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ABSTRACT

We develop a two-fluid model (TFM) to simulate the particle migration phenomenon in

non-Brownian dense suspense flows. The TFM is implemented as solver in the open-source

computational framework of OpenFOAM®. We incorporate stress heterogeneity of dense

suspension under shear based on the established phenomenological models of viscosity and

normal stress. We incorporate thermal transport in the dense suspensions by developing a

novel closure relation for inter-phase heat transfer coefficient in the TFM. The closure relation

is calibrated successfully against a prior experiment on flow in a concentric Couette cell from

the literature. We demonstrate how a thermo-rheological flux term can be deduced from the

TFM, in addition to shear-induced flux, to understand the coupling of shear and thermal

gradients in the system on particle migration. The interplay between heat transfer and shear

migration was studied computationally by imposing shear in the system via rotation of the

inner cylinder of Couette cell for two different thermal boundary conditions: ∆T < 0 and

∆T > 0, where ∆T = (Tin − Tout) is the temperature difference across the gap, while Tin

and Tout are temperatures at the inner and outer walls of the Couette cell. A novel effect

was found for ∆T > 0: that the shear- and thermal-induced migration fluxes act in opposite

direction to cancel the net particle migration. Meanwhile, for ∆T < 0, the fluxes act in

the same direction to aid the particle migration. Next, in an eccentric Couette cell system.

We observed that, for ∆T > 0, the Nusselt number Nu increases with eccentricity owing to

secondary flow in the system. Meanwhile, for ∆T < 0, there exists a maximum for Nu, after

which it decreases due to enhanced particle migration and large flow re-circulation zones.

Finally, we employed the proposed computational TFM framework to analyze electronics

cooling by forced convection for microchannel cooling. We used a suspensions of high thermal

conductivity (Boron Nitride) particles in a 3M™ Fluorinert™ FC-43 cooling fluid. Three-

dimensional simulations were run to quantify the temperature distributions under uniform

heating (5 W) and under hot-spot heating (2 W/cm2) conditions. A 100 K junction level

temperature improvement (enhanced thermal spreading) was seen for hot-spot heating and

15 K was observed for uniform heating, demonstrating the enhanced cooling capabilities of

dense particulate suspensions of high-conductivity particles, over a clear FC-43 fluid.
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1. INTRODUCTION

1.1 Overview and contributions of the work

Particles in sheared suspension flows tend to migrate from regions of large shear rate

to regions of low shear rate [2 ]. This phenomenon known as particle migration can affect

mixing and heat transfer. Understanding particle migration is important for a broad range

of applications including geothermal energy recovery [3 ], [4 ], hydraulic fracturing [5 ], [6 ],

hemodynamics [7 ], microfluidics [8 ], [9 ], electronics cooling [10 ], [11 ], and food processing [12 ],

[13 ]. These applications have driven significant research on the topic of fluidized particles

and particulate suspensions. However, thermal transport in such “complex fluids” appears

to be less well understood, especially in the case of dense suspensions.

Often approximate models with limited generality and limited validation are applied to

estimate effective material properties of a particle-fluid mixture. Additionally, when applied

thermo-fluid problems [14 ], [15 ], these models require the assumption of thermal equilib-

rium between phases. Therefore, prior models do not account for particle migration under

the coupled influence of shear and thermal gradients in the system. To fill this gap in

the literature, we develop a continuum two-fluid model (TFM) for computational analysis

heat transfer and particle migration in the flow of dense suspensions. The proposed TFM

resolves the particle and fluid phases separately without using the inter-phase thermal equi-

librium assumption. Specifically, by extending the isothermal dense-suspension TFM from

[16 ] to incorporate coupled heat transfer within each and between the phases, we provide a

general and extensible computational framework with which one can predictively simulate

(upon proper calibration performed herein) the interaction between shear-rate gradients and

thermal gradients in dense suspensions, across a variety of flow scenarios.

To capture thermal transport between particle and fluid phase, we propose a closure re-

lation for the inter-phase heat transfer coefficient Kh, which depends on the thermal Pećlet

number P eth and the particle volume fraction φ. Within the context of shear-induced par-

ticle migration, we investigate the influence of temperature gradients in the system. TFM

simulations were performed to study the coupled effect of shear and thermal gradients on

particle migration in concentric Couette cell system. It was found that thermal gradients
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can enhance or mitigate shear-induce particle fluxes. To understand this observation, a

thermo-rheological flux term was derived, which accounts for the novel effect. In addition,

the TFM was applied to study the coupled behavior in eccentric Couette cells, which exhibit

non-axisymmetric flows. The heat transfer enhancement seen in suspensions was compared

to a clear fluid (FC-43 fluid with no particles) using a heat transfer enhancement factor,

Nusus/Nufc, based on the Nusselt number of the system with suspension flow and the Nus-

selt number of the system with FC fluid. This enhancement factor was found to reduce with

the eccentricity of the Couette cell, highlighting maximum enhancement for the concentric

Couette cell case. This is due to accumulation of particles at outer walls in the suspension

flows.

Moreover, the TFM was extended to perform CFD modeling of 3D microfluidic channels

for the application of cooling electronics system. Cooling of electronics systems has been

an area of active research due to the increase of junction level heat fluxes arising from

compact packaging. In this thesis, we investigate the use of dense particulate suspensions

for cooling three different microchannel geometries with both uniform heat input (of 5 W)

and localized hotspot (of 2 W cm−2) heat inputs. The suspensions used comprise of 50 µm

diameter boron-nitride (BN) particles (in 30% volume concentration) suspended in a FC-43

electronics cooling fluid. BN particles were chosen as they have identical density to FC-43

fluid resulting in neutrally buoyant suspension. Further, BN thermal conductivity is 500

times that of FC-43 fluid resulting in enhanced thermal performance. Then, the cooling

performance of the particle-laden fluids is compared to that of the commonly used FC-43

electronics cooling fluid (without any suspended particles).

1.2 Outline of the thesis

Chapter 2 briefly introduces the background and state-of-the-art of dense suspension

modeling.

Chapter 3 discusses the governing equations pertaining to the TFM for modeling flows

of dense non-Brownian suspensions, including their rheology in Section 3.1.1 and their ther-

mophysical properties in Section 3.1.2 . We describe the heat transfer closure relation that
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we propose to capture coupled thermal-particle migration phenomena via the TFM. In Sec-

tion 3.1.3 , we provide a conceptual argument, based on the temperature-dependent fluid

properties of how shear and thermal gradients couple and yield migration forces on the

particulate phase. Then, in Section 3.1.4 , we summarize the numerical methods used to

implement the TFM in OpenFOAM®, along with the schemes used, and the stability criteria

employed to obtain accurate results. We calibrate our computational model against the heat

pulse experiments of Metzger, Rahli, and Yin [17 ] in Section 3.2.1 to obtain the fitting pa-

rameters in the inter-phase heat transfer closure. Then, in Section 3.2.2 , we (qualitatively)

validate the flow solver (no fitting parameters in this isothermal case) against data from

Subia, Ingber, Mondy, et al. [18 ] for an eccentric Couette cell. Next, to understand the

interplay between thermal and shear gradients, we study particle migration subject to two

thermal boundary conditions (BCs) in a Couette cell (Section 3.4.1 ): for one set of BCs, the

thermal and shear gradients are in the same direction, and in the other, the gradients are in

opposite directions. We also extend the discussion to eccentric Couette cells (Section 3.4.2 )

and show the that the geometric eccentricity can be used to tune the thermal performance

of the suspension flow.

We then extend the TFM to full 3D CFD simulations for the application of electronics

cooling in Chapter 4 , in which we discuss the performance improvements due to suspension

for a hot spot and uniform heating scenarios in uniform cross section, herringbone and

converging-diverging microchannels.

Finally, in Section 5 , we summarize our findings and briefly discuss potential avenues for

future work.
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2. LITERATURE REVIEW

This chapter discusses previous work pertaining to dense suspension flows, specifically prior

work related to shear-induced particle migration, heat transfer in suspensions, and applica-

tion of suspensions to microchannel cooling of electronics system. Portions of this text were

published in [19 ] and [20 ].

2.1 Shear-induced particle migration in flows of dense suspensions

The migration of particles from regions of high shear rate to regions of low shear occurs

at low particle Reynolds number (i.e., the regime of negligible particle inertia), and large

particle Peclét number (i.e., the non-Brownian regime) [21 , p. 2]. Historical overviews of

this phenomenon can be found elsewhere [21 ], [22 ]. A standard setup for experimentally

characterizing suspension flows is the Couette cell (i.e., the gap between two, usually con-

centric, rotating cylinders). Past experimental studies sought to explain, with varying levels

of fidelity, the irreversible particle migration phenomenon [23 ], [24 ], including its dependence

on the shear rate, the particle volume fraction, and the particle size.

The simplest model of shear-induced particle migration is a phenomenological transport

process, in which scalar diffusive fluxes (in principle, dependent on the gradients of shear

rate and particle concentration) are posited [14 ], [25 ], [26 ]. The model resulting from this

approach is termed the diffusive flux model (DFM). The DFM is a phenomenological and

requires empirical calibration of (i) a collision flux (i.e., migration of particles to a region

of low collisional frequency between particles [25 ]) and (ii) a viscosity flux (i.e., migration

caused caused by viscosity gradients [25 ]). The simplicity of the DFM is appealing and

it yields itself to straightforward computational studies, however, as Denn and Morris [22 ,

p. 212] note, the DFM “gives results that conflict with several experiments in other simple-

shear geometries” beyond the Couette cell.

In order to obtain deeper insight into particle migration, the suspension balance model

(SBM) was introduced by Nott and Brady [27 ] and further refined in recent years [28 ], [29 ].

Rather than treating particle migration simply as an extra diffusive flux in the particle

transport equation, the SBM (in its most common implementation [2 ]) involves solving the
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suspension’s momentum equation, a particle transport equation, and an energy conservation

equation for the suspension. For a pressure-driven flow, Nott and Brady [27 ] used both

particle-resolved Stokesian dynamics simulations and the SBM to explain how particles,

starting with a uniform particle volume fraction, migrate to the center of the channel (where

the shear rate is low) in inhomogeneous flow due a force arising from an “average particle

pressure.

In general, normal stresses arise in flows in curvilinear geometries, and they must be

accounted for to understand particle migration. To this end, Morris and Boulay [30 ] re-

formulated the SBM [27 ] to capture the anisotropy of the normal stresses. Their results

were further confirmed by the more recent experiments by Dbouk, Lobry, and Lemaire [31 ].

Consequently, modeling of shear-induced particle migration in flows beyond the canonical

unidirectional configuration (such as contraction-expansions and cavity flows [32 ], as well as

flows in concentric [33 ] and eccentric [34 ] Couette cells) became possible. These SBM formu-

lation [30 ], [33 ] highlight that the divergence of the particle stress tensor, which arises from

the stress inhomogeneity, is the driving force for particle migration in the particle transport

equation.

In contrast to the traditional implementation of the SBM, which lumps the fluid and

particles into a single phase, two-fluid models (TFMs) [35 ] solve the governing (mass and

momentum conservation) equations for the particle phase and for the fluid phase separately.

A TFM, therefore, does not make the equilibrium assumptions between the two phases,

which leads to the traditional form of the SBM. Thus, it is expected that a TFM can be

applied to a wider class of flows. Buyevich [36 ] used this approach to address the coupled

effect of Brownian and shear-induced migration in concentrated suspensions. More recently,

TFMs have been applied to simulate proppant transport in hydraulic fracturing applica-

tions [6 ], [37 ] due to their ability to capture the governing physics in different flow regimes.

Meanwhile, Municchi, Nagrani, and Christov [16 ] implemented and benchmarked a TFM

for the numerical simulation of dense suspension flows (including shear-induced migration)

in OpenFOAM®. They showed good agreement with the previous works on particle migra-

tion, suggesting general curvilinear flows of dense particulate suspensions can be accurately
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simulated with a TFM using the proper rheological closures that account for particle stress

anisotropy. In this thesis, we build upon this approach.

2.2 Heat transfer in flows of dense suspensions

While particle migration has been studied extensively from a fluid mechanics perspective,

the effect of thermal gradients and heat transfer on particle migration has not received as

much attention. Yet, when suspensions are sheared, experiments have demonstrated that

the effective suspension thermal conductivity is enhanced [38 ]–[42 ]. In addition to the shear

rate, the thermal conductivity of suspensions also depends on other properties such as the

particle volume fraction, the particle size, and the particles’ thermal diffusivity [38 ], [39 ], [41 ].

Recent research (e.g., [3 ], [15 ], [17 ]) has focused on modeling this enhancement of thermal

transport using effective properties. Our goal is to increase the modeling fidelity by using a

TFM.

Early work by Sohn and Chen [40 ] demonstrated that shearing suspensions induces parti-

cle motion in the mixture, which leads to convection that enhances thermal transport. Shin

and Lee [41 ] showed that the suspension’s homogenized thermal conductivity increases with

the shear rate, though their experiments appear to be in an inertial flow regime.

More recently, Metzger, Rahli, and Yin [17 ] performed a heat-pulse experiment, in which

they heated the inner cylinder of a Couette cell until steady state was achieved, and then

let it cool while observing the temperature decay with and without shearing of the suspen-

sion in the gap (via rotation of one cylinder of the cell). A faster temperature decay was

observed when the suspension was sheared, suggesting a shear-induced improvement of ther-

mal transport. Metzger, Rahli, and Yin [17 ] developed a closure relation for the effective

(homogenized) thermal diffusivity of the suspension as a function of particle volume frac-

tion φ and the thermal Péclet number P eth, by drawing upon functional forms motivated in

earlier work on shear-enhanced diffusion [43 ], [44 ].

A limited number of computational studies have addressed the interplay between shear-

and thermal-driven particle migration in suspensions. Most recently, Wu, Zhou, Aubry, et

al. [14 ] and Dbouk [15 ] modified the DFM and SBM, respectively, to account for thermal
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transport in dense suspension flows. Wu, Zhou, Aubry, et al. [14 ] then employed their DFM

to compute show a discernible effect of a temperature gradient across a Couette cell’s gap

(both concentric and eccentric) on the radial particle distribution profile. In a similar vein,

Kang, Yoshikawa, and Mirbod [45 ] performed a computational DFM study of the onset of

thermal convection in suspensions. Dbouk [15 ], on the other hand, incorporated a conjugate

heat transfer model and the closure relation of Metzger, Rahli, and Yin [17 ] into the SBM.

He quantified the enhancement of thermal performance due to a suspension, compared to

a clear liquid, for forced convection through a rectangular channel. On this basis, Dbouk

[11 ] suggested exploiting particle migration effects to improve heat transfer in applications

related to CPU cooling.

While these recent works begin to demonstrate the importance of the coupled particle

migration and thermal transport, DFMs and the typical form of the SBM do not capture the

inter-phase heat transfer between the particle phase and the fluid phase, since they employ a

single thermal transport equation, based on effective properties, for the mixture. Specifically,

the prior computational models are based on the assumption of thermal equilibrium between

the two phases, which we relax in the present work.

2.3 Cooling of electronic systems

To dissipate higher junction heat fluxes, forced air cooling techniques [46 ] are more effec-

tive than natural convection cooling because of higher heat transfer coefficients. Reaching

the upper limit for heat dissipation by forced air cooling motivated the development of more

efficient methods such as forced liquid cooling [47 ]–[50 ], which can achieve even higher heat

transfer coefficients. With liquid cooling, the introduction of high thermal conductivity

nanoparticles within the heat transfer fluid (which often has a relatively low thermal con-

ductivity) increases the effective thermal conductivity of the mixture and improves thermal

performance [10 ], [51 ].

Microchannel cooling systems have become attractive thermal management systems due

to the increased heat transfer coefficients at small length scales and the ability to match

the heat sink size to the device geometry. Innovative microchannel designs such as herring-
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bone channels [52 ] have been used to further augment the mixing within the channel to

be able to dissipate higher heat fluxes without significantly increasing the pumping power

[53 ]. Specifically, the Nusselt number was found to increase by a factor of four for herring-

bone microchannels, compared to uniform cross-section microchannels at the same flow rate

[53 ]. Further, Yang et al. [54 ] showed that staggered herringbone microchannels enhance

the single- and two-phase heat dissipation along with the critical heat flux (CHF) compared

to ‘plain’ microchannels. Herringbone patterned fins have also been integrated in battery

thermal management systems [55 ] to enhance the heat dissipation rates. Dbouk [11 ] recently

studied the cooling of CPUs by modeling the flow of suspensions in cooling channels using

the suspension balance model (SBM). Suspensions reduced the surface temperature com-

pared to a clear fluid. In addition, suspensions of particles with higher (than the suspending

fluid’s) thermal conductivity further enhanced heat transfer in the system.

2.4 Summary

Historically, a lot of investigation, both computational and experimental is conducted on

shear induced particle migration [16 ], [26 ], [27 ], [30 ], [31 ], [33 ], but little focus is given to

thermal transport [15 ], [17 ], [56 ] in such flow regimes. Our work tries to bridge this gap by

extending the prior TFM [16 ] by inculcating an inter-phase heat transfer coefficient which

characterizes heat transfer between the particles and fluid phase. The TFM we propose

sheds the equilibrium assumption among the phases and resolves the particles and phases

separately. We study the particle migration trajectory in a fundamental Couette cell geome-

try under the influence of shear and thermal gradients to characterize the influence of shear

induced migration and migration due to thermal gradient (thermo-rheological flux). Finally,

we extend the developed TFM model to simulate forced convection in 3D microchannels to

mitigate the junction level temperature rise by deploying suspensions rather than a clear

electronic cooling fluid.
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3. TWO-FLUID MODEL

SUMMARY

The current chapter aims to explain the particle trajectories due to migration phenomenon

under the influence of shear and thermal gradients in a Couette cell. First, the governing

equations of the TFM along with the proposed closure relation for inter-phase heat transfer

coefficient (Kh) are presented. A concise discussion on the origin of thermo-rheological flux

in the presence of thermal gradients is presented in addition to shear-induced migration.

Next, the CFD simulation methodology in OpenFOAM® v7 is discussed to obtain accurate

and converged results. Later, the calibration and validation of TFM is described in detailed

for concentric and eccentric cases with previous studies ([17 ], [18 ]) in the literature. Finally,

particle migration profiles are plotted under the presence of thermal and shear gradients

for Couette cell systems by varying the bulk volume fraction (φb), thermal Pećlet number

(P eth) and temperature difference (∆T = Tin − Tout). It was seen that when ∆T < 0, the

thermal and shear migration flux aid each to enhance particle migration, while for ∆T > 0,

the thermal and shear fluxes oppose each other to neutralize the particle migration to obtain

homogeneous field. The heat transfer in eccentric Couette cell system is characterized by

plotting Nusselt number Nu and enhancement factor Nusus/Nufc with the eccentricity E.

For ∆T > 0, the Nu increases with E owing to enhanced mixing. On the other hand, for

∆T < 0, a maximum at E = 0.4 was seen after which Nu decreases due to enhanced particle

migration and large vortices entraining particles at the outer wall.

The material in this chapter has been submitted for publication as [P.P. Nagrani, F.

Municchi, A.M. Marconnet, I.C. Christov, “Two fluid modeling of heat transfer in flows of

dense suspensions,” May 2021. Preprint: https://arxiv.org/pdf/2105.08853 ] [19 ]
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3.1 Governing equations of the TFM

3.1.1 Flow and rheology

In this subsection, we summarize the basic equations of the TFM for dense particulate

suspensions, as detailed in [16 ]. Introducing the particle volume fraction field φ(x, t), where

x is the position vector in 3D space and t is time, we write the governing equations for the

two phases (‘p’ for particle and ‘f ’ for fluid) as:

∂

∂t
(ρpφ) + ∇ · (ρpupφ) = 0, (3.1)

∂

∂t
[ρf (1 − φ)] + ∇ · [ρfuf (1 − φ)] = 0, (3.2)

∂

∂t
(ρpφup) + ∇ · (ρpφup ⊗ up) = ∇ · Σp + φρpg + fd, (3.3)

∂

∂t
[ρf (1 − φ) uf ] + ∇ · [ρf (1 − φ) uf ⊗ uf ] = − ∇ · (pI − τf ) − fd + (1 − φ)ρfg. (3.4)

Equations (3.1 ) and (3.2 ) are the conservation of mass (continuity) equations for the two

phases, while Eqs. (3.3 ) and (3.4 ) are the corresponding conservation of linear momentum

equations.

Here, the particle-phase stress tensor Σp is to be modeled, τf is the deviatoric stress

tensor of the generalized Newtonian fluid phase, and

fd = Kd (up − uf ) + φ∇ · (τf − pI) − (1 − φ) ∇pp (3.5)

is the inter-phase force, where Kd is the so-called Clift drag coefficient [57 ]. Furthermore,

p = pf + pp is the ‘shared’ pressure, which satisfies the Poisson equation in the case of

an incompressible suspension. Importantly, as in [16 ], we incorporate the state-of-the art

rheological models for dense suspensions via

Σp = 2µpṠp + λp (∇ · up) I + Σs, (3.6)
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where µp and λp are the shear and bulk viscosities obtained using the kinetic theory of

granular flows [58 ] and the general expression for the frictional viscosity described in [1 ]. For

either phase (‘p’ or ‘f ’), Ṡ = 1
2 [∇u + (∇u)T ] − (∇ · u)I is the deviatoric rate of strain.

The particulate phase’s frictional viscosity µp is expressed, as in [1 ], [16 ], as the product

of the fluid viscosity and a function of the particle volume fraction η(φ). Specifically, it takes

the form:

µp = µf (Tf )η (φ) , η(φ) = aµ + bµφ

(
1 − φ

φm

)−1

+ cµ

(
1 − φ

φm

)−2

, (3.7)

where φm is the maximum packing fraction (here, taken to be 0.68 corresponding to BBC

sphere packing), while aµ, bµ, and cµ are parameters fitted from data in the literature. We

recall from [1 ], [16 ] that Eq. (3.7 ) returns the closures from [30 ] and [59 ], under appropriate

choices of the model parameters.

The extra contribution Σs in Eq. (3.6 ) is the anisotropic stress, due to the shearing of

the particle phase, given by

Σs = −µfηN(φ)γ̇effQ, γ̇eff =
(
2Ṡp : Ṡp

)1/2
+ γ̇NL, (3.8)

where ηN is the normal scaled viscosity. The nonlocal shear rate γ̇NL regularizes the model by

accounting for the average stress at the (sub-continuum) particle scale [60 ]. Specifically, γ̇NL

ensures that γ̇eff 6= 0, for example, at the centerline of a channel [16 ], as a way to overcome

the breakdown of the continuum assumption at the particle scale [27 ], [30 ], [61 ].

In Eq. (3.8 ), the extra stress’ anisotropy is represented by means of the tensor Q [30 ]. This

anisotropy tensor can be diagonalized by employing a suitable local orthonormal coordinate

system based on the particle phase velocity field: Q = ∑3
i=1 λi (φ) ei ⊗ ei, where λi (φ) are

the anisotropy weight functions [30 ], and ei are the unit vectors in the direction of the flow

(i = 1), gradient (i = 2) and vorticity (i = 3) as e1 = up

/
|up|, e3 = (∇ × up)

/
|∇ × up|,

and e2 = e1 × e3. In DFMs and SBMs, it is not possible to capture the dense suspension’s

stress anisotropy in this way because of the assumptions made on Eq. (3.3 ) do not allow for
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up to be resolved. The above definition of the unit vectors, introduced in [16 ], allows for the

straightforward generalization of the model to 3D curvilinear flows.

3.1.2 Heat transfer and energy equations

To succinctly describe how we incorporate heat transfer within a TFM, it is most conve-

nient to express each phase’s energy equation using a mixed formulation with their enthalpies,

internal energies, and temperatures:

unsteady︷ ︸︸ ︷
∂

∂t
(ρpφHp) +

convection︷ ︸︸ ︷
∇ · (ρpφHpup) =

pressure work︷ ︸︸ ︷
φ

∂p

∂t
+

conduction︷ ︸︸ ︷
∇ · (ρpαpφ∇ep)

−
inter-phase heat transfer︷ ︸︸ ︷

Kh(Tp − Tf ), (3.9)
∂

∂t
[ρf (1 − φ) Hf ] + ∇ · [ρf (1 − φ) Hfuf ] = (1 − φ) ∂p

∂t
+ ∇ · [ρfαf (1 − φ)∇ef ]

+ Kh(Tp − Tf ), (3.10)

where the stagnation (or “total”) enthalpies Hp,f = hp,f + 1
2 |up,f |2 have been introduced for

convenience from the specific enthalpies hp,f of the phases. Note that the internal energy

of each phase is ep,f = hp,f − p/ρf,p. In equations (3.9 ) and (3.10 ), Kh is the (volumet-

ric, W m−3 K−1) inter-phase heat transfer coefficient to be modeled; αf = kf/(ρfCp,f ) and

αp = kp/(ρpCp,p) are the phases’ thermal diffusivities, with kp, kf and Cp,p, Cp,f being their

thermal conductivities and specific heats, respectively; Tp and Tf are the phases’ individual

temperature fields. In Eqs. (3.9 ) and (3.10 ), we have neglected viscous dissipation (unlike

previous work [15 ]). This assumption will be justified upon specifying the flow conditions

in Section 3.4 below. Also, there are no volumetric sources of heat present or work done

by gravitational forces. Work done by buoyancy is not considered in the energy equation

in present work, as buoyancy was found to have marginal effects in flows similar to those

studied herein [15 ].

To create a predictive TFM for heat transfer in dense suspensions, we must ensure that Kh

takes into account the non-uniform shear-induced migration within the particle phase, as well

as the particle phase’s thermal conductivity relative to the suspending fluid. In the fluidized
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beds literature [62 ], [63 ], heat transfer is incorporated into TFMs via a Nusselt correlation:

e.g., the Ranz–Marshall [64 ] formula Nudp = 2 + 0.6Re1/2
dp

Pr1/3, where Redp = Ufdp/νf

and Pr = νf/αf , then, Kh,0 = Nudp kf/d2
p. Based on this approach, we propose a shear-

dependent inter-phase heat transfer coefficient

Kh(φ, γ̇) = Kh,0[1 + βφ(‖Ṡp‖d2
p/αp︸ ︷︷ ︸

∼P eth

)m], (3.11)

where β and m are parameters that must be calibrated against experiments (in Section 3.2.1 

below for the heat-pulse experiment from [17 ]), γ̇ =
√

2‖Ṡp‖, and P eth is an effective particle-

based thermal Péclet number of the shear suspension.

Although our expression for Kh(φ, γ̇) is similar (in functional form) to the mixture models’

αeff(γ̇) [15 ], [17 ], Kh and αeff represent fundamentally different physics (see also [65 ]). In

the TFM, the usual αp and αf take care of conduction within each phase, thus they cannot

depend on γ̇. Importantly, by writing down separate energy equations for the phases, we

shed the assumption of “microscopic local thermal equilibrium between the solid and fluid

phases” [15 , p. 437] used in the SBM.

3.1.3 The origin of thermo-rheological fluxes

As we show in Section 3.4 , the presence of temperature gradients in a flow results in a net

flux of particles which, in most fluids, is oriented in the direction opposite to the heat flux.

This phenomenon results from the interplay between the thermal state of the fluid phase

and the rheology of the suspended particulate phase. In particular, the dynamic viscosity µf

of liquids is generally a decreasing function of temperature [66 , p. 117], so that µf = µf (Tf )

and dµf/dTf < 0.

Now, consider the force fΣ = ∇ · Σp acting on the particulate phase due to the changes

in stress. Using the chain rule, it is also possible to split fΣ as

fΣ = µf∇ · Σ̃p︸ ︷︷ ︸
shear-induced

migration and diffusion

−
thermo-rheological︷ ︸︸ ︷
Σp · (βµ∇Tf ) , (3.12)
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Figure 3.1. Diagram of a unidirectional shear configuration, which is repre-
sentative of Couette flow between two cylinders. The continuous line represents
the velocity in the y-direction and the dashed line represents the shear rate.

where we defined the scaled particle stress tensor Σ̃p = Σp/µf and the thermal variation

coefficient of the dynamic viscosity:

βµ =
∣∣∣∣∣d (ln µf )

dTf

∣∣∣∣∣ . (3.13)

The second term on the right-hand side of Eq. (3.12 ) represents the thermo-rheological force

that couples the energy equation with the momentum equation. Specifically, Eq. (3.12 )

shows that there is an additional force oriented in the direction opposite to the projection

of the particle stress on the temperature gradient. Hence, if we consider the case in which

the particles are pushed in the positive x-direction by the shear-induced migration forces, a

temperature gradient aligned with the shear rate gradient will result in an opposing flux. It

is also clear that no flux arises only due to the temperature gradient, but the presence of

a shear flow is also required. However, while shear-induced particle migration is driven by

the spatial variation of the shear-rate, the thermo-rheological flux should also be observed

in uniformly sheared suspensions.
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Now, disregarding the terms arising from kinetic theory (which do not play a significant

role in the present study due to the low value of the granular temperature and the assumption

of a non-Brownian suspension), we can express fΣ, via Eq. (3.6 ), as:

fΣ = ∇ ·
[
2µf (Tf )η(φ)Ṡp − µf (Tf )ηN(φ)γ̇effQ

]
. (3.14)

To better illustrate the point, consider a unidirectional flow scenario as depicted schemati-

cally in Fig. 3.1 . In this situation, the force is acting in the x-direction normal to the shear

and the suspension is subject to a temperature gradient along x. We denote the shear rate

as ṡ(x) = Ṡp,yx = (1/2)∂up,y/∂x. Furthermore, we take γ̇eff = γ̇ =
√

2|ṡ| = −
√

2ṡ as in this

case the velocity is always decreasing in the x-direction. This configuration is illustrative of

the velocity and shear profiles expected in Couette cells. Under these circumstances, after

some algebra, Eq. (3.14 ) becomes:

fΣ,x = A(φ)
(

µf
∂γ̇

∂x
− γ̇

∣∣∣∣∣dµf

dTf

∣∣∣∣∣ ∂Tf

∂x

)
+ µf γ̇

dA(φ)
dφ

∂φ

∂x
, A(φ) = −

√
2η − ηNλ1. (3.15)

It is now clear that an additional flux (second term in the parentheses above) opposing the

classical migration flux (first term) induced by the gradient of the shear rate is established.

Equation (3.15 ) also shows the linear dependence of the thermo-rheological force on the shear

rate. Notice that, since A(φ) is always negative, the thermo-rheological force is oriented in

the same direction as the temperature gradient.

In the absence of other forces perpendicular to the flow direction such as gravity or

pressure gradients, the force balance on the particle phase is fΣ,x = 0. Hence, in order

to achieve a perfectly mixed suspension without particle segregation (i.e., ∂φ/∂x = 0) the

following relation between shear rate and temperature gradient should hold:

∂ ln γ̇

∂x
= −βµ

∂Tf

∂x
, (3.16)
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which, under the assumption that βµ is not varying significantly, can be easily integrated for

a domain bounded between two walls x = w1 and x = w2, leading to:

ln
(

γ̇|w1

γ̇|w2

)
= −βµ (Tf |w1 − Tf |w2) . (3.17)

Equation (3.17 ) shows that, if the shear rate is uniform (γ̇|w1 = γ̇|w2), then only an isothermal

suspension can also be homogeneous. We also remark that the integration of the logarithm

can be carried out only if γ̇ 6= 0 throughout the domain. This also has a physical significance

since no thermo-rheological flux can exist where γ̇ = 0, while classical migration fluxes might

still be present, as they depend on the gradient of γ̇. Hence, a suspension cannot be ho-

mogeneous under such circumstances; the classical migration flux would remain unbalanced

at such points. It is worth noting that such regions (or isolated) points where γ̇ = 0 are

pathological also in standard shear-induced migration, and a non-local non-zero effective

shear rate has to be used instead (recall the discussion following Eq. (3.8 )).

Finally, in the more general case where variations of βµ are not negligible (for example

due to large temperature gradients), it is more convenient to integrate the right-hand-side

of Eq. (3.16 ) with respect to µf rather than Tf , leading to:

γ̇|w1

γ̇|w2
= µf (Tf |w1)

µf (Tf |w2)
. (3.18)

While Eq. (3.18 ) is a more complete form, it possesses the same characteristics of Eq. (3.17 ).

However, though conceptually enlightening, both expressions are generally of little practical

use as the value of the shear at the walls due to dense suspension flow is generally unknown

a priori (as there is no analytical solution).

3.1.4 Simulation methodology

The governing equations [Eqs. (3.1 ), (3.2 ), (3.3 ), (3.4 ), (3.9 ), and (3.10 )] are solved nu-

merically via the finite-volume method (FVM) [67 ] in a solver implemented in OpenFOAM®

v7. The full description of the numerical approach (based on the earlier algorithm of Pas-

salacqua and Fox [68 ]) can be found in [1 ]. The FVM discretization ensures that mass is
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conserved “automatically” in all the cell elements that the flow geometry is divided into.

A structured mesh was employed for computational modeling of coupled thermal-particle

migration in the 2D Couette cell (Fig. 3.2 ). A grid independence study was performed

(summarized in Section 3.3 ) to determine the optimal number of mesh elements needed to

obtain accurate results, while simultaneously ensuring reasonable wall-clock time required

to complete each simulation.

For the discretization of the transient terms, a second-order backward scheme was em-

ployed. Although this scheme, on an orthogonal mesh, is unconditionally stable, this is

rarely the case in reality. Deferred correction for high-order schemes, coupling, and non-

linear terms cannot be handled implicitly, introducing a Courant–Friedrichs–Lewy (CFL)

number Co constraint [67 ], which we enforce to ensure convergence of the simulations. Dif-

fusion terms were discretized using the “Gauss” approach in OpenFOAM®. A second-order

linear discretization scheme was employed to obtain higher accuracy for the discretization

of diffusion terms. Furthermore, to account for the effect of non-orthogonality of the mesh

employed on the discretization of the diffusion terms, a “corrected” method was used [67 ].

The linear interpolation scheme from OpenFOAM® was chosen to interpolate the diffusion

coefficients from the cell faces to the cell centers. The divergence terms were discretized

using the “Gauss” method of OpenFOAM® and an upwind scheme was employed on the

convective terms in the equations. The “cellMDLimited Gauss linear” scheme was used for

discretization of the gradient terms. The gradient scheme ensures boundedness of the gra-

dient terms after discretization. In the simulations below, the pressure and velocity residual

convergence criteria were set to 10−7 and 10−9, respectively.

The “PIMPLE” method, which is a combination of the pressure-implicit with splitting of

operators (PISO) method and the semi-implicit method for pressure-linked equations (SIM-

PLE) [67 ] was used to couple the Navier–Stokes and energy equations and obtain converged

residuals for the transient simulations. The minimum number of linear solver iteration was

always set to 1, so that convergence of simulations was achieved due to convergence of

residuals. Moreover, the number of times the entire system of equations was solved was de-

termined by observing the number of iterations required for the residuals to converge during
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Figure 3.2. Geometry and structured computational mesh of the annular
Couette cell’s flow domain.

each time step. A dynamic adjustable time step was used in the simulations, which ensured

that max Co < 0.5 during the entire simulations.

3.2 Calibration and validation of the TFM

3.2.1 Heat transfer through suspension in a concentric Couette cell

Metzger, Rahli, and Yin [17 ] evaluated heat transfer in a sheared suspension of poly-

methyl methacrylate (PMMA) particles dispersed within a Newtonian fluid (mixture of Tri-

ton X-100, zinc chloride solution and water) in a Couette cell geometry (top view shown in

Fig. 3.2 ). The particles and fluid had identical thermophysical properties in order to isolate

the effect of shear-induced migration on the heat transfer enhancement. We calibrate the

parameters in our TFM via their experimental data.

To simulate the shearing of the suspension in a concentric Couette cell with inner and

outer radii of Rin = 5 cm and Rout = 6.2 cm, respectively, we use a structured mesh (shown

in Fig. 3.2 ). The inner cylinder rotates at a given rate of Ωin, while the outer cylinder

is held stationary (Ωout = 0). For convenience, we book-keep the applied shear rate at

steady state via the relation γ̇ = (2ΩinR2
out)/(R2

out −R2
in) at the inner wall, which admittedly

only holds true for a clear Newtonian fluid flow. In what follows, this quantity is reported,
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Table 3.1. Particle and fluid properties used for the calibration of the TFM
against the experimental results of Metzger, Rahli, and Yin [17 ].

Property Particle (‘p’) Fluid (‘f ’)
Density ρ (kg m−3) 1180 1180
Dynamic viscosity µ (Pa s) – 3.0
Thermal conductivity k (W m−1 K−1) 0.19 0.19
Specific heat Cp (J kg−1 K−1) 1260 1260

and the value of γ̇ is set by varying Ωin. The fluid and particle thermophysical properties

used are listed in Table 3.1 . Consistent with the experiments of [17 ], we use a neutrally

buoyant suspension (ρp = ρf ) with an initial, uniform bulk particle volume fraction of

φ(x, t = 0) = φb everywhere across the gap. We do not consider the effect of temperature

varying thermophysical properties as the maximum temperature difference in the system is

only 5 K in this case.

Calibration at non-zero shear rate

In the heat-pulse experiment [17 ], the entire system was initially at a uniform temperature

of Tinitial = 293 K. Then, the inner cylinder was heated to Tin = 298 K for a duration of 5 s,

while the outer cylinder is kept at Tout = 293 K. After that, the heater was turned off and

the temperature of inner cylinder decays back to 293 K. This heating and cooling process

was performed for both the unsheared and sheared (varying inner cylinder rotation rate)

suspensions. For our calibration, we use the case of γ̇ = 10 s−1. Next, we describe how the

heat-pulse experiment was simulated using the TFM to calibrate our proposed model.

The BCs are specified in Table 3.2 . The outer cylinder was approximated as insulated

and always held stationary. During the 5 s of heating, the inner cylinder was held stationary

and the wall temperature was fixed at 298 K in our model; again, this neglects the heating

time for the cylinder to reach the set temperature, but agrees with previous modeling work

[15 ]. During the cooling process, we approximated the BC at the inner cylinder as adiabatic,

which neglects the energy storage term in the inner cylinder as it cools. Because the heat

transfer depends on shearing and the parameters may vary with time, which cannot be

established for the published experimental description, we instead apply an adiabatic BC
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Figure 3.3. Unsteady temperature response Tsus|r=Rin at the inner cylinder
(r = Rin) for the heat-pulse experiment, starting from a uniform temperature
Tinitial = 293 K. This plot shows the successful calibration the TFM to the
experimental data of Metzger, Rahli, and Yin [17 ]. The calibration against
the γ̇ = 10 s−1 experimental data yields β = 0.2 and m = 1. The case of
γ̇ = 0 s−1 is provided for completeness only.

during cooling for the inner cylinder (similar to the approach in [15 ]). Thus, the only free

parameters in this problem are β and m in the shear-dependent inter-phase heat transfer

coefficient Kh from Eq. (3.11 ).

We considered β ∈ [0.1, 1.0] and m ∈ [0.25, 2] and calculated the root-mean-squared error

(RMSE) between the TFM simulations and the experimental data as

RMSE =
√√√√ 1

n

n∑
i=1

(TTFM,i − Texpt,i)2, (3.19)

where n is total number of time points sampled. Here, TTFM,i is the temperature data

generated from the TFM simulation by interpolating the transient temperature profile at
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Figure 3.4. Root mean squared error (RMSE) map between the transient
temperature profiles of the heat-pulse experiment [17 ] and the TFM simula-
tions, computed for a range of parameters β ∈ [0.1, 1.0] and m ∈ [0.25, 2] used
in the closure for Kh from Eq. (3.11 ).

the same time-points ti as the experimental measurement Texpt,i (recall Fig. 3.3 ). As shown

by the cross symbol in Fig. 3.4 , the RMSE is least for β ≈ 0.2 and m ≈ 1.

By comparing our model’s prediction to the experimental data from [17 ], as shown in

Fig. 3.3 , we calibrated the parameters, yielding β = 0.2 and m = 1. Note that these

parameters are not the same as found by Metzger, Rahli, and Yin [17 ], who determined

β = 0.046 in their expression for the shear-dependent effective diffusivity. Of course, since

the TFM captures different physics (recall the discussion in Section 3.1.2 ), it is not expected

that the fitting parameter values would be the same. Note that m = 1 indicates that inter-

phase heat transfer coefficient Kh depends linearly on the particle-based thermal Péclet

number P eth (recall Eq. (3.11 )), which is generally expected [43 ].

Calibration at zero shear rate: Lumped-parameter modeling of the cylinder

Although not relevant to our study for shear-induced migration, for completeness, here

we discuss how the no shear (γ̇ = 0 s−1) curve is calibrated in Fig. 3.3 . The inner and

outer cylinders are held stationary for the entire simulation (during both the heating and
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Table 3.2. Boundary conditions for the TFM simulations of the Couette cell
heat-pulse experiment. The adiabatic condition enforces ∇Tf ·n = ∇Tp·n = 0
on the appropriate boundaries with unit normal n. The specified shear rate is
estimated as γ̇ = (2ΩinR2

out)/(R2
out−R2

in) and by achieved by settung a suitable
rotation rate of the inner wall Ωin.

Location BC t < 5 s (heating) t > 5 s (cooling)

Inner cylinder Thermal Tin = 298 K Adiabatic
Shear rate γ̇ = 0 s−1 γ̇ = 10 s−1

Outer cylinder Thermal Adiabatic Adiabatic
Shear rate γ̇ = 0 s−1 γ̇ = 0 s−1

cooling periods). For thermal BCs, although the outer wall is maintained at 293 K in

the experiments, the gap is sufficiently large that we model the outer thermal BC as well

insulated. For the inner cylinder, during the 5 s of heating, we assume a constant wall

temperature of 298 K, which neglects the time it takes for the inner cylinder to heat up. For

cooling, employing the idea from [17 , Section 2.2.2] used to estimate the thermal diffusivity

of the suspension, we develop a modified time-decaying temperature gradient BC (for our

simulations) at the inner wall.

Specifically, consider the energy balance at the inner wall. Then, assuming a lumped

capacitance model for the cylinder itself:

McylCP
dTwall

dt
= −2πRinL

[
kpφ

dTp

dr
+ kf (1 − φ)dTf

dr

]
r=Rin

, (3.20)

where Twall is the inner cylinder wall temperature, Mcyl, CP and L are the mass, specific heat

and length of the inner cylinder, respectively. To find the functional form of dTwall/dt to

use in Eq. (3.20 ) to obtain the sought after BC for simulations, we fit an exponential decay

Twall(t) − Tinitial = (Tmax − Tinitial) exp(−At) to the measured Twall(t) in [17 ] (for the case of

no shear), recalling that Tinitial = 293 K and Tmax = 298 K. We obtained A ≈ 0.0129 s−1.
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Finding the expression for dTwall/dt from this equation and substituting it into Eq. (3.20 ),

we solve for the radial temperature gradient at the inner wall, and obtain the following BC:

[
φ

dTp

dr
+ (1 − φ)dTf

dr

]
r=Rin︸ ︷︷ ︸

from simulation

= BA exp(−At)︸ ︷︷ ︸
from experiment

. (3.21)

In this case, k = kp = kf , hence it is included in B = McylCp(Tmax − Tinitial)/(2πRinLk),

which lumps together all the unknown (unmeasured) inner cylinder physical quantities in

this problem. Because there is no shear in this example, Eq. (3.11 ) reduces to Kh = Kh,0,

which is obtained from the particle-based Ranz–Marshall Nusselt correlation. Thus, the

only unknown in our model is B in Eq. (3.21 ), which is a constant that lumps together all

the unknown inner cylinder properties. To find a suitable value for B, we performed TFM

simulations, using Eq. (3.21 ) as the imposed BC, and matched the temperature decay profile

predicted by the TFM to the experimentally measured one in [17 ], to obtain B ≈ 105 K s m−1

(Fig. 3.3 ).

3.2.2 Flow of a sheared suspension in an eccentric Couette cell

An eccentric Couette cell is another typical geometry in which flows of dense suspensions

are studied. In this geometry, the center of the inner cylinder is offset from the center of the

outer cylinder. The eccentricity is quantified by the ratio E = d/(Rout − Rin), where d is

the distance between the centers of the two cylinders. In general, eccentricity can lead to a

recirculating region [69 ] that induces additional mixing [70 ]. Subia, Ingber, Mondy, et al. [18 ]

performed experiments and finite element modeling of suspension flow using the parameters

listed in Table 3.3 . Next, we qualitatively validate our TFM against the numerical model

and experiments of Subia, Ingber, Mondy, et al. [18 ] by plotting φ contours in Fig. 3.5 after

different number of revolutions (turns) of the inner cylinder. Our TFM results are in good

agreement with the previous ones. Note that this validation is for the isothermal case. In

Section 3.4.2 , we explore heat transfer in the eccentric Couette cell.
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Table 3.3. Geometric parameters, particle and fluid properties used in the
simulations that validate our TFM against the results of Subia, Ingber, Mondy,
et al. [18 ]. The suspension is comprised of PMMA particles suspended in a
Newtonian fluid.

Quantity Rin Rout E Ωin dp µf φb ρf

Value 0.64 cm 2.54 cm 0.5 90 rpm 675 µm 4.95 Pa s 0.5 1180 kg m−3

Turns, 𝑁
Subia et al. (1998) Present study

NumericalExperimental Numerical

𝑁 = 40

𝑁 = 1000

𝑁 = 2000

𝑁 = 3000

𝑁 = 5000

Figure 3.5. Qualitative validation of the TFM simulation against the results
from Subia, Ingber, Mondy, et al. [18 ] for dense suspension flow (see Table 3.3 

for the parameters) in an eccentric Couette cell. Color shows contours of the
particle volume fraction φ for different number of turns N of the inner cylinder.
The first and second columns are reproduced, with permission, from [Subia,
S.R., Ingber, M.S., Mondy, L.A., Altobelli, S.A., Graham, A.L., 1998. Mod-
elling of concentrated suspensions using a continuum constitutive equation.
Journal of Fluid Mechanics 373, 193–219. doi:10.1017/S0022112098002651 ©
Cambridge University Press.]
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3.3 Mesh independence study: Couette cell

In this section, we justify the mesh used to produce the simulation results in the main

text. To be able to trust our conclusions, we must verify the simulations are independent of

the mesh resolution (in addition to the calibration/validation against experiments performed

in Sections 3.2.1 and 3.2.2 ). We consider the concentric Couette cell geometry (Fig. 3.2 ) filled

with dp = 675 µm BN particles suspended at φb = 50% in FC-43 fluid (refer to Table 3.4 

for the remaining properties). A temperature difference of ∆T = 30 K is set across the

Couette cell, in which the inner cylinder is rotated at a shear rate of γ̇ = 3 s−1. As seen

from Fig. 3.6 , Ncells = 120 along the radial direction accurately captures the particle volume

fraction trajectory, providing us with the computationally “optimal” mesh resolution.

0 0.2 0.4 0.6 0.8 1

0.73

0.74

0.75

Figure 3.6. Mesh independent study for the concentric Couette cell. Here,
Ncells is the number of mesh cells in the radial direction across the gap. The
grid arrangement is shown in Fig. 3.2 .

3.4 Particle migration in the presence of coupled thermal and shear gradients

In this section, we discuss our main computational results on the interaction of shear-

induced migration with thermal gradients across the system. Specifically, we will consider

the two cases in which the temperature difference ∆T = Tin − Tout across the gap is either

positive or negative (i.e., heat transfer occurs from the inner to the out wall, or vice versa).
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Table 3.4. Thermophysical properties of the suspension of boron nitride (BN)
particles into a fluoro-carbon (FC) fluid [71 ]. For the temperature-dependent
fluid properties’ formulas, the coefficients are in the appropriate (implied) SI
units.

Property Particle (‘p’) Fluid (‘f ’)
Density ρ (kg m−3) 1900 2508 − 2.18Tf

Dynamic viscosity µ (Pa s) – 0.3933 − 0.0035Tf + (1.13 × 10−5)T 2
f

−(1.5 × 10−8)T 3
f + (6.7 × 10−12)T 4

f

Conductivity k (W m−1 K−1) 35.5 0.08611 − (7 × 10−5)Tf

Specific heat Cp (J kg−1 K−1) 960 589.8 + 1.554Tf

3.4.1 Concentric Couette cell

After calibrating the inter-phase heat transfer coefficient as described in Section 3.2.1 ,

we performed a parametric study to understand the interplay between shear and thermal

gradients on particle migration. Specifically, we varied the bulk particle volume fraction φb,

the thermal Péclet number P eth = γ̇d2
p/αp and the temperature difference ∆T across gap.

As in the calibration described in Section 3.2.1 , we use the concentric Couette cell geometry

shown in Fig. 3.2 .

Keeping in mind the salient application of suspension flows to electronics cooling [11 ],

in these simulations we consider boron nitride (BN) particles dispersed in a fluoro-carbon

(FC) fluid. This choice of suspension is to ensure that the particles and fluid have nearly

identical densities, and hence, the suspension is neutrally buoyant. The particles have con-

stant thermophysical properties as given in Table 3.4 . The thermophysical properties of the

FC-43 fluid are temperature dependent [71 ]. We fit a fourth-order polynomial to the data for

the FC-43 fluid viscosity as a function of temperature given in [71 ], also given in Table 3.4 .

The choice of such particles and fluid is due to large contrast in their thermal conductivities,

which we hypothesize will allow us to observe significant thermal performance enhancement.

The thermophysical properties of the particles are taken to be constant because measure-

ments of the temperature-dependence of Cp,p, kp, and ρp for BN show that it is quite weak

over the temperature ranges (≈ 200–400 K) explored in this work [72 ]–[74 ].
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Table 3.5. Temperature boundary conditions for the inner (‘in’) and outer
(‘out’) cylinders of the Couette cell.

Temperature BC Notation Tin Tout

Case 1: migration with thermal gradient ∆T > 0 323 K 293 K
Case 2: migration against thermal gradient ∆T < 0 293 K 323 K

In these simulations, we use BN particles with dp = 675 µm at an initial (spatially

uniform) volume fraction of φb = 0.5, unless otherwise stated. The inner cylinder is rotated so

as to maintain γ̇ = 3 s−1 at steady state. The outer cylinder is held stationary. Consequently,

due to the shearing, particles are expected to migrate from the inner cylinder towards outer

one. We consider two different sets of thermal BCs as described in Table 3.5 . In doing so,

we wish to characterize the radial particle migration fields when the shear-induced particle

migration and heat transfer are in same (∆T > 0) vs. opposite (∆T < 0) directions across

the gap.

Having specified the flow conditions, we can now justify why viscous dissipation is ne-

glected in the energy equations (Eqs. (3.9 ) and (3.10 )). Specifically, the Eckert number for

this flow is Ec = U2
c /(Cp∆T ) ' 10−11, indicating that conduction is the dominant heat

transfer mechanism in this system. Here, we have taken the characteristic velocity Uc to be

the inner wall velocity (corresponding to the 3 s−1 shear rate), and Cp = φbCp,p +(1−φb)Cp,f

is the suspension specific heat estimated as the bulk-volume-fraction weighted average at the

initial temperature of 293 K.

Interplay between heat transfer and shear migration

The impact of the direction of the temperature gradient across the Couette cell on the

radial particle migration profiles at different bulk volume fractions (φb = 0.1 to φb = 0.5)

is shown in Fig. 3.7 . For ∆T < 0, the thermal and shear gradients lead to migration fluxes

in the same direction and, hence, enhance migration (in comparison to ∆T > 0, for which

the fluxes are in opposite directions). Therefore, at each φb, we observe particle migration

towards the outer wall (segregation of the mixture). From Fig. 3.7 , we also observe that the

particle distribution profiles are similar for both ∆T > 0 and ∆T < 0 for small φb, while
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a prominent difference emerges as φb increases. Therefore, the interplay between shear and

thermal gradients is more pronounced for dense suspensions.

0 0.2 0.4 0.6 0.8 1
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Figure 3.7. Effect of bulk particle volume fraction φb on the radial distri-
bution of particles φ for the concentric Couette cell for dp = 675 µm and
γ̇ = 3 s−1. Arrows indicate the direction of increasing φb.

To fully explore the possible behaviors, we next analyze the crucial impact of thermal

Péclet number P eth on the particle migration. We vary P eth by changing either γ̇ or dp: we

performed simulations with dp = 0.5 − 1.5 mm (Fig. 3.8a ) γ̇ = 1 − 8 s−1 (Fig. 3.8b ), for

both ∆T > 0 and ∆T < 0. For both the temperature BCs, particle migration is suppressed

at larger dp and γ̇ (⇒ larger P eth). Moreover, ∆T > 0 results in a more homogeneous

suspension because the contribution of the thermal gradients to the migration flux opposes

that of the shear gradients. Significant particle segregation across the gap is observed for

∆T < 0 because the fluxes due to thermal and shear gradients enhance each other, which

aids particle migration. When ∆T > 0, almost no particle migration is observed for the

strongly sheared suspensions with largest P eth (corresponding to, e.g., dp = 0.5 mm and

γ̇ = 8 s−1).

How the thermo-rheological fluxes affect particle migration

In Section 3.1.3 , we provided an abstract discussion the origin of the thermo-rheological

particle migration fluxes within the TFM framework. In this subsection, we quantify the

effect of temperature gradients on the particle migration profiles for a fixed shear gradient.
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Figure 3.8. Effect of varying the thermal Péclet number P eth = γ̇d2
p/αp via

(a) the particle diameter dp and (b) the imposed shear rate γ̇ (by rotation of
the inner cylinder) on the radial distribution of particles φ in the concentric
Couette cell for φb = 0.5. Arrows indicate the direction of increasing dp or γ̇.

We now subject the Couette cell to |∆T | = 5 − 30 K for each temperature BC. Figure 3.9 

shows that, for the BC with ∆T > 0, as the temperature difference increases, particle

migration is reduced due to the opposing shear- and thermal-driven particle migration fluxes.

The black dashed curve in Fig. 3.9 represents the isothermal case in which the migration

is solely due to the shear gradient. For BC with opposing heat transfer (∆T < 0), the

contribution of the thermal-gradient-induced particle flux aids the shear-gradient-induced

one, leading to enhanced particle migration towards the outer wall. As |∆T | is increased (in

this ∆T < 0 case), the augmentation from the thermal gradients on the overall migration

flux is evidently stronger as well.

3.4.2 Eccentric Couette cell

For the concentric Couette cell, the heat transfer characteristics are dominated by the

suspension’s effective thermal conductivity, showing only weak dependence on the various

parameters varied, which is why we did not discuss this point in Section 3.4.1 . A more inter-

esting setup in which to characterize the overall system’s thermal performance is the dense

suspension flow in an eccentric Couette cell (recall Section 3.2.2 ). For example, eccentric
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Figure 3.9. Effect of the temperature difference ∆T across the gap on the
radial distribution of particles φ in the concentric Couette cell for φb = 0.5,
γ̇ = 3 s−1 and dp = 675 µm. Arrows indicate the direction of increasing |∆T |.
The black dashed curve represents the isothermal case (∆T = 0).

Couette cells are an effective way to enhance mixing at low Reynolds number [70 ] due to the

added complexity of the recirculating regions.

We quantify the system’s heat transfer by calculating the heat transfer coefficient hin =

q′′/(Tin − Tout), where q′′ is the heat flux from the inner cylinder. Note that this convection

coefficient hin, characterizing the heat transfer in the entire system, is not the same as inter-

phase heat transfer coefficient Kh from Eq. (3.11 ), which captures heat transfer between the

particles and fluid phases. Then, making h dimensionless, we calculate the Nusselt number

Nu of the system. In this section, we show the dependence of Nu on the eccentricity

E = d/(Rout − Rin) of the Couette cell.

We use the basic Couette cell geometry from Section 3.2.2 with varying eccentricities

from E = 0 to 0.6 (above which we observe jamming of particles). The eccentricity in the

geometry renders the mesh non-orthogonal. Hence, additional non-orthogonality correction

loops are run in each time step in order to obtain accurate results [16 ]. We focus on the

neutrally buoyant suspension of BN particles with dp = 675 µm and φb = 0.3 in an FC

fluid. The thermophysical properties of the two phases are given in Table 3.4 , as before.

Finally, the same sets of thermal BCs as given in Table 3.5 are simulated to highlight the
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differences between the case when the thermal gradient across the gap aides or opposes the

shear-induced particle migration.

As mentioned above, our figure of merit for quantifying heat transfer is the system’s

Nusselt number Nu. It is calculated by applying an energy balance at the surface of the

hotter cylinder. For the case 1 BC, at steady state, this energy balance on the inner cylinder

wall gives

q′′|r=Rin = −
[
kpφ

dTp

dr
+ kf (1 − φ)dTf

dr

]
r=Rin

= hin(Tin − Tout). (3.22)

The second equality above is used to calculate the heat transfer coefficient hin = h|r=Rin for

the case 1 BC. Similarly, hout = h|r=Rout for case 2 BC is calculated by applying the same

energy balance now at the stationary outer cylinder (r = Rout). For comparison purposes,

hin is also calculated for the case 2 BC from hout via the steady energy balance as hinRin =

houtRout. In Eq. (3.22 ), the particle volume fraction and temperature gradients at the hotter

wall obtained from the TFM simulation are used. Finally, Nu = hin(Rout −Rin)/ksus (defined

the same way for all eccentricities), where the suspension thermal conductivity is taken as

ksus = φbkp + (1 − φb)kf for the purposes of computing Nu. The Nusselt number is a ‘coarse’

measure of the system heat transfer, thus in our definition of it, we do not account for the

shear-induced migration explicitly. Furthermore, since kp ≈ 500kf � kf , q′′ from Eq. (3.22 )

is dominated by the particle heat flux. Hence, the particle phase’s heat fluxes at the inner

(for ∆T > 0) and outer (for ∆T < 0) walls drive the thermal performance of the system.
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Figure 3.10. Effect of Couette cell eccentricity E on (a) Nusselt number Nu
of the suspension and (b) the Nusselt enhancement factor Nusus/Nufc (with
respect to clear FC-43 fluid with no particles) for φb = 0.3, γ̇ = 3 s−1 and
dp = 675 µm.
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Figure 3.10a shows that the Nusselt number increases with the eccentricity of the cell

for ∆T > 0 case, while an optimum at E = 0.4 is observed for ∆T < 0 case. The Nusselt

number for both thermal BCs is comparable up to E = 0.4, after which ∆T > 0 performs

better than ∆T < 0 for E = 0.5 and E = 0.6. This behavior can be explained by considering

the results shown in Fig. 3.11 . Differences in the particle migration fields are observed for

E = 0.5 and E = 0.6 between the two thermal BCs (especially near the outer wall in the

wider gap), while the particle migration fields for E = 0.4 are visually indistinguishable for

both BCs.

For E = 0.5 and E = 0.6 with ∆T < 0, particle migration is more pronounced than for

∆T > 0, as evidenced by the larger variation in the particle migration field along the outer

wall. The additional migration for ∆T < 0 is due to shear and thermal gradients aiding

each other (to increase the overall particle flux). This migration, in turn, decreases the

particle flux term in the energy equation (3.22 ) (for E = 0.5 and E = 0.6 in with ∆T < 0)

and, hence, the Nusselt number is reduced compared to the ∆T > 0 case. For this same

case, the particle migrations is also enhanced by the recirculating flow (a ‘vortex’) observed

in the velocity fields in Fig. 3.11 . For eccentricity ratio E . 0.4, the recirculating flow

is not observed (consistent with the known theory for a Newtonian eccentric Couette flow

[69 , Fig. 17]), therefore particle migration is diminished for E = 0.4 compared to E = 0.5

and E = 0.6. In addition, the vortex becomes larger and moves towards the outer wall

for ∆T < 0 (compared to ∆T > 0). Once again, this observation highlights the interplay

between heat transfer and particle migration, further suggesting that the flow characteristics

can also be tuned in this system via said interplay.

Figure 3.10b shows the dependence of the enhancement factor Nusus/Nufc (with respect

to clear FC-43 fluid with no particles) on the eccentricity ratio E. Even though Nusus (up to

E = 0.4 for the ∆T < 0 case) and Nufc are both augmented at higher E, the enhancement

factor decreases with E. This observation suggest there is a trade-off in the eccentric Couette

cell flow. The suspension yields the largest enhancement (compared to the clear FC fluid)

for the concentric case (E = 0). The relative improvement is reduced thereafter, although it

is still significant. The reason for the diminished improvement with increasing E is that the

suspension entrains particles near outer wall in the wider gap section (as evident from the top
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Figure 3.11. Comparison of the volume fraction, suspension temperature
fields, and suspension velocity (visualized by streamlines color-coded by the
velocity magnitude) for different E in the eccentric Couette cell flow, consid-
ering both types of thermal BCs.

row of Fig. 3.11 ), whereas the clear FC fluid flow (having no particles) does not exhibit this

pathology. Therefore, Nusus/Nufc shows a mild decreasing trend with E, as the accumulation

of particles near the outer wall cancels out some of the heat transfer enhancement enabled

by the highly-conductive BN particles.

Considerable deviation between the two BCs is observed at E = 0.5 and E = 0.6 due to

the enhanced particle migration for the case 2 BC resulting in lower Nusus and hence lower

Nusus/Nufc.
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4. APPLICATION TO MICROFLUIDIC COOLING

SUMMARY

This chapter focuses on the application of suspension dynamics for microchannel cooling to

mitigate junction level temperature rise. Initially the CFD simulation methodology used

in TFM to obtain accurate simulations is presented followed by mesh independent study.

Three different microchannels: uniform cross section, herringbone and converging-diverging

channels are considered for hot spot and uniform heating cases. The temperature distribution

at lower walls of the microchannels is compared for suspensions and clear FC-43 fluid (with

no particles) to conclude that suspensions possess enhance thermal spreading capability

to mitigate the temperature rise compared to clear FC-43 fluid for hot spot heating. For

uniform heating case, it was seen that suspensions reduce the junction level temperatures by

approximately 10K. Finally, the pumping power for different microchannels were compared

to conclude that herringbone channels have the least pumping power owing to the notch.

The material in this chapter was published in [P.P. Nagrani, I.C. Christov, A.M. Mar-

connet, “Two fluid modeling of dense particulate suspensions for electronics cooling,” Pro-

ceedings of IEEE-ITherm: The Intersociety Conference on Thermal and Thermomechanical

Phenomena in Electronic Systems, online, 2021.] [20 ]
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4.1 CFD Methodology

The numerical solution of the heat-transfer-enabled TFM equations was performed in

OpenFOAM® [75 ], [76 ], which uses a finite-volume discretization of the governing equations

[67 ], as discussed in [16 ]. For transient terms, a second-order backward implicit scheme was

used to ensure stability. For diffusion terms, a Gauss discretization scheme with ‘linear cor-

rected’ second-order interpolation accounts for mesh non-orthogonality. For the divergence

terms, along with Gauss integration, a ‘linear upwind’ second-order bounded-upwind scheme

was used to keep the numerical method stable. Gradient terms were discretized using a ‘lin-

ear’ scheme. A ‘PIMPLE’ coupling technique, which is a portmanteau for the combination of

the PISO (Pressure Implicit with Splitting of Operator) and SIMPLE (Semi-Implicit Method

for Pressure-Linked Equations) algorithms, was used to solve the tightly-coupled transient

problem (see, e.g., [77 ] and [67 ], Ch. 15). The time-step size was adjusted (optimized) dy-

namically under the constraint of keeping the Courant–Friedrichs–Lewy (CFL) number less

than 0.5. Further, the pressure and velocity convergence criteria for residuals were set to

10−7 and 10−9 respectively to obtain high fidelity results. For more details on the numerical

methods, their implementation, and validation, we refer the reader to our previous works

[16 ], [19 ].

In the present study, the thermal performance of three different microchannels (shown

in Fig. 4.1 ) was investigated computationally. A structured mesh of hexahedral elements

was used to discretize the 3D computational domain of the microchannels through which

the suspensions flow. We used N = 60 000 mesh elements to obtain accurate results. A

grid independent study capturing the particle concentration at the centerline of the cooling

channel was performed for different mesh sizes to conclude that N = 60 000 elements results

in accurate results while having a low computational time. The mesh elements are orthogonal

for the uniform cross-section channel and the converging-diverging channel, but they are non-

orthogonal for the herringbone channel, which helps to better mesh this complex 3D domain.

The uniform cross-section channel has a cross-section of 23 mm × 0.5 mm and is L = 50 mm

long. All three channels have the same inlet cross-section and the same axial length. The

width of the converging-diverging channel cross-section varies along the flow direction: in
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the first half of the channel, the width shrinks linearly to 13 mm at L/2 = 25 mm. Then,

in the second half of the channel, the width grows linearly to the full inlet cross-section at

the exit (at L = 50 mm). Finally, the herringbone channel consists of a channel with the

dimensions of a uniform cross-section channel with an additional notch along its top wall.

This notch adds an additional height of 0.5 mm to a portion of the channel. This feature is

responsible for secondary flows in the cross-section and, thus, enhanced mixing.

We ran unsteady simulations to steady state (typically, a physical run time of > 300 s),

which was established by checking the macroscopic energy balance across the system.

Flows of a clear FC-43 heat transfer fluid and flows of dense suspensions consisting of BN

microparticles dispersed in an FC-43 fluid were computationally investigated in the three mi-

crochannel geometries. The particles have constant thermophysical properties: thermal con-

ductivity of kp = 35.5 W m−1 K, specific heat of Cp,p = 960 J/kgK and density of ρp = 1900

kg/m3. The thermophysical properties of the FC-43 fluid are temperature dependent [71 ].

We fit a cubic polynomial to the data for the FC-43 fluid viscosity as a function of temper-

ature given in [71 ]. From the data sheet for FC-43 [71 ], the temperature-dependent specific

heat is Cp,f (Tf ) = 1014 + 1.554Tf , thermal conductivity is kf (Tf ) = 0.067 − 0.00007Tf , and

density is ρf (Tf ) = 1913−2.18Tf . In these formulas, the coefficients are in the appropriate SI

units. We assume the particle thermophysical properties to be independent of temperature,

based on measurements of these quantities for BN in the literature [72 ]–[74 ] showing only

weak dependence in the temperature range of this study.

4.2 Mesh independence study: Microchannels

We show the mesh independent study for the microchannel cooling application. From

Fig. 4.2 , we concluded that Ncells = 60, 000 mesh elements are sufficient based on a grid

independent study. The grid independence study was performed as follows: we computed

particle concentration profile at the centerline of the open channel at steady state using

simulations with different mesh sizes (different total mesh elements Ncells). The plot below

shows the dimensionless particle concentration profiles φ/φm, versus dimensionless length

x/L at the centerline with different levels of meshing. It is thus concluded that the mesh with
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(a) Uniform cross-section channel.

(b) Converging-diverging channel.

(c) Herringbone channel.

Figure 4.1. Schematics of the computational domain of each of the three
microchannel types investigated in the present study. Dimensions shown are
in mm.

a total of Ncells = 60, 000 elements is a good “trade off” allowing accurate solutions compared

to the fine mesh (with Ncells = 100, 0000 elements) but reducing overall computational time.
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Figure 4.2. Mesh independent study for microchannel geometries. Here,
Ncells is the number of mesh cells in the 3D microchannel geometry.

4.3 Results and Discussion

In this section, we first consider a uniform constant heat input of 5 W across the entire

base of the microchannels (Fig. 4.1 ). Then, we compare the latter results to those for a

localized hotspot (2 Wcm−2 over a 20 mm × 13 mm section) to see the impact of the

enhanced cooling properties of the suspension.

4.3.1 Uniform Heat Input

Figures 4.3 and 4.4 show the computed spatial fluid temperature profile at the lower wall

for the suspension and the clear fluid, respectively, with a constant heat input of 5 W across

the entire base (lower wall) of the microchannels. The same total heater power was applied,

resulting in different local heat fluxes: 0.44 Wcm−2 for the uniform cross-section channel

and herringbone channel, and 0.56 Wcm−2 for the the converging-diverging channel. For

comparison purposes, the same temperature legend bar is used in Figs. 4.3 and 4.4 . The

maximum temperature for each case is listed in Table 4.1 .

The BN particles in the suspensions increase the effective thermal conductivity of the

mixture, thus improving the heat transfer performance. Therefore, as seen by comparing

Fig. 4.3 and Fig. 4.4 , suspensions reduce the junction level temperatures compared to the
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(a) Uniform cross-section channel.

(b) Converging-diverging channel.

(c) Herringbone channel.

Figure 4.3. Temperature maps for the lower wall of the microchannels with
uniform heating of 5 W under the flow of a suspension. As expected, a linear
temperature increase is observed for the uniform cross-section channel, while
mixing can spread heat non-uniformly in the herringbone channel.
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(a) Uniform cross-section channel.

(b) Converging-diverging channel.

(c) Herringbone channel.

Figure 4.4. Temperature maps for the lower wall of the microchannels with
uniform heating of 5 W under the flow of a clear FC-43 fluid (no particles).
Compared to the cases with suspensions (Fig. 4.3 ), the temperatures are in-
creased and the effectiveness of mixing in the herringbone channel to reduce
the temperature is limited.

clear fluid. As an example, for the herringbone geometry, the maximum temperature is

approximately 317 K for suspensions case, while it is of the order of 330 K for FC-43 fluid

case.
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Table 4.1. Simulated maximum temperature in different channels for the
uniform heat input of 5 W. The maximum temperature occurs on the bottom
(heated) surface.

Microchannel Geometry Maximum Temperature (K)
FC-43 Fluid Suspension

Uniform cross-section channel 328 316
Converging-diverging channel 331 317
Herringbone channel 330 317
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Figure 4.5. Variation of heat transfer coefficient for different microchannels
with uniform heating of 5 W at the bottom wall of the channel, where x is the
axial (flow-wise) distance from the inlet. (Connecting lines are to guide the
reader’s eye.)

To characterize the cooling performance of the different microchannels, Fig. 4.5 shows the

heat transfer coefficient at several locations along the flow-wise direction. The suspension

flow in a herringbone channel significantly outperforms the other microchannels. Secondary

flows (eddies) in the channels result in enhanced mixing between the particles and fluid phase

and, hence, lower maximum temperatures. These secondary flows in the notch region also

cause non-monotonic changes in the heat transfer coefficient. In contrast, the performance

of uniform cross-section and converging-diverging channels is approximately constant along

the channel length (flow-wise direction), although there is a small improvement in the heat

transfer coefficient at the exit of the converging-diverging channel. For all three geometries,

the heat transfer coefficient for the case of flow of a clear FC-43 fluid follows the intuition
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Table 4.2. Simulated maximum temperature in different channels for a
hotspot of 2 Wcm−2. The maximum temperature occurs on the bottom
(heated) surface.

Microchannel Geometry Maximum Temperature (K)
FC-43 Fluid Suspension

Uniform cross-section channel 386 332
Converging-diverging channel 371 325
Herringbone channel 431 324

that, after a development region, the heat transfer coefficient remains constant along the

entire length of all the microchannels.

4.3.2 Hotspot

Next, hotspots of 2 W cm−2 across a 20 mm × 13 mm patch are applied at the center of

the lower walls of the microchannels. Suspensions exhibit significant thermal management

potential for these cases, compared to the clear FC-43 fluid (see Fig. 4.6 and Fig. 4.7 ). The

simulated maximum temperatures in the different microchannels are listed in Table 4.2 .

For the same geometry and power levels, the suspensions reduce the maximum temper-

ature by almost 100 K due to enhanced heat spreading near the localized hotspot. The low

thermal conductivity of the FC-43 fluid causes the junction temperature to exceed 430 K.

The enhanced thermal spreading ability of suspensions is attributed to the high thermal

conductivity of the particles and the shear- and thermal-induced particle migration further

helping spread heat away from the hotspots. To illustrate this key point, the particle con-

centration contours in the herringbone channel are shown in Fig. 4.8 . Note the regions

of high and low particle concentration caused by the need to balance the particle stress

inhomogeneity, thus leading to a complex migration pattern.

Further, the herringbone channel outperforms the other microchannels in terms of the

local heat transfer coefficient (Fig. 4.9 ). The high thermal conductivity of suspensions im-

proves the heat transfer coefficient of the converging-diverging and uniform cross-section

channel with a suspension, compared to the same geometry with a clear FC-43 fluid.
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(a) Uniform cross-section channel.

(b) Converging-diverging channel.

(c) Herringbone channel.

Figure 4.6. Temperature maps for the lower wall of the microchannels with
the flow of suspensions for the hotspot heat input of 2 Wcm−2 over an area of
20 mm × 13 mm. The dashed rectangles indicate the hotspot location. The
high thermal conductivity of the suspension helps spread the heat laterally
across the width of the channels.
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(a) Uniform cross-section channel.

(b) Converging-diverging channel.

(c) Herringbone channel.

Figure 4.7. Temperature maps for the lower wall of the microchannels with
the flow of the clear FC-43 fluid (no particles) for a hotspot heat input of
2 Wcm−2 over an area of 20 mm × 13 mm. The dashed rectangles indicate
the hotspot location. Significantly higher temperatures are observed for the
pure FC-43 fluid (compared to the suspension case in Fig. 4.6 ; note scalebar
maximum), and heat is generally confined to the width of the hotspot (i.e.,,
it is not well dissipated).
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Figure 4.8. Particle volume fraction φp distribution in a herringbone channel,
illustrating the 3D shear- and thermal-driven migration of particles in this flow.

4.3.3 Pumping Power

Forced convection cooling requires the use of an external pump, or other means to pump

the coolant through the microchannels. The pumping power is calculated as the product of

pressure drop across the channel times the volumetric flow rate. In the current scenario, the

average inlet velocity is fixed at 0.01 ms−1, and the inlet cross-section is held constant for

all three types of microchannel geometries. Hence, the volumetric flow rate is fixed as well.

Therefore, the pumping power is set by the pressure drop across the microchannels. The

presence of particles in the suspension leads to higher required pumping power, compared to

the pure fluid (see Table 4.3 ), in large part due to the increased suspension viscosity. Note

that there is a slight variation between the uniform heating and the hotspot heating cases

due to the temperature-dependent viscosity of the FC-43 fluid [71 ].

For each fluid, the converging-diverging channel requires the largest pumping power due

to the flow constriction. On the other hand, the herringbone channel has the least pressure

drop due to larger flow cross-section in the notch region. Hence in addition to a good thermal

performance, the herringbone channels also require the lowest pumping power.
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Figure 4.9. Variation of the heat transfer coefficient for different microchan-
nels for the hotspot case, where x is the axial (flow-wise) distance from the
inlet. The heat transfer coefficient is only calculated in the hotspot region
from x/L = 0.3 to 0.7. (Connecting lines are to guide the reader’s eye.)

Table 4.3. Simulated pumping power required for uniform inlet velocity of
0.01 m s−1 for the uniform and hotspot (HS) heat cases.

Microchannel Geometry
Pumping Power (µW)

FC-43 Fluid Suspension
Uniform HS Uniform HS

Uniform cross-section channel 9.1 9.2 19.8 21.3
Converging-diverging channel 11.6 12.5 27.1 26.7
Herringbone channel 5.7 5.8 8.5 8.6

Intriguingly, the flow of the suspension through the herringbone channel provides im-

proved thermal performance while requiring less pumping power compared to the flow of

the clear fluid through the uniform cross-section channel (see Tables 4.1 , 4.2 , and 4.3 ). This

demonstrates the potential for flow of suspensions through the herringbone microchannels

as a potential thermal management solution for hotspot cooling.
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5. SUMMARY AND FUTURE WORK

In the present work, we developed a two-fluid model (TFM) for simulation of heat transfer

in dense non-Brownian suspensions. We used this TFM to investigate the effect of combined

shear and thermal gradients on the phenomenon of particle migration in a Couette cell. We

built upon our previous work, Municchi, Nagrani, and Christov [16 ], in which we focused

only on the anisotropy stress tensor (recall Eq. (3.8 )) and the shear-induced particle migra-

tion aspect. In this work, we extended the latter by calibrating a closure relation for the

inter-phase heat transfer coefficient, given in Eq. (3.11 ), which takes into account the joint

effect of the particle thermal diffusivity and rate-of-tensor strain of the particulate phase

on the inter-phase (fluid-particle) heat transfer. In this respect, unlike previous models, the

proposed TFM allows for thermal disequilibrium between the phases. Specifically, in the

TFM, shearing the suspension enhances the inter-phase heat transfer coefficient, rather than

the intrinsic thermal conductivity of particles (as in previous models), which should be a

fixed thermophysical quantity. This approach allowed us to explain the origin of a novel

thermo-rheological flux and its effect on the particle migration phenomenon. Specifically,

Eq. (3.15 ) shows that a flux due to thermal gradients can act to oppose a flux generated by

shear gradients.

To further understand the interplay of shear and thermal gradients on particle migration,

we conducted a parametric study of dense suspension flow in a Couette cell by varying φb,

P eth (by varying γ̇ and dp) and ∆T across the gap. An enhanced particle segregation is

seen when ∆T < 0 because the signs of shear and thermal gradients term in Eq. (3.15 ) are

the same (fluxes are in the same direction). On the other hand, for ∆T > 0, the fluxes

due to shear and thermal gradients oppose each other resulting in a homogeneous particle

distribution across the gap. The difference in particle migration profiles between the two

cases increase as the suspension is made denser. This observation follows for that the fact

that the effect of individual migration flux terms is more pronounced when more particles (by

volume) are added to the system. In addition, we observed that particle migration is reduced

for both thermal BCs in strongly sheared suspensions (larger thermal Péclet number).
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Moreover, for the ∆T > 0 case, as |∆T | across the gap is increased, the opposing thermal-

gradient-induced flux strengthens, and ultimately cancels out more of the shear-gradient-

induced flux. The result is a more homogeneous suspension across the gap. Therefore, from

a practical point of view, to reduce particle migration and improve the thermal performance

of this flow system, it is recommended that the Couette cell is densely filled (say, φb = 0.5)

with large particles (say, dp = 0.5 mm) and subjected to high shear rates (say, γ̇ = 8 s−1)

with heat transfer in the direction towards the outer wall (∆T > 0).

In addition, we investigated the effect of eccentricity of the Couette cell on the overall

heat transfer characteristics. The eccentricity was varied from E = 0 to E = 0.6 above

which jamming of particles (flow arrest) occurs. We observed an increase in the Nusselt

number Nu with E for the ∆T > 0 BC, while an optimum at E = 0.4 exists for the

∆T < 0 BC. Decrease in Nu at larger E (for the ∆T < 0 case) is due to enhanced particle

migration arising from the combined effect of shear- and thermal-induced particle migration

aiding each other and a large recirculation zone resulting in a diminished particle flux, hence

diminished heat transfer across the system. In addition, the heat transfer enhancement

factor (Nusus/Nufc) is maximum for a concentric Couette cell. Even though Nusus and Nufc

increase with eccentricity, their ratio decreases because particles are entrained near the outer

wall for the suspension flow at large E, whereas they are not present in clear FC-43 fluid,

and reduce the overall enhancement brought by the high particle conductivity.

Ultimately, Fig. 3.10a shows that the range of Nu is quite narrow for the temperature BCs

under consideration because heat transfer in the system is dictated by the overall properties

of the suspension, as also shown in previous studies [15 ], [17 ]. The main take-away from

in this study that we wish to highlight to the reader is the novel effect of the temperature

difference directionality on the enhancement or diminution of particle migration, arising from

the thermo-rheological migration fluxes (Section 3.1.3 ). This effect is most clearly observed

by contrasting curves in Fig. 3.8 for the two BCs.

Later, we then extend the TFM computational modeling approach to resolve the coupled

effects of particle migration and thermal transport in the flow of dense particulate suspen-

sions in example geometries relevant for electronics cooling applications. Three different

microchannel types were analyzed with the objective of minimizing the maximum chip tem-
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peratures. Two different thermal boundary conditions were considered: one in the form of

uniform base heating and one in the form of localized hotspot heating. Additionally, the per-

formance of two working heat transfer fluids – a neutrally buoyant suspension (BN particles

into an FC-43 fluid) and a clear FC-43 fluid – was assessed.

For a constant heat input of 5 W, there is a small enhancement in the cooling performance

of the suspension compared to that of a clear FC-43 fluid. The maximum temperatures with

suspensions were ≈ 317 K. Meanwhile, for the clear FC-43 fluid, the maximum temperature

was found to be ≈ 331 K. Therefore, the proposed suspensions are an improved working

fluid for electronics cooling compared to the standard, clear FC-43 fluid. In particular,

this enhancement of heat transfer is due to the high thermal conductivity of the suspended

particles, which improves the overall thermophysical properties of the suspension. Further,

the herringbone channels with suspensions perform the best out of the cases considered, as

illustrated by their high heat transfer coefficient.

In the case of a localized hotspot (with heat flux of 2 Wcm−2), the enhancement in the

thermal performance by the use of suspensions is more significant due to their enhanced

heat spreading capability. The maximum temperatures were reduced from ≈ 430 K for the

clear FC-43 fluid to ≈ 330 K with suspensions. The herringbone channels with a suspension

performed the best for hotspot cooling as well.

Finally, in general, the pumping power is lower for a clear FC-43 fluid than a suspension

because the presence of suspended particles increases the effective viscosity of the suspension.

Therefore, there is a tradeoff between thermal performance and pumping power. For the

different microchannels under consideration, the converging-diverging channel had the largest

pressure drop and required the most pumping power due to the presence of a constriction.

Meanwhile, the herringbone channel required the least pumping power, in part due to the

increased cross-section in the herringbone section.

The tradeoff between pumping power and heat transfer performance must be considered

when integrating such microchannel heat sinks into electronics cooling systems for applica-

tions. This study illustrates that boron nitride particles dispersed in a fluorocarbon-based

heat transfer fluid, combined with appropriate geometric features in the microchannel to
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enhance mixing and cross-sectional flows, can lead to significant improvement over uniform

microchannels and clear working fluids.

In future work, it would be of interest to experimentally interrogate the combined effect

of shear and thermal contributions on particle migration to see enhanced and suppressed

particle migration based on heat transfer direction in the Couette cell. It would also be

intriguing to further extend TFM for electronics cooling application in which particle change

phase from solid to liquid to have enhanced heat storing capability.
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