
FAST ALGORITHMS FOR GENERATING MINIMAL RANK
H2-MATRIX FOR ELECTRICALLY LARGE SURFACE

INTEGRAL OPERATORS
by

Chang Yang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Dan Jiao, Chair

School of Electrical and Computer Engineering

Dr. Weng Cho Chew

School of Electrical and Computer Engineering

Dr. Steven D. Pekarek

School of Electrical and Computer Engineering

Dr. Alexander V. Kildishev

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

To my family

3

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor Professor Dan Jiao, who give

me the opportunity to work with her and study at this university. She led me into the world

of Computational Electromagnetics and steered me in the right direction through the ocean.

She will always be there whenever I feel the struggle in my research. Then she would work

out every detail to give me a piece of tangible advice. I cannot imagine this work without her

help. Her passion, rigor, wisdom, and diligence will surely continue inspiring me no matter

where I go. Working with her will be one of my best memories.

I would like to thank other members of my Ph.D. advisory committee: Professor Weng

Cho Chew, Professor Steven D. Pekarek, and Professor Alexander V. Kildishev for their

precious time, support, and suggestions regarding my research work.

Thanks are also extended to all the fellow labmates who worked with me in the On-Chip

Electromagnetics Lab here at Purdue: Dr. Jin Yan, Dr. Kaiyuan Zeng, Dr. Miaomiao Ma,

Dr. Ping Li, Dr. Yu Zhao, Dr. Li Xue, Michael R. Hayashi, Shuzhan Sun, Yifan Wang,

Vinicius Cabral Do Nascimento for their constant support and the friendly yet professional

environment in the lab.

Last but not the least, I would like to thank my family for their love and ultimate support

during all these years.

4

TABLE OF CONTENTS

LIST OF TABLES . 11

LIST OF FIGURES . 13

ABBREVIATIONS . 15

ABSTRACT . 16

1 INTRODUCTION . 17

1.1 Challenges . 17

1.2 Mathematical Background . 18

1.2.1 Electric Field Integral Equations (EFIEs) 18

1.2.2 H2-Matrix . 19

1.2.3 Method for Generating an Initial H2-matrix from MLFMA 21

1.3 Contributions of This Work . 23

1.4 Dissertation Outline . 24

2 CONVERTING AN H2-MATRIX TO A MINIMAL RANK H2-MATRIX 26

2.1 Proposed Algorithm . 27

2.1.1 Fast Computation Using the Factorized Form of ABT 27

2.1.2 Proposed Algorithm . 28

2.2 Accuracy and Complexity Analysis . 34

2.3 Numerical Result . 35

3 NESTED REDUCTION ALGORITHM (NRA) 40

5

3.1 Simplifying the conversion algorithm . 40

3.1.1 New Scheme to Convert FMM H2 to New H2 40

3.1.2 Complexity Analysis . 44

3.1.3 Converting from VSVH H2-matrix to VSVT H2-matrix 44

3.2 Nested Reduction Algorithm (NRA) . 45

3.2.1 Proposed Work . 45

3.2.2 Numerical Result . 49

4 NRA WITH FURTHER REDUCED COMPLEXITY 55

4.1 Fast NRA . 55

4.2 Memory Efficient NRA (Double Recursive Algorithm) 58

4.3 NRA taking advantage of sparsity . 62

4.3.1 NRA Using Sparsity . 64

4.3.2 Eliminating Randomness . 65

4.4 Accuracy and Complexity . 66

4.4.1 Accuracy . 66

4.4.2 Time and Memory Complexity . 67

4.4.3 Further Rank Reduction . 69

4.5 Numerical Results . 69

4.5.1 Accuracy . 70

6

Accuracy Comparison Between the Proposed Fast NRA Algorithm

and the DRA . 70

Scattering from a Conducting Cube Using Fast NRA 71

Scattering from a Conducting Plate Using Fast NRA 71

Scattering from an Array of Spheres Using Fast NRA 72

Scattering from two Complex Structures Using Fast NRA 73

Scattering from a Conducting Cube Using DRA 74

4.5.2 Time and Memory Complexity . 76

The Growth Rate of the Rank . 76

Complexity Analysis . 78

4.6 Conclusion . 83

5 NESTED CONSTRUCTION METHOD . 87

5.1 Background . 88

5.1.1 Pseudo-Skeleton Approximation . 88

5.2 Nested Construction Algorithm . 89

5.2.1 Cluster Basis Generation at Leaf Level 90

5.2.2 Cluster Basis Generation at Nonleaf Levels 92

5.2.3 Coupling Matrix Generation . 94

5.2.4 Complexity Analysis . 96

5.3 Efficient Conversion of H-matrix to H2-matrix 98

7

5.4 Numerical Results . 100

5.4.1 Pseudo-Skeleton Approximation with Random Choice of Pivots . . . 100

5.4.2 Accuracy of the Proposed Nested Construction Algorithm 103

Scattering from an Irregularly Shaped Coil 103

Scattering from an Array of Spheres 103

Scattering from a Large Conducting Cube 104

5.4.3 Complexity of the Proposed Nested Construction Algorithm 104

The Growth Rate of the Rank . 106

Time and Memory Complexity . 107

5.5 Conclusion . 109

6 NESTED PSEUDO SKELETON APPROXIMATION 110

6.1 Nested Pseudo-Skeleton Approximation . 111

6.1.1 Nested Pseudo-Skeleton Approximation 112

6.1.2 Rank-Minimization On the Fly . 114

6.1.3 NPSA Algorithm Using Original Matrix Entries for Coupling Matrices 117

6.1.4 Accuracy and Complexity . 121

6.2 Numerical Results . 122

6.2.1 Accuracy . 122

Scattering from a Conducting Cube 122

Scattering from an Array of Spheres 124

8

Scattering from More Complicated Structures 124

6.2.2 The Growth Rate of the Rank . 126

6.2.3 Complexity . 127

6.3 Conclusion . 130

7 ANALYTICAL SKELETON APPROXIMATION 131

7.1 Introduction . 131

7.2 Proposed Work . 132

7.3 Application to IE operators . 136

7.4 Numerical Results . 137

7.4.1 Using Auxiliary Boxes . 137

Relationship between ∆B and d for a fixed accuracy 138

Cases with dt 6= ds . 138

Choice of ∆B . 140

Effects of side length sB . 141

Effects of η or distance D . 142

Electrically large cases . 142

7.4.2 Using Original Pivots . 143

7.4.3 Using Auxiliary Plates . 144

7.4.4 Application to realistic S-EFIE problems 145

7.4.5 Comparison of ASA with ACA . 146

9

7.5 Conclusion . 146

8 SUMMARY . 148

8.1 Conclusions . 148

8.2 Future work . 149

REFERENCES . 150

VITA . 152

10

LIST OF TABLES

2.1 Data of converting process for a suite of spheres 37

3.1 Rank versus tree level using Nested Reduction for ε = 10−3 53

4.1 Sparsity of ŨH against the number of unknowns for cubes. 64

4.2 Accuracy Comparison Between NRA and Fast NRA 71

4.3 Accuracy Comparison Between DRA and Fast NRA 71

4.4 Rank versus tree level using NRA with ε = 10−3 77

4.5 Time, rank, and memory scaling of the proposed fast NRA with ε = 10−2 and
comparison with the FMM-based representation. 79

4.6 Accuracy of NRA using sparsity which hard-threshold (Ũt)H for every cluster.
Cube, ε = 10−2 . 83

4.7 Data of NRA using sparsity, hard-thresholding (Ũt)H based on entire matrix’s
max for every cluster, using SVD on G̃G̃H , Sphere, ε = 10−2 84

4.8 Data of NRA using sparsity, hard-thresholding (Ũt)H based on entire matrix’s
max for every cluster, and hard-thresholding (Ũt

1)HT1 and (Ũt
2)HT2, using SVD

on G̃G̃H (Note G̃ =
[
ŨH

1 T1ŨH
2 T2

]
), Sphere, ε = 10−2 84

4.9 Data of NRA using sparsity, without thresholding (Ũt)H , using SVD on G̃G̃H ,
Sphere, ε = 10−2 . 85

5.1 Accuracy of PSA with random choice pivots for the interaction between two cubes. 101

5.2 Accuracy of using randomly selected columns to represent an admissible block. . 102

5.3 The effect of c0 on the accuracy of PSA. 102

5.4 Rank versus Tree Level Using the NC Algorithm with ε = 10−3 for a Conducting
Sphere. 106

5.5 Rank versus Tree Level Using NC Algorithm with ε = 10−3 for a Conducting Cube. 107

5.6 Scaling of CPU Time, Memory, Accuracy, Rank vs. N 108

6.1 Rank versus tree level, ε = 10−3, Sphere, diameter is 29.482 λ, N= 1,179,648 . . 127

6.2 Data of NPSA, sphere, ε = 10−3 . 128

6.3 Data of NPSA, shown in subsection 6.1.3 , Sphere, ε = 10−3 130

7.1 ASA with auxiliary bounding boxes for the interaction between two solid cubes. 138

7.2 ASA with auxiliary bounding boxes for two solid cubes: Effects of d on ∆B,
e1 = 10−4. 139

11

7.3 ASA with auxiliary bounding boxes for two 3D uniform grids: Effects of d on
∆B, e1 = 10−6. 139

7.4 ASA with auxiliary bounding boxes for two solid cubes: dt 6= ds case. 140

7.5 ASA with auxiliary bounding boxes for two solid cubes: Choice of ∆B (d = 1.558
m). 140

7.6 ASA with auxiliary bounding boxes for two solid cubes: Choice of ∆B (d = 4.155m). 141

7.7 ASA with auxiliary bounding boxes for two solid cubes: Effects of side length sB

(d = 3.289 m, D = 3.947m). 141

7.8 ASA with auxiliary bounding boxes for two solid cubes: Effects of side length sB

(d = 4.155 m, D = 4.986 m). 141

7.9 ASA with auxiliary bounding boxes for two solid cubes: Effects of side length sB

(d = 4.155 m, D = 8.310 m). 142

7.10 Auxiliary bounding boxes enclosing two solid cubes: Effects of D on ∆B, e1 = 10−4. 142

7.11 Auxiliary bounding boxes enclosing two solid cubes, Effects of D on ∆B, e1 = 10−6. 143

7.12 Auxiliary bounding boxes enclosing 3D solid cubes: Electrically very large cases. 143

7.13 ASA with original pivots applied to the EFIE of two conducting spheres. 144

7.14 ASA with auxiliary plates for two solid cubes, η = 1.2. 144

7.15 ASA with auxiliary plates for clusters with a different size using equal ∆B for
two solid cubes, η = 1.2. 145

7.16 Comparison Between ASA and ACA. 146

12

LIST OF FIGURES

1.1 Illustration of an H2-matrix . 21

2.1 Setup for computing bistatic RCS . 36

2.2 number of unknowns to be 73728, electrical size to be 4.42 38

2.3 Compare of memory used to generate H2-matrices, PEC-sphere, εrSV D = 10−2
 38

2.4 Compare of rank of two H2-matrices, PEC-sphere, εrSV D = 10−2 39

2.5 Compare of relative error of two H2-matrices, PEC-sphere, εrSV D = 10−2 . . 39

3.1 Compare RCS of conducting sphere . 50

3.2 Compare RCS of conducting Cube . 50

3.3 A coil. 51

3.4 RCS of a coil simulated using Fast NRA. 52

3.5 A joint. 53

3.6 RCS of a joint simulated using Fast NRA. 54

4.1 Compare RCS of conducting Cube Using Fast NRA 72

4.2 Compare RCS of conducting Plate Using Fast NRA 72

4.3 Simulated RCS of an array of conducting spheres (4× 4× 4) Using Fast NRA. 73

4.4 Simulated RCS of an array of conducting spheres (6× 6× 6) Using Fast NRA. 74

4.5 RCS of a coil simulated using Fast NRA. 75

4.6 RCS of a joint simulated using Fast NRA. 75

4.7 Compare RCS of conducting Cube Using DRA 76

4.8 New rank’s growth rate with electrical size in a sphere example. 77

4.9 Simulated RCS of a conducting sphere using Fast NRA in comparison with
Mie series solution. 78

4.10 Time Complexity of the proposed fast NRA. 80

4.11 Memory Complexity of the proposed fast NRA. 81

4.12 comparison of memory needed to store FMM representation and Fast NRA
representation . 81

4.13 comparison of time needed for FMM representation and Fast NRA represen-
tation to do MV with the same vector . 82

13

4.14 Memory comparison between Fast NRA 1 and Fast NRA 2 during the con-
version stage. 82

5.1 Submatrices colored in yellow are Gt4 of cluster t4. 91

5.2 RCS of a coil simulated using Nested Construction. 103

5.3 RCS of an array of spheres having 6×6×6 elements using Nested Construction. 104

5.4 Scattering from a large cube with over one million unknowns simulated using
Nested Construction. 105

5.5 Scattering from a conducting sphere having N = 294, 912 using Nested Con-
struction. 105

5.6 Time Complexity of the Proposed Nested Construction Algorithm. 107

5.7 Memory Complexity of the Proposed Nested Construction Algorithm. 108

6.1 bRCS, Nested Pseudo-Skeleton Approximation, N=1179648, Cube 123

6.2 bRCS, Nested Pseudo-Skeleton Approximation, N=139968, array of spheres,
6× 6× 6 array . 124

6.3 bRCS, Nested Pseudo-Skeleton Approximation, N=139968, coil 125

6.4 bRCS, Nested Pseudo-Skeleton Approximation, N=139968, joint 126

6.5 bRCS, NPSA, N=294912, Sphere . 128

6.6 Time Complexity of Nested Pseudo Skeleton Approximation. 129

6.7 Memory Complexity of Nested Pseudo Skeleton Approximation. 129

7.1 Using auxiliary plates to build the ASA. 135

7.2 Use auxiliary plates to build the ASA for rectangular matrices. 135

7.3 Use auxiliary plates with equal ∆B . 145

14

ABBREVIATIONS

ACA Adaptive Cross Approximation

CEM Computational Electromagnetics

EFIE Electric Field Integral Equation

FMM Fast Multipole Method

IE Integral Equation

MLFMA Multi-level Fast Multipole Algorithm

MVM Matrix Vector Multiplication

NPSA Nested Pseudo Skeleton Approximation

NRA Nested Reduction Algorithm

PEC Perfect Electric Conductor

PSA Pseudo Skeleton Approximation

RCS Radar cross-section

rSVD reduced SVD

RHS Right Hand Side

SIE Surface Integral Equation

VIE Volumn Integral Equation

15

ABSTRACT

Computational electromagnetics (CEM) plays an important role in many aspects of to-

day’s engineering world. Among existing CEM methods, Integral Equation (IE) based solvers

are popular because of their versatility, efficiency, and reliability. IE-based methods in gen-

eral result in a dense system matrix. To solve this system matrix efficiently, a prevailing

solution is to use a Fast Multipole Method (FMM) with an iterative solver. Recently, fast

H2-matrix based direct solvers have been developed to directly invert or factorize the dense

system matrix. However, how to generate an H2-representation efficiently for electrically

large analysis remains an unsolved problem. Existing methods for generating an H2-matrix

of electrically large integral operators are all expensive, especially for surface IE (SIE) oper-

ators.

In this work, we proposed and developed a series of fast algorithms to generate a rank-

minimized H2-matrix for electrically large SIE-based analysis, the best of which has com-

plexity as low as O(N log N) in time and memory. Using the H2-matrix generated in this

work, we can make the H2-matrix-based direct solver achieve a total complexity of O(N1.5)

in time and O(N log N) in memory for electrically large SIE analysis. In contrast, generating

an H2-matrix or inverting a dense matrix in a brute-force way both will cost O(N3) in time

and O(N2) in memory. In addition to accelerating direct solvers, we significantly reduce

the CPU time of a matrix-vector multiplication as well as the memory consumption because

of the rank-minimized H2-representation. In addition to electromagnetic analysis, the pro-

posed algorithms are applicable to many other disciplines, where a compact representation

of dense matrices is the key to the reduction of computational complexity.

16

1. INTRODUCTION

In the very first chapter, we briefly summarise the challenges posed and the background of

our research. We also briefly describe our contribution along with the outline of this work.

1.1 Challenges

Computational Electromagnetics (CEM) is a critical part of modern scientific research

and industry design, ranging from Electronic Design Automation (EDA) to the design of

stealth airplanes. Nowadays, the computational domain usually either contains very large

objects or very fine and complex structures, or both. Solving such complex and large struc-

tures in a brutal-force way will be cost-prohibitive. Thus, it is important to develop efficient

methods to obtain the solution. Among all the popular methods available now, Surface Inte-

gral Equation (SIE) based solvers gain particular interest due to their versatility, efficiency,

and reliability. Compared to other mainstream CEM methods that discretize the whole 3-D

volume of the computational domain, SIE only needs to discretize the surface of a target

object when calculating homogeneous problems, and thus reduce the computational domain

by one dimension. SIE solvers result in a dense matrix system ZI = V . The current fast

method to solve this matrix system is to use Multilevel Fast Multipole Algorithm (MLFMA)

together with an iterative solver. By using the MLFMA, the computation of one matrix-

vector multiplication can be sped up to as low as O(N log N) in time [1]–[4]. Thus, the total

time needed is O(NNitNrhs), where Nit is the number of iterations required for convergence

and O(Nrhs) is the number of right hand side (RHS) vectors.

Despite that great progress has been made in iterative solvers, the direct solver has

always lacked although strongly desired. Compared to iterative solvers, a direct solver that

directly inverts the impedance matrix Z or directly factorizes it in a decomposition form

that can be inverted easily has multiple advantages. First, a direct solver avoids the Nit

in the time complexity, which is typically very large when N increases. Second, a direct

solver can be easily multiplied by multiple RHS, once we get the inverted Z matrix. On the

other hand, for an iterative solver, we need to repeat the whole iterative process for each

RHS. It is worth mentioning that currently many works have been done to overcome the

17

aforementioned problems inherent in an iterative solver. However, it still is a huge advantage

if we can develop a direct solver of optimal time complexity of optimal O(N log N). This is

exactly where the challenges present, especially for electrically large SIE and VIE analysis.

H2-matrix is a general mathematical framework [5], [6] that has drawn much attention

in recent years. It can be used to develop a fast direct solver for electrical large IE operators.

For an existing H2-matrix, we can directly invert it in O(N1.5) in time and O(N) in memory

for electrically large SIEs and O(N log N) for VIEs [7]. However, existing methods for

generating an H2-matrix of electrically large integral operators are expensive. Thus, the fast

generation of H2-matrix for large IE operators is in demand.

The dissertation here concerns the research problem of fast generating an H2-matrix. We

propose to start from an MLFMA-based representation and convert it to a minimal rank

H2-matrix. In this way, we can leverage the low complexity of FMM to solve electrically large

problems. In addition, we propose purely algebraic methods to generate a rank-minimized

H2 representation.

In the remainder of this chapter, I will go through the mathematical background of H2-

Matrix and how to use the MLFMA to generate an initial H2-matrix, while introducing the

notions I will use throughout the dissertation. Then I will briefly state the contributions of

this work.

1.2 Mathematical Background

1.2.1 Electric Field Integral Equations (EFIEs)

The Method of Moments based discretization of the surface electric field integral equation

results in a dense system matrix Z, whose mn-th entry can be written as

Zm,n =
∫

Sm

∫
Sn

(~fm · ~fn −
1
k2∇s · ~fm∇s · ~fn)GdS ′dS, (1.1)

where G = e−jk0R

4πR
is the Green’s function, k0 is the wave number, R = ‖r−r′‖ is the distance

between a source point r′ and an observer point r, ~fm and ~fn are the vector bases on triangular

18

patches Sm, and Sn respectively. Here, triangular elements are used to discretize a surface,

and RWG bases are employed to expand unknown currents.

The Z can be expressed as the sum of the electric scalar and magnetic vector potential

based components as follows

Z = −Zφ + ZAx + ZAy + ZAz, (1.2)

where,

Zφ,mn = 1
k2

0

∫
Sm

∫
Sn

(∇s · ~fm∇s · ~fn)GdS ′dS, (1.3)

and

ZAξ,mn =
∫

Sm

∫
Sn

(fmξfnξ)GdS ′dS, ξ = {x, y, z}. (1.4)

1.2.2 H2-Matrix

An H2-matrix [6] represents the interaction between two binary trees. An example of

the H2-matrix is illustrated in Fig. 1.1 . We call the binary tree a cluster tree since each

node in the tree represents a cluster of unknowns. All the source bases form a column tree,

whereas all the observer bases form a row tree. When the testing function is chosen to be

the same as the basis function, the resultant matrix is symmetrical, whose row and column

trees are identical. In an H2-matrix, by checking the admissibility condition level by level

between a row cluster tree and a column cluster tree, the original matrix is partitioned into

multilevel admissible and inadmissible blocks. The admissible block is represented by a green

submatrix and the inadmissible one is shown in red in Fig. 1.1 . Physically, an admissible

block represents the interaction between separated sources (column cluster) and observers

(row cluster), which satisfies the following admissibility condition

d < ηD (1.5)

19

where d denotes the maximal diameter of the row and column cluster, D is the distance

between two clusters, and η is a positive parameter, which can be used to adjust the matrix

partition.

An inadmissible block is stored in its original full matrix format. An admissible block has

a compact storage. Take an admissible block formed between a row cluster t and a column

cluster s as an example. It is stored as VtSt,s(Vs)H , where S is called a coupling matrix,

and V is called a cluster basis. Vt means the V matrix specified for cluster t. Similar

notation applies for St,s and Tt that will be introduced below. V is nested in the sense that

for a cluster t whose children clusters are t1 and t2, their cluster bases have the following

relationship

Vt =

Vt1

Vt2


Tt1

Tt2

 , (1.6)

in which T matrix is called a transfer matrix. For a non-leaf cluster t, if i is t’s child, then

we may refer cluster i as ti and i’s transfer matrix as Tti.

A block that is formed by one row cluster and one column cluster sharing the same tree

level is called a block cluster and denoted as b. It is easy to see block clusters also form

a tree, named block cluster tree. A block cluster can either be admissible, inadmissible or

having four children, which are normally denoted bi for the ith child. The root block cluster

is the H2-Matrix itself. It has four children for the H2 matrix shown in Fig. 1.1 , b0 = {7, 7},

b1 = {7, 14}, b2 = {14, 7}, b3 = {14, 14}. Each of these four children also has four children.

This goes on until one block cluster is either an admissible block or an inadmissible block.

Define tp as the set of all ancestors of t including t itself. For example, in Fig. 1.1 , the set

of ancestors of cluster 1 is {1, 3, 7, 15}. Define t̂+ = {s : {tp, s}is an admissible block}. Let

Gt be denoted as the matrix formed by t and t̂+. For example, G1 is the matrix concatenated

by three submatrices, which are matrix formed by {1, 4}, {1, 8} and {1, 13}.

In the algorithms presented in this dissertation, we assume one non-leaf cluster has two

children for the sake of simplicity. But the case of multiple children can always be readily

generalized.

20

Figure 1.1. Illustration of an H2-matrix

1.2.3 Method for Generating an Initial H2-matrix from MLFMA

According to the addition theorem, Green’s function G can be written as

e−jkR

4πR
≈

∑
p

ωpe−jk ~Sp·~dTL,X(~Sp), (1.7)

where p refers to the index of the sampling point defined on a unit spherical surface, ~Sp and

ωp are the position vector, and the quadrature weight of each sampling point, respectively;

L is the truncation parameter used in the addition theorem; ~d = ~R − ~X = r − r′ − ~X,
~X = ~O1− ~O2, with ~O1 being the center of an observer group whose points are denoted by r,

and ~O2 the center of a source group whose points are r′, and

TL, ~X(~Sp) = −jk0

4π

L∑
l=0

(−j)l(2l + 1)
4π

h
(1)∗
l (kX)Pl(~Sp · X̂), (1.8)

21

where h
(1)
l stands for a spherical Hankel function of the first kind, superscript ∗ denotes a

complex conjugate, Pl are Legendre polynomials, and X̂ stands for a unit vector along ~X.

Substituting (1.7) into (1.3), we obtain

Zφ,ij = Vi,pSp,pWj,p
H , (1.9)

in which

Vi,p =
∑

q

wi,q

k0
e−jk0 ~Sp·(~ri− ~O1)∇s · ~fi(~ri,q) (1.10)

Sp,p = diag(ωpTl, ~O1− ~O2
(~Sp)) (1.11)

Wj,p =
∑

q

wj,q

k0
e−jk0 ~Sp·(~rj− ~O2)∇s · ~fj(~rj,q), (1.12)

where wq are weighting coefficients used for a numerical surface integration on source, and

field triangular patch respectively.

Consider a cluster i, whose parent cluster is i′, the Vi′ is related to Vi by Vi′ = ViT,

where T is called a transfer matrix shown as the following

Tpp′ =
∑

m,l≤K

Yml(θ′
p′ , φ′

p′)Y ∗
ml(θp, φp)ωpe−jk ~S′

p(~O1− ~O′
1),

where p′ is the index of the sampling points for Vt′ , K here stands for the number of

quadrature points in θ direction of Vt, and Yml are spherical harmonics. It is clear that the

number of the sampling points is the rank of cluster basis V. In θ direction, the sampling

points are chosen as Gauss-Legendre points; while in φ direction, uniform sampling is used.

T is sparse for a prescribed accuracy, whose number of entries per column is a constant

regardless of matrix size. This number can be further reduced using a filter [2]. When the

size of T is large, we can also use Lagrange Polynomial to generate T, which will result in

a sparse matrix [1]. This is the key to keep the complexity of FMM low.

22

There are many ways to determine the truncation number L in (1.8). For example, we

can set

L = k0d + 1.8d
2/3
0 (k0d) 1

3 (1.13)

where d0 = log10(1
εF

) and εF is the desired accuracy for FMM, k0 is wavenumber, and d is

the diameter of the targeted cluster [1]. Another good criterion for the determination of

truncation number L is as the following:

L = k0d + C ln(k0d + π) (1.14)

where C is a constant, and C = 2.25 is suggested in [2].

This induces the second admissible condition in the construction of FMM generated

H2-matrix, which is shown in the following

L(k0, d) < kD (1.15)

where L is the truncation number and is determined by k0 and d. Otherwise, (1.8) will

diverge [3].

1.3 Contributions of This Work

In this work, we propose two classes of algorithms to fast construct rank-minimized H2-

matrices of an electrically large IE operator. Its rank is minimized based on accuracy. In the

first class, we propose to start from an MLFMA-based representation whose rank is full, and

then develop fast algorithms to convert it to a rank-minimized H2-matrix. In this way, the

low complexity of MLFMA in handling electrically large problems can be utilized to build

an efficient H2-representation for electrically large analysis. In the second class, we propose

a method to generate a rank-minimized H2 algebraically without utilizing kernel-specific

information. Using both classes of methods, the real rank of H2-matrix for EFIE is reduced

to the minimal one required by accuracy, which grows as O(N0.5) with N the unknown size

in an SIE. As a result, using the proposed rank-minimized H2-matrix can accelerate both

23

iterative and direct solvers. Meanwhile, the complexity of generating a rank-minimized H2-

matrix can be as low as O(N1.5) for electrically large SIE operators and O(N log N) for

electrically large VIE operators.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows.

In Chap. 2, we introduce a method to convert an FMM-based representation to a new

rank-minimized H2-matrix. This method is based on an existing method that can convert an

H2-matrix whose rank is not minimized for accuracy to a new rank-minimized H2-matrix [8].

However, the conversion method in [8] only has a low computational cost when the original

H2-matrix has a constant rank. This is not the case for the FMM-based representation,

which has a full rank. Thus directly applying the method of [8] will result in a very high

complexity of O(N3). Hence, we improved the method to greatly reduce the conversion

complexity to O(N2) for electrically large SIEs.

In Chap. 3, we develop a method that greatly simplifies the method in Chapter 2 while

costing much less absolute CPU run time, but with the same accuracy preserved. In this

method, we directly obtain new cluster bases from old cluster bases and then use the updated

cluster bases to update coupling matrices. As a comparison, in the method described in

Chapter 2, we consider the whole matrix information to update cluster bases and coupling

matrices. The method developed in this chapter serves as a foundation for the work in the

following chapters that further reduce the complexity.

In Chap. 4, we develop a new algorithm to further reduce the complexity of the conver-

sion process. The complexity can be reduced to O(N1.5 log N) in time for electrically large

SIE operators and O(N log N) for electrically large VIE operators. These methods utilize

randomness to reduce complexity. But we can show both theoretically and numerically that

accuracy is not compromised.

In Chap. 5, we propose an algorithm that is purely algebraic but can generate a

rank-minimized H2-matrix in a similar complexity as in the previous chapter, which is

O(N1.5 log N) in time and O(N log N) in memory. Without using MLFMA, the convert-

24

ing process can be greatly simplified regarding implementation. This new method relies on

the Pseudo-Skeleton Approximation, which shows great reliability when used in the SIE.

In Chap. 6, we propose another algebraic algorithm, Nested Pseudo Skeleton Approxi-

mation. It cost O(k3) for each cluster and coupling matrix in time and O(k2) in memory.

This will result in a total complexity of O(N1.5) in time and O(N log N) in memory, which is

more advantageous than the previous one, while preserves the advantages of being algebraic.

In Chap. 7, Although PSA is robust most of the time, it still has the potential to fail

when we deliberately choose the unfavorable pivots. So, in this chapter, we develop a new

algorithm that has the same accuracy as PSA but is unable to fail with IE operators. We call

it Analytical Skeleton Approximation because we analytically find a set of real or auxiliary

pivots that make PSA robust and accurate.

In Chap. 8, we summarize the work that has been done and present future work.

25

2. CONVERTING AN H2-MATRIX TO A MINIMAL RANK

H2-MATRIX

The FMM method and the multi-level fast multipole algorithm (MLFMA) [1] have been

widely used to solve electrically large integral operators. The matrix resulting from an

FMM-based representation of integral operators (IE) is an H2-matrix. This H2-matrix is

special in the sense that it has a diagonal coupling matrix, and a sparse transfer matrix.

As a result, although the asymptotic rank of an FMM representation is full for electrically

large analysis, the complexity of one matrix-vector multiplication for surface IE can still be

achieved as O(N log N), where N is matrix size. The asymptotic behavior of the FMM’s

rank has led to a belief that the rank of an electrically large IE operator is full, i.e., it is not

of low rank. In this work, we present fast algorithms to convert the FMM-based H2-matrix

to a rank-minimized H2-matrix based on prescribed accuracy.

There is an existing method that can convert an H2-matrix whose rank is not minimized

for accuracy to a new rank-minimized H2-matrix [8]. If the original H2-matrix is of constant

rank, then the converting process can be done in O(N). But the H2-matrix derived from

MLFMA is full rank, meaning that the rank grows quadratically with the electrical size

and thus linear with the number of unknowns in one cluster. Thus, directly applying the

converting method in [8] will be costly. The procedure described in this chapter is an

improvement of [8] to accommodate the scenario of a full rank H2-matrix. Some other

changes are also done because the H2-matrix generated from FMM is in the form of VSVH

instead of VSVT .

To speed up the converting process, for a low-rank matrix B associated with a cluster

basis or a block cluster basis, we choose to store its decomposed form, like B = BaBT
b . Here

subscript a and b indicate the left and right matrix. Then all the operations carried on that

matrix B in the original algorithm is carried out on the factorized form of matrix BaBT
b . For

the matrix B in higher level, instead of directly factorizing B, we use the nested property of

H2-matrix, meaning using children level’s Ba and BT
b to compute parent level’s Ba and BT

b .

Let Ṽt, T̃, S̃t,s denote cluster basis, transfer matrix, coupling matrix for the converted low

rank new H2-matrix.

26

We apply these algorithms to a surface-based electric-field integral equation (EFIE) for

solving scattering problems. Our numerical experiments show that after the conversion,

the original full rank of the FMM representation can be significantly reduced to a much

smaller rank. The resulting minimal-rank H2-matrix can be used for both fast iterative and

direct solutions of the integral equations. As an example, we directly factorize and solve the

minimal-rank H2-matrix obtained from an initial FMM representation of the EFIE using

[7]. The resultant RCS of a sphere shows excellent agreement with analytical Mie series

solutions.

2.1 Proposed Algorithm

2.1.1 Fast Computation Using the Factorized Form of ABT

First I will introduce the procedure of an efficient addition of two ABT form matrices

while applying rSVD, which can be found in [6]. This procedure includes an efficient rSVD of

an ABT form matrix which can also be found in [6]. The algorithms are shown in Algorithm 1

and 2 . These two algorithms are essential for the development of the new algorithm in this

chapter.

Algorithm 1 Adding two lowrank matrices
1: procedure Addition_low_ranks(M1 = ABT , M2 = CDT)
2: M = M1 + M2 =

[
A C

] [
B D

]T

3: end procedure

Algorithm 2 reduced SVD on a low rank matrix of ABT form
1: procedure rSVD_low_rank(M = ABT ∈ Rm×n)
2: Compute (reduced) QR-factorisations of A,B: A = QARA, B = QBRB

3: Compute a rSVD of RART
B = U′ΣV′T

4: Compute U := QAU′, V := QBV′

5: end procedure

In algorithm 2 , assuming that the input matrix M is stored in the form of M = ABT

and is of size m×n. And the size of A and B is m×k and n×k, respectively. Note here k is

27

not the minimal numerical rank for M and we are going to find the real minimal numerical

rank in the algorithm of this chapter. In line 2, we compute reduced QR factorization of A,

B such that A = QARA, B = QBRB, respectively. This procedure only costs O((m+n)k2).

Then in line 3, we first compute the multiplication of RART
B. Then we do reduced SVD

based on a prescribed criterion ε, on the resultant matrix to get RART
B = U′ΣV′T . This step

of rSVD can reveal the true rank k̃ for input matrix M. This procedure only costs O(k3)

since RA and RB are both of size k× k. Finally, we do two multiplications U := QAU′ and

V := QBV′. This final procedure costs O((m + n)kk̃). After these three steps, the input

M can be expressed as M = UΣVT . Its true rank is revealed based on accuracy criterion ε

compared to the original form of ABT . Compared to brute-force decomposition of M, which

will cost O(min(m2n, mn2)), this procedure clearly has a complexity advantage if k is small

compared to m and n, which is true in the following algorithm. We can multiply Σ to either

U or V if M = ABT form is more desired.

2.1.2 Proposed Algorithm

In [8], a linear-complexity algorithm is developed for converting a constant-rank H2-

matrix whose rank is not minimized for accuracy to a new rank-minimized H2-matrix. Here,

since the H2-matrix obtained from the FMM has a rank increasing with tree level from

the leaf level up to the root level, as the electrical size increases, we have to accelerate

the algorithm in [8] to make the conversion efficient. In addition, the cluster bases of the

FMM-based H2 are not orthogonal. They are also complex-valued. In this chapter, we

address these difficulties and successfully develop fast algorithms to compress the FMM-

based representation which is full rank to a minimal-rank H2 based on prescribed accuracy.

The detailed procedure is as follows.

We start from an initial H2-matrix generated from the FMM. Beginning from leaf level,

for every cluster t, we assemble all the admissible blocks formed by t, and t’s parents at all

non-leaf levels, into a matrix called Gt. We then obtain Gt
2 = GtGtH . An SVD based on

prescribed accuracy performed on Gt
2 provides a new cluster basis of leaf cluster t, Ṽt.

28

A naive brute-force computation of Gt
2 is computationally expensive. Here, we use the

nested property of the FMM-based H2-matrix to compute Gt
2 efficiently. The expression of

Gt
2 can be found from Eqn. (19) in [8]. However, here, since V is complex-valued, different

from (20) in [8], we have Bs = VsHVs for cluster s. Vs is of size #s × kF,l, where #s

denotes the cardinality of cluster s, and kF,l denotes an FMM-rank at tree level l. Since

kF,l is large, we cannot afford to computing Bs as it is. Instead, we first obtain Bs for each

leaf cluster, then we apply a reduced SVD (rSVD) [6] based on prescribed accuracy ε to

Bs, obtaining Bs = Bs
aBsT

b , where the size of Bs
a and Bs

b is both kF,l × km,l, and km,l is the

minimal rank at level l. Then at a non-leaf level, using nested property, Bs is obtained from

TH
1 Bs1

a Bs1
b

T T1 + EH
2 Bs2

a Bs2
b

T T2. Since T is sparse, the computation of TH
1 Bs1

a costs only

O(kF,l×km,l) instead of O(k2
F,l×km,l). We then add the two low rank matrices, and perform

another rSVD based on accuracy ε to obtain Bs = Bs
aBs

b
T , the overall cost of which is only

O(kF,l × k2
m,l) as compared to a brute-force O(k3

F,l) cost. The aforementioned procedure is

performed level by level from leaf level up to the minimum level where there are admissible

blocks. The pseudo-code of this step is shown in Algorithm 3 . We feed this algorithm with

root cluster basis.

Algorithm 3 Computing_Bs

1: procedure Computing_Bs(s)
2: if t is leaf cluster then
3: Bs ← VsHVs

4: Do SVD on Bs, store it as Bs
a and Bs

b so that Bs = Bs
aBs

b
T

5: else
6: for i = 0;i <children;i++ do
7: Computing_Bs(si)
8: atemp ← TsiH Bsi

a

9: bT
temp ← Bsi

b
T Tsi

10: A← Addition_low_ranks(Bs, atempbT
temp)

11: (Bs
a, Bs

b)← rSVD_low_rank(A)
12: end for
13: end if
14: end procedure

After computing B for each cluster, next we compute S̄ for each cluster. This matrix

is shown in (20) in [8], which sums up all the coupling matrices of the admissible blocks

29

formed by a cluster. Since B has been obtained in its minimal-rank factorized form, we can

compute S̄t efficiently also in its minimal-rank form, which is S̄t = S̄aS̄T
b . Obtaining S̄a(b)

for each admissible block costs only O(kF,l× km,l) since S̄a(b) = St,sBs
a(b) and St,s is diagonal.

We then perform the addition of Csp low-rank matrices formed by t, and apply an rSVD to

the resultant to obtain S̄t in its minimal-rank form, the cost of which is also O(kF,l × k2
m,l).

The pseudo-code of this step is shown in Algorithm 4 . In this pseudo-code, b denote the

corresponding block cluster basis. And we need to feed the root block cluster basis to this

algorithm. The root block cluster basis is just the original H2-matrix.

Algorithm 4 Computing_S̄t

1: procedure Computing_S̄t(b)
2: if b is non-leaf block cluster then
3: for i = 0; i <children; i++ do
4: Computing_S̄(bi)
5: end for
6: else if b is admissible block then
7: atemp ← St,sBs

a

8: bT
temp ← Bs

b
T St,sH

9: A← Addition_low_ranks(S̄t, atempbT
temp)

10: (S̄t
a, S̄t

b)← rSVD_low_rank(A)
11: end if
12: end procedure

After S̄ is obtained for each cluster, we compute Ssum by a top-down tree traversal, since

the transfer matrices are sparse, the cost of obtaining the minimal-rank form of St
sum for each

cluster t also costs O(kF,l×k2
m,l). The pseudo-code of this step is shown in Algorithm 5 . Note

here we still use S̄t in the pseudo-code. However, after running this procedure, S̄t becomes

Ssum. We feed this algorithm with the root cluster basis.

After St
sum is computed, we perform an SVD on Gt

2 = VtSt
sumVtH for leaf cluster t,

the cost of which is constant. The resultant singular vectors truncated based on accuracy

ε are the new cluster bases for leaf cluster t. At a non-leaf level, we first project the Gt
2 of

a non-leaf cluster t onto the new cluster bases of its children, as shown in (24) of [8]. We

obtain Gt
2,proj, the size of which is km,l×km,l, on which an SVD is performed to find the new

transfer matrix of t. Again, computing Gt
2,proj costs O(kF,l × k2

m,l) only, and the subsequent

30

Algorithm 5 Updating_S̄t

1: procedure Updating_S̄t(t)
2: if t is non-leaf cluster then
3: for i = 0; i <children; i++ do
4: atemp ← T tiS̄t

a

5: bT
temp ← (S̄t

b)T (T ti)H

6: A← Addition_low_ranks(S̄ti, atempbT
temp)

7: (S̄ti
a , S̄ti

b)← rSVD_low_rank(A)
8: Updating_S̄t(ti)
9: end for

10: end if
11: end procedure

31

SVD costs O(k3
m,l). The pseudo-code of this part is shown at Algorithm 6 . Here line 13 and

line 21 are added if we want final H2-matrix possess the form of Z = VSWT . If we just

want final H2-matrix possess the form of Z = VSWH , then we do not need these two lines.

And we also do not need to compute or store B̃s.

Algorithm 6 Mini_cluster_rank
1: procedure Mini_cluster_rank((t, ε))
2: if t is non-leaf cluster then
3: for i = 0; i <children; i++ do
4: Mini_cluster_rank(ti, ε)
5: Bti

T ← B̃tiTti

6: end for
7: atemp ←

[
Bt1

T

Bt2
T

]
St

sum,a

8: bT
temp ← (St

sum,b)T

[
Bt1

T

Bt2
T

]H

9: Gt
2,proj ← atempbT

temp

10: do SVD on Gt
2,proj = pdpH

11: T̃t1 ← pt1, T̃t2 ← pt2

12: B̃t ← T̃t1Bt1
T + T̃t2Bt2

T

13: B̃s ← (T̃t1)HB̃s1conj(Tt1) + (T̃t2)HB̃s2conj(Tt2)
14: else
15: atemp = VtSt

sum,a

16: bT
temp = (St

sum,b)T VtH

17: G2 = atempbT
temp

18: do SVD on G2, G2 = pdpH

19: Ṽt ← pt

20: B̃t ← (Ṽt)HVt

21: B̃s ← (Ṽt)Hconj(Vt)
22: end if
23: end procedure

Finally, we can update the coupling matrix, as shown in 7 . Remember here St,s is original

FMM H2-matrix’s coupling matrix.

Carrying out the computation described in Algorithms 3 , 4 , 5 , 6 and 7 in sequence will

convert the original full rank FMM H2-matrix to a new minimal rank H2-matrix. The

accuracy is obviously well-controlled since only QR and SVD involve approximations whose

accuracy is also controlled. The complexity is also low as we will analyze below.

32

Algorithm 7 Mini_block_rank
1: procedure Mini_block_rank((b))
2: if b is non-leaf block cluster then
3: for i = 0; i <children; i++ do
4: Mini_block_rank(bi)
5: end for
6: else if b is admissible block then
7: S̃t,s

new ← B̃tSt,s(B̃s)T

8: end if
9: end procedure

33

2.2 Accuracy and Complexity Analysis

Doing reduced SVD on a matrix of M = ABT form costs O((m+n)k2) operations, where

k is the rank of M. m and n is the row dimension and column dimension of M. Thus, A is of

is size (m, k), and B is of size (n, k). Having this knowledge, we first analyze the complexity

of algorithm 3 . Since we want to store B matrix in its low rank form (B = BaBT
b). Thus,

for a non-leaf cluster t, we need to first know Ba and Bb. Here we have B matrix of its son

cluster ti. We first do Bt
a = THBti

a . Since T is a sparse matrix with constant number of

entries per line, the complexity of this procedure is O(kn). Similarly, computing Bt
b = BbT

also takes O(kn) operations. Cluster t normally has two children t1, t2. Thus, we need to

add two low-rank matrices. This procedure can be done using algorithm 1 , followed with

algorithm 2 to minimize the rank. This procedure can be done in O((m + n)k2) as well.

Consider we need to do traverse through the tree structure. For each cluster, the cost is

O(nk2), where n is the size of this cluster, and k is the rank of this cluster.

Next we analyze the complexity of algorithm 4 . Similarly to last one, we first compute

S̄t
a = St,sBs

a. Then compute S̄t
b = Bs

bSH
t,s. Since St,s is diagonal matrix. This process need

O(kn) operations. For a cluster t, S̄t needed to be added Csp times for different cluster s.

Each addition uses the process mentioned above and takes O(nk2) operations. Thus, the

total number of operations for one cluster is O(Cspnk2) = O(nk2).

Next is the analysis of algorithm 5 . The analysis of this process is almost the same as

that of algorithm 3 but reversed. Thus for each cluster, the cost is O(nk2), where n is the

size of this cluster, k is the rank of this cluster.

Finally, the analysis of algorithm 6 . For a non-leaf level, we need to compute G2,proj =

BT · S̄ ·BH
T . BT involved here is of size k × n, where k is minimal rank revealed by SVD

of G2 matrix. Thus, similarly, we first compute BT · S̄t
a, then compute S̄t

b · BH
T . Finally

multiply these two resulting matrices. Time and memory complexity is of O(k3).

To summarize, in each of the aforementioned algorithms, the complexity of each cluster

is O(nk2). Thus, if for each cluster, rank k is a constant, the total complexity is O(N log N),

where N is the total number of degrees of freedom. If for each cluster, rank k has order

34

k ∼ O(log(n)), the total complexity is O(N log3 N). If the rank k grows as O(n0.5), as in

the SIE case [9], the total complexity is O(N2).

2.3 Numerical Result

The scattering of a conducting sphere at 300 MHz is considered. The setup is shown

in Fig. 2.1 . The PEC sphere is centered in the origin of the coordinate. The direction of

incident plane wave is k̂ = (0, 0,−1) with E field of Ê = (1, 0, 0). The scattering field is

measured as bistatic RCS with φ = 0 and θ ranging from 0 to 180. In this thesis, when other

geometries are considered, the bRCS are all computed in this fashion with the geometry

is centered at origin. The mesh density is chosen to be about λ
10 , and the radius of the

sphere is increased to examine the electrical size dependence of the proposed algorithm.

We use MLFMA to generate an initial H2-matrix of an EFIE. The number of Gaussian

quadrature points is three on each triangular patch. Leafsize is set to be 40, and η = 1.2.

For coupling matrices, Lagrange interpolation is used for larger sizes. For small transfer

matrices, spherical harmonics are employed for global interpolation; for large ones that are

sparse, six points are used for Lagrange interpolation along both θ and φ direction. We set

L = kd + 1.8d
2
3
0 (kd) 1

3 as the truncation number used in the addition theorem, where k is

wave number, d is the diameter of a cluster. We first validate the proposed algorithm using

a sphere whose N = 73, 728, with a radius of 4.42 m. After converting the FMM H2-matrix

to a new minimal-rank H2-matrix, we apply the direct solver of [7] to directly solve it. The

resultant bistatic RCS along θ direction is plotted in Fig. 2.2 in comparison with Mie series

solution. Excellent agreement is observed. In this example, d0 = log(100), ε for the rSVD

used in the algorithm is 10−4. The sparsity constant used in the transfer matrix is 10.

We then examine the performance of the proposed algorithm by increasing the electrical

size of the sphere, yielding N from 4,608, 18,432, 73,728 to 294,912. For a quick test,

ε = 10−2 is used for rSVD, and d0 = log(10). In Fig. 2.4 , we plot the rank of FMM and that

of the minimal-rank H2-matrix as a function of N , clearly, the rank of the new H2-matrix is

significantly reduced, and its growth rate is lower. If a higher accuracy setting is used, the

growth rate of the new rank is expected to be even lower. In Fig. 2.3 , we plot the memory

35

Figure 2.1. Setup for computing bistatic RCS

usage of the FMM and that of the new H2-matrix. A clear reduction in memory is observed.

The accuracy is checked by evaluating the largest admissible block error of the new H2-

matrix. It is found to be 0.227%, 0.229%, 0.325%, and 0.335% respectively. Corresponding

figure is shown at Fig. 2.5 . Hence, the proposed algorithm is able to significantly compress

the original FMM-representation while maintaining good accuracy. These results are also

shown in Table 2.1 . In this table, N is the number of unknowns, FMM rank is the maximum

rank in FMMH2-matrix, and New rank is the maximum rank in NewH2-matrix. FMM time

is the time used to generate FMM H2-matrix, while New time is the time used to generate

New H2-matrix. FMM mem is the memory needed to generate FMM H2-matrix, while New

mem is the memory needed to generate New H2-matrix. FMM error is the relative error of

the largest admissible block of FMM H2-matrix compared with that of MoM matrix, and

New error is the counterpart of New H2-matrix.

36

Table 2.1. Data of converting process for a suite of spheres
N 4608 18432 73728 294912

FMM rank 242 882 3872 12168
New rank 6 14 39 134

FMM time (s) 77.12 310.34 1247.32 4966.76
New time (s) 1.78e3 1.77e4 1.18e5 8.66e5

FMM mem (Mbs) 121.95 878.64 4.12e3 1.85e4
New mem (Mbs) 3.21 30.39 185.13 1239.47

FMM error 1.49e-6 5.18e-6 1.93e-5 3.07e-5
New error 2.27e-3 2.29e-3 3.25e-3 3.35e-3

37

Figure 2.2. number of unknowns to be 73728, electrical size to be 4.42

Figure 2.3. Compare of memory used to generate H2-matrices, PEC-sphere,
εrSV D = 10−2

38

Figure 2.4. Compare of rank of two H2-matrices, PEC-sphere, εrSV D = 10−2

Figure 2.5. Compare of relative error of two H2-matrices, PEC-sphere, εrSV D = 10−2

39

3. NESTED REDUCTION ALGORITHM (NRA)

In the last chapter, we show how to leverage the MLFMA [2]–[4] to generate an H2-matrix.

But the algorithm is lengthy and complicated. The CPU run time is also long. Thus, in this

chapter, we aim to develop a method that is much simplified and takes much less CPU run

time, without sacrificing accuracy. We use the resultant minimal rank H2-matrix together

with a direct solver [7] to solve an electrically large surface IE problem and compute the

RCS of it. The resultant RCS shows great agreement with reference results.

3.1 Simplifying the conversion algorithm

In chapter 2, we do the conversion based on the construction and decomposition of G2

matrix. However, later we find out that only manipulating cluster basis V and T can also

do the conversion. Based on this observation, we propose the following algorithm to convert

an FMM H2-matrix to a rank-minimized H2-matrix.

3.1.1 New Scheme to Convert FMM H2 to New H2

In this new scheme, for leaf cluster, we first compute Bt = (Vt)HVt, where Vt is FMM

H2 cluster basis. Then do rSVD on Bt to get Bt = PtDt(Pt)H . Since Vt can represent Gt,

Pt can also represent Gt. Remember Gt is the matrix concatenated by all the admissible

submatrices formed by t. Thus, Ṽt = VtPt(Dt)− 1
2 can also accurately represent Gt. This

can be justified as follows

(Ṽt)HṼtGt = (Dt)−1/2(Pt)H(Vt)HVtPt(Dt)1/2Gt

= (Dt)−1/2(Pt)HPtDt(Pt)HPt(Dt)1/2Gt

= Gt

(3.1)

Here we use the fact that Dt is real diagonal. Then we compute B̃ = (Ṽt)HVt and store

it for further use. If we want final result to be of form VSVT instead of VSVH , we need to

compute one more matrix B̂ = (Ṽt)HV̄t and store it for further use.

40

For non-leaf cluster, we use projected Vt matrix to V̂t. In another word, we use V̂t to

substitute Vt in non-leaf level, which can be expressed as

V̂t =

Ṽt1(Ṽt1)H 0

0 Ṽt2(Ṽt2)H

 Vt

=

Ṽt1(Ṽt1)HVt1Tt1

Ṽt2(Ṽt2)HVt2Tt2


(3.2)

Thus, as in the leaf cluster case, we construct Ṽt as,

Ṽt = V̂tPt(Dt)−1/2

=

Ṽt1(Ṽt1)HVt1Tt1Pt(Dt)−1/2

Ṽt2(Ṽt2)HVt2Tt2Pt(Dt)−1/2

 (3.3)

Thus, we have T̃ti = (Ṽti)HVtiTtiPt(Dt)− 1
2 = B̃tiTtiPt(Dt)− 1

2 .

Finally, we can do S̃t,s = B̃tSt,s(B̃s)H to get new coupling matrix. We briefly summarise

this algorithm in the following.

1. For leaf cluster,

(a) Compute Bt = (Vt)HVt. Then do rSVD on B such that B = PtDt(Pt)H , while

truncating Dt based on accuracy ε.

Bt = (Vt)HVt = PtDt(Pt)H (3.4)

Then we store Bt in decomposition form

Bt = Bt
a(Bt

a)H (3.5)

by letting Bt
a = Pt(Dt)1/2.

41

(b) Then, update Vt matrix to Ṽt using follow equation

Ṽt = VtPt(Dt)− 1
2 (3.6)

(c) finally, compute B̃ and store it for further use,

B̃ = (Ṽt)HVt (3.7)

(d) Additionally, if want final result to be of form VSVT instead of VSVH . One

more computation is needed, which is

B̂ = (Ṽt)HV̄t (3.8)

2. For non-leaf cluster,

(a) first compute Bt = (Vt)HVt following

Bt = (Vt)HVt

=

Vt1Tt1

Vt2Tt2


H Vt1Tt1

Vt2Tt2


= (Tt1)HBt1Tt1 + (Tt2)HBt2Tt2

=
∑

i
(Tti)HBti

a (Bti
a)HTti

= PtDt(Pt)H

(3.9)

Note here Algorithm 1 and 2 are used in above computation to reduce the com-

plexity. Alternatively, we can compute Bt = (V̂t)HV̂t as

Bt = (V̂t)HV̂t

=
∑

i
(Tti)H(G̃ti)HG̃tiTti

= PtDt(Pt)H

(3.10)

42

in which Algorithm 1 and 2 should also be used.

(b) Then compute transfer matrix as

T̃ti = (Ṽti)HVtiTtiPt(Dt)− 1
2

= B̃tiTtiPt(Dt)− 1
2

(3.11)

(c) finally compute B̃ for further use

B̃t = (Ṽt)HVt

=

Ṽt1T̃t1

Ṽt2T̃t2


H Vt1Tt1

Vt2Tt2


= (T̃t1)HB̃t1Tt1 + (T̃t2)HB̃t2Tt2

(3.12)

(d) Additionally, if want final result to be of form VSVT instead of VSVH . One

more computation is needed, which is

B̂ = (Ṽt)HV̄t

=

Ṽt1T̃t1

Ṽt2T̃t2


H V̄t1T̄t1

V̄t2T̄t2


=

∑
i

(T̃ti)H(Ṽti)HV̄tiT̄ti

=
∑

i
(T̃ti)HB̂tiT̄ti

(3.13)

3. Finally, update coupling matrix for admissible block

S̃t,s = B̃tSt,s(B̃s)H (3.14)

If want final result to be of form VSVT instead of VSVH . Should update coupling

using below equation instead of using (3.14)

S̃t,s = B̃tSt,s(B̂s)T (3.15)

43

The correctness of above procedure can be easily verified by substitute the corresponding

expression for Ṽt, S̃t,s and Ṽs into ṼtS̃t,sṼs. It is easy to find the ṼtS̃t,sṼs ≈ VSVH with

some derivation.

The method in chapter 2 takes 5 tree traversals to update the FMM H2-matrix to rank-

minimized H2-matrix, while it only this procedure 2. One for all cluster basis, another for

all block cluster basis.

3.1.2 Complexity Analysis

For leaf level, complexity is O(N).

For non-leaf level, the complexity of computing Bt = ∑
i(Tti)HBti

a (Bti
a)HTti = PtDt(Pt)H

is O(k2
SkF). Here kS is the rank revealed by SVD and kF is FMM rank.

The complexity of computing T̃ti = B̃tiTtiPt(Dt)− 1
2 is O(kF kSi)+O(ksikSkF) = O(k2

SkF).

The complexity of computing B̃t = (T̃t1)HB̃t1Tt1 + (T̃t2)HB̃t2Tt2 is O(kSikSkF i) +

O(kSkF) = O(k2
SkF).

For coupling matrix, complexity is O(k2
SkF)

3.1.3 Converting from VSVH H2-matrix to VSVT H2-matrix

In the above procedure, we incorporate the process of converting a H2-matrix from

VSVHto VSVT in the rank-minimization process. Here we summarise this process. Let

original cluster basis and coupling matrix be Vt, S, Vs, and updated ones be Ṽt, S̃, Ṽs. Here

Vt should be orthonormal. We want to have

ṼtS̃t,s(S̃s)T = VtSt,s(Vs)H (3.16)

Let Ṽt = Vt, We have

S̃t,s = St,s(V s)HV̄s (3.17)

Thus, we can do one tree traversal on cluster tree to compute (Vs)HV̄s for every cluster.

Then do one tree traversal on block cluster tree to update coupling matrix using (3.17).

44

3.2 Nested Reduction Algorithm (NRA)

In this section, we still start from MLFMA, whose complexity is low for electrically large

IEs as compared to interpolation or ACA-based methods, to build H2-matrix whose rank

is minimized based on accuracy. But different from the method shown in Chapter 2 and

the method shown in the previous chapter, the proposed new algorithm is much simplified

and takes much less CPU run time while retaining the same accuracy. The resultant rank-

minimized H2-matrix facilitates both fast iterative and direct solutions. Comparisons with

analytical Mie series solutions and reference solutions from a commercial tool have validated

the accuracy and efficiency of the proposed method for solving electrically large surface IEs.

3.2.1 Proposed Work

In [8], a linear-complexity algorithm is developed for converting a constant-rank H2-

matrix whose rank is not minimized for accuracy to a new rank-minimized H2-matrix. FMM

will naturally generate an H2-matrix, in which the rank of each cluster grows linear with

the electrical size of this cluster, coupling matrix is diagonal, and transfer matrix is sparse

in the sense that the number of non-zero elements in each column is a constant. Details are

already discussed above and can be found in [10], [11]. In this section, we further simplify the

procedure introduced in section 3.1 . We name this method as Nested Reduction Algorithm

(NRA) since we reduce the rank of each cluster t in a nested fashion.

For an arbitrary cluster t in the cluster tree, let its original cluster basis obtained from

the FMM be Vt. Such a Vt is of size #t by kF , where #t denotes the number of unknowns

contained in cluster t, and kF is the rank resulting from the FMM. Since kF is large, the

algorithm presented here is to generate a new cluster basis Ṽt such that its rank k is the

minimal one required by accuracy, and hence being much smaller than kF . Certainly, such a

rank reduction algorithm must retain the original nested property of the V across the cluster

tree, while keeping the computational complexity low. In addition, for an electrically large

analysis, both k and kF are electrical size-dependent, and hence tree level dependent. For

the simplicity of the notation, we would not add a tree-level dependence for k and kF . But

45

it should be noted that they are different at different tree levels. The kF scales quadratically

with the electrical size, whereas k scales linearly with the electrical size [9].

We start from the leaf level l = L (root level is at l = 0) of the cluster tree. For a leaf

cluster t, we perform an SVD on Vt. Based on prescribed accuracy ε, we keep the singular

vectors whose singular values normalized by the maximum one are no less than ε. These

singular vectors make the new leaf cluster basis Ṽt. Thus, we obtain

Vt
#t×kF

ε≈ Ṽt
#t×k(Ũt)H

k×kF
, (3.18)

where the subscripts denote the matrix dimension, and (Ũt)H is the other factor resulting

from the SVD. Since #t is bounded by leafsize which is a constant, the cost of (3.18) is

constant, which is small.

We then proceed to the non-leaf level. For each non-leaf cluster t, its cluster basis is

related to its children clusters’ bases as shown in (1.6). Now the children clusters’ bases

have been changed. Hence, the transfer matrices must be updated for nonleaf cluster t. To

see how to update them, we can substitute (3.18) into (1.6) obtaining

Vt =

(Ṽt1)

(Ṽt2)


(Ũt1)HTt1

(Ũt2)HTt2

 , (3.19)

from which it can be seen that

G̃t =

(Ũt1)HTt1

(Ũt2)HTt2

 (3.20)

makes the new transfer matrix of cluster t. However, its rank may not be the minimal one

required by accuracy. Therefore, we perform another SVD on (3.20) and truncate singular

vectors based on accuracy ε to obtain the new transfer matrix T̃t. As a result, we have

G̃t
(k1+k2)×kF

ε≈ T̃t
(k1+k2)×k(Ũt)H

k×kF
, (3.21)

where the rank k1 + k2, which is the sum of the rank of the two children’s new cluster bases,

is further reduced to k based on prescribed accuracy.

46

The aforementioned procedure at a non-leaf level is then repeated level by level up, until

we reach the minimal level that has admissible blocks. At that level, we finish generating

the new cluster bases. After that, we update the orginal FMM-based coupling matrix, St,s,

as follows for each admissible block

S̃t,s = (Ũt)HSt,sŨs. (3.22)

The overall procedure is a bottom-up tree traversal procedure summarized as follows,

which is termed the Nested Reduction Algorithm (NRA).

At each tree level of the cluster tree, we do the following computation:

1. For a leaf cluster t, do (3.18) to obtain new cluster basis Ṽt based on required accuracy

ε.

2. For a non-leaf cluster t, compute (3.20) to obtain G̃t, then factorize it to obtain (3.21),

and hence new transfer matrix T̃t as well as (Ũt)H , based on accuracy ε.

If column cluster bases are different from row cluster bases such as those in an unsymmetrical

matrix, Steps 1 and 2 are repeated for column cluster bases. After cluster basis update, for

each admissible block, we update the coupling matrix based on (3.22).

At a non-leaf level, the cost of computing (3.20) is only of O(kkF), which is O(k3), since

transfer matrix T is sparse. However, the subsequent step of computing the SVD of T̂t can

be costly, which is O(k2kF), and hence scaling as O(k4).

We apply these steps recursively to every cluster in cluster tree and every admissible

block in H2-matrix, and formalized it into the form of an algorithm as shown in algorithm 8 .

In line 2 of algorithm 8 we call algorithm 9 on the root of cluster tree, which recursively

reduces the rank of all clusters. In line 3 we apply algorithm 10 to the root of H2-matrix to

compute new coupling matrix S̃ for all admissible blocks recursively.

After these steps, the new cluster basis’s rank is minimized based on accuracy ε. Fur-

thermore, they become orthonormal matrices. In this algorithm, the action is either exact

or approximate using SVD under a prescribed criterion, and thus is accurate. As for the

complexity, at the leaf level, it is O(N), where N is matrix size. For non-leaf levels, the

47

Algorithm 8 nested_reduction_algorithm
This algorithm shows Nested Reduction Algorithm

1: procedure nested_reduction_algorithm(t, b)
2: nested_update_cluster_basis(t)
3: nested_update_coupling_matrix(b)
4: end procedure

Algorithm 9 nested_update_cluster_basis
This algorithm shows how to update cluster basis in a nested way

1: procedure nested_update_cluster_basis(t)
2: if t is non-leaf cluster then
3: for i is t’s child do
4: nested_update_cluster_basis(ti)
5: end for
6: compute G̃ =

[
(Ũt1)HT̃t1

(Ũt2)HT̃t2

]
7: do SVD on G̃ = T̂ t(Ũt)H

8: Splite T̂ to get new transfer matrix:
[
T̃t1

T̃t2

]
= T̂

9: else
10: do SVD on Vt such that Vt = Ṽt(Ũ)H

11: end if
12: end procedure

Algorithm 10 nested_update_coupling_matrix
This algorithm updates a coupling matrix in a nested fashion.

1: procedure nested_update_coupling_matrix(b)
2: if b is admissible block then
3: S̃t,s = (Ũt)HSt,sŨs

4: else if i is b’s sons then
5: nested_update_coupling_matrix(bi)
6: end if
7: end procedure

48

complexity of computing G̃t is O(kSkF), since Tti is a sparse matrix in the sense that every

column only has a constant number of non-zero elements. Doing SVD on G̃t takes O(k2
SkF)

operations. Storing Ũt for each cluster needs O(kSkF) memory. Thus, for each non-leaf

cluster, the time complexity is O(k2
SkF) and the memory cost is O(kSkF). The complexity

of computing coupling matrices S̃t,s = (Ũt)HSt,sŨs is O(k2
SkF).

3.2.2 Numerical Result

The scattering of a conducting sphere at 300 MHz is considered. The mesh density is

chosen to be about λ
10 , and the radius of the sphere is increased to examine the electrical

size dependence of the proposed algorithm. We use FMM to generate an initial H2-matrix

of an EFIE. The number of Gaussian quadrature points is three on each triangular patch.

Leafsize is set to be 40, and η = 1.2. We set L = kd+1.8d
2
3
0 (kd) 1

3 as the truncation number

used in the addition theorem, where k is wave number, d is the diameter of a cluster, and

d0 = log10(1e4). For the criterion of an admissible block, we use d ≤ ηD and L ≤ kD at

the same time, where d is the largest diameter of two clusters and D is the distance between

them. For coupling matrices, Lagrange interpolation is used for larger sizes. For small

transfer matrices, spherical harmonics are employed for global interpolation; for large ones

that are sparse, six points are used for Lagrange interpolation along both θ and φ direction.

The ε in the converting process is set to be 1e-3. We validate the proposed algorithm using

a sphere whose diameter is 17.68m, in which N=294,912. We compared the new converted

H2-matrix solved by direct solver [7] with the MIE series. The result is shown in Fig. 3.1

Next, we validate the proposed algorithm together with the direct solver for a PEC cube

and compare the RCS with HFSS, the condition is set identical with the above example.

This cube is of size 12.8λ × 12.8λ × 12.8λ. The number of unknowns involved is 294,912.

The result is shown in Fig. 4.1

Next, we validate the NRA together with the direct solver for a complicated structure, a

coil. A coil is shown as Fig. 3.3 . This coil is of size 14.156 m. After discretization, there are

121,914 unknowns. As always, the new H2-matrix generated from the Fast NRA is directly

49

Figure 3.1. Compare RCS of conducting sphere

Figure 3.2. Compare RCS of conducting Cube

solved using the solver in [7], and the bistatic RCS is extracted and compared with HFSS.

Result is shown at Fig. 3.4 .

Another complicated structure is a joint, which is shown in 3.5 . The conditions are the

same as the previous one. This joint has a diameter of 17.302m. After discretization, there

50

Figure 3.3. A coil.

are 172,077 unknowns. The comparison between results of HFSS and Fast NRA solved by

the direct solver is shown in Fig. 3.6 .

Next in Table 3.1 , we show the rank of NewH2-matrix with original FMMH2-matrix’rank.

In this table, es is the largest electrical size of all clusters in this level, N is the largest un-

knowns of all clusters in a tree level, rF is the FMM’s rank (FMM rank is the same for all

this level’s clusters regardless the size of cluster), rN is the rank of New H2-matrix after we

merge Zφ, ZAx , ZAy , ZAz together, as we shown in [10]. rN,φ is the rank of NewH2-matrix for

only Zφ using the method introduced in this article. This shows that our new H2-matrix’s

rank is much reduced compared to the original FMM’s rank.

51

0 50 100 150
-10

0

10

20

30

40

50

R
C

S
 (

d
B

s
m

)

RCS over

HFSS

This Method

Figure 3.4. RCS of a coil simulated using Fast NRA.

52

Figure 3.5. A joint.

Table 3.1. Rank versus tree level using Nested Reduction for ε = 10−3

tree level es N rF rN rN,φ

3 20.61 49152 42050 967 954
4 15.74 24576 25538 721 552
5 10.26 12288 11552 509 323
6 8.29 6144 7938 324 204
7 5.26 3072 3698 207 125
8 4.48 1536 2738 134 86
9 2.79 768 1250 90 57
10 2.46 384 1058 63 43
11 1.50 192 512 44 31
12 1.39 96 450 32 25
13 0.88 48 242 25 18
14 0.84 24 242 18 15

53

0 50 100 150
5

10

15

20

25

30

35

40

45

50

R
C

S
 (

d
B

s
m

)

RCS over

HFSS

Fast NRA

Figure 3.6. RCS of a joint simulated using Fast NRA.

54

4. NRA WITH FURTHER REDUCED COMPLEXITY

In the above mentioned algorithm NRA, at a non-leaf level, the cost of computing (G̃t =(Ũt1)HTt1

(Ũt2)HTt2

) is only of O(kkF), which is O(k3), since transfer matrix T is sparse. However,

the subsequent step of computing the SVD of G̃t can be costly, which is O(k2kF), and hence

scaling as O(k4). To circumvent this cost, we propose a fast algorithm as the following.

4.1 Fast NRA

For a non-leaf cluster t, in (G̃t =

(Ũt1)HTt1

(Ũt2)HTt2

), we randomly choose O(k1 + k2) columns

to compute its low-rank factorization (G̃t = T̂t(Ũt)H) instead of operating on the full kF

columns. This can be done because the rank of G̃t is no greater than its row rank, which is

k1 + k2. We then compute a full cross approximation (FCA) [6] with prescribed accuracy on

the randomly selected O(k1 + k2) columns of G̃t, obtaining row pivots τ and column pivots

σ. As a result, G̃t is factorized to

G̃t ε≈ G̃t
:,σ(G̃t

τ,σ)−1G̃t
τ,: (4.1)

whose new rank is k. Since the full cross approximation is performed on the O(k1 + k2)

columns of G̃t, the entire computational cost of obtaining (4.1) is reduced to O(k3) as

compared to O(k4) from a brute-force SVD-based low-rank compression of G̃t. In (4.1), G̃t
:,σ

denotes the selected k columns of G̃t, whose indexes are contained in σ. The G̃t
:,σ multiplied

by the following small k by k matrix, (G̃t
τ,σ)−1, is nothing but the new transfer matrix of t,

thus

T̂t = G̃t
:,σ(G̃t

τ,σ)−1, (4.2)

whereas the

(Ũt)H = G̃t
τ,:, (4.3)

is the k rows of G̃t, whose row indexes are contained in τ . In this way, the (Ũt)H can be

obtained in O(k3) cost because it involves k-rows of (Ũ)H multiplied by a sparse T.

55

It is worth mentioning the full cross approximation instead of adaptive cross approxima-

tion is employed here because the accuracy of the former is better than the latter. Further-

more, for a low-rank matrix, the accuracy of an FCA is guaranteed. Certainly, the SVD can

be directly used on the selected O(k) columns to obtain new bases, which has a reduced cost

of O(k3) as well. However, if we do that, the subsequent step of obtaining (Ũt)H would cost

more than O(k3).

The pseudo-code of the aforementioned fast NRA is shown in Algorithm 11 . In line

2 of this algorithm, Algorithm 12 is called starting from the leaf level of the cluster tree,

which factorizes V = Ṽ(Ũ)H for each leaf cluster, and then factorizes G̃t = T̂(Ũ)H for each

non-leaf cluster. Algorithm 12 yields new rank-minimized cluster bases based on accuracy.

In line 3 we apply Algorithm 13 to the root of the block cluster tree of the H2-matrix,

which updates the coupling matrix of each admissible block.

Algorithm 11 Nested_Reduction_Algorithm
1: procedure nested_reduction_algorithm(t, b)
2: update_cluster_basis(t)
3: update_coupling_matrix(b)
4: end procedure

Algorithm 12 Update_Cluster_Basis
This algorithm efficiently obtains new nested cluster bases with rank minimized based on
accuracy

1: procedure randomized_update_cluster_basis(t)
2: if t is a non-leaf cluster then

3: Compute G̃ =
[
(Ũt1)HTt1

(Ũt2)HTt2

]
4: Randomly select ‖ct‖ columns from G̃ to form G̃w.
5: Do FCA based on ε on G̃w to get τ and σ
6: Obtain (Ũt)H = G̃t

τ,:, T̂ = G̃t
:,σ(G̃t

τ,σ)−1

7: else
8: Do SVD on Vt such that Vt = Ṽt(Ũt)H

9: end if
10: end procedure

The procedure is also outlined as follow,

56

Algorithm 13 Update_Coupling_Matrix
This algorithm updates coupling matrices

1: procedure update_coupling_matrix(b)
2: if b is an admissible block then
3: S̃t,s = (Ũt)HSt,sŨs

4: else if i is b’s child then
5: update_coupling_matrix(bi)
6: end if
7: end procedure

57

1. For leaf cluster t, do ACA or rSVD to reveal the rank of cluster basis Vt = Ṽt(Ũt)H .

Denote this rank by kt
S.

2. For non-leaf cluster t, randomly choose k column pivot set ct. the size of this set

(denoted by ‖ct‖) is decided by the rank of t’s two sons, t1 and t2. Essentially, ‖ct‖ =

c(kt1
S + kt2

S), where c is enlarging coefficient. Denote G̃t =

(Ũt1)HTt1

(Ũt2)HTt2

. We just

compute ct columns of G̃t. Denote this abbreviated version of G̃t matrix by G̃w. Do

Cross Approximation with full pivoting on G̃w to determine the row pivot set and

column pivot set τ , σ. Then we can compute T̂ = G̃t
:,σ(G̃t

τ,σ)−1. Then split T̂ =

T̃t1

T̃t2


to get new transfer matrix. Also, form (Ũt)H = G̃t

τ,: for this cluster’s parent to use.

3. For coupling matrix, we have S̃t,s = (Ũt)HSt,sŨs

From the aforementioned cost analysis given along with the description of the algorithm,

it can be seen that the time cost of obtaining new cluster bases Ṽt is low, which is O(k3)

for each cluster. Here, notice that k is the minimal rank required by accuracy instead of the

original FMM’s rank. However, the storage of Ũt would cost O(kkF) units for each cluster,

thus being O(k3). In the next section, we propose another NRA to reduce the memory costs.

4.2 Memory Efficient NRA (Double Recursive Algorithm)

We further improve the algorithm in the previous section. In this section, we introduce

an algorithm that only needs O(nk log n) in time and O(k2) in memory for each cluster and

each coupling matrix.

In this new algorithm, there are also two steps. One is to generate new cluster basis whose

rank is minimized, and the other is to update coupling matrices, similar to the algorithm

presented in previous section. However, we do not explicitly compute or store Ũ matrix for

each cluster. As can be seen from (3.18) and (3.21), if the new cluster basis Ṽt is made

unitary, then (Ũt)H is nothing but the projection of the original basis onto the new basis,

thus

(Ũt)H = (Ṽt)HVt. (4.4)

58

Hence, whenever (Ũt)H is involved in computation, we can utilize the nested property of

both the original basis Vt and the new basis (Ṽt) to compute it efficiently. Storage wise,

we only need to store the new cluster basis (Ṽt) whose rank is minimized, and the original

cluster basis Vt which is sparse, thus bypassing the storage of (Ũt)H . Next, we elaborate

this algorithm.

At the leaf level, the computation is the same as that in the previous algorithm, where

SVD is used to obtain Ṽt so that each leaf cluster basis is unitary. At a non-leaf level, for

each cluster t, we randomly select O(k1 + k2) columns of Tt to compute (3.20). Let this set

be ct. Computing ct-columns of T̂t is the same as computing ct-columns of (Ṽt)H
chVt, where

(Ṽt)ch is a block diagonal matrix containing t’s two children’s new cluster bases. To see this

more clearly, we can rewrite (3.20) as

G̃t =

(Ṽt1)H

(Ṽt2)H


Vt1Tt1

Vt2Tt2

 , (4.5)

which is nothing but

G̃t = (Ṽt)H
chVt. (4.6)

For each index c in the set ct, we form a cardinal vector ec, which has only one non-zero

element at the c-th entry. Multiplying (Ṽt)H
chVt by ec is the same as computing Vtec first, and

then multiplying the resultant vector by (Ṽt)H
ch, each of which costs O(n log n) complexity

using the nested property of both bases, where n is the size of cluster t. After obtaining the

ct columns of G̃t, we perform an SVD on it based on prescribed accuracy ε to obtain new

transfer matrix T̃t whose rank is reduced to k. The cost of this step is O(k3). In addition,

such a new transfer matrix is unitary. The aforementioned procedure of computing new

transfer matrix T̃ at a non-leaf level continues level by level up, until the highest level

having admissible block is reached.

The pseudo-code of the new algorithm is shown in Algorithm 14 , in which the fast

matrix-vector multiplication algorithm for Vt and (Ṽt)H are shown in Algorithm 15 , and

Algorithm 16 respectively.

59

Algorithm 14 new_update_cluster_basis
This algorithm is for new cluster basis generation.

1: procedure New Update Cluster Basis(t)
2: if t is a non-leaf cluster then
3: Randomly select ct pivots from kF columns of

t’s original transfer matrix Tt

4: for c ∈ ct do
5: ωt = ec

6: recursively_multi_old_trans(t, c)
7: recursively_multi_new_trans(t, c)
8: end for
9: Use the resultant ct columns of T̂t to form T̂t

w

10: Do SVD on T̂t
w based on ε to get T̃t

11: else
12: Do SVD on Vt to obtain Ṽt

13: end if
14: end procedure

Algorithm 15 recursively_multi_old_trans
This algorithm performs a top-down tree travserval to compute Vω

1: procedure recursively_multi_old_trans(t, ω)
2: if t is a non-leaf cluster then
3: for i is t’s child do
4: ωi = Tiω
5: recursively_multi_old_trans(ti, ωi)
6: end for
7: else
8: ωt = Vtωt

9: end if
10: end procedure

60

Algorithm 16 recursively_multi_new_trans
This Algorithm performs a bottom-up tree travserval to compute ṼHω

1: procedure recursively_multi_new_trans(t, ω)
2: if t is a non-leaf cluster then
3: for i is t’s child do
4: recursively_multi_new_trans(ti, ωi)
5: end for
6: ωt ←

[
(T̃t1)Hω1

(T̃t2)Hω2

]
7: else
8: ωt ← (Ṽt)Hωt

9: end if
10: end procedure

61

After generating new cluster bases, next we update the coupling matrix of each admissible

block. Similarly, utilizing (4.4), (3.22) becomes the computation of

S̃t,s = (Ṽt)HVtSt,s(Vs)HṼs. (4.7)

Since Ṽ basis is of rank k, Ṽs has only k columns. The computation of (Vs)HṼs is the

computation of k matrix-vector multiplications of (Vs)H multiplying the k columns in Ṽs.

This can be done using Algorithm 16 where the˜on top of the symbols is removed. This

step costs O(n log n) for one vector. Hence the total cost of (Vs)HṼs is O(kn log n), which is

O(k3 log k) since n scales as k2. Next, we multiply St,s by the computed (Vs)HṼs. Since St,s

is diagonal, the cost of this step is O(kF k), which is O(k3). After that, we multiply (Ṽt)HVt

by the k vectors resulting from St,s(Vs)HṼs, which again can be computed by k matrix-vector

multiplications using Vt, followed by the other k matrix-vector multiplications of (Ṽt)H . The

pseudo-code of the new coupling matrix update algorithm is shown in Algorithm 17 . The

cost of this step is also O(kn log n) utilizing the nest property of the cluster bases.

The memory requirement of the new algorithm for each cluster is O(k2). This is because

we do not store Ũ for each cluster. Instead, we store Ṽ and V. At the leaf level, the storage

is a constant for each cluster. At a non-leaf level, the storage is a new transfer matrix of

size k × k for each cluster. As for the original cluster basis V, the storage is a transfer

matrix of size kF × kF for each cluster. However, this transfer matrix is sparse, thus costing

O(kF) ≈ O(k2) units to store also.

4.3 NRA taking advantage of sparsity

In this section, we take advantage of the sparsity of ŨH to facilitate the NRA process.

Table 4.1 shows the largest percentage of Number of Non-Zero (NNZ) elements in ŨH of

all the ŨH in one case for different size of unknowns. We can see ŨH becomes sparser and

sparser when the number of unknowns goes up. Thus, taking advantage of this knowledge,

we can construct algorithms that are complexity low.

62

Algorithm 17 double_recursive_update_coupling
This algorithm updates a coupling matrix at l in converting process. This algorithm com-
putes S̃t,s = (Ũ t)HSt,sŨ s

1: procedure double_recursive_update_coupling(b)
2: if b is admissible block then
3: for i = 1, 2, ..., kt

S do
4: if t is non-leaf cluster then
5: for i is t’s sons do
6: ωi ← (T̃)(i,:)
7: recursively_multi_new_trans(ti, ωi)
8: end for
9: recursively_multi_old_trans(t, ω)

10: else
11: row ← ((Ũ t)H)(i,:)
12: end if
13: get row by multiply row with St,s

14: ωs = conj(row)
15: recursively_multi_old_trans(s, ωs)
16: recursively_multi_new_trans(s, ωs)
17: S̃t,s

(i,:) ← conj(row)
18: end for
19: else if i is b’s sons then
20: double_recursive_update_coupling(b)
21: end if
22: end procedure

63

Table 4.1. Sparsity of ŨH against the number of unknowns for cubes.
N 4608 18432 73728 294912 1179648

sparsity ŨH 0.8351 0.8382 0.7584 0.6213 0.4582

4.3.1 NRA Using Sparsity

Below outlines the algorithm that takes advantages of the sparsity of (Ũt)H . Note in

below Ṽ and T̃ are orthonormal matrix, and Ũ is orthogonal matrix.

1. For leaf cluster, directly do SVD to get orthogonalized cluster basis such that V =

ṼŨH .

2. For non-leaf cluster t, randomly choose k column pivot set ct. the size of this set

(denoted by ‖ct‖) is decided by the rank of t’s two sons, t1 and t2. Essentially, ‖ct‖ =

c(kt1
S + kt2

S), where c is enlarging coefficient. Denote G̃t =

(Ũt1)HTt1

(Ũt2)HTt2

. We just

compute ct columns of G̃t. Denote this abbreviated version of G̃t matrix by Ĝt. Then

do full SVD on Ĝ. We can get left-singular vectors T̂ =

T̃t1

T̃t2

, which is orthogonalized

transfer matrix. Such T̂ can represent the column span of Ĝt and G̃t. Then use the

relationship ŨH = T̃t1(Ũt1)HTt1 + T̃t2(Ũt2)HTt2 to get this cluster’s ŨH .

3. S̃t,s = (Ũt)HSt,sŨs

In this algorithm, first as always we do SVD on V for leaf cluster. For non-leaf cluster,

we also pre-select k columns and assemble a shrunk submatrix Ĝt from G̃t. Then wo do

SVD on Ĝt to get left-singular vectors T̂t =

T̃t1

T̃t2

. The difference here is how we compute

(Ũt)H . Since we want (Ũt)H to satisfy G̃t = T̂t(Ũt)H . We have

(Ũt)H = (T̂t)HG̃t (4.8)

This is

64

(Ũt)H = T̃t1(Ũt1)HTt1 + T̃t2(Ũt2)HTt2 (4.9)

given the expression of T̂t and G̃t. We can do (4.9) fast because (Ũt)H , (Ũt1)H and (Ũt2)H

are all sparse, so do Tt1 and Tt2. In this way, wo circumvent the need to do SVD on G̃t,

which is costly. Finally, we do S̃t,s = (Ũt)HSt,sŨs to update coupling matrix as always.

There are several ways to do (4.9) efficiently. First method is that we can compute each

row of (Ũt)H at one time. In this way, we only need to deal with two sparse matrix-vector

multiplications for each row of T̃t1 and T̃t2. Then for each row of (Ũt)H , find the maximum.

After finding the maximum for one row, free this row. Then find the maximum of the next

row. Finally, we can find the maximum of the entire matrix. Then we use this maximum

and prescribed accuracy ε to determine the threshold. Then we do the same procedure again

to find which element is above the threshold to decide whether or not to keep this element.

The second method is similar to the first one, only different in that each row’s maximum is

used to truncate that row. Thus, resultant ŨH will be less sparse and takes more memory

but is more accurate.

4.3.2 Eliminating Randomness

The above method is efficient but still relies on randomness when choosing randomly

column pivot set ct from G̃t. In the below algorithm, we eliminate the randomness while

still preserving the complexity. In below, Ṽt and T̃t are orthonormal matrix, and Ũt is

orthogonal matrix.

1. For leaf cluster, directly do SVD to get orthogonalized cluster basis such that V =

ṼŨH .

2. For non-leaf cluster, first compute G̃t =

(Ũt1)HTt1

(Ũt2)HTt2

, then compute G̃t(G̃t)H . Then

do SVD on G̃t(G̃t)H to get orthogonalized transfer matrix T̂. Then split T̂ =

T̃1

T̃2

.

Then use the relationship (Ũt)H = T̃t1(Ũt1)HTt1 + T̃t2(Ũt2)HTt2 to get this cluster’s

65

(Ũt)H . Note we store both (Ũt)H and (G̃t)H in sparse matrix format, and correspond-

ing matrix operations are sparse ones.

3. S̃t,s = (Ũt)HSt,sŨs

In this new algorithm, we first get G̃t =

(Ũt1)HTt1

(Ũt2)HTt2

, then compute G̃t(G̃t)H . Then

compute G̃t(G̃t)H and do SVD on it. Here the complexity is still low because G̃t is also

a sparse matrix. Doing SVD on G̃t(G̃t)H will give us the same T̂ as above algorithm.

Following procedure is the same as above procedure.

4.4 Accuracy and Complexity

4.4.1 Accuracy

In all the algorithms in this chapter, almost all the actions are either exact or approximate

using SVD or CA under a prescribed criterion and thus are accurate. The only exception

is the action of randomly selecting pivots in Fast NRA, Double Recursive Procedure, and

NRA using sparsity. We will later show the behavior of randomly selecting is accurate in

Section 4.5 .

In all the algorithms proposed in this chapter, only the steps of SVD or CA involve

approximations. However, they are performed subject to a prescribed accuracy. Hence, the

overall procedure is error controlled. In the CA part, we randomly select O(k1 + k2) =

c(k1 + k2) columns to perform CA, where c is a constant coefficient greater than 1. Since

the matrix upon which CA is performed is known to be bounded by k1 + k2 in rank, and

c is chosen to be greater than 1, the resultant cross approximation is ensured to produce

an accurate rank-k representation. As can be seen from [12], the choice of k columns is

not unique in a CA or ACA algorithm. As long as the k columns are linearly independent,

they yield an accurate rank-k model. Different from ACA, in a CA, at every step, the

maximum entry in the residual matrix is identified, whose row and column pivots are chosen

to generate a rank-1 model. Hence, the accuracy of CA is guaranteed [13]. If it happens that

the randomly selected c(k1 + k2) columns do not contain k linearly independent columns, it

66

can be identified in the CA process, and more columns can then be selected. The accuracy

of randomly selecting k columns will also be numerically shown in Section 4.5 .

4.4.2 Time and Memory Complexity

The complexity analysis is dependent on the rank’s behavior. Consider a rank that

grows linearly with the electrical size. This is also shown to be the minimal rank required

by accuracy in an electrically large IE analysis [9]. Let n be the size of a cluster, then in an

SIE, the rank k scales as

k = O(
√

n). (4.10)

As for the rank of FMM, it scales quadratically with the electrical size, thus

kF = O(n). (4.11)

In the proposed fast NRA algorithm, every cluster basis needs O(k3 + kF k) ≈ O(k3)

operations to be computed. Based on (4.10) and (4.11), the total time complexity for new

cluster basis generation can be computed as:

Ct =
L∑

l=0
2lO(kkF + k3)

=
L∑

l=0
2lO


√

N

2l

N

2l
+

√
N

2l

3
 = O(N1.5).

(4.12)

The time complexity for coupling matrix updates can be computed as:

Ct,S =
L∑

l=0
2lCspO(k2kF)

=
L∑

l=0
2lCspO

√
N

2l

2
N

2l

 = O(N2),
(4.13)

67

where Csp denotes the maximal number of blocks formed by a single cluster, which is a

constant [6]. The total memory complexity can be computed by adding the memory cost

of each cluster basis with that of each admissible block as the following

Cm =
L∑

l=0
(2lO(k3) + Csp2lO(k2))

≈
L∑

l=0
2lO

(
N

2l

)1.5
= O(N1.5).

(4.14)

Hence, O(N1.5) memory is required during the rank reduction. After the rank reduction is

finished, the memory of storing the new rank-minimizedH2-matrix would be just O(N log N)

for SIE, since only O(k2) is required for storing each cluster basis, and each admissible block.

As for DRA shown in Section 4.2 , the complexity for every cluster is O(kn log n) in time

and O(k2) in memory. Adding the cost of every cluster across all tree levels, we obtain the

total time cost as

Ct =
L∑

l=0
2lO(kn log n)

=
L∑

l=0
2lO

√
N

2l

N

2l
l

 = O(N1.5 log N).
(4.15)

Similarly, updating all the admissible blocks has also O(N1.5 log N) complexity, since at each

tree level, there are 2lO(Csp) admissible blocks, each of which costs O(kn log n) operations

to update. The total memory consumption including the memory required for both cluster

basis generation and coupling matrix updates scales as

Cm =
L∑

l=0
(2lO(k2) + Csp2lO(k2))

=
L∑

l=0
2lO

(
N

2l

)
= O(N log N)

(4.16)

for electrically large SIE analyses.

It is worth mentioning that although the new algorithm of Section 4.2 has the same time

complexity in cluster basis generation as compared to that in Section 3.2 , the constant in

68

front of the N1.5 log N is larger. As for the coupling matrix update, the DRA in Section 4.2

has a reduced complexity of O(N1.5 log N), but the constant is also larger. We notice that

the absolute run time of the DAR in Section 4.2 can exceed that of the fast NRA algorithm

in Section 3.2 when simulating medium-sized problems. However, memory and its scaling

rate are reduced. In addition, from the aforementioned complexity analysis, it can be seen

that for applications where the rank is a constant, the total complexity of the proposed

algorithms is O(N).

4.4.3 Further Rank Reduction

In the proposed NRA algorithms, the original FMM-based cluster bases are reduced

in rank based on accuracy. To further explore the redundancy in the matrix content, we

employ the algorithm in [14] on top of the new H2-matrix generated from the proposed

NRA algorithms to further reduce its rank. The algorithm in [14] can be used to convert an

H2-matrix whose rank is not minimized to a new one that is minimized based on accuracy.

However, if the algorithm in [14] is directly applied to an FMM-based matrix, the conversion

cost would be too high since the starting rank is high. In contrast, when using the H2-matrix

generated from the proposed NRA algorithms to do further compression using [14], the cost

is as low as O(k3) for each cluster and admissible block in time, and O(k2) in memory, thus

not increasing the complexity of the proposed NRA algorithms.

4.5 Numerical Results

A common set of simulation parameters are used for all examples simulated in this

section. Specifically, in the FMM, we set the truncation criterion of the addition theorem as

L = k0d+1.8d
2/3
0 (k0d) 1

3 , where d0 = log10(1
εF

) and εF = 10−2, k0 is wavenumber, and d is the

diameter of the targeted cluster. When generating an H2-representation of the FMM, we use

6 points along each of the θ and φ directions in the Lagrange polynomial based interpolation

to obtain transfer matrices. In addition, we choose η = 0.8 in the admissibility condition and

leafsize to be 40. The accuracy criterion is set to be ε, which is a user-defined parameter, for

FCA and SVD in the NRA algorithm. When randomly choosing #ct = c(k1 + k2) columns

69

from T̂t, we choose c to be 4. In the case that the direct solver of [7] is used to solve the

H2-matrix generated from the proposed algorithm, the accuracy is set to be 10−3.

4.5.1 Accuracy

We first validate the accuracy of the proposed algorithms before examining their com-

plexity in time and memory. A common set of simulation parameters are used for all ex-

amples simulated in this section. Specifically, in the FMM, we set the truncation criterion

of the addition theorem as L = k0d + 1.8d2
0(k0d) 1

3 , where d0 = log10(1
εF

) and εF = 10−2,

k0 is wavenumber and d is the diameter of the targeted cluster. When generating an H2-

representation of the FMM, we use 12 points along each of the θ and φ directions to do the

Lagrange Polynomial based interpolation to obtain transfer matrices. In addition, we choose

η = 1.2 in the admissibility condition. When using the proposed NRA to do rank reduction,

the accuracy criterion set for all ACA or SVD is ε. When choosing #ct = c(k1 + k2) columns

from T̂t, we choose c to be 4.

Accuracy Comparison Between the Proposed Fast NRA Algorithm and the DRA

In Algorithm 12 , a fast algorithm is developed to bypass the cost of the SVD in the

proposed NRA algorithm. In this algorithm, O(k) columns are randomly selected to perform

CA, out of the kF columns of the original FMM-based transfer matrix. Here, we examine the

accuracy of this approach as compared to the brute-force NRA. We take a random vector

x, and perform a matrix-vector multiplication using the new H2-matrix generated by the

brute-force NRA to obtain ZH2x. We also use the fast NRA to compute ZfastH2x. The error

of the resultant vector is then assessed by comparing with the original FMM-based matrix-

vector multiplication, ZF MMx. The results are shown in Table 4.2 for ε = 10−2, and ε = 10−3

respectively. In this table, err0 = ‖ZH2x−ZF MMx‖/‖ZF MMx‖ represents the relative error of

the newH2 generated by the brute-force NRA, while err1 = ‖ZF astH2x−ZF MMx‖/‖ZF MMx‖

represents that of the fast NRA. As can be seen, the fast NRA is accurate, and its accuracy

is also controllable like NRA. Similar results are also shown for DRA. In Table 4.3 , err0

remains the same, while err1 = ‖ZDRAH2x − ZF MMx‖/‖ZF MMx‖ represents the relative

70

Table 4.2. Accuracy Comparison Between NRA and Fast NRA
N 4608 18432 73728 294912 1179648

err0(ε = 10−2) 7.44e-3 1.07e-2 1.66e-2 2.07e-2 2.42e-2
err1(ε = 10−2) 6.92e-3 1.18e-2 1.83e-2 2.41e-2 4.51e-2
err0(ε = 10−3) 1.03e-3 1.13e-3 1.79e-3 2.28e-3 2.73e-3
err1(ε = 10−3) 9.42e-4 1.17e-3 1.95e-3 2.71e-3

Table 4.3. Accuracy Comparison Between DRA and Fast NRA
N 4608 18432 73728 294912 1179648

err0(ε = 10−2) 7.417e-3 9.451e-3 1.609e-2 2.060e-2 2.289e-2
err1(ε = 10−2) 7.435e-3 9.607e-3 1.623e-2 2.072e-2 2.283e-2

error of the new H2 generated by the DRA. As we can see, DRA is also accurate. This also

verifies our assumption before that the windowing technique will not affect the accuracy.

Scattering from a Conducting Cube Using Fast NRA

In this example, we compute the bistatic RCS of a conducting cube of size 12.8λ ×

12.8λ × 12.8λ at 300 MHz, which has 294,912 unknowns. The new H2-matrix generated

from the Fast NRA is solved using the direct solver of [7]. The resultant bistatic RCS is

compared with that from HFSS, which reveals good agreement as can be seen from 4.1 . In

this example, the accuracy criterion used in the fast NRA is set to be ε = 10−3.

Scattering from a Conducting Plate Using Fast NRA

In this example, we compute the bistatic RCS of a conducting plate of size 60.8λ× 60.8λ

at 300 MHz, which has 1,107,776 unknowns. A BiCGStab iterative solver with a diagonal

preconditioner is employed to solve the new H2-matrix generated from the proposed method.

The result is then compared with HFSS and shown in Fig. 4.2 . Again, very good agreement is

observed, which validates the accuracy of the proposed algorithm. The simulation parameters

are chosen the same as the previous cube example.

71

0 50 100 150
-20

-10

0

10

20

30

40

50

60

R
C

S
(d

B
s
m

)

RCS over

HFSS

NewH2

Figure 4.1. Compare RCS of conducting Cube Using Fast NRA

0 50 100 150
-20

0

20

40

60

80

100

R
C

S
(d

B
s
m

)

RCS over

HFSS

NewH2

Figure 4.2. Compare RCS of conducting Plate Using Fast NRA

Scattering from an Array of Spheres Using Fast NRA

In this example, we simulate an array of spheres, having 4× 4× 4 spheres, each of which

has a diameter of 0.5525 m and is discretized with 188 unknowns at 300 MHz. The distance

72

0 50 100 150
-40

-30

-20

-10

0

10

20

30

40

R
C

S
(d

B
s
m

)

RCS over

HFSS

NewH2

Figure 4.3. Simulated RCS of an array of conducting spheres (4 × 4 × 4)
Using Fast NRA.

between two adjacent spheres is 1.3820 m. The bistatic RCS is computed with a direct

solution of the new H2-matrix by the direct solver in [7] and compared with HFSS. Good

agreement is observed as can be seen from Fig. 4.3 . The accuracy criterion used in the fast

NRA is set to be ε = 10−3.

We also simulate another array having 6 × 6 × 6 spheres, each of which is of diameter

0.8288 m and is discretized with 648 unknowns, yielding 139,968 unknowns in total at 300

MHz. The distance between two adjacent spheres is 2.0730 m. Again, the new H2 matrix

generated from the proposed method is directly solved using the solver in [7], and the bistatic

RCS is extracted and compared with HFSS. The comparison is shown in Fig. 4.4 . which

further validates the accuracy of the proposed algorithm. The simulation parameters are

chosen the same as those in the previous example.

Scattering from two Complex Structures Using Fast NRA

We also simulate two complex structures 3.3 and 3.5 . This coil is of size 14.156 m.

After discretization, there are 121,914 unknowns. This joint has a diameter of 17.302m.

73

0 50 100 150
-20

-10

0

10

20

30

40

50

60

R
C

S
(d

B
s
m

)

RCS over

HFSS

NewH2

Figure 4.4. Simulated RCS of an array of conducting spheres (6 × 6 × 6)
Using Fast NRA.

After discretization, there are 172,077 unknowns. The comparison between results of HFSS

and DRA solved by the direct solver is shown at Fig. 4.5 and Fig. 4.6 , for coil and joint,

respectively.

Scattering from a Conducting Cube Using DRA

In this example, we compute the bistatic RCS of a conducting cube of size 12.8λ×12.8λ×

12.8λ at 300 MHz, which has 294,912 unknowns. The new H2-matrix generated from the

proposed method is solved using the direct solver of [7]. The resultant bistatic RCS is

compared with that from HFSS, which shows very good agreement, as can be seen from

Fig. 4.7 . In this example, the accuracy criterion used in the DRA is set to be ε = 10−3. As

we can see, the algorithm shows good accuracy as well.

74

0 50 100 150
-10

0

10

20

30

40

50

R
C

S
 (

d
B

s
m

)

RCS over

HFSS

Fast NRA

Figure 4.5. RCS of a coil simulated using Fast NRA.

0 50 100 150
5

10

15

20

25

30

35

40

45

50

R
C

S
 (

d
B

s
m

)

RCS over

HFSS

Fast NRA

Figure 4.6. RCS of a joint simulated using Fast NRA.

75

0 50 100 150
-20

-10

0

10

20

30

40

50

60

R
C

S
 (

d
B

s
m

)

RCS over

HFSS

This Method

Figure 4.7. Compare RCS of conducting Cube Using DRA

4.5.2 Time and Memory Complexity

With the accuracy of the proposed algorithms validated, next, we examine the complexity

of the proposed algorithms for generating a rank-minimized H2-matrix for electrically large

analysis.

The Growth Rate of the Rank

First, we examine the growth rate of the rank with electrical size since it is one of the

key parameters in the complexity analysis. We use a conducting sphere as an example, and

find its rank level by level using the Fast NRA with ε = 10−3. The results are listed in

Table 4.4 . In this table, es denotes the largest electrical size of all clusters at a tree level, n

is the largest unknown number of all clusters, kF is the FMM’s rank (note that in FMM, all

cluster bases at the same tree level share the same rank in common), k is the rank of the

new H2-matrix of the entire SIE obtained from the proposed reduction algorithm, and kφ is

the rank of the new H2-matrix for Zφ part only. We also plot the new rank as a function of

76

Table 4.4. Rank versus tree level using NRA with ε = 10−3

tree level es n kF k kφ

3 20.61 49152.00 42050 967 954
4 15.74 24576.00 25538 721 552
5 10.26 12288.00 11552 509 323
6 8.29 6144.00 7938 324 204
7 5.26 3072.00 3698 207 125
8 4.48 1536.00 2738 134 86
9 2.79 768.00 1250 90 57
10 2.46 384.00 1058 63 43
11 1.50 192.00 512 44 31
12 1.39 96.00 450 32 25
13 0.88 48.00 242 25 18
14 0.84 24.00 242 18 15

0 5 10 15 20 25

electrical size of a cluster

0

200

400

600

800

1000

N
e
w

 R
a
n
k

the growth rate of new rank with electrical size

Figure 4.8. New rank’s growth rate with electrical size in a sphere example.

electrical size in Fig. 4.8 . From this figure, it can also be seen clearly that the rank scales

linearly with electrical size, which agrees with the one used in our complexity analysis.

77

0 50 100 150
0

10

20

30

40

50

60

b
is

ta
ti
c
 R

C
S

(d
B

s
m

)

bistatic RCS over

Mie series

Numerical Result

Figure 4.9. Simulated RCS of a conducting sphere using Fast NRA in com-
parison with Mie series solution.

Complexity Analysis

A suite of conducting spheres of various diameters at 300 MHz is then simulated to

examine the time and memory complexity of the proposed fast NRA algorithm. First, as a

sanity check of the accuracy, we simulate one case, which is a sphere of 17.68 m diameter,

whose number of unknowns is 294,912. The accuracy criterion is chosen to be ε = 10−3 in the

fast NRA algorithm. We then use the direct solver in [7] to solve the H2 matrix generated

from the proposed algorithm. In Fig. 4.9 , the simulated bistatic RCS is plotted as a function

of θ, which reveals an excellent agreement with MIE series solution [15].

We then vary the size of the sphere and examine the time and memory scaling of the

proposed fast NRA algorithm. The scaling data are listed in Table 4.5 . In this Table, N

is the number of unknowns, D is the diameter of the conducting sphere, eMV denotes the

relative error between the result of an FMM-based matrix multiplied by a vector and the

new H2-matrix multiplied by the same vector, tC,φ is the time for converting the φ part of Z

matrix, tC is the time for converting the whole Z matrix and tF MM(s) is the assembly time

78

Table 4.5. Time, rank, and memory scaling of the proposed fast NRA with
ε = 10−2 and comparison with the FMM-based representation.

N 4608 18432 73728 294912 1179648
D 2.21λ 4.42λ 8.84λ 17.68λ 35.38λ

eMV 6.92e-3 1.18e-2 1.83e-2 2.41e-2 4.51e-2
tC(s) 114.75 1180.56 7570.54 46893.61 295287.38

tC,φ(s) 30.29 287.69 1874.19 10269.44 70441.52
tF MM(s) 72.96 283.85 1188.37 4798.54 18731.23

kF,φ 288 1152 3698 11858 42050
kφ 21 50 115 302 898

tF,MV (s) 5.53 29.00 75.26 209.48 719.94
tMV (s) 1.27 1.89 5.61 19.90 65.12

mF (Mb) 278.36 1429.50 6633.92 27883.57 115991.14
mgF (Mb) 318.25 1622.83 7481.95 31392.16 130411.31
m(Mb) 176.05 776.78 3416.73 15623.0 80965.49

mC(Mb) 312.78 1793.66 8844.36 42692.75 231295.43

of FMM. The kF,φ is the rank of the FMM H2-matrix’s φ part, kφ is the rank of the new H2-

matrix’s φ part, tF,MV (s) is the time of the FMM H2-matrix multiplied by a vector, tN,MV (s)

is the time of the new H2-matrix multiplied by the same vector, mF (Mb) is the memory to

store the FMM-based H2-matrix, mgF (Mb) is the memory used to assemble the FMM-based

H2-matrix, m(Mb) is the memory to store the new H2-matrix, mC(Mb) is the maximal

memory used in the converting process. It can be seen clearly the new H2-matrix generated

from the proposed work has a much reduced rank, memory, and matrix-vector multiplication

time as compared to the FMM-based representation. We also plot the time and memory

usage in log scale in Fig. 4.10 and Fig. 4.11 for the minimal-rank H2-generation time. They

are shown to agree very well with our theoretical complexity analysis. We also plot the

comparison between memory needed to store an FMM H2-matrix and a new H2-matrix

generated by Fast NRA in Fig. 4.12 . We also plot the comparison between the time needed

for FMM representation and a new H2-matrix generated by Fast NRA to do Matrix-Vector

Multiplication with the same vector in Fig. 4.13 . We can see Matrix-Vector Multiplication

79

10
4

10
5

10
6

Number of unknowns

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
 o

f
C

o
n
v
e
rt

in
g
 p

ro
c
e
s
s

O(N
1.5

)

O(N)

Converting time part

Figure 4.10. Time Complexity of the proposed fast NRA.

time is much reduced. This is not only because new H2-matrix needs less memory, but also

because new H2-matrix contains only dense matrices, which is implemented well in modern

library and is much faster when doing any computation. This shows we indeed get a more

compact representation of the IE operator, which can be advantageous in the subsequent

procedure for not only the direct solver but also the iterative solver, especially in the case of

multiple right-hand sides. In addition, we simulated this example using the NRA described

in Section 4.2 . The CPU run time does not show advantages compared to the Fast NRA

algorithm of Section 3.2 . However, the memory is reduced. In Fig. 4.14 , we plot its memory

scaling of DRA in comparison with the Fast NRA algorithm of Section 3.2 . As can be seen

clearly, the algorithm incurs less memory and shows a reduced scaling rate with N .

Finally, the time and memory scaling is also examined for NRA using sparsity. The

scaling data are listed in Table. 4.6 , Table. 4.9 , 4.7 and 4.8 . Table. 4.6 shows the results

of only hard-thresholding (Ũt)H in two ways. First is to threshold (Ũt)H ’s each row based

on its row’s own maximum. The second is to threshold (Ũt)H based on its entire matrix

maximum. ead is the relative error of all the admissible blocks between converted H2-matrix

and original FMM matrix. eall is the whole matrix relative error between converted H2-

matrix and original FMM matrix. eMV is the matrix-vector multiplication relative error

80

10
4

10
5

10
6

Number of unknowns

10
2

10
3

10
4

10
5

10
6

10
7

M
a
x
im

u
m

 M
e
m

o
ry

 U
s
a
g
e
 o

f
C

o
n
v
e
rt

in
g
 p

ro
c
e
s
s

O(N
1.5

)

O(N)

Maximum Memory Usage

Figure 4.11. Memory Complexity of the proposed fast NRA.

0 2 4 6 8 10 12

Number of unknowns 10
5

0

2

4

6

8

10

12

M
e
m

o
ry

 U
s
e
d
 t
o
 S

to
re

 E
a
c
h
 R

e
p
re

s
e
n
ta

ti
o
n 10

4

FMM Memory

Fast NRA Memory

Figure 4.12. comparison of memory needed to store FMM representation
and Fast NRA representation

obtained by using converted H2-matrix and original FMM matrix multiplied by the same

vector. t(s) means the time consumed by the converting process, mem(Mb) means the

memory needed to do the converting process. Table 4.7 corresponds the method in 4.3.2 ,

81

0 2 4 6 8 10 12

Number of unknowns 10
5

0

100

200

300

400

500

600

700

800

M
V

 t
im

e
 f
o
r

E
a
c
h
 R

e
p
re

s
e
n
ta

ti
o
n

FMM Memory

MV time for Fast NRA

Figure 4.13. comparison of time needed for FMM representation and Fast
NRA representation to do MV with the same vector

0 2 4 6 8 10 12

N 10
5

0

0.5

1

1.5

2

2.5

M
e

m
o

ry
 (

M
B

)

10
5

Fast NRA 1

Fast NRA 2

Figure 4.14. Memory comparison between Fast NRA 1 and Fast NRA 2
during the conversion stage.

which eliminates the randomness in the converting process. I also tested the method that

hard-threshold G̃ =

ŨH
1 T1

ŨH
2 T2

. In this method, we first hard-threshold (Ũt)H based on entire

matrix’s max for every cluster. Then we hard-threshold (Ũt
1)HT1 and (Ũt

2)HT2. Finally we

82

Table 4.6. Accuracy of NRA using sparsity which hard-threshold (Ũt)H for
every cluster. Cube, ε = 10−2

N 4608 18432 73728 294912 1179648
ead (row max) 3.912e-2 3.915e-2 5.332e-2
eall (row max) 1.116e-3 2.084e-3 3.757e-3
eMV (row max) 4.648e-3 8.155e-3 1.174e-2 1.844e-2 2.260e-2
t(s) (row max) 607.25 5847.63 33407.47 175119.79 836089.41

mem(Mb) (row max) 475.90 2792.72 12115.56 54473.56 256710.23
ead (entire max) 3.926e-2 4.026e-2 5.573e-2
eall (entire max) 1.120e-3 2.144e-3 3.927e-3
eMV (entire max) 4.675e-3 8.377e-3 1.228e-2 2.049e-2 3.071e-2
t(s) (entire max) 608.09 6389.36 30649.30 150935.80 756467.80

mem(Mb) (entire max) 396.14 2480.02 11686.10 52775.24 240388.59

use SVD on G̃G̃H (Note G̃ =

ŨH
1 T1

ŨH
2 T2

). Although G̃ is more sparse, it takes more time than

not doing so. Data corresponds to this method is shown in Tab. 4.8 for comparison. Tab. 4.9

shows data that does not do any hard-thresholding at all, including ŨH and G̃. In these

table, tconv is the total converting time, tconv,φ is the time of converting the Zφ part of the

impedance Z matrix. rV,φ is the new rank of Zφ, while rV,S is the new rank of Z, tF MM,MV (s)

is the time needed to do one matrix vector multiplication of FMM H2-matrix, tNew,MV (s) is

the time needed to do one matrix vector multiplication of New H2-matrix. memF MM(Mb)

is the memory needed to store FMM H2-matrix, memNew(Mb) is the memory need to store

new H2-matrix, memmax is the maximum memory needed to convert an FMM H2-matrix

ot a New H2-matrix.

4.6 Conclusion

We present new algorithms to generate a rank-minimized H2-matrix to represent electri-

cally large surface IE operators. First, the FMM is leveraged to obtain an initial H2-matrix

in low complexity. Fast nested reduction algorithms are then developed to convert the FMM-

based H2-representation to a new H2-matrix whose rank is minimized based on accuracy.

Then we propose the Double Recursive Algorithm and NRA using sparsity to further re-

duce the complexity of converting process. The resultant new H2-matrix is found to have a

83

Table 4.7. Data of NRA using sparsity, hard-thresholding (Ũt)H based on
entire matrix’s max for every cluster, using SVD on G̃G̃H , Sphere, ε = 10−2

N 4608 18432 73728 294912 1179648
eMV 7.529e-3 1.150e-2 1.783e-2 2.415e-2 3.331e-2
tconv 475.90 3997.77 19918.75 93580.29 686575.04

tconv,φ 127.34 1108.64 5081.38 23848.25 161832.38
rV,φ 18 43 100 273 818
rV,S 12 27 73 224 1194

tF MM,MV (s) 3.76 21.74 68.62 189.03 685.95
tNew,MV (s) 0.54 3.33 5.21 39.23 122.92

memF MM(Mb) 278.36 1429.50 6633.92 27890.01 116086.91
memNew(Mb) 176.10 772.82 3342.13 14887.16 75322.47

memmax 384.53 1839.41 8060.90 37521.27 190776.79

Table 4.8. Data of NRA using sparsity, hard-thresholding (Ũt)H based on
entire matrix’s max for every cluster, and hard-thresholding (Ũt

1)HT1 and

(Ũt
2)HT2, using SVD on G̃G̃H (Note G̃ =

[
ŨH

1 T1
ŨH

2 T2

]
), Sphere, ε = 10−2

N 4608 18432 73728 294912 1179648
eMV 7.479e-3 1.167e-2 1.821e-2 2.511e-2 3.504e-2
tconv 595.86 4014.23 25439.88 135229.79 797184.03

tconv,φ 162.97 1133.15 7060.59 36015.48 196844.77
rV,φ 18 43 103 278 813
rV,S 12 27 74 245 1272

tF MM,MV (s) 3.61 21.33 73.87 197.99 677.45
tNew,MV (s) 0.79 2.98 3.71 38.87 123.97

memF MM(Mb) 278.36 1429.50 6633.92 27890.01 116086.91
memNew(Mb) 176.12 772.44 3337.91 14896.65 75909.89

memmax 384.42 1842.91 8062.64 37618.62 191730.48

84

Table 4.9. Data of NRA using sparsity, without thresholding (Ũt)H , using
SVD on G̃G̃H , Sphere, ε = 10−2

N 4608 18432 73728 294912 1179648
eMV 7.443e-3 1.075e-2 1.660e-2 2.059e-2 2.322e-2
tconv 79.83 624.33 4508.70 27730.21 216170.56

tconv,φ 19.07 131.79 805.71 5310.30 42569.79
rV,φ 18 45 102 270 816
rV,S 12 27 71 199 578

tF MM,MV (s) 3.62 20.89 70.78 195.51 685.08
tNew,MV (s) 0.63 2.67 2.51 31.32 151.85

memF MM(Mb) 278.36 1429.50 6633.92 27890.01 116086.91
memNew(Mb) 175.79 773.42 3354.14 14872.06 70623.54

memmax 383.31 2012.29 8107.30 37939.30 197145.83

85

much reduced rank without sacrificing prescribed accuracy, which accelerates both iterative

and direct solutions. The proposed work has been applied to solve electrically large SIE

equations for scattering analysis. Its accuracy and efficiency are demonstrated by numerical

experiments. In addition to surface IEs, it is also applicable to volume IEs, and other IE

operators.

86

5. NESTED CONSTRUCTION METHOD

In chapter 4.2 , the MLFMA is leveraged to accelerate the generation ofH2-matrices for SIEs.

The method can achieve a time complexity of O(N1.5 log N). However, it is kernel-dependent,

involving the implementation of MLFMA.

In this chapter, we develop a kernel-independent and purely algebraic method, Nested

Construction Method, which can construct a rank-minimized H2-matrix to represent elec-

trically large surface IE operators with low complexity based on prescribed accuracy. In

this method, for each cluster in the H2-tree, we consider the interaction between the cluster

(row cluster) and other admissible clusters (column clusters) at the same tree level, as well

as all ancestor levels. To find the low-rank representation of such an interaction efficiently,

we employ Pseudo-Skeleton Approximation [16], [17] (PSA), and also randomly choose O(k)

rows from the row cluster, and O(k) columns from the column clusters to build a low-rank

representation. The time cost of this method in generating each cluster basis and coupling

matrix is of O(kn log n), while the memory consumption scales as O(k2), where k is the

rank of the cluster basis, and n is cluster size. At each non-leaf level, we project the O(k)

columns selected for a non-leaf cluster to the cluster bases of its two children, and use the

nested relationship to find transfer matrices efficiently. For electrically large surface integral

operators, taking into account the rank’s growth at each tree level, the time complexity of

the proposed algorithm scales as O(N1.5 log N), and the memory complexity is O(N log N)

for generating a rank-minimized H2-representation. This complexity is the same as in chap-

ter 4.2 . But this algorithm is kernel-independent. Since the new method does not depend

on MLFMA and is purely algebraic, it is also easier to implement.

In addition to an efficient H2-matrix construction, the underlying algorithms of this work

can be used to efficiently construct an H-matrix representation of IE operators, and be used

to perform efficient H- to H2-matrix conversion with a reduced complexity than existing

methods for performing the same task. We have introduced H2-matrix, now we briefly

introduce the H-matrix [6]. The H-matrix is similar to the H2-matrix. It also constitutes

a hierarchical and often low-rank representation of the original dense matrix, the structure

of which can be utilized to accelerate matrix computation. H-matrix structure is also built

87

using a row binary tree and a column one, an example of which is illustrated in Fig. 1.1 .

In an H-matrix, by checking the admissibility condition level by level between a row cluster

tree and a column cluster tree, the original matrix is partitioned into multilevel admissible

and inadmissible blocks. Physically, an admissible block represents the interaction between

separated sources (column cluster) and observers (row cluster). An inadmissible block is

stored in its original full matrix format, while an admissible block has compact storage.

Take an admissible block (t, s) formed between a row cluster t and a column cluster s as an

example. In an H-matrix, the admissible block is represented as ABT , whose rank is k which

can be smaller than the row and column dimension of the block. Actually, the H2-matrix is

a special class of the H-matrix. The difference lays in that the latter does not have a nested

hierarchical representation. Both are more compact and yield lower computational costs.

Thus, the H2-matrix is more difficult to be generated.

Numerical experiments have demonstrated the accuracy, efficiency, and complexity of the

proposed method. In addition to surface integral equations, the proposed algorithms can

also be applied to solving other electrically large integral equations.

The rest of this chapter is organized as follows. In Section I, we review the background

of this paper. In Section II, we present the proposed Nested Construction Algorithm for

H2-construction and analyze its computational complexity. In Section III, we show how to

use the proposed algorithm to convert an H-matrix to an H2-matrix efficiently. In Section

IV, a number of numerical results are presented to validate the accuracy and computational

complexity of the proposed algorithms. Section VI relates to our conclusions.

5.1 Background

5.1.1 Pseudo-Skeleton Approximation

In [16], [17], it is shown that there exists a Pseudo-Skeleton Approximation (PSA) of

a low-rank matrix with prescribed accuracy, which uses selected rows and columns of the

88

original matrix to generate a low-rank matrix. Let the set of selected rows be r and the set

of selected columns be c, for a low-rank matrix M, a PSA takes the following form

M ≈ CM(r, c)†R, (5.1)

where C contains selected columns of M whose indexes belong to c, thus being

C = M(:, c), (5.2)

R contains selected rows of M whose indexes belong to r, thus being

R = M(r, :), (5.3)

M(r, c) is the intersection between the rows in r and columns in c of M, having |r| × |c|

entries, and M(r, c)† denotes the pseudo-inverse of M(r, c).

In this work, we compute the pseudo-inverse of M(r, c) using reduced SVD (rSVD),

obtaining M(r, c) = UΣVH , where Σ is truncated based on prescribed accuracy ε. Then,

we obtain

M(r, c)† = VΣ−1UH . (5.4)

Such an implementation eliminates the instability of the pseudo-inverse even if M(r, c) is

rank-deficient. It also reveals the rank of M at the same time.

5.2 Nested Construction Algorithm

To obtain a low-rank representation of an IE dense matrix algebraically, a brute-force

method would cost O(N3) since it is equivalent to performing an SVD of the matrix and

truncating it based on prescribed accuracy. In this section, we present a fast Nested Con-

struction (NC) algorithm to generate such a low-rank representation, and also make it nested,

thus producing an H2-matrix. Algorithms 18 , 19 , and 20 provide an overview of this al-

gorithm. As can be seen, the algorithm consists of one bottom-up traversal of the cluster

tree to construct cluster bases (Algorithm 19), and one traversal of block cluster tree to

89

construct coupling matrices (Algorithm 20). Next, we will present how the nested cluster

bases are generated at the leaf level, and non-leaf levels respectively, and then explain the

coupling matrix generation.

Algorithm 18 Nested_Construction_Algorithm
1: procedure nested_construction_algorithm(t, b)
2: construct_cluster_basis(t)
3: construct_coupling_matrix(b)
4: end procedure

Algorithm 19 construct_cluster_basis
1: procedure construct_cluster_basis(t)
2: if t is a non-leaf cluster then
3: for i is t’s child do
4: construct_cluster_basis(ti)
5: end for
6: fill_non_leaf_cluster(t)
7: else
8: fill_leaf_cluster(t)
9: end if

10: end procedure

Algorithm 20 construct_coupling_matrix
1: procedure construct_coupling_matrix(b)
2: if b is an admissible block then
3: fill_coupling_matrix(b)
4: else if i is b’s child then
5: construct_coupling_matrix(bi)
6: else if b is an inadmissble block then
7: fill dense original matrix for b
8: end if
9: end procedure

5.2.1 Cluster Basis Generation at Leaf Level

For an arbitrary leaf cluster t, instead of only considering admissible blocks formed by t

at t’s level, we use the interaction between t and its far-field t+ to generate the cluster basis.

90

The same is performed for non-leaf clusters. This is to facilitate the generation of nested

cluster bases, which will soon become clear in the next section.

The far field t+ of a cluster t is defined as

t+ = {s : s. t. (tp, s) is admissible,∃tp ∈ [P(t), t]} (5.5)

where P(t) denotes the set of ancestors of cluster t. Hence, t+ includes all clusters s that are

admissible with t at t’s level, as well as those that are admissible with t’s ancestors. Define

Gt as the matrix formed by t and t+. An example of Gt is shown in Fig. 5.1 for cluster

t = t4, which is highlighted in yellow.

Figure 5.1. Submatrices colored in yellow are Gt4 of cluster t4.

Now consider a leaf cluster t, to generate its cluster basis, we select O(k) rows from t,

and O(k) columns from t+, where k is the rank of Gt for a prescribed accuracy, from which

we obtain a PSA of Gt as

Gt ≈ CtGt(r, c)†Rt, (5.6)

91

where Gt(r, c)† denotes the pseudo-inverse of the intersection between the selected rows r

and columns c, Ct = Gt(:, c), and Rt = Gt(r, :). Since the goal here is to generate the

cluster basis of t, which falls into the column space of Ct, we only need to compute Ct.

For efficiency, we randomly select c columns from Gt, and choose |c| = c0kt, where c0 is a

constant coefficient larger than 1. The rank of cluster t, kt, can be estimated as leafsize

at the leaf level. At a nonleaf level, kt can be estimated from the sum of the two children

clusters’ rank or from the square root of the cluster size based on [9]. The actual rank will

be determined after the rSVD is performed on the selected columns as follows.

Performing an rSVD on Ct, we obtain

Ct = UΣVH . (5.7)

Truncating the above based on prescribed accuracy ε, we obtain the cluster basis of the leaf

cluster t as

Vt ≈ Ukt , (5.8)

in which Ukt denotes the kt left singular vectors corresponding to the largest kt singular

values satisfying prescribed accuracy. The pseudo-code of the aforementioned leaf-level com-

putation is shown in Algorithm 21 .

Algorithm 21 fill_leaf_cluster
1: procedure fill_leaf_cluster(t)
2: Generate Ct from randomly selected column pivots.
3: Do rSVD on Ct to obtain leaf cluster basis Vt.
4: end procedure

5.2.2 Cluster Basis Generation at Nonleaf Levels

For a non-leaf cluster t, to build a nested cluster basis, we do not do rSVD on Ct directly

since it would be expensive. Instead, we do the rSVD on the projection of Ct onto its

two children cluster bases. Since the children cluster bases are built to account for the

interaction with all ancestor-level admissible clusters, i.e., with t+, such a projection can be

92

accurately performed. In other words, the children cluster bases can accurately represent

parent cluster’s Gt, and thus its selected columns Ct as well, since children cluster bases are

generated with their parent’s Ct taken into account.

Let the projection of Ct onto children cluster bases be Cproj
t , which is

Cproj
t =

(Vt1)H

(Vt2)H

 Ct, (5.9)

where t1 and t2 denote t’s two children, Vt1 and Vt2 are corresponding cluster bases that

have been generated at previous level. The Ct in (5.9) has O(kt) columns, and its row

dimension is the size of cluster t, and hence being nl, the number of unknowns at tree level l.

Even though generating Ct costs O(ktnl) operations only, a brute-force multiplication of Ct

with (Vt1)H and (Vt2)H would cost O(k2
t nl), which is expensive. Hence, we need to speed

up the multiplication in (5.9). To do so, we propose to use the nested property of cluster

bases V level by level. The technique used here is essential the same as a part described in

section 4.2 . Here we state again.

For each column vector in Ct, we can obtain its product with (Vt1)H and (Vt2)H in

O(nl log nl) operations, using the nested property of cluster bases V. Basically, for cluster

t, we go down the cluster tree until we reach t’s leaf level clusters. Starting from this level

(leaf level l = L), we compute (Vti)H multiplying corresponding segments of a column in

Ct, where ti is the i-th cluster at leaf level, and we do so for all leaf clusters of t. The total

cost at leaf level is O(nl). We then move one level up to l = L − 1, for each cluster ti at

this level, we compute Tti H multiplying the union of ti’s two children’s vectors obtained at

previous level, the cost of which is O(k2
ti
). We do so level by level up for each child cluster

of t. When we reach nonleaf cluster t at level l, we obtain a matrix of size (kt1 + kt2) × kt,

which is the result of (5.9).

Denoting each column of Ct by v, the pseudo-code of the aforementioned O(nl log nl)

algorithm is shown in Algorithm 22 . In this pseudo-code, the input is v and its associated

cluster. The ωt is a vector belonging to cluster t and of size kt (rank of cluster t); and vt

is the segment of v that corresponds to cluster t. After Algorithm 22 is executed, the ωt

93

of the input cluster t is the result being pursued, i.e, one column of Cproj
t . Algorithm 22

allows us to reduce the time of one matrix-vector multiplication in (5.9) from O(nlkt) to

O(nl log nl), by taking advantage of nested property. Here, the former is larger than the

latter because the rank kt scales as √nl in an electrically large surface IE [9], and hence can

be much larger than log nl. Since the column dimension of Cproj
t is O(kt), the total time cost

of computing Cproj
t is O(ktnl log nl).

Algorithm 22 recursively_multi_new_trans
This algorithm performs a bottom-up tree traversal to compute VHv

1: procedure recursively_multi_new_trans(t, v)
2: if t is a non-leaf cluster then
3: for i is t’s child do
4: recursively_multi_new_trans(ti, v)
5: end for
6: ωt ←

[
(Tt1)Hωt1

(Tt2)Hωt2

]
7: else
8: ωt ← (Vt)Hvt

9: end if
10: end procedure

After obtaining Cproj
t , we apply an rSVD with a prescribed accuracy ε, the resultant left

singular vectors are the transfer matrix of cluster t,

Tt =

Tt1

Tt2

 . (5.10)

The entire procedure for generating the cluster basis of a nonleaf cluster is shown by the

fill_non_leaf_cluster(t) in the following.

5.2.3 Coupling Matrix Generation

For each coupling matrix, denote the corresponding admissible block by Gt,s, where t is

a row cluster, and s is a column one admissible to t. We first randomly choose r rows and

c columns from Gt,s. Similar to how cluster bases are generated, we choose |r| = c0ks and

|c| = c0kt, where c0 ≥ 1 is the enlarging constant coefficient, and kt and ks are the rank of

94

Algorithm 23 fill_non_leaf_cluster
1: procedure fill_non_leaf_cluster(t)
2: generate ct (column pivots of cluster t).
3: for v is a column corresponding to a pivot of ct do
4: recursively_multi_new_trans(t, v) → ω
5: store ω as one column of Cproj

t

6: end for
7: Do rSVD on Cproj

t to get transfer matrix Tt.
8: end procedure

95

corresponding row, and column cluster basis, respectively. Then we form three submatrices

Ct,s, G̃t,s and Rt,s based on t, s, r and c to construct a PSA, hence obtaining

Gt,s = Ct,sG̃†
t,sRt,s, (5.11)

in which

Ct,s = Gt,s(:, c), G̃t,s = Gt,s(r, c), Rt,s = Gt,s(r, :). (5.12)

Multiplying the Ct,s by (Vt)H in front yields C̃, which is the projection of Ct,s onto the

cluster basis of t. Again, this multiplication can be efficiently carried out using the nested

algorithm shown in Algorithm 22 . Similarly, multiplying the Rt,s by (Vs), we obtain R̃.

As a result, the coupling matrix of the admissible block can be found as

St,s = C̃G̃†
t,sR̃, (5.13)

where G̃†
t,s is the pseudo-inverse of G̃t,s.

We formalize the aforementioned in the fill_coupling_matrix(t) pseudo-code shown in

Algorithm 24 .

Algorithm 24 fill_coupling_matrix
1: procedure fill_coupling_matrix(b)
2: generate C, G̃ and R.
3: do C̃ = (Vt)HC.
4: do R̃ = R(Vs).
5: compute St,s = C̃G̃†R̃
6: end procedure

5.2.4 Complexity Analysis

The cost of generating leaf cluster bases is O(N). For a non-leaf cluster, we have analyzed

that the time complexity of getting Ct is of O(ktn log n). Doing rSVD on Cproj
t is O(k3

t) since

Cproj
t is of size O(kt)×O(kt). As for the cost of coupling matrix generation, computing G̃†

t,s

96

in (5.13) has O(k3) complexity, where k = max(kt, ks). The cost of computing C̃, R̃ and

S̃t,s are O(kn log n), O(kn log n), and O(k3), respectively. Since in an SIE, rank scales as

the square-root of cluster size at each tree level, the generation of coupling matrix is of

O(k3
t log n) cost. Hence, the total time complexity of the proposed Nested Construction

algorithm is

Ct =
L∑

l=0
2lO(k3

t log n)

=
L∑

l=0
2lO


√

N

2l

3

log
(

N

2l

) = O(N1.5 log N).
(5.14)

Memory-wise, for cluster basis generation, the dimension of Ct is O(n)× O(kt), but we

can avoid storing it as a whole. We can generate one column of Ct, multiply this column

with V tH to get one column of Cproj
t . Then we use the same memory space to generate

another column of Ct and thereby compute another column of Cproj
t . In this way, we only

need a space sufficient to store one column of Ct, which costs O(n) only, and a space for

storing Cproj
t , which is O(k2

t). The transfer matrix T also only requires storage of O(k2
t).

Hence, for each non-leaf cluster, the memory requirement is O(k2
t) for generating and storing

the cluster basis.

For coupling matrix, we can use a similar technique to avoid the direct storage of Ct,s

and Rt,s. Thus, the memory requirement for generating each coupling matrix can also be

made O(k2
t). As a result, the total memory complexity of the proposed algorithm can be

calculated as

Cm =
L∑

l=0
(2lO(k2

t) + Csp2lO(k2
t))

=
L∑

l=0
2lO

(
N

2l

)
= O(N log N).

(5.15)

97

5.3 Efficient Conversion of H-matrix to H2-matrix

The proposed new method can also be used as an efficient way to convert an H-matrix

to an H2-matrix, which has a much reduced complexity as compared to using the H to H2

conversion in [6] for solving electrically large problems. Starting from an H-matrix M, next,

we show how to convert it to a minimal-rank H2-matrix. This H-matrix can be generated

using PSA as shown in this work. It can also be generated using other approaches. Let the

admissible block formed by cluster t and cluster s be Mt,s = At,s(Bt,s)H in the H-matrix.

We first construct nested cluster bases as follows.

1. For each leaf cluster t, form a new matrix Mt =
[
At,s1 At,s2 ... At,sn

]
, for si ∈ t̂+.

Here, for si that is admissible with an arbitrary ancestor of t, ta, At,si denotes the

submatrix of Ata,si corresponding to cluster t. Perform an SVD on Mt based on

accuracy ε to get the orthogonalized cluster basis of t, Vt.

2. For each non-leaf cluster t, we also form a matrix Mt =
[
At,s1 At,s2 ... At,sn

]
,

where si ∈ t̂+, similar to what is done at the leaf level. We then multiply Mt by(Vt1)H

(Vt2)H

, i.e., find the projection of the Mt onto its two children cluster

bases. This multiplication is done efficiently using the nested property of V as shown

in Algorithm 22 . Let the resultant matrix be Mproj
t . Do SVD on Mproj

t based on

accuracy ε to obtain transfer matrix Tt.

After cluster bases are generated using the aforementioned scheme, we compute coupling

matrices as follows. For each admissible block of (t, s), we compute Mr = (Vt)HAt,s, and

Mc = (Vs)HBt,s. Then the S̃ = Mr(Mc)H is the coupling matrix of the new H2-matrix.

We next analyze the complexity of the proposed algorithm for converting an H-matrix

to an H2-matrix. For each leaf cluster t, the largest column dimension of At,si is of O(
√

N),

where si is the column cluster of the largest admissible block formed with t’s ancestor. This

is because the size of the largest admissible block is of O(N), and the rank scales as square

root of it. The next largest column dimension of At,si is O(
√

N/2). Similarly, the next is

O(
√

N/4), etc. The number of At,si blocks at each level is bounded by Csp. Hence, the total

98

column dimension of Mt at the leaf level is bounded by CspO(
√

N)(1 + 1/
√

2 + 1/2 + ...) =

O(
√

N). Hence, doing SVD on Mt costs O(
√

N) since the row dimension of Mt is leafsize

which is a constant. There are O(N) leaf clusters, thus, the total time complexity for

computing leaf cluster bases is

Ct,l = O(N)×O(
√

N) = O(N1.5). (5.16)

Similarly, for a non-leaf cluster t, the column dimension of Mt is bounded by O(
√

N).

Multiplying each column of Mt with VH takes O(n log n) operations, where n is t’s cluster

size. Thus, the complexity of computing Mproj
t is O(

√
Nn log n). The size of Mproj

t is

O(kt)×O(
√

N). Doing rSVD on it takes O((kt)2
√

N) ≈ O(n
√

N). Thus, the time complexity

of computing all nonleaf cluster bases is

Ct,nl =
L−1∑
l=0

2lO(
√

N n log n) = O(N1.5 log2 N). (5.17)

For coupling matrix, using the nested property, the computation of Mr and Mc is of

complexity O(ktn log n). The computation of S̃ is of complexity O(k3
t). Thus, the total

complexity of computing coupling matrices is

Ct,coupling =
L∑

l=0
2lCspO(ktn log n) = O(N1.5 log N). (5.18)

Adding (5.16), (5.17), and (5.18), the total time complexity of converting an H-matrix

to an H2-matrix is O(N1.5 log2 N). For comparison, using the conversion method in [6], the

total complexity of doing the same is O(N2). Hence, the proposed algorithm has a reduced

complexity. In the complexity analysis above, we utilize the rank at each tree level for SIE

scaling as O(n0.5) for a cluster of size n, based on [9]. For volume IEs andH-matrices of other

ranks, the resultant complexity would be different but can be analyzed similarly using the

complexity analysis given here. It is also worth mentioning that one can employ the random

approach used in the previous section, and only choose O(kt) columns to construct Mt for

99

each cluster. If doing so, the complexity of the above H-matrix to H2-matrix conversion can

be further reduced to O(N1.5 log N) in time, and O(N log N) in memory.

5.4 Numerical Results

In this section, we conduct a number of numerical experiments to validate the accuracy

and computational complexity of the proposed algorithm. A common set of simulation

parameters are used for all examples simulated in this section. Specifically, we choose η = 1.2

in the admissibility condition, leafsize to be 40 and excitation frequency to be f = 300 MHz.

The accuracy parameter ε in the nested construction algorithm is chosen based on the desired

accuracy. The enlarging coefficient c0 for the random choice of pivots is chosen to be 4. In the

case that the direct solver of [7] is used to solve the H2-matrix generated from the proposed

algorithm, the accuracy of the direct solver is set to be 10−3, unless stated otherwise.

5.4.1 Pseudo-Skeleton Approximation with Random Choice of Pivots

We first validate the accuracy of PSA constructed by randomly choosing O(k) rows and

columns, in the context of H2-matrix and EFIE. We use two cubes to set up this test. The

distance between the two cubes is chosen to be D = η max(d1, d2), where d1 is the diameter

of the first cube, d2 is that of the second cube, and η = 1.2. We have studied a variety

of configurations with d1 = d2 or d1 6= d2, and with different electrical sizes, as shown in

Table 5.1 . The n1 in the Table denotes the number of degrees of freedom of the first cube,

while n2 is that of the second cube. The MoM matrix generated for the interaction between

these two cubes, M, is of size n1 × n2. In this matrix, we randomly choose a row set of size

|r| = c0
√

n1, a column set of size |c| = c0
√

n2, where the enlarging coefficient c0 is 4. Then

we perform a PSA with ε = 10−3 and obtain an approximation as shown in (5.1). We assess

the error of the approximation with the original MoM matrix as the following

E1 = ‖M−CM(r, c)†R‖F

‖M‖F

, (5.19)

100

in which subscript F denotes a Frobenius norm. This error is shown by E1 in Table 5.1 .

As can be seen, good accuracy is obtained for all configurations, validating the PSA with

random choices implemented in this work. Theoretically speaking, this is mainly due to

the nature of the MoM matrix whose column represents the fields generated by a source

at various observation points via Green’s function. The columns randomly selected across

observation points have good linear independence.

Table 5.1. Accuracy of PSA with random choice pivots for the interaction
between two cubes.

d1 d2 D n1 n2 |r| |c| E1
1.56 1.56 1.87 600 600 98 98 6.41e-04
3.29 3.29 3.94 2400 2400 196 196 7.04e-04
6.75 6.75 8.10 9600 9600 392 392 1.15e-03
13.68 13.68 16.41 38400 38400 784 784 1.90e-03
1.56 3.29 3.94 600 2400 98 196 6.88e-04
1.56 6.75 8.10 600 9600 98 392 4.54e-04
1.56 13.68 16.41 600 38400 98 784 0.0011
1.56 27.53 33.03 600 153600 98 1568 8.64e-04
3.29 13.68 16.41 600 38400 196 784 9.46e-04

We then use the same example to test the accuracy of representing an admissible block

by using randomly selected O(k) columns from the admissible block. Since PSA in the above

test is accurate with a random choice of pivots, we expect this to be accurate. In this test, we

randomly choose from M a column set of size |c| = c0
√

n1, where c0 = 4. Let the resultant

submatrix be denoted by Mr. We then perform an rSVD on Mr to obtain left singular

vectors U under ε = 10−3. The parameter rank shown in Table 5.2 is the rank obtained from

the rSVD. We then assess the following error

E2 = ‖M−UUHM‖F

‖M‖F

. (5.20)

This error is listed in Table 5.2 for various configurations of the admissible block. Clearly,

a good accuracy can be observed. Hence, the randomly selected columns contained in Mr

can be used to accurately represent M.

101

Table 5.2. Accuracy of using randomly selected columns to represent an admissible block.
d1 d2 D n1 n2 |c| rank E2

1.56 1.56 1.87 600 600 98 17 2.00e-03
1.56 3.29 3.94 600 2400 98 15 1.69e-03
1.56 6.75 8.10 600 9600 98 15 1.26e-03
1.56 13.68 16.41 600 38400 98 14 1.97e-3
1.56 27.53 33.03 600 153600 98 15 1.02e-3
1.56 55.23 66.27 600 614400 98 15 9.40e-4
3.29 3.29 3.95 2400 2400 196 30 1.41e-3
3.29 6.75 8.10 2400 9600 196 26 1.30e-3
3.29 13.68 16.41 2400 38400 196 26 9.92e-4
3.29 27.53 33.03 2400 153600 196 26 9.11e-4
3.29 55.23 66.27 2400 614400 196 26 9.83e-4
6.75 6.75 8.10 9600 9600 392 60 1.03e-3
6.75 13.68 16.41 9600 38400 392 54 1.18e-3
6.75 27.53 33.03 9600 153600 392 51 1.05e-3
13.68 13.68 16.41 38400 38400 784 135 9.96e-04

Next, we examine the effect of the enlarging constant c0 on the accuracy of PSA. Results

are shown in Table 5.3 for two different configurations of the admissible block. The ε of

rSVD is chosen to be 10−10. As can be seen, the accuracy of PSA is good for various choices

of c0, and it can be improved by enlarging c0.

Table 5.3. The effect of c0 on the accuracy of PSA.
c0 d1 d2 D n1 n2 ‖c‖ rank E2
1 3.29 3.29 3.95 2400 2400 49 48 5.124e-04
2 3.29 3.29 3.95 2400 2400 98 96 2.737e-06
4 3.29 3.29 3.95 2400 2400 196 144 1.164e-08
8 3.29 3.29 3.95 2400 2400 392 161 7.271e-10
1 6.75 6.75 8.10 9600 9600 98 97 4.232e-04
2 6.75 6.75 8.10 9600 9600 196 192 4.259e-07
4 6.75 6.75 8.10 9600 9600 392 237 1.480e-09
8 6.75 6.75 8.10 9600 9600 784 249 5.098e-10

102

0 50 100 150
-10

0

10

20

30

40

50

b
R

C
S

 (
d

B
s
m

)

RCS over

HFSS

NC and Direct Solver

Figure 5.2. RCS of a coil simulated using Nested Construction.

5.4.2 Accuracy of the Proposed Nested Construction Algorithm

Next, we validate the accuracy of the proposed nested construction algorithm before

examining its computational complexity in time and memory.

Scattering from an Irregularly Shaped Coil

We simulate the scattering from a coil, which is shown in Fig. 3.3 . This coil has a diameter

of 14.156 m and is illuminated by an incident plane wave at 300 MHz. After discretization,

the number of unknowns is 120,058. The H2-matrix is first generated from the proposed NC

algorithm and then solved using the fast direct solver of [7]. The resultant bistatic RCS is

compared with HFSS’s result in Fig. 5.2 . As can be seen, the two agree well with each other.

Scattering from an Array of Spheres

In the second example, we simulate an array of spheres, having 6 × 6 × 6 spheres, each

of which has a diameter of 0.8288 m and is discretized with 648 unknowns at 300 MHz.

The distance between two adjacent spheres is 2.0720 m. The total number of unknowns is

139,968. The bistatic RCS is computed using GMRES with Block Diagonal Preconditioner

103

0 50 100 150
-20

0

20

40

60

b
R

C
S

 (
d

B
s
m

)

RCS over

HFSS

NC and GMRES

Figure 5.3. RCS of an array of spheres having 6×6×6 elements using Nested
Construction.

on the minimal-rank H2-matrix generated by the proposed NC algorithm. The RCS Result

is compared with HFSS’s result. Very good agreement is observed, as can be seen from

Fig. 5.3 . The accuracy criterion used is ε = 10−3.

Scattering from a Large Conducting Cube

In this example, we compute the bistatic RCS of a conducting cube of side length 21.324

m at 300 MHz, which has 1,179,648 unknowns. The new H2-matrix generated from the NC

algorithm is solved by using the direct solver of [7]. The resultant bistatic RCS is compared

with that from HFSS in Fig. 5.4 , which shows very good agreement. In this example, the

accuracy criterion used in the NC algorithm is set to be ε = 10−3.

5.4.3 Complexity of the Proposed Nested Construction Algorithm

With the accuracy validated, next, we examine the complexity of the proposed algorithm.

104

0 50 100 150

0

20

40

60

80

b
R

C
S

 (
d

B
s
m

)

RCS over

HFSS

NC and Direct Solver

Figure 5.4. Scattering from a large cube with over one million unknowns
simulated using Nested Construction.

0 50 100 150
0

10

20

30

40

50

60

b
is

ta
ti
c
 R

C
S

(d
B

s
m

)

bistatic RCS over

Mie series

Nested Construction

Figure 5.5. Scattering from a conducting sphere having N = 294, 912 using
Nested Construction.

105

The Growth Rate of the Rank

First, we examine the growth rate of the rank with electrical size since it is one of the key

parameters in the complexity analysis. We use a conducting sphere as an example, and find

its rank level by level by using the proposed Nested Construction algorithm with ε = 10−3.

The results are listed in Table 5.4 . In this Table, es denotes the largest electrical size of all

clusters at a tree level, n is the maximal cluster size on one level and k is the maximal rank

revealed by Nested Construction at this level.

Table 5.4. Rank versus Tree Level Using the NC Algorithm with ε = 10−3

for a Conducting Sphere.
Tree level es Csp n k

3 17.18 7 49152.00 484
4 13.12 27 24576.00 521
5 8.55 39 12288.00 364
6 6.91 82 6144.00 238
7 4.38 112 3072.00 149
8 3.74 178 1536.00 102
9 2.32 216 768.00 67
10 2.05 368 384.00 49
11 1.25 407 192.00 34
12 1.16 753 96.00 27
13 0.74 780 48.00 21
14 0.70 1592 24.00 16

We also test a conducting cube and find its rank level by level using the proposed Nested

Construction algorithm with ε = 10−3. The results are shown in Table 5.5 . From this Table

and Table 5.4 , we observe that rank’s growth rate with electrical size follows the linear rate

closely.

106

Table 5.5. Rank versus Tree Level Using NC Algorithm with ε = 10−3 for a
Conducting Cube.

Tree level es Csp n k

3 15.08 4 49152.00 362
4 11.92 16 24576.00 355
5 7.54 38 12288.00 308
6 5.96 33 6144.00 236
7 3.77 45 3072.00 152
8 2.98 33 1536.00 103
9 1.88 45 768.00 68
10 1.49 33 384.00 49
11 0.94 45 192.00 36
12 0.75 33 96.00 27
13 0.47 45 48.00 21
14 0.37 64 24.00 17

104 105 106

Number of unknowns

104

106

108

T
im

e

O(N1.5)

O(N)

O(N1.5logN)

Generating time

Figure 5.6. Time Complexity of the Proposed Nested Construction Algorithm.

Time and Memory Complexity

We use the scattering from a sphere to examine the complexity of the proposed algorithm.

First, we simulate one sphere of diameter 17.68 m, whose number of unknowns is 294,912,

107

104 105 106

Number of unknowns

102

103

104

105

M
e

m
o

ry

O(N)

O(NlogN)

Maximum Memory Usage

Figure 5.7. Memory Complexity of the Proposed Nested Construction Algorithm.

at 300 MHz. We use the proposed nested construction algorithm to construct an H2-matrix

with ε = 10−3, and then employ the direct solver of [7] to solve the H2-matrix and compute

the bi-static RCS. We then compare the results obtained with the MIE series solution in

Fig. 5.5 . Good agreement is observed.

Then we change the size of the sphere and simulate a range of sizes to examine the time

and memory complexity of the proposed algorithm. The results are shown in Table 5.6 . In

this Table, N is the number of unknowns, t (s) is the total CPU time, mem (Mb) is the

memory cost, Eadd and Eall denote the relative error of admissible blocks of the generated

H2-matrix, and the whole H2-matrix, respectively. The Eadd and Eall are not feasible to

assess for N = 1, 179, 648 case, and hence left blank. The max(kt) denotes the maximum

rank of the constructed H2-matrix.

Table 5.6. Scaling of CPU Time, Memory, Accuracy, Rank vs. N .
N 4608 18432 73728 294,912 1,179,648

t (s) 5.258e3 3.583e4 2.117e5 2.476e6 2.563e7
mem (Mb) 4.467e2 1.294e3 4.380e3 2.157e4 1.154e5

Eadd 1.997e-3 2.431e-3 3.519e-3 5.157e-3 -
Eall 1.277e-4 1.959e-4 3.284e-4 5.373e-4 -

max(kt) 27 51 106 254 689

108

We also plot the time and memory scaling of the proposed NC algorithm with respect

to N in Fig. 5.6 and 5.7 for the minimal-rank H2-generation. They are shown to agree very

well with our theoretical complexity analysis.

5.5 Conclusion

We present a new algebraic and kernel independent method, nested construction method,

to generate a minimal-rank H2-matrix to represent electrically large surface integral opera-

tors. Instead of approximating each admissible block, we find the low-rank approximation

of the interaction between a cluster and its far-field. We also employ PSA with a random

choice of pivots to reduce the computational cost of generating the low-rank approximation.

We then develop an efficient nested algorithm to construct nested cluster bases level by level.

After the cluster bases are built, we generate coupling matrices. The accuracy and complex-

ity of the proposed are demonstrated by extensive numerical experiments. The proposed

method not only can be used for constructing a rank-minimized H2-matrix representation of

IE operators but also can be employed to carry out an efficient H- to H2-matrix conversion.

109

6. NESTED PSEUDO SKELETON APPROXIMATION

In the previous chapter, we developed an algebraic method. In this chapter, we propose

another algebraic kernel-independent method to construct a minimal rank H2-matrix to rep-

resent electrically large surface IE operators. We call the method a Nested Pseudo-Skeleton

Approximation (NPSA), in which the cluster bases and coupling matrices are built to have

an explicit relationship with the dense IE matrices being compressed. In this method, for

each cluster in the H2-tree, we consider the interaction between the cluster (row cluster)

and other admissible clusters (column clusters) at the same tree level, as well as all ances-

tor levels. To find the low-rank representation of such an interaction efficiently, we employ

Pseudo-Skeleton Approximation [16], [17] (PSA), and also randomly choose O(k) rows from

the row cluster, and O(k) columns from the column clusters to build a low-rank represen-

tation. In this way, only O(N log N) elements of the original dense matrix are used to

generate the H2-matrix irrespective of the large electrical size. It also provides a closed-form

expression of the nested cluster bases and coupling matrices using original matrix entries. In

contrast, the algebraic method developed in the previous chapter needs to find a nested re-

lationship numerically via computation, which is more time consuming. The computational

cost of generating each cluster basis and coupling matrix is only of O(k3), while the memory

consumption scales as O(k2), where k is its rank. The resultant H2-matrix is then solved

directly or iteratively in an efficient manner. Taking the rank’s growth with electrical size

into consideration [9], the total time complexity of the proposed method is O(N1.5) for the

SIE and the memory complexity scales as O(N log N). Meanwhile, it is kernel-independent.

Since the new method does not depend on MLFMA and is purely algebraic, it is also easier

to implement. In addition to surface integral equations, the proposed algorithms can also be

applied to solving other electrically large integral equations. Comparisons with analytical

Mie series and reference solutions from a commercial tool have validated the accuracy and

efficiency of the proposed method for solving electrically large SIEs.

In this chapter, to simplify the notation, let Z denote the MoM matrix of SIEs. For a

set of rows r and a set of columns c of Z, let Z(r, c) denote the submatrix of Z composed of

r and c. The t̂+ includes all clusters s that are admissible with t at t’s level, as well as those

110

that are admissible with t’s ancestors, termed far field of t. We also use t to denote the set

of indexes for cluster t and t̂+ to denote the indexes of far field of t. Thus, Gt = Z(t, t̂+).

Let rt denote a set of randomly selected rows from t, where the superscript denotes the

index of cluster. Let ct denote a set of randomly selected columns from t̂+ for cluster t.

Based on the PSA, we have

Gt = Z(t, t̂+) ≈ Z(t, ct)Z(rt, ct)†
Z(rt, t̂+), (6.1)

where Z(t, ct) are selected columns of Gt based on ct, while Z(rt, t̂+) are selected rows of

Gt based on rt, G(rt, ct) is the intersection between the rows in rt and columns in ct of Gt,

having |rt|×|ct| entries, and † denotes a pseudo-inverse, which is again achieved using reduced

SVD. The robustness and accuracy of the PSA can be improved if the pivots are selected

properly. If we make the locations of the pivots spread evenly in the far field and cover as

many directions as possible, the PSA will have a good accuracy. We can also artificially

introduce imaginary pivots to represent the far field interaction. The improvement of the

PSA will be in next chapter, where we eliminate the uncertainty arising from a random

choice of pivots and make sure it succeeds every time.

6.1 Nested Pseudo-Skeleton Approximation

The PSA does not result in a nested structure. In this section, we develop a nested PSA

algorithm to construct an H2-matrix. This method can construct a minimal-rank or low-

rank H2-matrix in O(k3) for each cluster, which is better than the algorithm proposed in the

previous chapter that results in an O(nk log n) complexity for each cluster. Thus, although

this method has the similar complexity as Nested Construction for SIE, this method can be

of lower complexity since k is in general smaller than n0.5, the constant involved in the new

algorithm is also smaller.

We will introduce a few variations of the main algorithm. But first, we will introduce

a framework that is common in all these variations. The framework is similar to our pre-

vious algorithms. NPSA can be done by calling Algorithm 18 . We first construct the

cluster bases using Algorithm 19 , which consists of one bottom-up traversal of the clus-

111

ter tree. Then we construct the coupling matrices using Algorithm 20 , which consists

of one bottom-up traversal of block cluster tree. In different variations, the methods of

fill_non_leaf_cluster(t), fill_leaf_cluster(t) and fill_coupling_matrix(b) are different.

6.1.1 Nested Pseudo-Skeleton Approximation

We first describe our first version of the NPSA algorithm, and then proceed to more

advanced ones. For a leaf cluster, we randomly choose a subset of t̂+, ct. It is enough to

choose the size of ct to be O(k), where k is the numerical rank of G. But we can choose

|ct| = O(n), where n is the size of a leaf cluster because this will not affect our desired

complexity bound. Then V t is just the ct columns of Gt, V t = Z(t, ct). This is formalized

in Algorithm 25 . Based on the existence of PSA, V t can represent Gt, meaning Gt can be

obtained by multiplying V t with another matrix on the right with high accuracy.

Algorithm 25 fill_leaf_cluster
1: procedure fill_leaf_cluster(t)
2: V t = Z(t, ct)
3: end procedure

For a non-leaf cluster, we also choose randomly a set of pivots ct from t̂+. This time, the

size of ct must be guided by the estimation of the rank for Gt, which is O(n0.5) as shown

in [9]. The cluster basis for t is also Vt that formed by t and ct, Vt = Z(t, ct). But we do not

compute or store it directly, because it is too expensive. Suppose t has two children t1 and t2.

We want Tt1 and Tt2 such that Vt =

Vt1

Vt2


Tt1

Tt2

. Split Vt =

Vt
1

Vt
2

 correspondingly,

such that V t
1 = Z(t1, ct). Now we need Vt1Tt1 = Vt

1. Remember Vt1 = Z(t1, ct1) can

represent Z(t1, t̂+
1) and thus can represent V t

1 = Z(t1, ct). We can do the PSA on
[
Vt1 Vt

1

]
,

which is
[
Z(t1, ct1) Z(t1, ct)

]
. According to the PSA, we can choose randomly a set of rows

rt1 from t1, whose size is |rt1| = |ct1 |. Then we have

Z(t1, ct) = Z(t1, ct1)Z(rt1 , ct1)†Z(rt1 , ct) (6.2)

112

This will hold no matter ct1 and ct have overlap, or they are completely separated, since

Z(t1, ct1 ∪ ct) = Z(t1, ct1)Z(rt1 , ct1)†Z(rt1 , ct1 ∪ ct) (6.3)

Naturally, Tt1 = Z(rt1 , ct1)†Z(rt1 , ct). Similarly, Tt2 = Z(rt2 , ct2)†Z(rt2 , ct). This is formal-

ized in Algorithm 26

Algorithm 26 fill_non_leaf_cluster
1: procedure fill_non_leaf_cluster(t)
2: for t’s ith child do
3: Tti = Z(rti , cti)†Z(rti , ct)
4: end for
5: end procedure

For coupling matrix b composed of t and s, we want to approximate Z(t, s). According

to the PSA, we have Z(t, s) = Z(t, cb)Z(rb, cb)†Z(rb, s), where cb is a set of selected columns

from s and rb is a set of selected rows from t. Remember we have V t = Z(t, ct). Thus,

as before, we can do the PSA on
[
Z(t, ct) Z(t, cb)

]
. Then we will need a set of rows

rt from t such that Z(t, cb) = Z(t, ct)Z(rt, ct)†Z(rt, cb). Obviously, rt can be chosen the

same as rb. Similarly, for s, we can have a set of columns rs from s such that Z(s, rb) =

Z(s, cs)Z(rs, cs)†Z(rs, rb). Finally, we obtain the following coupling matrix

St,s = Z(rt, ct)†Z(rt, cb)Z(rb, cb)†(Z(rs, cs)†Z(rs, rb))T (6.4)

It can be readily verified that Z(t, s) = V tSt,s(V s)T . This is formalized in Algorithm 27 .

Although (6.4) seems to be a long equation, in fact, each matrix is of size O(k)×O(k), which

is O(n0.5)×O(n0.5). Thus, total time complexity if O(k3) and memory complexity is O(k2).

Algorithm 27 fill_coupling_matrix
1: procedure fill_coupling_matrix(b)
2: Fill St,s using (6.4).
3: end procedure

113

In the above algorithms, we choose randomly the set of pivots directly from t̂+ for each

cluster. We can also choose ct as ct = ∪s∈t̂+ct
s, where ct

s is the column set for the cluster s

in t̂+, and construct leaf and non-leaf cluster bases using aforementioned methods. Each ct
s

can have a size of |ct
s| = O(k), thus |ct| = O(k log N), since t has at most log N ancestors

and each ancestor has at most Csp admissible blocks at its own level. We can construct leaf

and nonleaf clusters using this ct. In this way, for a coupling matrix block bt,s, we need a

column set cb and a row set rb. By construction, Vt has already contained the necessary cb,

which is ct
s. We can set cb = ct

s. Similarly, Vs contains necessary rb, which is cs
t . We can set

rb = cs
t . we can directly form the coupling matrix St,s = Z(cs

t , ct
s)† based on cs

t and ct
s. When

computing the Z(t, s), St,s is multiplied with corresponding part of V t and V s. Seeing from

another way, we put Z(cs
t , ct

s)† in corresponding position in St,s based on the position of ct
s

in Vt and cs
t in Vs, and make the rest of St,s as zero. Then St,s does not have to be formed

explicitly since St,s has so many zeros.

If the minimized rank is desired, a rank-minimized procedure [18] can be applied to the

resultant H2-matrix in O(k3) complexity, since current H2-matrix has a rank of O(k).

6.1.2 Rank-Minimization On the Fly

In the above, we describe an NPSA algorithm to construct a low-rank H2-matrix. The

resultant cluster bases are not orthonormal, and the rank is not minimized for accuracy

either. We have to add one rank-minimization process to make the cluster basis in the above

H2-matrix minimal-rank and orthonormal. But actually, we can do the rank-minimization at

the same time when constructing the H2-matrix. This can reduce the memory requirement.

This can be done by introducing an auxiliary matrix Ũ t. Let the new set of orthonormal

cluster basis be Ṽ t, T̃ t, and the corresponding coupling matrix be S̃t,s.

For a leaf cluster, we can do a reduced SVD on V t to get V t = Ṽ t(Ũ t)H based on

a certain accuracy criterion ε, where Ṽ t is the left singular vectors. Then Ṽ t is our new

minimal-rank cluster basis which is orthonormal. The (Ũ t)H is nothing but (Ṽ t)HV t. This

procedure is formalized in Algorithm 28

114

Algorithm 28 fill_leaf_cluster
1: procedure fill_leaf_cluster(t)
2: V t = Z(t, ct)
3: Ṽ t, (Ũ t)H ← do SVD on V t

4: end procedure

115

For a non-leaf cluster, we do rSVD on G̃t =

(Ũt1)HTt1

(Ũt2)HTt2

 to get G̃t =

T̃t1

T̃t2

 (Ũt)H ,

where

T̃t1

T̃t2

, the left singular vectors will be the minimal-rank transfer matrix, and (Ũt)H

will be used to update the transfer matrix of its parents. This procedure is formalized in

Algorithm 29 .

Algorithm 29 fill_nonleaf_cluster
1: procedure fill_nonleaf_cluster(t)
2: for t’s ith child do
3: Tti = Z(rti , cti)†Z(rti , ct)
4: end for
5: compute G̃t =

[
(Ũt1)HTt1

(Ũt2)HTt2

]

6:

[
T̃t1

T̃t2

]
, (Ũt)H ← do rSVD on G̃t

7: end procedure

For coupling matrix, we can generate the minimal-rank coupling matrix as S̃t,s = (Ũt)HSt,sŨs,

as in Algorithm 30 .

Algorithm 30 fill_coupling_matrix
1: procedure fill_coupling_matrix(b)
2: Fill St,s using (6.4).
3: S̃t,s = (Ũt)HSt,sŨs

4: end procedure

There is another way of choosing Ũt, which simplifies the above procedure. Consider

(6.1). For a cluster t, Do rSVD on Z(t, ct) to get Z(t, ct) = Ṽ tΣt(U t)H . Then select the set

of rows out of Ṽt to form a new matrix V̂r such that Z(rt, ct) = V̂rSr(Ur)H . This can be

done because Z(rt, ct) consists of some rows of Z(t, ct). Then it is easy to verify

Z(t, ct)Z(rt, ct)† = Ṽr(V̂r)† (6.5)

116

Thus, for leaf cluster, we first get Vt as in subsection 6.1.1 and do SVD on it to get left

singular vectors Ṽt. Then select rt rows on this cluster. As before, |cr| = O(k). Form a

submatrix of Ṽt based on rt and denote this submatrix as V̂t. Then (Ũt)H = (V̂t)†.

Then for non-leaf cluster, we compute G̃t =

(Ũt1)HZ(t1, ct1)

(Ũt2)HZ(t2, ct2)

. Then do rSVD on G̃t

to get left singular vectors T̃t. Splitting it into two will give us new rank-minimal transfer

matrix T̃t =

T̃t1

T̃t2

. To get (Ũt)H for a non-leaf cluster t, we need rows of Ṽt. But we do

not store them in the H2-matrix. We can maintain a short version of Ṽt for every cluster t

as V̌t =

V̂t1T̃t1

V̂t2T̃t2

 for example. We can choose rt from rt1 ∪ rt2 . In this way, we can choose

V̂t from V̌t. Here V̌t is also of size kt × kt.

One major benefit of doing this is the computation of coupling matrix is greatly simplified.

For a coupling matrix bt,s, we simply compute St,s = (Ũt)HZ(rs, rt)†Ũs. Thus the simplified

computation of coupling matrices might worth the complication of the computation of cluster

basis.

6.1.3 NPSA Algorithm Using Original Matrix Entries for Coupling Matrices

We can make a little modification to make the coupling matrices be generated using

original matrix entries. One additional advantage of this variation is that the size of the set

of randomly chosen pivots can be guided, or can be chosen adaptively. In this subsection,

we use V t, T t to denote cluster bases and transfer matrices and they are not orthonormal.

For leaf cluster, we first randomly choose rt and ct from t and t̂+, respectively, and

compute V t = Z(t, ct)Z(rt, ct)†. Note the pseudo-inverse of Vt will give us the minimal-

rank of cluster t, kt. This rank will guide the size of c and r for its parent cluster. Thus, this

new scheme is also adaptive in terms of H2-rank. For leaf cluster, we can set rt = t̂, where

t̂ denotes the set of all row pivots of cluster t, since this will not affect overall complexity.

Observe (6.1), we have Gt ≈ V tZ(rt, t̂+). V has another important property. For an

arbitrary subset c of t̂+, we have V tZ(rt, c) = Z(t, c). This procedure is formalized in

Algorithm 31 .

117

Algorithm 31 fill_leaf_cluster
1: procedure fill_leaf_cluster(t)
2: V t = Z(t, ct)Z(rt, ct)†

3: end procedure

118

For a non-leaf cluster t, the size of ct and rt can be chosen as |ct| = |rt| = c(∑
i kti),

where c is a constant coefficient, ti is the i-th child of t and kti is the minimal rank of ti.

This choice is due to the fact that the numerical rank kt must be smaller than ∑
i kti because

the union of Gti contains Gt. Thus, we have Gt ≈ Z(t, ct)Z(rt, ct)†
Z(rt, t̂+). Since the

children cluster’s t̂+ include parent clusters’ t̂+, we have Z(t, ct) =

Vt1

Vt2


Z(rt1 , ct)

Z(rt2 , ct)

.

Hence, it can be readily recognized that the transfer matrix T ti = Z(rti , ct)Z(rt, ct)†. Again,

the pseudo-inverse of Z(rt, ct) gives us the minimal-rank of this cluster t, kt. This rank

will determine the size of c and r for its parent cluster. As in the leaf cluster, we have

Gt ≈ V tZ(rt, t̂+), when we write V t in terms of

V t1

V t2


T t1

T t2

. Again, V t can represent

Gt. T also has an similar property as for leaf cluster. For an arbitrary subset c of t̂+, we

have V tZ(rt, c) = Z(t, c). These properties ensure the bottom-up traversal process can be

done from leaf level all the way to the highest level that has admissible block. This procedure

is formalized in Algorithm 32 .

Algorithm 32 fill_nonleaf_cluster
1: procedure fill_nonleaf_cluster(t)
2: for t’s ith child do
3: T ti = Z(rti , ct)Z(rt, ct)†

4: end for
5: end procedure

The advantage of the above procedure finally emerges when it comes to the computa-

tion of the coupling matrix. For a coupling matrix bt,s, St,s is just the submatrix of Mt,s

corresponding to rt of row cluster t and rs of column cluster s. Thus, St,s = Z(rt, rs).

This is because V tZ(rt, rs) = Z(t, rs), and V sZ(rs, t) = Z(s, t). Since |rt| = |rs| = O(k),

the complexity of generating each coupling matrix is O(k2) = O(n). This is formalized in

Algorithm 33 .

In this scheme, we make the generation of coupling matrix O(k2). But the resulting H2-

matrix is not minimal-rank, but a low-rank one. If minimal-rank is wanted, another rank

minimization procedure of complexity O(k3) for each cluster basis and each coupling matrix

119

Algorithm 33 fill_coupling_matrix
1: procedure fill_coupling_matrix(b)
2: St,s = Z(rt, rs)
3: end procedure

120

can be applied [8]. The rank-minimization can also be done on the fly using the algorithm

described in previous section.

6.1.4 Accuracy and Complexity

The accuracy and efficiency of the PSA with a random choice of pivots are discussed in

chapter 5 . The improvement of the PSA will be discussed in the next chapter, where we

eliminate the uncertainty and make sure it succeeds every time.

In the following complexity analysis, we use

kt =
√

n (6.6)

for each cluster basis for electrically large SIE operators.

For subsection 6.1.1 , for each leaf cluster, the time complexity is O(N). For each non-leaf

cluster, we need to generate Z(rti , cti), Z(rti , ct) and do Z(rti , cti)†Z(rti , ct). Both Z(rti , cti)

and Z(rti , ct) are of size O(kt) × O(kt). Thus, the time complexity for each cluster is

O((kt)3), while memory complexity for each cluster is O((kt)2). For coupling matrix, we

have concluded that the time complexity for each coupling matrix is O((kt)3) while memory

complexity is O((Kt)2). Hence, the total time complexity for NPSA is

Ct =
L∑

l=0
2lO((kt)3)

=
L∑

l=0
2lO


√

N

2l

3
 = O(N1.5).

(6.7)

While, total memory complexity is

Cm =
L∑

l=0
(2lO(k2))

=
L∑

l=0
2lO

(
N

2l

)
= O(N log N)

(6.8)

121

Subsection 6.1.2 introduces another O(kt)× O(kt) matrix Ũ, and thus it will not affect

the above complexity.

Subsection 6.1.3 makes time complexity O((kt)2) for each coupling matrix, thus the total

time complexity of generating coupling matrices will be O(N log N).

6.2 Numerical Results

A common set of simulation parameters are used for all examples simulated in this

section. Specifically, we choose η = 1.2 in the admissibility condition, leafsize to be 40 and

citation frequency to be f = 300MHz. The only simulation parameter in the proposed NPSA

is accuracy parameter ε, which is a user-defined parameter. The enlarging coefficient c is

normally chosen to be 4. The c can be chosen as an arbitrary constant, but a larger choice

of c would increase CPU run time. In the case that the direct solver of [7] is used to solve

the H2-matrix generated from the proposed algorithm, the accuracy is set to be 10−3, unless

stated otherwise.

6.2.1 Accuracy

We first examine the accuracy of the proposed algorithm before examining its complexity.

Scattering from a Conducting Cube

In this example, we compute the bistatic RCS of a conducting cube of size 21.324m ×

21.324m× 21.324m at 300 MHz, which has 1,179,648 unknowns. The new H2-matrix gener-

ated from the NPSA in subsection 6.1.2 is solved using the direct solver of [7]. The resultant

bistatic RCS is compared with that from HFSS, which shows very good agreement, as can

be seen from Fig. 6.1 . In this example, the accuracy criterion used in the NPSA is set to be

ε = 10−3.

122

0 50 100 150

0

20

40

60

80

b
R

C
S

 (
d

B
s
m

)

RCS over

HFSS

NPSA and Direct Solver

Figure 6.1. bRCS, Nested Pseudo-Skeleton Approximation, N=1179648, Cube

123

0 50 100 150
-20

0

20

40

60

b
R

C
S

 (
d

B
s
m

)

RCS over

HFSS

NPSA and GMRES

Figure 6.2. bRCS, Nested Pseudo-Skeleton Approximation, N=139968, array
of spheres, 6× 6× 6 array

Scattering from an Array of Spheres

In this example, we simulate an array of spheres, having 6× 6× 6 spheres, each of which

has a diameter of 0.8288 m and is discretized with 648 unknowns at 300 MHz. The distance

between the two adjacent spheres is 2.0720 m. The bistatic RCS is computed using GMRES

with Block Diagonal Preconditioner on the minimal-rank H2-matrix generated by NPSA

in subsection 6.1.2 . The result is compared with HFSS’s result. Very good agreement is

observed, as can be seen from Fig. 6.2 . The accuracy criterion used in the NPSA is ε = 10−3.

Scattering from More Complicated Structures

We also simulate a coil, whose shape is shown in Fig. 3.3 . This coil has a diameter of

14.156 m and is illuminated by an incident field at 300 MHz. After discretization, the number

of unknowns is 121,914. The new H2-matrix generated from the NPSA in subsection 6.1.2 is

then solved using the fast direct solver of [7]. The resultant bistatic RCS is compared with

HFSS’s result in Fig. 6.3 . As can be seen, the two agree well with each other.

124

0 50 100 150
-10

0

10

20

30

40

50

b
R

C
S

 (
d

B
s
m

)

RCS over

HFSS

NPSA

Figure 6.3. bRCS, Nested Pseudo-Skeleton Approximation, N=139968, coil

125

0 50 100 150
0

10

20

30

40

50

b
R

C
S

 (
d

B
s
m

)

RCS over

HFSS

NPSA

Figure 6.4. bRCS, Nested Pseudo-Skeleton Approximation, N=139968, joint

Another example we simulated is shown in Fig. 3.5 . The structure has a diameter of

17.302 m and is discretized into 172,077 unknowns at 300 MHz. The new H2-matrix gener-

ated from NPSA in subsection 6.1.2 is again solved using the fast direct solver of [7]. The

resultant bistatic RCS is compared with HFSS’s result in Fig. 6.4 . Good agreement can be

observed.

6.2.2 The Growth Rate of the Rank

Here we examine the growth rate of the rank with electrical size since it is one of the key

parameters in the complexity analysis. We use a conducting sphere as an example, and find

its rank level by level using the proposed NPSA algorithm in subsection 6.1.2 with ε = 10−3.

The results are listed in Table 6.1 . In this table, es denotes the largest electrical size of all

clusters at a tree level, n is the largest unknown number of all clusters, k is the minimal

rank of the new H2-matrix of the entire SIE obtained from the proposed algorithm. It can

be seen the rank scales linearly with electrical size, which agrees with the one used in our

complexity analysis.

126

Table 6.1. Rank versus tree level, ε = 10−3, Sphere, diameter is 29.482 λ, N= 1,179,648
tree level es n k

3 17.18 49152 483
4 13.12 24576 516
5 8.55 12288 366
6 6.91 6144 242
7 4.38 3072 151
8 3.74 1536 103
9 2.32 768 68
10 2.05 384 50
11 1.25 192 34
12 1.16 96 27
13 0.74 48 21
14 0.70 24 16

6.2.3 Complexity

We use the proposed NPSA in subsection 6.1.2 to construct an H2-matrix. Then we use

the direct solver to solve this new H2-matrix equation and compute the bRCS. We then

compare the results obtained in such way to the MIE series [15], and show it in Fig. 6.5 . In

this figure, the diameter of the sphere is 14.734 m, whose number of unknowns is 294,912,

f=300MHz. Then we also simulate a suite of spheres of various sizes to numerically show the

complexity of our converting algorithm at Table 6.2 . In this table, ε = 10−3, N is the number

of unknowns, t(s) is the time needed to construct the H2-matrix using NPSA, tcb(s) is the

time of generating cluster basis, tcm(s) is the time of generating coupling matrix. mg(Mb) is

the memory needed to construct the H2-matrix using NPSA, ms(Mb) the memory needed

to store the resultant H2-matrix, εadd and εall are the relative error of admissible block of

H2-matrix and whole H2-matrix, compared to MoM matrix, respectively. εadd and εall will

take too long to get for N = 1179648 and thus are left empty. max(kt) is the maximum of

the new rank of the constructed H2-matrix.

127

0 20 40 60 80 100 120 140 160 180
-10

0

10

20

30

40

50

60

b
is

ta
ti
c
 R

C
S

 (
d
B

s
m

)

bistatic RCS over

Mie series

This Method

Figure 6.5. bRCS, NPSA, N=294912, Sphere

Table 6.2. Data of NPSA, sphere, ε = 10−3

N 4608 18432 73728 294912 1179648
t(s) 1.166e4 6.978e4 3.022e5 1.271e6 5.210e6

tcb (s) 1.585e3 7.156e3 2.957e4 1.234e5 5.382e5
tcm (s) 1.008e4 6.263e4 2.726e5 1.155e6 4.675e6

mg (Mb) 118.23 520.01 2438.08 11433.72 58027.96
ms (Mb) 84.09 397.23 1854.26 8707.85 43393.26

εadd 3.575e-3 5.101e-3 6.604e-3 8.700e-3
εall 1.743e-4 3.144e-4 4.716e-4 6.910e-4

max(kt) 24 42 84 195 516

128

104 105 106

Number of unknowns

104

105

106

107

108

T
im

e

O(N1.5)

O(N)

Generating time

Figure 6.6. Time Complexity of Nested Pseudo Skeleton Approximation.

104 105 106

Number of unknowns

102

103

104

105

M
e

m
o

ry

O(N)

O(NlogN)

Maximum Memory Usage

Figure 6.7. Memory Complexity of Nested Pseudo Skeleton Approximation.

We plot the time and memory usage in log scale in Fig. 6.6 and Fig. 6.7 for the minimal-

rank H2-generation time. They are shown to agree very well with our theoretical complexity

analysis.

129

We also generated another suite of data for different sizes of spheres using the algorithm

in subsection 6.1.3 , the results are shown in Table 6.3 . We can see that the absolute run

time of using this method is much less than that shown in Table 6.2 .

Table 6.3. Data of NPSA, shown in subsection 6.1.3 , Sphere, ε = 10−3

N 4608 18432 73728 294912
t(s) 585.23 4478.50 22531.84 120066.85

tcb(s) 440.32 2780.39 11750.16 53218.94
tcm(s) 144.90 1698.08 10781.57 66847.46

mg(Mb) 754.06 4147.12 22531.84 170146.46
eall 3.08e-3 4.02e-3 5.08e-3 6.795e-3
ead 1.97e-4 3.24e-4 4.74e-4 7.080e-4

max(kt) 204 384 796 1900

6.3 Conclusion

We present a new algebraic and kernel independent method, Nested Pseudo-Skeleton

Approximation, to generate a minimal-rank H2-matrix to represent electrically large surface

integral operators. Instead of approximating each admissible block, we find the low-rank

approximation of the interaction between a cluster and its far-field. We also employ PSA

with a random choice of pivots to reduce the computational cost of generating the low-

rank approximation. We then develop an efficient nested algorithm to construct nested

cluster bases level by level. After the cluster bases are built, we generate coupling matrices.

The accuracy and complexity of the proposed are demonstrated by extensive numerical

experiments. Compared to previous work, our new algorithm scales O(k3) for each cluster

and O(k2) each coupling matrix and only uses O(N log N) elements of the original matrix.

130

7. ANALYTICAL SKELETON APPROXIMATION

In this chapter, we present a new method to approximate electrically large Green’s function

by a reduced set of parameters. Using this new method, we can compress electrically large

integral operators in a simple and effective manner. The compression has a reduced complex-

ity of O(kn) for a dense matrix of size n and rank k, as compared to existing techniques that

can cost O(n3) or O(k2n). Meanwhile, the accuracy is theoretically guaranteed. Numerical

experiments have demonstrated its accuracy and effectiveness. Thus, this new method can

be readily applied to the algorithms in previous algebraic methods to improve the accuracy

and robustness.

7.1 Introduction

The low-rank representation of electrically large integral operators (IEs) is of great im-

portance to the efficient solution of integral equations. For a dense matrix of size n and rank

k, a brute-force SVD would cost O(n3) to find its low-rank approximation. Using a full cross

approximation costs O(kn2), and employing a fast adaptive cross approximation (ACA) costs

O(k2n) [19]. Interpolation based methods result in a full-rank matrix to represent electrically

large IEs. Randomized approaches save time, but may lack accuracy control.

Green’s Function is the kernel function of various IE formulations, including surface IEs

(SIEs), volume IEs (VIEs), electric field IEs (EFIEs), magnetic field IEs, etc. In a fast

multipole method (FMM), based on the addition theorem, Green’s function is decomposed

into a number of plane waves whose directions are distributed over a unit sphere.

The resultant rank scales quadratically with electrical size, which leads to a full-rank rep-

resentation in a surface-IE based analysis. However, when performing an SVD on the dense

matrix characterizing the Green’s function based interaction between separated sources and

observers, the rank is found to be much smaller than the matrix dimension for a prescribed

accuracy. To understand this discrepancy, it is necessary to study whether there exist other

representations of Green’s function which are more compact than the addition theorem based

approximation.

131

In this work, we begin with a new approach to approximate Green’s function, whose rank

has a good correlation with SVD’s rank, which is the minimal rank required by accuracy.

This approach is simple, fast, and also accurate. We then show how to apply it to various

IE operators to efficiently obtain a low-rank representation of O(kn) cost with theoretically

guaranteed accuracy.

7.2 Proposed Work

To pursue more efficient representations of Green’s function, we utilize the following cross

approximation theorem [16], [17]: For a matrix R whose rank is k for accuracy ε, there exist

k rows and k columns of the matrix which determine a cross approximation of the matrix

within error tolerance as follows:

R̃ = R(:, Ĵ)
(
R(Î , Ĵ)

)−1
R(Î , :) (7.1)

and ‖R − R̃‖ is within error tolerance. In (7.1), R(:, Ĵ) denotes the k selected columns

of R, whose indexes belong to Ĵ = {j1, j2, ..., jk}, R(Î , :) denotes R’s selected rows whose

indexes are in the set of Î = {i1, i2, ..., ik}, and R−1
Î,Ĵ

is the inverse of the submatrix in R

formed between the k rows and k columns. The computational cost of (7.1) lies in the

determination of the row and column pivots. To find them, a full cross approximation costs

O(k×m×n), where m and n are the row, and column dimension of R respectively, while an

adaptive cross approximation (ACA) costs O(k2(m + n)). If one randomly chooses row and

column pivots, the computational cost is low. However, the accuracy cannot be guaranteed.

Using the aforementioned theorem (also known as skeleton approximation), there exists

the following representation of Green’s function for the interaction between m observers in

set t, and n sources in set s, if they are separated,

G̃t,s = G(t, Ĵ)m×k

(
G(Î , Ĵ)

)−1

k×k
G(Î , s)k×n (7.2)

in which k is the rank for a prescribed accuracy, G(t, Ĵ) denotes the k selected columns of

dense matrix G, whose indexes belong to Ĵ = {j1, j2, ..., jk}, and having entries of e−jk
∣∣ri−r′

jν

∣∣∣∣ri−r′
jν

∣∣
132

(i = 1, 2, ..., m; ν = 1, 2, ..., k). G(Î , :) denotes G’s selected rows whose indexes are in the set

of Î = {i1, i2, ..., ik}, and (G(Î , Ĵ))−1 is the inverse of the submatrix in G formed between

the k rows and k columns, having entries of

G(Î , Ĵ) = e−jk
∣∣riγ −r′

jν

∣∣∣∣∣riγ − r′
jν

∣∣∣ for (γ, ν = 1, 2, ..., k). (7.3)

A representation like (7.2) is equivalent to approximating Green’s function in the follow-

ing way:
e−jk0|r−r′|

4π|r− r′|
≈

k∑
ν=1

G(r, r′
jν)

k∑
γ=1

G†(riγ , r′
jν)G(riγ , r′), (7.4)

where G† is the inverse of the reduced Green’s function matrix in (7.2). The above means

the interaction between separated sources and observers can be built by letting these sources

at r′ first radiate to the k skeleton points located at riγ (γ = 1, 2, ..., k) in the observer

domain, and then reciprocally, the k observers generate fields in the source domain at the k

skeleton points located at r′
jν (ν = 1, 2, ..., k). After that, the k sources at r′

jν radiate to the

observer points r to complete the connection. In this way, the original square interaction

can be characterized by a reduced number of interactions. This is very different from an

FMM-based decomposition of Green’s function, where the sources first radiate to the center

of the source group, which is then translated to the center of the observer group. After that,

the field is emanated from the center of the observer group to the observer points. The latter

(FMM) has a full rank in an electrically large SIE, while the former has a low rank similar

to the rank of SVD. The major computation of (7.2) and (7.4) lies in the determination

of the row and column pivots Î, and Ĵ . Existing techniques cost at least O(k2(m + n))

for prescribed accuracy. Here, we present an accurate and efficient way to obtain (7.2). It

analytically determines Î and Ĵ , and hence having no computational cost in finding desired

rows and columns (or deciding skeleton points); while generating the k columns and rows

costs O(k(m + n)) only.

Our method is as follows. The center block of (7.2) actually represents an interaction

between sources and observers using reduced degrees of freedom. As shown in [9], computing

the SVD of the Green’s function matrix is equivalent to performing a Fourier transform of

133

the Green’s function. The latter is found to be 1/(κ2 − κ2
0), where κ is the wave number

of a Fourier mode, and κ0 is the wave number of the Green’s function. Clearly, Fourier

modes having κ far away from κ0 can be truncated without affecting desired accuracy. This

means when a source and an observer domain are separated, a coarse discretization can be

used to characterize the interaction between the two domains, since this would not change

the Green’s function’s Fourier transform but to cut its fast decaying tail in the κ domain.

Furthermore, this does not mean we do not discretize the original spatial domain using the

right mesh size for the given frequency. As can be seen from (7.2), the row and column

dimension of G are kept the same. It is the center block which captures coupling now has a

reduced sampling. Such a representation also agrees with our physical intuition. When two

regions are far from each other, their detailed structures are blurred to each other. In light

of this fact, the only thing we need to do is to use a coarse resolution to select samples in

the source domain, the set of which makes column pivots Ĵ , and do the same in the observer

domain to obtain Î. The coarse resolution can be as coarse as half wavelength, and even

larger, which can be adaptively decided during the construction.

Moreover, if the uniform down sampling is troublesome to achieve in an irregularly shaped

structure, we can enclose the source domain in an auxiliary bounding box, and do the same

for the observer domain. The shape of the box can be as simple as a rectangular box. Then

we select points uniformly based on a coarse resolution on the surface of the bounding box.

If the center block of (7.2) is rank deficient, a pseudo-inverse can be performed using SVD

(this is operated on a small matrix of rank size) and discarding singular values smaller than

threshold. Due to the low rank property, the density of auxiliary points on the surface of the

auxiliary box can be chosen much smaller than the that of the source/observer cluster itself.

This density can also be adaptively determined during numerical computation. Basically, we

start from an initial density that is very coarse. We then increase it step by step until the

rank of the resultant block has saturated for a prescribed accuracy. In this process, the rank

is small at the beginning, and then increases with the density. However, the rank would not

increase any more after the density has increased to certain level.

When the diameter of t and s are different,let ∆Bt denote the distance between auxiliary

points on the auxiliary box of t, while ∆Bs denotes the same on the auxiliary box of s. Since

134

the rank of the interaction between two clusters is determined by the electrical size of the

smaller one, the ∆Bt and ∆Bs are determined by the diameter of the smaller cluster. Hence,

the density on the larger auxiliary surface is smaller than that on the smaller auxiliary

surface.

Besides the auxiliary box, we can also use auxiliary plates to act as Î and Ĵ . As shown

in Fig. 7.1 , the two auxiliary plates are placed in between the two clusters to block the

directions along which the interaction occurs between t and s. Similar to the auxiliary box,

the Î and Ĵ on the auxiliary plates can be chosen sparsely and uniformly. The distance

between auxiliary points on the auxiliary plates can also be determined adpatively until the

resultant tank saturates. In addition, for better accuracy, the plate needs to be enlarged to

cover more directions than those predicted by a straight ray tracing. This also agrees with

the physics of waves at electrodynamic frequencies. The plates can also be arranged to be

parallel with each other. If the two plates are made the same, we can further explore the

nice structure of Toeplitz matrix to accelerate the computation. If t and s are different in

size, we can move the plate of the larger cluster toward the smaller one, as shown in Fig. 7.2 ,

the Toeplitz structure of G(Î , Ĵ) will still be maintained.

Figure 7.1. Using auxiliary plates to build the ASA.

Figure 7.2. Use auxiliary plates to build the ASA for rectangular matrices.

135

7.3 Application to IE operators

The aforementioned representation of Green’s function can be readily applied to compress

various IE operators in EM analysis. Take φ part of the EFIE as an example,

Zφ,mn = 1
k2

∫
Sm

∫
Sn

(∇s · ~fm(r)∇s · ~fn(r′))G(r, r′)dS ′dS, (7.5)

where ~fm and ~fn are RWG bases on triangular patches Sm, and Sn respectively. If m ∈ t,

n ∈ s, and t and s are separated, we can readily obtain its low-rank compression as

Zφ,mn = VtG†VT
s , (7.6)

where

Vt(:, ν) = 1
k0

∫
Sm

(∇s · ~fm)G(r, r′
jν)dS, (7.7)

VT
s (γ, :) = 1

k0

∫
Sn

(∇s · ~fn)G(riγ , r′)dS ′, (7.8)

and G† = (G(riγ , r′
jν))−1 is the pseudo-inverse of the center Green’s function matrix, and

ν, γ = 1, 2, ..., k. The application of (7.2) to vector potential ZAξ,mn, ξ ∈ {x, y, z} is similar,

as follow:

ZAξ,mn = Vξ,mG†VT
ξ,n, (7.9)

where vξ,m, wξ,n are two vectors and are given as follow

Vξ,m(:, ν) =
∫

Sm

(~fm)ξG(r, rjν)dS, (7.10)

where (~fm)ξ is the ξ component for ~fm, and

Vξ,n(:, γ) =
∫

Sn

(~fn)ξG(riγ , r′)dS ′, (7.11)

136

where (~fn)ξ is the ξ component for ~fn, Thus, Z can obtained by

Z = −Zφ + ZAx + ZAy + ZAz. (7.12)

7.4 Numerical Results

In this section, we examine the accuracy and efficiency of the proposed algorithm. We

also apply the algorithm to generate an H-matrix representation of the S-EFIE equation,

and compare its performance with an ACA-based compression method.

7.4.1 Using Auxiliary Boxes

The first example is to represent the Green’s function matrix formed between two solid

cubes, each of which is discretized into a 3-D uniform grid. The distance between adjacent

points is λ
10 along each of the x-, y- and z-directions. We choose such an example because

it is universal in the sense that an arbitrarily shaped object can be interpolated from such

a discretization. We use an auxiliary box to enclose each cube, and generate a low-rank

representation accordingly.

The frequency considered is 300 MHz. Let d be the diameter of each cube, and D = 1.2d

be the distance between the center of the two cubes. For a range of d from small to large, we

use the proposed method to obtain the low-rank representation and examine its accuracy.

The results are shown in Table 7.1 . In this Table, the n denotes the number of points in each

grid. Thus, the Green’s function matrix, G, is of size n× n. The s denotes the side length

of each solid cube, and sB is the side length of the auxiliary bounding box. The ∆B is the

distance between adjacent points on the surface of the auxiliary bounding box, and the nB

is the resultant number of auxiliary points on the bounding box. Hence, the nB × nB is the

size of center matrix G(Î , Ĵ) shown in (7.2). The r1 is the rank of G(Î , Ĵ) given the criterion

of ε1 = 10−10 when doing the pseudo inverse in the ASA. The matrix error is measured by

e1 = ‖G− G̃‖F

‖G‖F

, (7.13)

137

where ‖ · ‖F denotes the Frobenius norm, and G̃ is the matrix obtained from the proposed

ASA. The r2 is the rank of G(t, Ĵ) given the criterion of ε2 = 10−15. The error e2 is measured

by

e2 = ‖G− uuHG‖F

‖G‖F

, (7.14)

where u is left singular vectors of G(t, Ĵ), obtained from a reduced SVD with ε2 accuracy.

As can be seen, the proposed method produces an accurate low-rank representation for all

the d cases.

Table 7.1. ASA with auxiliary bounding boxes for the interaction between
two solid cubes.

d (m) 0.693 1.558 2.424 3.289 4.155
D (m) 0.831 1.870 2.909 3.947 4.986

n 125 1000 3375 8000 15625
s (m) 0.400 0.900 1.399 1.899 2.399

sB (m) 0.400 0.900 1.496 2.179 2.448
∆B (m) 0.200 0.300 0.374 0.436 0.490

nB 26 56 98 152 152
r1 26 56 98 138 137
e1 3.215e-04 2.274e-05 3.842e-06 9.012e-07 5.483e-06
r2 26 56 98 152 152
e2 1.924e-04 1.807e-05 2.757e-06 9.156e-08 2.719e-07

Relationship between ∆B and d for a fixed accuracy

Next, we examine how the ∆B changes with respect to the diameter d for a fixed accuracy

e1. The results are listed in Table 7.2 , where e1 is fixed to be 10−4 for a variety of d. In

Table 7.3 , we list the same for e1 = 10−6. It can be observed that when d is larger, the

allowed cell size ∆B for the same accuracy also increases but will saturate.

Cases with dt 6= ds

In Table 7.4 , we examine those cases when dt 6= ds. In this Table, d1 is the diameter of

the first cube which changes, and d2 = 6.752 m is fixed, with D = 8.102 m. The n1 is the

number of grid points on the first cube, and n2 is that on the second cube. The n2 = 64000 is

138

Table 7.2. ASA with auxiliary bounding boxes for two solid cubes: Effects
of d on ∆B, e1 = 10−4.

d (m) 0.693 1.558 2.424 3.289 4.155
D (m) 0.831 1.870 2.909 3.947 4.986

n 125 1000 3375 8000 15625
s (m) 0.400 0.900 1.399 1.899 2.399

c 1.184 0.763 0.801 0.689 0.815
sB (m) 0.506 1.180 1.400 2.531 2.403
∆B (m) 0.169 0.393 0.467 0.633 0.601

nB 56 56 56 98 98
r1 56 56 56 98 98
e1 9.185e-05 1.006e-04 1.721e-04 5.964e-05 1.702e-04
r2 56 56 56 98 98
e2 6.867e-06 2.440e-05 1.420e-04 2.639e-05 9.080e-05

Table 7.3. ASA with auxiliary bounding boxes for two 3D uniform grids:
Effects of d on ∆B, e1 = 10−6.

d (m) 0.693 1.558 2.424 3.289 4.155
D (m) 0.831 1.870 2.909 3.947 4.986

n 125 1000 3375 8000 15625
s (m) 0.400 0.900 1.399 1.899 2.399

c 1.719 1.156 1.068 0.988 1.019
sB (m) 0.465 1.037 1.400 2.206 2.402
∆B (m) 0.116 0.259 0.350 0.441 0.480

nB 98 98 98 152 152
r1 83 91 92 138 135
e1 9.485e-07 1.036e-06 3.602e-06 9.485e-07 5.640e-06
r2 98 98 98 152 152
e2 2.068e-09 2.515e-07 2.741e-06 9.637e-08 2.787e-07

fixed, while the n1 changes. The s1 and s2 are the side length of the two cubes, respectively.

The sB1 and sB2 are the side length of the two auxiliary boxes, and ∆B1 and ∆B2 are the cell

size on the surface of the two auxiliary boxes. The nB1 and nB2 are the resultant number of

grid points on the auxiliary box surfaces. Other conditions are set to be the same as those

in the previous case. From the last column of Table 7.4 , it can be seen that a G(Î , Ĵ) of

size 152× 152 can represent the original G of size 15, 625× 15, 625, while achieving a good

accuracy of 5.483e-06. From this table, we can also see that ∆B for the larger auxiliary box

139

is affected by the diameter of the smaller one, and nBt = nBs can hold true even though the

two clusters are very different in size.

Table 7.4. ASA with auxiliary bounding boxes for two solid cubes: dt 6= ds case.
d1 0.693 1.558 2.424 3.289
n1 125 1000 3375 8000
s1 0.400 0.900 1.399 1.899
s2 3.898 3.898 3.898 3.898

sB1 0.400 0.900 1.496 2.179
sB2 3.898 3.898 4.167 4.472
∆B1 0.200 0.300 0.374 0.436
∆B2 1.949 1.299 1.042 0.894
nB1 26 56 98 152
nB2 26 56 98 152
r1 26 54 86 128
e1 2.709e-05 5.286e-06 9.444e-07 2.511e-07
r2 26 56 98 152
e2 2.696e-05 4.940e-06 8.071e-07 1.158e-08

Choice of ∆B

We choose ∆B = 1
c

√
d∆N , with ∆N = λ/10, and test the effect of enlarging coefficient

c in Table 7.5 . In this table, the two cubes have the same d = 1.558 m, n = 1000, and

s = 0.900m. In addition, D = 1.870m. The effect of c is also recorded in Table 7.6 , in which

d = 4.155m, D = 4.986m, n = 15625, s = 2.399m, and ε1 = 10−10, ε2 = 10−15. This table

shows we can adaptively decide c, and hence ∆B based on the convergence of rank r1, which

can be obtained in a relatively low cost.

Table 7.5. ASA with auxiliary bounding boxes for two solid cubes: Choice
of ∆B (d = 1.558 m).

c sB(m) ∆B(m) nB r1 e1 r2 e2
1 0.900 0.300 56 56 2.274e-05 56 1.807e-05

1.5 1.000 0.200 152 113 1.180e-07 152 3.190e-09
2 0.900 0.150 218 115 2.169e-07 192 4.001e-11

140

Table 7.6. ASA with auxiliary bounding boxes for two solid cubes: Choice
of ∆B (d = 4.155m).

c sB(m) ∆B(m) nB r1 e1 r2 e2
0.2 2.448 2.448 8 8 1.718 8 2.947e-01
0.3 3.264 1.632 26 26 4.193e-01 26 3.286e-02
0.5 2.938 0.979 56 56 3.939e-03 56 1.820e-03
1 2.448 0.490 152 152 5.483e-06 152 2.719e-07

1.5 2.612 0.326 386 202 1.537e-07 306 1.707e-12
2 2.448 0.245 602 193 1.266e-07 333 9.532e-15

Effects of side length sB

In Table 7.7 , we show the effect of side-length sB on the accuracy of ASA. In this table,

c = 1, d = 3.289 m, D = 3.947m, n = 8000, s = 1.899, ∆B = 0.436, ε1 = 10−10, and

ε2 = 10−15. Table 7.8 also shows the effect of side length sB on the accuracy of ASA, where

c = 0.5, d = 4.155 m, D = 4.986 m, n = 15625, s = 2.399, ∆B = 0.979, ε1 = 10−10,

ε2 = 10−15. In Table 7.9 , we examine the same but D is changed to D = 8.310 m.

Table 7.7. ASA with auxiliary bounding boxes for two solid cubes: Effects
of side length sB (d = 3.289 m, D = 3.947m).

sB nB r1 e1 r2 e2
2.179 152 138 9.012e-07 152 9.156e-08
2.614 218 191 1.081e-07 218 3.937e-09
3.050 296 248 1.114e-07 291 1.109e-10
3.486 386 317 1.937e-07 360 4.141e-12

Table 7.8. ASA with auxiliary bounding boxes for two solid cubes: Effects
of side length sB (d = 4.155 m, D = 4.986 m).

sB nB r1 e1 r2 e2
2.938 56 56 3.939e-03 56 1.820e-03
3.917 98 98 1.727e-03 98 1.720e-04

141

Table 7.9. ASA with auxiliary bounding boxes for two solid cubes: Effects
of side length sB (d = 4.155 m, D = 8.310 m).

sB nB r1 e1 r2 e2
2.938 56 56 1.009e-04 56 6.113e-05
3.917 98 98 2.455e-05 98 1.753e-06
4.897 152 152 1.596e-05 152 8.067e-09
5.876 218 218 2.072e-05 218 1.821e-10

Effects of η or distance D

In Table 7.10 , we show the effects of η on the accuracy of ASA. In this table, we fix

d = 4.155 m while changing D, and see how ∆B should be selected to maintain a reasonable

accuracy of e1 or e2. In this table, c = 1, n = 15625, s = 2.399, ε1 = 10−10, ε2 = 10−15 and

we try to fix e1 to be 10−4. In table 7.11 , we try to fix e1 to be 10−6. We can see D play a

role in determining ∆B, and thus determining nB, the approximate rank of the ASA. With

D increasing, nB clearly decreases.

Table 7.10. Auxiliary bounding boxes enclosing two solid cubes: Effects of
D on ∆B, e1 = 10−4.

η 1.2 2 5 10
D 4.986 8.310 20.775 41.550
c 0.697 0.503 0.322 0.228

∆B 0.706 0.973 1.521 2.147
sB 2.823 2.920 3.043 4.293
nB 98 56 26 26
r1 98 56 26 26
e1 1.513e-04 9.776e-05 1.075e-04 8.819e-05
r2 98 56 26 26
e2 9.166e-05 6.098e-05 6.541e-05 4.053e-06

Electrically large cases

Next we show in Table 7.12 that the proposed method can be used to compress electrically

very large cases. We use the convergence of rank r1 to adaptively decide ∆B to ensure the

accuracy of ASA. In this table, ε = 10−8 and η = 2. We increase enlarging coefficient

142

Table 7.11. Auxiliary bounding boxes enclosing two solid cubes, Effects of
D on ∆B, e1 = 10−6.

η 2 4 15
D 8.310 16.620 62.325
c 0.769 0.484 0.271

∆B 0.637 1.011 1.806
sB 2.548 3.033 3.612
nB 98 56 26
r1 98 56 26
e1 1.002e-06 9.839e-07 9.522e-07
r2 98 56 26
e2 8.055e-07 7.670e-07 7.716e-07

Table 7.12. Auxiliary bounding boxes enclosing 3D solid cubes: Electrically
very large cases.

d (m) 1.558 3.289 6.752 13.677 27.527 55.227 110.628 221.428
D (m) 3.116 6.579 13.504 27.354 55.054 110.455 221.255 442.857

n 1000 8000 6.4e4 5.12e5 4.096e6 3.277e7 2.621e8 2.097e9
s (m) 0.900 1.899 3.898 7.896 15.893 31.886 63.871 127.842

c 1.700 1.200 0.950 0.950 1.450 1.450 1.450 1.950
sB (m) 1.058 2.179 3.942 8.417 16.515 32.011 64.474 128.322
∆B (m) 0.176 0.363 0.657 0.935 0.869 1.231 1.743 1.833

nB 218 218 218 488 2168 4058 8216 29402
r1 62 83 103 194 369 734 1815 4943
e1 1.142e-9 2.874e-9 2.116e-8 3.902e-8 7.483e-9 1.544e-8 3.835e-8 1.916e-8

c each time by 0.25 starting from 0.2 and stop once r1 stops increasing with c. Then we

measure e1. For d ≥ 13.677, we randomly choose a submatrix of size 50000 × 50000 from the

original MoM matrix to measure e1 to test the accuracy of ASA. This example also shows

the proposed compression method is efficient, and can handle very large electrical sizes.

7.4.2 Using Original Pivots

In Table 7.13 , we test the ASA without using an auxiliary box, but using the original

columns and rows of Z, which is from an EFIE matrix. Here we use two spheres to represent

two admissible clusters, d for each sphere is 5.756 m, the center to center distance between two

spheres D is set to be D = 1.5d, which is 8.633 m. Using RWG basis with a discretization of

143

λ/10, the original EFIE matrix has a size of 45000×45000. We extract uniformly nB elements

from each sphere, based on a different c and thereby ∆B. The ε1 = 10−10, ε2 = 10−15. As

can be seen, a good accuracy of ASA is achieved.

Table 7.13. ASA with original pivots applied to the EFIE of two conducting spheres.
c d D n nB e1 e2

0.5 5.756 8.633 45000 288 6.608e-04 2.557e-05
1 5.756 8.633 45000 1056 6.821e-08 5.869e-11
2 5.756 8.633 45000 5202 2.374e-08 2.533e-14

7.4.3 Using Auxiliary Plates

When using auxiliary plates, the choice of the side length of the plate is important. Thus,

we need to introduce a new variable p, which is the number of padding along each direction

of the plate. The padding has the same density as that on the auxiliary plate. In Table 7.14 ,

ε1 = 10−10, d = 3.289 m, s = 1.899 m, D = 6.579 m, n = 8000. From this table, we can see

that increasing c and p can both improve e1. However, increasing p is a better option than

increasing c because it can better improve e1 with the same nB. In addition, the numerical

rank of the resultant G under ε1 is closer to its dimension.

Table 7.14. ASA with auxiliary plates for two solid cubes, η = 1.2.
c p ∆B nB sB r1 e1
1 1 0.436 36 2.178 36 4.780e-04
2 1 0.218 100 1.961 49 4.711e-05
3 1 0.145 225 2.033 50 1.774e-05
1 1 0.436 36 2.178 36 4.780e-04
1 3 0.436 64 3.050 62 4.775e-05
1 5 0.436 100 3.921 95 6.732e-06

Finally, we show when dt 6= ds, the plate of the larger cluster does not need to cling to

the larger one. Fig. 7.3 illustrates the side view of the setting that is shown in Fig. 7.2 ,

where t and s represent two solid cubes, Pt and Ps represent two auxiliary plates that cover

all the directions of the interaction. The plate Pt is on the right side of t, whereas Ps is Dp

away from Pt. The ASA results for this setting are shown in Table 7.15 .

144

Figure 7.3. Use auxiliary plates with equal ∆B

Table 7.15. ASA with auxiliary plates for clusters with a different size using
equal ∆B for two solid cubes, η = 1.2.

c 2 2 2
p 5 5 5
st 0.900 0.900 1.899
ss 3.898 7.896 3.898
D 13.504 27.354 13.504
nt 1000 1000 8000
ns 64000 512000 64000
Dp 0.900 0.900 1.899
∆B 0.150 0.150 0.218
nB 169 169 256
sB 1.799 1.799 3.268
r1 143 143 171
e1 9.262e-3 1.160e-2 1.541e-3

7.4.4 Application to realistic S-EFIE problems

Next, we use the proposed method to construct an H-matrix of the EFIE. For a sphere

of diameter 7.37λ and of 73,728 unknowns with a λ
10 discretization. The MoM matrix is

partitioned into an H-matrix of 10 levels, with admissiblility condition max(dt, ds) < 0.6D

and leafsize = 40. There are 7 tree levels that have admissible blocks. Each cluster of

an admissible block is enclosed by an auxiliary box, and the matrix is approximated using

the proposed ASA. The c = 1 is chosen. The whole matrix relative error compared with

the original MoM matrix Z is shown to be 1.440e-05 (the relative error for the admissible

part of Z is 2.176e-04). Under the same condition, for a sphere of diameter 14.741λ and of

294,912 unknowns, the H-matrix has 12 levels, among which 9 levels have admissible blocks.

145

The whole matrix relative error compared with the original MoM matrix Z is found to be

1.479e-05 (relative error for admissible part of Z is 1.972e-04).

7.4.5 Comparison of ASA with ACA

Finally, we compare the proposed ASA with the ACA to demonstrate its efficiency.

For a sphere with diameter 3.685λ with 1,432 unknowns, the H-matrix has 8 levels, we

use both the proposed ASA and the ACA to genertae the low-rank representation of each

admissible block. The total time measured for ASA includes the time used for defining each

auxiliary box, the generation of Go, Gs for four components of G, the generation of Gcnt

and pseudo-inverse of Gcnt. Total time measured for ACA includes directly applying ACA

to Z to generate A and B. A suite of PEC spheres are simulated with λ
10 discretization in

Table 7.16 . The number of Gauss Quadrature points on each triangle patch is 3. As can be

seen, the proposed method has advantages. It achieves a better accuracy while using less

CPU run time. The comparsion is made for a sequential implementation. If run parallel,

the proposed would outperform more since its parallelization is straightforward while ACA

is difficult to be parallelized since it is an iteration-based algorithm.

Table 7.16. Comparison Between ASA and ACA.
d 0.92λ 3.69λ 7.37λ 14.741λ
N 4608 18432 73728 294912

tASA,full (s) 2885.88 17680.60 104667.95 451577.60
tASA,ad (s) 2726.41 17111.00 102221.79 441825.77

ead 1.873e-4 1.713e-4 1.592e-4 1.354e-4
eall 7.226e-6 8.773e-6 9.678e-6 1.015e-5

tACA,ad (s) 4589.22 38422.44 189526.73 916931.91
ead 1.044e-4 1.644e-4 1.316e-4 1.568e-4

7.5 Conclusion

We developed a new method to compress Green’s Function. It is analytical, accurate,

efficient, simple and straightforward. It helps intuitively understand why the Green’s func-

tion has a low-rank representation irrespective of electrical size. The resultant rank has a

146

good correlation with the minimal rank required by accuracy. Comparison with existing

compression methods such as ACA has demonstrated the clear advantages of the proposed

method. Such a compression technique can be readily applied to various IE equations to

accelerate their solutions.

147

8. SUMMARY

8.1 Conclusions

In this work, we develop various methods to construct a low-rank or minimal-rank H2-

matrix for electrically large SIE operators. These methods are efficient and accurate. The

H2-matrix constructed by these methods can be used to accelerate both iterative and di-

rect solvers. These methods can either leverage the low complexity of MLFMA or directly

construct H2-matrix algebraically.

• First, the method described in [8] is improved when applying it to convert an FMM

H2-matrix to a minimal rank H2-matrix. The key contribution in this method is to

process and store those large matrices in their factorized form. At a lower level, we

factor those matrices in their factorized forms. Then we use the factorized form and

the nested property of H2-matrix to directly compute the factorized form of a large

matrix at the upper level. By doing this in every step of the algorithm in [8], we can

reduce both the time and memory complexity.

• A NRA is developed to convert an FMM H2-matrix to a minimal rank H2-matrix.

In this new algorithm, we focus on the treatment of cluster basis Vt instead of Gt
2.

In this way, we can still do the converting process in low complexity. But this new

method can cost much less absolute time. We do SVD on Vt on leaf level. Then we

use the factorized information of lower level Vt and the nested property of H2-matrix

to compute the Tt in an upper level.

• Then we develop a few algorithms based on NRA that possess even lower complexity.

The first one is Fast NRA that utilizes randomness. We can randomly select a few

column pivots of G̃ and do FCA. In this way, we do not have to do SVD on the large

G̃. We then develop DRA that performs another recursive procedure to compute new

Ṽ and S̃. Finally, we exploit the sparsity of (Ũt)H and G̃ to reduce the time and

memory complexity.

148

• Then we introduce an algebraic method to construct low-rank H2-matrix or minimal-

rankH2-matrix, Nested Construction. It relies on Pseudo-Skeleton Approximation and

nested property of H2-matrix. This method can achieve the same complexity as the

aforementioned methods but can avoid the complicated implementation of MLFMA,

and being purely algebraic.

• Then we develop a new kernel-free pure algebraic method to construct minimal-rank

H2-matrix, Nested Pseudo-Skeleton Approximation. It improves on the previous al-

gebraic method in that the time cost for each cluster and coupling matrix is only

O(k3) while memory is O(k2). This leads to a total of O(N1.5) time complexity and

O(N log N) memory complexity for SIE.

• Finally, we improve the PSA, which is heavily relied on in our algebraic methods. We

call this Analytical Skeleton Approximation. It can eliminate the randomness of PSA

and retain the same complexity. It beats ACA in terms of time complexity while does

not suffers from the potential failure of ACA when applying to off-diagonal blocks

of the EFIE matrix. It is analytical, accurate, efficient, simple to implement, and

straightforward.

8.2 Future work

• We will further reduce the complexity of constructing minimal-rank H2-matrix for

electrically large SIE analysis by using ASA.

149

REFERENCES

[1] W. C. Chew, E. Michielssen, J. Song, and J.-M. Jin, Fast and efficient algorithms in
computational electromagnetics. Artech House, Inc., 2001.

[2] E. Darve, “The fast multipole method: Numerical implementation,” Journal of Compu-
tational Physics, vol. 160, no. 1, pp. 195–240, 2000.

[3] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave
equation: A pedestrian prescription,” IEEE Antennas and Propagation Magazine, vol. 35,
no. 3, pp. 7–12, 1993.

[4] J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for solving combined
field integral equations of electromagnetic scattering,” Microwave and Optical Technology
Letters, vol. 10, no. 1, pp. 14–19, 1995.

[5] W. Hackbusch, “A sparse matrix arithmetic based on H-matrices. part i: Introduction
to H-matrices,” Computing, vol. 62, no. 2, pp. 89–108, 1999.

[6] S. Börm, L. Grasedyck, and W. Hackbusch, “Hierarchical matrices,” Lecture notes,
vol. 21, 2003.

[7] M. Ma and D. Jiao, “Accuracy directly controlled fast direct solution of general H2-
matrices and its application to solving electrodynamic volume integral equations,” IEEE
Trans. Microwave Theory and Techniques, vol. 66, no. 1, pp. 35–48, 2017.

[8] W. Chai and D. Jiao, “Linear-complexity direct and iterative integral equation solvers
accelerated by a new rank-minimized H2-representation for large-scale 3-D interconnect ex-
traction,” IEEE Trans. Microwave Theory and Techniques, vol. 61, no. 8, pp. 2792–2805,
2013.

[9] W. Chai and D. Jiao, “Theoretical study on the rank of integral operators for broad-
band electromagnetic modeling from static to electrodynamic frequencies,” IEEE Trans. on
Components, Packaging and Manufacturing Technology, vol. 3, no. 12, pp. 2113–2126, 2013.

[10] C. Yang and D. Jiao, “Method for generating a minimal-rank H2-matrix from fmm
for electrically large analysis,” in IEEE International Symp. on Antennas and Propagation,
IEEE, 2018, pp. 2503–2504.

[11] C. Yang, M. Ma, and D. Jiao, “Fast algorithms for converting an FMM-based rep-
resentation of electrically large integral operators to a minimal-rank H2-matrix,” in IEEE
International Symp. on Antennas and Propagation, IEEE, 2019.

150

[12] Y. Zhao, D. Jiao, and J. Mao, “Fast nested cross approximation algorithm for solv-
ing large-scale electromagnetic problems,” IEEE Transactions on Microwave Theory and
Techniques, vol. 67, no. 8, pp. 3271–3283, 2019.

[13] K. Zhao, M. N. Vouvakis, and J.-F. Lee, “The adaptive cross approximation algorithm
for accelerated method of moments computations of emc problems,” IEEE transactions on
electromagnetic compatibility, vol. 47, no. 4, pp. 763–773, 2005.

[14] D. Jiao and S. Omar, “Minimal-rank H2-matrix-based iterative and direct volume inte-
gral equation solvers for large-scale scattering analysis,” in 2015 IEEE International Symp.
Antennas and Propagation, IEEE, 2015, pp. 740–741.

[15] C. Balanis, Advanced Engineering Electromagnetics, ser. CourseSmart Series. Wiley,
2012, isbn: 9780470589489. [Online]. Available: https : / / books . google . com / books ? id =
cRkTuQAACAAJ .

[16] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, “A theory of pseudoskeleton
approximations,” Linear algebra and its applications, vol. 261, no. 1-3, pp. 1–21, 1997.

[17] A. Osinsky and N. L. Zamarashkin, “Pseudo-skeleton approximations with better accu-
racy estimates,” Linear Algebra and its Applications, vol. 537, pp. 221–249, 2018.

[18] C. Yang and D. Jiao, “Nested reduction algorithms for generating a rank-minimized H2-
matrix from FMM for electrically large analysis,” IEEE Trans. Antennas and Propagation,
vol. 69, no. 7, pp. 3945–3956, 2021. doi: 10.1109/TAP.2020.3044584 .

[19] M. Bebendorf, Hierarchical matrices. Springer, 2008.

151

https://books.google.com/books?id=cRkTuQAACAAJ
https://books.google.com/books?id=cRkTuQAACAAJ
https://doi.org/10.1109/TAP.2020.3044584

VITA

Chang Yang received the B.S. degree in electronic science and technology from the Xi’an

Jiaotong University, Xi’an, CHINA, in 2016. Since 2016, he has been working toward the

Ph.D. degree at Purdue University, West Lafayette, IN, USA. He is with the School of

Electrical and Computer Engineering, Purdue University, as a member of the On-Chip Elec-

tromagnetics Group. His current research interests include computational electromagnetics,

fast and high-capacity numerical methods. He was the recipient of an Honorable Mention

Award of the 2020 IEEE AP-S Symposium on Antennas and Propagation.

152

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Challenges
	Mathematical Background
	Electric Field Integral Equations (EFIEs)
	H2-Matrix
	Method for Generating an Initial H2-matrix from MLFMA

	Contributions of This Work
	Dissertation Outline

	CONVERTING AN H2-MATRIX TO A MINIMAL RANK H2-MATRIX
	Proposed Algorithm
	Fast Computation Using the Factorized Form of ABT
	Proposed Algorithm

	Accuracy and Complexity Analysis
	Numerical Result

	NESTED REDUCTION ALGORITHM (NRA)
	Simplifying the conversion algorithm
	New Scheme to Convert FMM H2 to New H2
	Complexity Analysis
	Converting from VSVH H2-matrix to VSVT H2-matrix

	Nested Reduction Algorithm (NRA)
	Proposed Work
	Numerical Result

	NRA WITH FURTHER REDUCED COMPLEXITY
	Fast NRA
	Memory Efficient NRA (Double Recursive Algorithm)
	NRA taking advantage of sparsity
	NRA Using Sparsity
	Eliminating Randomness

	Accuracy and Complexity
	Accuracy
	Time and Memory Complexity
	Further Rank Reduction

	Numerical Results
	Accuracy
	Accuracy Comparison Between the Proposed Fast NRA Algorithm and the DRA
	Scattering from a Conducting Cube Using Fast NRA
	Scattering from a Conducting Plate Using Fast NRA
	Scattering from an Array of Spheres Using Fast NRA
	Scattering from two Complex Structures Using Fast NRA
	Scattering from a Conducting Cube Using DRA

	Time and Memory Complexity
	The Growth Rate of the Rank
	Complexity Analysis

	Conclusion

	NESTED CONSTRUCTION METHOD
	Background
	Pseudo-Skeleton Approximation

	Nested Construction Algorithm
	Cluster Basis Generation at Leaf Level
	Cluster Basis Generation at Nonleaf Levels
	Coupling Matrix Generation
	Complexity Analysis

	Efficient Conversion of H-matrix to H2-matrix
	Numerical Results
	Pseudo-Skeleton Approximation with Random Choice of Pivots
	Accuracy of the Proposed Nested Construction Algorithm
	Scattering from an Irregularly Shaped Coil
	Scattering from an Array of Spheres
	Scattering from a Large Conducting Cube

	Complexity of the Proposed Nested Construction Algorithm
	The Growth Rate of the Rank
	Time and Memory Complexity

	Conclusion

	NESTED PSEUDO SKELETON APPROXIMATION
	Nested Pseudo-Skeleton Approximation
	Nested Pseudo-Skeleton Approximation
	Rank-Minimization On the Fly
	NPSA Algorithm Using Original Matrix Entries for Coupling Matrices
	Accuracy and Complexity

	Numerical Results
	Accuracy
	Scattering from a Conducting Cube
	Scattering from an Array of Spheres
	Scattering from More Complicated Structures

	The Growth Rate of the Rank
	Complexity

	Conclusion

	ANALYTICAL SKELETON APPROXIMATION
	Introduction
	Proposed Work
	Application to IE operators
	Numerical Results
	Using Auxiliary Boxes
	Relationship between ΔB and d for a fixed accuracy
	Cases with dt≠ds
	Choice of ΔB
	Effects of side length sB
	Effects of η or distance D
	Electrically large cases

	Using Original Pivots
	Using Auxiliary Plates
	Application to realistic S-EFIE problems
	Comparison of ASA with ACA

	Conclusion

	SUMMARY
	Conclusions
	Future work

	REFERENCES
	VITA

