithm. To solve a PDE, the DDM decomposes the whole computational

domain into smaller overlapping or non-overlapping subdomains as shown in Fig. 3.1 , solves

each subdomain individually, then recombines local solutions to provide a global solution.

The DDM is primarily used 1) to simplify mesh generation for complicated geometries,

such as performing a local mesh refinement and following moving components, and 2) as an

indispensable parallel scheme especially for multiscale and multiphysics problems.

Looking back the history, the DDM-based parallelization has been widely used in PDE-

based CEM solvers. The conventional Yee’s finite-difference time-domain (FDTD) method

62

has a simple iterative scheme and naturally high parallelism, therefore, can be parallelized

with DDM for various applications [39], [40]. However, the time step of Yee’s FDTD is

limited by the Courant–Friedrichs–Lewy (CFL) stability condition, which requires way too

many time steps to finish an on-chip simulation. To eliminate the restriction on time step,

several implicit temporal difference schemes have been developed in recent years, such as

alternating direction implicit FDTD (ADI-FDTD) method [41], locally 1-D FDTD (LOD-

FDTD) method [42], Laguerre-FDTD method [43], and Crank–Nicolson FDTD (CN-FDTD)

method [44]. Both the ADI-FDTD method and LOD-FDTD method involve the solution

of tri-diagonal systems along the three directions of Cartesian coordinate, and their parallel

implementations with DDM have been introduced in [45] and [18]. Despite higher com-

putational efficiency, the ADI-FDTD method and LOD-FDTD method suffer from worse

accuracy as the time step increases [46], [47]. The Laguerre-FDTD method can be paral-

lelized with conformal DDM [48] and nonconformal DDM [19]. The CN-FDTD method has

a second order accuracy in both time and space, and has been parallelized with DDM in

[49]. At every time step, both the Laguerre-FDTD method and CN-FDTD method need to

solve a large sparse matrix equation. Corresponding parallel DDMs [19], [48], [49] solve this

large matrix with block Gaussian elimination, where Schur complements can be computed

in parallel. DDMs have also been developed in the finite-element method (FEM) [50]–[53].

The parallelization in DDMs is achieved mainly in two approaches. The first approach is

the Schur complement and block Gaussian elimination, which preserves the exact coupling

among subdomains in a mathematically rigorous manner. In this approach, the global sys-

tem matrix is rearranged to separate 1) interior-interior coupling blocks, 2) interior-interface

coupling blocks, and 3) interface-interface coupling blocks. Then, Schur complements rela-

tive to interface unknowns can be computed in parallel. After a block Gaussian elimination,

the original computational system can be reduced to a much smaller size only containing

interface unknowns, therefore can be solved more easily. However, when many subdomains

and higher levels of eliminations are needed for on-chip simulation, second and higher levels

of eliminations require Schur complements on a dense matrix [51], which can be very expen-

sive when the interface is large. The second approach is to use transmission conditions to

break the coupling among subdomains meanwhile maintaining the continuity of solution and

63

flux (normal derivative of solution). As a result, subdomains can be solved in parallel. The

transmission conditions are boundary conditions on the interfaces that exchange solutions

between subdomains. Dirichlet conditions, Neumann conditions, and Robin conditions are

commonly employed transmission conditions [17]. However, many transmission conditions

may not be enforced strictly but approximately, e.g., via minimization of the residual between

the different subdomains [54]. Also, the convergence of this approach depends on the equa-

tion parameters, the interface conditions, the overlap size, and the shapes and sizes of the

subdomains, therefore can be difficult to predict and control in practice. As a consequence,

the second approach used as a solver can suffer from slow or even a lack of convergence [55].

Figure 3.1. Space domain partition of two subdomains Ω1 and Ω2. Two
subdomains can overlap as in (a) or connect with each other only at their
interfaces as in (b).

In this work, we propose a new non-overlapping parallel DDM for finite difference method

(FDM). Different from conventional DDMs where only the system matrix is partitioned

to decouple subdomains, our proposed DDM partitions both the system matrix and the

interface field according to contributions from each subdomain. For example, in a two-

subdomain system in Fig. 3.1 (b), two subdomains Ω1 and Ω2 overlap only at the interface

Γ. Let corresponding solutions from each subdomain at the interface be x1,Γ and x2,Γ, and

the global solution at the interface be xΓ. Then, conventional DDMs use

xΓ = x1,Γ = x2,Γ

64

to guarantee the continuity of solution. However, our proposed DDM uses

xΓ = x1,Γ + x2,Γ,

where the physical meaning of xi,Γ here is the contribution from i-th region. In this way,

our proposed DDM can preserve the coupling among subdomains while avoiding a Schur

complement and block Gaussian elimination. Also, no approximated transmission condition

is needed at the interface. The key idea of our proposed DDM is to disassemble the numerical

finite difference system and extract each subdomain’s contribution to both the system matrix

and the interface field. This can be done readily using a path-based single-grid formulation for

FDM [29], from which, we can clearly decouple the physical interactions among subdomains

and extract a clean subsystem to solve independently. Note that our proposed DDM is

also different from pure domain decomposition preconditioner where only a frontal matrix

is generated according to DDM. In this work, to reduce the overall unknown number, a

nonuniform FDM is used so that fine discretizations are employed only when necessary. Our

proposed DDM can be applied to FDM in both frequency domain and time domain. In

time domain, to allow for a large time step for on-chip simulation, we use an unconditionally

stable backward-difference based FDTD [20]. Extensive numerical examples are simulated

to demonstrate the capability of the proposed parallel solver in both frequency domain and

time domain.

3.2 Theory of the Parallel Solver

3.2.1 Review of Patch-Based Single-Grid FDTD Formulation

First, we provide a brief review of the patch-based single-grid FDTD formulation, which

is developed in [29]. It is used in this work to facilitate the development of a non-overlapping

domain decomposition parallel iteration scheme, as this formulation reveals clearly how the

submatrices in different regions are assembled in an FDTD to build a global system matrix.

65

The formulation is valid for both 2- and 3-D grids. Let {e} be a global electric field

unknown vector of length Ne, and {h} being a global magnetic field unknown vector of

length Nh. The FDTD can be written into the following form:

Se{e} = −Dµ{ḣ}, (3.1)

Sh{h} = Dε{ė} + Dσ{e} + {js}, (3.2)

where a dot above a letter denotes the first-order time derivative, {js} represents a current

source vector, and Dµ, Dσ and Dε are diagonal matrices of permeability, conductivity, and

permittivity respectively.

Based on the patch-based single-grid formulation, each row of Se in (3.1) corresponds to

one patch in the grid, and when multiplied by {e}, it produces the magnetic field located at

the patch center and normal to the patch. Take the i-th row of Se as an example, it can be

written as

S(i)
e = {− 1

Li
,

1
Li

,
1

Wi
, − 1

Wi
} ⊕ zeros(1, Ne), (3.3)

which has only four nonzero elements, and Li and Wi are the two side lengths of the i-th patch.

A reference normal direction is defined for every patch, which is also H’s reference direction

on the patch. Using the right hand rule, with the right thumb pointing to the reference

normal direction, if the electric field edge’s direction is along the direction encircling the

normal direction, then a plus sign is used; otherwise, a negative sign appears in (3.3). The

⊕ denotes an extended addition by adding the four nonzero elements upon a zero vector

of length Ne, based on the global indexes of the four electric field unknowns on the patch.

Similarly, for the i-th patch, we generate a column vector

S(i)
h = {− 1

La1
i

,
1

La2
i

,
1

W a1
i

, − 1
W a2

i
}T ⊕ zeros(Ne, 1), (3.4)

where La1
i or La2

i are the averaged side length of the i-th patch with its left neighbor patch

or right neighbor patch. The plus sign or negative sign is determined by the same right

66

hand rule as that in S(i)
e . Similarly, W a1

i or W a2
i are the averaged side length along the

other direction. When the mesh is uniform, S(i)
h is nothing but the transpose of (3.3), thus

Sh = ST
e . As can be seen, a column i of Sh has also at most four nonzero entries, located at

the rows corresponding to the four electric fields of patch i.

Eliminating {h} from (3.1) and (3.2), we obtain

Dε{ë} + Dσ{ė} + S{e} = −{j̇s}, (3.5)

where S can be represented as

S = ShDµ−1Se =
Nh∑
i=1

µ−1
i

(
S(i)

h

)
Ne×1

(
S(i)

e

)
1×Ne

, (3.6)

which is a sum of the rank-1 matrix S(i)
h S(i)

e over all the patches.

3.2.2 Disassemble Contributions of Subdomains

From (3.5) and (3.6), we can analyze how the equations in different subdomains are

assembled in the FDTD to simulate the entire problem. Consider two subdomains, (3.5) can

be rewritten as

Dε{ë} + Dσ{ė} = −
[
Sh,1Dµ−1

1
Se,1 + Sh,2Dµ−1

2
Se,2

]
{e}, (3.7)

where Sh,1(2) has all the column vectors generated from the patches in subdomain 1 (2),

and Se,1(2) comprises all the row vectors from the patches in subdomain 1 (2). Here, the

source term is omitted to focus on the assembling mechanism in the FDTD. As can been

seen, the total S is an addition of each subdomain’s S, which is the same as the assembling

procedure in a finite-element method (FEM). Each patch’s S is assembled to obtain a global

S based on the index of a global unknown vector. However, the Dε and Dσ are not added

up from each subdomain’s contribution. They are diagonal matrices, whose entries are the

permittivity or conductivity at the corresponding e’s location. Shall they be assembled from

67

each patch’s contribution like that in a finite-element method, then the diagonal entry would

be a multiple of the permittivity or conductivity.

Based on (3.7), we can express the electric filed unknown as the addition of two contri-

butions: one is from subdomain 1, expressed by the first term of the right hand side of (3.7);

the other is from subdomain 2, represented by the second term. Hence, we can rewrite (3.7)

as a two-row system:

Dε{ë}1 + Dσ{ė}1 = −Sh,1Dµ−1
1

Se,1{e} (3.8)

Dε{ë}2 + Dσ{ė}2 = −Sh,2Dµ−1
2

Se,2{e}, (3.9)

with

{e} = {e}1 + {e}2, (3.10)

which stitches the two subdomains together. Neither {e}1 nor {e}2 provides a complete

solution of {e}. This is because for an interface e unknown between subdomain 1 and

subdomain 2, (3.8) yields the curl of H from domain 1 patches, and (3.9) generates the curl

of H from domain 2 patches, and the addition shown in (3.10) is required to complete the

whole curl of H operation to produce the electric field on the interface.

Algorithm 2 Disassemble contribution {e}i and Si in i-th subdomain
1: for every subdomain, subdomain index i := 1 to p do

2: Re-index all Nei edges (unknowns) in i-th subdomain as a vector {e}i

3: for every patch in i-th subdomain, patch index j := 1 to Nhi do

4: Generate S(j)
e at j-th patch as in (3.3)

5: Generate S(j)
h at j-th patch as in (3.4)

6: if j-th patch is on the interface and shared by another subdomain then

7: Divide S(j)
h by 2

8: end if

9: end for

10: Assemble Si =
Nhi∑
j=1

µ−1
j

(
S(j)

h

)
Nei ×1

(
S(j)

e

)
1×Nei

over all Nhi patches in i-th subdomain

11: end for

68

Generally, when the entire computation domain is partitioned into p subdomains, we can

rewrite (3.5) by contributions from each subdomain

Dε1{ë}1 + Dσ1{ė}1

...

Dεp{ë}p + Dσp{ė}p

+

S1 · · · S1
...

Sp · · · Sp

{e}1

...

{e}p

= −

{j̇s}1

...

{j̇s}p

, (3.11)

with entire domain solution

{e} = {e}1 + · · · + {e}p. (3.12)

Here, {e}i is the contribution to solution vector {e} from i-th subdomain and it only includes

Nei edges (unknowns) residing in this local subdomain. Notice that one edge can be shared

by m subdomains, in which case, the solution at this edge should be the sum of those

m {e}is. Because each subdomain has its own indexing for edges in {e}i, one need to

carefully find the correct index of this shared edge. Dµi , Dσi and Dεi are local diagonal

matrices of permeability, conductivity, and permittivity respectively in i-th subdomain. Si =

Sh,iDµ−1
i

Se,i, where Sh,i has all the column vectors generated from the patches in domain i,

and Se,i comprises all the row vectors from the patches in domain i. Because of the way

that stiffness matrix S is assembled in (3.6) in patch-based single-grid FDTD, we can clearly

extract the contribution Si in i-th subdomain.

The pseudo-code to disassemble contributions of subdomains is shown in Algorithm 2 .

In equation (3.11) and Algorithm 2 , we choose to disassemble {e}i and Si in i-th subdomain

into local size Nei . Actually, a straight forward way is to keep the size of {e}i and Si as

the original Ne, which is the number of all unknowns in the entire domain. In keeping the

original size Ne, only a few all zeros rows or columns are included and there is no need

to give special consideration for interface edges. Also, summing up the rows in (3.11) can

directly recover the Maxwell’s equations in the entire domain. However, those extra rows and

columns can significantly downgrade the performance of LU factorization on the local system

in the subsequent parallel solver. Therefore, we still choose to disassemble to local size Nei ,

where {e}i is a vector of size Nei × 1 and Si is a sparse matrix a size Nei × Nei . Note that

the different local sizes immediately mathematically invalid the block matrix-vector product

69

Si{e}j in (3.11) when subdomain index j 6= i. However, the physical meaning of Si{e}j is

simply that the solution contribution {e}j at j-th subdomain will change the solution at i-th

subdomain. Because of the locality of curl-curl operator in finite difference method, only

interface edges have contribution in Si{e}j. We can mathematically obtain the result of

Si{e}j by reducing the original form of Si{e}j when both Si and {e}j are defined by entire

unknown size Ne. Equivalently, what one need to do with the off-diagonal blocks in (3.11)

is to separate

S1 · · · S1
...

Sp · · · Sp

{e}1

...

{e}p

=

S1{e}1

...

Sp{e}p

+

0 · · · S1
...

Sp · · · 0

{e}1

...

{e}p

, (3.13)

where the first term in right hand side comes from diagonal block matrices and represents

the interaction of each subdomain to itself. The second term in right hand side comes from

off-diagonal block matrices and represents the interaction with all neighbor subdomains. So,

we can define the interaction with all neighbor subdomains as

{bns}1

...

{bns}p

=

0 · · · S1
...

Sp · · · 0

{e}1

...

{e}p

=

S1{einterface}1

...

Sp{einterface}p

, (3.14)

with

{einterface}i =
p∑

j=1,j6=i
{e}j, (3.15)

which is later cascaded into corresponding edges in i-th subdomain. The {einterface}i is a

vector of size Nei × 1 and represents the e’s contributions from all neighbor subdomains. To

implement (3.15), one can first identify the m interface edges in i-th subdomain, then collect

all neighbor subdomains’ contribution {e}j at those m edges, the sum of which becomes cor-

70

responding m nonzero values in vector {einterface}i. As a result, we can avoid mathematically

invalid Si{e}j and transform (3.11) to

Dε1{ë}1 + Dσ1{ė}1 + S1{e}1

...

Dεp{ë}p + Dσp{ė}p + Sp{e}p

= −

{bns}1 + {j̇s}1

...

{bns}p + {j̇s}p

. (3.16)

Here, each row represents one subdomain, which already shows a high potential to be par-

alleled.

The disassembling of {e}i and Si in i-th subdomain is mathematically rigorous without

any approximation. What’s more, the physical interactions among subdomains through curl

of H are clearly revealed in the disassembled system (3.16). All those are necessary to have

a fast convergence of the proposed parallel iterative solver.

3.2.3 Parallel Iteration Scheme in Frequency Domain

In frequency domain, simply replace all ∂
∂t

= jω, then (3.16) becomes

(ω2Dε1 − jωDσ1 − S1){e}1

...

(ω2Dεp − jωDσp − Sp){e}p

=

{bns}1 + jω{js}1

...

{bns}p + jω{js}p

. (3.17)

The Ai = ω2Dεi − jωDσi − Si is the local system matrix in the i-th subdomain. Ai can be

generated locally according to Algorithm 2 . Compared to the system matrix A of the entire

domain, after partitioning into many small subdomains, Ai can have a much smaller matrix

size thus is much cheaper to solve. Besides, formula (3.17) allows solving each subdomain

in parallel, where the communication among neighbor subdomains is only {bns}i at interface

edges. The communication cost is just passing interface {e}i to its neighbor subdomains, thus

71

the parallel overhead is not very large. According to above analysis on (3.17), we propose

such a parallel iteration scheme:

{e}nIter+1

1
...

{e}nIter+1
p

=

A−1

1 ({bns}nIter
1 + jω{js}1)

...

A−1
p ({bns}nIter

p + jω{js}p)

, (3.18)

where nIter means the iteration step. In i-th subdomain, Ai = ω2Dεi − jωDσi − Si is local

system matrix, {bns}nIter
i = Si{einterface}nIter

i is the interaction with all neighbor subdomains

at nIter-th iteration step. For on-chip problems, a good initial guess to start the iteration

is {e} = 0.

We use relative residual of (3.18) as the convergence criterion. To make the relative

residual clear, we can let

Ã = diag(A1, · · · , Ap), {b}nIter
i = {bns}nIter

i + jω{js}i, (3.19)

and

{ẽ}nIter =

{e}nIter

1
...

{e}nIter
p

, {b̃}nIter =

{b}nIter

1
...

{b}nIter
p

. (3.20)

Then, the iteration in (3.18) is simply

Ã{ẽ}nIter+1 = {b̃}nIter. (3.21)

So, a natural definition of relative residual with Euclidean norm is

relaRes_b =

∥∥∥{Ã{ẽ}nIter+1 − {b̃}nIter+1
∥∥∥∥∥∥{b̃}nIter+1

∥∥∥ =

∥∥∥{b̃}nIter − {b̃}nIter+1
∥∥∥∥∥∥{b̃}nIter+1

∥∥∥ . (3.22)

72

In parallel coding, to save communication cost, instead of collecting the entire vector {b̃}nIter

from all subdomains, a cheaper way is to only collect
∥∥∥{b̃}nIter+1

i

∥∥∥ and
∥∥∥{b̃}nIter

i − {b̃}nIter+1
i

∥∥∥
from subdomain i. Then, under Euclidean norm,

∥∥∥{b̃}nIter+1
∥∥∥ =

√√√√ p∑
i=1

∥∥∥{b̃}nIter+1
i

∥∥∥2
. (3.23)

Similar trick can be used to get
∥∥∥{b̃}nIter − {b̃}nIter+1

∥∥∥. In our implementation of the parallel

iterative solver (3.18), we also limit the maximum number of iterations. Thus, we stop the

iteration when

relaRes_b < 10−3 or nIter > 200. (3.24)

To compare with the proposed parallel solver, a direct solver in frequency domain directly

solve

(ω2Dε − jωDσ − S){e} = jω{js}, (3.25)

where all matrices and vectors are in the entire domain. Most direct matrix solvers like

the PARDISO function in Intel MKL library and the backslash in Matlab will first LU

factorize the system matrix, then solve much cheaper L matrix and U matrix. Because

LU factorization for non-symmetric system matrix in (3.25) is not scaling that well as seen

in later numerical experiments, the proposed parallel solver can save a lot of time by LU

factorizing many much smaller system matrices in parallel.

3.2.4 Parallel Iteration Scheme in Time Domain

The idea that partitioning the entire domain into smaller subdomains then solving smaller

system matrices in parallel can also be applied to time domain finite difference solvers. In

time domain simulation, many unconditionally stable FDMs, such as CN-FDTD [44] and

backward-difference based FDTD [20], reply on solving a big matrix to get rid of the limit

of the small CFL time step. We find that backward-difference based FDTD can adopt a

similar parallel iteration scheme as the frequency domain one in (3.18).

73

An unconditionally stable backward-difference based FDTD [20] discretizes time domain

Maxwell’s equations (3.5) into

Dε({e}n+1 − 2{e}n + {e}n−1) + ∆tDσ({e}n+1 − {e}n) + ∆t2S{e}n+1 = −∆t2{j̇s}n+1, (3.26)

where ∆t is the time step and n means n-th time instant. By putting the latest time instant

{e}n+1 on the left hand side, we obtain the time marching

(Dε + ∆tDσ + ∆t2S){e}n+1 = (2Dε + ∆tDσ){e}n − Dε{e}n−1 − ∆t2{j̇s}n+1. (3.27)

A direct solver in time domain will factorize the asymmetric system matrix Dε+∆tDσ+∆t2S

then solve the factorized matrices. However, as analyzed before in frequency domain, the

factorization can be very expensive in terms of memory and CPU time for super large system

matrix. So, a parallelization based on the dissembled system matrix can also be applied here.

Table 3.1. One-on-One Mapping between Time Domain and Frequency Domain
Time Domain in (3.27) Frequency Domain in (3.25)

solution {e}n+1 {e}
system matrix A Dε + ∆tDσ + ∆t2S ω2Dε − jωDσ − S
stiffness matrix ∆t2S −S

right hand side (2Dε + ∆tDσ){e}n−
Dε{e}n−1 − ∆t2{j̇s}n+1 jω{js}

Due to the similarity between the time marching (3.27) in time domain and the dominant

equation (3.25) in frequency domain, we can solve each time step in (3.27) with a similar

parallel iteration scheme as (3.18). To get the parallel iteration scheme in time domain, we

only need to do a one-on-one mapping between time domain (3.27) and frequency domain

(3.25). The mapping is listed in Table 3.1 . Let’s define the right hand side of (3.27) as

{rhs}n+1 = (2Dε + ∆tDσ){e}n − Dε{e}n−1 − ∆t2{j̇s}n+1, (3.28)

74

which can be viewed as a constant vector when iteratively solving {e}n+1. After a one-on-one

mapping from the frequency domain parallel iteration scheme (3.18), we have such a time

domain parallel iteration scheme to solve {e}n+1 at (n + 1)-th time instant:

{e}nIter+1,n+1

1
...

{e}nIter+1,n+1
p

=

A−1

1 ({bns}nIter,n+1
1 + {rhs}n+1

1)
...

A−1
p ({bns}nIter,n+1

p + {rhs}n+1
p)

. (3.29)

Here, (n + 1) denotes the time instant and nIer denotes the iteration step. During the

iteration, all time-related terms have the same time instant (n + 1). Only when moving

to the next time instant, will the {rhs} be updated. In i-th subdomain, the terms in time

domain iteration (3.29) are summarized here:

Ai = Dεi + ∆tDσi + ∆t2Si,

{bns}nIter,n+1
i = −∆t2Si{einterface}nIter,n+1

i .

{einterface}nIter,n+1
i =

p∑
j=1,j 6=i

{e}nIter,n+1
j ,

{rhs}n+1
i = (2Dεi + ∆tDσi){e}n

i − Dεi{e}n−1
i − ∆t2{j̇s}n+1

i .

Because the field distribution typically will not change dramatically between two time

steps, the solution at previous time step is used as the initial guess to start the iteration in

(3.29). Because the initial guess is already close to the solution, the number of iterations is

not large. From our numerical testing, most iterations can converge to relaRes_b < 10−3

within 20 iterations.

The proposed parallel iterative solver in time domain is still unconditionally stable thus

allows a large time step. Also, since only much smaller local system matrices are solved in

parallel, both memory and CPU time can be saved relative to a direct solver.

75

3.3 Numerical Results in Frequency Domain

Next, we show numerical results in both frequency domain and time domain. In all those

examples, when the entire computational domain is partitioned into p subdomains, p CPUs

are used so that each CPU only solves one subdomain with single thread. Both the parallel

solver and the direct solver are run in a server where 20 CPUs and 256 GB shared memory are

available. The direct solver solves the entire system matrix with LU factorization, whereas

our proposed parallel solver only solves system matrix A in each subdomain. The direct

solver uses Matlab built-in function backslash, whereas parallel solver uses ”spmd” in Matlab.

3.3.1 Accuracy and Convergence

(a) (b)

Figure 3.2. Amplitude and phase of S21 of the test chip interconnect.

We first validate the accuracy of the parallel solver by solving the test-chip interconnect

example in Fig. 2.4 . The same port 1 and port 2 are used. This time, a non-uniform

mesh is used. Along stack growth direction z, 7 stacks are discretized into mesh sizes

Nz = [3, 3, 7, 3, 2, 2, 3] from bottom to top. The 100 µm-long interconnect is padded with

30 µm-long air at front and back. The 100 µm length along y is discretized into Ny = 20,

and each 30 µm air padding is discretized into Ny = 6. The central wire is discretized into

Nx = 10 along x direction. In the parallel solver, the entire structure is equally partitioned

76

into 6 subdomains (regions) along y direction. As shown in Fig. 3.2 , the obtained S21 from

parallel solver matches very well with reference results. In Fig. 3.3 (a), the relaRes_b of

the entire domain solution quickly converges to a very small value. Fig. 3.3 (b) shows that,

for this example, every subdomain has its own relaResi_b converged at a similar speed as

that of the entire domain solution, even through the subdomains far from excitation should

have worse accuracy.

(a) (b)

Figure 3.3. Convergence in terms of relaRes_b of the test chip interconnect at 1 GHz.

3.3.2 Speed up Relative to Direct Solver

Table 3.2. Structure information and run time of logic gates inv, nand2, and xor
Structure info Direct solver Parallel solver, (time: LU + iteration)
Nedge Ncelly entire domain 4 CPUs 10 CPUs 20 CPUs

inv 113,664 79 116.3 s 17.4+17.9 s 2.02+16.8 s 1.26+32.4 s
nand2 672,759 98 1257 s 162+804 s 21.4+258 s 3.34+171 s

xor 679,578 99 1605 s 154+800 s 20.7+232 s 3.17+177 s

We then simulate three standard logic gate examples as in Fig. 3.4 . The frequency is 1

GHz and the structure information of those logic gates is in Table 3.2 . The direct solver solves

the system matrix of the entire computational domain using 1 CPU and all 256 GB memory.

The parallel solver equally partitions the logic gate along y direction into p subdomains,

77

(a) (b) (c)

Figure 3.4. Layout structure of logic gate examples. (a) ”inv”, an inverter
(NOT gate). (b) ”nand2”, a NAND gate. (c) ”xor”, a XOR gate.

where each domain is assigned to 1 CPU to solve. The parallel solver first factorizes local

system matrix then iterates until convergence. The time of both LU and iteration is given

in Table 3.2 , from which we can see a sharp decrease of LU time when more subdomains

(CPUs) are used in parallel solver. However, as p becomes larger, the communication cost

might also increase. The speedup of the parallel solver relative to direct solver is plotted in

Fig. 3.5 (a). The speedup no long increases with num of CPUs in ”inv” example because

the parallel overhead (communication time) becomes larger in this relative small example.

Fig. 3.5 (b) shows the convergence of each logic gate in terms of relaRes_b when p = 10.

3.4 Numerical Results in Time Domain

In this section, we show numerical experiments in time domain.

3.4.1 Accuracy

To show the accuracy of the proposed parallel solver, we first simulate logic gate example

”inv” and ”nand2” in time domain. The same discretization of logic gates is used as in Table

78

(a) (b)

Figure 3.5. Logic gate examples in Fig. 3.4 . (a) speed up relative to direct
solver. (b) convergence in terms of relaRes_b.

 3.2 . The parallel solver partitions the structure into 10 subdomains and uses 10 CPUs to

solve it. At each time step, limit the maximum number of iteration to be Niter = 20 and

set convergence criterion as relaRes_b = 10−4. The logic gate is excited with Gaussian

derivative source current density js = −(t − t0)exp[− (t−t0
τs

)2] A/m2 (t0 = 4τs, τs = 2 × 10−11

s). The time window 8τs of the pulse is equally discretized into 200 time steps according to

sampling theorem. Then, the voltage drop between two selected ports or the port voltage

relative to ground PEC is plotted in Fig. 3.6 , where the response from parallel solver matches

very well with that from direct solver.

Table 3.3. Structure information and run time of example Intel 4004 processor
Intel 4004 Structure info Direct solver Parallel solver

Nedge Ncelly LU 200 time steps LU 200 time steps
Coarse mesh 1,157,768 262 465 s 1155 s 5.0 s 2023 s
Finer mesh 7,240,090 657 LU out of memory 55.6 s 12401 s

The last example is an Intel 4004 processor (a 4-bit central processing unit), the layout

of which is shown in Fig. 3.7 . It has 7 layers and over 86,220 objects. A coarse discretization

results in 1,157,768 unknowns and a finer discretization results in 7,240,090 unknowns. The

conventional FDTD fails to simulate this example in a feasible run time because of the

79

“inv”

(a)

“nand2”

(b)

Figure 3.6. Time domain source current and voltage in logic gate example
(a) ”inv” and (b) ”nand2”.

requirement of a small time step 10e-17 s for stability. A Gaussian derivative source current

is used and discretized into 200 time steps. Limited to the hardware capacity of our server

(20 CPUs, 256 GB memory), the parallel solver partitions the structure into 20 subdomains

and uses all 20 CPUs. The run time is shown in Table 3.3 . The direct solver can barely

solve the example in coarse mesh and fails in finer mesh (7 million unknowns). Compared to

the direct solver, the parallel solver has a smaller memory requirement, thus can still handle

the example in finer mesh. The simulated port voltage is plotted in Fig. 3.8 . In coarse

mesh where both parallel solver and direct solver can run through, their simulated responses

match very well with each other.

3.4.2 Scaling Performance

Here, we show the scaling performance of the parallel solver using previous examples

including Intel 4004 processor and logic gates ”inv”, ”nand2”, and ”xor”. A full time domain

simulation uses 200 time steps. At each time step, the parallel solver uses iteration to find

the accurate solution, where the convergence criterion is set as relaRes_b = 10−3. Also,

the maximum number of iteration is limited to Niter = 20 for the first 66 time steps and

Niter = 10 for the rest of time steps. In such a way, we can reduce the accumulation of

80

Figure 3.7. Layout structure of Intel 4004 processor.

numerical error at early time steps while not increase the run time too much. The run time

at different examples are plotted in Fig. 3.9 . In Fig. 3.9 (a), when more subdomains are

partitioned into and more CPUs are used, the run time of parallel solver decreases. For

smaller example like ”inv”, the run time first decreases then increases because the parallel

overhead and communication cost are larger when more CPUs are used. From the data in

Fig. 3.9 (b), we can see that, when the number of unknowns is smaller than 10 million, the

81

(a) (b)

Figure 3.8. Time domain source current and port voltage in Intel 4004 pro-
cessor. (a) A coarse mesh is used. (b) A finer mesh is used.

(a) (b)

Figure 3.9. Scaling performance of the TD parallel solver.

parallel solver has a linear run time complexity ∼ O(Nedge) with respect to number of edges

(unknowns).

3.5 Conclusion

A non-overlapping domain decomposition parallel algorithm for finite-difference method

is developed in this work, which enables simple parallelization by solving each subdomain

and adding back contribution from neighbor subdomains. The proposed parallel solver can

82

overcome the large memory complexity of LU factorization while maintaining a controllable

accuracy, thereby enables the simulation of large-scale on-chip IC structures.

83

4. SPLIT-FIELD DOMAIN DECOMPOSITION PARALLEL

ALGORITHM WITH FAST CONVERGENCE FOR

ELECTROMAGNETIC ANALYSIS

4.1 Introduction

A parallel domain decomposition method (DDM) [17] is popular in solving large-scale

problems. Essentially, the DDM is a divide-and-conquer algorithm. To solve a partial

differential equation (PDE), the DDM decomposes the whole computational domain into

smaller overlapping or non-overlapping subdomains, solves each subdomain individually,

then recombines local solutions to provide a global solution.

In open literature, the DDM-based parallelization has been widely used in the PDE-based

CEM solvers. The conventional Yee’s finite-difference time-domain (FDTD) method has a

simple iterative scheme and naturally high parallelism, therefore, it can be paralleled with

DDM for various applications [39], [40]. However, the time step of Yee’s FDTD is limited

by the Courant–Friedrichs–Lewy (CFL) stability condition, which requires way too many

time steps to finish a full-package simulation. To eliminate the restriction on the time step,

several implicit temporal difference schemes have been developed in recent years, such as

alternating direction implicit FDTD (ADI-FDTD) method [41], locally 1-D FDTD (LOD-

FDTD) method [42], Laguerre-FDTD method [43], and Crank–Nicolson FDTD (CN-FDTD)

method [44]. Both the ADI-FDTD method and LOD-FDTD method involve the solution of

tri-diagonal systems along the three directions of Cartesian coordinates, and their parallel

implementations with DDM have been introduced in [45] and [18]. However, despite higher

computational efficiency, the ADI-FDTD method and LOD-FDTD method suffer from worse

accuracy as the time step increases [46], [47]. The Laguerre-FDTD method is an order-

marching method that can be paralleled with conformal DDM [48] and nonconformal DDM

[19]. The CN-FDTD method has a second order accuracy in both time and space, and has

been paralleled with DDM in [49]. At every time step, both the Laguerre-FDTD method and

CN-FDTD method need to solve a large sparse matrix equation. The Schur-based parallel

DDMs [19], [48], [49] solve this large matrix with a block Gaussian elimination, where each

84

cascaded subdomain can be computed in parallel. DDMs have also been presented in finite-

element method (FEM) in both frequency and time domain [50]–[53].

Among existing DDM-based methods, the parallelization is achieved mainly in two ap-

proaches. The first approach is a direct solver using Schur complement. The major com-

putational cost of this approach is the dense system of interface unknowns. The second

approach is an iterative solver that applies transmission conditions on the interfaces to ex-

change solutions between subdomains. However, the convergence of this approach is problem

dependent.

One common feature in existing DD methods is that the interface field is treated as a

whole, and shared in common by adjacent subdomains. The transmission condition can be

formulated using tangential E, tangential H, or their weighted sum on the interface. The

interface fields can be viewed as the sources of each subdomain. Given an interface field, the

unknowns inside the subdomains are solved in sequential or in parallel, which is essentially

how the overall work is partitioned into each subdomain to solve.

In this work, we develop a new split-field DDM. Different from existing methods, we split

the interface field e into multiple components, for example, e = e1 + e2 + ... + em, and let

subdomain 1 compute e1, subdomain 2 compute e2, etc. The resulting system allows for

a natural partition into fully decoupled subsystems. Meanwhile, since each subdomain is

not just using interface e as a boundary condition, but also computing part of its solution,

a fast convergence can be achieved. We theoretically analyze the convergence of the new

DD method, and find it is guaranteed. The communication cost is minimal only involving

an addition of interface unknowns at each time step, and hence a communication between

adjacent subdomains on a small set of interface unknowns. The proposed DDM algorithm

has the advantages of both direct and iterative solutions.

The rest of this chapter is organized as follows. In Section 4.2 , we present the preliminaries

of this work. In Section 4.3 , we elaborate the proposed DD method. In Section 4.4 , we discuss

details of a parallel implementation. A suite of on-chip and package simulations are then

carried out to validate the proposed method in Section 4.5 .

85

4.2 Preliminaries

A PDE-based solution of time domain Maxwell’s equations results in the following system

of equations

Dε
∂2{e}
∂t2 + Dσ

∂{e}
∂t

+ S{e} = −∂{js}
∂t

. (4.1)

If discretized in time using a backward difference, we obtain [20]

(Dε + ∆tDσ + ∆t2S){e}n+1 =

(2Dε + ∆tDσ){e}n − Dε{e}n−1 − ∆t2{j̇s}n+1,
(4.2)

where {e} is a global electric field unknown vector of length Ne, {js} represents a current

source vector, ∆t is the time step, and n means n-th time instant. Dσ, and Dε are diagonal

matrices of conductivity, and permittivity respectively. S is the discretized ∇ × µ−1∇×

operator. Unlike an explicit time marching, (4.2) is implicit, and allowing for the use of a

large time step independent of space step.

At every time step, the system (4.2) essentially is solving

A{e}n+1 = {b}, (4.3)

where system matrix

A = Dε + ∆tDσ + ∆t2S (4.4)

and right hand side

{b} = (2Dε + ∆tDσ){e}n − Dε{e}n−1 − ∆t2{j̇s}n+1. (4.5)

In a PDE method like the FDTD and the matrix-free time-domain method, the Dε and Dσ

are diagonal. In an FEM, the two are sparse but not diagonal in general. The S is a sparse

matrix in all PDE methods. In this paper, we use the FDTD as an example to present the

proposed DD method, but the general idea is applicable to other PDE methods.

86

4.3 Proposed Split-Field DD Method

In this section, we will start from a two-domain formulation to help readers understand

the key concepts of the proposed method. We then show a general p-domain formulation,

analyze the convergence, and compare with traditional DD methods that do not split fields.

4.3.1 Two-Domain Problems

Consider two subdomains, let the vector of interface fields be {e}s, we split {e}s as follows

{e}s = {e}s1 + {e}s2 , (4.6)

where {e}s1 and {e}s2 are the two components of {e}s, computed from subdomain 1 and 2

respectively. Using a simple example to illustrate the concept.

We then partition the unknowns to be solved into {e}1, and {e}2 respectively. The {e}1

consists of the unknown fields interior to subdomain 1 and one component of the interface

field ({e}s1). The {e}2 is composed of unknowns interior to subdomain 2 and the other

component of the interface field, {e}s2 . As can be seen, this partition is very different from

existing DD methods. In existing methods, the entire interface field {e}s is categorized into

one subdomain, not split into multiple components. In the proposed new method, the {e}1

and {e}2 overlap at the entries corresponding to the interface unknowns, but each having

only one component of the interface field unknown. If augmenting both {e}1 and {e}2 to

the full length of the entire unknown field vector {e}, we have

{e} = {e}1 + {e}2. (4.7)

For those unknowns interior to each subdomain, they only appear in one {e}i vector (i = 1, 2),

and they are zero in other vectors. For those unknowns on the interface, they are superposed

from the contribution of each subdomain as shown in (4.6).

87

The original system equation (4.1) can then be decomposed into the following two sub-

systems to solve

Dε
∂2{e}1

∂t2 + Dσ
∂{e}1

∂t
+ S1{e} = −∂{js}1

∂t
(4.8)

Dε
∂2{e}2

∂t2 + Dσ
∂{e}2

∂t
+ S2{e} = −∂{js}2

∂t
, (4.9)

in which S1 and S2 are formulated in each subdomain, and

S1 + S2 = S (4.10)

makes the entire S matrix in the 2-domain problem. All matrices and vectors in the above

are written using a global dimension, Ne, which is the total number of electric field unknowns

in the computational domain. Adding up (4.8) and (4.9), it can be readily verified that (4.7)

is the solution of the original equation (4.1).

Equation (4.8) and (4.9) can further be written as

Dε
∂2{e}1

∂t2 + Dσ
∂{e}1

∂t
+ S1({e}1 + {e}2) = −∂{js}1

∂t
(4.11)

Dε
∂2{e}2

∂t2 + Dσ
∂{e}2

∂t
+ S2({e}1 + {e}2) = −∂{js}2

∂t
, (4.12)

whose implicit time marching can be performed as the following

 Dε + ∆tDσ + ∆t2S1 ∆t2S1

∆t2S2 Dε + ∆tDσ + ∆t2S2

 {e}n+1

1

{e}n+1
2

 =

 {b}1

{b}2

 (4.13)

with local right hand side

{b}i = (2Dε + ∆tDσ) {e}n
i − Dε{e}n−1

i − ∆t2{j̇s}n+1
i . (4.14)

88

The above (4.13) can be decoupled into each subdomain, and solved iteratively as follows

until convergence.

 D1 + ∆t2S1 0

0 D2 + ∆t2S2

 {e}n+1

1

{e}n+1
2

(k+1)

= −∆t2

 0 S1

S2 0

 {e}n+1

1

{e}n+1
2

(k)

+

 {b}1

{b}2

 ,

(4.15)

in which k denotes the iteration number, and

Di = Dε + ∆tDσ. (4.16)

Since the off-diagonal part of the system matrix in (4.13) is one part of the diagonal part,

the convergence of the above iteration is guaranteed, and the number of iterations is also

small. The proof of the convergence is given in the following Section 4.3.4 .

In the formulations developed above, to ease a mathematical understanding, all matrices

and vectors are written using a global dimension, Ne. In real implementation, (4.15) can be

solved in each subdomain using unknowns residing only in one subdomain. This is because

{e}i only contains the field unknowns in one subdomain. The matrices acting on {e}i are

hence only effective in the part corresponding to {e}i. The number of nonzero elements in

{e}i is only Ne,i, i.e., the number of electric field unknowns belonging to subdomain i.

4.3.2 P -Domain Problems

Extending (4.8) and (4.9) to p subdomains, we obtain

Dε

∂2{e}1
∂t2

...

Dε
∂2{e}p

∂t2

+

Dσ

∂{e}1
∂t

...

Dσ
∂{e}p

∂t

+

S1 · · · S1
...

Sp · · · Sp

{e}1

...

{e}p

 =

−∂{js}1

∂t
...

−∂{js}p

∂t

 , (4.17)

89

and the entire domain solution {e} can be obtained from the {e}i of each subdomain as

{e} =
p∑

i=1
{e}i. (4.18)

Here, {e}i is the contribution to solution vector {e} from the i-th subdomain and it is only

nonzero at Nei edges (unknowns) residing in subdomain i. For an interface field unknown

shared by m subdomains, the {e}i vector in each of the m subdomains has one component

of the interface field unknown.

Performing a backward difference on (4.17), we obtain

D1

. . .

Dp

{e}n+1

1
...

{e}n+1
p

+ ∆t2

S1 · · · S1
...

Sp · · · Sp

{e}n+1

1
...

{e}n+1
p

 =

{b}1

...

{b}p

 , (4.19)

where

{b}i = (2Dεi + ∆tDσi){e}n
i − Dεi{e}n−1

i − ∆t2{j̇s}n+1
i . (4.20)

Adding the rows of equations in (4.19), it can be seen clearly that it reverts to the original

equation shown in (4.2), and

{b} =
p∑

i=1
{b}i. (4.21)

The second term in (4.19) can be further separated into two parts: The diagonal part that

represents the curl-curl operation performed on the unknowns of each subdomain including

interior unknowns and one component of the interface field unknown; and the off-diagonal

part that represents the curl-curl operation performed on the rest of the components of the

interface field contributed by the neighbor subdomains. Moving the off-diagonal part to the

90

right hand side, (4.19) can be solved in a decoupled manner by performing the following

iteration until it converges

D1 + ∆t2S1

. . .

Dp + ∆t2Sp

{e}n+1

1
...

{e}n+1
p

(k+1)

=

− ∆t2

0 S1 · · · S1

S2 0 · · · S2
...

Sp Sp · · · 0

{e}n+1

1
...

{e}n+1
p

(k)

+

{b}1

...

{b}p

 , (4.22)

in which k denotes the iteration index. Obviously, when it converges,

{e}n+1

1
...

{e}n+1
p

(k+1)

=

{e}n+1

1
...

{e}n+1
p

(k)

, (4.23)

we obtain the solution of (4.19). This iteration (index k) has a convergence rate dictated

by the spectral radius of (Di + ∆t2Si)−1(∆t2Si) which is bounded by 1, and hence the

convergence is guaranteed. A more detailed proof is provided in Section 4.3.4 .

The implementation of (4.22) can be done domain by domain, where in each domain,

the dimension of matrices and vectors involved in the computation is only the number of

unknowns in a single domain. The curl-curl operator based coupling in the right hand side

can be computed as a single vector in each domain as

{bs}n+1
i = ∆t2Si

p∑
j=1,j6=i

{e}n+1
j . (4.24)

At each time instant (n+1), the {bs}n+1
i term can be first generated from {e}n since {bs}n

i =

∆t2Si
∑p

j=1,j6=i{e}n
j . This is known, and hence can be moved to the right hand side, and used

as the solution of the k = 0 step of (4.22). The iteration then continues until the convergence

is reached.

91

4.3.3 Matrix Partition

One major part of the proposed split-field DD method is how to partition the system

matrix into

S =
p∑

i=1
Si. (4.25)

In FDTD, a conventional difference based formula does not reveal the composition of S

clearly. We can use the patch-based single-grid FDTD formulation [29] to partition S easily.

Based on this formulation, each patch j contributes to S in the format of a rank-1 matrix(
S(j)

h

)
Ne×1

µ−1
j

(
S(j)

e

)
1×Ne

. Using this, we can partition the S matrix based on patches in each

subdomain. Namely, assemble

Si =
Nhi∑
j=1

µ−1
j

(
S(j)

h

)
Nei ×1

(
S(j)

e

)
1×Nei

(4.26)

over all Nhi patches in i-th subdomain. The assembly of Si from patches applies to subdo-

mains with regular shape, irregular shape, and even discontinuous structure.

In the FEM, the S is a summation of elemental contributions. Hence, we can partition

S into the sum of S matrices formulated in each element in each subdomain. Since the Deps

and Dsig are not diagonal in a conventional FEM, they can be partitioned in the same way

as how S is partitioned. Other PDE methods follow the same rule.

4.3.4 Convergence Analysis of the Proposed DD Method

Using a 2-domain as an example, the iteration of the proposed algorithm is performed

on (4.15) until convergence. When convergence reaches, the following is satisfied

 {e}n+1
1

{e}n+1
2

(k+1)

=

 {e}n+1
1

{e}n+1
2

(k)

, (4.27)

92

and hence the first term in the right hand side can be moved to the left hand side to

be combined with the S-based term, yielding the same solution as the original equation.

Equation (4.15) can further be written as

 {e}n+1
1

{e}n+1
2

(k+1)

= −

 0 M1

M2 0

 {e}n+1

1

{e}n+1
2

(k)

+

 {b}1

{b}2

 (4.28)

where

Mi = (Di + ∆t2Si)−1(∆t2Si) (i = 1, 2) (4.29)

Hence, the convergence of the iteration is determined by the spectral radius of the following

matrix

M =

 0 M1

M2 0

 , (4.30)

which is

ρ(M) =
√

ρ(M2M1). (4.31)

Since Mi has a form shown in (4.29), the following always holds true

ρ(Mi) < 1, ∀ i (4.32)

As a result, we have

ρ(M) < 1, (4.33)

and hence the convergence of (4.15) is guaranteed.

The above proof is developed for a 2-domain system. But the same proof is readily

applicable to an arbitrary p-domain system by applying the proof recursively. For exam-

93

ple, between the two domains in the above, one domain again can be partitioned into two

subdomains. The resultant amplification matrix is the same as (4.30), but with M2 now

having the same two-domain matrix structure as (4.30). Again, M2 would have a less than

1 spectral radius since (4.32) holds true in every domain, and hence (4.33) is satisfied for

a 3-domain problem. Doing so recursively, one can obtain (4.33) for an arbitrary p-domain

and general 3-D problem.

4.3.5 Comparison with Non-split-field DD Algorithms

In a prevailing non-split-field DD parallel algorithm [19], [48], [49], a computational do-

main is partitioned into unknowns interior to each subdomain {e}in
i , and unknowns residing

on the interface between subdomains {e}Γ, obtaining a partitioned system

A11 A1Γ
.

App ApΓ

AΓ1 · · · AΓp AΓΓ

{e}in
1

...

{e}in
p

{e}Γ

=

{b}in
1

...

{b}in
p

{b}Γ

, (4.34)

where Aii, AΓΓ, AiΓ, and AΓi represent the interior to interior coupling, the interface to

interface coupling, the interior to interface coupling, and the interface to interior coupling,

respectively. Unlike the proposed method, the off-diagonal part of the above system matrix

has no relationship with the diagonal part, since they are generated for different sets of

unknowns. If the off-diagonal part of the above system matrix is moved to the right hand

side, the convergence is not guaranteed, and it is problem dependent.

One can also solve the (4.34) directly by first building a Schur complement

ASch = AΓΓ −
p∑

i=1
AΓiA−1

ii AiΓ, (4.35)

which is then used to solve unknowns at all interface Γ

{e}Γ = A−1
Sch

(
{b}Γ −

p∑
i=1

AΓiA−1
ii {b}i

)
. (4.36)

94

Knowing {e}Γ, {e}i at subdomain i can be solved in a decoupled manner as

{e}i = A−1
ii ({b}i − AiΓ{e}Γ) . (4.37)

The computational bottleneck of this approach is the direct solution of the interface problems,

i.e., ASch, when the interface problem is large.

In contrast, the proposed split-field DD algorithm possesses the advantages of both direct

and iterative solutions. The direct solver only needs to handle a small sparse matrix in each

subdomain, while the iterative solver that solves the global coupling has a guaranteed fast

convergence.

4.4 Split-Field DD Parallel Algorithm

The DD algorithm presented in previous section can be readily parallelized, owing to its

domain-decomposed formulation. In this section, we elaborate how to assess the error and

control the accuracy when the proposed DD algorithm is run in parallel.

To assess the error, a straightforward approach is to compute relative residual at each

iteration as follows.

relaResb = ‖A{e}k,n+1 − {b}‖
‖{b}‖

. (4.38)

However, gathering a large vector from every subdomain at every iteration is too expensive

in parallel computing.

Here, we develop a much more efficient method with little communication cost to compute

the relative residual of the entire system. Instead of using the right hand side of (4.3) directly,

we use the right hand side vector in (4.19), and thus

{b̃} =

{b}1

...

{b}p

 . (4.39)

95

The relative residual of (4.19) with respect to {b̃} is a good characterization of accuracy of

the entire system solution. What’s more, relaResb̃ can be computed in parallel by using the

field unknowns local to each subdomain. We can rewrite (4.19) as

D1{e}n+1

1 + ∆t2S1{e}n+1

...

Dp{e}n+1
p + ∆t2Sp{e}n+1

 =

{b}1

...

{b}p

 , (4.40)

which can be written in short as

f
(
{e}n+1

)
= {b̃}. (4.41)

Then, for the solution {e}k,n+1 obtained at the k-th iteration, we can evaluate the relative

residual as

relaResb̃ =
‖f
(
{e}k,n+1

)
− {b̃}‖

‖{b̃}‖
. (4.42)

The above is nothing but

relaResb̃ = ‖{b̃s}k,n+1 − {b̃s}k−1,n+1‖
‖{b̃}‖

, (4.43)

where {b̃s}k,n+1 is the union of {bs}k,n+1
i in each subdomain, which is shown in (4.24). This

can be derived as follows:

{
f
(
{e}k,n+1

)
− {b̃}

}
at subdomain i

= Di{e}k,n+1
i + ∆t2Si{e}k,n+1 − {b}i

= (Di + ∆t2Si){e}k,n+1
i + {bs}k,n+1

i − {b}i

= {bs}k,n+1
i − {bs}k−1,n+1

i .

(4.44)

Under Euclidean norm,

‖{b̃}‖ =

√√√√ p∑
i=1

‖{b}i‖2. (4.45)

96

The other norm ‖{b̃s}k,n+1−{b̃s}k−1,n+1‖ in numerator can be calculated similarly. Therefore,

relaResb̃ =

√∑p
i=1 ‖{bs}k,n+1

i − {bs}k−1,n+1
i ‖2√∑p

i=1 ‖{b}i‖2
. (4.46)

Instead of gathering the entire vector from every subdomain, using (4.46), we now can

solve relaResb̃ by only gathering 2 numbers ‖{b}i‖ and ‖{bs}k,n+1
i − {bs}k−1,n+1

i ‖ from each

subdomain. Both {b}i and {bs}k,n+1
i are already calculated in the parallel iterative solver, so,

we can directly reuse the vectors to generate their local norms. Therefore, the calculation

of relative residual relaResb̃ using (4.46) has very little computing cost and communication

cost.

4.5 Numerical Results

In this section, we use numerical examples to examine the accuracy, convergence, run-

time complexity, and memory complexity of the proposed DD solver. Both IC chips and

packages are simulated.

4.5.1 Test-chip Interconnect

𝒋𝒊

Port 2

Port 1

(a)

𝜀𝑟

4.1

4.1

8.0

8.0

4.1

0.308

thickness
(μm)

1.448

0.120

0.615

0.285

0.120

0.296

100 μm

10 μm

50 μm 50 μm 90 μm

𝒋𝒊

(b)

Figure 4.1. Geometry of a test-chip interconnect. (a) 3-D view of three metal
layers, where the current source is supplied from bottom metal layer to the
center wire at port 1. (b) Front view of the test-chip interconnect.

We first validate the accuracy of the proposed method by simulating a realistic test-chip

interconnect structure [37], which is fabricated using a silicon processing technology. This

97

|S11|

|S21|

(a)

Phase of S11

Phase of S21

(b)

Figure 4.2. Simulated S-parameters of the test-chip interconnect. (a) Mag-
nitude of S11 and S21. (b) Phase of S11 and S21.

Figure 4.3. Relative residual of the test-chip interconnect.

100 µm-long test-chip interconnect comprises 3 metal layers and 5 inhomogeneous dielectric

stacks, whose 3-D structure and cross-sectional view are illustrated in Fig. 4.1 . Fig. 4.1

also shows all geometrical dimensions and the relative permittivity εr of each layer. The 100

µm-long interconnect is sandwiched between two 30 µm-long air layers in the front and at the

back. A non-uniform mesh is used. Along stack growth direction z, 7 stacks are discretized

into mesh sizes Nz = [3, 3, 7, 3, 2, 2, 3] from bottom to top. The 100 µm length along y is

discretized into Ny = 20, and each 30 µm air padding is discretized into Ny = 6. The center

interconnect is discretized into Nx = 10 along x direction. In the proposed DD solver, the

98

entire structure is equally partitioned into 4 subdomains along y direction. The convergence

criterion of the DD solver is set as tol = 5 × 10−3 and maximum iteration number maxit

= 30. A current source of a time derivative Gaussian pulse js = −(t − t0)exp[− (t−t0
τs

)2]

A/m2 (t0 = 4τs, τs = 2 × 10−11 s) is placed right in the middle at the near-end of the center

interconnect. A time window of 8τs with 200dt is simulated. After performing a Fast Fourier

Transform (FFT) on the current source and the simulated time-domain port voltages, we

directly obtain the Z-parameters of the structure, which are then converted to S-parameters

with a 50 Ω reference impedance. The reference S-parameters of this test-chip interconnect

in Fig. 4.2 are from [37], which have been validated by experimental measurements. The

simulated S-parameters from the proposed DD solver, as shown in Fig. 4.2 , agree very well

with both those from a direct solver and reference results.

To further determine how fast the DD solver converges on this test-chip interconnect in

general, we set the entire right hand side vector {b̃} to be a random vector between 0 and

1. Then, we gather the solution {e}k+1 at k + 1-th iteration from all 4 subdomains and

calculate the relaResx = ‖{e}k+1−{e}k‖
‖{e}k+1‖ . As seen in Fig. 4.3 , after 30 iterations, the relaResx

can quickly converge to 1.3 × 10−3.

4.5.2 ASAP7 On-chip Interconnect

Here, we test the performance of our DD solver on an IC layout at a 7 nm technology

node. Due to the extremely fine feature size thereby ill-conditioned system matrix, iterative

solvers typically suffer from slow convergence on on-chip structures fabricated with 7 nm

technology node. From the OpenROAD project [56], we obtain an chip design, which is

designed with ASAP7 7 nm FinFET process design kit (PDK) [57]. We simulate one net

from the ASAP7 chip, where the net is highlighted in white edges in Fig. 4.4 , occupying

a 2.268 µm × 10.376 µm chip area. This area is discretized into a 79 × 131 mesh. The

structure here includes the first 3 metal layers M1-M3 and first 3 via layers V0-V2 of the

ASAP7 process. The thickness is 36 nm for each metal layer and 39.6 nm for each via layer.

The layer stack direction is discretized into a Nz = 6 cells. The entire structure is shown in

Fig. 4.4 with PEC at the bottom and PMC at the other 5 sides. Same as previous test-chip

99

(a)

(b)

Figure 4.4. Geometry of ASAP7 on-chip interconnect. (a) 3-D view. (b) Top view.

interconnect, in the proposed DD solver, the entire structure is equally partitioned into 4

subdomains along y direction. The convergence criterion of the DD solver is set to be tol

= 5 × 10−3 and with a larger maxit = 600. Still a Gaussian derivative pulse is used for the

source current, thus js = −(t − t0)exp[− (t−t0
τs

)2] A/m2. A slightly smaller τs = 1 × 10−11

s is used corresponding to the maximum signal frequency ∼ 1/τs = 100 GHz, and t0 = 4τs.

Still, a time window of 8τs with 200dt is simulated. The simulated Z-parameters from the

proposed DD solver, as shown in Fig. 4.5 , agree very well with a brute-forth solution.

The relative residual of this ASAP7 interconnect is generated and plotted in Fig. 4.3 . The

minimum fine feature size is 120 nm for previous test-chip interconnect and 36 nm for this

ASAP7 interconnect. Besides, the fine feature size of each layer in this ASAP7 example is

much smaller than that in the test-chip interconnect. The convergence of the proposed DD

solver is slower for this ASAP7 interconnect, as can be seen from Fig. 4.3 . This agrees with

our theoretical prediction since the curl-curl term has an enlarged norm.

100

Z11

Z21

(a) (b)

Figure 4.5. Simulated Z-parameters of the ASAP7 on-chip interconnect. (a)
Real part of Z11 and Z21. (b) Imaginary part of Z11 and Z21.

4.5.3 A Representative Package Structure

Compared to previous on-chip examples, packages typically have a larger electrical size,

therefore it can have a better convergence behavior. Here, we further validate the accuracy

and convergence of the proposed DD solver on package problems. A representative package

structure as shown in Fig. 4.6 (a) is simulated, where two ports are marked by the red dots

in the lower right corner. The entire structure is discretized into 709, 339 unknowns. The

proposed DD solver partitions the structure into 20 subdomains. The same current source

js is used as in the previous test-chip interconnect example. Due to many resonance modes

in this structure, we simulate a very long time window of 128τs with 3200dt, so that the

electromagnetic response can die down to almost 0. In the proposed time-domain iterative

solver, the error at all previous time steps will accumulate over time marching. To guarantee

the accuracy at later time steps for such a long time window, we use more a stringent tol of

1 × 10−3 and maxit = 100 for the DD solver. The result shows that in most time steps, the

solver can converge to relaResb̃ < 5 × 10−3 within 30 iterations and relaResb̃ < 1 × 10−3

within 70 iterations. The extracted Z-parameters in Fig. 4.6 show a good match over a

broad frequency band between proposed DD solver and a direct solver.

101

(a)

(b) (c)

Figure 4.6. A representative package structure and its simulated impedance
parameter Z21. (a) Top view. (b) Real part of Z21. (c) Imaginary part of Z21.

Next, we numerically examine the convergence of the proposed DD method from the

perspective of eigenvalue spectrum. A slightly coarser mesh is used so that an eigenvalue

solution is feasible. We check the spectral radius of the entire amplification matrix which is of

size 0.19 million. All 0.19 M eigenvalues are solved and the largest 17 K of them are plotted

in Fig. 4.7 . The spectral radius is shown to be 0.9949, and more importantly only 3.0% of

all eigenvalues have its absolute value greater than 0.5. The eigenvalues close to 1 have little

contributions in the field solution since they correspond to the largest eigenvalues of the S

matrix. The field solution are dominated by the nullspace and a few small eigenmodes of S.

Therefore, even though those closest to 1 eigenvalues are the slowest to converge, since they

are not important to the solution, we don’t need to wait for them to converge.

4.5.4 2-D Partition of the DD Solver

Here, we demonstrate a 2D partition of the DD solver. Use the same package structure

in Fig. 4.6 (a) and keep the same mesh. Still, use a Gaussian derivative source current

102

Figure 4.7. Eigenvalue spectrum of the representative package structure.

Figure 4.8. Voltage responses of the representative package structure when
solved by DD solver with 2-D partition.

js = −(t − t0)exp[− (t−t0
τs

)2] A/m2. This time, use a smaller τs = 1 × 10−12 s. t0 = 4τs. A

time window of 20τs with 500dt is simulated. The DD solver uses tol = 1 × 10−5 and maxit

= 30. The 1-D partition of the DD solver partitions the entire structure into 15 subdomains

along y direction, whereas the 2-D partition of the DD solver partitions the entire structure

into 5 subdomains along y direction and 3 subdomains along x direction. The same number

of subdomains for both 1-D partition and 2-D partition. All time steps of 2-D partition can

converge to relaResb̃ < 1 × 10−5 within 5 iterations, whereas all time steps of 1-D partition

can converge to relaResb̃ < 1 × 10−5 within 4 iterations. Given the same setup and number

103

of computing cores, compared to 1-D partition, 2-D partition converges slightly worse, but

requires less data communication, and can better accommodate the subdomains with the

structure of the package. Their voltage responses are plotted in Fig. 4.8 , where DD solver

with 2-D partition matches very well with both 1-D partition and direct solver.

4.5.5 Large-scale IBM Plasma Package Structure

(a) (b)

Figure 4.9. IBM plasma package example. (a) Top view of the package
structure. (b) Voltage simulated in time domain.

We apply the proposed method to simulate the plasma package from IBM. The top view

of the structure is shown in Fig. 4.9 (a), which is discretized into 8, 580, 128 unknowns.

A Gaussian derivative source current is injected in the middle of the package on the top

layer, whose waveform is js = −(t − t0)exp[− (t−t0
τs

)2] A/m2, where t0 = 4τs and τs =

2 × 10−11s. The pulse has a maximal signal frequency of approximately 50 GHz. A time

window of 24τs with 600dt is simulated. The voltage simulated from this method is plotted

in Fig. 4.9 and compared with a conventional direct solver, and a GMRES-based iterative

solver. The proposed solver converges to relaResb̃ < 5 × 10−3 within 20 iterations at each

time instant. The GMRES uses tol = 1 × 10−4, maxit = 1, and restart = 1000, and its

solution converges within 110 inner iterations. Compared to GMRES, the iterative part in the

proposed DD algorithm can converge in a smaller number of iterations, while yielding a much

104

better accuracy. Compared to the conventional direct solution, the proposed method avoids

the bottleneck of directly factorizing a large matrix. Only a direct solution in each small

subdomain is required. The parallel solver developed in this work costs 26 s in factorization,

and completes the time marching within 6.9 hours, whereas the conventional direct solver

costs 11.4 hours in factorization, and 10.7 hours in time marching. The machine to run the

simulation has 256 GB memory and 20 CPUs. For parallel solver, the entire structure is

partitioned into 20 subdomains so that each CPU only solves one subdomain with single

thread.

We also check the convergence the our proposed parallel solver from the perspective of

relative residual. Fig. 4.10 shows the relative residual when the entire right hand side {b̃}

is a random vector. The relaResb̃ is obtained by gathering local norms according to (4.46).

For the parallel solver, we also gather the entire solution vector from every subdomain and

calculate relaResb according to (4.38). As expected, relaResb̃ is very similar to relaResb in

the proposed parallel solver. Next, look at the convergence speed. For the first 30 iterations,

the proposed parallel solver has a steeper slope and converges faster than GMRES. To reach

even higher accuracy, the convergence speed of the proposed parallel solver will saturate to a

much slower speed as compared to GMRES. However, from our test on IC package examples,

most examples only require 30 iterations and tol = 10−3 to achieve accurate results. The

lower requirement on tolerance and number of iterations could be from the hybrid nature

of the proposed parallel solver, namely being direct (LU) in each subdomain and iterative

across subdomains.

4.5.6 Run-time Complexity, Memory Complexity, and Parallel Efficiency

Here, we study the run-time complexity, memory complexity, and parallel efficiency of

the proposed DD solver based on the IBM plasma package structure in Fig. 4.9 (a). The

computing machine consists of a Dell compute node with two 64-core AMD Epyc 7662 Rome

processors (128 cores per node) and 1 TB of memory. All algorithms are implemented in

Matlab and run under Matlab version R2020a. The parallel library uses Matlab’s built-in

spmd command, which is based on MPI.

105

Figure 4.10. Relative residual of plasma package example.

(a) (b)

Figure 4.11. Run-time complexity of the proposed DD solver running in
parallel. (a) LU factorization. (b) LU solution.

To study run-time complexity and memory complexity, we keep the same mesh accuracy,

then simulate a larger and larger area each time to increase N . For a direct solver, only one

core is used to solve the entire system. For the parallel DD solver, we increase the number of

cores according to N so that the simulated local matrix size at each core is the same. In the

example here, we let each core solve a subsystem of about 0.17 million unknowns. Despite

the same N/core in each subdomain, the fact that each subdomain has different structures

in this realistic package example will add variations to the run-time and memory of the DD

solver.

106

Fig. 4.11 (a) shows the LU factorization time. The DD solver factorizes a similar-

size matrix at each core simultaneously, therefore, the run time doesn’t increase for large N .

However, the LU factorization time of direct solver will scale at O(N2) for large N . Fig. 4.11

(a) shows how the DD solver in parallel could benefit from factorizing a much smaller matrix

at each core. Fig. 4.11 (b) shows the LU solution time. For direct solver, this LU solution

time only comes from the cost of solving each U\L\b, which scales around O(N1.5). For

DD solver in parallel, the LU solution time comes from two major costs, one is from solving

U\L\b and another is from parallel communication cost. The L and U matrices at each core

are solved simultaneously and have much smaller size compared to those in direct solver. So,

solving U\L\b takes a similar small amount of run time. The increased LU solution time in

Fig. 4.11 (b) is from the parallel communication cost, which increases as more computing

cores are used for larger N . Fig. 4.11 (b) shows that the parallel communication cost of DD

solver scales less than linear. Note that, at each time step, the direct solver only needs to

solve U\L\b once. So, the run time of one time step of direct solver is the LU solution time

in Fig. 4.11 (b). The DD solver in parallel need to iterative a few iterations till the solution

converges, which is typically 30 iterations for package problems. So, the run time of one

time step of DD solver in parallel is LU solution time in Fig. 4.11 (b) multiplying number

of iterations.

Figure 4.12. Memory complexity of the proposed DD solver running in parallel.

107

Fig. 4.12 shows the peak memory usage. The major memory cost is at LU factorization.

For DD solver in parallel, each core uses similar amount of memory for LU factorization,

therefore, the total peak memory scales linearly ∼ O(N). For direct solver, the theoretical

memory complexity is O(N1.5). In our test for this example, we find the memory complexity

of direct solver is about O(N1.3). For the example with 22.4 million unknowns, the direct

solver fails to solve it due to running out of total 1 TB memory. The DD solver in parallel can

handle even larger examples because of its lower memory complexity. Besides, considering

the usage of distributed memory machines, the DD solver in parallel can solve any large N

as long as each small subdomain can fit into one computing node.

(a) (b)

Figure 4.13. Speed up of DD solver in parallel over DD solver in sequence.
(a) N/core is 1.8 million. (b) N/core is 2.9 million.

To demonstrate the parallel efficiency, we let the DD solver run in sequence, namely

solving each subdomain one by one with only one computing core. Therefore, we can define

a speed up

speedup = Run time of DD solver in sequence
Run time of DD solver in parallel

, (4.47)

which reveals the ratio of computing time over parallel overhead. To reduce the structure

variance among different subdomains, here, we duplicate the plasma package structure to

all used cores, so that every core solves the same system matrix. We also use a random

excitation vector to cover different solution modes. In this example, each core handles a

108

local system matrix of 1.8 million unknowns, which costs about 105 s to factorize and about

1.7 s to solve one U\L\b.

In the DD algorithm, the LU factorization is embarrassingly parallelizable, therefore, the

speedup of LU factorization is almost ideal speedup = p as shown in Fig. 4.13 . The LU

solution time includes 1) solving U\L\b, 2) passing interface unknown vectors to neighbor

subdomains, and 3) calculating relative residual. The second step, passing interface unknown

vectors, is the major source of parallel overhead. When few cores are used, the parallel

overhead is relatively small, the speedup of LU solution is also close to the ideal speedup = p

as in Fig. 4.13 . When number of cores p increases, the parallel overhead increases a little bit.

For example, when p = 20, the parallel overhead is about 0.7 s. The non-optimal speedup

of LU solution is due to the small solution time as compared to the communication cost.

Note that the communication cost is almost a constant, which scales way less than linear

when more cores as used. For even larger examples, such as the one in Fig. 4.13 (b), the

communication cost will be relatively small, then the speedup of LU solution could better

approach the ideal speedup = p. Limited by the 1 TB memory of the computing machine,

we can run at most about 35 M unknowns in parallel.

109

5. STABILITY CONTROL OF UNSYMMETRICAL

NUMERICAL METHODS IN TIME DOMAIN

5.1 Introduction

More and more unsymmetrical numerical methods in time domain are emerging to achieve

desired numerical performance, such as modeling the polarized metasurface by surface sus-

ceptibility tensors [58], [59], a nonuniform finite-difference time-domain (FDTD) method to

allow for the use of non-uniform meshes [60], subgridding algorithms to allow a finer mesh

only around certain regions [61]–[63], a matrix-free method to avoid a matrix solution [20],

[64], [65], and solutions of other general non-reciprocal problems with unsymmetrical system

matrix. Different from classical computational electromagnetics (CEM) algorithms, such as

the Yee’s FDTD and the finite element method (FEM), which have positive semi-definite

system matrices and thereby controllable stability, the stability of unsymmetrical numerical

systems are generally undetermined.

In a numerical system in time domain, there are two levels of considerations regarding

stability. The first level is on the time marching scheme regarding the choice of time step,

such as the famous Courant–Friedrichs–Lewy (CFL) limit for ∆t in Yee’s FDTD. Most of the

stability analysis focuses on which time step can make the time marching stable, assuming

the system matrix already has desired physical property such as passivity. Commonly used

methods to analyze time-domain stability include the Von-Neumann method [66], [67] and

the Z-transform method [68]. However, for numerical systems with an unsymmetrical system

matrix, one cannot assume their system matrix has the right sign of eigenvalues, this has to be

ensured by construction. If the system matrix has complex-valued eigenvalues or an incorrect

sign in its real eigenvalues, then no matter which method is used for time marching, the

time-domain simulation would be totally unstable. Therefore, for unsymmetrical numerical

systems, a more fundamental problem to study in stability analysis is whether the system

matrix statifies physical property. The research problem we study here is how to ensure the

numerical system has physically correct eigenvalues by construction.

On the one hand, the lack of theories on unsymmetrical matrices makes it hard to examine

the eigenmodes of unsymmetrical numerical systems. Right now, most stability analyses for

110

unsymmetrical numerical systems rely on checking the eigenvalues and need to be done

case by case [69]–[71]. Generally, this stability analysis would require solving all eigenvalues

of a large asymmetric matrix, which is too expensive to be done for large problems. On

the other hand, the almost guaranteed existence of complex eigenvalues in an asymmetric

matrix means that an unsymmetrical numerical system is very likely to have some unstable

eigenmodes, even though those unstable eigenmodes might not be dominant or not even be

observable in most circumstances. What’s worse, as proved in [61], [72], traditional explicit

time marching with an unsymmetrical system matrix becomes absolutely unstable, because

an unsymmetrical matrix can support complex-valued and even negative eigenvalues. All

these call for a feasible stability theory to prove and control the stability of unsymmetrical

numerical systems.

Recently, a matrix-free time-domain (MFTD) method has been developed in both 2-D

[20] and 3-D [64], which solves Maxwell’s equations in general unstructured meshes while not

requiring a matrix solution. The MFTD has a diagonal mass matrix in nature independent of

the element shape used for discretization. To overcome the stability problem while retaining

the advantage of a diagonal mass matrix, a backward difference scheme is employed for time

marching. Then, the inverse of the system matrix is made explicit by using a series expansion,

thus avoiding a matrix solution. In [65], a new time marching scheme is developed to make

the MFTD method truly explicit, hence removing the need for using the backward difference

and the series expansion to avoid a matrix solution. In all previous MFTD formulations, the

system matrix is still asymmetric, therefore, the stability of MFTD still requires a further

proof.

In this work, we propose a stability analysis method that reduces the stability analysis

in the entire computational domain to that in a single-element, therefore avoiding solving all

eigenvalues of a large unsymmetrical matrix. The proposed stability analysis method also

provides a way to control the stability of a large numerical system by simply controlling the

stability of every dissembled single element. Compared to the entire system, each dissem-

bled single element has a much smaller local system matrix and less parameters, therefore,

controlling the stability of every single element is much easier. In this work, we show the

application of the method to prove and control the stability of the MFTD method. To dis-

111

tinguish from original MFTD, we call the new MFTD with controlled stability as CS-MFTD.

In the 2-D MFTD, we can control the stability by controlling the H-loop size. In the 3-D

MFTD, we found using the original scheme, complex eigenvalues arise from a single tetra-

hedron. Hence, we propose a new 3-D patch-based MFTD method in unstructured meshes.

The proposed new 3-D MFTD also has well controlled stability.

5.2 Stability Analysis Theory

5.2.1 Conventional Stability Criterion by Solving All Eigenvalues of the Entire
System Matrix

The numerical system in time domain of many partial differential solvers can be written

as
∂x

∂t
= Ax, t ≥ 0, (5.1)

with A being the system matrix and x being the solution vector. The governing equation

(5.1) has a general solution

x(t) = eAtx0, t ≥ 0. (5.2)

Here, x0 is the initial condition. Before moving forward to a temporal discretization that

further discretizes ∂
∂t

, the spatial discretization and corresponding system matrix A already

determines a level of stability for the numerical system. As can be seen from (5.2), a spatial

discretization and its resulting numerical system is stable only if matrix eAt is always bounded

for a passive problem. In other words, the numerical system (5.1) is stable only if the spectral

radius (largest absolute value of all eigenvalues) of matrix eAt is always bounded.

To find the spectral radius ρ(eAt), we first do an eigenvalue decomposition for A matrix

A = VΛV−1, (5.3)

where Λ denotes the diagonal matrix of all eigenvalues of system matrix A. Each column

of matrix V is an eigenvector. Then, using the property of matrix exponential, eAt can be

decomposed into

eAt = eVΛtV−1 = VeΛtV−1. (5.4)

112

Therefore, the eigenvalues of matrix eAt are simply eΛt. For a stable numerical system (5.1),

ρ(eAt) = max(|eΛt|) always being bounded for arbitrary t ≥ 0 means that all eigenvalues of

A should have non-positive real part

Λ.real ≤ 0, (5.5)

which also means the spectral radius of eAt should be not only bounded but also bounded

by 1, namely

ρ(eAt) ≤ 1. (5.6)

From the analysis above, we can clearly see that the stability is directly determined by the

eigenvalues of system matrix A as in (5.5) or (5.6).

To prove that numerical system (5.1) is stable, we need to prove either (5.5) or (5.6) is

satisfied. However, for a large unsymmetrical numerical system, directly checking the real

part of all Λ is too expensive as it requires solving all eigenvalues of a large matrix.

5.2.2 Proposed Stability Criterion by Reducing to Single Element

In this work, we propose to reduce the scope of the stability analysis from the entire-

domain system matrix to dissembled single-element local system matrix.

In many PDE methods, the entire-domain system matrix A is assembled from all N

elements

A =
N∑

i=1
Ai, (5.7)

where Ai is the contribution from the i-th element. The assembly in (5.7) inspires us to

think that maybe we could regulate every single element to guarantee the overall stability of

the entire numerical system. Fortunately, we do find such a connection through the spectral

radius.

Before proving our proposed stability criterion, we first prove a few lemmas as below.

Lemma 5.2.1. All eigenvalues Λ of matrix A satisfy Λ.real ≤ 0 ⇔ ρ(eA) ≤ 1.

Proof. eA has eigenvalues eΛ, ρ(eA) = max(|eΛ|), so this Lemma is obvious.

113

Lemma 5.2.2. If ρ(eA) ≤ 1 and c is a positive number, then ρ(eA/c) ≤ 1.

Proof. eA and eA/c have the same sign for the real part of their eigenvalues. According to

Lemma 5.2.1 , this Lemma is also valid.

Lemma 5.2.3. For arbitrary square matrix P and Q of the same size, if ρ(eP) ≤ 1 and

ρ(eQ) ≤ 1, then ρ(eP+Q) ≤ 1.

Proof. We can apply Lie product formula to expand the matrix exponential as

eP+Q = lim
c→∞

(
eP/ceQ/c

)c
= lim

c→∞

(
eQ/ceP/c

)c
, (5.8)

where c is a sufficiently large constant number.

From Lie product formula (5.8), we can see that eP/c and eQ/c commute to each other,

therefore, the submultiplicative property of spectral radius holds true

ρ(eP/ceQ/c) ≤ ρ(eP/c)ρ(eQ/c). (5.9)

Given ρ(eP) ≤ 1 and ρ(eQ) ≤ 1, from Lemma 5.2.2 , we have

ρ(eP/c) ≤ 1, ρ(eQ/c) ≤ 1. (5.10)

Since ρ(Mc) = (ρ(M))c, we can prove

ρ(eP+Q) = lim
c→∞

(
ρ(eP/ceQ/c)

)c

≤ lim
c→∞

(
ρ(eP/c)ρ(eQ/c)

)c
≤ 1.

(5.11)

With above lemmas, we can prove our proposed stability criterion

Theorem 5.2.4. If every element satisfies ρ(eAit) ≤ 1, then the entire system satisfies

ρ(eAt) ≤ 1 therefore is stable.

114

Proof. We can iteratively prove Theorem 5.2.4 as below. Define

A(n) =
n∑

i=1
Ai, 1 ≤ n ≤ N, (5.12)

which is the assembled first n elements in (5.7). Initially when n = 1, A(1) = A1 thus

ρ(eA(1)t) ≤ 1 is satisfied. Then, given ρ(eA(n−1)t) ≤ 1 being true, because A(n) = A(n−1) +An

and ρ(eAnt) ≤ 1, we can directly apply Lemma 5.2.3 to approve ρ(eA(n)t) ≤ 1. Iteratively

increase n to N and we can prove ρ(eAt) ≤ 1.

Using Lemma 5.2.1 , we can obtain a more practical criterion to determine stability by

directly looking at the eigenvalues of Ai.

Theorem 5.2.5. If every element’s matrix Ai has all its eigenvalues Λi.real ≤ 0, then the

entire system satisfies ρ(eAt) ≤ 1 therefore is stable.

Note that even though the criterion in Theorem 5.2.5 is not satisfied, the numerical

system still can be stable because the criterion is only a sufficient condition for stability.

But, as proved above, as along as the criterion is satisfied, we can guarantee the numerical

system is stable.

5.3 Control the Stability of MFTD Method

In this section, we apply our proposed stability theory to control the stability of MFTD

in both 2-D and 3-D.

5.3.1 Review of Matrix-Free Time-Domain Method

Consider a physical structure discretized into either a regular grid or an unstructured

mesh consisting of arbitrarily shaped elements. Based on [20], Maxwell’s equations are

discretized as the following

Se{e} = −Dµ
∂{h}

∂t
(5.13)

Sh{h} = Dε
∂{e}
∂t

+ Dσ{e} + {js}, (5.14)

115

where Se{e} represents a discretized curl of E, Sh{h} denotes a discretized curl of H, the

Dµ, Dε and Dσ are the diagonal matrices of permeability, permittivity, and conductivity

respectively. The {e} is a global vector of unknown electric fields whose i-th entry is E at

point rei along direction êi, thus ei = E(rei) · êi. The E’s points and directions are associated

with the curl-conforming vector basis functions used to expand E in each element. From

(5.13), using higher-order bases, we can evaluate H at any point rhi along any direction ĥi,

which is hi, with a desired order of accuracy.

Figure 5.1. H points and directions.

Where to choose hi is the key to ensure the accuracy in the matrix-free method. The hi

are chosen based on e so that e can be generated accurately from h. Specifically, for each ei,

the H unknowns are chosen along a rectangular loop perpendicular to ei, and centering ei,

as shown in Fig. 5.1 . In this way, the H fields selected can generate ei accurately, which is

manifested by the discretization of Ampere’s law shown in (5.14). Different from the FDTD

method, here, the H points and directions do not form a dual mesh. Only a single mesh is

needed. No interpolations and projections are required either. Since the resulting matrices in

front of the first-order time derivative in (5.13) and (5.14) are diagonal, an explicit marching

is free of a matrix solution.

The h is the global vector of unknown magnetic fields whose i-th entry is H at point rhi

along direction ĥi, thus H(rhi) · ĥi. For each ei, there are four to discretize Faraday’s law, we

expand the electric field E in each element by vector bases, yielding E = ∑m
j=1 ujNj, where

116

Eqn. (5.13) and (5.14) can be solved in a leapfrog way which is free of matrix solutions. We

can also eliminate h and solve e as the following

∂2 {e}
∂t2 + D−1

ε Dσ
∂ {e}

∂t
+ S {e}=−D−1

ε

∂{js}
∂t

(5.15)

where

S = D−1
ε ShD−1

µ Se. (5.16)

The governing equation of MFTD, written as general format (5.1), is

∂

∂t

 {e}

{h}

 =

 0 D−1
ε Sh

−D−1
µ Se 0

 {e}

{h}

−

 D−1
ε {js}

0

 . (5.17)

5.3.2 Control the Stability of 2-D MFTD Method

Algorithm 3 Choose H locations in 2-D original MFTD
1: Define a constant hyper-parameter 1/Hlratio ∈ (0, 1]
2: for every E point at rei along direction êi do
3: Draw a line passing rei and vertical to êi
4: Let the line intersect with all edges in the entire mesh
5: Find the intersection point rpi that is closest to rei
6: Choose 2 H points related to this E point:
7: One H point is at rei + (rpi − rei)/Hlratio
8: The other H point is at rei − (rpi − rei)/Hlratio
9: end for

The 2-D MFTD studied in this work uses triangular mesh and first order vector bases.

Details about original 2-D MFTD can be found in [20]. Each dissembled single element is a

triangle. When using first order vector bases, each dissembled triangle has 8 E points and

10 H points.

In original 2-D MFTD [20], H directions are always normal to the patch face, while H

locations can be chosen anywhere inside the triangular patch. In [20], the H locations are

chosen as in Algorithm 3 . Readers may refer to Fig. 4 in [20] for better understanding.

However, according to our numerical testing, such a choice of H locations cannot always

117

Algorithm 4 Choose H locations in 2-D CS-MFTD
1: Define a constant hyper-parameter 1/Hlratio ∈ (0, 0.1]
2: for every E point at rei along direction êi do
3: Draw a line passing rei and vertical to êi
4: Let the line intersect with all edges in the entire mesh
5: Find the intersection point rpi that is closest to rei
6: Track the min intersection distance Lepi = ‖rpi − rei‖ and line direction r̂epi = (rpi −

rei)/Lepi
7: end for
8: Set a fixed H loop size LH = mini(Lepi)/Hlratio
9: for every E point at rei along direction êi do

10: Choose 2 H points related to this E point:
11: One H point is at rei + r̂epi × LH

12: The other H point is at rei − r̂epi × LH

13: end for

guarantee a good stability for either single element or entire system, no matter how we tune

the only hyper-parameter 1/Hlratio in Algorithm 3 .

Using our developed new stability analysis theory, we only need to control the stability

of every single triangle. Each dissembled triangle only has 8 E points and 10 H points,

so, the dissembled local system matrix Ai has a small size 18 × 18. We can analytically

write down Ai. However, even though local system matrix Ai of single triangle looks simple,

the unsymmetrical nature of Ai makes it hard to analytically find any insights into the

eigenvalues.

After many trials, we eventually find one way to control the stability of single triangle of

arbitrary shape. The method to get 2-D CS-MFTD is described in Algorithm 4 . Compared

to 2-D original MFTD where every H loop has different loop size, our proposed 2-D CS-

MFTD uses a fixed H loop size for every E point in the entire mesh. Due to the lack of

theory to analytically solve eigenvalues of unsymmetrical matrix, we numerically prove the

controlled stability of 2-D CS-MFTD in Section 5.4 . From our numerical testings, a good

choice of the hyper-parameter 1/Hlratio in Algorithm 4 is 1/Hlratio = 0.01.

118

5.3.3 New 3-D MFTD Method with Controlled Stability

The 3-D original MFTD [65] uses a tetrahedral mesh and first order 3-D vector bases.

Each dissembled single element is a tetrahedron. When using first order vector bases, each

dissembled tetrahedron has 20 E points and at least 8 H points. The exact number of H

points per tetrahedron is determined by if edge H falls into this tetrahedron. We tried many

methods to control the stability of a single tetrahedron, such as setting a different H loop

size, uniformly distributing edge H in surrounding tetrahedrons, etc. However, none of the

methods is able to guarantee the stability of a single tetrahedron of arbitrary shapes.

To develop a 3-D CS-MFTD, we decide to continue the success of the 2-D CS-MFTD. A

single triangular patch of an arbitrary shape has well controlled stability in 2-D CS-MFTD

as shown in Algorithm 4 . Meanwhile, we can view each 3-D tetrahedron element as an

assembly of four triangular patches. If we use the first order 2-D vector bases for every

triangular patch in the entire 3-D mesh, then the entire 3-D mesh can again be an assembly

of 2-D patches, just like that in 2-D CS-MFTD. The new 3-D MFTD following this idea

does have well controlled stability and decent accuracy. In such a 3-D CS-MFTD, each 3-D

triangular patch is just viewed as a 2-D patch, so, we can directly reuse the method and code

in 2-D CS-MFTD, except that the z direction in the 2-D CS-MFTD needs to be set as the

normal direction of this 3-D triangular patch. The Se matrix in the 3-D CS-MFTD can be

generated exactly the same as the Se in the 2-D CS-MFTD. Sh matrix’s rows corresponding

to the face E points are also the same as those in 2-D, while the rows corresponding to the

edge E points have the following entry

Sh,ij = ± 2
LH × m

, (5.18)

where j denotes the global index of the H point associated with this edge ei. LH is the fixed

H loop size obtained from Algorithm 4 , and m is the number of tetrahedrons sharing this

edge. The ± sign is determined by right-hand-rule, just as in original MFTD.

119

Algorithm 5 Numerically Check If System Matrix A is Stable
1: Numerically calculate all nonzero eigenvalues Λ of A
2: for every nonzero eigenvalue λi ∈ Λ do
3: if λi.real > 0 then
4: Ri = λi.real/|λi.imag|
5: else
6: Ri = 0
7: end if
8: end for
9: Calculate MR of matrix A: MR = maxi(Ri)

10: if MR is very small, e.g. MR < 10−6 then
11: say system matrix A is stable
12: else
13: say system matrix A is unstable
14: end if

The new 3-D CS-MFTD uses the time marching scheme developed in [65]. Since the

system matrix has well controlled stability, there is only one upper bound for the time step

∆t [65]

∆t <

√
4
3

1√
λmax

=
√

4
3

1
ωmax

, (5.19)

where λmax is the largest eigenvalue of S matrix. ωmax is the largest resonant frequency

of the numerical system, which can be obtained from the largest imaginary part of system

matrix A.

5.4 Numerical Results of 2-D CS-MFTD Method

5.4.1 Controlled Stability of 2-D Triangular Meshes of Arbitrary Shape

Here, we numerically prove that our the proposed 2-D CS-MFTD can control the stability

of MFTD in an arbitrary triangle. To do so, we fix two nodes as shown in Fig. 5.2 (a), then,

test 2-D CS-MFTD when node 1 is at different locations. In most meshing tools like the

DistMesh [73] used in this paper, very skewed triangles will be further partitioned into better

structured triangles. So, without losing much generosity, we sample and test some triangle

shapes to represent arbitrary triangles. For example, here, x coordinate of node 1 is sampled

120

Node 2, (0, 0) Node 3, (1, 0)

Node 1 , (𝑥, 𝑦)

(a) (b)

Figure 5.2. Single triangle. (a) Node positions of this triangle. (b) MR of
system matrix A vs. different x-y locations of node 1.

every 0.1 m from -2 m to 3 m, and y coordinate of node 1 is sampled every 0.1 m from 0.1

m to 5 m. The sampled structures include most triangular shapes used in a 2-D meshing.

For each sampled triangular shape, we generate its system matrix A according to the

2-D CS-MFTD. The scaling factor of fixed H loop size is 1/Hlratio = 0.01. The MR of

system matrix A is numerically calculated following Algorithm 5 , which is then plotted in

Fig. 5.2 (b). The left blank area in white color in Fig. 5.2 (b) means MR is less than 10−20.

Compared to the machine error of 10−15 level, we can safely say the system matrix A of

each patch has pure imaginary eigenvalues. Since the above sampled triangles numerically

represent all regular shapes that are used in 2-D meshing, we thereby numerically prove that

2D triangles of arbitrary shapes always have a guaranteed stability.

5.4.2 Wave Propagation in a 2-D Ring Mesh

A 2-D ring centered at (1.0 m, 1.0 m) with inner radius 0.5 m and outer radius 1.0 m

is simulated in free space. The triangular mesh is shown in Fig. 5.3 (a). The discretization

results in 826 edges and 519 triangular patches. The same mesh is solved with both 2-D

original MFTD and 2-D CS-MFTD. In 2-D CS-MFTD, the scaling factor of fixed H loop

size is 1/Hlratio = 0.01. In 2-D original MFTD, 1/Hlratio = 0.5.

121

(a) (b) (c)

Figure 5.3. 2-D ring. (a) Triangular mesh of a 2-D ring. (b) Eigenvalues of
entire system matrix A in CS-MFTD. (c) Eigenvalues of entire system matrix
A in original MFTD.

(a) (b)

Figure 5.4. MR of each patch element of the 2-D ring. (a) CS-MFTD. (b)
Original MFTD.

To show the stability of the numerical system, we directly solve all the nonzero eigenvalues

of entire system matrix A. Fig. 5.3 (b) is all the 3,114 nonzero eigenvalues of system matrix

A in 2-D CS-MFTD. Clearly, the real part of the eigenvalues is much smaller than the

imaginary part, thus, we can numerically say that Λ.real ≤ 0. Therefore, 2-D CS-MFTD is

stable in this ring mesh. Fig. 5.3 (c) is all the nonzero eigenvalues of system matrix A in

2-D original MFTD. Many eigenvalues in 2-D original MFTD have large positive real part,

which correspond to unstable modes in the numerical system.

In Fig. 5.4 , we further show the MR of each dissembled patch when using proposed

2-D CS-MFTD or 2-D original MFTD. In original MFTD, a few dissembled patches have

122

bad stability. In contrast, with CS-MFTD, every patch has controlled stability. Following

Theorem 5.2.5 , we can prove that 2-D CS-MFTD in the entire ring mesh is stable.

(a) (b)

Figure 5.5. Accuracy of the proposed CS-MFTD in 2-D ring example. (a)
Simulated two electric fields in comparison with analytical results. (b) Entire
E field solution error as a function of time.

To investigate the accuracy of the proposed method in such a mesh, we consider that the

most convincing comparison is a comparison with analytical solution. Although the structure

is irregular, we can use it to study a free-space wave propagation problem whose analytical

solution is known. To do so, we impose an analytical boundary condition, i.e. the known

value of tangential E, on the boundary of the problem, which comprises the innermost

and outermost circles; we then numerically simulate the fields inside the computational

domain and correlate the results with the analytical solution. The incident E, which is

also the total field in the given problem, is specified as E = ŷf(t − x/c), where f(t) =

2(t − t0)exp(−(t − t0)2/τ 2), τ = 2.5 × 10−8 s, t0 = 4τ , and c denotes the speed of light.

The time step used in original MFTD is ∆t = 2.0 × 10−11 s, and ∆t = 2.0 × 10−12 s in

CS-MFTD. We sample two points and plot their electric fields in Fig. 5.5 (a). The relative

error of the whole solution vector is shown in Fig. 5.5 (b). It can be seen clearly that the

electric fields solved from both original MFTD and CS-MFTD have an excellent agreement

with analytical results. The center peak in Fig. 5.5 (b) is due to the comparison with close

to zero fields. Note that, compared to original MFTD, CS-MFTD in this ring mesh has

123

slightly worse overall accuracy, which could be from more skewed discretization in terms of

H points.

5.4.3 Wave Propagation in a 2-D Cavity Discretized Into a Highly Unstructured
Mesh

(a) (b) (c)

Figure 5.6. 2-D cavity. (a) Highly unstructured triangular mesh of the 2-D
cavity. (b) Eigenvalues of entire system matrix A in CS-MFTD. (c) Eigenval-
ues of entire system matrix A in original MFTD.

(a) (b)

Figure 5.7. MR of each patch element of the 2-D cavity. (a) CS-MFTD. (b)
Original MFTD.

To examine the robustness of the proposed 2-D CS-MFTD in handling unstructured

meshes, we simulate a cavity discretized into a highly irregular mesh as shown in Fig. 5.6

(a). The discretization results in 463 edges and 296 triangular patches. The same mesh is

124

solved with both 2-D original MFTD and 2-D CS-MFTD. In 2-D CS-MFTD, the scaling

factor of fixed H loop size is 1/Hlratio = 0.01. In 2-D original MFTD, 1/Hlratio = 2/3.

To show the stability of the numerical system, we directly solve all the nonzero eigenvalues

of entire system matrix A. Fig. 5.6 (b) is all the 1,776 nonzero eigenvalues of system matrix

A in 2-D CS-MFTD. Clearly, the real part of the eigenvalues is much smaller than the

imaginary part, thus, we can numerically say that Λ.real ≤ 0. Therefore, 2-D CS-MFTD

is stable in this highly unstructured mesh. Fig. 5.6 (c) is all the nonzero eigenvalues of

system matrix A in 2-D original MFTD. Many eigenvalues in 2-D original MFTD have large

positive real part, which correspond to unstable modes in the numerical system.

In Fig. 5.7 , we further show the MR of each dissembled patch when using proposed

2-D CS-MFTD or 2-D original MFTD. In original MFTD, a few dissembled patches have

bad stability. In contrast, with CS-MFTD, every patch has controlled stability. Following

Theorem 5.2.5 , we can prove that 2-D CS-MFTD in the entire mesh is stable.

(a) (b)

Figure 5.8. Accuracy of the proposed CS-MFTD in 2-D cavity example. (a)
Simulated two electric fields in comparison with analytical results. (b) Entire
E field solution error as a function of time.

To investigate the accuracy, we study a free-space wave propagation problem similar to

the one in the ring mesh, except that τ = 2.0×10−12 s. Both original MFTD and CS-MFTD

use the same time step ∆t = 1.0 × 10−14 s. We sample two points and plot their electric

fields in Fig. 5.8 (a). The relative error of the whole solution vector is shown in Fig. 5.8 (b).

125

It can be seen clearly that the electric fields solved from both original MFTD and CS-MFTD

have an excellent agreement with analytical results.

5.5 Numerical Results of 3-D CS-MFTD Method

5.5.1 3-D Single Tetrahedron of Arbitrary Shape

Node 2, (0, 0, 0)

Node 4, (
3

2
,
1

2
, 0)

Node 3, (0, 1, 0)

Node 1 , (𝑥, 𝑦, 0.5)

(a) (b)

Figure 5.9. Single tetrahedron. (a) Node positions of this tetrahedron. (b)
MR of the entire system matrix A vs. different x-y locations of node 1.

Here, we apply the new 3-D CS-MFTD to a single tetrahedron as shown in Fig. 5.9 (a).

To test the robustness of the new MFTD method for different shapes of single tetrahedron,

we set node 2, 3, and 4 at fixed locations as shown in Fig. 5.9 (a), then change the x-y

coordinates of node 1. Both x-y coordinates of node 1 are sampled from the range of −2

m to 3 m, with a sampling interval of 0.2 m. The scaling factor of fixed H loop size is

0.01. For each location of node 1 representing a new tetrahedron structure, its system

matrix A is generated to retrieve the MR following Algorithm 5 . Fig. 5.9 (b) shows the

MR of entire system matrix when node 1 are at different locations. The data show that

the eigenvalues of the entire system matrix are almost pure imaginary, therefore, the entire

system is always stable in this new 3-D CS-MFTD method. In Fig. 5.10 , we further show

the MR of each dissembled patch. The left blank area in white color in Fig. 5.10 means MR

is less than 10−20. Compared to the machine precision of 10−15 level, we can safely say each

126

(a) (b)

(c) (d)

Figure 5.10. MR of the local system matrix in each dissembled patch. (a)
Patch 1 (node 1-2-3). (b) Patch 2 (node 1-2-4). (c) Patch 3 (node 1-3-4). (d)
Patch 4 (node 2-3-4).

patch and corresponding dissembled subsystem has pure imaginary eigenvalues, therefore

has guaranteed stability.

5.5.2 A 3-D Box Discretized into Tetrahedral Mesh

This example is a 3-D box discretized into tetrahedral elements shown in Fig. 5.11 (a).

The total size is 1.0 m in x-direction, 0.5 m in y-direction, and 0.75 m in z-direction. The

discretization results in 113 nodes, 544 edges, 782 patches, and 350 tetrahedron elements.

The scaling factor of fixed H loop size is 0.01. The resultant entire system matrix A has

127

(a) (b)

(c) (d)

Figure 5.11. 3-D parallel plate. (a) Tetrahedron mesh of a 3-D parallel plate.
(b) Eigenvalues of entire system matrix A. (c) Simulated two electric fields
in comparison with analytical results. (d) Entire E field solution error as a
function of time.

3,992 nonzero eigenvalues, which are numerically solved and plotted in Fig. 5.11 (b). Clearly,

all eigenvalues of A are almost pure imaginary, therefore, the entire system is stable.

We also set up a free-space wave propagation problem in the given mesh to validate the

accuracy of the proposed method against analytical results. The incident E has the same

form as that of the previous example, but with τ = 6.28 ns in accordance with the new 3-D

structure’s dimension. The time step used in the proposed method is ∆t = 2.60 ps, which is

determined from (5.19). In Fig. 5.11 (c), we plot the electric fields of the 1st (edge E) and

the 602-th (face E) entry from the unknown {e} vector, and compare them with analytical

solutions. Good agreement can be observed. We also plot the entire solution error shown

128

in Fig. 5.11 (d) versus time. It is evident that the proposed method is not just accurate at

certain points, but accurate at all points in the computational domain for all time instants

simulated.

5.5.3 A 3-D Sphere Discretized into Tetrahedral Mesh

(a) (b)

(c) (d)

Figure 5.12. 3-D sphere. (a) Tetrahedron mesh of a 3-D sphere. (b) Eigenval-
ues of entire system matrix A. (c) Simulated two electric fields in comparison
with analytical results. (d) Entire E field solution error as a function of time.

This example is a 3-D sphere discretized into tetrahedral elements shown in Fig. 5.12 (a).

The radius is 0.1 m. The discretization results in 629 nodes, 3,183 edges, 4,543 patches, and

1,987 tetrahedron elements. The scaling factor of fixed H loop size is 0.01. The resultant

entire system matrix A has 16,458 nonzero eigenvalues, which are numerically solved and

129

plotted in Fig. 5.12 (b). Clearly, all eigenvalues of A are almost pure imaginary, therefore,

the entire system is stable.

We also set up a free-space wave propagation problem in the given mesh to validate the

accuracy of the proposed method against analytical results. The incident E has the same

form as that of the previous example, but with τ = 3.14 ns in accordance with the new 3-D

structure’s dimension. The time step used in the proposed method is ∆t = 0.23 ps, which is

determined from (5.19). In Fig. 5.12 (c), we plot the electric fields of the 1st (edge E) and

the 2,955-th (face E) entry from the unknown {e} vector, and compare them with analytical

solutions. Good agreement can be observed. We also plot the entire solution error shown

in Fig. 5.12 (d) versus time. It is evident that the proposed method is not just accurate at

certain points, but accurate at all points in the computational domain for all time instants

simulated. The center peak in Fig. 5.12 (d) is due to the comparison with close to zero

fields.

5.5.4 A 3-D Stripline Discretized into Tetrahedral Mesh

This example is a 3-D stripline discretized into tetrahedral elements shown in Fig. 5.13

(a). The total size is 2.795 µm in x-direction, 8.0 µm in y-direction, and 2.0 µm in z-direction.

The discretization results in 702 nodes, 4,070 edges, 6,411 patches, and 3,042 tetrahedron

elements. The scaling factor of fixed H loop size is 0.01. The resultant entire system matrix

A has 28,460 nonzero eigenvalues, which are numerically solved and plotted in Fig. 5.13

(b). Clearly, all eigenvalues of A are almost pure imaginary, therefore, the entire system is

stable.

We also set up a free-space wave propagation problem in the given mesh to validate the

accuracy of the proposed method against analytical results. The incident E has the same

form as that of the previous example, but with τ = 62.8 ps in accordance with the new 3-D

structure’s dimension. The time step used in the proposed method is ∆t = 5.56 fs, which is

determined from (5.19). In Fig. 5.13 (c), we plot the electric fields of the 1st (edge E) and

the 6,184-th (face E) entry from the unknown {e} vector, and compare them with analytical

solutions. Good agreement can be observed. We also plot the entire solution error shown

130

(a) (b)

(c) (d)

Figure 5.13. 3-D stripline. (a) Tetrahedron mesh of a 3-D stripline. (b)
Eigenvalues of entire system matrix A. (c) Simulated two electric fields in
comparison with analytical results. (d) Entire E field solution error as a func-
tion of time.

in Fig. 5.13 (d) versus time. It is evident that the proposed method is not just accurate at

certain points, but accurate at all points in the computational domain for all time instants

simulated. The later rising error in Fig. 5.13 (d) is due to the comparison with close to zero

fields.

131

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this work, we develop multiphysics and large-scale modeling and simulation methods

for advanced integrated circuit design as follows:

• First, we study the high-frequency performance of Cu-Graphene hybrid interconnects

with a proposed multiphysics model. We develop a multiphysics-based model and

an efficient simulation algorithm to co-simulate directly in time domain Maxwell’s

equations, equations characterizing graphene materials, and Boltzmann equation from

direct current (DC) to high frequencies. To enable the simulation of nano-interconnects

within a feasible run time, the entire numerical system is further made unconditionally

stable in time marching. We show the multiphysics modeling and simulation algorithm

for analyzing Cu-G interconnects, prove the time-domain stability of the coupled simu-

lation, validate the proposed work against measured data, and also apply it to predict

the crosstalk and propagation delay of Cu-G interconnects.

• Second, we study the difference between the first-principles based method and com-

monly used simplified models such as the Drude-model based approach for analyzing

general on-chip Cu-graphene hybrid systems, from both theoretical and numerical per-

spectives. To do so, we first develop a Drude model based simulation algorithm, in-

cluding the derivation of the Drude model from the Boltzmann transport equation, the

numerical representation of the Drude model, and an efficient algorithm for simulating

the Drude model in conjunction with the FDTD to analyze a Cu-graphene intercon-

nect. We then compare it with the first-principles based multiphysics model and the

resulting simulation algorithm both theoretically and numerically through extensive

numerical experiments performed on the Cu-G nano-interconnects. We find that the

first-principles based analysis is necessary to capture the physical process happening

in a Cu-G interconnect at microwave frequencies and in the sub-nm regime.

• Third, to address the large-scale simulation challenge, we develop a new parallelized

domain decomposition (DD) algorithm for solving Maxwell’s equations that minimizes

132

the communication between subdomains, while having a fast convergence of the global

solution. In this algorithm, unlike prevailing domain decomposition methods which

treat the interface field as a whole and use it to build a transmission condition be-

tween subdomains, we split the interface field into multiple components, and let each

component be solved from one subdomain. In this way, we transform the original

coupled system to p decoupled subsystems to solve iteratively with guaranteed conver-

gence, where p is the number of subdomains. Only one addition (communication) of

the interface unknowns needs to be performed after the computation in each subdo-

main is finished at each time step. More important, the algorithm has a guaranteed

fast convergence and permits the use of a large time step irrespective of space step.

It possesses the advantages of both the direct solver (used to solve the numerical sys-

tem in each subdomain) and the iterative solver (used to capture the coupling between

subdomains, whose convergence is made guaranteed). Numerical experiments on large-

scale on-chip and package layout analysis have demonstrated the capability of the new

DD parallelization algorithm.

• In the last part of the thesis, to tackle the challenge of efficient simulation of irregular

structures, we develop a method for the stability analysis and control of unsymmetrical

numerical systems in time domain. In our method, we reduce the stability analysis

of a large system into the stability analysis of dissembled elements, therefore provides

a feasible way to control the stability of large-scale systems regardless of whether the

system is symmetrical or unsymmetrical. We then apply the proposed method to prove

and control the stability of an unsymmetrical matrix-free method that solves Maxwell’s

equations in general unstructured meshes while not requiring a matrix solution.

6.2 Future Work

The future work of this research includes:

• Balance stability and accuracy in 3-D MFTD. Now, the stability can be controlled. For

2-D MFTD, our developed 2-D CS-MFTD can control the stability while not sacrificing

the accuracy. However, in a 3-D mesh, the accuracy of our developed 3-D CS-MFTD

133

is worse than the original 3-D MFTD. Therefore, new approaches to approximate Sh

might be studied to balance stability and accuracy in the 3-D MFTD.

• Include more physics effects, such as the intraband transition in graphene and the

surface scattering at the Cu-graphene interface to further enrich the multiphysics model

and enhance the prediction power.

134

REFERENCES

[1] R. C. Munoz and C. Arenas, “Size effects and charge transport in metals: Quantum
theory of the resistivity of nanometric metallic structures arising from electron scat-
tering by grain boundaries and by rough surfaces,” Appl. Phys. Rev., vol. 4, no. 1,
p. 011 102, 2017. doi: 10.1063/1.4974032 .

[2] D. Josell, S. H. Brongersma, and Z. Tőkei, “Size-dependent resistivity in nanoscale
interconnects,” Annu. Rev. Mater. Res., vol. 39, no. 1, pp. 231–254, 2009. doi: 10.
1146/annurev-matsci-082908-145415 .

[3] R. Mehta, S. Chugh, and Z. Chen, “Enhanced electrical and thermal conduction in
graphene-encapsulated copper nanowires,” Nano Lett., vol. 15, no. 3, pp. 2024–2030,
2015. doi: 10.1021/nl504889t .

[4] A. Naeemi and J. D. Meindl, “Compact physics-based circuit models for graphene
nanoribbon interconnects,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 1822–
1833, 2009, issn: 0018-9383.

[5] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity
in graphene,” J. Phys. Condens. Matter, vol. 19, no. 2, p. 026 222, Dec. 2006. doi:
 10.1088/0953-8984/19/2/026222 .

[6] G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface con-
ductivity model of graphene,” J. Appl. Phys., vol. 103, no. 6, p. 064 302, 2008, issn:
0021-8979. doi: 10.1063/1.2891452 .

[7] A. G. D. Aloia, W. Zhao, G. Wang, and W. Yin, “Near-field radiated from carbon nan-
otube and graphene-based nanointerconnects,” IEEE Trans. Electromagn. Compat.,
vol. 59, no. 2, pp. 646–653, 2017, issn: 0018-9375. doi: 10.1109/TEMC.2016.2639319 .

[8] V. Nayyeri, M. Soleimani, and O. M. Ramahi, “Modeling graphene in the finite-
difference time-domain method using a surface boundary condition,” IEEE Trans.
Antennas Propag., vol. 61, no. 8, pp. 4176–4182, 2013, issn: 0018-926X. doi: 10.1109/
TAP.2013.2260517 .

[9] R. M. S. d. Oliveira, N. R. N. M. Rodrigues, and V. Dmitriev, “Fdtd formulation for
graphene modeling based on piecewise linear recursive convolution and thin material
sheets techniques,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 767–770, 2015,
issn: 1536-1225. doi: 10.1109/LAWP.2014.2378174 .

[10] A. Vakil and N. Engheta, “Transformation optics using graphene,” Science, vol. 332,
no. 6035, p. 1291, 2011.

135

https://doi.org/10.1063/1.4974032
https://doi.org/10.1146/annurev-matsci-082908-145415
https://doi.org/10.1146/annurev-matsci-082908-145415
https://doi.org/10.1021/nl504889t
https://doi.org/10.1088/0953-8984/19/2/026222
https://doi.org/10.1063/1.2891452
https://doi.org/10.1109/TEMC.2016.2639319
https://doi.org/10.1109/TAP.2013.2260517
https://doi.org/10.1109/TAP.2013.2260517
https://doi.org/10.1109/LAWP.2014.2378174

[11] D. Sarkar, C. Xu, H. Li, and K. Banerjee, “High-frequency behavior of graphene-based
interconnects-part i: Impedance modeling,” IEEE Trans. Electron Devices, vol. 58,
no. 3, pp. 843–852, Mar. 2011, issn: 0018-9383. doi: 10.1109/TED.2010.2102031 .

[12] R. Wang, X.-G. Ren, Z. Yan, L.-J. Jiang, W. E. I. Sha, and G.-C. Shan, “Graphene
based functional devices: A short review,” Front. Phys., vol. 14, no. 1, p. 13 603, Oct.
2018, issn: 2095-0470. doi: 10.1007/s11467-018-0859-y .

[13] B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L.
Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband
transitions,” Nat. Commun., vol. 3, p. 780, 2012.

[14] J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin,
A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of dirac
fermions in graphene,” Phys. Rev. B, vol. 83, p. 165 113, 16 Apr. 2011. doi: 10.1103/
PhysRevB.83.165113 .

[15] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N.
Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement
and coherence in patterned epitaxial graphene,” Science, vol. 312, no. 5777, pp. 1191–
1196, 2006, issn: 0036-8075. doi: 10.1126/science.1125925 . eprint: http://science.
sciencemag.org/content/312/5777/1191.full.pdf .

[16] E. H. Hwang and S. Das Sarma, “Single-particle relaxation time versus transport
scattering time in a two-dimensional graphene layer,” Phys. Rev. B, vol. 77, p. 195 412,
19 May 2008. doi: 10.1103/PhysRevB.77.195412 .

[17] A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory.
Springer Science & Business Media, 2006, vol. 34.

[18] T. Hemmi, F. Costen, S. Garcia, R. Himeno, H. Yokota, and M. Mustafa, “Efficient par-
allel LOD-FDTD method for Debye-dispersive media,” IEEE Trans. Antennas Propag.,
vol. 62, no. 3, pp. 1330–1338, Mar. 2014.

[19] M. Yi, Z. Qian, A. Aydiner, and M. Swaminathan, “Transient simulation of multiscale
structures using the nonconformal domain decomposition Laguerre-FDTD method,”
IEEE Trans. Compon., Packag., Manuf. Technol., vol. 5, no. 4, pp. 532–540, Apr. 2015.

[20] J. Yan and D. Jiao, “Time-domain method having a naturally diagonal mass matrix
independent of element shape for general electromagnetic analysis—2-D formulations,”
IEEE Trans. Antennas Propag., vol. 65, no. 3, pp. 1202–1214, Mar. 2017. doi: 10.1109/
TAP.2017.2653078 .

136

https://doi.org/10.1109/TED.2010.2102031
https://doi.org/10.1007/s11467-018-0859-y
https://doi.org/10.1103/PhysRevB.83.165113
https://doi.org/10.1103/PhysRevB.83.165113
https://doi.org/10.1126/science.1125925
http://science.sciencemag.org/content/312/5777/1191.full.pdf
http://science.sciencemag.org/content/312/5777/1191.full.pdf
https://doi.org/10.1103/PhysRevB.77.195412
https://doi.org/10.1109/TAP.2017.2653078
https://doi.org/10.1109/TAP.2017.2653078

[21] C. G. Kang, S. K. Lim, S. Lee, S. K. Lee, C. Cho, Y. G. Lee, H. J. Hwang, Y. Kim,
H. J. Choi, S. H. Choe, M.-H. Ham, and B. H. Lee, “Effects of multi-layer graphene
capping on Cu interconnects,” Nanotechnology, vol. 24, no. 11, p. 115 707, 2013.

[22] P. Goli, H. Ning, X. Li, C. Y. Lu, K. S. Novoselov, and A. A. Balandin, “Thermal prop-
erties of graphene–copper–graphene heterogeneous films,” Nano Lett., vol. 14, no. 3,
pp. 1497–1503, 2014. doi: 10.1021/nl404719n .

[23] N. T. Cuong and S. Okada, “Suppression of conductivity deterioration of copper thin
films by coating with atomic-layer materials,” Appl. Phys. Lett., vol. 110, no. 13,
p. 131 601, 2017. doi: 10.1063/1.4979038 .

[24] S. Sun and D. Jiao, “Multiphysics modeling and simulation of 3-D cu-graphene hybrid
nanointerconnects,” IEEE Trans. Microw. Theory Tech., vol. 68, no. 2, pp. 490–500,
2020. doi: 10.1109/TMTT.2019.2955123 .

[25] S. Sun and D. Jiao, “First-principles based multiphysics modeling and simulation of
on-chip Cu-graphene hybrid nano-interconnects in comparison with simplified model
based analysis,” IEEE J. Multiscale Multiphys. Comput. Tech., vol. 4, pp. 374–382,
Dec. 2019. doi: 10.1109/JMMCT.2020.2964655 .

[26] C. Kittel, Introduction to Solid State Physics, 8th ed. Wiley, 2005, pp. 656–661.

[27] H. Peng, N. B. M. Schröter, J. Yin, H. Wang, T.-F. Chung, H. Yang, S. Ekahana,
Z. Liu, J. Jiang, L. Yang, T. Zhang, C. Chen, H. Ni, A. Barinov, Y. P. Chen, Z. Liu,
H. Peng, and Y. Chen, “Substrate doping effect and unusually large angle van hove
singularity evolution in twisted Bi- and multilayer graphene,” Adv. Mater., vol. 29,
no. 27, p. 1 606 741, 2017, issn: 1521-4095. doi: 10.1002/adma.201606741 .

[28] M. Jablan, H. Buljan, and M. Solja či ć, “Plasmonics in graphene at infrared frequen-
cies,” Phys. Rev. B, vol. 80, p. 245 435, 24 Dec. 2009. doi: 10.1103/PhysRevB.80.
245435 .

[29] J. Yan and D. Jiao, “Fast explicit and unconditionally stable FDTD method for elec-
tromagnetic analysis,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 8, pp. 2698–
2710, Aug. 2017. doi: 10.1109/TMTT.2017.2686862 .

[30] C. Jungemann and B. Meinerzhagen, “Analysis of the stochastic error of stationary
monte carlo device simulations,” IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 985–
992, May 2001, issn: 0018-9383. doi: 10.1109/16.918247 .

[31] P. W. Rambo and J. Denavit, “Time stability of monte carlo device simulation,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 12, no. 11, pp. 1734–1741,
Nov. 1993, issn: 0278-0070. doi: 10.1109/43.248084 .

137

https://doi.org/10.1021/nl404719n
https://doi.org/10.1063/1.4979038
https://doi.org/10.1109/TMTT.2019.2955123
https://doi.org/10.1109/JMMCT.2020.2964655
https://doi.org/10.1002/adma.201606741
https://doi.org/10.1103/PhysRevB.80.245435
https://doi.org/10.1103/PhysRevB.80.245435
https://doi.org/10.1109/TMTT.2017.2686862
https://doi.org/10.1109/16.918247
https://doi.org/10.1109/43.248084

[32] L. Varani, L. Reggiani, T. Kuhn, T. Gonzalez, and D. Pardo, “Microscopic simulation
of electronic noise in semiconductor materials and devices,” IEEE Trans. Electron
Devices, vol. 41, no. 11, pp. 1916–1925, Nov. 1994, issn: 0018-9383. doi: 10.1109/16.
333807 .

[33] S.-M. Hong, A.-T. Pham, and C. Jungemann, Deterministic Solvers for the Boltzmann
Transport Equation. Springer Science & Business Media, 2011.

[34] K. Zhao, S. Hong, C. Jungemann, and R. Han, “Stable implementation of a determin-
istic multi-subband boltzmann solver for silicon double-gate nmosfets,” in Int. Conf.
Simulation Semiconductor Processes Devices, Sep. 2010, pp. 303–306. doi: 10.1109/
SISPAD.2010.5604500 .

[35] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equa-
tions. Society for Industrial and Applied Mathematics, 2007, p. 342, isbn: 978-0-89871-
629-0. doi: doi:10.1137/1.9780898717839 .

[36] J. G. Maloney and G. S. Smith, “The efficient modeling of thin material sheets in the
finite-difference time-domain (fdtd) method,” IEEE Trans. Antennas Propag., vol. 40,
no. 3, pp. 323–330, 1992, issn: 0018-926X. doi: 10.1109/8.135475 .

[37] M. J. Kobrinsky, S. Chakravarty, D. Jiao, M. C. Harmes, S. List, and M. Mazumder,
“Experimental validation of crosstalk simulations for on-chip interconnects using S-
parameters,” IEEE Trans. Adv. Packag., vol. 28, no. 1, pp. 57–62, Feb. 2005. doi:
 10.1109/TADVP.2004.841672 .

[38] S. Sun and D. Jiao, “Multiphysics simulation of high-speed graphene-based inter-
connects in time domain,” in Proc. IEEE Int. Symp. Antennas Propag., Jul. 2018,
pp. 1169–1170. doi: 10.1109/APUSNCURSINRSM.2018.8608859 .

[39] Feng Xu and Wei Hong, “Domain decomposition FDTD algorithm for the analysis of
a new type of E-plane sectorial horn with aperture field distribution optimization,”
IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 426–434, Feb. 2004.

[40] Z. Lai, J. Kiang, and R. Mittra, “A domain decomposition finite difference time domain
(FDTD) method for scattering problem from very large rough surfaces,” IEEE Trans.
Antennas Propag., vol. 63, no. 10, pp. 4468–4476, Oct. 2015.

[41] S. Yang, Z. Chen, Y. Yu, and W. Yin, “An unconditionally stable one-step arbitrary-
order leapfrog ADI-FDTD method and its numerical properties,” IEEE Trans. Anten-
nas Propag., vol. 60, no. 4, pp. 1995–2003, Apr. 2012. doi: 10.1109/TAP.2012.2186249 .

138

https://doi.org/10.1109/16.333807
https://doi.org/10.1109/16.333807
https://doi.org/10.1109/SISPAD.2010.5604500
https://doi.org/10.1109/SISPAD.2010.5604500
https://doi.org/doi:10.1137/1.9780898717839
https://doi.org/10.1109/8.135475
https://doi.org/10.1109/TADVP.2004.841672
https://doi.org/10.1109/APUSNCURSINRSM.2018.8608859
https://doi.org/10.1109/TAP.2012.2186249

[42] J. Shibayama, M. Muraki, J. Yamauchi, and H. Nakano, “Efficient implicit FDTD
algorithm based on locally one-dimensional scheme,” Electron. Lett., vol. 41, no. 19,
pp. 1046–1047, Sep. 2005. doi: 10.1049/el:20052381 .

[43] Y. Duan, B. Chen, D. Fang, and B. Zhou, “Efficient implementation for 3-D Laguerre-
based finite-difference time-domain method,” IEEE Trans. Microw. Theory Tech.,
vol. 59, no. 1, pp. 56–64, Jan. 2011. doi: 10.1109/TMTT.2010.2091206 .

[44] G. Sun and C. W. Trueman, “Approximate Crank-Nicolson schemes for the 2-D finite-
difference time-domain method for TEz waves,” IEEE Trans. Antennas Propag., vol. 52,
no. 11, pp. 2963–2972, Nov. 2004. doi: 10.1109/TAP.2004.835142 .

[45] H. Bao and R. Chen, “An efficient domain decomposition parallel scheme for leapfrog
ADI-FDTD method,” IEEE Trans. Antennas Propag., vol. 65, no. 3, pp. 1490–1494,
Mar. 2017.

[46] F. Zheng and Z. Chen, “Numerical dispersion analysis of the unconditionally stable
3-D ADI-FDTD method,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 1006–
1009, May 2001. doi: 10.1109/22.920165 .

[47] I. Ahmed, E. Chua, E. Li, and Z. Chen, “Development of the three-dimensional un-
conditionally stable LOD-FDTD method,” IEEE Trans. Antennas Propag., vol. 56,
no. 11, pp. 3596–3600, Nov. 2008. doi: 10.1109/TAP.2008.2005544 .

[48] G. He, W. Shao, X. Wang, and B. Wang, “An efficient domain decomposition Laguerre-
FDTD method for two-dimensional scattering problems,” IEEE Trans. Antennas Propag.,
vol. 61, no. 5, pp. 2639–2645, May 2013. doi: 10.1109/TAP.2013.2242836 .

[49] X. Wei, W. Shao, and H. Ou, “Domain decomposition CN-FDTD method for analyzing
dispersive metallic gratings,” IEEE Photon. J., vol. 9, no. 4, pp. 1–18, Aug. 2017. doi:
 10.1109/JPHOT.2017.2722459 .

[50] Y. Li and J. M. Jin, “A vector dual-primal finite element tearing and interconnecting
method for solving 3-D large-scale electromagnetic problems,” IEEE Trans. Antennas
Propag., vol. 54, no. 10, pp. 3000–3009, Oct. 2006. doi: 10.1109/TAP.2006.882191 .

[51] D. Jiao, S. Chakravarty, and C. Dai, “A layered finite element method for electromag-
netic analysis of large-scale high-frequency integrated circuits,” IEEE Trans. Antennas
Propag., vol. 55, no. 2, pp. 422–432, Feb. 2007.

[52] Y. Shao, Z. Peng, and J. Lee, “Signal integrity analysis of high-speed interconnects by
using nonconformal domain decomposition method,” IEEE Trans. Compon., Packag.,
Manuf. Technol., vol. 2, no. 1, pp. 122–130, Jan. 2012.

139

https://doi.org/10.1049/el:20052381
https://doi.org/10.1109/TMTT.2010.2091206
https://doi.org/10.1109/TAP.2004.835142
https://doi.org/10.1109/22.920165
https://doi.org/10.1109/TAP.2008.2005544
https://doi.org/10.1109/TAP.2013.2242836
https://doi.org/10.1109/JPHOT.2017.2722459
https://doi.org/10.1109/TAP.2006.882191

[53] S. Wang, Y. Shao, and Z. Peng, “A parallel-in-space-and-time method for transient
electromagnetic problems,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 3961–
3973, Jun. 2019.

[54] M. Discacciati, P. Gervasio, and A. Quarteroni, “The interface control domain decom-
position (ICDD) method for elliptic problems,” SIAM J. Control Optim., vol. 51, no. 5,
pp. 3434–3458, Sep. 2013.

[55] M. J. Gander, “Schwarz methods over the course of time,” Electron. Trans. Numer.
Anal., vol. 31, pp. 228–255, 2008.

[56] The OpenROAD Project, Jun. 2021. [Online]. Available: https://theopenroadproject.
org/ .

[57] L. T. Clark, V. Vashishtha, D. M. Harris, S. Dietrich, and Z. Wang, “Design flows and
collateral for the ASAP7 7nm FinFET predictive process design kit,” in Proc. IEEE
Int. Conf. Microelectron. Syst. Edu. (MSE), May 2017, pp. 1–4. doi: 10.1109/MSE.
2017.7945071 .

[58] X. Jia, F. Yang, X. Liu, M. Li, and S. Xu, “Fast nonuniform metasurface analysis in
FDTD using surface susceptibility model,” IEEE Trans. Antennas Propag., vol. 68,
no. 10, pp. 7121–7130, Oct. 2020. doi: 10.1109/TAP.2019.2957317 .

[59] H. B. Wang, Y. J. Cheng, and Z. N. Chen, “Wideband and wide-angle single-layered-
substrate linear-to-circular polarization metasurface converter,” IEEE Trans. Antennas
Propag., vol. 68, no. 2, pp. 1186–1191, Feb. 2020. doi: 10.1109/TAP.2019.2938683 .

[60] T. Ohtani, Y. Kanai, and J. B. Cole, “A stability improvement technique using PML
condition for the three-dimensional nonuniform mesh nonstandard FDTD method,”
IEEE Trans. Magn., vol. 49, no. 5, pp. 1569–1572, May 2013. doi: 10.1109/TMAG.
2013.2238613 .

[61] J. Yan and D. Jiao, “An unsymmetric FDTD subgridding algorithm with unconditional
stability,” IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 4137–4150, May 2018.
doi: 10.1109/TAP.2018.2835561 .

[62] K. Zeng and D. Jiao, “Symmetric positive semi-definite FDTD subgridding algorithms
in both space and time for accurate analysis of inhomogeneous problems,” IEEE Trans.
Antennas Propag., vol. 68, no. 4, pp. 3047–3059, Jan. 2020. doi: 10.1109/TAP.2020.
2964943 .

[63] A. A. Ijjeh, M. Cueille, J.-L. Dubard, and M. M. Ney, “Dispersion and stability analysis
for TLM unstructured block meshing,” IEEE Trans. Microw. Theory Tech., vol. 69,
no. 10, pp. 4352–4365, Oct. 2021. doi: 10.1109/TMTT.2021.3093417 .

140

https://theopenroadproject.org/
https://theopenroadproject.org/
https://doi.org/10.1109/MSE.2017.7945071
https://doi.org/10.1109/MSE.2017.7945071
https://doi.org/10.1109/TAP.2019.2957317
https://doi.org/10.1109/TAP.2019.2938683
https://doi.org/10.1109/TMAG.2013.2238613
https://doi.org/10.1109/TMAG.2013.2238613
https://doi.org/10.1109/TAP.2018.2835561
https://doi.org/10.1109/TAP.2020.2964943
https://doi.org/10.1109/TAP.2020.2964943
https://doi.org/10.1109/TMTT.2021.3093417

[64] J. Yan and D. Jiao, “Matrix-free time-domain method for general electromagnetic anal-
ysis in 3-D unstructured meshes—modified-basis formulation,” IEEE Trans. Microw.
Theory Tech., vol. 64, no. 8, pp. 2371–2382, Jul. 2016. doi: 10.1109/TMTT.2016.
2584047 .

[65] K. Zeng and D. Jiao, “Explicit matrix-free time-domain method in unstructured meshes
and its application to stable simulation of general unsymmetrical systems,” IEEE
Trans. Microw. Theory Tech., vol. 67, no. 12, pp. 4821–4832, Dec. 2019. doi: 10 .
1109/TMTT.2019.2951669 .

[66] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations. SIAM,
2004.

[67] M. Moradi, V. Nayyeri, and O. M. Ramahi, “An unconditionally stable single-field
finite-difference time-domain method for the solution of Maxwell equations in three
dimensions,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3859–3868, May 2020.
doi: 10.1109/TAP.2020.2975675 .

[68] D. Jiao and J.-M. Jin, “A general approach for the stability analysis of the time-
domain finite-element method for electromagnetic simulations,” IEEE Trans. Antennas
Propag., vol. 50, no. 11, pp. 1624–1632, Nov. 2002. doi: 10.1109/TAP.2002.803965 .

[69] R. Bellman, Stability Theory of Differential Equations. Dover Publications, 2013, isbn:
9780486150130.

[70] P. J. Schmid, “Nonmodal stability theory,” Annu. Rev. Fluid Mech., vol. 39, no. 1,
pp. 129–162, Jan. 2007. doi: 10.1146/annurev.fluid.38.050304.092139 .

[71] Y. Saad, Numerical Methods for Large Eigenvalue Problems: Revised Edition. SIAM,
2011.

[72] J. Yan and D. Jiao, “Accurate and stable matrix-free time-domain method in 3-D un-
structured meshes for general electromagnetic analysis,” IEEE Trans. Microw. Theory
Tech., vol. 63, no. 12, pp. 4201–4214, Dec. 2015, issn: 0018-9480.

[73] P.-O. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Rev.,
vol. 46, no. 2, pp. 329–345, 2004. doi: 10.1137/S0036144503429121 .

141

https://doi.org/10.1109/TMTT.2016.2584047
https://doi.org/10.1109/TMTT.2016.2584047
https://doi.org/10.1109/TMTT.2019.2951669
https://doi.org/10.1109/TMTT.2019.2951669
https://doi.org/10.1109/TAP.2020.2975675
https://doi.org/10.1109/TAP.2002.803965
https://doi.org/10.1146/annurev.fluid.38.050304.092139
https://doi.org/10.1137/S0036144503429121

VITA

Shuzhan Sun received the B.S. degree in physics from the School of Special Class for

the Gifted Young, University of Science and Technology of China (USTC), Hefei, China, in

2016. He is currently pursuing the Ph.D. degree in Electrical and Computer Engineering

(with a minor M.S. degree in physics in 2018) in the On-Chip Electromagnetics Group,

Purdue University, West Lafayette, IN, USA. Since Sept. 2021, Shuzhan works as a Lead

Software Engineer in the Spectre circuit simulation team in Cadence Design Systems, San

Jose, CA.

His current research focuses on simulating next-generation Cu-graphene hybrid nanoint-

erconnects and developing novel electromagnetic algorithms for large-scale simulation.

Mr. Sun received the Best Student Paper Finalist Award at the IEEE International

Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (IEEE

AP-S/URSI) in 2019, and 2021, respectively.

142

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Background and Motivation
	Contributions of This Work
	Dissertation Outline

	MULTIPHYSICS MODELING AND SIMULATION OF 3-D CU-GRAPHENE HYBRID NANO-INTERCONNECTS
	Introduction
	Simplified Drude Model Based Simulation Method
	Analytical Derivation of Drude Model from the Boltzmann Transport Equation
	Accounting for Drude Model in Time Domain Analysis
	Drude Model in Conjunction with the FDTD Algorithm for Simulating On-Chip Cu-Graphene Hybrid Interconnects

	Proposed Multiphysics Modeling of Cu-G Hybrid Nano-Interconnects
	Multiphysics Co-Simulation in Time Domain and Stability Analysis
	Unconditionally Stable Time-Marching Scheme of the Maxwell Subsystem
	Unconditionally Stable Time-Marching Scheme of the Boltzmann Subsystem
	Unconditionally Stable Boltzmann Solver
	Proof on the Unconditional Stability of the Boltzmann Solver and the Choice of Time Step

	Unconditionally Stable Time-Marching Scheme of the Coupled System

	Numerical Results from Proposed Solver
	Validation of the Maxwell Solver
	Validation of the Boltzmann Solver
	Enhanced Electrical Conduction in Cu-G Nanowires Predicted by the Coupled Solver for Multiphysics Simulation
	Increased Crosstalk Effect and Decreased Propagation Delay in Graphene-Encapsulated Cu Nano-Interconnects Predicted by the Proposed Multiphysics Solver

	Comparisons between Proposed Multiphysics Solver and Drude Model Based Simulation
	Validation of Both Simulations at DC
	Simulating Graphene-Encapsulated Cu Nano-Interconnects and Two Determining Factors: Feature Size & Signal Frequency
	Determining Factor 1 - Feature Size
	Determining Factor 2 - Signal Frequency

	Conclusion

	A NON-OVERLAPPING DOMAIN DECOMPOSITION PARALLEL ITERATION SCHEME OF NONUNIFORM FINITE DIFFERENCE METHOD FOR LARGE-SCALE ON-CHIP SIMULATION
	Introduction
	Theory of the Parallel Solver
	Review of Patch-Based Single-Grid FDTD Formulation
	Disassemble Contributions of Subdomains
	Parallel Iteration Scheme in Frequency Domain
	Parallel Iteration Scheme in Time Domain

	Numerical Results in Frequency Domain
	Accuracy and Convergence
	Speed up Relative to Direct Solver

	Numerical Results in Time Domain
	Accuracy
	Scaling Performance

	Conclusion

	SPLIT-FIELD DOMAIN DECOMPOSITION PARALLEL ALGORITHM WITH FAST CONVERGENCE FOR ELECTROMAGNETIC ANALYSIS
	Introduction
	Preliminaries
	Proposed Split-Field DD Method
	Two-Domain Problems
	P-Domain Problems
	Matrix Partition
	Convergence Analysis of the Proposed DD Method
	Comparison with Non-split-field DD Algorithms

	Split-Field DD Parallel Algorithm
	Numerical Results
	Test-chip Interconnect
	ASAP7 On-chip Interconnect
	A Representative Package Structure
	2-D Partition of the DD Solver
	Large-scale IBM Plasma Package Structure
	Run-time Complexity, Memory Complexity, and Parallel Efficiency

	STABILITY CONTROL OF UNSYMMETRICAL NUMERICAL METHODS IN TIME DOMAIN
	Introduction
	Stability Analysis Theory
	Conventional Stability Criterion by Solving All Eigenvalues of the Entire System Matrix
	Proposed Stability Criterion by Reducing to Single Element

	Control the Stability of MFTD Method
	Review of Matrix-Free Time-Domain Method
	Control the Stability of 2-D MFTD Method
	New 3-D MFTD Method with Controlled Stability

	Numerical Results of 2-D CS-MFTD Method
	Controlled Stability of 2-D Triangular Meshes of Arbitrary Shape
	Wave Propagation in a 2-D Ring Mesh
	Wave Propagation in a 2-D Cavity Discretized Into a Highly Unstructured Mesh

	Numerical Results of 3-D CS-MFTD Method
	3-D Single Tetrahedron of Arbitrary Shape
	A 3-D Box Discretized into Tetrahedral Mesh
	A 3-D Sphere Discretized into Tetrahedral Mesh
	A 3-D Stripline Discretized into Tetrahedral Mesh

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Work

	REFERENCES
	VITA

